
Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York

Don Mills, Ontario Wokingham, England Amsterdam Bonn

Sydney Singapore Tokyo Madrid San Juan

Paris Seoul Milan Mexico City Taipei

I N S I D E M A C I N T O S H

Files

Apple Computer, Inc.

© 1992, Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014-6299
408-996-1010

Apple, the Apple logo, APDA,
AppleShare, AppleTalk, A/UX,
LaserWriter, Macintosh, MPW,
and ProDOS are trademarks of
Apple Computer, Inc. registered in the
United States and other countries.

Apple SuperDrive, Balloon Help, Disk
First Aid, Finder, ResEdit, and System 7
are trademarks of Apple Computer, Inc.

Adobe Illustrator and PostScript are
trademarks of Adobe Systems
Incorporated, which may be registered
in certain jurisdictions.

AGFA is a trademark of Agfa-Gevaert.

FrameMaker is a registered trademark
of Frame Technology Corporation.

Helvetica and Palatino are registered
trademarks of Linotype Company.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

MS-DOS is a registered trademark of
Microsoft Corporation.

Sony is a registered trademark of Sony
Corporation.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

ISBN 0-201-63244-6
1 2 3 4 5 6 7 8 9-MU-9695949392
First Printing, August 1992

iii

Contents

Figures, Tables, and Listings xi

Preface About This Book xv

Format of a Typical Chapter xvi

Conventions Used in This Book xvi

Special Fonts xvi

Types of Notes xvii

Assembly-Language Information xvii

Development Environment xviii

Chapter 1 Introduction to File Management 1-1

About Files 1-4

File Forks 1-4

File Size 1-6

File Access Characteristics 1-8

The Hierarchical File System 1-9

Identifying Files and Directories 1-12

Using Files 1-12

Testing for File Management Routines 1-14

Defining a Document Record 1-15

Creating a New File 1-16

Opening a File 1-18

Reading File Data 1-22

Writing File Data 1-23

Saving a File 1-26

Reverting to a Saved File 1-30

Closing a File 1-32

Opening Files at Application Startup Time 1-34

Using a Preferences File 1-36

Adjusting the File Menu 1-37

File Management Reference 1-38

Data Structures 1-39

File System Specification Record 1-39

Standard File Reply Records 1-39

Application Files Records 1-41

File Specification Routines 1-42

File Access Routines 1-43

Reading, Writing, and Closing Files 1-44

Manipulating the File Mark 1-46

Manipulating the End-of-File 1-48

iv

File and Directory Manipulation Routines 1-49

Opening, Creating, and Deleting Files 1-49

Exchanging the Data in Two Files 1-53

Creating File System Specifications 1-54

Volume Access Routines 1-55

Updating Volumes 1-55

Obtaining Volume Information 1-56

Application Launch File Routines 1-57

Summary of File Management 1-61

Pascal Summary 1-61

Constants 1-61

Data Types 1-62

File Specification Routines 1-63

File Access Routines 1-63

File and Directory Manipulation Routines 1-63

Volume Access Routines 1-64

Application Launch File Routines 1-64

C Summary 1-64

Constants 1-64

Data Types 1-65

File Specification Routines 1-66

File Access Routines 1-67

File and Directory Manipulation Routines 1-67

Volume Access Routines 1-68

Application Launch File Routines 1-68

Assembly-Language Summary 1-68

Global Variables 1-68

Result Codes 1-69

Chapter 2 File Manager 2-1

About the File Manager 2-5

File Manipulation 2-7

Directory Manipulation 2-10

Volume Manipulation 2-11

Volume Searching 2-13

Shared Environments 2-14

Shared File Access Permissions 2-15

Directory Access Privileges 2-18

Remote Volume Mounting 2-20

Privilege Information in Foreign File Systems 2-20

File ID Reference Routines 2-23

Identifying Files, Directories, and Volumes 2-23

File System Specifications 2-24

File IDs 2-24

Directory IDs 2-25

v

Volume Reference Numbers 2-26

Working Directory Reference Numbers 2-26

Names and Pathnames 2-27

HFS Specifications 2-28

Search Paths 2-31

Using the File Manager 2-32

Determining the Features of the File Manager 2-32

Creating File System Specification Records 2-34

Manipulating the Default Volume and Directory 2-35

Deleting Files and File Forks 2-37

Searching a Volume 2-38

Constructing Full Pathnames 2-44

Determining the Amount of Free Space on a Volume 2-46

Sharing Volumes and Directories 2-48

Locking and Unlocking File Ranges 2-50

Data Organization on Volumes 2-52

Disk and Volume Organization 2-54

Boot Blocks 2-57

Master Directory Blocks 2-59

Volume Bitmaps 2-62

B*-Trees 2-63

Nodes 2-64

Node Records 2-66

Header Nodes 2-67

Map Nodes 2-69

Index Nodes 2-69

Leaf Nodes 2-70

Catalog Files 2-70

Catalog File Keys 2-71

Catalog File Data Records 2-72

Extents Overflow Files 2-74

Data Organization in Memory 2-76

The File I/O Queue 2-77

Volume Control Blocks 2-77

File Control Blocks 2-81

B*-Tree Control Blocks 2-83

The Drive Queue 2-84

File Manager Reference 2-86

Data Structures 2-86

File System Specification Record 2-86

Basic File Manager Parameter Block 2-87

HFS Parameter Block 2-91

Catalog Information Parameter Blocks 2-100

Catalog Position Records 2-104

Catalog Move Parameter Blocks 2-104

Working Directory Parameter Blocks 2-106

File Control Block Parameter Blocks 2-107

vi

Volume Attributes Buffer 2-109

Volume Mounting Information Records 2-110

High-Level File Access Routines 2-112

Reading, Writing, and Closing Files 2-112

Manipulating the File Mark 2-115

Manipulating the End-of-File 2-116

Allocating File Blocks 2-118

Low-Level File Access Routines 2-120

Reading, Writing, and Closing Files 2-121

Manipulating the File Mark 2-125

Manipulating the End-of-File 2-126

Allocating File Blocks 2-128

Updating Files 2-131

High-Level Volume Access Routines 2-132

Unmounting Volumes 2-132

Updating Volumes 2-133

Manipulating the Default Volume 2-134

Obtaining Volume Information 2-137

Low-Level Volume Access Routines 2-138

Mounting and Unmounting Volumes 2-139

Updating Volumes 2-142

Obtaining Volume Information 2-144

Manipulating the Default Volume 2-150

File System Specification Routines 2-154

Opening Files 2-154

Creating and Deleting Files and Directories 2-156

Accessing Information About Files and Directories 2-159

Moving Files or Directories 2-163

Exchanging the Data in Two Files 2-165

Creating File System Specifications 2-166

High-Level HFS Routines 2-169

Opening Files 2-169

Creating and Deleting Files and Directories 2-172

Accessing Information About Files and Directories 2-175

Moving Files or Directories 2-179

Maintaining Working Directories 2-180

Low-Level HFS Routines 2-182

Opening Files 2-183

Creating and Deleting Files and Directories 2-186

Accessing Information About Files and Directories 2-190

Moving Files or Directories 2-199

Maintaining Working Directories 2-201

Searching a Catalog 2-204

Exchanging the Data in Two Files 2-206

Shared Environment Routines 2-208

Opening Files While Denying Access 2-208

Locking and Unlocking File Ranges 2-211

vii

Manipulating Share Points 2-213

Controlling Directory Access 2-217

Mounting Volumes 2-219

Controlling Login Access 2-222

Copying and Moving Files 2-226

File ID Routines 2-229

Resolving File ID References 2-229

Creating and Deleting File ID References 2-230

Foreign File System Routines 2-232

Utility Routines 2-235

Obtaining Queue Headers 2-235

Adding a Drive 2-236

Obtaining File Control Block Information 2-236

Application-Defined Routines 2-238

Completion Routines 2-238

Summary of the File Manager 2-240

Pascal Summary 2-240

Constants 2-240

Data Types 2-242

Internal Data Types 2-251

High-Level File Access Routines 2-253

Low-Level File Access Routines 2-254

High-Level Volume Access Routines 2-255

Low-Level Volume Access Routines 2-255

File System Specification Routines 2-256

High-Level HFS Routines 2-257

Low-Level HFS Routines 2-259

Shared Environment Routines 2-261

File ID Routines 2-263

Foreign File System Routines 2-263

Utility Routines 2-264

Application-Defined Routine 2-264

C Summary 2-264

Constants 2-264

Data Types 2-267

Internal Data Types 2-278

High-Level File Access Routines 2-280

Low-Level File Access Routines 2-280

High-Level Volume Access Routines 2-281

Low-Level Volume Access Routines 2-282

File System Specification Routines 2-283

High-Level HFS Routines 2-284

Low-Level HFS Routines 2-285

Shared Environment Routines 2-287

File ID Routines 2-290

Foreign File System Routines 2-290

Utility Routines 2-291

Application-Defined Routine 2-291

viii

Assembly-Language Summary 2-291

Constants 2-291

Data Structures 2-292

Trap Macros 2-299

Global Variables 2-301

Result Codes 2-301

Chapter 3 Standard File Package 3-1

About the Standard File Package 3-3

Standard User Interfaces 3-4

Opening Files 3-4

Saving Files 3-5

Keyboard Equivalents 3-7

Customized User Interfaces 3-8

Saving Files 3-8

Opening Files 3-9

Selecting Volumes and Directories 3-10

User Interface Guidelines 3-12

Using the Standard File Package 3-13

Presenting the Standard User Interface 3-14

Customizing the User Interface 3-16

Customizing Dialog Boxes 3-17

Writing a File Filter Function 3-20

Writing a Dialog Hook Function 3-21

Writing a Modal-Dialog Filter Function 3-28

Writing an Activation Procedure 3-30

Setting the Current Directory 3-31

Selecting a Directory 3-34

Selecting a Volume 3-38

Using the Original Procedures 3-40

Standard File Package Reference 3-41

Data Structures 3-41

Enhanced Standard File Reply Record 3-42

Original Standard File Reply Record 3-43

Standard File Package Routines 3-44

Saving Files 3-44

Opening Files 3-49

Application-Defined Routines 3-55

File Filter Functions 3-55

Dialog Hook Functions 3-56

Modal-Dialog Filter Functions 3-57

Activation Procedures 3-59

Summary of the Standard File Package 3-60

ix

Pascal Summary 3-60

Constants 3-60

Data Types 3-62

Standard File Package Routines 3-63

Application-Defined Routines 3-64

C Summary 3-64

Constants 3-64

Data Types 3-66

Standard File Package Routines 3-67

Application-Defined Routines 3-68

Assembly-Language Summary 3-69

Data Structures 3-69

Trap Macros 3-69

Global Variables 3-69

Chapter 4 Alias Manager 4-1

About the Alias Manager 4-3

Alias Records 4-4

Search Strategies 4-5

Relative Searches 4-5

Absolute Searches 4-6

Fast Searches 4-7

Exhaustive Searches 4-8

Using the Alias Manager 4-8

Creating Alias Records 4-9

Resolving Alias Records 4-10

Identifying a Single Target 4-10

Identifying Multiple Targets 4-11

Maintaining Alias Records 4-12

Getting Information From Alias Records 4-13

Customizing Alias Records 4-13

Alias Manager Reference 4-13

Data Structures 4-14

Alias Records 4-14

Alias Manager Routines 4-14

Creating and Updating Alias Records 4-14

Resolving and Reading Alias Records 4-19

Application-Defined Routines 4-25

Filtering Possible Targets 4-25

Summary of the Alias Manager 4-26

Pascal Summary 4-26

Constants 4-26

Data Types 4-26

Alias Manager Routines 4-27

Application-Defined Routine 4-27

x

C Summary 4-28

Constants 4-28

Data Types 4-28

Alias Manager Routines 4-29

Application-Defined Routine 4-29

Assembly-Language Summary 4-29

Data Structure 4-29

Trap Macros 4-30

Result Codes 4-30

Chapter 5 Disk Initialization Manager 5-1

About the Disk Initialization Manager 5-3

Disk Initialization 5-4

The Disk Initialization User Interface 5-5

Bad Block Sparing 5-7

Using the Disk Initialization Manager 5-9

Responding to Disk-Inserted Events 5-9

Erasing Initialized Disks 5-11

Overriding the Standard Initialization Interface 5-12

Changing Default Volume Characteristics 5-13

Disk Initialization Manager Reference 5-15

Routines 5-15

Loading and Unloading the Disk Initialization Manager 5-15

Initializing a Disk 5-17

Low-Level Disk Initialization Routines 5-19

Summary of the Disk Initialization Manager 5-23

Pascal Summary 5-23

Data Types 5-23

Routines 5-23

C Summary 5-24

Data Types 5-24

Routines 5-24

Assembly-Language Summary 5-25

Data Structures 5-25

Trap Macros 5-25

Global Variables 5-25

Result Codes 5-25

Glossary GL-1

Index IN-1

xi

Figures, Tables, and Listings

Chapter 1 Introduction to File Management 1-1

Figure 1-1 The two forks of a Macintosh file 1-5
Figure 1-2 Logical blocks and allocation blocks 1-7
Figure 1-3 Logical end-of-file and physical end-of-file 1-8
Figure 1-4 The Macintosh hierarchical file system 1-10
Figure 1-5 The disk switch dialog box 1-11
Figure 1-6 A typical File menu 1-12
Figure 1-7 The default Open dialog box 1-19
Figure 1-8 The default Save dialog box 1-28
Figure 1-9 The new folder dialog box 1-29
Figure 1-10 The name conflict dialog box 1-29
Figure 1-11 A Revert to Saved dialog box 1-30

Listing 1-1 Handling the File menu commands 1-13
Listing 1-2 Testing for the availability of routines that operate

on FSSpec records 1-14
Listing 1-3 A sample document record 1-15
Listing 1-4 Handling the New menu command 1-16
Listing 1-5 Creating a new document window 1-17
Listing 1-6 Handling the Open menu command 1-19
Listing 1-7 Opening a file 1-20
Listing 1-8 Reading data from a file 1-22
Listing 1-9 Writing data into a file 1-24
Listing 1-10 Updating a file safely 1-25
Listing 1-11 Handling the Save menu command 1-26
Listing 1-12 Handling the Save As menu command 1-27
Listing 1-13 Copying a resource from one resource fork to another 1-30
Listing 1-14 Handling the Revert to Saved menu command 1-31
Listing 1-15 Handling the Close menu command 1-32
Listing 1-16 Closing a file 1-33
Listing 1-17 Opening files at application launch time 1-35
Listing 1-18 Opening a preferences file 1-36
Listing 1-19 Adjusting the File menu 1-37

Chapter 2 File Manager 2-1

Figure 2-1 Access and deny mode synchronization 2-16
Figure 2-2 Access privileges information in the ioACAccess field 2-19
Figure 2-3 Identifying a file in HFS 2-30
Figure 2-4 Organization of partitions on a disk 2-55
Figure 2-5 Organization of a volume 2-56
Figure 2-6 The structure of a B*-tree file 2-63
Figure 2-7 The structure of a node 2-64
Figure 2-8 Structure of a B*-tree node record 2-66

xii

Figure 2-9 A sample B*-tree 2-67
Figure 2-10 Header node structure 2-68

Table 2-1 Routines for opening file forks 2-7
Table 2-2 Routines for operating on open file forks 2-9
Table 2-3 Routines for operating on closed files 2-9
Table 2-4 Routines for operating on directories 2-10
Table 2-5 Routines for manipulating working directories 2-11
Table 2-6 Routines for operating on volumes 2-12
Table 2-7 Routines for manipulating working directories 2-13
Table 2-8 Shared environment routines 2-15
Table 2-9 Access mode translation 2-17
Table 2-10 How FSMakeFSSpec interprets its parameters 2-35
Table 2-11 Fields in ioSearchInfo1 and ioSearchInfo2 used

for a file 2-39
Table 2-12 Fields in ioSearchInfo1 and ioSearchInfo2 used

for a directory 2-39

Listing 2-1 Testing for PBCatSearch 2-33
Listing 2-2 Deleting a file’s resource fork 2-37
Listing 2-3 Searching a volume with PBCatSearch 2-41
Listing 2-4 Searching a volume using a recursive, indexed search 2-43
Listing 2-5 Constructing the full pathname of a file 2-45
Listing 2-6 Determining the amount of free space on a volume 2-47
Listing 2-7 Determining whether a volume is sharable 2-48
Listing 2-8 Determining whether file sharing is enabled 2-49
Listing 2-9 Determining whether a file can have ranges locked 2-50
Listing 2-10 Locking a file range to append data to the file 2-51
Listing 2-11 Reading a drive queue element’s flag bytes 2-85

Chapter 3 Standard File Package 3-1

Figure 3-1 The default Open dialog box 3-5
Figure 3-2 The default Save dialog box 3-6
Figure 3-3 The New Folder dialog box 3-6
Figure 3-4 The name conflict dialog box 3-7
Figure 3-5 The Save dialog box customized with radio buttons 3-8
Figure 3-6 The Save dialog box customized with a pop-up menu 3-9
Figure 3-7 The Open dialog box customized with a pop-up menu 3-9
Figure 3-8 The Open dialog box customized to allow selection

of a directory 3-10
Figure 3-9 The Open dialog box when no directory is selected 3-11
Figure 3-10 The Open dialog box with a long directory name

abbreviated 3-11
Figure 3-11 A volume selection dialog box 3-12

Listing 3-1 Handling the Open menu command 3-14
Listing 3-2 Specifying more than four file types 3-15
Listing 3-3 Presenting a customized Open dialog box 3-17
Listing 3-4 The definition of the default Open dialog box 3-18
Listing 3-5 The definition of the default Save dialog box 3-18

xiii

Listing 3-6 The item list for the default Open dialog box 3-18
Listing 3-7 The item list for the default Save dialog box 3-19
Listing 3-8 A sample file filter function 3-21
Listing 3-9 A sample dialog hook function 3-27
Listing 3-10 A sample modal-dialog filter function 3-30
Listing 3-11 Determining the current directory 3-31
Listing 3-12 Determining the current volume 3-32
Listing 3-13 Setting the current directory 3-32
Listing 3-14 Setting the current volume 3-33
Listing 3-15 Setting the current directory 3-33
Listing 3-16 A file filter function that lists only directories 3-34
Listing 3-17 Setting a button’s title 3-35
Listing 3-18 Handling user selections in the directory selection

dialog box 3-35
Listing 3-19 Presenting the directory selection dialog box 3-37
Listing 3-20 A file filter function that lists only volumes 3-38
Listing 3-21 Handling user selections in the volume selection

dialog box 3-39
Listing 3-22 Presenting the volume selection dialog box 3-40

Chapter 4 Alias Manager 4-1

Figure 4-1 Resolving a relative path 4-6

Listing 4-1 Creating an alias record 4-9
Listing 4-2 Storing an alias record as a resource 4-12

Chapter 5 Disk Initialization Manager 5-1

Figure 5-1 The disk initialization dialog box 5-5
Figure 5-2 Alternate buttons for the disk initialization dialog box 5-6
Figure 5-3 The disk initialization warning 5-6
Figure 5-4 The disk naming dialog box 5-6
Figure 5-5 The Finder’s disk erasing dialog box 5-7

Listing 5-1 Responding to disk-inserted events 5-10
Listing 5-2 Reinitializing a valid disk 5-11
Listing 5-3 Reinitializing a validly formatted disk without using

the standard interface 5-12
Listing 5-4 Initializing an uninitialized disk without using the

standard interface 5-13
Listing 5-5 Changing default volume characteristics 5-15

xv

P R E F A C E

About This Book

This book, Inside Macintosh: Files, describes the parts of the Macintosh

Operating System that allow you to manage files. It shows in detail how your

application can handle the commands typically found in a File menu. It also

provides a complete technical reference to the File Manager, the Standard File

Package, the Alias Manager, and other file-related services provided by the

system software.

If you are new to the Macintosh Operating System, you should begin with the

chapter “Introduction to File Management.” This chapter describes the basic

structure of Macintosh files and the hierarchical file system (HFS) used with

Macintosh computers, and it shows how you can use the services provided by

the Standard File Package, the File Manager, the Finder, and other system

software components to create, open, update, and close files. Because this

chapter is designed to be largely self-contained, the reference and summary

sections in this chapter are subsets of the corresponding sections from the

other chapters in this book.

Once you are familiar with basic file management on Macintosh computers,

you might want to read other chapters in this book. The chapter “File

Manager” describes how your application can manage shared files; search

for specific files in a volume; obtain information about files, directories, and

volumes; and perform other advanced operations. This chapter also describes

how the File Manager organizes file and directory data on disk and in

memory. Much of this information is of interest only to designers of very

specialized applications or file-system utility programs.

If you want to customize the user interface for naming and identifying files,

you need to read the chapter “Standard File Package.” It provides complete

information on how to customize and display the dialog boxes that let the

user specify the names and locations of files to be saved or opened.

If your application needs to keep track of particular files, directories, or

volumes, you might want to use the Alias Manager. It helps you find objects

in the file system, even if those objects have been moved or renamed. See the

chapter “Alias Manager” for complete details.

The chapter “Disk Initialization Manager” shows how you can initialize disks

and erase the contents of previously initialized disks. The Disk Initialization

Manager provides a routine that allows you to present the standard user

interface for initializing and naming disks. Most applications should call that

routine whenever they receive a disk-inserted event and the inserted disk

is invalid.

xvi

P R E F A C E

Format of a Typical Chapter

Almost all chapters in this book follow a standard structure. For example, the

chapter “Standard File Package” contains these sections:

■ “About the Standard File Package.” This section provides an overview of the
features provided by the Standard File Package.

■ “Using the Standard File Package.” This section describes the tasks you can
accomplish using the Standard File Package. It describes how to use the
most common routines, gives related user interface information, provides
code samples, and supplies additional information.

■ “Standard File Package Reference.” This section provides a complete
reference to the Standard File Package by describing the data structures and
routines that it uses. Each routine description also follows a standard format,
which gives the routine declaration and a description of every parameter of
the routine. Some routine descriptions also give additional descriptive
information, such as assembly-language information or result codes.

■ “Summary of the Standard File Package.” This section provides the
Standard File Package’s Pascal interface, as well as the C interface, for the
constants, data structures, routines, and result codes associated with the
Standard File Package. It also includes relevant assembly-language
interface information.

Some chapters contain additional main sections that provide more detailed

discussions of certain topics. For example, the chapter “File Manager”

contains the section “Identifying Files, Directories, and Volumes,” which

describes the many ways to identify objects in the file system. That chapter

also contains the two advanced sections “Data Organization on Volumes”

and “Data Organization in Memory.”

Conventions Used in This Book

Inside Macintosh uses various conventions to present information. Words that

require special treatment appear in specific fonts or font styles. Certain

information, such as parameter blocks, use special formats so that you can

scan them quickly.

Special Fonts

All code listings, reserved words, and the names of actual data structures,

constants, fields, parameters, and routines are shown in Courier (this
is Courier).

Words that appear in boldface are key terms or concepts and are defined in

the Glossary.

xvii

P R E F A C E

Types of Notes

There are several types of notes used in this book.

Note

A note like this contains information that is interesting but possibly not
essential to an understanding of the main text. (An example appears on
page 1-6.) ◆

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. (An example appears on page 1-6.) ▲

▲ W A R N I N G

Warnings like this indicate potential problems that you should be aware
of as you design your application. Failure to heed these warnings could
result in system crashes or loss of data. (An example appears on
page 1-46.) ▲

Assembly-Language Information

Inside Macintosh provides information about the registers for specific routines

like this:

In addition, Inside Macintosh presents information about the fields of a

parameter block in this format:

Parameter block

The arrow in the far left column indicates whether the field is an input

parameter, output parameter, or both. You must supply values for all input

parameters and input/output parameters. The routine returns values in

output parameters and input/output parameters.

The second column shows the field name as defined in the MPW Pascal

interface files; the third column indicates the Pascal data type of that field.

The fourth column provides a brief description of the use of the field. For a

complete description of each field, see the discussion that follows the

parameter block or the description of the parameter block in the reference

section of the chapter.

Registers on entry

A0 Contents of register A0 on entry

Registers on exit

D0 Contents of register D0 on exit

↔ inAndOut Integer Input/output parameter.

← output1 Ptr Output parameter.

→ input1 Ptr Input parameter.

xviii

P R E F A C E

Development Environment

The system software routines described in this book are available using

Pascal, C, or assembly-language interfaces. How you access these routines

depends on the development environment you are using. This book shows

system software routines in their Pascal interface using the Macintosh

Programmer’s Workshop (MPW).

All code listings in this book are shown in Pascal. They show methods of

using various routines and illustrate techniques for accomplishing particular

tasks. All code listings have been compiled and, in most cases, tested.

However, Apple Computer does not intend that you use these code samples

in your application.

This book occasionally uses SurfDraw as the name of a sample application for

illustrative purposes; this is not an actual product of Apple Computer, Inc.

APDA, Apple’s source for developer tools, offers worldwide access to a broad

range of programming products, resources, and information for anyone

developing on Apple platforms. You’ll find the most current versions of

Apple and third-party development tools, debuggers, compilers, languages,

and technical references for all Apple platforms. To establish an APDA

account, obtain additional ordering information, or find out about site

licensing and developer training programs, contact

APDA

Apple Computer, Inc.

20525 Mariani Avenue, M/S 33-G

Cupertino, CA 95014-6299

If you provide commercial products and services, call 408-974-4897 for

information on the developer support programs available from Apple.

For information on registering signatures, file types, Apple events, and other

technical information, contact

Macintosh Developer Technical Support

Apple Computer, Inc.

20525 Mariani Avenue, M/S 75-3T

Cupertino, CA 95014-6299

Telephone: 800-282-2732 (United States)
800-637-0029 (Canada)
800-562-3910 (elsewhere in the world)

Fax: 408-562-3971

Telex: 171-576

Contents 1-1

C H A P T E R 1

Introduction to

Contents

File Management

About Files 1-4

File Forks 1-4

File Size 1-6

File Access Characteristics 1-8

The Hierarchical File System 1-9

Identifying Files and Directories 1-12

Using Files 1-12

Testing for File Management Routines 1-14

Defining a Document Record 1-15

Creating a New File 1-16

Opening a File 1-18

Reading File Data 1-22

Writing File Data 1-23

Saving a File 1-26

Reverting to a Saved File 1-30

Closing a File 1-32

Opening Files at Application Startup Time 1-34

Using a Preferences File 1-36

Adjusting the File Menu 1-37

File Management Reference 1-38

Data Structures 1-39

File System Specification Record 1-39

Standard File Reply Records 1-39

Application Files Records 1-41

File Specification Routines 1-42

C H A P T E R 1

1-2 Contents

File Access Routines 1-43

Reading, Writing, and Closing Files 1-44

Manipulating the File Mark 1-46

Manipulating the End-of-File 1-48

File and Directory Manipulation Routines 1-49

Opening, Creating, and Deleting Files 1-49

Exchanging the Data in Two Files 1-53

Creating File System Specifications 1-54

Volume Access Routines 1-55

Updating Volumes 1-55

Obtaining Volume Information 1-56

Application Launch File Routines 1-57

Summary of File Management 1-61

Pascal Summary 1-61

Constants 1-61

Data Types 1-62

File Specification Routines 1-63

File Access Routines 1-63

File and Directory Manipulation Routines 1-63

Volume Access Routines 1-64

Application Launch File Routines 1-64

C Summary 1-64

Constants 1-64

Data Types 1-65

File Specification Routines 1-66

File Access Routines 1-67

File and Directory Manipulation Routines 1-67

Volume Access Routines 1-68

Application Launch File Routines 1-68

Assembly-Language Summary 1-68

Global Variables 1-68

Result Codes 1-69

C H A P T E R 1

1-3

Introduction to File Management

This chapter is a general introduction to file management on Macintosh computers. It

explains the basic structure of Macintosh files and the hierarchical file system (HFS) used

with Macintosh computers, and it shows how you can use the services provided by the

Standard File Package, the File Manager, the Finder, and other system software

components to create, open, update, and close files.

You should read this chapter if your application implements the commands typically

found in an application’s File menu—except for printing commands and the Quit

command, which are described elsewhere. This chapter describes how to

■ create a new file

■ open an existing file

■ close a file

■ save a document’s data in a file

■ save a document’s data in a file under a new name

■ revert to the last saved version of a file

■ create and read a preferences file

Depending on the requirements of your application, you may be able to accomplish all

your file-related operations by following the instructions given in this chapter. If your

application has more specialized file management needs, you’ll need to read some or all

of the remaining chapters in this book.

This chapter assumes that your application is running in an environment in which the

routines that accept file system specification records (defined by the FSSpec data type)

are available. File system specification records, introduced in system software version 7.0,

simplify the identification of objects in the file system. Your development environment

may provide “glue” that allows you to call those routines in earlier system software

versions. If such glue is not available and you want your application to run in system

software versions earlier than version 7.0, you need to read the discussion of HFS

file-manipulation routines in the chapter “File Manager” in this book.

This chapter begins with a description of files and their organization into directories and

volumes. Then it describes how to test for the presence of the routines that accept FSSpec

records and how to use those routines to perform the file management tasks listed above.

The chapter ends with descriptions of the data structures and routines used to perform

these tasks. The “File Management Reference” and “Summary of File Management”

sections in this chapter are subsets of the corresponding sections of the remaining

chapters in this book.

C H A P T E R 1

Introduction to File Management

1-4 About Files

About Files

To the user, a file is simply some data stored on a disk. To your application, a file is a

named, ordered sequence of bytes stored on a Macintosh volume, divided into two forks

(as described in the following section, “File Forks”). The information in a file can be used

for any of a variety of purposes. For example, a file might contain the text of a letter or

the numerical data in a spreadsheet; these types of files are usually known as documents.

Typically a document is a file that a user can create and edit. A document is usually

associated with a single application, which the user expects to be able to open by

double-clicking the document’s icon in the Finder.

A file might also contain an application. In that case, the information in the file consists

of the executable code of the application itself and any application-specific resources and

data. Applications typically allow the user to create and manipulate documents. Some

applications also create special files in which they store user-specific settings; such files

are known as preferences files.

The Macintosh Operating System also uses files for other purposes. For example, the File

Manager uses a special file located in a volume to maintain the hierarchical organization

of files and folders in that volume. This special file is called the volume’s catalog file.
Similarly, if virtual memory is in operation, the Operating System stores unused pages of

memory in a disk file called the backing-store file.

No matter what its function, each file shares certain characteristics with every other file.

This section describes these general characteristics of Macintosh files, including

■ file forks

■ file size and access characteristics

■ file system organization

■ file naming and identification

File Forks
Many operating systems treat a file simply as a named, ordered sequence of bytes

(possibly terminated by a byte having a special value that indicates the end-of-file). As

illustrated in Figure 1-1, however, each Macintosh file has two forks, known as the data

fork and the resource fork.

A file’s resource fork contains that file’s resources. If the file is an application, the

resource fork typically contains resources that describe the application’s menus, dialog

boxes, icons, and even the executable code of the application itself. A particularly

important resource is the application’s 'SIZE' resource, which contains information

about the capabilities of the application and its run-time memory requirements. If the file

is a document, its resource fork typically contains preference settings, window locations,

and document-specific fonts, icons, and so forth.

C H A P T E R 1

Introduction to File Management

About Files 1-5

Figure 1-1 The two forks of a Macintosh file

A file’s data fork contains the file’s data. It is simply a series of consecutive bytes of data.

In a sense, the data fork of a Macintosh file corresponds to an entire file in operating

systems that treat a file simply as a sequence of bytes. The bytes stored in a file’s data

fork do not have to exhibit any internal structure, unlike the bytes stored in the resource

fork (which consists of a resource map followed by resources). Rather, your application

is responsible for interpreting the bytes in the data fork in whatever manner is appropri-

ate. The data fork of a document file might, for example, contain the text of a letter.

Even though a Macintosh file always contains both a resource fork and a data fork, one

or both of those forks can be empty. Document files sometimes contain only data (in

which case the resource fork is empty). More often, document files contain both

resources and data. Application files generally contain resources only (in which case, the

data fork is empty). Application files can, however, contain data as well.

Whether you store specific data in the data fork or in the resource fork of a file depends

largely on whether that data can usefully be structured as a resource. For example, if you

want to store a small number of names and telephone numbers, you can easily define a

resource type that pairs each name with its telephone number. Then you can read names

and corresponding numbers from the resource file by using Resource Manager routines.

To retrieve the data stored in a resource, you simply specify the resource type and ID;

you don’t need to know, for instance, how many bytes of data are stored in that resource.

In some cases, however, it is not possible or advisable to store your data in resources.

The data might be too difficult to put into the structure required by the Resource

Manager. For example, it is easiest to store a document’s text, which is usually of

variable length, in a file’s data fork. Then you can use File Manager routines to access

any byte or group of bytes individually.

C H A P T E R 1

Introduction to File Management

1-6 About Files

Even when it is easy to define a resource type for your data, limitations on the Resource

Manager might compel you to store your data in the data fork instead. A resource fork

can contain at most about 2700 resources. More importantly, the Resource Manager

searches linearly through a file’s resource types and resource IDs. If the number of types

or IDs to be searched is large, accessing the resource data can become slow. As a rule of

thumb, if you need to manage data that would occupy more than about 500 resources

total, you should use the data fork instead.

IMPORTANT

In general, you should store data created by the user in a file’s data fork,
unless the data is guaranteed to occupy a small number of resources.
The Resource Manager was not designed to be a general-purpose data
storage and retrieval system. Also, the Resource Manager does not
support multiple access to a file’s resource fork. If you want to store data
that can be accessed by multiple users of a shared volume, use the
data fork. ▲

Because the Resource Manager is of limited use in storing large amounts of

user-generated data, most of the techniques in “Using Files” (beginning on page 1-12)

illustrate the use of File Manager routines to manage information stored in a file’s data

fork. See the section “Using a Preferences File” on page 1-36 for an example of the use of

the Resource Manager to access data stored in a file’s resource fork.

File Size
The size of a file is usually limited only by the size of its volume. A volume is a portion

of a storage device that is formatted to contain files. A volume can be an entire disk or

only a part of a disk. A 3.5-inch floppy disk, for instance, is always formatted as one

volume. Other memory devices, such as hard disks and file servers, can contain multiple

volumes.

Note

Actually, a file on an HFS volume can be as large as 2 GB ($7FFFFFFF
bytes). Most volumes are not large enough to hold a file of that size. An
HFS volume currently can be as large as 2 GB. ◆

The size of a volume varies from one type of device to another. Volumes are formatted

into chunks known as logical blocks, each of which can contain up to 512 bytes. A

double-sided 3.5-inch floppy disk, for instance, usually has 1600 logical blocks, or 800 KB.

Generally, however, the size of a logical block on a volume is of interest only to the disk

device driver. This is because the File Manager always allocates space to a file in units

called allocation blocks. An allocation block is a group of consecutive logical blocks. The

File Manager can access a maximum of 65,535 allocation blocks on any volume. For

small volumes, such as volumes on floppy disks, the File Manager uses an allocation

block size of one logical block. To support volumes larger than about 32 MB, the File

C H A P T E R 1

Introduction to File Management

About Files 1-7

Manager needs to use an allocation block size that is at least two logical blocks. To

support volumes larger than about 64 MB, the File Manager needs to use an allocation

block that is at least three allocation blocks. In this way, by progressively increasing

the number of logical blocks in an allocation block, the File Manager can handle

larger and larger volumes. Figure 1-2 illustrates how logical blocks are grouped into

allocation blocks.

Figure 1-2 Logical blocks and allocation blocks

The size of the allocation blocks on a volume is determined when the volume is

initialized and depends on the number of logical blocks it contains. In general, the

Disk Initialization Manager uses the smallest allocation block size that will allow the

File Manager to address the entire volume. A nonempty file fork always occupies at least

one allocation block, no matter how many bytes of data that file fork contains. On a

40 MB volume, for example, a file’s data fork occupies at least 1024 bytes (that is, two

logical blocks), even if it contains only 11 bytes of actual data.

To distinguish between the amount of space allocated to a file and the number of bytes of

actual data in the file, two numbers are used to describe the size of a file. The physical
end-of-file is the number of bytes currently allocated to the file; it’s 1 greater than the

number of the last byte in its last allocation block (since the first byte is byte number 0).

As a result, the physical end-of-file is always an exact multiple of the allocation block

size. The logical end-of-file is the number of those allocated bytes that currently contain

data; it’s 1 greater than the number of the last byte in the file that contains data. For

example, on a volume having an allocation block size of two logical blocks (that is,

1024 bytes), a file with 509 bytes of data has a logical end-of-file of 509 and a physical

end-of-file of 1024 (see Figure 1-3).

C H A P T E R 1

Introduction to File Management

1-8 About Files

Figure 1-3 Logical end-of-file and physical end-of-file

You can move the logical end-of-file to adjust the size of the file. When you move the

logical end-of-file to a position more than one allocation block short of the current

physical end-of-file, the File Manager automatically deletes the unneeded allocation

block from the file. Similarly, you can increase the size of a file by moving the logical

end-of-file past the physical end-of-file. When you move the logical end-of-file past the

physical end-of-file, the File Manager automatically adds one or more allocation blocks

to the file. The number of allocation blocks added to the file is determined by the

volume’s clump size. A clump is a group of contiguous allocation blocks. The purpose of

enlarging files always by adding clumps is to reduce file fragmentation on a volume,

thus improving the efficiency of read and write operations.

If you plan to keep extending a file with multiple write operations and you know in

advance approximately how large the file is likely to become, you should first call the

SetEOF function to set the file to that size (instead of having the File Manager adjust

the size each time you write past the end-of-file). Doing this reduces file fragmentation

and improves I/O performance.

File Access Characteristics
A file can be open or closed. Your application can perform certain operations, such as

reading and writing data, only on open files. It can perform other operations, such as

deleting, only on closed files.

When you open a file, the File Manager reads information about the file from its volume

and stores that information in a file control block (FCB). The File Manager also creates

an access path to the file, a description of the route to be followed when accessing the

file. The access path specifies the volume on which the file is located and the location of

the file on the volume. Each access path is assigned a unique file reference number

(some number greater than 0) by which your application refers to the path. Multiple

access paths can be opened to the same file.

C H A P T E R 1

Introduction to File Management

About Files 1-9

For each open access path to a file, the File Manager maintains a current position marker,

called the file mark, to keep track of where it is in the file during a read or write

operation. The mark is the number of the next byte that will be read or written; each time

a byte is read or written, the mark is moved. When, during a write operation, the mark

reaches the number of the last byte currently allocated to the file, the File Manager adds

another clump to the file.

You can read bytes from and write bytes to a file either singly or in sequences of virtually

unlimited length. You can specify where each read or write operation should begin by

setting the mark or specifying an offset; if you don’t, the operation begins at the current

file mark.

Each time you want to read or write a file’s data, you need to pass the address of a data
buffer, a part of RAM (usually in your application’s heap). The File Manager uses the

buffer when it transfers data to or from your application. You can use a single buffer for

each read or write operation, or change the address and size of the buffer as necessary.

When your application writes data to a file, the File Manager transfers the data from

your application’s data buffer and writes it to the disk cache, a part of RAM (usually in

the System heap). The File Manager uses the disk cache as an intermediate buffer when

reading data from or writing it to the file system. When your application requests

that data be read from a file, the File Manager looks for the data in the disk cache

and transfers it to your application’s data buffer if the data is found in the cache;

otherwise, the File Manager reads the requested bytes from the disk and puts them in

your data buffer.

Note

You can also read a continuous stream of characters or a line of
characters from a file. In the first case, you ask the File Manager to read a
specific number of bytes: When that many have been read, or when the
mark reaches the logical end-of-file, the read operation terminates. In the
second case, called newline mode, the read operation terminates when
either of the above conditions is met or when a specified character, the
newline character, is read. The newline character is usually Return
(ASCII code $0D), but it can be any character. Information about newline
mode is associated with each access path to a file and can differ from
one access path to another. See the chapter “File Manager” in this book
for more information about newline mode. ◆

The Hierarchical File System
The Macintosh Operating System uses a method of organizing files called the

hierarchical file system (HFS). In HFS, files are grouped into directories (also called

folders), which themselves are grouped into other directories, as illustrated in

Figure 1-4. The number listed for each directory is its directory ID. The directory ID

is one component of a file system specification, as explained in the next section,

“Identifying Files and Directories.”

C H A P T E R 1

Introduction to File Management

1-10 About Files

Figure 1-4 The Macintosh hierarchical file system

The Finder is responsible for managing the files and folders on the desktop. It works

with the File Manager to maintain the organization of files and folders on a volume. The

hierarchical relationship of folders within folders on the desktop corresponds directly to

the hierarchical directory structure maintained on the volume. The volume is known as

the root directory, and the folders are known as subdirectories, or simply directories.

A volume appears on the desktop only after it has been mounted. Ejectable volumes

(such as 3.5-inch floppy disks) are mounted when they’re inserted into a disk drive;

nonejectable volumes (such as those on hard disks) are mounted automatically at system

startup. When a volume is mounted, the File Manager places information about the

volume in a nonrelocatable block of memory called a volume control block (VCB). The

number of volumes that can be mounted at any time is limited only by the number of

drives attached and available memory.

When a volume is mounted, the File Manager assigns a volume reference number by

which you can refer to the volume for as long as it remains mounted. You can also

identify a volume by its volume name, a sequence of 1 to 27 printing characters,

excluding colons (:). (The File Manager ignores case when comparing names but does

recognize diacritical marks.) Whenever possible, though, you should use the volume

reference number to avoid confusion between volumes with the same name.

Note

A volume reference number is valid only until the volume is
unmounted. If a single volume is mounted and then unmounted, the
File Manager may assign it a different volume reference number when it
is next mounted. ◆

C H A P T E R 1

Introduction to File Management

About Files 1-11

When an application ejects a 3.5-inch disk from a drive, the File Manager places the

volume offline. When a volume is offline, the volume control block is kept in memory

and the volume reference number is still valid. If you make a File Manager call that

specifies that volume, the File Manager presents the disk switch dialog box to the user.

Figure 1-5 shows a sample disk switch dialog box.

Figure 1-5 The disk switch dialog box

When the user drags a volume icon to the Trash, that volume is unmounted; the

volume control block is released, and the volume is no longer known to the File

Manager. In particular, the volume reference number previously assigned to the

volume is no longer valid.

Each subdirectory is located within a directory called its parent directory. Typically, the

parent directory is specified by a parent directory ID, which is simply the directory ID of

the parent directory. The File Manager assigns a special parent directory ID to a volume’s

root directory. This is primarily to permit a consistent method of identifying files and

directories using the volume reference number, the parent directory ID, and the file or

directory name. See the next section, “Identifying Files and Directories,” for details.

For the most part, your application does not need to be concerned about, or keep track

of, the location of files in the file system hierarchy. Most of the files your application

opens and saves are specified by the user or another application, and their location is

provided to your application by either the Finder or the Standard File Package. One

notable exception here concerns preferences files, which are typically stored in the

Preferences folder in the currently active System Folder. See “Using a Preferences File”

on page 1-36 for instructions on finding preferences files.

Note

In addition to files, folders, and volumes, a fourth type of object, namely
an alias, might appear on the Finder desktop. An alias is a special kind
of file that represents another file, folder, or volume. The Finder and the
Standard File Package automatically resolve aliases before passing files
to your application, so you generally don’t need to do anything with
aliases. For more information on working with alias files, see the chapter
“Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials and
the chapter “Alias Manager” in this book. ◆

C H A P T E R 1

Introduction to File Management

1-12 Using Files

Identifying Files and Directories
The hierarchical arrangement of files and directories allows you to identify a file or

directory uniquely by providing just three pieces of information: its volume reference

number, its parent directory ID, and its name within that parent directory. The system

software lets you specify these three items together in a file system specification record,

defined by the FSSpec data type:

TYPE FSSpec = {file system specification}

RECORD

vRefNum: Integer; {volume reference number}

parID: LongInt; {directory ID of parent directory}

name: Str63; {filename or directory name}

END;

The FSSpec record provides a simple and standard format for specifying files and

directories. For example, the Standard File Package procedure StandardGetFile uses

an FSSpec record to return information identifying a user-selected file or folder. You can

pass that specification directly to any file-manipulation routines, such as FSpOpenDF

and FSpDelete, that accept FSSpec records. In addition, the Alias Manager, Edition

Manager, and Finder all use FSSpec records to specify files and directories.

Using Files

This section describes how to perform typical file operations using some of the services

provided by the Standard File Package, the File Manager, the Finder, and other system

software components. Figure 1-6 shows the typical appearance of an application’s

File menu.

Figure 1-6 A typical File menu

C H A P T E R 1

Introduction to File Management

Using Files 1-13

Note that all the commands in this menu, except for the Quit and Page Setup commands,

manipulate files. Your application’s File menu should resemble the menu shown in

Figure 1-6 as closely as possible. In general, whenever the user creates or manipulates

information that is stored in a document, you need to implement all the commands

shown in Figure 1-6.

Note

Some applications allow the user to create or edit information that is not
stored in a document. In those cases, it is inappropriate to put the
commands that create or manipulate that information in the File menu.
Instead, group those commands together in a separate menu. ◆

Listing 1-1 shows one way to handle some of the typical commands in a File menu. Most

of the techniques described in this section are illustrated by means of definitions of the

functions called in Listing 1-1.

Listing 1-1 Handling the File menu commands

PROCEDURE DoHandleFileCommand (menuItem: Integer);

VAR

myErr: OSErr;

BEGIN

CASE menuItem OF

iNew:

myErr := DoNewCmd; {create a new document}

iOpen:

myErr := DoOpenCmd; {open an existing document}

iClose:

myErr := DoCloseCmd; {close the current document}

iSave:

myErr := DoSaveCmd; {save the current document}

iSaveAs:

myErr := DoSaveAsCmd; {save document under new name}

iRevert:

myErr := DoRevertCmd; {revert to last saved version}

OTHERWISE

;

END;

END;

Your application should deactivate any menu commands that do not apply to the

frontmost window. For example, if the frontmost window is not a document window

belonging to your application, then the Close, Save, Save As, and Revert commands

should be dimmed when the menu appears. Similarly, if the document in the frontmost

window does belong to your application but contains data that has not changed since it

C H A P T E R 1

Introduction to File Management

1-14 Using Files

was last saved, then the Save menu command should be dimmed. See “Adjusting the

File Menu” on page 1-37 for details on implementing this feature. The definitions of the

application-defined functions used in Listing 1-1 assume that this feature has been

implemented.

The techniques described in this chapter for manipulating files assume that you identify

files and directories by using file system specification records. Because the routines that

accept FSSpec records are not available on all versions of system software, you may

need to test for the availability of those routines before actually calling any of them. See

the next section, “Testing for File Management Routines,” for details.

Testing for File Management Routines
To determine the availability of the routines that operate on FSSpec records, you can

call the Gestalt function with the gestaltFSAttr selector code, as illustrated in

Listing 1-2.

Listing 1-2 Testing for the availability of routines that operate on FSSpec records

FUNCTION FSSpecRoutinesAvail: Boolean;

VAR

myErr: OSErr; {Gestalt result code}

myFeature: LongInt; {Gestalt response}

BEGIN

FSSpecRoutinesAvail := FALSE;

IF gHasGestalt THEN {if Gestalt is available}

BEGIN

myErr := Gestalt(gestaltFSAttr, myFeature);

IF myErr = noErr THEN

IF BTst(myFeature, gestaltHasFSSpecCalls) THEN

FSSpecRoutinesAvail := TRUE;

END;

END;

To use the procedures defined in the following sections to open and save files, you

also need to make sure that the routines StandardGetFile and StandardPutFile

are available. You can do this by passing Gestalt the gestaltStandardFileAttr

selector and verifying that the bit gestaltStandardFile58 is set in the response

value. Also, before using the FindFolder function (as shown, for example, in

Listing 1-10 on page 1-25), you should call the Gestalt function with the

gestaltFindFolderAttr selector and verify that the gestaltFindFolderPresent

bit is set; this indicates that the FindFolder function is available.

C H A P T E R 1

Introduction to File Management

Using Files 1-15

If the routines that operate on FSSpec records are not available, you can use

corresponding File Manager and Standard File Package routines. For example, if

you cannot call FSpOpenDF, you can call HOpenDF. That is, instead of writing

myErr := FSpOpenDF(mySpec, fsCurPerm, myFile);

you can write something like

myErr := HOpenDF(myVol, myDirID, myName, fsCurPerm, myFile);

The only difference is that the mySpec parameter is replaced by three parameters

specifying the volume reference number, the parent directory ID, and the filename. With

only a few exceptions, all of the techniques presented in this chapter can be easily

adapted to work with high-level HFS routines in place of the routines that work with

FSSpec records.

Note

One notable exception concerns the Standard File Package procedures
SFGetFile and SFPutFile. The vRefNum field of the reply
record passed to both these functions contains a working directory
reference number, which encodes both the directory ID and the
volume reference number. In general, you should avoid using this
number; instead you can turn it into the corresponding directory ID and
volume reference number by calling the GetWDInfo function. See the
chapter “File Manager” in this book for details on working directory
reference numbers. ◆

Defining a Document Record
When a user creates a new document or opens an existing document, your application

displays the contents of the document in a window, which provides a standard interface

for the user to view and possibly edit the document data. It is useful for your application

to define a document record, an application-specific data structure that contains

information about the window, any controls in the window (such as scroll bars), and the

file (if any) whose contents are displayed in the window. Listing 1-3 illustrates a sample

document record for an application that handles text files.

Listing 1-3 A sample document record

TYPE

MyDocRecHnd = ^MyDocRecPtr;

MyDocRecPtr = ^MyDocRec;

MyDocRec =

RECORD

editRec: TEHandle; {handle to TextEdit record}

vScrollBar: ControlHandle; {vertical scroll bar}

C H A P T E R 1

Introduction to File Management

1-16 Using Files

hScrollBar: ControlHandle; {horizontal scroll bar}

fileRefNum: Integer; {ref num for window's file}

fileFSSpec: FSSpec; {file's FSSpec}

windowDirty: Boolean; {has window data changed?}

END;

Some fields in the MyDocRec record hold information about the TextEdit record that

contains the window’s text data. Other fields describe the horizontal and vertical scroll

bars in the window. The myDocRec record also contains a field for the file reference

number of the open file (if any) whose data is displayed in the window and a field for

the file system specification that identifies that file. The file reference number is needed

when the application manipulates the open file (for example, when it reads data from or

writes data to the file, and when it closes the file). The FSSpec record is needed when a

“safe-save” procedure is used to save data in a file.

The last field of the MyDocRec data type is a Boolean value that indicates whether the

contents of the document in the TextEdit record differ from the contents of the document

in the associated file. When your application first reads a file into the window, you

should set this field to FALSE. Then, when any subsequent operations alter the contents

of the document, you should set the field to TRUE. Your application can inspect this field

whenever appropriate to determine if special processing is needed. For example, when

the user closes a document window and the value of the windowDirty flag is TRUE,

your application should ask the user whether to save the changed version of the

document in the file. See Listing 1-16 (page 1-33) for details.

To associate a document record with a particular window, you can simply set a handle to

that record as the reference constant of the window (by using the Window Manager

procedure SetWRefCon). Then you can retrieve the document record by calling the

GetWRefCon function. Listing 1-15 illustrates this process.

Creating a New File
The user expects to be able to create a new document using the New command in the

File menu. Listing 1-4 illustrates one way to handle the New menu command.

Listing 1-4 Handling the New menu command

FUNCTION DoNewCmd: OSErr;

VAR

myWindow: WindowPtr; {the new document window; ignored here}

BEGIN

{Create a new window and make it visible.}

DoNewCmd := DoNewDocWindow(TRUE, myWindow);

END;

C H A P T E R 1

Introduction to File Management

Using Files 1-17

The DoNewCmd function simply calls the application-defined function DoNewDocWindow

(shown in Listing 1-5). The first parameter to DoNewDocWindow determines whether the

new window should be visible or not; the value TRUE indicates that the new window

should be visible. If DoNewDocWindow completes successfully, it returns a window

pointer to the calling routine in the second parameter. The DoNewCmd function ignores

that returned window pointer.

Listing 1-5 Creating a new document window

FUNCTION DoNewDocWindow (newDocument: Boolean; var myWindow: WindowPtr):

 OSErr;

VAR

myData: MyDocRecHnd; {the window's data record}

CONST

rDocWindow = 1000; {resource ID of window template}

BEGIN

{Allocate a new window; see Window Mgr chapter for details.}

myWindow := GetNewWindow(rDocWindow, NIL, WindowPtr(-1));

IF myWindow = NIL THEN

BEGIN

DoNewDocWindow := MemError;

Exit(DoNewDocWindow);

END;

{Allocate space for the window's data record.}

myData := MyDocRecHnd(NewHandle(SizeOf(MyDocRec)));

IF myData = NIL THEN

BEGIN

DoNewDocWindow := MemError;

DisposeWindow(myWindow);

Exit(DoNewDocWindow);

END;

MoveHHi(Handle(myData)); {move the handle high}

HLock(Handle(myData)); {lock the handle}

WITH myData^^ DO {fill in window data}

BEGIN

editRec := TENew(gDestRect, gViewRect);

vScroll := GetNewControl(rVScroll, myWindow);

hScroll := GetNewControl(rHScroll, myWindow);

fileRefNum := 0; {no file yet!}

windowDirty := FALSE;

IF (editRec = NIL) OR (vScroll = NIL) OR (hScroll = NIL) THEN

C H A P T E R 1

Introduction to File Management

1-18 Using Files

BEGIN

DoNewDocWindow := memFullErr;

DisposeWindow(myWindow);

DisposeControl(vScroll);

DisposeControl(hScroll);

TEDispose(editRec);

DisposeHandle(myData);

Exit(DoNewDocWindow);

END;

END;

IF newDocument THEN {if new document, show it}

ShowWindow(myWindow);

SetWRefCon(myWindow, LongInt(myData)); {link record to window}

HUnlock(Handle(myData)); {unlock the handle}

DoNewDocWindow := noErr;

END;

Note that the DoNewDocWindow function does not actually create a new file. The reason

for this is that it is usually better to wait until the user actually saves a new document

before creating a file (mainly because the user might decide not to save the document).

The DoNewDocWindow function creates a window, allocates a new document record,

and fills out the fields of that record. However, it sets the fileRefNum field of the

document record to 0 to indicate that no file is currently associated with this window.

Opening a File
Your application might need to open a file in several different situations. For example, if

the user launches your application by double-clicking one of its document icons in the

Finder, the Finder provides your application with information about the selected file (if

your application receives high-level events, the Finder sends it an Open Documents

event). At that point, you want to create a new window for the document and read the

document data from the file into the window.

Your application also opens files after the user chooses the Open command in the File

menu. In this case, you need to determine which file to open. You can use the Standard

File Package to present a standard dialog box that allows the user to navigate the file

system hierarchy (if necessary) and select a file of the appropriate type. Once you get the

necessary information from the Standard File Package, you can then create a new

window for the document and read the document data from the file into the window.

As you can see, it makes sense to divide the process of opening a document into several

different routines. You can have a routine that elicits a file selection from the user and

another routine that creates a window and reads the file data into it. In the sample

C H A P T E R 1

Introduction to File Management

Using Files 1-19

listings given here, the function DoOpenCmd handles the interaction with the user and

DoOpenFile reads a file into a new window.

Listing 1-6 shows one way to handle the Open command in the File menu. It uses the

Standard File Package routine StandardGetFile to determine which file the user

wants to open.

Listing 1-6 Handling the Open menu command

FUNCTION DoOpenCmd: OSErr;

VAR

myReply: StandardFileReply; {Standard File reply record}

myTypes: SFTypeList; {types of files to display}

myErr: OSErr;

BEGIN

myErr := noErr;

myTypes[0] := 'TEXT'; {display text files only}

StandardGetFile(NIL, 1, myTypes, myReply);

IF myReply.sfGood THEN

myErr := DoOpenFile(myReply.sfFile)

ELSE

myErr := usrCanceledErr;

DoOpenCmd := myErr;

END;

The StandardGetFile procedure requires a list of file types to display in an Open

dialog box, as in Figure 1-7. In this case, only text files are to be listed.

Figure 1-7 The default Open dialog box

C H A P T E R 1

Introduction to File Management

1-20 Using Files

The user can scroll through the list of files in the current directory, change the current

directory, select a file to open, or cancel the operation altogether. When the user clicks

either the Cancel or the Open button, StandardGetFile fills out the Standard File

reply record you pass to it, which has this structure:

TYPE StandardFileReply =

RECORD

sfGood: Boolean; {TRUE if user did not cancel}

sfReplacing: Boolean; {TRUE if replacing file with same name}

sfType: OSType; {file type}

sfFile: FSSpec; {selected item}

sfScript: ScriptCode; {script of selected item's name}

sfFlags: Integer; {Finder flags of selected item}

sfIsFolder: Boolean; {selected item is a folder}

sfIsVolume: Boolean; {selected item is a volume}

sfReserved1: LongInt; {reserved}

sfReserved2: Integer; {reserved}

END;

In this situation, the relevant fields of the reply record are the sfGood and sfFile

fields. If the user selects a file to open, the sfGood field is set to TRUE and the sfFile

field contains an FSSpec record for the selected file. In Listing 1-6, the returned FSSpec

record is passed directly to the application-defined function DoOpenFile. Listing 1-7

illustrates a way to define the DoOpenFile function.

Listing 1-7 Opening a file

FUNCTION DoOpenFile (mySpec: FSSpec): OSErr;

VAR

myWindow: WindowPtr; {window for file data}

myData: MyDocRecHnd; {handle to window data}

myFileRefNum: Integer; {file reference number}

myErr: OSErr;

BEGIN

{Create a new window, but don't show it yet.}

myErr := DoNewDocWindow(FALSE, myWindow);

IF (myErr <> noErr) OR (myWindow = NIL) THEN

BEGIN

DoOpenFile := myErr;

Exit(DoOpenFile);

END;

SetWTitle(myWindow, mySpec.name); {set window's title}

MySetWindowPosition(myWindow); {set window position}

C H A P T E R 1

Introduction to File Management

Using Files 1-21

{Open the file's data fork for reading and writing.}

myErr := FSpOpenDF(mySpec, fsRdWrPerm, myFileRefNum);

IF myErr <> noErr THEN

BEGIN

DisposeWindow(myWindow);

DoOpenFile := myErr;

Exit(DoOpenFile);

END;

{Retrieve handle to window's data record.}

myData := MyDocRecHnd(GetWRefCon(myWindow));

myData^^.fileRefNum := myFileRefNum;{save file information}

myData^^.fileFSSpec := mySpec;

myErr := DoReadFile(myWindow); {read in file data}

ShowWindow(myWindow); {now show the window}

DoOpenFile := myErr;

END;

This function is relatively simple because much of the real work is done by the two

functions DoNewDocWindow and DoReadFile. The DoReadFile function is

responsible for actually reading the file data from the disk into the TextEdit record

associated with the document window. See the next section, “Reading File Data,” for a

sample definition of DoReadFile.

In Listing 1-7, the key step is the call to FSpOpenDF, which opens the data fork of the

specified file. A file reference number—which indicates an access path to the open file—

is returned in the third parameter. As you can see, this reference number is saved in the

document record, from where it can easily be retrieved for future calls to the FSRead

and FSWrite functions.

The second parameter in a call to the FSpOpenDF function specifies the access mode for

opening the file. For each file, the File Manager maintains access mode information that

determines what type of access is available. Most applications support one of two types

of access:

■ A single user is allowed to read from and write to a file.

■ Multiple users are allowed to read from a file, but no one can write to it.

Your application can use the following constants to specify these types of access:

CONST

fsCurPerm = 0; {whatever permission is allowed}

fsRdPerm = 1; {read permission}

fsWrPerm = 2; {write permission}

fsRdWrPerm = 3; {exclusive read/write permission}

fsRdWrShPerm = 4; {shared read/write permission}

C H A P T E R 1

Introduction to File Management

1-22 Using Files

To open a file with exclusive read/write access, you can specify fsRdWrPerm. To open a

file with read-only access, specify fsRdPerm. If you want to open a file and don’t know

or care which type of access is available, specify fsCurPerm. When you specify

fsCurPerm, if no access paths are already open, the file is opened with exclusive read/

write access. If other access paths are already open, but they are read-only, another

read-only path is opened.

Reading File Data
Once you have opened a file, you can read data from it by calling the FSRead function.

Generally you need to read data from a file when the user first opens a file or when the

user reverts to the last saved version of a document. The DoReadFile function defined

in Listing 1-8 illustrates how to use FSRead to read data from a file into a TextEdit

record in either situation.

Listing 1-8 Reading data from a file

FUNCTION DoReadFile (myWindow: WindowPtr): OSErr;

VAR

myData: MyDocRecHnd; {handle to a document record}

myFile: Integer; {file reference number}

myLength: LongInt; {number of bytes to read from file}

myText: TEHandle; {handle to TextEdit record}

myBuffer: Ptr; {pointer to data buffer}

myErr: OSErr;

BEGIN

myData := MyDocRecHnd(GetWRefCon(myWindow)); {get window's data}

myFile := myData^^.fileRefNum; {get file reference number}

myErr := SetFPos(myFile, fsFromStart, 0); {set file mark at start}

IF myErr <> noErr THEN

BEGIN

DoReadFile := myErr;

Exit(DoReadFile);

END;

myErr := GetEOF(myFile, myLength); {get file length}

myBuffer := NewPtr(myLength); {allocate a buffer}

IF myBuffer = NIL THEN

BEGIN

DoReadFile := MemError;

Exit(DoReadFile);

END;

C H A P T E R 1

Introduction to File Management

Using Files 1-23

myErr := FSRead(myFile, myLength, myBuffer); {read data into buffer}

IF (myErr = noErr) OR (myErr = eofErr) THEN

BEGIN {move data into TERec}

HLock(Handle(myData^^.editRec));

TESetText(myBuffer, myLength, myData^^.editRec);

myErr := noErr;

HUnlock(Handle(myData^^.editRec));

END;

DoReadFile := myErr;

END;

The DoReadFile function takes one parameter specifying the window to read data into.

This function first retrieves the handle to that window’s document record and extracts

the file’s reference number from that record. Then DoReadFile calls the SetFPos

function to set the file mark to the beginning of the file having that reference number.

There is no need to check that myFile has a nonzero value, because SetFPos returns an

error if you pass it an invalid file reference number.

The second parameter to SetFPos specifies the file mark positioning mode; it can

contain one of the following values:

CONST

fsAtMark = 0; {at current mark}

fsFromStart = 1; {set mark relative to beginning of file}

fsFromLEOF = 2; {set mark relative to logical end-of-file}

fsFromMark = 3; {set mark relative to current mark}

If you specify fsAtMark, the mark is left wherever it’s currently positioned, and the

third parameter of SetFPos is ignored. The next three constants let you position the

mark relative to either the beginning of the file, the logical end-of-file, or the current

mark. If you specify one of these three constants, the third parameter contains the byte

offset (either positive or negative) from the specified point. Here, the appropriate

positioning mode is relative to the beginning of the file.

If DoReadFile successfully positions the file mark, it next determines the number of

bytes in the file by calling the GetEOF function. The key step in the DoReadFile

function is the call to FSRead, which reads the specified number of bytes from the file

into the specified buffer. In this case, the data is read into a temporary buffer; then the

data is moved into the TextEdit record associated with the file. The FSRead function

returns, in the myLength parameter, the number of bytes actually read from the file.

Writing File Data
Generally your application writes data to a file in response to the File menu commands

Save or Save As. However, your application might also incorporate a scheme that

automatically saves all open documents to disk every few minutes. It therefore makes

sense to isolate the routines that handle the menu commands from the routines that

C H A P T E R 1

Introduction to File Management

1-24 Using Files

handle the actual writing of data to disk. This section shows how to write the data stored

in a TextEdit record to a file. See “Saving a File” on page 1-26 for instructions on

handling the Save and Save As menu commands.

It is very easy to write data from a specified buffer into a specified file. You simply

position the file mark at the beginning of the file (using SetFPos), write the data into

the file (using FSWrite), and then resize the file to the number of bytes actually written

(using SetEOF). Listing 1-9 illustrates this sequence.

Listing 1-9 Writing data into a file

FUNCTION DoWriteData (myWindow: WindowPtr; myTemp: Integer): OSErr;

VAR

myData: MyDocRecHnd; {handle to a document record}

myLength: LongInt; {number of bytes to write to file}

myText: TEHandle; {handle to TextEdit record}

myBuffer: Handle; {handle to actual text in TERec}

myVol: Integer; {volume reference number of myFile}

myErr: OSErr;

BEGIN

myData := MyDocRecHnd(GetWRefCon(myWindow)); {get window's data record}

myText := myData^^.editRec; {get TERec}

myBuffer := myText^^.hText; {get text buffer}

myLength := myText^^.teLength; {get text buffer size}

myErr := SetFPos(myTemp, fsFromStart, 0); {set file mark at start}

IF myErr = noErr THEN {write buffer into file}

myErr := FSWrite(myTemp, myLength, myBuffer^);

IF myErr = noErr THEN {adjust file size}

myErr := SetEOF(myTemp, myLength);

IF myErr = noErr THEN {find volume file is on}

myErr := GetVRefNum(myTemp, myVol);

IF myErr = noErr THEN {flush volume}

 myErr := FlushVol(NIL, myVol);

IF myErr = noErr THEN {show file is up to date}

myData^^.windowDirty := FALSE;

DoWriteData := myErr;

END;

The DoWriteData function first retrieves the TextEdit record attached to the specified

window and extracts the address and length of the actual text buffer from that record.

Then it calls SetFPos, FSWrite, and SetEOF as just explained. Finally, DoWriteData

determines the volume containing the file (using the GetVRefNum function) and flushes

that volume (using the FlushVol function). This is necessary to ensure that both the

file’s data and the file’s catalog entry are updated.

C H A P T E R 1

Introduction to File Management

Using Files 1-25

Notice that the DoWriteData function takes a second parameter, myTemp, which should

be the file reference number of a temporary file, not the file reference number of the file

associated with the window whose data you want to write. If you pass the reference

number of the file associated with the window, you risk corrupting the file, because the

existing file data is overwritten when you position the file mark at the beginning of the

file and call FSWrite. If FSWrite does not complete successfully, it is very likely that

the file on disk does not contain the correct document data.

To avoid corrupting the file containing the saved version of a document, always call

DoWriteData specifying the file reference number of some new, temporary file. Then,

when DoWriteData completes successfully, you can call the FSpExchangeFiles

function to swap the contents of the temporary file and the existing file. Listing 1-10

illustrates how to update a file on disk safely; it shows a sequence of updating,

renaming, saving, and deleting files that preserves the contents of the existing file until

the new version is safely recorded.

Listing 1-10 Updating a file safely

FUNCTION DoWriteFile (myWindow): OSErr;

VAR

myData: MyDocRecHnd; {handle to window's document record}

myFSpec: FSSpec; {FSSpec for file to update}

myTSpec: FSSpec; {FSSpec for temporary file}

myTime: LongInt; {current time; for temporary filename}

myName: Str255; {name of temporary file}

myTemp: Integer; {file reference number of temporary file}

myVRef: Integer; {volume reference number of temporary file}

myDirID: LongInt; {directory ID of temporary file}

myErr: OSErr;

BEGIN

myData := MyDocRecHnd(GetWRefCon(myWindow));{get that window's data}

myFSpec := myData^^.fileFSSpec; {get FSSpec for existing file}

GetDateTime(myTime); {create a temporary filename}

NumToString(myTime, myName);

{Find the temporary folder on file's volume; create it if necessary.}

myErr := FindFolder(myFSpec.vRefNum, kTemporaryFolderType,

kCreateFolder, myVRef, myDirID);

IF myErr = noErr THEN {make an FSSpec for temp file}

myErr := FSMakeFSSpec(myVRef, myDirID, myName, myTSpec);

IF (myErr = noErr) OR (myErr = fnfErr) THEN{create a temporary file}

myErr := FSpCreate(myTSpec, 'trsh', 'trsh', smSystemScript);

IF myErr = noErr THEN {open the newly created file}

C H A P T E R 1

Introduction to File Management

1-26 Using Files

myErr := FSpOpenDF(myTSpec, fsRdWrPerm, myTemp);

IF myErr = noErr THEN {write data to the data fork}

myErr := DoWriteData(myWindow, myTemp);

IF myErr = noErr THEN {close the temporary file}

myErr := FSClose(myTemp);

IF myErr = noErr THEN {swap data in the two files}

myErr := FSpExchangeFiles(myTSpec, myFSpec);

IF myErr = noErr THEN {delete the temporary file}

myErr := FSpDelete(myTSpec);

DoWriteFile := myErr;

END;

The essential idea behind this “safe-save” process is to save the data in memory into a

new file and then to exchange the contents of the new file and the old version of the file

by calling FSpExchangeFiles. The FSpExchangeFiles function does not move the

data on the volume; it merely changes the information in the volume’s catalog file and, if

the files are open, in their file control blocks (FCBs). The catalog entry for a file contains

■ fields that describe the physical data, such as the first allocation block, physical end,
and logical end of both the resource and data forks

■ fields that describe the file within the file system, such as file ID and parent
directory ID

Fields that describe the data remain with the data; fields that describe the file remain

with the file. The creation date remains with the file; the modification date remains with

the data. (For a more complete description of the FSpExchangeFiles function, see the

chapter “File Manager” in this book.)

Saving a File
There are several ways for a user to indicate that the current contents of a document

should be saved (that is, written to disk). The user can choose the File menu commands

Save or Save As, or the user can click the Save button in a dialog box that you display

when the user attempts to close a “dirty” document (that is, a document whose contents

have changed since the last time it was saved). You can handle the Save menu command

quite easily, as illustrated in Listing 1-11.

Listing 1-11 Handling the Save menu command

FUNCTION DoSaveCmd: OSErr;

VAR

myWindow: WindowPtr; {pointer to the front window}

myData: MyDocRecHnd; {handle to a document record}

myErr: OSErr;

C H A P T E R 1

Introduction to File Management

Using Files 1-27

BEGIN

myWindow := FrontWindow; {get front window and its data}

myData := MyDocRecHnd(GetWRefCon(myWindow));

IF myData^^.fileRefNum <> 0 THEN {if window has a file already}

myErr := DoWriteFile(myWindow); {then write contents to disk}

ELSE

myErr := DoSaveAsCmd; {else ask for a filename}

DoSaveCmd := myErr;

END;

The DoSaveCmd function simply checks whether the frontmost window is already

associated with a file. If so, then DoSaveCmd calls DoWriteFile to write the data to

disk (using the “safe-save” process illustrated in the previous section). Otherwise, if no

file exists for that window, DoSaveCmd calls DoSaveAsCmd. Listing 1-12 shows a way to

define the DoSaveAsCmd function.

Listing 1-12 Handling the Save As menu command

FUNCTION DoSaveAsCmd: OSErr;

VAR

myWindow: WindowPtr; {pointer to the front window}

myData: MyDocRecHnd; {handle to a document record}

myReply: StandardFileReply;

myFile: Integer; {file reference number}

myErr: OSErr;

BEGIN

myWindow := FrontWindow; {get front window and its data}

myData := MyDocRecHnd(GetWRefCon(myWindow));

myErr := noErr;

StandardPutFile('Save as:', 'Untitled', myReply);

IF myReply.sfGood THEN {user saves file}

BEGIN

IF NOT myReply.sfReplacing THEN

myErr := FSpCreate(myReply.sfFile, 'MYAP', 'TEXT',

 smSystemScript);

IF myErr <> noErr THEN

Exit(DoSaveAsCmd);

myData^^.fileFSSpec := myReply.sfFile;

IF myData^^.fileRefNum <> 0 THEN {if window already has a file}

myErr := FSClose(myData^^.fileRefNum);{close it}

C H A P T E R 1

Introduction to File Management

1-28 Using Files

{Create document's resource fork and copy Finder resources to it.}

FSpCreateResFile(myData^^.fileFSSpec, 'MYAP', 'TEXT',

 smSystemScript);

myErr := ResError;

IF myErr = noErr THEN

myFile := FSpOpenResFile(myData^^.fileFSSpec, fsRdWrPerm);

IF myFile > 0 THEN {copy Finder resources}

myErr := DoCopyResource('STR ', -16396, gAppsResFile, myFile)

ELSE

myErr := ResError;

IF myErr = noErr THEN

myErr := FSClose(myFile); {close the resource fork}

{Open data fork and leave it open.}

IF myErr = noErr THEN

myErr := FSpOpenDF(myData^^.fileFSSpec, fsRdWrPerm, myFile);

IF myErr = noErr THEN

BEGIN

myData^^.fileRefNum := myFile;

SetWTitle(myWindow, myReply.sfFile.name);

myErr := DoWriteFile(myWindow);

END;

DoSaveAsCmd := myErr;

END;

END;

The StandardPutFile procedure is similar to the StandardGetFile procedure

discussed earlier in this chapter. It manages the user interface for the default Save dialog

box, illustrated in Figure 1-8.

Figure 1-8 The default Save dialog box

C H A P T E R 1

Introduction to File Management

Using Files 1-29

If the user clicks the New Folder button, the Standard File Package presents a subsidiary

dialog box like the one shown in Figure 1-9.

Figure 1-9 The new folder dialog box

If the user asks to save a file with a name that already exists at the specified location,

the Standard File Package displays a subsidiary dialog box, like the one shown in

Figure 1-10, to verify that the new file should replace the existing file.

Figure 1-10 The name conflict dialog box

Note in Listing 1-12 that if the user is not replacing an existing file, the DoSaveAsCmd

function creates a new file and records the new FSSpec record in the window’s

document record. Otherwise, if the user is replacing an existing file, DoSaveAsCmd

simply records, in the window’s document record, the FSSpec record returned by

StandardGetFile.

When DoSaveAsCmd creates a new file, it also copies a resource from your application’s

resource fork to the resource fork of the newly created file. This resource (with ID

–16396) identifies the name of your application. (For more details about this resource,

see the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials.)

The DoSaveAsCmd function calls the application-defined routine DoCopyResource.

Listing 1-13 shows a simple way to define the DoCopyResource function.

C H A P T E R 1

Introduction to File Management

1-30 Using Files

Listing 1-13 Copying a resource from one resource fork to another

FUNCTION DoCopyResource (theType: ResType; theID: Integer;

source: Integer; dest: Integer): OSErr;

VAR

myHandle: Handle; {handle to resource to copy}

myName: Str255; {name of resource to copy}

myType: ResType; {ignored; used for GetResInfo}

myID: Integer; {ignored; used for GetResInfo}

BEGIN

UseResFile(source); {set the source resource file}

myHandle := GetResource(theType, theID); {open the source resource}

IF myHandle <> NIL THEN

BEGIN

GetResInfo(myHandle, myID, myType, myName); {get resource name}

DetachResource(myHandle); {detach resource}

UseResFile(dest); {set destination resource file}

AddResource(myHandle, theType, theID, myName);

IF ResError = noErr THEN

WriteResource(myHandle); {write resource data}

END;

DoCopyResource := ResError; {return result code}

ReleaseResource(myHandle);

END;

See the chapter “Resource Manager” in Inside Macintosh: More Macintosh Toolbox for

details about the routines used in Listing 1-13.

Reverting to a Saved File
Many applications that manipulate files provide a menu command that allows the user

to revert to the last saved version of a document. The technique for handling this

command is relatively simple. First you should display a dialog box asking whether to

revert to the last saved version of the file, as illustrated in Figure 1-11.

Figure 1-11 A Revert to Saved dialog box

C H A P T E R 1

Introduction to File Management

Using Files 1-31

If the user clicks the Cancel button, nothing should happen to the current document. If,

however, the user confirms the menu command by clicking OK, you just need to call

DoReadFile to read the disk version of the file back into the window. Listing 1-14

illustrates how to implement a Revert to Saved menu command.

Listing 1-14 Handling the Revert to Saved menu command

FUNCTION DoRevertCmd: OSErr;

VAR

myWindow: WindowPtr; {window for file data}

myData: MyDocRecHnd; {handle to window data}

myFile: Integer; {file reference number}

myName: Str255; {file's name}

myDialog: DialogPtr; {pointer to modal dialog box}

myItem: Integer; {item selected in modal dialog}

myPort: GrafPtr; {the original graphics port}

CONST

kRevertDialog = 128; {resource ID of Revert to Saved dialog}

BEGIN

myWindow := FrontWindow; {get pointer to front window}

{get handle to window's data record}

myData := MyDocRecHnd(GetWRefCon(myWindow));

GetWTitle(myWindow, myName); {get file's name}

ParamText(myName, '', '', '');

myDialog := GetNewDialog(kRevertDialog, NIL, WindowPtr(-1));

GetPort(myPort);

SetPort(myDialog);

REPEAT

ModalDialog(NIL, myItem);

UNTIL (myItem = iOK) OR (myItem = iCancel);

DisposeDialog(myDialog);

SetPort(myPort); {restore previous grafPort}

IF myItem = iOK THEN

DoRevertCmd := DoReadFile(myWindow);

ELSE

DoRevertCmd := noErr;

END;

The DoRevertCmd function retrieves the document record handle from the frontmost

window’s reference constant field and then gets the window’s title (which is also the

name of the file) and inserts it into a modal dialog box.

C H A P T E R 1

Introduction to File Management

1-32 Using Files

If the user clicks the OK button, DoRevertCmd calls the DoReadFile function to read

the data from the file into the window. Otherwise, DoRevertCmd simply exits without

changing the data in the window.

Closing a File
In most cases, your application closes a file after a user clicks in a window’s close box or

chooses the Close command in the File menu. The Close menu command should be

active only when there is actually an active window on the desktop. If there is an active

window, you need to determine whether it belongs to your application; if so, you need to

handle dialog windows and document windows differently, as illustrated in Listing 1-15.

Listing 1-15 Handling the Close menu command

FUNCTION DoCloseCmd: OSErr;

VAR

myWindow: WindowPtr;

myData: MyDocRecHnd;

myErr: OSErr;

BEGIN

myErr := FALSE;

myWindow := FrontWindow; {get window to be closed}

CASE MyGetWindowType(myWindow) OF

kDAWindow:

CloseDeskAcc(WindowPeek(myWindow)^.windowKind);

kMyModelessDialog:

HideWindow(myWindow); {for dialogs, hide the window}

kMyDocWindow:

BEGIN

myData := MyDocRecHnd(GetWRefCon(myWindow));

myErr := DoCloseFile(myData);

IF myErr = noErr THEN

DisposeWindow(myWindow);

END;

OTHERWISE

;

END;

DoCloseCmd := myErr;

END;

The DoCloseCmd function determines the type of the frontmost window by calling the

application-defined function MyGetWindowType. (See the chapter “Window Manager”

in Inside Macintosh: Macintosh Toolbox Essentials for a definition of MyGetWindowType.) If

the window to be closed is a window belonging to a desk accessory, DoCloseCmd closes

C H A P T E R 1

Introduction to File Management

Using Files 1-33

the desk accessory. If the window to be closed is a dialog window, this procedure just

hides the window. If the window to be closed is a document window, DoCloseCmd

retrieves its document record handle and calls both DoCloseFile (defined in

Listing 1-16) and DisposeWindow. Before you close the file associated with a

window, you should check whether the contents of the window have changed since

the last time the document was saved. If so, you should ask the user whether to save

those changes. Listing 1-16 illustrates one way to do this.

Listing 1-16 Closing a file

FUNCTION DoCloseFile (myData: MyDocRecHnd): OSErr;

VAR

myErr: OSErr;

myDialog: DialogPtr; {pointer to modal dialog box}

myItem: Integer; {item selected in alert box}

myPort: GrafPtr; {the original graphics port}

CONST

kSaveChangesDialog = 129; {resource of Save changes dialog}

BEGIN

IF myData^^.windowDirty THEN {see whether window is dirty}

BEGIN

myItem := CautionAlert(kSaveChangesDialog, NIL);

IF myItem = iCancel THEN{user clicked Cancel}

BEGIN

DoCloseFile := usrCanceledErr;

Exit(DoCloseFile);

END;

IF myItem = iSave THEN

myErr := DoSaveCmd;

END;

IF myData^^.fileRefNum <> 0 THEN

BEGIN

myErr := FSClose(myData^^.fileRefNum);

IF myErr = noErr THEN

BEGIN

myErr := FlushVol(NIL, myData^^.fileFSSpec.vRefNum);

myData^^.fileRefNum := 0; {clear the file reference number}

END;

END;

{Dispose of TextEdit record and controls here (code omitted).}

DisposeHandle(Handle(myData)); {dispose of document record}

DoCloseFile := myErr;

END;

C H A P T E R 1

Introduction to File Management

1-34 Using Files

If the document is an existing file that has not been changed since it was last saved, your

application can simply call the FSClose function. This routine writes to disk any

unwritten data remaining in the volume buffer. The FSClose function also updates the

information maintained on the volume for that file and removes the access path. The

information about the file is not actually written to the disk, however, until the volume is

flushed, ejected, or unmounted. To keep the file information current, it’s a good idea to

follow each call to FSClose with a call to the FlushVol function.

If the contents of an existing file have been changed, or if a new file is being closed for

the first time, your application can call the Dialog Manager routine CautionAlert

(specifying a resource ID of an 'ALRT' template) to ask the user whether or not to save

the changes. If the user decides not to save the file, you can just call FSClose and

dispose of the window. Otherwise, DoCloseFile calls the DoSaveCmd function to save

the file to disk.

Opening Files at Application Startup Time
A user often launches your application by double-clicking one of its document icons or

by selecting one or more document icons and choosing the Open command in the

Finder’s File menu. In these cases, your application needs to determine which files the

user selected so that it can open each one and display its contents in a window. There are

two ways in which your application can determine this.

If the user opens a file from the Finder and if your application supports high-level

events, the Finder sends it an Open Documents event. Your application then needs to

determine which file or files to open and react accordingly. For a complete description of

how to process the Open Documents event, see the chapter “Apple Event Manager” in

Inside Macintosh: Interapplication Communication.

IMPORTANT

If at all possible, your application should support high-level events. You
should use the techniques illustrated in this section only if your
application doesn’t support high-level events. ▲

If your application does not support high-level events, you need to ask the Finder at

application launch time whether or not the user launched the application by selecting

some documents. You can do this by calling the CountAppFiles procedure and seeing

whether the count of files is 1 or more. Then you can call the procedures GetAppFiles

and ClrAppFiles to retrieve the information about the selected files. The technique is

illustrated in Listing 1-17.

The CountAppFiles procedure determines how many files, if any, the user selected at

application startup time. If the value of the myNum parameter is nonzero, then myJob

contains a value that indicates whether the files were selected for opening or printing.

Currently, myJob can have one of two values:

CONST

appOpen = 0; {open the document(s)}

appPrint = 1; {print the document(s)}

C H A P T E R 1

Introduction to File Management

Using Files 1-35

Listing 1-17 Opening files at application launch time

PROCEDURE DoInitFiles;

VAR

myNum: Integer; {number of files to be opened or printed}

myJob: Integer; {open or print the files?}

index: Integer; {index of current file}

myFile: AppFile; {file info}

mySpec: FSSpec; {file system specification}

myErr: OSErr;

BEGIN

CountAppFiles(myJob, myNum);

IF myNum > 0 THEN {user selected some files}

IF myJob = appOpen THEN {files are to be opened}

FOR index := 1 TO myNum DO

BEGIN

GetAppFiles(index, myFile); {get file info from Finder}

myErr := FSMakeFSSpec(myFile.vRefNum, 0, myFile.fName,

mySpec); {make an FSSpec to hold info}

myErr := DoOpenFile(mySpec); {read in file's data}

ClrAppFiles(index); {show we've got the info}

END;

END;

In Listing 1-17, if the files are to be opened, then DoInitFiles obtains information

about them by calling the GetAppFiles procedure for each one. The GetAppFiles

procedure returns the information in a record of type AppFile.

TYPE AppFile =

RECORD

vRefNum: Integer; {working directory reference number}

fType: OSType; {file type}

versNum: Integer; {version number; ignored}

fName: Str255; {filename}

END;

Because the function DoOpenFile takes an FSSpec record as a parameter,

DoInitFiles next converts the information returned in the myFile parameter into an

FSSpec record, using FSMakeFSSpec. Then DoInitFiles calls DoOpenFile to read

the file data and ClrAppFiles to let the Finder know that it has processed the

information for that file.

C H A P T E R 1

Introduction to File Management

1-36 Using Files

Note

The vRefNum field of an AppFile record does not contain a volume
reference number; instead it contains a working directory reference
number, which encodes both the volume reference number and the
parent directory ID. (That’s why the second parameter passed to
FSMakeFSSpec in Listing 1-17 is 0.) ◆

Using a Preferences File
Many applications allow the user to alter various settings that control the operation or

configuration of the application. For example, your application might allow the user to

specify the size and placement of any new windows or the default font used to display

text in those windows. You can create a preferences file in which to record user

preferences, and your application can retrieve that file whenever it is launched.

In deciding how to structure your preferences file, it is important to distinguish

document-specific settings from application-specific settings. Some user-specifiable

settings affect only a particular document. For example, the user might have changed the

text font in a particular window. When you save the text in the window, you also want to

save the current font setting. Generally you can do this by storing the font name in a

resource in the document file’s resource fork. Then, when the user opens that document

again, you check for the presence of such a resource, retrieve the information stored in it,

and set the document font accordingly.

Some settings, such as a default text font, are not specific to a particular document. You

might store such settings in the application’s resource fork, but generally it is better to

store them in a separate preferences file. The main reason for this is to avoid problems

that can arise if an application is located on a server volume. If preferences are stored in

resources in the application’s resource fork, those preferences apply to all users

executing that application. Worse yet, the resources can become corrupted if several

different users attempt to alter the settings at the same time.

Thus, it is best to store application-specific settings in a preferences file. The Operating

System provides a special folder in the System Folder, called Preferences, where you can

store that file. Listing 1-18 illustrates a way to open your application’s preferences file.

Listing 1-18 Opening a preferences file

PROCEDURE DoGetPreferences;

VAR

myErr: OSErr;

myVRef: Integer; {volume ref num of Preferences folder}

myDirID: LongInt; {dir ID of Preferences folder}

mySpec: FSSpec; {FSSpec for the preferences file}

myName: Str255; {name of the application}

myRef: Integer; {ref num of app's resource file; ignored}

myHand: Handle; {handle to Finder information; ignored}

myRefNum: Integer; {file reference number}

C H A P T E R 1

Introduction to File Management

Using Files 1-37

CONST

kPrefID = 128; {resource ID of STR# with filename}

BEGIN

{Determine the name of the preferences file.}

GetIndString(myName, kPrefID, 1);

{Find the Preferences folder in the System Folder.}

myErr := FindFolder(kOnSystemDisk, kPreferencesFolderType,

 kDontCreateFolder, myVRef, myDirID);

IF myErr = noErr THEN

myErr := FSMakeFSSpec(myVRef, myDirID, myName, mySpec);

IF myErr = noErr THEN

myRefNum := FSpOpenResFile(mySpec, fsCurPerm);

{Read your preference settings here.}

CloseResFile(myRefNum);

END;

The DoGetPreferences procedure first determines the name of the preferences file it is

to open and read. To allow easy localization, you should store the name in a resource of

type 'STR#' in your application’s resource file. The DoGetPreferences procedure

assumes that the name is stored as the first string in the resource having ID kPrefID.

The technique shown here assumes that your preference settings can all be stored in

resources. As a result, Listing 1-18 calls the Resource Manager function FSpOpenResFile

to open the resource fork of your preferences file. See the chapter “Resource Manager” in

Inside Macintosh: More Macintosh Toolbox for complete details on opening resource files and

reading resources from them.

Adjusting the File Menu
Your application should dim any File menu commands that are not available at the time

the user pulls down the File menu. For example, if your application does not yet have a

document window open, then the Save, Save As, and Revert commands should be

dimmed. You can adjust the File menu easily using the technique shown in Listing 1-19.

Listing 1-19 Adjusting the File menu

PROCEDURE DoAdjustFileMenu;

VAR

myWindow: WindowPtr;

myMenu: MenuHandle;

myData: MyDocRecHnd; {handle to window data}

C H A P T E R 1

Introduction to File Management

1-38 File Management Reference

BEGIN

myWindow := FrontWindow;

IF myWindow = NIL THEN

BEGIN

myMenu := GetMHandle(mFile);

DisableItem(myMenu, iSave); {disable Save}

DisableItem(myMenu, iSaveAs); {disable Save As}

DisableItem(myMenu, iRevert); {disable Revert}

DisableItem(myMenu, iClose); {disable Close}

END

ELSE IF MyGetWindowType(myWindow) = kMyDocWindow THEN

BEGIN

myData := MyDocRecHnd(GetWRefCon(myWindow));

myMenu := GetMHandle(mFile);

EnableItem(myMenu, iSaveAs); {enable Save As}

EnableItem(myMenu, iClose); {enable Close}

IF myData^^.windowDirty THEN

BEGIN

EnableItem(myMenu, iSave); {enable Save}

EnableItem(myMenu, iRevert); {enable Revert}

END

ELSE

BEGIN

DisableItem(myMenu, iSave); {disable Save}

DisableItem(myMenu, iRevert); {disable Revert}

END;

END;

END;

Your application should call DoAdjustFileMenu whenever it receives a mouse-down

event in the menu bar. (No doubt you want to include code appropriate for enabling and

disabling other menu items too.) See the chapter “Menu Manager” in Inside Macintosh:
Macintosh Toolbox Essentials for details on the menu enabling and disabling procedures

used in Listing 1-19.

File Management Reference

This section describes the data structures and routines used in this chapter to illustrate

basic file management operations. The section “Data Structures” shows the Pascal data

structures for the file system specification record and the standard file reply record. The

sections that follow describe the Standard File Package routines for opening and saving

C H A P T E R 1

Introduction to File Management

File Management Reference 1-39

documents and the File Manager routines for accessing files, manipulating files and

directories, accessing volumes, and getting information about documents to be opened

when your application is launched.

For a description of other file-related data structures and routines, see the chapters “File

Manager” and “Standard File Package” in this book.

Data Structures

This section describes the data structures that your application can use to exchange

information with the File Manager and the Standard File Package. The techniques

described in this chapter use file system specification records and standard file reply

records.

File System Specification Record

The file system specification record for files and directories is defined by the FSSpec

data type.

TYPE FSSpec = {file system specification}

RECORD

vRefNum: Integer; {volume reference number}

parID: LongInt; {directory ID of parent directory}

name: Str63; {filename or directory name}

END;

Field descriptions

vRefNum The volume reference number of the volume containing the
specified file or directory.

parID The directory ID of the directory containing the specified file
or directory.

name The name of the specified file or directory.

Standard File Reply Records

The procedures StandardGetFile and StandardPutFile both return information

to your application using a standard file reply record, which is defined by the

StandardFileReply data type. The reply record identifies selected files with a file

system specification record, which you can pass directly to many of the File Manager

functions described in the sections that follow. The reply record also contains fields that

support several Finder features.

C H A P T E R 1

Introduction to File Management

1-40 File Management Reference

TYPE StandardFileReply =

RECORD

sfGood: Boolean; {TRUE if user did not cancel}

sfReplacing: Boolean; {TRUE if replacing file with same name}

sfType: OSType; {file type}

sfFile: FSSpec; {selected file, folder, or volume}

sfScript: ScriptCode; {script of file, folder, or volume name}

sfFlags: Integer; {Finder flags of selected item}

sfIsFolder: Boolean; {selected item is a folder}

sfIsVolume: Boolean; {selected item is a volume}

sfReserved1: LongInt; {reserved}

sfReserved2: Integer; {reserved}

END;

Field descriptions

sfGood Reports whether the reply record is valid. The value is TRUE after
the user clicks Save or Open; FALSE after the user clicks Cancel.
When the user has completed the dialog box, the other fields in the
reply record are valid only if the sfGood field contains TRUE.

sfReplacing Reports whether a file to be saved replaces an existing file of
the same name. This field is valid only after a call to the
StandardPutFile or CustomPutFile procedure. When
the user assigns a name that duplicates that of an existing file,
the Standard File Package asks for verification by displaying a
subsidiary dialog box (illustrated in Figure 1-10). If the user
verifies the name, the Standard File Package sets the sfReplacing
field to TRUE and returns to your application; if the user cancels
the overwriting of the file, the Standard File Package returns
to the main dialog box. If the name does not conflict with an
existing name, the Standard File Package sets the field to FALSE
and returns.

sfType Contains the file type of the selected file. (File types are described in
the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox
Essentials.) Only StandardGetFile and CustomGetFile return a
file type in this field.

sfFile Describes the selected file, folder, or volume with a file system
specification record, which contains a volume reference number,
parent directory ID, and name. (See the chapter “File Manager” in
this book for a complete description of the file system specification
record.) If the selected item is an alias for another item, the Standard
File Package resolves the alias and places the file system
specification record for the target in the sfFile field when the user
completes the dialog box. If the selected file is a stationery pad, the
reply record describes the file itself, not a copy of the file.

sfScript Identifies the script in which the name of the document is to be
displayed. (This information is used by the Finder and by the
Standard File Package.) A script code of smSystemScript (–1)
represents the default system script.

C H A P T E R 1

Introduction to File Management

File Management Reference 1-41

sfFlags Contains the Finder flags from the Finder information record in the
catalog entry for the selected file. (See the chapter “Finder Interface”
in Inside Macintosh: Macintosh Toolbox Essentials for a description of
the Finder flags.) This field is returned only by StandardGetFile
and CustomGetFile. If your application supports stationery, it
should check the stationery bit in the Finder flags to determine
whether to treat the selected file as stationery. Unlike the Finder, the
Standard File Package does not automatically create a document
from a stationery pad and pass your application the new document.
If the user opens a stationery document from within an application
that does not support stationery, the Standard File Package displays
a dialog box warning the user that the master copy is being opened.

sfIsFolder Reports whether the selected item is a folder (TRUE) or a file or
volume (FALSE). This field is meaningful only during the execution
of a dialog hook function.

sfIsVolume Reports whether the selected item is a volume (TRUE) or a file or
folder (FALSE). This field is meaningful only during the execution
of a dialog hook function.

sfReserved1 Reserved.

sfReserved2 Reserved.

Application Files Records

The GetAppFiles procedure returns information about files opened at application

launch time in an application files record, defined by the AppFile data type:

TYPE AppFile =

RECORD

vRefNum: Integer; {working directory reference number}

fType: OSType; {file type}

versNum: Integer; {version number; ignored}

fName: Str255; {filename}

END;

Field descriptions

vRefNum A working directory reference number that encodes the volume and
parent directory of the file.

fType The file type.

versNum Reserved.

fName The filename.

C H A P T E R 1

Introduction to File Management

1-42 File Management Reference

File Specification Routines

If your application has no special user interface requirements, you can use the

StandardGetFile and StandardPutFile procedures to display the default dialog

boxes for opening and saving documents. For a description of more advanced file

specification routines, see the chapter “Standard File Package” in this book.

StandardGetFile

You can use the StandardGetFile procedure to display the default Open dialog box

when the user is opening a file.

PROCEDURE StandardGetFile (fileFilter: FileFilterProcPtr;

numTypes: Integer;

typeList: SFTypeList;

VAR reply: StandardFileReply);

fileFilter A pointer to an optional file filter function, provided by your application,
through which StandardGetFile passes files of the specified types.

numTypes The number of file types to be displayed. If you specify a numTypes
value of –1, the first filtering passes files of all types.

typeList A list of file types to be displayed.

reply The reply record, which StandardGetFile fills in before returning.

DESCRIPTION

The StandardGetFile procedure presents a dialog box through which the user

specifies the name and location of a file to be opened. While the dialog box is active,

StandardGetFile gets and handles events until the user completes the interaction,

either by selecting a file to open or by canceling the operation. StandardGetFile

returns the user’s input in a record of type StandardFileReply.

The fileFilter, numTypes, and typeList parameters together determine which

files appear in the displayed list. The first filtering is by file type, which you specify in

the numTypes and typeList parameters. The numTypes parameter specifies the

number of file types to be displayed. You can specify one or more types. If you specify a

numTypes value of –1, the first filtering passes files of all types.

The fileFilter parameter points to an optional file filter function, provided by your

application, through which StandardGetFile passes files of the specified types. See

the chapter “Standard File Package” in this book for a complete description of how you

specify this filter function.

C H A P T E R 1

Introduction to File Management

File Management Reference 1-43

SPECIAL CONSIDERATIONS

The StandardGetFile procedure is not available in all versions of system software.

Use the Gestalt function to determine whether StandardGetFile is available before

calling it.

Because StandardGetFile may move memory, you should not call it at interrupt time.

StandardPutFile

You can use the StandardPutFile procedure to display the default Save dialog box

when the user is saving a file.

PROCEDURE StandardPutFile (prompt: Str255; defaultName: Str255;

VAR reply: StandardFileReply);

prompt The prompt message to be displayed over the text field.

defaultName
The initial name of the file.

reply The reply record, which StandardPutFile fills in before returning.

DESCRIPTION

The StandardPutFile procedure presents a dialog box through which the user

specifies the name and location of a file to be written to. The dialog box is centered on

the screen. While the dialog box is active, StandardPutFile gets and handles events

until the user completes the interaction, either by selecting a name and authorizing the

save or by canceling the save. The StandardPutFile procedure returns the user’s

input in a record of type StandardFileReply.

SPECIAL CONSIDERATIONS

The StandardPutFile procedure is not available in all versions of system software.

Use the Gestalt function to determine whether StandardPutFile is available before

calling it.

Because StandardPutFile may move memory, you should not call it at interrupt time.

File Access Routines

This section describes the File Manager’s file access routines. When you call one of these

routines, you specify a file by a path reference number (which the File Manager returns

to your application when your application opens the file). Unless your application has

very specialized needs, you should be able to manage all file access (for example, writing

data to the file) using the routines described in this section. Typically you use these

routines to operate on a file’s data fork, but in certain circumstances you might want to

use them on a file’s resource fork as well.

C H A P T E R 1

Introduction to File Management

1-44 File Management Reference

Reading, Writing, and Closing Files

You can use the functions FSRead, FSWrite, and FSClose to read data from a file,

write data to a file, and close an open file. All three of these functions operate on open

files. You can use any one of a variety of routines to open a file (for example,

FSpOpenDF).

FSRead

You can use the FSRead function to read any number of bytes from an open file.

FUNCTION FSRead (refNum: Integer; VAR count: LongInt;

buffPtr: Ptr): OSErr;

refNum The file reference number of an open file.

count On input, the number of bytes to read; on output, the number of bytes
actually read.

buffPtr A pointer to the data buffer into which the bytes are to be read.

DESCRIPTION

The FSRead function attempts to read the requested number of bytes from the specified

file into the specified buffer. The buffPtr parameter points to that buffer; this buffer is

allocated by your application and must be at least as large as the count parameter.

Because the read operation begins at the current mark, you might want to set the mark

first by calling the SetFPos function. If you try to read past the logical end-of-file,

FSRead reads in all the data up to the end-of-file, moves the mark to the end-of-file, and

returns eofErr as its function result. Otherwise, FSRead moves the file mark to the byte

following the last byte read and returns noErr.

RESULT CODES

noErr 0 No error
ioErr –36 I/O error
fnOpnErr –38 File not open
eofErr –39 Logical end-of-file reached
posErr –40 Attempt to position mark before start of file
fLckdErr -45 File is locked
paramErr –50 Negative count
rfNumErr –51 Bad reference number
afpAccessDenied –5000 User does not have the correct access to the file

C H A P T E R 1

Introduction to File Management

File Management Reference 1-45

FSWrite

You can use the FSWrite function to write any number of bytes to an open file.

FUNCTION FSWrite (refNum: Integer; VAR count: LongInt;

buffPtr: Ptr): OSErr;

refNum The file reference number of an open file.

count On input, the number of bytes to write to the file; on output, the number
of bytes actually written.

buffPtr A pointer to the data buffer from which the bytes are to be written.

DESCRIPTION

The FSWrite function takes the specified number of bytes from the specified data buffer

and attempts to write them to the specified file. Because the write operation begins at the

current mark, you might want to set the mark first by calling the SetFPos function.

If the write operation completes successfully, FSWrite moves the file mark to the

byte following the last byte written and returns noErr. If you try to write past the

logical end-of-file, FSWrite moves the logical end-of-file. If you try to write past

the physical end-of-file, FSWrite adds one or more clumps to the file and moves the

physical end-of-file accordingly.

RESULT CODES

FSClose

You can use the FSClose function to close an open file.

FUNCTION FSClose (refNum: Integer): OSErr;

refNum The file reference number of an open file.

noErr 0 No error
dskFulErr –34 Disk full
ioErr –36 I/O error
fnOpnErr –38 File not open
posErr –40 Attempt to position mark before start of file
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
paramErr –50 Negative count
rfNumErr –51 Bad reference number
wrPermErr –61 Read/write permission doesn’t allow writing

C H A P T E R 1

Introduction to File Management

1-46 File Management Reference

DESCRIPTION

The FSClose function removes the access path for the specified file and writes the

contents of the volume buffer to the volume.

Note

The FSClose function calls PBFlushFile internally to write the file’s
bytes onto the volume. To ensure that the file’s catalog entry is updated,
you should call FlushVol after you call FSClose. ◆

▲ W A R N I N G

Make sure that you do not call FSClose with a file reference number
of a file that has already been closed. Attempting to close the same file
twice may result in loss of data on a volume. See the description of
file control blocks in the chapter “File Manager” in this book for a
discussion of how this can happen. ▲

RESULT CODES

Manipulating the File Mark

You can use the functions GetFPos and SetFPos to get or set the current position of the

file mark.

GetFPos

You can use the GetFPos function to determine the current position of the mark before

reading from or writing to an open file.

FUNCTION GetFPos (refNum: Integer; VAR filePos: LongInt): OSErr;

refNum The file reference number of an open file.

filePos On output, the current position of the mark.

DESCRIPTION

The GetFPos function returns, in the filePos parameter, the current position of the file

mark for the specified open file. The position value is zero-based; that is, the value of

filePos is 0 if the file mark is positioned at the beginning of the file.

noErr 0 No error
ioErr –36 I/O error
fnOpnErr –38 File not open
fnfErr –43 File not found
rfNumErr –51 Bad reference number

C H A P T E R 1

Introduction to File Management

File Management Reference 1-47

RESULT CODES

SetFPos

You can use the SetFPos function to set the position of the file mark before reading

from or writing to an open file.

FUNCTION SetFPos (refNum: Integer; posMode: Integer;

posOff: LongInt): OSErr;

refNum The file reference number of an open file.

posMode The positioning mode.

posOff The positioning offset.

DESCRIPTION

The SetFPos function sets the file mark of the specified file. The posMode parameter

indicates how to position the mark; it must contain one of the following values:

CONST

fsAtMark = 0; {at current mark}

fsFromStart = 1; {set mark relative to beginning of file}

fsFromLEOF = 2; {set mark relative to logical end-of-file}

fsFromMark = 3; {set mark relative to current mark}

If you specify fsAtMark, the mark is left wherever it’s currently positioned, and the

posOff parameter is ignored. The next three constants let you position the mark relative

to either the beginning of the file, the logical end-of-file, or the current mark. If you

specify one of these three constants, you must also pass in posOff a byte offset (either

positive or negative) from the specified point. If you specify fsFromLEOF, the value in

posOff must be less than or equal to 0.

RESULT CODES

noErr 0 No error
ioErr –36 I/O error
fnOpnErr –38 File not open
rfNumErr –51 Bad reference number
gfpErr –52 Error during GetFPos

noErr 0 No error
ioErr –36 I/O error
fnOpnErr –38 File not open
eofErr –39 Logical end-of-file reached
posErr –40 Attempt to position mark before start of file
rfNumErr –51 Bad reference number

C H A P T E R 1

Introduction to File Management

1-48 File Management Reference

Manipulating the End-of-File

You can use the functions GetEOF and SetEOF to get or set the logical end-of-file of an

open file.

GetEOF

You can use the GetEOF function to determine the current logical end-of-file of an open

file.

FUNCTION GetEOF (refNum: Integer; VAR logEOF: LongInt): OSErr;

refNum The file reference number of an open file.

logEOF On output, the logical end-of-file.

DESCRIPTION

The GetEOF function returns, in the logEOF parameter, the logical end-of-file of the

specified file.

RESULT CODES

SEE ALSO

For a description of the logical and physical end-of-file, see the section “File Access

Characteristics” on page 1-8.

SetEOF

You can use the SetEOF function to set the logical end-of-file of an open file.

FUNCTION SetEOF (refNum: Integer; logEOF: LongInt): OSErr;

refNum The file reference number of an open file.

logEOF The logical end-of-file.

noErr 0 No error
ioErr –36 I/O error
fnOpnErr –38 File not open
rfNumErr –51 Bad reference number
afpAccessDenied –5000 User does not have the correct access to the file

C H A P T E R 1

Introduction to File Management

File Management Reference 1-49

DESCRIPTION

The SetEOF function sets the logical end-of-file of the specified file. If you attempt to set

the logical end-of-file beyond the physical end-of-file, the physical end-of-file is set 1

byte beyond the end of the next free allocation block; if there isn’t enough space on the

volume, no change is made, and SetEOF returns dskFulErr as its function result.

If you set the logEOF parameter to 0, all space occupied by the file on the volume is

released. The file still exists, but it contains 0 bytes. Setting a file fork’s end-of-file to 0 is

therefore not the same as deleting the file (which removes both file forks at once).

RESULT CODES

SEE ALSO

For a description of the logical and physical end-of-file, see the section “File Access

Characteristics” on page 1-8.

File and Directory Manipulation Routines

The File Manager includes a set of file and directory manipulation routines that accept

FSSpec records as parameters. Depending on the requirements of your application and

on the environment in which it is running, you may be able to accomplish all your file

and directory operations by using these routines.

Before calling any of these routines, however, you should call the Gestalt function to

ensure that they are available in the operating environment. (See “Testing for File

Management Routines” on page 1-14 for an illustration of calling Gestalt.) If these

routines are not available, you can call the corresponding HFS routines.

Opening, Creating, and Deleting Files

The File Manager provides the FSpOpenDF, FSpCreate, and FSpDelete routines,

which allow you to open, create, and delete files.

noErr 0 No error
dskFulErr –34 Disk full
ioErr –36 I/O error
fnOpnErr –38 File not open
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
rfNumErr –51 Bad reference number
wrPermErr –61 Read/write permission doesn’t allow writing

C H A P T E R 1

Introduction to File Management

1-50 File Management Reference

FSpOpenDF

You can use the FSpOpenDF function to open a file’s data fork.

FUNCTION FSpOpenDF (spec: FSSpec; permission: SignedByte;

VAR refNum: Integer): OSErr;

spec An FSSpec record specifying the file whose data fork is to be opened.

permission
A constant indicating the desired file access permissions.

refNum A reference number of an access path to the file’s data fork.

DESCRIPTION

The FSpOpenDF function opens the data fork of the file specified by the spec parameter

and returns a file reference number in the refNum parameter. You can pass that reference

number as a parameter to any of the low- or high-level file access routines.

The permission parameter specifies the kind of access permission mode you want. You

can specify one of these constants:

CONST

fsCurPerm = 0; {whatever permission is allowed}

fsRdPerm = 1; {read permission}

fsWrPerm = 2; {write permission}

fsRdWrPerm = 3; {exclusive read/write permission}

fsRdWrShPerm = 4; {shared read/write permission}

In most cases, you can simply set the permission parameter to fsCurPerm. Some

applications request fsRdWrPerm, to ensure that they can both read from and write to a

file.

RESULT CODES

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
tmfoErr –42 Too many files open
fnfErr –43 File not found
opWrErr –49 File already open for writing
permErr –54 Attempt to open locked file for writing
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access to the file

C H A P T E R 1

Introduction to File Management

File Management Reference 1-51

FSpCreate

You can use the FSpCreate function to create a new file.

FUNCTION FSpCreate (spec: FSSpec; creator: OSType;

fileType: OSType; scriptTag: ScriptCode):

OSErr;

spec An FSSpec record specifying the file to be created.

creator The creator of the new file.

fileType The file type of the new file.

scriptTag The code of the script system in which the filename is to be displayed. If
you have established the name and location of the new file using either
the StandardPutFile or CustomPutFile procedure, specify the script
code returned in the reply record. (See the chapter “Standard File
Package” in this book for a description of StandardPutFile and
CustomPutFile.) Otherwise, specify the system script by setting the
scriptTag parameter to the value smSystemScript.

DESCRIPTION

The FSpCreate function creates a new file (both forks) with the specified type, creator,

and script code. The new file is unlocked and empty. The date and time of creation and

last modification are set to the current date and time.

See the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials for

information on file types and creators.

Files created using FSpCreate are not automatically opened. If you want to write

data to the new file, you must first open the file using a file access routine (such

as FSpOpenDF).

Note

The resource fork of the new file exists but is empty. You’ll need to call
one of the Resource Manager procedures CreateResFile,
HCreateResFile, or FSpCreateResFile to create a resource map in
the file before you can open it (by calling one of the Resource Manager
functions OpenResFile, HOpenResFile, or FSpOpenResFile). ◆

C H A P T E R 1

Introduction to File Management

1-52 File Management Reference

RESULT CODES

FSpDelete

You can use the FSpDelete function to delete files and directories.

FUNCTION FSpDelete (spec: FSSpec): OSErr;

spec An FSSpec record specifying the file or directory to delete.

DESCRIPTION

The FSpDelete function removes a file or directory. If the specified target is a file, both

forks of the file are deleted. The file ID reference, if any, is removed.

A file must be closed before you can delete it. Similarly, a directory must be empty before

you can delete it. If you attempt to delete an open file or a nonempty directory,

FSpDelete returns the result code fBsyErr. FSpDelete also returns the result code

fBsyErr if the directory has an open working directory associated with it.

RESULT CODES

noErr 0 No error
dirFulErr –33 File directory full
dskFulErr –34 Disk is full
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 Directory not found or incomplete pathname
wPrErr –44 Hardware volume lock
vLckdErr –46 Software volume lock
dupFNErr –48 Duplicate filename and version
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access
afpObjectTypeErr –5025 A directory exists with that name

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
fBsyErr –47 File busy, directory not empty, or working directory

control block open
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access

C H A P T E R 1

Introduction to File Management

File Management Reference 1-53

Exchanging the Data in Two Files

The function FSpExchangeFiles allows you to exchange the data in two files.

FSpExchangeFiles

You can use the FSpExchangeFiles function to exchange the data stored in two files

on the same volume.

FUNCTION FSpExchangeFiles (source: FSSpec; dest: FSSpec): OSErr;

source The source file. The contents of this file and its file information are placed
in the file specified by the dest parameter.

dest The destination file. The contents of this file and its file information are
placed in the file specified by the source parameter.

DESCRIPTION

The FSpExchangeFiles function swaps the data in two files by changing the

information in the volume’s catalog and, if the files are open, in the file control blocks.

You should use FSpExchangeFiles when updating an existing file, so that the file ID

remains valid in case the file is being tracked through its file ID. The FSpExchangeFiles

function changes the fields in the catalog entries that record the location of the data and

the modification dates. It swaps both the data forks and the resource forks.

The FSpExchangeFiles function works on both open and closed files. If either file is

open, FSpExchangeFiles updates any file control blocks associated with the file.

Exchanging the contents of two files requires essentially the same access permissions as

opening both files for writing.

The files whose data is to be exchanged must both reside on the same volume. If they do

not, FSpExchangeFiles returns the result code diffVolErr.

RESULT CODES

noErr 0 No error
nsvErr –35 Volume not found
ioErr –36 I/O error
fnfErr –43 File not found
fLckdErr –45 File is locked
vLckdErr –46 Volume is locked or read-only
paramErr –50 Function not supported by volume
volOfflinErr –53 Volume is offline
wrgVolTypErr –123 Not an HFS volume
diffVolErr –1303 Files on different volumes
afpAccessDenied –5000 User does not have the correct access
afpObjectTypeErr –5025 Object is a directory, not a file
afpSameObjectErr –5038 Source and destination files are the same

C H A P T E R 1

Introduction to File Management

1-54 File Management Reference

Creating File System Specifications

The FSMakeFSSpec function allows you to create FSSpec records.

FSMakeFSSpec

You can use the FSMakeFSSpec function to initialize an FSSpec record to particular

values for a file or directory.

FUNCTION FSMakeFSSpec (vRefNum: Integer; dirID: LongInt;

fileName: Str255; VAR spec: FSSpec):

OSErr;

vRefNum A volume specification. This parameter can contain a volume reference
number, a working directory reference number, a drive number, or 0 (to
specify the default volume).

dirID A directory specification. This parameter usually specifies the parent
directory ID of the target object. If the directory is sufficiently specified by
either the vRefNum or fileName parameter, dirID can be set to 0. If you
explicitly specify dirID (that is, if it has any value other than 0), and if
vRefNum specifies a working directory reference number, dirID
overrides the directory ID included in vRefNum. If the fileName
parameter contains an empty string, FSMakeFSSpec creates an FSSpec
record for a directory specified by either the dirID or vRefNum
parameter.

fileName A full or partial pathname. If fileName specifies a full pathname,
FSMakeFSSpec ignores both the vRefNum and dirID parameters. A
partial pathname might identify only the final target, or it might include
one or more parent directory names. If fileName specifies a partial
pathname, then vRefNum, dirID, or both must be valid.

spec A file system specification to be filled in by FSMakeFSSpec.

DESCRIPTION

The FSMakeFSSpec function fills in the fields of the spec parameter using the

information contained in the other three parameters. Call FSMakeFSSpec whenever

you want to create an FSSpec record.

You can pass the input to FSMakeFSSpec in several ways. The chapter “File

Manager” in this book explains how FSMakeFSSpec interprets its input.

If the specified volume is mounted and the specified parent directory exists, but the

target file or directory doesn’t exist in that location, FSMakeFSSpec fills in the record

and then returns fnfErr instead of noErr. The record is valid, but it describes a target

that doesn’t exist. You can use the record for other operations, such as creating a file with

the FSpCreate function.

C H A P T E R 1

Introduction to File Management

File Management Reference 1-55

In addition to the result codes that follow, FSMakeFSSpec can return a number of other

File Manager error codes. If your application receives any result code other than noErr

or fnfErr, all fields of the resulting FSSpec record are set to 0.

RESULT CODES

Volume Access Routines

This section describes the high-level volume access routines. Unless your application has

very specialized needs, you should be able to manage all volume access using the

routines described in this section. In fact, most applications are likely to need only the

FlushVol function described in the next section, “Updating Volumes.”

When you call one of these routines, you specify a volume by a volume reference

number (which you can obtain, for example, by calling the GetVInfo function, or from

the reply record returned by the Standard File Package). You can also specify a volume

by name, but this is generally discouraged, because there is no guarantee that volume

names are unique.

Updating Volumes

When you close a file, you should call FlushVol to ensure that any changed contents of

the file are written to the volume.

FlushVol

You can use the FlushVol function to write the contents of the volume buffer and

update information about the volume.

FUNCTION FlushVol (volName: StringPtr; vRefNum: Integer): OSErr;

volName A pointer to the name of a mounted volume.

vRefNum A volume reference number, a working directory reference number, a
drive number, or 0 for the default volume.

DESCRIPTION

On the specified volume, the FlushVol function writes the contents of the associated

volume buffer and descriptive information about the volume (if they’ve changed since

the last time FlushVol was called). This information is written to the volume.

noErr 0 No error
nsvErr –35 Volume doesn’t exist
fnfErr –43 File or directory does not exist (FSSpec is still valid)

C H A P T E R 1

Introduction to File Management

1-56 File Management Reference

RESULT CODES

Obtaining Volume Information

You can get information about a volume by calling the GetVInfo or GetVRefNum

function.

GetVInfo

You can use the GetVInfo function to get information about a mounted volume.

FUNCTION GetVInfo (drvNum: Integer; volName: StringPtr;

VAR vRefNum: Integer;

VAR freeBytes: LongInt): OSErr;

drvNum The drive number of the volume for which information is requested.

volName On output, a pointer to the name of the specified volume.

vRefNum The volume reference number of the specified volume.

freeBytes The available space (in bytes) on the specified volume.

DESCRIPTION

The GetVInfo function returns the name, volume reference number, and available

space (in bytes) for the specified volume. You specify a volume by providing its drive

number in the drvNum parameter. You can pass 0 in the drvNum parameter to get

information about the default volume.

RESULT CODES

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad volume name
paramErr –50 No default volume
nsDrvErr –56 No such drive

noErr 0 No error
nsvErr –35 No such volume
paramErr –50 No default volume

C H A P T E R 1

Introduction to File Management

File Management Reference 1-57

GetVRefNum

You can use the GetVRefNum function to get a volume reference number from a file

reference number.

FUNCTION GetVRefNum (refNum: Integer; VAR vRefNum: Integer):

OSErr;

refNum The file reference number of an open file.

vRefNum On exit, the volume reference number of the volume containing the file
specified by refNum.

DESCRIPTION

The GetVRefNum function returns the volume reference number of the volume

containing the specified file. If you also want to determine the directory ID of the

specified file’s parent directory, call the PBGetFCBInfo function.

RESULT CODES

Application Launch File Routines

You can call GetAppParms to determine your application’s name and the reference

number of its resource file. When your application starts up, you can call

CountAppFiles to determine whether the user selected any documents to open or

print. If so, you can call GetAppFiles and ClrAppFiles to process the information

passed to your application by the Finder.

Note

If your application supports high-level events, you receive this
information from the Finder in an Open Documents or Print
Documents event. ◆

noErr 0 No error
rfNumErr –51 Bad reference number

C H A P T E R 1

Introduction to File Management

1-58 File Management Reference

GetAppParms

You can use the GetAppParms procedure to get information about the current

application and about files selected by the user for opening or printing.

PROCEDURE GetAppParms(VAR apName: Str255; VAR apRefNum: Integer;

 VAR apParam: Handle);

apName On output, the name of the calling application.

apRefNum On output, the reference number of the application’s resource file.

apParam On output, a handle to the Finder information about files to open or print.

DESCRIPTION

The GetAppParms procedure returns information about the current application. You can

call GetAppParms at application launch time to determine which files, if any, the user

has selected in the Finder for opening or printing. You can call GetAppParms at any

time to determine the current application’s name and the reference number of the

application’s resource fork.

The GetAppParms procedure returns the application’s name in the apName parameter

and the reference number of its resource fork in the apRefNum parameter. A handle to

the Finder information is returned in apParam. This information consists of a word that

encodes the message or action to be performed, a word that indicates how many files to

process, and a list of Finder information about each such file. The Finder information has

the structure of an AppFile record, except that the filename occupies only as many

bytes as are required to hold the name (padded to an even number of bytes, if

necessary). In general, it is easier to use the GetAppFiles procedure to access the

Finder information.

SPECIAL CONSIDERATIONS

If you simply want to determine the application’s resource file reference number, you

can call the Resource Manager function CurResFile when your application starts up.

If you need more extensive information about the application than GetAppParms

provides, you can use the Process Manager function GetCurrentProcess.

ASSEMBLY-LANGUAGE INFORMATION

You can get the application’s name, reference number, and handle to the Finder

information directly from the global variables CurApName, CurApRefNum, and

AppParmHandle.

C H A P T E R 1

Introduction to File Management

File Management Reference 1-59

CountAppFiles

You can use the CountAppFiles procedure to determine how many documents (if any)

the user has selected at application launch time for opening or printing.

PROCEDURE CountAppFiles (VAR message: Integer;

 VAR count: Integer);

message The action to be performed on the selected files.

count The number of files selected.

DESCRIPTION

The CountAppFiles procedure deciphers the Finder information passed to your

application and returns information about the files that were selected when your

application was started up. On exit, the count parameter contains the number of

selected files, and the message parameter contains an integer that indicates whether the

files are to be opened or printed. The message parameter contains one of these

constants:

CONST

appOpen = 0; {open the document(s)}

appPrint = 1; {print the document(s)}

GetAppFiles

You can use the GetAppFiles procedure to retrieve information about each file selected

at application startup for opening or printing.

PROCEDURE GetAppFiles (index: Integer; VAR theFile: AppFile);

index The index of the file whose information is returned.

theFile A structure containing the returned information.

DESCRIPTION

The GetAppFiles procedure returns information about a file that was selected when

your application was started up (as listed in the Finder information). The index

parameter indicates the file for which information should be returned; it must be

between 1 and the number returned by CountAppFiles, inclusive.

C H A P T E R 1

Introduction to File Management

1-60 File Management Reference

ClrAppFiles

You can use the ClrAppFiles procedure to notify the Finder that you have processed

the information about a file selected for opening or printing at application startup.

PROCEDURE ClrAppFiles (index: Integer);

index The index of the file whose information is to be cleared.

DESCRIPTION

The ClrAppFiles procedure changes the Finder information passed to your

application about the specified file so that the Finder knows you’ve processed the file.

The index parameter must be between 1 and the number returned by CountAppFiles,

inclusive. You should call ClrAppFiles for every document your application opens or

prints, so that the information returned by CountAppFiles and GetAppFiles is

always correct. The ClrAppFiles procedure sets the file type in the Finder information

to 0.

C H A P T E R 1

Introduction to File Management

Summary of File Management 1-61

Summary of File Management

Pascal Summary

Constants

CONST

{Gestalt constants}

gestaltFSAttr = 'fs '; {file system attributes selector}

gestaltHasFSSpecCalls = 1; {supports FSSpec records}

gestaltStandardFileAttr = 'stdf'; {Standard File attributes selector}

gestaltStandardFile58 = 0; {supports StandardPutFile etc.}

gestaltFindFolderAttr = 'fold'; {FindFolder attributes selector}

gestaltFindFolderPresent= 0; {FindFolder is present}

{access modes for opening files}

fsCurPerm = 0; {whatever permission is allowed}

fsRdPerm = 1; {read permission}

fsWrPerm = 2; {write permission}

fsRdWrPerm = 3; {exclusive read/write permission}

fsRdWrShPerm = 4; {shared read/write permission}

{file mark positioning modes}

fsAtMark = 0; {at current mark}

fsFromStart = 1; {set mark relative to beginning of file}

fsFromLEOF = 2; {set mark relative to logical end-of-file}

fsFromMark = 3; {set mark relative to current mark}

rdVerify = 64; {add to above for read-verify}

{messages from CountAppFiles}

appOpen = 0; {open the document(s)}

appPrint = 1; {print the document(s)}

C H A P T E R 1

Introduction to File Management

1-62 Summary of File Management

Data Types

File System Specification Record

TYPE FSSpec =

RECORD

vRefNum: Integer; {volume reference number}

parID: LongInt; {directory ID of parent directory}

name: Str63; {filename or directory name}

END;

FSSpecPtr = ^FSSpec;

FSSpecHandle = ^FSSpecPtr;

Standard File Reply Record

TYPE StandardFileReply=

RECORD

sfGood: Boolean; {TRUE if user did not cancel}

sfReplacing: Boolean; {TRUE if replacing file with same name}

sfType: OSType; {file type}

sfFile: FSSpec; {selected item}

sfScript: ScriptCode; {script of selected item's name}

sfFlags: Integer; {Finder flags of selected item}

sfIsFolder: Boolean; {selected item is a folder}

sfIsVolume: Boolean; {selected item is a volume}

sfReserved1: LongInt; {reserved}

sfReserved2: Integer; {reserved}

END;

Application Files Record

TYPE AppFile =

RECORD

vRefNum: Integer; {working directory reference number}

fType: OSType; {file type}

versNum: Integer; {version number; ignored}

fName: Str255; {filename}

END;

SFTypeList = ARRAY[0..3] OF OSType;

FileFilterProcPtr = ProcPtr; {file filter function}

C H A P T E R 1

Introduction to File Management

Summary of File Management 1-63

File Specification Routines

Opening Files

PROCEDURE StandardGetFile (fileFilter: FileFilterProcPtr;
numTypes: Integer; typeList: SFTypeList;
VAR reply: StandardFileReply);

Saving Files

PROCEDURE StandardPutFile (prompt: Str255; defaultName: Str255;
VAR reply: StandardFileReply);

File Access Routines

Reading, Writing, and Closing Files

FUNCTION FSRead (refNum: Integer; VAR count: LongInt;
buffPtr: Ptr): OSErr;

FUNCTION FSWrite (refNum: Integer; VAR count: LongInt;
buffPtr: Ptr): OSErr;

FUNCTION FSClose (refNum: Integer): OSErr;

Manipulating the File Mark

FUNCTION GetFPos (refNum: Integer; VAR filePos: LongInt): OSErr;

FUNCTION SetFPos (refNum: Integer; posMode: Integer;
posOff: LongInt): OSErr;

Manipulating the End-of-File

FUNCTION GetEOF (refNum: Integer; VAR logEOF: LongInt): OSErr;

FUNCTION SetEOF (refNum: Integer; logEOF: LongInt): OSErr;

File and Directory Manipulation Routines

Opening, Creating, and Deleting Files

FUNCTION FSpOpenDF (spec: FSSpec; permission: SignedByte;
VAR refNum: Integer): OSErr;

FUNCTION FSpCreate (spec: FSSpec; creator: OSType;
fileType: OSType; scriptTag: ScriptCode):
OSErr;

FUNCTION FSpDelete (spec: FSSpec): OSErr;

C H A P T E R 1

Introduction to File Management

1-64 Summary of File Management

Exchanging the Data in Two Files

FUNCTION FSpExchangeFiles (source: FSSpec; dest: FSSpec): OSErr;

Creating File System Specifications

FUNCTION FSMakeFSSpec (vRefNum: Integer; dirID: LongInt;
fileName: Str255; VAR spec: FSSpec): OSErr;

Volume Access Routines

Updating Volumes

FUNCTION FlushVol (volName: StringPtr; vRefNum: Integer): OSErr;

Obtaining Volume Information

FUNCTION GetVInfo (drvNum: Integer; volName: StringPtr;
VAR vRefNum: Integer; VAR freeBytes: LongInt):
OSErr;

FUNCTION GetVRefNum (refNum: Integer; VAR vRefNum: Integer): OSErr;

Application Launch File Routines

PROCEDURE GetAppParms (VAR apName: Str255; VAR apRefNum: Integer;
VAR apParam: Handle);

PROCEDURE CountAppFiles (VAR message: Integer; VAR count: Integer);

PROCEDURE GetAppFiles (index: Integer; VAR theFile: AppFile);

PROCEDURE ClrAppFiles (index: Integer);

C Summary

Constants

/*Gestalt constants*/

#define gestaltFSAttr 'fs ' /*file system attributes selector*/

#define gestaltFullExtFSDispatching 0 /*exports HFSDispatch traps*/

#define gestaltHasFSSpecCalls 1 /*supports FSSpec records*/

#define gestaltFindFolderAttr 'fold' /*FindFolder attributes selector*/

#define gestaltFindFolderPresent 0 /*FindFolder is present*/

C H A P T E R 1

Introduction to File Management

Summary of File Management 1-65

/*Gestalt Standard File attributes selector and reply*/

#define gestaltStandardFileAttr 'stdf'

#define gestaltStandardFile58 0

/*values for requesting file read/write permissions*/

enum {

fsCurPerm = 0, /*whatever permission is allowed*/

fsRdPerm = 1, /*read permission*/

fsWrPerm = 2, /*write permission*/

fsRdWrPerm = 3, /*exclusive read/write permission*/

fsRdWrShPerm = 4}; /*shared read/write permission*/

/*file mark positioning modes*/

enum {

fsAtMark = 0, /*at current mark}

fsFromStart = 1, /*set mark relative to beginning of file*/

fsFromLEOF = 2, /*set mark relative to logical end-of-file*/

fsFromMark = 3, /*set mark relative to current mark*/

rdVerify = 64}; /*add to above for read-verify*/

/*messages from CountAppFiles*/

enum {

appOpen = 0, /*open the document(s)*/

appPrint = 1}; /*print the document(s)*/

Data Types

File System Specification Record

struct FSSpec { /*file system specification*/

short vRefNum; /*volume reference number*/

long parID; /*directory ID of parent directory*/

Str63 name; /*filename or directory name*/

};

typedef struct FSSpec FSSpec;

typedef FSSpec *FSSpecPtr;

typedef FSSpecPtr *FSSpecHandle;

C H A P T E R 1

Introduction to File Management

1-66 Summary of File Management

Standard File Reply Record

struct StandardFileReply { /*enhanced standard file reply record*/

Boolean sfGood; /*TRUE if user did not cancel*/

Boolean sfReplacing;/*TRUE if replacing file with same name*/

OSType sfType; /*file type*/

FSSpec sfFile; /*selected file, folder, or volume*/

ScriptCode sfScript; /*script of file, folder, or volume name*/

short sfFlags; /*Finder flags of selected item*/

Boolean sfIsFolder; /*selected item is a folder*/

Boolean sfIsVolume; /*selected item is a volume*/

long sfReserved1;/*reserved*/

short sfReserved2;/*reserved*/

};

typedef struct StandardFileReply StandardFileReply;

Application Files Record

struct AppFile {

short vRefNum; /*working directory reference number*/

OSType fType; /*file type*/

short versNum; /*version number; ignored*/

Str255 fName; /*filename*/

END;

typedef struct AppFile AppFile;

Standard File Type List

typedef OSType SFTypeList[4];

Callback Routine Pointer Types

/*file filter function*/

typedef pascal Boolean (*FileFilterProcPtr)

(ParmBlkPtr PB);

File Specification Routines

Opening Files

pascal void StandardGetFile (const Str255 prompt,
FileFilterProcPtr fileFilter,
short numTypes, SFTypeList typeList,
StandardFileReply *reply);

C H A P T E R 1

Introduction to File Management

Summary of File Management 1-67

Saving Files

pascal void StandardPutFile (const Str255 prompt, const Str255 defaultName,
StandardFileReply *reply);

File Access Routines

Reading, Writing, and Closing Files

pascal OSErr FSRead (short refNum, long *count, Ptr buffPtr);

pascal OSErr FSWrite (short refNum, long *count, Ptr buffPtr);

pascal OSErr FSClose (short refNum);

Manipulating the File Mark

pascal OSErr GetFPos (short refNum, long *filePos);

pascal OSErr SetFPos (short refNum, short posMode, long posOff);

Manipulating the End-of-File

pascal OSErr GetEOF (short refNum, long *logEOF);

pascal OSErr SetEOF (short refNum, long logEOF);

File and Directory Manipulation Routines

Opening, Creating, and Deleting Files

pascal OSErr FSpOpenDF (const FSSpec *spec, char permission,
short *refNum);

pascal OSErr FSpCreate (const FSSpec *spec, OSType creator,
OSType fileType, ScriptCode scriptTag);

pascal OSErr FSpDelete (const FSSpec *spec);

Exchanging the Data in Two Files

pascal OSErr FSpExchangeFiles

(const FSSpec *source, const FSSpec *dest);

Creating File System Specifications

pascal OSErr FSMakeFSSpec (short vRefNum, long dirID,
ConstStr255Param fileName, FSSpecPtr spec);

C H A P T E R 1

Introduction to File Management

1-68 Summary of File Management

Volume Access Routines

Updating Volumes

pascal OSErr FlushVol (StringPtr volName, short vRefNum);

Obtaining Volume Information

pascal OSErr GetVInfo (short drvNum, StringPtr volName,
short *vRefNum, long *freeBytes);

pascal OSErr GetVRefNum (short refNum, short *vRefNum);

Application Launch File Routines

pascal void GetAppParms (Str255 apName, short *apRefNum,
Handle *apParam);

pascal void CountAppFiles (short *message, short *count);

pascal void GetAppFiles (short index, AppFile *theFile);

pascal void ClrAppFiles (short index);

Assembly-Language Summary

Global Variables

AppParmHandle long Handle to Finder information.

CurApName 32 bytes Name of current application (length byte followed by up to
31 characters).

CurApRefNum word Reference number of current application’s resource file.

C H A P T E R 1

Introduction to File Management

Summary of File Management 1-69

Result Codes
noErr 0 No error
dirFulErr –33 File directory full
dskFulErr –34 All allocation blocks on the volume are full
nsvErr –35 Volume not found
ioErr –36 I/O error
bdNamErr –37 Bad filename or volume name
fnOpnErr –38 File not open
eofErr –39 Logical end-of-file reached
posErr –40 Attempt to position mark before start of file
tmfoErr –42 Too many files open
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
fLckdErr –45 File locked
vLckdErr –46 Software volume lock
fBsyErr –47 File is busy; one or more files are open; directory not

empty or working directory control block is open
dupFNErr –48 A file with the specified name and version number

already exists
opWrErr –49 File already open for writing
paramErr –50 Parameter error
rfNumErr –51 Reference number specifies nonexistent access path
gfpErr –52 Error during GetFPos
volOfflinErr –53 Volume is offline
permErr –54 Attempt to open locked file for writing
nsDrvErr –56 Specified drive number doesn’t match any number in

the drive queue
wrPermErr –61 Read/write permission doesn’t allow writing
dirNFErr –120 Directory not found or incomplete pathname
wrgVolTypErr –123 Not an HFS volume
notAFileErr –1302 Specified file is a directory
diffVolErr –1303 Files are on different volumes
sameFileErr –1306 Source and destination files are the same
afpAccessDenied –5000 User does not have the correct access to the file
afpObjectTypeErr –5025 Object is a directory, not a file; a directory exists with

that name
afpSameObjectErr –5038 Source and destination files are the same

Contents 2-1

C H A P T E R 2

Contents

File Manager

About the File Manager 2-5

File Manipulation 2-7

Directory Manipulation 2-10

Volume Manipulation 2-11

Volume Searching 2-13

Shared Environments 2-14

Shared File Access Permissions 2-15

Directory Access Privileges 2-18

Remote Volume Mounting 2-20

Privilege Information in Foreign File Systems 2-20

File ID Reference Routines 2-23

Identifying Files, Directories, and Volumes 2-23

File System Specifications 2-24

File IDs 2-24

Directory IDs 2-25

Volume Reference Numbers 2-26

Working Directory Reference Numbers 2-26

Names and Pathnames 2-27

HFS Specifications 2-28

Search Paths 2-31

Using the File Manager 2-32

Determining the Features of the File Manager 2-32

Creating File System Specification Records 2-34

Manipulating the Default Volume and Directory 2-35

Deleting Files and File Forks 2-37

Searching a Volume 2-38

Constructing Full Pathnames 2-44

Determining the Amount of Free Space on a Volume 2-46

Sharing Volumes and Directories 2-48

Locking and Unlocking File Ranges 2-50

C H A P T E R 2

2-2 Contents

Data Organization on Volumes 2-52

Disk and Volume Organization 2-54

Boot Blocks 2-57

Master Directory Blocks 2-59

Volume Bitmaps 2-62

B*-Trees 2-63

Nodes 2-64

Node Records 2-66

Header Nodes 2-67

Map Nodes 2-69

Index Nodes 2-69

Leaf Nodes 2-70

Catalog Files 2-70

Catalog File Keys 2-71

Catalog File Data Records 2-72

Extents Overflow Files 2-74

Data Organization in Memory 2-76

The File I/O Queue 2-77

Volume Control Blocks 2-77

File Control Blocks 2-81

B*-Tree Control Blocks 2-83

The Drive Queue 2-84

File Manager Reference 2-86

Data Structures 2-86

File System Specification Record 2-86

Basic File Manager Parameter Block 2-87

HFS Parameter Block 2-91

Catalog Information Parameter Blocks 2-100

Catalog Position Records 2-104

Catalog Move Parameter Blocks 2-104

Working Directory Parameter Blocks 2-106

File Control Block Parameter Blocks 2-107

Volume Attributes Buffer 2-109

Volume Mounting Information Records 2-110

High-Level File Access Routines 2-112

Reading, Writing, and Closing Files 2-112

Manipulating the File Mark 2-115

Manipulating the End-of-File 2-116

Allocating File Blocks 2-118

Low-Level File Access Routines 2-120

Reading, Writing, and Closing Files 2-121

Manipulating the File Mark 2-125

Manipulating the End-of-File 2-126

Allocating File Blocks 2-128

Updating Files 2-131

High-Level Volume Access Routines 2-132

Unmounting Volumes 2-132

C H A P T E R 2

Contents 2-3

Updating Volumes 2-133

Manipulating the Default Volume 2-134

Obtaining Volume Information 2-137

Low-Level Volume Access Routines 2-138

Mounting and Unmounting Volumes 2-139

Updating Volumes 2-142

Obtaining Volume Information 2-144

Manipulating the Default Volume 2-150

File System Specification Routines 2-154

Opening Files 2-154

Creating and Deleting Files and Directories 2-156

Accessing Information About Files and Directories 2-159

Moving Files or Directories 2-163

Exchanging the Data in Two Files 2-165

Creating File System Specifications 2-166

High-Level HFS Routines 2-169

Opening Files 2-169

Creating and Deleting Files and Directories 2-172

Accessing Information About Files and Directories 2-175

Moving Files or Directories 2-179

Maintaining Working Directories 2-180

Low-Level HFS Routines 2-182

Opening Files 2-183

Creating and Deleting Files and Directories 2-186

Accessing Information About Files and Directories 2-190

Moving Files or Directories 2-199

Maintaining Working Directories 2-201

Searching a Catalog 2-204

Exchanging the Data in Two Files 2-206

Shared Environment Routines 2-208

Opening Files While Denying Access 2-208

Locking and Unlocking File Ranges 2-211

Manipulating Share Points 2-213

Controlling Directory Access 2-217

Mounting Volumes 2-219

Controlling Login Access 2-222

Copying and Moving Files 2-226

File ID Routines 2-229

Resolving File ID References 2-229

Creating and Deleting File ID References 2-230

Foreign File System Routines 2-232

Utility Routines 2-235

Obtaining Queue Headers 2-235

Adding a Drive 2-236

Obtaining File Control Block Information 2-236

Application-Defined Routines 2-238

Completion Routines 2-238

C H A P T E R 2

2-4 Contents

Summary of the File Manager 2-240

Pascal Summary 2-240

Constants 2-240

Data Types 2-242

Internal Data Types 2-251

High-Level File Access Routines 2-253

Low-Level File Access Routines 2-254

High-Level Volume Access Routines 2-255

Low-Level Volume Access Routines 2-255

File System Specification Routines 2-256

High-Level HFS Routines 2-257

Low-Level HFS Routines 2-259

Shared Environment Routines 2-261

File ID Routines 2-263

Foreign File System Routines 2-263

Utility Routines 2-264

Application-Defined Routine 2-264

C Summary 2-264

Constants 2-264

Data Types 2-267

Internal Data Types 2-278

High-Level File Access Routines 2-280

Low-Level File Access Routines 2-280

High-Level Volume Access Routines 2-281

Low-Level Volume Access Routines 2-282

File System Specification Routines 2-283

High-Level HFS Routines 2-284

Low-Level HFS Routines 2-285

Shared Environment Routines 2-287

File ID Routines 2-290

Foreign File System Routines 2-290

Utility Routines 2-291

Application-Defined Routine 2-291

Assembly-Language Summary 2-291

Constants 2-291

Data Structures 2-292

Trap Macros 2-299

Global Variables 2-301

Result Codes 2-301

C H A P T E R 2

About the File Manager 2-5

File Manager

This chapter describes how your application can use the File Manager to store and access

data in files or to manipulate files, directories, and volumes. It also provides a complete

description of all File Manager routines, data types, and constants.

You need to read the information in this chapter if you wish to use File Manager routines

other than those described in the chapter “Introduction to File Management” earlier in

this book. That chapter shows how to use the File Manager, the Standard File Package,

and other system software components to handle the typical File menu commands and

perform other common file-manipulation operations. This chapter addresses a number

of other important file-related issues, including

■ using the low-level File Manager routines

■ locking and unlocking byte ranges in shared files

■ searching a volume for files or directories satisfying certain criteria

■ obtaining information about files, directories, and volumes

This chapter also addresses some advanced topics of interest primarily to designers

of very specialized applications or file-system utility programs. These advanced

topics include

■ how the File Manager organizes file and directory data on disk

■ how the File Manager organizes information in memory

To use this chapter, you should already be familiar with the information presented in the

chapter “Introduction to File Management” earlier in this book.

This chapter begins with a general introduction to the File Manager and the services it

provides. Then it describes

■ ways of identifying files, directories, and volumes

■ file access permissions

■ directory access privileges

■ running in a shared environment

About the File Manager

The File Manager is the part of the Macintosh Operating System that manages the

organization, reading, and writing of data located on physical data storage devices

such as disk drives. This data includes the data in documents as well as other

collections of data used to maintain the hierarchical file system (HFS) and other system

software services. To accomplish these tasks, the File Manager interacts with many

other components of the system software. For example, the Resource Manager uses

File Manager routines when it needs to read and write resource data. Similarly, the File

Manager calls the Device Manager to perform the actual reading and writing of data

on a physical data storage device. In general, you’ll use the Resource Manager to read

and write data in a file’s resource fork and the File Manager to read and write data in

a file’s data fork. You’ll also use the File Manager to perform operations on directories

and volumes.

C H A P T E R 2

File Manager

2-6 About the File Manager

The File Manager provides a large number of routines for performing various operations

on files, directories, and volumes. The requirements of your application will dictate

which of these routines you will need to use. Many applications simply need to open

files, read and write the data in those files, and then close the files. Other applications

might provide more capabilities, such as the ability to copy a file or move a file to

another directory. A few file-system utilities perform even more extensive file operations

and hence need to use some of the advanced routines provided by the File Manager. For

example, a disk scavenger might need to make a byte-by-byte search through a volume

to find pieces of a deleted file.

You can often use one of several File Manager routines to accomplish a particular task.

This is because many of the File Manager routines are provided in two different forms:

high level and low level. The low-level routines generally provide the greatest control

over the requested task; they are identified by the prefixes PB and PBH, indicating that

they take the address of a parameter block as a parameter. The high-level routines are

always defined in terms of low-level routines; they are identified by prefixes such as FSp

or H, indicating how you identify files or directories using those routines, or by no

special prefix at all.

You pass information to a high-level routine using the routine’s parameters. A high-level

routine has as many parameters as are necessary to pass the information it requires.

You pass information to a low-level routine by filling in fields in a parameter block and

then passing the address of the parameter block to the routine. In all cases, a low-level

routine uses more fields in the parameter block than there are parameters in the

corresponding high-level routine. As a result, you can use those low-level routines to

perform more advanced operations or to provide more extensive information than you

can with the corresponding high-level routines. This is the principal reason you might

choose to use a low-level routine instead of its corresponding high-level routine.

IMPORTANT

If you use the low-level File Manager routines, be sure to clear all
unused fields of the parameter block. ▲

Low-level routines also accept a parameter indicating whether you want the routine to

be executed synchronously or asynchronously. If you request synchronous execution,

control does not return to your application until the routine has been executed. This

allows you to inspect the routine’s result code to see whether the routine was

successfully completed. If so, your application can continue by performing other

operations that depend on the successful completion of that routine.

If you request asynchronous execution, an I/O request is put into the file I/O queue and

control returns to your application immediately—possibly even before the actual I/O

operation is completed. The File Manager takes requests from the queue one at a time

and processes them; meanwhile, your application is free to work on other things.

Routines that are executed asynchronously return control to your application with the

result code noErr as soon as the call is placed in the file I/O queue. Return of control

does not signal successful completion of the call, but simply successful queuing of the

request. To determine when the call is actually completed, you can poll the ioResult

field of the parameter block. This field is set to a positive number when the call is made

C H A P T E R 2

File Manager

About the File Manager 2-7

and set to the actual result code when the call is completed. If necessary, you can also

install a completion routine that is executed when the asynchronous call is completed.

See “Completion Routines” on page 2-238 for details about completion routines.

Note

Although you can request asynchronous execution for most low-level
routines, the device driver for the device on which the target file,
directory, or volume resides might not support asynchronous
operations. For example, the current implementation of the SCSI
Manager allows synchronous execution only. The Sony disk driver and
AppleShare server software do, however, support asynchronous
operation. ◆

The following sections describe the various capabilities of the File Manager. For full

details on any of the routines mentioned in these sections, see the descriptions given in

“File Manager Reference” beginning on page 2-86.

File Manipulation
The File Manager provides a number of routines that allow you to manipulate files. You

can open a file fork, read and write the data in it, adjust its logical end-of-file, set the file

mark, allocate blocks to a file, and close a file.

To manipulate the data in a file, you first need to open the file. You can open a file using

one of several routines, depending on whether you want to use low-level or high-level

routines and how you identify the file to open. Table 2-1 lists the file-opening routines.

All the high-level FSSpec routines require you to specify a file using a file system

specification record. All the HFS routines, whether high or low level, require you to

specify a file by its volume, directory, and name.

No matter which routine you use to open a file, you need to specify a file permission

that governs the kind of access your application can have to that file. You can specify one

of these constants:

CONST

fsCurPerm = 0; {whatever permission is allowed}

fsRdPerm = 1; {read permission}

Table 2-1 Routines for opening file forks

FSSpec HFS High-Level HFS Low-Level Description

FSpOpenDF HOpenDF PBHOpenDF Open a file’s data fork.

FSpOpenRF HOpenRF PBHOpenRF Open a file’s resource fork.

HOpen PBHOpen Open a driver or file data fork.

C H A P T E R 2

File Manager

2-8 About the File Manager

fsWrPerm = 2; {write permission}

fsRdWrPerm = 3; {exclusive read/write permission}

fsRdWrShPerm = 4; {shared read/write permission}

Use the constant fsCurPerm to request whatever permission is currently allowed. If

write access is unavailable (because the file is locked or because the file is already open

with write access), then read permission is granted. Otherwise, read/write permission

is granted.

Use the constant fsRdPerm to request permission to read the file. Similarly, use the

constant fsWrPerm to request permission to write to the file. If write permission is

granted, no other access paths are granted write permission. Note, however, that the File

Manager does not support write-only access to a file. As a result, fsWrPerm is

synonymous with fsRdWrPerm.

There are two types of read/write permission—exclusive and shared. Often you want

exclusive read/write permission, so that users can safely read and alter portions of a file.

If your application requests and is granted exclusive read/write permission, no users are

granted permission to write to the file; other users may, however, be granted permission

to read the file.

Shared read/write permission allows multiple access paths for writing and reading. It is

safe to have multiple read/write paths open to a file only if there is some way of locking

a portion of the file before writing to that portion of the file. You can use the File

Manager functions PBLockRange and PBUnlockRange to lock and unlock ranges of

bytes in a file. These functions, however, are supported only on remotely mounted

volumes or on local volumes that are sharable on the network. As a result, you should

request shared read/write permission only if range locking is available. See “Shared File

Access Permissions” on page 2-15 for details on permissions in shared environments.

Note

Don’t assume that successfully opening a file for writing ensures that
you can actually write data to the file. The File Manager allows you to
open with write permission a file located on a locked volume, and you
won’t receive an error until you first try to write data to the file. To be
safe, you can call the PBHGetVInfo function to make sure that the
volume is writable. ◆

When you successfully open a file fork, you receive a file reference number that

uniquely identifies the open file. You can pass that number to the File Manager routines

that allow you to manipulate open files. Table 2-2 lists the routines that operate on

open files.

The File Manager provides a number of routines that allow you to operate on files that

are closed. You can create, delete, get and set information, and lock and unlock files.

You can also move files within a volume and exchange data in two files. Table 2-3 lists

these routines.

C H A P T E R 2

File Manager

About the File Manager 2-9

Note

You can use the functions listed in Table 2-2 on open files as well, except
for those functions that create or delete file forks. ◆

Table 2-2 Routines for operating on open file forks

High-Level Low-Level Description

FSRead PBRead Read bytes from an open file fork.

FSWrite PBWrite Write bytes to an open file fork.

FSClose PBClose Close an open file fork.

GetFPos PBGetFPos Get the position of the file mark.

SetFPos PBSetFPos Set the position of the file mark.

GetEOF PBGetEOF Get the current logical end-of-file.

SetEOF PBSetEOF Set the current logical end-of-file.

Allocate PBAllocate Add allocation blocks to a file fork.

AllocContig PBAllocContig Add contiguous allocation blocks to a file fork.

PBFlushFile Update the disk contents of a file fork.

GetVRefNum Get volume reference number of an open file.

Table 2-3 Routines for operating on closed files

FSSpec HFS High-Level HFS Low-Level Description

FSpCreate HCreate PBHCreate Create both forks of a
new file.

FSpDelete HDelete PBHDelete Delete both forks of a file.

FSpGetFInfo HGetFInfo PBHGetFInfo Get a file’s Finder
information.

FSpSetFInfo HSetFInfo PBHSetFInfo Set a file’s Finder information.

FSpSetFLock HSetFLock PBHSetFLock Lock a file.

FSpRstFLock HRstFLock PBHRstFLock Unlock a file.

FSpCatMove CatMove PBCatMove Move a file or directory
within a volume.

FSpRename HRename PBHRename Rename a file or directory.

PBGetCatInfo Get information about a file
or directory.

PBSetCatInfo Set information about a file
or directory.

C H A P T E R 2

File Manager

2-10 About the File Manager

You can exchange the data in two files using the FSpExchangeFiles and

PBExchangeFiles functions. If you need to create a file system specification record,

you can use the FSMakeFSSpec or PBMakeFSSpec function.

Directory Manipulation
The File Manager provides a number of routines that allow you to manipulate

directories. For example, you can create and delete directories, get information about a

directory, and move and rename directories. The directory manipulation routines are

listed in Table 2-4.

The File Manager includes a number of routines that allow you to manipulate working

directories. See Table 2-5. Most applications do not need to use working directories.

Table 2-4 Routines for operating on directories

FSSpec HFS High-Level HFS Low-Level Description

FSpDirCreat
e

DirCreate PBDirCreate Create a directory.

FSpDelete HDelete PBHDelete Delete a directory.

FSpGetFInfo HGetFInfo PBHGetFInfo Get Finder information for
a directory.

FSpSetFInfo HSetFInfo PBHSetFInfo Set Finder information for
a directory.

FSpSetFLock HSetFLock PBHSetFLock Lock a directory.

FSpRstFLock HRstFLock PBHRstFLock Unlock a directory.

FSpCatMove CatMove PBCatMove Move a file or directory within
a volume.

FSpRename HRename PBHRename Rename a file or directory.

PBGetCatInfo Get information about a file
or directory.

PBSetCatInfo Set information about a file
or directory.

C H A P T E R 2

File Manager

About the File Manager 2-11

Volume Manipulation
The File Manager provides a number of routines that allow you to manipulate volumes.

For example, you can obtain information about a mounted volume, update the

information on a volume, unmount a mounted volume or place it offline, and so forth.

Most applications don’t need explicit access to volumes. The Standard File Package and

the Finder handle most events related to the insertion and ejection of disks.

When the Event Manager function WaitNextEvent (or GetNextEvent) receives a

disk-inserted event, it calls the Desk Manager function SystemEvent. The Desk

Manager in turn calls the File Manager function PBMountVol, which attempts to mount

the volume on the disk. The result of the PBMountVol call is put into the high-order

word of the event message, and the drive number is put into its low-order word. If the

result code indicates that an error occurred, you need to call the Disk Initialization

Manager routine DIBadMount to allow the user to initialize or eject the volume. For

details, see the chapter “Disk Initialization Manager” in this book.

After a volume has been mounted, your application can call GetVInfo, which returns

the name, the amount of unused space, and the volume reference number. Given a file

reference number, you can get the volume reference number of the volume containing

that file by calling either GetVRefNum or GetFCBInfo.

You can unmount or place offline any volumes that aren’t currently being used. To

unmount a volume, call UnmountVol, which flushes a volume (by calling FlushVol)

and releases all of the memory it uses. To place a volume offline, call PBOffLine, which

flushes a volume and releases all of the memory used for it except for the volume control

block. The File Manager places offline volumes online as needed, but your application

must remount any unmounted volumes it wants to access. The File Manager itself may

place volumes offline during its normal operation.

Note

If you make a call to an offline volume, the File Manager displays the
disk switch dialog box and waits for the user to reinsert the disk
containing the volume. When the user inserts the required disk, the File
Manager mounts the volume and then reissues your original call. To
avoid presenting the user with numerous disk switch dialog boxes, you
might need to check that a volume is online before attempting to access
data on it. ◆

Table 2-5 Routines for manipulating working directories

High-Level Low-Level Description

OpenWD PBOpenWD Open a working directory.

CloseWD PBCloseWD Close a working directory.

GetWDInfo PBGetWDInfo Get information about a working directory.

C H A P T E R 2

File Manager

2-12 About the File Manager

To protect against data loss due to power interruption or unexpected disk ejection, you

should periodically call FlushVol (probably after each time you close a file), which

writes the contents of the volume buffer and all access path buffers (if any) to the volume

and updates the descriptive information contained on the volume.

Whenever your application is finished with a disk, or when the user chooses Eject from a

menu, call the Eject function. This function calls FlushVol, places the volume offline,

and then physically ejects the volume from its drive.

If you would like all File Manager calls to apply to a particular volume, specify it as the

default volume. You can use the HGetVol (or GetVol) function to determine the name

and volume reference number of the default volume, and the SetVol function to make

any mounted volume the default.

Normally, volume initialization and naming are handled by the Disk Initialization

Manager. If you want to initialize a volume explicitly or erase all files from a volume,

you can call the Disk Initialization Manager directly. When you want to change the name

of a volume, call the HRename function.

Table 2-6 summarizes the volume-manipulation routines. Most of these routines require

you to specify a volume either by name or by volume reference number.

Table 2-6 Routines for operating on volumes

High-Level Low-Level Description

PBMountVol Mount a volume.

UnmountVol PBUnmountVol Unmount a volume.

Eject PBEject Eject a volume.

PBOffLine Place a volume offline.

FlushVol PBFlushVol Update a volume.

GetVol PBGetVol Get the default volume.

HGetVol PBHGetVol Get the default volume.

SetVol PBSetVol Set the default volume.

HSetVol PBHSetVol Set the default volume.

GetVInfo PBHGetVInfo Get information about a volume.

PBSetVInfo Set information about a volume.

PBHGetVolParms Determine capabilities of a volume.

PBCatSearch Search a volume for files or directories
satisfying certain criteria.

C H A P T E R 2

File Manager

About the File Manager 2-13

Volume Searching
The File Manager provides several routines that you can use to search a volume for files

or directories having specific characteristics. For example, you can search for all files

with modification dates of two days ago or less or all directories with the string “Temp”

in their names.

In general, you should avoid searching entire volumes, because a search of large

volumes can consume significant amounts of time. Suppose you are looking for a

particular file (for example, a dictionary file against which your application needs to

check the spelling of a document). In this case, you can save time and increase the

chances of finding the correct file by storing and later resolving an alias record that

describes the desired file. See the chapter “Alias Manager” in this book for details on

using alias records.

Alternatively, suppose you need to find the location of a standard system directory, such

as the Preferences folder or the Temporary Items folder. To perform this search most

efficiently, you should use the FindFolder function. See the chapter “Finder Interface”

in Inside Macintosh: Macintosh Toolbox Essentials for details.

In some cases, however, you do need to search volumes. For instance, a backup utility

needs to search an entire volume to find which files and directories, if any, might need to

be backed up. In these cases, you can choose either of two general search strategies: you

can search the volume’s catalog by calling the PBCatSearch function, or you can use a

recursive, indexed search by calling the PBGetCatInfo function (see Table 2-2).

Using the PBCatSearch function is the fastest and most reliable way to search the

catalog file of an HFS volume for files and directories satisfying certain criteria. The

PBCatSearch function returns a list of FSSpec records describing the files or

directories that match the criteria specified by your application.

However, PBCatSearch is not available on all volumes or in all versions of the

File Manager. See “Determining the Features of the File Manager” on page 2-32

for instructions on how to determine whether the system software and the target

volume both support the PBCatSearch function.

Note

The PBCatSearch function is available on all volumes that support the
AppleTalk Filing Protocol (AFP) version 2.1. This includes volumes and
directories shared using the file sharing software introduced in system
software version 7.0 and using the AppleShare 3.0 file server software. ◆

Table 2-7 Routines for manipulating working directories

Routine Description

PBCatSearch Search a volume’s catalog file for files or directories.

PBGetCatInfo Get information about a single catalog file entry.

C H A P T E R 2

File Manager

2-14 About the File Manager

In environments where PBCatSearch is not available, you’ll need to do a search that

recursively descends the directory hierarchy and reads through the catalog entries of all

files and directories located in each directory in that hierarchy. You can do this by making

indexed calls to the PBGetCatInfo function, which is supported by all system software

versions and by all volumes. However, using this recursive, indexed search method is

usually significantly slower than using the PBCatSearch function. (For example, a

recursive, indexed search that takes over 6 minutes might take about 20 seconds using

PBCatSearch.)

See “Searching a Volume” beginning on page 2-38 for examples of using both

PBCatSearch and PBGetCatInfo to search a volume for files and directories.

Shared Environments
Any operating environment that supports multiple users and multiple access to data or

applications is known as a shared environment. A shared environment can be a number

of workstations attached to a network as well as a single workstation executing a

multi-user operating system such as A/UX.

The File Manager supports access both to locally mounted volumes and to volumes

located on devices attached to remote machines on a network. For example, AppleShare,

Apple’s file-server application, allows users to share data, applications, and disk storage

over a network. System software version 7.0 introduced File Sharing, a local version of

AppleShare that allows users to make some or all of the files on a volume available over

the network. To do so, a user establishes a volume or directory as a share point, making

it available for use by registered users or guests on the network.

It is a virtual certainty that some users will run your application in a shared environment.

The File Manager, Chooser, and other system software components cooperate to make

access to remote volumes largely transparent to your application. As a result, most

applications do not need to accommodate shared environments explicitly. You can read

and write files, for instance, regardless of whether they are located on a local or a remote

volume.

If your application performs certain operations on files, however, you might be able to

save considerable time by using special shared environment routines. Suppose, for

example, that you want to copy a file to another directory on a volume. In the general

case, you handle this by reading a buffer of data from the source file and then writing it to

the destination file. If the source and destination volumes are remote, however, this

technique might involve the copying of a lot of data over the network. To optimize remote

file copying, the File Manager provides the PBHCopyFile function, which copies a

remote file without sending the data across the network. Similarly, the PBHMoveRename

function allows you to move and optionally rename a file located on a remote volume.

The File Manager provides routines that allow you to control other aspects of a shared

environment, including

■ providing multiple users with shared read/write access to files

■ locking and unlocking byte ranges within a file to ensure exclusive access to data
during updates

C H A P T E R 2

File Manager

About the File Manager 2-15

■ enabling and disabling sharing on local volumes and directories

■ getting and setting access privileges for directories

■ determining volume mounting and login information so that any volume can be
unmounted and remounted easily

Table 2-8 lists the File Manager routines that you can use in a shared environment. Note

that all of these are low-level routines.

The following sections describe the capabilities provided by these routines.

Shared File Access Permissions

In a shared environment, files can be shared at a file or subfile level. At a file level, a

project schedule could be read by many users simultaneously but updated by only one

user at a time. At a subfile level, different records of a data base file could be updated by

several users at the same time.

Table 2-8 Shared environment routines

Routine Description

PBHOpenDeny Open a file’s data fork using the access deny modes.

PBHOpenRFDeny Open a file’s resource fork using the access deny modes.

PBLockRange Lock a portion of a shared file.

PBUnlockRange Unlock a previously locked portion of a shared file.

PBShare Establish a volume or directory as a share point.

PBUnshare Remove a share point from a shared environment.

PBGetUGEntry Get a list of users and groups on the local file server.

PBHGetDirAccess Get the access control information for a directory.

PBHSetDirAccess Set the access control information for a directory.

PBGetVolMountInfoSize Get the size of a volume mounting information record.

PBGetVolMountInfo Get volume mounting information.

PBVolumeMount Mount a volume.

PBHGetLogInInfo Get the method used to log on to a shared volume.

PBHMapID Get the name of a user or group from its ID.

PBHMapName Get the ID of a user or group from its name.

PBHCopyFile Copy a file on a remote volume.

PBHMoveRename Move (and perhaps rename) a file on a remote volume.

C H A P T E R 2

File Manager

2-16 About the File Manager

The access modes provided by the standard file-opening routines prove insufficient for

shared files. Two additional open functions, PBHOpenDeny and PBHOpenRFDeny, allow

the ability to deny access as well. These deny modes are cumulative, combining to

determine the current access permissions for a file. For instance, if the first opening

routine denies reading to others and the second denies writing, both reading and writing

are then denied for the file.

Figure 2-1 shows how new access and deny modes are granted or refused according to a

file’s current access and deny modes. An unshaded square indicates that a new open call

with the listed permissions would succeed; otherwise, the new open call would fail.

Figure 2-1 Access and deny mode synchronization

You specify deny modes by setting bits in the ioDenyModes field of the parameter

block passed to PBHOpenDeny or PBHOpenRFDeny. Currently four bits of this field

are meaningful:

Bit Meaning

0 If set, request read permission

1 If set, request write permission

4 If set, deny other users read permission to this file

5 If set, deny other users write permission to this file

C H A P T E R 2

File Manager

About the File Manager 2-17

The combination of access and deny requests allows four common opening possibilities:

■ Browsing access. You request browsing access by specifying both read and
deny-write modes (ioDenyModes set to $0021). Browsing access is traditional
read-only access; it permits multiple readers but no writers. This access mode is useful
for shared files that do not change often, such as help files, configuration files, and
dictionaries.

■ Exclusive access. You request exclusive access by specifying both read and write
access and both deny-read and deny-write access (ioDenyModes set to $0033). Most
applications that are not specifically designed to share file data use this permission
setting. An exclusive access opening call succeeds only if there are no existing paths to
the file. After a successful opening call, all future attempts to establish access paths to
the file are denied until the exclusive-access path is closed.

■ Access as a single writer with multiple readers. You request access as the single
writer with multiple readers by specifying both read and write access and deny-write
access (ioDenyModes set to $0023). This access method allows additional users to
gain read-only access to browse a document being modified by the initial writer. The
writer’s application is responsible for range locking the file (by calling PBLockRange)
before writing to it, to prevent reading when the file is inconsistent.

■ Shared access. You request shared access by specifying both read and write access
(ioDenyModes set to $0003). Shared access should be used by applications that
support full multi-user access to its documents. Range locking is needed to prevent
other users from accessing information undergoing change. Each user must also check
for and handle any errors that result from access by other users. You might prefer to
use a semaphore to flag records in the document as they are checked out, rather than
use range locking exclusively.

You can open a shared file using either the deny modes described here or the file access

permissions described in “File Manipulation” on page 2-7. If you use the original

permissions when you open a file located in a shared directory, the File Manager

translates those permissions into the corresponding access and deny modes. The basic

rule followed in this translation is to allow a single writer or multiple readers, but not

both. The translation from the original permissions to the deny-mode permissions is

shown in Table 2-9.

Table 2-9 Access mode translation

HFS permissions Deny-mode permissions

fsCurPerm Exclusive access, or browsing access if exclusive access
is unavailable.

fsRdPerm Browsing access.

fsWrPerm Exclusive access.

fsRdWrPerm Exclusive access, or browsing access if exclusive access
is unavailable.

fsRdWrShPerm Shared access.

C H A P T E R 2

File Manager

2-18 About the File Manager

Notice that fsCurPerm and fsRdWrPerm are retried as read-only (browsing access) if

exclusive access is not available. In addition, whenever browsing access is requested

(that is, when you directly request fsRdPerm, or when a request for fsCurPerm or

fsRdWrPerm is retried because exclusive access is not available) and cannot be granted,

the AppleShare external file system searches through the open file control blocks (FCBs)

for another AFP access path to the file. If an AFP access path to that file is found, a

read-only access path is returned that shares the AFP access path.

Directory Access Privileges

AppleShare allows users to assign directory access privileges to individual directories,

controlling who has access to the files and folders in the directory. A directory may

be kept private, shared by a group of registered users, or shared with all users on

the network.

Users are organized into groups. Users can belong to more than one group. Information

about users and their privileges is maintained by AppleShare. Each directory has access

privileges assigned for each of these three classifications of users: owner, group, and

everyone. The following privileges can be assigned:

■ See Folders. A user with this access privilege (also called search privilege) can see
other directories in the specified directory.

■ See Files. A user with this access privilege (also called read privilege) can see the
icons and open documents or applications in that directory as well.

■ Make Changes. A user with this access privilege (also called write privilege) can
create, modify, rename, or delete any file or directory contained in the specified
directory. Directory deletion requires additional privileges. It is possible to have Make
Changes privileges without also having See Folders or See Files privileges; this would
allow users to put items into a directory but not view the contents of that directory.

For instance, a user might assign privileges to a particular directory allowing the owner

to read, write, and search the directory, and allowing everyone else (whether in the

group or not) only to search the directory.

On directories shared using File Sharing, you can also assign blank access privileges. In

this case, the File Manager ignores any other access privileges and uses the access

privileges of the directory’s parent. On the local machine, directories in a shared area

have blank access privileges, until set otherwise.

Note

You cannot assign blank access privileges to a volume’s root directory. ◆

You can use the PBHGetDirAccess and PBHSetDirAccess functions to determine

and change the access privileges for a directory. The access privileges are passed in the

4-byte ioACAccess field of the accessParam variant of the HFS parameter block

passed to these two functions. The 4 bytes are interpreted separately; byte 0 is the

high-order byte.

C H A P T E R 2

File Manager

About the File Manager 2-19

The bits in each byte encode access privilege information, as illustrated in Figure 2-2.

(The high-order byte is on top, and the high-order bit is on the left.) Note that the user’s

privileges byte also indicates whether the user owns the directory and whether the

directory has blank access privileges.

Figure 2-2 Access privileges information in the ioACAccess field

If bit 31 is set, then the user is the owner of the specified directory. If bit 28 is set, the

specified directory has blank access privileges. If bit 28 is clear, the 3 low-order bits of

each byte encode the write, read, and search privileges, respectively. If one of these bits

is set, the directory privileges permit the indicated access to the specified individual.

The 3 low-order bits of the byte encoding the user’s access privilege information are

the logical OR of the corresponding bits in whichever of the other 3 bytes apply to the

user. For example, if the user is the owner of a directory and is in the directory’s group,

then the 3 low-order bits of the user byte are the logical OR of the corresponding bits in

the other 3 bytes. If, however, the user is not the owner and is not in the directory’s

group, the user privilege bits have the same values as the corresponding ones in the

everyone byte.

Byte Meaning

0 User’s access privileges

1 Everyone’s access privileges

2 Group’s access privileges

3 Owner’s access privileges

C H A P T E R 2

File Manager

2-20 About the File Manager

You can use PBHSetDirAccess to set the low-order 3 bits of all the privileges bytes

except the user’s privileges byte. In the user’s privileges byte, you can set only the blank

access privileges bit (bit 28).

Note

Not all volumes support blank access privileges. You can call the
PBHGetVolParms function to determine whether a particular volume
supports blank access privileges. ◆

Remote Volume Mounting

Typically, the user mounts remote shared volumes through the Chooser or by opening an

alias file. The File Manager in system software version 7.0 and later provides a set of calls

for collecting the mounting information from a mounted volume and then using that

information to mount the volume again later, without going through the Chooser.

Ordinarily, before you can mount a volume programmatically, you must record its

mounting information while it’s mounted. Because the size of the mounting information

can vary, you first call the PBGetVolMountInfoSize function, which returns the

size of the record you’ll need to allocate to hold the mounting information. You then

allocate the record and call PBGetVolMountInfo, passing a pointer to the record.

When you want to mount the volume later, you can pass the record directly to the

PBVolumeMount function.

Note

The functions for mounting volumes programmatically are low-level
functions designed for specialized applications. Even if your application
needs to track and access volumes automatically, it can ordinarily use
the Alias Manager, described in the chapter “Alias Manager” in this
book. The Alias Manager can record mounting information and later
remount most volumes, even those that do not support the
programmatic mounting functions. ◆

The programmatic mounting functions can now be used to mount AppleShare volumes.

The functions have been designed so that they can eventually be used to mount local

Macintosh volumes, such as partitions on devices that support partitioning, and local or

remote volumes managed by non-Macintosh file systems.

Privilege Information in Foreign File Systems

Virtually every file system has its own privilege model, that is, conventions for

controlling access to stored files and directories. A number of non-Macintosh file systems

support access from a Macintosh computer by mapping their native privilege models

onto the model defined by the AppleTalk Filing Protocol (AFP). Most applications that

manipulate files in foreign file systems can rely on the intervening software to translate

AFP privileges into whatever is required by the remote system.

C H A P T E R 2

File Manager

About the File Manager 2-21

The correlation is not always simple, however, and some applications require more

control over the files stored on the foreign system. The A/UX privilege model, for

example, recognizes four kinds of access: read, write, execute, and search. The AFP

model recognizes read, write, deny-read, and deny-write access. If a shell program

running on the Macintosh Operating System wants to allow the user to set native A/UX

privileges on a remote file, it has to communicate with the A/UX file system using the

A/UX privilege model.

System software version 7.0 provides two new functions, PBGetForeignPrivs and

PBSetForeignPrivs, for manipulating privileges in a non-Macintosh file system.

These access-control functions were designed for use by shell programs, such as the

Finder, that need to use the native privilege model of the foreign file system. Most

applications can rely on using shared environment functions, which are recognized by

file systems that support the Macintosh privilege model. The new access-control

functions do not relieve a foreign file system of the need to map its own privilege model

onto the shared environment functions.

Like all other low-level File Manager functions, the access-control functions exchange

information with your application through parameter blocks. The meanings of some

fields vary according to the foreign file system used. These fields are currently defined

for A/UX, and you can define them for other file systems.

You can identify the foreign file system through the PBHGetVolParms function. The

attributes buffer introduced in system software version 7.0 for the PBHGetVolParms

function contains a field for the foreign privilege model, vMForeignPrivID.

Note

The value of vMForeignPrivID does not specify whether the remote
volume supports the AFP access-control functions. You can determine
whether the volume supports the AFP access-control functions by
checking the bAccessCntl bit in the vMAttrib field. ◆

A value of 0 for vMForeignPrivID signifies an HFS volume that supports no foreign

privilege models. The field currently has one other defined value.

CONST

fsUnixPriv = 1; {A/UX privilege model}

For an updated list of supported models and their constants and fields, contact

Macintosh Developer Technical Support.

A volume can support no more than one foreign privilege model.

The access-control functions store information in an HFS parameter block of type

foreignPrivParam. The parameter block can store access-control information in one

or both of

■ a buffer of any length, whose location and size are stored in the parameter block

■ 4 long words of data stored in the parameter block itself

C H A P T E R 2

File Manager

2-22 About the File Manager

The meanings of the fields in the parameter block depend on the definitions established

by the foreign file system. For example, the A/UX operating system uses the

ioForeignPrivBuffer field to point to a 16-byte buffer that describes the access

rights for the specified file or directory. The buffer is divided into four fields, as follows:

Bytes Description

0–3 The user ID of the owner of the file or directory.

4–7 The group ID of the owner of the file or directory.

8–11 Mode bits specifying the type of access available to the owner of the file or
directory, the group of the file or directory, and to everyone else. The value in
this field is a logical OR of some of the following octal values:

Value Meaning

0001 Executable by others.

0002 Writable by others.

0004 Readable by others.

0010 Executable by the group.

0020 Writable by the group.

0040 Readable by the group.

0100 Executable by the owner.

0200 Writable by the owner.

0400 Readable by the owner.

2000 Set group ID on execution.

4000 Set user ID on execution.

(Execute privileges on a directory mean that the directory is searchable.) You
can also use these octal masks to test or set common acess rights:

Mask Meaning

0007 Executable, writable, and readable by others.

0070 Executable, writable, and readable by the group.

0700 Executable, writable, and readable by the owner.

12–15 The active user’s access rights. The value in this field is a logical OR of some
of the following octal values:

Value Meaning

0001 Executable by user.

0002 Writable by user.

0004 Readable by user.

0010 Set if user owns this file or directory.

Note that you cannot change the owner of a file or directory using
PBSetForeignPrivs. Accordingly, the value 0010 is meaningful for
PBGetForeignPrivs only.

C H A P T E R 2

File Manager

Identifying Files, Directories, and Volumes 2-23

File ID Reference Routines
The File Manager provides a set of three low-level functions for creating, resolving, and

deleting file ID references. These functions were developed for use by the Alias Manager

in tracking files that have been moved within a volume or renamed. In most cases, you

should use the Alias Manager, not file IDs, to track files. See the chapter “Alias Manager”

in this book.

You establish a file ID reference when you need to identify a file using a file number (see

“File IDs” on page 2-24). You create a file ID reference with the PBCreateFileIDRef

function. Because the File Manager assigns file numbers independently on each volume,

file IDs are not unique across volumes.

You can resolve a file ID reference by calling the PBResolveFileIDRef function,

which determines the name and parent directory ID of the file with a given ID. If you no

longer need a file ID, remove its record from the directory by calling the

PBDeleteFileIDRef function.

Note

Removing a file ID is seldom appropriate, but the function is provided
for completeness. ◆

Identifying Files, Directories, and Volumes

Whenever you want to perform some operation on a file, directory, or volume, you need

to identify the target item to the File Manager. Exactly how you specify these items in the

file system depends on several factors, including which version of system software is

currently running and, if the target item is a file, whether it is open or closed. For

example, once you have opened a file, you subsequently identify that file to the File

Manager by providing its file reference number, a unique number returned to your

application when you open the file.

In all other cases, you can identify files, directories, and volumes to the File Manager

by using a variety of methods. In addition to file reference numbers, the File

Manager recognizes

■ file system specifications

■ file ID references

■ directory ID numbers

■ volume reference numbers

■ working directory reference numbers

■ names and full or partial pathnames

This section describes each of these ways to identify items in the file system. Note,

however, that some of these methods are of historical or theoretical interest only.

Working directory reference numbers exist solely to provide compatibility with the

C H A P T E R 2

File Manager

2-24 Identifying Files, Directories, and Volumes

now-obsolete Macintosh file system (MFS), and their use is no longer recommended.

Similarly, the use of full pathnames to specify volumes, directories, or files is not

generally recommended.

Whenever possible, you should use file system specifications to identify files and

directories because they provide the simplest method of identification and are

recognized by the Finder, the Standard File Package, and other system software

components beginning with system software version 7.0. If your application is intended

to run in system software versions in which the routines that accept file system

specification records are not available, you should use the volume reference number,

parent directory ID, and name of the item you wish to identify.

File System Specifications
Conventions for identifying files, directories, and volumes have evolved as the File

Manager has matured. System software version 7.0 introduced a simple, standard form

for identifying a file or directory, called a file system specification. You can use a file

system specification whenever you must identify a file or directory for the File Manager.

A file system specification contains

■ the volume reference number of the volume on which the file or directory resides

■ the directory ID of the parent directory

■ the name of the file or directory

For a complete description of the file system specification (FSSpec) record, see “File

System Specification Record” on page 2-86.

The Standard File Package in system software version 7.0 uses FSSpec records to

identify files to be saved or opened. The File Manager provides a new set of high-level

routines that accept FSSpec records as input, so that your application can pass the data

directly from the Standard File Package to the File Manager. The Alias Manager and the

Edition Manager accept file specifications only in the form of FSSpec records.

The Finder introduced in version 7.0 uses alias records, which are resolved into FSSpec

records, to identify files to be opened or printed.

Version 7.0 also introduced the FSMakeFSSpec function, which initializes an FSSpec

record for a particular file or directory. For a description of FSMakeFSSpec, see

“Creating File System Specification Records” on page 2-34.

File IDs
A file ID is a unique number that the File Manager assigns to a file at the time it is

created. The File Manager uses file IDs to distinguish one file from another on the same

volume. In fact, a file ID is simply the catalog node ID of a file. As a result, file IDs are

functionally analogous to directory IDs (described in the next section), and both kinds of

IDs are assigned from the same set of numbers.

C H A P T E R 2

File Manager

Identifying Files, Directories, and Volumes 2-25

The File Manager can set up an internal record in the volume’s catalog that specifies

the filename and parent directory ID of the file with a given file ID, allowing you to

reference the file by that number. (For more information about the volume’s catalog,

see “Catalog Files” on page 2-70.) This internal record in the volume catalog is a file ID
reference (or file ID thread record).

It is important to distinguish file IDs from file ID references. File IDs exist on all HFS

volumes, but file ID references might or might not exist on a particular HFS volume.

Even if file ID references do exist on a volume, they might not exist for all the files on

that volume. In addition, you can track files by their file IDs only on systems capable of

creating and resolving file ID references. See “File ID Reference Routines” on page 2-23

for a description of the File Manager functions that allow you to manipulate file IDs.

Note

The file ID is a low-level tool and is unique only on one HFS volume. In
most cases, your application should track files using the Alias Manager,
described in the chapter “Alias Manager” in this book. The Alias
Manager can track files across volumes. It creates a detailed record
describing a file that you want to track, and, when you need to resolve
the record later, it performs a sophisticated search. The Alias Manager
uses file IDs internally. ◆

A file ID is analogous to a directory ID. A file ID is unique only within a volume and

remains constant even when the file is moved or renamed. When a file is copied or

restored from backup, however, the file ID changes. File IDs are unique over time—that

is, once an ID has been assigned to a file, that number is not reused even after the file has

been deleted.

The file ID is a permanent file reference, one that a user cannot change. After storing a

file ID, your application can locate a specific file quickly and automatically, even if the

user has moved or renamed it on the same volume.

File IDs are intended only as a tool for tracking files, not as a new element in file

specification conventions. Neither high-level nor low-level File Manager functions

accept file IDs as parameters.

Directory IDs
A directory ID is a unique number that the File Manager uses to distinguish one

directory from another on the same volume. Assigned by the File Manager when the

directory is created, a directory ID is simply the catalog node ID of a directory. As a

result, directory IDs are functionally equivalent to file IDs, and both kinds of IDs are

assigned from the same set of numbers.

Directory IDs are long integers. The File Manager defines several constants to refer to

special directory IDs that exist on every volume.

CONST

fsRtParID = 1; {directory ID of root directory's parent}

fsRtDirID = 2; {directory ID of volume's root directory}

C H A P T E R 2

File Manager

2-26 Identifying Files, Directories, and Volumes

The root directory of every volume has a directory ID of 2. In addition, the root directory

of every volume has a parent directory ID of 1. There is, however, no such parent

directory; the constant fsRtParID is provided solely for use by applications and File

Manager routines that need to specify a parent ID when referring to the volume’s root

directory. For example, if you call the PBGetCatInfo function when the ioDirID field

is set to fsRtDirID, the value fsRtParID is returned in the ioDrParID field.

Volume Reference Numbers
A volume reference number is a unique number assigned to a volume at the time it is

mounted. Unlike the volume name (which the user can change at any time and hence

may not be unique), the volume reference number is both unique and unchangeable by

the user, and so is a reliable way to refer to a volume for as long as it is mounted.

Volume reference numbers are small negative integers. They are valid only until the

volume is unmounted. For example, if you place a volume offline and then bring it back

online, that volume retains the same volume reference number it was originally

assigned. However, if you unmount a volume and then remount it at some later time, its

volume reference number might not be the same during both mounts.

Note

A volume reference number refers to a volume only as long as the
volume is mounted. To create a volume reference that remains valid
across subsequent boots, use alias records. See the chapter “Alias
Manager” in this book for details. ◆

Working Directory Reference Numbers
The File Manager provides a method of identifying directories known as working

directory reference numbers. A working directory is a temporary directory reference

that the File Manager uses to specify both a directory and the volume on which it

resides. Each working directory is assigned a working directory reference number at

the time it is created. You can use this number in place of a volume reference number in

all File Manager routines.

Note

Working directories were developed to allow applications written for
the now-obsolete Macintosh file system to execute correctly when
accessing volumes using the hierarchical file system. In general, your
application should not create working directories and, in the few
instances a working directory reference number is returned to your
application, it should immediately convert that number to a volume
reference number and directory ID. ◆

The first file system available on Macintosh computers was the Macintosh file system
(MFS), a “flat” file system in which all files are stored in a single directory. The

hierarchical organization of folders within folders is an illusion maintained by the

system software. As a result, you can identify a file under MFS simply by specifying its

name and its volume. Typically, MFS routines require a volume reference number and a

filename to specify a file.

C H A P T E R 2

File Manager

Identifying Files, Directories, and Volumes 2-27

To improve performance, especially with larger volumes, Apple Computer, Inc., intro-

duced the hierarchical file system (HFS) on the Macintosh Plus computer and later

models. In HFS, a volume can be divided into smaller units known as directories, which

can themselves contain files or other directories. This hierarchical relationship of folders

corresponds to an actual hierarchical directory structure maintained on disk. (See “Data

Organization on Volumes” beginning on page 2-52 for the precise details of this hierarchi-

cal directory structure.)

Each file on an HFS volume is stored in a directory, called the file’s parent directory. To

identify a file in HFS, you must specify its volume, its parent directory, and its name. The

File Manager assigns each directory a directory ID, and the user or the system software

assigns each directory a name. The HFS File Manager routines include an additional

parameter to handle the directory specification.

To keep existing applications running smoothly, Apple Computer, Inc. introduced the

concept of working directories. A working directory is a combined directory and volume

specification. To make a directory into a working directory, the File Manager establishes

a working directory control block that contains both the volume and the directory ID of

the target directory. The File Manager returns a unique working directory reference

number, which you can use instead of the volume reference number in all routines.

Note

If your application provides both a directory ID and a working directory
reference number, the directory ID is used to specify the directory
(overriding the working directory specified by the working directory
reference number). The working directory reference number is used to
specify the volume (unless a volume name, which overrides all other
forms of volume specification, is also provided). ◆

The best course of action is to avoid using working directories altogether. In the few

cases where system software returns a working directory reference number to your

application, the recommended practice is to immediately convert that working directory

reference number into its corresponding directory ID and volume reference number

(using PBGetWDInfo or its high-level equivalent, GetWDInfo).

In system software versions 7.0 and later, the Process Manager closes all working

directories opened on behalf of your application when it terminates (quits or crashes).

If your application might also run under earlier system software versions, you need to

be careful to close any such working directories before you quit (using PBCloseWD or

its high-level equivalent, CloseWD).

Names and Pathnames
Volumes, directories, and files all have names. A volume name is any sequence of 1

to 27 characters, excluding colons (:), that is assigned to a volume. File and directory

names consist of any sequence of 1 to 31 characters, excluding colons. You can use

uppercase and lowercase letters in names, but the File Manager ignores case when

comparing names. The File Manager does not, however, ignore diacritical marks when

comparing names.

C H A P T E R 2

File Manager

2-28 Identifying Files, Directories, and Volumes

Note

Although it is legal to use any character other than the colon in file,
directory, and volume names, you should avoid using nonprinting
characters in such names, even for temporary files that do not appear on
the desktop or in the Standard File Package dialog boxes. A program
written in C interprets a null character (ASCII code $00) as the end of a
name; as a result, embedding the null character in a filename is likely to
cause problems. In addition, file, directory, or volume names with null
characters are not usable by AFP file servers (such as computers running
Macintosh File Sharing or AppleShare software). In general, you should
ensure that you use only printing characters in names of objects that you
create in the file system. ◆

Files and directories located in the same directory must all have unique names.

However, there is no requirement that volumes have unique names. It is perfectly

acceptable for two mounted volumes to have the same name. This is one reason why

your application should use volume reference numbers rather than volume names to

specify volumes.

You can also specify files and directories using pathnames, although this method is

discouraged. There are two kinds of pathnames, full and partial. A full pathname is a

sequence of directory names, separated by colons, starting from the root directory (or

volume) and leading down to the file. A full pathname to the file “Bananas,” for instance,

might be something like this:

MyVolume:Fruits:Tropical:Bananas

A partial pathname is a pathname that begins in some directory other than the root

directory. A particular directory is specified by volume reference number (in the case of

the root directory), working directory reference number, or directory ID, and the

pathname begins relative to that directory. If the directory “Fruits” were specified, for

instance, the partial pathname to the “Bananas” file would be

:Tropical:Bananas

The use of pathnames, however, is highly discouraged. If the user changes names or

moves things around, they are worthless. It’s best to stay with simple file or directory

names and specify the directory containing the file or directory by its directory ID.

HFS Specifications
The simplest way to identify a mounted volume is by giving its volume reference

number. The simplest way to identify a file or directory located on a mounted volume is

by providing a file system specification. In some cases, however, you might not be able

to use file system specifications.

For example, the low-level File Manager routines do not accept file system specifications,

and so you must specify files and directories by some other method. You must also use

another file-identification method when you use the high-level HFS routines that existed

prior to the introduction of the routines that accept FSSpec records as file or directory

C H A P T E R 2

File Manager

Identifying Files, Directories, and Volumes 2-29

specifications. This section summarizes the conventions the File Manager uses to

interpret the various volume, directory, and file specifications that are available even

when file system specifications are not.

The File Manager recognizes three kinds of file system objects: files, directories, and

volumes. You can identify them using various methods.

In HFS, you can pass a complete file specification in any of several ways:

■ full pathname

■ volume reference number and partial pathname

■ working directory reference number and partial pathname

■ volume reference number, directory ID, and partial pathname

A full pathname consists of the name of the volume, the names of all directories between

the root directory and the target, and the name of the target. A full pathname starts with

a character other than a colon and contains at least one colon. If the first character is a

colon, or if the pathname contains no colons, it is a partial pathname. If a partial

pathname starts with the name of a parent directory, the first character in the pathname

must be a colon. If a partial pathname contains only the name of the target file or

directory, the leading colon is optional.

You can identify a volume in the vRefNum parameter by volume reference number or

drive number, but volume reference number is preferred. A value of 0 represents the

default volume. A volume name in the pathname overrides any other volume

specification. Unlike a volume name, a volume reference number is guaranteed to be

unique. It changes, however, each time a volume is mounted.

A working directory reference number represents both the directory ID and the volume

reference number. If you specify any value other than 0 for the dirID parameter, that

value overrides the directory ID implied by a working directory reference number in the

volume parameter. The volume specification remains valid.

Figure 2-3 illustrates the standard ways to identify a file in HFS.

Object Method of identification

File Filename

Directory Directory name

Directory ID

Working directory reference number,
which also implies a volume

Volume Volume name

Volume reference number

Working directory reference number,
which also implies a directory

C H A P T E R 2

File Manager

2-30 Identifying Files, Directories, and Volumes

Figure 2-3 Identifying a file in HFS

C H A P T E R 2

File Manager

Identifying Files, Directories, and Volumes 2-31

Search Paths
Whenever you specify a value of 0 for the directory ID in an HFS specification, the File

Manager first looks for the desired file in the directory indicated by the two other

relevant HFS parameters or fields—namely, the pathname and the volume specification.

If the specified file is not found in that directory, the File Manager continues searching

for the file along a path known as the poor man’s search path. You need to be aware of

this behavior so that you do not accidentally open, delete, or otherwise manipulate the

wrong file.

Note

The File Manager uses the poor man’s search path only when the
directory ID parameter or field has the value 0. You can avoid the
consequences of accidentally opening or deleting the wrong file by
specifying a directory explicitly with its directory ID. ◆

If the volume specification is a working directory reference number, the File Manager

searches in the directory whose directory ID is encoded in that working directory

reference number. If the volume specification is a volume reference number or 0, the File

Manager searches in the default directory on the indicated volume. (See “Manipulating

the Default Volume and Directory” on page 2-35 for information about default

directories.) If you provide a full pathname, the File Manager searches in the directory

whose name is contained in the pathname.

If the File Manager cannot find the specified file in the first directory it searches, it next

searches the root directory of the boot volume, but only if the first directory searched is

located on the boot volume. If the specified file is still not found, or if the first directory

searched is not located on the boot volume, the File Manager next searches the System

Folder, if one exists, on the volume containing the first directory searched. If the file still

cannot be found, the File Manager gives up and returns the result code fnfErr (file not

found) to your application.

As you can see, the use of the poor man’s search path might lead to unexpected results.

Suppose, for example, that you call the HOpenDF function like this:

myErr := HOpenDF(0, 0, ':Ackees', fsRdWrPerm, myRefNum);

The values of 0 for the first two parameters (the volume specification and directory ID)

indicate that you want the File Manager to look for the named file in the default

directory. If, however, there is no such file in that directory, the File Manager continues

looking along the poor man’s search path for a file with the specified name. The result

might be that you open the wrong file. (Worse yet, if you had called HDelete instead of

HOpenDF, you might have deleted the wrong file!)

The File Manager uses the poor man’s search path for all routines that can return the

fnfErr result code and to which you passed a directory ID of zero. It does not use the

poor man’s search path when you specify a nonzero directory ID or when you call an

indexed routine (that is, when the ioFDirIndex field of the parameter block has a

nonzero value). The File Manager also does not use the poor man’s search path when

you create a file (perhaps by calling PBHCreate) or move a file between directories (by

calling PBCatMove).

C H A P T E R 2

File Manager

2-32 Using the File Manager

Note

The poor man’s search path might not be supported in future versions of
system software. You should not depend on its availability. ◆

Using the File Manager

You can use the File Manager to manipulate files, directories, and volumes. The chapter

“Introduction to File Management” in this book shows how to use the File Manager and

other system software services to accomplish the most common file-related operations

(that is, handling the typical File menu commands). This section shows how to accomplish

a variety of other operations on files, directories, and volumes. In particular, this section

shows how to

■ determine the available features of the File Manager

■ determine the characteristics of a particular mounted volume

■ create file system specification records

■ manipulate the default volume and directory

■ delete files and file forks

■ search a volume for files or directories matching various criteria

■ construct the full pathname of a file

■ determine the amount of free space on a volume

■ lock and unlock byte ranges in shared files

Altogether, the code listings given in this section provide a rich source of information

about using the many File Manager routines and data structures.

Determining the Features of the File Manager
Some of the capabilities provided by the File Manager depend on the version of system

software that is running, and some others depend on the characteristics of the target

volume. For example, the routines that accept FSSpec records as file or directory

specifications were introduced in system software version 7.0 and are unavailable in

earlier system software versions—unless your software development system provides

“glue” that allows you to call those routines when running in earlier system software

versions (or unless some system extension provides those routines). Similarly, some

volumes support features that other volumes do not; a volume that has local file

sharing enabled, for instance, allows you to lock byte ranges in any files on a volume

that is sharable.

Before using any of the File Manager features that are not universally available in all

system software versions and on all volumes, you should check for that feature’s

availability by calling either the Gestalt function or the PBHGetVolParms function,

according to whether the feature’s presence depends on the system software or the

characteristics of the volume.

C H A P T E R 2

File Manager

Using the File Manager 2-33

You can use Gestalt to determine whether or not you can call the functions that accept

and support FSSpec records. Call Gestalt with the gestaltFSAttr selector to check

for File Manager features. The response parameter currently has two relevant bits:

CONST

gestaltFullExtFSDispatching = 0; {exports HFSDispatch traps}

gestaltHasFSSpecCalls = 1; {supports FSSpec records}

Constant descriptions

gestaltFullExtFSDispatching
If set, all of the routines selected through the _HFSDispatch trap
are available to external file systems. If this bit is clear, the File
Manager checks the selector passed to _HFSDispatch and ensures
that it is valid; if the selector is invalid, the result code paramErr is
returned to the caller. If this bit is set, no such validity checking is
performed.

gestaltHasFSSpecCalls
If set, the operating environment provides the file system
specification versions of the basic file-manipulation functions, plus
the FSMakeFSSpec function.

The chapter “Introduction to File Management” in this book illustrates how to use the

Gestalt function to determine whether the operating environment supports the

routines that accept FSSpec records. For a complete description of the Gestalt

function, see the chapter “Gestalt Manager” in Inside Macintosh: Operating System Utilities.

To test for the availability of the features that depend on the volume, you can call the

low-level function PBHGetVolParms. Listing 2-1 illustrates how you can determine

whether the PBCatSearch function is available before using it to search a volume’s

catalog. Note that the SupportsCatSearch function defined in Listing 2-1 first calls

Gestalt to determine whether the File Manager supports PBCatSearch. If it does, the

SupportsCatSearch function calls PBHGetVolParms to see if the indicated volume

also supports PBCatSearch.

Listing 2-1 Testing for PBCatSearch

FUNCTION SupportsCatSearch (vRefNum: Integer): Boolean;

VAR

myHPB: HParamBlockRec;

infoBuffer: GetVolParmsInfoBuffer;

attrib: LongInt;

BEGIN

SupportsCatSearch := FALSE; {assume no PBCatSearch support}

IF gHasGestalt THEN {set this somewhere else}

IF Gestalt(gestaltFSAttr, attrib) = noErr THEN

IF BTst(attrib, gestaltFullExtFSDispatching) THEN

C H A P T E R 2

File Manager

2-34 Using the File Manager

BEGIN {this File Mgr has PBCatSearch}

WITH myHPB DO

BEGIN

ioNamePtr := NIL;

ioVRefNum := vRefNum;

ioBuffer := @infoBuffer;

ioReqCount := SIZEOF(infoBuffer);

END;

IF PBHGetVolParms(@myHPB, FALSE) = noErr THEN

IF BTST(infoBuffer.vMAttrib, bHasCatSearch) THEN

SupportsCatSearch := TRUE;

END;

END;

The SupportsCatSearch function calls PBHGetVolParms for the volume whose

reference number is passed as a parameter to SupportsCatSearch. The

PBHGetVolParms function returns information about a volume in a record of type

GetVolParmsInfoBuffer. The vMAttrib field of that record contains a number of

bits that encode information about the capabilities of the target volume. In particular, the

bit bHasCatSearch is set if the specified volume supports the PBCatSearch function.

Note

Some features of volumes might change dynamically during the
execution of your application. For example, the user can turn File
Sharing on and off, thereby changing the capabilities of volumes. See
“Locking and Unlocking File Ranges” on page 2-50 for more details. ◆

Creating File System Specification Records
Sometimes it is useful for your application to create a file system specification record. For

example, your application might be running in an environment where the enhanced

Standard File Package routines (which return FSSpec records) are unavailable but the

File Manager routines that accept FSSpec records are available (perhaps as glue code in

your development system). You can call the FSMakeFSSpec function (or its low-level

equivalent PBMakeFSSpec) to initialize a file system specification record.

Three of the parameters to FSMakeFSSpec represent the volume, parent directory, and

file specifications of the target object. You can provide this information in any of the four

combinations described in “HFS Specifications” beginning on page 2-28. Table 2-10

details the ways your application can identify the name and location of a file or directory

in a call to FSMakeFSSpec.

The fourth parameter to FSMakeFSSpec is a pointer to the FSSpec record.

C H A P T E R 2

File Manager

Using the File Manager 2-35

Manipulating the Default Volume and Directory
When your application is running, the File Manager maintains a default volume and a

default directory for it. The default directory is used in File Manager routines whenever

you don’t explicitly specify some directory. The default volume is the volume containing

the default directory.

If you pass 0 as the volume specification with routines that operate on a volume (such as

mounting or ejecting routines), the File Manager assumes that you want to perform the

operation on the default volume. Initially, the volume used to start up the application is

set as the default volume, but your application can designate any mounted volume as

the default volume.

Table 2-10 How FSMakeFSSpec interprets its parameters

vRefNum dirID fileName Interpretation

Ignored Ignored Full pathname Full pathname overrides any other information

Volume reference
number or drive
number

Directory ID Partial pathname Partial pathname starts in the directory whose
parent is specified in the dirID parameter

Working directory
reference number

Directory ID Partial pathname Directory specification in the dirID parameter
overrides the directory implied by the
reference number

Partial pathname starts in the directory whose
parent is specified in dirID

Volume reference
number or drive
number

0 Partial pathname Partial pathname starts in the root directory of
the volume in vRefNum

Working directory
reference number

0 Partial pathname Partial pathname starts in the directory
specified by the working directory
reference number

Volume reference
number of drive

Directory ID Empty string
or NIL

The target object is the directory specified by
the directory ID in dirID

Working directory
reference number

0 Empty string
or NIL

The target object is the directory specified by
the working directory reference number
in vRefNum

Volume reference
number or drive
number

0 Empty string
or NIL

The target object is the volume specified
in vRefNum

0 Directory ID Empty string
or NIL

The target object is the directory specified in
dirID on the default volume

0 Directory ID Partial pathname Partial pathname starts in the directory
specified in dirID on the default volume

0 0 Empty string
or NIL

The target object is the default directory on the
default volume

0 0 Partial pathname Partial pathname starts in the default directory
on the default volume

C H A P T E R 2

File Manager

2-36 Using the File Manager

With routines that access files or directories, if you don’t specify a directory and you pass

a volume specification of 0, the File Manager assumes that the file or directory is located

in the default directory. Initially, the default directory is set to the root directory of the

default volume, but your application can designate any directory as the default directory.

Note

Don’t confuse the default directory and volume maintained by the
File Manager with the current directory and volume maintained by
the Standard File Package. Although the default volume and current
volume are initially the same, they can differ whenever your application
resets one of them. See the chapter “Standard File Package” in this book
for more information about the current directory and volume. ◆

The provision of a default volume was originally intended as a convenient way for

you to limit all File Manager calls to a particular volume. The default directory was

introduced along with HFS as an analog to the default volume. In general, however, it

is safest to specify both a volume and a directory explicitly in all File Manager calls. In

particular, the introduction of file system specification records has rendered default

volumes and directories largely obsolete. As a result, you should avoid relying on them.

In some cases, however, you might want to set the default volume or directory explicitly.

You can determine the default volume and directory by calling the GetVol or HGetVol

function. You can explicitly set the default directory and volume by calling the SetVol

or HSetVol function. For reasons explained later, however, the use of HSetVol and its

low-level equivalent PBHSetVol is discouraged.

To set the default volume only, you can call SetVol, passing it the volume reference

number of the volume you want to establish as the default volume, as in this example:

myErr := SetVol(NIL, myVRefNum);

You can instead specify the volume by name, but because volume names might not be

unique, it is best to use the volume reference number.

To set both the default directory and the default volume, you could call HSetVol,

passing it the appropriate volume reference number and directory ID, as in this example:

myErr := HSetVol(NIL, myVRefNum, myDirID);

However, using HSetVol can lead to problems in certain circumstances. When you call

HSetVol (or its low-level version PBHSetVol) and pass a working directory reference

number in the vRefNum parameter, the File Manager stores the encoded volume

reference number and directory ID separately. If you later call GetVol (or its low-level

version PBGetVol), the File Manager returns that volume reference number, not the

working directory reference number you passed to HSetVol. The net result is that any

code using the results of the GetVol call will access the root directory of the default

volume, not the actual default directory.

C H A P T E R 2

File Manager

Using the File Manager 2-37

It is important to realize that calling HSetVol is perfectly safe if all the code executing in

your application’s partition always calls HGetVol instead of GetVol. This is because

HGetVol returns a working directory reference number whenever the previous call to

HSetVol passed one in. Calling HSetVol can create problems only if your application is

running under a system software version prior to version 7.0. In that case, a desk accesso-

ry might be opened in your application’s partition, thereby inheriting your application’s

default volume and directory. If that desk accessory calls GetVol instead of HGetVol, it

might receive a volume reference number when it expects a working directory reference

number, as described in the previous paragraph. To avoid this problem, you can simply

use SetVol (or PBSetVol) instead of HSetVol, as in this example:

myErr := SetVol(NIL, myVRefNum);

In this case, the myVRefNum parameter should contain a working directory

reference number.

Deleting Files and File Forks
You can delete a file by calling FSpDelete, HDelete, or PBHDelete. These functions

delete both forks of a file by removing the catalog entry for the file and adjusting the

volume information block and volume bitmap accordingly. These functions do not

actually erase the disk areas occupied by the file, so there is a reasonable chance that a

good disk utility might be able to salvage a deleted file if the user hasn’t allocated any

new file blocks in the meantime.

Sometimes you might want to truncate just one fork of a file. Listing 2-2 illustrates how

you can truncate a file’s resource fork while preserving the data fork.

Listing 2-2 Deleting a file’s resource fork

FUNCTION TruncateRF (myFileSpec: FSSpec): OSErr;

VAR

myErr: OSErr; {result code}

myFile: Integer; {file reference number}

BEGIN

myErr := FSpOpenRF(myFileSpec, fsRdWrPerm, myFile);

IF myErr = noErr THEN

myErr := SetEOF(myFile, 0);

IF myErr = noErr THEN

myErr := FSClose(myFile);

IF myErr = noErr THEN

myErr := FlushVol(myFileSpec.vRefNum);

TruncateRF := myErr;

END;

C H A P T E R 2

File Manager

2-38 Using the File Manager

The function TruncateRF defined in Listing 2-2 opens the file’s resource fork with

exclusive read/write permission and sets its logical end-of-file to 0. This effectively

releases all the space occupied by the resource fork on the volume. Then TruncateRF

closes the file and updates the volume.

Searching a Volume
To search a volume efficiently, you can use the PBCatSearch function. The

PBCatSearch function looks at all entries in the volume’s catalog file and returns a list

of all files or directories that match the criteria you specify. You can ask PBCatSearch to

match files or directories using many types of criteria, including

■ names or partial names

■ file and directory attributes

■ Finder information

■ physical and logical file length

■ creation, modification, and backup dates

■ parent directory ID

Like all low-level File Manager functions, PBCatSearch exchanges information with

your application through a parameter block. The PBCatSearch function uses the

csParam variant of the basic parameter block defined by the HParamBlockRec data

type. That variant includes two fields, ioSearchInfo1 and ioSearchInfo2, that

contain the addresses of two catalog information records (of type CInfoPBRec). You

specify which kinds of files or directories you want to search for by filling in the fields of

those two records.

The fields in ioSearchInfo1 and ioSearchInfo2 have different uses:

■ The ioNamePtr field in ioSearchInfo1 holds a pointer to the target string; the
ioNamePtr field in ioSearchInfo2 must be NIL. (If you’re not searching for the
name, the ioNamePtr field in ioSearchInfo1 must also be NIL.)

■ The date and length fields in ioSearchInfo1 hold the lowest values in the target
range, and the date and length fields in ioSearchInfo2 hold the highest values in
the target range. The PBCatSearch function looks for values greater than or equal to
the field values in ioSearchInfo1 and less than or equal to the values in
ioSearchInfo2.

■ The ioFlAttrib and ioFlFndrInfo fields in ioSearchInfo1 hold the target
values, and the same fields in ioSearchInfo2 hold masks that specify which bits
are relevant.

Some fields in the catalog information records apply only to files, some only to

directories, and some to both. Some of the fields that apply to both have different names,

depending on whether the target of the record is a file or a directory. The PBCatSearch

function uses only some fields in the catalog information record. Table 2-11 lists the fields

used for files.

Table 2-12 lists the fields in catalog information records used for directories.

C H A P T E R 2

File Manager

Using the File Manager 2-39

The PBCatSearch function searches only on bits 0 and 4 in the file attributes

field (ioFlAttrib).

Note

The PBCatSearch function cannot use the additional bits returned in
the ioFlAttrib field by the PBGetCatInfo function. ◆

Table 2-11 Fields in ioSearchInfo1 and ioSearchInfo2 used for a file

Field Meaning in ioSearchInfo1 Meaning in ioSearchInfo2

ioNamePtr Pointer to filename Reserved (must be NIL)

ioFlAttrib Desired file attributes Mask for file attributes

ioFlFndrInfo Desired Finder information Mask for Finder information

ioFlLgLen Smallest logical size of data fork Largest logical size

ioFlPyLen Smallest physical size of data fork Largest physical size

ioFlRLgLen Smallest logical size of resource fork Largest logical size

ioFlRPyLen Smallest physical size of resource fork Largest physical size

ioFlCrDat Earliest file creation date Latest file creation date

ioFlMdDat Earliest file modification date Latest file modification date

ioFlBkDat Earliest file backup date Latest file backup date

ioFlXFndrInfo Desired extended Finder information Mask for Finder information

ioFlParID Smallest directory ID of file’s parent Largest parent directory ID

Table 2-12 Fields in ioSearchInfo1 and ioSearchInfo2 used for a directory

Field Meaning in ioSearchInfo1 Meaning in ioSearchInfo2

ioNamePtr Pointer to directory name Reserved (must be NIL)

ioFlAttrib Desired directory attributes Mask for directory attributes

ioDrUsrWds Desired Finder information Mask for Finder information

ioDrNmFls Smallest number of files in directory Largest number of files

ioDrCrDat Earliest directory creation date Latest creation date

ioDrMdDat Earliest directory modification date Latest modification date

ioDrBkDat Earliest directory backup date Latest backup date

ioDrFndrInfo Desired extended Finder information Mask for Finder information

ioDrParID Smallest directory ID of directory’s parent Largest parent directory ID

Bit Meaning

0 Set if the file or directory is locked.

4 Set if the item is a directory.

C H A P T E R 2

File Manager

2-40 Using the File Manager

To give PBCatSearch a full description of the search criteria, you pass it a pair of

catalog information records that determine the limits of the search and a mask that

identifies the relevant fields within the records. You pass the mask in the

ioSearchBits field in the PBCatSearch parameter block. To determine the value of

ioSearchBits, add the appropriate constants. To match all files and directories on a

volume (including the volume’s root directory), set ioSearchBits to 0.

CONST

fsSBPartialName = 1; {substring of name}

fsSBFullName = 2; {full name}

fsSBFlAttrib = 4; {directory flag; software lock flag}

fsSBNegate = 16384;{reverse match status}

{for files only}

fsSBFlFndrInfo = 8; {Finder file info}

fsSBFlLgLen = 32; {logical length of data fork}

fsSBFlPyLen = 64; {physical length of data fork}

fsSBFlRLgLen = 128; {logical length of resource fork}

fsSBFlRPyLen = 256; {physical length of resource fork}

fsSBFlCrDat = 512; {file creation date}

fsSBFlMdDat = 1024; {file modification date}

fsSBFlBkDat = 2048; {file backup date}

fsSBFlXFndrInfo = 4096; {more Finder file info}

fsSBFlParID = 8192; {file's parent ID}

{for directories only}

fsSBDrUsrWds = 8; {Finder directory info}

fsSBDrNmFls = 16; {number of files in directory}

fsSBDrCrDat = 512; {directory creation date}

fsSBDrMdDat = 1024; {directory modification date}

fsSBDrBkDat = 2048; {directory backup date}

fsSBDrFndrInfo = 4096; {more Finder directory info}

fsSBDrParID = 8192; {directory's parent ID}

For example, to search for a file that was created between two specified dates and whose

name contains a specified string, set ioSearchBits to 517 (that is, to fsSBFlAttrib
+ fsSBFlCrDat + fsSBPartialName).

A catalog entry must meet all of the specified criteria to be placed in the list of matches.

After PBCatSearch has completed its scan of each entry, it checks the fsSBNegate bit.

If that bit is set, PBCatSearch reverses the entry’s match status (that is, if the entry is a

match but the fsSBNegate bit is set, the entry is not put in the list of matches; if it is not

a match, it is put in the list).

Note

The fsSBNegate bit is ignored during searches of remote volumes that
support AFP version 2.1. ◆

C H A P T E R 2

File Manager

Using the File Manager 2-41

Although using PBCatSearch is significantly more efficient than searching the

directories recursively, searching a large volume can still take long enough to affect user

response time. You can break a search into several shorter searches by specifying a

maximum length of time in the ioSearchTime field of the parameter block and

keeping an index in the ioCatPosition field. The PBCatSearch function stores its

directory-location index in a catalog position record, which is defined by the

CatPositionRec data type.

TYPE CatPositionRec = {catalog position record}

RECORD

initialize: LongInt; {starting point}

priv: ARRAY[1..6] OF Integer; {private data}

END;

To start a search at the beginning of the catalog, set the initialize field to 0. When

PBCatSearch exits because of a timeout, it updates the record so that it describes the

next entry to be searched. When you call PBCatSearch to resume the search after a

timeout, pass the entire record that was returned by the last call. PBCatSearch returns a

list of the names and parent directories of all files and directories that match the criteria

you specify. It places the list in an array pointed to by the ioMatchPtr field.

Note

The ioSearchTime field is not used by AFP volumes. To break up a
potentially lengthy search into smaller searches on AFP volumes, use
the ioReqMatchCount field to specify the maximum number of
matches to return. ◆

Listing 2-3 illustrates how to use PBCatSearch to find all files (not directories) whose

names contain the string “Temp” and that were created within the past two days.

Listing 2-3 Searching a volume with PBCatSearch

CONST

kMaxMatches = 30; {find up to 30 matches in one pass}

kOptBufferSize = $4000; {use a 16K search cache for speed}

VAR

myErr: OSErr; {result code of function calls}

myCount: Integer; {loop control variable}

myFName: Str255; {name of string to look for}

myVRefNum: Integer; {volume to search}

myDirID: LongInt; {ignored directory ID for HGetVol}

myCurrDate: LongInt; {current date, in seconds}

twoDaysAgo: LongInt; {date two days ago, in seconds}

myPB: HParamBlockRec; {parameter block for PBCatSearch}

myMatches: PACKED ARRAY[1..kMaxMatches] OF FSSpec;

{put matches here}

C H A P T E R 2

File Manager

2-42 Using the File Manager

mySpec1: CInfoPBRec; {search criteria, part 1}

mySpec2: CInfoPBRec; {search criteria, part 2}

myBuffer: PACKED ARRAY[1..kOptBufferSize] OF Char;

{search cache}

done: Boolean; {have all matches been found?}

PROCEDURE SetupForFirstTime;

BEGIN

myErr := HGetVol(NIL, myVRefNum, myDirID);

{search on the default volume}

myFName := 'Temp'; {search for "Temp"}

GetDateTime(myCurrDate); {get current time in seconds}

twoDaysAgo := myCurrDate - (2 * 24 * 60 * 60);

WITH myPB DO

BEGIN

ioCompletion := NIL; {no completion routine}

ioNamePtr := NIL; {no volume name; use vRefNum}

ioVRefNum := myVRefNum; {volume to search}

ioMatchPtr := FSSpecArrayPtr(@myMatches);

{points to results buffer}

ioReqMatchCount:= kMaxMatches; {number of matches}

ioSearchBits := fsSBPartialName {search on partial name}

+ fsSBFlAttrib {search on file attributes}

+ fsSBFlCrDat; {search on creation date}

ioSearchInfo1 := @mySpec1; {points to first criteria set}

ioSearchInfo2 := @mySpec2; {points to second criteria set}

ioSearchTime := 0; {no timeout on searches}

ioCatPosition.initialize := 0; {set hint to 0}

ioOptBuffer := @myBuffer; {point to search cache}

ioOptBufSize := kOptBufferSize; {size of search cache}

END;

WITH mySpec1 DO

BEGIN

ioNamePtr := @myFName; {point to string to find}

ioFlAttrib := $00; {clear bit 4 to ask for files}

ioFlCrDat := twoDaysAgo; {lower bound of creation date}

END;

WITH mySpec2 DO

BEGIN

ioNamePtr := NIL; {set to NIL}

ioFlAttrib := $10; {set mask for bit 4}

ioFlCrDat := myCurrDate; {upper bound of creation date}

END;

END;

C H A P T E R 2

File Manager

Using the File Manager 2-43

BEGIN

SetupForFirstTime; {initialize data records}

REPEAT

myErr := PBCatSearchSync(@myPB); {get some files}

done := (myErr = eofErr); {eofErr returned when all done}

IF ((myErr = noErr) | done) & (myPB.ioActMatchCount > 0) THEN

FOR myCount := 1 TO myPB.ioActMatchCount DO

Writeln(myMatches[myCount].name);

{report all matches found}

UNTIL done;

END;

When PBCatSearch is not available in the current operating environment or is not

supported by the volume you wish to search, you’ll need to use PBGetCatInfo to

perform a recursive, indexed search through the volume’s directory hierarchy. This

kind of search is usually much slower than a search with PBCatSearch, and you

can encounter problems you avoid by using PBCatSearch. For example, a

recursive, indexed search can require a large amount of stack space. The procedure

EnumerateShell defined in Listing 2-4 is designed to minimize the amount of stack

space used. As a result, it should execute even in environments with very limited

stack space.

Listing 2-4 Searching a volume using a recursive, indexed search

PROCEDURE EnumerateShell (vRefNum: Integer; dirID: LongInt);
VAR

myName: Str63;
myCPB: CInfoPBRec;
myErr: OSErr;
PROCEDURE EnumerateCatalog (dirID: LongInt);
CONST

kFolderBit = 4;
VAR

index: Integer;
BEGIN

index := 1;
REPEAT

WITH myCBP DO
BEGIN

ioFDirIndex := index;
ioDrDirID := dirID; {reset dirID; PBGetCatInfo may change it}
ioACUser := 0;

END;
myErr := PBGetCatInfo(@myCPB, FALSE);
IF myErr = noErr THEN

C H A P T E R 2

File Manager

2-44 Using the File Manager

IF BTst(myCPB.ioFlAttrib, kFolderBit) THEN
BEGIN {we have a directory}

{Do something useful with the dir. information in myCPB.}
EnumerateCatalog(myCPB.ioDrDirID);
myErr := noErr; {clear error return on way back}

END
ELSE

BEGIN {we have a file}
{Do something useful with the file information in myCPB.}

END;
index := index + 1;

UNTIL (myErr <> noErr);
END; {EnumerateCatalog}

BEGIN {EnumerateShell}
WITH myCPB DO

BEGIN
ioNamePtr := @myName;
ioVRefNum := vRefNum;

END;
EnumerateCatalog(dirID);

END; {EnumerateShell}

The EnumerateShell procedure sets up a catalog information parameter block with a

pointer to a string variable and the volume reference number passed to it. It then calls

the EnumerateDir procedure, which uses indexed calls to PBGetCatInfo to read the

catalog information about all items in the specified directory. If an item is a directory (as

indicated by the kFolderBit bit of the ioFlAttrib field of the parameter block),

EnumerateDir calls itself recursively to enumerate the contents of that directory. If an

item is a file, EnumerateDir performs whatever processing is appropriate.

Note that EnumerateDir resets the ioDrDirID field before calling PBGetCatInfo.

This is necessary because PBGetCatInfo returns a file ID number in that field if the

item is a file. The EnumerateDir procedure also clears the ioACUser field. You need to

do this if your search depends on the value in that field after the call to PBGetCatInfo,

because the value returned in that field for local volumes is meaningless.

To search an entire volume, call the EnumerateShell procedure with the vRefNum

parameter set to the volume reference number of the volume you want to search and the

dirID parameter set to fsRtDirID. You can also do a partial search of a volume by

specifying a different directory ID in the dirID parameter.

Constructing Full Pathnames
As indicated in “Names and Pathnames” on page 2-27, the use of full or partial

pathnames is strongly discouraged. Full pathnames are particularly unreliable as a

means of identifying files or directories within your application, largely because the user

can change the name of any element in the path at virtually any time. In general, you

should use a file’s name, parent directory ID, and volume reference number to identify a

file you want to open, delete, or otherwise manipulate.

C H A P T E R 2

File Manager

Using the File Manager 2-45

If you need to remember the location of a particular file across subsequent system boots,

use the Alias Manager to create an alias record describing the file. If the Alias Manager is

not available, you can save the file’s name, its parent directory ID, and the name of the

volume on which it’s located. Although none of these methods is foolproof, they are

much more reliable than using full pathnames to identify files.

Nonetheless, it is sometimes useful to display a file’s full pathname to the user. For

example, a backup utility might display a list of full pathnames of files as it copies them

onto the backup medium. Or, a utility might want to display a dialog box showing the

full pathname of a file when it needs the user’s confirmation to delete the file. No matter

how unreliable full pathnames may be from a file-specification viewpoint, users

understand them more readily than volume reference numbers or directory IDs.

Note

The following technique for constructing the full pathname of a file is
intended for display purposes only. Applications that depend on any
particular structure of a full pathname are likely to fail on alternate
foreign file systems or under future system software versions. ◆

Listing 2-5 shows one way to define a function, GetFullPath, that accepts a directory

ID and a filename as parameters and returns the full pathname of the corresponding file

(if any). The GetFullPath function calls the low-level function PBGetCatInfo for the

specified directory to determine the name and directory ID of that directory’s parent

directory. It then performs the same operation on the parent directory’s parent,

continuing until it finds a parent directory with ID fsRtDirID. Under HFS, this is

always the ID of a volume’s root directory.

Listing 2-5 Constructing the full pathname of a file

FUNCTION GetFullPath (DirID: LongInt; vRefnum: Integer): Str255;
VAR

myPB: CInfoPBRec; {parameter block for PBGetCatInfo}
dirName: Str255; {a directory name}
fullPath: Str255; {full pathname being constructed}
myErr: OSErr;

BEGIN
fullPath := ''; {initialize full pathname}
myPB.ioNamePtr := @dirName;
myPB.ioVRefNum := vRefNum; {indicate target volume}
myPB.ioDrParID := DirId; {initialize parent directory ID}
myPB.ioFDirIndex := -1; {get info about a directory}
{Get name of each parent directory, up to root directory.}
REPEAT

myPB.ioDrDirID := myPB.ioDrParID;
myErr := PBGetCatInfo(@myPB, FALSE);
IF gHaveAUX THEN

C H A P T E R 2

File Manager

2-46 Using the File Manager

BEGIN
IF dirName[1] <> '/' THEN

dirName := concat(dirName, '/');
END

ELSE
dirName := concat(dirName, ':');

fullPath := concat(dirName, fullPath);
UNTIL myPB.ioDrDirID = fsRtDirID;
GetFullPath := fullPath; {return full pathname}

END;

Note that GetFullPath uses either a slash (/) or a colon (:) to separate names in the full

path, depending on whether A/UX is running or not. The GetFullPath function reads

the value of the global variable gHaveAUX to determine whether A/UX is running; your

application must initialize this variable (preferably by calling the Gestalt function)

before it calls GetFullPath.

The GetFullPath function defined in Listing 2-5 returns a result of type Str255,

which limits the full pathname to 255 characters. An actual full pathname, however,

might exceed 255 characters. A volume name can be up to 27 characters, and each

directory name can be up to 31 characters. If the average volume and directory name is

about 20 characters long, GetFullPath can handle files located only about 12 levels

deep. If the length of the average directory name is closer to the maximum,

GetFullPath provides a full pathname for files located only about 8 levels deep. If

necessary, you can overcome this limitation by rewriting GetFullPath to return a

handle to the full pathname; the algorithm for ascending the directory hierarchy using

PBGetCatInfo will still work, however.

Determining the Amount of Free Space on a Volume
You can determine how much space is free on a particular volume by calling the

low-level function PBHGetVInfo. This function returns, in the ioVFrBlk field of the

parameter block passed to it, the number of free allocation blocks on a volume. It also

returns, in the ioVAlBlkSiz field, the number of bytes in the allocation blocks on that

volume. By multiplying those two values, you can determine how many bytes are free

on a particular volume.

There is, however, one complication in this process. The ioVFrBlk field of the

parameter block is actually an unsigned integer and can contain values from 0 to 65,535.

However, because Pascal does not support unsigned integers, it interprets the values in

the ioVFrBlk field as lying in the range –32,768 to 32,767. (Integers are stored as 16-bit

quantities where the high-order bit indicates whether the value is true binary or a

negated value in its two’s complement positive form.) If, for example, a volume has

40,000 allocation blocks free and your application blindly returned the value in the

ioVFrBlk field, it would erroneously report that the volume had –25,536 allocation

blocks available.

You can circumvent this problem by forcing Pascal to interpret the high-order bit as

part of the number of free blocks. For example, if you install the value returned in the

C H A P T E R 2

File Manager

Using the File Manager 2-47

ioVFrBlk field as the low-order word of a long integer, the high-order bit of that

word is no longer the high-order bit of that long integer and hence is not interpreted

as a sign indication. The data type TwoIntsMakeALong provides a convenient way

to accomplish this.

TYPE
TwoIntsMakeALong = {two integers make a long integer}
RECORD

CASE Integer OF
1: (long: LongInt);
2: (ints: ARRAY[0..1] OF Integer);

END;

Listing 2-6 illustrates how to use this technique to determine the amount of free space on

a volume (specified by its volume reference number).

Listing 2-6 Determining the amount of free space on a volume

FUNCTION GetVolumeFreeSpace (myVol: Integer): LongInt;
VAR

myHPB: HParamBlockRec; {parameter block for PBHGetVInfo}
myErr: OSErr; {result code from PBHGetVInfo}
myRec: TwoIntsMakeALong; {easy way to get an unsigned int}

BEGIN
WITH myHPB DO

BEGIN
ioNamePtr := NIL;
ioVRefNum := myVol;
ioVolIndex := 0;

END;
myErr := PBHGetVInfo(@myHPB, FALSE);
IF myErr = noErr THEN

BEGIN
myRec.ints[0] := 0;
myRec.ints[1] := myHPB.ioVFrBlk;
GetVolumeFreeSpace := myRec.long * myHPB.ioVAlBlkSiz;

END
ELSE

GetVolumeFreeSpace := 0;
END;

If the value passed to GetVolumeFreeSpace is a valid volume reference number,

then this function reads the number of free allocation blocks on the volume, installs

that number as the low-order word of a long integer, and performs the necessary

multiplication to determine how many bytes are free on the volume.

C H A P T E R 2

File Manager

2-48 Using the File Manager

Note

You could avoid these complications with unsigned integers by calling
PBHGetVInfo as illustrated and then passing the value returned in the
ioVDrvInfo field to the high-level function GetVInfo. The technique
using the TwoIntsMakeALong data type to convert unsigned integers
to long integers is illustrated here because it is useful when reading the
fields of many other File Manager data structures from Pascal. For
example, the vcbFreeBks field of a volume control block contains an
unsigned integer that you can interpret in this way. ◆

Sharing Volumes and Directories
The File Manager includes several functions that allow you to manipulate share points

on local volumes that have file sharing enabled and to obtain a list of user and group

names and IDs recognized by the local file server. These functions are especially useful

if you need to implement a dialog box that allows the user to designate a volume or

directory as a share point or to set the owner, user, and group of a shared folder.

The PBShare function makes a volume or directory a share point, hence available on the

network. The PBUnshare function undoes the effects of PBShare: it makes an existing

share point unavailable on the network. The PBGetUGEntry function lets you create a

list of user and group names and IDs on the local server.

Before calling any of these functions, you should check whether file sharing is

enabled on the local machine and, if so, whether the desired local volume is sharable.

You can determine whether a particular volume is sharable by using the function

VolIsSharable defined in Listing 2-7.

Listing 2-7 Determining whether a volume is sharable

FUNCTION VolIsSharable (vRefNum: Integer): Boolean;

VAR

myHPB: HParamBlockRec;

myInfoBuffer: GetVolParmsInfoBuffer;

myErr: OSErr;

BEGIN

WITH myHPB DO

BEGIN

ioNamePtr := NIL;

ioVRefNum := vRefNum;

ioBuffer := @myInfoBuffer;

ioReqCount := SizeOf(myInfoBuffer);

END;

myErr := PBHGetVolParms(@myHPB, FALSE);

IF myErr = noErr THEN

IF BTst(myInfoBuffer.vMAttrib, bHasPersonalAccessPrivileges) THEN

C H A P T E R 2

File Manager

Using the File Manager 2-49

VolIsSharable := TRUE

ELSE

VolIsSharable := FALSE

ELSE

VolIsSharable := FALSE;

END;

The VolIsSharable function inspects the bHasPersonalAccessPrivileges

bit returned in the vMAttrib field of the volume attributes buffer it passed to

PBHGetVolParms. If this bit is set, local file sharing is enabled on the specified volume.

You can use the function SharingIsOn defined in Listing 2-8 to determine whether file

sharing is enabled on the local machine.

Listing 2-8 Determining whether file sharing is enabled

FUNCTION SharingIsOn: Boolean;

VAR

myHPB: HParamBlockRec;

myErr: OSErr;

volIndex: Integer;

sharing: Boolean;

BEGIN

sharing := FALSE; {assume file sharing is off}

volIndex := 1;

REPEAT

WITH myHPB DO

BEGIN

ioNamePtr := NIL;

ioVolIndex := volIndex;

END;

myErr := PBHGetVInfo(@myHPB, FALSE);

IF myErr = noErr THEN

sharing := VolIsSharable(myHPB.ioVRefNum);

volIndex := volIndex + 1;

UNTIL (myErr <> noErr) OR sharing;

SharingIsOn := sharing;

END;

The SharingIsOn function simply calls the VolIsSharable function for each local

volume (or until a sharable volume is found). It uses indexed calls to PBHGetVInfo to

obtain the volume reference number of each mounted volume.

C H A P T E R 2

File Manager

2-50 Using the File Manager

Locking and Unlocking File Ranges
A file can be opened with shared read/write permission to allow several users to share

the data in the file. When a user needs to modify a portion of a file that has been opened

with shared read/write permission, it is usually desirable to make that portion of the file

unavailable to other users while the changes are made. You can call the PBLockRange

function to lock a range of bytes before modifying the file and then PBUnlockRange to

unlock that range after your changes are safely recorded in the file.

Locking a range of bytes in a file gives the user exclusive read/write access to that range

and makes it inaccessible to other users. Other users can neither write nor read the bytes

in that range until you unlock it. If other users attempt to read data from a portion of a

file that you have locked, they receive the fLckdErr result code.

The functions PBLockRange and PBUnlockRange are effective only on files that are

located on volumes that are sharable. If you call PBLockRange on a file that is not

located on a remote server volume or that is not currently being shared, no range locking

occurs. Moreover, PBLockRange does not return a result code indicating that no range

locking has occurred. As a result, you should usually check whether range locking will

be effective on a file before attempting to lock the desired range.

Listing 2-9 illustrates how you can check to make sure that calling PBLockRange will

have the desired effect.

Listing 2-9 Determining whether a file can have ranges locked

FUNCTION RangesCanBeLocked (fRefNum: Integer): Boolean;

VAR

myParmBlk: ParamBlockRec; {basic parameter block}

myErr: OSErr;

BEGIN

WITH myParmBlk DO

BEGIN

ioRefNum := fRefNum;

ioReqCount := 1; {lock a single byte}

ioPosMode := fsFromStart; {at the beginning of the file}

ioPosOffset := 0;

END;

myErr := PBLockRange(@myParmBlk, FALSE);{lock the byte; ignore result}

myErr := PBLockRange(@myParmBlk, FALSE);{lock the byte again}

CASE myErr OF

fLckdErr, {byte was locked by another user}

afpRangeOverlap, {byte was locked by this user}

afpNoMoreLocks: {max number of locks already used}

C H A P T E R 2

File Manager

Using the File Manager 2-51

BEGIN

RangesCanBeLocked := TRUE; {range locking is supported}

IF myErr = afpRangeOverlap THEN {unlock the byte we locked}

myErr := PBUnlockRange(@myParmBlk, FALSE);

END;

OTHERWISE

RangesCanBeLocked := FALSE; {range locking is not supported}

END; {of CASE}

END;

The function RangesCanBeLocked takes a file reference number of an open file as

a parameter; this is the reference number of the file in which a range of bytes is to

be locked. The function attempts to locks the first byte in the file and immediately

attempts to lock it again. If the second range locking fails with the result code

afpRangeOverlap, the first call to PBLockRange was successful. If the second call to

PBLockRange fails with the result code fLckdErr, the byte was already locked by

another user. Similarly, if the second call to PBLockRange fails with the result code

afpNoMoreLocks, the maximum number of range locks has been reached. In these

three cases, range locking is supported by the volume containing the specified file. If any

other result code (including noErr) is returned, range locking is not supported by that

volume or for some reason the capabilities of the volume cannot be determined.

Note

Local file sharing can be started or stopped (via the Sharing Setup
control panel) while your application is running. For this reason, each
time you want to lock a range, it’s best to check that byte ranges in that
file can be locked. ◆

You can unlock a locked range of bytes by calling PBUnlockRange. Note that the range

to be unlocked must be the exact same range of bytes that was previously locked using

PBLockRange. (You can lock and unlock different byte ranges in any order, however.) If

for some reason you need to unlock a range of bytes and do not know where the range

started or how long the range is, you must close the file to unlock the range. When a file

is closed, all locked ranges held by a user are unlocked.

If you want to append data to a shared file, you can use PBLockRange to lock the range

of bytes from the file’s current logical end-of-file to the last possible addressable byte of

the file. Once you have locked that range, you can write data into it. Listing 2-10 shows

how to determine the current logical end-of-file and lock the appropriate range.

Listing 2-10 Locking a file range to append data to the file

FUNCTION LockRangeForAppending (fRefNum: Integer; VAR EOF: LongInt): OSErr;
VAR

myParmBlk: ParamBlockRec; {basic parameter block}
myErr: OSErr;

myEOF: LongInt; {current EOF}

C H A P T E R 2

File Manager

2-52 Data Organization on Volumes

BEGIN
myParmBlk.ioCompletion := NIL;

myParmBlk.ioRefNum := fRefNum;
myErr := PBGetEOF(@myParmBlk, FALSE); {get the current EOF}

IF myErr <> noErr THEN
BEGIN

LockRangeForAppending := myErr;
Exit(LockRangeForAppending); {trouble reading EOF}

END;
myEOF := LongInt(myParmBlk.ioMisc); {save the current EOF}

WITH myParmBlk DO
BEGIN

ioReqCount := -1; {all addressable bytes}
ioPosMode := fsFromStart; {start range...}

ioPosOffset := myEOF; {...at the current end-of-file}
END;

myErr := PBLockRange(@myParmBlk, FALSE);{lock the specified range}
EOF := myEOF; {return current EOF to caller}

LockRangeForAppending := myErr;
END;

The function LockRangeForAppending first determines the current logical end-of-file.

It is important to get this value immediately before you attempt to lock a range that

depends on it because another user of the shared file might have changed the end-of-file

since you last read it. Then LockRangeForAppending locks the range beginning at the

current end-of-file and extending for the maximum number of bytes (specified using the

special value –1).

In effect, this technique locks a range where data does not yet exist. Practically speaking,

locking the entire addressable range of a file prevents another user from appending data

to the file until you unlock that range. Note that LockRangeForAppending returns the

current logical end-of-file to the caller so that the caller can unlock the correct range of

bytes after appending the data.

You can also call PBLockRange to lock a range of bytes when you want to truncate a

file. Locking the end portion of a file to be deleted prevents another user from using that

portion during the truncation. Instead of setting the ioPosOffset field of the

parameter block to the logical end-of-file (as in Listing 2-10), simply set it to what will be

the last byte after the file is truncated. Similarly, you can lock an entire file fork by setting

the ioPosOffset field to 0.

Data Organization on Volumes

This section describes how data is organized on HFS volumes. In general, an application

that simply manipulates data stored in files does not need to know how that data is

organized on a volume or on the physical storage medium containing that volume. The

C H A P T E R 2

File Manager

Data Organization on Volumes 2-53

organization described in this section is maintained by the File Manager for its own uses.

Some specialized applications and file-system utilities, however, do need to know

exactly how file data is stored on a disk.

▲ W A R N I N G

This section is provided primarily for informational purposes. The
organization of data on volumes is subject to change. Before you use this
information to read or modify the data stored on a volume, be sure to
check that the drSigWord field in the master directory block (described
in “Master Directory Blocks” beginning on page 2-59) identifies that
volume as an HFS volume. ▲

Much of the information describing the files and directories on an HFS volume is read

into memory when the volume is mounted. (For example, most of the volume’s master

directory block is read into memory as a volume control block.) For a description of how

that data is organized in memory, see “Data Organization in Memory” beginning on

page 2-76.

The File Manager uses a number of interrelated structures to manage the organization of

data on disk and in memory. For this reason, it is easy to lose sight of the simple and

elegant scheme that underlies these structures. As you read through this section and the

next, you should keep these points in mind:

■ The File Manager keeps track of which blocks on a disk are allocated to files and
which are not by storing a volume bitmap on disk and in memory. If a bit in the map is
set, the corresponding block is allocated to some file; otherwise, the corresponding
block is free for allocation.

■ The File Manager always allocates logical disk blocks to a file in groups called
allocation blocks; an allocation block is simply a group of consecutive logical blocks.
The size of a volume’s allocation blocks depends on the capacity of the volume; there
can be at most 65,535 allocation blocks on a volume.

■ The File Manager keeps track of the directory hierarchy on a volume by maintaining a
file called the catalog file; the catalog file lists all the files and directories on a volume,
as well as some of the attributes of those files and directories. A catalog file is
organized as a B*-tree (or “balanced tree”) to allow quick and efficient searches
through a directory hierarchy that is typically quite large.

■ The File Manager keeps track of which allocation blocks belong to a file by
maintaining a list of the file’s extents; an extent is a contiguous range of allocation
blocks allocated to some file, which can be represented by a pair of numbers: the start
of the range and the length of the range. The first three extents of most files are stored
in the volume’s catalog file. All remaining file extents are stored in the extents overflow
file, which is also organized as a B*-tree.

■ The first three extents of the catalog file and the extents overflow file are stored in the
master directory block (on disk) and the volume control buffer (in memory); a master
directory block is always located at a fixed offset from the beginning of a volume, and
a volume control block is stored in the VCB queue.

C H A P T E R 2

File Manager

2-54 Data Organization on Volumes

Disk and Volume Organization
A disk is a physical medium capable of storing information. Examples of disks include

3.5-inch floppy disks, SCSI hard disks and CD-ROM discs, and even RAM disks. A SCSI

disk may be divided into one or more partitions. A partition is simply part of a disk that

has been allocated to a particular operating system, file system, or device driver. For

example, you can partition a single SCSI disk into both Macintosh partitions and A/UX

partitions. The Macintosh partitions are typically used to hold Macintosh volumes. An

A/UX partition can contain an A/UX file system, but it can also be used as a paging area

for virtual memory or as a storage area for autorecovery files.

The information describing the division of a SCSI disk into partitions is contained in the

disk’s partition map, which is always located in the first physical block (512 bytes) on a

disk. The partition map specifies the first and last physical blocks in each partition, as

well as additional information about the partition (such as its type). The exact structure

of a partition map is described in the chapter “SCSI Manager” in Inside Macintosh: Devices.

Often the first partition on a SCSI disk, following the partition map, is the driver

partition that contains the actual device driver used to communicate with the disk.

(There is, however, no requirement that the driver partition be the first partition on a

disk.) Figure 2-4 illustrates a typical organization of partitions on a disk.

A partition can contain at most one volume. A volume is a single disk partition that

contains both file data and the file and directory information necessary to maintain the

appropriate data organization or file system. For example, a volume can contain a

Macintosh, ProDOS, MS-DOS, or A/UX file system structure. Notice in Figure 2-4 that a

Macintosh volume occupies only part of the entire physical disk, and that there can be

multiple partitions (both Macintosh volumes or other types of partitions) on a given disk.

Note

The disk organization illustrated in Figure 2-4 does not apply to
Macintosh 3.5-inch floppy disks. Because each floppy disk is one
volume, there is no need for a disk partition map. Also, there is no
device driver partition on a floppy disk. ◆

The remainder of this section describes only HFS volumes, that is, Macintosh file

systems organized using the hierarchical file system (HFS) implemented on the

Macintosh Plus and later models.

Each HFS volume begins with two boot blocks. The boot blocks on the startup volume

are read at system startup time and contain booting instructions and other important

information such as the name of the System file and the Finder. Following the boot

blocks are two additional structures, the master directory block and the volume bitmap.

The master directory block contains information about the volume, such as the date and

time of the volume’s creation and the number of files on the volume. The volume bitmap

contains a record of which blocks in the volume are currently in use.

C H A P T E R 2

File Manager

Data Organization on Volumes 2-55

Figure 2-4 Organization of partitions on a disk

The largest portion of a volume consists of four types of information or areas:

■ applications and data files

■ the catalog file

■ the extents overflow file

■ unused space

The general structure of an HFS volume is illustrated in Figure 2-5.

C H A P T E R 2

File Manager

2-56 Data Organization on Volumes

Figure 2-5 Organization of a volume

All the areas on a volume are of fixed size and location, except for the catalog file and the

extents overflow file. These two files can appear anywhere between the volume bitmap

and the alternate master directory block (MDB). They can appear in any order and are

not necessarily contiguous.

The information on all block-formatted volumes is organized in logical blocks and

allocation blocks. Logical blocks contain a number of bytes of standard information (512

bytes on Macintosh-initialized volumes). Allocation blocks are composed of any integral

number of logical blocks and are simply a means of grouping logical blocks in more

convenient parcels. The allocation block size is a volume parameter whose value is set

when the volume is initialized; it cannot be changed unless the volume is reinitialized.

To promote file contiguity and avoid fragmentation, space is allocated to files in groups

of allocation blocks, or clumps. The clump size is always a multiple of the allocation

C H A P T E R 2

File Manager

Data Organization on Volumes 2-57

block size, and it’s the minimum number of bytes to allocate each time the Allocate

function is called or the physical end-of-file is reached during a write operation. The

clump size is specified in the catalog information for a file; you can determine the clump

size using the PBGetCatInfo function.

The rest of this section describes in detail the structure of the boot blocks, the master

directory block, and the catalog and extents overflow files. It also describes the general

structure of a B*-tree, because the catalog and extents overflow files are both organized

as B*-trees.

Boot Blocks
The first two logical blocks on every Macintosh volume are boot blocks. These blocks

contain system startup information: instructions and information necessary to start up

(or “boot”) a Macintosh computer. This information consists of certain configurable

system parameters (such as the capacity of the event queue, the number of open files

allowed, and so forth) and is contained in a boot block header. The system startup

information also includes actual machine-language instructions that could be used to

load and execute the System file. Usually these instructions follow immediately after the

boot block header. Generally, however, the boot code stored on disk is ignored in favor of

boot code stored in a resource in the System file.

The structure of the boot block header can be described by the Pascal BootBlkHdr

data type.

▲ W A R N I N G

The format of the boot block header is subject to change. If your
application relies on the information presented here, it should check the
boot block header version number and react gracefully if that number is
greater than that documented here. ▲

Note that there are two boot block header formats. The current format includes two

fields at the end that are not contained in the older format. These fields allow the

Operating System to size the System heap relative to the amount of available physical

RAM. A boot block header that conforms to the older format sets the size of the System

heap absolutely, using values specified in the header itself. You can determine whether a

boot block header uses the current or the older format by inspecting a bit in the

high-order byte of the bbVersion field, as explained in its field description.

TYPE BootBlkHdr = {boot block header}

RECORD

bbID: Integer; {boot blocks signature}

bbEntry: LongInt; {entry point to boot code}

bbVersion: Integer; {boot blocks version number}

bbPageFlags: Integer; {used internally}

bbSysName: Str15; {System filename}

bbShellName: Str15; {Finder filename}

bbDbg1Name: Str15; {debugger filename}

C H A P T E R 2

File Manager

2-58 Data Organization on Volumes

bbDbg2Name: Str15; {debugger filename}

bbScreenName: Str15; {name of startup screen}

bbHelloName: Str15; {name of startup program}

bbScrapName: Str15; {name of system scrap file}

bbCntFCBs: Integer; {number of FCBs to allocate}

bbCntEvts: Integer; {number of event queue elements}

bb128KSHeap: LongInt; {system heap size on 128K Mac}

bb256KSHeap: LongInt; {used internally}

bbSysHeapSize: LongInt; {system heap size on all machines}

filler: Integer; {reserved}

bbSysHeapExtra: LongInt; {additional system heap space}

bbSysHeapFract: LongInt; {fraction of RAM for system heap}

END;

Field descriptions

bbID A signature word. For HFS volumes, this field always contains the
value $4C4B.

bbEntry The entry point to the boot code stored in the boot blocks. This
field contains machine-language instructions that translate to
BRA.S *+$90 (or BRA.S *+$88, if the older block header format
is used), which jumps to the main boot code following the boot
block header. This field is ignored, however, if bit 6 is clear in the
high-order byte of the bbVersion field or if the low-order byte in
that field contains $D.

bbVersion A flag byte and boot block version number. The high-order byte of
this field is a flag byte whose bits have the following meanings:

If bit 7 is clear, then bits 5 and 6 are ignored and the version number
is found in the low-order byte of this field. If that byte contains a
value that is less than $15, the Operating System ignores any values
in the bb128KSHeap and bb256KSHeap fields and configures the
System heap to the default value contained in the bbSysHeapSize
field. If that byte contains a value that is greater than or equal to
$15, the Operating System sets the System heap to the value in
bbSysHeapSize. In addition, the Operating System executes
the boot code in the bbEntry field only if the low-order byte
contains $D.

If bit 7 is set, the Operating System inspects bit 6 to determine
whether to execute the boot code contained in the bbEntry field
and bit 5 to determine whether to use relative System heap sizing. If
bit 5 is clear, the Operating System sets the System heap to the value

Bit Meaning

0–4 Reserved; must be 0

5 Set if relative system heap sizing is to be used

6 Set if the boot code in boot blocks is to be executed

7 Set if new boot block header format is used

C H A P T E R 2

File Manager

Data Organization on Volumes 2-59

in bbSysHeapSize. If bit 5 is set, the System heap is extended by
the value in bbSysHeapExtra plus the fraction of available RAM
specified in bbSysHeapFract.

bbPageFlags Used internally.

bbSysName The name of the System file.

bbShellName The name of the shell file. Usually, the system shell is the Finder.

bbDbg1Name The name of the first debugger installed during the boot process.
Typically this is Macsbug.

bbDbg2Name The name of the second debugger installed during the boot process.
Typically this is Disassembler.

bbScreenName The name of the file containing the startup screen. Usually this is
StartUpScreen.

bbHelloName The name of the startup program. Usually this is Finder.

bbScrapName The name of the system scrap file. Usually this is Clipboard.

bbCntFCBs The number of file control blocks (FCBs) to put in the FCB buffer. In
system software version 7.0 and later, this field specifies only the
initial number of FCBs in the FCB buffer, because the Operating
System can usually resize the FCB buffer if necessary. See “File
Control Blocks” on page 2-81 for details on the FCB buffer.

bbCntEvts The number of event queue elements to allocate. This number
determines the maximum number of events that the Event Manager
can store at any one time. Usually this field contains the value 20.

bb128KSHeap The size of the System heap on a Macintosh computer having
128 KB of RAM.

bb256KSHeap Reserved.

bbSysHeapSize The size of the System heap on a Macintosh computer having
512 KB or more of RAM. This field might be ignored, as explained
in the description of the bbVersion field.

filler Reserved.

bbSysHeapExtra The minimum amount of additional System heap space required. If
bit 5 of the high-order word of the bbVersion field is set, this
value is added to bbSysHeapSize.

bbSysHeapFract The fraction of RAM available to be used for the System heap. If
bit 5 of the high-order word of the bbVersion field is set, this
fraction of available RAM is added to bbSysHeapSize.

Master Directory Blocks
A master directory block (MDB)—also sometimes known as a volume information
block (VIB)—contains information about the rest of the volume. This information is

written into the MDB when the volume is initialized. Thereafter, whenever the volume is

mounted, the File Manager reads the information in the MDB and copies some of that

information into a volume control block (VCB). A VCB is a private data structure

maintained in memory by the File Manager (in the VCB queue). The structure of a VCB

is described in “Volume Control Blocks,” later in this chapter.

C H A P T E R 2

File Manager

2-60 Data Organization on Volumes

Note in Figure 2-5 (page 2-56) that a copy of the MDB is located in the next-to-last block

in the volume. This copy is updated only when the extents overflow file or the catalog

file grows larger. This alternate MBD is intended for use solely by disk utilities.

The MDB data type defines a master directory block record.

TYPE MDB = {master directory block}

RECORD

drSigWord: Integer; {volume signature}

drCrDate: LongInt; {date and time of volume creation}

drLsMod: LongInt; {date and time of last modification}

drAtrb: Integer; {volume attributes}

drNmFls: Integer; {number of files in root directory}

drVBMSt: Integer; {first block of volume bitmap}

drAllocPtr: Integer; {start of next allocation search}

drNmAlBlks: Integer; {number of allocation blocks in volume}

drAlBlkSiz: LongInt; {size (in bytes) of allocation blocks}

drClpSiz: LongInt; {default clump size}

drAlBlSt: Integer; {first allocation block in volume}

drNxtCNID: LongInt; {next unused catalog node ID}

drFreeBks: Integer; {number of unused allocation blocks}

drVN: String[27]; {volume name}

drVolBkUp: LongInt; {date and time of last backup}

drVSeqNum: Integer; {volume backup sequence number}

drWrCnt: LongInt; {volume write count}

drXTClpSiz: LongInt; {clump size for extents overflow file}

drCTClpSiz: LongInt; {clump size for catalog file}

drNmRtDirs: Integer; {number of directories in root directory}

drFilCnt: LongInt; {number of files in volume}

drDirCnt: LongInt; {number of directories in volume}

drFndrInfo: ARRAY[1..8] OF LongInt;

{information used by the Finder}

drVCSize: Integer; {size (in blocks) of volume cache}

drVBMCSize: Integer; {size (in blocks) of volume bitmap cache}

drCtlCSize: Integer; {size (in blocks) of common volume cache}

drXTFlSize: LongInt; {size of extents overflow file}

drXTExtRec: ExtDataRec; {extent record for extents overflow file}

drCTFlSize: LongInt; {size of catalog file}

drCTExtRec: ExtDataRec; {extent record for catalog file}

END;

Field descriptions

drSigWord The volume signature. For HFS volumes, this field contains $4244;
for the obsolete flat MFS volumes, this field contains $D2D7.

drCrDate The date and time of volume creation (initialization).

C H A P T E R 2

File Manager

Data Organization on Volumes 2-61

drLsMod The date and time the volume was last modified. This is not
necessarily when the volume was last flushed.

drAtrb Volume attributes. Currently the following bits are defined:

drNmFls The number of files in the root directory.

drVBMSt The first block of the volume bitmap. This field always contains 3 in
the current implementation.

drAllocPtr The number of the allocation block at which the next allocation
search will begin. Used internally.

drNmAlBlks The number of allocation blocks in the volume. Because the value in
this field is an integer, a volume can contain at most 65,535
allocation blocks.

drAlBlkSiz The allocation block size (in bytes). This value must always be a
multiple of 512 bytes.

drClpSiz The default clump size.

drAlBlSt The location of the first allocation block in the volume.

drNxtCNID The next unused catalog node ID (directory ID or file ID).

drFreeBks The number of unused allocation blocks on the volume.

drVN The volume name. This field consists of a length byte followed
by 27 bytes. Note that the volume name can occupy at most
27 characters; this is an exception to the normal file and directory
name limit of 31 characters.

drVolBkUp The date and time of the last volume backup.

drVSeqNum Volume backup sequence number. Used internally.

drWrCnt The volume write count (that is, the number of times the volume
has been written to).

drXTClpSize The clump size for the extents overflow file.

drCTClpSize The clump size for the catalog file.

drNmRtDirs The number of directories in the root directory.

drFilCnt The number of files on the volume.

drDirCnt The number of directories on the volume.

drFndrInfo Information used by the Finder. See the chapter “Finder Interface”
in Inside Macintosh: Macintosh Toolbox Essentials for details on
Finder information.

drVCSize The size (in allocation blocks) of the volume cache. Used internally.

drVBMCSize The size (in allocation blocks) of the volume bitmap cache.
Used internally.

drCtlCSize The size (in allocation blocks) of the common volume cache.
Used internally.

Bit Meaning

7 Set if the volume is locked by hardware

8 Set if the volume was successfully unmounted

9 Set if the volume has had its bad blocks spared

15 Set if the volume is locked by software

C H A P T E R 2

File Manager

2-62 Data Organization on Volumes

drXTFlSize The size (in allocation blocks) of the extents overflow file.

drXTExtRec First extent record for the extents overflow file. An extent record is
an array of three extents. See “Extents Overflow Files” on page 2-74
for a description of extents and extent records.

drCTFlSize The size (in allocation blocks) of the catalog file.

drCTExtRec First extent record for the catalog file.

Note

The values in the drNmAlBlks and drFreeBks fields should be
interpreted as unsigned integers (that is, they can range from 0 to 65,535,
not from –32,768 to 32,767). Pascal does not support unsigned data
types, and so you need to use the technique illustrated in “Determining
the Amount of Free Space on a Volume” on page 2-46 to read the values
in these fields correctly. ◆

Volume Bitmaps
The File Manager uses a volume bitmap to keep track of whether each block in a volume

is currently allocated to some file or not. The bitmap contains one bit for each allocation

block in the volume. If a bit is set, the corresponding allocation block is currently in use

by some file. If a bit is clear, the corresponding allocation block is not currently in use by

any file and is available for allocation.

Note

The volume bitmap indicates which blocks on a volume are currently in
use, but it does not indicate which files occupy which blocks. The File
Manager maintains file-mapping information in two locations: in each
file’s catalog entry and in the extents overflow file. ◆

The size of the volume bitmap depends on the number of allocation blocks in the

volume, which in turn depends both on the number of physical blocks in the volume

and on the size of the volume’s allocation blocks (the number of physical blocks per

allocation block). For example, a floppy disk that can hold 800 KB of data and has an

allocation block size of one physical block has a volume bitmap size of 1600 bits (200

bytes). A volume containing 32 MB of data and having an allocation block size of one

physical block has a volume bitmap size of 65,536 bits (8192 bytes). However, the size of

the volume bitmap is rounded up, if necessary, so that the volume bitmap occupies an

integral number of physical blocks.

Because the drNmAlBlks field in the MDB occupies only 2 bytes, the File Manager can

address at most 65,535 allocation blocks. Thus, the volume bitmap is never larger than

8192 bytes (or 16 physical blocks). For volumes containing more than 32 MB of space, the

allocation block size must be increased. For example, a volume containing 40 MB of

space must have an allocation block size that is at least 2 physical blocks; a volume

containing 80 MB of space must have an allocation block size that is at least 3 physical

blocks; and so forth.

C H A P T E R 2

File Manager

Data Organization on Volumes 2-63

B*-Trees
The File Manager maintains information about a volume’s directory hierarchy and file

block mapping in two files that are organized as B*-trees to allow quick and efficient

retrieval of that information. In a B*-tree, all the information that needs to be stored is

intelligently classified and sorted into objects called nodes. Figure 2-6 illustrates the

general structure of a B*-tree file.

Figure 2-6 The structure of a B*-tree file

Note that each B*-tree file used by the File Manager makes use of the data fork only; the

resource fork of a B*-tree file is unused. The length of a B*-tree file varies according to the

number of nodes it contains.

A node in turn contains records, which can be used for a variety of purposes. Some

records contain the actual data that is to be retrieved and possibly updated; these records

occupy nodes called leaf nodes. Other records contain information about the structure of

the B*-tree. The File Manager uses these records to find the information it needs quickly.

There are three types of these “bookkeeping” nodes: header nodes, index nodes, and

map nodes.

C H A P T E R 2

File Manager

2-64 Data Organization on Volumes

Nodes

A B*-tree file consists entirely of objects called nodes, each of which is 512 bytes long.

Figure 2-7 illustrates the structure of a node.

Each node has the same general structure and consists of three main parts: a node

descriptor that starts at the beginning of the node, a group of record offsets that starts

at the end of the node, and a group of records.

The node descriptor contains information about the node, as well as forward and

backward links to other nodes. You can use the NodeDescriptor data type to display

the structure of a node descriptor.

TYPE NodeDescriptor = {node descriptor}
RECORD

ndFLink: LongInt; {forward link}
ndBLink: LongInt; {backward link}
ndType: SignedByte; {node type}
ndNHeight: SignedByte; {node level}
ndNRecs: Integer; {number of records in node}
ndResv2: Integer; {reserved}

END;

Figure 2-7 The structure of a node

C H A P T E R 2

File Manager

Data Organization on Volumes 2-65

Field descriptions

ndFLink A link to the next node of this type. If this node is the last node, this
field contains NIL.

ndBLink A link to the previous node of this type. If this node is the first node,
this field contains NIL.

ndType The type of this node. Currently four types of nodes are recognized,
defined by the constants listed in this section.

ndNHeight The level or “depth” of this node in the B*-tree hierarchy. The
top-level node (a header node, described in “Header Nodes” on
page 2-67) always has a level of 0; all other nodes have a level that is
one greater than their parent node. Currently, the maximum depth
of a node is 8.

ndNRecs The number of records contained in this node.

ndResv2 Reserved. This field should always be 0.

A node descriptor is always $0E bytes in length, and so the records contained in the

node always begin at offset $0E from the beginning of the node. The size of a record can

vary, depending on its type and on the amount of information it contains; as a result, the

File Manager accesses a record by storing the offset from the beginning of the node to

that record in the list of offsets found at the end of the node. Each offset occupies a word,

and (as you might have guessed) the last word in a node always contains the value $0E,

pointing to the first record in the node. The offsets to subsequent records are stored in

order starting from the end of the node, as illustrated in Figure 2-7.

Note that there is always one more offset than the number of records contained in a

node; this is an offset to the beginning of any unused space in the node. If there is no free

space in the node, then that offset contains its own byte offset within the node.

The ndType field of the node descriptor indicates the type of a node. In essence, the type

of a node indicates what kinds of records it contains and hence what its function in the

B*-tree hierarchy is. The File Manager maintains four kinds of nodes in a B*-tree,

indicated by constants:

CONST {node types}

ndIndxNode = $00; {index node}

ndHdrNode = $01; {header node}

ndMapNode = $02; {map node}

ndLeafNode = $FF; {leaf node}

These node types are described in the four sections immediately after the next one.

C H A P T E R 2

File Manager

2-66 Data Organization on Volumes

Node Records

A record in a B*-tree node contains either data or a pointer to some other node in the

tree. Figure 2-8 shows the general structure of a record in a leaf or index node.

Figure 2-8 Structure of a B*-tree node record

Note

The three records in a B*-tree header node do not have the structure
depicted in Figure 2-8. They consist solely of data, as described in the
next section, “Header Nodes.” Similarly, the single record in a map node
consists solely of data; see “Map Nodes” on page 2-69 for details. ◆

Each record contains a search key, which the File Manager uses to search through the

B*-tree to locate the information it needs. The key can contain any information at all that

is deemed useful in finding the data contained in the leaf nodes. In a catalog file, which

maintains information about the hierarchy of files and directories on a volume, the

search key is a combination of the file or directory name and the parent directory ID of

that file or directory. In an extents overflow file, which maintains information about the

extra extents belonging to a file, the search key is a combination of that file’s type, its file

ID, and the index of the first allocation block in the extent.

In a B*-tree, the records in each node are always grouped so that their keys are in

ascending order. Moreover, the nodes on any given level are linked (through the

ndFLink and ndBLink fields of their node descriptors) in such a way as to preserve the

ascending order of record keys throughout that level. This is the essential ordering

principle that allows the File Manager to search quickly through a tree. To illustrate this

ordering scheme, Figure 2-9 shows a sample B*-tree containing hypothetical search keys

(in this case, the keys are simply integers).

When the File Manager needs to find a data record, it begins searching at the root node

(which is an index node, unless the tree has only one level), moving from one record to

the next until it finds the record with the highest key that is less than or equal to the

search key. The pointer of that record leads to another node, one level down in the tree.

This process continues until the File Manager reaches a leaf node; then the records of

that leaf node are examined until the desired key is found. At that point, the desired data

has also been found.

C H A P T E R 2

File Manager

Data Organization on Volumes 2-67

Figure 2-9 A sample B*-tree

There is of course no guarantee that a record having the desired key will always be

found in a search through a B*-tree. In this case, the search stops when a key larger

than the search key is reached. (This is most likely to happen in a search through the

catalog file.)

Header Nodes

The first node (that is, node 0) in every B*-tree file is a header node, which contains

essential information about the entire B*-tree file. The File Manager stores the location of

the header node of the catalog file in the first 2 bytes of the drCTExtRec field of the

MDB; the value in those 2 bytes indicates the allocation block number on which the

catalog file (and hence the header node) begins. Similarly, the File Manager stores the

location of the header node of the extents overflow file in the first 2 bytes of the

drXTExtRec field of the MDB.

Note

When a volume is mounted, the File Manager reads the header node
and copies some of the information it contains into a B*-tree control
block in memory. See “B*-Tree Control Blocks” on page 2-83 for a
description of this control block. ◆

A header node contains three records, the second of which occupies 128 bytes and is

reserved for use by the File Manager. The other two records are called the B*-tree header

record and the B*-tree map record; they occupy the first and third record positions,

respectively. Hence, a header node has the structure illustrated in Figure 2-10.

C H A P T E R 2

File Manager

2-68 Data Organization on Volumes

Figure 2-10 Header node structure

Note

The three records contained in the header node do not contain keys. ◆

The map record is a bitmap that indicates which nodes in the B*-tree file are used and

which are not. The bits are interpreted in exactly the same way as the bits in the volume

bitmap: if a bit in the map record is set, then the corresponding node in the B*-tree file is

being used. This bitmap occupies 256 bytes and can therefore encode information about

2048 nodes at most. If more nodes are needed to contain all the data that is to be stored

in the B*-tree, the File Manager uses a map node to store additional mapping informa-

tion. See the next section, “Map Nodes,” for a description of the structure of a map node.

The B*-tree header record, a data structure of type BTHdrRec, contains information

about the beginning of the tree, as well as the size of the tree.

TYPE BTHdrRec = {B*-tree header}

RECORD

bthDepth: Integer; {current depth of tree}

bthRoot: LongInt; {number of root node}

bthNRecs: LongInt; {number of leaf records in tree}

bthFNode: LongInt; {number of first leaf node}

bthLNode: LongInt; {number of last leaf node}

bthNodeSize: Integer; {size of a node}

bthKeyLen: Integer; {maximum length of a key}

C H A P T E R 2

File Manager

Data Organization on Volumes 2-69

bthNNodes: LongInt; {total number of nodes in tree}

bthFree: LongInt; {number of free nodes}

bthResv: ARRAY[1..76] OF SignedByte; {reserved}

END;

Field descriptions

bthDepth The current depth of the B*-tree.

bthRoot The node number of the root node. The root node is the start of the
B*-tree structure; usually the root node is first index node, but it
might be a leaf node if there are no index nodes.

bthNRecs The number of data records (records contained in leaf nodes).

bthFNode The node number of the first leaf node.

bthLNode The node number of the last leaf node.

bthNodeSize The size (in bytes) of a node. Currently, this is always 512.

bthKeyLen The maximum length of the key records in each node.

bthNNodes The total number of nodes in the B*-tree.

bthFree The total number of free nodes in the B*-tree.

bthResv Reserved.

Map Nodes

As indicated in the previous section, the File Manager maintains a bitmap of the tree

nodes in the map record of the B*-tree header node. If a B*-tree file contains more than

2048 nodes (enough for about 8000 files), the File Manager uses a map node to store

additional node-mapping information. It stores the node number of the new map node

in the ndFLink field of the node descriptor of the header node.

A map node consists of a node descriptor and a single map record. The map record is a

continuation of the map record contained in the header node and occupies 494 bytes

(512 bytes in the node, less 14 bytes for the node descriptor and 2 bytes for each of the

two record offsets at the end of the node). A map node can therefore contain mapping

information for an additional 3952 nodes.

If a B*-tree contains more than 6000 nodes (that is, 2048 + 3952, enough for about 25,000

files), the File Manager uses a second map node, the node number of which is stored in

the ndFLink field of the node descriptor of the first map node. If more map nodes are

required, each additional map node is similarly linked to the previous one.

Index Nodes

An index node contains records that point to other nodes in the B*-tree hierarchy. The

File Manager uses index nodes to navigate the tree structure quickly when it wants to

find some data (which is always stored in leaf nodes). Index nodes speed a tree search by

dividing the tree into smaller pieces, as illustrated in Figure 2-9 (page 2-67).

The records stored in an index node are called pointer records. A pointer record consists

of a key followed by the node number of the corresponding node. The structure of the

key varies according to the type of B*-tree file that contains the index node. For a catalog

C H A P T E R 2

File Manager

2-70 Data Organization on Volumes

file, the search key is a combination of the file or directory name and the parent directory

ID of that file or directory. In an extents overflow file, the search key is a combination of

that file’s type, its file ID, and the index of the first allocation block in the extent. See the

sections “Catalog File Keys” on page 2-71 and “Extents Overflow Files” on page 2-74 for

more details on the structure of index node search keys.

The immediate descendants of an index node are called the children of the index node.

An index node can have from 1 to 15 children, depending on the size of the pointer

records that the index node contains. Typically the File Manager selects one of the node’s

children and continues the search at that node; the File Manager may stop the search,

however, if the index node does not contain a pointer record with the appropriate key.

The first index node in a B*-tree is called the root node. Recall that the B*-tree

header node contains the node number of the root node in the bthRoot field of

the header record.

Leaf Nodes

The bottom level of a B*-tree structure is occupied exclusively by leaf nodes, which

contain data records (not pointer records). The structure of the leaf node data records

varies according to the type of B*-tree under consideration. In an extents overflow file,

the leaf node data records consist of a key and an extent record. In a catalog file

(described in the next section), the leaf node data records can be any one of four kinds

of records.

Catalog Files
The File Manager uses a file called the catalog file to maintain information about the

hierarchy of files and directories on a volume. A catalog file is organized as a B*-tree file

and hence consists of a header node, index nodes, leaf nodes, and (if necessary) map

nodes. The allocation block number of the first file extent of the catalog file (and hence of

the file’s header node) is stored in the MDB; when the volume is mounted, that

information is copied into that volume’s volume control block. From the header node,

the File Manager can obtain the node number of the catalog file’s root node; from the

root node, the File Manager can find the entire catalog file.

Each node of the catalog file is assigned a unique catalog node ID (CNID). For directo-

ries, the CNID is the directory ID; for files, it’s the file ID. For any given file or directory,

the parent ID is the CNID of the parent directory. The first 16 CNIDs are reserved for use

by Apple Computer, Inc., and include the following standard assignments:

CNID Assignment

1 Parent ID of the root directory

2 Directory ID of the root directory

3 File number of the extents file

4 File number of the catalog file

5 File number of the bad allocation block file

C H A P T E R 2

File Manager

Data Organization on Volumes 2-71

You need to know only two things about a catalog file in addition to the information

given earlier in this chapter in “B*-Trees”:

■ the format of the catalog key used in index and leaf nodes

■ the format of the leaf node data records

These formats are described in the following two sections.

Catalog File Keys

The key that the File Manager uses to navigate the catalog file is simple: for a given file

or directory, the key consists principally of the name of that file or directory and its

parent directory ID. With the exception of a volume reference number (which is not

needed here), this mirrors the standard way to specify a file or directory with the

high-level HFS routines. You can describe a catalog file key using a record of the

CatKeyRec data type.

TYPE CatKeyRec = {catalog key record}

RECORD

ckrKeyLen: SignedByte; {key length}

ckrResrv1: SignedByte; {reserved}

ckrParID: LongInt; {parent directory ID}

ckrCName: Str31; {catalog node name}

END;

Field descriptions

ckrKeyLen The length (in bytes) of the rest of the key. The value in this field
does not include the byte occupied by the field itself. If this field
contains 0, the key indicates a deleted record.

ckrResrv1 Reserved.

ckrParID The catalog node ID of the parent directory.

ckrCName The name of the file or directory whose catalog entry is to be found.
This field is padded with null characters if necessary to have the
next record data or pointer begin on a word boundary.

You should pay special attention to the fact that the catalog key differs slightly

depending on whether it occurs in a record in an index node or a leaf node. If the key

occurs in a pointer record (hence in an index node), the ckrCName field always occupies

a full 32 bytes and the ckrKeyLen field always contains the value $25.

If, however, the catalog file key occurs in a data record (hence in a leaf node), then the

ckrCName field varies in length; it occupies only the number of bytes required to hold

the file or directory name, suitably padded so that the data following it begins on a word

boundary. In that case, the ckrKeyLen field varies as well and may contain values from

$7 to $25.

C H A P T E R 2

File Manager

2-72 Data Organization on Volumes

Catalog File Data Records

A catalog file leaf node can contain four different types of records:

■ Directory records. A directory record contains information about a single directory.

■ File records. A file record contains information about a single file.

■ Directory thread records. A directory thread record provides a link between a
directory and its parent directory. It allows the File Manager to find the name and
directory ID of the parent of a given directory.

■ File thread records. A file thread record provides a link between a file and its parent
directory. It allows the File Manager to find the name and directory ID of the parent of
a given file.

Each record is defined by a variant of the CatDataType data type.

TYPE CatDataType = (cdrDirRec, cdrFilRec, cdrThdRec,

 cdrFThdRec);

TYPE CatDataRec = {catalog data records}

RECORD

cdrType: SignedByte; {record type}

cdrResrv2: SignedByte; {reserved}

CASE CatDataType OF

cdrDirRec: {directory record}

 (dirFlags: Integer; {directory flags}

dirVal: Integer; {directory valence}

dirDirID: LongInt; {directory ID}

dirCrDat: LongInt; {date and time of creation}

dirMdDat: LongInt; {date and time of last modification}

dirBkDat: LongInt; {date and time of last backup}

dirUsrInfo: DInfo; {Finder information}

dirFndrInfo: DXInfo; {additional Finder information}

dirResrv: ARRAY[1..4] OF LongInt);

{reserved}

cdrFilRec: {file record}

 (filFlags: SignedByte; {file flags}

filTyp: SignedByte; {file type}

filUsrWds: FInfo; {Finder information}

filFlNum: LongInt; {file ID}

filStBlk: Integer; {first alloc. blk. of data fork}

filLgLen: LongInt; {logical EOF of data fork}

filPyLen: LongInt; {physical EOF of data fork}

filRStBlk: Integer; {first alloc. blk. of resource fork}

filRLgLen: LongInt; {logical EOF of resource fork}

filRPyLen: LongInt; {physical EOF of resource fork}

filCrDat: LongInt; {date and time of creation}

C H A P T E R 2

File Manager

Data Organization on Volumes 2-73

filMdDat: LongInt; {date and time of last modification}

filBkDat: LongInt; {date and time of last backup}

filFndrInfo: FXInfo; {additional Finder information}

filClpSize: Integer; {file clump size}

filExtRec: ExtDataRec; {first data fork extent record}

filRExtRec: ExtDataRec; {first resource fork extent record}

filResrv: LongInt); {reserved}

cdrThdRec: {directory thread record}

 (thdResrv: ARRAY[1..2] OF LongInt;

{reserved}

thdParID: LongInt; {parent ID for this directory}

thdCName: Str31); {name of this directory}

cdrFThdRec: {file thread record}

 (fthdResrv: ARRAY[1..2] OF LongInt;

{reserved}

fthdParID: LongInt; {parent ID for this file}

fthdCName: Str31); {name of this file}

END;

The first two fields of a catalog data record are common to all four variants. Each variant

also includes its own unique fields.

Field descriptions common to all variants

cdrType The type of catalog data record. This field can contain one of four
values:

cdrResrv2 Reserved.

Field descriptions for the cdrDirRec variant

dirFlags Directory flags.

dirVal The directory valence (the number of files in this directory).

dirDirID The directory ID.

dirCrDat The date and time this directory was created.

dirMdDat The date and time this directory was last modified.

dirBkDat The date and time this directory was last backed up.

dirUsrInfo Information used by the Finder.

dirFndrInfo Additional information used by the Finder.

dirResrv Reserved.

Value Meaning

1 Directory record

2 File record

3 Directory thread record

4 File thread record

C H A P T E R 2

File Manager

2-74 Data Organization on Volumes

Field descriptions for the cdrFilRec variant

filFlags File flags. This is interpreted as a bitmap; currently the following
bits are defined:

filTyp The file type. This field should always contain 0.

filUsrWds The file’s Finder information.

filFlNum The file ID.

filStBlk The first allocation block of the data fork.

filLgLen The logical EOF of the data fork.

filPyLen The physical EOF of the data fork.

filRStBlk The first allocation block of the resource fork.

filRLgLen The logical EOF of the resource fork.

filRPyLen The physical EOF of the resource fork.

filCrDat The date and time this file was created.

filMdDat The date and time this file was last modified.

filBkDat The date and time this file was last backed up.

filFndrInfo Additional information used by the Finder.

filClpSize The file clump size.

filExtRec The first extent record of the file’s data fork.

filRExtRec The first extent record of the file’s resource fork.

filResrv Reserved.

Field descriptions for the cdrThdRec variant

thdResrv Reserved.

thdParID The directory ID of the parent of the associated directory.

thdCName The name of this directory.

Field descriptions for the cdrFThdRec variant

fthdResrv Reserved.

fthdParID The directory ID of the parent of the associated file.

fthdCName The name of this file.

As you can see, a file thread record is exactly the same as a directory thread record

except that the associated object is a file, not a directory.

Extents Overflow Files
The File Manager keeps track of which allocation blocks belong to a file by maintaining a

list of contiguous disk segments that belong to that file, in the appropriate order. When

the list of disk segments gets too large, some of those segments (or extents) are stored on

disk in a file called the extents overflow file.

Bit Meaning

0 If set, file is locked and cannot be written to.

1 If set, a file thread record exists for this file.

7 If set, the file record is used.

C H A P T E R 2

File Manager

Data Organization on Volumes 2-75

The structure of an extents overflow file is relatively simple compared to that of a catalog

file. The function of the extents overflow file is to store those file extents that are not

contained in the MDB or VCB (in the case of the catalog and extents overflow files

themselves) or in an FCB (in the case of all other files). Because the first three file extents

are always maintained in memory (in a VCB or an FCB), the File Manager needs to read

the extents overflow file only to retrieve any file extents beyond the first three; if a file

has at most three extents, the File Manager never needs to read the disk to find the

locations of the file’s blocks. (This is one good reason to promote file block contiguity.)

An extent is a contiguous range of allocation blocks that have been allocated to some file.

You can represent the structure of an extent using an extent descriptor, defined by the

ExtDescriptor data type.

TYPE ExtDescriptor = {extent descriptor}

RECORD

xdrStABN: Integer; {first allocation block}

xdrNumABlks: Integer; {number of allocation blocks}

END;

An extent descriptor record consists of the first allocation block of the extent, followed

by the number of allocation blocks in that extent. The File Manager prefers to access

extent descriptors in groups of three; to do so, it uses the extent data record, defined by

the ExtDataRec data type.

TYPE

ExtDataRec: ARRAY[1..3] OF ExtDescriptor;{extent data record}

Recall that the drCTExtRec and drXTExtRec fields of the MDB are of type

ExtDataRec (see “Master Directory Blocks,” earlier in this chapter), as is the

fcbExtRec field of an FCB (see “File Control Blocks” beginning on page 2-81). Also,

the records in the leaf nodes of the extents overflow file are extent data records. For

this reason, the extents overflow file is much simpler than the catalog file: the data in

a leaf node of an extents overflow file always consists of a single kind of record,

instead of the four kinds of records found in a catalog file.

The other main difference between a catalog B*-tree and an extents overflow B*-tree

concerns the format of the key. You can describe an extent record key with the

ExtKeyRec data type.

TYPE ExtKeyRec = {extent key record}

RECORD

xkrKeyLen: SignedByte; {key length}

xkrFkType: SignedByte; {fork type}

xkrFNum: LongInt; {file number}

xkrFABN: Integer; {starting file allocation block}

END;

C H A P T E R 2

File Manager

2-76 Data Organization in Memory

Field descriptions

xkrKeyLen The length (in bytes) of the rest of the key. In the current
implementation, this field always contains the value 7.

xkrFkType The type of file fork. This field contains $00 if the file is a data fork
and $FF if the file is a resource fork.

xkrFNum The file ID of the file.

xkrFABN The starting file allocation block number. In the list of the allocation
blocks belonging to this file, this number is the index of the first
allocation block of the first extent descriptor of the extent record.

Note

Disks initialized using the enhanced Disk Initialization Manager
introduced in system software version 7.0 might contain extent records
for some blocks that do not belong to any actual file in the file system.
These extent records have a file ID set to 5, indicating that the extent
contains a bad block. See the chapter “Disk Initialization Manager” in
this book for details on bad block sparing. ◆

Data Organization in Memory

This section describes the data structures used internally by the File Manager and any

external file system that accesses files on Macintosh-initialized volumes. As described in

“Data Organization on Volumes,” which begins on page 2-52, most applications do not

need to access these internal data structures directly. In general, you need to know about

these data structures only if you are writing an external file system or a disk utility.

▲ W A R N I N G

This section is provided primarily for informational purposes. The
organization of data in memory is subject to change. If you want your
application to be compatible with future versions of Macintosh system
software, you should not access these internal data structures
directly. ▲

The data structures maintained in memory by the File Manager and external file

systems include

■ the file I/O queue

■ the volume control block queue, listing information about each mounted volume

■ the file control block buffer, listing information about each access path to a fork

■ a B*-tree control block for the catalog file and the extents overflow file for each
mounted volume

■ the drive queue, listing information about each drive connected to the Macintosh

C H A P T E R 2

File Manager

Data Organization in Memory 2-77

The File I/O Queue
The file I/O queue is a standard Operating System queue (described in the chapter

“Queue Utilities” in Inside Macintosh: Operating System Utilities) that contains parameter

blocks for all asynchronous routines awaiting execution.

Each entry in the file I/O queue consists of a parameter block for the routine that was

called. The File Manager uses the first four fields of each parameter block in processing

the I/O requests in the queue.

TYPE ParamBlockRec =

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

ioTrap: Integer; {routine trap}

ioCmdAddr: Ptr; {routine address}

{rest of block}

END;

Field descriptions

qLink A pointer to the next entry in the file I/O queue.

qType The queue type. This field must always contain ORD(ioQType).

ioTrap The trap word of the routine that was called.

ioCmdAddr The address of the routine that was called.

You can get a pointer to the header of the file I/O queue by calling the File Manager

utility function GetFSQHdr.

Assembly-Language Note

The global variable FSQHdr contains the header of the file I/O
queue. ◆

Volume Control Blocks
Each time a volume is mounted, the File Manager reads its volume information from the

master directory block and uses the information to build a new volume control block

(VCB) in the volume control block queue (unless an ejected or offline volume is being

remounted). The File Manager also creates a volume buffer in the system heap. When a

volume is placed offline, its buffer is released. When a volume is unmounted, its VCB is

removed from the VCB queue as well.

Assembly-Language Note

The global variable VCBQHdr contains the header of the VCB queue. The
global variable DefVCBPtr points to the VCB of the default
volume. ◆

C H A P T E R 2

File Manager

2-78 Data Organization in Memory

▲ W A R N I N G

The size and structure of a VCB may be different in future versions of
Macintosh system software. To ensure that you are reading the correct
version of a VCB, check the vcbSigWord field; it should contain the
value $4244. ▲

The volume control block queue is a standard Operating System queue that’s

maintained in the system heap. It contains a volume control block for each mounted

volume. A volume control block is a nonrelocatable block that contains volume-specific

information. The structure of a volume control block is defined by the VCB data type.

TYPE VCB = {volume control block}
RECORD

qLink: QElemPtr; {next queue entry}
qType: Integer; {queue type}

vcbFlags: Integer; {volume flags}
vcbSigWord: Integer; {volume signature}

vcbCrDate: LongInt; {date and time of volume creation}
vcbLsMod: LongInt; {date and time of last modification}

vcbAtrb: Integer; {volume attributes}
vcbNmFls: Integer; {number of files in root directory}

vcbVBMSt: Integer; {first block of volume bitmap}
vcbAllocPtr: Integer; {start of next allocation search}

vcbNmAlBlks: Integer; {number of allocation blocks in volume}
vcbAlBlkSiz: LongInt; {size (in bytes) of allocation blocks}

vcbClpSiz: LongInt; {default clump size}
vcbAlBlSt: Integer; {first allocation block in volume}

vcbNxtCNID: LongInt; {next unused catalog node ID}
vcbFreeBks: Integer; {number of unused allocation blocks}

vcbVN: String[27]; {volume name}
vcbDrvNum: Integer; {drive number}

vcbDRefNum: Integer; {driver reference number}
vcbFSID: Integer; {file-system identifier}

vcbVRefNum: Integer; {volume reference number}
vcbMAdr: Ptr; {used internally}

vcbBufAdr: Ptr; {used internally}
vcbMLen: Integer; {used internally}

vcbDirIndex: Integer; {used internally}
vcbDirBlk: Integer; {used internally}

vcbVolBkUp: LongInt; {date and time of last backup}
vcbVSeqNum: Integer; {volume backup sequence number}

vcbWrCnt: LongInt; {volume write count}
vcbXTClpSiz: LongInt; {clump size for extents overflow file}

vcbCTClpSiz: LongInt; {clump size for catalog file}
vcbNmRtDirs: Integer; {number of directories in root dir.}

vcbFilCnt: LongInt; {number of files in volume}

C H A P T E R 2

File Manager

Data Organization in Memory 2-79

vcbDirCnt: LongInt; {number of directories in volume}
vcbFndrInfo: ARRAY[1..8] OF LongInt;

{information used by the Finder}
vcbVCSize: Integer; {used internally}

vcbVBMCSiz: Integer; {used internally}
vcbCtlCSiz: Integer; {used internally}

vcbXTAlBks: Integer; {size of extents overflow file}
vcbCTAlBks: Integer; {size of catalog file}

vcbXTRef: Integer; {ref. num. for extents overflow file}
vcbCTRef: Integer; {ref. num. for catalog file}

vcbCtlBuf: Ptr; {ptr. to extents and catalog caches}
vcbDirIDM: LongInt; {directory last searched}

vcbOffsM: Integer; {offspring index at last search}
END;

Note

The values in the vcbNmAlBlks and vcbFreeBks fields are unsigned
integers (that is, they can range from 0 to 65,535, not from –32,768 to
32,767). Because Pascal does not support unsigned data types, you need
to use the technique illustrated in “Determining the Amount of Free
Space on a Volume” on page 2-46 to read the values in these fields
correctly. ◆

Field descriptions

qLink A pointer to the next entry in the VCB queue. You can get a pointer
to the header of the VCB queue by calling the File Manager utility
function GetVCBQHdr.

qType The queue type. When the volume is mounted and the VCB is
created, this field is cleared. Thereafter, bit 7 of this field is set
whenever a file on that volume is opened.

vcbFlags Volume flags. Bit 15 is set if the volume information has been
changed by a File Manager call since the volume was last affected
by a FlushVol call.

vcbSigWord The volume signature. For HFS volumes, this field contains $4244.

vcbCrDate The date and time of volume creation (initialization).

vcbLsMod The date and time of last modification. This is not necessarily when
the volume was last flushed.

vcbAtrb Volume attributes. The bits have these meanings:

vcbNmFls The number of files in the root directory.

Bit Meaning

0–5 Reserved

6 Set if the volume is busy (one or more files are open)

7 Set if the volume is locked by hardware

8–14 Reserved

15 Set if the volume is locked by software

C H A P T E R 2

File Manager

2-80 Data Organization in Memory

vcbVBMSt The first block of the volume bitmap.

vcbAllocPtr The start block of the next allocation search. Used internally.

vcbNmAlBlks The number of allocation blocks in the volume.

vcbAlBlkSiz The allocation block size (in bytes). This value must always be a
multiple of 512 bytes.

vcbClpSiz The default clump size.

vcbAlBlSt The first allocation block in the volume.

vcbNxtCNID The next unused catalog node ID (directory ID or file ID).

vcbFreeBks The number of unused allocation blocks on the volume.

vcbVN The volume name. This field consists of a length byte followed
by 27 bytes. Note that the volume name can occupy at most
27 characters; this is an exception to the normal file and directory
name limit of 31 characters.

vcbDrvNum The drive number of the drive on which the volume is located.
When a mounted volume is placed offline or ejected, vcbDrvNum is
set to 0.

vcbDRefNum The driver reference number of the driver used to access the
volume. When a volume is ejected, vcbDRefNum is set to the
previous value of vcbDrvNum (and hence is a positive number).
When a volume is placed offline, vcbDRefNum is set to the
negative of the previous value of vcbDrvNum (and hence is
a negative number).

vcbFSID An identifier for the file system handling the volume; it’s zero for
volumes handled by the File Manager and nonzero for volumes
handled by other file systems.

vcbVRefNum The volume reference number.

vcbMAdr Used internally.

vcbBufAdr Used internally.

vcbMLen Used internally.

vcbDirIndex Used internally.

vcbDirBlk Used internally.

vcbVolBkUp The date and time of the last volume backup.

vcbVSeqNum Used internally.

vcbWrCnt The volume write count.

vcbXTClpSiz The clump size of the extents overflow file.

vcbCTClpSiz The clump size of the catalog file.

vcbNmRtDirs The number of directories in the root directory.

vcbFilCnt The number of files on the volume.

vcbDirCnt The number of directories on the volume.

vcbFndrInfo Information used by the Finder.

vcbVCSize Used internally.

vcbVBMCSiz Used internally.

vcbCtlCSiz Used internally.

C H A P T E R 2

File Manager

Data Organization in Memory 2-81

vcbXTAlBks The size (in blocks) of the extents overflow file.

vcbCTAlBks The size (in blocks) of the catalog file.

vcbXTRef The path reference number for the extents overflow file.

vcbCTRef The path reference number for the catalog file.

vcbCtlBuf A pointer to the extents and catalog caches.

vcbDirIDM The directory last searched.

vcbOffsM The offspring index at the last search.

File Control Blocks
Each time a file is opened, the File Manager reads that file’s catalog entry and builds a

file control block (FCB) in the FCB buffer, which contains information about all access

paths. The FCB buffer is a block in the system heap; the first word contains the length

of the buffer, and the remainder of the buffer is used to hold FCBs for open files.

The initial size of the FCB buffer is determined by the system startup information stored

on a volume. Beginning in system software version 7.0, the File Manager attempts to

resize the FCB buffer whenever the existing buffer is filled.

You can find the beginning of any particular FCB by adding the size of all preceding

FCBs to the size of the FCB buffer length word (that is, 2). This offset from the head of

the FCB buffer is used as the file reference number of the corresponding open file.

Because the current size of an FCB is 94 bytes, the first few valid file reference numbers

are 2, 96, 190, 284, 378, 472, and so on. The maximum size of an expandable FCB buffer is

32,535 bytes, so there is an absolute limit of 342 FCBs in the FCB buffer.

Note

The size and structure of an FCB will be different in future versions of
Macintosh system software. To be safe, you should get information from
the FCB allocated for an open file by calling the File Manager function
PBGetFCBInfo. ◆

When you close a file (for example, by calling FSClose), the FCB for that file is cleared,

and the File Manager may use that space to hold the FCB for a file that is opened at a

later time. Consequently, it is important that you do not attempt to close a file more

than once; you may inadvertently close a file that was opened by the system or by

another application.

▲ W A R N I N G

Closing a volume’s catalog file (perhaps by inadvertently calling
FSClose or PBClose twice with the same file reference number) may
result in damage to the volume’s file system and loss of data. ▲

The structure of a file control block is defined by the FCB data type.

TYPE FCB = {file control block}

RECORD

fcbFlNum: LongInt; {file ID}

fcbFlags: Integer; {file flags}

C H A P T E R 2

File Manager

2-82 Data Organization in Memory

fcbSBlk: Integer; {reserved}

fcbEOF: LongInt; {logical end-of-file}

fcbPLen: LongInt; {physical end-of-file}

fcbCrPs: LongInt; {current file mark position}

fcbVPtr: Ptr; {pointer to volume control block}

fcbBfAdr: Ptr; {pointer to access path buffer}

fcbFlPos: Integer; {reserved}

fcbClmpSize: LongInt; {file clump size}

fcbBTCBPtr: Ptr; {pointer to B*-tree control block}

fcbExtRec: ExtDataRec; {first three file extents}

fcbFType: LongInt; {file's four Finder type bytes}

fcbCatPos: LongInt; {catalog hint for use on close}

fcbDirID: LongInt; {file's parent directory ID}

fcbCName: String[31]; {name of file}

END;

Field descriptions

fcbFlNum The file ID of this file.

fcbFlags Flags describing the status of the file. Currently the following bits
are defined:

fcbSBlk Reserved.

fcbEOF The logical end-of-file of the file.

fcbPLen The physical end-of-file of the file.

fcbCrPs The position of the mark.

fcbVPtr A pointer to the volume control block of the volume containing
the file.

fcbBfAdr A pointer to the file’s access path buffer.

fcbFlPos Reserved.

fcbClmpSize The clump size of the file.

fcbBTCBPtr A pointer to the file’s B*-tree control block.

fcbExtRec An extent record (12 bytes) containing the first three extents of
the file.

Bit Meaning

0–7 Reserved

8 Set if data can be written to the file

9 Set if this FCB describes a resource fork

10 Set if the file has a locked byte range

11 Reserved

12 Set if the file has shared write permissions

13 Set if the file is locked (write-protected)

14 Set if the file’s clump size is specified in the FCB

15 Set if the file has changed since it was last flushed

C H A P T E R 2

File Manager

Data Organization in Memory 2-83

fcbFType The file’s Finder type.

fcbCatPos A catalog hint, used when you close the file.

fcbDirID The file’s parent directory ID.

fcbCName The file’s name (as contained in the volume catalog file).

B*-Tree Control Blocks
When the File Manager mounts a volume, it reads the B*-tree header node for both the

catalog file and the extents overflow file found on that volume and, for each file, creates

a B*-tree control block in memory. (See the section “Header Nodes” on page 2-67 for a

description of B*-tree header nodes.) The structure of a B*-tree control block is defined by

the BTCB data type.

TYPE BTCB = {B*-tree control block}

RECORD

btcFlags: SignedByte; {flag byte}

btcResv: SignedByte; {reserved}

btcRefNum: Integer; {file reference number}

btcKeyCr: ProcPtr: {pointer to key comparison routine}

btcCQPtr: LongInt; {pointer to cache queue}

btcVarPtr: LongInt; {pointer to B*-tree variables}

btcLevel: Integer; {current level}

btcNodeM: LongInt; {current node mark}

btcIndexM: Integer; {current index mark}

btcDepth: Integer; {current depth of tree}

btcRoot: LongInt; {number of root node}

btcNRecs: LongInt; {number of leaf records in tree}

btcFNode: LongInt; {number of first leaf node}

btcLNode: LongInt; {number of last leaf node}

btcNodeSize: Integer; {size of a node}

btcKeyLen: Integer; {maximum length of a key}

btcNNodes: LongInt; {total number of nodes in tree}

btcFree: LongInt; {number of free nodes}

END;

Field descriptions

btcFlags A flag byte. Currently the following bits are defined:

Bit Meaning

4 Set if an existing index record must be deleted

5 Set if a new index record must be created

6 Set if the index key must be updated

7 Set if the block has changed since it was last flushed

C H A P T E R 2

File Manager

2-84 Data Organization in Memory

btcResv Reserved.

btcRefNum The file reference number of the catalog or extents overflow file
corresponding to this control block.

btcKeyCr A pointer to the routine used to compare keys.

btcCQPtr A pointer to the cache queue.

btcVarPtr A pointer to B*-tree variables.

btcLevel The current level.

btcNodeM The current node mark.

btcIndexM The current index mark.

bthDepth The current depth of the B*-tree.

btcRoot The node number of the root node. The root node is the start of the
B*-tree structure; usually the root node is the first index node, but
it might be a leaf node if there are no index nodes.

btcNRecs The number of data records (records contained in leaf nodes).

btcFNode The node number of the first leaf node.

btcLNode The node number of the last leaf node.

btcNodeSize The size (in bytes) of a node. Currently, this is always 512.

btcKeyLen The length of the key records in each node.

btcNNodes The total number of nodes in the B*-tree.

btcFree The total number of free nodes in the B*-tree.

The Drive Queue
The File Manager maintains a list of all disk drives connected to the computer. It

maintains this list in the drive queue, which is a standard operating system queue. The

drive queue is initially created at system startup time. Elements are added to the queue

at system startup time or when you call the AddDrive procedure. The drive queue can

support any number of drives, limited only by memory space. Each element in the drive

queue contains information about the corresponding drive; the structure of a drive

queue element is defined by the DrvQEl data type.

TYPE DrvQEl =

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {flag for dQDrvSz and dQDrvSz2}

dQDrive: Integer; {drive number}

dQRefNum: Integer; {driver reference number}

dQFSID: Integer; {file-system identifier}

dQDrvSz: Integer; {number of logical blocks on drive}

dQDrvSz2: Integer; {additional field for large drives}

END;

C H A P T E R 2

File Manager

Data Organization in Memory 2-85

Field descriptions

qLink A pointer to the next entry in the drive queue.

qType Used to specify the size of the drive. If the value of qType is 0,
the number of logical blocks on the drive is contained in the
dQDrvSz field alone. If the value of qType is 1, both dQDrvSz
and dQDrvSz2 are used to store the number of blocks; in that case,
dQDrvSz2 contains the high-order word of this number
and dQDrvSz contains the low-order word.

dQDrive The drive number of the drive.

dQRefNum The driver reference number of the driver controlling the device on
which the volume is mounted.

dQFSID An identifier for the file system handling the volume in the drive;
it’s zero for volumes handled by the File Manager and nonzero for
volumes handled by other file systems.

dQDrvSz The number of logical blocks on the drive.

dQDrvSz2 An additional field to handle large drives. This field is used only if
the qType field contains 1.

The File Manager also maintains four flag bytes preceding each drive queue element.

These bytes contain the following information:

You can read these flags by subtracting 4 bytes from the beginning of a drive queue

element, as illustrated in Listing 2-11.

Listing 2-11 Reading a drive queue element’s flag bytes

FUNCTION GetDriveFlags (myDQElemPtr: DrvQElPtr): LongInt;

TYPE

FlagPtr = ^LongInt; {pointer to the queue element flag bytes}

VAR

myQFlagsPtr: FlagPtr;

BEGIN

{Just subtract 4 from the queue element pointer.}

myQFlagsPtr := FlagPtr(ORD4(myDQElemPtr) - 4);

GetDriveFlags := myQFlagsPtr^;

END;

Byte Contents

0 Bit 7=1 if the volume on the drive is locked

1 0 if no disk in drive; 1 or 2 if disk in drive; 8 if nonejectable disk in drive;
$FC–$FF if disk was ejected within last 1.5 seconds; $48 if disk in drive is
nonejectable but driver wants a call

2 Used internally during system startup

3 Bit 7=0 if disk is single-sided

C H A P T E R 2

File Manager

2-86 File Manager Reference

The GetDriveFlags function defined Listing 2-11 takes a pointer to a drive queue

element as a parameter. You can get a queue element pointer for a particular volume by

walking the drive queue until you find a queue element whose dQDrive field contains

the same value as the vcbDrvNum field of that volume’s VCB. You can get a pointer to

the header of the drive queue by calling the File Manager function GetDrvQHdr.

Note that the bit numbers given in this section use the standard MC68000 numbering

scheme; to access the correct bit using some Pascal routines, you must reverse that

numbering. For example, if you use the Toolbox BitTst routine to determine whether a

particular disk is single-sided, you must test bit 24 (that is, 31 minus 7) of the returned

long integer. If you use the built-in Pascal function BTST, however, you can test the

indicated bit directly.

Assembly-Language Note

The global variable DrvQHdr contains the header of the drive queue. ◆

File Manager Reference

This section describes the routines provided by the File Manager and the data structures

you must pass when calling those routines.

The “Data Structures” section shows the Pascal data structures for all the records and

parameter blocks that most applications are likely to use. If you need information about

data structures describing the structure of the information maintained on volumes or in

memory, see “Data Organization on Volumes” and “Data Organization in Memory”

earlier in this chapter.

The remaining sections describe the routines provided by the File Manager.

Data Structures

This section describes the data structures that your application uses to exchange

information with the File Manager.

File System Specification Record

The system software recognizes the file system specification record, which provides a

simple, standard way to specify the name and location of a file or directory. The file

system specification record is defined by the FSSpec data type.

TYPE FSSpec = {file system specification}

RECORD

vRefNum: Integer; {volume reference number}

parID: LongInt; {directory ID of parent directory}

name: Str63; {filename or directory name}

END;

C H A P T E R 2

File Manager

File Manager Reference 2-87

Field descriptions

vRefNum The volume reference number of the volume containing the specified
file or directory.

parID The directory ID of the directory containing the specified file or
directory.

name The name of the specified file or directory.

The FSSpec record can describe only a file or a directory, not a volume. A volume can

be identified by its root directory, although the system software never uses an FSSpec

record to describe a volume. (The directory ID of the root’s parent directory is

fsRtParID, defined in the interface files. The name of the root directory is the same

as the name of the volume.)

If you need to convert a file specification into an FSSpec record, call the function

FSMakeFSSpec. Do not fill in the fields of an FSSpec record yourself.

Basic File Manager Parameter Block

Many of the low-level functions that manipulate files and volumes exchange information

with your application using the basic File Manager parameter block, defined by the

ParamBlockRec data type.

TYPE ParamBlockRec = {basic File Manager parameter block}

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

ioTrap: Integer; {routine trap}

ioCmdAddr: Ptr; {routine address}

ioCompletion: ProcPtr; {pointer to completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {pointer to pathname}

ioVRefNum: Integer; {volume specification}

CASE ParamBlkType OF

ioParam:

 (ioRefNum: Integer; {file reference number}

ioVersNum: SignedByte; {version number}

ioPermssn: SignedByte; {read/write permission}

ioMisc: Ptr; {miscellaneous}

ioBuffer: Ptr; {data buffer}

ioReqCount: LongInt; {requested number of bytes}

ioActCount: LongInt; {actual number of bytes}

ioPosMode: Integer; {positioning mode and newline char.}

ioPosOffset: LongInt); {positioning offset}

fileParam:

 (ioFRefNum: Integer; {file reference number}

ioFVersNum: SignedByte; {file version number (unused)}

C H A P T E R 2

File Manager

2-88 File Manager Reference

filler1: SignedByte; {reserved}

ioFDirIndex: Integer; {directory index}

ioFlAttrib: SignedByte; {file attributes}

ioFlVersNum: SignedByte; {file version number (unused)}

ioFlFndrInfo: FInfo; {information used by the Finder}

ioFlNum: LongInt; {file ID}

ioFlStBlk: Integer; {first alloc. blk. of data fork}

ioFlLgLen: LongInt; {logical EOF of data fork}

ioFlPyLen: LongInt; {physical EOF of data fork}

ioFlRStBlk: Integer; {first alloc. blk. of resource fork}

ioFlRLgLen: LongInt; {logical EOF of resource fork}

ioFlRPyLen: LongInt; {physical EOF of resource fork}

ioFlCrDat: LongInt; {date and time of creation}

ioFlMdDat: LongInt); {date and time of last modification}

volumeParam:

 (filler2: LongInt; {reserved}

ioVolIndex: Integer; {volume index}

ioVCrDate: LongInt; {date and time of initialization}

ioVLsBkUp: LongInt; {date and time of last modification}

ioVAtrb: Integer; {volume attributes}

ioVNmFls: Integer; {number of files in root directory}

ioVDirSt: Integer; {first block of directory}

ioVBlLn: Integer; {length of directory in blocks}

ioVNmAlBlks: Integer; {number of allocation blocks}

ioVAlBlkSiz: LongInt; {size of allocation blocks}

ioVClpSiz: LongInt; {default clump size}

ioAlBlSt: Integer; {first block in block map}

ioVNxtFNum: LongInt; {next unused file ID}

ioVFrBlk: Integer); {number of unused allocation blocks}

END;

The first eight fields are common to all three variants. Each variant also includes its own

unique fields.

Field descriptions for fields common to all variants

qLink A pointer to the next entry in the file I/O queue. (This field is used
internally by the File Manager to keep track of asynchronous calls
awaiting execution.)

qType The queue type. (This field is used internally by the File Manager.)

ioTrap The trap number of the routine that was called. (This field is used
internally by the File Manager.)

ioCmdAddr The address of the routine that was called. (This field is used
internally by the File Manager.)

C H A P T E R 2

File Manager

File Manager Reference 2-89

ioCompletion A pointer to a completion routine to be executed at the end of an
asynchronous call. It should be NIL for asynchronous calls with
no completion routine and is automatically set to NIL for all
synchronous calls. See “Completion Routines” on page 2-238 for
information about completion routines.

ioResult The result code of the function. For synchronous calls, this field is
the same as the result code of the function call itself. To determine
when an asynchronous call has actually been completed, your
application can poll this field; it’s set to a positive number when
the call is made and receives the actual result code when the call
is completed.

ioNamePtr A pointer to a pathname. Whenever a routine description specifies
that ioNamePtr is used—whether for input, output, or both—
it’s very important that you set this field to point to storage for a
Str255 value (if you’re using a pathname) or to NIL (if you’re not).

ioVRefNum A volume specification (volume reference number, working
directory reference number, drive number, or 0 for default volume).

Field descriptions for the ioParam variant

ioRefNum The file reference number of an open file.

ioVersNum A version number. This field is no longer used and you should
always set it to 0.

ioPermssn The access mode.

ioMisc Depends on the routine called. This field contains either a new
logical end-of-file, a new version number, or a pointer to a new
pathname. Because ioMisc is of type Ptr, you’ll need to perform
type coercion to interpret the value of ioMisc correctly when it
contains an end-of-file (a LongInt value) or version number (a
SignedByte value).

ioBuffer A pointer to a data buffer into which data is written by _Read calls
and from which data is read by _Write calls.

ioReqCount The requested number of bytes to be read, written, or allocated.

ioActCount The number of bytes actually read, written, or allocated.

ioPosMode The positioning mode for setting the mark. Bits 0 and 1 of this field
indicate how to position the mark; you can use the following
predefined constants to set or test their value:

CONST

fsAtMark = 0; {at current mark}

fsFromStart = 1; {from beginning of file}

fsFromLEOF = 2; {from logical end-of-file}

fsFromMark = 3; {relative to current mark}

You can set bit 4 of the ioPosMode field to request that the data be
cached, and you can set bit 5 to request that the data not be cached.
You can set bit 6 to request that any data written be immediately

C H A P T E R 2

File Manager

2-90 File Manager Reference

read; this ensures that the data written to a volume exactly matches
the data in memory. To request a read-verify operation, add the
following constant to the positioning mode:

CONST

rdVerify = 64; {use read-verify mode}

You can set bit 7 to read a continuous stream of bytes, and place
the ASCII code of a newline character in the high-order byte to
terminate a read operation at the end of a line.

ioPosOffset The offset to be used in conjunction with the positioning mode.

Field descriptions for the fileParam variant

ioFRefNum The file reference number of an open file.

ioFVersNum A file version number. This field is no longer used and you should
always set it to 0.

filler1 Reserved.

ioFDirIndex An index for use with the PBHGetFInfo function.

ioFlAttrib File attributes. The bits in this field have these meanings:

ioFlVersNum A file version number. This feature is no longer supported, and you
must always set this field to 0.

ioFlFndrInfo Information used by the Finder. (See the chapter “Finder Interface”
in Inside Macintosh: Macintosh Toolbox Essentials for details.)

ioFlNum A file ID.

ioFlStBlk The first allocation block of the data fork. This field contains 0 if the
file’s data fork is empty.

ioFlLgLen The logical end-of-file of the data fork.

ioFlPyLen The physical end-of-file of the data fork.

ioFlRStBlk The first allocation block of the resource fork. This field contains 0 if
the file’s resource fork is empty.

ioFlRLgLen The logical end-of-file of the resource fork.

ioFlRPyLen The physical end-of-file of the resource fork.

ioFlCrDat The date and time of the file’s creation, specified in seconds since
midnight, January 1, 1904.

ioFlMdDat The date and time of the last modification to the file, specified in
seconds since midnight, January 1, 1904.

Bit Meaning

0 Set if file is locked

2 Set if resource fork is open

3 Set if data fork is open

4 Set if a directory

7 Set if file (either fork) is open

C H A P T E R 2

File Manager

File Manager Reference 2-91

Field descriptions for the volumeParam variant

filler2 Reserved.

ioVolIndex The volume index.

ioVCrDate The date and time of volume initialization.

ioVLsBkUp The date and time the volume information was last modified. (This
field is not changed when information is written to a file and does
not necessarily indicate when the volume was flushed.)

ioVAtrb The volume attributes.

ioVNmFls The number of files in the root directory.

ioVDirSt The first block of the volume directory.

ioVBlLn Length of directory in blocks.

ioVNmAlBlks The number of allocation blocks.

ioVAlBlkSiz The size of allocation blocks.

ioVClpSiz The volume clump size.

ioAlBlSt The first block in the volume map.

ioVNxtFNum The next unused file number.

ioVFrBlk The number of unused allocation blocks.

HFS Parameter Block

Most of the low-level HFS functions exchange information with your application using

the HFS parameter block, defined by the HParamBlockRec data type.

TYPE HParamBlockRec = {HFS parameter block}
RECORD

qLink: QElemPtr; {next queue entry}
qType: Integer; {queue type}

ioTrap: Integer; {routine trap}
ioCmdAddr: Ptr; {routine address}

ioCompletion: ProcPtr; {pointer to completion routine}
ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {pointer to pathname}
ioVRefNum: Integer; {volume specification}

CASE ParamBlkType OF
ioParam:

 (ioRefNum: Integer; {file reference number}
ioVersNum: SignedByte; {version number}

ioPermssn: SignedByte; {read/write permission}
ioMisc: Ptr; {miscellaneous}

ioBuffer: Ptr; {data buffer}
ioReqCount: LongInt; {requested number of bytes}

ioActCount: LongInt; {actual number of bytes}
ioPosMode: Integer; {positioning mode and newline char.}

ioPosOffset: LongInt); {positioning offset}

C H A P T E R 2

File Manager

2-92 File Manager Reference

fileParam:
 (ioFRefNum: Integer; {file reference number}

ioFVersNum: SignedByte; {file version number (unused)}
filler1: SignedByte; {reserved}

ioFDirIndex: Integer; {directory index}
ioFlAttrib: SignedByte; {file attributes}

ioFlVersNum: SignedByte; {file version number (unused)}
ioFlFndrInfo: FInfo; {information used by the Finder}

ioDirID: LongInt; {directory ID or file ID}
ioFlStBlk: Integer; {first alloc. blk. of data fork}

ioFlLgLen: LongInt; {logical EOF of data fork}
ioFlPyLen: LongInt; {physical EOF of data fork}

ioFlRStBlk: Integer; {first alloc. blk. of resource fork}
ioFlRLgLen: LongInt; {logical EOF of resource fork}

ioFlRPyLen: LongInt; {physical EOF of resource fork}
ioFlCrDat: LongInt; {date and time of creation}

ioFlMdDat: LongInt); {date and time of last modification}
volumeParam:

 (filler2: LongInt; {reserved}
ioVolIndex: Integer; {volume index}

ioVCrDate: LongInt; {date and time of initialization}
ioVLsMod: LongInt; {date and time of last modification}

ioVAtrb: Integer; {volume attributes}
ioVNmFls: Integer; {number of files in root directory}

ioVBitMap: Integer; {first block of volume bitmap}
ioAllocPtr: Integer; {first block of next new file}

ioVNmAlBlks: Integer; {number of allocation blocks}
ioVAlBlkSiz: LongInt; {size of allocation blocks}

ioVClpSiz: LongInt; {default clump size}
ioAlBlSt: Integer; {first block in volume map}

ioVNxtCNID: LongInt; {next unused node ID}
ioVFrBlk: Integer; {number of unused allocation blocks}

ioVSigWord: Integer; {volume signature}
ioVDrvInfo: Integer; {drive number}

ioVDRefNum: Integer; {driver reference number}
ioVFSID: Integer; {file-system identifier}

ioVBkUp: LongInt; {date and time of last backup}
ioVSeqNum: Integer; {used internally}

ioVWrCnt: LongInt; {volume write count}
ioVFilCnt: LongInt; {number of files on volume}

ioVDirCnt: LongInt; {number of directories on volume}
ioVFndrInfo: ARRAY[1..8] OF LongInt);

{information used by the Finder}
accessParam:

 (filler3: Integer; {reserved}

C H A P T E R 2

File Manager

File Manager Reference 2-93

ioDenyModes: Integer; {access mode information}
filler4: Integer; {reserved}

filler5: SignedByte; {reserved}
ioACUser: SignedByte; {user access rights}

filler6: LongInt; {reserved}
ioACOwnerID: LongInt; {owner ID}

ioACGroupID: LongInt; {group ID}
ioACAccess: LongInt); {directory access rights}

objParam:
 (filler7: Integer; {reserved}

ioObjType: Integer; {function code}
ioObjNamePtr: Ptr; {ptr to returned creator/group name}

ioObjID: LongInt); {creator/group ID}
copyParam:

 (ioDstVRefNum: Integer; {destination volume identifier}
filler8: Integer; {reserved}

ioNewName: Ptr; {pointer to destination pathname}
ioCopyName: Ptr; {pointer to optional name}

ioNewDirID: LongInt); {destination directory ID}
wdParam:

 (filler9: Integer; {reserved}
ioWDIndex: Integer; {working directory index}

ioWDProcID: LongInt; {working directory user identifier}
ioWDVRefNum: Integer; {working directory's vol. ref. num.}

filler10: Integer; {reserved}
filler11: LongInt; {reserved}

filler12: LongInt; {reserved}
filler13: LongInt; {reserved}

ioWDDirID: LongInt); {working directory's directory ID}
fidParam:

 (filler14: LongInt; {reserved}
ioDestNamePtr: StringPtr; {pointer to destination filename}

filler15: LongInt; {reserved}
ioDestDirID: LongInt; {destination parent directory ID}

filler16: LongInt; {reserved}
filler17: LongInt; {reserved}

ioSrcDirID: LongInt; {source parent directory ID}
filler18: Integer; {reserved}

ioFileID: LongInt); {file ID}
csParam:

 (ioMatchPtr: FSSpecArrayPtr;{pointer to array of matches}
ioReqMatchCount: LongInt; {max. number of matches to return}

ioActMatchCount: LongInt; {actual number of matches}
ioSearchBits: LongInt; {enable bits for matching rules}

ioSearchInfo1: CInfoPBPtr; {pointer to values and lower bounds}

C H A P T E R 2

File Manager

2-94 File Manager Reference

ioSearchInfo2: CInfoPBPtr; {pointer to masks and upper bounds}
ioSearchTime: LongInt; {maximum time to search}

ioCatPosition: CatPositionRec;{current catalog position}
ioOptBuffer: Ptr; {pointer to optional read buffer}

ioOptBufSize: LongInt); {length of optional read buffer}
foreignPrivParam:

 (filler21: LongInt; {reserved}
filler22: LongInt; {reserved}

ioForeignPrivBuffer: Ptr; {privileges data buffer}
ioForeignPrivReqCount: LongInt; {size of buffer}

ioForeignPrivActCount: LongInt; {amount of buffer used}
filler23: LongInt; {reserved}

ioForeignPrivDirID: LongInt; {parent directory ID of }
{ foreign file or directory}

ioForeignPrivInfo1: LongInt; {privileges data}
ioForeignPrivInfo2: LongInt; {privileges data}

ioForeignPrivInfo3: LongInt; {privileges data}
ioForeignPrivInfo4: LongInt); {privileges data}

END;

The first eight fields are common to all ten variants. Each variant also includes its own

unique fields.

Field descriptions common to all variants

qLink A pointer to the next entry in the file I/O queue. (This field is used
internally by the File Manager to keep track of asynchronous calls
awaiting execution.)

qType The queue type. (This field is used internally by the File Manager.)

ioTrap The trap number of the routine that was called. (This field is used
internally by the File Manager.)

ioCmdAddr The address of the routine that was called. (This field is used
internally by the File Manager.)

ioCompletion A pointer to a completion routine to be executed at the end of an
asynchronous call. It should be NIL for asynchronous calls with
no completion routine and is automatically set to NIL for all
synchronous calls. See “Completion Routines” on page 2-238 for
information about completion routines.

ioResult The result code of the function. For synchronous calls, this field is
the same as the result code of the function call itself. To determine
when an asynchronous call has actually been completed, your
application can poll this field; it’s set to a positive number when
the call is made and receives the actual result code when the call
is completed.

ioNamePtr A pointer to a pathname. Whenever a routine description specifies
that ioNamePtr is used—whether for input, output, or both—it’s
very important that you set this field to point to storage for a
Str255 value (if you’re using a pathname) or to NIL (if you’re not).

C H A P T E R 2

File Manager

File Manager Reference 2-95

ioVRefNum A volume specification (volume reference number, working
directory reference number, drive number, or 0 for default volume).

Field descriptions for the ioParam variant

ioRefNum The file reference number of an open file.

ioVersNum A version number. This field is no longer used and you should
always set it to 0.

ioPermssn The access mode.

ioMisc Depends on the routine called. This field contains either a new
logical end-of-file, a new version number, a pointer to an access
path buffer, or a pointer to a new pathname. Because ioMisc is of
type Ptr, you’ll need to perform type coercion to interpret the value
of ioMisc correctly when it contains an end-of-file (a LongInt
value) or version number (a SignedByte value).

ioBuffer A pointer to a data buffer into which data is written by _Read calls
and from which data is read by _Write calls.

ioReqCount The requested number of bytes to be read, written, or allocated.

ioActCount The number of bytes actually read, written, or allocated.

ioPosMode The positioning mode for setting the mark. Bits 0 and 1 of this field
indicate how to position the mark; you can use the following
predefined constants to set or test their value:

CONST

fsAtMark = 0; {at current mark}

fsFromStart = 1; {from beginning of file}

fsFromLEOF = 2; {from logical end-of-file}

fsFromMark = 3; {relative to current mark}

You can set bit 4 of the ioPosMode field to request that the data be
cached, and you can set bit 5 to request that the data not be cached.
You can set bit 6 to request that any data written be immediately
read; this ensures that the data written to a volume exactly matches
the data in memory. To request a read-verify operation, add the
following constant to the positioning mode:

CONST

rdVerify = 64; {use read-verify mode}

You can set bit 7 to read a continuous stream of bytes, and place the
ASCII code of a newline character in the high-order byte to
terminate a read operation at the end of a line.

ioPosOffset The offset to be used in conjunction with the positioning mode.

Field descriptions for the fileParam variant

ioFRefNum The file reference number of an open file.

ioFVersNum A file version number. This field is no longer used and you should
always set it to 0.

C H A P T E R 2

File Manager

2-96 File Manager Reference

filler1 Reserved.

ioFDirIndex An index for use with the PBHGetFInfo function.

ioFlAttrib File attributes. The bits in this field have these meanings:

ioFlVersNum A file version number. This field is no longer used and you should
always set it to 0.

ioFlFndrInfo Information used by the Finder.

ioDirID A directory ID.

ioFlStBlk The first allocation block of the data fork. This field contains 0 if the
file’s data fork is empty.

ioFlLgLen The logical end-of-file of the data fork.

ioFlPyLen The physical end-of-file of the data fork.

ioFlRStBlk The first allocation block of the resource fork.

ioFlRLgLen The logical end-of-file of the resource fork.

ioFlRPyLen The physical end-of-file of the resource fork.

ioFlCrDat The date and time of the file’s creation, specified in seconds since
midnight, January 1, 1904.

ioFlMdDat The date and time of the last modification to the file, specified in
seconds since midnight, January 1, 1904.

Field descriptions for the volumeParam variant

filler2 Reserved.

ioVolIndex An index for use with the PBHGetVInfo function.

ioVCrDate The date and time of volume initialization.

ioVLsMod The date and time the volume information was last modified. (This
field is not changed when information is written to a file and does
not necessarily indicate when the volume was flushed.)

ioVAtrb The volume attributes.

ioVNmFls The number of files in the root directory.

ioVBitMap The first block of the volume bitmap.

ioAllocPtr The block at which the next new file starts. Used internally.

ioVNmAlBlks The number of allocation blocks.

ioVAlBlkSiz The size of allocation blocks.

ioVClpSiz The clump size.

ioAlBlSt The first block in the volume map.

ioVNxtCNID The next unused catalog node ID.

ioVFrBlk The number of unused allocation blocks.

Bit Meaning

0 Set if file is locked

2 Set if resource fork is open

3 Set if data fork is open

4 Set if a directory

7 Set if file (either fork) is open

C H A P T E R 2

File Manager

File Manager Reference 2-97

ioVSigWord A signature word identifying the type of volume; it’s $D2D7 for
MFS volumes and $4244 for volumes that support HFS calls.

ioVDrvInfo The drive number of the drive containing the volume.

ioVDRefNum For online volumes, the reference number of the I/O driver for the
drive identified by ioVDrvInfo.

ioVFSID The file-system identifier. It indicates which file system is servicing
the volume; it’s zero for File Manager volumes and nonzero for
volumes handled by an external file system.

ioVBkUp The date and time the volume was last backed up (it’s 0 if never
backed up).

ioVSeqNum Used internally.

ioVWrCnt The volume write count.

ioVFilCnt The total number of files on the volume.

ioVDirCnt The total number of directories (not including the root directory) on
the volume.

ioVFndrInfo Information used by the Finder.

Field descriptions for the accessParam variant

filler3 Reserved.

ioDenyModes Access mode information. The bits in this field have these meanings:

filler4 Reserved.

filler5 Reserved.

ioACUser The user’s access rights for the specified directory. The bits in this
field have the following meanings:

filler6 Reserved.

ioACOwnerID The owner ID.

ioACGroupID The group ID.

ioACAccess The directory access privileges. See the section “Directory Access
Privileges,” beginning on page 2-18, for a complete description of
this field.

Bit Meaning

0 If set, request read permission

1 If set, request write permission

2–3 Reserved; must be 0

4 If set, deny other readers access to this file

5 If set, deny other writers access to this file

6–15 Reserved; must be 0

Bit Meaning

0 Set if user does not have See Folder privileges

1 Set if user does not have See Files privileges

2 Set if user does not have Make Changes privileges

3–6 Reserved; always set to 0

7 Set if user is not owner of the directory

C H A P T E R 2

File Manager

2-98 File Manager Reference

Field descriptions for the objParam variant

filler7 Reserved.

ioObjType A function code. The values passed in this field are determined by
the routine to which you pass this parameter block.

ioObjNamePtr A pointer to the returned creator/group name.

ioObjID The creator/group ID.

Field descriptions for the copyParam variant

ioDstVRefNum A volume reference number for the destination volume.

filler8 Reserved.

ioNewName A pointer to the destination pathname.

ioCopyName A pointer to an optional name.

ioNewDirID A destination directory ID.

Field descriptions for the wdParam variant

filler9 Reserved.

ioWDIndex An index to working directories.

ioWDProcID The working directory user identifier.

ioWDVRefNum The volume reference number for the working directory.

filler10 Reserved.

filler11 Reserved.

filler12 Reserved.

filler13 Reserved.

ioWDDirID The working directory’s directory ID.

Field descriptions for the fidParam variant

filler14 Reserved.

ioDestNamePtr A pointer to the name of the destination file.

filler15 Reserved.

ioDestDirID The parent directory ID of the destination file.

filler16 Reserved.

filler17 Reserved.

ioSrcDirID The parent directory ID of the source file.

filler18 Reserved.

ioFileID The file ID.

Field descriptions for the csParam variant

ioMatchPtr A pointer to an array of FSSpec records in which the file and
directory names that match the selection criteria are returned. The
array must be large enough to hold the largest possible number of
FSSpec records, as determined by the ioReqMatchCount field.

ioReqMatchCount
The maximum number of matches to return. This number should be
the number of FSSpec records that will fit in the memory pointed

C H A P T E R 2

File Manager

File Manager Reference 2-99

to by ioMatchPtr. You can use this field to avoid a possible excess
of matches for criteria that prove to be too general (or to limit the
length of a search if the ioSearchTime field isn’t used).

ioActMatchCount
The number of actual matches found.

ioSearchBits The fields of the parameter blocks ioSearchInfo1 and
ioSearchInfo2 that are relevant to the search. See “Searching a
Volume” beginning on page 2-38 for constants you can add to
determine a value for ioSearchBits.

ioSearchInfo1 A pointer to a CInfoPBRec parameter block that contains values
and the lower bounds of ranges for the fields selected by
ioSearchBits.

ioSearchInfo2 A pointer to a second CInfoPBRec parameter block that contains
masks and upper bounds of ranges for the fields selected by
ioSearchBits.

ioSearchTime A time limit on a search, in Time Manager format. Use this field to
limit the run time of a single call to PBCatSearch. A value of 0
imposes no time limit. If the value of this field is positive, it is
interpreted as milliseconds. If the value of this field is negative, it is
interpreted as negated microseconds.

ioCatPosition A position in the catalog where searching should begin. Use this
field to keep an index into the catalog when breaking down the
PBCatSearch search into a number of smaller searches. This field
is valid whenever PBCatSearch exits because it either spends the
maximum time allowed by ioSearchTime or finds the maximum
number of matches allowed by ioReqMatchCount.

To start at the beginning of the catalog, set the initialize
field of ioCatPosition to 0. Before exiting after an interrupted
search, PBCatSearch sets that field to the next catalog entry to
be searched.

To resume where the previous call stopped, pass the entire
CatPosition record returned by the previous call as input
to the next.

ioOptBuffer A pointer to an optional read buffer. The ioOptBuffer and
ioOptBufSize fields let you specify a part of memory as a read
buffer, increasing search speed.

ioOptBufSize The size of the buffer pointed to by ioOptBuffer. Buffer size
effectiveness varies with models and configurations, but a 16 KB
buffer is likely to be optimal. The size should be at least 1024 bytes
and should be an integral multiple of 512 bytes.

Field descriptions for the foreignPrivParam variant

filler21 Reserved.

filler22 Reserved.

ioForeignPrivBuffer
A pointer to a buffer containing access-control information about
the foreign file system.

C H A P T E R 2

File Manager

2-100 File Manager Reference

ioForeignPrivReqCount
The size of the buffer pointed to by the ioForeignPrivBuffer field.

ioForeignPrivActCount
The amount of the buffer pointed to by the ioForeignPrivBuffer
field that was actually used to hold data.

filler23 Reserved.

ioForeignPrivDirID
The parent directory ID of the foreign file or directory.

ioForeignPrivInfo1
A long word that may contain privileges data.

ioForeignPrivInfo2
A long word that may contain privileges data.

ioForeignPrivInfo3
A long word that may contain privileges data.

ioForeignPrivInfo4
A long word that may contain privileges data.

Catalog Information Parameter Blocks

The low-level functions PBGetCatInfo, PBSetCatInfo, and PBCatSearch exchange

information with your application using the catalog information parameter block, which is

defined by the CInfoPBRec data type. There are two variants of this record, hFileInfo

and dirInfo, which describe files and directories, respectively.

TYPE CInfoPBRec = {catalog information parameter block}

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

ioTrap: Integer; {routine trap}

ioCmdAddr: Ptr; {routine address}

ioCompletion: ProcPtr; {pointer to completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {pointer to pathname}

ioVRefNum: Integer; {volume specification}

ioFRefNum: Integer; {file reference number}

ioFVersNum: SignedByte; {version number}

filler1: SignedByte; {reserved}

ioFDirIndex: Integer; {directory index}

ioFlAttrib: SignedByte; {file or directory attributes}

ioACUser: SignedByte; {directory access rights}

CASE CInfoType OF

hFileInfo:

 (ioFlFndrInfo: FInfo; {information used by the Finder}

ioDirID: LongInt; {directory ID or file ID}

ioFlStBlk: Integer; {first alloc. blk. of data fork}

C H A P T E R 2

File Manager

File Manager Reference 2-101

ioFlLgLen: LongInt; {logical EOF of data fork}

ioFlPyLen: LongInt; {physical EOF of data fork}

ioFlRStBlk: Integer; {first alloc. blk. of resource fork}

ioFlRLgLen: LongInt; {logical EOF of resource fork}

ioFlRPyLen: LongInt; {physical EOF of resource fork}

ioFlCrDat: LongInt; {date and time of creation}

ioFlMdDat: LongInt; {date and time of last modification}

ioFlBkDat: LongInt; {date and time of last backup}

ioFlXFndrInfo: FXInfo; {additional Finder information}

ioFlParID: LongInt; {file parent directory ID}

ioFlClpSiz: LongInt); {file's clump size}

dirInfo:

 (ioDrUsrWds: DInfo; {information used by the Finder}

ioDrDirID: LongInt; {directory ID}

ioDrNmFls: Integer; {number of files in directory}

filler3: ARRAY[1..9] OF Integer;

ioDrCrDat: LongInt; {date and time of creation}

ioDrMdDat: LongInt; {date and time of last modification}

ioDrBkDat: LongInt; {date and time of last backup}

ioDrFndrInfo: DXInfo; {additional Finder information}

ioDrParID: LongInt); {directory's parent directory ID}

END;

The first 14 fields are common to both variants. Each variant also includes its own

unique fields.

Field descriptions common to both variants

qLink A pointer to the next entry in the file I/O queue. (This field is used
internally by the File Manager to keep track of asynchronous calls
awaiting execution.)

qType The queue type. (This field is used internally by the File Manager.)

ioTrap The trap number of the routine that was called. (This field is used
internally by the File Manager.)

ioCmdAddr The address of the routine that was called. (This field is used
internally by the File Manager.)

ioCompletion A pointer to a completion routine to be executed at the end of an
asynchronous call. It should be NIL for asynchronous calls with no
completion routine and is automatically set to NIL for all
synchronous calls. See “Completion Routines” on page 2-238 for
information about completion routines.

ioResult The result code of the function. For synchronous calls, this field is
the same as the result code of the function call itself. To determine
when an asynchronous call has actually been completed, your
application can poll this field; it’s set to a positive number when
the call is made and receives the actual result code when the call
is completed.

C H A P T E R 2

File Manager

2-102 File Manager Reference

ioNamePtr A pointer to a pathname. Whenever a routine description specifies
that ioNamePtr is used—whether for input, output, or both—
it’s very important that you set this field to point to storage for a
Str255 value (if you’re using a pathname) or to NIL (if you’re not).

ioVRefNum A volume specification. You can specify a volume using a volume
reference number, a drive number, a working directory reference
number, or 0 for the default drive.

ioFRefNum The file reference number of an open file.

ioFVersNum A file version number. This field is no longer used and you should
always set it to 0.

filler1 Reserved.

ioFDirIndex A file and directory index. If this field contains a positive number,
PBGetCatInfo returns information about the file or directory
having that directory index in the directory specified by the
ioVRefNum field. (If ioVRefNum contains a volume reference
number, the specified directory is that volume’s root directory.)

If this field contains 0, PBGetCatInfo returns information about
the file or directory whose name is specified in the ioNamePtr field
and that is located in the directory specified by the ioVRefNum
field. (Once again, if ioVRefNum contains a volume reference
number, the specified directory is that volume’s root directory.)

If this field contains a negative number, PBGetCatInfo ignores the
ioNamePtr field and returns information about the directory
specified in the ioDirID field. If both ioDirID and ioVRefNum
are set to 0, PBGetCatInfo returns information about the current
default directory.

ioFlAttrib File or directory attributes. For files, the bits in this field have the
following meanings:

For directories, the bits in this field have the following meanings:

Bit Meaning

0 Set if file is locked

1 Reserved

2 Set if resource fork is open

3 Set if data fork is open

4 Set if a directory

5–6 Reserved

7 Set if file (either fork) is open

Bit Meaning

0 Set if the directory is locked

1 Reserved

2 Set if the directory is within a shared area of the
directory hierarchy

3 Set if the directory is a share point that is mounted by
some user

C H A P T E R 2

File Manager

File Manager Reference 2-103

ioACUser The user’s access rights for the specified directory. The bits in this
field have the following meanings:

For example, if you call PBGetCatInfo for a particular shared
volume and ioACUser returns 0, you know that the user is the
owner of the directory and has complete privileges to it.

Field descriptions for the hFileInfo variant

ioFlFndrInfo Information used by the Finder.

ioDirID A directory ID or file ID. On input to PBGetCatInfo, this field
contains a directory ID (which is used only if the ioFDirIndex
field is negative). On output, this field contains the file ID of the
specified file.

ioFlStBlk The first allocation block of the data fork. This field contains 0 if the
file’s data fork is empty.

ioFlLgLen The logical end-of-file of the data fork.

ioFlPyLen The physical end-of-file of the data fork.

ioFlRStBlk The first allocation block of the resource fork.

ioFlRLgLen The logical end-of-file of the resource fork.

ioFlRPyLen The physical end-of-file of the resource fork.

ioFlCrDat The date and time of the file’s creation, specified in seconds since
midnight, January 1, 1904.

ioFlMdDat The date and time of the last modification to the file, specified in
seconds since midnight, January 1, 1904.

ioFlBkDat The date and time of the last backup to the file, specified in seconds
since midnight, January 1, 1904.

ioFlXFndrInfo Additional information used by the Finder. (See the chapter
“Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials
for details.)

ioFlParID The directory ID of the file’s parent.

ioFlClpSiz The clump size to be used when writing the file; if it’s 0, the
volume’s clump size is used when the file is opened.

4 Set if the item is a directory

5 Set if the directory is a share point

6–7 Reserved

Bit Meaning

0 Set if user does not have See Folder privileges

1 Set if user does not have See Files privileges

2 Set if user does not have Make Changes privileges

3–6 Reserved; always set to 0

7 Set if user is not owner of the directory

Bit Meaning

C H A P T E R 2

File Manager

2-104 File Manager Reference

Field descriptions for the dirInfo variant

ioDrUsrWds Information used by the Finder.

ioDrDirID A directory ID. On input to PBGetCatInfo, this field contains a
directory ID (which is used only if the value of the ioFDirIndex
field is negative). On output, this field contains the directory ID of
the specified directory.

ioDrNmFls The number of files in the directory.

filler3 Reserved.

ioDrCrDat The date and time of the directory’s creation, specified in seconds
since midnight, January 1, 1904.

ioDrMdDat The date and time of the last modification to the directory, specified
in seconds since midnight, January 1, 1904.

ioDrBkDat The date and time of the last backup to the directory, specified in
seconds since midnight, January 1, 1904.

ioDrFndrInfo Additional information used by the Finder.

ioDrParID The directory ID of the specified directory’s parent.

Catalog Position Records

When you call the PBCatSearch function to search a volume’s catalog file, you can

specify (in the ioCatPosition field of the parameter block passed to PBCatSearch) a

catalog position record. If a catalog search consumes more time than is allowed by the

ioSearchTime field, PBCatSearch stores a directory-location index in that record;

when you call PBCatSearch again, it uses that record to resume searching where it left

off. A catalog position record is defined by the CatPositionRec data type.

TYPE CatPositionRec = {catalog position record}

RECORD

initialize: LongInt; {starting point}

priv: ARRAY[1..6] OF Integer; {private data}

END;

Field descriptions

initialize The starting point of the catalog search. To start searching at
the beginning of a catalog, specify 0 in this field. To resume a
previous search, pass the value returned by the previous call
to PBCatSearch.

priv An array of integers that is used internally by PBCatSearch.

Catalog Move Parameter Blocks

The low-level HFS function PBCatMove uses the catalog move parameter block defined

by the CMovePBRec data type.

C H A P T E R 2

File Manager

File Manager Reference 2-105

TYPE CMovePBRec = {catalog move parameter block}

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

ioTrap: Integer; {routine trap}

ioCmdAddr: Ptr; {routine address}

ioCompletion: ProcPtr; {pointer to completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {pointer to pathname}

ioVRefNum: Integer; {volume specification}

filler1: LongInt; {reserved}

ioNewName: StringPtr; {name of new directory}

filler2: LongInt; {reserved}

ioNewDirID: LongInt; {directory ID of new directory}

filler3: ARRAY[1..2] OF LongInt; {reserved}

ioDirID: LongInt; {directory ID of current directory}

END;

Field descriptions

qLink A pointer to the next entry in the file I/O queue. (This field is used
internally by the File Manager to keep track of asynchronous calls
awaiting execution.)

qType The queue type. (This field is used internally by the File Manager.)

ioTrap The trap number of the routine that was called. (This field is used
internally by the File Manager.)

ioCmdAddr The address of the routine that was called. (This field is used
internally by the File Manager.)

ioCompletion A pointer to a completion routine to be executed at the end of an
asynchronous call. It should be NIL for asynchronous calls with no
completion routine and is automatically set to NIL for all
synchronous calls. See “Completion Routines” on page 2-238 for
information about completion routines.

ioResult The result code of the function. For synchronous calls, this field is the
same as the result code of the function call itself. To determine when
an asynchronous call has actually been completed, your application
can poll this field; it’s set to a positive number when the call is made
and receives the actual result code when the call is completed.

ioNamePtr A pointer to a pathname. Whenever a routine description specifies
that ioNamePtr is used—whether for input, output, or both—it’s
very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NIL (if you’re not).

ioVRefNum A volume specification (volume reference number, working directory
reference number, drive number, or 0 for default volume).

filler1 Reserved.

C H A P T E R 2

File Manager

2-106 File Manager Reference

ioNewName The name of the directory into which the specified file or directory
is to be moved.

filler2 Reserved.

ioNewDirID The directory ID of the directory into which the specified file or
directory is to be moved.

filler3 Reserved.

ioDirID The current directory ID of the file or directory to be moved (used
in conjunction with the ioVRefNum and ioNamePtr fields).

Working Directory Parameter Blocks

The low-level HFS functions PBOpenWD, PBCloseWD, and PBGetWDInfo use the

working directory parameter block defined by the WDPBRec data type.

TYPE WDPBRec = {working directory parameter block}
RECORD

qLink: QElemPtr; {next queue entry}
qType: Integer; {queue type}

ioTrap: Integer; {routine trap}
ioCmdAddr: Ptr; {routine address}

ioCompletion: ProcPtr; {pointer to completion routine}
ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {pointer to pathname}
ioVRefNum: Integer; {volume specification}

filler1: Integer; {reserved}
ioWDIndex: Integer; {working directory index}

ioWDProcID: LongInt; {working directory user identifier}
ioWDVRefNum: Integer; {working directory's vol. ref. num.}

filler2: ARRAY[1..7] OF Integer; {reserved}
ioWDDirID: LongInt; {working directory's directory ID}

END;

Field descriptions

qLink A pointer to the next entry in the file I/O queue. (This field is used
internally by the File Manager to keep track of asynchronous calls
awaiting execution.)

qType The queue type. (This field is used internally by the File Manager.)

ioTrap The trap number of the routine that was called. (This field is used
internally by the File Manager.)

ioCmdAddr The address of the routine that was called. (This field is used
internally by the File Manager.)

ioCompletion A pointer to a completion routine to be executed at the end of an
asynchronous call. It should be NIL for asynchronous calls with
no completion routine and is automatically set to NIL for all
synchronous calls. See “Completion Routines” on page 2-238 for
information about completion routines.

C H A P T E R 2

File Manager

File Manager Reference 2-107

ioResult The result code of the function. For synchronous calls, this field is
the same as the result code of the function call itself. To determine
when an asynchronous call has actually been completed, your
application can poll this field; it’s set to a positive number when
the call is made and receives the actual result code when the call
is completed.

ioNamePtr A pointer to a pathname. Whenever a routine description specifies
that ioNamePtr is used—whether for input, output, or both—
it’s very important that you set this field to point to storage for a
Str255 value (if you’re using a pathname) or to NIL (if you’re not).

ioVRefNum A volume specification (volume reference number, working
directory reference number, drive number, or 0 for default volume).

filler1 Reserved.

ioWDIndex An index for use with the PBGetWDInfo function.

ioWDProcID An identifier that’s used to distinguish between working directories
set up by different users; you should set ioWDProcID to your
application’s signature.

ioWDVRefNum The working directory’s volume reference number.

filler2 Reserved.

ioWDDirID The working directory’s directory ID.

File Control Block Parameter Blocks

The low-level HFS function PBGetFCBInfo uses the file control block parameter block

defined by the FCBPBRec data type.

TYPE FCBPBRec = {file control block parameter block}

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

ioTrap: Integer; {routine trap}

ioCmdAddr: Ptr; {routine address}

ioCompletion: ProcPtr; {pointer to completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {pointer to pathname}

ioVRefNum: Integer; {volume specification}

ioRefNum: Integer; {file reference number}

filler: Integer; {reserved}

ioFCBIndx: Integer; {FCB index}

filler1: Integer; {reserved}

ioFCBFlNm: LongInt; {file ID}

ioFCBFlags: Integer; {flags}

ioFCBStBlk: Integer; {first allocation block of file}

ioFCBEOF: LongInt; {logical end-of-file}

ioFCBPLen: LongInt; {physical end-of-file}

C H A P T E R 2

File Manager

2-108 File Manager Reference

ioFCBCrPs: LongInt; {position of the file mark}

ioFCBVRefNum: Integer; {volume reference number}

ioFCBClpSiz: LongInt; {file's clump size}

ioFCBParID: LongInt; {parent directory ID}

END;

Field descriptions

qLink A pointer to the next entry in the file I/O queue. (This field is used
internally by the File Manager to keep track of asynchronous calls
awaiting execution.)

qType The queue type. (This field is used internally by the File Manager.)

ioTrap The trap number of the routine that was called. (This field is used
internally by the File Manager.)

ioCmdAddr The address of the routine that was called. (This field is used
internally by the File Manager.)

ioCompletion A pointer to a completion routine to be executed at the end of an
asynchronous call. It should be NIL for asynchronous calls with
no completion routine and is automatically set to NIL for all
synchronous calls. See “Completion Routines” on page 2-238 for
information about completion routines.

ioResult The result code of the function. For synchronous calls, this field is
the same as the result code of the function call itself. To determine
when an asynchronous call has actually been completed, your
application can poll this field; it’s set to a positive number when
the call is made and receives the actual result code when the call
is completed.

ioNamePtr A pointer to a pathname. Whenever a routine description specifies
that ioNamePtr is used—whether for input, output, or both—
it’s very important that you set this field to point to storage for a
Str255 value (if you’re using a pathname) or to NIL (if you’re not).

ioVRefNum A volume specification (volume reference number, working
directory reference number, drive number, or 0 for default volume).

ioRefNum The file reference number of an open file.

filler Reserved.

ioFCBIndx An index for use with the PBGetFCBInfo function.

filler1 Reserved.

ioFCBFlNm The file ID.

ioFCBFlags Flags describing the status of the file. The bits in this field that are
currently used have the following meanings:

Bit Meaning

8 Set if data can be written to the file

9 Set if this FCB describes a resource fork

10 Set if the file has a locked byte range

11 Reserved

C H A P T E R 2

File Manager

File Manager Reference 2-109

ioFCBStBlk The number of the first allocation block of the file.

ioFCBEOF The logical end-of-file.

ioFCBPLen The physical end-of-file.

ioFCBCrPs The position of the file mark.

ioFCBVRefNum The volume reference number.

ioFCBClpSiz The file clump size.

ioFCBParID The file’s parent directory ID.

Volume Attributes Buffer

The low-level HFS function PBHGetVolParms returns information in the volume

attributes buffer, defined by the GetVolParmsInfoBuffer data type.

TYPE GetVolParmsInfoBuffer =

RECORD

vMVersion: Integer; {version number}

vMAttrib: LongInt; {volume attributes}

vMLocalHand: Handle; {reserved}

vMServerAdr: LongInt; {network server address}

vMVolumeGrade: LongInt; {relative speed rating}

vMForeignPrivID: Integer; {foreign privilege model}

END;

Field descriptions

vMVersion The version of the attributes buffer structure. Currently this field
returns either 1 or 2.

vMAttrib A 32-bit quantity that encodes information about the volume
attributes. See the list of constants in the description of
PBHGetVolParms beginning on page 2-147 for details on the
meaning of each bit.

vMLocalHand A handle to private data for shared volumes. On creation of the
VCB (right after mounting), this field is a handle to a 2-byte block
of memory. The Finder uses this for its local window list storage,
allocating and deallocating memory as needed. It is disposed of
when the volume is unmounted. Your application should treat this
field as reserved.

vMServerAdr For AppleTalk server volumes, this field contains the internet
address of an AppleTalk server volume. Your application can
inspect this field to tell which volumes belong to which server; the
value of this field is 0 if the volume does not have a server.

12 Set if the file has shared write permissions

13 Set if the file is locked (write-protected)

14 Set if the file’s clump size is specified in the FCB

15 Set if the file has changed since it was last flushed

Bit Meaning

C H A P T E R 2

File Manager

2-110 File Manager Reference

vMVolumeGrade The relative speed rating of the volume. The scale used to
determine these values is currently uncalibrated. In general,
lower values indicate faster speeds. A value of 0 indicates that
the volume’s speed is unrated. The buffer version returned in
the vMVersion field must be greater than 1 for this field to
be meaningful.

vMForeignPrivID
An integer representing the privilege model supported by the
volume. Currently two values are defined for this field:
0 represents a standard HFS volume that might or might not
support the AFP privilege model; fsUnixPriv represents a
volume that supports the A/UX privilege model. The buffer
version returned in the vMVersion field must be greater than 1
for this field to be meaningful.

Volume Mounting Information Records

The File Manager remote mounting functions store the mounting information in a

variable-sized structure called a volume mounting information record, defined by the

VolMountInfoHeader data type.

TYPE VolMountInfoHeader = {volume mounting information}

RECORD

length: Integer; {length of mounting information}

media: VolumeType; {type of volume}

{volume-specific, variable-length location data}

END;

Field descriptions

length The length of the VolMountInfoHeader structure (that is,
the total length of the structure header described here plus the
variable-length location data). The length of the record is flexible
so that non-Macintosh file systems can store whatever information
they need for volume mounting.

media The volume type of the remote volume. The value
AppleShareMediaType (a constant that translates to 'afpm')
represents an AppleShare volume. If you are adding support for
the programmatic mounting functions to a non-Macintosh file
system, you should register a four-character identifier for your
volumes with Macintosh Developer Technical Support at Apple
Computer, Inc.

The only volumes that currently support the programmatic mounting functions are

AppleShare servers, which use a volume mounting record of type AFPVolMountInfo.

TYPE AFPVolMountInfo = {AFP volume mounting information}

RECORD

length: Integer; {length of mounting information}

media: VolumeType; {type of volume}

C H A P T E R 2

File Manager

File Manager Reference 2-111

flags: Integer; {reserved; must be set to 0}

nbpInterval: SignedByte; {NBP retry interval}

nbpCount: SignedByte; {NBP retry count}

uamType: Integer; {user authentication method}

zoneNameOffset: Integer; {offset to zone name}

serverNameOffset: Integer; {offset server name}

volNameOffset: Integer; {offset to volume name}

userNameOffset: Integer; {offset to user name}

userPasswordOffset:

Integer; {offset to user password}

volPasswordOffset:

Integer; {offset to volume password}

AFPData: PACKED ARRAY[1..144] OF CHAR;

{standard AFP mounting info}

{optional volume-specific, variable-length data}

END;

Field descriptions

length The length of the AFPVolMountInfo structure (that is, the total
length of the structure header described here plus the variable-
length location data).

media The volume type of the remote volume. The value
AppleShareMediaType (a constant that translates to 'afpm')
represents an AppleShare volume.

flags Reserved; set this field to 0. If bit 0 is set, no greeting message from
the server is displayed.

nbpInterval The NBP retransmit interval, in units of 8 ticks.

npbCount The NBP retransmit count. This field specifies the total number of
times a packet should be transmitted, including the first
transmission.

uamType The access-control method used by the remote volume. AppleShare
uses four methods, defined by constants:

CONST

kNoUserAuthentication = 1; {no password}

kPassword = 2; {8-byte password}

kEncryptPassword = 3;

{encrypted 8-byte password}

kTwoWayEncryptPassword = 6;

{two-way random encryption}

zoneNameOffset The offset in bytes from the beginning of the record to the entry in
the AFPData field containing the name of the AppleShare zone.

serverNameOffset
The offset in bytes from the beginning of the record to the entry in
the AFPData field containing the name of the AppleShare server.

C H A P T E R 2

File Manager

2-112 File Manager Reference

volNameOffset The offset in bytes from the beginning of the record to the entry in
the AFPData field containing the name of the volume.

userNameOffset The offset in bytes from the beginning of the record to the entry in
the AFPData field containing the name of the user.

userPasswordOffset
The offset in bytes from the beginning of the record to the entry in
the AFPData field containing the user’s password.

volPasswordOffset
The offset in bytes from the beginning of the record to the entry
in the AFPData field containing the volume’s password. Some
versions of the AppleShare software do not pass the information
in this field to the server.

AFPData The actual volume mounting information, offsets to which are
contained in the preceding six fields. To mount an AFP volume, you
must fill in the record with at least the zone name, server name,
user name, user password, and volume password. You can lay out
the data in any order within this data field, as long as you specify
the correct offsets in the offset fields.

High-Level File Access Routines

This section describes the File Manager’s high-level file access routines. When you call

one of these routines, you specify a file by a file reference number (which the File

Manager returns to your application when the application opens a file). Unless your

application has very specialized needs, you should be able to manage all file access (for

example, writing data to the file) using the routines described in this section. Typically

you use these routines to operate on a file’s data fork, but in certain circumstances you

might want to use them on a file’s resource fork as well.

Reading, Writing, and Closing Files

You can use the functions FSRead, FSWrite, and FSClose to read data from a

file, write data to a file, and close an open file. All three of these functions operate

on open files. You can use any one of a variety of routines to open a file (for example,

FSpOpenDF).

FSRead

You can use the FSRead function to read any number of bytes from an open file.

FUNCTION FSRead (refNum: Integer; VAR count: LongInt;

buffPtr: Ptr): OSErr;

refNum The file reference number of an open file.

C H A P T E R 2

File Manager

File Manager Reference 2-113

count On input, the number of bytes to read; on output, the number of bytes
actually read.

buffPtr A pointer to the data buffer into which the bytes are to be read.

DESCRIPTION

The FSRead function attempts to read the requested number of bytes from the specified

file into the specified buffer. The buffPtr parameter points to that buffer; this buffer is

allocated by your application and must be at least as large as the count parameter.

Because the read operation begins at the current mark, you might want to set the mark

first by calling the SetFPos function. If you try to read past the logical end-of-file,

FSRead reads in all the data up to the end-of-file, moves the mark to the end-of-file, and

returns eofErr as its function result. Otherwise, FSRead moves the file mark to the byte

following the last byte read and returns noErr.

Note

The low-level PBRead function lets you set the mark without having to
call SetFPos. Also, if you want to read data in newline mode, you must
use PBRead instead of FSRead. ◆

RESULT CODES

FSWrite

You can use the FSWrite function to write any number of bytes to an open file.

FUNCTION FSWrite (refNum: Integer; VAR count: LongInt;

buffPtr: Ptr): OSErr;

refNum The file reference number of an open file.

count On input, the number of bytes to write to the file; on output, the number
of bytes actually written.

buffPtr A pointer to the data buffer from which the bytes are to be written.

noErr 0 No error
ioErr –36 I/O error
fnOpnErr –38 File not open
eofErr –39 Logical end-of-file reached
posErr –40 Attempt to position mark before start of file
fLckdErr -45 File is locked
paramErr –50 Negative count
rfNumErr –51 Bad reference number
afpAccessDenied –5000 User does not have the correct access to the file

C H A P T E R 2

File Manager

2-114 File Manager Reference

DESCRIPTION

The FSWrite function takes the specified number of bytes from the specified data buffer

and attempts to write them to the specified file. Because the write operation begins at

the current mark, you might want to set the mark first by calling the SetFPos function.

If the write operation completes successfully, FSWrite moves the file mark to the

byte following the last byte written and returns noErr. If you try to write past the

logical end-of-file, FSWrite moves the logical end-of-file. If you try to write past

the physical end-of-file, FSWrite adds one or more clumps to the file and moves the

physical end-of-file accordingly.

Note

The low-level PBWrite function lets you set the mark without having to
call SetFPos. ◆

RESULT CODES

FSClose

You can use the FSClose function to close an open file.

FUNCTION FSClose (refNum: Integer): OSErr;

refNum The file reference number of an open file.

DESCRIPTION

The FSClose function removes the access path for the specified file and writes the

contents of the volume buffer to the volume.

Note

The FSClose function calls PBFlushFile internally to write the file’s
bytes onto the volume. To ensure that the file’s catalog entry is updated,
you should call FlushVol after you call FSClose. ◆

noErr 0 No error
dskFulErr –34 Disk full
ioErr –36 I/O error
fnOpnErr –38 File not open
posErr –40 Attempt to position mark before start of file
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
paramErr –50 Negative count
rfNumErr –51 Bad reference number
wrPermErr –61 Read/write permission doesn’t allow writing

C H A P T E R 2

File Manager

File Manager Reference 2-115

▲ W A R N I N G

Make sure that you do not call FSClose with a file reference number of
a file that has already been closed. Attempting to close the same file
twice may result in loss of data on a volume. See “File Control Blocks”
on page 2-81 for a description of how this can happen. ▲

RESULT CODES

Manipulating the File Mark

You can use the functions GetFPos and SetFPos to get or set the current position of the

file mark.

GetFPos

You can use the GetFPos function to determine the current position of the mark before

reading from or writing to an open file.

FUNCTION GetFPos (refNum: Integer; VAR filePos: LongInt): OSErr;

refNum The file reference number of an open file.

filePos On output, the current position of the mark.

DESCRIPTION

The GetFPos function returns, in the filePos parameter, the current position of the file

mark for the specified open file. The position value is zero-based; that is, the value of

filePos is 0 if the file mark is positioned at the beginning of the file.

RESULT CODES

noErr 0 No error
ioErr –36 I/O error
fnOpnErr –38 File not open
fnfErr –43 File not found
rfNumErr –51 Bad reference number

noErr 0 No error
ioErr –36 I/O error
fnOpnErr –38 File not open
rfNumErr –51 Bad reference number
gfpErr –52 Error during GetFPos

C H A P T E R 2

File Manager

2-116 File Manager Reference

SetFPos

You can use the SetFPos function to set the position of the file mark before reading

from or writing to an open file.

FUNCTION SetFPos (refNum: Integer; posMode: Integer;

posOff: LongInt): OSErr;

refNum The file reference number of an open file.

posMode The positioning mode.

posOff The positioning offset.

DESCRIPTION

The SetFPos function sets the file mark of the specified file. The posMode parameter

indicates how to position the mark; it must contain one of the following values:

CONST

fsAtMark = 0; {at current mark}

fsFromStart = 1; {set mark relative to beginning of file}

fsFromLEOF = 2; {set mark relative to logical end-of-file}

fsFromMark = 3; {set mark relative to current mark}

If you specify fsAtMark, the mark is left wherever it’s currently positioned, and the

posOff parameter is ignored. The next three constants let you position the mark relative

to either the beginning of the file, the logical end-of-file, or the current mark. If you

specify one of these three constants, you must also pass in posOff a byte offset (either

positive or negative) from the specified point. If you specify fsFromLEOF, the value in

posOff must be less than or equal to 0.

RESULT CODES

Manipulating the End-of-File

You can use the functions GetEOF and SetEOF to get or set the logical end-of-file of an

open file.

noErr 0 No error
ioErr –36 I/O error
fnOpnErr –38 File not open
eofErr –39 Logical end-of-file reached
posErr –40 Attempt to position mark before start of file
rfNumErr –51 Bad reference number

C H A P T E R 2

File Manager

File Manager Reference 2-117

GetEOF

You can use the GetEOF function to determine the current logical end-of-file of an

open file.

FUNCTION GetEOF (refNum: Integer; VAR logEOF: LongInt): OSErr;

refNum The file reference number of an open file.

logEOF On output, the logical end-of-file.

DESCRIPTION

The GetEOF function returns, in the logEOF parameter, the logical end-of-file of the

specified file.

RESULT CODES

SetEOF

You can use the SetEOF function to set the logical end-of-file of an open file.

FUNCTION SetEOF (refNum: Integer; logEOF: LongInt): OSErr;

refNum The file reference number of an open file.

logEOF The logical end-of-file.

DESCRIPTION

The SetEOF function sets the logical end-of-file of the specified file. If you attempt to set

the logical end-of-file beyond the physical end-of-file, the physical end-of-file is set

1 byte beyond the end of the next free allocation block; if there isn’t enough space on the

volume, no change is made, and SetEOF returns dskFulErr as its function result.

If you set the logEOF parameter to 0, all space occupied by the file on the volume is

released. The file still exists, but it contains 0 bytes. Setting a file fork’s end-of-file to 0 is

therefore not the same as deleting the file (which removes both file forks at once).

noErr 0 No error
ioErr –36 I/O error
fnOpnErr –38 File not open
rfNumErr –51 Bad reference number
afpAccessDenied –5000 User does not have the correct access to the file

C H A P T E R 2

File Manager

2-118 File Manager Reference

RESULT CODES

Allocating File Blocks

The File Manager provides two functions, Allocate and AllocContig, that allow you

to allocate additional blocks to a file. The File Manager automatically allocates file blocks

if you move the logical end-of-file past the physical end-of-file, and it automatically

deallocates unneeded blocks from a file if you move the logical end-of-file to a position

more than one allocation block before the current physical end-of-file. Consequently,

you do not in general need to be concerned with allocating or deallocating file

blocks. However, you can improve file block contiguity if you use the Allocate

or AllocContig function to preallocate file blocks. This is most useful if you know

in advance how big a file is likely to become.

Note

When the File Manager allocates (or deallocates) file blocks
automatically, it always adds (or removes) blocks in clumps. The
Allocate and AllocContig functions allow you to add blocks
in allocation blocks, which may be smaller than clumps. ◆

The Allocate and AllocContig functions are not supported by AppleShare volumes.

Instead, use SetEOF or PBSetEOF to extend a file by setting the end-of-file.

Allocate

You can use the Allocate function to allocate additional blocks to an open file.

FUNCTION Allocate (refNum: Integer; VAR count: LongInt): OSErr;

refNum The file reference number of an open file.

count On input, the number of additional bytes to allocate to the file; on output,
the number of bytes actually allocated, rounded up to the nearest
multiple of the allocation block size.

DESCRIPTION

The Allocate function adds the specified number of bytes to the specified file and sets

the physical end-of-file to 1 byte beyond the last block allocated. If there isn’t enough

empty space on the volume to satisfy the allocation request, Allocate allocates the rest

of the space on the volume and returns dskFulErr as its function result.

noErr 0 No error
dskFulErr –34 Disk full
ioErr –36 I/O error
fnOpnErr –38 File not open
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
rfNumErr –51 Bad reference number
wrPermErr –61 Read/write permission doesn’t allow writing

C H A P T E R 2

File Manager

File Manager Reference 2-119

The Allocate function always attempts to allocate contiguous blocks. If the total

number of requested bytes is unavailable, Allocate allocates whatever space,

contiguous or not, is available. To force the allocation of the entire requested space as a

contiguous piece, call AllocContig instead.

RESULT CODES

AllocContig

You can use the AllocContig function to allocate additional contiguous blocks to an

open file.

FUNCTION AllocContig (refNum: Integer; VAR count: LongInt): OSErr;

refNum The file reference number of an open file.

count On input, the number of additional bytes to allocate to the file; on output,
the number of bytes allocated, rounded up to the nearest multiple of the
allocation block size.

DESCRIPTION

The AllocContig function is identical to the Allocate function except that if there

isn’t enough contiguous empty space on the volume to satisfy the allocation request,

AllocContig does nothing and returns dskFulErr as its function result. If you want

to allocate whatever space is available, even when the entire request cannot be filled by

the allocation of a contiguous piece, call Allocate instead.

RESULT CODES

noErr 0 No error
dskFulErr –34 Disk full
ioErr –36 I/O error
fnOpnErr –38 File not open
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
rfNumErr –51 Bad reference number
wrPermErr –61 Read/write permission doesn’t allow writing

noErr 0 No error
dskFulErr –34 Disk full
ioErr –36 I/O error
fnOpnErr –38 File not open
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
rfNumErr –51 Bad reference number
wrPermErr –61 Read/write permission doesn’t allow writing

C H A P T E R 2

File Manager

2-120 File Manager Reference

Low-Level File Access Routines

This section describes the low-level file access routines. These low-level routines, whose

names begin with the letters PB, provide two advantages over the corresponding

high-level file access routines:

■ These routines can be executed asynchronously, returning control to your application
before the operation is completed.

■ In certain cases, these routines provide more extensive information or perform
advanced operations.

All of these routines exchange parameters with your application through a parameter

block of type ParamBlock. When you call a low-level routine, you pass the address of

the parameter block to the routine.

Assembly-Language Note

When you call any of these low-level routines, register A0 must point to
a parameter block containing the parameters for the routine. If you want
the routine to be executed asynchronously, set bit 10 of the routine trap
word. You can do this by supplying the word ASYNC as the second
argument to the routine macro. Here’s an example:

_Read, ASYNC

You can set or test bit 10 of a trap word using the global constant
asyncTrpBit.

The hierarchical extensions of certain basic File Manager routines
actually are not new calls. For instance, _Open and _HOpen both trap to
the same routine. The trap word generated by the _HOpen macro is the
same as the trap word that would be generated by invoking the _Open
macro with bit 9 set. The setting of this bit tells the File Manager to
expect a larger parameter block containing the additional fields (such as
a directory ID) needed to handle a hierarchical directory volume. You
can set or test bit 9 of a trap word by using the global constant hfsBit.

All File Manager routines return a result code in register D0. ◆

These low-level file access routines can run either synchronously or asynchronously.

There are three versions of each routine. The first takes two parameters: a pointer to the

parameter block and a Boolean parameter that specifies whether the routine is to run

asynchronously (TRUE) or synchronously (FALSE). For example, the first version of the

low-level routine to read bytes from a file has this declaration:

FUNCTION PBRead (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

The second version does not take a second parameter; instead, it adds the suffix Async

to the name of the routine.

FUNCTION PBReadAsync (paramBlock: ParmBlkPtr): OSErr;

C H A P T E R 2

File Manager

File Manager Reference 2-121

Similarly, the third version of the routine does not take a second parameter; instead, it

adds the suffix Sync to the name of the routine.

FUNCTION PBReadSync (paramBlock: ParmBlkPtr): OSErr;

Only the first version of each routine is documented in this section. (See “Summary of

the File Manager,” beginning on page 2-240, for a listing of all three versions of these

routines.) Note, however, that the second and third versions of these routines do not use

the glue code that the first version uses and are therefore more efficient.

Note

Although you can execute low-level file access routines asynchronously,
the underlying device driver may not support asynchronous operation.
The SCSI Manager, for example, currently supports only synchronous
data transfers. Data transfers to a floppy disk or to a network server,
however, can be made asynchronously. ◆

Reading, Writing, and Closing Files

You can use the functions PBRead, PBWrite, and PBClose to read data from a file,

write data to a file, and close an open file. All three of these functions operate on open

files. You can use any one of a variety of routines (for example, PBHOpenDF) to open

a file.

PBRead

You can use the PBRead function to read any number of bytes from an open file.

FUNCTION PBRead (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

paramBlock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioRefNum Integer A file reference number.
→ ioBuffer Ptr A pointer to a data buffer.
→ ioReqCount LongInt The number of bytes requested.
← ioActCount LongInt The number of bytes actually read.
→ ioPosMode Integer The positioning mode.
↔ ioPosOffset LongInt The positioning offset.

C H A P T E R 2

File Manager

2-122 File Manager Reference

DESCRIPTION

The PBRead function attempts to read ioReqCount bytes from the open file whose

access path is specified in the ioRefNum field and transfer them to the data buffer

pointed to by the ioBuffer field. The position of the mark is specified by ioPosMode

and ioPosOffset. If your application tries to read past the logical end-of-file, PBRead

reads the data, moves the mark to the end-of-file, and returns eofErr as its function

result. Otherwise, PBRead moves the file mark to the byte following the last byte read

and returns noErr. After the read is completed, the mark is returned in ioPosOffset,

and the number of bytes actually read into the buffer is returned in ioActCount.

You can specify that PBRead read the file data 1 byte at a time until the requested

number of bytes have been read or until the end-of-file is reached. To do so, set bit 7 of

the ioPosMode field. Similarly, you can specify that PBRead should stop reading data

when it reaches an application-defined newline character. To do so, place the ASCII code

of that character into the high-order byte of the ioPosMode field; you must also set bit 7

of that field to enable newline mode.

Note

When reading data in newline mode, PBRead returns the newline
character as part of the data read and sets ioActCount to the actual
number of bytes placed into the buffer (which includes the newline
character). ◆

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBRead is _Read.

RESULT CODES

PBWrite

You can use the PBWrite function to write any number of bytes to an open file.

FUNCTION PBWrite (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

paramBlock A pointer to a basic File Manager parameter block.

noErr 0 No error
ioErr –36 I/O error
fnOpnErr –38 File not open
eofErr –39 Logical end-of-file reached
posErr –40 Attempt to position mark before start of file
fLckdErr -45 File is locked
paramErr –50 Negative ioReqCount
rfNumErr –51 Bad reference number
afpAccessDenied –5000 User does not have the correct access to the file

C H A P T E R 2

File Manager

File Manager Reference 2-123

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBWrite function takes ioReqCount bytes from the buffer pointed to by

ioBuffer and attempts to write them to the open file whose access path is specified by

ioRefNum. The position of the mark is specified by ioPosMode and ioPosOffset. If

the write operation completes successfully, PBWrite moves the file mark to the byte

following the last byte written and returns noErr. After the write operation is

completed, the mark is returned in ioPosOffset and the number of bytes actually

written is returned in ioActCount.

If you try to write past the logical end-of-file, PBWrite moves the logical end-of-file. If

you try to write past the physical end-of-file, PBWrite adds one or more clumps to the

file and moves the physical end-of-file accordingly.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBWrite is _Write.

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioRefNum Integer A file reference number.
→ ioBuffer Ptr A pointer to a data buffer.
→ ioReqCount LongInt The number of bytes requested.
← ioActCount LongInt The number of bytes actually written.
→ ioPosMode Integer The positioning mode.
↔ ioPosOffset LongInt The positioning offset.

noErr 0 No error
dskFulErr –34 Disk full
ioErr –36 I/O error
fnOpnErr –38 File not open
posErr –40 Attempt to position mark before start of file
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
paramErr –50 Negative ioReqCount
rfNumErr –51 Bad reference number
wrPermErr –61 Read/write permission doesn’t allow writing

C H A P T E R 2

File Manager

2-124 File Manager Reference

PBClose

You can use the PBClose function to close an open file.

FUNCTION PBClose (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

paramBlock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBClose function writes the contents of the access path buffer specified by the

ioRefNum field to the volume and removes the access path.

▲ W A R N I N G

Some information stored on the volume won’t be updated until
PBFlushVol is called. ▲

▲ W A R N I N G

Do not call PBClose with a file reference number of a file that has
already been closed. Attempting to close the same file twice may result
in loss of data on a volume. See “File Control Blocks” on page 2-81 for a
description of how this can happen. ▲

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBClose is _Close.

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioRefNum Integer A file reference number.

noErr 0 No error
ioErr –36 I/O error
fnOpnErr –38 File not open
fnfErr –43 File not found
rfNumErr –51 Bad reference number

C H A P T E R 2

File Manager

File Manager Reference 2-125

Manipulating the File Mark

You can use the functions PBGetFPos and PBSetFPos to get or set the current position

of the file mark.

PBGetFPos

You can use the PBGetFPos function to determine the current position of the file mark

before reading from or writing to an open file.

FUNCTION PBGetFPos (paramBlock: ParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBGetFPos function returns, in the ioPosOffset field, the mark of the specified

file. The value returned in ioPosOffset is zero-based. Thus, a call to PBGetFPos

returns 0 if you call it when the file mark is positioned at the beginning of the file.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBGetFPos is _GetFPos.

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioRefNum Integer A file reference number.
← ioReqCount LongInt On output, set to 0.
← ioActCount LongInt On output, set to 0.
← ioPosMode Integer On output, set to 0.
← ioPosOffset LongInt The current position of the mark.

noErr 0 No error
ioErr –36 I/O error
fnOpnErr –38 File not open
rfNumErr –51 Bad reference number
gfpErr –52 Error during PBGetFPos

C H A P T E R 2

File Manager

2-126 File Manager Reference

PBSetFPos

You can use the PBSetFPos function to position the file mark before reading from or

writing to an open file.

FUNCTION PBSetFPos (paramBlock: ParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DECRIPTION

The PBSetFPos function sets the mark of the specified file to the position specified by

the ioPosMode and ioPosOffset fields. If you try to set the mark past the logical

end-of-file, PBSetFPos moves the mark to the end-of-file and returns eofErr as its

function result.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBSetFPos is _SetFPos.

RESULT CODES

Manipulating the End-of-File

You can use the functions PBGetEOF and PBSetEOF to get or set the current end-of-file.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioRefNum Integer A file reference number.
→ ioPosMode Integer The positioning mode.
↔ ioPosOffset LongInt On input, the positioning offset. On

output, the position at which the mark
was actually set.

noErr 0 No error
ioErr –36 I/O error
fnOpnErr –38 File not open
eofErr –39 Logical end-of-file reached
posErr –40 Attempt to position mark before start of file
rfNumErr –51 Bad reference number
extFSErr –58 External file system

C H A P T E R 2

File Manager

File Manager Reference 2-127

PBGetEOF

You can use the PBGetEOF function to determine the current logical end-of-file of an

open file.

FUNCTION PBGetEOF (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

paramBlock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBGetEOF function returns, in the ioMisc field, the logical end-of-file of the

specified file. Because ioMisc is of type Ptr, you’ll need to coerce the value to type

LongInt to interpret the value correctly.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBGetEOF is _GetEOF.

RESULT CODES

PBSetEOF

You can use the PBSetEOF function to set the logical end-of-file of an open file.

FUNCTION PBSetEOF (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

paramBlock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioRefNum Integer A file reference number.
← ioMisc Ptr The logical end-of-file.

noErr 0 No error
ioErr –36 I/O error
fnOpnErr –38 File not open
rfNumErr –51 Bad reference number
afpAccessDenied –5000 User does not have the correct access to the file

C H A P T E R 2

File Manager

2-128 File Manager Reference

Parameter block

DESCRIPTION

The PBSetEOF function sets the logical end-of-file of the open file, whose access path is

specified by ioRefNum, to ioMisc. Because the ioMisc field is of type Ptr, you must

coerce the desired value from type LongInt to type Ptr.

If you attempt to set the logical end-of-file beyond the current physical end-of-file,

another allocation block is added to the file; if there isn’t enough space on the volume,

no change is made and PBSetEOF returns dskFulErr as its function result.

If the value of the ioMisc field is 0, all space occupied by the file on the volume is

released. The file still exists, but it contains 0 bytes. Setting a file fork’s end-of-file to 0

is therefore not the same as deleting the file (which removes both file forks at once).

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBSetEOF is _SetEOF.

RESULT CODES

Allocating File Blocks

The File Manager provides two low-level functions, PBAllocate and PBAllocContig,

that allow you to allocate additional blocks to a file. The File Manager automatically

allocates file blocks if you move the logical end-of-file past the physical end-of-file, and it

automatically deallocates unneeded blocks from a file if you move the logical end-of-file

to a position more than one allocation block before the current physical end-of-file.

Consequently, you do not in general need to be concerned with allocating or deallocating

file blocks. However, you can improve file block contiguity if you use the PBAllocate

or PBAllocContig function to preallocate file blocks. This is most useful if you know in

advance how big a file is likely to become.

PBAllocate and PBAllocContig are not supported by AppleShare volumes. Instead,

use SetEOF or PBSetEOF to extend a file by setting the end-of-file.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioRefNum Integer A file reference number.
→ ioMisc Ptr The logical end-of-file.

noErr 0 No error
dskFulErr –34 Disk full
ioErr –36 I/O error
fnOpnErr –38 File not open
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
rfNumErr –51 Bad reference number
wrPermErr –61 Read/write permission doesn’t allow writing

C H A P T E R 2

File Manager

File Manager Reference 2-129

PBAllocate

You can use the PBAllocate function to allocate additional blocks to an open file.

FUNCTION PBAllocate (paramBlock: ParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBAllocate function adds ioReqCount bytes to the specified file and sets the

physical end-of-file to 1 byte beyond the last block allocated. If there isn’t enough empty

space on the volume to satisfy the allocation request, PBAllocate allocates the rest of

the space on the volume and returns dskFulErr as its function result.

Note

If the total number of requested bytes is unavailable, PBAllocate
allocates whatever space, contiguous or not, is available. To force the
allocation of the entire requested space as a contiguous piece, call
PBAllocContig instead. ◆

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBAllocate is _Allocate.

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioRefNum Integer A file reference number.
→ ioReqCount LongInt The number of bytes requested.
← ioActCount LongInt The number of bytes actually

allocated, rounded up to the nearest
multiple of the allocation block size.

noErr 0 No error
dskFulErr –34 Disk full
ioErr –36 I/O error
fnOpnErr –38 File not open
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
rfNumErr –51 Bad reference number
wrPermErr –61 Read/write permission doesn’t allow writing

C H A P T E R 2

File Manager

2-130 File Manager Reference

PBAllocContig

You can use the PBAllocContig function to allocate additional contiguous blocks to an

open file.

FUNCTION PBAllocContig (paramBlock: ParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBAllocContig function is identical to the PBAllocate function except that if

there isn’t enough contiguous empty space on the volume to satisfy the allocation

request, PBAllocContig does nothing and returns dskFulErr as its function result. If

you want to allocate whatever space is available, even when the entire request cannot be

filled by the allocation of a contiguous piece, call PBAllocate instead.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBAllocContig is _AllocContig.

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioRefNum Integer A file reference number.
→ ioReqCount LongInt The number of bytes requested.
← ioActCount LongInt The number of bytes allocated,

rounded up to the nearest multiple
of the allocation block size.

noErr 0 No error
dskFulErr –34 Disk full
ioErr –36 I/O error
fnOpnErr –38 File not open
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
rfNumErr –51 Bad reference number
wrPermErr –61 Read/write permission doesn’t allow writing

C H A P T E R 2

File Manager

File Manager Reference 2-131

Updating Files

You can use the PBFlushFile function to ensure that the path access buffer of a file is

written to disk. There is no high-level equivalent of this function.

PBFlushFile

You can use the PBFlushFile function to write the contents of a file’s access path buffer.

FUNCTION PBFlushFile (paramBlock: ParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic FIle Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBFlushFile function writes the contents of the access path buffer indicated by

ioRefNum to the volume and then updates the file’s entry in the volume catalog.

▲ W A R N I N G

Some information stored on the volume won’t be correct until
PBFlushVol is called. ▲

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBFlushFile is _FlushFile.

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioRefNum Integer A file reference number.

noErr 0 No error
nsvErr –35 Volume not found
ioErr –36 I/O error
fnOpnErr –38 File not open
fnfErr –43 File not found
rfNumErr –51 Bad reference number
extFSErr –58 External file system

C H A P T E R 2

File Manager

2-132 File Manager Reference

High-Level Volume Access Routines

This section describes the File Manager’s high-level routines for accessing volumes.

Most applications are likely to need only the FlushVol function described on

page 2-134.

When you call one of these routines, you specify a volume by a volume reference

number (which you can obtain, for example, by calling the GetVInfo function, or from

the reply record returned by the Standard File Package). You can also specify a volume

by name, but this is generally discouraged, because there is no guarantee that volume

names will be unique.

Unmounting Volumes

The functions UnmountVol and Eject allow you to unmount and eject volumes. Most

applications do not need to use these routines, because the user typically ejects (and

possibly also unmounts) a volume in the Finder.

UnmountVol

You can use the UnmountVol function to unmount a volume that isn’t currently

being used.

FUNCTION UnmountVol (volName: StringPtr; vRefNum: Integer): OSErr;

volName A pointer to the name of a mounted volume.

vRefNum A volume reference number, a working directory reference number, a
drive number, or 0 for the default volume.

DESCRIPTION

The UnmountVol function unmounts the specified volume. All files on the volume

(except those opened by the Operating System) must be closed before you call

UnmountVol, which does not eject the volume.

▲ W A R N I N G

Don’t unmount the startup volume. Doing so will cause a
system crash. ▲

C H A P T E R 2

File Manager

File Manager Reference 2-133

RESULT CODES

Eject

You can use the Eject function to place a volume offline and eject it.

FUNCTION Eject (volName: StringPtr; vRefNum: Integer): OSErr;

volName A pointer to the name of a volume.

vRefNum A volume reference number, a working directory reference number, a
drive number, or 0 for the default volume.

DESCRIPTION

The Eject function flushes the specified volume, places it offline, and then ejects

the volume.

RESULT CODES

Updating Volumes

When you close a file, you should call FlushVol to ensure that any changed contents of

the file are written to the volume.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad volume name
fBsyErr –47 One or more files are open
paramErr –50 No default volume
nsDrvErr –56 No such drive
extFSErr –58 External file system

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad volume name
paramErr –50 No default volume
nsDrvErr –56 No such drive
extFSErr –58 External file system

C H A P T E R 2

File Manager

2-134 File Manager Reference

FlushVol

You can use the FlushVol function to write the contents of the volume buffer and

update information about the volume.

FUNCTION FlushVol (volName: StringPtr; vRefNum: Integer): OSErr;

volName A pointer to the name of a mounted volume.

vRefNum A volume reference number, a working directory reference number, a
drive number, or 0 for the default volume.

DESCRIPTION

On the specified volume, the FlushVol function writes the contents of the associated

volume buffer and descriptive information about the volume (if they’ve changed since

the last time FlushVol was called). This information is written to the volume.

RESULT CODES

Manipulating the Default Volume

The functions GetVol, SetVol, HGetVol, and HSetVol allow you to determine which

volume is the default volume and to set the default volume.

GetVol

You can use the GetVol function to determine the current default volume and possibly

also the default directory.

FUNCTION GetVol (volName: StringPtr; VAR vRefNum: Integer): OSErr;

volName A pointer to the name of the default volume.

vRefNum A volume reference number or a working directory reference number.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad volume name
paramErr –50 No default volume
nsDrvErr –56 No such drive

C H A P T E R 2

File Manager

File Manager Reference 2-135

DESCRIPTION

The GetVol function returns a pointer to the name of the default volume in the volName

parameter and its volume reference number in the vRefNum parameter. If the default

directory has a working directory associated with it, the vRefNum parameter instead

contains a working directory reference number (which encodes both the volume reference

number and the default directory ID). However, if, in a previous call to HSetVol (or

PBHSetVol), a working directory reference number was passed in, GetVol returns a

volume reference number in the vRefNum parameter.

RESULT CODES

SetVol

You can change the default volume and default directory using the SetVol function.

FUNCTION SetVol (volName: StringPtr; vRefNum: Integer): OSErr;

volName A pointer to the name of a mounted volume.

vRefNum A volume reference number or a working directory reference number.

DESCRIPTION

The SetVol function sets the default volume and directory to the values specified in the

volName and vRefNum parameters. If you pass a volume reference number in vRefNum

or a pointer to a volume name in volName, SetVol makes the specified volume the

default volume and the root directory of that volume the default directory. If you pass a

working directory reference number in vRefNum, SetVol makes the specified directory

the default directory, and the volume containing that directory the default volume.

RESULT CODES

noErr 0 No error
nsvErr –35 No such volume

noErr 0 No error
nsvErr –35 No such volume
bdNamErr –37 Bad volume name
paramErr –50 No default volume

C H A P T E R 2

File Manager

2-136 File Manager Reference

HGetVol

You can use the HGetVol function to determine the current default volume and

default directory.

FUNCTION HGetVol (volName: StringPtr; VAR vRefNum: Integer;

VAR dirID: LongInt): OSErr;

volName A pointer to the name of the default volume.

vRefNum A volume reference number or a working directory reference number.

dirID The directory ID of the default directory.

DESCRIPTION

The HGetVol function returns the name and reference number of the default volume, as

well as the directory ID of the default directory. A pointer to the name of the default

volume is returned in the volName parameter, unless you set volName to NIL before

calling HGetVol.

The HGetVol function returns a working directory reference number in the vRefNum

parameter if the previous call to HSetVol (or PBHSetVol) passed in a working

directory reference number. If, however, you have previously called HSetVol (or

PBHSetVol) specifying the target volume with a volume reference number, then

HGetVol returns a volume reference number in the vRefNum parameter.

RESULT CODES

HSetVol

You can use the HSetVol function to set both the default volume and the default

directory.

FUNCTION HSetVol (volName: StringPtr; vRefNum: Integer;

dirID: LongInt): OSErr;

volName A pointer to the name of a mounted volume or the partial pathname
of a directory.

vRefNum A volume reference number or a working directory reference number.

dirID A directory ID.

noErr 0 No error
nsvErr –35 No default volume

C H A P T E R 2

File Manager

File Manager Reference 2-137

DESCRIPTION

The HSetVol function lets you specify the default directory by volume reference

number, by directory ID, or by a combination of working directory reference number

and partial pathname (beginning from that working directory).

▲ W A R N I N G

Use of the HSetVol function is discouraged if your application may execute
in system software versions prior to version 7.0. Because the specified
directory might not itself be a working directory, HSetVol records the default
volume and directory separately, using the volume reference number of the
volume and the actual directory ID of the specified directory. Subsequent calls
to GetVol (or PBGetVol) return only the volume reference number, which
will cause that volume’s root directory (rather than the default directory, as
expected) to be accessed. ▲

Note

Both the default volume and the default directory are used in calls made
with no volume name, a volume reference number of 0, and a directory
ID of 0. ◆

RESULT CODES

Obtaining Volume Information

You can get information about a volume by calling the GetVInfo or

GetVRefNum function.

GetVInfo

You can use the GetVInfo function to get information about a mounted volume.

FUNCTION GetVInfo (drvNum: Integer; volName: StringPtr;

VAR vRefNum: Integer;

VAR freeBytes: LongInt): OSErr;

drvNum The drive number of the volume for which information is requested.

volName On output, a pointer to the name of the specified volume.

vRefNum The volume reference number of the specified volume.

freeBytes The available space (in bytes) on the specified volume.

noErr 0 No error
nsvErr –35 No such volume
bdNamErr –37 Bad volume name
fnfErr –43 Directory not found
paramErr –50 No default volume
afpAccessDenied –5000 User does not have access to the directory

C H A P T E R 2

File Manager

2-138 File Manager Reference

DESCRIPTION

The GetVInfo function returns the name, volume reference number, and available

space (in bytes) for the specified volume. You specify a volume by providing its drive

number in the drvNum parameter. You can pass 0 in the drvNum parameter to get

information about the default volume.

RESULT CODES

GetVRefNum

You can use the GetVRefNum function to get a volume reference number from a file

reference number.

FUNCTION GetVRefNum (refNum: Integer; VAR vRefNum: Integer):

OSErr;

refNum The file reference number of an open file.

vRefNum On exit, the volume reference number of the volume containing the file
specified by refNum.

DESCRIPTION

The GetVRefNum function returns the volume reference number of the volume

containing the specified file. If you also want to determine the directory ID of the

specified file’s parent directory, call the PBGetFCBInfo function.

RESULT CODES

Low-Level Volume Access Routines

This section describes the low-level routines for accessing volumes. These routines

exchange parameters with your application through a parameter block of type

ParamBlock, HParamBlock, or WDPBRec. When you call a low-level routine, you

pass the address of the appropriate parameter block to the routine.

Some low-level routines for accessing volumes can run either asynchronously or

synchronously. Each of these routines comes in three versions: one version requires the

async parameter and two have the suffix Async or Sync added to their names. For

noErr 0 No error
nsvErr –35 No such volume
paramErr –50 No default volume

noErr 0 No error
rfNumErr –51 Bad reference number

C H A P T E R 2

File Manager

File Manager Reference 2-139

more information about the differences between the three versions, see “Low-Level File

Access Routines” on page 2-120.

Only the first version of these routines is documented in this section. See “Summary of

the File Manager,” beginning on page 2-240, for a listing that includes all three versions.

Assembly-Language Note

See the assembly-language note on page 2-120 for details on calling
these routines from assembly language. ◆

Mounting and Unmounting Volumes

The File Manager provides several low-level routines that allow you to mount and

unmount Macintosh volumes, eject volumes, and place mounted volumes offline.

PBMountVol

You can use the PBMountVol function to mount a volume.

FUNCTION PBMountVol (paramBlock: ParmBlkPtr): OSErr;

paramBlock A pointer to a basic FIle Manager parameter block.

Parameter block

DESCRIPTION

The PBMountVol function mounts the volume in the specified drive. If there are no

volumes already mounted, this volume becomes the default volume.

Because you specify the volume to be mounted by providing a drive number, you can

use PBMountVol to mount only one volume per disk.

The PBMountVol function always executes synchronously.

Note

The PBMountVol function opens two files needed for maintaining
file catalog and file mapping information. If no access paths are
available for these two files, PBMountVol fails and returns tmfoErr
as its function result. ◆

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBMountVol is _MountVol.

← ioResult OSErr The result code of the function.
↔ ioVRefNum Integer On input, a drive number. On output,

the volume reference number.

C H A P T E R 2

File Manager

2-140 File Manager Reference

RESULT CODES

PBUnmountVol

You can use the PBUnmountVol function to unmount a volume.

FUNCTION PBUnmountVol (paramBlock: ParmBlkPtr): OSErr;

paramBlock A pointer to a basic File Manager parameter block.

Parameter block

DESCRIPTION

The PBUnmountVol function unmounts the specified volume. All user files on the

volume must be closed. Then, PBUnmountVol calls PBFlushVol to flush the volume

and releases the memory used for the volume.

The PBUnmountVol function always executes synchronously.

▲ W A R N I N G

Don’t unmount the startup volume. Doing so will cause a
system crash. ▲

Note

Unmounting a volume does not close working directories; to release the
memory allocated to a working directory, call PBCloseWD. ◆

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBUnmountVol is _UnmountVol.

noErr 0 No error
ioErr –36 I/O error
tmfoErr –42 Too many files open
paramErr –50 Bad drive number
volOnLinErr –55 Volume already online
nsDrvErr –56 No such drive
noMacDskErr –57 Not a Macintosh disk
extFSErr –58 External file system
badMDBErr –60 Bad master directory block
memFullErr –108 Not enough room in heap zone

← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume reference number, a

working directory reference number,
or 0 for the default volume.

C H A P T E R 2

File Manager

File Manager Reference 2-141

RESULT CODES

PBEject

When your application is finished with a volume, you can use the PBEject function to

place the volume offline and eject it.

FUNCTION PBEject (paramBlock: ParmBlkPtr): OSErr;

paramBlock A pointer to a basic File Manager parameter block.

Parameter block

DESCRIPTION

The PBEject function flushes the specified volume, places it offline, and then ejects

the volume.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBEject is _Eject. You can invoke the _Eject macro asynchro-

nously; the first two parts of the call are executed synchronously, and the actual ejection

is executed asynchronously.

RESULT CODES

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad volume name
fBsyErr –47 One or more files are open
paramErr –50 No default volume
nsDrvErr –56 No such drive
extFSErr –58 External file system

→ ioCompletion ProcPtr A pointer to a completion
routine.

← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad volume name
paramErr –50 No default volume
nsDrvErr –56 No such drive
extFSErr –58 External file system

C H A P T E R 2

File Manager

2-142 File Manager Reference

PBOffLine

You can use the PBOffLine function to place a volume offline. Most applications don’t

need to do this.

FUNCTION PBOffLine (paramBlock: ParmBlkPtr): OSErr;

paramBlock A pointer to a basic File Manager parameter block.

Parameter block

DESCRIPTION

The PBOffLine function places the specified volume offline by calling PBFlushVol to

flush the volume and releasing all the memory used for the volume except for the

volume control block.

The PBOffLine function always executes synchronously.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBOffLine is _OffLine.

RESULT CODES

Updating Volumes

You can update a volume by calling the PBFlushVol function.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad volume name
paramErr –50 No default volume
nsDrvErr –56 No such drive
extFSErr –58 External file system

C H A P T E R 2

File Manager

File Manager Reference 2-143

PBFlushVol

You can use the PBFlushVol function to write the contents of the volume buffer and

update information about the volume.

FUNCTION PBFlushVol (paramBlock: ParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

On the volume specified by ioNamePtr or ioVRefNum, the PBFlushVol function

writes descriptive information about the volume, the contents of the associated volume

buffer, and all access path buffers for the volume (if they’ve changed since the last time

PBFlushVol was called).

Note

The date and time of the last modification to the volume are set when
the modification is made, not when the volume is flushed. ◆

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBFlushVol is _FlushVol.

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad volume name
paramErr –50 No default volume
nsDrvErr –56 No such drive
extFSErr –58 External file system

C H A P T E R 2

File Manager

2-144 File Manager Reference

Obtaining Volume Information

The File Manager provides several routines that allow you to obtain and modify

information about a volume. For example, you can use the PBHGetVInfo function

to determine the date and time that a volume was last modified. You can use the

PBHGetVolParms function to determine other features of the volume, such as

whether it supports the PBHOpenDeny function.

PBHGetVInfo

You can use the PBHGetVInfo function to get detailed information about a volume.

FUNCTION PBHGetVInfo (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
↔ ioNamePtr StringPtr A pointer to the volume’s name.
↔ ioVRefNum Integer On input, a volume specification.

On output, the volume reference
number.

→ ioVolIndex Integer An index used for indexing through
all mounted volumes.

← ioVCrDate LongInt The date and time of initialization.
← ioVLsMod LongInt The date and time of last

modification.
← ioVAtrb Integer The volume attributes.
← ioVNmFls Integer The number of files in the root

directory.
← ioVBitMap Integer The first block of the volume bitmap.
← ioVAllocPtr Integer The block at which the next new

file starts.
← ioVNmAlBlks Integer The number of allocation blocks.
← ioVAlBlkSiz LongInt The size of allocation blocks.
← ioVClpSiz LongInt The default clump size.
← ioAlBlSt Integer The first block in the volume

block map.
← ioVNxtCNID LongInt The next unused catalog node ID.
← ioVFrBlk Integer The number of unused

allocation blocks.
← ioVSigWord Integer The volume signature.
← ioVDrvInfo Integer The drive number.
← ioVDRefNum Integer The driver reference number.

C H A P T E R 2

File Manager

File Manager Reference 2-145

DESCRIPTION

The PBHGetVInfo function returns information about the specified volume. If the value

of ioVolIndex is positive, the File Manager attempts to use it to find the volume; for

instance, if the value of ioVolIndex is 2, the File Manager attempts to access the second

mounted volume in the VCB queue. If the value of ioVolIndex is negative, the File

Manager uses ioNamePtr and ioVRefNum in the standard way to determine the

volume. If the value of ioVolIndex is 0, the File Manager attempts to access the

volume by using ioVRefNum only. The volume reference number is returned in

ioVRefNum, and the volume name is returned in the buffer whose address you passed

in ioNamePtr. You should pass a pointer to a Str31 value if you want that name

returned. If you pass NIL in the ioNamePtr field, no volume name is returned.

If you pass a working directory reference number in ioVRefNum (or if the default

directory is a subdirectory), the number of files and directories in the specified directory

(the directory’s valence) is returned in ioVNmFls.

You can read the ioVDrvInfo and ioVDRefNum fields to determine whether the

specified volume is online, offline, or ejected. For online volumes, ioVDrvInfo contains

the drive number of the drive containing the specified volume and hence is always

greater than 0. If the value returned in ioVDrvInfo is 0, the volume is either offline or

ejected. You can determine whether the volume is offline or ejected by inspecting the

value of the ioVDRefNum field. For online volumes, ioVDRefNum contains a driver

reference number; these numbers are always less than 0. If the volume is not online, the

value of ioVDRefNum is either the negative of the drive number (if the volume is offline)

or the drive number itself (if the volume is ejected).

You can get information about all the online volumes by making repeated calls to

PBHGetVInfo, starting with the value of ioVolIndex set to 1 and incrementing that

value until PBHGetVInfo returns nsvErr.

SPECIAL CONSIDERATIONS

The values returned in the ioVNmAlBlks and ioVFrBlk fields are unsigned integers.

You need to exercise special care when reading those values from Pascal. See

“Determining the Amount of Free Space on a Volume” on page 2-46 for one technique

you can use to read those values.

← ioVFSID Integer The file system handling
this volume.

← ioVBkUp LongInt The date and time of the last backup.
← ioVSeqNum Integer Used internally.
← ioVWrCnt LongInt The volume write count.
← ioVFilCnt LongInt The number of files on the volume.
← ioVDirCnt LongInt The number of directories on

the volume.
← ioVFndrInfo ARRAY[1..8] OF LongInt

Information used by the Finder.

C H A P T E R 2

File Manager

2-146 File Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBHGetVInfo is _HGetVolInfo.

RESULT CODES

PBSetVInfo

You can use the PBSetVInfo function to change information about a volume.

FUNCTION PBSetVInfo (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBSetVInfo function lets you modify information about volumes. You can specify,

in ioNamePtr, a pointer to a new name for the volume. Only bit 15 of ioVAtrb can be

changed; setting it locks the volume.

Note

You cannot specify the volume by name; you must use either the
volume reference number, the drive number, or a working directory
reference number. ◆

noErr 0 No error
nsvErr –35 No such volume
paramErr –50 No default volume

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to the volume’s name.
→ ioVRefNum Integer A volume specification.
→ ioVCrDate LongInt The date and time of initialization.
→ ioVLsMod LongInt The date and time of last

modification.
→ ioVAtrb Integer The volume attributes.
→ ioVBkUp LongInt The date and time of the last

backup.
→ ioVSeqNum Integer Used internally.
→ ioVFndrInfo ARRAY[1..8] OF LongInt

Information used by the Finder.

C H A P T E R 2

File Manager

File Manager Reference 2-147

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBSetVInfo is _SetVolInfo.

RESULT CODES

PBHGetVolParms

You can use the PBHGetVolParms function to determine the characteristics of a volume.

FUNCTION PBHGetVolParms (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBHGetVolParms function returns information about the characteristics of a

volume. You specify a volume (either by name or by volume reference number) and a

buffer size, and PBHGetVolParms fills in the volume attributes buffer, as described in

this section.

You can use a name (pointed to by the ioNamePtr field) or a volume specification

(contained in the ioVRefNum field) to specify the volume. A volume specification can be

a volume reference number, drive number, or working directory reference number. If

you use a volume specification to specify the volume, you should set the ioNamePtr

field to NIL.

You must allocate memory to hold the returned attributes and put a pointer to the buffer

in the ioBuffer field. Specify the size of the buffer in the ioReqCount field. The

PBHGetVolParms function places the attributes information in the buffer pointed to by

the ioBuffer field and specifies the actual length of the data in the ioActCount field.

noErr 0 No error
nsvErr –35 No such volume
paramErr –50 No default volume

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to the volume’s name.
→ ioVRefNum Integer A volume specification.
→ ioBuffer Ptr A pointer to a GetVolParmsInfoBuffer

record.
→ ioReqCount LongInt The size of the buffer area.
← ioActCount LongInt The size of the data actually returned.

C H A P T E R 2

File Manager

2-148 File Manager Reference

The PBHGetVolParms function returns the bulk of its volume description in the

vMAttrib field of the attributes buffer. The vMAttrib field contains 32 bits of

attribute information about the volume. Bits 0–3 and 21–24 are reserved; all volumes

should return these bits clear. The bits currently used are defined by these constants:

CONST

bHasBlankAccessPrivileges

= 4; {volume supports inherited privileges}

bHasBTreeMgr = 5; {reserved}

bHasFileIDs = 6; {volume supports file ID functions}

bHasCatSearch = 7; {volume supports PBCatSearch}

bHasUserGroupList

= 8; {volume supports AFP privileges}

bHasPersonalAccessPrivileges

= 9; {local file sharing is enabled}

bHasFolderLock = 10; {volume supports locking of folders}

bHasShortName = 11; {volume supports AFP short names}

bHasDesktopMgr = 12; {volume supports Desktop Manager}

bHasMoveRename = 13; {volume supports _MoveRename}

bHasCopyFile = 14; {volume supports _CopyFile}

bHasOpenDeny = 15; {volume supports shared access modes}

bHasExtFSVol = 16; {volume is external file system volume}

bNoSysDir = 17; {volume has no system directory}

bAccessCntl = 18; {volume supports AFP access control}

bNoBootBlks = 19; {volume is not a startup volume}

bNoDeskItems = 20; {do not place objects on the desktop}

bNoSwitchTo = 25; {do not switch launch to applications}

bTrshOffLine = 26; {zoom volume when it is unmounted}

bNoLclSync = 27; {don't let Finder change mod. date}

bNoVNEdit = 28; {lock volume name}

bNoMiniFndr = 29; {reserved; always 1}

bLocalWList = 30; {use shared volume handle for window }

{ list}

bLimitFCBs = 31; {limit file control blocks}

These constants have the following meanings if set:

Constant descriptions

bHasBlankAccessPrivileges
This volume supports inherited access privileges for folders.

bHasBTreeMgr Reserved for internal use.

bHasFileIDs This volume supports the file ID functions, including the
PBExchangeFiles function.

bHasCatSearch This volume supports the PBCatSearch function.

C H A P T E R 2

File Manager

File Manager Reference 2-149

bHasUserGroupList
This volume supports the Users and Groups file and thus the AFP
privilege functions.

bHasPersonalAccessPrivileges
This volume has local file sharing enabled.

bHasFolderLock Folders on the volume can be locked, and so they cannot be deleted
or renamed.

bHasShortName This volume supports AFP short names.

bHasDesktopMgr This volume supports all of the desktop functions (described in
the chapter “Desktop Manager” in Inside Macintosh: More
Macintosh Toolbox).

bHasMoveRename This volume supports the PBHMoveRename function.

bHasCopyFile This volume supports the PBHCopyFile function, which is used in
copy and duplicate operations if both source and destination
volumes have the same server address.

bHasOpenDeny This volume supports the PBHOpenDeny and PBHOpenRFDeny
functions.

bHasExtFSVol This volume is an external file system volume.

bNoSysDir This volume doesn’t support a system directory. Do not switch
launch to this volume.

bAccessCntl This volume supports AppleTalk AFP access-control interfaces. The
PBHGetLoginInfo, PBHGetDirAccess, PBHSetDirAccess,
PBHMapID, and PBHMapName functions are supported. Special
folder icons are used. The Access Privileges menu command is
enabled for disk and folder items. The ioFlAttrib field of
PBGetCatInfo calls is assumed to be valid.

bNoBootBlks This volume is not a startup volume. The Startup menu item is
disabled. Boot blocks are not copied during copy operations.

bNoDeskItems Don’t place objects in this volume on the Finder desktop.

bNoSwitchTo The Finder will not switch launch to any application on this volume.

bTrshOffLine Any time this volume goes offline, it is zoomed to the Trash
and unmounted.

bNoLclSync Don’t let the Finder change the modification date.

bNoVNEdit This volume’s name cannot be edited.

bNoMiniFndr Reserved; always set to 1.

bLocalWList The Finder uses the returned shared volume handle for its local
window list.

bLimitFCBs The Finder limits the number of file control blocks used during
copying to 8 instead of 16.

SPECIAL CONSIDERATIONS

A volume’s characteristics can change when the user enables and disables file sharing.

You might have to make repeated calls to PBHGetVolParms to ensure that you have the

current status of a volume.

C H A P T E R 2

File Manager

2-150 File Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBHGetVolParms are

RESULT CODES

Manipulating the Default Volume

The low-level functions PBGetVol, PBSetVol, PBHGetVol, and PBHSetVol allow you

to manipulate the default volume and directory.

PBGetVol

You can use the PBGetVol function to determine the default volume and default

directory.

FUNCTION PBGetVol (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

paramBlock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBGetVol function returns, in ioNamePtr, a pointer to the name of the default

volume (unless ioNamePtr is NIL) and, in ioVRefNum, its volume reference number. If

a default directory was set with a previous call to PBSetVol, a pointer to its name is

returned in ioNamePtr and its working directory reference number is returned in

ioVRefNum. However, if, in a previous call to HSetVol (or PBHSetVol), a working

directory reference number was passed in, PBGetVol returns a volume reference

number in the ioVRefNum field.

Trap macro Selector

_HFSDispatch $0030

noErr 0 No error
nsvErr –35 Volume not found
paramErr –50 Volume doesn’t support the function

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
← ioNamePtr StringPtr A pointer to a pathname.
← ioVRefNum Integer A volume reference number

or a working directory
reference number.

C H A P T E R 2

File Manager

File Manager Reference 2-151

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBGetVol is _GetVol.

RESULT CODES

PBSetVol

You can change the default volume and default directory using the PBSetVol function.

FUNCTION PBSetVol (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

paramBlock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

If you pass a volume reference number in ioVRefNum, the PBSetVol function makes

the specified volume the default volume and the root directory of that volume the

default directory. If you pass a working directory reference number, PBSetVol makes

the specified directory the default directory, and the volume containing that directory

the default volume.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBSetVol is _SetVol.

RESULT CODES

noErr 0 No error
nsvErr –35 No default volume

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume reference number or a

working directory reference number.

noErr 0 No error
nsvErr –35 No such volume
bdNamErr –37 Bad volume name
paramErr –50 No default volume

C H A P T E R 2

File Manager

2-152 File Manager Reference

PBHGetVol

You can use the PBHGetVol function to determine the default volume and default

directory.

FUNCTION PBHGetVol (paramBlock: WDPBPtr; async: Boolean): OSErr;

paramBlock A pointer to a working directory parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBHGetVol function returns the default volume and directory last set by a call

to either PBSetVol or PBHSetVol. The reference number of the default volume is

returned in ioVRefNum. The PBHGetVol function returns a pointer to the volume’s

name in the ioNamePtr field. You should pass a pointer to a Str31 value if you

want that name returned. If you pass NIL in the ioNamePtr field, no volume name

is returned.

▲ W A R N I N G

On exit, the ioVRefNum field contains a working directory reference
number (instead of the volume reference number) if, in the last call to
PBSetVol or PBHSetVol, a working directory reference number was
passed in this field. ▲

The volume reference number of the volume on which the default directory exists

is returned in ioWDVRefNum. The directory ID of the default directory is returned

in ioWDDirID.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBHGetVol is _HGetVol.

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
← ioNamePtr StringPtr A pointer to a pathname.
← ioVRefNum Integer A volume reference number or a working

directory reference number.
← ioWDProcID LongInt The working directory user identifier.
← ioWDVRefNum Integer The volume reference number of the

default volume.
← ioWDDirID LongInt The directory ID of the default directory.

noErr 0 No error
nsvErr –35 No default volume

C H A P T E R 2

File Manager

File Manager Reference 2-153

PBHSetVol

The PBHSetVol function sets both the default volume and the default directory.

FUNCTION PBHSetVol (paramBlock: WDPBPtr; async: Boolean): OSErr;

paramBlock A pointer to a working directory parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBHSetVol function sets the default volume and directory to the volume and

directory specified by the ioNamePtr, ioVRefNum, and ioWDDirID fields.

The PBHSetVol function sets the default volume to the volume specified by the

ioVRefNum field, which can contain either a volume reference number or a working

directory reference number. If the ioNamePtr field specifies a full pathname, however,

the default volume is set to the volume whose name is contained in that pathname. (A

full pathname overrides the ioVRefNum field.)

The PBHSetVol function also sets the default directory. If the ioVRefNum field contains

a volume reference number, then the default directory is set to the directory on that

volume having the partial pathname specified by ioNamePtr in the directory specified

by ioWDDirID. If the value of ioNamePtr is NIL, the default directory is simply the

directory whose directory ID is contained in ioWDDirID.

▲ W A R N I N G

If the ioVRefNum field contains a working directory reference number,
then ioWDDirID is ignored and the default directory is set to the
directory on that volume having the partial pathname specified by
ioNamePtr in the directory specified by the working directory
reference number. If the value of ioNamePtr is NIL, the default
directory is simply the directory specified in ioVRefNum.Use of the
PBHSetVol function is discouraged if your application may execute in
system software versions prior to version 7.0. Because the specified
directory might not itself be a working directory, PBHSetVol records
the default volume and directory separately, using the volume reference
number of the volume and the actual directory ID of the specified
directory. Subsequent calls to GetVol (or PBGetVol) return only the
volume reference number, which will cause that volume’s root directory
(rather than the default directory, as expected) to be accessed. ▲

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume reference number or a

working directory reference number.
→ ioWDDirID LongInt The directory ID.

C H A P T E R 2

File Manager

2-154 File Manager Reference

Note

Both the default volume and the default directory are used in calls made
with no volume name, a volume reference number of 0, and a directory
ID of 0. ◆

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBSGetVol is _HSetVol.

RESULT CODES

File System Specification Routines

The File Manager provides a set of file and directory manipulation routines that accept

file system specification records as parameters. Depending on the requirements of your

application and on the environment in which it is running, you may be able to

accomplish all your file and directory operations by using these routines.

Before calling any of these routines, however, you should call the Gestalt function to

ensure that they are available in the operating environment. If these routines are not

available, you can call the corresponding HFS routines. See “High-Level HFS Routines”

on page 2-169 for details.

Opening Files

There are two FSSpec functions that allow you to open files, FSpOpenDF and

FSpOpenRF. You can use them to open a file’s data fork and resource fork, respectively.

FSpOpenDF

You can use the FSpOpenDF function to open a file’s data fork.

FUNCTION FSpOpenDF (spec: FSSpec; permission: SignedByte;

VAR refNum: Integer): OSErr;

spec An FSSpec record specifying the file whose data fork is to be opened.

permission A constant indicating the desired file access permissions.

refNum A reference number of an access path to the file’s data fork.

noErr 0 No error
nsvErr –35 No such volume
bdNamErr –37 Bad volume name
fnfErr –43 Directory not found
paramErr –50 No default volume
afpAccessDenied –5000 User does not have access to the directory

C H A P T E R 2

2-155

File Manager

DESCRIPTION

The FSpOpenDF function opens the data fork of the file specified by the spec parameter

and returns a file reference number in the refNum parameter. You can pass that reference

number as a parameter to any of the low- or high-level file access routines.

The permission parameter specifies the kind of access permission mode you want.

In most cases, you can simply set the permission parameter to fsCurPerm. Some

applications request fsRdWrPerm, to ensure that they can both read from and write

to a file. For more information about permissions, see “File Manipulation” on page 2-7.

In shared environments, permission requests are translated into the deny mode

permissions defined by AppleShare.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for FSpOpenDF are

RESULT CODES

FSpOpenRF

You can use the FSpOpenRF function to open a file’s resource fork.

FUNCTION FSpOpenRF (spec: FSSpec; permission: SignedByte;

VAR refNum: Integer): OSErr;

spec An FSSpec record specifying the file whose resource fork is to be opened.

permission A constant indicating the desired file access permissions.

refNum A reference number of an access path to the file’s resource fork.

DESCRIPTION

The FSpOpenRF function creates an access path to the resource fork of a file and returns,

in the refNum parameter, an access path reference number to that fork. You can pass that

Trap macro Selector

_HighLevelHFSDispatch $0002

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
tmfoErr –42 Too many files open
fnfErr –43 File not found
opWrErr –49 File already open for writing
permErr –54 Attempt to open locked file for writing
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access to the file

C H A P T E R 2

File Manager

2-156

reference number as a parameter to any of the low- or high-level file access routines.

The permission parameter should contain a constant indicating the desired file

access permissions.

SPECIAL CONSIDERATIONS

Generally, your application should use Resource Manager routines rather than File

Manager routines to access a file’s resource fork. The FSpOpenRF function does not read

the resource map into memory and is generally useful only for applications (such as

utilities that copy files) that need block-level access to a resource fork. In particular, you

should not use the resource fork of a file to hold nonresource data. Many parts of the

system software assume that a resource fork always contains resource data.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for FSpOpenRF are

RESULT CODES

Creating and Deleting Files and Directories

You can create files and directories by calling FSpCreate and FSpDirCreate,

respectively. You can delete files and directories by calling the FSpDelete function.

FSpCreate

You can use the FSpCreate function to create a new file.

FUNCTION FSpCreate (spec: FSSpec; creator: OSType;

fileType: OSType; scriptTag: ScriptCode):

OSErr;

spec An FSSpec record specifying the file to be created.

Trap macro Selector

_HighLevelHFSDispatch $0003

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
tmfoErr –42 Too many files open
fnfErr –43 File not found
opWrErr –49 File already open for writing
permErr –54 Attempt to open locked file for writing
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access to the file

C H A P T E R 2

File Manager

2-157

creator The creator of the new file.

fileType The file type of the new file.

scriptTag The code of the script system in which the filename is to be displayed. If
you have established the name and location of the new file using either the
StandardPutFile or CustomPutFile procedure, specify the script
code returned in the reply record. (See the chapter “Standard File Package”
in this book for a description of StandardPutFile and
CustomPutFile.) Otherwise, specify the system script by setting the
scriptTag parameter to the value smSystemScript.

DESCRIPTION

The FSpCreate function creates a new file (both forks) with the specified type, creator,

and script code. The new file is unlocked and empty. The date and time of creation and

last modification are set to the current date and time.

See the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials for

information on file types and creators.

Files created using FSpCreate are not automatically opened. If you want to write data to

the new file, you must first open the file using a file access routine (such as FSpOpenDF).

Note

The resource fork of the new file exists but is empty. You’ll need to
call one of the Resource Manager procedures CreateResFile,
HCreateResFile, or FSpCreateResFile to create a resource map in
the file before you can open it (by calling one of the Resource Manager
functions OpenResFile, HOpenResFile, or FSpOpenResFile). ◆

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for FSpCreate are

RESULT CODES

Trap macro Selector

_HighLevelHFSDispatch $0004

noErr 0 No error
dirFulErr –33 File directory full
dskFulErr –34 Disk is full
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 Directory not found or incomplete pathname
wPrErr –44 Hardware volume lock
vLckdErr –46 Software volume lock
dupFNErr –48 Duplicate filename and version
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access
afpObjectTypeErr –5025 A directory exists with that name

C H A P T E R 2

File Manager

2-158

FSpDirCreate

You can use the FSpDirCreate function to create a new directory.

FUNCTION FSpDirCreate (spec: FSSpec; scriptTag: ScriptCode;

VAR createdDirID: LongInt): OSErr;

spec An FSSpec record specifying the directory to be created.

scriptTag The code of the script system in which the directory name is to be
displayed. If you have established the name and location of the new
directory using either the StandardPutFile or CustomPutFile
procedure, specify the script code returned in the reply record. (See the
chapter “Standard File Package” in this book for a description of
StandardPutFile and CustomPutFile.) Otherwise, specify the
system script by setting the scriptTag parameter to the value
smSystemScript.

createdDirID
The directory ID of the directory that was created.

DESCRIPTION

The FSpDirCreate function creates a new directory and returns the directory ID of the

new directory in the createdDirID parameter. Then FSpDirCreate sets the date and

time of creation and last modification to the current date and time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for FSpDirCreate are

RESULT CODES

Trap macro Selector

_HighLevelHFSDispatch $0005

noErr 0 No error
dirFulErr –33 File directory full
dskFulErr –34 Disk is full
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 Directory not found or incomplete pathname
wPrErr –44 Hardware volume lock
vLckdErr –46 Software volume lock
dupFNErr –48 Duplicate filename and version
dirNFErr –120 Directory not found or incomplete pathname
wrgVolTypErr –123 Not an HFS volume
afpAccessDenied –5000 User does not have the correct access

C H A P T E R 2

File Manager

2-159

FSpDelete

You can use the FSpDelete function to delete files and directories.

FUNCTION FSpDelete (spec: FSSpec): OSErr;

spec An FSSpec record specifying the file or directory to delete.

DESCRIPTION

The FSpDelete function removes a file or directory. If the specified target is a file, both

forks of the file are deleted. The file ID reference, if any, is removed.

A file must be closed before you can delete it. Similarly, a directory must be empty

before you can delete it. If you attempt to delete an open file or a nonempty directory,

FSpDelete returns the result code fBsyErr. FSpDelete also returns the result

code fBsyErr if the directory has an open working directory associated with it.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for FSpDelete are

RESULT CODES

Accessing Information About Files and Directories

You can use several File Manager routines that accept FSSpec records if you want to

obtain and set information about files and directories and to manipulate file locking.

These routines don’t require the file to be open.

Trap macro Selector

_HighLevelHFSDispatch $0006

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
fBsyErr –47 File busy, directory not empty, or working directory

control block open
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access

C H A P T E R 2

File Manager

2-160

FSpGetFInfo

You can use the FSpGetFInfo function to obtain the Finder information about a file or

directory.

FUNCTION FSpGetFInfo (spec: FSSpec; VAR fndrInfo: FInfo): OSErr;

spec An FSSpec record specifying the file or directory whose Finder
information is desired.

fndrInfo Information used by the Finder.

DESCRIPTION

The FSpGetFInfo function returns the Finder information from the volume catalog

entry for the specified file or directory. The FSpGetFInfo function provides only the

original Finder information—the FInfo or DInfo records, not FXInfo or DXInfo. (See

the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials for a

discussion of Finder information.)

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for FSpGetFInfo are

RESULT CODES

FSpSetFInfo

You can use the FSpSetFInfo function to set the Finder information about a file

or directory.

FUNCTION FSpSetFInfo (spec: FSSpec; fndrInfo: FInfo): OSErr;

spec An FSSpec record specifying the file or directory whose Finder
information will be set.

fndrInfo Information to be used by the Finder.

Trap macro Selector

_HighLevelHFSDispatch $0007

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 File not found
paramErr –50 No default volume
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access
afpObjectTypeErr –5025 Directory not found or incomplete pathname

C H A P T E R 2

File Manager

2-161

DESCRIPTION

The FSpSetFInfo function changes the Finder information in the volume catalog entry

for the specified file or directory. FSpSetFInfo allows you to set only the original

Finder information—the FInfo or DInfo records, not FXInfo or DXInfo. (See the

chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials for a

discussion of Finder information.)

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for FSpSetFInfo are

RESULT CODES

FSpSetFLock

You can use the FSpSetFLock function to lock a file.

FUNCTION FSpSetFLock (spec: FSSpec): OSErr;

spec An FSSpec record specifying the file to lock.

DESCRIPTION

The FSpSetFLock function locks a file. After you lock a file, all new access paths to that

file are read-only. This function has no effect on existing access paths.

If the PBHGetVolParms function indicates that the volume supports folder locking (that

is, the bHasFolderLock bit of the vMAttrib field is set), you can use FSpSetFLock to

lock a directory.

Trap macro Selector

_HighLevelHFSDispatch $0008

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access
afpObjectTypeErr –5025 Object was a directory

C H A P T E R 2

File Manager

2-162

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for FSpSetFLock are

RESULT CODES

FSpRstFLock

You can use the FSpRstFLock function to unlock a file.

FUNCTION FSpRstFLock (spec: FSSpec): OSErr;

spec An FSSpec record specifying the file to unlock.

DESCRIPTION

The FSpRstFLock function unlocks a file.

If the PBHGetVolParms function indicates that the volume supports folder locking (that

is, the bHasFolderLock bit of the vMAttrib field is set), you can use FSpRstFLock to

unlock a directory.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for FSpRstFLock are

RESULT CODES

Trap macro Selector

_HighLevelHFSDispatch $0009

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
vLckdErr –46 Software volume lock
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access to the file
afpObjectTypeErr –5025 Folder locking not supported by volume

Trap macro Selector

_HighLevelHFSDispatch $000A

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
vLckdErr –46 Software volume lock
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access to the file
afpObjectTypeErr –5025 Folder locking not supported by volume

C H A P T E R 2

File Manager

2-163

FSpRename

You can use the FSpRename function to rename a file or directory.

FUNCTION FSpRename (spec: FSSpec; newName: Str255): OSErr;

spec An FSSpec record specifying the file or directory to rename.

newName The new name of the file or directory.

DESCRIPTION

The FSpRename function changes the name of a file or directory. If a file ID reference for

the specified file exists, it remains with the renamed file.

SPECIAL CONSIDERATIONS

If you want to change the name of a new copy of an existing file, you should use the

FSpExchangeFiles function instead.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for FSpRename are

RESULT CODES

Moving Files or Directories

The FSpCatMove function allows you to move files and directories within a volume. If

the FSSpec routines are not available, you can call the high-level HFS routine CatMove

or the low-level HFS routine PBCatMove.

Trap macro Selector

_HighLevelHFSDispatch $000B

noErr 0 No error
dirFulErr –33 File directory full
dskFulErr –34 Volume is full
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
dupFNErr –48 Duplicate filename and version
paramErr –50 No default volume
fsRnErr –59 Problem during rename
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access to the file

C H A P T E R 2

File Manager

2-164

FSpCatMove

You can use the FSpCatMove function to move a file or directory from one location to

another on the same volume.

FUNCTION FSpCatMove (source: FSSpec; dest: FSSpec): OSErr;

source An FSSpec record specifying the name and location of the file or
directory to be moved.

dest An FSSpec record specifying the name and location of the directory into
which the source file or directory is to be moved.

DESCRIPTION

The FSpCatMove function moves the file or directory specified by the source

parameter into the directory specified by the dest parameter. The directory ID specified

in the parID field of the dest parameter is the directory ID of the parent of the

directory into which you want to move the source file or directory. The name field of the

dest parameter specifies the name of the directory into which you want to move the

source file or directory.

Note

If you don’t already know the parent directory ID of the destination
directory, it might be easier to use the PBCatMove function, which
allows you to specify only the directory ID of the destination directory. ◆

The FSpCatMove function is strictly a file catalog operation; it does not actually change

the location of the file or directory on the disk. You cannot use FSpCatMove to move

a file or directory to another volume (that is, the vRefNum field in both FSSpec

parameters must be the same). Also, you cannot use FSpCatMove to rename files or

directories; to rename a file or directory, use FSpRename.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for FSpCatMove are

Trap macro Selector

_HighLevelHFSDispatch $000C

C H A P T E R 2

File Manager

2-165

RESULT CODES

Exchanging the Data in Two Files

The FSpExchangeFiles function allows you to exchange the data in two files.

FSpExchangeFiles

You can use the FSpExchangeFiles function to exchange the data stored in two files

on the same volume.

FUNCTION FSpExchangeFiles (source: FSSpec; dest: FSSpec): OSErr;

source The source file. The contents of this file and its file information are placed
in the file specified by the dest parameter.

dest The destination file. The contents of this file and its file information are
placed in the file specified by the source parameter.

DESCRIPTION

The FSpExchangeFiles function swaps the data in two files by changing the

information in the volume’s catalog and, if the files are open, in the file control

blocks. You should use FSpExchangeFiles when updating an existing file, so

that the file ID remains valid in case the file is being tracked through its file ID.

The FSpExchangeFiles function changes the fields in the catalog entries that

record the location of the data and the modification dates. It swaps both the data

forks and the resource forks.

The FSpExchangeFiles function works on both open and closed files. If either file is

open, FSpExchangeFiles updates any file control blocks associated with the file.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename or attempt to move into a file
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
fLckdErr –45 Target directory is locked
vLckdErr –46 Software volume lock
dupFNErr –48 Duplicate filename and version
paramErr –50 No default volume
badMovErr –122 Attempt to move into offspring
wrgVolTypErr –123 Not an HFS volume
afpAccessDenied –5000 User does not have the correct access to the file

C H A P T E R 2

File Manager

2-166

Exchanging the contents of two files requires essentially the same access permissions as

opening both files for writing.

The files whose data is to be exchanged must both reside on the same volume. If they do

not, FSpExchangeFiles returns the result code diffVolErr.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for FSpExchangeFiles are

RESULT CODES

Creating File System Specifications

You can use either the FSMakeFSSpec function or the PBMakeFSSpec function to

create FSSpec records. You should always use FSMakeFSSpec or PBMakeFSSpec

to create an FSSpec record rather than allocating space and filling out the fields of the

record yourself.

FSMakeFSSpec

You can use the FSMakeFSSpec function to initialize an FSSpec record to particular

values for a file or directory.

FUNCTION FSMakeFSSpec (vRefNum: Integer; dirID: LongInt;

fileName: Str255; VAR spec: FSSpec):

OSErr;

Trap macro Selector

_HighLevelHFSDispatch $000F

noErr 0 No error
nsvErr –35 Volume not found
ioErr –36 I/O error
fnfErr –43 File not found
fLckdErr –45 File is locked
vLckdErr –46 Volume is locked or read-only
paramErr –50 Function not supported by volume
volOfflinErr –53 Volume is offline
wrgVolTypErr –123 Not an HFS volume
diffVolErr –1303 Files on different volumes
afpAccessDenied –5000 User does not have the correct access
afpObjectTypeErr –5025 Object is a directory, not a file
afpSameObjectErr –5038 Source and destination files are the same

C H A P T E R 2

File Manager

2-167

vRefNum A volume specification. This parameter can contain a volume reference
number, a working directory reference number, a drive number, or 0
(to specify the default volume).

dirID A directory specification. This parameter usually specifies the parent
directory ID of the target object. If the directory is sufficiently specified
by either the vRefNum or fileName parameter, dirID can be set to 0.
If you explicitly specify dirID (that is, if it has any value other than 0),
and if vRefNum specifies a working directory reference number, dirID
overrides the directory ID included in vRefNum. If the fileName
parameter contains an empty string, FSMakeFSSpec creates an
FSSpec record for a directory specified by either the dirID or
vRefNum parameter.

fileName A full or partial pathname. If fileName specifies a full pathname,
FSMakeFSSpec ignores both the vRefNum and dirID parameters. A
partial pathname might identify only the final target, or it might include
one or more parent directory names. If fileName specifies a partial
pathname, then vRefNum, dirID, or both must be valid.

spec A file system specification to be filled in by FSMakeFSSpec.

DESCRIPTION

The FSMakeFSSpec function fills in the fields of the spec parameter using the

information contained in the other three parameters. Call FSMakeFSSpec whenever you

want to create an FSSpec record.

You can pass the input to FSMakeFSSpec in any of the ways described in “HFS

Specifications” on page 2-28. See Table 2-10 on page 2-35 for information about the way

FSMakeFSSpec interprets its input.

If the specified volume is mounted and the specified parent directory exists, but the

target file or directory doesn’t exist in that location, FSMakeFSSpec fills in the record

and then returns fnfErr instead of noErr. The record is valid, but it describes a target

that doesn’t exist. You can use the record for other operations, such as creating a file with

the FSpCreate function.

In addition to the result codes that follow, FSMakeFSSpec can return a number of other

File Manager error codes. If your application receives any result code other than noErr

or fnfErr, all fields of the resulting FSSpec record are set to 0.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for FSMakeFSSpec are

Trap macro Selector

_HighLevelHFSDispatch $0001

C H A P T E R 2

File Manager

2-168

RESULT CODES

PBMakeFSSpec

You can use the low-level PBMakeFSSpec function to create an FSSpec record for a file

or directory.

FUNCTION PBMakeFSSpec (paramBlock: HParmBlkPtr; async: Boolean):

 OSErr;

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

Given a complete specification for a file or directory, the PBMakeFSSpec function fills in

an FSSpec record that identifies the file or directory. (See Table 2-10 on page 2-35 for a

detailed description of valid file specifications.)

If the specified volume is mounted and the specified parent directory exists, but the

target file or directory doesn’t exist in that location, PBMakeFSSpec fills in the record

and returns fnfErr instead of noErr. The record is valid, but it describes a target that

doesn’t exist. You can use the record for another operation, such as creating a file.

In addition to the result codes that follow, PBMakeFSSpec can return a number of

different File Manager error codes. When PBMakeFSSpec returns any result other

than noErr or fnfErr, all fields of the resulting FSSpec record are set to 0.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBMakeFSSpec are

noErr 0 No error
nsvErr –35 Volume doesn’t exist
fnfErr –43 File or directory does not exist (FSSpec is still valid)

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a file or directory name.
→ ioVRefNum Integer A volume specification.
→ ioMisc LongInt A pointer to an FSSpec record.
→ ioDirID LongInt A parent directory ID.

Trap macro Selector

_HFSDispatch $001B

C H A P T E R 2

File Manager

2-169

RESULT CODES

High-Level HFS Routines

The File Manager provides a set of high-level file and directory manipulation routines

that are available in all operating environments. You may need to use these routines if

the FSSpec routines are not available. You do not need to call the Gestalt function to

determine if these routines are available.

Each of the high-level HFS routines allows you to specify a file or directory by providing

three parameters: a volume specification, a directory specification, and a filename. See

“HFS Specifications” on page 2-28 for a complete description of the many ways in which

you can set these parameters to pick out a file or directory.

Opening Files

You can use the functions HOpenDF, HOpenRF, and HOpen to open files.

HOpenDF

You can use the HOpenDF function to open the data fork of a file.

FUNCTION HOpenDF (vRefNum: Integer; dirID: LongInt;

fileName: Str255; permission: SignedByte;

VAR refNum: Integer): OSErr;

vRefNum A volume reference number, a working directory reference number, or 0
for the default volume.

dirID A directory ID.

fileName The name of the file.

permission The access mode under which to open the file.

refNum The file reference number of the opened file.

DESCRIPTION

The HOpenDF function creates an access path to the data fork of a file and returns, in

the refNum parameter, an access path reference number to that fork. You can pass that

reference number as a parameter to any of the high-level file access routines.

noErr 0 No error
nsvErr –35 Volume doesn’t exist
fnfErr –43 File or directory does not exist (FSSpec is still valid)

C H A P T E R 2

File Manager

2-170

RESULT CODES

HOpenRF

You can use the HOpenRF function to open the resource fork of file.

FUNCTION HOpenRF (vRefNum: Integer; dirID: LongInt;

fileName: Str255; permission: SignedByte;

VAR refNum: Integer): OSErr;

vRefNum A volume reference number, a working directory reference number, or 0
for the default volume.

dirID A directory ID.

fileName The name of the file.

permission The access mode under which to open the file.

refNum The file reference number of the opened file.

DESCRIPTION

The HOpenRF function creates an access path to the resource fork of a file. A file

reference number for that file is returned in the refNum parameter.

SPECIAL CONSIDERATIONS

Generally, your application should use Resource Manager routines rather than File

Manager routines to access a file’s resource fork. The HOpenRF function does not read

the resource map into memory and is generally useful only for applications (such as

utilities that copy files) that need block-level access to a resource fork. In particular, you

should not use the resource fork of a file to hold nonresource data. Many parts of the

system software assume that a resource fork always contains resource data.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
tmfoErr –42 Too many files open
fnfErr –43 File not found
opWrErr –49 File already open for writing
permErr –54 Attempt to open locked file for writing
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access to the file

C H A P T E R 2

File Manager

2-171

RESULT CODES

HOpen

You can use the HOpen function to open the data fork of a file. Because HOpen also opens

devices, it’s safer to use the HOpenDF function instead.

FUNCTION HOpen (vRefNum: Integer; dirID: LongInt;

fileName: Str255; permission: SignedByte;

VAR refNum: Integer): OSErr;

vRefNum A volume reference number, a working directory reference number, or 0
for the default volume.

dirID A directory ID.

fileName The name of the file.

permission The access mode under which to open the file.

refNum The file reference number of the opened file.

DESCRIPTION

The HOpen function creates an access path to the data fork of the specified file. A file

reference number for that file is returned in the refNum parameter.

▲ W A R N I N G

If you use HOpen to try to open a file whose name begins with a period,
you might mistakenly open a driver instead; subsequent attempts to
write data might corrupt data on the target device. To avoid these
problems, you should always use HOpenDF instead of HOpen. ▲

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
tmfoErr –42 Too many files open
fnfErr –43 File not found
opWrErr –49 File already open for writing
permErr –54 Attempt to open locked file for writing
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access to the file

C H A P T E R 2

File Manager

2-172

RESULT CODES

Creating and Deleting Files and Directories

You can create a file by calling the HCreate function and a directory by calling the

DirCreate function. To delete either a file or a directory, call HDelete.

HCreate

You can use the HCreate function to create a new file.

FUNCTION HCreate (vRefNum: Integer; dirID: LongInt;

fileName: Str255; creator: OSType;

fileType: OSType): OSErr;

vRefNum A volume reference number, a working directory reference number, or 0
for the default volume.

dirID A directory ID.

fileName The name of the new file.

creator The creator of the new file.

fileType The file type of the new file.

DESCRIPTION

The HCreate function creates a new file (both forks) with the specified name, creator,

and file type. For information on a file’s creator and type, see the chapter “Finder

Interface” in Inside Macintosh: Macintosh Toolbox Essentials.

The new file is unlocked and empty. The date and time of its creation and last

modification are set to the current date and time.

Files created using HCreate are not automatically opened. If you want to write data to

the new file, you must first open the file using a file access routine.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
tmfoErr –42 Too many files open
fnfErr –43 File not found
opWrErr –49 File already open for writing
permErr –54 Attempt to open locked file for writing
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access to the file

C H A P T E R 2

File Manager

2-173

Note

The resource fork of the new file exists but is empty. You’ll need to
call one of the Resource Manager procedures CreateResFile,
HCreateResFile, or FSpCreateResFile to create a resource map in
the file before you can open it (by calling one of the Resource Manager
functions OpenResFile, HOpenResFile, or FSpOpenResFile). ◆

You should not allow users to give files names that begin with a period (.). This ensures

that files can be successfully opened by applications calling HOpen instead of HOpenDF.

RESULT CODES

DirCreate

You can use the DirCreate function to create a new directory.

FUNCTION DirCreate (vRefNum: Integer; parentDirID: LongInt;

directoryName: Str255;

VAR createdDirID: LongInt): OSErr;

vRefNum A volume reference number, a working directory reference number,
or 0 for the default volume.

parentDirID The directory ID of the parent directory; if it’s 0, the new directory
is placed in the root directory of the specified volume.

directoryName The name of the new directory.

createdDirID The directory ID of the created directory.

DESCRIPTION

The DirCreate function creates a new directory and returns the directory ID of the new

directory in the createdDirID parameter. The date and time of its creation and last

modification are set to the current date and time.

noErr 0 No error
dirFulErr –33 File directory full
dskFulErr –34 Disk is full
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 Directory not found or incomplete pathname
wPrErr –44 Hardware volume lock
vLckdErr –46 Software volume lock
dupFNErr –48 Duplicate filename and version
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access
afpObjectTypeErr –5025 A directory exists with that name

C H A P T E R 2

File Manager

2-174

Note

A directory ID, unlike a volume reference number or a working
directory reference number, is a LongInt value. ◆

RESULT CODES

HDelete

You can use the HDelete function to delete a file or directory.

FUNCTION HDelete (vRefNum: Integer; dirID: LongInt;

fileName: Str255): OSErr;

vRefNum A volume specification (a volume reference number, a working directory
reference number, or 0 for the default volume).

dirID The directory ID of the parent of the file or directory to delete.

fileName The name of the file or directory to delete.

DESCRIPTION

The HDelete function removes a file or directory. If the specified target is a file, both

forks of the file are deleted. In addition, if a file ID reference for the specified file exists,

that reference is removed.

A file must be closed before you can delete it. Similarly, you cannot delete a directory

unless it’s empty. If you attempt to delete an open file or a nonempty directory, HDelete

returns the result code fBsyErr. HDelete also returns the result code fBsyErr if the

directory has an open working directory associated with it.

noErr 0 No error
dirFulErr –33 File directory full
dskFulErr –34 Disk is full
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 Directory not found or incomplete pathname
wPrErr –44 Hardware volume lock
vLckdErr –46 Software volume lock
dupFNErr –48 Duplicate filename and version
dirNFErr –120 Directory not found or incomplete pathname
wrgVolTypErr –123 Not an HFS volume
afpAccessDenied –5000 User does not have the correct access

C H A P T E R 2

File Manager

2-175

RESULT CODES

Accessing Information About Files and Directories

The File Manager provides a number of high-level HFS routines that allow you to obtain

and set information about files and directories and to manipulate file locking. All of the

routines described in this section operate on both forks of a file and don’t require the file

to be open.

HGetFInfo

You can use the HGetFInfo function to obtain the Finder information for a file.

FUNCTION HGetFInfo (vRefNum: Integer; dirID: LongInt;

fileName: Str255; VAR fndrInfo: FInfo):

OSErr;

vRefNum A volume reference number, a working directory reference number, or
0 for the default volume.

dirID A directory ID.

fileName The name of the file.

fndrInfo Information used by the Finder.

DESCRIPTION

The HGetFInfo function returns the Finder information stored in the volume’s catalog

for a file. The HGetFInfo function returns only the original Finder information—the

FInfo record, not FXInfo. (See the chapter “Finder Interface” in Inside Macintosh:
Macintosh Toolbox Essentials for a discussion of Finder information.)

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
fBsyErr –47 File busy, directory not empty, or working directory

control block open
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access

C H A P T E R 2

File Manager

2-176

RESULT CODES

HSetFInfo

You can use the HSetFInfo function to set the Finder information for a file.

FUNCTION HSetFInfo (vRefNum: Integer; dirID: LongInt;

fileName: Str255; fndrInfo: FInfo): OSErr;

vRefNum A volume reference number, a working directory reference number, or 0
for the default volume.

dirID A directory ID.

fileName The name of the file.

fndrInfo Information used by the Finder.

DESCRIPTION

The HSetFInfo function changes the Finder information stored in the volume’s catalog

for a file. HSetFInfo changes only the original Finder information—the FInfo record,

not FXInfo. (See the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox
Essentials for a discussion of Finder information.)

RESULT CODES

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 File not found
paramErr –50 No default volume
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access
afpObjectTypeErr –5025 Directory not found or incomplete pathname

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access
afpObjectTypeErr –5025 Object was a directory

C H A P T E R 2

File Manager

2-177

HSetFLock

You can use the HSetFLock function to lock a file.

FUNCTION HSetFLock (vRefNum: Integer; dirID: LongInt;

fileName: Str255): OSErr;

vRefNum A volume reference number, a working directory reference number, or 0
for the default volume.

dirID A directory ID.

fileName The name of the file.

DESCRIPTION

The HSetFLock function locks a file. After you lock a file, all new access paths to that

file are read-only. This function has no effect on existing access paths.

If the PBHGetVolParms function indicates that the volume supports folder locking (that

is, the bHasFolderLock bit of the vMAttrib field is set), you can use HSetFLock to

lock a directory.

RESULT CODES

HRstFLock

You can use the HRstFLock function to unlock a file.

FUNCTION HRstFLock (vRefNum: Integer; dirID: LongInt;

fileName: Str255): OSErr;

vRefNum A volume reference number, a working directory reference number, or 0
for the default volume.

dirID A directory ID.

fileName The name of the file.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
vLckdErr –46 Software volume lock
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access to the file
afpObjectTypeErr –5025 Folder locking not supported by volume

C H A P T E R 2

File Manager

2-178

DESCRIPTION

The HRstFLock function unlocks a file.

If the PBHGetVolParms function indicates that the volume supports folder locking (that

is, the bHasFolderLock bit of the vMAttrib field is set), you can use HRstFLock to

unlock a directory.

RESULT CODES

HRename

You can use the HRename function to rename a file, directory, or volume.

FUNCTION HRename (vRefNum: Integer; dirID: LongInt;

oldName: Str255; newName: Str255): OSErr;

vRefNum A volume reference number, a working directory reference number, or 0
for the default volume.

dirID A directory ID.

oldName An existing filename, directory name, or volume name.

newName The new filename, directory name, or volume name.

DESCRIPTION

The HRename function changes the name of a file, directory, or volume. Given the name

of a file or directory in oldName, HRename changes it to the name in newName. Given a

volume name or a volume reference number, it changes the name of the volume to the

name in newName. Access paths currently in use aren’t affected.

SPECIAL CONSIDERATIONS

You cannot use HRename to change the directory in which a file resides. If you’re

renaming a volume, make sure that both names end with a colon.

Note

If a file ID reference exists for a file you are renaming, the file ID remains
with the renamed file. ◆

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
vLckdErr –46 Software volume lock
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access to the file
afpObjectTypeErr –5025 Folder locking not supported by volume

C H A P T E R 2

File Manager

2-179

RESULT CODES

Moving Files or Directories

The high-level HFS function CatMove allows you to move files and directories within

a volume.

CatMove

You can use the CatMove function to move files or directories from one directory to

another on the same volume.

FUNCTION CatMove (vRefNum: Integer; dirID: LongInt;

oldName: Str255; newDirID: LongInt;

newName: Str255): OSErr;

vRefNum A volume reference number, a working directory reference number, or 0
for the default volume.

dirID A directory ID.

oldName An existing filename or directory name.

newDirID If newName is empty, the directory ID of the target directory; otherwise,
the parent directory ID of the target directory.

newName The name of the directory to which the file or directory is to be moved.

DESCRIPTION

The CatMove function moves a file or directory from one directory to another within a

volume. CatMove is strictly a file catalog operation; it does not actually change the

location of the file or directory on the disk.

noErr 0 No error
dirFulErr –33 File directory full
dskFulErr –34 Volume is full
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
dupFNErr –48 Duplicate filename
paramErr –50 No default volume
fsRnErr –59 Problem during rename
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access to the file

C H A P T E R 2

File Manager

2-180

The newName parameter specifies the name of the directory to which the file or directory

is to be moved. If a valid directory name is provided for newName, the destination

directory’s parent directory is specified in newDirID. However, you can specify an

empty name for newName, in which case newDirID should be set to the directory ID of

the destination directory.

Note

It is usually simplest to specify the destination directory by passing its
directory ID in the newDirID parameter and by setting newName to an
empty name. To specify an empty name, set newName to ':'. ◆

The CatMove function cannot move a file or directory to another volume (that is, the

vRefNum parameter is used in specifying both the source and the destination). Also, you

cannot use it to rename files or directories; to rename a file or directory, use HRename.

RESULT CODES

Maintaining Working Directories

The File Manager provides several functions that allow you to manipulate working

directories. Working directories are used internally by the File Manager; in general,

your application should not create or directly access working directories. For more

information about working directories, see “Working Directory Reference Numbers,”

beginning on page 2-26.

OpenWD

You can use the OpenWD function to create a working directory.

FUNCTION OpenWD (vRefNum: Integer; dirID: LongInt;

procID: LongInt; VAR wdRefNum: Integer): OSErr;

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename or attempt to move into a file
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
fLckdErr –45 Target directory is locked
vLckdErr –46 Software volume lock
dupFNErr –48 Duplicate filename and version
paramErr –50 No default volume
badMovErr –122 Attempt to move into offspring
wrgVolTypErr –123 Not an HFS volume
afpAccessDenied –5000 User does not have the correct access to the file

C H A P T E R 2

File Manager

2-181

vRefNum A volume reference number, a working directory reference number, or 0
for the default volume.

dirID A directory ID.

procID A working directory user identifier. You should use your application’s
signature as the user identifier.

wdRefNum On exit, the working directory reference number.

DESCRIPTION

The OpenWD function creates a working directory that corresponds to the specified

directory. It returns in wdRefNum a working directory reference number that can be used

in subsequent File Manager calls.

If a working directory having the specified user identifier already exists for the specified

directory, no new working directory is opened; instead, the existing working directory

reference number is returned in wdRefNum. If the specified directory already has a

working directory with a different user identifier, a new working directory reference

number is returned.

If the directory specified by the dirID parameter is the volume’s root directory, no

working directory is created; instead, the volume reference number is returned in the

wdRefNum parameter.

RESULT CODES

CloseWD

You can use the CloseWD function to close a working directory.

FUNCTION CloseWD (wdRefNum: Integer): OSErr;

wdRefNum A working directory reference number.

DESCRIPTION

The CloseWD function releases the specified working directory.

Note

If you specify a volume reference number in the wdRefNum parameter,
CloseWD does nothing. ◆

noErr 0 No error
nsvErr –35 No such volume
fnfErr –43 No such directory
tmwdoErr –121 Too many working directories open
afpAccessDenied –5000 User does not have the correct access to the file

C H A P T E R 2

File Manager

2-182

RESULT CODES

GetWDInfo

You can use the GetWDInfo function to get information about a working directory.

FUNCTION GetWDInfo (wdRefNum: Integer; VAR vRefNum: Integer;

VAR dirID: LongInt; VAR procID: LongInt):

OSErr;

wdRefNum A working directory reference number.

vRefNum If nonzero on input, a volume reference number or drive number. On
output, the volume reference number of the working directory.

dirID On output, the directory ID of the specified working directory.

procID The working directory user identifier.

DESCRIPTION

The GetWDInfo function returns information about the specified working directory.

You can use GetWDInfo to convert a working directory reference number to its

corresponding volume reference number and directory ID.

RESULT CODES

Low-Level HFS Routines

The File Manager provides a set of low-level file and directory manipulation routines

that are available in all operating environments. You do not need to call the Gestalt

function to determine if these routines are available.

These routines exchange parameters with your application through a parameter block.

When you call a low-level routine, you pass the address of the appropriate parameter

block to the routine.

Some low-level HFS routines can run either asynchronously or synchronously. Each of

these routines comes in three versions: one version requires the async parameter, and

two have the suffix Async or Sync added to their names. For more information about

the differences between the three versions, see “Low-Level File Access Routines” on

noErr 0 No error
nsvErr –35 No such volume
rfNumErr –51 Bad working directory reference number

noErr 0 No error
nsvErr –35 No such volume
rfNumErr –51 Bad working directory reference number

C H A P T E R 2

File Manager

2-183

page 2-120. Only the first version of these routines is documented in this section. See

“Summary of the File Manager,” beginning on page 2-240, for a listing that includes all

three versions.

Assembly-Language Note

See the assembly-language note on page 2-120 for details on calling
these routines from assembly language. ◆

Opening Files

You can use the functions PBHOpenDF, PBHOpenRF, and PBHOpen to open files.

PBHOpenDF

You can use the PBHOpenDF function to open the data fork of a file.

FUNCTION PBHOpenDF (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBHOpenDF function creates an access path to the data fork of a file and returns a

file reference number in the ioRefNum field. PBHOpenDF is exactly like the PBHOpen

function except that PBHOpenDF allows you to open a file whose name begins with

a period (.).

You can open a path for writing even if it accesses a file on a locked volume, and no error

is returned until a PBWrite, PBSetEOF, or PBAllocate call is made.

If you attempt to open a locked file for writing, PBHOpenDF returns the result code

permErr. If you request exclusive read/write permission but another access path

is already open, PBHOpenDF returns the reference number of the existing access path

in ioRefNum and opWrErr as its function result. You should not use this reference

number unless your application originally opened the file.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
← ioRefNum Integer A file reference number.
→ ioPermssn SignedByte The read/write permission.
→ ioDirID LongInt A parent directory ID.

C H A P T E R 2

File Manager

2-184

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBHOpenDF are

RESULT CODES

PBHOpenRF

You can use the PBHOpenRF function to open the resource fork of file.

FUNCTION PBHOpenRF (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBHOpenRF function creates an access path to the resource fork of a file and returns

a file reference number in the ioRefNum field.

Trap macro Selector

_HFSDispatch $001A

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
tmfoErr –42 Too many files open
fnfErr –43 File not found
opWrErr –49 File already open for writing
permErr –54 Attempt to open locked file for writing
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access to the file

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
← ioRefNum Integer A file reference number.
→ ioPermssn SignedByte The read/write permission.
→ ioDirID LongInt A directory ID.

C H A P T E R 2

File Manager

2-185

SPECIAL CONSIDERATIONS

Generally your application should use Resource Manager routines rather than File

Manager routines to access a file’s resource fork. The PBHOpenRF function does not read

the resource map into memory and is generally useful only for applications (such as

utilities that copy files) that need block-level access to a resource fork. In particular, you

should not use the resource fork of a file to hold nonresource data. Many parts of the

system software assume that a resource fork always contains resource data.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBHOpenRF is _HOpenRF.

RESULT CODES

PBHOpen

You can use the PBHOpen function to open the data fork of a file. Because PBHOpen will

also open devices, it’s safer to use the PBHOpenDF function instead.

FUNCTION PBHOpen (paramBlock: HParmBlkPtr; async: Boolean): OSErr;

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
tmfoErr –42 Too many files open
fnfErr –43 File not found
opWrErr –49 File already open for writing
permErr –54 Attempt to open locked file for writing
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access to the file

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
← ioRefNum Integer A file reference number.
→ ioPermssn SignedByte The read/write permission.
→ ioDirID LongInt A directory ID.

C H A P T E R 2

File Manager

2-186

DESCRIPTION

The PBHOpen function creates an access path to the data fork of the specified file and

returns a file reference number in the ioRefNum field.

You can open a path for writing even if it accesses a file on a locked volume, and no error

is returned until a PBWrite, PBSetEOF, or PBAllocate call is made.

If you attempt to open a locked file for writing, PBHOpen returns the result code

permErr. If you request exclusive read/write permission but another access path is

already open, PBHOpen returns the reference number of the existing access path in

ioRefNum and opWrErr as its function result. You should not use this reference number

unless your application originally opened the file.

▲ W A R N I N G

If you use PBHOpen to try to open a file whose name begins with a
period, you might mistakenly open a driver instead; subsequent
attempts to write data might corrupt data on the target device. To
avoid these problems, you should always use PBHOpenDF instead
of PBHOpen. ▲

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBHOpen is _HOpen.

RESULT CODES

Creating and Deleting Files and Directories

You can create a file by calling the PBHCreate function and a directory by calling the

PBDirCreate function. To delete either a file or a directory, use PBHDelete.

PBHCreate

You can use the PBHCreate function to create a new file.

FUNCTION PBHCreate (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
tmfoErr –42 Too many files open
fnfErr –43 File not found
opWrErr –49 File already open for writing
permErr –54 Attempt to open locked file for writing
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access to the file

C H A P T E R 2

File Manager

2-187

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBHCreate function creates a new file (both forks); the new file is unlocked and

empty. The date and time of its creation and last modification are set to the current date

and time. If the file created isn’t temporary (that is, if it will exist after the user quits the

application), the application should call PBHSetFInfo (after PBHCreate) to fill in the

information needed by the Finder.

Files created using PBHCreate are not automatically opened. If you want to write

data to the new file, you must first open the file using a file access routine (such

as PBHOpenDF).

Note

The resource fork of the new file exists but is empty. You’ll need to
call one of the Resource Manager procedures CreateResFile,
HCreateResFile, or FSpCreateResFile to create a resource map in
the file before you can open it (by calling one of the Resource Manager
functions OpenResFile, HOpenResFile, or FSpOpenResFile). ◆

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBHCreate is _HCreate.

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
→ ioDirID LongInt A directory ID.

noErr 0 No error
dirFulErr –33 File directory full
dskFulErr –34 Disk is full
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 Directory not found or incomplete pathname
wPrErr –44 Hardware volume lock
vLckdErr –46 Software volume lock
dupFNErr –48 Duplicate filename and version
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access
afpObjectTypeErr –5025 A directory exists with that name

C H A P T E R 2

File Manager

2-188

PBDirCreate

You can use the PBDirCreate function to create a new directory.

FUNCTION PBDirCreate (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBDirCreate function is identical to PBHCreate except that it creates a new

directory instead of a file. You can specify the parent of the directory to be created in

ioDirID; if it’s 0, the new directory is placed in the root directory of the specified

volume. The directory ID of the new directory is returned in ioDirID. The date and

time of its creation and last modification are set to the current date and time.

Note

A directory ID, unlike a volume reference number or a working
directory reference number, is a LongInt value. ◆

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBDirCreate are

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
↔ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
↔ ioDirID LongInt A directory ID.

Trap macro Selector

_HFSDispatch $0006

noErr 0 No error
dirFulErr –33 File directory full
dskFulErr –34 Disk is full
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 Directory not found or incomplete pathname
wPrErr –44 Hardware volume lock
vLckdErr –46 Software volume lock
dupFNErr –48 Duplicate filename and version
dirNFErr –120 Directory not found or incomplete pathname
wrgVolTypErr –123 Not an HFS volume
afpAccessDenied –5000 User does not have the correct access

C H A P T E R 2

File Manager

2-189

PBHDelete

You can use the PBHDelete function to delete a file or directory.

FUNCTION PBHDelete (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBHDelete function removes a file or directory. If the specified target is a file, both

forks of the file are deleted. In addition, if a file ID reference for the specified file exists,

that file ID reference is also removed.

A file must be closed before you can delete it. Similarly, you cannot delete a directory

unless it’s empty. If you attempt to delete an open file or a nonempty directory,

PBHDelete returns the result code fBsyErr. PBHDelete also returns fBsyErr if you

attempt to delete a directory that has an open working directory associated with it.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBHDelete is _HDelete.

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
→ ioDirID LongInt A directory ID.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
fBsyErr –47 File busy, directory not empty, or working directory

control block open
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access

C H A P T E R 2

File Manager

2-190

Accessing Information About Files and Directories

The File Manager provides a number of low-level HFS routines that allow you to obtain

and set information about files and directories and to manipulate file locking. All of the

routines described in this section operate on both forks of a file and don’t require the file

to be open.

PBGetCatInfo

You can use the PBGetCatInfo function to get information about the files and

directories in a file catalog.

FUNCTION PBGetCatInfo (paramBlock: CInfoPBPtr; async: Boolean):

OSErr;

paramBlock A pointer to a catalog information parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block for files

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
↔ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
← ioFRefNum Integer A file reference number.
→ ioFDirIndex Integer An index.
← ioFlAttrib SignedByte The file attributes.
← ioFlFndrInfo FInfo Information used by the Finder.
↔ ioDirID LongInt On input, a directory ID. On output, a

file ID.
← ioFlStBlk Integer The first allocation block of the

data fork.
← ioFlLgLen LongInt The logical end-of-file of the data fork.
← ioFlPyLen LongInt The physical end-of-file of the

data fork.
← ioFlRStBlk Integer The first allocation block of the

resource fork.
← ioFlRLgLen LongInt The logical end-of-file of the

resource fork.
← ioFlRPyLen LongInt The physical end-of-file of the

resource fork.
← ioFlCrDat LongInt The date and time of creation.
← ioFlMdDat LongInt The date and time of the last

modification.
← ioFlBkDat LongInt The date and time of the last backup.
← ioFlXFndrInfo FXInfo Additional information used by

the Finder.
← ioFlParID LongInt The directory ID of the parent directory.
← ioFlClpSiz LongInt The file’s clump size.

C H A P T E R 2

File Manager

2-191

Parameter block for directories

DESCRIPTION

The PBGetCatInfo function returns information about a file or directory, depending on

the values you specify in the ioFDirIndex, ioNamePtr, ioVRefNum, and ioDirID or

ioDrDirID fields. If you need to determine whether the information returned is for a

file or a directory, you can test bit 4 of the ioFlAttrib field; if that bit is set, the

information returned describes a directory.

The PBGetCatInfo function selects a file or directory according to these rules:

■ If the value of ioFDirIndex is positive, PBGetCatInfo returns information about
the file or directory whose directory index is ioFDirIndex in the directory specified
by ioVRefNum (this will be the root directory if a volume reference number is
provided).

■ If the value of ioFDirIndex is 0, PBGetCatInfo returns information about the file
or directory specified by ioNamePtr in the directory specified by ioVRefNum (again,
this will be the root directory if a volume reference number is provided).

■ If the value of ioFDirIndex is negative, PBGetCatInfo ignores ioNamePtr and
returns information about the directory specified by ioDrDirID.

With files, PBGetCatInfo is similar to PBHGetFInfo but returns some additional

information. If the file is open, the reference number of the first access path found is

returned in ioFRefNum, and the name of the file is returned in ioNamePtr (unless

ioNamePtr is NIL). The file’s attributes are returned in the ioFlAttrib field. See

the description of the fields of the CInfoPBRec data type (beginning on page 2-100)

for the meaning of the bits in this field.

Note

When you get information about a file, the ioDirID field contains the
file ID on exit from PBGetCatInfo. You might need to save the value of
ioDirID before calling PBGetCatInfo if you make subsequent calls
with the same parameter block. ◆

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
↔ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
→ ioFDirIndex Integer An index.
← ioFlAttrib SignedByte The directory attributes.
← ioACUser SignedByte The directory access rights.
← ioDrUsrWds DInfo Information used by the Finder.
↔ ioDrDirID LongInt The directory ID.
← ioDrNmFls Integer The number of files in the directory.
← ioDrCrDat LongInt The date and time of creation.
← ioDrMdDat LongInt The date and time of the last

modification.
← ioDrBkDat LongInt The date and time of the last backup.
← ioDrFndrInfo DXInfo Additional information used by

the Finder.
← ioDrParID LongInt The directory ID of the parent directory.

C H A P T E R 2

File Manager

2-192

With directories, PBGetCatInfo returns information such as the directory attributes

and, for server volumes, the directory access privileges of the user. The directory

attributes are encoded by bits in the ioFlAttrib field and have these meanings:

Note

These bits in the ioFlAttrib field for directories are read-only.
You cannot alter directory attributes by setting these bits using
PBSetCatInfo. Instead, you can call PBHSetFLock and
PBHRstFLock to lock and unlock a directory, and PBShare
and PBUnshare to enable and disable file sharing on local
directories. ◆

The PBGetCatInfo function returns the directory access rights in the ioACUser

field only for shared volumes. As a result, you should set this field to 0 before

calling PBGetCatInfo.

You can also use PBGetCatInfo to determine whether a file has a file ID reference.

The value of the file ID is returned in the ioDirID field. Because that parameter could

also represent a directory ID, call PBResolveFileIDRef to see if the value is a real

file ID. If you want to determine whether a file ID reference exists for a file and create

one if it doesn’t, use PBCreateFileIDRef, which will either create a file ID or

return fidExists.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBGetCatInfo are

RESULT CODES

Bit Meaning

0 Set if the directory is locked

1 Reserved

2 Set if the directory is within a shared area of the directory hierarchy

3 Set if the directory is a share point that is mounted by some user

4 Set if the item is a directory

5 Set if the directory is a share point

6–7 Reserved

Trap macro Selector

_HFSDispatch $0009

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 File not found
paramErr –50 No default volume
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access
afpObjectTypeErr –5025 Directory not found or incomplete pathname

C H A P T E R 2

File Manager

2-193

PBSetCatInfo

You can use the PBSetCatInfo function to modify information about files and

directories.

FUNCTION PBSetCatInfo (paramBlock: CInfoPBPtr; async: Boolean):

OSErr;

paramBlock A pointer to a catalog information parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block for files

Parameter block for directories

DESCRIPTION

The PBSetCatInfo function sets information about a file or directory. When used to set

information about a file, it works much as PBHSetFInfo does, but lets you set some

additional information.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
→ ioFlFndrInfo FInfo Information used by the Finder.
→ ioDirID LongInt The directory ID.
→ ioFlCrDat LongInt The date and time of creation.
→ ioFlMdDat LongInt The date and time of the last

modification.
→ ioFlBkDat LongInt The date and time of the last backup.
→ ioFlXFndrInfo FXInfo Additional information used by

the Finder.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
→ ioDrUsrWds DInfo Information used by the Finder.
→ ioDrDirID LongInt The directory ID.
→ ioDrCrDat LongInt The date and time of creation.
→ ioDrMdDat LongInt The date and time of the last

modification.
→ ioDrBkDat LongInt The date and time of the last backup.
→ ioDrFndrInfo DXInfo Additional information used by

the Finder.

C H A P T E R 2

File Manager

2-194

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBSetCatInfo are

RESULT CODES

PBHGetFInfo

You can use the PBHGetFInfo function to obtain information about a file.

FUNCTION PBHGetFInfo (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

Trap macro Selector

_HFSDispatch $000A

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 File not found
fLckdErr –45 File is locked
vLckdErr –46 Volume is locked or read-only
paramErr –50 No default volume
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
↔ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
← ioFRefNum Integer A file reference number.
→ ioFDirIndex Integer An index.
← ioFlAttrib SignedByte The file attributes.
← ioFlFndrInfo FInfo Information used by the Finder.
↔ ioDirID LongInt On input, a directory ID; on output, a file ID.
← ioFlStBlk Integer The first allocation block of the data fork.
← ioFlLgLen LongInt The logical end-of-file of the data fork.
← ioFlPyLen LongInt The physical end-of-file of the data fork.
← ioFlRStBlk Integer The first allocation block of the resource fork.
← ioFlRLgLen LongInt The logical end-of-file of the resource fork.
← ioFlRPyLen LongInt The physical end-of-file of the resource fork.
← ioFlCrDat LongInt The date and time of creation.
← ioFlMdDat LongInt The date and time of last modification.

C H A P T E R 2

File Manager

2-195

DESCRIPTION

If the value of ioFDirIndex is positive, the PBHGetFInfo function returns

information about the file whose directory index is ioFDirIndex on the volume

specified by ioVRefNum in the directory specified by ioDirID. You should call

PBHGetFInfo just before PBHSetFInfo, so that the current information is present

in the parameter block.

Note

If a working directory reference number is specified in ioVRefNum, the
File Manager returns information about the file whose directory index is
ioFDirIndex in the specified directory. ◆

If the value of ioFDirIndex is negative or 0, the PBHGetFInfo function returns

information about the file having the name pointed to by ioNamePtr on the volume

specified by ioVRefNum. If the file is open, the reference number of the first access path

found is returned in ioFRefNum, and the name of the file is returned in ioNamePtr

(unless ioNamePtr is NIL).

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBHGetFInfo is _HGetFileInfo.

RESULT CODES

PBHSetFInfo

You can use the PBHSetFInfo function to set information for a file.

FUNCTION PBHSetFInfo (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 File not found
paramErr –50 No default volume
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access
afpObjectTypeErr –5025 Directory not found or incomplete pathname

C H A P T E R 2

File Manager

2-196

Parameter block

DESCRIPTION

The PBHSetFInfo function sets information (including the date and time of creation

and modification, and information needed by the Finder) about the file having the name

pointed to by ioNamePtr on the volume specified by ioVRefNum. You should call

PBHGetFInfo just before PBHSetFInfo, so that the current information is present in

the parameter block.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBHSetFInfo is _HSetFileInfo.

RESULT CODES

PBHSetFLock

You can use the PBHSetFLock function to lock a file.

FUNCTION PBHSetFLock (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
→ ioFlFndrInfo FInfo Information used by the Finder.
→ ioDirID LongInt A directory ID.
→ ioFlCrDat LongInt The date and time of creation.
→ ioFlMdDat LongInt The date and time of last modification.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access
afpObjectTypeErr –5025 Object was a directory

C H A P T E R 2

File Manager

2-197

Parameter block

DESCRIPTION

The PBHSetFLock function locks the file with the name pointed to by ioNamePtr on

the volume specified by ioVRefNum. After you lock a file, all new access paths to that

file are read-only. Access paths currently in use aren’t affected.

If the PBHGetVolParms function indicates that the volume supports folder locking (that

is, the bHasFolderLock bit of the vMAttrib field is set), you can use PBHSetFLock to

lock a directory.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBHSetFLock is _HSetFLock.

RESULT CODES

PBHRstFLock

You can use the PBHRstFLock function to unlock a file.

FUNCTION PBHRstFLock (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
→ ioDirID LongInt A directory ID.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
vLckdErr –46 Software volume lock
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access to the file
afpObjectTypeErr –5025 Folder locking not supported by volume

C H A P T E R 2

File Manager

2-198

Parameter block

DESCRIPTION

The PBHRstFLock function unlocks the file with the name pointed to by ioNamePtr on

the volume specified by ioVRefNum. Access paths currently in use aren’t affected.

If the PBHGetVolParms function indicates that the volume supports folder locking (that

is, the bHasFolderLock bit of the vMAttrib field is set), you can use PBHRstFLock to

unlock a directory.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBHRstFLock is _HRstFLock.

RESULT CODES

PBHRename

You can use the PBHRename function to rename a file, directory, or volume.

FUNCTION PBHRename (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
→ ioDirID LongInt A directory ID.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
vLckdErr –46 Software volume lock
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access to the file
afpObjectTypeErr –5025 Folder locking not supported by volume

C H A P T E R 2

File Manager

2-199

Parameter block

DESCRIPTION

Given a pointer to the name of a file or directory in ioNamePtr, PBHRename changes it

to the name pointed to by ioMisc. Given a pointer to a volume name in ioNamePtr or

a volume reference number in ioVRefNum, it changes the name of the volume to the

name pointed to by ioMisc.

Note

If a file ID reference exists for the file being renamed, the file ID remains
with the file. ◆

IMPORTANT

You cannot use PBHRename to change the directory in which a file
is located. ▲

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBHRename is _HRename.

RESULT CODES

Moving Files or Directories

The low-level HFS function PBCatMove allows you to move files and directories within

a volume.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
→ ioMisc Ptr A pointer to the new name for the file.
→ ioDirID LongInt A directory ID.

noErr 0 No error
dirFulErr –33 File directory full
dskFulErr –34 Volume is full
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
dupFNErr –48 Duplicate filename and version
paramErr –50 No default volume
fsRnErr –59 Problem during rename
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access

C H A P T E R 2

File Manager

2-200

PBCatMove

You can use the PBCatMove function to move files or directories from one directory to

another on the same volume.

FUNCTION PBCatMove (paramBlock: CMovePBPtr; async: Boolean):

OSErr;

paramBlock A pointer to a catalog move parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBCatMove function moves a file or directory from one directory to another within

a volume. PBCatMove is strictly a file catalog operation; it does not actually change the

location of the file or directory on the disk.

The source file or directory should be specified by its volume, parent directory ID, and

partial pathname. Pass a volume specification in ioVRefNum. Pass the parent directory

ID in the ioDirID field and a pointer to the partial pathname in the ioNamePtr field.

The name of the directory into which the file or directory is to be moved is specified by

the ioNewName field. If a valid directory name is provided for ioNewName, the

destination directory’s parent directory is specified in ioNewDirID. However, you can

specify NIL for ioNewName, in which case ioNewDirID should be set to the directory

ID of the destination directory itself.

Note

It is usually simplest to specify the destination directory by passing
its directory ID in the ioNewDirID field and by setting ioNewName
to NIL. ◆

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to the name of the file or

directory to be moved.
→ ioVRefNum Integer A volume specification.
→ ioNewName StringPtr A pointer to the name of the directory

into which the file or directory is to
be moved.

→ ioNewDirID LongInt The directory ID of the directory into
which the file or directory is to be moved,
if ioNewName is NIL. If ioNewName is
not NIL, this is the parent directory ID of
the directory into which the file or
directory is to be moved.

→ ioDirID LongInt The directory ID of the file or directory to
be moved.

C H A P T E R 2

File Manager

2-201

The PBCatMove function cannot move a file or directory to another volume (that is,

ioVRefNum is used in specifying both the source and the destination). Also, you cannot

use it to rename files or directories; to rename a file or directory, use PBHRename.

If a file ID reference exists for the file, the file ID reference remains with the moved file.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBCatMove are

RESULT CODES

Maintaining Working Directories

The File Manager provides several low-level functions that allow you to manipulate

working directories. Working directories are used internally by the File Manager; in

general, your application should not create or directly access working directories. For

more information about working directories, see “Working Directory Reference

Numbers,” beginning on page 2-26.

PBOpenWD

You can use the PBOpenWD function to create a working directory.

FUNCTION PBOpenWD (paramBlock: WDPBPtr; async: Boolean): OSErr;

paramBlock A pointer to a working directory parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Trap macro Selector

_HFSDispatch $0005

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename or attempt to move into a file
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
fLckdErr –45 Target directory is locked
vLckdErr –46 Software volume lock
dupFNErr –48 Duplicate filename and version
paramErr –50 No default volume
badMovErr –122 Attempt to move into offspring
wrgVolTypErr –123 Not an HFS volume
afpAccessDenied –5000 User does not have the correct access

C H A P T E R 2

File Manager

2-202

Parameter block

DESCRIPTION

The PBOpenWD function creates a working directory that corresponds to the directory

specified by ioVRefNum, ioWDDirID, and ioWDProcID. (You can also specify the

directory using a combination of partial pathname and directory ID.) PBOpenWD returns

in ioVRefNum a working directory reference number that can be used in subsequent File

Manager calls.

If a working directory having the specified user identifier already exists for the specified

directory, no new working directory is opened; instead, the existing working directory

reference number is returned in ioVRefNum. If the specified directory already has a

working directory with a different user identifier, a new working directory reference

number is returned.

If the directory specified by the ioWDDirID parameter is the volume’s root directory, no

working directory is created; instead, the volume reference number is returned in the

ioVRefNum parameter.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBOpenWD are

RESULT CODES

PBCloseWD

You can use the PBCloseWD function to close a working directory.

FUNCTION PBCloseWD (paramBlock: WDPBPtr; async: Boolean): OSErr;

paramBlock A pointer to a working directory parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
↔ ioVRefNum Integer A volume specification.
→ ioWDProcID LongInt The working directory user identifier.
→ ioWDDirID LongInt The working directory’s directory ID.

Trap macro Selector

_HFSDispatch $0001

noErr 0 No error
nsvErr –35 No such volume
fnfErr –43 No such directory
tmwdoErr –121 Too many working directories open
afpAccessDenied –5000 User does not have the correct access

C H A P T E R 2

File Manager

2-203

Parameter block

DESCRIPTION

The PBCloseWD function releases the working directory whose working directory

reference number is specified in ioVRefNum.

Note

If you specify a volume reference number in the ioVRefNum field,
PBCloseWD does nothing. ◆

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBCloseWD are

RESULT CODES

PBGetWDInfo

You can use the PBGetWDInfo function to get information about a working directory.

FUNCTION PBGetWDInfo (paramBlock: WDPBPtr; async: Boolean): OSErr;

paramBlock A pointer to a working directory parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioVRefNum Integer A working directory reference

number.

Trap macro Selector

_HFSDispatch $0002

noErr 0 No error
nsvErr –35 No such volume
rfNumErr –51 Bad working directory reference number

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
← ioNamePtr StringPtr A pointer to a pathname.
↔ ioVRefNum Integer A volume specification.
→ ioWDIndex Integer An index.
↔ ioWDProcID LongInt The working directory user identifier.
↔ ioWDVRefNum Integer The volume reference number for the

working directory.
← ioWDDirID LongInt The working directory’s directory ID.

C H A P T E R 2

File Manager

2-204

DESCRIPTION

The PBGetWDInfo function returns information about the specified working directory.

The working directory can be specified either by its working directory reference number

in ioVRefNum (in which case the value of ioWDIndex should be 0), or by its index

number in ioWDIndex. In the latter case, if the value of ioVRefNum is not 0, it’s

interpreted as a volume specification, and only working directories on that volume

are indexed.

The ioWDVRefNum field always returns the volume reference number. The ioVRefNum

field contains a working directory reference number when a working directory reference

number is passed in that field; otherwise, it returns a volume reference number.

PBGetWDInfo returns a pointer to the volume’s name in the ioNamePtr field. You

should pass a pointer to a Str31 value if you want that name returned. If you pass NIL

in the ioNamePtr field, no volume name is returned.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBGetWDInfo are

RESULT CODES

Searching a Catalog

The low-level HFS function PBCatSearch allows you to search a volume using a

particular set of search criteria.

PBCatSearch

The PBCatSearch function searches a volume’s catalog file using a set of search criteria

that you specify. It builds a list of all files or directories that meet your specifications.

FUNCTION PBCatSearch (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a csParam variant of an HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Trap macro Selector

_HFSDispatch $0007

noErr 0 No error
nsvErr –35 No such volume
rfNumErr –51 Bad working directory reference number

C H A P T E R 2

File Manager

2-205

Parameter block

DESCRIPTION

The PBCatSearch function searches the volume you specify for files or directories

that match two coordinated sets of selection criteria. PBCatSearch returns (in the

ioMatchPtr field) a pointer to an array of FSSpec records identifying the files and

directories that match the criteria.

If the catalog file changes between two timed calls to PBCatSearch (that is, when you are

using ioSearchTime and ioCatPosition to search a volume in segments and

the catalog file changes between searches), PBCatSearch returns a result code of

catChangedErr and no matches. Depending on what has changed on the volume,

ioCatPosition might be invalid, most likely by a few entries in one direction or

another. You can continue the search, but you risk either skipping some entries or reading

some twice.

When PBCatSearch has searched the entire volume, it returns eofErr. If it exits

because it either spends the maximum time allowed by ioSearchTime or finds the

maximum number of matches allowed by ioReqMatchCount, it returns noErr. You

can specify a value of 0 in the ioSearchTime field to indicate that no time limit is to

be enforced.

SPECIAL CONSIDERATIONS

Not all volumes support the PBCatSearch function. Before you call PBCatSearch to

search a particular volume, you should call the PBHGetVolParms function to determine

whether that volume supports PBCatSearch. See page 2-147 for details on calling

PBHGetVolParms.

Even though AFP volumes support PBCatSearch, they do not support all of its features

that are available on local volumes. These restrictions apply to AFP volumes:

■ AFP volumes do not use the ioSearchTime field. Current versions of the AppleShare
server software search for 1 second or until 4 matches are found. The AppleShare
workstation software keeps requesting the appropriate number of matches until the
server returns either the number specified in the ioReqMatchCount field or an error.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a volume name.
→ ioVRefNum Integer A volume specification.
→ ioMatchPtr FSSpecArrayPtr A pointer to an array of matches.
→ ioReqMatchCount LongInt The maximum match count.
← ioActMatchCount LongInt The actual match count.
→ ioSearchBits LongInt Enable bits for fields in criteria

records.
→ ioSearchInfo1 CInfoPBPtr The values and lower bounds.
→ ioSearchInfo2 CInfoPBPtr The masks and upper bounds.
→ ioSearchTime LongInt The maximum allowed search time.
↔ ioCatPosition CatPositionRec The current catalog position.
→ ioOptBuffer Ptr A pointer to optional read buffer.
→ ioOptBufSize LongInt The length of optional read buffer.

C H A P T E R 2

File Manager

2-206

■ AFP volumes do not support both logical and physical fork lengths. If you request a
search using the length of a fork, the actual minimum length used is the smallest of
the values in the logical and physical fields of the ioSearchInfo1 record and the
actual maximum length used is the largest of the values in the logical and physical
fields of the ioSearchInfo2 record.

■ The fsSBNegate bit of the ioSearchBits field is ignored during searches of
remote volumes that support AFP version 2.1.

■ If the AFP server returns afpCatalogChanged, the catalog position record returned
to your application (in the ioCatPosition field) is the same one you passed to
PBCatSearch. You should clear the initialize field of that record to restart the
search from the beginning.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBCatSearch are

RESULT CODES

SEE ALSO

See “Searching a Volume” on page 2-38 for a description of how to use PBCatSearch.

Exchanging the Data in Two Files

The function PBExchangeFiles allows you to exchange the data in two files.

PBExchangeFiles

You can use the PBExchangeFiles function to exchange the data stored in two files on

the same volume.

FUNCTION PBExchangeFiles (paramBlock: HParmBlkPtr;

async: Boolean): OSErr;

Trap macro Selector

_HFSDispatch $0018

noErr 0 No error (entire catalog has not been searched)
nsvErr –35 Volume not found
ioErr –36 I/O error
eofErr –39 Logical end-of-file reached
paramErr –50 Parameters don’t specify an existing volume
extFSErr –58 External file system
wrgVolTypErr –123 Volume is an MFS volume
catChangedErr –1304 Catalog has changed and catalog position record

may be invalid
afpCatalogChange –5037 Catalog has changed and search cannot be resumed

C H A P T E R 2

File Manager

2-207

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBExchangeFiles function swaps the data in two files by changing some of the

information in the volume catalog and, if the files are open, in the file control blocks. The

PBExchangeFiles function uses the file ID parameter block.

You should use PBExchangeFiles to preserve the file ID when updating an existing

file, in case the file is being tracked through its file ID.

Typically, you use PBExchangeFiles after creating a new file during a safe save.

You identify the names and parent directory IDs of the two files to be exchanged in

the fields ioNamePtr, ioDestNamePtr, ioSrcDirID, and ioDestDirID. The

PBExchangeFiles function changes the fields in the catalog entries that record the

location of the data and the modification dates. It swaps both the data forks and the

resource forks.

The PBExchangeFiles function works on either open or closed files. If either file is

open, PBExchangeFiles updates any file control blocks associated with the file.

Exchanging the contents of two files requires essentially the same access privileges as

opening both files for writing.

The PBExchangeFiles function does not require that file ID references exist for the

files being exchanged.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBExchangeFiles are

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
→ ioDestNamePt

r
StringPtr A pointer to the name of the destination file.

→ ioDestDirID LongInt The destination file’s parent directory ID.
→ ioSrcDirID LongInt The source file’s parent directory ID.

Trap macro Selector

_HFSDispatch $0017

C H A P T E R 2

File Manager

2-208

RESULT CODES

Shared Environment Routines

The File Manager provides a number of routines that allow you to control access to files,

directories, and volumes in a shared environment. The routines described in this section

allow you to

■ provide multiple users with read/write access to files

■ lock and unlock portions of files opened with shared read/write permission

■ manipulate share points on local shared volumes

■ get and change the access privileges for directories

■ mount remote volumes

■ control login access

■ access a list of users and groups on the local file server

Before using the routines described in this section, call the PBHGetVolParms

function to see if the volume supports them. (The PBGetVolMountInfoSize,

PBGetVolMountInfo, and PBVolumeMount routines are exceptions: you’ll just

have to make these calls and check the result code.)

Opening Files While Denying Access

The PBHOpenDeny and PBHOpenRFDeny functions control file access modes and enable

applications to implement shared read/write access to files.

PBHOpenDeny

You can use the PBHOpenDeny function to open a file’s data fork using the access

deny modes.

FUNCTION PBHOpenDeny (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

noErr 0 No error
nsvErr –35 Volume not found
ioErr –36 I/O error
fnfErr –43 File not found
fLckdErr –45 File is locked
vLckdErr –46 Volume is locked or read-only
paramErr –50 Function not supported by volume
volOfflinErr –53 Volume is offline
wrgVolTypErr –123 Not an HFS volume
diffVolErr –1303 Files on different volumes
afpAccessDenied –5000 User does not have the correct access
afpObjectTypeErr –5025 Object is a directory, not a file
afpSameObjectErr –5038 Source and destination are the same

C H A P T E R 2

File Manager

2-209

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBHOpenDeny function opens a file’s data fork with specific access rights specified

in the ioDenyModes field. The file reference number is returned in ioRefNum.

The result code opWrErr is returned if you’ve requested write permission and you

have already opened the file for writing; in that case, the existing file reference

number is returned in ioRefNum. You should not use this reference number unless

your application originally opened the file.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBHOpenDeny are

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
← ioRefNum Integer The file reference number.
→ ioDenyModes Integer Access rights data.
→ ioDirID LongInt The directory ID.

Trap macro Selector

_HFSDispatch $0038

noErr 0 No error
tmfoErr –42 Too many files open
fnfErr –43 File not found
fLckdErr –45 File is locked
vLckdErr –46 Volume is locked or read-only
opWrErr –49 File already open for writing
paramErr –50 Function not supported by volume
permErr –54 File is already open and cannot be opened using

specified deny modes
afpAccessDenied –5000 User does not have the correct access to the file
afpDenyConflict –5006 Requested access permission not possible

C H A P T E R 2

File Manager

2-210

PBHOpenRFDeny

You can use the PBHOpenRFDeny function to open a file’s resource fork using the access

deny modes.

FUNCTION PBHOpenRFDeny (paramBlock: HParmBlkPtr;

async: Boolean): OSErr;

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBHOpenRFDeny function opens a file’s resource fork with specific access rights.

The path reference number is returned in ioRefNum.

The result code opWrErr is returned if you’ve requested write permission and you

have already opened the file for writing; in that case, the existing file reference

number is returned in ioRefNum. You should not use this reference number unless

your application originally opened the file.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBHOpenRFDeny are

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
← ioRefNum Integer The file reference number.
→ ioDenyModes Integer Access rights data.
→ ioDirID LongInt The directory ID.

Trap macro Selector

_HFSDispatch $0039

noErr 0 No error
tmfoErr –42 Too many files open
fnfErr –43 File not found
fLckdErr –45 File is locked
vLckdErr –46 Volume is locked or read-only
opWrErr –49 File already open for writing
paramErr –50 Function not supported by volume
permErr –54 File is already open and cannot be opened using

specified deny modes
afpAccessDenied –5000 User does not have the correct access to the file
afpDenyConflict –5006 Requested access permission not possible

C H A P T E R 2

File Manager

2-211

Locking and Unlocking File Ranges

The File Manager provides several low-level routines that allow you to lock and unlock

parts of files. These functions are ineffective when used on local HFS volumes unless

local file sharing is enabled for those volumes.

PBLockRange

You can use the PBLockRange function to lock a portion of a file.

FUNCTION PBLockRange (paramBlock: ParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBLockRange function locks a portion of a file that was opened with shared

read/write permission. The beginning of the range to be locked is determined by the

ioPosMode and ioPosOffset fields. The end of the range to be locked is determined

by the beginning of the range and the ioReqCount field. For example, to lock the

first 50 bytes in a file, set ioReqCount to 50, ioPosMode to fsFromStart, and

ioPosOffset to 0. Set ioReqCount to –1 to lock the maximum number of bytes from

the position specified in ioPosOffset.

The PBLockRange function uses the same parameters as both PBRead and PBWrite; by

calling it immediately before PBRead, you can use the information in the parameter

block for the PBRead call.

When you’re finished with the data (typically after a call to PBWrite), be sure to call

PBUnlockRange to free that portion of the file for subsequent PBRead calls.

SPECIAL CONSIDERATIONS

The PBLockRange function does nothing if the file specified in the ioRefNum field is

open with shared read/write permission but is not located on a remote server volume

or is not located under a share point on a sharable local volume. See “Locking and

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioRefNum Integer A file reference number.
→ ioReqCount LongInt The number of bytes in the range.
→ ioPosMode Integer The positioning mode.
→ ioPosOffset LongInt The positioning offset.

C H A P T E R 2

File Manager

2-212

Unlocking File Ranges” on page 2-50 for a simple way to determine whether calling

PBLockRange on an open file would in fact lock a range of bytes.

▲ W A R N I N G

In system software versions 6.0.7 and earlier, specifying ioPosMode as
fsFromLEOF results in the wrong byte range being locked. ▲

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBLockRange are

RESULT CODES

PBUnlockRange

You can use the PBUnlockRange function to unlock a portion of a file that was

previously locked by a call to PBLockRange.

FUNCTION PBUnlockRange (paramBlock: ParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

Trap macro Selector

_HFSDispatch $0010

noErr 0 No error
ioErr –36 I/O error
fnOpnErr –38 File not open
eofErr –39 Logical end-of-file reached
fLckdErr –45 File is locked by another user
paramErr –50 Negative ioReqCount
rfNumErr –51 Bad reference number
extFSErr –58 External file system
volGoneErr –124 Server volume has been disconnected
afpNoMoreLocks –5015 No more ranges can be locked
afpRangeOverlap –5021 Part of range is already locked

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioRefNum Integer A file reference number.
→ ioReqCount LongInt The number of bytes in the range.
→ ioPosMode Integer The positioning mode.
→ ioPosOffset LongInt The positioning offset.

C H A P T E R 2

File Manager

2-213

DESCRIPTION

The PBUnlockRange function unlocks a portion of a file that you locked with

PBLockRange. You specify the range by filling in the ioReqCount, ioPosMode,

and ioPosOffset fields as described in the preceding discussion of PBLockRange.

The range of bytes to be unlocked must be the exact same range locked by a previous

call to PBLockRange.

If for some reason you need to unlock a range whose beginning or length is unknown,

you can simply close the file. When a file is closed, all locked ranges held by the user

are unlocked.

SPECIAL CONSIDERATIONS

The PBUnlockRange function does nothing if the file specified in the ioRefNum field is

open with shared read/write permission but is not located on a remote server volume or

is not located under a share point on a local volume.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBUnlockRange are

RESULT CODES

Manipulating Share Points

The PBShare and PBUnshare functions allow you to manipulate share points on local

volumes. The PBGetUGEntry function lets you access the list of user and group names

and IDs on the local server.

Trap macro Selector

_HFSDispatch $0011

noErr 0 No error
ioErr –36 I/O error
fnOpnErr –38 File not open
eofErr –39 Logical end-of-file reached
paramErr –50 Negative ioReqCount
rfNumErr –51 Bad reference number
extFSErr –58 External file system
volGoneErr –124 Server volume has been disconnected
afpRangeNotLocked –5020 Specified range was not locked

C H A P T E R 2

File Manager

2-214

PBShare

You can use the PBShare function to establish a local volume or directory as a

share point.

FUNCTION PBShare (paramBlock: HParmBlkPtr; async: Boolean): OSErr;

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBShare function makes the directory specified by the ioNamePtr and ioDirID

fields a share point. If ioNamePtr is NIL, then ioDirID is the directory ID of the

directory that is to become a share point. If ioNamePtr points to a partial pathname,

ioDirID is the parent directory of the directory to be shared. The ioVRefNum field can

contain a volume reference number, a working directory reference number, a drive

number, or 0 for the default volume.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBShare are

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
→ ioDirID LongInt A directory ID.

Trap macro Selector

_HFSDispatch $0042

noErr 0 No error
tmfoErr –42 Too many share points
fnfErr –43 File not found
dupFNErr –48 Already a share point with this name
paramErr –50 Function not supported by volume
dirNFErr –120 Directory not found
afpAccessDenied –5000 This directory cannot be shared
afpObjectTypeErr –5025 Object was a file, not a directory
afpContainsSharedErr –5033 The directory contains a share point
afpInsideSharedErr –5043 The directory is inside a shared directory

C H A P T E R 2

File Manager

2-215

PBUnshare

You can use the PBUnshare function to reverse the effects of PBShare.

FUNCTION PBUnShare (paramBlock: HParmBlkPtr; async: Boolean):

 OSErr;

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBUnshare function makes the share point specified by the ioNamePtr and

ioDirID fields unavailable on the network. If ioNamePtr is NIL, then ioDirID is

the directory ID of the directory that is to become unavailable. If ioNamePtr points

to a partial pathname, ioDirID is the parent directory of the directory to become

unavailable. The ioVRefNum field can contain a volume reference number, a working

directory reference number, a drive number, or 0 for the default volume.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBUnshare are

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
→ ioDirID LongInt A directory ID.

Trap macro Selector

_HFSDispatch $0043

noErr 0 No error
fnfErr –43 File not found
paramErr –50 Function not supported by volume
dirNFErr –120 Directory not found
afpObjectTypeErr –5025 Object was a file, not a directory; or, this directory is

not a share point

C H A P T E R 2

File Manager

2-216

PBGetUGEntry

You can use the PBGetUGEntry function to get a list of user and group entries from the

local file server.

FUNCTION PBGetUGEntry (paramBlock: HParmBlkPtr; async: Boolean):

 OSErr;

paramBlock A pointer to an objParam variant of an HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBGetUGEntry function returns the name and ID of the user or group whose name

is alphabetically next to that of the user or group whose ID is contained in the ioObjID

field. You can enumerate the users or groups in alphabetical order by setting ioObjID to

0 and then repetitively calling PBGetUGEntry with the same parameter block until the

result code fnfErr is returned.

You specify whether you want information about users or groups by setting the

ioObjType field to the desired value. Set ioObjType to 0 to receive the next user

entry; set it to –1 to receive the next group entry.

The user or group name is returned as a Pascal string pointed to by ioObjNamePtr.

The maximum size of the string is 31 characters, preceded by a length byte. If you set

ioObjNamePtr to NIL, no name is returned.

If you set ioObjID to 0, PBGetUGEntry returns information about the user or group

known to the local server whose name is alphabetically first. If the value of ioObjID is

not 0, PBGetUGEntry returns information about the user or group whose name follows

immediately in alphabetical order that of the user or group having that ID.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBGetUGEntry are

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioObjType Integer A function code.
→ ioObjNamePtr Ptr A pointer to the returned user/group name.
↔ ioObjID LongInt A user/group ID.

Trap macro Selector

_HFSDispatch $0044

noErr 0 No error
fnfErr –43 No more users or groups
paramErr –50 Function not supported; or, ioObjID is negative

C H A P T E R 2

File Manager

2-217

Controlling Directory Access

The PBHGetDirAccess and PBHSetDirAccess functions control privileges for

individual directories.

PBHGetDirAccess

You can use the PBHGetDirAccess function to get the access control information for

a directory.

FUNCTION PBHGetDirAccess (paramBlock: HParmBlkPtr;

async: Boolean): OSErr;

paramBlock A pointer to an HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBHGetDirAccess returns access control information for the specified directory.

On output, the ioACOwnerID field contains the ID of the directory’s owner, and the

ioACGroupID field contains the directory’s primary group. The directory’s access rights

are encoded in the ioACAccess field. See “Directory Access Privileges,” beginning on

page 2-18, for a description of the ioACAccess field.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBHGetDirAccess are

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
← ioACOwnerID LongInt The owner ID.
← ioACGroupID LongInt The group ID.
← ioACAccess LongInt The access rights.
→ ioDirID LongInt The directory ID.

Trap macro Selector

_HFSDispatch $0032

noErr 0 No error
fnfErr –43 Directory not found
paramErr –50 Function not supported by volume
afpAccessDenied –5000 User does not have the correct access to the directory

C H A P T E R 2

File Manager

2-218

PBHSetDirAccess

You can use the PBHSetDirAccess function to change the access control information

for a directory.

FUNCTION PBHSetDirAccess (paramBlock: HParmBlkPtr;

async: Boolean): OSErr;

paramBlock A pointer to an HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBHSetDirAccess function allows you to change the access rights to the specified

directory. The ioACAccess field contains the directory’s access rights. You cannot set

the owner or user rights bits of the ioACAccess field directly (if you try to do this,

PBHSetDirAccess returns the result code paramErr). See “Directory Access

Privileges,” beginning on page 2-18, for a description of the ioACAccess field.

To change the owner or group, you should set the ioACOwnerID or ioACGroupID field

to the appropriate ID. You must be the owner of the directory to change the owner or

group ID. A guest on a server can manipulate the privileges of any directory owned by

the guest.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBHSetDirAccess are

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
→ ioACOwnerID LongInt The owner ID.
→ ioACGroupID LongInt The group ID.
→ ioACAccess LongInt The access rights.
→ ioDirID LongInt The directory ID.

Trap macro Selector

_HFSDispatch $0033

noErr 0 No error
fnfErr –43 Directory not found
vLckdErr –46 Volume is locked or read-only
paramErr –50 Parameter error
afpAccessDenied –5000 User does not have the correct access to the directory
afpObjectTypeErr –5025 Object is a file, not a directory

C H A P T E R 2

File Manager

2-219

Mounting Volumes

The File Manager provides three functions that allow your application to record the

mounting information for a volume and then to mount the volume later. The program-

matic mounting functions store the mounting information in a structure called the

AFPVolMountInfo record. The programmatic mounting functions use the ioParam

variant of the ParamBlockRec record.

In general, it is easier to mount remote volumes by creating and then resolving alias

records that describe those volumes. The Alias Manager displays the standard user

interface for user authentication when resolving alias records for remote volumes. As

a result, the routines described in this section are primarily of interest for applications

that need to mount remote volumes with no user interface or with some custom

user interface.

Note

All the functions described in this section execute synchronously. You
should not call them at interrupt time. ◆

PBGetVolMountInfoSize

You use the PBGetVolMountInfoSize function to determine how much space to

allocate for a volume mounting information record.

FUNCTION PBGetVolMountInfoSize (paramBlock: ParmBlkPtr): OSErr;

paramBlock A pointer to a basic File Manager parameter block.

Parameter block

DESCRIPTION

For a specified volume, the PBGetVolMountInfoSize function provides the size

of the record needed to hold the volume’s mounting information. The ioBuffer

field is a pointer to the size information, which is of type Integer (2 bytes). If

PBGetVolMountInfoSize returns noErr, that integer contains the size of the

volume mounting information record.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBGetVolMountInfoSize are

→ ioCompletion LongInt A pointer to a completion routine.
← ioResult OSErr The function’s result code.
→ ioVRefNum Integer A volume specification.
→ ioBuffer LongInt A pointer to storage for size.

Trap macro Selector

_HFSDispatch $003F

C H A P T E R 2

File Manager

2-220

RESULT CODES

PBGetVolMountInfo

After ascertaining the size of the record needed and allocating storage, you can use the

PBGetVolMountInfo function to retrieve a record containing all the information

needed to mount the volume, except for passwords. You can later pass this record to the

PBVolumeMount function to mount the volume.

FUNCTION PBGetVolMountInfo (paramBlock: ParmBlkPtr): OSErr;

paramBlock A pointer to a basic File Manager parameter block.

Parameter block

DESCRIPTION

The PBGetVolMountInfo function places the mounting information for a specified

volume into the buffer pointed to by the ioBuffer field. The mounting information for

an AppleShare volume is stored as an AFP mounting record. The length of the buffer is

specified by the value pointed to by the ioBuffer field in a previous call to

PBGetVolMountInfoSize.

The PBGetVolMountInfo function does not return the user password or volume

password in the AFPVolMountInfo record. Your application should solicit

these passwords from the user and fill in the record before attempting to mount the

remote volume.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBGetVolMountInfo are

noErr 0 No error
nsvErr –35 Volume not found
paramErr –50 Parameter error
extFSErr –58 External file system error; typically, function

is not available for that volume

→ ioCompletion LongInt A pointer to a completion routine.
← ioResult OSErr The function’s result code.
→ ioVRefNum Integer A volume specification.
→ ioBuffer LongInt A pointer to mounting information.

Trap macro Selector

_HFSDispatch $0040

C H A P T E R 2

File Manager

2-221

RESULT CODES

PBVolumeMount

You can use the PBVolumeMount function to mount a volume, using either the

information returned by the PBGetVolMountInfo function or a structure filled in by

your application.

FUNCTION PBVolumeMount (paramBlock: ParmBlkPtr): OSErr;

paramBlock A pointer to a basic File Manager parameter block.

Parameter block

DESCRIPTION

The PBVolumeMount function mounts a volume and returns its volume reference

number. If you’re mounting an AppleShare volume, place the volume’s AFP mounting

information record in the buffer pointed to by the ioBuffer field.

The PBGetVolMountInfo function does not return the user and volume passwords;

they’re returned blank. Typically, your application asks the user for any necessary

passwords and fills in those fields just before calling PBVolumeMount. If you want to

mount a volume with guest status, pass an empty string as the user password.

If you have enough information about the volume, you can fill in the mounting record

yourself and call PBVolumeMount, even if you did not save the mounting information

while the volume was mounted. To mount an AFP volume, you must fill in the record

with at least the zone name, server name, user name, user password, and volume

password. You can lay out the fields in any order within the data field, as long as you

specify the correct offsets.

SPECIAL CONSIDERATIONS

The File Sharing workstation software introduced in system software version 7.0 does

not currently pass the volume password. The AppleShare 3.0 workstation software does,

however, pass the volume password.

noErr 0 No error
nsvErr –35 Volume not found
paramErr –50 Parameter error
extFSErr –58 External file system error; typically, function is not

available for that volume

→ ioCompletion LongInt A pointer to a completion routine.
← ioResult OSErr The function’s result code.
← ioVRefNum Integer A volume reference number.
→ ioBuffer LongInt A pointer to mounting information.

C H A P T E R 2

File Manager

2-222

AFP volumes currently ignore the user authentication method passed in the uamType

field of the volume mounting information record whose address is passed in ioBuffer.

The most secure available method is used by default, except when a user mounts the

volume as <Guest> and uses the kNoUserAuthentication authentication method.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBVolumeMount are

RESULT CODES

Controlling Login Access

You can use the functions PBHGetLogInInfo, PBHMapID, and PBHMapName to

get information about the login method and the recognized users and groups on a

particular machine.

Trap macro Selector

_HFSDispatch $0041

noErr 0 No error
notOpenErr –28 AppleTalk is not open
nsvErr –35 Volume not found
paramErr –50 Parameter error; typically, zone, server, and

volume name combination is not valid or not
complete, or the user name is not recognized

extFSErr –58 External file system error; typically, file system
signature was not recognized, or function is
not available for that volume

memFullErr –108 Not enough memory to create a new volume
control block for mounting the volume

afpBadUAM –5002 User authentication method is unknown
afpBadVersNum –5003 Workstation is using an AFP version that the

server doesn’t recognize
afpNoServer –5016 Server is not responding
afpUserNotAuth –5023 User authentication failed (usually, password

is not correct)
afpPwdExpired –5042 Password has expired on server
afpBadDirIDType –5060 Not a fixed directory ID volume
afpCantMountMoreSrvrs –5061 Maximum number of volumes has

been mounted
afpAlreadyMounted –5062 Volume already mounted
afpSameNodeErr –5063 Attempt to log on to a server running on the

same machine

C H A P T E R 2

File Manager

2-223

PBHGetLogInInfo

You can use the PBHGetLogInInfo function to determine the login method used to log

on to a particular shared volume.

FUNCTION PBHGetLogInInfo (paramBlock: HParmBlkPtr;

async: Boolean): OSErr;

paramBlock A pointer to an objParam variant of the HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBHGetLogInInfo function returns the method used for login and the user name

specified at login time for the volume specified by the ioVRefNum field. The login user

name is returned as a Pascal string in ioObjNamePtr. The maximum size of the user

name is 31 characters. The login method type is returned in the ioObjType field. These

values are recognized.

CONST

kNoUserAuthentication = 1; {no password}

kPassword = 2; {8-byte password}

kEncryptPassword = 3; {encrypted 8-byte password}

kTwoWayEncryptPassword = 6; {two-way random encryption}

Values in the range 7–127 are reserved for future use by Apple Computer, Inc. Values in

the range 128–255 are available to your application as user-defined values.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBHGetLogInInfo are

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioVRefNum Integer The volume specification.
← ioObjType Integer The login method.
← ioObjNamePtr Ptr A pointer to the user name.

Trap macro Selector

_HFSDispatch $0031

noErr 0 No error
nsvErr –35 Specified volume doesn’t exist
paramErr –50 Function not supported by volume

C H A P T E R 2

File Manager

2-224

PBHMapID

You can use the PBHMapID function to determine the name of a user or group if you

know the user or group ID.

FUNCTION PBHMapID (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to an objParam variant of the HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBHMapID function returns the name of a user or group given its unique ID. The

ioObjID field contains the ID to be mapped. (AppleShare uses the value 0 to signify

<Any User>.) The ioObjType field is the mapping function code; its value is 1 if you’re

mapping a user ID to a user name or 2 if you’re mapping a group ID to a group name.

The name is returned in ioObjNamePtr; the maximum size of the name is 31 characters

(preceded by a length byte).

Because user and group IDs are interchangeable under AFP 2.1 and later volumes, you

might not need to specify a value in the ioObjType field.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBHMapID are

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
→ ioObjType Integer The login method.
← ioObjNamePtr Ptr A pointer to the user/group name.
→ ioObjID LongInt The user/group ID.

Trap macro Selector

_HFSDispatch $0034

noErr 0 No error
fnfErr –43 Unrecognizable owner or group name
paramErr –50 Function not supported by volume

C H A P T E R 2

File Manager

2-225

PBHMapName

You can use the PBHMapName function to determine the user ID or group ID from a user

or group name.

FUNCTION PBHMapName (paramBlock: HParmBlkPtr; async: Boolean):

 OSErr;

paramBlock A pointer to an objParam variant of the HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

Given a name, the PBHMapName function returns the corresponding unique user ID

or group ID. The name is passed as a string in ioObjNamePtr. If NIL is passed, the ID

returned is always 0. The maximum size of the name is 31 characters. The ioObjType

field is the mapping function code; its value is 3 if you’re mapping a user name to a user

ID or 4 if you’re mapping a group name to a group ID. On exit, ioObjID contains the

mapped ID.

Because user and group IDs are interchangeable under AFP 2.1 and later volumes, you

might need to set the ioObjType field to determine which database (user or group) to

search first. If both a user and a group have the same name, this field determines which

kind of ID you receive.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBHMapName are

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
→ ioObjType Integer The login method.
→ ioObjNamePtr Ptr A pointer to the user/group name.
← ioObjID LongInt The user/group ID.

Trap macro Selector

_HFSDispatch $0035

noErr 0 No error
fnfErr –43 Unrecognizable owner or group name
paramErr –50 Function not supported by volume

C H A P T E R 2

File Manager

2-226

Copying and Moving Files

The File Manager provides two shared environment routines—PBHCopyFile and

PBHMoveRename—that allow you to copy and move files. These routines are especially

useful when you want to copy or move files located on a remote volume, because they

allow you to forgo transmitting large amounts of data across a network. These routines

are used internally by the Finder; most applications do not need to use them.

If you do want to use PBHCopyFile or PBHMoveRename, you should first call

PBHGetVolParms to see whether the target volume supports these routines.

PBHCopyFile

You can use the PBHCopyFile function to duplicate a file and optionally to rename it.

FUNCTION PBHCopyFile (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a copyParam variant of the HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBHCopyFile function duplicates a file on the specified volume and optionally

renames it. It is an optional call for AppleShare file servers. Your application should

examine the information returned by the PBHGetVolParms function to see if the

volume supports PBHCopyFile.

For AppleShare file servers, the source and destination pathnames must indicate the

same file server; however, the parameter block may specify different source and

destination volumes on that file server. A useful way to tell if two file server volumes are

on the same file server is to call the PBHGetVolParms function for each volume and

compare the server addresses returned. The server opens source files with read/deny

write enabled and destination files with write/deny read and write enabled.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
→ ioDstVRefNum Integer Destination volume identifier.
→ ioNewName Ptr A pointer to the destination

pathname (may be NIL).
→ ioCopyName Ptr A pointer to the file’s new name

(may be NIL).
→ ioNewDirID LongInt The destination directory ID.
→ ioDirID LongInt The source directory ID.

C H A P T E R 2

File Manager

2-227

You specify the source file with the ioVRefNum, ioDirID, and ioNamePtr fields. You

specify the destination directory with the ioDstVRefNum, ioNewDirID, and

ioNewName fields. If ioNewName is NIL, the destination directory is the directory

having ID ioNewDirID on the specified volume; if ioNewName is not NIL, the

destination directory is the directory having the partial pathname pointed to by

ioNewName in the directory having ID ioNewDirID on the specified volume.

The ioCopyName field may contain a pointer to an optional string to be used in copying

the file; if it is not NIL, the file copy is renamed to the name specified in ioCopyName.

The string pointed to by ioCopyName must be a filename, not a partial pathname.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBHCopyFile are

RESULT CODES

PBHMoveRename

You can use the PBHMoveRename function to move a file or directory and optionally to

rename it.

FUNCTION PBHMoveRename (paramBlock: HParmBlkPtr;

async: Boolean): OSErr;

paramBlock A pointer to a copyParam variant of the HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Trap macro Selector

_HFSDispatch $0036

noErr 0 No error
dskFulErr –34 Destination volume is full
fnfErr –43 Source file not found, or destination directory does

not exist
vLckdErr –46 Destination volume is read-only
fBsyErr –47 The source or destination file could not be opened

with the correct access modes
dupFNErr –48 Destination file already exists
paramErr –50 Function not supported by volume
wrgVolTypErr –123 Function not supported by volume
afpAccessDenied –5000 The user does not have the right to read the source or

write to the destination
afpDenyConflict –5006 The source or destination file could not be opened

with the correct access modes
afpObjectTypeErr –5025 Source is a directory

C H A P T E R 2

File Manager

2-228

Parameter block

DESCRIPTION

The PBHMoveRename function allows you to move (not copy) a file or directory and

optionally to rename it. The source and destination pathnames must point to the same

file server volume.

You specify the source file or directory with the ioVRefNum, ioDirID, and ioNamePtr

fields. You specify the destination directory with the ioNewDirID and ioNewName

fields. If ioNewName is NIL, the destination directory is the directory having ID

ioNewDirID on the specified volume; if ioNewName is not NIL, the destination

directory is the directory having the partial pathname pointed to by ioNewName in

the directory having ID ioNewDirID on the specified volume.

The ioCopyName field may contain a pointer to an optional string to be used in copying

the file or directory; if it is not NIL, the moved object is renamed to the name specified

in ioCopyName. The string pointed to by ioCopyName must be a filename, not a

partial pathname.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBHMoveRename are

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
→ ioNewName Ptr A pointer to the destination

pathname (may be NIL).
→ ioCopyName Ptr A pointer to the file’s new name

(may be NIL).
→ ioNewDirID LongInt The destination directory ID.
→ ioDirID LongInt The source directory ID.

Trap macro Selector

_HFSDispatch $0037

noErr 0 No error
fnfErr –43 Source file or directory not found
fLckdErr –45 File is locked
vLckdErr –46 Destination volume is read-only
dupFNErr –48 Destination already exists
paramErr –50 Function not supported by volume
badMovErr –122 Attempted to move directory into offspring
afpAccessDenied –5000 The user does not have the right to move the file

or directory

C H A P T E R 2

File Manager

2-229

File ID Routines

The File Manager provides several routines that allow you to track files using file IDs.

These routines use the fidParam variant of the HFS parameter block.

Note

Most applications do not need to use these routines. In general you
should track files using alias records, as described in the chapter “Alias
Manager” in this book. The Alias Manager uses file IDs internally as
part of its search algorithms for finding the target of an alias record. ◆

Resolving File ID References

You can find the target of a file ID reference by calling the PBResolveFileIDRef

function.

PBResolveFileIDRef

You can use the PBResolveFileIDRef function to retrieve the filename and parent

directory ID of the file with a specified file ID.

FUNCTION PBResolveFileIDRef (paramBlock: HParmBlkPtr;

async: Boolean): OSErr;

paramBlock A pointer to an fidParam variant of the HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBResolveFileIDRef function returns the filename and parent directory ID of the

file referred to by file ID in the ioFileID field. It places the filename in the string

pointed to by the ioNamePtr field and the parent directory ID in the ioSrcDirID field.

If the name string is NIL, PBResolveFileIDRef returns only the parent directory ID.

If the name string is not NIL but is only a volume name, PBResolveFileIDRef ignores

the value in the ioVRefNum field, uses the volume name instead, and overwrites the

name string with the filename. A return code of fidNotFoundErr means that the

specified file ID reference has become invalid, either because the file was deleted or

because the file ID reference was destroyed by PBDeleteFileIDRef.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
↔ ioNamePtr StringPtr A pointer to a filename.
→ ioVRefNum Integer A volume specification.
← ioSrcDirID LongInt The file’s parent directory ID.
→ ioFileID LongInt A file ID.

C H A P T E R 2

File Manager

2-230

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBResolveFileIDRef are

RESULT CODES

Creating and Deleting File ID References

You can create and delete file ID references using the functions PBCreateFileIDRef

and PBDeleteFileIDRef.

Note

Most applications should not directly create or delete file ID references. ◆

PBCreateFileIDRef

Use the PBCreateFileIDRef function to establish a file ID reference for a file.

FUNCTION PBCreateFileIDRef (paramBlock: HParmBlkPtr;

async: Boolean): OSErr;

paramBlock A pointer to an fidParam variant of the HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

Trap macro Selector

_HFSDispatch $0016

noErr 0 No error
nsvErr –35 Volume not found
ioErr –36 I/O error
fnfErr –43 File not found
paramErr –50 Function not supported by volume
volOfflinErr –53 Volume is offline
extFSErr –58 External file system
wrgVolTypErr –123 Not an HFS volume
fidNotFoundErr –1300 File ID not found
notAFileErr –1302 Specified file is a directory
afpAccessDenied –5000 User does not have the correct access
afpObjectTypeErr –5025 Specified file is a directory
afpIDNotFound –5034 File ID not found
afpBadIDErr –5039 File ID not found

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a filename.
→ ioVRefNum Integer A volume specification.
→ ioSrcDirID LongInt The file’s parent directory ID.
← ioFileID LongInt A file ID.

C H A P T E R 2

File Manager

2-231

DESCRIPTION

Given a volume reference number, filename, and parent directory ID, the

PBCreateFileIDRef function creates a record to hold the name and parent directory

ID of the specified file. PBCreateFileIDRef places the file ID in the ioFileID field.

If a file ID reference already exists for the file, PBCreateFileIDRef supplies the file

ID but returns the result code fidExists.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBCreateFileIDRef are

RESULT CODES

PBDeleteFileIDRef

You can use the PBDeleteFileIDRef function to delete a file ID reference.

FUNCTION PBDeleteFileIDRef (paramBlock: HParmBlkPtr;

async: Boolean): OSErr;

paramBlock A pointer to an fidParam variant of the HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

Trap macro Selector

_HFSDispatch $0014

noErr 0 No error
nsvErr –35 Volume not found
ioErr –36 I/O error
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
vLckdErr –46 Software volume lock
paramErr –50 Function not supported by volume
volOfflinErr –53 Volume is offline
extFSErr –58 External file system
wrgVolTypErr –123 Not an HFS volume
fidExists –1301 File ID already exists
notAFileErr –1302 Specified file is a directory
afpAccessDenied –5000 User does not have the correct access
afpObjectTypeErr –5025 Specified file is a directory
afpIDExists –5035 File ID already exists

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a filename.
→ ioVRefNum Integer A volume specification.
→ ioFileID LongInt A file ID.

C H A P T E R 2

File Manager

2-232

DESCRIPTION

The PBDeleteFileIDRef function invalidates the specified file ID reference on the

volume specified by ioVRefNum or ioNamePtr. After it has invalidated a file ID

reference, the File Manager can no longer resolve that ID reference to a filename and

parent directory ID.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBDeleteFileIDRef are

RESULT CODES

Foreign File System Routines

The File Manager provides several routines that allow you to obtain and set privilege

information on foreign file systems. The PBGetForeignPrivs and PBSetForeignPrivs

functions allow your application or shell program to communicate with a foreign file

system about its native access-control system. These functions retrieve and set access

permissions on the foreign file system, using a foreignPrivParam variant of the HFS

parameter block.

PBGetForeignPrivs

You can use the PBGetForeignPrivs function to determine the native access-control

information for a file or directory stored on a volume managed by a foreign file system.

FUNCTION PBGetForeignPrivs (paramBlock: HParmBlkPtr;

async: Boolean): OSErr;

Trap macro Selector

_HFSDispatch $0015

noErr 0 No error
nsvErr –35 Volume not found
ioErr –36 I/O error
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
vLckdErr –46 Software volume lock
paramErr –50 Function not supported by volume
volOfflinErr –53 Volume is offline
extFSErr –58 External file system
wrgVolTypErr –123 Function is not supported by volume
fidNotFoundErr –1300 File ID not found
afpAccessDenied –5000 User does not have the correct access
afpObjectTypeErr –5025 Specified file is a directory
afpIDNotFound –5034 File ID not found

C H A P T E R 2

File Manager

2-233

paramBlock A pointer to a foreignPrivParam variant of the HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBGetForeignPrivs function retrieves access information for a file or directory

on a volume managed by a file system that uses a privilege model different from the AFP

model. See “Privilege Information in Foreign File Systems” on page 2-20 for a more

complete explanation of access-control privileges.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBGetForeignPrivs are

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a file or

directory name.
← ioVRefNum Integer A volume specification.
← ioForeignPrivBuffer Ptr A pointer to the privilege

information buffer.
→ ioForeignPrivReqCount LongInt The size allocated for the buffer.
← ioForeignPrivActCount LongInt The amount used in buffer.
→ ioForeignPrivDirID Integer The parent directory ID.
← ioForeignPrivInfo1 LongInt Information specific to

privilege model.
← ioForeignPrivInfo2 LongInt Information specific to

privilege model.
← ioForeignPrivInfo3 LongInt Information specific to

privilege model.
← ioForeignPrivInfo4 LongInt Information specific to

privilege model.

Trap macro Selector

_HFSDispatch $0060

noErr 0 No error
nsvErr –35 Volume not found
paramErr –50 Volume is HFS or MFS (that is, it has no foreign

privilege model), or foreign volume does not
support these calls

C H A P T E R 2

File Manager

2-234

PBSetForeignPrivs

You can use the PBSetForeignPrivs function to change the native access-control

information for a file or directory stored on a volume managed by a foreign file system.

FUNCTION PBSetForeignPrivs (paramBlock: HParmBlkPtr;

async: Boolean): OSErr;

paramBlock A pointer to a foreignPrivParam variant of the HFS
parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBSetForeignPrivs function modifies access information for a file or directory

on a volume managed by a file system that uses a privilege model different from the

AFP model.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBSetForeignPrivs are

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a file or directory name.
→ ioVRefNum Integer A volume specification.
→ ioForeignPrivBuffer Ptr A pointer to the privilege

information buffer.
→ ioForeignPrivReqCount LongInt The size allocated for the buffer.
→ ioForeignPrivActCount LongInt The amount used in buffer.
→ ioForeignPrivDirID Integer The parent directory ID.
→ ioForeignPrivInfo1 LongInt Information specific to

privilege model.
→ ioForeignPrivInfo2 LongInt Information specific to

privilege model.
→ ioForeignPrivInfo3 LongInt Information specific to

privilege model.
→ ioForeignPrivInfo4 LongInt Information specific to

privilege model.

Trap macro Selector

_HFSDispatch $0061

noErr 0 No error
nsvErr –35 Volume not found
paramErr –50 Volume is HFS or MFS (that is, it has no foreign

privilege model), or foreign volume does not
support these calls

C H A P T E R 2

File Manager

2-235

Utility Routines

The File Manager provides several utility routines that allow you to obtain information

about File Manager queues and file control blocks. These routines insulate your

application from the need to know about the data structures maintained internally by

the File Manager. Most applications do not need to use these routines.

Obtaining Queue Headers

You can use the functions GetFSQHdr, GetVCBQHdr, and GetDrvQHdr to obtain a

pointer to the header of the file I/O queue, the VCB queue, and the drive queue,

respectively. See the chapter “Queue Utilities” in Inside Macintosh: Operating System
Utilities for a description of queues and the format of a queue header.

GetFSQHdr

You can use the GetFSQHdr function to get a pointer to the header of the file I/O queue.

FUNCTION GetFSQHdr: QHdrPtr;

DESCRIPTION

The GetFSQHdr function returns a pointer to the header of the file I/O queue.

ASSEMBLY-LANGUAGE INFORMATION

The global variable FSQHdr contains the header of the file I/O queue.

GetVCBQHdr

You can use the GetVCBQHdr function to get a pointer to the header of the VCB queue.

FUNCTION GetVCBQHdr: QHdrPtr;

DESCRIPTION

The GetVCBQHdr function returns a pointer to the header of the VCB queue.

ASSEMBLY-LANGUAGE INFORMATION

The global variable VCBQHdr contains the header of the VCB queue. The default

volume’s VCB is pointed to by the global variable DefVCBPtr.

C H A P T E R 2

File Manager

2-236

GetDrvQHdr

You can use the GetDrvQHdr function to get a pointer to the header of the drive queue.

FUNCTION GetDrvQHdr: QHdrPtr;

DESCRIPTION

The GetDrvQHdr function returns a pointer to the header of the drive queue.

ASSEMBLY-LANGUAGE INFORMATION

The global variable DrvQHdr contains the header of the drive queue.

Adding a Drive

The AddDrive procedure allows you to add a drive.

AddDrive

You can use the AddDrive procedure to add a drive to the system.

PROCEDURE AddDrive (drvrRefNum: Integer; drvNum: Integer;

qEl: DrvQElPtr);

drvrRefNum A driver reference number.

drvNum A drive number.

qEl A pointer to a drive queue element.

DESCRIPTION

The AddDrive procedure adds a disk drive having the specified driver reference

number and drive number to the system. The File Manager expands the drive queue

by adding a copy of the queue element pointed to by the qEl parameter to the end

of the existing queue.

Obtaining File Control Block Information

You can get information from the file control block (FCB) allocated for an open file by

calling the function PBGetFCBInfo.

C H A P T E R 2

File Manager

2-237

PBGetFCBInfo

You can use PBGetFCBInfo to get information about an open file.

FUNCTION PBGetFCBInfo (paramBlock: FCBPBPtr; async: Boolean):

OSErr;

paramBlock A pointer to a file control block parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBGetFCBInfo function returns information about the specified open file. If the

value of ioFCBIndx is positive, the File Manager returns information about the file

whose index in the FCB buffer is ioFCBIndx and that is located on the volume specified

by ioVRefNum (which may contain a drive number, volume reference number, or

working directory reference number). If the value of ioVRefNum is 0, all open files are

indexed; otherwise, only open files on the specified volume are indexed.

If the value of ioFCBIndx is 0, the File Manager returns information about the file

whose file reference number is specified by the ioRefNum field. If the value of

ioFCBIndx is positive, the ioRefNum field is ignored on input and contains the file

reference number on output.

If PBGetFCBInfo executes successfully, the ioNamePtr field contains the name of the

specified open file. You should pass a pointer to a Str31 value if you want that name

returned. If you pass NIL in the ioNamePtr field, no filename is returned.

The ioFCBFlags field returns status information about the specified open file. See

“File Control Block Parameter Blocks” beginning on page 2-107 for a description of

the meaning of the bits in this field.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
↔ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
↔ ioRefNum Integer The file reference number.
→ ioFCBIndx Integer An index.
← ioFCBFlNm LongInt The file ID.
← ioFCBFlags Integer File status flags.
← ioFCBStBlk Integer The first allocation block of the file.
← ioFCBEOF LongInt The logical end-of-file.
← ioFCBPLen LongInt The physical end-of-file.
← ioFCBCrPs LongInt The position of the file mark.
← ioFCBVRefNum Integer The volume reference number.
← ioFCBClpSiz LongInt The file clump size.
← ioFCBParID LongInt The parent directory ID.

C H A P T E R 2

File Manager

2-238

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBGetFCBInfo are

RESULT CODES

Application-Defined Routines

This section describes the application-defined routines whose addresses you pass to

some of the File Manager routines. You can define a routine that is called after the

completion of an asynchronous call.

Completion Routines

Most low-level File Manager routines can be executed either synchronously (that

is, the application can’t continue until the routine is completed) or asynchronously

(that is, the application is free to perform other tasks while the routine is executing).

Some routines, however, can only be executed synchronously because they use the

Memory Manager to allocate and release memory.

When you execute a routine asynchronously, you can specify a completion routine that

the File Manager executes after the completion of the call.

MyCompletionProc

A File Manager completion routine has the following syntax:

PROCEDURE MyCompletionProc;

DESCRIPTION

When you execute a File Manager routine asynchronously (by setting its async

parameter to TRUE), you can specify a completion routine by passing the routine’s

address in the ioCompletion field of the parameter block passed to the routine.

Because you requested asynchronous execution, the File Manager places an I/O request

in the file I/O queue and returns control to your application—possibly even before the

actual I/O operation is completed. The File Manager takes requests from the queue one

at a time and processes them; meanwhile, your application is free to do other processing.

Trap macro Selector

_HFSDispatch $0008

noErr 0 No error
nsvErr –35 Specified volume doesn’t exist
fnOpnErr –38 File not open
rfNumErr –51 Reference number specifies nonexistent access path

C H A P T E R 2

File Manager

2-239

A routine executed asynchronously returns control to your application with the result

code noErr as soon as the call is placed in the file I/O queue. This result code does not

indicate that the call has successfully completed, but simply indicates that the call was

successfully placed in the queue. To determine when the call is actually completed, you

can inspect the ioResult field of the parameter block. This field is set to a positive

number when the call is made and set to the actual result code when the call is

completed. If you specify a completion routine, it is executed after the result code is

placed in ioResult.

ASSEMBLY-LANGUAGE INFORMATION

When your completion routine is called, register A0 contains a pointer to the parameter

block of the asynchronous call, and register D0 contains the result code. The value in

register D0 is always identical to the value in the ioResult field of the parameter block.

A completion routine must preserve all registers other than A0, A1, and D0–D2.

SPECIAL CONSIDERATIONS

Because a completion routine is executed at interrupt time, it should not allocate, move,

or purge memory (either directly or indirectly) and should not depend on the validity of

handles to unlocked blocks.

If your completion routine uses application global variables, it must also ensure that

register A5 contains the address of the boundary between your application global

variables and your application parameters. For details, see the discussion of the

functions SetCurrentA5 and SetA5 in the chapter “Memory Management Utilities”

in Inside Macintosh: Memory.

SEE ALSO

For a more complete discussion of interrupt-level processing and its limitations, see the

chapter “Introduction to Processes and Tasks” in Inside Macintosh: Processes.

C H A P T E R 2

File Manager

2-240 Summary of the File Manager

Summary of the File Manager

Pascal Summary

Constants

CONST

{Gestalt constants}

gestaltFSAttr = 'fs '; {file system attributes selector}

gestaltFullExtFSDispatching= 0; {exports HFSDispatch traps}

gestaltHasFSSpecCalls = 1; {supports FSSpec records}

{directory IDs}

fsRtParID = 1; {directory ID of root directory's parent}

fsRtDirID = 2; {directory ID of volume's root directory}

{access modes for opening files}

fsCurPerm = 0; {whatever permission is allowed}

fsRdPerm = 1; {read permission}

fsWrPerm = 2; {write permission}

fsRdWrPerm = 3; {exclusive read/write permission}

fsRdWrShPerm = 4; {shared read/write permission}

{file mark positioning modes}

fsAtMark = 0; {at current mark}

fsFromStart = 1; {set mark relative to beginning of file}

fsFromLEOF = 2; {set mark relative to logical end-of-file}

fsFromMark = 3; {set mark relative to current mark}

rdVerify = 64; {add to above for read-verify}

{values for ioSearchBits in PBCatSearch parameter block}

fsSBPartialName = 1; {substring of name}

fsSBFullName = 2; {full name}

fsSBFlAttrib = 4; {directory flag; software lock flag}

fsSBNegate = 16384; {reverse match status}

{for files only}

fsSBFlFndrInfo = 8; {Finder file info}

fsSBFlLgLen = 32; {logical length of data fork}

fsSBFlPyLen = 64; {physical length of data fork}

C H A P T E R 2

File Manager

Summary of the File Manager 2-241

fsSBFlRLgLen = 128; {logical length of resource fork}

fsSBFlRPyLen = 256; {physical length of resource fork}

fsSBFlCrDat = 512; {file creation date}

fsSBFlMdDat = 1024; {file modification date}

fsSBFlBkDat = 2048; {file backup date}

fsSBFlXFndrInfo = 4096; {more Finder file info}

fsSBFlParID = 8192; {file's parent ID}

{for directories only}

fsSBDrUsrWds = 8; {Finder directory info}

fsSBDrNmFls = 16; {number of files in directory}

fsSBDrCrDat = 512; {directory creation date}

fsSBDrMdDat = 1024; {directory modification date}

fsSBDrBkDat = 2048; {directory backup date}

fsSBDrFndrInfo = 4096; {more Finder directory info}

fsSBDrParID = 8192; {directory's parent ID}

{value of vMForeignPrivID in file attributes buffer}

fsUnixPriv = 1; {A/UX privilege model}

{bit positions in vMAttrib field of GetVolParmsInfoBuffer}

bHasBlankAccessPrivileges

= 4; {volume supports inherited privileges}

bHasBTreeMgr = 5; {reserved}

bHasFileIDs = 6; {volume supports file ID functions}

bHasCatSearch = 7; {volume supports PBCatSearch}

bHasUserGroupList = 8; {volume supports AFP privileges}

bHasPersonalAccessPrivileges

= 9; {local file sharing is enabled}

bHasFolderLock = 10; {volume supports locking of folders}

bHasShortName = 11; {volume supports AFP short names}

bHasDesktopMgr = 12; {volume supports Desktop Manager}

bHasMoveRename = 13; {volume supports _MoveRename}

bHasCopyFile = 14; {volume supports _CopyFile}

bHasOpenDeny = 15; {volume supports shared access modes}

bHasExtFSVol = 16; {volume is external file system volume}

bNoSysDir = 17; {volume has no system directory}

bAccessCntl = 18; {volume supports AFP access control}

bNoBootBlks = 19; {volume is not a startup volume}

bNoDeskItems = 20; {do not place objects on the desktop}

bNoSwitchTo = 25; {do not switch launch to applications}

bTrshOffLine = 26; {zoom volume when it is unmounted}

bNoLclSync = 27; {don't let Finder change mod. date}

bNoVNEdit = 28; {lock volume name}

C H A P T E R 2

File Manager

2-242 Summary of the File Manager

bNoMiniFndr = 29; {reserved; always 1}

bLocalWList = 30; {use shared volume handle for window list}

bLimitFCBs = 31; {limit file control blocks}

{media type in remote mounting information}

AppleShareMediaType

= 'afpm'; {an AppleShare volume}

{user authentication methods in AFP remote mounting information}

kNoUserAuthentication = 1; {guest status; no password needed}

kPassword = 2; {8-byte password}

kEncryptPassword = 3; {encrypted 8-byte password}

kTwoWayEncryptPassword = 6; {two-way random encryption; }

{ authenticate both user and server}

Data Types

File System Specification Record

TYPE

FSSpec = {file system specification}

RECORD

vRefNum: Integer; {volume reference number}

parID: LongInt; {directory ID of parent directory}

name: Str63; {filename or directory name}

END;

FSSpecPtr = ^FSSpec;

FSSpecHandle = ^FSSpecPtr;

FSSpecArray = ARRAY[0..0] OF FSSpec;

FSSpecArrayPtr = ^FSSpecArray;

FSSpecArrayHandle = ^FSSpecArrayPtr;

File and Directory Parameter Blocks

TYPE

ParamBlkType = (ioParam, fileParam, volumeParam, cntrlParam,

slotDevParam, multiDevParam, accessParam,

objParam, copyParam, wdParam, fidParam, csParam,

foreignPrivsParam);

C H A P T E R 2

File Manager

Summary of the File Manager 2-243

ParmBlkPtr = ^ParamBlockRec;

ParamBlockRec = {basic File Manager parameter block}

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

ioTrap: Integer; {routine trap}

ioCmdAddr: Ptr; {routine address}

ioCompletion: ProcPtr; {pointer to completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {pointer to pathname}

ioVRefNum: Integer; {volume specification}

CASE ParamBlkType OF

ioParam:

 (ioRefNum: Integer; {file reference number}

ioVersNum: SignedByte; {version number}

ioPermssn: SignedByte; {read/write permission}

ioMisc: Ptr; {miscellaneous}

ioBuffer: Ptr; {data buffer}

ioReqCount: LongInt; {requested number of bytes}

ioActCount: LongInt; {actual number of bytes}

ioPosMode: Integer; {positioning mode and newline char.}

ioPosOffset: LongInt); {positioning offset}

fileParam:

 (ioFRefNum: Integer; {file reference number}

ioFVersNum: SignedByte; {file version number (unused)}

filler1: SignedByte; {reserved}

ioFDirIndex: Integer; {directory index}

ioFlAttrib: SignedByte; {file attributes}

ioFlVersNum: SignedByte; {file version number (unused)}

ioFlFndrInfo: FInfo; {information used by the Finder}

ioFlNum: LongInt; {file ID}

ioFlStBlk: Integer; {first alloc. blk. of data fork}

ioFlLgLen: LongInt; {logical EOF of data fork}

ioFlPyLen: LongInt; {physical EOF of data fork}

ioFlRStBlk: Integer; {first alloc. blk. of resource fork}

ioFlRLgLen: LongInt; {logical EOF of resource fork}

ioFlRPyLen: LongInt; {physical EOF of resource fork}

ioFlCrDat: LongInt; {date and time of creation}

ioFlMdDat: LongInt); {date and time of last modification}

volumeParam:

 (filler2: LongInt; {reserved}

ioVolIndex: Integer; {volume index}

ioVCrDate: LongInt; {date and time of initialization}

C H A P T E R 2

File Manager

2-244 Summary of the File Manager

ioVLsBkUp: LongInt; {date and time of last modification}

ioVAtrb: Integer; {volume attributes}

ioVNmFls: Integer; {number of files in root directory}

ioVDirSt: Integer; {first block of directory}

ioVBlLn: Integer; {length of directory in blocks}

ioVNmAlBlks: Integer; {number of allocation blocks}

ioVAlBlkSiz: LongInt; {size of allocation blocks}

ioVClpSiz: LongInt; {default clump size}

ioAlBlSt: Integer; {first block in block map}

ioVNxtFNum: LongInt; {next unused file ID}

ioVFrBlk: Integer); {number of unused allocation blocks}

END;

HParmBlkPtr = ^HParamBlockRec;

HParamBlockRec = {HFS parameter block}

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

ioTrap: Integer; {routine trap}

ioCmdAddr: Ptr; {routine address}

ioCompletion: ProcPtr; {pointer to completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {pointer to pathname}

ioVRefNum: Integer; {volume specification}

CASE ParamBlkType OF

ioParam:

 (ioRefNum: Integer; {file reference number}

ioVersNum: SignedByte; {version number}

ioPermssn: SignedByte; {read/write permission}

ioMisc: Ptr; {miscellaneous}

ioBuffer: Ptr; {data buffer}

ioReqCount: LongInt; {requested number of bytes}

ioActCount: LongInt; {actual number of bytes}

ioPosMode: Integer; {positioning mode and newline char.}

ioPosOffset: LongInt); {positioning offset}

fileParam:

 (ioFRefNum: Integer; {file reference number}

ioFVersNum: SignedByte; {file version number (unused)}

filler1: SignedByte; {reserved}

ioFDirIndex: Integer; {directory index}

ioFlAttrib: SignedByte; {file attributes}

ioFlVersNum: SignedByte; {file version number (unused)}

ioFlFndrInfo: FInfo; {information used by the Finder}

ioDirID: LongInt; {directory ID or file ID}

C H A P T E R 2

File Manager

Summary of the File Manager 2-245

ioFlStBlk: Integer; {first alloc. blk. of data fork}

ioFlLgLen: LongInt; {logical EOF of data fork}

ioFlPyLen: LongInt; {physical EOF of data fork}

ioFlRStBlk: Integer; {first alloc. blk. of resource fork}

ioFlRLgLen: LongInt; {logical EOF of resource fork}

ioFlRPyLen: LongInt; {physical EOF of resource fork}

ioFlCrDat: LongInt; {date and time of creation}

ioFlMdDat: LongInt); {date and time of last modification}

volumeParam:

 (filler2: LongInt; {reserved}

ioVolIndex: Integer; {volume index}

ioVCrDate: LongInt; {date and time of initialization}

ioVLsMod: LongInt; {date and time of last modification}

ioVAtrb: Integer; {volume attributes}

ioVNmFls: Integer; {number of files in root directory}

ioVBitMap: Integer; {first block of volume bitmap}

ioAllocPtr: Integer; {first block of next new file}

ioVNmAlBlks: Integer; {number of allocation blocks}

ioVAlBlkSiz: LongInt; {size of allocation blocks}

ioVClpSiz: LongInt; {default clump size}

ioAlBlSt: Integer; {first block in volume map}

ioVNxtCNID: LongInt; {next unused node ID}

ioVFrBlk: Integer; {number of unused allocation blocks}

ioVSigWord: Integer; {volume signature}

ioVDrvInfo: Integer; {drive number}

ioVDRefNum: Integer; {driver reference number}

ioVFSID: Integer; {file-system identifier}

ioVBkUp: LongInt; {date and time of last backup}

ioVSeqNum: Integer; {used internally}

ioVWrCnt: LongInt; {volume write count}

ioVFilCnt: LongInt; {number of files on volume}

ioVDirCnt: LongInt; {number of directories on volume}

ioVFndrInfo: ARRAY[1..8] OF LongInt);

{information used by the Finder}

accessParam:

 (filler3: Integer; {reserved}

ioDenyModes: Integer; {access mode information}

filler4: Integer; {reserved}

filler5: SignedByte; {reserved}

ioACUser: SignedByte; {user access rights}

filler6: LongInt; {reserved}

ioACOwnerID: LongInt; {owner ID}

ioACGroupID: LongInt; {group ID}

ioACAccess: LongInt); {directory access rights}

C H A P T E R 2

File Manager

2-246 Summary of the File Manager

objParam:

 (filler7: Integer; {reserved}

ioObjType: Integer; {function code}

ioObjNamePtr: Ptr; {ptr to returned creator/group name}

ioObjID: LongInt); {creator/group ID}

copyParam:

 (ioDstVRefNum: Integer; {destination volume identifier}

filler8: Integer; {reserved}

ioNewName: Ptr; {pointer to destination pathname}

ioCopyName: Ptr; {pointer to optional name}

ioNewDirID: LongInt); {destination directory ID}

wdParam:

 (filler9: Integer; {reserved}

ioWDIndex: Integer; {working directory index}

ioWDProcID: LongInt; {working directory user identifier}

ioWDVRefNum: Integer; {working directory's vol. ref. num.}

filler10: Integer; {reserved}

filler11: LongInt; {reserved}

filler12: LongInt; {reserved}

filler13: LongInt; {reserved}

ioWDDirID: LongInt); {working directory's directory ID}

fidParam:

 (filler14: LongInt; {reserved}

ioDestNamePtr: StringPtr; {pointer to destination filename}

filler15: LongInt; {reserved}

ioDestDirID: LongInt; {destination parent directory ID}

filler16: LongInt; {reserved}

filler17: LongInt; {reserved}

ioSrcDirID: LongInt; {source parent directory ID}

filler18: Integer; {reserved}

ioFileID: LongInt); {file ID}

csParam:

 (ioMatchPtr: FSSpecArrayPtr;{pointer to array of matches}

ioReqMatchCount: LongInt; {max. number of matches to return}

ioActMatchCount: LongInt; {actual number of matches}

ioSearchBits: LongInt; {enable bits for matching rules}

ioSearchInfo1: CInfoPBPtr; {pointer to values and lower bounds}

ioSearchInfo2: CInfoPBPtr; {pointer to masks and upper bounds}

ioSearchTime: LongInt; {maximum time to search}

ioCatPosition: CatPositionRec;{current catalog position}

ioOptBuffer: Ptr; {pointer to optional read buffer}

ioOptBufSize: LongInt); {length of optional read buffer}

C H A P T E R 2

File Manager

Summary of the File Manager 2-247

foreignPrivParam:

 (filler21: LongInt; {reserved}

filler22: LongInt; {reserved}

ioForeignPrivBuffer: Ptr; {privileges data buffer}

ioForeignPrivReqCount: LongInt; {size of buffer}

ioForeignPrivActCount: LongInt; {amount of buffer used}

filler23: LongInt; {reserved}

ioForeignPrivDirID: LongInt; {parent directory ID of }

{ foreign file or directory}

ioForeignPrivInfo1: LongInt; {privileges data}

ioForeignPrivInfo2: LongInt; {privileges data}

ioForeignPrivInfo3: LongInt; {privileges data}

ioForeignPrivInfo4: LongInt); {privileges data}

END;

Catalog Information Parameter Blocks

TYPE

CInfoType = (hfileInfo, dirInfo);

CInfoPBPtr = ^CInfoPBRec;

CInfoPBRec = {catalog information parameter block}

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

ioTrap: Integer; {routine trap}

ioCmdAddr: Ptr; {routine address}

ioCompletion: ProcPtr; {pointer to completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {pointer to pathname}

ioVRefNum: Integer; {volume specification}

ioFRefNum: Integer; {file reference number}

ioFVersNum: SignedByte; {version number}

filler1: SignedByte; {reserved}

ioFDirIndex: Integer; {directory index}

ioFlAttrib: SignedByte; {file or directory attributes}

ioACUser: SignedByte; {directory access rights}

CASE CInfoType OF

hFileInfo:

 (ioFlFndrInfo: FInfo; {information used by the Finder}

ioDirID: LongInt; {directory ID or file ID}

ioFlStBlk: Integer; {first alloc. blk. of data fork}

ioFlLgLen: LongInt; {logical EOF of data fork}

ioFlPyLen: LongInt; {physical EOF of data fork}

C H A P T E R 2

File Manager

2-248 Summary of the File Manager

ioFlRStBlk: Integer; {first alloc. blk. of resource fork}

ioFlRLgLen: LongInt; {logical EOF of resource fork}

ioFlRPyLen: LongInt; {physical EOF of resource fork}

ioFlCrDat: LongInt; {date and time of creation}

ioFlMdDat: LongInt; {date and time of last modification}

ioFlBkDat: LongInt; {date and time of last backup}

ioFlXFndrInfo: FXInfo; {additional Finder information}

ioFlParID: LongInt; {file parent directory ID}

ioFlClpSiz: LongInt); {file's clump size}

dirInfo:

 (ioDrUsrWds: DInfo; {information used by the Finder}

ioDrDirID: LongInt; {directory ID}

ioDrNmFls: Integer; {number of files in directory}

filler3: ARRAY[1..9] OF Integer;

ioDrCrDat: LongInt; {date and time of creation}

ioDrMdDat: LongInt; {date and time of last modification}

ioDrBkDat: LongInt; {date and time of last backup}

ioDrFndrInfo: DXInfo; {additional Finder information}

ioDrParID: LongInt); {directory's parent directory ID}

END;

Catalog Position Record

TYPE

CatPositionRec = {catalog position record}

RECORD

initialize: LongInt; {starting point}

priv: ARRAY[1..6] OF Integer; {private data}

END;

Catalog Move Parameter Block

TYPE

CMovePBPtr = ^CMovePBRec;

CMovePBRec = {catalog move parameter block}

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

ioTrap: Integer; {routine trap}

ioCmdAddr: Ptr; {routine address}

ioCompletion: ProcPtr; {pointer to completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {pointer to pathname}

ioVRefNum: Integer; {volume specification}

C H A P T E R 2

File Manager

Summary of the File Manager 2-249

filler1: LongInt; {reserved}

ioNewName: StringPtr; {name of new directory}

filler2: LongInt; {reserved}

ioNewDirID: LongInt; {directory ID of new directory}

filler3: ARRAY[1..2] OF LongInt; {reserved}

ioDirID: LongInt; {directory ID of current directory}

END;

Working Directory Parameter Block

TYPE

WDPBPtr = ^WDPBRec;

WDPBRec = {working directory parameter block}

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

ioTrap: Integer; {routine trap}

ioCmdAddr: Ptr; {routine address}

ioCompletion: ProcPtr; {pointer to completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {pointer to pathname}

ioVRefNum: Integer; {volume specification}

filler1: Integer; {reserved}

ioWDIndex: Integer; {working directory index}

ioWDProcID: LongInt; {working directory user identifier}

ioWDVRefNum: Integer; {working directory's vol. ref. num.}

filler2: ARRAY[1..7] OF Integer; {reserved}

ioWDDirID: LongInt; {working directory's directory ID}

END;

File Control Block Parameter Block

TYPE

FCBPBPtr = ^FCBPBRec;

FCBPBRec = {file control block parameter block}

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

ioTrap: Integer; {routine trap}

ioCmdAddr: Ptr; {routine address}

ioCompletion: ProcPtr; {pointer to completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {pointer to pathname}

ioVRefNum: Integer; {volume specification}

C H A P T E R 2

File Manager

2-250 Summary of the File Manager

ioRefNum: Integer; {file reference number}

filler: Integer; {reserved}

ioFCBIndx: Integer; {FCB index}

filler1: Integer; {reserved}

ioFCBFlNm: LongInt; {file ID}

ioFCBFlags: Integer; {flags}

ioFCBStBlk: Integer; {first allocation block of file}

ioFCBEOF: LongInt; {logical end-of-file}

ioFCBPLen: LongInt; {physical end-of-file}

ioFCBCrPs: LongInt; {position of the file mark}

ioFCBVRefNum: Integer; {volume reference number}

ioFCBClpSiz: LongInt; {file's clump size}

ioFCBParID: LongInt; {parent directory ID}

END;

Volume Attributes Buffer

TYPE

GetVolParmsInfoBuffer =

RECORD

vMVersion: Integer; {version number}

vMAttrib: LongInt; {volume attributes}

vMLocalHand: Handle; {reserved}

vMServerAdr: LongInt; {network server address}

vMVolumeGrade: LongInt; {relative speed rating}

vMForeignPrivID: Integer; {foreign privilege model}

END;

Volume Mounting Information Records

TYPE

VolumeType = OSType;

VolMountInfoPtr = ^VolMountInfoHeader;

VolMountInfoHeader = {volume mounting information}

RECORD

length: Integer; {length of mounting information}

media: VolumeType; {type of volume}

END;

AFPVolMountInfoPtr = ^AFPVolMountInfo;

AFPVolMountInfo = {AFP volume mounting information}

RECORD

length: Integer; {length of mounting information}

media: VolumeType; {type of volume}

C H A P T E R 2

File Manager

Summary of the File Manager 2-251

flags: Integer; {reserved; must be set to 0}

nbpInterval: SignedByte; {NBP retry interval}

nbpCount: SignedByte; {NBP retry count}

uamType: Integer; {user authentication method}

zoneNameOffset: Integer; {offset to zone name}

serverNameOffset: Integer; {offset server name}

volNameOffset: Integer; {offset to volume name}

userNameOffset: Integer; {offset to user name}

userPasswordOffset:

Integer; {offset to user password}

volPasswordOffset:

Integer; {offset to volume password}

AFPData: PACKED ARRAY[1..144] OF CHAR;

{standard AFP mounting info}

END;

Internal Data Types

Volume and File Control Blocks

TYPE

VCB = {volume control block}

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

vcbFlags: Integer; {volume flags (bit 15 = 1 if dirty)}

vcbSigWord: Integer; {volume signature}

vcbCrDate: LongInt; {date and time of volume creation}

vcbLsMod: LongInt; {date and time of last modification}

vcbAtrb: Integer; {volume attributes}

vcbNmFls: Integer; {number of files in root directory}

vcbVBMSt: Integer; {first block of volume bitmap}

vcbAllocPtr: Integer; {start of next allocation search}

vcbNmAlBlks: Integer; {number of allocation blocks in volume}

vcbAlBlkSiz: LongInt; {size (in bytes) of allocation blocks}

vcbClpSiz: LongInt; {default clump size}

vcbAlBlSt: Integer; {first allocation block in volume}

vcbNxtCNID: LongInt; {next unused catalog node ID}

vcbFreeBks: Integer; {number of unused allocation blocks}

vcbVN: String[27]; {volume name}

vcbDrvNum: Integer; {drive number}

vcbDRefNum: Integer; {driver reference number}

vcbFSID: Integer; {file-system identifier}

C H A P T E R 2

File Manager

2-252 Summary of the File Manager

vcbVRefNum: Integer; {volume reference number}

vcbMAdr: Ptr; {used internally}

vcbBufAdr: Ptr; {used internally}

vcbMLen: Integer; {used internally}

vcbDirIndex: Integer; {used internally}

vcbDirBlk: Integer; {used internally}

vcbVolBkUp: LongInt; {date and time of last backup}

vcbVSeqNum: Integer; {volume backup sequence number}

vcbWrCnt: LongInt; {volume write count}

vcbXTClpSiz: LongInt; {clump size for extents overflow file}

vcbCTClpSiz: LongInt; {clump size for catalog file}

vcbNmRtDirs: Integer; {number of directories in root dir.}

vcbFilCnt: LongInt; {number of files in volume}

vcbDirCnt: LongInt; {number of directories in volume}

vcbFndrInfo: ARRAY[1..8] OF LongInt;

{information used by the Finder}

vcbVCSize: Integer; {used internally}

vcbVBMCSiz: Integer; {used internally}

vcbCtlCSiz: Integer; {used internally}

vcbXTAlBlks: Integer; {size of extents overflow file}

vcbCTAlBlks: Integer; {size of catalog file}

vcbXTRef: Integer; {ref. num. for extents overflow file}

vcbCTRef: Integer; {ref. num. for catalog file}

vcbCtlBuf: Ptr; {ptr. to extents and catalog caches}

vcbDirIDM: LongInt; {directory last searched}

vcbOffsM: Integer; {offspring index at last search}

END;

FCB = {file control block}

RECORD

fcbFlNum: LongInt; {file ID}

fcbFlags: Integer; {file flags}

fcbSBlk: Integer; {first allocation block of file}

fcbEOF: LongInt; {logical end-of-file}

fcbPLen: LongInt; {physical end-of-file}

fcbCrPs: LongInt; {current file mark position}

fcbVPtr: Ptr; {pointer to volume control block}

fcbBfAdr: Ptr; {pointer to access path buffer}

fcbFlPos: Integer; {reserved}

fcbClmpSize: LongInt; {file clump size}

fcbBTCBPtr: Ptr; {pointer to B*-tree control block}

fcbExtRec: ExtDataRec; {first three file extents}

fcbFType: LongInt; {file's four Finder type bytes}

C H A P T E R 2

File Manager

Summary of the File Manager 2-253

fcbCatPos: LongInt; {catalog hint for use on Close}

fcbDirID: LongInt; {file's parent directory ID}

fcbCName: String[31]; {name of file}

END;

Drive Queue Elements

TYPE

DrvQEl = {drive queue element}

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {flag for dQDrvSz and dQDrvSz2}

dQDrive: Integer; {drive number}

dQRefNum: Integer; {driver reference number}

dQFSID: Integer; {file-system identifier}

dQDrvSz: Integer; {number of logical blocks on drive}

dQDrvSz2: Integer; {additional field for large drives}

END;

High-Level File Access Routines

Reading, Writing, and Closing Files

FUNCTION FSRead (refNum: Integer; VAR count: LongInt;
buffPtr: Ptr): OSErr;

FUNCTION FSWrite (refNum: Integer; VAR count: LongInt;
buffPtr: Ptr): OSErr;

FUNCTION FSClose (refNum: Integer): OSErr;

Manipulating the File Mark

FUNCTION GetFPos (refNum: Integer; VAR filePos: LongInt): OSErr;

FUNCTION SetFPos (refNum: Integer; posMode: Integer;
posOff: LongInt): OSErr;

Manipulating the End-of-File

FUNCTION GetEOF (refNum: Integer; VAR logEOF: LongInt): OSErr;

FUNCTION SetEOF (refNum: Integer; logEOF: LongInt): OSErr;

Allocating File Blocks

FUNCTION Allocate (refNum: Integer; VAR count: LongInt): OSErr;

FUNCTION AllocContig (refNum: Integer; VAR count: LongInt): OSErr;

C H A P T E R 2

File Manager

2-254 Summary of the File Manager

Low-Level File Access Routines

Reading, Writing, and Closing Files

FUNCTION PBRead (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBReadSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBReadAsync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBWrite (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBWriteSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBWriteAsync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBClose (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBCloseSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBCloseAsync (paramBlock: ParmBlkPtr): OSErr;

Manipulating the File Mark

FUNCTION PBGetFPos (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBGetFPosSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBGetFPosAsync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBSetFPos (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBSetFPosSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBSetFPosAsync (paramBlock: ParmBlkPtr): OSErr;

Manipulating the End-of-File

FUNCTION PBGetEOF (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBGetEOFSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBGetEOFAsync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBSetEOF (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBSetEOFSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBSetEOFAsync (paramBlock: ParmBlkPtr): OSErr;

Allocating File Blocks

FUNCTION PBAllocate (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBAllocateSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBAllocateAsync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBAllocContig (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBAllocContigSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBAllocContigAsync (paramBlock: ParmBlkPtr): OSErr;

C H A P T E R 2

File Manager

Summary of the File Manager 2-255

Updating Files

FUNCTION PBFlushFile (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBFlushFileSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBFlushFileAsync (paramBlock: ParmBlkPtr): OSErr;

High-Level Volume Access Routines

Unmounting Volumes

FUNCTION UnmountVol (volName: StringPtr; vRefNum: Integer): OSErr;

FUNCTION Eject (volName: StringPtr; vRefNum: Integer): OSErr;

Updating Volumes

FUNCTION FlushVol (volName: StringPtr; vRefNum: Integer): OSErr;

Manipulating the Default Volume

FUNCTION GetVol (volName: StringPtr; VAR vRefNum: Integer):
OSErr;

FUNCTION SetVol (volName: StringPtr; vRefNum: Integer): OSErr;

FUNCTION HGetVol (volName: StringPtr; VAR vRefNum: Integer;
VAR dirID: LongInt): OSErr;

FUNCTION HSetVol (volName: StringPtr; vRefNum: Integer;
dirID: LongInt): OSErr;

Obtaining Volume Information

FUNCTION GetVInfo (drvNum: Integer; volName: StringPtr;
VAR vRefNum: Integer; VAR freeBytes: LongInt):
OSErr;

FUNCTION GetVRefNum (refNum: Integer; VAR vRefNum: Integer): OSErr;

Low-Level Volume Access Routines

Mounting and Unmounting Volumes

FUNCTION PBMountVol (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBUnmountVol (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBEject (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBOffLine (paramBlock: ParmBlkPtr): OSErr;

C H A P T E R 2

File Manager

2-256 Summary of the File Manager

Updating Volumes

FUNCTION PBFlushVol (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBFlushVolSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBFlushVolAsync (paramBlock: ParmBlkPtr): OSErr;

Obtaining Volume Information

FUNCTION PBHGetVInfo (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHGetVInfoSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHGetVInfoAsync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBSetVInfo (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBSetVInfoSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBSetVInfoAsync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHGetVolParms (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHGetVolParmsSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHGetVolParmsAsync(paramBlock: HParmBlkPtr): OSErr;

Manipulating the Default Volume

FUNCTION PBGetVol (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBGetVolSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBGetVolAsync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBSetVol (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBSetVolSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBSetVolAsync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBHGetVol (paramBlock: WDPBPtr; async: Boolean): OSErr;

FUNCTION PBHGetVolSync (paramBlock: WDPBPtr): OSErr;

FUNCTION PBHGetVolAsync (paramBlock: WDPBPtr): OSErr;

FUNCTION PBHSetVol (paramBlock: WDPBPtr; async: Boolean): OSErr;

FUNCTION PBHSetVolSync (paramBlock: WDPBPtr): OSErr;

FUNCTION PBHSetVolAsync (paramBlock: WDPBPtr): OSErr;

File System Specification Routines

Opening Files

FUNCTION FSpOpenDF (spec: FSSpec; permission: SignedByte;
VAR refNum: Integer): OSErr;

FUNCTION FSpOpenRF (spec: FSSpec; permission: SignedByte;
VAR refNum: Integer): OSErr;

C H A P T E R 2

File Manager

Summary of the File Manager 2-257

Creating and Deleting Files and Directories

FUNCTION FSpCreate (spec: FSSpec; creator: OSType;
fileType: OSType; scriptTag: ScriptCode):
OSErr;

FUNCTION FSpDirCreate (spec: FSSpec; scriptTag: ScriptCode;
VAR createdDirID: LongInt): OSErr;

FUNCTION FSpDelete (spec: FSSpec): OSErr;

Accessing Information About Files and Directories

FUNCTION FSpGetFInfo (spec: FSSpec; VAR fndrInfo: FInfo): OSErr;

FUNCTION FSpSetFInfo (spec: FSSpec; fndrInfo: FInfo): OSErr;

FUNCTION FSpSetFLock (spec: FSSpec): OSErr;

FUNCTION FSpRstFLock (spec: FSSpec): OSErr;

FUNCTION FSpRename (spec: FSSpec; newName: Str255): OSErr;

Moving Files or Directories

FUNCTION FSpCatMove (source: FSSpec; dest: FSSpec): OSErr;

Exchanging the Data in Two Files

FUNCTION FSpExchangeFiles (source: FSSpec; dest: FSSpec): OSErr;

Creating File System Specifications

FUNCTION FSMakeFSSpec (vRefNum: Integer; dirID: LongInt;
fileName: Str255; VAR spec: FSSpec): OSErr;

FUNCTION PBMakeFSSpec (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBMakeFSSpecSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBMakeFSSpecAsync (paramBlock: HParmBlkPtr): OSErr;

High-Level HFS Routines

Opening Files

FUNCTION HOpenDF (vRefNum: Integer; dirID: LongInt;
fileName: Str255; permission: SignedByte;
VAR refNum: Integer): OSErr;

FUNCTION HOpenRF (vRefNum: Integer; dirID: LongInt;
fileName: Str255; permission: SignedByte;
VAR refNum: Integer): OSErr;

C H A P T E R 2

File Manager

2-258 Summary of the File Manager

FUNCTION HOpen (vRefNum: Integer; dirID: LongInt;
fileName: Str255; permission: SignedByte;
VAR refNum: Integer): OSErr;

Creating and Deleting Files and Directories

FUNCTION HCreate (vRefNum: Integer; dirID: LongInt;
fileName: Str255; creator: OSType;
fileType: OSType): OSErr;

FUNCTION DirCreate (vRefNum: Integer; parentDirID: LongInt;
directoryName: Str255;
VAR createdDirID: LongInt): OSErr;

FUNCTION HDelete (vRefNum: Integer; dirID: LongInt;
fileName: Str255): OSErr;

Accessing Information About Files and Directories

FUNCTION HGetFInfo (vRefNum: Integer; dirID: LongInt;
fileName: Str255; VAR fndrInfo: FInfo): OSErr;

FUNCTION HSetFInfo (vRefNum: Integer; dirID: LongInt;
fileName: Str255; fndrInfo: FInfo): OSErr;

FUNCTION HSetFLock (vRefNum: Integer; dirID: LongInt;
fileName: Str255): OSErr;

FUNCTION HRstFLock (vRefNum: Integer; dirID: LongInt;
fileName: Str255): OSErr;

FUNCTION HRename (vRefNum: Integer; dirID: LongInt;
oldName: Str255; newName: Str255): OSErr;

Moving Files or Directories

FUNCTION CatMove (vRefNum: Integer; dirID: LongInt;
oldName: Str255; newDirID: LongInt;
newName: Str255): OSErr;

Maintaining Working Directories

FUNCTION OpenWD (vRefNum: Integer; dirID: LongInt;
procID: LongInt; VAR wdRefNum: Integer): OSErr;

FUNCTION CloseWD (wdRefNum: Integer): OSErr;

FUNCTION GetWDInfo (wdRefNum: Integer; VAR vRefNum: Integer;
VAR dirID: LongInt; VAR procID: LongInt):
OSErr;

C H A P T E R 2

File Manager

Summary of the File Manager 2-259

Low-Level HFS Routines

Opening Files

FUNCTION PBHOpenDF (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHOpenDFSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHOpenDFAsync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHOpenRF (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHOpenRFSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHOpenRFAsync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHOpen (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHOpenSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHOpenAsync (paramBlock: HParmBlkPtr): OSErr;

Creating and Deleting Files and Directories

FUNCTION PBHCreate (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHCreateSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHCreateAsync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBDirCreate (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBDirCreateSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBDirCreateAsync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHDelete (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHDeleteSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHDeleteAsync (paramBlock: HParmBlkPtr): OSErr;

Accessing Information About Files and Directories

FUNCTION PBGetCatInfo (paramBlock: CInfoPBPtr; async: Boolean): OSErr;

FUNCTION PBGetCatInfoSync (paramBlock: CInfoPBPtr): OSErr;

FUNCTION PBGetCatInfoAsync (paramBlock: CInfoPBPtr): OSErr;

FUNCTION PBSetCatInfo (paramBlock: CInfoPBPtr; async: Boolean): OSErr;

FUNCTION PBSetCatInfoSync (paramBlock: CInfoPBPtr): OSErr;

FUNCTION PBSetCatInfoAsync (paramBlock: CInfoPBPtr): OSErr;

FUNCTION PBHGetFInfo (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

C H A P T E R 2

File Manager

2-260 Summary of the File Manager

FUNCTION PBHGetFInfoSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHGetFInfoAsync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHSetFInfo (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHSetFInfoSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHSetFInfoAsync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHSetFLock (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHSetFLockSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHSetFLockAsync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHRstFLock (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHRstFLockSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHRstFLockAsync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHRename (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHRenameSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHRenameAsync (paramBlock: HParmBlkPtr): OSErr;

Moving Files or Directories

FUNCTION PBCatMove (paramBlock: CMovePBPtr; async: Boolean): OSErr;

FUNCTION PBCatMoveSync (paramBlock: CMovePBPtr): OSErr;

FUNCTION PBCatMoveAsync (paramBlock: CMovePBPtr): OSErr;

Maintaining Working Directories

FUNCTION PBOpenWD (paramBlock: WDPBPtr; async: Boolean): OSErr;

FUNCTION PBOpenWDSync (paramBlock: WDPBPtr): OSErr;

FUNCTION PBOpenWDAsync (paramBlock: WDPBPtr): OSErr;

FUNCTION PBCloseWD (paramBlock: WDPBPtr; async: Boolean): OSErr;

FUNCTION PBCloseWDSync (paramBlock: WDPBPtr): OSErr;

FUNCTION PBCloseWDAsync (paramBlock: WDPBPtr): OSErr;

FUNCTION PBGetWDInfo (paramBlock: WDPBPtr; async: Boolean): OSErr;

FUNCTION PBGetWDInfoSync (paramBlock: WDPBPtr): OSErr;

FUNCTION PBGetWDInfoAsync (paramBlock: WDPBPtr): OSErr;

Searching a Catalog

FUNCTION PBCatSearch (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBCatSearchSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBCatSearchAsync (paramBlock: HParmBlkPtr): OSErr;

C H A P T E R 2

File Manager

Summary of the File Manager 2-261

Exchanging the Data in Two Files

FUNCTION PBExchangeFiles (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBExchangeFilesSync(paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBExchangeFilesAsync
(paramBlock: HParmBlkPtr): OSErr;

Shared Environment Routines

Opening Files While Denying Access

FUNCTION PBHOpenDeny (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHOpenDenySync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHOpenDenyAsync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHOpenRFDeny (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHOpenRFDenySync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHOpenRFDenyAsync (paramBlock: HParmBlkPtr): OSErr;

Locking and Unlocking File Ranges

FUNCTION PBLockRange (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBLockRangeSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBLockRangeAsync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBUnlockRange (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBUnlockRangeSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBUnlockRangeAsync (paramBlock: ParmBlkPtr): OSErr;

Manipulating Share Points

FUNCTION PBShare (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBShareSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBShareAsync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBUnshare (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBUnshareSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBUnshareAsync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBGetUGEntry (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBGetUGEntrySync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBGetUGEntryAsync (paramBlock: HParmBlkPtr): OSErr;

C H A P T E R 2

File Manager

2-262 Summary of the File Manager

Controlling Directory Access

FUNCTION PBHGetDirAccess (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHGetDirAccessSync(paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHGetDirAccessAsync
(paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHSetDirAccess (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHSetDirAccessSync(paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHSetDirAccessAsync
(paramBlock: HParmBlkPtr): OSErr;

Mounting Volumes

FUNCTION PBGetVolMountInfoSize
(paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBGetVolMountInfo (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBVolumeMount (paramBlock: ParmBlkPtr): OSErr;

Controlling Login Access

FUNCTION PBHGetLogInInfo (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHGetLogInInfoSync(paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHGetLogInInfoAsync
(paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHMapID (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHMapIDSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHMapIDAsync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHMapName (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHMapNameSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHMapNameAsync (paramBlock: HParmBlkPtr): OSErr;

Copying and Moving Files

FUNCTION PBHCopyFile (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHCopyFileSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHCopyFileAsync (paramBlock: HParmBlkPtr): OSErr;

C H A P T E R 2

File Manager

Summary of the File Manager 2-263

FUNCTION PBHMoveRename (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHMoveRenameSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHMoveRenameAsync (paramBlock: HParmBlkPtr): OSErr;

File ID Routines

Resolving File ID References

FUNCTION PBResolveFileIDRef (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBResolveFileIDRefSync
(paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBResolveFileIDRefAsync
(paramBlock: HParmBlkPtr): OSErr;

Creating and Deleting File ID References

FUNCTION PBCreateFileIDRef (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBCreateFileIDRefSync
(paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBCreateFileIDRefAsync
(paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBDeleteFileIDRef (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBDeleteFileIDRefSync
(paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBDeleteFileIDRefAsync
(paramBlock: HParmBlkPtr): OSErr;

Foreign File System Routines

Accessing Privilege Information in Foreign File Systems

FUNCTION PBGetForeignPrivs (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBGetForeignPrivsSync
(paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBGetForeignPrivsAsync
(paramBlock: HParmBlkPtr): OSErr;

C H A P T E R 2

File Manager

2-264 Summary of the File Manager

FUNCTION PBSetForeignPrivs (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBSetForeignPrivsSync
(paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBSetForeignPrivsAsync
(paramBlock: HParmBlkPtr): OSErr;

Utility Routines

Obtaining Queue Headers

FUNCTION GetFSQHdr : QHdrPtr;

FUNCTION GetVCBQHdr : QHdrPtr;

FUNCTION GetDrvQHdr : QHdrPtr;

Adding a Drive

PROCEDURE AddDrive (drvrRefNum: Integer; drvNum: Integer;
qEl: DrvQElPtr);

Obtaining File Control Block Information

FUNCTION PBGetFCBInfo (paramBlock: FCBPBPtr; async: Boolean): OSErr;

FUNCTION PBGetFCBInfoSync (paramBlock: FCBPBPtr): OSErr;

FUNCTION PBGetFCBInfoAsync (paramBlock: FCBPBPtr): OSErr;

Application-Defined Routine

Completion Routines

PROCEDURE MyCompletionProc;

C Summary

Constants

/*Gestalt constants*/

#define gestaltFSAttr 'fs ' /*file system attributes selector*/

#define gestaltFullExtFSDispatching 0 /*exports HFSDispatch traps*/

#define gestaltHasFSSpecCalls 1 /*supports FSSpec records*/

C H A P T E R 2

File Manager

Summary of the File Manager 2-265

/*directory IDs*/

enum {

fsRtParID = 1, /*directory ID of root directory's parent*/

fsRtDirID = 2}; /*directory ID of volume's root directory*/

/*values for requesting file read/write permissions*/

enum {

fsCurPerm = 0, /*whatever permission is allowed*/

fsRdPerm = 1, /*read permission*/

fsWrPerm = 2, /*write permission*/

fsRdWrPerm = 3, /*exclusive read/write permission*/

fsRdWrShPerm = 4}; /*shared read/write permission*/

/*file mark positioning modes*/

enum {

fsAtMark = 0, /*at current mark}

fsFromStart = 1, /*set mark relative to beginning of file*/

fsFromLEOF = 2, /*set mark relative to logical end-of-file*/

fsFromMark = 3, /*set mark relative to current mark*/

rdVerify = 64}; /*add to above for read-verify*/

/*values for ioSearchBits in PBCatSearch parameter block*/

enum {

fsSBPartialName = 1, /*substring of name*/

fsSBFullName = 2, /*full name*/

fsSBFlAttrib = 4, /*directory flag; software lock flag*/

fsSBNegate = 16384}; /*reverse match status*/

/*for files only*/

enum {

fsSBFlFndrInfo = 8, /*Finder file info*/

fsSBFlLgLen = 32, /*logical length of data fork*/

fsSBFlPyLen = 64, /*physical length of data fork*/

fsSBFlRLgLen = 128, /*logical length of resource fork*/

fsSBFlRPyLen = 256, /*physical length of resource fork*/

fsSBFlCrDat = 512, /*file creation date*/

fsSBFlMdDat = 1024, /*file modification date*/

fsSBFlBkDat = 2048, /*file backup date*/

fsSBFlXFndrInfo = 4096, /*more Finder file info*/

fsSBFlParID = 8192}; /*file's parent ID*/

C H A P T E R 2

File Manager

2-266 Summary of the File Manager

/*for directories only*/

enum {

fsSBDrUsrWds = 8, /*Finder directory info*/

fsSBDrNmFls = 16, /*number of files in directory*/

fsSBDrCrDat = 512, /*directory creation date*/

fsSBDrMdDat = 1024, /*directory modification date*/

fsSBDrBkDat = 2048, /*directory backup date*/

fsSBDrFndrInfo = 4096, /*more Finder directory info*/

fsSBDrParID = 8192}; /*directory's parent ID*/

/*value of vMForeignPrivID in file attributes buffer*/

enum {fsUnixPriv = 1}; /*A/UX privilege model*/

/*bit positions in vMAttrib field of GetVolParmsInfoBuffer*/

enum {

bHasBlankAccessPrivileges

= 4, /*volume supports inherited privileges*/

bHasBTreeMgr = 5, /*reserved*/

bHasFileIDs = 6, /*volume supports file ID functions*/

bHasCatSearch = 7, /*volume supports PBCatSearch*/

bHasUserGroupList = 8, /*volume supports AFP privileges*/

bHasPersonalAccessPrivileges

= 9, /*local file sharing is enabled*/

bHasFolderLock = 10, /*volume supports locking of folders*/

bHasShortName = 11, /*volume supports shorter volume name*/

bHasDesktopMgr = 12, /*volume supports Desktop Manager*/

bHasMoveRename = 13, /*volume supports _MoveRename*/

bHasCopyFile = 14, /*volume supports _CopyFile*/

bHasOpenDeny = 15, /*volume supports shared access modes*/

bHasExtFSVol = 16, /*volume is external file system volume*/

bNoSysDir = 17, /*volume has no system directory*/

bAccessCntl = 18, /*volume supports AFP access control*/

bNoBootBlks = 19, /*volume is not a startup volume*/

bNoDeskItems = 20, /*do not place objects on the desktop*/

bNoSwitchTo = 25, /*do not switch launch to applications*/

bTrshOffLine = 26, /*zoom volume when it is unmounted*/

bNoLclSync = 27, /*don't let Finder change mod. date*/

bNoVNEdit = 28, /*lock volume name*/

bNoMiniFndr = 29, /*reserved; always 1*/

bLocalWList = 30, /*use shared volume handle for window */

/* list*/

bLimitFCBs = 31}; /*limit file control blocks*/

C H A P T E R 2

File Manager

Summary of the File Manager 2-267

/*media type in remote mounting information/*

enum {AppleShareMediaType

= 'afpm'}; /*an AppleShare volume*/

/*user authentication methods in AFP remote mounting information*/

enum {

kNoUserAuthentication = 1, /*guest status; no password needed*/

kPassword = 2, /*8-byte password*/

kEncryptPassword = 3, /*encrypted 8-byte password*/

kTwoWayEncryptPassword = 6}; /*two-way random encryption; */

/* authenticate both user and server*/

Data Types

File System Specification Record

struct FSSpec { /*file system specification*/

short vRefNum; /*volume reference number*/

long parID; /*directory ID of parent directory*/

Str63 name; /*filename or directory name*/

};

typedef struct FSSpec FSSpec;

typedef FSSpec *FSSpecPtr;

typedef FSSpecPtr *FSSpecHandle;

File and Directory Parameter Blocks

union ParamBlockRec {

IOParam ioParam;

FileParam fileParam;

VolumeParam volumeParam;

CntrlParam cntrlParam;

SlotDevParam slotDevParam;

MultiDevParam multiDevParam;

};

typedef union ParamBlockRec ParamBlockRec;

typedef ParamBlockRec *ParmBlkPtr;

C H A P T E R 2

File Manager

2-268 Summary of the File Manager

#define ParamBlockHeader \

QElemPtr qLink; /*next queue entry*/\

short qType; /*queue type*/\

short ioTrap; /*routine trap*/\

Ptr ioCmdAddr; /*routine address*/\

ProcPtr ioCompletion; /*completion routine*/\

OSErr ioResult; /*result code*/\

StringPtr ioNamePtr; /*pointer to pathname*/\

short ioVRefNum; /*volume specification*/

struct IOParam {
ParamBlockHeader
short ioRefNum; /*file reference number*/
char ioVersNum; /*version number*/
char ioPermssn; /*read/write permission*/
Ptr ioMisc; /*miscellaneous*/
Ptr ioBuffer; /*data buffer*/
long ioReqCount; /*requested number of bytes*/
long ioActCount; /*actual number of bytes*/
short ioPosMode; /*positioning mode and newline char.*/
long ioPosOffset; /*positioning offset*/

};

typedef struct IOParam IOParam;

struct FileParam {

ParamBlockHeader

short ioFRefNum; /*file reference number*/

char ioFVersNum; /*file version number (unused)*/

char filler1; /*reserved*/

short ioFDirIndex; /*directory index*/

unsigned char ioFlAttrib; /*file attributes*/

unsigned char ioFlVersNum; /*file version number (unused)*/

FInfo ioFlFndrInfo; /*information used by the Finder*/

unsigned long ioFlNum; /*File ID*/

unsigned short ioFlStBlk; /*first alloc. blk. of data fork*/

long ioFlLgLen; /*logical EOF of data fork*/

long ioFlPyLen; /*physical EOF of data fork*/

unsigned short ioFlRStBlk; /*first alloc. blk. of resource fork*/

long ioFlRLgLen; /*logical EOF of resource fork*/

long ioFlRPyLen; /*physical EOF of resource fork*/

unsigned long ioFlCrDat; /*date and time of creation*/

unsigned long ioFlMdDat; /*date and time of last modification*/

};

typedef struct FileParam FileParam;

C H A P T E R 2

File Manager

Summary of the File Manager 2-269

struct VolumeParam {

ParamBlockHeader

long filler2; /*reserved*/

short ioVolIndex; /*volume index*/

unsigned long ioVCrDate; /*date and time of initialization*/

unsigned long ioVLsBkUp; /*date and time of last modification*/

unsigned short ioVAtrb; /*volume attributes*/

unsigned short ioVNmFls; /*number of files in root directory*/

unsigned short ioVDirSt; /*first block of directory*/

short ioVBlLn; /*length of directory in blocks*/

unsigned short ioVNmAlBlks; /*number of allocation blocks*/

long ioVAlBlkSiz; /*size of allocation blocks*/

long ioVClpSiz; /*number of bytes to allocate*/

unsigned short ioAlBlSt; /*first block in block map*/

unsigned long ioVNxtFNum; /*next unused file ID*/

unsigned short ioVFrBlk; /*number of unused allocation blocks*/

};

typedef struct VolumeParam VolumeParam;

union HParamBlockRec { /*HFS parameter block*/

HIOParam ioParam;

HFileParam fileParam;

HVolumeParam volumeParam;

AccessParam accessParam;

ObjParam objParam;

CopyParam copyParam;

WDParam wdParam;

FIDParam fidParam;

CSParam csParam;

ForeignPrivParam foreignPrivParam;

};

typedef union HParamBlockRec HParamBlockRec;

typedef HParamBlockRec *HParmBlkPtr;

struct HIOParam {

ParamBlockHeader

 short ioRefNum; /*file reference number*/

char ioVersNum; /*version number*/

char ioPermssn; /*read/write permission*/

Ptr ioMisc; /*miscellaneous*/

Ptr ioBuffer; /*data buffer*/

long ioReqCount; /*requested number of bytes*/

C H A P T E R 2

File Manager

2-270 Summary of the File Manager

long ioActCount; /*actual number of bytes*/

short ioPosMode; /*positioning mode and newline char.*/

long ioPosOffset; /*positioning offset*/

};

typedef struct HIOParam HIOParam;

struct HFileParam {

ParamBlockHeader

short ioFRefNum; /*file reference number*/

char ioFVersNum; /*file version number (unused)*/

char filler1; /*reserved*/

short ioFDirIndex; /*directory index*/

char ioFlAttrib; /*file attributes*/

char ioFlVersNum; /*file version number (unused)*/

FInfo ioFlFndrInfo; /*information used by the Finder*/

long ioDirID; /*directory ID or file ID*/

unsigned short ioFlStBlk; /*first alloc. blk. of data fork*/

long ioFlLgLen; /*logical EOF of data fork*/

long ioFlPyLen; /*physical EOF of data fork*/

unsigned short ioFlRStBlk; /*first alloc. blk. of resource fork*/

long ioFlRLgLen; /*logical EOF of resource fork*/

long ioFlRPyLen; /*physical EOF of resource fork*/

unsigned long ioFlCrDat; /*date and time of creation*/

unsigned long ioFlMdDat; /*date and time of last modification*/

};

typedef struct HFileParam HFileParam;

struct HVolumeParam {

ParamBlockHeader

long filler2; /*reserved*/

short ioVolIndex; /*volume index*/

unsigned long ioVCrDate; /*date and time of initialization*/

unsigned long ioVLsMod; /*date and time of last modification*/

short ioVAtrb; /*volume attributes*/

unsigned short ioVNmFls; /*number of files in root directory*/

short ioVBitMap; /*first block of volume bitmap*/

short ioAllocPtr; /*first block of next new file*/

unsigned short ioVNmAlBlks; /*number of allocation blocks*/

long ioVAlBlkSiz; /*size of allocation blocks*/

long ioVClpSiz; /*default clump size*/

short ioAlBlSt; /*first block in volume map*/

long ioVNxtCNID; /*next unused node ID*/

C H A P T E R 2

File Manager

Summary of the File Manager 2-271

unsigned short ioVFrBlk; /*number of unused allocation blocks*/

unsigned short ioVSigWord; /*volume signature*/

short ioVDrvInfo; /*drive number*/

short ioVDRefNum; /*driver reference number*/

short ioVFSID; /*file-system identifier*/

unsigned long ioVBkUp; /*date and time of last backup*/

unsigned short ioVSeqNum; /*used internally*/

long ioVWrCnt; /*volume write count*/

long ioVFilCnt; /*number of files on volume*/

long ioVDirCnt; /*number of directories on volume*/

long ioVFndrInfo[8];/*information used by the Finder*/

};

typedef struct HVolumeParam HVolumeParam;

struct AccessParam {

ParamBlockHeader

short filler3; /*reserved*/

short ioDenyModes; /*access mode information*/

short filler4; /*reserved*/

char filler5; /*reserved*/

char ioACUser; /*user access rights*/

long filler6; /*reserved*/

long ioACOwnerID; /*owner ID*/

long ioACGroupID; /*group ID*/

long ioACAccess; /*directory access rights*/

};

typedef struct AccessParam AccessParam;

struct ObjParam {

ParamBlockHeader

short filler7; /*reserved*/

short ioObjType; /*function code*/

StringPtr ioObjNamePtr; /*ptr to returned creator/group name*/

long ioObjID; /*creator/group ID*/

long ioReqCount; /*size of buffer area*/

long ioActCount; /*length of data*/

};

typedef struct ObjParam ObjParam;

C H A P T E R 2

File Manager

2-272 Summary of the File Manager

struct CopyParam {

ParamBlockHeader

short ioDstVRefNum; /*destination volume identifier*/

short filler8; /*reserved*/

StringPtr ioNewName; /*pointer to destination pathname*/

StringPtr ioCopyName; /*pointer to optional name*/

long ioNewDirID; /*destination directory ID*/

long filler14; /*reserved*/

long filler15; /*reserved*/

long ioDirID; /*directory ID or file ID*/

};

typedef struct CopyParam CopyParam;

struct WDParam {

ParamBlockHeader

short filler9; /*reserved*/

short ioWDIndex; /*working directory index*/

long ioWDProcID; /*working directory user identifier*/

short ioWDVRefNum; /*working directory's vol. ref. num.*/

short filler10; /*reserved*/

long filler11; /*reserved*/

long filler12; /*reserved*/

long filler13; /*reserved*/

long ioWDDirID; /*working directory's directory ID*/

};

typedef struct WDParam WDParam;

struct FIDParam {

ParamBlockHeader

long filler1; /*reserved*/

StringPtr ioDestNamePtr; /*pointer to destination filename*/

long filler2; /*reserved*/

long ioDestDirID; /*destination parent directory ID*/

long filler3; /*reserved*/

long filler4; /*reserved*/

long ioSrcDirID; /*source parent directory ID*/

short filler5; /*reserved*/

long ioFileID; /*file ID*/

};

typedef struct FIDParam FIDParam;

C H A P T E R 2

File Manager

Summary of the File Manager 2-273

struct CSParam {

ParamBlockHeader

FSSpecPtr ioMatchPtr; /*pointer to array of matches*/

long ioReqMatchCount; /*max number of matches to return*/

long ioActMatchCount; /*actual number of matches*/

long ioSearchBits; /*enable bits for matching rules*/

CInfoPBPtr ioSearchInfo1; /*pointer to values and lower */

/* bounds*/

CInfoPBPtr ioSearchInfo2; /*pointer to masks and upper */

/* bounds*/

long ioSearchTime; /*maximum time to search*/

CatPositionRec ioCatPosition; /*current catalog position*/

Ptr ioOptBuffer; /*pointer to optional read buffer*/

long ioOptBufSize; /*length of optional read buffer*/

};

typedef struct CSParam CSParam;

struct ForeignPrivParam {

ParamBlockHeader

long filler1; /*reserved*/

long filler2; /*reserved*/

Ptr ioForeignPrivBuffer; /*privileges data buffer*/

long ioForeignPrivReqCount; /*size of buffer*/

long ioForeignPrivActCount; /*amount of buffer used*/

long filler3; /*reserved*/

long ioForeignPrivDirID; /*parent directory ID of foreign */

/* file or directory*/

long ioForeignPrivInfo1; /*privileges data*/

long ioForeignPrivInfo2; /*privileges data*/

long ioForeignPrivInfo3; /*privileges data*/

long ioForeignPrivInfo4; /*privileges data*/

};

typedef struct ForeignPrivParam ForeignPrivParam;

typedef ForeignPrivParam *ForeignPrivParamPtr;

C H A P T E R 2

File Manager

2-274 Summary of the File Manager

Catalog Information Parameter Blocks

enum {hFileInfo, dirInfo};

typedef unsigned char CInfoType;

union CInfoPBRec { /*catalog information parameter block*/

HFileInfo hFileInfo;

DirInfo dirInfo;

};

typedef union CInfoPBRec CInfoPBRec;

typedef CInfoPBRec *CInfoPBPtr;

struct HFileInfo {

ParamBlockHeader

short ioFRefNum; /*file reference number*/

char ioFVersNum; /*version number*/

char filler1; /*reserved*/

short ioFDirIndex; /*file index*/

char ioFlAttrib; /*file attributes*/

char ioACUser; /*directory access rights*/

FInfo ioFlFndrInfo; /*information used by the Finder*/

long ioDirID; /*directory ID or file ID*/

unsigned short ioFlStBlk; /*first alloc. blk. of data fork*/

long ioFlLgLen; /*logical EOF of data fork*/

long ioFlPyLen; /*physical EOF of data fork*/

unsigned short ioFlRStBlk; /*first alloc. blk. of resource fork*/

long ioFlRLgLen; /*logical EOF of resource fork*/

long ioFlRPyLen; /*physical EOF of resource fork*/

unsigned long ioFlCrDat; /*date and time of creation*/

unsigned long ioFlMdDat; /*date and time of last modification*/

unsigned long ioFlBkDat; /*date and time of last backup*/

FXInfo ioFlXFndrInfo; /*additional Finder information*/

long ioFlParID; /*file parent directory ID (integer)*/

long ioFlClpSiz; /*file's clump size*/

};

typedef struct HFileInfo HFileInfo;

struct DirInfo {

ParamBlockHeader

short ioFRefNum; /*file reference number*/

short filler1; /*reserved*/

short ioFDirIndex; /*directory index*/

C H A P T E R 2

File Manager

Summary of the File Manager 2-275

char ioFlAttrib; /*directory attributes*/

char filler2; /*reserved*/

DInfo ioDrUsrWds; /*information used by the Finder*/

long ioDrDirID; /*directory ID*/

unsigned short ioDrNmFls; /*number of files in directory*/

short filler3[9]; /*reserved*/

unsigned long ioDrCrDat; /*date and time of creation*/

unsigned long ioDrMdDat; /*date and time of last modification*/

unsigned long ioDrBkDat; /*date and time of last backup*/

DXInfo ioDrFndrInfo; /*additional Finder information*/

long ioDrParID; /*directory's parent directory ID*/

};

typedef struct DirInfo DirInfo;

Catalog Position Record

struct CatPositionRec { /*catalog position record*/

long initialize; /*starting point*/

short priv[6]; /*private data*/

};

typedef struct CatPositionRec CatPositionRec;

Catalog Move Parameter Block

struct CMovePBRec { /*catalog move parameter block*/

QElemPtr qLink; /*next queue entry*/

short qType; /*queue type*/

short ioTrap; /*routine trap*/

Ptr ioCmdAddr; /*routine address*/

ProcPtr ioCompletion; /*completion routine*/

OSErr ioResult; /*result code*/

StringPtr ioNamePtr; /*pointer to pathname*/

short ioVRefNum; /*volume specification*/

long filler1; /*reserved*/

StringPtr ioNewName; /*name of new directory*/

long filler2; /*reserved*/

long ioNewDirID; /*directory ID of new directory*/

long filler3[2]; /*reserved*/

long ioDirID; /*directory ID of current directory*/

};

typedef struct CMovePBRec CMovePBRec;

typedef CMovePBRec *CMovePBPtr;

C H A P T E R 2

File Manager

2-276 Summary of the File Manager

Working Directory Parameter Block

struct WDPBRec { /*working directory parameter block*/

QElemPtr qLink; /*next queue entry*/

short qType; /*queue type*/

short ioTrap; /*routine trap*/

Ptr ioCmdAddr; /*routine address*/

ProcPtr ioCompletion; /*completion routine*/

OSErr ioResult; /*result code*/

StringPtr ioNamePtr; /*pointer to pathname*/

short ioVRefNum; /*volume specification*/

short filler1; /*reserved*/

short ioWDIndex; /*working directory index*/

long ioWDProcID; /*working directory user identifier*/

short ioWDVRefNum; /*working directory's vol. ref. num.*/

short filler2[7]; /*reserved*/

long ioWDDirID; /*working directory's directory ID*/

};

typedef struct WDPBRec WDPBRec;

typedef WDPBRec *WDPBPtr;

File Control Block Parameter Block

struct FCBPBRec { /*file control block parameter block*/

QElemPtr qLink; /*next queue entry*/

short qType; /*queue type*/

short ioTrap; /*routine trap*/

Ptr ioCmdAddr; /*routine address*/

ProcPtr ioCompletion; /*completion routine*/

OSErr ioResult; /*result code*/

StringPtr ioNamePtr; /*pointer to pathname*/

short ioVRefNum; /*volume specification*/

short ioRefNum; /*file reference number*/

short filler; /*reserved*/

short ioFCBIndx; /*FCB index*/

short filler1; /*reserved*/

long ioFCBFlNm; /*file ID*/

short ioFCBFlags; /*flags*/

unsigned short ioFCBStBlk; /*first allocation block of file*/

long ioFCBEOF; /*logical end-of-file*/

long ioFCBPLen; /*physical end-of-file*/

long ioFCBCrPs; /*position of the file mark*/

short ioFCBVRefNum; /*volume reference number*/

C H A P T E R 2

File Manager

Summary of the File Manager 2-277

long ioFCBClpSiz; /*file's clump size*/

long ioFCBParID; /*parent directory ID*/

};

typedef struct FCBPBRec FCBPBRec;

typedef FCBPBRec *FCBPBPtr;

Volume Attributes Buffer

struct GetVolParmsInfoBuffer {

short vMVersion; /*version number*/

long vMAttrib; /*volume attributes*/

Handle vMLocalHand; /*reserved*/

long vMServerAdr; /*network server address*/

long vMVolumeGrade; /*relative speed rating*/

short vMForeignPrivID; /*foreign privilege model*/

};

typedef struct GetVolParmsInfoBuffer GetVolParmsInfoBuffer;

Volume Mounting Information Records

struct VolMountInfoHeader{ /*volume mounting information*/

short length; /*length of mounting information*/

VolumeType media; /*type of volume*/

};

typedef struct VolMountInfoHeader VolMountInfoHeader;

typedef VolMountInfoHeader *VolMountInfoPtr;

struct AFPVolMountInfo{ /*AFP volume mounting information*/
short length; /*length of mounting information*/
VolumeType media; /*type of volume*/
short flags; /*reserved; must be set to 0*/
char nbpInterval; /*NBP retry interval*/
char nbpCount; /*NBP retry count*/
short uamType; /*user authentication method*/
short zoneNameOffset; /*offset to zone name*/
short serverNameOffset; /*offset server name*/
short volNameOffset; /*offset to volume name*/
short userNameOffset; /*offset to user name*/
short userPasswordOffset; /*offset to user password*/
short volPasswordOffset; /*offset to volume password*/
char AFPData[144]; /*standard AFP mounting info*/

};

typedef struct AFPVolMountInfo AFPVolMountInfo;
typedef AFPVolMountInfo *AFPVolMountInfoPtr;

C H A P T E R 2

File Manager

2-278 Summary of the File Manager

Internal Data Types

Volume and File Control Blocks

struct VCB { /*volume control block*/

QElemPtr qLink; /*next queue entry*/

short qType; /*queue type*/

short vcbFlags; /*volume flags (bit 15 = 1 if dirty)*/

unsigned short vcbSigWord; /*volume signature*/

unsigned long vcbCrDate; /*date and time of volume creation*/

unsigned long vcbLsMod; /*date and time of last modification*/

short vcbAtrb; /*volume attributes*/

unsigned short vcbNmFls; /*number of files in root directory*/

short vcbVBMSt; /*first block of volume bitmap*/

short vcbAllocPtr; /*start of next allocation search*/

unsigned short vcbNmAlBlks; /*number of allocation blocks in */

/* volume*/

long vcbAlBlkSiz; /*size (in bytes) of allocation */

/* blocks*/

long vcbClpSiz; /*default clump size*/

short vcbAlBlSt; /*first allocation block in volume*/

long vcbNxtCNID; /*next unused catalog node ID*/

unsigned short vcbFreeBks; /*number of unused allocation blocks*/

Str27 vcbVN; /*volume name*/

short vcbDrvNum; /*drive number*/

short vcbDRefNum; /*driver reference number*/

short vcbFSID; /*file-system identifier*/

short vcbVRefNum; /*volume reference number*/

Ptr vcbMAdr; /*used internally*/

Ptr vcbBufAdr; /*used internally*/

short vcbMLen; /*used internally*/

short vcbDirIndex; /*used internally*/

short vcbDirBlk; /*used internally*/

unsigned long vcbVolBkUp; /*date and time of last backup*/

unsigned short vcbVSeqNum; /*volume backup sequence number*/

long vcbWrCnt; /*volume write count*/

long vcbXTClpSiz; /*clump size for extents overflow */

/* file*/

long vcbCTClpSiz; /*clump size for catalog file*/

unsigned short vcbNmRtDirs; /*number of directories in root dir.*/

long vcbFilCnt; /*number of files in volume*/

long vcbDirCnt; /*number of directories in volume*/

long vcbFndrInfo[8];/*information used by the Finder*/

C H A P T E R 2

File Manager

Summary of the File Manager 2-279

unsigned short vcbVCSize; /*used internally*/

unsigned short vcbVBMCSiz; /*used internally*/

unsigned short vcbCtlCSiz; /*used internally*/

unsigned short vcbXTAlBlks; /*size of extents overflow file*/

unsigned short vcbCTAlBlks; /*size of catalog file*/

short vcbXTRef; /*ref. num. for extents overflow */

/* file*/

short vcbCTRef; /*ref. num. for catalog file*/

Ptr vcbCtlBuf; /*ptr. to extents and catalog caches*/

long vcbDirIDM; /*directory last searched*/

short vcbOffsM; /*offspring index at last search*/

};

typedef struct VCB VCB;

struct FCB { /*file control block*/

long fcbFlNum; /*file ID*/

short fcbFlags; /*file flags*/

short fcbSBlk; /*first allocation block of file*/

long fcbEOF; /*logical end-of-file*/

long fcbPLen; /*physical end-of-file*/

long fcbCrPs; /*current file mark position*/

Ptr fcbVPtr; /*pointer to volume control block*/

Ptr fcbBfAdr; /*pointer to access path buffer*/

short fcbFlPos; /*unused*/

long fcbClmpSize; /*file clump size*/

Ptr fcbBTCBPtr; /*pointer to B*-tree control block*/

ExtDataRec fcbExtRec; /*first three file extents*/

long fcbFType; /*file's four Finder type bytes*/

long fcbCatPos; /*catalog hint for use on Close*/

long fcbDirID; /*file's parent directory ID*/

Str31 fcbCName; /*name of file*/

};

typedef struct FCB FCB;

Drive Queue Elements

struct DrvQEl { /*drive queue element*/

QElemPtr qLink; /*next queue entry*/

short qType; /*flag for dQDrvSz and dQDrvSz2*/

short dQDrive; /*drive number*/

short dQRefNum; /*driver reference number*/

short dQFSID; /*file-system identifier*/

C H A P T E R 2

File Manager

2-280 Summary of the File Manager

unsigned short dQDrvSz; /*number of logical blocks on drive*/

unsigned short dQDrvSz2; /*additional field for large drives*/

};

typedef struct DrvQEl DrvQEl;

High-Level File Access Routines

Reading, Writing, and Closing Files

pascal OSErr FSRead (short refNum, long *count, Ptr buffPtr);

pascal OSErr FSWrite (short refNum, long *count, Ptr buffPtr);

pascal OSErr FSClose (short refNum);

Manipulating the File Mark

pascal OSErr GetFPos (short refNum, long *filePos);

pascal OSErr SetFPos (short refNum, short posMode, long posOff);

Manipulating the End-of-File

pascal OSErr GetEOF (short refNum, long *logEOF);

pascal OSErr SetEOF (short refNum, long logEOF);

Allocating File Blocks

pascal OSErr Allocate (short refNum, long *count);

pascal OSErr AllocContig (short refNum, long *count);

Low-Level File Access Routines

Reading, Writing, and Closing Files

pascal OSErr PBRead (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBReadSync (ParmBlkPtr paramBlock);

pascal OSErr PBReadAsync (ParmBlkPtr paramBlock);

pascal OSErr PBWrite (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBWriteSync (ParmBlkPtr paramBlock);

pascal OSErr PBWriteAsync (ParmBlkPtr paramBlock);

pascal OSErr PBClose (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBCloseSync (ParmBlkPtr paramBlock);

pascal OSErr PBCloseAsync (ParmBlkPtr paramBlock);

C H A P T E R 2

File Manager

Summary of the File Manager 2-281

Manipulating the File Mark

pascal OSErr PBGetFPos (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBGetFPosSync (ParmBlkPtr paramBlock);

pascal OSErr PBGetFPosAsync (ParmBlkPtr paramBlock);

pascal OSErr PBSetFPos (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBSetFPosSync (ParmBlkPtr paramBlock);

pascal OSErr PBSetFPosAsync (ParmBlkPtr paramBlock);

Manipulating the End-of-File

pascal OSErr PBGetEOF (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBGetEOFSync (ParmBlkPtr paramBlock);

pascal OSErr PBGetEOFAsync (ParmBlkPtr paramBlock);

pascal OSErr PBSetEOF (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBSetEOFSync (ParmBlkPtr paramBlock);

pascal OSErr PBSetEOFAsync (ParmBlkPtr paramBlock);

Allocating File Blocks

pascal OSErr PBAllocate (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBAllocateSync (ParmBlkPtr paramBlock);

pascal OSErr PBAllocateAsync(ParmBlkPtr paramBlock);

pascal OSErr PBAllocContig (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBAllocContigSync
(ParmBlkPtr paramBlock);

pascal OSErr PBAllocContigAsync
(ParmBlkPtr paramBlock);

Updating Files

pascal OSErr PBFlushFile (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBFlushFileSync(ParmBlkPtr paramBlock);

pascal OSErr PBFlushFileAsync
(ParmBlkPtr paramBlock);

High-Level Volume Access Routines

Unmounting Volumes

pascal OSErr UnmountVol (StringPtr volName, short vRefNum);

pascal OSErr Eject (StringPtr volName, short vRefNum);

C H A P T E R 2

File Manager

2-282 Summary of the File Manager

Updating Volumes

pascal OSErr FlushVol (StringPtr volName, short vRefNum);

Manipulating the Default Volume

pascal OSErr GetVol (StringPtr volName, short *vRefNum);

pascal OSErr SetVol (StringPtr volName, short vRefNum);

pascal OSErr HGetVol (StringPtr volName, short *vRefNum,
long *dirID);

pascal OSErr HSetVol (StringPtr volName, short vRefNum, long dirID);

Obtaining Volume Information

pascal OSErr GetVInfo (short drvNum, StringPtr volName,
short *vRefNum, long *freeBytes);

pascal OSErr GetVRefNum (short refNum, short *vRefNum);

Low-Level Volume Access Routines

Mounting and Unmounting Volumes

pascal OSErr PBMountVol (ParmBlkPtr paramBlock);

pascal OSErr PBUnmountVol (ParmBlkPtr paramBlock);

pascal OSErr PBEject (ParmBlkPtr paramBlock);

pascal OSErr PBOffLine (ParmBlkPtr paramBlock);

Updating Volumes

pascal OSErr PBFlushVol (ParmBlkPtr paramBlock; Boolean async);

pascal OSErr PBFlushVolSync (ParmBlkPtr paramBlock);

pascal OSErr PBFlushVolAsync(ParmBlkPtr paramBlock);

Obtaining Volume Information

pascal OSErr PBHGetVInfo (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHGetVInfoSync(HParmBlkPtr paramBlock);

pascal OSErr PBHGetVInfoAsync
(HParmBlkPtr paramBlock);

pascal OSErr PBSetVInfo (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBSetVInfoSync (HParmBlkPtr paramBlock);

pascal OSErr PBSetVInfoAsync(HParmBlkPtr paramBlock);

pascal OSErr PBHGetVolParms (HParmBlkPtr paramBlock, Boolean async);

C H A P T E R 2

File Manager

Summary of the File Manager 2-283

pascal OSErr PBHGetVolParmsSync
(HParmBlkPtr paramBlock);

pascal OSErr PBHGetVolParmsAsync
(HParmBlkPtr paramBlock);

Manipulating the Default Volume

pascal OSErr PBGetVol (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBGetVolSync (ParmBlkPtr paramBlock);

pascal OSErr PBGetVolAsync (ParmBlkPtr paramBlock);

pascal OSErr PBSetVol (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBSetVolSync (ParmBlkPtr paramBlock);

pascal OSErr PBSetVolAsync (ParmBlkPtr paramBlock);

pascal OSErr PBHGetVol (WDPBPtr paramBlock, Boolean async);

pascal OSErr PBHGetVolSync (WDPBPtr paramBlock);

pascal OSErr PBHGetVolAsync (WDPBPtr paramBlock);

pascal OSErr PBHSetVol (WDPBPtr paramBlock, Boolean async);

pascal OSErr PBHSetVolSync (WDPBPtr paramBlock);

pascal OSErr PBHSetVolAsync (WDPBPtr paramBlock);

File System Specification Routines

Opening Files

pascal OSErr FSpOpenDF (const FSSpec *spec, char permission,
short *refNum);

pascal OSErr FSpOpenRF (const FSSpec *spec, char permission,
short *refNum);

Creating and Deleting Files and Directories

pascal OSErr FSpCreate (const FSSpec *spec, OSType creator,
OSType fileType, ScriptCode scriptTag);

pascal OSErr FSpDirCreate (const FSSpec *spec, ScriptCode scriptTag,
long *createdDirID);

pascal OSErr FSpDelete (const FSSpec *spec);

Accessing Information About Files and Directories

pascal OSErr FSpGetFInfo (const FSSpec *spec, FInfo *fndrInfo);

pascal OSErr FSpSetFInfo (const FSSpec *spec, const FInfo *fndrInfo);

pascal OSErr FSpSetFLock (const FSSpec *spec);

pascal OSErr FSpRstFLock (const FSSpec *spec);

pascal OSErr FSpRename (const FSSpec *spec, ConstStr255Param newName);

C H A P T E R 2

File Manager

2-284 Summary of the File Manager

Moving Files or Directories

pascal OSErr FSpCatMove (const FSSpec *source, const FSSpec *dest);

Exchanging the Data in Two Files

pascal OSErr FSpExchangeFiles
(const FSSpec *source, const FSSpec *dest);

Creating File System Specifications

pascal OSErr FSMakeFSSpec (short vRefNum, long dirID,
ConstStr255Param fileName, FSSpecPtr spec);

pascal OSErr PBMakeFSSpec (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBMakeFSSpecSync
(HParmBlkPtr paramBlock);

pascal OSErr PBMakeFSSpecAsync
(HParmBlkPtr paramBlock);

High-Level HFS Routines

Opening Files

pascal OSErr HOpenDF (short vRefNum, long dirID,
 const Str255 fileName, char permission,
 short *refNum);

pascal OSErr HOpenRF (short vRefNum, long dirID,
 const Str255 fileName, char permission,
 short *refNum);

pascal OSErr HOpen (short vRefNum, long dirID,
 const Str255 fileName, char permission,
 short *refNum);

Creating and Deleting Files and Directories

pascal OSErr HCreate (short vRefNum, long dirID,
 const Str255 fileName, OSType creator,
 OSType fileType);

pascal OSErr DirCreate (short vRefNum, long parentDirID,
 const Str255 directoryName,
 long *createdDirID);

pascal OSErr HDelete (short vRefNum, long dirID,
 const Str255 fileName);

C H A P T E R 2

File Manager

Summary of the File Manager 2-285

Accessing Information About Files and Directories

pascal OSErr HGetFInfo (short vRefNum, long dirID,
 const Str255 fileName, FInfo *fndrInfo);

pascal OSErr HSetFInfo (short vRefNum, long dirID,
 const Str255 fileName, const FInfo *fndrInfo);

pascal OSErr HSetFLock (short vRefNum, long dirID,
 const Str255 fileName);

pascal OSErr HRstFLock (short vRefNum, long dirID,
 const Str255 fileName);

pascal OSErr HRename (short vRefNum, long dirID,
 const Str255 oldName, const Str255 newName);

Moving Files or Directories

pascal OSErr CatMove (short vRefNum, long dirID,
 const Str255 oldName, long newDirID,
 const Str255 newName);

Maintaining Working Directories

pascal OSErr OpenWD (short vRefNum, long dirID, long procID,
short *wdRefNum);

pascal OSErr CloseWD (short wdRefNum);

pascal OSErr GetWDInfo (short wdRefNum, short *vRefNum, long *dirID,
long *procID);

Low-Level HFS Routines

Opening Files

pascal OSErr PBHOpenDF (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHOpenDFSync (HParmBlkPtr paramBlock);

pascal OSErr PBHOpenDFAsync (HParmBlkPtr paramBlock);

pascal OSErr PBHOpenRF (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHOpenRFSync (HParmBlkPtr paramBlock);

pascal OSErr PBHOpenRFAsync (HParmBlkPtr paramBlock);

pascal OSErr PBHOpen (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHOpenSync (HParmBlkPtr paramBlock);

pascal OSErr PBHOpenAsync (HParmBlkPtr paramBlock);

C H A P T E R 2

File Manager

2-286 Summary of the File Manager

Creating and Deleting Files and Directories

pascal OSErr PBHCreate (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHCreateSync (HParmBlkPtr paramBlock);

pascal OSErr PBHCreateAsync (HParmBlkPtr paramBlock);

pascal OSErr PBDirCreate (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBDirCreateSync(HParmBlkPtr paramBlock);

pascal OSErr PBDirCreateAsync
(HParmBlkPtr paramBlock);

pascal OSErr PBHDelete (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHDeleteSync (HParmBlkPtr paramBlock);

pascal OSErr PBHDeleteAsync (HParmBlkPtr paramBlock);

Accessing Information About Files and Directories

pascal OSErr PBGetCatInfo (CInfoPBPtr paramBlock, Boolean async);

pascal OSErr PBGetCatInfoSync
(CInfoPBPtr paramBlock, Boolean async);

pascal OSErr PBGetCatInfoAsync
(CInfoPBPtr paramBlock);

pascal OSErr PBSetCatInfo (CInfoPBPtr paramBlock, Boolean async);

pascal OSErr PBSetCatInfoSync
(CInfoPBPtr paramBlock);

pascal OSErr PBSetCatInfoAsync
(CInfoPBPtr paramBlock);

pascal OSErr PBHGetFInfo (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHGetFInfoSync(HParmBlkPtr paramBlock);

pascal OSErr PBHGetFInfoAsync
(HParmBlkPtr paramBlock);

pascal OSErr PBHSetFInfo (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHSetFInfoSync(HParmBlkPtr paramBlock);

pascal OSErr PBHSetFInfoAsync
(HParmBlkPtr paramBlock);

pascal OSErr PBHSetFLock (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHSetFLockSync(HParmBlkPtr paramBlock);

pascal OSErr PBHSetFLockAsync
(HParmBlkPtr paramBlock);

pascal OSErr PBHRstFLock (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHRstFLockSync(HParmBlkPtr paramBlock);

pascal OSErr PBHRstFLockAsync
(HParmBlkPtr paramBlock);

pascal OSErr PBHRename (HParmBlkPtr paramBlock, Boolean async);

C H A P T E R 2

File Manager

Summary of the File Manager 2-287

pascal OSErr PBHRenameSync (HParmBlkPtr paramBlock);

pascal OSErr PBHRenameAsync (HParmBlkPtr paramBlock);

Moving Files or Directories

pascal OSErr PBCatMove (CMovePBPtr paramBlock, Boolean async);

pascal OSErr PBCatMoveSync (CMovePBPtr paramBlock);

pascal OSErr PBCatMoveAsync (CMovePBPtr paramBlock);

Maintaining Working Directories

pascal OSErr PBOpenWD (WDPBPtr paramBlock, Boolean async);

pascal OSErr PBOpenWDSync (WDPBPtr paramBlock);

pascal OSErr PBOpenWDAsync (WDPBPtr paramBlock);

pascal OSErr PBCloseWD (WDPBPtr paramBlock, Boolean async);

pascal OSErr PBCloseWDSync (WDPBPtr paramBlock);

pascal OSErr PBCloseWDAsync (WDPBPtr paramBlock);

pascal OSErr PBGetWDInfo (WDPBPtr paramBlock, Boolean async);

pascal OSErr PBGetWDInfoSync(WDPBPtr paramBlock);

pascal OSErr PBGetWDInfoAsync
(WDPBPtr paramBlock);

Searching a Catalog

pascal OSErr PBCatSearch (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBCatSearchSync(HParmBlkPtr paramBlock);

pascal OSErr PBCatSearchAsync
(HParmBlkPtr paramBlock);

Exchanging the Data in Two Files

pascal OSErr PBExchangeFiles(HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBExchangeFilesSync
(HParmBlkPtr paramBlock);

pascal OSErr PBExchangeFilesAsync
(HParmBlkPtr paramBlock);

Shared Environment Routines

Opening Files While Denying Access

pascal OSErr PBHOpenDeny (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHOpenDenySync(HParmBlkPtr paramBlock);

C H A P T E R 2

File Manager

2-288 Summary of the File Manager

pascal OSErr PBHOpenDenyAsync
(HParmBlkPtr paramBlock);

pascal OSErr PBHOpenRFDeny (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHOpenRFDenySync
(HParmBlkPtr paramBlock);

pascal OSErr PBHOpenRFDenyAsync
(HParmBlkPtr paramBlock);

Locking and Unlocking File Ranges

pascal OSErr PBLockRange (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBLockRangeSync(ParmBlkPtr paramBlock);

pascal OSErr PBLockRangeAsync
(ParmBlkPtr paramBlock);

pascal OSErr PBUnlockRange (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBUnlockRangeSync
(ParmBlkPtr paramBlock);

pascal OSErr PBUnlockRangeAsync
(ParmBlkPtr paramBlock);

Manipulating Share Points

pascal OSErr PBShare (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBShareSync (HParmBlkPtr paramBlock);

pascal OSErr PBShareAsync (HParmBlkPtr paramBlock);

pascal OSErr PBUnshare (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBUnshareSync (HParmBlkPtr paramBlock);

pascal OSErr PBUnshareAsync (HParmBlkPtr paramBlock);

pascal OSErr PBGetUGEntry (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBGetUGEntrySync
(HParmBlkPtr paramBlock);

pascal OSErr PBGetUGEntryAsync
(HParmBlkPtr paramBlock);

Controlling Directory Access

pascal OSErr PBHGetDirAccess(HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHGetDirAccessSync
(HParmBlkPtr paramBlock);

pascal OSErr PBHGetDirAccessAsync
(HParmBlkPtr paramBlock);

C H A P T E R 2

File Manager

Summary of the File Manager 2-289

pascal OSErr PBHSetDirAccess(HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHSetDirAccessSync
(HParmBlkPtr paramBlock);

pascal OSErr PBHSetDirAccessAsync
(HParmBlkPtr paramBlock);

Mounting Volumes

pascal OSErr PBGetVolMountInfoSize
(ParmBlkPtr paramBlock);

pascal OSErr PBGetVolMountInfo
(ParmBlkPtr paramBlock);

pascal OSErr PBVolumeMount (ParmBlkPtr paramBlock);

Controlling Login Access

pascal OSErr PBHGetLogInInfo(HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHGetLogInInfoSync
(HParmBlkPtr paramBlock);

pascal OSErr PBHGetLogInInfoAsync
(HParmBlkPtr paramBlock);

pascal OSErr PBHMapID (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHMapIDSync (HParmBlkPtr paramBlock);

pascal OSErr PBHMapIDAsync (HParmBlkPtr paramBlock);

pascal OSErr PBHMapName (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHMapNameSync (HParmBlkPtr paramBlock);

pascal OSErr PBHMapNameAsync(HParmBlkPtr paramBlock);

Copying and Moving Files

pascal OSErr PBHCopyFile (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHCopyFileSync(HParmBlkPtr paramBlock);

pascal OSErr PBHCopyFileAsync
(HParmBlkPtr paramBlock);

pascal OSErr PBHMoveRename (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHMoveRenameSync
(HParmBlkPtr paramBlock);

pascal OSErr PBHMoveRenameAsync
(HParmBlkPtr paramBlock);

C H A P T E R 2

File Manager

2-290 Summary of the File Manager

File ID Routines

Resolving File ID References

pascal OSErr PBResolveFileIDRef
(HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBResolveFileIDRefSync
(HParmBlkPtr paramBlock);

pascal OSErr PBResolveFileIDRefAsync
(HParmBlkPtr paramBlock);

Creating and Deleting File ID References

pascal OSErr PBCreateFileIDRef
(HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBCreateFileIDRefSync
(HParmBlkPtr paramBlock);

pascal OSErr PBCreateFileIDRefAsync
(HParmBlkPtr paramBlock);

pascal OSErr PBDeleteFileIDRef
(HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBDeleteFileIDRefSync
(HParmBlkPtr paramBlock);

pascal OSErr PBDeleteFileIDRefAsync
(HParmBlkPtr paramBlock);

Foreign File System Routines

Accessing Privilege Information in Foreign File Systems

pascal OSErr PBGetForeignPrivs
(HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBGetForeignPrivsSync
(HParmBlkPtr paramBlock);

pascal OSErr PBGetForeignPrivsAsync
(HParmBlkPtr paramBlock);

pascal OSErr PBSetForeignPrivs
(HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBSetForeignPrivsSync
(HParmBlkPtr paramBlock);

pascal OSErr PBSetForeignPrivsAsync
(HParmBlkPtr paramBlock);

C H A P T E R 2

File Manager

Summary of the File Manager 2-291

Utility Routines

Obtaining Queue Headers

#define GetFSQHdr() (QHdrPtr);

#define GetVCBQHdr() (QHdrPtr);

#define GetDrvQHdr() (QHdrPtr);

Adding a Drive

pascal void AddDrive (short drvrRefNum, short drvNum, DrvQElPtr qEl);

Obtaining File Control Block Information

pascal OSErr PBGetFCBInfo (FCBPBPtr paramBlock, Boolean async);

pascal OSErr PBGetFCBInfoSync
(FCBPBPtr paramBlock);

pascal OSErr PBGetFCBInfoAsync
(FCBPBPtr paramBlock);

Application-Defined Routine

Completion Routines

pascal void MyCompletionProc(void);

Assembly-Language Summary

Constants

;flags in trap words

hfsBit EQU 9 ;set for an HFS call

asyncTrpBit EQU 10 ;set for an asynchronous call

;masks for flags in trap words

newHFS EQU $200 ;make an HFS call

ASYNC EQU $400 ;make an asynchronous call

C H A P T E R 2

File Manager

2-292 Summary of the File Manager

Data Structures

File System Specification Record

HFS Parameter Block Common Fields

I/O Parameter Variant

File Parameter Variant

0 vRefNum word volume reference number
2 parID long parent directory ID
6 name 64 bytes filename or directory name

0 qLink long next queue entry
4 qType word queue type
6 ioTrap word routine trap
8 ioCmdAddr long routine address

12 ioCompletion long address of completion routine
16 ioResult word result code
18 ioNamePtr long pointer to pathname
22 ioVRefNum word volume specification

24 ioRefNum word file reference number
26 ioVersNum byte version number
27 ioPermssn byte read/write permission
28 ioMisc long miscellaneous
32 ioBuffer long data buffer
36 ioReqCount long requested number of bytes
40 ioActCount long actual number of bytes
44 ioPosMode word positioning mode and newline character
46 ioPosOffset long positioning offset

24 ioFRefNum word file reference number
26 ioFVersNum byte file version number (unused)
27 filler1 byte reserved
28 ioFDirIndex word directory index
30 ioFlAttrib byte file attributes
31 ioFlVersNum byte file version number (unused)
32 ioFlFndrInfo 16 bytes information used by the Finder
48 ioDirID long directory ID or file ID
52 ioFlStBlk word first allocation block of data fork
54 ioFlLgLen long logical end-of-file of data fork
58 ioFlPyLen long physical end-of-file of data fork
62 ioFlRStBlk word first allocation block of resource fork
64 ioFlRLgLen long logical end-of-file of resource fork
68 ioFlRPyLen long physical end-of-file of resource fork
72 ioFlCrDat long date and time of creation
76 ioFlMdDat long date and time of last modification

C H A P T E R 2

File Manager

Summary of the File Manager 2-293

Volume Parameter Variant

Access Variant

Object Variant

Copy Variant

24 filler2 long reserved
28 ioVolIndex word volume index
30 ioVCrDate long date and time of initialization
34 ioVLsMod long date and time of last modification
38 ioVAtrb word volume attributes
40 ioVNmFls word number of files in root directory
42 ioVBitMap word first block of volume bitmap
44 ioAllocPtr word first block of next new file
46 ioVNmAlBlks word number of allocation blocks
48 ioVAlBlkSiz long size of allocation blocks
50 ioVClpSiz long default clump size
54 ioAlBlSt word first block in volume map
56 ioVNxtCNID long next unused node ID
60 ioVFrBlk word number of unused allocation blocks
62 ioVSigWord word volume signature
64 ioVDrvInfo word drive number
66 ioVDRefNum word driver reference number
68 ioVFSID word file-system identifier
70 ioVBkUp long date and time of last backup
74 ioVSeqNum word used internally
76 ioVWrCnt long volume write count
80 ioVFilCnt long number of files on volume
84 ioVDirCnt long number of directories on volume
88 ioVFndrInfo 32 bytes information used by the Finder

24 filler3 word reserved
26 ioDenyModes word access mode information
28 filler4 word reserved
30 filler5 byte reserved
31 ioACUser byte user access rights
32 filler6 long reserved
36 ioACOwnerID long owner ID
40 ioACGroupID long group ID
44 ioACAccess long directory access rights

24 filler7 word reserved
26 ioObjType word function code
28 ioObjNamePtr long pointer to returned creator/group name
32 ioObjID long creator/group ID

24 ioDstVRefNum word destination volume identifier
26 filler8 word reserved
28 ioNewName long pointer to destination pathname
32 ioCopyName long pointer to optional name
36 ioNewDirID long directory ID of destination directory

C H A P T E R 2

File Manager

2-294 Summary of the File Manager

Working Directory Variant

File ID Variant

Catalog Search Variant

Foreign Privileges Variant

24 filler9 word reserved
26 ioWDIndex word working directory’s index
28 ioWDProcID long working directory’s user identifier
32 ioWDVRefNum word working directory’s volume reference number
34 filler10 word reserved
36 filler11 long reserved
40 filler12 long reserved
44 filler13 long reserved
48 ioWDDirID long working directory’s directory ID

24 filler14 long reserved
28 ioDestNamePtr long pointer to destination filename
32 filler15 long reserved
36 ioDestDirID long destination parent directory ID
40 filler16 long reserved
44 filler17 long reserved
48 ioSrcDirID long source parent directory ID
52 filler18 word reserved
54 ioFileID long file ID

24 ioMatchPtr long pointer to array of matches
28 ioReqMatchCount long maximum match count
32 ioActMatchCount long actual match count
36 ioSearchBits long search criteria selector
40 ioSearchInfo1 long pointer to values and lower bounds
44 ioSearchInfo2 long pointer to masks and upper bounds
48 ioSearchTime long time limit on search
52 ioCatPosition 16 bytes catalog position record
68 ioOptBuffer long pointer to optional read buffer
72 ioOptBufSize long length of optional read buffer

24 filler21 long reserved
28 filler22 long reserved
32 ioForeignPrivBuffer long pointer to privileges data buffer
36 ioForeignPrivReqCount long size allocated for buffer
40 ioForeignPrivActCount long amount of buffer used
44 filler23 long reserved
48 ioForeignPrivDirID long parent directory ID of target
52 ioForeignPrivInfo1 long privileges data
56 ioForeignPrivInfo2 long privileges data
60 ioForeignPrivInfo3 long privileges data
64 ioForeignPrivInfo4 long privileges data

C H A P T E R 2

File Manager

Summary of the File Manager 2-295

Catalog Information Parameter Block (Files Variant)

Catalog Information Parameter Block (Directories Variant)

Catalog Position Record

24 ioFRefNum word file reference number
26 ioFVersNum byte version number
27 filler1 byte reserved
28 ioFDirIndex word directory index
30 ioFlAttrib byte file attributes
31 ioACUser byte directory access rights
32 ioFlUsrWds 16 bytes information used by the Finder
48 ioFlNum long file ID
52 ioFlStBlk word first allocation block of data fork
54 ioFlLgLen long logical end-of-file of data fork
58 ioFlPyLen long physical end-of-file of data fork
62 ioFlRStBlk word first allocation block of resource fork
64 ioFlRLgLen long logical end-of-file of resource fork
68 ioFlRPyLen long physical end-of-file of resource fork
72 ioFlCrDat long date and time of creation
76 ioFlMdDat long date and time of last modification
80 ioFlBkDat long date and time of last backup
84 ioFlXFndrInfo 16 bytes additional information used by the Finder

100 ioFlParID long file parent directory ID
104 ioFlClpSiz long file’s clump size

24 ioFRefNum word file reference number
26 ioFVersNum byte version number
27 filler1 byte reserved
28 ioFDirIndex word directory index
30 ioFlAttrib byte directory attributes
31 ioACUser byte directory access rights
32 ioDrUsrWds 16 bytes information used by the Finder
48 ioDrDirID long directory ID
52 ioDrNmFls word number of files in directory
54 filler3 18 bytes reserved
72 ioDrCrDat long date and time of creation
76 ioDrMdDat long date and time of last modification
80 ioDrBkDat long date and time of last backup
84 ioDrFndrInfo 16 bytes additional information used by the Finder

100 ioDrParID long directory’s parent directory ID

0 initialize long starting place for next search
4 priv 12 bytes private data

C H A P T E R 2

File Manager

2-296 Summary of the File Manager

Catalog Move Parameter Block

Working Directory Parameter Block

File Control Block Parameter Block

Volume Attributes Buffer

Volume Mounting Information Record

24 filler1 long reserved
28 ioNewName long pointer to name of new directory
32 filler2 long reserved
36 ioNewDirID long directory ID of new directory
40 filler3 8 bytes reserved
48 ioDirID long directory ID of current directory

24 filler1 word reserved
26 ioWDIndex word working directory’s index
28 ioWDProcID long working directory’s user identifier
32 ioWDVRefNum word working directory’s volume reference number
34 filler2 14 bytes reserved
48 ioWDDirID long working directory’s directory ID

24 ioRefNum word file reference number
26 filler word reserved
28 ioFCBIndx word FCB index
30 ioFCBfiller1 word reserved
32 ioFCBFlNm long file ID
36 ioFCBFlags word flags
38 ioFCBStBlk word first allocation block of file
40 ioFCBEOF long logical end-of-file
44 ioFCBPLen long physical end-of-file
48 ioFCBCrPs long position of the file mark
52 ioFCBVRefNum word volume reference number
54 ioFCBClpSiz long file’s clump size
58 ioFCBParID long parent directory ID

0 vMVersion word version number
2 vMAttrib long volume attributes
6 vMLocalHand long reserved

10 vMServerAdr long network server address
14 vMVolumeGrade long relative speed rating
18 vMForeignPrivID word foreign privilege model

0 length word length of record
2 media 4 bytes type of volume

C H A P T E R 2

File Manager

Summary of the File Manager 2-297

AFP Mounting Information Record

Volume Control Block Data Structure (Internal)

0 length word length of record
2 media 4 bytes type of volume
6 flags word reserved; must be 0
8 nbpInterval byte NBP retry interval
9 nbpCount byte NBP retry count

10 uamType word user authentication method
12 zoneNameOffset word offset to zone name
14 serverNameOffset word offset to server name
16 volNameOffset word offset to volume name
18 userNameOffset word offset to user name
20 userPasswordOffset word offset to user password
22 volPasswordOffset word offset to volume password
24 AFPData 144 bytes mounting data

0 qLink long next queue entry
4 qType word queue type
6 vcbFlags word volume flags
8 vcbSigWord word volume signature

10 vcbCrDate long date and time of initialization
14 vcbLsMod long date and time of last modification
18 vcbAtrb word volume attributes
20 vcbNmFls word number of files in root directory
22 vcbVBMSt word first block of volume bitmap
24 vcbAllocPtr word start of next allocation search
26 vcbNmAlBlks word number of allocation blocks in volume
28 vcbAlBlkSiz long size (in bytes) of allocation block
32 vcbClpSiz long default clump size
36 vcbAlBlSt word first allocation block in volume
38 vcbNxtCNID long next unused catalog node ID
42 vcbFreeBks word number of unused allocation blocks
44 vcbVN 28 bytes volume name preceded by length byte
72 vcbDrvNum word drive number
74 vcbDRefNum word driver reference number
76 vcbFSID word file-system identifier
78 vcbVRefNum word volume reference number
80 vcbMAdr long pointer to block map
84 vcbBufAdr long pointer to volume buffer
88 vcbMLen word number of bytes in block map
90 vcbDirIndex word reserved
92 vcbDirBlk word reserved
94 vcbVolBkUp long date and time of last backup
98 vcbVSeqNum word volume backup sequence number

C H A P T E R 2

File Manager

2-298 Summary of the File Manager

File Control Block Data Structure (Internal)

Drive Queue Elements

100 vcbWrCnt long volume write count
104 vcbXTClpSiz long clump size for extents overflow file
108 vcbCTClpSiz long clump size for catalog file
112 vcbNmRtDirs word number of directories in root directory
114 vcbFilCnt long number of files in volume
118 vcbDirCnt long number of directories in volume
122 vcbFndrInfo 32 bytes information used by the Finder
154 vcbVCSize word reserved
156 vcbVBMCSiz word reserved
158 vcbCtlCSiz word reserved
160 vcbXTAlBks word size in blocks of extents overflow file
162 vcbCTAlBks word size in blocks of catalog file
164 vcbXTRef word file reference number for extents overflow file
166 vcbCTRef word file reference number for catalog file
168 vcbCtlBuf long pointer to extents and catalog tree caches
172 vcbDirIDM long directory last searched
176 vcbOffsM word offspring index at last search

0 fcbFlNum long file ID
4 fcbFlags word file flags
6 fcbSBlk word first allocation block of file
8 fcbEOF long logical end-of-file

12 fcbPLen long physical end-of-file
16 fcbCrPs long current file mark position
20 fcbVPtr long pointer to volume control block
24 fcbBfAdr long pointer to access path buffer
28 fcbFlPos word reserved
30 fcbClmpSize long file’s clump size
34 fcbBTCBPtr long pointer to B*-tree control block
38 fcbExtRec 12 bytes first three file extents
50 fcbFType long file’s four Finder type bytes
54 fcbCatPos long catalog hint for use on close
58 fcbDirID long file’s parent directory ID
62 fcbCName 32 bytes name of open file, preceded by length byte

0 qLink long next queue entry
4 qType word flag for dQDrvSz and dQDrvSz2 fields
6 dQDrive word drive number
8 dQRefNum word driver reference number

10 dQFSID word file-system identifier
12 dQDrvSz word number of logical blocks on drive
14 dQDrvSz2 word additional field for large drives

C H A P T E R 2

File Manager

Summary of the File Manager 2-299

Trap Macros

Trap Macro Names

Pascal name Trap macro name

PBAllocate _Allocate

PBAllocContig _AllocContig

PBClose _Close

PBDirCreate _DirCreate

PBEject _Eject

PBFlushFile _FlushFile

PBFlushVol _FlushVol

PBGetEOF _GetEOF

PBGetFPos _GetFPos

PBGetVol _GetVol

PBHCreate _HCreate

PBHDelete _HDelete

PBHGetFInfo _HGetFileInfo

PBHGetVInfo _HGetVolInfo

PBHGetVol _HGetVol

PBHGetVolParms _GetVolParms

PBHOpen _HOpen

PBHOpenRF _HOpenRF

PBHRename _HRename

PBHRstFLock _HRstFLock

PBHSetFInfo _HSetFileInfo

PBHSetFLock _HSetFLock

PBHSetVol _HSetVol

PBMountVol _MountVol

PBOffLine _OffLine

PBRead _Read

PBSetEOF _SetEOF

PBSetFPos _SetFPos

PBSetVInfo _SetVolInfo

PBSetVol _SetVol

PBUnmountVol _UnmountVol

PBWrite _Write

C H A P T E R 2

File Manager

2-300 Summary of the File Manager

Trap Macros Requiring Routine Selectors

_HFSDispatch

Selector Routine

$0001 PBOpenWD

$0002 PBCloseWD

$0005 PBCatMove

$0006 PBDirCreate

$0007 PBGetWDInfo

$0008 PBGetFCBInfo

$0009 PBGetCatInfo

$000A PBSetCatInfo

$000B PBSetVInfo

$0010 PBLockRange

$0011 PBUnlockRange

$0014 PBCreateFileIDRef

$0015 PBDeleteFileIDRef

$0016 PBResolveFileIDRef

$0017 PBExchangeFiles

$0018 PBCatSearch

$001A PBHOpenDF

$001B PBMakeFSSpec

$0030 PBHGetVolParms

$0031 PBHGetLogInInfo

$0032 PBHGetDirAccess

$0033 PBHSetDirAccess

$0034 PBHMapID

$0035 PBHMapName

$0036 PBHCopyFile

$0037 PBHMoveRename

$0038 PBHOpenDeny

$0039 PBHOpenRFDeny

$003F PBGetVolMountInfoSize

$0040 PBGetVolMountInfo

$0041 PBVolumeMount

$0042 PBShare

$0043 PBUnshare

C H A P T E R 2

File Manager

Summary of the File Manager 2-301

_HighLevelFSDispatch

Global Variables

Result Codes

$0044 PBGetUGEntry

$0060 PBGetForeignPrivs

$0061 PBSetForeignPrivs

Selector Routine

$0001 FSMakeFSSpec

$0002 FSpOpenDF

$0003 FSpOpenRF

$0004 FSpCreate

$0005 FSpDirCreate

$0006 FSpDelete

$0007 FSpGetFInfo

$0008 FSpSetFInfo

$0009 FSpSetFLock

$000A FSpRstFLock

$000B FSpRename

$000C FSpCatMove

$000D FSpOpenResFile

$000E FSpCreateResFile

$000F FSpExchangeFiles

BootDrive word Working directory reference number for startup volume.

DefVCBPtr long Pointer to default volume control block.

DrvQHdr 10 bytes Drive queue header.

FSFCBLen word Size of a file control block.

FSQHdr 10 bytes File I/O queue header.

ToExtFS long Pointer to external file system.

VCBQHdr 10 bytes Volume control block queue header.

noErr 0 No error
notOpenErr –28 AppleTalk is not open
dirFulErr –33 File directory full
dskFulErr –34 All allocation blocks on the volume are full
nsvErr –35 Volume not found

Selector Routine

C H A P T E R 2

File Manager

2-302 Summary of the File Manager

ioErr –36 I/O error
bdNamErr –37 Bad filename or volume name
fnOpnErr –38 File not open
eofErr –39 Logical end-of-file reached
posErr –40 Attempt to position mark before start of file
tmfoErr –42 Too many files open
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
fBsyErr –47 File is busy; one or more files are open; directory not

empty or working directory control block is open
dupFNErr –48 A file with the specified name already exists
opWrErr –49 File already open for writing
paramErr –50 Parameter error
rfNumErr –51 Reference number specifies nonexistent access path;

bad working directory reference number
gfpErr –52 Error during GetFPos
volOfflinErr –53 Volume is offline
permErr –54 Attempt to open locked file for writing
volOnLinErr –55 Specified volume is already mounted and online
nsDrvErr –56 Specified drive number doesn’t match any number

in the drive queue
noMacDskErr –57 Volume lacks Macintosh-format directory
extFSErr –58 External file system
fsRnErr –59 Problem during rename
badMDBErr –60 Bad master directory block
wrPermErr –61 Read/write permission doesn’t allow writing
memFullErr –108 Insufficient memory available
dirNFErr –120 Directory not found
tmwdoErr –121 Too many working directories open
badMovErr –122 Attempted to move into offspring
wrgVolTypErr –123 Not an HFS volume
volGoneErr –124 Server volume has been disconnected
fsDSIntErr –127 Internal file system error
fidNotFoundErr –1300 File ID not found
fidExists –1301 File ID already exists
notAFileErr –1302 Specified file is a directory
diffVolErr –1303 Files are on different volumes
catChangedErr –1304 Catalog has changed and catalog position record

may be invalid
sameFileErr –1306 Files are the same
afpAccessDenied –5000 The operation has failed because the user does not

have the correct access to the file or folder
afpBadUAM –5002 User authentication method is unknown
afpBadVersNum –5003 Workstation is using an AFP version that the server

doesn’t recognize
afpDenyConflict –5006 The operation has failed because the permission or

deny mode conflicts with the mode in which the
fork has already been opened

afpNoMoreLocks –5015 Byte range locking has failed because the server
cannot lock any additional ranges

afpNoServer –5016 Server is not responding

C H A P T E R 2

File Manager

Summary of the File Manager 2-303

afpRangeNotLocked –5020 User has attempted to unlock a range that was not
locked by that user

afpRangeOverlap –5021 User attempted to lock some or all of a range that is
already locked

afpUserNotAuth –5023 User authentication failed (usually, password is
not correct)

afpObjectTypeErr –5025 Object was a file, not a directory; or, this directory is
not a share point

afpContainsSharedErr –5033 The directory contains a share point
afpIDNotFound –5034 File ID not found
afpIDExists –5035 File ID already exists
afpCatalogChanged –5037 Catalog has changed and search cannot be resumed
afpSameObjectErr –5038 Source and destination are the same
afpBadIDErr –5039 Bad file ID
afpPwdExpired –5042 Password has expired on server
afpInsideSharedErr –5043 The directory is inside a shared directory
afpBadDirIDType –5060 Not a fixed directory ID volume
afpCantMountMoreSrvrs –5061 Maximum number of volumes have been mounted
afpAlreadyMounted –5062 Volume already mounted
afpSameNodeErr –5063 Attempt to log on to a server running on the

same machine

Contents 3-1

C H A P T E R 3

Contents

Standard File Package

About the Standard File Package 3-3

Standard User Interfaces 3-4

Opening Files 3-4

Saving Files 3-5

Keyboard Equivalents 3-7

Customized User Interfaces 3-8

Saving Files 3-8

Opening Files 3-9

Selecting Volumes and Directories 3-10

User Interface Guidelines 3-12

Using the Standard File Package 3-13

Presenting the Standard User Interface 3-14

Customizing the User Interface 3-16

Customizing Dialog Boxes 3-17

Writing a File Filter Function 3-20

Writing a Dialog Hook Function 3-21

Writing a Modal-Dialog Filter Function 3-28

Writing an Activation Procedure 3-30

Setting the Current Directory 3-31

Selecting a Directory 3-34

Selecting a Volume 3-38

Using the Original Procedures 3-40

Standard File Package Reference 3-41

Data Structures 3-41

Enhanced Standard File Reply Record 3-42

Original Standard File Reply Record 3-43

Standard File Package Routines 3-44

Saving Files 3-44

Opening Files 3-49

C H A P T E R 3

3-2 Contents

Application-Defined Routines 3-55

File Filter Functions 3-55

Dialog Hook Functions 3-56

Modal-Dialog Filter Functions 3-57

Activation Procedures 3-59

Summary of the Standard File Package 3-60

Pascal Summary 3-60

Constants 3-60

Data Types 3-62

Standard File Package Routines 3-63

Application-Defined Routines 3-64

C Summary 3-64

Constants 3-64

Data Types 3-66

Standard File Package Routines 3-67

Application-Defined Routines 3-68

Assembly-Language Summary 3-69

Data Structures 3-69

Trap Macros 3-69

Global Variables 3-69

C H A P T E R 3

About the Standard File Package 3-3

Standard File Package

This chapter describes how your application can use the Standard File Package to

manage the user interface for naming and identifying files. The Standard File Package

displays the dialog boxes that let the user specify the names and locations of files to be

saved or opened, and it reports the user’s choices to your application.

The Standard File Package supports both standard and customized dialog boxes. The

standard dialog boxes are sufficient for applications that do not require additional

controls or other elements in the user interface. The chapter “Introduction to File

Management” earlier in this book provides a detailed description of how to display

the standard dialog boxes by calling two of the enhanced Standard File Package

routines introduced in system software version 7.0. You need to read this chapter if

your application needs to use features not described in that earlier chapter (such as

customized dialog boxes or a special file filter function). You also need to read this

chapter if you want your application to run in an environment where the new routines

are not available and your development system does not provide glue code that allows

you to call the enhanced routines in earlier system software versions.

To use this chapter, you should be familiar with the Dialog Manager, the Control

Manager, and the Finder. You need to know about the Dialog Manager if you want to

provide a modal-dialog filter function that handles events received from the Event

Manager before they are passed to the ModalDialog procedure (which the Standard

File Package uses to manage both standard and customized dialog boxes). You need to

know about the Control Manager if you want to customize the user interface by adding

controls (such as radio buttons or pop-up menus). You need to know about the Finder

if your application supports stationery documents. See the appropriate chapters in

Inside Macintosh: Macintosh Toolbox Essentials for specific information about these system

software components.

This chapter provides an introduction to the Standard File Package and then discusses

■ how you can display the standard file selection dialog boxes

■ how the Standard File Package interprets user actions in those dialog boxes

■ how to manage customized dialog boxes

■ how to set the directory whose contents are listed in a dialog box

■ how to allow the user to select a volume or directory

■ how to use the original Standard File Package routines

About the Standard File Package

Macintosh applications typically have a File menu from which the user can save and

open documents, via the Save, Save As, and Open commands. When the user chooses

Open to open an existing document, your application needs to determine which

document to open. Similarly, when the user chooses Save As, or Save when the

document is untitled, your application needs to ask the user for the name and location

of the file in which the document is to be saved.

C H A P T E R 3

Standard File Package

3-4 About the Standard File Package

The Standard File Package provides a number of routines that handle the user interface

between the user and your application when the user saves or opens a document. It

displays dialog boxes through which the user specifies the name and location of the

document to be saved or opened. It also allows your application to customize the dialog

boxes and, through callback routines, to handle user actions during the dialogs. The

Standard File Package procedures return information about the user’s choices to your

application through a reply record.

The Standard File Package is available in all versions of system software. However,

significant improvements were made to the package in system software version 7.0. The

Standard File Package in version 7.0 introduces

■ a pair of simplified procedures (StandardGetFile and StandardPutFile) that
you call to display and handle the standard Open and Save dialog boxes

■ a pair of customizable procedures (CustomGetFile and CustomPutFile) that you
call when you need more control over the interaction

■ a new reply record (StandardFileReply) that identifies files and folders with a file
system specification record and that accommodates the new Finder features
introduced in system software version 7.0

■ a new layout for the standard dialog boxes

This section describes in detail the standard and customized user interfaces provided by

the enhanced Standard File Package in system software version 7.0 and later. If your

application is to run in earlier system software versions as well, you should read the

section “Using the Original Procedures” on page 3-40.

IMPORTANT

If you use the enhanced routines introduced in system software
version 7.0, you must also support the Open Documents Apple event. ▲

Standard User Interfaces
If your application has no special interface requirements, you can use the

StandardGetFile and StandardPutFile procedures to display the standard dialog

boxes for opening and saving documents.

Opening Files

You use the StandardGetFile procedure when you want to let the user select a file to

be opened. Figure 3-1 illustrates a sample dialog box displayed by StandardGetFile.

The directory whose contents are listed in the display list in the dialog box displayed by

StandardGetFile is known as the current directory. In Figure 3-1, the current

directory is named “Tropical.” The user can change the current directory in several ways.

To ascend the directory hierarchy from the current directory, the user can click the

directory pop-up menu and select a new directory from among those in the menu. To

ascend one level of the directory hierarchy, the user can click the volume icon. To ascend

immediately to the top of the directory hierarchy, the user can click the Desktop button.

C H A P T E R 3

Standard File Package

About the Standard File Package 3-5

Figure 3-1 The default Open dialog box

To descend the directory hierarchy, the user can double-click any of the folder names in

the list (or select a folder by clicking its name once and then clicking the Open button).

Whenever the current directory changes, the list of folders and files is updated to reflect

the contents of the new current directory.

The volume on which the current directory is located is the current volume (or current
disk), whose name is displayed to the right of the directory pop-up menu. If the current

volume is a removable volume, the Eject button is active. The user can click Eject to eject

the current volume and insert another, which then becomes the current volume. If the

user inserts an uninitialized or otherwise unreadable disk, the Standard File Package

calls the Disk Initialization Manager to provide the standard user interface for

initializing and naming a disk. See the chapter “Disk Initialization Manager” in this

book for details.

Note that the list of files and folders always contains all folders in the current

directory, but it might not contain all files in the current directory. When you call

StandardGetFile, you can supply a list of the file types that your application

can open. The StandardGetFile procedure then displays only files of the specified

types. You can also supply your own file filter function to help determine which files

are displayed. (See “Writing a File Filter Function” on page 3-20 for details.)

When the user is opening a document, StandardGetFile interprets some keystrokes

as selectors in the displayed list. If the user presses A, for example, StandardGetFile

selects the first item in the list that starts with the letter a (or, if no items in the list start

with the letter a, the item that starts with the letter closest to a). The Standard File

Package sets a timer on keystrokes: keystrokes in rapid succession form a string;

keystrokes spaced in time are processed separately. See “Keyboard Equivalents” on

page 3-7 for a complete list of keyboard equivalents recognized by StandardGetFile.

Saving Files

You use the StandardPutFile procedure when you want to let the user specify a

name and location for a file to be saved. Figure 3-2 illustrates a sample dialog box

displayed by StandardPutFile.

C H A P T E R 3

Standard File Package

3-6 About the Standard File Package

Figure 3-2 The default Save dialog box

The dialog box displayed by StandardPutFile is similar to that displayed by

StandardGetFile, but includes three additional items. The Save dialog box

includes a filename field in which the user can type the name under which to save

the file. This filename field is a TextEdit field that permits all the standard editing

operations (cut, copy, paste, and so forth). Above the filename field is a line of text

specified by your application.

When the user is saving a document, StandardPutFile can direct keystrokes to either

of two targets: the filename field or the displayed list. When the dialog box first appears,

keystrokes are directed to the filename field. If the user presses the Tab key or clicks to

select an item in the displayed list, subsequent keystrokes are interpreted as selectors in

the displayed list. Each time the user presses the Tab key, keyboard input shifts between

the two targets.

The third additional item in the Save dialog is the New Folder button. When the user

clicks the New Folder button, the Standard File Package presents a subsidiary dialog

box like the one shown in Figure 3-3.

Figure 3-3 The New Folder dialog box

C H A P T E R 3

Standard File Package

About the Standard File Package 3-7

If the user asks to save a file under a name that already exists at the specified location,

the Standard File Package displays a subsidiary dialog box to verify that the new file

should replace the existing file, as illustrated in Figure 3-4.

Figure 3-4 The name conflict dialog box

The StandardGetFile and StandardPutFile procedures always display the new

dialog boxes. The procedures available before version 7.0 (SFGetFile, SFPutFile,

SFPGetFile, and SFPPutFile) also display the new dialog boxes when running in

version 7.0, unless your application has customized the dialog box. For more details on

how the version 7.0 Standard File Package handles earlier procedures, see “Using the

Original Procedures” on page 3-40.

Keyboard Equivalents

The Standard File Package recognizes a long list of keyboard equivalents during dialogs.

Keystrokes Action

Up Arrow Scroll up (backward) through displayed list

Down Arrow Scroll down (forward) through displayed list

Command–Up Arrow Display contents of parent directory

Command–Down Arrow Display contents of selected directory or volume

Command–Left Arrow Display contents of previous volume

Command–Right Arrow Display contents of next volume

Command–Shift–Up Arrow Display contents of desktop

Command-Shift-1 Eject disk in drive 1

Command-Shift-2 Eject disk in drive 2

Tab Move to next keyboard target

Return or Enter Invoke the default option for the dialog box
(Open or Save)

Escape or Command-. Cancel

Command-O Open the selected item

Command-D Display contents of desktop

Command-N Create a new folder

Option-Command-O or
Option-[click Open]

Select the target of the selected alias item instead
of opening it

C H A P T E R 3

Standard File Package

3-8 About the Standard File Package

When the user uses a keyboard equivalent to select a button in the dialog box, the

button blinks.

Customized User Interfaces
The standard user interfaces provided by the StandardGetFile and StandardPutFile

procedures might not be adequate for the needs of certain applications. To handle such

cases, the Standard File Package provides several routines that you can use to present a

customized user interface when opening or saving files. This section gives some simple

examples of how you might want to customize the user interfaces and suggests some

guidelines you should follow when doing so.

IMPORTANT

You should alter the standard user interfaces only if necessary. Apple
Computer, Inc., does not guarantee future compatibility for your
application if you use a customized dialog box. ▲

Saving Files

Perhaps the most common reason to customize one of the Standard File Package dialog

boxes is to allow the user to save a document in one of several file formats supported by

the application. For example, a word-processing application might let the user save a

document in the application’s own format, in an interchange format, as a file of type

'TEXT', and so on.

It is usually best to allow the user to select a file format from within the dialog box

displayed in response to a Save or Save As menu command. To do this, you need to

add items to the standard dialog box and process user actions in those new items.

If your application supports only a few file formats, you could simply add the required

number of radio buttons to the standard dialog box, as illustrated in Figure 3-5. The

application presenting this dialog box supports only two file formats, its own proprietary

format (SurfDraw) and the format used for startup screens.

Figure 3-5 The Save dialog box customized with radio buttons

C H A P T E R 3

Standard File Package

About the Standard File Package 3-9

If your application supports more than a couple of alternate file formats, you could add a

pop-up menu, as shown in Figure 3-6.

Figure 3-6 The Save dialog box customized with a pop-up menu

Opening Files

Your application might also allow the user to open a number of different types of files. In

this case, there is less need to customize the Open dialog box than the Save dialog box

because you can simply list all the kinds of files your application supports. To avoid clutter

in the list of files and folders, however, you might wish to filter out all but one of those

types. In this way, the user can dynamically select which type of file to view in the list.

Once again, you might accomplish this by adding radio buttons or a pop-up menu to

the Open dialog box, depending on the number of different file types your application

supports. Figure 3-7 illustrates a customized Open dialog box that contains a pop-up

menu. Only files of the indicated type (and, of course, folders) appear in the list of items

available to open.

Figure 3-7 The Open dialog box customized with a pop-up menu

C H A P T E R 3

Standard File Package

3-10 About the Standard File Package

For details on some techniques you can use to add items to the standard user interface

and process user actions with those additional items, see “Customizing the User

Interface” on page 3-16. Note in particular that Listing 3-3, Listing 3-8, and Listing 3-9

together provide a fairly complete implementation of the pop-up menu illustrated in

Figure 3-7.

Note

Remember that the user might also open one of your application’s
documents from the Finder (by double-clicking its icon, for example). As
a result, you should in general avoid customizing the Open dialog box
for files. ◆

Selecting Volumes and Directories

Sometimes you need to allow the user to select a directory or a volume, not a file. For

example, the user might want to select a directory as a first step in searching all the files

in the directory for some important information. Similarly, the user might need to select

a volume before backing up all the files on that volume.

The standard Open dialog box, however, is designed for selecting files, not volumes or

directories. When the user selects a volume or directory from the items in the displayed

list and clicks the Open button, the volume or directory is opened and its contents are

displayed in the list. The standard Open dialog boxes provide no obvious mechanism for

choosing a selected directory instead of opening it.

To allow the user to select a directory—including the volume’s root directory, the volume

itself—you can add an additional button to the standard Open dialog box. By clicking

this button, the user can select a highlighted directory, not open it. This button gives the

user an obvious way to select a directory while preserving the well-known mechanism

for opening directories to search for the desired directory. Figure 3-8 illustrates the

standard Open dialog box modified to include a Select button and a prompt informing

the user of the type of action required.

Figure 3-8 The Open dialog box customized to allow selection of a directory

C H A P T E R 3

Standard File Package

About the Standard File Package 3-11

The Select button should display the name of the directory that is selected if the user

clicks the button. This, together with the prompt displayed at the top of the dialog box,

helps the user differentiate this directory selection dialog box from the standard file

opening dialog box. All the other items in the dialog box should maintain their standard

appearance and behavior. Any existing keyboard equivalents (in particular, the use of

Return and Enter to select the default button) should be preserved. Command-S is

recommended as a keyboard equivalent for the new Select button, paralleling the use of

Command-D to select the Desktop button and Command-O to select the Open button.

To help maintain consistency among applications using this scheme for selecting

directories, your application should open the folder displayed in the pop-up menu if

there is no selected item and the user clicks the Select button. In addition, you should

disable the Open button if no directory is currently selected. Figure 3-9 illustrates the

recommended appearance of the directory selection dialog box in this case.

Figure 3-9 The Open dialog box when no directory is selected

If the name of the directory is too long to fit in the Select button, you should abbreviate

the name using an ellipsis character, as shown in Figure 3-10.

Figure 3-10 The Open dialog box with a long directory name abbreviated

C H A P T E R 3

Standard File Package

3-12 About the Standard File Package

See “Selecting a Directory” beginning on page 3-34 for details on how you can create and

manage a directory selection dialog box.

The directory selection dialog boxes illustrated here allow the user to specify the root

directory in a volume, which effectively selects the volume itself. However, you might

want to limit the user’s selections to the available volumes. To do that, you can create a

volume selection dialog box, shown in Figure 3-11.

Figure 3-11 A volume selection dialog box

Notice that the volume selection dialog box uses a prompt specific to selecting a volume

and that the Open button is now a Select button. There is no need for a separate Select

button, because the user should not be allowed to open any of the listed volumes. (For

this same reason, the pop-up menu should not pop up if clicked.) See “Selecting a

Volume” on page 3-38 for instructions on implementing a volume selection dialog box.

User Interface Guidelines

In general, you should customize the user interface only if necessary. If you do modify

the standard dialog boxes presented by the Standard File Package, you should keep

these user interface guidelines in mind:

■ Customize a dialog box only by adding items to the standard dialog boxes. Avoid
removing existing items from the standard boxes or altering the operation of existing
items. In particular, you should avoid modifying the keyboard equivalents recognized
by the Standard File Package.

■ Add only those items that are necessary for your application to complete the
requested action successfully. Avoid adding items that provide unnecessary
information or items that provide no information at all (such as logos, icons, or
other “window-dressing”).

■ Whenever possible, use controls such as radio buttons or pop-up menus whose effects
are visible within the dialog box itself. Avoid controls whose use calls subsidiary
modal dialog boxes that the user must dismiss before continuing.

■ Use controls or other items that are already familiar to the user. Avoid using
customized controls that are not also used elsewhere in your application.

C H A P T E R 3

Standard File Package

Using the Standard File Package 3-13

Your overriding concern should be to make the customized file identification dialog

boxes in your application as similar to the standard dialog boxes as possible while

providing the additional capabilities you need.

Using the Standard File Package

You use the Standard File Package to handle the user interface when the user must

specify a file to be saved or opened. You typically call the Standard File Package after

the user chooses Save, Save As, or Open from the File menu.

When saving a document, you call one of the PutFile procedures; when opening a

document, you call one of the GetFile procedures. The Standard File Package in

version 7.0 introduces two pairs of enhanced procedures:

■ StandardPutFile and StandardGetFile, for presenting the standard interface

■ CustomPutFile and CustomGetFile, for presenting a customized interface

Before calling the enhanced Standard File Package procedures, verify that they are

available by calling the Gestalt function with the gestaltStandardFileAttr

selector. If Gestalt sets the gestaltStandardFile58 bit in the reply, the four

enhanced procedures are available.

If the enhanced procedures are not available, you need to use the original Standard File

Package procedures that are available in all system software versions:

■ SFPutFile and SFGetFile, for presenting the standard interface

■ SFPPutFile and SFPGetFile, for presenting a customized interface

This section focuses on the enhanced procedures introduced in system software

version 7.0. If you need to use the original procedures, see “Using the Original

Procedures” on page 3-40. You can adapt most of the techniques shown in this section

for use with the original procedures. In general, however, the original procedures are

slightly harder to use and somewhat less powerful than their enhanced counterparts.

All the enhanced procedures return the results of the dialog boxes in a new reply record,

StandardFileReply.

TYPE StandardFileReply =
RECORD

sfGood: Boolean; {TRUE if user did not cancel}
sfReplacing: Boolean; {TRUE if replacing file with same name}
sfType: OSType; {file type}
sfFile: FSSpec; {selected file, folder, or volume}
sfScript: ScriptCode; {script of file, folder, or volume name}
sfFlags: Integer; {Finder flags of selected item}
sfIsFolder: Boolean; {selected item is a folder}
sfIsVolume: Boolean; {selected item is a volume}
sfReserved1: LongInt; {reserved}
sfReserved2: Integer; {reserved}

END;

C H A P T E R 3

Standard File Package

3-14 Using the Standard File Package

The reply record identifies selected files with a file system specification (FSSpec) record.

You can pass the FSSpec record directly to the File Manager functions that recognize

FSSpec records, such as FSpOpenDF or FSpCreate. The reply record also contains

additional fields that support the Finder features introduced in system software

version 7.0.

The sfGood field reports whether the reply record is valid—that is, whether your

application can use the information in the other fields. The field is set to TRUE after the

user clicks Save or Open, and to FALSE after the user clicks Cancel.

Your application needs to look primarily at the sfFile and sfReplacing fields when

the sfGood field contains TRUE. The sfFile field contains a file system specification

record that describes the selected file or folder. If the selected file is a stationery pad, the

reply record describes the file itself, not a copy of the file.

The sfReplacing field reports whether a file to be saved replaces an existing file

of the same name. This field is valid only after a call to the StandardPutFile or

CustomPutFile procedure. Your application can rely on the value of this field instead

of checking for and handling name conflicts itself.

Note

See “Enhanced Standard File Reply Record” on page 3-42 for a complete
description of the fields of the StandardFileReply record. ◆

The Standard File Package fills in the reply record and returns when the user completes

one of its dialog boxes—either by selecting a file and clicking Save or Open, or by

clicking Cancel. Your application checks the values in the reply record to see what action

to take, if any. If the selected item is an alias for another item, the Standard File Package

resolves the alias and places a file system specification record for the target in the

sfFile field when the user completes the dialog box. (See the chapter “Finder

Interface” of Inside Macintosh: Macintosh Toolbox Essentials for a description of aliases.)

Presenting the Standard User Interface
You can use the standard dialog boxes provided by the Standard File Package to prompt

the user for the name of a file to open or a filename and location to use when saving a

document. Use StandardGetFile to present the standard interface when opening a

file and StandardPutFile to present the standard interface when saving a file.

Listing 3-1 illustrates how your application can use StandardGetFile to elicit a file

specification after the user chooses Open from the File menu.

Listing 3-1 Handling the Open menu command

FUNCTION DoOpenCmd: OSErr;

VAR

myReply: StandardFileReply; {Standard File reply record}

myTypes: SFTypeList; {types of files to display}

myErr: OSErr;

C H A P T E R 3

Standard File Package

Using the Standard File Package 3-15

BEGIN

myTypes[0] := 'TEXT'; {display text files only}

StandardGetFile(NIL, 1, myTypes, myReply);

IF myReply.sfGood THEN

myErr := DoOpenFile(myReply.sfFile)

ELSE

myErr := UsrCanceledErr;

DoOpenCmd := myErr;

END;

If the user dismisses the dialog box by clicking the Open button, the reply record field

myReply.sfGood is set to TRUE; in that case, the function defined in Listing 3-1 calls

the application-defined function DoOpenFile, passing it the file system specification

record contained in the reply record. For a sample definition of the DoOpenFile

function, see the chapter “Introduction to File Management” in this book.

The third parameter to StandardGetFile is a list of file types that are to appear in the

list of files and folders; the second parameter is the number of items in that list of file

types. The list of file types is of type SFTypeList.

TYPE SFTypeList = ARRAY[0..3] OF OSType;

If you need to display more than four types of files, you can define a new data type that

is large enough to hold all the types you need. For example, you can define the data type

MyTypeList to hold ten file types:

TYPE MyTypeList = ARRAY[0..9] OF OSType;

MyTListPtr = ^MyTypeList;

Listing 3-2 shows how to call StandardGetFile using an expanded type list.

Listing 3-2 Specifying more than four file types

FUNCTION DoOpenCmd: OSErr;

VAR

myReply: StandardFileReply; {Standard File reply record}

myTypes: MyTypeList; {types of files to display}

myErr: OSErr;

BEGIN

myTypes[0] := 'TEXT'; {first file type to display}

{Put other assignments here.}

myTypes[9] := 'RTFT'; {tenth file type to display}

StandardGetFile(NIL, 1, MyTListPtr(myTypes)^, myReply);

IF myReply.sfGood THEN

myErr := DoOpenFile(myReply.sfFile)

C H A P T E R 3

Standard File Package

3-16 Using the Standard File Package

ELSE

myErr := UsrCanceledErr;

DoOpenCmd := myErr;

END;

Note

To display all file types in the dialog box, pass –1 as the second
parameter. Invisible files and folders are not shown in the dialog box
unless you pass –1 in that parameter. If you pass –1 as the second
parameter when calling CustomGetFile, the dialog box also lists
folders; this is not true when you call StandardGetFile. ◆

The first parameter passed to StandardGetFile is the address of a file filter function,

a function that helps determine which files appear in the list of files to open. (In

Listing 3-1, this address is NIL, indicating that all files of the specified type are to be

listed.) See “Writing a File Filter Function” on page 3-20 for details on defining a filter

function for use with StandardGetFile.

Customizing the User Interface
If your application requires it, you can customize the user interface for identifying files.

To customize a dialog box, you should

■ design your dialog box and create the resources that describe it

■ write callback routines, if necessary, to process user actions in the dialog box

■ call the Standard File Package using the CustomPutFile and CustomGetFile
procedures, passing the resource IDs of the customized dialog boxes and pointers to
the callback routines

Depending on the level of customizing you require in your dialog box, you may need to

write as many as four different callback routines:

■ a file filter function for determining which files the user can open

■ a dialog hook function for handling user actions in the dialog boxes

■ a modal-dialog filter function for handling user events received from the
Event Manager

■ an activation procedure for highlighting the display when keyboard input is directed
at a customized field defined by your application

To provide the interface illustrated in Figure 3-7, for example, you could replace the

definition of DoOpenCmd given earlier in Listing 3-1 by the definition given in Listing 3-3.

In addition to the information passed to StandardGetFile, CustomGetFile requires

the resource ID of the customized dialog box, the location of the dialog box on the

screen, and pointers to any callback routines and private data you are using.

C H A P T E R 3

Standard File Package

Using the Standard File Package 3-17

Listing 3-3 Presenting a customized Open dialog box

FUNCTION DoOpenCmd: OSErr;

VAR

myReply: StandardFileReply; {Standard File reply record}

myTypes: SFTypeList; {types of files to display}

myPoint: Point; {upper-left corner of box}

myErr: OSErr;

CONST

kCustomGetDialog = 4000; {resource ID of custom dialog}

BEGIN

myErr := noErr;

SetPt(myPoint, -1, -1); {center the dialog}

myTypes[0] := 'SRFD'; {SurfDraw files}

myTypes[1] := 'STUP'; {startup screens}

myTypes[2] := 'PICT'; {picture files}

myTypes[3] := 'RTFT'; {rich text format}

CustomGetFile(@MyCustomFileFilter, 4, myTypes, myReply,

kCustomGetDialog, myPoint, @MyDlgHook,

NIL, NIL, NIL, NIL);

IF myReply.sfGood THEN

myErr := DoOpenFile(myReply.sfFile);

DoOpenCmd := myErr;

END;

In Listing 3-3, CustomGetFile is passed two callback routines, a file filter function

(MyCustomFileFilter) and a dialog hook function (MyDlgHook). See Listing 3-8

(page 3-21) and Listing 3-9 (page 3-27) for sample definitions of these functions.

You can also supply data of your own to the callback routines through a new parameter,

yourDataPtr, which you pass to CustomGetFile and CustomPutFile.

Customizing Dialog Boxes

To describe a dialog box, you supply a 'DLOG' resource that defines the box itself and a

'DITL' resource that defines the items in the dialog box.

Listing 3-4 shows the resource definition of the default Open dialog box, in Rez input

format. (Rez is the resource compiler provided with Apple’s Macintosh Programmer’s

Workshop [MPW]. For a description of Rez format, see the manual that accompanies the

MPW software, MPW: Macintosh Programmer’s Development Environment.)

C H A P T E R 3

Standard File Package

3-18 Using the Standard File Package

Listing 3-4 The definition of the default Open dialog box

resource 'DLOG' (-6042, purgeable)

{

{0, 0, 166, 344}, dBoxProc, invisible, noGoAway, 0,

 –6042, "", noAutoCenter

};

Listing 3-5 shows the resource definition of the default Save dialog box, in Rez

input format.

Listing 3-5 The definition of the default Save dialog box

resource 'DLOG' (-6043, purgeable)

{

{0, 0, 188, 344}, dBoxProc, invisible, noGoAway, 0,

 –6043, "", noAutoCenter

};

Note

You can also use the stand-alone resource editor ResEdit, available from
Apple Computer, Inc., or other resource-editing utilities available from
third-party developers to create customized dialog box and dialog item
list resources. ◆

You must provide an item list (in a 'DITL' resource with the ID specified in the

'DLOG' resource) for each dialog box you define. Add new items to the end of the

default lists. CustomGetFile expects the first 9 items in a customized dialog box to

have the same functions as the corresponding items in the StandardGetFile dialog

box; CustomPutFile expects the first 12 items to have the same functions as the

corresponding items in the StandardPutFile dialog box. If you want to eliminate

one of the standard items from the display, leave it in the item list but place its

coordinates outside the bounds of the dialog box rectangle.

Listing 3-6 shows the dialog item list for the default Open dialog box, in Rez input

format. See “Writing a Dialog Hook Function” beginning on page 3-21 for a list of the

dialog box elements these items represent.

Listing 3-6 The item list for the default Open dialog box

resource 'DITL'(-6042)

{ {

{135, 252, 155, 332}, Button { enabled, "Open" },

{104, 252, 124, 332}, Button { enabled, "Cancel" },

{0, 0, 0, 0}, HelpItem { disabled, HMScanhdlg {-6042}},

{8, 235, 24, 337}, UserItem { enabled },

C H A P T E R 3

Standard File Package

Using the Standard File Package 3-19

{32, 252, 52, 332}, Button { enabled, "Eject" },

{60, 252, 80, 332}, Button { enabled, "Desktop" },

{29, 12, 159, 230}, UserItem { enabled },

{6, 12, 25, 230}, UserItem { enabled },

{91, 251, 92, 333}, Picture { disabled, 11 },

} };

Listing 3-7 shows the dialog item list for the default Save dialog box, in Rez input format.

Listing 3-7 The item list for the default Save dialog box

resource 'DITL'(-6043)

{ {

{161, 252, 181, 332}, Button { enabled, "Save" },

{130, 252, 150, 332}, Button { enabled, "Cancel" },

{0, 0, 0, 0}, HelpItem { disabled, HMScanhdlg {-6043}},

{8, 235, 24, 337}, UserItem { enabled },

{32, 252, 52, 332}, Button { enabled, "Eject" },

{60, 252, 80, 332}, Button { enabled, "Desktop" },

{29, 12, 127, 230}, UserItem { enabled },

{6, 12, 25, 230}, UserItem { enabled },

{119, 250, 120, 334}, Picture { disabled, 11 },

{157, 15, 173, 227}, EditText { enabled, "" },

{136, 15, 152, 227}, StaticText { disabled, "Save as:" },

{88, 252, 108, 332}, UserItem { disabled },

} };

The third item in each list (HelpItem) supplies Apple’s Balloon Help for items in the

dialog box. This third item specifies the resource ID of the 'hdlg' resource that contains

the help strings for the standard dialog items. If you want to modify the help text of an

existing dialog item, you should copy the original 'hdlg' resource from the System

file into your application’s resource fork and modify the text in the copied resource as

desired; then you must change the resource ID specified in HelpItem to the resource ID

of the copied and modified resource. To provide Balloon Help for your own items,

supply a second 'hdlg' resource and reference it with another help item at the end

of the list. The existing items retain their default text (unless you change that text,

as described).

The default dialog item lists used by the original Standard File Package routines do not

contain help items, but the Standard File Package does provide Balloon Help when you

call those routines in system software version 7.0 and later. If you call one of the original

routines and the specified dialog item list does not contain any help items, the Standard

File Package uses its default help text for the standard dialog items. If, however, the

dialog item list does contain a help item, the Standard File Package assumes that your

application provides the text for all help items, including the standard dialog items.

C H A P T E R 3

Standard File Package

3-20 Using the Standard File Package

Note

The default Standard File Package dialog boxes support color. The
System file contains 'dctb' resources with the same resource IDs as
the default dialog boxes, so that the Dialog Manager uses color graphics
ports for the default dialog boxes. (See the chapter “Dialog Manager”
of Inside Macintosh: Macintosh Toolbox Essentials for a description of
the 'dctb' resource.) If you create your own dialog boxes, include
'dctb' resources. ◆

Writing a File Filter Function

A file filter function determines which files appear in the displayed list when the user

is opening a file. Both StandardGetFile and CustomGetFile recognize file

filter functions.

When the Standard File Package is displaying the contents of a volume or folder, it

checks the file type of each file and filters out files whose types do not match your

application’s specifications. (Your application can specify which file types are to be

displayed through the typeList parameter to either StandardGetFile or

CustomGetFile, as described in “Presenting the Standard User Interface” beginning on

page 3-14.) If your application also supplies a file filter function, the Standard File

Package calls that function each time it identifies a file of an acceptable type.

The file filter function receives a pointer to the file’s catalog information record

(described in the chapter “File Manager” in this book). The function evaluates the

catalog entry and returns a Boolean value that determines whether the file is filtered

(that is, a value of TRUE suppresses display of the filename, and a value of FALSE

allows the display). If you do not supply a file filter function, the Standard File Package

displays all files of the specified types.

A file filter function to be called by StandardGetFile must use this syntax:

FUNCTION MyStandardFileFilter (pb: CInfoPBPtr): Boolean;

The single parameter passed to your standard file filter function is the address of a

catalog information parameter block; see the chapter “File Manager” in this book for a

description of the fields of that parameter block.

When CustomGetFile calls your file filter function, it can also receive a pointer to any

data that you passed in through the call to CustomGetFile. A file filter function to be

called by CustomGetFile must use this syntax:

FUNCTION MyCustomFileFilter (pb: CInfoPBPtr; myDataPtr: Ptr):

 Boolean;

Listing 3-8 shows a sample file filter function to be called by CustomGetFile. You

might define a file filter function like this to support the custom dialog box illustrated in

Figure 3-7, which lists files of the type shown in the pop-up box.

C H A P T E R 3

Standard File Package

Using the Standard File Package 3-21

Listing 3-8 A sample file filter function

FUNCTION MyCustomFileFilter (pb: CInfoPBPtr; myDataPtr: Ptr): Boolean;

BEGIN

MyCustomFileFilter := TRUE; {default: don't show the file}

IF pb^.ioFlFndrInfo.fdType = gTypesArray[gCurrentType] THEN

MyCustomFileFilter := FALSE; {show the file}

END;

In Listing 3-8, the application global variable gCurrentType contains the index in

the array gTypesArray of the currently selected file type. If the type of a file passed in

for evaluation matches the current file type, the filter returns FALSE, indicating that

StandardGetFile should put it in the list. See Listing 3-9 (page 3-27) for an example

of how you can use a dialog hook function to change the value of gCurrentType

according to user selections in the pop-up menu control.

Writing a Dialog Hook Function

A dialog hook function handles item selections in a dialog box. It receives a pointer to

the dialog record and an item number from the ModalDialog procedure via the

Standard File Package each time the user selects one of the dialog items. Your dialog

hook function checks the item number of each selected item, and then either handles the

selection or passes it back to the Standard File Package.

If you provide a dialog hook function, CustomPutFile and CustomGetFile call

your function immediately after calling ModalDialog. They pass your function the

item number returned by ModalDialog, a pointer to the dialog record, and a pointer

to the data received from your application, if any. The dialog hook function must use

this syntax:

FUNCTION MyDlgHook (item: Integer; theDialog: DialogPtr;

 myDataPtr: Ptr): Integer;

Your dialog hook function returns as its function result an integer that is either the item

number passed to it or some other item number. If it returns one of the item numbers in

the following list of constants, the Standard File Package handles the selected item as

described later in this section. If your dialog hook function does not handle a selection, it

should pass the item number back to the Standard File Package for processing by setting

its return value equal to the item number.

CONST {items that appear in both the Open and Save dialog boxes}

sfItemOpenButton = 1; {Save or Open button}

sfItemCancelButton = 2; {Cancel button}

sfItemBalloonHelp = 3; {Balloon Help}

sfItemVolumeUser = 4; {volume icon and name}

sfItemEjectButton = 5; {Eject button}

sfItemDesktopButton = 6; {Desktop button}

sfItemFileListUser = 7; {display list}

C H A P T E R 3

Standard File Package

3-22 Using the Standard File Package

sfItemPopUpMenuUser = 8; {directory pop-up menu}

sfItemDividerLinePict = 9; {dividing line between buttons}

{items that appear in Save dialog boxes only}

sfItemFileNameTextEdit = 10; {filename field}

sfItemPromptStaticText = 11; {filename prompt text area}

sfItemNewFolderUser = 12; {New Folder button}

You must write your own dialog hook function to handle any items you have added to

the dialog box.

Note

The constants that represent disabled items (sfItemBalloonHelp,
sfItemDividerLinePict, and sfItemPromptStaticText) have no
effect, but they are defined in the header files for the sake of completeness. ◆

The Standard File Package also recognizes a number of constants that do not represent

any actual item in the dialog list; these constants are known as pseudo-items. There are

two kinds of pseudo-items:

■ pseudo-items passed to your dialog hook function by the Standard File Package

■ pseudo-items passed to the Standard File Package by your dialog hook function

The sfHookFirstCall constant is an example of the first kind of pseudo-item. The

Standard File Package sends this pseudo-item to your dialog hook function immediately

before it displays the dialog box. Your function typically reacts to this item number by

performing any necessary initialization.

You can pass back other pseudo-items to indicate that you’ve handled the user selection

or to request some action by the Standard File Package. For example, if the list of

files and folders must be rebuilt because of a user selection, you can pass back the

pseudo-item sfHookRebuildList. Similarly, when your application handles the

selection and needs no further action by the Standard File Package, it should return

sfHookNullEvent. When the dialog hook function passes either sfHookNullEvent

or an item number that the Standard File Package doesn’t recognize, it does nothing.

The Standard File Package recognizes these pseudo-item numbers:

CONST {pseudo-items available prior to version 7.0}

sfHookFirstCall = -1; {initialize display}

sfHookCharOffset = $1000; {offset for character input}

sfHookNullEvent = 100; {null event}

sfHookRebuildList = 101; {redisplay list}

sfHookFolderPopUp = 102; {display parent-directory menu}

sfHookOpenFolder = 103; {display contents of }

{ selected folder or volume}

{additional pseudo-items introduced in version 7.0}

sfHookLastCall = -2; {clean up after display}

C H A P T E R 3

Standard File Package

Using the Standard File Package 3-23

sfHookOpenAlias = 104; {resolve alias}

sfHookGoToDesktop = 105; {display contents of desktop}

sfHookGoToAliasTarget = 106; {select target of alias}

sfHookGoToParent = 107; {display contents of parent}

sfHookGoToNextDrive = 108; {display contents of next drive}

sfHookGoToPrevDrive = 109; {display contents of previous drive}

sfHookChangeSelection = 110; {select target of reply record}

sfHookSetActiveOffset = 200; {switch active item}

The Standard File Package uses a set of modal-dialog filter functions (described in

“Writing a Modal-Dialog Filter Function” on page 3-28) to map user actions during

the dialog onto the defined item numbers. Some of the mapping is indirect. A click of

the Open button, for example, is mapped to sfItemOpenButton only if a file is

selected in the display list. If a folder or volume is selected, the Standard File Package

maps the selection onto the pseudo-item sfHookOpenFolder.

The lists that follow summarize when various items and pseudo-items are generated

and how they are handled. The descriptions indicate the simplest mouse action that

generates each item; many of the items can also be generated by keyboard actions, as

described in “Keyboard Equivalents” on page 3-7.

Note

Any indicated effects of passing back these constants do not occur until
the Standard File Package receives the constant back from your dialog
hook function. ◆

Constant descriptions

sfItemOpenButton
Generated when the user clicks Open or Save while a filename is
selected. The Standard File Package fills in the reply record (setting
sfGood to TRUE), removes the dialog box, and returns.

sfItemCancelButton
Generated when the user clicks Cancel. The Standard File Package
sets sfGood to FALSE, removes the dialog box, and returns.

sfItemVolumeUser
Generated when the user clicks the volume icon or its name. The
Standard File Package rebuilds the display list to show the contents
of the folder that is one level up the hierarchy (that is, the parent
directory of the current parent directory).

sfItemEjectButton
Generated when the user clicks Eject. The Standard File Package
ejects the volume that is currently selected.

sfItemDesktopButton
Generated when the user clicks the Drive button in a customized
dialog box defined by one of the earlier procedures. You never
receive this item number with the new procedures; when the user
clicks the Desktop button, the action is mapped to the item
sfHookGoToDesktop, described later in this section. The Standard
File Package displays the contents of the next drive.

C H A P T E R 3

Standard File Package

3-24 Using the Standard File Package

sfItemFileListUser
Generated when the user clicks an item in the display list. The
Standard File Package updates the selection and generates this
item for your information.

sfItemPopUpMenuUser
Never generated. The Standard File Package’s modal-dialog filter
function maps clicks on the directory pop-up menu to
sfHookFolderPopUp, described later in this section.

sfItemFileNameTextEdit
Generated when the user clicks the filename field. TextEdit and the
Standard File Package process mouse clicks in the filename field,
but the item number is generated for your information.

sfItemNewFolderUser
Generated when the user clicks New Folder. The Standard File
Package displays the New Folder dialog box.

The pseudo-items are messages that allow your application and the Standard File

Package to communicate and support various features added since the original design

of the Standard File Package.

The Standard File Package generates three pseudo-items that give your application the

chance to control a customized display.

Constant descriptions

sfHookFirstCall
Generated by the Standard File Package as a signal to your dialog
hook function that it is about to display a dialog box. If you
want to initialize the display, do so when you receive this item.
You can specify the current directory either by returning
sfHookGoToDesktop or by changing the reply record and
returning sfHookChangeSelection.

sfHookLastCall Generated by the Standard File Package as a signal to your dialog
hook function that it is about to remove a dialog box. If you created
any structures when the dialog box was first displayed, remove
them when you receive this item.

sfHookNullEvent
Issued periodically by the Standard File Package if no user action
has taken place. Your application can use this null event to perform
any updating or periodic processing that might be necessary.

Your application can generate three pseudo-items to request services from the Standard

File Package.

Constant descriptions

sfHookRebuildList
Returned by your dialog hook function to the Standard File Package
when it needs to redisplay the file list. Your application might need
to redisplay the list if, for example, it allows the user to change the
file types to be displayed. The Standard File Package rebuilds and
displays the list of files that can be opened.

C H A P T E R 3

Standard File Package

Using the Standard File Package 3-25

sfHookChangeSelection
Returned by your application to the Standard File Package after
your application changes the reply record so that it describes a
different file or folder. (You’ll need to pass the address of the reply
record in the yourDataPtr field if you want to do this.) The
Standard File Package rebuilds the display list to show the contents
of the folder or volume containing the object described in the reply
record. It selects the item described in the reply record.

sfHookSetActiveOffset
Your application adds this constant to an item number and sends
the result to the Standard File Package. The Standard File Package
activates that item in the dialog box, making it the target of
keyboard input. This constant allows your application to activate a
specific field in the dialog box without explicit input from the user.

The Standard File Package’s own modal-dialog filter functions generate a number of

pseudo-items that allow its dialog hook functions to support various features introduced

since the original design of the standard file dialog boxes. Except under extraordinary

circumstances, your dialog hook function always passes any of these item numbers back

to the Standard File Package for processing.

Constant descriptions

sfHookCharOffset
The Standard File Package adds this constant to the value of an
ASCII character when it’s using keyboard input for item selection.
The Standard File Package uses the decoded ASCII character to
select an entry in the display list.

sfHookFolderPopUp
Generated when the user clicks the directory pop-up menu. The
Standard File Package displays the pop-up menu showing all
parent directories.

sfHookOpenFolder
Generated when the user clicks the Open button while a folder
or volume is selected in the display list. The Standard File Package
rebuilds the display list to show the contents of the folder
or volume.

sfHookOpenAlias
Generated by the Standard File Package as a signal that the selected
item is an alias for another file, folder, or volume. If the selected
item is an alias for a file, the Standard File Package resolves the
alias, places the file system specification record of the target in the
reply record, and returns.

If the selected item is an alias for a folder or volume, the Standard
File Package resolves the alias and rebuilds the display list to show
the contents of the alias target.

sfHookGoToDesktop
Generated when the user clicks the Desktop button. The Standard
File Package displays the contents of the desktop in the display list.

C H A P T E R 3

Standard File Package

3-26 Using the Standard File Package

sfHookGoToAliasTarget
Generated when the user presses the Option key while opening an
item that is an alias. The Standard File Package rebuilds the display
list to display the volume or folder containing the alias target and
selects the target.

sfHookGoToParent
Generated when the user presses Command–Up Arrow (or
clicks the volume icon). The Standard File Package rebuilds the
display list to show the contents of the folder that is one level
up the hierarchy (that is, the parent directory of the current
parent directory).

sfHookGoToNextDrive
Generated when the user presses Command–Right Arrow. The
Standard File Package displays the contents of the next volume.

sfHookGoToPrevDrive
Generated when the user presses Command–Left Arrow. The
Standard File Package displays the contents of the previous volume.

The CustomGetFile and CustomPutFile procedures call your dialog hook

function for item selections in both the main dialog box and any subsidiary dialog

boxes (such as the dialog box for naming a new folder while saving a document

through CustomPutFile). To determine whether the dialog record describes the

main dialog box or a subsidiary dialog box, check the value of the refCon field in

the window record in the dialog record.

Note

Prior to system software version 7.0, the Standard File Package did not
call your dialog hook function during subsidiary dialog boxes. Dialog
hook functions for the new CustomGetFile and CustomPutFile
procedures must check the dialog window’s refCon field to determine
the target of the dialog record. ◆

The defined values for the refCon field represent the Standard File dialog boxes.

CONST

sfMainDialogRefCon = 'stdf'; {main dialog box}

sfNewFolderDialogRefCon = 'nfdr'; {New Folder dialog box}

sfReplaceDialogRefCon = 'rplc'; {name conflict dialog box}

sfStatWarnDialogRefCon = 'stat'; {stationery warning}

sfErrorDialogRefCon = 'err '; {general error report}

sfLockWarnDialogRefCon = 'lock'; {software lock warning}

Constant descriptions

sfMainDialogRefCon The main dialog box, either Open or Save.

sfNewFolderDialogRefCon The New Folder dialog box.

sfReplaceDialogRefCon The dialog box requesting verification for replacing a
file of the same name.

sfStatWarnDialogRefCon The dialog box warning that the user is opening
the master copy of a stationery pad, not a piece
of stationery.

C H A P T E R 3

Standard File Package

Using the Standard File Package 3-27

sfErrorDialogRefCon A dialog box reporting a general error.

sfLockWarnDialogRefCon The dialog box warning that the user is opening a
locked file and won’t be allowed to save any changes.

Listing 3-9 defines a dialog hook function that handles user selections in the customized

Open dialog box illustrated in Figure 3-7. Note that this dialog hook function handles

selections only in the main dialog box, not in any subsidiary dialog boxes.

Listing 3-9 A sample dialog hook function

FUNCTION MyDlgHook (item: Integer; theDialog: DialogPtr; myDataPtr: Ptr):
 Integer;

VAR
myType: Integer; {menu item selected}

myHandle: Handle; {needed for GetDItem}
myRect: Rect; {needed for GetDItem}

myIgnore: Integer; {needed for GetDItem; ignored}
CONST

kMyPopUpItem = 10; {item number of File Type pop-up menu}
BEGIN

MyDlgHook := item; {by default, return the item passed in}
IF GetWRefCon(WindowPtr(theDialog)) <> LongInt(sfMainDialogRefCon) THEN

Exit(MyDlgHook); {this function is only for main dialog}

{Do processing of pseudo-items and your own additional item.}
CASE item OF

sfHookFirstCall: {pseudo-item: first time function called}
BEGIN

GetDItem(theDialog, kPopUpItem, myType, myHandle, myRect);
SetCtlValue(ControlHandle(myHandle), gCurrentType);

MyDlgHook := sfHookNullEvent;
END;

kMyPopUpItem: {user selected File Type pop-up menu}
BEGIN

GetDItem(theDialog, item, myIgnore, myHandle, myRect);
myType := GetCtlValue(ControlHandle(myHandle));

IF myType <> gCurrentType THEN
BEGIN

gCurrentType := myType;
MyDlgHook := sfHookRebuildList;

END;
END;

OTHERWISE
; {ignore all other items}

END;
END;

C H A P T E R 3

Standard File Package

3-28 Using the Standard File Package

The pop-up menu is stored as a control in the application’s resource fork. Values stored

in the resource determine the appearance of the control, such as the pop-up title text and

the menu associated with the control. The Dialog Manager’s ModalDialog procedure

takes care of drawing the box around the pop-up menu and the title of the dialog box.

When the dialog hook function is first called, it simply retrieves a handle to that control

and sets the value of the pop-up control to the current menu item (stored in the global

variable gCurrentType). The MyDlgHook function then returns sfHookNullEvent to

indicate that no further processing is required.

When the user clicks the pop-up menu control, ModalDialog calls the standard control

definition function associated with it. If the user makes a selection in the pop-up menu,

MyDlgHook is called with the item parameter equal to kPopUpItem. Your dialog hook

function needs simply to determine the current value of the control and respond

accordingly. In this case, if the user has selected a new file type, the global variable

gCurrentType is updated to reflect the new selection, and MyDlgHook returns

sfHookRebuildList to cause the Standard File Package to rebuild the list of files and

folders displayed in the dialog box.

For complete details on handling pop-up menus, see the chapters “Control Manager”

and “Menu Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

Writing a Modal-Dialog Filter Function

A modal-dialog filter function controls events closer to their source by filtering the

events received from the Event Manager. The Standard File Package itself contains

an internal modal-dialog filter function that maps keypresses and other user input

onto the equivalent dialog box items. If you also want to process events at this level,

you can supply your own filter function.

Note

You can supply a modal-dialog filter function only when you use one of
the procedures that displays a customized dialog box (that is,
CustomGetFile, CustomPutFile, SFPGetFile, or SFPPutFile). ◆

Your modal-dialog filter function determines how the Dialog Manager procedure

ModalDialog filters events. The ModalDialog procedure retrieves events by calling

the Event Manager function GetNextEvent. As just indicated, the Standard File

Package contains an internal filter function that performs some preliminary processing

on each event it receives. If you provide a modal-dialog filter function, ModalDialog

calls your filter function after it calls the internal Standard File Package filter function

and before it sends the event to your dialog hook function.

You might provide a modal-dialog filter function for several reasons. If you have

customized the Open or Save dialog boxes by adding one or more items, you might want

to map some of the user’s keypresses to those items in the same way that the internal

filter function maps certain keypresses to existing items.

C H A P T E R 3

Standard File Package

Using the Standard File Package 3-29

Another reason to provide a modal-dialog filter function is to avoid a problem that

can arise if an update event is received for one of your application’s windows while

a Standard File Package dialog box is displayed.

Note

The problem described in the following paragraph occurs only in system
software versions earlier than version 7.0. The internal modal-dialog
filter function installed by the Standard File Package when running in
version 7.0 and later avoids the problem by passing the update event to
your dialog filter and, if your filter doesn’t handle the event, mapping it
to a null event. ◆

When ModalDialog calls GetNextEvent and receives the update event,

ModalDialog does not know how to respond to it and therefore passes the update

event to the Standard File Package’s internal filter function. The internal filter function

cannot handle the update event either. As a result, if you do not provide your own

modal-dialog filter function that handles the update event, that event is never cleared.

The next time ModalDialog calls GetNextEvent, it receives the same update event.

ModalDialog never receives a null event, so your dialog hook function never performs

any processing in response to the sfHookNullEvent pseudo-item. You can solve this

problem by providing a modal-dialog filter function that handles the update event or

changes it to a null event. See Listing 3-10 for details.

A modal-dialog filter function used with SFPGetFile and SFPPutFile is declared like

any filter function passed to ModalDialog. Your function is passed a pointer to the

dialog record, a pointer to the event record, and the item number. (The modal-dialog

filter function is described in the chapter “Dialog Manager” in Inside Macintosh:
Macintosh Toolbox Essentials.)

FUNCTION MyModalFilter (theDialog: DialogPtr;

VAR theEvent: EventRecord;

VAR itemHit: Integer): Boolean;

The modal-dialog filter function used with CustomGetFile and CustomPutFile

requires an additional parameter, a pointer (myDataPtr) to the data received from

your application, if any.

FUNCTION MyModalFilterYD (theDialog: DialogPtr;

VAR theEvent: EventRecord;

VAR itemHit: Integer;

myDataPtr: Ptr): Boolean;

Your modal-dialog filter function returns a Boolean value that reports whether it

handled the event. If your function returns a value of FALSE, ModalDialog

processes the event through its own filters. If your function returns a value of TRUE,

ModalDialog returns with no further action.

C H A P T E R 3

Standard File Package

3-30 Using the Standard File Package

The CustomGetFile and CustomPutFile procedures call your filter function to

process events in both the main dialog box and any subsidiary dialog boxes (such as the

dialog box for naming a new folder while saving a document through CustomPutFile).

To determine whether the dialog record describes the main dialog box or a subsidiary

dialog box, check the value of the refCon field in the window record in the dialog record,

as described in “Writing a Dialog Hook Function” beginning on page 3-21.

Listing 3-10 shows how to define a modal-dialog filter function that prevents update

events from clogging the event queue.

Listing 3-10 A sample modal-dialog filter function

FUNCTION MyModalFilter (theDialog: DialogPtr; VAR theEvent: EventRecord;

VAR itemHit: Integer): Boolean;

BEGIN

MyModalFilter := FALSE; {we haven't handled the event yet}

IF theEvent.what = updateEvt THEN

IF IsAppWindow(WindowPtr(theEvent.message)) THEN

BEGIN

DoUpdateEvent(WindowPtr(theEvent.message));

MyModalFilter := TRUE; {we have handled the event}

END;

END;

If this filter function receives an update event for a window other than the Standard File

Package dialog box, it calls the application’s routine for handling update events

(DoUpdateEvent) and returns TRUE to indicate that the event has been handled. See

the chapters “Event Manager” and “Window Manager” in Inside Macintosh: Macintosh
Toolbox Essentials for complete details on handling update events.

Writing an Activation Procedure

The activation procedure controls the highlighting of dialog items that are defined by

your application and can receive keyboard input. Ordinarily, you need to supply an

activation procedure only if your application builds a list from which the user can select

entries. The Standard File Package supplies the activation procedure for the file display

list and for all TextEdit fields. You can also use the activation procedure to keep track of

which field is receiving keyboard input, if your application needs that information.

The target of keyboard input is called the active field. The two standard keyboard-input

fields are the filename field (present only in Save dialog boxes) and the display list. Unless

you override it through your own dialog hook function, the Standard File Package

handles the highlighting of its own items and TextEdit fields. When the user changes the

keyboard target by pressing the mouse button or the Tab key, the Standard File Package

calls your activation procedure twice: the first call specifies which field is being

C H A P T E R 3

Standard File Package

Using the Standard File Package 3-31

deactivated, and the second specifies which field is being activated. Your application is

responsible for removing the highlighting when one of its fields becomes inactive and

for adding the highlighting when one of its fields becomes active. The Standard File

Package can handle the highlighting of all TextEdit fields, even those defined by your

application.

The activation procedure receives four parameters: a dialog pointer, a dialog item

number, a Boolean value that specifies whether the field is being activated (TRUE) or

deactivated (FALSE), and a pointer to your own data.

PROCEDURE MyActivateProc (theDialog: DialogPtr; itemNo: Integer;

activating: Boolean; myDataPtr: Ptr);

Setting the Current Directory
The first time your application calls one of the Standard File Package routines, the

default current directory (that is, the directory whose contents are listed in the dialog

box) is determined by the way in which your application was launched.

■ If the user launched your application directly (perhaps by double-clicking its icon in
the Finder), the default directory is the directory in which your application is located.

■ If the user launched your application indirectly (perhaps by double-clicking one of
your application’s document icons), the default directory is the directory in which that
document is located.

At each subsequent call to one of the Standard File Package routines, the default current

directory is simply the directory that was current when the user completed the previous

dialog box. You can use the function GetSFCurDir defined in Listing 3-11 to determine

the current directory.

Listing 3-11 Determining the current directory

FUNCTION GetSFCurDir: LongInt;

TYPE

LongIntPtr = ^LongInt;

CONST

CurDirStore = $398;

BEGIN

GetSFCurDir := LongIntPtr(CurDirStore)^;

END;

C H A P T E R 3

Standard File Package

3-32 Using the Standard File Package

You can use the GetSFCurVol function defined in Listing 3-12 to determine the

current volume.

Listing 3-12 Determining the current volume

FUNCTION GetSFCurVol: Integer;

TYPE

IntPtr = ^Integer;

CONST

SFSaveDisk = $214;

BEGIN

GetSFCurVol := -IntPtr(SFSaveDisk)^;

END;

If necessary, you can change the default current directory and volume. For example,

when the user needs to select a dictionary file for a spell-checking application, the

application might set the current directory to a directory containing document-specific

dictionary files. This saves the user from having to navigate the directory hierarchy from

the directory containing documents to that containing dictionary files. You can use the

procedure SetSFCurDir defined in Listing 3-13 to set the current directory.

Listing 3-13 Setting the current directory

PROCEDURE SetSFCurDir (dirID: LongInt);

TYPE

LongIntPtr = ^LongInt;

CONST

CurDirStore = $398;

BEGIN

LongIntPtr(CurDirStore)^ := dirID;

END;

You can use the procedure SetSFCurVol defined in Listing 3-14 to set the current volume.

Listing 3-14 Setting the current volume

PROCEDURE SetSFCurVol (vRefNum: Integer);

TYPE

IntPtr = ^Integer;

CONST

SFSaveDisk = $214;

BEGIN

IntPtr(SFSaveDisk)^ := -vRefNum;

END;

C H A P T E R 3

Standard File Package

Using the Standard File Package 3-33

Note

Most applications don’t need to alter the default current directory
or volume. ◆

If you are using the enhanced Standard File Package routines, you can set the current

directory by filling in the fields of the file system specification in the reply record passed

to CustomGetFile or CustomPutFile. You do this within your dialog hook function.

Listing 3-15 defines a dialog hook function that makes the currently active System Folder

the current directory.

Listing 3-15 Setting the current directory

FUNCTION MyDlgHook (item: Integer; theDialog: DialogPtr; myDataPtr: Ptr):

 Integer;

VAR

myReplyPtr: StandardFileReplyPtr;

foundVRefNum: Integer;

foundDirID: LongInt;

myErr: OSErr;

BEGIN

MyDlgHook := item; {by default, return the item passed in}

IF GetWRefCon(WindowPtr(theDialog)) <> LongInt(sfMainDialogRefCon) THEN

Exit(MyDlgHook); {this function is only for main dialog box}

CASE item OF

sfHookFirstCall: {pseudo-item: first time function called}

BEGIN

myReplyPtr := StandardFileReplyPtr(myDataPtr);

myErr := FindFolder(kOnSystemDisk, kSystemFolderType,

 kDontCreateFolder, foundVRefNum, foundDirID);

IF myErr = noErr THEN

BEGIN

myReplyPtr^.sfFile.parID := foundDirID;

myReplyPtr^.sfFile.vRefNum := foundVRefNum;

MyDlgHook := sfHookChangeSelection;

END;

END;

OTHERWISE

; {ignore all other items}

END;

END;

C H A P T E R 3

Standard File Package

3-34 Using the Standard File Package

This dialog hook function installs the System Folder’s volume reference number and

parent directory ID into the file system specification whose address is passed in the

myDataPtr parameter. Because the dialog hook function returns the constant

sfHookChangeSelection the first time it is called (that is, in response to the

sfHookFirstCall pseudo-item), the Standard File Package sets the current directory

to the indicated directory when the dialog box is displayed.

Selecting a Directory
You can present the recommended user interface for selecting a directory by calling the

CustomGetFile procedure and passing it the addresses of a custom file filter function

and a dialog hook function. See “Selecting Volumes and Directories” on page 3-10 for a

description of the appearance and behavior of the directory selection dialog box.

The file filter function used to select directories is quite simple; it ensures that only

directories, not files, are listed in the dialog box displayed by CustomGetFile.

Listing 3-16 defines a file filter function you can use for this purpose.

Listing 3-16 A file filter function that lists only directories

FUNCTION MyCustomFileFilter (pb: CInfoPBPtr; myDataPtr: Ptr): Boolean;

CONST

kFolderBit = 4; {bit set in ioFlAttrib for a directory}

BEGIN {list directories only}

MyCustomFileFilter := NOT BTst(pb^.ioFlAttrib, kFolderBit);

END;

The function MyCustomFileFilter simply inspects the appropriate bit in the file

attributes (ioFlAttrib) field of the catalog information parameter block passed to it. If

the directory bit is set, the file filter function returns FALSE, indicating that the item

should appear in the list; otherwise, the file filter function returns TRUE to exclude the

item from the list. Because a volume is identified via its root directory, volumes also

appear in the list of items in the dialog box.

The title of the Select button should identify which directory is available for selection.

You can use the SetButtonTitle procedure defined in Listing 3-17 to set the title

of a button.

Your dialog hook function calls the SetButtonTitle procedure to copy the truncated

title of the selected item into the Select button. This title eliminates possible user

confusion about which directory is available for selection. If no item in the list is selected,

the dialog hook function uses the name of the directory shown in the pop-up menu as

the title of the Select button.

C H A P T E R 3

Standard File Package

Using the Standard File Package 3-35

Listing 3-17 Setting a button’s title

PROCEDURE SetButtonTitle (ButtonHdl: Handle; name: Str255; ButtonRect: Rect);

VAR

result: Integer; {result of TruncString}

width: Integer; {width available for name of directory}

BEGIN

gPrevSelectedName := name;

WITH ButtonRect DO

width := (right - left) - (StringWidth('Select ""') + CharWidth(' '));

result := TruncString(width, name, smTruncMiddle);

SetCTitle(ControlHandle(ButtonHdl), CONCAT('Select "', name, '"'));

ValidRect(ButtonRect);

END;

The SetButtonTitle procedure is passed a handle to the button whose title is to be

changed, the name of the directory available for selection, and the button’s enclosing

rectangle. The global variable gPrevSelectedName holds the full directory name,

before truncation.

A dialog hook function manages most of the process of letting the user select a director.

Listing 3-18 defines a dialog hook function that handles user selections in the dialog box.

Listing 3-18 Handling user selections in the directory selection dialog box

FUNCTION MyDlgHook (item: Integer; theDialog: DialogPtr; myDataPtr: Ptr):
 Integer;

CONST
kGetDirBTN = 10; {Select directory button}

TYPE
SFRPtr = ^StandardFileReply;

VAR
myType: Integer; {menu item selected}
myHandle: Handle; {needed for GetDItem}
myRect: Rect; {needed for GetDItem}
myName: Str255;
myPB: CInfoPBRec;
mySFRPtr: SFRPtr;
myErr: OSErr;

BEGIN
MyDlgHook := item; {default, except in special cases below}
IF GetWRefCon(WindowPtr(theDialog)) <> LongInt(sfMainDialogRefCon) THEN

Exit(MyDlgHook); {this function is only for main dialog box}

GetDItem(theDialog, kGetDirBTN, myType, myHandle, myRect);
IF item = sfHookFirstCall THEN

C H A P T E R 3

Standard File Package

3-36 Using the Standard File Package

BEGIN
{Determine current folder name and set title of Select button.}
WITH myPB DO

BEGIN
ioCompletion := NIL;
ioNamePtr := @myName;
ioVRefNum := GetSFCurVol;
ioFDirIndex := - 1;
ioDirID := GetSFCurDir;

END;
myErr := PBGetCatInfo(@myPB, FALSE);
SetButtonTitle(myHandle, myName, myRect);

END
ELSE

BEGIN
{Get mySFRPtr from 3rd parameter to hook function.}
mySFRPtr := SFRPtr(myDataPtr);
{Track name of folder that can be selected.}
IF (mySFRPtr^.sfIsFolder) OR (mySFRPtr^.sfIsVolume) THEN

myName := mySFRPtr^.sfFile.name
ELSE

BEGIN
WITH myPB DO

BEGIN
ioCompletion := NIL;
ioNamePtr := @myName;
ioVRefNum := mySFRPtr^.sfFile.vRefNum;
ioFDirIndex := -1;
ioDrDirID := mySFRPtr^.sfFile.parID;

END;
myErr := PBGetCatInfo(@myPB, FALSE);

END;
{Change directory name in button title as needed.}
IF myName <> gPrevSelectedName THEN

SetButtonTitle(myHandle, myName, myRect);

CASE item OF
kGetDirBTN: {force return by faking a cancel}

MyDlgHook := sfItemCancelButton;
sfItemCancelButton:

gDirSelectionFlag := FALSE;{flag no directory was selected}
OTHERWISE

;
END; {CASE}

END;
END;

C H A P T E R 3

Standard File Package

Using the Standard File Package 3-37

The MyDlgHook dialog hook function defined in Listing 3-18 calls the File Manager

function PBGetCatInfo to retrieve the name of the directory to be selected. When the

dialog hook function is first called (that is, when item is set to sfHookFirstCall),

MyDlgHook determines the current volume and directory by calling the functions

GetSFCurVol and GetSFCurDir. When MyDlgHook is called each subsequent time,

MyDlgHook calls PBGetCatInfo with the volume reference number and directory ID

of the previously opened directory.

When the user clicks the Select button, MyDlgHook returns the item

sfItemCancelButton. When the user clicks the real Cancel button, MyDlgHook

sets the global variable gDirSelectionFlag to FALSE, indicating that the user

didn’t select a directory. The function DoGetDirectory uses that variable to

distinguish between clicks of Cancel and clicks of Select.

The function DoGetDirectory defined in Listing 3-19 uses the file filter function

and the dialog hook functions defined above to manage the directory selection dialog

box. On exit, DoGetDirectory returns a standard file reply record describing the

selected directory.

Listing 3-19 Presenting the directory selection dialog box

FUNCTION DoGetDirectory: StandardFileReply;

VAR

myReply: StandardFileReply;

myTypes: SFTypeList; {types of files to display}

myPoint: Point; {upper-left corner of box}

myNumTypes: Integer;

myModalFilter: ModalFilterYDProcPtr;

myActiveList: Ptr;

myActivateProc: ActivateYDProcPtr;

myName: Str255;

CONST

rGetDirectoryDLOG = 128; {resource ID of custom dialog box}

BEGIN

gPrevSelectedName := ''; {initialize name of previous selection}

gDirSelectionFlag := TRUE; {initialize directory selection flag}

myNumTypes := -1; {pass all types of files to file filter}

myPoint.h := -1; {center dialog box on screen}

myPoint.v := -1;

myModalFilter := NIL;

myActiveList := NIL;

myActivateProc := NIL;

CustomGetFile(@MyCustomFileFilter, myNumTypes, myTypes, myReply,

rGetDirectoryDLOG, myPoint, @MyDlgHook, myModalFilter,

myActiveList, myActivateProc, @myReply);

C H A P T E R 3

Standard File Package

3-38 Using the Standard File Package

{Get the name of the directory.}

IF gDirSelectionFlag AND myReply.sfIsVolume THEN

myName := Concat(myReply.sfFile.name, ':')

ELSE

myName := myReply.sfFile.name;

IF gDirSelectionFlag AND myReply.sfIsVolume THEN

myReply.sfFile.name := myName

ELSE IF gDirSelectionFlag THEN

myReply.sfFile.name := gPrevSelectedName;

gDirSelectionFlag := FALSE;

DoGetDirectory := myReply;

END;

The DoGetDirectory function initializes the two global variables

gPrevSelectedName and gDirSelectionFlag. As you have seen, these two

variables are used by the custom dialog hook function. Then DoGetDirectory

calls CustomGetFile to display the directory selection dialog box and handle user

selections. When the user selects a directory or clicks the Cancel button, the dialog

hook function returns sfItemCancelButton and CustomGetFile exits. At that

point, the reply record contains information about the last item selected in the list of

available items.

Selecting a Volume
You can present the recommended user interface for selecting a volume by calling the

CustomGetFile procedure and passing it the addresses of a custom file filter function

and a dialog hook function. See “Selecting Volumes and Directories” on page 3-10 for a

description of the appearance and behavior of the volume selection dialog box.

The file filter function used to select volumes is quite simple; it ensures that only

volumes, not files or directories, are listed in the dialog box displayed by

CustomGetFile. Listing 3-16 defines a file filter function you can use to do this.

Listing 3-20 A file filter function that lists only volumes

FUNCTION MyCustomFileFilter (pb: CInfoPBPtr; myDataPtr: Ptr): Boolean;

CONST

kFolderBit = 4; {bit set in ioFlAttrib for a directory}

BEGIN {list volumes only}

MyCustomFileFilter := TRUE; {assume you don't list the item}

IF BTst(pb^.ioFlAttrib, kFolderBit) AND (pb^.ioDrParID = fsRtParID) THEN

MyCustomFileFilter := FALSE;

END;

C H A P T E R 3

Standard File Package

Using the Standard File Package 3-39

The function MyCustomFileFilter inspects the appropriate bit in the file attributes

(ioFlAttrib) field of the catalog information parameter block passed to it. If the

directory bit is set, MyCustomFileFilter checks whether the parent directory ID of

the directory is equal to fsRtParID, which is always the parent directory ID of a

volume’s root directory. If it is, the file filter function returns FALSE, indicating that the

item should appear in the list of volumes; otherwise, the file filter function returns TRUE

to exclude the item from the list.

A dialog hook function for handling the items in the volume selection dialog box is

defined in Listing 3-21.

Listing 3-21 Handling user selections in the volume selection dialog box

FUNCTION MyDlgHook (item: Integer; theDialog: DialogPtr; myDataPtr: Ptr):
 Integer;

VAR
myType: Integer; {menu item selected}
myHandle: Handle; {needed for GetDItem}
myRect: Rect; {needed for GetDItem}
myName: Str255; {new title for Open button}

BEGIN
MyDlgHook := item; {default, except in special cases below}
IF GetWRefCon(WindowPtr(theDialog)) <> LongInt(sfMainDialogRefCon) THEN

Exit(MyDlgHook); {this function is only for main dialog box}

CASE item OF
sfHookFirstCall:

BEGIN
{Set button title and go to desktop.}
myName := 'Select';
GetDItem(theDialog, sfItemOpenButton, myType, myHandle, myRect);
SetCTitle(ControlHandle(myHandle), myName);
MyDlgHook := sfHookGoToDesktop;

END;
sfHookGoToDesktop: {map Cmd-D to a null event}

MyDlgHook := sfHookNullEvent;
sfHookChangeSelection:

MyDlgHook := sfHookGoToDesktop;
sfHookGoToNextDrive: {map Cmd-Left Arrow to a null event}

MyDlgHook := sfHookNullEvent;
sfHookGoToPrevDrive: {map Cmd-Right Arrow to a null event}

MyDlgHook := sfHookNullEvent;
sfItemOpenButton, sfHookOpenFolder:

MyDlgHook := sfItemOpenButton;
OTHERWISE

;
END;

END;

C H A P T E R 3

Standard File Package

3-40 Using the Standard File Package

You can prompt the user to select a volume by calling the function DoGetVolume

defined in Listing 3-22.

Listing 3-22 Presenting the volume selection dialog box

FUNCTION DoGetVolume: StandardFileReply;

VAR

myReply: StandardFileReply;

myTypes: SFTypeList; {types of files to display}

myPoint: Point; {upper-left corner of box}

myNumTypes: Integer;

myModalFilter: ModalFilterYDProcPtr;

myActiveList: Ptr;

myActivateProc: ActivateYDProcPtr;

CONST

rGetVolumeDLOG = 129; {resource ID of custom dialog box}

BEGIN

myNumTypes := -1; {pass all types of files}

myPoint.h := -1; {center dialog box on screen}

myPoint.v := -1;

myModalFilter := NIL;

myActiveList := NIL;

myActivateProc := NIL;

CustomGetFile(@MyCustomFileFilter, myNumTypes, myTypes, myReply,

rGetVolumeDLOG, myPoint, @MyDlgHook, myModalFilter,

myActiveList, myActivateProc, @myReply);

DoGetVolume := myReply;

END;

Using the Original Procedures
The Standard File Package still recognizes all procedures available before system

software version 7.0 (SFGetFile, SFPutFile, SFPGetFile, and SFPPutFile). It

displays the new interface for all applications that don’t customize the dialog boxes in

incompatible ways (that is, applications that specify both the dialog hook and the

modal-dialog filter pointers as NIL and that specify no alternative dialog ID).

C H A P T E R 3

Standard File Package

Standard File Package Reference 3-41

When the Standard File Package can’t use the enhanced dialog box layout because an

application customized the dialog box with the earlier procedures, it nevertheless makes

some changes to the display:

■ It changes the label of the Drive button to Desktop and makes the desktop the root of
the display.

■ It moves the volume icon slightly to the right, to make room for selection highlighting
around the display list field.

If, however, a customized dialog box has suppressed the file display list (by specifying

coordinates outside of the dialog box), the Standard File Package uses the earlier interface,

on the assumption that the dialog box is designed for volume selection.

If you need to use the procedures available before system software version 7.0, you need

to be aware of a number of differences between those procedures and the enhanced

procedures. These are the most important differences:

■ The original procedures do not recognize some pseudo-items under previous system
software versions. For example, the pseudo-item sfHookLastCall is not used
before version 7.0. See the comments under “Constants” in “Summary of the Standard
File Package” (beginning on page 3-60) for information on which pseudo-items are
universally available.

■ The original standard file reply record (type SFReply) returns a working directory
reference number, not a volume reference number. Typically, you should immediately
convert that number to a volume reference number and directory ID using GetWDInfo
or PBGetWDInfo. Then close the working directory by calling CloseWD or
PBCloseWD. For details on these functions, see the chapter “File Manager” in this book.

■ Dialog hook functions used with the original procedures are not passed a
myDataPtr parameter.

Standard File Package Reference

This section describes the data structures and routines that are specific to the Standard

File Package. The “Data Structures” section shows the Pascal data structures for

the original and the enhanced Standard File reply records. The section “Standard File

Package Routines” describes routines for opening and saving files. The section

“Application-Defined Routines” describes the routines that your application can define

to customize the operations of the Standard File Package routines.

Data Structures

The Standard File Package exchanges information with your application using a standard

file reply record. If you use the procedures introduced in system software version 7.0, you

use a reply record of type StandardFileReply. If you use the procedures available

before version 7.0, you must use a reply record of type SFReply.

C H A P T E R 3

Standard File Package

3-42 Standard File Package Reference

Enhanced Standard File Reply Record

When you use one of the procedures StandardPutFile, StandardGetFile,

CustomPutFile, or CustomGetFile, you pass a reply record of type

StandardFileReply.

TYPE StandardFileReply =

RECORD

sfGood: Boolean; {TRUE if user did not cancel}

sfReplacing: Boolean; {TRUE if replacing file with same name}

sfType: OSType; {file type}

sfFile: FSSpec; {selected file, folder, or volume}

sfScript: ScriptCode; {script of file, folder, or volume name}

sfFlags: Integer; {Finder flags of selected item}

sfIsFolder: Boolean; {selected item is a folder}

sfIsVolume: Boolean; {selected item is a volume}

sfReserved1: LongInt; {reserved}

sfReserved2: Integer; {reserved}

END;

Field descriptions

sfGood Reports whether the reply record is valid. The value is TRUE after
the user clicks Save or Open; FALSE after the user clicks Cancel.
When the user has completed the dialog box, the other fields in the
reply record are valid only if the sfGood field contains TRUE.

sfReplacing Reports whether a file to be saved replaces an existing file of the same
name. This field is valid only after a call to the StandardPutFile or
CustomPutFile procedure. When the user assigns a name that
duplicates that of an existing file, the Standard File Package asks for
verification by displaying a subsidiary dialog box (illustrated in
Figure 3-4, page 3-7). If the user verifies the name, the Standard File
Package sets the sfReplacing field to TRUE and returns to your
application; if the user cancels the overwriting of the file, the
Standard File Package returns to the main dialog box. If the name
does not conflict with an existing name, the Standard File Package
sets the field to FALSE and returns.

sfType Contains the file type of the selected file. (File types are described in
the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox
Essentials.) Only StandardGetFile and CustomGetFile return a
file type in this field.

sfFile Describes the selected file, folder, or volume with a file system
specification record, which contains a volume reference number,
parent directory ID, and name. (See the chapter “File Manager” in
this book for a complete description of the file system specification
record.) If the selected item is an alias for another item, the Standard

C H A P T E R 3

Standard File Package

Standard File Package Reference 3-43

File Package resolves the alias and places the file system
specification record for the target in the sfFile field when the
user completes the dialog box. If the selected file is a stationery
pad, the reply record describes the file itself, not a copy of the file.

sfScript Identifies the script in which the name of the document is to be
displayed. (This information is used by the Finder and by the
Standard File Package.) A script code of smSystemScript (–1)
represents the default system script.

sfFlags Contains the Finder flags from the Finder information record in the
catalog entry for the selected file. (See the chapter “Finder Interface”
in Inside Macintosh: Macintosh Toolbox Essentials for a description of
the Finder flags.) This field is returned only by StandardGetFile
and CustomGetFile. If your application supports stationery, it
should check the stationery bit in the Finder flags to determine
whether to treat the selected file as stationery. Unlike the Finder, the
Standard File Package does not automatically create a document
from a stationery pad and pass your application the new document.
If the user opens a stationery document from within an application
that does not support stationery, the Standard File Package displays
a dialog box warning the user that the master copy is being opened.

sfIsFolder Reports whether the selected item is a folder (TRUE) or a file or
volume (FALSE). This field is meaningful only during the execution
of a dialog hook function.

sfIsVolume Reports whether the selected item is a volume (TRUE) or a file or
folder (FALSE). This field is meaningful only during the execution
of a dialog hook function.

sfReserved1 Reserved.

sfReserved2 Reserved.

Original Standard File Reply Record

When you use one of the original Standard File Package procedures SFPutFile,

SFGetFile, SFPPutFile, or SFPGetFile, you pass a reply record of type SFReply.

SFReply =

RECORD

good: Boolean; {TRUE if user did not cancel}

copy: Boolean; {reserved}

fType: OSType; {file type}

vRefNum: Integer; {working directory reference number}

version: Integer; {reserved}

fName: Str63; {filename}

END;

C H A P T E R 3

Standard File Package

3-44 Standard File Package Reference

Field descriptions

good Reports whether the reply record is valid. The value is TRUE after
the user clicks Save or Open; FALSE after the user clicks Cancel.
When the user has completed the dialog box, the other fields in the
reply record are valid only if the value of good is TRUE.

copy Reserved.

fType Contains the file type of the selected file. (File types are described in
the chapter “Finder Interface” of Inside Macintosh: Macintosh Toolbox
Essentials.) Only SFGetFile and SFPGetFile return a file type in
this field.

vRefNum Contains the working directory reference number of the selected file.

version Reserved.

fName Contains the name of the selected file.

Note

In spite of its name, the vRefNum field does not contain a volume
reference number. Instead, it contains a working directory reference
number, which encodes both the volume reference number and the
parent directory ID of the selected file. You can obtain the volume
reference number and directory ID of the file by calling GetWDInfo or
PBGetWDInfo. See the chapter “File Manager” in this book for details
about working directory reference numbers. ◆

Standard File Package Routines

This section describes the routines you can use to prompt the user for a file’s name and

location after a request to save or open a file. If your application is designed to run in

system software versions prior to version 7.0, you must use either SFGetFile or

SFPGetFile when opening a file and either SFPutFile or SFPPutFile when saving

a file.

If your application is designed to take advantage of features introduced in system

software version 7.0 or later, you can use the new routines intended to simplify

the code required to elicit a filename from the user. The StandardPutFile and

StandardGetFile procedures are simplified versions of the original procedures

for handling the user interface during the storing and retrieving of files. The

CustomPutFile and CustomGetFile procedures are customizable versions of

the same procedures.

Saving Files

You can use the StandardPutFile procedure to present the standard user interface

when the user asks to save a file. If you need to add elements to the default dialog boxes

or exercise greater control over user actions in the dialog box, use CustomPutFile.

C H A P T E R 3

Standard File Package

Standard File Package Reference 3-45

If your application is designed to execute in system software versions earlier than

version 7.0, you can use the corresponding procedures SFPutFile and SFPPutFile.

StandardPutFile

You can use the StandardPutFile procedure to display the default Save dialog box

when the user is saving a file.

PROCEDURE StandardPutFile (prompt: Str255; defaultName: Str255;

VAR reply: StandardFileReply);

prompt The prompt message to be displayed over the text field.

defaultName
The initial name of the file.

reply The reply record, which StandardPutFile fills in before returning.

DESCRIPTION

The StandardPutFile procedure presents a dialog box through which the user

specifies the name and location of a file to be written to. The dialog box is centered on

the screen. While the dialog box is active, StandardPutFile gets and handles events

until the user completes the interaction, either by selecting a name and authorizing the

save or by canceling the save. The StandardPutFile procedure returns the user’s

input in a record of type StandardFileReply.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for StandardPutFile are

SPECIAL CONSIDERATIONS

The StandardPutFile procedure is not available in all versions of system software.

Use the Gestalt function to determine whether StandardPutFile is available before

calling it.

Because StandardPutFile may move memory, you should not call it at interrupt time.

Trap macro Selector

_Pack3 $0005

C H A P T E R 3

Standard File Package

3-46 Standard File Package Reference

CustomPutFile

Use the CustomPutFile procedure when your application requires more control over

the Save dialog box than is possible using StandardPutFile.

PROCEDURE CustomPutFile (prompt: Str255; defaultName: Str255;

VAR reply: StandardFileReply;

dlgID: Integer; where: Point;

dlgHook: DlgHookYDProcPtr;

filterProc: ModalFilterYDProcPtr;

activeList: Ptr;

activateProc: ActivateYDProcPtr;

yourDataPtr: UNIV Ptr);

prompt The prompt message to be displayed over the text field.

defaultName
The initial name of the file.

reply The reply record, which CustomPutFile fills in before returning.

dlgID The resource ID of a customized dialog template. To use the standard
template, set this parameter to 0.

where The upper-left corner of the dialog box, in global coordinates. If you
specify the point (–1,–1), CustomPutFile automatically centers the
dialog box on the screen.

dlgHook A pointer to your dialog hook function, which handles item selections
received from the Dialog Manager. Specify a value of NIL if you have not
added any items to the dialog box and want the standard items handled
in the standard ways. See “Writing a Dialog Hook Function” on page 3-21
for a description of the dialog hook function.

filterProc A pointer to your modal-dialog filter function, which determines how the
ModalDialog procedure filters events when called by the CustomPutFile
procedure. Specify a value of NIL if you are not supplying your own
function. See “Writing a Modal-Dialog Filter Function” on page 3-28 for a
description of the modal-dialog filter function.

activeList A pointer to a list of all dialog items that can be activated—that is, can be
the target of keyboard input. If you supply an activeList parameter of
NIL, CustomPutFile uses the default targets (the filename field and the
list of files and folders). If you have added any fields that can accept
keyboard input, you must modify the list. The list is stored as an array of
16-bit integers. The first integer is the number of items in the list. The
remaining integers are the item numbers of all possible keyboard targets,
in the order that they are activated by the Tab key.

C H A P T E R 3

Standard File Package

Standard File Package Reference 3-47

activateProc
A pointer to your activation procedure, which controls the highlighting of
dialog items that are defined by your application and that can receive
keyboard input. See “Writing an Activation Procedure” on page 3-30 for a
description of the activation procedure.

yourDataPtr
Any 4-byte value; usually, a pointer to optional data supplied by your
application. When CustomPutFile calls any of your callback routines,
it adds this parameter, making the data available to your callback
routines. If you are not supplying any data of your own, you can specify
a value of NIL.

DESCRIPTION

The CustomPutFile procedure is an alternative to StandardPutFile when you want

to display a customized Save dialog box or handle the default dialog box in a custom-

ized way. During the dialog, CustomPutFile gets and handles events (possibly with

the assistance of application-defined callback routines) until the user completes the inter-

action, either by selecting a name and authorizing the save operation or by canceling the

save operation. The CustomPutFile procedure returns the user’s input in a record of

type StandardFileReply.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for CustomPutFile are

SPECIAL CONSIDERATIONS

The CustomPutFile procedure is not available in all versions of system software.

Use the Gestalt function to determine whether CustomPutFile is available before

calling it.

Because CustomPutFile may move memory, you should not call it at interrupt time.

SFPutFile

Use the SFPutFile procedure to display the standard Save dialog box when the user is

saving a file.

PROCEDURE SFPutFile (where: Point; prompt: Str255;

origName: Str255; dlgHook: DlgHookProcPtr;

VAR reply: SFReply);

Trap macro Selector

_Pack3 $0007

C H A P T E R 3

Standard File Package

3-48 Standard File Package Reference

where The upper-left corner of the dialog box, in global coordinates.

prompt The prompt message to be displayed over the text field.

origName The initial name of the file.

dlgHook A pointer to your dialog hook function, which handles item selections
received from the Dialog Manager. Specify a value of NIL if you want
the standard items handled in the standard ways. See “Writing a Dialog
Hook Function” on page 3-21 for a description of the dialog
hook function.

reply The reply record, which SFPutFile fills in before returning.

DESCRIPTION

The SFPutFile procedure presents a dialog box through which the user specifies the

name and location of a file to be written to. During the dialog, SFPutFile gets and

handles events until the user completes the interaction, either by selecting a name and

authorizing the save or by canceling the save. The SFPutFile procedure returns the

user’s input in a record of type SFReply.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SFPutFile are

SPECIAL CONSIDERATIONS

Because SFPutFile may move memory, you should not call it at interrupt time.

SFPPutFile

Use the SFPPutFile procedure when your application requires more control over the

Save dialog box than is possible using SFPutFile.

PROCEDURE SFPPutFile (where: Point; prompt: Str255;

origName: Str255; dlgHook: DlgHookProcPtr;

VAR reply: SFReply; dlgID: Integer;

filterProc: ModalFilterProcPtr);

where The upper-left corner of the dialog box, in global coordinates.

prompt The prompt message to be displayed over the text field.

origName The initial name of the file, if any.

Trap macro Selector

_Pack3 $0001

C H A P T E R 3

Standard File Package

Standard File Package Reference 3-49

dlgHook A pointer to your dialog hook function, which handles item selections
received from the Dialog Manager. Specify a value of NIL if you have not
added any items to the dialog box and want the standard items handled
in the standard ways. See “Writing a Dialog Hook Function” on page 3-21
for a description of the dialog hook function.

reply The reply record, which SFPPutFile fills in before returning.

dlgID The resource ID of a customized dialog template. To use the standard
template, set this parameter to –3999.

filterProc A pointer to your modal-dialog filter function, which determines how the
ModalDialog procedure filters events when called by the SFPPutFile
procedure. Specify a value of NIL if you are not supplying your own
function. See “Writing a Modal-Dialog Filter Function” on page 3-28 for a
description of the modal-dialog filter function.

DESCRIPTION

The SFPPutFile procedure is an alternative to SFPutFile when you want to display

a customized Save dialog box or handle the default dialog box in a customized way.

During the dialog, SFPPutFile gets and handles events (possibly with the assistance of

application-defined callback routines) until the user completes the interaction, either by

selecting a name and authorizing the save operation or by canceling the save operation.

SFPPutFile returns the user’s input in a record of type SFReply.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SFPPutFile are

SPECIAL CONSIDERATIONS

Because SFPPutFile may move memory, you should not call it at interrupt time.

Opening Files

You can use the StandardGetFile procedure to present the standard user interface

when the user asks to open a file. If you need to add elements to the default dialog boxes

or exercise greater control over user actions in the dialog box, use CustomGetFile.

If your application is designed to execute in system software versions earlier than

version 7.0, you can use the corresponding procedures SFGetFile and SFPGetFile.

Trap macro Selector

_Pack3 $0003

C H A P T E R 3

Standard File Package

3-50 Standard File Package Reference

StandardGetFile

You can use the StandardGetFile procedure to display the default Open dialog box

when the user is opening a file.

PROCEDURE StandardGetFile (fileFilter: FileFilterProcPtr;

numTypes: Integer;

typeList: SFTypeList;

VAR reply: StandardFileReply);

fileFilter A pointer to an optional file filter function, provided by your application,
through which StandardGetFile passes files of the specified types.

numTypes The number of file types to be displayed. If you specify a numTypes
value of –1, the first filtering passes files of all types.

typeList A list of file types to be displayed.

reply The reply record, which StandardGetFile fills in before returning.

DESCRIPTION

The StandardGetFile procedure presents a dialog box through which the user

specifies the name and location of a file to be opened. While the dialog box is active,

StandardGetFile gets and handles events until the user completes the interaction,

either by selecting a file to open or by canceling the operation. StandardGetFile

returns the user’s input in a record of type StandardFileReply.

The fileFilter, numTypes, and typeList parameters together determine which

files appear in the displayed list. The first filtering is by file type, which you specify in

the numTypes and typeList parameters. The numTypes parameter specifies the

number of file types to be displayed. You can specify one or more types. If you specify a

numTypes value of –1, the first filtering passes files of all types.

The fileFilter parameter points to an optional file filter function, provided by your

application, through which StandardGetFile passes files of the specified types. See

“Writing a File Filter Function” on page 3-20 for a description of the file filter function.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for StandardGetFile are

SPECIAL CONSIDERATIONS

The StandardGetFile procedure is not available in all versions of system software.

Use the Gestalt function to determine whether StandardGetFile is available before

calling it.

Because StandardGetFile may move memory, you should not call it at interrupt time.

Trap macro Selector

_Pack3 $0006

C H A P T E R 3

Standard File Package

Standard File Package Reference 3-51

CustomGetFile

Call the CustomGetFile procedure when your application requires more control over

the Open dialog box than is possible using StandardGetFile.

PROCEDURE CustomGetFile (fileFilter: FileFilterYDProcPtr;

numTypes: Integer;

typeList: SFTypeList;

VAR reply: StandardFileReply;

dlgID: Integer;

where: Point;

dlgHook: DlgHookYDProcPtr;

filterProc: ModalFilterYDProcPtr;

activeList: Ptr;

activateProc: ActivateYDProcPtr;

yourDataPtr: UNIV Ptr);

fileFilter A pointer to an optional file filter function, provided by your application,
through which CustomGetFile passes files of the specified types.

numTypes The number of file types to be displayed. If you specify a numTypes
value of –1, the first filtering passes files of all types.

typeList A list of file types to be displayed.

reply The reply record, which CustomGetFile fills in before returning.

dlgID The resource ID of a customized dialog template. To use the standard
template, set this parameter to 0.

where The upper-left corner of the dialog box in global coordinates. If you
specify the point (–1,–1), CustomGetFile automatically centers the
dialog box on the screen.

dlgHook A pointer to your dialog hook function, which handles item selections
received from the Dialog Manager. Specify a value of NIL if you have not
added any items to the dialog box and want the standard items handled
in the standard ways. See “Writing a Dialog Hook Function” on page 3-21
for a description of the dialog hook function.

filterProc A pointer to your modal-dialog filter function, which determines how
ModalDialog filters events when called by CustomGetFile. Specify a
value of NIL if you are not supplying your own function. See “Writing a
Modal-Dialog Filter Function” on page 3-28 for a description of the
modal-dialog filter function.

activeList A pointer to a list of all dialog items that can be activated—that is, made
the target of keyboard input. The list is stored as an array of 16-bit
integers. The first integer is the number of items in the list. The remaining
integers are the item numbers of all possible keyboard targets, in the
order that they are activated by the Tab key. If you supply an
activeList parameter of NIL, CustomGetFile directs all keyboard
input to the displayed list.

C H A P T E R 3

Standard File Package

3-52 Standard File Package Reference

activateProc
A pointer to your activation procedure, which controls the highlighting of
dialog items that are defined by your application and that can receive
keyboard input. See “Writing an Activation Procedure” on page 3-30 for a
description of the activation procedure.

yourDataPtr
A pointer to optional data supplied by your application. When
CustomGetFile calls any of your callback routines, it pushes this
parameter on the stack, making the data available to your callback
routines. If you are not supplying any data of your own, specify a
value of NIL.

DESCRIPTION

The CustomGetFile procedure is an alternative to StandardGetFile when you want

to use a customized dialog box or handle the default Open dialog box in a customized

way. CustomGetFile presents a dialog box through which the user specifies the name

and location of a file to be opened. While the dialog box is active, CustomGetFile gets

and handles events until the user completes the interaction, either by selecting a file to

open or by canceling the operation. CustomGetFile returns the user’s input in a record

of type StandardFileReply.

The first four parameters are similar to the same parameters in StandardGetFile.

The fileFilter, numTypes, and typeList parameters determine which files

appear in the list of choices. If you specify a value of –1 in the numTypes parameter,

CustomGetFile displays or passes to your file filter function all files and folders (not

just the files) at the current level of the display hierarchy. If you provide a filter function,

CustomGetFile passes it both the pointer to the catalog entry for each file to be

processed and also a pointer to the optional data passed by your application in its call

to CustomGetFile.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for CustomGetFile are

SPECIAL CONSIDERATIONS

The CustomGetFile procedure is not available in all versions of system software.

Use the Gestalt function to determine whether CustomGetFile is available before

calling it.

Because CustomGetFile may move memory, you should not call it at interrupt time.

Trap macro Selector

_Pack3 $0008

C H A P T E R 3

Standard File Package

Standard File Package Reference 3-53

SFGetFile

Use the SFGetFile procedure to display the default Open dialog box when the user is

opening a file.

PROCEDURE SFGetFile (where: Point; prompt: Str255;

fileFilter: FileFilterProcPtr;

numTypes: Integer; typeList: SFTypeList;

dlgHook: DlgHookProcPtr; VAR reply: SFReply);

where The upper-left corner of the dialog box, in global coordinates.

prompt Ignored.

fileFilter A pointer to an optional file filter function, provided by your application,
through which SFGetFile passes files of the specified types.

numTypes The number of file types to be displayed. If you specify a numTypes
value of –1, the first filtering passes files of all types.

typeList A list of file types to be displayed.

dlgHook A pointer to your dialog hook function, which handles item selections
received from the Dialog Manager. Specify a value of NIL if you want the
standard items handled in the standard ways.

reply The reply record, which SFGetFile fills in before returning.

DESCRIPTION

The SFGetFile procedure displays a dialog box listing the names of a specific

group of files from which the user can select one to be opened (as during an Open

menu command). During the dialog, SFGetFile gets and handles events (possibly

with the assistance of application-defined callback routines) until the user completes

the interaction, either by selecting a file to open or by canceling the open operation.

SFGetFile returns the user’s input in a record of type SFReply.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SFGetFile are

SPECIAL CONSIDERATIONS

Because SFGetFile may move memory, you should not call it at interrupt time.

Trap macro Selector

_Pack3 $0002

C H A P T E R 3

Standard File Package

3-54 Standard File Package Reference

SFPGetFile

Call the SFPGetFile procedure when your application requires more control over the

Open dialog box than is possible using SFGetFile.

PROCEDURE SFPGetFile (where: Point; prompt: Str255;
fileFilter: FileFilterProcPtr;
numTypes: Integer; typeList: SFTypeList;
dlgHook: DlgHookProcPtr;
VAR reply: SFReply; dlgID: Integer;
filterProc: ModalFilterProcPtr);

where The upper-left corner of the dialog box, in global coordinates.

prompt Ignored.

fileFilter A pointer to an optional file filter function, provided by your application,
through which SFPGetFile passes files of the specified types.

numTypes The number of file types to be displayed. If you specify a numTypes
value of –1, the first filtering passes files of all types.

typeList A list of file types to be displayed.

dlgHook A pointer to your dialog hook function, which handles item selections
received from the Dialog Manager. Specify a value of NIL if you have not
added any items to the dialog box and want the standard items handled
in the standard ways.

reply The reply record, which SFPGetFile fills in before returning.

dlgID The resource ID of a customized dialog template.

filterProc A pointer to your modal-dialog filter function, which determines how
the ModalDialog procedure filters events when called by the
SFPGetFile procedure. Specify a value of NIL if you are not supplying
your own function.

DESCRIPTION

The SFPGetFile procedure is an alternative to SFGetFile when you want to display

a customized Open dialog box or handle the default dialog box in a customized way.

During the dialog, SFPGetFile gets and handles events (possibly with the assistance of

application-defined callback routines) until the user completes the interaction, either by

selecting a file to open or by canceling the open operation. SFPGetFile returns the

user’s input in a record of type SFReply.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SFPGetFile are

SPECIAL CONSIDERATIONS

Because SFPGetFile may move memory, you should not call it at interrupt time.

Trap macro Selector

_Pack3 $0004

C H A P T E R 3

Standard File Package

Standard File Package Reference 3-55

Application-Defined Routines

This section describes the application-defined routines whose addresses you pass to

some of the Standard File Package routines. You can define

■ a file filter function for determining which files the user can open

■ a dialog hook function for handling user actions in the dialog boxes

■ a modal-dialog filter function for handling user events received from the Event
Manager

■ an activation procedure for highlighting the display when keyboard input is directed
at a customized field defined by your application

File Filter Functions

You specify a file filter function to determine which files appear in the displayed list of

files and folders when the user is opening a file. You can define a standard or custom

file filter.

MyStandardFileFilter

A file filter function whose address is passed to StandardGetFile should have the

following form:

FUNCTION MyStandardFileFilter (pb: CInfoPBPtr): Boolean;

pb A pointer to a catalog information parameter block.

DESCRIPTION

When StandardGetFile is displaying the contents of a volume or folder, it checks the

file type of each file and filters out files whose types do not match your application’s

specifications. If your application also supplies a file filter function, the Standard File

Package calls that function each time it identifies a file of an acceptable type.

When your file filter function is called, it is passed, in the pb parameter, a pointer to a

catalog information parameter block. See the chapter “File Manager” in this book for a

description of the fields of this parameter block.

Your function evaluates the catalog information parameter block and returns a Boolean

value that determines whether the file is filtered (that is, a value of TRUE suppresses

display of the filename, and a value of FALSE allows the display). If you do not supply a

file filter function, the Standard File Package displays all files of the specified types.

SEE ALSO

See “Writing a File Filter Function” on page 3-20 for a sample file filter function.

C H A P T E R 3

Standard File Package

3-56 Standard File Package Reference

MyCustomFileFilter

A file filter function whose address is passed to CustomGetFile should have the

following form:

FUNCTION MyCustomFileFilter (pb: CInfoPBPtr; myDataPtr: Ptr):

 Boolean;

pb A pointer to a catalog information parameter block.

myDataPtr A pointer to the optional data whose address is passed to
CustomGetFile.

DESCRIPTION

When CustomGetFile is displaying the contents of a volume or folder, it checks the file

type of each file and filters out files whose types do not match your application’s

specifications. If your application also supplies a file filter function, the Standard File

Package calls that function each time it identifies a file of an acceptable type.

When your file filter function is called, it is passed, in the pb parameter, a pointer to a

catalog information parameter block. See the chapter “File Manager” in this book for

a description of the fields of this parameter block.

Your function evaluates the catalog information parameter block and returns a Boolean

value that determines whether the file is filtered (that is, a value of TRUE suppresses

display of the filename, and a value of FALSE allows the display). If you do not supply a

file filter function, the Standard File Package displays all files of the specified types.

SEE ALSO

See “Writing a File Filter Function” on page 3-20 for a sample file filter function.

Dialog Hook Functions

A dialog hook function handles user selections in a dialog box.

MyDlgHook

A dialog hook function should have the following form:

FUNCTION MyDlgHook (item: Integer; theDialog: DialogPtr;

 myDataPtr: Ptr): Integer;

item The number of the item selected.

theDialog A pointer to the dialog record of the dialog box.

myDataPtr A pointer to the optional data whose address is passed to
CustomGetFile or CustomPutFile.

C H A P T E R 3

Standard File Package

Standard File Package Reference 3-57

DESCRIPTION

You supply a dialog hook function to handle user selections of items that you added

to a dialog box. If you provide a dialog hook function, CustomPutFile and

CustomGetFile call your function immediately after calling ModalDialog. They

pass your function the item number returned by ModalDialog, a pointer to the

dialog record, and a pointer to the data received from your application, if any.

Your dialog hook function returns as its function result an integer that is either the item

number passed to it or some other item number. If your dialog hook function does not

handle a selection, it should pass the item number back to the Standard File Package for

processing by setting its return value equal to the item number. If your dialog hook

function does handle the selection, it should pass back sfHookNullEvent or the

number of some other pseudo-item.

SEE ALSO

See “Writing a Dialog Hook Function” on page 3-21 for a sample dialog hook function.

Modal-Dialog Filter Functions

A modal-dialog filter function controls events closer to their source by filtering the

events received from the Event Manager. The Standard File Package itself contains an

internal modal-dialog filter function that maps keypresses and other user input onto the

equivalent dialog box items. If you also want to process events at this level, you can

supply your own filter function.

MyModalFilter

A modal-dialog filter function whose address is passed to SFPGetFile or SFPPutFile

should have the following form:

FUNCTION MyModalFilter (theDialog: DialogPtr;

VAR theEvent: EventRecord;

VAR itemHit: Integer): Boolean;

theDialog A pointer to the dialog record of the dialog box.

theEvent The event record for the event.

itemHit The number of the item selected.

DESCRIPTION

Your modal-dialog filter function determines how the Dialog Manager procedure

ModalDialog filters events. The ModalDialog procedure retrieves events by calling

the Event Manager function GetNextEvent. The Standard File Package contains an

internal filter function that performs some preliminary processing on each event it

C H A P T E R 3

Standard File Package

3-58 Standard File Package Reference

receives. If you provide a modal-dialog filter function, ModalDialog calls your filter

function after it calls the internal Standard File Package filter function and before it sends

the event to your dialog hook function.

Your modal-dialog filter function returns a Boolean value that reports whether it

handled the event. If your function returns a value of FALSE, ModalDialog processes

the event through its own filters. If your function returns a value of TRUE,

ModalDialog returns with no further action.

SEE ALSO

See “Writing a Modal-Dialog Filter Function” on page 3-28 for a sample modal-dialog

filter function.

MyModalFilterYD

A modal-dialog filter function whose address is passed to CustomGetFile or

CustomPutFile should have the following form:

FUNCTION MyModalFilterYD (theDialog: DialogPtr;

VAR theEvent: EventRecord;

VAR itemHit: Integer;

myDataPtr: Ptr): Boolean;

theDialog A pointer to the dialog record of the dialog box.

theEvent The event record for the event.

itemHit The number of the item selected.

myDataPtr A pointer to the optional data whose address is passed to
CustomGetFile or CustomPutFile.

DESCRIPTION

Your modal-dialog filter function determines how the Dialog Manager procedure

ModalDialog filters events. The ModalDialog procedure retrieves events by calling

the Event Manager function GetNextEvent. The Standard File Package contains an

internal filter function that performs some preliminary processing on each event it

receives. If you provide a modal-dialog filter function, ModalDialog calls your filter

function after it calls the internal Standard File Package filter function and before it sends

the event to your dialog hook function.

Your modal-dialog filter function returns a Boolean value that reports whether it

handled the event. If your function returns a value of FALSE, ModalDialog processes

the event through its own filters. If your function returns a value of TRUE,

ModalDialog returns with no further action.

C H A P T E R 3

Standard File Package

Standard File Package Reference 3-59

SEE ALSO

See “Writing a Modal-Dialog Filter Function” on page 3-28 for a sample modal-dialog

filter function.

Activation Procedures

An activation procedure controls the highlighting of dialog items that are defined by

your application and can receive keyboard input.

MyActivateProc

An activation procedure should have the following form:

PROCEDURE MyActivateProc (theDialog: DialogPtr; itemNo: Integer;

activating: Boolean; myDataPtr: Ptr);

theDialog A pointer to the dialog record of the dialog box.

itemNo The number of the item selected.

activating
A Boolean value that specifies whether the field is being activated (TRUE)
or deactivated (FALSE).

myDataPtr A pointer to the optional data whose address is passed to
CustomGetFile or CustomPutFile.

DESCRIPTION

Your activation procedure controls the highlighting of dialog items that are defined by

your application and can receive keyboard input. Ordinarily, you need to supply an

activation procedure only if your application builds a list from which the user can select

entries. The Standard File Package supplies the activation procedure for the file display

list and for all TextEdit fields. You can also use the activation procedure to keep track of

which field is receiving keyboard input, if your application needs that information.

Your application is responsible for removing the highlighting when one of its fields

becomes inactive and for adding the highlighting when one of its fields becomes active.

The Standard File Package can handle the highlighting of all TextEdit fields, even those

defined by your application.

C H A P T E R 3

Standard File Package

3-60 Summary of the Standard File Package

Summary of the Standard File Package

Pascal Summary

Constants

CONST

{Gestalt selector and reply}

gestaltStandardFileAttr = 'stdf';

gestaltStandardFile58 = 0;

{standard dialog resource IDs}

sfPutDialogID = -6043; {Save dialog box}

sfGetDialogID = -6042; {Open dialog box}

{items that appear in both the Open and Save dialog boxes}

sfItemOpenButton = 1; {Save or Open button}

sfItemCancelButton = 2; {Cancel button}

sfItemBalloonHelp = 3; {Balloon Help}

sfItemVolumeUser = 4; {volume icon and name}

sfItemEjectButton = 5; {Eject button}

sfItemDesktopButton = 6; {Desktop button}

sfItemFileListUser = 7; {display list}

sfItemPopUpMenuUser = 8; {directory pop-up menu}

sfItemDividerLinePict = 9; {dividing line between buttons}

{items that appear in Save dialog boxes only}

sfItemFileNameTextEdit = 10; {filename field}

sfItemPromptStaticText = 11; {filename prompt text area}

sfItemNewFolderUser = 12; {New Folder button}

{pseudo-items available prior to version 7.0}

sfHookFirstCall = -1; {initialize display}

sfHookCharOffset = $1000; {offset for character input}

sfHookNullEvent = 100; {null event}

sfHookRebuildList = 101; {redisplay list}

sfHookFolderPopUp = 102; {display parent-directory menu}

sfHookOpenFolder = 103; {display contents of selected }

{ folder or volume}

C H A P T E R 3

Standard File Package

Summary of the Standard File Package 3-61

{additional pseudo-items introduced in version 7.0}

sfHookLastCall = -2; {clean up after display}

sfHookOpenAlias = 104; {resolve alias}

sfHookGoToDesktop = 105; {display contents of desktop}

sfHookGoToAliasTarget = 106; {select target of alias}

sfHookGoToParent = 107; {display contents of parent}

sfHookGoToNextDrive = 108; {display contents of next drive}

sfHookGoToPrevDrive = 109; {display contents of previous drive}

sfHookChangeSelection = 110; {select target of reply record}

sfHookSetActiveOffset = 200; {switch active item}

{refCon field in the window record in the dialog record}

sfMainDialogRefCon = 'stdf'; {main dialog box}

sfNewFolderDialogRefCon = 'nfdr'; {New Folder dialog box}

sfReplaceDialogRefCon = 'rplc'; {name conflict dialog box}

sfStatWarnDialogRefCon = 'stat'; {stationery warning}

sfErrorDialogRefCon = 'err '; {general error report}

sfLockWarnDialogRefCon = 'lock'; {software lock warning}

{resource IDs and item numbers of pre-7.0 dialog boxes}

putDlgID = -3999; {Save dialog box}

putSave = 1; {Save button}

putCancel = 2; {Cancel button}

putEject = 5; {Eject button}

putDrive = 6; {Drive button}

putName = 7; {filename field}

getDlgID = -4000; {Open dialog box}

getOpen = 1; {Open button}

getCancel = 3; {Cancel button}

getEject = 5; {Eject button}

getDrive = 6; {Drive button}

getNmList = 7; {list of names}

getScroll = 8; {scroll bar}

C H A P T E R 3

Standard File Package

3-62 Summary of the Standard File Package

Data Types

Standard File Reply Records

TYPE StandardFileReply = {enhanced standard file reply record}

RECORD

sfGood: Boolean; {TRUE if user did not cancel}

sfReplacing: Boolean; {TRUE if replacing file with same name}

sfType: OSType; {file type}

sfFile: FSSpec; {selected file, folder, or volume}

sfScript: ScriptCode; {script of file, folder, or volume name}

sfFlags: Integer; {Finder flags of selected item}

sfIsFolder: Boolean; {selected item is a folder}

sfIsVolume: Boolean; {selected item is a volume}

sfReserved1: LongInt; {reserved}

sfReserved2: Integer; {reserved}

END;

SFReply = {original standard file reply record}

RECORD

good: Boolean; {TRUE if user did not cancel}

copy: Boolean; {reserved}

fType: OSType; {file type}

vRefNum: Integer; {working directory reference number}

version: Integer; {reserved}

fName: Str63; {filename}

END;

Standard File Type List

SFTypeList = ARRAY[0..3] OF OSType;

Callback Routine Pointer Types

DlgHookProcPtr = ProcPtr; {dialog hook function}

DlgHookYDProcPtr = ProcPtr; {dialog hook function with data}

FileFilterProcPtr = ProcPtr; {file filter function}

FileFilterYDProcPtr = ProcPtr; {file filter function with data}

ModalFilterProcPtr = ProcPtr; {modal-dialog filter}

ModalFilterYDProcPtr = ProcPtr; {modal-dialog filter with data}

ActivateYDProcPtr = ProcPtr; {activation procedure}

C H A P T E R 3

Standard File Package

Summary of the Standard File Package 3-63

Standard File Package Routines

Saving Files

PROCEDURE StandardPutFile (prompt: Str255; defaultName: Str255;
VAR reply: StandardFileReply);

PROCEDURE CustomPutFile (prompt: Str255; defaultName: Str255;
VAR reply: StandardFileReply; dlgID: Integer;
where: Point; dlgHook: DlgHookYDProcPtr;
filterProc: ModalFilterYDProcPtr;
activeList: Ptr;
activateProc: ActivateYDProcPtr;
yourDataPtr: UNIV Ptr);

PROCEDURE SFPutFile (where: Point; prompt: Str255;
origName: Str255; dlgHook: DlgHookProcPtr;
VAR reply: SFReply);

PROCEDURE SFPPutFile (where: Point; prompt: Str255;
origName: Str255; dlgHook: DlgHookProcPtr;
VAR reply: SFReply; dlgID: Integer;
filterProc: ModalFilterProcPtr);

Opening Files

PROCEDURE StandardGetFile (fileFilter: FileFilterProcPtr;
numTypes: Integer; typeList: SFTypeList;
VAR reply: StandardFileReply);

PROCEDURE CustomGetFile (fileFilter: FileFilterYDProcPtr;
numTypes: Integer; typeList: SFTypeList;
VAR reply: StandardFileReply; dlgID: Integer;
where: Point; dlgHook: DlgHookYDProcPtr;
filterProc: ModalFilterYDProcPtr;
activeList: Ptr;
activateProc: ActivateYDProcPtr;
yourDataPtr: UNIV Ptr);

PROCEDURE SFGetFile (where: Point; prompt: Str255;
fileFilter: FileFilterProcPtr;
numTypes: Integer; typeList: SFTypeList;
dlgHook: DlgHookProcPtr; VAR reply: SFReply);

PROCEDURE SFPGetFile (where: Point; prompt: Str255;
fileFilter: FileFilterProcPtr;
numTypes: Integer; typeList: SFTypeList;
dlgHook: DlgHookProcPtr; VAR reply: SFReply;
dlgID: Integer;
filterProc: ModalFilterProcPtr);

C H A P T E R 3

Standard File Package

3-64 Summary of the Standard File Package

Application-Defined Routines

FUNCTION MyStandardFileFilter
(pb: CInfoPBPtr): Boolean;

FUNCTION MyCustomFileFilter (pb: CInfoPBPtr; myDataPtr: Ptr): Boolean;

FUNCTION MyDlgHook (item: Integer; theDialog: DialogPtr;
myDataPtr: Ptr): Integer;

FUNCTION MyModalFilter (theDialog: DialogPtr;
VAR theEvent: EventRecord;
VAR itemHit: Integer): Boolean;

FUNCTION MyModalFilterYD (theDialog: DialogPtr;
VAR theEvent: EventRecord;
VAR itemHit: Integer; myDataPtr: Ptr): Boolean;

PROCEDURE MyActivateProc (theDialog: DialogPtr; itemNo: Integer;
activating: Boolean; myDataPtr: Ptr);

C Summary

Constants

/*Gestalt selector and reply*/

#define gestaltStandardFileAttr 'stdf'

#define gestaltStandardFile58 0

/*standard dialog resource IDs*/

enum {sfPutDialogID = (-6043)}; /*Save dialog box*/

enum {sfGetDialogID = (-6042)}; /*Open dialog box*/

/*items that appear in both the Open and Save dialog boxes/*
enum {sfItemOpenButton = 1}; /*Save or Open button*/
enum {sfItemCancelButton = 2}; /*Cancel button*/
enum {sfItemBalloonHelp = 3}; /*Balloon Help*/
enum {sfItemVolumeUser = 4}; /*volume icon and name*/
enum {sfItemEjectButton = 5}; /*Eject button*/
enum {sfItemDesktopButton = 6}; /*Desktop button*/
enum {sfItemFileListUser = 7}; /*display list*/
enum {sfItemPopUpMenuUser = 8}; /*directory pop-up menu*/
enum {sfItemDividerLinePict = 9}; /*dividing line between buttons*/

/*items that appear in Save dialog boxes only*/

enum {sfItemFileNameTextEdit = 10}; /*filename field*/

enum {sfItemPromptStaticText = 11}; /*filename prompt text area*/

enum {sfItemNewFolderUser = 12}; /*New Folder button*/

C H A P T E R 3

Standard File Package

Summary of the Standard File Package 3-65

/*pseudo-items available prior to version 7.0*/

enum {sfHookFirstCall = (-1)}; /*initialize display*/

enum {sfHookCharOffset = 0x1000};/*offset for character input*/

enum {sfHookNullEvent = 100}; /*null event*/

enum {sfHookRebuildList = 101}; /*redisplay list*/

enum {sfHookFolderPopUp = 102}; /*display parent-directory menu*/

enum {sfHookOpenFolder = 103}; /*display contents of selected */

/* folder or volume*/

/*additional pseudo-items introduced in version 7.0*/

enum {sfHookLastCall = (-2)}; /*clean up after display*/

enum {sfHookOpenAlias = 104}; /*resolve alias*/

enum {sfHookGoToDesktop = 105}; /*display contents of desktop*/

enum {sfHookGoToAliasTarget = 106}; /*select target of alias*/

enum {sfHookGoToParent = 107}; /*display contents of parent*/

enum {sfHookGoToNextDrive = 108}; /*display contents of next drive*/

enum {sfHookGoToPrevDrive = 109}; /*display contents of previous drive*/

enum {sfHookChangeSelection = 110}; /*select target of reply record*/

enum {sfHookSetActiveOffset = 200}; /*switch active item*/

/*refCon field in the window record in the dialog record*/

#define sfMainDialogRefCon 'stdf' /*main dialog box*/

#define sfNewFolderDialogRefCon 'nfdr' /*New Folder dialog box*/

#define sfReplaceDialogRefCon 'rplc' /*name conflict dialog box*/

#define sfStatWarnDialogRefCon 'stat' /*stationery warning*/

#define sfErrorDialogRefCon 'err ' /*general error report*/

#define sfLockWarnDialogRefCon 'lock' /*software lock warning*/

/*resource IDs and item numbers of pre-7.0 dialog boxes*/

enum {putDlgID = -3999}; /*Save dialog box*/

enum {putSave = 1}; /*Save button*/

enum {putCancel = 2}; /*Cancel button*/

enum {putEject = 5}; /*Eject button*/

enum {putDrive = 6}; /*Drive button*/

enum {putName = 7}; /*filename field*/

enum {getDlgID = -4000}; /*Open dialog box*/

enum {getOpen = 1}; /*Open button*/

enum {getCancel = 3}; /*Cancel button*/

enum {getEject = 5}; /*Eject button*/

enum {getDrive = 6}; /*Drive button*/

enum {getNmList = 7}; /*list of names*/

enum {getScroll = 8}; /*scroll bar*/

C H A P T E R 3

Standard File Package

3-66 Summary of the Standard File Package

Data Types

Standard File Reply Records

struct StandardFileReply { /*enhanced standard file reply record*/

Boolean sfGood; /*TRUE if user did not cancel*/

Boolean sfReplacing;/*TRUE if replacing file with same name*/

OSType sfType; /*file type*/

FSSpec sfFile; /*selected file, folder, or volume*/

ScriptCode sfScript; /*script of file, folder, or volume name*/

short sfFlags; /*Finder flags of selected item*/

Boolean sfIsFolder; /*selected item is a folder*/

Boolean sfIsVolume; /*selected item is a volume*/

long sfReserved1;/*reserved*/

short sfReserved2;/*reserved*/

};

typedef struct StandardFileReply StandardFileReply;

struct SFReply { /*original standard file reply record*/

Boolean good; /*TRUE if user did not cancel*/

Boolean copy; /*reserved*/

OSType fType; /*file type*/

short vRefNum; /*working directory reference number*/

short version; /*reserved*/

Str63 fName; /*filename*/

};

typedef struct SFReply SFReply;

Standard File Type List

typedef OSType SFTypeList[4];

Callback Routine Pointer Types

/*dialog hook function*/

typedef pascal short (*DlgHookProcPtr)
(short item, DialogPtr theDialog);

/*dialog hook function with data*/

typedef pascal short (*DlgHookYDProcPtr)
(short item, DialogPtr theDialog,
void *yourDataPtr);

C H A P T E R 3

Standard File Package

Summary of the Standard File Package 3-67

/*file filter function*/

typedef pascal Boolean (*FileFilterProcPtr)
(ParmBlkPtr PB);

/*file filter function with data*/

typedef pascal Boolean (*FileFilterYDProcPtr)
(ParmBlkPtr PB, void *yourDataPtr);

/*modal-dialog filter*/

typedef pascal ProcPtr ModalFilterProcPtr;
(DialogPtr theDialog, EventRecord *theEvent,
short *itemHit);

/*modal-dialog filter with data*/

typedef pascal Boolean (*ModalFilterYDProcPtr)
(DialogPtr theDialog, EventRecord *theEvent,
short *itemHit, void *yourDataPtr);

/*activation procedure*/

typedef pascal void (*ActivateYDProcPtr)
(DialogPtr theDialog,
short itemNo, Boolean activating,
void *yourDataPtr);

Standard File Package Routines

Saving Files

pascal void StandardPutFile (const Str255 prompt, const Str255 defaultName,
StandardFileReply *reply);

pascal void CustomPutFile (const Str255 prompt, const Str255 defaultName,
StandardFileReply *reply, short dlgID,
Point where, DlgHookYDProcPtr dlgHook,
ModalFilterYDProcPtr filterProc,
short *activeList,
ActivateYDProcPtr activateProc,
void *yourDataPtr);

pascal void SFPutFile (Point where, const Str255 prompt,
const Str255 origName, DlgHookProcPtr dlgHook,
SFReply *reply);

pascal void SFPPutFile (Point where, const Str255 prompt,
const Str255 origName, DlgHookProcPtr dlgHook,
SFReply *reply, short dlgID,
ModalFilterProcPtr filterProc);

C H A P T E R 3

Standard File Package

3-68 Summary of the Standard File Package

Opening Files

pascal void StandardGetFile (const Str255 prompt,
FileFilterProcPtr fileFilter,
short numTypes, SFTypeList typeList,
StandardFileReply *reply);

pascal void CustomGetFile (FileFilterYDProcPtr fileFilter,
short numTypes, SFTypeList typeList,
StandardFileReply *reply, short dlgID,
Point where, DlgHookYDProcPtr dlgHook,
ModalFilterYDProcPtr filterProc,
short *activeList,
ActivateYDProcPtr activateProc,
void *yourDataPtr);

pascal void SFGetFile (Point where, const Str255 prompt,
FileFilterProcPtr fileFilter, short numTypes,
SFTypeList typeList, DlgHookProcPtr dlgHook,
SFReply *reply);

pascal void SFPGetFile (Point where, const Str255 prompt,
FileFilterProcPtr fileFilter,
short numTypes, SFTypeList typeList,
DlgHookProcPtr dlgHook, SFReply *reply,
short dlgID, ModalFilterProcPtr filterProc);

Application-Defined Routines

pascal Boolean MyStandardFileFilter
(CInfoPBPtr pb);

pascal Boolean MyCustomFileFilter
(CInfoPBPtr pb, Ptr myDataPtr);

pascal short MyDlgHook (short item, DialogPtr theDialog,
Ptr myDataPtr);

pascal Boolean MyModalFilter(DialogPtr theDialog,
EventRecord *theEvent, short *itemHit);

pascal Boolean MyModalFilterYD
(DialogPtr theDialog,
EventRecord *theEvent, short *itemHit,
Ptr myDataPtr);

pascal void MyActivateProc (DialogPtr theDialog, short itemNo,
Boolean activating, Ptr myDataPtr);

C H A P T E R 3

Standard File Package

Summary of the Standard File Package 3-69

Assembly-Language Summary

Data Structures

New Standard File Reply Record

Old Standard File Reply Record

Trap Macros

Trap Macro Requiring Routine Selector

_Pack3

Global Variables

0 sfGood byte command-valid flag
1 sfReplacing byte replace existing file flag
2 sfType long file type
6 sfFile 70 bytes selected item

76 sfScript word display script
78 sfFlags word Finder flags from catalog
80 sfIsFolder byte folder flag
81 sfIsVolume byte volume flag
82 sfReserved1 long reserved
86 sfReserved2 word reserved

0 good byte command-valid flag
1 copy byte reserved
2 fType long file type
6 vRefNum word working directory reference number
8 version word reserved

10 fName 64 bytes name of file (length byte followed by up to
63 characters)

Selector Routine

$0001 SFPutFile

$0002 SFGetFile

$0003 SFPPutFile

$0004 SFPGetFile

$0005 StandardPutFile

$0006 StandardGetFile

$0007 CustomPutFile

$0008 CustomGetFile

CurDirStore long The directory ID of the current directory.

SFSaveDisk word The negative of the volume reference number of the current volume.

Contents 4-1

C H A P T E R 4

Alias Manager

Contents

About the Alias Manager 4-3

Alias Records 4-4

Search Strategies 4-5

Relative Searches 4-5

Absolute Searches 4-6

Fast Searches 4-7

Exhaustive Searches 4-8

Using the Alias Manager 4-8

Creating Alias Records 4-9

Resolving Alias Records 4-10

Identifying a Single Target 4-10

Identifying Multiple Targets 4-11

Maintaining Alias Records 4-12

Getting Information From Alias Records 4-13

Customizing Alias Records 4-13

Alias Manager Reference 4-13

Data Structures 4-14

Alias Records 4-14

Alias Manager Routines 4-14

Creating and Updating Alias Records 4-14

Resolving and Reading Alias Records 4-19

Application-Defined Routines 4-25

Filtering Possible Targets 4-25

Summary of the Alias Manager 4-26

Pascal Summary 4-26

Constants 4-26

Data Types 4-26

Alias Manager Routines 4-27

Application-Defined Routine 4-27

C H A P T E R 4

4-2 Contents

C Summary 4-28

Constants 4-28

Data Types 4-28

Alias Manager Routines 4-29

Application-Defined Routine 4-29

Assembly-Language Summary 4-29

Data Structure 4-29

Trap Macros 4-30

Result Codes 4-30

C H A P T E R 4

About the Alias Manager 4-3

Alias Manager

This chapter describes how your application can use the Alias Manager to establish and

resolve alias records, which are data structures that describe file system objects (that is,

files, directories, and volumes). You create an alias record to take a “fingerprint” of a file

system object, usually a file, that you might need to locate again later. You can store the

alias record, instead of a file system specification, and then let the Alias Manager find the

file again when it’s needed. The Alias Manager contains algorithms for locating files that

have been moved, renamed, copied, or restored from backup.

Note

The Alias Manager lets you manage alias records. It does not directly
manipulate Finder aliases, which the user creates and manages through
the Finder. The chapter “Finder Interface” in Inside Macintosh: Macintosh
Toolbox Essentials describes Finder aliases and ways to accommodate
them in your application. ◆

The Alias Manager is available only in system software version 7.0 or later. Use the

Gestalt function, described in the chapter “Gestalt Manager” of Inside Macintosh:
Operating System Utilities, to determine whether the Alias Manager is present.

Read this chapter if you want your application to create and resolve alias records. You

might store an alias record, for example, to identify a customized dictionary from

within a word-processing document. When the user runs a spelling checker on the

document, your application can ask the Alias Manager to resolve the record to find the

correct dictionary.

To use this chapter, you should be familiar with the File Manager’s conventions for

identifying files, directories, and volumes, as described in the chapter “Introduction to

File Management” in this book.

This chapter begins with a description of the Alias Manager, alias records, and the search

strategies that the Alias Manager uses to resolve an alias record. Then this chapter shows

how you can

■ create alias records

■ resolve alias records

■ store alias records as resources

■ get information about the target of an alias record

About the Alias Manager

The Alias Manager is the part of the Operating System that helps you to locate specified

files, directories, or volumes at a later time. It stores certain information about the target
object in an alias record. When you later want the Alias Manager to find the target, you

pass it the alias record and other information regarding the type of search to perform.

Sometimes, the Alias Manager can find the original file. In other cases, the Alias Manager

builds a list of potential matches and allows you (or the user) to select the desired file.

C H A P T E R 4

Alias Manager

4-4 About the Alias Manager

The Alias Manager creates and resolves (that is, finds the targets of) alias records. In

general, you should use the Alias Manager to create an alias record whenever you find

yourself storing a specific file description, such as filename and parent directory ID. The

Alias Manager stores this information and more in the alias record, and it also provides a

set of search strategies for resolving the record later. The search strategies are described

in “Search Strategies” beginning on page 4-5. You can use the Alias Manager to create,

resolve, and (if necessary) update alias records. You can also obtain information about

the target of an alias record without actually resolving the alias record.

The Alias Manager can track files and directories across volumes. If the target of an

alias record is on an unmounted AppleShare volume, the Alias Manager automatically

mounts the volume when it resolves the alias. If the target object is on an unmounted

ejectable volume, the Alias Manager prompts the user to insert the volume.

When the Alias Manager creates an alias record, it allocates the storage, fills in the

record, and returns a handle to it. Your application is responsible for storing the record

and retrieving it when needed. Your application must also supply strategies for handling

various alias-resolution problems, described in “Resolving Alias Records” on page 4-10.

To help you understand and use the Alias Manager, this section provides

■ an overview of alias records

■ a description of the search strategies the Alias Manager uses to resolve alias records

Alias Records
An alias record is a data structure that describes a file, directory, or volume. The record

contains

■ location information, such as name and parent directory ID

■ verification information, such as creation date, file type, and creator

■ volume mounting information (that is, server and zone), if applicable

By storing alias records, you can allow your users to create a robust connection to a file—

that is, a connection that can survive the moving or renaming of the target file. The

Finder introduced in system software version 7.0, for example, stores alias records in

aliases created by the user to represent other files or folders. The Edition Manager uses

alias records to support data sharing among separate documents.

An alias record is a reliable way to identify a file system object when your application is

communicating with a process that might be running on a different machine.

The creation of an alias record has no effect on the target of the record, except to establish

a file ID reference for the target file if one did not previously exist. (See the chapter “File

Manager” in this book for a description of file IDs and file ID references.)

The alias record contains only two fields of public information available to your

application. The bulk of the record is managed privately by the Alias Manager.

C H A P T E R 4

Alias Manager

About the Alias Manager 4-5

TYPE AliasRecord =

RECORD

userType: OSType; {application's signature}

aliasSize: Integer; {size of record when created}

{variable-length private data}

END;

Your application can store, in the userType field, its own signature or any other

data that fits into 4 bytes. When the Alias Manager creates an alias record, it stores 0

in that field.

The Alias Manager stores, in the aliasSize field, the size assigned to the record at the

time of its creation. Knowing the starting size allows you to store and retrieve data of

your own at the end of the record (see “Customizing Alias Records” on page 4-13). An

alias record is typically 200 to 300 bytes long.

The private Alias Manager data includes all of the location, verification, and mounting

information needed to resolve the alias record with the various search strategies

described in this chapter.

Search Strategies
Some of the key features of the Alias Manager are the search strategies built into the

alias-resolution functions. The search strategies are designed to find the original target

of an alias record, even if the target has been moved, renamed, copied, or restored from

backup. Which strategy you use to resolve a particular alias record usually depends on a

number of factors, including whether you are willing to sacrifice time to find as many

potential targets as possible and whether the target is known to be in a particular

volume. This section describes the available search strategies.

You can request either a relative or an absolute search. If you request an absolute search,

you can specify whether the search should be either fast or exhaustive. (A relative search

is always a fast search.) As you can see, there are three general search strategies available

to your application for resolving alias records:

■ relative search (always fast)

■ absolute fast search

■ absolute exhaustive search

The following sections describe these search strategies.

Relative Searches

During a relative search, the Alias Manager starts in a specified directory and

searches for the target of an alias record by ascending the file system hierarchy to

a predetermined common parent of the target and the starting directory and then

descending the hierarchy from that common parent.

C H A P T E R 4

Alias Manager

4-6 About the Alias Manager

Suppose, for example, that you are writing a word-processing application that allows the

user to build a customized, supplemental dictionary for each document. You might

create the dictionary as a separate document in the same directory as the document it

serves. In this case, the common parent of the document and the dictionary file (that is,

the lowest-level directory that appears in the pathnames of both) is simply the directory

containing both files.

More generally, you might want to store all document-specific dictionary files in their

own directory, as illustrated in Figure 4-1. Here, the common parent of the document file

“File 2” and its associated dictionary file “Dict 2” is the directory named “Sample.”

Figure 4-1 Resolving a relative path

To resolve an alias record using a relative search, the Alias Manager needs several pieces

of information, which are recorded in the alias record at the time you create it. The Alias

Manager needs a relative path, that is, a path to the target from another file or directory

on the same volume. (Relative paths don’t work across volumes.) To record a relative

path, the Alias Manager saves the distances from the target and the starting file or

directory to their common parent. The Alias Manager can later use those distances in

conjunction with the full pathname to conduct a relative search.

When resolving the alias record by using a relative path, the Alias Manager looks at the

directory at the specified distance above the starting file or directory. The Alias Manager

then constructs a partial pathname by extracting one field of the absolute pathname for

each step from the target to the common parent. In Figure 4-1, the distance is 2, so the

partial pathname is “Dictionary:Dict 2”.

Absolute Searches

In contrast to a relative search, an absolute search always begins at the root directory

of the file system hierarchy and always descends the hierarchy. The first step in any

absolute search is to identify the volume on which the target resides. When conducting a

volume search, the Alias Manager considers the volume’s name, its creation date (which

acts almost as a unique identifier for a volume), and its type (for example, a hard disk, a

3.5-inch floppy disk, or an AppleShare volume).

C H A P T E R 4

Alias Manager

About the Alias Manager 4-7

The Alias Manager first looks for a volume that matches all three criteria: name, creation

date, and type. The search succeeds if the volume is mounted and if its name and

creation date have not changed since the record was created. If the search fails, the Alias

Manager attempts to match by creation date and type only. This step locates volumes

that have been renamed. Finally, the Alias Manager attempts to match by volume name

and type only.

If the target is on an unmounted AppleShare volume, the Alias Manager attempts to

mount the volume. It presents a name and password dialog box if appropriate. If the

target is on an unmounted ejectable volume, the Alias Manager displays a dialog box

prompting the user to insert the volume. Your application can suppress the automatic

mounting, as explained in the description of the MatchAlias function on page 4-20.

Note

Any time that your application needs to resolve a large number of
aliases and the resolution of each alias might require user interaction,
you should ensure that if the user cancels any of the dialog boxes, all
remaining user interaction is canceled as well. ◆

In some circumstances, a relative search identifies the correct target when an absolute

search cannot. For example, suppose the user of your word-processing application

creates a working copy of a document and dictionary by copying the entire folder

Sample to another disk. The user later updates the original document and dictionary

by copying the folder from the working disk. All of the underlying file and directory

identifications change, but the filenames and relative path remain the same. When the

user later runs the spelling checker on the document, a relative-path search finds the

correct target dictionary.

Fast Searches

A fast search employs an algorithm designed to find the target of an alias record quickly.

Depending on how you invoke it, the fast-search algorithm starts with either a relative

search or an absolute search. The Alias Manager can perform a relative fast search

whether or not it has identified the target volume, but it cannot perform an absolute fast

search unless the volume has been identified.

During an absolute fast search, the Alias Manager first searches by file ID (if the target

is a file) or directory ID (if the target is a directory). (File IDs and directory IDs are

described in the chapter “File Manager” in this book.) Even if a file has been renamed

or moved on a volume, the Alias Manager can find it quickly through its file ID.

If the search by file ID or directory ID fails, the Alias Manager searches by name in the

original parent directory. This search locates the target if its file or directory ID has

changed but it still exists by the same name in the parent directory (for example, if the

target was restored from a backup). The Alias Manager compares file numbers of files

found by name in the correct parent directory. If the file numbers do not match, the file is

treated as a possible match—that is, it is put on the list of candidates—and the search

continues. If the target is not found by name in the parent directory, the Alias Manager

looks for a file by file number in the parent directory. A file with the same file number

but a different name replaces a file with the same name but a different file number in the

list of matches.

C H A P T E R 4

Alias Manager

4-8 Using the Alias Manager

If the search by file ID or directory ID fails and if the Alias Manager cannot find the

original parent directory, it searches for the target by full pathname. This search succeeds

if the target resides in the same location on the volume but the directory ID of its parent

directory has changed (for example, if the entire parent directory was restored from

a backup).

If the search by full pathname fails, the Alias Manager attempts to find the file by tracing

partial pathnames up through all parent directories, using parent directory IDs instead

of directory names. For example, consider this full pathname:

MyDisk:Fruits:Tropical:Ackees

If the search by full pathname fails, Alias Manager first looks for the partial pathname

“:Ackees” in the directory with the ID that the directory “MyDisk:Fruits:Tropical” had

when the alias record was created. If that search fails, it looks for “:Tropical:Ackees” in

the directory with the ID that “MyDisk:Fruits” had, and so on.

If you do not ask for a search by relative path first but do provide a starting point for a

relative search, and if the alias record contains relative path information, the Alias

Manager performs a relative search after the absolute search. The relative search

succeeds if the relative path is the same as when the record was created and if the names

of the target and its intervening parent directories have not changed.

Exhaustive Searches

An exhaustive search uses an algorithm that scans an entire volume to look for possible

matches. The Alias Manager typically performs an exhaustive search by calling the File

Manager function PBCatSearch, searching for files or directories with a matching

creation date, creator, and type. (See the chapter “File Manager” in this book for a

description of PBCatSearch.)

The PBCatSearch function is available only on volumes that support the HFS routines

and only on systems running system software version 7.0 and later. When

PBCatSearch is not available, an exhaustive search of the entire volume is performed

by making a series of indexed File Manager calls, searching for objects with matching

creation date, type, creator, or file number.

Using the Alias Manager

You use the Alias Manager primarily to create and resolve alias records. You can also use

it to get information about and update alias records.

The Alias Manager creates an alias record in memory and provides you with a handle to

the record. When you no longer need a record in memory, free the memory by calling the

Memory Manager’s DisposeHandle procedure. Whenever possible, you should store

and retrieve alias records as resources of type 'alis'.

C H A P T E R 4

Alias Manager

Using the Alias Manager 4-9

Alias Manager functions accept and return file specifications in the form of FSSpec

records, which contain a volume reference number, a parent directory ID, and a

target name. See the chapter “File Manager” in this book for a description of file

identification conventions.

Before calling any of the Alias Manager functions, you should verify that the

Alias Manager is available by calling the Gestalt function with a selector of
gestaltAliasMgrAttr. If Gestalt sets the gestaltAliasMgrPresent

bit in the response parameter, the Alias Manager is present.

For more detailed descriptions of the functions described in this section, see “Alias

Manager Reference” beginning on page 4-13.

Creating Alias Records
You create a new alias record by calling one of three functions: NewAlias,

NewAliasMinimal, or NewAliasMinimalFromFullPath. The NewAlias function

creates a complete alias record that can make full use of the alias-resolution algorithms.

The other two functions are streamlined variations designed for circumstances when

speed is more important than robust resolution services. All three functions allocate the

memory for the record, fill it in, and return a handle to it.

The NewAlias function always records the name and the file or directory ID of the

target, its creation date, the parent directory name and ID, and the volume name and

creation date. It also records the full pathname of the target and a collection of other

information. You can have NewAlias store relative path information as well by

supplying a starting point for a relative path (see “Relative Searches” on page 4-5 for a

description of relative paths).

Call NewAlias when you want to create an alias record to store for later use. For

example, suppose you are writing a word-processing application that allows the user to

customize a dictionary for use with a single text file. Your application stores the custom

data in a separate dictionary file in the same directory as the document. As soon as you

create the dictionary file, you can call NewAlias to create an alias record for that file,

including path information relative to the user’s text file. Listing 4-1 shows how to use

NewAlias to create a new alias.

Listing 4-1 Creating an alias record

FUNCTION DoCreateAlias (myDoc, myDict: FSSpec): OSErr;

VAR

myAliasHdl: AliasHandle; {handle to created alias}

myErr: OSErr;

BEGIN

myErr := NewAlias(@myDoc, myDict, myAliasHdl); {create alias record}

IF myAliasHdl <> NIL THEN

myErr := DoSaveAlias(myDoc, myAliasHdl); {save it as a resource}

DoCreateAlias := myErr; {return result code}

END;

C H A P T E R 4

Alias Manager

4-10 Using the Alias Manager

The function DoCreateAlias defined in Listing 4-1 takes two FSSpec records as

parameters. The first specifies the document that is to serve as the starting point for a

relative search, in this case the user’s text file. The second FSSpec record specifies the

target of the alias to be created, in this example the dictionary file. The DoCreateAlias

function calls NewAlias to create the alias record; if successful, it calls the application-

defined function DoSaveAlias to save the alias record as a resource in the document

file’s resource fork. See Listing 4-2 on page 4-12 for a definition of DoSaveAlias.

The two variations on the NewAlias function, NewAliasMinimal and

NewAliasMinimalFromFullPath, record only a minimum of information about

the target. The NewAliasMinimal function records only the target’s name, parent

directory ID, volume name and creation date, and volume mounting information. The

NewAliasMinimalFromFullPath function records only the full pathname of the

target, including the volume name.

Use NewAliasMinimal or NewAliasMinimalFromFullPath when you are willing

to give up robust alias-resolution service in return for speed. The Finder, for example,

stores minimal aliases in the Apple events that tell your application to open or print a

document. Because the alias record is resolved almost immediately, the description is

likely to remain valid, and the shorter record is probably safe.

You can use NewAliasMinimalFromFullPath to create an alias record for a target

that doesn’t exist or that resides on an unmounted volume.

Resolving Alias Records
The Alias Manager provides two functions that you can use to resolve alias records:

■ the high-level function ResolveAlias, which performs a fast search and identifies
only one target

■ the low-level function MatchAlias, which can perform a fast search, an exhaustive
search, or both and which can return a list of target candidates

In general, when you want to identify only the single most likely target of an alias

record, you call ResolveAlias. You call MatchAlias when you want your program

to control the search.

Identifying a Single Target

To resolve an alias record, you usually call the ResolveAlias function. This function

performs a fast search (described earlier in “Fast Searches” on page 4-7) and exits after it

identifies one target. The ResolveAlias function compares some key information

about the identified target with the information stored in the alias record. If any of the

information is different, ResolveAlias automatically updates the record.

Note

Like all other Alias Manager functions, ResolveAlias updates the
record only in memory. Your application is responsible for updating
alias records stored on disk when appropriate. ◆

C H A P T E R 4

Alias Manager

Using the Alias Manager 4-11

In the dictionary example illustrated in Figure 4-1 on page 4-6, the application calls

ResolveAlias with a relative path specification when the user runs the spelling

checker on a document with a customized dictionary. If you provide a relative starting

point, ResolveAlias performs the relative search first.

The ResolveAlias function reports, in the wasChanged parameter, whether it

updated the alias record. After ResolveAlias runs, the value of wasChanged is TRUE

if the record was updated and FALSE if it was not. If you are storing the alias record,

check the value of wasChanged (as well as the function’s result code) to see whether to

update the stored record after resolving an alias.

If ResolveAlias can’t resolve the alias record, it returns a nonzero result code. A result

code of fnfErr signals that ResolveAlias has found the correct volume and parent

directory but not the target file or folder. In this case, ResolveAlias constructs a valid

FSSpec record that describes the target. You can use this record to explore possible

solutions to the resolution failure. You can, for example, pass the FSSpec record to the

File Manager function FSpCreate to create a replacement for a missing file.

Identifying Multiple Targets

The MatchAlias function is a low-level routine that gives your application control over

the search algorithms.

You can control

■ whether to attempt an automatic mounting of unmounted volumes

■ whether to search on more than one volume

■ whether to perform a fast search, an exhaustive search, or both

■ what the order of the absolute and relative searches in a fast search should be

■ whether to pursue search strategies that require interaction with the user (such as
asking for a password while mounting an AppleShare volume)

You can also specify a maximum number of candidates that MatchAlias can identify.

For details about controlling a search with the MatchAlias function, see its description

beginning on page 4-20.

You can supply an optional filter function that MatchAlias calls

■ each time it identifies a possible match

■ when three seconds have elapsed without a match

The filter function determines whether each candidate is added to the list of possible

targets. It can also terminate the search. See “Filtering Possible Targets” on page 4-25

for a description of the filter function.

The MatchAlias function returns, in an array of file system specification records, all

candidates that it identifies.

C H A P T E R 4

Alias Manager

4-12 Using the Alias Manager

Maintaining Alias Records
You can store alias records as resources of type 'alis'.

CONST

rAliasType = 'alis'; {resource type for saved alias records}

To store and retrieve resources, use the standard Resource Manager functions

(AddResource, GetResource, and GetNamedResource) described in the chapter

“Resource Manager” in Inside Macintosh: More Macintosh Toolbox. Listing 4-2 illustrates

one way to save an alias record as a resource in a document file’s resource fork.

Listing 4-2 Storing an alias record as a resource

FUNCTION DoSaveAlias (myDoc: FSSpec; myAliasHdl: AliasHandle): OSErr;

VAR

myErr: OSErr;

myFile: Integer; {file ref number of document's resource fork}

CONST

kID = 129;

kName = 'Dictionary Alias';

BEGIN

myFile := FSpOpenResFile(myDoc, fsCurPerm);

IF myFile = -1 THEN {couldn't open the document's resource fork}

BEGIN

DoSaveAlias := ResError;

exit(DoSaveAlias);

END;

AddResource(Handle(myAliasHdl), rAliasType, kID, kName);

myErr := ResError; {check for errors adding resource}

IF myErr = noErr THEN

BEGIN

WriteResource(Handle(myAliasHdl));

myErr := ResError; {check for errors writing resource}

END;

DoSaveAlias := myErr;

END;

Note that DoSaveAlias assumes that the file specified by the myDoc parameter already

has a resource fork and that the file is not yet open. Your application might have

different requirements.

To update an alias record, use the UpdateAlias function. You typically call

UpdateAlias any time you know that the target of an alias record has been renamed

or otherwise changed. You are most likely to call UpdateAlias after a call to the

C H A P T E R 4

Alias Manager

Alias Manager Reference 4-13

MatchAlias function. If MatchAlias identifies a single target, it sets a flag telling

you whether or not the key information about the target file matches the information in

the alias record. It is the responsibility of your application to update the record.

The ResolveAlias function automatically updates an alias record if any of the key

information about the identified target does not match the information in the record.

Getting Information From Alias Records
To retrieve information from an alias record without actually resolving the record, call

the GetAliasInfo function. You can use GetAliasInfo to retrieve the name of the

target, the names of the target’s parent directories, the name of the target’s volume, or, in

the case of an AppleShare volume, its zone or server name.

The information returned by GetAliasInfo might be stale. GetAliasInfo reads the

information stored in the alias record, which might have changed since the creation of

the record. Because it doesn’t resolve the alias record, GetAliasInfo is most useful for

providing information quickly.

Customizing Alias Records
An alias record contains two kinds of information: public information available to your

application and private information available only to the Alias Manager. Your

application can use the first field, userType, to store its own signature or any other data

that fits into 4 bytes. Your application can use the second field, aliasSize, to customize

the alias record for storing additional data.

The Alias Manager stores, in the aliasSize field, the size of the record at the time it is

created or updated. To customize an alias record, you first use the Memory Manager’s

SetHandleSize procedure to increase the size of the record. You can then find the

starting address of your own data in the record by adding the record’s starting address

to the length recorded in the aliasSize field. If you use the Memory Manager to

expand the record, the Alias Manager preserves your data, even if it changes the size of

its own data when updating the record.

Note

In general, you should customize only alias records that you
have created. ◆

Alias Manager Reference

This section describes the routines provided by the Alias Manager and the

AliasRecord data structure you must pass when calling those routines.

C H A P T E R 4

Alias Manager

4-14 Alias Manager Reference

Data Structures

The Alias Manager uses alias records to store information that allows it to locate an

object in the file system.

Alias Records

Alias records are defined by the AliasRecord data type.

TYPE AliasRecord =

RECORD

userType: OSType; {application's signature}

aliasSize: Integer; {size of record when created}

{variable-length private data}

END;

Field descriptions

userType A 4-byte field that can contain application-specific data. When an
alias record is created, this field contains 0. Your application can use
this field for its own purposes. Typically you should store your
application’s signature here.

aliasSize The size, in bytes, assigned to the alias record at the time of its
creation or updating. This is the total size of the record, including
the userType and aliasSize fields, as well as the variable-length
data that is private to the Alias Manager.

Following these two fields is a variable-length block of data maintained privately by the

Alias Manager.

Alias Manager Routines

This section describes the routines you use to create, update, resolve, and read alias

records. Alias Manager routines use file system specification records (defined by the

FSSpec data type) to identify files, directories, and volumes. To create an FSSpec

record, call the function FSMakeFSSpec, described in the chapter “File Manager” in

this book.

The Alias Manager routines can return the result codes listed in this section or any other

applicable file system or memory management result codes.

Creating and Updating Alias Records

You can use the functions NewAlias, NewAliasMinimal,

NewAliasMinimalFromFullPath, and UpdateAlias to create and

update alias records.

C H A P T E R 4

Alias Manager

Alias Manager Reference 4-15

NewAlias

You use the NewAlias function to create a complete alias record.

FUNCTION NewAlias (fromFile: FSSpecPtr; target: FSSpec;

 VAR alias: AliasHandle): OSErr;

fromFile The starting point for a relative path, to be used later in a relative search.
If you do not need relative path information in the record, pass a
fromFile value of NIL. If you want NewAlias to record relative path
information, pass a pointer to a valid FSSpec record in this parameter.
The two files or directories, fromFile and target, must reside on the
same volume.

target An FSSpec record for the target of the alias record.

alias A handle to the newly created alias record. If the function fails to create
an alias record, it sets alias to NIL.

DESCRIPTION

The NewAlias function creates an alias record that describes the specified target. It

allocates the storage, fills in the record, and puts a record handle to that storage in the

alias parameter. NewAlias always records the name and file or directory ID of the

target, its creation date, the parent directory name and ID, and the volume name and

creation date. It also records the full pathname of the target and a collection of other

information relevant to locating the target, verifying the target, and mounting the

target’s volume, if necessary. You can have NewAlias store relative path information as

well by supplying a starting point for a relative path (see “Relative Searches” on page 4-5

for a description of relative paths).

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for NewAlias are

RESULT CODE

Trap macro Selector

_AliasDispatch $0002

noErr 0 No error

C H A P T E R 4

Alias Manager

4-16 Alias Manager Reference

NewAliasMinimal

You use the NewAliasMinimal function to create a short alias record quickly.

FUNCTION NewAliasMinimal (target: FSSpec;

VAR alias: AliasHandle): OSErr;

target An FSSpec record for the target of the alias record.

alias A handle to the newly created alias record. If the function fails to create
an alias record, it sets alias to NIL.

DESCRIPTION

The NewAliasMinimal function creates an alias record that contains only the minimum

information necessary to describe the target: the target name, the parent directory ID, the

volume name and creation date, and the volume mounting information. The

NewAliasMinimal function uses the standard alias record data structure, but it fills in

only parts of the record.

Note

The ResolveAlias function, described on page 4-19, never updates a
minimal alias record.<36pt>◆

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for NewAliasMinimal are

RESULT CODES

Trap macro Selector

_AliasDispatch $0008

noErr 0 No error
paramErr –50 The value of target or alias parameter, or of both, is

NIL, or the alias record is corrupt

C H A P T E R 4

Alias Manager

Alias Manager Reference 4-17

NewAliasMinimalFromFullPath

You use the function NewAliasMinimalFromFullPath to quickly create an alias

record that contains only the full pathname of the target.

FUNCTION NewAliasMinimalFromFullPath

(fullPathLength: Integer; fullPath: Ptr;

zoneName: Str32; serverName: Str31;

VAR alias: AliasHandle): OSErr;

fullPathLength
The number of characters in the full pathname of the target.

fullPath A pointer to a buffer that contains the full pathname of the target. The full
pathname starts with the name of the volume, includes all of the directory
names in the path to the target, and ends with the target name. (For a
description of pathnames, see the chapter “File Manager” in this book.)

zoneName The AppleTalk zone name of the AppleShare volume on which the target
resides. Set this parameter to a null string if you do not need it.

serverName The AppleTalk server name of the AppleShare volume on which the
target resides. Set this parameter to a null string if you do not need it.

alias A handle to the newly created alias record. If the function fails to create
an alias record, it sets alias to NIL.

DESCRIPTION

The NewAliasMinimalFromFullPath function creates an alias record that identifies

the target by full pathname. You can call NewAliasMinimalFromFullPath to create

an alias record for a file that doesn’t exist or that resides on an unmounted volume.

The NewAliasMinimalFromFullPath function uses the standard alias record data

structure, but it fills in only the information provided in the input parameters. You can

therefore use NewAliasMinimalFromFullPath to create alias records for targets on

unmounted volumes.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for NewAliasMinimalFromFullPath are

RESULT CODES

Trap macro Selector

_AliasDispatch $0009

noErr 0 No error
paramErr –50 Parameter error

C H A P T E R 4

Alias Manager

4-18 Alias Manager Reference

UpdateAlias

You use the UpdateAlias function to update an alias record.

FUNCTION UpdateAlias (fromFile: FSSpecPtr; target: FSSpec;

alias: AliasHandle;

VAR wasChanged: Boolean): OSErr;

fromFile The starting point for a relative path, to be used later in a relative
search. If you do not need relative path information in the record, pass
a fromFile value of NIL. If you want UpdateAlias to record
relative path information, pass a pointer to a valid FSSpec record
in this parameter.

target The target of the alias record. This parameter must be a valid
FSSpec record.

alias A handle to the alias record to be updated.

wasChanged A Boolean value indicating whether the newly constructed alias record is
exactly the same as the old one. If the new record is the same as the old
one, UpdateAlias sets the wasChanged parameter to FALSE.
Otherwise, it sets it to TRUE. Check this parameter to determine whether
you need to save an updated record.

DESCRIPTION

The UpdateAlias function updates the alias record pointed to by the alias parameter

so that it describes the target specified by the target parameter. The UpdateAlias

function rebuilds the entire alias record and fills it in as the NewAlias function would.

The UpdateAlias function always creates a complete alias record. When you use

UpdateAlias to update a minimal alias record, you convert the minimal record to a

complete record.

SPECIAL CONSIDERATIONS

The two files or directories, fromFile and target, must reside on the same volume.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for UpdateAlias are

RESULT CODES

Trap macro Selector

_AliasDispatch $0006

noErr 0 No error
paramErr –50 The value of the target or alias parameter, or both,

is NIL, or the alias record is corrupt

C H A P T E R 4

Alias Manager

Alias Manager Reference 4-19

Resolving and Reading Alias Records

You can use the functions ResolveAlias and MatchAlias to resolve or find possible

targets of an alias record. You can use the function GetAliasInfo to get information

about the target of an alias without actually resolving the alias.

ResolveAlias

You use the ResolveAlias function to identify the single most likely target of an

alias record.

FUNCTION ResolveAlias (fromFile: FSSpecPtr; alias: AliasHandle;

VAR target: FSSpec;

VAR wasChanged: Boolean): OSErr;

fromFile The starting point for a relative search. If you pass a fromFile parameter
of NIL, ResolveAlias performs only an absolute search. If you pass
a pointer to a valid FSSpec record in the fromFile parameter,
ResolveAlias performs a relative search for the target, followed by
an absolute search only if the relative search fails. If you want to perform
an absolute search followed by a relative search, you must use the
MatchAlias function.

alias A handle to the alias record to be resolved and, if necessary, updated.

target The target of the alias record. This parameter must be a valid
FSSpec record.

wasChanged A Boolean value indicating whether the alias record to be resolved was
updated because it contained some outdated information about the target.

DESCRIPTION

The ResolveAlias function performs a fast search for the target of the alias, as

described in “Fast Searches” on page 4-7. If the resolution is successful, ResolveAlias

returns (in the target parameter) the FSSpec record for the target file system object,

updates the alias record if necessary, and reports (through the wasChanged parameter)

whether the record was updated. If the target is on an unmounted AppleShare volume,

ResolveAlias automatically mounts the volume. If the target is on an unmounted

ejectable volume, ResolveAlias asks the user to insert the volume. The

ResolveAlias function exits after it finds one acceptable target.

After it identifies a target, ResolveAlias compares some key information about the

target with the information in the alias record. (The description of the MatchAlias

function, beginning on page 4-20, lists the key information.) If the information differs,

ResolveAlias updates the record to match the target. If it updates the alias

record, ResolveAlias sets the wasChanged parameter to TRUE. Otherwise, it sets

it to FALSE. (ResolveAlias never updates a minimal alias, so it never sets

wasChanged to TRUE when resolving a minimal alias.)

C H A P T E R 4

Alias Manager

4-20 Alias Manager Reference

When it finds the specified volume and parent directory but fails to find the target file or

directory in that location, ResolveAlias returns a result code of fnfErr and fills in

the target parameter with a complete FSSpec record describing the target (that is, the

volume reference number, parent directory ID, and filename or folder name). The

FSSpec record is valid, although the object it describes does not exist. This information

is intended as a “hint” that lets you explore possible solutions to the resolution failure.

You can, for example, pass the FSSpec record to the File Manager function FSpCreate

to create a replacement for a missing file.

The ResolveAlias function displays the standard dialog boxes when it needs input

from the user, such as a name and password for mounting a remote volume. The user

can cancel the resolution through these dialog boxes.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for ResolveAlias are

RESULT CODES

MatchAlias

You use the MatchAlias function to identify a list of possible matches and pass the list

through an optional selection filter. The filter can return more than one possible match.

FUNCTION MatchAlias (fromFile: FSSpecPtr; rulesMask: LongInt;

alias: AliasHandle; VAR aliasCount: Integer;

aliasList: FSSpecArrayPtr;

VAR needsUpdate: Boolean;

aliasFilter: AliasFilterProcPtr;

yourDataPtr: UNIV Ptr): OSErr;

fromFile The starting point for a relative search. If you do not want MatchAlias
to perform a relative search, set fromFile to NIL. If you want
MatchAlias to perform a relative search, pass a pointer to a file system
specification record that describes the starting point for the search.

rulesMask A set of rules to guide the resolution. Pass the sum of all of the rules you
want to invoke.

Trap macro Selector

_AliasDispatch $0003

noErr 0 No error
nsvErr –35 The volume is not mounted
fnfErr –43 Target not found, but volume and parent directory found
paramErr –50 The value of the target or alias parameter, or both, is

NIL, or the alias record is corrupt
dirNFErr –120 Parent directory not found
usrCanceledErr –128 The user canceled the operation

C H A P T E R 4

Alias Manager

Alias Manager Reference 4-21

alias A handle to the alias record to be resolved.

aliasCount On input, the maximum number of possible matches to return. On output,
the actual number of matches returned.

aliasList A pointer to the array that holds the results of the search.

needsUpdate
A Boolean flag that indicates whether the alias record to be resolved needs
to be updated.

aliasFilter
An application-defined filter function.

yourDataPtr
A pointer to data to be passed to the filter function.

DESCRIPTION

The MatchAlias function resolves the alias record specified by the alias parameter,

following the rules specified by the rulesMask parameter. Then it returns, in the

structure specified by the aliasList parameter, a list of possible candidates. The

MatchAlias function places, in the aliasCount parameter, the number of

candidates identified.

You specify the matching criteria by passing a sum of these constants in the

rulesMask parameter.

CONST

kARMMountVol = $00000001;{mount volume automatically}

kARMNoUI = $00000002;{suppress user interface}

kARMMultVols = $00000008;{search on multiple volumes}

kARMSearch = $00000100;{do a fast search}

kARMSearchMore = $00000200;{do an exhaustive search}

kARMSearchRelFirst = $00000400;{do a relative search first}

Constant descriptions

kARMMountVol Automatically try to mount the target’s volume if it is not
mounted.

kARMNoUI Stop if a search requires user interaction, such as a password dialog
box when mounting a remote volume. If user interaction is needed
and kARMNoUI is in effect, the search fails.

kARMMultVols Search all mounted volumes. The search begins with the volume on
which the target resided when the record was created. When you
specify a fast search of all mounted volumes, MatchAlias performs
a formal fast search only on the volume described in the alias record.
On all other volumes it looks for the target by ID or by name in the
directory with the specified parent directory ID. When you specify
an exhaustive search of multiple volumes, MatchAlias performs
the same search on all volumes. When resolving an alias record
created by NewAliasMinimalFromFullPath, MatchAlias
ignores this flag.

C H A P T E R 4

Alias Manager

4-22 Alias Manager Reference

kARMSearch Perform a fast search for the alias target. If kARMSearchRelFirst
is not set, perform an absolute search first, followed by a relative
search only if the value of the fromFile parameter is not NIL and
the list of matches is not full.

kARMSearchMore Perform an exhaustive search for the alias target. On HFS volumes,
the exhaustive search uses the File Manager function PBCatSearch
to identify candidates with matching creation date, type, and creator.
The PBCatSearch function is available only on HFS volumes and
only on systems running version 7.0 or later. On MFS volumes or
HFS volumes that do not support PBCatSearch, the exhaustive
search makes a series of indexed calls to File Manager functions,
using the same search criteria. If you set kARMSearchMore and
either or both of kARMSearch and kARMSearchRelFirst,
MatchAlias performs the fast search first.

kARMSearchRelFirst
If kARMSearch is also set, perform a relative search before the
absolute search. (If kARMSearch is also set and the target is found
through the absolute search, MatchAlias sets the needsUpdate
flag to TRUE.) If neither kARMSearch nor kARMSearchMore is set,
perform only a relative search. If kARMSearch is not set but
kARMSearchMore is set, perform a relative search followed by an
exhaustive search.

You must specify at least one of the last three parameters: kARMSearch,

kARMSearchMore, and kARMSearchRelFirst.

Your application can specify a maximum number of possible matches by setting the

aliasCount parameter. MatchAlias changes the aliasCount parameter to the

actual number of candidates identified. If MatchAlias finds the parent directory on the

correct volume but does not find the target, it sets the aliasCount parameter to 1, puts

the file system specification record for the target in the results list, and returns fnfErr.

The FSSpec record is valid, although the object it describes does not exist. This

information is intended as a “hint” that lets you explore possible solutions to the

resolution failure. You can, for example, use the FSSpec record and the File Manager

function FSpCreate to create a replacement for a missing file.

The needsUpdate flag is a signal to your application that the record might need to be

updated. After it identifies a target, MatchAlias compares some key information about

the target with the same information in the record. If the information does not match,

MatchAlias sets the needsUpdate flag to TRUE. The key information is

■ the name of the target

■ the directory ID of the target’s parent

■ the file ID or directory ID of the target

■ the name and creation date of the volume on which the target resides

The MatchAlias function also sets the needsUpdate flag to TRUE if it identifies a list of

possible matches rather than a single match or if kARMsearchRelFirst is set but the

target is identified through either an absolute search or an exhaustive search. Otherwise,

the MatchAlias function sets the needsUpdate flag to FALSE. MatchAlias always

C H A P T E R 4

Alias Manager

Alias Manager Reference 4-23

sets the needsUpdate flag to FALSE when resolving an alias created by

NewAliasMinimal. If you want to update the alias record to reflect the final

results of the resolution, call UpdateAlias.

The aliasFilter parameter points to a filter function supplied by your application.

The Alias Manager executes this function each time it identifies a possible match and

after the search has continued for three seconds without a match. Your filter function

returns a Boolean value that determines whether the possible match is discarded (TRUE)

or added to the list of possible targets (FALSE). It can also terminate the search by setting

the variable parameter quitFlag. See “Filtering Possible Targets” on page 4-25 for a

description of the filter function.

The yourDataPtr parameter can point to any data that your application might need in

the filter function.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for MatchAlias are

RESULT CODES

GetAliasInfo

You use the GetAliasInfo function to get information from an alias record without

actually resolving the record.

FUNCTION GetAliasInfo (alias: AliasHandle; index: AliasInfoType;

VAR theString: Str63): OSErr;

alias A handle to the alias record to be read.

index The kind of information to be retrieved.

theString A string that holds the requested information.

DESCRIPTION

The GetAliasInfo function retrieves the information specified by the index

parameter from the record pointed to by the alias parameter and places that

information in the parameter theString.

Trap macro Selector

_AliasDispatch $0005

noErr 0 No error
nsvErr –35 The volume is not mounted
fnfErr –43 Target not found, but volume and parent directory found
paramErr –50 The value of the target or alias parameter, or both, is

NIL, or the alias record is corrupt
usrCanceledErr –128 The user canceled the operation

C H A P T E R 4

Alias Manager

4-24 Alias Manager Reference

The index parameter specifies the kind of information to be retrieved. If the value of

index is a positive integer, GetAliasInfo retrieves the parent directory that has the

same hierarchical level above the target as the index parameter (for example, an index

value of 2 returns the name of the parent directory of the target’s parent directory). You

can therefore assemble the names of the target and all of its parent directories by making

repeated calls to GetAliasInfo with incrementing index values, starting with a value

of 0. When the value of index is greater than the number of levels between the target

and the root, GetAliasInfo returns an empty string. You can also set the index

parameter to one of the following five values:

CONST

asiZoneName = –3; {get zone name}

asiServerName = –2; {get server name}

asiVolumeName = –1; {get volume name}

asiAliasName = 0; {get target name}

asiParentName = 1; {get parent directory name}

Constant descriptions

asiZoneName If the record represents a target on an AppleShare volume, retrieve
the server’s zone name. Otherwise, return an empty string.

asiServerName If the record represents a target on an AppleShare volume, retrieve
the server name. Otherwise, return an empty string.

asiVolumeName Return the name of the volume on which the target resides.

asiAliasName Return the name of the target.

asiParentName Return the name of the parent directory of the target of the record. If
the target is a volume, return the volume name.

The GetAliasInfo function returns the information stored in the alias record, which

might not be current. To ensure that the information is current, you can resolve and

update the alias record before calling GetAliasInfo.

Note

The GetAliasInfo function cannot provide all kinds of information
about a minimal alias. ◆

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for GetAliasInfo are

RESULT CODES

Trap macro Selector

_AliasDispatch $0007

noErr 0 No error
paramErr –50 The value of alias or theString parameter, or both,

is NIL; the value of index is less than the value of
asiZoneName; or the alias record is corrupt

C H A P T E R 4

Alias Manager

Alias Manager Reference 4-25

Application-Defined Routines

The Alias Manager supports a single application-defined routine, a function for filtering

out possible targets of an alias record.

Filtering Possible Targets

You can write your own filter function to examine possible targets identified by the

MatchAlias function. The MatchAlias function calls your filter function each time it

identifies a possible match or when three seconds have elapsed without a match.

MyMatchAliasFilter

You can pass the address of an alias-matching filter function to the MatchAlias

function.

FUNCTION MyMatchAliasFilter (cpbPtr: CInfoPBPtr;

VAR quitFlag: Boolean;

myDataPtr: Ptr): Boolean;

cpbPtr A pointer to a catalog information parameter block.

quitFlag On exit, set this to TRUE if you want to terminate the search.

myDataPtr A pointer to custom data.

DESCRIPTION

Your application-defined filter function is called by MatchAlias to filter out possible

matches. When your function is called, the cpbPtr parameter points to the catalog

information parameter block of the possible match (returned by the File Manager

function PBGetCatInfo). The MatchAlias function sets this parameter to NIL if it

is calling your function to give it the periodic chance to terminate the search. (Do not

use this pointer without checking for NIL.) If you want to terminate the search, set the

quitFlag parameter to TRUE.

The myDataPtr parameter points to any customized data that your application passed

when it called MatchAlias. This parameter allows your filter function to access any

data that your application has set up on its own.

Your function should return TRUE to indicate that the possible match is to be discarded,

or FALSE to indicate that the possible match is to be added to the list of possible targets.

C H A P T E R 4

Alias Manager

4-26 Summary of the Alias Manager

Summary of the Alias Manager

Pascal Summary

Constants

CONST

{Gestalt constants}

gestaltAliasMgrAttr = 'alis'; {Alias Mgr attributes selector}

gestaltAliasMgrPresent = 0; {Alias Mgr is present}

{resource type for saved alias records}

rAliasType = 'alis';

{masks for alias resolution action rules used by MatchAlias}

kARMMountVol = $00000001; {mount volume automatically}

kARMNoUI = $00000002; {suppress user interface}

kARMMultVols = $00000008; {search on multiple volumes}

kARMSearch = $00000100; {do a fast search}

kARMSearchMore = $00000200; {do an exhaustive search}

kARMSearchRelFirst = $00000400; {do a relative search first}

{index values for GetAliasInfo}

asiZoneName = –3; {get zone name}

asiServerName = –2; {get server name}

asiVolumeName = –1; {get volume name}

asiAliasName = 0; {get target name}

asiParentName = 1; {get parent directory name}

Data Types

TYPE AliasRecord = {alias record}

RECORD

userType: OSType; {application's signature}

aliasSize: Integer; {size of record when created}

{variable-length private data}

END;

C H A P T E R 4

Alias Manager

Summary of the Alias Manager 4-27

AliasPtr = ^AliasRecord;

AliasHandle = ^AliasPtr;

AliasInfoType = Integer; {alias record information type}

AliasFilterProcPtr = ProcPtr; {application-defined routine}

Alias Manager Routines

Creating and Updating Alias Records

FUNCTION NewAlias (fromFile: FSSpecPtr; target: FSSpec;
VAR alias: AliasHandle): OSErr;

FUNCTION NewAliasMinimal (target: FSSpec;
VAR alias: AliasHandle): OSErr;

FUNCTION NewAliasMinimalFromFullPath

(fullPathLength: Integer; fullPath: Ptr;
zoneName: Str32; serverName: Str31;
VAR alias: AliasHandle): OSErr;

FUNCTION UpdateAlias (fromFile: FSSpecPtr; target: FSSpec;
alias: AliasHandle;
VAR wasChanged: Boolean): OSErr;

Resolving and Reading Alias Records

FUNCTION ResolveAlias (fromFile: FSSpecPtr; alias: AliasHandle;
VAR target: FSSpec;
VAR wasChanged: Boolean): OSErr;

FUNCTION MatchAlias (fromFile: FSSpecPtr; rulesMask: LongInt;
alias: AliasHandle; VAR aliasCount: Integer;
aliasList: FSSpecArrayPtr;
VAR needsUpdate: Boolean;
aliasFilter: AliasFilterProcPtr;
yourDataPtr: UNIV Ptr): OSErr;

FUNCTION GetAliasInfo (alias: AliasHandle; index: AliasInfoType;
VAR theString: Str63): OSErr;

Application-Defined Routine

FUNCTION MyMatchAliasFilter (cpbPtr: CInfoPBPtr; VAR quitFlag: Boolean;
myDataPtr: Ptr): Boolean;

C H A P T E R 4

Alias Manager

4-28 Summary of the Alias Manager

C Summary

Constants

/*Gestalt constants*/

#define gestaltAliasMgrAttr 'alis' /*Alias Mgr attributes selector*/

#define gestaltAliasMgrPresent 0 /*Alias Mgr is present*/

/*resource type for saved alias records*/

#define rAliasType 'alis'

/*masks for alias resolution action rules used by MatchAlias*/

enum {kARMMountVol = 0x00000001}; /*mount volume automatically*/

enum {kARMNoUI = 0x00000002}; /*suppress user interface*/

enum {kARMMultVols = 0x00000008}; /*search on multiple volumes*/

enum {kARMSearch = 0x00000100}; /*do a fast search*/

enum {kARMSearchMore = 0x00000200}; /*do an exhaustive search*/

enum {kARMSearchRelFirt = 0x00000400}; /*do a relative search first*/

/*index values for GetAliasInfo*/

enum {asiZoneName = –3}; /*get zone name*/

enum {asiServerName = –2}; /*get server name*/

enum {asiVolumeName = –1}; /*get volume name*/

enum {asiAliasName = 0}; /*get target name*/

enum {asiParentName = 1}; /*get parent directory name*/

Data Types

typedef struct { /*alias record*/

OSType userType; /*application's signature*/

unsigned short aliasSize; /*size of record when created*/

} AliasRecord;

typedef AliasRecord *AliasPtr;

typedef AliasRecord **AliasHandle;

typedef short AliasInfoType; /*alias record information type*/

typedef pascal Boolean (*AliasFilterProcPtr)(CInfoPBPtr cpbPtr,

Boolean *quitFlag, Ptr yourDataPtr);

C H A P T E R 4

Alias Manager

Summary of the Alias Manager 4-29

Alias Manager Routines

Creating and Updating Alias Records

pascal OSErr NewAlias (const FSSpec *fromFile, const FSSpec *target,
AliasHandle *alias);

pascal OSErr NewAliasMinimal(const FSSpec *target, AliasHandle *alias);

pascal OSErr NewAliasMinimalFromFullPath

(short fullPathLength,
const unsigned char *fullpath,
const Str32 zoneName, const Str31 serverName,
AliasHandle *alias);

pascal OSErr UpdateAlias (const FSSpec *fromFile, const FSSpec *target,
AliasHandle alias, Boolean *wasChanged);

Resolving and Reading Alias Records

pascal OSErr ResolveAlias (const FSSpec *fromFile, AliasHandle alias,
FSSpec *target, Boolean *wasChanged);

pascal OSErr MatchAlias (const FSSpec *fromFile,
unsigned long rulesMask,
const AliasHandle alias, short *aliasCount,
FSSpecPtr aliasList, Boolean *needsUpdate,
AliasFilterProcPtr aliasFilter,
Ptr yourDataPtr);

pascal OSErr GetAliasInfo (const AliasHandle alias, AliasInfoType index,
Str63 theString);

Application-Defined Routine

pascal Boolean MyMatchAliasFilter

(CInfoPBPtr cpbPtr, Boolean *quitFlag,
Ptr myDataPtr);

Assembly-Language Summary

Data Structure

Alias Record Data Structure

0 userType long file type of target file
4 aliasSize word size, in bytes, of record

C H A P T E R 4

Alias Manager

4-30 Summary of the Alias Manager

Trap Macros

Trap Macro Requiring Routine Selectors

_AliasDispatch

Result Codes

Selector Routine

$0002 NewAlias

$0003 ResolveAlias

$0005 MatchAlias

$0006 UpdateAlias

$0007 GetAliasInfo

$0008 NewAliasMinimal

$0009 NewAliasMinimalFromFullPath

$000C ResolveAliasFile

noErr 0 No error
nsvErr –35 The volume is not mounted
fnfErr –43 Target not found, but volume and parent directory found
paramErr –50 Parameter error
dirNFErr –120 Parent directory not found
usrCanceledErr –128 The user canceled the operation

Contents 5-1

C H A P T E R 5

Contents

Disk Initialization Manager

About the Disk Initialization Manager 5-3

Disk Initialization 5-4

The Disk Initialization User Interface 5-5

Bad Block Sparing 5-7

Using the Disk Initialization Manager 5-9

Responding to Disk-Inserted Events 5-9

Erasing Initialized Disks 5-11

Overriding the Standard Initialization Interface 5-12

Changing Default Volume Characteristics 5-13

Disk Initialization Manager Reference 5-15

Routines 5-15

Loading and Unloading the Disk Initialization Manager 5-15

Initializing a Disk 5-17

Low-Level Disk Initialization Routines 5-19

Summary of the Disk Initialization Manager 5-23

Pascal Summary 5-23

Data Types 5-23

Routines 5-23

C Summary 5-24

Data Types 5-24

Routines 5-24

Assembly-Language Summary 5-25

Data Structures 5-25

Trap Macros 5-25

Global Variables 5-25

Result Codes 5-25

C H A P T E R 5

About the Disk Initialization Manager 5-3

Disk Initialization Manager

This chapter describes the Disk Initialization Manager, the part of the Operating System

that allows you to initialize disks and erase the contents of previously initialized disks.

The Disk Initialization Manager provides a routine that allows you to present the

standard user interface for initializing and naming disks. It also provides routines that

allow you to initialize disks without presenting that standard user interface.

You need to read this chapter if your application does not mask out disk-inserted events.

When your application receives a disk-inserted event, it must determine whether the

inserted disk is valid. If the disk is not valid, your application can use the Disk Initializa-

tion Manager to present the user with the standard interface for initializing the disk.

To use this chapter, you should already be familiar with the Event Manager, which sends

your application a disk-inserted event whenever a disk is inserted (unless you have

masked out such events). You need to examine the message field of that event to

determine whether the inserted disk is already initialized. You also need to be familiar

with the File Manager if your application changes the default volume characteristics of

newly initialized volumes.

This chapter begins by describing the operation of the Disk Initialization Manager,

including

■ formatting, verifying, and zeroing a disk

■ the standard user interface for initializing and naming a disk

■ bad block sparing

Then this chapter shows how you can

■ determine whether an inserted disk is valid

■ present the standard user interface to initialize and name an invalid disk

■ present the standard user interface to erase a disk

■ initialize or erase a disk without using the standard user interface

■ change the default volume characteristics of newly initialized volumes

About the Disk Initialization Manager

The Disk Initialization Manager is the part of the Macintosh Operating System that

manages the process of initializing disks. This package accepts requests to initialize a

disk and translates them into control calls for the corresponding disk driver. The Disk

Initialization Manager itself does not perform the low-level formatting or verification of

the disk; instead, it simply manages the communication between the software requesting

that a particular disk be initialized and the appropriate disk driver.

C H A P T E R 5

Disk Initialization Manager

5-4 About the Disk Initialization Manager

Note

In theory, you can use the Disk Initialization Manager to initialize any
writable disk drive. In practice, however, most SCSI disk drivers ignore
formatting control calls. Instead, low-level disk operations such as
formatting and verification are usually performed by a utility program
supplied with the disk. As a result, this chapter assumes that the disk to
be initialized is a 3.5-inch floppy disk or an Apple Hard Disk 20SC, all of
which are accessed through the Disk Driver. ◆

Usually, the Finder or the Standard File Package calls the Disk Initialization Manager

when the user inserts an uninitialized disk. Occasionally the user will insert a disk when

your application is frontmost. At that time, the Operating System generates a

disk-inserted event. If your application has not masked out such events, it receives an

event record for that event when it makes an event call and no events with higher

priority are pending. You then need to determine whether the inserted disk is valid (as

indicated by a value in the event record). If the disk is not valid, you should call the Disk

Initialization Manager to allow the user to initialize the disk or, if desired, eject it.

If your application masks out disk-inserted events, the event stays in the event queue

until your application calls the Standard File Package (which automatically processes

disk-inserted events) or until the current application can handle disk-inserted events. In

general, it’s best not to mask out disk-inserted events and to handle them as described

later in this chapter; otherwise, the user is likely to become confused when, after

inserting an uninitialized or damaged disk, no disk icon appears on the desktop and no

standard disk initialization dialog box appears. (Icons of initialized and undamaged

disks always appear on the desktop, even if the current application ignores disk-inserted

events.)

Disk Initialization
Disk initialization is the process of making a disk usable by the Macintosh Operating

System. When shipped, most floppy disks are uninitialized because different operating

systems have different initialization requirements. On Macintosh computers, disk

initialization consists of three independent steps:

■ disk formatting

■ disk verification

■ disk zeroing

All three steps must be performed successfully before the disk is considered initialized

(or valid). You can use a single Disk Initialization Manager function, DIBadMount,

to perform all three operations in sequence, or you can perform any one of them by

calling a corresponding low-level function (either DIFormat, DIVerify, or DIZero).

In general, your application should use the standard user interface described in the

following section to initialize a disk.

The first step in the initialization process is disk formatting. Formatting a disk consists

of writing special information onto a disk so that the disk driver can read from and write

to the disk. This involves dividing the total usable space into sectors and tracks. See the

C H A P T E R 5

Disk Initialization Manager

About the Disk Initialization Manager 5-5

chapter “Disk Driver” in Inside Macintosh: Devices for a description of how a disk is

divided into tracks and sectors.

The second step in the disk-initialization process is disk verification. Verifying a disk

consists of reading every bit on the disk to ensure that the disk has been formatted

correctly and contains no bad blocks. If an error occurs during the reading of any single

bit, the verification is considered unsuccessful.

The third and final step in the disk-initialization process is disk zeroing. Zeroing a disk

consists of creating on the disk the data structures and files necessary for the disk to be

recognized as a hierarchical file system (HFS) volume. In particular, zeroing a disk places

a master directory block (MDB), a volume bitmap, and a catalog file in appropriate

locations on the disk. (For information on the locations and sizes of these items, see the

description of the organization of data in a volume in the chapter “File Manager” in

this book.) The volume bitmap and catalog file are set up to represent a volume contain-

ing no user files. As a result, zeroing a disk makes any files previously located on the

disk inaccessible.

Beginning in system software version 7.0, zeroing a disk also causes the Disk

Initialization Manager to attempt to remove any bad blocks (as identified during the

disk-verification process) from the pool of available blocks on the disk. See “Bad Block

Sparing” on page 5-7 for a description of this capability.

The Disk Initialization User Interface
The Finder and the Standard File Package both handle disk-inserted events for

uninitialized disks by presenting a disk initialization dialog box asking the user

whether the disk should be ejected or initialized. Your application too can easily call a

Disk Initialization Manager routine that generates such a dialog box when the user

inserts an invalid disk. Figure 5-1 illustrates one configuration of the dialog box.

Figure 5-1 The disk initialization dialog box

The appearance of the disk initialization dialog box changes to reflect changing

conditions. For example, the icon changes to show which drive contains the disk. Also,

the text of the dialog box changes according to what is wrong with the disk. The text

might read “This is not a Macintosh disk” if the Disk Initialization Manager detects that

the disk has been formatted for use on another operating system. Or, it might notify the

user that a high-density disk can be used only on an Apple SuperDrive. Finally, if a user

C H A P T E R 5

Disk Initialization Manager

5-6 About the Disk Initialization Manager

inserts a single-sided disk into any disk drive, or a high-density disk into a high-density

disk drive, then the Disk Initialization Manager changes the buttons in the dialog box, as

illustrated in Figure 5-2, because such disks can be formatted in only one way.

Figure 5-2 Alternate buttons for the disk initialization dialog box

Regardless of the initial appearance of the disk initialization dialog box, it disappears if

the user clicks Eject or Cancel. If, however, the user decides to initialize the disk, the text

in the dialog box changes to warn the user that initialization erases any previous data on

the disk, as illustrated in Figure 5-3.

Figure 5-3 The disk initialization warning

Finally, if the user decides to initialize the disk, the contents of the dialog box change so

that the user can name the new disk, as illustrated in Figure 5-4.

Figure 5-4 The disk naming dialog box

After the user names the disk, the Disk Initialization Manager attempts to initialize it.

If an error occurs and the initialization fails, an alert box notifies the user, and the disk

is ejected.

C H A P T E R 5

Disk Initialization Manager

About the Disk Initialization Manager 5-7

The Disk Initialization Manager also provides a mechanism for using the standard

interface to reinitialize disks that are already formatted. (This mechanism is useful, for

example, when the user wants to reinitialize single-sided disks as double-sided disks.)

The Finder takes advantage of this mechanism with its Erase Disk command, illustrated

in Figure 5-5. After the user selects the erase operation from this dialog box, the reinitial-

ization begins immediately, without further warnings. If desired, your application can

use this same standard interface to allow users to reinitialize mounted disks (other than

the startup volume). Your application can customize the text to be displayed in such a

dialog box. Note that only a few utility applications actually need to provide users with

this capability.

Figure 5-5 The Finder’s disk erasing dialog box

If you are writing a utility program such as a disk-copying application, you might wish

to initialize new disks or reinitialize valid disks without displaying the standard disk

initialization dialog box. For example, your application might allow users to initialize

multiple disks without having to respond to the standard dialog box each time. The Disk

Initialization Manager provides low-level routines that allow you to do so. Unless you

are writing a utility program of this type, you don’t need to use these routines.

Bad Block Sparing
Beginning with system software version 7.0, the Disk Initialization Manager tries to

initialize a disk even if it contains some bad blocks; this feature is called bad block
sparing. Without bad block sparing, the Disk Initialization Manager considers a disk

unusable even if just one block is bad. With bad block sparing, however, the Disk

Initialization Manager attempts to work around the bad block by removing it from the

pool of available free blocks. This prevents the File Manager from allocating the block

to a file. Except in cases (described later) involving critical blocks on a disk, the Disk

Initialization Manager can usually initialize a disk that would previously have been

rejected as invalid. This section describes the operation of bad block sparing.

▲ W A R N I N G

Applications that manipulate disks using File Manager routines are
unaffected by bad block sparing. Software that accesses blocks directly
from the disk or that makes assumptions about the physical blocks on a
disk (such as a disk scavenger, recovery, or backup utility) is likely to fail
or cause a loss of data on disks containing spared blocks. ▲

C H A P T E R 5

Disk Initialization Manager

5-8 About the Disk Initialization Manager

The bad block sparing occurs during the disk-zeroing phase of disk initialization. As a

result, sparing occurs only when you call DIZero or DIBadMount (which internally

calls DIZero), never when you call DIFormat or DIVerify. The only visible sign

of the sparing process is an additional dialog box that contains the message

“Re-Verifying Disk.”

Disks without bad blocks are initialized exactly as in previous versions of system soft-

ware. The sparing algorithm is invoked only if the disk verification fails during a call to

the DIBadMount function or if the DIZero function encounters bad blocks during its

zeroing. The sparing algorithm proceeds by making a second pass over the disk, writing

and then reading back a test pattern. This testing is done a single track at a time. If any

retries or errors occur during this test, all the sectors in the track are deemed bad.

If more than 25 percent of the disk is found to contain bad blocks, if the I/O errors

appear to be due to hardware failure rather than media failure, or if certain critical

sectors (described later) are bad, then the initialization fails just as it would have without

the bad block sparing. Otherwise, the HFS volume structure is written to the disk. After

the volume structure has been written, the Disk Initialization Manager performs several

further operations during bad block sparing.

1. It sets the appropriate bits in the volume bitmap to indicate that the bad blocks are
allocated to a file.

2. It creates file extent descriptors for the bad blocks and inserts them into the volume
extents B*-tree so that the free-space scavenging that occurs at volume mount time (or
that is done by disk utilities such as Disk First Aid) does not reintroduce the bad
blocks into the volume bitmap. A special file ID (5) is used for these extents.

3. It sets bit 9 in the drAtrb field of the master directory block to indicate that bad
blocks in the disk have been spared.

4. On 800K floppy disks only, it reduces the number of allocation blocks on the disk
by 1 (from 1594 to 1593), to prevent previous versions of the Finder from doing
disk-to-disk copies physically (that is, sector by sector). This copying operation
would fail during an attempt to copy the bad blocks. The Finder does physical
copies as an optimization only on disks containing exactly 1594 allocation blocks.

The critical sectors (those that must be good even on a spared disk) include the boot

blocks, the master directory block and the spare master directory block, the volume

bitmap, and the initial extents for the catalog and extents B*-tree files of the volume.

Notice that the bad block sparing algorithm does not create any new entries in the

volume’s catalog file. In other words, steps 1 and 2 of the algorithm trick the File

Manager into thinking that the bad blocks have been allocated to some file, although no

file is actually created to contain those blocks. For this reason, directory enumerations

and file-by-file copies can proceed as they would have without bad block sparing. (If a

file were created for the bad blocks, that file would need a parent directory; in that case,

reading the catalog file to determine how many files that directory contains would

produce erroneous results.)

C H A P T E R 5

Disk Initialization Manager

Using the Disk Initialization Manager 5-9

Note

The bad block sparing capability described in this section applies
only during disk initialization. The Operating System cannot
correct problems that occur after a disk has been initialized
(except by reinitializing the disk). ◆

Using the Disk Initialization Manager

The Disk Initialization Manager provides standard interfaces that allow your application

■ to respond to the user’s insertion of an unformatted or damaged disk by presenting
the standard disk initialization dialog box

■ to reinitialize valid disks, preserving their names but destroying their contents

You can override these standard interfaces by calling low-level Disk Initialization

Manager routines, and you can also override the default volume characteristics that the

Disk Initialization Manager gives to hierarchical volumes.

Responding to Disk-Inserted Events
When the user inserts a disk, the Operating System attempts to mount the volume on the

disk by calling the File Manager function PBMountVol. If the volume is successfully

mounted, an icon representing the disk appears on the desktop. The Operating System

then generates a disk-inserted event. If the user is interacting with a standard file dialog

box, the Standard File Package intercepts the disk-inserted event and handles it.

Otherwise, the event is left in the event queue for your application to retrieve.

Your application must either mask out disk-inserted events or process them by checking

to see whether the inserted disk is invalid. If you mask out such events, then each

disk-inserted event needlessly occupies a position in the event queue until the user

brings an application that can handle such events to the foreground or until your

application invokes the Standard File Package. Also, displaying the disk initialization

dialog box long after the disk has been inserted is likely to confuse the user. However,

you might wish to mask out disk-inserted events when you create modal dialog boxes in

which you process events with WaitNextEvent rather than ModalDialog. That way,

your application can process disk-inserted events as soon as the modal dialog box closes.

Note

By default, the Dialog Manager’s ModalDialog procedure
automatically masks out disk-inserted events so that your application
can handle them when dialog boxes close. If you wish to accept
disk-inserted events in a modal dialog box in which you call
ModalDialog, you must supply a filter procedure for the dialog box.
See the chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox
Essentials for information on how to write a filter procedure. ◆

C H A P T E R 5

Disk Initialization Manager

5-10 Using the Disk Initialization Manager

Because handling disk-inserted events is easy, there is no good reason for your

application to mask out the events in its main event loop. Listing 5-1 defines a

procedure that your application can call when it receives a disk-inserted event.

Listing 5-1 Responding to disk-inserted events

PROCEDURE DoDiskEvent (myEvent: EventRecord);

VAR

myPoint: Point;

myErr: OSErr;

BEGIN

IF HiWord(myEvent.message) <> noErr THEN

BEGIN {attempt to mount was unsuccessful}

DILoad; {load Disk Initialization Manager}

SetPt(myPoint, 120, 120); {set top left of dialog box}

myErr := DIBadMount(myPoint, myEvent.message);

{notify the user}

DIUnload; {unload Disk Initialization Manager}

END

ELSE {attempt to mount was successful}

; {do other processing}

END;

The DoDiskEvent procedure in Listing 5-1 checks the high word of the event message

to see if the disk is mounted properly. If it has not been mounted, DoDiskEvent calls

the Disk Initialization Manager’s DIBadMount function, which displays the disk

initialization dialog box. Before doing so, DoDiskEvent calls DILoad to ensure that the

Disk Initialization Manager and its dialog box are loaded into memory. If you did not

call DILoad and the user started up with a floppy system startup disk, the Operating

System might require that the user reinsert the system disk and might then attempt to

initialize that disk. In Listing 5-1, if the user did start up with a floppy system startup

disk on a single floppy-drive system, the DILoad procedure requests that the user insert

the system disk so that it can read the necessary resources, and then it ejects that disk so

that the user can again put the disk to be initialized into the drive. After calling

DIBadMount to handle the uninitialized disk, DoDiskEvent calls DIUnload to release

the resources DILoad read into memory.

Beginning with system software version 7.0, the first parameter to DIBadMount is

ignored, and the disk initialization dialog box is automatically centered on the screen.

The procedure in Listing 5-1 ignores the result code returned by DIBadMount because

ordinarily it does not concern your application. If an error does occur during initializa-

tion, DIBadMount informs the user and ejects the disk.

C H A P T E R 5

Disk Initialization Manager

Using the Disk Initialization Manager 5-11

Erasing Initialized Disks
You can use the standard interface provided by the DIBadMount function to reinitialize

disks that are already initialized correctly. Doing so permanently erases their contents,

but does not change their names.

To reinitialize a disk, call DIBadMount with the high word of the event message equal to

the result code noErr. The DIBadMount function presents the standard interface to

initialize the disk in the drive whose number is specified by the low word of the event

message. However, because the Disk Initialization Manager cannot know why your

application wishes to reinitialize a disk, it cannot provide the initial text for the disk

initialization dialog box. Therefore, your application must use the Dialog Manager’s

ParamText procedure to create a customized message, as illustrated in Listing 5-2.

If you need to reinitialize a valid disk but do not have access to the event message from

when the disk was formatted, you can artificially create an event message by setting the

event message to an integer representing the drive number, as follows:

myEvent.message := driveNum;

Doing so sets each of the high-order bits of the artificial event message to 0, which is

desired because the constant noErr is equal to 0.

Listing 5-2 defines a procedure for displaying a disk initialization dialog box that allows

the user to reinitialize the disk in the drive specified by driveNum. The disk initializa-

tion dialog box displays the text specified in the myString parameter. The procedure in

Listing 5-2 in turn calls a procedure named DoError. You must define DoError to

process the result code if the initialization did not successfully complete. The disk initial-

ization dialog box does alert the user if the operation is not successfully completed, and

the disk is ejected. However, your application might need to know that a formerly

mounted disk is no longer mounted because reinitialization failed.

Listing 5-2 Reinitializing a valid disk

PROCEDURE DoEraseDisk (driveNum: Integer; myString: Str255);

VAR

myPoint: Point;

myErr: Integer; {result code}

BEGIN

DILoad; {load Disk Initialization Manager}

ParamText(myString, '', '', ''); {set dialog text}

SetPt(myPoint, 120, 120); {set top left of dialog box}

myErr := DIBadMount(myPoint, driveNum);

{allow user to confirm erase}

IF myErr <> noErr THEN

DoError(myErr); {respond to error, if necessary}

DIUnload; {unload Disk Initialization Manager}

END;

C H A P T E R 5

Disk Initialization Manager

5-12 Using the Disk Initialization Manager

Overriding the Standard Initialization Interface
The disk initialization dialog box provides an easy-to-use, standard interface for

initializing and reinitializing disks. However, if you wish, you can use three low-level

Disk Initialization Manager functions that accomplish the three stages of disk

initialization without presenting any user interface. The three functions are DIFormat,

DIVerify, and DIZero. The DIFormat function attempts to format the disk, the

DIVerify function verifies whether the format was successful, and the DIZero

function updates the newly initialized volume’s characteristics and attempts to spare

any bad blocks on the disk.

Listing 5-3 shows how to reinitialize a disk without using the standard interface. The

low-level functions work only if the disk is not already mounted in the disk drive.

Therefore, Listing 5-3 uses high-level File Manager calls to unmount the volume and to

remember the volume’s name, so that it can be restored later. Because you are no longer

using the standard interface, you must define the DoError procedure so that you can

alert the user about an error.

Listing 5-3 Reinitializing a validly formatted disk without using the standard interface

PROCEDURE DoEraseDisk (driveNum: Integer);

VAR

myErr: OSErr; {result code}

volName: Str255; {name of volume}

oldVRefNum: Integer; {to unmount volume}

oldFreeBytes: LongInt; {for GetVInfo call}

BEGIN

DILoad; {load Disk Init. Manager}

myErr := GetVInfo(driveNum, @volName, oldVRefNum, oldFreeBytes);

{remember name of volume}

IF myErr = noErr THEN

myErr := UnmountVol(@volName, oldVRefNum);

{unmount the disk}

IF myErr = noErr THEN

myErr := DIFormat(driveNum); {format the disk}

IF myErr = noErr THEN

myErr := DIVerify(driveNum); {verify format}

IF myErr = noErr THEN

myErr := DIZero(driveNum, volName); {update volume information}

IF myErr <> noErr THEN

DoError(myErr); {respond to error}

DIUnload; {unload Disk Init. Manager}

END;

C H A P T E R 5

Disk Initialization Manager

Using the Disk Initialization Manager 5-13

If you wish, you can also respond to a user’s insertion of an uninitialized or damaged

disk by simply formatting the disk without using the standard interface. Listing 5-4

defines a procedure for this purpose. Listing 5-4 differs from Listing 5-3 only in that it

does not begin by unmounting the volume (because the File Manager does not mount

uninitialized or damaged disks).

Listing 5-4 Initializing an uninitialized disk without using the standard interface

PROCEDURE DoInitDisk (driveNum: Integer; volName: Str255);

VAR

myErr: OSErr; {result code}

BEGIN

DILoad; {load Disk Init. Manager}

myErr := DIFormat(driveNum); {format the disk}

IF myErr = noErr THEN

myErr := DIVerify(driveNum); {verify format}

IF myErr = noErr THEN

myErr := DIZero(driveNum, volName); {update volume information}

IF myErr <> noErr THEN

DoError(myErr); {respond to error}

DIUnload; {unload Disk Init. Manager}

END;

Changing Default Volume Characteristics
The Disk Initialization Manager must set certain volume characteristics when it creates

an HFS directory on a volume. Default values for these characteristics are stored in an

HFS defaults record in ROM. If you wish, you can override those default values by

placing a pointer to an HFS defaults record in the low-memory global variable

FmtDefaults. The Disk Initialization Manager uses the record stored in ROM

whenever this low-memory global variable contains NIL.

IMPORTANT

Most applications do not need to alter the default volume characteristics.
This technique is useful primarily for applications, such as backup
utilities, that intelligently adjust the allocation block size and clump
size to maximize the amount of data written to a backup volume. ▲

C H A P T E R 5

Disk Initialization Manager

5-14 Using the Disk Initialization Manager

The HFSDefaults data structure defines the HFS defaults record.

TYPE HFSDefaults =

RECORD

sigWord: PACKED ARRAY[0..1] OF Byte; {signature word}

abSize: LongInt; {allocation block size in bytes}

clpSize: LongInt; {clump size in bytes}

nxFreeFN: LongInt; {next free file number}

btClpSize: LongInt; {B*-tree clump size in bytes}

rsrv1: Integer; {reserved}

rsrv2: Integer; {reserved}

rsrv3: Integer; {reserved}

END;

Field descriptions

sigWord The signature word to be used for newly initialized volumes. By
default, this field is set to 'BD' (hexadecimal $4244). You must set
this field to 'BD' for the volume to be recognized as an HFS
volume.

abSize The number of bytes in each allocation block on newly initialized
volumes. If you set this field to 0, the number of bytes in each
allocation block is computed according to the following formula:

abSize = (1 + (blocks in volume/64K)) * 512 bytes

By default, this field is set to 0.

clpSize The number of bytes to be used for the clump on newly initialized
volumes. By default, this field is set to 4*abSize.

nxFreeFN The next free file number on newly initialized volumes. By default,
this field is set to 16.

btClpSize The number of bytes to be used for the B*-tree clump on newly
initialized volumes. If you set this field to 0, the number of bytes to
be used for the B*-tree clump is computed according to the
following formula:

btClpSize = ((blocks in volume)/128) * 512 bytes

By default, this field is set to 0.

rsrv1 Reserved. Set to 0.

rsrv2 Reserved. Set to 0.

rsrv3 Reserved. Set to 0.

The code in Listing 5-5 fills in an HFSDefaults record, stores it in the system heap (so

that the record remains in memory after the application terminates), and makes the

low-memory global variable FmtDefaults a pointer to that record. Note that changing

the default volume characteristics does not affect volumes that you have already

initialized, but only volumes to be initialized.

C H A P T E R 5

Disk Initialization Manager

Disk Initialization Manager Reference 5-15

Listing 5-5 Changing default volume characteristics

PROCEDURE ChangeHFSDefaults;

CONST

FmtDefaults = $039E; {address of low-memory global}

TYPE

HFSDefaultsPtr = ^HFSDefaults; {pointer to override record}

HFSDefaultsAdd = ^HFSDefaultsPtr; {address of above pointer}

VAR

myDefaults: HFSDefaultsPtr;

BEGIN {allocate record in system heap}

myDefaults := HFSDefaultsPtr(NewPtrSysClear(SizeOf(HFSDefaults)));

WITH myDefaults^ DO

BEGIN

... {set fields of record}

END;

HFSDefaultsAdd(FmtDefaults)^ := myDefaults;

{change value of global}

END;

If you later want to restore the default settings, you can reset the low-memory global

variable FmtDefaults to NIL. Remember to delete any memory you have allocated.

Disk Initialization Manager Reference

This section describes the routines that are specific to the Disk Initialization Manager. See

“Changing Default Volume Characteristics” on page 5-13 for a description of the Pascal

data structure for the HFS defaults record.

Routines

The Disk Initialization Manager provides two routines (DILoad and DIUnload) that

allow you to load and unload the package. The DIBadMount routine has two uses: to

format uninitialized disks that the user inserts and to reinitialize volumes by erasing

their data without changing their names. Last, three low-level routines (DIFormat,

DIVerify, and DIZero) allow you to perform the steps of formatting, verifying, and

zeroing the disk separately.

Loading and Unloading the Disk Initialization Manager

Even a user with a hard disk drive might occasionally use a floppy disk to start up the

computer. When you call the Disk Initialization Manager to initialize a disk, it might

need to read a resource from the System resource file. If the disk containing the System

C H A P T E R 5

Disk Initialization Manager

5-16 Disk Initialization Manager Reference

resource file is not already mounted, the user might need to switch disks, and system

software might accidentally try to reinitialize the startup volume. The DILoad procedure

allows you to avoid this problem by ensuring that the resources the Disk Initialization

Manager needs are preloaded into memory. The DIUnload procedure reverses the

effects of DILoad.

DILoad

You can use the DILoad procedure to ensure that the Disk Initialization Manager and its

associated dialog box and dialog items are in memory.

PROCEDURE DILoad;

DESCRIPTION

The DILoad procedure reads the Disk Initialization Manager and its associated dialog

box and dialog items into memory and makes them unpurgeable. Depending on which

Macintosh model the user is using, the Disk Initialization Manager and the dialog box

and dialog items are either in ROM or in the System file.

Ordinarily, you call the DILoad procedure when you anticipate that the user will need to

format a disk. The Standard File Package automatically calls DILoad when you call

StandardGetFile or StandardPutFile. If you are writing a utility program that

frequently needs to initialize disks, such as a disk-copying program, you might call

DILoad at the beginning of your application.

When you use the low-level disk-initialization routines DIFormat, DIVerify, and

DIZero, the Disk Initialization Manager does not need to load a dialog box. Therefore,

if you use only these routines, you can (if you wish) call the Resource Manager to read

just the package resource into memory and the Memory Manager procedure to make

it unpurgeable. To read just the package resource into memory, you can call the

GetResource function with a resource ID of 2 and a resource type of 'PACK'. Then,

you need to use the HNoPurge procedure to make the package resource unpurgeable.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for DILoad are

SPECIAL CONSIDERATIONS

Because the DILoad procedure allocates memory, you should not call it at interrupt time.

Trap macro Selector

_Pack2 $0002

C H A P T E R 5

Disk Initialization Manager

Disk Initialization Manager Reference 5-17

DIUnload

To free the memory space occupied by the Disk Initialization Manager, you can call the

DIUnload procedure.

PROCEDURE DIUnload;

DESCRIPTION

The DIUnload procedure makes the Disk Initialization Manager and its associated

dialog box and dialog items purgeable. They remain in memory until the Memory

Manager purges the heap zone.

If you are using the low-level disk initialization routines and read just the package

resource into memory, you can free the memory the package occupies by calling the

ReleaseResource procedure.

To force the Memory Manager to purge the heap zone so that it really frees the memory

occupied by the Disk Initialization Manager and its dialog box and dialog items, you

can call one of the Memory Manager routines PurgeMem and MaxMem. For more

information, see the chapter “Memory Manager” in Inside Macintosh: Memory.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for DIUnload are

SPECIAL CONSIDERATIONS

Because DIUnload might affect memory, you should not call it at interrupt time.

Initializing a Disk

You can use the Disk Initialization Manager to initialize uninitialized disks and to

reinitialize previously initialized disks. The DIBadMount function accomplishes

both tasks.

Trap macro Selector

_Pack2 $0004

C H A P T E R 5

Disk Initialization Manager

5-18 Disk Initialization Manager Reference

DIBadMount

To respond to the user’s insertion of an uninitialized or damaged disk, you can call the

DIBadMount function.

FUNCTION DIBadMount (where: Point; evtMessage: LongInt): Integer;

where The desired location, in global coordinates, of the upper-left corner of the
disk initialization dialog box. In system software versions 7.0 and later,
this parameter is ignored, and the dialog box is automatically centered on
the screen.

evtMessage The event message received when the disk is inserted. The high word of
this message contains the result code associated with the disk insertion.
The low word of this message indicates the number of the drive into
which the user inserted the disk.

DESCRIPTION

The DIBadMount function evaluates the result code in the high word of the evtMessage

parameter and responds appropriately. If the result code is noErr, the function allows

the user to erase the contents of the disk. If the result code is ioErr, badMDBErr, or

noMacDskErr, initializing the disk might correct the problem, and so DIBadMount

displays a dialog box that explains the problem and allows the user to initialize the disk.

If the result code is extFSErr, memFullErr, nsDrvErr, paramErr, or volOnLinErr,

then initializing the disk would not correct the problem. In this case, DIBadMount ejects

the disk from the drive and returns the result code.

Before presenting the disk initialization dialog box, DIBadMount checks whether the

drive contains an already mounted volume. If so, it ejects the disk and returns 2 as its

result. This happens rarely and could reflect an error in your application (for example,

you forgot to call DILoad, and the user had to switch to the disk containing the System

resource file).

The DIBadMount function uses just one disk initialization dialog box to cover all disk

initialization situations. The dialog box contains many dialog items, which are hidden

and shown as appropriate. The dialog box always contains an icon indicating the drive

containing the disk to be initialized.

The initial text of the disk initialization dialog box depends on the result code received.

For example, if you pass noMacDskErr to DIBadMount in the evtMessage parameter,

the dialog box displays the text “This is not a Macintosh disk.” If you pass the result

code noErr, you can customize the message by using the Dialog Manager’s ParamText

procedure.

The disk initialization dialog box contains a button allowing the user to cancel the

initialization and one or two buttons allowing the user to request initialization of

the disk. Usually, the cancel button is labeled Eject, but if the result code passed to

DIBadMount within the evtMessage parameter is noErr, then the cancel button is

labeled Cancel. If the user responds to the disk initialization dialog box by clicking

the Eject button, DIBadMount ejects the disk and returns 1 as its result. If the user

clicks the Cancel button, DIBadMount returns 1 but does not eject the disk.

C H A P T E R 5

Disk Initialization Manager

Disk Initialization Manager Reference 5-19

In most cases, the Initialize button is the only alternative to the Eject or Cancel button.

However, if the user inserts a double-sided (but not high-density) disk into a

double-sided or high-density disk drive, DIBadMount presents buttons labeled

One-Sided and Two-Sided. The user can then decide whether to make the disk

single-sided or double-sided. If the user clicks the Initialize button, the One-Sided

button, or the Two-Sided button, DIBadMount warns the user that the initialization

process erases any existing data on the disks. If the user proceeds, DIBadMount allows

the user to name the disk if it is not already named and then updates the text of the

dialog box to inform the user of the progress of the operation. If the operation fails,

DIBadMount alerts the user and ejects the disk, returning an appropriate result code.

You can use DIBadMount to format hard disks as well as floppy disks. However, you

should not attempt to format the startup volume.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for DIBadMount are

SPECIAL CONSIDERATIONS

Because the DIBadMount function might allocate memory, you should not call it at

interrupt time.

RESULT CODES

Low-Level Disk Initialization Routines

If you do not want to use the standard interface for initializing uninitialized volumes,

you can use the Disk Initialization Manager’s low-level routines. For example, if you are

writing a disk-copying application, initializing a disk might be only part of the copying

process. In this case, you might wish to create your own dialog boxes warning the user

about the repercussions of initializing a disk and giving information on the progress of

the initialization.

Trap macro Selector

_Pack2 $0000

[no name] 2 Disk in specified drive is already mounted
[no name] 1 User canceled initializing
noErr 0 No error
paramErr –50 Drive number specified is bad
volOnLinErr –55 Volume is already online
nsDrvErr –56 No such drive
extFSErr –58 Disk has external file system
lastDskErr –64 Last of the range of low-level disk errors
...
firstDskErr –84 First of the range of low-level disk errors
memFullErr –108 Not enough memory

C H A P T E R 5

Disk Initialization Manager

5-20 Disk Initialization Manager Reference

The three low-level disk-initialization routines are DIFormat, DIVerify, and DIZero.

Ordinarily, you call them in that order to format an uninitialized disk, to verify the

format, and to set the volume’s volume information block and catalog.

DIFormat

To format a disk, you can use the DIFormat function.

FUNCTION DIFormat (drvNum: Integer): OSErr;

drvNum The number of the drive containing the disk to be formatted.

DESCRIPTION

The DIFormat function attempts to format the disk in the drive specified by the drvNum

parameter and returns a result code indicating whether it completed the formatting

successfully or failed. Formatting a disk consists of writing special information onto it

so that the disk driver can read from and write to the disk.

You can use DIFormat to format any unlocked disk, including single-sided disks,

double-sided disks, high-density disks, and hard disk drives. It formats both sides

of a double-sided disk.

You have to unmount a disk before calling the DIFormat function.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for DIFormat are

SPECIAL CONSIDERATIONS

You should not call DIFormat at interrupt time.

RESULT CODES

Trap macro Selector

_Pack2 $0006

noErr 0 No error
volOnLinErr –55 Volume is online
lastDskErr –64 Last of the range of low-level disk errors
...
firstDskErr –84 First of the range of low-level disk errors

C H A P T E R 5

Disk Initialization Manager

Disk Initialization Manager Reference 5-21

DIVerify

To verify a disk you have formatted, you can use the DIVerify function.

FUNCTION DIVerify (drvNum: Integer): OSErr;

drvNum The number of the drive containing the disk to be verified.

DESCRIPTION

The DIVerify function verifies the format of the disk in the drive specified by the

drvNum parameter. It reads each bit from the disk and returns a result code indicating

whether all bits were read successfully or not. The DIVerify function does not affect

the contents of the disk itself.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for DIVerify are

SPECIAL CONSIDERATIONS

You should not call DIVerify at interrupt time.

RESULT CODES

DIZero

To complete the disk-initialization process, you can use the DIZero function.

FUNCTION DIZero (drvNum: Integer; volName: Str255): OSErr;

drvNum The number of the drive containing the disk to be zeroed.

volName The name of the volume (to be included in the volume information).

DESCRIPTION

On the unmounted volume in the drive specified by the given drive number, the DIZero

function sets the volume information, the volume bitmap, a file directory, and the

desktop database (or desktop file) to the settings corresponding to a volume with no

Trap macro Selector

_Pack2 $0008

noErr 0 No error
lastDskErr –64 Last of the range of low-level disk errors
...
firstDskErr –84 First of the range of low-level disk errors

C H A P T E R 5

Disk Initialization Manager

5-22 Disk Initialization Manager Reference

files. This function completes the process of making any files previously on the volume

permanently inaccessible. If the operation fails, DIZero returns a result code indicating

that a low-level disk error occurred. Otherwise, it mounts the volume by calling the File

Manager function PBMountVol and returns that function’s result code.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for DIZero are

SPECIAL CONSIDERATIONS

You should not call DIZero at interrupt time. In system software version 7.0 and later,

DIZero automatically performs bad block sparing, as described in “Bad Block Sparing,”

beginning on page 5-7.

RESULT CODES

Trap macro Selector

_Pack2 $000A

noErr 0 No error
ioErr –36 I/O error
paramErr –50 Drive number specified is bad
volOnLinErr –55 Volume is already online
nsDrvErr –56 No such drive
noMacDskErr –57 Disk is not a Macintosh disk
extFSErr –58 Disk has external file system
badMDBErr –60 Master directory block is bad
lastDskErr –64 Last of the range of low-level disk errors
...
firstDskErr –84 First of the range of low-level disk errors
memFullErr –108 Not enough memory

C H A P T E R 5

Disk Initialization Manager

Summary of the Disk Initialization Manager 5-23

Summary of the Disk Initialization Manager

Pascal Summary

Data Types

HFS Defaults Record

TYPE HFSDefaults =

RECORD

sigWord: PACKED ARRAY[0..1] OF Byte; {signature word}

abSize: LongInt; {allocation block size in bytes}

clpSize: LongInt; {clump size in bytes}

nxFreeFN: LongInt; {next free file number}

btClpSize: LongInt; {B*-tree clump size in bytes}

rsrv1: Integer; {reserved}

rsrv2: Integer; {reserved}

rsrv3: Integer; {reserved}

END;

Routines

Loading and Unloading the Disk Initialization Manager

PROCEDURE DILoad;

PROCEDURE DIUnload;

Initializing a Disk

FUNCTION DIBadMount (where: Point; evtMessage: LongInt): Integer;

Low-Level Disk-Initialization Routines

FUNCTION DIFormat (drvNum: Integer): OSErr;

FUNCTION DIVerify (drvNum: Integer): OSErr;

FUNCTION DIZero (drvNum: Integer; volName: Str255): OSErr;

C H A P T E R 5

Disk Initialization Manager

5-24 Summary of the Disk Initialization Manager

C Summary

Data Types

HFS Defaults Record

struct HFSDefaults {

char sigWord[2]; /*signature word*/

long abSize; /*allocation block size in bytes*/

long clpSize; /*clump size in bytes*/

long nxFreeFN; /*next free file number*/

long btClpSize; /*B-Tree clump size in bytes*/

short rsrv1; /*reserved*/

short rsrv2; /*reserved*/

short rsrv3; /*reserved*/

};

typedef struct HFSDefaults HFSDefaults;

Routines

Loading and Unloading the Disk Initialization Package

pascal void DILoad (void);

pascal void DIUnload (void);

Initializing a Disk

pascal short DIBadMount (Point where, long evtMessage);

Low-Level Disk-Initialization Routines

pascal OSErr DIFormat (short drvNum);

pascal OSErr DIVerify (short drvNum);

pascal OSErr DIZero (short drvNum, const Str255 volName);

C H A P T E R 5

Disk Initialization Manager

Summary of the Disk Initialization Manager 5-25

Assembly-Language Summary

Data Structures

HFSDefaults Data Structure

Trap Macros

Trap Macro Requiring Routine Selectors

_Pack2

Global Variables

Result Codes

0 sigWord word signature word
2 abSize long allocation block size in bytes
6 clpSize long clump size in bytes

10 nxFreeFN long next free file number
14 btClpSize long B*-tree clump size in bytes
18 rsrv1 word reserved
20 rsrv2 word reserved
22 rsrv3 word reserved

Selector Routine

$0000 DIBadMount

$0002 DILoad

$0004 DIUnload

$0006 DIFormat

$0008 DIVerify

$000A DIZero

FmtDefaults long Pointer to substitute values for hierarchical volume directories.

[no name] 2 Disk in specified drive is already mounted
[no name] 1 User canceled initializing
noErr 0 No error
ioErr –36 I/O error
paramErr –50 Drive number specified is bad
volOnLinErr –55 Volume is already online
nsDrvErr –56 No such drive

C H A P T E R 5

Disk Initialization Manager

5-26 Summary of the Disk Initialization Manager

noMacDskErr –57 Disk is not a Macintosh disk
extFSErr –58 Disk has external file system
badMDBErr –60 Master directory block is bad
lastDskErr –64 Last of the range of low-level disk errors
firstDskErr –84 First of the range of low-level disk errors
memFullErr –108 Not enough memory

GL-1

Glossary

absolute search A search that begins at the root
directory of the file system hierarchy and always
descends the hierarchy. See also relative search.

access modes A set of file permissions that
specify what abilities should be allowed to a
user attempting to open a file fork. See also
deny modes.

access path A description of the route that the
File Manager follows to access a file; created
when a file is opened. See also file reference
number.

access permissions See access modes, file
permissions.

access privileges See directory access
privileges.

access rights The permissions governing
the access to a file, or the privileges governing
the access to a directory.

activation procedure An application-defined
procedure that controls the highlighting of
application-defined dialog items capable of
receiving keyboard input.

active field The target of keyboard input in a
dialog box.

AFP volume A volume that is accessed using
the AppleTalk Filing Protocol.

alias An object in the file system that represents
another file, directory, or volume.

Alias Manager The part of the Operating
System that helps you to locate specified files,
directories, or volumes at a later time. The Alias
Manager creates and resolves alias records.

alias record A data structure created by the
Alias Manager to identify a file, directory,
or volume.

alias target The file, directory, or volume
described by an alias record.

allocation block A group of consecutive logical
blocks on a volume.

AppleTalk Filing Protocol (AFP) A protocol
that allows users to share data files and
application programs that reside in a shared
resource, such as a file server.

asynchronous execution A mode of invoking
a routine. During the asynchronous execution
of a routine, an application is free to perform
other tasks.

backing-store file The file that the Virtual
Memory Manager uses to store the contents of
unneeded pages of memory.

bad block sparing The process of working
around a bad block by removing it from the pool
of available free blocks.

blank access privileges The directory access
privileges under which a directory has the same
access privileges as the directory’s parent.

block A group regarded as a unit; usually
refers to data or memory in which data is stored.
See also allocation block.

boot blocks The blocks on a disk that contain
system startup information.

browsing access The file access permissions
that allow users to read but not modify a file.

B*-tree A method of organizing information
into a collection of nodes. The nodes are arranged
in a way that allows efficient access to the stored
information.

B*-tree control block A block of memory that
contains information about a B*-tree file (either
a catalog file or an extents overflow file).

B*-tree file A file that is organized as a B*-tree.
See also catalog file, extents overflow file.

B*-tree header record A record in a header
node that contains information about the
beginning of the tree, as well as the size of
the tree.

G l o s s a r y

GL-2

catalog file A special file, located on a volume,
that contains information about the hierarchical
organization of files and folders on that volume.

catalog node An entry in a volume’s catalog file
that describes either a file or a directory.

catalog node ID A unique number assigned
to a node in a catalog file. For a directory, the
catalog node ID is the directory ID; for a file,
the catalog node ID is the file ID.

closed file A file without an access path. You
cannot read from or write to closed files.

clump A group of contiguous allocation blocks.
Space is allocated to a new file in clumps to
promote file contiguity and avoid fragmentation.

clump size The number of allocation blocks to
be allocated to a new file.

CNID See catalog node ID.

CNode See catalog node.

common parent The lowest-level directory
that appears in the pathnames of two objects on
a volume.

completion routine A routine that is executed
when an asynchronous call to some other routine
is completed.

current directory The directory whose contents
are listed in the dialog box displayed by the
Standard File Package. See also default directory.

current disk The current volume.

current volume The volume on which the
current directory is located.

data buffer A buffer (usually in an
application’s heap) that contains information to
be written to
a file from the application, or read from a file to
an application.

data fork The part of a file that contains data
accessed using the File Manager.

default directory The directory used in File
Manager routines whenever you don’t explicitly
specify some directory. See also current directory.

default volume The volume that contains the
default directory.

deny modes A set of file permissions that
specify what abilities should be denied to users
attempting to open a file fork already opened by
another user. See also access modes.

dialog hook function An application-defined
function that handles item selections in a dialog
box displayed by the Standard File Package.

directory A subdivision of a volume, available
in the hierarchical file system. A directory can
contain files and other directories (known as
subdirectories).

directory access privileges A set of conventions
for controlling access to a directory.

directory ID A unique number assigned to a
directory. The File Manager uses this number to
distinguish a directory from others on the same
volume. See also catalog node ID.

disk A physical medium capable of storing
information.

disk cache A part of RAM that acts as an
intermediate buffer when data is read from
and written to file systems on secondary
storage devices.

disk formatting The process of writing special
information onto a disk so that the disk driver
can read from and write to the disk.

disk initialization The process of making a
disk usable by the Macintosh Operating System.

disk initialization dialog box A dialog box
asking the user whether a disk should be ejected
or initialized.

Disk Initialization Manager The part of the
Macintosh Operating System that manages the
process of initializing disks.

disk-inserted event An event generated when
the user inserts a disk in a disk drive or takes
any other action that requires a volume to be
mounted.

disk switch dialog box A dialog box asking the
user to insert a particular disk.

disk verification The process of reading every
bit on the disk to ensure that the disk has been
formatted correctly and contains no bad blocks.

G l o s s a r y

GL-3

disk zeroing The process of creating on the
disk the data structures and files necessary for
the disk to be recognized as a hierarchical file
system (HFS) volume.

display list In a standard file dialog box, the
list of files, folders, and volumes at one level of
the display hierarchy, from which the user can
select items.

document A file that a user can create and edit.
A document is usually associated with a single
application, which the user expects to be able to
open by double-clicking the document’s icon in
the Finder.

document record An application-defined data
structure that contains information about the
window, any controls in the window (such as
scroll bars), and the file (if any) whose contents
are displayed in the window.

drive queue A list of all volumes connected to
the computer.

end-of-file (EOF) See logical end-of-file,
physical end-of-file.

EOF See logical end-of-file, physical
end-of-file.

exclusive access The file access permissions
that deny other users both read and write access
to a file.

exhaustive search A search using an algorithm
that scans an entire volume to look for possible
matches.

extent A contiguous range of allocation blocks
that have been allocated to some file.

extent data record A data record that contains
three extent descriptors. Extent data records are
stored in the leaf nodes of the extents overflow
file, in the catalog file, and in the boot blocks.

extent descriptor A description of an extent,
consisting of the number of the first allocation
block of the extent followed by the length of
the extent. Defined by the ExtDescriptor
data type.

extents overflow file A special file containing
all extent data records that are not stored
elsewhere by the File Manager.

fast search A search that employs an algorithm
designed to find the target of an alias record
quickly. See also absolute search.

FCB See file control block.

file A named, ordered sequence of bytes stored
on a Macintosh volume. A file is divided into a
data fork and a resource fork.

file access permissions See file permissions.

file control block (FCB) A fixed-length data
structure, contained in the file-control-block
buffer, where information about an access path to
a file is stored.

file-control-block buffer A block in the system
heap that contains one file control block for each
access path.

file filter function An application-defined
function that helps determine which files appear
in the list of files to open. This list appears in
the dialog boxes displayed by the Standard
File Package.

file fork One of the two parts of a file. See also
data fork, resource fork.

file ID A unique number assigned to a file. The
File Manager uses this number to distinguish a
file from others on the same volume. See also
catalog node ID.

file ID reference An internal record in the
volume’s catalog file. This record specifies the
filename and parent directory ID of the file with a
given file ID.

file ID thread record See file ID reference.

file I/O queue A queue containing parameter
blocks for all I/O requests to the File Manager.

File Manager The part of the Macintosh
Operating System that manages the organization,
reading, and writing of data located on physical
data storage devices such as disk drives.

file mark A marker the File Manager uses
to keep track of its place in a file during a read
or write operation. The file mark specifies
the position of the next byte that will be read
or written.

filename A sequence of up to 31 printing
characters, excluding colons, that identifies a file.

G l o s s a r y

GL-4

file permissions A set of conventions for
controlling access to a file. A file’s permissions
consist of access modes and deny modes.

file reference number A number (greater
than 0) that is returned to your application when
it opens a fork of a file using File Manager
routines; each file reference number corresponds
to a unique access path.

file server A computer running software that
provides network users with access to shared
disks or other mass-storage devices.

file system A method of organizing files and
directories on a volume.

file system specification A record that identi-
fies a stored file or directory by volume reference
number, parent directory ID, and name. Defined
by the FSSpec data type.

Finder A Macintosh application that allows
access to documents and other applications.
The Finder uses icons to represent objects on
a volume.

flush To write data from a cache in memory to
a volume.

folder A directory. See directory.

fork See file fork.

formatting See disk formatting.

full pathname A pathname that begins in the
root directory.

guest A user who is logged on to a file server
without a registered user name and password.

header node The first node in a B*-tree file; it
contains essential information about the entire
B*-tree file.

HFS See hierarchical file system.

HFS volume A volume that is organized
according to the hierarchical file system.

hierarchical file system (HFS) A method of
organizing files and directories on a volume in a
hierarchical or tree-like structure.

index node A node containing records that
point to other nodes in the B*-tree hierarchy.

initialization See disk initialization.

I/O queue See file I/O queue.

I/O request A request for input from or output
to a file or device driver; caused by calling a File
Manager or Device Manager routine
asynchronously.

leaf node A node that contains data records.

locked file A file whose data cannot be
changed.

locked range A range of bytes in a file whose
data cannot be changed.

locked volume A volume whose data cannot
be changed.

logical block A portion of a volume. Usually
512 bytes long.

logical end-of-file The position of 1 byte past
the last byte in a file; equal to the actual number
of bytes in the file.

log on To connect to a networked file server or
to a local machine that requires user authentica-
tion. Usually a user must specify a user name
and password to be able to log on to a file server.

Macintosh file system (MFS) A now-obsolete
method of organizing files on a volume in a “flat”
or nonhierarchical structure. See also hierarchical
file system.

Make Changes privileges The directory access
privileges that allow other users to create,
rename, delete, and write files in the specified
directory.

map node A node that contains an additional
map record.

map record A record in a header node or map
node that indicates which nodes in a B*-tree file
are used and which are not.

mark See file mark.

master directory block (MDB) The part of a
volume that contains information about the
volume, such as the volume name and allocation
block size.

MFS volume A volume that is organized using
the Macintosh file system.

G l o s s a r y

GL-5

modal-dialog filter function An application-
defined function that filters events passed from
the Event Manager to the Standard File Package
when one of its dialog boxes is being displayed.

modes See access modes, deny modes.

mount To make a volume available on the
local machine.

mounted volume A volume that has had
its descriptive information read by the File
Manager and placed into a volume control
block in memory.

newline character Any character, but usually
the Return character (ASCII code $0D), that
indicates the end of a sequence of bytes.

newline mode A mode of reading data in
which the end of the data is indicated by a
newline character (and not by a specific
byte count).

node A part of a B*-tree.

node descriptor The first part of a B*-tree node;
it contains information about the node, as well as
forward and backward links to other nodes.

offline volume A volume that has been
mounted but made temporarily unavailable (for
example, because it was ejected).

offspring For a given directory, the set of files
and directories the given directory contains.

online volume A volume that has been
mounted and is currently available for File
Manager operations.

open file A file with an access path. You can
read from and write to open files only.

open permission Information about a file that
indicates whether the file can be read from,
written to, or both.

parent directory The directory in which a file or
directory is located.

parent directory ID The directory ID of the
directory containing a file or directory.

partial pathname A pathname that begins in
some directory other than the root directory.

partition A part of a disk that has been
allocated to a particular operating system, file
system, or device driver.

partition map A block of information that
describes the organization of partitions on a disk.

password A string of characters that a user or
application must provide to gain access to a
networked file server or to a local machine that
requires user authentication. Passwords are
frequently encrypted prior to transmission over a
network to ensure network security.

pathname A series of concatenated directory
names and filenames that identifies a given file
or directory. See also full pathname, partial
pathname.

path reference number See file reference
number.

permissions See file permissions.

physical end-of-file The position of 1 byte past
the last allocation block of a file; equal to 1 more
than the maximum number of bytes the file
can contain.

pointer record The kind of record contained in
an index node in a B*-tree file. The structure of a
pointer record depends on the kind of B*-tree in
which it is contained.

poor man’s search path The list of directories
that the File Manager searches whenever it
cannot find a specified file in the specified
directory.

preferences file A file that stores a user’s
settings for a document or application.

Preferences folder A directory located in the
System Folder that stores preferences files.

privilege model A set of conventions for
controlling access to stored files and directories.

privileges See directory access privileges.

pseudo-item A constant that does not represent
any actual item in the dialog list of one of
the dialog boxes displayed by the Standard
File Package.

G l o s s a r y

GL-6

range locking Locking a range of bytes in a file
so that other users can’t read from or write to
that range, but allowing the rest of the file to
be accessed.

read privileges See See Files privileges.

read/write permission Information associated
with an access path that indicates whether the
file can be read from, written to, or both.

relative path A path to the target from another
file or directory on the same volume.

relative search A search that starts in a
specified directory and searches for the target
of an alias record by ascending the file system
hierarchy to a predetermined common parent
of the target and the starting directory, and
then descending the hierarchy from that
common parent.

resolve To find the target of an alias record.

resource fork The fork of a file that contains the
file’s resources.

root directory The directory at the base of
a volume.

root node The first index node in a B*-tree.

search key A piece of data that the File
Manager uses when searching through a B*-tree
to locate the information it needs.

search privileges See See Folders privileges.

See Files privileges The directory access
privileges that allow users to read files in the
specified directory.

See Folders privileges The directory access
privileges that allow users to see other directories
in the specified directory.

shared access The file access permissions that
allow other users both read and write access to
a file.

shared environment Any operating environ-
ment that supports multiple users and multiple
access to data or applications.

share point A volume or directory made
available for sharing on the network.

single-writer access The file access permissions
that deny other users write access to a file but
allow them to read it.

Standard File Package The part of system
software that allows you to present the
standard user interface when a file is to be
saved or opened.

subdirectory A directory that is contained in
some other directory. All directories on a volume
except the root directory are subdirectories.

synchronous execution A mode of invoking a
routine. After calling a routine synchronously, an
application cannot perform other tasks until the
routine is completed.

system startup information Certain config-
urable system parameters that are stored in
the boot blocks of a volume and read in at
system startup.

target See alias target.

unmounted volume A volume that hasn’t yet
been mounted, or a volume that was previously
mounted but has since had its volume control
block removed from the VCB queue.

user authentication method A process used
by a file server or workstation to confirm the
user’s identity.

user name A string of characters that uniquely
identifies a user for login purposes.

VCB See volume control block.

VCB queue See volume control block queue.

verification See disk verification.

volume A portion of a storage device that is
formatted to contain files.

volume bitmap A data structure that contains a
series of bits indicating which blocks on the
volume are allocated. Volume bitmaps exist both
on HFS volumes and in memory.

volume catalog See catalog file.

volume control block (VCB) A nonrelocatable
block of memory in the system heap that contains
information about a specific mounted volume,
including the information from the volume’s
master directory block.

G l o s s a r y

GL-7

volume control block queue A list of the
volume control blocks for all mounted volumes.

volume index A number identifying the
position of a mounted volume listed in the
volume control block queue.

volume information block (VIB) See master
directory block.

volume name A sequence of up to 27 charac-
ters, excluding colons (:), that identifies a volume.

volume reference number A unique number
assigned to a volume when it’s mounted; used to
refer to the volume.

working directory A temporary directory
reference by which the File Manager specifies
both a directory and the volume on which it
resides. The File Manager assigns a reference
number to each working directory.

working directory control block A data
structure that contains the directory ID of a
working directory as well as the volume
reference number of the volume on which the
directory is located.

working directory reference number A tempo-
rary reference number that encodes a directory
ID and a volume reference number. It can be
used in place of the volume reference number in
most File Manager calls.

write privileges See Make Changes privileges.

zeroing See disk zeroing.

IN-1

Index

A

absolute search for alias records 4-6 to 4-7
access-control functions. See access privileges
access modes 1-21, 2-7, 2-15 to 2-18

AFP 2-18
translation of 2-17

access paths 1-8, 1-21, 2-8
access permissions. See access modes; file permissions
access privileges

in A/UX file systems 2-22
in foreign file systems 2-20 to 2-22, 2-232 to 2-234

access rights. See directory access privileges; file
permissions

activation procedures 3-30 to 3-31, 3-59
active fields 3-31
AddDrive procedure 2-236
AFP (AppleTalk Filing Protocol) 2-20
AFPVolMountInfo data type 2-110
AFP volume mounting information records 2-110
_AliasDispatch trap macro 4-28
aliases

defined 1-11
resolution by Finder 1-11
resolution of by Standard File Package 3-14

Alias Manager 4-3 to 4-30. See also alias records
application-defined routines in 4-25
routines in 4-14 to 4-24
testing for availability 4-9
user interface guidelines 4-7

alias-matching filter function 4-25
AliasRecord data type 4-5, 4-14
alias records 4-4 to 4-5

contents 4-4, 4-13
creating 4-9 to 4-10, 4-15 to 4-17
customizing 4-13
defined 4-3
exhaustive search for 4-8
finding targets of 4-4
getting information from 4-13, 4-23
private Alias Manager data 4-5
relative path in 4-6
resolving 4-5 to 4-8

functions for 4-10 to 4-11, 4-19 to 4-23
searches

absolute 4-6 to 4-7
exhaustive 4-8
fast 4-7, 4-10
relative 4-5 to 4-6

search strategies 4-5 to 4-8
storing and retrieving 4-12
updating 4-13, 4-18

alias targets 4-3
'alis' resource type 4-8, 4-12
Allocate function 2-118 to 2-119
allocation blocks

default size of 5-14
determining number free 2-46
introduced 2-53, 2-56
size 1-6 to 1-7

AllocContig function 2-119
AppFile data type 1-35, 1-41
AppleShare volumes

automatic mounting to resolve alias records 4-4
support for mounting routines 2-110

AppleTalk Filing Protocol (AFP) 2-20
application files records 1-41
asynchronous execution with low-level File Manager

routines 2-6, 2-120, 2-238
asynchTrpBit global constant 2-120

B

B*-tree clumps, default size of 5-14
B*-tree control blocks 2-83 to 2-84
B*-tree file structure 2-63
B*-tree header nodes 2-67 to 2-69
B*-tree header records 2-68
B*-tree index nodes

defined 2-69
root nodes 2-70

B*-tree leaf nodes
for catalog files 2-72
defined 2-70

B*-tree map nodes 2-69
B*-tree map records 2-68
B*-tree node descriptors 2-64
B*-tree nodes 2-64 to 2-65
B*-trees 2-63 to 2-70
B*-tree search keys

for catalog files 2-71
defined 2-66

backing-store files 1-4
bad block sparing 5-7 to 5-9
Balloon Help 3-19

I N D E X

IN-2

basic File Manager parameter blocks 2-87 to 2-91
blank access privileges 2-18
blocks. See also allocation blocks

logical 2-56
BootBlkHdr data type 2-57 to 2-59
boot block header formats 2-57
boot block headers 2-57 to 2-59
boot blocks 2-57 to 2-59
browsing access 2-17
BTCB data type 2-83 to 2-84
BTHdrRec data type 2-68
byte ranges in shared files, locking 2-50 to 2-52

C

callback routines
with MatchAlias function 4-25
with Standard File Package routines 3-16, 3-20 to

3-31
catalog data records 2-72 to 2-74
catalog file key records 2-71
catalog files 1-4, 2-53, 2-70 to 2-74

searching 2-38 to 2-43, 2-204 to 2-206
catalog information parameter blocks 2-100 to 2-104
catalog move parameter blocks 2-104 to 2-106
catalog node IDs (CNIDs). See also directory IDs;

file IDs
defined 2-70
reserved values 2-70

catalog nodes 2-70
catalog position records 2-41, 2-104
catalogs. See catalog files
CatDataRec data type 2-72 to 2-74
CatDataType data type 2-72
CatKeyRec data type 2-71
CatMove function 2-179 to 2-180
CatPositionRec data type 2-41, 2-104
CInfoPBRec data type 2-100 to 2-104
Close command (File menu) 1-12 to 1-14, 1-32 to 1-34
CloseWD function 2-181 to 2-182
closing files 1-32 to 1-34, 1-45 to 1-46, 2-81, 2-114 to

2-115
ClrAppFiles procedure 1-60
clumps

default size of 5-14
defined 1-8, 2-56

clump size 2-57
CMovePBRec data type 2-105 to 2-106
CNIDs. See catalog node IDs
CNodes. See catalog nodes
commands, menu. See menu commands
common parent in alias records 4-6

compatibility, custom Standard File Package dialog
boxes 3-40

completion routines
for asynchronous File Manager calls 2-238 to 2-239
defined 2-7
limitations on 2-239

CountAppFiles procedure 1-59
CreateResFile procedure 1-51, 2-157, 2-173, 2-187
creation dates, handled by FSpExchangeFiles 1-26
CurDirStore global variable 3-65
current directory, in Standard File Package dialog

boxes 3-5, 3-31 to 3-34
current disk. See current volume
current volume 3-32 to 3-34

in Standard File Package dialog boxes 3-5, 3-31 to
3-34

custom dialog boxes. See dialog boxes, custom
CustomGetFile procedure 3-51 to 3-52
CustomPutFile procedure 3-46 to 3-47

D

data buffers 1-9
data forks 1-4 to 1-5

creating 1-51, 2-157, 2-173, 2-187
data organization in memory 2-76 to 2-86
data organization on volumes 2-52 to 2-76
'dctb' resource type 3-20
default directory 2-35 to 2-37
default volume 2-12, 2-35 to 2-37
deny modes 2-16 to 2-18
dialog boxes

custom 3-8 to 3-12, 3-16 to 3-31
displaying file types in 3-16
resources 3-17
for saving and opening files 3-4 to 3-13

custom 3-16 to 3-31
item numbers 3-22

standard 3-4 to 3-8
dialog hook functions 3-21 to 3-28, 3-35 to 3-38, 3-56 to

3-57
DIBadMount function 5-10, 5-11, 5-18 to 5-19
DIFormat function 5-20
DILoad procedure 5-16
DirCreate function 2-173 to 2-174
directories

current 3-31 to 3-34
default 2-35 to 2-37
defined 1-9
described for PBCatSearch 2-38 to 2-39
locking 2-149, 2-161, 2-177, 2-197
moving 2-179 to 2-180
naming 2-27

I N D E X

IN-3

directories (continued)
selecting 3-10 to 3-12, 3-34 to 3-38
specifying in HFS 2-29
in Standard File Package dialog boxes. See current

directory
unlocking 2-162, 2-178, 2-198

directory access privileges 2-18 to 2-20, 2-97
directory IDs

defined 1-9, 2-25
in resolution of alias records 4-7

directory records 2-72
directory thread records 2-73
disk caches 1-9
disk formatting 5-5
disk initialization 5-4
disk initialization dialog boxes

alternate layouts for 5-5 to 5-7
initializing disks without 5-12 to 5-13
placement of 5-10
presentation of 5-5 to 5-7
reinitializing disks 5-11
variations in 5-6

Disk Initialization Manager 5-3 to 5-25
and bad block sparing 5-7 to 5-9
loading 5-10, 5-16
low-level routines 5-19 to 5-22
overriding the disk initialization dialog box 5-12 to

5-13
routines in 5-15 to 5-22
unloading 5-17

disk initialization warning dialog boxes 5-6
disk-inserted events

masking out 5-9
receiving in a modal dialog 5-9
responding to 5-9 to 5-10

disk naming dialog boxes 5-6
disk partition maps 2-54
disk partitions 2-54
disks

defined 2-54
determining whether a disk is valid 5-10
erasing 5-11

in the Finder 5-7
formatting 5-4, 5-20
initializing 5-9 to 5-10

overriding the disk initialization dialog box 5-12
to 5-13

naming 5-6
reinitializing 5-11
verifying formatting of 5-5, 5-21
zeroing 5-5

disk switch dialog box 1-11, 2-11
disk verification 5-5
disk zeroing 5-5
display list 3-5

'DITL' resource type, for default Open and Save
dialog boxes 3-17 to 3-20

DIUnload procedure 5-17
DIVerify function 5-21
DIZero function 5-21 to 5-22
'DLOG' resource type, for default Open and Save

dialog boxes 3-17 to 3-18
document 1-4
document records 1-15
drive queues 2-84 to 2-86

defined 2-84
reading an element’s flag bits 2-85

DrvQEl data type 2-84

E

ejected volumes 2-145
Eject function 2-133
end-of-file

logical 1-7 to 1-8
physical 1-7 to 1-8

enhanced Standard File Package routines 3-13
EOF. See end-of-file
Erase Disk menu command (Special menu) 5-7
exclusive access 2-17
exhaustive search for alias records 4-8
ExtDataRec data type 2-75
ExtDescriptor data type 2-75
extent data records 2-75
extent descriptors 2-75
extent key records 2-75
extents 2-75
extents overflow files 2-53, 2-74 to 2-76
ExtKeyRec data type 2-75

F

fast search for alias records 4-7 to 4-8
FCB. See file control blocks
FCB data type 2-81 to 2-83
FCBPBRec data type 2-107 to 2-109
file access permissions. See file permissions
file attributes

defined 2-39
specifying in PBCatSearch 2-38

file control block parameter blocks 2-107 to 2-109
file control blocks 1-8, 2-81 to 2-83
file data 1-5

limitations of using Resource Manager 1-6
using the File Manager to read 1-5
using the Resource Manager to read 1-5

I N D E X

IN-4

file filter functions
for file display list 3-20, 3-55 to 3-56
for resolving aliases 4-25

file forks
data fork 1-4
deleting 2-37 to 2-38
resource fork 1-4
truncating 2-38

file formats in Standard File Package dialog boxes 3-8
to 3-10

file fragmentation 1-8
file ID reference

defined 2-25
routines 2-23

file IDs
creating 2-230
defined 2-24
deleting 2-231
functions for manipulating 2-229 to 2-232
in resolution of alias records 4-7
resolving 2-229 to 2-230
tracking files with 2-23

file ID thread records 2-25, 2-72, 2-74
file I/O queues 2-6, 2-77
File Manager 2-5 to 2-302

access-control functions 2-20 to 2-22, 2-232 to 2-234
application-defined routines in 2-238 to 2-239
and bad block sparing 5-7
creating FSSpec records 1-54 to 1-55, 2-34, 2-87,

2-166 to 2-169
data structures in 2-86 to 2-112
exchanging contents of two files 1-53, 2-165
high-level and low-level routines compared 2-6
mounting inserted disks 5-9
mounting remote volumes 2-219 to 2-222
organization of data in memory 2-76 to 2-86
organization of data on volumes 2-52 to 2-76
reading volume information 2-147 to 2-150
routines in 2-112 to 2-238

directory manipulation 2-10
file access 2-112 to 2-131
file ID 2-229 to 2-232
file manipulation 2-7 to 2-10
foreign file system 2-232 to 2-234
FSSpec 2-154 to 2-169
HFS 2-169 to 2-208
shared environment 2-208 to 2-228
utility 2-235 to 2-238
volume access 2-132 to 2-154
volume manipulation 2-11 to 2-12
working directories 2-11, 2-13

searching a catalog 2-38 to 2-43, 2-204 to 2-206
testing for features 1-14, 2-32 to 2-34

file marks 1-9

File menu
adjusting items in 1-37 to 1-38
appearance of 1-12
Close command 1-32 to 1-34
New command 1-16
Open command 1-18 to 1-22, 3-13
Revert to Saved command 1-30 to 1-32
Save As command 1-26 to 1-30, 3-13
Save command 1-26 to 1-30, 3-13
user selections in 1-13, 1-16 to 1-34

filenames
searching volumes by 2-38
specifying in PBCatSearch 2-38

file permissions 1-21, 2-7
file ranges

locking 2-50 to 2-51, 2-211 to 2-212
unlocking 2-51, 2-212 to 2-213

file records 2-72
file reference numbers

defined 1-8, 2-23
and FCB buffer 2-81

files
access privileges in foreign file systems 2-20 to 2-22,

2-232 to 2-234
adjusting size of 1-8, 1-48, 2-117, 2-118 to 2-119, 2-127

to 2-128
closing 1-32 to 1-34
creating 1-16 to 1-18, 1-51, 2-157, 2-173, 2-187
defined 1-4
deleting 2-37 to 2-38
exchanging data in 1-53, 2-10, 2-148, 2-165 to 2-166,

2-206 to 2-208
handling File menu commands 1-13
moving 2-179 to 2-180
naming 2-27
opening 1-18 to 1-22

access modes 2-7
with FSSpec routines 2-154 to 2-156
with high-level HFS routines 2-169 to 2-172
with low-level HFS routines 2-183 to 2-186
Standard File Package 1-42 to 1-43, 3-4 to 3-5, 3-9

to 3-10, 3-49 to 3-54
while denying access 2-208 to 2-210

opening at application startup 1-34 to 1-36
permissions 1-21, 2-7
reading data 1-22 to 1-23, 1-45, 2-112 to 2-113, 2-121

to 2-122
reading data in newline mode 1-9
reverting to last saved version 1-30 to 1-32
saving 1-26 to 1-30, 3-5 to 3-7, 3-8 to 3-9
saving preferences 1-36 to 1-37
saving under a new name 1-27
searching a catalog for 2-38
specifying in HFS 2-29

I N D E X

IN-5

files (continued)
tracking with file IDs 2-23
user interface for saving and opening 3-3 to 3-65
writing data 1-23 to 1-26

file sharing, enabled 2-49
file system. See hierarchical file system; Macintosh file

system
file system specification records

creating 1-51 to 1-52, 2-34
defined 1-39, 2-86
introduced 2-24
with Standard File Package 3-14

file thread records 2-73
file types, filtering Standard File Package display lists

by 3-50
filter functions. See also file filter functions

alias matching 4-25
with MatchAlias function 4-25
modal-dialog filter functions 3-28 to 3-30
with Standard File Package routines 3-16, 3-20 to

3-21
Finder information, specifying in PBCatSearch 2-38
FindFolder function 1-14
flushing a volume 1-24, 1-34, 1-55 to 1-56, 2-11, 2-79,

2-133 to 2-134, 2-142 to 2-143
FlushVol function 1-34, 1-55 to 1-56, 2-12, 2-134
FmtDefaults global variable 5-13, 5-14
folders. See directories
foreign file systems, access privileges in 2-20 to 2-22,

2-232 to 2-234
forks. See file forks
formatting disks 5-20
FSClose function 1-45 to 1-46, 2-114 to 2-115
FSMakeFSSpec function 1-54 to 1-55, 2-87, 2-166 to

2-168
FSpCatMove function 2-164 to 2-165
FSpCreate function 1-51 to 1-52, 2-156 to 2-157
FSpCreateResFile procedure 1-51, 2-157, 2-173,

2-187
FSpDelete function 1-52, 2-159
FSpDirCreate function 2-158
FSpExchangeFiles function 1-25 to 1-26, 1-53, 2-165

to 2-166
FSpGetFInfo function 2-160
FSpOpenDF function 1-50, 2-154 to 2-155
FSpOpenResFile function 1-51, 2-157, 2-173, 2-187
FSpOpenRF function 2-155 to 2-156
FSpRename function 2-163
FSpRstFLock function 2-162
FSpSetFInfo function 2-160 to 2-161
FSpSetFLock function 2-161 to 2-162
FSRead function 1-44, 2-112 to 2-113
FSSpec data type 1-12, 1-39, 2-86
FSWrite function 1-45, 2-113 to 2-114
full pathnames 2-28

G

GetAliasInfo function 4-13, 4-23 to 4-24
GetAppFiles procedure 1-59
GetAppParms procedure 1-58
GetDrvQHdr function 2-236
GetEOF function 1-48, 2-117
GetFPos function 1-46 to 1-47, 2-115
GetFSQHdr function 2-235
GetVCBQHdr function 2-235
GetVInfo function 1-56, 2-137 to 2-138
GetVol function 2-36, 2-134 to 2-135
GetVolParmsInfoBuffer data type 2-109
GetVRefNum function 1-57, 2-138
GetWDInfo function 2-182
guests 2-14, 2-218, 2-221, 2-222

H

HCreate function 2-172 to 2-173
HCreateResFile procedure 1-51, 2-157, 2-173, 2-187
HDelete function 2-174 to 2-175
'hdlg' resource type 3-19
header nodes. See B*-tree header nodes
HFS. See hierarchical file system
hfsBit global constant 2-120
HFSDefaults data type 5-14
HFS defaults record 5-14
HFS directories, creating on a volume 5-13
HFS parameter blocks 2-91 to 2-100
HFS specifications 2-28 to 2-30
HFS volumes

defined 1-9, 2-54
signature words for 2-60
structure of 2-56

HGetFInfo function 2-175 to 2-176
HGetVol function 2-136
hierarchical file system (HFS)

defined 1-9 to 1-11, 2-27
organization of 2-52 to 2-76

HOpenDF function 2-169 to 2-170
HOpen function 2-171 to 2-172
HOpenResFile function 1-51, 2-157, 2-173, 2-187
HOpenRF function 2-170 to 2-171
HParamBlockRec data type 2-91 to 2-100
HRename function 2-178 to 2-179
HRstFLock function 2-177 to 2-178
HSetFInfo function 2-176
HSetFLock function 2-177
HSetVol function 2-136 to 2-137

possible problems using 2-36

I N D E X

IN-6

I, J

index nodes. See B*-tree index nodes
initializing disks 5-3 to 5-6, 5-9 to 5-10

overriding the disk initialization dialog box 5-12 to
5-13

I/O queues. See file I/O queues
I/O requests 2-6

K

keyboard equivalents, in Standard File Package dialog
boxes 3-7 to 3-8

L

leaf nodes. See B*-tree leaf nodes
loading the Disk Initialization Manager 5-15 to 5-16
locking

directories 2-161, 2-177, 2-197
file ranges 2-50 to 2-52, 2-211
files 2-161, 2-177, 2-197

logical blocks 1-6, 2-56
logical end-of-file 1-7 to 1-8

M

Macintosh file system (MFS)
defined 2-26
introduced 2-24

Make Changes privileges 2-18
map nodes, B*-tree 2-69
map records 2-68, 2-69
marks. See file marks
master directory block records 2-60
master directory blocks (MDB) 2-59 to 2-62
MatchAlias function 4-11, 4-20, 4-25
MDB. See master directory blocks
MDB data type 2-60
menu commands

Close (File menu) 1-12 to 1-14, 1-32 to 1-34
Erase Disk (Special menu) 5-7
New (File menu) 1-12 to 1-14, 1-16 to 1-18
Open (File menu) 1-12 to 1-14, 1-18 to 1-22
Revert to Saved (File menu) 1-12 to 1-14, 1-30 to 1-32
Save (File menu) 1-12 to 1-14, 1-26 to 1-30
Save As (File menu) 1-12 to 1-14, 1-26 to 1-30

MFS. See Macintosh file system
MFS volumes, signature words for 2-60
modal-dialog filter functions, for Standard File Package

dialog boxes 3-23, 3-28 to 3-30, 3-57 to 3-59
modes. See access modes; deny modes
modification dates, handled by

FSpExchangeFiles 1-26
mounting volumes. See volumes, mounting
mounting volumes programmatically 2-219 to 2-222

N

naming disks 5-6
NewAlias function 4-9, 4-15
NewAliasMinimalFromFullPath function 4-10,

4-17
NewAliasMinimal function 4-10, 4-16
New command (File menu) 1-12 to 1-14, 1-16 to 1-18
New Folder dialog box 1-29, 1-40, 3-7, 3-42
newline character 1-9, 2-90, 2-95, 2-122
newline mode 1-9, 2-90, 2-95, 2-113, 2-122
NodeDescriptor data type 2-64
node descriptors, B*-tree 2-64
node records 2-66
nodes, B*-tree 2-64 to 2-65
nonprinting characters

using in filenames 2-28
using in volume names 2-28

O

offline volumes 1-11, 2-11, 2-145
online volumes 2-11, 2-26, 2-145
Open command (File menu) 1-12 to 1-14, 1-18 to 1-22
opening files

at application startup 1-34 to 1-36
with FSSpec routines 2-154 to 2-156
with high-level HFS routines 2-169 to 2-172
with low-level HFS routines 2-183 to 2-186
with Standard File Package 3-4 to 3-5, 3-9
while denying access 2-208 to 2-210

OpenResFile function 1-51, 2-157, 2-173, 2-187
OpenWD function 2-180 to 2-181
organization of data

in memory 2-76 to 2-86
on volumes 2-52 to 2-76

organization of disks 2-54
original Standard File Package procedures 3-40 to 3-41,

3-43

I N D E X

IN-7

P, Q

_Pack2 trap macro 5-24
_Pack3 trap macro 3-65
ParamBlockRec data type 2-87 to 2-91
parent directories 1-11, 2-27
parent directory IDs 1-11
partial pathnames 2-28
partition maps 2-54
partitions 2-54
passwords. See user passwords
pathnames 2-28, 2-29, 2-45 to 2-46
path reference numbers. See file reference numbers
PBAllocate function 2-129
PBAllocContig function 2-130
PBCatMove function 2-200 to 2-201
PBCatSearch function 2-38 to 2-43, 2-204 to 2-206
PBClose function 2-124
PBCloseWD function 2-202 to 2-203
PBCreateFileIDRef function 2-230 to 2-231
PBDeleteFileIDRef function 2-231 to 2-232
PBDirCreate function 2-188
PBEject function 2-141
PBExchangeFiles function 2-206 to 2-208
PBFlushFile function 2-131
PBFlushVol function 2-143
PBGetCatInfo function 2-190 to 2-192
PBGetEOF function 2-127
PBGetFCBInfo function 2-237 to 2-238
PBGetForeignPrivs function 2-232 to 2-233
PBGetFPos function 2-125
PBGetUGEntry function 2-216
PBGetVol function 2-150 to 2-151
PBGetVolMountInfo function 2-220 to 2-221
PBGetVolMountInfoSize function 2-219 to 2-220
PBGetWDInfo function 2-203 to 2-204
PBHCopyFile function 2-226 to 2-227
PBHCreate function 2-186 to 2-187
PBHDelete function 2-189
PBHGetDirAccess function 2-217
PBHGetFInfo function 2-194 to 2-195
PBHGetLogInInfo function 2-223
PBHGetVInfo function 2-144 to 2-146
PBHGetVol function 2-152
PBHGetVolParms function 2-34, 2-147 to 2-150
PBHMapID function 2-224
PBHMapName function 2-225
PBHMoveRename function 2-227 to 2-228
PBHOpenDeny function 2-208 to 2-209
PBHOpenDF function 2-183 to 2-184
PBHOpen function 2-185 to 2-186
PBHOpenRFDeny function 2-210
PBHOpenRF function 2-184 to 2-185
PBHRename function 2-198 to 2-199
PBHRstFLock function 2-197 to 2-198

PBHSetDirAccess function 2-218
PBHSetFInfo function 2-195 to 2-196
PBHSetFLock function 2-196 to 2-197
PBHSetVol function 2-36, 2-153 to 2-154
PBLockRange function 2-50 to 2-52, 2-211 to 2-212
PBMakeFSSpec function 2-168 to 2-169
PBMountVol function 2-139 to 2-140
PBOffLine function 2-142
PBOpenWD function 2-201 to 2-202
PBRead function 2-121 to 2-122
PBResolveFileIDRef function 2-229 to 2-230
PBSetCatInfo function 2-193 to 2-194
PBSetEOF function 2-127 to 2-128
PBSetForeignPrivs function 2-234
PBSetFPos function 2-126
PBSetVInfo function 2-146 to 2-147
PBSetVol function 2-151
PBShare function 2-214
PBUnlockRange function 2-51, 2-212 to 2-213
PBUnmountVol function 2-140 to 2-141
PBUnshare function 2-215
PBVolumeMount function 2-221 to 2-222
PBWrite function 2-122 to 2-123
permissions

AFP 2-18
file 2-7
shared access 2-16

physical end-of-file 1-7 to 1-8
pointer records 2-70
poor man’s search paths 2-31
pop-up menus, in Standard File Package dialog

boxes 3-9
preferences files 1-4, 1-36 to 1-37
Preferences folder 1-11
privilege information

in A/UX file systems 2-22
in foreign file systems 2-20 to 2-22

privilege models 2-20, 2-21
privileges 2-18
pseudo-items 3-22 to 3-26

constant descriptions 3-22 to 3-27

R

radio buttons, in Standard File Package dialog
boxes 3-8

range locking. See locking file ranges
reading data from files 1-22 to 1-23, 1-44, 2-112 to

2-113, 2-121 to 2-122
read privileges. See See Files privileges
records, alias. See alias records
relative paths 4-6
relative search for alias records 4-5 to 4-6, 4-7, 4-8

I N D E X

IN-8

reply records for Standard File Package 3-13 to 3-14,
3-41 to 3-44

ResolveAlias function 4-10, 4-19
resolving alias records 4-10 to 4-11

controlling search algorithms 4-11
multiple targets 4-11
a single target 4-10 to 4-11

resource editors 3-18
resource forks 1-4

creating 1-51, 2-157, 2-173, 2-187
creating resource map in 1-51, 2-157, 2-173, 2-187

resource types
'alis' 4-8, 4-12
'dctb' 3-20
'DITL' 1-29, 3-7
'DLOG' 3-17
'hdlg' 3-19

Revert to Saved command (File menu) 1-12 to 1-14,
1-30 to 1-32

Rez 3-17
root directory 1-10
root nodes. See B*-tree index nodes

S

Save As command (File menu) 1-12 to 1-14, 1-26 to 1-30
Save command (File menu) 1-12 to 1-14, 1-26 to 1-30
saving files 1-26 to 1-30
saving to different file formats 3-8
scripts, specifying when creating a file 1-51, 2-157
search keys, B*-tree

for catalog files 2-71
defined 2-66

search paths 2-31
search privileges. See See Folders privileges
search strategies in resolution of alias records 4-5 to 4-8

absolute 4-6
exhaustive 4-8
fast 4-7
relative 4-5

See Files privileges 2-18
See Folders privileges 2-18
SetEOF function 1-8, 1-48 to 1-49, 2-117 to 2-118
SetFPos function 1-47, 2-116
SetVol function 2-36, 2-37, 2-135
SFGetFile procedure 3-53
SFPGetFile procedure 3-54
SFPPutFile procedure 3-48 to 3-49
SFPutFile procedure 3-47 to 3-48
SFReply data type 3-43
SFSaveDisk global variable 3-65

shared access 2-17
shared environments 2-14 to 2-22

routines 2-14 to 2-15
share points 2-14, 2-48 to 2-49
signature words

default for HFS volumes 5-14
for HFS volumes 2-60
for MFS volumes 2-60

single-writer access 2-17
Special menu, Erase Disk command 5-7
Standard File Package 3-3 to 3-65

activation procedures 3-30 to 3-31, 3-59
and aliases 3-14
application-defined routines in 3-55 to 3-59
callback routines 3-20 to 3-31
compatibility with earlier procedures 3-40 to 3-41
data structures in 3-41 to 3-44
dialog hook functions 3-21 to 3-28, 3-56 to 3-57
and disk initialization 5-5
file filter functions 3-20 to 3-21, 3-55 to 3-56
modal-dialog filter functions 3-28 to 3-30, 3-57 to 3-59
opening files 1-42 to 1-43, 3-4 to 3-5, 3-49 to 3-54
original procedures 3-40 to 3-41
original reply record 3-43 to 3-44
reply records 1-39 to 1-41, 3-13 to 3-14, 3-42 to 3-44
routines in 3-44 to 3-54
saving files 1-43, 3-5 to 3-14, 3-44 to 3-49
testing for features 3-13
user interface guidelines 3-12 to 3-13
user interfaces

custom 3-8 to 3-12
standard 3-4 to 3-8

StandardFileReply data type 3-14, 3-42
StandardGetFile procedure 1-42 to 1-43, 3-4 to 3-5,

3-14, 3-50
StandardPutFile procedure 1-43, 3-5, 3-45
stationery pads, handled by Standard File

Package 1-40, 3-43
subdirectories 1-10
synchronous execution with low-level File Manager

routines 2-6
System Folder 1-11
system software version 7.0 2-24, 2-81, 3-13, 3-26, 3-29,

3-40, 4-4, 5-5, 5-10
system startup information 2-57

T

targets, of an alias record 4-3
TwoIntsMakeALong data type 2-47

I N D E X

IN-9

U

unlocking
directories 2-162, 2-178, 2-198
file ranges 2-212
files 2-162, 2-178, 2-198

UnmountVol function 2-132 to 2-133
UpdateAlias function 4-13, 4-18
update events, and Standard File Package routines 3-29
user authentication methods 2-111, 2-222
user interface

for initializing and naming a disk 5-5 to 5-7
for saving and opening files 3-3 to 3-65

user interface guidelines 3-12
user names 2-223
user passwords 2-112

V

VCB data type 2-78
VCB queues. See volume control block queues
VCBs. See volume control blocks
verifying formatting of disks 5-21
VIBs. See volume information blocks
VolMountInfoHeader data type 2-110
volume attributes buffers 2-109
volume bitmaps 2-53, 2-62
volume catalogs. See catalog files
volume characteristics

changing defaults 5-13 to 5-14
reverting back to defaults 5-14

volume control block queues 2-78
volume control block records 2-78
volume control blocks (VCBs) 1-10, 2-77 to 2-81
volume index 2-31
volume information blocks (VIBs) 2-59
volume mounting information records 2-110
volume passwords 2-112, 2-221
volume reference numbers 1-10, 2-26
volumes

current 3-32
default 2-35 to 2-37
defined 1-6, 2-54
determining if sharable 2-48
ejected 2-145
ejecting 2-141
flushing buffers 2-12
free space on 2-46 to 2-48
HFS 2-54 to 2-57
identified in FSSpec records 2-87
identifying in an alias resolution 4-6
indexed searching 2-14

mounting 1-10, 2-11, 2-20, 2-139 to 2-140, 2-219 to
2-222

naming 1-10, 2-27
offline 1-11, 2-11, 2-145
online 2-11, 2-26, 2-145
organization of 2-52 to 2-57
passwords 2-112, 2-221
placing offline 2-26, 2-142
recursive searching in 2-14, 2-43 to 2-44
remote mounting of 2-20
searching 2-13 to 2-14, 2-38 to 2-44, 2-204 to 2-206
selecting 3-10 to 3-12, 3-38 to 3-40
specifying 2-29
in Standard File Package dialog boxes. See current

volume
unmounting 2-11, 2-140 to 2-141

W, X, Y

WDPBRec data type 2-106
working directories 2-180 to 2-182, 2-201 to 2-204

closing 2-181 to 2-182, 2-202 to 2-203
defined 2-26
getting information about 2-182, 2-203 to 2-204
opening 2-180 to 2-181, 2-201 to 2-202

working directory control blocks 2-27
working directory parameter blocks 2-106
working directory reference numbers 1-15, 2-26
write privileges. See Make Changes privileges
writing data to files 1-23 to 1-26, 1-45, 2-113 to 2-114,

2-122 to 2-123

Z

zeroing disks 5-5

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter IINTX printer. Final page
negatives were output directly from text
files on an AGFA ProSet 9800 imagesetter.
Line art was created using
Adobe™ Illustrator. PostScript™, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Apple Courier.

WRITER

Tim Monroe

DEVELOPMENTAL EDITOR

Antonio Padial

ILLUSTRATOR

Peggy Kunz

PRODUCTION EDITOR

Rex Wolf

ON-LINE PRODUCTION EDITOR

Gerri Gray

PROJECT MANAGER

Patricia Eastman

COVER DESIGNER

Barbara Smyth

Special thanks to Lars Borresen,
Bill Bruffey, Dave Feldman, Nick Kledzik,
Prashant Patel, and Kenny Tung.

Acknowledgments to
Michael Abramowicz, Neil Day,
Richard Dizmang, Sharon Everson,
Sanborn Hodgkins, Jim Luther,
Sue Luttner, Mikey McDougall,
Jim Reekes, Keith Rollin,
Gordon Sheridan, Steve Szymanski, and
the entire Inside Macintosh team.

