INSIDE MACINTOSH

QuickDraw GX Graphics

[
rTw

Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid SanJuan

Paris Seoul Milan Mexico City Taipei

& Apple Computer, Inc.

© 1994 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, LaserWriter, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.

QuickDraw and TrueType are
trademarks of Apple Computer, Inc.
Adobe lllustrator, Adobe Photoshop,
and PostScript are trademarks of Adobe
Systems Incorporated, which may be
registered in certain jurisdictions.
FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica and Palatino are registered
trademarks of Linotype Company.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Optrotech is a trademark of Orbotech
Corporation.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

ISBN 0-201-40673-X
1234567 89-CRW-9897969594
First Printing, March 1994

Library of Congress Cataloging-in-Publication Data

Inside Macintosh. QuickDraw GX graphics.

p. cm.
Includes index.
ISBN 0-201-40673-X

1. Macintosh (Computer)—Programming. 2. Computer graphics.

3. QuickDraw GX. |. Apple Computer, Inc.

QA76.8.M3153 1994
006.6’765—dc20

I1. Title: QuickDraw GX graphics.

93-48597
CIP

Preface

Contents

Figures, Tables, and Listings Xi

About This Book xxiii

Chapter 1

What to Read XXV
Chapter Organization XXVi
Conventions Used in This Book XXVi
Special Fonts XXVi
Types of Notes XXVii
Numerical Formats XXVii
Type Definitions for Enumerations XXVii
Illustrations XXViii
Development Environment XXViii
Developer Products and Support XXviii

Introduction to QuickDraw GX Graphics

1-1

Chapter 2

About QuickDraw GX Graphics 1-4
Geometric Shapes 1-7
Geometric Shape Types 1-8
Geometric Shape Geometries 1-9
Geometric Shape Fills 1-10
Geometric Styles, Inks, and Transforms 1-11
Geometric Operations 1-14
Bitmap Shapes 1-17
Picture Shapes 1-20

Geometric Shapes 21

About Geometric Shapes 2-5

The Geometric Properties of Shape Objects 2-7
Shape Type 2-7
Shape Geometry 2-9
Shape Fill 2-12

The Geometric Shape Types 2-16
Empty Shapes and Full Shapes 2-16
Point Shapes 2-16
Line Shapes 2-17
Curve Shapes 2-18
Rectangle Shapes 2-20

Polygon Shapes 2-22
Path Shapes 2-25

Using Geometric Shapes 2-27

Creating and Drawing Empty Shapes and Full Shapes 2-28

Creating and Drawing Points 2-29

Creating and Drawing Lines 2-36

Creating and Drawing Curves 2-41

Creating and Drawing Rectangles 2-43

Creating and Drawing Polygons 2-45
Creating Polygons With a Single Contour 2-46
Creating Polygons With Multiple Contours 2-49
Creating Polygons With Crossed Contours 2-50

Creating and Drawing Paths 2-55
Creating Paths With a Single Contour 2-57
Creating Paths Using Only Off-Curve Points 2-59
Creating Paths With Multiple Contours 2-60

Converting Between Geometric Shape Types 2-65
Converting Shapes to Points, Lines, and Rectangles 2-66
Converting Shapes to Curve Shapes 2-71
Converting Shapes to Polygons and Paths 2-74

Replacing Geometric Points 2-79

Editing Polygon Parts 2-82

Editing Paths Parts 2-91

Editing Shape Parts 2-93

Applying Functions Described Elsewhere to Geometric Shapes 2-100

Shape-Related Functions Applicable to Geometric Shapes 2-100
Other Functions Applicable to Geometric Shapes 2-103

Geometric Shapes Reference 2-103

Data Types 2-104
The Point Structure 2-104
The Line Structure 2-105
The Curve Structure 2-105
The Rectangle Structure 2-106
Polygon Structures 2-106
Path Structures 2-107

Functions 2-108
Creating Geometric Shapes 2-109
Getting and Setting Shape Geometries 2-119
Editing Shape Geometries 2-135
Drawing Geometric Shapes 2-157

Summary of Geometric Shapes 2-163

Constants and Data Types 2-163
Functions 2-164

Chapter 3 Geometric Styles 31

About Geometric Styles 3-5
Shapes and Styles 3-5
Incorporating Stylistic Variations Into Shape Geometries 3-8
Style Properties 3-11
Default Style Objects 3-12
Curve Error 3-14
The Geometric Pen 3-15
Style Attributes 3-17
Pen Placement 3-18
Grids 3-20
Interactions Between Caps, Joins, Dashes, and Patterns 3-22
Caps 3-23
Joins 3-25
Dashes 3-27
Patterns 3-31
Interactions Between Caps, Joins, Dashes, and Patterns 3-33
Using Geometric Styles 3-35
Associating Styles With Shapes 3-36
Constraining Shape Geometries to Grids 3-40
Constraining Shapes to Device Grids 3-42
Using Curve Error When Converting Paths to Polygons 3-45
Using Curve Error When Reducing Shapes 3-49
Manipulating Pen Width and Placement 3-51
Adding Caps to a Shape 3-57
Adding Standard Caps to a Shape 3-59
Adding Joins to a Shape 3-61
Adding Standard Joins to a Shape 3-64
Dashing a Shape 3-66
Adjusting Dashes to Fit Contours 3-70
Insetting Dashes 3-73
Breaking and Bending Dashes 3-74
Wrapping Text to a Contour 3-80
Determining Dash Positions 3-81
Adding a Pattern to a Shape 3-86
Determining Pattern Positions 3-88
Combining Caps, Joins, Dashes, and Patterns 3-91
Geometric Styles Reference 3-96
Constants and Data Types 3-96
Style Objects 3-97
Style Attributes 3-98
The Cap Structure 3-99
Cap Attributes 3-101
The Join Structure 3-101
Join Attributes 3-102

The Dash Structure 3-103

Dash Attributes 3-105

The Pattern Structure 3-106

Pattern Attributes 3-107

Functions 3-108

Getting and Setting Style Attributes 3-109

Getting and Setting Curve Error 3-114

Getting and Setting the Pen Width 3-119

Getting and Setting Caps 3-123

Getting and Setting Joins 3-129

Getting and Setting Dashes 3-134

Getting and Setting Patterns 3-142
Summary of Geometric Styles 3-149

Constants and Data Types 3-149

Functions for Manipulating Geometric Style Properties 3-151

Chapter 4 Geometric Operations 41

About Geometric Operations 4-4
Contours and Contour Direction 4-4
Reducing and Simplifying Shape Geometries 4-9
The Primitive Form of Shape Geometries 4-12
Geometric Information 4-16
Touching and Containing 4-18
Geometric Arithmetic 4-21
Using Geometric Operations 4-23
Determining and Reversing Contour Direction 4-23
Breaking Shape Contours 4-28
Eliminating Unnecessary Geometric Points 4-30
Simplifying Shapes 4-33
Converting a Shape to Primitive Form 4-38
Finding Geometric Information About a Shape 4-41
Finding the Length of a Contour 4-42
Finding the Point at a Certain Distance Along a Contour 4-42
Finding the Bounding Rectangle and Center Point of a Shape 4-43
Finding the Area of a Shape 4-45
Setting a Shape’s Bounding Rectangle 4-47
Insetting Shapes 4-50
Determining Whether Two Shapes Touch 4-53
Determining Whether One Shape Contains Another 4-58
Performing Geometric Arithmetic With Shapes 4-60
Geometric Operations Reference 4-67
Constants and Data Types 4-67
Contour Directions 4-67

Vi

Chapter 5

Functions 4-68

Determining and Reversing Contour Direction 4-68
Breaking Shape Contours 4-72
Reducing and Simplifying Shapes 4-74
Incorporating Style Information Into Shape Geometries 4-79
Finding Geometric Information About Shapes 4-83
Getting and Setting Shape Bounds 4-90
Insetting Shapes 4-94
Determining Whether Two Areas Touch 4-95
Determining Whether One Shape Contains Another 4-100
Performing Geometric Arithmetic With Shapes 4-104

Summary of Geometric Operations 4-117
Constants and Data Types 4-117
Functions 4-117

Bitmap Shapes 51

About Bitmap Shapes 5-3
Bitmap Geometries 5-5
Bitmap Styles and Inks 5-8
Bitmap Transforms 5-10
Bitmaps and View Devices 5-12
Using Bitmap Shapes 5-14
Creating and Drawing Bitmaps 5-15
Creating Black-and-White Bitmaps 5-15
Creating Color Bitmaps 5-21
Dithering and Halftoning Bitmaps 5-30
Applying Transfer Modes to Bitmaps 5-32
Converting Other Types of Shapes to Bitmaps 5-34
Applying Transformations to Bitmaps 5-38
Mapping Bitmap Shapes 5-39
Clipping Bitmap Shapes 5-43
Creating Bitmaps With Disk-Based Pixel Images 5-44
Creating Bitmaps Offscreen 5-45
Editing Part of a Bitmap 5-53
Applying Functions Described Elsewhere to Bitmap Shapes 5-54
Functions That Post Errors or Warnings When Applied to Bitmap
Shapes 5-55
Shape-Related Functions Applicable to Bitmap Shapes 5-56
Geometric Operations Applicable to Bitmap Shapes 5-58
Style-Related Functions Applicable to Bitmap Shapes 5-59
Ink-Related Functions Applicable to Bitmap Shapes 5-59
Transform-Related Functions Applicable to Bitmap Shapes 5-59
View-Related Functions Applicable to Bitmap Shapes 5-61

Vii

Chapter 6

Bitmap Shapes Reference 5-61
Constants and Data Types 5-61
The Bitmap Geometry Structure 5-62
The Long Rectangle Structure 5-64
Constants For Bitmaps With Disk-Based Pixel Images 5-64
Bitmap Data Source Alias Structure 5-65
Functions 5-65
Creating Bitmaps 5-65
Getting and Setting Bitmap Geometries 5-68
Editing Bitmaps 5-71
Drawing Bitmaps 5-76
Checking Bitmap Colors 5-79
Summary of Bitmap Shapes 5-81
Constants and Data Types 5-81
Functions 5-82

Picture Shapes 6-1

viii

About Picture Shapes 6-3
Overriding Styles, Inks, and Transforms 6-8
Multiple References 6-10
Unique Items Shape Attribute 6-15
Picture Hierarchies 6-18
Transform Concatenation 6-19
About Hit-Testing Picture Shapes 6-24
Using Picture Shapes 6-26
Creating and Drawing Picture Shapes 6-27
Getting and Setting Picture Geometries 6-31
Adding Items to a Picture 6-32
Removing and Replacing Items in a Picture 6-35
Using Overriding Styles, Inks, and Transforms 6-38
Adding Multiple References 6-40
Adding Items With the Unique Items Attribute Set 6-43
Creating Picture Hierarchies 6-44
Hit-Testing Pictures 6-46
Applying Functions Described Elsewhere to Picture Shapes 6-52
Functions That Post Errors or Warnings When Applied to Pictures
Shape-Related Functions Applicable to Pictures 6-54
Geometric Operations Applicable to Pictures 6-55
Style-Related Functions Applicable to Pictures 6-55
Ink-Related Functions Applicable to Pictures 6-56
Transform-Related Functions Applicable to Pictures 6-56
Picture Shapes Reference 6-57
Functions 6-57
Creating Picture Shapes 6-57
Getting and Setting Picture Geometries 6-59

6-52

Editing Picture Parts 6-63
Drawing Pictures 6-67
Hit-Testing Pictures 6-69

Summary of Picture Shapes 6-72
Functions 6-72

Glossary L1

Index IN-1

Preface

Chapter 1

Chapter 2

Figures, Tables, and Listings

Color Plates

Color plates are immediately preceding the title page.

Color Plate 1 The effect of transfer modes on bitmap shapes
Color Plate 2 A blended color ramp bitmap

Color Plate 3 A bitmap with an eight-color color set

Color Plate 4 A color ramp bitmap

Color Plate 5 Transformed bitmaps

Color Plate 6 A bitmap drawn with and without a transfer mode

About This Book xxiii

Figure P-1 Roadmap to the QuickDraw GX suite of books XXV

Introduction to QuickDraw GX Graphics 1-1

Figure 1-1 Shape object structure 1-5

Figure 1-2 The geometric shape types and examples of geometric shape
geometries 1-8

Figure 1-3 A polygon shape with a single polygon contour containing three
geometric points 1-10

Figure 1-4 Framed shapes versus solid shapes 1-11

Figure 1-5 Two condensed views of a polygon shape 1-12

Figure 1-6 The geometric style properties and some examples of their
effects 1-13

Figure 1-7 An example of reducing a shape 1-14

Figure 1-8 An example of simplifying a shape 1-14

Figure 1-9 Some examples of the geometric information available about a
shape 1-15

Figure 1-10 Some examples of the geometric arithmetic you can perform with
shapes 1-16

Figure 1-11 Sample bitmap shapes 1-17

Figure 1-12 A bitmap shape 1-18

Figure 1-13 Elements of a bitmap geometry 1-19

Figure 1-14 Sample picture shapes 1-20

Figure 1-15 A picture hierarchy 1-21

Table 1-1 Where to find information on shape-type conversion 1-6

Geometric Shapes 2-1

Figure 2-1 A shape object 2-6

Figure 2-2 The geometric shape types and examples of geometric shape
geometries 2-8

Xi

Xil

Figure 2-3

Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
Figure 2-10
Figure 2-11
Figure 2-12
Figure 2-13
Figure 2-14
Figure 2-15
Figure 2-16

Figure 2-17
Figure 2-18
Figure 2-19
Figure 2-20
Figure 2-21
Figure 2-22
Figure 2-23
Figure 2-24
Figure 2-25
Figure 2-26
Figure 2-27
Figure 2-28
Figure 2-29
Figure 2-30

Figure 2-31
Figure 2-32
Figure 2-33
Figure 2-34
Figure 2-35
Figure 2-36
Figure 2-37
Figure 2-38
Figure 2-39
Figure 2-40
Figure 2-41
Figure 2-42

Figure 2-43
Figure 2-44

A polygon shape with a single contour containing three geometric
points 2-10

Framed shapes versus solid shapes 2-12

The various shape fills and examples of their effects 2-13
The even-odd rule and winding-number rule algorithms 2-14
The inverse even-odd shape fill 2-15

Two lines 2-17

A quadratic Bézier curve 2-18

Finding the midpoint of a curve 2-19

Dividing a curve into two smaller curves 2-20

A rectangle geometry shown framed and filled 2-21

A polygon shape with two polygon contours 2-23

A polygon drawn with the even-odd and winding shape fills 2-24
A path with two consecutive off-curve points 2-25

A path shape filled with the even-odd and winding shape
fills 2-26

A point 2-30
Two different point geometries 2-35
Aline 2-37

Parallel lines 2-39

Nearly parallel lines 2-40

A curve 2-42

A rectangle 2-44

A framed rectangle 2-45

A polygon 2-47

A triangular polygon with inverse shape fill 2-47

A filled polygon with two separate contours 2-50

A framed polygon with a crossed contour 2-51

A solid polygon with a crossed contour 2-51

A polygon with an overlapping contour and closed-frame shape
fill 2-53

A polygon with an overlapping contour and even-odd shape
fill 2-53

A polygon with an overlapping contour and winding shape
fill 2-54

A path 2-58

A round path shape 2-60

A path shape with two concentric clockwise contours and
closed-frame shape fill 2-62

A path shape with two concentric clockwise contours and even-odd
shape fill 2-63

A path shape with two concentric clockwise contours and winding
shape fill 2-63

A path shape with an internal counterclockwise contour and
closed-frame shape fill 2-64

A path shape with even-odd or winding shape fill 2-65

A figure-eight path shape 2-67

A path shape before and after conversion to a rectangle

shape 2-68

A path shape before and after conversion to a line shape 2-69
A path shape before and after conversion to a point shape 2-70
A line shape before and after conversion to a curve shape 2-72

Figure 2-45
Figure 2-46
Figure 2-47
Figure 2-48
Figure 2-49

Figure 2-50
Figure 2-51
Figure 2-52
Figure 2-53
Figure 2-54

Figure 2-55
Figure 2-56

Figure 2-57
Figure 2-58

Figure 2-59
Figure 2-60
Figure 2-61
Figure 2-62
Figure 2-63
Figure 2-64
Figure 2-65

Table 2-1

Listing 2-1
Listing 2-2
Listing 2-3

Listing 2-4
Listing 2-5

Listing 2-6
Listing 2-7
Listing 2-8
Listing 2-9
Listing 2-10
Listing 2-11
Listing 2-12
Listing 2-13
Listing 2-14
Listing 2-15
Listing 2-16

A rectangle shape before and after conversion to a curve
shape 2-73

A polygon shape before and after conversion to a curve
shape 2-74

A rectangle shape before and after conversion to a polygon
shape 2-75

A path shape before and after conversion to a polygon
shape 2-77

Polygon shape with two contours before and after conversion to a
path shape 2-79

A path shape with a flat top 2-81

A path shape with geometric points replaced 2-81

A polygon shape with two contours 2-83

A polygon shape extracted from a larger polygon shape 2-85

A polygon with two geometric points replaced by a single
geometric point 2-87

A polygon shape with one contour 2-87

A polygon shape edited with the gxBr eakNei t her Edi t flag
set 2-89

A polygon shape edited with the gxBr eakLef t Edi t flag
set 2-89

A polygon shape edited with the gxBr eakR ght Edi t flag
set 2-90

A path shape with two curved contours 2-92

A path shape edited with GXSet Pat hPart s 2-93
A path shape with a flat top 2-95

A path shape edited to have a pointy top 2-96
A path shape edited to have a round top 2-97

A diagonal line 2-99

An edited line 2-99

Shape-related functions that exhibit special behavior with
geometric shapes 2-101

Drawing a point without creating a point shape 2-30
Creating a point shape with the GXNewPoi nt function 2-31

Creating a point shape with the GXNewShapeVect or
function 2-32

Creating a point shape with the GXNewShape and GXSet Poi nt
functions 2-33

Using the GXSet Poi nt function to replace a point shape’s
geometry 2-34

Drawing a line without creating a line shape 2-37
Creating a line shape with the GXNewLi ne function 2-38
Drawing two parallel lines 2-39

Creating a curve shape 2-41

Creating a rectangle shape 2-43

Creating a framed rectangle 2-44

Drawing a triangular polygon 2-46

Creating a polygon with two contours 2-49

Creating a polygon with a crossed contour 2-50
Creating a polygon with an overlapping contour 2-52
Drawing a path shape 2-57

xiil

Chapter 3

Xiv

Listing 2-17
Listing 2-18
Listing 2-19
Listing 2-20
Listing 2-21
Listing 2-22
Listing 2-23
Listing 2-24
Listing 2-25
Listing 2-26
Listing 2-27
Listing 2-28
Listing 2-29
Listing 2-30
Listing 2-31
Listing 2-32
Listing 2-33

Creating a path using only off-curve control points 2-59
Creating a path with concentric contours 2-61
Creating a figure-eight path shape 2-67

Converting a line to a curve 2-71

Converting a rectangle to a curve 2-72

Converting a polygon shape to a curve shape 2-73
Converting a rectangle shape to a polygon shape 2-75
Converting a path shape to a polygon shape 2-76
Converting a polygon shape to a path shape 2-78
Replacing geometric points 2-80

Creating a polygon shape with two contours 2-82
Extracting part of a polygon shape 2-84

Replacing geometric points of a polygon shape 2-86
Inserting a geometric point in a polygon shape 2-88
Creating a path shape with two curved contours 2-91
Creating a path shape with one contour 2-94

Creating a diagonal line 2-98

Geometric Styles 3-1

Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4

Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 3-11

Figure 3-12
Figure 3-13
Figure 3-14
Figure 3-15
Figure 3-16
Figure 3-17
Figure 3-18
Figure 3-19
Figure 3-20
Figure 3-21
Figure 3-22
Figure 3-23
Figure 3-24
Figure 3-25
Figure 3-26
Figure 3-27
Figure 3-28

Style object with geometric properties highlighted 3-6
Shared style objects 3-7
Effects of the GXPri ni ti veShape function on a line shape

Effects of the GXPri ni ti veShape function on a rectangle
shape 3-10

The QuickDraw GX geometric pen 3-15
Differing pen widths 3-16

Pixels included in a hairline 3-16

A geometry with no hairline 3-17

Pen placement 3-18

Effect of the auto-inset style attribute 3-19

Effect of the auto-inset and inside-frame style attributes for a

crossed contour 3-19

Eliminating crossed contours 3-20
Constraining shapes to grids 3-21
Caps, joins, dashes, and patterns 3-22
A shape with caps 3-23

A shape with level caps 3-24

Standard cap shapes 3-24

A shape with joins 3-25

A shape with level joins 3-26

Standard joins 3-26

Sharp join with miter 3-27

A dashed shape 3-27

Scaling a dash shape 3-28

Effect of the clip dash attribute 3-29
Effects of breaking a dash 3-30
Effects of bending a dash 3-30

A shape with a pattern 3-31

Pattern placed on a nonrectilinear grid 3-32

3-9

Figure 3-29 Effects of the port-align pattern attribute 3-32

Figure 3-30 Effects of the port-map pattern attribute 3-33

Figure 3-31 A shape with a cap, join, and pattern 3-34

Figure 3-32 A shape with a dash and a pattern 3-34

Figure 3-33 A shape with a clipped dash and a cap and join 3-35

Figure 3-34 Rectangle with thick pen 3-38

Figure 3-35 Scaled, but not constrained, V shape 3-41

Figure 3-36 Constrained V shape 3-42

Figure 3-37 Rotated star not constrained to device grid (magnified 200
percent) 3-44

Figure 3-38 Rotated star constrained to device grid (magnified 200
percent) 3-45

Figure 3-39 Polygon approximation of a circle with curve error of 1 3-46

Figure 3-40 Polygon approximation of a circle with curve error of 5 3-47

Figure 3-41 Polygon approximation of a circle with curve error of 10 3-47

Figure 3-42 Polygon resulting from a curve error of 0 3-48

Figure 3-43 Wavy line 3-50

Figure 3-44 Wavy line somewhat smoothed by curve error of 10 3-50

Figure 3-45 Wavy line smoothed by curve error of 15 3-50

Figure 3-46 Wavy line completely straightened by curve error of 20 3-50

Figure 3-47 A hairline figure eight 3-52

Figure 3-48 A thick figure eight 3-52

Figure 3-49 A figure eight with pen inset 3-53

Figure 3-50 A figure eight with pen outset 3-54

Figure 3-51 A reversed figure eight with pen outset 3-55

Figure 3-52 Uncrossed figure eight with pen outset 3-56

Figure 3-53 An arrow 3-59

Figure 3-54 Round and square caps 3-61

Figure 3-55 A square with diamond-shaped joins 3-63

Figure 3-56 A square with level joins 3-63

Figure 3-57 An angle with a sharp join 3-65

Figure 3-58 An angle with a truncated sharp join 3-65

Figure 3-59 A dashed curve 3-68

Figure 3-60 A curve with scaled dashes 3-68

Figure 3-61 A curve with clipped dashes 3-69

Figure 3-62 A curve with phased dashes 3-69

Figure 3-63 Circle dashed with diamonds 3-71

Figure 3-64 Circle with automatically advanced dashes 3-72

Figure 3-65 Circle with diamond dashes inset 3-73

Figure 3-66 Circle with diamond dashes moved toward the center 3-74

Figure 3-67 Dash shape with two contours 3-75

Figure 3-68 Circle dashed with double diamonds 3-76

Figure 3-69 Circle with dashes broken 3-77

Figure 3-70 Circle with hairline dashes 3-78

Figure 3-71 Circle with bent hairline dashes 3-79

Figure 3-72 Wrapped text 3-81

Figure 3-73 Dash positions for a clock 3-83

Figure 3-74 A clock shape 3-85

Figure 3-75 A rectangle with a pattern 3-87

Figure 3-76 A framed rectangle with a pattern 3-88

Figure 3-77 Shape with changing pattern 3-91

Chapter 4

XVi

Figure 3-78
Figure 3-79
Figure 3-80

Listing 3-1

Listing 3-2
Listing 3-3
Listing 3-4
Listing 3-5
Listing 3-6
Listing 3-7
Listing 3-8
Listing 3-9
Listing 3-10
Listing 3-11
Listing 3-12
Listing 3-13
Listing 3-14
Listing 3-15
Listing 3-16
Listing 3-17
Listing 3-18
Listing 3-19
Listing 3-20
Listing 3-21

Angle shape with cap, join, and pattern 3-93
Angle shape with dash and pattern; caps and join ignored 3-94
Shape with cap, join, dash, and the clip dash attribute set 3-95

Adding style information by directly manipulating a style
object 3-37

Manipulating style information indirectly 3-39
Constraining a shape to a half-inch grid 3-40
Creating a shape with fractional geometric point positions 3-43
Converting a circle to a polygon 3-46

Creating a complicated contour 3-49

Defining a figure eight 3-51

Removing unwanted contour crossings 3-55
Creating an arrow 3-57

Adding round caps and square caps to a curve 3-60
Adding joins to a shape 3-61

Adding a sharp join to an angle shape 3-64
Creating a curve shape dashed with diamonds 3-66
Creating a dashed circle 3-70

Creating a dash with multiple contours 3-75
Wrapping text 3-80

Creating a circle with 12 dashes 3-82

Creating a clock shape 3-83

Patterning a shape 3-86

Changing a pattern throughout a patterned shape 3-89
Combining a cap, join, and pattern 3-92

Geometric Operations 4-1

Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4

Figure 4-5

Figure 4-6
Figure 4-7

Figure 4-8
Figure 4-9

Figure 4-10
Figure 4-11
Figure 4-12
Figure 4-13
Figure 4-14
Figure 4-15

Figure 4-16

Line contours 4-5
A path shape with two contours 4-6
A path whose contour direction is hot immediately obvious 4-7

A path whose inner contour has the same contour direction as its
outer contour 4-8

A path shape whose inner and outer contours have different
contour directions 4-8

Effects of reducing and simplifying shape geometries 4-10

How simplifying a shape can produce more predictable results
when drawing 4-11

Simple example of the GXPri ni ti veShape function 4-13

More involved example of the GXPri m t i veShape
function 4-15

Geometric information available about a path shape 4-17

A path shape resized by changing its bounding rectangle 4-18
Testing whether one shape touches another 4-19

Testing whether one shape contains another 4-20

Geometric arithmetic with two solid shapes 4-21

Geometric arithmetic with a framed shape and a solid
shape 4-22

Geometric inversion 4-22

Figure 4-17
Figure 4-18
Figure 4-19

Figure 4-20
Figure 4-21
Figure 4-22
Figure 4-23

Figure 4-24
Figure 4-25
Figure 4-26

Figure 4-27
Figure 4-28

Figure 4-29
Figure 4-30
Figure 4-31

Figure 4-32
Figure 4-33

Figure 4-34
Figure 4-35

Figure 4-36
Figure 4-37

Figure 4-38

Figure 4-39
Figure 4-40
Figure 4-41
Figure 4-42
Figure 4-43
Figure 4-44
Figure 4-45
Figure 4-46
Figure 4-47
Figure 4-48
Figure 4-49

Figure 4-50
Figure 4-51

Figure 4-52

A polygon shape whose two contours have opposite contour
directions 4-25

A polygon shape with the direction of both contours
reversed 4-26

A polygon shape with the direction of the inner contour
reversed 4-27

A path shape with a single contour 4-29
A path shape broken into two contours 4-29
A polygon shape with unnecessary geometric points 4-31

A polygon shape with the unnecessary geometric points
removed 4-32

A polygon shape with a crossed contour 4-34
A polygon shape with no crossed contours 4-34

A path shape with two concentric clockwise contours and even-odd
shape fill 4-36

A path shape with two concentric contours with opposite contour
direction 4-36

A path shape with two concentric clockwise contours and winding
shape fill 4-37

A path shape simplified to a single clockwise contour 4-37
A hourglass-shaped polygon with a thick border 4-39

A polygon shape with style information incorporated into its
geometry 4-39

The primitive form of the polygon shape after simplification 4-40

A path with an outer clockwise contour and an inner
counterclockwise contour 4-42

Finding a specified point on a path contour 4-43

Finding the bounding rectangle and the center point of a
path 4-44

Finding the center point of two contours 4-44

Finding the area of a path, two contours with same contour
direction 4-45

Finding the area of a path, two contours with opposite contour
direction 4-46

Finding the area of a simplified path 4-46

A circular path 4-48

A circular path after bounding rectangle changed 4-48

A path shape with a transform mapping 4-49

A tight curve 4-51

An inset curve shape 4-51

An outset curve 4-52

A rectangle containing a circular path 4-54

A rectangle that touches a circular path shape 4-55

A rectangle and a circular path touching at a single point 4-56

A large circular path shape touching a smaller circular path
shape 4-57

A path shape with two contours and a smaller concentric rectangle
shape 4-59

A diamond-shaped polygon geometry and a circular path
geometry 4-61

The intersection of a diamond-shaped polygon and a circular
path 4-61

xvil

Chapter 5

Xviil

Figure 4-53 The union of a diamond-shaped polygon and a circular

path 4-62

Figure 4-54 The union of a framed diamond-shaped polygon and a circular
path 4-63

Figure 4-55 The result of subtracting a circular path from a diamond-shaped
polygon 4-63

Figure 4-56 The result of subtracting a diamond-shaped polygon from a circular
path 4-64

Figure 4-57 The result of the exclusive-OR operation on a polygon and a
path 4-65

Figure 4-58 An inverted diamond 4-66

Listing 4-1 Creating a polygon shape with two contours having opposite
contour directions 4-24

Listing 4-2 Creating a path shape with a single contour 4-28

Listing 4-3 Creating a polygon with redundant geometric points 4-31

Listing 4-4 Creating a polygon shape with a crossed contour 4-33

Listing 4-5 Creating a path shape with two clockwise contours 4-35

Listing 4-6 Creating an hourglass polygon shape with a thick pen
width 4-38

Listing 4-7 Creating a path shape with two contours having opposite contour
directions 4-41

Listing 4-8 Creating a circular path 4-47

Listing 4-9 Creating a tight curve shape 4-50

Listing 4-10 Creating a rectangle and a circular path shape 4-53

Listing 4-11 Creating a path shape with two contours and a smaller concentric
rectangle shape 4-58

Listing 4-12 Creating a diamond-shaped polygon and a circular path that

intersect 4-60

Bitmap Shapes 5-1

Figure 5-1 A bitmap shape 5-4

Figure 5-2 A black-and-white bitmap geometry 5-6

Figure 5-3 A grayscale bitmap geometry 5-7

Figure 5-4 The effect of transfer modes on bitmap shapes 5-9

Figure 5-5 The effect of mappings on bitmap shapes 5-10

Figure 5-6 The effect of the gxMapTr ansf or nBhape shape attribute on bitmap
mappings 5-11

Figure 5-7 Bitmaps and view devices 5-13

Figure 5-8 A black-and-white bitmap—32 bits wide 5-17

Figure 5-9 An example of unaligned bytes per row 5-19

Figure 5-10 An envelope with a shadow 5-20

Figure 5-11 A bitmap with a grayscale color set (four shades) 5-22

Figure 5-12 A bitmap with a grayscale color set (sixteen shades) 5-23

Figure 5-13 A bitmap with an eight-color color set 5-24

Figure 5-14 A color ramp from red to green 5-28

Figure 5-15 Dithered bitmaps 5-31

Figure 5-16 Halftoned bitmaps 5-32

Figure 5-17 A blended color ramp 5-34

Figure 5-18 A bitmap representation of a path shape 5-36

Figure 5-19 A bitmap and its bounding rectangle 5-36

Chapter 6

Figure 5-20
Figure 5-21
Figure 5-22
Figure 5-23

Figure 5-24
Figure 5-25
Figure 5-26
Figure 5-27
Figure 5-28
Figure 5-29
Figure 5-30
Figure 5-31

Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5

Table 5-6

Listing 5-1
Listing 5-2
Listing 5-3
Listing 5-4
Listing 5-5
Listing 5-6

Listing 5-7
Listing 5-8
Listing 5-9
Listing 5-10
Listing 5-11
Listing 5-12
Listing 5-13
Listing 5-14

Picture Shapes

A bitmap drawn over a background 5-37
A bitmap with a transfer mode drawn over a background 5-38
A path shape converted to a bitmap shape 5-39

A path shape converted to a bitmap shape and then
skewed 5-39

A color ramp bitmap 5-40

A bitmap after multiple transformations 5-40
Scaled text 5-41

Scaled text and a scaled bitmap 5-42

A clipped bitmap 5-43

Multiple shapes drawn to a bitmap 5-51

An extracted bitmap 5-53

An edited bitmap 5-54

Shape-editing functions that post errors or warnings when applied
to bitmaps 5-55

Geometric operations that post errors or warnings when applied to
bitmaps 5-56

Shape-related functions that exhibit special behavior when applied
to bitmaps 5-57

Geometric operations that exhibit special behavior when applied to
bitmaps 5-58

Transform-related functions that exhibit special behavior when
applied to bitmaps 5-60

View-related functions that can be applied to bitmaps 5-61

Creating a black-and-white bitmap 5-15

A bit image with an even number of bytes per row 5-20
Defining a color set 5-23

Creating a color ramp 5-26

Creating a color ramp using the ramp library 5-28

Creating a color ramp using both the ramp and color
libraries 5-29

Halftoning a bitmap 5-31

Applying a transfer mode to a bitmap 5-33

Converting a path to a bitmap 5-35

Scaling text 5-41

Scaling a bitmap 5-42

Creating a black-and-white bitmap 5-46

Creating an offscreen bitmap 5-49

Creating an offscreen bitmap using the offscreen library 5-51

6-1

Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6

A picture shape 6-4

A picture item 6-5

A picture geometry with two items 6-6
Condensed view of picture with two items 6-7
A picture shape with overrides 6-9

A picture containing multiple references to the same
shape 6-10

XiX

XX

Figure 6-7
Figure 6-8
Figure 6-9

Figure 6-10
Figure 6-11
Figure 6-12
Figure 6-13
Figure 6-14
Figure 6-15
Figure 6-16
Figure 6-17
Figure 6-18
Figure 6-19
Figure 6-20
Figure 6-21
Figure 6-22
Figure 6-23
Figure 6-24
Figure 6-25
Figure 6-26

Figure 6-27
Figure 6-28
Figure 6-29
Figure 6-30
Figure 6-31
Figure 6-32

Table 6-1
Table 6-2

Table 6-3

Table 6-4

Listing 6-1
Listing 6-2

Listing 6-3
Listing 6-4
Listing 6-5
Listing 6-6
Listing 6-7
Listing 6-8
Listing 6-9

Listing 6-10

Listing 6-11

A condensed view of a picture with multiple references 6-11
Multiple references with overriding transforms 6-12

Multiple references with overriding styles, inks, and
transforms 6-14

An empty picture shape and a polygon shape 6-15
Adding a polygon shape to a picture shape 6-16
Adding a shape to a picture twice 6-17

A condensed view of a picture hierarchy 6-18

A path shape and its transform 6-19

A picture with an overriding transform 6-20

Simple transform concatenation 6-21

Intricate transform concatenation 6-23

A picture shape and hit-test points 6-25

A picture of a house with a roof and a door 6-29

A picture of a house with a relocated door 6-32

A house with a lawn, walkway, and chimney 6-35
A house with chimney removed 6-36

A house with the chimney replaced 6-37

A house picture with an overriding style, ink, and transform 6-40
A house with four windows 6-42

A house with four windows and four unique overriding
transforms 6-44

A house rotated by 90 degrees two times 6-45

Grounds picture 6-47

House picture 6-47

Picture containing grounds picture and house picture 6-48
Hit-testing the picture of house and grounds 6-49
Hit-testing the picture at depth 2 and level 1 6-50

Hit-testing a picture at different depths and levels 6-51

Geometric operations that post errors or warnings when applied to
pictures 6-53

Shape-related functions that exhibit special behavior when applied
to pictures 6-54

Geometric operations that exhibit special behavior when applied to
pictures 6-55

Creating a simple picture of a house 6-28

Disposing of shapes contained in a picture before disposing of the
picture 6-30

Extracting and editing items from a picture 6-31

Defining new shapes for the house picture 6-33

Adding new shapes to the house picture 6-34

Removing an item from a picture 6-36

Replacing one shape with another 6-37

Creating style, ink, and transform objects 6-38

Creating a picture whose items have overriding styles, inks, and
transforms 6-39

Disposing of overriding style, ink, and transform objects before
drawing 6-40

Adding four items that reference the same shape to a house
picture 6-41

Listing 6-12

Listing 6-13
Listing 6-14
Listing 6-15
Listing 6-16

Disposing of the white rectangle and the three transform objects
before drawing 6-42

Adding unique items to a picture 6-43
Creating a picture hierarchy 6-45
Creating a picture hierarchy 6-46
Hit-testing a picture shape 6-49

XXi

P REFACE

About This Book

QuickDraw GX is an integrated, object-based approach to graphics
programming on Macintosh computers. This book, Inside Macintosh:
QuickDraw GX Graphics, describes the data types and functions you use to
create graphic images.

For application programming purposes, QuickDraw GX augments the
capabilities of some of the Macintosh system software managers documented
in other parts of Inside Macintosh. In situations where your application uses
QuickDraw GX for drawing, information in this book replaces much of the
information in Inside Macintosh: Imaging With QuickDraw. QuickDraw and
QuickDraw GX coexist without conflict, however, and you can use both in the
same program. Furthermore, for tasks outside the scope of QuickDraw GX,
such as managing graphics ports, you need to use QuickDraw.

Before you read this book, you should already be familiar with information
described elsewhere in the Inside Macintosh QuickDraw GX suite of books.

In particular, you should be familiar with much of the information in

Inside Macintosh: QuickDraw GX Objects. You should read the information
about QuickDraw GX shapes and objects in the chapter “Introduction to
QuickDraw GX” in that book. You should also read the chapters “Shape
Objects,” “Style Objects,” “Ink Objects,” and “Transform Objects” in that book.

xXiii

P REFACE

For an alternative approach to learning QuickDraw GX, you can read
QuickDraw GX Programmer’s Overview before or along with this

book. QuickDraw GX Programmer’s Overview teaches QuickDraw GX
programming through building extensive code samples. Figure P-1 shows the
suggested reading order for the QuickDraw GX books.

Figure P-1 Roadmap to the QuickDraw GX suite of books

XXIV

2 ks D 1531 uick D B3 D ick Dy G
Grap hics Typography Frinking

Oy ik D G20
Frin ki g
ExkEnzions
and
[vinars

What to Read

P REFACE

This book describes three types of QuickDraw GX shapes you can use to
make graphic images:

n

n

n

geometric shapes
bitmap shapes

picture shapes

The other types of QuickDraw GX shapes (the typographic shapes) are
discussed in Inside Macintosh: QuickDraw GX Typography:.

The chapters of this book cover these topics:

n

Geometric shapes, which are the building blocks for graphics. These
shapes, which include points, lines, curves, rectangles, polygons, and
paths, make up the graphic elements supported by most drawing
programs. The chapter “Geometric Shapes” in this book describes
geometric shapes in detail.

Geometric styles, which are the stylistic variations you can make
to geometric shapes. The chapter “Geometric Styles” in this book describes
these variations.

Geometric operations, which are the functions you can use to manipulate
geometric shapes and obtain geometric information about geometric
shapes. The chapter “Geometric Operations” in this book describes these
functions.

Bitmap shapes, which contain pixel images. These shapes allow you to
create graphics by specifying the color value of each pixel in the image. The
chapter “Bitmap Shapes” in this book describes bitmap shapes in detail.
This chapter also references a number of the color plates you can find at the
front of this book.

Picture shapes, which are collections of QuickDraw GX shapes, including
other picture shapes. You can find this type of shape described in the
chapter “Picture Shapes,” in this book.

XXV

P REFACE

Chapter Organization

Most chapters in this book follow a standard general structure. For example,
the chapter “Geometric Shapes” contains these major sections:

n “About Geometric Shapes.” This section provides an overview of
geometric shapes.

n “Using Geometric Shapes.” This section describes how you can create and
manipulate geometric shapes using QuickDraw GX. It describes how to
use the most common functions, gives related user interface information,
provides code samples, and supplies additional information.

n “Geometric Shapes Reference.” This section provides a complete reference
to geometric shapes by describing the constants, data types, and functions
that you use with geometric shapes. Each function description follows a
standard format, which gives the function declaration; a description of
every parameter; the function result, if any; and a list of errors, warnings,
and notices. Most function descriptions give additional information about
using the function and include cross-references to related information
elsewhere.

n “Summary of Geometric Shapes.” This shows the C interface for the
constants, data types, and functions associated with geometric shapes.

Conventions Used in This Book

XXVI

This book uses various conventions to present certain types of information.

Special Fonts

All code listings, reserved words, and the names of data structures, constants,
fields, parameters, and functions are shown in Courier (t hi s i s Couri er).

When new terms are introduced, they are in boldface. These terms are also
defined in the glossary.

P REFACE

Types of Notes

There are several types of notes used in this book.

Note

A note formatted like this contains information that is interesting but
possibly not essential to an understanding of the main text. The wording
in the title may say something more descriptive than just “Note,” for
example “Implementation Note.” (An example appears on page 2-22.) u

IMPORTANT

A note like this contains information that is especially important. (An
example appears on page 2-28.) s

Numerical Formats

Hexadecimal numbers are shown in this format; 0x0008.

The numerical values of constants are shown in decimal, unless the constants
are flag or mask elements that can be summed, in which case they are shown
in hexadecimal.

Type Definitions for Enumerations

Enumeration declarations in this book are commonly followed by a type
definition that is not strictly part of the enumeration. You can use the type to
specify one of the enumerated values for a parameter or field. The type name
is usually the singular of the enumeration name, as in the following example:

enum gxDashAttri butes {

gxBendDash = 0x0001,
gxBr eakDash = 0x0002,
gxd i pDash = 0x0004,
gxLevel Dash = 0x0008,
gxAut oAdvanceDash = 0x0010

b
typedef | ong gxDashAttri bute;

XXVii

P REFACE

[llustrations

The following conventions are used in illustrations in this book.

In illustrations that show object properties, properties that are object
references are in italics.

In order to focus attention on the key part of some drawings, other parts are
printed in gray, rather than black.

This book also uses other conventions for representing shape objects, style
objects, ink objects, and transform objects.

See Figure 1-1, Figure 1-2, and Figure 1-6 in Chapter 1, “Introduction to
QuickDraw GX Graphics,” for examples of these conventions.

Development Environment

The QuickDraw GX functions described in this book are available using C
interfaces. How you access these functions depends on the development
environment you are using.

Code listings in this book are shown in ANSI C. They suggest methods of
using various functions and illustrate techniques for accomplishing particular
tasks. Although most code listings have been compiled and tested, Apple
Computer, Inc., does not intend for you to use these code samples in your
applications.

Developer Products and Support

XXViii

APDA is Apple’s worldwide source for over three hundred development
tools, technical resources, training products, and information for anyone
interested in developing applications on Apple platforms. Customers receive
the quarterly APDA Tools Catalog featuring all current versions of Apple
development tools and the most popular third-party development tools.
Ordering is easy; there are no membership fees, and application forms are not
required for most of our products. APDA offers convenient payment and
shipping options, including site licensing.

P REFACE

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA

Apple Computer, Inc.

P.O. Box 319

Buffalo, NY 14207-0319

Telephone 800-282-2732 (United States)
800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDAOorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com

If you provide commercial products and services, call 408-974-4897 for
information on the developer support programs available from Apple.

XXiX

CHAPTER 1

Introduction to
QuickDraw GX Graphics

Contents

About QuickDraw GX Graphics 1-4
Geometric Shapes 1-7
Geometric Shape Types 1-8
Geometric Shape Geometries 1-9
Geometric Shape Fills 1-10
Geometric Styles, Inks, and Transforms 1-11
Geometric Operations 1-14
Bitmap Shapes 1-17
Picture Shapes 1-20

Contents 1-1

CHAPTER 1

Introduction to QuickDraw GX Graphics

This chapter introduces the main concepts found in the rest of this book and gives an
overview of the three types of QuickDraw GX shapes you can use to make graphic
images:

n geometric shapes
n bitmap shapes
n picture shapes

The other types of QuickDraw GX shapes (the typographic shapes) are discussed in
Inside Macintosh: QuickDraw GX Typography.

You should be familiar with information described elsewhere in the Inside Macintosh:
QuickDraw GX books before you read this chapter. In particular, you should read the
information about QuickDraw GX shapes and objects in the chapter “Introduction to
QuickDraw GX” in Inside Macintosh: QuickDraw GX Objects. You should also read the
chapter “Shape Objects” in that book.

As you read this chapter and the other chapters in this book, you might want to be
familiar with the other information in Inside Macintosh: QuickDraw GX Objects—in

particular, you might also read the “Style Objects,” “Ink Objects,” and “Transform

Objects” chapters in that book.

The next section reviews the objects that make up a QuickDraw GX shape and
introduces the different types of graphic shapes. The remaining sections of this chapter
briefly discuss

n the structure of geometric shapes

n the contents of geometric shape geometries

n the shape fill property and how it affects geometric shapes

n the properties of the style object that modify geometric shapes
n the geometric operations provided by QuickDraw GX

n the structure of bitmap shapes

n the structure of picture shapes

1-3

CHAPTER 1

Introduction to QuickDraw GX Graphics

About QuickDraw GX Graphics

1-4

With QuickDraw GX, you create graphics by creating QuickDraw GX shapes. Graphics
shapes include geometric shapes, bitmap shapes, and picture shapes:

n Geometric shapes are the building blocks for graphics. These shapes, which include
points, lines, curves, rectangles, polygons, and paths, make up the graphic elements
supported by most drawing programs. There are also two special types of geometric
shapes: empty shapes, which cover no area, and full shapes, which cover all area.

n Bitmap shapes contain pixel images. These shapes allow you to create graphics by
specifying the color value of each pixel in the image.

n Picture shapes are collections of QuickDraw GX shapes, including other picture
shapes.

All QuickDraw GX shapes share the same basic structure. They are all represented by a
shape object and its associated style, ink, and transform objects. Figure 1-1 shows the
four basic QuickDraw GX objects and lists the properties of each. This figure includes all
of the properties of these objects. However, this book examines only a subset of these
properties. Properties not examined in this book are grayed out.

About QuickDraw GX Graphics

CHAPTER 1

Introduction to QuickDraw GX Graphics

Figure 1-1 Shape object structure
1 -
Shyle obipck
Peraidth PR Fun condale
Cap Teit oo Feming duedn ente arrar
i Texteize Hyph eobediidore amayr
Dz Bligren 2nt Fun fazir=s armyr
Patlern Font vrrdone | Pricilr jueficzion
airarride
Cunre emor Ercoding
Gyph juedicaion
Bt b e Teutatriborbes Ciref T ArAr
Cearer oot
Al T it
T, o —
ek ""i E‘ Inkobiect
Fuavetum e
kil ?f'!. Traasform object Colar
Atributes Clip Trareder mods
Craner count .
— Mapping Atribuiee
hindy
= frvgar fref rarer count
Hit e etparam efere Sag e
e oot
N

About QuickDraw GX Graphics

CHAPTER 1

Introduction to QuickDraw GX Graphics

Like all shapes, geometric shapes are represented by a shape object in memory. Three of
the properties of the shape object—shape type, shape geometry, and shape

fill—and how they apply to geometric shapes in particular, are introduced in the

section “Geometric Shapes” beginning on page 1-7 and are fully discussed in the chapter
“Geometric Shapes” in this book.

Geometric shapes use the style object properties highlighted in Figure 1-1. These
properties are introduced in the section “Geometric Styles, Inks, and Transforms”
beginning on page 1-11 and are fully examined in the chapter “Geometric Styles” in this
book.

Geometric shapes also use the properties of their ink and transform objects. You can find
more information about these objects in the chapters “Ink Objects” and “Transform
Objects” in Inside Macintosh; QuickDraw GX Objects.

Bitmap shapes use their shape, style, ink, and transform objects, although they make
limited use of some of the properties of these objects. Bitmap shapes are introduced in

the section “Bitmap Shapes” beginning on page 1-17 and are fully examined in the
chapter “Bitmap Shapes” in this book.

Picture shapes use their shape and transform objects, but do not use their style or ink
objects. Picture shapes are introduced in the section “Picture Shapes” beginning on
page 1-20 and are fully examined in the chapter “Picture Shapes” in this book.

QuickDraw GX allows you to convert between the different types of shapes. Table 1-1
describes where to look in each book for information regarding each possible kind of

conversion.

Table 1-1

Where to find information on shape-type conversion

To a geometric To a bitmap To a picture To atypographic
shape shape shape shape
From a geometric See “Geometric See “Bitmap See “Picture (not possible)
shape Shapes” in this book Shapes” in Shapes” in
this book this book
From a bitmap (not possible) See “Bitmap See “Picture (not possible)
shape Shapes” in Shapes” in
this book this book
From a picture (not possible) See “Bitmap See “Picture (not possible)
shape Shapes” in Shapes” in
this book this book
Froma See “Typographic See “Bitmap See “Picture See “Typographic
typographic Shapes” in Shapes” in Shapes” in Shapes” in
shape QuickDraw GX this book this book QuickDraw GX
Typography Typography

1-6

About QuickDraw GX Graphics

CHAPTER 1

Introduction to QuickDraw GX Graphics

Geometric Shapes

QuickDraw GX provides eight types of geometric shapes—the basic building blocks

of QuickDraw GX graphics. These shapes include empty shapes, full shapes, points,
lines, rectangles, curves, polygons, and paths. You can use these shapes for drawing, for
calculating areas, for clipping, as elements of more complex graphics, and so on.

As with all types of QuickDraw GX shapes, a geometric shape is represented by a shape
object in QuickDraw GX memory. However, what defines a geometric shape—what
makes it different from other types of shapes—is how it uses the properties of the shape
object:

n The shape type property specifies the type of the geometric shape—empty, full, point,
line, curve, rectangle, polygon, or path.

n The geometry property specifies the positions of the points that define the shape—for
example, the end points of a line, or the corners of a rectangle.

n The shape fill property specifies how the geometry of the shape is interpreted—for
example, as a framed outline or as a solid area.

n The style property references a style object, which specifies modifications to the
geometric shape—for example, pen width, dashes, and patterns.

n The ink and transform properties reference an ink and a transform object. The ink
object specifies the color and transfer mode applied to the shape when drawn. The
transform object specifies mapping transformations made to the shape, how the shape
is clipped, how the shape is hit-tested, and to what view ports the shape is finally
drawn.

n The attributes, owner count, and tag list properties contain object-related information
about the shape. These properties affect how the shape object is maintained in
memory, when the memory held by the shape is freed, and other information you
might want to specify for a particular shape.

Geometric shapes use all of the shape properties—to understand geometric shapes fully,
you should be familiar with all of these properties, which are introduced in the chapter
“Shape Objects” in Inside Macintosh: QuickDraw GX Objects. The way that geometric
shapes use these properties differently from other types of shapes is described in this
book, particularly in the chapters “Geometric Shapes” and “Geometric Styles.”

Geometric Shapes 1-7

CHAPTER 1

Introduction to QuickDraw GX Graphics

Geometric Shape Types

There are six basic types of geometric shapes and two special types. The basic geometric
shapes include points, lines, rectangles, curves, polygons, and paths; the two special
types are empty shapes and full shapes. Figure 1-2 lists the basic geometric shape types
and also shows a sample geometry for each of them. Each geometry is made up of
geometric points and edges that connect the geometric points. The next section,
“Geometric Shape Geometries,” introduces these concepts in more detail.

Figure 1-2 The geometric shape types and examples of geometric shape geometries

Shapeoblck ..

Tupe Paint Lins Rachirgh Cires Pelirgan Fah

o ety oo

Rl

=1 |/ ¥ X

Striboree

Cmarear oot

Tag Tt

1-8

The empty shape and the full shape are not shown in this figure. An empty shape is

a shape that has no geometry and covers no area. A full shape is the inverse of an empty
shape—it covers all area. For a complete description of each type of geometric shape, see
the chapter “Geometric Shapes” in this book.

Geometric Shapes

CHAPTER 1

Introduction to QuickDraw GX Graphics

Geometric Shape Geometries

Each type of geometric shape uses the geometry property of its shape object in a slightly
different manner. For example, empty shapes and full shapes store no information in
their geometry, because they require no further geometry information—their shape type
says it all.

However, for other types of geometric shapes, the shape type does not contain all the
geometry information necessary to define the shape. The geometries of these shapes
contain (x, y) coordinate pairs called geometric points—points that specify the location,
dimension, and form of the geometric shapes:

n

Point geometries contain one geometric point—an x-coordinate and a y-coordinate—
to specify the position of the point shape.

Line geometries contain two geometric points—one point to specify where the line
starts and one to specify where the line ends.

Rectangle geometries also contain two geometric points—one point to specify one
corner of the rectangle, and another point to specify the opposing corner.

Curve shapes store three geometric points in their geometry—one to specify where
the curve starts, another to specify where the curve ends, and another, called the
off-curve control point, to specify the tangents used to define the curve.

Polygon geometries are made up of zero, one, or more polygon contours. Each
polygon contour is series of geometric points connected by straight edges.

Path geometries are similiar to polygon geometries, but path geometries also store
information about which geometric points are on-curve and which are off-curve
control points. Therefore, path contours can have curves as well as straight lines.

For more information about the geometries of each geometric shape type, see the chapter
“Goemetric Shapes” in this book.

Geometric Shapes 1-9

CHAPTER 1

Introduction to QuickDraw GX Graphics

Figure 1-3 shows a polygon shape with a single polygon contour made up of three
geometric points. This figure shows three views of the polygon geometry: as a list of

(X, y) coordinate pairs, as three geometric points plotted on a geometric grid, and as
three points connected by three straight lines. This third way of viewing geometries is
used frequently throughout this book, as it shows not only the geometric points, but also
the implied edges that connect them. Notice that geometric points have fixed-point
coordinates—you can specify fractional positions.

Figure 1-3 A polygon shape with a single polygon contour containing three geometric points

Fnl,rgnl 5“" k"l’_ |:5I:I_I:III:I_I:I:| o

0, 4000

00,00

"o | o0, 4000

Striboes

il
Traforms (I I Pobagon geom aing

Charer count:

£0.0, 1000 (000, 1000

Tag et

1-10

Geometric Shape Fills

The shape fill property specifies how QuickDraw GX interprets the geometric points of a
geometric shape’s geometry. There are two basic types of shape fills:

n Framed fills. These shape fills indicate that QuickDraw GX should interpret the shape
as an outline—as a series of edges.

n Solid fills. These shape fills indicate that QuickDraw GX should interpret the shape as
a solid area—the edges of the shape represent the boundaries of the area.

Geometric Shapes

CHAPTER 1

Introduction to QuickDraw GX Graphics

Figure 1-4 shows an example of a polygon contour similar to the one in Figure 1-3, and
how QuickDraw GX might draw it with a framed fill and with a solid fill.

Figure 1-4 Framed shapes versus solid shapes

Palygon geom 2t Fram =d =oid

For more information about the various kinds of shape fills provided by QuickDraw GX,
see the chapter “Geometric Shapes” in this book.

Geometric Styles, Inks, and Transforms

Like all QuickDraw GX shapes, geometric shapes reference a style object, an ink object,
and a transform object. Figure 1-5 shows a condensed view of how a polygon shape
might use these four objects.

Instead of listing every property of each of these objects, the first half of Figure 1-5 (the
left side) depicts a single important property for each object:

n For the shape object, it shows the polygon geometry.

n For the style object, it shows the pen width.

n For the ink object, it shows the color.

n For the transform object, it shows the transformation mapping.

This condensed view of these objects is used frequently throughout this book to
highlight information important to a particular example.

Geometric Shapes 1-11

CHAPTER 1

Introduction to QuickDraw GX Graphics

The second half of Figure 1-5 (the right side) shows an even more condensed view of the
polygon shape. In this view, all of the stylistic, color, and transform variations have been
incorporated into the shape itself—basically showing the shape as it is drawn. This
extremely condensed view is used occasionally throughout this book, particularly when
many shapes must appear in a single figure, as in the chapter “Picture Shapes.”

Figure 1-5 Two condensed views of a polygon shape

1-12

Per vidh = 100

Because the ink and transform objects are used in the same way by geometric and
typographic shapes, these two objects are discussed in Inside Macintosh: QuickDraw GX
Objects, rather than in this book.

However, geometric shapes use their style objects in a very different way than
typographic shapes do.

The style object has three types of properties:

n Object-related style properties, which are discussed in the chapter “Style Objects” in
Inside Macintosh: QuickDraw GX Objects. These properties apply to the style as an
object in memory.

n Typographic style properties, which are discussed in the chapter “Typographic
Styles” in Inside Macintosh: QuickDraw GX Typography These properties apply only to
typographic shapes.

n Geometric style properties, which are discussed in the chapter “Geometric Styles” in
this book. These properties apply primarily to geometric shapes.

Geometric Shapes

CHAPTER 1

Introduction to QuickDraw GX Graphics

The geometric style properties are the properties of the style object that specify
modifications to geometric shapes. With these properties, you can specify how wide
QuickDraw GX should draw a shape’s edges, whether the edges should be solid or
dashed, whether corners should be round or sharp, what pattern should fill a shape’s
area, and so on.

Figure 1-6 shows the geometric properties of the style object. This figure also gives
examples of the effects of these properties.

Figure 1-6 The geometric style properties and some examples of their effects

Pea widih

AN AN N
9 E'yhnbpntmml __Eup
Fan widh .__ N A N\
Cap - .
o T o
= e | N O N
Hem .
Curve arror -, '-1:_ " Dk
Atyibore s . - '-'.-'-. "‘ﬂ'ﬁ" #ﬂ%

. Pollem

F N M

>
>
>

Geometric Shapes 1-13

CHAPTER 1

Introduction to QuickDraw GX Graphics

Geometric Operations

QuickDraw GX provides functions that allow you to modify the geometries of geometric
shapes, obtain information about their geometries, and combine the geometries of
two shapes.

One such geometric operation allows you to remove unnecessary or redundant
geometric points from the shape’s geometry—this process is called reducing a geometry.

Figure 1-7 shows a polygon geometry with two unnecessary geometric points:

n Point 2 lies on the same line as points 1 and 3, and therefore has no effect on the
geometry.

n Points 4 and 5 lie on top of one another, and so only one of them is necessary for this
geometry.

Figure 1-7 An example of reducing a shape
g 3]
4
& = 4 e
Polygon geome iy Mller wdecing

In addition to unnecessary geometric points, a shape geometry can have a number of
other complicating qualities, such as crossed edges or overlapping contours.
QuickDraw GX provides a geometric operation that redefines a shape’s geometry to
eliminate these qualities. This process is called simplifying a shape. Figure 1-8 shows a
polygon contour with two edges that cross and the result of simplifying this shape.

1-14

Figure 1-8 An example of simplifying a shape
4
Conior 1
Coniowor 2
& o
Polygos geomstry Aty = i pliiy g

Geometric Shapes

CHAPTER 1

Introduction to QuickDraw GX Graphics

As Figure 1-8 shows, simplifying the polygon geometry splits it into two contours: an
upper triangular contour with three geometric points, and a lower triangular contour
with three geometric points. Although the simplified geometry contains more geometric
points and more contours than the original, it does not contain any crossed edges.

You can find more about reducing and simplifying shape geometries in the chapter
“Geometric Operations” in this book. That chapter also describes many functions that
allow you to obtain information about geometric shapes and perform geometric
arithmetic on them. Figure 1-9 shows some examples of the different types of geometric
information that QuickDraw GX calculates for you.

Figure 1-9 Some examples of the geometric information available about a shape
:"".‘F- h 11";
! i
1 1
i
i ;
o] K
\‘“-1_._ o
1 2 -
(00,005 M- W00, 0.0 Lesghh = 6451 Lenghh ko poiml= 32 25
{0000, 200 - Tm—t -g (20 10, 200
Padh geo e by
Arem = Cealerpoinkt= [100, 10.0)

You can find more about geometric information in the “Geometric Operations” chapter
of this book.

Another important type of geometric operation is geometric arithmetic. Figure 1-10
shows examples of intersection, union, difference, reverse difference, and exclusion
operations, which each return a result calculated by combining the geometries of two
shapes in different ways.

Geometric Shapes 1-15

CHAPTER 1

Introduction to QuickDraw GX Graphics

Figure 1-10 Some examples of the geometric arithmetic you can perform with shapes

Other geometric operations provided by QuickDraw GX allow you to

n alter the order of the geometric points specified in a shape’s geometry
n break a single shape contour into multiple contours

n calculate whether two shapes intersect

n calculate whether one shape contains another shape

n inset the geometric points of a shape’s geometry

n scale the shape to fit in a new bounding rectangle

n invert the geometry of a shape

These geometric operations are all discussed in the chapter “Geometric Operations” in
this book.

The chapter “Transform Objects” in Inside Macintosh: QuickDraw GX Objects describes a
related set of functions you can use to perform geometric modifications to a shape’s
geometry. These functions allow you to

n move a shape

n rotate a shape

n scale a shape

n skew a shape

n perform any arbitrary mapping on a shape

Depending on the setting of a shape’s map-transform shape attribute, these functions
either modify the mapping matrix contained in the shape’s transform object or
recalculate the geometric points contained in the shape’s geometry directly.

1-16 Geometric Shapes

CHAPTER 1

Introduction to QuickDraw GX Graphics

Bitmap Shapes

Bitmap shapes allow you to create images for which you specify the color value of each
pixel. Geometric shapes create images with more flexibility—they can be rendered by
QuickDraw GX accurately at any output device resolution. However, you might still
want to use bitmap shapes for a number of reasons. For example, if you know the
resolution of an output device, you can create a bitmap shape to use as an offscreen
graphics buffer. As another example, since bitmaps allow you to specify multiple colors
within a single shape, you can use bitmaps to create gradients, or ramps—shapes that
fade from one color to another.

Figure 1-11 shows some sample bitmaps.

Figure 1-11 Sample bitmap shapes

Although there are many types of geometric shapes—points, lines, curves, and so on—
there is only one type of bitmap shape. Bitmap shapes make extensive use of their
geometry property. In fact, most of the information useful to bitmap shapes is stored in
their geometry—the values of the bitmap’s pixels, the dimensions of the bitmap, and the
color information used by the bitmap.

Bitmap shapes don’t make much use of their shape fill property, and they use very little
of their associated style object. In fact, the only pieces of information in a style object
used by bitmap shapes are the style attributes that determine whether the upper-left
corner of the bitmap should be constrained to an integer grid position.

Because bitmap shapes store their own color information in their geometries, they don’t
use the color property of their ink object. They do, however, use the transfer mode
property of their ink objects.

Bitmap shapes make full use of their transform objects. For example, you can scale, skew,
rotate, and clip bitmap shapes. You can also hit-test bitmap shapes, but you cannot
hit-test parts of a bitmap shape as you can for other types of shapes. For more
information about transform objects and hit-testing, see the chapter “Transform Objects”
and the chapter “Shape Objects” of Inside Macintosh: QuickDraw GX Objects.

Bitmap Shapes 1-17

CHAPTER 1

Introduction to QuickDraw GX Graphics

Figure 1-12 shows a bitmap shape object and bitmap geometry.

Figure 1-12 A bitmap shape

1-18

Bilma p geo mee by
- Dind beeggs 1010001000011 000
widh, | o110011100101000
ail . : o110110010101000
. Haight oo110o01001010000
: Prezl size
Tk L
' E!.rbbpur-:-w
T e - el
30, b bt
: . ol 4
o urt '
kil ' Ciodor i
Tar b B
= | Bitmap posifion

As Figure 1-12 shows, a bitmap geometry contains a reference to a pixel image, which
contains the color values of each pixel in the bitmap. QuickDraw GX allows pixel images
to be stored in three locations:

n in memory allocated by your application
n in memory allocated and managed by QuickDraw GX

n inadisk file

Each of these options presents different advantages and disadvantages. For example,
storing a pixel image in a disk file allows you to have large bitmaps without keeping the
entire pixel image in memory. However, QuickDraw GX provides only limited access to
this type of pixel image: it can read the image, but cannot make changes to it.

Bitmap Shapes

CHAPTER 1

Introduction to QuickDraw GX Graphics

Different bitmap shapes may reference the same pixel image. You might want to use this
feature to draw the same pixel image with two different transfer modes, for example, or
to draw the same pixel image in two different color spaces.

The other fields of a bitmap geometry define the dimensions, color information, and
position of the bitmap’s pixel image. Figure 1-13 shows a sample bitmap geometry that
uses one bit to represent each pixel, and has four rows and ten columns. Since each row
of the pixel image requires only ten bits, the pixel image is padded so that each row is
represented by an even number of bytes.

Figure 1-13 Elements of a bitmap geometry

Pixel eze = 1

Height = 4

Widh= 10
I
hl" 1
o1 011 101 o101
101 1 () = () 5]
11 0 1 0 o111
oo 1010 1010
L |]
Byrlet pzr rov = 2

The color space and color set fields of the bitmap geometry allow you to specify how
QuickDraw GX should interpret the pixel values. In this example, pixel values of 0
represent white pixels and pixel values of 1 represent black pixels.

The color profile field specifies color-matching information. See the chapter
“Color-Related Objects” in Inside Macintosh: QuickDraw GX Objects for more information
about color values, color spaces, color sets, and color matching.

For more information about bitmap shapes, see the chapter “Bitmap Shapes” in this
book.

Bitmap Shapes 1-19

CHAPTER 1

Introduction to QuickDraw GX Graphics

Picture Shapes

Picture shapes contain collections of other shapes. They allow you to gather disparate
elements together inside a single shape.

You can use picture shapes for many reasons, including to group a page of shapes
together for printing, to provide a grouping feature in a graphics application, or to
simplify your programming by gathering a number of shapes together and applying
modifications to the group as a whole.

Figure 1-14 shows three sample picture shapes:

n The first picture shape combines a number of geometric shapes—rectangles,
polygons, and paths—into one picture.

n The second picture shape includes a bitmap shape as well—the lawn is a gradient, or
ramp, which fades from dark to light.

n The third picture shape includes typographic shapes in the picture as well.

Figure 1-14 Sample picture shapes

1-20

e, e =

i,

Pi: bare vl Pizln e with geo mee bric Pichwe with geomelric, hilnap
geometne shapes el il b pes aiil bypogmphic shapes

Like bitmap shapes, picture shapes make extensive use of their geometry property. A
picture shape uses its geometry property to store a list of references to the shapes to be
included the picture. Although each of these shapes has its own style, ink, and transform
object, picture shapes allow you to provide an overriding style, ink, and transform object
to use for each of these shapes.

Picture Shapes

CHAPTER 1

Introduction to QuickDraw GX Graphics

Figure 1-15 shows a hierarchical view of the first picture shape shown in Figure 1-14.
The picture contains two items: each of which is a picture shape itself. The first item is a
picture that contains two items: the lawn and the walkway. The second item is a picture
that contains four items: the chimney, the house, the door, and the roof.

Figure 1-15 A picture hierarchy

'

%

&
3

E

Notice that the order the shapes appear in the geometry is the order in which
QuickDraw GX draws them, from back to front.

Picture Shapes 1-21

1-22

CHAPTER 1

Introduction to QuickDraw GX Graphics

Since picture shapes contain other shapes, they don’t make much use of their shape fill
property, although you can specify a no-fill shape fill if you don’t want the picture to
appear when drawn.

Picture shapes also don’t make much use of their associated style or ink objects, since
each shape in the picture has its own style object and ink object, and, potentially, an
overriding style and ink object.

Picture shapes do make full use of their transform objects, however. For example, you
can scale, skew, rotate, and clip picture shapes as a whole, as well as separately for each
individual shape in the picture. QuickDraw GX also provides powerful tools for
hit-testing picture shapes.

For more information about picture shapes, see the chapter “Picture Shapes” in this book.

Picture Shapes

CHAPTER 2

Geometric Shapes

Contents

About Geometric Shapes 2-5
The Geometric Properties of Shape Objects 2-7
Shape Type 2-7
Shape Geometry 2-9
Shape Fill 2-12
The Geometric Shape Types 2-16
Empty Shapes and Full Shapes 2-16
Point Shapes 2-16
Line Shapes 2-17
Curve Shapes 2-18
Rectangle Shapes 2-20
Polygon Shapes 2-22
Path Shapes 2-25
Using Geometric Shapes 2-27
Creating and Drawing Empty Shapes and Full Shapes
Creating and Drawing Points 2-29
Creating and Drawing Lines 2-36
Creating and Drawing Curves 2-41
Creating and Drawing Rectangles 2-43
Creating and Drawing Polygons 2-45
Creating Polygons With a Single Contour 2-46
Creating Polygons With Multiple Contours 2-49
Creating Polygons With Crossed Contours 2-50
Creating and Drawing Paths 2-55
Creating Paths With a Single Contour 2-57
Creating Paths Using Only Off-Curve Points 2-59
Creating Paths With Multiple Contours 2-60
Converting Between Geometric Shape Types 2-65
Converting Shapes to Points, Lines, and Rectangles

Contents

2-28

2-66

2-1

2-2

CHAPTER 2

Converting Shapes to Curve Shapes 2-71
Converting Shapes to Polygons and Paths 2-74
Replacing Geometric Points 2-79
Editing Polygon Parts 2-82
Editing Paths Parts 2-91
Editing Shape Parts 2-93
Applying Functions Described Elsewhere to Geometric Shapes 2-100
Shape-Related Functions Applicable to Geometric Shapes 2-100
Other Functions Applicable to Geometric Shapes 2-103
Geometric Shapes Reference 2-103
Data Types 2-104
The Point Structure 2-104
The Line Structure 2-105
The Curve Structure 2-105
The Rectangle Structure 2-106
Polygon Structures 2-106
Path Structures 2-107
Functions 2-108
Creating Geometric Shapes 2-109
GXNewShapeVect or 2-109
GXNewPoi nt 2-111
GXNewLi ne 2-112
GXNewCur ve 2-113
GXNewRect angl e 2-114
GXNewPol ygons 2-116
GXNewPat hs 2-117
Getting and Setting Shape Geometries 2-119
GXSet ShapeVect or 2-119
GXCet Poi nt 2-121
GXSet Poi nt 2-122
GXCGet Li ne 2-123
GXSet Li ne 2-124
GXGet Curve 2-125
GXSet Cur ve 2-126
GXGet Rect angl e 2-127
GXSet Rect angl e 2-129
GXGet Pol ygons 2-130
GXSet Pol ygons 2-131
GXCet Pat hs 2-132
GXSet Pat hs 2-133
Editing Shape Geometries 2-135
GXCount ShapeCont our s 2-136
GXCount ShapePoi nt s 2-137
GXGet Shapel ndex 2-139
GXGet ShapePoi nt s 2-140
GXSet ShapePoi nt s 2-142
GXGet Pol ygonPart s 2-144

Contents

CHAPTER 2

GXSet Pol ygonPart s 2-145

GXCet Pat hPar t s 2-148

GXSet Pat hPart s 2-149

GXGet ShapePart s 2-152

GXSet ShapePart s 2-154
Drawing Geometric Shapes 2-157

GXDr awPoi nt 2-158

GXDr awLi ne 2-158

GXDr awCur ve 2-159

GXDr awRect angl e 2-160

GXDr awPol ygons 2-161

GXDr awPat hs 2-162

Summary of Geometric Shapes 2-163

Constants and Data Types 2-163
Functions 2-164

Contents

2-3

CHAPTER 2

Geometric Shapes

This chapter describes the geometric shapes. In particular, it shows you how you can
n define geometries

n Ccreate geometric shapes

n manipulate their shape type, shape fill, and geometry properties

n draw the shapes

Before you read this chapter, you should be familiar with some of the information in
Inside Macintosh: QuickDraw GX Objects. In particular, you should read the chapters
“Introduction to QuickDraw GX Objects” and “Shape Objects” in that book.

The next chapter, “Geometric Styles,” discusses the stylistic variations you can apply to
geometric shapes.

Chapter 4, “Geometric Operations,” describes the functions QuickDraw GX provides for
performing operations on the geometries of geometric shapes—operations such as
intersection, union, and so on.

For information about applying colors and transfer modes to geometric shapes, you
should read the chapter “Ink Objects” in Inside Macintosh: QuickDraw GX Objects.

For information about applying mapping transformations to geometric shapes, clipping
geometric shapes, and hit-testing geometric shapes, see the chapter “Transform Objects”
in Inside Macintosh: QuickDraw GX Objects.

About Geometric Shapes

QuickDraw GX represents shapes in memory using a shape object and an associated
style, ink, and transform object. QuickDraw GX uses these same objects to represent all
types of shapes—qgraphic as well as typographic.

A shape object has nine properties, which are like fields of a data structure with one
important exception: you cannot directly examine or change the information stored in a
property. Instead, you must use QuickDraw GX functions to examine or alter the value
of a property.

About Geometric Shapes 2-5

CHAPTER 2

Geometric Shapes

Figure 2-1 shows a graphic representation of a shape object and its nine properties.

Figure 2-1 A shape object

2-6

m." Shape object

Typ= b

pp—— SI‘; Stykobiect

Al

Ghoda

Pk —-—u mkobjct
Tamafoens

Adibotee _L.

“rner count Trusrfors object
Tag e

The first three properties of a shape object—the shape type, shape geometry, and shape
fill—are called the geometric shape properties. These properties are examined in detail in
“The Geometric Properties of Shape Objects” beginning on page 2-7. In particular, that
section describes how these three properties are used by geometric shapes.

The next three properties of a shape object—the style, ink, and transform properties—are
references to the style, ink, and transform objects associated with the shape. Each of
these objects contains information that modifies the way QuickDraw GX draws the
shape. You can find more information about these objects in Inside Macintosh:

QuickDraw GX Objects. In addition, you can find specific information about how style
objects affect geometric shapes in Chapter 3, “Geometric Styles,” in this book.

The final three properties of a shape object—the shape attributes, the owner count,

and the tag list—are the object-related shape properties. You can find information about
these properties, and how they affect all types of shapes, in the chapter “Shape Objects”
in Inside Macintosh: QuickDraw GX Objects.

QuickDraw GX provides six basic types of geometric shapes and two special types. The
six basic types include points, lines, curves, rectangles, polygons, and paths; the two
special types include empty shapes and full shapes.

About Geometric Shapes

CHAPTER 2

Geometric Shapes

Each of these shape types is examined in detail in “The Geometric Shape Types”
beginning on page 2-16. In particular, that section analyzes how each type of geometric
shape uses its shape geometry and shape fill, and also discusses the default

geometric shapes.

The Geometric Properties of Shape Objects

Every shape object has three geometric properties: the shape type, the shape geometry,
and the shape fill. For geometric shapes, these properties define

n the type of shape—for example, a point, a line, or a curve

n the coordinates of the shape—for example, the position where a line starts and ends,
or the positions of the corners of a rectangle

n how the shape is filled—for example, whether the shape is framed (drawn as an
outline) or solid (drawn as a solid area)

The next three sections examine these properties in more detail.

Shape Type

The shape type property of a shape object specifies what type of shape the shape
object represents. There are thirteen different QuickDraw GX shape types: one for
bitmap shapes, one for picture shapes, three for typographic shapes, and eight for
geometric shapes. The eight geometric shape types are:

n point

n line

n curve

n rectangle
n polygon
n path

n empty
n full

The value of the shape type property affects the way QuickDraw GX interprets the other
properties of the shape. In particular, different types of shapes store substantially
different information in their geometry properties. For example, the geometry of a point
shape contains only an x-coordinate and a y-coordinate. The geometry of a line contains
an x-coordinate and a y-coordinate to define the beginning of the line and an
x-coordinate and a y-coordinate to define the end of the line. The geometry of a polygon
shape can contain many pairs of (x, y) coordinates.

About Geometric Shapes 2-7

CHAPTER 2

Geometric Shapes

Figure 2-2 shows a shape object and lists six possible values for its shape type property.
This figure also shows a sample geometry for each of the shape types listed. Each
geometry is made up of geometric points (specified by (x, y) coordinate pairs) and edges
connecting the geometric points. The next section, “Shape Geometry,” discusses
geometric points and edges in more detail.

Figure 2-2 The geometric shape types and examples of geometric shape geometries

=
‘@ Shapeobject ..

Tvpe) Foint Line Rectirgl Corre Palyrgan Path
“Heonn ednr o

Al
o ’

TE N Y ¥ X

Oriborie
Cmarer coourit
T i

There are two types of geometric shapes not shown in this figure: the empty shape and
the full shape. An empty shape is a shape that has no geometry and covers no area. A
full shape is the inverse of an empty shape—it covers all area. You can find more

information about these shape types in “Empty Shapes and Full Shapes” beginning on
page 2-16.

2-8 About Geometric Shapes

CHAPTER 2

Geometric Shapes

Shape Geometry

Each type of geometric shape uses the geometry property of its shape object in a slightly
different manner. For example, empty shapes and full shapes store no information in
their geometry, because they require no further geometric information—their shape type
says it all.

However, for other types of geometric shapes, the shape type does not contain all the
geometric information necessary to define the shape. The geometries of these shapes
contain (x, y) coordinate pairs called geometric points—points that specify the location,
dimension, and form of the geometric shapes:

n

Point geometries contain one geometric point—an x-coordinate and a y-coordinate—
to specify the position of the point shape. See “Point Shapes” on page 2-16 for more
information.

Line geometries contain two geometric points—one point to specify where the line
starts and one to specify where the line ends. See “Line Shapes” on page 2-17 for more
information.

Rectangle geometries also contain two geometric points—specifying the positions of
opposing corners of the rectangle. See “Rectangle Shapes” on page 2-20 for more
information.

Curve shapes store three geometric points in their geometry—one to specify where
the curve starts, another to specify where the curve ends, and another, called the
off-curve control point, to specify the tangents used to define the curve. See “Curve
Shapes” on page 2-18 for more information.

A polygon shape can contain multiple contours. A polygon contour is a series of
geometric points connected by straight lines—for example, a V-shape, a triangle, or a
hexagon.

A path geometry can also contain multiple contours, but each path contour can
contain curves as well as straight lines.

About Geometric Shapes 2-9

CHAPTER 2

Geometric Shapes

Figure 2-3 shows a polygon shape with a two polygon contours made up of seven
geometric points total. This figure shows two views of the polygon geometry: as a list of
(X, y) coordinate pairs and as seven geometric points plotted on a geometric grid. This
second way of viewing geometries is used frequently throughout this book, as it shows
not only the geometric points, but also the implied edges that connect them. Typically,
the figures in this book do not show the grid, but just the points and edges.

Figure 2-3 A polygon shape with a single contour containing three geometric points
i S0.0, 0091
2 — Mum ber ofeorioure '
I ;
e — Mumn ber of poiride
in fretcorour
0., 100 0 /
Firet -
eoniow S0.00,0.0 0o, 1nn.|:|1u - ‘hgmm:u. 100,
00,0, 1000
e
1 4 — Mo ber ofpaints 0o, 1500, = 1000, 1500
. LI & f
in e cond corour i i T
0.0, 1500 i v
100.0, 1500 {00, 200,00 {1000, 200
BT By -4 -T J_'.
eoniow 1000, 200 1
0.0,2000
.
2-10 About Geometric Shapes

CHAPTER 2

Geometric Shapes

Each geometric point in a geometry has a geometry index—if you consider the geometry
as a list of geometric points starting from the first geometric point of the first contour to
the last geometric point of the last contour, the geometry index of a particular geometric
point is its position in this list. For example, in the shape in Figure 2-3, the first point
(0.0, 100.0) has a geometry index of 1, the second point (50.0, 0.0) has a geometry index
of 2, and the third point (100.0, 100.0) has a geometry index of 3. The first point in the
second contour (0.0, 150.0) has a geometry index of 4, as it is the fourth geometric point
in the geometry. However, it has a contour index of 1, as it is the first point of its contour.
Similarly, the next point (100.0, 150.0) has a geometry index of 5 and a contour index of 2,
and so forth.

Notice that each of the three edges of the polygon contour in Figure 2-3 has a direction.
The first edge is pointing up and to the right; the second edge is pointing down and

to the right; the third edge is pointing to the left. QuickDraw GX takes into consideration
the direction that an edge is pointing in a number of circumstances:

n When filling a shape. QuickDraw GX allows you to choose how a shape should be
filled. The next section, “Shape Fill,” discusses how the direction of an edge can affect
how QuickDraw GX fills a shape.

n When determining the contour direction of a contour. In the example in Figure 2-3,
both polygon contours have a clockwise contour direction. If their geometric points
were reversed, the polygon contours would have a counterclockwise contour
direction.

n When determining the inside or outside of a contour. QuickDraw GX normally
defines the right side of an edge to be the inside and the left side to be the outside.
Since the example in Figure 2-3 has a clockwise contour direction, the inside of the
contour corresponds to what you would expect the inside to be. If the contour had a
counterclockwise direction, the inside of the contour would correspond to what you
might expect the outside to be.

QuickDraw GX uses contour direction and the inside and outside of a shape when
applying certain stylistic variations, as described in Chapter 3, “Geometric Styles,” and
when performing certain geometric operations, as described in Chapter 4, “Geometric
Operations,” of this book.

For more details about the geometries of the various geometric shapes, see “The
Geometric Shape Types” beginning on page 2-16.

About Geometric Shapes 2-11

CHAPTER 2

Geometric Shapes

Shape Fill

The shape fill property specifies how QuickDraw GX interprets the geometric points of a
geometric shape’s geometry during drawing and other operations. There are two basic
types of shape fills:

n

Framed fills. These shape fills indicate that QuickDraw GX should interpret the shape
as an outline—as a series of edges.

Solid fills. These shape fills indicate that QuickDraw GX should interpret the shape as
a solid area—the edges of the shape represent the boundaries of the area.

Figure 2-4 shows an example of a polygon contour similar to the one in Figure 2-3, and
how QuickDraw GX might draw it with a framed fill and with a solid fill.

Figure 2-4 Framed shapes versus solid shapes

2-12

Podvrgon geom ek Fram=d 1ll Sdlid il

QuickDraw GX actually provides seven types of shape fills:

n

n

n

no-fill shape fill

open-frame shape fill (also called frame fill)

closed-frame shape fill (also called hollow fill)

even-odd shape fill (also called solid fill)

winding shape fill

inverse even-odd shape fill (also called inverse fill and inverse solid fill)

inverse winding shape fill

About Geometric Shapes

CHAPTER 2

Geometric Shapes

Figure 2-5 shows these shape fills and the effect they have on three sample geometries.

Figure 2-5 The various shape fills and examples of their effects
i
4 Smpeobjct o

Typ= " -

Le e T

Rl

b [Opes—tiramrs 6l Clhosred-fn e &

B, Hribarbes S

Sraner count Eves-odd fll Winding il

Tﬂ' ﬁ#‘ ! | !

Invere epea-odd Sl

s 1 A%

Inmerwe winedimg 1l

The no-fill shape fill specifies that QuickDraw GX should not draw the shape. You can
use this shape fill to hide a shape. You can specify the no-fill shape fill for any shape type.

The open-frame shape fill specifies that QuickDraw GX should draw a shape as a
connected set of edges. The closed-frame shape fill indicates that QuickDraw GX should
also connect the last geometric point of a contour to the first geometric point of that
contour.

The even-odd shape fill and the winding shape fill indicate that QuickDraw GX should
interpret the shape as a solid area—the edges of the shape represent the boundaries of
the area. These two shape fills differ in the algorithm they use to determine what area to
include in the shape.

The even-odd shape fill indicates that QuickDraw GX should use the even-odd rule to
determine what area lies inside a shape. As QuickDraw GX scans a shape horizontally, it
fills the area between every other pair of edges, as shown in Figure 2-6.

About Geometric Shapes 2-13

CHAPTER 2

Geometric Shapes

The winding shape fill indicates that QuickDraw GX should use the winding-number
rule to determine what area lies inside a shape. As QuickDraw GX scans a shape
horizontally, it increments a counter the first time it crosses an edge of the shape. It also
notices whether the contour was directed up or down at that edge. As QuickDraw GX
continues to scan the shape horizontally, everytime it crosses another edge pointed in the
same direction (up or down), it increments the counter, and when it crosses an edge
pointing in the opposite direction (down or up), it decrements the counter. Wherever
along the horizontal scan line the counter is not zero, QuickDraw GX fills the area, as is
shown in Figure 2-6.

Figure 2-6 The even-odd rule and winding-number rule algorithms

2-14

Ewea—odd 1l b 4= mren
- = odd

About Geometric Shapes

CHAPTER 2

Geometric Shapes

The inverse even-odd shape fill indicates the inverse of the even-odd shape fill, as shown
in Figure 2-7.

Figure 2-7 The inverse even-odd shape fill

] 4HAPE I B

7 I
& (@

K [1 EE

Similarly, the inverse winding shape fill indicates the inverse of the winding shape fill.

Not all shape fills are appropriate for all types of geometric shapes. For example, a
rectangle shape can have a closed-frame shape fill but not an open-frame shape fill; a line
shape can only have an no-fill or an open-frame shape fill.

See the sections on each shape type, beginning on page 2-16, for a complete discussion of
the shape fills that are allowed for each shape type.

The shape fill does more than affect the way a shape is drawn; it affects the fundamental
behavior of a shape. Two shapes with the same geometry that have different shape fills
can exhibit vastly different geometric behaviors. For example, the shape fill can affect

n stylistic variations, which are described in Chapter 3, “Geometric Styles,” in this book

n shape measurements and other geometric operations, which are discussed in
Chapter 4, “Geometric Operations,” in this book (As an example, a polygon with the
closed-frame shape fill might simplify to a rectangle. However, the same polygon with
the open-frame fill might not simplify at all.)

n hit-testing, which is described in the chapter “Transform Objects” and the chapter
“Shape Objects” in Inside Macintosh: QuickDraw GX Objects

For examples of how shape fill affects the behavior of shapes, see
n “Polygon Shapes” beginning on page 2-22

n “Path Shapes” beginning on page 2-25

n “Creating and Drawing Polygons” beginning on page 2-45

n “Creating and Drawing Paths” beginning on page 2-55

About Geometric Shapes 2-15

2-16

CHAPTER 2

Geometric Shapes

The Geometric Shape Types

QuickDraw GX provides eight types of geometric shapes: empty shapes, full shapes,
point shapes, line shapes, curve shapes, rectangle shapes, polygon shapes, and path
shapes.

The following sections examine each of these shape types in detail. In particular, these
sections discuss how the different types of shapes use their geometry and shape fill
properties, and what the default values are for properties of each type of shape.

Empty Shapes and Full Shapes

Empty shapes and full shapes are the only geometric shapes with no information stored
in the geometry property.

An empty shape is a shape with no geometry. When you draw an empty shape, nothing
appears. You can use an empty shape when creating other types of shapes. For example,
you can create an empty shape and then build it into a polygon shape, adding one
contour at a time.

A full shape is a shape that covers the largest area possible. When you draw a full shape,
QuickDraw GX fills in the entire drawable area of the full shape’s view port (paying
attention to the clipping information stored in the full shape’s transform). You can use a
full shape when erasing an area.

Point Shapes

The point shape is the simplest of the geometric shapes. Its geometry consists of a single
geometric point—a single (x, y) coordinate pair.

Point shapes must always have the open-frame shape fill or the no-fill shape fill.

A point shape’s style determines how QuickDraw GX draws the point. If a point’s style
has a pen width of 0, which is the default pen width, QuickDraw GX draws the point as
a single pixel on the output device. If the style has a pen width greater than 0,
QuickDraw GX draws the point only if the style also has a start cap. The next chapter,
“Geometric Styles,” discusses these aspects of the style object in more detail.

When you create a new point shape, QuickDraw GX makes a copy of the default point
shape. The default point shape has these properties:

n owner count: 1

n tag list: no tags

n shape attributes: no attributes
n shape type: point type

n shape fill: open-frame fill

n geometry: (0.0, 0.0)

About Geometric Shapes

CHAPTER 2

Geometric Shapes

You may change the properties of the default point shape, which effectively changes the
behavior of the functions that create point shapes. However, when creating a new point
shape, QuickDraw GX always initializes the owner count to 1 and the geometry to

(0.0, 0.0), even if you have specified other values for the default point shape.

For examples of creating and drawing point shapes, see “Creating and Drawing Points”
beginning on page 2-29.

Line Shapes

The geometry of a line shape consists of two geometric points: a first point and a last
point. Because the points are ordered, a line points in a certain direction.

Line shapes must always have the open-frame shape fill or the no-fill shape fill.

Figure 2-8 shows two line shapes. The geometries of these two lines have the same
geometric points, but in the opposite order. Therefore, the two lines point in opposite
directions.

Figure 2-8 Two lines
Rretpoirt (500,00 Laetpoin (500, 0.0)
Leetpaint(00, 100 0 Rretpoint (0.0, 1000

If a line shape uses the default style information, the direction of the line does not affect
how QuickDraw GX draws the line. However, when you add stylistic variations (such as
pen width, pen placement, and dashes) to a line shape, the direction of the line can affect
how QuickDraw GX draws the line. See the next chapter, “Geometric Styles,” for
information about how you can add stylistic variations to a line.

When you create a new line shape, QuickDraw GX makes a copy of the default line
shape. The default line shape has these properties:

n owner count: 1
n tag list: no tags

n shape attributes: no attributes

About Geometric Shapes 2-17

CHAPTER 2

Geometric Shapes

n shape type: line type
n shape fill: open-frame fill
n geometry: (0.0, 0.0), (0.0,0.0)

You may change the properties of the default line shape, which effectively changes the
behavior of the functions that create line shapes. However, when creating a new line
shape, QuickDraw GX always initializes the owner count to 1 and the geometry to
(0.0, 0.0), (0.0, 0.0), even if you have specified other values for the default line shape.

For examples of creating and drawing line shapes without stylistic variations, see
“Creating and Drawing Lines” beginning on page 2-36.

For examples of creating and drawing lines with stylistic variations, see the next chapter,
“Geometric Styles.”

Curve Shapes

The geometry of a curve shape consists of three geometric points: a first point, a last
point, and an off-curve control point that determines the tangents of the curve. The curve
described by these three points is a quadratic Bézier curve—the same type of curve used
to describe TrueType fonts.

Because a curve’s geometric points are ordered, a curve has direction. As with line
shapes, direction affects the drawing of a curve only after you apply stylistic variations,
which are discussed in the next chapter, “Geometric Styles.”

Curve shapes must always have the open-frame shape fill or no fill shape fill.

Figure 2-9 shows an example of a curve shape. In this example, the first point is
(50.0, 50.0), the last point is (200.0, 50.0) and the off-curve control point is (100.0, 150.0).

Figure 2-9 A quadratic Bézier curve

2-18

Firet point Laetpaint

Crfcaarre cork ol F-nint

About Geometric Shapes

CHAPTER 2

Geometric Shapes

Quadratic Bézier curves have the following characteristics:

n A line connecting the first point and the off-curve control point describes the tangent

of the curve at the first point.

n A line connecting the off-curve control point and the last point describes the tangent

of the curve at the last point.

n The curve is always contained by the triangle formed by the three geometric points.

n The midpoint of the curve is halfway between the off-curve control point and the
point midway between the first point and last point, as shown in Figure 2-10.

Figure 2-10 Finding the midpoint of a curve

Pointm idamer batam an
fret pointard lzetpoint

Firet point Laetpeint

"
Targent ; Midpaintofourre
at ridpoint -'
Cfourre conddl point

You can divide a quadratic Bézier curve into two smaller quadratic Bézier curves:

n One smaller curve extends from the first point to the midpoint of the original curve.
The new off-curve control point is the point midway between the first point and the

original off-curve control point.

n The other smaller curve extends from the midpoint to the last point of the original
curve. The new off-curve control point is the point midway between the original

off-curve control point and the last point.

About Geometric Shapes

2-19

CHAPTER 2

Geometric Shapes

Figure 2-11 shows a curve divided into two smaller curves.

Figure 2-11 Dividing a curve into two smaller curves

2-20

Fretpaint Laatpeoint

M HF-Din‘l:cifl\:l.lrl.l‘t

L] r
My offcarine i—--- ----‘ ey o ffcrine
conral pairt cond peirt

Crigiral off-unre condd point

When you create a new curve shape, QuickDraw GX makes a copy of the default curve
shape. The default curve shape has these properties:

n owner count: 1

n tag list: no tags

n shape attributes: no attributes

n shape type: curve type

n shape fill: open-frame fill

n geometry: (0.0, 0.0), (0.0,0.0), (0.0,0.0)

You may change the properties of the default curve shape, which effectively changes the
behavior of the functions that create curve shapes. However, when creating a new curve
shape, QuickDraw GX always initializes the owner count to 1 and the geometry to

(0.0, 0.0), (0.0, 0.0), (0.0, 0.0), even if you have specified other values for the default curve
shape.

For examples of creating and drawing curve shapes without stylistic variations, see
“Creating and Drawing Curves” beginning on page 2-41.

For examples of creating and drawing curves with stylistic variations, see the next
chapter, “Geometric Styles.”

Rectangle Shapes

The geometry of a rectangle shape consists of two geometric points. Typically, these
geometric points represent the upper-left and lower-right corners of the rectangle;
however, you can specify any corner as the first geometric point and the diagonally
opposite corner as the second geometric point.

About Geometric Shapes

CHAPTER 2

Geometric Shapes

Rectangle shapes can have any shape fill except the open-frame shape fill.

Figure 2-12 shows a rectangle geometry and how that rectangle is drawn with a
closed-frame shape fill and how it is drawn with an even-odd shape fill.

Figure 2-12 A rectangle geometry shown framed and filled

Rretpint (500, 50.0)

Lzt point(150.0, 100 0)

Rechaeg b geo me by Az drwrs with Ax drmrn wilk
o lowed-fram = il eaea-odd 1

Note

Although you may specify a rectangle’s geometric points in any order,
QuickDraw GX functions that calculate rectangles always return
rectangles with the upper-left corner as the first geometric point and the
lower-right corner as the second geometric point. u

When you create a new rectangle shape, QuickDraw GX makes a copy of the default
rectangle shape. The default rectangle shape has these properties:

n owner count: 1

n tag list: no tags

n shape attributes: no attributes
n shape type: rectangle type

n shape fill: even-odd fill

n geometry: (0.0, 0.0), (0.0,0.0)

You may change the properties of the default rectangle shape, which effectively changes
the behavior of the functions that create rectangle shapes. However, when creating a new
rectangle shape, QuickDraw GX always initializes the owner count to 1 and the
geometry to (0.0, 0.0), (0.0, 0.0), even if you have specified other values for the default
rectangle shape.

For examples of creating and drawing rectangle shapes without stylistic variations, see
“Creating and Drawing Rectangles” beginning on page 2-43.

For examples of creating and drawing rectangles with stylistic variations, see the next
chapter, “Geometric Styles.”

About Geometric Shapes 2-21

CHAPTER 2

Geometric Shapes

Polygon Shapes

A polygon contour is a series of geometric points connected by straight lines. A polygon
shape may include any number of polygon contours.

Implementation Note

In version 1.0 of QuickDraw GX, a single polygon contour can have
between 1 and 32,767 geometric points. The geometry of a polygon
shape can have between 0 and 32,767 polygon contours. The total size of
a polygon geometry may not exceed 2,147,483,647 bytes. u

Polygon shapes may have any shape fill.

Figure 2-13 shows a polygon shape that contains two separate contours. The shape is
shown four times:

n as a polygon shape geometry
n as drawn with the open-frame shape fill
n as drawn with the closed-frame shape fill

n as drawn with even-odd shape fill

2-22 About Geometric Shapes

CHAPTER 2

Geometric Shapes

Figure 2-13 A polygon shape with two polygon contours

Frstconloar Secowd conloar

Palrgon geamednr

B A widh
cpean-frame 4l

B A widh
cogead-frame 1l

B A widh
arar-zdd 1l

The first contour in Figure 2-13 has four geometric points and the second contour has
three geometric points.

About Geometric Shapes 2-23

CHAPTER 2

Geometric Shapes

The index of a geometric point within its contour is called its contour index. The
geometric points in the first contour in Figure 2-13 have contour indexes ranging from 1
to 4, and the geometric points in the second contour in Figure 2-13 have contour indexes
ranging from 1 to 3. These contour indexes are shown in the top part of the figure.

Since contours and geometric points are ordered, each geometric point can be numbered
from the first geometric point of the first contour to the last geometric point of the last
contour. This number is called a geometric point’s geometry index. Since the polygon
geometry in Figure 2-13 has seven geometric points total, these points have geometry
indexes ranging from 1 to 7. You use geometry indexes and contour indexes of geometric
points when editing polygon geometries. For examples, see “Editing Polygon Parts”
beginning on page 2-82.

If the contours of a polygon shape cross over one another, or if a polygon shape contains
contours that lie within other contours, the even-odd shape fill and the winding shape
fill may fill the polygon shape differently, as shown in Figure 2-14.

Figure 2-14 A polygon drawn with the even-odd and winding shape fills

2-24

3 rf\x, . 3 ;f\x, R
ho L A AN

Eves—odd 6l Wiadiaqg fill

When you create a new polygon shape, QuickDraw GX makes a copy of the default
polygon shape. The default polygon shape has these properties:

n owner count: 1

n tag list: no tags

n shape attributes: no attributes
n shape type: polygon type

n shape fill: even-odd fill

n geometry: 0 contours, 0 points

About Geometric Shapes

CHAPTER 2

Geometric Shapes

You may change the properties of the default polygon shape, which effectively changes
the behavior of the functions that create polygon shapes. However, when creating a new
polygon shape, QuickDraw GX always initializes the owner count to 1 and the geometry
to 0 contours with 0 points, even if you have specified other values for the default
polygon shape.

For examples of creating and drawing polygon shapes without stylistic variations, see
“Creating and Drawing Polygons” beginning on page 2-45.

For examples of creating and drawing polygons with stylistic variations, see the next
chapter, “Geometric Styles.”

Path Shapes

A path contour, like a polygon contour, is defined by a series of geometric points.
However, a path contour can contain off-curve control points as well as on-curve points;
therefore, a path contour can contain curves as well as straight lines. A path shape may
include any number of path contours.

Implementation Note

In version 1.0 of QuickDraw GX, a single path contour can have between
0 and 32,767 geometric points. The geometry of a path shape can
between 0 and 32,767 polygon contours. The total size of a path
geometry may not exceed 2,147,483,647 bytes. u

Every path contains an array of control bits that specify which geometric points are on
curve and which geometric points are off curve. QuickDraw GX connects two
consecutive on-curve points with a straight line. If two on-curve points have an off-curve
point between them, QuickDraw GX connects the two on-curve points with a quadratic
Bézier curve, using the geometric point between them as the off-curve control point.

QuickDraw GX allows a path to have two or more consecutive off-curve control points.
In this case, each pair of consecutive off-curve points implies an on-curve point midway
between them, as represented by the small hollow circle in Figure 2-15.

Figure 2-15 A path with two consecutive off-curve points

Painti Painta Paintd

About Geometric Shapes 2-25

CHAPTER 2

Geometric Shapes

Path shapes may have any shape fill—including open-frame shape fill. However, a path
may not have the open-frame shape fill if the first point or the last point of any path
contour is an off-curve point.

If the contours of a path shape cross over one another, or if a path shape contains
contours that lie within other contours, the even-odd shape fill and the winding shape
fill may fill the path shape differently, as shown in Figure 2-16.

Figure 2-16 A path shape filled with the even-odd and winding shape fills

Palh geomebry Ax drmrs wilh coes—odd £ Az d v vrith winding 6l

Contour direction affects how QuickDraw GX fills a path when the path has the winding
shape fill. In the example in Figure 2-16, if the inner contour has the opposite contour
direction from the outer contour, the winding shape fill works in the same manner as the
even-odd shape fill. For more information, see the next section, “Shape Fill.” For
examples, see “Creating and Drawing Paths” beginning on page 2-55.

When you create a hew path shape, QuickDraw GX makes a copy of the default path
shape. The default path shape has these properties:

n owner count: 1

n tag list: no tags

n shape attributes: no attributes
n shape type: path type

n shape fill: even-odd fill

n geometry: 0 contours, 0 points

2-26 About Geometric Shapes

CHAPTER 2

Geometric Shapes

You may change the properties of the default path shape, which effectively changes the
behavior of the functions that create path shapes. However, when creating a new path
shape, QuickDraw GX always initializes the owner count to 1 and the geometry to 0
contours with 0 points, even if you have specified other values for the default paths
shape.

For examples of creating and drawing path shapes without stylistic variations, see
“Creating and Drawing Paths” beginning on page 2-55.

For examples of creating and drawing paths with stylistic variations, see the next
chapter, “Geometric Styles.”

Using Geometric Shapes

This section shows you how to create, edit, and draw geometric shapes. In particular,
this section shows you how to

n create and draw empty and full shapes

n create point, line, curve, rectangle, polygon, and path shapes

n draw points, lines, curves, rectangles, polygons, and paths

n create framed and solid shapes

n convert a shape from one shape type to another

n replace the geometry of a shape

n replace geometric points within a shape’s geometry

n insert geometric points into and remove geometric points from a shape’s geometry

All of the sample functions in this section create geometric shapes with default style, ink,
and transform information. All shapes are black; framed shapes have one-pixel-wide
contours; and the shapes are not rotated, skewed, and so on. For examples of the many
stylistic variations you can apply to geometric shapes, see Chapter 3 of this book,
“Geometric Styles.” For information about inks and transforms, see Inside Macintosh:
QuickDraw GX Objects.

Many of the sample functions in this section create geometric shapes and, to do so, they
specify geometric points for the shapes’ geometries. Since a geometric point contains two
fixed-point values (of type Fi xed), the sample functions in this section must convert
integer constants to fixed-point constants when specifying a geometric point.
QuickDraw GX provides the GXI nt ToFi xed macro, which performs this conversion by
shifting the integer value 16 bits to the left:

#defi ne GXI nt ToFi xed(a) ((Fixed)(a) << 16)

Using Geometric Shapes 2-27

2-28

CHAPTER 2

Geometric Shapes

QuickDraw GX also provides the f f macro as a convenient alias:
#define ff(a) GXIntToFi xed(a)

A few of the sample functions in this section specify fractional values for geometric point
coordinates. To convert a floating-point value (of type f | oat) to a fixed-point value
(type Fi xed), QuickDraw GX provides the GXFl oat ToFi xed macro:

#def i ne GXFl oat ToFi xed(a) ((Fixed)((float)(a) * fixedl))
and the synonymous f | macro:

#define fl (a) GXFl oat ToFi xed(a)

IMPORTANT

The GXI nt ToFi xed macro has substantially faster performance
than the GXFI oat ToFi xed macro. Whenever possible, you should
choose the GXI nt ToFi xed macro over the GXFl oat ToFi xed macro. s

Creating and Drawing Empty Shapes and Full Shapes

To create an empty shape or a full shape, you use the function GXNewShape, which is
described in full in the chapter “Shape Objects” of Inside Macintosh: QuickDraw GX
Objects.

To create an empty shape, you could define a shape reference and then call the
GXNewShape function:

gxShape anEnpt yShape;

anEnpt yShape = GXNewShape(gxEnpt yType) ;

Although you can draw this shape with the GXDr awShape function, nothing will
appear. However, you can use empty shapes for other purposes. For example, you can
create an empty shape and then add geometric points to it using the Set ShapePart s
function, building other types of shapes as you add points. See “Editing Shape Parts”
beginning on page 2-93 for examples of this function.

Using Geometric Shapes

CHAPTER 2

Geometric Shapes

To create a full shape, you can use this code:

gxShape aFul | Shape;

aFul | Shape = GXNewShape(gxFul | Type) ;
You can then draw the full shape to cover the entire area of the shape’s view ports. For

example, you could use the full shape to erase an area, or you could set the color of the
full shape and draw it to create a colored background before drawing other shapes.

Creating and Drawing Points

QuickDraw GX provides a number of methods to create and draw geometric shapes. In
general, to draw a shape you must first define a geometry. You can then draw the shape
in one of two ways:

n You can draw the geometry directly—without having to create a shape object.

n You can create a shape object to encapsulate the geometry and then draw the shape.

The first sample function in this section, shown in Listing 2-1, uses the first method—it
draws a point without creating a point shape.

To draw the point, this sample function first defines a point geometry, which is
represented by a point structure (of type gxPoi nt):

struct gxPoint {
Fi xed X;
Fi xed y;

}

The value in the x field specifies horizontal distance from the origin; greater values
indicate distances further to the right. The value in the y field specifies vertical distance
from the origin; greater values indicate distances further down.

Note

The coordinates of a shape’s geometry go through a number of
transformations before the shape is actually drawn. Where the shape is
drawn depends not only on the values of the shape’s geometry, but also
on the shape’s associated transform and view port objects. If you use the
default transform and view port information, the coordinates in a
shape’s geometry represent units of 1/72 inch and the origin is the
upper-left corner of the view port. See Inside Macintosh: QuickDraw GX
Objects for more information about the coordinate systems of
QuickDraw GX. u

Using Geometric Shapes 2-29

CHAPTER 2

Geometric Shapes

Since each coordinate of a point must be a fixed-point value, the sample function in
Listing 2-1 uses the GXI nt ToFi xed macro to convert integer constants to fixed-point
constants.

The sample function then draws the point using the GXDr awPoi nt function. The

GXDr awPoi nt function takes a pointer to a gxPoi nt structure as its only parameter and
draws the corresponding point. When drawing the point, it uses the style, ink, and
transform information associated with the default point shape.

Listing 2-1 Drawing a point without creating a point shape

voi d DrawASi ngl ePoi nt (voi d)

{
static gxPoint aPoint Geonetry = {GXI nt ToFi xed(5),

GXI nt ToFi xed(5) };

GXDr awPoi nt (&aPoi nt Geonet ry) ;
}

QuickDraw GX provides the f f macro as an alias for the GXI nt ToFi xed macro. In the
example in Listing 2-1, the point coordinates could be specified with this line of code;

static gxPoint aPointCeonetry = {ff(5), ff(5)};

The rest of the examples in “Using Geometric Shapes” use this convenient alternative.

Figure 2-17 shows the result of the sample function from Listing 2-1.

Figure 2-17 A point

2-30

5.0

{00,000

2.0

Using Geometric Shapes

CHAPTER 2

Geometric Shapes

Listing 2-1 defines the point at location (5.0, 5.0), which lies at the intersection of two
infinitely thin grid lines, and therefore is infinitely thin itself. However, when
QuickDraw GX draws this point shape, it draws it as a single pixel—the pixel lying
down and to the right of the point itself, as shown in Figure 2-17. QuickDraw GX only
draws this single-pixel type of point, called a hairline point, if the pen width property of
the style object associated with the point shape has a value of 0, which is the default
value for this property. If the pen width is greater than 0.0, QuickDraw GX does not
draw the point, unless it has a start cap, in which case only the start cap is drawn. For
more information about the pen width property and cap property of style objects and
how they affects the drawing of point shapes, see the chapter “Geometric Styles,” in this
book.

Although you may sometimes want to draw a shape without creating a shape object for
it, you will frequently want to create a shape object before drawing a shape. Creating a
shape object has many advantages; for example, it allows you to provide custom style,
ink, and transform information before drawing the shape.

QuickDraw GX provides three main methods for creating geometric shapes:

n You can call a type-specific function, such as GXNewPoi nt , which requires you to
provide a pointer to the shape’s desired geometric structure.

n You can call the GXNewShapeVect or function, which requires you to specify the
shape type and provide a pointer to the shape’s desired geometric structure.

n You can call the GXNewShape function, which requires you to specify the desired
shape type, and then call a type-specific function, such as GXSet Poi nt , to set the
geometry.

The sample functions in Listing 2-2, Listing 2-3, and Listing 2-4 show how to create a
point shape using these three methods.

Listing 2-2 uses the GXNewPoi nt function to create a point shape given a pointer to a
point geometry.

Listing 2-2 Creating a point shape with the GXNewPoi nt function

voi d Creat ePoi nt Shape(voi d)

{ gxShape aPoi nt Shape;
static gxPoint aPointCGeonetry = {ff(5), ff(5)};
aPoi nt Shape = GXNewPoi nt (& Poi nt Geonetry);
GXDr awsShape(aPoi nt Shape) ;
GXDi sposeShape(aPoi nt Shape) ;
}

Using Geometric Shapes 2-31

CHAPTER 2

Geometric Shapes

Listing 2-3 uses the GXNewShapeVect or function to create a point shape. The
GXNewShapeVect or function requires two parameters:

n the shape type of the shape you want to create
n an array of fixed-point values that represent the shape’s geometry

In this example, the desired shape type is gxPoi nt Type and the geometry is specified
as an array of two fixed-point values representing the coordinates of the point’s
geometry. When using the GXNewShapeVect or function to create shapes more
complicated than point shapes, you need to provide more values in this array.

Listing 2-3 Creating a point shape with the GXNewShapeVect or function

2-32

voi d Creat ePoi nt Shape(voi d)

{
gxShape aPoi nt Shape;
static Fixed aPoi ntGeonetry[] = {ff(5), ff(5)};
aPoi nt Shape = GXNewShapeVect or (gxPoi nt Type, aPoi nt Geonetry);
GXDr awsShape(aPoi nt Shape) ;
GXDi sposeShape(aPoi nt Shape) ;
}

Listing 2-4 creates a point shape using the GXNewShape function. The GXNewShape
function requires only that you specify the type of shape to create. You do not have to
specify any values for the geometric points of the shape’s geometry—the GXNewShape
function initializes the point geometry to (0.0, 0.0).

Using Geometric Shapes

CHAPTER 2

Geometric Shapes

To set the values of the point shape’s geometry once it’s created, the sample function in
Listing 2-4 uses the GXSet Poi nt function. This function takes a reference to the shape
and a pointer to the desired geometry as its parameters.

Listing 2-4 Creating a point shape with the GXNewShape and GXSet Poi nt functions

voi d Creat ePoi nt Shape(voi d)

{ gxShape aPoi nt Shape;
static gxPoint aPointCGeonetry = {ff(5), ff(5)};
aPoi nt Shape = GXNewShape(gxPoi nt Type);
GXSet Poi nt (aPoi nt Shape, &aPoi nt Geonetry);
GXDr awsShape(aPoi nt Shape) ;
GXDi sposeShape(aPoi nt Shape) ;
}

The sample functions in Listing 2-2, Listing 2-3, and Listing 2-4 all use the
GXDr awShape function to draw the point after the point shape has been created. The
resulting point is the same for all three examples; it appears as shown in Figure 2-17.

Using Geometric Shapes 2-33

CHAPTER 2

Geometric Shapes

You can use the GXSet Poi nt function to replace a point shape’s geometry any number
of times. The sample function in Listing 2-5 creates a point shape, sets its geometry using
the GXSet Poi nt function, draws the point, replaces its geometry using the

GXSet Poi nt function, and draws the point again.

Listing 2-5 Using the GXSet Poi nt function to replace a point shape’s geometry

2-34

voi d Repl acePoi nt ShapeGeonet ry(voi d)

{

gxShape aPoi nt Shape;
static gxPoint aPointCeonetry = {ff(5), ff(5)};

static gxPoi nt anot herPoi nt Geonetry = {ff(13), ff(8)};

aPoi nt Shape = GXNewShape(gxPoi nt Type);
GXSet Poi nt (aPoi nt Shape, &aPoi nt Geonetry);
GXDr awsShape(aPoi nt Shape) ;

GXSet Poi nt (aPoi nt Shape, &anot her Poi nt Geonetry) ;
GXDr awsShape(aPoi nt Shape) ;

GXDi sposeShape(aPoi nt Shape) ;

Using Geometric Shapes

CHAPTER 2

Geometric Shapes

Figure 2-18 depicts the results of this sample function.

Figure 2-18 Two different point geometries

50 120
{00,000

H

H

Using Geometric Shapes 2-35

2-36

CHAPTER 2

Geometric Shapes

Most of the sample functions discussed in “Using Geometric Shapes” create shape
objects. If you create a shape object using any of the methods discussed, you are
responsible for disposing of the shape when you no longer need it. You can do this using
the GXDi sposeShape function, which decrements the owner count of the shape and
frees the memory occupied by that shape if the shape’s owner count becomes 0. The
examples of this section dispose of the point shape by calling

GXDi sposeShape(aPoi nt Shape) ;

Since the GXNewPoi nt , GXNewShapeVect or, and GXNewShape functions all return a
shape with an owner count of 1, calling the GXDi sposeShape function in the three
previous examples would decrement the owner count to 0 and therefore purge the point
shape from memory. For a complete discussion of creating and disposing of shapes, see
Inside Macintosh: QuickDraw GX Objects.

For more information about point shapes, see “Point Shapes” on page 2-16 and “The
Point Structure” on page 2-104.

For information about the functions you can use to create and draw points, see the
description of the GXNewPoi nt function on page 2-111 and the GXDr awPoi nt function
on page 2-158.

Creating and Drawing Lines

You can draw lines and create line shapes with QuickDraw GX in much the same way
as you draw points and create point shapes. Typically, you first define a line geometry,
which is encapsulated in a gxLi ne structure:

struct gxLine {
struct gxPoint first;
struct gxPoint |ast;

b

Using Geometric Shapes

CHAPTER 2

Geometric Shapes

Once you’ve defined a line geometry, you can draw the corresponding line without
creating a line shape by using the GXDr awLi ne function, as shown in Listing 2-6.

Listing 2-6 Drawing a line without creating a line shape

voi d Dr awASi ngl eLi ne(voi d)
{
static gxLine aLineGeonetry = {{ff(50), ff(50)},
{ff(150), ff(150)}};

GXDr awLi ne(&alLi neGeonetry);
}

This sample function defines a line geometry, using the f f macro (which is an alias for
the GXI nt ToFi xed macro) to convert integer constants to fixed-point coordinate values.
It then uses the GXDr awLi ne function to draw the line. The GXDr awLi ne function uses
the style, ink, and transform information from the default line shape when drawing the
line. The result is shown in Figure 2-19.

Figure 2-19 Aline

{500, 5000)

(1000, 100.0
Line geomee bry Az dmvrs

Using Geometric Shapes 2-37

CHAPTER 2

Geometric Shapes

As with the point shape in Figure 2-17, the line shape in Figure 2-19 is infinitely thin, but
is drawn one-pixel wide—a hairline—because the default value of the pen width
property of the style object is 0, which indicates that QuickDraw GX should draw the
line at the thinnest perceivable resolution.

Another method of drawing a line is to encapsulate the line geometry in a line shape and
then use the GXDr awShape function to draw the line. This method allows you to specify
different style, ink, and transform information for the line. The sample function in
Listing 2-7 uses this method: it creates a line shape using the GXNewLi ne function and
then draws the line using the GXDr awShape function.

Listing 2-7 Creating a line shape with the GXNewLi ne function

voi d CreateLi neShape(voi d)

{ gxShape aLi neShape;
static gxLine alLineCGeonetry = {ff(50), ff(50),
ff(150), ff(150)};
aLi neShape = GXNewLi ne(&aLi neCeonetry);
GXDr awShape(aLi neShape) ;
GXDi sposeShape(aLi neShape) ;
}

You can also use the GXNewShape or GXNewShapeVect or functions to create a line
shape. For example, to create the same line shape using the GXNewShape function, you
could replace this line of code in the previous example:

aLi neShape = GXNewLi ne(&aLi neGeonetry);
with these lines of code:

aLi neShape = GXNewShape(gxLi neType) ;
GXSet Li ne(aLi neShape, &ali neGeonetry);

In either case, the line shape would be the same, and would appear as shown in
Figure 2-19.

The sample function in Listing 2-8 shows how to use the GXSet Li ne function to change
the geometry of an existing line shape.

2-38 Using Geometric Shapes

CHAPTER 2

Geometric Shapes

Listing 2-8 Drawing two parallel lines

voi d DrawPar al | el Li nes(voi d)

{
gxShape aLi neShape;
static gxLine aLineGeonetry = {ff(50), ff(50),
ff(57), ff(100)};
static gxLi ne anotherLineGeonetry = {ff(60), ff(50),
ff(67), ff(100)};
aLi neShape = GXNewShape(gxLi neType) ;
GXSet Li ne(aLi neShape, &ali neGeonetry);
GXDr awShape(aLi neShape) ;
GXSet Li ne(aLi neShape, &anot herLi neGeonetry);
GXDr awsShape(aLi neShape) ;
GXDi sposeShape(aLi neShape) ;
}

This sample function creates and draws a line shape, changes its geometry, and then
draws it again. The results are shown in Figure 2-20.

Figure 2-20 Parallel lines

(0.0, 5000 [E00, 0
(5r.0, 1000 (E70, 10000
Line geom ehries A dmvs

Using Geometric Shapes

2-39

CHAPTER 2

Geometric Shapes

As with any geometric shape, you can specify fractional values for a line shape’s
geometric points. Although specifying a fractional part does hot move the start pixel or
the end pixel of line (unless rounding occurs), it can affect how the line is drawn. When
QuickDraw GX draws a line with fractional endpoint coordinates, rather than integer
endpoint coordinates, it may choose different pixels to represent the line, even if

the endpoints remain on the same pixels in both cases. By choosing a different “stair
step” pattern to represent the line, QuickDraw GX can give the illusion of very slight
changes in line angles. As an example, if in the previous example you replace the second
definition:

static gxLi ne anot herLi neGeonetry {ff(60), ff(50),

ff(67), ff(100)};

with a slightly modified version:

static gxLi ne anot herLi neGeonetry {f1(59.6), ff(50),

fl(67.4), ff(100)};

QuickDraw GX chooses different pixels to represent the second line, giving the
appearance of a slightly different angle, as shown in Figure 2-21.

Figure 2-21 Nearly parallel lines

(500, 5000 [S86, 500
{570, 1000 {67 4, 1000}
Liwr geome Inies s dmvrs

For more information about line shapes, see “Line Shapes” on page 2-17 and “The Line
Structure” on page 2-105.

For information about the functions you can use to create and draw lines, see the
description of the GXNewLi ne function on page 2-112 and the GXDr awLi ne function on
page 2-158.

2-40 Using Geometric Shapes

CHAPTER 2

Geometric Shapes

Creating and Drawing Curves

You can create and draw curve shapes with QuickDraw GX the same way you create and
draw points and lines. Typically, you first define a curve geometry, which is
encapsulated in a gxCur ve structure:

struct gxCurve {
struct gxPoint first;
struct gxPoint control;
struct gxPoint |ast;

b

The first andl ast fields determine the start point and the end point of the curve. The
point specified in the cont r ol field lies off the curve and determines the tangents of the
curve. (The off-curve control point could actually be on the curve—that is, directly
between the first and last points—in which case the curve is a straight line.)

Once you’ve defined a curve geometry, you can create a curve shape using the
GXNewCur ve function and draw it using the GXDr awShape function, as shown in
Listing 2-9.

Listing 2-9 Creating a curve shape

voi d CreateCurve(void)

{
gxShape aCurveShape;
static gxCurve aCurveCeonetry = {ff(50), ff(50), [* on */
ff(100), ff(150), /* off */
ff(200), ff(50)}; /* on */
aCurveShape = GXNewCurve(&aCurveCGeonetry);
GXDr awShape(aCur veShape) ;
GXDi sposeShape(aCur veShape) ;
}

Using Geometric Shapes 2-41

CHAPTER 2

Geometric Shapes

Figure 2-22 shows the curve shape geometry, which includes the first and last points, the
off-curve control point, and the tangents implied by these geometric points. This figure
also shows the curve as drawn. It is drawn as a hairline (one-pixel wide) with the
open-frame shape fill, which reflects the default values for curve shapes.

Figure 2-22 A curve

2-42

Az drmvs with opes-frasse fill

You could draw the same curve without creating a curve shape by calling the
GXDr awCur ve function:

GXDr awCur ve(&Cur veCGeonetry) ;

You could also create the curve shape using the GXNewShape function described in
Inside Macintosh: QuickDraw GX Objects or the GXNewShapeVect or function described
on page 2-109.

Curves have a direction that depends on the order of the points in the geometry. For
example, you could reverse the direction of the curve in Figure 2-22 by reversing the
order of the points in the geometry definition from Listing 2-9:

static gxCurve aCurveCeonetry = {ff(200), ff(50), /* on curve */
ff(100), ff(150), /* off curve */
ff(50), ff(50)}; /* on curve */

Changing the direction of this curve would not change its appearance. However, curve
direction can affect the appearance of a curve when you apply certain stylistic variations,
such as dashing, to the curve. The next chapter, “Geometric Styles,” discusses these
stylistic variations. Also, when a curve is part of a path shape, the direction of the curve
can affect the way the path is drawn. See “Creating and Drawing Paths” beginning on
page 2-55 for examples of how the direction of a curve can affect drawing.

For more information about curve shapes, see “Curve Shapes” on page 2-18 and “The
Curve Structure” on page 2-105. For information about the functions you can use to
create and draw curves, see the description of the GXNewCur ve function on page 2-113
and the GXDr awCur ve function on page 2-159.

Using Geometric Shapes

CHAPTER 2

Geometric Shapes

Creating and Drawing Rectangles

You can create rectangle shapes and draw rectangles with QuickDraw GX the same
way you create and draw points, lines, and curves. Typically, you first define a rectangle
geometry, which is encapsulated in a gxRect angl e structure:

struct gxRectangle {
Fi xed left;
Fi xed top;
Fi xed right;
Fi xed bott om
b

Note

QuickDraw GX allows you to specify rectangle coordinates out of
order—that is, you can specify any corner of the rectangle using the first
two fields of the rectangle structure and the opposing corner using the
third and fourth fields of the rectangle structure. u

Once you’ve defined a rectangle geometry, you can draw the corresponding rectangle
without creating a rectangle shape by using the GXDr awRect angl e function or you can
create a rectangle shape and draw it with the GXDr awShape function, as shown in
Listing 2-10.

Listing 2-10 Creating a rectangle shape

voi d Creat eRect angl e(voi d)

{ gxShape aRect angl eShape;
static gxRectangl e aRectangl eCeonetry = {ff(50), ff(50),
ff(150), ff(100)};
aRect angl eShape = GXNewRect angl e(&aRect angl eGeonetry);
GXDr awsShape(aRect angl eShape) ;
GXDi sposeShape(aRect angl eShape) ;
}

This sample function uses the f f macro (which is an alias for the | nt eger ToFi xed
macro) to convert integer constants to the fixed-point coordinate values needed to
define a rectangle geometry. It then creates a rectangle shape using the

GXNewRect angl e function (although it could use the GXNewShape function or

Using Geometric Shapes 2-43

CHAPTER 2

Geometric Shapes

the GXNewShapeVect or function instead) and draws the rectangle using the
GXDr awshape function. The result is shown in Figure 2-23.

Figure 2-23 A rectangle

R bnweg b= e ey A= o v m writh eses—oadd 50

Notice that the rectangle is solid rather than framed. The GXNewRect angl e function
returns a new rectangle shape with the same shape fill property as the default rectangle
shape, which is the even-odd shape fill.

Note

Although initially QuickDraw GX sets the shape fill property of the
default rectangle shape to be even-odd shape fill, you may change

the default shape fill for rectangles by using the GXGet Def aul t Shape
function to obtain a reference to the default rectangle and then using the
GXSet ShapeFi | | function to change its shape fill. You can similarly
change the default shape fill for any shape type. u

To create a framed rectangle, you can use the GXSet ShapeFi | | function to change the
shape fill from even-odd to closed-frame, as shown in Listing 2-11.

Listing 2-11 Creating a framed rectangle

2-44

voi d Creat eFranedRect angl e(voi d)

{
gxShape aRect angl eShape;
static gxRectangl e aRectangl eCeonetry = {ff(150), ff(100),

ff(50), ff(50)};

aRect angl eShape = GXNewRect angl e(&Rect angl eGeonetry);
GXSet ShapeFi | | (aRect angl eShape, gxC osedFraneFill);
GXDr awShape(aRect angl eShape) ;

}

Using Geometric Shapes

CHAPTER 2

Geometric Shapes

Figure 2-24 shows the result of Listing 2-11.

Figure 2-24 A framed rectangle

Roor bn g b= oo meetry Az dewrs wilk clhoed-fra e 7l

In general, a rectangle can have any shape fill except open-frame shape fill. For more
information about rectangle shapes, see “Rectangle Shapes” on page 2-20 and “The
Rectangle Structure” on page 2-106.

For more information about the shape fill property, see “Shape Fill” beginning on
page 2-12.

For information about the functions you can use to create and draw rectangles, see the
description of the GXNewRect angl e function on page 2-114 and the
GXDr awRect angl e function on page 2-160.

Creating and Drawing Polygons

A polygon contour is a series of points connected by straight lines. QuickDraw GX
defines the gxPol ygon structure to encapsulate a polygon contour:

struct gxPol ygon {
| ong vectors;
struct gxPoi nt vector[gxAnyNunber];

H

The vect or s field indicates the number of points in the polygon and the vect or array
contains the points themselves. (The constant gx AnyNumber is used as a placeholder,
since a polygon contour can have any number of geometric points.)

The polygon shape type allows you to group any number of polygon contours within a
single QuickDraw GX shape. The gxPol ygons structure encapsulates the
multiple-polygon geometry:

struct gxPol ygons {
| ong cont ours;
struct gxPol ygon cont our [gxAnyNunber] ;

H

Using Geometric Shapes 2-45

CHAPTER 2

Geometric Shapes

The cont our s field indicates the total number of contours (in other words, the total
number of separate polygons), and the cont our array contains the polygon contour
geometries.

Implementation Note

In version 1.0 of QuickDraw GX, a single path contour can have between
0 and 32,767 geometric points. The geometry of a path shape can
between 0 and 32,767 polygon contours. The total size of a path
geometry may not exceed 2,147,483,647 bytes. u

Creating Polygons With a Single Contour

Since a gxPol ygons structure is of variable length and every element in it is of type
| ong, you can define a polygon geometry as an array of long values. For example, the
definition

|l ong aPol ygonCGeonetry[] = {1, /* nunber of contours */
3, /'* nunber of points */
ff(50), ff(50),
ff(100), ff(80),
ff(50), ff(110)};

defines a polygon geometry with one contour (that is, with one polygon). The polygon
contains three points; it is a triangle.

Most QuickDraw GX functions that create or draw polygon shapes expect a pointer to a
gxPol ygons structure as one of the parameters. Therefore, you must cast an array of
long values to the correct type before sending it to one of these functions. As an example,
you can cast the aPol ygonGeorret r y array to the correct type with this expression:

(gxPol ygons *) aPol ygonGeonetry

The sample function in Listing 2-12 shows how to use this geometry to draw a triangle.

Listing 2-12 Drawing a triangular polygon

voi d DrawTri angl e(voi d)
{
static | ong aPol ygonGeonetry[] = {1, /* nunmber of contours */
3, /'* nunber of points */
ff(50), ff(50),
ff(100), ff(80),
ff(50), ff(110)};

GXDr awPol ygons((gxPol ygons *) aPol ygonGeonetry, gxEvenOddFill);

2-46 Using Geometric Shapes

CHAPTER 2

Geometric Shapes

This sample function defines the aPol ygonGeonet ry array, casts it to a

gxPol ygons pointer, and sends it to the GXDr awPol ygons function. Unlike the

GXDr awPoi nt , GXDr awLi ne, GXDr awCur ve, and GXDr awRect angl e functions,

the GXDr awPol ygons function takes a second parameter—the shape fill to use when
drawing the polygon shape. In this example, the parameter is set to the even-odd shape
value and the resulting polygon is shown in Figure 2-25.

Figure 2-25 A polygon

> p

Polygon geometry A= o rers with exes-odd Al

You can specify any type of shape fill for polygon shapes. For example, if you specify the
inverse even-odd shape fill:

GXDr awPol ygons((gxPol ygons *) aPol ygonGeonetry,
gxl nverseEvenCQddFi | 1) ;

QuickDraw GX draws the graphic shown in Figure 2-26. The black portion of the
drawing would be clipped according to the information in the default polygon shape’s
transform object. If no clipping information is specified there, the drawing would extend
to the full range of the shape’s view port.

Figure 2-26 A triangular polygon with inverse shape fill

Using Geometric Shapes 2-47

2-48

CHAPTER 2

Geometric Shapes

For information on clipping and view ports, see Inside Macintosh: QuickDraw GX Objects.

Although this example draws the polygon without creating a polygon shape, it could
instead create a polygon shape with the GXNewPol ygons function:

aPol ygonShape = GXNewPol ygons((gxPol ygons *) aPol ygonGeonetry);
and then draw it using the GXDr awShape function:

GXDr awshape(aPol ygonShape) ;

You can also create polygon shapes using the GXNewShape function:

aPol ygonShape = GXNewShape(gxPol ygonType);
GXSet Pol ygons(aPol ygonShape, (gxPol ygons *) aPol ygonGeonetry);

or by using the GXNewShapeVect or function:
aPol ygonShape = GXNewShapeVect or (gxPol ygonType, aPol ygonGeonetry);

Notice that in this case you do not have to cast the aPol ygonGeonet ry array to be a
pointer to a gxPol ygons structure. The GXNewShapeVect or function expects an array
of long values.

Although the GXDr awPol ygons function (shown in Listing 2-12) allows you to specify a
shape fill, the GXDr awShape function does not. If you create a polygon shape and you
want it to have a different shape fill than the default polygon shape, you must indicate
the desired shape fill using the GXSet ShapeFi | | function—for example,

GXSet ShapeFi | | (aPol ygonShape, gxl nverseEvenOddFill);

For more information about shape fills, see “Shape Fill”” beginning on page 2-12.

Using Geometric Shapes

CHAPTER 2

Geometric Shapes

Creating Polygons With Multiple Contours

The sample function in Listing 2-13 shows how a single polygon shape can contain more
than one polygon contour. The polygon shape defined in this example includes the
triangle from the previous example as well as a second, entirely separate, triangle.

Listing 2-13 Creating a polygon with two contours

voi d DrawTwoTri angl es(voi d)

{
gxShape aPol ygonsShape;
static | ong aPol ygonsCGeonetry[] = {2, /* nunber of contours */
3, /'* nunber of points */
ff(50), ff(50),
ff(100), ff(80),
ff(50), ff(110),
3, /'* nunber of points */
ff(200), ff(50),
ff(150), ff(80),
ff(200), ff(110)};
aPol ygonsShape = GXNewPol ygons((gxPol ygons *)
aPol ygonsGeonetry);
GXDr awsShape(aPol ygonsShape) ;
GXDi sposeShape(aPol ygonsShape) ;
}

Using Geometric Shapes 2-49

CHAPTER 2

Geometric Shapes

This sample function results in the drawing shown in Figure 2-27.

Figure 2-27 A filled polygon with two separate contours

> <P 4

Polygos geomelng A d v s with eves-odd 6501

For more information about polygon shapes and multiple contours, see “Polygon
Shapes” beginning on page 2-22.

Creating Polygons With Crossed Contours

Since a polygon contour is defined as an array of geometric points connected by straight
lines, it is possible for the lines that make up a polygon contour to cross over each other.
The sample function in Listing 2-14 creates such a polygon.

Listing 2-14 Creating a polygon with a crossed contour

voi d Creat eCrossedCont our (voi d)

{
gxShape aPol ygonsShape;

static | ong aPol ygonsCGeonetry[] = {1, /* nunber of contours */
4, [* nunber of points */
ff(50), ff(50),
ff(150), ff(110),
ff(150), ff(50),
ff(50), ff(110)};

aPol ygonsShape = GXNewPol ygons((gxPol ygons *)
aPol ygonsGeonetry);
GXSet ShapeFi | | (aPol ygonsShape, gxd osedFrameFill);

2-50 Using Geometric Shapes

CHAPTER 2

Geometric Shapes

GXDr awsShape(aPol ygonsShape) ;

GXDi sposeShape(aPol ygonsShape) ;
}

Figure 2-28 shows the geometry of the resulting polygon contour as well as how the
contour appears when drawn with the closed-frame shape fill.

Figure 2-28 A framed polygon with a crossed contour

D X<

Po lpgos geomeedey A dewvrs with o losed-frases 1l

You can change the shape fill of this polygon by removing this line of code from the
sample function in Listing 2-14:

GXSet ShapeFi | | (aPol ygonsShape, gxd osedFrameFill);

If you don’t specify a shape fill, the GXNewPol ygons function uses the shape fill from
the default polygon, which is the even-odd shape fill (unless you change it using the
GXGet Def aul t Shape and GXSet ShapeFi | | functions). The polygon resulting from
an even-odd shape fill is shown in Figure 2-29.

Figure 2-29 A solid polygon with a crossed contour

Po lygon geomelry A devrs wilk eves-odd 1l

Notice that QuickDraw GX fills both sections of this polygon.

Using Geometric Shapes 2-51

CHAPTER 2

Geometric Shapes

It is possible to create a polygon with a contour that overlaps in such a way that
QuickDraw GX does not fill all sections of the polygon. The sample function in
Listing 2-15 creates such a polygon.

Listing 2-15 Creating a polygon with an overlapping contour

voi d Creat eOver | appi ngCont our (voi d)

{
gxShape aPol ygonShape;
static | ong aPol ygonGeonetry[] = {1, /* nunber of contours */
6, /* nunber of points */
ff(50), ff(50),
ff(100), ff(80),
ff(25), ff(150),
ff(25), ff(10),
ff(100), ff(80),
ff(50), ff(110)};
aPol ygonShape = GXNewPol ygons((gxPol ygons *) aPol ygonGeonetry);
GXSet ShapeFi | | (aPol ygonShape, gxHol | owFi ||);
GXDr awshape(aPol ygonShape) ;
GXDi sposeShape(aPol ygonShape) ;
}

2-52 Using Geometric Shapes

CHAPTER 2

Geometric Shapes

Figure 2-30 shows the geometry of the resulting polygon contour as well as how the
contour appears when drawn with the closed-frame shape fill.

Figure 2-30 A polygon with an overlapping contour and closed-frame shape fill

Polygon geometry B dwvrn with ¢ bed-Trases il

If you specified the even-odd shape fill for this polygon, instead of the closed-frame
shape fill, the resulting shape would appear as in Figure 2-31.

Figure 2-31 A polygon with an overlapping contour and even-odd shape fill

.
|

4 5
.

3

Polygon geo s bry A= o v n with exes-odd S0

Using Geometric Shapes 2-53

CHAPTER 2

Geometric Shapes

Notice that QuickDraw GX fills in the polygon but does not fill in the area contained in
the inner loop. The algorithm used by QuickDraw GX to fill in shapes with the even-odd
shape fill doesn’t fill loops within the shape. (It would, however, fill another loop inside
the first loop.)

The winding shape fill works differently. If you specify the winding shape fill for this
polygon using the call

GXSet ShapeFi | | (aPol ygonShape, gxW ndingFill);

QuickDraw GX draws the polygon as shown in Figure 2-32.

Figure 2-32 A polygon with an overlapping contour and winding shape fill

2-54

Polgon geome by Ax dravws wilh winedineg il

As you can see, the winding shape fill causes QuickDraw GX to hide the inner loop—it
fills in the entire polygon, outer loop and inner.

Using Geometric Shapes

CHAPTER 2

Geometric Shapes

It is possible, however, to define a polygon in such a way that QuickDraw GX does not
fill the inner loop even when you specify the winding shape fill. Unlike the even-odd
shape fill, which never fills an inner loop, winding shape fill considers contour direction
when filling a shape:

n If the inner loop and the outer loop have the same contour direction, winding shape
fill causes QuickDraw GX to fill the inner loop as well as the outer loop, as shown in
Figure 2-32.

n If the inner loop and the outer loop have opposite contour directions, winding shape
fill causes QuickDraw GX to fill the outer loop, but not the inner loop. The next
section gives an example using path shapes.

For more information about contour direction and shape-filling algorithms, see “Shape
Fill” beginning on page 2-12.

For more information about polygon shapes, see “Polygon Shapes” on page 2-22 and
“Polygon Structures” on page 2-106.

For information about the functions you can use to create and draw polygons, see the
description of the GXNewPol ygons function on page 2-116 and the GXDr awPol ygons
function on page 2-161.

Creating and Drawing Paths

Like a polygon contour, a path contour is a series of connected points. However, whereas
a polygon contour is made up of straight lines, a path contour can contain both straight
lines and curves. Therefore, the geometric points that make up a path contour can be
on-curve points or off-curve control points. QuickDraw GX defines the gxPat h structure
to encapsulate a path contour geometry:

struct gxPath {
| ong vectors;
| ong control Bi t s[gxAnyNunber] ;
struct gxPoi nt vector[gxAnyNunmber];

b

Using Geometric Shapes 2-55

2-56

CHAPTER 2

Geometric Shapes

The vect or s field indicates the number of geometric points in the path and the vect or
array contains the geometric points themselves. The cont r ol Bi t s array specifies
which geometric points are on-curve points and which are off-curve control points. A
value of 0 indicates an on-curve point and a value of 1 indicates an off-curve point. For
example, acontrol Bi t s field with the value

0x55555555 /* 0101 0101 0101 0101 ... */

indicates that every other point is an off-curve control point; the first point is on curve,
the second point is off, and so on. As another example, acont r ol Bi t s field value of

0x00000000 /* 0000 0000 0000 0000 ... */

indicates all points are on curve, which effectively creates a polygon.

Notice that the contr ol Bi t s array allows you to specify sequential off-curve control
points. For example, a cont r ol Bi t s value of

OxFFFFFFFF /* 1111 1111 1111 1111 ... */

indicates that all points are off curve. When you indicate that two control points in a row
are off curve, QuickDraw GX assumes an on-curve point midway between them. (The
example in Listing 2-17 on page 2-59 gives an example.)

Like the polygon shape, the path shape allows you to group any number of contours
within a single QuickDraw GX shape. The gxPat hs structure encapsulates the
multiple-path geometry:

struct gxPaths {
| ong cont ours;
struct gxPath contour[gxAnyNunber];

H

The cont our s field indicates the total number of contours (in other words, the total
number of separate paths), and the cont our array contains the path geometries.

Using Geometric Shapes

CHAPTER 2

Geometric Shapes

Creating Paths With a Single Contour

Since a gxPat hs structure is of variable length and every element in it is of type | ong,

you can define a path geometry as an array of long values. The sample function in

Listing 2-16 shows how to define a path geometry as an array of long values, and then
draw a path shape using the GXDr awPat hs function. Since the GXDr awPat hs function
expects its first parameter to be a pointer to a gxPat hs structure, the sample function

casts the array of long values to the appropriate type using the expression
(gxPat hs *) aPat hGeonetry

before sending the information to the GXDr awPat hs function.

Listing 2-16 Drawing a path shape

voi d Dr awAPat hShape(voi d)

{
static long aPathGeonetry[] = {1, /* nunmber of contours */
6, /* nunber of points */
0x48000000, /* 0100 1000 */
ff(50), ff(100), /* on */
ff(0), ff(75), [* off */
ff(50), ff(50), /[* on */
ff(150), ff(50), /* on */
ff(200), ff(75), [* off */
ff(150), ff(100)}; /* on */
GXDr awPat hs((gxPat hs *) aPat hGeonetry, gxOpenFraneFill);
}

Using Geometric Shapes

2-57

CHAPTER 2

Geometric Shapes

The path defined in this example has four on-curve points and two off-curve points.
When drawn with the open-frame shape fill, it contains two curves and one straight line,
as shown in Figure 2-33.

Figure 2-33 A path

3 -
_f"d
g
l,h'_“
1
Palh geomeelny
Ax drvws with oper-fane il

The sample function from Listing 2-16 draws the path without creating a path shape. It
could instead create a path shape with the GXNewPat hs function:

aPat hsShape = GXNewPat hs((gxPat hs *) aPat hGeonetry);
and then draw it using the GXDr awShape function:

GXDr awsShape(aPat hsShape) ;

You can also create path shapes using the GXNewShape function:

aPat hsShape = GXNewShape(gxPat hType);
GXSet Pat hs(aPat hsShape, (gxPaths *) aPat hGeonetry);

or by using the GXNewShapeVect or function:

aPat hsShape = GXNewShapeVect or (gxPat hType, aPat hGeonetry);

2-58 Using Geometric Shapes

CHAPTER 2

Geometric Shapes

Notice that in this case you do not have to cast the aPat hGeonet r y array to be a
pointer to a gxPat hs structure. The GXNewShapeVect or function expects an array of
long values.

Although the GXDr awPat hs function (shown in Listing 2-16) allows you to specify a
shape fill, the GXDr awShape function does not. If you create a path shape and you want
it to have a different shape fill than the default path shape, you must indicate the desired
shape fill using the GXSet ShapeFi | I function—for example,

GXSet ShapeFi | | (aPat hsShape, gxlnverseEvenCOddFill);

For more information about shape fills, see “Shape Fill” beginning on page 2-12.

Creating Paths Using Only Off-Curve Points

The sample function in Listing 2-17 shows how you can create a path using only
off-curve control points. The path defined in this example contains four control points,
and the control Bi t s field is set to

0xF0000000 /* 1111 0000 0000 0000 0000 ... */

which indicates that the first four points are off curve. The path contains only four
points, and therefore they are all off curve.

Listing 2-17 Creating a path using only off-curve control points

voi d Creat eRoundPat h(voi d)

{
gxShape aPat hShape;
static |l ong aPat hGeonetry[] = {1, /* nunmber of contours */
4, [* nunber of points */
0xF0000000, /* 1111 0000 ... */
ff(50), ff(50), [* off */
ff(150), ff(50), /* off */
ff(150), ff(150), /* off */
ff(50), ff(150)}; /* off */
aPat hShape = GXNewPat hs((gxPat hs *) aPat hGeometry);
GXDr awShape(aPat hShape) ;
}

Using Geometric Shapes 2-59

CHAPTER 2

Geometric Shapes

The four off-curve control points in this example form a square; the path that they define
is a rounded square, as shown in Figure 2-34.

Figure 2-34 A round path shape

2-60

Ax dewrs with eees—odd il

Notice that the path is filled with the even-odd shape fill, which is the default for

path shapes. You could, however, specify any shape fill for this path except the
open-frame shape fill. The open-frame shape fill requires that the first and last points of
the contour be on-curve points, and this path has no on-curve points.

Creating Paths With Multiple Contours

The sample function in Listing 2-18 shows how a single path shape can contain more
than one path contour. The path shape defined in this example includes the round path
from the previous example as well as a second round path, entirely contained within the
first.

Using Geometric Shapes

CHAPTER 2

Geometric Shapes

Listing 2-18

Creating a path with concentric contours

voi d CreateHol Il owCi rcl es(voi d)

{

gxShape aPat hShape;

static | ong aPat hGeonetry][]

= {2, /* nunber of contours

4, [* nunber of points */

0xF0000000, /* 1111 0000 ..
ff(50), ff(50), /* off
ff(150), ff(50), /* off
ff(150), ff(150), /* off
ff(50), ff(150), /* off

4, [* nunber of points */

0xF0000000, /* 1111 0000 ..
ff(65), ff(65), [/* off
ff(135), ff(65), /* off
ff(135), ff(135), /* off
ff(65), ff(135)}; /* off

aPat hShape = GXNewPat hs((gxPat hs *) aPat hGeomnetry);

GXSet ShapeFi | | (aPat hShape,
GXDr awShape(aPat hShape) ;

GXDi sposeShape(aPat hShape) ;

Using Geometric Shapes

gxC osedFraneFil l);

*/

*/
*/
*/
*/

*/
*/
*/
*/

*/

*/

2-61

CHAPTER 2

Geometric Shapes

The result of this function is shown in Figure 2-35.

Figure 2-35 A path shape with two concentric clockwise contours and closed-frame shape fill

Fak geomelny Az dmvs wilk clhoed-frawe fill

You can change the shape fill of this polygon by removing this line of code from the
sample function in Listing 2-18:

GXSet ShapeFi | | (aPol ygonsShape, gxd osedFrameFill);

2-62 Using Geometric Shapes

CHAPTER 2

Geometric Shapes

If you don’t specify a shape fill, the GXNewPat hs function uses the shape fill from the
default path shape, which is the even-odd shape fill (unless you change it using the
GXCet Def aul t Shape and GXSet ShapeFi | | functions). The path shape resulting from
an even-odd shape fill is shown in Figure 2-36.

Figure 2-36 A path shape with two concentric clockwise contours and even-odd shape fill

0

Palk gromebry A dewrs wilk evesrodd £l

Notice that the even-odd shape fill causes QuickDraw GX to fill in the outer contour, but
not the inner contour. However, if you specify the winding shape fill for this path using
the call

GXSet ShapeFi | | (aPat hShape, gxWndingFill);

the resulting shape would appear as shown in Figure 2-37.

Figure 2-37 A path shape with two concentric clockwise contours and winding shape fill

o)

Pak geomelny A drwrs with windieq Al

Using Geometric Shapes 2-63

CHAPTER 2

Geometric Shapes

Unlike the even-odd shape fill, the winding shape fill causes QuickDraw GX to fill inner
contours—as long as the inner contour has the same contour direction as the outer contour. If
the inner contour and the outer contour have opposite contour directions, neither the
even-odd shape fill nor the winding shape fill will fill the inner contour.

For example, if you change the direction of the inner contour from the previous example
by reversing the order of the second path’s geometric points, as in the declaration

static |l ong aPathGeonetry[] = {2, /* nunber of contours */
4, [* nunber of points */
0xF0000000, /* 1111 0000 */
ff(50), ff(50), [* off */
ff(150), ff(50), [* off */
ff(150), ff(150), /* off */
ff(50), ff(150), [* off */

4, [* nunber of points */

0xF0000000, /* 1111 0000 */
ff(65), ff(135), [* off */
ff(135), ff(135), [/* off */
ff(135), ff(65), [* off */
ff(65), ff(65)}; [* off */

and set the shape fill to the closed-frame shape fill using the call
GXSet ShapeFi | | (aPat hShape, gxC osedFraneFill);

the resulting shape has contours with opposite contour directions, as depicted in
Figure 2-38.

Figure 2-38 A path shape with an internal counterclockwise contour and closed-frame shape fill

2-64

O Q

Pak geomebry A dves with ¢ baed-frass il

Using Geometric Shapes

CHAPTER 2

Geometric Shapes

Since the outer contour and the inner contour have opposite contour directions, neither
the even-odd shape fill nor the winding shape fill cause QuickDraw GX to fill the inner
contour, as shown in Figure 2-39.

Figure 2-39 A path shape with even-odd or winding shape fill

Pabh geomebry Az dmvs wik citheere ve s-odd fill
orwisdisg 6l

For more information about contour direction and shape-filling algorithms, see “Shape
Fill” on page 2-12.

For more information about path shapes, see “Path Shapes” on page 2-25 and “Path
Structures” on page 2-107.

For information about the functions you can use to create and draw paths, see the
description of the GXNewPat hs function on page 2-117 and the GXDr awPat hs function
on page 2-162.

Converting Between Geometric Shape Types

QuickDraw GX provides the GXGet ShapeType and GXSet ShapeType functions to
allow you to manipulate a shape’s type. The GXGet ShapeType function simply returns
the value of the shape type property for a specified shape. For geometric shapes, the
possible values returned from this function are

n gXEnptyType

n gxFul | Type

n gxPoi nt Type

n gxLi neType

n gxCurveType

n gxRect angl eType

Using Geometric Shapes 2-65

2-66

CHAPTER 2

Geometric Shapes

n gxPol ygonType
n gxPat hType

The GXSet ShapeType function allows you to change the shape type of an existing
shape. In doing so, this function often has to reinterpret the geometry of the shape. This
reinterpretation is called type conversion. Sometimes the conversion makes sense and
doesn’t lose any data. For example, you might want to convert a line shape to a polygon
shape so that you can add more contours to the shape. Some conversions, however,
aren’t as useful and data can be lost. For example, converting a complex path shape to a
point shape can result in the loss of a significant amount of data.

In general, when converting between geometric shape types, QuickDraw GX exhibits
different behavior in these four situations:

n when converting other geometric shapes to an empty shape or a full shape
n when converting other geometric shapes to a point, line, or rectangle

n when converting other geometric shapes to a curve

n when converting other geometric shapes to a polygon or path

When converting to an empty shape or a full shape, all the information in the original
shape’s geometry is lost—the result is simple an empty shape or a full shape,
respectively.

The following three subsections discuss the other cases in more detail.

Converting Shapes to Points, Lines, and Rectangles

When converting a shape to a point, line, or rectangle, QuickDraw GX uses the bounding
rectangle of the original shape. (Bounding rectangles are defined in the chapter
“Geometric Operations” in this book. For an example, see Figure 2-41 on page 2-68.)
QuickDraw GX uses the bounding rectangle differently, depending on which shape type
you are converting to:

n When you convert to a rectangle shape, the resulting rectangle is the bounding
rectangle of the original shape.

n When you convert to a line shape, the result is a line that runs from the upper-left
corner of the original shape’s bounding rectangle to the lower-right corner.

n When you convert to a point, the resulting point is the point at the upper-left corner of
the bounding rectangle of the original shape.

Using Geometric Shapes

CHAPTER 2

Geometric Shapes

Listing 2-19 creates a path shape, which is converted subsequently to a rectangle shape,
then to a line shape, and finally to a point shape.

Listing 2-19 Creating a figure-eight path shape

voi d Creat eFi gureEi ght (voi d)

{
gxShape aPat hShape;
static long figureEi ghtGeonetry[] = {1,/* nunmber of contours */
4, [* nunber of points */
0xFO000000, /* 1111 ... */
ff(50), ff(50), [/* off */
ff(200),ff(200), /* off */
ff(50), ff(200), /* off */
ff(200),ff(50)}; /* off */
aPat hShape = GXNewPat hs((gxPaths *) fi gureEi ght Geonetry);
GXSet ShapeFi | | (aPat hShape, gxC osedFraneFill);
GXDr awShape(aPat hShape) ;
}

The resulting path geometry is shown in Figure 2-40.

Figure 2-40 A figure-eight path shape

Using Geometric Shapes 2-67

CHAPTER 2

Geometric Shapes

If you convert this shape to a rectangle shape, using the call

GXSet ShapeType(aPat hShape, gxRectangl eType);

the resulting shape is the bounding rectangle for the original path shape, as shown in
Figure 2-41.

Figure 2-41 A path shape before and after conversion to a rectangle shape

Pal shape Reclasq e shape

2-68 Using Geometric Shapes

CHAPTER 2

Geometric Shapes

If you convert the original path shape to a line shape, using the call

GXSet ShapeType(aPat hShape, gxLi neType);

the resulting shape is a diagonal line from the upper-left corner of the path’s bounding
rectangle to its lower-right corner, as shown in Figure 2-42.

Figure 2-42 A path shape before and after conversion to a line shape

Falh shape Liwe = kape

Using Geometric Shapes 2-69

CHAPTER 2
Geometric Shapes
Finally, if you convert the orignal path shape to a point shape, using the call

GXSet ShapeType(aPat hShape, gxPoi nt Type);

the resulting shape is the point at the upper-left corner of the path’s bounding rectangle,
as shown in Figure 2-43.

Figure 2-43 A path shape before and after conversion to a point shape

Reeudirg poirt—g

Bourdingrectknge

Palh shape Poimbshape

The next two sections give examples of converting to the curve shape type and of
converting to the polygon and path shape types.

For more information about the GXSet ShapeType function, see the chapter “Shape
Objects” of Inside Macintosh: QuickDraw GX Objects.

2-70 Using Geometric Shapes

CHAPTER 2

Geometric Shapes

Converting Shapes to Curve Shapes

When converting other geometric shapes to a curve shape, QuickDraw GX takes one of
these approaches:

n

When converting a point to a curve, QuickDraw GX sets each of the three geometric
points of the curve to be the same as the original point.

When converting a line to a curve, QuickDraw GX sets the first point and last point of
the curve to be the same as the first point and last point of the line and sets the
off-curve control point to be same as the last point of the line, which results in the
curve being a straight line.

When converting a rectangle to a curve, QuickDraw GX sets the first point of the
curve to be the upper-left corner of the rectangle and the last point of the curve to be
the lower-right corner of the rectangle. The off-curve control point is set to be the
same as the last point, which results in the curve being a straight line.

When converting a polygon or a path to a curve, QuickDraw GX sets the three
geometric points of the curve to be the first three geometric points of the original
shape.

The sample function in Listing 2-20 creates a line shape and converts it to a curve.

Listing 2-20 Converting a line to a curve

voi d Convert Li neToCurve(voi d)

{

gxShape aLi neShape;

static gxLine diagonal Geonetry = {ff(50), ff(50),
ff(150), ff(150)};

aLi neShape = GXNewli ne(&di agonal Geonetry);

GXSet ShapeType(aLi neShape, gxCurveType);

GXDr awShape(aLi neShape) ;

GXDi sposeShape(aLi neShape) ;

Using Geometric Shapes 2-71

CHAPTER 2

Geometric Shapes

The original line shape and the resulting curve shape are shown in Figure 2-44.

Figure 2-44 A line shape before and after conversion to a curve shape

Firetpaint Firetpaint

be) X1 {1
condrol point
Fh
Laetpoint Laetpint
Lime = kape Cureexhape

Notice that the converted curve looks just like the original line. The only difference
between the two shapes is that the curve shape has an additional off-curve control point,
which is set to be identical to the last point.

The sample function in Listing 2-21 creates a rectangle shape and converts it to a curve
shape.

Listing 2-21 Converting a rectangle to a curve

voi d Convert Rect angl eToCur ve(voi d)

{
gxShape aRect angl eShape;
static gxRectangle rectangl eCeonetry = {ff(50), ff(50),
ff(150), ff(150)};
aRect angl eShape = GXNewRect angl e(& ect angl eGeonetry);
GXSet ShapeType(aRect angl eShape, gxCurveType);
GXDr awShape(aRect angl eShape) ;
GXDi sposeShape(aLi neShape) ;
}

2-72 Using Geometric Shapes

CHAPTER 2

Geometric Shapes

The original rectangle and the resulting curve are both shown in Figure 2-45.

Figure 2-45 A rectangle shape before and after conversion to a curve shape

Uppar-laft point Fretpoint
L
Cf e
control point
. b
Lewear-rightpcint Leetpcint
Roec nngle = ape Curve shape

As in the previous example, the off-curve control point of the curve shape is set to be the
same as the last point, which results in the curve shape being a straight line.

The next example, shown in Listing 2-22, shows how QuickDraw GX converts a polygon
shape to a curve shape.

Listing 2-22 Converting a polygon shape to a curve shape

voi d Convert Pol ygonToCur ve(voi d)

{
gxShape aPol ygonShape;

static | ong aPol ygonGeonetry[] = {1, /* nunber of contours */
4, [* nunber of points */
ff(50), ff(50),
ff(150), ff(50),
ff(150), ff(150),
ff(50), ff(150)};

aPol ygonShape = GXNewPol ygons((gxPol ygons *) aPol ygonGeonetry);
GXSet ShapeType(aPol ygonShape, gxCurveType);

Using Geometric Shapes 2-73

CHAPTER 2

Geometric Shapes

GXDr awshape(aPol ygonShape) ;

GXDi sposeShape(aPol ygonShape) ;
}

In this example, QuickDraw GX sets the three geometric points of the resulting curve to
be the first three geometric points of the original polygon. (Converting from path shapes
to curve shapes works in the same way.) The original polygon and the resulting curve
are shown in Figure 2-46.

Figure 2-46 A polygon shape before and after conversion to a curve shape

2-74

1 Y-

Polygos shape

Notice that even though the polygon in this example looks the same as the rectangle in
Figure 2-45, the converted curve shape looks quite different.

The next section gives examples of converting shapes to polygon and path shapes.

For more information about the GXSet ShapeType function in general, see the chapter
“Shape Objects” of Inside Macintosh: QuickDraw GX Objects.

Converting Shapes to Polygons and Paths

When converting other geometric shapes to polygon or path shapes, the original shapes
don’t lose any geometric information. For example, when you convert a line shape to a
path shape, the resulting path shape contains one contour with two geometric points,
both on curve—an exact duplicate of the original line.

You can even convert a curve shape to a polygon shape without losing geometric
information, although the result does draw differently. The resulting polygon has one
contour and three geometric points—the same three geometric points as the original
curve. If you convert the polygon back to a curve, you end up with the original curve.

Using Geometric Shapes

CHAPTER 2

Geometric Shapes

When you convert a rectangle shape to a polygon shape, as shown in Listing 2-23, the

original shape and the resulting shape look exactly the same.

Listing 2-23 Converting a rectangle shape to a polygon shape

voi d Convert Rect angl eToPol ygon(voi d)

{
gxShape aRect angl eShape;
static gxRectangle rectangl eGeonetry = {ff(50),

ff(150),

aRect angl eShape = GXNewRect angl e(&r ect angl eGeonetry);
GXSet ShapeType(aRect angl eShape, gxPol ygonType) ;
GXDr awsShape(aRect angl eShape) ;
GXDi sposeShape(aRect angl eShape) ;

}

The original rectangle and the resulting polygon are shown in Figure 2-47.

Figure 2-47 A rectangle shape before and after conversion to a polygon shape

ff(50),
ff(150)};

1 I

52

Reciasq b shape Polygon shape

Using Geometric Shapes

2-75

CHAPTER 2

Geometric Shapes

Converting from a path shape to a polygon shape, however, does lose geometric
information. The resulting polygon contains the same geometric points as the original
path; however, the points are all considered on-curve points. The original information
about which points were on curve and which points were off curve is lost during this
conversion.

As an example, Listing 2-24 creates a path shape and converts it to a polygon shape.

Listing 2-24 Converting a path shape to a polygon shape

voi d Convert Pat hToPol ygon(voi d)

{
gxShape aPat hShape;
static long figureEi ghtGeonetry[] = {1, /* # of contours */
4, [* # of points */
0xF0000000, /* 1111 ... */
ff(50), ff(50), [/* off */
ff(200),ff(200), /* off */
ff(50), ff(200), /* off */
ff(200),ff(50)}; /* off */
aPat hShape = GXNewPat hs((gxPaths *) fi gureEi ght Geonetry);
GXSet ShapeFi | | (aPat hShape, gxHol | owFill);
GXSet ShapeType(aPat hShape, gxPol ygonType);
GXDr awShape(aPat hShape) ;
GXDi sposeShape(aPat hShape) ;
}

2-76 Using Geometric Shapes

CHAPTER 2

Geometric Shapes

Figure 2-48 shows the original path shape and the resulting polygon shape.

Figure 2-48 A path shape before and after conversion to a polygon shape

Polygos shape

Note

You can request that QuickDraw GX calculate a better polygon
approximation to a path by setting the curve error property of the path
shape’s style object before calling the GXSet ShapeType function. See
the next chapter, “Geometric Styles,” for examples. u

Using Geometric Shapes 2-77

CHAPTER 2

Geometric Shapes

Converting in the other direction, however—from a polygon shape to a path shape—
retains all of the geometry information and the resulting path shape looks exactly the
same as the original polygon shape. The sample function in Listing 2-25 gives an

example.

Listing 2-25 Converting a polygon shape to a path shape

2-78

voi d Convert Pol ygonToPat h(voi d)

{
gxShape aPol ygonShape;

static | ong aPol ygonGeonetry|[]

= {2,
3,

/* nunber of contours */
/* nunber of points */

ff(50), ff(50),
ff(100), ff(80),
ff(50), ff(110),

31

/* nunmber of points */

ff(200), ff(50),
ff(150), ff(80),
ff(200), ff(110)};

aPol ygonShape = GXNewPol ygons((gxPol ygons *)
aPol ygonCGeonetry) ;

GXSet ShapeType(aPol ygonShape,
GXDr awsShape(aPol ygonShape) ;

GXDi sposeShape(aPol ygonShape) ;

Using Geometric Shapes

gxPat hType);

CHAPTER 2

Geometric Shapes

The original polygon shape and the converted path shape are shown in Figure 2-49.

Figure 2-49 Polygon shape with two contours before and after conversion to a path shape

> < D>

Polygon shape Palh

For more information about the GXSet ShapeType function, see the chapter “Shape
Objects” of Inside Macintosh: QuickDraw GX Objects.

Replacing Geometric Points

The GXSet Poi nt, GXSet Li ne, GXSet Cur ve, GXSet Rect angl e, GXSet Pol ygons,
and GXSet Pat hs functions allow you to replace the geometry of an existing shape. The
limitation of these functions is that you must replace the entire geometry at once.

QuickDraw GX provides other, more sophisticated, mechanisms for editing shape
geometries. The GXSet ShapePoi nt s function, which is illustrated in this section,
allows you to replace individual geometric points within a shape’s geometry. The
GXSet Pol ygonPart s, GXSet Pat hPar t s, and GXSet ShapePar t s functions, which
are discussed in the next three sections, provide even more ways to edit the geometries
of shapes.

Using Geometric Shapes 2-79

CHAPTER 2

Geometric Shapes

The sample function in Listing 2-26 creates a path shape and uses the
GXSet ShapePoi nt s function to replace two of the path’s geometric points.

Listing 2-26 Replacing geometric points

voi d Repl aceTopTwoCont r ol Poi nt s(voi d)

/[* on */
[* off */
[* on */
/[* on */
[* off */
[* on */

{
gxShape aPat hShape;
static |l ong twoCurveGeonetry[] = {1, /* nunber of contours */
6, /* nunber of points */
0x48000000, /* 0100 1000 */
ff(100), ff(150),
ff(50), ff(100),
ff(100), ff(50),
ff(200), ff(50),
ff(250), ff(100),
ff(200), ff(150)};
static gxPoint newTopGeonetry[] = {ff(140), ff(50),
ff(160), ff(50)};
aPat hShape = GXNewPat hs((gxPat hs *) twoCurveCGeonetry);
GXSet ShapeFi | | (aPat hShape, gxOpenFrameFill);
GXSet ShapePoi nt s(aPat hShape, 3, 2, newTopGeonetry);
GXDr awShape(aPat hShape) ;
GXDi sposeShape(aPat hShape) ;
}

The GXSet ShapePoi nt s function takes four parameters:
n a reference to the shape to edit

n the index of the first geometric point to be replaced

n the number of geometric points to replace

n an array containing the new geometric points

2-80 Using Geometric Shapes

CHAPTER 2

Geometric Shapes

Therefore, the line of code from the sample function in Listing 2-26
GXSet ShapePoi nt s(aPat hsShape, 3, 2, newlopCGeonetry);

replaces the third and fourth geometric point from the original path shape with the two
geometric points in the newTopCGeonet ry array.

Figure 2-50 shows the path shape before the geometric points are replaced.

Figure 2-50 A path shape with a flat top

Figure 2-51 shows the path shape after the geometric points are replaced.

Figure 2-51 A path shape with geometric points replaced

[y F-u-in‘l:Gl [F-uinH-

For more information about the GXSet ShapePoi nt s function, see page 2-142.

The next three sections give examples of functions that allow you even more control in
editing the geometric points of a shape’s geometry.

Using Geometric Shapes 2-81

CHAPTER 2

Geometric Shapes

Editing Polygon Parts

QuickDraw GX provides six functions that allow sophisticated editing of geometric
shapes:

n The GXGet Pol ygonPar t s and GXSet Pol ygonPar t s functions allow you to
extract information from a polygon geometry, replace information in the geometry,
remove information in the geometry, and insert new information in the geometry.

n The GXGet Pat hPar t s and GXSet Pat hPar t s functions allow you to extract,
replace, remove, and insert information in a path shape’s geometry.

n The GXGet ShapePart s and GXSet ShapePar t s functions allow you to extract,
replace, remove, and insert information in any shape’s geometry.

This section gives examples of the GXGet Pol ygonPar t s and GXSet Pol ygonPart s
functions. The next two sections show how to edit path shape geometries and shape
geometries in general.

Listing 2-27 creates a polygon shape with two contours. Later examples in this section
use this polygon shape to demonstrate editing polygon parts.

Listing 2-27 Creating a polygon shape with two contours

voi d Creat eTwoAngl es(voi d)

{
gxShape aPol ygonShape;
static | ong twoAngl eGeonetry[] = {2, /* nunber of contours */
3, /'* nunber of points */
ff(100), ff(150),
ff(50), ff(100),
ff(100), ff(50),
3, /'* nunber of points */
ff(200), ff(50),
ff(250), ff(100),
ff(200), ff(150)};
aPol ygonShape = GXNewPol ygons((gxPol ygons *)
t woAngl eCeonet ry) ;
GXSet ShapeFi | | (aPol ygonShape, gxQpenFrameFill);
GXDr awsShape(aPol ygonShape) ;
GXDi sposeShape(aPol ygonShape) ;
}

2-82 Using Geometric Shapes

CHAPTER 2

Geometric Shapes

The result of this sample function is shown in Figure 2-52.

Figure 2-52 A polygon shape with two contours

The GXCet Pol ygonPar t s function allows you to extract geometric points from the
geometry of an existing polygon shape and put them into a new polygon geometry. This
function takes four parameters:

n a reference to the existing polygon shape

n the index of the first desired geometric point

n the number of geometric points to include

n a pointer to a polygon geometry in which to store the extracted geometric points

The GXGet Pol ygonPar t s function returns as its function result the number of bytes
necessary to contain the extracted polygon. Therefore, you typically call

GXGet Pol ygonPar t s twice—once to determine the size of extracted polygon and once
to extract the polygon. For example, if you declare the variable

| ong byt eCount ;

you could determine the number of bytes necessary to extract the top half of the polygon
geometry in Figure 2-52 using this line of code:

byt eCount = GXCet Pol ygonPart s(aPol ygonsShape, 2, 4, nil);

In this example, setting the final parameter to ni | indicates that you want to determine
the number of bytes necessary to hold the extracted polygon geometry, but you do not
want to actually extract the polygon geometry. The values of 2 and 4 for the second and
third parameters indicate that the GXGet Pol ygonPar t s function should determine the
number of bytes necessary to hold an extracted polygon geometry that contains
geometric points 2, 3, 4, and 5 from the polygon geometry in Figure 2-52.

Using Geometric Shapes 2-83

CHAPTER 2

Geometric Shapes

You can then use this byte count to allocate enough memory to hold the extracted
polygon geometry:

gxPol ygons
topHal f Geonretry = (gxPol ygons *) NewPtr (byteCount);

*t opHal f Geonetry;

Finally, you can extract the polygon geometry by calling GXGet Pol ygonPar t s again:

GXGet Pol ygonPart s(aPol ygonsShape,

21 41

t opHal f Geonretry) ;

The sample function in Listing 2-28 creates the polygon shape from the previous
example, extracts the second through the fifth geometric points and puts them into a
separate geometry, and then replaces the geometry of the original polygon shape with
the extracted geometry.

Listing 2-28

2-84

Extracting part of a polygon shape

voi d Extract TopPart O Pol ygon(voi d)

{

gxShape

aPol ygonShape;

static | ong twoAngl eGeonetry|]

| ong

byt eCount ;

gxPol ygons *topHal f Geonetry;

= {2, /* nunber of contours */

3, /'* nunber of points */
ff(100), ff(150),

ff(50), ff(100),

ff(100), ff(50),

3, /'* nunber of points */
ff(200), ff(50),

ff(250), ff(100),

ff(200), ff(150)};

aPol ygonShape = GXNewPol ygons((gxPol ygons *)
t woAngl eGeonetry);

GXSet ShapeFi | | (aPol ygonShape,

Using Geometric Shapes

gxQpenFraneFi | 1) ;

CHAPTER 2

Geometric Shapes

}

byt eCount = GXGet Pol ygonPart s(aPol ygonShape, 2, 4, nil);
topHal f Geonretry = (gxPol ygons *) NewPtr (byteCount);

GXGet Pol ygonPar t s(aPol ygonShape, 2, 4, topHal f Geonetry);
GXSet Pol ygons(aPol ygonShape, topHal f Geonetry);

GXDr awshape(aPol ygonShape) ;

GXDi sposeShape(aPol ygonShape) ;

The resulting polygon shape is shown in Figure 2-53.

Figure 2-53 A polygon shape extracted from a larger polygon shape

Compare this polygon shape with the polygon shape shown in Figure 2-52.

Like the GXSet ShapePoi nt s function discussed in the previous section, the

GXSet Pol ygonPar t s function allows you to replace geometric points within a polygon
shape’s geometry. However, the GXSet Pol ygonPar t s function allows you even more
editing control. With it, you can also remove geometric points, insert geometric points,
and break a polygon shape into multiple contours.

Using Geometric Shapes 2-85

CHAPTER 2

Geometric Shapes

As an example of replacing geometric points in a polygon geometry, the sample function
in Listing 2-29 creates two polygon geometries: the two-angle polygon geometry from
Figure 2-52 and another polygon geometry consisting of a single point. The sample
function creates the two-angle polygon shape as in Listing 2-27 and then replaces its
third and fourth geometric points with the single geometric point of the other polygon
geometry.

Listing 2-29 Replacing geometric points of a polygon shape

voi d Repl aceControl Poi nts(voi d)

{
gxShape aPol ygonShape;
static | ong twoAngl eGeonetry[] = {2, /* nunber of contours */
3, /'* nunber of points */
ff(100), ff(150),
ff(50), ff(100),
ff(100), ff(50),
3, /'* nunber of points */
ff(200), ff(50),
ff(250), ff(100),
ff(200), ff(150)};
static | ong newlTopGeonetry[] = {1, /* nunber of contours */
1, /* nunber of points */
ff(150), ff(50)};
aPol ygonShape = GXNewPol ygons((gxPol ygons *)
t woAngl eGeonetry);
GXSet ShapeFi | | (aPol ygonsShape, gxOpenFrameFill);
GXSet Pol ygonPar t s(aPol ygonShape, 3, 2,
(gxPol ygons *) newTopGeonetry,
gxBreakNei therEdit);
GXDr awsShape(aPol ygonShape) ;
GXDi sposeShape(aPol ygonShape) ;
}

2-86 Using Geometric Shapes

CHAPTER 2

Geometric Shapes

Figure 2-54 shows the result of the sample function in Listing 2-29.

Figure 2-54 A polygon with two geometric points replaced by a single geometric point

Notice that, whereas the GXSet ShapePoi nt s function limited you to replacing
geometric points on a point-by-point basis, the GXSet Pol ygonPar t s function allows
you to replace any number of geometric points in the original geometry with any
number of new geometric points contained in an arbitrary polygon geometry.

Since the GXSet Pol ygonPar t s function allows you to insert an arbitrary polygon
geometry into the geometry of an existing polygon shape, you can use this function to
break a single polygon contour into multiple contours. In fact, the final parameter to
GXSet Pol ygonPar t s allows you to specify how the resulting polygons shape should
be broken up. In the previous example, the gxBr eakNei t her Edi t constant indicated
that the resulting polygon should not be broken into separate contours.

The next example, shown in Listing 2-30, first creates a polygon shape similar to the
two-angle polygons shape, except in this example the two contours are connected, as
shown in Figure 2-55.

Figure 2-55 A polygon shape with one contour

Using Geometric Shapes 2-87

CHAPTER 2

Geometric Shapes

The sample function then uses the GXSet Pol ygonPar t s function to insert a new
geometric point in the center of the polygon.

Listing 2-30 Inserting a geometric point in a polygon shape

voi d Creat eHol | owPol ygon(voi d)

{
gxShape aPol ygonShape;
static | ong twoAngl eGeonetry[] = {1, /* nunmber of contours */
6, /* nunber of points */
ff(100), ff(150),
ff(50), ff(100),
ff(100), ff(50),
ff(200), ff(50),
ff(250), ff(100),
ff(200), ff(150)};
static | ong newCenterCGeonetry[] = {1, /* nunber of contours */
1 /* nunber of points */,
ff(150), ff(100)};
aPol ygonShape = GXNewPol ygons((gxPol ygons *)
t woAngl eGeonet ry);
GXSet ShapeFi | | (aPol ygonShape, gxC osedFraneFill);
GXSet Pol ygonPar t s(aPol ygonShape, 4, 0,
(gxPol ygons *) newCent er Geonetry,
gxBreakNei t herEdit);
GXDr awsShape(aPol ygonShape) ;
GXDi sposeShape(aPol ygonShape) ;
}

2-88 Using Geometric Shapes

CHAPTER 2

Geometric Shapes

Since this sample function specifies the gxBr eakNei t her Edi t constant as the final
parameter to the GXSet Pol ygonPar t s function, the resulting polygon has a single
contour, as shown in Figure 2-56.

Figure 2-56 A polygon shape edited with the gxBr eakNei t her Edi t flag set

However, if the sample function had specified the gxBr eakLef t Edi t constant, as with
the call

GXSet Pol ygonPart s(aPol ygonsShape, 4, O,
(gxPol ygons *) newCent er Geonetry,
gxBreakLeft Edit);

QuickDraw GX would break the resulting polygon into two contours: The

gxBreaklLef t Edi t constant indicates that the polygon should be broken between the
newly inserted point and the previous point, as shown in Figure 2-57.

Figure 2-57 A polygon shape edited with the gxBr eakLef t Edi t flag set

Using Geometric Shapes 2-89

CHAPTER 2

Geometric Shapes

The gxBr eakRi ght Edi t constant works similarly, except the break occurs between the
newly inserted point and the subsequent point, as shown in Figure 2-58.

Figure 2-58 A polygon shape edited with the gxBr eakR ght Edi t flag set

2-90

You can use the GXSet Pol ygonPar t s function to insert a polygon geometry that
contains multiple contours. In this case, the breaks that occur in the inserted geometry
remain in the resulting polygon shape.

For more information about polygon geometries, see “Polygon Shapes” on page 2-22.

For more information about the GXGet Pol ygonPar t s and GXSet Pol ygonPart s
functions, see the function descriptions on page 2-144 and page 2-145.

The next two sections show more examples of editing shape geometries.

Using Geometric Shapes

CHAPTER 2

Geometric Shapes

Editing Paths Parts

The GXGet Pat hPar t s and GXSet Pat hPar t s functions work similarly to the
GXGet Pol ygonPar t s and GXSet Pol ygonPar t s functions, which are described in the
previous section.

The sample function in Listing 2-31 creates a path shape similar to the polygon shape
from the previous section. Later examples in this section use this path shape to
demonstrate editing path parts.

Listing 2-31 Creating a path shape with two curved contours

voi d Creat eTwoCurves(voi d)

{
gxShape aPat hShape;
static |l ong twoCurveGeonetry[] = {2, /* nunber of contours */
3, /'* nunber of points */
0x40000000, /* 0100 ... */
ff(100), ff(150), /* on */
ff(50), ff(100), /* off */
ff(100), ff(50), [/* on */
3, /'* nunber of points */
0x40000000, /* 0100 ... */
ff(200), ff(50), /[* on */
ff(250), ff(100), /* off */
ff(200), ff(150)}; /* on */
aPat hShape = GXNewPat hs((gxPaths *) twoCurveGeonetry);
GXSet ShapeFi | | (aPat hShape, gxQpenFraneFill);
GXDr awShape(aPat hShape) ;
GXDi sposeShape(aPat hShape) ;
}

Using Geometric Shapes 2-91

CHAPTER 2

Geometric Shapes

The resulting path shape is shown in Figure 2-59.

Figure 2-59 A path shape with two curved contours

2-92

You can use the GXSet Pat hPar t s function to replace any number of geometric points
from this path shape with an arbitrary number of new geometric points. In a manner
similar to the GXSet Pol ygonPar t s function, the GXSet Pat hPar t s function requires
that you encapsulate the new geometric points in a path geometry. For example, to
replace the top two geometric points in the path shape shown in Figure 2-59 with a
single geometric point, you must first encapsulate the new geometric point in a path
geometry, as with the definition

static | ong newlTopGeonetry[] = {1, /* nunber of contours */
1, /* nunber of points */
0x00000000, /* 0000 ... */
ff(150), ff(50)}; /* on curve */

and then call the GXSet Pat hPar t s function:

GXSet Pat hPar t s(aPat hsShape, 3, 2,
(gxPat hs *) newTopGeonetry, gxBreakNeitherEdit);

Using Geometric Shapes

CHAPTER 2

Geometric Shapes

The resulting path shape is shown in Figure 2-60.

Figure 2-60 A path shape edited with GXSet Pat hPart s

For more information about path geometries, see “Path Shapes” beginning on page 2-25.

For more information about the GXGet Pat hPar t s and GXSet Pat hPar t s functions,
see the function descriptions on page 2-148 and page 2-149.

Editing Shape Parts

The GXSet ShapePart s function is more general than the GXSet Pol ygonPart s
and GXSet Pat hPar t s functions described in the previous two sections. The

GXSet ShapePar t s function allows you to replace a subset of the geometric points in
one shape with the geometric points in the geometry of another shape.

For example, with GXSet ShapePar t s you could replace the last three geometric points
of a polygon shape with the geometry of a line shape, or you could replace the first
geometric point of a path shape with the entire geometry of a polygon shape.

Using Geometric Shapes 2-93

CHAPTER 2

Geometric Shapes

The sample function in Listing 2-32 creates a path shape with one contour. Later
examples in this section use this path shape to demonstrate editing shape parts.

Listing 2-32 Creating a path shape with one contour

2-94

voi d Creat ePat hShape(voi d)

{
gxShape aPat hShape;
static |l ong twoCurveGeonetry[] = {1, /* nunber of contours */
6, /* nunber of points */
0x48000000, /* 0100 1000 */
ff(100), ff(150), /* on */
ff(50), ff(100), [/* off */
ff(100), ff(50), /* on */
ff(200), ff(50), /[* on */
ff(250), ff(100), /* off */
ff(200), ff(150)}; /* on */
aPat hsShape = GXNewPat hs((gxPat hs *) twoCurveGeonetry);
GXSet ShapeFi | | (aPat hShape, gxQpenFraneFill);
GXDr awsShape(aPat hShape) ;
GXDi sposeShape(aPat hShape) ;
}

Using Geometric Shapes

CHAPTER 2

Geometric Shapes

The resulting shape is shown in Figure 2-61.

Figure 2-61 A path shape with a flat top

To insert a new geometric point in this shape using the GXSet ShapePar t s function,
you must first encapsulate the new geometric point in a point shape:

static gxPoint newTopCeonetry = {ff(150), ff(20)};
gxShape aPoi nt Shape,;

aPoi nt Shape = GXNewPoi nt (&hewTopGeonetry);
Then you call the GXSet ShapePar t s function:

GXSet ShapePar t s(aPat hsShape, 4, 0, aPoint Shape,
gxBreakNei t herEdit);

Using Geometric Shapes 2-95

CHAPTER 2

Geometric Shapes

Since you must create a shape to encapsulate the point geometry, you should dispose of
this shape when you no longer need it:

GXDi sposeShape(aPoi nt Shape) ;

The resulting path shape is shown in Figure 2-62.

Figure 2-62 A path shape edited to have a pointy top

2-96

You can also use the GXSet ShapePar t s function to insert an off-curve control point in
the path shape. To do this, however, you must encapsulate the new geometric point into
a path shape, because only a path shape can contain a single off-curve point.

gxShape aSi ngl e f Cur vePoi nt ;

static | ong newlTopGeonetry[] = {1, /* nunber of contours */
1, /* nunber of points */
0x80000000, /* 1000 ... */
ff(150), ff(20)}; /* off curve */

aSi ngl e f CurvePoi nt = GXNewPat hs((gxPat hs *) newTopGeonetry);
GXSet ShapePar t s(aPat hsShape, 4, O,

aSi ngl eOf f Cur vePoi nt, gxBreakNeitherEdit);
GXDi sposeShape(aSi ngl e f Cur vePoi nt) ;

Using Geometric Shapes

CHAPTER 2

Geometric Shapes

The resulting path shape is shown in Figure 2-63.

Figure 2-63 A path shape edited to have a round top

Using Geometric Shapes 2-97

CHAPTER 2

Geometric Shapes

The GXSet ShapePar t s function allows you to edit the geometry of any shape. For
example, the sample function in Listing 2-33 creates a line shape and uses
GXSet ShapePar t s to change the last point.

Listing 2-33 Creating a diagonal line

2-98

voi d Creat eDi agonal Li ne(voi d)

{
gxShape aLi neShape;
gxShape aPoi nt Shape;
static gxLine lineGeonetry = {ff(50), ff(50),

ff(150), ff(150)};
static gxPoi nt newLast Poi nt Geonetry = {ff(300), ff(150)};
aLi neShape = GXNewLi ne(& i neGeonetry);
GXSet ShapeFi | | (aLi neShape, gxQpenFraneFill);
aPoi nt Shape = GXNewPoi nt (&newlLast Poi nt Geonet ry) ;
GXSet ShapePar t s(aLi neShape, 2, 1, aPoi nt Shape,
gxBreakNei t herEdit);

GXDi sposeShape(aPoi nt Shape) ;
GXDr awShape(aLi neShape) ;
GXDi sposeShape(aLi neShape) ;

}

Using Geometric Shapes

CHAPTER 2

Geometric Shapes

The original line is shown in Figure 2-64.

Figure 2-64 A diagonal line

The line shape with the replaced last point is shown in Figure 2-65.

Figure 2-65 An edited line

For more information about editing shape parts and the GXSet ShapePar t s function,
see the function description on page 2-154.

Using Geometric Shapes 2-99

CHAPTER 2

Geometric Shapes

Applying Functions Described Elsewhere to Geometric Shapes

QuickDraw GX provides many functions that apply exclusively to geometric shapes.
However, there are many other QuickDraw GX functions that apply to other types of
shapes as well as geometric shapes.

The next two sections discuss how functions described elsewhere operate on geometric
shapes. These sections are:

“Shape-Related Functions Applicable to Geometric Shapes,” the next section

n “Other Functions Applicable to Geometric Shapes,” on page 2-103

Shape-Related Functions Applicable to Geometric Shapes

You can apply all of the functions described in the chapter “Shape Objects” in Inside
Macintosh: QuickDraw GX Objects to geometric shapes. These functions allow you to

n manipulate the shape object that represents geometric shapes (for example, you can
copy, clone, cache, compare, and dispose of a geometric shape)

n set the geometry, shape type, shape fill, and shape attributes of geometric shapes
n change the style, ink, and transform objects that are associated with geometric shapes
n manipulate the tags and owner count of the geometric shapes

Table 2-1 gives important information about geometric shapes for a subset of the
functions from the chapter “Shape Objects” in Inside Macintosh: QuickDraw GX

Objects. Functions described in that chapter that do not appear in this list exhibit the
same behavior when applied to geometric shapes as they do when applied to other types
of shapes.

2-100 Applying Functions Described Elsewhere to Geometric Shapes

CHAPTER 2

Geometric Shapes

Table 2-1 Shape-related functions that exhibit special behavior with geometric shapes

Function name
GXGet Def aul t Shape

GXGet ShapeFi | |

GXSet Def aul t Shape

GXSet ShapeFi | |

GXSet ShapeType

Action taken

Returns a reference to the default geometric shape of the
specified type. See “The Geometric Shape Types” beginning
on page 2-16 for information about the default geometric
shapes.

Returns the shape fill of the shape. See “The Geometric
Shape Types” beginning on page 2-16 for a discussion of
which shape fills are appropriate for which geometric
shapes.

Allows you to specify the shape to copy when creating new
geometric shapes. See “The Geometric Shape Types”
beginning on page 2-16 for information about the default
geometric shapes.

Sets the shape fill of the shape. See “The Geometric Shape
Types” beginning on page 2-16 for a discussion of which
shape fills are appropriate for which geometric shapes.

Changes the shape type of the geometric shape and converts
the shape fill and geometry as appropriate. See the rest
of this section for more information about converting shape

types.

When converting between geometric shape types, the behavior of the GXSet ShapeType
function depends on the new shape type. If the new shape type is the point, line or
rectangle type, the new geometry is based on the bounding rectangle of the original

geometry:

Old type New type
Any Point
Any Line

Any Rectangle

New geometry

Upper-left corner of bounds

Line from upper-left corner to lower-left corner
Bounding rectangle of original geometry

For examples, see “Converting Between Geometric Shape Types” beginning on page 2-65.

Applying Functions Described Elsewhere to Geometric Shapes 2-101

CHAPTER 2

Geometric Shapes

If the new shape type is the curve type, the conversion performed depends on the
original shape type:

Old type New type New geometry
Point Curve New control points all set to original point
Line Curve First and last points remain the same;

off-curve control point set equal to last point

Rectangle Curve First point set to original upper-left point;
last point set to original lower-right point;
off-curve control point set equal to last point

Polygon Curve New control points set to first three original control points
Path Curve New control points set to first three original control points

For examples, see “Converting Shapes to Curve Shapes” beginning on page 2-71.

If the new shape type is the polygon type, this function retains all of the original
geometric points:

Old type New type New geometry

Point, line, Polygon Single contour with same geometric points
or rectangle

Curve Polygon Single contour with same geometric points;
the off-curve point becomes on curve

Path Polygon Same geometric points; all on curve
(calculates approximation if curve error is not zero)

When converting a path shape to a polygon shape, this function examines the curve
error of the style of the path shape. If the curve error is not zero, this functions creates a
polygon approximation of the original path. For more information about curve error, see
the next chapter, “Geometric Styles,” in this book.

Finally, if the new shape type is the path type, the GXSet ShapeType function retains all
of the original geometry information:

Old type New type New geometry

Point, line, curve, Path Single contour with same geometric points
or rectangle

Polygon Path Same number of contours; same geometric points;
all control points remain on curve

For examples, see “Converting Shapes to Polygons and Paths” beginning on page 2-74.

2-102 Applying Functions Described Elsewhere to Geometric Shapes

CHAPTER 2

Geometric Shapes

Other Functions Applicable to Geometric Shapes

You can apply any of the geometric operations described in Chapter 4, “Geometric
Operations,” to the geometric shapes.

Geometric shapes make use of the geometric properties of their style objects. For this
reason, you may apply shape-based functions (such as GXSet ShapePen,

GXSet ShapeDash, and so on) described in Chapter 3, “Geometric Styles,” to geometric
shapes.

You may also apply any of the shape-based functions in the chapter “Typographic
Styles” in Inside Macintosh: QuickDraw GX Typography to geometric shapes. However,
these functions do not affect the way geometric shapes appear when drawn.

You may apply any of the shape-based functions described in the chapter “Ink
Objects” in Inside Macintosh: QuickDraw GX Typography to geometric shapes.
These functions include GXSet ShapeCol or, GXSet ShapeTr ansf er,

GXSet Shapel nkAt t ri but es, and so on.

You may apply any of the shape-based functions described in the chapter “Transform
Objects” in Inside Macintosh: QuickDraw GX Typography to geometric shapes. These
functions include GXSet Shaped i p, GXSet ShapeMappi ng, GXSet ShapeHi t Test,
and so on.

Geometric Shapes Reference

This section describes the data types and functions that are related to geometric shapes.

The “Data Types” section shows the structure definitions for the geometries of the
geometric shapes.

The “Functions” section describes the functions that allow you to create and draw
geometric shapes and functions that allow you to perform simple manipulations on
shape geometries, such as replacing the entire geometry, or replacing certain points in a
geometry.

Chapter 4, “Geometric Operations,” in this book describes functions that allow you to
perform more advanced operations on shape geometries—operations such as insetting,
intersecting, and so on.

Geometric Shapes Reference 2-103

CHAPTER 2

Geometric Shapes

Data Types

This section describes the structures that you use when creating and manipulating
geometric shapes.

You use the gxPoi nt structure when creating a point shape and when specifying
geometric point positions for all of the geometric shapes.

You use the gxLi ne structure when creating a line shape.
You use the gxCur ve structure when creating a curve shape.

You use the gxRect angl e structure when creating a rectangle shape and when
specifying the bounding rectangle of a shape.

You use the gxPol ygon structure when specifying a single contour made up of straight
lines. You use the gxPol ygons structure when specifying multiple contours made up of
straight lines.

You use the gxPat h structure when specifying a single contour made up of straight lines
and curves. You use the gxPat hs structure when specifying multiple path contours.

The Point Structure

2-104

You use the gxPoi nt structure in a number of situations; for example, to specify the
geometry of a point shape, to specify the position of geometric points in the geometries
of other geometric shape types, to specify a location to hit-test, to specify the position of
a bitmap, and so on.

The gxPoi nt structure is defined as follows:

struct gxPoint {

Fi xed X;
Fi xed y;
b
Field descriptions
X A horizontal distance. Greater values of the x field indicate
distances further to the right.
y A vertical distance. Greater values of the y field indicate distances

further down.

The location of the origin depends on the context where you use the point; for example,
it might be the upper-left corner of a view port.

Notice that the x andy fields are of type Fi xed. QuickDraw GX allows you to specify
fractional coordinate positions.

For more information about coordinates and coordinate spaces, see Inside Macintosh:
QuickDraw GX Objects.

For more information about points and point shapes, see “Point Shapes” on page 2-16.

Geometric Shapes Reference

CHAPTER 2

Geometric Shapes

The Line Structure

You use the gxLi ne structure to specify the geometry of a line shape.
The gxLi ne structure is defined as follows:
struct gxLine {

struct gxPoint first;
struct gxPoint |ast;

s

Field descriptions

first The coordinate position where the line begins.
| ast The coordinate position where the line ends.

Notice that the endpoints of a line are ordered—Ilines have an implicit direction. This
direction can affect how QuickDraw GX draws a line shape, particularly when the line
shape has stylistic variations.

For more information about lines and line shapes, see “Line Shapes” on page 2-17.

The Curve Structure

You use the gxCur ve structure to specify the geometry of a curve shape.

The gxCur ve structure is defined as follows:

struct gxCurve {
struct gxPoint first;
struct gxPoint control;
struct gxPoint |ast;

b

Field descriptions

first The coordinate position where the curve begins.

control The coordinate position of the off-curve control point, which
QuickDraw GX uses to determine the tangents of the curve.

| ast The coordinate position where the curve ends.

The curve defined by these three points is a quadratic Bézier curve.

Because the geometric points that define a curve are ordered, curves have direction. The
direction of a curve can affect how QuickDraw GX draws the curve shape, particularly
when the curve shape has stylistic variations.

For more information about curves and curve shapes, see “Curve Shapes” on page 2-18.

Geometric Shapes Reference 2-105

CHAPTER 2

Geometric Shapes

The Rectangle Structure

Youuse the gxRect angl e structure in a variety of situations: to specify the geometry of
a rectangle shape, to specify the bounding rectangle of another shape, and so on.

The gxRect angl e structure is defined as follows:

struct gxRectangle {
Fi xed left;
Fi xed top;
Fi xed right;
Fi xed bott om

b

Field descriptions

| eft Specifies the x-coordinate of the rectangle’s first geometric point.
top Specifies the y-coordinate of the rectangle’s first geometric point.
ri ght Specifies the x-coordinate of the rectangle’s last geometric point.
bottom Specifies the y-coordinate of the rectangle’s last geometric point.

You may specify a rectangle’s geometric points in any order—the coordinates in the

| eft andt op field do not have to correspond to the rectangle’s upper-left corner.
However, rectangles calculated by QuickDraw GX, such as those returned from
geometric operations as described in Chapter 4, “Geometric Operations,” always have
their coordinates specified in the standard order.

For more information about rectangles and rectangle shapes, see “Rectangle Shapes” on
page 2-20.

Polygon Structures

You use the gxPol ygon structure to specify a single polygon contour composed of
straight lines.

The gxPol ygon structure is defined as follows:
struct gxPol ygon {

| ong vectors;
struct gxPoi nt vector[gxAnyNunber];

b

Field descriptions

vectors The number of geometric points in the contour.
vect or The coordinates of the geometric points.

The array index gxAnyNunber indicates that the gxPol ygon data structure is a
variable-length structure—it can include any number of points.

2-106 Geometric Shapes Reference

CHAPTER 2

Geometric Shapes

The gxPol ygons structure allows you to group multiple polygon contours together.
You use this structure when specifying the geometry of a polygon shape.

The gxPol ygons structure is defined as follows:
struct gxPol ygons {

| ong cont ours;
struct gxPol ygon cont our[gxAnyNunber];

b

Field descriptions

contours The number of polygon contours.
cont our The polygon contours.

The array index gxAnyNunber indicates that the gxPol ygons data structure is also a
variable-length structure—it can include any number of gxPol ygon structures.

Implementation Note

In version 1.0 of QuickDraw GX, a single polygon contour can have
between 1 and 32,767 geometric points. The geometry of a polygon
shape can have between 0 and 32,767 polygon contours. The total size of
a polygon geometry may not exceed 2,147,483,647 bytes. u

For more information about polygons and polygon shapes, see “Polygon Shapes” on
page 2-22.

Path Structures

You use the gxPat h structure to specify a single contour composed of straight lines and
curves.

The gxPat h structure is defined as follows:

struct gxPath {

| ong vect ors;
| ong control Bi t s[gxAnyNunber] ;
struct gxPoi nt vector[gxAnyNunber];
b
Field descriptions
vectors The number of geometric points in the contour.
control Bits Bit flags that indicate which geometric points are on curve and
which are off-curve control points.
vect or The coordinates of the geometric points.

The array index gxAnyNunber indicates that the gxPat h data structure is a
variable-length structure—it can include any number of geometric points

Geometric Shapes Reference 2-107

Functions

CHAPTER 2

Geometric Shapes

Each bit in the array specified in the cont r ol Bi t s field indicates whether a particular
point in the array specified by the vector field is on curve or off curve. A value of 0
indicates that the corresponding point is on curve and a value of 1 indicates that the
corresponding point is off curve.

The gxPat hs structure allows you to group multiple path contours together. You use
this data structure when specifying the geometry of a path shape.

The gxPat hs structure is defined as follows:
struct gxPaths {

| ong cont ours;
struct gxPath contour[gxAnyNumber];

b

Field descriptions

contours The number of path contours.
cont our The path contours.

The array index gxAnyNumnber indicates that the gxPat hs data structure is also a
variable-length structure—it can include any number of path contours.

Implementation Note

In version 1.0 of QuickDraw GX, a single path contour can have between
0 and 32,767 geometric points. The geometry of a path shape can
between 0 and 32,767 polygon contours. The total size of a path
geometry may not exceed 2,147,483,647 bytes. u

For more information about paths and path shapes, see “Path Shapes” on page 2-25.

2-108

This section describes the functions available for

n creating new geometric shapes

n manipulating the geometries of geometric shapes
n editing parts of shape geometries

n drawing geometric shapes

Chapter 4, “Geometric Operations,” contains information about more sophisticateed
functions for manipulating shape geometries.

Geometric Shapes Reference

CHAPTER 2

Geometric Shapes

For information about creating, drawing, and manipulating bitmap shapes, see
Chapter 5, “Bitmap Shapes.”

For information about creating, drawing, and manipulating picture shapes, see
Chapter 6, “Picture Shapes.”

For information about getting and setting the default geometric shapes and information
about manipulating shape type and shape fill, see the chapter “Shape Objects” in Inside
Macintosh: QuickDraw GX Objects. For information about hit-testing geometric shapes,
see the chapter “Transform Objects” also in that book.

For information about creating, drawing, and manipulating typographic shapes, see
Inside Macintosh: QuickDraw GX Typography.

Creating Geometric Shapes

QuickDraw GX provides a number of ways for you to create a new shape.

The functions described in this section allow you to specify a shape’s initial geometry
when creating the shape. For example, the GXNewShapeVect or function allows you
to specify a shape type and an array of values. The function creates a new shape of the
specified type and uses the array of values to initialize the new shape’s geometry.

The GXNewPoi nt , GXNewLi ne, GXNewCur ve, GXNewRect angl e, GXNewPol ygons,
and GXNewPat hs functions all create a new shape of a specific type. These functions
allow you to specify the shape’s initial geometry.

You can also use the GXNewShape function to create shapes. This function, which is
described in the chapter “Shape Objects” in Inside Macintosh: QuickDraw GX Objects,
allows you to create a shape by specifying only the shape type; the geometry of the new
shape is set to its initial state—all geometric points are (0.0, 0.0) and polygons and paths
have 0 contours. You can customize the shape’s geometry using the functions described
in “Getting and Setting Shape Geometries” beginning on page 2-119.

GXNewShapeVector

You can use the GXNewShapeVect or function to create a new shape of any type.
voi d GXNewShapeVect or (gxShapeType aType, const Fixed vector[]);

aType A reference to the shape whose geometry you want to change.
vect or An array of fixed-point values to use as the new geometry.

function result A reference to the new shape.

Geometric Shapes Reference 2-109

DESCRIPTION

CHAPTER 2

Geometric Shapes

The GXNewShapeVect or function copies the default shape of the shape type specified
by the aType parameter, sets the owner count of the new shape to 1, initializes its
geometry with the values in the vect or parameter, and returns a reference to it as the

function result.

Although this function creates a copy of the default shape, it does not create a copy of
the default shape’s style, ink, or transform. The new shape returned by this function
contains references to same style, ink, and transform as the default shape. You can
change the style using functions from Chapter 3, “Geometric Styles,” and you

can change the style, ink, and transform using functions from Inside Macintosh:

QuickDraw GX Obijects.

You may pass any number of values in the vect or array; the GXNewShapeVect or
function traverses this array as necessary to initialize the new shape’s geometry. If you

pass too few values in this parameter, the function posts the warning

extra_data_passed_was_i gnor ed.

If you specify a shape type that is not one of the geometric shape types, this function

performs the actions described in the following table:

Shape type Action taken

bitmap Creates a bitmap shape; expects the vector array to contain values
corresponding to the fields of a bitmap structure

picture Creates a picture shape with no overriding styles, inks, or transforms;
expects the vector array to contain an array of shape references

text Posts the error gr aphi c_t ype_does_not _cont ai n_poi nts

glyph Posts the error gr aphi ¢c_t ype_does_not _contai n_poi nts

layout Posts the error gr aphi ¢c_t ype_does_not _contai n_poi nts

ERRORS, WARNINGS, AND NOTICES

2-110

Errors

out _of nenory

shape_is_nil

par amet er _i s_ni

nunber _of _points_exceeds_i npl enentation_limt
nunber _of _contours_exceeds_i npl ementation_limnt
si ze_of _pol ygon_exceeds_i npl ementation_limt
size_of path_exceeds_inplenentation limt
illegal type for_shape

count _i s_| ess_t han_one
shape_access_not _al | owed

graphi c_type_does_not _cont ai n_poi nts

Warnings
extra_data_passed_was_i gnhored

Geometric Shapes Reference

(debugging version)
(debugging version)
(debugging version)
(debugging version)

SEE ALSO

CHAPTER 2

Geometric Shapes

For general information about each type of geometry, see “About Geometric Shapes” on
page 2-5. For specific definitions of each type of geometry, see the section “Data Types”
beginning on page 2-104.

For information about related functions, see the descriptions of the GXNeWpPoi nt ,
GXNeWLi ne, GXNeWCur ve, GXNeWWRect angl e, GXNeWPol ygons, and GXNeWPat hs
functions on page 2-111 through page 2-119.

GXNewPoint

DESCRIPTION

You can use the GXNewPoi nt function to create a new point shape and initialize its
geometry.

gxShape GXNewPoi nt (const gxPoi nt *data);

dat a A pointer to the initial point geometry.

function result A reference to the new point shape.

The GXNewPoi nt function creates a copy of the default point shape, sets the owner
count of the copy to 1, initializes its geometry with the values in the dat a parameter,
and returns a reference to it as the function result.

Although this function creates a copy of the default point shape, it does not create a copy
of the default point’s style, ink, or transform objects. The new point shape returned by
this function contains references to the same style, ink, and transform as the default
point shape.

SPECIAL CONSIDERATIONS

If no error occurs, the GXNewPoi nt function creates a shape; you are responsible for
disposing of this shape when you no longer need it. See Inside Macintosh: QuickDraw GX
Objects for information about creating and disposing of shapes.

If an error occurs, this function returns ni | as the function result.

ERRORS, WARNINGS, AND NOTICES

Errors
out _of nenory
parameter _is_nil (debugging version)

Geometric Shapes Reference 2-111

CHAPTER 2

Geometric Shapes

SEE ALSO
For an example that uses this function, see “Creating and Drawing Points” beginning on
page 2-29.
For a discussion of points and the default point shape, see “Point Shapes” on page 2-16.
For a description of the gxPoi nt structure, see page 2-104.
To create a new point shape without specifying an initial geometry, see the description of
the GXNewShape function in the chapter “Shape Objects” in Inside Macintosh:
QuickDraw GX Objects.
To set the geometry of an existing point shape, see the description of the GXSet Poi nt
function on page 2-122.
To draw a point geometry, see the description of GXDr awPoi nt on page 2-158. To draw a
point shape, see the description of GXDr awShape in the chapter “Shape Objects” in
Inside Macintosh: QuickDraw GX Objects.

GXNewLine
You can use the GXNewLi ne function to create a new line shape and initialize its
geometry.
gxShape GXNewlLi ne(const gxLine *data);
dat a A pointer to the initial line geometry.
function result A reference to the new line shape.

DESCRIPTION

The GXNewLi ne function creates a copy of the default line shape, sets the owner count of
the copy to 1, initializes its geometry with the values in the dat a parameter, and returns
a reference to it as the function result.

Although this function creates a copy of the default line shape, it does not create a copy
of the default line’s style, ink, or transform objects. The new line shape returned by this
function contains references to same style, ink, and transform as the default line shape.

SPECIAL CONSIDERATIONS

2-112

If no error occurs, the GXNewLi ne function creates a shape; you are responsible for
disposing of this shape when you no longer need it. See Inside Macintosh: QuickDraw GX
Objects for information about creating and disposing of shapes.

If an error occurs, this function returns ni | as the function result.

Geometric Shapes Reference

CHAPTER 2

Geometric Shapes

ERRORS, WARNINGS, AND NOTICES

Errors
out _of _nenory
paraneter_is_nil (debugging version)

SEE ALSO
For an example that uses this function, see “Creating and Drawing Lines” beginning on
page 2-36.
For a discussion of lines and the default line shape, see “Line Shapes” on page 2-17.
For a description of the gxLi ne structure, see page 2-105.
To create a new line shape without specifying an initial geometry, see the description of
the GXNewShape function in the chapter “Shape Objects” in Inside Macintosh:
QuickDraw GX Objects.
To set the geometry of an existing line shape, see the description of the GXSet Li ne
function on page 2-124.
To draw a line geometry without creating a line shape, see the description of
GXDr awLi ne on page 2-158. To draw a line shape, see the description of GXDr awShape
in the chapter “Shape Objects” in Inside Macintosh: QuickDraw GX Objects.
GXNewCurve
You can use the GXNewCur ve function to create a new curve shape and initialize its
geometry.
gxShape GXNewCurve(const gxCurve *data);
dat a A pointer to the initial curve geometry.
function result A reference to the new curve shape.
DESCRIPTION

The GXNewCur ve function creates a copy of the default curve shape, sets the owner
count of the copy to 1, initializes its geometry with the values in the dat a parameter,
and returns a reference to it as the function result.

Although this function creates a copy of the default curve shape, it does not create a
copy of the default curve’s style, ink, or transform objects. The new curve shape returned
by this function contains references to same style, ink, and transform as the default curve
shape.

Geometric Shapes Reference 2-113

CHAPTER 2

Geometric Shapes

SPECIAL CONSIDERATIONS

If no error occurs, the GXNewCur ve function creates a shape; you are responsible for
disposing of this shape when you no longer need it. See Inside Macintosh: QuickDraw GX
Objects for information about creating and disposing of shapes.

If an error occurs, this function returns ni | as the function result.

ERRORS, WARNINGS, AND NOTICES

Errors
out _of _nenory
paraneter_is_nil (debugging version)

SEE ALSO
For an example that uses this function, see “Creating and Drawing Curves” beginning
on page 2-41.
For a discussion of curves and the default curve shape, see “Curve Shapes” beginning on
page 2-18.
For a description of the gxCur ve structure, see page 2-105.
To create a new curve shape without specifying an initial geometry, see the description of
the GXNewShape function in the chapter “Shape Objects” in Inside Macintosh:
QuickDraw GX Objects.
To set the geometry of an existing curve shape, see the description of the GXSet Cur ve
function on page 2-126.
To draw a curve geometry without creating a curve shape, see the description
of GXDr awCur ve on page 2-159. To draw a curve shape, see the description of
GXDr awShape in the chapter “Shape Objects” in Inside Macintosh: QuickDraw GX Objects.
GXNewRectangle
You can use the GXNewRect angl e function to create a new rectangle shape and
initialize its geometry.
gxShape GXNewRect angl e(const gxRectangl e *dat a);
dat a A pointer to the initial rectangle geometry.
function result A reference to the new rectangle shape.
2-114 Geometric Shapes Reference

CHAPTER 2

Geometric Shapes

DESCRIPTION

The GXNewRect angl e function creates a copy of the default rectangle shape, sets the
owner count of the copy to 1, initializes its geometry with the values in the dat a
parameter, and returns a reference to it as the function result.

Although this function creates a copy of the default rectangle shape, it does not create a
copy of the default rectangle’s style, ink, or transform objects. The new rectangle shape
returned by this function contains references to same style, ink, and transform as the
default rectangle shape.

SPECIAL CONSIDERATIONS

If no error occurs, the GXNewRect angl e function creates a shape; you are responsible
for disposing of this shape when you no longer need it. See Inside Macintosh:
QuickDraw GX Objects for information about creating and disposing of shapes.

If an error occurs, this function returns ni | as the function result.

ERRORS, WARNINGS, AND NOTICES

Errors
out _of nenory
parameter _is_nil (debugging version)

SEE ALSO

For an example that uses this function, see “Creating and Drawing Rectangles”
beginning on page 2-43.

For a discussion of rectangles and the default rectangle shape, see “Rectangle Shapes
beginning on page 2-20.

For a description of the gxRect angl e structure, see page 2-106.

To create a new rectangle shape without specifying an initial geometry, see the

description of the GXNewShape function in the chapter “Shape Objects” in Inside
Macintosh: QuickDraw GX Objects.

To set the geometry of an existing rectangle shape, see the description of the
GXSet Rect angl e function on page 2-129.

To draw a rectangle geometry without creating a rectangle shape, see the description of
GXDr awRect angl e on page 2-160. To draw a rectangle shape, see the description

of GXDr awShape in the chapter “Shape Objects” in Inside Macintosh: QuickDraw GX
Objects.

Geometric Shapes Reference 2-115

CHAPTER 2

Geometric Shapes

GXNewPolygons

DESCRIPTION

You can use the GXNewPol ygons function to create a new polygon shape and initialize
its geometry.

gxShape GXNewPol ygons(const gxPol ygons *dat a) ;

dat a A pointer to the initial polygon geometry.

function result A reference to the new polygon shape.

The GXNewPol ygons function creates a copy of the default polygon shape, sets the
owner count of the copy to 1, initializes its geometry with the values in the dat a
parameter, and returns a reference to it as the function result. If you specify ni | for the
dat a parameter, this function returns a polygon shape with no polygon contours.

Although this function creates a copy of the default polygon shape, it does not create a
copy of the default polygon’s style, ink, or transform objects. The new polygon shape
returned by this function contains references to same style, ink, and transform as the
default polygon shape.

Implementation Note

In version 1.0 of QuickDraw GX, the total size of a polygon geometry
may not exceed 2,147,483,647 bytes. If the size of the data you provide in
the dat a parameter exceeds this limit, the GXNewPol ygons function
postsasi ze_of _pol ygon_exceeds_i npl ementation_limt
error. u

SPECIAL CONSIDERATIONS

2-116

If no error occurs, the GXNewPol ygons function creates a shape; you are responsible for
disposing of this shape when you no longer need it. See Inside Macintosh: QuickDraw GX
Obijects for information about creating and disposing of shapes.

If an error occurs, this function returns ni | as the function result.

Geometric Shapes Reference

CHAPTER 2

Geometric Shapes

ERRORS, WARNINGS, AND NOTICES

Errors

out _of _nenory

nunber _of _poi nts_exceeds_i npl enentation_limt

nunber _of contours_exceeds inplenentation_ limt

si ze_of pol ygon_exceeds_inplenentation_limt

count _is | ess than_one (debugging version)

SEE ALSO
For an example that uses this function, see “Creating and Drawing Polygons” beginning
on page 2-45.
For a discussion of polygons and the default polygon shape, see “Polygon Shapes”
beginning on page 2-22.
For a description of the gxPol ygons structure, see page 2-106.
To create a new polygon shape without specifying an initial geometry, see the

description of the GXNewShape function in the chapter “Shape Objects” in Inside
Macintosh: QuickDraw GX Objects.

To set the geometry of an existing polygon shape, see the description of the
GXSet Pol ygons function on page 2-131.

To draw a polygon geometry without creating a polygon shape, see the description of
GXDr awPol ygons on page 2-161. To draw a polygon shape, see the description

of GXDr awShape in the chapter “Shape Objects” in Inside Macintosh: QuickDraw GX
Objects.

GXNewPaths

You can use the GXNewPat hs function to create a new path shape and initialize its
geometry.

gxShape GXNewPat hs(const gxPaths *data);

dat a A pointer to the initial path geometry.

function result A reference to the new path shape.

Geometric Shapes Reference 2-117

DESCRIPTION

CHAPTER 2

Geometric Shapes

The GXNewPat hs function creates a copy of the default path shape, sets the owner count
of the copy to 1, initializes its geometry with the values in the dat a parameter, and
returns a reference to it as the function result. If you specify ni | for the dat a parameter,
this function returns a path shape with no path contours.

Although this function creates a copy of the default path shape, it does not create a copy
of the default path shape’s style, ink, or transform objects. The new path shape returned
by this function contains references to same style, ink, and transform as the default path
shape.

Implementation Limit

In version 1.0 of QuickDraw GX, the total size of a path geometry may
not exceed 2,147,483,647 bytes. If the size of the data you provide in the
dat a parameter exceeds this limit, the GXNewPat hs function posts a
si ze_of _path_exceeds_inpl ementation_limt error. u

SPECIAL CONSIDERATIONS

If no error occurs, the GXNewPat hs function creates a shape; you are responsible for
disposing of this shape when you no longer need it. See Inside Macintosh: QuickDraw GX
Obijects for information about creating and disposing of shapes.

If an error occurs, this function returns ni | as the function result.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

2-118

Errors

out _of _nenory

nunber _of _poi nts_exceeds_i npl enentation_limt

nunber _of contours_exceeds inplenentation_ limt

size_of path_exceeds_inplenentation limt

count _is |l ess than_one (debugging version)

For an example that uses this function, see “Creating and Drawing Paths” beginning on
page 2-55.

For a discussion of paths and the default path shape, see “Path Shapes” beginning on
page 2-25.

For a description of the gxPat hs structure, see page 2-107.

To create a new path shape without specifying an initial geometry, see the description of
the GXNewShape function in the chapter “Shape Objects” in Inside Macintosh:
QuickDraw GX Objects.

To set the geometry of an existing path shape, see the description of the GXSet Pat hs
function on page 2-133.

Geometric Shapes Reference

CHAPTER 2

Geometric Shapes

To draw a path geometry without creating a path shape, see the description
of GXDr awPat hs on page 2-162. To draw a path shape, see the description of
GXDr awShape in the chapter “Shape Objects” in Inside Macintosh: QuickDraw GX Objects.

Getting and Setting Shape Geometries

The geometry property of geometric shapes contains the geometric points that define the
shape. The geometries of polygon shapes and path shapes also contain some additional
information, such as the number of separate contours, how many geometric points in
each contour, and (for paths) which geometric points are on curve and which are
off-curve control points.

For general information about each type of geometry, see “About Geometric Shapes”
beginning on page 2-5. For specific definitions of each type of geometric structure, see
the section “Data Types” beginning on page 2-104.

The GXSet ShapeVect or function allows you to change the geometry of any shape.
With this function, you specify a shape and an array of values. The function replaces the
geometry of the specified shape with the values in the array. This function works for
other shape types as well as geometric shapes.

The GXCGet Poi nt, GXGet Li ne, GXGet Cur ve, GXCGet Rect angl e, GXCGet Pol ygons,
and GXCet Pat hs functions each return the geometry of a specific type of shape.

The GXSet Poi nt, GXSet Li ne, GXSet Cur ve, GXSet Rect angl e, GXSet Pol ygons,
and GXSet Pat hs functions each replace the geometry of a specific type of shape.

GXSetShapeVector

DESCRIPTION

You can use the GXSet ShapeVect or function to change the geometry of an existing
shape.

voi d GXSet ShapeVect or (gxShape target, const Fixed vector[]);

t ar get A reference to the shape whose geometry you want to change.
dat a An array of fixed-point values to use as the new geometry.

The GXSet ShapeVect or function replaces the geometry of the t ar get shape with a
new geometry, which it creates by traversing the vect or array. The length of the

vect or array that you supply depends on shape type of the t ar get shape; for
example, if the t ar get shape is a point, you should provide a vector array with two
Fi xed values; if the t ar get shape is a line, you should provide four Fi xed values, and
so on.

Geometric Shapes Reference 2-119

CHAPTER 2

Geometric Shapes

Although this function creates a copy of the default shape, it does not create a copy of
the default shape’s style, ink, or transform. The new shape returned by this function
contains references to same style, ink, and transform as the default shape. You can
change the style using functions from Chapter 3, “Geometric Styles,” and you can
change the style, ink, and transform using functions from Inside Macintosh:

QuickDraw GX Objects.

You may pass any number of values in the vect or array; the GXNewShapeVect or
function traverses this array as necessary to initialize the new shape’s geometry. If you

pass too few values in this parameter, the function posts the warning

extra_data_passed_was_i gnored.

If you specify a shape type that is not one of the geometric shape types, this function

performs the actions described in the following table:

Shape type Action taken

bitmap Sets the target shape to be a bitmap shape; expects the vector array to
contain values corresponding to the fields of a bitmap structure

picture Sets the target shape to be a picture shape with no overriding styles,
inks, or transforms; expects the vector array to contain an array of shape
references

text Posts the error gr aphi c_t ype_does_not _cont ai n_poi nts

glyph Posts the error gr aphi ¢c_t ype_does_not _contai n_poi nts

layout Posts the error gr aphi ¢c_t ype_does_not _contai n_poi nts

ERRORS, WARNINGS, AND NOTICES

Errors

out _of nenory

shape_is_nil

par amet er _i s_ni

nunber _of _points_exceeds_i npl enentation_limt
nunber _of _contours_exceeds_i npl ementation_limnt
si ze_of _pol ygon_exceeds_i npl enentation_limt
size_of path_exceeds_inplenentation limt
illegal type for_shape

count _i s_| ess_t han_one
shape_access_not _al | owed

graphi c_type_does_not _cont ai n_poi nts

Warnings
extra_data_passed_was_i gnhored

2-120 Geometric Shapes Reference

(debugging version)
(debugging version)
(debugging version)
(debugging version)

CHAPTER 2

Geometric Shapes

SEE ALSO

For general information about each type of geometry, see “About Geometric Shapes” on
page 2-5. For specific definitions of each type of geometry, see the section “Data Types”
beginning on page 2-104.

For information about related functions, see the descriptions of the GXSet Poi nt
GXSet Li ne, GXSet Cur ve, GXSet Rect angl e, GXSet Pol ygons, and GXSet Pat hs
functions on page 2-122 through page 2-135.

GXGetPoint

You can use the GXGet Poi nt function to determine the geometry of an existing point
shape.

gxPoi nt *GXCGet Poi nt (gxShape source, gxPoint *data);

source A reference to the point shape whose geometry you want to determine.

dat a A pointer to a gxPoi nt structure. The function copies the source shape’s
geometry into this structure.

function result A pointer to a copy of the source shape’s geometry.

DESCRIPTION
The GXCGet Poi nt function copies the geometry information from the source point shape
into the gxPoi nt structure pointed to by the dat a parameter. As a convenience, this
function also returns a pointer to the point geometry as the function result.

If the source shape is not a point shape, this function posts the error code
illegal _type_for_shape.

You must pass a pointer to a gxPoi nt structure in the dat a parameter—if you pass ni |
for this parameter, the function posts the error code paraneter _is _nil.

ERRORS, WARNINGS, AND NOTICES

Errors

out _of _nmenory

shape_is_nil

illegal type for_shape (debugging version)
paranmeter _is_nil (debugging version)

Geometric Shapes Reference 2-121

CHAPTER 2

Geometric Shapes

SEE ALSO
For general information about point geometries, see “Point Shapes” on page 2-16.
For the definition of the gxPoi nt structure, see page 2-104.
To create a new point shape, use the GXNewPoi nt function, which is described on
page 2-111.
To change the geometry of an existing point shape, use the GXSet Poi nt function, which
is described in the next section.
To draw a point geometry without creating a point shape, use the GXDr awPoi nt
function, which is described on page 2-158. To draw a point shape, use the
GXDr awShape function, which is described in the chapter “Shape Objects” in Inside
Macintosh: QuickDraw GX Objects.
GXSetPoint
You can use the GXSet Poi nt function to change the geometry of an existing point shape.
voi d GXSet Poi nt (gxShape target, const gxPoint *data);
tar get A reference to the point shape whose geometry you want to change.
dat a A pointer to the new point geometry.
DESCRIPTION

The GXSet Poi nt function copies the geometry information from the dat a parameter
into the geometry property of the target point shape. If the target shape is not a point
shape, this function replaces the target shape with a point shape and sets the shape fill to
open-frame fill.

You must provide a pointer to a gxPoi nt structure in the dat a parameter—if you pass
ni | for the dat a parameter, the function posts the error paraneter i s_nil.

If the target shape is locked (that is, its gxLockedShape shape attribute is set), this
function posts the error shape_access_not _al | owned.

ERRORS, WARNINGS, AND NOTICES

2-122

Errors

out _of nenory

shape_is_nil

paraneter _is_nil (debugging version)
shape_access_not _al | owed (debugging version)

Geometric Shapes Reference

CHAPTER 2

Geometric Shapes

SEE ALSO
For general information about point geometries, see “Point Shapes” on page 2-16.
For the definition of the gxPoi nt structure, see page 2-104.
To create a new point shape, use the GXNewPoi nt function, which is described on
page 2-111.

To examine the geometry of an existing point shape, use the GXGet Poi nt function,
which is described on page 2-121.

To draw a point geometry without creating a point shape, use the GXDr awPoi nt
function, which is described on page 2-158. To draw a point shape, use the

GXDr awShape function, which is described in the chapter “Shape Objects” in Inside
Macintosh: QuickDraw GX Objects.

GXGetLine

You can use the GXCet Li ne function to determine the geometry of an existing line
shape.

gxLi ne *GXGet Li ne(gxShape source, gxLine *data);

source A reference to the line shape whose geometry you want to determine.

dat a A pointer to a gxLi ne structure. The function copies the source shape’s
geometry into this structure.

function result A pointer to a copy of the source shape’s geometry.

DESCRIPTION

The GXCet Li ne function copies the geometry information from the source line shape
into the gxLi ne structure pointed to by the dat a parameter. As a convenience, this
function also returns a pointer to the line geometry as the function result.

If the source shape is not a line shape, this function posts the error code
illegal type for_shape.

You must pass a pointer to a gxLi ne structure in the dat a parameter—if you pass ni |
for this parameter, the function posts the error code paraneter _is _nil.

Geometric Shapes Reference 2-123

CHAPTER 2

Geometric Shapes

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

GXSetLine

Errors

out _of _nenory

shape_is_nil

illegal type for_shape (debugging version)
paraneter _is_nil (debugging version)

For general information about line geometries, see “Line Shapes” on page 2-17.

For the definition of the gxLi ne structure, see page 2-105.

To create a new line shape, use the GXNewLi ne function, which is described on

page 2-112.

To change the geometry of an existing line shape, use the GXSet Li ne function, which is
described in the next section.

To draw a line geometry without creating a line shape, use the GXDr awLi ne function,
which is described on page 2-158. To draw a line shape, use the GXDr awShape
function, which is described in the chapter “Shape Objects” in Inside Macintosh:
QuickDraw GX Objects.

DESCRIPTION

2-124

You can use the GXSet Li ne function to change the geometry of a line shape.
voi d GXSet Li ne(gxShape target, const gxLine *data);

t ar get A reference to the line shape whose geometry you want to change.
dat a A pointer to the new line geometry.

The GXSet Li ne function copies the geometry information from the dat a parameter
into the geometry property of the target line shape. If the target shape is not a line shape,
this function replaces the target shape with a line shape and sets the shape fill to
open-frame fill.

You must provide a pointer to a gxLi ne structure in the dat a parameter—if you pass
ni | for this parameter, the function posts the error code paraneter _is_nil.

If the target shape is locked (that is, its gxLockedShape shape attribute is set), this
function posts the error shape_access_not _al | owed.

Geometric Shapes Reference

CHAPTER 2

Geometric Shapes

ERRORS, WARNINGS, AND NOTICES

Errors

out _of _nenory

shape_is_nil

paraneter _is_nil (debugging version)
shape_access_not _al | owed (debugging version)

SEE ALSO
For general information about line geometries, see “Line Shapes” on page 2-17.

For the definition of the gxLi ne structure, see page 2-105.

To create a new line shape, use the GXNewLi ne function, which is described on

page 2-112.

To examine the geometry of an existing line shape, use the GXGet Li ne function, which
is described on page 2-123.

To draw a line geometry without creating a line shape, use the GXDr awLi ne function,
which is described on page 2-158. To draw a line shape, use the GXDr awShape
function, which is described in the chapter “Shape Objects” in Inside Macintosh:
QuickDraw GX Objects.

GXGetCurve

You can use the GXGet Cur ve function to determine the geometry of an existing curve
shape.

gxCurve *GXCGet Curve(gxShape source, gxCurve *data);

source A reference to the curve shape whose geometry you want to determine.

dat a A pointer to a gxCur ve structure. The function copies the source shape’s
geometry into this structure.

function result A pointer to a copy of the source shape’s geometry.

DESCRIPTION
The GXGet Cur ve function copies the geometry information from the source curve shape
into the gxCur ve structure pointed to by the dat a parameter. As a convenience, this
function also returns a pointer to the curve geometry as the function result.

Geometric Shapes Reference 2-125

CHAPTER 2

Geometric Shapes

If the source shape is not a curve shape, this function posts the error code
illegal _type_for_shape.

You must pass a pointer to a gxCur ve structure in the dat a parameter—if you pass ni |
for this parameter, the function posts the error code par amet er _i s_ni | .

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors

out _of nenory

shape_is_nil

illegal type for_shape (debugging version)
parameter _is_nil (debugging version)

For general information about curve geometries, see “Curve Shapes” on page 2-18.
For the definition of the gxCur ve structure, see page 2-105.

To create a new curve shape, use the GXNewCur ve function, which is described on
page 2-113.

To change the geometry of an existing curve shape, use the GXSet Cur ve function,
which is described in the next section.

To draw a curve geometry without creating a curve shape object, use the GXDr awCur ve
function, which is described on page 2-159. To draw a curve shape, use the

GXDr awShape function, which is described in the chapter “Shape Objects” in Inside
Macintosh: QuickDraw GX Objects.

GXSetCurve

DESCRIPTION

2-126

You can use the GXSet Cur ve function to change the geometry of a curve shape.

voi d GXSet Curve(gxShape target, const gxCurve *data);

t ar get A reference to the curve shape whose geometry you want to change.
dat a A pointer to the new curve geometry.

The GXSet Cur ve function copies the geometry information from the dat a parameter
into the geometry property of the target shape. If the target shape is not a curve shape,
this function replaces the target shape with a curve shape and sets the shape fill to
open-frame fill.

Geometric Shapes Reference

CHAPTER 2

Geometric Shapes

You must provide a pointer to a gxCur ve structure in the dat a parameter—if you pass
ni | for this parameter, the function posts the error code paraneter i s_nil.

If the target shape is locked (that is, its gxLockedShape shape attribute is set), this
function posts the error shape_access_not _al | owed.

ERRORS, WARNINGS, AND NOTICES

Errors

out _of nenory

shape_is_nil

parameter _is_nil (debugging version)
shape_access_not _al | owed (debugging version)

SEE ALSO
For general information about curve geometries, see “Curve Shapes” on page 2-18.
For the definition of the gxCur ve structure, see page 2-105.
To create a new curve shape, use the GXNewCur ve function, which is described on
page 2-113.
To examine the geometry of an existing curve shape, use the GXGet Cur ve function,
which is described on page 2-125.

To draw a curve geometry without creating a curve shape, use the GXDr awCur ve
function, which is described on page 2-159. To draw a curve shape, use the

GXDr awShape function, which is described in the chapter “Shape Objects” in Inside
Macintosh: QuickDraw GX Objects.

GXGetRectangle

You can use the GXGet Rect angl e function to determine the geometry of an existing
rectangle shape.

gxRect angl e * GXGet Rect angl e(gxShape source, gxRectangle *data);

source A reference to the rectangle shape whose geometry you want to
determine.
dat a A pointer to a gxRect angl e structure. The function copies the source

shape’s geometry into this structure.

function result A pointer to a copy of the source shape’s geometry.

Geometric Shapes Reference 2-127

DESCRIPTION

CHAPTER 2

Geometric Shapes

The GXCGet Rect angl e function copies the geometry information from the source
rectangle shape into the gxRect angl e data structure pointed to by the dat a parameter.
As a convenience, this function also returns a pointer to the rectangle geometry as the
function result.

If the source shape is not a rectangle shape, this function posts the error code
illegal type for_shape.

You must pass a pointer to a gxRect angl e structure in the dat a parameter—if you
pass ni | for this parameter, the function posts the error code par anet er _i s_ni | .

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

2-128

Errors

out _of nenory

shape_is_nil

illegal type for_shape (debugging version)
paraneter_is_nil (debugging version)

For general information about rectangle geometries, see “Rectangle Shapes” on
page 2-20.

For the definition of the gxRect angl e structure, see page 2-106.

To create a new rectangle shape, use the GXNewRect angl e function, which is described
on page 2-114.

To determine the bounding rectangle of a rectangle shape, use the GXGet ShapeBounds
function, which is described in the chapter, “Geometric Operations,” in this book. (The
result of the GXGet ShapeBounds function is an ordered rectangle. Therefore, the result
of this function may differ from the geometry of the shape you pass in, even if that shape
is a rectangle.)

To change the geometry of an existing rectangle shape, use the GXSet Rect angl e
function, which is described in the next section.

To draw a rectangle geometry without creating a rectangle shape, use the

GXDr awRect angl e function, which is described on page 2-160. To draw a rectangle
shape, use the GXDr awShape function, which is described in the chapter “Shape
Objects” in Inside Macintosh: QuickDraw GX Objects.

Geometric Shapes Reference

CHAPTER 2

Geometric Shapes

GXSetRectangle

DESCRIPTION

You can use the GXSet Rect angl e function to change the geometry of a rectangle shape.
voi d GXSet Rect angl e(gxShape target, const gxRectangle *data);

tar get A reference to the rectangle shape whose geometry you want to change.
dat a A pointer to the new rectangle geometry.

The GXSet Rect angl e function copies the geometry information from the dat a
parameter into the geometry property of the target shape. If the target shape is not a
rectangle shape, this function replaces the target shape with a rectangle shape and sets
the shape fill to closed-frame fill if it was originally open-frame fill.

If the target shape is not a rectangle shape, this function posts the error code

illegal _type_for_shape.

You must provide a pointer to a gxRect angl e structure in the dat a parameter—if you
pass ni | for this parameter, the function posts the error code par amet er _i s_ni | .

If the target shape is locked (that is, its gxLockedShape shape attribute is set), this
function posts the error shape_access_not _al | owed.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors

out _of _nmenory

shape_is_nil

paraneter _is_nil (debugging version)
shape_access_not _al | owed (debugging version)

For general information about rectangle geometries, see “Rectangle Shapes” on
page 2-20.

For the definition of the gxRect angl e structure, see page 2-106.

To create a new rectangle shape, use the GXNewRect angl e function, which is described
on page 2-114.

To examine the geometry of an existing rectangle shape, use the GXGet Rect angl e
function, which is described on page 2-127.

To draw a rectangle geometry without creating a rectangle shape, use the

GXDr awRect angl e function, which is described on page 2-160. To draw a rectangle
shape, use the GXDr awShape function, which is described in the chapter “Shape
Objects” in Inside Macintosh: QuickDraw GX Objects.

Geometric Shapes Reference 2-129

CHAPTER 2

Geometric Shapes

GXGetPolygons

DESCRIPTION

You can use the GXCGet Pol ygons function to determine the geometry of a polygon
shape.

| ong GXGet Pol ygons(gxShape source, gxPol ygons *data);

source A reference to the polygon shape whose geometry you want to determine.

dat a A pointer to a gxPol ygons data structure. The function copies the source
shape’s geometry into this structure.

function result The length in bytes of the source shape’s geometry.

The GXCet Pol ygons function copies the geometry information from the source
polygon shape into the gxPol ygons structure pointed to by the dat a parameter. As the
function result, this function returns the length in bytes of the polygon geometry.

If the source shape is not a polygon shape, this function posts the error code
illegal type for_shape.

You may pass ni | for the dat a parameter. In this case, the GXGet Pol ygons function
still returns the length of the data as the function result, but it does not return the actual
data in the dat a parameter.

Typically, to use this function, you go through the following steps:

1. Determine the length of the polygon data by calling this function, passing ni | for the
dat a parameter.

2. Allocate enough memory to hold the polygon data.

3. Call this function again, passing a pointer to the allocated memory in the dat a
parameter.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

2-130

Errors

out _of _nenory

shape_is_nil

illegal type for_shape (debugging version)

For general information about polygon geometries, see “Polygon Shapes” on page 2-22.

For the definition of the gxPol ygons structure, see page 2-106.

Geometric Shapes Reference

CHAPTER 2

Geometric Shapes

To create a new polygons shape, use the GXNewPol ygons function, which is described
on page 2-116.

To change the geometry of an existing polygon shape, use the GXSet Pol ygons
function, which is described in the next section.

To draw a polygon geometry without creating a polygon shape, use the

GXDr awPol ygons function, which is described on page 2-161. To draw a polygons
shape, use the GXDr awShape function, which is described in the chapter “Shape
Objects” in Inside Macintosh: QuickDraw GX Objects.

GXSetPolygons

You can use the GXSet Pol ygons function to change the geometry of a polygon shape.
voi d GXSet Pol ygons(gxShape target, const gxPol ygons *data);

t ar get A reference to the polygon shape whose geometry you want to change.
dat a A pointer to the new polygon geometry.

DESCRIPTION

The GXSet Pol ygons function copies the geometry information from the dat a
parameter into the geometry property of the target polygon shape. If the target shape is
not a polygon shape, this function replaces the target shape with a polygon shape.

If you passni | for the dat a parameter, the function sets the polygon shape to have zero
contours.

If the target shape is locked (that is, its gxLockedShape shape attribute is set), this
function posts the error shape_access_not _al | owed.

ERRORS, WARNINGS, AND NOTICES

Errors

out _of _nenory

shape_is_nil

nunber _of _poi nts_exceeds_i npl enentation_limt

nunber _of contours_exceeds inplenentation_ limt

si ze_of pol ygon_exceeds_inplenentation_ limt

count _is | ess than_one (debugging version)
shape_access_not _al | owed (debugging version)

Geometric Shapes Reference 2-131

SEE ALSO

CHAPTER 2

Geometric Shapes

For general information about polygon geometries, see “Polygon Shapes” on page 2-22.
For the definition of the gxPol ygons structure, see page 2-106.

To create a new polygon shape, use the GXNewPol ygons function, which is described on
page 2-116.

To examine the geometry of an existing polygon shape, use the GXGet Pol ygons
function, which is described on page 2-130.

To draw a polygon geometry without creating a polygon shape, use the

GXDr awPol ygons function, which is described on page 2-161. To draw a polygon
shape, use the GXDr awShape function, which is described in the chapter “Shape
Objects” in Inside Macintosh: QuickDraw GX Objects.

GXGetPaths

DESCRIPTION

2-132

You can use the GXCet Pat hs function to determine the geometry of a path shape.
| ong GXGet Pat hs(gxShape source, gxPaths *data);

source A reference to the path shape whose geometry you want to determine.

dat a A pointer to a gxPat hs structure. The function copies the source shape’s
geometry into this structure.

function result The length in bytes of the source shape’s geometry.

The GXCet Pat hs function copies the geometry information from the source path shape
into the gxPat hs structure pointed to by the dat a parameter. As the function result,
this function returns the length in bytes of the path geometry.

If the source shape is nhot a path shape, this function posts the error code
illegal _type_for_shape.

You may pass ni | for the dat a parameter. In this case, the GXCGet Pat hs function still
returns the length of the data, but it does not return the actual data in the dat a
parameter.

Geometric Shapes Reference

CHAPTER 2

Geometric Shapes

Typically, to use this function, you go through the following steps:

1. Determine the length of the path data by calling this function, passing ni | for the
dat a parameter.

2. Allocate enough memory to hold the path data.

3. Call this function again, passing a pointer to the allocated memory in the dat a
parameter.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors

out _of nenory

shape_is_nil

illegal type for_shape (debugging version)

For general information about path geometries, see “Path Shapes” on page 2-25.

For the definition of the gxPat hs structure, see page 2-107.

To create a new path shape, use the GXNewPat hs function, which is described on

page 2-117.

To change the geometry of an existing path shape, use the GXSet Pat hs function, which
is described in the next section.

To draw a path geometry without creating a path shape, use the GXDr awPat hs function,
which is described on page 2-162. To draw a path shape, use the GXDr awShape
function, which is described in the chapter “Shape Objects” in Inside Macintosh:
QuickDraw GX Objects.

GXSetPaths

You can use the GXSet Pat hs function to change the geometry of a path shape.
voi d GXSet Pat hs(gxShape target, const gxPaths *data);

t ar get A reference to the path shape whose geometry you want to change.
dat a A pointer to new path geometry.

Geometric Shapes Reference 2-133

DESCRIPTION

CHAPTER 2

Geometric Shapes

The GXSet Pat hs function copies the geometry information from the dat a parameter
into the geometry property of the target path shape. If the target shape is not a path
shape, this function posts the error code i | | egal _type_for_shape.

You must provide a pointer to a gxPat hs structure in the dat a parameter—if you pass
ni | for this parameter, the function posts the error code paraneter _is_nil.

If the target shape is locked (that is, its gxLockedShape shape attribute is set), this
function posts the error shape_access_not _al | owed.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

2-134

Errors

out _of nenory

shape_is_nil

nunber _of _points_exceeds_i npl enentation_limt

nunber _of _cont ours_exceeds_i npl ementation_limt

size_of path_exceeds_inplenentation limt

count _is | ess than_one (debugging version)
shape_access_not _al | owed (debugging version)

For general information about path geometries, see “Path Shapes” on page 2-25.
For the definition of the gxPat hs structure, see page 2-107.

To create a new path shape, use the GXNewPat hs function, which is described on
page 2-117.

To examine the geometry of an existing path shape, use the GXGet Pat hs function,
which is described on page 2-132.

To draw a path geometry without creating a path shape, use the GXDr awPat hs function,
which is described on page 2-162. To draw a path shape, use the GXDr awShape
function, which is described in the chapter “Shape Objects” in Inside Macintosh:
QuickDraw GX Objects.

Geometric Shapes Reference

CHAPTER 2

Geometric Shapes

Editing Shape Geometries

The functions described in the previous section, “Getting and Setting Shape
Geometries,” allow you to examine and replace entire shape geometries. The functions in
this section provide more sophisticated abilities—with these functions, you can examine
and edit specific parts of geometries.

For example, the GXCount ShapeCont our s function allows you to determine the
number of contours in a shape’s geometry. For polygon and path shapes, this number is
an integral part of the geometry—it is the first value stored in the geometry; for other
geometric shapes, this function simply returns 1.

Similarly, the GXCount ShapePoi nt s function returns the number of geometric points
in a specified contour of a shape’s geometry.

The GXGet Shapel ndex function returns the geometry index of a specific geometric
point given a contour number and the index of the geometric point within the contour.
(Remember, each geometric point in a geometry has an geometry index—if you consider
a geometry as a list of geometric points starting from the first geometric point of the first
contour to the last geometric point of the last contour, the geometry index of a particular
geometric point is its position in this list.) You use geometry indexes to specify ranges

of geometric points in many of the functions in this section.

You can use the GXGet ShapePoi nt s function to obtain a copy of a particular range of
geometric points from a shape’s geometry, and you can use the GXSet ShapePoi nt s to
replace a particular range of geometric points in a shape’s geometry.

You can use the GXGet Pol ygonPar t s function to extract a range of geometric points
from an existing polygon shape and put them into a new polygon geometry. You can use
the GXSet Pol ygonPar t s function to replace any range of geometric points in an
existing polygon shape with any new polygon geometry.

Similarly, you can use the Get Pat hsPar t s function to extract a range of geometric
points from an existing path shape and put them into a new path geometry, and you can
use the Set Pat hsPar t s function to replace any range of geometric points in an existing
path shape with any new path geometry.

The GXCGet ShapePart s and GXSet ShapePar t s functions allow the broadest editing
control. With the GXGet ShapePar t s function, you can extract any range of geometric
points from an existing shape and put them into a new shape. With the

GXSet ShapePar t s function, you can replace any range of geometric points in an
existing shape with the entire geometry of another shape.

Geometric Shapes Reference 2-135

CHAPTER 2

Geometric Shapes

You can apply GXCount ShapeCont our s, GXCount ShapePoi nt s,

GXGet Shapel ndex, GXGet ShapePoi nt s, GXSet ShapePoi nt s, GXGet ShapePart s,
and GXSet ShapePar t s functions to other shape types as well as geometric shapes.
Information about how they work for geometric shapes is presented in this section. You
can find more information about these functions in Chapter 5, “Bitmap Shapes,” and
Chapter 6, “Picture Shapes,” and in Inside Macintosh: QuickDraw GX Typography.

GXCountShapeContours

DESCRIPTION

2-136

You can use the GXCount ShapeCont our s function to determine the number of
contours in a shape.

| ong GXCount ShapeCont our s(gxShape source);

source A reference to the shape whose contours you want to count.

function result The number of contours in the source shape.

The GXCount ShapeCont our s function returns as its function result the number of
contours in the source shape. For polygon and path shapes, this number indicates the
total number of polygon contours or path contours contained in the shape. For points,
lines, curves, and rectangles, this function returns the value 1. For empty and full shapes,
this function posts the gr aphi cs_type_does_not _have nultiple_contours
error.

If you provide a source shape that is not one of the geometric shape types, this function
performs the actions described in the following table:

Shape type Action taken

bitmap Always returns 1 as the function result
picture Returns the number of picture items
text Returns the number of glyphs

glyph Returns the number of glyphs

layout Returns the byte length of the text

Geometric Shapes Reference

CHAPTER 2

Geometric Shapes

ERRORS, WARNINGS, AND NOTICES

Errors

out _of _nenory

shape_is_nil

graphi c_type_does_not _have nultiple_contours (debugging version)

SEE ALSO
For a discussion of contours, see “Shape Geometry” on page 2-9, “Polygon Shapes” on
page 2-22, and “Path Shapes” on page 2-25.
To learn how this function works for typographic shape types, see Inside Macintosh:
QuickDraw GX Typography:

To determine the number of points in a specific contour of a shape, use the
GXCount ShapePoi nt s function, which is described in the next section.

GXCountShapePoints

You can use the GXCount ShapePoi nt s function to determine the number of geometric
points in a specific contour of a shape.

| ong GXCount ShapePoi nt s(gxShape source, |ong contour);
source A reference to the shape containing the contour.

cont our The index of the contour whose geometric points you want to count.

function result The number of points in the specified contour of the source shape.

DESCRIPTION
The GXCount ShapePoi nt s function returns as its function result the number of points
in the contour specified by the cont our parameter of the shape specified by the sour ce
parameter. If you pass 0 for the cont our parameter, this function returns the total
number of geometric points in the shape.

Geometric Shapes Reference 2-137

CHAPTER 2

Geometric Shapes

For the geometric shapes with only one contour—points, lines, curves, and rectangles—
you must pass a0 or alinthe cont our parameter. For polygons and paths shapes, the
value you provide for the cont our parameter must be 0 or greater and must be equal to
or less than the actual number of contours in the shape. For empty and full shapes, the
function posts acont our _out _of _range warning.

If you provide a source shape that is not one of the geometric shape types, this function
performs the actions described in the following table:

Shape type Action taken

bitmap Returns 1 if the cont our parameter is 0 or 1; posts the error
cont our _out _of _range otherwise

picture Posts the error gr aphi c_t ype_does_not _cont ai n_poi nts

text Returns 1 if the cont our parameter is 0 or 1; posts the error
cont our _out _of range otherwise

glyph Returns the number of glyphs in the style run indicated by the cont our
parameter

layout Returns the byte length of the style run indicated by the cont our
parameter

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

2-138

Errors

out _of _nmenory

shape_is_nil

graphi c_type_does_not_contai n_points (debugging version)
Warnings

cont our _out _of _range

For a discussion of geometric points, see the section “About Geometric Shapes”
beginning on page 2-5.

To learn how this function works for typographic shape types, see Inside Macintosh:
QuickDraw GX Typography.

To determine the number of contours in a shape, use the GXCount ShapeCont our s
function, which is described on page 2-136.

To determine the index of a particular geometric point within a shape, use the
GXGet Shapel ndex function, which is described in the next section.

Geometric Shapes Reference

CHAPTER 2

Geometric Shapes

GXGetShapelndex

DESCRIPTION

You can use the GXGet Shapel ndex function to determine the geometry index of a
geometric point.

| ong GXGet Shapel ndex(gxShape source, |ong contour, |ong vector);

source A reference to the shape containing the desired geometric point.
cont our The index of the contour within the shape containing the geometric point.
vect or The index of the geometric point within that contour.

function result The geometry index of the specified geometric point.

The GXGet Shapel ndex function returns as its function result the geometry index of the
geometric point in the sour ce shape’s geometry that is identified by the cont our and
vect or parameters. The indexes you provide in the cont our andvect or parameters
are 1-based—for example, a value of 1 for the cont our parameter indicates the first
contour, and value of 2 indicates the second contour, and so on.

Each geometric point in a geometry has a geometry index—if you consider a geometry
as a list of geometric points starting from the first geometric point of the first contour to
the last geometric point of the last contour, the geometry index of a particular geometric
point is its position in this list. For example, for a shape with two contours, the first with
10 geometric points and the second with 5 geometric points, this function would return
14 if you set the cont our parameter to 2 and the vect or parameter to 4.

For the geometric shapes with only one contour—points, lines, curves, and rectangles—
you must pass a 1 in the cont our parameter. For polygon and path shapes, the

value you provide for the cont our parameter must be greater than 0 and must be equal
to or less than the actual number of contours in the shape. Otherwise, the function posts
a cont our _out _of _range warning. Similarly, the value you provide for the vect or
parameter must be equal to or less than the actual number of geometric points in the
specified contour, or the function posts an i ndex_out _of _range_i n_cont our
warning and returns 0 as the function result.

If you provide a source shape that is an empty shape, a full shape, or a shape that is not
one of the geometric shape types, this function posts the error
graphi c_type_does_not _have nultiple_contours.

Geometric Shapes Reference 2-139

CHAPTER 2

Geometric Shapes

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
out _of _nenory
shape_is_nil

index_is | ess than_one (debugging version)
graphi c_type_does_not_contai n_points (debugging version)
graphi c_type_does_not _have nultiple_contours (debugging version)
Warnings

cont our _out _of _range
i ndex_out _of range_in_contour

For a discussion of geometric points, see the section “About Geometric Shapes”
beginning on page 2-5.

To determine the number of contours in a shape, use the GXCount ShapeCont our s
function, which is described on page 2-136.

To determine the number of geometric points in a contour, use the
GXCount ShapePoi nt s function, which is described on page 2-137.

To copy a range of geometric points from a shape’s geometry, use the
GXGet ShapePoi nt s function, which is described in the next section.

GXGetShapePoints

2-140

You can use the GXGet ShapePoi nt s function to obtain a copy of a range of geometric
points from a specified shape.

| ong GXGet ShapePoi nt s(gxShape source, |ong index, |ong count,
gxPoint data[]);

source A reference to the shape containing the desired geometric points.
i ndex The geometry index of the first geometric point to copy.
count The number of the geometric points to copy. You may provide the

gxSel ect ToEnd constant for this parameter.

dat a A pointer to an array of gxPoi nt structures. On return, this array
contains the copied points.

function result The number of geometric points copied.

Geometric Shapes Reference

DESCRIPTION

CHAPTER 2

Geometric Shapes

The GXGet ShapePoi nt s function returns in the dat a parameter a copy of the
geometric points from the source shape’s geometry starting from the geometric point
with the geometry index indicated in the i ndex parameter.

You provide, in the count parameter, the number of geometric points you want copied.
The function result is the actual number of points copied. Typically, the value you
provide for the count parameter is the same as the function result returned by this
function. There are two exceptions:

n If you provide too large a value for the count parameter—that is, the geometry of the
source shape does not have enough geometric points to satisfy your request—this
function copies as many geometric points as the shape does have (starting from the
geometric point with the geometry index indicated by the i ndex parameter). In this
case, the function posts a count _out _of _range warning, and the function result
reflects the actual number of geometric points copied.

n Similarly, if you set the count parameter to the gxSel ect ToEnd constant, the
function copies as many geometric points as the shape has, starting from the
geometric point with the geometry index indicated by the i ndex parameter. In this
case, the function result reflects the actual number of geometric points copied, but no
warning is posted.

Notice that this function returns the copied points as a single point array. If the source
shape is a polygon or path shape, the information about which contours contained the
geometric points is not retained.

If you want use the gxSel ect ToEnd constant for the count parameter, you would
typically do the following:

1. Determine the length of the point array by calling this function, passing ni | for the
dat a parameter.

2. Allocate enough memory to hold the point array.

3. Call this function again, passing a pointer to the allocated memory in the dat a
parameter.

If you provide an empty or full shape for the source shape, this function posts the error
graphi c_type_does_not _cont ai n_poi nts.

If you provide a source shape that is not one of the geometric shape types, this function
performs the actions described in the following table:

Shape type Action taken

bitmap Always returns 1 as the function result

picture Posts the error gr aphi ¢c_t ype_does_not _cont ai n_poi nts
text Always returns 1

glyph Returns the number of glyphs

layout Always returns 1

Geometric Shapes Reference 2-141

CHAPTER 2

Geometric Shapes

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
out _of _nenory
shape_is_nil

index_is | ess than_one (debugging version)
count _is | ess than_one (debugging version)
graphi c_type_does_not_contain_points (debugging version)
Warnings

i ndex_out _of _range_i n_cont our
count _out _of range

For a discussion of geometric points, see the section “Shape Geometry” beginning on
page 2-9.

To learn how this function works for typographic shape types, see Inside Macintosh:
QuickDraw GX Typography:

To determine the geometry index of a particular geometric point within a shape’s
geometry, use the GXGet Shapel ndex function, which is described on page 2-139.

To replace a range of geometric points in a geometry, use the GXSet ShapePoi nt s
function, which is described in the next section.

GXSetShapePoints

DESCRIPTION

2-142

You can use the GXSet ShapePoi nt s procedure to replace geometric points of a shape.

voi d GXSet ShapePoi nt s(gxShape target, |ong index, |ong count,
const gxPoint datal]);

tar get A reference to the shape containing the geometric points you want to
replace.

i ndex The geometry index of the first geometric point to replace.

count The number of the geometric points to replace.

dat a An array of new geometric points.

The GXSet ShapePoi nt s function changes the values of the number of geometric points
specified in the count parameter, starting with the geometric point indicated by the
i ndex parameter, to the values specified by the dat a parameter.

Notice that this function replaces geometric points on a point-by-point basis; the number
of points in the dat a parameter must match the value of the count parameter. You may
not use the gxSel ect ToEnd constant for the count parameter.

Geometric Shapes Reference

CHAPTER 2

Geometric Shapes

If you provide an empty or full shape for the source shape, this function posts the error
graphi c_type_does_not _cont ai n_poi nts.

If you provide a source shape that is not one of the geometric shape types, this function
performs the actions described in the following table:

Shape type Action taken

bitmap Sets bitmap position

picture Posts the error gr aphi ¢c_t ype_does_not _contai n_poi nts

text Sets position of text shape

glyph Sets glyph positions corresponding to range indicated by the i ndex and

count parameters
layout Sets position of layout shape

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
out _of _nmenory
shape_is_nil

i ndex_is_|ess _than_one (debugging version)
count _i s_| ess_t han_one (debugging version)
graphi c_type_does_not _contai n_poi nts (debugging version)
shape_access_not _al | owed (debugging version)
Warnings

i ndex_out _of range_in_contour
count _out _of range

For examples that use this function, see “Replacing Geometric Points” beginning on
page 2-79.

For a discussion of geometric points, see the section “Shape Geometry” beginning on
page 2-9.

To learn how this function works for typographic shape types, see Inside Macintosh:
QuickDraw GX Typography.

To determine the geometry index of a particular geometric point within a shape, use the
GXGet Shapel ndex function, which is described on page 2-139.

To obtain a copy of a range of geometric points in a geometry, use the
GXGet ShapePoi nt s function, which is described on page 2-140.

Geometric Shapes Reference 2-143

CHAPTER 2

Geometric Shapes

GXGetPolygonParts

DESCRIPTION

2-144

You can use the GXGet Pol ygonPar t s function to copy a specified range of geometric
points from the geometry of a polygon shape and then put these points into a polygon
structure.

| ong GXGet Pol ygonPart s(gxShape source, |ong index, |ong count,
gxPol ygons *dat a) ;

source A reference to the polygon shape containing the desired geometric points.
i ndex The geometry index of the first geometric point to copy.
count The number of the geometric points to copy. You may provide the

gxSel ect ToEnd constant for this parameter.
dat a A pointer to a polygon structure to hold the copied geometric information.

function result The number of bytes required to hold the information returned in the
dat a parameter.

The GXCGet Pol ygonPar t s function copies geometry information from the source
polygon shape into the polygon structure specified by the dat a parameter. This function
copies all of the geometry information starting with the geometric point indicated by the
i ndex parameter and continuing for as many geometric points as indicated by the
count parameter. This function copies the values of the indicated geometric points and
retains the information about contour breaks from the original geometry. The function
result is the length in bytes of the information returned in the dat a parameter.

Both the i ndex and the count parameters must be greater than 0, although you can
provide the gxSel ect ToEnd constant for the count parameter, which indicates that
you want a copy of all the geometric points starting with the point indicated by the

i ndex parameter.

Youmay passni | for the dat a parameter. In this case, the function still returns the byte
length as the function result, but does not copy any geometry information.

Typically, to use this function, you go through these steps:

1. Determine the byte length needed to store the copied geometry information by calling
this function, passing ni | for the dat a parameter.

2. Allocate enough memory to hold the copied geometric information.

3. Call this function again, passing a pointer to the allocated memory in the dat a
parameter.

Geometric Shapes Reference

CHAPTER 2

Geometric Shapes

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors

out _of _nenory

shape_is_nil

illegal type for_shape (debugging version)
i ndex_is_|ess _than_one (debugging version)
count _is | ess than_one (debugging version)
Warnings

i ndex_out _of _range

count _out _of range

For an example that uses this function, see “Editing Polygon Parts” beginning on
page 2-82.

For a discussion of polygons, see “Polygon Shapes” on page 2-22.
For the definition of the gxPol ygons structure, see page 2-106.

For information about other functions that allow you to extract information from shape
geometries, see the description of the GXGet ShapePoi nt s function on page 2-140 and
the description of the GXGet ShapePar t s function on page 2-152.

To replace parts of a polygon shape’s geometry, use the GXSet Pol ygonPar t s function,
which is described in the next section.

GXSetPolygonParts

You can use the GXSet Pol ygonPar t s function to replace a range of geometry
information in the geometry of a polygon shape with information from a specified
polygon structure.

voi d GXSet Pol ygonPart s(gxShape target, |ong index, |ong count,
const gxPol ygons *dat a,
gxEdi t ShapeFl ag fl ags);

t ar get A reference to the polygon shape whose geometry you want to edit.

i ndex The geometry index of the first geometric point to replace. A value of 0
indicates that the new information should be inserted after the final
geometric point in the target shape’s geometry.

count The number of the geometric points to replace. A value of 0 indicates that
no geometric points should be replaced; instead, the new information is
inserted before the geometric point indicated by the i ndex parameter. If
you pass the gxSel ect ToEnd constant for this parameter, all geometric
points starting with the geometric point indicated by the i ndex
parameter are replaced.

Geometric Shapes Reference 2-145

DESCRIPTION

2-146

CHAPTER 2

Geometric Shapes

dat a A pointer to a polygon structure containing the new geometry
information.
flags A set of flags that determine how the new information is inserted in the

existing geometry.

The GXSet Pol ygonPar t s function replaces geometry information in the target shape’s
geometry with the information pointed to by the dat a parameter. The i ndex and
count parameters determine what part of the original geometry is replaced. The f | ags
parameter determines how the new information is inserted in the geometry.

The dat a parameter contains a pointer to the geometry information to be copied into the
t ar get shape’s geometry. If you pass the gxSet ToNi | constant for this parameter, no
new information is copied in; in this case, this function removes the indicated geometric
points instead of replacing them.

The i ndex parameter indicates the first geometric point to be replaced. If you pass a
value of 0 for this parameter, no geometric points are replaced. Instead, this function
inserts the new geometry information after the last geometric point of the target shape’s
original geometry. If you pass 0 for this parameter, you must pass 0 or the

gxSel ect ToEnd constant for the count parameter.

The count parameter indicates how many geometric points in the original geometry
should be replaced. If you pass a value of 0 for this parameter, no geometric points are
replaced; instead, this function inserts the new geometry information before the
geometric point indicated by the i ndex parameter. If you pass the gxSel ect ToEnd
constant for this parameter, the function replaces all geometric points in the original
geometry starting with the geometric point indicated by the i ndex parameter.

When this function inserts the new geometry information, it retains the contour breaks
contained in the gxPol ygons structure specified by the dat a parameter. For example, if
you provide a gxPol ygons structure that contains two contours, the break between
those contours remains when the new geometric points are inserted in the target shape’s
geometry.

The f | ags parameter indicates how you want the function to merge the first geometric
point and the last geometric point of the gxPol ygons structure into the target shape’s
geometry. The possible flags are

gxBr eakNei t her Edi t =0

gxBreaklLeft Edi t = 0x01
gxBr eakRi ght Edi t = 0x02
gxRenoveDupl i cat ePoi nt's = 0x04

Geometric Shapes Reference

CHAPTER 2

Geometric Shapes

The gxBr eakNei t her Edi t value indicates that the first geometric point of the
gxPol ygons structure should be merged into the preceding contour of the target
shape’s geometry and the final geometric point of the gxPol ygons structure should be
merged into the following contour.

The gxBreakLeft Edi t flag indicates that the first geometric point of the gxPol ygons
structure should begin a new contour in the target shape’s geometry. The

gxBr eakRi ght Edi t flag indicates that the geometric point in the target shape that
follows the final geometric point of the gxPol ygons structure (after the new
information is inserted) should begin a new contour.

The gxRermoveDupl i cat ePoi nt s flag indicates that this function should, when
inserting the information from the gxPol ygons structure, remove the first geometric
point of this structure if it exactly matches the preceding geometric point. Similarly, this
flag indicates that the final geometric point of the gxPol ygons structure should be
removed if it exactly matches the subsequent geometric point in the target shape’s
geometry.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors

out _of nenory

shape_is_nil

nunber _of _poi nts_exceeds_i npl enentation_limt
nunber _of _contours_exceeds_i npl ementation_limt
si ze_of pol ygon_exceeds_inplenentation_ limt

illegal type for_shape (debugging version)
i nconsi stent_paraneters (debugging version)
i ndex_is_less_than_zero (debugging version)
count _is_less_than_zero (debugging version)
shape_access_not _al | owed (debugging version)
Warnings

i ndex_out _of range
count _out _of _range

For an example that uses this function, see “Editing Polygon Parts” beginning on
page 2-82.

For a discussion of polygons, see “Polygon Shapes” on page 2-22.
For the definition of the gxPol ygons structure, see page 2-106.

For information about other functions that allow you to edit information in shape
geometries, see the description of the GXSet ShapePoi nt s function on page 2-142 and
the description of the GXSet ShapePar t s function on page 2-154.

To copy parts of a polygon shape’s geometry, use the GXGet Pol ygonPar t s function,
which is described on page 2-144.

Geometric Shapes Reference 2-147

CHAPTER 2

Geometric Shapes

GXGetPathParts

DESCRIPTION

2-148

You can use the GXCGet Pat hPar t s function to extract a copy of a specified range of
geometric points from the geometry of a path shape and put these points into a
gxPat hs structure.

| ong GXGet Pat hPart s(gxShape source, |ong index, |ong count,
gxPat hs *dat a) ;

source A reference to the path shape containing the desired geometric points.
i ndex The geometry index of the first geometric point to copy.
count The number of geometric points to copy. You may provide the

gxSel ect ToEnd constant for this parameter.

dat a A pointer to a gxPat hs structure. On return, this structure contains the
copied geometric information.

function result The number of bytes required to hold the information returned in the
dat a parameter.

The GXCGet Pat hPar t s function copies geometry information from the source path
shape into the gxPat hs structure specified by the dat a parameter. This function copies
all of the geometry information starting with the geometric point indicated by the

i ndex parameter and continuing for as many geometric points as indicated by the
count parameter. This function copies the values of the indicated geometric points and
retains the information about contour breaks from the original geometry, as well as the
information about which points are on curve and which are off curve. The function
result is the length in bytes of the information returned in the dat a parameter.

Both the i ndex and the count parameters must be greater than 0, although you can
provide the gxSel ect ToEnd constant for the count parameter, which indicates that
you want a copy of all the geometric points starting with the geometric point indicated
by the i ndex parameter.

Youmay passni | for the dat a parameter. In this case, the function still returns the byte
length as the function result, but does not copy any geometry information.

Typically, to use this function, you go through these steps:

1. Determine the byte length needed to store the copied geometry information by calling
this function, passing ni | for the dat a parameter.

2. Allocate enough memory to hold the copied geometry information.

3. Call this function again, passing a pointer to the allocated memory in the dat a
parameter.

Geometric Shapes Reference

CHAPTER 2

Geometric Shapes

ERRORS, WARNINGS, AND NOTICES

Errors

out _of _nenory

shape_is_nil

illegal type for_shape (debugging version)
i ndex_is_|ess _than_one (debugging version)
count _is | ess than_one (debugging version)
Warnings

i ndex_out _of _range

count _out _of range

SEE ALSO
For a discussion of paths, see “Path Shapes” on page 2-25.
For the definition of the gxPat hs structure, see page 2-107.
For information about other functions that allow you to extract information from shape
geometries, see the description of the GXGet ShapePoi nt s function on page 2-140 and
the description of the GXGet ShapePar t s function on page 2-152.
To replace parts of a path shape’s geometry, use the GXSet Pat hPar t s function, which
is described in the next section.

GXSetPathParts

You can use the GXSet Pat hPar t s function to replace a range of geometric points in the
geometry of a path shape with the information from a specified gxPat hs structure.

voi d GXSet Pat hPart s(gxShape target, |ong index, |ong count,
const gxPaths *data, gxEditShapeFlag flags);

tar get A reference to the path shape whose geometry you want to edit.

i ndex The index number of the first geometric point to replace. A value of 0
indicates that the new information should be inserted after the final
geometric point in the target shape’s geometry.

count The number of the geometric points to replace. A value of 0 indicates that
no geometric points should be replaced; instead, the new information is
inserted before the geometric point specified by the i ndex parameter. If
you pass the gxSel ect ToEnd constant for this parameter, all geometric
points from the one specified by the i ndex parameter to the final
geometric point are replaced.

dat a A pointer to the gxPat hs structure containing the new geometry
information.
flags A set of flags that determine how the new information is inserted in the

existing geometry.

Geometric Shapes Reference 2-149

DESCRIPTION

2-150

CHAPTER 2

Geometric Shapes

The GXSet Pat hPar t s function replaces geometry information in the target shape’s
geometry with the information pointed to by the dat a parameter. The i ndex and
count parameters determine what part of the original geometry is replaced. The f | ags
parameter determines how the new information is inserted in the geometry.

The dat a parameter contains a pointer to the geometry information to be copied into the
target shape’s geometry. If you pass the gxSet ToNi | constant for this parameter, no
new information is copied in; in this case, the GXSet Pat hPar t s function removes the
indicated geometric points instead of replacing them.

The i ndex parameter indicates the first geometric point to be replaced. If you pass a
value of 0 for this parameter, no geometric points are replaced. Instead, this function
inserts the new geometric information after the last geometric point of the target shape’s
original geometry. If you pass 0 for this parameter, you must pass 0 or the

gxSel ect ToEnd constant for the count parameter.

The count parameter indicates how many geometric points in the original geometry
should be replaced. If you pass a value of 0 for this parameter, no geometric points are
replaced; instead, this function inserts the new geometry information before the
geometric point indicated by the i ndex parameter. If you pass the gxSel ect ToEnd
constant for this parameter, the function replaces all geometric points in the original
geometry starting with the one indicated by the i ndex parameter.

When this function inserts the new geometric information, it retains the contour breaks
contained in the gxPat hs structure specified in the dat a parameter. For example, if you
provide a gxPat hs structure that contains two contours, the break between those
contours remains when the geometric points are inserted into the target shape’s
geometry.

The f | ags parameter indicates how you want the function to merge the first geometric
point and the last geometric point of the gxPat hs structure into the target shape’s
geometry. The possible flags are

gxBr eakNei t her Edi t =0

gxBreaklLeft Edi t = 0x01
gxBr eakRi ght Edi t = 0x02
gxRenoveDupl i cat ePoi nt's = 0x04

The gxBr eakNei t her Edi t value indicates that the first geometric point of the
gxPat hs structure should be merged into the preceding contour of the target shape’s
geometry and the final geometric point of the gxPat hs structure should be merged into
the subsequent contour.

Geometric Shapes Reference

CHAPTER 2

Geometric Shapes

The gxBr eakLef t Edi t flag indicates that the first geometric point of the gxPat hs
structure should begin a new contour once inserted in the target shape’s geometry. The
gxBr eakRi ght Edi t flag indicates that the geometric point in the target shape that
follows the final geometric point of the gxPat hs structure (after the new information is
inserted) should begin a new contour.

The gxRenmoveDupl i cat ePoi nt s flag indicates that this function should, when
inserting the information from the gxPat hs structure, remove the first geometric point
of this inserted structure if it exactly matches the preceding point in the existing
geometry. Similarly, this flag indicates that the final geometric point of the gxPat hs
structure should be removed if it exactly matches the subsequent geometric point in the
target shape’s geometry.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors

out _of _nmenory

shape_is_nil

nunber _of points_exceeds_inplenentation linmt
nunber _of contours_exceeds_inplenentation_ limnt
si ze_of _pol ygon_exceeds_i npl ementation_limnit

illegal type for_shape (debugging version)
i nconsi stent _paraneters (debugging version)
index_is less than zero (debugging version)
count _is |l ess than zero (debugging version)
shape_access_not _al | owed (debugging version)
Warnings

i ndex_out _of _range
count _out _of range

For an example that uses this function, see “Editing Paths Parts” beginning on page 2-91.
For a discussion of paths, see “Path Shapes” on page 2-25.
For the definition of the gxPat hs structure, see “Path Structures” on page 2-107.

For information about other functions that allow you to edit information in shape
geometries, see the description of the GXSet ShapePoi nt s function on page 2-142 and
the description of the GXSet ShapePar t s function on page 2-154.

To copy parts of a path shape’s geometry, use the GXGet Pat hPar t s function, which is
described on page 2-148.

Geometric Shapes Reference 2-151

CHAPTER 2

Geometric Shapes

GXGetShapeParts

You can use the GXCGet ShapePar t s function to extract a copy of a specified range of
geometric points from the geometry of one shape and encapsulate it in another shape.

gxShape GXGet ShapePart s(gxShape source, |ong index, |ong count,
gxShape destination);

source A reference to the shape containing the desired geometric points.
i ndex The geometry index of the first geometric point to copy.
count The number of geometric points to copy. You may provide the

gxSel ect ToEnd constant for this parameter.

destination
A reference to the shape to encapsulate the copied geometry information.

function result A copy of the reference returned in thedest i nat i on parameter.

DESCRIPTION

The GXGet ShapePar t s function copies geometry information from the source shape
into the destination shape. This function copies all of the geometry information starting
with the geometric point indicated by the i ndex parameter and continuing for as many
geometric points as indicated by the count parameter. This function copies the values
of the indicated geometric points and retains the information about contour breaks from
the original geometry, as well as the information about which points are on curve and
which are off curve. As a convenience, the function returns as its function result a
reference to the destination shape.

Both the i ndex and the count parameters must be greater than 0, although you can
provide the gxSel ect ToEnd constant for the count parameter, which indicates that
you want a copy of all the geometric points (starting with the geometric point indicated
by the i ndex parameter) in the source shape’s geometry.

You may pass ni | for the dest i nat i on parameter. In this case, the function creates a
new shape of the appropriate type and encapsulates the extracted geometry information
in this new shape.

2-152 Geometric Shapes Reference

CHAPTER 2

Geometric Shapes

If the source shape is one of the geometric shape types, this function returns a geometric
shape type, as described in the following table:

Shape type Action taken

empty Returns an empty shape

full Returns a full shape

point Returns a point shape

line Returns a point or a line shape, depending on the number of geometric

points copied

curve Returns a point, line, or curve shape, depending on the number of
geometric points copied

rectangle Returns a point or a rectangle shape, depending on the number of
geometric points copied

polygon Always returns a polygon shape, even if only one or two geometric
points are copied

path Always returns a path shape, even if only one, two, or three geometric
points are copied

If you provide a source shape that is not one of the geometric shape types, this function
performs the actions described in the following table:

Shape type Action taken

bitmap Postsshape_operat or _nmay_not be_a_bi t map error
picture Returns the number of picture items

text Returns the number of glyphs

glyph Returns the number of glyphs

layout Returns the byte length of the text

SPECIAL CONSIDERATIONS

If you passni | for the desti nati on parameter and no error results, the

GXGet ShapePar t s function creates a shape; you are responsible for disposing of this
shape when you no longer need it. See Inside Macintosh: QuickDraw GX Objects for
information about creating and disposing of objects.

Geometric Shapes Reference 2-153

CHAPTER 2

Geometric Shapes

ERRORS, WARNINGS, AND NOTICES

Errors
out _of _nenory
shape_is_nil

i ndex_is | ess _than_one (debugging version)
count _is | ess than_one (debugging version)
Warnings

shape_operat or _may_not _be_a bitmap
i ndex_out _of _range
count _out _of range

SEE ALSO

For information about other functions that allow you to extract information from shape

geometries, see the description of the GXGet ShapePoi nt s function on page 2-140, the

description of the GXGet Pol ygonPar t s function on page 2-144, and the description of

the GXGet Pat hPar t s function on page 2-148.

To replace parts of a shape’s geometry, use the GXSet ShapePar t s function, which is

described in the next section.

GXSetShapeParts

You can use the GXSet ShapePar t s function to replace a range of geometric points in a

shape’s geometry with the information in another shape’s geometry.

voi d GXSet ShapePart s(gxShape target, |ong index, |ong count,

gxShape insert, gxEditShapeFlag flags);

tar get A reference to the shape whose geometry you want to edit.

i ndex The geometry index of the first geometric point to replace. A value of 0
indicates that the new information should be inserted after the final
geometric point in the target shape’s geometry.

count How many geometric points to replace. A value of 0 indicates that no
geometric points should be replaced; instead, the new information is
inserted before the geometric point specified by the i ndex parameter. If
you pass the gxSel ect ToEnd constant for this parameter, all geometric
points from the one specified by the i ndex parameter to the final one are
replaced.

i nsert A reference to the shape whose geometry you want to insert. You may
specify the gxSet ToNi | constant for this parameter to indicate that you
want to delete points from the target shape’s geometry.

fl ags A set of flags that determine how the new geometry information is
inserted in the t ar get shape’s geometry.

2-154 Geometric Shapes Reference

DESCRIPTION

CHAPTER 2

Geometric Shapes

The GXSet ShapePart s function replaces geometry information in the target shape’s
geometry with the geometry information in the shape specified by the i nsert
parameter. The i ndex and count parameters determine what part of the original
geometry is replaced. The f | ags parameter determines how the new information is
inserted in the geometry.

This function converts the shape type of the target shape to be suitable to hold the
information from the inserted shape. For example, if the target shape is a line and the
inserted shape is a rectangle, this function converts the target shape to a polygon shape
before inserting the rectangle.

If the target shape is a rectangle, you may only insert information before both geometric
points, after both geometric points, or in place of both geometric points.

You may add any shape to an empty target shape—the result will be identical to the
inserted shape. You may also add any shape to a full target shape, but the result will also
be a full shape.

The i ndex parameter indicates the first geometric point to be replaced. If you pass a
value of 0 for this parameter, no geometric points are replaced. Instead, this function
inserts the new geometry information after the last geometric point of the target shape’s
original geometry. If you pass a 0 for this parameter, you must pass a 0 or the

gxSel ect ToEnd constant for the count parameter.

The count parameter indicates how many geometric points in the original geometry
should be replaced. If you pass a value of 0 for this parameter, no geometric points are
replaced; instead, this function inserts the new geometry information before the
geometric point indicated by the i ndex parameter. If you pass the gxSel ect ToEnd
constant for this parameter, the function replaces all geometric points in the original
geometry starting with the geometric point indicated by the i ndex parameter.

When this function inserts the new geometry information, it retains the contour breaks
contained in the inserted shape’s geometry. For example, if you provide a path shape for
the inserted shape that contains two contours, the break between those contours remains
when the geometric points are inserted into the target shape’s geometry.

The f | ags parameter indicates how you want the function to merge the first geometric
point and the last geometric point of the inserted shape’s geometry into the target
shape’s geometry. The possible flags are:

gxBreakNei t her Edi t =0

gxBreaklLeft Edi t = 0x01
gxBr eakRi ght Edi t = 0x02
gxRenoveDupl i cat ePoi nt's = 0x04

The gxBr eakNei t her Edi t value indicates that the first geometric point of the inserted
shape’s geometry should be merged into the preceding contour of the target shape’s
geometry and the final geometric point of the inserted shape’s geometry should be
merged into the subsequent contour.

Geometric Shapes Reference 2-155

CHAPTER 2

Geometric Shapes

The gxBr eakLef t Edi t flag indicates that the first geometric point of the inserted
shape’s geometry should begin a new contour once inserted in the t ar get shape’s
geometry. The gxBr eakRi ght Edi t flag indicates that the geometric point in the target
shape that follows the final geometric point of the inserted shape’s geometry (after the
new information is inserted) should begin a new contour.

The gxRenmoveDupl i cat ePoi nt s flag indicates that this function should, when
inserting the information from the inserted shape’s geometry, remove the first geometric
point of this inserted geometry if it exactly matches the preceding point in the existing
geometry. Similarly, this flag indicates that the final geometric point of the inserted
shape’s geometry should be removed if it exactly matches the subsequent geometric
point in the target shape’s geometry.

If you provide a source shape that is a full shape, this function returns a full shape in the
desti nati on parameter.

If you provide a source shape that is not one of the geometric shape types, this function
performs the actions described in the following table:

Shape type Action taken

bitmap Posts the error shape_operat or_nay_not _be_a bitmap
picture Calls the GXSet Pi ct ur ePar t s function

text Calls the GXSet Text Par t s function

glyph Calls the GXSet G yphPart s function

layout Calls the GXSet Layout Par t s function

ERRORS, WARNINGS, AND NOTICES

2-156

Errors
out _of nenory
shape_is_nil

i ndex_i s_| ess_t han_one (debugging version)
count _is_|less_than_one (debugging version)
functionality_uninpl enent ed (debugging version)
rectangl es_cannot _be inserted into (debugging version)
shape_operator_may_not _be_a bitmap (debugging version)
shape_access_not _al | owed (debugging version)
Warnings

i ndex_out _of _range
count _out _of range
pi cture_cannot _contain_itself

Notices
par anet ers_have_no_ef f ect (debugging version)

Geometric Shapes Reference

SEE ALSO

CHAPTER 2

Geometric Shapes

For an example of this function, see “Editing Shape Parts” beginning on page 2-93.

To learn how this function works for typographic shape types, see Inside Macintosh:
QuickDraw GX Typography:

For information about other functions that allow you to edit information in shape
geometries, see the description of the GXSet ShapePoi nt s function on page 2-142, the
description of the GXSet Pol ygonPar t s function on page 2-145, and the description of
the GXSet Pat hPar t s function on page 2-149.

To copy parts of a shape’s geometry, use the GXGet ShapePar t s function, which is
described on page 2-152.

Drawing Geometric Shapes

The QuickDraw GX drawing functions compile all of the information in a shape’s
properties, and the properties of its style, ink, and transform objects, and produce a
graphic image. Therefore, to understand how these functions draw geometric shapes,
you need to be familiar with much of the information in Inside Macintosh: QuickDraw GX
Objects, as well as much of the information in this chapter and in the next chapter,
“Geometric Styles.” The function descriptions in this section give an overview of the
process these functions use to draw geometric shapes.

If you want to draw a geometric shape without creating a shape object—that is, just
given a geometry—you can use the GXDr awPoi nt , GXDr awLi ne, GXDr awCur ve,

GXDr awRect angl e, GXDr awPol ygons, or GXDr awPat hs functions, which are
described in this section. These functions create a shape object, initialize it, draw it, and
dispose of it; therefore, they do not take advantage of the QuickDraw GX caching
mechanism. You should make limited use of these functions—for example, you could
use one of these functions if you wanted to draw a particular shape drawn only once.

To draw a shape once you have created a shape object and modified its properties to suit
your needs, you can use the GXDr awShape function. This function draws all shape
types, and is described in the chapter “Shape Objects” in Inside Macintosh: QuickDraw GX
Objects.

When debugging your application, you can use the GXGet Dr awkr r or function, which
is described in the chapter “QuickDraw GX Debugging” in Inside Macintosh:
QuickDraw GX Environment and Utilities, for hints when a shape fails to draw as expected.

Geometric Shapes Reference 2-157

CHAPTER 2

Geometric Shapes

GXDrawPoint

DESCRIPTION

You can use the GXDr awPoi nt function to draw a point without creating a point shape.
voi d GXDr awPoi nt (const gxPoi nt *data);

dat a A pointer to the point geometry you want to draw.

The GXDr awPoi nt function draws the point geometry specified by the dat a parameter,
using the shape fill, style, ink, and transform of the default point shape.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
out _of nenory
parameter _is_nil (debugging version)

For examples using this function, see “Creating and Drawing Points” beginning on
page 2-29.

For more information about points and the default point shape, see “Point Shapes” on
page 2-16.

For the definition of the gxPoi nt structure, see page 2-104.

For more information about drawing shapes, see the description of the GXDr awShape
function in the chapter “Shape Objects” in Inside Macintosh: QuickDraw GX Objects.

GXDrawLine

DESCRIPTION

2-158

You can use the GXDr awLi ne function to draw a line without creating a line shape.
voi d GXDr awLi ne(const gxLi ne *data);

dat a A pointer to the line geometry you want to draw.

The GXDr awLi ne function draws the line geometry specified by the dat a parameter,
using the shape fill, style, ink, and transform of the default line shape.

Geometric Shapes Reference

CHAPTER 2

Geometric Shapes

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
out _of _nenory
paraneter_is_nil (debugging version)

For examples using this function, see “Creating and Drawing Lines” beginning on
page 2-36.

For more information about lines and the default line shape, see “Line Shapes” on
page 2-17.

For the definition of the gxLi ne structure, see page 2-105.

For more information about drawing shapes, see the description of the GXDr awShape
function in the chapter “Shape Objects” in Inside Macintosh: QuickDraw GX Objects.

GXDrawCurve

DESCRIPTION

You can use the GXDr awCur ve function to draw a curve without creating a curve shape.
voi d GXDr awCur ve(const gxCurve *data);

dat a A pointer to the curve geometry you want to draw.

The GXDr awCur ve function draws the curve geometry specified by the dat a parameter,
using the shape fill, style, ink, and transform of the default curve shape.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
out _of _nenory
paraneter_is_nil (debugging version)

For examples using this function, see “Creating and Drawing Curves” beginning on
page 2-41.

For more information about curves and the default curve shape, see “Curve Shapes” on
page 2-18.

For the definition of the gxCur ve structure, see page 2-105.

For more information about drawing shapes, see the description of the GXDr awShape
function in the chapter “Shape Objects” in Inside Macintosh: QuickDraw GX Objects

Geometric Shapes Reference 2-159

CHAPTER 2

Geometric Shapes

GXDrawRectangle

DESCRIPTION

You can use the GXDr awRect angl e function to draw a rectangle without creating a
rectangle shape.

voi d GXDr awRect angl e(const gxRectangl e *data, gxShapeFill fill);

dat a A pointer to the rectangle geometry you want to draw.
fill The shape fill to use when drawing the rectangle.

The GXDr awRect angl e function draws the rectangle geometry specified by the dat a
parameter, using the shape fill specified by the fi | | parameter, and the style, ink, and
transform of the default rectangle shape.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

2-160

Errors

out _of nenory

parameter _is_nil (debugging version)
shapeFill _is_not_all owed (debugging version)

For examples using this function, see “Creating and Drawing Rectangles” beginning on
page 2-43.

For more information about rectangles and the default rectangle shape, see “Rectangle
Shapes” on page 2-20.

For the definition of the gxRect angl e structure, see page 2-106.

For more information about drawing shapes, see the description of the GXDr awShape
function in the chapter “Shape Objects” in Inside Macintosh: QuickDraw GX Objects.

Geometric Shapes Reference

CHAPTER 2

Geometric Shapes

GXDrawPolygons

DESCRIPTION

You can use the GXDr awPol ygons function to draw polygon contours without creating
a polygon shape.

voi d GXDr awPol ygons(const gxPol ygons *data, gxShapeFill fill);

dat a A pointer to the polygon geometry you want to draw.
fill The shape fill to use when drawing the polygon contours.

The GXDr awPol ygons function draws the polygon geometry specified by the dat a
parameter, using the shape fill specified by the fi | | parameter, and the style, ink, and
transform of the default polygon shape.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
out _of nenory
parameter _is_nil (debugging version)

For more information about polygons and the default polygon shape, see “Polygon
Shapes” on page 2-22.

For the definition of the gxPol ygons structure, see page 2-106.

For examples using this function, see “Creating and Drawing Polygons” beginning on
page 2-45.

For more information about drawing shapes, see the description of the GXDr awShape
function in the chapter “Shape Objects” in Inside Macintosh: QuickDraw GX Objects.

Geometric Shapes Reference 2-161

CHAPTER 2

Geometric Shapes

GXDrawPaths

DESCRIPTION

You can use the GXDr awPat hs function to draw path contours without creating a path
shape.

voi d GXDr awPat hs(const gxPat hs *data, gxShapeFill fill);

dat a A pointer to the path geometry you want to draw.
fill The shape fill to use when drawing the path contours.

The GXDr awPat hs function draws the path geometry specified by the dat a parameter,
using the shape fill specified by the fi I | parameter, and the style, ink, and transform of
the default path shape.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

2-162

Errors
out _of nenory
parameter _is_nil (debugging version)

For more information about paths and the default path shape, see “Path Shapes” on
page 2-25.

For the definition of the gxPat hs structure, see page 2-107.

For examples using this function, see “Creating and Drawing Paths” beginning on
page 2-55.

For more information about drawing shapes, see the description of the GXDr awShape
function in the chapter “Shape Objects” in Inside Macintosh: QuickDraw GX Objects.

Geometric Shapes Reference

CHAPTER 2

Geometric Shapes

Summary of Geometric Shapes

Constants and Data Types

The Point Structure

struct gxPoint {
Fi xed X;
Fi xed Y;
b

The Line Structure

struct gxLine {
struct gxPoint first;
struct gxPoint |ast;

H

The Curve Structure

struct gxCurve {
struct gxPoint first;
struct gxPoint control
struct gxPoint |ast;

H

The Rectangle Structure

struct gxRectangle {
Fi xed left;
Fi xed top;
Fi xed right;
Fi xed bott om

Summary of Geometric Shapes

2-163

CHAPTER 2

Geometric Shapes

Polygon Structures

struct gxPol ygon {
| ong vectors;
struct gxPoi nt vector[gxAnyNunber];

H

struct gxPol ygons {
| ong cont ours;
struct gxPol ygon cont our[gxAnyNunber] ;

b

Path Structures

struct gxPath {
| ong vect ors;
| ong control Bi t s[gxAnyNunber] ;
struct gxPoi nt vector[gxAnyNumber];

H

struct gxPaths {
| ong cont ours;
struct gxPath contour[gxAnyNumber];

b

Functions

Creating Geometric Shapes

gxShape GXNewPoi nt (const gxPoint *data);
gxShape GXNewli ne (const gxLine *data);
gxShape GXNewCurve (const gxCurve *data);
gxShape GXNewRect angl e (const gxRectangle *data);
gxShape GXNewPol ygons (const gxPol ygons *dat a) ;
gxShape GXNewPat hs (const gxPaths *data);

2-164 Summary of Geometric Shapes

CHAPTER 2

Geometric Shapes

Getting and Setting Shape Geometries
gxPoi nt * GXGet Poi nt

voi d

GXSet Poi nt

gxLi ne *GXGet Li ne

voi d

GXSet Li ne

gxCurve *GXGet Curve

voi d

gxRect angl e *GXGet Rect angl e

voi d
| ong
voi d
| ong
voi d

GXSet Curve

GXSet Rect angl e
GXGet Pol ygons
GXSet Pol ygons
GXGet Pat hs
GXSet Pat hs

Editing Shape Geometries

| ong
| ong
| ong
| ong

voi d

| ong

voi d

| ong

voi d

GXCount ShapeCont our s
GXCount ShapePoi nt s
GXGet Shapel ndex
GXGet ShapePoi nt s

GXSet ShapePoi nt s

GXGet Pol ygonPart s

GXSet Pol ygonPart s

GXGet Pat hParts

GXSet Pat hPart s

gxShape GXGet ShapeParts

voi d

GXSet ShapePart s

(gxShape source, gxPoint *data);
(gxShape target, const gxPoint *data);
(gxShape source, gxLine *data);
(gxShape target, const gxLine *data);
(gxShape source, gxCurve *data);
(gxShape target, const gxCurve *data);

(gxShape source, gxRectangle *data);
(gxShape target, const gxRectangle *data);
(gxShape source, gxPolygons *data);
(gxShape target, const gxPol ygons *data);
(gxShape source, gxPaths *data);

(gxShape target, const gxPaths *data);

(gxShape source);
(gxShape source, |ong contour);
(gxShape source, |long contour, |ong vector);

(gxShape source, |ong index, |ong count,
gxPoint data[]);

(gxShape target, long index, |ong count,
const gxPoint data[]);

(gxShape source, long index, |ong count,
gxPol ygons *dat a);

(gxShape target, long index, |ong count,
const gxPol ygons *dat a,

gxEdi t ShapeFl ag fl ags);

(gxShape source, long index, |ong count,
gxPat hs *data);

(gxShape target, long index, |ong count,
const gxPat hs *data, gxEditShapeFl ag fl ags);
(gxShape source, |ong index, |ong count,
gxShape destination);

(gxShape target, long index, |ong count,
gxShape insert, gxEditShapeFl ag fl ags);

Summary of Geometric Shapes

2-165

CHAPTER 2

Geometric Shapes

Drawing Geometric Shapes

voi d GXDr awPoi nt
voi d GXDr awLi ne

voi d GXDr awCurve

voi d GXDr awRect angl e
voi d GXDr awPol ygons
voi d GXDr awPat hs

(const
(const
(const
(const
(const
(const

2-166 Summary of Geometric Shapes

gxPoi nt *data);

gxLi ne *dat a);

gxCurve *data);

gxRectangl e *data, gxShapeFill fill);
gxPol ygons *data, gxShapeFill fill);
gxPat hs *data, gxShapeFill fill);

CHAPTER 3

Geometric Styles

Contents

About Geometric Styles 3-5
Shapes and Styles 3-5
Incorporating Stylistic Variations Into Shape Geometries 3-8
Style Properties 3-11
Default Style Objects 3-12
Curve Error 3-14
The Geometric Pen 3-15
Style Attributes 3-17
Pen Placement 3-18
Grids 3-20
Interactions Between Caps, Joins, Dashes, and Patterns 3-22
Caps 3-23
Joins 3-25
Dashes 3-27
Patterns 3-31
Interactions Between Caps, Joins, Dashes, and Patterns 3-33
Using Geometric Styles 3-35
Associating Styles With Shapes 3-36
Constraining Shape Geometries to Grids 3-40
Constraining Shapes to Device Grids 3-42
Using Curve Error When Converting Paths to Polygons 3-45
Using Curve Error When Reducing Shapes 3-49
Manipulating Pen Width and Placement 3-51
Adding Caps to a Shape 3-57
Adding Standard Caps to a Shape 3-59
Adding Joins to a Shape 3-61
Adding Standard Joins to a Shape 3-64
Dashing a Shape 3-66
Adjusting Dashes to Fit Contours 3-70
Insetting Dashes 3-73

Contents 3-1

3-2

CHAPTER 3

Breaking and Bending Dashes 3-74
Wrapping Text to a Contour 3-80
Determining Dash Positions 3-81
Adding a Pattern to a Shape 3-86
Determining Pattern Positions 3-88

Combining Caps, Joins, Dashes, and Patterns
Geometric Styles Reference 3-96
Constants and Data Types 3-96
Style Objects 3-97
Style Attributes 3-98
The Cap Structure 3-99

Cap Attributes 3-101

The Join Structure 3-101

Join Attributes 3-102
The Dash Structure 3-
Dash Attributes 3-105
The Pattern Structure

103

3-106

Pattern Attributes 3-107
Functions 3-108
Getting and Setting Style Attributes 3-109
GXGet Styl eAttri butes 3-109
GXSet Styl eAttri butes 3-110
GXGet ShapeStyl eAttri butes 3-112
GXSet ShapeStyl eAttri butes 3-113
Getting and Setting Curve Error 3-114
GXGet St yl eCurveError 3-115
GXSet St yl eCur veError 3-116
GXGet ShapeCur veErr or 3-117
GXSet ShapeCur veEr r or 3-118
Getting and Setting the Pen Width 3-119
GXGet St yl ePen 3-119
GXSet St yl ePen 3-120
GXGet ShapePen 3-121
GXSet ShapePen 3-122
Getting and Setting Caps 3-123
GXCGet St yl eCap 3-124
GXSet St yl eCap 3-125
GXGet ShapeCap 3-126
GXSet ShapeCap 3-128
Getting and Setting Joins 3-129
GXCGet St yl eJoi n 3-129
GXSet St yl eJoin 3-130
GXGet ShapeJoi n 3-132
GXSet ShapeJoi n 3-133
Getting and Setting Dashes 3-134
GXGet St yl eDash 3-135
GXSet St yl eDash 3-136

Contents

3-91

CHAPTER 3

GXGet ShapeDash 3-138

GXSet ShapeDash 3-139

GXGet ShapeDashPosi ti ons 3-140
Getting and Setting Patterns 3-142

GXGet Styl ePattern 3-142

GXSet Styl ePattern 3-144

GXGet ShapePat t ern 3-145

GXSet ShapePatt ern 3-146

GXGet ShapePat t er nPosi ti ons 3-147

Summary of Geometric Styles 3-149

Constants and Data Types 3-149
Functions for Manipulating Geometric Style Properties

Contents

3-151

3-3

CHAPTER 3

Geometric Styles

This chapter describes the geometric properties of style objects, which you can use to
apply certain types of stylistic variations to QuickDraw GX shapes. In particular, this
chapter shows how you can

n constrain the drawing of a shape to a grid

n specify the pen width to use when drawing a shape’s frame

n indicate the placement of the pen relative to the shape’s frame

n specify what to draw at the beginnings and the ends of a shape’s contours
n specify what to draw at the corners of a shape’s contours

n dash the contours of a shape

n fill a shape, or the frame of a shape, with a pattern

You can also apply stylistic variations to typographic shapes, using the typographic
properties of the style object. For example, you can use the style associated with a text
shape to specify the text’s font, font size, and type style. The chapter “Typographic
Styles” in Inside Macintosh: QuickDraw GX Typography discusses the text-related
properties of style objects.

You should be familiar with some of the information in Inside Macintosh: QuickDraw GX
Objects before you read this chapter; in particular, you should read the chapters
“Introduction to QuickDraw GX Objects” and “Style Objects” in that book.

About Geometric Styles

A style is a group of stylistic variations applied to a shape. QuickDraw GX provides two
major categories of stylistic variations: geometric variations, which include pen width,
dashes, patterns, and so on, and typographic variations, which include font, font size,
typestyle, and so on.

Both types of stylistic variation are encapsulated in a style object. Like a shape object, a
style object is a data structure that you manipulate with functions provided by
QuickDraw GX. Each style object has a group of properties, and each style property
represents a different stylistic variation.

Shapes and Styles

In general, a shape object is an object with a group of properties that describe a
geometry; a style object is an object with a group of properties that affect how
QuickDraw GX interprets a shape’s geometry during drawing.

About Geometric Styles 3-5

CHAPTER 3

Geometric Styles

Every QuickDraw GX shape object contains a reference to a style object. Figure 3-1
shows the properties of a style object. In this figure, the geometric properties—those that
apply primarily to geometric shapes—are highlighted. These properties are discussed in
this chapter. The other style properties are shown in gray. These include

n the typographic style properties (those that apply primarily to typographic shapes),
which are described in the chapter “Typographic Styles” in Inside Macintosh:
QuickDraw GX Typography

n the style properties common to all objects, (owner count and tag list), which are
described in the chapter “Style Objects” in Inside Macintosh: QuickDraw GX Objects

Figure 3-1 Style object with geometric properties highlighted

3-6

73.....

Par widh e Run confrabe
Cap Textface Ferrirg aduetments armyr
Jain Tt wize Ayph subediione arrayr
Dzeh HMlignin ent Fun fezburs e amar
Patem Fontwanztiorse | Pricridr jueficaion
oiremide
Lrine &rror Encoding
yph juediicaion
At s Teaxt athibuies oiremide e ATF
Craner count
ity

About Geometric Styles

CHAPTER 3

Geometric Styles

As Figure 3-2 depicts, a single style object can be shared by multiple shape objects.

Figure 3-2 Shared style objects

Rechuag be = ape

g

Par widh = 100

Cap=ndl

e §

[eeh =ndl

Patern=xdl

Currsamor = 00

Atribuies = default

A draran

B draran

A geometric shape and a typographic shape can reference the same style object. The
geometric shape uses the geometric style properties, which are described in this chapter,
while the typographic shape uses the typographic style properties, which are described
in the chapter “Typographic Styles” in Inside Macintosh: QuickDraw GX Typography.

About Geometric Styles

3-7

3-8

CHAPTER 3

Geometric Styles

QuickDraw GX typically handles style sharing for you. The section “Default Style
Objects” on page 3-12 and the section “Associating Styles With Shapes” on page 3-36
describe the default style sharing behavior implemented by QuickDraw GX and how
you can override this behavior.

As with all QuickDraw GX objects, a style object has an owner count, which reflects the
number of existing references to the style object. When a new reference to a style object is
created, the owner count of the style object is incremented; when a reference to a style
object goes away, the owner count of the style object is decremented. When a style object
has an owner count of 0, QuickDraw GX can free the memory used by the style object.

References to style objects typically include those contained in shape objects and those
contained in variables in your application. QuickDraw GX manages the owner counts
corresponding to references in shape objects for you; you are responsible for managing
the owner counts corresponding to variables in your application. The chapter
“Introduction to QuickDraw GX Objects” in Inside Macintosh: QuickDraw GX Objects
explains owner counts and owner count management in more detail.

Incorporating Stylistic Variations Into Shape Geometries

When you draw a shape, QuickDraw GX applies the information in the style object of
the shape to the shape’s geometry. For example, style objects contain a pen width
property, described in full later in this chapter. When you draw a line shape,
QuickDraw GX draws the line with the width specified in the pen width property of the
style object associated with the line shape. As drawn, the thick line looks like a filled
polygon. However, even after drawing the line shape, the shape still contains a line
geometry.

QuickDraw GX provides a mechanism for incorporating the stylistic variations
contained in a style object directly into the geometry of a shape object. This mechanism is
the GXPri m ti veShape function, which is described in full in the next chapter,
“Geometric Operations.”

If you make changes to a shape’s style object and then call the GXPri m t i veShape
function, QuickDraw GX changes the shape’s shape type, shape fill, and shape geometry
to incorporate the new stylistic variations. Basically, the same process that happens when
drawing the shape happens directly to the shape’s geometry.

For example, Figure 3-3 shows a line shape. If you alter the style of this line shape to
include a pen width of 10, the line shape effectively becomes a filled polygon shape.

If you were to apply the GXPri mi ti veShape function to this thick line shape, the
GXPri m ti veShape function would change the shape type to the polygon type, the
shape fill to even-odd shape fill, and the shape geometry to a list of the four geometric
points that define the polygon, as shown in Figure 3-3.

Another example, the result of applying the GXPr i mi t i veShape function to a framed
rectangle with a thick pen width is shown in Figure 3-4. In this case, the result of the
GXPri m ti veShape function is a filled polygon shape with two contours: an inside
contour and an outside contour.

About Geometric Styles

CHAPTER 3

Geometric Styles

Figure 3-3 Effects of the GXPri ni ti veShape function on a line shape

S

- rgnal line geom ety L dravn

Par wadh = 1010
Cap=ndl

B ba e Join=ndl
Dash=nil
Patern=nil

Cmarear count

Tiag et

Curre arror = 000

Strbortes = dafault

. Prrim ifive polirgen e dravn
o e

I8 Sty obpct
Par, widh = 100
Cap=ndl

Ok e Join=ndl
Dash=nil
Patern=xnil

Cmarer count

Tz et

e arpor = 000

Atrbortes = default

About Geometric Styles

CHAPTER 3

Geometric Styles

Figure 3-4 Effects of the GXPri mi ti veShape function on a rectangle shape

o0 Origiral rechinge B draan
' geoin edy

'8 Sty objct
Par widh = 100
Cap=nil

Oiriba e Join=ndl
Dash=nil
Patern=mnil

Cmarear count

Tag e

Cure arror = 000

Atrbotes = dafault

o Prim ifire podirgon o 2
qec ey

I8 Sty obect
Par widh = 100
Cap=nil

Stribatee Join=ndl

Cmarer count Dash=mil
Patern=mnil

Tz Wt

e arror = 000

Atribortes = default

3-10 About Geometric Styles

CHAPTER 3

Geometric Styles

Notice that the GXPri m ti veShape function does not affect the style object of the
shape: it merely incorporates the existing style information into the geometry of
the shape.

The result of calling the GXPr i i ti veShape function is called a primitive shape, or a
shape in its primitive form. Primitive shapes include

n empty shapes and full shapes, which are described in Chapter 3, “Geometric Shapes”

n filled rectangle, polygon, and path shapes, which are also described in Chapter 3,
“Geometric Shapes”

n hairline framed shapes, which are described on page 3-16
n glyph shapes, which are described in Inside Macintosh: QuickDraw GX Typography
n bitmap shapes, which are described in Chapter 5, “Bitmap Shapes”

QuickDraw GX uses primitive shapes for caps, joins, dashes, and patterns, which are
discussed throughout the rest of this chapter, and for clip shapes, which are discussed in
the chapter “Transform Objects” in Inside Macintosh: QuickDraw GX Objects.

Style Properties

Like most QuickDraw GX objects, each style object has an owner count and a list of tags.
These properties are described in detail in the chapter “Introduction to QuickDraw GX
Objects” in Inside Macintosh; QuickDraw GX Objects.

In addition to the owner count and the tag list, each style object contains properties that
primarily affect the drawing of geometric shapes and properties that primarily affect the
drawing of typographic shapes.

The style properties that primarily affect geometric shapes include the following:

n Curve error. This property specifies the allowable amount of error when
QuickDraw GX converts a path shape into a polygon shape. It also specifies how far
apart geometric points must be for QuickDraw GX to consider them separate points
when simplifying or reducing a shape.

n Pen width. This property specifies the width of the pen QuickDraw GX uses to draw
the contours of a shape.

n Style attributes. This property is a group of flags that allow you to specify how
QuickDraw GX places the pen with respect to a shape’s geometry and whether the
shape should be constrained to a grid when drawn.

n Caps. This property specifies what QuickDraw GX should draw at the start and the
end of a shape’s contours. QuickDraw GX allows you to use any geometric shape (for
example, a polygon shaped like an arrow head) as a start cap or end cap.

n Join. This property specifies what QuickDraw GX should draw at the corners of a
shape’s contours. QuickDraw GX provides two standard join types (one for round
corners and one for sharp corners), although QuickDraw GX allows you to specify
any geometric shape as a join.

About Geometric Styles 3-11

CHAPTER 3

Geometric Styles

n Dash. This property specifies how QuickDraw GX should dash the contours of a
shape. As with caps and joins, you can specify any geometric shape to dash the frame
another shape. However, you can also dash a shape with glyphs, which gives the
effect of fitting text to a shape’s frame.

n Pattern. This property specifies how QuickDraw GX should fill the geometry of a
shape. You can use geometric shapes, glyphs shapes, or bitmap shapes as patterns.

The sections “Curve Error” on page 3-14, “The Geometric Pen” on page 3-15, “Style
Attributes” on page 3-17, and “Interactions Between Caps, Joins, Dashes, and Patterns”
on page 3-22 discuss these style properties in more detail.

The typographic style properties, which include font, text size, text face, and so on, are
described in Inside Macintosh: QuickDraw GX Typography.

Default Style Objects

When you call the GXNewSt yI e function, which is described in the chapter “Style
Objects” in Inside Macintosh: QuickDraw GX Objects, QuickDraw GX creates and returns a
new style object. All of the new style object’s properties are set to standard initial values.
Once you have created a new style object, you can change the values of its properties,
but you cannot change the behavior of the GXNewsSt y| e function itself; it always returns
a style object with these values for the geometric style properties:

n owner count: 1
n tag list: no tags
n style attributes: no attributes
n curve error: 0.0
n pen width: 0.0

n cap
n cap attributes: no attributes
n start cap: none
n end cap: none

n join
n join attributes: no attributes
n join: none
n join miter: Fi xed1

3-12 About Geometric Styles

CHAPTER 3

Geometric Styles

n dash
n dash attributes: no attributes
n dash: none
n dash advance: 0.0
n dash phase: 0.0
n dash scale: Fi xed1

n pattern
n pattern attributes: no attributes
n pattern: none
n pattern grid: (0.0,0.0), (0.0,0.0)

The chapter “Typographic Styles” in Inside Macintosh: QuickDraw GX Typography
discusses the default style values for the typographic style properties.

Although you cannot change the behavior of the GXNewSt yl e function, QuickDraw GX
provides another method for creating new style objects—a method that you can modify.
When you create a new shape with the GXNewShape function, QuickDraw GX returns a
copy of the default shape of the requested type. Since you can change the default shapes,
you can also change the style objects that they reference.

Initially, all of the default shape objects reference the same style object. Whenever you
create a new shape, it, too, references this style object. There are two ways in which you
can change the style object associated with a new shape:

n You can call a function such as GXSet ShapePen, which makes a copy of the style
object specifically for your new shape before changing its pen width.

n You can obtain a reference to your new shape’s style object by calling
the GXCGet ShapeSt yl e function, and then you can call a function such as
GXSet St yl ePen, which does not make a copy of the style object. Instead, it affects
the style object directly, which, in effect, changes the default style for all the default
shapes.

By calling functions such as GXSet ShapePen on each of the default shapes, you can
create a different style object for each default shape. See the chapter “Shape Objects” in
Inside Macintosh: QuickDraw GX Objects for more information about default shapes.

About Geometric Styles 3-13

3-14

CHAPTER 3

Geometric Styles

Curve Error

Curve error is the only geometric style property that doesn’t affect the drawing of a
shape; instead, it affects the geometric points of the shape’s geometry when performing
geometric operations, shape type conversions, and shape simplifications. The curve error
property determines how far away two points must be for QuickDraw GX to consider
them as separate points in these cases:

n

Geometric operations. QuickDraw GX guarantees that the results of the geometric
operations described in the chapter “Geometric Operations” in this book, such as

GXI nt er sect Shape or GXUni onShape, have no two points closer than the value of
the curve error of the target shape.

Insetting shapes. A special case of geometric operation, the GXI nset Shape function,
which is described in the chapter “Geometric Operations” in this book, can produce
results with an unusually large number of geometric points. Because the inset of a
quadratic Bézier curve is not a quadratic Bézier curve itself, multiple insets of tight
curve shapes can cause the number of geometric points to grow dramatically. As with
the other geometric operations, the result of the GXI nset Shape function has no two
consecutive points closer than the value of the curve error of the target shape.

Path to polygon conversions. The curve error also determines the maximum error
when converting a path shape to a polygon (for example, with the code

GXSet ShapeType (aPat hShape, gxPol ygonType)). The distance between the
original path and the resulting polygon is always less than the value of the curve
error. If the curve error is 0, QuickDraw GX performs the path to polygon conversion
simply by removing all off-curve control points, which gives a fairly rough
approximation.

Shape simplifications. The functions GXReduceShape and GXSi npl i f yShape,
which are described in more detail the chapter “Geometric Operations” in this book,
perform a number of simplifications on shapes (for example, removing geometric
points unnecessary to the geometry and unwinding crossed contours). In addition to
their other simplifications, these functions remove all consecutive (on-curve)
geometric points within a distance of less than the curve error.

The sections “Using Curve Error When Converting Paths to Polygons” on page 3-45 and
“Using Curve Error When Reducing Shapes” on page 3-49 give examples of using curve
error, and the section “Getting and Setting Curve Error” on page 3-114 describes the
functions you can use to manipulate this style property.

About Geometric Styles

CHAPTER 3

Geometric Styles

The Geometric Pen

The contours of framed geometric shapes are drawn with the QuickDraw GX geometric
pen. You can specify the width of this pen using the pen width property of the style
object, and you can specify where to place the pen relative to the contours of a shape
using the style attributes, which are described in “Style Attributes” beginning on

page 3-17.

Conceptually, the QuickDraw GX geometric pen is a line that QuickDraw GX drags
along the contours of the shape being drawn—always keeping it perpendicular to the
contours. In effect, the geometric pen turns a framed geometry into a filled one. For
example, a line shape, which is always framed, becomes the equivalent of a filled
polygon after QuickDraw GX applies the geometric pen.

Figure 3-5 shows the effect of the geometric pen. This figure shows two geometries— a
line geometry and a curve geometry—and how QuickDraw GX draws them with a pen
width of 15.

Figure 3-5 The QuickDraw GX geometric pen

Notice that the ends of the thick line contour and the thick curve contour in Figure 3-5
are perpendicular to the direction of the contours themselves.

About Geometric Styles 3-15

CHAPTER 3

Geometric Styles

Figure 3-6 shows the effect of different pen widths on a semicircular path shape.

Figure 3-6 Differing pen widths

Setting a value of 0 for the pen width property has special meaning. Instead of indicating
an infinitely thin pen, it indicates that a shape’s contours should be drawn using
hairlines—the thinnest line renderable on the device to which the shape is drawn.

A hairline is always one pixel wide and is always centered about the shape’s geometry.

One important use of hairlines is to make point shapes visible. QuickDraw GX draws
point shapes under only two conditions: if the pen width is 0, indicating a hairline point,
in which case exactly one pixel is drawn, or if the point has a start cap, which is
described in “Caps” beginning on page 3-23.

When drawing a hairline, QuickDraw GX uses this algorithm to determine which pixels
to include:

n If the contour being drawn is more vertical than horizontal, QuickDraw GX includes a
pixel if the contour crosses the horizontal center line of the pixel.

n If the contour being drawn is more horizontal than vertical, QuickDraw GX includes a
pixel if the contour crosses the vertical center line of the pixel.

Figure 3-7 depicts this algorithm.

Figure 3-7 Pixels included in a hairline

3-16

- .-f_ L _

_f___
=1

About Geometric Styles

CHAPTER 3

Geometric Styles

In extreme cases, this algorithm can cause no pixels to draw, as shown in Figure 3-8.

Figure 3-8 A geometry with no hairline
]]]]]] H H
I I I I | I | I
R RSy RN [RN WS NS Ry S Ui DS Sy Sy Uy Sy Sy neay -
1 1 1 1 1 T '—'T
L L
JI. Lt oL _b!"._]l._ -l _4|._ _4|._ -
I I I I | I | I
L L L L L L L L
I I I I | I | I

The section “Manipulating Pen Width and Placement” on page 3-51 gives an example of
using the pen width property, and the section “Getting and Setting the Pen Width” on
page 3-119 describes the functions you can use to manipulate it.

Style Attributes

The style attributes property of a style object contains six attributes that affect the
drawing of a shape. Four of these attributes affect how QuickDraw GX places the
geometric pen relative to the contours of a shape:

n The center-frame style attribute, which is the default, indicates that the
QuickDraw GX should center the geometric pen along the shape’s contours.

n The inside-frame style attribute indicates that QuickDraw GX should position the pen
along the inside of a shape’s contours.

n The outside-frame style attribute indicates that QuickDraw GX should position the
pen along the outside of shape’s contours.

n The auto-inset style attribute affects the definition of the inside and outside of a
contour.

These four attributes are discussed in the next section, “Pen Placement.”

There are also two style attributes that determine whether the geometric points of a
shape are constrained to a grid when the shape is drawn:

n The source-grid style attribute constrains the geometric points of a shape to integer
values before applying the shape’s style and transform information.

n The device-grid style attribute constrains the geometric points of a shape to integer
pixel positions after applying the shape’s style and transform information.

These two attributes are discussed in the section “Grids” beginning on page 3-20.

About Geometric Styles 3-17

CHAPTER 3

Geometric Styles

Pen Placement

You can use the center-frame, inside-frame, and outside-frame style attributes to specify
where QuickDraw GX should position the pen with respect to the shape’s geometry.
QuickDraw uses these attributes to position the pen, which also affects the placement of
dashes and how dashes are clipped. For some examples, see “Insetting Dashes”
beginning on page 3-73 and “Combining Caps, Joins, Dashes, and Patterns” beginning
on page 3-91.

Figure 3-9 shows the results of these style attributes. Notice that QuickDraw GX
considers contour direction when determining which side of a contour is the inside: the
right side of the contour is the inside, while the left side of the contour is the outside.

Figure 3-9 Pen placement
Clockeies condour P drvn b he e dravn v e
neide-fam e elde atiibue oulide-fam = eide athibue
Counierdockodies condour P drvn b he e drvn vt e
neide-fam e elde atiibue ouleide-fan = eide athibue

3-18 About Geometric Styles

CHAPTER 3

Geometric Styles

QuickDraw GX also provides the auto-inset style attribute, which allows you to specify
that QuickDraw GX should ignore contour direction when determining which side of a
contour is the inside. When you set this style attribute, QuickDraw GX determines the
true inside of a contour, rather than using the right side as the inside. Figure 3-10 shows
the effect of setting the auto-inset style attribute for the shapes depicted in Figure 3-9.

Figure 3-10 Effect of the auto-inset style attribute

ockoaies or e drvn it he Ao drvn it he
counierdodosies coniour odreetebrs atribute atcrireart el 2 atribute
and e and e
nwide-Fam e elfde atribuie ouiside-fam = el e athborie

When a contour crosses over itself, the results of setting the auto-inset style attribute are
unpredictable, as the contour has no true inside (or, actually, has multiple true insides).
For the figure-eight shape in Figure 3-11, setting the gxAut ol nset St yl e and the

gxl nsi deFr aneSt yl e style attributes could lead to one of two results.

Figure 3-11 Effect of the auto-inset and inside-frame style attributes for a crossed contour

5 Y8

Criginal cordour Pt b= raptt of Ariohher posible re oo f
aub-nestatribuie ard au‘b-ln-n-ttaﬁ'lbi.lt ared
irmide-fam = ehde atribuie ireid e = ehde atribuie

About Geometric Styles 3-19

CHAPTER 3

Geometric Styles

To ensure that setting the auto-inset style attribute behaves as you would expect, you
need to call the GXSi npl i f yShape function, which is described in the chapter
“Geometric Operations” in this book. This function redefines the shape’s geometry to
eliminate crossed contours, as shown in Figure 3-12.

Figure 3-12 Eliminating crossed contours

3-20

Eratore Bfer Rasultof aud-irestedda
Zisimpli fyrsha pa Zisitpli frsha pe atribute and ireid e 26 =
wide athiboue

The section “Manipulating Pen Width and Placement” on page 3-51 gives an example of
specifying pen placement. The section “Style Attributes” on page 3-98 defines the style
attributes enumeration, and the section “Getting and Setting Style Attributes” on

page 3-109 describes the functions you can use to manipulate them.

Grids

From the initial geometry specification to the final image rendering, each QuickDraw GX
shape exists in a number of different coordinate spaces. You describe a shape’s geometry
in geometry space, the style and transform modifications happen in local space, the
shape then exists in one or more view ports’ global spaces, and the shape is finally
rendered in the pixels of a view device’s device space.

In each of these coordinate spaces, QuickDraw GX allows fractional coordinate values.
When you specify points in a shape’s geometry, you are not limited to integer values,
such as (1, 1) or (-10, 10). Instead, you can specify that the shape’s geometric points fall
between integral positions in the geometry space’s coordinate grid, for example (0.5, 0.5).
During each transformation of the shape from geometry to rendering, QuickDraw GX
maintains fractional coordinate values.

The style attributes property of a style object contains two flags that allow you to
suppress fractional coordinate values—that is, these flags allow you to constrain a
shape’s geometric points to integer coordinate values in the different coordinate systems.

About Geometric Styles

CHAPTER 3

Geometric Styles

The source-grid style attribute indicates that QuickDraw GX should constrain the
shape’s geometric points to integral positions on the local space grid, before making the
style and transform modifications.

The device-grid style attribute indicates that QuickDraw GX should constrain the
shape’s geometric points to integral positions (that is, pixel positions) on the device
space grid, after making style, transform, and view port modifications.

Note

These style attributes only affect a shape while it is being drawn. They
do not affect the geometric points you specify in the original shape
geometry. u

To constrain a shape to integral positions on a coordinate space’s grid, QuickDraw GX
moves the entire shape (that is, all the shape’s geometric points) so that the shape’s
first geometric point lies on the nearest grid position, and then moves each remaining
geometric point to the nearest grid position.

Figure 3-13 depicts the grid-constraining algorithm.

Figure 3-13 Constraining shapes to grids

— -
|| o
izt oo e 2inad FRret F-u-in‘l:mm‘hahad Al F-uinh corerained

The sections “Constraining Shape Geometries to Grids” on page 3-40 and “Constraining
Shapes to Device Grids” on page 3-42 give examples of the grid-constraining style
attributes. The section “Style Attributes” on page 3-98 defines the style attributes
enumeration and the section “Getting and Setting Style Attributes” beginning on

page 3-109 describes the functions you can use to manipulate them.

About Geometric Styles 3-21

CHAPTER 3

Geometric Styles

Interactions Between Caps, Joins, Dashes, and Patterns

The cap, join, dash, and pattern properties of the style object allow you to change the
way QuickDraw GX draws the contours of a shape. The cap and join properties allow
you to place arbitrary shapes on the geometric points of a shape’s contours. For
example, you can place arrow heads at the ends of a line, or you can put rounded edges
at the corners of a rectangle. The dash property allows you to dash the contours of one
shape with another shape. For example, you could dash a line with a circular path shape
to get a dotted line.

The pattern property allows you to fill a shape (or the frame of a shape drawn with a
thick pen width) with a repeated pattern of another shape. For example, you could fill a
large square shape with a pattern of small squares to get a checkerboard.

Figure 3-14 shows some of the stylistic variations possible with caps, joins, dashes, and
patterms.

Figure 3-14 Caps, joins, dashes, and patterns

Cq:m

Jone IES T Fateme

3-22

There is one important rule that applies to all four of these properties: Cap shapes, join
shapes, dash shapes, and pattern shapes must all be in their primitive form. When
QuickDraw GX uses a cap, join, dash, or pattern shape, it ignores the stylistic variations
of that shape. If you want a cap, join, dash, or pattern shape to have stylistic variations
itself, you must first incorporate those stylistic variations into the shape using the
GXPri mi ti veShape function.

As an example, specifying a line shape with a thick pen (like the one in Figure 3-3 on
page 3-9) as a cap, join, dash, or pattern shape may produce an unexpected result or post
an error, since the shape is not in its primitive form. However, if you use the

GXPri m ti veShape function, you can convert the line to a filled polygon, which is a
perfectly acceptable cap, join, dash, or pattern shape.

The sections “The Cap Structure” on page 3-99, “The Join Structure” on page 3-101, “The
Dash Structure” on page 3-103, and“The Pattern Structure” on page 3-106 discuss the
types of shapes appropriate to use as caps, joins, dashes, and patterns.

About Geometric Styles

CHAPTER 3

Geometric Styles

As another example, a polygon with zero contours is not an acceptable cap, join, dash, or
pattern shape, as it is not in its primitive form. Similarly, any shape with the no-fill shape
fill is not in its primitive form. However, the empty shape, which is in its primitive form,
is an acceptable cap, join, dash, or pattern shape. You can find more information about
polygon shapes, polygon contours, and empty shapes in Chapter 2, “Geometric Shapes,”
in this book.

You can always be sure your cap, join, dash, or pattern shape is in the correct form by
calling the GXPr i m ti veShape function, which is described in Chapter 4, “Geometric
Operations,” before setting the corresponding style property.

As for typographic shapes, text and layout shapes are not in their primitive form, but
glyph shapes are acceptable as cap, join, dash, and pattern shapes so long as they have
no text face or tags and do not have caps, joins, dashes, or patterns themselves.

For more information, see Inside Macintosh: QuickDraw GX Typography.

You can use bitmap shapes as patterns, but not as caps, joins, or dashes, and you cannot
use picture shapes for caps, joins, dashes, or patterns.

The next few sections describe caps, joins, dashes, and patterns in more detail.

Caps

QuickDraw GX allows you to specify cap shapes—what to draw at the start and at the
end of a shape’s contours. In particular, you can specify a start cap for any point shape,
and you can specify a start cap and an end cap for any line, curve, polygon, or path
shape that has open-frame shape fill.

In fact, the only way to draw a point shape is to specify a start cap for it (unless its style
object has a pen width property with a value of 0, in which case QuickDraw GX draws
the point shape as a single pixel).

QuickDraw GX uses the cap property of a shape’s style object to store information about
the start cap and end cap of the shape.

Figure 3-15 shows how QuickDraw GX adds a cap to a contour by centering the cap
shape at the end of the contour, scaling the cap shape by the pen width, and rotating the
cap shape to match the slope of the contour.

Figure 3-15 A shape with caps

-

S‘hrl:-zm

End cap Cunre with cepe

About Geometric Styles 3-23

CHAPTER 3

Geometric Styles

The cap property of a style object includes a cap attributes field, which allows you to
specify level caps—caps that QuickDraw GX does not rotate to match the slope of the
contour—as shown in Figure 3-16.

Figure 3-16 A shape with level caps

-

Tt cp

End cap “urre with ke cape

You can create two standard cap types by specifying half a square or a semicircle for the
start cap or end cap shape, as shown in Figure 3-17.

Figure 3-17 Standard cap shapes

3-24

Zunre vt etardar d i

The sections “Adding Caps to a Shape” on page 3-57 and “Adding Standard Caps to a
Shape” on page 3-59 give examples of using the cap property, the sections “The Cap
Structure” on page 3-99 and “Cap Attributes” on page 3-101 describe the data structures
used to store information about caps, and the section “Getting and Setting Caps”
beginning on page 3-123 describes the functions you can use to manipulate caps.

About Geometric Styles

CHAPTER 3

Geometric Styles

Joins

QuickDraw GX allows you to specify a join shape to be drawn at the corners of another
shape’s contours. In particular, you can specify a join shape for any rectangle, polygon,
or path shape that has an open-frame shape fill or a closed-frame shape fill:

n For shapes with the closed-frame shape fill, QuickDraw GX draws the specified join
shape at every on-curve geometric point of each contour.

n For shapes with the open-frame shape fill, QuickDraw GX draws the specified join
shape at every on-curve geometric point between the first point and the last point of
each contour.

QuickDraw GX uses the join property of a shape’s style object to store information about
the joins of a shape.

Figure 3-18 shows how QuickDraw GX adds a join to a contour by centering the join
shape on the on-curve geometric points, scaling the join shape by the pen width, and
rotating the join shape to match the mid-angle of the two line segments that make up the
corner.

Figure 3-18 A shape with joins

eir bpes Equmre wit jire

About Geometric Styles 3-25

CHAPTER 3

Geometric Styles

The join property of a style object includes a join attributes field, which allows you to
specify level joins—joins that QuickDraw GX does not rotate to match the slope of the
contour—as shown in Figure 3-19.

Figure 3-19 A shape with level joins

ki ehap= paare it lere] joire

You can also use the join attributes to specify two types of standard joins—sharp joins
and curve joins, as shown in Figure 3-20.

Figure 3-20 Standard joins

Eharp join unre join

3-26 About Geometric Styles

CHAPTER 3

Geometric Styles

For sharp joins, QuickDraw GX allows you to specify a miter—the maximum distance
between the actual corner of a shape’s geometry and the corner as drawn, as shown in
Figure 3-21.

Figure 3-21 Sharp join with miter

The sections “Adding Joins to a Shape” on page 3-61 and “Adding Standard Joins to a
Shape” on page 3-64 give examples of using the join property, the section “The Join
Structure” on page 3-101 and “Join Attributes” on page 3-102 describe the data structures
used to store information about joins, and the section “Getting and Setting Joins” on
page 3-129 describes the functions you can use to manipulate them.

Dashes

With QuickDraw GX, you can specify that framed shapes should be drawn with dashed,
instead of solid, contours. In particular, you may specify a dash shape for any line,
curve, rectangle, polygon, or path shape that has an open-frame shape fill or a
closed-frame shape fill.

QuickDraw GX uses the dash property of a shape’s style object to store information
about how to dash the shape.

Figure 3-22 shows how QuickDraw GX dashes a contour by placing copies of the dash
shape along the contour at regular intervals, and rotating the dash shape to match the
slope of the contour.

Figure 3-22 A dashed shape

ady
-
4 " ot

Daeh ehzpe Dzebezd cirire

About Geometric Styles 3-27

CHAPTER 3

Geometric Styles

When drawing a dashed shape, QuickDraw GX automatically scales the dash shape up
by the pen width of the dashed shape. However, unlike cap and joins, QuickDraw GX
scales dashes only perpendicularly to the dashed contour.

For example, if the height of the dash shape is 1.0, then QuickDraw GX draws the dashes
with a height equal to the dashed shape’s pen width. If the height of the dash shape is
2.0, then QuickDraw GX draws the dashes with a height equal to twice the dashed
shape’s pen width.

Since the dash shape is scaled up by the pen width of the dashed shape, QuickDraw GX
provides a way for you to scale the dash down, as well, by providing a scaling factor,
called the dash scale, in one of the fields of the dash structure. QuickDraw GX multiplies
the height of the dash by the pen width and then divides by the dash scale.

Figure 3-23 shows the effect of different pen widths on the same dash shape. In this
example, the dash shape has height of 10.0 (its y-coordinates span from -5.0 to 5.0). The
shape being dashed is a curve. The curve is shown first with a pen width of 10.0 and a
dash scale of 10.0, which keeps the dimensions of the dash shape unchanged. The curve
is then shown with a pen width of 20.0 and a dash scale of 10.0, which doubles the size
of the dash shape in the y-coordinate direction.

Figure 3-23 Scaling a dash shape

3-28

¢ ""‘I. *~"’,

[-uhape Dizpdend caxurz Dizvpdezd cairz

Note

Glyph shapes are an exception to this scaling rule. If the dash shape is
a glyph shape, QuickDraw GX does not scale the dashes (which in this
case would be glyphs) to the dashed shape’s pen width. u

About Geometric Styles

CHAPTER 3

Geometric Styles

Notice that the position of a dash shape in the coordinates of its geometry space is
significant. For example, if the y-coordinates of the geometry of a dash shape span from
1.0 to 2.0, then QuickDraw GX draws the dashes at a distance of one pen width to the
outside of the dashed contour (if the dash scale is 1.0). If the lowest y-coordinate of a
dash shape is 2.0, then QuickDraw GX draws the dashes at a distance of two pen widths
to the outside of the contour (if the dash scale is 1.0).

If the y-coordinates of the geometry of a dash shape are large enough and the scaling
factor you provided in the dash structure is small enough, the dashes may exceed the
pen width of the dashed shape. QuickDraw GX provides the clip dash attribute to
indicate that QuickDraw GX should clip the dashes to the pen width, as illustrated in
Figure 3-24.

Figure 3-24 Effect of the clip dash attribute

*‘ ' "’ ". ...'

Daeh ecaled o axomed pan wich Dzeh diFF-ed = e

Setting the clip dash attribute causes some intricate interactions among dashes, caps,
joins, and patterms. See “Interactions Between Caps, Joins, Dashes, and Patterns” on
page 3-33 for more information.

QuickDraw GX also allows you to control how far apart the dashes appear from one
another, which is called the dash advance, and how far into the dash shape the dashing
should start, which is called the dash phase.

The dash advance is the distance between the start of one dash shape and the start of the
next dash shape along the contour. The dash phase indicates where the first dash should
fall on a contour; it is a percentage of the dash advance.

When a dash shape has multiple contours, it is possible for the dashes not to fall on the
contours of the dashed shape. For this situation, QuickDraw GX provides the break dash
attribute, which indicates that each contour of the dash should be rotated and placed
separately on the dashed shape’s contours. Figure 3-25 depicts the result of setting this
dash attribute.

About Geometric Styles 3-29

CHAPTER 3

Geometric Styles

Figure 3-25 Effects of breaking a dash

: o ’ »

-, '] »
L # w2
[k d‘@-e Dzrehiad circla O dravn i e
with o confoure brazk dzeh atribute

Finally, QuickDraw GX provides a dashing feature that works only when dashing
hairline contours. In this case, you can set the bend dash attribute, which indicates that
QuickDraw GX should wrap the dash to fit the dashed contour exactly, as shown in

3-30

Figure 3-26.
Figure 3-26 Effects of bending a dash
/ \ / \
\ / \ y
Cteh ehape Dizeete=d hrirline crde oo dranon vith the
be=rd dueh atribuie

About Geometric Styles

CHAPTER 3

Geometric Styles

The following sections give examples of dashing:

n “Dashing a Shape” on page 3-66

n “Adjusting Dashes to Fit Contours” on page 3-70
n “Insetting Dashes” on page 3-73

n “Breaking and Bending Dashes” on page 3-74

n “Wrapping Text to a Contour” on page 3-80

n “Determining Dash Positions” on page 3-81

The section “The Dash Structure” on page 3-103 and“Dash Attributes” on page 3-105
describe the data structures used to store and communicate information about dashes,
and the section “Getting and Setting Dashes” on page 3-134 describes the functions you
can use to manipulate the dash property.

Patterns

With QuickDraw GX, you can specify that certain shapes be filled with a pattern. For
shapes with solid shape fills, QuickDraw GX fills the shape by repeating a pattern shape
that you specify.

You can also pattern framed shapes. For example, if you pattern a rectangle shape with a
closed-frame shape fill and a pen width of 20.0, QuickDraw GX would fill the frame of
the rectangle with the pattern. See the section “Interactions Between Caps, Joins, Dashes,
and Patterns” on page 3-33 for more intricate examples.

QuickDraw GX uses the pattern property of a shape’s style object to store information
about how to pattern the shape.

Figure 3-27 shows how QuickDraw GX patterns a shape by filling the shape with copies
of another shape, called the pattern shape, placed according to a regular grid that you

specify.

Figure 3-27 A shape with a pattern

Patlern ehap= Rectargle dlled with pattern

About Geometric Styles 3-31

CHAPTER 3

Geometric Styles

In addition to specifying the shape to use as the pattern shape, you also specify the
pattern grid on which to place the pattern, as shown in Figure 3-28.

Figure 3-28 Pattern placed on a nonrectilinear grid

i L] Y L]
< <‘. T H I = ==
a0 WS N
n r r r
IEE NN
r L] L 1 I L] L bl El
" LI | Lo LI hor
. " “ L
HE B R BN
g LI T - T -
r - W nd L 3
A I B E NN
L ~'|| 1 r I'lr 'I.J
Pattermreciore Patem grid Patemed smp=

In addition, QuickDraw GX provides you with two pattern attributes: the port-align
pattern attribute and the port-map pattern attribute. Setting the port-align pattern
attribute allows you to specify that QuickDraw GX should align the pattern with the
view device instead of with the geometry of the patterned shape. Figure 3-29 shows the
effect of setting this attribute.

Figure 3-29 Effects of the port-align pattern attribute

H N I-I.I EEEEE
HENE EEE E B EEEERN
H N - - I EEEEENEDR
+ EEEEN EEENEI
Fectorigle geon akise P drzvan it patem B dranaih E-:-rbaign
patern athibuie

3-32

About Geometric Styles

CHAPTER 3

Geometric Styles

The port-map pattern attribute indicates that the pattern shape should not be affected by
transformations to the patterned shape. For example, if you set this pattern attribute,
scaling the patterned shape by a factor of two does not also scale the pattern shape by a
factor of two; instead, more of the pattern is shown. Figure 3-30 shows the effect of
setting this attribute.

Figure 3-30 Effects of the port-map pattern attribute

Faterred shape Aftar ecalling without

Bifter wcalling with
portmap pattarn atribui

N EEEEEENE
EEEEEENE
B BB =EmsEEEn
EEEEEENE
H EEEEEER
= et

he portmozp patem athiboe et

The sections “Adding a Pattern to a Shape” on page 3-86 and “Determining Pattern
Positions™ on page 3-88 give examples of using patterns. The section “The Pattern
Structure” on page 3-106 and “Pattern Attributes” on page 3-107 describes the

data structures used to store information about patterns, and the section “Getting and
Setting Patterns” on page 3-142 describes the functions you can use to manipulate
patterns.

Interactions Between Caps, Joins, Dashes, and Patterns

The previous four sections show the results of adding a cap, a join, a dash, or a pattern to
a QuickDraw GX shape. This section discusses how these stylistic variations interact
when you add more than one of them at a time to the same shape.

In general, these elements interact differently in each of these three cases:

n the shape does not have a dash but has one or more of the other three stylistic
variations

n the shape does have a dash but the clip dash attribute is not set

n the shape does have a dash and the clip dash attribute is set

About Geometric Styles 3-33

CHAPTER 3

Geometric Styles

When a shape has a cap and a join, QuickDraw GX adds the caps to the beginnings and
ends of the shape’s contours, and adds the joins to the other on-curve geometric points
of the shape’s contours. If the shape also has a pattern, QuickDraw GX draws this
pattern throughout the shape’s frame as well as the shape’s caps and joins, as shown in
Figure 3-31.

Figure 3-31 A shape with a cap, join, and pattern

._._.—-—-"'"""""""-—-—-_1

Folrgon shape Capehape oir hizpes

Himm
[]| |
Patem -ahap-e

If a shape has a dash, but the clip dash attribute is not set, QuickDraw GX ignores the caps
and joins of the shape. However, if the shape has a pattern, QuickDraw GX does draw the
pattern throughout the dashes, as shown in Figure 3-32.

Figure 3-32 A shape with a dash and a pattern

=1
— i
Falyrgon ehap s b ehizp= Fatlern ehepe
Loh o bodd
o & & & 8
& v wF r
I N
Be dravan

3-34 About Geometric Styles

CHAPTER 3

Geometric Styles

Finally, if the shape has a dash and the clip dash attribute is set, QuickDraw GX does not
ignore the caps and joins. Instead, the cap shapes and the join shapes are added to the
clip shape that QuickDraw GX uses to clip the dashes. Patterns are not allowed in this
case. Figure 3-33 shows the interaction of a cap, join, and clipped dash.

Figure 3-33 A shape with a clipped dash and a cap and join

S pe 5 bovwing arew ofc Bp shape
re——
. a l R
.l"lf L
‘)
"-.‘h_' rl -1 -, L
Thee resnling clipped =lmpe

\\\ g

The section “Combining Caps, Joins, Dashes, and Patterns” beginning on page 3-91 give
examples of the interactions between caps, joins, dashes, and patterns.

Using Geometric Styles

This section shows you how to use styles to add stylistic variations to geometric shapes.
In particular, this section show you how to

n create a style object, alter its properties, and associate the style with a shape

n alter the properties of a style object already associated with a shape

n constrain shapes to grids

n use curve error when approximating paths with polygons and when reducing shapes

n manipulate pen width and placement

Using Geometric Styles 3-35

CHAPTER 3

Geometric Styles

n add caps to a shape, including round and square caps

n add joins to a shape, including standard round and sharp joins
n dash a shape

n adjust dashes to fit contours

n bend and break dashes

n wrap text by using glyphs as a dash shape

n determine dash positions

n add a pattern to a shape and determine pattern positions

n combine caps, joins, dashes, and patterns

Associating Styles With Shapes

QuickDraw GX provides two basic methods of altering stylistic information for shapes:
n using functions that operate on style objects directly
n using functions that operate on style objects indirectly through shape objects

The first category of functions require you to provide a reference to a style object, which
you can obtain by using the GXNewSt y| e function to create a new style object, or by
using the GXGet ShapesSt yl e function to obtain a reference to an existing style object.
(The GXNewst yl e and GXGet ShapeSt yl e functions are described in Inside Macintosh:
QuickDraw GX Objects.)

Once you have a reference to a style object, you can use this category of functions to
manipulate the style’s properties; for example, you can use the GXSet St yl ePen
function to change the pen width of the style.

If you obtained the reference to the style object using the GXGet ShapeSt y| e function,
then the style is already associated with a shape—in fact, it may be shared amongst
many shapes. Modifications you make to the style’s properties will apply to all shapes
that share the style.

3-36 Using Geometric Styles

CHAPTER 3

Geometric Styles

However, if you created the style object using the GXNewSt yI e function, you must then
associate the style with a shape for the style modifications to have any effect. You can
associate a style with a shape using the GXSet ShapeSt yl e function, as shown in
Listing 3-1. The GXSet ShapeSt yl e function is described in Inside Macintosh:
QuickDraw GX Objects.

Listing 3-1 Adding style information by directly manipulating a style object

voi d MakeThi ckPenStyl e(voi d)

{
gxShape aRect angl eShape;
gxStyl e aThi ckPenStyl e;
static gxRectangl e rectangl eGeonetry = {ff(50), ff(50),
ff(200), ff(200)};
aRect angl eShape = GXNewRect angl e(&r ect angl eGeonetry);
GXSet ShapeFi | | (aRect angl eShape, gxC osedFraneFill);
aThi ckPenStyl e = GXNewSt yl e();
GXSet Styl ePen(aThi ckPenStyl e, ff(30));
GXSet ShapeSt yl e(aRect angl eShape, aThi ckPenStyl e);
GXDi sposeStyl e(aThi ckPenStyl e);
GXDr awsShape(aRect angl eShape) ;
GXDi sposeShape(aRect angl eShape) ;
}

The MakeThi ckPenSt yl e sample function creates a rectangle shape and sets its shape
fill to the closed-frame shape fill, making it a framed rectangle. The sample function then
creates a new style object using the GXNewSt yI e function, which creates a style object
with properties set to the standard initialized values. The owner count of this style object
is 1, corresponding to the reference contained in the aThi ckPenSt yl e variable. The
sample function then alters the pen width of the new style using the GXSet St yl ePen
function.

Using Geometric Styles 3-37

CHAPTER 3

Geometric Styles

To associate the style with the rectangle shape, the sample function calls the

GXSet ShapesSt yl e function. This function disposes of the style previously referenced
by the rectangle shape, stores a reference to the new style in the rectangle shape object,
and increments the style’s owner count—there are now two references to the style: one in
the sample function’s local variable, and one in the rectangle shape.

Finally, the sample function disposes of the style, which indicates that the reference to
the style stored in the local variable aThi ckPenSt yl e is no longer needed.
QuickDraw GX decrements the owner count of the style, which becomes 1,
corresponding to the reference contained in the rectangle shape.

Finally, the sample function draws the rectangle, which appears as in Figure 3-34.

Figure 3-34 Rectangle with thick pen

The second method of altering styles involves functions that operate on style objects
indirectly through the shape objects that reference them.

When using this category of function, you need only provide a reference to the shape
whose style information you want to change. QuickDraw GX finds the associated style
object and alters the appropriate style property for you.

3-38 Using Geometric Styles

CHAPTER 3

Geometric Styles

In fact, QuickDraw GX provides one further level of service with this category of
functions. If the shape that you specify is sharing its style with other shapes,
QuickDraw GX first makes a copy of the style object, associates the copy with the shape
you specified, and then alters the appropriate property of the copy.

Listing 3-2 shows an alternate approach to creating the thick-framed rectangle
from Listing 3-1.

Listing 3-2 Manipulating style information indirectly

voi d MakeThi ckRect angl e(voi d)

{
gxShape aRect angl eShape;
gxRect angl e rectangl eGeonetry = {ff(50), ff(50),
ff(200), ff(200)};
aRect angl eShape = GXNewRect angl e(& ect angl eGeonetry);
GXSet ShapeFi | | (aRect angl eShape, gxHol l owFill);
GXSet ShapePen(aRect angl eShape, ff(30));
GXDr awShape(aRect angl eShape) ;
GXDi sposeShape(aRect angl eShape) ;
}

As in Listing 3-1, this sample function creates a new framed rectangle shape. However,
instead of creating a style object, altering the pen width property of the style object with
the GXSet St yl ePen function, and associating the style with the rectangle shape, this
sample function uses the GXSet ShapePen function to accomplish those tasks in one
step.

Since the rectangle shape is a new shape, it shares its style object with other shapes—the
default rectangle shape at the very least. The GXSet ShapePen function notices that the
rectangle shape’s style is shared, so it makes a copy of this style, associates the copy with
the rectangle shape, and alters the pen width property of this copy.

Using Geometric Styles 3-39

CHAPTER 3

Geometric Styles

The result of this sample function looks exactly the same as the result of the previous
sample function, shown in Figure 3-34.

For simplicity, the rest of the sample functions in this chapter use the second method for
altering style properties.

Constraining Shape Geometries to Grids

The source-grid style attribute (gxSour ceG i dSt yl e) allows you to specify that
QuickDraw GX should constrain the coordinates of a shape’s geometry to integer
positions before applying the shape’s style and transform. Setting this style attribute
does not actually change the information stored in the shape’s geometry—instead,
QuickDraw GX reinterprets the shape’s geometry when drawing the shape.

If a shape has no style or transform modifications, setting this style attribute has the
effect of snapping the shape to a 1/72-inch grid—an effect that is visible only on
high-resolution devices. However, if the shape has style or transform modifications,
setting this style attribute might have visible effects even on lower-resolution devices.

For example, you can use the source-grid style attribute in combination with a scaling
transform to achieve the effect of constraining a shape to a grid much larger than 1/72
inch. The sample function in Listing 3-3 shows how to use this style attribute to constrain
a shape to a half-inch grid.

Listing 3-3 Constraining a shape to a half-inch grid

3-40

voi d Constrai nShapeToG i d(voi d)
{
gxMappi ng scal eToHal f | nches;
static |l ong veeGeonetry[] = {1, /* nunber of contours */
3, /'* nunber of points */
fl(1.2), fl(1.1),
fl1(2.9), fl(2.8),
fl1(5.2), fI(.9)};
gxShape aVeeShape;

aVeeShape = GXNewPol ygons((gxPol ygons *) veeCGeonetry);

GXSet ShapeFi | | (aVeeShape, gxOpenFraneFill);
GXSet ShapePen(aVeeShape, fl (5.0 * (1.0/36.0)));

Using Geometric Styles

CHAPTER 3

Geometric Styles

GXReset Mappi ng(scal eToHal f I nches) ;

GXScal eMappi ng(scal eToHal fI nches, ff(36), ff(36),
f£(0), f£(0));

GXSet ShapeMappi ng(aVeeShape, scal eToHal fl nches);

GXDr awShape(aVeeShape) ;

GXDi sposeShape(aVeeShape) ;
}

This sample function defines a small, irregular, V-shape geometry and scales the shape
up by 36 points, or half an inch. The pen width is set to 5.0 (divided by 36.0 to counteract
the scaling). The result of this sample function is shown in Figure 3-35.

Figure 3-35 Scaled, but not constrained, V shape

Notice that before QuickDraw GX applies the mapping, the coordinates of the shape’s
geometry represent points, whereas after QuickDraw GX applies the mapping, the
coordinates of the shape’s geometry effectively represent half inches.

If you set the source-grid style attribute by adding this line of code to the sample
function:

GXSet ShapeSt yl eAttri but es(aVeeShape, gxSourceGi dStyle);

Using Geometric Styles 3-41

CHAPTER 3

Geometric Styles

QuickDraw GX constrains the coordinates of the shape’s geometry to the nearest integer
position before applying the mapping. Therefore, after the mapping, the shape’s
geometric points lie on a half-inch grid, as shown in Figure 3-36.

Figure 3-36 Constrained V shape

3-42

The sample function in this section uses some concepts from other parts of
QuickDraw GX. For more information about scaling, mappings, and transforms, see the
chapter “Transform Objects” in Inside Macintosh: QuickDraw GX Objects.

For more information about the gxSour ceG i dSt yl e style attribute, see “Style
Attributes” on page 3-98.

Constraining Shapes to Device Grids

QuickDraw GX provides the device-grid style attribute (gxDevi ceGri dSt yl e), which
allows you to constrain the geometric points of a shape to integer positions after the
style, transform, and view modifications have been made.

This style attribute constrains the geometric points of a shape to the nearest integer pixel
position on the device to which the shape is rendered. Unlike the source-grid style
attribute, the device-grid style attribute never drastically affects the position of the
shape. However, for shapes that do not have the device-grid attribute set,

QuickDraw GX makes minor modifications when drawing contours whose geometric
points lie between pixels; you can use the device-grid style attribute to override these
modifications, which typically produces better-looking results.

Using Geometric Styles

CHAPTER 3

Geometric Styles

The sample function in Listing 3-4 creates a star-shaped polygon and rotates it 28
degrees, which causes its geometric points to lie between integer positions.

Listing 3-4 Creating a shape with fractional geometric point positions

voi d Constrai nShapeToDevi ceGri d(voi d)

{
long starGeonmetry[] = {1, /* nunber of contours */
9, /* nunber of points */
ff(40), ff(40),
ff(50), ff(20),
ff(60), ff(40),
ff(80), ff(50),
ff(60), ff(60),
ff(50), ff(80),
ff(40), ff(60),
ff(20), ff(50),
ff(40), ff(40),
b
gxShape aStar;
aStar = GXNewPol ygons((gxPol ygons *) star Geonetry);
GXSet ShapeFi | | (aStar, gxQpenFrameFill);
Rot at eShapeAbout Cent er (aStar, ff(28));
GXDr awShape(aSt ar) ;
GXDi sposeShape(aStar);
}

Using Geometric Styles 3-43

CHAPTER 3

Geometric Styles

Because the geometric points of the rotated star do not lie on integer positions,
QuickDraw GX does not draw the contours of the star with the most visually appealing
lines; instead, it makes minor adjustments to reflect the fractional part of the geometric
point coordinates as shown in Figure 3-37.

Figure 3-37 Rotated star not constrained to device grid (magnified 200 percent)

3-44

If you constrain the star shape to the device grid by adding this line of code to the
sample function:

GXSet ShapeStyl eAttri butes(aStar, gxDeviceGidStyle);

QuickDraw GX constrains the shape’s geometric points to the device grid before
choosing the pixels to represent the shape’s contours, which creates better-looking lines,
as shown in Figure 3-38.

Using Geometric Styles

CHAPTER 3

Geometric Styles

Figure 3-38 Rotated star constrained to device grid (magnified 200 percent)

The sample function in this section uses some concepts from other parts of
QuickDraw GX. For more information about rotating, mappings, and transforms, see the
chapter “Transform Objects” in Inside Macintosh: QuickDraw GX Objects.

For more information about the gxDevi ceG i dSt yl e style attribute, see “Style
Attributes” on page 3-98.

Using Curve Error When Converting Paths to Polygons

You can use the curve error property of the style object in a variety of situations—for
example, when approximating a path shape (which includes curves) with a polygon
shape (which includes only straight lines).

The GXSet ShapeType function, which is described in full in Inside Macintosh:
QuickDraw GX Objects, allows you to convert a shape from one shape type to another.
When you convert a path shape that contains curves to a polygon shape, QuickDraw GX
uses the curve error of the shape’s style to determine how close to make the polygon
approximation. The distance between the polygon and the original path is never greater
than the number of grid points (1/72-inch units) specified by the curve error.

Using Geometric Styles 3-45

CHAPTER 3

Geometric Styles

Listing 3-5 shows a sample function that creates a circular path shape, sets its curve error

to 1, and converts it to a polygon shape.

Listing 3-5 Converting a circle to a polygon

voi d Convert Circl eToPol ygon(voi d)

{

gxRectangl e circl eBounds = {ff(50), ff(50),
ff(200), ff(200)};

gxShape aCircle;
aCircle = NewArc(&circleBounds, ff(0), ff(360), false);
GXSet ShapeFi || (aCircl e, gxC osedFraneFill);
GXSet ShapeCurveError(aCircle, ff(1));
GXSet ShapeType(aCircl e, gxPol ygonType);
GXDr awshape(aCircl e);
GXDi sposeShape(aCircl e);

}

Since the curve error is 1 in this example, the resulting polygon is never more than 1 grid

point away from the original circle, which makes for an accurate approximation, as
shown in Figure 3-39.

Figure 3-39 Polygon approximation of a circle with curve error of 1

3-46

Using Geometric Styles

CHAPTER 3

Geometric Styles

Increasing the curve error decreases the accuracy of the approximation. Setting the curve
error to 5 in this example creates the polygon shown in Figure 3-40, which has fewer
sides than the polygon in Figure 3-39.

Figure 3-40 Polygon approximation of a circle with curve error of 5

If you increase the curve error to 10, the octagon shown in Figure 3-41 results.

Figure 3-41 Polygon approximation of a circle with curve error of 10

Using Geometric Styles 3-47

CHAPTER 3

Geometric Styles

Although decreasing the curve error leads to more accurate approximations in general, a
curve error of 0 is a special case. A curve error of 0 indicates that QuickDraw GX should
not approximate the path at all. Instead, QuickDraw GX simply removes all off-curve
control points, leaving a polygon made up of the on-curve geometric points of the initial
path.

In Listing 3-5, the circular path returned by the NewAr ¢ library routine contains eight
off-curve control points, which imply eight on-curve geometric points midway between
each pair of off-curve control points. A curve error of 0 results in a polygon containing
these eight on-curve points, as shown in Figure 3-42.

Figure 3-42 Polygon resulting from a curve error of 0

3-48

For more information about paths, polygons, and on-curve and off-curve geometric
points, see Chapter 3, “Geometric Shapes.”

For more information about curve error and the functions you can use to manipulate it,
see “Curve Error” on page 3-14 and “Getting and Setting Curve Error” on page 3-114.

Using Geometric Styles

CHAPTER 3

Geometric Styles

Using Curve Error When Reducing Shapes

You can also use curve error to eliminate excess detail in complicated shapes. When you

call the GXReduceShape or GXSi mpl i f yShape functions, QuickDraw GX averages

points within a curve error of each other.

You can use this feature to smooth a complicated contour, such as the wavy line created

in Listing 3-6.

Listing 3-6

Creating a complicated contour

voi d Fl att enWavyLi ne(voi d)

static | ongwavyGeonetry[] = {1, /* nunber of contours */
13, /* nunber of points */

0x2AA00000,

ff(80),

ff(110),
ff(113),
ff(118),
ff(123),
ff(128),
ff(133),
ff(135),
ff(141),
ff(145),
ff(150),
ff(153),
ff(183),
}

ff(100),/* on */
ff(91), /* off */
ff(103),/* on */
ff(85),/* off */

ff(100), /* on */
ff(112), /* off */
ff(97), /* on */
ff(106), /* off */
ff(94), /* on */
ff(109), /* off */
ff(100), /* on */
ff(100)/* on */

aWave = GXNewPat hs((gxPaths *) wavyGeonetry);
gxOpenFraneFi | I);

{
gxShape aWave;
GXSet ShapeFi | | (aWave,
GXDr awShape(avave) ;
GXDi sposeShape(aWave) ;
}

Using Geometric Styles

/* 0010 0101 0101 */
f£(100),/* on */

3-49

CHAPTER 3

Geometric Styles

The shape created by this sample function is shown in Figure 3-43.

Figure 3-43 Wavy line

n(w,,

If you add the following lines of code to this sample function:

GXSet ShapeCur veError (aVWave, ff(10));
GXReduceShape(aWave, 0);

the resulting shape has a slightly smoother appearance because QuickDraw GX averages

sequential on-curve geometric points within the specified distance (a distance of 10 grid
points). Figure 3-44 shows the resulting shape.

Figure 3-44 Wavy line somewhat smoothed by curve error of 10

.—-—'—'\,r'""qur-..l‘h.

Increasing the curve error increases the number of geometric points that QuickDraw GX
averages. A curve error of 15 results in the shape shown in Figure 3-45.

Figure 3-45 Wavy line smoothed by curve error of 15

S N

A curve error of 20 results in a completely straight line—all of the points between the
start point and the end point of the contour have been averaged out as shown in
Figure 3-46.

Figure 3-46 Wavy line completely straightened by curve error of 20

3-50

Using Geometric Styles

CHAPTER 3

Geometric Styles

Note

When QuickDraw GX reduces a shape, it does not ignore the first and
last points of the contour. If these points had been close enough to the
other points in this example, they, too, would have been averaged, and
the entire shape would have become a point. u

For more information about curve error and the functions you can use to manipulate it,
see “Curve Error” on page 3-14 and “Getting and Setting Curve Error” beginning on
page 3-114.

Manipulating Pen Width and Placement

The pen width property of a style object determines the width with which
QuickDraw GX draws a shape’s contours, and three of the style attributes determine
where QuickDraw GX places the pen in relation to a shape’s contours. These three
attributes are

n the center-frame style attribute (gxCent er Fr ameSt yl e)
n the inside-frame style attribute (gx| nsi deFr aneSt yl e)
n the outside-frame style attribute (gxQut si deFr anmeSt yl e)

Since contour direction and crossed contours affect pen placement, the examples in this
section use a path shape shaped like a figure eight, as defined in Listing 3-7.

Listing 3-7 Defining a figure eight

voi d Creat eFi gureEi ght (voi d)

{
gxShape aPat hShape;
static long figureEi ghtGeonetry[] = {1, /* nunber of contours */
4, [* nunber of points */
0OxF0000000, /* 1111 ... */
ff(50), ff(50),
ff(200), ff(200),
ff(50), ff(200),
ff(200), ff(50)};
aPat hShape = GXNewPat hs((gxPaths *) figureEi ght Geonetry);
GXSet ShapeFi | | (aPat hShape, gxC osedFraneFill);
GXDr awShape(aPat hShape) ;
GXDi sposeShape(aPat hShape) ;
}

Using Geometric Styles 3-51

CHAPTER 3

Geometric Styles

Figure 3-47 shows the result of this sample function with the default pen width, which is
a hairline, and the default pen placement, which is centered (as it always is for hairlines).

Figure 3-47 A hairline figure eight

To increase the width of the pen, you can add the following line of code to the
Cr eat eFi gur eEi ght sample function:

GXSet ShapePen(aPat hShape, ff(30));

which results in the shape depicted in Figure 3-48.

Figure 3-48 A thick figure eight

3-52 Using Geometric Styles

CHAPTER 3

Geometric Styles

To change the placement of the thick pen, you can use the

GXSet ShapeSt yl eAt tri but es function to set the inside-frame style attribute or
outside-frame style attribute. For example, if you add this line of code to the

Cr eat eFi gur eEi ght sample function:

GXSet ShapeSt yl eAttri but es(aPat hShape, gxl nsi deFraneStyl e);

QuickDraw GX shifts the entire pen width, which is 30 points, to the inside of the figure
eight. Since, by default, QuickDraw GX defines the inside of a contour to be the right
side, contour direction is significant in this case, and the resulting shape appears as
depicted in Figure 3-49.

Figure 3-49 A figure eight with pen inset

Using Geometric Styles 3-53

CHAPTER 3

Geometric Styles

If you indicate that the pen should be placed outside—that is, to the left of—the contour,
using this line of code:

GXSet ShapeSt yl eAttri but es(aPat hShape, gxCQutsi deFranmeStyle);

the figure reverses, appearing as shown in Figure 3-50.

Figure 3-50 A figure eight with pen outset

The contour direction of the path shape determines which side is the inside and which
side is the outside. If you reverse the contour direction by reversing the order of the
geometric points with this definition;

static long figureEi ghtGeonetry[] = {1, /* nunber of contours */
4, |/* nunber of points */
0xF0000000, /* 1111 ... */
ff(200), ff(50)
ff(50), ff(200),
ff(200), ff(200),
ff(50), ff(50)};

but still set the outside-frame style attribute:
GXSet ShapeSt yl eAttri but es(aPat hShape, gxCQutsi deFranmeStyle);

then the resulting shape appears to be the same as the original figure-eight shape with
the path inset, as shown in Figure 3-51.

3-54 Using Geometric Styles

CHAPTER 3

Geometric Styles

Figure 3-51 A reversed figure eight with pen outset

However, this figure still doesn’tlook like a figure eight with the path outset—it looks
like a figure eight with the upper half of the path outset and the lower half of the path
inset. This problem arises because the path crosses itself. To fix this problem, you can call
the GXSi npl i f yShape function, which redefines the geometry of the shape so that the
path has no crossed contours. Listing 3-8 shows a sample function that uses the

GXSi npl i f yShape to remove the unwanted contour crossing.

Listing 3-8 Removing unwanted contour crossings

voi d Creat eUncr ossedFi gur eEi ght (voi d)

{

gxShape aPat hShape;

static long figureEi ghtGeonetry[] = {1, /* nunber of contours */
4, |* nunber of points */
0xFO000000, /* 1111 ... */
ff(50), ff(50), /* off */
ff(200), ff(200),/* off */
ff(50), ff(200),/* off */
ff(200), ff(50)};/* off */

aPat hShape = GXNewPat hs((gxPaths *) fi gureEi ght Geonetry);
GXSet ShapeFi | | (aPat hShape, gxC osedFraneFill);

GXSet ShapePen(aPat hShape, ff(30));

GXSi npl i f yShape(aPat hShape) ;

Using Geometric Styles 3-55

CHAPTER 3

Geometric Styles

GXSet ShapeSt yl eAt tri but es(aPat hShape, gxAut ol nset Styl e);
GXSet ShapeSt yl eAttri but es(aPat hShape, gxCQutsi deFraneStyle);

GXDr awShape(aPat hShape) ;

GXDi sposeShape(aPat hShape) ;
}

This sample function calls GXSi npl i f yShape to uncross the contours of the figure
eight. However, you cannot be sure whether GXSi npl i f yShape uncrosses the contours
by reversing the direction of the upper half of the figure eight, making each loop
clockwise, or by reversing the lower half of the figure eight, making each loop
counterclockwise. Therefore, the Cr eat eUncr ossedFi gur eEi ght sample function
sets the auto-inset style attribute, which overrides the default assumption that the right
side of the contour is the inside. Instead, QuickDraw GX determines the true inside of
each contour.

Finally, now that the contours of the path do not cross and QuickDraw GX is determinng
the actual inside of the contour, setting the outside-frame style attribute works more as
you would expect, as shown in Figure 3-52.

Figure 3-52 Uncrossed figure eight with pen outset

For more information about pen placement, see “Pen Placement” beginning on
page 3-18. For more information about style attributes, see “Style Attributes” beginning
on page 3-17 and “Style Attributes” beginning on page 3-98.

3-56 Using Geometric Styles

CHAPTER 3

Geometric Styles

Adding Caps to a Shape

To add a cap shape to the ends of another shape’s contours, you must create a cap record
structure. The cap structure has three fields: one for the start cap shape, one for the end
cap shape, and one for the cap attributes.

Listing 3-9 shows how to create a cap structure with an arrow head for the start cap, an
arrow tail for the end cap, and no cap attributes.

Listing 3-9 Creating an arrow

voi d Creat eArrow voi d)
{

gxShape aCurve, arrowHead, arrowTail;

static gxCurve curveGeonetry = {ff(25), ff(125),
ff(100), O,
ff(225), ff(125)};

static | ong arrowHeadPol ygonGeonet ry[] {4, I'* # of points */
-ff(3), O,
0, fixedl,
fixedl, O,

0, -fixedl};

static | ong arrowTail Pol ygonGeonet ry[] {5, I'* # of points */
-fixedl, O,

0, fixedl,

ff(2), fixedl,
ff(2), -fixedl,

0, -fixedl};
gxCapRecord t heCapRecor d;

aCurve = GXNewCurve (&curveCeonetry);

arr owHead = NewPol ygon((gxPol ygon *)
&ar r owHeadPol ygonCeonetry) ;
arrowTai | = NewPol ygon((gxPol ygon *)

&ar rowTai | Pol ygonGeonet ry) ;
t heCapRecord. start Cap = arrowHead;

t heCapRecord. endCap = arrowrail ;
t heCapRecord. attri butes = gxNoAttri butes;

Using Geometric Styles 3-57

3-58

CHAPTER 3

Geometric Styles

GXSet ShapeCap(aCurve, &t heCapRecord);

GXDi sposeShape(arr owHead) ;
GXDi sposeShape(arrowTail) ;

GXSet ShapePen(aCurve, ff(10));
GXDr awShape(aCurve);

GXDi sposeShape(aCurve);
}

This sample function creates two polygon shapes: one for the arrow head and one for the
arrow tail. It then creates a cap structure that contains references to the two shape objects
and an attributes field with no attributes set.

The sample function then calls the GXSet ShapeCap function, which sets the cap
property of the curve shape’s style object. (Remember, it makes a copy of this style object
if the style is shared amongst multiple shapes.)

When the GXSet ShapeCap function copies the start cap and the end cap from the cap
record to the curve’s style object, it does not simply copy references to the arrow head
polygon and the arrow tail polygon. Instead, it makes copies of those shapes and
includes the copies in the cap property of the curve’s style object. After setting the curve
shape’s caps, you may subsequently make changes to the arrow head and arrow

tail shapes without affecting the start cap or end cap of the curve.

Note

Actually, the GXSet ShapeCap function does not copy the entire start
cap shape or end cap shape. Instead, it copies only the geometric
information of the start and end cap shapes. For this reason, you must
provide start cap shapes and end cap shapes in their primitive forms. u

After the Cr eat eAr r owsample function sets the caps of the curve shape, it disposes of
the arrow head and arrow tail polygons. At this point, the owner count of these shapes
becomes 0 (since the curve’s style does not actually reference these shapes), and the
memory used by the two polygon shapes is freed.

Note

In the same way that the GXSet ShapeCap function copies geometry
information from the start and end cap shapes into a style’s cap
property, the GXGet ShapeCap function creates new shape objects and
copies the geometry information from a style’s cap property into the
new shapes. If you use the GXGet ShapeCap function to find the caps of
a shape and alter those caps, you must use the GXSet ShapeCap
function to copy your changes back into the shape’s caps. u

Using Geometric Styles

CHAPTER 3

Geometric Styles

Figure 3-53 shows the result of the Cr eat eAr r owsample function.

Figure 3-53 An arrow

Notice that QuickDraw GX rotates the start cap and the end cap to match the slope of the
curve’s contour, and scales them by the width of the pen. You can suppress the rotation
by setting the level start-cap attribute and the level end-cap attribute.

The sections “The Cap Structure” on page 3-99 and “Cap Attributes” on page 3-101
describe the cap structure and the cap attributes in more detail, and the section “Getting
and Setting Caps” beginning on page 3-123 describes the functions you can use to
manipulate caps.

Adding Standard Caps to a Shape

Two types of caps that you may frequently want to add to your shapes are the round cap
and the square cap. The sample function in Listing 3-10 shows how to create these types
of caps.

For a round cap, you need to create a semicircle, which you can do using the library
function NewAr c. To fit the end of a contour, the bounds of this semicircle must be set as
follows:

gxRect angl e roundCapBounds = {-fl(.5), -fl(.5), fl(.5), fl(.5)};
and the semicircle must start at 180 degrees and span a 180 degree arc:

gxRoundCap = NewAr c(& oundCapBounds, ff(180), ff(180), true);
For a square cap to fit the end of a contour, its bounds must be set as follows:

gxRect angl e squareCapBounds = {-ff(.5), -ff(.5), ff(0), ff(.5)};

Using Geometric Styles 3-59

CHAPTER 3

Geometric Styles

Listing 3-10 shows how to create a round cap and a square cap for the curve shape from
previous examples.

Listing 3-10 Adding round caps and square caps to a curve

voi d Creat eMyShape(voi d)

{
gxShape aCurve, gxRoundCap, gxSquareCap;
static gxCurve curveGeonetry = {ff(25), ff(125),
ff(100), O,
ff(225), ff(125)};
static gxRectangl e roundCapBounds = {-fl(.5), -fl(.5),
fl(.5), fI(.5)};
static gxRectangl e squareCapBounds = {-ff(.5), -ff(.5),
ff(0), ff(.5};
gxCapRecord t heCapRecor d;
aCurve = GXNewCurve (&curveCeonetry);
gxRoundCap = NewAr c(& oundCapBounds, ff(180), ff(180), true);
gxSquar eCap = GXNewRect angl e(&quar eCapBounds) ;
t heCapRecord. start Cap = gxRoundCap;
t heCapRecord. endCap = gxSquar eCap;
t heCapRecord. attri butes = gxNoAttri butes;
GXSet ShapeCap(aCurve, &t heCapRecord);
GXDi sposeShape(gxRoundCap) ;
GXDi sposeShape(gxSquar eCap) ;
GXSet ShapePen(aCurve, ff(10));
GXDr awShape(aCurve);
GXDi sposeShape(aCurve);
}

3-60 Using Geometric Styles

CHAPTER 3

Geometric Styles

Figure 3-54 shows the result of this sample function.

Figure 3-54 Round and square caps

Notice that QuickDraw GX rotates and resizes the caps to fit the contour.

The sections “The Cap Structure” on page 3-99 and “Cap Attributes” on page 3-101

describe the cap structure and the cap attributes in more detail, and the section “Getting

and Setting Caps” beginning on page 3-123 describes the functions you can use to
manipulate caps.

Adding Joins to a Shape

To add a join shape to the corners of another shape’s contours, you must create a join
structure. The join structure has three fields: one for the join shape, one for the join
attributes, and one for the miter, which is used only for sharp joins.

Listing 3-11 shows how to create a join structure with an diamond shape as the join
shape, and then apply the diamond join shape to the corners of a rectangle shape.

Listing 3-11 Adding joins to a shape

voi d Creat eJoi nedSquar e(voi d)

{
gxShape aSquareShape, abi anondShape;

static gxRectangle squareGeonetry = {ff(50), ff(50),
ff(150), ff(150)};

static | ong di anondGeonetry[] = {1, /* nunber of contours */
4, [* nunber of points */
ff(0o), ff(3),
ff(1), f1(0),
ff(0), -ff(3),
-ff(1), ff(0)};

Using Geometric Styles

3-61

3-62

CHAPTER 3

Geometric Styles

gxJoi nRecord t heJoi nRecor d;

aSquar eShape = GXNewRect angl e(& quar eGeonetry);
GXSet ShapeFi | | (aSquar eShape, gxCl osedFraneFill);

abDi anondShape = GXNewPol ygons((gxPol ygons *) di anondGeonetry);

theJoi nRecord. attri butes = gxNoAttri butes;
t heJoi nRecord. j oi n = aDi anondShape;
t heJoi nRecord. mter = 0;

GXSet ShapeJoi n(aSquar eShape, &t heJoi nRecord);
GXDi sposeShape(abi anondShape) ;

GXSet ShapePen(aSquar eShape, ff(10));

GXDr awShape(aSquar eShape) ;

GXDi sposeShape(aSquar eShape) ;
}

This sample function creates a square as the shape to add joins to and a diamond-shaped
polygon to use for the joins. It then creates a join structure which contains a reference to
the diamond shape, an attributes field with no attributes set, and a miter of 0.

The sample function then calls the GXSet ShapeJoi n function, which sets the join
property of the square shape’s style object. (Remember, it makes a copy of this style
object if the style is shared amongst multiple shapes.)

Note

As with caps, QuickDraw GX copies only the geometric information

of the join shape into the join property of the style object; it does not
copy the entire join shape. For this reason, join shapes must be in their
primitive form. Once you have called GXSet ShapeJoi n, you are free to
change the original join shape without affecting the joins that you have
already added to a shape. u

After the Cr eat eJoi nedSquar e sample function sets the joins of the square shape, it
disposes of the diamond-shaped polygon. At this point, the owner count of this polygon
shape becomes 0 and the memory used by the polygon shape is freed.

Figure 3-55 shows the result of the Cr eat eJoi nedSquar e sample function.

Using Geometric Styles

CHAPTER 3

Geometric Styles

Figure 3-55 A square with diamond-shaped joins

Notice that QuickDraw GX scales the join shape by the pen width and rotates the join
shape to match the mid-angle of the two line segments that make each corner. You can
suppress the rotation by setting the level join attribute:

t heJoi nRecord. attri butes = gxLevel Joi n;

Figure 3-56 shows the result of setting this attribute.

Figure 3-56 A square with level joins

Using Geometric Styles 3-63

CHAPTER 3

Geometric Styles

The sections “The Join Structure” on page 3-101 and “Join Attributes” on page 3-102
describe the join structure and join attributes in more detail, and the section “Getting and
Setting Joins” beginning on page 3-129 describes the functions you can use to
manipulate joins.

The next section shows how to create standard joins and how to use the miter field of the
join structure.

Adding Standard Joins to a Shape

Two types of joins that you may frequently want to add to your shapes are the round
join and the square join. Unlike the standard cap shapes, which you add yourself by
creating a semicircle shape or a half-square shape, the standard join shapes are provided
for you by QuickDraw GX.

To create a standard join shape, you set the j oi n field of the join record toni | , which
indicates that you are not providing a join shape, and you set the sharp join attribute or
the curve join attribute, which indicates that you want QuickDraw GX to generate one
of the standard joins for you.

Listing 3-12 shows how to add a sharp join to an angle shape.

Listing 3-12 Adding a sharp join to an angle shape

voi d Creat eShar pJoi n(voi d)

{
gxShape anAngl eShape;

static long angl eGeonetry[] = {1, /* nunber of contours */
3, /'* nunber of points */
ff(20), ff(20),
ff(250), ff(60),
ff(20), ff(100)};

gxJoi nRecord t heJoi nRecor d;

anAngl eShape = GXNewPol ygons((gxPol ygons *) angl eGeonetry);
GXSet ShapeFi | | (anAngl eShape, gxOpenFraneFill);

t heJoi nRecord. attri butes = gxSharpJoin;
theJoi nRecord.join = nil;
t heJoi nRecord. miter = gxPositivelnfinity;

GXSet ShapeJoi n(anAngl eShape, &theJoi nRecord);

GXSet ShapePen(anAngl eShape, ff(15));

3-64 Using Geometric Styles

CHAPTER 3

Geometric Styles

GXDr awShape(anAngl eShape) ;

GXDi sposeShape(anAngl eShape) ;
}

Notice that this sample function sets the mi t er field to the constant value
gxPosi ti vel nfinity, which indicates the join should be as sharp as necessary.

Figure 3-57 shows the result of this sample function.

Figure 3-57 An angle with a sharp join

If you limit the miter of the sharp join, for example, with the code
theJoi nRecord. nmiter = ff(1); /* scaled by pen width */

QuickDraw GX limits the distance between the actual corner of the contour as specified
in the shape’s geometry and the tip of the corner as actually drawn. Since miter is scaled
by pen width, and the pen width in this example is 15, QuickDraw GX truncates the
sharp join 15 points away from the actual corner of the geometry, as shown in

Figure 3-58.

Figure 3-58 An angle with a truncated sharp join

Using Geometric Styles 3-65

CHAPTER 3

Geometric Styles

The sections “The Join Structure” on page 3-101 and “Join Attributes” on page 3-102
describe the join record structure and the join attributes in more detail, and the section
“Getting and Setting Joins” beginning on page 3-129 describes the functions you can use
to manipulate joins.

Dashing a Shape

To add a dash shape along the contours of another shape, you must create a dash
structure. The dash structure has five fields:

n the dash attributes, which modify the way the shape is dashed
n the dash shape, which contains the shape to use as the dashes

n the dash advance, which determines the number of points between the start of one
dash and the start of the next

n the dash phase, which determines how far into the advance the dashing should start

n the dash scale, which you can use to counteract the automatic scaling of the dash
shape

The sample function in Listing 3-13 creates a curve shape dashed with diamonds. First, it
creates the curve shape and the diamond shape. The diamond shape has a height and a
width of 30.0 points.

The sample function then creates a dash structure for the diamond dashes, and calls the
GXSet ShapeDash function to set the dash property of the curve shape’s style object.

Listing 3-13 Creating a curve shape dashed with diamonds

voi d Creat eDashedCurve(voi d)

{
gxShape aCurveShape, aD anondShape;

static gxCurve curveGeonetry = {ff(50), ff(125),
ff(125), O,
ff(250), ff(125)};

static | ong di anondGeonetry[] = {1, /* nunber of contours */
4, [* nunber of points */
ff(0), ff(15),
ff(15), fl1(0),
ff(0), -ff(15),
-ff(15), ff(0)};

gxDashRecord t heDashRecor d;

3-66 Using Geometric Styles

CHAPTER 3

Geometric Styles

aCurveShape = GXNewCurve (&curveCeonetry);
aDi anondShape = GXNewPol ygons((gxPol ygons *) di anondGeonetry);

t heDashRecord. attri butes = gxNoAttri butes;
t heDashRecor d. dash = aDi anondShape;

t heDashRecor d. advance = ff (40);
t heDashRecor d. phase = 0;

t heDashRecord. scale = ff(30);

GXSet ShapeDash(aCurveShape, &t heDashRecord);
GXDi sposeShape(ab anondShape) ;

GXSet ShapePen(aCur veShape, ff(30));

GXDr awShape(aCur veShape) ;

GXDi sposeShape(aCur veShape) ;
}

Note

As with caps and joins, QuickDraw GX copies only the geometric
information of the dash shape into the dash property of the style object;
it does not copy the entire dash shape. For this reason, the dash shape
must be in its primitive form. Once you have called GXSet ShapeDash,
you are free to change the original dash shape without affecting the
dashes of the dashed shape. u

Notice that this sample function sets the dash advance to 40. Since the diamond shape is
30 points wide, this dash advance allows for 10 points between dashes. The dash phase
is set to 0, which indicates that the origin of the first dash should be aligned with the
beginning of the curve contour exactly.

Since QuickDraw GX scales dashes (perpendicularly to the dashed contour) by the pen
width, the dashes in this example would be 900 points from tip to tip, as the diamond
shape itself is 30 points high and the pen width of the curve is also 30 points. However,
the sample function sets the dash scale to 30, by which QuickDraw GX scales the dashes
down (again, perpendicularly to the dashed contour), which leaves the diamond shapes
with their original size.

Using Geometric Styles 3-67

CHAPTER 3

Geometric Styles

Figure 3-59 shows the result of the Cr eat eDashedCur ve sample function.

Figure 3-59 A dashed curve

If you provide a smaller value for the dash scale, QuickDraw GX scales the dashes up in
the direction perpendicular to the dashed contour. For example, if you provide a dash
scale half as large:

t heDashRecord. scale = ff(15);
the dashes become twice the size in the direction perpendicular to the curve, as shown in

Figure 3-60.

Figure 3-60 A curve with scaled dashes

3-68 Using Geometric Styles

CHAPTER 3

Geometric Styles

The dashes are now actually wider than the pen width of the curve. You can set the clip
dash attribute to draw only the parts of the dashes that lie within the curve’s pen width.
For example, adding this line of code to the sample function:

t heDashRecord. attri butes = gxd i pDash;

creates the shape shown in Figure 3-61.

Figure 3-61 A curve with clipped dashes

1 X
® 0'

%

Notice that QuickDraw GX not only clips the dashes to the width of the curve, but also
clips them at the ends of the curve. To shift the dashes along the curve so that you see the
whole first dash, you can adjust the dash phase. For example, this line of code:

t heDashRecor d. phase = GXFl oat ToFr act (0. 50) ;

shifts the dashes forward one half of the dash advance. Since the dash advance in this
case is 40, the dashes are shifted forward 20 points, as shown in Figure 3-62.

Figure 3-62 A curve with phased dashes

*0
.‘ @

@

Using Geometric Styles 3-69

CHAPTER 3

Geometric Styles

In this case, adjusting the dash phase is sufficient to cause a whole number of dashes to
show. In other cases, you may have to use the auto-advance dash attribute, which is
described in the next section.

The sections “The Dash Structure” on page 3-103 and “Dash Attributes” on page 3-105
describe the dash record and dash attributes in more detail, and the section “Getting and
Setting Dashes” beginning on page 3-134 describes the functions you can use to
manipulate dashes.

Adjusting Dashes to Fit Contours

Sometimes the dash advance does not divide evenly into the length of a contour and the
dashes don’t look quite right. QuickDraw GX provides the auto-advance dash attribute
(gxAut oAdvanceDash) to handle this situation.

For example, the sample function in Listing 3-14 creates a circle dashed with kite-shaped
diamonds. It does not use the auto-advance dash attribute.

Listing 3-14 Creating a dashed circle

3-70

voi d Creat eDashedCircl e(voi d)

{
gxShape aCircl eShape, abi anondShape;

static gxRectangl ecircl eBounds = {ff(50), ff(50),
ff(180), ff(180)};

static | ong di anondGeonetry[] = {1, /* nunber of contours */
4, [* nunber of points */
ff(0), ff(20),
ff(15), ff(0),
ff(0), -ff(40),
-ff(15), ff(0)};

gxDashRecord t heDashRecor d;

aCi rcl eShape = NewArc(&circl eBounds, ff(0), ff(360), false);
GXSet ShapeFi I | (aCircl eShape, gxHollowFill);

aDi anondShape = GXNewPol ygons((gxPol ygons *) di anondGeonetry);
t heDashRecord. attri butes = gxNoAttri butes;

t heDashRecor d. dash = aDi anondShape;
t heDashRecor d. advance = ff(30);

Using Geometric Styles

CHAPTER 3

Geometric Styles

t heDashRecor d. phase
t heDashRecord. scal e

0;
ff(60);

GXSet ShapeDash(aCi r cl eShape, &t heDashRecord);
GXDi sposeShape(abDi anondShape) ;
GXSet ShapePen(aCi rcl eShape, ff(60));

GXDr awshape(aCi r cl eShape) ;
}

Since this sample function does not set the auto-advance dash attribute, and the dash
advance of 30 does not divide evenly into the circumference of the circle, this function
results in the shape shown in Figure 3-63.

Figure 3-63 Circle dashed with diamonds

Notice that the initial dash and the final dash overlap. (The overlapping region is not
filled, because, by default, the dash shape has winding shape fill.)

Using Geometric Styles 3-71

CHAPTER 3

Geometric Styles

If, however, you set the auto-advance dash attribute, using this line of code:
t heDashRecord. attri butes = gxAut oAdvanceDash;

QuickDraw GX adjusts the dash advance accordingly. The result is shown in Figure 3-64.

Figure 3-64 Circle with automatically advanced dashes

As you can see, QuickDraw GX adjusts the dash advance the smallest amount possible
to create a whole number of dashes along the contour.

The sections “The Dash Structure” on page 3-103 and “Dash Attributes” on page 3-105
describe the dash structure and dash attributes in more detail, and the section “Getting
and Setting Dashes” beginning on page 3-134 describes the functions you can use to
manipulate dashes.

3-72 Using Geometric Styles

CHAPTER 3

Geometric Styles

Insetting Dashes

You can use a humber of methods to change the placement of the dash shape relative to
the dashed contour. For example, you can

n set the inside-frame style attribute (gxI nsi deFr aneSt yl e) or outside-frame style
(gxQut si deFr aneSt yl e) attribute of the style object containing the dash
information so that QuickDraw GX places the dashes on the inside or outside of the
contours

n change the geometry of the dash shape so that QuickDraw GX changes the placement
the dash shape correspondingly when dashing the shape

These two methods produce substantially different results. For example, if you inset the
pen placement in the example from the previous section by adding the call

GXSet ShapeStyl eAttri but es(aCircl eShape, gxl nsi deFraneStyl e);

to the Cr eat eADashedCi r cl e sample function in Listing 3-14 on page 3-70,
QuickDraw GX automatically adjusts the number and spacing of the dashes to fit the
smaller circle, as shown in Figure 3-65.

Figure 3-65 Circle with diamond dashes inset

»
0,(

Using Geometric Styles 3-73

CHAPTER 3

Geometric Styles

In this case, the number of dashes has been drastically reduced. If you want to keep the
number of dashes constant, but move them towards the center of the circle, change the
geometry of the dash shape instead of insetting the pen. For example, you can alter the
diamond geometry from the Cr eat eDashedCi r cl e sample function by translating it
up 30 points in the y-coordinate direction using this defintion:

static | ong di anondGeonetry[] = {1, /* nunber of contours */
4, |* nunber of points */
ff(0), ff(50),
ff(15), ff(30),
ff(0), -ff(10),
-ff(15), ff(30)};

In this case, if you do not inset the pen of the circle shape, the resulting shape maintains
the greater number of dashes, but fits within the smaller circle, as shown in Figure 3-66.

Figure 3-66 Circle with diamond dashes moved toward the center

3-74

The sections “The Dash Structure” on page 3-103 and “Dash Attributes” on page 3-105
describe the dash structure and dash attributes in more detail, and the section “Getting
and Setting Dashes” beginning on page 3-134 describes the functions you can use to
manipulate dashes.

Breaking and Bending Dashes

You can use polygon shapes and path shapes as dash shapes, which means you can have
a dash shape that has multiple contours. The way that QuickDraw GX place dashes
along a contour can cause dashes with multiple contours to appear quite a distance from
the dashed contour. QuickDraw GX provides the break dash attribute (gxBr eakDash)
and the bend dash attribute (gxBendDash) to address this problem.

Using Geometric Styles

CHAPTER 3

Geometric Styles

As an example, you can create a dash shape with two entirely separate contours: for
example, two separate diamonds, as shown in Figure 3-67.

Figure 3-67 Dash shape with two contours

<>

When you use this shape to dash any sort of curve, the larger diamond falls entirely off
of the contour. Listing 3-15 creates a circle shape and dashes with the double diamond
shape.

Listing 3-15 Creating a dash with multiple contours

voi d Creat eDoubl eDi anmondDash(voi d)

{
gxShape aCi rcl eShape, aDi anondShape;

gxRectangl e circl eBounds = {ff(50), ff(50), ff(180), ff(180)};

static | ong doubl ebi anond[] = {2, /* nunmber of contours */

4, [* nunber of points */
ff(0), ff(10),

ff(10), ff(0),

ff(0o), -ff(10),

-ff(10), ff(0),

4, [* nunber of points */
ff(40), ff(10),

ff(60), ff(0),

ff(40), -ff(10),

ff(20), ff(0)};

gxDashRecord t heDashRecor d;

aCi rcl eShape = NewArc(&circl eBounds, ff(0), ff(360), false);
GXSet ShapeFi | | (aCircl eShape, gxC osedFraneFill);

aDi anondShape = GXNewPol ygons((gxPol ygons *) doubl eDi anond) ;

Using Geometric Styles 3-75

CHAPTER 3

Geometric Styles

t heDashRecord. attri butes = gxAut oAdvanceDash;
t heDashRecor d. dash = aDi anondShape;

t heDashRecor d. advance = ff(80);

t heDashRecor d. phase GXFl oat ToFract (0. 0);

t heDashRecord. scal e ff(60);

GXSet ShapeDash(aCi rcl eShape, &t heDashRecord);
GXDi sposeShape(abi anondShape) ;

GXSet ShapePen(aCircl eShape, ff(60));

GXDr awsShape(aCi rcl eShape) ;

GXDi sposeShape(aCircl eShape) ;
}

This sample function creates the shape depicted in Figure 3-68.

Figure 3-68 Circle dashed with double diamonds

~'

¢
~

3-76 Using Geometric Styles

CHAPTER 3

Geometric Styles

The break dash attribute indicates that each contour of the dash shape should be
separately rotated and placed on the contours of the dashed shape. If you set the break
dash attribute in this example by replacing this line of code in the sample function:

t heDashRecord. attri but es

gxAut oAdvanceDash;
with this line of code:
t heDashRecord. attri butes = gxAut oAdvanceDash | gxBreakDash;

the resulting shape appears as shown in Figure 3-69.

Figure 3-69 Circle with dashes broken

¥ o
g -
L 2

N\ .

* &

In this case, QuickDraw GX rotates and centers the large diamond contours (separately
from the small diamond contours) to fit the contour of the dashed shape.

Using Geometric Styles 3-77

CHAPTER 3

Geometric Styles

If you change the pen width of the circle in this example to 0.0, you get a hairline curve,
and the dashes are mapped down to their one-dimensional image. So, for example,
setting the pen width with the call

GXSet ShapePen(aCircl eShape, ff(0));

causes the dashed circle to appear as in Figure 3-70.

Figure 3-70 Circle with hairline dashes

..--""""‘--.._‘_‘__H‘_

/ \
\ g

Sy

QuickDraw GX provides an extra feature for hairline dashes: you can bend them to fit
curved contours exactly using the bend dash attribute (gxBendDash).

3-78 Using Geometric Styles

CHAPTER 3

Geometric Styles

For example, if you change the dash attributes in this example using the assignment

t heDashRecord. attri butes = gxAut oAdvanceDash | gxBreakDash |
gxBendDash;

the dashed circle appears as shown in Figure 3-71.

Figure 3-71 Circle with bent hairline dashes

Note that you can specify the bend dash attribute only for hairline contours with broken
dashes.

The sections “The Dash Structure” on page 3-103 and “Dash Attributes” on page 3-105
describe the dash record structure and dash attributes in more detail, and the section
“Getting and Setting Dashes” beginning on page 3-134 describes the functions you can
use to manipulate dashes.

Using Geometric Styles 3-79

CHAPTER 3

Geometric Styles

Wrapping Text to a Contour

You can wrap text to a contour by using a typographic shape as the dash shape. Since
dashes must always be primitive shapes, you must convert a text or layout shape to a
glyph or path shape before using it as a dash shape.

The sample function in Listing 3-16 creates a text shape, sets its font and text size,
converts it to a path shape, and uses it to dash a curve.

Listing 3-16 Wrapping text

voi d WapText (voi d)

{
gxShape aCurveShape, aText Shape;

static gxCurve curveGeonetry = {ff(25), ff(125),
ff(100), O,
ff(225), ff(125)};

gxDashRecord t heDashRecor d;

aCurveShape = GXNewCurve(&curveCGeonetry);
GXSet ShapeFi | | (aCur veShape, gxOpenFraneFill);

aText Shape = GXNewText (13,
(unsi gned char *) "QuickDraw™ GX",
nil);

Set ShapeConmonFont (aText Shape, tinesFont);

GXSet ShapeText Si ze(aText Shape, ff(35));

GXSet ShapeType(aText Shape, gxPat hType);

t heDashRecord. attri butes = gxBreakDash;
t heDashRecor d. dash = aText Shape;

t heDashRecor d. advance = ff(330);
t heDashRecor d. phase = 0;
t heDashRecord. scal e = ff(35);

3-80 Using Geometric Styles

CHAPTER 3

Geometric Styles

GXSet ShapeDash(aCur veShape, &t heDashRecord);
GXDi sposeShape(aText Shape) ;

GXSet ShapePen(aCur veShape, ff(35));
GXDr awShape(aCur veShape) ;

GXDi sposeShape(aCur veShape) ;
}

This example sets the dash scale to equal the text size so that the glyphs do not become
distorted by dash scaling.

The result of this function is depicted in Figure 3-72. Notice that QuickDraw GX rotates
and places each glyph separately on the contour because the break dash attribute is set.

Figure 3-72 Wrapped text

ckDra
W Gy

Inside Macintosh: QuickDraw GX Typography contains more information about using
typographic shapes.

Determining Dash Positions

A restriction of the QuickDraw GX dashing architecture is that each dash must be the
same shape. There may be a situation where you’d like to dash a contour and have the
dashes change as they progress along the contour.

To help you create the appearance of a dashed contours where the dashes change,
QuickDraw GX provides the GXGet ShapeDashPosi ti ons function. This function
returns a list of mappings that identify the position and rotation of each dash on a shape.

By placing shapes in a picture using this list of mappings, you can give the effect of a
contour with changing dashes.

Using Geometric Styles 3-81

CHAPTER 3

Geometric Styles

As an example, the sample functions in this section show you how to create a picture of a
clock. The Cr eat eDashedCi r cl e sample function in Listing 3-17 creates a circle with
12 dashes, each of which appears where a number would appear on a clock.

Listing 3-17 Creating a circle with 12 dashes

voi d Creat eDashedCircl e(voi d)

{
gxShape adi rcl eShape, aSquar eShape;

static gxRectangle circleBounds = {ff(50), ff(50),
ff(180), ff(180)};

static gxRectangl e squareBounds = {-ff(10), -ff(10),
ff(10), ff(10)};

gxDashRecord t heDashRecor d;

aCi rcl eShape = NewArc(&circl eBounds, ff(30), ff(350), false);
GXSet ShapeFi | | (aCircl eShape, gxC osedFraneFill);
GXSet ShapePen(aCircl eShape, ff(60));

aSquar eShape = GXNewRect angl e(&quar eBounds) ;
GXSet ShapeFi | | (aSquar eShape, gxEvenCddFill);

t heDashRecord. attri butes = gxAut oAdvanceDash | gxLevel Dash;
t heDashRecor d. dash = aSquar eShape;

t heDashRecor d. advance = ff(34);

t heDashRecor d. phase = 0;

t heDashRecord. scal e ff(60);

GXSet ShapeDash(aCir cl eShape, &t heDashRecord);
GXDi sposeShape(aSquar eShape) ;

GXDr awshape(aGircl eShape) ;

GXDi sposeShape(aCircl eShape) ;

3-82 Using Geometric Styles

CHAPTER 3

Geometric Styles

This sample function creates a square shape using the GXNewRect angl e function to use
as a dash for a circle shape created using the library function NewAr c.

The result of this function is shown in Figure 3-73.

Figure 3-73 Dash positions for a clock

To replace the square dashes with numbers, the sample function in Listing 3-18 calls the
Get DashPosi ti ons function to obtain an array of mappings that identify the position
and rotation of each dash. (Notice that the dashes are not rotated in this case since the
level dash attribute is set.)

The sample function in Listing 3-18 then creates a picture and adds to it text shapes
containing the numbers 1 through 12. Each time text is added to the picture, its mapping
is set to be the next mapping in the array of dash positions.

Listing 3-18 Creating a clock shape

voi d Creat eAd ock(voi d)

{
gxShape adCircl eShape, aText Shape, aSquareShape, aPicture;

static gxRectangle circl eBounds

{ff(50), ff(50),
ff(180), ff(180)};

static gxRectangl e squar eBounds

{-ff(10), -ff(10),
ff(10), ff(10)};

static gxPointtextPosition = {ff(0), ff(0)};

Using Geometric Styles 3-83

3-84

CHAPTER 3

Geometric Styles

static char* nunbers[] = {" 1", " 2", " 3", " 4", " 5" " 6",

gxDashRecord t heDashRecor d;

| ong nunber Of Dashes, count;
gxMappi ng dashMappi ngs[12] ;

/* Create the dashed circle fromthe previous exanple. */

aCircl eShape = NewArc(&circl eBounds, ff(30), ff(350), false);
GXSet ShapeFi | | (aCircl eShape, gxC osedFraneFill);

aSquar eShape = GXNewRect angl e(& quar eBounds) ;
GXSet ShapeFi | | (aSquar eShape, gxEvenCQddFill);

t heDashRecord. attri butes = gxAut oAdvanceDash | gxLevel Dash;
t heDashRecor d. dash = aSquar eShape;

t heDashRecor d. advance = ff(34);

t heDashRecor d. phase = GXFl oat ToFract (0. 0);

t heDashRecord. scal e ff(60);

GXSet ShapeDash(aCir cl eShape, &t heDashRecord);
GXSet ShapePen(aCi rcl eShape, ff(60));

/* Find the dash positions. */

nunber Of Dashes = GXGet ShapeDashPosi ti ons(aCi rcl eShape,
dashMappi ngs) ;

GXDi sposeShape(aCircl eShape) ;

GXDi sposeShape(aSquar eShape) ;

/* Create a picture with nunbered text shapes. */

aText Shape = GXNewText (1, (unsigned char*) " 1",
&t ext Position);
GXSet ShapeFi | | (aText Shape, gxEvenOddFill);

aPi cture = GXNewShape(gxPi ctureType);

GXSet ShapeAttri but es(aPi cture, gxUni quelt ensShape);

for (count = 0; count <= nunber Of Dashes; count ++) {
GXSet ShapeMappi ng(aText Shape, dashMappi ngs[count]);

Using Geometric Styles

CHAPTER 3

Geometric Styles

GXSet Text (aText Shape, 2, nunbers[count], &textPosition);
AddToShape(aPi ct ure, aText Shape);

}
GXDi sposeShape(aText Shape) ;

GXDr awShape(aPi cture);

GXDi sposeShape(aPi cture);
}

The result of the Cr eat eACl ock sample function is depicted in Figure 3-74.

Figure 3-74 A clock shape

11 12 1

10 2

This sample function uses some concepts from other parts of QuickDraw GX. For more
information about

n mappings, see the chapter “Transform Objects” in Inside Macintosh: QuickDraw GX
Objects.

n pictures and adding elements to them, see Chapter 6, “Picture Shapes.”

n typographic shapes, see Inside Macintosh: QuickDraw GX Typography.

Using Geometric Styles 3-85

CHAPTER 3

Geometric Styles

Adding a Pattern to a Shape

To add a pattern to a shape, you must create a pattern structure. The pattern structure
has four fields: the shape to use as the pattern, the pattern attributes, and a pair of
vectors that define the grid over which QuickDraw GX places the pattern.

The sample function in Listing 3-19 creates a large rectangle shape patterned with small
squares.

Listing 3-19 Patterning a shape

voi d CreatePatternedRect angl e(voi d)

{
gxShape aRectangl eShape, aSquarePattern;
static gxRectangl e rectangl eGeonetry = {ff(50), ff(50),
ff(250), ff(150)};
static gxRectangl e squareGeonetry = {ff(0), ff(0),
ff(10), ff(10)};
gxPatternRecord thePatternRecord;
aRect angl eShape = GXNewRect angl e(& ect angl eGeonetry);
aSquar ePattern = GXNewRect angl e(&quar eGeonetry) ;
thePatternRecord. attri butes = gxNoAttri butes;
t hePatt ernRecord. pattern = aSquarePattern;
thePatternRecord.u.x = ff(0);
thePatternRecord.u.y = ff(20);
thePatternRecord.v.x = ff(20);
thePatternRecord.v.y = ff(0);
GXSet ShapePat t er n(aRect angl eShape, &t hePatternRecord);
GXDi sposeShape(aSquar ePattern);
GXDr awShape(aRect angl eShape) ;
GXDi sposeShape(aRect angl eShape) ;
}

3-86 Using Geometric Styles

CHAPTER 3

Geometric Styles

Note

As with caps, joins, and dashes, QuickDraw GX copies only the
geometric information of the pattern shape into the pattern property of
the style object; it does not copy the entire pattern shape. For this reason,
pattern shapes must be in primitive form. Once you have called

GXSet ShapePat t er n, you are free to change the original pattern shape
without affecting the pattern of the patterned shape. u

Notice that this sample function creates a square pattern shape 10 points high
by 10 points wide. It places that square pattern on a rectangular grid 20 points high by
20 points wide, resulting in the shape shown in Figure 3-75.

Figure 3-75 A rectangle with a pattern

1 1 1 1
EEEE EEEE EEEY £

1 1 1 1

1 1 1 1

1 1 1 1

Ll EEEN
1 1 1 1
1 1 1 1

1

1

1

i ilaints Il b b
1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1===q1==-q---1---1-

Patern rectore Paterned grid Rectangle flled wit 2 pathern

Although this example places the pattern shape on a rectangular grid, you are not
limited to rectangular grids. The u and v fields of the pattern structure allow you to
define a pair of vectors, so your pattern can be placed on any regular grid.

Using Geometric Styles 3-87

CHAPTER 3

Geometric Styles

QuickDraw GX does not limit you to patterning filled shapes; you can pattern
framed shapes as well. For example, if you change the previous example so that the
rectangle shape is framed using the call

GXSet ShapeFi | | (aRect angl eShape, gxC osedFraneFill);
and has a thick pen width using the call
GXSet ShapePen(aRect angl eShape, ff(40));

the resulting function creates the shape shown in Figure 3-76.

Figure 3-76 A framed rectangle with a pattern

3-88

You can also pattern dashed shapes. For examples, see “Combining Caps, Joins, Dashes,
and Patterns” on page 3-91.

The sections “The Pattern Structure” on page 3-106 and “Pattern Attributes” on

page 3-107 describe the pattern record structure and pattern attributes in more detail,
and the section “Getting and Setting Patterns” beginning on page 3-142 describes the
functions you can use to manipulate patterns.

Determining Pattern Positions

As with the model for dashes, the QuickDraw GX model for patterns provides only for
the case where the pattern shape remains the same throughout the entire patterned
shape. If you want to pattern a shape and have the pattern change throughout it, you
must use the GXGet ShapePat t er nPosi t i ons function. This function returns an array
of points that identify the location of each pattern shape on the patterned shape.

Using Geometric Styles

CHAPTER 3

Geometric Styles

As an example, the sample function in this section shows you how to alter the patterned
rectangle from the previous section. The sample function in Listing 3-20 first creates the
patterned rectangle shown in Figure 3-75 and then uses the

GXGet ShapePat t er nPosi ti ons function to find the position of each small square in
that patterned rectangle. The sample function then creates a picture, adding small
squares at the appropriate positions, but rotating each new square a small amount.

Listing 3-20 Changing a pattern throughout a patterned shape

voi d CreateBizarrePattern(void)

{

gxShape aRect angl eShape, snal |l Rectangl e, aPicture;

static gxRectangl e rectangl eGeonetry {ff(50), ff(50),

ff(250), ff(150)};

static gxRectangle small Rect Geonetry {ff(0), ff(0),

ff(10), ff(10)};
gxPatternRecord thePatternRecord;
gxPoi nt *patternPositions;
i nt number Of Patterns, count;
aRect angl eShape = GXNewRect angl e(& ect angl eGeonetry);
GXSet ShapeFi | | (aRect angl eShape, gxEvenOddFill);

smal | Rect angl e = GXNewRect angl e(&l | Rect Geonetry) ;
GXSet ShapeFi | | (smal | Rect angl e, gxEvenCQddFill);

thePatternRecord. attri butes = gxPortAlignPattern;
t hePatternRecord. pattern = smal | Rect angl e;

thePatternRecord.u.x = ff(0);
thePatternRecord.u.y = ff(20);
thePatternRecord.v.x = ff(20);
thePatternRecord.v.y = ff(0);

GXSet ShapePat t er n(aRect angl eShape, &t hePatternRecord);

nunber Of Pat t er ns = GXGet ShapePat t er nPosi ti ons(aRect angl eShape,
nil);

Using Geometric Styles 3-89

3-90

CHAPTER 3

Geometric Styles

}

patternPositions = (gxPoint *)
NewPt r (nunber O Patterns * si zeof (gxPoint));
GXGet ShapePat t er nPosi ti ons(aRect angl eShape, patternPositions);

GXDi sposeShape(aRect angl eShape) ;

aPi cture = GXNewShape(gxPi ctureType);

GXSet ShapeAttri but es(aPi cture, gxUni quel t ensShape);

for (count = 0; count < nunberOfPatterns; count++) {
GXRot at eShape(snal | Rectangl e, ff(10), 0, 0);
GXMoveShapeTo(snal | Rect angl e, patternPositions[count]. X,

patternPositions[count].y);

AddToShape(aPi cture, small Rectangle);

}

GXDi sposeShape(snal | Rect angl e) ;

Di sposePtr((Ptr)patternPositions);

GXDr awShape(aPi cture);

GXDi sposeShape(aPi cture);

This function calls the GXGet ShapePat t er nPosi ti ons function twice. The first time,
itsends ni | as the value of the pattern positions array, which indicates that the
GXGet ShapePat t er nPosi t i ons function should not return an actual array of
positions, but should return as the function result the total number of pattern positions.
Once the sample function has this total, it allocates enough memory to hold the array of
pattern positions, and then calls GXGet ShapePat t er nPosi ti ons again to determine
the actual positions.

Using Geometric Styles

CHAPTER 3

Geometric Styles

The result of this sample function is shown in Figure 3-77.

Figure 3-77 Shape with changing pattern

L X X X ¥ N
xuEne
ERE XY
 E XX N N]
R ERS
FREEX XY
L X X X N N
SENEBRS
ERvedé
L X X ¥ N
bR ESS

Notice that, in this case, the list of positions returned by

GXGet ShapePat t er nPosi ti ons starts at the upper-left corner and

works down each column of the patterned shape. In general, the order of

the positions returned by the GXGet ShapePat t er nPosi t i ons function is not
guaranteed by QuickDraw GX.

This sample function uses some concepts from other parts of QuickDraw GX. For more
information about

n rotating and moving shapes, see the chapter “Transform Objects” in Inside Macintosh:
QuickDraw GX Objects.

n pictures and adding elements to them, see Chapter 6, “Picture Shapes,” in this book.

Combining Caps, Joins, Dashes, and Patterns

As mentioned in “Interactions Between Caps, Joins, Dashes, and Patterns” on page 3-22,
combining caps, joins, dashes, and patterns on the same shape causes some interesting
interactions.

These elements interact differently in each of these three cases:

n the shape does not have a dash but has one or more of the three other stylistic
variations

n the shape does have a dash but the clip dash attribute is not set

n the shape does have a dash and the clip dash attribute is set

Using Geometric Styles 3-91

CHAPTER 3

Geometric Styles

When a shape has a cap and a join, QuickDraw GX adds the caps to the beginnings and
ends of the shape’s contours, and adds the joins to the other on-curve geometric points
of the shape’s contours. If the shape also has a pattern, QuickDraw GX draws this
pattern throughout the shape’s frame as well as the shape’s caps and joins. The sample
function in Listing 3-21 creates an angle shape with a round cap, a square join, and a
very small square pattern.

Listing 3-21 Combining a cap, join, and pattern

voi d CapJoi nPattern(void)

{
gxShape anAngl eShape, aRoundCap, aSquareJoin, aSquarePattern;

static long angl eGeonetry[] = {1, /* nunber of contours */
3, /'* nunber of points */
ff(100), ff(100),
ff(200), ff(80),
ff(300), ff(100)};

static | ong di anondGeonetry[] = {1, /* nunber of contours */
4, [* nunber of points */
ff(0), ff(50),
ff(10), ff(0),
ff(0), -ff(50),
-ff(10), ff(0)};

static gxRectangle circleBounds ={-fl(.75), -fl(.75),
fl1(.75), fl(.75)};
static gxRectangle small SquareGeonetry = {ff(0), ff(0),
ff(l), ff(1)};
gxCapRecord t heCapRecor d;
gxJoi nRecord theJoi nRecor d;
gxPatternRecord thePatternRecord;

/* Create the shape to be capped, joined, and patterned. */
anAngl eShape = GXNewPol ygons((gxPol ygons *) angl eGeonetry);
GXSet ShapeFi | | (anAngl eShape, gxOpenFraneFill);

GXSet ShapePen(anAngl eShape, ff(50));

/* Create the round cap and add to the shape. */
aRoundCap = NewArc(&circl eBounds, ff(0), ff(360), false);
t heCapRecord. start Cap = aRoundCap;

t heCapRecor d. endCap = aRoundCap;

3-92 Using Geometric Styles

CHAPTER 3

Geometric Styles

theCapRecord. attri butes = gxNoAttri butes;
GXSet ShapeCap(anAngl eShape, &t heCapRecord);
GXDi sposeShape(aRoundCap) ;

/* Create the square join and add to join the shape. */
aSquar eJoi n = GXNewRect angl e(&ci r cl eBounds) ;

theJoi nRecord. attri butes = gxNoAttri butes;

t heJoi nRecord. j oi n = aSquar eJoi n;

t heJoi nRecord. mter = 0;

GXSet ShapeJoi n(anAngl eShape, &theJoi nRecord);

GXDi sposeShape(aSquar eJoi n);

/* Create the small square pattern and pattern the shape. */
aSquarePattern = GXNewRect angl e(&nal | Squar eGeonet ry) ;

GXSet ShapeFi | | (aSquarePattern, gxSolidFill);
thePatternRecord. attri butes = gxNoAttri butes;

t hePatt ernRecord. pattern = aSquarePattern;
thePatternRecord.u.x = ff(0);

thePatternRecord.u.y = ff(2);
thePatternRecord.v.x = ff(2);
thePatternRecord.v.y = ff(0);

GXSet ShapePat t er n(anAngl eShape, &t hePatternRecord);
GXDi sposeShape(aSquar ePattern);

GXDr awShape(anAngl eShape) ;

GXDi sposeShape(anAngl eShape) ;
}

The result of this function is shown in Figure 3-78.

Figure 3-78 Angle shape with cap, join, and pattern

i i

Using Geometric Styles 3-93

CHAPTER 3

Geometric Styles

The second case of cap, join, dash, and pattern interaction is when the shape has a dash
but the clip dash attribute is not set. In this case, QuickDraw GX ignores the caps and joins
of the shape. However, QuickDraw GX does draw the pattern throughout the dashes.

For example, if you add the following declarations at the appropriate places in the
previous example:

gxShape abDi anondDash;

static | ong di amondGeonetry[] = {1, /* nunber of contours */
4, [* nunber of points */
ff(0), ff(50),
ff(10), ff(0),
ff(0), -ff(50),
-ff(10), ff(0)};
gxDashRecord t heDashRecor d;

and you add the following code to create a diamond-shaped dash:

/* Create the dianond dash and dash the shape. */

aDi anondDash = GXNewPol ygons((gxPol ygons *) di anondGeonetry);
GXSet ShapeFi | | (abDi anondDash, gxEvenCQddFill);

t heDashRecord. attri butes = gxNoAttri butes;

t heDashRecor d. dash = aDi anondDash;

t heDashRecor d. advance = ff (40);

t heDashRecor d. phase 0;

t heDashRecord. scal e = ff(50);

GXSet ShapeDash(anAngl eShape, &t heDashRecord);

GXDi sposeShape(abi anondDash) ;

the resulting shape will appear as depicted in Figure 3-79.

Figure 3-79 Angle shape with dash and pattern; caps and join ignored

b d
. b i L d :
3 3) Ji il A
! ML NL & A& FlL
N, W& W8 mF = A0
Nk YN YN N W
us s ‘"W | |y
in L 1 r ¥ |
a 1) I ¥
1 I

3-94 Using Geometric Styles

CHAPTER 3

Geometric Styles

The third case of cap, join, dash, and pattern interaction is when the shape has a dash
and the clip dash attribute is set. In this case, QuickDraw GX adds the cap and the join
shapes to the clip shape used to clip the dashes. Patterns are not allowed in this case, so
if you add the following line to the previous example:

t heDashRecord. attri butes = gxd i pDash;
you must comment out this line:

[* GXSet ShapePat t er n(anAngl eShape, &t hePatternRecord); */

which ensures that no pattern is set for the shape.

In this case, the resulting shape is drawn as shown in Figure 3-80.

Figure 3-80 Shape with cap, join, dash, and the clip dash attribute set

Shape showivg aeenof ¢ Bp sinpe

H 1
| |
.,.-"r - - E— — e
£ L
¢ %,
| i
y]
b - R ¥ _ - f
) ! L ,r'f
1‘-._‘_ ..-"r S _._..-"
Thee resnlEng clipped shape

\\\ /1

Notice that the dashes (which are now solid because there is no pattern) are clipped to
the thick contours of the angle shape. However, at the ends and at the corner more of the
dashes show because the cap shapes and the join shape are added to the clip shape used
to clip the dashes.

Using Geometric Styles 3-95

CHAPTER 3

Geometric Styles

Geometric Styles Reference

Each QuickDraw GX shape includes a shape object, a style object, an ink object, and a
transform object. This section describes the data types and functions that are specific to
style objects.

The “Constants and Data Types” section shows the type definition for the style object,
and the structure and enumeration definitions used for five of the properties of style
objects: the style attributes, the caps, the join, the dash, and the pattern.

The “Functions” section describes functions that manipulate the geometric style
properties: the style attributes, the curve error, the pen width, the caps, the join, the dash,
and the pattern. These properties allow you to apply stylistic variations to geometric
shapes.

For information regarding creating and manipulating style objects themselves, or
manipulating their tags and owner counts, see the chapter “Style Objects” in Inside
Macintosh: QuickDraw GX Objects.

For information regarding the typographic style properties—for example, the font, text
size, and text face—see the chapter “Typographic Styles” in Inside Macintosh:
QuickDraw GX Typography.

Constants and Data Types

3-96

This section describes the data types that you use to provide information about and to
retrieve information from style objects.

You use the gxSt yl e data type when referring to a style object. This data type is
described in full in the chapter “Style Objects” of Inside Macintosh: QuickDraw GX Objects.

You use the gxSt yl eAt t ri but es enumeration when getting and setting individual
flags of the attributes property of a style object.

You use the gxCapRecor d structure and the gxCapAt t r i but es enumeration when
getting and setting the start cap and end cap of a shape.

You use the gxJoi nRecor d structure and the gxJoi nAt t ri but es enumeration when
getting and setting the corner join of a shape.

You use the gxDashRecor d structure and the gxDashAt t r i but es enumeration when
getting and setting a shape’s dashes.

You use the gxPat t er nRecor d structure and the gxPat t er nAt tri but es
enumeration when getting and setting a shape’s pattern.

Geometric Styles Reference

CHAPTER 3

Geometric Styles

Style Objects

You use the gxSt yl e data type when referring to a style object. This data type is
described in full in the chapter “Style Objects” of Inside Macintosh: QuickDraw GX Objects.

Style objects have owner counts, tags, typographic style properties, and seven
geometric style properties. The owner count and tags properties are described in

Inside Macintosh: QuickDraw GX Objects. The typographic style properties are described
in Inside Macintosh: QuickDraw GX Typography The geometric style properties are listed
here:

n Style attributes. This property is a group of flags that modify the behavior of the style

object. The section “Style Attributes” on page 3-17 discusses the effects of these
attributes. The section “Style Attributes” on page 3-98 describes the style attribute
flags, and “Getting and Setting Style Attributes” on page 3-109 describes the functions
you can use to examine or alter style attribute flags.

Curve error. This property specifies the allowable amount of error when QuickDraw
GX converts a path shape into a polygon shape. It also specifies how far apart
geometric points must be for QuickDraw GX to consider them separate points when
reducing or simplifying a shape. The section “Curve Error” on page 3-14 discusses the
curve error property and the sections “Using Curve Error When Converting Paths to
Polygons” on page 3-45 and “Using Curve Error When Reducing Shapes” on

page 3-49 give examples of using curve error. The section “Getting and Setting Curve
Error” on page 3-114 describes the functions you can use to examine or alter this
property.

Pen width. This property specifies the thickness of the pen QuickDraw GX uses to
draw the contours of a shape. “The Geometric Pen” on page 3-15 describes how
QuickDraw GX uses the pen when drawing, and “Getting and Setting the Pen Width”
beginning on page 3-119 describes the functions you can use to examine or alter the
pen width.

Cap. This property specifies what QuickDraw GX should draw at the start and the
end of a shape’s contours. The section “Caps” on page 3-23 describes start and end
caps, the sections “The Cap Structure” on page 3-99 and “Cap Attributes” on

page 3-101 discuss the data types you use to describe start and end caps, and the
section “Getting and Setting Caps” beginning on page 3-123 describes the functions
you can use to examine or alter a shape’s start and end caps.

Join. This property specifies what QuickDraw GX draws at the corners of a shape’s
geometry. The section “Joins” on page 3-25 describes corner joins, the sections “The
Join Structure” on page 3-101 and “Join Attributes” on page 3-102 discuss the data
types you use to describe corner joins, and the section “Getting and Setting Joins”
beginning on page 3-129 describes the functions you can use to examine or alter a
shape’s corner joins.

Geometric Styles Reference 3-97

CHAPTER 3

Geometric Styles

n Dash. This property specifies how QuickDraw GX should dash the contours of a
shape. The section “Dashes” on page 3-27 describes dashes, the sections “The Dash
Structure” on page 3-103 and “Dash Attributes” on page 3-105 discuss the data types
you use to describe dashes, and the section “Getting and Setting Dashes” beginning
on page 3-134 describes the functions you can use to examine or alter a shape’s dashes.

n Pattern. This property specifies how QuickDraw GX should fill the geometry of a
shape with a pattern. The section “Patterns” on page 3-31 describes patterns, the
sections “The Pattern Structure” on page 3-106 and “Pattern Attributes” on page 3-107
discuss the data types you use to describe patterns, and the section “Getting and
Setting Patterns” beginning on page 3-142 describes the functions you can use to
examine or alter a shape’s pattern.

Style Attributes

3-98

Each style object has a set of style attributes, which are a group of flags that modify the
behavior of the style object. In particular, these flags allow you to specify how
QuickDraw GX places the pen with respect to a shape’s geometry and whether the shape
should be constrained to a grid. These constants are defined in the

gxStyl eAttri but es enumeration:

enum gxStyl eAttributes {

gxCent er FraneStyl e = 0,

gxSourceG i dStyl e = 0x0001,
gxDevi ceGidStyl e = 0x0002,
gxl nsi deFraneStyl e = 0x0004,
gxQut si deFrameStyl e = 0x0008,
gxAut ol nset Styl e = 0x0010

H

typedef |ong gxStyl eAttribute;

Constant descriptions

gxCent er FraneStyl e
Indicates that QuickDraw GX should center the geometric pen
along the shape’s contours.

gxSourceG i dStyl e

Constrains the geometric points of the shape in geometry space.
When drawing a shape whose style object has this flag set,
QuickDraw GX moves each geometric point of the shape’s
geometry to the closest integral position before applying the shape’s
style and transform. (Note that the original geometric points are
unchanged,; this operation occurs only as the shape is being drawn.)
See “Grids” beginning on page 3-20 for more information.

Geometric Styles Reference

CHAPTER 3

Geometric Styles

gxDevi ceGi dStyl e
Constrains the geometric points of the shape in device space. When
drawing a shape whose style object has this flag set, QuickDraw GX
moves the shape’s geometric points, after applying the shape’s style
and transform, to the closest integral position (that is, pixel
position) in the device space. (Note that the original geometric
points are unchanged; this operation occurs only as the shape is
being drawn.) See “Grids” beginning on page 3-20 for more
information.

gxl nsi deFraneStyl e
Indicates that QuickDraw GX should position the pen along the
inside of the shape’s contours. By default, QuickDraw GX uses the
direction of a contour to determine which side is the inside; the
right side of a contour is considered the inside.

gxQut si deFraneStyl e
Indicates that QuickDraw GX should place the pen along the
outside of the shape’s contours. By default, QuickDraw GX uses the
direction of a contour to determine which side is the inside; the left
side of a contour is considered the outside.

gxAut ol nset Styl e
Alters the default definition of the inside and outside of a contour.
When this flag is not set, QuickDraw GX assumes the right side of a
contour is the inside and the left side of a contour is the outside
(which provides the correct behavior for TrueType fonts). When the
gxAut ol nset St yl e flag is set, QuickDraw GX finds the true
inside of each contour, regardless of the contour direction.

Setting both the gxI nsi deFr aneSt yl e and gxQut si deFr aneSt yl e style attributes
results in the i nconsi st ent _par anet er s error.

See “Grids” on page 3-20 and “Constraining Shape Geometries to Grids” beginning on
page 3-40 for details about how QuickDraw GX constrains shapes to a grid. See “The
Geometric Pen” on page 3-15 and “Manipulating Pen Width and Placement” on

page 3-51 for examples of pen placement.

The Cap Structure

QuickDraw GX allows you to specify what to draw at the start and at the end of a
shape’s contours. In particular, you may specify a start cap for any point shape, and you
may specify a start cap and an end cap for any line, curve, polygon, or path shape that
has an open-frame shape fill.

QuickDraw GX uses the cap property of a shape’s style object to store information about
the start cap and end cap of the shape.

You use the cap structure when specifying cap information (using the GXSet St yl eCap
or GXSet ShapeCap functions) and when retrieving cap information (using the
GXGet St yl eCap or GXGet ShapeCap functions).

Geometric Styles Reference 3-99

3-100

CHAPTER 3

Geometric Styles

The cap structure is defined by the gxCapRecor d data type:

struct gxCapRecord {
gxCapAttribute attri butes;

gxShape
gxShape
b

Field descriptions
attributes

start Cap

endCap

start Cap;
endCap;

Modifies the behavior of the caps. The next section, “Cap
Attributes,” describes the gxCapAt t ri but e flags in detail.

Specifies what the start cap should look like. You must use shapes
in their primitive form for the start cap shape. (Primitive shapes are
described in detail in Chapter 4, “Geometric Operations,” in this
book.) You may not use framed shapes, shapes with an inverse
shape fill, full shapes, text shapes, glyph shapes, layout shapes,
bitmap shapes, or picture shapes as the start cap shape.

QuickDraw GX considers only the geometric properties (the shape
type, the shape fill, and the shape geometry) of the shape specified
by the st ar t Cap field. QuickDraw GX ignores the owner count,
shape tags, and shape attributes properties and the style, ink, and
transform objects of the start cap shape.

Specifies what the start cap should look like. You must use shapes
in their primitive form for the end cap shape. (Primitive shapes are
described in detail in Chapter 4, “Geometric Operations,” in this
book.) You may not use framed shapes, shapes with an inverse
shape fill, full shapes, text shapes, glyph shapes, layout shapes,
bitmap shapes, or picture shapes as the end cap shape.

QuickDraw GX considers only the geometric properties (the shape
type, the shape fill, and the shape geometry) of the shape specified
by the endCap field. QuickDraw GX ignores the owner count,
shape tags, and shape attributes properties and the style, ink, and
transform objects of the end cap shape.

See “Caps” beginning on page 3-23, “Adding Caps to a Shape” beginning on page 3-57,
and “Adding Standard Caps to a Shape” beginning on page 3-59 for examples of caps.

Geometric Styles Reference

CHAPTER 3

Geometric Styles

Cap Attributes

Each cap structure contains a set of flags that modify the way a shape is capped. These
constants are defined in the gxCapAt t ri but es enumeration:

enum gxCapAttributes {
gxLevel St art Cap= 0x0001,;
gxLevel EndCap = 0x0002;

H

typedef |ong gxCapAttribute;

Constant descriptions

gxLevel Start Cap
Suppresses rotation of the start cap shape. When you set this flag,
QuickDraw GX does not rotate the start cap shape to match the
slope of the capped contour. Instead, QuickDraw GX places the
start cap shape onto the start of the capped contour with the exact
orientation specified by the start cap shape’s geometry.

gxLevel EndCap Suppresses rotation of the end cap shape. When you set this flag,
QuickDraw GX does not rotate the end cap shape to match the
slope of the capped contour. Instead, QuickDraw GX places the end
cap shape onto the start of the capped contour with the exact
orientation specified by the end cap shape’s geometry.

The Join Structure

QuickDraw GX allows you to specify a join shape to be drawn at the corners of another
shape’s contours. In particular, you may specify a join shape for any rectangle, polygon,
or path shape that has an open-frame shape fill or a closed-frame shape fill.

n For shapes with the closed-frame shape fill, QuickDraw GX draws the specified join
shape at every on-curve geometric point of each contour.

n For shapes with the open-frame shape fill, QuickDraw GX draws the specified join
shape at every on-curve geometric point between the first point and the last point of
each contour.

QuickDraw GX uses the join property of a shape’s style object to store information about
the join of the shape.

You use the join structure when specifying join information (using the
GXSet St yl eJoi n or GXSet ShapeJoi n functions) and when retrieving join
information (using the GXGet St yl eJoi n or GXGet ShapeJoi n functions).

Geometric Styles Reference 3-101

CHAPTER 3

Geometric Styles

The join structure is defined by the gxJoi nRecor d data type:

struct gxJoi nRecord {
gxJoi nAttributeattri butes;
gxShape j oi n;
Fi xed mter;

b

Field descriptions

attributes Allows you to specify a level join, or to specify one of two standard
types of joins: sharp joins and curve joins. The next section, “Join
Attributes,” describes the gxJoi nAt t ri but e flags in detail.

join Specifies what the join should look like. You must use shapes in
their primitive form for the join shape. (Primitive shapes are
described in detail in Chapter 4, “Geometric Operations,” in this
book.) You may not use framed shapes, shapes with an inverse
shape fill, full shapes, text shapes, glyph shapes, layout shapes,
bitmap shapes, or picture shapes as the join shape.

QuickDraw GX considers only the geometric properties (the shape
type, the shape fill, and the shape geometry) of the shape specified
by the j oi n field. QuickDraw GX ignores the owner count, shape
tags, and shape attributes properties and the style, ink, and
transform objects of the join shape.

You set this field to ni | when you want to specify a standard join: a
sharp join or curve join.

mter Used to truncate sharp joins. See the next section, “Join Attributes,”
for more information about sharp joins.

See “Joins” beginning on page 3-25, “Adding Joins to a Shape” beginning on page 3-61,

and “Adding Standard Joins to a Shape” beginning on page 3-64 for examples of joins.

Join Attributes

3-102

Each join structure contains a set of flags that allow you to specify level joins, sharp joins,
and curve joins. These constants are defined in the gxJoi nAt t ri but es enumeration:

enum gxJoi nAttri butes {
gxShar pJoi n= 0x0000,
gxCurveJdoi n= 0x0001,
gxLevel Joi n= 0x0002

b

typedef |ong gxJoi nAttri bute;

Geometric Styles Reference

CHAPTER 3

Geometric Styles

Constant descriptions

gxShar pJoi n Indicates that QuickDraw GX should continue the outside edges of
the corners of the joined shape until they meet at a point. You can
use the i t er field of the join structure to limit the size of a sharp
join for very sharp corners.

gxCurveldoin Indicates that QuickDraw GX should connect the outside edges of
the corners of the joined shape with a circular curve.
gxLevel Join Suppresses rotation of the shape specified by the j oi n field of the

join structure. When you set this flag, QuickDraw GX does not
rotate the join shape to match the mid-angle of the joined corner.
Instead, QuickDraw GX places the join shape onto the joined corner
with the exact orientation specified by the geometry of the join
shape.

QuickDraw GX draws a sharp join or a curve join for every corner of every geometric
shape; you may additionally specify a join shape to be added to a shape’s corner using
the j oi n field of the join structure.

The ni t er field of the join structure allows you to limit the size of sharp joins, which is
particularly useful if the joined corner is very sharp. In the mi t er field, you specify the
maximum distance between the actual corner (as specified by the joined shape’s
geometry) and the tip of the sharp corner as drawn.

See “Adding Standard Joins to a Shape” beginning on page 3-64 for an example of a
standard join.

The Dash Structure

With QuickDraw GX, you can specify that certain shapes should be drawn with dashed,
instead of solid, contours. In particular, you may specify a dash for any line, curve,
rectangle, polygon, or path shape that has an open-frame shape fill or a closed-frame
shape fill.

QuickDraw GX uses the dash property of a shape’s style object to store information
about how to dash the shape.

You use the dash structure when specifying dash information (using the
GXSet St yl eDash or GXSet ShapeDash functions) and when retrieving dash
information (using the GXGet St yl eDash or GXGet ShapeDash functions).

The dash structure is defined by the gxDashRecor d data type:

struct gxDashRecord {
gxDashAttribute attri butes;

gxShape dash;

Fi xed advance;
fract phase;

Fi xed scal e; /

Geometric Styles Reference 3-103

3-104

CHAPTER 3

Geometric Styles

Field descriptions
attributes

dash

advance

phase

scal e

Modifies the behavior of the dashes. The next section, “Dash
Attributes,” describes the gxDashAt t ri but e flags in detail.

Specifies what the dash should look like. You must use shapes in
their primitive form for the dash shape. (Primitive shapes are
described in detail in Chapter 4, “Geometric Operations,” in this
book.) You may not use text shapes, layout shapes, bitmap shapes,
or picture shapes as the dash shape. However, you may use
framed shapes and glyph, and you may also use shapes with an
inverse shape fill if the clip dash attribute is set.

QuickDraw GX considers only the geometric properties (the shape
type, the shape fill, and the shape geometry) of the shape specified
by the dash field. QuickDraw GX ignores the owner count, shape
tags, and shape attributes properties and the style, ink, and
transform objects of the dash shape.

Indicates the distance between dashes. This fixed-point value is the
distance along the contours of the dashed shape between the
beginning of a dash and the beginning of the following dash. The
value must be greater than 0.

Specifies the initial placement of a dash. This value can vary
between —-2.0 and 2.0. A value of 0 indicates that the dash shape
should not be offset—that is, the start of the first dash shape should
be aligned with the start of the contour. A value greater than 0
indicates that the first dash along the contour should begin a certain
percentage into the dash shape. A value of 1.0 indicates that the
dashes should be shifted exactly one advance width—this value

is equivalent to specifying a value of 0. Values greater than 1.0 are
equivalent to their fractional part.

Specifies the scaling of the dash shape. QuickDraw GX scales the
dash shape in one dimension—perpendicularly to the contour
being dashed. The factor it uses to scales the dash shape in this
dimension is the pen with divided by the dash scale. Therfore,
decreasing the dash scale has the effect of thickening the dashed
contour.

See “Dashes” beginning on page 3-27 for more information about dashes, and see
page 3-66 through page 3-81 for examples of dashing.

Geometric Styles Reference

CHAPTER 3

Geometric Styles

Dash Attributes

enum gxDashAttri butes {
gxBendDash
gxBr eakDash
gxC i pDash
gxLevel Dash
gxAut oAdvancebDash

H

t ypedef

Each dash structure contains a set of flags that modify the way a shape is dashed. These
constants are defined in the gxDashAt t ri but es enumeration:

0x0001,;
0x0002;
0x0004;
0x0008;
0x0010;

| ong gxDashAttri bute;

Constant descriptions

gxBendDash

gxBr eakDash

gxd i pDash

gxLevel Dash

Distorts the dash shape to match the contour being dashed. A dash
may have the gxBendDash attribute only when the dashed shape’s
pen width is zero, indicating hairline contours. (Any other pen
width results in an error condition.) When the gxBendDash
attribute is set, QuickDraw GX maps the dash shape onto the x-axis
(so that it becomes one-dimensional) and bends this flattened dash
shape along the contours of the shape being dashed.

Indicates that QuickDraw GX should rotate and place each contour
of the dash shape separately. When this attribute is set,

QuickDraw GX calculates the center point of each contour of the
dash shape and rotates and centers it appropriately along the
contour of the shape being dashed. See Figure 3-25 on page 3-30 for
an example.

Indicates that QuickDraw GX should clip the dashes to the pen
width of the dashed shape. See Figure 3-24 on page 3-29 for an
example. This attribute causes dashes to have some complicated
interactions with caps and joins. See the section “Interactions
Between Caps, Joins, Dashes, and Patterns” on page 3-33 and
“Combining Caps, Joins, Dashes, and Patterns” beginning on
page 3-91 for more information.

Suppresses rotation of the dash shape. When this attribute is set,
QuickDraw GX does not rotate the dash shape to match the slope of
the dashed shape’s contours. Instead, QuickDraw GX places the
dash shape onto the contours of the dashed shape with the exact
orientation specified by the geometry of the dash shape.

gxAut oAdvancebDash

Adjusts the dash advance so that a whole multiple of dash shapes
fit each contour.

Geometric Styles Reference 3-105

CHAPTER 3

Geometric Styles

These sections include examples of using dash attributes:
n “Dashing a Shape” on page 3-66

n “Adjusting Dashes to Fit Contours” on page 3-70

n “Breaking and Bending Dashes” on page 3-74

The Pattern Structure

3-106

With QuickDraw GX, you can specify that certain shapes be patterned. For shapes with
solid shape fills, QuickDraw GX fills the shape by repeating a pattern shape that you
specify, over a grid that you specify.

You can also pattern shapes with framed shape fills. For example, imagine a rectangle
shape with the closed-frame shape fill and a pen width of 20. If you patterned this
rectangle, QuickDraw GX would fill the frame of the rectangle with the pattern. See the
section “Adding a Pattern to a Shape” on page 3-86 for examples.

QuickDraw GX uses the pattern property of a shape’s style object to store information
about how to pattern the shape.

You use the pattern structure when specifying pattern information (using the
GXSet St yl ePat t er n or GXSet ShapePat t er n functions) and when retrieving pattern
information (using the GXGet St yl ePat t er n or GXGet ShapePat t er n functions).

The pattern structure is defined by the gxPat t er nRecor d data type:

struct gxPatternRecord {
gxPatternAttribute attributes;

gxShape pattern;
gxPoi nt u;
gxPoi nt v;
b
Field descriptions
attributes Modifies the behavior of the pattern. The next section, “Pattern
Attributes,” describes the gxPat t er nAt t ri but e flags in detail.
pattern Specifies the shape that makes up the pattern. You must use

shapes in their primitive form for the pattern shape.

(Primitive shapes are described in detail in Chapter 4, “Geometric
Operations,” in this book.) You may not use text shapes, layout
shapes, or picture shapes as the pattern shape. However, you may
use framed shape shapes and shapes with an inverse shape fill. You
may also use bitmap shapes with any pixel size as long as the
bitmap shape does not contain color profile information.

QuickDraw GX considers only the geometric properties (the shape
type, the shape fill, and the shape geometry) of the shape specified
by the pattern field. QuickDraw GX ignores the owner count, shape
tags, and shape attributes properties and the style, ink, and
transform objects of the pattern shape.

Geometric Styles Reference

CHAPTER 3

Geometric Styles

u One of a pair of vectors that determine how QuickDraw GX places
the pattern shape. This field, along with the v field, defines the
pattern grid.

% The other of the pair of vectors that describe how QuickDraw GX
places the pat t er n shape. This field, along with the u field, defines
the pattern grid.

The u andv fields together form a pair of vectors that define the pattern grid, which
determines where QuickDraw GX places the pattern shape. The vectors define a grid

of parallelograms and QuickDraw GX draws a pattern shape at every intersection in this
grid.

The vectors specified by the u andv fields do not need to be any order, but they must

point in different directions—that is, they may not lie on the same line. If you specify u
and v vectors that are parallel, apattern_l atti ce_out _of _range error results.

Optimization Note

QuickDraw GX draws bitmap patterns very quickly—that is, nearly as
fast as a nonpatterned fill—if the uand v vectors place the patterns in a
rectangular grid the size of the bitmap. u

See “Patterns” beginning on page 3-31 for more information about patterns and
the pattern grid, and “Adding a Pattern to a Shape” on page 3-86 for an example of
using patterns.

Pattern Attributes

Each pattern structure contains a set of flags that modify the way a shape is patterned.
These constants are defined in the gxPat t er nAt t ri but es enumeration:

enum gxPatternAttributes {
gxPort Al i gnPattern 0x0001,
gxPort MapPat t er n 0x0002

b

typedef |ong gxPatternAttribute;

Constant descriptions

gxPort Al i gnPattern
Indicates that QuickDraw GX should align the pattern shapes with
the view device instead of the patterned shape. When this attribute
is set, the pattern does not move when the patterned shape moves.
Instead, the position of the pattern stays constant with respect to the
view device. In effect, the patterned shape allows you to see
through to a constant background covered by the pattern shape.

Geometric Styles Reference 3-107

Functions

CHAPTER 3

Geometric Styles

gxPort MapPat t er n
Indicates that mappings in the patterned shape’s transform affect
the patterned shape but do not affect the pattern. As an example,
imagine that the transform of the patterned shape specifies that
the patterned shape be scaled up by a factor of 2. If the
gxPor t MapPat t er n attribute is not set, then the pattern itself is
magnified as well as the patterned shape. If this attribute is set, then
the pattern stays the same size, but the patterned shape shows more
of the pattern.

See the section “Patterns” on page 3-31 for an example of these attributes.

3-108

This section describes the functions available for manipulating a style object’s geometric
properties:

n the style attributes
n the curve error

n the pen width

n the caps

n the join

n the dash

n the pattern

These properties together determine the stylistic variations applied to the frame and the
area of a shape when drawn.

For information about creating, disposing of, copying, and comparing style objects as
well as information about manipulating style tags and style owner counts, see Inside
Macintosh: QuickDraw GX Objects.

For information about the typographic style properties, such as font, text size, and text
face, see Inside Macintosh: QuickDraw GX Typography.

In general, there are two types of functions that manipulate the properties of style objects:
n functions that require you to provide a reference to the style object itself

n functions that allow you to provide a reference to a shape and affect the style object
associated with that shape

The section “Associating Styles With Shapes” on page 3-36 provides an example of both
of these types of functions and compares their results.

Both types of functions are described in this reference section.

Geometric Styles Reference

CHAPTER 3

Geometric Styles

Getting and Setting Style Attributes

The style attributes are a set of flags that modify the behavior of the style object. In
particular, these flags allow you to specify how QuickDraw GX places the geometric pen
with respect to a shape’s geometry and whether the shape should be constrained to a
grid.

For a description of the style attributes, see the section “Style Attributes” on page 3-98.
You can use the GXGet St yl eAt t ri but es function to find the style attributes of an

existing style and the GXSet St yl eAt t ri but es function to set the style attributes of a
style.

The GXCGet ShapeSt yl eAttri but es and GXSet ShapeSt yl eAt t ri but es functions
provide a way to determine and change the style attributes of a style object associated
with a particular shape.

GXGetStyleAttributes

DESCRIPTION

You can use the GXGet St yl eAt t ri but es function to determine which style attributes
are set for a particular style object.

gxStyleAttribute GXGet Styl eAttributes(gxStyle source);

source A reference to the style object whose style attributes you want to
determine.

function result The style attributes associated with the source style object.

The GXCGet St yl eAt t ri but es function returns as its function result the style attributes
of the style object specified by the sour ce parameter.

As an example, to examine the gxSour ceG i dSt yl e flag of a style object referenced by
the variable sour ce, you could use this code:

if (GXCGetStyleAttributes(source) & gxSourceGidStyle) {
/* style has gxSourceGidStyle attribute set */

Geometric Styles Reference 3-109

CHAPTER 3

Geometric Styles

The gxCent er Fr aneSt yl e attribute is set only if both the gxI nsi deFr aneSt yl e and
the gxQut si deFr anmeSt yl e attributes are clear, so if you want to test for a centered
frame style you need this code:

if (GXCGetStyleAttributes(source) &
(gxl nsideFraneStyl e | gxQutsideFrameStyle) ==
gxCent er FranmeStyl e) {
/* style has gxCenterFraneStyle attribute set */

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
out _of _nenory
style_is_nil

For a discussion of style attributes, see “Style Attributes” on page 3-98.

For an example of pen placement, see “Manipulating Pen Width and Placement” on
page 3-51.

For an example of constraining shapes to grids, see “Constraining Shape Geometries to
Grids” on page 3-40 and “Constraining Shapes to Device Grids” on page 3-42.

To examine the style attributes of a style object associated with a particular shape, use
the GXCGet ShapeSt yl eAt t ri but es function, which is described on page 3-112.

To alter the style attributes of a style object, use the GXSet St yl eAt t ri but es function,
which is described in the next section.

To alter the style attributes of a style object associated with a particular shape, use the
GXSet ShapeStyl eAtt ri but es function, which is described on page 3-113.

GXSetStyleAttributes

3-110

You can use the GXSet St yl eAt t ri but es function to alter the style attributes for a
particular style object.

voi d GXSet Styl eAttributes(gxStyle target,
gxStyleAttribute attributes);

t ar get A reference to the style object whose attributes you want to alter.

attributes
The new set of attributes.

Geometric Styles Reference

DESCRIPTION

CHAPTER 3

Geometric Styles

The GXSet St yl eAttri but es function sets the style attributes of the style object
specified by the t ar get parameter to be the attributes specified in the att ri but es
parameter.

You can use this function in combination with the GXGet St yl eAt t r i but es function to
set or clear single style attributes. For example, to clear the gxSour ceGri dStyl e
attribute of a style object referenced by the variable t ar get , you could use this line of
code:

GXSet Styl eAttri butes(target,
GXGet Styl eAttributes(target & ~gxSourceGidStyle);

To set the gxSour ceG i dSt yl e attribute, you could use this line of code:

GXSet Styl eAttri butes(target,
GXGet Styl eAttributes(target | gxSourceGidStyle);

To set the gxCent er Fr aneSt yl e attribute, you need to clear the
gxl nsi deFraneStyl e andgxCQut si deFr aneSt yl e attributes.

When you set a style’s attributes using this function, you are effectively changing the
style attributes for all shapes that share the style.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors

out _of _nenory

style_is_nil

i nconsi stent _paraneters (debugging version)
par anet er _out _of range (debugging version)

Notices (debugging version)
attributes_al ready_set

For a discussion of style attributes, see “Style Attributes” on page 3-98.

For an example of pen placement, see “Manipulating Pen Width and Placement”
beginning on page 3-51.

For an example of constraining shapes to grids, see “Constraining Shape Geometries to
Grids” on page 3-40 and “Constraining Shapes to Device Grids” on page 3-42.

To examine the style attributes of a style object, use the GXGet St yl eAt tri but es
function, which is described on page 3-109.

To examine the style attributes of a style object associated with a particular shape, use
the GXCGet ShapesSt yl eAt t ri but es function, which is described in the next section. To
alter the style attributes of a style object associated with a particular shape, use the

GXSet ShapeSt yl eAt tri but es function, which is described on page 3-113.

Geometric Styles Reference 3-111

CHAPTER 3

Geometric Styles

GXGetShapeStyleAttributes

DESCRIPTION

You can use the GXGet ShapeSt yl eAt t ri but es function to determine which style
attributes are set for the style object of a particular shape.

gxStyl eAttri bute GXGet ShapeStyl eAttri butes(gxShape source);

source A reference to the shape whose style attributes you want to determine.

function result The style attributes of the source shape’s style object.

The GXGet ShapeSt yl eAt tri but es function provides a convenient way to
determine the style attributes of a shape without having to call the GXGet ShapeStyl e
function to obtain a reference to the shape’s style object.

As an example, to examine the gxSour ceG i dSt yl e flag of a style object associated
with the shape object referenced by the variable sour ce, you could use this code:

i f (GXGet ShapeStyl eAttributes(source) & gxSourceGidStyle) {
/* shape's style has gxSourceGidStyle attribute set */

}

The gxCent er Fr ameSt yl e attribute is set only if both the gxI nsi deFraneSt yl e
and the gxCQut si deFr aneSt yl e attributes are clear, so if you want to test for a
centered frame style you need this code:

i f (GXCGet ShapeStyl eAttributes(source) &
(gxl nsideFraneStyl e | gxCQutsideFrameStyle) ==
gxCent er FrameStyl e) {
/* shape's style has gxCenterFraneStyle attribute set */

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

3-112

Errors
out _of nenory
shape_is_nil

For a discussion of style attributes, see “Style Attributes” on page 3-98.

For an example of pen placement, see “Manipulating Pen Width and Placement”
beginning on page 3-51.

Geometric Styles Reference

CHAPTER 3

Geometric Styles

For an example of constraining shapes to grids, see “Constraining Shape Geometries to
Grids” on page 3-40 and “Constraining Shapes to Device Grids” on page 3-42.

To examine or alter the style attributes of a style object, use the

GXCet St yl eAt t ri but es function, which is described on page 3-109. To alter the style
attributes of a style object, use the GXSet St yl eAt t ri but es function, which is
described on page 3-110.

To alter the style attributes of a style object associated with a particular shape, use the
GXSet ShapeSt yl eAt t ri but es function, which is described in the next section.

GXSetShapeStyleAttributes

DESCRIPTION

You can use the GXSet ShapeSt yl eAt t ri but es function to alter the style attributes of
the style object associated with a particular shape.

voi d GXSet ShapeStyl eAttri but es(gxShape target,
gxStyleAttribute attributes);

tar get A reference to the shape whose style attributes you want to alter.

attributes
The new set of attributes.

The GXSet ShapeSt yl eAtt ri but es function sets the style attributes of the style object
associated with the shape specified by the t ar get parameter.

If the target shape shares its style object with other shapes, this function makes a copy
of the style object, sets the target shape to reference the copy, and changes the style
attributes of the copy. (However, if the effect of this function would leave the

style attributes unchanged, this function does not create a copy of the style object;
instead, it posts a notice).

You can use this function in combination with the GXGet ShapeSt yl eAttri but es
function to set or clear single style attributes. For example, to clear the

gxSour cex i dSt yl e attribute of a style object associated with a target shape, you
could use this line of code:

GXSet ShapeStyl eAttri but es(target,
GXGet ShapeStyl eAttributes(target & ~gxSourceGidStyle);

To set the gxSour ceG i dSt yl e attribute, you could use this line of code:

GXSet ShapeStyl eAttri but es(target,
GXGet ShapeStyl eAttributes(target | gxSourceGidStyle);

Geometric Styles Reference 3-113

CHAPTER 3

Geometric Styles

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors

out _of _nenory

style_is_nil

i nconsi stent _paraneters (debugging version)
par anet er _out _of range (debugging version)

Notices (debugging version)
attributes_al ready_set

For a discussion of style attributes, see “Style Attributes” on page 3-98.

For an example of pen placement, see “Manipulating Pen Width and Placement” on
page 3-51.

For an example of constraining shapes to grids, see “Constraining Shape Geometries to
Grids” on page 3-40 and “Constraining Shapes to Device Grids” on page 3-42.

To examine the style attributes of a style object associated with a particular shape, use
the GXCGet ShapeSt yl eAtt ri but es function, which is described on page 3-112.

To examine the style attributes of a style object, use the GXGet St yl eAt tri but es
function, which is described on page 3-109. To alter the style attributes of a style object,
use the GXSet St yl eAt t ri but es function, which is described on page 3-110.

Getting and Setting Curve Error

3-114

The curve error property of style objects specifies the allowable amount of error when
QuickDraw GX converts a path shape into a polygon shape. It also specifies how far
apart geometric points must be for QuickDraw GX to consider them separate points
when performing geometric operations on shapes or reducing shapes.

For example, when you call the GXI nset Shape function on a tight curve, the resulting
curve can require many more geometric points than the original curve. QuickDraw GX

simplifies the resulting shape by removing geometric points that are within the shape’s

curve error from another geometric point.

You can use the GXGet St yl eCur veEr r or function to determine the curve error of a
style object and the GXSet St yl eCur veEr r or function to change the curve error of
a style object.

The GXGet ShapeCur veEr r or and GXSet ShapeCur veEr r or functions provide a way
to determine and change the curve error of the style object associated with a particular
shape.

Geometric Styles Reference

CHAPTER 3

Geometric Styles

GXGetStyleCurveError

DESCRIPTION

You can use the GXGet St yl eCur veEr r or function to determine the curve error of a
style object.

Fi xed GXGet Styl eCurveError(gxStyle source);

source A reference to the style object whose curve error you want to determine.

function result The curve error of the source style object.

When a path shape has a curve error of 0, QuickDraw GX does not approximate the path
shape with a polygon shape when converting it to a polygon. Instead, QuickDraw GX
simply removes off-curve control points, as shown in “Using Curve Error When
Converting Paths to Polygons” on page 3-45.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
out _of _nenory
style_is_nil

For a discussion of curve error, see “Curve Error” on page 3-14.

For examples of using curve error, see “Using Curve Error When Converting Paths to
Polygons” on page 3-45 and “Using Curve Error When Reducing Shapes” on page 3-49.

To change the curve error of a style object, use the GXSet St yl eCur veEr r or function,
which is described in the next section.

To examine the curve error of a style object associated with a particular shape, use the
GXGet ShapeCur veEr r or function, which is described on page 3-117. To change the
curve error of a style object associated with a particular shape, use the

GXSet ShapeCur veEr r or function, which is described on page 3-118.

Geometric Styles Reference 3-115

CHAPTER 3

Geometric Styles

GXSetStyleCurveError

DESCRIPTION

You can use the GXSet St yl eCur veEr r or function to change the curve error of a style
object.

voi d GXSet Styl eCurveError (gxStyle target, Fixed error);

tar get A reference to the style object whose curve error you want to change.
error The new curve error.

This routine sets the curve error of the style object specified by the target parameter to be
the fixed-point value specified by the er r or parameter. You may specify any
nonnegative value for this parameter.

When a path shape has a curve error of 0.0, QuickDraw GX does not approximate the
path shape with a polygon shape when converting it to a polygon. Instead,
QuickDraw GX simply removes off-curve control points, as shown in “Using Curve
Error When Converting Paths to Polygons” on page 3-45.

A very small curve error may cause the GXSet ShapeType function and certain
geometric operations such as the GXI nset Shape function to use inappropriate amounts
of memory and time.

When you set a style’s curve error using this function, you are effectively changing the
curve error for all shapes that share the style.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

3-116

Errors

out _of nenory

style_is_nil

par anet er _out _of _range (debugging version)

Notices (debugging version)
curve_error_al ready_set

For a discussion of curve error, see “Curve Error” on page 3-14.

For examples of curve error, see “Using Curve Error When Converting Paths to
Polygons” on page 3-45 and “Using Curve Error When Reducing Shapes” on page 3-49.

To determine the curve error of a style object, use the GXCGet St yl eCur veErr or
function, which is described on page 3-115.

Geometric Styles Reference

CHAPTER 3

Geometric Styles

To examine the curve error of a style object associated with a particular shape, use the
GXCet ShapeCur veEr r or function, which is described in the next section. To change
the curve error of a style object associated with a particular shape, use the

GXSet ShapeCur veEr r or function, which is described on page 3-118.

GXGetShapeCurveError

DESCRIPTION

You can use the GXGet ShapeCur veEr r or function to determine the curve error of the
style object associated with a particular shape.

Fi xed GXGet ShapeCurveError (gxShape source);

source A reference to the shape whose curve error you want to determine.

function result The curve error of the style object associated with the source shape.

When a path shape has a curve error of 0, QuickDraw GX does not approximate the path
shape with a polygon shape when converting it to a polygon. Instead, QuickDraw GX
simply removes off-curve control points, as shown in “Using Curve Error When
Converting Paths to Polygons” on page 3-45.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
out _of nenory
shape_is_nil

For a discussion of curve error, see “Curve Error” on page 3-14.

For examples of curve error, see “Using Curve Error When Converting Paths to
Polygons” on page 3-45 and “Using Curve Error When Reducing Shapes” on page 3-49.

To determine the curve error of a style object, use the GXCGet St yl eCur veErr or
function, which is described on page 3-115. To change the curve error of a style object,
use the GXSet St yl eCur veEr r or function, which is described on page 3-116.

To change the curve error of a style object associated with a particular shape, use the
GXSet ShapeCur veEr r or function, which is described in the next section.

Geometric Styles Reference 3-117

CHAPTER 3

Geometric Styles

GXSetShapeCurveError

DESCRIPTION

You can use the GXSet ShapeCur veEr r or function to change the curve error of the
style object associated with a particular shape.

voi d GXSet ShapeCurveError (gxShape target, Fixed error);

tar get A reference to the shape whose curve error you want to change.
error The new curve error.

The GXSet ShapeCur veEr r or function replaces the curve error of the style object
associated with the shape specified by the sour ce parameter with the value in the
err or parameter. You may specify any nonnegative value for this parameter.

If the target shape shares its style object with other shapes, this function makes a copy of
the style object, sets the target shape to reference the copy, and changes the curve error
of the copy. (However, if the effect of this function would leave the curve error
unchanged, this function does not create a copy of the style object; instead, it posts a
notice.)

When the curve error is 0, QuickDraw GX does not approximate a path shape with a
polygon shape when converting from a path to a polygon. Instead, QuickDraw GX
simply removes off-curve control points, as shown in “Using Curve Error When
Converting Paths to Polygons” on page 3-45.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

3-118

Errors

out _of nenory

shape_is_nil

par anmet er _out _of _range (debugging version)
Notices (debugging version)

curve_error_al ready_set

For a discussion of curve error, see “Curve Error” on page 3-14.

For examples of curve error, see “Using Curve Error When Converting Paths to
Polygons” on page 3-45 and “Using Curve Error When Reducing Shapes” on page 3-49.

To determine the curve error of a style object, use the GXCGet St yl eCur veErr or
function, which is described on page 3-115. To change the curve error of a style object,
use the GXSet St yl eCur veEr r or function, which is described on page 3-116.

To determine the curve error of a style object associated with a particular shape, use the
GXGet ShapeCur veEr r or function, which is described on page 3-117.

Geometric Styles Reference

CHAPTER 3

Geometric Styles

Getting and Setting the Pen Width

The pen width property of a style object specifies the width at which QuickDraw GX
should draw a shape’s contours. A pen width of 0 specifies a hairline. QuickDraw GX
always draws hairlines at the resolution of the output device—one pixel wide. The pen
width also affects dashing: QuickDraw GX scales a shape’s dashes (in the y-coordinate
direction) by the pen width. Also, the pen width affects the clip shape that

QuickDraw GX uses to clip the dashes when a shape’s clip dash attribute is set.

You can use the GXCGet St yl ePen function to determine the pen width of a style object
and the GXSet St yl ePen function to change the pen width of a style object.

The GXGet ShapePen and GXSet ShapePen functions provide a way to determine and
change the pen width of the style object associated with a particular shape.

GXGetStylePen

You can use the GXGet St yl ePen function to determine the pen width of a particular
style object.

Fi xed GXGet Styl ePen(gxStyl e source);

source A reference to the style object whose pen width you want to determine.

function result The pen width of the source style object.

DESCRIPTION

A pen width of 0.0 indicates a hairline width; QuickDraw GX always draws hairlines
one pixel wide.

ERRORS, WARNINGS, AND NOTICES

Errors
out _of nenory
style_is_nil

SEE ALSO
For a discussion of the drawing pen, see “The Geometric Pen” on page 3-15.

For an example of changing a shape’s pen width, see “Manipulating Pen Width and
Placement” on page 3-51.

To change the pen width of a style object, use the GXSet St yl ePen function, which is
described in the next section.

Geometric Styles Reference 3-119

CHAPTER 3

Geometric Styles

To determine the pen width of a style object associated with a particular shape, use the
GXCet ShapePen function, which is described on page 3-121. To change the pen width
of a style object associated with a particular shape, use the GXSet ShapePen function,
which is described on page 3-122.

GXSetStylePen

DESCRIPTION

You can use the GXSet St yl ePen function to change the pen width of a style object.
voi d GXSet Styl ePen(gxStyle target, Fixed pen);

t ar get A reference to the style object whose pen width you want to change.
pen The new pen width.

The GXSet St yl ePen function sets the pen width of the style object specified by the
t ar get parameter to the value specified in the pen parameter. You may specify any
nonnegative value for this parameter.

A pen width of 0 indicates a hairline; QuickDraw GX always draws hairlines one pixel
wide.

Remember that the pen parameter is specified as a fixed-point value. Very small
diameters may cause all drawing to disappear, since a shape may fall between pixels. A
common mistake when setting the pen width is to specify the pen width as an integer,
rather than a fixed-point value:

GXSet Styl ePen(nyStyle, 1); [/* set the pen width to 1/65536 */
GXSet Styl ePen(nyStyle, ff(1)); /* set the pen width to 1.0 */

When you set the pen width using this function, you are effectively changing the pen
width for all shapes that share the style.

ERRORS, WARNINGS, AND NOTICES

3-120

Errors

out _of _nenory

style_is_nil

par anet er _out _of _range (debugging version)

Notices (debugging version)
pen_si ze_al ready_set

Geometric Styles Reference

SEE ALSO

CHAPTER 3

Geometric Styles

For a discussion of the drawing pen, see “The Geometric Pen” on page 3-15.

For an example of changing a shape’s pen width, see “Manipulating Pen Width and
Placement” on page 3-51.

To determine the pen width of a style object, use the GXGet St y| ePen function, which is
described on page 3-119.

To determine the pen width of a style object associated with a particular shape, use the
GXGet ShapePen function, which is described in the next section. To change the pen
width of a style object associated with a particular shape, use the GXSet ShapePen
function, which is described on page 3-122.

GXGetShapePen

DESCRIPTION

You can use the GXGet ShapePen function to determine the pen width of the style object
associated with a particular shape.

Fi xed GXGet ShapePen(gxShape source);

source A reference to the shape whose pen width you want to determine.

function result The pen width of the source shape’s style object.

A pen width of 0.0 indicates a hairline width; QuickDraw GX always draws hairlines
one pixel wide.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
out _of _nmenory
shape_is_nil

For a discussion of the drawing pen, see “The Geometric Pen” on page 3-15.

For an example of changing a shape’s pen width, see “Manipulating Pen Width and
Placement” on page 3-51.

Geometric Styles Reference 3-121

CHAPTER 3

Geometric Styles

To determine the pen width of a style object, use the GXGet St y| ePen function, which is
described on page 3-119. To change the pen width of a style object, use the
GXSet St yl ePen function, which is described on page 3-120.

To change the pen width of a style object associated with a particular shape, use the
GXSet ShapePen function, which is described in the next section.

GXSetShapePen

DESCRIPTION

3-122

You can use the GXSet ShapePen function to change the pen width of the style object
associated with a particular shape.

voi d GXSet ShapePen(gxShape target, Fixed pen);

t ar get A reference to the shape whose pen width you want to change.
pen The new pen width.

The GXSet ShapePen function sets the pen width of the target shape’s style object to
be the value specified in the pen parameter. You may specify any nonnegative value for
this parameter.

If the target shape shares its style object with other shapes, this function makes a copy of
the style object, sets the target shape to reference the copy, and changes the pen width

of the copy. (However, if the effect of this function would leave the pen width
information unchanged, this function does not create a copy of the style object; instead, it
posts a notice.)

A pen width of 0 indicates a hairline; QuickDraw GX always draws hairlines one pixel
wide.

GXSet ShapePen(nyShape, 0); /* set as thin as renderable */

Remember that the pen parameter is specified as a fixed-point value. Very small
diameters may cause all drawing to disappear, since a shape may fall between pixels. A
common mistake when setting the pen width is to specify the pen width as an integer,
rather than a fixed-point value:

GXSet Styl ePen(nyStyle, 1); [/* set the pen width to 1/65536 */

GXSet Styl ePen(nyStyle, ff(1)); /* set the pen width to 1.0 */

Geometric Styles Reference

CHAPTER 3

Geometric Styles

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors

out _of _nenory

shape_is_nil

par anet er _out _of range (debugging version)

Notices (debugging version)
pen_si ze_al ready_set

For a discussion of the drawing pen, see “The Geometric Pen” on page 3-15.

For an example of changing a shape’s pen width, see “Manipulating Pen Width and
Placement” on page 3-51.

To determine the pen width of a style object, use the GXGet St yl ePen function, which is
described on page 3-119. To change the pen width of a style object, use the
GXSet St yl ePen function, which is described on page 3-120.

To determine the pen width of a style object associated with a particular shape, use the
GXCet ShapePen function, which is described on page 3-121.

Getting and Setting Caps

QuickDraw GX allows you to specify what to draw at the start and at the end of a
shape’s contours. In particular, you may specify a start cap for any point shape, and you
may specify a start cap and an end cap for any line, curve, polygon, or path shape that
has an gxOpenFr aneFi | | shape fill. You must always specify cap shapes in primitive
form.

“The Cap Structure” on page 3-99 describes the gxCapRecor d structure, which you use
when retrieving or specifying cap information. That section also describes what types of
shapes you may use as cap shapes.

You can use the GXGet St yl eCap function to retrieve the cap information from a style
object and the GXSet St yl eCap function to specify cap information for a style object.

The GXGet ShapeCap and GXSet ShapeCap functions provide a way to retrieve and
specify cap information for the style object associated with a particular shape.

Geometric Styles Reference 3-123

CHAPTER 3

Geometric Styles

GXGetStyleCap

DESCRIPTION

You can use the GXCet St yl eCap function to retrieve the cap information from a style
object.

gxCapRecord *GXGet Styl eCap(gxStyl e source, gxCapRecord *cap);

source The style object whose cap information you want to retrieve.

cap A pointer to a gxCapRecor d structure. On return, this structure contains
the cap information for the source style object.

function result A copy of the gxCapRecor d associated with the source style.

The GXCGet St yl eCap function returns as its function result, and in the cap parameter, a
gxCapRecor d structure containing the cap information for the style object specified by
the sour ce parameter.

This function creates new shapes to encapsulate the start cap and end cap geometries,
and places references to these shapes in the st art Cap and endCap fields of the
returned gxCapRecor d structure. You should dispose of these shapes when you no
longer need them.

Since this function copies the cap information from the source style object, you may
make changes to the gxCapRecor d structure returned by this function without affecting
the source style’s cap information. If you want to change the cap information in the
source style, you must use the GXSet St yl eCap function.

SPECIAL CONSIDERATIONS

If no error results, the GXGet St yl eCap function creates shapes; you are responsible for
disposing of these shapes when you no longer need them. See Inside Macintosh:
QuickDraw GX Objects for information about disposing QuickDraw GX objects.

ERRORS, WARNINGS, AND NOTICES

3-124

Errors

out _of nenory

style is_nil

paranmeter _is_nil (debugging version)

Geometric Styles Reference

SEE ALSO

CHAPTER 3

Geometric Styles

For a discussion of start and end caps, see “Caps” on page 3-23.

For examples of adding caps to a shape, see “Adding Caps to a Shape” on page 3-57 and
“Adding Standard Caps to a Shape” on page 3-59.

For a discussion of the gxCapRecor d structure and a description of what types of
shapes you can use as cap shapes, see “The Cap Structure” on page 3-99.

To specify cap information for a style object, use the GXSet St yl eCap function, which is
described in the next section.

To retrieve cap information from a style object associated with a particular shape, use the
GXGet ShapeCap function, which is described on page 3-126. To specify cap information
for a style object associated with a particular shape, use the GXSet ShapeCap function,
which is described on page 3-128.

GXSetStyleCap

DESCRIPTION

You can use the GXSet St yl eCap function to change the cap information of a style
object.

voi d GXSet Styl eCap(gxStyle target, const gxCapRecord *cap);

t ar get The style object whose cap information you want to change.
cap A pointer to the new cap information.

The GXSet St yl eCap function replaces the cap information in the style object specified
by the t ar get parameter with the cap information specified in the cap parameter. You
use the gxCapRecor d structure to provide cap information.

Passing ni | for the cap parameter indicates that you want no caps and QuickDraw GX
removes any cap information from the target style.

When you set a style’s cap property using this function, you are effectively changing the
caps for all shapes that share the style.

Geometric Styles Reference 3-125

CHAPTER 3

Geometric Styles

ERRORS, WARNINGS, AND NOTICES

Errors
out _of _nenory
style_is_nil

par anet er _out _of range (debugging version)
enpty_shape_not _al | owed (debugging version)
i gnor ePl at f or nShape_not _al | owed (debugging version)
illegal type for_shape (debugging version)
nil_style in_glyph_not_all owed (debugging version)
compl ex_gl yph_styl e_not _al | owed (debugging version)
shapeFill _not_al | owed (debugging version)

Notices (debugging version)
caps_al ready_set
tags_i n_shape_i gnored

SEE ALSO
For a discussion of start and end caps, see “Caps” on page 3-23.

For examples of adding caps to a shape, see “Adding Caps to a Shape” on page 3-57 and
“Adding Standard Caps to a Shape” on page 3-59.

For a discussion of the gxCapRecor d structure and a description of what types of
shapes you can use as cap shapes, see “The Cap Structure” on page 3-99.

To retrieve cap information from a style object, use the GXGet St yl eCap function, which
is described on page 3-124.

To retrieve cap information from a style object associated with a particular shape, use the
GXGet ShapeCap function, which is described in the next section. To specify cap
information for a style object associated with a particular shape, use the

GXSet ShapeCap function, which is described on page 3-128.

GXGetShapeCap

You can use the GXGet ShapeCap function to retrieve cap information from the style
object of a particular shape.

gxCapRecord *GXGet ShapeCap(gxShape source, gxCapRecord *cap);

source A refernce to the shape whose cap information you want to retrieve.

cap A pointer to a gxCapRecor d structure. On return, this structure contains
the cap information for the source shape.

function result A copy of the gxCapRecor d structure associated with the source
shape’s style object.

3-126 Geometric Styles Reference

DESCRIPTION

CHAPTER 3

Geometric Styles

The GXGet ShapeCap function returns as its function result, and in the cap parameter, a
gxCapRecor d structure containing the cap information for the style object associated
with the shape specified by the source parameter.

This function creates new shapes to encapsulate the start cap and end cap geometries,
and places references to these shapes in the st ar t Cap and endCap fields of the
returned gxCapRecor d structure. You should dispose of these shapes when you no
longer need them.

Since this function copies the cap information from the source shape’s style, you may
make changes to the gxCapRecor d structure returned by this function without affecting
the source shape’s caps. If you want to change the cap information for the source shape,
you must use the GXSet ShapeCap function.

SPECIAL CONSIDERATIONS

Unless an error results, the GXGet ShapeCap function creates shapes; you are
responsible for disposing of these shapes when you no longer need them. See Inside
Macintosh: QuickDraw GX Objects for information about disposing of QuickDraw GX
objects.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors

out _of _nenory
shape_is_nil
paraneter_is_nil

For a discussion of start and end caps, see “Caps” on page 3-23.

For examples of adding caps to a shape, see “Adding Caps to a Shape” on page 3-57 and
“Adding Standard Caps to a Shape” on page 3-59.

For a discussion of the gxCapRecor d structure and a description of what types of
shapes you can use as cap shapes, see “The Cap Structure” on page 3-99.

To retrieve cap information from a style object, use the GXGet St yl eCap function, which
is described on page 3-124. To specify cap information for a style object, use the
GXSet St yl eCap function, which is described on page 3-125.

To specify cap information for a style object associated with a particular shape, use the
GXSet ShapeCap function, which is described in the next section.

Geometric Styles Reference 3-127

CHAPTER 3

Geometric Styles

GXSetShapeCap

DESCRIPTION

You can use the GXSet ShapeCap function to change the cap information of the style
object associated with a particular shape.

voi d GXSet ShapeCap(gxShape target, const gxCapRecord *cap);

tar get A reference to the shape whose cap information you want to change.
cap A pointer to the new cap information.

The GXSet ShapeCap function replaces the cap information in the style object of the
shape specified by the t ar get parameter with the cap information specified in the cap
parameter. You use the gxCapRecor d structure to provide cap information.

Passing ni | for the cap parameter indicates that you want no caps and QuickDraw GX
removes any cap information from the target shape.

If the target shape shares its style object with other shapes, this function makes a copy of
the style object, sets the target shape to reference the copy, and changes the cap property
of the copy. (However, if the effect of this function would leave the cap information
unchanged, this function does not create a copy of the style object; instead, it posts a
notice.)

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

3-128

Errors
out _of _nenory
style_is_nil

par anet er _out _of _range (debugging version)
enpty_shape_not _al | owed (debugging version)
i gnor ePl at f or nShape_not _al | owed (debugging version)
illegal type for_shape (debugging version)
nil_style_in_glyph_not_all owed (debugging version)
compl ex_gl yph_styl e_not _al | owed (debugging version)
shapeFi || _not _al | owed (debugging version)

Notices (debugging version)
caps_al ready_set
tags_i n_shape_i gnhored

For a discussion of start and end caps, see “Caps” on page 3-23.

For examples of adding caps to shapes, see “Adding Caps to a Shape” on page 3-57 and
“Adding Standard Caps to a Shape” on page 3-59.

For a discussion of the gxCapRecor d structure and a description of what types of
shapes you can use as cap shapes, see “The Cap Structure” on page 3-99.

Geometric Styles Reference

CHAPTER 3

Geometric Styles

To retrieve cap information from a style object, use the GXGet St yl eCap function, which
is described on page 3-124.

To specify cap information for a style object, use the GXSet St yl eCap function, which is
described on page 3-125.

To retrieve cap information from a style object associated with a particular shape, use the
GXGet ShapeCap function, which is described on page 3-126.

Getting and Setting Joins

QuickDraw GX allows you to specify what to draw at corners of a shape’s contours. In
particular, you may specify a corner join for any rectangle, polygon, or path shape that
has an open-frame shape fill or a closed-frame shape fill. You must always specify join
shapes in primitive form.

“The Join Structure” on page 3-101 describes the gxCapRecor d structure, which you use
when retrieving or specifying join information. That section also describes what types of
shapes you may use as join shapes.

You can use the GXGet St yl eJoi n function to retrieve the join information from a style
object and the GXSet St yl eJoi n function to specify join information for a style object.

The GXCGet ShapeJoi n and GXSet ShapeJoi n functions provide a way to retrieve and
specify join information for the style object associated with a particular shape.

GXGetStyleJoin

DESCRIPTION

You can use the GXCGet St yl eJoi n function to retrieve the join information from a style
object.

gxJoi nRecord *GXCet Styl eJoi n(gxStyl e source, gxJoi nRecord *join);

source A reference to the style object whose join information you want to retrieve.

join A pointer to a gxJoi nRecor d structure. On return, this structure
contains the join information for the source style object.

function result A copy of the gxJoi nRecor d structure associated with the source

style object.

The GXCGet St yl eJoi n function returns as its function result, and in the j oi n
parameter, a pointer to a gxJoi nRecor d structure containing the join information for
the style object specified by the sour ce parameter.

Geometric Styles Reference 3-129

CHAPTER 3

Geometric Styles

This function creates a new shape to encapsulate the join geometry, and places a
reference to this shape in the j oi n field of the returned gxJoi nRecor d structure. You
should dispose of this shape when you no longer need it.

Since this function copies the join information from the source style, you may make
changes to the gxJoi nRecor d structure returned by this function without affecting the
source style’s join information. If you want to change the join information in the source
style, you must use the GXSet St yl eJoi n function.

SPECIAL CONSIDERATIONS

Unless an error results, the GXGet St yl eJoi n function creates a shape; you are
responsible for disposing of this shape when you no longer need it. See Inside Macintosh:
QuickDraw GX Objects for information about disposing of QuickDraw GX objects.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors

out _of _nenory
style_is_nil
paraneter_is_nil

For a discussion of joins, see “Joins” on page 3-25.

For examples of adding joins to shapes, see “Adding Joins to a Shape” on page 3-61 and
“Adding Standard Joins to a Shape” on page 3-64.

For a discussion of the gxJoi nRecor d structure and a description of what types of
shapes you can use as join shapes, see “The Join Structure” on page 3-101.

To specify join information for a style object, use the GXSet St yl eJoi n function, which
is described in the next section.

To retrieve join information from a style object associated with a particular shape, use the
GXGet ShapeJoi n function, which is described on page 3-132.

To specify join information for a style object associated with a particular shape, use the
GXSet ShapeJoi n function, which is described on page 3-133.

GXSetStyleJoin

3-130

You can use the GXSet St yl eJoi n function to change a style object’s join information.

voi d GXSet Styl eJoi n(gxStyle target, const gxJoi nRecord *join);

Geometric Styles Reference

DESCRIPTION

CHAPTER 3

Geometric Styles

t ar get A reference to the style object whose join information you want to change.
join A pointer to the new join information.

The GXSet St yl eJoi n function replaces the join information in the style object specified
by the t ar get parameter with the join information specified in the j oi n parameter. You
use the gxJoi nRecor d structure to provide join information.

Passing ni | for the j oi n parameter indicates that you want no join shape and
QuickDraw GX removes any join information from the target style.

When you set a style’s join property using this function, you are effectively changing the
joins for all shapes that share the style.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
out _of _nenory
style_is_nil

par anet er _out _of _range (debugging version)
enpty_shape_not _al | owed (d