
,, 

I 



An App[e for tbe Teacber 



Brooks/Cole Series in Computer Science 

Program Design with Pseudocode 
IE. Bailey and K. A. Lundgaard 

BASIC: An Introduction to Computer Programming with the Apple 
Robert J. Bent and George C. Sethares 

BASIC: An Introduction to Computer Programming, Second Edition 
Robert J. Bent and George C. Sethares 

Business BASIC 
Robert J. Bent and George C. Sethares 

FORTRAN with Problem Solving: A Structured Approach 
Robert J. Bent and George C. Sethares 

Beginning BASIC 
Keith Carver 

Beginning Structured COBOL 
Keith Carver 

Structured COBOL for Microcomputers 
Keith Carver 

Learning BASIC Programming: A Systematic Approach 
Howard Dachs/ager; Masato Hayashi, and Richard Zucker 

Problem Solving and Structured Programming with ForTran 77 
Martin Q Holoien and Ali Behforooz 

Basic Business BASIC: Using Microcomputers 
Peter Mears and Louis Raho 

Brooks/Cole Series in Computer Education 

An Apple for the Teacher: Fundamentals of Instructional Computing 
George H. Culp and Herbert Nickles 

RUN: Computer Education 
Dennis Q Harper and James H. Stewart 



An Apple for tbe Teacber 
Fundamentafs of Instructional 

Computing 

George H. Culp 

Assistant Director for Instructional Computing 
Computation Center 

University of Texas at Austin 

Herbert Nickles 

Coordinator of Instructional Computing 
Computer Center 

California State College, San Bernardino 

Brooks/Cole Publishing Company 
Monterey, California 



Brooks/Cole Publishing Company 
A Division of Wadsworth, Inc. 

© 1983 by Wadsworth, Inc. , Belmont, California 94002. All rights reserved. No part of 
this book may be reproduced, stored in a retrieval system, or transcribed, in any form 
or by any means-electronic. mechanical, photocopying, recording, or otherwise­
without the prior written permission of the publisher, Brooks/Cole Publishing 
Company, Monterey, California 93940. a division of Wadsworth, Inc. 

Printed in the United States of America 

10 9 8 7 6 5 4 3 

Library of Congress Cataloging in Publication Data 

Culp. George H. 
An Apple for the teacher. 

Bibliography: p. 
Includes index 
I. Computer-assisted instruction-Teacher training. 

2. Computer managed instruction-Teacher 
training. 3. Microcomputers-Teacher training. 
I. Nickles. Herbert. II. Title. 
LB1028.5.C78 1983 371.3'9445 82-24506 

ISBN 0-534-01378-3 

This product is neither endorsed nor coproduced by Apple Computer. Inc. 

Subject Editor: James F. Leisy, Jr. 
Production Service: Greg Hubit Bookworks 
Manuscript Editor: Trevor Grayling 
Interior Design: Marilyn Langfeld 
Cover Design: Vicki Van Deventer 
Cover Photo: Stan Rice 
'fypesetting: Graphic 'fypesetting Service. Los Angeles 



Preface 

"The PTA at our school has given us two microcomputers. Since I am a 
math/science teacher, the principal said I should use them in my classes. I 
had one course in Fortran programming about five years ago; I know very 
little about computers and absolutely nothing about how to use them with 
instruction. I am aware that they are being used as effective teaching tools. 
But how? What do I need to know to get started?" 

An Inservice Teacher 

"As part of an education course I'm taking, I recently sat in on a school 
board meeting of our district. The agenda included a presentation by a man 
demonstrating the instructional uses of microcomputers. The man's assistant, 
who operated the microcomputer, loaded and ran programs and, in general, 
demonstrated the system, was his six-year-old daughter! It is obvious to me 
that I'll be facing many young students who are using microcomputers at 
home and in the school. Even more obviously, I'll need to know something 
about the different uses of micros: What they can and cannot do, how they 
are programmed, how these programs are made and tested, and so on. But 
I don't want to become a "computer scientist." I want to know the funda­
mentals that will let me make practical use of a microcomputer in an instruc­
tional setting." 

A Preservice Teacher 

This book is designed for teachers who find themselves in situations similar 
to those cited in the two examples above. It is based upon a university course in 
which hundreds of teachers in grade levels elementary through college have been 
introduced to the fundamentals of the instructional use of computers and have 
successfully designed and developed programs for use in their own areas of 
interest. 

This book is not designed to teach general computer literacy: There is little 
mention of the history, architecture, or use of computers in society. Nor is it a 
text to train computer programmers: Several language statements common to 
programming texts are omitted because their application is not typical of the 
instructional use of computers. v 



Preface 

vi 

This is a practical book for the teacher who needs to know the fundamentals 
of the BASIC programming language for the Apple microcomputer and how to 
apply them to the design and development of instructional computing programs. 
It has been our experience that, given these fundamentals, teachers have the 
proficiency to expand upon this base and develop efficient programs designed to 
meet their specific needs. 

The text consists of nine chapters and four appendices and is divided into 
two parts. In Part One, the first four chapters discuss the BASIC programming 
language statements and commands common to five areas of instructional com­
puting use: problem solving, drill and practice, tutorial dialog, simulation and 
gaming, and testing. Chapter 5 summarizes and reviews these statements and 
their applications. Chapter 6 gives relatively short example and model programs 
in each of these five areas. Chapter 7 discusses and demonstrates the simple use 
of graphics as an instructional technique. 

In Part Two, Chapters 8 and 9 discuss the specific steps needed to first design 
and then develop instructional computing programs. The appendices include 
instructions for "booting up" the microcomputer; instructions for loading, edit­
ing, and saving programs; commands and statements unique to the Apple micro­
computer; answers to questions and problems given in the chapters; and an 
annotated bibliography of journals and other publications dealing with instruc­
tional computing. 

As a matter of personal preference, some readers may wish to study Chapters 
8 and 9 on design and development prior to the chapters on BASIC. We believe, 
however, that practical design and development can come only after the working 
guidelines for the language are established. Thus, BASIC fundamentals are pre­
sented before the discussion of design fundamentals. 

Twenty-six programs ranging frorp simple introductory examples to more 
complex instructional computing application models, plus a "keyword" subrou­
tine and a program "menu" routine are presented in the text. Professors adopting 
the text may write to the publisher for a free copy of the software diskette, which 
contains these programs along with solution programs to selected problems in 
the text. On request, the publisher will make copies of the diskette available to 
students for $11.95 each. 

The authors are indebted to many people for the development of this book. 
Only with the critical review of the manuscript by Sister Mary K. Keller of Clark 
College, Professor Edward B. Wright of Western Oregon State College, Professors 
Dennis Harper and Jeffrey Marcus of the University of California at Santa Bar-



bara, the encouragement of Mr. James F. Leisy, Jr., of Brooks/Cole Publishing 
Company, and the excellent copy editing of Mr. Trevor Grayling, could this book 
have been published. Production was ably directed by Mr. Greg Hubit of Greg 
Hubit Bookworks. Additional assistance was provided by Mr. Morgan Watkins 
of the University of Texas at Austin, Mr. Carey Van Loon of California State 
College, San Bernardino, and Mr. Larry Hall. Most of all, we wish to gratefully 
acknowledge the contribution of the 708 students who have provided direct input 
and response during the development stages of this book. 

GHC 
HN 

Preface 

vii 



Contents 

Introduction 1 

Part I An Introduction to the BASIC 
Programming Language 

Chapter 1 A BASIC Program of My Very Own 5 
1.1 Objectives 5 
1.2 Computer Use: A Brief History and Rationale 6 
1.3 Access to Computers 7 
1.4 A Bit about BASIC before Beginning 9 
1.5 BASIC Statements for This Chapter 11 
1.6 Editing BASIC Programs 15 
1.7 Posers and Problems 16 

Chapter 2 Now Tell It Where To Go and What To Do 
With It 19 
2.1 Objectives 19 
2.2 BASIC Statements for This Chapter 20 
2.3 Some Very BASIC Functions 21 
2.4 Modification of Existing Programs 22 
2.5 Incorporating the New Statements 25 
2.6 Posers and Problems 28 

Chapter 3 Take a Ride on the Loop-D-Loop 31 
3.1 Objectives 31 
3.2 BASIC Statements for This Chapter 32 
3.3 Incorporating the New Statements 34 
3.4 A Time-Saving Technique 38 
3.5 Posers and Problems 42 ix 



Contents 

Chapter 4 DIM it! There Must Be an Easier Way! 45 
Array! Array! There Is! 
4.1 Objectives 45 
4.2 Arrays 46 
4.3 Examples of the Use of One-Dimensional 

Arrays 49 
4.4 BASIC Statements for This Chapter 56 
4. 5 Posers and Problems 61 

Chapter 5 Relax and Catch Your BASIC Breath 65 
5.1 Objectives 65 
5.2 BASIC.Statements: A Summary and Some 'fypical 

Uses 65 
5.3 A Summary of the Purposes of BASIC 

Statements 72 
5.4 Posers and Problems 73 

Chapter 6 Show and Tell 75 
6.1 Objectives 75 
6.2 Some Example Programs and Programming 

Strategies 76 
6.3 Problem-Solving Applications 77 
6.4 Drill-and-Practice Applications 88 
6.5 Tutorial (Dialog) Applications 105 

6.6 Simulation Applications 122 
6. 7 Testing 144 
6.8 The KEYWORD Subroutine 153 
6.9 Using BASIC Commands within a Program 159 
6.1 O Posers and Problems 164 

Chapter 7 One Picture Is Worth Ten Thousand 
Words 167 
7.1 Objectives 167 
7.2 What Are Graphics? 168 
7.3 Statements for Low-Resolution Graphics 168 
7.4 Statements for High-Resolution Graphics 172 
7.5 High-Resolution Graphics and Instructional 

Computing Materials 175 
7.6 Some Notes about Using Color 179 

x 7. 7 Posers and Problems 1 79 



Part II An Introduction to the Design and 
Development of Instructional 
Computing Materials 

Chapter 8 What Are Your Intentions? 

8.1 Objectives 183 

8.2 Designing Instructional Computing 
Materials 184 

8.3 The Systems Approach 

8.4 Posers and Problems 

184 

189 

Chapter 9 Developmental Processes 
9.1 Objectives 19I 

9.2 The Systems Approach (Continued) 

9.3 Guidelines for Design and Development 

I91 
194 

183 

191 

Appendix A The Apple Computer and How To Use It 197 
A. I The Apple II Computer 197 

A.2 How To Use the Apple with This Book 200 
A.3 What To Do When All Else Fails 204 

Appendix B Applesoft Language Summary 206 
B. l BASIC Statements 207 
B.2 Graphics Statements 210 

B.3 Text Formatting Statements 212 

B.4 Summary of Variable Types 214 

B.5 Summary of Operators 215 

B.6 Mathematical Functions 216 
B. 7 String Functions 217 

B.8 BASIC and Disk Commands 218 
B. 9 Special Keys 221 

B.10 ASCII Character Codes 222 

Appendix C Answers to Selected Questions and 
Problems 224 

Appendix D Annotated Bibliography 229 

Index 237 

Contents 

xi 



IntroJuction 

This book contains nine chapters that describe an approach to using a com­
mon programming language, BASIC, for the design and development of instruc­
tional computing programs for Apple microcomputers. These chapters discuss 
certain fundamentals of the language and the design and developmental processes 
that provide a foundation for the production of instructional computing programs. 

There are more than one hundred books available that teach BASIC (the 
Beginners' All-purpose Symbolic Instruction Code, developed by John G. Kemeny 
and Thomas E. Kurtz at Dartmouth College) . Although most of these books are 
very thorough in describing BASIC, they usually emphasize problem-solving 
applications. Our emphasis, on the other hand, is on instruction in the use of 
BASIC in the design and development of materials for instructional computing, 
which we now proceed to define. 

Simply put, any use of computing techniques within the classroom may be 
broadly defined as instructional computing (sometimes known as computer-assisted 
instruction). Specifically, it includes: 

1. Problem solving, in which computer programs are written to solve dis­
cipline-oriented problems. 

2. Drill and practice on fundamental concepts using computer programs in 
a given discipline. 

3. Tutorial dialog, in which computer programs provide "tutorlike" assis­
tance in pointing out certain types of mistakes, providing review if needed, 
skipping areas in which proficiency is shown, and so on. 

4. Simulation, in which computer programs allow manipulation and inter­
pretation of certain elements related to given physical or social phenom­
ena without the constraints of time, space, equipment, and environ­
mental or logistical limits. 

5. 'Jesting, in which computer programs ask the questions, check the answers, 
and record the performance. 

For our purposes, the term instrudional computing is used to include all of these 
applications. 



Introduction 

2 

The Use of BASIC An introduction to some of the fundamentals of 
BASIC is provided in this book. This introduction is not intended to produce 
highly accomplished and skilled programmers. Rather, it gives only the funda­
mentals needed to write fairly simple programs for instructional computing appli­
cations. Model programs are described that illustrate this use. 

Although many different programming languages may be used in instruc­
tional computing, there are several reasons for using BASIC: 

I. It is easy to learn and easy to use. 

2. It is a common interactive language (see Section 1.3 ), available on large 
computer systems costing millions, medium-sized systems costing 
hundreds of thousands, minisystems costing tens of thousands, and small 
systems (commonly called micros or personal computers) costing a few 
hundred to a few thousand dollars. 

3. It may be used in all applications of computer-based instruction. 

4. It is the introductory computer language used in most secondary and 
many elementary schools. 

5. It is the most common language of microcomputers-an area of com­
puter technology that is making the major impact on education in this 
decade. 

Design Following the introduction to BASIC, a method for designing 
instructional materials called the systems approach is outlined. This approach, in 
essence, is a logical, step-by-step process for identifying the tasks and activities 
needed in the production of validated instructional materials. 

Development The development of instructional computing pro­
grams by the reader is the ultimate goal of this book. Initially, the development 
phase overlaps the design phase in which paper, pencil, and brain power are the 
principal ingredients. This involves outlining the rationale, objectives, and 
instructional sequence of one or more instructional computing programs. After 
this is outlined on paper, it is translated into the BASIC programming code. 
Following this, it is necessary to spend considerable time at a computer entering, 
testing, and refining what has been designed and developed on paper. 

As a final introductory note, it should be emphasized that this book assumes 
no previous experience whatsoever with computers. On the other hand, it is not 
designed to provide detailed information on computers in general or how they 
operate. Rather, it introduces the ways and means by which the Apple® com­
puter* may be used within the instructional process. 

Now, let us begin by getting down to the BASICs ... 

*Apple is a registered trademark of Apple Computer, Inc. 



An Introduction to 
the BASIC 

• Programm1ng 
Language 

Part 
I 



4 

"Nothing in life is to be feared. It is only to 
be understood." 
-Marie Curie 

"In certain trying circumstances, urgent circumstances, 
desperate circumstances, profanity farnishes a relief 

denied even to prayer. " 
-Mark Twain 

Tb ink About Tb is (for Fun} 

Rearrange the letters of NEW DOOR to form one word. [Note: Answers to Think 
About This for Fun questions may be found in Appendix C.] 

Tbink About Tbis (Serious[~) 

Does a computer possess intelligence? 



A BASIC Program of M~ 
Ver~Own 

1.1 OBJECTIVES 

For the successful completion of this chapter, you should be able to: 

I . List five general applications of computer-based instruction (Introduction). 

2. Define two ways in which computers may be accessed (Section 1.3). 

3. List the steps necessary to "boot up" (power up) a computer system 
(Appendix A). 

4. State how a BASIC program may be entered on that system after the 
booting up (Section 1.5.5 and Appendix A). 

5. Define what (not who) composes a BASIC program (Section 1.4.1). 

cf)apter 

I 

5 



An Introduction to the BASIC Programming Language 

6 

6. Distinguish between BASIC statements and commands (Sections 1.4.1-
1.4.2). 

7. Define the action of the following BASIC commands: NEW, RUN, LIST, 
and SAVE (Section 1.4.2). 

8. Define and give at least one example of both a Numeric variable and a 
String variable (Section 1.4.3 ). 

9. Describe the use of com.mas and semicolons in BASIC for purposes 
other than punctuation (Section 1.4.4). 

10. Define the purpose and give at least one example of the following 
BASIC statements: PRINT, INPUT, LET, and END (Sections 1.5.1-1.5.4). 

11 . Describe three simple techniques for editing BASIC programs (Section 
1.6 and Appendix B). 

1.2 COMPUTER USE: A BRIEF IDSTORY AND 
RATIONALE 

Electronic computers have been in use since the late 1940s. In the period from 
1948 to 1965, they were used primarily for what their name implies: computing 
or "number crunching" as it is sometimes called. Starting about the mid-sixties, 
however, educators began experimenting with applications of computers in the 
instructional process that involved more than just computing. 

In the decade following, this use expanded, and, just as computers have 
become ingrained in our society, instructional computing is becoming common­
place in our schools. (These points may be emphasized by the fact that since 1975 
over 1,500,000 microcomputers have been purchased, many for home or school 
use.) 

Now, it is very important to recognize that computers are not replacing teach­
ers! The fundamental principle underlying the use of computers-regardless of 
the profession using them-is that they are incredibly fast and accurate tools that 
allow people to do certain activities in a manner not previously possible. Thus, 
the use of computers in instruction is basically that of supplemental applications. 
Computers allow teachers and students to do certain educational processes faster, 
with greater accuracy, and in a manner not possible before they came on the 
scene. 

Computer programs can be very helpful in providing patient, routine drill 
on fundamental concepts, in generating and grading tests in a given discipline, 
and in many other applications. In any of these cases, the most effective programs 
are those designed by teachers-the professionals in the field who are aware of 
what is to be taught and how to teach it. As yet, there is no computer program 
that can lead an intelligent and sensitive discussion on any given abstract concept. 
There are no teachers out of a job because they have been replaced by a computer! 
That is something worth remembering. 



A BASIC Program of My \try Own 

1.3 ACCESS TO COMPUTERS 

A computer is an extremely fast and accurate processor of data. In the simplest 
sense, most common computer systems may be viewed as four units connected 
electronically: 

I. An input unit (such as a computer terminal keyboard) through which 
data is entered. 

2. A processor unit, which stores the data input and processes it electronically. 

3. An output unit (such as a computer terminal screen or printer) which 
shows the results of processing the data input. 

4. A data storage/retrieval unit (such as a disk drive) which stores data on, 
and retrieves data from, some magnetic medium (such as a floppy disk). 

Figure 1.1 shows these units in block form. 

Until the late 1960s, the primary means of access involved punching program 
statements, data, and commands onto computer cards. This "batch" of cards was 
read (input) by a card reader and eventually a printout (output) of the program 
"run" was retrieved. This type of access is commonly referred to as batch access 
or batch processing. 

Since the early 1970s, there has been a very strong trend toward accessing 
computers via computer terminals. In the simplest sense, a terminal consists of 
a keyboard, similar to that of a typewriter, for input of statements, data, com­
mands, and so forth, with output displayed either on a cathode ray tube (CRT) 
screen or paper (hardcopy) at the terminal. This type of access is known as 
interactive (a user is interacting directly with the computer or a program) or 
timesharing (there may be literally scores of terminals in remote locations "shar-

Output unit 
(TV monitor) ...., __ -l Processor 

Storage unit 
(disk drive) 

Figure 1.1 
Components of a 
computer system. 

7 



An Introduction to the BASIC Programming Language 

Figure 1.2 
APPLE ll system: 

keyboard, monitor, 
thermal printer, and 

disk drives. 
(Courtesy of Apple 

Computer. Inc.) 

8 

ing the time" of one computer). In these cases, the terminal is connected to the 
computer via standard telephone lines. 

Microcomputers are an exception to this. Here, the computer, terminal, dis­
play, and other components are usually provided as a unit small enough to fit 
on a desk top (Figure 1.2). There are no telephone connections or sharing of 
computer time. This makes the unit more portable, Jess prone to equipment 
failure, less expensive, and, consequently, well suited to the classroom. 

For our use here, only microcomputers are discussed. The examples and 
assignments in the text assume that the reader has access to an APPLE II micro­
computer with AppleSoft BASIC, one floppy disk drive, a video monitor or tele­
vision, and at least 48K of random access memory (RAM). 



A BASIC Program of My \i'ry Own 

It is very important that the reader, particularly the reader new to micro­
computers, become familiar with the processes needed to access (use) the system. 
This first involves gaining confidence in booting up the system. Refer to Appendix 
A for a step-by-step procedure to accomplish this. 

1.4 A BIT ABOUT BASIC BEFORE BEGINNING 

There are a few general points about BASIC that should be made early. Consider 
these as some of the "rules of the game" to follow for BASIC. 

1.4.l Statements 

A BASIC program is composed of BASIC statements. These are words (often 
verbs), such as PRINT, INPUT, and so on, that make some degree of sense to both 
a user and the computer. (Of course, the computer has been programmed by 
people to "understand" these words.) 

BASIC statements are always numbered, generally by tens (10, 20, 30, etc.). 
They could be numbered 1, 2, 3, and so on, but no additional statements could 
be inserted into the program, say, between statements numbered 1 and 2. State­
ments can be inserted between lines numbered IO and 20 (11, 12, etc.), and so 
it is possible to add as many as 9 lines (statements) between 10 and 20. Thus, 
the numbering convention is usually in increments of ten. 

1.4.2 Commands 

BASIC commands issue specific information to the computer system about 
the program. For example, the command NEW instructs the system to prepare 
for a new BASIC program to be entered at the terminal by "erasing" any program 
statements that are currently in the system's memory. The command LIST will 
produce a listing of the BASIC statements comprising the program in memory. 

The command RUN executes (RUNs) the BASIC statements in their increas­
ing numerical sequence unless one of those statements transfers the execution 
to another part of the program. (This is called branching and will be discussed 
later.) The command SAVE (filename) instructs the system to save the program 
in memory under the name (filename). The program is stored on a floppy diskette 
placed in the disk drive. (The (filename) may be just about any name the user 
wishes, but short, descriptive names should be considered.) 

1.4.3 Variables 
Nearly all BASIC programs described in this text will include values that may 

vary as the program is executed (RUN). These values, which are called variables, 
could be students' names, test scores, responses for correct or incorrect answers, 
and so forth. 9 



An Introduction to the BASIC Programming Language 

10 

In BASIC, a variable may be represented (named) by any letter of the alpha­
bet (A-Z) or any letter and any number up to 9 (Al,M8,W3,Z9, etc.). The APPLE 
microcomputer will allow variables to have even longer names that are more 
descriptive of what they represent: FIRSTTEST, NUMBEROK, AVERAGE, and so 
on. However, only the first two letters are used internally by the APPLE system. 
Consequently, AVERAGE and AVENUE represent the same variable; so care must 
be used in naming the variables in a program. 

For our purposes, there are two types of variables: 

1. Numeric. The value of the variable is always numeric: 1.0, 2, 110.5, 
- 3.1365, and so on. 

2. String (or alphanumeric). The value of the variable may be alphabetic 
characters or numbers or a mixture of both. This value is always enclosed 
in quotation marks: "ABCDEF", "CS395T", "JOHN JONES", "NOW IS 
THE TIME", and so on. 

A dollar sign ($) is added to the name of the string variable to distinguish it 
from a numeric variable. N$, Al$, Z9$, and FIRSTNAME$ all represent string 
variable names, while N, Al, Z9, and FIRSTTEST all represent numeric variable 
names. 

Examples: A = 123 

(The numeric variable named A has a value of 123.) 

A$ = "ABC" 

(The string variable named A$ has a value of ABC.) 

1.4.4 Commas(,) and Semicolons(;) 

Commas and semicolons have specific uses in BASIC. They can be used in 
the normal fashion as punctuation marks, or they can be used to instruct the 
system to display information in special ways. For example, every so often in a 
BASIC program there may be a need to have information printed in columns. 
Suppose a list of student names, test score averages, and final numeric grades 
were to be displayed (printed). Assume the values are stored in the variables N$, 
T, and F, respectively. The BASIC statement 

PRINT N$1T1F 

would display this information in columns 16 spaces apart from the start of the 
first value to the start of the second value, and so on. Here, the comma acts as 
an automatic tabulator. Thus, any line can have "fields" of display starting at 
column 1, column 17, and column 33. This can be useful when certain types of 
information are to be displayed. (See, for example, Sections 1.5.l and 1.5.3.) 



A BASIC Program of My \try Own 

If one wished the above information to be close packed (printed without any 
separating spaces), the semicolon would be used in place of the comma. In 
essence, then, the comma, when not used as a punctuation mark, instructs the 
system to tab 16 spaces before printing; similarly, the semicolon instructs the 
system to not skip any spaces before printing. 

These and other examples of their use will be shown shortly, but for now 
be aware that the comma and semicolon can have special meanings when not 
used as punctuation. 

1.5 BASIC STATEMENTS FOR THIS CHAPTER 

1.5.1 Statement PRINT 

Purpose Displays (PRINTs) information at the computer terminal. This 
information may be text, numeric variable values or string (alphanumeric) var­
iable values (see Section 1. 5. 3). When text is to be displayed, it must be enclosed 
in quotation marks (") in the PRINT statement. 

Example: PRINT "HE LLO. WHAT'S YO UR FIRST NAME" 

Result of execution: HELLO. WHAT Is YOUR FIRST NAME 

Example: 1 o A = 123 
20 A$ = "ABC" 
30 PRINT A1A$ 

Result of execution: 123 ABC 
+----16 spaces~ 

l.5.2 Statement INPUT 

Purpose Allows numeric or alphanumeric information to be entered 
(INPUT) into a BASIC program during its execution. The information is entered 
through the terminal keyboard and is assigned to a variable specified by the 
program author. The variable will have the assigned value until changed by 
another INPUT or LET statement for that variable. 

Examples: IN Pu T N (for numeric information) 
IN Pu T N $ (for alphanumeric information) 

Note: Most BASIC systems automatically display a question mark(?) when 
the INPUT statement is executed. In computer terms, the question mark is called 
the input indicator or prompt. Program execution is stopped until the RETURN 
key is depressed. Also, note that the use of quotes, discussed earlier for string 
variables in Section 1.4.3, is not required when string information is INPUT. The 
dollar sign instructs the system that any input will be assigned as a string variable. 

11 



An Introduction to the BASIC Programming Language 

12 

Program example: 1 o PR I NT "HELLO. WHAT' s YOUR FIRST NAME" 
20 INPUT N$ 
30 PRINT N$;" IS A NICE NAME." 
llO END 

Result of execution: HELLO' WHAT'S YOUR FIRST NAME 
?SAMMY (SAMMY is typed and the RETURN key 
depressed.) 
SAMMY IS A NICE NAME. 

1.5.3 Statement LET 

Purpose Assigns values to variables. This action may be "direct," as in 
LET X = 20 (X would have a value of 20), or it may be "indirect," as in LET X 
= (2*Y)/3 (X would have a value equal to the result of dividing 3 into the product 
of 2 times the value of Y). The "*" is the symbol (character) used for multipli­
cation; the "/" is the symbol used for division. It may also be used to assign 
alphanumeric values, as in LET A$ = "HERE'S THE ANSWER!" 

Note: In most BASIC systems, the term LET is optional; so the statement X 
= 20 is equivalent to LET X = 20. Also, note here that assignment to a string 
variable requires the use of quotes. The string content must be enclosed in quotes. 

Example: 1 o LET NAME$ = "JOHN JONES" 
20 LET TESTl = 100 
3 0 FINAL TEST = 89 (Note: LET is omitted.) 
LIO PRINT "STUDENT" 1"TEST 1", "FINAL" 
50 PRINT 11

-------
11 111

------
11

, "-----" 

60 PRINT NAME$1TEST1 tFINALTEST 
70 END 

Result of execution: STUDENT TEST 1 FINAL 

JOHN JONES 100 89 

What would happen if the commas in statements 40-60 were replaced 
by semicolons? (Note: Answers to this and other questions found within the 
text are supplied under their respective chapter and section numbers in Ap­
pendix C.) 

1.5.4 Statement END 

Purpose Ends program execution. On many systems, it is not required. 
However, in the interest of good programming practice, it should be the last 
statement in any program. 

1.5.5 PROGRAM I: Years-to-Days Conversion 

The statements discussed thus far can be combined to make a program. But 
what is the program to do? Some stage of program design must be defined that 



A BASIC Program of My itry Own 

illustrates the use of these statements. Arbitrarily, then, the program is designed 
to: 

1. Ask for a person's name (PRINT) . 

2. Store the name entered in a string variable (INPUT). 

3. Greet that person with the name entered (PRINT). 

4. Skip a line so that the screen is not too crowded (PRINT). 

5. Ask for the person's age in years (PRINT). 

6. Store the age entered in a numeric variable (INPUT) . 

7. Convert the age in years to the age in days (LET). 

8. Display this age in days (PRINT). 

9. End the program (END). 

Note: The sample interaction shows a "session" at a microcomputer. It includes 
creating a NEW program, entering the program statements, SA VEing the pro­
gram, RUNning the program, LISTing the program, LISTing a single statement 
(LIST 40), LISTing statements IO to 30 inclusive (LIST 10,30), and LISTing a 
nonexistent statement (LIST 120). 

All this is shown in the sample as it would appear on an APPLE system 
monitor, which limits each display line to 40 characters. Any remaining char­
acters on a given line "wrap around" and are shown on the next line displayed. 
Although this makes absolutely no difference to the APPLE system (a line may 
contain as many as 25 5 characters), it is confusing when read by a person. To 
clarify this, another listing of PROGRAM 1 is shown below the actual session. 
This and all listings of subsequent programs in this text are in an 80-column 
format. Be aware that the listings will look different when viewed on the monitor 
display. 

Refer to the listing and run of PROGRAM 1. 

JNEW 

JlO PRINT "HELLO. WHAT'S YOUR FIRST NAME" 

JZO INPUT N$ 

130 PRINT "HOWDY1 "lN$ 

Statement IO displays a greeting and 
asks for user's first name. 

Statement 20 automatically displays a 
"?" and waits for input. Whatever is 
typed is assigned to N$ when RETURN 
is depressed. 

Statement 30 displays " HOWDY, " 
(Why the blank space?) and value of 
NS. 

l ll 0 PR I NT Statement 40 prints a blank line. and 
statement 50 requests the user's age in 

l SO PR I NT "TELL ME, , , WHAT IS YO UR AGE IN YEARS" ; years. 



An Introduction to the BASIC Programming Language 

J60 INPUT A 

J70 D=A*365 

]80 PR I NT "WELL' " i N$ i II ' YOU HAVE BEEN BREATH I NG II 

J8 0 PRINT "FOR AT LEAST "iDi" DA YS!" 

Jl OO PRINT1"BYE-BYE1 "iN$ 

]110 END 

JSAVE PROGRAM 
JRUN 
HELLO. WHAT'S YOUR FIRST NAME 
?SAM MY 
HOWDY 1 SAMMY 

TELL ME •• ,WHAT IS YOUR AGE IN YEARS?21 
WELL1 SAMMY1 YOU HAVE BEEN BREATHING 
FOR AT LEAST 7665 DAYS! 

BYE- BYE1 SAMMY 

J LIST 

10 PRINT "HELLO, WHAT'S YOUR FIR 
ST NAME" 

20 INPUT N$ 
30 PRI NT "HOWD Y 1 "iN$ 
ao PRINT 
50 PRINT "TELL ME,,, WHAT IS YOUR 

AGE IN YEARS"i 
60 INPUT A 
70 D = A * 365 
80 PRINT "WELL, II ;N$; II, YOU HAVE 

BEEN BREATHING" 
80 PRINT " FOR AT LEAST II ;o; II DAY 

s ! " 
100 PRINT 1 "BYE-BYE, "i N$ 
110 END 

]LIST ao 

ao PRINT 

JLIST 10 130 

10 PRINT "HELLO. WHAT'S YOUR FIR 
ST NAME" 

20 INPUT N$ 
30 PRINT "HOWDY1 "iN$ 

Statement 60 automatically displays a 
"?" and waits until some number is 
typed and RETURN is depressed. This 
number is assigned to variable A. 

Statement 70 assigns a value to D equal 
to the value of A times 365 (converting 
year.; to days). 

Statements 80 and 90 display values of 
N$ and D, along with appropriate text. 

Statement 100 skips 16 spaces and 
displays a farewell. 

Statement 110 ends program execution. 



A BASIC Program of My \.try Own 

JLIST 120 

J 

JLIST 

10 PRINT "HELLO. WHAT 'S YO UR FIRST NAME" 
20 INPUT N$ 
30 PRINT "HOWDY, ";N$ 
ao PRINT 
50 PRINT "TELL ME ,, .WHAT IS YOUR AGE IN YEARS"; 
60 INPUT A 
70 D = A * 365 
BO PRINT "WELL, ";N$ ; " t YOU HAVE BEEN BREATHING" 
90 PRINT " FOR AT LEAST 0 ;0; 11 DAYS!" 
100 PRINT t"BYE-BYE t ";N$ 
110 END 

1.6 EDITING BASIC PROGRAMS 

Most BASIC systems have some means by which programs may be edited. For 
example, a PRINT statement with a misspelled word or typographical error may 
be corrected by editing. Three simple editing techniques are: 

I. Left arrow key ( +--- ) . A typographical error may be corrected by back­
spacing the cursor over the error, entering the correction, and then com­
pleting the line being typed. This type of editing can be used only before 
the RETURN key is depressed for the line being entered. 

2. Retyping the statement. A statement may be replaced by simply retyping 
the line number followed by the correct statement. 

3. Deleting lines. A statement may be deleted entirely by typing the line 
number only and then depressing the RETURN key. Several lines may 
be deleted by typing DEL, followed by the beginning and ending line 
numbers to be deleted. For example, the command: 

DEL 20t50 

would delete line numbers 20-50, inclusive. 

Although these are only three simple techniques for editing, they will get 
you staned and can be extremely useful. As you become more proficient and at 
ease with the system, you should become familiar with the more advanced edit­
ing techniques described in Appendix B (section B.9, page 221 ). 15 



An lntrodudion to the BASIC Programming Language 

16 

1. 7 POSERS AND PROBLEMS 

(Note: Many of the " Posers and Problems" given in this book may be entered 
and run as programs. Where possible, this should be done, since it will be of 
help in arriving at the solutions. As a last resort, or to check your work, refer to 
Appendix C. A * indicates a more difficult problem.) 

I . Correct any errors found in the following BASIC statements: 

10 PR I MT "HELLO 
20 PRINT WHAT'S YOUR HEIG HT IN INCHES" 
30 IN PUT 
40 M = 2,54 * 
50 PRINT YOU ARE M CENTIMETERS TALL ! 
60 FINISH 

2. What is the value of X in each of the following if Y = 6? 

x = 25 
X <2*Yl/3 
x y 
X = <2* Y)/(3*Y> 
X <Y* Yl / CY*2l 

3. What is the purpose of the semicolon in statements 30, 80, and 90 of 
PROGRAM 17 What would substituting a comma for the semicolon 
produce? What is the purpose of the comma in statement 100? 

4 . Note the different positions of the two question marks in the sample 
RUN of PROGRAM 1. What caused the difference? (Hint: Carefully 
examine statements 10 and 50.) 

5. Modify PROGRAM 1 to output the user's age in " heartbeats" (use H 
as the variable), assuming a pulse rate of 72 beats per minute (and 60 
minutes per hour, 24 hours per day) . 

6. What would result if the following statements were executed? 

10 A$ "NAME " 
20 8$ = "SCORE" 
30 C$ = "AVERAGE " 
40 PRINT A$ t8$,C$ 
50 END 



A BASIC Program of My \.t'ry Own 

7. What would result if the following statements were executed? (Assume 
you input your own name and weight.) 

10 PRINT "FIRST NAME"; 
20 INPUT N$ 
30 PRINT "WEIGHT IN POUNDS"; 
LIO INPUT P 
50 K = P/2,2 
60 z = p * 16 
70 PRINT1"WOW1 ";N$;"!" 
80 PRINT "THAT'S ONLY •;K;" KILOGRAMS, BUT, GEEt" 
90 PR I NT t" IT'S " ; Z;" OUNCES! " 
100 END 

* 8. Write a program that converts a temperature in Celsius to a temperature 
in Fahrenheit. The user should enter the temperature for conversion 
from the keyboard. Hint: The formula for conversion is F = (C * 9/5) 
+ 32. 

* 9. Write a program that converts two variables, cups and ounces, into 
ounces. For example, 2 cups and 3 ounces equal 19 ounces. 

* I 0. Write a program that inputs two string variables, first name and last 
name, and prints out a salutation of your choice using the person's full 
name. 

17 



18 

"Even if you 're on the right track, you 'll get run over 
if you just sit there." 

-Will Rogers 

"Mans mind stretched to a new idea never goes back to 
its original dimensions." 

-Oliver Wendell Holmes 

2. 

'-'? 

.J 
· \ 

Tbink About Tb is ( for Fun) 

What do you sit on, sleep on, and brush your teeth with? 

Tbink About Tbis (Serious{~) 

Can computer programs teach? 



Now Teff It w&ere To Go 
and w&at To Do wit& It 

2.1 OBJECTIVES 

For the successful completion of this chapter, you should be able to: 

l. Define the purpose and give at least one example of each of the BASIC 
statements REM, GOTO, IF-THEN, and ON-GOTO (Sections 2.2.1-2.2.4). 

2. Define the purpose and give at least one example of each of the BASIC 
functions RND(l) and INT (Section 2.3). 

3. Define the purpose of the BASIC commands LOAD and DELETE (Section 
2.4) . 

4. Alone and unafraid, boot up a microcomputer system (Appendix A). 

5. Design, enter, and RUN a BASIC program that includes the statements 
discussed in Chapter 1. 

cbapter 

2 

19 



An Introduction to the BASIC Programming Language 

20 

2.2 BASIC STATEMENTS FOR THIS CHAPTER 

2.2.1 Statement REM 

Purpose Used as a REMinder or REMark to document the listing of 
BASIC programs. That is, REM gives a means by which internal notes may be 
made in the program listing. These notes will provide information about the 
program, such as which variables are used and their purpose (commonly called 
a dictionary of variables), and will identify special program routines or strategies, 
separating the program into segments so that the program listing is easy to read. 
The REM statement is not executed during a program run; thus, the only time 
these are displayed is after a LIST command. 

Example: REM THE VARIABLE 'A' IS THE AGE IN YEARS 

2.2.2 Statement GOTO 

Purpose Unconditionally transfers program execution to the specified 
statement number. 

Example: GOTO 100 

2.2.3 Statement IF-THEN 

Purpose Conditionally transfers program execution to the specified 
statement number if, and only if, the defined variable relationship is true. 

Examples: IF x = 1 THEN 100 

(Transfer to statement 100 will occur if X is equal to 1.) 

IF Y <> Z THEN 100 

{Transfer to statement 100 will occur if the value of Y is not equal to the value 
ofZ.) 

IF A <= 2 THEN 100 

(Transfer to statement 100 will occur if the value of A is less than or equal to 2.) 

IF A >= 2 THEN 100 

(Transfer to statement 100 will occur if the value of A is greater than or equal to 
2.) 

IF A$ = "YES" THEN 100 

(Transfer to statement 100 will occur if the value of A$ is equal to the character 
string YES.) 



Now 'Jell It Where 1b Go and What 1b Do with It 

2.2.4 Statement ON-GOTO 

Purpose Transfers program execution to a specified statement number 
based on the truncated value of a variable or numerical relationship. 

Example: ON x GOTO 100 1300 1600 

(Transfer to statement 100 will occur if the truncated value of X is 1; transfer to 
statement 300 will occur if this value is 2; transfer to statement 600 will occur 
if this value is 3. If X is less than 1 or greater than 3 in the example above, 
execution continues with the first statement following the ON-GOTO.) 

This example of the ON-GOTO is equivalent to the following three IF-THEN 
statements: 

IF X THEN 100 
IF X 2 THEN 300 
IF X = 3 THEN 600 

By using the ON-GOTO, the same instructions can be given to the system by just 
one statement: 

ON X GOTO 10013001600 

Note: Truncate is a computer term that means "reduce a number with a 
decimal fraction to its whole-number value." The truncated values of 3.0001 
and 3.9999 are both equal to 3. The truncated values of - 3.0001 and - 3.9999 
are both equal to -4 (since the decimal number is reduced). 

2.3 SOME VERY BASIC FUNCTIONS 

Functions in BASIC are essentially mathematical routines that either come with 
the computer system (as a library of routines or functions) or are defined by the 
user. Once a function has been defined, it may be used over and over again 
without the bother of writing out the entire routine. 

Two of the most common library functions that are used in instructional 
computing applications are RND( 1) and INT. When executed, the RND( 1) func­
tion automatically gives some random numeric value between 0.0 and 0.99999999. 
The INT function truncates any number with a decimal fraction (called a real 
number) to a whole number (called an integer). 

By using a combination of these functions in BASIC statements, it is possible 
to generate random numbers within any range desired. This may be used to 
generate different values for questions containing numbers, randomly selecting 
questions by number from a "bank" of questions, randomly branching to spec­
ified line numbers using ON-GOTO statements, and so on. The following illus­
tration shows how this combination may be used to generate numbers in the 
range of 1-10, inclusive. 

21 



An Introduction to the BASIC Programming Language 

22 

Suppose a BASIC statement looked like this: 

X = INT<lO * RND<ll + ll 

and suppose RND( 1) comes up with a random value of0.58. BASIC is set up so 
that numerical operations enclosed in parentheses are performed first. Thus, the 
steps the system follows in computing the value of X would be: 

1. 10*0.58=5.8 

2. 5.8 + l = 6.8 

3. INT of 6.8 = 6 

Thus, X will have a value of 6 in this example. 
What would be the value of X if RND(l) = 0.99999999? What would be 

the value of X if RND ( 1) = 0.01? What is the range of random numbers that 
could result from the statement: 

X = INT<lO * RND<ll + 3l 

What would be the statement that would generate random numbers in the range 
l.00-100.00, inclusive? (Hint: Note the two decimal places. How is an integer 
value changed to a real value containing two decimal places? Answer: By dividing 
the integer by 100.) What statement would produce random numbers in the 
range 5-95, inclusive? 

2.4 MODIFICATION OF EXISTING PROGRAMS 

In Chapter 1, Problem 5 asked the reader to modify PROGRAM 1 to output 
(PRINT) the number of heartbeats equivalent to a user's age in years, assuming 
there were 72 beats per minute. To do this, it is necessary to: 

1. Retrieve PROGRAM 1 from the disk. 

2. Make the modifications. 

3 . Save the modified version of PROGRAM 1 as PROGRAM 2. 

[By saving the modified program as PROGRAM 2, both the old version (PRO­
GRAM 1) and the new version (PROGRAM 2) are on the diskette. If only the 
new version is desired, the same name (PROGRAM 1, in this case) should be 
used.] 

2.4.1 PROGRAM 2: Adding Heartbeats 

Recall that PROGRAM 1 was created by first typing NEW to erase any pro­
gram in memory and then entering each line, statement by statement. RUN was 



Now 71!/l It Where 1b Go and What 1b Do with It 

typed to test the program, and it was SAVEd on the floppy diskette. Once a 
program has been SA VEd, it may be retrieved for use or modifications by the 
command LOAD (filename). 

If any changes are made that are to be permanent in the program, the com­
mand SA VE (filename) must be used. This is illustrated by the listing and sample 
run of PROGRAM 2. If a SA VEd program is no longer needed, it may be deleted 
by the command DELETE. Thus, the command for erasing any program is DELETE 
(filename). But be careful! Once a program is deleted, it is gone, gone, gone! 

Run from disk and refer to the listing and run of PROGRAM 2. 

JLOAD PROGRAM 1 
JLIST 

10 PRINT "HELLO , WHAT ' S YOUR FIRST NAME" 
20 INPUT N$ 
30 PRINT "HDWDY1 "iN$ 
40 PRINT 
50 PRINT "TELL ME,,,WHAT IS YOUR AGE IN YEARS"i 
SO INPUT A 
70 D = A * 385 
80 PRINT "WELL1 "iN$i" 1 YOU HAVE BEEN BREATHING" 
90 PRINT "FOR AT LEAST ";o i" DA YS!" 
100 PRINT I "BYE-BYE I "iN$ 
110 END 

]92 REM =============== 

]93 REM MODIFICATIONS ADDED BELOW 

J94 REM =============== 

J97 PRINT "AND IN HEARTBEATS1 THAT ' S" 

]98 PRINT "ABOUT "iHi" TOTAL THROBS!" 

J99 PRINT " wow I " ; N$ i" ! " 

J70 D=A*3S5.25 

JRUN 
HELLO, WHAT'S YOUR FIRST NAME 
?SAMMY 
HOWDY 1 SAMMY 

Statements 92-99 are entered. 
(Statement 96 converts age in days, D, 
to heartbeats, H, since there are 24 
hours per day, 60 minutes per hour, and 
72 heartbeats per minute.) 

Statements 97-99 display the value of 
variable H, along with appropriate text. 

Statement 70 is reentered, giving a more 
accurate value for days per year (365.25 
versus 365). 

The program is then RUN. 

23 



An Introduction to the BASIC Programming Language 

TELL ME • • • WHAT IS YOUR AGE IN YEARS?Q3,5 
WELL1 SAMM Y1 YOU HAVE BEEN BREATHING 
FOR AT LEAST 15888.375 DA YS! 
AND IN HEARTBEATS, THAT ' S 
ABOUT 1,GQ73067 2E+ 09 TOTAL THROBS ! 

WOW 1 SAMMY! 

JSAVE PROGR AM 2 
JLIST 

BYE- BYE1 SAMM Y 

10 
20 
30 
ao 
50 
60 

PRINT "HELLO . WHAT ' S YOUR FIRST NAME" 
INPUT N$ 
PRI NT "HO WDY 1 " ;N$ 
PRINT 
PR INT "TELL ME .. . WH AT IS YOU R AGE IN YEARS" ; 
I NPUT A 

70 D = A * 365 .25 

The program is SAVEd as PROGRAM 2. 
A new LIST is requested. 

80 PRINT "WELL1 ";N$;" 1 YOU HAVE BEEN BREATHING" 
90 PRINT "FOR AT LEAST ";D;" DAYS!" 
92 REM === === ==== ==== = 
93 REM MODIFIC ATIO NS ADDED BELOW 
94 REM ======== == ===== 
96 H = D * 24 * 60 * 72 
97 PRINT "AND IN HEA RTBEATS1 THAT ' S" 
98 PRINT "ABOUT ";H ; " TOTAL THROBS!" 
98 
100 

PRINT " 
PRINT 

11 0 END 

WOW1 •;N$; "! " 
1"BYE- BYE, ";N$ 

In summary, we have the following commands: 

Command Ex~le 

NEW NEW 

RUN RUN 

RUN (filenam e) RUN PROGRAM 1 

LOAD (filename) LOAD PROGRAM 1 

LIST LIST 

Action 

Clears memory of 
statements. 

Executes statements in 
memory. 

LOADs program (filename) 
from the disk and RUNs it. 

LOADs program (filename) 
from the disk to memory. 

LISTs the entire program . 



Now 11!1/ It Where 10 Go and What 10 Do with It 

LIST nn 

LISTnn,mm 

SA VE (filename) 

DEL nn,mrn 

DELETE (filename) 

LIST 10 

LIST 10, 100 

SA VE PROGRAM l 

DEL 10,100 

DELETE PROGRAM l 

LISTS line nn. 

LISTs lines nn-mm, 
inclusive. 

SA VEs current program in 
memory on the disk as 
program (filename). 

DELetes lines nn-mm, 
inclusive. 

DELETES program 
(filename) from the disk. 

Note: In the RUN of the program, the value of H is expressed as 
1.64 7306 72E + 09. This is the method in which the system displays a value of 
1,647,306, 720. It is also the system's way of expressing scientific notation, that is, 
1.64 7306 72 x 109 

. This amounts to one billion, six hundred forty-seven million, 
three hundred and six thousand, seven hundred and twenty heartbeats! Tho' 
easily broken, 'tis still a powerful muscle! 

2.5 INCORPORATING THE NEW STATEMENTS 

The content design of any BASIC program is at the discretion of its author (pro­
grammer). The program can be as simple or as complex as the author desires. 
For example, BASIC may be used in trivial Fahrenheit-to-Celsius temperature 
conversions or in sophisticated modeling of population dynamics. The point is 
that a program does only what an author has designed it to d~nothing more 
or less. However, for any program, regardless of its simplicity or complexity, the 
author must first outline the design and "flow" of the program. On that note, 
the following program (PROGRAM 3) is designed only to illustrate a use of the 
statements discussed in this chapter. 

2.5.1 PROGRAM 3: Appropriate Responses 

The program will ask a question and give only one chance for a correct 
answer. "Appropriate" responses will be made for either a correct or incorrect 
answer. The program will then ask a final question related to age. The user will 
be informed if the answer is too low or too high. For answers that are too high, 
an additional comment will be randomly selected from three choices. The ques­
tion will be repeated until the correct answer is given. 

This is a general outline of what the program is designed to do. The BASIC 
statements needed to accomplish this are shown in the program listing. (Now, 
try to relax when you see the " long" listing of the program. Think about what 
each statement instructs the system to do and mentally follow its execution.) 25 



An Introduction to the BASIC Programming Language 

RUN from disk and refer to the listing and run of PROGRAM 3. 

JLDAD PROGRAM 3 
JLIST 

10 
2 0 
30 
ll 0 
50 
60 
70 
8 0 
90 
100 
110 
120 
130 

1 llO 
150 
160 
170 

REM PROGRAM 3 
REM =============== 
REM ASK SOME QUESTION 
REM GET AN ANSWER AND 
REM CHECK FOR ACCURAC Y 
REM =============== 
PRINT "WHAT STATE FOLLOWS ALASKA" 
PRINT "IN TOTAL LAND AREA"; 
INPUT R$ 

IF R$ = "TEXAS" THEN 130 
PRINT 1" NOPE1 IT 'S TE XAS!" 
GOTO 1 llO 
PRINT TAB< 3) i"YEEE-HAAA! 
IS CORRECT!" 
PRINT 
REM ==== =========== 
REM ASK ANOTHER QUESTION 
REM AND CHECK FOR HIGH DR 

YOUR ANSWER 

180 REM LOW ANSWER INPUT 
190 REM =============== 
200 
210 
220 
230 
2ll0 
250 
260 
270 
280 
290 
300 
310 
320 
330 
3ll0 
350 

PRINT "WHAT WAS THE PERPETUAL AGE" 
PRINT "OF THE LATE JACK BENNY"; 
INPUT R 
IF R < 39 THEN 290 
IF R > 39 THEN 320 
REM ===THEN INPUT EQUALS 39=== 
PRINT 
PRINT "DIDN'T LOOK IT1 DID HE. I. · 
GOTO ll90 
PR I NT I" TOO LOW I • I " 

REM ===REPEAT THE QUESTION=== 
GOTO 1 llO 
PRINT 1"TOO HIGH .. ," 
REM == === ========== 
REM GET A RANDOM COMMENT FDR 
REM AN Y ANSWER THAT I S HIGH 

360 REM THEN REPEAT THE QUESTION 
370 REM ======= ==== ==== 
380 X = I NT < 3 * RND < 1 l + 1 l 
390 ON X GOTO ll00 1ll201 llllO 

Statements 70 and 80 (the firs t executed 
statements) print the question. 

Statement 90 displays a question mark 
(note where it is displayed!), waits for 
input, and stores it in the string variable 
R$. (Note: From now on. reference to 
statements w ill sometimes be made by 
number only. That is, statement 100, fo r 
example. will simply be referred to as 
100.) 

I 00 checks for value of R$ equal to 
TEXAS. lf so, transfer to 130 occurs. If 
not, 110 is executed, and then 120 
causes transfer to 140 (skipping 130, the 
response for the correct answer). 

140 prints a blank line. 

200 and 210 print the next question. 

220 displays a "?"; waits for input; and 
stores it in variable R. 

230 checks for R less than 39. If so, 
transfer is to 290. lf not, execution 
continues to 240, which checks for R 

greater than 39. lf so. transfer is to 320. 
If not, 260 and 270 are executed. (230-
270 essentially say that if R is neither 
greater nor less than 39, then it must be 
equal to it.) 

290 (from 230, if R< 39) lets user know 
they are too low, and 31 O returns to the 
question ( 140). 

320 (from 240, if R> 39) lets user know 
they are too high. 

380 gives a random value fo r X between 
3 and I . inclusive. 

390 transfers execution to 400 if X = I , 
to 420 if X = 2, or to 440 if X = 3. 
These statements print an additional 
comment and return the execution to 
140 (by 410, 430, or 450). 



400 PRINT "NOW THAT IS OLD!" 
410 GOTO 140 
420 PRINT "ARE YOU TRYING TO BE CRUEL?" 
430 GOTO 140 
440 PRINT "HAVE YOU NO SYMPATHY?" 
450 GOTO 140 
480 REM =============== 
470 REM ENO THE PROGRAM 
480 REM =============== 
490 PRINT 
500 PRINT 
510 PRINT 1"BYE-BYE1 FRIENDS ••• " 
520 ENO 

JRUN 
WHAT STATE FOLLOWS ALASKA 
IN TOTAL LAND AREA?CALIFDRNIA 

NOPE, IT ' S TE XAS! 

WHAT WAS THE PERPETUAL AGE 
OF THE LATE JACK BENNY?33 

TDD LOW,,. 

WHAT WAS THE PERPETUAL AGE 
OF THE LATE JACK BENN Y? G9 

TOO HIGH ••• 
HAVE YOU NO SYMPATHY? 

WHAT WAS THE PERPETUAL AGE 
OF THE LATE JACK BENNY?BB 

TOO HIGH, •• 
NOW THAT IS OLD! 

WHAT WAS THE PERPETUAL AGE 
OF THE LATE JACK BENNY?55 

TDD HIGH .. • 
NOW THAT IS OLD! 

WHAT WAS THE PERPETUAL AGE 
OF THE LATE JACK BENN Y? 39 

DIDN'T LOOK IT, DID HE ••• 

BYE-BYE , FRIENDS. , , 

Now 'Jell It Where 1b Go and What 1b Do with It 

If R is neither less than nor greater than 
39 (see statements 230-270), 280 
transfers execution to 490 which prints 
a blank line, as does 500. A farewell is 
printed by 51 O and the program ends at 
520. 

27 



An Introduction to the BASIC Programming Language 

lRUN 
WHAT STATE FOLLOWS ALASKA 
IN TOTAL LAND AREA?TEXAS 

YEEE-HAAA! YOUR ANSWER IS CORRECT! 

WHAT WAS THE PERPETUAL AGE 
OF THE LATE JACK BENNY?39 

DIDN'T LOOK IT1 DID HE,,, 

28 

BYE-BYE1 FRIENDS,,, 

2.6 POSERS AND PROBLEMS 

1. What is the difference between the variables R and R$ in PRO­
GRAM 3? 

2. What would be the result if statement 390 in PROGRAM 3 read ON X 
GOTO 440,400,420? 

3. Modify statements 400, 420, and 440 in PROGRAM 3 to give comments 
of your choosing. 

4. What should be done to PROGRAM 3 so that it would ask for your age 
instead of Jack Benny's? 

5. What should be done to PROGRAM 3 in order to select a random 
comment from five choices instead of three? 

6. What changes should be made to PROGRAM 3 in order to ask for the 
third largest state by land area instead of the second? 

7. How should PROGRAM 3 be modified to ask for the user's first name 
at the start of the program and then refer to them by name when "BYE­
BYE ... " is executed in statement 51 O? 

8. Add some REM statements to PROGRAM l so that the variables are 
made clearer to someone looking at the listing of the program for the 
first time. 

9. Write a statement that will randomly give a value for variable X that is 
between 100 and 25, inclusive. 



Now 'Jell It Where 1b Go and What 1b Do with It 

10. What is the range of numbers that could randomly be generated by the 
statement: 

X = INTCZ5 * RNDC1l + 5) 

* 11. Write a program that asks for the user's height in inches and then prints 
"TALL" if the user is over six feet, " SHORT" if under five feet, or 
"AVERAGE" if between five and six feet, inclusive. 

* 12. Write a program that inputs the lengths of the sides of a triangle as 
variables A, B, and C (largest side last) and determines if it is a right 
triangle. [Hint: For right triangles, C. 2 = A . 2 + B . 2. The caret () 
is the Apple's way to "raise to the power of.")] 

* 13. Write a program that inputs a number and prints "THREE" if it is a 3, 
"SIX" if it is a 6, " NINE" if it is a 9, or "NEITHER 3, 6, nor 9" if it is 
not equal to either 3, 6, or 9. 

29 



30 

"Don't put off for tomorrow what you can do today, 
because if you enjoy it today you can do it again 

tomorrow." 
-Jam es A. Michener 

Tbink About Tb is ( for Fun} 

What is the exact opposite of not in? 

Tbink About Tbis (Serious[~} 

Is the use of computers in instruction just another "educational fad"? 



3.1 OBJECTIVES 

Take a RiJe on tbe 
Loop-D-Loop 

For the successful completion of this chapter, you should be able to: 

I . Define and give at least one example of each of the BASIC statements 
HOME, DATA-READ, RESTORE, and FOR-NEXT (Sections 3.2.1-3.2.4). 

2. Enter and RUN each of the BASIC programs used as statement examples 
in this chapter. 

cbapter 

3 

31 



An Introduction to the BASIC Programming Language 

32 

3.2 BASIC STATEMENTS FOR THIS CHAPTER 

3.2.1 Statement HOME 

Purpose HOME clears {erases) all display and "homes" the cursor in 
the upper left corner of the TV or monitor screen. This use is particularly appro­
priate in instructional computing since it allows information, examples, ques­
tions, and so on, to be displayed in a frame-by-frame fashion. 

Example: HOME 

3.2.2 Statement Pair DATA-READ 

Purpose DATA allows information {numeric or string) to be stored in 
a program for use at various stages throughout its execution. The pieces of infor­
mation are generally referred to as data elements, with each element separated 
(delimited) by a comma. READ assigns the defined value of a data element to a 
specified variable and "moves" a data "marker" or "pointer" to the next data 
element. The data type {numeric or string) must match the variable type {numeric 
or string) . For example, "ABC" cannot be assigned to a numeric variable. 

There are two important notes to be made in regard to the elements in the 
DATA statements : 

1. Never place a comma at the end of the DATA statement. The system may 
take the space character following the comma as the next data element! 

2. On the Apple system it is not actually necessary to enclose string ele­
ments in quotation marks. However, there are certain sequences of char­
acters that the system may misinterpret if the string is not enclosed in 
quotes. Therefore, as a safeguard, always enclose string DATA elements 
with quotation marks. It is worth the extra keystrokes required to do 
this in order to avoid any potential difficulties that may otherwise result. 

Example: 10 DATA 11 "AEIC" 12 
20 READ N 
30 PRINT N 
llO READ N$ 
50 PRINT N$ 
GO READ N 
70 PRINT N 
80 END 

Why did the value of the variable N change? If statement 

75 PRINT N$ 

were added, what would be the result of running the program again? 



Take a Ride on the Loop-D-Loop 

Example: 10 DATA 11"ABC" 12 t"DEF" 
20 READ N1N$1Nl 
30 PRINT N1N$1Nl 
40 READ N$ 
50 PRINT NliNiN$ 
60 END 

Why did the value of the variable N$ change? What caused the display format 
of PRINT statements 30 and 50 to be different? 

(After mentally tracing the program execution, enter and RUN the above 
examples to check your mental interpretations.) 

3.2.3 Statement RESTORE 

Purpose Moves the data pointer to the first data element in the first 
DATA statement. 

Example: 1 o X = o 
20 DATA 11"ABC" 12 1"DEF" 
30 READ N1N$1Nl 1Nl$ 
40 PRINT N1N$1Nl 1Nl$ 
50 IF X = 2 THEN 100 
60 x = x + 1 
70 PRINT "THE VALUE OF XIS "iX 
90 GOTO 30 
100 END 

Enter and RUN the above program and note what happens. Add the statement 
80 RESTORE and RUN again. Note the results. 

What is the position of the data pointer after statement 30 has been executed 
but before the RESTORE statement is added? What caused the error message in 
the first RUN? What caused the program to stop execution after the statement 
80 RESTORE was added? What would the program do if statements 50-70 were 
deleted (after 80 RESTORE was included in the program)? Think this through 
before RUNning; otherwise, remember that simultaneously depressing the CON­
TROL and C keys (CTRL-C) will halt the execution of a "runaway" program! 

Note: On many BASIC systems, statements such as 10 X = 0 (as in the 
program above, for example) are not needed because all variables are automat­
ically " initialized" (set) to zero. However, it is good programming practice to 
initialize variables to zero in any program. 

3.2.4 Statement Pair FOR-NEXT 

Purpose Defines the number of times (loops) a series of consecutive 
BASIC statements are to be repeated. FOR defines the variable used as a counter 
for the repeats and the lower and upper limits of the count. NEXT increases the 
variable count by 1 (or the defined STEP size) and checks to see if the upper 
limit of the FOR is exceeded. If not, execution is transferred to the statement J J 



An Introduction to the BASIC Programming Language 

34 

immediately following the FOR statement. If the upper limit is exceeded, exe­
cution is transferred to the statement immediately following the NEXT statement. 

The variable names in the loop defined by a FOR-NEXT must be identical. 
Note also that the start and/or limit of the loop may be defined by variable names, 
as in FOR X = Y TO Z. 

Examples: 10 FOR x = 1 TD 10 
20 PRINT XtX * x 
30 NEXT x 
40 PRINTt"THAT 'S ALL,,," 
50 END 

10 FOR x = 1 TD 10 STEP 2 
20 PRINT XtX*X*X 
30 PRINTt"MORE TD COME., , " 
40 NEXT x 
50 PRINTt"THAT'S ALL ••• " 
60 END 

10 A = 10 
20 6 = -10 
30 FOR c = A TD 6 STEP -2 
40 PRINT c; II " . ' 
50 NEXT c 
60 END 

(Mentally trace the execution, and then enter and RUN each program.) 

3.3 INCORPORATING THE NEW STATEMENTS 

With the addition of the statements in this chapter, a BASIC program may be 
designed that provides more of a utility than the earlier programs. One of the 
many uses of computer programs involves searching a list of information (com­
monly called a data base) for key elements that may be specified by a user. For 
example, data bases may be searched for financial accounts that are overdue by 
30, 60, or 90 days; address lists may be searched for ZIP codes; employee rolls 
may be searched for persons who have special deductions; and so on. The fol­
lowing program illustrates one search technique. 

3.3.1 PROGRAM 4: Searching for a Range of Values 

The program contains a list of DATA elements representing pairs of hypo­
thetical names and scores. This list is to be searched for scores that fall within a 
specified maximum and minimum range. A list of names and scores that are 
within this range is printed. Following this, the user is given an option to do 
another search. 



Take a Ride on rhe Loop-D-Loop 

What will this require as the program is mentally designed? In outline form, 
there must be at least: 

1. Prompts to·get the maximum and minimum scores (PRINTs). 

2. Entry of these scores (INPUTs). 

3. A loop (FOR) to: 
a. READ the DATA. 
b. Check (lF-THENs) to see if the current score read is the last data 

element in the list and, if not, to see if it is in the maximum-minimum 
range. 

c. Display (PRINT) the name and score if in the range. 
d. Continue the search (NEXT). 

4. A prompt for another search option (PRINT and INPUT). 

5. Movement of the data pointer back to the first data element if another 
search is to be done (RESTORE), followed by repetition of the total 
process (GOTO). 

6. A list of names and scores in the program (DATA). 

7. An end to the program (PRINT and END). 

RUN from disk and refer to the listing and run of PROGRAM 4. 

JLOAD PROGRAM LI 
JLIST 

10 REM =============== 
20 REM PROGRAM LI DESCRIPTION 
30 REM =============== 
LIO REM KEY SEARCH OF 50 OR LESS DATA ELEMENT 

PA IRS, 

Statements I 0-200 give a brief 
documentation of the program, describing 
its primary functions and listing 
important variables and their use. 

50 REM PROGRAM SEARCHES FOR A MINIMUM-MAXIM UM 
RANGE OF SCORES. 

60 REM DATA ELEMENTS ARE IN SEQUENCE: NAMEt 
SCORE. 

70 REM LAST SEQUENCE OF DATA ELEMENTS: "X" 10 
80 REM =============== 
90 REM VARIABLE DICTIONARY 
100 REM =============== 
110 REM N$ - HYPOTHETICAL NAME 
120 REM S - HYPOTHETICAL SCORE 
130 REM Ml - MAXIMUM SCORE 
140 REM M2 - MINIMUM SCORE 
150 REM I - LOOP COUNTER 
160 REM F - "FLAG" FOR FINDING AT LEAST ONE 

MATCH 35 



An Introduction to the BASIC Programming Language 

170 REM =============== 
180 REM SET THE MATCH FLAG TO ZERO, CLEAR 
190 REM THE SCREEN, AND GET THE RANGE SOUGHT. 
200 REM == ============= 
210 F = 0 
220 HOME 
230 PRINT " MAXIMUM SCORE"; 
240 INPUT Ml 
2SO PRINT "MINIMUM SCORE"; 
260 INPUT M2 
270 PRINT "NAMES WITH SCORES 

II i M2 i II - II i M 1 
280 PRINT "NAME" 1"SCORE" 
290 PRINT "--- - " 111

---- -
11 

300 REM == ============= 
310 REM DO THE SEARCH LOO P 
320 REM =============== 
330 FOR I = 1 TO SO 
340 READ N$ 1S 

IN 

3SO REM ===ENO OF DATA LIST?=== 
360 IF N$ = "X" THEN 460 
370 IF S > Ml THEN 420 
380 IF S < M2 THEN 420 
390 PRINT N$1S 

THE 

400 REM ===FLAG A SEARCH MATCH=== 
410 F = 1 
420 NEXT 
430 REM =============== 
440 REM END OF CURRENT SEARCH 
4SO REM == ======= ====== 

IF F = 1 THEN 480 
PRINT "***NONE FOUND***" 

RANGE : 

460 
470 
480 
490 
soo 
S10 
S20 
S30 
S40 
sso 
S60 

PRINT "DO YOU WISH ANOTHER SEARCH CY DR Nl" i 
INPUT 2$ 

S70 

580 

590 

600 
999 

IF 2$ < > "Y" THEN 1000 
RESTORE 
GOTO 2 10 
REM ===== === == ===== 
REM DATA LIST 
REM ========== ===== 
DATA "SUE" 167 1"BOB" 1SS 1"JACK" 198 111 MARY 11 1991 
"STAN" 1SO 1 "ROB" 172 
DATA "LETA" 1771"ALEX" 166 111 SUSAN 11 18S1 11 MARIA" 
199 111 FRAN"170 
DATA "BOBBIE" 1l001"CHARLES" 1641 11 BILLY" 1661 
"MAGGIE" 186 
DATA "DONNA" 1911" YANCY" 177 111 TRAC Y11 1891 
"KAREN" 1100 111 BUCK" 190 
REM ===ROOM FOR MORE DATA== = 
DATA " X" 10 

21 O initializes variable F to zero. (F is 
used as a " flag" to indicate if a search 
found any match: If a match is found, F 
is set to l ; otherwise, F remains 0.) 

220 clears the screen and HOMEs the 
cu~or at line 1, column 1 on the screen. 

230-260 obtain maximum and 
minimum range of scores desired by 
user. 

270-290 PRINT a heading for the list. 

330-420 define a FOR-NEXT loop. 

330 assigns 1 as loop counter, sets its 
intial value to I, and defines its upper 
limit as 50 (i.e., the loop will execute 
maximum 50 times). 

340 READs a DATA element pair from 
data list beginning at 560 and assigns 
values read to N$ and S, respectively. 
(The Mt time READ is executed, N$ has 
a value of SUE, S equals 67. Data 
pointer then moves to BOB in 
preparation for next READ.) 

360 checks value of N$. lf equal to the 
character X, execution transfers to 460. 
(X is arbitrarily defined as last "name" 
in data list. This lets program know 
when last data element pair has been 
read.) 

370-380 check S, the score just READ, 
to see if outside max-min range (greater 
than M l or less than M2). lf so, 
execution transfe~ to 420 where loop 
repeats if value (I + l) does not exceed 
defined upper limit of 50. 

lf S falls within range (neither greater 
than Ml nor less than M 2), 390 PRINTS 
current values of N$ and S. 

41 O sets flag F to 1, indicating a match 
found. 



1000 PRINT "*** SEARCH COMPLETED ***" 
101 0 END 

JLOAD PROGRAM 4 
JRUN 

[Clear screen] 

MAXIMUM SCDRE?100 
MINIMUM SCORE?90 
NAMES WITH SCORES IN THE RANGE: 80-100 
NAME SCORE 

JAC K 
MAR Y 
MARIA 
BOBBIE 
DONNA 
KAREN 
BUCK 
DD YOU WISH ANOTHER 

[Clear screen] 

MAXIMUM SCORE?89 
MINIMUM SCORE?80 

88 
88 
88 
100 
91 
100 
90 
SEARCH <Y OR Nl?Y 

NAMES WITH SCORES IN THE RANGE: 80-89 
NAME SCORE 

SUSAN 85 
MAGGIE 86 
TRACY 89 
DO YOU WISH ANOTHER SEARCH (Y OR Nl?Y 

[Clear screen] 

MAXIMUM SCORE?79 
MINIMUM SCORE?70 
NAMES WITH SCORES IN THE RANGE: 70-79 
NAME SCORE 

ROB 
LETA 

72 
77 

FRAN 70 
YANCY 77 
DD YOU WISH ANOTHER SEARCH CY OR Nl?Y 

[Clear screen] 

MA XIMUM SCORE?69 
MINIMUM SCORE?SO 

Take a Ride on the Loop-D-Loop 

420 repeats loop if not yet occurred 50 
times. 

460 can be executed from one of two 
sources: 360, if last data clement has 
been READ; or 420, if NEXT I exceeds 
limit defined in statement 330. 

460 checks value of F. If F = I 
(indicating a match), transfer is to 480. 
If F,;, I, no match was found. 470 then 
PRJNTs that message. 

480-500 give option for another search. 
lf INPUT value for ZS not equal to Y (for 
Yes), transfer is to 1000 and program 
ENDs. Otherwise, 510 RESTORES data 
pointer to first data element, and 520 
transfers execution back to 2 JO for 
another search. 

37 



An Introduction to the BASIC Programming Language 

NAMES WITH SCORES IN THE RANGE: 60-69 
NAME 

SUE 
ALEX 
CHARLES 
BILLY 

SCORE 

67 
66 
6ll 
66 

OD YOU WISH ANOTHER SEARCH CY OR Nl? Y 

[Clear screen] 

MAXIMUM SCORE?59 
MINIMUM SCORE?50 
NAMES WITH SCORES IN THE RANGE: 50-59 
NAME SCORE 

BOB 55 
STAN 50 
DO YOU WISH ANOTHER SEARCH CY OR Nl?Y 

[Clear screen) 

MAXIMUM SCORE?ll9 
MINIMUM SCORE?llO 
NAMES WITH SCORES IN THE RANGE: ll0-ll9 
NAME SCORE 

***NONE FOUND*** 
DO YOU WISH ANOTHER SEARCH CY OR Nl?N 
*** SEARCH COMPLETED *** 

38 

3.3.2 Additional Comments on PROGRAM 4 

DATA statements may be included anywhere in a BASIC program. They are 
not executed as, for example, a PRINT or INPUT statement would be. Their only 
use is to contain data (information) that is to be READ and assigned to variables. 
The DATA statements in PROGRAM 4 are placed near the end of the program 
so that additional DATA statements may be added if desired. The last data ele­
ment pair, " X" and 0, is given the highest number possible for a DATA statement 
(999 in this case) . Thus, additional DATA statements could be inserted between 
statements 600-999 if there were a need to add more data. 

3.4 A TIME-SAVING TECHNIQUE 

There may be times when the reader wishes to SAVE both the "old" and " new" 
versions of a program. The "new" (modified) version of a program may be 
SA VEd by simply giving it a new (unique) name when the SA VE command is 



Take a Ride on the Loop-D-Loop 

issued. We did this earlier in Chapter 2 when PROGRAM 1 was modified (with 
the heartbeats) and SA VEd as PROGRAM 2. 

To illustrate this technique, PROGRAM 4 will be modified, renamed, and 
SA VEd as PROGRAM 5. This means that both the old (PROGRAM 4) and the 
new (PROGRAM 5) programs will be available for future use. 

3.4.l PROGRAM 5: Searching for a Specific Value 

Arbitrarily, this new version of PROGRAM 4 will perform a search for only 
one user-specified score, listing all the names with that score. 

First, the LIST of PROGRAM 4 is studied. Examination of the list of state­
ments shows which lines need to be modified. These changes are then made, as 
indicated in the session that follows. 

The program is then RUN to test these modifications. On completion of a 
successful RUN, the program is SAVEd as PROGRAM 5. It is then listed for 
examination. Note that a new program (PROGRAM 5), based on another pro­
gram (PROGRAM 4) , has been created and SAVEd without the time and trouble 
required to completely type the new version. 

Run from disk and refer to the listing and run of PROGRAM 5. 

JLOAO PROGRAM a 
J20 REM PROGRAM 5 DESCRIPTION 

20 and 50 retyped in program 
description. 

JSO REM PROGRAM SEARCHES FOR A SPECIFIED 
SCORE. 

130 retyped to reflect program change. 

J 130 REM Ml - SCORE SOUGHT 

Hao 

J160 REM F - COUNTER FOR THE NUMBER OF MATCHES 
FOUND 

J230 PRINT "SCORE SOUGHT"; 

JOEL 2501260 

J270 PRINT "NAMES WITH A SCORE OF •;Ml 

]370 IF s <> M1 THEN a20 

J380 

Jaoo REM ===COUNT THE NUMBER OF MATCHES 
FOUND=== 

JalO F = F + 1 

Jaso PRINT "THIS SEARCH FOUND •;F;" MATCH<ESl" 

Ja70 PRINT 

140 is deleted (no longer needed) . 

160 retyped to reflect program change. 

230 retyped to reflect program change. 

250 and 260 deleted (not needed). 

270 retyped to reflect program change. 

370 retyped to perform check for match 
of score sought. 

380 is deleted (not needed). 

400 retyped to reflect program change. 

410 changed from flag to counter of 
matches found. 

460 and 470 changed to show number 
of matches found. 

39 



An Introduction to the BASIC Programming Language 

lRUN 

[Clear screen] 

SCORE SOUGHT? 100 
NAMES WITH A SCORE OF 100 
NAME SCORE 

BOBBIE 
KAREN 

100 
100 

THIS SEARCH FOUND 2 MATCHCESl 

DO YOU WISH ANOTHER SEARCH CY DR Nl?Y 

[Clear screen) 

SCORE SOUGHT?75 
NAMES WITH A SCORE OF 75 
NAME SCORE 

• THIS SEARCH FOUND 0 MATCH CES l 

DO YOU WISH ANOTHER SEARCH CY OR Nl ? Y 

[Clear screen] 

SCORE SOUGHT?50 
NAMES WITH A SCORE OF 50 
NAME SCORE 

STAN 50 
THIS SEARCH FOUND 1 MATCHCESl 

DO YOU WISH ANOTHE R SEARCH CY OR Nl?N 
*** SEARCH COMPLETED *** 

lSAVE PROGRAM 5 

l LI ST 

10 REM == ======== ==== = 
20 REM PROGRAM 5 DESCRIPTION 
30 REM ====== ======= == 
ao REM KEY SEARCH OF 50 DR LESS DATA 

PAIRS . 
ELEMENT 

50 REM PROGRAM SEARCHES FOR A SPECIFIED SCORE. 
60 REM DATA ELEMENTS ARE IN SEQUENCE: NAME I 

SCORE, 
70 REM LAST SEQUENCE OF DATA ELEMENTS IS "X" 10 



80 REM =============== 
90 REM VARIABLE DICTIONARY 
100 REM ===== == ======== 
110 REM NS - HYPOTHETICAL NAME 
120 REM S - HYPOTHETICAL SCORE 
130 REM Ml - SCORE SOUGHT 
150 REM I - LOOP COUNTER 
160 REM F - COUNTER FOR THE NUMBER OF MATCHES 

FOUND 
170 REM =============== 
180 REM 
190 REM 
200 REM 
210 F = 0 
220 HOME 

SET THE MATCH FLAG TO ZER01 CLEAR 
THE SCREEN, AND GET THE RANGE SOUGHT. 
=============== 

230 PRINT "SCORE SOUGHT"; 
2ll0 INPUT Ml 
270 PRINT "NAMES WITH A SCORE OF ";Ml 
280 PRINT "NAME" 1"SCORE " 
290 PRINT "----" 111

-----
11 

300 REM =============== 
310 REM DO THE SEARCH LOOP 
320 REM ===== ======== == 
330 FOR I = 1 TO SO 
3ll0 READ N$1S 
350 REM ===END OF DATA LIST? === 
360 IF N$ = "X" THEN ll60 
370 IF S < > Ml THEN ll20 
390 PRINT N$1S 
llOO REM ===COUNT THE NUMBER OF MATCHES 

FOUND === 
lll O F = F + 1 
ll20 NEXT I 
ll30 REM =============== 
llllO REM END OF CURRENT SEARCH 
llSO REM =============== 
ll60 PRINT "THIS SEARCH FOUND ";F;" MATCHCESl" 
ll70 PRINT 
ll80 PRINT "DO YOU WISH ANOTHER SEARCH <Y DR Nl "i 
ll90 INPUT ZS 
500 IF Z$ < > "Y" THEN 1000 
51 0 RESTORE 
520 GOTO 210 
530 REM =============== 
SllO REM DATA LIST 
550 REM =============== 
560 DATA "SUE 11 1671 11 BOB" 1SS1 11 JACK" 1881 11 MARY 11 

1991 11 STAN" 1S01"ROB" 172 
570 DATA "LETA " 1771 "ALEX" 1681 11 SUSAN 11 1851 

"MARIA"1991"FRAN" 170 

Take a Ride on the Loop-D-Loop 

41 



An Introduction to the BASIC Programming Language 

580 DATA "BOBBIE " 1100 111 CHARLES" 16LI 1"BILLY" 
166 ,"MAGGIE" 186 

590 DATA "DONNA " 191 •"YANCY"1771"TRACY" ,99, 
"KAREN" 1100 1" BUCK 11 190 

600 REM == =ROOM FDR MOR E DATA=== 
999 DA TA "X" 10 

1000 PRINT "*** SEARCH COMP LETED ***" 
101 0 END 

42 

3.5 POSERS AND PROBLEMS 

I . Correct any errors {if, in fact, there are any) in the following three programs: 

10 FOR X = 1 TD 10 
20 PRINT Y1Y*Y 
30 NEXT Y 
LIO END 

10 DATA 11"ABC" 12 
20 READ N 1N$ 1N U 
30 PRINT N 1N$ 1NU 
LIO END 

10 DATA LI , 5 16 
20 FDR X = 1 TD 3 
30 READ A 
LIO PRINT A 
50 NEXT X 
60 READ A 
70 PRINT A 
BO END 

2. Below are some student data for a name and test score. Complete the 
program so that the name and score are printed in columnar form. 

10 DATA "CHUC K" 1951"MARY" 1B01"PHIL" 195 1" JEANNIE" ,35 
20 FDR I = 1 TD LI 
30 READ S$1S 
?? 

3. Modify your program in Problem 2 to print the average of the scores 
after printing the list of names and scores. 

4. Write a search program in which a list of data elements consists of 
hypothetical names, hair color, eye color, and height in inches. A list is 
to be printed that shows the above information based upon a search of 
a user-specified eye color. For example, if BLUE is input in response to 



Take a Ride on the Loop-D-Loop 

"EYE COLOR?", the name, hair color, eye color, and height in inches 
for all blue-eyed people would be printed. The program should also give 
the option to conduct another search. 

Note: This program may be easily completed by modifying PRO­
GRAM 5. For example, PRINT statements describing the program and 
prompting for the eye color will have to be modified and/or added. The 
INPUT will have to be a string variable. The READ statement will need 
to read four DATA elements. The IF-THEN check will have to compare 
the INPUT variable and the eye-color variable just read. The PRINT state­
ment showing a match will have to be written so that four variable values 
are displayed on one line-consider using TAB between the variables 
in the PRINT statement. Finally, the DATA statements will have to con­
tain four elements (name, hair color, eye color, and height in inches). 

5. Enter and RUN the following program. Be prepared to discuss its flow. 

5 SPEED = 100 
10 FOR X = 10 TO 1 STEP - 1 
20 IF x > 1 THEN 50 
30 PRINT x; II 

LIO GOTO 55 
50 PRINT x; II 
55 PR I NT , 
60 FOR I 
70 PRINT 
BO NEXT 
90 PRINT 
100 NE XT X 
110 PRINT 

LITT LE RA88 IT. 

LITT LE RABBITS. 

= 1 TO x 
II* II• 

I 

I 

SEE ITSTAIL! 11 

SEE THEIR TAILS! 11 

120 PR I NT 11 ANO THEN THERE WERE NONE ••• " 
125 SPEED = 255 
130 END 

In particular, what is the purpose of "STEP -1" in statement 10, the 
comma in statement 55, the semicolon in statement 70, and the PRINT 
in statement 90? (Note: Statements 5 and 125 in the above program 
introduce SPEED which may be used either as a statement or command. 
It is used to control the rate of character display on the screen. Its value 
is relative and for our purposes may vary from 10 (very slow) to 255 
(normal rate) .] 

6. Write a program which converts Celsius to Fahrenheit and PRINTs an 
equivalence table for every 5 Celsius degrees from 0 to 100, inclusive. 
Hint: F = 32 + (C * 9/5). 

7. Write a program that will PRINT the cube of the numbers 1 to 10, 
inclusive. 43 



44 

"Frustration is not having anyone to blame but 
yourself." 

-Bits and Pieces 

"Work spares us from three great evils: boredom, vice 
and need." 
-Voltaire 

Tbjnk About Tbjs { for Fun J 

I have two U.S. coins that total $0.55. One of them is not a nickel. What are the 
coins? 

Tbjnk About Tbjs { Serjous[~ J 

Could the proliferation of microcomputers in the school and home alter the 
traditional classroom setting as we now know it? If so, how? 



DIM It! rbere Must Be an 
Easier Wal)! ArralJ ! ArralJ ! 

Tbere Is! 
4.1 OBJECTIVES 

For the successful completion of this chapter, you should be able to : 

1. Define and give at least one example of a subscripted variable (Section 
4.2.1). 

2. Define and give at least one example of both a one-dimensional and a 
two-dimensional array (Sections 4.2.l and 4.2.2) . 

3. Define and give at least one example of each of the BASIC statements 
DIM and GOSUB-RETURN (Section 4.4). 

4. Design, enter, and RUN a BASIC program of your own choosing that 
includes a one-dimensional array and the BASIC statements for this 
chapter. 

cbapter 

4 

45 



An Introduction to the BASIC Programming Language 

46 

4.2 ARRAYS 

4.2.1 One-Dimensional Arrays 
For our purposes, a one-dimensional array is just an organized list of infor­

mation. That information could be any string and/or numeric values: student 
names, states, chemical names, school districts, test scores, ages, weights, years, 
and so on. 

Recall the four names and test scores given in Problem 2 of Chapter 3. Using 
one-dimensional arrays in BASIC, we can easily make lists of those names and 
scores. 

Consider the BASIC statements needed. First, there is information (names 
and scores) that will be used; thus, there will be a need for DATA statements. Of 
course, if there is DATA, it will need to be READ. Also, since there are two sets 
of four elements (four names and four scores), a FOR-NEXT loop could be used 
to do the READing. Thus: 

10 DATA "C HUCK" t"MARY" t"PHI L" t"JEANNIE" 
20 FDR I = 1 TO a 
30 READ N$C i l 
ao NEXT I 

This should appear somewhat familiar, with the exception of statement 30, 
READ N$(1). N$(1) is an example of another type of variable. This type, however, 
uses an "internal" variable, (I), to distinguish one value of N$(1) from the others. 
Remember, the variable I is going to have a value that may be 1, 2, 3, or 4 (FOR 
I = 1 TO 4). Thus, the variable values in this example are: 

N$ C 1 l CHU CK 
N$(2l MARY 
N$C3l = PHIL 
N$<4l JE ANNIE 

Or, said another way, there is a 4-item list (one-dimensional array) of N$(I) 
values: 

I N$(I) 

1. CHUCK 

2. MARY 

3. PHIL 

4 . JEANNIE 

The name given to these types of variables is subscripted variables. The value 
of N$(1), pronounced "N$ sub l," is equal to the string CHUCK; the value of 
N$(2) is equal to the string MARY, and so on. 



DIM It! There Must Be an Easier Way! 

It is quite simple to build a series oflists using subscripted variables. Consider: 

10 DATA "CHUCK" 1951"MARY" 1801"PHIL" 195 111 JEANNIE" 135 
20 FOR I = 1 TO 4 
30 READ N$ (I) 18 (I) 
ao NEXT I 

If these statements were to be executed, what would be the value ofN$(3)? Of 
S(4)? If the following statements were added to those above, what would be the 
result of execution? 

50 FOR I = 4 TO 1 STEP -1 
60 PRil'H N$(I) 1S(I> 
70 NEXT I 
80 END 

(Mentally trace the execution; then enter and RUN to check your mental 
interpretation.) 

4.2.2 Two-Dimensional Arrays 

A one-dimensional array is nothing more than a list of data. A two-dimen­
sional array is a table of data in rows and columns. 

Assume there are two test scores for each of those students above. A table, 
consisting of 4 rows and 2 columns, might look like this: 

Name 

CHUCK 
MARY 
PHIL 
JEANNIE 

Test 1 

95 
80 
95 
35 

Test 2 

80 
82 
93 
98 

Note: The table in this example is composed of the test scores. The names of 
the students cannot be included in the table because they are string variables, 
and the two-dimensional array is defined as a numeric array. In other words, 
variable types (string and numeric) cannot be mixed in an array. However, just 
as it is possible to define a two-dimensional numeric array, a two-dimensional 
string array may also be defined. Just don't mix them! 

How could a two-dimensional array of this information be formed? Again, 
there is information (names and scores) that will be used; so DATA statements 
are appropriate. This information in statement form would be: 

10 DATA 11 CHUCK"195180 
20 DATA "MARY" 180182 
30 GATA "PHIL"195193 
40 DATA 11 JEANNIE 11 135198 47 



An Introduction to the BASIC Programming Language 

48 

(The DATA statements above could be combined into one or two statements. 
However, they are listed as four separate statements for the sake of clarity.) 

The difficulty is in determining how the DATA should be READ. Examine 
the sequence of information: one name, followed by 11vo scores; then the next 
name, followed by two scores; and so on. Since there are 4 rows (names) and 
each must be READ, the first loop to be defined will be FOR I = 1TO4. However, 
before the next name is READ, there are 2 scores to be assigned (READ) . So, 
another loop, FOR J = 1 TO 2, needs to be defined. Thus: 

50 FOR I = l TD LI 
GO READ N$(1) 
70 FOR J = l TD 2 
80 READ S <I tJ > 
90 NEX T J 
100 NEXT 

(Note: The indentation is for clarity only.) 
The variable I is READing the rows of the table, and the variable J is READing 

the columns. The J loop is said to be nested within the I loop. Examine the table 
above. What is the value of S(I,J) when I = 1 and J = 1? When I = 3 and J = 
2? The important point to remember is that I and J are nothing more than 
numbers that define a row and column, respectively. 

A more productive use of two-dimensional arrays may be illustrated by 
adding the following statements to the program: 

ll5 PR I NT "NAME" 1"TESTl 11 111 TEST2" 
llG PR I NT "----" 111

--- --
11 111

-----
11 

G5 PRINT N$( I) , 
81 PRINT S< I 1Jl' 
82 REM T<I > =CUMULATIVE TOTAL EACH STUDENT'S SCO RE 
Bll T<I> = T<I> + S ( l1J ) 
BG REM T = CUMULATIVE TOTAL OF ALL SCORES 
88 T = T + S <I1 J> 
9ll REM SKIP A LINE PRIOR TD PRINT OF NEXT NAME 
95 PRINT 
110 PR I NT 
120 FOR I = l TD LI 
130 PRINT N$(1);" 'S AVERAGE IS ";TCil/2 
lllO NEXT I 
150 PRINT "THE CLASS AVERAGE IS "; T/ 8 
lGO END 

Combine all the statements in this section into one program; then enter and RUN 
it. What is the purpose of the comma at the end of statements 65 and 81? Why 
is a blank PRINT needed in statement 95? Examine the LIST of the complete 
program very carefully and mentally follow the execution of each statement. 



DIM It! There Must Be an Easier Way! 

4.3 EXAMPLES OF THE USE OF ONE-DIMENSIONAL 
ARRAYS 

There are many more applications of one- and two-dimensional arrays in instruc­
tional computing than just building lists or tables of names and scores. The 
following two programs give examples of some of these uses. 

4.3.l PROGRAM 6: Searching Based on Optional Keys 

One use of one-dimensional arrays may be seen in PROGRAM 6, an expanded 
version of a search. In this program, a list of three prompts will be assigned to a 
one-dimensional array C$(C), where C = 1, 2, or 3. The appropriate prompt 
will be displayed, based upon the choice of search selected by the user. 

The program contains DATA representing names, hair color, eye color, and 
height in inches for ten hypothetical persons. The user of the program is given 
the choice of searching this DATA by hair color, eye color, or maximum height 
in inches. Following this option, a prompt is given for a key word upon which 
to base the search. A list of names, hair color, eye color, and height in inches 
matching the key word is displayed. The user is then given the option to do 
another search. 

This program is similar in concept to PROGRAMS 4 and 5 in Chapter 3 in 
which DATA is READ and IF-THEN statements are used to check for a match 
with a key word INPUT by the user. However, the program is expanded in a 
number of ways. Note the conunents alongside the program listing. 

RUN from disk and refer to the listing and run of PROGRAM 6. 

JLOAD PROGRAM 6 
JLIST 

10 REM == ==== === ====== 
20 REM PROGRAM 6 DES CR I PT ION 
30 REM == ============= 
40 REM "EXPANDED" SEARCH PROGRAM, 
50 REM ALLOWS SEARCH TO BE BASED 

KEYS . 
UPON OPTIONAL 

60 REM DATA CONTAI NS NAME, HAIR CDLDR1 EYE 
COLOR1 HEIGHT IN INCHES. 

70 REM LAST DATA ELEMENT SEQUENCE IS x ,x ,x ,x. 
80 REM ======== ===== == 
90 REM VARIABL E 0 ICTIDNARY 
100 REM == ============= 
110 REM c - SEARCH OPTION CHOICE 
120 REM C$( ) - PROMPT FOR SEARCH KEY WORD 
130 REM E$ - EYE COLOR 
140 REM F - COUNTER FOR THE NUMBER OF "FINDS" 49 



An Introduction to the BASIC Programming Language 

150 REM H$ - HAIR COLOR 
160 REM I - LOOP COUNTER 
170 REM I $ - HE I GHT IN INCHES 
180 REM N$ - NAME 
190 REM S$ - SEARCH KEY WORD 
200 REM ====== ===== ==== 
210 REM ASSIGN THE OPTIONS 
220 REM =============== 

C$Cll "HAIR COLOR" 230 
240 
250 
260 

C$12l = "EYE COLOR" 
C$C3l = "MAXIMUM HEIGHT IN INCHES" 

REM =============== 
270 REM CLEAR THE SCREEN AND 
280 REM PRINT THE OPTIONS 
290 REM =============== 
300 F = 0 
310 HOME 
320 PRINT "DD YOU WISH TO SEARCH BY:" 
330 FOR I = 
340 PRINT " 
350 NEX T I 

TO 3 
";I;" "; C$ CI l 

360 PRINT "ENTER THE NUMBER OF YOUR CHOICE"; 
370 INPUT C 
380 REM ===OUT OF RANGE CHECK=== 
390 IF C < 1 THEN 360 
aoo IF c > 3 THEN 360 

PRINT C$CC>; 
IN PUT S$ 
PRINT "*** SELECT ION LIST ***" 

ll 10 
420 
430 
aao 
450 
460 
470 

PRINT "NAME" 1"HAIR EYES HEIGHT" 
PRINT 11 ____ .. •"----

FOR I = 1 TO 50 
READ N$ 1H$ 1E$ 1 l$ 

480 IF N$ = "X" THEN 640 
490 REM =============== 
500 REM GO TO THE APPR OPRIATE 
510 REM LINE TO CHECK FOR MATCH 
520 REM OF OPTION SELECTED 
530 REM =============== 
540 ON C GOTO 55015701590 
550 IF S$ = H$ THEN 600 
560 GOTO 630 
570 IF S$ = E$ THEN 600 
580 GOTO 630 
590 IF S$ < I$ THEN 630 
GOO PR I NT N$1H$;" ";E$;" ";!$ 

------

610 REM ===COUNT THE NUMBER FOUND=== 
620 F = F + 1 
630 NEXT I 
640 PRINT 

" 

230-250 assign values to string variables 
CS(!) , CS(2), and CS(3). 

330-350 print search choices. 

370 assigns CNPUT choice (1, 2, or 3) to 
variable C. 

39G-400 ensure that value CNPUT is in 
range 1-3. 

410 displays appropriate prompt, based 
upon value of C (e.g., if choice is 2, C 
has value 2; so CS(C) is CS(2) , and 
"EYE COLOR" is printed at 410.) 

420 CNPUTs user's key word for search, 
assigning it to variable SS. 

540 transfers execution to appropriate 
lF-THEN statement for match checking. 
[E.g., if C = 2 (from choke made at 
370), transfer is to 570, where INPUT 

• variable SS is checked with ES, the eye 
color.] 

ln particular, note 590. BASIC allows 
comparison of string variables for " less 
than," "greater than," " not equal to," 
and so on. Just as a numeric value of 62 
is less than a numeric value of 63, the 
character "A" is less than "B" which is 
less than "C", and so on. 



650 PR I NT II TH Is SEARCH FOUND II ; F; II ENTRIES. II 

660 PRINT "DO ANOTHER <Y OR Nl"i 
670 INPUT Z$ 
680 IF Z$ < > "Y" THEN 1000 
690 RESTORE 
700 GOTO 300 
710 DATA "MA RY" 111 BLAC K" 1"GREEN 11 111 62" 111 BILL" 1 

" BROWN" 1"BROWN" 1"70 " 
720 DATA "SUE" 1"BLOND " 1"GREEN " 1"66" 111 BOB" 1 

11 BLACK 11 111 GREEN 11 111 72" 
730 DATA "JANE" •"BROWN" •"BROWN" 111 68 11 1"JACK" I 

"BLOND" 1"GREEN 11 111 74 " 
740 DATA "BETTY" 111 BLAC K" 1"BLACK" 1"66 11 111 FRED" 1 

"BLACK" 1"BROWN" 111 73 11 

750 DATA "FRANCES" 1"BLOND" 1"BRDWN 11 1"64 " 1"BUCK" , 
"BLOND" 111 GREEN 11 111 68 11 

760 REM === ROOM FOR MORE DATA === 
999 DATA "X " 1"X" 111 X11 1" X" 
1000 PRINT "*** SEARCH COMPLETED *** " 
101 0 END 

JRUN 

[Clear screen) 

DO YOU WISH TD SEARCH BY: 
1 HAIR COLOR 
2 EYE COLOR 
3 MA XIMUM HEIGHT IN INCHES 

ENTE R THE NUMBER OF YOUR CHOICE?l 
HAIR COLDR?BLDND 
*** SELECTION LI ST *** 
NAME HAIR EYES 

SUE BLOND GREE N 
JACK BLOND GREEN 
FRANCES BLOND BROWN 
BUCK BLOND GREEN 

THIS SEARCH FOUND 4 ENTRIES, 
DD ANOTHER <Y OR Nl ?Y 

[Clear screen) 

DO YOU WISH TD SEARCH BY: 
1 HAIR COLOR 
2 EYE COLOR 

HEIGHT 
------
66 
74 
64 
GB 

3 MA XIMUM HEIGHT IN INCHES 

DIM It! There Must Be an Easier Way! 

51 



An Introduction to the BASIC Programming Language 

ENTER THE ~UMBER OF YO UR CHOICE?S 
ENTER THE NUMBER OF YOUR CHOICE?O 
ENTER THE NUMBER OF YOUR CHOICE?2 
EYE COLOR?HAZEL 
*** SELECTION LIST *** 
NAME HAIR EYES 

THIS SEARCH FOUND 0 ENTRIES, 
DO ANOTHER <Y OR Nl?Y 

[Clear screen] 

DO YOU WISH TO SEARCH BY: 
1 HAIR COLOR 
2 EYE COLOR 

HEIGHT 

3 MAXIMUM HEIGHT IN INCHES 
ENTER THE NUMBER OF YOUR CHOICE?2 
EYE COLOR?BROWN 
*** SELECTION LIST *** 
NAME HAIR EYES 

BILL BROWN BROWN 
JANE BROWN BROWN 
FRED BLACK BROWN 
FRANCES BLOND BROWN 

THIS SEARCH FOUND ll ENTRIES. 
DO ANOTHER <Y OR Nl? Y 

[Clear screen] 

DO YOU WISH TO SEARCH BY: 
1 HAIR COLOR 
2 EYE COLOR 

HEIGHT 
--- ---
70 
69 
73 
64 

3 MAXIMUM HEIGHT IN INCHES 
ENTER THE NUMBER OF YOUR CHOICE?3 
MA XIMUM HEIGHT IN INCHES?66 
*** SELECTION LIST *** 
NAME HAIR EYES 

MAR Y BLAC K GREEN 
SUE BLOND GREEN 
BETTY BLACK BLACK 
FRANCES BLOND BROWN 

THIS SEARCH FOUND ll ENTRIES, 
DD ANOTHER <Y OR Nl?N 
*** SEARCH COMPLETED *** 

HEIGHT 
- -- ---
62 
66 
66 
Bll 



DIM It! There Must Be an Easier Way! 

4.3.2 PROGRAM 7: Random Selection from a List 

Another common use of one-dimensional arrays in instructional computing 
is in building lists of information for retrieval. These lists contain information, 
such as names, classification, and addresses; questions, answers, and hints for a 
given concept or topic; numerical data for analysis; and so on. Our next program 
illustrates one method of building lists and then randomly selecting items of 
information from them. 

The primary purpose of this program is to demonstrate building one-dimen­
sional string arrays (lists) and then randomly selecting from the lists. A user is 
given the option of making the length of the list from 3 to 15 elements. The lists, 
containing names and sex, are then made via INPUT statements. The user then 
has the option of selecting the number of names to be randomly selected from 
the list, with each randomly selected name appearing only once. This randomly 
selected list and the complete list of all names are printed. 

RUN from disk and refer to the listing and run of PROGRAM 7. 

JLOAO PROGRAM 7 
JLIST 

10 REM =============== 
20 REM PROGRAM 7 DESCRIPTION 
30 
LIO 
50 
60 
70 
80 
90 
100 
110 
120 

130 
1 llO 
150 
160 
170 
180 
190 
200 
210 
220 
230 
2ll0 
250 
260 

REM 
REM 
REM 
REM 
REM 
REM 
REM 

REM 
REM 
REM 
<VIA 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 

=============== 
PROGRAM DEMONSTRATES THE 
USE OF 1-DIMENSIDNAL STRING 
ARRAYS1 DIM STATEMENTS, 
AND RANDOM SELECTION 
WITHOUT REPETITION. 
=============== 

VARIABLE DICTIONARY 
=============== 
N - NUMBER OF NAMES IN A LIST 
INPUT> 
N$( l - HYPOTHETICAL NAMES 
S - NUMBER OF NAMES RANDOMLY 

SELECTED <VIA INPUT> 
S$ < > - SEX <MALE DR FEMALE) 
X - SOME RANDOM NUMBER 
Z< X> - FLAG FOR SELECTED 

RANDOM NUMBER 
IF Z< X> = o, NUMBER HAS 
NOT BEEN RANDOMLY SELECTED 
IF ZC X> = 1, NUMBER HAS BEEN 
SELECTED AND PRINTED 

DIMENSION THE VARIABLES. 
CLEAR THE SCREEN. 

270 REM GET SOME NAMES 

l 0-290 briefly describe the purpose of 
the program and the variables used. 

53 



An Introduct ion to the BASIC Programming Language 

280 REM AND SE X INPUT. 
290 REM =============== 
300 
31 0 
320 
330 
340 
350 
360 

DIM N$Cl5 l tS$ Cl5 l 1ZC15l 
HOME 
PRINT "HOW MAN Y NAMES DO YOU WISH TO ENTER" 
PRINT "CAT LEAST 3 BUT NO MORE THAN 15l" 
INPUT N 
IF N < 3 OR N > 15 THEN 320 
FOR I = 1 TO N 

370 REM 
380 Z <I l = 

===INITIALIZE THE FLAG=== 
0 

390 
400 
41 0 
420 
430 
440 
450 
460 

PR I NT "NAME NUMBER ";I; 
INPUT N$C l l 
PRINT "SEX CM OR F l "i 
INPUT S$C l l 
NE XT I 
PRINT "OF THE " iN;" NAMESt WHAT NUMBER " 
PRINT" DO YOU WISH TO RANDOMLY SELECT" i 
INPUT S 

470 REM ===ENOUGH AVAILABLE?=== 
480 IF S < = N THEN 510 
490 
500 
510 
520 
530 
540 
550 
560 
570 

PRINT "IMPOSSIBLE ! YOU ONLY ENTERED "iNi"!" 
GOTO ll40 
PRINT 
PRINT Si" RANDOMLY SELECTED NAMES:" 
PRINT "NUMBER" t "NAME" t"SE X" 
PRINT 
REM 
REM 
REM 

II 11 It II 0 II 
- - - --- t ---- t ---

=============== 
SELECT THE NAMES 
AT RANDOM 

580 REM =========== ==== 
590 FOR I = 1 TO S 
600 REM 
610 x = 
620 REM 

===GET A RANDOM X VALUE=== 
I NT < N * RND < 1 l + 1 l 

===HAS X APPEARED BEFORE?=== 
630 IF Z< X> = 0 THEN 660 
640 PR I NT II NUMBER II ; x ; II SELECTED AGAIN. II 

650 GOTO 610 
660 ZC Xl = 1 
670 PRINT XtN$C Xl tS$ CXl 
680 NE XT I 
690 PRINT 
700 PRINT "THE COMPLETE LIST IS:" 
710 
720 
730 
740 
750 
760 
770 

PRINT "NUMBER " t" NAME" t" SE X" 
PRINT "------" t"---- 11 t"--- 11 

FOR I = 1 TO N 
PRINT I 1N$C I l tS$ ( I l 
NE XT I 
PRINT "* * * DONE * * *" 
END 

300 DIMensions (Section 4.4.1) length 
of one-dimensional arrays (lists) to 
maximum of 15 elements. 

320-340 allow user to define number of 
elements in list. 

350 shows how one IF-THEN statement 
may be used to check for both minimum 
or maximum values. 

36o-430 request a name [assigned to 
NS(!)) and sex (assigned to S$(I)] for 
each list element. 

440-500 give user the option of defining 
number of random selections to be 
made from list just entered. 

510-540 print heading fo r lists of 
randomly selected items. 

590-680 print lists of randomly selected 
numbers, names, and sexes. 

590 defines S (number of names 
selected) to be upper limit of loop. 

610 assigns X some random value 
between 1 and N (number of names in 
complete list). 

630 checks value of Z(X). If Z(X) = 0 
[aJI values of Z(X) initialized to zero in 
380), random number represented by X 
not previously used; so transfer is to 
660, where Z(X) set to 1. If Z(X) = l, 
random value X appeared previously; 
640 then displays message illustrating 
that numbers may be randomly selected 
more than once. 650 then transfers 
execution to 610 where another random 
value is generated. 

670 prints values of X, N$(X), S$(X). 
Loop continues at 680 until completion. 

After randomly selected list is printed, 
700-760 print complete list of names 
and sex; program then ends. 



lRUN 

[Clear screen] 

HOW MANY NAMES DO YOU WISH TO ENTER 
<AT LEAST 3 BUT NO MORE THAN 15) 
?100 
HOW MANY NAMES DO YOU WISH TO ENTER 
<AT LEAST 3 BUT NO MORE THAN 15) 
?7 
NAME NUMBER l?FRANK 
SEX <M OR F>?M 
NAME NUMBER 2?FRAN 
SEX <M OR F>?F 
NAME NUMBER 3?BILL 
SEX <M OR F>?M 
NAME NUMBER 4?BARB 
SEX <M OR Fl?F 
NAME NUMBER 5?BUCK 
SEX <M OR F>?M 
NAME NUMBER S?PAM 
SEX <M OR F>?F 
NAME NUMBER 7?GH 
SEX <M OR F>?M 
OF THE 7 NAMES, WHAT NUMBER 

DO YOU WISH TO RANDOMLY SELECT?10 
IMPOSSIBLE! YOU ONLY ENTERED 7! 
OF THE 7 NAMES1 WHAT NUMBER 

DO YOU WISH TO RANDOMLY SELECT?4 

4 RANDOMLY SELECTED NAMES: 
NUMBER NAME SEX 

6 
4 
5 
7 

PAM 
BARB 
BUCK 
GH 

THE COMPLETE LIST IS: 
NUMBER NAME 

1 
2 
3 
4 
5 
6 
7 

* * * DONE * * * 

FRANK 
FRAN 
BILL 
BARB 
BUCK 
PAM 
GH 

F 
F 
M 
M 

SEX 

M 
F 
M 
F 
M 
F 
M 

DIM It! There Must Be an Easier Way! 

55 



An Introduction to the BASIC Programming Language 

56 

4.3.3 Use of a Flag for Nonrepetitive Random Selection 

In PROGRAM 7, all values for Z(X) are initialized to zero (statement 380) 
as the name and sex information is INPUT. A partial list of the information INPUT 
in the sample RUN of PROGRAM 7 would be: 

x N$(X) S$(X) Z(X) 

I Frank M 0 

2 Fran F 0 

3 Bill M 0 

4 Barb F 0 

If, for example, a random value for Xis 3 (statement 610), Z(3) is set to 1, 
and the list would now be: 

x N$(X) S$(X) Z(X) 

I Frank M 0 

2 Fran F 0 

3 Bill M I 

4 Barb F 0 

Since Z(3) is now equal to 1, any subsequent random value where Xis equal to 
3 would cause statements 630-650 to transfer execution back to statement 610, 
where another random value for X would be generated. Therefore, any randomly 
selected name in this program example will be displayed only one time. 

4.4 BASIC STATEMENTS FOR TIIlS CHAPTER 

4.4.1 Statement DIM 

Purpose DIMensions (defines the size needed) for one-dimensional 
and two-dimensional arrays. On most BASIC systems, it is not necessary to use 
the DIM statement unless the array will contain more than ten elements. Most 
systems automatically allocate space for ten or less elements. However, it is good 



DIM It! There Must Be an Easier Way! 

programming practice to DIMension all arrays, even those containing ten or less 
elements. 

Examples: DIM N$< 12> 

(Dimensions space for a list of 12 string variables.) 

DIM S(2013l 

(Dimensions space for a 20-row, 3-column table containing numeric data.} 

4.4.2 Statement Pair GOSUB-RETURN 

Purpose This statement pair is very useful for programs in which a 
sequence of statements is repeated several times throughout program execution. 
Whenever GOSUB is encountered, program execution is transferred to the state­
ment number specified in the GOSUB. Execution continues from that statement 
until the RETURN statement is encountered. Execution is then transferred 
(RETURNed} to the statement number immediately following the GOSUB state­
ment that caused the transfer in the first place. 

A typical example in instructional computing would be an answer-checking 
sequence for student input in a program containing several questions. Rather 
than writing an identical answer-checking sequence for each question, it is writ­
ten only once as a subroutine. GOSUB may then be used after each question to 
check the answer. 

Example: 10 PRINT "CAP ITAL OF TE XAS"i 
20 A$ = "AUSTIN" 
30 GO SUB 200 
LIO PRINT "X MARKS 
50 A$ = "SPOT" 
60 GO SUB 200 
70 GOTO 300 
200 INPUT R$ 

THE --?-- 11; 

210 IF R$ = A$ THEN 2ll0 
220 PRINT "NOPE ••• IT'S II iA$ 
230 GOTO 250 
2ll0 PRINT "OHHH1 MARVELOUS!" 
250 RETURN 
300 PRINT1"BYE-BYE,,," 
310 END 

Mentally execute this program before entering and RUNning it. Why is statement 
70 needed? 

4.4.3 PROGRAM 8: Question Sets and Hints, Using 
GOSUB-RETURN Statements 

The following program illustrates the use of GOSUB-RETURN in a "muscle 
quiz." Note that alternate correct answers are used, note how the questions, 
additional hints, and answers are assigned and presented, and note that credit is 57 



An Introduction to the BASIC Programming Language 

given for only those answers that are correct on the first try. Mentally outline 
the execution of this program carefully: Unlike previous programs, PROGRAM 
8 does not have explanatory comments accompanying it. 

RUN from disk and refer to the listing and run of PROGRAM 8. 

JLOAD PROGRAM 8 
]LIST 

10 REM 
20 REM 
30 REM 
LIO REM 
50 REM 
BO REM 
70 REM 
80 REM 
90 REM 
100 REM 
110 REM 
120 REM 
130 REM 
lllO REM 
150 REM 
160 REM 
170 REM 
180 HOME 

========== == === 
PROGRAM 8 DESCRIPTION 

======== === ==== 
PROGRAM DEMONSTRATES THE USE OF 
GOSUB-RETURN1 CHECKING FOR 
SYNONYMOUS CORRECT ANSWERS1 AND 
THE USE OF ON-GOTO FDR HINTS. 
======== ==== === 
VARIABLE DICTIONARY 

=============== 
C - CORRECT ANSWER COUNTER 
C$ - SYNON. CORRECT ANSWER 
0$ - SYNON. CORRECT ANSWER 
E$ - SYNON. CORRECT ANSWER 
F - FLAG FOR MISS ON 1ST TRY 
X - QUESTION NUMBER COUNTER 
=============== 

190 
200 
210 
220 

PRINT II 

PRINT 
M U S C L E Q U I Z" 

REM === === ========= 
REM 

230 REM 
2ll0 REM 
250 REM 

PRINT THE QUESTION, DEFINE 
THE QUESTION NUMBER AND THE 
ANTICIPATED CORRECT ANSWERS. THEN 
GO TO THE SUBROUTINE FOR INPUT. 

260 REM === === ====== == = 
270 REM 
280 PRINT "WHAT IS THE LARGEST MUSCLE" 
290 PRINT" IN THE HUMAN BODY"; 
300 x = 1 
310 C$ "GLUTEUS MAXIMUS" 
320 0$ = "BUTTOCKS" 
330 E$ = "DERRIERE" 
3ll0 GOSUB 5000 
350 REM =============== 
360 REM REPEAT THE QUESTION AND 
370 REM ANSWER SEQUENCE AGAIN 
380 REM =============== 



390 PRINT "WHAT MUSCLE IS CONSIDERED BY SOME" 
400 PRINT " TO HAVE AN ORIGIN" 
410 PRINT "BUT NO INSERTION •; 
420 x = 2 
430 REM ===ON LY ONE ANSWER= == 
440 C$ = "TONGUE " 
450 D$ = C$ 
460 E$ = C$ 
470 GOSUB 5000 
480 REM ==== ===== ====== 
490 REM REPEAT THE PROCESS 
500 REM FOR A FINAL QUESTION 
510 REM =============== 
520 PRINT "WHAT MUSCLE HAS MADE MARK EDEN RICH1 " 
530 PRINT " OLD MEN LEER" 
540 PRINT "AND WEIGHT LIFTERS STRUT•; 
550 x = 3 
560 C$ " PECTORAL" 
570 D$ = "PECTORALIS MAJDRA" 
580 E$ = "PECTORALS " 
590 GOSUB 5000 
600 REM ==== ===== ====== 
61 0 REM THE RE' S PLENTY OF ROOM 
620 REM TO ADD MORE QUESTIONS AND 
630 REM ANSW ERS FOLLOWING THE SAME 
640 REM SEQUENCE AS ABOVE. 
650 REM HINTS WOULD NEED TO BE 
660 REM ADDED TO THE SUBROUTINE. 
670 REM ========= ====== 
680 REM 
690 REM 
700 REM 
7 10 REM 
720 REM 
730 RE M 
740 REM 

==::::::====== == ==== 
STATEMENT 4990 IS NEEDED 
TO SKIP THE SUBROUTINE 1 
GI VE THE PERFORMANCE SCORE1 
AND END THE PROGRAM. 
========= === === 

4990 GOTO 5270 
5000 INPUT A$ 
50 10 IF A$ = C$ THEN 5200 
5020 IF A$ = D$ THEN 5200 
5030 IF A$ = E$ THEN 5200 
5040 REM === MISSED BEFORE? CF=1>=== 
5050 IF F = 1 THEN 5 170 
5060 F = 1 
5070 REM === GIVE HINT FOR QUEST 1 t2t OR 3 === 
5080 ON X GOTO 509015 12015140 
5090 PRINT "SOME AUTHORITIES SA Y WOMEN FIRST 

NOTICE" 
5 100 PRINT "TH IS ,,, NOW TRY AGAIN •• . • 

DIM It! There Must Be an Easier Way! 

59 



An Introduction to the BASIC Programming Language 

5110 GOTO 5000 
5120 PRINT "ON SOME1 IT WAGS ALOT . NOW TR Y ••• " 
5130 GOTO 5000 
5140 PRINT " PALM-TO-PALM PRESSURE DEVELOPS THIS" 
5150 PRINT "MUSCLE . TRY IT AGA IN,,," 
5160 GOTO 5000 
5170 PRINT "A CORRECT ANSWER IS "iC$ 
5180 GOTO 5240 
5190 REM ===NO CREDIT GIVEN IF MISSED 1ST TR Y=== 
5200 IF F = 1 THEN 5220 
5210 c = c + 1 
5220 PRINT "O.K." 
5230 REM ===SET F TO ZERO BEFORE NEXT QUESTION=== 
5240 F = 0 
5250 PRINT 
5260 RETURN 
5270 PRINT 
5280 PRINT "Y OU GOT "iCi" CORRECT ON THE FIRST TRY." 
5290 PRINT 1"THAT'S ALL ... " 
5300 END 

JRUN 

[Clear screen] 

M U S C L E Q U I Z 

WHAT IS THE LARGEST MUSCLE 
IN THE HUMAN BOD Y ?HEAD 

SOME AUTHORITIES SA Y WOMEN FIRST NOTICE 
THIS,,. NOW TRY AGAIN,., 
?B ICEPS 
A CORRECT ANSWER IS GLUTEUS MAXIMUS 

WHAT MUSCLE IS CON SI DERED BY SOME 
TO HAVE AN ORIGIN 

BUT NO INSERTION ?BICEPS 
ON SOME1 IT WAGS ALOT. NOW TRY ••• 
? TAIL 
A CORRECT ANSWER IS TONGUE 

WHAT MUSCLE HAS MADE MARK EDEN RICH 1 
OLD MEN LEER 

ANO WEIGHT LIFTERS STRUT ?CHEST 
PALM- TO-PALM PRESSURE DEVELOPS THIS 
MUSCLE. TRY IT AGAIN ••• 
?PECTORALS 
O. K. 

YOU GOT 0 CORRECT ON THE FIRST TR Y. 
THAT'S ALL •• , 



DIM It! There Must Be an Easier Wayt 

JRUN 

[Clear screen] 

M U S C L E Q U I Z 

WHAT IS THE LARGEST MUSCLE 
IN THE HUMAN BODY ?GLUTEUS BIGGEST 

SOME AUTHORITIES SAY WOMEN FIRST NOTICE 
THIS,,, NOW TRY AGAIN,,, 
?GLUTEUS MAXIMUS 
O,K, 

WHAT MUSCLE IS CONSIDERED BY SOME 
TO HAVE AN ORIGIN 

BUT NO INSERTION ?TONGUE 
O,K , 

WHAT MUSCLE HAS MADE MARK EDEN RICH1 
OLD MEN LEER 

AND WEIGHT LIFTERS STRUT ?PECTORALIS MAJORA 
O,K, 

YOU GOT 2 CORRECT ON THE FIRST TRY. 
THAT ' S ALL .. , 

4.5 POSERS AND PROBLEMS 

1. Assume you have a class of 20 students and the semester test average 
and final exam scores for each. Outline the BASIC statements that would 
make a series of lists of this information. 

2. Outline the BASIC statements that will read 3 scores for each of 25 
students into a two-dimensional array. 

3. Write a brief paragraph outlining the execution of the program consisting 
of the combined statements of Section 4.2 .2. 

4. Describe what would result from execution of the following BASIC 
statements: 

10 DATA "TEXAS" 1"DKLAHOMA 11 1"KANSAS 11 111 NEVADA" 1"UTAH" 
20 FOR I = 1 TD 5 
30 READ S$CI ) 
£10 NE XT I 
50 FOR K = 1 TO 3 
60 X = INTCS*RNDC1)+1) 
70 PRINT S$C X> 
80 NEXT K 
90 END 61 



An Introduction to the BASIC Programming Language 

62 

5. How would adding the following statements affect the execution of the 
program in Problem 4? 

3ll Z < I > = 0 
6ll IF Z<X> = 1 THEN 60 
66 z ( x) = 1 

6. Describe the execution of the program in Problem 5 if statement 50 is 
changed to 

50 FOR K = 1 TO 6 

Think this through carefully before entering and RUNning. Remember, 
CTRL-C (CONTROL and C keys depressed simultaneously) will halt a 
runaway program! 

7. How would you modify the program in Section 4.4.2 to print a hint as 
a response for the first miss and give the correct answer on the second 
miss? [Hint: One way to do this is shown in PROGRAM 8. Another way 
is to assign the hint to, say, H$ and use an IF-THEN (IF F = 1 THEN ... ) 
to either give the hint (F = 0) or the correct answer (F = 1).) 

8. Write a program that creates five random sentences from lists of subjects, 
verbs, and objects. 

9. Write a program to choose and print four random numbers between 1 
and 10 without repeating any number that has been printed. 



64 

"'Tis an old tale, and often told." 
-Walter Scott 

''And look before you, ere you leap; 
For as you sow, y' are like to reap." 

-Samuel Butler 

Tbink About Tb is ( for Fun J 

Four men are on a raft in the middle of the ocean. Each has one carton of 
cigarettes but no means whatsoever of lighting them. The smartest of the four, 
however, devotes his full mental prowess to the problem and, within minutes, 
all are smoking a cigarette. How was this accomplished? 

Tbink About Tbis (Serious[~ J 

Could the role of the teacher change as computers become common in our 
schools? If so, how do you see this new role? 



Relax anJ Catcb Your 
BASIC Breatb 

5.1 OBJECTIVES 

For the successful completion of this chapter, you should be able to: 

Design, enter and RUN a minimum of three short programs using the 
BASIC statements summarized below. 

5.2 BASIC STATEMENTS: A SUMMARY AND SOME 
TYPICAL USES 

As an examination of any BASIC text or manual will show, there is more to the 
language than has been discussed so far. To this point, there has been presented 

cbapter 

5 

65 



An Introduction to the BASIC Programming Language 

66 

nothing more than just a brief introduction to the basics of BASIC. Although 
there is much more (some of which will be presented in later chapters), the 
statements and commands discussed to this point do provide a foundation for 
instructional computing applications. 

This chapter summarizes these statements and provides a very general out­
line for their use in designing application programs. This summary must be gen­
eral in illustrating applications since, as in any writing endeavor (programming 
or otherwise), the author's creativity is the limiting factor. The BASIC statements 
provide only the means by which programs can be constructed. The content, 
design strategies, effectiveness, and applicability of programs are the end result 
of creativity. Programs can only be as good-or as bad-as this factor. 

Note: Many of the following examples are actually program fragments that 
may be referenced for future program development. 

5.2.1 PRINT 

Displays (outputs) information 

Some typical uses 

Output text 

Text + numeric variable 

Text + string variable 

Numeric with spacing 

String (close-packed) 

5.2.2 LET 

Assignment of a value to a variable 

Some typical uses 

Counters 

Assigning correct answers 

Assigning hints 

Computation 

Example 

PRINT "WHAT ' S YOUR NAME"; 
PRINT "SCORE IS ";Si" PERCENT" 
PRINT "HELLO, ";N$i"I" 
PRINT A1B1C 
PRINT N$iS$;A$ 

Example 

c = c + 

A$ = "AUSTIN" 
A = Y * Z 

H$=" 'R IVER CITY'" 
s = c * 100/Q 



Relax and Catch Your BASIC Breath 

5.2.3 INPUT 

Receives information (input) f rom keyboard and assigns to defined variables 

Some typical uses Example 

Numeric input INPUT N 

Suing input INPUT N$ 

Combinations INPUT N$1N 
INPUT X1Y1Z 

5.2.4 GOTO 

Unconditional branch (transfer of execution) to a specified statement number 

Some typical uses Example 

Shlpping statements 100 GOTO 130 
11 0 PRINT "VERY GODO!" 
120 c = c + 1 
130 PRINT "NEXT QUESTION •• ," 

Returnjng for input 100 INPUT R 

150 PRINT "NO I TR Y AGAIN ••• " 
160 GOTO 100 

(Note: The : denotes omitted program segments.) 

5.2.5 IF-THEN 

Conditional branch to specified statement number if the defined condition is true 

Some typical uses 

Answer chechlng 

Example 

100 IF R$=A$ THEN 130 
11 0 PRINT "N01 THE ANSWER IS " ;A$ 
120 GOTO 140 
130 PR I NT "GODO SHOW! " conrinutd 67 



An Introduction to the BASIC Programming Language 

68 

Determining the 
sequence of execution 

14 0 IF F = 1 THEN 160 
150 c = c + 1 
160 PRINT II NE XT QUESTION.••" 

100 IF R < 40 THEN 140 
11 0 IF R > 40 THEN 160 

14 0 PRINT "TOO LOW ••• II 

160 PR INT "TOO HIGH ... " 

100 IF F = 1 THEN 200 
11 0 F = 1 
120 PRINT "HERE 'S A HINT •• , " 

200 PRINT "THE CORRECT ANSWER IS ";A 

100 IF A$ = "STOP" THEN 800 

800 PRINT "HERE'S YOUR SCORE ••• " 

5.2.6 ON-GOTO 

Branch to a specified statement, based on the value of a defined variable or expression 

Some typical uses Example 

Branch to a randomly 
selected question 

100 X = I NT < 5 * RND C 1 l + 1 l 

150 ON X GOTO 200130014001500 1600 

200 PRINT "QUESTION 1, . ," 

300 PRINT "QUESTION 2, ,," 



Branch to a hint for 
a given question 

100 PRINT "QUESTION 1,.," 
11 0 Q = 1 

500 INPUT R$ 

550 PRINT "HERE 'S A HINT,,," 
560 ON Q GOTO 70018001900 

700 PRINT "HINT FDR QUES TION 1. ,," 
710 GOTO 50 0 

5.2.7 DATA-READ (Statement pair) 

Stores and assigns (READs) information to a defined variable 

Some typical uses Example 

Assignmentofquestion 100 REM*** Q$=QUES A$=ANS H$=HINT 

Relax and Catch Your BASIC Breach 

answer and hint 110 DATA "TEXAS" 1"AUSTIN" ,"RIVER CITY" 

200 READ Q$1A$1H$ 

Assignment of numerical 100 DATA 90 176 ,55 170 188 ,93 
information 

150 READ 5 11S2 153 
1 GO T = T + S 1 + 52 + 53 

200 READ 51152153 69 



An Introduction to the BASIC Progra_mming Language 

70 

5.2.8 FOR-NEXT (Statement pair) 

Repeats (loops) statement sequence between the FOR and the NEXT a defined number of times 

Some typical uses Example 

Assigning data to arrays 200 PRINT "NUMBER OF SCORES"i 
210 INPUT N 
220 FOR I = 1 TO N 
230 PRINT "SCDRE"i 
240 INPUT S < I l 
250 T = T + S <I l 
260 NE XT I 
270 A = TI N 
280 PRINT "AVERAGE SCORE IS II iA 

100 DATA "OUES 1" , "ANS 1" 1"HINT 
110 DATA " OUES 2", "ANS 2" 1"HINT 

200 FDR I = 1 TO 10 
210 READ 0$ <I l 1A$ <I l 1H$ <I l 
220 NEXT I 

Checking response to match 
any defined answer 

Defining the number of 
questions to be asked 

200 FOR I = 1 TO 10 
2 10 IF R$ = A$(!) THEN 2ao 
220 NE XT I 
230 GOTO 500 
2ao PRINT "MATCHES ANS NO. "iI 

1 II 
2" 

100 PRINT "HO W MAN Y DD YOU WANT"i 
110 INPUT p 

120 IF p < 26 THEN 150 
130 PRINT "THAT 'S TOO MANY!" 
140 GOTO 100 
150 FOR I = 1 TO p 

160 PRINT "PROBLEM NUMBER "i p 

3 00 NE XT I 



Relax and Catch lVur BASIC Breath 

5.2.9 GOSUB-RETURN (Statement pair) 

GOes to the statement number defining the SUBroutine, executes the statements in sequence 
until RETURN is executed, and then returns to the statements following the GOS VB 

Some typical uses 

Answer-checking 
sequence 

Example 

100 PRINT "QUESTION 1 •• • II 
105 A$ = "ANSWER 1" 
11 0 GOSU6 2000 
120 PRI NT "QUESTION 2 .. , " 
125 A$ = "ANSWER 2" 
130 GO SU6 2000 

2000 INPUT R$ 
20 10 IF R$ = A$ THEN 2080 

2080 c = c + 1 
2090 PRINT "HOT-DOGGIES ! " 
21 00 RETUR N 

Generating random numbers : . 
100 GOSU6 500 
11 0 PRINT "IF MASS= " ; X;" ANO" 
120 PRINT "VOLUME = "; Y; ", DENSIT Y 
130 IN PUT R 
140 I F R = Z THEN 200 

500 X I NT ! 1000 * RNO ! ll + l l/ 100 
51 0 Y INT !500 * RN0 ( 1l + l l/ 10 
520 Z = X/Y 
530 RETURN 

- II • 
- I 

71 



An Introduction to the BASIC Programming Language 

72 

Generating random 
responses 

10 DATA "GDDD"1"GREAT" 1"WDW" 
20 FOR I = 1 TO 3 
30 READ R$(l) 
ao NE XT I 

500 GOSUB 750 

750 X = INTC3 * RNDCll + ll 
760 PR I NT R$ < X l ; " ! " 
770 RETURN 

5.3 A SUMMARY OF THE PURPOSES OF BASIC 
STATEMENTS 

Although there is much more to the BASIC language, the statements summarized 
in this chapter are, nonetheless, the fundamental statements used in constructing 
instructional computing programs. In essence, these statements form the foun­
dation upon which a program author has : 

1. Some means of assigning and/or displaying values. 

2. Some means of controlling the sequence of execution. 

3. Some means of easing repetitious tasks. 

Thus, most of the BASIC statements discussed to this point may be further 
summarized into three categories: 

Assignment Control Repetition 

PRINT GOTO FOR-NEXT 

LET IF-THEN GOSUB-RETURN 

INPUT ON-GOTO 

DATA-READ 

This further generalization can be helpful in the initial design stages of pro­
gram development. Once the category for a particular design task is identified, 
it becomes a matter of selecting the appropriate statements and defining their 
sequence of execution. 



Relax and Catch Your BASIC Breath 

5.4 POSERS AND PROBLEMS 

I. Assume a program is to be designed that gives credit for a correct answer 
only ifit is answered correctly on the first attempt. Outline the statements 
needed to accomplish this. 

2 . Assume a program is to be designed that gives a hint on the first miss 
and the correct answer on the second miss. Outline the statements needed 
to accomplish this. 

3. Assume 5 questions are to be randomly selected from a one-dimensional 
array containing l 0 questions without repetition of any question during 
a given RUN. Outline the statements needed to accomplish this. (Hint: 
See Problems 4 and 5 in Chapter 4.) 

4. Assume a program is to be designed that: 

1. Stores 15 questions, 15 answers, 15 hints, 3 positive responses, and 
3 negative responses in one-dimensional arrays. 

2. Will ask a total of 8 questions. 

3. Will randomly select each question. 

4. Will not repeat any question. 

5. Will give a random positive response if correct. 

6. Will give a random negative response and an appropriate hint for the 
first miss. 

7. Will give the correct answer on the second miss. 

8. Will give the number of correct answers at the conclusion of the 
interaction. 

Outline the statements needed to accomplish each of the above steps. 

73 



74 

"The opportunities of man are limited only by his 
imagination. But so few have imagination that there 

are ten thousand fiddlers to one composer." 
-Charles F. Kettering 

"The most beaten paths are certainly the surest; but do 
not hope to scare up much game on them." 

-Andre Gide 

Tb ink About Tb is ( for Fun J 

"All that glitters is not gold." 
-William Shakespeare 

Read this sentence slowly: "Finished files are the result of years of scientific study 
combined with the experience of years." Now, once and only once, count out 
loud the F's (and f 's) in that sentence. How many are there? 

Tbink About Tbis (Serious[~ J 

Should at least one course in "Computer Literacy" be requ ired for teacher cer­
tification in any area? 



sbow and Teff 

6.1 OBJECTIVES 

For the successful completion of this chapter, you should be able to: 

I. Describe the purpose or application of instructional computing programs 
that are: 
a. problem solvers 
b. drill and practice 
c. tutorial (dialog) 
d. simulation 
e. testing 
(Sections 6.3-6.7). 

2. Describe in outline form the sequence of execution for each of the exam­
ple programs or program fragments in this chapter. 

c&apter 

6 

75 



An Introduction to the BASIC Programming Language 

76 

6.2 SOME EXAMPLE PROGRAMS AND 
PROGRAMMING STRATEGIES 

One of the important factors determining the success or failure of a given human 
endeavor is the amount of imagination (originality, creativity, innovation, etc.) 
that goes into it. This applies not only to education in general and the instruc­
tional process in particular but also to the use of computers in instruction (in 
general) and the successful design and development of instructional computing 
programs (in particular) . 

In Chapter 8, specific steps will be discussed in which imagination will have 
an opportunity to spring forth. Before these steps are discussed, however, exam­
ine a few sample programs and program fragments that give an introduction to 
strategies and techniques for five methods in which instructional computing may 
be applied. 

As these programs are examined, please keep in mind the quotations at the 
beginning of this chapter. These example programs are limited-by imagination 
and space. They are not meant to be the "well-beaten path" for those who choose 
to follow one. Also, they are certainly not meant to reflect the "gold" of instruc­
tional computing applications. However, they might plant an "imaginative seed" 
to allow one to reach heights of greater glory and reward in developing instruc­
tional computing programs. 

Many of the examples are trivial in content. This is done intentionally because 
the content is not the point to be made: Rather, the programs illustrate some of 
the strategies that may be used in designing instructional computing programs. 
The content is left to the individual author who might use or expand upon these 
strategies. 

Although some of the examples may be related to a specific discipline, this 
should be considered only as a "illustrative vehicle." In many cases, the peda­
gogical strategy used in the program could be applied in general, even though 
the content may be specific. 

6.2. l A Note About REM Statements 

REM statements are very important for documenting a program listing. If 
carefully used in the program, they allow the reader to follow the sequence of 
program "events" with greater ease; their use makes the program more readable 
to the eye. For this reason, REM statements are extensively used in the following 
example programs. Hopefully, they will allow the user (particularly the begin­
ning user) to better visualize a program's design and strategy. 

This extensive use of REM statements may give the impression that the exam­
ple programs are overly long and complicated. This is not the case. If the REM 
statements were removed, most of the example programs would be less than 50 
to 75 statements long. Remember, then, that the REM statements are there to 
help explain the program as the listing is examined. 

It should also be mentioned that REM statements, just like any other state­
ments, require space in the system's memory. If the memory available in a system 



is limited and the program design is lengthy, judicious use of REMs should be 
made. 

Finally, and perhaps foremost, keep in mind that many of these example 
programs may be easily modified and expanded for actual class use. The REM 
statements in the listings will help explain how to do this. 

6.3 PROBLEM-SOLVING APPLICATIONS 

The heaviest use of instructional computing to date is that of problem solving­
writing computer programs to solve specific discipline-oriented problems. This 
particular application, for all practical purposes, has no limits. It could be finding 
the roots of a quadratic equation in mathematics, calculating lunar orbits in 
physics, solving gas-law problems in chemistry, analyzing voting behavior in 
sociology, determining circulation trends in library science, and so on. 

6.3.l PROGRAM 9: Compound Interest 

Most, if not all, problem-solving programs are based upon some formula or 
mathematical expression. Known parameters (elements) of the expression are 
input or read from data and the solution to an unknown parameter is calculated 
and output. PROGRAM 9 illustrates a business-oriented problem related to the 
return on invested capital. The known parameters are: 

1. A given principal amount to be invested. 

2. A given interest rate. 

3. A given number of compounding periods per year. 

4. A given number of years. 

The future value is calculated and displayed, based on the following formula: 

V = P * ( 1 + <I /N > > • < N*Y > 

where 

V = future value of the investment 
P = principal amount invested 
I = interest rate (decimal) 
N =number of times the interest rate is compounded annually 
Y = number of years the principal is invested 

Remember, in the above formula and in statement 210 of the program, the caret 
is the Apple's way to "raise to the power of." 

RUN from disk and refer to the listing and run of PROGRAM 9. 

Show and 11!/l 

77 



An Introduction to the BASIC Programming Language 

JLOAD PROGRAM 9 
JLIST 

10 REM PROGRAM 9 
20 REM =============== 
30 REM PROBLEM SOLVING: THIS PROGRAM 
40 REM CALCULATES FUTURE VALUES OF 
50 REM INVESTMENTS, DEMOS ' FLASH ' 
60 REM AND 'NORMAL ' STATEMENTS. 
70 REM =============== 
80 HOME 
90 PRINT II 

100 PRINT 
INVESTMENT FUTURE VALUES" 

110 PRINT "WHAT IS THE AMOUNT INVESTED"; 
120 INPUT P 
130 PRINT "AT WHAT INTEREST RATE CZ>"; 
140 INPUT I 
150 PRINT "TIMES COMPOUNDED PER YEAR"; 
160 INPUT N 
170 I = I I 100 
180 PRINT "FOR HOW MANY YEARS"; 
190 INPUT Y 
200 REM ===FORMULA FOR CALC=== 
210 V = P * Cl + CI I Nl l " IN* Yl 
220 PRINT "ITS FUTURE VALUE WOULD BE"; 
230 REM ===SET THE FLASH DISPLA Y= == 
240 FLASH 
250 REM ================ 
260 REM MULTIPLY THE VALUE OF V BY 100; THEN 
270 REM GET THIS INTEGER VALUE; THEN DIVIDE 
280 REM BY 100. THIS GIVES A VALUE TO 2 DECIMAL 

PLACES. 
290 REM ======== ======== 
300 PRINT 11 $ 11

; INT CV * 100) I 100 
310 REM ===SET BACK TO NORMAL DISPLAY=== 
320 NORMAL 
330 PRINT 
340 PRINT "CALCULATE ANOTHER CY OR NJ"; 
350 INPUT A$ 
360 IF A$ = "Y" THEN 100 
370 END 

JRUN PROGRAM 9 

[Clear screen] 

INVESTMENT FUTURE VALUES 

WHAT IS THE AMOUNT INVESTED?1000 
AT WHAT INTEREST RATE CZ)? 16.5 



TIMES COMPOUNDED PER YEAR?4 

FDR HOW MANY YEARS?! ~::: i:: 
ITS FUTURE VALUE WOULD BE $ i1 H ~ ~:~ f 
CALCULATE ANOTHER <Y OR Nl?Y 

WHAT IS THE AMOUNT INVESTED?1000 
AT WHAT INTEREST RATE (%)?16.5 
TIMES COMPOUNDED PER YEAR?4 
FOR HOW MANY YEARS?20 
I TS FUTURE VALUE WOULD BE~ ~:2:~~~~ ~ ?: ~ ~ 
CALCULATE ANOTHER <Y OR Nl?Y 

WHAT IS THE AMOUNT INVESTED?10000 
AT WHAT INTEREST RATE (%)?12 
TIMES COMPOUNDED PER YEAR?! 

I TS FUTURE VALUE WOULD BE $ss4sz t 93 FOR HOW MANY YEARS?20 ~ : : : i: i: i; l:: ~ 
CALCULATE ANOTHER (Y OR Nl 

WHAT IS THE AMOUNT INVESTED?10000 
AT WHAT INTEREST RATE <Xl?12 
TIMES COMPOUNDED PER YEAR?365 
FOR HOW MANY YEARS?20 ~ : : ~ ~ 
I TS FUTURE VALUE WOULD BE 3~1 ~ ?:1:~r:~ ~ 
CALCULATE ANOTHER <Y OR Nl?N 

6.3.2 PROGRAM 10: Statistics 

The formula for the mean of a set of scores is: 

Sum of scores Mean=-----­
Number of scores 

The variance may be found from: 

Sum of squared differences between mean and scores Variance =---....o._ ______________ _ 
Number of scores 

The standard deviation of a set of scores is : 

Standard deviation = Square root of variance 

Show and 11:11 

79 



An Introduction to the BASI C Programming Language 

The Z-score may be found from: 

Difference of score from mean z = -----------
Standard deviation 

A program may be written to solve for these unknowns, given a set of scores. 

RUN from disk and refer to the listing and run of PROGRAM 10. 

JLOAO PROGRAM 10 
JLIST 

10 REM 
20 REM 
30 REM 
40 REM 
SO REM 
60 REM 
70 REM 
80 REM 
90 REM 
100 REM 
110 REM 
120 REM 
130 REM 
140 REM 
150 REM 
160 REM 
170 REM 
180 REM 
190 REM 
200 REM 
210 REM 
220 REM 
230 REM 
240 REM 
250 REM 

PROGRAM 10 
=============== 
PROBLEM SOLVING: THIS PROGRAM 
CALCULATES MEAN, VARIANCE, 
STANDARD OEVIATIONt ANO 
Z-SCORES FOR A SET OF 
SCORES, 

=============== 
VARIABLE DICTIONARY 

0 - STANDARD DE VIATION 
(SQ , ROOT OF VARIANCE> 

01 ( l - DISTANCE OF GIVEN 
SCORE FROM MEAN 

M - MEAN OF SCORES 
S < l - GIVEN SCORE 
T - CUMULATIVE TOTAL OF SCORES 
Tl - CUMULATIVE TOTAL OF THE SQUARE 

OF THE DISTANCE OF A GIVEN 
SCORE FROM THE MEAN 

V - VARIANCE 
==== =========== 

260 DIM S < l OOl 101<100 > 
270 HOME 
280 PRINT "MEAN1 VARIANCE 1 ANO STANDARD " 
290 PRINT "DEVIATION OF A SET OF SCORES" 
300 PRINT 
31 0 PRINT "ENTER THE SCORES. TO STOP1" 
320 PRINT " ENTER AN Y NEGATIVE NO," 
330 REM ===ROOM FO R 100 SCORES=== 
340 FOR I = 1 TO 100 
350 PRINT "SCORE <NEGATIVE TO STOP l "i 
360 INPUT S(I) 
370 IF S<Il < 0 THEN 420 



380 REM ===CUMULATIVE SCORE TOTAL=== 
390 T = T + SCil 
llOO NEXT I 
lllO GOTO ll30 
ll20 I = I - 1 
ll30 PRINT 
llllO PRINT "MEAN" 1"VAR"1"SD" 
il50 PRINT "----" 1"--- 11 1"--" 
il60 ===COMPUTE THE MEAN=== 
ll70 M = T I I 
il80 FOR J = 1 TO I 
ll90 REM ===GET DISTANCE OF SCORE FROM MEAN=== 
500 D1CJ) = SCJl - M 
510 REM ===BUILD A CUMULATIVE TOTAL=== 
520 T1 = T1 + DlCJl ' 2 
530 NEXT J 
5ll0 REM ===COMPUTE VARIANCE=== 
550 V = Tl I I 
560 REM ===COMPUTE STANDARD DEVIATION=== 
570 D = SQR CVl 
580 REM ===SET THE VALUES TO 2 DECIMAL PLACES=== 
590 PRINT INT CM* 100) I 1001 INT CV* 100) I 

100 1 INT (D * 100> I 100 
600 PRINT 
610 PRINT " Z-SCORES" 
620 PRINT "SCORE" 111 Z-SCORE" 
630 PRINT "----- , -------
6ll0 FOR J = 1 TO I 
650 REM =============== 
660 REM Z-SCORE IS THE DISTANCE OF A 
670 REM GIVEN SCORE FROM THE MEAN1 
680 REM DIVIDED BY THE STANDARD DEVIATION. 
690 REM =============== 
700 PRINT SCJl 1 INT <D1CJ) I D* 100) I 100 
710 NE XT J 
720 PRINT 
730 PRINT "ANALYZE ANOTHER SET <Y DR Nl"; 
7il0 INPUT A$ 
750 IF A$ < > "Y" THEN 790 
760 T = 0 
770 T 1 = 0 
780 GOTO 300 
790 PRINT 1"BYE-BYE" 
800 END 

JRUN 

[Clear screen] 

MEAN1 VARIANCE1 AND STANDARD 
DEVIATION OF A SET OF SCORES 

Show and 'ft// 

81 



An Introduction to the BASIC Programming Language 

ENTER THE SCORES. TO STOP1 
ENTER ANY NEGATIVE NO, 

SCORE 
SCORE 
SCORE 
SCORE 
SCORE 
SCORE 

MEAN 

80 

SCORE 

100 
so 
80 
70 
60 

<NEGATIVE 
<NEGATIVE 
<NEGATIVE 
<NEGATIVE 
<NEGATIVE 
<NEGATI VE 

Z-SCORES 

TO STOPl?lOO 
TO STOPl?SO 
TO STOP>?BO 
TO STOP>?70 
TO STOPl?60 
TO STOP>?-1 

VAR 

200 

Z-SCORE 

1 • 41 
.7 

0 
- • 71 
_ 1 • 42 

ANALYZE ANOTHER SET CY OR N>?Y 

ENTER THE SCORES, TO STOP1 
ENTER ANY NEGATIVE NO. 

SCORE C NEGATIVE TO STOPl?88 
SCORE <NEGATIVE TO STOP>?S1 
SCORE <NEGATIVE TO STOP l ?77 
SCORE (NEGATIVE TO STOP l ?55 
SCORE <NEGATIVE TO STOP l ?93 
SCORE <NEGATIVE TO STOP l ?85 
SCORE <NEGATIVE TO STOP> ?70 
SCORE <NEGATIVE TO STOP >?-1 

MEAN VAR 

79.85 158.97 

Z-SCORES 
SCORE Z-SCORE 

-- -----
88 • 64 
91 ,99 
77 - . 23 
55 -1 . 98 
93 1 • 04 
85 • 4 
70 -. 79 

ANALYZE ANOTHER SET CY OR N>?N 
BYE-BYE 

SD 

14.14 

SD 

12.6 



6.3.3 PROGRAM 11: File Maintenance 

One problem that teachers face is ease of access to, and updating of, student 
records. PROGRAM 11 is one approach to letting a computer program do most 
of the work (the grades still have to be entered somehow-via a keyboard in 
this case). This program is included here to serve more as a utility program that 
the reader can use than as an illustrative example because some of the statements 
are more advanced than those of Chapters 1 through 5. 

These new statements are needed to access another file, called TESTS, in 
which the record information is kept. The concept of this file is the same as that 
of DATA-READ program statements. However, the data (student records) are 
not accessed from DATA statements in the program but from the file TESTS. Use 
of such text files allows data to be updated for use in a program without having 
to rewrite or add DATA statements in the body of the program. 

The contents of TESTS are numerical data in the sequence: nl,sl , 
s2, ... ,n2,s l ,s2, ... ,etc. Here, nl is the number of scores for the first student name 
and sl,s2, ... are the scores for that student; n2 is the number of scores for the 
second student name and sl,s2, ... are the scores for that student; and so on. An 
example might look like: 2,99,88,1,75,4,87,85,92,95, ... , etc. 

PROGRAM 11 appears to be lengthy but, again, this is due to extensive use 
of REM statements to help explain the program's execution. The program may 
be easily modified for actual class use by changing the DIM and DATA statements 
to meet the user's needs and running the program RECORD INITIALIZER from 
the diskette to erase the sample data in the file TESTS. 

RUN from disk and refer to the listing and run of PROGRAM 11. 

JLOAO PROGRAM 11 
JLIST 

10 REM PROGRAM 11 
20 REM ============== 
30 REM PROBLEM SOLVING: 
ao REM THIS PROGRAM IS AN EXAMPLE OF RECORD 
SO REM KEEPING USING SEQUENTIAL "TEXT FILES," 
60 REM FIVE STUDENT NAMES ARE DATA ELEMENTS 
70 REM IN THE BODY OF THE PROGRAM. THE 
80 REM NUMBER OF SCORES FOR EACH STUDENT AND 
90 REM THEIR RESPECTIVE SCORES ARE STORED 
100 REM SEQUENTIALLY IN THE TEXT FILE "TESTS" 
110 REM ON THE DISK, THE PROGRAM MAY BE USED 
120 REM FOR REAL STUDENT RECORD KEEPING BY 
130 REM CHANGING THE DIM AND DATA STATE MENTS 
140 REM ACCORDINGLY, AND THEN RUNNING THE PROGRAM 
150 REM "RECORD INITIALIZER," 
160 REM =============== 
170 REM VARIABLE DICTIONARY 
180 REM =============== 

Show and 11!1/ 

83 



An Introduction to the BASIC Programming Language 

190 REM N$ - STUDENT NAME SOUGHT <VIA INPUT> 
200 REM N$( ) - STUDENT NAMES FROM PROGRAM DATA 
210 REM STATEMENTS 
220 REM N < > - NUMBER OF SCORES FOR EACH 
230 REM STUDENT <FROM FILE "TESTS") 
240 REM P - NUMBER OF STUDENTS <FROM PROGRAM 
250 REM DATA STATEMENT> 
260 REM S< 1 > - TWO-DIM ARRAY: ROW IS STUDENT 
270 REM NUMBER; COLUMN IS NUMBER OF 
280 REM SCORES FOR THAT STUDENT 
290 REM ============== 
300 REM PROGRAM EXAMPLE DIMENSIONS FOR A 
31 0 REM MAXIMUM OF 20 STUDENTS AND 8 SCORES. 
320 REM CHANGE DIM IF USED IN REAL CLASS. 
330 REM =============== 
340 HOME : DIM S (20 t8l 1N$(20l tN! 20) 
350 PRINT "C L A S S S C 0 R E K E E P I N G" 
360 REM =============== 
370 REM DATA FOR NUMBER OF STUDENTS. CHANGE 
380 REM IF USED IN REAL CLASS. 
390 REM =============== 
400 DATA 5 
410 REM =============== 
420 REM READ THE NUMBER OF STUDENTS; THEN 
430 REM STORE THE NAMES IN N$< ) • 
440 REM =============== 
450 READ p 
460 REM =============== 
470 REM 5 STUDENT NAMES <CHANGE FOR REAL USE!l 
480 DATA "CANTOR" t"DARWIN" t" EDGAR" t"MCCARTHY" t"ZILLA" 
490 REM =============== 
500 FOR I = 1 TO P 
510 READ N$!I l 
52 0 NEXT I 
530 REM =============== 
540 REM DEFINE 0$ AS CONTROL-0 <RULES OF THE 
550 REM GAME TO ACCESS TE XT FILE "TESTS") 
560 REM ================ 
570 0$ = CHR$ (4) 
580 REM =============== 
590 REM THEN ISSUE "COMMANDS" TO OPEN THE 
600 REM FILE AND START READING THE DATA 
610 REM FROM IT. DATA ARE STORED IN THE 
620 REM SEQUENCE: <NUMBER OF SCORES FOR 
630 REM A STUDENT> t <EACH SCORE FOR 
640 REM THAT STUDENT>. N<I> IS THE NUMBER OF 
650 REM SCORES; S<I ~J> IS THE SCORE. 
660 REM =============== 
670 PRINT O$; "OPEN TESTS" 
680 PRINT O$; "R EAD TESTS " 



690 FOR I = 1 TO P 
700 REM ===GET THE NUMBER OF SCORES FROM FILE=== 
710 INPUT N<Il 
720 REM ===NOW GET EACH SCORE FROM FILE=== 
730 FOR J = 1 TO N<Il 
7ll0 INPUT S (I ,J l 
750 NEXT J 
760 NE XT I 
770 PRINT 0$l"CLOSE TESTS" 
780 REM ================ 
790 REM FINISHED READING DATA FROM FILE 
800 REM ================ 
810 PRINT 
820 PRINT "DO YOU WANT TO:" 
830 PRINT "1, ENTER NEW SCORES" 
8ll0 PRINT "2 , RETRIEVE SCORES" 
850 PRINT "3 , STOP <ENTER 1-3l"i 
860 
870 
880 
890 
900 
910 

INPUT c 
IF c = 1 
IF C = 2 
IF C = 3 
GOTO 81 0 
PRINT 

THEN 910 
THEN 910 
THEN 1250 

920 PR I NT "STUDENT 'S NAME (OR STOP)"; 
930 INPUT N$ 
9ll0 IF N$ = "STOP" THEN 81 0 
950 FOR I = 1 TO P 
960 REM ===MATCH FOUND WITH NAMES?=== 
970 IF N$ = N$(I) THEN 1010 
980 NE XT I 
990 PRINT N$l" IS NOT ON FILE!" 
1000 GOTO 920 
1010 IF C = 1 THEN 1190 
1020 REM ================ 
1030 REM PRINT THE SCORES FOR THE STUDENT 
10ll0 REM ================ 
1050 PRINT "SCORES FOR "lN$(Ili":" 
1060 FOR J = 1 TO N<I> 
1070 PRINT S(I,J)i" • ; 
1080 REM ===CUMULATIVE TOTAL FOR STUDENT=== 
1090 T = T + S<I,J) 
1100 NEXT J 
1110 REM ===ILLEGAL TO DIVIDE BY ZERO=== 
11 20 IF N<I> = 0 THEN 11ll0 
1130 PR I NT " AVE = " ;r I N <I l 
11ll0 T = 0 
1150 GOTO 91 0 
1160 REM ================ 
1170 REM ADD MORE SCORES FOR STUDENTS 
1180 REM ================ 

Show and Jell 

85 



An Introduction to the BASIC Programming Language 

1190 PRINT "NEXT SCORE FOR ";N$; 
1200 REM ===INCREASE THE SCORE COUNT BY 1=== 
1210 N<Il = N<Il + 1 
1220 REM ===STORE NEW SCORE IN ARRAY=== 
1230 INPUT S(I1N(Ill 
1240 GOTO 910 
1250 PRINT 
1280 REM === TURN ON PRINTER IF WANTED=== 
1282 PRINT "USE PRINTER <Y OR Nl"; 
1284 INPUT Z$ 
1288 D$ = CHR$(4l 
1288 IF Z$ = "Y" THEN PRINT D$; "PR•l" 
1270 REM ================ 
1280 REM PRINT OUT CLASS RECORDS 
1290 REM ================ 
1300 PRINT "NAME"; TAB< 12) ;"SCORES"; TAB( 22l; 

"AVERAGE" 
1310 PRINT"----"; TAB< 12l ;"------";TAB< 22l; 

1320 FOR I = 1 TO P 
1330 FOR J = 1 TO N<Il 
1340 REM ===CUMULATIVE TOTAL FOR STUDENT=== 
1350 T = T + S(I,Jl 
1380 REM ===CUMULATIVE TOTAL FOR CLASS=== 
1370 T 1 = T 1 + S < I tJ l 
1380 NEXT J 
1390 REM ===ILLEGAL TO DIVIDE BY ZERO=== 
1400 IF N<Il = 0 THEN 1430 
1410 PRINT N$( ll; TAB< 15l ;N( ll; TAB 

< 23l;T I N<Il 
1420 REM ===CUMULATIVE TOTAL SCORE NUMBER=== 
1430 Sl = Sl + N<Il 
1440 T = o 
1450 NEXT I 
1480 PRINT 
1470 PRINT "THE CLASS AVERAGE IS ";Tl I Sl 
1475 IF Z$ = "Y" THEN PRINT 6$; "PR•O" 
1480 REM ======= ======== 
1490 REM WRITE ALL DATA WITH UPDATES 
1500 REM BACK ON THE FILE "TESTS," 
1510 REM =============== 
1520 PRINT D$;"OPEN TESTS" 
1530 PRINT D$;"WRITE TESTS" 
1540 FOR I = 1 TO P 
1550 PRINT N<Il 
1580 FOR J = 1 TO N<Il 
1570 PRINT S< I 1Jl 
1580 NEXT J 
1590 NEXT I 
1800 PRINT D$;"CLOSE TESTS" 



1610 PRINT II 

1620 END 

JRUN 

[Clear screen] 

*** D D N E ***" 

C L A S S S C D R E K E E P I N G 

DO YOU WANT TO: 
1. ENTER NEW SCORES 
2. RETRIEVE SCORES 
3. STOP <ENTER 1-3l?5 

DO YOU WANT TO: 
1. ENTER NEW SCORES 
2. RETRIEVE SCORES 
3. STOP <ENTER 1-3)?2 

STUDENT ' S NAME !OR STOPl?ZILLA 
SCORES FOR ZILLA: 
100 50 55 AVE = 68.3333334 

STUDENT'S NAME (OR STOPl?BERGEN 
BERGEN IS NOT ON FILE! 
STUDENT'S NAME <OR STOPl?CANTOR 
SCORES FOR CANTOR: 
60 77 56 81 AVE = 68.5 

STUDENT 'S NAME <OR STOPl?TOPPER 
TOPPER IS NOT ON FILE! 
STUDENT'S NAME <OR STOPl?STOP 

DO YOU WANT TO: 
1. ENTER NEW SCORES 
2. RETRIEVE SCORES 
3. STOP <ENTER 1-3)?1 

STUDENT 'S NAME <OR STOPl?CANTOR 
NEXT SCORE FOR CANTOR?91 

STUDENT'S NAME <OR ST OP l?Z ILLA 
NEXT SCORE FOR ZILLA?72 

STUDENT ' S NAME <OR STOPl?STOP 

DO YOU WANT TO: 
1. ENTER NEW SCORES 
2. RETRIEVE SCORES 
3, STOP <ENTER 1-3l?3 

Show and 7ell 

87 



An Introduction to the BASIC Programming Language 

USE PRINTER <Y OR Nl? N 

NAME SCORES AVERAGE 
------ -------

CANTOR 5 73 
DARWIN 8 79.25 
EDGAR LI 59.5 
MCCARTHY 2 67.5 
ZILLA LI 69.25 

THE CLASS AVERAGE IS 71.6956522 

*** D 0 N E *** 

88 

6.4 DRILL-AND-PRACTICE APPLICATIONS 

Drill-and-practice programs are second only in use to problem-solving applica­
tions in instructional computing. This technique also has wide application in any 
area in which certain fundamental concepts require practice for mastery. This 
could be multiplication tables, chemical nomenclature, Latin-English word-root 
translations, state capitals, and so on. 

Drill-and-practice programs are generally very straightforward: An intro­
duction, u sually including examples, is given; drill questions are presented (either 
linearly or by random selection) ; answers are entered and checked for accuracy; 
appropriate feedback is given; the next question is asked; and, at the end of the 
program, some form of performance report is given and, perhaps, recorded. 

6.4.1 PROGRAM 12: Linear Selection of Drill Questions 

Drill programs can be easily constructed with DATA-READ and FOR-NEXT 
statements. If the questions are to be linear, the DATA con sists of question­
answer pairs on any chosen topic tha t are READ as part of a FOR-NEXT question 
sequence. A skeleton program might be: 

10 DATA["Question ! ","Answer ! ","Question 2", etc.] 

2 0 0 PR I NT "[Introductory statements, examples, etc.]" 

500 FOR I = 1 TO [Number of questions to ask] 
5 10 READ Q$,A$ 
520 PRINT Q$j 
530 INPUT R$ 
5LIO IF R$ = A$ THEN 570 



550 PRINT " A COR RECT ANSWER IS " ;A$ 
560 GOTO 590 
570 PRINT "EXCELLENT!" 
580 c = c + 1 
590 NEXT I 
GOO PRINT "YOU ANSWERED ";c;" QUESTI ONS CORRECTLY!" 
610 END 

In the following program on state capitals (PROGRAM 12), note the use of 
the RND ( 1) function to "flip a coin" to determine if the state or the capital is to 
be asked as a question. In the normal READ sequence (as defined in this pro­
gram), Q$ (the question) contains the state and A$ (the answer) contains the 
capital. If the question-answer values are to be reversed, the contents of the 
variables Q$ and A$ must be switched. This is accomplished in statements 44~ 
460 by the use of a dummy variable, D$, to hold the original question (value of 
Q$) as the switching process is done. 

Again, please remember that by just changing the contents of the DATA 
statements, it is possible to make the program more than just a trivial drill on 
state capitals! 

RUN from disk and refer to the listing and run of PROGRAM 12. 

JLOAD PROGRAM 12 
JLIST 

10 REM PROGRAM 12 
20 REM ====== ========= 
30 REM DRILL AND PRACTICE: THI S 
ao REM PROGRAM DEMOS THE LINEAR QUESTIDN-
50 REM AND-ANSWER SEQUENCE VIA DATA-READ, 
60 REM PLUS SWITCHING A QUESTION FOR AN 
70 REM ANSWER AND AN ANS WE R FOR A QUESTION, 
80 REM 
90 REM == ============ = 
100 REM VARIABLE DICTIONARY 
11 0 REM ====== ===== ==== 
120 REM A$ - ANSWER <FROM DATA-READ> 
130 REM C - NUMBER CORRECT COUNTER 
1ao REM 0$ - HOLDS ORIGINAL QUESTION IN 
150 REM QUESTION /A NSWER SWIT CHING 
160 REM Q$ - QUESTION <FRO M DATA-READ> 
170 REM R$ - USER RESPONSE <VIA INPUT> 
180 REM ======== === ==== 
190 DATA "TE XAS " •"AUSTIN" •"ARKANSAS " 1"LITTLE ROCK" 
200 DATA "NEW MEXICO" 111 SANTA FE" 1"0KLAHOMA" 
2 10 DATA "O KLA HOMA CITY" 111 0REGON" 1"SALEM 11 

220 HOME 
230 REM ===INTRODUCTION== = 

Show and Jell 

89 



An Introduction to the BASIC Programming Language 

240 PRINT "STATE CAPITAL DRILL" 
250 PRINT 
260 PR INT "IF I GIVE THE STATE1 YOU GIVE" 
270 PRINT "THE CAPITALl IF I GIVE THE" 
280 PRINT "CAPITAL1 YOU GIVE THE STATE ," 
290 PRINT 
300 FOR I = 1 TO 5 
310 READ Q$1A$ 
320 PRINT 
330 REM ==='FLIP' A COIN=== 
340 X = I NT ( 2 * RND < 1 l + 1 l 
350 IF X = 2 THEN 490 
360 REM ===DO THE SWITCH IF X IS 1== = 
370 REM ==== =========== 
380 REM HERE ' S THE SWITCH,,.STORE Q$ IN 
390 REM D$ TEMPORARIL Y1 PUT THE ANSWER IN 
400 REM Q$ ( NOW THE ANSWER IS THE QUEST I ON l 1 AND 
410 REM THEN GET THE ANSWER FROM D$ 
420 REM ( NOW THE ORIGINAL QUESTION IS THE ANSWER), 
430 REM =============== 
440 D$ = Q$ 
450 Q$ = A$ 
460 A$ = D$ 
470 REM ===SWITCH COMPLETED=== 
480 REM ===NOW ASK THE QUESTION=== 
490 PRINT Q$l 
500 INPUT R$ 
510 IF R$ = A$ THEN 540 
520 PRINT "A CORRECT ANSWER IS "lA$ 
530 GOTO 560 
540 PRINT "GREAT!" 
550 c = c + 1 
560 NE XT I 
570 PRINT "YOU GOT "lCl" CO RRECT!" 
580 END 

JRUN PROGRAM 12 

[Clear screen] 

STA TE CAPITAL DRILL 

IF I GIVE THE STATE, YOU GIVE 
THE CAPITALl IF I GIVE THE 
CAPITAL1 YOU GI VE THE STATE, 

TE XAS?AUSTIN 
GREAT! 

ARKANSAS? LITTLE ROCK 
GREAT! 



NEW MEXICO?SACRAMENTD 
A CORRECT ANSWER IS SANTA FE 

OKLAHOMA CITY?DKLAHDMA 
GREAT! 

OREGON? PORTLAND 
A CORRECT ANSWER IS SALEM 
YOU GOT 3 CORRECT! 

JRUN 

[Clear screen] 

STATE CAPITAL DRILL 

IF I GIVE THE STATE1 YOU GI VE 
THE CAPITAL; IF I GIVE THE 
CAPITAL1 YO U GIVE THE STATE. 

TEXAS?AUSTIN 
GREAT! 

ARKANSAS?LITTLE ROCK 
GREAT! 

NEW MEXICD?SANTA FE 
GREAT! 

OKLAHOMA CITY?DKLAHDMA 
GREAT! 

SALEM?DREGDN 
GREAT! 
YOU GOT 5 CORRECT! 

6.4.2 PROGRAM 13: Random Selection of Drill Questions 

If the questions are to be randomly selected from a bank of data elements. 
the DATA are READ into one-dimensional arrays prior to presentation of the 
question sequence: 

l o o IM Q$( [Number of questions in bank]) •A$< > • z < 
20 DATA ["Question ","Answer l ","Question 2", etc.) 

l GO FDR I = l TD [Number of questions in bank) 
l 70 READ Q$ (I) I A$ ( I ) 
180Z!Il=O 

Show and 'Jell 

91 



An Introduction to the BASIC Programming Language 

180 NEXT I 
200 PR I NT "(Introductory statements, examples, etc.]" 

500 FOR I = 1 TO [Number of questions to be asked] 
505 REM RANDOMLY SELECT A QUESTION NUMBER 
51 o J = I NT< [Number of questions in bank]*RND < 1 > + 1 > 

515 REM HAS THIS NUMBER ALREADY BEEN SELECTED? 
520 IF Z(J) = 1 THEN 510 
530 Z!J) = 1 
5LIO PRINT Q$(J) i 
550 INPUT R$ 
560 IF R$ = A$(J) THEN 580 
570 PRINT "A CORRECT ANSWER IS "iA$(J) 
580 GOTO 61 0 
580 PRINT "GREAT ! " 
GOO C = C + 1 
610 NE XT I 
620 PRINT "YOU ANSWEREO"iCi"QUESTIONS CORRECTLY!" 
630 ENO 

Note in the example, PROGRAM 13, that only 3 of the 5 possible questions 
are randomly selected. In general, it is good practice to have approximately 25% 
more questions in the bank than are to be asked by random selection. This will 
reduce the time required for the program to find a question that has not been 
asked previously. 

RUN from disk and refer to the listing and run of PROGRAM 13. 

lLOAO PROGRAM 13 
lLIST 

10 REM 
20 REM 
30 REM 
LIO REM 
50 REM 
60 REM 
70 REM 
80 REM 
90 REM 
100 REM 
110 REM 
120 REM 
130 REM 
!LIO REM 
150 REM 
160 REM 
170 REM 

PROGRAM 13 
=============== 

DRILL ANO PRACTICE: THIS 
PROGRAM DEMOS RANDOM SELECTION OF 
QUESTIONS/ANSWERS FROM ONE-DIM ARRA YS 
WITHOUT REPEATING AN Y QUESTION1 PLUS 
SWITCHING THE QUESTION-ANSWER. 
=============== 
VARIABLE DICTIONARY 

=============== 
A$ (J) - ANSWER TO QUESTION 
0$ - HOLDS QUESTION TEMPORARILY 

IN QUES / ANSWER SWITCHING 
J - RANDOM INTEGER VALUE 
Q$(J) - RANDOM QUESTION FROM LIST 
Z(J) - FLAG FOR SELECTED INTEGER 
=============== 

180 DIM Q$(5 ) 1A$(5) 1Z(5) 



190 DATA 
200 DATA 
210 DATA 
220 HOME 

"TEXAS " t"AUSTIN"t"ARKANSAS" t" LITTLE ROCK" 
"NEW MEXI CO" 1"SANTA FE" t" OKLAHOMA " 
"OKLAHOMA CITY" t"OREGON" t"SALEM" 

230 REM ===INTRODUCTION=== 
240 PRINT "STATE CAPITAL DRILL" 
250 PRINT 
260 PRINT "IF I GIVE THE STATEt YOU GIVE" 
270 PRINT "THE CAP I TAL; IF I GI VE THE" 
280 PRINT "CAPITAL, YOU GIVE THE STATE," 
290 PRINT 
300 REM ===STORE THE QUESTIONS/ANSWERS=== 
310 FOR I = 1 TO 5 
320 READ Q$C I) tASC I) 
330 NEXT I 
340 REM ===ASK ON LY 3 OF THE POSSIBLE 5=== 
350 FOR I = 1 TO 3 
360 PRINT 
370 REM ===SELECT A QUESTION NUMBER == = 
380 J = I NT C 5 * RND C 1) + 1) 
390 REM ===HAS IT BEEN SELECTED BEFORE?=== 
400 IF Z(J) = 1 THEN 380 
410 REM ===FLAG J AS A SELECTED NUMBER=== 
420 ZCJl = 1 
430 REM 
440 REM === ' FLIP ' A COIN=== 
450 x = I NT ( 2 * RND ( 1) + 1) 
460 IF x = 2 THEN 520 
470 REM ===DO THE SWITCH IF X IS 1=== 
400 D$ = QSCJ> 
490 Q$ CJ> = A$<J> 
500 A$CJ l = D$ 
51 0 REM ===ASK THE QUESTION=== 
520 PRINT Q$CJ l i 
530 INPUT R$ 
540 IF R$ = A$(J) THEN 570 
550 PRINT "A CORRECT ANSWER IS "iA$(Jl 
560 GOTO 590 
570 PRINT "GREAT!" 
580 c = c + 1 
590 NEXT I 
600 PRINT "YOU GOT " iCi " CORRECT !" 
610 END 

Show and 7W 

93 



An Introduction to the BASIC Programming Language 

JRUN PROGRAM 13 

[Clear screen] 

STATE CAPITAL DRILL 

IF I GIVE THE STATE1 YOU GIVE 
THE CAPITALi IF I GIVE THE 
CAPITAL1 YOU GIVE THE STATE. 

SALEM?NEW ME XICO 
A CORRECT ANSWER IS OREGON 

AUSTIN?NEVAOA 
A CORRECT ANSWER IS TE XAS 

NEW MEXICO? SANTA FE 
GREAT! 
YOU GOT 1 CORRECT! 

JRUN 

(Clear screen] 

STATE CAPITAL DRILL 

IF I GIVE THE STATE1 YOU GIVE 
THE CAPITAL! IF I GIVE THE 
CAPITAL1 YOU GIVE THE STATE. 

SANTA FE?NEW ME XICO 
GREAT! 

TE XAS ? AUSTIN 
GREAT! 

OREGON?SALEM 
GREAT! 
YOU GOT 3 CORRECT! 

6.4.3 PROGRAM 14: User Options and Random Positive 
Feedback 

Use of GOSUB-RETURN routines makes development of linear dri ll-and­
practice programs a simple task. The minimum needed could be: 

94 



• Present statements for the introduction, examples, and question content: 

1 o PRINT " (Introductory statements] " 

1 oo PR I NT "[Presenting examples]" 

200 PRINT "[Ask question l]' 

• Assign a correct answer to a variable: 

21 o A$=" (Answer to question l]" 

• Go to the answer-checking subroutine: 

220 GOSUB 10000 

• Present the next question following RETURN: 

230 PR I NT "(Ask question 2)" 

• Assign answer to a variable: 

240 A$=" (Answer to question 2]" 

• Go to the subroutine again: 

250 GOSUB 10000 

• The subroutine allows for answer input: 

10000 IN PUT R$ 

• Checks for accuracy: 

10010 IF R$=A$ THEN 10040 

• Presents a correct answer if missed: 

10020 PRINT "A CORRECT ANSWER 15 ";A$ 

• Returns to the next question: 

10030 GOTO 10060 

• Gives a positive feedback if correct: 

10040 PRINT "VERY GOOD!" 

• Increases a number-correct counter by 1: 

10050 c = c + 1 

• And asks the next question: 

10060 RETURN 

Show and 'kl/ 

95 



An Introduction to the BASIC Programming Language 

These statements outline a general design sequence. But, to a user, a drill­
and-practice program that just asks a question, says "CORRECT" or "INCOR­
RECT," and then asks the next question can be awfully boring. However, we can 
liven up the program by giving the user some options like: SKIP (a question) , 
ANSWER (to a question) , and STOP (at will) . We can also randomize the positive 
feedback and use the INVERSE statement for emphasis in asking a question. 
Examples of these types of additions are shown in PROGRAM 14, which is a 
drill on the parts of a sentence. 

Some comments about PROGRAM 14: Just when you thought you knew a bit 
about BASIC, along comes this program that's sooooo long! Don't tear your hair! 
Without the REM statements explaining the program's execution and the PRINT 
statements giving the introduction and examples, the program consists of only 
73 statements. The key points brought out in these 73 statements are: the use of 
subroutines for repetitive processes; control and appearance of the screen display; 
and ease of expanding a program once these processes are defined. 

Examination of the listing will show that the introduction and the sentences 
composing the questions (up to eight words per sentence) may be changed to a 
user's own choosing and that many more sentences may be added with ease. So 
relax. Carefully examine the method by which a sentence is defined (e.g., state­
ments 710-1010) and the subroutines beginning at statements 4500 and 5000. 
These sections are the crux of comprehending this program. 

RUN from disk and refer to the listing and run of PROGRAM 14. 

lLOAD PROGRAM 14 
lLIST 

10 REM 
20 REM 
30 REM 
40 REM 
50 REM 
60 REM 
70 REM 
80 REM 
80 REM 
100 REM 
110 REM 
120 REM 
130 REM 
140 REM 
150 REM 
160 REM 

PROGRAM 14 
== ======== ===== 
DRILL AND PRACTICE: THIS PROGRAM 
DEMOS RANDOM POSITIVE FEEDBACK 
FROM A ONE-DIM ARRAY1 GIVING 
USER OPTIONS FDR PROGRAM CONTROL1 

AND THE USE OF THE INVERSE STATEMENT 
FOR EMPHASIS IN QUESTION SEQUENCE, 
TWO SUBROUTINES ARE USED. 

=============== 
VARIABLE DICTIONARY 
=============== 
A$ - ANTICIPATED CORRECT ANSWER 
C - NUMBER-CORRECT COUNTER 
F$ < l - RANDOM PDS IT I VE FEEDBAC K 
R$ - USER INPUT 



170 REM 
180 REM 
190 REM 
ZOO REM 

W - NUMBER OF WORDS IN A GIVEN SENTENCE 
W$C l - WORDS OF THE SENTENCE 
X - QUESTION CWORDl COUNTER 
Y - WORD NO, IN SENTENCE TD EMPHASIZE 

210 REM =============== 
220 DIM F$C4l 1W$C8l 
230 REM ===POSITIVE FEEDBACK CHOICES=== 
240 DATA "WELL DONE" 1"MARVELDUS" 1"THAT'S IT" 1"VERY GOOD" 
250 REM ===STORE FEEDBACK CHOICES=== 
260 FOR I = 1 TD 4 
270 .READ F$ C I ) 
280 NEXT I 
290 REM ===GIVE THE INTRODUCTION=== 
300 HOME 
310 PRINT " 
320 PRINT 

INTRODUCTION" 

330 PRINT "THIS IS A SHORT DRILL ON" 
340 PRINT "SENTENCE STRUCTURE, I ' LL" 
350 PRINT "PRESENT A COMPLETE SENTENCE" 
360 PRINT "AND YOU ARE ASKED TD IDENTIFY" 
370 PRINT " EACH PART OF THAT SENTENCE1" 
380 PRINT " WORD BY WORD," 
390 PRINT 
400 REM ===USER CONTROLS WHEN TD GD=== 
410 PRINT "READY FDR MORE"; 
420 INPUT Z$ 
430 HOME 
440 PRINT " *** EXAMPLE ***" 
450 PRINT 
460 PRINT "THE DOG BITES." 
470 PRINT 
480 PRINT "FIRST I'LL EMPHASIZE THE WORD ' THE '" 
490 PRINT "AND YOU SHOULD IDENTIFY ' THE '" 
500 PRINT "AS AN ARTICLE, NEXT I ' LL" 
510 PRINT "EMPHASIZE THE WORD ' DOG ' WHICH SHOULD" 
520 PRINT "BE IDENTIFIED AS THE SUBJECT," 
530 PRINT 11 FINALLY1 I'LL EMPHASIZE ' BITES '" 
540 PRINT "WHICH SHOULD BE IDENTIFIED AS" 
550 PRINT "A VERB," 
560 PRINT 
570 PRINT "SHALL I GO ON"; 
580 REM ===USER CONTROLS WHEN TD GO=== 
590 INPUT Z$ 
600 HOME 
610 PRINT 
620 PRINT "ALS01 KNOW THAT YOU MAY SKIP" 
630 PRINT "A QUESTION BY ENTERING 'SKIP' 1" 
640 PRINT "RECEIVE A CORRECT ANSWER BY" 
650 PRINT "ENTERING ' ANSWER' 1 DR STOP AT" 
660 PRINT "ANYTIME BY ENTERING 'STOP ' ," 

Show and It/I 

97 



An Introduction to the BASIC Programming Language 

670 PRINT 
680 PRINT "ARE YOU READY FDR THE" 
690 PRINT "FIRST SENTENCE"; 
700 INPUT ZS 
710 REM =============== 
720 REM THE DATA CONTAINS THE WORDS 
730 REM OF THE SENTENCE. I w I Is THE 
740 REM NUMBER OF THE WORDS IN THE 
750 REM SENTENCE FDR THE READING LOOP, 
760 REM =============== 
770 DATA "JACK" 1"LDVES" 1"MARY." 
780 w = 3 
790 REM =============== 
800 REM GD TO THE SUBROUTINE TD 
810 REM STORE THE WORDS IN W$( ) , 
820 REM THE MAXIMUM NO, OF WORDS IS 8, 
830 REM =============== 
840 GOSUB 4500 
850 REM 
860 REM 
870 REM 
880 REM 
890 REM 
900 REM 
910 y = 1 

=============== 
ASSIGN THE CORRECT ANSWER TD AS 
AND THE WORD NUMBER IN THE SENTENCE 
TD INVERSE FDR EMPHASIS TD y, THEN 
GO TO THE QUES/ANSWER SUBROUTINE, 
=============== 

920 A$ = "SUBJECT" 
930 GDSUB 5000 
940 REM ===REPEAT THE PROCESS FDR THE NEXT WORD=== 
950 y = 2 
960 A$ = "VERB" 
970 GDSUB 5000 
980 REM ===REPEAT THE PROCESS=== 
990 y = 3 
1000 A$ = "DIRECT OBJECT" 
1010 GOSUB 5000 
1020 REM =============== 
1030 REM REPEAT THE PROCESS FOR 
1040 REM THE NEXT SENTENCE 
1050 REM ================ 
1060 DATA "THE" 1"CAT" 1"SCRATCHED" 1"MIKE," 
1070 w = 4 
1080 REM ===GO TO THE STORING SUBROUTINE=== 
1090 GOSUB 4500 
1100 REM ===ASSIGN THE ANS, AND WORD NO. TO EMPHASIZE=== 
1110 y = 1 
1120 A$ = "ARTICLE" 
1130 GOSUB 5000 
1140 y = 2 
1150 A$ = "SUBJECT" 
1160 GDSUB 5000 



1170 y = 3 
1180 A$ = "VERB" 
1190 GOSUB 5000 
1200 y = 4 
1210 A$ = "DIRECT OBJECT" 
1220 GOSUB 5000 
1230 REM ============== 
1240 REM ADDITIONAL SENTENCES MAY 
1250 REM BE ADDED BELOW, FOLLOWING 
1260 REM THE SAME SEQUENCE AS ABOVE. 
1270 REM ============== 
4000 PRINT 
4010 PRINT "THAT ' S ALL FDR TODAY,,," 
4020 GOTO 5540 
4100 REM ============= 
4110 REM THE 4500 SUBROUTINE READS THE WORDS 
4120 REM OF A GIVEN SENTENCE INTO AN 
4130 REM ARRAY SO THAT THE SENTENCE MAY 
4140 REM BE PRINTED LATER, WORD-BY-WORD, 
4150 REM AND THE APPROPRIATE WORD "INVERSED," 
4160 REM ============= 
4500 HOME 
4510 FDR I = 1 TD W 
4520 READ W$Cil 
4530 NEXT I 
4540 REM ========= ==== 
4550 REM NOW THAT THE SENTENCE WORDS HAVE 
4560 REM BEEN STORED1 RETURN AND START 
4570 REM THE QUESTION/ANSWER SEQUENCE, 
4580 REM ============= 
4590 RETURN 
4600 REM ============== 
4610 REM THE 5000 SUBROUTINE PRINTS THE 
4620 REM SENTENCE WORD-BY-WORD, INVERSING 
4630 REM THE WORD CORRESPONDING TD THE 
4640 REM QUESTION. USER INPUT IS CHECKED 
4650 REM FIRST FOR AN ' OPTION' MATCH THEN 
4660 REM FDR THE CORRECT ANSWER. RANDOM 
4670 REM FEEDBACK IS GIVEN FDR CORRECT ANSWERS. 
4680 REM ============= 
5000 PRINT 
5010 REM ===START PRINTING THE WORDS=== 
5020 FOR I = 1 TD W 
5030 REM ===ADD 1 TD THE X COUNTER=== 
5040 x = x + 1 
5050 REM ===IS X EQUAL TD Y? INVERSE IF SD=== 
5060 IF X = Y THEN 5090 
5070 PRINT W$CI); 11 11

; 

5080 GOTO 5120 
5 0 90 INVERSE 

Show and Jell 

99 



An Introduction to the BASIC Programming Language 

5100 PRINT W$(Il;" "; 
5110 NORMAL 
5120 NEXT I 
5130 PRINT 
5140 PRINT 
5150 PRINT "YOUR ANSWER"; 
5160 INPUT R$ 
5170 REM ========= ==== == 
5180 REM CHECK FIRST FOR ' OPTION ' INPUT 
5190 REM =============== 

IF R$ "SKIP" THEN 5490 5200 
5210 
5220 
5230 

IF R$ = "ANSWER" THEN 5270 
IF R$ = "STOP" THEN 5540 
REM =============== 

5240 REM THEN CHECK FOR A CORRECT ANSWER 
5250 REM =============== 
5260 IF RS = A$ THEN 5370 
5270 PRINT "A CORRECT ANSWER IS " ;A$ 
5280 REM ================ 
5290 REM HOLD THE CORRECT ANSWER UNTIL 
5300 REM THE USER IS READY TO CONTINUE, 
5310 REM ================ 
5320 PRINT 
5330 PRINT "ARE YOU READY"; 
5340 INPUT ZS 
5350 GOTO 5490 
5360 REM ===GET A RANDOM NUMBER <4-ll=== 
5370 F =INT (4 * RND <1> + ll 
5380 REM ===PRINT THE RANDOM FEEDBACK=== 
5390 PRINT FS(Fl ; 11 ! " 
5400 REM ===ADD 1 TO THE NUMBER CORRECT=== 
5410 c = c + 1 
5420 REM =============== 
5430 REM LET THE SYSTEM "COUNT" TO 2000 SO THAT 
5440 REM THE DISPLAY WILL REMAIN 2- 3 SECONDS 
5450 REM =============== 
5460 FOR K = 1 TO 2000 
5470 NEXT K 
5480 REM ===SET X TO ZERO BEFORE NEXT 

QUESTION=== 
5490 x = 0 
5500 RETURN 
5510 REM ============= 
5520 REM GIVE SCORE AND END PROGRAM 
5530 REM ===== == ====== 
5540 PRINT 
5550 PRINT "YOU GOT ";c;" CORRECT ANSWER(S)," 
5560 END 



lRUN 

[Clear screen] 

INTRODUCTION 

THIS IS A SHORT DRILL ON 
SENTENCE STRUCTURE, I 'LL 
PRESENT A COMPLETE SENTENCE 
AND YOU ARE ASKED TO IDENTIFY 
EACH PART OF THAT SENTENCE, 
WORD BY WORD. 

READY FOR MORE?OK 

[Clear screen] 

*** EXAMPLE *** 
THE DOG BITES. 

FIRST I'LL EMPHASIZE THE WORD 'THE' 
AND YOU SHOULD IDENTIFY 'THE' 
AS AN ARTICLE. NEXT I'LL 
EMPHASIZE THE WORD 'DOG' WHICH SHOULD 
BE IDENTIFIED AS THE SUBJECT. 
FINALLY1 I'LL EMPHASIZE ' BITES ' 
WHICH SHOULD BE IDENTIFIED AS 
A VERB. 

SHALL I GO DN?YES ,,,GO ON 

[Clear screen] 

ALS0 1 KNOW THAT YOU MAY SKIP 
A QUESTION BY ENTERING 'SKIP' 1 
RECEIVE A CORRECT ANSWER BY 
ENTERING ' ANSWER' 1 OR STOP AT 
ANYTIME BY ENTERING ' STOP', 

ARE YOU READY FOR THE 
FIRST SENTENCE?YES 

[Clear screen] 

- LOVES MARY, 

YOUR ANSWER?ANSWER 
A CORRECT ANSWER IS SUBJECT 

ARE YOU READY?OK 

Show and Tell 

101 



An Introduction to the BASIC Programming Language 

JACK i!1W+i MARY, 

YOUR ANSWER?SKIP 

JACK LOVES mml• 
YOUR ANSWER?SUBJECT 
A CORRECT ANSWER IS DIRECT OBJECT 

ARE YOU READY? OK 

[Clear screen] 

lllcAT SCRATCHED MIKE, 

YOUR ANSWER?ARTICLE 
THAT'S IT! 

THE - SCRATCHED MIKE. 

YOUR ANSWER?SUBJECT 
VERY GOOD! 

THE CAT f44@ii40:t•J MIKE• 

YOUR ANSWER?VERB 
WELL DONE! 

THE CAT SCRATCHED Hill# 
YOUR ANSWER?DIRECT OBJECT 
VERY GOOD ! 

THAT'S ALL FOR TODA Y,,, 

YOU GOT a CORRECT ANSWER<S>, 

102 

6.4.4 PROGRAM 15: Random Generation of Question 
Parameters 

For drill programs using numerical values, the RND ( 1) function may be used 
to ensure that no two RUNs of the program are identical. That is, although the 
text of the problem may be the same, the parameters are randomly generated in 
order that each problem appears unique. As an example, consider PROGRAM 
15, which gives the base and height of a triangle and asks for the area (Area = 
112 base x height). 

Note: In referring to the listing of PROGRAM 15, look closely at statements 
670, 680, and 730. The Apple (and most other brands of microcomputer) will 
allow multiple BASIC statements per line. This means that a series of statements 



may be entered on one line. Each statement is delimited (separated) by a colon. 
Frnm the system's standpoint, this makes more efficient use of the available 
memory. From the reader's standpoint, however, it is sometimes more difficult 
to follow the program's sequence of execution. 

In this particular program example, the multiple statements are used to illus­
trate control of the screen display. If a user's answer is correct, the screen is first 
erased, a positive response is shown in the center of the screen, and the computer 
pauses for about 3 seconds before continuing in the instructional sequen~e. 

RUN from disk and refer to the listing and run of PROGRAM 15. 

lLOAD PROGRAM 15 
lLIST 

10 
20 
30 
LIO 
50 
60 
70 
80 
90 
100 
110 
120 
130 
l llO 
150 
160 
170 
180 
190 
200 
210 
220 
230 

REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 

REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
HOME 

PROGRAM 15 
============== 
DRILL AND PRACTICE: THIS 
PROGRAM DEMOS USER CONTROL OF THE 
NUMBER OF QUESTIONS TO BE ASKED 
AND USE OF RND<l> TO RANDOMLY 
GENERATE NUMBERS WITHIN LIMITS TO 
USE IN THE TEXT OF A QUESTION, 
PROGRAM ALSO DEMOS FOR THE FIRST TIME 

THE USE OF MULTIPLE STATEMENTS PER LINE 
----------------------------
VARIABLE DICTIONARY 
============== 
A - AREA OF TRIANGLE <ANSWER> 
B - RANDOMLY SELECTED VALUE FOR 

THE 'BASE' OF A TRIANGLE 
H - RANDOMLY SELECTED VALUE FOR 

THE 'HEIGHT' OF A TRIANGLE 
P - NUMBER OF PROBLEMS SELECTED BY USER 
S - USER ANSWER <INPUT> 
============== 

240 PRINT "DRILL ON CALCULATING THE" 
250 PRINT "AREA OF A TRIANGLE" 
260 PRINT 
270 PRINT "HOW MANY PROBLEMS DO YOU WANT"; 
280 INPUT P 
290 IF P < 1 THEN 270 
300 IF P < 11 THEN 350 
310 PRINT "THAT'S TOO MANY,,,KEEP" 
320 PRINT " IT TO 10 OR LESS," 
330 GOTO 270 
340 REM ===USER GOT TO DEFINE THE VALUE OF P 

<WITHIN LIMITS>=== 

Show and Tell 

103 



An Introduction to the BASIC Programming Language 

350 FOR I = 1 TD P 
360 PRINT 
370 REM =============== 
380 REM GET RANDOM VALUES FOR THE BASE AND 
390 REM HEIGHT AND CALCULATE THE AREA, 
400 REM =============== 
410 B INT <10 * RND (1) + 1) * 5 
420 H = I NT ( 15 * RND < 1 l + ll * 10 
a30 A = ,5 * B * H 
440 PRINT "THE BASE OF A TRIANGLE IS" 
a5o PRINT B;" INCHES AND ITS HEIGHT" 
a60 PRINT "IS "iHi" INCHES. WHAT IS" 
a10 PRINT "ITS AREA IN SQUARE INCHES"; 
a00 INPUT s 
a90 REM ===IS INPUT CORRECT ANSWER?=== 
500 IF A = S THEN 670 
510 PRINT 
520 PRINT "NOt AREA = 1/2 X BASE X HEIGHT" 
530 PRINT"= 1/2 X "iBi" X ";H 
5ao PRINT"= ";A;" SQUARE INCHES" 
550 REM ===USER CONTROLS WHEN TD GO=== 
560 PRINT "READY"; 
570 INPUT Z$ 
580 GOTO 710 
590 REM ============= 
600 REM NOW WE'LL USE MULTIPLE STATEMENTS 
610 REM ON A LINE TO: 1, ERASE THE SCREEN; 
620 REM 2, SKIP DOWN TO THE MIDDLE OF THE 
630 REM SCREEN; 3, PRINT A RESPONSE; AND 
6ao REM a. HOLD THE DISPLAY WHILE THE 
650 REM SYSTEM "COUNTS" TD 1000, 
660 REM =============== 
670 HOME : FDR J = TD 11: PRINT : NEXT J 
680 PRINT " PERFECT!": FOR J = 1 TD 1000: 

NEXT J 
690 c = c + 1 
700 REM ===CLEAR THE SCREEN THEN GD=== 
710 HOME 
720 NEXT 
730 FDR J = 1 TD 11: PRINT : NE XT J 
7ao PRINT "Yau Ga T "iCi" ca RR E c T !" 
750 END 

JRUN 

[Clear screen] 

DRILL ON CALCULATING THE 
AREA OF A TRIANGLE 



HO'/ MANY PROBLEMS 00 YOU WANT?3 
.I 

~HE BASE OF A TRIANGLE IS 
45 INCHES AND ITS HEIGHT 
IS 120 INCHES. WHAT IS 
ITS AREA IN SQUARE INCHES?2400 

N01 AREA = 1/2 BASE X HEIGHT 
= 1/2 x 45 x 120 
= 2700 SQUARE INCHES 
READY?OK 

[Clear screen] 

THE BASE OF A TRIANGLE IS 
15 INCHES AND ITS HEIGHT 
IS 80 INCHES. WHAT IS 
ITS AREA IN SQUARE INCHES?SOO 

[Clear screen] 

P E R F E C T! 

[Clear screen) 

THE BASE OF A TRIANGLE IS 
25 INCHES AND ITS HEIGHT 
IS 30 INCHES. WHAT IS 
ITS AREA IN SQUARE INCHES?375 

[Clear screen] 

P E R F E C T! 

[Clear screen] 

Y 0 U G 0 T 2 C 0 R R E C T 

6.5 TUTORIAL (DIALOG) APPLICATIONS 

An extension of the drill-and-practice application allows for more feedback to 
the user whenever difficulty is indicated. This "tutorial dialog" could assist the 
user in locating the specific cause of errors, provide hints, or if needed, branch 
to a separate section for detailed review. 

From an instructional computing standpoint, programs of this type are often 
the most complicated to design, are time-consuming in development, and gen­
erally go through many stages of testing and revision. The reason is that these 
programs (if carefully and thoroughly designed) must anticipate a variety of 

Show and Tl!:ll 

105 



An Introduction to the BASIC Programming Language 

users' responses and treat them accordingly: Is the user's answer partly correct? 
Has the user indicated difficulty to the extent that a branch for review is needed? 
If the user stops in the middle of an interaction, will the program start again at 
that point for the user? Should the program record the questions/responses for 
questions missed? Because of these extensive design, development, and evalu­
ation considerations, thorough tutorial dialog programs are not widely available. 

The examples that follow are relatively short programs that illustrate some 
programming strategies for introducing more of a "dialog" into the interaction. 
They are by no means examples of extensive tutorial dialog instructional com­
puting programs. However, they do show some of the techniques that may be 
used in programs of this type. 

6.5.1 PROGRAM 16: Providing Hints 

Providing hints is a simple example of a tutorial program. These hints may 
be incorporated as DATA elements and READ into a one-dimensional array in 
the same fashion as questions and answers were in PROGRAM 13. In the fol­
lowing program, a flag is set so that (arbitrarily) a hint is given on the first miss 
and the correct answer is given on the second miss (see statements 930-980). 
PROGRAM 16 illustrates this and also follows the criteria defined in Problem 4 
of Chapter 5. 

RUN from disk and refer to the listing and run of PROGRAM 16. 

lLOAO PROGRAM 16 
lLIST 

10 REM 
20 REM 
30 REM 
ao REM 
50 REM 
60 REM 
70 REM 
80 REM 
90 REM 
100 REM 
110 REM 
120 REM 
130 REM 
140 REM 
150 REM 
160 REM 
170 REM 
180 REM 
190 REM 
200 REM 
210 REM 

PROGRAM 16 
=============== 
TUTORIAL "DIALOG": THIS 
PROGRAM DEMOS RANDOM QUESTIONS 
WITH ONE HINT, SELECTION IS FROM 
ONE-DIM ARRAYS. DATA IS STORED 
IN THE SEQUENCE: 
QUESTION1 ANSWER, HINT. 
FEEDBACK FOR CORRECT AND INCORRECT 

USER RESPONSES IS ALSO RANDOMLY 
SELECTED FROM ONE-DIM ARRAYS, 
=============== 
VARIABLE DICTIONARY 
=============== 
A$( > - ANSWER FOR QUESTION Q$( > 

C - NUMBER-CORRECT COUNTER 
C$( > - FEEDBACK FDR CORRECT RESPONSE 
F - FLAG FOR MISSING QUES lST TRY 
H$ ( ) - HI NT FDR QUEST I ON Q$ ( l 
Q - COUNTER FOR NUMBER OF QUESTIONS <LOOP> 
Q$ < l - QUEST ION ASKED 



220 REM R$ - USER RESPONSE CVIA INPUT> 
230 REM W$C l - FEEDBACK FOR 1ST INCORRECT RESPONSE 
240 REM X - RANDOM NUMBER <15-ll 
250 REM ZCXl - FLAG FDR RANDOM NUMBER X 
~60 REM =============== 
270 DIM Q$(15l 1A$(15l 1H$C15l 1ZC15l 1C$C3l 1W$C3l 
280 REM ===QUESTION1 ANSWER1 HINT DATA=== 
290 DATA "CAPITAL OF TEXAS" 111 AUSTIN" 
300 DATA "OL' STEPHEN F," 
310 DATA "LAST NAME OF ' BOLERO ' COMPOSER" 
320 DATA "RAVEL" 1"SWEATERS CAN UN - " 
330 DATA "FORMULA FDR POTASSIUM FLUORIDE" 
340 DATA I KF" 1"PDTASSIUM IS K" 
350 DATA GOLIATH'S SLAYER" 1"DA VID" 
360 DATA SLING-SHOT" 
370 DATA 
380 DATA 
390 DATA 
400 DATA 
410 DATA 
420 DATA 
430 DATA 
440 DATA 
450 DATA 
460 DATA 
470 DATA 

DANIEL WAS PLACED IN THE LION ' S -?-" 
DEN " 1"FAMILY ROOM" 
THE 'B ' IN BASIC" 
BEGINNER ' S" 111 NOVICE'S" 
LARGEST CITY IN JAPAN" 
TOKYO" 111 TOKEN QUESTION" 
A SYNONYM FOR PARONOMASIA" 
PUN 11 111 PUNSTERS USE THESE" 
DIVIDE 50 BY 112 AND ADD 3. ANS" 
103" I II ( ( 50 I. 5) +3 ) II 

GEORGE WASHINGTON COULD NOT TELL A --?--" 
480 DATA LIE "1" LITTLE WHITE-?-" 
490 DATA THREE-TOED SLOTH"1"AI" 
500 DATA FIRST AND THIRD VOWELS" 
510 DATA COOLED LAVA" 111 AA" 
520 DATA SOUND OF PLEASURE" 
530 DATA MONTH OF THE WINTER SOLSTICE" 
540 DATA DECEMBER" 111 MAKE MERRY" 
550 DATA ADAM ' S ALE 11 111 WATER" 1"H20" 
560 DATA CM PER INCH" 1"2,54 11 1"?,54 11 

570 REM ===FEEDBACK FOR CORRECT/INCORRECT RESPONSE=== 
580 DATA "HOT-DOGGIES" 111 WHDDPS" 
590 DATA "PERFECT" 111 YOU'RE KIDDING" 
600 DATA "SENSATIONAL" 1"THINK OF THIS" 
610 REM =============== 
620 REM STORE QUESTION1 ANSWER1 HINT 
630 REM =============== 
640 FOR I = 1 TO 15 
650 READ Q$ <I l 1A$ <I l 1H$ <I l 
660 ZCil = 0 
670 NEXT I 
680 REM =============== 
690 REM STORE CORRECT1 INCORRECT FEEDBACK 
700 REM =============== 
710 FOR I = 1 TO 3 

Show and 7ell 

107 



An Introduction to the BASIC Programming Language 

720 READC$ClltW$ Cil 
730 NE XT I 
740 HOME 
750 PRINT II FUN AND GAMES" 
760 PRINT 
770 PRINT "H ERE ARE 8 QUESTIONS,,, " 
780 REM =============== 
790 REM ASK 8 QUESTIONS 
800 REM ======= ===== === 
81 0 FDR Q = 1 TD 8 
820 PRINT 
830 F = 0 
840 X = INT C15 * RND Cl) + ll 
850 REM ===HAS X APPEAR ED BEFORE?=== 
860 IF ZC Xl = 1 THEN 840 
870 ZCXl = 
880 PRINT Q$C Xl i 
890 INPUT R$ 
900 REM ===GET A RANDOM NUMBER FDR FEEDBACK=== 
810 R = INT C3 * RND Cl l + ll 
920 IF R$ = A$ (Xl THEN 990 
830 REM ===HAS QUESTION BEEN MISSED BEFORE?=== 
940 IF F = 1 THEN 1020 
950 F = 1 
960 PRINT W$!R li"! HERE ' S A HINT:" 
970 PRINT H$ (Xl 
980 GOTO 880 
990 PRINT C$CRl i"!" 
1000 c = c + 1 
1010 GOTO 1030 
1020 PRINT "A CORRECT ANSWER IS "iA$CXJ 
1030 NEXT Q 
1040 PRINT 
1050 PRINT "YOU ANSWERED "iCi" CORRECT LY!" 
1060 PRINT TAB ( 7); "BYE-B YE ... II 
1070 END 

JRUN 

[Clear screen) 

FUN AND GAMES 

HERE ARE 8 QUESTIONS.,, 

LAST NAME OF 'BO LERO ' COMPOSER?BACH 
WHOOPS ! HERE ' S A HINT: 
SWEATERS CAN UN-
LAST NAME OF ' BOLERO ' COMPDSER?R AVEL 
PERFECT! 



COOLED LAVA?WHAT????? 
YOU'RE KIDDING! HERE'S A HINT: 
SOUND OF PLEASURE 
COOLED LAVA?AH 
A CORRECT ANSWER IS AA 

GOLIATH ' S SLAYER?OANIEL 
WHOOPS! HERE'S A HINT: 
SLING-SHOT 
GOLIATH ' S SLAYER?OAVIO 
HOT-DOGGIES! 

THREE-TOED SLOTH?WHO KNOWS? 
YOU ' RE KIDDING! HERE'S A HINT: 
FIRST ANO THIRD VOWELS 
THREE-TOED SLOTH?AI 
PERFECT! 

LARGEST CITY IN JAPAN?TOKYO 
HOT-DOGGIES! 

THE 'B' IN BASIC?BEGINNERS 
YOU'RE KIDDING! HERE ' S A HINT: 
NOVICE ' S 
THE ' B' IN BASIC?BEGINNER ' S 
PERFECT! 

GEORGE WASHINGTON COULD NOT TELL A --?--?FIB 
THINK OF THIS! HERE'S A HINT: 

LITTLE WHITE -?-
GEORGE WASHINGTON COULD NOT TELL A --?--?STORY 
A CORRECT ANSWER IS LIE 

A SYNONYM FDR PARDNOMASIA?PUN 
SENSATIONAL! 

YOU ANSWERED S CORRECTLY! 
BYE-BYE,,, 

6.5.2 PROGRAM 17: Review of Missed Questions 

A simple expansion of PROGRAM 16 can be accomplished by defining two 
additional one-dimensional arrays. One will flag a question number missed, and 
the other will contain the incorrect response entered for that question (see state­
ments 1200-1270). At the conclusion of the program, a list of missed questions, 
including the incorrect responses and a correct answer, can be displayed for 
review by the user (see statements 1640-1850). 

Show and Tell 

109 



An Introduction to the BASIC Programming Language 

RUN from disk and refer to the listing and run of PROGRAM 17. 

lLOAD PROGRAM 17 
JLIST 

10 REM 
20 REM 
30 REM 
40 REM 
50 REM 
80 REM 
70 REM 
80 REM 
90 REM 
100 REM 
110 REM 
120 REM 
130 REM 
140 REM 
150 REM 
180 REM 
170 REM 
180 REM 
190 REM 
200 REM 
2 10 REM 
220 REM 
230 REM 
240 REM 
250 REM 
280 REM 
270 REM 
280 REM 
290 REM 

PROGRAM 17 
=============== 
TUTORIAL "DIALOG": THIS 
PROGRAM IS SIMILAR TO PROGRAM 18 
BUT ADDS THE FEATURES OF IMPROVED 
SCREEN DISPLA Y AND "REVIEWS" EACH 
QUESTION MISSED AT LEAST ONCE. USER 
IS ALLOWED TO SELECT THE NUMBER OF 
QUESTIONS TO BE ASKED. 

ONLY THOSE QUESTIONS ANSWERED CORRECTL Y 
ON FIRST ATTEMPT ARE COUNTED AS OK. 
=============== 
VARIABLE DICTIONARY 
=============== 
A$( ) - ANSWER TO QUESTION Q$( ) 
C - NUMBER-CORRECT-lST-TRY COUNTER 
C$( ) - FEEDBAC K FOR CORRECT RESPONSE 
F - FLAG FOR MISSING QUESTION 1ST TRY 
H$( > - HINT FDR QUESTION Q$( ) 
Q - NUMBER OF QUESTIONS ASKED <VIA USER INPUT> 
Q$( > - QUESTION ASKED 
R - RANDOM NUMBER (3-ll FOR FEEDBACK 
R$ - USER RESPONSE <VIA INPUT> 
S$ ( > - USER INCORRECT RESPONSE TO QUEST I ON Q$ ( ) 
W$ ( l - FEEDBACK FOR 1 ST INCORRECT RESPONSE 
X - RANDOM NUMBER ( 15-1) 
Z< X> - FLAG FOR RANDOM NUMBER X 
Zl< X> - FLAG FOR QUESTION NUMBER MISSED BY USER 
=============== 

300 DIM Q$(15 l 1A$ ! 15) 1H$!15) 1S$(15l 1Z(15) 1Zl!15l 1C$(3l, 
W$ !3l 

310 REM = =QUESTION1 ANSWER1 HINT DATA=== 
320 DATA LATIN FDR ' BUTTOCKS '" 
330 DATA GLUTEUS MA X I MUS II , II GLUTEALS" 
340 DATA LAST NAME OF ' BOLERO' COMPOSER" 
350 DATA RAVEL" 1"SWEATERS CAN UN-" 
360 DATA FORMULA FOR ZINC OXIDE" 
370 DATA ZNO" 1"ZINC IS ZN" 
380 DATA GOLIATH ' S SLAYER" 1"DAVID" 
390 DATA SLINGSHOT" 
400 DATA 
410 DATA 
420 DATA 

DANIEL WAS PLACED IN THE LION ' S -?-" 
DEN" 1"FAMILY ROOM" 
WHAT KEEPS THE DOCTOR AWAY" 

ll30 DATA AN APPLE A DA Y" 1"MICROCOMPUTER" 
ll40 DATA "WHICH IS LONGER: METER OR YARD " 



450 
460 
470 
480 
490 
500 
510 
520 
530 
5ll0 
550 
560 
570 
580 
590 
600 
610 
620 
630 
640 
650 
660 
670 
680 

DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
REM 
DATA 
DATA 
DATA 
REM 
REM 
REM 

"METER" t"A METER IS 39,37 IN," 
"MONTH OF THE LONGEST DAY" 
"JUNE" t"ASSUME N. HEMISPHERE" 

THE ' B' IN BASIC" 
BEGINNER ' S" •"NOVICE'S" 
A THREE-TOED SLOTH"t"AI" 
FIRST AND THIRD VOWELS" 
LARGEST RIVER IN THE WORLD" 
AMAZON" t "BIG-MOMMA! II 

LONGEST RIVER IN THE WORLD" 
NILE" t"A SHADE OF GREEN" 

"NORTHERN WATER BODY OF TEXAS" 
"RED RIVER" t"RED RYDER" 
"CAPITAL OF OREGON" t"SALEM" 
"WITCH HUNT CITY" 
"'NEW DOOR ' REARRANGED TO ONE WORD" 
"ONE WORD" •"IT'S ONE WORD" 

===FEEDBACK FOR CORRECT/INCORRECT RESPONSE=== 
"GREAT" t "OHt SHOOT" 
"SENSATIONAL" t"WHOA NOW ••• II 

"HOT-DOGGIES" 1"LET ME HELP" 
------------------------------
STORE QUESTION, ANSWERt HINT 
=============== 

690 FOR I = 1 TD 15 
700 READ Q$( I) tA$( I) tH$( I) 
710 ZCil = O:ZlCil = 0 
720 NE XT I 
730 REM =============== 
740 REM STORE FEEDBACK FOR CORRECT/INCORRECT RESPONSE=== 
750 FOR I = 1 TD 3 
760 READC$ClltW$Cll 
770 NEXT I 
780 HOME : PRINT : PRINT : PRINT 
790 PRINT "MORE FUN AND GAMES": PRINT 
800 PRINT 
810 PRINT "WHAT ' S YOUR FIRST NAME"; 
820 INPUT F$ 
830 HOME : PRINT 
840 PRINT 
850 =INTRODUCTION=== REM = 
860 HELLOt ";F$;" , THIS PROGRAM": PRINT PRINT 

PRINT 870 SHOWS SOME SIMPLE USES OF BASIC": PRINT 
880 IN INSTRUCTIONAL COMPUTING. WHAT": PRINT PRINT 
890 I ' LL DD IS ASK SOME QUESTIONS": PRINT PRINT 
900 THAT ARE 'FUN AND GAMES,' IF YOU": PRINT PRINT 
910 MISS ON THE FIRST TRYt I'LL GIVE": PRINT PRINT 

PRINT 920 A HINT. I'LL ONLY GIVE YOU TWO": PRINT 
PRINT 930 CHANCES TD ANSWER, AT THE ENDt": PRINT 

940 PRINT I ' LL SHOW YOU THE QUESTIONS MISSED": PRINT 

Show and 'Jell 

111 



An Introduction to the BASIC Pro9mmmin9 Lan9ua9e 

PRINT "AND GIVE YOU YOUR SCORE," 950 
955 
980 
970 
980 
990 
1000 
1010 
1020 
1030 
1040 
1050 
1080 
1070 
1080 

REM === INPUT STATEMENT CAN HAVE TEXT 
PRINT : INPUT "READY?";Z$ 
REM ===CLEAR AND CENTER ON SCREEN=== 
HOME : FOR I = 1 TO 11: PRINT : NEXT I 
PRINT "I HAVE 15 QUESTIONS AVAILABLE," 

PRINT "HOW MANY WOULD YOU LIKE";: INPUT Q 
REM ===CHECK FOR WITHIN RANGE=== 
IF Q < 1 THEN 1050 
IF Q > 15 THEN 1050 
GOTO 1080 
PRINT "AWWW 1 IT HAS TO BE 1 TO 15 ! " 
GOTO 990 
REM ===ASK "Q" QUESTIONS=== 
FOR J = 1 TO Q 

1090 HOME : FOR I = 1 TO 10: PRINT NEXT I 
11 00 F = 0 
1110 X = INT C15 * RND Cl> + 1) 
1120 REM ===HAS X APPEARED BEFORE?=== 
1130 IF ZCX> = 1 THEN 1110 
1140 ZC X> = 
1150 PRINT Q$CX>; 
1180 INPUT R$ 
1170 R = INT C3 * RND Cl> + 1) 
1180 IF R$ = A$C X> THEN 1380 
1190 IF F = 1 THEN 1470 
1200 REM =============== 
1210 
1220 
1230 

REM 
REM 
REM 

FOR A QUESTION THAT IS MISSED: 
1 , FLAG THE NUMBER OF THAT QUESTION; 
2, STORE THE RESPONSE GIVEN BY THE USER 

IN S$C X) FOR LATER RECALL, 1240 REM 
1250 REM 
1280 ZlCX) = 

=============== 

1270 S$C X> = R$ 
1280 F = 1 
1290 PRINT W$CR);"! HERE ' S A HINT:" 
1300 PRINT H$C X) 
1310 GOTO 1150 
1320 REM =============== 
1330 REM CLEAR THE SCREEN, CENTER THE FEEDBACK, 
1340 REM AND HOLD IT THERE A MOMENT OR TWO , 
1350 REM ================ 
1380 HOME : FOR I = 1 TO 11: PRINT 
1370 PRINT TAB< 10) ;C$CR> ;n ! " 
1380 FOR I = 1 TO 1000: NE XT I 

NEXT I 

1390 REM ===NO CREDIT GIVEN IF CORRECT 2ND 
TRY!=== 

1400 IF F = 1 THEN 1500 
1410 c = c + 1 



1420 GOTO 1500 
1430 REM =============== 
1440 REM FLASH THE CORRECT ANSWER AND 
1450 REM LET USER SAY WHEN TO GO. 
1460 REM =============== 
1470 PRINT "A CORRECT ANSWER IS: "l 
1480 FLASH : PRINT A$CX l : NORMAL 
1490 PRINT : INPUT "READY?"lZ$ 
1500 NE XT J 
1510 HOME : PRINT 
1520 PRINT "YOU ANSWERED "lCl" CORRECTLY" 
1530 PRINT "ON THE FIRST TRY,,," 
1540 REM ===EVERY ANSWER CORRECT FIRST TRY?=== 
1550 IF C < > Q THEN 1600 
1560 PRINT 
1570 PRINT "EXCELLENT !" 
1580 FOR I = 1 TO 3000: NEXT I 
1590 GOTO 1860 
1600 PRINT : PRINT 
1610 PRINT "THE QUESTIONS MISSED AT" 
1620 PRINT "LEAST ONCE ARE:" 
1630 FOR I = 1 TO 5000: NE XT I 
1640 REM =============== 
1650 REM 
1660 REM 
1670 REM 
1680 REM 
1690 REM 
1700 REM 

LOOP THRU ALL 15 TO SEE IF A QUESTION 
WAS MISSED. IF MISSED1 ZlCil IS 1 

CFROM SETTING THE FLAG AT LINE 1260> 
AND THE USER'S INCORRECT RESPONSE 

IS STORED IN S$C I>, CFROM LINE 1270) 
=============== 

171 0 FOR I = 1 TO 15 
1720 HOME : PRINT : PRINT : PRINT 
1730 REM ===DID THE USER MISS THIS QUESTION?=== 
1740 IF ZlCil = 0 THEN 1850 
1750 PRINT 
1760 PRINT " QUESTION:" 
1770 
1780 
1790 
1800 
1810 
1820 
1830 
1840 
1850 
1860 
1870 
1880 

PRINTQ$CI> 
PRINT 
PRINT " 
PRINT S$C I) 
PRINT 

YOUR ANSWER:" 

PRINT " A CORRECT ANSWER:" 
PRINT A$Cil: PRINT 
INPUT" READY? " iZ$ 
NEXT I 
HOME : FOR I = 1 TO 10: PRINT : NE XT I 
REM ===COMPUTE A PERCENTAGE SCORE=== 
PRINT "YOUR SCORE IS "iC * 100 I Qi" '%! " 

1890 PRINT TABC 5 ) i "BYE-BYE, "iF$ 
1900 END 

Show and 'Jell 

113 



An Introduction to the BASIC Programming Language 

JRUN 

[Clear screen) 

MORE FUN AND GAMES 

WHAT'S YOUR FIRST NAME?SAMMY 

[Clear screen) 

HELlOt SAMMY. THIS PROGRAM 

SHOWS SOME SIMPLE USES OF BASIC 

IN INSTRUCTIONAL COMPUTING. WHAT 

I ' LL DO IS ASK SOME QUESTIONS 

THAT ARE ' FUN AND GAMES,' IF YOU 

MISS ON THE FIRST TRYt I ' LL GIVE 

A HINT, I 'LL ONL Y GIVE YOU TWO 

CHANCES TO ANSWER. AT THE ENDt 

I ' LL SHOW YOU THE QUESTIONS MISSED 

AND GIVE YOU YOUR SCORE. 

READY?OK 

[Clear screen) 

I HAVE 15 QUESTIONS AVAILABLE. 
HOW MANY WOULD YO U LIKE?O 
AWWW1 IT HAS TO BE 1 TO 15! 
I HAVE 15 QUESTIONS AVAILABLE. 
HOW MANY WOULD YOU LI KE?100 
AWWW1 IT HAS TO BE 1 TO 15! 
I HAVE 15 QUESTIONS AVAILABLE. 
HOW MANY WOULD YOU LIKE?3 

[Clear screen) 

LONGEST RIVER IN THE WORLD?MISSISSIPPI 
WHOA Now ••• ! HERE 'S A HINT: 
A SHADE OF GREEN 
LONGEST RIVER IN THE WORLD?THAMES 
A CORRECT ANSWER Is: 3:~ ~ ~~ E 
READY?YES 



[Clear screen] 

LARGEST RIVER IN THE WORLD?AMAZDN 

[Clear screen] 

HOT-DOGGIES! 

[Clear screen] 

A THREE-TOED SLOTH?WHO KNOWS? 
LET ME HELP! HERE'S A HINT: 
FIRST AND THIRD VOWELS 
A THREE-TOED SLOTH?AI 

[Clear screen] 

GREAT! 

[Clear screen] 

YOU ANSWERED 1 CORRECTLY 
ON THE FIRST TRY+•• 

THE QUESTIONS MISSED AT 
LEAST ONCE ARE: 

[Clear screen] 

QUESTION: 
A THREE-TOED SLOTH 

YOUR ANSWER: 
WHO KNOWS? 

A CORRECT ANSWER: 
AI 

READY?YES 

QUESTION: 
LONGEST RIVER IN THE WORLD 

YOUR ANSWER: 
MISSISSIPPI 

A CORRECT ANSWER: 
NILE 

READY?GO ON ••• 

[Clear screen] 

YOUR SCORE IS 33,3333333 X! 
BYE-BYE 1 SAMMY 

Show and Jell 

115 



An Introduction to the BASIC Programming Language 

6.5.3 PROGRAM 18: Model Tutorial Program with Hints 
Based upon the previous two programs, it is possible to derive a "model" 

program for a general type of tutorial interaction. For this model, a maximum 
of 50 possible questions and the presentation of two hints have been arbitrarily 
defined. The program is designed so that DATA elements corresponding to the 
number of possible questions, the number of questions to be presented, the text 
of the question, the text of the answer, and the text of the first and second hints 
are added to the program following statement 1670 (see statements 1590-1670). 

This model program shows that, once a general design has been defined, it 
is a relatively simple task to use the same program in a variety of conceptual 
applications. By adding an appropriate introduction via PRINT statements and 
DATA containing whatever content is desired, the program will ask questions, 
provide hints, and so forth, for any chosen topic. 

Refer to the listing of PROGRAM 18. 

JLOAD PROGRAM 18 
JLIST 

10 REM 
20 REM 
30 REM 
llO REM 
50 REM 
60 REM 
70 REM 
80 REM 
90 REM 
100 REM 
110 REM 
120 REM 
130 REM 
140 REM 
150 REM 
160 REM 
170 REM 
180 REM 
190 REM 
200 REM 
210 REM 
220 REM 
230 REM 
2£10 REM 
250 REM 
260 REM 
270 REM 
280 REM 
290 REM 
300 REM 

PROGRAM 18 
=============== 
TUTORIAL "DIALOG": THIS PROGRAM 
IS BASED ON PROGRAM 17 CONCEPTS. 
PROGRAM DEMOS HOW "MODELS" MAY BE 
BUILT SO THAT DATA CORRESPONDING TO 
QUESTIONS1 ANSWERS1 AND HINTS OF A 
USER ' S CHOOSING MA Y BE ADDED TO THE 
MODEL PROGRAM . THIS PROGRAM 

ARBITRARILY HAS FIVE CHOICES FOR 
CORRECT/INCORRECT FEEDBACK INCLUDED. 
UP TO TWO HINTS ARE GIVEN FOR EACH 
INCORRECT RESPONSE. REVIEW OF MISSED 
QUESTIONS IS GIVEN AT CONCLUSION OF 
THE PROGRAM. DATA REPRESENTING THE 
NUMBER OF QUESTIONS AVAILABLE CN1> 
AND NUMBER OF QUESTIONS TO BE ASKED CNZ> 
PLUS DATA FOR QUESTIDN1 ANSWER1 HINT! 1 
AND HINTZ ARE ADDED AFTER LINE 1670 . 
============== 
VARIABLE DICTIONARY 
======== ==== == 
A$( ) - CORRECT ANSWER 
C - NUMBER-CORRECT COUNTER 
C$ C > - RANDOM POSIT I VE FEEDBACK 
F - COUNTER FDR THE NUMBER OF TIMES 

A QUESTION HAS BEEN MISSED 
H1$C ) - FIRST HINT 
H2$C ) - SECOND HINT 
Nl - TOTAL NUMBER OF QUES1 ANS1 HINTS 



TO BE READ FROM DATA 310 REM 
320 REM 
330 REM 
3il0 REM 
350 REM 
360 REM 
370 REM 
380 REM 
390 REM 
aoo REM 

N2 - NUMBER OF QUESTIONS TO ASK IN LOOP 
Q$ < l - QUEST I ON ASKED 
RS - USER RESPONSE <VIA INPUT> 
S$ ( ) - USER ' S INCORRECT RESPONSE 
W$( l - RANDOM FEEDBACK FOR INCORRECT RESPONSE 
X - RANDOM NUMBER <Nl TO ll 
Z! Xl - RANDOM NUMBER SELECTION FLAG 
Zl(Xl - FLAG FOR THE QUES, NO, MISSED 
============== 

illO DIM Q$(50l 1A$(50) 1HU<50) 1H2$!50) 
il20 DIM S$(50) 1Z!50) 1Z1<50) 1C$(5) 1W$(5) 
il30 REM ===FEEDBACK FOR CORRECT/INCORRECT RESPONSE=== 
aao DATA "GRRREAT" 1"NO ••• THINK OF THIS" 
il50 DATA "FINE" 1"HOLD IT" 1"PERFECT" 1"NO,, .NOT YET" 
il60 DATA "HOT-DOG" 1"LET ME HELP" 
il70 DATA "MARVELOUS" 1"THIS MAY HELP" 
il80 REM ===STORE CORRECT1 INCORRECT RESPONSES=== 
il90 FOR I = 1 TO 5 
500 READ C$( I) 11-!$( I l 
510 NEXT ' ! 
520 REM =============== 
530 REM READ THE NUMBER OF QUESTION "SETS" 
5i10 REM AVAILABLE FROM DATA AND THE NUMBER 
550 REM OF QUESTIONS TO ASK IN THE LOOP, 
560 REM ================ 
570 READ Nl 1N2 
580 REM ===NOW STORE QUES1 ANS1HINT11 HINTZ= == 
590 FOR I = 1 TO Nl 
600 READ Q$(1) 1A$(I) 1HU<I> 1H2$(1> 
610 Z<I> = 0 
620 Zl(I) 0 
630 NEXT 
6ao c = o 

----------------------------650 REM 
660 REM 
670 REM 
680 REM 

INTRODUCTORY STATEMENTS MAY BE ADDED 
HERE UP TO LINE NUMBER 1000. 

=============== 
1000 FOR Q = 1 TO N2 
1010 HOME :F = 0 
1020 
1030 
10il0 
1050 

PRINT : 
X = INT 

IF Z<X> 
z ( x) = 1 

PRINT : PRINT 
<N1 * RND <1> + 1) 
= 1 THEN 1030 

1060 REM ===ASK THE QUESTION=== 
1070 PRINT : PRINT Q$(X) i 
1080 INPUT R$ 
1090 R = I NT < 5 * RND < 1 l + 1 > 
1100 IF R$ = A$< X> THEN 1350 
1110 HOME : FOR I = 1 TO 10: PRINT NEXT I 

Show and WI 

117 



An Introduction to the BASIC Pro9rammin9 Lan9ua9e 

1120 REM ===FLAG QUES, NO. MISSED ANO STORE RESPONSE=== 
1130 Zl<X> = 1 
1140 S$( X) = R$ 
1150 F = F + 1 
1160 REM =============== 
1170 REM GIVE EITHER THE FIRST HINT1 THE SECOND 
1180 REM HINT1 OR THE CORRECT ANSWER, 
1190 REM ============== 
1200 ON F GOTO 12 101124011270 
1210 PRINT lol$(Rli"! HERE ' S A HINT:" 
1220 PRINT Hl$< X> 
1230 GOTO 1070 
1240 PRINT lol$(R) i"! HERE'S ANOTHER HINT:" 
1250 PRINT H2$( X) 
1260 GOTO 1070 
1270 PRINT "A CORRECT ANSWER IS " iA$( X) 
1280 PRINT "READY TO GO ON"i 
1290 INPUT Z$ 
1300 GOTO 1400 
1310 REM =============== 
1320 REM CLEAR1 CENTER1 GIVE FEEDBACK 
1330 REM AND HOLD IT FOR A MOMENT, 
1340 REM ======= ==== ==== 
1350 HOME : FOR I = 1 TO 11 : PRINT 
1360 PRINT TAB< 10liC$(R)i"!" 
1370 FDR I = 1 TO 1000: NE XT I 
1380 IF F < > 0 THEN 1400 
1390 c = c + 
1400 NEXT Q 

NEXT I 

1410 HOME FOR I = 1 TO 10: PRINT : NEXT I 
1420 PRI NT "FIRST TRY CORRECT= "iC 
1430 IF C < > NZ THEN 1460 
1440 PRINT "E X CELLENT !" 
1450 GOTO 9999 
1460 PRINT "THE ONES MISSED AT LEAST ONCE ARE:" 
1470 FDR I = 1 TO Nl 
1480 IF Zl<I> = 0 THEN 1580 
1490 PRINT : PRINT : PRINT 
1500 PRINT "QUESTION: "iQ$(I) 
1510 PRINT 
1520 PRINT "Y OU R ANSWER: "iS$(I) 
1530 PRINT 
1540 PRINT "CORRECT ANSWER: "iAS<I> 
1550 PR INT : PRINT 
1560 PRINT TAB < 10) i"READY"; 
1570 INPUT Z$ 
1580 NE XT I 
1590 REM =========== ==== 
1600 REM ADD A DATA STATEMENT HERE FOR 
161 0 REM THE NUMBER OF QUESTION "SETS" AND 



1620 
1630 
16LIO 
1650 
1660 
1670 
9999 
10000 

REM THE NUMBER OF QUESTIONS TO BE ASK ED . 
REM EXAMPLE: DATA 25115 
REM THEN ADD DATA FOR THE QUESTION "SETS" 
REM IN THE SEQUENCE "QUESTION", "ANSWER" 
REM "FIRST HINT" 1"SECONO HINT" 
REM ============ 
PRINT II 

END 
BYE-BYE,, ," 

6.5.4 PROGRAM 19: Model Tutorial Program with Dialog 

A tutorial program can do more than just give hints when users are having 
difficulty with a given question: It can, to some degree, approach the type of 
dialog that occurs between a tutor and a student. As an example, consider a 
question related to the chemical concept of a mole. By definition, a mole is a 
quantity of a chemical compound equal to the formula weight (FW) of that 
compound. This quantity is usually expressed in grams, but it could be any mass 
unit (ounces, tons, and so on). For a given weight of a chemical compound, the 
number of moles is determined by the following formula: 

Moles = Weight (grams)/FW (gram-formula weight) 

The following program illustrates a type of dialog that could occur in a 
tutorial instructional computing application. Note that the program makes use 
of the ABS (absolute) function to allow for a tolerance of ± 0.1 in the user's 
answers (see statements 450-500 and 680). Also be reminded that this is, in 
essence, a program fragment and does not include an introduction, examples, 
random selection of positive responses, use of counters for the number correct, 
and so on. These elements should always be incorporated in programs for actual 
use in an educational setting. 

RUN from disk and refer to the listing and run of PROGRAM 19. 

JLOAD PROGRAM 19 
JLIST 

10 REM 
20 REM 
30 REM 
ao REM 
SO REM 
60 REM 
70 REM 
BO REM 
90 REM 
100 REM 
110 REM 

PROGRAM 19 
========== === 
TUTORIAL "DIALOG": TH IS 
PROGRAM DEMOS MORE OF A "TUTORIAL" 
TYPE OF INTERACTION BETWEEN USER AND 
THE PROGRAM , USING THE CHEMICAL CONCEPT 
OF THE "MOLE" AS AN ILLUSTR ATI VE VE HI CLE, 
ONLY THREE COMPOUNDS ARE USED I N 
THE EXAMPLE WITH THEIR FORMULAS AND 

FORMULA WEIGHTS STORED IN ONE-DIMENSION ARRAYS, 
USE OF THE ABS <A BSOLUTE > FUNC TION 

120 REM IS ALSO INTRODUCED, 

Show and Iell 

119 



An Introduction to the BASIC Programming Language 

130 REM 
1£10 REM 
150 REM 
160 REM 
170 REM 
180 REM 
190 REM 
ZOO REM 
210 REM 
220 REM 
230 REM 

====== ====== 
VARIABLE DICTIONARY 
============ 
C$ < l - CHEM I CAL COMPOUND FORMULA 
F - FLAG FOR MISSING QUESTION 1ST TRY 
G - RANDOM NUMBER OF GRAMS OF COMPOUND 
M - NUMBER OF MOLES <GRAMS /FORMULA WT l 
Rt R$1 V - USER RESPONSES <V IA INPUTS ) 
W< l - FORMULA WEIGHT OF A COMPOUND 
X - RANDOM NUMBER <3 TO ll FOR 

COMPOUND SELECTION 
2£10 REM ===== ========== 
250 DIM C$ (3l 1W<3l 
260 DATA "KOH"1561"HF 11 1Z01 11 KI"d66 
270 REM ===STORE THE FORMULAS AND WEIGHTS= == 
280 FOR I = 1 TO 3 
290 READ C$< I l 1W< I l 
300 NE XT I 
310 F = 0 
320 REM =============== 
330 REM GET A RANDOM NUMBER OF GRAMS AND A 
3£10 REM RANDOM COMPOUND. THEN CALCULATE MOLES . 
350 REM ====== ====== ==== 
360 G = I NT < 10 * RND < 1 l + 1 l * 20 
370 X = I NT < 3 * RN D < 1 l + 1 l 
380 M = G I W<Xl 
390 REM ===ASK THE QUESTION=== 
£10 0 PRINT 
£110 PRINT "HOW MAN Y MOLES OF " iC$( Xl i" ARE" 
£120 PRINT "PRESE NT IN "iGi" GRAMS"i 
£130 INPUT R 
llllO PRINT 
£150 REM =============== 
£160 REM USE THE ABS FUNCTION TO ACCEPT AN 
£170 REM ANSWER THAT IS WITHIN 0,1 OF THE 
£180 REM CORRECT ANSWER AND THE USER 'S ANSWER . 
£190 REM =============== 
500 IF ABS <R - Ml < = .1 THEN 860 
510 REM ===GIVE ANSWER ON SECOND MISS=== 
520 IF F = 1 THEN 800 
530 F = 1 
5£10 REM ===ASK FIRST STEP IN SOLUTION SEQUENCE=== 
550 PRINT "NO., .DID YOU DIVIDE THE" 
560 PRINT "WEIGHT BY THE FW <Y OR Nl " i 
570 INPUT R$ 
580 PRINT 
590 IF R$ = "Y" THEN 630 
600 PRINT "WELL1 YOU SHOULD! TRY AGAIN+" 
610 GOTO £100 
620 REM ===CHECK FOR SECOND STEP IN SOL'N SEQUENCE=== 



630 PRINT "GOOD, THAT IS CORRECT." 
640 PRINT "WHAT VALUE DID YOU USE" 
650 PRINT "FOR THE FW OF ";C$CX); 
660 INPUT V 
670 PRINT 
680 IF ABS CV - WIX>) < = .1 THEN 750 
690 PRINT "AHA! THIS MAY BE YOUR" 
700 PRINT "PROBLEM. THE APPROXIMATE" 
710 PRINT "FW OF ";C$C X> ;" IS "HICX) 
720 PRINT "NOW TRY IT AGAIN ••• " 
730 GOTO 400 
740 REM ===IF CORRECT TO HERE1 MUST BE MATH ERROR=== 
750 PRINT "HMMM ••• THAT IS THE CORRECT" 
760 PRINT "FW FDR ";C$CX>;", YOU MUST" 
770 PRINT "HAVE MADE AN ARITHMETIC" 
780 PRINT "ERROR. CHECK AND TRY AGAIN." 
790 GOTO 400 
800 PRINT 
810 REM ===SHOW THE CORRECT SOLUTION=== 
820 PRINT "MOLES = WT/FW" 
830 PRINT"= ";G;" /"; wc x> 
840 PRINT"= "; INT CM* 100) I 100 
850 GOTO 880 
860 PRINT" EXCELLENT !" 
870 REM ===LET USER CONTINUE AT WILL=== 
880 PRINT 
890 PRINT "WANT ANOTHER CY ORN)"; 
900 INPUT R$ 
910 IF R$ = "Y" THEN 310 
920 END 

JRUN 

HOW MANY MOLES OF KI ARE 
PRESENT IN 200 GRAMS?33 

NO ••• DID YOU DIVIDE THE 
WEIGHT BY THE FW CY OR N>?Y 

GOOD. THAT IS CORRECT. 
WHAT VALUE DID YOU USE 
FOR THE FW OF KI?56 

AHA! THIS MAY BE YOUR 
PROBLEM, THE APPROXIMATE 
FW OF KI IS 166 
NOW TRY IT AGAIN ••• 

HOW MANY MOLES OF KI ARE 
PRESENT IN 200 GRAMS?1.2 

Show and 'fell 

121 



An Introduction to the BASIC Prog ramming Language 

E X C E L L E N T I 

WANT ANOTHER <Y OR N>?Y 

HOW MANY MOLES OF HF ARE 
PRESENT IN 120 GRAMS?2 

NO,,,DID YOU DIVIDE THE 
WEIGHT BY THE FW <Y OR Nl?N 

WELL, YOU SHOULD! TRY AGAIN, 

HOW MANY MOLES OF HF ARE 
PRESENT IN 120 GRAMS?1,5 

MOLES = WT/FW 
= 120/20 
= 6 

WANT ANOTHER <Y OR N>?Y 

HOW MANY MOLES OF KI ARE 
PRESENT IN 120 GRAMS?.5 

NO,, , OIO YOU DIVIDE THE 
WEIGHT BY THE FW <Y OR Nl?Y 

GOOD, THAT IS CORRECT, 
WHAT VALUE DID YOU USE 
FOR THE FW OF KI?166 

HMMM,,,THAT IS THE CORRECT 
FW FOR KI, YOU MUST 
HAVE MADE AN ARITHMETIC 
ERROR, CHECK AND TRY AGAIN, 

HOW MANY MOLES OF KI ARE 
PRESENT IN 120 GRAMS?,71 

E X C E L L E N T ! 

WANT ANOTHER CY OR Nl?N 

122 

6.6 SIMULATION APPLICATIONS 

Usually, simulation applications in instructional computing are used when it is 
important to understand a given concept but one or more of the following sit­
uations apply: 



1. There are time and/or space and/or equipment limitations. 

2. The real process might place the user in a perilous situation. 

3. Review and/or practice would be beneficial prior to performing the actual 
experiment or process. 

Simulations in instructional computing are based upon models, most of which 
are mathematical in origin. In general, these programs allow a user to manipulate 
parameters and perhaps discover the effect of those manipulations. One popular 
application is in population dynamics: What happens to the population over a 
certain span of years if both the birth and death rates decrease and the female/ 
male birth ratio increases? Another application is in environmental studies: What 
happens to the water oxygen content if untreated raw sewage is dumped into a 
slow-moving stream? A fast-moving river? What is the effect of performing pri­
mary treatment? Secondary treatment? How does temperature affect the above 
results? 

Again, the example programs discussed below are not extensive simulations; 
they do illustrate the concept of basing the design on some defined model. 

6.6.1 PROGRAM 20: Caloric Intake and Ideal Weight 

Diet and proper body weight maintenance are popular concerns in our soci­
ety. It is well known that, by careful control of calorie intake and a good exercise 
program, weight can be lost or gained and then maintained at an "ideal" level. 

PROGRAM 20 is based upon a model which defines a woman's ideal weight 
as 100 pounds plus (or minus) 5 pounds for each inch over (or under) 5 feet in 
height. A man's ideal weight is defined as 106 pounds plus (or minus) 6 pounds 
for each inch over (or under) 5 feet in height. This weight, multiplied by an 
exercise activity factor of 12 if not active, 15 if moderately active, or 18 if very 
active, gives an approximate daily calorie count to maintain the ideal weight. A 
prediction of weight loss or gain can be made by comparing this count with an 
actual (or, in this case, simulated) daily caloric intake. 

PROGRAM 20 allows manipulation of a limited daily menu and exercise 
activity factors to examine the effects on weight control. However, its use here 
is primarily that of a simple illustration of basing a simulation on a defined model. 
Any model (within reason) can be simulated by a computer program. The most 
important step in developing the program is careful analysis of its design from 
the model. 

RUN from disk and refer to the listing and run of PROGRAM 20. 

lLOAO PROGRAM 20 
lLIST 

10 REM PROGRAM 20 DESCRIPTION 
20 REM ====================== 
30 REM SIMULATION: THIS PROGRAM PRESENTS A 

Show and 11!/l 

123 



An Introduction to the BASIC Programming Language 

llO REM 
50 REM 
GO REM 
70 REM 
80 REM 
90 REM 
100 REM 
11 0 REM 
120 REM 
130 REM 
lllO REM 
150 REM 
160 REM 
170 REM 
180 REM 
190 REM 
200 REM 
210 REM 
220 REM 
230 REM 
ZLIO REM 
250 REM 
260 REM 
270 REM 
280 REM 
290 REM 
300 REM 
310 REM 
320 REM 
330 REM 

SIMULATED CAN O LIMITED! l DAILY MENU 
FOR SELECTION BY A USER. BASED UPON 
THE MENU SELECTED AND THE SEX1 HT,, 
AND ACTIVITY OF THE USER1 AN IDEAL 
WEIGHT AND CALORIC INTAKE TO MAIN­
TAIN TH AT WEIGHT IS GIVEN, FINALL Y1 

A WEIGHT DIFFERENTIAL CLOSS OR GAIN> 
ASSUMING CONSISTENT CALORIC INTAKE 
IS SHOWN. BUT1 THE MENU IS LIMITED! 
=================== 

VARIABLE DICTIONARY 

A - EXERCISE ACTIVIT Y FACTOR 
B - BASE WEIGHT 
C - CALOR IES TO MAINTAIN I DEAL WT. 
CC> - CALORIES PE R FOOD PORTION 
E - TYP E OF EXERCISE 
F$ () - FOOD LIST FOR MEALS 
H - HEIGHT IN INCHES 
I - IDEAL WEIGHT 
M$ - MEAL 
N - NUMBER OF THE FOOD SELECTED 
P - POUNDS CLOSS OR GAIN> 
S - SEX OF THE USER 
T - TOT AL CALO RIC INTAKE 
W - WT. FACTOR / INCH FROM 5 FT. 
ZCl - FLAG FOR FOOD SELECTED 
==================== 

3LIO DIM CClll1F$Clll 1ZC ll l 
350 HOME : FOR J = 1 TO 9: PRINT : NEXT J 
360 PRINT "A SIM ULATED DAIL Y CALORIC INTA KE AND" 
370 PRINT : PRINT " ITS EFFECT ON YOUR IDEAL WEI GHT" 
380 FOR J = 1 TO LIOOO : NE XT J 
390 HOME : PRINT : PRINT "YOU WILL BE PRESENTED A MENU FO R BREAK - " 
LIOO PRINT PRINT ''FAST1 LUNCH1 AND DINNER . SELECT AS MANY" 
lllO PRINT PRINT ''ITEMS FROM EACH MENU AS YOU WI SH, AFTER" 
LI ZO PR INT PRINT ''Y OUR DAILY MENU HAS BEEN CO MPLETED1 YOU " 
ll30 PRINT PRINT " WILL RECEIVE A SUMMARY OF YOUR CALORIC " 
LILIO PRINT PRINT ''I NTA KE AND ITS EFFECT ON YO UR IDEAL WT , " 
ll50 PRINT PRINT" DEP RESS ANY KE y ,,," 
LIGO GET Z$ 
ll70 REM 
ll80 REM ===BR EA KFAS T DATA === 
ll90 REM 
500 DATA "BREAKFAST"1"BACON OR SAUSAG E"1 Z001"CEREAL WITH MILK" 1250 
510 DATA "COFFEE <BLA CK>" 151"COFFEE <WITH SUGARl " 150 
520 DATA "EGGS CZ>" '100 1"MI LK" 11 25 
530 DATA "O RANGE JUICE" 160 1"PANCAK ES " 1225 



540 DATA "SWEET ROLL" 12501"TDAST" 1751"WAFFLES" 1550 
550 GDSUB 1290 
560 REM 
570 REM ===LUNCH DATA=== 
580 REM 
590 DATA "LUNCH"1"BEER"11251"BEFDRE LUNCH DRINK"1115 
600 DATA "CHEESEBURGER" 13101"CDLA" 1144 
610 DATA "COTTAGE CHEESE 11 11101"CRACKERS" 175 
620 DATA "FRENCH FRIES" 14001"HAMBURGER 11 1260 
630 DATA "MILK" 11251"TUNA FISH 11 150 
640 DATA "VEGETABLE OR FRUIT SALAD"175 
650 GOSUB 1290 
660 REM 
670 REM ===DINNER DATA=== 
680 REM 
690 DATA DINNER" 1"APPLE <OF COURSE> PIE" 1300 
700 DATA BAKED POTAT0"12501"BEFORE DINNER DRINK" 1115 
710 DATA BEEF STEAK" 15601"BEETS" 140 
720 DATA DOZEN RAW OYSTERS" 12401"FISH" 1400 
730 DATA MACARONI" 1851"PEAS" 1115 
740 DATA TOSSED SALAD"1751 11 T.V. DINNER" 1500 
750 GOSUB 290 
760 GOSUB 1530 
770 PRINT "NOW1 SOME PERSONAL DATA IS NEEDED,,," 
780 FOR J = 1 TO 3000: NEXT J 
790 GOSUB 1530 
BOO PRINT "ARE YOU:" 
810 PRINT " 1, FEMALE" 
820 PRINT " 2. MALE" 
830 PRINT "ENTER 1 OR 2"l 
840 INPUT S 
850 IF S < 1 OR S > 2 THEN 830 
860 IF S = 1 THEN B 100:W = 5: GOTO 880 
870 B = 106:W = 6 
BBO GOSUB 1530 
890 PRINT "WHAT IS YOUR HEIGHT IN INCHES"; 
900 INPUT H 
910 IF H < 48 OR H > 84 THEN 890 
920 I = < < H - 60 > * W > + B 
930 
940 
950 
960 
970 
980 
990 
1000 
1010 
1020 
1030 

GO SUB 
PRINT 
PRINT 
PRINT 
PRINT 
PRINT 
INPUT 

IF E 
IF E 
IF E 
IF E 

1530 
"DO YOU CONSIDER YOURSELF:" 
" 1 • SEDENTARY <LITTLE EXERCISE>" 
II 2. MODERATELY ACTIVE" 
" 3. VERY ACTIVE" 
"ENTER 1 ' 2' OR 3"; 
E 
< OR E > 3 THEN 980 
= 1 THEN A 12: GOTO 1040 
= 2 THEN A 15: GOTO 1040 

3 THEN A = 18 

Show and 'Jell 

125 



An Introduction to the BASIC Programming Language 

10ll0 C = I * A 
1050 HOME : PRINT TAB< 8) i"SUMMARY OF DATA": PRINT 
1060 PRINT " YOUR IDEAL WEIGHT IS "ii: PRINT 
1070 PRINT "TO MAINTAIN THAT WEIGHT YOU NEED" 
1080 PRINT c;" CALORIES PER DAY, " : PRINT 
1090 PRINT "Y OUR DAILY CALORIC INTAKE BASED UPON " 
1100 PRINT "THE LIMITED MENU IS "iTi" CALORIES,": PRINT 
1110 PRINT" DEPRESS AN Y KE y,,," 
1120 GET Z$ 
1130 HOME : PRINT : PRINT : PRINT " 0 A T A A N A L Y S I S" 
lll!O P = INT ((((T - Cl * 7l I 3500) * 10l I 10 
1150 FOR J 1 TO ll: PRINT : NEXT J 
1160 PRINT PRINT "IF YOU ARE CONSISTENT IN THIS CALORIC " 
1170 PRINT PRINT "INTAKE, YOUR WEIGHT DIFFERENTIAL WILL" 
1180 PRINT PRINT "BE APPROXIMATELY "iPi" POUNDS/WEEK, " 
1190 PRINT PRINT" DEPRESS ANY KE y , ,," 
1200 GET Z$ 
121 0 GOSUB 1530 
1220 PRINT "00 YOU WISH ANOTHER ANALYSIS <Y OR Nl"i 
1230 INPUT Z$ 
12ll0 IF Z$ = "Y" THEN T = 0: RESTORE : GOTO 550 
1250 GOSUB 1530 
1260 PRINT "MAY YOUR BODY BE BEAUTIFUL,,, " 
1270 FOR J = 1 TO l!OOO: NEXT J: HOME 
1280 END 
1290 READ M$ 
1300 FOR J = 1 TO 11: READ F$CJltCCJl: NEXT J 
1310 HOME : PRINT TAB( llll iM$: PRINT 
1320 PRINT " FOOD"; TAB< 28l ; " CALORIES " : PR INT 
1330 FOR J = 1 TO 11 
13ll0 IF Z<Jl = 0 THEN 1390 
1350 REM 
1360 REM == =INVERSE ITEMS SELECTED; GIVE CALORIES=== 
1370 REM 
1380 INVERSE : PRINT J;", " iF$ (Jl; : NORMAL : PRINT TAB< 30l iCCJ l: 

GOTO 1 l!OO 
1390 PRINT Ji", " i F$(J) 
ll!OO NE XT J 
1ll10 PRINT "12 , CONTINUE TO NEXT SECTION,,," 
1ll20 PRINT : PRINT " YOUR CHOICECSl <1 TO 12l"i 
1ll30 INPUT N 
llll!O IF N < 1 OR N > 12 THEN 1ll20 
1ll50 IF N = 12 THEN 1510 
1460 REM 
1ll70 REM ===FLAG THE NUMBER OF THE ITEM SELECTED === 
1ll80 REM 
1ll90 Z<Nl = 1 
1500 T = T + C(Nl: GOTO 1310 
1510 FOR J = 1 TO ll:Z<J l = 0: NE XT J 
1520 RETURN 



1530 HOME : FOR J = 1 TO B: PRINT 
1540 RETURN 

lRUN 

[Clear screen] 

A SIMULATED DAILY CALORIC INTAKE AND 

ITS EFFECT ON YOUR IDEAL WEIGHT 

[Clear screen] 

NEXT J 

YOU WILL BE PRESENTED A MENU FOR BREAK-

FAST , LUNCHt AND DINNER , SELECT AS MANY 

ITEMS FROM EACH MENU AS YOU WISH , AFTER 

YOUR DAILY MENU HAS BEEN COMPLETED, YOU 

WILL RECEIVE A SUMMARY OF YOUR CALORIC 

INTAKE AND ITS EFFECT ON YOUR I DEAL WT, 

D E P R E S S A N Y 

[Clear screen] 

BREAKFAST 
FOOD 

1 , BACON OR SAUSAGE 
2 , CEREAL WITH MILK 
3, COFFEE <BLAC K> 
4 , COFFEE <WITH SUGAR> 
5, EGGS < 2) 
6 , MILK 
7, ORANGE JUICE 
B, PANCAKES 
9, SWEET ROLL 
10, TOAST 
11, WAFFLES 

K E Y .. , 

CALORIES 

12, CONTINUE TO NEXT SECTION,,, 

YOUR CHOICE<S> <1 TO 12)?1 

[Clear screen] 

BREAKFAST 
FOOD CALORIES 

1. BACON OR SAUSAGE 200 
2 , CEREAL WITH MILK 

Show and 'Jell 

127 



An lntrodudion to the BASIC Programming Language 

3, COFFEE <BLACK> 
a, COFFEE <WITH SUGAR> 
S, EGGS (2) 
6, MILK 
7, ORANGE JUICE 
8 , PANCAKES 
9 , SWEET ROLL 
10, TOAST 
11. WAFFLES 
12, CONTINUE TO NEXT SECTION,,, 

YOUR CHOICECSl (1 TO 12l?S 

[Clear screen] 

BREAKFAST 
FOOD 

1, BACON OR SAUSAGE 
2, CEREAL WITH MILK 
3, COFFEE <BLACK> 
a, COFFEE <WITH SUGAR> 
S, EGGS <2l 
s. MILK 
7 . ORANGE JUICE 
a. PANCAKES 
s. SWEET ROLL 
10. TOAST 
11 • WAFFLES 

CALORIES 

200 

100 

12 . CONTINUE TO NE XT SECTION,,, 

YOUR CHOICE<Sl < 1 TO 12l?6 

[Clear screen] 

BREAKFAST 
FOOD 

1, BACON DR SAUSAGE 
2. CEREAL WITH MIL K 
3, COFFEE <BLACK) 
a, COFFEE <WITH SUGAR> 
S, EGGS <2> 
G, MILK 
7, ORANGE JUICE 
8. PANCAKES 
9, SWEET ROLL 
10 . TOAST 
11 • WAFFLES 

CALORIES 

200 

100 
125 

12 . CO NTINUE TO NEXT SECTION,,, 

YOUR CHOICECSl C 1 TO 12l?7 



[Clear screen] 

BREAKFAST 
FOOD 

1 . BACON DR SAUSAGE 
2, CEREAL WITH MILK 
3, COFFEE <BLACK> 
a, COFFEE <WITH SUGAR) 

llS: ... 11 
8, PANCAKES 
9, SWEET ROLL 
10, TOAST 
11, WAFFLES 

CALORIES 

200 

100 
125 
60 

12, CONTINUE TD NEXT SECTION,,, 

YOUR CHOICECSl Cl TD 12l?10 

[Clear screen] 

BREAKFAST 
FOOD 

1. BACON DR SAUSAGE 
2, CEREAL WITH MILK 
3. COFFEE <BLACK> 
a, COFFEE <WITH SUGAR> 

llC .. s1 
8, PANCAKES 
9, SWEET ROLL 

CALORIES 

200 

100 
125 
60 

lfNl1ti1.11 75 
11. WAFFLES 
12. CONTINUE TD NEXT SECTION,,, 

YOUR CHOICE<Sl (1 TO 12>?12 

[Clear screen] 

LUNCH 
FOOD 

1. BEER 
2. BEFORE LUNCH DRINK 
3. CHEESEBURGER 
a. COLA 
5, COTTAGE CHEESE 

CALORIES 

Show and 71!/l 

129 



An Introduction to the BASIC Programming Language 

6. CRACKERS 
7. FRENCH FRIES 
8, HAMBURGER 
9, MILK 
10, TUNA FISH 
11. VEGETABLE DR FRUIT SALAD 
12. CONTINUE TD NEXT SECTION ••• 

YOUR CHOICECS> Cl TD 12l?ll 

[Clear screen) 

LUNCH 

FOOD CALORIES 

1. BEER 
2. BEFORE LUNCH DRINK 
3. CHEESEBURGER 
IMll.Jf;i 144 
5. COTTAGE CHEESE 
6. CRACKERS 
7. FRENCH FRIES 
8. HAMBURGER 
9. MILK 
10, TUNA FI SH 
11. VEGETABLE DR FRUIT SALAD 
12. CONTINUE TD NE XT SECTION • • • 

YOUR CHOICECSl Cl TD 12>?10 

[Clear screen) 

LUNCH 

FOOD CALORIES 

1 • BEER 
2. BEFORE LUNCH DRINK 
3. CHEESEBURGER 
lm!l•IEI 1 ll ll 
s. COTTAGE CHEESE 
s. CRACKERS 
7' FRENCH FRIES 
8. HAMBURGER 
9. MILK 
10. TUNA FISH 50 
11. VEGETABLE OR FRUIT SALAD 
12. CONTINUE TD NEXT SECTION ••• 

YOUR CHOICECS> Cl TD 12l? 12 



(Clear screen) 

DINNER 

FOOD 

1. APPLE <OF COURSE> PIE 
2, BAKED POTATO 
3, BEFORE DINNER DRINK 
a. BEEF STEAK 
5, BEETS 
6, DOZEN RAW OYSTERS 
7 , FISH 
B, MACARONI 
S, PEAS 
10, TOSSED SALAD 
11 , T, V, DINNER 

CALORIES 

12, CONTINUE TO NE XT SECTION, ,, 

YOUR CHOICE <Sl Cl TO 12 l ?4 

[Clear screen] 

DINNER 

FOOD CALORIES 

1 , APPLE <OF COURSE> PIE 
2 . BAKED POTATO 
3 . BEFORE DINNER DRINK 
a. BEEF STEAK 560 
5. BEETS 
s . DOZEN RAW OYSTERS 
7 , FISH 
a. MACARONI 
s . PEAS 
10. TOSSED SALAD 
11 • T.v. DINNER 
12. CONTINUE TO NE XT SECTION, ,, 

YOUR CHOICECS l Cl TO 12 l?2 

(Cle.ar screen] 

DINNER 

FOOD CALORIES 

1, APPLE COF COURSE) PIE 
2. BAKED POTATO 250 

Show and 7ell 

131 



An Introduction to the BASIC Programming Language 

3, BEFORE DINNER DRINK 
ll. BEEF STEAK 560 
5. BEETS 
6. DOZEN RAW OYSTERS 
7 . FISH 
a. MACARONI 
9. PEAS 
10 . TOSSED SALAD 
11 • T.v. DINNER 
12. CONTINUE TD NEXT SECT ION,,, 

YOUR CHOIC E<Sl <1 TD 12>?10 

[Clear screen) 

DINNER 

FOOD 

1 , APPLE <OF COURSE> PIE 
2. BAKED POTATO 
3, BEFORE DINNER DRINK 
ll. BEEF STEAK 
5 , BEETS 
6, DOZEN RAW OYSTERS 
7. FISH 
8, MACARONI 
9, PEAS 
10. TOSSED SALAD 
11. T.V . DINNER 

CALORIES 

250 

560 

75 

12 . CONTINUE TD NEXT SECTION,,, 

YOUR CHOICE <S > ( 1 TD 12 l ?1 

[Clear screen] 

DINNER 

FOOD 

mtDlll:l1:1'sM••a•a 
3, BEFORE DINNER DRINK 
ll. BEEF STEAK 
5. BEETS 
6, DOZEN RAW OYSTERS 
7. FISH 
8, MACARONI 
9, PEAS 
10. TOSSED SALAD 

CALORIES 

300 
250 

560 

75 



11 . T.v. DINNER 
12. CONTINUE TO NEXT SECTION.,, 

YOUR CHDICE <S > <1 TO 12 >? 12 

[Clear screen] 

NOW1 SOME PERSONAL DATA IS NEEDED ••• 

[Clear screen] 

ARE YOU: 
1. FEMALE 
2. MALE 

ENTER 1 OR 2?2 

[Clear screen] 

WHAT IS YOUR HEIGHT IN INCHES?70 

[Clear screen] 

DD YOU CONSIDER YOURSELF: 
1. SEDENTARY <LITTLE EXERCISE ) 
2. MODERATEL Y ACTIVE 
3. VERY ACTIVE 

ENTER 1 I 21 OR 3?2 

[Clear screen] 

SUMMARY OF DATA 

YOUR IDEAL WEIGHT IS 166 

TO MAINTAIN THAT WEIGHT YOU NEED 
2490 CALORIES PER DA Y. 

YOUR DAIL Y CALORIC INTA KE BASED UPON 
TH E LIMITED MENU IS 1935 CALORIES, 

D E P R E S S A N Y K E Y .. , 

[Clear screen] 

D A T A A N A L Y S I S 

IF YOU ARE CONSISTENT IN THIS CALORIC 

Show and Il!ll 

133 



An Introduction to the BASIC Programming Language 

INTAKE YOUR WEIGHT DIFFERENTIAL WILL 

BE APPROXIMATELY -1 POUNDS/WEEK. 

D E P R E S S A N Y K E Y .. , 

[Clear screen] 

DO YOU WISH ANOTHER ANALYSIS <Y OR Nl?N 

[Clear screen] 

MAY YOUR BODY BE BEAUTIFUL ••• 

[Clear screen] 

134 

6.6.2 PROGRAM 21: Dealing a Bridge Hand 

As might be expected, one easy model to simulate is a deck of 52 cards. Our 
manipulation of the model will be limited to shuffling the deck and dealing one 
hand of 13 cards. A simulated deck may be considered as a two-dimensional 
array of 13 rows (card values) by 4 columns (suits) . Two random-number gen­
erators can pick (deal) a given row and column, respectively, defining a position 
in the array. Since the random row also defines the card value (ace, deuce, etc.) 
and the random column defines the suit (clubs, diamonds, etc.), it is simple to 
PRINT the card "dealt." The position in the array may be flagged so that any 
dealt card will not be redealt until the deck has been "shuffled" (by reinitializing 
the array) . 

PROGRAM 21 simulates dealing a bridge hand (13 cards) , and then arrang­
ing the hand by suit. This "arranging the hand by suit" introduces one example 
of a common programming strategy: sorting (see statements 880-1010). That is, 
let the program order a given list in either increasing or decreasing value. In the 
example here, the list is sorted in decreasing order by suit value ( 4-1) in the 
one-dimensional array S 1 (n). Thus, all the 4's are placed together, followed by 
all the 3's, and so on. Each suit dealt also has a card value, C 1 (n), where n = 
1-13, assigned with it. This value is " carried" with each suit as it is sorted. (Also 
note another use of the IF-THEN statement in statements (650-730.) 

How could the sorting routine be modified so that it would alphabetize a list 
of names input into one array, L$(n) , as: 

LAST NAME(space)FIRST NAME 

and then print out the sorted (alphabetized) list? (Note: Program A662 on the 
test diskette gives one possible solution.) 

RUN from disk and refer to the listing and run of PROGRAM 2 1. 



JLOAD PROGRAM 21 
JUST 

10 REM 
20 REM 
30 REM 
40 REM 
50 REM 
60 REM 
70 REM 
80 REM 
90 REM 
100 REM 
110 REM 
120 REM 
130 REM 
140 REM 
150 REM 
160 REM 
170 REM 
180 REM 
190 REM 
200 REM 
210 REM 
220 REM 
230 REM 

PROGRAM 21 
=============== 
SIMULATION: THIS 
PROGRAM DEMOS THE USE OF A 2-DIM ARRAY 
<13 ROWS 6Y 4 COLUMNS> TO SIMULATE 
A CARD DECK C13 CARD VALUES 6Y 4 SUITS>. 
THIRTEEN CARDS <E.G. 1 A BRIDGE HAND> 
ARE RANDOMLY SELECTED FROM THE "DECK." 
A NEW USE OF THE IF-THEN STMT IS INTRODUCED 

IN COUNTING "HONOR" POINTS. THE "GET" 
STMT IS SHOWN AS AN ALTERNATIVE TO INPUT . 
THE FIRST EXAMPLE OF A SORT IS ALSO GIVEN. 
=============== 
VARIABLE DICTIONARY 
=============== 
C - CARD "VALUE" < 1-13) 
Cl< l - DEALT CARD "VALUE" STORED 

FOR LATER SORTING 
C$ ( - CARD II NAME II (ACE I DEUCE I ETC. ) 
C< 1 l - CARD "DECK" (2-DIM ARRAY> 
P - HONOR POINT COUNTER <ACE= 41 

KING= 31 QUEEN= 21 JACK= 1l 
S - SUIT "VALUE" <1-4) 

240 REM Sl< 
250 REM 

- DEALT CARD SUIT "VALUE" STORED 
FOR LATER SORTING 

260 REM S$( - SUIT "NAME" <CLUBS 1 DIAMONDS 1 ETC.) 
270 REM =============== 
280 DIM C<1314l 1C$(13) 1S$<4> 1S1<14> 1C1<13l 
290 REM ===CARO NAMES=== 
300 DATA " ACE" 1"DEUCE" 111 TREY 11 111 FOUR 11 111 FIVE 11 111 SIX 11 

310 DATA "SEVEN" 1"EIGHT" 111 NINE 11 
1

11 TEN 11 

320 DATA "JACK" 1"QUEEN" 1
11 KING 11 

330 REM ===SUIT NAMES=== 
340 DATA "CLUBS" 1"DIAMONDS 11 111 HEARTS 11 111 SPADES 11 

350 REM ===STORE THE CARD NAMES=== 
360 FOR I = 1 TO 13 
370 READ C$(I) 
380 NEXT I 
390 REM ===STORE THE SUIT NAMES=== 
400 FOR I = 1 TO 4 
410 READ S$(Il 
420 NEXT I 
430 HOME 
440 PRINT " A SIMULATED BRIDGE HAND" 
450 PRINT 
460 REM =============== 
470 REM INITIALIZE THE ARRA Y <SHUFFLE 

Show and 'Jell 

135 



An /11t roduction to the BASIC Programming Language 

480 REM THE CARD DECK> 
490 REM ======= ====== == 
500 FOR I TO 13 
510 FOR J = TO 4 
520 c ( I I J) = 0 
530 NE XT J 
540 NE XT I 
550 PRINT "HERE 'S HOW THEY WERE DEALT:" 
560 PRINT 
570 FOR D = 1 TO 13 
580 REM ===PICK A CARD NAME=== 
590 C = INT <13 * RND (1) + 1> 
600 REM ===PICK A SUIT NAME=== 
610 S = I NT < 4 * RN O < 1 > + 1 ) 
6 20 REM ===HAS THIS CARD BEEN DEALT?=== 
630 IF C!C1Sl = 1 THEN 590 
64 0 C!C1S) = 1 
650 REM =============== 
660 REM 
670 REM 
680 REM 

HERE IS A NEW USE OF IF-THEN STMTS: 
IF THE EXPRESSION IS TRUE1 THEN THE 
VALUE OF P WILL BE INCREASED ACCORDINGL Y. 

690 REM =============== 
700 IF C = 1 THEN P = P + 4: GOTO 750 
7 10 IF C 13 THEN P P + 3 : GOTO 750 
720 IF C 12 THEN P = P + 2: GOTO 750 
730 IF C 11 THEN P = P + 1 
740 REM === STORE THE CARD NAME AND SUIT VALUES TO SORT=== 
750 Sl<D) = s 
760 Cl!D l C 
770 PRINT TAB < 5) iC$<C> i TAB ( 12) i " OF " i TAB< 16) iS$ (Sl 
780 NE XT D 
790 PRINT 
800 PRINT "DEPRESS ANY KEY1 AND I ' LL " 
810 PRINT "ARRANGE THE HAND BY SUIT." 
820 REM =============== 
830 REM THE "GET" STATEMENT STORES THE VALUE 
84 0 REM OF ANY DEPRESSED KEY IN THE VARIABLE. 
850 REM ======== ===== == 
860 GET Z$ 
870 HOME 
880 REM ========= SORTING ROUTINE========= 
890 FOR J = 2 TO 13 
900 Dl = Sl<J> 
910 D2 = Cl(J) 
920 FOR K = J - 1 TO 1 STEP - 1 
930 IF Sl<K> > = Dl THEN 980 
940 Sl< K + 1> = Sl <K> 
950 Cl <K + 1 > = Cl<K> 
960 NE XT K 
970 K = 0 



980 S1(K + 1) = 01 
990 C1<K + 1) = 02 
1000 NEXT J 
1010 REM =========END OF SORTING========== 
1020 PRINT TAB < 5) i"ARRANGED BY SUIT:" 
1030 PRINT 
1040 FOR I = 1 TD 13 
1050 PRINT TAB< 5)iC$CC1<I>>i TAB< 12)i"OF"i TAB< 16>i 

S$(S1(I)) 
1060 IF S1<I> = S1 <I + 1) THEN 1090 
1070 REM ===SKIP A LINE BETWEEN SORTED "SUITS"=== 
1080 PRINT 
1090 NEXT I 
1100 PRINT PRINT 
1110 PRINT "HOW MANY *H 0 N 0 R* POINTS " 
1120 PRINT "ARE IN THIS HAND"i 
1130 INPUT H 
1140 IF H = P THEN 1170 
1150 PRINT II I COUNT II; p; II HONOR POINTS! II 

1160 GOTO 1180 
1170 PRINT "GO GET ' EM, GOREN! THAT ' S RIGHT!" 
1180 PRINT : PR INT "DEAL ANOTHER <Y OR N)"i 
1190 INPUT Z$ 
1200 IF Z$ < > "Y" THEN 1220 
1210 P = 0 : HOME : GOTO 500 
1220 HOME : FOR I = 1 TO 11 : PRINT NEXT I 
1230 PRINT "MAY LIFE BE A GRAND SLAM ALWAYS FOR YOU! " 
1240 END 

JRUN 

[Clear screen] 

A SIMULATED BRIDGE HAND 

HERE ' S HOW THEY WERE DEALT: 

SEVEN OF DIAMONDS 
QUEEN OF CLUBS 
FIVE OF HEARTS 
FIVE OF DIAMONDS 
JACK OF HEARTS 
ACE OF CLUBS 
TREY OF HEARTS 
TREY OF CLUBS 
SIX OF SPADES 
SI X OF HEARTS 
EIGHT OF HEARTS 
KING OF CLUBS 
TEN OF DIAMONDS 

Show and Tell 

137 



An Introduction to the BASIC Programming Language 

DEPRESS ANY KEYt AND I ' LL 
ARRANGE THE HAND BY SUIT, 

[Clear screen] 

ARRANGED BY SUIT: 

SI X OF SPADES 

FIVE OF HEARTS 
JACK OF HEARTS 
TREY OF HEARTS 
SI X OF HEARTS 
EIGHT OF HEARTS 

SEVEN OF DIAMONDS 
FIVE OF DIAMONDS 
TEN OF DIAMONDS 

QUEEN OF CLUBS 
ACE OF CLUBS 
TREY OF CLUBS 
KING OF CLUBS 

HOW MANY *H 0 N 0 R* POINTS 
ARE IN THIS HAND?S 
I COUNT 10 HONOR POINTS ! 

DEAL ANOTHER <Y OR Nl?Y 

[Clear screen] 

HERE ' S HOW THEY WERE DEALT: 

FIVE OF DIAMONDS 
FOUR OF HEARTS 
SEVEN OF CLUBS 
TREY OF SPADES 
KING OF DIAMONDS 
NINE OF DIAMONDS 
DEUCE OF HEARTS 
ACE OF CLUBS 
FIVE OF CLUBS 
FOUR OF CLUBS 
EIGHT OF CLUBS 
TEN OF SPADES 
FOUR OF SPADES 

DEPRESS AN Y KEY t AND I ' LL 
ARRANGE THE HAND BY SUIT, 



[Clear screen) 

ARRANGED BY SUIT: 

TREY OF SPADES 
TEN OF SPADES 
FOUR OF SPADES 

FOUR OF HEARTS 
DEUCE OF HEARTS 

FIVE OF DIAMONDS 
KING OF DIAMONDS 
NINE OF DIAMONDS 

SEVEN OF CLUBS 
ACE OF CLUBS 
FIVE OF CLUBS 
FOUR OF CLUBS 
EIGHT OF CLUBS 

HOW MANY *H 0 N 0 R* POINTS 
ARE IN THIS HAND?7 
GO GET ' EM I GOREN! THAT 'S RIGHT! 

DEAL ANOTHER CY DR Nl?N 

[Clear screen] 

MAY LIFE BE A GRAND SLAM ALWAYS FOR YOU! 

6.6.3 PROGRAM 22: Rolling a Pair of Dice 

Another easy model to simulate is rolling a pair of dice. Any die rolled will 
give a random number, 1 through 6. The sum of the two dice is the roll value. 
Given an infinite number of rolls, what number is cast most often? PROGRAM 
22 can provide a simulated, but nonetheless, accurate answer to this question 
(within roll limits) . A rough plot of the percentage distribution is also shown by 
printing the number of asterisks on a line that corresponds to the integer value 
of the percentage distribution (see statements 660-700). 

An interesting effect can be seen by changing statements 690 and 710 to: 

690 INVERSE : PRINT " "i 
710 NORMAL:PRINT 

Again, the most important point in designing and developing any simulation 
is in defining the model. Once this is done, it may be possible to design a sim­
ulation of the model. (Note: For some fun and games, but a loosely based sim­
ulation, RUN ISLAND from the diskette.) 

Show and Jell 

139 



An Introduction to the BASIC Programming Language 

RUN from disk and refer to the listing and run of PROGRAM 22. 

JLOAD PROGRAM 22 
JLIST 

PROGRAM 22 
== ==== ======== 
SIMULATION: THIS 

10 REM 
20 REM 
30 REM 
40 REM 
50 REM 
60 REM 
70 REM 
80 REM 
90 REM 
100 REM 
110 REM 
120 REM 
130 REM 
140 REM 
150 REM 
160 REM 
170 REM 
180 REM 
190 REM 
200 REM 
210 REM 

PROGRAM SIMULATES ROLLING A PAIR OF DICE 
UP TO 1000 TIMESt GIVING THE DISTRIBUTION 
FOR EACH SET OF ROLLS. EXAMINATION OF 
THE PERCENTAGE DISTRIBUTION OR ITS PLOT 
MAY BE USED TD ILLUSTRATE THE NORMAL 
DISTRIBUTION CURVE OF THE RANDOM-NUMBER 

GENERATOR, GIVEN SUFFICIENT ROLLS. 
=============== 
VARIABLE DICTIONARY 
=============== 
01 - FIRST DIE COF A PAIR OF DICE> 
02 - SECOND DIE 
PC - COUNT OF A GI VEN VALUE FOR 

A ROLL OF A PAIR OF DICE 
Pl C l - PERCENTAGE DISTRIBUTION 
R - NUMBER OF ROLLS (VIA INPUT> 
S - SUM OF 01 AND 02 CVALUE OF A GIVEN ROLL) 
=============== 

220 DIM PC 12) tPl ( 12) 
230 HOME 
240 PRINT "THIS PROGRAM SIMULATES" 
250 PRINT "ROLLING A PAIR OF DICE" 
260 REM ===INITIALIZE THE COUNT ARRAY=== 
270 FOR I = 2 TD 12 
280 p ( Il = 0 
290 NEXT I 
300 PRINT 
310 PRINT "HOW MANY ROLLS"l 
320 INPUT R 
330 IF R < 100 1 THEN 390 
340 PRINT " IT TA KES A WHILE TD DO MORE THAN " 
350 PRINT "1000 ROLLS ••• so WH Y DON ' T YOU" 
360 PRINT "GIVE ME A LOWER NUMBER,,," 
370 GOTO 3 00 
380 REM ===SHOW THE USER WE ' RE DOING IT=== 
390 HOME : FOR I = 1 TO 10: PRINT : NE XT I : PRINT TABC 8) 

l"ROLLING • • • " 
400 REM ===DO THE ROLLS=== 
4 10 FOR T = 1 TO R 
420 REM ===GET A RANDOM VALUE FOR EACH DIE=== 
430 01 = INT (6 * RND ( 1 ) + 1) 

440 02 = INT (6 * RND ( 1 ) + 1 ) 



450 REM ===SUM THE PAIR OF DICE=== 
460 s = 01 + 02 
470 REM ===INCREASE THAT COUNT BY ONE=== 
480 PCS) = PCS> + 1 
490 NEXT T 
500 HOME 
510 PRINT "VALUE OF ROLL" i TABC 18> i"COUNT" i TABC 30) i" X" 
520 PRINT 
530 REM ===NOW SHOW THE DISTRIBUTION=== 
540 FOR L = 2 TO 12 
550 REM ===ROUND OFF THE PERCENTAGE VALUES=== 
560 Pl(L) = INT <CP(L) + ,5) * 100 IR> 
570 PRINT TABC 6) iU TABC 20) iPCL> i TAB< 29) i INT C CPCL> * 

100 I R> * 100) I 100 
580 NEXT L 
590 PRINT 
600 PRINT "WANT TO SEE THE DISTRIBUTION" 
610 PRINT "CURVE CY OR Nl"i 
620 INPUT AS 
630 IF AS < > II y II THEN 730 
640 HOME : PRINT : PRINT " P E R C E N T A G E" 
650 PRINT II 0 I S T R I BU T I 0 N": PRINT " 

----------------
660 FOR I = 2 TO 12 
670 PRINT I ; TAB< 4 > ; "I"; 
680 FOR J = 1 TO P 1 < I ) 
690 PRINT "*" ; 
700 NE XT J 
710 PRINT 
720 NE XT I 
730 PRINT PRINT "WANT ANOTHER 
740 INPUT AS 
750 IF AS = 11y11 THEN 270 
760 ENO 

JRUN 

[Clear screen) 

THIS PROGRAM SIMULATES 
ROLLING A PAIR OF DICE 

HOW MAN Y ROLLS ? lOOOOOO 
IT TAKES A WHILE TO 00 MORE THAN 
1000 ROLLS ••• so WHY DON'T YOU 
GIVE ME A LOWER NUMBER,,, 

HOW MANY ROLLS?50 

SET OF ROLLS CY OR N> II; 

Show and ~II 

141 



An Introduction to the BASIC Pro9rammin9 Lan9ua9e 

[Clear screen] 

ROLL! NG, , , 

[Clear screen] 

VALUE OF ROL L COUNT 

2 2 
3 ll 
ll 3 
5 s 
s 5 
7 s 
B 7 
9 10 
10 1 
11 5 
12 1 

WANT TO SEE THE DISTRIBUTION 
CURVE CY OR N>?Y 

[Clear screen) 

P E R C E N T A G E 
D I S T R I B U T I 0 N 

2 I***** 
3 I********* 
ll I******* 
5 I************* 
S I*********** 
7 I************* 
B I*************** 
9 !********************* 
10 I*** 
11 I*********** 
12 I*** 

'X 

ll 
B 
s 
12 
10 
12 
1 ll 
20 
2 
10 
2 

WANT ANOTHER SET OF RO LLS CY OR Nl?Y 

HOW MANY ROLLS?100 

[Clear screen] 

ROLLING , ,, 



[Clear screen] 

VALUE OF ROLL COUNT 

2 3 
3 5 
4 11 
5 15 
6 13 
7 14 
8 13 
9 7 
10 9 
11 7 
12 3 

WANT TO SEE THE DISTRIBUTION 
CURVE CY OR N>?Y 

[Clear screen) 

P E R C E N T A G E 
D I S T R I B U T I D N 

2 I*** 
3 I***** 
4 I*********** 
5 I*************** 
6 I************* 
7 I************** 
8 I************* 
9 I******* 
10 I********* 
11 I******* 
12 I*** 

'l. 

3 
5 
11 
15 
13 
14 
13 
7 
9 
7 
3 

WANT ANOTHER SET OF ROLLS CY OR N>?Y 

HOW MANY ROLLS?1000 

[Clear screen] 

ROLLING,,, 

[Clear screen] 

VALUE OF ROLL 

2 
3 

COUNT 

27 
52 

'I 

2.7 
5. 19 

Show and Iell 

143 



An Introduction to the BASIC Programming Language 

4 as a .as 
5 100 10 
6 139 13.aS 
7 165 16.5 
a 144 14 . 39 
9 1oa 10.a 
10 93 9,3 
11 55 5,5 
12 2a 2.79 

WANT TO SEE THE DISTRI BU TION 
CURVE <Y OR N>?Y 

[Clear screen) 

P E R C E N T A G E 
0 I S T R I B U T I 0 N 

2 I** 
3 I***** 
4 I******** 
5 I********** 
6 I************* 
7 I**************** 
a I************** 
9 I********** 
10 I********* 
11 I***** 
12 I** 

WANT ANOTHER SET OF ROLLS (Y OR N>?N 

144 

6.7 TESTING 

Testing is another application similar to drill and practice, with the exception that 
no "assistance" is provided. A question is asked, user response is entered, and, 
at some point, the user's performance is indicated. 

6.7.1 PROGRAM 23: Name the Seven Dwarfs 
PROGRAM 23 is a short example of a testing program. This particular pro­

gram tests the naming of the seven dwarfs of Snow White fame. Names are 
READ into a one-dimensional array, and then a question loop asks for one of 
those names. An internal loop searches the list of names for a match. If a match 
occurs, it is checked for being previously named (flagged). At the conclusion of 
the program, the complete list is shown and any names in the list not given by 
the user are starred (*****). 



Note the use of the one-dimensional array D(n), where n = 1-7, as a flag 
that prevents double credit for the same name being entered twice. The same 
flag is also used to "star" those names not entered when the test was taken (see 
statements 600-670 and 900-940). 

Although this program tests on naming dwarfs, the program itself may be 
used as a general test program. By just changing the DIM, DATA, and introductory 
PRINT statements accordingly, the program could test naming from any chosen 
list. 

RUN from disk and refer to the listing and run of PROGRAM 23. 

lLOAO PROGRAM 23 
lLIST 

10 
20 
30 
40 
50 
60 
70 
BO 
90 
100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270 

REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 

REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
DATA 

PROGRAM 23 
============== 
TESTING: THIS 
PROGRAM DEMOS SIMPLE TESTING EXERCISE 
IN NAMING, PROGRAM CHECKS ANY NAME INPUT 
FIRST FOR ACCURACY AND1 IF OK1 THEN TO 
SEE IF NAME HAS BEEN INPUT PREVIOUSLY. 
ANY NAME NOT ANSWERED IS LISTED AT THE 
CONCLUSION OF THE PROGRAM, BY CHANGING 

THE DIM1 DATA1 AND ALL "FOR-TO" 
STATEMENTS TO THE NUM~ER OF NAMES IN 
THE LIST1 THE PROGRAM MAY BE USED AS 
A MODEL FOR TESTING ANY LIST OF NAMES, 
=============== 
VARIABLE DICTIONARY 
----------------- -- ------- ----
D( ) - FLAG FOR THE NUMBER OF THE NAME 

CORRECTLY ENTERED 
D$ ( l - LIST OF NAMES 
F - FLAG FOR MISSING AT LEAS T ONE NAME 
L - LENGTH OF THE LIST <NO , OF ELEMENTS> 
R - RANDOM NUMBER <4-1) 
R$(Rl - POSITIVE FEEDBACK 
S - NUMBER CORRECT COUNTER <SCORE> 
------------------------------
===POSITIVE FEEDBACK CHOICES=== 

"O, K,","G RE A T"1"S UP E R"1"V ER Y 
G 0 0 D" 

280 REM ===NO, OF ITEMS IN LIST=== 
290 DATA 7 
300 REM ===LIST OF ITEMS TO BE NAMED=== 
310 DATA "BASHFUL" 1"DOC" 1"DOPEY"1"GRUMPY" 
320 DATA "HAPPY" 1"SLEEPY" 1"SNEEZY" 
330 REM ===STORE THE FEEDBACK=== 
340 FOR I = 1 TO 4 

Show and Jell 

145 



An Introduction to the BASIC Programming Language 

350 
360 

READ 
NE XT 

R$(Il 
I 

370 HOW LONG THE LIST IS=== REM ===STORE 
380 READ L 
390 THE LIST OF NAMES=== REM ===STORE 
400 FOR I = 1 TO L 
410 READ D$(Il 
420 D <I l = 0 
430 NE XT I 
440 REM ===BEGIN THE TEST=== 
450 HOME 
460 PRINT "SNOW WHITE AND THE 7 DWARFS" 
470 PRINT 
480 PRINT "LET'S SEE IF YOU CAN NAME THEM,,," 
490 FOR I = 1 TO 2000: NEXT I 
500 HOME 
510 FOR T = 
520 FOR I = 

TO L 
TO 11: PRINT : NEXT I 

530 PRINT "NAME NUMBER "lTl 
540 INPUT R$ 
550 REM =============== 
560 REM GO THRU THE LIST TO CHECK FOR A MATCH 
570 REM =============== 
580 FOR K = 1 TO L 
590 IF R$ < > D$(Kl THEN 750 
600 REM =============== 
610 REM NAME INPUT MATCHES ONE IN THE LIST, BUT 
620 REM HAS IT BEEN PREVIOUSLY ENTERED? IF NOT1 
630 REM SET THE D(K) = 11 INCREASE THE SCORE 
640 REM BY 11 AND GIVE A POSITIVE RESPONSE 
650 REM =============== 
660 IF D<Kl = 1 THEN 730 
670 D <Kl = 1 
680 s = s + 1 
690 HOME : FOR I = 1 TO 11: PRINT : NE XT I 
700 R = INT <4 * RND Cll + ll: PRINT TABC 5llR$CRll"! " 
710 FOR I = 1 TD 1000 : NEXT I: HOME 
720 GOTO 810 
730 PRINT "YOU HAVE GIVEN THAT NAME BEFORE!" 
740 GOTO 710 
750 NEXT K 
760 REM =============== 
770 REM IF WE GOT THIS FAR1 INPUT NAME DID 
780 REM NOT MATCH ANY NAME IN THE LIST 
790 REM =============== 
BOO PRINT "HMMM,,,THAT'S NOT ONE,,,":GOTO 710 
810 NE XT T 
820 PRINT : PRINT 
830 PRINT "DEPRESS ANY KEY FOR THE COMPLETE LIST"; 
840 GET Z$ 



850 HOME 
860 PRINT 
870 PRINT TAB< Bl i"THE COMPLETE LIST:" 
880 FOR I = 1 TO L 
890 PRINT TAB< 12liD$Cili 
900 REM ===THOSE CORRECTLY NAMED WERE "FLAGGED" <D<Il = 1> 

910 IF DCil = 1 THEN 940 
920 PRINT " *****" 
930 F = 1: GOTO 950 
940 PRINT 
950 NEXT I 
960 PRINT 
970 IF F = 1 THEN 1010 
980 REM ===IF F IS ZERO, ALL WERE NAMED=== 
990 PRINT TAB< 6) i"*** YOU KNEW THEM ALL! ***" 
1000 GOTO 1030 
1010 PRINT TAB< 6) i"<***** = NAME NOT LISTED!>": PRINT 
1020 REM ===SHOW THE SCORE TO ONE DECIMAL PLACE=== 
1030 PRINT "THAT'S "i INT CS* 100 IL* 10) I 10i" 

PERCENT CORRECT!" 
1040 PRINT 
1050 PRINT "BYE-BYE FOR NOW.,,AND WATCH" 
1060 PRINT " OUT FOR THOSE APPLES!" 
1070 END 

JRUN 

[Clear screen] 

SNOW WHITE ANO THE 7 DWARFS 

LET'S SEE IF YOU CAN NAME THEM.,, 

[Clear screen] 

NAME NUMBER 1?SNEEZY 

[Clear screen] 

G R E A T! 

[Clear screen] 

NAME NUMBER 2?DOC 

[Clear screen] 

D, K, ! 

Show and 11:/l 

147 



An Introduction to the BASIC Programming Language 

[Clear screen] 

NAME NUMBER 3?GRUMPY 

[Clear screen] 

V E R Y G 0 0 O! 

[Clear screen) 

NAME NUMBER 4?0UMBO 
HMMM ••• THAT ' S NOT ONE, • • 

[Clear screen) 

NAME NUMBER S?OOPEY 

[Clear screen] 

0, K, ! 

[Clear screen] 

NAME NUMBER S?GRUMPY 
YOU HAVE GIVEN THAT NAME BEFORE ! 

[Clear screen) 

NAME NUMBER 7?SLEEPY 

[Clear screen] 

O. K, ! 

[Clear screen] 

DEPRESS ANY KEY FOR THE COMPLETE LIST 

[Clear screen) 

THE COMPLETE LIST: 
BASHFUL ***** 
DOC 
DOPE Y 
GRUMPY 
HAPP Y ***** 
SLEEPY 
SNEEZY 

<***** = NAME NOT LISTED ! l 



THAT'S 71.4 PERCENT CORRECT! 

BYE-BYE FOR NOW ••• ANO WATCH 
OUT FOR THOSE APPLES! 

6.7.2 PROGRAM 24: Multiple-Choice Questions 

PROGRAM 24 is one example of generating multiple-choice questions. Fol­
lowing any introductory statements, PRINT statements that ask questions and 
DATA statements that provide the choices and their appropriate responses may 
be added to the program. The correct choice by number is assigned to variable 
A, and then a GOSUB transfers to a subroutine that displays the choices and 
evaluates the user's input. This sequence of PRINT (the question), DATA (for 
each choice and its response), A = (number of the correct choice), and GOSUB 
5000 may be repeated for an indefinite number of multiple-choice questions in 
the program. 

(This program arbitrarily presents only 4 choices. What would be needed to 
change the program so that 5 choices would be displayed?) 

RUN from disk and refer to the listing and run of PROGRAM 24. 

lLOAO PROGRAM 24 
lLIST 

10 REM PROGRAM 24 
20 REM =============== 
30 REM TESTING: THIS 
40 REM PROGRAM DEMOS MULTIPLE-CHOICE TESTING 
50 REM USING DATA-READ TECHNIQUES, QUESTIONS 
60 REM ARE ASKED IN SEQUENCE CI, E, , NO RANDOMIZATION> , 
70 REM ALL QUESTIONS "SETS" ARE ENTERED IN THE 
80 REM PROGRAM FOLLOWING THE SEQUENCE: 
90 REM 1 , PRINT STATEMENTS TO ASK THE QUESTION 
100 REM z, DATA STATEMENTS FOR 4 CHOICES ANO 
110 REM THE RESPONSE FOR EACH CHOICE 
120 REM 3, SETTING VARIABLE "A" TD THE 
130 REM NUMBER OF THE CORRECT CHOICE 
140 REM 4, GOSUB 5000 
150 REM QUESTION "SETS" ON ANY TOPIC MAY BE 
160 REM USED IN THE PROGRAM IF THIS SEQUENCE 
170 REM IS FOLLOWED, 
180 REM ============= == 
190 REM VARIABLE DICTIONARY 
ZOO REM =============== 
210 REM A - CORRECT CHOICE ANSWER C1-4l 
220 REM A$C ) - A GIVEN CHOICE CREAD FROM DATA> 
230 REM C - NUMBER CORRECT COUNTER 
240 REM R - USER 'S ANSWER CV IA INPUT) 

Show and 'Jell 

149 



An Introduction to the BASIC Programming Language 

250 REM 
260 REM 

R$ ( ) - A GIVEN RESPONSE <READ FROM DATA> 
------------------------------

270 DIM A$llll 1R$lll l 
280 HOME :C = 0 
290 REM 
300 REM 
310 REM 
320 REM 
330 REM 
3ll0 REM 
500 REM 
510 REM 

=============== 
ADD INTRODUCTORY STATEMENTS1 EXAMPLES1 

OR WHATEVER HERE <UP TO LINE 500) 

----------------------------
PRINT THE QUESTION 

520 REM ============== 
530 PRINT "THE STATE FLOWER OF TEXAS IS THE:" 
5ll0 REM ============== 
550 REM ADD ll DATA ELEMENT PAIRS FOR EACH 
560 REM CHOICE AND THE RESPONSE FOR THAT CHOICE 
570 REM =============== 
580 DATA "BLUE-BONNET" 1"BEAUTIFUL1 AREN ' T THEY" 
590 DATA "ROSE" 1"IT ' S BY ANOTHER NAME HERE" 
600 DATA "DANDELION" 1"BLOW IT OFF" 
610 DATA "MORNING GLORY"1"IT AI N' T1 BU T IT COULD BE " 
620 REM =============== 
630 REM SET VARIABLE "A" TO THE CORRECT CHOICE NUMBER 
640 REM =============== 
650 A = 1 
660 REM =============== 
670 REM THEN GOSUB 5000 TO PR I NT THE CHOICES 1 
680 REM GET THE ANSWER1 AND THEN RESPOND TO IT , 
690 REM =============== 
700 GOSUB 5000 
71 0 REM ===NE XT QUESTION SEQUENCE1 ETC , === 
720 PRINT "AN EXAMPLE OF A COMPUTER OUTPUT" 
730 PRINT "DEVICE IS: " 
7ll0 DATA "PRINTER"1"YES1 BUT THERE WAS ANOTHER IN THE 

LIST" 
750 DATA "KEYB OARD " 1"THAT' S AN INPUT DEVICE!" 
760 DATA "TERMINAL SCREEN " 1"Y ES1 BUT THERE IS A BETTER 

CHOICE" 
770 DATA "1, AND 3, ABOVE" 111 0,K, , ,THEY ARE 2 COMMON 

EXAMPLES" 
780 A = 4 
790 GOSUB 5000 
800 REM ===NEXT QUESTION SEQUENCE1 ETC , === 
810 PRINT "WHICH PLANET IS EARTH " 
820 PRINT "FROM THE SUN? " 
830 DATA "FIRST" 111 THAT ' S MERCURY" 
8ll0 DATA "SECOND" 111 ' TIS VENUS1 ABOUT DE MILO FROM THE 

SUN ! II 
850 DATA "THIRD" 1"RIGHT,,, YOU'RE A TERROR FARMER" 



860 
870 
880 
890 
900 
910 
920 
930 
Ll800 
Ll810 
Ll820 
Ll830 
Ll8LIO 
Ll850 
Ll860 
Ll870 
Ll880 
Ll890 
Ll900 
Ll910 
Ll920 
5000 
5010 
5020 
5030 
50LIO 
5050 
5060 
5070 
5080 
5090 
5100 
5110 
5120 
5130 
51LIO 
5150 
5160 
5170 
5180 
5190 
5200 
5210 
5220 
5230 
52LIO 
5250 
5260 
5270 
5280 

DATA "FOURTH" 1"MAR-CY1 THAT'S MARS" 
A = 3 

GDSUB 5000 
REM =============== 
REM 
REM 

ROOM TO ADD MANY MORE QUESTION "SETS" 
FOLLOWING THE SEQUENCE OF: 

REM PRINT I DATA I A = I GOSUB 
REM ------------------------------

REM 
REM 
REM 
REM 
REM 
REM 

================= 
IT'S OK TO HAVE THE 'END' STATEMENT 
** NOT ** AS THE LAST STATEMENT! 
================= 

PRINT : PRINT "YOU ANSWERED ";C;" CORRECTLY!" 
END 
REM =============== 
REM 
REM 
REM 
REM 
PRINT 
REM 

SUBROUTINE TO DISPLAY THE CHOICES, STORE 
THE RESPONSE FOR EACH CHOICE1 AND 
GET THE INPUT FOR CHECKING 
------------------------------
============== 

REM READ THE DATA FOR THE CHOICE AND 
REM ITS RESPONSE; PRINT THE CHOICE 
REM ============== 
FOR I = 1 TO LI 
READ A$( I l 1R$( I l 
PRINT Ii", "iA$(Il 
PRINT 
NEXT I 
PRINT 
PRINT "YOUR CHOICE <1-Lll"i 
INPUT R 
REM ===CHECK FOR WITHIN RANGE=== 
IF R < 1 THEN 5110 
IF R > LI THEN 5110 
PRINT 
REM ===PRINT THE RESPONSE FOR USER'S CHOICE=== 
PR I NT R$ < R l ; " I " 
REM ===IS IT THE CORRECT CHOICE?=== 
IF A = R THEN 5300 
REM ============== 
REM 
REM 
REM 
REM 
PRINT 

IF THE USER ' S CHOICE IS NOT CORRECT1 
PRINT THE CORRECT CHOICE NUMBER 
AND THE CHOICE LISTED 
=============== 

PRINT "A CORRECT CHOICE IS ";A;",: "iA$<A> 
GOTO 5320 

Show and 'Jell 

151 



An Introduction to the BASIC Programming Language 

5290 REM ===INCREASE A NUMBER-CORRECT COUNTER=== 
5300 c = c + 1 
5310 REM ===LET THE USER SA Y WHEN TO GO ON=== 
5320 PRINT 
5330 PRINT "DEPRESS ANY KEY TD CONTINUE,,," 
53aO GET Z$ 
5350 HOME 
5360 REM ===RETURN FOR THE NE XT QUESTION=== 
5370 RETURN 

JRUN PROGRAM za 

[Clear screen] 

THE STATE FLOWER OF TEXAS IS THE: 

1, BLUE-BONNET 

2. ROSE 

3, DANDELION 

a. MORNING GLORY 

YOUR CHOICE (1-a l ?2 

IT ' S BY ANOTHER NAME HERE! 

A CORRECT CHOICE IS 1.: BLUE-BONNET 

DEPRESS ANY KEY TO CONTINUE,,, 

[Clear screen] 

AN EXAMPLE OF A COMPUTER OUTPUT 
DEVI CE IS: 

1, PRINTER 

2 . KE YBOARD 

3 , TERMINAL SCREEN 

a, 1, AND 3, ABOVE 

YOUR CHOICE (1 - al?2 

THAT ' S AN INPUT DEVICE!! 

A CORRECT CHOICE IS a.: 1, AND 3 , ABOVE 

DEPRESS ANY KE Y TO CONTINUE,,, 



[Clear screen) 

WHICH PLANET IS EARTH 
FROM THE SUN? 

1, FIRST 

z. SECOND 

3, THIRD 

4, FOURTH 

YOUR CHOICE Cl-lll?Z 

' TIS VENUSt ABOUT DE MILO FROM THE SUN! 

A CORRECT CHOICE IS 3.: THIRD 

DEPRESS ANY KEY TD CONTINUE,, , 

[Clear screen] 

YOU ANSWERED 0 CORRECTLY! 

6.8 THE KEYWORD SUBROUTINE 

Up to this point, a variety of instructional computing program examples and 
models have been presented. These programs illustrate some of the major con­
cepts, strategies, and techniques that may be used in program design. However, 
one additional technique that merits discussion is keyword matching. 

This technique allows a program author to define a "keyword" sequence of 
characters that, if found anywhere in the user's response in the same sequence, 
will constitute a match between the input and an anticipated answer. For exam­
ple, assume that an author wanted to ask the following question: 

YOU HAVE REMOVED YOUR DIRTY SOCKS. 
WHAT SHOULD YOU DO WITH THEM NOW? 

Further assume that the author anticipates the following responses as possible 
answers to the question: 

WASH AND DRY THEM 
WASH THEM 
THROW THEM AWAY 
GIVE THEM AWA Y 

Show and 'Jell 

153 



An Introduction to the BASIC Programming Language 

With the use of a keyword subroutine, the author can define a match of 
these anticipated answers as : 

"WASH*DRY" 
"WASH" 
II THROW II 
"GIVE" 

Thus, if the user responds with any phrase containing the word GIVE, for 
example, then a match will have been found. The author can then have the 
program make appropriate responses and transfer execution back to the original 
question or give the complete answer. If none of the anticipated answers are 
matched, a response (such as a hint) can be made and execution transferred 
accordingly. 

The program fragment, KEYWORD, found on the text diskette is one exam­
ple of a subroutine of this nature. Although many of the program statements are 
beyond the scope of this text, it is very easy to use the subroutine. However, 
since KEYWORD is already written, there are certain conventions that must be 
followed for its successful use: 

I. The user's response must be in R$ (i.e., INPUT R$) . 

2. The defined anticipated answers (keywords to search for in the user's 
response) must be assigned to A$. 

3. A$ may have as many as three keywords, delimited (separated) by an 
asterisk. 

4. If a match occurs between the anticipated answer and the user's response, 
A$ is set to "O" (string zero). If no match is found, A$ is set to " l " 
(string one). Appropriate branching in the program is then based upon 
the value of A$. 

5. The subroutine begins with statement number 5000. 

6. The END statement is number 10000. 

Refer to the creation and run of the program socks. 

JLDAD KEYWORD 

Jl REM ===PROGRAM NAME : SOCKS=== 

J2 REM ===DEMOS KEYWORD SUBROUTINE=== 

J3 REM ===VARIABLE F IS A COUNTER FDR=== 

J4 REM ===REPEATING THE QUESTION ND=== 

JS REM ===MORE THAN 4 TIMES=== 

KEYWORD is loaded from diskette [i.e .. 
KEYWORD subroutine (statements in 
range 5000 through 10000) is loaded 
into system's memory] . 

1-5 added to document program. 



JS F = 0 

J10 F = F + 1 

JZO IF F > ll THEN 230 

J30 PRINT 

J LIO PRINT "YOU HAVE REMOVED YOUR DIRT Y" 

J50 PRINT "SOCKS, WHAT SHOULD YOU DO" 

JS O PRINT "WITH THEM NOW"; 

J70 INPUT R$ 

JB O A$= "WASH *DRY ":GOSUB 5000 

JSO IF A$ = "1" THEN 110 

J1 00 PRINT "GOOD! YO U MIGHT USE A BIT" 

J 105 PR I NT "OF FOOT POWDER 1 TOO! ":GOTO 10000 

J110 A$ = "WASH":GOSUB 5000 

J120 IF A$ = "1" THEN 140 

J130 PRINT "DO YOU WEAR WET SOCKS?":GOTO 10 

J1ll0 A$ = " THROW":GOSUB 5000 

J150 IF A$ = "1" THEN 180 

J160 PRINT "DON ' T TOSS THEM YET • •• TR Y" 

J1 70 PRINT "SOME SOAP AND WATE R,":GOTD 10 

J180 A$ = "GIVE" : GOSUB 5000 

J190 IF A$ = "1" THEN 210 

J200 PRINT "NO ONE WOULD TAKE THEM!!!":GOTO 10 

J21 0 PRINT "<ND MATCH YET ,, ,) " 

J220 PRINT "THINK OF SOAP AND SUNSHINE!":GOTO 10 

J230 PRINT:PRINT 

J2ll0 PRINT "THOSE DIRTY SOCKS SHOULD BE" 

Show and 7ell 

20 limits number of times question 
asked to 4. 

3(}-60 added to ask the question. 

70 assigns user's response to R$. 

80 assigns first anticipated answer (in 
this case, correct response) to A$. Two 
keywords needed, WASH and DRY, 
delimited by an asterisk. Transfer to 
subroutine at 5000. 

Upon return from subroutine, 90 checks 
value of A$. If user's response contained 
at least keyword WASH followed 
somewhere by keyword DRY, a match 
occurred .and A$ was set to " O" by 
subroutine. If no match, A$ was set 
to "I". 

IOG--105 executed if A$ = "O" (i.e., 
match found) . Transfer is then to 10000, 
the END of program. 

I I 0 executed if no match for first 
keyword (A$ = " !") .A$ redefined as 
next keyword to check fo r in user's 
response. Transfer back to subroutine. 
This sequence-define keyword, go to 
subroutine, check A$ upon return, and 
branching or responding accordingly- is 
repeated through 200. 

21(}-220 executed if no defined 
keywords matched. Transfer then made 
back to IO to either ask question again 
or give correct answer, based upon 
value of F. 

155 



An Introduction to the BASIC Programming Language 

J 250 PR I NT "WASHED AND DR I ED! ! ! ! ":GOTO 10000 

JRUN 

YOU HAVE REMOVED YOUR DIRTY 
SOCKS. WHAT SHOULD YOU DO 
WITH THEM NOW?THROW THEM IN THE LAUNDRY 
DON'T TOSS THEM YET ••• TRY 
SOME SOAP AND WATER. 

YOU HAVE REMOVED YOUR DIRTY 
SOCKS. WHAT SHOULD YOU DD 
WITH THEM NDW?WELL ••• WASH THEM I GUESS 
DO YOU WEAR WET SOCKS? 

YOU HAVE REMOVED YOUR DIRTY 
SOCKS. WHAT SHOULD YOU DO 
WITH THEM NOW?OK •• GIVE THEM TO ANYBODY 
NO ONE WOULD TAKE THEM!!! 

YOU HAVE REMOVED YOUR DIRTY 
SOCKS. WHAT SHOULD YOU DD 
WITH THEM NOW?LET MOM WORRY ABOUT THEM 
<NO MATCH YET,,,) 
THINK OF SOAP AND SUNSHINE! 

THOSE DIRTY SOCKS SHOULD BE 
WASHED AND DRIED! ! ! ! 

JRUN 

YOU HAVE REMOVED YOUR DIRTY 
SOCKS. WHAT SHOULD YOU DD 
WITH THEM NOW?HANO THEM TO MOM 
<ND MATCH YET •• ,) 
THIN K OF SOAP ANO SUNSHINE! 

YOU HAVE REMOVED YOUR DIRT Y 
SOCKS. WHAT SHOULD YOU DO 
WITH THEM NOW?OH ••• I ' D BETTER WASH AND DR Y 
THEM!!! 
GOOD! YOU MIGHT USE A BIT 
OF FOOT POWDERt TOD! 

JSAVE SOCKS 

156 

Following this same sequential strategy, a variety of both anticipated correct 
and incorrect answers may be used in a program. Program KEYWORD DEMO 
on the text diskette is another example of using the keyword subroutine. A 
sample run is shown, followed by a listing of the subroutine. 



Refer to the run of the program keyword demo. 

JRUN KEYWORD DEMO 
A DEMO OF THE KEYWORD SUBROUTINE 

WHAT DD WE CALL OUR FIFTY STATES 
COLLECTIVELY? UNITED 
UNITED WHAT OF WHAT??? 

WHAT DO WE CALL OUR FIFTY STATES 
COLLECTIVELY?UNITED STATES 
UNITED STATES OF WHAT??? 

WHAT DD WE CALL OUR FIFTY STATES 
COLLECTIVELY? AMERICA 
YES 1 BUT WHAT OF AMERICA??? 

WHAT DD WE CALL DUR FIFTY STATES 
CDLLECTIVEL Y?U S A 
USA1 YES ••• BUT SPELL IT OUT PLEASE! 

WHAT DD WE CALL OUR FIFTY STATES 
COLLECTIVELY?THE HOME OF THE FREE 

THE ANSWER I WANTED WAS THE 
UNITED STATES OF AMERICA! 

JRUN 
A DEMO OF THE KEYWORD SUBROUTINE. 

WHAT DD WE CALL OUR FIFTY STATES 
COLLECTIVELY?NEVER THE UNITED STATES!!! 
YOU ARE TRYING TO BE TRICKY! 

WHAT DD WE CALL OUR FIFTY STATES 
COLLECTIVELY?MUST BE THE UNITED STATES OF AMERICA 
THAT ' S IT • • ,VERY GOOD! 

JLDAD KEYWORD 
JLIST 

5000 REM ===== ======== ====== = 
5002 REM PROGRAM NAME: KEYWORD 
5004 REM ==== ========= ======= 
5006 REM THIS SUBROUTINE READS A 
5008 REM 
50 10 REM 
5012 REM 
50 14 REM 
5016 REM 

USER'S RESPONSE ( MUST BE 
FROM: INPUT R$l AND CHECKS 
FOR A "KEYW ORD" CHARACTER 
SEQ UENCE MATCH AS DEFINED 
IN A$, IF A MATCH OCCURS, 

Show and 'Jell 

157 



An Introduction to the BASIC Programming Language 

5018 REM 
5020 REM 
5030 REM 
5040 REM 
5042 REM 
5044 REM 
5046 REM 
5048 REM 
5050 REM 
5052 REM 
5054 REM 
5056 REM 
5058 REM 
5060 REM 
5062 REM 
5064 REM 
5066 REM 
5068 REM 
5070 REM 
5080 REM 
5090 REM 
51 00 REM 
5110 REM 
5120 REM 
5130 REM 
5140 REM 
5150 REM 
5160 REM 
5170 REM 
5180 REM 
5190 REM 
5200 REM 
52 10 REM 
5220 REM 
5230 REM 
5240 REM 
5250 REM 
5260 REM 

A$ IS SET TO "O"i OTHERWISE1 "1", 
NOTE: A$ MA Y CONTAIN UP TO 3 
KEYWORDS DELIMITED BY *• 
==================== 
THE SUBROUTINE MAY BE USED WITH ANY 
PROGRAM BY FIRST LOADING THE 
"KEYWORD" PROGRAM, AND THEN ADDING 
STATEMENTS IN THE SEQUENCE: 
PRINT(S) CFOR THE QUESTION> 
INPUT R$ CFOR THE RESPONSE> 
A$ = "DEFINED•KEYWORD•ANSWER" 
GOSUB 5000 
IF A$ = "1" THEN <TO NE XT KEYWORD l 
PRINT<S> CTO REPLY TO MATCH JUST MADE> 
GOTO <REPEAT OF THE QUESTION, 

OR GIVE THE ANSWER> 
A$ = "NE XT•K EYWORD" 
GOSUB 5000 ETC, 1 ETC, 
==================== 
THE FOLLOWING DIM 
STATEMENT MUST BE 
DECLARED IN THE MAIN 

PROGRAM: DIM W$ (3 ) 
==================== 
IN PUT A$ CAS DEFINED > 
==================== 
OUTPUT - A$ = 0 CORRECT 

A$ = 1 INCORRECT 
==================== 
VARIABLE DICTIONARY 
===== =============== 
A$ - KEYW ORD<S> ANTICIPATED 
LA - LENGTH OF ANSWER 
LR - LENGTH OF RESPONSE 
LW - LENGTH OF KEYWORD 
NW - NO, OF KEYW ORDS 
Pl 1P2 - STRING POINTERS 
R$ - USER ' S RESPONSE 

5270 REM W$(3 l - ARRAY FOR KEYWORDS 
5280 REM ======== ============ 
5300 LA = LEN CA $ l 
531 0 LR = LEN (R$l 
5320 IF LR < LA GOTO 5620 
5330 FOR I TO 3 
5340 FOR J 1 TO LA 
5350 Pl = J 
5360 IF MIO$ (A$1J1ll 
5370 NEXT J 
5380 P2 = Pl 
5390 GOTO 5410 

"*" GOTO 5400 



5400 P2 = p 1 - 1 
5410 W$Cll = MID$ CA$t11P2l 
5420 IF P1 < > LA GOTO 5450 
5430 NW = I 
5440 GOTO 5500 
5450 A$= MID$ CA$1P1 + 11LA - P1l 
5460 LA = LEN CA$l 
5470 NEXT I 
5480 PRINT "ERROR - A$ CONTAINS MORE THAN 3 WORDS" 
5490 END 
5500 P1 = 
5510 FOR = 1 TO NW 
5520 LW = LEN CW$Clll 
5530 FOR J = P1 TO LR - LW + 1 
5540 P2 = J 
5550 IF MIO$ CR$1J1LWl = W$Cll GOTO 5580 
5560 NEXT J 
5570 GOTO 5620 
5580 P1 = P2 + LW + 1 
5590 NEXT I 
5600 A$ = "O" 
5610 RETURN 
5620 A$ = "1" 
5630 RETURN 
10000 END 

6.9 USING BASIC COMMANDS WITHIN A PROGRAM 

By now, you are well aware of many of the BASIC commands (CATALOG, 
LOAD, RUN, LIST, etc.) of the Apple. There is a method by which commands 
may be incorporated as statements within the body of a BASIC program. When 
one of these statements is executed it could, for example, display the catalog of 
files on the disk or execute (RUN) a given program. The second example is 
particularly useful in that one program can "command" another program to 
RUN, which could command another program to RUN, and so on. Thus, pro­
grams can be "linked" together in sort of a "chain" fashion. 

A common use in instructional computing is to design one program as a 
"menu" of available programs on the disk. When this menu program is executed, 
a selection of programs is displayed, and the user may enter the choice desired. 
Based upon the user's input, execution is transferred to the appropriate line 
number in the menu program that commands the system to RUN the selected 
program. 

Without going into detail, we shall simply state here that a variable needs 
to be defined as a "control-D" character. One way to accomplish this is by the 
use of the statement CHR$(4) (see Appendix B) . Thus, the statement 

0$ = CHR$(4l 

Show and 'Jell 

159 



An Introduct ion to the BASIC Programming Language 

JLDAD MENU 
JLIST 

assigns a value of "control-D" to the variable D$ (any legal string variable name 
could be used) . Executing the "control-D" as a PRINT statement that includes 
the appropriate command enclosed in quotes allows the command to literally be 
a statement in the program. For example, when the statement 

PRINT 0$i"RUN NE XT" 

is executed [and D$ has an assigned value of CHR$(4)]. the system will auto­
matically LOAD and RUN the program named NEXT. 

This use of commands as BASIC statements is illustrated in program MENU 
on the disk. Carefully examine the listings of MENU, CHAIN 1, and CHAIN 2; 
then, RUN MENU and note the options and actions it provides. 

10 REM PROGRAM ' MENU ' 
20 REM ==== ============ 
30 REM THIS PROGRAM DEMONSTRATES THE USE OF 
ao REM INCORPORATING BASIC COMMANDS INTO THE 
50 REM BODY OF A PROGRAM BY DEFINING A 
60 REM STRING VARIABLE CE.G. 1 0$) = CHR$Clll, 
70 REM TWO PROGRAMS1 CHAIN 1 AND CHAIN 2 ARE 
8 0 REM USED FOR DEMONSTRATION PURPOSES . 
85 REM ======= ========= 
90 HOME FOR I = 1 TO 5: PRINT : NE XT I 
100 PRINT " MENU": PRINT 
110 
120 
130 
1 ll O 
150 
160 
170 
180 
190 
200 
210 
220 
230 
2ll0 
250 

PRINT "THIS PROGRAM DEMONSTRATES HOW A 'MENU'" 
PRINT "OF PROGRAMS MAY BE PRESENTED FOR" 
PRINT "SELECTION AND THEN AUTOMATICALLY" 
PRINT "EXECUTED CRUNl BY THE SYSTEM," 
REM =============== 
REM 
REM 
0$ = 
PRINT 
PRINT 
PRINT 
PRINT 
PRINT 
PRINT 
PRINT 

DEFINE A VARIABLE AS A 'CONTROL-0' CCHR$C4ll 
======= ======== 
CHR$ <a> 

PRINT 
YOUR OPTIONS:" 

1 . PROGRAM CHAIN 1" 
2, PROGRAM CHA IN 2" 
3, STOP 

YOUR CHOICE Cl-3)?" 
260 GET Z 
270 IF Z > = 1 AND Z < = 3 THEN 330 
280 PRINT "***OUT OF RANGE ***": GOTO 250 
290 REM =============== 
300 REM 
31 0 REM 
320 REM 

CLEAR THE SCREEN1 CENTER1 AND 
TELL WHAT 'S HAPPENING •• • 
=============== 



330 HOME : FOR I = 1 TO 11: PRINT : NE XT I 
3ll0 
350 
360 
370 

ON Z GOTO 35013701390 
PRINT "GOING TO PROGRAM 'C HAIN 
PRINT D$;"RUN CHAIN 1" 
PRINT "GOING TO PROGRAM ' CHAIN 

380 PRINT D$;"RUN CHAIN 2" 

1 I U ... 
2 I U ... 

390 PRINT "STOPPING THIS INTERACTION AND" 
llOO PRINT "GETTING THE DISK ' CATALOG ' •••" 
ll10 FOR I = 1 TO 3000: NE XT I 
ll20 PRINT D$;"CATALOG" 
ll30 END 

JLOAD CHAIN 
JUST 

PROGRAM 'CHAIN 1 ' 10 REM 
20 REM =================== 
30 HOME : FOR I = 1 TO 8 : PRINT : NE XT 
LIO PRINT "AN D HERE WE ARE EXECUTING" 
50 PRINT "PROGRAM 'C HAIN 1 I U ... 
60 PRINT 
70 PRINT " IF YOU DEPRESS THE LETTER ' N'" 
80 PR I NT " (FOR I NEXT I ) I WE I LL GO TO THE" 
90 PRI NT "PROGRAM 'C HAIN 2', ANY OTHER KEY" 
100 PRINT "WILL TAKE YOU BACK TO THE ' MENU ' •••" 
110 D$ = CHR$ Cli) 
120 GET Z$ 
130 HOME : FOR I = 1 TO 11: PRINT : NEXT I 
1ll0 PRINT "YOU DEPRESSED THE LETTER '";Z$ ;" '•• •" 
150 PRINT : PRINT " SO ... " 
160 IF Z$ = "N" THEN 180 
170 PRINT D$ ;" RUN MENU" 
180 PRINT D$;"RUN CHAIN 2" 
190 END 

JLOAD CHAIN 2 
JUST 

10 REM 
20 REM 

PROGRAM ' CHAIN 2' 

30 HOME : FOR I = 1 TO 10: PRINT : NE XT I 
LIO PRINT "WELL1 WE MADE IT TO PROGRAM" 
50 PRINT "'CHAIN 2 · ... so YOU SEE IT 'S" 
60 PRINT "SIMPLE TO HAVE THE SYSTEM" 
70 PRINT "FOLLOW YOUR COMMANDS **IN**" 
80 PRINT "A PROGRAM CI F YOU KN OW THE RULES,,,)" 
90 PRINT 
100 PRINT "NOW DEPRESS ANY KEY 1 AND WE ' LL" 
110 PRINT "GO BACK TO THE 'MENU' PROGRAM •• , " 
120 GET Z$ 

Show and Jell 

161 



An Introduction to the BASIC Programming Language 

130 HOME: FOR I= 1 TO 11: PRINT : NE XT I 
140 PRINT "HERE WE GO BACK TO THE MENU,,," 
150 0$ = CHR$ ca> 
160 PRINT 0$l"RUN MENU " 
170 END 

JRUN MENU 

[Clear screen] 

M E N U 

THIS PROGRAM DEMONSTRATES HOW A ' MENU ' 
OF PROGRAMS MAY BE PRESENTED FOR 
SELECTION AND THEN AUTOMATICALL Y 
EXECUTED CRUNl BY THE SYSTEM, 

YO UR OPTIONS: 
--------

1. PROGRAM CHAIN 
2. PROGRAM CHAIN 2 
3, STOP 

YOUR CHOICE ( 1-3)? 

[Clear screen] 

GOING TO PROGRAM ' CHAIN 1 ',,, 

[Clear screen] 

AND HERE WE ARE EXECUTING 
PROGRAM 'CHAIN 1',,, 

IF YOU DEPRESS THE LETTER 'N' 
CFOR 'NEXT ') t WE'LL GO TO THE 
PROGRAM ' CHAIN 2', ANY OTHER KEY 
WILL TAKE YOU BACK TO THE 'MENU',,, 

[Clear screen] 

YOU DEPRESSED THE LETTER 'N',, , 

so ••• 

[Clear screen] 

WELLt WE MADE IT TO PROGRAM 
' CHAIN 2' ••• so YOU SEE IT ' S 
SIMPLE TO HAVE THE SYSTEM 
FOLLOW YOUR COMMANDS ** IN** 
A PROGRAM CIF YOU KN OW THE RULES,,, ) 



NOW DEPRESS ANY KEYt AND WE'LL 
GO BACK TO THE ' MENU ' PROGRAM,,, 

[Clear screen) 

HERE WE GO BACK TO THE MENU,,, 

[Clear screen) 

M E N U 

THIS PROGRAM DEMONSTRATES HOW A 'MENU ' 
OF PROGRAMS MAY BE PRESENTED FOR 
SELECTION AND THEN AUTOMATICALLY 
EXECUTED CRUNl BY THE SYSTEM, 

YOUR DPT IONS: 
--------

1. PROGRAM CHAIN 
2. PROGRAM CHAIN 2 
3. STOP 

YOUR CHOICE (1-3)? 3 

[Clear screen) 

STOPPING THIS INTERACTION AND 
GETTING THE DISK 'CATALOG'••• 

DISK VOLUME 254 

*A 002 HELLO 
*B 034 TITLE 
*B 034 CREDITS 
*A 002 PROGRAM 1 
*A 003 PROGRAM 2 
*A 006 PROGRAM 3 
*A 008 PROGRAM 4 
*A 008 PROGRAM 5 
*A 009 PROGRAM 6 
*A 009 PROGRAM 7 
*A 011 PROGRAM 8 
*A 005 PROGRAM 9 
*A 008 PROGRAM 10 
*A 018 PROGRAM 11 
*A 021 PROGRAM 12 
*A 007 PROGRAM 13 
*A 022 PROGRAM 14 
*A 009 PROGRAM 15 
*A 013 PROGRAM 16 
*A 022 PROGRAM 17 
*A 016 PROGRAM 18 

Show and Tell 

163 



An Introduction to the BASIC Programming Language 

*A 011 
*A 021 
*A 014 
*A 009 
*A 012 
*A 016 
*A 006 
*A 011 
*A 006 

T 002 
*A 008 
*A 004 
*A 006 
*A 007 
*A OOll 

*A 004 
*A OOll 

*A 009 
*A 016 
*A 012 
*A 006 
*A 003 
*A 003 
*A 004 
*A 004 
*A 021 

164 

PROGRAM 
PROGRAM 
PROGRAM 
PROGRAM 
PROGRAM 
PROGRAM 
PROGRAM 
PROGRAM 
RECORD 
TESTS 
A3S4 
A422 
A4SB 
A662 
A78ll 
A78S 
A786 
KEYWORD 
KEY WORD 
SOCKS 
MENU 
CHAIN 1 
CHAIN 2 
START 
WARNING 
ISLAND 

19 
20 
21 
22 
23 
24 
25 
26 

INITIALIZER 

DEMO 

Question: How could the menu of available programs on a disk be auto­
matically displayed when the disk is loaded and the system booted up? (One 
solution is shown on the text disk in statement 90 of the HELLO program and 
by the program START.) 

6.10 POSERS AND PROBLEMS 

1. Identify an area in your particular field of interest in which an instruc­
tional computing program could be written for each of the five appli­
cations described above. Briefly outline each program by describing the 
area, content, and application in a short paragraph. 



166 

"What is the use of a book," thought Alice, "without 
pictures or conversations?" 

-Lewis Carroll 

rbink About rbis { for Fun) 

A single English word can be formed from these letters. What is it? Use all the 
letters: PNLLEEEESSSSS. 

rbink About This {Serious[~) 

Is is possible that graphics do not always enhance instructional computing 
materials? · 



One Picture Is Wortb 
Ten TbousanJ Words 

7.1 OBJECTIVES 

For the successful completion of this chapter, you should be able to: 

1. Explain and give an example of how to specify a point on a graphics 
screen (Section 7.2). 

2. Define the purpose and give at least one example of each of the low­
resolution graphics statements GR COLOR, PLOT, HLIN, VLIN, and TEXT 
(Section 7.3). 

3. Define the purpose and give at least one example of each of the high­
resolution graphics statements HGR HCOLOR and HPLOT (Section 7.4). 

c&apter 

167 



An Introduction to the BASIC Programming Language 

168 

4. Design, enter, and RUN a BASIC program of your own choosing using 
low-resolution graphics. 

5. Design, enter and RUN a BASIC program of your own choosing using 
high-resolution graphics. 

7.2 WHAT ARE GRAPHICS? 

Throughout history, progress has been the result of people's ability to understand 
complex concepts. Visual tools such as drawings, photographs, films, and video 
tapes provide the medium for making complex concepts understandable to the 
masses. With the development of the computer and its ability to analyze vast 
amounts of data rapidly, its use as a tool for portraying visual information (graph­
ics) naturally evolved. 

A computer graphic is somewhat like a printed map. Both are two-dimen­
sional surfaces with a vertical direction and a horizontal direction. Just as any 
point on a map may be identified by its horizontal and vertical coordinates 
(latitude and longitude)., any point on a computer's graphics screen can be spec­
ified by measuring its vertical and horizontal distances from the upper left corner. 

The horizontal distance scale is called the x-axis and the vertical distance 
scale is called the y-axis. Figure 7.1 shows the Apple low-resolution graphics 
screen with the x-axis across the top of the screen and the y-axis down the left 
side of the screen. When the position of a point is specified, the distance on the 
x-axis is specified first, followed by the distance on the y-axis (the x- and y­
coordinates of the point) . For example, 20,10 specifies the point 20 units to the 
right in the x-direction and 10 units down in the y-direction. Similarly, the 
corners of the Apple low-resolution graphics screen are specified by 0,0 (upper 
left) , 39.0 (upper right) , 39,39 (lower right) , and 0,39 (lower left). 

7.3 STATEMENTS FOR LOW-RESOLUTION GRAPHICS 

7.3.1 Statement GR 

Purpose The GR statement is used to initialize the low-resolution graphics 
screen in a program. When it is executed, the computer monitor will change 
from text to low-resolution graphics, and the screen will be cleared to black. As 
pictured in Figure 7.1, the low-resolution screen contains 160 points (0 to 39 by 
0 to 39). In addition, four text lines are available at the bottom of the screen for 
instructions, questions, and comments. 

7.3.2 Statement COLOR 
Purpose The COLOR statement sets the color for subsequent graphics 

statements. Once the color has been set, all graphics drawn on the screen will be 



One Picture Is lM>rth 'Itn Thousand Words 

0 5 10 15 
x axis 

20 25 30 35 39 
0 

I r- r~ - . - i-: f!=I[ .. J -I I -i I' ~E_J..±l+Ff-FC 
r-r - 1---j---i-ttp-· -. .. -: ' I ~ .:~-i±-i EEEf: :f_-_,=I ~ ~ 

5 , .. ;:..,~~~\ . j 1'-: .. :.._ ~f =F.--+ ' -1- . ·1· 1· : _ 1~,· f- · . -·-t--t-ct:- ""F-ti . . I .. - .. I . I : ' - --'-'- . ,_ . ···1··1 · 1 -- --· 1-t-c 101----'. -!--;--i- · t : · .. • · · i ~ --· · · H-'-' ' ' -t-::- · -::Ll..J - - - PLOi- 2 1..l....L.. - .=:.._: '. ' . I . ·-i--] 
t=I.-L:..J fr 1 · I · ... 1 · · · I · 1 r : -, I · 11 :--; 
1----l--<'-l-+-i w,---: .. - [ -·-- -1 . l - 1-+-,---"--· -· - ·--15 

- •- ·-- I ~~ i - - _[_. _ _ , :_ .. -, ~ 

1--1 -T--1----1-..-T1--~ • - --,-, EllJ' • r · J · ' - · · · · · --1 t::J::r t--t-- i ·-· . . :-i-·-- I 1~ 1- ·-1--+- . -1- ----1 
y axis i-1-·· _:_ , ·+-++-H-r l - __t:J - 1-L-,-,-' 

20 1- :r_ cc- t_.., i-o:::aG jA= 2 1-+--1-1-frl-i - 1- 1-1- H 
1-1...: ! I H+-:- 1. 1...-

35 t-f--t-t-i--+-il-l-·t-t-t-+-t-t-++-+-+-+-+-+-+-t-i-!--i-11-1--+-l'-l-+-i-l- +-i-!-+-+-i--1 
1-1--1-1-1--+-i1 - t-t£- 1-+-1-1-+-_-+l--1t-'-f::t--1-1-i=J= _ - 1-+_-+_-1H-!-_+_-:t---:::..:t:::t::t :t:t=J 

39 --1--1- I - - - I f-l-f-!-1 

Text line 21- .. .. ....... ........... . ................. . ..... . . .. . ..... .... . . . ............ ....... .. ................ . .. 
Text line 22- ..................................................................... · ........... .......... ...... . .. .. . 

Text line 23- · · · •· · · · ·· · ••• · • · ·· · · •• · · • · • · · · .•.•. ..•• . · · • · · · · .. · · · · · · · · · · · · · ·· · · · · ··· ·· · · · · • •· · · · · · · · · · · · · · · · · · · · · · · 
Text line 24- · · • · · · · · • ••• .•....•. · ·· · · · · · ·• ..• . . . · · .• . . . ·. · · · · · · ·· ·· · · · · · · ••· • · • •· • ·· · · · · •· · • · · · · · • · • · · · · · · · · · · · · · · · 

of that color until another COLOR statement is executed. Sixteen colors are 
available. Each color is represented by a number from 0 to 15: 

COLOR = 0 (black) COLO R = 8 (brown) 
COLOR = 1 (magenta) COLOR = 9 (orange) 
COLOR = 2 (dark blue) COLOR = 10 (grey) 
COLOR = 3 (purple) COL OR 1 1 (pink) 
COLOR = i1 (dark green) COLOR = 12 (green) 
COLOR = 5 (grey) CO LOR = 13 (yellow) 
COLOR = 6 (medium blue) CO LOR = 1 i1 (aqua) 
COLOR = 7 (light blue) COLOR = 15 (white) 

7 .3.3 Statement PLOT 

Purpose The PLOT statement will place a rectangular "brick" on the 
screen at the x- and y-coordinates specified in the statement. The color of the 
brick will be the color specified by the most recently executed COLOR statement. 

Example: PLOT 20, 10 

(A brick will be PLOTted at a point 20 units to the right on the x-axis and 10 
units down on the y-axis. See Figure 7.1.) 

Figure 7.1 
Low-resolution 
graphics screen 
(GR). 

169 



An Introduction to the BASIC Programming Language 

NEW 
10 
20 
30 
40 
50 
60 
70 
80 

170 

Example: Enter the following program and RUN it: 

GR 
FOR I = 1 TO 15 

I 0 initializes low-resolution graphics 
screen. 

20 defines a loop to be executed 15 
times. 

COLOR = I 30 resets COLOR to new value each 
time through loop. x = 

y = 
PLOT 
NEXT 
END 

INT<RNDC1 l*40l 
INT CR NDC1 l*40l 

40 and 50 generate random values (0-
39) for x- and y-coordinates. 

x,v 
I 

60 PLOTS brick on screen. 

70 and 80 continue loop and END 
program. 

What happened? If entered correctly, fifteen bricks of different colors were PLOT -
ted on the screen. 

7.3.4 Statement HLIN 

Purpose The HLIN statement draws a horizontal line on the screen 
from a specified starting point on the x-axis. to a specified ending point on the 
x-axis. The line is located at a specified y-axis point. The color of the line will be 
the color indicated by the most recently executed COLOR statement. 

Example: HLIN 10 ,30 AT 20 

(A horizontal line will be drawn from the 10th to the 30th unit on the x-axis at 
the 20th unit down the y-axis. See Figure 7.1.) 

7.3.5 Statement VLIN 

Purpose The VLIN statement draws a vertical line on the screen from 
a specified starting point on the y-axis to a specified ending point on the y-axis. 
The line is located at a specified x-axis point. The color of the line will be the 
color indicated by the most recently executed COLOR statement. 

Example: VLIN 21 ,3 1 AT 5 

(A vertical line will be drawn from the 2 1st to the 31st unit on the y-axis at the 
5th unit to the right on the x-axis. See Figure 7.1.) 

7 .3.6 Statement TEXT 

Purpose The TEXT statement returns the computer's monitor to a full 
text screen (24 lines of 40 characters). If this statement is not included at the end 
of a program using graphics, the graphics screen will remain on the monitor. 



One Picture Is Worth Jen Thousand Words 

TEXT may also be typed as an individual command to return to the full text 
screen. 

7.3. 7 PROGRAM 25: Random Colored Lines 
The five low-resolution graphics statements GR, COLOR, PLOT, HLIN, and 

VLIN provide the basis for adding diagrams, charts, and illustrations to instruc­
tional computing materials. PROGRAM 25 demonstrates the use of these state­
ments to generate unique art. The program is designed to: 

I . Clear the screen and color it light blue. 

2. Draw 100 vertical and 100 horizontal lines of varying lengths at random 
locations on the screen. 

3. Draw each line using a random color. 

Since PROGRAM 25 is dynamic, it must be RUN to be appreciated. The 
actions on the screen cannot be sufficiently illustrated by words or pictures in 
this text. 

Run from disk and refer to the listing of PROGRAM 25. 

JLOAD PROGRAM 25 
JLIST 

100 REM =============== 
110 REM PROGRAM 25 DESCRIPTION 
120 REM =========== ==== 
130 REM DEMONSTRATION OF LOW-RESOLUTION 

GRAPH I CS, 
140 

150 
160 
170 

REM THE SCREEN WILL BE COLORED BLUE AND 
100 RANDOM 
REM LINES OF RANDOM CO LORS WILL BE DRAWN . 
REM 
REM 

-- ---- ----- ------ --- ----------
VARIABLE DICTIO NARY 

180 REM ======== ======= 
190 REM A - RANDOM STARTING POINT 
200 REM B - RANDOM ENDING PO I NT 
21 0 REM C - RANDOM X OR Y POINT 
220 REM I - LOOP COUNTER 
230 REM X - RANDOM COLOR CODE 
240 REM =============== 
250 REM COLOR IN BAC KGROUND 
260 REM == ============ = 
270 HOME 
280 GR 
290 COLOR = 7 
300 FOR I = 0 TO 39 

100- 230 document program and list 
important variables and what they 
represent. 

270 d ears text page. (Undesired text 
may otherwise appear below graphics.) 

280 initializes low-resolution graphics 
screen. 



An Introduction to the BASIC Programming Language 

310 
320 
330 
3ll0 
350 
360 
370 

HLIN 0 139 AT I 
NE XT I 
REM =============== 
REM LOOP 100 TIMES 
REM =============== 
FOR I = 1 TD 100 

REM =============== 
380 REM CHOOSE RANDOM COLOR 
390 REM =============== 
aoo 
ll 10 
£1 20 
£130 
aao 
ll50 
ll60 
£170 
ll80 
ll90 
500 
510 

LET X = INT< RND (1) * 16l 
IF x = 7 THEN aoo 
COLOR = X 
REM =============== 
REM PLOT VERTICAL LINE 
REM =============== 
GOSUB 610 
VLIN A 18 AT C 
REM =============== 
REM ANOTHER RANDOM COLOR 
REM =============== 
LET X = INT C RND Cll * 16) 

520 IF X = 7 THEN 510 
530 COLOR = X 
5£10 REM =============== 
550 REM PLOT HORIZONTAL LINE 
560 REM =============== 
570 
580 
590 
600 
610 
620 
630 
6ao 
650 
660 
670 

GOSUB 610 
HLIN A 18 AT C 
NEXT I 
END 
REM =============== 
REM SUBROUTINE TD CHOOSE 
REM THREE RANDOM POINTS 
REM =============== 
LET A = INT 
LET 8 = INT 
LET C = INT 

RND ( 1) * ao) 
RND ( 1 ) * ao) 
RND ( 1) * ao) 

68 0 RETURN 

290 sets COLOR light blue; 300-320 
draw 40 horizontal lines completely 
across screen (x-axis points 0-39). ln 
effect, this colors background light blue. 

360 defines loop which terminates at 
590. It will be executed 100 times. 

400 chooses random number 0-15. 

410 checks if chosen number equals 7, 
the background color code. If so, 
another will be chosen. Otherwise, 
COLOR set to random number at 420. 

460 calls subroutine at 610. 

470 draws vertical line from A on y-axis 
to B on y-axis at point C on x-axis. (A, 
B. C, values come from subroutine at 
610.) 

510-530 select random COLOR not 
light blue. Execution transferred again to 
subroutine at 610; 3 new random 
numbers stored in A, B, C. 

580 draws horizontal line from A on y­
axis to B on x-axis at point C on y-axis. 

590 terminates loop. Since loop executes 
I 00 times, l 00 random vertical and 
horizontal lines are drawn on screen. 

610-680 is subroutine generating 3 
random numbers (0-39). It stores them 
in A, B, C. 

7.4 STATEMENTS FOR HIGH-RESOLUTION GRAPHICS 

172 

The Apple II microcomputer has two levels of graphics available: low-resolution 
graphics, as discussed above, and high-resolution graphics. High-resolution 
graphics, as the name implies, have greater detail or more resolution. However, 
something must be sacrificed for this feature-the variety of colors. 

The high-resolution screen is illustrated in Figure 7.2. A point on the screen 
is specified in the same fashion as on the low-resolution screen by giving the x­
axis position first, followed by the y-axis position. However, the axes have con-



One Picture ls Worth Ten Thousand Words 

Figure 7.2 
35 70 105 

x axis 
140 175 210 245 279 High-resolution 

,.,-~~.....-~~--,-~~-,-~~~..--~~-.-~~--r~~---,,-~----., 

40 

60 

y axis 80 

100 • 
HPLOT 951101 

120 

140 

159 

Text line 21- ... ..... .. ... .. .. . ........ . .......... .................. . .................... . ..................... . . .. 
Text line 22- ........ • ........... ........... ..... . ...................... . ..... . ... ......... .. .. . ........... . ...... . 
Text line 23- ..... .................. . ....................................................................... ..... .. 
Text line 24-- ................................ . ........... ..... ...... . ................... .................... ...... . 

siderably more units: The x-axis contains 280 units (0 through 279) and they­
axis contains 160 (0 through 159). Four text lines are available at the bottom of 
the screen for instructions, questions, and comments. 

Instead of having sixteen colors available, only six are allowed: black, white, 
green, blue, orange, and violet. These colors will vary in hue depending on the 
brand of TV monitor being used. 

7.4.1 Statement HGR 

Purpose The HGR statement is used to initialize the high-resolution 
graphics screen in a program. When it is executed, the computer monitor will 
change from text to high-resolution graphics, and the screen will be cleared to 
black. As pictured in Figure 7.2, the high-resolution screen initialized with the 
HGR statement contains 44,800 points (0 to 279 by Oto 159). 

7.4.2 Statement HCOLOR 

Purpose The HCOLOR statement sets the color for subsequent graphics 
statements. Once the color has been set, all graphics drawn on the screen will 
be of that color until another HCOLOR statement is executed. Six colors are 

graphics screen 
(HGR). 

173 



An Introduction to the BASIC Programming Language 

174 

available. Each color is represented by a number from 0 to 7 {black and white 
are represented by two codes): 

HCDLOR = 0 {black) HCDLDR a {black) 
HCDLDR = {green) HCDLDR s {orange) 
HCOLDR = 2 {violet) HCDLDR 6 {blue) 
HCDLDR = 3 {white) HCDLDR = 7 {white) 

7.4.3 Statement HPLOT 

Purpose HPLOT will place a dot on the screen at the x- and y-coor­
dinates specified in the statement. The color of the dot will be the color specified 
by the most recently executed COLOR statement. 

Example: HPLDT 95 1101 

{Plots a dot on the high-resolution screen 95 units to the right on the x-axis and 
101 units down the y-axis. See Figure 7.2.) 

The HPLOT statement can also be used to draw a line from one point on the 
screen to another. 

Example: 1 o HGR 
20 HCOLOR = 3 
30 HPLDT 010 TD 2791 159 
llO END 

(Draws a diagonal white line from the upper left corner to the lower right corner 
of the screen. See Figure 7.2.) 

HPLOT can also be used to draw a line from the last point plotted to the x­
and y-coordinates specified. 

Example: 10 HGR 
20 HCOLOR = 3 
30 HPLDT 010 
llO HPLOT . TD 27910 
so HP LDT TD 2791159 
60 HP LOT TD 0 1159 
70 HP LOT TD 010 
BO END 

{Draws a white border completely around the high-resolution screen.) 
A series of lines can be specified in a single HPLOT statement. The following 

example will have the same result as the previous example (a border around the 
graphics screen); however, it is done in one statement. 

Example: 1 o HGR 
20 HCOLOR = 3 
30 HPLOT 0 10 TO 27910 TD 2791 159 TD 01 159 TD 

010 
llO ENO 



One Picture Is Worth 'Jen Thousand Words 

7.4.4 Statement VT AB 

Purpose The VTAB statement tabs to the line number specified so that 
text can be PRINTed on that line. Both the low-resolution and high-resolution 
graphics screens have four text lines available. These lines are the 21st, 22nd, 
23rd, and 24th lines on the text screen. VT AB 21 in statement 80 of the following 
program allows statement 90 to PRINT on line 21 and statement 100 to PRINT 
on line 22. 

NEW 
5 HOME 
10 HGR 
20 FOR 

Example: Enter the following high-resolution graphics program and RUN 
it: 

I = 1 TO 100 
IO initializes high-resolution graphics 
screen. 

30 HCOLOR = INT CRND < 1 > *8 > 
ao x = I NT CRND ( 1 > *280) 20-70 defines loop executed I 00 times. 

50 y = INT<RND(1)*160) 
60 HPLOT X1Y 
70 NEXT I 
80 VTAB 21 
90 PRINT "THE 

BRIGHT" 
100 PRINT II 

110 END 

STARS AT NIGHT ••• ARE BIG AND 

DEEP IN THE HEART OF TEXAS,"; 

30 chooses random color. 

40 chooses random x-axis position. 

50 chooses random y-axis position. 

60 plots dot at chosen coordinate. 

Brilliant! One hundred random points (stars) were plotted on the screen. 

7.5 HIGH-RESOLUTION GRAPHICS AND 
INSTRUCTIONAL COMPUTING MATERIALS 

When developing instructional computing materials that contain graphics, some 
special planning is necessary. In addition to the normal designing of the program, 
the graphic screens used in the program should be sketched or plotted on graph 
paper. Longer tutorial programs may require a storyboard to be prepared. This is 
a series of sketches of the graphics with the related textual information or ques­
tions included. 

When designing the program, the graphics are most easily done in subrou­
tines which can be called as needed in the program. The subroutines can be easily 
tested by typing RUN and the starting line number of the subroutine. (For exam­
ple, RUN 800 would execute the subroutine beginning at line 800.) 

7.5.1 PROGRAM 26: Shape-Recognition Drill 

PROGRAM 26 is a drill-and-practice program that displays a shape on the 
screen for the student to identify. Four shapes are used: circle, rectangle, square, 175 



An Introdudion to the BASIC Programming Language 

and triangle. The program randomly presents five questions, presents the shape 
in random sizes, and keeps track of the student's score. The program elements 
required in the design are: 

1. Instructions to the student. 

2. A loop to: 
a. Choose one of the four shapes. 
b. Branch to the appropriate subroutine. 

3. Four subroutines (circle, rectangle, square, and triangle) to: 
a. Choose a random height and width. 
b. Plot the shape, centered on the screen. 
c. Ask the student to identify the shape. 
d. Input the student's answer. 
e. Display whether the answer is right or wrong. 
f. Tally the correct answers. 

4. Display the number of correct answers. 

5. End the program. 

Run from disk and refer to the listing of PROGRAM 26. 

lLOAD PROGRAM 26 
lLIST 

100 REM =============== 
110 REM PROGRAM 26 DESCRIPTION 

=============== 
SHAPE-RECOGNITION DRILL+ 

120 REM 
130 REM 
lllO REM 
150 REM 
160 REM 

PROGRAM DRAWS A SHAPE ON THE SCREEN 
AND ASKS USER TO IDENTIFY IT, 
SHAPES ARE: CIRCLE1 RECTANGLE1 SQUARE1 

AND 
170 REM TRIANGLE , SHAPES ARE DRAWN IN RANDOM 

SIZES, 
180 REM ------------------------------
190 REM VARIABLE DICTIONARY 
200 REM =============== 
210 REM ANS$ - USER ' S RESPONSE 
220 REM c - NUMBER CORRECT 
230 REM H - RANDOM HEIGHT 
240 REM I - LOOP COUNTER 
250 REM J - LOOP COUNTER 
260 REM w - RANDOM WIDTH 
270 REM x - x AXIS POINT 
280 REM y - y AXIS POINT 
290 REM z - RANDOM SHAPE 
300 REM =============== 

100-290 document program and list 
and identify variables. 



REM PRINT INTRODUCTION 
REM =============== 
HOME 
PRINT 

PRINT "I AM GOING TD SHOW YOU SOME SHAPES," 
PRINT 

One Picture Is Y\-Vrth Ten Thousand Words 

H0-41 O clear screen, provide basic 
instructions, and ask student if ready. If 
so, program continues at 420; if student 
not ready, instructions are repeated. 

310 
320 
330 
340 

350 
360 
370 

380 
390 

PRINT 
PRINT 
PRINT 

"YOU TELL ME WHAT KIND OF SHAPE IT IS , "42osetscorrect-answercounter,C, to 

400 INPUT "ARE YOU READY? "lANS$ 
410 IF ANS$ < > "YES" THEN 330 
420 LET C = 0 
430 

440 
450 
460 
470 
480 
490 

500 

510 

520 
530 
540 

550 
560 
570 

580 
590 
600 

610 
620 
630 
640 
650 
660 
670 
680 
690 
700 
710 
720 

725 

730 
740 
750 

REM =============== 
REM ASK 5 QUESTIONS 
REM =============== 
FOR I = 1 TD 5 
HOME 
HGR 
VTAB 22 
PRINT "C=CIRCLE R=RECTANGLE S=SQUARE 
T=TRIANGLE" 
PRINT 

REM =============== 
REM CHOOSE RANDOM SHAPE. 
REM BRANCH TO SUBROUTINE, 
REM =============== 
LET Z = INT < RND C1> *LI+ ll 
ON Z GDSUB 6501770189011010 
NEXT I 
HOME 
TEXT 

PRINT "YOU GOT "lCl" SHAPES CORRECT!" 
PRINT 

PRINT "SO LONG FOR NOW," 
END 

REM ====== 
REM SQUARE 
REM ====== 
LETH INT ( RND (1) * 61 + 10) 

LET w = H * 1.20 
LET Y = 80 - H I 2 
LET X = 140 - W I 2 
HPLDT X1Y TD x + W1Y TD x + w,y + H TD x,y 
+ H TO X1Y 

HPLOT X - 11 Y - 1 TD X + W+l, Y - TO X 
+ w + 1 I y + H + TD x - 1 I y + H + 1 
TO X - 1 , Y - 1 

INPUT "WHICH SHAPE IS IT? "iANS$ 
IF ANS$ "S" THEN GOSUB 1170 
IF ANS$ = < > "S" THEN GOSUB 1260 

zero. 

460 begins loop terminating at 580. It is 
executed 5 times. 

470-480 clear text screen and initialize 
high-resolution graphics screen. 

490-51 O print answer codes on text line 
22. 

560 chooses random number (l-4). 

570 branches to corresponding 
subroutine. 

590 clears screen after loop executed 5 
times. 

600 switches back to full text screen. 

61 O reports number of correct responses. 

630 makes concluding remarks. 

650-760 is subroutine that draws a 
square. 

680 generates random height for square. 

690 multiplies height by 1.2 to obtain 
width of square. (Because screen is 
rectangular, l unit on x-axis = 1.2 units 
on y-axis.) 

700-710 calculate the starting y- and x­
axis positions; respectively, to center 
square on screen. (Note: 140,80 is 
approx. center screen.) 

720-72 5 draw the square. 

730 prints question on text line 24 and 
inputs answer into ANS$. If answer is 
"S" for square, subroutine at 1170 is 
executed. Otherwise, subroutine at 1260 
is executed. 

177 



An /ntrod11ction to the BASIC Programming Language 

RETURN 
REM ==== === = 
REM TRIANGLE 
REM ======== 
LE T H INT ( RND ( 1) * 61 + 10) 
LET w H * . 7 
LET y = 80 - H I 2 
LET x 140 

760 
770 
780 
790 
800 
81 0 
820 
830 
0ao HPLOT X1Y TO X + W1Y + H TD X - W1 Y + H 

TO X1Y 
850 
860 
870 
880 
890 
900 
910 

INPUT "WHICH SHAPE IS IT? " i ANS$ 
IF ANS$ = "T" THEN GOSUB 1170 
IF ANS$ < > "T" THEN GO SUB 1260 
RETURN 
REM ========= 
REM RECTANGL E 
REM ========= 

920 LET H INT ( RND <ll * 61 + l Ol 
930 LET W = H * 2 
9aO LET y = 80 - H I 2 
950 LET X 14 0 - W I 2 
960 HPLOT X1Y TO X + W1Y TD X + W1Y + H TO X1Y 

+ H TD X1Y 
965 HPLOT X - 1 , Y - TO X + W+ 1 t Y - TD 

x + w + 1 I y + H + 1 TO x - 1 I y + H + 1 TO 
X-11Y-1 

970 INPUT "W HICH SHAPE IS IT? ";ANS$ 
980 IF ANS$ "R" THEN GOSUB 11 70 
990 IF AN S$ < > "R" THEN GOSUB 1260 
1000 RETURN 

REM == ==== 
REM CIRCLE 
REM ====== 
LET H INT RND ( 1 ) 
LET x cos - 3. 1 al 
LET y SIN - 3. 14) 
HPLOT X1Y 

10 10 
1020 
1030 
104 0 
1050 
1060 
1070 
1080 
1090 

FOR J = - 3 .1 5TO 3. 15 
LET x = cos ( J) * H * 

* 61 + 10) 

* H * 1. 2 

* H + 80 

STEP • 1 
1. 2 + 140 

+ 14 0 

1170-12 50 is subroutine that informs 
student of correct answer ( 1210) and 
adds I to correct-answer counter C 
(1220). 

1230 and 1240 loop 1000 times to slow 
drill to pleasing pace. 

1260-1330 is subroutine that informs 
student of wrong answer ( 1300). 

13 IO and 1320 also loop 1000 times to 
slow pace. 

770-880 and 890-1000 are subroutines 
to draw triangle and rectangle. They 
follow same logic as square. Study them 
to discover technique used in each. 

1OI0-11 60 is subroutine that draws a 
circle. Rather than connecting comers of 
an object, as with square, triangle, and 
rectangle, circle must be drawn by 
computing each x- and y-coordinate 
from a formula (polar coordinate 
formula ). 

I 040 randomly chooses value for circle 
radius. 

1050 calculates x-axis coordinate for 
starting point; I 060 calculates y-axis 
coordinate. Formulae are: 
X = COS(radian) x (radius) x ( 1.2) 
+ (x-coordinate for center) 
Y = SIN(radian) x (radius) 
+ (y-coordinate for center) 

1050 substitutes - 3. 14 for radian, 
variable H for radius, and 140 for x­
coordinate of circle center. Remember, 
1.2 is width-to-height ratio of screen. 

LET y SIN ( J) * H + 80 11 00 I 060 substitutes - 3.14 and H, and 80 
HPL OT TO X1Y 111 O for y-coordinate of circle center. 

1120 NE XT J 
1130 
1140 
1150 
1160 
1170 
1180 
1190 
1200 

INPUT "WHICH SHAPE IS IT? "iANS$ 
IF ANS$ = "C" THEN GOSUB 11 70 
IF ANS$ < > "C" THEN GO SUB 1260 
RETURN 
REM =============== 
REM ANSWER CORRECT 
REM =============== 
PRINT 

12 10 PRINT "YOU ARE CORRECT !" 

I 070 plots starting point on screen. 

1080-1120 calculate subsequent x- and 
y-coordinates around circle. Loop runs 
from - 3.15 to + 3. 15 (circle contains 
2ir radians), stepping by 0.1. This 
stepping facto r provides a relatively 
smooth circle; yet it plots at reasonable 
speed. 



One Picture Is \Mirth Jen Thousand Words 

1220 LET c = 
1230 FOR J = 
12ll0 NE XT J 

c + 
1 TO 

1 
1000 

1110 draws line from previous point 
plo tted to current values of X and Y. 

1250 RETURN 
1260 REM 
1270 REM 

=============== 
ANSWER WRONG 

1130- 1 150 ask student to identify shape 
and branch to appropriate subroutine if 
answer right or wrong. 

1280 REM ------- --- ------------ ------- -
1290 PRINT 
1300 PRINT "SORRY1 TRY ANOTHER. II 

1310 FOR J = 1 TD 1000 
1320 NEXT J 
1330 RETU RN 

7.6 SOME NOTES ABOUT USING COLOR 

The graphic statements in this chapter can be employed to "add a little color" 
to instructional computing materials. However, there are both positive and neg­
ative factors to be considered when using color: 

1. Color can increase attention. 

2. Color can increase motivation. 

3. Color is less fatiguing to the eye than black and white text. 

4. If color is used for highlighting concepts, it must be used consistently 
throughout the program. 

5. Limit the number of colors used at any one time to four. 

6. Use highly saturated (bold) colors. 

7. Consider color stereotypes. (Stop signs must be red.) 

8. The greater the contrast between two colors (i.e., complementary colors), 
the greater the visual impact. 

9. Remember that 10% of all males and 5% of all females are color-blind. 

10. Most important: If you emphasize everything, nothing on the screen will 
stand out! 

7. 7 POSERS AND PROBLEMS 

1. Correct any errors in the following statements: 

10 GR 
20 COLOR = 10 
30 HPLOT 101 10 TO 10011 00 
llO END 179 



An Introduction to the BASIC Programming Language 

2. Modify PROGRAM 25 to draw random squares of random colors on the 
low-resolution graphics screen instead of random lines. 

3. What would result from the execution of the following statements? 

10 HGR 
20 HCOLOR = 2 
30 FOR Y = 0 TO 159 
ao HPLOT 01Y TO 279,y 
50 NE XT Y 
60 END 

4. Write a low-resolution graphics program that displays sixteen bars of 
different colors. (This program can be used as a test pattern to adjust the 
color on the TV monitor.) 

5. Write a low-resolution graphics program which displays a checkerboard 
pattern (your choice of colors) on the screen. 

6. Write a high-resolution graphics program that plots the function X = 
SQR(Y)*20 (vary Y from 0 to 159) . 



An Introduction to 
tbe Design and 

Development of 
Instructional 

Computing Materia[s 

Part 

II 



182 

"It takes less time to do a thing right than to explain 
why you did it wrong." 

-H. W. Longfellow 

"Garbage in, garbage out." 
-Anon. 

''A thing of beauty is a joy forever. '' 
-John Keats 

Tb ink About Tb is (for Fun J 

Using each numberonly once, arrange the figures 0,1,2,3,4,5,6, 7,8,9 so that their 
sum is 100. 

Tbink About Tbis (Serious[~ J 

Should every student have had an exposure to computers and their uses by the 
time of graduation from high school? 



Wbat Are Your Intentions? 

8.1 OBJECTIVES 

For the successful completion of this chapter, you should be able to: 

1. Identify the steps of a "systems approach" to the design of instructional 
computing materials (Section 8.3). 

2. Identify an area of personal interest within which to apply instructional 
computing. 

3. Outline a rationale, a set of quantitative performance objectives, and a 
sequence of instruction for a unit of instructional computing materials 
(Sections 8.3.1-8.3.3). 

c&apter 

8 

183 



An Introduction to the Design and Development of Instructional Computing Materials 

184 

8.2 DESIGNING INSTRUCTIONAL COMPUTING 
MATERIALS 

A working knowledge of BASIC (or any programming language) provides only 
a very small step toward the actual development of educationally valid instruc­
tional computing materials. In fact, such materials have been designed by edu­
cators with no computing experience whatsoever! In these cases, the completed 
design is given to a computer programmer (who often knows very little about 
the specific academic area) for translation into an executable computer program. 
The executable program is tested, refined, and eventually put to use in the class­
room. Thus, the key to the development of valid educational materials rests 
initially with their design. 

The entire design and development process can be improved if both the 
author and the programmer have something more than a casual awareness of 
the other's area of expertise. However, it is not often that the author and pro­
grammer are one and the same person, with expertise in both programming and 
a given academic area. Very few educators have high proficiency in programming 
techniques and strategies. Likewise, few programmers know the intricacies of 
learning theory, instructional design, teaching methodology, and so on. 

The wide acceptance and use of microcomputers in education is bringing 
about a gradual change in this, however. More and more, both inservice and 
preservice teachers are gaining knowledge in computer literacy and instructional 
computing uses. With this knowledge will come improved materials and improved 
use of this medium of instructional technology which, literally, is at our finger­
tips. 

Design! It is not too unusual for some individuals to have the feeling that 
they have never designed anything! However, if they have ever wanted anything, 
anything at all, that was eventually obtained through their efforts, they have 
experienced the design process! This process, then, is really something common 
to most people, and it has at least one fringe benefit: It makes us think logically 
and creatively. That is, the procedure-from identification of an objective to 
its attainment-becomes a series of steps. 

Often, this logical procedure is called an algorithm, and, in fact, it is a logical 
series of steps that must be followed in designing any effective package of instruc­
tional materials. This process, however, is amplified greatly in designing and 
developing interactive instructional computing materials. There are several rea­
sons for this amplification, the primary ones being the immediate feedback and 
active user participation aspects of instructional computing. The design of a pro­
gram-for better or worse-rapidly becomes apparent to a user through the 
interactive nature of this type of instructional media. 

8.3 THE SYSTEMS APPROACH 

The design stage of instructional computing materials is one part of a process 
that is used extensively in the overall development of educational m~terials. 



What Are Your Intentions? 

Although this process is known by several names, and the steps may differ slightly 
among versions, it may be summarized as follows: 

1. statement of the rationale for use 

2. statement of quantitative performance objectives 

3. definition of the instructional sequence 

4. program construction 

5. debugging 

6. pilot testing 

7. revision 

8. use in the classroom 

9. revision 

10. evaluation 

These ten steps comprise the process often called a systems approach to instrudional 
design . However, since it does involve a logical approach, another name might 
be, "A Common Sense Approach to Instructional Design." 

The first three steps constitute the design stage and will be discussed in this 
chapter. The following seven steps will be discussed in Chapter 9. Note that, 
although all of these steps are important, the contents of each are determined 
solely by the author(s) of the instructional computing materials. In other words, 
the steps and general procedures for each can be outlined in this book, but the 
reason for any given instructional computing lesson- what it does and how it 
does it-can only be determined by its author(s). 

8.3.I The Rationale 
Assume that an area of interest has been identified for the design and devel­

opment of a unit of instructional computing material. Can reasons be stated why 
this particular area of interest should be taught in the first place? Can reasons be 
stated why a computer should be used? In other words, the rationale is the 
answer to why: Why teach this academic concept, and why use the computer as 
an adjunct to the instructional process? If the why cannot be justified in both 
instances, the design stage should be terminated and another area of interest 
identified. 

The following examples of rationales are taken directly from instructional 
computing units developed by various teachers. Note how brief or how thorough 
such a rationale may be. The first example is very brief: 

The purpose of this learning module (unit) is to enrich the student's personal com­
munication skills, provide a background knowledge for future study in business and 

185 



An Introduction to the Design and Development of Instructional Computing Materials 

186 

economics, and provide a beginning knowledge base of terminology for application 
in the selected career area. Terminology is essential for communicating in a specialized 
technological society. This module provides a beginning for building a vocabulary 
base in business, management and economics. 

A second, slightly longer rationale is very specific: 

Correct association of compound names with molecular formulas is a necessary skill 
for continuing successfully in a chemistry course. The names and formulas for com­
pounds are used interchangeably throughout most chemical literature. Mastery of 
chemistry textbook reading material requires the correct identification of compound 
names and formulas. In the chemistry laboratory, names and formulas are also used 
interchangeably in labeling containers and in written laboratory procedures. A seri­
ous error could result in the laboratory if a student incorrectly identified a compound 
used in the experiment. 

The computer can serve as an effective tool for the student who is learning to identify 
the names and molecular formulas of compounds because: l) it allows the student 
to work at his/her individual pace, 2) it provides immediate feedback to the student 
after each answer is given, 3) it may randomly generate different questions so that 
the student has a variety of practice, 4) it scores the student at the end of the drill 
providing an estimation of progress, and, 5) it may be adapted for use in both drill 
exercises and testing. 

The third example is as specific as the second and is slightly more expansive: 

Preservice educational preparation for nursing in a coronary care unit generally focuses 
on dysrhythrnia recognition. Given various electrocardiographic tracings, the learner 
is expected to label the patterns by origin and conduction of impulse, rate, and 
probable clinical sequela. She/he is rarely provided opportunity to project and eval­
uate nursing actions based on recognition of the dysrhythrnia. Consequently, these 
decision making skills are usually learned "on the job" under tutelage of a more 
experienced nurse practitioner. The trainee's learning depends, then, on numerous 
variables-the experienced nurse's willingness to teach, clinical situations which 
"happen" to be present, critical time factors which may or may not permit the trainee 
opportunity to project appropriate actions before action is required, and numerous 
other equally uncontrollable factors. Preservice teaching methods can, and should, 
be developed which facilitate the trainee's acquisition of decision making/judgment 
skills in environments created deliberately for learning; learning within the setting 
of a coronary care unit is best reserved for only those abilities which cannot be 
synthesized in any other environment. 

Simulation is one possibly effective preservice teaching technique to facilitate acquis­
ition of decision making/judgment skills. Simulation teaching strategies have been 
noted to enable the student to: 1) actively participate in learning, 2) integrate the­
oretical concepts to simulated life situations, 3) desensitize oneself against threatening 
situations, 4) be presented with identical "hands-on experiences" as those presented 
fellow learners, 5) experience some of the doubts, competencies, difficulties and 
anxieties that would be experienced in actual clinical settings, and, 6) respond in a 

• 



What An> lVur Intentions? 

safe standardized context free of concern about harming the patient or pleasing a 
tutor. 

What are the advantages of using the computer in designing these simulated expe­
riences? First. the selection and sequencing of problems can be randomized inde­
pendent of instructor or learner choice at the moment-a situation more closely 
approximating the "randomness" of the actual clinical setting. Second, the learner 
can be provided with immediate feedback on decisions made. Third, since computers 
are interactive, the student's response has a measurable effect on the material as it is 
presented. Fifth, the learner can choose the time for instruction, times when faculty 
may or may not be available. Sixth, the instructor can reconstruct precisely the sequence 
in which the student responds to the simulated clinical situation, diagnose errors in 
approach, and pinpoint reinforcement and help. 

In summary, the rationale underlying this unit rests on three premises: 1) A need for 
preservice acquisition of decision making/judgment skills exists. 2) Simulated expe­
riences can assist in acquisition of these needed skills. 3) Use of the computer enhances 
the student's independence, assists instructor diagnosis of learning difficulties, and 
facilitates the process of simulating clinical situations. 

8.3.2 Quantitative Performance Objectives 

Students will be interacting with your programs: Do they know what is 
expected of them before, during, and after this interaction? Before a student sits 
down at a computer terminal, information should be provided that at least out­
lines the prerequisites for interaction, what the interaction will deal with, and, 
specifically, what constitutes a successful interaction. For what goals should the 
student strive, and how will it be determined if these goals are attained? 

Continuing with our examples from the previous section, a statement of 
quantitative objectives might be as brief as: 

General: Given a basic list of business terms, the student will develop a working 
knowledge of basic business terms. The student will demonstrate this ability by com­
pleting successfully the instructional computing units focusing on terminology mastery. 

Specific: Given a set of terminology, the student will complete the instructional com­
puting unit with 90% or better accuracy on a 20-word list. 

The second example is succinct and equally brief: 

1. The student will be able to state the name of a compound when given its molec­
ular formula with 80% accuracy. 

2. The student will be able to state the molecular formula of a compound when 
given its name with 80% accuracy. 

The third example is longer but also quite specific: 187 



An Introduction to the Design and Development of Instructional Computing Materials 

188 

• Given a cardiac rhythm strip, the student will identify the pattern by site of origin 
and rhythm with I 00% accuracy. 

• Given a cardiac rhythm strip, the student will identify an appropriate sequence of 
nursing actions from among the following four alternatives: obtain more data, 
execute a standing order, call the physician, or continue close observation. 

• Given a decision to call the physician, the student will indicate the information 
to be shared, omitting no pertinent data. 

• Given a decision to obtain more data, the student will ask for data pertinent to 
formulating a subsequent action-decision. 

• Given feedback regarding a questionable action-decision, the student will re-eval­
uate the decision and indicate with I 00% accuracy if the decision was appropriate. 

For a thorough and enlightening description of defining instructional objec­
tives, the reader is referred to the classic text in this field, Preparing Instructional 
Objectives by R. F. Mager (Fearon Publications, Palo Alto, Calif., 1962). 

8.3.3 The Instructional Sequence 
This step in design is probably the most difficult for tutorial dialog programs 

and the least difficult for linear (nonbranching) programs. Obviously, the instruc­
tional sequence is in part determined by the type of instructional computing 
(problem solving, drill, simulation, etc.) to be applied. This in turn is determined 
by the rationale, objectives, and interactive tasks defined for the unit. Regardless 
of the type of use, this step should include, as a minimum, answers to such 
questions as: 

I. Should review material or other information specifically related to the 
unit be provided prior to actual interaction? If so, what? 

2. What student-control options should be included? Stop at will? Skip 
problems or sections? Receive answers to questions without an actual 
attempt at answering? 

3. How many questions will be included in the interaction? 

4. What are the anticipated correct answers to questions? What response(s) 
will be given? 

5. What are the anticipated incorrect answers to questions? What response(s) 
will be given? 

6. What will the program do if neither an anticipated correct nor incorrect 
answer is matched? Give a hint? Give the answer? 

7. How many "misses" will be allowed? 

8. Will branching to review sections be provided for students having 
difficulty? 



What Are Your Intentions? 

9. Will only answers that are correct on the first attempt be recorded? 

10. How will the performance report to the student be presented? Will 
areas of strength and/or weakness be identified? 

Answers to these-and perhaps many other questions, depending upon the 
design-must be outlined on paper prior to translation of the defined sequence 
into a computer programming language. 

8.4 POSERS AND PROBLEMS 

1. Outline on paper the rationale, quantitative objective(s), and sequence 
of instruction for a short unit of instructional computing in an area of 
your interest. 

189 



190 

"The young do not know enough to be prudent and 
therefore they attempt the impossible-and achieve it, 

generation after generation." 
-Pearl S. Buck 

"The next-best thing to knowing something is 
knowing where to find it." 

-The Ensign 

Tbink About Tb is ( for Fun J 

"Them as has, gits." 
- Anon. 

A frog (male ) is at the bottom of a thirty-foot well, trying to escape. Everytime 
he jumps up three feet, h e falls back two. How many jumps will it require for 
the frog to get out? 

Tbink About Tbis (Serious[~ J 

Should our society become a computer-literate society? If so, how could this be 
accomplished? 



I 

Developmental Processes 

9.1 OBJECTIVES 

For the successful completion of this chapter, you should be able to : 

I. Identify the processes involved in the developmental steps of the systems 
approach to instructional design (Section 9 .2) . 

2. Identify at least ten of the twelve guidelines for the design and devel­
opment of instructional computing materials (Section 9.3) . 

3. Using information discussed in Chapters l through 9, design and develop 
instructional computing units. 

9.2 THE SYSTEMS APPROACH (continued) 

The design of instructional computing materials constitutes the first three steps 
of the systems approach. These steps are essentially mental, paper-and-pencil 

cbapter 

9 

191 



An Introduction to the Design and Development of Instrudional Computing Materials 

192 

processes. Once the rationale, objectives, and instructional sequence have been 
defined, the remaining steps of the development process-the coding, debugging, 
testing, refinement, and use and evaluation of the materials-may be started. 

The total process, from rationale to evaluation, for an original set of instruc­
tional computing materials may require 50 to 250 person-hours for each hour 
of student interaction at a terminal. This would include development of any 
accompanying materials, such as student and instructor manuals. Of course, if 
model programs are simply adapted to a teacher's specific needs, the time required 
for development is considerably reduced. 

9.2.l Program Construction 

Actually, this step is still a mental, paper-and-pencil process for the most 
part. It primarily involves the translation of the instructional sequence into com­
puter program statements. This is the first of the systematic steps in which some 
degree of programming expertise is required from either the design author or a 
programmer. Programming techniques and strategies must be used in transferring 
the design concepts from paper to executable program code. This step may range 
from the trivial task of adapting a model program to the extremely involved, 
time-consuming process of translating an original, detailed design into program 
code. 

9.2.2 Debugging 

Once the code has been written, entered, and saved, execution of the pro­
gram is attempted. Chances are, the program will not run. Problems, commonly 
called bugs in computerese, may be present. These may be anything from simple 
syntax errors {omitting quotes, misspelling statements, etc.) to technical or con­
ceptual errors {incorrect use of a formula, right answer not accepted, omitting 
counters, branching at the wrong point, etc.). Debugging {extermination of the 
errors) is done to the point that program execution is satisfactory from the 
author's viewpoint. 

9.2.3 Pilot Testing 

Pilot testing of the program is performed next. Generally, this is done with 
the aid of teaching colleagues and a few volunteer students to test the program 
on an individual basis. It is recommended that the author literally "look over 
their shoulders" as they run the program since it is a rare case in which something 
unanticipated does not occur. These events may be as trivial as the user typing 
in an anticipated answer, followed by an unanticipated period or space which 
the program cannot handle. Alternatively, a major discussion of the conceptual 
and/or instructional strategy may be involved. Of course, the main point of pilot 
testing is feedback to the author regarding the design and content of the program. 



9.2.4 Revision 

It is common for instructional computing materials to be frequently revised. 
However, the majority of revisions occur after pilot testing. These revisions are 
usually fairly minor in nature, involving redefining anticipated answers, improv­
ing responses, making cosmetic improvements to the display, and so on. How­
ever, the revisions could be as major as returning to the design stage for refine­
ment of the program or, in extreme cases, discarding the program. {If the design 
steps are thought out carefully, this probably will not occur!) Note that the pilot 
testing and revision steps are cyclic and may be repeated several times prior to 
actual classroom use of the program. 

9.2.5 Use in the Classroom/Further Revision 

Use of instructional computing materials in the classroom is, obviously, directly 
related to the design of the materials. This use may be supplemental for those 
students needing review or assistance on a given concept; it may be a required 
segment of a set of "learning activities"; it may be a prerequisite simulation of a 
real experiment prior to entering the laboratory; it may be used both as a drill 
and a testing procedure; and so on. 

Regardless of the particular application, it is safe to anticipate minor revision 
of the materials, if for no other reason than the number of users testing the 
materials will have increased. Again, it is unlikely that the materials will ever get 
to the point where no additional revisions {however minor) are needed. Thus, 
use in the classroom and revision are cyclic and may continue as long as the 
materials are a part of the given instructional process. 

9.2.6 Evaluation 

Evaluation of instructional computing materials may be divided into two 
categories. The first is an analysis to determine if the students are indeed attaining 
the defined objectives. This analysis may vary depending upon the design of the 
materials, but it is often based upon pretest and posttest results. If negative results 
are indicated, a return to Step 1 of the systems approach may be appropriate. 

The second evaluation is of the concept of using instructional computing 
materials. Did this approach as an instructional medium prove suitable? Analysis 
of this comes in part from evaluation of the materials in terms of meeting defined 
objectives. Further evaluation may be based on both student and colleague feed­
back via attitudinal questionnaires, overall student performance, and, although 
it lacks quantitative measurement, the author's intuitive feeling. 

Note: Research since the late sixties has consistently indicated that the con­
cept of the use of supplemental instructional computing materials is educationally 
valid. In general, the success or failure of any given instructional computing 
program rests heavily upon the design steps previously discussed. Although it 
should go without saying, the importance of thoughtful design merits emphasis 

Developmental Processes 

193 



An lntrodudion to the Design and Development of Instructional Computing Materials 

194 

one final time. If, in particular, the rationale, objectives, and instructional sequence 
are very carefully defined, the chances for successful use of the materials are 
greatly enhanced. In other words, think it through, folks! 

9.3 GUIDELINES FOR DESIGN AND DEVELOPMENT 

9.3.1 Consider BASIC 
Although there are some disadvantages to using BASIC as an instructional 

computing language (primarily in translating instructional sequence into pro­
gram code), they are minor when compared to the relative ease of acquiring a 
working knowledge of the language, its universal nature, and its transportability. 

9.3.2 Modularize the Units 

It is good practice when writing any computer program to keep it as modular 
(concise by topic) as possible. For example, if a given concept includes a series 
of subconcepts, it is better to have one program for each subconcept, rather than 
one long program for the total concept. Programs are not only easier to design 
on this basis but are also easier to debug and revise. 

9.3.3 Follow a Systems Approach 

It is obviously important that the author of a program know the why, what, 
how, and effect of using instructional computing materials. For purposes of moti­
vation, it is equally important that the student know why the area is worth 
studying, what the objectives are, how they will be achieved, and what effect 
they will have. Following a systems approach in the design and development of 
the materials is a means by which this may be accomplished. 

9.3.4 State Quantitative Objectives · 

Although this is one of the steps in the systems approach to instructional 
design, it merits reiteration. Ensure that users of instructional computing mate­
rials know specifically the extent and effect of a successful interaction with the 
materials. This means that measurement of the objectives must be possible. 

9.3.5 Put in Personality 

Be kind to the users of your materials. Have a variety of positive reinforcers. 
Avoid the use of any negative feedback to the student; rather, make your responses 
to incorrect answers indicate that you are there "in spirit" to assist the student, 
and then proceed to do so. Include enough humor to solicit a smile or two from 
the user, but avoid the use of "cute" statements and repetitive responses. Also 
avoid the use of "fad" responses; they go out of style quickly. 



9.3.6 Consider Gluteal Limits 

Another advantage of modularization is that the user will not be sitting at a 
terminal for lengthy periods. A good "rule of rear" is to keep the interaction to 
30 minutes or less. 

9.3. 7 Avoid Lengthy Text 

Do not make programs "page turners"! It is expensive and boring. One of 
the key elements in successful instructional computing is that the user be an active 
learner. If detailed information, figures, tables, and so on, are required, have 
these available as supplemental materials prior to or during the interaction. 

9.3.8 Branch 

Another key to success is the individualization that may be provided by 
branching. If appropriate, the program should have the capability to allow stu­
dents to view additional material, skip areas if competence is indicated, and/or 
stop the interaction at will, based upon student need or performance. In any 
event, never construct a program so that the student is trapped in a routine with 
no means of escape. Always provide some means by which the student may 
continue. For example, give the answer after a certain number of incorrect responses 
or provide other options. 

9.3.9 Supplemental Use 
For better or worse, the major use of instructional computing is as a supple­

ment or adjunct to traditional instruction. There are few courses that are taught 
by computer alone. Design units that will ease those areas that are routine to the 
instructional process or that can be best done by instructional computing tech­
niques. Remember, it takes teachers to truly impart personality, lead discussions, 
and explain abstract concepts. 

9.3.10 Document 
Your work in the design and development of materials represents much time, 

effort, and thought. Thus, have your programs well documented with REMark 
statements and develop student and teacher guides where appropriate. This will 
facilitate not only the local use of your materials, but also their potential use 
elsewhere. 

9.3.11 Review the Literature 
Have others done what you are doing? Is their approach different from yours? 

Are you "reinventing the wheel"? Before you invest the effort required to design 
and develop materials, you should know what has gone before. Likewise, if your 

Developmental Processes 

195 



An Introduction to the Design and Development of Instructional Computing Materials 

196 

work is unique and successful, consider publishing a description of what you 
have done. There are a variety of instructional computing journals and other 
publications available (see Appendix D). Others interested in instructional com­
puting should have the opportunity to become aware of your efforts. 

9.3.12 Recognize the Capabilities of the Computer 
Finally, but perhaps foremost. never forget that, to this point in the realm of 

instructional computing, computers are an incredibly fast, accurate, and useful 
tool. They can only do what they have been programmed to do. That means that 
people are providing the instructions. Thus, computer programs are only as good 
or bad in their actions as they have been designed to be by the people who 
provided the instructions. 

Instructional computing materials have been used successfully in problem 
solving, drill, testing, simulation, and, to a lesser degree, tutorial applications. In 
general, these are applications where speed and accuracy are important in improving 
the instructional process. That is where we are today. 

Where will instructional computing be in the future? More and better of the 
same? Faster and cheaper computing? Computers in every home and school? 
Libraries of validated instructional computing materials? Use in practically every 
academic discipline? It is difficult to accurately predict this future, for the limits 
are determined by something unpredictable and unlimited: imagination. 



Tbe Apple Computer anJ 
How to Use It 

A.I THE APPLE Il COMPUTER 

The Apple II microcomputer is one of the most popular computers used in edu­
cation. Among the reasons for this popularity is its flexibility and expandability. 
An Apple owner can begin with a modest investment and gradually upgrade the 
system as his or her interest and budget allow. 

The variety of components available for the Apple make it difficult to describe 
all the possible combinations. Therefore, this book will limit the discussion to 
the typical system found in schools: 

1. Apple II Plus with 48K of RAM. 

2. Color television or monitor. 

3. Disk II floppy disk drive. 

4. Dot matrix printer. 

A.I.I The "'Core" of the Apple 

From the exterior, the Apple resembles a typewriter with a keyboard but no 
place to put the paper. Inside the case of the Apple are the integrated circuits 
known as !C's or chips that make it operate. Figure A. l illustrates the "core" of 
the Apple. 

The functional work unit is the microprocessor chip which is located centrally 
in the computer. Surrounding the microprocessor are memory chips, peripheral 
slots, and other electronics necessary for the operation of the Apple. 

1\vo types of memory are found in most microcomputers. ROM, Read-Only 
Memory, has programs already stored in it by the manufacturer. These programs 
may be read but not changed in any way. They are permanent and are never 
lost, even when the power is turned off. In contrast, RAM, Random Access Memory, 
is read-and-write memory. It may be read or changed (written to). When the 
power is turned off, any programs or data stored in RAM are erased. 

AppenJix 

A 

197 



The Apple Computer and How to Use It 

Figure A.I 
The "core" of the 

Apple U. 
(Photograph by 

Carey Van Loon) 

198 

-----------------

In the Apple II Plus, ROM contains the programs that make the computer 
operate (the operating system) and the Applesoft language interpreter. The latter 
will convert Applesoft BASIC statements and commands to meaningful codes to 
which the microprocessor can react. 

In the Apple It the predecessor of the Apple II Plus, ROM contained the 
operating system and the Integer BASIC language. If the reader wishes to use 
such a system with this text, he or she will need either the Applesoft Firmware 
card, which contains the same ROM as the Apple II Plus, or the Language System 
which contains l 6K of RAM. The Language System works by loading the Apple­
soft BASIC interpreter into its RAM from the disk drive. (Note that, although the 



The Apple Computer and How to Use It 

Applesoft language can be loaded into RAM on the Apple II, it will not allow 
user access to high-resolution graphics and some of the programs contained in 
this book will not function properly.) 

The Apple II Plus is available with l 6K ( 16,384 characters of storage), 32K. 
or 48K of RAM. This memory is used to store a BASIC program, the program 
variables, the images of the text screen, the low-resolution graphics screen, and 
the high-resolution graphics screen. When using a disk drive, the Disk Operating 
System (DOS) containing the instructions to transfer data and programs between 
the Apple and the drive is loaded into RAM. This requires at least a 32K Apple 
system. If the user also wishes to utilize the high-resolution graphics screen in 
addition to a disk drive, a 48K Apple system will be needed. Consequently, most 
educators choose the 48K system. 

Eight slots are provided inside the Apple toward the back. These slots are 
numbered 0 through 7 and are used to connect the Apple with peripheral devices. 
Slot 0, however, is the exception. It is used only for memory expansion and can 
contain the Applesoft Firmware or Language System cards mentioned above. 
Slots 1 through 7 are used for communicating with external devices such as 
printers (usually slot l ), other computers (slot 2), and disk drives (slot 6). Other 
less common peripherals include graphics tablet, clock, voice synthesis, voice 
recognition, plotter, and music synthesis. 

The remaining integrated circuits in the Apple's core are used to generate the 
screen display, decode the keyboard input, and create sounds on the Apple's 
speaker. As with all electronic appliances, severe damage or shock can result 
from liquids being spilled inside the Apple. Appropriate care should be exercised. 

A.1.2 The Television (Monitor) 
The Apple II will output to any black and white or color television. (Of 

course, color graphics cannot be displayed in color on a black and white TY. 
Alternatively, either a black and white or color monitor can be used. A monitor 
will generally produce a sharper picture than a television; however, it is usually 
more expensive. The TV set is connected to the Apple with an RF modulator 
which converts the Apple's video signal to a TV signal. The modulator is con­
nected from inside the Apple to the TV antenna leads. If a monitor is used, it is 
connected directly to the video output plug at the right rear corner of the Apple. 

A.1.3 The Disk II Drive 
The Disk II floppy disk drive is the "file cabinet" of the Apple. It is capable 

of storing 143,360 characters of information (programs and/or data) per diskette 
and can retrieve a single piece of information in 5/100000 of a second. The disk 
drive is connected to the Apple through an interface called a disk controller which 
is plugged into slot 6 of the Apple. Two drives can be connected to one controller, 
in which case they are usually labeled drive 1 and drive 2. This book utilizes 
only drive 1. 199 



The Apple Computer and How to Use It 

200 

A.1.4 The Dot Matrix Printer 

A variety of printers can be connected to the Apple through an interface 
plugged into slot 1. The most common and least expensive printer uses a pattern 
of dots to print the characters on the paper; hence the name dot matrix printer. 
The cost of printers range from approximately $400 to several thousand dollars; 
hence they are considered by some to be a "luxury" in the e~ucational setting. 
However, a printer is essential to the process of developing instructional com­
puting materials. 

A.2 HOW TO USE THE APPLE WITH THIS BOOK 

A companion to this book is a diskette containing all of the sample programs 
described in the various chapters. This diskette is designed to work on a 48K 
Apple II Plus system with a Disk II drive. A 48K Apple II system with Integer 
BASIC can be used if either an Applesoft Firmware or a Language System card 
is installed in peripheral slot 0. 

It is recommended that the reader use this diskette in conjunction with the 
book in order to study the programs. It is further recommended that a second 
diskette be used to store the programs you develop from the "Posers and Prob­
lems." The following sections will explain how to boot up the Apple, initialize 
your own diskette, care for diskettes, use a printer, and what to do if you get into 
trouble. 

A.2.1 Booting Up 

Using the diskette labeled "An APPLE for the Teacher: Fundamentals of 
Instructional Computing," boot up the system as follows: 

1. Open the door on disk drive 1 by pulling outward on the bottom edge 
of the door. 

2. Slip the diskette into the slot in the front of the drive with the diskette 
label facing upwards. The edge of the diskette with the oval cutout should 
be toward the back of the drive. 

3. Push the diskette gently into the drive until it is entirely inside it. Do not 
force or bend the diskette. Close the disk drive door. 

4. Turn on the television and turn the sound down all the way. 

5. Turn on the Apple by pushing upward on the switch located at the back 
of the computer on your left-hand side. The red light on the disk drive 
will go on and the drive will make clicking sounds. 



The Apple Computer and How to Use It 

Figure A.2 
(Photograph by 
Carey Van Loon) 

6. After a few seconds, the title of this book should appear on the screen 
(Figure A.2), followed by the authors' names. After a few more seconds, 
a warning about use of the diskette and a menu of the programs stored 
on it will appear (Figure A.3). 

7. Select a program from the menu, type in its car.responding number, and 
depress the RETURN key. The program then may be either LOADed or 
RUN at your option by depressing l or 2 followed by depressing the 
RETURN key. 

The process of powering up the Apple is called booting DOS by experienced 
Apple users. What takes place is that the DOS (disk operating system) is loaded 
from the diskette into RAM memory and a predetermined program is executed. 

To execute another program on the diskette, type RUN followed by the name 
of the program, and depress the RETURN key. To see a list of the program's 
statements, type LIST and depress the RETURN key. For example: 

RUN PROGRAM 1 [don't forget the RETURN key] 

will load PROGRAM l from the diskette into the computer's memory and exe­
cute it; and 

LI 5 T [depress RETURN] 

will list all the statements of PROGRAM 1. 
201 



The Apple Computer and How to Use I t 

Figure A.3 

202 

A R N N G 

THIS IS NOT A DEMONSTRATION DISKETTE! 

THE PROGRAMS ARE AN INTEGRA L PART OF 

AND SOL ELY FOR USE IN CONJUNCTION WITH 

THE ACC OM PANYING TEXT MATERIA L, 

DEPRESS ANY KEY ••• 

[Clear screen] 

* * M E N U OF P R D G R A M S * * 

EXAMPLE PROGRAMS FROM THE TEXT: 

1 6 11 16 21 26 
2 7 12 17 22 
3 8 13 18 23 
a 8 1a 18 2a 
5 10 15 20 25 

ANSWERS TO 'POSERS AND PROBLEMS': 

27 •• A35a 30 •• A662 33 • • A786 
2a •• Aa22 31 , .A7Ba 
28 •• Aa58 32 • • A785 

DEMONSTRATION PROGRAMS FROM THE TE XT : 

3a • • ISLAND 36 •• SOCKS 
35 •• KEYWDRD DEMO 37 •• MENU 

PLEASE ENTER THE NUMBER OF THE PROGRAM 
YOU WISH?! 

[Clear screen) 

DD YOU WISH TO : 
1 • LOAD 
2. RUN 

PROGRAM 1 <ENTER 1 DR 2l? 1 

[Clear screen] 

LOADING PROGRAM 1 • • • 



The Apple Computer and How to Use It 

A.2.2 Initializing a Blank Diskette 

You will want to store the programs you write on a diskette. Although you 
can store your programs on the diskene that comes with this book, it is best to 
use another diskette so that you don' t accidentally delete a sample program. 

Obtain a new blank diskette and follow this procedure: 

I . After removing the sample program diskette from the disk drive, insert 
your blank diskette into the disk drive. 

2. Type NEW and depress the RETURN key. 

3. Type 10 HOME and depress the RETURN key. 

4. Type INIT HELLO and depress the RETURN key. The red light on the 
disk drive will glow and the drive will whirr for about two minutes. 

5. When the"]" character appears, remove the diskette and label the out­
side of the diskette with a pressure-sensitive label. Use a felt pen so that 
you won't damage the diskette. 

It is very important that you have a blank diskette in the drive when you 
follow the above procedure, otherwise you will destroy any programs on the 
diskette. This procedure formats the diskette so that it can be used with the Apple. 
The DOS is copied from memory onto the diskette along with whatever program 
is stored in memory. The diskette can subsequently be used to power up (boot) 
the system. 

A.2.3 Care and Treatment of Diskettes 

The programs you store on diskette are valuable. You have an investment 
in them-either time or money or both. Eliminate troubles by following these 
simple precautions: 

1. Handle a diskette by the jacket (plastic cover) only . Do not allow anything 
to touch the exposed area of the diskette. 

2. Never subject a diskette to a magnetic field; it may erase the diskette. 
Setting your diskette on top of a TV or printer could cause problems. 

3. Keep diskettes flat. Do not fold, bend, or crimp in a three-ring binder. 

4. Insert diskettes carefully into the disk drive. Don't use unnecessary force. 

5. Store diskettes in their envelope away from liquids, dirty or greasy sur­
faces, and dust. In the classroom, chalk dust can cause serious problems 
with diskettes. 

6. Do not expose diskettes to extreme hot or cold temperatures. Car dash­
boards and trunks are diskette killers. 203 



The Apple Computer and How to Use It 

204 

A.2.4 How to Use a Printer 

Since several different printers may be used with the Apple II computer, the 
following instructions for using a printer are generalized. Should these instruc­
tions not work, refer to the printer manual. 

I . Locate the on/off switch on the printer and turn it on. 

2. Check for a switch labeled onlineloff/ine and set for online. 

J. Type PR# I and depress the RETURN key. From now on, any text that 
appears on the television screen should also appear on the paper in the 
printer. 

4. When a 'T appears, printing may be halted by typing PR#O and depressing 
the RETURN key. Locate a switch on the printer labeled linefeed orform­
feed. Use this switch to eject the paper so that the printout can be removed 
from the printer. (Note: The printer may need to be offline to eject the 
paper.) 

The above instructions require that the printer interface be plugged into 
peripheral slot 1 inside the Apple. This is its normal location. 

The default print line length is 40 characters, the same as the Apple's screen 
line length. Some printers can print 80 characters per line. To print 80 characters, 
type the following sequence of keys: 

J. Type PR#l and depress RETURN. 

2. Type I while holding down the CTRL key. 

J. Type 80 and depress RETURN. 

A.3 WHAT TO DO WHEN ALL ELSE FAILS 

A.3.1 Booting DOS Manually 

Because of the number of possible configurations of Apple systems, the above 
instructions will not always boot the system. If you follow the instructions in 
Section A.2.1 and the disk light does not go on, you can manually boot the DOS 
as follows: 

1. If a "]" or ">" appears on the screen, type PR#6 and depress the RETURN 
key. 

2. If a "*" appears on the screen, type 6; then type P while holding down 
the CTRL key. Finally depress RETURN. 



The Apple Computer and How to Use It 

A.3.2 Getting Back to BASIC (Applesoft) 

Through a number of different ways, it is possible to get out of Applesoft 
BASIC (designated by a"]" prompt) and into either Integer BASIC (designated 
by a ">"prompt) or the Apple monitor mode (designated by a "*" prompt). 
Follow these directions to return to Applesoft: 

1. If a ">" appears on the screen, type FP and depress RETURN. 

2. If a "*" appears on the screen, type 3DOG and depress RETURN. (That's 
a zero after the D.) 

A.3.3 Halting a Runaway 

Sometimes when you RUN a program or make a LISTing of a ptogram you 
may desire to stop before it finishes. To do this, type C while holding down the 
CTRL key. 

A.3.4 The Last Resort 

If all attempts to get yourself out of the jam you're in have failed , try depress­
ing the RESET key and following the instructions above for getting back into 
Applesoft. Note that depressing the RESET key during a program RUN can have 
disastrous results. (Some systems require the CTRL key to be held down while 
depressing RESET.) 

The ultimate correction for problems is to turn the power off and then boot 
up the Apple again. This will definitely erase the program in memory, but it will 
not affect the diskette as long as the red light on the disk drive is not lit when 
you turn off the power. 

If you cannot get the companion diskette to this book to boot correctly, reread 
Section A.2 to make sure the Apple you are using is configured correctly. 

205 



Appendix 

B 

206 

Applesoft Language 
Summar'9 

This appendix defines the most common statements and commands used by 
educators on the Apple computer. It is not a complete listing of all possible 
statements, nor does it present a detailed description of the action of each state­
ment. The reader who requires such information is referred to the Applesoft 
BASIC programming reference manual that comes with each Apple II. 

The assumption of this appendix is the same as that of the rest of the text: 
The statements and commands as described are intended to be used on an Apple 
II Plus (or Apple II with an Applesoft Firmware or Language System card) with 
48K of RAM memory and one or two disk drives whose controller card is located 
in slot #6. This configuration is very common for educational users. If the reader's 
system is not configured in this fashion, some of the following statements and 
commands will function differently than documented. 

In the following summary, the general format for each statement or com­
mand is followed by an example (or examples) and a description of the action 
initiated. The conventions and abbreviations used are as follows: 

< ••• > Required element. 

< ••• } Optional element. 

c on d Any logical condition. 

di 111 ens ion c s > The maximum dimension(s) of an array. 

e x P r Any numeric constant, variable, or expression. 

f i 1 e Any legal filename (only the first 30 characters are used) . 

Ke Y Any key on the Apple keyboard. 

1 ine nu111be r Any legal line number from 0 to 32767. 

111 es sage Any combination of characters. 

state111ent Any legal Applesoft statement. 



strin!1 

variable 
or var 

x 

y 

Any string constant, variable, or expression. 

Any legal variable as described in 
Section B.4. 

Applesoft Language Summary 

Any numeric constant, variable, or expression defining an x­
axis value. 

Any numeric constant, variable, or expression defining a y­
axis value. 

B.l BASIC STATEMENTS 

DATA 

DIM 

END 

FOR 

GET 

line number DATA < list of variables> 

210 DATA ll.3 1"A TD Z" 110 

Provides a program with data which can be stored into variables 
using the READ statement. In the example, 4 .3 is a real number, 
"A TO Z" is a string, and 10 is an integer. (See READ below.) 

line number DIM <variable(dimension(s))> 

10 DIM A<23l 1BC31lll 1C$Clll tD$(12t30l 

Defines a variable capable of storing a list (single dimension) or 
a table (double dimension) ofa specified length. In the example, 
A is a numeric variable with 23 possible entries. D$ is a string 
variable with a maximum of 12 rows and 30 columns. 

line number END 

32767 END 

Terminates the execution of a program. 

line number FOR < var> = <expr> TO <expr> {STEP < expr> } 

LIS FOR I = 2 TD 10 STEP 2 

Creates a loop that executes all of the statements between a FOR 
and a NEXT statement a specified number of times. In the exam­
ple, the loop would be executed for the values of I from 2 to 10 
by 2s (i.e., 2, 4, 6, 8, and 10). (See NEXT below.) 

line number GET <variable> 

70 GET X$ 

Inputs a single character from the .keyboard without the char­
acter being printed on the screen. Does not require the RETURN 207 



Applesoft Language Summary 

GO SUB 

GOTO 

IF-THEN 

INPUT 

208 

key to be pressed. In the example, the input character is stored 
in the variable X$. 

line number GOSUB < line number> 

220 GOSUB 10000 

Unconditionally branches program execution to a subroutine at 
the indicated line number. When a RETURN statement is 
encountered in the subroutine, execution is returned to the 
statement immediately following the GOSUB. The example will 
cause the program to branch to the subroutine beginning at line 
10000. (See RETURN below.) 

line number GOTO <line number> 

670 GOTO 10 

Causes the execution of the program to branch to the indicated 
line number. In the example, program execution will branch 
from line 670 to line 10. 

line number IF < cond> THEN < statement> 
line number IF < cond> THEN < line number> 

55 IF A$ = "Y" THEN PRINT "CORRECT " 
75 IF X < Z THEN 300 

Causes the program to execute the indicated statement or branch 
to the indicated line number if a specified condition is true. If 
the condition is false, the statement or branch is not executed 
and the program continues with the execution of the next num­
bered statement following the IF-THEN. In the fi rst example, 
CORRECT will be printed if A$ has the string value "Y". The 
second example will cause a branch to line 300 if the value 
stored in X is less than the value stored in Z. 

line number INPUT {string;} < list of variables> 

240 INP UT "WHAT IS YOUR NAME? ";NAME$ 
800 INPUT A1B1C 

Inputs data from the keyboard to be stored into the respective 
variables listed. Optionally, INPUT can print a string on the screen 
before waiting for input. The RETURN key must be pressed after 
the user has entered data. In the first example, the string WHAT 
IS YOUR NAME? will be printed on the screen, followed by the 
cursor. The string the user enters will be stored in NAME$. The 
second example will input from the keyboard three numeric 
values separated by commas and store them into A, B, and C, 
respectively. 



LET 

NEXT 

ON-GOSUB 

ON-GOTO 

PRINT 

Applesoft Language Summary 

line number LET <variable> = <expr> 
line number <variable> = <expr> 

110 LET C = 100 
120 P$ = "GREAT!" 
130 A = 1/2 * B + H 

Assigns the value of <expr> to <variable>. The word LET is 
optional. In the examples, the value 100 is stored in the variable 
C, the string GREAT! is stored in the variable P$, and variable 
A will have the value of one-half the value of B plus the value 
ofH. 

line number NEXT <variable> 

80 NEXT I 

Terminates a loop begun by a FOR statement. The variable must 
be the same used in the corresponding FOR statement. In the 
example, line 80 will terminate the preceding statement: 45 FOR 
I = 2 TO 10 STEP 2. (See FOR above.) 

line number ON <expr> GOSUB <list of line numbers> 

30 ON x GOSUB 10000,1sooo 

Branches to the subroutine at the line numbers indicated, based 
on the arithmetic value of an expression. In the example, the 
program will branch to the subroutine at line 10000 if X is 1 
and to the subroutine at 15000 if X is 2. If X is less than I or 
greater than 2, the statement immediately following the ON­
GOSUB will be executed. 

line number ON <expr> GOTO <list of line numbers> 

ao ON x - y GOTO 500tGOOt700 

Branches to the line numbers indicated, based on the arithmetic 
value of an expression. In the example, the program will branch 
to line 500 if X - Y has the value I, line 600 if X - Y has the 
value 2, and line 700 if X - Y has "the value 3. If X - Y is less 
than I or greater than 3, then the statement immediately follow­
ing the ON-GOTO will be executed. 

line number PRINT <list of variables> 

890 PRINT "YOU GOT "lNl" QUESTIONS CORRECT" 

Causes the computer to advance the cursor to the next line on 
the screen and print the values of the specified variables or strings. 
If in the example N had the value 9, YOU GOT 9 QUESTIONS 209 



Applesoft Language Summary 

READ 

REM 

RESTORE 

RETURN 

CORRECT would appear on the screen. See Section B.3, "Text 
Formatting Statements," for more information. 

line number READ < list of variables> 

ll65 READ X 1Y1Z 

Used in conjunction with the DATA statement to store data into 
variables within a program. When a READ statement is exe­
cuted, the program will set the variables listed to the next suc­
cessive values in the program's DATA statements. The example 
will take the next three values from the DATA statements and 
store them in X, Y, and Z, respectively. (See DATA above.) 

line number REM < message> 

10 REM PROGRAM BY IMA TEACHER 

Inserts a REMark into the program. The message only appears 
when the program is LISTed; the computer ignores all REMarks 
when the program is RUN. 

line number RESTORE 

360 RESTORE 

Returns the DATA list pointer to the first value of the first DATA 
statement, allowing the DATA to be reread. 

line number RETURN 

10ll50 RETURN 

Terminates a subroutine and returns execution to the next num­
bered statement following the GOSUB which called the subrou­
tine. (See GOSUB above.) 

B.2 GRAPHICS STATEMENTS 

COLOR 

210 

line number COLOR = < expr> 

340 COLOR = 7 

Sets the color to be plotted in low-resolution graphics. The <expr> 
is an integer between 0 and 15 that represents the following 
colors: 



GR 

HCOLOR 

HGR 

HLIN 

HP LOT 

Applesoft Lan9ua9e Summary 

0 black 4 
1 magenta 5 
2 dark blue 6 
3 purple 7 

line number GR 

800 GR 

dark green 8 
grey 9 
medium blue 10 
light blue 11 

brown 
orange 
grey 
pink 

12 green 
13 yellow 
14 aqua 
15 white 

Switches the display on the screen to low-resolution graphics 
(40 x 40 points) with four lines of text at the bottom. Clears 
the graphics screen to black and sets COLOR = 0 (black) . 

line number HCOLOR = <expr> 

aso HCOLOR = 1 

Sets the color to b~ plotted in high-resolution graphics. The 
<expr> is an integer between 0 and 7 that represents the fol­
lowing colors: 

0 black 
1 green 

2 violet 
3 white 

line number HGR 

390 HGR 

4 black 
5 orange 

6 blue 
7 white 

Switches the display on the screen to high-resolution graphics 
( 280 x 160 points) with four lines of text at the bottom. Clears 
the graphics screen to black but does not change the value of 
HCOLOR. 

line number HUN <Xl > ,<X2> AT < Y> 

10 10 HLIN 5125 AT 20 

Draws a horizontal line on the low-resolution graphics screen 
at the y-axis position < Y> from the x-axis position <Xl > to 
the x-axis position < X2 > . The color will be that most recently 
set by the COLOR statement. In the example, a horizontal line 
will be drawn from X = 5 to X = 25 at Y = 20. 

line number HPLOT < X> , < Y> 
line number HPLOT < Xl > ,< Yl > TO < X2> ,<Y2 > 
line number HPLOT TO < X>, < Y> 

200 HPLOT 1001130 
210 HPLOT 010 TO 2791159 
220 HPLOT TO 150 110 211 



Applesoft Language Summary 

PLOT 

SCRN 

TEXT 

VLIN 

Plots dots or lines on the high-resolution graphics screen using 
the color most recently set by the HCOLOR statement. The high­
resolution screen uses an (X,Y) coordinate system with 0,0 in 
the upper left corner. In the first example, a dot will be plotted 
at X = 100, Y = 130. In the second example, a line will be 
plotted from X = 0, Y = O (upper left corner) to X = 279, 
Y = 159 (lower right corner). In the third example, a line will 
be plotted from the last point plotted to X = 150, Y = 10. 

line number PLOT < X>,<Y> 

275 PLOT 20130 

Plots rectangular blocks on the low-resolution graphics screen 
using the color most recently set by the COLOR statement. The 
low-resolution screen uses an (X,Y) coordinate system with 0,0 
in the upper left corner and 39,39 in the lower right corner. The 
example will plot a block at X = 20, Y = 30. 

line number < var> = SCRN ( < X> , < Y> ) 

620 Z = SCRN(271Sl 

SCRN is the low-resolution graphics screen function that returns 
the color value of the graphic coordinates specified. In the exam­
ple, Z will be set to the value of the color at X = 27, Y = 5. 

line number TEXT 

990 TEXT 

Sets the screen to the text mode of 24 lines of text with 40 
characters per line. TEXT does not dear the screen or HOME the 
cursor. 

line number VLIN < Yl>,<Y2 > AT < X> 

730 VLIN 0139 AT 20 

Draws a vertical line on the low-resolution graphics screen at 
the x-axis position < X> from the y-axis position < Yl > to the 
y-axis position < Y2>. The color will be that most recently set 
by the COLOR statement. In the example, a vertical line will be 
drawn from Y = 0 to Y = 39 at X = 20. 

B.3 TEXT FORMATTING STATEMENTS 

COMMA(,) line number PRINT <var>, < var> 
212 370 PRINT QUANTITY1PRICE1TDTAL 



FLASH 

HOME 

HTAB 

INVERSE 

NORMAL 

POS 

App/esoft Language Summary 

Used in a PRINT statement to space data into 16-column fields. 
In the example, the value of the variable QUANTITY will be 
printed in column 1, the value of the variable PRICE will be 
printed in column 17, and the value of the variable TOTAL will 
be printed in column 3 3. 

line number FLASH 

1500 FLASH 

Sets the text printing mode to flashing characters. All text printed 
after this statement will flash. NORMAL reverses this action. 

line number HOME 

10 HOME 

Clears the text screen and returns the cursor to the home posi­
tion in the upper left corner. 

line number HTAB <expr> 

550 HTAB 27 

Moves the cursor to the specified column number ( 1 to 40). The 
HTAB statement is usually followed by a PRINT statement. In 
the example, the cursor will be moved to column 27. 

line number INVERSE 

345 INVERSE 

Sets the text printing mode to black-on-white characters instead 
of white on black. All text printed after this statement will be 
printed in inverse. NORMAL reverses this action. 

line number NORMAL 

810 NORMAL 

Sets the text printing mode to normal white-on-black charac­
ters. Reverses the action of the FLASH and INVERSE statements. 

line number <var> = POS( <expr> ) 

730 X = POS!Ol 

POS is the text function that returns the current horizontal cur­
sor position (0 to 39). Although <expr> is required, the expres­
sion has no effect on the results. In the example, X will be set 
to the current horizontal cursor position. 213 



Applesoft Language Summary 

214 

SEMICOLON(;) line number PRINT < string>;<var> 

SPC 

SPEED 

TAB 

VTAB 

840 PRINT "YOU GOT ";N;" CORRECT," 

Used in a PRINT statement to position the cursor immediately 
after the string or variable preceeding the semicolon. If N = 10 
in the example, the printed line would read: 

YOU GOT 10 CORRECT, 

line number PRINT <var>;SPC(<expr>);<var> 

480 PRINT A;SPC< 10) ;B 

Used in a PRINT statement to insert a specified number of spaces 
between two variables when preceded and followed by semi­
colons. In the example, the value of A will be printed, followed 
by 10 spaces and then the value of B. 

line number SPEED = < expr> 

160 SPEED = 200 

Sets the speed at which characters are printed on the screen. The 
default speed, 255, is the fastest system speed. Zero is the slowest 
speed. 

line number PRINT TAB ( <expr>); <var> 

80 PRINT TABC25) ;R 

Used in a PRINT statement to move the cursor to the specified 
column, where 1 is the left margin and 40 is the right margin. 
TAB can only move the cursor to the right. Use HTAB to move 
the cursor to the left. In the example, the value of R will be 
printed starting in column 25. 

line number VTAB <expr> 

120 VTAB 18 

Moves the cursor to the specified line number. The top of the 
screen is line I ; while the bottom is line 24. The VTAB statement 
is usually followed by a PRINT statement. In the example, the 
cursor will be moved to line 18. 

B.4 SUMMARY OF VARIABLE TYPES 

INTEGER Variable name: Single letter (optionally followed by a single 
letter or digit) followed by the "%" character. 



Applesoft Language Summary 

REAL 

STRING 

Range: - 32767 to + 32767. 

Examples: 1%, B2%, GH% 

Variable name: Single letter (optionally followed by a single 
letter or digit.) 

Range: - 9. 99999999 E + 3 7 to + 9. 99999999 E + 3 7 

Examples : S, R5, DE 

Variable name: Single letter (optionally followed by a single 
letter or digit) followed by the"$" character. 

Range: 0 to 255 characters 

Examples: F$, K9$, XY$. 

Note that variable names may be longer than two characters, 
but only the first two characters are significant. Consequently, 
APPLE and APPLIANCE are the same real variable, AP. 

B.5 SUMMARY OF OPERATORS 

ARITHMETIC + addition 
I division 

exponentiation (raise to a power) 
* multiplication 

subtraction or negation 

LOGICAL AND logical product 
NOT logical negation 
OR logical sum 

RELATIONAL = equals 
> greater than 
>= greater than or equal to 
< less than 
<= less than or equal to 
<> not equal to 

STRING + concatenation 215 



App/esoft Language Summary 

B.6 MATHEMATICAL FUNCTIONS 

ABS 

ATN 

cos 

EXP 

INT 

LOG 

RND 

216 

line number < var> = ABS( < expr> ) 

100 X = ABS<-G.75> 

Returns the absolute value of < expr> . In the example, X 
6.75. 

line number < var> = ATN( < expr> ) 

100 ){ = ATN<l> 

Returns the arctangent of < expr> in radians. In the example, 
x = .785398163. 

line number < var> = COS( < expr> ) 

100 X = CDS<l> 

Returns the cosine of < expr>. < expr> must be in radians. In 
the example, X = .540302306. 

line number < var> EXP( < expr> ) 

100 ){ = EXP<l> 

Returns the value eA< expr> , where e = 2.7182828183. In 
the example, X = 2.71828183. 

line number < var> = INT ( < expr> ) 

100 X = INT <4.53> 

Returns the greatest integer in < expr> which is Jess than or 
equal to < expr> . In the example, X = 4. 

line number < var> = LOG( < expr> ) 

100 X = LOG(2) 

Returns the natural logarithm of < expr>. In the example, X = 
.693147181. 

line number < var> RND( < expr> ) 

100 X = RND<l> 

Returns a random number greater than or equal to 0 and Jess 
than 1. If <expr> is positive, a unique set of random numbers 
is generated. If < expr> is 0, then the last random number gen-



SGN 

SIN 

SQR 

TAN 

App/esoft Language Summary 

erated is returned. If < expr> is negative, the same set of random 
numbers will be generated every time the program is run. 

line number < var> = SGN(<expr> ) 

100 X = SGNC-217.456) 

Returns the sign of < expr>: + 1 if positive, 0 if zero, and - I 
if negative. In the example, X = - I. 

line number < var> = SIN(< expr> ) 

100 X = SIN <l l 

Returns the sine of < expr>. <expr> must be in radians. In the 
example, X = .841470985. 

line number < var> = SQR(< expr> ) 

100 X = SQR(lGl 

Returns the square root of <ex pr> . In the example, X = 4. 

line number < var> = TAN(<expr>) 

100 X = TAN<l > 

Returns the tangent of < expr> . < expr> must be in radians. In 
the example, X = 1.55740772. 

B. 7 STRING FUNCTIONS 

ASC 

CHRS 

LEFTS 

line number < var> = ASC( <string> ) 

100 X = ASCC"APPLE"l 

Returns the ASCII code for the first character in the string spe­
cified. In the example, X = 65 . 

line number <string> = CHR$( < expr>) 

100 X$ = CHR$CG5l 

Returns the ASCII character specified by the numerical value of 
<expr> . In the example, X$ = "K 

line number <string> = LEFf$ (<string>, < expr> ) 

100 X$ = LEFT$ <"APP LE" 13) 217 



Applesoft Language Summary 

LEN 

MID$ 

RIGHT$ 

STR$ 

VAL 

Returns a substring of <string> from the first character to the 
<expr>th character. In the example, X$ = "APP". 

line number <var> = LEN(<string>) 

100 X = LEN<"APPLE"l 

Returns the number of characters contained in <string>. In the 
example, X = 5. 

line number <string> = MID$(<string>,<exprl>,<expr2>) 

100 X$ = MID$C"NOW IS THE TIME " 1516) 

Returns the substring of <string> that begins with the character 
specified by <exprl > and has a length of <expr2> characters. 
In the example, X$ = "IS THE". 

line number <string> = RIGHT$( <string>,<expr>) 

100 X$ = RIGHT$< "APPLE" 12) 

Returns the substring of <string> consisting of the rightmost 
characters specified by <expr>. In the example, X$ = "LE". 

line number <string> = STR$(<expr>) 

100 X$ = STR$C24+07) 

Converts the <expr> to a string. In the example, X$ = "24.07". 

line number <var> = VAL( <string>) 

100 X = VALC"365 DA YS") 

Converts the <string> to a real or integer variable. The con­
version will terminate when a non-numeric character is encoun­
tered. In the example, X = 365. 

B.8 BASIC AND DISK COMMANDS 

CATALOG 

218 

CATALOG {,D<expr>} 

CATALOG102 

Prints a list of all the files on a diskette. Optionally the disk drive 
number, D<expr>, may be specified. In the example, a catalog 
of the diskette in drive two will be listed on the screen. 



DEL 

DELETE 

INIT 

LIST 

LOAD 

Applesoft Language Summary 

DEL < line number>, <line number> 

DEL 3501400 

Deletes line numbers from the program in memory starting with 
the first line number specified and ending with the second line 
number specified. In the example, line 350, line 400, and all of 
the lines with numbers between 350 and 400 will be deleted. 

DELETE < file> {,D<expr> } {,V< expr>} 

DELETE BUTTERFLIES 

Erases a file from a diskette. Optionally, the drive number or 
volume number may be specified. In the example, the file BUT­
TERFLIES will be erased from the diskette in the drive last used. 

INIT < file> {,D< expr>} {,V< expr> } 

INIT HELLD1 V25 

Initializes a blank diskette so that it can be used. The current 
program in memory will be saved as the <file> specified, and 
that program will be run when the diskette is booted. Optionally, 
the drive number or volume number may be specified. In the 
example, the diskette in the drive most recently used will be 
initialized as volume 25 with the program in memory stored as 
HELLO. 

LIST {< line number>} {,<line number>} 

LIST 
LIST 300 
LIST 1000 12000 

Lists lines of the program in memory on the screen. Optionally, 
a line number or range of line numbers may be specified. In the 
first example, the entire program will be listed. In the second 
example, line 300 only will be listed. In the third example, lines 
1000 to 2000, inclusive, will be listed. 

LOAD < file> {,D< expr> } {,V< expr> } 

LOAD SNOW WHITE 

Loads the specified file from a diskette into memory. The current 
program in memory will be erased. Optionally, the drive number 
or volume number may be specified. In the example, the pro­
gram SNOW WHITE will be loaded into memory from the disk 
most recently used. 219 



Applesoft Language Summary 

LOCK 

NEW 

PR 

RUN 

RENAME 

SAVE 

220 

LOCK < file> {,D<expr>} {,V<expr> } 

LOCK MATH DRILL 

Protects a file from being replaced or deleted accidentally. The 
UNLOCK command will reverse the action. Optionally, the drive 
number or volume number may be specified. In the example, 
the file MATH DRILL will be LOCKed on the diskette in the 
drive most recently used. 

NEW 

Erases the program and variables currently in memory. Used to 
clear memory before writing a new program. 

PR#< expr> 

PR116 
PR• 1 
PR•O 

Transfers output to the specified peripheral slot number. In the 
examples, PR#6 boots disk drive l ; PR#l transfers all subse­
quent output to a printer, assuming the printer interface is in 
slot l ; PR#O returns output to the screen. 

RUN {< file> } {,D<expr> } {,V<expr>} 

RUN SPELL 

Executes the program in memory if no file is specified. If a file 
is specified, memory is cleared, the file is loaded from a diskette, 
and the program is executed. Optionally, the drive number or 
volume number may be specified. In the example, the program 
SPELL will be loaded from the most recently used disk drive 
and executed. 

RENAME < filel >,<file2 > {,D<expr> } {,V<expr> } 

RENAME PROGRAM 1 1MUSCLES 

Changes the name of < file l > to < file2 > on a diskette. Option­
ally, the drive number or volume number may be specified. In 
the example, PROGRAM 1 will be renamed MUSCLES on the 
diskette in the drive most recently used. 

SAVE < file> {,D< expr> } {,V< expr> } 

SA VE PICKLES 



Applesoft Language Summary 

UNLOCK 

Saves the program currently in memory on diskette as the file 
specified. Optionally, the drive number or volume number may 
be specified. If the file specified already exists on the diskette, it 
will be replaced by the program in memory unless it was LOCKed. 
In the example, the program in memory will be saved with the 
name PICKLES on the diskette in the drive most recently used. 

UNLOCK < file> {,D<expr> } {,V< expr> } 

UNLOC K MATH DRILL 

Removes the accidental replace or delete lock on the file speci­
fied. Optionally, the drive number or volume number may be 
specified. In the example, the file MATH DRILL will be unlocked 
on the diskette in the drive most recently used. 

B. 9 SPECIAL KEYS 

ARROW KEYS LEFf ARROW(+--) 
RIGHT ARROW (-) 

CONTROL 
(CTRL) 

The two keys on the Apple keyboard marked with a left arrow 
and right arrow are used to edit programs. The LEFf ARROW 
is used to delete characters previously typed in the current line. 
The RIGHT ARROW will reenter a character on the screen as 
though you were typing it. 

CONTROL < key> 

CONTROL C 
CONTROL G 
CONTROLX 

The CONTROL key is used in conjunction with other keys to 
specify a variety of actions. To execute a CONTROL sequence, 
hold the CONTROL key down and then depress the other key. 
In the examples, CONTROL C will break the execution of a 
program and print the line number at which execution termi­
nated, CONTROL G will sound a bell on the Apple speaker, and 
CONTROL X will delete the current line being typed. 

ESCAPE (ESC) ESCAPE < key> 

ESCAPE I 
ESCAPE J 
ESCAPE K 
ESCAPE M 221 



App/esoft Lan9ua9e Summary 

222 

The ESCAPE key is commonly used to edit programs. When the 
ESCAPE key is typed, the moveable-cursor mode is entered. The 
keys I, J, K, and Mare used to move the cursor up, left, right, 
and down, respectively. Once the cursor is positioned, any key 
except I. J, K, and M will return to normal mode. The LEFT 
ARROW and RIGHT ARROW keys may then be used to make 
edits. 

REPEAT (REPT) REPEAT <key> 

RESET 

When the REPEAT key is held down in conjunction with another 
key, the other key will be repeatedly typed. 

RESET 
CONTROL RESET 

The RESET key immediately halts the execution of a program 
and sets the screen to TEXT mode. If RESET is typed while a 
program is being saved on a diskette, the file may be damaged. 
For this reason, newer Apples have an internal switch which 
can be set to require the CONTROL key to be held down while 
typing RESET. 

B.10 ASCII CHARACTER CODES 

The following codes are used in the CHR$ and ASC functions : 

Code Character Code Character 

0 CTRL @ 48 0 
l CTRLA 49 
2 CTRLB 50 2 
3 CTRL C 51 3 
4 CTRLD 52 4 
5 CTRLE 53 5 
6 CTRLF 54 6 
7 CTRL G (bell) 55 7 
8 CTRLH (~) 56 8 
9 CTRL I 57 9 

10 CTRLJ 58 
11 CTRLK 59 
12 CTRL L (form feed) 60 < 
13 CTRL M (return) 61 
14 CTRLN 62 > 
15 CTRLO 63 ? 



Applesoft Language Summary 

Code Character Code Character 

16 CTRLP 64 @ 
17 CTRLQ 65 A 
18 CTRLR 66 B 
19 CTRLS 67 c 
20 CTRLT 68 D 
21 CTRL U (~) 69 E 
22 CTRL V 70 F 
23 CTRLW 71 G 
24 CTRLX 72 H 
25 CTRL Y 73 I 
26 CTRLZ 74 J 
27 ESC 75 K 
28 not available 76 L 
29 CTRL SHIFf M 77 M 
30 CTRL /\ 78 N 
31 not available 79 0 
32 SPACE 80 p 

33 81 Q 
34 82 R 
35 # 83 s 
36 $ 84 T 
37 % 85 u 
38 & 86 v 
39 87 w 
40 88 x 
41 89 y 

42 * 90 z 
43 + 91 [ 
44 92 not 

available 
45 93 ] 
46 94 /\ 
47 95 not 

available 

223 



AppenJix 

c Answers to Se(ecteJ 
Questions anJ Problems 

CHAPTER 1 

Think About This (for Fun ) 

One Word 

Text Questions 

Section 1.5.J The output would be "close packed" (printed 
with no separating spaces). 

Section I. 5. 5 The blank space is needed to separate the comma 
from the name (value of N$). Otherwise, the 
comma and name would be close packed, as in 
HOWDY.SAMMY. 

Posers and Problems 

1. 10 PRINT "HELLO " 
20 PRINT "WHAT'S YOUR HEIGHT IN INCHES"; 
30 INPUT H 
110 M = 2.511 * H 

8. 10 PRINT "DEGREES CELS I US" ; 
20 IN PUT c 
30 F = cc * 9/5) + 32 
11 0 PR I NT c; II DEGREES c = II i F ; 11 DEGREES 
50 END 

9. 10 PRINT "HOW MAN Y CU PS" i 
20 INPUT c 
30 PRINT "HOW MANY OUN CES " i 
110 INP UT 2 
50 T = CB * Cl + z 
60 PRINT c i " CUPS II ;z; II OUNCES II; T; II 

TO TAL DUNCES, " 
7 0 END 

IO. 10 PRINT "FIRST NAME" i 
20 INPUT FS 
30 PRINT "LAST NAME " i 
110 INPUT LS 
50 PRINT "HELLD 1 u ; Fs ; II 11 ; Ls ;11 ! II 

60 END 

CHAPTER 2 

so PRINT "YOU ARE " ;Mi " CENT I METERS TALL! " Think About This (for Fun) 
6 0 ENO 

2. 25, 4, 6, .66666667, 3 

J. So that any output will be close packed. Commas cause 
the output to be tabbed 16 spaces before being printed. 

4. The semicolon close packed the "?" printed by execu­
tion of the INPUT statement (60). 

5. See Section 2.4 of Chapter 2. 

6. NA ME SCORE AVERAGE 
<-16 spaces--+<-16 spaces -+ 

7. Enter and RUN the program. 

224 

A chair, a bed, and a toothbrush. 

Text Questions 

Section 2. J INT( I 0 * . 99999999 + I) = JO 
INT(J0* .01 + l) = l 
Range of INT( lO * RND(l ) + 3) = 12 to 3 
Range of INT(9901 * RND(l) + 100)/ 100 
100.00 to 1.00 
Range oflNT(91 * RND(l) + 5) = 95 to 5 

F' " 



Posers and Problems 

I. R is for numeric input (years) 
RS is for string input (state name) 

2. There is no real difference. Random output would still 
be given. If Xis l, then 440 is PRINTED, and so on. 

J. Change the text of PRINT statements 400, 420, and 
440. 

4. Change PRINT statements 200 and 2 10 to ask for your 
age; change the "39" in statements 230-·250 to your 
age. 

5. 380 X = INT< 5 • RND<ll +ll 
390 ON x GOTO 400,420,440,452,455 
452 PRINT "HO-HO! NOT THAT OLD!" 
454 GOTO 140 
456 PRINT "COME DOWN SOME!" 
458 GOTO 140 

6. 70 PRINT "WHAT STATE IS THE THIRD" 
80 PRINT "LARGEST 6Y LAND AREA"i 
100 IF RS = "CALIFORNIA" THEN 130 

Answers to Selected Questions and Problems 

13. 10 PR INT "ENTER AN Y NUMBER I 1-10' 
INCLUS I VE" i 

20 INPUT N 
30 AS "WAS ENTERED . " 
40 IF N 3 THEN 90 
50 IF N = 6 THEN 110 
60 I F N = 9 THEN 130 
70 PR INT "NEI THE R 3, 61 OR 9 " iAS 
80 GOTO 140 
90 PRINT "THREE " ;As 
100 GOTO 140 
110 PRINT "SIX II tA$ 

120 GOTO 140 
130 PR INT "NINE " iAS 
140 END 

CHAPTER 3 

Think About This (for Fun) 

In 

110 PRINT "N01 IT'S CALIFORNIA!" 
130 PR I NT "RIGHT ! WHERE THE ORANGES GROW! " Text Questions 

Z I PRINT "W HAT 'S YOUR FIRST NAME"i 
2 IN PUT FS 
510 PRINT1"6YE -6YE 1 "iFSi"!" 

9. X = INT(76 • RND(l) + 25) 

JO. 29 to 5, inclusive 

11. 10 PRINT "WHAT'S YOUR 
20 IN PUT H 
30 IF H > 72 THEN 80 
40 IF H < 60 THEN 100 
50 PRINT 
60 PRINT "AVERAGE" 
70 GOTO 11 0 
80 PRINT. "TALL" 
90 GOTO 11 0 
100 PRINT "SHORT" 
110 END 

HEIGHT IN INCHES" i 

IL 10 PRINT "ENTER THREE SIDES !SEPARATED 6Y 
COMMAS l 1" 

20 PRINT "WITH THE LONGEST SIDE ENTERED 
LAST " 

30 INPUT A161C 
40 IF A > c THEN 90 
50 IF 6 > C THEN 90 
60 IF <C • 2l = <<A • 2> + <B • 2) > THEN 

11 0 
70 PRINT " NO T A RIGHT TRIANGL E" 
80 GOTO 120 
90 PRINT "LONGEST SIDE NOT ENTERED LAST!" 
100 GOTO 10 
11 0 PRINT "THAT'S A RIGHT TRIANGLE!" 
120 END 

Section J.2.2 A new value (2) was READ and assigned to N 
at statement 60. 

ABC would be printed. 

A new value (DEF) was READ and assigned 
to N$ at statement 40. 

Use of commas (tabs) and semicolons (close 
packs). 

Seaio11 J.2.J After statement 30 is executed, the data pointer 
is "past" the last data element. 

The error was caused by no DATA present to 
be READ (the data pointer is "past" the last 
element) . 

Statement 60 increases X by I each time it is 
executed. When Xis equal to 2 (statement 50), 
transfer is to statement 100 (END). 

The program would endlessly READ, PRJNT, 
and RESTORE. 

Posers and Problems 

l. 10 FOR Y = I TD 10 

10 DATA I 1"ABC" 1" DE F" 
(or) 
20 READ N1NS 1NI 
30 PRINT N1 NS1NI 

225 



Answers to Selected Questions and Problems 

DEL 60170 
(or) 
SS RESTORE 
(or) 
10 DATA 41S16 17 

2. 40 PRINT SS 1S 
SO NEXT I 
60 ENO 

3. 5 T • 0 
4Z T = T + S 
44 X • X + 1 
SS PRINT " THE AVERAGE SCORE IS "iT/X i "!" 

4. LOAD, RUN, and LIST program A354 from the text 
diskette. 

5. FOR x • 10 TO 1 STEP -1 starts at 10 and "counts" 
the loop to I in increments of - I . 

6. 

The comma in statement 55 tabs 16 spaces before printing. 

The";" in statement 70 close packs the "tails" (* ). 

The 90 PRINT statement "cancels" the close packing of 
the semicolon in statement 70. 

10 PRINT "CELSIUS"1"FAHRENHEIT " 
zo PRINT " __ _____ .. tit----------" 
30 FOR c . 0 TO 100 STEP 5 
40 F . 3Z + CC * 9/S) 
so PRINT C1F 
60 NEXT c 
70 ENO 

~ 10 FOR I • TO 10 
ZO PRINT Ii " CUBED IS "II "3 
30 NEXT I 
40 ENO 

CHAPI'ER4 

Think About This (for Fun) 

A 50-cent piece and a nickel (one of the coins is not a nickel­
although the other one is!) 

Text Questions 

Section4.2.I N$(3) =PHIL; S(4) = 35; the two lists would 
be printed. 

The lists would be printed, but in reverse order 
(4 to I). 

Sedion 4.2.2 S(l,l) = 95; S(3,2) = 93 

226 

For the complete program in Section 4.2.2, 
LOAD, RUN, and LIST program A422 on the 
text diskette. 

Section 4.2.2 

(cont.) 
The comma in statements 65 and 81 are 

needed to tab before printing the first and sec­
ond scores. The PRINT in 95 is needed to can· 
cel the tab effect of statement 81. 

Posers and Problems 

I . 

2. 

10 REM NS( l•NAMEI S C l• SEM.AVE,; F< l • FINAL 
EXAM 

zo DIM NSCZOl 1SCZOl 1FtZOl 
30 FOR I = 1 TO ZO 
40 READ NS< I l 1S( I l 1F ( I l 
so PRINT NS(Il 1S til 1F <I> 
60 NEXT I 

1000 REM DATA FOR ZO STUDENTS ANO THEIR 
SCORES 

1010 DATA "JONES "1801 8Z 1 [etc.] 

2000 END 

10 REM NS ( l =NAME, S< ' >•STUDENT SCORES 
zo DIM NS<ZS> 1StZS 13) 
30 FOR I = 1 TO ZS 
40 READ NS<I> 
so FOR J = 1 TO 3 
60 READ St I 1Jl 
70 NE XT J 
80 NEXT I 

1000 REM DATA FOR ZS STUDENTS• EACH MITH 
3 SCORES 

1010 DATA "A8EL" 1SS1801881 •etc.+ 

4. Three states would be randomly selected (with a random 
chance that one would be repeated) . 

5. Three states would be randomly selected without any 
state being repeated. 

6. Five states would be printed without any repetition. Then 
the program becomes an endless loop, trying to find the 
sixth state not yet printed (FORK = 1 TO 6) when only 
five states were given. 

7. S F = 0 
ZS HS = "STEPHEN F. --?- -" 
SS HS = "DICK AN O JANE'S DOG . " 
Z1Z IF F = 1 THEN ZZO 
Z14 F = 1 
Z16 PRINT "HINT: "IHS 
Z18 GOTO ZOO 
ZSO F = 0 
ZSZ RETURN 

8. LOAD, RUN, and LIST program A458 on the text diskette. 



9. 10 DIH Z< 10 > 
20 FDR I = 1 TD 4 
30 x = INT<IO • RNDCI> + 1 l 
40 IF ZCXl = I THEN 30 
so Z<Xl = 1 
60 PRINT X 
70 NEXT I 
80 END 

CHAPTER 5 

Think About This (for Fun) 

The man opened one carton, took one package, opened it, and 
then dropped one cigarette overboard. This made the raft a 
cigarette lighter! 

Posers and Problems 

I . 

200 INPUT RS 
210 IF RS = AS THEN 260 
220 IF F = 1 THEN 300 
230 F = I 
240 PRINT HS [Give a hint] 
2SO GOTO 200 
260 IF F = I THEN 280 [Skip giving credit] 
270 c = c + 1 [Give credit] 
280 PRINT "VERY GOOD!" 
290 GOTO 310 
300 PRINT "A CORRECT ANSWER IS "iAS 
310 RETURN 

2. See statements 220-250 in the above program fragmenL 

3. 10 REH QS( l=QUESTIONI AS< l=ANSWERi 
ZC>= FLAG 

20 DIH QS( 1011ASC 1011Z< 10) 
30 FOR I = 1 TO 10 
40 READ QS( I) 1AS< I> 
SO NEXT I 
60 FOR Q = 1 TO S 
70 X = INT<lO • RND<ll + ll 
80 IF Z< Xl = 1 THEN 70 
90 Z< Xl = 
100 PRINT QS< X> 

1000 REH DATA FOR 10 QUESTIONS• ANSWERS 
1010 DATA "QUEST ION 1" •"ANSWER 1". [etc.] 

Answers to Selected Questions and Problems 

2000 ENO 

5. LOAD, RUN, and LIST PROGRAM 16 from the text 
diskette. (PROGRAM 16 is an example program in 
Chapter 6.) 

CHAPTER 6 

Think About This (for Fun) 

There are 6 F's (the "of's" are often overlooked). 

Text Questions 

Section 6. 7.2 For five choices, make the following 
modifications: 

270 DIM AS<S> 1RSCS> 
SOSO FOR I = 1 TO S 
SllO PRINT "Y OUR CHOICE <1-Sl"i 
SISO IF R > S THEN SllO 

Then add additional data elements for each 
fifth choice and its response. 

CHAPTER 7 

Think About This (for Fun) 

SLEEPLESSNESS (as in programming) 

Posers and Problems 

I . 10 HGR 
20 HCOLOR = 3 
30 HPLOT 10'10 TO I 00 .too 
40 END 

2. 

440 REH PLOT SQUARE 
460 !:_S.T A = INTCRNOC1l • 40) 
470 HLIN 0 ,A AT 0 
480 VLIN 01A AT 39 
490 HLIN A10 AT 39 
soo VLIN A10 AT 0 
S10 NE XT I 
S20 END 
DEL S30.680 

3. The screen will change from text to high-resolution 
graphics, and the entire screen will be colored violet. 

227 



Answers to Seleded Questions and Problems 

4 . 10 HOHE 70 NEXT Y 
20 GR 80 ENO 
30 FOR I = 0 TO 15 
40 COLOR = I or 

50 VLIN 0,39 AT * 2 + s 10 HOHE 
60 VLIN 0,39 AT * 2 + 6 20 HGR 
70 NEXT I 30 HCOLOR = 3 
80 END 3S HPLOT OtO 

5. 10 HOHE 40 FOR Y = 1 TO 159 

20 GR so x = SOR<Y> * 20 

30 COLOR = 6 60 HPLOT TO x.v 
40 FOR Y = 0 TO 39 70 NEXT y 

so HLIN 0 ,39 AT y 80 ENO 

60 NEXT Y 
70 COLOR 13 
80 FOR Y 0 TO 38 STEP 2 CHAPTERS 
90 FOR X 0 TO 38 STEP 2 
100 PLOT x.v 
110 NE XT x Think About This (for Fun) 
120 NEXT y 

130 FOR Y = TO 39 STEP 2 
50 '/2 + 491"/,o = I 00 140 FOR X = TO 39 STEP 2 

ISO PLOT x.v 
160 NE XT x 
170 NE XT Y CHAPTER 9 
180 ENO 

6. 10 HOHE 
20 HGR Think About This (for Fun) 

30 HCOLOR = 3 
40 FOR Y = 0 TO 159 28 jumps (after 27 jumps, the frog is 3 feet from the top of the 
50 x = SOR <Y) * 20 well; one more jump of 3 feet is needed ). 
60 HPLOT X tY 

228 



Appendix 

Annotated Bibliograpb~ D 

The periodicals listed in the following pages were selected from a more complete 
bibliography developed by Ron Adams of The College of New Caledonia in Mac­
kenzie, British Columbia, Canada. These periodicals were judged by the authors 
as being most useful to the teacher using an Apple microcomputer in the class­
room. The prices quoted are for one-year subscriptions taken out in Summer 
1982. (Note: Any comments found in the abstracts are those of Professor Adams 
and not the authors.) 

ADCIS NEWSLETTER 
Computer Center 

U.S.A. $40 membership 
CANADA $40 

Western Washington University 
Bellingham, WA 98255 

This newsletter is published every two months by 
the Association for the Development of Computer­
Based Instructional Systems, one of the oldest and 
best-organized groups of post secondary computer­
using educators. It has special-interest groups for 
those developing software for health education, 
home economics, mathematics, music, PLATO, ele­
mentary and secondary schools. computer-based 
training, and the handicapped. ADCIS annually hosts 
one of the most important computers-in-education 
conferences, and publishes the quarterly Journal of 
Computer-Based Instrudion, which provides some of 
the most scholarly articles in this field. 

APPLE ASSEMBLY LINE 
S-C Software 
Box 280300 
Dallas, TX 75228 

U.S.A. $12 
CANADA $12 

A monthly newsletter featuring beginners' tutori­
als, utility programs, and programming techniques 
in Apple assembly language. 

APPLE EDUCATION NEWS 
Box 20485 
San Jose, CA 95106 

Free 

This newsletter, published occasionally by the Apple 
Corporation, is a useful source of information on 
the burgeoning Apple-based CAI programs being 
developed in American universities, colleges, and 
schools. It also contains the inevitable glowing per­
formance accounts of the company's educational 
software, as well as of the software being developed 
for the Apple by other companies. The newsletter 
is evidently intended for distribution in computer 
stores because there is no subscription information 
in it. 

APPLE EDUCATORS' NEWSLETTER 
9525 Lucerne Street 
Ventura, CA 93004 

U.S.A. $15 
CANADA $25 

The newsletter is published every two months by 
the Apple for the Teacher group, a California-based 
organi:tation of elementary and high school teach­
ers dedicated to sharing and developing educa­
tional software reviews and information on CAI 
projects that don't get coverage in the glossy mag­
azines. Recommended. 

229 



Annotated Bibliography 

APPLE MAGAZINE Free 
10260 Bandley Drive 
Cupertino, CA 95014 

The Apple Corporation's quarterly catalogue dis­
guised as a magazine. It contains several short arti­
cles lauding the Apple's versatility as a personal and 
small-business computer, and provides an up-to­
date listing of all hardware and software marketed 
by the company. It's available at Apple dealers and 
usually is given free to potential customers. 

APPLE ORCHARD U.S.A. $15 
CANADA $22.50 910A George Street 

Santa Clara, CA 95050 

The quarterly magazine of the International Apple 
Core, a loosely structured umbrella organization of 
200 Apple-user groups around the world. It con­
tains useful utility programs, prograrnrning tips, short 
articles on computer literacy, a column on new 
products for the Apple, and an occasional inter­
view-most of which are reprinted from member 
groups' newsletters. For example, the Spring 1981 
issue contains an interview with Apple founder Steve 
Wozniak and a tutorial on text-formatting far supe­
rior to the explanation in the Apple manuals. The 
optional $100 IAC club membership includes sub­
scription to Apple Orchard, five diskettes of contrib­
uted software, and a newsletter of technical notes 
on the Apple. 

APPLEGRAM CANADA $15 membership 
Apples B.C. Computer Society 
316-8055 Anderson Road 
Richmond, B.C. 
Canada V6Y 1S2 

The quarterly newsletter of the Apples B.C. Com­
puter Society, which includes several of the prov­
ince's top microcomputer programmers. It contains 
software reviews, program listings, short articles on 
technical topics, buy-and-sell advertisements, club 
notices, and a list of programs that members con­
tributed to a software library that can be bought for 
$10 a disk. 

BOUNTY U.S.A. $6 

230 

17710 De Witt Avenue 
Morgan Hill, CA 95037 

A quarterly newsletter for special education teach­
ers that includes a "computer corner" devoted to 

reviews of microcomputer software for the learning 
disabled. 

BYTE 
Box 590 
Martinsville, NJ 08836 

U.S.A. $19 
CANADA $21 

Byte is McGraw-Hill's monthly attempt to imitate 
the worst features of Scientific American and the Sears 
catalog. The articles are not only highly technical 
and frequently devoted to arcane subjects that will 
bewilder the small-systems user, but also buried in 
a blizzard of advertising that occasionally pushes 
this unexceptional magazine to 500 pages. Each 
issue has a theme (local network and data base 
management systems have been featured in recent 
months) and a do-it-yourself project by electronics 
wizard Steve Ciarcia. Indeed, Byte may well be the 
only microcomputer periodical that will appeal to 
computer professionals and hobbyists who have their 
basements crammed with gadgetry. Nonetheless, 
it's the leading microcomputer journal and the 
advertisements will keep you abreast of the latest 
developments and all the new hardware in the field. 
I buy it for three reasons: Bytelines, which is Sol 
Libes's fascinating analysis of news ~nd rumors in 
the microcomputing industry; the Education Forum, 
which reports CAI projects at various American 
universities and colleges; and Robert Tinney's 
remarkable covers, which will surely become 20th 
century classics. 

CALL-A.P.P.L.E. U.S.A. $40 membership 
304 Main Avenue South CANADA $40 
Suite 300 membership 
Renton, WA 98055 Subsequent years $15 

Published nine times a year, Call-A.P.P.L.E. is the 
magazine of the oldest and most sophisticated of 
the Apple-users groups-the Apple Puget Sound 
Program Library Exchange. It is an excellent source 
of programming tips, utility program listings, soft­
ware reviews, and product reports. Although it is 
geared to experienced users, beginners and experts 
alike may call a "hot line" for advice from 9 a.m. 
to 3 p.m. and 6 p.m. to 10 p.m. seven days a week. 
The hot line has saved me many hours of frustra­
tion. I strongly recommend membership in Call­
A. P. P.L.E. for serious Apple users. 



THE CATYLIST 
1259 El Camino Real 
Suite 275 
Menlo Park, CA 94025 

U.S.A. $12 

Published six times a year, The Catylist features arti­
cles and reports on microcomputers in special 
education. 

CLASSROOM COMPUTER NEWS 
Box 266 
Cambridge, MA 02139 

U.S.A. $16 
CANADA $21 

Classroom Computer News is probably the best source 
of educational software reviews. My complimen­
tary issue contained the following articles: "Com­
puter literacy- What Should Schools Be Doing 
About It?"; "A School Administrator Looks at Vis­
icalc"; "Special Tools for Special Needs"; "Pro­
gramming 1-The Starting Gate"; "Word Proces­
sors for Teachers"; "Microcomputers in the School 
Library's Future"; and "How Does the Computer 
Remember All That Stuff?" Highly recommended 
for teachers. 

COMPUKIDS 
Box 874 
Sedalia.MO 65301 

U.S.A. $12 

A monthly newsletter for children that contains 
stories, games, and contests that will appeal to jun­
ior microcomputer enthusiasts. 

COMPUTEKTOWN USA! Donations 
Box E 
Menlo Park, CA 94025 

The monthly newsletter of a group of enthusiasts 
dedicated to promoting computer literacy in Menlo 
Park, California. Their projects include microcom­
puter fairs, programming contests, and public dem­
onstrations, as well as the installation of microcom­
puters in public libraries. It's a good source of ideas 
on grass-roots microcomputer uses. For example, 
the August 1981 issue has an article on raising funds 
for the purchase of microcomputers. 

THE COMPUTING TEACHER 
Computing Center 
Eastern Oregon State College 
La Grande, OR 97850 

U.S.A. $14.50 
CANADA $20.00 

Edited by David Moursund, a leading CAI educator, 
this journal focuses on teacher education, com-

Annotated Bibliography 

puter-assisted instruction, and the impact of com­
puters on curriculums. Apart from the usual arti­
cles and software reviews, The Computing 1.eacher 
features reports on CAI projects, articles on instruc­
tional design, and an assortment of calculator and 
microcomputer programming assignments that can 
be adapted to classroom use. Any teachers using a 
microcomputer should not be without this journal. 

CREATIVE COMPUTING 
Box 789-M 
Morrison, NJ 07960 

U.S .A. $25 
CANADA $30 

If you plan to purchase only one magazine, this 
should be your choice. Creative Computing has all 
the types of articles, reviews, program listings, and 
columns usually appearing in other microcompu­
ter monthlies, as well as a sense of humor: It's 
sprinkJed with cartoons, delightful pen-and-ink 
drawings, satirical pieces, short stories, puzzles, and 
even the occasional poem. Moreover, it's not 
restricted to computer topics. Recent issues had an 
excellent series on effective writing techniques that 
any writer can use. The judgement of its editors, 
however, appears shortsighted: they rejected this 
critical bibliography with a typewritten form letter. 

CUE NEWSLETTER 
Independence High School 
1776 Educational Park Drive 
San Jose, CA 95133 

U.S.A. $6 
CANADA $8 

Published every two months, this is the newsletter 
of California's computer-using educators, an 
enthusiastic group of several hundred elementary 
and high school teachers who have just started an 
educational software exchange. Members can buy 
several diskettes of modest educational programs 
for the Apple, PET, and TRS-80 for $10 a disketle. 
The newsleuer outlines CUE's many activities, and 
prints short but revealing software reviews from a 
teacher's viewpoint. It is a model for computer-using 
educators' groups and is well worth the low mem­
bership fee. 

EDUCATIONAL COMPUTER 
MAGAZINE 

Box 535 
Cupertino, CA 95015 

U.S.A. $ 12 
CANADA $20 

Educational Computer is a new magazine for teachers 
in schools, colleges, and universities. It is published 
every two months and features articles, reviews, 
editorials, and letters on educational topics. 

231 



Annotated Bibliography 

EDUCATIONAL TECHNOLOGY 
140 Sylvan Avenue 
Englewood Cliffs, NJ 07632 

U.S.A. $49 
CANADA $59 

A monthly periodical for audio-visual specialists 
and educators interested in the technological aspects 
of education. It consists mostly of indifferently edited 
research papers on arcane subjects written in aca­
demic language by professors who must, even at 
the cost of clear expression, publish or perish. A 
noticeable exception is Gerald T. Gleason's survey 
of the use of microcomputers in education (March 
1981, pp. 7-18), which succinctly summarizes recent 
developments in the field. The editors of Educational 
7echnology have recently discovered microcompu­
ters and are devoting more and more coverage to 
their educational applications. This no doubt will 
be a boon to graduate students and the many edu­
cation faculty members who judge scholarship by 
the number of footnotes per manuscript page. 

ELECTRONIC LEARNING 
Scholastic Inc. 

USA $19 

Box 2001 
Englewood Cliffs, NJ 07632 

Electronic Learning is a colorful, easy-to-read mag­
azine published eight times a year for teachers. 
Articles in recent issues include a nine-part primer 
on computers, a detailed outline of a course in 
computer literacy, a guide to purchasing microcom­
puters, and a tutorial on evaluating educational 
software. It regularly features articles on the edu­
cational potential of new products like the video­
disc, a comprehensive directory of software houses, 
and lists of microcomputer courses offered in the 
United States. Reviews of educational software are 
short and often superficial, but teachers will find it 
a good source of ideas for classroom projects. It 
does not favor any brand of microcomputer. Every 
elementary and high school staff room should have 
a subscription. 

ILLINOIS SERIES ON THE EDUCATIONAL 
APPLICATIONS OF COMPUTERS U.S.A. 50¢ per paper 

College of Education 

232 

University of Illinois 
Urbana, IL 61801 

A series of academic papers "prepared as resources 
for the pre-service training of teachers under the 

general theme of teaching with or about com­
puters." I'm not well enough informed in the teacher­
training field to evaluate this comprehensive series. 
Some of the material may be dated, but no doubt 
it will be very useful to education faculty interested 
in adding computer-assisted instructional technol­
ogy to their curriculums. 

INFOWORLD 
Circulation Department 
375 Cochituate Road 
Framingham, MA 0170 I 

U.S.A. $25 
CANADA $52 

A weekly newspaper aimed at the personal and 
business microcomputer user that will keep you 
informed on the latest developments in the indus­
try. The coverage is comprehensive and most arti­
cles are free of jargon. Particularly valuable are its 
editorials and its many candid software reviews, 
many of which are for the Apple. Each issue has an 
extensive collection of classified ads as well as a 
delightful satire written by "Minnie Floppy." Also 
revealing are its letters to the editor from irate peo­
ple who have found that some of the much her­
alded microcomputer products leave a great deal to 
be desired. This is the periodical that I look forward 
to receiving the most. 

ITMA NEWSLETTER Free, but send 
College of St. Mark and St. John $30 for postage 
Derriford Road 
Plymouth, PL6 8BH 
Great Britain 

The quarterly newsletter of the British Investiga­
tions on Teaching with Microcomputers as an Aid, 
a rapidly growing group of British teachers dedi­
cated to developing, evaluating, and promoting CAI 
materials. It features valuable material on CAI tech­
niques, articles written by teachers, and educa­
tional program listings in 380Z BASIC. The news­
letter furnishes proof of Britain's energetic promotion 
of the educational applications of microcomputers. 

JOURNAL OF COMPUTER-BASED 
INSTRUCTION 

Computer Center 
Western Washington University 
Bellingham, WA 98225 

See ADCIS 

The JCBI is the academic quarterly of Western 
Washington's Association for the Development of 



Computer-Based Instructional Systems. The people 
who put it out assert that it publishes "original 
investigations and theoretical papers dealing with 
direct applications of computing to the problems of 
learning and instruction, design of curriculum, 
authoring languages and systems, and comparative 
curriculum structures for computer-based instruc­
tion." Contributors are urged to submit "empirical 
studies that use experimental procedures which will 
maximize the potential generalizability of out­
comes." Put that into your computer. 

Annotated Bibliography 

MICROCOMPUTING U.S.A. $25 
Box 977 CANADA $27 
Farmingdale. NY 11737 

Microcomputing is a comprehensive, carefully edited 
monthly noted for excellent articles on technical 
topics and for regular features on the microcom­
puter industry, education, business. new products, 
and book reviews. Serious microcomputer users may 
prefer it to Creative Computing. Editor Wayne Green's 
perceptive monthly analysis of the industry is worth 
the price of Microcomputing. Highly recommended. 

NIBBLE JOURNAL OF COMPUTERS IN 
SCIENCE TEACHING U.S.A. $7 Box 325 

U.S.A. $17.50 
CANADA $18.00 

Box 4825 
Austin, TX 78765 

Published quarterly by the Association for Com­
puters in Science Teaching, this journal features 
research reports, tutorials, and software reviews 
pertinent to elementary and high school science 
teaching. 

JOURNAL OF COURSEWARE REVIEW 
Box 28426 
San Jose, CA 95 159 

U.S.A. $6.95 

A collection of professional reviews of educational 
software for the Apple. It is published by the Foun­
dation for the Advancement of Computer-aided 
Instruction (formerly the Apple Education Foun­
dation ), a non-profit organization that furnishes 
hundreds of thousands of dollars worth of micro­
computer equipment each year to people who pro­
pose innovative CAI projects. The first issue is $6.95, 
a modest price to pay to save you from purchasing 
poor software. 

MICRO 
Box 6502 
Chelmsford, MA 0 1824 

U.S.A. $24 
CANADA $27 

A monthly for experienced APPLE, PET, OSI, TRS-
80 Color, and KYM/SYN/AIM programmers. Each 
issue includes one or more useful utility programs 
for the Apple, but most of the content is devoted 
to the other microcomputers. However, Micro does 
have two features that make it worth the subscrip­
tion price: a monthly annotated bibliography of 
articles in many microcomputer journals and a 
comprehensive directory of new software. 

Lincoln , MA 01733 

A magazine for advanced Apple users. Each of the 
eight yearly issues features at least two major pro­
gram listings for home, small-business, or enter­
tainment use that can be typed into the Apple. It 
also contains a selection of program tips, hardware 
construction projects, and product reviews. The 
major listings may also be obtained on diskettes for 
$15 or less. Those who enjoy programming swear 
by Nibble, and no Apple owner should be without 
a subscription. Highly recommended. 

PEELINGS I/ 

2260 Oleander Street 
Las Cruces, NM 88004 

U.S.A. $21.00 
CANADA $28.50 

A privately published collection of comprehensive 
reviews of Apple II software. Reviewers Edward 
Burlbaw, Howard de St. Germain, John Metallaro. 
and John Mitchener don't mince words: ifthe pro­
gram is a lemon. they will tell you. What's more, 
they provide information on the capabilities of soft­
ware that other reviewers miss. Each program is 
given a letter grade for any comparison, and adver­
tising is accepted only from companies who a re 
making quality software. Peelings II is undoubtedly 
the most useful single reference for the Apple owner. 
The review of word processing software in the July 
issue is itself worth a two-year subscription. It is 
published nine times a year. 

PERSONAL COMPUTERS 
1 Fawcett Place 
Greenwich, CT 06830 

U.S.A. $1.75 an issue 

Mechanix lllustrated's quarterly magazine on micro­
computers. It is designed for newsstand sale (sub­
scription information wasn't given in the first two 

233 



r 

Annotated Bibliography 

issues) and the articles and product reviews are brief 
and easy to read, but rather superficial. 

PERSONAL COMPUTING 
Circulation Deparunent 

U.S.A. $18 
CANADA $26 

1050 Commonwealth Avenue 
Boston, MA 02215 

A well-designed, easy-to-read montly with articles 
on varied topics and regular columns on business, 
education, computer chess, computer bridge, and 
the future of computing. Since it used to have a 
slight bias toward the TRS-80, it was originally not 
high on my recommended list for Apple owners; 
but recent issues have improved so much under 
editor David Gabel that Prnonal C:Omputing may soon 
rival the leaders. 

PIPELINE 
Conduit 

U.S.A. $25 membership 

Box 388 
Iowa City, IA 52244 

A semi-annual report of the University of Iowa's 
CONDUIT organization, a U.S.A. government-sup­
ported project designed to develop, evaluate, and 
market computer-assisted instructional materials for 
higher education. Members of CONDUIT receive 
Pipeline, a CAI authoring guide, and brochures on 
new post-secondary CAI materials, some of which 
are available for the Apple, PET, and TRS-80. Pipe­
line contains several short articles on CAI research, 
as well as a catalogue of $50 disk-based programs 
in biology, chemistry, economics, education, geog­
raphy, psychology, sociology, humanities, manage­
ment, mathematics, physics, political science, and 
statistics. Recommended. 

POPULAR COMPUTING 
(formerly ONCOMPUTING) 
70 Main Street 

U.S.A. $15 
CANADA $18 

234 

Peterborough, NH 03458 

McGraw-Hill's new monthly is aimed at magazine­
stand browsers and new microcomputer owners. It 
contains easy-to-read reviews and articles on 
microcomputers, peripheral devices, software, and 
new products-all of which are lavishly illustrated 
with color photographs and diagrams. It is proba­
bly the best magazine for beginners. 

SCHOOL MICROWARE DIRECTORY 
Dresden Associates 
Box 246 
Dresden, MA 04342 

U.S.A. $20 
CANADA $20 

A typewritten quarterly catalogue of educational 
software available for the major microcomputers. 
Entries are listed by subject and grade level ranging 
from Kindergarten to Grade 12. Unfortunately, the 
programs are not reviewed, and anyone purchasing 
educational software sight unseen can expect to be 
disappointed. 

SCHOOL MICROWARE REVIEW 
Dresden Associates 
Box 246 
Dresden, MA 04342 

U.S.A. $30 
CANADA $30 

For $30 more than the cost of their preceding direc­
tory, Dresden Associates will send you two issues 
of educational software reviews solicited from sub­
scribers. One would expect such reviews to appear 
in Dresden's School Microware Directory; thus, the 
publication of a separate newsletter appears to be 
an attempt to separate educators from their limited 
computer funds. 

SCIENTIFIC AMERICAN 
Box 5959 
New York, NY 1001 7 

U.S.A. $21 

This leading scientific monthly occasionally pub­
lishes highly technical but well-illustrated articles 
on microelectronics that are worth searching out. 
Silicon-chip technology was thoroughly explained 
in the issues of May 1975 and September 1977; the 
super-conducting Josephson Junction was featured 
in the May 1980 issue; disk-storage technology was 
described in the August 1980 issue; and the new 
"supercomputers" were discussed in the January 
1982 issue. 

SOFTALK 
11021 Magnolia Boulevard 
North Hollywood, CA 91601 

U.S.A. $24 
CANADA $24 

An excelJent monthly that features chatty articles 
on the people in the microcomputer industry, a lively 
readers' forum, a programming contest page that 
will encourage submissions from Apple users of alJ 
ages, a revealing disk-jockey-style list of best-selJ­
ing programs for the Apple. Highly recommended. 



SOFTS/DE 
Box 68 
Milford, NH 03055 

U.S.A. $24 
CANADA $32 

A monthly devoted largely to printed-games soft­
ware for the Apple, PET, TRS-80, and Atari micro­
computers. It also has tips for advanced 
programmers. 

TALMIS NEWSLETTER 
115 North Oak Park Avenue 
Oak Park, rL 60301 

A Neilson-rating-style newsletter of educational 
software reviews scheduled to begin publication in 
August 1982. 

TECHNOLOGY ILLUSTRATED 
Box 2804 
Boulder, CO 80321 

U.S.A. $9.95 
CANADA $15.00 

A lavishly illustrated new magazine designed to 
explain technological developments to the layman. 
Like Science Digest, the magazine it imitates, 'Jech­
nology Illustrated covers a wide range of topics. The 
first issue (October/November 1981) starts with an 
article on the history of computers and concludes 
with a note on the zany wartime research of B. F. 
Skinner, who is described as "the best-known sci­
entist of our time." I liked it. The photographs were 
ideal for my introductory lecture on the history of 
computing, and I still consider B. F. Skinner's Beyond 
Freedom and Dignity to be one of the most impor­
tant books ever written, even if he did get his start 

Annotated Bibliography 

trying to train pigeons to operate the controls of a 
guided missile. Teachers will probably find 'Jechnol­
ogy Illustrated a good source of classroom ideas. 

T.H.E. JOURNAL 
Box 992 
Acton, MD 201 72 

U.S.A. $15 
CANADA $23 

A journal published every two months subtitled 
'Jechnology Horizons in Education for school admin­
istrators by Information Synergy Inc. of Acton, 
Maryland. It contains short reviews of new equip­
ment and erudite articles on the theoretical and 
practical applications of technological advances in 
education at all levels. Complimentary subscrip­
tions are available to senior administrators. I rec­
ommend it for educational planners and graduate 
students in education. 

WASHINGTON APPLE PI 
Box 345 11 
Bethesda, MD 20817 

The monthly newsletter of the large Apple users 
group in the Washington. D.C. area. A collection 
of their best articles 1980-1981 is available for $7.50. 

235 



A 

ABS 119,2 16 
Algorithm 186 
Alphanumeric variable, defined 10 
APPLE II 

operation of 199-201 
typical system 8, 197 

Arrays 
one-dimensional 46 
two-dimensional 47 

B 

BASIC commands 
defined 9 
summarized 218-22 1 

BASIC statements 
defined 9 
summarized 207-214 

Batch access 7 
Booting up 5, 200- 204 

c 

CATALOG 163, 218 
CHAIN I (program) 160-161 
CHAIN 2 (program) I60-162 
Chaining 159 
Chip 197 
CHR$(4) 84, 86, 159 
Codes 

ASCII 222-223 
control 221 

Coin flipping 89 
COLOR 168, 210 

Index 

Color, use of l 79 
Color codes 

high-resolution 174 
low-resolution 169 

Commas, use of 10, 212 
Computer-assisted instruction (CAI) 
Computer-based instruction, 

applications I. 7 5-164 
Computer system. primary units 7 
Computer use, brief histo ry, rationale 

for 5 
Control-C 33, 205, 221 
Control-D 84, 86, 159 

D 

DATA-READ 32, 69, 209, 2 10 
DEL 15,25, 219 
DELETE 23,25,219 
Designing instructional materials 2, 184 

guidelines 194-196 
Development of instructional 

materials 2, 185-196 
DIM 56, 207 
Disk drive 199 
Disk operating system (DOS) 199 
Diskette 

care of 203 
initializing 20 l 

Drill and practice 1, 88, 9 1, 94, I 02 

E 

E notation 25 
Editing 15, 221 
END I2, 207 237 



r 

Index 

238 

F 

FLASH 78, 11 3, 213 
FOR-NEXT 33, 70, 207, 208 
Functions 21. 2 16-218 

G 

GET 124, 135, 146, 207 
GOSUB-RETURN 57, 71. 208, 2 10 
GOTO 20, 67, 72, 208 
GR 168,2 11 
Graphics 168 

high-resolution 172 
low-resolution 168 

H 

HCOLOR 173, 211 
HGR 173,2 11 
HUN 170, 21 l 
HOME 32, 213 
HPLOT 174. 2 11 
HTAB 2 13 

IF-THEN 20, 67, 72, 208 
!NIT 201. 219 
INPUT 11.67, 72, 208 
Instructional computing 
Instructional sequence 

considerations l 88-189 
INT 21. 22, 21 6 
Interactive access 7 
INVERSE 96, 126, 139, 213 
ISLAND (program) I 39 

K 

KEYWORD (program fragment 
subroutine) 154, 157-159 

KEYWORD DEMO (program) 156 
Keyword subroutine 153 

L 

LET 12, 66, 72,209 
LIST 13, 24, 25,219 
LOAD 23, 24, 219 
LOCK 220 
Loops 33 

nested 48 

M 

MENU (program) 160 
Multiple statements per line 102 

N 

NEW 13, 22,24,220 
NORMAL 78, 96, I 13, 126, 139, 213 
Numeric variable. defined 10, 214- 215 

0 

Objectives 
chapter 5-6, 19, 31. 45, 65, 75, 167, 

183, 191 
examples of 187-1 88 

ON-GOSUB 209 
ON-GOTO 21. 68, 72, 209 
Operators 215 

p 

PLOT 169, 212 
POS 213 
Powering up 5, 200, 204 
PR 86, 220 
PRINT ll ,66, 72, 219 
Printer 200 

use of 203-204 
Problem solving l , 77, 79, 83 
PROGRAM 1 12 
PROGRAM 2 22 
PROGRAM 3 25 
PROGRAM4 34 



PROGRAM 5 39 
PROGRAM 6 49 
PROGRAM 7 53 
PROGRAM 8 57 
PROGRAM 9 77 
PROGRAM 10 79 
PROGRAM 11 83 
PROGRAM 12 88 
PROGRAM 13 91 
PROGRAM 14 94 
PROGRAM 15 102 
PROGRAM 16 106 
PROGRAM 17 109 
PROGRAM 18 116 
PROGRAM 19 119 
PROGRAM 20 123 
PROGRAM 21 134 
PROGRAM 22 139 
PROGRAM 23 144 
PROGRAM 24 149 
PROGRAM 25 171 
PROGRAM 26 175 

R 

RAM 8, 197, 198, 199, 206 
Random numbers 21, 22, 102 
Random selection 56 

questions 53, 91-92, 96 
Rationale 185 

examples of 185- 187 
RECORD INITIALIZER (program) 83 
REM 20, 76, 210 
RENAME 220 
Renaming programs 39, 220 
RESTORE 33, 210 
RND(l) 21, 22, 216 
ROM 197, 198 
RUN 13, 22, 24, 220 

s 

SAVE 13,23,25,220 
Scientific notation 25 
Screen display 13 
SCRN 2 12 
Semicolons, use of 1 1, 2 14 
Simulation I. 122, 123, 134, 139 
Slots 199, 206 
SOCKS (program) 154- 156 
Sorting 134 
SPC 213 
SPEED 43 , 214 
String variable, defined 10, 215 
Systems approach 184 

discussion of steps 185-193 

T 

TAB 26,214 
Television (monitor) 199 
Testing I, 144, 149 
TEXT 170, 2 12 
Text fi les 83 
1Tuncate, defined 20 
Tutorial dialog 1, 105, 106, 109, 

116, 119 

u 

UNLOCK 221 

v 

Variables. defined 9 
VLIN 170, 2 12 
VTAB 175,2 14 

Index 

239 




