INSIDE MACINTOSH

Files

[
rTw

Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid SanJuan

Paris Seoul Milan Mexico City Taipei

& Apple Computer, Inc.

© 1992, Apple Computer, Inc.

All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014-6299
408-996-1010

Apple, the Apple logo, APDA,
AppleShare, AppleTalk, A/UX,
LaserWriter, Macintosh, MPW,

and ProDOS are trademarks of

Apple Computer, Inc. registered in the
United States and other countries.
Apple SuperDrive, Balloon Help, Disk
First Aid, Finder, ResEdit, and System 7
are trademarks of Apple Computer, Inc.
Adobe lllustrator and PostScript are
trademarks of Adobe Systems
Incorporated, which may be registered
in certain jurisdictions.

AGFA is a trademark of Agfa-Gevaert.

FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica and Palatino are registered
trademarks of Linotype Company.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

MS-DOS is a registered trademark of
Microsoft Corporation.

Sony is a registered trademark of Sony
Corporation.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

ISBN 0-201-63244-6
1234567 89-MU-9695949392
First Printing, August 1992

Contents

Figures, Tables, and Listings Xi

Preface About This Book xv
Format of a Typical Chapter XVi
Conventions Used in This Book XVi
Special Fonts XVi
Types of Notes XVvii
Assembly-Language Information XVii
Development Environment Xviii
Chapter 1 Introduction to File Management 11

About Files 1-4
File Forks 1-4
File Size 1-6
File Access Characteristics 1-8
The Hierarchical File System 1-9
Identifying Files and Directories 1-12
Using Files 1-12
Testing for File Management Routines 1-14
Defining a Document Record 1-15
Creating a New File 1-16
Opening a File 1-18
Reading File Data 1-22
Writing File Data 1-23
Saving a File 1-26
Reverting to a Saved File 1-30
Closing a File 1-32
Opening Files at Application Startup Time 1-34
Using a Preferences File 1-36
Adjusting the File Menu 1-37
File Management Reference 1-38
Data Structures 1-39
File System Specification Record 1-39
Standard File Reply Records 1-39
Application Files Records 1-41
File Specification Routines 1-42
File Access Routines 1-43
Reading, Writing, and Closing Files 1-44
Manipulating the File Mark 1-46
Manipulating the End-of-File 1-48

File and Directory Manipulation Routines 1-49
Opening, Creating, and Deleting Files 1-49
Exchanging the Data in Two Files 1-53
Creating File System Specifications 1-54

Volume Access Routines 1-55
Updating Volumes 1-55
Obtaining Volume Information 1-56

Application Launch File Routines 1-57

Summary of File Management 1-61

Pascal Summary 1-61
Constants 1-61
Data Types 1-62
File Specification Routines 1-63
File Access Routines 1-63
File and Directory Manipulation Routines 1-63
Volume Access Routines 1-64
Application Launch File Routines 1-64

C Summary 1-64
Constants 1-64
Data Types 1-65
File Specification Routines 1-66
File Access Routines 1-67
File and Directory Manipulation Routines 1-67
Volume Access Routines 1-68
Application Launch File Routines 1-68

Assembly-Language Summary 1-68
Global Variables 1-68

Result Codes 1-69

Chapter 2 File M anager 21

About the File Manager 2-5
File Manipulation 2-7
Directory Manipulation 2-10
Volume Manipulation 2-11
Volume Searching 2-13
Shared Environments 2-14
Shared File Access Permissions 2-15
Directory Access Privileges 2-18
Remote Volume Mounting 2-20
Privilege Information in Foreign File Systems 2-20
File ID Reference Routines 2-23
Identifying Files, Directories, and Volumes 2-23
File System Specifications 2-24
File IDs 2-24
Directory IDs 2-25

Volume Reference Numbers 2-26
Working Directory Reference Numbers 2-26
Names and Pathnames 2-27
HFS Specifications 2-28
Search Paths 2-31
Using the File Manager 2-32
Determining the Features of the File Manager 2-32
Creating File System Specification Records 2-34
Manipulating the Default Volume and Directory 2-35
Deleting Files and File Forks 2-37
Searching a Volume 2-38
Constructing Full Pathnames 2-44
Determining the Amount of Free Space on a Volume 2-46
Sharing Volumes and Directories 2-48
Locking and Unlocking File Ranges 2-50
Data Organization on Volumes 2-52
Disk and Volume Organization 2-54
Boot Blocks 2-57
Master Directory Blocks 2-59
Volume Bitmaps 2-62
B*-Trees 2-63
Nodes 2-64
Node Records 2-66
Header Nodes 2-67
Map Nodes 2-69
Index Nodes 2-69
Leaf Nodes 2-70
Catalog Files 2-70
Catalog File Keys 2-71
Catalog File Data Records 2-72
Extents Overflow Files 2-74
Data Organization in Memory 2-76
The File 1/0 Queue 2-77
Volume Control Blocks 2-77
File Control Blocks 2-81
B*-Tree Control Blocks 2-83
The Drive Queue 2-84
File Manager Reference 2-86
Data Structures 2-86
File System Specification Record 2-86
Basic File Manager Parameter Block 2-87
HFS Parameter Block 2-91
Catalog Information Parameter Blocks 2-100
Catalog Position Records 2-104
Catalog Move Parameter Blocks 2-104
Working Directory Parameter Blocks 2-106
File Control Block Parameter Blocks 2-107

Vi

Volume Attributes Buffer 2-109
VVolume Mounting Information Records 2-110
High-Level File Access Routines 2-112
Reading, Writing, and Closing Files 2-112
Manipulating the File Mark 2-115
Manipulating the End-of-File 2-116
Allocating File Blocks 2-118
Low-Level File Access Routines 2-120
Reading, Writing, and Closing Files 2-121
Manipulating the File Mark 2-125
Manipulating the End-of-File 2-126
Allocating File Blocks 2-128
Updating Files 2-131
High-Level Volume Access Routines 2-132
Unmounting Volumes 2-132
Updating Volumes 2-133
Manipulating the Default Volume 2-134
Obtaining Volume Information 2-137
Low-Level Volume Access Routines 2-138
Mounting and Unmounting Volumes 2-139
Updating Volumes 2-142
Obtaining Volume Information 2-144
Manipulating the Default Volume 2-150
File System Specification Routines 2-154
Opening Files 2-154
Creating and Deleting Files and Directories 2-156
Accessing Information About Files and Directories 2-159
Moving Files or Directories 2-163
Exchanging the Data in Two Files 2-165
Creating File System Specifications 2-166
High-Level HFS Routines 2-169
Opening Files 2-169
Creating and Deleting Files and Directories 2-172
Accessing Information About Files and Directories 2-175
Moving Files or Directories 2-179
Maintaining Working Directories 2-180
Low-Level HFS Routines 2-182
Opening Files 2-183
Creating and Deleting Files and Directories 2-186
Accessing Information About Files and Directories 2-190
Moving Files or Directories 2-199
Maintaining Working Directories 2-201
Searching a Catalog 2-204
Exchanging the Data in Two Files 2-206
Shared Environment Routines 2-208
Opening Files While Denying Access 2-208
Locking and Unlocking File Ranges 2-211

Manipulating Share Points 2-213
Controlling Directory Access 2-217
Mounting Volumes 2-219
Controlling Login Access 2-222
Copying and Moving Files 2-226

File ID Routines 2-229
Resolving File ID References 2-229
Creating and Deleting File ID References 2-230

Foreign File System Routines 2-232

Utility Routines 2-235
Obtaining Queue Headers 2-235
Adding a Drive 2-236
Obtaining File Control Block Information 2-236

Application-Defined Routines 2-238
Completion Routines 2-238

Summary of the File Manager 2-240

Pascal Summary 2-240
Constants 2-240
Data Types 2-242
Internal Data Types 2-251
High-Level File Access Routines 2-253
Low-Level File Access Routines 2-254
High-Level Volume Access Routines 2-255
Low-Level Volume Access Routines 2-255
File System Specification Routines 2-256
High-Level HFS Routines 2-257
Low-Level HFS Routines 2-259
Shared Environment Routines 2-261
File ID Routines 2-263
Foreign File System Routines 2-263
Utility Routines 2-264
Application-Defined Routine 2-264

C Summary 2-264
Constants 2-264
Data Types 2-267
Internal Data Types 2-278
High-Level File Access Routines 2-280
Low-Level File Access Routines 2-280
High-Level Volume Access Routines 2-281
Low-Level Volume Access Routines 2-282
File System Specification Routines 2-283
High-Level HFS Routines 2-284
Low-Level HFS Routines 2-285
Shared Environment Routines 2-287
File ID Routines 2-290
Foreign File System Routines 2-290
Utility Routines 2-291
Application-Defined Routine 2-291

Assembly-Language Summary 2-291
Constants 2-291
Data Structures 2-292
Trap Macros 2-299
Global Variables 2-301
Result Codes 2-301

Chapter 3 Standard File Package 31

About the Standard File Package 3-3
Standard User Interfaces 3-4
Opening Files 3-4
Saving Files 3-5
Keyboard Equivalents 3-7
Customized User Interfaces 3-8
Saving Files 3-8
Opening Files 3-9
Selecting Volumes and Directories 3-10
User Interface Guidelines 3-12
Using the Standard File Package 3-13
Presenting the Standard User Interface 3-14
Customizing the User Interface 3-16
Customizing Dialog Boxes 3-17
Writing a File Filter Function 3-20
Writing a Dialog Hook Function 3-21
Writing a Modal-Dialog Filter Function 3-28
Writing an Activation Procedure 3-30
Setting the Current Directory 3-31
Selecting a Directory 3-34
Selecting a Volume 3-38
Using the Original Procedures 3-40
Standard File Package Reference 3-41
Data Structures 3-41
Enhanced Standard File Reply Record 3-42
Original Standard File Reply Record 3-43
Standard File Package Routines 3-44
Saving Files 3-44
Opening Files 3-49
Application-Defined Routines 3-55
File Filter Functions 3-55
Dialog Hook Functions 3-56
Modal-Dialog Filter Functions 3-57
Activation Procedures 3-59
Summary of the Standard File Package 3-60

viii

Pascal Summary 3-60

Constants 3-60

Data Types 3-62

Standard File Package Routines 3-63

Application-Defined Routines 3-64
C Summary 3-64

Constants 3-64

Data Types 3-66

Standard File Package Routines 3-67

Application-Defined Routines 3-68
Assembly-Language Summary 3-69

Data Structures 3-69

Trap Macros 3-69

Global Variables 3-69

Chapter 4 AliasManager 41

About the Alias Manager 4-3
Alias Records 4-4
Search Strategies 4-5
Relative Searches 4-5
Absolute Searches 4-6
Fast Searches 4-7
Exhaustive Searches 4-8
Using the Alias Manager 4-8
Creating Alias Records 4-9
Resolving Alias Records 4-10
Identifying a Single Target 4-10
Identifying Multiple Targets 4-11
Maintaining Alias Records 4-12
Getting Information From Alias Records 4-13
Customizing Alias Records 4-13
Alias Manager Reference 4-13
Data Structures 4-14
Alias Records 4-14
Alias Manager Routines 4-14
Creating and Updating Alias Records 4-14
Resolving and Reading Alias Records 4-19
Application-Defined Routines 4-25
Filtering Possible Targets 4-25
Summary of the Alias Manager 4-26
Pascal Summary 4-26
Constants 4-26
Data Types 4-26
Alias Manager Routines 4-27
Application-Defined Routine 4-27

C Summary 4-28
Constants 4-28
Data Types 4-28
Alias Manager Routines 4-29
Application-Defined Routine 4-29
Assembly-Language Summary 4-29
Data Structure 4-29
Trap Macros 4-30
Result Codes 4-30

Chapter 5 Disk Initidlization Manager 51

About the Disk Initialization Manager 5-3
Disk Initialization 5-4
The Disk Initialization User Interface 5-5
Bad Block Sparing 5-7
Using the Disk Initialization Manager 5-9
Responding to Disk-Inserted Events 5-9
Erasing Initialized Disks 5-11
Overriding the Standard Initialization Interface 5-12
Changing Default Volume Characteristics 5-13
Disk Initialization Manager Reference 5-15
Routines 5-15
Loading and Unloading the Disk Initialization Manager
Initializing a Disk 5-17
Low-Level Disk Initialization Routines 5-19
Summary of the Disk Initialization Manager 5-23
Pascal Summary 5-23
Data Types 5-23
Routines 5-23
C Summary 5-24
Data Types 5-24
Routines 5-24
Assembly-Language Summary 5-25
Data Structures 5-25
Trap Macros 5-25
Global Variables 5-25
Result Codes 5-25

Glossary L1

5-15

Index IN-1

Chapter 1

Chapter 2

Figures, Tables, and Listings

Introduction to File Management 1-1

Figure 1-1 The two forks of a Macintosh file 1-5

Figure 1-2 Logical blocks and allocation blocks 1-7

Figure 1-3 Logical end-of-file and physical end-of-file 1-8

Figure 1-4 The Macintosh hierarchical file system 1-10

Figure 1-5 The disk switch dialog box 1-11

Figure 1-6 A typical File menu 1-12

Figure 1-7 The default Open dialog box 1-19

Figure 1-8 The default Save dialog box 1-28

Figure 1-9 The new folder dialog box 1-29

Figure 1-10 The name conflict dialog box 1-29

Figure 1-11 A Revert to Saved dialog box 1-30

Listing 1-1 Handling the File menu commands 1-13

Listing 1-2 Testing for the availability of routines that operate
on FSSpec records 1-14

Listing 1-3 A sample document record 1-15

Listing 1-4 Handling the New menu command 1-16

Listing 1-5 Creating a new document window 1-17

Listing 1-6 Handling the Open menu command 1-19

Listing 1-7 Opening a file 1-20

Listing 1-8 Reading data from a file 1-22

Listing 1-9 Writing data into a file 1-24

Listing 1-10 Updating a file safely 1-25

Listing 1-11 Handling the Save menu command 1-26

Listing 1-12 Handling the Save As menu command 1-27

Listing 1-13 Copying a resource from one resource fork to another 1-30

Listing 1-14 Handling the Revert to Saved menu command 1-31

Listing 1-15 Handling the Close menu command 1-32

Listing 1-16 Closing a file 1-33

Listing 1-17 Opening files at application launch time 1-35

Listing 1-18 Opening a preferences file 1-36

Listing 1-19 Adjusting the File menu 1-37

File Manager 21

Figure 2-1 Access and deny mode synchronization 2-16

Figure 2-2 Access privileges information in the i 0ACAccess field 2-19
Figure 2-3 Identifying a file in HFS 2-30

Figure 2-4 Organization of partitions on a disk 2-55

Figure 2-5 Organization of a volume 2-56

Figure 2-6 The structure of a B*-tree file 2-63

Figure 2-7 The structure of a node 2-64

Figure 2-8 Structure of a B*-tree node record 2-66

Xi

Chapter 3

Xil

Figure 2-9
Figure 2-10

Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 2-6
Table 2-7
Table 2-8
Table 2-9
Table 2-10
Table 2-11

Table 2-12

Listing 2-1
Listing 2-2
Listing 2-3
Listing 2-4
Listing 2-5
Listing 2-6
Listing 2-7
Listing 2-8
Listing 2-9
Listing 2-10
Listing 2-11

A sample B*-tree 2-67
Header node structure 2-68

Routines for opening file forks 2-7

Routines for operating on open file forks 2-9
Routines for operating on closed files 2-9
Routines for operating on directories 2-10
Routines for manipulating working directories 2-11
Routines for operating on volumes 2-12

Routines for manipulating working directories 2-13
Shared environment routines 2-15

Access mode translation 2-17

How FSVakeFSSpec interprets its parameters 2-35

Fields ini oSear chl nf ol and i oSear chl nf 02 used
for a file 2-39

Fields ini oSear chl nf ol and i oSear chl nf 02 used
for a directory 2-39

Testing for PBCat Sear ch 2-33

Deleting a file’s resource fork 2-37

Searching a volume with PBCat Sear ch 2-41

Searching a volume using a recursive, indexed search 2-43
Constructing the full pathname of a file 2-45
Determining the amount of free space on a volume 2-47
Determining whether a volume is sharable 2-48
Determining whether file sharing is enabled 2-49
Determining whether a file can have ranges locked 2-50
Locking a file range to append data to the file 2-51
Reading a drive queue element’s flag bytes 2-85

Standard File Package 3-1

Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8

Figure 3-9
Figure 3-10

Figure 3-11

Listing 3-1
Listing 3-2
Listing 3-3
Listing 3-4
Listing 3-5

The default Open dialog box 3-5

The default Save dialog box 3-6

The New Folder dialog box 3-6

The name conflict dialog box 3-7

The Save dialog box customized with radio buttons 3-8
The Save dialog box customized with a pop-up menu 3-9
The Open dialog box customized with a pop-up menu 3-9

The Open dialog box customized to allow selection
of a directory 3-10

The Open dialog box when no directory is selected 3-11

The Open dialog box with a long directory name
abbreviated 3-11

A volume selection dialog box 3-12

Handling the Open menu command 3-14
Specifying more than four file types 3-15
Presenting a customized Open dialog box 3-17
The definition of the default Open dialog box 3-18
The definition of the default Save dialog box 3-18

Chapter 4

Chapter 5

Listing 3-6
Listing 3-7
Listing 3-8
Listing 3-9
Listing 3-10
Listing 3-11
Listing 3-12
Listing 3-13
Listing 3-14
Listing 3-15
Listing 3-16
Listing 3-17
Listing 3-18

Listing 3-19
Listing 3-20
Listing 3-21

Listing 3-22

Alias Manager

The item list for the default Open dialog box 3-18
The item list for the default Save dialog box 3-19
A sample file filter function 3-21

A sample dialog hook function 3-27

A sample modal-dialog filter function 3-30
Determining the current directory 3-31
Determining the current volume 3-32

Setting the current directory 3-32

Setting the current volume 3-33

Setting the current directory 3-33

A file filter function that lists only directories 3-34
Setting a button’s title 3-35

Handling user selections in the directory selection
dialog box 3-35

Presenting the directory selection dialog box 3-37
A file filter function that lists only volumes 3-38

Handling user selections in the volume selection
dialog box 3-39

Presenting the volume selection dialog box 3-40

41

Figure 4-1

Listing 4-1
Listing 4-2

Resolving a relative path 4-6

Creating an alias record 4-9
Storing an alias record as a resource 4-12

Disk Initialization Manager 5-1

Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5

Listing 5-1
Listing 5-2
Listing 5-3
Listing 5-4

Listing 5-5

The disk initialization dialog box 5-5

Alternate buttons for the disk initialization dialog box
The disk initialization warning 5-6

The disk naming dialog box 5-6

The Finder’s disk erasing dialog box 5-7

Responding to disk-inserted events 5-10
Reinitializing a valid disk 5-11

Reinitializing a validly formatted disk without using
the standard interface 5-12

Initializing an uninitialized disk without using the
standard interface 5-13

Changing default volume characteristics 5-15

5-6

xiil

P REFACE

About This Book

This book, Inside Macintosh: Files, describes the parts of the Macintosh
Operating System that allow you to manage files. It shows in detail how your
application can handle the commands typically found in a File menu. It also
provides a complete technical reference to the File Manager, the Standard File
Package, the Alias Manager, and other file-related services provided by the
system software.

If you are new to the Macintosh Operating System, you should begin with the
chapter “Introduction to File Management.” This chapter describes the basic
structure of Macintosh files and the hierarchical file system (HFS) used with
Macintosh computers, and it shows how you can use the services provided by
the Standard File Package, the File Manager, the Finder, and other system
software components to create, open, update, and close files. Because this
chapter is designed to be largely self-contained, the reference and summary
sections in this chapter are subsets of the corresponding sections from the
other chapters in this book.

Once you are familiar with basic file management on Macintosh computers,
you might want to read other chapters in this book. The chapter “File
Manager” describes how your application can manage shared files; search
for specific files in a volume; obtain information about files, directories, and
volumes; and perform other advanced operations. This chapter also describes
how the File Manager organizes file and directory data on disk and in
memory. Much of this information is of interest only to designers of very
specialized applications or file-system utility programs.

If you want to customize the user interface for naming and identifying files,
you need to read the chapter “Standard File Package.” It provides complete
information on how to customize and display the dialog boxes that let the
user specify the names and locations of files to be saved or opened.

If your application needs to keep track of particular files, directories, or
volumes, you might want to use the Alias Manager. It helps you find objects
in the file system, even if those objects have been moved or renamed. See the
chapter “Alias Manager” for complete details.

The chapter “Disk Initialization Manager” shows how you can initialize disks
and erase the contents of previously initialized disks. The Disk Initialization
Manager provides a routine that allows you to present the standard user
interface for initializing and naming disks. Most applications should call that
routine whenever they receive a disk-inserted event and the inserted disk

is invalid.

XV

P REFACE

Format of a Typical Chapter

Almost all chapters in this book follow a standard structure. For example, the
chapter “Standard File Package” contains these sections:

n “About the Standard File Package.” This section provides an overview of the
features provided by the Standard File Package.

n “Using the Standard File Package.” This section describes the tasks you can
accomplish using the Standard File Package. It describes how to use the
most common routines, gives related user interface information, provides
code samples, and supplies additional information.

n “Standard File Package Reference.” This section provides a complete
reference to the Standard File Package by describing the data structures and
routines that it uses. Each routine description also follows a standard format,
which gives the routine declaration and a description of every parameter of
the routine. Some routine descriptions also give additional descriptive
information, such as assembly-language information or result codes.

n “Summary of the Standard File Package.” This section provides the
Standard File Package’s Pascal interface, as well as the C interface, for the
constants, data structures, routines, and result codes associated with the
Standard File Package. It also includes relevant assembly-language
interface information.

Some chapters contain additional main sections that provide more detailed
discussions of certain topics. For example, the chapter “File Manager”
contains the section “Identifying Files, Directories, and Volumes,” which
describes the many ways to identify objects in the file system. That chapter
also contains the two advanced sections “Data Organization on VVolumes”
and “Data Organization in Memory.”

Conventions Used in This Book

XVi

Inside Macintosh uses various conventions to present information. Words that
require special treatment appear in specific fonts or font styles. Certain
information, such as parameter blocks, use special formats so that you can
scan them quickly.

Special Fonts

All code listings, reserved words, and the names of actual data structures,
constants, fields, parameters, and routines are shown in Courier (t hi s
is Courier).

Words that appear in boldface are key terms or concepts and are defined in
the Glossary.

P REFACE

Types of Notes

There are several types of notes used in this book.

Note

A note like this contains information that is interesting but possibly not
essential to an understanding of the main text. (An example appears on
page 1-6.) u

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. (An example appears on page 1-6.) s

WARNING
Warnings like this indicate potential problems that you should be aware
of as you design your application. Failure to heed these warnings could
result in system crashes or loss of data. (An example appears on

page 1-46.) s

Assembly-Language Information

Inside Macintosh provides information about the registers for specific routines
like this:

Registers on entry

A0 Contents of register A0 on entry

Registers on exit

DO Contents of register DO on exit

In addition, Inside Macintosh presents information about the fields of a
parameter block in this format:

Parameter block

« i nAndQut I nt eger Input/output parameter.
- out putl Ptr Output parameter.
® i nput 1 Ptr Input parameter.

The arrow in the far left column indicates whether the field is an input
parameter, output parameter, or both. You must supply values for all input
parameters and input/output parameters. The routine returns values in
output parameters and input/output parameters.

The second column shows the field name as defined in the MPW Pascal
interface files; the third column indicates the Pascal data type of that field.
The fourth column provides a brief description of the use of the field. For a
complete description of each field, see the discussion that follows the
parameter block or the description of the parameter block in the reference
section of the chapter.

Xvili

P REFACE

Development Environment

Xviil

The system software routines described in this book are available using
Pascal, C, or assembly-language interfaces. How you access these routines
depends on the development environment you are using. This book shows
system software routines in their Pascal interface using the Macintosh
Programmer’s Workshop (MPW).

All code listings in this book are shown in Pascal. They show methods of
using various routines and illustrate techniques for accomplishing particular
tasks. All code listings have been compiled and, in most cases, tested.
However, Apple Computer does not intend that you use these code samples
in your application.

This book occasionally uses SurfDraw as the name of a sample application for
illustrative purposes; this is not an actual product of Apple Computer, Inc.

APDA, Apple’s source for developer tools, offers worldwide access to a broad
range of programming products, resources, and information for anyone
developing on Apple platforms. You’ll find the most current versions of
Apple and third-party development tools, debuggers, compilers, languages,
and technical references for all Apple platforms. To establish an APDA
account, obtain additional ordering information, or find out about site
licensing and developer training programs, contact

APDA

Apple Computer, Inc.

20525 Mariani Avenue, M/S 33-G
Cupertino, CA 95014-6299

Telephone: 800-282-2732 (United States)
800-637-0029 (Canada)
800-562-3910 (elsewhere in the world)

Fax: 408-562-3971
Telex: 171-576

If you provide commercial products and services, call 408-974-4897 for
information on the developer support programs available from Apple.

For information on registering signatures, file types, Apple events, and other
technical information, contact

Macintosh Developer Technical Support
Apple Computer, Inc.

20525 Mariani Avenue, M/S 75-3T
Cupertino, CA 95014-6299

CHAPTER 1

Introduction to
File Management

Contents

About Files 1-4
File Forks 1-4
File Size 1-6
File Access Characteristics 1-8
The Hierarchical File System 1-9
Identifying Files and Directories 1-12
Using Files 1-12
Testing for File Management Routines 1-14
Defining a Document Record 1-15
Creating a New File 1-16
Opening a File 1-18
Reading File Data 1-22
Writing File Data 1-23
Saving a File 1-26
Reverting to a Saved File 1-30
Closing a File 1-32
Opening Files at Application Startup Time 1-34
Using a Preferences File 1-36
Adjusting the File Menu 1-37
File Management Reference 1-38
Data Structures 1-39
File System Specification Record 1-39
Standard File Reply Records 1-39
Application Files Records 1-41
File Specification Routines 1-42

Contents

1-1

CHAPTER 1

File Access Routines 1-43
Reading, Writing, and Closing Files 1-44
Manipulating the File Mark 1-46
Manipulating the End-of-File 1-48
File and Directory Manipulation Routines 1-49
Opening, Creating, and Deleting Files 1-49
Exchanging the Data in Two Files 1-53
Creating File System Specifications 1-54
Volume Access Routines 1-55
Updating Volumes 1-55
Obtaining Volume Information 1-56
Application Launch File Routines 1-57
Summary of File Management 1-61
Pascal Summary 1-61
Constants 1-61
Data Types 1-62
File Specification Routines 1-63
File Access Routines 1-63
File and Directory Manipulation Routines 1-63
VVolume Access Routines 1-64
Application Launch File Routines 1-64
C Summary 1-64
Constants 1-64
Data Types 1-65
File Specification Routines 1-66
File Access Routines 1-67
File and Directory Manipulation Routines 1-67
Volume Access Routines 1-68
Application Launch File Routines 1-68
Assembly-Language Summary 1-68
Global Variables 1-68
Result Codes 1-69

Contents

CHAPTER 1

Introduction to File Management

This chapter is a general introduction to file management on Macintosh computers. It
explains the basic structure of Macintosh files and the hierarchical file system (HFS) used
with Macintosh computers, and it shows how you can use the services provided by the
Standard File Package, the File Manager, the Finder, and other system software
components to create, open, update, and close files.

You should read this chapter if your application implements the commands typically
found in an application’s File menu—except for printing commands and the Quit
command, which are described elsewhere. This chapter describes how to

n create a new file

n open an existing file

n close a file

n save a document’s data in a file

n save a document’s data in a file under a new name
n revert to the last saved version of a file

n create and read a preferences file

Depending on the requirements of your application, you may be able to accomplish all
your file-related operations by following the instructions given in this chapter. If your
application has more specialized file management needs, you’ll need to read some or all
of the remaining chapters in this book.

This chapter assumes that your application is running in an environment in which the
routines that accept file system specification records (defined by the FSSpec data type)
are available. File system specification records, introduced in system software version 7.0,
simplify the identification of objects in the file system. Your development environment
may provide “glue” that allows you to call those routines in earlier system software
versions. If such glue is not available and you want your application to run in system
software versions earlier than version 7.0, you need to read the discussion of HFS
file-manipulation routines in the chapter “File Manager” in this book.

This chapter begins with a description of files and their organization into directories and
volumes. Then it describes how to test for the presence of the routines that accept FSSpec
records and how to use those routines to perform the file management tasks listed above.
The chapter ends with descriptions of the data structures and routines used to perform
these tasks. The “File Management Reference” and “Summary of File Management”
sections in this chapter are subsets of the corresponding sections of the remaining
chapters in this book.

1-3

CHAPTER 1

Introduction to File Management

About Files

1-4

To the user, a file is simply some data stored on a disk. To your application, a file is a
named, ordered sequence of bytes stored on a Macintosh volume, divided into two forks
(as described in the following section, “File Forks™). The information in a file can be used
for any of a variety of purposes. For example, a file might contain the text of a letter or
the numerical data in a spreadsheet; these types of files are usually known as documents.
Typically adocument is a file that a user can create and edit. A document is usually
associated with a single application, which the user expects to be able to open by
double-clicking the document’s icon in the Finder.

A file might also contain an application. In that case, the information in the file consists
of the executable code of the application itself and any application-specific resources and
data. Applications typically allow the user to create and manipulate documents. Some
applications also create special files in which they store user-specific settings; such files
are known as preferences files.

The Macintosh Operating System also uses files for other purposes. For example, the File
Manager uses a special file located in a volume to maintain the hierarchical organization
of files and folders in that volume. This special file is called the volume’s catalog file.
Similarly, if virtual memory is in operation, the Operating System stores unused pages of
memory in a disk file called the backing-store file.

No matter what its function, each file shares certain characteristics with every other file.
This section describes these general characteristics of Macintosh files, including

n file forks
n file size and access characteristics
n file system organization

n file naming and identification

File Forks

Many operating systems treat a file simply as a named, ordered sequence of bytes
(possibly terminated by a byte having a special value that indicates the end-of-file). As
illustrated in Figure 1-1, however, each Macintosh file has two forks, known as the data
fork and the resource fork.

A file’s resource fork contains that file’s resources. If the file is an application, the
resource fork typically contains resources that describe the application’s menus, dialog
boxes, icons, and even the executable code of the application itself. A particularly
important resource is the application’s ' SI ZE' resource, which contains information
about the capabilities of the application and its run-time memory requirements. If the file
is a document, its resource fork typically contains preference settings, window locations,
and document-specific fonts, icons, and so forth.

About Files

CHAPTER 1

Introduction to File Management

Figure 1-1 The two forks of a Macintosh file

e

[t — — Fasoircas

[— Fesouroe map
.

Dot ke Rexoawe fxk

A file’s data fork contains the file’s data. It is simply a series of consecutive bytes of data.
In a sense, the data fork of a Macintosh file corresponds to an entire file in operating
systems that treat a file simply as a sequence of bytes. The bytes stored in a file’s data
fork do not have to exhibit any internal structure, unlike the bytes stored in the resource
fork (which consists of a resource map followed by resources). Rather, your application
is responsible for interpreting the bytes in the data fork in whatever manner is appropri-
ate. The data fork of a document file might, for example, contain the text of a letter.

Even though a Macintosh file always contains both a resource fork and a data fork, one
or both of those forks can be empty. Document files sometimes contain only data (in
which case the resource fork is empty). More often, document files contain both
resources and data. Application files generally contain resources only (in which case, the
data fork is empty). Application files can, however, contain data as well.

Whether you store specific data in the data fork or in the resource fork of a file depends
largely on whether that data can usefully be structured as a resource. For example, if you
want to store a small number of names and telephone numbers, you can easily define a
resource type that pairs each name with its telephone number. Then you can read names
and corresponding numbers from the resource file by using Resource Manager routines.
To retrieve the data stored in a resource, you simply specify the resource type and ID;
you don’t need to know, for instance, how many bytes of data are stored in that resource.

In some cases, however, it is not possible or advisable to store your data in resources.
The data might be too difficult to put into the structure required by the Resource
Manager. For example, it is easiest to store a document’s text, which is usually of
variable length, in a file’s data fork. Then you can use File Manager routines to access
any byte or group of bytes individually.

About Files 1-5

1-6

CHAPTER 1

Introduction to File Management

Even when it is easy to define a resource type for your data, limitations on the Resource
Manager might compel you to store your data in the data fork instead. A resource fork
can contain at most about 2700 resources. More importantly, the Resource Manager
searches linearly through a file’s resource types and resource IDs. If the number of types
or IDs to be searched is large, accessing the resource data can become slow. As a rule of
thumb, if you need to manage data that would occupy more than about 500 resources
total, you should use the data fork instead.

IMPORTANT

In general, you should store data created by the user in a file’s data fork,
unless the data is guaranteed to occupy a small number of resources.
The Resource Manager was not designed to be a general-purpose data
storage and retrieval system. Also, the Resource Manager does not
support multiple access to a file's resource fork. If you want to store data
that can be accessed by multiple users of a shared volume, use the

data fork. s

Because the Resource Manager is of limited use in storing large amounts of
user-generated data, most of the techniques in “Using Files” (beginning on page 1-12)
illustrate the use of File Manager routines to manage information stored in a file’s data
fork. See the section “Using a Preferences File” on page 1-36 for an example of the use of
the Resource Manager to access data stored in a file’s resource fork.

File Size

The size of afile is usually limited only by the size of its volume. A volume is a portion
of a storage device that is formatted to contain files. A volume can be an entire disk or
only a part of a disk. A 3.5-inch floppy disk, for instance, is always formatted as one
volume. Other memory devices, such as hard disks and file servers, can contain multiple
volumes.

Note

Actually, a file on an HFS volume can be as large as 2 GB ($7FFFFFFF
bytes). Most volumes are not large enough to hold a file of that size. An
HFS volume currently can be as large as 2 GB. u

The size of a volume varies from one type of device to another. Volumes are formatted
into chunks known as logical blocks, each of which can contain up to 512 bytes. A
double-sided 3.5-inch floppy disk, for instance, usually has 1600 logical blocks, or 800 KB.

Generally, however, the size of a logical block on a volume is of interest only to the disk
device driver. This is because the File Manager always allocates space to a file in units
called allocation blocks. An allocation block is a group of consecutive logical blocks. The
File Manager can access a maximum of 65,535 allocation blocks on any volume. For
small volumes, such as volumes on floppy disks, the File Manager uses an allocation
block size of one logical block. To support volumes larger than about 32 MB, the File

About Files

CHAPTER 1

Introduction to File Management

Manager needs to use an allocation block size that is at least two logical blocks. To
support volumes larger than about 64 MB, the File Manager needs to use an allocation
block that is at least three allocation blocks. In this way, by progressively increasing
the number of logical blocks in an allocation block, the File Manager can handle
larger and larger volumes. Figure 1-2 illustrates how logical blocks are grouped into
allocation blocks.

Figure 1-2 Logical blocks and allocation blocks
Logeonl - Aloontins
Bl e Meeciineh wolume Eloch

'i' Rk A 0

2 FicB 1

2

4 2

3 Fl=C

& 2

T

n n

2nH z

The size of the allocation blocks on a volume is determined when the volume is
initialized and depends on the number of logical blocks it contains. In general, the

Disk Initialization Manager uses the smallest allocation block size that will allow the

File Manager to address the entire volume. A nonempty file fork always occupies at least
one allocation block, no matter how many bytes of data that file fork contains. On a

40 MB volume, for example, a file’s data fork occupies at least 1024 bytes (that is, two
logical blocks), even if it contains only 11 bytes of actual data.

To distinguish between the amount of space allocated to a file and the number of bytes of
actual data in the file, two numbers are used to describe the size of a file. The physical
end-of-file is the number of bytes currently allocated to the file; it’s 1 greater than the
number of the last byte in its last allocation block (since the first byte is byte number 0).
As a result, the physical end-of-file is always an exact multiple of the allocation block
size. The logical end-of-file is the number of those allocated bytes that currently contain
data; it’s 1 greater than the number of the last byte in the file that contains data. For
example, on a volume having an allocation block size of two logical blocks (that is,

1024 bytes), a file with 509 bytes of data has a logical end-of-file of 509 and a physical
end-of-file of 1024 (see Figure 1-3).

About Files 1-7

CHAPTER 1

Introduction to File Management

Figure 1-3 Logical end-of-file and physical end-of-file

.';'.Ilmu'li-:-n bk

f I.-:gi-:d blckS II.-:gi-:d bk 1

{ - i - b

P '

[- I - [

Eyre: 0 11 512 (1=
Logicdd andofde Frosics andofils
{byre S0 e 1024)

1-8

You can move the logical end-of-file to adjust the size of the file. When you move the
logical end-of-file to a position more than one allocation block short of the current
physical end-of-file, the File Manager automatically deletes the unneeded allocation
block from the file. Similarly, you can increase the size of a file by moving the logical
end-of-file past the physical end-of-file. When you move the logical end-of-file past the
physical end-of-file, the File Manager automatically adds one or more allocation blocks
to the file. The number of allocation blocks added to the file is determined by the
volume’s clump size. Aclump is a group of contiguous allocation blocks. The purpose of
enlarging files always by adding clumps is to reduce file fragmentation on a volume,
thus improving the efficiency of read and write operations.

If you plan to keep extending a file with multiple write operations and you know in
advance approximately how large the file is likely to become, you should first call the
Set EOF function to set the file to that size (instead of having the File Manager adjust
the size each time you write past the end-of-file). Doing this reduces file fragmentation
and improves 1/0 performance.

File Access Characteristics

A file can be open or closed. Your application can perform certain operations, such as
reading and writing data, only on open files. It can perform other operations, such as
deleting, only on closed files.

When you open a file, the File Manager reads information about the file from its volume
and stores that information in a file control block (FCB). The File Manager also creates
an access path to the file, a description of the route to be followed when accessing the
file. The access path specifies the volume on which the file is located and the location of
the file on the volume. Each access path is assigned a unique file reference number
(some number greater than 0) by which your application refers to the path. Multiple
access paths can be opened to the same file.

About Files

CHAPTER 1

Introduction to File Management

For each open access path to a file, the File Manager maintains a current position marker,
called the file mark, to keep track of where it is in the file during a read or write
operation. The mark is the number of the next byte that will be read or written; each time
a byte is read or written, the mark is moved. When, during a write operation, the mark
reaches the number of the last byte currently allocated to the file, the File Manager adds
another clump to the file.

You can read bytes from and write bytes to a file either singly or in sequences of virtually
unlimited length. You can specify where each read or write operation should begin by
setting the mark or specifying an offset; if you don’t, the operation begins at the current
file mark.

Each time you want to read or write a file’s data, you need to pass the address of a data
buffer, a part of RAM (usually in your application’s heap). The File Manager uses the
buffer when it transfers data to or from your application. You can use a single buffer for
each read or write operation, or change the address and size of the buffer as necessary.

When your application writes data to a file, the File Manager transfers the data from
your application’s data buffer and writes it to the disk cache, a part of RAM (usually in
the System heap). The File Manager uses the disk cache as an intermediate buffer when
reading data from or writing it to the file system. When your application requests

that data be read from a file, the File Manager looks for the data in the disk cache

and transfers it to your application’s data buffer if the data is found in the cache;
otherwise, the File Manager reads the requested bytes from the disk and puts them in
your data buffer.

Note

You can also read a continuous stream of characters or a line of
characters from a file. In the first case, you ask the File Manager to read a
specific number of bytes: When that many have been read, or when the
mark reaches the logical end-of-file, the read operation terminates. In the
second case, called newline mode, the read operation terminates when
either of the above conditions is met or when a specified character, the
newline character, is read. The newline character is usually Return
(ASCII code $0D), but it can be any character. Information about newline
mode is associated with each access path to a file and can differ from
one access path to another. See the chapter “File Manager” in this book
for more information about newline mode. u

The Hierarchical File System

The Macintosh Operating System uses a method of organizing files called the
hierarchical file system (HFS). In HFS, files are grouped into directories (also called
folders), which themselves are grouped into other directories, as illustrated in
Figure 1-4. The number listed for each directory is its directory ID. The directory 1D
is one component of a file system specification, as explained in the next section,
“Identifying Files and Directories.”

About Files 1-9

CHAPTER 1

Introduction to File Management

1-10

Figure 1-4 The Macintosh hierarchical file system
c
Myviabame i
[1 i
" 21 26
Fruit= = Wegeiehles

—F— T

| L
. I:.l I L _
E]

Bppkes Mddon=s Tropica Walns Empis Folder Fed
1
r I | 1

1L =-

Oolpees Bananas Coconuds Guavas Tomatoes

The Finder is responsible for managing the files and folders on the desktop. It works
with the File Manager to maintain the organization of files and folders on a volume. The
hierarchical relationship of folders within folders on the desktop corresponds directly to
the hierarchical directory structure maintained on the volume. The volume is known as
the root directory, and the folders are known as subdirectories, or simply directories.

A volume appears on the desktop only after it has been mounted. Ejectable volumes
(such as 3.5-inch floppy disks) are mounted when they’re inserted into a disk drive;
nonejectable volumes (such as those on hard disks) are mounted automatically at system
startup. When a volume is mounted, the File Manager places information about the
volume in a nonrelocatable block of memory called a volume control block (VCB). The
number of volumes that can be mounted at any time is limited only by the number of
drives attached and available memory.

When a volume is mounted, the File Manager assigns a volume reference number by
which you can refer to the volume for as long as it remains mounted. You can also
identify a volume by its volume name, a sequence of 1 to 27 printing characters,
excluding colons (3). (The File Manager ignores case when comparing names but does
recognize diacritical marks.) Whenever possible, though, you should use the volume
reference number to avoid confusion between volumes with the same name.

Note
A volume reference number is valid only until the volume is
unmounted. If a single volume is mounted and then unmounted, the

File Manager may assign it a different volume reference number when it
is next mounted. u

About Files

CHAPTER 1

Introduction to File Management

When an application ejects a 3.5-inch disk from a drive, the File Manager places the
volume offline. When a volume is offline, the volume control block is kept in memory
and the volume reference number is still valid. If you make a File Manager call that
specifies that volume, the File Manager presents the disk switch dialog box to the user.
Figure 1-5 shows a sample disk switch dialog box.

Figure 1-5 The disk switch dialog box

Please insert the disk:
,
£ Mathan's Games

When the user drags a volume icon to the Trash, that volume isunmounted; the
volume control block is released, and the volume is no longer known to the File
Manager. In particular, the volume reference number previously assigned to the
volume is no longer valid.

Each subdirectory is located within a directory called its parent directory. Typically, the
parent directory is specified by a parent directory ID, which is simply the directory ID of
the parent directory. The File Manager assigns a special parent directory ID to a volume’s
root directory. This is primarily to permit a consistent method of identifying files and
directories using the volume reference number, the parent directory ID, and the file or
directory name. See the next section, “ldentifying Files and Directories,” for details.

For the most part, your application does not need to be concerned about, or keep track
of, the location of files in the file system hierarchy. Most of the files your application
opens and saves are specified by the user or another application, and their location is
provided to your application by either the Finder or the Standard File Package. One
notable exception here concerns preferences files, which are typically stored in the
Preferences folder in the currently active System Folder. See “Using a Preferences File”
on page 1-36 for instructions on finding preferences files.

Note

In addition to files, folders, and volumes, a fourth type of object, namely
an alias, might appear on the Finder desktop. An alias is a special kind
of file that represents another file, folder, or volume. The Finder and the
Standard File Package automatically resolve aliases before passing files
to your application, so you generally don’t need to do anything with
aliases. For more information on working with alias files, see the chapter
“Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials and
the chapter “Alias Manager” in this book. u

About Files 1-11

CHAPTER 1

Introduction to File Management

Identifying Files and Directories

The hierarchical arrangement of files and directories allows you to identify a file or
directory uniquely by providing just three pieces of information: its volume reference
number, its parent directory ID, and its name within that parent directory. The system
software lets you specify these three items together in a file system specification record,
defined by the FSSpec data type:

TYPE FSSpec = {file system specification}

RECORD
vRef Num I nt eger; {vol une reference nunber}
par | D Longl nt ; {directory I D of parent directory}
nane: Str63; {filenane or directory nane}

END;

The FSSpec record provides a simple and standard format for specifying files and
directories. For example, the Standard File Package procedure St andar dGet Fi | e uses
an FSSpec record to return information identifying a user-selected file or folder. You can
pass that specification directly to any file-manipulation routines, such as FSpCpenDF
and FSpDel et e, that accept FSSpec records. In addition, the Alias Manager, Edition
Manager, and Finder all use FSSpec records to specify files and directories.

Using Files

This section describes how to perform typical file operations using some of the services
provided by the Standard File Package, the File Manager, the Finder, and other system
software components. Figure 1-6 shows the typical appearance of an application’s

File menu.

Figure 1-6 A typical File menu

1-12

New 3N
open... 30
Close EA L
Save S
Save As...

Revert to 5aved

Page Setup...
Print... #P
Quit %0

Using Files

CHAPTER 1

Introduction to File Management

Note that all the commands in this menu, except for the Quit and Page Setup commands,
manipulate files. Your application’s File menu should resemble the menu shown in
Figure 1-6 as closely as possible. In general, whenever the user creates or manipulates
information that is stored in a document, you need to implement all the commands
shown in Figure 1-6.

Note

Some applications allow the user to create or edit information that is not
stored in a document. In those cases, it is inappropriate to put the
commands that create or manipulate that information in the File menu.
Instead, group those commands together in a separate menu. u

Listing 1-1 shows one way to handle some of the typical commands in a File menu. Most
of the techniques described in this section are illustrated by means of definitions of the
functions called in Listing 1-1.

Listing 1-1 Handling the File menu commands

PROCEDURE DoHandl eFi | eConmand (nenultem | nteger);

VAR
myErr: OSErr;
BEG N
CASE nenultem OF
i New.
myErr : = DoNewCnd; {create a new docunent}
i Open:
myErr : = DoQOpenCnd; {open an existing docunent}
i O ose:
myErr : = DoC oseCnd; {cl ose the current docunent}
i Save:
myErr : = DoSaveCnd; {save the current docunent}
i SaveAs:
myErr : = DoSaveAsCnd; {save docunent under new nane}
i Revert:
myErr : = DoRevert Cnd; {revert to | ast saved version}
OTHERW SE
END;
END;

Your application should deactivate any menu commands that do not apply to the
frontmost window. For example, if the frontmost window is not a document window
belonging to your application, then the Close, Save, Save As, and Revert commands
should be dimmed when the menu appears. Similarly, if the document in the frontmost
window does belong to your application but contains data that has not changed since it

Using Files 1-13

CHAPTER 1

Introduction to File Management

was last saved, then the Save menu command should be dimmed. See “Adjusting the
File Menu” on page 1-37 for details on implementing this feature. The definitions of the
application-defined functions used in Listing 1-1 assume that this feature has been
implemented.

The techniques described in this chapter for manipulating files assume that you identify
files and directories by using file system specification records. Because the routines that
accept FSSpec records are not available on all versions of system software, you may
need to test for the availability of those routines before actually calling any of them. See
the next section, “Testing for File Management Routines,” for details.

Testing for File Management Routines

To determine the availability of the routines that operate on FSSpec records, you can
call the Gest al t function with the gest al t FSAt t r selector code, as illustrated in
Listing 1-2.

Listing 1-2 Testing for the availability of routines that operate on FSSpec records

1-14

FUNCTI ON FSSpecRout i nesAvai |l : Bool ean;
VAR
myErr: CSErr; {Gestalt result code}
my Feat ur e: Longl nt; {Gestalt response}
BEG N
FSSpecRout i nesAvail := FALSE;
| F gHasGestalt THEN {if Gestalt is avail abl e}
BEG N
myErr := Cestalt(gestaltFSAttr, nyFeature);
I'F nyErr = noErr THEN
| F BTst (nyFeature, gestaltHasFSSpecCalls) THEN
FSSpecRout i nesAvail := TRUE;
END;
END,

To use the procedures defined in the following sections to open and save files, you

also need to make sure that the routines St andar dGet Fi | e and St andar dPut Fi | e
are available. You can do this by passing Gest al t the gestal t St andardFi | eAttr
selector and verifying that the bit gest al t St andar dFi | €58 is set in the response
value. Also, before using the Fi ndFol der function (as shown, for example, in

Listing 1-10 on page 1-25), you should call the Gest al t function with the

gest al t Fi ndFol der At t r selector and verify that the gest al t Fi ndFol der Pr esent
bit is set; this indicates that the Fi ndFol der function is available.

Using Files

CHAPTER 1

Introduction to File Management

If the routines that operate on FSSpec records are not available, you can use
corresponding File Manager and Standard File Package routines. For example, if
you cannot call FSpQpenDF, you can call HOpenDF. That is, instead of writing

nyErr := FSpOpenDF(nySpec, fsCurPerm nyFile);
you can write something like
myErr : = HOpenDF(nyVol, nyDirl D, nyNanme, fsCurPerm nmnyFile);

The only difference is that the mySpec parameter is replaced by three parameters
specifying the volume reference number, the parent directory ID, and the filename. With
only a few exceptions, all of the techniques presented in this chapter can be easily
adapted to work with high-level HFS routines in place of the routines that work with
FSSpec records.

Note

One notable exception concerns the Standard File Package procedures
SFGet Fi | e and SFPut Fi | e. The vRef Numfield of the reply

record passed to both these functions contains a working directory
reference number, which encodes both the directory ID and the
volume reference number. In general, you should avoid using this
number; instead you can turn it into the corresponding directory 1D and
volume reference number by calling the Get WDI nf o function. See the
chapter “File Manager” in this book for details on working directory
reference numbers. u

Defining a Document Record

When a user creates a new document or opens an existing document, your application
displays the contents of the document in a window, which provides a standard interface
for the user to view and possibly edit the document data. It is useful for your application
to define a document record, an application-specific data structure that contains
information about the window, any controls in the window (such as scroll bars), and the
file (if any) whose contents are displayed in the window. Listing 1-3 illustrates a sample
document record for an application that handles text files.

Listing 1-3 A sample document record
TYPE
MyDocRecHnd = "MyDocRecPtr;
MyDocRecPt r = "MyDocRec;
MyDocRec =
RECORD
edi t Rec: TEHandl e; {handl e to TextEdit record}
vScrol | Bar: Cont r ol Handl e; {vertical scroll bar}

Using Files 1-15

CHAPTER 1

Introduction to File Management

hScrol | Bar: Cont r ol Handl e; {hori zontal scroll bar}

fil eRef Num I nt eger; {ref numfor windows file}

fil eFSSpec: FSSpec; {file's FSSpec}

wi ndowDi rty: Bool ean; {has wi ndow dat a changed?}
END,;

Some fields in the MyDocRec record hold information about the TextEdit record that
contains the window’s text data. Other fields describe the horizontal and vertical scroll
bars in the window. The nmyDocRec record also contains a field for the file reference
number of the open file (if any) whose data is displayed in the window and a field for
the file system specification that identifies that file. The file reference number is needed
when the application manipulates the open file (for example, when it reads data from or
writes data to the file, and when it closes the file). The FSSpec record is needed when a
“safe-save” procedure is used to save data in a file.

The last field of the MyDocRec data type is a Boolean value that indicates whether the
contents of the document in the TextEdit record differ from the contents of the document
in the associated file. When your application first reads a file into the window, you
should set this field to FALSE. Then, when any subsequent operations alter the contents
of the document, you should set the field to TRUE. Your application can inspect this field
whenever appropriate to determine if special processing is needed. For example, when
the user closes a document window and the value of the wi ndowDi rt y flag is TRUE,
your application should ask the user whether to save the changed version of the
document in the file. See Listing 1-16 (page 1-33) for details.

To associate a document record with a particular window, you can simply set a handle to
that record as the reference constant of the window (by using the Window Manager
procedure Set WRef Con). Then you can retrieve the document record by calling the

Get VIRef Con function. Listing 1-15 illustrates this process.

Creating a New File

The user expects to be able to create a new document using the New command in the
File menu. Listing 1-4 illustrates one way to handle the New menu command.

Listing 1-4 Handling the New menu command

1-16

FUNCTI ON DoNewCnd: OSErr;
VAR
myW ndow: W ndowPtr; {the new docunment w ndow, ignored here}
BEG N
{Create a new wi ndow and nmake it visible.}
DoNewCrd : = DoNewDocW ndow TRUE, nyW ndow) ;
END;

Using Files

CHAPTER 1

Introduction to File Management

The DoNewCird function simply calls the application-defined function DoNewDocW ndow
(shown in Listing 1-5). The first parameter to DoNewDocW ndow determines whether the
new window should be visible or not; the value TRUE indicates that the new window
should be visible. If DoNewDocW ndow completes successfully, it returns a window
pointer to the calling routine in the second parameter. The DoNewCnd function ignores
that returned window pointer.

Listing 1-5 Creating a new document window

FUNCTI ON DoNewDocW ndow (newDocunent: Bool ean; var nyW ndow. W ndowPtr):

CSErr;
VAR
myDat a: MyDocRecHnd; {the wi ndow s data record}
CONST
r DocW ndow = 1000; {resource I D of wi ndow tenpl ate}
BEG N

{Al |l ocate a new wi ndow; see Wndow Mgr chapter for details.}
myW ndow : = Get NewW ndow(r DocW ndow, NI L, WndowPtr(-1));
| F myW ndow = NI L THEN
BEG N
DoNewDocW ndow : = MenError;
Exi t (DoNewDocW ndow) ;
END;

{Al'l ocate space for the window s data record.}
myDat a : = MyDocRecHnd(NewHandl e(Si zeOf (MyDocRec))) ;
IF myData = NIL THEN
BEG N
DoNewDocW ndow : = MenError;
D sposeW ndow(nyW ndow) ;
Exi t (DoNewDocW ndow) ;

END;
MoveHH (Handl e(nyData)) ; {move t he handl e high}
HLock(Handl e(nyDat a)) ; {l ock the handl e}
W TH nyDat a** DO {fill in wi ndow dat a}
BEG N
edi t Rec : = TENew gDest Rect, gVi ewRect);
vScrol |l := GetNewControl (rVvVScroll, nmyW ndow);
hScroll := GetNewControl (rHScroll, nyW ndow);
fileRefNum : = 0; {no file yet!}
wi ndowDi rty : = FALSE;
IF (editRec = NIL) OR (vScroll = NL) OR (hScroll = NL) THEN

Using Files 1-17

END;

CHAPTER 1

Introduction to File Management

BEG N
DoNewDocW ndow : = nenful | Err;
Di sposeW ndow(nyW ndow) ;
Di sposeControl (vScrol I');
Di sposeControl (hScrol I);
TEDi spose(editRec);
D sposeHandl e(myDat a) ;
Exi t (DoNewDocW ndow) ;
END;

| F newDocunent THEN {if new docunent, show it}
ShowwW ndow(nyW ndow) ;

Set WRef Con(nyW ndow, Longlnt(nmyData)); {link record to w ndow}
HUnl ock(Handl e(nyDat a)) ; {unl ock the handl e}
DoNewDocW ndow : = noFErr;

END;

1-18

Note that the DoNewDocW ndow function does not actually create a new file. The reason
for this is that it is usually better to wait until the user actually saves a new document
before creating a file (mainly because the user might decide not to save the document).
The DoNewDocW ndow function creates a window, allocates a new document record,

and fills out the fields of that record. However, it sets the f i | eRef Numfield of the
document record to 0 to indicate that no file is currently associated with this window.

Opening a File

Your application might need to open a file in several different situations. For example, if
the user launches your application by double-clicking one of its document icons in the
Finder, the Finder provides your application with information about the selected file (if
your application receives high-level events, the Finder sends it an Open Documents
event). At that point, you want to create a new window for the document and read the
document data from the file into the window.

Your application also opens files after the user chooses the Open command in the File
menu. In this case, you need to determine which file to open. You can use the Standard
File Package to present a standard dialog box that allows the user to navigate the file
system hierarchy (if necessary) and select a file of the appropriate type. Once you get the
necessary information from the Standard File Package, you can then create a new
window for the document and read the document data from the file into the window.

As you can see, it makes sense to divide the process of opening a document into several
different routines. You can have a routine that elicits a file selection from the user and
another routine that creates a window and reads the file data into it. In the sample

Using Files

CHAPTER 1

Introduction to File Management

listings given here, the function DoOpenCrd handles the interaction with the user and
DoOpenkFi | e reads a file into a new window.

Listing 1-6 shows one way to handle the Open command in the File menu. It uses the
Standard File Package routine St andar dGet Fi | e to determine which file the user
wants to open.

Listing 1-6 Handling the Open menu command

FUNCTI ON DoQpenCnd: OSErr;

VAR
myRepl y: St andar dFi | eRepl y; {Standard File reply record}
myTypes: SFTypelLi st ; {types of files to display}
nyErr: OSErr;

BEG N
nmyErr := noErr;
nmyTypes[0] := 'TEXT; {display text files only}

StandardGetFil e(NIL, 1, nyTypes, nyReply);
I F myReply. sf Good THEN
nyErr := DoOpenFil e(nyReply.sfFile)
ELSE
myErr : = usrCancel edErr;
DoOpenCnd : = nyErr;
END,

The St andar dGet Fi | e procedure requires a list of file types to display in an Open
dialog box, as in Figure 1-7. In this case, only text files are to be listed.

Figure 1-7 The default Open dialog box

== Tropical v =— 80 5C

O Ackees

0 Bananas
0O Coconuts Desktop
O Guavas

Eiont

l

L

Cancel

Open

<

Using Files 1-19

CHAPTER 1

Introduction to File Management

The user can scroll through the list of files in the current directory, change the current

directory, select a file to open, or cancel the operation altogether. When the user clicks

either the Cancel or the Open button, St andar dGet Fi | e fills out the Standard File
reply record you pass to it, which has this structure:

TYPE St andardFil eReply =

RECORD
sf Good: Bool ean; {TRUE if user did not cancel}
sf Repl aci ng: Bool ean; {TRUE if replacing file with same nane}
sf Type: CSType; {file type}
sfFile: FSSpec; {selected iten}
sf Scri pt: Scri pt Code; {script of selected item s nane}
sf Fl ags: I nt eger; {Finder flags of selected iten}
sf | sFol der: Bool ean; {selected itemis a folder}
sf 1 sVol une: Bool ean; {selected itemis a vol une}
sf Reservedl: Longl nt; {reserved}
sf Reserved2: I nt eger; {reserved}
END;

In this situation, the relevant fields of the reply record are the sf Good andsf Fi | e
fields. If the user selects a file to open, the sf Good field is set to TRUE and the sf Fi | e
field contains an FSSpec record for the selected file. In Listing 1-6, the returned FSSpec
record is passed directly to the application-defined function DoOpenFi | e. Listing 1-7
illustrates a way to define the DoOpenFi | e function.

Listing 1-7 Opening a file

FUNCTI ON DoQpenFil e (nmySpec: FSSpec): OSErr;

VAR
myW ndow: W ndowPt r ; {wi ndow for file data}
myDat a: MyDocRecHnd; {handl e to wi ndow dat a}
myFi | eRef Num | nt eger; {file reference nunber}
nmyErr: OSErr;

BEG N

{Create a new wi ndow, but don't showit yet.}
myErr : = DoNewDocW ndow(FALSE, nyW ndow) ;
IF (nmyErr <> noErr) OR (nmyWndow = NI L) THEN
BEG N
DoOpenFile := nyErr;
Exi t (DoOpenFil e);
END;

Set Wi t | e(myW ndow, nySpec. nane); {set window s title}
My Set W ndowPosi ti on(nyW ndow) ; {set wi ndow position}

1-20 Using Files

CHAPTER 1

Introduction to File Management

{Open the file's data fork for reading and witing.}
nyErr : = FSpOpenDF(nySpec, fsRAW Perm nyFil eRef Num;
IF myErr <> noErr THEN
BEG N
Di sposeW ndow(myW ndow) ;
DoOpenFile := nyErr;
Exit (DoOpenFil e);
END;

{Retrieve handle to wi ndow s data record.}

nyData : = MyDocRecHnd(Get WRef Con(myW ndow)) ;

myDat a””. fil eRef Num : = nyFi | eRef Num {save file information}
myDat a”. fi | eFSSpec : = nySpec;

myErr : = DoReadFi | e(nyW ndow) ; {read in file data}
ShowwW ndow(nyW ndow) ; {now show t he wi ndow}
DoOpenFile := nyErr;

END;

This function is relatively simple because much of the real work is done by the two
functions DoNewDocW ndowand DoReadFi | e. The DoReadFi | e function is
responsible for actually reading the file data from the disk into the TextEdit record
associated with the document window. See the next section, “Reading File Data,” for a
sample definition of DoReadFi | e.

In Listing 1-7, the key step is the call to FSpOpenDF, which opens the data fork of the
specified file. A file reference number—which indicates an access path to the open file—
is returned in the third parameter. As you can see, this reference number is saved in the
document record, from where it can easily be retrieved for future calls to the FSRead
and FSW i t e functions.

The second parameter in a call to the FSpOpenDF function specifies the access mode for
opening the file. For each file, the File Manager maintains access mode information that
determines what type of access is available. Most applications support one of two types
of access:

n Asingle user is allowed to read from and write to a file.

n Multiple users are allowed to read from a file, but no one can write to it.
Your application can use the following constants to specify these types of access:

CONST
fsCurPerm = 0 {what ever perm ssion is allowed}
f sRdPer m 1; {read pernission}
f sW Perm = 2 {write permssion}
f sSRAW Per m = 3 {exclusive read/wite pernission}
f SRAW ShPerm = 4; {shared read/wite pernission}

Using Files 1-21

CHAPTER 1

Introduction to File Management

To open a file with exclusive read/write access, you can specify f SRAW Per m To open a
file with read-only access, specify f sRdPer m If you want to open a file and don’t know
or care which type of access is available, specify f sCur Per m When you specify

f sCur Per m if no access paths are already open, the file is opened with exclusive read/
write access. If other access paths are already open, but they are read-only, another
read-only path is opened.

Reading File Data

Once you have opened a file, you can read data from it by calling the FSRead function.
Generally you need to read data from a file when the user first opens a file or when the
user reverts to the last saved version of a document. The DoReadFi | e function defined
in Listing 1-8 illustrates how to use FSRead to read data from a file into a TextEdit
record in either situation.

Listing 1-8 Reading data from a file

FUNCTI ON DoReadFil e (nyW ndow. W ndowPtr): OSErr;

VAR
myDat a: MyDocRecHnd; {handl e to a document record}
nyFi | e: I nt eger; {file reference nunber}
myLengt h: Longl nt; {nunber of bytes to read fromfile}
myText : TEHandl e; {handl e to TextEdit record}
myBuf f er: Ptr; {pointer to data buffer}
nyErr: OSEr v
BEG N
myDat a : = MyDocRecHnd(Get WRef Con(nyW ndow)); {get w ndow s data}
myFile : = nyData™”. fil eRef Num {get file reference nunber}
myErr := SetFPos(nyFile, fsFronStart, 0); {set file mark at start}
IF myErr <> noErr THEN
BEG N
DoReadFil e : = nyErr;
Exi t (DoReadFi | e);
END,
nmyErr := Get EOF(mnyFile, myLength); {get file Iength}
myBuf fer := NewPtr(nmyLength); {allocate a buffer}
I F myBuffer = NIL THEN
BEG N
DoReadFi | e : = MenError;
Exi t (DoReadFi | e);
END;

1-22

Using Files

CHAPTER 1

Introduction to File Management

myErr := FSRead(nyFile, nyLength, myBuffer); {read data into buffer}
IF (nyErr = noErr) OR (nyErr = eof Err) THEN
BEA N {nmove data into TERec}
HLock(Handl e(nyDat a*”. edi t Rec)) ;
TESet Text (nmyBuf fer, myLength, nyData””. editRec);
nyErr = noErr;
HUnl ock(Handl e(nyDat a*”. edi t Rec)) ;
END;
DoReadFil e : = nyErr;
END,

The DoReadFi | e function takes one parameter specifying the window to read data into.
This function first retrieves the handle to that window’s document record and extracts
the file’s reference number from that record. Then DoReadFi | e calls the Set FPos
function to set the file mark to the beginning of the file having that reference number.
There is no need to check that myFi | e has a nonzero value, because Set FPos returns an
error if you pass it an invalid file reference number.

The second parameter to Set FPos specifies the file mark positioning mode; it can
contain one of the following values:

CONST
f sAt Mar k = 0; {at current nark}
fsFronStart = 1; {set mark relative to beginning of file}
fsFromLEOF = 2; {set mark relative to | ogical end-of-file}
fsFromvark = 3; {set mark relative to current nark}

If you specify f sAt Mar k, the mark is left wherever it’s currently positioned, and the
third parameter of Set FPos is ignored. The next three constants let you position the
mark relative to either the beginning of the file, the logical end-of-file, or the current
mark. If you specify one of these three constants, the third parameter contains the byte
offset (either positive or negative) from the specified point. Here, the appropriate
positioning mode is relative to the beginning of the file.

If DoReadFi | e successfully positions the file mark, it next determines the number of
bytes in the file by calling the Get ECF function. The key step in the DoReadFi | e
function is the call to FSRead, which reads the specified number of bytes from the file
into the specified buffer. In this case, the data is read into a temporary buffer; then the
data is moved into the TextEdit record associated with the file. The FSRead function
returns, in the nyLengt h parameter, the number of bytes actually read from the file.

Writing File Data

Generally your application writes data to a file in response to the File menu commands
Save or Save As. However, your application might also incorporate a scheme that
automatically saves all open documents to disk every few minutes. It therefore makes
sense to isolate the routines that handle the menu commands from the routines that

Using Files 1-23

CHAPTER 1

Introduction to File Management

handle the actual writing of data to disk. This section shows how to write the data stored
in a TextEdit record to a file. See “Saving a File” on page 1-26 for instructions on
handling the Save and Save As menu commands.

It is very easy to write data from a specified buffer into a specified file. You simply
position the file mark at the beginning of the file (using Set FPos), write the data into
the file (using FSW i t e), and then resize the file to the number of bytes actually written
(using Set ECF). Listing 1-9 illustrates this sequence.

Listing 1-9 Writing data into a file

FUNCTI ON DoWiteData (nyW ndow. W ndowPtr; nyTenp: Integer): OSErr;

VAR
nmy Dat a:
nmyLengt h
nyText :
my Buf f er
nmy Vol :
nmyErr:

BEG N

1-24

nyDat a :
nmy Text

my Buf f er
nmyLengt h

nmyErr :=
IF nmyErr

nyErr
I F nyErr

nyErr
I'F myErr

nmyErr
I'F nmyErr

nmyErr
I F nyErr
ny Dat

MyDocRecHnd; {handl e to a document record}

: Longl nt; {nunber of bytes to wite to file}
TEHandl e; {handl e to TextEdit record}

: Handl e; {handl e to actual text in TERec}
I nt eger; {vol une reference nunmber of nyFile}
CSErr;

MyDocRecHnd(Get WRef Con(nyW ndow)); {get w ndow s data record}

= nyDat a*”. edi t Rec; {get TERec}
:= myText M. hText; {get text buffer}
:= nmyText . telLengt h; {get text buffer size}
Set FPos(myTenp, fsFronttart, 0); {set file mark at start}
= noErr THEN {write buffer into file}
= FSWite(nyTenp, myLength, nyBuffer”);
= noErr THEN {adjust file size}
:= Set ECF(myTenp, myLength);
= noErr THEN {find volune file is on}
:= Get VRef Num(myTenp, myVol);
= noErr THEN {flush vol une}
:= FlushVol (NI'L, myVol);
= noErr THEN {show file is up to date}

a"™. wi ndowbDirty := FALSE;

DoWiteData : = nyErr;
END;

The DoW i t eDat a function first retrieves the TextEdit record attached to the specified
window and extracts the address and length of the actual text buffer from that record.
Then it calls Set FPos, FSW i t e, and Set EOF as just explained. Finally, Dow i t eDat a
determines the volume containing the file (using the Get VRef Numfunction) and flushes
that volume (using the Fl ushVol function). This is necessary to ensure that both the
file’s data and the file’s catalog entry are updated.

Using Files

CHAPTER 1

Introduction to File Management

Notice that the DoW i t eDat a function takes a second parameter, ny Tenp, which should
be the file reference number of a temporary file, not the file reference number of the file
associated with the window whose data you want to write. If you pass the reference
number of the file associated with the window, you risk corrupting the file, because the
existing file data is overwritten when you position the file mark at the beginning of the
file and call FSW i t e. If FSW i t e does not complete successfully, it is very likely that
the file on disk does not contain the correct document data.

To avoid corrupting the file containing the saved version of a document, always call
DoW i t eDat a specifying the file reference number of some new, temporary file. Then,
when DoW i t eDat a completes successfully, you can call the FSpExchangeFi | es
function to swap the contents of the temporary file and the existing file. Listing 1-10
illustrates how to update a file on disk safely; it shows a sequence of updating,
renaming, saving, and deleting files that preserves the contents of the existing file until
the new version is safely recorded.

Listing 1-10 Updating a file safely

FUNCTI ON DoWiteFile (nmyWndow): OSErr;

VAR
myDat a: MyDocRecHnd; {handl e to wi ndow s docunent record}
myFSpec: FSSpec; {FSSpec for file to update}
myTSpec: FSSpec; {FSSpec for tenmporary file}
nmy Ti me: Longl nt ; {current tinme; for tenporary fil enane}
my Nane: St r 255; {nane of tenporary file}
my Tenp: I nt eger; {file reference nunber of tenporary file}
nmy VRef : I nt eger; {vol une reference nunber of tenporary file}
myDirl D: Longl nt;; {directory ID of tenporary file}
nmyErr: CSErr;

BEG N
myDat a : = MyDocRecHnd(Get WRef Con(nyW ndow)) ; {get that w ndow s dat a}
myFSpec : = nyData™”.fil eFSSpec; {get FSSpec for existing file}
Get Dat eTi ne(nyTi ne) ; {create a tenporary fil enane}

NuniToStri ng(nyTi me, nyNane) ;

{Find the tenporary folder on file's volune; create it if necessary.}
myErr : = Fi ndFol der (nyFSpec. vRef Num kTenpor ar yFol der Type,

kCreat eFol der, nyVRef, nyDirlD);
I F myErr = noErr THEN {make an FSSpec for tenp file}

myErr : = FSMakeFSSpec(nyVRef, nyDirlD, nyName, myTSpec);

IF (nyErr = noErr) OR (nyErr = fnfErr) THEN{create a tenporary file}
myErr := FSpCreate(nyTSpec, 'trsh', 'trsh', snBystenfcript);

IF nmyErr = noErr THEN {open the newy created file}

Using Files 1-25

nmyErr
IF nmyErr

nyErr
I F nyErr

nyErr
I'F myErr

nmyErr
IF nmyErr

nyErr

CHAPTER 1

Introduction to File Management

:= FSpQpenDF(nyTSpec, fsRdWPerm nyTenp);

= noErr THEN {wite data to the data fork}
.= DoWit eDat a(nyW ndow, nyTenp);

= noErr THEN {close the tenporary file}

.= FSC ose(myTenp) ;

= noErr THEN {swap data in the two files}
: = FSpExchangeFi | es(nyTSpec, mnyFSpec);

= noErr THEN {del ete the tenmporary file}

: = FSpDel et e(nyTSpec) ;

DoWiteFile := nyErr;

END;

The essential idea behind this “safe-save” process is to save the data in memory into a
new file and then to exchange the contents of the new file and the old version of the file
by calling FSpExchangeFi | es. The FSpExchangeFi | es function does not move the
data on the volume; it merely changes the information in the volume’s catalog file and, if
the files are open, in their file control blocks (FCBs). The catalog entry for a file contains

n fields that describe the physical data, such as the first allocation block, physical end,
and logical end of both the resource and data forks

n fields that describe the file within the file system, such as file ID and parent
directory ID

Fields that describe the data remain with the data; fields that describe the file remain
with the file. The creation date remains with the file; the modification date remains with
the data. (For a more complete description of the FSpExchangeFi | es function, see the
chapter “File Manager” in this book.)

Saving a File

There are several ways for a user to indicate that the current contents of a document
should be saved (that is, written to disk). The user can choose the File menu commands
Save or Save As, or the user can click the Save button in a dialog box that you display
when the user attempts to close a “dirty” document (that is, a document whose contents
have changed since the last time it was saved). You can handle the Save menu command
quite easily, as illustrated in Listing 1-11.

Listing 1-11 Handling the Save menu command

FUNCTI ON DoSaveCnd: OSErr;

VAR
myW ndow: W ndowPt r; {pointer to the front w ndow}
myDat a: MyDocRecHnd; {handl e to a document record}
myErr: CSErr;

1-26 Using Files

CHAPTER 1

Introduction to File Management

BEG N
myW ndow : = Front W ndow, {get front wi ndow and its data}
myDat a : = MyDocRecHnd(Get WRef Con(nyW ndow)) ;
I F nmyDat a®™.fil eRef Num <> 0 THEN {if window has a file already}
nyErr := DoWiteFile(nmyWndow); {then wite contents to disk}
ELSE
myErr : = DoSaveAsCnd; {el se ask for a fil enanme}
DoSaveCmd : = nyErr;
END,

The DoSaveCnd function simply checks whether the frontmost window is already
associated with a file. If so, then DoSaveCnd calls DoW i t eFi | e to write the data to
disk (using the “safe-save” process illustrated in the previous section). Otherwise, if no
file exists for that window, DoSaveCrd calls DoSaveAsCd. Listing 1-12 shows a way to
define the DoSaveAs Cnd function.

Listing 1-12 Handling the Save As menu command

FUNCTI ON DoSaveAsCnd: OSErr;

VAR
myW ndow: W ndowPt r; {pointer to the front w ndow}
myDat a: MyDocRecHnd; {handl e to a document record}
nyRepl y: St andar dFi | eRepl vy;
myFi | e: I nt eger; {file reference nunber}
nmyErr: CSErr;

BEG N
myW ndow : = Front W ndow;, {get front wi ndow and its data}

myDat a : = MyDocRecHnd(Get WRef Con(nyW ndow)) ;
nmyErr := noErr;

StandardPut Fil e(’' Save as:', 'Untitled , nyReply);
| F nyReply. sf Good THEN {user saves file}
BEG N

I F NOT nyReply. sf Repl aci ng THEN
nyErr := FSpCreate(nyReply.sfFile, 'MYAP', 'TEXT,
snByst enScri pt);
I'F nyErr <> noErr THEN
Exi t (DoSaveAsCmd) ;
myDat a*". fil eFSSpec : = nyReply.sfFile;

| F nyDat a®*. fil eRef Num <> 0 THEN {if window already has a file}
myErr := FSC ose(nyData”™.fil eRef Num); {close it}

Using Files 1-27

CHAPTER 1

Introduction to File Management

{Create docunment's resource fork and copy Finder resources to it.}
FSpCr eat eResFi | e(nyDat a””. fi | eFSSpec, ' MYAP' , ' TEXT',
snByst enScri pt);
nmyErr := ResError;
I'F nyErr = noErr THEN
myFil e : = FSpOpenResFi | e(nyDat a**. fil eFSSpec, fsRAW Pernj;

IF nyFile > 0 THEN {copy Fi nder resources}
myErr : = DoCopyResource(' STR ', -16396, gAppsResFile, nyFile)
ELSE

nmyErr := ResError;
I'F nyErr = noErr THEN
myErr := FSC ose(nyFile); {cl ose the resource fork}

{Open data fork and |l eave it open.}
IF myErr = noErr THEN
myErr : = FSpOpenDF(nyDat a®”. fil eFSSpec, fsRdW Perm myFile);
I'F nyErr = noErr THEN
BEG N
myDat a*”. fil eRef Num : = nyFil e;
Set W t | e(myW ndow, mnyReply. sfFile.nane);
myErr DoWiteFil e(myW ndow) ;
END,
DoSaveAsCnd : = nyErr;
END,

END,
The St andar dPut Fi | e procedure is similar to the St andar dGet Fi | e procedure

discussed earlier in this chapter. It manages the user interface for the default Save dialog
box, illustrated in Figure 1-8.

Figure 1-8 The default Save dialog box

== Tropical v = 80 5C
“ fokaas 4]
0 Bananns
0 foranuts Desktop
0 bunuas
5 I
save as:

1-28 Using Files

CHAPTER 1

Introduction to File Management

If the user clicks the New Folder button, the Standard File Package presents a subsidiary
dialog box like the one shown in Figure 1-9.

Figure 1-9 The new folder dialog box

= Tropical ¥ — 80 SC
0 Rekaws [t [e
Y Bapnanas
0 Penonuis Mame of new folder:
W BHaERs [untitied folder |
Save as:

If the user asks to save a file with a name that already exists at the specified location,
the Standard File Package displays a subsidiary dialog box, like the one shown in
Figure 1-10, to verify that the new file should replace the existing file.

Figure 1-10 The name conflict dialog box

Replace existing “Ackees™
rd

Cancel Replace

Note in Listing 1-12 that if the user is not replacing an existing file, the DoSaveAsCnd
function creates a new file and records the new FSSpec record in the window’s
document record. Otherwise, if the user is replacing an existing file, DoSaveAsCnd
simply records, in the window’s document record, the FSSpec record returned by

St andar dGet Fi | e.

When DoSaveAsCnd creates a new file, it also copies a resource from your application’s
resource fork to the resource fork of the newly created file. This resource (with ID
—-16396) identifies the name of your application. (For more details about this resource,
see the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials.)

The DoSaveAsCnd function calls the application-defined routine DoCopyResour ce.
Listing 1-13 shows a simple way to define the DoCopyResour ce function.

Using Files 1-29

CHAPTER 1

Introduction to File Management

Listing 1-13 Copying a resource from one resource fork to another

FUNCTI ON DoCopyResource (theType: ResType; thelD: |Integer;
source: Integer; dest: Integer): OSErr;

VAR
myHandl e: Handl e; {handl e to resource to copy}
my Nane: St r 255; {nane of resource to copy}
myType: ResType; {ignored; used for GetReslnfo}
myl D: I nt eger; {ignored; used for GetReslnfo}
BEG N
UseResFi | e(source); {set the source resource file}

myHandl e : = Get Resource(theType, thelD); {open the source resource}
| F nyHandl e <> NIL THEN

BEG N
Get Resl nfo(nyHandl e, nmyl D, nyType, nyNanme); {get resource nane}
Det achResour ce(nyHandl e) ; {detach resource}
UseResFi |l e(dest); {set destination resource file}

AddResour ce(nmyHandl e, theType, thel D, myNane);
I F ResError = noErr THEN

Wit eResour ce(nmyHandl e) ; {write resource data}
END;
DoCopyResource : = ResError; {return result code}
Rel easeResour ce(myHandl e) ;

END;

See the chapter “Resource Manager” in Inside Macintosh: More Macintosh Toolbox for
details about the routines used in Listing 1-13.

Reverting to a Saved File

Many applications that manipulate files provide a menu command that allows the user
to revert to the last saved version of a document. The technique for handling this
command is relatively simple. First you should display a dialog box asking whether to
revert to the last saved version of the file, as illustrated in Figure 1-11.

Figure 1-11 A Revert to Saved dialog box

Revert to the last saved version of the file
named "Coconuts"?

T

1-30 Using Files

CHAPTER 1

Introduction to File Management

If the user clicks the Cancel button, nothing should happen to the current document. If,
however, the user confirms the menu command by clicking OK, you just need to call
DoReadFi | e to read the disk version of the file back into the window. Listing 1-14
illustrates how to implement a Revert to Saved menu command.

Listing 1-14 Handling the Revert to Saved menu command

FUNCTI ON DoRevert Cnd: OSErr;

VAR

myW ndow: W ndowPt r ; {wi ndow for file data}

myDat a: MyDocRecHnd; {handl e to wi ndow dat a}

nyFi | e: I nt eger; {file reference nunber}

my Nane: St r 255; {file's nane}

myDi al og: Di al ogPtr; {pointer to nodal dial og box}

myltem I nt eger; {item sel ected in nodal dial og}

myPor t : Gafbtr; {the original graphics port}
CONST

kRevertDi al og = 128; {resource I D of Revert to Saved di al og}
BEG N

myW ndow : = Front W ndow;, {get pointer to front w ndow}

{get handle to wi ndow s data record}
myDat a : = MyDocRecHnd(Get WRef Con(nyW ndow)) ;
Get WIi t| e(nyW ndow, nyNane) ; {get file's nane}
Par anifext (nyNane, "', "', '');
myDi al og : = Get NewDi al og(kRevertDi al og, NIL, WndowPtr(-1));
Get Port (myPort);
Set Port (nmyDi al og) ;

REPEAT
Modal Di al og(NI L, nyltem;
UNTIL (nyltem=i0OK) OR (nyltem = i Cancel);

Di sposeDi al og(nyDi al og) ;
Set Port (myPort); {restore previous grafPort}

IF nyltem = i OK THEN

DoRevert Cnd : = DoReadFi | e(nyW ndow) ;
ELSE

DoRevert Cnd : = noFErr;

END;
The DoRever t Cnd function retrieves the document record handle from the frontmost

window’s reference constant field and then gets the window’s title (which is also the
name of the file) and inserts it into a modal dialog box.

Using Files 1-31

CHAPTER 1

Introduction to File Management

If the user clicks the OK button, DoRevert Cnd calls the DoReadFi | e function to read
the data from the file into the window. Otherwise, DoRevert Crd simply exits without
changing the data in the window.

Closing a File

In most cases, your application closes a file after a user clicks in a window’s close box or
chooses the Close command in the File menu. The Close menu command should be
active only when there is actually an active window on the desktop. If there is an active
window, you need to determine whether it belongs to your application; if so, you need to
handle dialog windows and document windows differently, as illustrated in Listing 1-15.

Listing 1-15 Handling the Close menu command

1-32

FUNCTI ON DoCl oseCnd: OSErr;
VAR
myW ndow: W ndowPt r;
myDat a: MyDocRecHnd;
nmyErr: OSErr;
BEG N
nmyErr := FALSE;
myW ndow : = Front W ndow, {get window to be cl osed}
CASE MyGet W ndowType(myW ndow) OF
k DAW ndow:
Cl oseDeskAcc(W ndowPeek(nyW ndow) . wi ndowKi nd) ;
kMyModel essDi al og:
H deW ndow(myW ndow) ; {for dial ogs, hide the w ndow}
kMyDocW ndow:
BEG N
myDat a : = MyDocRecHnd(Get WRef Con(nyW ndow)) ;
myErr : = Dod oseFil e(myDat a) ;
IF myErr = noErr THEN
Di sposeW ndow(nyW ndow) ;
END;
OTHERW SE
END;
Dod oseCnd : = nyErr;
END;

The Dod oseCnd function determines the type of the frontmost window by calling the
application-defined function MyGet W ndowType. (See the chapter “Window Manager”
in Inside Macintosh: Macintosh Toolbox Essentials for a definition of MyGet W ndowType.) If
the window to be closed is a window belonging to a desk accessory, DoCl oseCrrd closes

Using Files

CHAPTER 1

Introduction to File Management

the desk accessory. If the window to be closed is a dialog window, this procedure just
hides the window. If the window to be closed is a document window, DoCl oseCnd
retrieves its document record handle and calls both DoCl oseFi | e (defined in
Listing 1-16) and Di sposeW ndow Before you close the file associated with a
window, you should check whether the contents of the window have changed since
the last time the document was saved. If so, you should ask the user whether to save
those changes. Listing 1-16 illustrates one way to do this.

Listing 1-16 Closing a file

FUNCTI ON DoCl oseFil e (nmyData: MyDocRecHnd): OSErr;

VAR
nmyErr: OSErr;
myDi al og: Di al ogPtr; {pointer to nodal dial og box}
myltem I nt eger; {itemselected in alert box}
myPort: Gafbtr; {the original graphics port}
CONST
kSaveChangesDi al og = 129; {resource of Save changes di al og}
BEG N
I F nmyDat a®”. wi ndowDi rty THEN {see whether w ndow is dirty}
BEG N
nmyltem : = CautionAl ert(kSaveChangesDi al og, N L);
IF nmyltem = i Cancel THEN{user clicked Cancel}
BEG N
DoCl oseFil e : = usrCancel edErr;
Exi t (Dod oseFil e);
END;
IF nyltem = i Save THEN
myErr : = DoSaveCnd;
END;
| F nyDat a®*. fil eRef Num <> 0 THEN
BEG N
myErr : = FSC ose(nyDat a”™. fil eRef Num ;
IF nyErr = noErr THEN
BEG N
myErr := FlushVol (NIL, nyData””.fil eFSSpec. vRef Nunj ;
myDat a®".fileRef Num:= 0; {clear the file reference nunber}
END;
END;
{Di spose of TextEdit record and controls here (code onitted).}
D sposeHandl e(Handl e(myDat a)) ; {di spose of docunent record}
Dod oseFile : = nyErr;
END;

Using Files 1-33

1-34

CHAPTER 1

Introduction to File Management

If the document is an existing file that has not been changed since it was last saved, your
application can simply call the FSCl ose function. This routine writes to disk any
unwritten data remaining in the volume buffer. The FSCl ose function also updates the
information maintained on the volume for that file and removes the access path. The
information about the file is not actually written to the disk, however, until the volume is
flushed, ejected, or unmounted. To keep the file information current, it’s a good idea to
follow each call to FSCl ose with a call to the Fl ushVol function.

If the contents of an existing file have been changed, or if a new file is being closed for
the first time, your application can call the Dialog Manager routine Caut i onAl ert
(specifying a resource ID of an' ALRT' template) to ask the user whether or not to save
the changes. If the user decides not to save the file, you can just call FSCl ose and
dispose of the window. Otherwise, DoCl oseFi | e calls the DoSaveCnd function to save
the file to disk.

Opening Files at Application Startup Time

A user often launches your application by double-clicking one of its document icons or
by selecting one or more document icons and choosing the Open command in the
Finder’s File menu. In these cases, your application needs to determine which files the
user selected so that it can open each one and display its contents in a window. There are
two ways in which your application can determine this.

If the user opens a file from the Finder and if your application supports high-level
events, the Finder sends it an Open Documents event. Your application then needs to
determine which file or files to open and react accordingly. For a complete description of
how to process the Open Documents event, see the chapter “Apple Event Manager” in
Inside Macintosh: Interapplication Communication.

IMPORTANT

If at all possible, your application should support high-level events. You
should use the techniques illustrated in this section only if your
application doesn’t support high-level events. s

If your application does not support high-level events, you need to ask the Finder at
application launch time whether or not the user launched the application by selecting
some documents. You can do this by calling the Count AppFi | es procedure and seeing
whether the count of files is 1 or more. Then you can call the procedures Get AppFi | es
and d r AppFi | es to retrieve the information about the selected files. The technique is
illustrated in Listing 1-17.

The Count AppFi | es procedure determines how many files, if any, the user selected at
application startup time. If the value of the myNumparameter is nonzero, then nyJob
contains a value that indicates whether the files were selected for opening or printing.
Currently, nyJob can have one of two values:

CONST
appOpen = O0; {open the docunent(s)}
appPrint = 1; {print the docunent(s)}

Using Files

CHAPTER 1

Introduction to File Management

Listing 1-17 Opening files at application launch time

PROCEDURE Dol nitFil es;

VAR
myNum I nt eger; {nunber of files to be opened or printed}
myJob: I nt eger; {open or print the files?}
i ndex: I nt eger; {index of current file}
myFile: AppFile; {file info}
mySpec: FSSpec; {file system specification}
nyErr: OSEr v
BEG N
Count AppFi | es(myJob, myNun;
I F myNum > 0 THEN {user sel ected sone fil es}
I F myJob = appOpen THEN {files are to be opened}

END;

FOR index := 1 TO nmyNum DO

BEG N
Get AppFi | es(index, nyFile); {get file info from Fi nder}
nyErr : = FSMakeFSSpec(nyFil e.vRef Num O, nyFile.fNane,
mySpec); {make an FSSpec to hol d info}
myErr : = DoQpenFil e(nySpec); {read in file's data}
Cl r AppFi | es(i ndex); {show we' ve got the info}
END,

In Listing 1-17, if the files are to be opened, then Dol ni t Fi | es obtains information
about them by calling the Get AppFi | es procedure for each one. The Get AppFi | es
procedure returns the information in a record of type AppFi | e.

TYPE AppFile =
RECORD
vRef Num I nt eger; {working directory reference nunber}
f Type: OSType; {file type}
ver sNum I nt eger; {versi on nunber; ignored}
f Nane: St r 255; {fil ename}
END;

Because the function DoOpenFi | e takes an FSSpec record as a parameter,

Dol ni t Fi | es next converts the information returned in the nyFi | e parameter into an
FSSpec record, using FSMakeFSSpec. Then Dol ni t Fi | es calls DoOpenFi | e to read
the file data and C r AppFi | es to let the Finder know that it has processed the
information for that file.

Using Files 1-35

CHAPTER 1

Introduction to File Management

Note

The vRef Numfield of an AppFi | e record does not contain a volume
reference number; instead it contains a working directory reference
number, which encodes both the volume reference number and the
parent directory ID. (That’s why the second parameter passed to
FSMakeFSSpec in Listing 1-17is0.) u

Using a Preferences File

Many applications allow the user to alter various settings that control the operation or
configuration of the application. For example, your application might allow the user to
specify the size and placement of any new windows or the default font used to display
text in those windows. You can create a preferences file in which to record user
preferences, and your application can retrieve that file whenever it is launched.

In deciding how to structure your preferences file, it is important to distinguish
document-specific settings from application-specific settings. Some user-specifiable
settings affect only a particular document. For example, the user might have changed the
text font in a particular window. When you save the text in the window, you also want to
save the current font setting. Generally you can do this by storing the font name in a
resource in the document file’s resource fork. Then, when the user opens that document
again, you check for the presence of such a resource, retrieve the information stored in it,
and set the document font accordingly.

Some settings, such as a default text font, are not specific to a particular document. You
might store such settings in the application’s resource fork, but generally it is better to
store them in a separate preferences file. The main reason for this is to avoid problems
that can arise if an application is located on a server volume. If preferences are stored in
resources in the application’s resource fork, those preferences apply to all users
executing that application. Worse yet, the resources can become corrupted if several
different users attempt to alter the settings at the same time.

Thus, it is best to store application-specific settings in a preferences file. The Operating
System provides a special folder in the System Folder, called Preferences, where you can
store that file. Listing 1-18 illustrates a way to open your application’s preferences file.

Listing 1-18 Opening a preferences file

PROCEDURE DoGet Pr ef er ences;

VAR
myErr: CSErr;
my VRef : Integer; {volume ref num of Preferences folder}
nyDirl D Longint; {dir I D of Preferences folder}
my Spec: FSSpec; {FSSpec for the preferences file}
my Nane: Str255; {nane of the application}
my Ref : Integer; {ref num of app's resource file; ignored}
myHand: Handl e; {handle to Finder information; ignored}
myRef Num Integer; {file reference nunber}

1-36 Using Files

CHAPTER 1

Introduction to File Management

CONST

kPref| D = 128; {resource ID of STR#¢ with fil enane}
BEG N

{Deternine the name of the preferences file.}

Get I ndString(nyNanme, kPreflD, 1);

{Find the Preferences folder in the System Fol der.}
myErr : = FindFol der (kOnSyst enDi sk, kPreferencesFol der Type,
kDont Cr eat eFol der, nyVRef, nyDirlD);

IF nyErr = noErr THEN
myErr .= FSMakeFSSpec(nyVRef, nyDirlD, myNane, mySpec);
IF myErr = noErr THEN

myRef Num : = FSpOpenResFi | e(nmySpec, fsCurPern;
{Read your preference settings here.}

Cl oseResFi | e(myRef Nunj ;
END;

The DoGet Pr ef er ences procedure first determines the name of the preferences file it is
to open and read. To allow easy localization, you should store the name in a resource of
type ' STR#' in your application’s resource file. The DoGet Pr ef er ences procedure
assumes that the name is stored as the first string in the resource having ID kPr ef | D.

The technique shown here assumes that your preference settings can all be stored in
resources. As a result, Listing 1-18 calls the Resource Manager function FSpOpenResFi | e
to open the resource fork of your preferences file. See the chapter “Resource Manager” in
Inside Macintosh: More Macintosh Toolbox for complete details on opening resource files and
reading resources from them.

Adjusting the File Menu

Your application should dim any File menu commands that are not available at the time
the user pulls down the File menu. For example, if your application does not yet have a
document window open, then the Save, Save As, and Revert commands should be

dimmed. You can adjust the File menu easily using the technique shown in Listing 1-19.

Listing 1-19 Adjusting the File menu

PROCEDURE DoAdj ust Fi | eMenu;

VAR
myW ndow: W ndowPt r;
my Menu: MenuHandl e;
myDat a: MyDocRecHnd; {handl e to wi ndow dat a}

Using Files 1-37

CHAPTER 1

Introduction to File Management

BEG N
myW ndow : = Front W ndow,
| F myW ndow = NI L THEN

BEG N
myMenu : = Get MHandl e(nfFil e);
Di sabl el t en{myMenu, i Save); {di sabl e Save}
Di sabl el t en{ nyMenu, i SaveAs); {di sabl e Save As}
Di sabl el t en{myMenu, i Revert); {di sabl e Revert}
Di sabl el ten{nmyMenu, i d ose); {di sabl e C ose}
END
ELSE | F MyGet W ndowType(nyW ndow) = kMyDocW ndow THEN
BEG N
myDat a : = MyDocRecHnd(Get WRef Con(nyW ndow)) ;
myMenu : = Get MHandl e(nfFil e);
Enabl el t en(myMenu, i SaveAs); {enabl e Save As}
Enabl el t em(myMenu, i d ose); {enabl e d ose}

I F nmyDat a®”. wi ndowDi rty THEN

BEG N
Enabl el t em(myMenu, i Save); {enabl e Save}
Enabl el t em(myMenu, i Revert); {enabl e Revert}
END
ELSE
BEG N
Di sabl el t en{ nmyMenu, i Save); {di sabl e Save}
Di sabl el t en{myMenu, i Revert); {di sabl e Revert}
END;

END;
END;

Your application should call DoAdj ust Fi | eMenu whenever it receives a mouse-down
event in the menu bar. (No doubt you want to include code appropriate for enabling and
disabling other menu items too.) See the chapter “Menu Manager” in Inside Macintosh:
Macintosh Toolbox Essentials for details on the menu enabling and disabling procedures
used in Listing 1-19.

File Management Reference

This section describes the data structures and routines used in this chapter to illustrate

basic file management operations. The section “Data Structures” shows the Pascal data
structures for the file system specification record and the standard file reply record. The
sections that follow describe the Standard File Package routines for opening and saving

1-38 File Management Reference

CHAPTER 1

Introduction to File Management

documents and the File Manager routines for accessing files, manipulating files and
directories, accessing volumes, and getting information about documents to be opened
when your application is launched.

For a description of other file-related data structures and routines, see the chapters “File
Manager” and “Standard File Package” in this book.

Data Structures

This section describes the data structures that your application can use to exchange
information with the File Manager and the Standard File Package. The techniques
described in this chapter use file system specification records and standard file reply
records.

File System Specification Record

The file system specification record for files and directories is defined by the FSSpec

data type.

TYPE FSSpec = {file system specification}

RECORD
vRef Num I nt eger; {vol une reference nunber}
par | D Longl nt; {directory ID of parent directory}
nane: Str63; {filenane or directory nane}

END;

Field descriptions

vRef Num The volume reference number of the volume containing the
specified file or directory.

parl D The directory ID of the directory containing the specified file
or directory.

nane The name of the specified file or directory.

Standard File Reply Records

The procedures St andar dGet Fi | e and St andar dPut Fi | e both return information
to your application using a standard file reply record, which is defined by the

St andar dFi | eRepl y data type. The reply record identifies selected files with a file
system specification record, which you can pass directly to many of the File Manager
functions described in the sections that follow. The reply record also contains fields that
support several Finder features.

File Management Reference 1-39

CHAPTER 1

Introduction to File Management

TYPE St andardFil eReply =
RECORD

sf Good:

sf Repl aci ng:

sf Type:
sfFile:

sf Script:
sf Fl ags:

sf | sFol der:
sf 1 sVol une:

sf Reservedl:

Bool ean;
Bool ean;
GSType;
FSSpec;
Scri pt Code;
I nt eger;
Bool ean;
Bool ean;
Longl nt;

{TRUE if user did not cancel}

{TRUE if replacing file with same nane}
{file type}

{selected file, folder, or vol une}
{script of file, folder, or volune nane}
{Finder flags of selected iten}
{selected itemis a folder}

{selected itemis a vol une}

{reserved}

sf Reserved2:
END;

I nt eger; {reserved}

Field descriptions

sf Good Reports whether the reply record is valid. The value is TRUE after
the user clicks Save or Open; FALSE after the user clicks Cancel.
When the user has completed the dialog box, the other fields in the

reply record are valid only if the sf Good field contains TRUE.

Reports whether a file to be saved replaces an existing file of

the same name. This field is valid only after a call to the

St andar dPut Fi | e or Cust onPut Fi | e procedure. When

the user assigns a name that duplicates that of an existing file,

the Standard File Package asks for verification by displaying a
subsidiary dialog box (illustrated in Figure 1-10). If the user
verifies the name, the Standard File Package sets the sf Repl aci ng
field to TRUE and returns to your application; if the user cancels
the overwriting of the file, the Standard File Package returns

to the main dialog box. If the name does not conflict with an
existing name, the Standard File Package sets the field to FALSE
and returns.

sf Repl aci ng

sf Type Contains the file type of the selected file. (File types are described in
the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox
Essentials.) Only St andar dGet Fi | e and Cust omCGet Fi | e returna

file type in this field.

Describes the selected file, folder, or volume with a file system
specification record, which contains a volume reference number,
parent directory ID, and name. (See the chapter “File Manager” in
this book for a complete description of the file system specification
record.) If the selected item is an alias for another item, the Standard
File Package resolves the alias and places the file system
specification record for the target in the sf Fi | e field when the user
completes the dialog box. If the selected file is a stationery pad, the
reply record describes the file itself, not a copy of the file.

Identifies the script in which the name of the document is to be
displayed. (This information is used by the Finder and by the
Standard File Package.) A script code of snByst enscri pt (—1)
represents the default system script.

sfFile

sf Scri pt

1-40 File Management Reference

CHAPTER 1

Introduction to File Management

sf Fl ags

sfl sFol der

sf | sVol une

sf Reservedl
sf Reserved?2

Application Files Records

Contains the Finder flags from the Finder information record in the
catalog entry for the selected file. (See the chapter “Finder Interface”
in Inside Macintosh: Macintosh Toolbox Essentials for a description of
the Finder flags.) This field is returned only by St andar dGet Fi | e
and Cust ontGet Fi | e. If your application supports stationery, it
should check the stationery bit in the Finder flags to determine
whether to treat the selected file as stationery. Unlike the Finder, the
Standard File Package does not automatically create a document
from a stationery pad and pass your application the new document.
If the user opens a stationery document from within an application
that does not support stationery, the Standard File Package displays
a dialog box warning the user that the master copy is being opened.

Reports whether the selected item is a folder (TRUE) or a file or
volume (FALSE). This field is meaningful only during the execution
of a dialog hook function.

Reports whether the selected item is a volume (TRUE) or a file or
folder (FALSE). This field is meaningful only during the execution
of a dialog hook function.

Reserved.
Reserved.

The Get AppFi | es procedure returns information about files opened at application
launch time in an application files record, defined by the AppFi | e data type:

TYPE AppFile
RECORD

vRef Num

f Type:

ver sNum

f Narre:
END;

Field descriptions
vRef Num

f Type
ver sNum
f Name

File Management Reference

I nt eger; {working directory reference nunber}
OSType; {file type}

I nt eger; {versi on nunber; ignored}

Str 255; {fil ename}

A working directory reference number that encodes the volume and
parent directory of the file.

The file type.
Reserved.
The filename.

1-41

CHAPTER 1

Introduction to File Management

File Specification Routines

If your application has no special user interface requirements, you can use the

St andar dGet Fi | e and St andar dPut Fi | e procedures to display the default dialog
boxes for opening and saving documents. For a description of more advanced file
specification routines, see the chapter “Standard File Package” in this book.

StandardGetFile

DESCRIPTION

1-42

You can use the St andar dGet Fi | e procedure to display the default Open dialog box
when the user is opening a file.

PROCEDURE St andardGetFile (fileFilter: FileFilterProcPtr;
nunlypes: | nteger;
typeli st: SFTypeli st;
VAR reply: StandardFil eReply);

fileFilter A pointerto an optional file filter function, provided by your application,
through which St andar dGet Fi | e passes files of the specified types.

nunirypes The number of file types to be displayed. If you specify a nuniTypes
value of -1, the first filtering passes files of all types.

typeli st A list of file types to be displayed.
reply The reply record, which St andar dGet Fi | e fills in before returning.

The St andar dGet Fi | e procedure presents a dialog box through which the user
specifies the name and location of a file to be opened. While the dialog box is active,
St andar dGet Fi | e gets and handles events until the user completes the interaction,
either by selecting a file to open or by canceling the operation. St andar dGet Fi | e
returns the user’s input in a record of type St andar dFi | eRepl vy.

Thefil eFilter,nunilypes,andtypelLi st parameters together determine which
files appear in the displayed list. The first filtering is by file type, which you specify in
the nunmTypes andt ypelLi st parameters. The nunilypes parameter specifies the
number of file types to be displayed. You can specify one or more types. If you specify a
nuniTypes value of -1, the first filtering passes files of all types.

The fil eFi |l t er parameter points to an optional file filter function, provided by your
application, through which St andar dGet Fi | e passes files of the specified types. See
the chapter “Standard File Package” in this book for a complete description of how you
specify this filter function.

File Management Reference

CHAPTER 1

Introduction to File Management

SPECIAL CONSIDERATIONS

The St andar dGet Fi | e procedure is not available in all versions of system software.
Use the Gest al t function to determine whether St andar dGet Fi | e is available before
calling it.

Because St andar dGet Fi | e may move memory, you should not call it at interrupt time.

StandardPutFile

You can use the St andar dPut Fi | e procedure to display the default Save dialog box
when the user is saving a file.

PROCEDURE St andardPutFile (pronpt: Str255; defaultNane: Str255;
VAR reply: StandardFil eReply);

pr onpt The prompt message to be displayed over the text field.
def aul t Nane
The initial name of the file.

reply The reply record, which St andar dPut Fi | e fills in before returning.

DESCRIPTION

The St andar dPut Fi | e procedure presents a dialog box through which the user
specifies the name and location of a file to be written to. The dialog box is centered on
the screen. While the dialog box is active, St andar dPut Fi | e gets and handles events
until the user completes the interaction, either by selecting a name and authorizing the
save or by canceling the save. The St andar dPut Fi | e procedure returns the user’s
input in a record of type St andar dFi | eRepl y.

SPECIAL CONSIDERATIONS

The St andar dPut Fi | e procedure is not available in all versions of system software.
Use the Gest al t function to determine whether St andar dPut Fi | e is available before
calling it.

Because St andar dPut Fi | e may move memory, you should not call it at interrupt time.

File Access Routines

This section describes the File Manager’s file access routines. When you call one of these
routines, you specify a file by a path reference number (which the File Manager returns
to your application when your application opens the file). Unless your application has
very specialized needs, you should be able to manage all file access (for example, writing
data to the file) using the routines described in this section. Typically you use these
routines to operate on a file’s data fork, but in certain circumstances you might want to
use them on a file’s resource fork as well.

File Management Reference 1-43

CHAPTER 1

Introduction to File Management

Reading, Writing, and Closing Files

FSRead

You can use the functions FSRead, FSW i t e, and FSCl ose to read data from a file,
write data to a file, and close an open file. All three of these functions operate on open
files. You can use any one of a variety of routines to open a file (for example,
FSpOpenDF).

DESCRIPTION

RESULT CODES

1-44

You can use the FSRead function to read any number of bytes from an open file.

FUNCTI ON FSRead (refNum |Integer; VAR count: Longlnt;
buffPtr: Ptr): CSErr;

ref Num The file reference number of an open file.

count On input, the number of bytes to read; on output, the number of bytes
actually read.

buf fPtr A pointer to the data buffer into which the bytes are to be read.

The FSRead function attempts to read the requested number of bytes from the specified
file into the specified buffer. The buf f Pt r parameter points to that buffer; this buffer is
allocated by your application and must be at least as large as the count parameter.

Because the read operation begins at the current mark, you might want to set the mark
first by calling the Set FPos function. If you try to read past the logical end-of-file,
FSRead reads in all the data up to the end-of-file, moves the mark to the end-of-file, and
returnseof Er r as its function result. Otherwise, FSRead moves the file mark to the byte
following the last byte read and returns noEr r.

noErr 0 No error

i oErr -36 1/0 error

f nQpnErr -38 File not open

eof Err -39 Logical end-of-file reached

posErr -40 Attempt to position mark before start of file

f LckdErr -45 File is locked

par ankrr -50 Negative count

rf Nuntrr -51 Bad reference number

af pAccessDeni ed -5000 User does not have the correct access to the file

File Management Reference

CHAPTER 1

Introduction to File Management

FSWrite
You can use the FSW i t e function to write any number of bytes to an open file.
FUNCTION FSWite (refNum Integer; VAR count: Longlnt;
buffPtr: Ptr): CSErr;
ref Num The file reference number of an open file.
count On input, the number of bytes to write to the file; on output, the number
of bytes actually written.
buffPtr A pointer to the data buffer from which the bytes are to be written.
DESCRIPTION
The FSW i t e function takes the specified number of bytes from the specified data buffer
and attempts to write them to the specified file. Because the write operation begins at the
current mark, you might want to set the mark first by calling the Set FPos function.
If the write operation completes successfully, FSW i t e moves the file mark to the
byte following the last byte written and returns noEr r. If you try to write past the
logical end-of-file, FSW i t e moves the logical end-of-file. If you try to write past
the physical end-of-file, FSW i t e adds one or more clumps to the file and moves the
physical end-of-file accordingly.
RESULT CODES
noErr 0 No error
dskFul Err =34 Disk full
i oErr -36 1/0 error
f nQpnErr -38 File not open
posErr -40 Attempt to position mark before start of file
wWPr Er r 44 Hardware volume lock
f LckdErr -45 File is locked
vLckdErr -46 Software volume lock
par ankrr -50 Negative count
rf Nunkrr -51 Bad reference number
wr Per mkr r -61 Read/write permission doesn’t allow writing
FSClose

You can use the FSC ose function to close an open file.
FUNCTI ON FSCl ose (ref Num Integer): OSErr;

ref Num The file reference number of an open file.

File Management Reference 1-45

DESCRIPTION

RESULT CODES

CHAPTER 1

Introduction to File Management

The FSO ose function removes the access path for the specified file and writes the
contents of the volume buffer to the volume.

Note

The FSA ose function calls PBFl ushFi | e internally to write the file’s
bytes onto the volume. To ensure that the file’s catalog entry is updated,
you should call Fl ushVol after you call FSCl ose. u

WARNING

Make sure that you do not call FSCl ose with a file reference number
of a file that has already been closed. Attempting to close the same file
twice may result in loss of data on a volume. See the description of
file control blocks in the chapter “File Manager” in this book for a
discussion of how this can happen. s

noErr 0 No error

i oErr -36 170 error

fnOpnErr -38 File not open

fnfErr -43 File not found

rf Nuntrr -51 Bad reference number

Manipulating the File Mark

You can use the functions Get FPos and Set FPos to get or set the current position of the
file mark.

GetFPos
You can use the Get FPos function to determine the current position of the mark before
reading from or writing to an open file.
FUNCTI ON Get FPos (ref Num Integer; VAR filePos: Longlnt): OSErr;
ref Num The file reference number of an open file.
fil ePos On output, the current position of the mark.

DESCRIPTION
The Get FPos functionreturns, inthef i | ePos parameter, the current position of the file
mark for the specified open file. The position value is zero-based; that is, the value of
fil ePos is 0 if the file mark is positioned at the beginning of the file.

1-46 File Management Reference

RESULT CODES

SetFPos

CHAPTER 1

Introduction to File Management

noErr 0 No error

i oErr -36 1/0 error

f nOpnEr r -38 File not open

rf Nuntrr -51 Bad reference number
of pErr -52 Error during Get FPos

DESCRIPTION

RESULT CODES

You can use the Set FPos function to set the position of the file mark before reading
from or writing to an open file.

FUNCTI ON Set FPos (ref Num I nteger; poshbde: Integer;
posOif: Longlnt): OSErr;

ref Num The file reference number of an open file.
poshMbde The positioning mode.
posOf f The positioning offset.

The Set FPos function sets the file mark of the specified file. The posMbde parameter
indicates how to position the mark; it must contain one of the following values:

CONST
f sAt Mar k = 0; {at current nark}
fsFronStart = 1; {set mark relative to beginning of file}
fsFromLEOF = 2; {set mark relative to logical end-of-file}
fsFromvark = 3; {set mark relative to current nark}

If you specify f sAt Mar k, the mark is left wherever it’s currently positioned, and the
posOf f parameter is ignored. The next three constants let you position the mark relative
to either the beginning of the file, the logical end-of-file, or the current mark. If you
specify one of these three constants, you must also pass in posOf f a byte offset (either
positive or negative) from the specified point. If you specify f sFr onLECF, the value in
posOf f must be less than or equal to 0.

nokErr 0 No error

i OErr -36 170 error

f nOpnErr -38 File not open

eof Err -39 Logical end-of-file reached

posErr -40 Attempt to position mark before start of file
rf Nunerr -51 Bad reference number

File Management Reference 1-47

CHAPTER 1

Introduction to File Management

Manipulating the End-of-File

You can use the functions Get EOF and Set EOF to get or set the logical end-of-file of an
open file.

GetEOF
You can use the Get ECF function to determine the current logical end-of-file of an open
file.
FUNCTI ON Get EOF (ref Num |nteger; VAR | ogEOF: Longlnt): OSErr;
ref Num The file reference number of an open file.
| ogECF On output, the logical end-of-file.
DESCRIPTION
The Get ECF function returns, in the | ogECF parameter, the logical end-of-file of the
specified file.
RESULT CODES
noErr 0 No error
i oErr -36 1/0 error
f nQpnErr -38 File not open
rf Nuner r -51 Bad reference number
af pAccessDeni ed -5000 User does not have the correct access to the file
SEE ALSO
For a description of the logical and physical end-of-file, see the section “File Access
Characteristics” on page 1-8.
SetEOF

You can use the Set EOF function to set the logical end-of-file of an open file.
FUNCTI ON Set EOF (ref Num |Integer; |ogEOF: Longlnt): CSErr;

ref Num The file reference number of an open file.
| ogECF The logical end-of-file.

1-48 File Management Reference

DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 1

Introduction to File Management

The Set EOF function sets the logical end-of-file of the specified file. If you attempt to set
the logical end-of-file beyond the physical end-of-file, the physical end-of-file is set 1
byte beyond the end of the next free allocation block; if there isn’t enough space on the
volume, no change is made, and Set ECF returns dskFul Er r as its function result.

If you set the | ogEOF parameter to 0, all space occupied by the file on the volume is
released. The file still exists, but it contains 0 bytes. Setting a file fork’s end-of-file to 0 is
therefore not the same as deleting the file (which removes both file forks at once).

noErr 0 No error

dskFul Err -34 Disk full

i oErr -36 170 error

f nOpnErr -38 File not open

wWPr Er r -44 Hardware volume lock

f LckdErr -45 File is locked

vLckdErr -46 Software volume lock

rf Nuntrr -51 Bad reference number

wr Per nkr r -61 Read/write permission doesn’t allow writing

For a description of the logical and physical end-of-file, see the section “File Access
Characteristics” on page 1-8.

File and Directory Manipulation Routines

The File Manager includes a set of file and directory manipulation routines that accept
FSSpec records as parameters. Depending on the requirements of your application and
on the environment in which it is running, you may be able to accomplish all your file
and directory operations by using these routines.

Before calling any of these routines, however, you should call the Gest al t function to
ensure that they are available in the operating environment. (See “Testing for File
Management Routines” on page 1-14 for an illustration of calling Gest al t .) If these
routines are not available, you can call the corresponding HFS routines.

Opening, Creating, and Deleting Files

The File Manager provides the FSpOpenDF, FSpCr eat e, and FSpDel et e routines,
which allow you to open, create, and delete files.

File Management Reference 1-49

CHAPTER 1

Introduction to File Management

FSpOpenDF

DESCRIPTION

RESULT CODES

1-50

You can use the FSpOpenDF function to open a file’s data fork.

FUNCTI ON FSpOpenDF (spec: FSSpec; perm ssion: SignedByte;
VAR ref Num |Integer): CSErr;

spec An FSSpec record specifying the file whose data fork is to be opened.

per ni ssi on
A constant indicating the desired file access permissions.

ref Num A reference number of an access path to the file’s data fork.

The FSpOpenDF function opens the data fork of the file specified by the spec parameter
and returns a file reference number in the r ef Numparameter. You can pass that reference
number as a parameter to any of the low- or high-level file access routines.

The per m ssi on parameter specifies the kind of access permission mode you want. You
can specify one of these constants:

CONST
fsCurPerm = 0 {what ever perm ssion is all owed}
f sRdPer m = 1; {read pernmni ssion}
f sW Perm = 2 {write perm ssion}
f SRAW Per m = 3 {exclusive read/wite permni ssion}
f sSRAW ShPerm = 4; {shared read/wite pernission}

In most cases, you can simply set the permission parameter to f sCur Per m Some
applications request f sRAW Per m to ensure that they can both read from and write to a
file.

nokErr 0 No error

nsvErr =35 No such volume

i oErr -36 170 error

bdNantr r =37 Bad filename

t nf oErr 42 Too many files open

fnfErr -43 File not found

OpW Err -49 File already open for writing

per nerr 54 Attempt to open locked file for writing

di r NFErr -120 Directory not found or incomplete pathname
af pAccessDeni ed -5000 User does not have the correct access to the file
File Management Reference

CHAPTER 1

Introduction to File Management

FSpCreate
You can use the FSpCr eat e function to create a new file.
FUNCTI ON FSpCreate (spec: FSSpec; creator: OSType;
fileType: OSType; scriptTag: ScriptCode):
OSErr;
spec An FSSpec record specifying the file to be created.
creator The creator of the new file.
fil eType The file type of the new file.
script Tag The code of the script system in which the filename is to be displayed. If
you have established the name and location of the new file using either
the St andar dPut Fi | e or Cust onPut Fi | e procedure, specify the script
code returned in the reply record. (See the chapter “Standard File
Package” in this book for a description of St andar dPut Fi | e and
Cust onPut Fi | e.) Otherwise, specify the system script by setting the
scri pt Tag parameter to the value snSyst enfscri pt .
DESCRIPTION

The FSpCr eat e function creates a new file (both forks) with the specified type, creator,
and script code. The new file is unlocked and empty. The date and time of creation and
last modification are set to the current date and time.

See the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials for
information on file types and creators.

Files created using FSpCr eat e are not automatically opened. If you want to write
data to the new file, you must first open the file using a file access routine (such
as FSpQpenDF).

Note

The resource fork of the new file exists but is empty. You’ll need to call
one of the Resource Manager procedures Cr eat eResFi | e,

HCr eat eResFi | e, or FSpCr eat eResFi | e to create a resource map in
the file before you can open it (by calling one of the Resource Manager
functions OpenResFi | e, HOpenResFi | e, or FSpOpenResFi |l). u

File Management Reference 1-51

CHAPTER 1

Introduction to File Management

RESULT CODES

nokErr 0 No error

dirFul Err -33 File directory full

dskFul Err -34 Disk is full

nsvErr =35 No such volume

i OErr -36 170 error

bdNantEr r =37 Bad filename

fnfErr -43 Directory not found or incomplete pathname

wWPr Er r 44 Hardware volume lock

vLckdErr -46 Software volume lock

dupFNEr r -48 Duplicate filename and version

di r NFErr -120 Directory not found or incomplete pathname

af pAccessDeni ed -5000 User does not have the correct access

af pObj ect TypeErr -5025 A directory exists with that name
FSpDelete

You can use the FSpDel et e function to delete files and directories.
FUNCTI ON FSpDel ete (spec: FSSpec): OSErr;

spec An FSSpec record specifying the file or directory to delete.

DESCRIPTION

The FSpDel et e function removes a file or directory. If the specified target is a file, both
forks of the file are deleted. The file ID reference, if any, is removed.

A file must be closed before you can delete it. Similarly, a directory must be empty before
you can delete it. If you attempt to delete an open file or a nonempty directory,

FSpDel et e returns the result code f BsyEr r. FSpDel et e also returns the result code

f BsyEr r if the directory has an open working directory associated with it.

RESULT CODES
noErr 0 No error
nsvErr -35 No such volume
i oErr -36 1/0 error
bdNantEr r =37 Bad filename
fnfErr -43 File not found
wWPr Er r 44 Hardware volume lock
f LckdErr -45 File is locked
vLckdErr -46 Software volume lock
f BsyErr 47 File busy, directory not empty, or working directory
control block open
di r NFErr -120 Directory not found or incomplete pathname
af pAccessDeni ed -5000 User does not have the correct access

1-52 File Management Reference

CHAPTER 1

Introduction to File Management

Exchanging the Data in Two Files

The function FSpExchangeFi | es allows you to exchange the data in two files.

FSpExchangeFiles

DESCRIPTION

RESULT CODES

You can use the FSpExchangeFi | es function to exchange the data stored in two files
on the same volume.

FUNCTI ON FSpExchangeFi |l es (source: FSSpec; dest: FSSpec): OSErr;

source The source file. The contents of this file and its file information are placed
in the file specified by the dest parameter.
dest The destination file. The contents of this file and its file information are

placed in the file specified by the sour ce parameter.

The FSpExchangeFi | es function swaps the data in two files by changing the
information in the volume’s catalog and, if the files are open, in the file control blocks.

You should use FSpExchangeFi | es when updating an existing file, so that the file ID
remains valid in case the file is being tracked through its file ID. The FSpExchangeFi | es
function changes the fields in the catalog entries that record the location of the data and
the modification dates. It swaps both the data forks and the resource forks.

The FSpExchangeFi | es function works on both open and closed files. If either file is
open, FSpExchangeFi | es updates any file control blocks associated with the file.
Exchanging the contents of two files requires essentially the same access permissions as
opening both files for writing.

The files whose data is to be exchanged must both reside on the same volume. If they do
not, FSpExchangeFi | es returns the result code di f f Vol Err.

nokErr 0 No error

nsvErr =35 Volume not found

i oErr -36 1/0 error

fnfErr -43 File not found

f LckdErr -45 File is locked

vLckdErr -46 Volume is locked or read-only

par antrr -50 Function not supported by volume
vol O flinErr -53 Volume is offline

wr gVol TypErr -123 Not an HFS volume

di ffVol Err -1303 Files on different volumes

af pAccessDeni ed -5000 User does not have the correct access
af pObj ect TypeErr -5025 Obiject is a directory, not a file

af pSaneoj ect Err -5038 Source and destination files are the same

File Management Reference 1-53

CHAPTER 1

Introduction to File Management

Creating File System Specifications

The FSMakeFSSpec function allows you to create FSSpec records.

FSMakeFSSpec

DESCRIPTION

1-54

You can use the FSMakeFSSpec function to initialize an FSSpec record to particular
values for a file or directory.

FUNCTI ON FSMakeFSSpec (vRef Num Integer; dirlD: Longlnt;
fileNanme: Str255; VAR spec: FSSpec):
OSErr;

vRef Num A volume specification. This parameter can contain a volume reference
number, a working directory reference number, a drive number, or 0 (to
specify the default volume).

dirlD A directory specification. This parameter usually specifies the parent
directory ID of the target object. If the directory is sufficiently specified by
either the vRef Numorf i | eNane parameter, di r | Dcan be setto 0. If you
explicitly specify di r| D (that is, if it has any value other than 0), and if
vRef Numspecifies a working directory reference number, di r | D
overrides the directory ID included in vRef Num If the fi | eNane
parameter contains an empty string, FSMakeFSSpec creates an FSSpec
record for a directory specified by either the di r | Dor vRef Num
parameter.

fileNane A full or partial pathname. If f i | eName specifies a full pathname,
FSMakeFSSpec ignores both the vRef Numand di r | D parameters. A
partial pathname might identify only the final target, or it might include

one or more parent directory names. If f i | eNane specifies a partial
pathname, then vRef Num di r I D, or both must be valid.

spec A file system specification to be filled in by FSMakeFSSpec.

The FSMakeFSSpec function fills in the fields of the spec parameter using the
information contained in the other three parameters. Call FSMakeFSSpec whenever
you want to create an FSSpec record.

You can pass the input to FSMakeFSSpec in several ways. The chapter “File
Manager” in this book explains how FSMakeFSSpec interprets its input.

If the specified volume is mounted and the specified parent directory exists, but the
target file or directory doesn’t exist in that location, FSMakeFSSpec fills in the record
and then returns f nf Er r instead of noEr r. The record is valid, but it describes a target
that doesn’t exist. You can use the record for other operations, such as creating a file with
the FSpCr eat e function.

File Management Reference

RESULT CODES

CHAPTER 1

Introduction to File Management

In addition to the result codes that follow, FSMakeFSSpec can return a number of other
File Manager error codes. If your application receives any result code other than noEr r
orf nf Err, all fields of the resulting FSSpec record are set to 0.

noErr 0 No error
nsvErr -35 Volume doesn’t exist
fnfErr -43 File or directory does not exist (FSSpec is still valid)

Volume Access Routines

This section describes the high-level volume access routines. Unless your application has
very specialized needs, you should be able to manage all volume access using the
routines described in this section. In fact, most applications are likely to need only the

Fl ushVol function described in the next section, “Updating Volumes.”

When you call one of these routines, you specify a volume by a volume reference
number (which you can obtain, for example, by calling the Get VI nf o function, or from
the reply record returned by the Standard File Package). You can also specify a volume
by name, but this is generally discouraged, because there is no guarantee that volume
names are unique.

Updating Volumes

When you close a file, you should call FI ushVol to ensure that any changed contents of
the file are written to the volume.

FlushVol
You can use the Fl ushVol function to write the contents of the volume buffer and
update information about the volume.
FUNCTI ON Fl ushVol (vol Nane: StringPtr; vRefNum Integer): OSErr;
vol Nane A pointer to the name of a mounted volume.
vRef Num A volume reference number, a working directory reference number, a

drive number, or 0 for the default volume.
DESCRIPTION

On the specified volume, the Fl ushVol function writes the contents of the associated
volume buffer and descriptive information about the volume (if they’ve changed since
the last time FI ushVol was called). This information is written to the volume.

File Management Reference 1-55

CHAPTER 1

Introduction to File Management

RESULT CODES
noErr 0 No error
nsvErr -35 No such volume
i oErr -36 170 error
bdNantEr r =37 Bad volume name
par ankrr -50 No default volume
nsDr vErr -56 No such drive

Obtaining Volume Information

You can get information about a volume by calling the Get VI nf 0 or Get VRef Num
function.

GetVinfo
You can use the Get VI nf o function to get information about a mounted volume.
FUNCTI ON GetVInfo (drvNum |Integer; vol Name: StringPtr;
VAR vRef Num | nt eger;
VAR freeBytes: Longlnt): CSErr;
dr vNum The drive number of the volume for which information is requested.
vol Nare On output, a pointer to the name of the specified volume.
vRef Num The volume reference number of the specified volume.
freeBytes The available space (in bytes) on the specified volume.
DESCRIPTION
The Get VI nf o function returns the name, volume reference number, and available
space (in bytes) for the specified volume. You specify a volume by providing its drive
number in the dr vNumparameter. You can pass 0 in the dr vNumparameter to get
information about the default volume.
RESULT CODES
nokErr 0 No error
nsvErr =35 No such volume
par antrr -50 No default volume

1-56 File Management Reference

CHAPTER 1

Introduction to File Management

GetVRefNum

You can use the Get VRef Numfunction to get a volume reference number from a file
reference number.

FUNCTI ON Get VRef Num (ref Num I nteger; VAR vRef Num | nteger):
CSErr;

ref Num The file reference number of an open file.

vRef Num On exit, the volume reference number of the volume containing the file
specified by r ef Num

DESCRIPTION

The Get VRef Numfunction returns the volume reference number of the volume
containing the specified file. If you also want to determine the directory ID of the
specified file’s parent directory, call the PBGet FCBI nf o function.

RESULT CODES

noErr 0 No error
rf Nuntrr -51 Bad reference number

Application Launch File Routines

You can call Get AppPar s to determine your application’s name and the reference
number of its resource file. When your application starts up, you can call

Count AppFi | es to determine whether the user selected any documents to open or
print. If so, you can call Get AppFi | es and Cl r AppFi | es to process the information
passed to your application by the Finder.

Note

If your application supports high-level events, you receive this
information from the Finder in an Open Documents or Print
Documents event. u

File Management Reference 1-57

CHAPTER 1

Introduction to File Management

GetAppParms

You can use the Get AppPar s procedure to get information about the current
application and about files selected by the user for opening or printing.

PROCEDURE Get AppPar ns(VAR apNane: Str255; VAR apRef Num | nt eger;
VAR apParam Handl e);

apNane On output, the name of the calling application.
apRef Num On output, the reference number of the application’s resource file.
apPar am On output, a handle to the Finder information about files to open or print.

DESCRIPTION

The Get AppPar s procedure returns information about the current application. You can
call Get AppPar ns at application launch time to determine which files, if any, the user
has selected in the Finder for opening or printing. You can call Get AppPar s at any
time to determine the current application’s name and the reference number of the
application’s resource fork.

The Get AppPar s procedure returns the application’s name in the apNane parameter
and the reference number of its resource fork in the apRef Numparameter. A handle to
the Finder information is returned in apPar am This information consists of a word that
encodes the message or action to be performed, a word that indicates how many files to
process, and a list of Finder information about each such file. The Finder information has
the structure of an AppFi | e record, except that the filename occupies only as many
bytes as are required to hold the name (padded to an even number of bytes, if
necessary). In general, it is easier to use the Get AppFi | es procedure to access the
Finder information.

SPECIAL CONSIDERATIONS
If you simply want to determine the application’s resource file reference number, you
can call the Resource Manager function Cur ResFi | e when your application starts up.

If you need more extensive information about the application than Get AppPar ns
provides, you can use the Process Manager function Get Cur r ent Pr ocess.

ASSEMBLY-LANGUAGE INFORMATION

You can get the application’s name, reference number, and handle to the Finder
information directly from the global variables Cur ApNane, Cur ApRef Num and
AppPar nHandl e.

1-58 File Management Reference

CHAPTER 1

Introduction to File Management

CountAppFiles

DESCRIPTION

You can use the Count AppFi | es procedure to determine how many documents (if any)
the user has selected at application launch time for opening or printing.

PROCEDURE Count AppFil es (VAR nessage: | nteger;
VAR count: Integer);

message The action to be performed on the selected files.
count The number of files selected.

The Count AppFi | es procedure deciphers the Finder information passed to your
application and returns information about the files that were selected when your
application was started up. On exit, the count parameter contains the number of
selected files, and the nessage parameter contains an integer that indicates whether the
files are to be opened or printed. The message parameter contains one of these
constants:

CONST

appQpen
appPri nt

0; {open the docunent(s)}
1; {print the docunent(s)}

GetAppFiles

DESCRIPTION

You can use the Get AppFi | es procedure to retrieve information about each file selected
at application startup for opening or printing.

PROCEDURE GCet AppFil es (index: Integer; VAR theFile: AppFile);

i ndex The index of the file whose information is returned.
theFile A structure containing the returned information.

The Get AppFi | es procedure returns information about a file that was selected when
your application was started up (as listed in the Finder information). The i ndex
parameter indicates the file for which information should be returned; it must be
between 1 and the number returned by Count AppFi | es, inclusive.

File Management Reference 1-59

CHAPTER 1

Introduction to File Management

ClrAppFiles

DESCRIPTION

1-60

You can use the Cl r AppFi | es procedure to notify the Finder that you have processed
the information about a file selected for opening or printing at application startup.

PROCEDURE C r AppFi | es (index: |nteger);

i ndex The index of the file whose information is to be cleared.

The C r AppFi | es procedure changes the Finder information passed to your
application about the specified file so that the Finder knows you’ve processed the file.
The i ndex parameter must be between 1 and the number returned by Count AppFi | es,
inclusive. You should call C r AppFi | es for every document your application opens or
prints, so that the information returned by Count AppFi | es and Get AppFi | es is
always correct. The Cl r AppFi | es procedure sets the file type in the Finder information
to 0.

File Management Reference

CHAPTER 1

Introduction to File Management

Summary of File Management

Pascal Summary

Constants

CONST
{Gestalt constants}
gestal t FSAttr = '"fs '; {file systemattributes sel ector}
gest al t HasFSSpecCal | s = 1; {supports FSSpec records}
gestaltStandardFil eAttr = 'stdf'; {Standard File attributes selector}
gest al t St andar dFi | e58 = 0 {supports StandardPutFile etc.}
gestal t Fi ndFol der Attr = 'fold'; {FindFolder attributes selector}
gest al t Fi ndFol der Present=0; {Fi ndFol der is present}

{access nodes for opening files}

fsCurPerm = 0 {what ever perm ssion is all owed}
f sRdPer m = 1; {read pernission}

f sW Perm = 2 {write permssion}

f SRAW Per m = 3 {exclusive read/wite permi ssion}
f sSRAW ShPer m = 4, {shared read/wite pernission}

{file mark positioning nodes}

f SAt Mar k = 0 {at current mark}

fsFronttart = 1 {set mark relative to beginning of file}

f sFromLEOF = 2 {set mark relative to logical end-of-file}
f sFromvar k = 3 {set mark relative to current mark}
rdVerify = 64, {add to above for read-verify}

{messages from Count AppFi | es}
appOpen = 0 {open the docunent(s)}
appPrint = 1 {print the docunent(s)}

Summary of File Management 1-61

CHAPTER 1

Introduction to File Management

Data Types

File System Specification Record

TYPE FSSpec =

RECORD
vRef Num I nt eger; {vol une reference nunber}
par | D Longl nt; {directory ID of parent directory}
nane: Str63; {filename or directory name}

END;

FSSpecPtr = ~"FSSpec;

FSSpecHandl e = ~FSSpechktr

Standard File Reply Record

TYPE St andar dFi | eRepl y=
RECORD

{TRUE if user did not cancel}

{TRUE if replacing file with same nane}

{file type}
{selected iten}

{script of selected item s nane}

{Finder flags of selected iten}

sf Good: Bool ean;
sf Repl aci ng: Bool ean
sf Type: CSType;
sfFile: FSSpec;
sf Scri pt: Scri pt Code;
sf Fl ags: I nt eger;
sf | sFol der: Bool ean
sfl sVol une: Bool ean
sf Reservedl: Longl nt;
sf Reserved2: I nt eger;

END;

Application Files Record
TYPE AppFil e =

RECORD
vRef Num I nt eger;
f Type: CSType;
ver sNum | nt eger;
f Nane: Str255

END;

SFTypelLi st =

FileFilterProcPtr

1-62 Summary of File Management

ProcPtr;

{selected itemis a folder}
{selected itemis a vol une}
{reserved}
{reserved}

{working directory reference nunber}

{file type}
{versi on nunber; ignored}
{filenane}

ARRAY[0. . 3] OF OSType;

{file filter function}

CHAPTER 1

Introduction to File Management

File Specification Routines

Opening Files

PROCEDURE St andardCet Fil e (fileFilter: FileFilterProcPtr;
nunfTypes: Integer; typeList: SFTypelist;
VAR reply: StandardFil eReply);

Saving Files

PROCEDURE St andar dPut Fil e (pronpt: Str255; defaultName: Str255;
VAR reply: StandardFil eReply);

File Access Routines

Reading, Writing, and Closing Files

FUNCTI ON FSRead (refNum Integer; VAR count: Longlnt;
buffPtr: Ptr): OSErr;

FUNCTION FSWite (refNum Integer; VAR count: Longlnt;
buffPtr: Ptr): OSErr;

FUNCTI ON FSCl ose (refNum Integer): OSErr;

Manipulating the File Mark

FUNCTI ON Get FPos (refNum Integer; VAR filePos: Longint): OSErr;

FUNCTI ON Set FPos (refNum Integer; poshMde: Integer;
posOf: Longlnt): OSErr;

Manipulating the End-of-File

FUNCTI ON CGet EOF (refNum Integer; VAR | ogEOF: Longlnt): OSErr;
FUNCTI ON Set EOF (ref Num Integer; |ogECF: Longlnt): OSErr;

File and Directory Manipulation Routines

Opening, Creating, and Deleting Files

FUNCTI ON FSpQpenDF (spec: FSSpec; perm ssion: SignedByte;
VAR ref Num |Integer): OSErr;

FUNCTI ON FSpCr eat e (spec: FSSpec; creator: OSType;
fileType: OSType; scriptTag: ScriptCode):
OSErr;

FUNCTI ON FSpDel et e (spec: FSSpec): OSErr;

Summary of File Management 1-63

CHAPTER 1

Introduction to File Management

Exchanging the Data in Two Files
FUNCTI ON FSpExchangeFi | es

Creating File System Specifications
FUNCTI ON FSMakeFSSpec (vRef Num

(source: FSSpec; dest: FSSpec): OSErr;

Integer; dirlD: Longlnt;

fileName: Str255; VAR spec: FSSpec): OSErr;

Volume Access Routines

Updating Volumes
FUNCTI ON Fl ushVol

Obtaining Volume Information
FUNCTI ON Get VInfo

CSErr;
FUNCTI ON Get VRef Num

Application Launch File Routines

(vol Name: StringPtr; vRefNum Integer): OSErr;

(drvNum Integer; vol Nane: StringPtr;
VAR vRef Num

I nteger; VAR freeBytes: Longint):

(refNum Integer; VAR vRef Num |Integer): OSErr;

PROCEDURE Get AppPar ns

(VAR apNane: Str255; VAR apRef Num | nteger;

VAR apParam Handl e);

PROCEDURE Count AppFi | es
PROCEDURE Get AppFi | es
PROCEDURE d r AppFi | es

C Summary

(VAR nessage:
(index: Integer; VAR theFile: AppFile);
(i ndex: Integer);

I nteger; VAR count: Integer);

Constants

/| *Gestalt constants*/

#define gestal t FSAttr "fs
#def i ne gestaltFul | Ext FSDi spat ching 0
#def i ne gestal t HasFSSpecCal | s 1
#defi ne gestaltFindFol derAttr "fol d
#def i ne gestal t Fi ndFol der Present 0

1-64 Summary of File Management

[*file systemattributes selector*/
[*exports HFSDi spatch traps*/

[*supports FSSpec records*/

/ *Fi ndFol der attributes sel ector*/
[*Fi ndFol der is present*/

CHAPTER 1

Introduction to File Management

/*Cestalt Standard File attributes selector and reply*/

#defi ne ges
#defi ne ges

taltStandardFi |l eAttr
tal t St andar dFi | e58

"stdf’
0

[*values for requesting file read/wite perm ssions*/

enum {
f sCur Per

0
f sRdPer m =1
fsWPerm = 2,

3
4

f SRAW Pe
f sRAW Sh

[*file mark
enum {
f SAt Mar k
f sFrontt

rdVerify

/ *messages
enum {

appQpen
appPri nt

Data Types

0
1
f sFronLECF = 2,
f sFromvar k =3

m =

rm =
Perm =

posi ti oni ng nodes*/

art =

= 64};
from Count AppFi | es*/

= 0,

[*what ever pernission is allowed*/
[*read perm ssion*/

/*write permnission*/

[*excl usive read/wite perm ssion*/
/[*shared read/wite perm ssion*/

[*at current mark}

/*set mark relative to beginning of file*/
/*set mark relative to |ogical end-of-file*/
/*set mark relative to current mark*/

/*add to above for read-verify*/

[*open the docunent (s)*/
[*print the docunent(s)*/

File System Specification Record

struct FSSp
short
| ong
Str63

H

typedef str

ec {
vRef Num
par | D
nane;

uct FSSpec FSSpec;

typedef FSSpec *FSSpecPtr;

typedef FSSpecPtr *FSSpecHandl e;

Summary of File Management

[*file system specification*/

/[*vol une reference nunber*/
[*directory I D of parent directory*/
[*fil ename or directory nane*/

1-65

CHAPTER 1

Introduction to File Management

Standard File Reply Record

struct StandardFil eReply {

/ *enhanced standard file reply record*/

Bool ean sf Good; [*TRUE if user did not cancel */

Bool ean sfReplacing;/*TRUE if replacing file with sane nane*/
OSType sf Type; [*file type*/

FSSpec sfFile; /[*selected file, folder, or vol une*/

Scri pt Code sfScri pt; [*script of file, folder, or volune nane*/
short sf Fl ags; /[*Finder flags of selected itent/

Bool ean sflsFol der; /*selected itemis a folder*/

Bool ean sflsVolune; /*selected itemis a vol une*/

| ong sf Reservedl;/*reserved*/

short sf Reserved2;/*reserved*/

b

typedef struct StandardFil eReply StandardFil eReply;

Application Files Record

struct AppFile {

short vRef Num

OSType f Type;

short ver sNun

Str255 f Nane;
END;

typedef struct AppFile AppFile;

Standard File Type List

typedef OSType SFTypelist[4];

Callback Routine Pointer Types
[*file filter function*/

/*wor ki ng directory reference nunber*/
[*file type*/

[*version numnber; ignored*/

[*fil enane*/

typedef pascal Boolean (*FileFilterProcPtr)
(Par Bl kPtr PB);

File Specification Routines

Opening Files

pascal void StandardGetFile (const Str255 pronpt,
FileFilterProcPtr fileFilter,
short numlypes, SFTypelList typelist,
StandardFi | eReply *reply);

1-66 Summary of File Management

CHAPTER 1

Introduction to File Management

Saving Files

pascal void StandardPutFile (const Str255 pronmpt, const Str255 defaul t Nane,
StandardFi | eReply *reply);

File Access Routines

Reading, Writing, and Closing Files

pascal OSErr FSRead (short refNum long *count, Ptr buffPtr);
pascal CSErr FSWite (short refNum long *count, Ptr buffPtr);
pascal OSErr FSC ose (short refNunj;

Manipulating the File Mark

pascal OSErr Get FPos (short refNum Iong *fil ePos);
pascal OSErr Set FPos (short ref Num short posMdde, |ong posOif);

Manipulating the End-of-File

pascal OSErr Get EOF (short ref Num [ong *I| ogEOF);
pascal OSErr Set EOF (short refNum |ong | ogeCF);

File and Directory Manipulation Routines

Opening, Creating, and Deleting Files

pascal OSErr FSpQpenDF (const FSSpec *spec, char perm ssion,
short *refNum;

pascal OSErr FSpCreate (const FSSpec *spec, OSType creator,
OSType fil eType, ScriptCode scriptTag);

pascal OSErr FSpDel ete (const FSSpec *spec);

Exchanging the Data in Two Files

pascal OSErr FSpExchangeFil es
(const FSSpec *source, const FSSpec *dest);

Creating File System Specifications

pascal OSErr FSMVakeFSSpec (short vRefNum |long dirlD,
Const St r 255Param fi | eName, FSSpecPtr spec);

Summary of File Management 1-67

CHAPTER 1

Introduction to File Management

Volume Access Routines

Updating Volumes
pascal OSErr Fl ushVol (StringPtr vol Nanme, short vRef Num;

Obtaining Volume Information

pascal OSErr GetVinfo (short drvNum StringPtr vol Nane,
short *vRef Num |ong *freeBytes);
pascal OSErr Get VRef Num (short ref Num short *vRef Nunj;

Application Launch File Routines

pascal void Get AppPar ns (Str255 apNane, short *apRef Num
Handl e *apParam ;

pascal void Count AppFil es (short *message, short *count);
pascal void Get AppFil es (short index, AppFile *theFile);
pascal void O rAppFiles (short index);

Assembly-Language Summary

Global Variables

AppPar nHandl e long Handle to Finder information.

Cur ApNane 32 bytes Name of current application (length byte followed by up to
31 characters).

Cur ApRef Num word Reference number of current application’s resource file.

1-68 Summary of File Management

CHAPTER 1

Introduction to File Management

Result Codes

noErr

di rFul Err
dskFul Err
nsvErr

i oErr
bdNantr r
f nQpnErr
eof Err
posErr
tnfoErr
fnfErr
wWPr Err

f LckdErr
vLckdErr
f BsyErr

dupFNEr r

OpW Err

par ankrr

rf Nuntrr

of pErr

vol OFflinErr
pernkrr
nsDrvErr

wr Per nErr

di r NFErr

wr gVol TypErr
not AFi | eErr
di ffVol Err
sameFi | eErr

33
-34
35
36
37
38
-39
40
—42
43
—44
45
46
47

49
50
51
52
53
54
-56

—61
-120
-123

-1302
-1303
-1306

af pAccessDeni ed
af pObj ect TypeErr

af pSaneoj ect Err

-5000
-5025

-5038

No error

File directory full

All allocation blocks on the volume are full
Volume not found

1/0 error

Bad filename or volume name

File not open

Logical end-of-file reached

Attempt to position mark before start of file

Too many files open

File not found

Hardware volume lock

File locked

Software volume lock

File is busy; one or more files are open; directory not
empty or working directory control block is open
A file with the specified name and version number
already exists

File already open for writing

Parameter error

Reference number specifies nonexistent access path
Error during Get FPos

Volume is offline

Attempt to open locked file for writing

Specified drive number doesn’t match any number in
the drive queue

Read/write permission doesn’t allow writing
Directory not found or incomplete pathname

Not an HFS volume

Specified file is a directory

Files are on different volumes

Source and destination files are the same

User does not have the correct access to the file
Obiject is a directory, not a file; a directory exists with
that name

Source and destination files are the same

Summary of File Management 1-69

CHAPTER 2

File Manager

Contents

About the File Manager 2-5
File Manipulation 2-7
Directory Manipulation 2-10
Volume Manipulation 2-11
Volume Searching 2-13
Shared Environments 2-14
Shared File Access Permissions 2-15
Directory Access Privileges 2-18
Remote Volume Mounting 2-20
Privilege Information in Foreign File Systems 2-20
File ID Reference Routines 2-23
Identifying Files, Directories, and Volumes 2-23
File System Specifications 2-24
File IDs 2-24
Directory IDs 2-25
Volume Reference Numbers 2-26
Working Directory Reference Numbers 2-26
Names and Pathnames 2-27
HFS Specifications 2-28
Search Paths 2-31
Using the File Manager 2-32
Determining the Features of the File Manager 2-32
Creating File System Specification Records 2-34
Manipulating the Default Volume and Directory 2-35
Deleting Files and File Forks 2-37
Searching a Volume 2-38
Constructing Full Pathnames 2-44
Determining the Amount of Free Space on a Volume 2-46
Sharing Volumes and Directories 2-48
Locking and Unlocking File Ranges 2-50

Contents

CHAPTER 2

Data Organization on VVolumes 2-52
Disk and Volume Organization 2-54
Boot Blocks 2-57
Master Directory Blocks 2-59
Volume Bitmaps 2-62
B*-Trees 2-63
Nodes 2-64
Node Records 2-66
Header Nodes 2-67
Map Nodes 2-69
Index Nodes 2-69
Leaf Nodes 2-70
Catalog Files 2-70
Catalog File Keys 2-71
Catalog File Data Records 2-72
Extents Overflow Files 2-74
Data Organization in Memory 2-76
The File 1/0 Queue 2-77
Volume Control Blocks 2-77
File Control Blocks 2-81
B*-Tree Control Blocks 2-83
The Drive Queue 2-84
File Manager Reference 2-86
Data Structures 2-86
File System Specification Record 2-86
Basic File Manager Parameter Block 2-87
HFS Parameter Block 2-91
Catalog Information Parameter Blocks 2-100
Catalog Position Records 2-104
Catalog Move Parameter Blocks 2-104
Working Directory Parameter Blocks 2-106
File Control Block Parameter Blocks 2-107
Volume Attributes Buffer 2-109
Volume Mounting Information Records 2-110
High-Level File Access Routines 2-112
Reading, Writing, and Closing Files 2-112
Manipulating the File Mark 2-115
Manipulating the End-of-File 2-116
Allocating File Blocks 2-118
Low-Level File Access Routines 2-120
Reading, Writing, and Closing Files 2-121
Manipulating the File Mark 2-125
Manipulating the End-of-File 2-126
Allocating File Blocks 2-128
Updating Files 2-131
High-Level Volume Access Routines 2-132
Unmounting Volumes 2-132

Contents

CHAPTER 2

Updating Volumes 2-133
Manipulating the Default Volume 2-134
Obtaining Volume Information 2-137
Low-Level Volume Access Routines 2-138
Mounting and Unmounting Volumes 2-139
Updating Volumes 2-142
Obtaining Volume Information 2-144
Manipulating the Default Volume 2-150
File System Specification Routines 2-154
Opening Files 2-154
Creating and Deleting Files and Directories 2-156
Accessing Information About Files and Directories 2-159
Moving Files or Directories 2-163
Exchanging the Data in Two Files 2-165
Creating File System Specifications 2-166
High-Level HFS Routines 2-169
Opening Files 2-169
Creating and Deleting Files and Directories 2-172
Accessing Information About Files and Directories 2-175
Moving Files or Directories 2-179
Maintaining Working Directories 2-180
Low-Level HFS Routines 2-182
Opening Files 2-183
Creating and Deleting Files and Directories 2-186
Accessing Information About Files and Directories 2-190
Moving Files or Directories 2-199
Maintaining Working Directories 2-201
Searching a Catalog 2-204
Exchanging the Data in Two Files 2-206
Shared Environment Routines 2-208
Opening Files While Denying Access 2-208
Locking and Unlocking File Ranges 2-211
Manipulating Share Points 2-213
Controlling Directory Access 2-217
Mounting Volumes 2-219
Controlling Login Access 2-222
Copying and Moving Files 2-226
File ID Routines 2-229
Resolving File ID References 2-229
Creating and Deleting File ID References 2-230
Foreign File System Routines 2-232
Utility Routines 2-235
Obtaining Queue Headers 2-235
Adding a Drive 2-236
Obtaining File Control Block Information 2-236
Application-Defined Routines 2-238
Completion Routines 2-238

Contents

CHAPTER 2

Summary of the File Manager
Pascal Summary 2-240
Constants 2-240
Data Types 2-242

Internal Data Types 2-251

2-240

High-Level File Access Routines 2-253
Low-Level File Access Routines 2-254
High-Level Volume Access Routines 2-255
Low-Level Volume Access Routines 2-255
File System Specification Routines 2-256

High-Level HFS Routines
Low-Level HFS Routines

2-257

2-259

Shared Environment Routines 2-261

File ID Routines 2-263

Foreign File System Routines

Utility Routines 2-264

Application-Defined Routine
C Summary 2-264

Constants 2-264

Data Types 2-267

Internal Data Types 2-278

2-263

2-264

High-Level File Access Routines 2-280
Low-Level File Access Routines 2-280
High-Level Volume Access Routines 2-281
Low-Level Volume Access Routines 2-282
File System Specification Routines 2-283

High-Level HFS Routines
Low-Level HFS Routines

2-284
2-285

Shared Environment Routines 2-287

File ID Routines 2-290
Foreign File System Routines
Utility Routines 2-291
Application-Defined Routine
Assembly-Language Summary
Constants 2-291
Data Structures 2-292
Trap Macros 2-299
Global Variables 2-301
Result Codes 2-301

2-4 Contents

2-290

2-291
2-291

CHAPTER 2

File Manager

This chapter describes how your application can use the File Manager to store and access
data in files or to manipulate files, directories, and volumes. It also provides a complete
description of all File Manager routines, data types, and constants.

You need to read the information in this chapter if you wish to use File Manager routines
other than those described in the chapter “Introduction to File Management” earlier in
this book. That chapter shows how to use the File Manager, the Standard File Package,
and other system software components to handle the typical File menu commands and
perform other common file-manipulation operations. This chapter addresses a number
of other important file-related issues, including

n using the low-level File Manager routines

n locking and unlocking byte ranges in shared files

n searching a volume for files or directories satisfying certain criteria
n obtaining information about files, directories, and volumes

This chapter also addresses some advanced topics of interest primarily to designers
of very specialized applications or file-system utility programs. These advanced
topics include

n how the File Manager organizes file and directory data on disk
n how the File Manager organizes information in memory

To use this chapter, you should already be familiar with the information presented in the
chapter “Introduction to File Management” earlier in this book.

This chapter begins with a general introduction to the File Manager and the services it
provides. Then it describes

n ways of identifying files, directories, and volumes
n file access permissions
n directory access privileges

n running in a shared environment

About the File Manager

The File Manager is the part of the Macintosh Operating System that manages the
organization, reading, and writing of data located on physical data storage devices
such as disk drives. This data includes the data in documents as well as other
collections of data used to maintain the hierarchical file system (HFS) and other system
software services. To accomplish these tasks, the File Manager interacts with many
other components of the system software. For example, the Resource Manager uses
File Manager routines when it needs to read and write resource data. Similarly, the File
Manager calls the Device Manager to perform the actual reading and writing of data
on a physical data storage device. In general, you’ll use the Resource Manager to read
and write data in a file’s resource fork and the File Manager to read and write data in
afile’s data fork. You’ll also use the File Manager to perform operations on directories
and volumes.

About the File Manager 2-5

CHAPTER 2

File Manager

The File Manager provides a large number of routines for performing various operations
on files, directories, and volumes. The requirements of your application will dictate
which of these routines you will need to use. Many applications simply need to open
files, read and write the data in those files, and then close the files. Other applications
might provide more capabilities, such as the ability to copy a file or move a file to
another directory. A few file-system utilities perform even more extensive file operations
and hence need to use some of the advanced routines provided by the File Manager. For
example, a disk scavenger might need to make a byte-by-byte search through a volume
to find pieces of a deleted file.

You can often use one of several File Manager routines to accomplish a particular task.
This is because many of the File Manager routines are provided in two different forms:
high level and low level. The low-level routines generally provide the greatest control
over the requested task; they are identified by the prefixes PB and PBH, indicating that
they take the address of a parameter block as a parameter. The high-level routines are
always defined in terms of low-level routines; they are identified by prefixes such as FSp
or H, indicating how you identify files or directories using those routines, or by no
special prefix at all.

You pass information to a high-level routine using the routine’s parameters. A high-level
routine has as many parameters as are necessary to pass the information it requires.

You pass information to a low-level routine by filling in fields in a parameter block and
then passing the address of the parameter block to the routine. In all cases, a low-level
routine uses more fields in the parameter block than there are parameters in the
corresponding high-level routine. As a result, you can use those low-level routines to
perform more advanced operations or to provide more extensive information than you
can with the corresponding high-level routines. This is the principal reason you might
choose to use a low-level routine instead of its corresponding high-level routine.

IMPORTANT

If you use the low-level File Manager routines, be sure to clear all
unused fields of the parameter block. s

Low-level routines also accept a parameter indicating whether you want the routine to
be executed synchronously or asynchronously. If you request synchronous execution,
control does not return to your application until the routine has been executed. This
allows you to inspect the routine’s result code to see whether the routine was
successfully completed. If so, your application can continue by performing other
operations that depend on the successful completion of that routine.

If you request asynchronous execution, an 1/O request is put into the file I/0O queue and
control returns to your application immediately—possibly even before the actual 1/0
operation is completed. The File Manager takes requests from the queue one at a time
and processes them; meanwhile, your application is free to work on other things.
Routines that are executed asynchronously return control to your application with the
result code noEr r as soon as the call is placed in the file I/0 queue. Return of control
does not signal successful completion of the call, but simply successful queuing of the
request. To determine when the call is actually completed, you can poll the i oResul t
field of the parameter block. This field is set to a positive number when the call is made

About the File Manager

CHAPTER 2

File Manager

and set to the actual result code when the call is completed. If necessary, you can also
install a completion routine that is executed when the asynchronous call is completed.
See “Completion Routines” on page 2-238 for details about completion routines.

Note

Although you can request asynchronous execution for most low-level
routines, the device driver for the device on which the target file,
directory, or volume resides might not support asynchronous
operations. For example, the current implementation of the SCSI
Manager allows synchronous execution only. The Sony disk driver and
AppleShare server software do, however, support asynchronous
operation. u

The following sections describe the various capabilities of the File Manager. For full
details on any of the routines mentioned in these sections, see the descriptions given in
“File Manager Reference” beginning on page 2-86.

File Manipulation

The File Manager provides a number of routines that allow you to manipulate files. You
can open a file fork, read and write the data in it, adjust its logical end-of-file, set the file
mark, allocate blocks to a file, and close a file.

To manipulate the data in a file, you first need to open the file. You can open a file using
one of several routines, depending on whether you want to use low-level or high-level
routines and how you identify the file to open. Table 2-1 lists the file-opening routines.

Table 2-1 Routines for opening file forks

FSSpec HFS High-Level HFS Low-Level Description

FSpOpenDF HOpenDF PBHOpenDF Open a file’s data fork.

FSpOpenRF HOpenRF PBHOpenRF Open a file’s resource fork.
HOpen PBHOpen Open a driver or file data fork.

All the high-level FSSpec routines require you to specify a file using a file system
specification record. All the HFS routines, whether high or low level, require you to
specify a file by its volume, directory, and name.

No matter which routine you use to open a file, you need to specify a file permission
that governs the kind of access your application can have to that file. You can specify one
of these constants:

CONST
fsCurPerm = 0 {what ever perm ssion is allowed}
f sRdPer m = 1; {read perm ssion}

About the File Manager 2-7

CHAPTER 2

File Manager
f sW Perm = 2 {write perm ssion}
f SRAW Per m = 3 {exclusive read/wite pernission}
f sSRAW ShPerm = 4; {shared read/wite pernission}

Use the constant f sCur Per mto request whatever permission is currently allowed. If
write access is unavailable (because the file is locked or because the file is already open
with write access), then read permission is granted. Otherwise, read/write permission
is granted.

Use the constant f sRdPer mto request permission to read the file. Similarly, use the
constant f sW Per mto request permission to write to the file. If write permission is
granted, no other access paths are granted write permission. Note, however, that the File
Manager does not support write-only access to a file. As a result, f sW Per mis
synonymous with f sRAW Per m

There are two types of read/write permission—exclusive and shared. Often you want
exclusive read/write permission, so that users can safely read and alter portions of a file.
If your application requests and is granted exclusive read/write permission, no users are
granted permission to write to the file; other users may, however, be granted permission
to read the file.

Shared read/write permission allows multiple access paths for writing and reading. It is
safe to have multiple read/write paths open to a file only if there is some way of locking
a portion of the file before writing to that portion of the file. You can use the File
Manager functions PBLockRange and PBUnl ockRange to lock and unlock ranges of
bytes in a file. These functions, however, are supported only on remotely mounted
volumes or on local volumes that are sharable on the network. As a result, you should
request shared read/write permission only if range locking is available. See “Shared File
Access Permissions” on page 2-15 for details on permissions in shared environments.

Note

Don’t assume that successfully opening a file for writing ensures that
you can actually write data to the file. The File Manager allows you to
open with write permission a file located on a locked volume, and you
won’t receive an error until you first try to write data to the file. To be
safe, you can call the PBHGet VI nf o function to make sure that the
volume is writable. u

When you successfully open a file fork, you receive afile reference number that
uniquely identifies the open file. You can pass that number to the File Manager routines
that allow you to manipulate open files. Table 2-2 lists the routines that operate on
open files.

The File Manager provides a number of routines that allow you to operate on files that
are closed. You can create, delete, get and set information, and lock and unlock files.
You can also move files within a volume and exchange data in two files. Table 2-3 lists
these routines.

About the File Manager

CHAPTER 2

File Manager

Table 2-2 Routines for operating on open file forks

High-Level Low-Level Description

FSRead PBRead Read bytes from an open file fork.

FSWite PBWite Write bytes to an open file fork.

FSC ose PBC ose Close an open file fork.

Get FPos PBGet FPos Get the position of the file mark.

Set FPos PBSet FPos Set the position of the file mark.

Get EOF PBGet EOF Get the current logical end-of-file.

Set EOF PBSet EOF Set the current logical end-of-file.

Al | ocate PBAl | ocat e Add allocation blocks to a file fork.

Al'l ocConti g PBAI | ocConti g Add contiguous allocation blocks to a file fork.

PBFI ushFi |l e Update the disk contents of a file fork.

Get VRef Num Get volume reference number of an open file.

Table 2-3 Routines for operating on closed files

FSSpec HFS High-Level HFS Low-Level Description

FSpCreate HCr eat e PBHCr eat e Create both forks of a
new file.

FSpDel et e HDel et e PBHDel et e Delete both forks of a file.

FSpGet FI nf o HCGet FI nf o PBHGet FI nf o Get a file’s Finder
information.

FSpSet FI nf o HSet FI nf o PBHSet FI nf o Set a file’s Finder information.

FSpSet FLock HSet FLock PBHSet FLock Lock afile.

FSpRst FLock HRst FLock PBHRst FLock Unlock a file.

FSpCat Move Cat Move PBCat Move Move a file or directory
within a volume.

FSpRenane HRenane PBHRenane Rename a file or directory.

PBCet Cat I nfo Get information about a file
or directory.
PBSet Cat | nf o Set information about a file

or directory.

Note

You can use the functions listed in Table 2-2 on open files as well, except
for those functions that create or delete file forks. u

About the File Manager

2-9

2-10

CHAPTER 2

File Manager

You can exchange the data in two files using the FSpExchangeFi | es and
PBExchangeFi | es functions. If you need to create a file system specification record,
you can use the FSMakeFSSpec or PBMakeFSSpec function.

Directory Manipulation

The File Manager provides a number of routines that allow you to manipulate
directories. For example, you can create and delete directories, get information about a
directory, and move and rename directories. The directory manipulation routines are

listed in Table 2-4.

Table 2-4 Routines for operating on directories

FSSpec HFS High-Level HFS Low-Level Description

FSpDi r Cr eat DirCreate PBDi r Creat e Create a directory.

e

FSpDel et e HDel et e PBHDel et e Delete a directory.

FSpGet FI nf o HGet FI nfo PBHGet FI nf o Get Finder information for
adirectory.

FSpSet FI nf o HSet FI nf o PBHSet FI nf o Set Finder information for
adirectory.

FSpSet FLock HSet FLock PBHSet FLock Lock a directory.

FSpRst FLock HRst FLock PBHRst FLock Unlock a directory.

FSpCat Move Cat Move PBCat Move Move a file or directory within
a volume.

FSpRenarne HRenane PBHRenare Rename a file or directory.

PBGet Cat | nf o

PBSet Cat | nf o

Get information about a file
or directory.

Set information about a file
or directory.

The File Manager includes a number of routines that allow you to manipulate working
directories. See Table 2-5. Most applications do not need to use working directories.

About the File Manager

CHAPTER 2

File Manager

Table 2-5 Routines for manipulating working directories

High-Level Low-Level Description

OpenV\D PBOpenV\D Open a working directory.

Cl oseWD PBCl oseWD Close a working directory.

Get DI nf o PBGet VDI nf o Get information about a working directory.

Volume Manipulation

The File Manager provides a number of routines that allow you to manipulate volumes.
For example, you can obtain information about a mounted volume, update the
information on a volume, unmount a mounted volume or place it offline, and so forth.
Most applications don’t need explicit access to volumes. The Standard File Package and
the Finder handle most events related to the insertion and ejection of disks.

When the Event Manager function Wai t Next Event (or Get Next Event) receives a
disk-inserted event, it calls the Desk Manager function Syst enEvent . The Desk
Manager in turn calls the File Manager function PBVbunt Vol , which attempts to mount
the volume on the disk. The result of the PBMbunt Vol call is put into the high-order
word of the event message, and the drive number is put into its low-order word. If the
result code indicates that an error occurred, you need to call the Disk Initialization
Manager routine DI BadMbunt to allow the user to initialize or eject the volume. For
details, see the chapter “Disk Initialization Manager” in this book.

After a volume has been mounted, your application can call Get VI nf o, which returns
the name, the amount of unused space, and the volume reference number. Given a file
reference number, you can get the volume reference number of the volume containing
that file by calling either Get VRef Numor Get FCBI nf o.

You can unmount or place offline any volumes that aren’t currently being used. To
unmount a volume, call Unnount Vol , which flushes a volume (by calling FI ushVol)
and releases all of the memory it uses. To place a volume offline, call PBO f Li ne, which
flushes a volume and releases all of the memory used for it except for the volume control
block. The File Manager places offline volumes online as needed, but your application
must remount any unmounted volumes it wants to access. The File Manager itself may
place volumes offline during its normal operation.

Note

If you make a call to an offline volume, the File Manager displays the
disk switch dialog box and waits for the user to reinsert the disk
containing the volume. When the user inserts the required disk, the File
Manager mounts the volume and then reissues your original call. To
avoid presenting the user with numerous disk switch dialog boxes, you
might need to check that a volume is online before attempting to access
dataonit. u

About the File Manager 2-11

CHAPTER 2

File Manager

To protect against data loss due to power interruption or unexpected disk ejection, you
should periodically call Fl ushVol (probably after each time you close a file), which
writes the contents of the volume buffer and all access path buffers (if any) to the volume
and updates the descriptive information contained on the volume.

Whenever your application is finished with a disk, or when the user chooses Eject from a
menu, call the Ej ect function. This function calls FI ushVol , places the volume offline,
and then physically ejects the volume from its drive.

If you would like all File Manager calls to apply to a particular volume, specify it as the
default volume. You can use the HGet Vol (or Get Vol) function to determine the name
and volume reference number of the default volume, and the Set Vol function to make
any mounted volume the default.

Normally, volume initialization and naming are handled by the Disk Initialization
Manager. If you want to initialize a volume explicitly or erase all files from a volume,
you can call the Disk Initialization Manager directly. When you want to change the name
of a volume, call the HRenan® function.

Table 2-6 summarizes the volume-manipulation routines. Most of these routines require

you to specify a volume either by name or by volume reference number.

Table 2-6 Routines for operating on volumes

High-Level Low-Level Description
PBMount Vol Mount a volume.

Unnount Vol PBUnnount Vol Unmount a volume.

Ej ect PBEj ect Eject a volume.
PBO f Li ne Place a volume offline.

Fl ushVol PBFI ushVol Update a volume.

Get Vol PBGCet Vol Get the default volume.

HCet Vol PBHGet Vol Get the default volume.

Set Vol PBSet Vol Set the default volume.

HSet Vol PBHSet Vol Set the default volume.

Get VInfo PBHGet VI nf o Get information about a volume.
PBSet VI nf o Set information about a volume.

PBHGet Vol Par ns
PBCat Sear ch

About the File Manager

Determine capabilities of a volume.

Search a volume for files or directories
satisfying certain criteria.

CHAPTER 2

File Manager

Volume Searching

The File Manager provides several routines that you can use to search a volume for files
or directories having specific characteristics. For example, you can search for all files
with modification dates of two days ago or less or all directories with the string “Temp”
in their names.

In general, you should avoid searching entire volumes, because a search of large
volumes can consume significant amounts of time. Suppose you are looking for a
particular file (for example, a dictionary file against which your application needs to
check the spelling of a document). In this case, you can save time and increase the
chances of finding the correct file by storing and later resolving an alias record that
describes the desired file. See the chapter “Alias Manager” in this book for details on
using alias records.

Alternatively, suppose you need to find the location of a standard system directory, such
as the Preferences folder or the Temporary Items folder. To perform this search most
efficiently, you should use the Fi ndFol der function. See the chapter “Finder Interface”
in Inside Macintosh: Macintosh Toolbox Essentials for details.

In some cases, however, you do need to search volumes. For instance, a backup utility
needs to search an entire volume to find which files and directories, if any, might need to
be backed up. In these cases, you can choose either of two general search strategies: you
can search the volume’s catalog by calling the PBCat Sear ch function, or you can use a
recursive, indexed search by calling the PBGet Cat | nf o function (see Table 2-2).

Table 2-7 Routines for manipulating working directories

Routine Description

PBCat Sear ch Search a volume’s catalog file for files or directories.
PBCGet Cat | nf o Get information about a single catalog file entry.

Using the PBCat Sear ch function is the fastest and most reliable way to search the
catalog file of an HFS volume for files and directories satisfying certain criteria. The
PBCat Sear ch function returns a list of FSSpec records describing the files or
directories that match the criteria specified by your application.

However, PBCat Sear ch is not available on all volumes or in all versions of the
File Manager. See “Determining the Features of the File Manager” on page 2-32
for instructions on how to determine whether the system software and the target
volume both support the PBCat Sear ch function.

Note

The PBCat Sear ch function is available on all volumes that support the
AppleTalk Filing Protocol (AFP) version 2.1. This includes volumes and
directories shared using the file sharing software introduced in system
software version 7.0 and using the AppleShare 3.0 file server software. u

About the File Manager 2-13

2-14

CHAPTER 2

File Manager

In environments where PBCat Sear ch is not available, you’ll need to do a search that
recursively descends the directory hierarchy and reads through the catalog entries of all
files and directories located in each directory in that hierarchy. You can do this by making
indexed calls to the PBGet Cat | nf o function, which is supported by all system software
versions and by all volumes. However, using this recursive, indexed search method is
usually significantly slower than using the PBCat Sear ch function. (For example, a
recursive, indexed search that takes over 6 minutes might take about 20 seconds using
PBCat Sear ch.)

See “Searching a Volume” beginning on page 2-38 for examples of using both
PBCat Sear ch and PBGet Cat | nf o to search a volume for files and directories.

Shared Environments

Any operating environment that supports multiple users and multiple access to data or
applications is known as a shared environment. A shared environment can be a number
of workstations attached to a network as well as a single workstation executing a
multi-user operating system such as A/UX.

The File Manager supports access both to locally mounted volumes and to volumes
located on devices attached to remote machines on a network. For example, AppleShare,
Apple’s file-server application, allows users to share data, applications, and disk storage
over a network. System software version 7.0 introduced File Sharing, a local version of
AppleShare that allows users to make some or all of the files on a volume available over
the network. To do so, a user establishes a volume or directory as a share point, making
it available for use by registered users or guests on the network.

It is a virtual certainty that some users will run your application in a shared environment.
The File Manager, Chooser, and other system software components cooperate to make
access to remote volumes largely transparent to your application. As a result, most
applications do not need to accommodate shared environments explicitly. You can read
and write files, for instance, regardless of whether they are located on a local or a remote
volume.

If your application performs certain operations on files, however, you might be able to
save considerable time by using special shared environment routines. Suppose, for
example, that you want to copy a file to another directory on a volume. In the general
case, you handle this by reading a buffer of data from the source file and then writing it to
the destination file. If the source and destination volumes are remote, however, this
technique might involve the copying of a lot of data over the network. To optimize remote
file copying, the File Manager provides the PBHCopyFi | e function, which copies a
remote file without sending the data across the network. Similarly, the PBHVbveRenane
function allows you to move and optionally rename a file located on a remote volume.

The File Manager provides routines that allow you to control other aspects of a shared
environment, including

n providing multiple users with shared read/write access to files

n locking and unlocking byte ranges within a file to ensure exclusive access to data
during updates

About the File Manager

CHAPTER 2

File Manager

n enabling and disabling sharing on local volumes and directories
n getting and setting access privileges for directories

n determining volume mounting and login information so that any volume can be
unmounted and remounted easily

Table 2-8 lists the File Manager routines that you can use in a shared environment. Note
that all of these are low-level routines.

Table 2-8 Shared environment routines

Routine Description

PBHOpenDeny Open a file’s data fork using the access deny modes.
PBHOpenRFDeny Open a file’s resource fork using the access deny modes.
PBLockRange Lock a portion of a shared file.

PBUNnl ockRange Unlock a previously locked portion of a shared file.
PBShar e Establish a volume or directory as a share point.
PBUnshar e Remove a share point from a shared environment.
PBGet UGENt ry Get a list of users and groups on the local file server.
PBHGet Di r Access Get the access control information for a directory.
PBHSet Di r Access Set the access control information for a directory.

PBGet Vol Mount | nf 0Si ze Get the size of a volume mounting information record.

PBGet Vol Mount | nf o Get volume mounting information.

PBVol umeMount Mount a volume.

PBHGet Logl nl nf o Get the method used to log on to a shared volume.
PBHVap! D Get the name of a user or group fromits ID.
PBHVapNane Get the ID of a user or group from its name.
PBHCopyFi | e Copy a file on a remote volume.

PBHMbveRenane Move (and perhaps rename) a file on a remote volume.

The following sections describe the capabilities provided by these routines.

Shared File Access Permissions

In a shared environment, files can be shared at a file or subfile level. At a file level, a
project schedule could be read by many users simultaneously but updated by only one
user at a time. At a subfile level, different records of a data base file could be updated by
several users at the same time.

About the File Manager 2-15

CHA

PTER 2

File Manager

The access modes provided by the standard file-opening routines prove insufficient for
shared files. Two additional open functions, PBHOpenDeny and PBHOpenRFDeny, allow

the ability to deny access as well. These deny modes are cumulative, combining to
determine the current access permissions for a file. For instance, if the first opening

routine denies reading to others and the second denies writing, both reading and writing

are then denied for the file.

Figure 2-1 shows how new access and deny modes are granted or refused according to a
file’s current access and deny modes. An unshaded square indicates that a new open call

with the listed permissions would succeed; otherwise, the new open call would fail.

Figure 2-1 Access and deny mode synchronization

2-16

i Ncw-:up:n eyt pt dery moode ared rewy
! opan atenptacsass mods
i

ER ety e e gty ” Etr e] e ey
LI B) B) SRS o

N S S A

D g Tt R it it
i i = o A | g = iy il gl e e x o

- e R R g -
il e e S e N S v

r I L T A L LR g L T e

7 E e - v

R R e IF IF II Ifaﬁf

.-'.-'.l-'.-'.-':-'.-'.-':-'.-'.-'

I e e SR .-.-.-i

Poodesre.
R MR
A B O O

EEk bk Lt Gl
g SR G LR ::
4 Sk S e
o R O L
bz
E . -'.-'.-'-':-':-'
- o-.. "
LE
o S
%
i
3
=
b H
] il At SN SN AR I
5 . I L S SR I . Pt
g N R e e EEt Bk de--bolbo
: iy : A A Y S AR R Vot

You specify deny modes by setting bits in thei oDenyMdes field of the parameter
block passed to PBHOpenDeny or PBHOpenRFDeny. Currently four bits of this field
are meaningful:

Bit

0
1
4
5

Meaning

If set, request read permission

If set, request write permission

If set, deny other users read permission to this file
If set, deny other users write permission to this file

About the File Manager

CHAPTER 2

File Manager

The combination of access and deny requests allows four common opening possibilities:

n Browsing access. You request browsing access by specifying both read and
deny-write modes (i oDenyModes set to $0021). Browsing access is traditional
read-only access; it permits multiple readers but no writers. This access mode is useful
for shared files that do not change often, such as help files, configuration files, and
dictionaries.

n Exclusive access. You request exclusive access by specifying both read and write
access and both deny-read and deny-write access (i oDenyModes set to $0033). Most
applications that are not specifically designed to share file data use this permission
setting. An exclusive access opening call succeeds only if there are no existing paths to
the file. After a successful opening call, all future attempts to establish access paths to
the file are denied until the exclusive-access path is closed.

n Access as a single writer with multiple readers. You request access as the single
writer with multiple readers by specifying both read and write access and deny-write
access (i oDenyModes set to $0023). This access method allows additional users to
gain read-only access to browse a document being modified by the initial writer. The
writer’s application is responsible for range locking the file (by calling PBLockRange)
before writing to it, to prevent reading when the file is inconsistent.

n Shared access. You request shared access by specifying both read and write access
(i oDenyMbdes set to $0003). Shared access should be used by applications that
support full multi-user access to its documents. Range locking is needed to prevent
other users from accessing information undergoing change. Each user must also check
for and handle any errors that result from access by other users. You might prefer to
use a semaphore to flag records in the document as they are checked out, rather than
use range locking exclusively.

You can open a shared file using either the deny modes described here or the file access
permissions described in “File Manipulation” on page 2-7. If you use the original
permissions when you open a file located in a shared directory, the File Manager
translates those permissions into the corresponding access and deny modes. The basic
rule followed in this translation is to allow a single writer or multiple readers, but not
both. The translation from the original permissions to the deny-mode permissions is
shown in Table 2-9.

Table 2-9 Access mode translation

HFS permissions Deny-mode permissions

fsCurPerm Exclusive access, or browsing access if exclusive access
is unavailable.

f sRdPer m Browsing access.

f sW Perm Exclusive access.

f sSRAW Per m Exclusive access, or browsing access if exclusive access

is unavailable.

f sSRAW ShPer m Shared access.

About the File Manager 2-17

2-18

CHAPTER 2

File Manager

Notice that f sCur Per mand f sRAW Per mare retried as read-only (browsing access) if
exclusive access is not available. In addition, whenever browsing access is requested
(that is, when you directly request f sRdPer m or when a request for f sCur Per mor

f sRAW Per mis retried because exclusive access is not available) and cannot be granted,
the AppleShare external file system searches through the open file control blocks (FCBs)
for another AFP access path to the file. If an AFP access path to that file is found, a
read-only access path is returned that shares the AFP access path.

Directory Access Privileges

AppleShare allows users to assign directory access privileges to individual directories,
controlling who has access to the files and folders in the directory. A directory may

be kept private, shared by a group of registered users, or shared with all users on

the network.

Users are organized into groups. Users can belong to more than one group. Information
about users and their privileges is maintained by AppleShare. Each directory has access
privileges assigned for each of these three classifications of users: owner, group, and
everyone. The following privileges can be assigned:

n See Folders. A user with this access privilege (also called search privilege) can see
other directories in the specified directory.

n See Files. A user with this access privilege (also called read privilege) can see the
icons and open documents or applications in that directory as well.

n Make Changes. A user with this access privilege (also called write privilege) can
create, modify, rename, or delete any file or directory contained in the specified
directory. Directory deletion requires additional privileges. It is possible to have Make
Changes privileges without also having See Folders or See Files privileges; this would
allow users to put items into a directory but not view the contents of that directory.

For instance, a user might assign privileges to a particular directory allowing the owner
to read, write, and search the directory, and allowing everyone else (whether in the
group or not) only to search the directory.

On directories shared using File Sharing, you can also assign blank access privileges. In
this case, the File Manager ignores any other access privileges and uses the access
privileges of the directory’s parent. On the local machine, directories in a shared area
have blank access privileges, until set otherwise.

Note
You cannot assign blank access privileges to a volume’s root directory. u

You can use the PBHGet Di r Access and PBHSet Di r Access functions to determine
and change the access privileges for a directory. The access privileges are passed in the
4-byte i 0ACAccess field of the accessPar amvariant of the HFS parameter block
passed to these two functions. The 4 bytes are interpreted separately; byte 0 is the
high-order byte.

About the File Manager

CHAPTER 2

File Manager

Byte Meaning

0 User’s access privileges

1 Everyone’s access privileges
2 Group’s access privileges

3 Owner’s access privileges

The bits in each byte encode access privilege information, as illustrated in Figure 2-2.
(The high-order byte is on top, and the high-order bit is on the left.) Note that the user’s
privileges byte also indicates whether the user owns the directory and whether the
directory has blank access privileges.

Figure 2-2 Access privileges information in the i 0ACAccess field

;S| 24 — Uexr'e privilages

12 | 17 | 16 |— Brerypore’s privilages

LUN 2 | wogp's privieges

2 1 0 |— ©murere privilegee

|
| Seanch
Fasd

Wit

If bit 31 is set, then the user is the owner of the specified directory. If bit 28 is set, the
specified directory has blank access privileges. If bit 28 is clear, the 3 low-order bits of
each byte encode the write, read, and search privileges, respectively. If one of these bits
is set, the directory privileges permit the indicated access to the specified individual.

The 3 low-order bits of the byte encoding the user’s access privilege information are
the logical OR of the corresponding bits in whichever of the other 3 bytes apply to the
user. For example, if the user is the owner of a directory and is in the directory’s group,
then the 3 low-order bits of the user byte are the logical OR of the corresponding bits in
the other 3 bytes. If, however, the user is not the owner and is not in the directory’s
group, the user privilege bits have the same values as the corresponding ones in the
everyone byte.

About the File Manager 2-19

2-20

CHAPTER 2

File Manager

You can use PBHSet Di r Access to set the low-order 3 bits of all the privileges bytes
except the user’s privileges byte. In the user’s privileges byte, you can set only the blank
access privileges bit (bit 28).

Note

Not all volumes support blank access privileges. You can call the
PBHGet Vol Par s function to determine whether a particular volume
supports blank access privileges. u

Remote Volume Mounting

Typically, the user mounts remote shared volumes through the Chooser or by opening an
alias file. The File Manager in system software version 7.0 and later provides a set of calls
for collecting the mounting information from a mounted volume and then using that
information to mount the volume again later, without going through the Chooser.

Ordinarily, before you can mount a volume programmatically, you must record its
mounting information while it’s mounted. Because the size of the mounting information
can vary, you first call the PBGet Vol Mount | nf 0Si ze function, which returns the

size of the record you’ll need to allocate to hold the mounting information. You then
allocate the record and call PBGet Vol Mbunt | nf o, passing a pointer to the record.
When you want to mount the volume later, you can pass the record directly to the

PBVol umeMount function.

Note

The functions for mounting volumes programmatically are low-level
functions designed for specialized applications. Even if your application
needs to track and access volumes automatically, it can ordinarily use
the Alias Manager, described in the chapter “Alias Manager” in this
book. The Alias Manager can record mounting information and later
remount most volumes, even those that do not support the
programmatic mounting functions. u

The programmatic mounting functions can now be used to mount AppleShare volumes.
The functions have been designed so that they can eventually be used to mount local
Macintosh volumes, such as partitions on devices that support partitioning, and local or
remote volumes managed by non-Macintosh file systems.

Privilege Information in Foreign File Systems

Virtually every file system has its own privilege model, that is, conventions for
controlling access to stored files and directories. A number of non-Macintosh file systems
support access from a Macintosh computer by mapping their native privilege models
onto the model defined by the AppleTalk Filing Protocol (AFP). Most applications that
manipulate files in foreign file systems can rely on the intervening software to translate
AFP privileges into whatever is required by the remote system.

About the File Manager

CHAPTER 2

File Manager

The correlation is not always simple, however, and some applications require more
control over the files stored on the foreign system. The A/UX privilege model, for
example, recognizes four kinds of access: read, write, execute, and search. The AFP
model recognizes read, write, deny-read, and deny-write access. If a shell program
running on the Macintosh Operating System wants to allow the user to set native A/UX
privileges on a remote file, it has to communicate with the A/UX file system using the
A/UX privilege model.

System software version 7.0 provides two new functions, PBGet For ei gnPri vs and
PBSet For ei gnPri vs, for manipulating privileges in a non-Macintosh file system.
These access-control functions were designed for use by shell programs, such as the
Finder, that need to use the native privilege model of the foreign file system. Most
applications can rely on using shared environment functions, which are recognized by
file systems that support the Macintosh privilege model. The new access-control
functions do not relieve a foreign file system of the need to map its own privilege model
onto the shared environment functions.

Like all other low-level File Manager functions, the access-control functions exchange
information with your application through parameter blocks. The meanings of some
fields vary according to the foreign file system used. These fields are currently defined
for A/UX, and you can define them for other file systems.

You can identify the foreign file system through the PBHGet Vol Par ns function. The
attributes buffer introduced in system software version 7.0 for the PBHGet Vol Par s
function contains a field for the foreign privilege model, viMFor ei gnPri vI D.

Note

The value of vMFor ei gnPr i vl Ddoes not specify whether the remote
volume supports the AFP access-control functions. You can determine
whether the volume supports the AFP access-control functions by
checking the bAccessCnt | bitinthevMAttri b field. u

A value of 0 for vMFor ei gnPr i vl Dsignifies an HFS volume that supports no foreign
privilege models. The field currently has one other defined value.

CONST
fsUni xPriv = 1; {A UX privil ege nodel }

For an updated list of supported models and their constants and fields, contact
Macintosh Developer Technical Support.
A volume can support no more than one foreign privilege model.

The access-control functions store information in an HFS parameter block of type
f or ei gnPri vPar am The parameter block can store access-control information in one
or both of

n a buffer of any length, whose location and size are stored in the parameter block

n 4 long words of data stored in the parameter block itself

About the File Manager 2-21

CHAPTER 2

File Manager

The meanings of the fields in the parameter block depend on the definitions established
by the foreign file system. For example, the A/UX operating system uses the

i oFor ei gnPri vBuf f er field to point to a 16-byte buffer that describes the access
rights for the specified file or directory. The buffer is divided into four fields, as follows:

Bytes Description

0-3 The user ID of the owner of the file or directory.

4-7 The group ID of the owner of the file or directory.

8-11 Mode bits specifying the type of access available to the owner of the file or

directory, the group of the file or directory, and to everyone else. The value in
this field is a logical OR of some of the following octal values:

Value Meaning

0001 Executable by others.
0002 Writable by others.

0004 Readable by others.

0010 Executable by the group.
0020 Writable by the group.
0040 Readable by the group.
0100 Executable by the owner.
0200 Writable by the owner.
0400 Readable by the owner.
2000 Set group ID on execution.
4000 Set user ID on execution.

(Execute privileges on a directory mean that the directory is searchable.) You
can also use these octal masks to test or set common acess rights:

Mask Meaning
0007 Executable, writable, and readable by others.
0070 Executable, writable, and readable by the group.
0700 Executable, writable, and readable by the owner.
12-15 The active user’s access rights. The value in this field is a logical OR of some

of the following octal values:

Value Meaning

0001 Executable by user.

0002 Writable by user.

0004 Readable by user.

0010 Set if user owns this file or directory.

Note that you cannot change the owner of a file or directory using
PBSet For ei gnPri vs. Accordingly, the value 0010 is meaningful for
PBGet For ei gnPri vs only.

2-22 About the File Manager

CHAPTER 2

File Manager

File ID Reference Routines

The File Manager provides a set of three low-level functions for creating, resolving, and
deleting file ID references. These functions were developed for use by the Alias Manager
in tracking files that have been moved within a volume or renamed. In most cases, you
should use the Alias Manager, not file IDs, to track files. See the chapter “Alias Manager”
in this book.

You establish a file ID reference when you need to identify a file using a file number (see
“File IDs” on page 2-24). You create a file ID reference with the PBCr eat eFi | el DRef
function. Because the File Manager assigns file numbers independently on each volume,
file IDs are not unique across volumes.

You can resolve afile ID reference by calling the PBResol veFi | el DRef function,
which determines the name and parent directory ID of the file with a given ID. If you no
longer need a file ID, remove its record from the directory by calling the

PBDel et eFi | el DRef function.

Note

Removing a file ID is seldom appropriate, but the function is provided
for completeness. u

Identifying Files, Directories, and VVolumes

Whenever you want to perform some operation on a file, directory, or volume, you need
to identify the target item to the File Manager. Exactly how you specify these items in the
file system depends on several factors, including which version of system software is
currently running and, if the target item is a file, whether it is open or closed. For
example, once you have opened a file, you subsequently identify that file to the File
Manager by providing its file reference number, a unique number returned to your
application when you open the file.

In all other cases, you can identify files, directories, and volumes to the File Manager
by using a variety of methods. In addition to file reference numbers, the File
Manager recognizes

n file system specifications

n file ID references

n directory ID numbers

n volume reference numbers

n working directory reference numbers
n names and full or partial pathnames

This section describes each of these ways to identify items in the file system. Note,
however, that some of these methods are of historical or theoretical interest only.
Working directory reference numbers exist solely to provide compatibility with the

Identifying Files, Directories, and Volumes 2-23

2-24

CHAPTER 2

File Manager

now-obsolete Macintosh file system (MFS), and their use is no longer recommended.
Similarly, the use of full pathnames to specify volumes, directories, or files is not
generally recommended.

Whenever possible, you should use file system specifications to identify files and
directories because they provide the simplest method of identification and are
recognized by the Finder, the Standard File Package, and other system software
components beginning with system software version 7.0. If your application is intended
to run in system software versions in which the routines that accept file system
specification records are not available, you should use the volume reference number,
parent directory 1D, and name of the item you wish to identify.

File System Specifications

Conventions for identifying files, directories, and volumes have evolved as the File
Manager has matured. System software version 7.0 introduced a simple, standard form
for identifying a file or directory, called a file system specification. You can use a file
system specification whenever you must identify a file or directory for the File Manager.

A file system specification contains

n the volume reference number of the volume on which the file or directory resides
n the directory ID of the parent directory

n the name of the file or directory

For a complete description of the file system specification (FSSpec) record, see “File
System Specification Record” on page 2-86.

The Standard File Package in system software version 7.0 uses FSSpec records to
identify files to be saved or opened. The File Manager provides a new set of high-level
routines that accept FSSpec records as input, so that your application can pass the data
directly from the Standard File Package to the File Manager. The Alias Manager and the
Edition Manager accept file specifications only in the form of FSSpec records.

The Finder introduced in version 7.0 uses alias records, which are resolved into FSSpec
records, to identify files to be opened or printed.

Version 7.0 also introduced the FSMakeFSSpec function, which initializes an FSSpec
record for a particular file or directory. For a description of FSMakeFSSpec, see
“Creating File System Specification Records” on page 2-34.

File IDs

Afile ID is a unique number that the File Manager assigns to a file at the time it is
created. The File Manager uses file 1Ds to distinguish one file from another on the same
volume. In fact, a file ID is simply the catalog node ID of a file. As a result, file IDs are
functionally analogous to directory I1Ds (described in the next section), and both kinds of
IDs are assigned from the same set of numbers.

Identifying Files, Directories, and Volumes

CHAPTER 2

File Manager

The File Manager can set up an internal record in the volume’s catalog that specifies
the filename and parent directory ID of the file with a given file ID, allowing you to
reference the file by that number. (For more information about the volume’s catalog,
see “Catalog Files” on page 2-70.) This internal record in the volume catalog is a file ID
reference (or file ID thread record).

It is important to distinguish file IDs from file ID references. File IDs exist on all HFS
volumes, but file ID references might or might not exist on a particular HFS volume.
Even if file ID references do exist on a volume, they might not exist for all the files on
that volume. In addition, you can track files by their file IDs only on systems capable of
creating and resolving file ID references. See “File ID Reference Routines” on page 2-23
for a description of the File Manager functions that allow you to manipulate file IDs.

Note

The file ID is a low-level tool and is unique only on one HFS volume. In
most cases, your application should track files using the Alias Manager,
described in the chapter “Alias Manager” in this book. The Alias
Manager can track files across volumes. It creates a detailed record
describing a file that you want to track, and, when you need to resolve
the record later, it performs a sophisticated search. The Alias Manager
uses file IDs internally. u

A file ID is analogous to a directory ID. A file ID is unique only within a volume and
remains constant even when the file is moved or renamed. When a file is copied or
restored from backup, however, the file ID changes. File IDs are unique over time—that
is, once an ID has been assigned to a file, that number is not reused even after the file has
been deleted.

The file ID is a permanent file reference, one that a user cannot change. After storing a
file ID, your application can locate a specific file quickly and automatically, even if the
user has moved or renamed it on the same volume.

File IDs are intended only as a tool for tracking files, not as a new element in file
specification conventions. Neither high-level nor low-level File Manager functions
accept file IDs as parameters.

Directory IDs

Adirectory ID is a unique number that the File Manager uses to distinguish one
directory from another on the same volume. Assigned by the File Manager when the
directory is created, a directory ID is simply the catalog node ID of a directory. As a
result, directory IDs are functionally equivalent to file IDs, and both kinds of IDs are
assigned from the same set of numbers.

Directory IDs are long integers. The File Manager defines several constants to refer to
special directory IDs that exist on every volume.

CONST
fsRtParID = 1; {directory ID of root directory's parent}
fsRKDirID = 2; {directory ID of volune's root directory}

Identifying Files, Directories, and Volumes 2-25

2-26

CHAPTER 2

File Manager

The root directory of every volume has a directory ID of 2. In addition, the root directory
of every volume has a parent directory ID of 1. There is, however, no such parent
directory; the constant f SRt Par | Dis provided solely for use by applications and File
Manager routines that need to specify a parent ID when referring to the volume’s root
directory. For example, if you call the PBGet Cat | nf o function when the i oDi r | Dfield
issettof sRt Di r | D, the value f sRt Par | Dis returned in the i oDr Par | Dfield.

Volume Reference Numbers

A volume reference number is a unique number assigned to a volume at the time it is
mounted. Unlike the volume name (which the user can change at any time and hence
may not be unique), the volume reference number is both unique and unchangeable by
the user, and so is a reliable way to refer to a volume for as long as it is mounted.

Volume reference numbers are small negative integers. They are valid only until the
volume is unmounted. For example, if you place a volume offline and then bring it back
online, that volume retains the same volume reference number it was originally
assigned. However, if you unmount a volume and then remount it at some later time, its
volume reference number might not be the same during both mounts.

Note

A volume reference number refers to a volume only as long as the
volume is mounted. To create a volume reference that remains valid
across subsequent boots, use alias records. See the chapter “Alias
Manager” in this book for details. u

Working Directory Reference Numbers

The File Manager provides a method of identifying directories known as working
directory reference numbers. A working directory is a temporary directory reference
that the File Manager uses to specify both a directory and the volume on which it
resides. Each working directory is assigned a working directory reference number at
the time it is created. You can use this number in place of a volume reference number in
all File Manager routines.

Note

Working directories were developed to allow applications written for
the now-obsolete Macintosh file system to execute correctly when
accessing volumes using the hierarchical file system. In general, your
application should not create working directories and, in the few
instances a working directory reference number is returned to your
application, it should immediately convert that number to a volume
reference number and directory ID. u

The first file system available on Macintosh computers was the Macintosh file system
(MFS), a “flat” file system in which all files are stored in a single directory. The
hierarchical organization of folders within folders is an illusion maintained by the
system software. As a result, you can identify a file under MFS simply by specifying its
name and its volume. Typically, MFS routines require a volume reference number and a
filename to specify a file.

Identifying Files, Directories, and Volumes

CHAPTER 2

File Manager

To improve performance, especially with larger volumes, Apple Computer, Inc., intro-
duced the hierarchical file system (HFS) on the Macintosh Plus computer and later
models. In HFS, a volume can be divided into smaller units known as directories, which
can themselves contain files or other directories. This hierarchical relationship of folders
corresponds to an actual hierarchical directory structure maintained on disk. (See “Data
Organization on VVolumes” beginning on page 2-52 for the precise details of this hierarchi-
cal directory structure.)

Each file on an HFS volume is stored in a directory, called the file’s parent directory. To
identify a file in HFS, you must specify its volume, its parent directory, and its name. The
File Manager assigns each directory a directory ID, and the user or the system software
assigns each directory a name. The HFS File Manager routines include an additional
parameter to handle the directory specification.

To keep existing applications running smoothly, Apple Computer, Inc. introduced the
concept of working directories. A working directory is a combined directory and volume
specification. To make a directory into a working directory, the File Manager establishes
a working directory control block that contains both the volume and the directory ID of
the target directory. The File Manager returns a unique working directory reference
number, which you can use instead of the volume reference number in all routines.

Note

If your application provides both a directory ID and a working directory
reference number, the directory ID is used to specify the directory
(overriding the working directory specified by the working directory
reference number). The working directory reference number is used to
specify the volume (unless a volume name, which overrides all other
forms of volume specification, is also provided). u

The best course of action is to avoid using working directories altogether. In the few
cases where system software returns a working directory reference number to your
application, the recommended practice is to immediately convert that working directory
reference number into its corresponding directory 1D and volume reference number
(using PBGet VDI nf o or its high-level equivalent, Get DI nf 0).

In system software versions 7.0 and later, the Process Manager closes all working
directories opened on behalf of your application when it terminates (quits or crashes).
If your application might also run under earlier system software versions, you need to
be careful to close any such working directories before you quit (using PBCl oseWD or
its high-level equivalent, Cl oseWD).

Names and Pathnames

Volumes, directories, and files all have names. A volume name is any sequence of 1

to 27 characters, excluding colons (3), that is assigned to a volume. File and directory
names consist of any sequence of 1 to 31 characters, excluding colons. You can use
uppercase and lowercase letters in names, but the File Manager ignores case when
comparing names. The File Manager does not, however, ignore diacritical marks when
comparing names.

Identifying Files, Directories, and Volumes 2-27

2-28

CHAPTER 2

File Manager

Note

Although it is legal to use any character other than the colon in file,
directory, and volume names, you should avoid using nonprinting
characters in such names, even for temporary files that do not appear on
the desktop or in the Standard File Package dialog boxes. A program
written in C interprets a null character (ASCII code $00) as the end of a
name; as a result, embedding the null character in a filename is likely to
cause problems. In addition, file, directory, or volume names with null
characters are not usable by AFP file servers (such as computers running
Macintosh File Sharing or AppleShare software). In general, you should
ensure that you use only printing characters in names of objects that you
create in the file system. u

Files and directories located in the same directory must all have unique names.
However, there is no requirement that volumes have unique names. It is perfectly
acceptable for two mounted volumes to have the same name. This is one reason why
your application should use volume reference numbers rather than volume names to
specify volumes.

You can also specify files and directories using pathnames, although this method is
discouraged. There are two kinds of pathnames, full and partial. A full pathname is a
sequence of directory names, separated by colons, starting from the root directory (or
volume) and leading down to the file. A full pathname to the file “Bananas,” for instance,
might be something like this:

MyVol une: Frui t s: Tr opi cal : Bananas

A partial pathname is a pathname that begins in some directory other than the root
directory. A particular directory is specified by volume reference number (in the case of
the root directory), working directory reference number, or directory ID, and the
pathname begins relative to that directory. If the directory “Fruits” were specified, for
instance, the partial pathname to the “Bananas” file would be

: Tropi cal : Bananas

The use of pathnames, however, is highly discouraged. If the user changes names or
moves things around, they are worthless. It’s best to stay with simple file or directory
names and specify the directory containing the file or directory by its directory ID.

HFS Specifications

The simplest way to identify a mounted volume is by giving its volume reference
number. The simplest way to identify a file or directory located on a mounted volume is
by providing a file system specification. In some cases, however, you might not be able
to use file system specifications.

For example, the low-level File Manager routines do not accept file system specifications,
and so you must specify files and directories by some other method. You must also use
another file-identification method when you use the high-level HFS routines that existed
prior to the introduction of the routines that accept FSSpec records as file or directory

Identifying Files, Directories, and Volumes

CHAPTER 2

File Manager

specifications. This section summarizes the conventions the File Manager uses to
interpret the various volume, directory, and file specifications that are available even
when file system specifications are not.

The File Manager recognizes three kinds of file system objects: files, directories, and
volumes. You can identify them using various methods.

Object Method of identification

File Filename

Directory Directory name
Directory ID

Working directory reference number,
which also implies a volume

Volume Volume name
Volume reference number

Working directory reference number,
which also implies a directory

In HFS, you can pass a complete file specification in any of several ways:
n full pathname

n volume reference number and partial pathname

n working directory reference number and partial pathname

n volume reference number, directory 1D, and partial pathname

A full pathname consists of the name of the volume, the names of all directories between
the root directory and the target, and the name of the target. A full pathname starts with
a character other than a colon and contains at least one colon. If the first character is a
colon, or if the pathname contains no colons, it is a partial pathname. If a partial
pathname starts with the name of a parent directory, the first character in the pathname
must be a colon. If a partial pathname contains only the name of the target file or
directory, the leading colon is optional.

You can identify a volume in the vRef Numparameter by volume reference number or
drive number, but volume reference number is preferred. A value of 0 represents the
default volume. A volume name in the pathname overrides any other volume
specification. Unlike a volume name, a volume reference number is guaranteed to be
unique. It changes, however, each time a volume is mounted.

A working directory reference number represents both the directory ID and the volume
reference number. If you specify any value other than 0 for the di r | D parameter, that
value overrides the directory ID implied by a working directory reference number in the
volume parameter. The volume specification remains valid.

Figure 2-3 illustrates the standard ways to identify a file in HFS.

Identifying Files, Directories, and Volumes 2-29

CHAPTER 2

File Manager

Figure 2-3 Identifying a file in HFS

Full puHanme
—
o rRefdum lgrared
Loma Friet
A,
: : 4riD Igrered
e
T . ot
AL S
H E H E — flah)ann = Ful pathram =
TP T i, Lioma Frists: Xt Lines
Lires
Yolwneawd partind pabhsamrs
—
— rRethlum Wolumn e reference rumber or O for
=] defaut ol =
Loma Prieta driD i}
PR ; -
e LA \ ot
Pt e
: E : E — dlahlam = Pariid pahrams
Lood L A At Line=s
: Lires
T,
Workieq direciory asd parial pobhssme
—_
o
! Loma Friek — wrRefdum Workirg directory raferancs rumber
E-\'.'.'.-\. L
: %
: %
(PSSR, -
e Art drlD 0
A S Y ™
! ! — flah)an = Farial pathirame
L P : — LiiTims
Lires
Yolme direchey D, 2w purbis] pabh -
—_
a — rRetum Wolr e reference rumber, O for defadt
_J ralum 2, or vaorking direcionr referance
! Loma Prieta nimn ber
¥ : —
: t — dirlD Direzieny 10 (2 noreercmble bere
! : _J crerrides direciony im plied by werking
R S ot direciory referance num ber in rRetdum)
o e —_
- L fletdam = Parfd pahrame
- S N _ Lines

2-30 Identifying Files, Directories, and Volumes

CHAPTER 2

File Manager

Search Paths

Whenever you specify a value of 0 for the directory ID in an HFS specification, the File
Manager first looks for the desired file in the directory indicated by the two other
relevant HFS parameters or fields—namely, the pathname and the volume specification.
If the specified file is not found in that directory, the File Manager continues searching
for the file along a path known as the poor man’s search path. You need to be aware of
this behavior so that you do not accidentally open, delete, or otherwise manipulate the
wrong file.

Note

The File Manager uses the poor man’s search path only when the

directory ID parameter or field has the value 0. You can avoid the

consequences of accidentally opening or deleting the wrong file by

specifying a directory explicitly with its directory ID. u

If the volume specification is a working directory reference number, the File Manager
searches in the directory whose directory ID is encoded in that working directory
reference number. If the volume specification is a volume reference number or 0, the File
Manager searches in the default directory on the indicated volume. (See “Manipulating
the Default Volume and Directory” on page 2-35 for information about default
directories.) If you provide a full pathname, the File Manager searches in the directory
whose name is contained in the pathname.

If the File Manager cannot find the specified file in the first directory it searches, it next
searches the root directory of the boot volume, but only if the first directory searched is
located on the boot volume. If the specified file is still not found, or if the first directory
searched is not located on the boot volume, the File Manager next searches the System
Folder, if one exists, on the volume containing the first directory searched. If the file still
cannot be found, the File Manager gives up and returns the result code f nf Er r (file not
found) to your application.

As you can see, the use of the poor man’s search path might lead to unexpected results.
Suppose, for example, that you call the HOpenDF function like this:

myErr := HOpenDF(0, 0, ':Ackees', fsRIWPerm nyRefNum;

The values of 0 for the first two parameters (the volume specification and directory 1D)
indicate that you want the File Manager to look for the named file in the default
directory. If, however, there is no such file in that directory, the File Manager continues
looking along the poor man’s search path for a file with the specified name. The result
might be that you open the wrong file. (Worse yet, if you had called HDel et e instead of
HOpenDF, you might have deleted the wrong file!)

The File Manager uses the poor man’s search path for all routines that can return the

f nf Er r result code and to which you passed a directory ID of zero. It does not use the
poor man’s search path when you specify a nonzero directory ID or when you call an
indexed routine (that is, when the i oFDi r | ndex field of the parameter block has a
nonzero value). The File Manager also does not use the poor man’s search path when
you create a file (perhaps by calling PBHCr eat e) or move a file between directories (by
calling PBCat Move).

Identifying Files, Directories, and Volumes 2-31

CHAPTER 2

File Manager

Note

The poor man’s search path might not be supported in future versions of
system software. You should not depend on its availability. u

Using the File Manager

You can use the File Manager to manipulate files, directories, and volumes. The chapter
“Introduction to File Management” in this book shows how to use the File Manager and
other system software services to accomplish the most common file-related operations
(that is, handling the typical File menu commands). This section shows how to accomplish
a variety of other operations on files, directories, and volumes. In particular, this section
shows how to

n determine the available features of the File Manager

n determine the characteristics of a particular mounted volume

n create file system specification records

n manipulate the default volume and directory

n delete files and file forks

n search a volume for files or directories matching various criteria
n construct the full pathname of a file

n determine the amount of free space on a volume

n lock and unlock byte ranges in shared files

Altogether, the code listings given in this section provide a rich source of information
about using the many File Manager routines and data structures.

Determining the Features of the File Manager

Some of the capabilities provided by the File Manager depend on the version of system
software that is running, and some others depend on the characteristics of the target
volume. For example, the routines that accept FSSpec records as file or directory
specifications were introduced in system software version 7.0 and are unavailable in
earlier system software versions—unless your software development system provides
“glue” that allows you to call those routines when running in earlier system software
versions (or unless some system extension provides those routines). Similarly, some
volumes support features that other volumes do not; a volume that has local file
sharing enabled, for instance, allows you to lock byte ranges in any files on a volume
that is sharable.

Before using any of the File Manager features that are not universally available in all
system software versions and on all volumes, you should check for that feature’s
availability by calling either the Gest al t function or the PBHGet Vol Par s function,
according to whether the feature’s presence depends on the system software or the
characteristics of the volume.

2-32 Using the File Manager

CONST

gest al t Ful | Ext FSDi spat chi ng
gest al t HasFSSpecCal | s

CHAPTER 2

File Manager

You can use Gest al t to determine whether or not you can call the functions that accept
and support FSSpec records. Call Gest al t with the gest al t FSAt t r selector to check
for File Manager features. The r esponse parameter currently has two relevant bits:

0; {exports HFSDi spatch traps}
1, {supports FSSpec records}

Constant descriptions

gest al t Ful | Ext FSDi spat chi ng
If set, all of the routines selected through the HFSDi spat ch trap
are available to external file systems. If this bit is clear, the File
Manager checks the selector passed to _HFSDi spat ch and ensures
that it is valid; if the selector is invalid, the result code par anErr is
returned to the caller. If this bit is set, no such validity checking is
performed.

gest al t HasFSSpecCal | s
If set, the operating environment provides the file system
specification versions of the basic file-manipulation functions, plus
the FSMakeFSSpec function.

The chapter “Introduction to File Management” in this book illustrates how to use the
Gest al t function to determine whether the operating environment supports the
routines that accept FSSpec records. For a complete description of the Gest al t
function, see the chapter “Gestalt Manager” in Inside Macintosh: Operating System Utilities.

To test for the availability of the features that depend on the volume, you can call the
low-level function PBHGet Vol Par ns. Listing 2-1 illustrates how you can determine
whether the PBCat Sear ch function is available before using it to search a volume’s
catalog. Note that the Support sCat Sear ch function defined in Listing 2-1 first calls
Gest al t to determine whether the File Manager supports PBCat Sear ch. If it does, the
Support sCat Sear ch function calls PBHGet Vol Par s to see if the indicated volume
also supports PBCat Sear ch.

Listing 2-1 Testing for PBCat Sear ch

FUNCTI ON SupportsCat Search (vRef Num Integer): Bool ean;
VAR

my HPB: HPar anBl ockRec;
i nf oBuf fer: Get Vol Par sl nf oBuf f er;
attrib: Longl nt;
BEG N
SupportsCat Search : = FALSE; {assunme no PBCat Sear ch support}
| F gHasGestalt THEN {set this sonmewhere el se}

| F CGestalt(gestal t FSAttr, attrib) = noErr THEN
IF BTst(attrib, gestaltFull Ext FSDi spat chi ng) THEN

Using the File Manager 2-33

2-34

CHAPTER 2

File Manager
BEG N {this File Myr has PBCat Sear ch}
W TH nyHPB DO
BEG N
i oNanmePtr := NL;
i oVRef Num : = vRef Num
i oBuffer := @nfoBuffer;
i oReqCount : = SI ZEOF(i nfoBuffer);
END;
| F PBHGet Vol Par ns(@yHPB, FALSE) = noErr THEN
| F BTST(i nfoBuffer.vMAttri b, bHasCat Search) THEN
Support sCat Search : = TRUE;
END;
END;

The Suppor t sCat Sear ch function calls PBHGet Vol Par s for the volume whose
reference number is passed as a parameter to Suppor t sCat Sear ch. The

PBHGet Vol Par s function returns information about a volume in a record of type

Get Vol Par sl nf oBuf f er. The vMAt t r i b field of that record contains a number of
bits that encode information about the capabilities of the target volume. In particular, the
bit bHasCat Sear ch is set if the specified volume supports the PBCat Sear ch function.

Note

Some features of volumes might change dynamically during the
execution of your application. For example, the user can turn File
Sharing on and off, thereby changing the capabilities of volumes. See
“Locking and Unlocking File Ranges” on page 2-50 for more details. u

Creating File System Specification Records

Sometimes it is useful for your application to create a file system specification record. For
example, your application might be running in an environment where the enhanced
Standard File Package routines (which return FSSpec records) are unavailable but the
File Manager routines that accept FSSpec records are available (perhaps as glue code in
your development system). You can call the FSMakeFSSpec function (or its low-level
equivalent PBMakeFSSpec) to initialize a file system specification record.

Three of the parameters to FSMakeFSSpec represent the volume, parent directory, and
file specifications of the target object. You can provide this information in any of the four
combinations described in “HFS Specifications” beginning on page 2-28. Table 2-10
details the ways your application can identify the name and location of a file or directory
in a call to FSMakeFSSpec.

The fourth parameter to FSMakeFSSpec is a pointer to the FSSpec record.

Using the File Manager

CHAPTER 2

File Manager
Table 2-10 How FSMakeFSSpec interprets its parameters
vRef Num dirlD fil eNarmre Interpretation
Ignored Ignored Full pathname Full pathname overrides any other information
Volume reference Directory ID Partial pathname Partial pathname starts in the directory whose
number or drive parent is specified in the di r | D parameter
number
Working directory Directory ID Partial pathname Directory specification in the di r | D parameter
reference number overrides the directory implied by the
reference number
Partial pathname starts in the directory whose
parent is specified indi rI D
Volume reference 0 Partial pathname Partial pathname starts in the root directory of
number or drive the volume in vRef Num
number
Working directory 0 Partial pathname Partial pathname starts in the directory
reference number specified by the working directory
reference number
Volume reference Directory ID Empty string The target object is the directory specified by
number of drive orNL the directory ID indir1 D
Working directory 0 Empty string The target object is the directory specified by
reference number orN L the working directory reference number
in vRef Num
Volume reference 0 Empty string The target object is the volume specified
number or drive orN L in vRef Num
number
0 Directory ID Empty string The target object is the directory specified in
orNL di r I D on the default volume
0 Directory ID Partial pathname Partial pathname starts in the directory
specified in di r | D on the default volume
0 0 Empty string The target object is the default directory on the
orNL default volume
0 0 Partial pathname Partial pathname starts in the default directory

on the default volume

Manipulating the Default Volume and Directory

When your application is running, the File Manager maintains a default volume and a
default directory for it. The default directory is used in File Manager routines whenever
you don’t explicitly specify some directory. The default volume is the volume containing
the default directory.

If you pass 0 as the volume specification with routines that operate on a volume (such as
mounting or ejecting routines), the File Manager assumes that you want to perform the
operation on the default volume. Initially, the volume used to start up the application is
set as the default volume, but your application can designate any mounted volume as
the default volume.

Using the File Manager 2-35

2-36

CHAPTER 2

File Manager

With routines that access files or directories, if you don’t specify a directory and you pass
a volume specification of 0, the File Manager assumes that the file or directory is located
in the default directory. Initially, the default directory is set to the root directory of the
default volume, but your application can designate any directory as the default directory.

Note

Don’t confuse the default directory and volume maintained by the

File Manager with the current directory and volume maintained by

the Standard File Package. Although the default volume and current
volume are initially the same, they can differ whenever your application
resets one of them. See the chapter “Standard File Package” in this book
for more information about the current directory and volume. u

The provision of a default volume was originally intended as a convenient way for

you to limit all File Manager calls to a particular volume. The default directory was
introduced along with HFS as an analog to the default volume. In general, however, it
is safest to specify both a volume and a directory explicitly in all File Manager calls. In
particular, the introduction of file system specification records has rendered default
volumes and directories largely obsolete. As a result, you should avoid relying on them.

In some cases, however, you might want to set the default volume or directory explicitly.
You can determine the default volume and directory by calling the Get Vol or HGet Vol
function. You can explicitly set the default directory and volume by calling the Set Vol
or HSet Vol function. For reasons explained later, however, the use of HSet Vol and its
low-level equivalent PBHSet Vol is discouraged.

To set the default volume only, you can call Set Vol , passing it the volume reference
number of the volume you want to establish as the default volume, as in this example:

nyErr := SetVol (NIL, mnyVRef Num ;

You can instead specify the volume by name, but because volume names might not be
unique, it is best to use the volume reference number.

To set both the default directory and the default volume, you could call HSet Vol ,
passing it the appropriate volume reference number and directory ID, as in this example:

nmyErr := HSetVol (NIL, nyVRef Num nyDirlD);

However, using HSet Vol can lead to problems in certain circumstances. When you call
HSet Vol (or its low-level version PBHSet Vol) and pass a working directory reference
number in the vRef Numparameter, the File Manager stores the encoded volume
reference number and directory ID separately. If you later call Get Vol (or its low-level
version PBGet Vol), the File Manager returns that volume reference number, not the
working directory reference number you passed to HSet Vol . The net result is that any
code using the results of the Get Vol call will access the root directory of the default
volume, not the actual default directory.

Using the File Manager

CHAPTER 2

File Manager

It is important to realize that calling HSet Vol is perfectly safe if all the code executing in
your application’s partition always calls HGet Vol instead of Get Vol . This is because
HGet Vol returns a working directory reference number whenever the previous call to
HSet Vol passed one in. Calling HSet Vol can create problems only if your application is
running under a system software version prior to version 7.0. In that case, a desk accesso-
ry might be opened in your application’s partition, thereby inheriting your application’s
default volume and directory. If that desk accessory calls Get Vol instead of HGet Vol , it
might receive a volume reference number when it expects a working directory reference
number, as described in the previous paragraph. To avoid this problem, you can simply
use Set Vol (or PBSet Vol) instead of HSet Vol , as in this example:

nmyErr := SetVol (NIL, nyVRef Num ;

In this case, the ny VRef Numparameter should contain a working directory
reference number.

Deleting Files and File Forks

You can delete afile by calling FSpDel et e, HDel et e, or PBHDel et e. These functions
delete both forks of a file by removing the catalog entry for the file and adjusting the
volume information block and volume bitmap accordingly. These functions do not
actually erase the disk areas occupied by the file, so there is a reasonable chance that a
good disk utility might be able to salvage a deleted file if the user hasn’t allocated any
new file blocks in the meantime.

Sometimes you might want to truncate just one fork of a file. Listing 2-2 illustrates how
you can truncate a file’s resource fork while preserving the data fork.

Listing 2-2 Deleting a file’s resource fork

FUNCTI ON Truncat eRF (nyFil eSpec: FSSpec): OSErr;

VAR
myErr: CSErr; {result code}
nyFile: |nteger; {file reference nunber}
BEG N
myErr : = FSpOpenRF(nyFi |l eSpec, fsRAWPerm nyFile);
I'F nyErr = noErr THEN
myErr := Set EOF(nyFile, 0);
IF nyErr = noErr THEN
myErr := FSC ose(nyFile);
IF myErr = noErr THEN

myErr := FlushVol (nyFi | eSpec. vRef Num ;
Truncat eRF : = nyErr;
END;

Using the File Manager 2-37

2-38

CHAPTER 2

File Manager

The function Tr uncat eRF defined in Listing 2-2 opens the file’s resource fork with
exclusive read/write permission and sets its logical end-of-file to 0. This effectively
releases all the space occupied by the resource fork on the volume. Then Tr uncat eRF
closes the file and updates the volume.

Searching a Volume

To search a volume efficiently, you can use the PBCat Sear ch function. The

PBCat Sear ch function looks at all entries in the volume’s catalog file and returns a list
of all files or directories that match the criteria you specify. You can ask PBCat Sear ch to
match files or directories using many types of criteria, including

n names or partial names

n file and directory attributes

n Finder information

n physical and logical file length

n creation, modification, and backup dates

n parent directory ID

Like all low-level File Manager functions, PBCat Sear ch exchanges information with
your application through a parameter block. The PBCat Sear ch function uses the
csPar amvariant of the basic parameter block defined by the HPar anBl ockRec data
type. That variant includes two fields, i oSear chl nf 01 and i oSear chl nf 02, that
contain the addresses of two catalog information records (of type Cl nf oPBRec). You
specify which kinds of files or directories you want to search for by filling in the fields of
those two records.

The fields ini oSear chl nf o1 and i oSear chl nf 02 have different uses:

n Thei oNanePtr field ini oSear chl nf 0l holds a pointer to the target string; the
i oNanePt r field ini oSear chl nf 02 must be NI L. (If you’re not searching for the
name, the i oNamePt r field ini oSear chl nf 01 must also be NI L.)

n The date and length fields in i oSear chl nf 01 hold the lowest values in the target
range, and the date and length fields ini oSear chl nf 02 hold the highest values in
the target range. The PBCat Sear ch function looks for values greater than or equal to
the field values in i oSear chl nf 01 and less than or equal to the values in
i oSear chl nf 02.

n TheioFl AttribandioFl Fndr | nf o fieldsini oSear chl nf o1 hold the target
values, and the same fields ini oSear chl nf 02 hold masks that specify which bits
are relevant.

Some fields in the catalog information records apply only to files, some only to
directories, and some to both. Some of the fields that apply to both have different names,
depending on whether the target of the record is a file or a directory. The PBCat Sear ch
function uses only some fields in the catalog information record. Table 2-11 lists the fields
used for files.

Table 2-12 lists the fields in catalog information records used for directories.

Using the File Manager

CHAPTER 2

File Manager

Table 2-11 Fields ini oSear chl nf ol and i oSear chl nf 02 used for a file

Field Meaning in i oSear chl nf o1 Meaning in i oSear chl nf 02

i oNanePt r Pointer to filename Reserved (must be NI L)

i oFl Attrib Desired file attributes Mask for file attributes

i oFl Endr 1 nfo Desired Finder information Mask for Finder information

i oFI LgLen Smallest logical size of data fork Largest logical size

i oFl PyLen Smallest physical size of data fork Largest physical size

i oFl RLgLen Smallest logical size of resource fork Largest logical size

i oFl RPyLen Smallest physical size of resource fork Largest physical size

i oFl Cr Dat Earliest file creation date Latest file creation date

i oFl MidDat Earliest file modification date Latest file modification date

i oFl BkDat Earliest file backup date Latest file backup date

i oFl XEndr | nf o Desired extended Finder information Mask for Finder information

i oFl Par | D Smallest directory ID of file’s parent Largest parent directory 1D
Table 2-12 Fields in ioSearchinfol and ioSearchinfo2 used for a directory

Field Meaning in i oSear chl nf ol Meaning in i oSear chl nf 02

i oNamePt r Pointer to directory name Reserved (must be NI L)

i oFl Attrib Desired directory attributes Mask for directory attributes

i oDr Usr Wis Desired Finder information Mask for Finder information

i oDr NnFl s Smallest number of files in directory Largest number of files

i oDr Cr Dat Earliest directory creation date Latest creation date

i oDr MdDat Earliest directory modification date Latest modification date

i oDr BkDat Earliest directory backup date Latest backup date

i oDr Fndr i nfo Desired extended Finder information Mask for Finder information

i oDrParl| D Smallest directory ID of directory’s parent Largest parent directory ID

The PBCat Sear ch function searches only on bits 0 and 4 in the file attributes
field (i oFl Attri b).

Bit Meaning

0 Set if the file or directory is locked.
4 Set if the item is a directory.

Note

The PBCat Sear ch function cannot use the additional bits returned in
thei oFl At tri b field by the PBGet Cat | nf o function. u

Using the File Manager

2-39

2-40

CHAPTER 2

File Manager

To give PBCat Sear ch a full description of the search criteria, you pass it a pair of
catalog information records that determine the limits of the search and a mask that
identifies the relevant fields within the records. You pass the mask in the

i oSear chBi t s field in the PBCat Sear ch parameter block. To determine the value of
i oSear chBi t s, add the appropriate constants. To match all files and directories on a
volume (including the volume’s root directory), seti oSear chBi t s to 0.

CONST
f sSBParti al Name = 1; {substring of nane}
f sSBFul | Nare = 2 {full nane}
fsSBFI Attrib = 4, {directory flag; software |ock flag}
f sSBNegat e = 16384; {reverse match status}
{for files only}
f sSBFI Fndr I nfo = 8; {Finder file info}
f sSBFI LgLen = 32 {logical length of data fork}
f sSBFI PyLen = 64 {physical |ength of data fork}
f sSBFI RLgLen = 128; {logical length of resource fork}
f sSBFI RPyLen = 256; {physical length of resource fork}
f sSBFI Cr Dat = 512; {file creation date}
f sSBFI MiDat = 1024; {file nodification date}
f s SBFI BkDat = 2048; {file backup date}
f sSBFI XFndr | nf o = 4096; {nore Finder file info}
f sSBFI Par | D = 8192; {file's parent |D}

{for directories only}

f sSBDr Usr Wis = 8; {Finder directory info}

f sSBDr Nl s = 16; {nunber of files in directory}
f sSBDr Cr Dat = 512; {directory creation date}

f s SBDr MiDat = 1024; {directory nodification date}
f s SBDr Bk Dat = 2048; {directory backup date}

f sSBDr Fndr | nf o = 4096; {nore Finder directory info}

f sSBDr Par | D

8192; {directory's parent |D}

For example, to search for a file that was created between two specified dates and whose
name contains a specified string, seti oSear chBi t s to 517 (that is, to f sSSBFI Attri b
+ fsSBFI CrDat +fsSBParti al Nane).

A catalog entry must meet all of the specified criteria to be placed in the list of matches.
After PBCat Sear ch has completed its scan of each entry, it checks the f sSBNegat e bit.
If that bit is set, PBCat Sear ch reverses the entry’s match status (that is, if the entry is a
match but the f sSBNegat e bit is set, the entry is not put in the list of matches; if it is not
a match, it is put in the list).

Note

The f sSBNegat e bit is ignored during searches of remote volumes that
support AFP version 2.1. u

Using the File Manager

CHAPTER 2

File Manager

Although using PBCat Sear ch is significantly more efficient than searching the
directories recursively, searching a large volume can still take long enough to affect user
response time. You can break a search into several shorter searches by specifying a
maximum length of time in the i oSear chTi ne field of the parameter block and
keeping an index in the i oCat Posi ti on field. The PBCat Sear ch function stores its
directory-location index in a catalog position record, which is defined by the

Cat Posi t i onRec data type.

TYPE Cat Positi onRec = {catal og position record}
RECORD

initialize: Longlnt; {starting point}

priv: ARRAY[1..6] OF Integer; {private data}
END,

To start a search at the beginning of the catalog, setthei ni ti al i ze field to 0. When
PBCat Sear ch exits because of a timeout, it updates the record so that it describes the
next entry to be searched. When you call PBCat Sear ch to resume the search after a
timeout, pass the entire record that was returned by the last call. PBCat Sear ch returns a
list of the names and parent directories of all files and directories that match the criteria
you specify. It places the list in an array pointed to by the i oMat chPt r field.

Note

The i oSear chTi ne field is not used by AFP volumes. To break up a
potentially lengthy search into smaller searches on AFP volumes, use
the i oReqMat chCount field to specify the maximum number of
matches to return. u

Listing 2-3 illustrates how to use PBCat Sear ch to find all files (not directories) whose
names contain the string “Temp” and that were created within the past two days.

Listing 2-3 Searching a volume with PBCat Sear ch

CONST
kMaxMat ches = 30; {find up to 30 matches in one pass}
kOpt Buf fer Si ze = $4000; {use a 16K search cache for speed}
VAR
nyErr: OSErr; {result code of function calls}
myCount : I nt eger; {l oop control vari abl e}
my FName: St r 255; {nane of string to | ook for}
nmyVRef Num | nt eger; {volune to search}
myDirl D: Longl nt;; {ignored directory ID for HGetVol}
myCurr Dat e: Longl nt; {current date, in seconds}
twoDaysAgo: Longlnt; {date two days ago, in seconds}
my PB: HPar anBl ockRec; {paraneter bl ock for PBCat Search}

myMat ches: PACKED ARRAY[1.. kMaxMat ches] OF FSSpec;

{put matches here}

Using the File Manager 2-41

CHAPTER 2

File Manager
mySpecl: Cl nf oPBRec; {search criteria, part 1}
mySpec2: Cl nf oPBRec; {search criteria, part 2}

myBuf f er: PACKED ARRAY[1.. kOpt Buf ferSi ze] OF Char;
{search cache}

done: Bool ean; {have all matches been found?}
PROCEDURE Set upFor Fi r st Ti ne;
BEG N

nmyErr = HGetVol (NIL, nyVRef Num nyDirlD);

{search on the default vol une}
myFNanme : = "'Tenp'; {search for "Tenmp"}
Get Dat eTi me(nyCurrDate) ; {get current tinme in seconds}
twoDaysAgo := nyCurrDate - (2 * 24 * 60 * 60);
W TH nyPB DO

BEA N
i oConpl eti on = NL; {no conpl etion routine}
i oNanePt r = NL; {no vol une nane; use vRef Nun}
i oVRef Num ;= nmyVRef Num {vol une to search}
i ovat chPtr = FSSpecArrayPtr (@Mt ches);

{points to results buffer}
kMaxMat ches; {nunber of natches}
fsSBParti al Nane {search on partial nane}

+ fsSSBFI Attrib {search on file attributes}

oReqMat chCount :
oSearchBits

+ fsSBFI Cr Dat ; {search on creation date}
i oSear chl nfol = @rySpecl; {points to first criteria set}
i oSear chl nf 02 = @rySpec?2; {points to second criteria set}
i oSear chTi ne = 0; {no tinmeout on searches}
i oCat Position.initialize := 0; {set hint to 0}
i oOpt Buf fer := @ryBuffer; {point to search cache}
i 0Opt Buf Si ze : = kOpt Buf fer Si ze; {si ze of search cache}
END,
W TH nySpecl DO
BEG N
i oNanePtr := @ryFNane; {point to string to find}
i oFl Attrib := $00; {clear bit 4 to ask for files}
i oFl CrDat := twoDaysAgo; {l ower bound of creation date}
END,
W TH nySpec2 DO
BEG N
i oNanmePtr := NL; {set to N L}
ioFl Attrib := $10; {set mask for bit 4}
i oFl CrDat := myCurrDate; {upper bound of creation date}
END,
END,

2-42 Using the File Manager

CHAPTER 2

File Manager
BEG N
Set upFor Fi r st Ti ne; {initialize data records}
REPEAT
myErr : = PBCat Sear chSync(@ryPB) ; {get some files}
done := (nyErr = eof Err); {eof Err returned when all done}
IF ((nmyErr = noErr) | done) & (myPB.ioAct MatchCount > 0) THEN
FOR nmyCount := 1 TO nyPB.i oAct Mat chCount DO
Witel n(nyMat ches[myCount]. nane) ;
{report all matches found}
UNTI L done;
END;

When PBCat Sear ch is not available in the current operating environment or is not
supported by the volume you wish to search, you’ll need to use PBGet Cat | nf o to
perform a recursive, indexed search through the volume’s directory hierarchy. This
kind of search is usually much slower than a search with PBCat Sear ch, and you

can encounter problems you avoid by using PBCat Sear ch. For example, a

recursive, indexed search can require a large amount of stack space. The procedure
Enumer at eShel | defined in Listing 2-4 is designed to minimize the amount of stack
space used. As a result, it should execute even in environments with very limited
stack space.

Listing 2-4 Searching a volume using a recursive, indexed search

PROCEDURE EnunerateShell (vRefNum Integer; dirlD: Longlnt);
VAR
my Narne: Str63;
my CPB: Cl nf oPBRec;
nmyErr: CSErr;
PROCEDURE EnunerateCatal og (dirlD: Longlnt);
CONST
kFol derBit = 4;
VAR
i ndex: I nt eger;
BEG N
i ndex := 1;
REPEAT
W TH nyCBP DO
BEG N
i oFDi r I ndex : = index;
ioDrDirID :=dirl D {reset dirlD, PBGetCatlnfo may change it}
i OACUser := O;
END;
nmyErr := PBGet Cat | nf o(@yCPB, FALSE);
IF myErr = noErr THEN

Using the File Manager 2-43

CHAPTER 2

File Manager

| F BTst (nyCPB.i oFl Attrib, kFolderBit) THEN
BEA N {we have a directory}
{Do something useful with the dir. information in nmyCPB.}
Enuner at eCat al og(nmyCPB. i oDrDirl D);
myErr := noErr; {clear error return on way back}
END
ELSE
BEG N {we have a file}
{Do something useful with the file information in nmyCPB.}
END;

i ndex := index + 1,
UNTIL (nyErr <> noErr);

END; {Enuner at eCat al og}
BEG N { Enuner at eShel | }
W TH nyCPB DO

BEG N
i oNanmePtr : = @ryNane;
i oVRef Num : = vRef Num

Enuner at eCat al og(dirl D);
END; {Enumer at eShel |}

2-44

The Enurrer at eShel | procedure sets up a catalog information parameter block with a
pointer to a string variable and the volume reference number passed to it. It then calls
the Enuner at eDi r procedure, which uses indexed calls to PBGet Cat | nf o to read the
catalog information about all items in the specified directory. If an item is a directory (as
indicated by the kFol der Bi t bit of thei oFl Attri b field of the parameter block),
Enuner at eDi r calls itself recursively to enumerate the contents of that directory. If an
item is a file, Enuner at eDi r performs whatever processing is appropriate.

Note that Enurrer at eDi r resets the i oDr Di r | Dfield before calling PBCGet Cat | nf o.
This is necessary because PBCet Cat | nf o returns a file ID number in that field if the
item is a file. The Enunrer at eDi r procedure also clears thei 0ACUser field. You need to
do this if your search depends on the value in that field after the call to PBGet Cat | nf o,
because the value returned in that field for local volumes is meaningless.

To search an entire volume, call the Enunrer at eShel | procedure with the vRef Num
parameter set to the volume reference number of the volume you want to search and the
di r | Dparameter setto f sRt Di r | D. You can also do a partial search of a volume by
specifying a different directory ID in the di r | D parameter.

Constructing Full Pathnames

As indicated in “Names and Pathnames” on page 2-27, the use of full or partial
pathnames is strongly discouraged. Full pathnames are particularly unreliable as a
means of identifying files or directories within your application, largely because the user
can change the name of any element in the path at virtually any time. In general, you
should use a file’s name, parent directory ID, and volume reference number to identify a
file you want to open, delete, or otherwise manipulate.

Using the File Manager

CHAPTER 2

File Manager

If you need to remember the location of a particular file across subsequent system boots,
use the Alias Manager to create an alias record describing the file. If the Alias Manager is
not available, you can save the file’'s name, its parent directory ID, and the name of the
volume on which it’s located. Although none of these methods is foolproof, they are
much more reliable than using full pathnames to identify files.

Nonetheless, it is sometimes useful to display a file’s full pathname to the user. For
example, a backup utility might display a list of full pathnames of files as it copies them
onto the backup medium. Or, a utility might want to display a dialog box showing the
full pathname of a file when it needs the user’s confirmation to delete the file. No matter
how unreliable full pathnames may be from a file-specification viewpoint, users
understand them more readily than volume reference numbers or directory IDs.

Note

The following technique for constructing the full pathname of a file is
intended for display purposes only. Applications that depend on any
particular structure of a full pathname are likely to fail on alternate
foreign file systems or under future system software versions. u

Listing 2-5 shows one way to define a function, Get Ful | Pat h, that accepts a directory
ID and a filename as parameters and returns the full pathname of the corresponding file
(if any). The Get Ful | Pat h function calls the low-level function PBGet Cat | nf o for the
specified directory to determine the name and directory ID of that directory’s parent
directory. It then performs the same operation on the parent directory’s parent,
continuing until it finds a parent directory with ID f sRt Di r | D. Under HFS, this is
always the ID of a volume’s root directory.

Listing 2-5 Constructing the full pathname of a file

FUNCTI ON Get Full Path (DirlD: Longlnt; vRefnum Integer): Str255;
VAR

my PB: Cl nf oPBRec; {paraneter bl ock for PBCGetCatl nfo}
di r Nane: St r 255; {a directory nane}
ful | Pat h: Str 255; {full pathname bei ng constructed}
nmyErr: CSErr;

BEG N
fullPath :=""; {initialize full pathnane}
myPB. i oNanePtr : = @li r Nane;
myPB. i oVRef Num : = vRef Num {indicate target vol une}
myPB.ioDrParID := Dirld; {initialize parent directory |ID}
myPB. i oFDi rl ndex := -1; {get info about a directory}

{Get nanme of each parent directory, up to root directory.}
REPEAT

myPB.ioDrDirlI D := myPB.ioDrParl D

nyErr : = PBGet Cat | nfo(@wyPB, FALSE);

| F gHaveAUX THEN

Using the File Manager 2-45

2-46

CHAPTER 2

File Manager
BEG N
IF dirNane[1] <> '/' THEN
di rNanme := concat (dirName, '/');
END
ELSE
di rName : = concat (dirName, ':');

full Path := concat (dirNane, full Path);
UNTIL nmyPB.ioDrDirID = fsRtDirl D
Get Ful I Path : = full Pat h; {return full pathnane}
END;

Note that Get Ful | Pat h uses either a slash (/) or a colon () to separate names in the full
path, depending on whether A/UX is running or not. The Get Ful | Pat h function reads
the value of the global variable gHave AUX to determine whether A/UX is running; your
application must initialize this variable (preferably by calling the Gest al t function)
before it calls Get Ful | Pat h.

The Get Ful | Pat h function defined in Listing 2-5 returns a result of type St r 255,
which limits the full pathname to 255 characters. An actual full pathname, however,
might exceed 255 characters. A volume name can be up to 27 characters, and each
directory name can be up to 31 characters. If the average volume and directory name is
about 20 characters long, Get Ful | Pat h can handle files located only about 12 levels
deep. If the length of the average directory name is closer to the maximum,

Get Ful | Pat h provides a full pathname for files located only about 8 levels deep. If
necessary, you can overcome this limitation by rewriting Get Ful | Pat h to return a
handle to the full pathname; the algorithm for ascending the directory hierarchy using
PBGet Cat | nf o will still work, however.

Determining the Amount of Free Space on a Volume

You can determine how much space is free on a particular volume by calling the
low-level function PBHGet VI nf o. This function returns, in the i oVFr Bl k field of the
parameter block passed to it, the number of free allocation blocks on a volume. It also
returns, in the i oVAI Bl kSi z field, the number of bytes in the allocation blocks on that
volume. By multiplying those two values, you can determine how many bytes are free
on a particular volume.

There is, however, one complication in this process. The i oVFr Bl k field of the
parameter block is actually an unsigned integer and can contain values from 0 to 65,535.
However, because Pascal does not support unsigned integers, it interprets the values in
the i oVFr Bl k field as lying in the range —-32,768 to 32,767. (Integers are stored as 16-bit
guantities where the high-order bit indicates whether the value is true binary or a
negated value in its two’s complement positive form.) If, for example, a volume has
40,000 allocation blocks free and your application blindly returned the value in the

i oVFr Bl k field, it would erroneously report that the volume had -25,536 allocation
blocks available.

You can circumvent this problem by forcing Pascal to interpret the high-order bit as
part of the number of free blocks. For example, if you install the value returned in the

Using the File Manager

CHAPTER 2

File Manager

i oVFr Bl k field as the low-order word of a long integer, the high-order bit of that
word is no longer the high-order bit of that long integer and hence is not interpreted
as a sign indication. The data type Twol nt sMakeALong provides a convenient way
to accomplish this.

TYPE
Twol nt sMakeALong = {two integers make a long integer}
RECORD
CASE | nteger OF
1: (long: Longlnt);
2: (ints: ARRAY[O0..1] OF Integer);
END,

Listing 2-6 illustrates how to use this technique to determine the amount of free space on

a volume (specified by its volume reference number).

Listing 2-6 Determining the amount of free space on a volume

FUNCTI ON Get Vol uneFr eeSpace (nyVol : Integer): Longlnt;
VAR

my HPB: HPar anBl ockRec; {paraneter bl ock for PBHGet VI nf o}
nmyErr: CSErr; {result code from PBHGet VI nf o}
myRec: Twol nt sMakeALong; {easy way to get an unsigned int}
BEG N
W TH nyHPB DO
BEA N
i oNamePtr := NIL;
i oVRef Num : = nyVol ;
i oVol I ndex := 0;
END;

nyErr := PBHGet VI nf o(@y HPB, FALSE);
I'F nyErr = noErr THEN
BEG N
myRec.ints[0] := O;
myRec.ints[1] := nyHPB.i oVFrBIlk;
Get Vol uneFr eeSpace : = nyRec.long * nyHPB. i oVAl Bl kSi z;
END
ELSE
Get Vol uneFr eeSpace : = 0;
END,

If the value passed to Get Vol uneFr eeSpace is a valid volume reference number,
then this function reads the number of free allocation blocks on the volume, installs
that number as the low-order word of a long integer, and performs the necessary
multiplication to determine how many bytes are free on the volume.

Using the File Manager

2-47

CHAPTER 2

File Manager

Note

You could avoid these complications with unsigned integers by calling
PBHGet VI nf o as illustrated and then passing the value returned in the
i oVDr vl nf o field to the high-level function Get VI nf 0. The technique
using the Twol nt sMakeALong data type to convert unsigned integers
to long integers is illustrated here because it is useful when reading the
fields of many other File Manager data structures from Pascal. For
example, the vcbFr eeBks field of a volume control block contains an
unsigned integer that you can interpret in this way. u

Sharing Volumes and Directories

The File Manager includes several functions that allow you to manipulate share points
on local volumes that have file sharing enabled and to obtain a list of user and group
names and IDs recognized by the local file server. These functions are especially useful
if you need to implement a dialog box that allows the user to designate a volume or
directory as a share point or to set the owner, user, and group of a shared folder.

The PBShar e function makes a volume or directory a share point, hence available on the
network. The PBUnshar e function undoes the effects of PBShar e: it makes an existing
share point unavailable on the network. The PBGet UGENt r y function lets you create a
list of user and group names and IDs on the local server.

Before calling any of these functions, you should check whether file sharing is
enabled on the local machine and, if so, whether the desired local volume is sharable.
You can determine whether a particular volume is sharable by using the function

Vol | sShar abl e defined in Listing 2-7.

Listing 2-7 Determining whether a volume is sharable

FUNCTI ON Vol | sSharabl e (vRef Num | nteger): Bool ean;

VAR
nmy HPB: HPar anBl ockRec;
myl nf oBuf fer: Get Vol Par nsl nf oBuf f er;
nmyErr: CSErr;
BEG N
W TH nyHPB DO
BEG N
i oNanePtr := N L;
i oVRef Num : = vRef Num

i oBuf fer := @yl nfoBuffer;
i oReqCount := SizeO (nmyl nfoBuffer);

END;
nmyErr

: = PBHGet Vol Par ms(@yHPB, FALSE);

IF nyErr = noErr THEN
I F BTst (nylnfoBuffer.vMAttri b, bHasPersonal AccessPrivil eges) THEN

2-48

Using the File Manager

CHAPTER 2

File Manager

Vol | sSharabl e : = TRUE
ELSE
Vol | sShar abl e : = FALSE

ELSE
Vol | sShar abl e : = FALSE;
END;

The Vol | sShar abl e function inspects the bHasPer sonal AccessPri vi | eges
bit returned in the vMAt t r i b field of the volume attributes buffer it passed to
PBHGet Vol Par nrs. If this bit is set, local file sharing is enabled on the specified volume.

You can use the function Shar i ngl sOn defined in Listing 2-8 to determine whether file
sharing is enabled on the local machine.

Listing 2-8 Determining whether file sharing is enabled

FUNCTI ON Shari ngl sOn: Bool ean;

VAR
nmy HPB: HPar anBl ockRec;
nyErr: OSEr v
vol | ndex: I nt eger;
shari ng: Bool ean;
BEG N
sharing : = FALSE; {assume file sharing is off}
vol I ndex := 1;
REPEAT
W TH nyHPB DO
BEG N
i oNamePtr := NIL;
i oVol I ndex : = vol I ndex;
END;

nyErr : = PBHGet VI nf o(@yHPB, FALSE);
IF nyErr = noErr THEN
sharing : = Vol | sShar abl e(myHPB. i oVRef Nunj ;
vol I ndex := vol | ndex + 1;
UNTIL (nmyErr <> noErr) OR shari ng;
Shari ngl sOn : = shari ng;
END;

The Shar i ngl sOn function simply calls the Vol | sShar abl e function for each local

volume (or until a sharable volume is found). It uses indexed calls to PBHGet VI nf o to
obtain the volume reference number of each mounted volume.

Using the File Manager 2-49

CHAPTER 2

File Manager

Locking and Unlocking File Ranges

A file can be opened with shared read/write permission to allow several users to share
the data in the file. When a user needs to modify a portion of a file that has been opened
with shared read/write permission, it is usually desirable to make that portion of the file
unavailable to other users while the changes are made. You can call the PBLockRange
function to lock a range of bytes before modifying the file and then PBUnl ockRange to
unlock that range after your changes are safely recorded in the file.

Locking a range of bytes in a file gives the user exclusive read/write access to that range
and makes it inaccessible to other users. Other users can neither write nor read the bytes
in that range until you unlock it. If other users attempt to read data from a portion of a
file that you have locked, they receive the f LckdEr r result code.

The functions PBLockRange and PBUnl ockRange are effective only on files that are
located on volumes that are sharable. If you call PBLockRange on a file that is not
located on a remote server volume or that is not currently being shared, no range locking
occurs. Moreover, PBLockRange does not return a result code indicating that no range
locking has occurred. As a result, you should usually check whether range locking will
be effective on a file before attempting to lock the desired range.

Listing 2-9 illustrates how you can check to make sure that calling PBLockRange will
have the desired effect.

Listing 2-9 Determining whether a file can have ranges locked

FUNCTI ON RangesCanBelLocked (fRef Num Integer): Bool ean;

VAR
nmyPar nBl k: Par anBl ockRec; {basi c paraneter bl ock}
myErr: CSErr;
BEG N
W TH nyPar nBl k DO
BEG N
i oRef Num : = f Ref Num
i oReqCount : = 1; {lock a single byte}
i oPosMode : = fsFronttart; {at the beginning of the file}
i oPosO fset : = 0;
END;
myErr : = PBLockRange(@wyParnBl k, FALSE);{lock the byte; ignore result}
myErr : = PBLockRange(@ryPar nBl k, FALSE); {l ock the byte agai n}

2-50

CASE nyErr OF

f LckdErr, {byte was | ocked by anot her user}
af pRangeOQverl ap, {byte was | ocked by this user}
af pNoMor eLocks: {max nunber of |ocks already used}

Using the File Manager

CHAPTER 2

File Manager

BEG N
RangesCanBelLocked : = TRUE; {range | ocking is supported}
I F nmyErr = af pRangeOverl ap THEN {unlock the byte we | ocked}

myErr : = PBUnl ockRange(@ryPar mBl k, FALSE) ;
END;
OTHERW SE
RangesCanBelLocked : = FALSE; {range | ocking is not supported}
END;, {of CASE}
END;

The function RangesCanBelLocked takes a file reference number of an open file as

a parameter; this is the reference number of the file in which a range of bytes is to

be locked. The function attempts to locks the first byte in the file and immediately
attempts to lock it again. If the second range locking fails with the result code

af pRangeOver | ap, the first call to PBLockRange was successful. If the second call to
PBLockRange fails with the result code f LckdEr r, the byte was already locked by
another user. Similarly, if the second call to PBLockRange fails with the result code

af pNoMor eLocks, the maximum number of range locks has been reached. In these
three cases, range locking is supported by the volume containing the specified file. If any
other result code (including noEr r) is returned, range locking is not supported by that
volume or for some reason the capabilities of the volume cannot be determined.

Note

Local file sharing can be started or stopped (via the Sharing Setup
control panel) while your application is running. For this reason, each
time you want to lock a range, it’s best to check that byte ranges in that
file can be locked. u

You can unlock a locked range of bytes by calling PBUnl ockRange. Note that the range
to be unlocked must be the exact same range of bytes that was previously locked using
PBLockRange. (You can lock and unlock different byte ranges in any order, however.) If
for some reason you need to unlock a range of bytes and do not know where the range
started or how long the range is, you must close the file to unlock the range. When a file
is closed, all locked ranges held by a user are unlocked.

If you want to append data to a shared file, you can use PBLockRange to lock the range
of bytes from the file’s current logical end-of-file to the last possible addressable byte of
the file. Once you have locked that range, you can write data into it. Listing 2-10 shows
how to determine the current logical end-of-file and lock the appropriate range.

Listing 2-10 Locking a file range to append data to the file

FUNCTI ON LockRangeFor Appendi ng (f Ref Num [|nteger; VAR EOF: Longlnt): OSErr;
VAR

myPar nBl k: Par anBl ockRec; {basi c paraneter bl ock}
nmyErr: CSErr;
nmy ECF: Longl nt ; {current EOF}

Using the File Manager 2-51

CHAPTER 2

File Manager

BEG N

myPar nBl k. i oConpl etion := NL;

myPar Bl k. i oRef Num : = f Ref Num

myErr : = PBGet EOF(@ryPar nBl k, FALSE); {get the current ECF}
I F myErr <> noErr THEN

BEG N
LockRangeFor Appendi ng : = nyErr;
Exi t (LockRangeFor Appendi ng) ; {troubl e readi ng ECF}
END;
nyEOF : = Longl nt (myPar Bl k. i oM sc) ; {save the current ECF}
W TH nyPar nBl k DO
BEG N
i oReqCount := -1, {all addressabl e byt es}
i oPosMode : = fsFronttart; {start range...}
i oPosO fset : = nyEOF; {...at the current end-of-file}
END;

myErr : = PBLockRange(@ryPar nBl k, FALSE); {l ock the specified range}

ECF : = nyECF; {return current EOF to caller}
LockRangeFor Appendi ng : = nyErr;

END;

The function LockRangeFor Appendi ng first determines the current logical end-of-file.
It is important to get this value immediately before you attempt to lock a range that
depends on it because another user of the shared file might have changed the end-of-file
since you last read it. Then LockRangeFor Appendi ng locks the range beginning at the
current end-of-file and extending for the maximum number of bytes (specified using the
special value -1).

In effect, this technique locks a range where data does not yet exist. Practically speaking,
locking the entire addressable range of a file prevents another user from appending data
to the file until you unlock that range. Note that LockRangeFor Appendi ng returns the
current logical end-of-file to the caller so that the caller can unlock the correct range of
bytes after appending the data.

You can also call PBLockRange to lock a range of bytes when you want to truncate a
file. Locking the end portion of a file to be deleted prevents another user from using that
portion during the truncation. Instead of setting the i oPosf f set field of the
parameter block to the logical end-of-file (as in Listing 2-10), simply set it to what will be
the last byte after the file is truncated. Similarly, you can lock an entire file fork by setting
the i oPosOf f set field to 0.

Data Organization on Volumes

2-52

This section describes how data is organized on HFS volumes. In general, an application
that simply manipulates data stored in files does not need to know how that data is
organized on a volume or on the physical storage medium containing that volume. The

Data Organization on Volumes

CHAPTER 2

File Manager

organization described in this section is maintained by the File Manager for its own uses.
Some specialized applications and file-system utilities, however, do need to know
exactly how file data is stored on a disk.

WARNING

This section is provided primarily for informational purposes. The
organization of data on volumes is subject to change. Before you use this
information to read or modify the data stored on a volume, be sure to
check that the dr Si g\Wér d field in the master directory block (described
in “Master Directory Blocks” beginning on page 2-59) identifies that
volume as an HFS volume. s

Much of the information describing the files and directories on an HFS volume is read
into memory when the volume is mounted. (For example, most of the volume’s master
directory block is read into memory as a volume control block.) For a description of how
that data is organized in memory, see “Data Organization in Memory” beginning on
page 2-76.

The File Manager uses a number of interrelated structures to manage the organization of
data on disk and in memory. For this reason, it is easy to lose sight of the simple and
elegant scheme that underlies these structures. As you read through this section and the
next, you should keep these points in mind:

n The File Manager keeps track of which blocks on a disk are allocated to files and
which are not by storing a volume bitmap on disk and in memory. If a bit in the map is
set, the corresponding block is allocated to some file; otherwise, the corresponding
block is free for allocation.

n The File Manager always allocates logical disk blocks to a file in groups called
allocation blocks; an allocation block is simply a group of consecutive logical blocks.
The size of a volume’s allocation blocks depends on the capacity of the volume; there
can be at most 65,535 allocation blocks on a volume.

n The File Manager keeps track of the directory hierarchy on a volume by maintaining a
file called the catalog file; the catalog file lists all the files and directories on a volume,
as well as some of the attributes of those files and directories. A catalog file is
organized as a B*-tree (or “balanced tree”) to allow quick and efficient searches
through a directory hierarchy that is typically quite large.

n The File Manager keeps track of which allocation blocks belong to a file by
maintaining a list of the file’s extents; an extent is a contiguous range of allocation
blocks allocated to some file, which can be represented by a pair of numbers: the start
of the range and the length of the range. The first three extents of most files are stored
in the volume’s catalog file. All remaining file extents are stored in the extents overflow
file, which is also organized as a B*-tree.

n The first three extents of the catalog file and the extents overflow file are stored in the
master directory block (on disk) and the volume control buffer (in memory); a master
directory block is always located at a fixed offset from the beginning of a volume, and
a volume control block is stored in the VCB queue.

Data Organization on Volumes 2-53

2-54

CHAPTER 2

File Manager

Disk and Volume Organization

Adisk is a physical medium capable of storing information. Examples of disks include
3.5-inch floppy disks, SCSI hard disks and CD-ROM discs, and even RAM disks. A SCSI
disk may be divided into one or more partitions. A partition is simply part of a disk that
has been allocated to a particular operating system, file system, or device driver. For
example, you can partition a single SCSI disk into both Macintosh partitions and A/UX
partitions. The Macintosh partitions are typically used to hold Macintosh volumes. An
A/UX partition can contain an A/UX file system, but it can also be used as a paging area
for virtual memory or as a storage area for autorecovery files.

The information describing the division of a SCSI disk into partitions is contained in the
disk’s partition map, which is always located in the first physical block (512 bytes) on a
disk. The partition map specifies the first and last physical blocks in each partition, as
well as additional information about the partition (such as its type). The exact structure
of a partition map is described in the chapter “SCSI Manager” in Inside Macintosh: Devices.

Often the first partition on a SCSI disk, following the partition map, is the driver
partition that contains the actual device driver used to communicate with the disk.
(There is, however, no requirement that the driver partition be the first partition on a
disk.) Figure 2-4 illustrates a typical organization of partitions on a disk.

A partition can contain at most one volume. A volume is a single disk partition that
contains both file data and the file and directory information necessary to maintain the
appropriate data organization or file system. For example, a volume can contain a
Macintosh, ProDOS, MS-DOS, or A/UX file system structure. Notice in Figure 2-4 that a
Macintosh volume occupies only part of the entire physical disk, and that there can be
multiple partitions (both Macintosh volumes or other types of partitions) on a given disk.

Note

The disk organization illustrated in Figure 2-4 does not apply to
Macintosh 3.5-inch floppy disks. Because each floppy disk is one
volume, there is no need for a disk partition map. Also, there is no
device driver partition on a floppy disk. u

The remainder of this section describes only HFS volumes, that is, Macintosh file
systems organized using the hierarchical file system (HFS) implemented on the
Macintosh Plus and later models.

Each HFS volume begins with two boot blocks. The boot blocks on the startup volume
are read at system startup time and contain booting instructions and other important
information such as the name of the System file and the Finder. Following the boot
blocks are two additional structures, the master directory block and the volume bitmap.

The master directory block contains information about the volume, such as the date and
time of the volume’s creation and the number of files on the volume. The volume bitmap
contains a record of which blocks in the volume are currently in use.

Data Organization on Volumes

CHAPTER 2

File Manager

Figure 2-4 Organization of partitions on a disk

!

0 Parddon information

rd Z | Disk driver

partition
n-1
=
=
n
i — Brcotbkockes =
nH
H 2 Mlasier direcion blodk
i
— Msciriosh
partiton

; ; — CHher

partitiors

The largest portion of a volume consists of four types of information or areas:

n applications and data files

n the catalog file

n the extents overflow file

n unused space

The general structure of an HFS volume is illustrated in Figure 2-5.

Data Organization on Volumes 2-55

CHAPTER 2

2-56

File Manager
Figure 2-5 Organization of a volume
proTTmTTn T '%
i Logiml Coateats Aloontion
H block block
1
u | Sycien Serup |
i irformadon
i
i
2 Pl =ty direciory Bleck (M DE)
2
; wodumn e Bt ap j

rd Cawmlog dle z

i ri-Hn m
i
i m+
; Bt i oo oy j
il
reHn-H mH
m H+1
!
!
; Crhar flas and j
free space
i
retnn H+Hk mH+k
p-1 Alemate M OE
F Pk sed

1
Rl P R Ll P

All the areas on a volume are of fixed size and location, except for the catalog file and the
extents overflow file. These two files can appear anywhere between the volume bitmap
and the alternate master directory block (MDB). They can appear in any order and are
not necessarily contiguous.

The information on all block-formatted volumes is organized in logical blocks and
allocation blocks. Logical blocks contain a number of bytes of standard information (512
bytes on Macintosh-initialized volumes). Allocation blocks are composed of any integral
number of logical blocks and are simply a means of grouping logical blocks in more
convenient parcels. The allocation block size is a volume parameter whose value is set
when the volume is initialized; it cannot be changed unless the volume is reinitialized.

To promote file contiguity and avoid fragmentation, space is allocated to files in groups
of allocation blocks, or clumps. The clump size is always a multiple of the allocation

Data Organization on Volumes

CHAPTER 2

File Manager

block size, and it’s the minimum number of bytes to allocate each time the Al | ocat e
function is called or the physical end-of-file is reached during a write operation. The
clump size is specified in the catalog information for a file; you can determine the clump
size using the PBGet Cat | nf o function.

The rest of this section describes in detail the structure of the boot blocks, the master
directory block, and the catalog and extents overflow files. It also describes the general
structure of a B*-tree, because the catalog and extents overflow files are both organized
as B*-trees.

Boot Blocks

The first two logical blocks on every Macintosh volume are boot blocks. These blocks
contain system startup information: instructions and information necessary to start up
(or “boot™) a Macintosh computer. This information consists of certain configurable
system parameters (such as the capacity of the event queue, the number of open files
allowed, and so forth) and is contained in a boot block header. The system startup
information also includes actual machine-language instructions that could be used to
load and execute the System file. Usually these instructions follow immediately after the
boot block header. Generally, however, the boot code stored on disk is ignored in favor of
boot code stored in a resource in the System file.

The structure of the boot block header can be described by the Pascal Boot Bl kHdr
data type.

WARNING

The format of the boot block header is subject to change. If your
application relies on the information presented here, it should check the
boot block header version number and react gracefully if that number is
greater than that documented here. s

Note that there are two boot block header formats. The current format includes two
fields at the end that are not contained in the older format. These fields allow the
Operating System to size the System heap relative to the amount of available physical
RAM. A boot block header that conforms to the older format sets the size of the System
heap absolutely, using values specified in the header itself. You can determine whether a
boot block header uses the current or the older format by inspecting a bit in the
high-order byte of the bbVer si on field, as explained in its field description.

TYPE Boot Bl kHdr = {boot bl ock header}

RECORD
bbl D: I nteger; {boot blocks signature}
bbEntry: Longlnt; {entry point to boot code}
bbVer si on: I nteger; {boot blocks version nunber}
bbPageF| ags: Integer; {used internally}
bbSysNane: Str15; {System fil enane}
bbShel | Nane: Str15; {Fi nder fil ename}
bbDbglNane: Strl5; {debugger filenane}

Data Organization on Volumes 2-57

2-58

CHAPTER 2

File Manager
bbDbg2Nane: Str15; {debugger fil enane}
bbScr eenNane: Str15; {name of startup screen}
bbHel | oNane: Str15; {nane of startup progran}
bbScr apNane: Str15; {nane of systemscrap file}
bbCnt FCBs: I nteger; {nunmber of FCBs to allocate}
bbCnt Evt s: I nteger; {nunmber of event queue el enents}
bb128KSHeap: Longl nt; {system heap size on 128K Mac}
bb256KSHeap: Longlnt; {used internally}
bbSysHeapSi ze: Longlnt; {system heap size on all nachines}
filler: I nteger; {reserved}
bbSysHeapEXxtr a: Longlnt; {additional system heap space}
bbSysHeapFr act : Longlnt; {fraction of RAM for system heap}
END;

Field descriptions
bbl D

bbEntry

bbVer si on

A signature word. For HFS volumes, this field always contains the
value $4C4B.

The entry point to the boot code stored in the boot blocks. This
field contains machine-language instructions that translate to

BRA. S *+$90 (or BRA. S *+$88, if the older block header format
is used), which jumps to the main boot code following the boot
block header. This field is ignored, however, if bit 6 is clear in the
high-order byte of the bbVer si on field or if the low-order byte in
that field contains $D.

A flag byte and boot block version number. The high-order byte of
this field is a flag byte whose bits have the following meanings:

Bit Meaning

0-4 Reserved; must be 0

5 Set if relative system heap sizing is to be used

6 Set if the boot code in boot blocks is to be executed
7 Set if new boot block header format is used

If bit 7 is clear, then bits 5 and 6 are ignored and the version number
is found in the low-order byte of this field. If that byte contains a
value that is less than $15, the Operating System ignores any values
in the bb128KSHeap and bb256KSHeap fields and configures the
System heap to the default value contained in the bbSysHeapSi ze
field. If that byte contains a value that is greater than or equal to
$15, the Operating System sets the System heap to the value in
bbSysHeapSi ze. In addition, the Operating System executes

the boot code in the bbEnt ry field only if the low-order byte
contains $D.

If bit 7 is set, the Operating System inspects bit 6 to determine
whether to execute the boot code contained in the bbEnt r y field
and bit 5 to determine whether to use relative System heap sizing. If
bit 5 is clear, the Operating System sets the System heap to the value

Data Organization on Volumes

CHAPTER 2

File Manager

bbPageFl| ags
bbSysNane

bbShel | Nare
bbDbg1Name

bbDbg2Nane
bbScr eenNanme

bbHel | oName
bbScr apName
bbCnt FCBs

bbCnt Evt s

bb128KSHeap

bb256KSHeap

bbSysHeapSi ze

filler

bbSysHeapExtra

bbSysHeapFr act

in bbSysHeapSi ze. If bit 5 is set, the System heap is extended by
the value in bbSysHeapExt r a plus the fraction of available RAM
specified in bbSysHeapFr act .

Used internally.

The name of the System file.

The name of the shell file. Usually, the system shell is the Finder.

The name of the first debugger installed during the boot process.
Typically this is Macsbug.

The name of the second debugger installed during the boot process.
Typically this is Disassembler.

The name of the file containing the startup screen. Usually this is
StartUpScreen.

The name of the startup program. Usually this is Finder.
The name of the system scrap file. Usually this is Clipboard.

The number of file control blocks (FCBs) to put in the FCB buffer. In
system software version 7.0 and later, this field specifies only the
initial number of FCBs in the FCB buffer, because the Operating
System can usually resize the FCB buffer if necessary. See “File
Control Blocks” on page 2-81 for details on the FCB buffer.

The number of event queue elements to allocate. This number
determines the maximum number of events that the Event Manager
can store at any one time. Usually this field contains the value 20.

The size of the System heap on a Macintosh computer having
128 KB of RAM.

Reserved.

The size of the System heap on a Macintosh computer having

512 KB or more of RAM. This field might be ignored, as explained
in the description of the bbVer si on field.

Reserved.
The minimum amount of additional System heap space required. If

bit 5 of the high-order word of the bbVer si on field is set, this
value is added to bbSysHeapSi ze.

The fraction of RAM available to be used for the System heap. If
bit 5 of the high-order word of the bbVer si on field is set, this
fraction of available RAM is added to bbSysHeapSi ze.

Master Directory Blocks

A master directory block (MDB)—also sometimes known as a volume information
block (VIB)—contains information about the rest of the volume. This information is
written into the MDB when the volume is initialized. Thereafter, whenever the volume is
mounted, the File Manager reads the information in the MDB and copies some of that
information into a volume control block (VCB). A VVCB is a private data structure
maintained in memory by the File Manager (in the VCB queue). The structure of a VCB
is described in “Volume Control Blocks,” later in this chapter.

Data Organization on Volumes 2-59

CHAPTER 2

File Manager

Note in Figure 2-5 (page 2-56) that a copy of the MDB is located in the next-to-last block
in the volume. This copy is updated only when the extents overflow file or the catalog
file grows larger. This alternate MBD is intended for use solely by disk utilities.

The MDB data type defines a master directory block record.

TYPE MDB = {master directory bl ock}
RECORD
dr Si g\Wor d: I nt eger; {vol une si gnature}
dr Cr Dat e: Longl nt; {date and time of volume creation}
dr LsMod: Longl nt; {date and tinme of last nodification}
dr Atrb: I nt eger; {volune attributes}
dr Nl s: I nt eger; {nunber of files in root directory}
dr VBMVS : I nt eger; {first block of volune bitmp}
drAl |l ocPtr: I nt eger; {start of next allocation search}
dr NmAl Bl ks: I nt eger; {nunber of allocation blocks in vol une}
dr Al Bl kSi z: Longl nt;; {size (in bytes) of allocation bl ocks}
drd pSi z: Longl nt; {default clunmp size}
dr Al Bl St: I nt eger; {first allocation block in vol une}
dr Nxt CNI D: Longl nt;; {next unused catal og node | D}
dr Fr eeBks: I nt eger; {nunber of unused all ocation bl ocks}
dr VN: String[27]; {volume nane}
dr Vol BkUp: Longl nt;; {date and tinme of |ast backup}
dr VSegNum I nt eger; {vol une backup sequence nunber}
dr WCnt : Longl nt; {volume wite count}
dr XTd pSi z: Longl nt;; {clunmp size for extents overflow fil e}
dr CTd pSi z: Longl nt; {clump size for catalog file}
drNTRt Di rs: I nt eger; {nunber of directories in root directory}
drFil Cnt: Longl nt;; {nunber of files in vol une}
drDirCnt: Longl nt; {nunber of directories in vol une}
dr Fndr I nf o: ARRAY[1..8] OF Longlnt;
{informati on used by the Finder}
dr VCSi ze: I nt eger; {size (in blocks) of volume cache}
dr VBMCSi ze: I nt eger; {size (in blocks) of volume bitmap cache}
drct | CSi ze: I nt eger; {size (in blocks) of comon vol une cache}
dr XTFI Si ze: Longl nt; {size of extents overflow file}
dr XTExt Rec: Ext Dat aRec; {extent record for extents overflow file}
dr CTFI Si ze: Longl nt;; {size of catalog file}
dr CTExt Rec: Ext Dat aRec; {extent record for catalog file}
END,

Field descriptions

dr Si gWord The volume signature. For HFS volumes, this field contains $4244;
for the obsolete flat MFS volumes, this field contains $D2D?7.
dr Cr Dat e The date and time of volume creation (initialization).

2-60 Data Organization on Volumes

CHAPTER 2

File Manager

dr LsMod

drAtrb

dr Nl s
dr VBMGt

dr Al |l ocPtr

dr NmAl Bl ks

dr Al Bl kSi z

drd pSiz
dr Al Bl St
dr Nxt CNI D
dr FreeBks
dr VN

dr Vol BkUp
dr VSegqNum
dr W Cnt

dr XTd pSi ze
dr CTd pSi ze
drNmRtDirs
drFil Cnt
drDirCnt
dr Fndrinfo

dr VCSi ze
dr VBMCSi ze

drc| CSi ze

Data Organization on Volumes

The date and time the volume was last modified. This is not
necessarily when the volume was last flushed.

Volume attributes. Currently the following bits are defined:
Bit Meaning
Set if the volume is locked by hardware
Set if the volume was successfully unmounted
Set if the volume has had its bad blocks spared
15 Set if the volume is locked by software
The number of files in the root directory.

The first block of the volume bitmap. This field always contains 3 in
the current implementation.

The number of the allocation block at which the next allocation
search will begin. Used internally.

The number of allocation blocks in the volume. Because the value in
this field is an integer, a volume can contain at most 65,535
allocation blocks.

The allocation block size (in bytes). This value must always be a
multiple of 512 bytes.

The default clump size.

The location of the first allocation block in the volume.
The next unused catalog node ID (directory ID or file ID).
The number of unused allocation blocks on the volume.

The volume name. This field consists of a length byte followed
by 27 bytes. Note that the volume name can occupy at most

27 characters; this is an exception to the normal file and directory
name limit of 31 characters.

The date and time of the last volume backup.
Volume backup sequence number. Used internally.

The volume write count (that is, the number of times the volume
has been written to).

The clump size for the extents overflow file.
The clump size for the catalog file.

The number of directories in the root directory.
The number of files on the volume.

The number of directories on the volume.

Information used by the Finder. See the chapter “Finder Interface”
in Inside Macintosh: Macintosh Toolbox Essentials for details on
Finder information.

The size (in allocation blocks) of the volume cache. Used internally.

The size (in allocation blocks) of the volume bitmap cache.
Used internally.

The size (in allocation blocks) of the common volume cache.
Used internally.

2-61

2-62

CHAPTER 2

File Manager

dr XTFI Si ze The size (in allocation blocks) of the extents overflow file.

dr XTExt Rec First extent record for the extents overflow file. An extent record is
an array of three extents. See “Extents Overflow Files” on page 2-74
for a description of extents and extent records.

dr CTFI Si ze The size (in allocation blocks) of the catalog file.

dr CTExt Rec First extent record for the catalog file.

Note

The values in the dr NmAl Bl ks and dr Fr eeBks fields should be
interpreted as unsigned integers (that is, they can range from 0 to 65,535,
not from -32,768 to 32,767). Pascal does not support unsigned data
types, and so you need to use the technique illustrated in “Determining
the Amount of Free Space on a Volume” on page 2-46 to read the values
in these fields correctly. u

Volume Bitmaps

The File Manager uses a volume bitmap to keep track of whether each block in a volume
is currently allocated to some file or not. The bitmap contains one bit for each allocation
block in the volume. If a bit is set, the corresponding allocation block is currently in use
by some file. If a bit is clear, the corresponding allocation block is not currently in use by
any file and is available for allocation.

Note

The volume bitmap indicates which blocks on a volume are currently in
use, but it does not indicate which files occupy which blocks. The File
Manager maintains file-mapping information in two locations: in each
file’s catalog entry and in the extents overflow file. u

The size of the volume bitmap depends on the number of allocation blocks in the
volume, which in turn depends both on the number of physical blocks in the volume
and on the size of the volume’s allocation blocks (the number of physical blocks per
allocation block). For example, a floppy disk that can hold 800 KB of data and has an
allocation block size of one physical block has a volume bitmap size of 1600 bits (200
bytes). A volume containing 32 MB of data and having an allocation block size of one
physical block has a volume bitmap size of 65,536 bits (8192 bytes). However, the size of
the volume bitmap is rounded up, if necessary, so that the volume bitmap occupies an
integral number of physical blocks.

Because the dr NmAl Bl ks field in the MDB occupies only 2 bytes, the File Manager can
address at most 65,535 allocation blocks. Thus, the volume bitmap is never larger than
8192 bytes (or 16 physical blocks). For volumes containing more than 32 MB of space, the
allocation block size must be increased. For example, a volume containing 40 MB of
space must have an allocation block size that is at least 2 physical blocks; a volume
containing 80 MB of space must have an allocation block size that is at least 3 physical
blocks; and so forth.

Data Organization on Volumes

CHAPTER 2

File Manager

B*-Trees

The File Manager maintains information about a volume’s directory hierarchy and file
block mapping in two files that are organized as B*-trees to allow quick and efficient
retrieval of that information. In a B*-tree, all the information that needs to be stored is
intelligently classified and sorted into objects called nodes. Figure 2-6 illustrates the
general structure of a B*-tree file.

Figure 2-6 The structure of a B*-tree file
___ .
Byl D fork
1]
Hezder
Mede i —
212
Miode 1
24
Mg 2

Meode nfS12

nnn

Note that each B*-tree file used by the File Manager makes use of the data fork only; the
resource fork of a B*-tree file is unused. The length of a B*-tree file varies according to the
number of nodes it contains.

A node in turn contains records, which can be used for a variety of purposes. Some
records contain the actual data that is to be retrieved and possibly updated; these records
occupy nodes called leaf nodes. Other records contain information about the structure of
the B*-tree. The File Manager uses these records to find the information it needs quickly.
There are three types of these “bookkeeping” nodes: header nodes, index nodes, and
map nodes.

Data Organization on Volumes 2-63

CHAPTER 2

File Manager

Nodes

A B*-tree file consists entirely of objects called nodes, each of which is 512 bytes long.
Figure 2-7 illustrates the structure of a node.

Each node has the same general structure and consists of three main parts: a node
descriptor that starts at the beginning of the node, a group of record offsets that starts
at the end of the node, and a group of records.

The node descriptor contains information about the node, as well as forward and
backward links to other nodes. You can use the NodeDescr i pt or data type to display
the structure of a node descriptor.

TYPE NodeDescriptor =

2-64

{node descriptor}

{nunber of records in node}

RECORD
ndFLi nk: Longl nt; {forward Iink}
ndBLi nk: Longl nt; {backward Ii nk}
ndType: Si gnedByt e; {node type}
ndNHei ght : Si gnedByt e; {node | evel}
ndNRecs: I nt eger;
ndResv2: I nt eger; {reserved}
END;
Figure 2-7 The structure of a node
___ -
Byl Coateats
0
Mode desoripior
— FE
Record O
Faards — -
Record 1
L
.f, Fre e cpems ;.i'
CHfsat Ao fre e pomse
Fexord et mrecord |
o ol
CHfzat 4o record 0O E

Data Organization on Volumes

CHAPTER 2

File Manager

Field descriptions

ndFLi nk A link to the next node of this type. If this node is the last node, this
field contains NI L.

ndBLi nk A link to the previous node of this type. If this node is the first node,
this field contains NI L.

ndType The type of this node. Currently four types of nodes are recognized,
defined by the constants listed in this section.

ndNHei ght The level or “depth” of this node in the B*-tree hierarchy. The

top-level node (a header node, described in “Header Nodes” on
page 2-67) always has a level of 0; all other nodes have a level that is
one greater than their parent node. Currently, the maximum depth

of anode is 8.
ndNRecs The number of records contained in this node.
ndResv?2 Reserved. This field should always be 0.

A node descriptor is always $0E bytes in length, and so the records contained in the
node always begin at offset $0E from the beginning of the node. The size of a record can
vary, depending on its type and on the amount of information it contains; as a result, the
File Manager accesses a record by storing the offset from the beginning of the node to
that record in the list of offsets found at the end of the node. Each offset occupies a word,
and (as you might have guessed) the last word in a node always contains the value $0E,
pointing to the first record in the node. The offsets to subsequent records are stored in
order starting from the end of the node, as illustrated in Figure 2-7.

Note that there is always one more offset than the number of records contained in a
node; this is an offset to the beginning of any unused space in the node. If there is no free
space in the node, then that offset contains its own byte offset within the node.

The ndType field of the node descriptor indicates the type of a hode. In essence, the type
of a node indicates what kinds of records it contains and hence what its function in the
B*-tree hierarchy is. The File Manager maintains four kinds of nodes in a B*-tree,
indicated by constants:

CONST {node types}
ndl ndxNode = $00; {i ndex node}
ndHdr Node = $01; {header node}
ndMapNode = $02; {map node}
ndLeaf Node = $FF; {l eaf node}

These node types are described in the four sections immediately after the next one.

Data Organization on Volumes 2-65

CHAPTER 2

File Manager

Node Records

A record in a B*-tree node contains either data or a pointer to some other node in the
tree. Figure 2-8 shows the general structure of a record in a leaf or index node.

2-66

Figure 2-8 Structure of a B*-tree node record

5 Kimplergt (1 byl

1

i Fracord ey .

E {0 255 bytes) oo o eyt o poiiriier

i Bye 0 n
Note

The three records in a B*-tree header node do not have the structure
depicted in Figure 2-8. They consist solely of data, as described in the
next section, “Header Nodes.” Similarly, the single record in a map node
consists solely of data; see “Map Nodes” on page 2-69 for details. u

Each record contains a search key, which the File Manager uses to search through the
B*-tree to locate the information it needs. The key can contain any information at all that
is deemed useful in finding the data contained in the leaf nodes. In a catalog file, which
maintains information about the hierarchy of files and directories on a volume, the
search key is a combination of the file or directory name and the parent directory ID of
that file or directory. In an extents overflow file, which maintains information about the
extra extents belonging to a file, the search key is a combination of that file’s type, its file
ID, and the index of the first allocation block in the extent.

In a B*-tree, the records in each node are always grouped so that their keys are in
ascending order. Moreover, the nodes on any given level are linked (through the

ndFLi nk and ndBLi nk fields of their node descriptors) in such a way as to preserve the
ascending order of record keys throughout that level. This is the essential ordering
principle that allows the File Manager to search quickly through a tree. To illustrate this
ordering scheme, Figure 2-9 shows a sample B*-tree containing hypothetical search keys
(in this case, the keys are simply integers).

When the File Manager needs to find a data record, it begins searching at the root node
(which is an index node, unless the tree has only one level), moving from one record to
the next until it finds the record with the highest key that is less than or equal to the
search key. The pointer of that record leads to another node, one level down in the tree.
This process continues until the File Manager reaches a leaf node; then the records of
that leaf node are examined until the desired key is found. At that point, the desired data
has also been found.

Data Organization on Volumes

CHAPTER 2

File Manager

Figure 2-9 A sample B*-tree

There is of course no guarantee that a record having the desired key will always be
found in a search through a B*-tree. In this case, the search stops when a key larger
than the search key is reached. (This is most likely to happen in a search through the
catalog file.)

Header Nodes

The first node (that is, node 0) in every B*-tree file is a header node, which contains
essential information about the entire B*-tree file. The File Manager stores the location of
the header node of the catalog file in the first 2 bytes of the dr CTExt Rec field of the
MDB; the value in those 2 bytes indicates the allocation block number on which the
catalog file (and hence the header node) begins. Similarly, the File Manager stores the
location of the header node of the extents overflow file in the first 2 bytes of the

dr XTExt Rec field of the MDB.

Note

When a volume is mounted, the File Manager reads the header node
and copies some of the information it contains into a B*-tree control
block in memory. See “B*-Tree Control Blocks” on page 2-83 for a
description of this control block. u

A header node contains three records, the second of which occupies 128 bytes and is
reserved for use by the File Manager. The other two records are called the B*-tree header
record and the B*-tree map record; they occupy the first and third record positions,
respectively. Hence, a header node has the structure illustrated in Figure 2-10.

Data Organization on Volumes 2-67

CHAPTER 2

File Manager

Figure 2-10 Header node structure

2-68

Mode descripior

3E
f E*-tes beeadar record
e

!

! Urpzad record
k==

rd

f E“dres moap record
¥R

!

CHfsat 0 urnsad space

CHiret 1o record 2

CHiret 1o racord |

CHérat 4o record 0

£

el R R R

Note

The three records contained in the header node do not contain keys. u

The map record is a bitmap that indicates which nodes in the B*-tree file are used and

which are not. The bits are interpreted in exactly the same way as the bits in the volume
bitmap: if a bit in the map record is set, then the corresponding node in the B*-tree file is
being used. This bitmap occupies 256 bytes and can therefore encode information about
2048 nodes at most. If more nodes are needed to contain all the data that is to be stored
in the B*-tree, the File Manager uses a map node to store additional mapping informa-
tion. See the next section, “Map Nodes,” for a description of the structure of a map node.

The B*-tree header record, a data structure of type BTHdr Rec, contains information
about the beginning of the tree, as well as the size of the tree.

TYPE BTHdr Rec =

RECORD
bt hDept h: I nt eger;
bt hRoot : Longl nt;
bt hNRecs: Longl nt;
bt hFNode: Longl nt;
bt hLNode: Longl nt;
bt hNodeSi ze: I nt eger;
bt hKeyLen: I nt eger;

Data Organization on Volumes

{B*-tree header}

{current depth of tree}

{nunber of root node}

{nunber of leaf records in tree}
{nunber of first |eaf node}
{nunber of last |eaf node}
{size of a node}

{maxi mum | ength of a key}

CHAPTER 2

File Manager
bt hNNodes: Longl nt; {total number of nodes in tree}
bt hFr ee: Longl nt; {nunber of free nodes}
bt hResv: ARRAY[1. .76] OF Si gnedByt e; {reserved}
END;

Field descriptions
bt hDept h The current depth of the B*-tree.
bt hRoot The node number of the root node. The root node is the start of the

B*-tree structure; usually the root node is first index node, but it
might be a leaf node if there are no index nodes.

bt hNRecs The number of data records (records contained in leaf nodes).
bt hFNode The node number of the first leaf node.

bt hLNode The node number of the last leaf node.

bt hNodeSi ze The size (in bytes) of a node. Currently, this is always 512.

bt hKeyLen The maximum length of the key records in each node.

bt hNNodes The total number of nodes in the B*-tree.

bt hFr ee The total number of free nodes in the B*-tree.

bt hResv Reserved.

Map Nodes

As indicated in the previous section, the File Manager maintains a bitmap of the tree
nodes in the map record of the B*-tree header node. If a B*-tree file contains more than
2048 nodes (enough for about 8000 files), the File Manager uses a map node to store
additional node-mapping information. It stores the node number of the new map node
in the ndFLi nk field of the node descriptor of the header node.

A map node consists of a node descriptor and a single map record. The map record is a
continuation of the map record contained in the header node and occupies 494 bytes
(512 bytes in the node, less 14 bytes for the node descriptor and 2 bytes for each of the
two record offsets at the end of the node). A map node can therefore contain mapping
information for an additional 3952 nodes.

If a B*-tree contains more than 6000 nodes (that is, 2048 + 3952, enough for about 25,000
files), the File Manager uses a second map node, the node number of which is stored in
the ndFLi nk field of the node descriptor of the first map node. If more map nodes are
required, each additional map node is similarly linked to the previous one.

Index Nodes

An index node contains records that point to other nodes in the B*-tree hierarchy. The
File Manager uses index nodes to navigate the tree structure quickly when it wants to
find some data (which is always stored in leaf nodes). Index nodes speed a tree search by
dividing the tree into smaller pieces, as illustrated in Figure 2-9 (page 2-67).

The records stored in an index node are called pointer records. A pointer record consists
of a key followed by the node number of the corresponding node. The structure of the
key varies according to the type of B*-tree file that contains the index node. For a catalog

Data Organization on Volumes 2-69

2-70

CHAPTER 2

File Manager

file, the search key is a combination of the file or directory name and the parent directory
ID of that file or directory. In an extents overflow file, the search key is a combination of
that file’s type, its file ID, and the index of the first allocation block in the extent. See the
sections “Catalog File Keys” on page 2-71 and “Extents Overflow Files” on page 2-74 for
more details on the structure of index node search keys.

The immediate descendants of an index node are called the children of the index node.
An index node can have from 1 to 15 children, depending on the size of the pointer
records that the index node contains. Typically the File Manager selects one of the node’s
children and continues the search at that node; the File Manager may stop the search,
however, if the index node does not contain a pointer record with the appropriate key.

The first index node in a B*-tree is called the root node. Recall that the B*-tree
header node contains the node number of the root node in the bt hRoot field of
the header record.

Leaf Nodes

The bottom level of a B*-tree structure is occupied exclusively by leaf nodes, which
contain data records (not pointer records). The structure of the leaf node data records
varies according to the type of B*-tree under consideration. In an extents overflow file,
the leaf node data records consist of a key and an extent record. In a catalog file
(described in the next section), the leaf node data records can be any one of four kinds
of records.

Catalog Files

The File Manager uses a file called the catalog file to maintain information about the
hierarchy of files and directories on a volume. A catalog file is organized as a B*-tree file
and hence consists of a header node, index nodes, leaf nodes, and (if necessary) map
nodes. The allocation block number of the first file extent of the catalog file (and hence of
the file’s header node) is stored in the MDB; when the volume is mounted, that
information is copied into that volume’s volume control block. From the header node,
the File Manager can obtain the node number of the catalog file’s root node; from the
root node, the File Manager can find the entire catalog file.

Each node of the catalog file is assigned a unique catalog node ID (CNID). For directo-
ries, the CNID is the directory ID; for files, it’s the file ID. For any given file or directory,
the parent ID is the CNID of the parent directory. The first 16 CNIDs are reserved for use
by Apple Computer, Inc., and include the following standard assignments;

CNID Assignment

1 Parent ID of the root directory

2 Directory ID of the root directory

3 File number of the extents file

4 File number of the catalog file

5 File number of the bad allocation block file

Data Organization on Volumes

CHAPTER 2

File Manager

You need to know only two things about a catalog file in addition to the information
given earlier in this chapter in “B*-Trees™:

n the format of the catalog key used in index and leaf nodes

n the format of the leaf node data records
These formats are described in the following two sections.

Catalog File Keys

The key that the File Manager uses to navigate the catalog file is simple: for a given file
or directory, the key consists principally of the name of that file or directory and its
parent directory ID. With the exception of a volume reference number (which is not
needed here), this mirrors the standard way to specify a file or directory with the
high-level HFS routines. You can describe a catalog file key using a record of the

Cat KeyRec data type.

TYPE Cat KeyRec = {cat al og key record}
RECORD

ckr KeyLen: Si gnedByt €; {key | ength}

ckr Resrvi1: Si gnedByt e; {reserved}

ckr Par | D Longl nt; {parent directory |D}

ckr CNane: Str31; {cat al og node nane}
END,

Field descriptions

ckr KeyLen The length (in bytes) of the rest of the key. The value in this field
does not include the byte occupied by the field itself. If this field
contains 0, the key indicates a deleted record.

ckrResrvil Reserved.
ckrParl D The catalog node ID of the parent directory.
ckr CNane The name of the file or directory whose catalog entry is to be found.

This field is padded with null characters if necessary to have the
next record data or pointer begin on a word boundary.

You should pay special attention to the fact that the catalog key differs slightly
depending on whether it occurs in a record in an index node or a leaf node. If the key
occurs in a pointer record (hence in an index node), the ckr CNane field always occupies
a full 32 bytes and the ckr KeyLen field always contains the value $25.

If, however, the catalog file key occurs in a data record (hence in a leaf node), then the
ckr CNane field varies in length; it occupies only the number of bytes required to hold
the file or directory name, suitably padded so that the data following it begins on a word
boundary. In that case, the ckr KeyLen field varies as well and may contain values from
$7 to $25.

Data Organization on Volumes 2-71

2-72

CHAPTER 2

File Manager

Catalog File Data Records

A catalog file leaf node can contain four different types of records:

n

n

n

Directory records. A directory record contains information about a single directory.

File records. A file record contains information about a single file.

Directory thread records. A directory thread record provides a link between a
directory and its parent directory. It allows the File Manager to find the name and
directory ID of the parent of a given directory.

File thread records. A file thread record provides a link between a file and its parent
directory. It allows the File Manager to find the name and directory ID of the parent of

a given file.

Each record is defined by a variant of the Cat Dat aType data type.

TYPE Cat Dat aType

TYPE Cat Dat aRec

RECORD

CASE

cdr Type:
cdr Resrv2:

cdrDi r Rec:

(dirFl ags:
dirVval :
dirDirlD
di r CrDat:
di r MidDat :
di r BkDat :

di
di
di

r Resrv:

cdr Fi | Rec:

(fil Fl ags:
filTyp:
fil UsrWils:
filFl Num
fil StBIk:
filLgLen:
fil PyLen:
fil RSt Bl k:
filRLgLen:
fil RPyLen:
fil CrDat:

r Usr | nf o:
r Fndr | nf o:

= (cdrDirRec, cdrFil Rec, cdrThdRec,
cdr FThdRec) ;

Si gnedByt e;
Si gnedByt e;

Cat Dat aType OF

| nt eger;

| nt eger;
Longl nt;
Longl nt;
Longl nt;
Longl nt;

Dl nf o;
DXI nf o;
ARRAY[1. . 4]

Si gnedByt e;
Si gnedByt e;
FI nf o;
Longl nt;

| nt eger;
Longl nt;
Longl nt;

| nt eger;
Longl nt;
Longl nt;
Longl nt;

Data Organization on Volumes

{catal og data records}

{record type}
{reserved}

{directory record}

{directory flags}

{directory val ence}

{directory | D}

{date and tine of creation}
{date and time of last nodification}
{date and time of |ast backup}
{Fi nder information}

{addi tional Finder information}
OF Longlint);

{reserved}

{file record}

{file flags}

{file type}

{Fi nder informtion}
{file 1D}

{first alloc. blk. of data fork}

{l ogi cal ECF of data fork}

{physi cal EOF of data fork}

{first alloc. blk. of resource fork}
{l ogi cal ECF of resource fork}
{physi cal EOF of resource fork}
{date and tine of creation}

CHAPTER 2

File Manager
fil MiDat : Longl nt; {date and time of last nodification}
fil BkDat: Longl nt; {date and tinme of |ast backup}
fil Fndrlnfo: FXI nf o; {addi tional Finder information}
fild pSize: I nt eger; {file clunp size}
fil Ext Rec: Ext Dat aRec; {first data fork extent record}
fil RExt Rec: Ext Dat aRec; {first resource fork extent record}
filResrv: Longl nt); {reserved}
cdr ThdRec: {directory thread record}
(t hdResr v: ARRAY[1. .2] OF Longlnt;
{reserved}
t hdPar | D Longl nt ; {parent ID for this directory}
t hdCNane: Str31); {nane of this directory}
cdr FThdRec: {file thread record}
(fthdResrv: ARRAY[1..2] OF Longlnt;
{reserved}
ft hdPar | D: Longl nt; {parent ID for this file}
ft hdCNanre: Str3l); {nane of this file}
END;

The first two fields of a catalog data record are common to all four variants. Each variant
also includes its own unique fields.

Field descriptions common to all variants

cdr Type The type of catalog data record. This field can contain one of four
values:
Value Meaning
1 Directory record
2 File record
3 Directory thread record
4 File thread record
cdr Resrv2 Reserved.

Field descriptions for the cdr Di r Rec variant

di r Fl ags Directory flags.

di r val The directory valence (the number of files in this directory).
dirDirlD The directory ID.

di r Cr Dat The date and time this directory was created.

di r MiDat The date and time this directory was last modified.

di r BkDat The date and time this directory was last backed up.
dirUsrinfo Information used by the Finder.

di rFndr I nfo Additional information used by the Finder.

di r Resrv Reserved.

Data Organization on Volumes 2-73

2-74

CHAPTER 2

File Manager

Field descriptions for the cdr Fi | Rec variant

filFlags File flags. This is interpreted as a bitmap; currently the following
bits are defined:

Bit Meaning
0 If set, file is locked and cannot be written to.
1 If set, a file thread record exists for this file.
7 If set, the file record is used.
filTyp The file type. This field should always contain 0.
filUsrWls The file’s Finder information.
filFl Num The file ID.
filstBlk The first allocation block of the data fork.
filLglLen The logical EOF of the data fork.
fil PyLen The physical EOF of the data fork.
fil RStBI k The first allocation block of the resource fork.
fil RLgLen The logical EOF of the resource fork.
fil RPyLen The physical EOF of the resource fork.
fil CrDat The date and time this file was created.
fil MiDat The date and time this file was last modified.
fil BkDat The date and time this file was last backed up.
filFndrinfo Additional information used by the Finder.
fild pSize The file clump size.
fil Ext Rec The first extent record of the file’s data fork.
fil RExt Rec The first extent record of the file’s resource fork.
filRResrv Reserved.

Field descriptions for the cdr ThdRec variant

t hdResrv Reserved.
t hdPar | D The directory ID of the parent of the associated directory.
t hdCNane The name of this directory.

Field descriptions for the cdr FThdRec variant

ft hdResrv Reserved.
fthdPar| D The directory ID of the parent of the associated file.
ft hdCNarre The name of this file.

As you can see, a file thread record is exactly the same as a directory thread record
except that the associated object is a file, not a directory.

Extents Overflow Files

The File Manager keeps track of which allocation blocks belong to a file by maintaining a
list of contiguous disk segments that belong to that file, in the appropriate order. When
the list of disk segments gets too large, some of those segments (or extents) are stored on
disk in afile called the extents overflow file.

Data Organization on Volumes

CHAPTER 2

File Manager

The structure of an extents overflow file is relatively simple compared to that of a catalog
file. The function of the extents overflow file is to store those file extents that are not
contained in the MDB or VCB (in the case of the catalog and extents overflow files
themselves) or in an FCB (in the case of all other files). Because the first three file extents
are always maintained in memory (in a VCB or an FCB), the File Manager needs to read
the extents overflow file only to retrieve any file extents beyond the first three; if a file
has at most three extents, the File Manager never needs to read the disk to find the
locations of the file’s blocks. (This is one good reason to promote file block contiguity.)

An extent is a contiguous range of allocation blocks that have been allocated to some file.
You can represent the structure of an extent using an extent descriptor, defined by the
Ext Descri pt or data type.

TYPE Ext Descri pt or = {extent descriptor}
RECORD

xdr St ABN: I nt eger; {first allocation bl ock}

xdr NumABI ks: I nt eger; {nunber of allocation blocks}
END;

An extent descriptor record consists of the first allocation block of the extent, followed
by the number of allocation blocks in that extent. The File Manager prefers to access
extent descriptors in groups of three; to do so, it uses the extent data record, defined by
the Ext Dat aRec data type.

TYPE
Ext Dat aRec: ARRAY[1l..3] OF ExtDescriptor;{extent data record}

Recall that the dr CTExt Rec and dr XTExt Rec fields of the MDB are of type

Ext Dat aRec (see “Master Directory Blocks,” earlier in this chapter), as is the

f cbExt Rec field of an FCB (see “File Control Blocks” beginning on page 2-81). Also,
the records in the leaf nodes of the extents overflow file are extent data records. For
this reason, the extents overflow file is much simpler than the catalog file: the data in
a leaf node of an extents overflow file always consists of a single kind of record,
instead of the four kinds of records found in a catalog file.

The other main difference between a catalog B*-tree and an extents overflow B*-tree
concerns the format of the key. You can describe an extent record key with the
Ext KeyRec data type.

TYPE Ext KeyRec = {extent key record}
RECORD

xkr KeyLen: Si gnedByt e; {key | engt h}

xkr FkType: Si gnedByt e; {fork type}

xkr FNum Longl nt; {file nunber}

xkr FABN: I nt eger; {starting file allocation block}
END,;

Data Organization on Volumes 2-75

CHAPTER 2

File Manager

Field descriptions

xkr KeyLen The length (in bytes) of the rest of the key. In the current
implementation, this field always contains the value 7.

xkr FkType The type of file fork. This field contains $00 if the file is a data fork
and $FF if the file is a resource fork.

xkr FNum The file ID of the file.

xkr FABN The starting file allocation block number. In the list of the allocation

blocks belonging to this file, this number is the index of the first
allocation block of the first extent descriptor of the extent record.

Note

Disks initialized using the enhanced Disk Initialization Manager
introduced in system software version 7.0 might contain extent records
for some blocks that do not belong to any actual file in the file system.
These extent records have a file ID set to 5, indicating that the extent
contains a bad block. See the chapter “Disk Initialization Manager” in
this book for details on bad block sparing. u

Data Organization in Memory

2-76

This section describes the data structures used internally by the File Manager and any
external file system that accesses files on Macintosh-initialized volumes. As described in
“Data Organization on Volumes,” which begins on page 2-52, most applications do not
need to access these internal data structures directly. In general, you need to know about
these data structures only if you are writing an external file system or a disk utility.

WARNING

This section is provided primarily for informational purposes. The
organization of data in memory is subject to change. If you want your
application to be compatible with future versions of Macintosh system
software, you should not access these internal data structures

directly. s

The data structures maintained in memory by the File Manager and external file
systems include

n the file I/0 queue
n the volume control block queue, listing information about each mounted volume
n the file control block buffer, listing information about each access path to a fork

n a B*-tree control block for the catalog file and the extents overflow file for each
mounted volume

n the drive queue, listing information about each drive connected to the Macintosh

Data Organization in Memory

CHAPTER 2

File Manager

The File I/0O Queue

The file I/0 queue is a standard Operating System queue (described in the chapter
“Queue Utilities” in Inside Macintosh: Operating System Utilities) that contains parameter
blocks for all asynchronous routines awaiting execution.

Each entry in the file I/0O queue consists of a parameter block for the routine that was
called. The File Manager uses the first four fields of each parameter block in processing
the 1/0 requests in the queue.

TYPE Par anBl ockRec =

RECORD
gLi nk: El enPtr; {next queue entry}
qType: I nt eger; {queue type}
i oTr ap: I nt eger; {routine trap}
i oCrd Addr : Ptr; {routine address}
{rest of bl ock}
END;

Field descriptions

gLi nk A pointer to the next entry in the file /0 queue.

qType The queue type. This field must always contain ORD(i oQType) .
i oTrap The trap word of the routine that was called.

i oCndAddr The address of the routine that was called.

You can get a pointer to the header of the file /0O queue by calling the File Manager
utility function Get FSQHdr .

Assembly-Language Note

The global variable FSQHdr contains the header of the file /0
gueue. u

Volume Control Blocks

Each time a volume is mounted, the File Manager reads its volume information from the
master directory block and uses the information to build a new volume control block
(VCB) in the volume control block queue (unless an ejected or offline volume is being
remounted). The File Manager also creates a volume buffer in the system heap. When a
volume is placed offline, its buffer is released. When a volume is unmounted, its VCB is
removed from the VCB queue as well.

Assembly-Language Note

The global variable VCBQHdr contains the header of the VCB queue. The
global variable Def VCBPt r points to the VCB of the default
volume. u

Data Organization in Memory 2-77

CHAPTER 2

File Manager

S WARNING
The size and structure of a VCB may be different in future versions of
Macintosh system software. To ensure that you are reading the correct
version of a VCB, check the vebSi g\Wor d field; it should contain the
value $4244. s

The volume control block queue is a standard Operating System queue that’s
maintained in the system heap. It contains a volume control block for each mounted
volume. A volume control block is a nonrelocatable block that contains volume-specific
information. The structure of a volume control block is defined by the VCB data type.

TYPE VCB = {vol unme control bl ock}

RECORD
gLi nk: El enPtr; {next queue entry}
qType: I nt eger; {queue type}
vcbFl ags: I nt eger; {vol une fl ags}
vchSi gWor d: I nt eger; {vol une si gnature}
vchCr Dat e: Longl nt; {date and time of volume creation}
vcbLsMod: Longl nt; {date and time of last nodification}
VCbAt r b: I nt eger; {volune attributes}
vcbNnFl s: I nt eger; {nunber of files in root directory}
vchbVBMSt : I nt eger; {first block of volume bitmap}
vcbAl | ocPtr: I nt eger; {start of next allocation search}
vcbNmAl Bl ks: I nt eger; {nunber of allocation blocks in vol une}
vcbAl Bl kSi z: Longl nt; {size (in bytes) of allocation bl ocks}
vcbd pSi z: Longl nt; {default clunmp size}
vcbAl Bl St : I nt eger; {first allocation block in vol une}
vcbNxt CNI D Longl nt ; {next unused catal og node | D}
vcbFr eeBks: I nt eger; {nunber of unused all ocation bl ocks}
vCcbVN: String[27]; {volune nane}
vcbDr vNum I nt eger; {drive nunber}
vchbDRef Num I nt eger; {driver reference nunber}
vcbFSI D I nt eger; {file-systemidentifier}
vcbVRef Num I nt eger; {vol une reference nunber}
vcbMAdr : Ptr; {used internally}
vcbBuf Adr: Ptr; {used internally}
vcbM.en: I nt eger; {used internally}
vchDi rl ndex: I nt eger; {used internally}
vcbDi r Bl k: I nt eger; {used internally}
vchbVol BkUp: Longl nt; {date and tinme of |ast backup}
vchVSegNum I nt eger; {vol une backup sequence nunber}
vchbW Cnt : Longl nt; {volume wite count}
vcbXTd pSi z: Longl nt; {clump size for extents overflow fil e}
vcbCTd pSi z: Longl nt ; {clunp size for catalog fil e}
vVChbNTRt Di r s: I nt eger; {nunber of directories in root dir.}
vcbhFi | Cnt: Longl nt; {nunber of files in vol une}

2-78 Data Organization in Memory

CHAPTER 2

File Manager
vcbDirCnt: Longl nt; {nunber of directories in vol une}
vcbFndr | nf o: ARRAY[1..8] OF Longlnt;

{informati on used by the Finder}
vchVCSi ze: I nt eger; {used internally}
vcbVBMCSi z: I nt eger; {used internally}
vcbhCQt I CSi z: I nt eger; {used internally}
vCcbXTAIl Bks: I nt eger; {size of extents overflow file}
vchCTAl Bks: I nt eger; {size of catalog file}
vcbXTRef : I nt eger; {ref. num for extents overflow file}
vCbCTRef : I nt eger; {ref. num for catalog file}
vchCt | Buf : Ptr; {ptr. to extents and catal og caches}
vchDi r | DM Longl nt; {directory | ast searched}
vebOf f sM I nt eger; {of fspring index at |ast search}
END,
Note

The values in the vcbNmAl Bl ks and vcbFr eeBks fields are unsigned
integers (that is, they can range from 0 to 65,535, not from -32,768 to
32,767). Because Pascal does not support unsigned data types, you need
to use the technique illustrated in “Determining the Amount of Free
Space on a Volume” on page 2-46 to read the values in these fields

correctly. u

Field descriptions

gLi nk

qType

vcbFl ags

vchSi gwrd
vcbhCr Dat e
vcbLsMd

VCcbAtrb

vcbNnFl s

Data Organization in Memory

A pointer to the next entry in the VCB queue. You can get a pointer
to the header of the VCB queue by calling the File Manager utility
function Get VCBQHdr .

The queue type. When the volume is mounted and the VCB is
created, this field is cleared. Thereafter, bit 7 of this field is set
whenever a file on that volume is opened.

Volume flags. Bit 15 is set if the volume information has been
changed by a File Manager call since the volume was last affected
by a Fl ushVol call.

The volume signature. For HFS volumes, this field contains $4244,
The date and time of volume creation (initialization).

The date and time of last modification. This is not necessarily when
the volume was last flushed.

Volume attributes. The bits have these meanings:

Bit Meaning

0-5 Reserved

6 Set if the volume is busy (one or more files are open)
7 Set if the volume is locked by hardware

8-14 Reserved

15 Set if the volume is locked by software

The number of files in the root directory.

2-79

2-80

CHAPTER 2

File Manager

vcbVBMst

vcbAl | ocPtr
vcbNmAl Bl ks
vcbAl Bl kSi z

vcbd pSi z
vcbAl Bl St
vcbNxt CNI D
vchbFr eeBks
vcbVN

vcbDr vNum

vcbDRef Num

vcbFSI D

vcbVRef Num
vchMAdr
vcbBuf Adr
vcbM.en
vcbDi r |l ndex
vchDi r Bl k
vcbVol BkUp
vchVSegNum
vcbW Cnt
vcbhXTd pSi z
vcbCTd pSi z
vchbNTRt Dirs
vcbFi | Cnt
vchDi r Cnt
vcbFndrinfo
vchbVCSi ze
vcbVBMCSI z
vchCt | CSi z

The first block of the volume bitmap.
The start block of the next allocation search. Used internally.
The number of allocation blocks in the volume.

The allocation block size (in bytes). This value must always be a
multiple of 512 bytes.

The default clump size.

The first allocation block in the volume.

The next unused catalog node ID (directory ID or file ID).
The number of unused allocation blocks on the volume.

The volume name. This field consists of a length byte followed
by 27 bytes. Note that the volume name can occupy at most

27 characters; this is an exception to the normal file and directory
name limit of 31 characters.

The drive number of the drive on which the volume is located.
When a mounted volume is placed offline or ejected, vcbDr vNumis
setto 0.

The driver reference number of the driver used to access the
volume. When a volume is ejected, vcbDRef Numis set to the
previous value of vebDr vNum(and hence is a positive number).
When a volume is placed offline, vcbDRef Numis set to the
negative of the previous value of vebDr vNum(and hence is

a negative number).

An identifier for the file system handling the volume; it’s zero for
volumes handled by the File Manager and nonzero for volumes
handled by other file systems.

The volume reference number.

Used internally.

Used internally.

Used internally.

Used internally.

Used internally.

The date and time of the last volume backup.
Used internally.

The volume write count.

The clump size of the extents overflow file.
The clump size of the catalog file.

The number of directories in the root directory.
The number of files on the volume.

The number of directories on the volume.
Information used by the Finder.

Used internally.

Used internally.

Used internally.

Data Organization in Memory

CHAPTER 2

File Manager

vcbXTAl Bks The size (in blocks) of the extents overflow file.
vchCTAI Bks The size (in blocks) of the catalog file.

vcbXTRef The path reference number for the extents overflow file.
vcbCTRef The path reference number for the catalog file.

vchCt | Buf A pointer to the extents and catalog caches.

vcbDi r1 DM The directory last searched.

vcebOf f sM The offspring index at the last search.

File Control Blocks

Each time a file is opened, the File Manager reads that file’s catalog entry and builds a
file control block (FCB) in the FCB buffer, which contains information about all access
paths. The FCB buffer is a block in the system heap; the first word contains the length
of the buffer, and the remainder of the buffer is used to hold FCBs for open files.

The initial size of the FCB buffer is determined by the system startup information stored
on a volume. Beginning in system software version 7.0, the File Manager attempts to
resize the FCB buffer whenever the existing buffer is filled.

You can find the beginning of any particular FCB by adding the size of all preceding
FCBs to the size of the FCB buffer length word (that is, 2). This offset from the head of
the FCB buffer is used as the file reference number of the corresponding open file.
Because the current size of an FCB is 94 bytes, the first few valid file reference numbers
are 2, 96, 190, 284, 378, 472, and so on. The maximum size of an expandable FCB buffer is
32,535 bytes, so there is an absolute limit of 342 FCBs in the FCB buffer.

Note

The size and structure of an FCB will be different in future versions of
Macintosh system software. To be safe, you should get information from
the FCB allocated for an open file by calling the File Manager function
PBGet FCBI nf 0. u

When you close a file (for example, by calling FSC ose), the FCB for that file is cleared,
and the File Manager may use that space to hold the FCB for a file that is opened at a
later time. Consequently, it is important that you do not attempt to close a file more
than once; you may inadvertently close a file that was opened by the system or by
another application.

WARNING

Closing a volume’s catalog file (perhaps by inadvertently calling
FSC ose or PBA ose twice with the same file reference number) may
result in damage to the volume’s file system and loss of data. s

The structure of a file control block is defined by the FCB data type.

TYPE FCB = {file control block}
RECORD

f cbFl Num Longl nt ; {file 1D}

f cbFl ags: I nt eger; {file flags}

Data Organization in Memory 2-81

2-82

CHAPTER 2

File Manager

f cbSBI k:
f cbEOF:

f cbPLen:
fcbCr Ps:
fcbVPtr:
f cbBf Adr:
f cbFl Pos:

fcbd npSi ze:

fcbBTCBPt 1 :

f cbExt Rec:

f cbFType:

f cbCat Pos:

fcbDirlD:

f cbCNane:
END;

Field descriptions
f cbFl Num

f cbFl ags

f cbSBI k
f cbEOF
f cbPLen
fcbCr Ps
fcbVPtr

f cbBf Adr

f cbFl Pos
fcbd npSi ze
f cbBTCBPt r
f cbExt Rec

I nt eger; {reserved}

Longl nt; {l ogi cal end-of-file}

Longl nt; {physical end-of-file}

Longl nt; {current file mark position}

Ptr; {pointer to volume control bl ock}
Ptr; {pointer to access path buffer}

I nt eger; {reserved}

Longl nt ; {file clunp size}

Ptr; {pointer to B*-tree control bl ock}
Ext Dat aRec; {first three file extents}

Longl nt; {file's four Finder type bytes}
Longl nt; {catalog hint for use on close}
Longl nt; {file's parent directory |D}

String[31]; {nane of file}

The file ID of this file.

Flags describing the status of the file. Currently the following bits
are defined:

Bit Meaning

0-7 Reserved

8 Set if data can be written to the file

9 Set if this FCB describes a resource fork

10 Set if the file has a locked byte range

11 Reserved

12 Set if the file has shared write permissions

13 Set if the file is locked (write-protected)

14 Set if the file’s clump size is specified in the FCB
15 Set if the file has changed since it was last flushed
Reserved.

The logical end-of-file of the file.
The physical end-of-file of the file.
The position of the mark.

A pointer to the volume control block of the volume containing
the file.

A pointer to the file’s access path buffer.
Reserved.

The clump size of the file.

A pointer to the file’s B*-tree control block.

An extent record (12 bytes) containing the first three extents of
the file.

Data Organization in Memory

CHAPTER 2

File Manager

f cbFType
f cbCat Pos
fcbDirl D
f cbCNane

The file’s Finder type.

A catalog hint, used when you close the file.

The file’s parent directory ID.

The file’s name (as contained in the volume catalog file).

B*-Tree Control Blocks

When the File Manager mounts a volume, it reads the B*-tree header node for both the
catalog file and the extents overflow file found on that volume and, for each file, creates
a B*-tree control block in memory. (See the section “Header Nodes” on page 2-67 for a
description of B*-tree header nodes.) The structure of a B*-tree control block is defined by

the BTCB data type.

TYPE BTCB
RECORD

{B*-tree control bl ock}

bt cFl ags:
bt cResv:
bt cRef Num
bt cKeyCr:
bt cCQPtr:
btcvarPtr:
bt cLevel :
bt cNodeM
bt cl ndexM
bt cDept h:
bt cRoot :
bt cNRecs:
bt cFNode:
bt cLNode:
bt cNodeSi ze:
bt cKeyLen:
bt cNNodes:
bt cFree:

END;

Field descriptions
bt cFl ags

Si gnedByt e;
Si gnedByt e;
| nt eger;
ProcPtr:
Longl nt;
Longl nt;
| nt eger;
Longl nt;
| nt eger;
| nt eger;
Longl nt;
Longl nt;
Longl nt;
Longl nt;
| nt eger;
| nt eger;
Longl nt;
Longl nt;

{flag byte}
{reserved}
{file reference nunber}

{pointer to key conparison routine}
{pointer to cache queue}
{pointer to B*-tree vari abl es}
{current |evel}

{current node mark}

{current index mark}

{current depth of tree}

{nunber of root node}

{nunber of leaf records in tree}
{nunber of first |eaf node}
{nunber of |ast |eaf node}

{size of a node}

{maxi mum | ength of a key}
{total number of nodes in tree}
{nunber of free nodes}

A flag byte. Currently the following bits are defined:

Bit

4
5
6
7

Meaning

Set if an existing index record must be deleted

Set if a new index record must be created

Set if the index key must be updated

Set if the block has changed since it was last flushed

Data Organization in Memory

2-83

2-84

CHAPTER 2

File Manager

bt cResv
bt cRef Num

bt cKeyCr
bt cCQPt r
bt cvar Ptr
bt cLevel
bt cNodeM
bt cl ndexM
bt hDept h
bt cRoot

bt cNRecs
bt cFNode
bt cLNode

bt cNodeSi ze

bt cKeyLen
bt cNNodes
bt cFree

Reserved.

The file reference number of the catalog or extents overflow file
corresponding to this control block.

A pointer to the routine used to compare keys.
A pointer to the cache queue.

A pointer to B*-tree variables.

The current level.

The current node mark.

The current index mark.

The current depth of the B*-tree.

The node number of the root node. The root node is the start of the
B*-tree structure; usually the root node is the first index node, but
it might be a leaf node if there are no index nodes.

The number of data records (records contained in leaf nodes).
The node number of the first leaf node.

The node number of the last leaf node.

The size (in bytes) of a node. Currently, this is always 512.
The length of the key records in each node.

The total number of nodes in the B*-tree.

The total number of free nodes in the B*-tree.

The Drive Queue

The File Manager maintains a list of all disk drives connected to the computer. It
maintains this list in the drive queue, which is a standard operating system queue. The
drive queue is initially created at system startup time. Elements are added to the queue
at system startup time or when you call the AddDr i ve procedure. The drive queue can
support any number of drives, limited only by memory space. Each element in the drive
gueue contains information about the corresponding drive; the structure of a drive
queue element is defined by the Dr vQEl data type.

TYPE Dr vCE
RECORD
gLi nk:
qType:
dQri ve:

dQRef Num

dQFSI D:
dQorvSz:

dQDr vSz2:

END;

QEl enPtr; {next queue entry}

I nt eger; {flag for d@rvSz and dQDrvSz2}

I nt eger; {drive nunber}

I nt eger; {driver reference nunber}

I nt eger; {file-systemidentifier}

I nt eger; {nunber of |ogical blocks on drive}
I nt eger; {additional field for large drives}

Data Organization in Memory

CHAPTER 2

File Manager

Field descriptions
gLi nk A pointer to the next entry in the drive queue.

qType Used to specify the size of the drive. If the value of qType is 0,
the number of logical blocks on the drive is contained in the
dQDr vSz field alone. If the value of qType is 1, both dQDr vSz
and dQDr vSz 2 are used to store the number of blocks; in that case,
dQDr vSz 2 contains the high-order word of this number
and dQDr vSz contains the low-order word.

dQDrive The drive number of the drive.

dQRef Num The driver reference number of the driver controlling the device on
which the volume is mounted.

dQFSI D An identifier for the file system handling the volume in the drive;

it’s zero for volumes handled by the File Manager and nonzero for
volumes handled by other file systems.

dQDrvSz The number of logical blocks on the drive.
dQDrvSz2 An additional field to handle large drives. This field is used only if
the qType field contains 1.

The File Manager also maintains four flag bytes preceding each drive queue element.
These bytes contain the following information:

Byte Contents
0 Bit 7=1 if the volume on the drive is locked
1 0if no disk in drive; 1 or 2 if disk in drive; 8 if nonejectable disk in drive;

$FC-$FF if disk was ejected within last 1.5 seconds; $48 if disk in drive is
nonejectable but driver wants a call

2 Used internally during system startup
3 Bit 7=0 if disk is single-sided

You can read these flags by subtracting 4 bytes from the beginning of a drive queue
element, as illustrated in Listing 2-11.

Listing 2-11 Reading a drive queue element’s flag bytes

FUNCTI ON Get DriveFl ags (nyDQEl enPtr: DrvQElPtr): Longlnt;
TYPE
FlagPtr = ~Longlnt; {pointer to the queue elenment flag bytes}
VAR
myQFl agsPtr: Fl agPtr;
BEG N
{Just subtract 4 fromthe queue el ement pointer.}
myQFl agsPtr = FlagPtr (ORD4(nyDQEl enPtr) - 4);
Get DriveFl ags : = nyQFl agsPtr”;
END;

Data Organization in Memory 2-85

CHAPTER 2

File Manager

The Get Dri veFl ags function defined Listing 2-11 takes a pointer to a drive queue
element as a parameter. You can get a queue element pointer for a particular volume by
walking the drive queue until you find a queue element whose dQDr i ve field contains
the same value as the vcbDr vNumfield of that volume’s VCB. You can get a pointer to
the header of the drive queue by calling the File Manager function Get Dr vQHdr .

Note that the bit numbers given in this section use the standard MC68000 numbering
scheme; to access the correct bit using some Pascal routines, you must reverse that
numbering. For example, if you use the Toolbox Bi t Tst routine to determine whether a
particular disk is single-sided, you must test bit 24 (that is, 31 minus 7) of the returned
long integer. If you use the built-in Pascal function BTST, however, you can test the
indicated bit directly.

Assembly-Language Note
The global variable Dr vQHdr contains the header of the drive queue. u

File Manager Reference

This section describes the routines provided by the File Manager and the data structures
you must pass when calling those routines.

The “Data Structures” section shows the Pascal data structures for all the records and
parameter blocks that most applications are likely to use. If you need information about
data structures describing the structure of the information maintained on volumes or in
memory, see “Data Organization on Volumes” and “Data Organization in Memory”
earlier in this chapter.

The remaining sections describe the routines provided by the File Manager.

Data Structures

This section describes the data structures that your application uses to exchange
information with the File Manager.

File System Specification Record

2-86

The system software recognizes the file system specification record, which provides a
simple, standard way to specify the name and location of a file or directory. The file
system specification record is defined by the FSSpec data type.

TYPE FSSpec = {file system specification}

RECORD
vRef Num I nt eger; {vol une reference nunber}
par | D Longl nt ; {directory ID of parent directory}
nane: Str63; {filenane or directory nane}

END;

File Manager Reference

CHAPTER 2

File Manager

Field descriptions

vRef Num

parl D

nane

The volume reference number of the volume containing the specified

file or directory.

The directory ID of the directory containing the specified file or

directory.

The name of the specified file or directory.

The FSSpec record can describe only a file or a directory, not a volume. A volume can
be identified by its root directory, although the system software never uses an FSSpec
record to describe a volume. (The directory ID of the root’s parent directory is

f sRt Par | D, defined in the interface files. The name of the root directory is the same
as the name of the volume.)

If you need to convert a file specification into an FSSpec record, call the function
FSMakeFSSpec. Do not fill in the fields of an FSSpec record yourself.

Basic File Manager Parameter Block

Many of the low-level functions that manipulate files and volumes exchange information
with your application using the basic File Manager parameter block, defined by the
Par anBl ockRec data type.

TYPE Par anBl ockRec =

{basi c File Manager paraneter bl ock}

RECORD

gLi nk: QEl enPtr; {next queue entry}
qType: I nt eger; {queue type}
i oTr ap: I nt eger; {routine trap}
i oCrd Addr : Ptr; {routine address}
i oConpl eti on: ProcPtr; {pointer to conpletion routine}
i oResul t: CSErr; {result code}
i oNamePt r: StringPtr; {poi nter to pathname}
i oVRef Num I nt eger; {vol une specification}

CASE Par anBl kType OF

i oPar am

(1 oRef Num I nt eger; {file reference nunber}

i oVer sNum Si gnedByt e; {versi on nunber}
i oPer nssn: Si gnedByt e; {read/write pernission}
i oM sc: Ptr; {m scel | aneous}
i oBuf fer: Ptr; {data buffer}
i oReqCount : Longl nt; {request ed nunber of bytes}
i 0Act Count : Longl nt; {actual nunber of bytes}
i oPosMbde: I nt eger; {posi tioning node and newl i ne char.}
i oPosOf f set: Longl nt); {posi tioning offset}

fil eParam

(1 oFRef Num I nt eger; {file reference nunber}

i oFVer sNum Si gnedByt e; {file version nunber (unused)}

File Manager Reference 2-87

CHAPTER 2

File Manager
fillerl: Si gnedByt e; {reserved}
i oFDi r | ndex: I nt eger; {directory index}
i oFl Attrib: Si gnedByt e; {file attributes}
i oFl Ver sNum Si gnedByt e; {file version nunber (unused)}
i oFl Fndr | nf o: FlI nf o; {informati on used by the Finder}
i oFl Num Longl nt; {file I D}
i oFl St Bl k: I nt eger; {first alloc. blk. of data fork}
i oFl LgLen: Longl nt ; {l ogi cal EOF of data fork}
i oFl PyLen: Longl nt; {physi cal EOF of data fork}
i oFl RSt BI k: I nt eger; {first alloc. blk. of resource fork}
i oFl RLgLen: Longl nt ; {l ogi cal EOF of resource fork}
i oFl RPyLen: Longl nt; {physi cal EOF of resource fork}
i oFl Cr Dat : Longl nt; {date and time of creation}
i oFl MiDat : Longlnt); {date and time of last nodification}
vol unePar am
(filler2: Longl nt; {reserved}
i oVol | ndex: I nt eger; {vol une index}
i oVCr Dat e: Longl nt; {date and tine of initialization}
i oVLsBkUp: Longl nt; {date and time of last nodification}
i OVAtT b: I nt eger; {volune attributes}
i OVNnFI s: I nt eger; {nunber of files in root directory}
ioVDirSt: I nt eger; {first block of directory}
i oVBI Ln: I nt eger; {length of directory in blocks}
i oOVNmAI Bl ks: I nt eger; {nunber of allocation blocks}
i oVAl Bl kSi z: Longl nt; {size of allocation bl ocks}
i ovVd pSi z: Longl nt; {default clunp size}
i oAl Bl St : I nt eger; {first block in bl ock map}
i OVNxt FNum Longl nt; {next unused file I D}
i oVFr Bl k: I nt eger) ; {nunber of unused allocation bl ocks}

END;

The first eight fields are common to all three variants. Each variant also includes its own
unique fields.

Field descriptions for fields common to all variants

gLi nk A pointer to the next entry in the file /0 queue. (This field is used
internally by the File Manager to keep track of asynchronous calls
awaiting execution.)

qType The queue type. (This field is used internally by the File Manager.)

i oTrap The trap number of the routine that was called. (This field is used
internally by the File Manager.)

i oCrdAddr The address of the routine that was called. (This field is used

internally by the File Manager.)

2-88 File Manager Reference

CHAPTER 2

File Manager

i oConpl eti on

i oResul t

i oNamePt r

i oVRef Num

A pointer to a completion routine to be executed at the end of an
asynchronous call. It should be NI L for asynchronous calls with
no completion routine and is automatically set to NI L for all
synchronous calls. See “Completion Routines” on page 2-238 for
information about completion routines.

The result code of the function. For synchronous calls, this field is
the same as the result code of the function call itself. To determine
when an asynchronous call has actually been completed, your
application can poll this field; it’s set to a positive number when
the call is made and receives the actual result code when the call
is completed.

A pointer to a pathname. Whenever a routine description specifies
thati oNamePt r is used—whether for input, output, or both—

it’s very important that you set this field to point to storage for a

St r 255 value (if you’re using a pathname) or to NI L (if you’re not).

A volume specification (volume reference number, working
directory reference number, drive number, or 0 for default volume).

Field descriptions for the i oPar am variant

i oRef Num
oVer sNum

oPer nssn
oM sc

oBuf f er

oReqCount
oAct Count
oPosMbde

The file reference number of an open file.

A version number. This field is no longer used and you should
always set it to 0.

The access mode.

Depends on the routine called. This field contains either a new
logical end-of-file, a new version number, or a pointer to a new
pathname. Because i oM sc is of type Pt r, you’ll need to perform
type coercion to interpret the value ofi oM sc correctly when it
contains an end-of-file (a Longl nt value) or version number (a
Si gnedByt e value).

A pointer to a data buffer into which data is written by _Read calls
and from which data is read by _W i t e calls.

The requested number of bytes to be read, written, or allocated.
The number of bytes actually read, written, or allocated.

The positioning mode for setting the mark. Bits 0 and 1 of this field
indicate how to position the mark; you can use the following
predefined constants to set or test their value:

CONST
f SAt Mar k = 0; {at current mark}
f sFrontt art = 1; {from beginning of file}
f sFronLECF = 2; {fromlogical end-of-file}
f sFromvar k = 3; {relative to current mark}

You can set bit 4 of thei oPosMbde field to request that the data be
cached, and you can set bit 5 to request that the data not be cached.
You can set bit 6 to request that any data written be immediately

File Manager Reference 2-89

2-90

CHAPTER 2

File Manager

i oPosOr f set

read; this ensures that the data written to a volume exactly matches
the data in memory. To request a read-verify operation, add the
following constant to the positioning mode:

CONST

rdVerify = 64, {use read-verify node}

You can set bit 7 to read a continuous stream of bytes, and place
the ASCII code of a newline character in the high-order byte to
terminate a read operation at the end of a line.

The offset to be used in conjunction with the positioning mode.

Field descriptions for the fi | ePar am variant

i oFRef Num
i oFVer sNum

fillerl
i oFDi r | ndex
ioFl Attrib

oFl Ver sNum

oFl Fndr I nfo

oFl Num
oFl St Bl k

oFl LgLen
oFl PyLen
oFl RSt Bl k

oFl RLgLen
oFl RPyLen
oFl Cr Dat

oFl MdDat

The file reference number of an open file.

A file version number. This field is no longer used and you should
always set it to 0.

Reserved.
An index for use with the PBHCet FI nf o function.
File attributes. The bits in this field have these meanings:

Bit Meaning

0 Set if file is locked

2 Set if resource fork is open
3 Set if data fork is open

4 Set if a directory

7 Set if file (either fork) is open

A file version number. This feature is no longer supported, and you
must always set this field to 0.

Information used by the Finder. (See the chapter “Finder Interface”
in Inside Macintosh: Macintosh Toolbox Essentials for details.)

Afile ID.

The first allocation block of the data fork. This field contains 0 if the
file’s data fork is empty.

The logical end-of-file of the data fork.
The physical end-of-file of the data fork.

The first allocation block of the resource fork. This field contains O if
the file’s resource fork is empty.

The logical end-of-file of the resource