- APPLE'BASIC:
DAIA FILE
PROGRAMMING

A SELFTEACHING GUIDE

f

“l
'«
I'

N

Save time and errors!

The programs in this book are available
on 5'%" disk—ready for instant use.
Buy at your favorite computer store

or use the order card inside.

LeROY FINKEL
- JERALD R.BROWN

APPLE® BASIC:
DATA FILE PROGRAMMING

More than a million people have learned to prograni, use, and enjoy microcomputers
with Wiley paperback guides. Look for them all at your.favorite bookshop or
computer store:

BASIC; 2nd ed., Albrecht, Finkel, & Brown

BASIC for Home Computers, Albrecht, Finkel, & Brown

TRS-80 BASIC, Albrecht, Inman, & Zamora

~ More TRS-80 BASIC, Inman, Zamora, & Albrecht
ATARI.BASIC, Albrecht, Finkel, & Brown '

Data File Programming in BASIC, Finkel & Brown .

Data File Programming for the Apple Computer, Finkel & Brown
ATARI Sound & Graphics, Moore, Lower, & Albrecht

Using CP/M, Fernandez & Ashley

Introduction to 8080/8085 Assembly Language Programmmg, Fernandez & Ashley
8080/Z80 Assembly Language, Miller

Personal Computing, McGlynn

* Why Do You Need a Personal Computer? Leventhal & Stafford
Problem-Solving-on the TRS-80 Pocket Computer, Inman & Conlan
Using Programmable Calculators for Business, Hohenstein

" How to Buy the Right Small Business Computer System Smolin
The TRS-80 Means Business, Lewis

~ ANS COBOL, 2nd ed., Ashley

Structured COBOL, Ashley

FORTRAN 1V, 2nd ed., Friedmann, Greenberg, & Hoffberg

Job Control Language, Ashley & Fernandez

Background Math for a Computer World, 2nd ed., Ashley
Flowcharting, Stern

Introduction to Data Professing, 2nd ed., Harris

APPLE® BASIC:
DATA FILE PROGRAMMING

LEROY FINKEL
San Carlos High School

and

JERALD R. BROWN

Educational Consultant

YEAR
AS)

1807\ f1982

2 ©
Y8

John Wiley & Sons, Inc.

New York e Chichester o Brisbane ¢ Toronto e Singapere

Publisher: Judy V.Wilson |
Editor: Dianne Littwin v
Composition and Make-up: Trotta Composition

Copyright © 1982, by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work
beyond that permitted by Sections 107 or 108 of the 1976
United States Copyright Act without the permission of
the copyright owner is unlawful. Requests for permission
or further information should be addressed to the

. Permissions Department, John Wiley & Sons, Inc.

" Library of Congress Cataloging in Publication Data

Finkel, LeRoy.
Apple BASIC, data file programming.

(Wiley self-teaching guides)

Includes index.

1. Basic (Computer-program language) 2. Apple
computer—Programming. I. Brown, Jerald, 1940-
IL. Title. III. Series: Self-teaching guide.
QA76.73.B3F52 001.64'24 81-13100
ISBN 0-471-09157-X

Printed in the United States of America

82 83 10 9 8 7 6 5.

How To Use This Book

When you use the self-instruction format in this book, you will be actively involved in
learning data file programming in APPLESOFT* BASIC. Most of the material is
presented in sections called frames, each of which teaches you something new or
provides practice. Each frame also gives you questions to answer or asks you to

write a program or program segmient.

You will learn best if you actually write out the answers and try the programs
on your APPLE II computer (with at least one disk drive). The questions are carefully
designed to call your attention to important points in the examples and explanations
and to help apply what is being explained or demonstrated.

Each chapter begins with a list of objectives — what you will be able to do after
completing that chapter. At the end of each chapter is a self-test to provide valuable
practice.

The self-test can be used as a review of the material covered in the chapter. You
- can test yourself immediately after reading the chapter. Or you can read a chapter,
take a break, and save the self-test as a review before you begin the next chapter. At
the end of the book is a final self-test to assess your overall understandmg of data file
programming.

This book is designed to be used with an APPLE computer close at hand. What .
you learn will be theoretical only until you actually sit down at a computer and apply
your knowledge “hands-on.” We strongly recommend that you and this book get
together with a computer! Learning data file programming in BASIC will be easier
and clearer if you have regular access to a computer so you can try the examples and
exercises, make your own modifications, and invent programs for your own purposes.
You are now ready to teach yourself to use data files in BASIC.

*APPLE and APPLESOFT are regfstered trademarks of Apple Computer, Inc.

Preface

This text will teach you to program data files in APPLESOFT BASIC. As a pre-
requisite to its use, you should have already completed an introductory course or
book in BASIC programming and be able to read program listings and write simple
programs: This is not a book for the absolute novice in BASIC. You should already
be comfortable writing your own programs that use statements including string vari-
ables, string functions, and arrays. We do start the book with a review of statements
that you already know, though we cover them in more depth and show you new ways
to use them.

The book is designed for use by readers who have little or no experience using
data files in BASIC (or elsewhere, for that matter). We take you slowly and carefully
through experiences that “teach by doing.” You will be asked to complete many
programs and program segments. By doing so, you will learn the essentials and a lot
more. If you already have data file experience, you can use this book to learn about
data files in more depth.

The particular data files explained in this text are for APPLESOFT BASIC. Data
files in other versions of BASIC will be similar, but not identical, to those taught in
this book.* You will find this book most useful when used in con]unctlon wuh the
reference manual for your computer system.

Data files are used to'store quantities of information that you may want to use
now and later; for example, mailing addresses, numeric or statistical information, or
tax and bookkeeping data. The examples presented in this book will help you use
files for home applications, for home business applications, and for your small
business or profession. When you have completed this book, you will be able to
write your own programs, modify programs purchased from commercial sources, and
adapt programs using data files that you find in magazines and other sources.

*For programming data files in TRS-80 BASIC, MICROSOFT BASIC-80, and Northstar BASIC, read our

other book, Data File Programming in BASIC by Finkel and Brown (John Wiley & Sons, Inc., N.Y., 1981).

For programming data files on the IBM PC, read IBM PC: Data File Programmmg by Brown and Finkel
(John Wiley & Sons, Inc., N.Y., 1983).

1

COnten"ts

Chapter 1 Writing BASIC Programs for Clarity, Readability,

and Logic _ 1
Chapter 2 An Important Review of BASIC Statements ' 15
Chapter 3 Building Data Entry and Error Checking Routines 49
Chapter 4 Creating and Reading Back Sequential Data Files 79
Chapter 5 Sequential Data File Utility Programs : 134
Chapter 6 Random Access Data Files _ 198 4
Chapter 7 Random Access File Applications : o 0252

Final Self-Test . 281
Appendix A ASCII Chart Code ' " 294
Appendix B List of Programs . 296
Index ’ 302

¢ ,

CHAPTERONE -
‘Writing BASIC Programs for
Clarity, Readability, and Logic

Objectives: When you have completed this chapter you will be able to:

1. ‘describe how a program can be written using a top-to-bottom format.
2. write an introductory module using REMARK statements.
3. -describe seven rules to write programs that save memory space.

INTRODUCTION

This text will teach you to use data files in APPLESOFT BASIC You should have
already completed an introductory coursé or book in BASIC programming, and be able
to read program listings and write simple programs. This is not a book for the abso-
lute novice in BASIC, but is for those who have never used data files in BASIC (or
elsewhere, for that matter). The particular data files explained in this text are for the
APPLE II computer and the BASIC languages found on it.

Data files in other versions of BASIC and for other computers will be 51mllar
but not identical, to those in this book. (If you are using a computer other than the
APPLE II, you may want to read Data Files Programming in BASIC, or IBM PC: Data
File Programming, available at your local computer store or bookstore.) You will find
this text most useful when used in conjunction with the APPLE II reference manuals and =
the Disk Operating System (DOS) Manual: It is not a substitute for your careful reading
of the APPLE II DOS Manual, though the workings of sequential and random access
files are explained here in far more depth and with more examples.

Since it is assumed you have some knowledge of programming in BASIC and have
practiced by writing small programs, the next step is for you to begin thinking about
program organization and clarity, Because data file programs can become fairly large
and complex, the inevitable debugging process — making the program actually work
— can be proportionately complex. ‘Therefore, this chapter is important to you be-
cause it provides some program organization methods to help make your future
programming easier. .

2 APPLE BASIC: DATA FILE PROGRAMMING

THE BASIC LANGUAGE

The computer language called BASIC was developed at Dartmouth College in the early
1960s. It was intended for use by people with little or no previous computer experi-
ence who were not necessarily adept at mathematics. The original language syntax
included only those functions that a beginner would need. As other colleges, computer
manufacturers, and institutions began to adopt BASIC, they added embellishments to
meet their own needs. Soon BASIC grew in syntax to what various sources called
Extended BASIC, Expanded BASIC, SUPERBASIC, XBASIC, BASIC PLUS, and so on.
Finally, in 1978 an industry standard was developed for BASIC, but that standard was
for only a “minimal BASIC,” as defined by the American National Standards Institute
(ANSI). Despite -the ANSI standard, today we have a plethora of different BASIC
languages, most of which “look alike,” but each with its own special characteristics

~ and quirks.

In the n‘ucrocomputer field, the most widely used versions of BASIC were
developed by the Microsoft Company and are generally referred to as MICROSOFT
BASICs. These BASICs are available on a variety of microcomputers but, unfortu-
nately, the language is implemented differently on each computer system. The
APPLE version of MICROSOFT BASIC is called APPLESOFT.

. The programs and runs shown in this text were actually performed on an
APPLE II and an APPLE II PLUS computer using Disk Operating System (DOS) 3.3.
(They will work in DOS 3.2, as well.) We wrote all of our programs using APPLE-
SOFT BASIC. To use the programs in INTEGER BASIC, you will have to make the
usual APPLESOFT to INTEGER modifications described in your reference manual.
The. file commands described in this text may be used in APPLESOFT or INTEGER
BASIC. For INTEGER BASIC you may have to modify the file mput and output
statements, as described in your DOS Manual.

Where possible, we use BASIC language features that are common to all versions
of BASIC, regardless of manufacturer. We do not attempt to show off all of the |
bells and whistles found in APPLESOFT BASIC, but rather to present easy-to-under-
stand programs that will be readily adaptable to a variety of computers. -

THE BASIC LANGUAGE YOU SHOULD USE
Conservative Programming

Since you will now be writing longer and more complex programs, you should adopt
conservative programming techniques so that errors will be easier to isolate and locate.
(Yes, you will still make errors. We all do!) This means that you should NOT use
all the fanciest features available in APPLESOFT BASIC until you have tested the
features to be sure they work the way you think they work. Even then, you still
might decide against using the fancy features, many of which relate to printing or
graphic output and do not work the same on other computers. Some are special
functions that simply do not exist on other computers. Leave them out of your
programs unless you feel you must include them. The more conservative your pro-
gramming techniques, the less chance there is of running into a software “glitch.”

WRITING BASIC PROGRAMS FOR CLARITY, READABILITY, AND LOGIC 3

This chapter discusses a program format that, in itself, is a conservative programming
technique. .

One reason for conservative programming is that your programs will be more
portable or transportable to other computers. “Why should I care about portability?”
you ask. Perhaps the most important reason is that you will want to trade programs
with friends. But do all of your friends have a computer IDENTICAL to yours?
Unless they do, they will probably be unable to use your programs without modifying
them. Conservative programming techniques will minimize the number of changes
required. :

Portability is also important for your own convenience. The computer you use
or own today may not be the one you will use one year from now; you may replace
or enhance your system. In order to use today’s programs on tomorrow’s computer be
conservative in your programming.

Use conservative programming to:

e Isolate and locate errors more easily.
e Avoid software “glitch.”
e Enhance portability.

WRITING READABLE PROGRAMS

Look at the sample programs throughout this book and you will see that they are easy
to read and understand because the programs and the individual statements are written
in simple, straight-line BASIC code without fancy methodology or language syntax. It
is as if the statements are written with the READER rather than the computer in mind.
Writing readable BASIC programs requires thinking ahead, planning your program
in a logical flow, and using a few special formats that make the program listing easier
to the eye. If you plan to program for a living, you may find yourself bound by your
employer’s programming style. However, if you program for pleasure, adding readable
style to your programs will make them that much easier to debug or change later, not
to mention the pride inherent in trading a clean, readable program to someone else. -
A readable programming style provides its own documentation. Such self-
documentation is not only pleasing to the eye, it provides the reader/user with suffi-
cient information to understand exactly how the program works. This style is not as
precise as “structured programming,” though we have borrowed features usually
promoted by structured programming enthusiasts. Our format organizes programs in
MODULES, each module containing one major function or program activity. We also
include techniques long accepted as good programming, but for some reason forgotten
in recent years. Most of our suggestions do NOT save memory space or speed up the
program run. Rather, readability is our primary concern, at the expense of memory
space. Later in this chapter, we will present some procedures to shorten and speed
up your programs. Modular style programs will usually be better running programs
and will effectively communicate your thought processes to a reader.

4 APPLE BASIC: DATA FILE PROGRAMMING

- THE TOP-TO-BOTTOM ORGANIZATION

When planﬁing your program, think in terms of major program functions. These might
include some or all of the functions from this list:

DATA ENTRY
~ DATA ANALYSIS
COMPUTATION
FILE UPDATE
EDITING
- REPORT GENERATION

Using our modular process, divide your program into modules, each containing
one of these functions. Your program should flow from module one to module two
and continue to the next higher numbered module. This “top-to-bettom organiza-
tion” makes your program easy to follow. Program modules might be broken up into
smaller “blocks,” each containing one procedure or computation. The size or scope of
a program block within a module is determined by the programmer and the task to be
accomplished. Block style will vary from person to person, and perhaps from program
to program.

USE A MODULAR FORMAT AND. TOP-TO-BOTTOM APPROACH

REMARK Statements :

Separate program modules and blocks from each other using REMARK statements or
nearly blank program lines. In general, programs designed for readability make liberal
use of REMARK statements, but don’t be overzealous. A nearly blank program line
can be created by typing a line number followed by a colon (150:). A line number
followed by REM (150 REM) can also be used. »

“100 REM DATA ENTRY MODULE
110 REM x%tx READ DATA FROM DATA STATEMENTS 8000-9080

130 BREM)
200 REM COMPUTATION MODULE
210 REM ARX :

(Note: Your Apple computer will split the word REMARK into two words, as shown
in line 210. Because this looks awkward, we encourage use of the word REM in
place of the complete word.) ‘

Begin each program module, block, or subroutine with an explanatory REM
statement.(line 100 and 110) and end it with a nearly blank line (line 120) or blank -
REM statement (line 130) indicating the end of the section.

WRITING BASIC PROGRAMS FOR CLARITY, READABILITY, AND LOGIC 5

Consistency in your use of REMs enhances readability. Use either REM or the
nearly blank line with a colon,.but be consistent. Some writers use the asterisks
(****) shown in line 110 to set off REM statements containing actual remarks from
blank REM statements; others use spaces four to six places after the REM before they
add a comment (line 200). Both formats effectively separate REM statements from
BASIC code.

You can place remarks on the same line as BASIC code using multiple statement
lintes, but be sure your REM is the LAST statement on the line. Such “on-line”
remarks can be used to explain what a particular statement is doing. A common
practice is to leave considerable‘space between an on-line remark and the BASIC code,
as shown below.

220 LET C(X) = C(X) + U: REM **®COUNT UNITS IN C ARRAY
240 LET T(X) = T(X) + C(X): REM xx*xINCREASE TOTALS ARRAY

Using REMs to explain what the program is doing is desirable, but don’t overuse
it. (LET C = A + B does not require a REM or explanation!). REM should add
information, not merely state an obvious step.

A Like everything else said in these first chapters, there will be exceptions to
what we say here. Keep in mind that we are trying to get you to. think through your
programming techniques and formats a little more than you are-probably accustomed
" to doing. Thus, our suggested “rules” are just that — suggestions to which there will
be exceptions. ' :

GOTO STATEMENTS

Perhaps the most controversial statement in the BASIC language is the unconditional
GOTO statement. Its use and abuse causes more controversy than any other statement.
Purists say you would NEVER use an unconditional GOTO statement such as GOTO
~100. A more realistic approach suggests that all GOTOs and GOSUBs go DOWN the
page to a line number larger than the line number where the GOTO or GOSUB appears.
This is consistent with the “top-to-bottom” program organization. This same ap-
proach—down the page—also applies to using IF. . .THEN statements (there will be
obvious exceptions to this rule). :

140 GOTO 210 -
150 IF X < Y THEN 800
160 GOSUB 8000

A final suggestion: A GOTO, GOSUB, or IF. . .THEN should not go to a state- .
ment containing only a REM. If you or the next user of your program run short of
memory space you will delete extra REM statements. This, in turn, requires you to
change all of your GOTO line numbers, so plan ahead first. Some BASICs do not

_even allow a program to branch to a statement starting with REM.

. 6 APPLE BASIC: DATA FILE PROGRAMMING

Bad S ' Good
150 GOTO 300 ' 150 COTO 300
300 REM DATA ENTRY 299 REM DATA ENTRY
310 INPUT "ENTER NAME:";N$ 300 INPUT "ENTER NAME:";Ns

A FORMAT FOR THE INTRODUCTORY MODULE

The first module of BASIC code (lines 100 through 199 or 1000 through 1999)
should contain a brief description of the program, user instructions when needed, a
list of all variables used, and the initialization of constants, variables, and arrays.

The very first program statement should be a REM statement containing
the program name. Carefully choose a name that tells the reader what the program
does, not just a randomly selected name. After the program’s name comes the author’s
or programmer’s name and the date. For the benefit of someone else who may like
to use your program, include a REM describing the computer system and/or
software system used when writing the program. Whenever the program is altered or
updated, the opening remarks should reflect the change

100 REM PAYROLL SUBSYSTEH

110 REM COPYRIGHT CONSUMER PROGRAMMING CORP. 9/82
120 REM :

130 REM HP 2000 BASIC

140 REM MODIFIED FOR APPLESOFT BASIC BY J. BROWN
150 REM ON APPLE 11, 48K

Follow these remarks with a brief explanation of what the program does,
contained either in REM statements or in PRINT statements. Next add user
instructions. For some programs you might offer the user the choice of having
instructions printed or not. If instructions are long, place the request for instructions
in the introductory module and the actual printed instructions in a subroutine toward
the end of your program. That way, the long instructions will not be listed each time
you LIST your program.

170 REM THIS PROGRAH V!LL COMPUTE PAY AND PRODUCE PRINTED PAYROLL
igg ;g: REGISTER USING DATA ENTERED BY OPERATOR

200 INPUT “DO YOU NEED INSTRUCTIONS?" ;R$

;;g ;;nn’ = "YES" THEN GOSUB 800

‘Follow the description/instructions with a series of statements to identify the
variables, string variables, arrays, constants, and files used in the program. Again,
these statements communicate information to a READER, making it that much easier
for you or someone else to modify the program later. We usually complete this
section AFTER we have completed the program so we don’t forget to include any-
thing.

- Assign a variable name to all “constants” used. Even though a constant will, not
change during the run of the program, a constant may change values between runs.
.By assigning it a variable name, you make it that much easier to change the value;

WRITING BASIC PROGRAMS FOR CLARITY, READABILITY, AND LOGIC 7

that is, by merely changing one statement in the program. It is a good idea to jot
down notes while writing the program so important details do not slip your mind or
escape notice. When the program has been written and tested (debugged), go back
through it, bring your notes up-to-date, and polish the descriptions in the REMs.

220 REM VARIABLES USED

230 REM G=GROSS PAY

240 REM N=NET PAY

250 REM T1=FEDERAL INCOME TAX

260 REM T2=STATE INCOME TAX

270 REM F=50C. SEC.TAX

280 REM D=DISABILITY (SDI) TAX

290 REM X,Y,2Z=FOR-NEXT LOOP CONTROL VARIABLE
300 REM H(X)=HOURS ARRAY

310 REM N$=EMPLOYEE NAME (20 CHAR)
320 REM PN$=EMPLOYEE NO. (5 CHAR)
330 REM C

340 REM CONSTANTS .
350 LET FR = .0613: REM SOC.SEC. RATE
360 LET DR = .01: REM SDI RATE

370 REM

380 REM FILES USED ‘

390 REM ITM=FEDL. TAX MASTER FILE
400 REM STM=STATE TAX MASTER FILE
410 REM

. (Notice the method used to indicate string length in lines 310 and 320.)
(Notice the use of on-line remarks in lines 350 and 360.)

The final part of the introductory module is the initialization section. In this
section, dimension the size of all single and double arrays and all string arrays, even
though DIMENSION is not required by your computer. This is valuable information
for a reader. Any variables that need to be initialized to zero should be done here for
clear communication, even though your computer initializes all variables to zero auto-
matically. This section also includes any user-defined functions before they are used
in the program.

410 REM INITIALIZE

420 :

430 DIM H(7),R(10,13) ,N$(30)
440 : N

450 REM

THE MODULES THAT FOLLOW THE INTRODUCTION

The remainder of your program consists of major function modules and subroutines
(and DATA statements, when they are used). Remember to separate each module
from others by a blank line REM statement and a remark identifying the module.
These modules can be further divided into user-deﬁned program blocks each separated
by a blank line REM statement.

A typical second module would be for data entry. Data can be operator-entered
from the keyboard or entered directly from DATA statements, a file, or some other device.
Chapter 3 discusses in detail how to write data entry routines with extensive error-
checking procedures to ensure the accuracy .and integrity of each data item entering
the computer.

For now, we suggest that you write data entry routines so that even a completely

8 APPLE BASIC: DATA FILE PROGRAMMING

inexperienced operator would have no trouble entermg data to your program. This
means the operator should ALWAYS be prompted as to what to enter and provided
with an example when necessary.

240 INPUT "ENTER TODAY'S DATE (MM/DD/YY)";Ds

If data are entered from DATA statements, place the DATA statements near the
end of your program (some suggest even past the END statement) using REM state-
ments to clearly identify the type of data and the order of placement of items within
the DATA statements.

9400 REM DATA FOR CORRECT ANSWER ARRAY IN QUESTION NUMBER ORDER.

g:lzg REM 10 ANSWERS, MULT.CHOICE 1-5

:222 'DATA' 4,5,1,3,2,1,1,4,4,5

9450 REM RESPONDENTS ANSWERS TO QUIZ

8480 REM DATA STATEMENT FORMAT:
9470 REM RESP. 1D # FOLLOWED BY 10 RESPDNSES TO QUIZ QUESTIONS

9490 DATA 17642, 4,5,1,3,2,2,1.4,4,4
9500 DATA 98128, 3,5,2,3.2,1.5.4.5,2

You can think of DATA statements as comprising a separate program module.

The “inbetween” program modules might do computations, data handling, file reading
and writing, and report writing. Modular programming style dictates that all printing
and report generation, except error messages, be done in one program module labeled
as such. This limits the use of PRINT statements to one easy-to-find location within
your program. (There might be more than one print module.) This makes it that
much easier for you to make subsequent changes on reports when paper forms change

. or new reports are designed. In the print module your program should NOT perform
any computations except trivial ones. Make important computations BEFORE the
program executes the print module(s). This may require greater use of variables
and/or arrays to “hold” data pending report printing, but your programs will be
much cleaner and easier to debug, since everythmg will be easy to find in its own
“nght” place.- '

SUBROUTINES

Program control flows smoothly from one module to the next. A well-designed
module has one entry point at its beginning and one exit point at its end. The
exception to this is a mid-module exit to a subroutine:

300 REM COMPUTATION MODULE
320 LETT =(V*3%)/aQ

330 LET TS =T9 + T

340 COSUB 800

360 REM REPORT PRINTING MODULE

WRITING BASIC PROGRAMS FOR CLARITY, READABILITY, AND LOGIC ;9

- A subroutine exit from a module always RETURNS to the next statement in the
module. The use of subroutines is desirable provided you don’t overdo it. Some
- program stylists recommend that the entire main program consist of nothing but
GOSUB statements “calling up” a series of subroutines located later in the program.
Such a technique is probably guilty of overkill. Strive for a happy medium between
the two extremes of no subroutines and nothing but subroutines.

Technically, you need use a subroutine only to avoid duplicating the same
program statements in two or more places in your program. A subroutine should be
called from MORE than one place in your program. Otherwise, why use a formal
subroutine? Program stylists now agree that subroutines enhance readability and
clarity and can be used at the convenience of the programmer (you!). However, again
the caution — don’t overdo it. Use subroutines to enhance the flow and readability
of your program. Stylists also agree that subroutines should be clearly identified
using REM statements and set off from other program sections with blank
REM statements. Program stylists disagree, however, on where to place the
subroutines. There are two schools of thought. Placement of subroutines can be
either immediately past the end of the module that calls the subroutine or in one
common module toward the end of the program. -

EITHER
300 REM COMPUTATION MODULE
-310 : .
320 :

330 GOSUB 410
340 GOSUB 460

400 REM ‘ NUMBER CONVERSION SUBROUTINE
410 : . .

450 .REH . COMPUTATION SUBROUTINE
460 .

OR

330 GOSUB 810
340 GOSUB 510

800 REM ° NUMBER CONVERSION SUBROUTINE
810 :

900 REM COMPUTATION SUBROUTINE
810 : .

10 APPLE BASIC: DATA FILE PROGRAMMING l

JUST FOR LOOKS

You can do a host of things to your prograins to enhance looks and clarity. These
techniques are generally called “prettyprinting.” Your Apple computer automatically
performs many “prettyprinting” activities. All statement lines are evenly spaced. -
Extra spaces are added to BASIC statements to enhance readability of your program,
even if you type the statements with no spaces at all. In fact, extra spaces that you
typed accidentally—or on purpose—may be deleted automatically by your Apple
computer.

Spacing

One way to make your programs look nice is to use-line numbers of equal length
throughout the program. If your program is small, use line numbers 100 through 999.
If long, start the program at 1000 and continue to 9999. When your program is
listed, it will be aligned neatly. It also improves the appearance if the entire program
is incremented by steps of ten. Without a resequence command this is virtually im-
possible to do. - A partial solution is to enter statements in sequence increments of
ten-when you first enter your program. When you have completed the program, even
.with changes, MOST of the program will still be in increments of ten. Learn how to
use the RENUMBER program that is provided on your Apple System Master diskette.
The RENUMBER INSTRUCTION PROGRAM will teach you how to renumber pro-

~ grams and program parts in “prettyprinting.”

Other Techniques To Enhance Looks and Readability

You can do still more to make your program clearer to you and another reader. These
few ideas are the “finishing touches.”

Using the LET statement, even when unnecessary, enhances readability. The
absence of LET can be confusing, especially in a multiple-statement line. '

CONFUSING
260 X = ¥:C = X * Y IF X = NTHEN X = €
BETTER
140 LET X = 0:¥ ; 0:C =0
BEST

260 LET X = Y: LET C = X * ¥: IF N = X THEN LET X = C

Arrange BASIC statements so that they read smoothly from left to right, just as
the readers’ eyes flow across the paper. This includes placing A before B and 1 before
2. Some stylists recommend that in IF. . .THEN statements, you place the least vary-
ing variable last, as shown in lines 270 and 300 below.

WRITING BASIC PROGRAMS FOR CLARITY, READABILITY, AND LOGIC 11

150 READ A,B,.C

260 FOR X = 1 TO 8 .
270 IF M(X) ¢ > N THEN 290
280 LET M(X) = N

280 NEXT X

300 IF D$ = "STOP" THEN 988

If your typed statement is long, it is probably confusing, especially if it is a
mathematical equation. Break it into two or more pieces so it is easy to read. Read
the statements aloud to test their readability.

CONFUSING

250 LET T = (N % 3.75) + ((N - 40) * 3.25) + ((N - 60) / 3) / ((D * N) * A)

CLEARER

250 LET T = (N *x 3.75) + ((N - 40) *.3.25)
260 LET T =T + ((N - 60) 7/ 3) / ({(D * N) % RA)

'UNDOING IT ALL TO SAVE SPACE AND SPEED UP RUN TIME

After reading all these rules and ways to enhance readability, you are probably wonder-
ing how you will remember them all. Chances are you won’t, but we hope we

" have at least sensitized you to the need for writing clear, readable programs. You will

adopt your own typing style based on some of these techniques, plus others that you
devise for convenience.

Nearly every technique illustrated in this chapter uses what some would consider
to be unnecessary memory space. You may in fact find that your computer memory
is filled before you have completely entered your program. When this happens, either
rethink your entire problem-solving technique or look for ways to save memory space
by making changes to your program. A well-written, readable program takes up more
memory space than a poorly written, less readable program. Thus, to save memory
space, you may have to undo some of the things you did to enhance readability.

To save large numbers of memory “bytes:”

1. Use multiple statements pei line.
2. Delete all REM statements beginning with the introductory module.

For_ further space saving:

Use one-letter variable names.

Delete unnecessary parentheses.

Reuse variables when possible (normally a terrible technique).

Dimension arrays sparingly.

Use GOTO, not GOSUB, for a routme accessed from only one place in a program

SNk wioe

7

12 APPLE BASIC: DATA FILE PROGRAMMING

If you are concerned about the speed of your program run, you can use some"
techniques to shave microseconds, even seconds, off the run time. Some of these

" overlap w1th the space-saving techniques.

- Delete all REMs and/or move the 1ntroductory module to the end.
Use multi-statement lines.
Use variables rather than constants (as recommended earlier).
Define the most commonly. used variables first.
Place subroutines before the main program. !
Use FOR NEXT loops whenever possible.
Remove extra parentheses.
Limit the use of GOSUBs. _

e A al ol >

Remember, these techniques may speed up your run,.but they are generally
considered to be bad programmmg techmques and contrary to nearly everything said

~ in this chapter.

.To save space and lessen distraction we have not followed ALL the rules suggest-
ed in this chapter in the rest of this book. However, you will still find our programs
easy to read and self- documentmg

CHAPTER 1 SELF-TEST

1. Wil a useful program written in BASIC on one computer system also RUN on a

different brand of computer that uses BASIC? Why or why not?

2. How can you be most certain that a program you write will also run on another
person’s computer? '

3. What is meant by the pbrtability of a computer program?

.

- WRiTING BASIC PROGRAMS FOR CLARITY, READABILITY, AND LOGIC 13

10.

Name at least three types of infofm_ation to include in REM statements in a
program’s introductory module.

Describe the “top-to-bottom format™ for organizing programs.

When branching statements such as GOTO and GOSUB are used, what statements .
should not be branched to and why? '

Define “initializing.”

What is the most important reason for des1gnat1ng a segment of a program as a
subroutine accessed by GOSUB? -

When writing a self-documenting, easy to read program, what sacrifices are made?

In a multiple statement line with three statements, the first being a REM
statement, how many statements will be executed?

7

14

APPLE BASIC: DATA FILE PROGRAMMING

10.

Answer Key

The program might not run on a different brand of computer, because different
computers use different versions of BASIC. :

Use conservative programming techmques and the least. fancy statements-in your
- version of BASIC.

Portability means that the program is likely to run on many computers w1th few
or no modifications.

Variables used and what they stand for, files used, descriptive name for program,
description of program if necessary, author of program, last revision of program, -
version of BASIC and/or system used. (any three answers)

To the extent possible, the program is written so that it begins execution at the
smallest line number and procedes toward the largest, with a minimum of con-
fusing branchjng within the piogram. :

REM statements in case they are removed from a progxam to save computer
memory space.

The first time in a program' that value(s) are assigned to variables or elements in
an array (often means assignment of zeros); DIMENSIONING where needed.

The segment would otherwise have to be repeated because it is used more than
once in executing the program.

Amount of memory used and possibly speed of program execution.

None. The computer goes on to the next line numbered statement if it sees that
the first statement in the line is a REM.

CHAPTER TWO

- An Important Review of
- ‘BASIC Statements

Objectives: To review important aspects of BASIC. When you finish this chapter,
you will be able to write BASIC statements using: LET, READ, DATA, INPUT,
IF. . .THEN, FOR NEXT. GOSUB, RETURN, ON. . .GOTO, LEN, ASC, MID$,
LEFTS$, RIGHTS, and ONERR. .GOTO.)

' INTRODUCTION

We assume you have used BASIC to write programs and that you can read and under-
stand a listing of a BASIC program (are you BASICly literate?); this information serves
as a review. Many of the programming techniques in this and the next chapter will

be used over and over again in programming data files. Even masters at programming
in BASIC should give the material a quick run through. This is important information
and skill to have under your belt so that you can give your fullest attention to learning
file-handling BASIC statements and techniques in Chapter 4.

VARIABLE NAMES

In early versions of BASIC, the names you could choose for a variable were limited to
one letter, or one letter and one number only. A, Al, Z7, Z(, B$, and B1$ were all
acceptable variable names: while AA, A25, SALARY, or NAME$ were unacceptable
to the computer. In contrast, APPLESOFT BASIC and other new dialects of BASIC
permit the use of multi-letter variable names. The unacceptable variable names men-
tiones above are all acceptable in APPLESOFT BASIC, as are NETPAY, GUESS,
OLDNAMES, and many others you may think of. The temptation to use long variable
names may bé overwhelming, but beware! APPLESOFT BASIC recognizes and identi-
fies the variable using only the first two letters of the variable name. Thus, the vari-
ables SALES and SALARY are not really two variables, but rather one — SA. PAY-
MENT and PAYROLL are also really the same variable — PA — in APPLESOFT
BASIC. Be extremely cautious selecting variable names to avoid unusual errors that
are hard to detect. Also note that longer variable names take up more computer

15

'16 APPLE BASIC: DATA FILE PROGRAMMING

memory space, which may become a problem as the programs you write become longer
and more complex.

Another limitation when using long variable names is that you cannot use a
combination of letters that are also used for a BASIC statement, command, or function.
- A'Reserved Word List in your reference manual tells you which words cannot be a
part of a long variable name. Examples are:

FOR, DATA, NOT, LIST, PRINT, DIM, IF, THEN

Use of simple variable names (A, T1, Y$) precludes having to debug a program when
the problem is a reserved word accidentally used (embedded) in a long variable name.
Notice in our examples, that even with simple variables we have selected names that
are more likely to be remembered and make sense to someone reading the program.
We encourage you to do the same. Use T for total, T9 for grand total, S for salary,
N$ for name, etc.

. The letters O and I are poor variable names since they are easily confused with
the number (@ (zero), the number 1 (one), or the lower case letter 1 (el). Some experi-
enced programmers reserve a few variables and use them the same way in all programs
* they write. X, Y, and Z are popular as control variables in FOR NEXT loops. K and"
C are popular for counting in statements like LET C =C + 1.

Variables, also called variable names or labels, identify for the computer a
particular place in its memory where information is stored. The information may be
numeric (a value) or alphanumeric (a string, discussed more fully later). A value or
string is first stored by an assignment statement (LET, READ, INPUT), and sub- _
sequent references to the variable tell the computer to use the value or string assigned
to (and identified by) that variable. Assignment statements are included in this review
of BASIC.

)
(a) Give two reasons for using simple vdriable names such as A, X3, and YS$.

AN IMPORTANT REVIEW OF BASiC STATEMENTS 17

(@ 1. Conserves computer memory space.
2. No reserved words are accidentally embedded in the variable.
3. Portability of programs between different versions of BASIC.
(any two answers)

String Variables

The rules for constructing names for string variables are the same as for numeric
variables, except that a string variable always has a dollar sign ($) as its last character.
A is a numeric variable, whereas A$ is a string variable. A string is one or more letters,
symbols, or numbers that can be used as information in a BASIC program. Strings
are stored in the computer’s memory with an assignment statement such as LET B$ =
“EXAMPLE OF A STRING.” The string variable B$ acts as a label in the computer’s
memory for the place where the string assigned to B$ is stored. A reference to B§

_ elsewhere in the program automatically tells the computer to use the string assigned
to B$. The string assigned to a string variable is often referred to as the “value” of
the string variable.

String variables act much hke numeric variables and can generally be manipulated
just like numeric variables. The crucial difference is that you cannot use string
variables in arithmetic expressions and calculations, even if numeric information is
assigned to the string variable. For example, LET F$ = “8.99” does not let you use
F$ in numeric calculations, even though the string is comprised of numbers. _

String variables and the strings assigned to them take up space in your computer’s
memory. You can visualize this as a box or compartment that contains alphanumeric
information identified by a string variable. For example, the assignment statement
LET N$ = “ALPHA PRODUCTS COMPANY” can be thought of as creatmg a storage
compartment in the computer’s memory like this:

N$ ALPHA PRODUCTS COMPANY
t . X

" the string variable the string

Remember that a string assigned to a string variable in this way has the string enclosed
in quotation marks. Only the information between the quotation marks comprises
‘the string; the quotes themselves are not part of the string.

Many, if not most, business and personal applications of data files make much
greater use of alphanumeric data (strings) than numeric data (numbers or values), so
we are taking this opportunity to reinforce and extend your understanding of the use
of string variables. Notice the word “alphanumeric.” This term comes from the data
processing industry and refers to data that may consist of alphabetic characters, numeric
characters, and/or special characters. For example, the product identification number
FC1372 appearing in a catalog is alphanumeric data consisting of two alphabetlc
characters followed by four numeric characters. An address or hyphenated phone
number is also alphanumeric data. To use and store such information in BASIC,
assign. it to a string variable (LET P$ = “FC1372”) because a simple numeric variable
would not accept the two alphabetic characters. If an identification number is mostly

18 APPLE BASIC: DATA FILE PROGRAMMING

numeric, but includes a hyphen, asterisk, or even a space (e.g., 84992%, where the “*”
denotes a special location, pnce etc.), then it too requires the use of a string vari-
able.

One string variable can have from zero to 255 characters, including all spaces,
“punctuation, and special characters. A string with no characters (zero characters) is
called a null string or empty string. An assignment statement for a null string would
be: 10 LET 2s = »». (There is no space between the two sets of quotation
marks.) ,
There is a crucial difference between the maximum length of a stnng (255
characters) and its actual length. The actual length is the number of alphanumeric
characters presently assigned to the string variable and stored in the computer’s
memory. Remember, spaces count as characters. Consider the lengths of the follow-
ing strings assigned to string variables.

N$ ALPHA PRODUCTS Actual length: Fourteen characters

1C$ | MENLO PARK, CA. 94025 Aétual length: Twenty-one characters
- : . (includes comma, period, and spaces)

Now you do this one:

A$ | 161 DAWN ST. SUITE 3

(a What is the maximum length for a string assigned to A$?

(b) What is the actual length of the string shown as assigned to A$ above?

(@ 255 characters
(b) Twenty characters

Since APPLE SOFT BASIC automatically assumes that a string variable can
be_ assigned a string with up to 255 characters, there is no need to DIMENSION
string variables. However, we recommend that you show a person using your program
what the string size (maximum actual size) is for all string variables listed in the
program. Do this by including REM statements in the introductory module,
as shown:

’

AN IMPORTANT REVIEW OF BASIC STATEMENTS 19

140 REM STRING VARIABLES

150 REM N$=CUSTOMER NAME(20)

160 REM A$=CUST.STREET ADDRESS(2Z5)

170 REM C$=CUST.CITY(15),STATE(2) ,ZIP(5))
180 REM C$ HAS 26 CHAR. TOTAL INCLUDING SPACES
190 :) . . : :

(a) How many characters are contained in a null string assigned to a string variable?

(b) In the actual length of a string, how many characters does a space use?

(a) zero (none)
(b) - one

As noted earlier, you can assign a string to a string variable using the LET
statement. Remember to place the string inside quotation marks, or the computer
will reject the statement; it will tell you that an error has been made. Example:

240 LET N$ = "TYPE A POSITIVE"

Almost all versions of BASIC allow omitting the word LET from an assignment
statement. For this reason, LET statements are sometimes called direct assignment
statements to distinguish them from INPUT and READ assignment statements. A
variable (numeric or string) followed by an equal sign (=) implies LET to BASIC; thus,

" the “implied LET” direct assignment statement can save a bit of typing and a little _
- memory space. We generally include LET for clarity in reading a program listing. This
statement: :

- 240 N$ = "TYPE A POSITIVE"

means the same in BASIC as the example before this paragraph.

READ—DATAA ASSIGNMENT STATEMENTS

DATA statements are like data files in that they hold data to be assigned to variables -~
and are then used in a program. The difference is that a DATA statement holds data
that can be used only by the program in which the DATA statement appears, whereas

a data file can be created and the data used by a variety of different programs, since

it is separate from the program itself. This will be explained in greater detail later.

20 APPLE BASIC: DATA FILE PROGRAMMING

The READ statement, which must have one or more DATA statements in the -
same program to READ from, is an assignment statement. One or more data items
from a DATA statement are assigned to one or more variables by a READ statement.

10 READ A
20 DATA 15, 76.5, 1882, -989

The statement READA assigns a numeric value from the DATA statement to variable
A

10 READ A,B
20 DATA 15, 76.5, 1892, -999

The statement READ A, B assigns two consecutive values from the DATA statement;
the first to variable A, the second t6 B.

A program can also use the READ and DATA statements to assign strings to
string variables. A DATA statement can contain strings as data items, and these
strings are assigned to string variables by a READ statement usmg the same procedure
as for reading numeric valués.

220 READ AS,BS.CS
910 DATA BLUE, GREEN, GOLD

" In APPLESOFT BASIC, the individual string items in the DATA statement do
not have to be enclosed in quotation; marks unless the string data-idem includes a
comma, semicolon, or one or more leading spaces (blank spaces that are to be included
and considered part of the string). In the latter cases, enclose the string data item in
quotation marks, just as for a LET direct assignment statement. Any trailing spaces
left between a string data item and the comma separating it from the next item in the -
" same data statement are accepted as part of the string and duly assigned to the string
variable. Note that the actual length of such a data 1tem mcludes these trailing spaces,
even though they seem invisible.

In the following example, quotation marks are necessary around each data item
because a comma 1s part of the string data items themselves. ~

220 READ N$

910 DATA "BROWN, JERALD R,", "FINKEL, LEROY P."

AN IMPORTANT REVIEW OF BASIC STATEMENTS 21

Try this test program to see how the “trailing space” rule works on your APPLE.

220 READ. N§,A$
230 PRINT Né;A$

810 DATA TEST , ITEMS
IRUN

TEST ITEMS

There should be only three spaces between the words TEST and ITEMS because
the leading spaces before items are not included, while the trailing spaces after TEST
.and before the comma are included. Now change line 910 as shown below and RUN
the program segment again.

916 DATA "TEST "" ITEMS"

() How many spaces should now appear between ‘the strings when the program is
RUN?

(a) six spaces

The computer uses an internal “pointer” system to keep track of itemsina - .
DATA statement that are “used up” or already assigned to variables in a program
RUN. When executing READ-DATA statements, each time a data item is read and
assigned to a variable the internal pointer advances one position in the DATA state-
ment to the next data item. If the pointer is pointed at alphanumeric data (a
string) and the READ statement is looking for numeric information to assign to a
numeric variable, the program will termmate in an error condltlon For example:

210 RBAD A
910 DATA ALPHA, NUHEB!C

An error condition would result from executing this program segment because
the statement READ A is “looking” for numeric data to assign to the numeric variable
A, but the pointer is pointing at alphanumeric information.

What will happen if this program is RUN?

- 210 "READ AS,BS$
220 PRINT_AS;BS$
910 DATA 173526, NUMERIC

(a) Will the program RUN without an error condition?

(b) What will be assigned to A$ and why?

22 APPLE BASIC: DATA FILE PROGRAMMING

(a) Yes’ :
(b) AS$ = 17926, since a number can be as31gned as a string to a string variable (but
not vice versa)

UNDERSTANDING INPUT
AN IMPORTANT ASSIGNMENT STATEMENT

You can enter numeric or alphanumenc information to be assigned to a numeric
variable or a string variable using the INPUT statement. When using INPUT statements,
make certain that the data entry person using your program at a computer terminal.
knows exactly what kind of information to enter for assignment to a variable by the
INPUT statement. To do so, you must fully understand how INPUT works in
APPLESOFT. , ,

The INPUT statement should always include a prompting string (a message that
appears on the printer or display screen) to tell the user exactly what sort of informa-
tion is to be entered. A typical format for an INPUT statement is:

160 INPUT "ENTER YOUR NAME, FIRST NAME THEN LAST:";Ns$

An INPUT statement without a prompting message (the part enclosed by quotes) -
causes the computer to print or display a question mark; the computer then waits for
a response from the keyboard. There is nothing more frustrating to a computer user
than an INPUT question mark with no hint as to what sort of response is requested.
Always use a prompting string in an INPUT statement. If necessary, use PRINT
statements preceding the INPUT statement to explain to the user what information
to enter.

" Another source of user frustration is the funny. responses the computer can make
when incorrect data are entered. Consider the following example:

360 INPUT "ENTER PRODUCT NUMBER AND QUANTITY:";N.Q

JRUN
ENTBR PRODUCT NUHBER AND QUANTITY:137

e

The user entered the number 137 after the prompting message and then pressed the
RETURN key. The computer responded with a double question mark (?7?), indicating -
that more data were expected. Notice that the INPUT statement had two variables
to assign values to but only one value (137) was entered. An inexperienced user
would not know that.

AN iMPORTANT REVIEW OF BASIC STATEMENTS 23

RUN the same program segment aéain and enter three items of data.

JRUN
* ENTER .PRODUCT NUMBER-AND QUANTITY:137,12,164
?EXTRA IGNORED

This general error message doesn’t provide any help to the user since it doesn’t pin-
point the problem. To make matters worse, the computer may accept incorrect data
and assign it to the INPUT variables! - Consider this example!

110 INPUT "ENTER .TWO VALUES:";A,B
120 PRINT A.B

JRUN
ENTER TWO VALUES:3

?REENTEB
ENTER TWO VALUES: <—
?REENTER

ENTER TWO VALUES:-<—

USER ENTERS ONE VALUE ONLY AND PRESSE§ RETURN. -
- USER ENTERS NO VALUE AND PRESSES RETURN.
IT'S BACK LOOKING FOR A VALUE FOR ‘A’ AGAINI

The same error conditions and input problems can occur in string data with an’
additional peculiarity. Consider the following program segment:

o

180 INPUT "ENTER CUSTOMER NUMBER AND NAME:";C,Ns$
190 PRINT C.N$

JRUN

ENTER CUSTOMER NUMBER AND NAME:13728
??

13728

Here the user entered the customer number (13726) and pressed RETURN, and the
number was duly assigned to variable C. But when the ?? appeared, indicating that
the computer expected yet another entry, the user pressed the RETURN key again
without making another entry. While the computer wanted a second entry to assign
to N§, it accepted “nothing” as an entry; that is, it accepted a null string and assigned
it to N§. If we changed the INPUT variables to C$ and N$ (instead of C and N§),
the computer would accept null strings for assignment to both string variables. In that
case, the computer interprets two presses on the RETURN key as meaning that it”
should assign null strings to both variables.

Our insistence on the importance of understanding INPUT should now be hitting
home. So what do you do for the accidental’ null string entry and the other eccentri-
cities of the INPUT statement.

Two programming techniques can help eliminate errors. First, ask the user to
enter only one value or string per INPUT statement, period! This makes data entry
(and data checking, as we will discuss in the next chapter) nice and clean. For
example:

24 APPLE BASIC: DATA FILE PROGRAMMING

RUN

ENTER CUSTOMER NUMBER:137

ENTER CUSTOMER NAME:BISHOP BROTHERS
ENTER PRODUCT NUMBER: 18625

ENTER QUANTITY ORDERED:106

Second, to have all input entries, whether string or numeric, assigned to string
variables. This eliminates error messages for nuieric variables that cannot- accept
alphanumeric information for assignment. In the next chapter you will learn to test
for null strings (no entry made) and appropriately advise the user with explicit mes-
sages as to the proper entry to be made. Numbers (numeric values) assigned to string
variables can be converted from strings to numeric values for arithmetic operations using
the VAL function. If Q$ = 106 (a string), then VAL(Q$) converts 106 to a numeric
value that can be assigned to a numeric variable and/or used directly as a numeric
value in a BASIC expression. VAL is discussed in the next chapter.

(a) Write an INPUT statement that will result in the following RUN:

RUN v
ENTER YOUR HOME ADDRESS:

(a) 100 INPUT "ENTER YOUR HOME ADDRESS:*;As (Your line number and string
variable may be different.) ' '

CONCATENATION

Strings can be joined to form lohger strings; a process called concatenation. . Strings
~are concatenated.in BASIC using the plus (+) sign. The process, however, is one of
joiriing, not of arithmetic addition. For example, the strings assigned to F$ and L$
can be concatenated and the new, longer string assigned to another variable N$ in an
assignment statement like this: \

110 LET N$ = F$ + L$

Strings assigned to variables can be concatenated with string constants, like this:

120 LET G$ = N$ + “"CUSTOMER"

AN IMPORTANT REVIEW OF BASIC STATEMENTS 25

or
150 LET N8 = F$ + " " + L$

The statement above concatenates the strings associated with F$ and L$ and assigns

- them to N$, but it also places a space in the new N$ string between the parts of N§ .
. that were assigned to F$ and L$. Look at the followmg program and show what will

" be printed when it is RUN.

(@) 10 LET F$ = "JANET"
20 LET L$ = "BARRINGTON"
30 LET NS = F$ + " " + L
40 PRINT N$

RUN

(@) JANET BARRINGTON

IF. . THEN STATEMENTS

The IF. . .THEN statement in BASIC gives the language real power. Its syntax varies
from one BASIC system to another.. Some BASICs permit only a GOTO statement
to follow an IF. . .THEN expression.

140 IF X (Y THEN GCOTO 800

However, the GOTO can be, and usually is, omitted. The simplest form of IF. . .THEN
is a COMPARISON between two numeric values or expressions. IF the comparison is
true, THEN (GOTO) a given line number and continue executing the program with the
statement at that line number. Since GOTO is usually omitted, just the lme number.
follows THEN. The possible comparisons are: ‘

26 APPLE BASIC: DATA FILE PROGRAMMING

= equals

‘< less than

> greziter th'an/

< = less than or equal to

> = greater than or equal to
< > not equal to

APPLESOFT BASIC also includes in the IF. . .THEN family of statements:

IF. . .THEN LET... (Follow rules for regular LET statements.
‘ _ LET can be omitted.)
IF. . . THEN GOSUB..". (Line number follows GOSUB.)
- IF. .. THEN RETURN... (Unusual, but possible.)
~IF...THEN PRINT... (Follow all the rules for regular PRINT
_ statements.)
"IF. . THEN INPUT. . - ,
IF. . .THEN READ. .. (These two are possible, but are not recom-

mended because of confusion and debugging
complications.) ‘

IF. . . THEN STOP. ..
IF. . . THEN END. .. .
IF. . .THEN IF..THEN... (Possible, but confusing and unnecessary.)

(a) What statement is implied after the THEN in the simplest form of the IF. . .THEN '
~ statement?

(b) . List at least five BASIC statements that can be part of an IF. . .THEN statement
" and that will be executed if the condition (comparison) is true.

(a GOTO
(b) PRINT, GOTO (assuming a line number appears after THEN),
- LET (direct assignment statement, with the option of omitting the word LET),
READ, INPUT, another IF. . .THEN statement (not recommended),
GOSUB, RETURN (any 5 answers)

AN IMPORTANT REVIEW OF BASIC STATEMENTS 27

IF. . .AND. . .THEN. .. and IF. . .OR. . .THEN. . . are called the logical AND
and logical OR. They allow you to put more than one comparison in a single
IF. . .THEN statement. The comparisons -on both sides of an AND must be true for
‘the entire IF. ... THEN comparison to be true. Only one comparison on either side
of an OR must be true for the comparison to be true. You can use more than one
AND and more than one OR between IF and THEN, and you may use both AND
and OR in the same IF. . .THEN statement, which allows three or more comparisons
. in one IF. . .THEN statement! Be certain you understand how to use the logical
AND and OR to produce the results you want. We find they are useful for certain
checks on user INPUT entries. If an INPUT value should be between five and twenty,
then the following statement would check that the value was within these parameters.

150 IF F (5 OR F > 20 THEN PRINT "ENTRY IS INCORRECT"

Alternately, the following line would check for “within bounds” parameters for the
value assigned to F, instead of “out of bounds” values. '

150 IFF) =5 AND f { = 20 THEN PRINT "ENTRY 1S WITHIN BOUNDS"

Note: Be very careful to have your logic straight or such comparison statements will
not do what you want. For some, flow charts help visualize the alternatives so you
can properly construct your comparison statements. Thoroughly testing programs
and program segments for every conceivable mistake that you could enter is a must.

(a) Write two IF. . .THEN statements, one using a logical AND and another using a
logical OR. The statement should test to see if the value assigned to variable Y
is greater than, but not equal to, zero, and less than, but not equal to, one. When
the comparison is true, one statement should print the message BETWEEN ZERO
AND ONE, and the other should print NOT BETWEEN ZERO AND ONE.

(@ 60 IFY > 0ANDY (1 THEN PRINT "BETWEEN .ZERO AND 1"
70 IFY ¢ =00RY) =1 THEN PRINT "NOT BETWEEN ZERO AND 1"

Having seen how more than one comparison can be made within a single
IF. . .THEN statement, now consider the other end of the comparison statement and
- how to have more than one instruction executed in the case of a true IF... THEN
comparison.

APPLESOFT BASIC permits you tc do. nearly anything after an IF. . .THEN
expression, frequently encouraging you. to place multiple statements on one line.

28 APPLE BASIC: DATA FILE PROGRAMMING

150 IF X ¢(Y THEN PRINT "TOO LOW": LET C = C + 1: GOTO 10
160 IF X > Y THEN LET C = C +-1: LET 6 = 0: GOTO 10

When you use this APPLESOFT BASIC feature, keep in mind that you may be
hindering the portability of your program. ' If this.doesn’t concern you, forget it! We
do urge you to complete your entire “activity” on one line after an IF. . THEN
statement, otherwise the program is extremely awkward to follow. If you cannot
complete your activity on one line, then GOTO a section where all of the activity can
be done together. Follow the acceptable example:

BAD

THEN LET %

150 1 (Y =
I .» Y THEN LET X =

X + D: LETY = Y / N: GOTO 200
160 X - D:Y =

Y / N: GOTO 10
200 LET € = C + 1: PRINT "TOO LOW": GOTO 10
ACCEPTABLE

150 IF X ¢ Y THEN 200
160 IF ¥ > Y THEN 250

.

200 LET X

=X+ D
210 LETY =Y / N .
220 LET C =C + 1 .. .or all on one line
230 PRINT "TOO LO

W -
240 GOTO 10 ,

Most of us who program for fun ignore what is going on inside the computer
because we don’t have to pay attention. However, on occasion, little “bugs,” in-
consistencies, and our own ignorance can cause some interesting (and frustrating)
problems. BASIC software sometimes does funny things, barely detectable because
the problem exists at the seventh or eighth decimal location, which may be invisible
to the BASIC user. We once spent hours trying to fix a “money changing” program
that kept giving us-4.9999 pennies change instead of a nickel. (This points out a very
important lesson: Your BASIC language interpreter does not always do things with
the accuracy and consistency you might expect. Therefore, when you are comparing
numeric values, especially numbers that have been computed by your computer, try
. to compare using less than (<), greater than (>), or not equal (<>).

GOOD

IF X<1125.75 THEN...
IF X>1125.75 THEN...
IF X <> 1125.75 THEN.....

NOT WISE

IF X = 1125.75 THEN....

AN IMPORTANT REVIEW OF BASIC STATEMENTS- 29

(a) Why should you avoid IF. . THEN comparisons for eqﬁalitjr? :

(2) Internal round-off errors may produce very slightly inaccurate values in calcula- -
' tions. Therefore, a comparison for equality might fa11 (be false) where you would
expect the companson to be true

IF. . .THEN String Comparisons. and the ASCII Code

So far the only comparisons used in IF. . .THEN examples have been between two
‘numeric expressions or values. Comparing strings in IF. . THEN statements begins to get a
little tricky. However, compansons for equality or inequality are fairly straightforward.
Examme these statements:

220 INPUT "ENTER YOUR LEGAL NAME: "'N
230 IF N$ = "STOP" THEN 893

- Notice that in line 230 a string variable (N$) is compared with a string constant
(“STOP”) A string constant in a comparison must be enclosed in quotation marks.
In order for a comparison for equality between two strings to be true, each and every
character in the two strings must be identical (upper and lower case are different), and -
the length of the strings and any leading or trailing spaces must be the same. Any
difference whatsoever will make the equality comparison false.

In line 230 above, the string assigned to a string variable was compared to a

string constant. Likewise, the contents of two string variables can be compared.

310 INPUT "ENTER OLD TITLE:";T$)
320 IF T$ ¢ > D$ THEN PRINT "WRONG TITLE. TRY ANOTHER."

The difficulty in string comparisons comes with the “less than” or “greater
than” comparisons. These have application in sorting strings, alphabetizing data, or
inserting new information into an alphabetically organized data file. In IF. . THEN
comparisons, BASIC compares the two stnngs one character at a time, from left to -
right.

Rather than comparing within the construct of a twenty-six-character alphabet,
BASIC uses a standard code that represents every possible signal a terminal keyboard
can send to the computer (and vice versa). Each key and each permitted combination
of keys, such as the shift or CONTROL key along with another key, sends a -
unique electronic code pattern to the computer. These patterns are represented by

30 APPLE BASIC: DATA FILE PROGRAMMING . -

" the decimal numbers 0 through 127 in the ASCII Code chart. Mercifully, here is one
instance of standardization throughout the computer industry. ASCII stands for
American Standard Code for Information Interchange. The ASCII code’s 128-character
set includes the upper and lower case letters of the alphabet, numbers, punctuation,
and other special characters and special function keys. The ASCII code also includes
128 other special codes that are numbered 129 through 255, that do not concern us.
Refer to the ASCII chart in the Appendix for your understanding of the following.

-Notice that the numbers 0 through 9 have ASCII codes of 48 to 57. The alpha-
bet has ASCII codes of 65 to 90 for upper case letters; lower case starts at 96. There-
fore, the lower case equivalent of an upper case letter is the upper case letter’s ASCII
code number plus 31.

A=65,50a=65+31=96

This fact will be of use later.

What actually happens in an IF. . .THEN string comparison? BASIC compares
the ASCII code number for each character in the two strings, comparing just one
character at a time. As soon as an inequality exists between characters, the string
with the character that has the lower ASCII code number will be considered “less
than” the other string. BASIC does not add up the ASCII code values for the two
strings being compared to determine “less than” or “‘greater than.” The following
chart shows the results of comparing a series of strings assigned to A$ and BS.

A$S Bs
ABC ABD A$ IS LESS THAN Bs
 MN! MNO A$ IS LESS THAN BS
STOP sTO B$ IS LESS THAN As (AS$ is greater than BS)
123A 123a A$ IS LESS THAN BS -

In the comparison process, if one string ends before the other and no other
difference has been found, then the shorter string is said to be “less than” the longer
one. One result is that a null string is always “less than” a non-null string, since the
ASCII code for null is zero. Here are some more examples.of string comparisons: -

A3 Bs

SMITH SMITHE AS IS LESS THAN BS

ALCOTJONES ALCOT A$ IS GREATER THAN Bs (BS is less than A$)
JOHNSEN JOHNSON ~ A$ IS LESS THAN B$ _

KELLOG " KELLOGG ~ A$ IS LESS THAN BS

EQ-8 EQ 8 BS IS LESS THAN AS .

Now it’s your turn to familiarize yourself with ASCII code comparisons. Fill in the
blanks with the appropriate string variable. Of course you can refer to the Appendix!

AN IMPORTANT REVIEW OF BASIC STATEMENTS 31

- Cs . D$
(@) Jacos JACOBS : __ isgreaterthan
(b) LOREN LORAN — islessthan .
(¢) SMITH-HILL SMITH HILL islessthan
(d ABLE12 ABLE=12 . slessthan
(¢) - Theater THEATER ' _islessthan
o9s.2 . 95-2 ‘ _ islessthan
(a) Ds,cs D$ has more characters, others being equal
(b) obs.cs Letter A is less than letter E
(c) bs,cs A'space is less than a hyphen
(d) pos,cs A hyphen is less than the number 1 :
(e) obs,cs Uppercase letters are less than lower case letters

) bs, cs A hyphen is less than a decimal point

Two string functions are used in conjunction with the ASCII code. The ASC ()
function gives the ASCII code number for the first character of the string contained
in the parentheses or for the first character of the string assigned to the string variable
contained in the parentheses. The ASCII number produced by ASC () may be assigned to
a variable, displayed by a PRINT statement, used in arithmetic expressions, and used as a’
value in an IF. . . THEN comparison. The following examples illustrate these points.

LET X = ASC(AS)

LET X = ASC("ANTWERP")
PRINT ASC(AS) .
IF ASC(N$) = 0 THEN...

Give the ASCII number or value that will be printed for each of these program
segments. Refer to the ASCII chart in the appendix.

(a) LET Ds = "DOLLAR" (b) PRINT ASC ("YES")
PRINT ASC (D$) RUN

RUN

AN

32 APPLE BASIC: DATA FILE PROGRAMMING

() 10 'LET F$ = "FRANK" (d) 10 PRINT asCc (*)
20 LET L$ = "JONES" RUN
30 LET N$ = L$ » ", " + F$
40 PRINT ASC (F$)
50 PRINT ASC (L$)
80 PRINT ASC (N$)

RUN
- (a) 68
() 89
() 70

74

74
@ 32

Describe the stnng that must be ass1gned to A$ in order for the followmg IE. . . THEN
comparisons to be true

@ [IF ASC(A$) = 53 THEN 510
(b) IF ASC(A$) < > 48 THEN 810
(©) IF ASC(A$) = ¢ THEN 950

(2) First character in AS$ is 5
(b) First character in A$ is not zero
(c) AS$ must be a null string

The opposite of the ASC() function is the CHR$() function. An ASCII number
is placed in the parentheses: It causes the computer to send that ASCII code signal
to the terminal, which can cause the printing of an alphanumeric character. CHR$()
is also used to send special control signals to the CRT screen or ‘printer (ASCII num-
bers O through 31) or in a PRINT statement to print characters corresponding to the
ASCII number-in the CHR$() parentheses. '

840 PRINT CHRSY(SS); CHRS (78); CHRS (68)

AN IMPORTANT REVIEW OF BASIC STATEMENTS 33

(a) By running this program or by reference to the ASCII chart, what will this

program line print?

(a) END

CHR$(7) sounds the beeper on the APPLE keyboard. CHR$(34) produces
quotation marks in situations where they would not otherwise be printed around a
string. Remember these possibilities. Check the ASCII codes, especially O through .
31, in your APPLESOFT reference manual. There may be some interesting capa-
bilities to explore.- _

When a program user has limited options for a response to input statements, it
is necessary to check the input for the options available. For example, it is often
useful to have the computer user answer yes or no, or to select from a specific list
of options for the response to an input statement. Examine the following program
segment:

330 INPUT “DO YOU WISH TO CONTINUE DATA ENTRY (Y OR N)?";RS$.

340 IF RS ¢) "Y" AND RS ¢) "N" THEN PRINT CHRS (7);"PLEASE TYPE 'y’
FOR YES OR 'N' FOR NO.": GOTO 330

350 IF R$ = "Y" THEN 450 ’

If line 340 were omitted and the user typed YES instead of Y, the program
would not operate as the programmer intended. Suppose a program displays the
following “menu” or list of possible responses!

ENTER ‘I’ TO INSERT DATA

ENTER ‘C' TO CHANGE DATA

~ ENTER ‘D’ TO DELETE DATA

ENTER ‘N FOR NO CHANGE OF DATA
YOUR CHOICE:

The selection of each option directs the computer to branch to a different section of
the remaining program to accomplish this activity.

210 - INPUT "YOUR CHOICE:";RS$
220 IF R$ = "I" THEN 510

230 IF R$ = "C" THEN 610 -
240 IF R$ = "D" THEN 710
250 IF R$ = "N" THEN 150

If the user entered a response other than I, C, D, or N, this program would not
detect the error.” If the user pressed RETURN with no response, the computer would
not catch the error either. -

34 APPI;E BASIC: DATA FILE PROGRAMMING

(a) Now write a statement for iine 215 that ensures that the response entered was
among the list of options on the menu, and, if not, informs the user of the
options available and branches back to the INPUT statement.

215

(@) 215 IF R$ ¢ > “I" AND R$ ¢ > "C" AND R$ ¢) “D" AND R$ ¢) “N" THEN
PRINT “PLEASE TYPE ONLY THE LETTER I, C, D, OR N.": GOTO 210 ~

THE LEN FUNCTION

Recall that while the maximum length of a string that can be assigned to a string
variable is 255 characters, the actual length of the string is the number of characters
currently assigned to a string variable. BASIC provides a function to “count” and

“report the actual length of a string, or of a string assigned to a particular variable; a
function appropriately called the LEN (for LENgth) function. LEN can be used in

" a print statement to print the number of characters in the string in question. Since
the execution of LEN results in a numeric value, it can be assigned as a value to a
numeric variable, used as a value in an IF. . .THEN comparison, or used in calcula-
tions.

For example:

10 LET G$ = “WHAT A GAS*®
20 PRINT LEN (C$)

JRUN

10

100 PRINT LEN ("NORTHERN MUSIC™)
IRUN

14

10 LET H$ = “1582 ANCHORAGE DRIVE"

20 LET A = LEN (HS$)
30 PRINT A

JRUN
20
150 LET R$ = "YES"
160 IF LEN (R$) = 3 THEN PRINT "GO ON TO THE NEXT QUESTION."

JRUN :
GO ON TO THE NEXT QUESTION

AN IMPORTANT REVIEW OF BASIC STATEMENTS 35

10 LET M$ = "AMERICAN"
20 LET N$ = "FOREIGN"
30 PRINT LEN (M$) '+ LEN (N$)

RUN
15
Show the results of executing each of the following program segments:

(@ 10 LETCS =" " -
20 PRINT LEN (C$)

RUN

(b) 10 LET F$ = "FRANK"
20 LET L$ = "JONES"
30 LET N$ = L8 + ", " + F$
40 PRINT N$
50 PRINT LEN (N$)

RUN

(@ 1

(b) JONES, FRANK
12

SUBSTRING FUNCTIONS:
VERSATILE TOOLS TO MANIPULATE STRING DATA

Three APPLESOFT BASIC string functions (MID$, RIGHTS$, LEFT$) allow you to
manipulate the parts of a string called substrings. The MID$ function is by far the
most useful substring manipulating function. It allows you to select substrings from
within a larger string. The MIDS selection function has the following forms:

Q) MIDS ("CHARGE IT", 1,6)
(2) w™ips(Ts, 3, 15)
(3) mips(ps, 10) .
(4) mips(ws, A, C*D)
In example (1), the MID$ function selects characters 1 through 6 inclusive as the

- substring within the string constant CHARGE IT, with the substring starting at char-
acter position 1 (the C) and including six characters total, making the substring .

36 APPLE BASIC: DATA FILE PROGRAMMING

CHARGE. Example (2) assumes that a string has been assigned to T$, and the sub-
string comprises fifteen characters of the T$ string, starting with the third character
in the string and continuing on to the 15th character after the third one. In'example
(3), the “last character position” notation (the last value inside the MID$ parentheses) .
has been omitted, which tells the computer that the substring will start at character
position 10, and will include all the rest of the string to the right of the character at
position 10. Example (4) shows that the starting position for the substring, as well
as the number of characters to be included in the substring, can be represented by
variables or expressions that evaluate to a numeric value. Of course, these variables
must have been previously assigned values, just as the string variable must have pre-
viously been assigned a string. So in general, the MIDS$ function has the form

MIDS (string variable or constant, substring starting position, how many
characters in the substring from the start position)

Note that the three parameters in the MID$ function are separated by commas.
The first is usually a string variable to which a string has previously been assigned.
The second parameter is the starting position for the substring. The third parameter
does not tell the last character position number in the substring, but rather tells how
many characters to include in the substring — a point that sometimes confuses people.
Notice the use of the MIDS$ selection function in PRINT statements in the
program below. Remember, it allows you to select and print any part or substring of
the string assigned to the string variable in the MID$ parentheses. The other two
values or parameters inside the parentheses still indicate where the substring to be
printed starts and how many characters it includes.
150 LET N$ = "rocuonm: wnu.nmowsn"
180 PRINT' MIDS (N$,1,8

170 PRINT MID$ (N$,10, 12)
180 PRINT Ns$

JRUN

FOGHORNE

WHILDEFLOWER

FOGHORNE WHILDEFLOWER

Notice the use of MIDS$ as a selection function in lines 160 and 170 above. This
same selection function can be used to assign a substring from a string assigned to a
string variable, without changing the original string from which the substring was
selected. Notice in the program segment below that a substring from an existing
string can be assigned to a new variable without changing the string from which it
was selected. F$ (for first name) and L$. (for last name) are selected from the entire
name (N$) without changmg NS.

150 LET N$ = "FOGHORNE WHILDEFLOWER"
160 " LET.F$ = MID$ (Ns,1,8)

170 LET L$ = MIDS$ (N$,10,12)

180 PRINT N

190 PRINT "FIRST NAME 1S ".Pt
200 PRINT “"LAST NAME IS ";L$

AN IMPORTANT REVIEW OF BASIC STATEMENTS 37

(a) Show the RUN for the program segment above.

(b) Which character in N§$ is not selected for inclusion in either F$ or L$?

(8 RUN , , : .
'FOGHORNE WHILDFLOWER .
FIRST NAME IS FOGHORNE -
LAST NAME IS WHILDEFLOWER

(b) The space at character position 9 of N§

The LEFT$ and RIGHTS string functions are not as versatile as MID$ and are
not used as much in our programming. They both work the same way, however, as
shown in these program segments:

160 PRINT LEFTS (A$,8) means print the left-most eight characters of A$ (the
' first eight characters in the string assigned to A$)

f: g %g g‘a 12,"6"“ (ns.g, means assign to B$ the twelve right-most characters
s ! of AS$ (the last twelve characters'in the string
assigned to A$)

These examples demonstrate the substring selection capabilities of LEFT$ and
RIGHTS: They are strictly selection functions, selecting one or more characters |
from one end or the other of an existing string to treat as a subétnng

We often use LEFT$ for convenience to check for a user’s YES or NO response
to an INPUT prompting question. Using an IF. . .THEN statement, we have the
computer look at the first character of the response string to determine whether or
not the answer was YES, as shown in the following program segment:

240 INPUT "DO YOU NEED INSTRUCTIONS (YES OR NO)?",R$
250 IF LEFTS (Rs,1) = "Y" THEN 600

38 APPLE BASIC: DATA FILE PROGRAMMING

(a) What responses could a user make to the INPUT prompt abbve_ in order for the
’ IF. . .THEN comparison to be true?

(a) Could type YES or-Y or any string that started with the letter Y

We have found less use for the RIGHTS function than for MID$ or for LEFTS,
but here is an example. Remember, the numeric value inside the RIGHT$ function’s
parentheses means to start counting the characters for the substring at the right-most
end of the string from which the substring is bemg selected counting toward the
beginning of the string.

240 INPUT "WHICH HIGH SCHOOL CLASS DID YOU GRADUATE FROM?";Y$
250 - PRINT "YOU GRADUATED IN 18"; RIGHT$ (Y$,2)

AsSﬁme that several people responded to the INPUT prompting question when the
above program segment was RUN. Show what the computer will prmt for each user’s
response.

(a) User responds: - CLASS OF 1938 -
Line 250 prints:
(b) User responds: CLASS OF ‘64

. Line 250 prints:
(c) Userresponds: 1958

Line 250 prints:
(d) User responds: FORTY EIGHT
Line 250 prints:

(2) . YOU GRADUATED IN 1938 () YOU GRADUATED IN 1958
(b) YOU GRADUATED IN 1964 (d) YOU GRADUATED IN 19HT

- MULTI-BRANCHING WITH ON. . .GOTO

The ON. . .GOTO statement allows the computer to branch to a number of different
statements throughout a program. The format for the statement is a list of line numbers:

AN IMPORTANT REVIEW OF BASIC STATEMENTS .39

10 ON X GOTO 310,450,860,660,660,720,830,810
Note: - X = any variable or expression from which a value will result.

If the value of X is 1 when the ON. . .GOTO statement is encountered and
executed, the computer branches (goes to) the first line number in the list of line
numbers (in our example, line 310). If the value of X is 2, the second line number
in the list is branched to. As many line numbers can follow GOTO as will fit in a
statement line. Notice also in our example that if X=3,4,0r5, the same line
number (660) will be branched to.

If the value of X is a zero, a negative number, or larger than the number of
line numbers in the list, then the ON. . .GOTO statement will be skipped without
execution and the next statement executed. '

Here is a method to arrive at an ON. . .GOTO value in a menu-section situation.
In the following program segment, the ASC() function is used to convert a letter
entered by the user to an ASCII value that is used to determine the value for an
ON. . .GOTO statement. The ON. . .GOTO is a multi-branching instruction. In line
260, if the value of R is 1, then the program goes to the first line number given after
GOTO. If R = 2, then the program branches to the second line number given, and
so on. The value of R must be greater than 1 and no higher than the number of line
numbers that follow GOTO.

230 INPUT “ENTER YOUR CHOICE, A-E:";R$

240 LET R = ASC (RS) - 64

250 IF R C1O0ORRO S5 THEN 270

260 ON R GOTO 300,400,500,600,700

270 PRINT "ENTRY ERROR PLEASE REENTER AS REQUESTED": GOTO 230

(a) In the program above, why is line 250 included?

(a) - If R evaluates to less than 1 due to a data entry error or larger than 5, an error
would occur; so the checking is done by line 250.

FOR NEXT STATEMENTS

- It is preferable to use a FOR NEXT 1oop when you have a controlled, repeating
sequence of instructions. .

40" APPLE BASIC: DATA FILE PROGRAMMING

'PREFERRED UNDESIRABLE
100 FOR X =1 TO N 100 LET X =1
110 PRINT X,X A 2 110 PRINT X.2 A 2
120 120 LET X = X 1

NEXT X
140 GOTO 110

As you can see, the FOR NEXT loop is- more space-efficient (it could even have been
done in one line), looks better, and is easier to read.

“A general rule when using FOR NEXT loops is: DO NOT EXIT from the mlddle
of-a FOR NEXT loop, except to GOSUB to a subroutine. Leaving the controlled
1oop makes the program difficult to read and hard to understand. Further, internally -
your computer wants to complete the entire FOR NEXT sequence. If you exit
prematurely, there is no certainty that your computer will behave “normally” the next
time it encounters the loop variable (X in the example above). This uncertainty can

_cause some very serious program errors that are extremely hard to detect. An exit to a
subroutine is acceptable because a subroutine will RETURN the program to the inside
-of the FOR NEXT loop to continue in sequence, as if there was no exit at all.

NEVER

100 FOR X = 1 TON
110 IF A(X) = B(X) THEN 200
120 NEXT X

NOT DESIREABLE

100 FOR X =1 TON

110 IF A(X) = B(X) THEN 130
120 NEXT X

130 LET S =8 + 1

140 GOTO 120

PREFERRED

100 FOR X = 1 TO N

110 IF A(X) ¢ > B(X) THEN 130
120 LET S =S + 1

130 NEXT X

You can usually write your program to incliide everything you need to do inside the
loop, rather than leaving the loop. (There will be exceptions.)

(2) Write a program segment using nested FOR NEXT loops that will pﬁnt the word
HELLO three times, but will print the word GOODBY four times after each
appearance of the word HELLO.

AN IMPORTANT REVIEW OF BASIC STATEMENTS 41

(@ 10 FOR X ="1.TD 3
20 PRINT “HELLO"
30 FOR Y = 1 TO 4
40 PRINT "GOODBY"
50 NEXT Y
60 NEXT X.

MULTIPLE-STATEMENT LINES

Many language features in APPLESOFT BASIC are not available on other computer.
systems. Some of these features speed up the program’s run time, others save memory
space, and some do both. Some features enhance program readability while others
confuse the reader. A popular feature is the ability to place multiple BASIC statements
on one line separated by a colon, as we showed earlier in discussing IF. . .THEN.

140 FOR X = 1 TO 10: PRINT X,X A 2: NEXT X .

or

200 IF X =Y THB}J PRINT "YOU WON!": GOTO 10
210 PRINT “SORRY, WRONG NUMBER": GOTO 60

, A few cautions and suggestions are applicable as you use multiple-statement
* lines: c : '

1. Multiple-statement lines are often hard to read and sometimes hard to understand.

If you later change a program, readability may be a problem It is more clear
_ to use one statement to a line.

2. If you must use multiple-statement lines, carry out a complete procedure or

action on one line, whenever possible. Carryover to other lmes makes reading
_ more- difficult and less clear.

3. Finding program errors buried in multiple-statement lines is difficult.”

4. Understand completely how IF. . .THEN statements work in a multiple-statement
line. In line 200 above, if X does equal Y, then “You won” will be printed and
the program will branch to line 10. If the X=Y condition is false, line 210.will
be executed next. Some people incorrectly presume that GOTO 10 will be
executed whether the condition is true or false.

5. REM statements must be the last statement on a multiple-statement line. Any
executable statement after a remark will not be executed.

Special consideration of the GOSUB statement in multiple-statement lines is
warranted. Remember that each GOSUB statement must have a corresponding
RETURN statement that appears as the last statement in the subroutme which the -
GOSUB branches to.

Say, a GOSUB is executed when an IF. . .THEN condition is true. After com-

42 APPLE BASIC: DATA FILE PROGRAMMING

pleting the subroutine, the computer must always be instructed to RETURN. The
statement it returns to will be:

(1) the next statement after GOSUB if it is a multiple-statement line, or

(2) the next lined numbered statement in normal line number order.

(a) Assume that the comparison in line 120 below is true and the GOSUB statement
is executed. Which statement will be executed next after the RETURN from
subroutine execution? '

. 120 IF X = 2 THEN GOSUB 510: GOTO 360
130 PRINT "X IS LESS THAN TWO.

(@) GOTO 360

TRAPPING ERRORS WITH ONERR GOTO

APPLESOFT BASIC has the ability to detect errors while your program is executing.
If you wish, you can have the program stop execution altogether and print an error
message. Or you can “trap” the error using the ONERR GOTO statement and then
determine if you want the program to continue, terminate, or print a message to the
. program user. '

The main reason for using the ONERR trap procedure is to avoid having your
program terminate unexpectedly in the middle of execution. This is especially im-
portant when using data files in your programs. If you do not use the error trapping
procedure, any programming or data entry errors will cause your program to terminate
with an error message. And most error messages do not do an adequate job of
explaining what is wrong to a naive computer user.

ONERR GOTO works much like an IF. . .THEN statement; if there is an error,
THEN GOTO the statement number indicated.

10 ONERR GOTO 300

If there is no error, then contmue program operation.

The ONERR statement sets what we call a “flag.” ANY error that occurs after
the ONERR statement has been executed will cause the statement to execute. In that
regard it is unlike an IF. . .THEN statement. You need execute the ONERR state-
ment only once and the flag is “set” for the rest of the program or until the flag is

“unset,” or reset with another ONERR statement that may direct the computer toa
different line number than the first ONERR.

To “unset” the ONERR flag, use the statement POKE 216, 0. Alternatively, a

AN IMPORTANT REVIEW OF BASIC STATEMENTS 43

second ONERR statement executed after the first one in a program will cancel the
first one. ' o
Here is an example of the use of ONERR. The program reads information from .
DATA statements into an array. We do not know exactly how much data is contained
in the DATA statements; less than fifty items is assumed. When we run “out of data”
(an error condition), we wish to continue operation of the program at line 200, where
the array mformatlon will then be used in some way.
iulrg REM ONERR DEMO PROGRAM -
© 120 DIM A(50)
130 LET K = 1
140 :
150 ONERR GOTO 200
180 READ A(K)
170 LET XK = K + 1
180 GOTO 180
180 :

200 POXE 215,0: REM RESET ERROR TRAP
210 REM PROGRAM CONTINUES

Notice that the ONERR statement is only executed once (line 150). That sets the
flag until the flag is “unset™ or reset at line 200. As the program continues at line
200, you may have wanted to set another error trap to send the program to line 300
if an error occurs.

(a) Write the statement that will set another error trap in line 200 to send the
program to lme 300.

200

(a) 200 ONERR GOTO 300

A NOTE ON POKE AND.PEEK

The BASIC statements PEEK and POKE provide the- BASIC user with a way to get
“inside” of the computer and observe or change the machine language codes.

You are aware that all data, even BASIC programs, are translated in the compu-
ter into a binary code.” This code is called “machine langauge.” The PEEK statement
will show you the numeric machine language code-value at a particular memory
location. These locations are numbered. For example, the following program segment
“looks at” the numeric code found at memory location 222, assigns it to the variable -
A and then displays. it on the screen. -

10 LBT A = PEEK (222)
20 PRINT A

44 APPLE BASIC: DATA FILE PROGRAMMING

The POKE statement, on the other hand, allows you to change the numeric
machine langauge code found at a particular memory location. You need not learn -
machine language to usé PEEK and POKE to accomplish specific jobs when you are
provided with the necessary machine language code and/or memory location. Here
is an example of a POKE statement.

50 POKE z16.0

This statement tells the computer to place a zero value at memory location 216.
A zero at this memory location turns off; or cancels, a previous ONERR instruction.
Thxs is discussed further in the next section.

USING ONERR

You can use ONERR to trap bad data in data entry routines (discussed in more détail
in Chapter 3). If a user responds with alphabetic information when numeric data is
requested, that is a trapable error. Look these program segments over carefully.

100 REN DATA ENTRY ERROR TRAP)

120 ONERR GOTO 200
130 INPUT "ENTER YOUR COMPLETE NAME:";N$
140 INPUT "ENTER YOUR AGE IN YEARS:";A

160 REM PROGCRAM CONTINUES

200 PRINT “YOU HAVE MADE A DATA ENTRY ERROR. PLEASE TRY AGAIN."
. 210 RESUME

If the user makes a trapable error, the message at line 200 is printed. The
RESUME statement in line 210 sends the computer back to the line in which the
error was originally made (where the error was trapped). We do not normally en-

".courage the use of the RESUME statement, however, as you will see in Chapter 3..

Each normal error message has a numeric error code. The code for “out of
data” is 42. For “bad response to INPUT statement,” the code is 254. Other error
codes are in your reference manual and DOS manual. We will point out particular
error codes as we use them. The numeric code for a particular error encountered
by the ONERR error trap is saved in the computer memory in location 222. To
see the error code, or to check to see if it is the one you expected, use. PEEK(222)
in a BASIC statement. For instance, in line 200 we might have said:

200 1IF PEEK (222) = 254 THEN PRINT "YOU HAVE MADE A DATA ENTRY ERROR.
PLEASE TRY AGAIN.": RESUME
205. PRINT "UNUSUAL ERROR CONDITION. PLEASE REENTER."

Now line 200 checks to be sure that it is a data entry error before the message is
printed. If it is not a data entry error, the message in line 205 is displayed to caution
the operator of an unusual error.

AN IMPORTANT REVIEW OF BASIC STATEMENTS .45

(2) Rewrite the error trapping routine for the first example to trap for bad data
(alphabetic information) and for out of data. Print an appropriate message .if
the data are bad, then continue to the next data item.

(@) 100 REM SECOND ONERR DEMO PROGRAM
110 : - , ,

120 DIM A(50)
130 LET K = 1

- 150 ONERR GOTO 200
180 READ ‘A(X)
170 LET X = K + 1
180 GOTO 160 .

200 IF PEEX (222) = 254 THEN PRINT "BAD DATA ITEM REJECTED.": GOTO 160
205 IF PEEX (222) = 42 THEN 220

210 PRINT "UNUSUAL ERROR CONDITION": STOP

220 REM PROGRAM CONTINUVES

46 APPLE BASIC: DATA FILE PROGRAMMING

CHAPTER 2 SELF-TEST

1. Why do the authors recommend using “greater than” and “less than” compari-
sons in IF. . .THEN numeric comparisons, rather than comparisons for equality?

2. When must quotation marks be placed around string data items in a DATA
statement?

3. How can a null string be assigned to an INPUT string variable?

4. Show the results of a RUN of the following program:

10 LET A$ = "ALFRED"

20 LET B$ = "CONTRACT"

30 LET €$ = "32C"

.40 PRINT ASC (A$), ASC (B$), ASC (C$)

‘5. Describe the string that must have been assigned to D$ for each of these com-
parisons to be true: '

(@) 10 IF ASC (D$) ¢ 48 OR ASC (D$) > 57 THEN 660
(b)- 30 IF ASC (D$) > B4 AND. ASC (D$) ¢ 81 THEN GOSUB 1520

@

®

6. What value will the LEN function show for a string to which fifteen spaces have
been assigned?

AN IMi’ORTANT REVIEW OF ‘BASIC STATEMENTS 47

10.

11.

Write a statement to check that the user response to an INPUT is among the
options requested. The INPUT prompt asks: DO YOU WANT INSTRUCTIONS
(YES OR NO):

-

Give an example of a simple numeric variable and a simple string variable.

Give a reason for avoiding multiple-statements in one program line.

Examine the following statement:
120 IF X > 10 THEN GOSUB 810 : GOTO 110

After executing the subroutine starting at like 810, to which statement will the
computer. return?

If a variable name has more than two-alphanumeric characters, how many of
those characters does the computer use to ldentlfy the value assigned to that
variable? :

~

48 APPLE BASIC: DATA FILE PROGRAMMING

Answer Key

1. Round-off error in the computer’s computational prc;cess may introduce tiny

errors that make expected values slightly more or less. Therefore, an equality
comparison may fail where you would expect it to succeed.

2. When the stnng data item mcludes a comma as part of the string or leadmg
' spaces are to be included as part of the string.

3. By pressing the ENTER key without entering anything else from the keyboard.

4. 65 67 57

5. (a) First character of D§ must not be a number (9 to ‘9).
(b) - First character of D$ must be a capital letter (A to Z).

6. 15 (Spaces count as characters in a string.)

7. 220 IF R$ ¢) “YES" AND R$ ¢) "NO" THEN PRINT "PLEASE TYPE 'YES'
.'NO'": GOTO 310 .

8. Numeric variable: A (or any letter of the alphabet); string variable: A$ or any

letter of the alphabet followed by a-dollar s1gn

9. May make it harder to read the program; may make errors in programming
harder to detect. (either answer)

10. GOTO 110

11. Only the first two characters.

OR

CHAPTER THREE

Bulldmg Data Entry and
'Error Checking Routines

Objectives: When you finish this chapter, you will be able to write statements in a
data entry program module to check the following aspects of data items:

Proper length
- Non-response (null strings)
Type of data (numeric or alphanumeric)
Inadvertant inclusion of wrong characters , ' .
Parameters for numeric data : ’

In addition, you will be able to write data entry modules that: .

Have clearly stated prompts

~ Use reasonable data fields -
Concatenate data items into a single field
Check and “pad” entries, as necessary, for proper field length
Remove excess spaces from data taken from data fields
Replace data items contained in a data field -
Provide complete explanations of a data entry error to the user

INTRODUCTION

If you are wondering when you are going to get into data files themselves, be patient.
Experience has shown that you need a good background in some special techniques
associated with data file programming which use BASIC statements you already know.
This will make it much easier and faster to learn the new BASIC statements and func-
tions specifically applied to data file handling. You shouldn’t have to struggle to
understand a new use for a familiar BASIC statement while trying to absorb the data
file statements and techniques, so please don’t gloss over this material. :

" Concern for data entry procedures was introduced in the section on INPUT
in the previous chapter. For our purposes data are defined as any information that
is or will be stored in a data file on disk. Common examples of data include mail-
ing, subscription, or billing lists; inventories of retail merchandise; accounting infor-
mation; files of books, recordings, journal articles, or notes for a book; statistical

- 49

50 APPLE BASIC: DATA FILE PROGRAMMING

information. Data entry includes the process of getting such information into the
computer so that it can be stored in a data file. Data files usually contain large ..
amounts of data, which, to be useful, must be accurate, valid, and error-free in con-
tent and format. The accuracy and usefulness of your program output depends en-
tirely on the accuracy of the data in these files. Furthermore, inaccurate or invalid
data in a data file (or any place in a program) can cause your program to interrupt,
halt, or abort in an error condition in the middle of its run. If your program ter-
minates unexpectedly, there may be no telling what is happening inside the compu-
ter. Printed reports can be only partially completed, entered data can be lost or
destroyed, data in the files can be half processed; the list goes on.

The result of an unexpected program interruption can be catastrophJc, though
it may not always be so. It is almost impossible to predict exactly what will happen.
Therefore, always do everything you can in your programming to avoid errors that
can precipitate program interruptions. :

Unfortunately most errors occur at data entry time. That is why we emphasize
the use of data entry checking procedures in this chapter — procedures to guarantee -
that data are entered as clean, valid, and accurate in content and format as your
ingenuity and knowledge of programming techniques can make it. Throughout the
remainder of this book “error-traps” and places where programming errors are likely
to occur are illustrated. : .

- This chapter focuses on constructing the data entry module of a program. This
is where, usually with INPUT statements, the computer user is instructed to type in
information that is going to be placed in a new data file, or to tell the computer to
locate information in an already existing data file. After each response to an INPUT
statement we will use one or more statements to check the response for possible
errors. These error-checking statements comprise the largest part of a data entry
program module.

DATA FIELD LENGTH

Many data entry problems are avoided by establishing a certain amount of space; a cer-
tain number of character positions into which a given element of data or data item is
placed. Establish strings, or defined substring positions within one string, where data .
must be located (data fields). A data field can be thought of as a string that contains
more than one data item. These data items always fit between two defined character
positions within the st¥ing. A simple example would be one string variable to Wthh
both a customer’s first and last names are assigned like this:

N$ = "VIVIAN VANCE"

The first name field is a six-character field in N$, occupying the first six character
positions of that string (1 through 6). The separator field is a one-character field,
located at character position 7.

The last name field has (@) characters and occupies character positions

(b). in the string assigned to (c)

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 51 ‘

(@) five
(b) 8tol2
(c0 NS$

Below is a graphic look at the fields in N$ with a slash (/) markmg the field designa-
tion: , .

N$=_ _ [_|_—___
o /‘ v
first name last name
separating
space

‘This particular data field works for the name in the example. However, the-goal
is to establish reasonable data fields. In this case, a reasonable data field should hold
ANY first or last name that might be assigned to N$. Certainly, many names contain
more than six letters for the first name and five letters for the last. On one hand, you
want to provide reasonably sized fields for the data. On the other hand, much storage
space will be wasted if you try to cover all possibilities. There really may be someone
named John Jacobjingleheimerschmidt, but reserving twenty-four character positions
for a last name data field would waste storage space; if 95 percent of the last names
in a data file has twelve letters or less, then half or more of the last name data
field goes unused 95 percent of the time. In a file of 1,000, 10,000, or 100,000
names, such as a mailing list, this can amount to a vast amount of unused string and
disk storage space.

Data field lengths must be adequate and reasonable. If all the catalog numbers
in an inventory data file are five characters, then obviously a ﬁve-character data field
is sufficient.

To review, use a slash(/) to mark off the fields in a twenty-six character string
assigned to A$, where the data fields hold the city, state, and zip code (the last line
in a mailing address). Place a number in each field indicating which of the following
- data items are to occupy that field.

City name (fifteen characters maximum)

Two separator spaces

State code (standard two-letter postal abbreviation)
Two separator spaces

Zip code (sive characters)

SRR

52 APPLE BASIC: DATA FILE PROGRAMMING

Next, consider the following data entry module to enter the city, state, and
zip code. These data are to be placed into the data fields you just defined above.

100 INPUT "ENTER NAME OF CITY:";C$

110 INPUT "ENTER STATE CODE:";S$

120 INPUT "ENTER ZIP CODE:";Z$

130 LET A = C8 + " " 4+ S8 + " " 4 2%
140 PRINT AS .

Notice the concatenating statement in line 130 — an attempt to get the data items into
data fields. But these two RUNs demonstrate a serious problem that relates to the
length of the 01ty name.

(a RN
_ENTER NAME OF CITY:IOWA CITY
“ENTER STATE CODE: 1A .
ENTER ZIP CODE:52240
TOWA CITY IA 52240

(b) 1RUN
ENTER NAME OF CITY:SOUTH SAN FRANCISCO
ENTER STATE CODE:CA
ENTER ZIP CODE:94080
SOUTH SAN FRANCISCO CA 94080

Fill in the spaces to show the results of line 130 in the program for each of the sample
RUNs: .

(@ A$= ZQQ&-CIZZ__Zﬁ__/5l/Li/__/ _____ '
(b) A$=S0viy SAd_FRANC| 15| Co|__|L4 ?4080

The faét that all cities don’t have ﬁfteen letters means that simple concatenation
of this data does not place it into the defined character positions for the data fields.

. Checking Data Entries for Acceptable Length
One programming technique to check data entries for acceptable length uses the LEN

function in an IF . . . THEN comparison. If the data requested always have a defined
number of characters, then an important check for mistakes in data entry would be

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 53

to see whether the entry has the exact length it should. A U.S.v ziprcode always has
five characters, so a check for that data item would look like line 170:
160 INPUT "ENTER ZIP CODE:";Z$

170 IF LEN (Z$) ¢ > 5 THEN PRINT "REENTER AS 5 DIGIT CODE": PRINT :
: GOTO 160 : .

JRUN
ENTER Z1P CODE:9543
REENTER AS 5 DIGIT CODE

ENTER Z1P CODE:954316
REENTER AS 5 DIGIT CODE

ENTER Z1P CODE:
REENTER A8 5 DICGIT CODE

If the entry for the zip code does not have exactly five characters, then a mistake has been
made, the user is so advised, and the computer repeats the prompting message and waits
for another entry. With new zip code formats, a bit of reprogramming will be necessary.

Now you write a statement to check for proper length of the entry for the
INPUT statement below:

(a) 140 INPUT “ENTER STATE CODE:";S$

150

@Q 150 IF LEN (S8$) ¢) 2 THEN PRINT "REENTER AS STANDARD 2-LETTER CODE.":
. PRINT : GOTO 140 :

How can you check something like a city name, which is allowed fifteen charac-
ters or less? The city name could have less than fifteen characters, exactly fifteen, or
more than fifteen. If it has more, you must advise the user that a shorter entry is
. needed and allow the user to reenter the data item with an intelligent abbreviation.

120 INPUT "ENTER CITY NAME:";C$

130 IF LEN (C$) > 15 THEN PRINT “"REENTER USING 15 CHARACTERS OB LESS.":
’ PRINT : GOTO 120

JRUN

ENTER CITY NAME:SOUTH SAN FRANCISCO

REENTER USING 15 CHARACTERS OR LESS.

ENTER CITY NAME:

Write a statement (similar to line 130 above) to check the entry for the INPUT
statement below, where the data field for the entry is twenty characters maximum;

(a) 310 INPUT "ENTER STREET ADDRESS:";S$

320

54 APPLE BASIC: DATA FILE PROGRAMMING

(@) 320 IF LEN (S$) > 20 THEN PRINT "REENTER USING 20 CHARACTERS OR LESS.":
PRINT : GOTO 310

“Padding” Entries With Spaces to Correct Field Lengths

You are probably wondering how to increase the length of an entry that has fewer
characters than its data field. The solution involves automating the addition of spaces
to “pad” the short entry (say, a short city name) with trailing spaces, so that the 4
resulting city name st¢ring, which includes the padding spaces, exactly fits the data field.
Remember, spaces occupy character positions and count as characters in the length of
the string. Line 140 shows how to pad with spaces: -

120 INPUT "ENTER CITY NAME:";C$

130 IF LEN (C$) > 15 THEN PRINT "REENTER USING 15 CHARACTERS DR LESS.":
PRINT : GOTO 120 '

140 IF LEN (C$) ¢ 15 THEN LET C$ = C$ + " ": GOTO 140

In line 140, if the city name entered and assigned to C$ has less than fifteen char-
acters, then a space is concatenated on to the end of the string. The new string
assigned to C$ is the old string plus a space. The statement “goes back to itself”
(GOTO 140) and keeps adding another space to the end of the C$ string until the
string contains exactly fifteen characters, including the spaces. Clever? '
Now you write a statement to pad an entry with spaces if it has less than the
eight characters required to fit in jts data field. ‘

(a) 120 INPUT "ENTER YOUR FIRST NAME:";F$
130 IF LEN (F$) > 8 THEN PRINT “SHORTEN ENTRY TO 8 CHARACTERS OR LESS.":
PRINT : GOTO 120

14Q

(@) 140 IF. LEN (F$) ¢ 8 THEN LET F$ = F$ + " ": GOTO 140 y
Now apply the techniques you have been using in a data entry module.

(a) Write a program routine to request that a user enter an alphanumeric product
.identification code with three characters, plus a product description with up to
twenty characters maximum, followed by a two-character code identifying the
person making the entries, using their first and last name initials. Once these
three data items have been entered and tested, combine the data into one string
of twenty-five characters ass1gned to a single string variable.

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 55

(a) 100 REM DATA ENTRY MODULE
110 :

120 INPUT "ENTER A THREE CHARACTER CODE:";C$

130 IF LEN (C$) ¢ > 3 THEN PRINT "ENTRY MUST BE 3 CHARACTERS PLEASE
REENTER.": PRINT: CGOTO 120

140 INPUT "ENTER DESCRIPTION:";D$

150 IF LEN (D$) > 20 THEN PRINT "ENTRY TOO LONG. PLEASE REENTER USING
20 CHARACTERS OR LESS.": PRINT : GOTO 14

0
160 IF LEN (D$) ¢ 20 THEN LET D$ = D$ + " ": GOTO 160
170 INPUT "ENTER YOUR TWO INITIALS:"“;N$

180 IF LEN (N$) (> 2 THEN PRINT "PLEASE USE THE FIRST LETTERS OF YOUR
FIRST AND LAST NAME ONLY.": PRINT : GOTO 170
1890 LET RS = C$ + D$ + N

$
200 REM FOR DEMONSTRATION PURPOSES ONLY WE DISPLAY RS
210 PRINT : PRINT R$

What’s the advantage in setting up data fields in a single string and putting more
than one data item into it? The reasons will become clear in later chapters. For now,
the answer has to do with how data files can store information using some automated
data entry procedures and equipment and with the ease with which BASIC allows the
manipulation of substrings using MID$ for particular applications.

56 APPLE BASIC: DATA FILE PROGRAMMING

N

Examine the program below and answer the questions that follow it.

REM EXAMPLE DATA ENTRY MODULE
"INPUT "ENTER CITY NAME:";T$

IF LEN (T$)) 15 THEN PRINT "REENTEH USING 15 CHARACTERS OR LESS.":
PRINT : GOTO 120

IF LEN (T$) ¢ 15 THEN LET T$ = T$ + » ": GOTO 140

INPUT "ENTER STATE CODE:"“;

IF LEN (8$) (> Z THEN PRINT "PLEASE REENTER AS 2 CHARACTERS.":
PRINT : GOTO 150

INPUT “ENTER ZIP CODE:";2$

IF LEN (Z$) ¢) 5 THEN PRINT "REENTER AS A 5 DIGIT CODE"' PRINT :
GOTO 170

LET CS =TS + " " + 8% + " " + Z¢
"REM FOR DEMONSTRATION PURPOSES ETC.

PRINT : PRINT C

(a) Whatis the purpose of line 130?

(b) What does T$ =T$ +“ ”in line 140 do?

©

In line 190, what is the purpose of “ ” in the concatenation?

(a) Tests to be sure user has not entered more than the acceptable number of char-
acters (fifteen) for the city name field

(b) Fills in, adds on, or concatenates spaces from the last character of the T$ string
up to and including character field position 15. Changes T$ to a fifteen-character
string if there were fewer than fifteen characters in the string entered for T$.

(c) Places spaces in the C$ string, one between the fields for city and state and two
between state code and 21p code. -

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES §7

Stripping the Padding Spaces From Substrings in Fields

You know how to pad a string with extra spaces to arrive at the proper field length
for that data item. Now let’s explore a way to eliminate the extra blank spaces when
you extract data packed into a string. In the example where we wanted to change a
person’s last name, it was necessary to pad names with spaces to the proper field length
so that corrections could be made, if necessary, and so the first and last names could
be found separately. But for name printing purposes, you want to eliminate all the
extra blank spaces. The method shown below uses the MID$ function. ‘In our exam-
ple, N§ really consists of eight characters, one space separating the two fields, twelve
characters for L$, and one final space. If the name concatenated into N$ is Jenny
Smiles, then:

N$ = “JENNY SMILES ”

This includes the field-separating space at character position 9. The string N$ has this
format:

Il I+

first name space last name’ space

The procedure used in the following example is called ““parsing.” It means search- -
ing through the string variable, one character at a time, until you find the character(s)
you are seeking. We use a FOR NEXT loop to help us “parse” the string variable N$
to find the first space in the first name field and first space in the last name field. If
no padding spaces were used, the spaces at the end of each field are found. The exam{
ple program below shows how to use first and last names separately, w1thout extra
spaces, in a computer-pnnted “thank you” letter.

58 APPLE BASIC: DATA FILE PROGRAMMING

iog REM PARSING DEMO PROGRAM

10 :

120 REM VARIABLES USED

130 REM F$=FIRST NAME

140 REM L$=LAST NAME

150 REM | N$=CONCATENATED NAMES

160 REM S AND S1=CHARACTER POSITION OF SPACE
170 REM X=FOR-NEXT LOOP CONTROL VARIABLE
180 : o

190 REM DATA ENTRY MODULE

200 :

210 INPUT “ENTER FIRST NAME:":F$

220 IF LEN (F$) > 8 THEN PRINT "NAME TOO LONG. REENTER USING 8
CHARACTERS OR LESS.": PRINT : GOTO 210

230 IF LEN (F$) ¢ 8 THEN LET F$ = F$ + " ": GOTO 230

240 INPUT "ENTER LAST NAME:";L$

250 IF LEN (L$) > 12 THEN PRINT "NAME TOO LONG 'REENTER USING 12
CHARACTERS OR LESS.": PRINT : GOTO 240

ggg IF LEN (L$) ¢ 12 THEN- LET L$ = L$ + " ": GOTO 260
‘ggo "REM CONCATENATES ENTIRE NAME INTO N$
0 : :

ggg LET NS = F$ + " " 4 L§ 4 "

ggg "REM PARSING ROUTINE TO DETECT FIRST SPACE IN FIELD

380 FOR X = 1 TO 9 : '

350 . IF MIDS (N$.%,1) = " " THEN LET S = X: GOTO 380: REM

" 8=CHAR.POSITION OF FIRST SPACE FOUND IN FIRST NAME FIELD

360 NEXT X

370 :

380 'FOR X = 10 TO 23

390 IF MID$ (N$,%,1) = " " THEN LET S1 = %: GCOTO 440: REM 81 1S FIRST
. SPACE FOUND IN LAST NAME FIELD

:gg NEXT %

420 REM .LETTER PRINT ROUTINE

430 :

440 PRINT : PRINT : PRINT ’ .
450 PRINT "DEAR “; MID$ (N$,1,8 - 1)>;",": REM PRINTS FIRST NAME IN SALUTATION
460 PRINT "IT SURE WAS GOOD TO SEE YOU AND MRS. “; MID$ (N$,10,81 - 10);"

AT THE GET TOGETHER THE OTHER EVENING."

JRUN
ENTER FIRST NAME:DANIEL
ENTER LAST NAME:ROBERTS

DEAR DANIEL,
IT SURE ¥A§ GOOD TO SEE YOU AND MRS. ROBERTS AT THE GET TOGETHER THE OTHER
EVENIN

NOTE: Lines 350 and 390 are one of those exceptions when the program leaves or
exits a FOR NEXT loop without necessarily completing all of the loops.

(a) In lines 350 and 390, what does the MID$ function search for?

(b) What value is assigned to S and S1 in the same lines?

(c) In line 450, why does S appear in the MID$ function?

BUHJHNGIMJAENTKYANDERRORCHECKDK}ROUTDES 59

(d) In line 460, why is 10 subtracted from S1 in the MIDS function?

(@) Looks for the first space in each name field
(b) . Character position number of first space in each field
(c) Counts the number of characters in the first name field, with the space at the
end subtracted from the character count
¢d) Subtracts the characters in the first name field (B), the space at character posi-
tion nine (1), and the first space in the last name field (1) from the MID$
character count: ‘

CHECKING ENTRIES FOR NULL STRINGS

One idiosyncracy of the INPUT statement already pointed out is that if the user mere-
ly presses the RETURN key when the computer is waiting for a response to an INPUT
statement, a null string is assigned to the string variable. If the computer then encoun-
ters a checking statement that pads.the entry with spaces to the proper field length,
the entire entry would end up as a string of spaces and be duly included in the data
field for that entry. So checking data entries for null string assignments is a must and
should be part of your data entry program modules.

You can use two different techniques to test whether a string variable has been
assigned a null value. They work equally well.

IF A$ = "" THEN...

or

IF LEN(A$) = 0 THEN...

The decision the programmer must make (and it will vary with each situation) is what
to do after the THEN when the IF. . .THEN condition is true and a null assignment
has been mistakenly made. Whatever you do, do not have the computer merely repeat
the INPUT prompt, as in the “what-not-to-do” example below.

170 INPUT "ENTER CUSTOMER NUMBER:";C$
180 IF LEN (C$) = 0 THEN 170

JRUN

ENTER CUSTOMER NUMBER: -
ENTER CUSTOMER NUMBER:
ENTER CUSTOMER NUMBER:
ENTER CUSTOMER NUMBER:

60 APPLE BASIC: DATA FILE PROGRAMMING

A user who persists in not entering the customer number gets no information as to
what is wrong. Always provide a helpful error message, perhaps even a beep, bell, or
other sound if available on the terminal, so the user knows something is amiss with
the present response or entry.

INPUT “"ENTER CUSTOMER NUMBER:";C$

170
180 IF LEN (C$) = 0 THEN GOSUB 1010

:8%3' PRINT “PLEASE, WE MUST HAVE THE CUSTOMER NUMBER TO CONTINUE."

JRUN
ENTER CUSTOMER NUMBER:
PLEASE, WE MUST HAVE THE CUSTOMER NUHBER TO CONTINUE

With this information in mind, write the data entry routine that will produce the
prompts shown below. Test each data item for null response immediately after it is
entered with a message to the user that if reentry is made then all data entered are .
assigned to string variables.

(@) ENTER CUSTOMER NUMBER:
ENTER CUSTOMER NAME:
ENTER PRODUCT NUMBER:
ENTER QUANTITY ORDERED:

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 61

a) 210-: ' : .
() 220 INPUT "ENTER CUSTOMER NUMBER:";C$
230 IF LEN (C$) = 0 THEN PRINT “ENTRY ERROR. PLEASE REENTER.": PRINT :.

GOTO 220
240 INPUT "ENTER CUSTOMER NAME:*“:N$
250 1IF LEN (N$) = 0 THEN PRINT "PLEASE RESPOND AS REQUESTED.": PRINT :

COTO 240
260 INPUT "ENTER PRODUCT NUMBER:";P$ _
270 IF LEN -(P$) = 0 THEN PRINT "WE CANNOT CONTIUE WITHOUT THIS DATA.":
PRINT : GOTO.260
280 INPUT “ENTER QUANTITY:";0$ o
280 ég'mx.m (0$) = 0 THEN PRINT “PLEASE ENTER THE CORRECT VALUE.": PRINT :
280 .

(or some similar messages)

Depending upon the program user’s sophistication, even more detailed error
messages for problems like the null string entry and others may be ne/cessary». Our
examples have given minimum messages to keep the examples short, uncluttered, and
easy to understand, but they may not be adequate to ensure a proper response.
Return to this example. ’ ,

170 INPUT "ENTER CUSTOMER NUMBER:".C$ ' y
180 IF LEN (C$) = 0 THEN COSUB 1010: PRINT : GOTO 170 .

1010 ;ﬁ%gg TYOU APPARENTLY PRESSED THE 'RETURN' XEY WITHOUT MAKING AN
"
1020 PRINT "WE NEED A CUSTOMER NUMBER WITH THIS FORMAT: A-121."

1030 RETURN

Another example:

230 INPUT "ENTER COMPANY NAME:".CS$
240 IF LEN (Cs) > 12 THEN GOSUB 1010: PRINT : GOTO 230

1010 PRINT : PRINT : PRINT "YOU ENTERED: ";C$

1020 PRINT "PLEASE ABBREVIATE THE COMPANY NAME TO 12 CHARACTERS OR LESS."
1030 ;gaNEOTEXAHPLz: ALPHA PRODUCTS COMPANY COULD BE SHORTENED TO 'ALPHA
1040 RETURN

Subroutines need to be protected from the main program that calls or branches
to them. Depending on how a program is constructed, a subroutine could be encounter-" -
ed and executed as if it were part of the main program, especially if the subroutine
section is one of the program’s last modules. Use.a STOP or END statement between
the main program and the module(s). containing the subroutines. This protects the
first subroutine in the subroutine module from being executed in normal line number
order. If the first subroutine is executed, the computer will stop executing. the
program and give an error message when it encounters a RETURN statement for which
the program has no matching GOSUB statement that sent it to the subroutine.

62 APPLE BASIC: DATA FILE PROGRAMMING

@

Write an error message subroutine accessed by a GOSUB statement executed after
a true IF. . . THEN comparison; one that displays an INPUT entry and describes
how to comply with the limit of twenty characters (because of data field length)
for entries to the following statement:

320 INPUT "ENTER PRODUCT DESCRIPTION:";Ps$

Sample entry to above statement:

RUN '
ENTER PRODUCT DESCRIPTION:LEFT HANDED MONKEY WRENCH

Your solution should be similar to this:

330 IF LEN (P$)) 20 THEN GOSUB 1120: PRINT : GOTO 320

1110 STOP

1120 PRINT : PRINT : PRINT "YOU ENTERED)>) ";Ps$;" ({ FOR PRODUCT
DESCRIPTION."

1130 PRINT "PLEASE REENTER, BUT SHORTEN YOUR ENTRY BY USINGC ABBREVIATIONS"

1140 PRINT "SO THAT THE PRODUCT DESCRIPTION IS 20 CHARACTERS OR LESS IN

GTH,
iigg ;gINT "INCLUDING THE SPACES AND PUNCTUATIO

REPLACEMENT OF DATA ITEMS CONTAINED IN A DATA FIELD

You may encounter problems when you attempt to change a data item in a data field.
The most practical solution is always use data fields of predefined lengths for each
data item in a string. That way any changes or replacements with MID$ will be com-
plete, rather than partial, as happened above.

Now design program modules to accomplish assignment and extraction of data in

fields within strings, using first and last names as examples.

Step 1. Define the field for the first name to have eight characters and that for the

last name, twelve characters, with a space after each name field.

-Step 2. Create the data entry routine.

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 63

INPUT “ENTER FIRST NAME:"F$

IF LEN (F$) = 0 THEN PRINT : PRINT “PLEASE, WE MUST HAVE THE NAME.":

PRINT :

GOTO 100

IF LEN (F$) > 8 THEN PRINT : PRINT "FIRST NAME TOD LARGE. 8 CHAR.

MAX.v:

PRINT : GOTO 100

IF LEN (F$) ¢(8 THEN LET F§ = F$ + " ": GOTO 130
INPUT "ENTER LAST NAME:";L$ -
IF LEN (L$) = 0 THEN PRINT : PRINT "PLEASE, WE MUST HAVE THE LAST

" PRINT :

NAME.": PRINT : GOTO 140
IF LEN (L$) > 12 THEN PRINT : PRINT “"LAST NAME T0O LONG. 12
CHAR.MAX.": PRINT : GOTO 140
IF LEN (L$) (12 THEN LET L$ = L$ + " "; GOTO 170
"REM CONCATENATED NAMES
"LET NS = F$ + " " 4 Lg 4 o v
PRINT N$: PRINT

Step 3. Replacement routine for last name field.

REM NEV LAST NAME TO REPLACE OLD LAST NAME
"INPUT "ENTER NEW LAST NAME:";L1$

IF LEN (L15) = 0 THEN PRINT : PRINT "PLEASE, WE MUST HAVE A LAST

NAME.":

PRINT .: GOTO 260

IF LEN (L1$§) > 12 THEN PRINT : PRINT "LAST NAME TOO LONGC. 12
CHAR.MAX.": PRINT.: GOTO 260
IF LEN (L1§) ¢ 12 THEN LET L1$ = L1$ + " ": GOTO 290

LET N$§ = MIDS (N$,1,8) + L1§ + *

Step 4. Name printing routines.

320
330
340
350
360
370
380
350
400
410
420
430
. 440

REM
:REN
:PRINT :
:RBH
:PRINT :
:REH
:PRINT :

NAME PRINTING ROUTINE

TO PRINT FIRST NAME ONLY
PRINT MIDS (Ns$,1,8)

TO PRINT LAST NAME ONLY
PRINT MID$ (N$,10,12)

TO PRINT COMPLETE NAME
PRINT Ns

Check your understanding of the routines above by answering the following
questions.

(2) Inline 170, what is the purpose of L$ = L$ + «“ »?

(b) What does line 210 do?

64 APPLE BASIC: DATA FILE PROGRAMMING

(¢) -In line 300, what does the MID$ function do?

(d) IfF$= “VAL” and L$ = “JEANS”, how will N§ appear when printed or dis--
played by line 220?

(a) Fills in unused character positions with blanks to the correct field length (same
technique used in lines 160 and 420)

(b) Packs first and last names into N$

(c) Concatenates the first nine characters of original N§ with the new last name

"~ (F183), creating a new N$ assignment

(d VAL JEANS
(Al “paddmg” spaces are included when N$ is printed.)

-THE VAL FUNCTION IN DATA ENTRY CHECKS -

If the product number and quantity ordered in a program must be numeric quantities,
VAL() can easily convert these numbers stored as strings to numeric values.

330 LET AS$ = “128.95"
340 PRINT VAL (AS$)
350 LET A = VAL (A$)
380 PRINT A :

JRUN
128.35
128.95

_ In the conversion, either a leading space is added for the implied plus sign, or a minus
sign is provided if the quantities were negative. 7

But the VAL() function does not completely solve the problem of converting
string numbers to numeric values. For example, alphabetic information included in a
string you wish to convert to a numeric value presents a very real problem that can
range from accidentally using the letter O (oh) for a zero, to a quantity that includes
the units that measure that quantity (12 quarts). Therefore, always test to be sure
that if numeric values are needed, that is what was entered.

x

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 65

- Following are sdme sample w}alues run on our APPLE II.

}gg REM VAL FUNCTION TEST#1
120 LET A$ = "ABC"

130 PRINT AS$, VAL (A$)
%ggA'nzn. TEST#2-NULL STRING

170 LET A$ = "*
180 PRINT AS, VAL (A$)

200 REM TEST#3

220 LET AS = “"123ABC"
230 PRINT AS$, VAL (A$)

250 REM TEST#4
260 LET A$ = "ABCI23"
270 PRINT AS, VAL (A$)

The RUN:
JRUN
ABC g
123ABC 123
ABCl123 0

Notice in the RUN above that alphabetic characters result in a value of @, as do
a null string and the mixed alphanumeric data where the alpha information precedes
the numeric (ABC123). Notice also that the mixed data 123ABC resuits in a value of
123. The APPLESOFT BASIC’s VAL function disregards the alphabet information
that follows numeric information in the same string. This is convenient if you wish to
enter the quantity and the units, such as 14 gallons, but inconvenient if you wish to
check for the validity of the data entered. Here, you want to ascertain that the data
entered are numeric, so when the VAL function entry test is used you get valid numer--
ic values. At this point, for mixed numbers and letters, assume that the user did enter
the correct value. 4

The test to validate numeric information would be:

100 IF VAL (As) = 0 THEN PRINT "ENTER NUMERIC VALUES ONLY."

Note that the entry passes the test if only the first character entered is numeric.

(@) Now do some programming. For the data entry problem on page 60, you wrote a
program to produce a data entry sequence with null string checks added. Now add
data checks that ensure that the product number and quantity ordered are numeric
values. Also include a data check to be certain that the product number is a four-
digit number.

’

66 APPLE BASIC: DATA FILE PROGRAMMING |

"INPUT "ENTER CUSTOMER NUMBER:";C$

IFT LEN (C$) = 0 THEN PRINT "ENTRY ERROR. PLEASE REENTER.": PRINT :
GOTO 220

INPUT "ENTER CUSTOMER NANE: “;N$

égTongo(Nt) = 0 THEN PRINT "PLEASE RESPOND AS REQUESTED.": PRINT :
INPUT "ENTER PRODUCT NUMBER:";P$

IF LEN (P$) = 0 THEN PRINT "WE CANNOT CONTINUE WITHOUT THIS DATA.*":
PRINT : GOTO 260

IF VAL (P$) = 0 THEN PRINT : PRINT "PLEASE ENTER NUMBERS ONLY.":
PRINT : GOTO 260 i

IF LEN (P$) ¢) 4 THEN PRINT : PRINT "THIS ENTRY MUST BE A 4-DICIT
NUMBER, SO REENTER.": PRINT : GOTO 280

INPUT "SNTER QUANTITY: "“;Q$

"IF LEN (Q$) = 0 THEN PRINT "PLEASE ENTER THE CORRECT VALUE.":

PRINT : GOTO 280
IF VAL (Q8) = 0 THEN PRINT : PRINT "ENTER NUMBERS ONLY, PLEASE.":
PRINT : GOTO 28

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 67

USING STR$ TO CONVERT VALUES TO STRINGS

The STR$() function serves the opposite purpose of the VAL() function. It converts
numeric values into strings. This allows you to manipulate numbers with string func-
tions. You can use it to convert numeric values to strings assigned to variables, in
concatenating several small strings into a string variable, as done earlier in this chapter.
For example, you may have combined product number, product description, and
quantity in inventory into one long string. You may then need the quantity in inven-
tory for an accounting procedure or another calculation. Such operations require a
numeric value. You would convert the string to a numeric value by using the VAL()
of the entry string. When the quantity is stored, you can convert back to a string by

" taking the STR$() of the numeric value to place it into the P$ string.

P$ 17633 BOOK TITLE 144

P$ = P$ + STR$(Q)

or
Q$ = STR$(Q) "
P$ = P$ + Q%

When the computer converts a numeric value to a string with STR$(), a minus
sign is included in the string if the value is negative.
Try this demonstration program:

140 LET X = 847.25

150 LET X6 = STRS (X)
160 PRINT "X =";X .
170 PRINT "X$ =";X$

JRUN :
X =847.25
X$ =847.25

In the example above, the LEN(X$) is six — five numeric characters and the
decimal point. (Remember, blank spaces, decimal points, and other punctuation marks
are characters.) If you fail to provide enough string length or field space, you will in-
advertently lose significant digits or characters due to computer truncation. A six-
digit number with a decimal point does not fir in a six-character field.

How many characters will the following data items have if they are converted
from values to strings with the STRS function? : »

(@) 17183 _ | ,
() 2001 .)
(© -999

68 APPLE BASIC: DATA FILE PROGRAMMING

(@ 6
() 4
(c) 4

CHECKING FOR ILLEGAL CHARACTERS

Using the ASC furiction in a data entry checking statement is a powerful tool to
determine whether illegal or unlikely characters have been included in an INPUT
string. Checking is done by a combination of the ASC function, the MID$ function,
an IF. . .THEN statement, and a FOR NEXT loop. First the length of the entry is
determined by the LEN function, which is used as the upper limit of the FOR control
variable, like this:

350 INPUT "ENTER 6 CHARACTER CATALOG CODE:";Cs
360 FOR X = 1 TO LEN (C$) -

Then the MID$ function, using the FOR control variable (value of X for any iteration)
to determine which character to examine, selects each character in the string for
comparison to an ASCII number, like this:

370 IF ASC (MIDS (C$,X,1)) = 32 THEN PRINT "REENTER BUT DO NOT INCLUDE
SPACES.": PRINT : GCOTO 350
380 NEXT 3

(Note: Here is one of those exceptions when the computer leaves or exits a FOR
NEXT loop before completing all iterations of the loop.)

Notice that any character that can be entered ds part of a string can be checked to see’
that legal characters that should be there are included, or that illegal characters are not
included. Notice, too, that the error message could be located in a subroutine outside
of the FOR NEXT loop. In addition, you can use the logical AND and OR to check
for more than one character or group of characters in the same IF. . .THEN statement.

What if a user made the following response to line 350 in the example above?
Answer the questions based on this response and this program segment:

1RUN : '
ENTER 6 CHARACTER CATALOG CODE:A - 1341
REENTER BUT DO NOT INCLUDE SPACES.

ENTER 6 CHARACTER CATALOG CODE:A-1341

(a) What is the length of the substring selected by the MID$ function in line 370? -

(b) What ASCII value is compared to 32 the first time through the FOR NEXT

loop?

©

@

©

@
(®)
(©
@
©

@

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 69

The second time through?
On which iteraﬁon of (time through) the FOR NEXT ioop ié the éompaﬁson in
line 370 true?
What value does the FOR statement control variable have as an upper limit for

this user’s response?

64 (for A)

32 (for a space)
second iteration
LEN(C$) = 8

Write a data entry checking routine similar to the one before that prints an
error message if an illegal character is encountered. Use more than one IF. . .
THEN statement with the ASC function in the comparison, or a single IF. . .
THEN statement that uses the logical AND and OR. The only legal characters
for the entry are the digits () (zero) through 9 inclusive.and the decimal point,
such as would be entered for a dollar and cents entry without a dollar sign.
Include a null entry test. :

70 * APPLE BASIC: DATA FILE PROGRAMMING

(a) 100 INPUT "ENTER A VALUE:";V$ '
110 IF LEN (V$) = 0 THEN PRINT : PRINT "PLEASE ENTER AS REQUESTED.":
PRINT : GOTO 100
120 FOR X = 1 TO LEN (V$)
130 IF ASC (MID$ (V$,X,1))) = 49 AND ASC (MIDS (V$,X,1)) (= 57 OR
. ASC (MIDS$(V$,X,1)) = 46 THEN 150
140 83}3T1;£NVALID ENTRY. ENTER NUMBERS AND DECIMAL PT. ONLY.": PRINT :
150 NEXT X
160 REM PROGRAM CONTINUES

THE HOME INSTRUCTION

It is sometimes desireable to remove “clutter” from the screen, especially when asking
the computer user for specific input, or after a-data entry or data display operation is
‘completed. Use APPLESOFT HOME instruction to accomplish this. HOME should
generally be used just before a new display operation. - (If HOME is placed in the pro-
gram after a display or entry instruction, the screen may be cleared before the user has
a chance to absorb the information). HOME may also be used in direct mode to clear
a screen.

100 HOME
110 INPUT "ENTER A VALUE:";V$
120 OME

130 lr LEN (V$) = 0 THEN PRINT : PRINT “PLEASE ENTER AS REQUESTED.":
HOME : PRINT : COTO 110 ,

140 HOME

150 FOR X = 1 TO LEN (V$)

160 IF 'ASC (MID$ (Vs,%,1)) > = 49 AND ASC (MID$ (V$,X,1)) ¢ = 57 OR
ASC (MIDS(V$,X,1)) = 46 THEN 180

170 HOME : PRINT "INVALID ENTRY. ENTER NUMBERS AND DECIMAL PT. ONLY.":
PRINT : HOME : GOTO 110

180 HOME

180 NEXT X

200 REM 'PROGRAM CONTINUES

(a) The HOME instruction appears five times in this segment. Which ones should be

removed so that adequate information is displayed for the user.?

(a) All except line 100.

i

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 71

A DISCUSSION OF DATA ENTRY AND CHECKING PROCEDURES

This chapter has included recommendations, hints, and techniques for dealing with
and checking data. This section describes and summarizes procedures used to check
_ and validate all data entries.

There are two schools of thought regarding at what point incoming data should
be checked for errors. One states that since the data entry operator’s time is costly,
the operator should merely enter data using the fastest possible procedures, with no -
checks for accuracy at the time data are entered. This position requires that more
time be spent training the data-entry operator in fast, accurate computer entry
techniques. Then, later, another program does the error checking on the data at fast
computer speeds. Whenever a data error is-encountered, the computer “kicks out”
or rejects the entire data entry transaction for that set of data and prints the rejected
information in a special report. The rejected data set is then reprocessed or reentered
by the data-entry staff. This procedure works well if the number of rejects is low.

In contrast, we prefer the second approach — checking data on the way in. As
each item is entered, it is error-checked immediately. If an error is detected, the
computer operator is advised to reenter the data. One advantage is that the person
making the entry error is responsible for correcting it. This method also gives man-
agement a better measure of an operator’s work flow since only accurate, - accepted
information is completed during a work day. In the alternate method, data entry rates
may seem high, but so may be the reject rate, and special procedures are need to ver-
ify who is making the entry errors. A less subtle technique is to signal an entry error
with a terminal beeper or bell. Each time faulty data are detected, the sound signals
the operator (and the manager, if present) that an error was made and draws attention
to the “culprit.” But these are concerns in a business environment.. The immediate
error check is more in keeping with the small business or personal nature of most
programming applications presented here. And since all the error checking routines
follow the data entry immediately, you can easily read the program to see what kinds
of error checks are being made.

Two general data entry techniques are universally accepted. One uses a graphic
reproduction on the video screen of the paper form from which data are entered. It

makes sense to reproduce that form on the screen and have the computer prompt the
operator to “fill in the blanks” just as they appear on the paper form or data source
sheet.

A second generally accepted technique is one that repeats back to the operator
one or more sets of data entered. The operator is then given the chance to reenter
any incorrect items, even after the entry checking has been performed by the computer.
This is the “last chance” to pick up spelling errors, number transpositions, typographi-
cal errors, and anything else for which entry error checks cannot be designed into the
program itself. An example of such a post-data entry display appears below:

72 V APPLE BASIC: DATA FILE PROGRAMMING -

THANK YOU., HERE IS THE DATA YOU ENTERED.

CUST. -# PROD. # © QUANTITY
1 - 98213 17892 18
2 - 98213 24618 12
3 - 98213 81811 144

ARE THERE ANY CHANGES (YES OR NO)? YES
.ENTER THE NUMBER OF THE LINE IN WHICH A CHANGE IS NECESSARY:

Before a summary report such as the one above is displayed, clear the screen of
previously displayed information. If fact, clearing the screen before each new entry
or after the entry of a data set is important in the entire concept of avoiding errors.

_If the graphic display of a data source form is used, then the screen should be. cleared
and the form redisplayed with the just-entered data. The operator can then double
check with the option to make any corrections directly on the new form.

Many error-checking procedures depend an personal preference or company
policy. Either way, plan ahead. Look carefully at the complete problem or job for
which you are using your computer. In what form and format should the data be
entered? Are there subtle limits or tests that you can apply to data to detect operator
errors? For instance, if you are entering addresses with zip codes and a large percentage
of your business is in California, then you know that most zip codes should start with
the number 9. It would be appropriate to test whether the entered zip code value be-
gins with a 9, and if not, to inform the operator of a possible error.

140 INPUT “ENTER ZIP CODE:";Z$ C

150 IF LEN (Z$) ¢ > 5 THEN PRINT : PRINT "Z1P CODE MUST BE EXACTLY 5
DIGITS. PLEASE REENTER.": PRINT : GOTO 140

160 IF LEFT$ (Z$,1) = "9" THEN 21D

170 PRINT : PRINT “THE ZIP CODE YOU ENTERED, ";Z$:" 1S NOT FOR CALIFORNIA."

180 INPUT "1S IT CORRECT ANYWAY?".R$

190 IF LEFTS (R$,1) ¢ > "Y" AND LEFT$ (RS$,1) (> "N" THEN PRINT :
PRINT “ENTER 'Y' FOR YES OR 'N' FOR NO.": PRINT : GOTO 170

200 égT LEFTS (R$,1) ¢) "Y" THEN PRINT "PLEASE REENTER.": PRINT :

0 140
210 REM PROGRAM CONTINUES

We also strongly recommend consistency in your data entry formats, especially

" for such things as data field lengths. Don’t confuse yourself or others who use your

. programs. If you write several programs that use personal names, use the same size
delimiters or data fields. This also allows you to have compatible data files for
various uses. The same goes for address sizes and formats, product descriptions, and
other alphanumeric data. Remember, your company may have already made the
decision for you, so be sure you know the policies!

For numeric values, quantities, and entries involving monetary values, you may .
have to dig a little to discover the lim{'s for which the data should be tested. Company
pohcy, common sense, and actual experience may give you the logical limits for a

“not less than” or “not to exceed” data entry check. And you can always use the
operator override procedure for possibly erroneous data, as shown below:

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 73

INPUT "SNTER QUANTITY ORDERED:";Q$
IF VAL (Q$) ¢ = 98 THEN 400
PRINT : PRINT "THB QUANTITY ENTE%%D EXCEEDS ORDER LIMIT OF 88 UNITS.

PLEASE REENTER.": PRINT : GOTO 3

.RSH ANOTHER PROCEDURE
"INPUT “ENTER PRICE QUOTED: " ;P$

IF VAL (P$) ¢ = 75.00 THEN 460

" PRINT : PRINT '"THE PRICE QUOTED EXCEEDS NORMAL LIMITS OF $75.00."

INPUT "18 IT CORRECT ANYWAY?".R$.

IF LEFT$S (R$,1) ¢ > "Y" AND LEFT$ (R$,1) ¢() “N" THEN PRINT :
PRINT "®TEASE ENTER 'Y' OR 'N'.": PRINT : COTO 420

IF LEFTS (R$,1) () "Y® THEN PRINT : PRINT "PLEASE REENTER.":
PRINT : GOTO 400

REM PROGRAM CONTINUES

Let’s review the general data entry error-checking procedures for alphabetic and

numeric information.

L.

2.
3.

2o

" Enter all data into string variables after a clearly stated prompt request from the

computer.

Enter only one data item per prompt.

If you are going to pack a number of data items (a data set) into one string,

enter the data into separate string variables and then concatenate after all check-
ing has been accomplished. Do not enter data directly into a substring position.
Checking should include a test for non response (a null string) of the type IF
LEN(RS)-=0. . :
When an error is d1scovered include a message not only to tell the operator that

an error was made, but also to describe as completely as possible what the error =

was. Do not merely request a reentry.

Check alphabetic data for field length using the LEN function.

It may be necessary to pad the entry with spaces to the proper field length,

especially for alphabetic data.

Thoroughly test numeric data (which we recommend be entered into 2 string

variable) in this order:

(a) for non-response (a null string)

(b) for excess string length, if applicable

(c) for the inadvertent inclusion of alphabetic characters in numeric values,
using VAL or ASC

(d) for any company policy tests or size limit

(e) if the datum is an integer value, test the value to see if it is an mteger with -
a statement like IF X <> INT(X). .. .

(f) for negative values if they are not acceptable.

If this sounds like a lot of work, remember that your otherwise excellent pro-

gram must have valid and accurate data to do its job. Don’t skimp. Be complete. For
example, the capability of the IF. . THEN statement to PRINT a message may lull
you into trying to oversimplify an error message in order to fit it into the same pro-
gramming line as the IF. . .THEN statement. Don’t fall into this trap. Use GOSUBs
and provide complete, clear messages to the operator.

You rhay want to place all error tests and messages into subroutines. This glves

your program neatness and clarity., Various entries may be put to the same tests,
allowing the check statements to work for various entnes if variables and other factors
are compatable

74 APPLE BASIC: DATA FILE PROGRAMMING

Be alert to other occasions throughout your programs where data errors may
“occur. While we encourage sensitivity to errors at data entry time, always check for
data errors later in your program, especially if the data are subject to various mani-
pulations after the entry routines. Watch for strange results from functions such as
VAL. Get to know the version of BASIC you are using inside and out by thoroughly
exploring the reactions of statements and functions in various circumstances. The
error conditions you encounter will depend largely on your programming skills and "~ -
the kinds of applications you program. 'Be alert to the errors that occur and include
tests for them. Don’t get psychologically locked in to your first, second, or third
version of a program or programming technique.

Finally, be aware that many programmers test their programs with only sensible
data, neglecting the ridiculous mistakes that can, and without a doubt will, be made. -
When you think you have covered every possibility, let a child with no computer
experience try it out. If the program survives, you’ve checked it all out!

CHAPTER 3 SELF-TEST

1. Write an IF. . THEN comparison that will be true if:
(a) the entry has exactly seven characters.
(b) the entry does not have exactly seven characters.
(c) the first character in any entry is not a number.
(d) the first character in an entry is a number other than zero.
“ (e) the entry is not a null string.

@
()
©

@
©

2. Write a statement line that checks to see if an entry has less than twelve char-
acters, and if so, pads the entry with spaces so that the resulting string has -
exactly twelve characters. '

3. ' Write a data entry checking routine that checks to see that no numbers have been
included in a string entry. Write an accompanying subroutine, to be called when
a number is found, that tells the user what was entered, and to reenter without
including numbers in the entry.

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 75

You now have the background to write a data entry module for most kinds of
data to be later placed into a data file (covered in the next chapter). Write the
data entry module and complete it with data entry error checks, as described
below: ‘

(a) Write a data entry routine that prompts the use to enter: :
+ (1) a five-character alphanumeric product code (must always have five
characters) ’
(2) a product name with a twelve-character maximum length
(3) the quantity ordered into a three-digit field with a limit of 288 per
order
(4) the price, into a five-digit field, with no price exceeding $99.99
(b) Pack the information entered into one long string (M$) with the following
fields: '

" Note: Do not include slashes in the data field string.

(c) Print parts of M$ in a “report” with the format shown below:

JPRICE: 1.25
QUANTITY: 24
PROD. CODE: 11234

Refer back through this chapter for ideas, and try debugging your solution
program before looking at our way of doing it. Our solutions are not the

only ones possible. The real test is whether the program works, and how

foolproof it is.

76 APPLE BASIC: DATA FILE PROGRAMMING

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 77

1.

2.

3.

.

(2
(®)
©
)
(O]

120

Answer Key

IF LEN (A$) = 7 THEN

IF LEN (A$) ¢ > 7 THEN

IF ASC (As) ¢ 48 AND ASC (A$) >-57 THEN
IF VAL (A$) ¢ > 0 THEN

IF LEN (A$) ¢ > 0 THEN

IF LEN (A$) ¢ 12 THEN LET A$ = A$ + " ": GOTO 120

(Your string variable and line number may be different, of course.)

igg REM SOLUTION, CH3, PROB3, SELF-TEST

©300 INPUT "ENTER YOUR NAME:";AS$

310 IF LEN (A$) = 0 THEN PRINT : PRINT "NO ENTRY MADE. PLEASE TRY
* AGAIN.": PRINT : GOTO 300 ' !

320 FOR X = 1 TO LEN (A$)

330 IF ASC (MIDS (A$.X,1))) 47 AND ASC (MIDS. (A! X,1)) ¢ 58 THEN

GOSUB 1100: PRINT : GOTO

340 NEXT X

1090 STOP

1100 PRINT : PRINT "YOU ENTERED: ";AS

1110 PRINT "PLEASE REENTER, BUT DO NOT INCLUDE ANY NUMBERS.": PRINT

1120 RETURN

.78 APPLE BASIC: DATA FILE PROGRAMMING

4.

100
110
120
130
140
150
160
170

180 :

180
200
210
220

230
235

240
250
2680
283

285

- 270

REM SOLUTION, CH3, PROB4 SELF-TEST :
"REM VARIABLE LIST

RENM C$=PRODUCT CODE(5 CHAR.)

REM N$=PRODUCT NAME(12 CHAR.MAX.)
REM Q$=QUANTITY ORDERED(3 CHAR.MAX.)
REM P$=PRICE(5 CHAR.MAX.)

REM M$=CONCATENATED DATASET(25 CHAR.)

REM DATA ENTRY MODULE

"INPUT "ENTER PRODUCT CODE:";C$

IF LEN (C$) ¢) 5 THEN PRINT : PRINT "CODE MUST BE 5 CHARACTERS
EXACTLY. PLEASE.REENTER.": PRINT : GOTO 210 .

INPUT "ENTER PRODUCT NAME:";N$ ~

IF LEN (N$) = 0 THEN PRINT : PRINT "NO ENTRY MADE. PLEASE ENTER AS
REQUESTED.": PRINT : GOTO 230

IF LEN (N$) > 12 THEN PRINT : PRINT "ENTRY TOO LONG. PLEASE REDUCE
TO 12, CHARACTERS MAX.": PRINT : GOTO 230

IF LEN (N$) ¢ 12 THEN LET N$ = N$ + " ": GOTO 250

INPUT "ENTER QUANTITY ORDERED:";Q$

IF LEN (Q$) = 0 THEN PRINT : PRINT "PLEASE ENTER AS REQUESTED.":
PRINT : GOTO 260

IF VAL (Qs$) = 0 THEN PRINT : PRINT "ENTRY ERROR. NUMBERS ONLY,
PLEASE.": PRINT : GOTO 260

IF LEN (Q$) > 3 THEN PRINT : PRINT "TOO MANY DIGITS. 3 MAX.":
PRINT : GOTO 260

IF LEN (Q$) ¢ 3 THEN LET Q% = Q$ + " ": GOTO 280

IF VAL (Q$) > 288 THEN PRINT : PRINT "ORDER EXCEEDS LIMIT OF 288
UNITS. PLEASE, REENTER.": PRINT : GOTO 260

INPUT “"ENTER UNIT PRICE:";P$)

IF LEN (P$) = 0 THEN PRINT : PRINT "NO ENTRY MADE. PLEASE ENTER AS
REQUESTED.": PRINT : GOTO 300

if VAL (Ps$)) 895.899 THEN PRINT : PRINT "PRICE ERROR. MAXIMUM PRICE
MUST BE LESS THAN 100.": PRINT : GOTO 300

IF LEN (P$) ¢ 5 THEN LET P$ = P$ + " ": GOTO 320
:REH COﬁCATENATB DATA

:LET M$ = C$ + N$ + O + PS

iﬁEH DISPLAY DATA .

PRINT “PRICE: "; RIGHTS$ (M$.5)
PRINT “QUANTITY: “; MIDS$ (M$,18,.3)

PRINT "PROD. CODE: "; LEFT$ (M$.5)

CHAPTER FOUR

Creating and Reading Back
- Sequential Data Files

Objectives: When you complete this chapter, you will be able to store and retrieve
numeric and/or alphanumeric data in sequential disk data files, using the following
BASIC data file statements in their special formats: OPEN, CLOSE, DELETE, READ
and INPUT, and WRITE and PRINT. :

INTRODUCTION

A data file is stored alphanumeric information that is separate and distinct from any
particular BASIC program. It is located (recorded) on either a magnetic disk, diskette,
or cassette tape. This chapter discusses using sequential (also called serial) data files on
disks and diskettes.

In your previous BASIC programming experiences you probably hand-entered all
" data needed by.your programs using INPUT statements. You did this each time you
ran your programs. Or,if you had larger amounts of data, you might have entered
the data with DATA statements and used the READ statement to access and mani-
pulate the data. In either case, the data were program-dependent; that is, they were
part of that one program and not usable by other programs..
. A data file is program-independent. 1t is separate from any one program and
can be accessed and used by many different programs. In most cases, you will use
only one program to load a data file with information. But once your data file is
loaded (entered and recorded) on a disk, you can read the information from that file
using many different programs, each performing a different activity with that file’s
data. v

For example, perhaps you have computerized your personal telephone and
address directory using data files stored on a disk.” You may need just one program
to originally load information into that file and add names to it. (This chapter will
show you how.) Another program allows you to select phone numbers from the file
using NAME as the selection criterion. You can use still another program to change
addresses or phone numbers for entries previously made in the file. Another program
could print gummed mailing labels in zip code order using the same data file. You
could design yet another program to print names and phone numbers by phone num-

79

80' APPLE BASIC: DATA FILE PROGRAMMING

ber area code, The possibilities go on-and on. Notice that one data file can be
accessed by many different computer programs. The data file is located separately on
the disk in a defined place. Each program mentioned above copies the information
from the disk into the electronic memory of the computer as it is needed by that
particular program. Alternatively, the program could transfer information from the
computer’s memory to be recorded onto the disk.)

" If you already use your disk to SAVE and/or LOAD BASIC programs, then you
have some experience with disk files. When you SAVE a BASIC program, it is re-
corded on this disk in a file. Such files containing BASIC programs are called pro--
gram files. In contrast, the files discussed in this chapter contain data and are there-
fore called data files or text files. Program files and data files are different and
are used differently. A BASIC program file contains a copy of a BASIC program that
- you can LOAD, RUN, LIST, and SAVE. A data file contains information only. You
access this information using a BASIC program that includes special BASIC statements
that access data files; that is, transfer all or part of the data from the magnetic record-
ing on the disk into the computer’s electronic memory so the program can use it. You
cannot LOAD, RUN, LIST, or SAVE a data file. You can access the information only
" by using a BASIC program.

- "You can tell what type of files is contained on your diskette by listing a CATA-
LOG on your screen or printer. Type the word CATALOG and press RETURN. Here
is a CATALOG of one of our diskette contents:

*A 002 HELLO
*| 002 APPLESOFT
*B 027 MUFFIN
A 013 RENUMBER
*T 023QuUIZ
T 015 APPLE CHAPTERS

The column to the far left with the letter A, I, B, or T indicates- whether the file
is an Applesoft BASIC program file, Integer BASIC program file, Binary program file,
or Text (or data) file. The asterisk (*) indicates whether or not the file is “locked,”
If it is, you cannot accidentally erase that file. See the APPLE II DOS Manual for the
locking procedures. '

The numeric entry in the second column indicates how many “sectors” of disk
space are taken by the file, and, of course, the file name. A file name can be from
one to thirty characters in length. The only “rule” is that the file name must begin
with a letter. “Sectors” are explained in next section. :

(a) Describe in general-terms how you can access data in a data file.

CREATING AND READING BACK SEQUENTIAL DATA FILES 81

(a) Using a BASIC program that includes special file accessing BASIC statements.

DATA STORAGE ON DISKS

A magnetic disk (or diskette) has limited data storage capacity that varies from one
computer to another, from one size disk to another, and from one recording system
to ariother. For our APPLE II computer using version 3.3 DOS with sixteen-sector
diskettes, the user storage capacity of the diskette is nearly 127,000 bytes of infor-
mation. (The term “byte” will be explained shortly.) Using the 3.2 DOS, with
diskettes of only thirteen sectors, the storage capac1ty is slightly over 103 ,000 bytes
of information.

A disk refers to several styles of magnetic storage. Floppy disks are made of a
flexible, magnetic-coated plastic, and come in two sizes — 8-inch and 5%-inch. The
smaller is often called a diskette. Hard disks are also available for microcomputers.
Although more expensive, they have larger data storage capacities. Fortunately, these
physical variations do not affect the BASIC statements used to store and access data
files.

Other variations occur in the way data are recorded on disks. A disk can be
recorded on one or both sides and in more or less space, depending on the disk drive
system. A double-density system records twice as much data in the same space as a
single-density system. A quad-density system is double-density recording on a system
that can record both sides of a disk without “turning it over.” Again, such variations
do not affect the BASIC statements used to store and access data files.)

Let’s take a closer look at the single-density, 5-% inch diskette that is used by .
the standard disk drive available with your APPLE computer. The disk is divided into
thirty-five concentric circles called tracks. Each track, in turn, is divided into thirteen
or sixteen sectors, depending on whether you use DOS 3.2 or 3.3 Each sector has
the capacity to store 256 bytes of information. The DOS uses three complete tracks.
Therefore, the DOS 3.3 diskette has a user capacity of 496 sectors, while the DOS 3.2
user has only 403 sectors of storage capacity.

What is this thing called a byte? A byte is computer jargon for both a unit of
computer memory and a unit of disk storage. Each byte has an electronic pattern
that corresponds to one alphanumeric character of information. One letter of the
alphabet, one special character, or one numeric character entered as a string (such as
LET B$ = “3”) takes up one byte of storage space. A twenty-character name takes

“twenty bytes of disk storage space. The general rule for storing strings in data files is
that the amount of storage needed for each string is equal to the actual length of the
string plus one byte for “overhead.”

(@) How many bytes of disk storage are required by the string assigned to N§?

N$ = "BASIC DATA FILES ARE FUN"

82 APPLE BASIC: DATA FILE PROGRAMMING

(2) Twenty-four, plus one for “overhead” (Spaces also take one byte.)

Keeping track of disk storage requirements for alphanumeric data in strings is
easy, since one character equals one byte. Numeric values not entered as strings work
in much the same way. Each character in the number, the sign (if negative), and the
decimal point all take one byte, plus one byte for “overhead.” The trick is knowing
in advance about how large each number will be so that you can approximate how
much storage space will be needed for numeric entries. With string entries you can
limit the size of the data field, as we showed you in Chapter 3.- You cannot, how-
ever, limit the size of a numeric entry. Therefore, you must plan ahead and estimate
the space requirements for your numeric file entries. The examples below give the
space requirements for each entry.-

234 = 3 characters +1 = 4 bytes
—127.5 = 6 characters +1 = 7 bytes
12.509 = 6 characters +1 = 7 bytes
0002 =5 characters +1 = 6 bytes

For a personal telephone and address directory application, let’s see how much
disk storage space is required for each person on file. Each data item has a defined
field length.

Name . 20 characters

Address (street) 25

City . 10

State 2

Zip code 5

Phone (XXX-XXX-XXXX) 12 .

Age ' 2 (Entered as an integer number)

Birthdate (xx/xx/xx) 8 ’ .
Subtotal 84 -
Overhead 7

Total 91

(a) How many bytes would be required to store the zip code as numeric value

instead of a string?

(b) Why was a twelve-character string rather than a numeric value used for the phone

number?

CREATING AND READING BACK SEQUENTIAL DATA FILES 83

(c) How many sectors would 150 entries in the address and phone directory take up

in storage?

(d) What is the maximum number of people you could file in your directory on one

disk with a capacity of 103,000 bytes?

(@ 5, plus 1 “overhead”

(b) Could not have included hyphens, which make number easier to read

(c) 92 times 150 = 13,800 bytes. 13,800 divided by 256 = 53.9, or 54 sectors
(Note that if you placed all eight data items into one long string, you could
save seven bytes of overhead, leaving eighty-five bytes per entry for a total of
fifty sectors. This technique can save bytes per entry and, therefore, valuable
storage space.) '

(d) 103,000 divided by 92 = 1119

The eight items in each entry in the personal directory are called a dataset. A dataset
consists of all data that are included.in one complete transaction or entry into a data
file. Grouping information by dataset and then accessing or otherwise manipulating
the dataset as a group of data items makes programming and reading programs much
easier. ' ‘

Sequential data files can be visualized as one long, continuous stream of informa-
tion, with datasets recorded one after the other. Imagine datasets recorded continuous-
ly on a magnetic tape cassette (a single, long ribbon of tape) and you have a fairly
accurate image of how a sequential file looks in theory. That is how you as a file user
should think of it. The truth is, a file can be partially located on one track or one
sector, and partially on another, depending on the computer system and how the file
was filled. Fortunately, the physical location of the file on a disk is “invisible” to the
user. All you need remember is the long, continuous stream of information.

SEQUENTIAL VS RANDOM ACCESS DATA FILES

Data filing systems can use sequential data files or random access data files. The latter
are explained fully in Chapters 6 and 7. Sequential data files use disk storage space
more efficiently than random access data files. It will quickly become clear to you
that a disk is easy to fill to capacity, despite the seemingly large number of bytes that
can be stored on it. Thus, sequential files are space-efficient. However, it is somewhat
difficult to change data stored in a sequential file. Sequential files are designed for
“permanent” information that changes infrequently. You can change data in sequen-

84 APPLE BASIC: DATA FILE PROGRAMMING

tial files, but it is not as easy or efficient as in random access files, Thus, another
criterion for choosing between sequential and random access data files is how often
changes in data can be expected.

A third consideration is the time it takes to access information stored on a dlsk
When you have a large data file with loads of information, it takes more computer
time to find or access a particular dataset at the end of a sequential file than it would
in a random access file. To access the 450th data set in a sequential file of 475 data”
sets, the computer must sequentially search through 449 datasets before coming upon
the 450th-dataset. Using random access files, the computer can immediately access
the 450th dataset without having to search through the other 449 datasets. Therefore
access time is another factor in selection of sequential or random access data files.

(a) What are three factors to consider when choosing between sequentlal and random
access data files?

(a) Storage space efficiency, changing data, and time for accessing. data

- INITIALIZING SEQUENTIAL DATA FILES

To prepare to use data files, you must first tell your APPLE how many different data
files you plan to use at one time in your programs. When you first load the DOS,
your APPLE assumes that you will use no more than three separate data files at one
time and reserves enough buffer memory space for those three files. If you know that
you will use more than three files at the same time in one BASIC program, then you
must execute a MAXFILES command.

APPLE will allow up to sixteen files to be used at one time. The MAXFILES
command tells the computer how many files you plan to use. To allocate space for
eight files, use this format:

MAXFILES8

You should execute the MAXFILES command before you even load your BASIC
program, since its execution will sometimes interfere with the internal pointers (ex- ‘
plained later) set by your program. If you must execute a MAXFILES command as
part of a program, make the MAXFILES command the first executable statement in
your program.

The MAXFILES command actually sets aside 595 bytes of memory for each file
that will be used. This space is called a buffer; it acts as a go-between for the compu-
ter and the disk data file (see Figure 1). Input information accessed from a disk file is
first copied into the buffer, 256 bytes at a time. It is then available for manipulation

CREATING AND READING BACK SEQUENTIAL DATA FILES 85)

by the program. Likewise, data to be output from the computer for recording onto
the disk are first accumulated in the buffer. When the buffer is full, the information
is copied from the buffer to the disk file. The buffer is a holding area for all data
coming to or from a data file.

diskette

N

Memory

Buffers

#2 is Input Buffer
#1 is Output Buffer

Figure 1: Data flow through buffers.

APPLESOFT BASIC statements that deal with data files fall into a special cate-
gory of BASIC statements that require an unusual format to execute. These statements
look like PRINT statements but are not really the same. The specidl format requires a
PRINT followed by a CONTROL D character, followed by the executable statement:

100 PRINT "CONTROL D" ;MAXFILESS

While this looks easy, when you see a line such as 100 in a program listing, you will

not see the CONTROL D. Control characters do not print in a program listing, so at

some later time you may forget what you were trying to do. To establish a clean,

readable procedure, we do the following in our programs:

1. Define the string variable D§ with the Control D character in the initialization
routine at the beginning of each program, as shown below.

150 LET D$ = CHRS (4): REM SET CONTROL D
2. Use DS$ in all special file statements.

200 PRINT D$;"MAXFILES 5"

Notice the punctuation in line 200. A semicolon (;) follows the PRINT state-
ment and the BASIC file statement is inside quotations marks.

86 APPLE BASIC: DATA FILE PROGRAMMING

Normally, the first statement in your program that relates directly to data files is
the OPEN statement(s) that identify to the computer the names of the files that will
be used in the program. The OPEN statement causes the computer to assign one of

the buffers to the file named in the OPEN statement. A buffer. is needed for each file
~ that is open at the same time in the program. The buffer assignment is done auto-
matically on execution of the OPEN statement; the user and programmer need do
nothing. The OPEN statement searches the disk to see if the named file aready exists.
" If not, it readies the disk to accept a new file with the indicated home. The OPEN
statement has the following form:

140 PRINT D$;"OPEN NAMES1"

This statement opens a sequential file with the name NAMESI if none already exists,
and assigns a buffer to it. Another example:

140 INPUT "ENTER FILE NAME:";F$
~ 150 PRINT D$;"OPEN"FS$

This shows that the file name can be assigned with a string variable. Line 150 opens
the file designated by the user in F$.

Just as every file must be OPENed by the program, every OPEN file must be
- CLOSEd with a CLOSE statement before the program finishes execution. As soon as
your program is through using a file, and always before the program terminates, in-
clude a CLOSE statement to close each of the files or to close all of them at once.
This also completes any transaction inside the computer system that the buffer was
involved in, as'explained in more detail in the next section. Once a file has been
closed and the buffer unassigned, the same buffer may be used again by the program
if you open new files. Here are some examples of CLOSE statements:

800 PRINT D$;"CLOSE NAMES1"
810 PRINT D$;"CLOSE"FS$
820 PRINT D$;"CLOSE"

The Buffer Problem

CLOSE is a vitally important statement and, in most cases, is used to maintain the
integrity and accuracy of your data files. Recall that the buffer acts as a go-between
for the computer and the disk system. When you output data from the computer to
the disk file, the data go first to the buffer. Then, when the buffer is full (256 bytes),
. the data are output and recorded onto the disk. This is often referred. to as updating
the disk file.

What happens if the buffer is only partly full of data and there are no more data
to finish filling it? You might expect the half-full buffer to simply transfer its contents
to the disk for recording when the program finishes execution. But it won’t do that.
The data.in the half-filled buffer will not necessarily be recorded into the file; your
file, therefore, may not contain all the information you expected. One important pur-
pose of the CLOSE statement is to force the buffer to transfer its contents to the data
file even though the buffer is not full. As a rule of thumb, any program with an

CREATING AND READING BACK SEQUENTIAL DATA FILES 87

‘

OPEN statement should have a CLOSE statement that is always executed before the
program terminates. If you get trapped with a program that aborts or terminates and
the buffer still contains data, CLOSE can be executed in direct mode, forcing the
buffer to transfer its contents to the disk file. However, to have to do so indicates
poor programming technique and would be completely unacceptable in a work
environment. Further instructions on writing your programs to always execute a
CLOSE statement are given later in the chapter.

(a) What are two purposes of the CLOSE statement?

(a) To unassign the buffer and to force the buffer to transfer its contents to the disk
data file. :

Our APPLE reference material states that the buffer will automatically “flush”
(transfer its contents to the disk data file) under normal conditions if the program
executes an OPEN to the same file, CLOSE or MAXIFILES, or if the user switches
languages by typing INT or FP (for Integer Basic or Floating-Point Basic). Don’t count
on anything else to flush the buffer! To repeat: Always include a CLOSE statement
that is executed before the program terminates, so-that buffer-flushing is automatic.
You should only force buffer-flushing under emergency conditions, and then you should
use the CLOSE statement in direct mode.

The buffer-flushing problem — and it is a real problem — makes it imperative that
you never remove a disk from the disk drive if the disk contains an open file. Be
certain all files are closed before you remove the disk from the drive, or you may find
yourself with data from a half-filled buffer placed in the wrong file- on the wrong disk,
which can create some nasty errors. Be cautious, and remember that data go first to
the buffer. They then transfer to the disk file once the buffer is full. If the buffer
is not full, force it to transfer the data to the disk file with the CLOSE statement.

(a) If you are outputting data in a program to a data file and the program accidental-
+ ly terminates without executing a CLOSE statement, what should you do?

(a) Close the file with a CLOSE statement in direct mode.

88 APPLE BASIC: DATA FILE PROGRAMMING

WRITING DATA TO A SEQUENTIAL DATA FILE

You have learned to set up communication between your APPLE and the disk system
with the OPEN and CLOSE statement. Now you will learn how to place data into a
file; that is, actually record data onto the disk. APPLESOFT BASIC does this using a
special WRITE statement followed by a PRINT statement. The procedure is a little
tricky, mainly because you have to plan the sequence of operation in your program.

To write to a file, you must use a PRINT D$ statement with a WRITE statement
to begin the WRITE operation.

360 PRINT D$; “WRITE DEMO1”

Once you start the WRITE operation, any normal PRINT statement that follows will
cause data to be printed to the file, rather than printed to the screen or printer. You
can see how this is done in the next program segment in lines 360 and 370. The
PRINT statement, then, actually causes the data to be printed to the file (after going
first to the buffer). The WRITE operation is terminated by a blank PRINT D$ state-
ment, like this:

410 PRINT D$

An INPUT statement INPUT N$ by itself will also terminate the file WRITE
operation. However, an INPUT with a prompt string (INPUT “ENTER NAME:”; N§)
will place unwanted data in your file by printing the prompt string message (ENTER
NAME:) to your file before terminating the write-to-file operation.

In our example, we want to enter data from the keyboard, and then write the
data to the disk file. We then enter more data and write it to the file. We will con-
tinue this procedure until we “signal” the computer that no more data are forthcom-
ing, then close the file. The program creates a data file containing the information
found in a school transcript showing classes taken, grades received, and units of college
credit for the course. The general programming steps are shown below.

OPEN the file.

Enter the data. _
Tell the computer to start the WRITE procedure.
PRINT to the file.

Terminate the WRITE operation.

Return to step 2 above.

CLOSE the file.

Nounpwbhe

Here is our program., Read it over carefully.

CREATING AND-READING BACK SEQUENTIAL DATA FILES 89

Bt Bt Bt Bt s Bt s Bt s
BB DBWNI~O
cocooocooooc

©

(CY

(@

(®)

©
@

REM . FILE PRINT DEMO #1

"REM ~ VARIABLES USED

'REM - N$=COURSE NAME

REM G$=COURSE GRADE

REM N=NUMBER OF ACADEMIC UNITS

"REM FILES USED

REM SEQUENTIAL FILE NAME: DEMOI

REM DATASET FORMAT:N$.C$,N

"REM INITIALIZE -

"LET D$ = CHRS$ (&)

PRINT D$;"OPEN DEMO1"

"REM 'BARE BONES' DATA ENTRY MODULE .
"PRINT "TYPE 'STOP' INSTEAD OF COURSE NAME TO END DATA ENTRY."

INPUT “"ENTER COURSE NAME:";N$
IF N$ = "STOP" THEN 460
INPUT “ENTER COURSE GRADE:":G$

INPUT "ENTER NUMBER OF UNITS:":N
"RENM START FILE WRITE OPERATION

"PRINT D$;"WRITE DEMO1"
PRINT N$: PRINT G$: PRINT N -

"REM TERMINATE WRITE OPERATION

"PRINT D$ -
PRINT : GOTO 280 ;
"REM CLOSE FILE

"PRINT D$;"CLOSE DEMO1"

END

What is the name of the file used in this program?

Data entry takes place in-what statements?

i

What signal is used to tell the computer there are no more data forthcoming?

What is the purpose of line 4107

DEMO1

290, 310, 320

STOP

It turns OFF the file write operation before you return for more data entry.

Line 360 tells the computer to begin the write-to-file operation, also referred to

as print-to-file, copy-to-file, or record-to-file operations. The PRINT statements in line

90 APPLE BASIC: DATA FILE PROGRAMMING

370 actually cause the data to be printed to the file (buffer). You can only PRINT

. one data item to the file with each PRINT statement. You cannot easily use one state-
ment to print all three items as you would likely do if you were using a PRINT state-
ment to display data on the screen or printer. Rather than use three separate PRINT
statements on three different lines, we have chosen to complete the file PRINTing on
one multiple-statement line (see line 370). The three data items are called a dataset,
PRINTed to the file by us on one line. This method creates one file PRINT statement
in the program, making it easier to check the program for errors.

Before the program returns for more data entry, the WRITE operation must be
terminated. The blank or empty PRINT D$ statement at line 410 terminates the
WRITE. Notice that there is no punctuation following the D$. Strange happenings
can occur in programs when you accidentally place a semicolon after the D§.

The final operation is the CLOSE routine at line 460.

(a) What causes the program to execute line 460?

(@) The operator enters “STOP” as the course name: line 300 tests for “STOP” and
branches to 460 to CLOSE the file.

There are other ways to use PRINT statements to print to a file. We mention
them here in case you encounter them in programs written by other people. We do
NOT recommend these procedures, primarily because it is too easy to make errors as
you type the statements.

, For numeric data only, you can use either of the PRINT statements shown be-
low to print to a file. Notice that this procedure requires only one PRINT statement
to print three data items.

100 PRINT A;".";B:".":
110 PRINT A ;" ;";B;";":

(a) What is the difference between the two statements?

(@) Line 100 uses commas (*“,”) to separate the variables; line 110 uses semicolons

).

CREATING AND READING BACK SEQUENTIAL DATA FILES 91

Notice the use of semicolons and quotations. With all that typing, you are bound to
make errors. We think the procedure described earlier is easier and clearer: use one
PRINT statement for each numeric variable holding data for the file.

For alphanumeric data, you must use separate PRINT statements for each string variable,
as described before:

130 PRINT As$: PRINT BS$: PRINT C$

A possible problem arises when you want to write information that includes commas to
your file. '

210 LET B$ = "PUBLIC, JOHN Q."

You would expect that the file print sequence below would cause the complete name to
be printed to the file:

220 PRINT D$;"WRITE FILENAME"
230 PRINT B¢

But it doesn’t: The quotation marks are essentially ignored. The computer accepts the
word “Public” and rejects the words ““John Q..” The only item placed on your file is
the word “Public.” Replacing line 210 with this statement compounds the problem
even more: :

210 INPUT “"ENTER NAME:";N$

When RUN, the operator responds with:

JRUN
ENTER NAME:"PUBLIC,JOHN 0."

Enclosing the name in quotes, you would expect the complete name to be written
to the file. Again, the computer confounds us by accepting the word “PUBLIC,” reject-
ing “JOHN Q.,” printing the error message “EXTRA INPUT IGNORED,” and placing
both the word PUBLIC and the error message on your file! And you thought this was
going to be easy! ‘

- As you might expect, there is a way to program the APPLE to accept alphabetic
data that includes embedded commas. The solution is to “force” quotation marks on
either side of the name string variable by using the CHR$() function. CHR$(34) is the
ASCII code for the quote () symbol. Here is a PRINT statement that will accept and
print to the file any alphabetic information that includes commas:

230 PRINT CHR$ (34);: PRINT Ns$;: PRINT CHR$ (34)

. Note carefully the format and the use of semicolons and colons. The typing alone in the
statement above may cause you anxiety. However, you need to worry about forcing

92 APPLE BASIC: DATA FILE PROGRAMMING

quotatlon marks only when your string includes commas. This should not happen
often and with careful planning it may never be necessary.
As noted earlier, using files requires planning. Your plan should consider:
What to include in each dataset.
. How large each data item or dataset will be.
3. Whether technical points, such as imbedded commas in strings, must be handled
with special techniques.
4, How to test each data item in the dataset as completely as possible for accuracy
and validity.
With these considerations in mind, here is a program to help you place a
simple inventory from your home or business into a disk file. The introductory
module and possible checks for data validity are included.

N =

100 REM INVENTORY FILE LOAD PROGRAM
120 REM VARIABLES USED

130 REM T$=DESCRIPTION(20 CHAR.MAX.)

140 REM N = NUMBER OF ITEMS

150 REM V = DOLLAR VALUE

180 REM D$ = CONTROL D

170 RN R$=USER RESPONSE

190 REM FILES USED ,
200 REM SEQUENTIAL FILE NAME: PROPERTY

210 REM DATASET FORMAT: T$,N,V

230 REM INITIALIZE

240 :

250 LET D$ = CHRS (4)
280 PRINT D$;"OPEN PROPERTY"

280 REM DATA ENTRY ROUTINES

300 INPUT "ENTER ITEM DESCRIPTION:";T$

310 IF LEN (T$) = 0 THEN PRINT : PRINT "PLEASE ENTER AS REQUESTED.":
PRINT : GOTO 300

320 IF LEN (T$) > 20 THEN PRINT : PRINT "PLEASE ABBREVIATE TO 20
CHARACTERS OR LESS.": PRINT : GOTO 300

330 INPUT “HOW MANY ITEMS:";N

340 IF N ¢ .) INT (N) THEN PRINT : PRINT "ENTER INTEGERS ONLY, PLEASE.":
PRINT : GOTO 330

350 IF N (= 0 THEN PRINT : PRINT "THERE MUST BE SOME UNITS! PLEASE

. ENTER A QUANTITY." : PRINT : GOTO 330

360 INPUT “"WHAT 1S THE DOLLAR VALUE OF EACH:";V

370 IF V ¢ = 0 THEN PRINT : GOTO 460

380 PRINT D$;"WRITE PROPERTY"

380 PRINT T$: PRINT N: PRINT V

400 PRINT Ds

410 :
t:gg PRINT : GOTO 300
‘:;: "REM ERROR MESSAGE MODULE

460 INPUT "DID YOU REALLY MEAN ZERO VALUE, YES OR NO:";R$

470 IF LEFTS (R$,1) ¢ > “Y" AND LEFTS (R$,1) ¢ > "N" THEN PRINT :

. PRINT "PLEASE.TYPE 'Y' FOR YES OR 'N' FOR NO.": PRINT : GOTO 460

480 IF LEPTO (R$,1) = "N" THEN PRINT : PRINT "REENTER THE CORRECT
VALUE.": PRINT : GOTO 360 {

490 COTO 380

500 : - .
g%g REM FILE CLOSE ROUTINE
ggg "PRINT D$;"CLOSE PROPERTY"

550 END

CREATING AND REA. ING BACK SEQUENTIAL DATA FILES 93

(a) What is the purpose-of the blank PRINT D$ statement in line 400?

(b) The above program has one small but important “bug.” Find and describe the
error. :

(@) To turn OFF the WRITE operation so you can resume data eniry ‘

(b) The program never executes the file closing routine at line 530; the CLOSE
statement is needed to assure flushing the last data items from the buffer to
the file.

The problem of how to indicate to the program when to close the file is part
of replanning. The program should include a way for the user to indicate to the
computer that the user is done with the program for now, or that all data have been
entered. Either of the two procedures shown below could be mcluded in the previous
program for this purpose. The choice is yours.

295 PRINT "TYPE 'STOP' IF NO MORE DATA. OTHERVISE.“
315 IF T$ = "STOP" THEN 530

or

405 INPUT "18 THERE MORE DATA TO ENTER (Y OR N)?";R$

408 IF LEFTS (R$.,1) ¢) “Y" AND LEFTS (R$,1) ¢ > "N" THEN PRINT :
PRINT “PLEASE TYPE 'Y' FOR YES OR 'N' FOR NO": PRINT : COTO 405

407 IF LEFTS (Rs,1) = "N THEN 530 }

Now enter and RUN the program, creating a sequential data file named
PROPERTY, which you will use later. This procedure works for terminating a pro-
gram and closing files which contain discrete datasets, as have been described in the
inventory program. But what about a variable length dataset — one with no prede-
fined field lengths, such as a data file of recipes or a file of letters? How do you
indicate to the program when one recipe or letter ends and another begins? And then,

94 APPLE BASIC: DATA FILE PROGRAMMING

how: can the computer “sense” the end of such data when inputting or reading back
from the recorded data file?] ’

One popular procedure is to place a flag or “dummy” character at the end of
- each dataset as a separator. The dummy character could be any character that would
never be part of or found in the data. An asterisk (*) is often used as a dummy sepa-
rator. Here is one way to insert such markers into the data file.

322 INPUT "18 THIS THE END OF ONE DATASET?";R$

323 REM - Y OR N DATA TEST GOES HERE

324 IF LEFTS (R$,1) = "Y" THEN PRINT D$;"WRITE FILENAME": PRINT "#":
PRINT D$: GOTO 410

A word of advice! When you write file programs (or any program for that
matter) prepare some written documentation for yourself and other users. At least
some description of the file layout is needed. Without written documentation, even
you may have trouble seeing how the program works six months from now. A good
procedure is to include such information in REM statements in the program itself as
part of the introductory module.

(a) Why‘is it ixnportant to inform the computer that all data to be included in the
Qata file have been entered?

(a) so that a CLOSE statement can be executed to flush an unfilled buffer

And a word of extreme caution: When you WRITE to a file after an OPEN
statement, you destroy any previous data that may be in that file! If you reuse a file,
and place data into it from the beginning, you destroy the previous information that
was placed in the file — but not completely. What happens is that some of the new
data overwrite the old data (old data are erased and new data are recorded on the
same disk space), but some of the old data may still be in the file! That means that
when you use the file, you may have some of the new data you want and some old
data you thought were destroyed. There is a way out of this mess. Follow these
steps when you first initialize your file and you can be sure you have completely
destroyed all previous data. Remember though, reuse only data files in which the old
data are no longer of use.

140 PRINT D$;"OPEN FILENAME"
150 PRINT D$;"DELETE FILENAME"
180 PRINT D$;"OPEN FILENAME"

You must first OPEN the file before you DELETE it. This is done because the
DELETE instruction first looks for a data file with the specified file name. If there is
no file by that name, the DELETE statement will cause an error message and your

CREATING AND READING BACK SEQUENTIAL DATA FILES 95

program will stop altogether. You can see that using the first OPEN statement prevents

the potential error condition. The moral of this lesson is think twice before you begin to

WRITE to a file. Make sure the file is either new or deleted before you start to write new
" data into it; otherwise, you may end up with a file that contains a lot of “garbage.”

Now you create a data file using the inventory program shown above. The data file
should include several datasets and a procedure to inform the computer that all data have
been entered, so that the file can be properly closed. Do NOT include a routine that
places a dummy separator between datasets. The file you create will be used in another
program later in this chapter.

READING DATA FROM A FILE

Now that you can output data from the computer to the data file, let’s examine how to
input or read data back into the computer’s memory from an existing disk file. To do
this, the most important thing to know is how the data were placed in the file in the first
place; that is, what order and format a dataset has in the file. After that, reading from a
file is simple and straightforward, with none of the complications that can accompany
writing to a file.

To read from a file, first OPEN the file as you did for the PRINT to file operation.
You then use a PRINT D$ statement to begin the READ operation. Any INPUT state-
ments that follow the READ statement will input data to the computer from the file.
The READ operation is terminated by a blank PRINT D$ statement, as before.

120 PRINT D$;"OPEN FILENAME"
130 PRINT D$;"READ FILENAME"
140 INPUT A$.B,C$

150 PRINT D¢

Notice the use of commas to separate the variables in line 140 above.

- Itisimportant that the variables in the INPUT statements be the correct variable
~ type (string or numeric) to match the data that appear next in the file. If the INPUT
statement “looks’ for numeric data in the file to assign to a numeric variable (B), and
the next file data item is alphanumeric, then your program may terminate in an error
condition or, perhaps worse, it will continue with bad data. If the INPUT statement
looks for string data and the next file item is numeric, the number will be accepted and
assigned to the string variable.

Is that good or bad? While the problem of having an open file and the program
stopping in an error condition is avoided and the new problem of having invalid data
takes its place — and after all that error checking at data entry time to place accurate
data into the file in the first placeVTo avoid such hassels, be sure you know how the
data were initially placed into the file, whether numeric or string data; and if strings, how
long. Your documentation should show the format of your dataset, at least in the section
of the program showing the variables used.y

Returning to the simple inventory file named PROPERTY described earlier in the
chapter, recall that the alphanumeric description (T$), followed by number of units (N),
followed by value (V) were placed in the file in that order. The variable names T$, N,

96 * APPLE BASIC: DATA FILE PROGRAMMING

and V were used in the program when the data were printed to the file. The variable
names themselves are separate from the data items. Therefore, you can use any appro-
priate string or numeric variable name in the INPUT statement when data are read
from the file, as long as they match the variable type in the file, numeric or string.

(a) Which of the following statements is appropriate' to input déta from the inven-
’ tory data file named PROPERTY?

1) 270 INPUT AB,C
2) 270 INPUT A$,B,C
3) 270 INPUT D1$,Q,D

(é) Statements 2 and 3 are both acceptable.

Below is the companion program to the property inventory file program, to read the
PROPERTY file and print a simple screen report with the data. Enter and RUN the
program. Make sure the d1sk containing the datafile called PROPERTY is in the disk

. drive. /)4
igg REM READ DATA FROM PROPERTY FILE Q\&gig‘%
120 REM VARIABLES USED
130 REM T$=DESCRIPTION
140 REM N=NUMBER OF ITEMS
150 REM V=DOLLAR VALUE
igg REM D$ =. CONTROL D
180 REM FILES USED
180 REM SEQUENTIAL FILE NAME: PROPERTY
ggg REM DATASET FORMAT:T$ N,V
220 REM INITIALIZE
230 :

240 LET D$ = CHRS$ (4)
250 PRINT D$;"OPEN PROPERTY"

g;: "REM PRINT HEADINGS

280 PRINT : PRINT “DESCRIPTION"; TAB(22);"QUANTITY"; TAB(33);"VALUE":
200 PRINT . .
g;g "REM FILE READ ROUTINE/PRINT REPORT

330 PRINT D$;"READ PROPERTY"

340 INPUT T$.N.V

350 PRINT Ds

360 PRINT T’. TAB(22);N; TAB(33):V
370 GOTO 330

380 :

2:: REM CLOSE FILE ROUTINE
410 PRINT D$;"CLOSE PROPERTY"
420 END .

CREATING AND READING BACK SEQUENTIAL DATA FILES 97

RUN

DESCRIPTION QUANTITY VALUE
FILES B 2 49
COMPUTERS 1 4500
GLASSES 24 5
DISXS _ 15 - 4.25

(@) What is the line number of the statement that begins the READ operation?

(b) What is the line number of the statement that terminates the READ operation?

(c) What is the purpose of line 360?

(a) line 330
(b) line 350 _
(c) Displays the report on the screen

This RUN terminated in an error condition with the message END OF DATA.
This was an aborted end to the program execution. What if you wanted to do more
with the data and did not want the program to terminate when the end of the data
file was reached? A technique exists that allows the program to read to the end of
the file without the program stopping at that point. To understand the technique, you
must know how the data file “pointer” works. What follows is not an exact explana-
tion of how the APPLE works, but it serves to explain how to detect the end of the
file. The procedures used do, indeed, work on the APPLE.

Just as with regular READ and DATA statements in BASIC, the data file uses a
pointer to point “to” the next data item available in the buffer holding data from the
disk file. When a file is opened, the pointer is positioned automatically at the begin-
ning of the file and points to the first data item. Each execution of a file INPUT
statement or a file PRINT statement pushes that pointer forward as many places as
there are variables in the statement-variable list.

10 PRINT As moves the pointer one position, to the place where the second data
item may be recorded.

-20 INPUT N,N$ moves the pointer past data items 1 and 2 to item 3. The pointer
is always looking at the position of the next available data ietm.

30 INPUT W,X,Y,z moves the pointer four places, so the next data item read by an
INPUT statement will be -the fifth data item

98 APPLE BASIC: DATA FILE PROGRAMMING

When your program uses a PRINT statement to add data to a file, each PRINT
statement moves the pointer and- an end-of-file marker ahead one position. When all
- data have been entered, the end-of-file marker is located just past the last data item.
The end-of-file marker is automatically put in place by the computer. _

When you INPUT data from the file, the file pointer is always looking at. the next
data item available in the file (or in the buffer, to be more exact). An attempt to
INPUT the end-of-file marker or anything beyond the last item of data results in an
error condition that can be detected using the ONERR statement. The end-of-file
error number is number five (5). Here are the statements needed to detect the end-of-
file condition.

220 ONERR GOTO 300
230 PRINT D$;"READ FILENAME"
240 INPUT AS.

300 IF PEEK (222) = 5 THEN PRINT D$;"CLOSE": GOTO 800

Line 220 sets the error condition test. Notice that we placed it before the READ
operation, since it does not have to be set more than once. One execution of line 220
" sets the error condition trap, which continues in effect until the program stops execu-
tion or until another ONERR statement is executed during the program RUN. Line
300 tests-to be sure that the error detected is the end-of-file condition. If it is, the
file is closed. '

You can modify the previous program so that it does not terminate with an END-
OF-DATA error condition. Make these changes to your program.

325 ONERR COTO 410
10 IF PEEK (222) = 5 THEN 4
420 PRINT "UNUSUAL FILE ERROR- pnocnnn TERMINATED. *

430 PRINT D$;"CLOSE PROPERTY"
440 END

An alternative modification would be as follows:
410 " IF PEEX (222) = 5 THEN PRINT D$;"CLOSE PROPERTY": GOTO 440

With either “fix,” the file will be properly closed.

A teminder: This is NOT a precise description of how the end-of-file mark works on
the APPLE. However, while the explanation has been simplified, the procedures
described to detect the end of a file do work correctly on your APPLE.

"(a) In the program to read and display PROPERTY, with the end-of-data error trap
included, under what conditions is line 420 executed?

CREATING AND READING BACK SEQUENTIAL DATA FILES 99

(a) If the error detected by ONERR is not the out-of-data error

PERMANENTLY REMOVING FILES FROM DISKS

Situations will arise when you want to erase a data file from a disk. It may bea
temporary file such as those created for demonstration programs in this book or a file
that is of no further use to you for other reasons. Use the DELETE command. Using
this command deletes the file named after the command from the disk, destroying the
file’s contents and deleting all reference to the file from the disk file directory.
DELETE is a system command that is entered and executed like RUN or LIST.

- DELETE can also be used in an executable statement in APPLESOFT BASIC, but we
discourage this use except, perhaps, for very temporary files. Here is the form:

DELETE FILENAME

Use the file destroying command very carefully, as the action is irreversible. Once the
file has been deleted, there is no going back. Accidentally destroying the wrong file,
especially if you have not made a backup copy, can mean that you wasted hours or
days entering data into a file. Think carefully before using DELETE.

Be sure you understand the difference between DELETE and CLOSE. CLOSE
merely disassociates a buffer from the file it was assigned to and flushes the buffer
contents onto the disk if you are outputting data. After a CLOSE statement, the
data file is still recorded on the disk. DELETE eliminates the file entirely from the
disk, as well as all reference to it in the file directory.

We have used the word “copy” to describe how the INPUT statement works
when data are transferred from the disk data file into the computer’s memory. Copy
implies that the data in the file do not change when they are input into the part of
the computer’s electronic memory designated as the buffer. The data in the file are
unaffected and unchanged and remain in the file for another use. The only way to
change data in a data file is with a WRITE and PRINT statement.

You can fill a file with data and read from the same file in the same program.
But you must always CLOSE a file after outputting or recording information into it
before you can reopen the file for input or copying data back into the computer
memory. You must OPEN to output, then CLOSE and OPEN to read back the data.
This procedure resets the file pointer to the beginning of the file.

\

100 APPLE BASIC: DATA FILE PROGRAMMING

The following program illustrates the procedure to open and close the files at
the appropriate times. Quality assurance data are entered from a manufacturing pro-
cess into a file. The program will read the QA values from the file and accumulate
the number of responses in each category (1 through 6) in an array, and then print
the results. The program is self-documented by REM statements.

RUN

QUALITY CONTROL MEASUREMENTS:
ACCUMULATED RESULTS

OA NUMBER QUANTITY

DS N -
ND D
o

- CREATING AND READING BACK SEQUENTIAL DATA FILES 101

REM FILE INPUT/OUTPUT DEMO

"REM 'PROGRAM TO ENTER OUALITY CONTROL RESULTS

REM INTO FILE. PREPARE SINPLE REPORT

REM FROM FILE

"REM VARIABLES USED

REM F$ = FILE

REM N = QUALITY ASSURANCE MEASURE

REM V = QUALITY ASSURANCE MEASURE

REM C() = COUNTING ARRAY

REM D$ = CONTROL D

"REM FILES USED

REM SEGUENTIAL FILE NAME (USER ENTERED): OUALITY CONTROL
REM DATASET FORMAT:N (EACH DATASET I8 ACTUALLY ONE NUNERIC VALUE)
"REM INITIALIZE

"LET D$ = CHR$ (4)

"INPUT "ENTER FILE NAME:";F$ - |
PRINT DS$;"OPEN"F$

"REM DATA ENTRY ROUTINE
"PRINT : PRINT “ENTER INTEGER NUMBERS 1-8.ONLY "

PRINT "ENTER '09°' WHEN DONE ENTERING DATA.": PRINT

INPUT "QA NUMBER:":N

IF N = 889 THEN 510

IFN(1ORN)> 8 THEN PRINT "PLEASE ENTER 1-6 ONLY": GOTO 380

"REM WRITE-TO-FILE ROUTINE
" PRINT gs;"wnxrs"r’

PRINT
PRINT D$
GOTO 380

"REM CLOSE FILE

" PRINT D$;"CLOSE"Fs

"REM © OPEN FILE TO READ

"PRINT Ds;"OPEN"F$

fnzn READ FILE AND ACCUMULATE IN ARRAY

"ONERR GOTO 670
. PRINT DS$;"READ"FS$

INPUT V
LET C(V) = C(V) + 1

COTO 610
"REM ERROR TEST
"IF PEEK (222) = 5 THEN 730

PRINT “"UNUSUAL ERROR. STOP PROGRAM"

STOP

"REM PRINT REPORT FROM ARRAY
"POXE 215.0

HOME

PRINT : PRINT "QUALITY CONTROL MEASUREMENTS:@"
PRINT "ACCUMULATED RESULTS": PRINT

PRINT "QA NUMBER","QUANTITY": PRINT

FORV =1 TO 8 ;

PRINT V.C(V)

NEXT v
"REM CLOSE FILE
"PRINT D$;"CLOSE"FS$
END

102 APPLE BASIC: DATA FILE PROGRAMMING

Refer to the program on p. 101 to answer the following questions:

(a) Through which statement does the computer obtain the name of the data file?

(b) - Which statement checks the parameters for the quality control numbers?

() ‘ How does the computer know that all data have been entered?

(d) Why are two CLOSE statements used in the same program? _

(e) What does line 590 do?

(f) In line 620, how many different values can V have?

(a) line 310

(b) line 400

(c) user enters 99 as input value

(d) the data file must be closed after output and after input
(e) sets trap for end-of-data error

) six(1to6)

Help us write anGther program that first creates a data file called TEST, and
then displays the contents of that data file. Complete lines 280, 320, 410, 470, 550,
590, 630, 670, 710, and 750. (Read the REMs and comments.)

. CREATING AND READING BACK SEQUENT[AL DATA FILES 103

REM DATAFILE DEMONSTRATION
"REM VARIABLES USED

REM AS$ = OUTPUT VARIABLE

REM B$ = INPUT VARIABLE

REM D$ = CONTROL D

REM X = FOR NEXT LOOP CONTROL VARIABLE

"REM FILE USED '

REM SEQUENTIAL FILE NAME: TEST ‘

REM DATASET FORMAT: AS$ (DATASET IS ONE STRING DATA ITEM)
"REM INITIALIZE

"LET D$ = CHR$ (4)

"REM OPEN THE FILE

"REM START WRITE OPERATION

"REM USING A FOR-NEXT LOOP, PLACE 8 STRINGS INTO A DATA FILE
"FOR X = 1 TO 8

LET A$ = "TEST® + STRS (X)

"REM PRINT TO THE FILE

"NEXT X

"REM CLOSE THE FILE

"REM A PRINT STATEMENT TO TELL US ALL IS WELL, SO FAR
"PRINT "FILE WRITTEN AND CLOSED"

"REM REOPEN THE FILE

"REM SET END-OF-DATA ERROR TRAP

"REM . START THE READ OPERATION

"REM INPUT DATA ITEM

"REM TERMINATE READ OPERATION

"REM PRINT TO THE SCREEN

GOTO 630

"REM CLOSE FILE

"IF PEEK (222) = 5 THEN 820

PRINT : PRINT "UNUSUAL ERROR. PROGRAM TERMINATED.": PRINT

PRINT D$;"CLOSE TEST"
PRINT “"FILE CLOSED."

END

104

APPLE BASIC: DATA FILE PROGRAMMING

€)]
®)
(©
@
(©)
®
®
(h)
@
[0)]

@

280 PRINT D$;"OPEN TEST"

320 - PRINT D$;“WRITE TEST"
410 PRINT As$

470 PRINT D$;"CLOSE TEST"
550 PRINT D$;"OPEN TEST"

560 ONERR GOTO 800

830 PRINT D$;"READ TEST"

870 INPUT B¢

710 PRINT D$

750 PRINT B$

Now show everything that will be printed or displayed when this program is

RUN. : A

JRUN .
FILE WRITTEN AND CLOSED
TESTI1

TEST2

TEST3

TEST4

TESTS

TESTS8

TEST?

TESTS

FILE CLOSED

CREATING AND READING BACK SEQUENTIAL DATA FILES 105 .

One unique feature of file programs is that sometimes nothing appears to be hap- .
pening when the program is RUN. -There may be no printed report or any CRT dis-
play other than RUN and READY. To the novice, this seeming lack of activity may
be alarming. Be forewarned.

(2) Which statements in the previous program help assure the user that “invisible”

data file activity has taken place?

(a) lines 290 and 450

A final word about the blank PRINT D§ statement that we have used to termi-
nate the READ or WRITE operation: If you follow our examples and procedures in
your own programming, everything should work in your file-related programming.
However, when you start to deviate from our procedures, you can run into some real
problems.

We have been repeatedly warned by other people that there are times when the
blank PRINT D$ statement will not work. On investigation (it never happened to us),
we discovered that file PRINT statements must always end with a carriage return. If
your most recent PRINT to file statement ends with a comma or semicolon, then a.
blank PRINT D$ statement will not terminate the WRITE operation. As a matter of
fact it will place the code for a Control D in your file and your file will end up filled
with garbage.

250 PRINT D$;"WRITE FILENAME"
260 PRINT A$,
270 PRINT D$

Line 270 does NOT turn off the WRITE operation because of the comma at the end
of line 260.

If you ignore our file programming procedures wh1ch never use a PRINT to file
statement that ends with a comma or semicolon, you must use the ASCII code signal
for a carriage return, which is CHR$(13), before a READ or WRITE operation can be
terminated. The procedure is to first PRINT CHR$(13), to force a carriage return,
and then to PRINT D$. This forces a carriage return into your file. Some program-
mers do the following: :

340 PRINT CHR$ (13) + CHRS (§)

CHR$(13) puts in the carriage return. CHR$(4) turns off the READ or WRITE condi-
tion.

Now you are probably saying, “I’ll just always use the CHR$(13) + CHR$(4)
technique. That will solve the problem forever.” Not so! If you always print a

106 APPLE BASIC: DATA FILE PROGRAMMING

carriage return before the blank PRINT DS, you will be placing an “extra™ carriage
return in your file. This could ruin your future file reading because of the dataset
format problem (the extra carriage return here and there looks like a distinct data -
item to the computer) and would certainly foul the operation of the end-of-file check
that you use. The easiest way to resolve this problem is to make sure your program
is nice and “clean.” .

CHAPTER 4 SELF-TEST

The problems in this self-test require you to write programs to store data in data files
and then to write companion programs to display the data in those data files. All
data files that you create in this self-test will be used in Chapter 5, so don’t skip this
section. The introductory module is given so your solutions will look something like
the solution provided. Save the programs and files for later use, modification, and
reference. Try your solutions (and debugging the programs) before looking at the
solutions provided. Believe me, our “first draft” programs had to be debugged, too!
Good luck and keep on hackin’. '

1 a. Write a program to fill a data file with the information and format speciﬁed
below:

Four data items per dataset.

First two data items are strings.

Second two data items are numeric values entered as strings.

Include data entry checks for null strings. :

For the numeric values assigned to strings, include data entry tests to see
that only numeric values were entered. Then convert these strings to
numeric values assigned to numeric variables before storing them in the
data file. ' \

Place at least three datasets in the data file. Name this file CUST.

100 REM SOLUTION TO CH4 SELFTEST PROB 1A
110 :

120 REM VARIABLE LIST

130 REM AS, B$ a ALPHA DATA

140 REM M$ M, N$ N =NUMERIC DATA
150 REM D$ = CONTROL D

Jgo REM R$ = USER RESPONSE

170 :

180 REM FILE USED

180 REM SEQUENTIAL FILE NAME: CUST

200 REM DATASET FORMAT: A$.Bs$ M,N

CREATING AND READING BACK SEQUENTIAL DATA FILES 107

i 108 APPLE BASIC: DATA FILE PROGRAMMING

1b. Write a companion program to display the contents of the data file named CUST
that you created in 1 a. '

2 a. Write a program to make a data file callld GROCERY that stores your grocery
shopping list. Include the description or name of each grocery item (maximum

- of twenty characters) and a numeric value telling the quantity of that item to
buy. Store at least six datasets in the file.

CREATING AND READING BACK SEQUENTIAL DATA FILES

109

A}

SOLUTION CH4 SELFTEST PROB 2A

VARIABLES USED

N$ = ITEM DESCRIPTION

Q = QUANTITY TO ORDER

D$ = CONTROL D

R$ = USER RESPONSE

F$ = USER ENTERED FILE NANME

FILES USED
SEQUENTIAL FILE NAME: GROCERY (USER ENTERED)
DATASET FORMAT: N$.Q

. 110 APPLE BASIC: DATA FILE PROGRAMMING

2b. Write é companion program to display the contents of GROCERY.

1

JRUN
ENTER NAME OF FILE:GROCERY

. ITEM QUANTITY
BEANS 80

BREAD 3

MILX 5

BUTTER 3

FILE CLOSED

CREATING AND READING BACK SEQUENTIAL DATA FILES 111

3 a. Write a program to enter the following data in a data file for a customer credit
file maintained by a small business. Each dataset consists of three items:
1. five-digit customer number (must have exactly five digits)
2. customer name (twenty characters maximum)
3. customer credit rating (a single digit number 1, 2, 3, 4, or 5)
Include data entry checks for null entries and for the parameters set forth in the
list above. Enter at least three datasets in the data file. Remember, the customer
numbers must be different for each customer and should be in ascending order,
i.e., each larger than the previous one, such as 19652, 19653, 19654, etc. Name
this file CREDIT. "

SOLUTION CH4 SELFTEST PROB 3A
CREDIT FILE LOADER

VARIABLES USED

F$ = FILE NAME

C$ = CUSTOMER # (5 CHAR.)

N$ = CUST. NAME (20 CHAR.MAZ.) .
-R$ AND R = CREDIT RATING (1 CHAR) .
D$ = CONTROL D

0¢ = USER RESPONSE

FILES USED o ’
SEQUENTIAL FILE NAME: CREDIT (USER ENTERED)
DATASET FORMAT: C$,N$, R

112 APPLE BASIC: DATA FILE PROGRAMMING

CREATING AND READING BACK SEQUENTIAL DATAFILES 113

114 APPLE BASIC: DATA FILE PROGRAMMING

3 b. Write a companion program to display the contents of the file named CREDIT.
Our RUN looks like this.

ENTER FILE NAME:TRANSACTION-1
10762

1

57

18102

2

6.12

43811

1

4.34

43611

2

58.95

43611

2

88.5

80223

1

450

98702

2

43.45 v
ALL DATA DISPLAYED AND FILE CLOSED

CREATING AND READING BACK SEQUENTIAL DATA FILES 115

4 a. Write a program to enter data into a transaction data file. A transaction file is
the data on a business transaction, such as that of a bank, a retail store, or a
_ mail-order business. For our example, each transaction produces a dataset with
three items, as shown below: '

Account number = five characters
Transaction code = two characters (for a bank, 1 = check, 2 = deposit, etc.)
Cash amount = seven characters (9999.99 maximum amount)

Include data entry checks for null entries and for the parameters set forth above.
Check cash amount entries for non-numeric characters, except the decimal point.
Your program should allow the user to select (input) a name for the data file.

Create two different data files with your program, with seven datasets
(seven transactions) in each data file. Name file. #1, TRANSACTION-1, and
name file #2, TRANSACTION-2. Use the account numbers given below for the
two files. For duplicate account numbers, make a complete dataset entry, so
that each of the two files contain seven datasets.

file #1 file #2

10762 10761
18102 18203
43611 43611
43611 80111
43611 80772
80223. 80772
98702 89012

Note: Only the account numbers are shown here; the complete datasets élsq include
transaction codes and amounts. ' :

110 :

120 REM VARIABLES USED

130 REM F$ = USER ENTERED FILE NAME

140 REM D1¢ = DATASETS FROM FILE 1,2

150 REM A$ = ACC'T NUMBER (5 CHAR.)

180 REM T8 = TRANSACTION CODE (1 CHAR.) :

170 REM C$ = CASH AM'T (9889.08 OR 7 CHAR.MAX.)

180 REM I = FOR NEXT LOOP CONTROL VARIABLE

%:8 REM D$ = CONTROL D

210 REM FILES USED

220 REM SEQUENTIAL FILE NAHES TRANSACTION 1. TRANSACTION 2 (USER
SELECTED AND ENTERED)

230 REM DATASET FORMAT:. A!.TO cs

240 :

116 APPLE BASIC: DATA FILE PROGRAMMING

CREATING AND READING BACK SEQUENTIAL DATA FILES 117

118 APPLE BASIC: DATA FILE PROGRAMMING

~ 4b. Write a companion program to display the contents of a data file with the above
dataset format. Again, the file name should be user entered so that it can be
used to display the contents of TRANSACTION-1 or TRANSACTION-2.

Our sample RUN:

JRUN .
FILE NAME:TRANSACTION-2

A/CS T-CODE AMOUNT
10761 1 33.33
18203 2 21
43811 2 500
80111 1 54.58
80772 1 54.68
80772 1 88.88
8 2 485.77

8012
FILE PRINTED AND CLOSED

CREATING AND READING BACK SEQUENTIAL DATA FILES 119

5 a. Write a program to load a data file named ADDRESS with (surprise!) names and-
‘ addresses. The data has the format shown below, with each dataset containing
five items in fields with one string

/1

‘ 55
20/21 40/41 50/12/53 57/

name

address city state zip code

Include appropriate data entry checks and field padding routines. Enter at least
four addresses in the data file.

100

110 :

120
130
140
150
160
170
180
190
200

210 :
. REM

220
230
240

REM
REM
REM
REM
REM
REM
REM
REM
REM

REM
REM

SOLUTION CH4 SELFTEST PROB 5A -

VARIABL
N$ =

~
-«
OB]

FILE US
SEQU
DATA

ES USED

NAME(20)

STREET ADDRESS(20)
CITY(10)

STATE(2)

ZIP CODE(3)

CONCATENATED DATASET(57)
CONTROL D

USER RESPONSE

ED
ENTIAL FILE NAME: ADDRESS
SET FORMAT:C$ (ONE STRING)

120. APPLE BASIC: DATA FILE PROGRAMMING

5b. Write a companion program to display the contents of ADDRESS. Here is our
sample RUN. :

1RUN _
JERALD R. BROWN
13140 FRATI LANE
SEBASTOPOL
CA
95472
RECGJE JACKXSON
#1 BALLPARK RD
EVERYWHERE
us

. 00000
JACK SPRAT
1 LEAN DRIVE
SKINNYVILL

" BA
00003
FILE CLOSED

CREATING AND READING BACK SEQUENTIAL DATA FILES 121

Write one program and use it to create three different data files called LETTERI,
LETTER2, and LETTER3. Each file should contain the text of a form letter with
at least three lines of text per letter. Each line of text in the letters is to be entered
and stored as one dataset. i

100 REM SOLUTION CH4 SELFTEST PROB6A

110 :

120 REM - VARIABLES USED

130 REM T$ = TEXT LINE

140 REM F$ = FILE NAME

150 REM D$ = CONTROL D

}gg REM R$ = USER RESPONSE

180 REM FILES USED

180 REM SEQ. FILE NAME: LETTER#

200 REM (# 18 USER SELECTED & ENTERED)

122. APPLE BASIC: DATA FILE PROGRAMMING

6 b. Write a companion program to display the data files above selected by the user.
Our sample RUN:

IRUN
ENTER FORM LETTER NUMBER:]
YOU ARE HEREBY INFORMED THAT ALL ELECTRICAL SERVICE TO YOUR AREA WILL BE

DISCONTINUED AS OF JAN. 1. WE HOPE THIS WILL NOT INCONVENIENCE YOU.
FILE CLOSED '

CREATING AND READING BACK SEQUENTIAL DATA FILES 123

Answer Key

REM SOLUTION TO CH4 SELFTEST PROB 1A

REM VARIABLE LIST

REM A$, B$ = ALPHA DATA

REM M$ M, N$ N sNUMERIC DATA
REM D$ = CONTROL D

‘REM R$ = USER RESPONSE

REM FILE VUSED

REM SEQUENTIAL FILE NAME: cusr
REM DATASET FORMAT: As,BS$. M,N

"REM INITIALIZE

"LET D$ = CHR$ (&)
PRINT D$;"OPEN CUST"

"REM DATA ENTRY ROUTINE
"INPUT "ENTER DATA ITEM:";A$

IF LEN (A$) = 0 THEN. PRINT “PLEASE ENTER SOHETHING“ GOTO 2580

INPUT “ENTER DATA ITEM 2:" ;B¢

IF LEN (B$) = 0 THEN PRIHT ”LBASE ENTER SOME DATA": GOTO 310 .

INPUT “ENTER NUMERIC DATA:"

IF LEN (M$) = 0 THEN PRINT : PRINT “"PLEASE ENTER SOMETHING": PRINT :

“1F VAL (M$) = 0 THEN PRINT : PRINT "PLEASE ENTER NUMBERS ONLY":

PRINT : GOTO 33

LET M = VAL (HO))

INPUT “ENTER NUMERIC ITEM 2:":N$

ésTolggo(NQ) = 0 THEN PRINT : PRINT "PLEASE ENTER SOMETHING": PRINT :
IF VAL (N$) = 0 THEN PRINT : PRINT “PLEASE ENTER NUMBERS ONLY":
PRINT : GOTO 370 . :

LET N = VAL (N$)
"REM WRITE TO FILE
"PRINT D$;“WRITE CUST"

PRINT At PRINT B$: PRINT M: PRINT N

PRINT D

INPUT "HORB DATA?" ;RS .

IF LEFTS (R$,1) ¢) “Y" AND LEFTS (R$,1) ¢ > "N" THEN PRINT :
PRINT “TYPE 'Y' FOR YES OR 'N' FOR NO.": PRINT : GOTO 470

IF Ry = Y% THEN 280
"REM CLOSE FILE
"PRINT D$;"CLOSE CUST"

PRINT “FILE CLOSED*
END

APPLE BASIC: DATA FILE PROGRAMMING

REM SOLUTION TO CH4 SELFTEST PROB 1B
"REM VARIABLES USED

RENM A$,B$ = ALPHA DATA

REM M,N = NUMERIC DATA

REM D$ = CONTROL D

REM FILE USED

REM SEQUENTIAL FILE NAME: CUST
REM DATASET FORMAT:AS$,B$ M.N

"REM INITIALIZE

"LET D$ = CHR$ (&)
PRINT D$;"OPEN CUST“

"REM INPUT DATA FROM FILE & DISPLAY -
"ONERR COTO 370 '

PRINT D$;"READ CUST"

INPUT A$.BS$ M.N

PRINT D$

PRINT A$: PRINT B$: PRINT M: PRINT N: PRINT

COTO 280
" REM CLOSE FILE
"IF PEEK (222) = 5 THEN 390

PRINT : PRINT "UNUSUAL ERROR. PROGRAM TERMINATED.": PRINT
PRINT D$;"CLOSE CUST"
;ﬁ%ﬂ? “"ALL DATA DISPLAYED AND FILE CLOSED"

CREATING AND READING BACK SEQUENTIAL DATA FILES 125

REM SOLUTION CH4 SELFTEST PROB ZA

REM VARIABLES USED

REM N$ = ITEM DESCRIPTION

REM Q = QUANTITY TO ORDER

REM D$ = CONTROL D .

REN R$ = USER RESPONSE

REN F$ = USER ENTERED FILE NAME

REM . FILES USED

REM SEQUENTIAL FILE NAME: GROCERY (USER ENTERED)
REM DATASET FORMAT: Ns.Q

"REM INITIALIZATION
"LET D$ = CHR$ (&)

INPUT “ENTER NAME OF FILE:";
PRINT D$;“OPEN"F$
PRINT D$;“DELETE"F$

PRINT D$;"OPEN"Fs$
"REM DATA ENTRY ROUTINE
"HoM

s .
PRINT "ENTER 'STOP' WHEN ALL DATA 1S ENTERED.": PRINT
INPUT “ENTER ITEM DESCRIPTION:";N$

IF N$ = "STOP® THEN 550

IF LEN (N$) = 0 THEN PRINT : PRINT “PLEASE ENTER A DESCRIPTION OR
'STOP'": PRINT :_ GOTO 330

IF LEN (N$)) 20 THEN PRINT : PRINT "SHORTEN DESCRIPTION TO 20
CHARS. AND REENTER": PRINT : GOTO 350

INPUT "ENTER QUANTITY:":0

IFQ)> =1 ANDQ (10 THEN 480

PRINT “YOU ENTERED A QUANTITY OF ";0

INPUT “I18 THAT WHAT YOU WANTED?";R$

IF LEFTS (R$,1) ¢) "¥Y" AND LEFTO (R$,1) ¢) "N" THEN PRINT :
PRINT “"TYPE 'Y' FOR YES OR 'N' FOR NO": PRINT : COTO 410

IF LEFTS (R$,1) = "N* THEN 380
" REM WRITE TO FILE ROUTINE
"PRINT D$;“"WRITE"F$

PRINT N$: PRINT Q
PRINT D¢

COTO 330
"REM CLOSE FILE
"PRINT D$;"CLOSE"F$

PRINT “FILE CLOSED"
END

APPLE BASIC: DATA FILE PROGRAMMING

REM - SOLUTION CH4 SELFTEST PROB 2B

"REM _VARIABLES USED

REM N$ = ITEM DESCRIPTION

REM 0 = QUANTITY TO ORDER

REM D$ = CONTROL D

REM F$ = USER ENTERED FILE NAME

"REM FILES USED

REM . SEQUENTIAL FILE NAME: CROCERY (USER ENTERED)
REM - DATASET FORMAT: N$,0

"REM INITIALIZATION

"LET D$ = CHRS

(4)
INPUT "ENTER NAME OF FILE:";F$
PRINT D$;"OPEN"F$

"REM READ AND PRINT FILE
"PRINT : PRINT "ITEM","QUANTITY": PRINT

ONERR GOTO 400
PRINT D$;"READ"F$
INPUT N$.Q

PRINT D$

PRINT N$.Q

COTO 320
"REM CLOSE FILE
“IF PEEX (222) = 5 THEN 420

PRINT : PRINT “UNUSUAL ERROR. PROGRAM TEEHINATED“"PRINT :" GOTO 420
PRINT D$;"CLOSE
:géﬂ? : PRINT "FIL!»CLOSED"

!

CREATING AND READING BACK SEQUENTIAL DATA FILES 127

PLEASE.": PRINT : GOTO 280
"PRINT : INPUT "ENTER CUSTOMER NAME: " ;N$

REM SOLUTION CH¢ SELFTEST PROB 3A
REM CREDIT FILE LOADER .

"REM VARIABLES USED

REM F$ = FILE NAME

REM C$ = CUSTOMER # (5 CHAR.)

REM N$ = CUST. NAME (20 CHAR.MAX.)

REM RS AND R = CREDIT RATING (1 CHAR)

REM D$ = CONTROL D

REM 0% = USER RESPONSE

"REM FILES USED

REM SEQUENTIAL FILE NAME: CREDIT (USER ENTERED)
REM DATASET FORMAT: C$,N$,R

"REM, INITIALIZE

"LET D$ = CHR$ (4)

HOME

INPUT “"ENTER FILE NAME:" F$
PRINT D$;"OPEN"F$

PRINT D$;"DELETE"F$

PRINT D$;"OPEN"F$

. REM DATA ENTRY ROUTINE
"PRINT "ENTER 'STOP' WHEN FINISHED ENTERING DATA.": PRINT

INPUT "ENTER CUSTOMER NUMBER:";Cs$
IF C$ = "STOP" THEN 670
IF LEN (C$) = 0 THEN PRINT : PRINT "ENTER NUMBERS OR TYPE ‘'STOP'":

: 370 .
IF LEN (C$) ¢ > 5 THEN PRINT : PRINT "ENTRY ERROR. NUMBER HAS 5
DIGITS.": PRINT : GOTO 370 :
IF VAL (C$) = D THEN PRINT : PRINT “ENTRY ERROR. NUMBERS ONLY,

e

IF LEN (N$) =0 THEN PRINT "PLEASE ENTER A NAME, NOW.": GOTO 430
IF LEN (N$) > 20 THEN PRINT “PLEASE LIMIT NAME TO 20 CHARS AND
REENTER.": GOTO 430

"PRINT : INPUT "CREDIT RATING:";R$

IF LEN (R$) ¢) 1 THEN PRINT "ONLY A ONE DIGIT NUMBER IS
ACCEPTABLE.": GOTO 4

IF VAL (R$) ¢ 1 OR VAL (R$) > 5 THEN PRINT "NUMBERS 1-5 ONLY,
PLEASE.": GOTO 47

LET R = VAL (na)
"REM PRINT TO FILE
"PRINT D$;"WRITE"F$

PRINT C$: PRINT N$: PRINT R

PRINT D$
"REM MORE DATA ROUTINE
"HOME

INPUT "DO YOU HAVE MORE DATA TO ENTER?";Q$

IF LEFTS (Qs$,1) ¢ > "Y" AND LEFTS (Q¢,1) ¢ > "N" THEN PRINT :
PRINT “"ENTER 'Y' FOR YES OR 'N' FOR NO": PRINT : GOTO 610

IF LEFTs (Qs,1) = "Y" THEN 380

"REM CLOSE FILE
"PRINT D$;"CLOSE"F$

PRINT "JOB COMPLETED"
END

APPLE BASIC: DATA FILE PROGRAMMING

REM SOLUTION CH4 SELFTEST PROB 3B

REM CREDIT FILE DISPLAY

"REM . VARIABLES USED

REM F$ = USER BNTBNED FILE NAME
REM C$ = CUST.

REM N$ - CUST. NAME

REM R = CREDIT RATING

_REM D$ = CONTROL D

"REM "FILES USED

REM - SEQUENTIAL FILE NAME: CREDIT (USER ENTERED)
REM | DATASET FORMAT: C$,N$,R
"REM INITIALIZE

"LET D$ = CHR$ (4)

HOME
INPUT "ENTER FILE NAME:";F

PRINT D$;“OPEN"F$
"REM READ/PRINT FILE
"ONERR COTO 420

PRINT D$;"READ"F$

INPUT C$,NS.R

PRINT D$

PRINT C$: PRINT N$: PRINT R: PRINT

COTO 340
"REM CLOSE FILE
"IF PEEX (222) = 5 THEN 44

0
PRINT : PRINT "UNUSUAL ERROR. PROGRAM TERMINATED": PRINT
PRINT D$;"CLOSE"FS$
gg;"? " ALL DATA DISPLAYED AND FILE CLOSED"

CREATING AND READING BACK SEQUENTIAL DATA FILES 129

REM SOLUTION éHQ SELFTEST PROB 4A

REM VARIABLES USED

REM F$ = USER ENTERED FILE NAME

REM D1$ = DATASETS FROM FILE 1,2

REM A$ = ACC'T NUMBER (5 CHAR.)

REM T$ = TRANSACTION CODE (1 CHAR.)

REM C$ = CASH AM'T (9899.99 OR 7 CHAR.MAX.)
REM X = FOR NEXT LOOP CONTROL VARIABLE

REN: D$ = CONTROL D

REH FILES USED

SEQUENTIAL FILE NAMES: TRANSACTION 1, TRANSACTION 2 (USER
SELECTED AND ENTERED)

REM DATASET FORMAT: A$,T$,CS$
"REM INIT{ALIZATION
"LET D$ = CHR$ (4)

INPUT "ENTER FILE NAME:";Fl$
PRINT D$;"OPEN"F1$
PRINT D$;"DELETE"F1$

PRINT D$;"OPEN"F1$
"REM DATA ENTRY/TESTS
" HOME

PRINT "ENTER -1 TO END DATA ENTRY"

PRINT : INPUT " ENTER ACCOUNT NUMBER (35 DIGITS):";AS$

IF. A$ = "-1" THEN 620

IF VAL (A$) = 0 THEN PRINT "PLEASE MAXE AN ENTRY.": GOTO 370
égTolgyotA’) ¢ > 5 THEN - PRINT "YOU ENTERED ";AS$;" PLEASE REENTER.":
INPUT “"ENTER TRANSACTION CODE(1 DIGIT):“;T$

IF VAL (T$) = 0 THEN PRINT "PLEASE MAKE AN ENTRY.": GOTO 410
éSTOLETD(T‘) {) 1 THEN PRINT "YOU ENTERED “;T$;" PLEASE REENTER.":
INPUT "ENTER THE AMOUNT:";Cs$

IF VAL (C$) = 0 THEN PRINT "PLEASE MAKE AN ENTRY.": GOTO 4

IF VAL (C$)) §899.88 THEN PRINT : PRINT "MAXIMUM AMOUNT IS 99!9 89.
PLEASE, REENTER.": PRINT : GOTO 440

FOR X = 1 TO LEN (C$)

IF ASC (MID$ (C$,X,1))) = 48 AND ASC (MID$ (Cs,X,1)) ¢ = 37 OR
ASC (MID$ (C$.X, 1)) = 46 THEN 500

:25“1 "INVALID ENTRY. ONLY NUMBERS AND DECIMAL POINTS ALLOWED.": GOTO

" NEXT X
"REM PRINT TO FILE
"PRINT DS$;"WRITE"F1$

PRINT A$: PRINT T$: PRINT C$
PRINT D$

HOME

GOTO 360

"REM CLOSE FILE
. PRINT D$;"CLOSE"F1$

PRINT "FILE CLOSED"
END

APPLE BASIC: DATA FILE PROGRAMMING

130
4b
{gg REM SOLUTION CH4 SELFTEST PROB 4B
120 REM VARIABLES USED
130 REM F$ = USER ENTERED FILE NAME140
140 REM A$ = ACCOUNT NUMBER
150 REM T$ = TRANSACTION CODE
160 REM C$ = CASH AMOUNT
170 REM X = FOR NEXT LOOP CONTROL VARIABLE
}:8 REM D$ = CONTROL D
200. REM - FILES USED
210 REM SED FILE NAMES: TRANSACTION-I. TRANSACTION-Z (USER SELECTED
AND ENTERED
ggn REM DATASET FORMAT:A$,T$,C$
0 :
:;g REM INITIALIZATION
260 LET D$ = CHRS (4)
270 INPUT “FILE NAME:";F$
280 PRINT Ds;"OPEN"F$
280 HONME
300 : ’ /
g%g REM READ/DISPLAY
330 PRINT : PRINT “A/C#", "T-COD!" "AMOUNT": PRINT b
340 ONERR GOTO 430
350 PRINT D$;"READ"FS$
360 INPUT AS.TQ,CO
370 PRINT Ds - .
380 PRINT AC.TS Cs
380 GOTO 3
400 : .
:%3 REM CLOSE FILE
430 IF PEEX (222) = 5 THEN 450
440 PRINT : PRINT “"UNUSUAL ERROR. PROGRAM TERMINATED.": PRINT
450 PRINT D$;“"CLOSE“FS$
460 PRINT "FILE PRINTED AND CLOSED"
470 END

CREATING AND READING BACK SEQUENTIAL DATA FILES 131

IF LEN (C$).
"INPUT "ENTER

"INPUT "ENTER
IF LEN (Z$) ¢

"LET E$ = N$ + A% + C$ + S8 + I8
"PRINT D$;"WRITE ADDRESS"

STATE CODE:";8$
ggo LEN (88) () Z THEN PRINT "PLEASE

ZIP CODE:";Z$
> 5 THEN PRINT "PLEASE

PRINT E$

PRINT D$
" INPUT "MORE ENTRIES?";Rs$
) "Y" AND .LEFT$ (R$,1) «
FOR NO":
IF LEFTS (R$,1) = "Y" THEN HOME -
"REM

"PRINT D$;"CLOSE ADDRESS"

IF LEFTS (R$,1) (

PRINT "ENTER 'Y'_FOR YES OR 'N’

CLOSE FILE

PRINT "FILE CLOSED"
END

BEM SOLUTION CH4 SELFTEST PROB 5A
REM VARIABLES USED
REN N$ = NAME(20)
REM AS = srnzsr annszss«zo)
REM Cs = CITY(
REM 5% o STATE(D)
REM 28 = 2IP CODE(S
REM E$ = concarznarzn nawassrcsv>
REM D$ = CONTROL D
REM R$ = USER RESPONSE
REM FILE USED
REM SEQUENTIAL FILE NAME: ADDRESS
REM DATASET FORMAT:C$ (ONE STRING)
"REM INITIALIZE
"LET D$ = CHR$ (4)
PRINT D$;"OPEN ADDRESS"
HOME
"REM DATA ENTRY
"INPUT "ENTER NAME:" ;N$
IF LEN (N$) ¢ 20 THEN LET N$ = N$ + " ": GOTO 350
"INPUT "ENTER ADDRESS:";A$,
IF LEN (AS) ¢ 20 THEN LET AS = A$ + " ": COTO 380
"INPUT “ENTER CITY NAME:";C$
¢ 10 THEN LET C$ = C$ + " *: GOTO 410

ENTER A 2 CHAR CODE.": GOTO

ENTER 5-DIGIT CODE.": GOTO 460

> "N" THEN
PRINT : GOTO 550

‘PRINT :

GOTO 340

APPLE BASIC: DATA FILE PROGRAMMING .

REM SOLUTION CH4 SELFTEST PROB 5B

"REM VARIABLES USED
REM . E$ = CONCATENATED DATASET
_ REM D$ = CONTROL D
"REM FILE USED
REM . SEQ. FILE NAME: ADDRESS
REM DATASET FORMAT: E$ (ONE STRING)
"REM INITIALIZE

"LET D$ = CHR$ (4)

PRINT D$;"OPEN ADDRESS"

HOME
"REM READ FILE/PRINT
"ONERR GOTO 42z

]
PRINT g:;”RBAD ADDRESS"

Ds
PRINT LEFT$ (E$,.20)
PRINT MID$ (E$,21,20)
PRINT MIDS$ (E$,41.10)
PRINT MIDS (Es$,51,2) : . e
PRINT RIGHTS (E$,5)

-GOTO 280
_"REM CLOSE FILES
"PRINT D$;"CLOSE ADDRESS"

PRINT “FILE CLOSED" .
END

REM SOLUTION CH4 SELFTEST PROB6A

"REM VARIABLES USED
REM T$ = TEXT LINE
REM F$ = FILE NAME
- REM D$ = CONTROL D
REM R$ = USER RESPONSE
"REM FILES USED
REM SEQ. FILE NAME: LETTER®
REM ¢4 18 USER SELECTED & ENTERED)
"REM INITIALIZE

LET D$ = CHRs (4

INPUT “ENTER LETTER FILE NUMBER:";F$
LET F$ = "LETTER" + F$
PRINT D$;"OPEN“FS$

"REM' DATA ENTRY
"HOME

PRINT “"ENTER TEXT LINE. USE QUOTES AT BEGINNING AND END"

INPUT "TEXT LINE:“;T$
"PRINT D$;"WRITE"F$

PRINT CHR$ (34);: PRINT T$;: PRINT CHRS (34)

PRINT D¢

INPUT "MORE ENTRIES:";RS$

IF LEFTS (R$.,1) ¢ > “"Y" AND LEFTS$ (R$,1) ¢ > "N" THEN
PRINT “ENTER 'Y' FOR YES AND 'N' FOR NO“: PRINT :310

IF LEFTS (R$,1) = "Y" THEN 310
"REM CLOSE FILE
"PRINT D$;"CLOSE"FS$

PRINT “FILE CLOSED"
END

PRINT :

CREATING AND READING BACK SEQUENTIAL DATA FILES 133

REM
"REM

REM
REM
REM

REM
"REM

REM
REM

REM
"REM
"LET D$ = CHRS (4)

SOLUTION CH4 SELFTEST PROB 6B

VARIABLES USED
TEXT LINE

= FILE NAME
D$ = CONTROL D

= USER RESPONSE

FILES USED
SEQ. FILE NAME: LETTERS

-
-
(]

(WHERE # 1S USER SELECTED & ENTERED)
DATASET FORMAT:T$ (ONE STRING)

INITIALIZE

INPUT "ENTER FORM LETTER NUMBER:";F$
LET F$ = “"LETTER" + F$

PRINT D$;"OPEN"F$
"REM
" HOME

READ FILE

ONERR GOTO 420
PRINT D¢ ;"READ"FS$
INPUT T$

PRINT D$

PRINT T

PRINT :

GOTO 340
"REM

"IF PEEX (222) = 5 THEN 440
PRINT "UNUSUAL ERROR. PROGRAM TERMINATED.": -PRINT

CLOSE FILE

PRINT D$;"CLOSE"FS$
PRINT “FILE CLOSED"

END

CHAPTER;EIVE |
Sequential Data File
Utility Programs

Objectives: When you finish this chapter you will be able to:

1. Write a'program to add data to an existing sequential file.

2. * Write a program to make a copy of a sequential data file.

3. Write a program to change the data in an existing sequential file.

4. Write a program to examine the contents in a sequential file and to change,
add, or delete data.

5. Write a program to merge the contents of two sequential files into one file,
maintaining the numeric or alphabetic order of the data.

6. Write a program that uses or combines selected data from more than one
sequential file.

Now that you understand the BASIC statements to create and use sequential data

- files, let’s build on this with more advanced techniques, including writing some file

* utility programs that help in your overall programming using data files. You will also
develop embryonic file applications to practice what you have learned and provide a
basis from which to develop personally useful programs. Most of the data files used |
in this chapter are created with programs you should have written for the Chapter 4
Self-Test, so if you skipped that, go back and write those programs before starting
~ this chapter.

ADDING DATA TO THE END OF A SEQUENTIAL FILE

Unlike other versions of BASIC, it is quite easy to add data to the end of an existing
APPLESOFT sequential file. To accomplish this you must APPEND your file rather
than OPEN it. When you OPEN a file, the file pointer is moved to the first position
in that file so that all subsequent file WRITE operations take place from the beginning
of the file (recall the problem that arises when you attempt to overwrite an existing
file). When you APPEND to an existing file, however, the file pointer is moved to

the end of the file data, so that subsequent file WRITE operations take place starting
after the last piece of existing data, and new data are added or appended beyond the
previous end of the file. The file WRITE procedure is the same as the one used when

134

SEQUENTIAL DATA FILE UTILITY PROGRAMS 135

the file was OPENed. The file APPEND statement looks like the other file operation
statements:

100 PRINT D$;"APPEND FILENAME"

The only “hitch” we have found with the file APPEND operation is that you
can only APPEND to an existing file. If you attempt an APPEND operation to a file
* not previously OPENed, the error condition — FILE NOT FOUND — will abort your

program. To get around this problem (there’s always a way), we will use this pro-
cedure: -

200 PRINT D$;"OPEN FILENAME"
210 PRINT D$;"CLOSE FILENAME"
220 PRINT D$;"APPEND FILENAME"

Let’s try an easy application. Assume you are using your personal computer to
prepare a grocery list for your periodic trips to the grocery store (see problem 2 of the
Chapter 4 Self-Test). Or better yet, in this modern electronic age, your list can be
telecommunicated to the store of your choice and the goods will be ready for your
pickup, with no shopping needed! In any event, every few days you think of new
items to be added to the list to be entered into your APPLE and added to the file.
Each dataset consists of one twenty-character string for the item description and one
numeric value for the quantity of the item needed. With one program, you can enter
the first items into the file and subsequent items as you think of them.

Here is the introductory module:

100 REM APPEND DATA TO EXISTING FILE

110 : :

120 REM VARIABLES USED)

130 REM N$ = ITEM DESCRIPTION"

140 REM Q = QUANTITY TO ORDER

150 REM D$ = CONTROL D

180 REM . RS = USER RESPONSE

}Zg REM F$ = USER ENTERED FILE NAME

180 REM FILES USED

200 REM SEQUENTIAL FILE NAME: GROCERY (USER ENTERED)
g;g REM DATASET FORMAT* N$,Q ’

(@) To complete the next program segment, fill in 270, 280, and 290.

230 REM INITIALIZE

0 :
250 LET D$ = CHRS (4)
280 'INPUT "ENTER FILE NAME:";F$

" 136 APPLE BASIC: DATA FILE PROGRAMMING

(@ 220 :
230 REM INITIALIZE

250 LET D$ = CHR$ (§)

260 INPUT “ENTER FILE NAHB i
270 PRINT D$;“"OPEN"FS$

280 PRINT DO,"CLOSB”F$

290 PRINT Ds$;"APPEND"F$

Here is the data entry routine with five blank lines for you to fill in. Use these
clues: -

Line 370 - test for stop entry.

Line 380 - test for null entry.

Line 390 - test for maximum entry length.

Line 420 - test for minimum entry of 1 and maximum entry of 10.
Line 460 - test for user response of N or NO and branch accordingly.

(@ 300 :
310 REM DATA ENTRY ROUTINE
330 HOME ' .
340 PRINT "TYPE 'STOP' WHEN ALL ITEMS ARE ENTERED."
350 PRINT
360 INPUT "ENTER ITEM DESCRIPTION:";N$
370
380 -
380
300 :
410 INPUT "ENTER QUANTITY:";Q
430 PRINT "YOU ENTERED A QUANTITY OF:";Q _
440 INPUT "IS THAT WHAT YOU WANTED?";R$
450 IF LEFTS (R$,1) {) "N" AND LEFTS (R$,1) () "Y" THEN PRINT
CHRS$ (7);"PLEASE TYPE 'Y' FOR YES OR 'N' FOR NO.": PRINT : GOTO 430
460
470
(@) 300 :
g;g REN DATA ENTRY ROUTINE
330 HOME
340 -PRINT "TYPE 'STOP' WHEN ALL ITEMS ARE ENTERED."
350 PRINT

360 INPUT "ENTER ITEM DESCRIPTION:";N$
370 IF N$ = "STOP" THEN 570)
380 IF LEN (N$) = 0 THEN PRINT : PRINT “"PLEASE ENTER A DESCRIPTION OR
’ 'STOP'": PRINT : GOTO 236
390 IF LEN (N$)) 20 THEN PRINT : PRINT “PLEASE LIMIT DESCRIPTION TO %0
CHARS MAX.": PRINT.: GOTO 38

410 INPUT “ENTER QUANTITY:";Q

420 IF Q> =1 ANDQ ¢ = 10 THEN 500

430 PRINT "YOU ENTERED A QUANTITY OF:";Q

440 INPUT "18 THAT WHAT YOU WANTED?";R$

450 IF LEFTS$ (R$,1) ¢ > "N" AND LEFTS$ (R$,1) ¢) “Y¥Y* THEN PRINT CHR$
(7);"PLEASE TYPE 'Y' FOR YES OR 'N' FOR NO.": PRINT : GOTO 43

:gg IF LEFTS (R$,1) = "N" THEN 410

'

SEQUENTIAL DATA FILE UTILITY PROGRAMS 137

The file WRITE routine should be familiar since it is the same procedure you
used in the last chapter. Fill in lines 500, 510, and 520.

'

(a) 470 :
480 REM WRITE TO FILE ROUTINE
490 ,

530 GOTO 330
550 REM CLOSE FILE
570 PRINT D$;"CLOSE"FS$

g:: ::éﬂ? : PRINT “NEW DATA APPENDED AND FILE CLOSED."

480 REM WRITE TO FILE ROUTINE

500 PRINT D$;"WRITE"FS$
510 PRINT Ns: PRINT Q
320 PRINT Ds

$30 GOTO 330

550 REM CLOSE FILE
570 PRINT D$;"CLOSE"F$

580 PRINT : PRINT "NEW DATA APPfNDED AND FILE CLbSED.“
390 END

Following is a complete listing .of the program you have developed:

138 APPLE BASIC: DATA FILE PROGRAMMING

100 REM APPEND DATA TO EXISTING FILE
120 REM. VARIABLES USED :
130 REM N$ = ITEM DESCRIPTION
140 REM Q = QUANTITY TD ORDER
150 REM D$ = CONTROL D
180 REM R$ = USER RESPONSE
170 ReM F$ = USER ENTERED FILE NAME
180 REM FILES USED .
200 REM SEQUENTIAL FILE NAME: GROCERY (USER ENTERED)
gig REM DATASET FORMAT® Ns,Q
230 REM INITIALIZE
240 :

250 LET D$ = CHRS (4)

260 INPUT "ENTER FILE NAME:";F$
270 PRINT D$;"OPEN"F$

280 PRINT D$;"CLOSE"F$

280 PRINT D$;"APPEND"F$

300 :

310 Rem DATA ENTRY ROUTINE

330 HOME

340 - PRINT "TYPE 'STOP' WHEN ALL ITEMS ARE ENTERED."
350 PRINT .

360 INPUT "ENTER ITEM DESCRIPTION:";N$

370 IF N$ = "STOP" THEN 570

380 IF LEN (N$) = D THEN PRINT : PRINT “PLEASE ENTER A DESCRIPTION OR _
"STOP'": PRINT : GOTO 360

380 IF LEN (N$) > 20 THEN PRINT : PRINT "PLEASE LIMIT DESCRIPTION TO 20
CHARS.MAX.": PRINT : GOTO 360 :

410 INPUT “"ENTER QUANTITY:";Q

420 IF Q) =1 ANDQ ¢ = 10 THEN 500

430 PRINT "YOU ENTERED A QUANTITY OF:";0

440 INPUT "1S THAT WHAT YOU WANTED?";R$

450 IF LEFTS (R$,1) ¢ > "N" AND LEFTS (R$,1) ¢) “Y" THEN PRINT CHRs
(7);"PLEASE TYPE 'Y' FOR YES OR 'N' FOR NO.": PRINT : GOTO 430

460 IF LEFTS (R$,1) = "N" THEN 410 -

480 REM WRITE TO FILE ROUTINE
500 PRINT D$;"WRITE"FS$
510 PRINT N$: PRINT Q
520 PRINT D

530 GOTO 330

550 REM CLOSE FILE

570 PRINT DS ; "CLOSE"FS

580 P:;NT PRINT “"NEW DATA APPENDED AND FILE CLOSED."
580 E

(a) Write the corresponding program line number(s) for each step listed below.
1. Open the file for the APPEND operation.

2. Enter and test the next dataset.
3. Write the dataset to the file.
4. Close the file.
5

. What must the user enter to cause the close operation to take place?

SEQUENTIAL DATA FILE UTILITY PROGRAMS 139

@@ 1. 290
2. 310-460
3. 480-530
4. 570
5. STOP

Now enter and RUN the program-appending data to the file named GROCERY.
Use the program to read GROCERY (Chapter 4 Self-Test, problem 2a) to verify the
success of the APPEND procedure.

You can use another procedure to add data to the end of the sequential data file
or to make changes in the contents of a file. (We’ll show you how to do that later.)
The success of this procedure depends on how much data the file contains and the
amount of available memory in your computer. The procedure uses arrays. Follow
these steps: ’

OPEN the file

READ the file contents into one or more arrays.
Add to the array or change the items in the array.
CLOSE the file, DELETE the file.

OPEN the file.

WRITE the current array contents to the file.
CLOSE the file.

Use this procedure only if the file is rather small and the datasets are easy to
manage (for example, when the data are all packed into one string variable). If these
two circumstances are present, you are not likely to encounter errors. However, when
files are large or data are placed into more than one array or into a two-dimensional
array, then the probablhty increases that data will get lost or “forgotten,” resulting
in errors.

You will see this procedure used in program hstmgs for computers other than
the APPLE. For the APPLE, we recommend the APPEND procedure as illustrated in
the grocery list program. It'is clean and neat!

N kEwN =

MAKING A FILE COPY

A very useful file utility program is one that makes a duplicate copy of your data file.
Your APPLE system master disk is equipped with such a program. This allows you to
make back-up copies of data files or copy a file from one disk to another. In this
section, however, we will show you how to write such a program in BASIC. A file
copy utility program in BASIC not only allows you to make back-up copies of data
files, it can also be incorporated into later programs to change data in existing data
files.

You now have the background to write a file copying program. Follow these
steps:

1. OPEN the source or original file. (Use the file named CUST cfeated in the
Chapter 4 Self-Test.) '

140 APPLE BASIC: DATA FILE PROGRAMMING

@

VPN AW

OPEN the file that will become the copy. (Name this file CUST COPY.)
Test the source file for end-of-data using ONERR.

READ the first dataset.

Terminate the READ operation.

WRITE to the copy file. K

Terminate the WRITE operation.

Return to step 3 above.

CLOSE both files.

Assume that you are going to copy a file that contains an unknown number of
datasets, with each dataset containing two twenty-five-character strings and two '
- numeric variables. Use the file named CUST created in the Chapter 4 Self-Test.
Here is the introductory module and the initialization section. Fill in the blanks in
lines 260, 290, and 320 to complete steps 1 and 2 of the outline.

. REM- UTILITY PROGRAM TO COPY FILES

REM VARIABLES USED

REM As$, B$ = STRING VARIABLES

REM. " A,B = NUMERIC VARIABLES

REM D$ = CONTROL D

REM F$ = USER ENTERED SOURCE FILE NAME

‘REM Fl$ = USER ENTERED COPY FILE NAME

REM FILES USED

REM SEQUENTIAL SOURCE FILE NAME: CUST (USER ENTERED)
REM SEQ. COPY FILE NAME: CUST COPY (USER ENTERED)
REM ‘DATASET FORMAT:AS$ B$.A.B

"REM INITIALIZATION
INPUT "ENTER SOURCE FILE NAME:";F$
INPUT "ENTER COPY FILE NAME:";Fls

PRINT D$; "OPEN"F1$
PRINT D$;"DELETE“F1$

REM UTILITY PROGRAM TO COPY FILES

REM VARIABLES USED

REM A$, B$S = STRING VARIABLES

REM A,B = NUMERIC VARIABLES

REM D$ = CONTROL D

REM F$ = USER ENTERED SOURCE FILE NAME

REM F1$ = USER ENTERED COPY FILE NAME

REM FILES USED

REM SEQUENTIAL SOQURCE FILE NAME: CUST (USER ENTERED)
REM SEQ. COPY FILE NAME: CUST COPY (USER ENTERED)
REM DATASET FORMAT:A$.BS.A.B

REM INITIALIZATION

LET D$ = CHRS (4)

INPUT “ENTER SOURCE FILE NAME:“;Fs$
INPUT “ENTER COPY FILE NAME:";F1$
PRINT D$;"OPEN"FS$

PRINT D$;"OPEN"F1$

PRINT D$;"DELETE"F1$

PRINT D$;"OPEN"F1$

SEQUENTIAL DATA FILE UTILITY PROGRAMS 141

@

The routine at lines 300, 310, and 320 is a good procedure to follow; always
OPEN, then DELETE, a file to which you plan to WRITE, to avoid overprinting
existing data (if any) and ending up with a possible mixture of new and old data in
your file. The second OPEN statement at line 320 assures an empty OPEN file for
the copy.
Here is the program module to READ from the source file and WRITE to the
copy file. Fill in the blanks in lines 370, 380, 430, and 440 to complete steps 3, 4,
5,6, 7, and 8 of the outline. .

REM READ FROM SOURCE FILE

"ONERR GOTO 500

PRINT D$
"REM

WRITE TO COPY FILE

PRINT D$

GOTO 370

@-

REM CLOSE FILES
IF PEEXK (222) ¢) 5 THEN PRINT :
TERMINATED.": PRINT : GOTO 510
END
CLOSE FILES

REN
“ONERR GOTO 500

'READ FROM SOURCE FILE

PRINT D$;"READ"F$
INPUT AS$,BS,A,B

PRINT D$
"REM
"PRINT D$;"VRITE"F1$

WRITE TO COPY FILE

PRINT AS:
PRINT Ds

PRINT BS$:

GOTO 370

PRINT A: PRINT B

And finally, the close file routine. Fill in the blank at line 490 to close both
files with one CLOSE statement, completing step 9 of the outline.

480
480
500

510

520

"REM
"IF PEEK (222) |

> 5 THEN PRINT
TERMINATED.": PRINT : GOTO 510
PRINT D$; "CLOSE"

PRINT “UNUSUAL ERROR PROGRAM

: PRINT "UNUSUAL ERROR PROGRAM

142 APPLE BASIC: DATA FILE PROGRAMMING

Here is a complete hstmg of the program you havé just completed.

- 100 REM UTILITY PROGRAM TO COPY FILES

120 REM VARIABLES USED

130 REM A$, B$ = STRING VARIABLES

140 REM A,B = NUMERIC VARIABLES

150 REM D$ = CONTROL D ‘

160 REM F$ = USER ENTERED SOURCE FILE NAME

izg REM F1$ = USER ENTERED COPY FILE NAME

180 REM FILES USED

200 REM - SEQUENTIAL SOURCE FILE NAME: CUST (USER ENTERED)
. 210 REM 8EQ. COPY FILE NAME: CUST COPY (USER ENTERED) -

ggg REM DATASET FORMAT:A$,BS A,B

ggg "REM . INITIALIZATION

260 LET D$ = CHRS (4)

270 INPUT "ENTER SOURCE FILE NAME:";F$
280 INPUT "ENTER COPY FILE NAME:";F1$
260 PRINT D$;“"OPEN"FS$

800 PRINT D$;"OPEN"F1$

310 PRINT D$;"DELETE"F1$

320 PRINT D$;"OPEN"F1$

340 REM READ FROM SOURCE FILE

380 ONERR GOTO 500
370 PRINT D$;"READ“FS$
380 INPUT AS$.BS,A.B
380 PRINT Ds

410" REM WRITE TO COPY FILE

430 PRINT D$;"WRITE"F1$

440 PRINT A$: PRINT BS: PRINT A: PRINT B
450 PRINT D

480 GOTO 370

480 REM CLOSE FILES
. 500 "IF PEEX (222) ¢) S THEN PRINT : PRINT "UNUSUAL ERROR PROGRAM
TERMINATED.": PRINT : GOTO 510 .

510 PRINT Ds;"CLOSE"
520 END

(@ When you RUN this program, what appears on the screen?

" (@ RUN A
ENTER SOURCE FILE NAME:
ENTER COPY FILE NAME:
(CURSOR)

- SEQUENTIAL DATA FILE UTILITY PROGRAMS 143

It can be unsettling to get no more than the above display from a program when
so much internal activity is supposed to be taking place, The final flashing “cursor”
is the only clue that your program completed its task. But you don’t know for sure
that it did. We have a suggestion.

Add a statement at line 505 that prints a message mdlcatmg that the]ob 1s
complete. For example,

505 PRINT “COPY COMPLETED”

A statement such as this lets you know that the program did execute past the error .
trap at line 500. This will verify that at least that much was done. Then add line 515
PRINT “FILE CLOSED” to indicate to the user that the program has executed past
the CLOSE operation.

The blank PRINT DS$ in lines 390 and 450 were placed there to terminate the -
operation in progress before starting a new operation. In this case, however, the
termination procedure was not necessary, as a new PRINT D$ of any type terminates
the previous file operation. That is, the WRITE statement in line 430 would have
automatically terminated the READ from line 370. We left the blank PRINT D$
statements in our program for clarity to the reader, and encourage you to do the
same. Though not always necessary, the blank PRINT D$ to terminate a file operation
makes your program much more readable and avoids the question, “Is this the time
CTRL D is needed or not?”

You now have a complete file-copying utility program. You can use it to copy
any sequential data file by simply changing the INPUT and PRINT statements to
conform to the data format or datasets in the particular data file you want to copy. .
We encourage you to enter and RUN this program using the datafile named CUST with
the corresponding dataset format that you created in the Chapter 4 Self-Test, problem
la.

After you have created CUST COPY, modify the program you wrote for the
Chapter 4 Self-Test, problem 1b, to read and display the contents of CUST COPY.
Modify lines 240, 290, and 390 in the solution we provided for Chapter 4 Self-Test,
problem 1b.

(a 240
290
390

(a) 240 PRINT D$;"OPEN CUST COPY"
280 PRINT D$;"READ CUST COPY"
390 PRINT D$;"CLOSE CUST COPY"

144 APPLE BASIC: DATA FILE PROGRAMMING

CHANGING DATA IN A FILE

’

We implied earlier in this book that it is not easy to change data that are already
located in a sequential data file, but it can be done. The procedure is straightforward:
copy all unchanged data into a temporary file, make any changes by writing to the
temporary file, and then either copy the temporary file back into the original file or
use the RENAME statement. A few tricks will be explained, as you are guided in
writing this program.

JRUN
ENTER FILE NAME:CREDIT
ENTER 'STOP' TO END DATA ENTRY.

ENTER CUSTOMER #:12345

PAUL ARMITICE CREDIT RATING: 4

ENTER NEW CREDIT RATING:S

RENAME COMPLETED)

DO YOU HAVE MORE CREDIT RATING CHANGES?Y
ENTER 'STOP' TO END DATA ENTRY.

ENTER CUSTOMER #:12346

MISS PIGGY CREDIT RATING: 1

ENTER NEW CREDIT RATING:2

RENAME COMPLETED

DO YOU HAVE MORE CREDIT RATING CHANGES?NO

PROGRAM COMPLETED AS REQUESTED.

While the procedure outlined below is tailored to the particular dataset used in this
example, the basic idea is easily adaptable to data files with different datasets.

1.

2.
3.

11.
12.

13.

OPEN the customer credit file. Use the file named CREDIT created in the
Chapter 4 Self-Test.

OPEN a temporary file. Name this file TEMP

Enter the customer number for the client whose credit rating is to be
changed. Include data-entry tests and a “no more searches” option.
Check for end-of-data in credit file using ONERR. If end-of-data is found:
a. display an error message indicating an unsuccessful search.

* b. CLOSE both files.

c. return to step 1.

READ a complete dataset.

Test for wanted customer number.

PRINT rejected datasets to temporary file (those which are to be copled
to the new file unchanged).

Display data; ask user to enter changes, with data entry test for the changes.
PRINT dataset with new data to temporary file.

PRINT remainder of credit file datasets (those with no changes) to
temporary file.

CLOSE both files.

Copy temporary file to CREDIT file, or use the RENAME operation to
make the temporary file the new corrected credit file.

Provide the user with the option of repeating the process.

The program will be developed one segment at a time, with blanks for you to
fill in, as before. Below is the introductory module, which you should understand by
now, followed by the first data entry routine with data entry checks. Read it over

SEQUENTIAL DATA FILE UTILITY PROGRAMS

145

carefully to get the flow of the program. The first three steps of the outline are
completed in this module.

igo REN CREDIT FILE CHANGER
0 : .
120 REM VARIABLES USED
130 REM F$ = FILE NAME
140 REM cs$ = CUST. #
150 REM Cl$ = CUST. #
160 REM N$ = NAME
170 REM R$ = ENTRY VARIABLE
180 REM R.Rl = CREDIT RATING VALUE
;gz REM Ds = CONTROL D
210 REM FILES USED
220 REM SEQ.FILE NAME: CREDIT (USER ENTERED)
230 REM TEMPORARY FILE NAME: TEMP
-ggo REM DATSET FORMAT: C$.N$.R
0 : .
260 REM INITIALIZE
270

280 LET D$ = CHRS$

280 HOME : INPUT “BNTER FILE NAME:";Fs$
300 PRINT D$;"OPEN"F$

310 PRINT D¢ ;"OPEN TEMP"

330 REM DATA ENTRY ROUTINE

350 HOME

360 PRINT "ENTER 'STOP' TO END DATA ENTRY."
370 PRINT

380 INPUT "ENTER CUSTOMER #:";C$

380 IF C$ = "STOP" THEN 1070

400 IF LEN (C$) = 0 THEN PRINT "ENTER CUSTOMER NUMBER OR TYPE 'STOP'":

GOTO 380

410 égTongn(Cﬁ) ¢ > 5 THEN PRINT “"ENTRY ERROR. REENTER WITH 5 DIGITS.":
420 IF VAL (C$) = 0 THEN PRINT "ENTRY ERROR. NUMBERS ONLY.": GOTO 380

Now for the interesting part. The program must search through the data file for

the customer number that the user entered.

'(a) When searching the data file for the customer number and encountering the end

of the file without finding the customer, what should the program do?

(b) Before another search is made for a customer number in the file, what must be

done to the file?

146

APPLE BASIC: DATA FILE PROGRAMMING

@
(b)

(a)

@

(®)

Print an error message indicating that the customer was not in the file (see the
sample RUN shown earlier).

CLOSE and reOPEN the files to reset the file pointer to the beginning of the
data files. (Very important!)

Fill in lines 470, 480, 490, 510, 520, and 530 below. These correspond to
outline steps 5,6, and 7.

440 REM FILE SEARCH ROUTINE
480 ONERR COTO 550

500 IF C$ = C1$ THEN 630

540 GOTO 470

550 PRINT "CHR$ (7);"ERROR MESSAGE. WE CANNOT FIND"
560 PRINT "CUSTOMER # ":C$;" ON THE FILE."

570 PRINT "PLEASE CHECK YOUR NUMBER AND REENTER."
580 PRINT D$;"CLOSE"

580 GOTO 300

440 REM FILE SEARCH ROUTINE

460 ONERR GOTO 5350

470 PRINT D$;"READ"F$

480 INPUT C1$,N$.R

490 PRINT Ds$

500 IF C$ = C1$ THEN 630

510 PRINT D$;"WRITE TEMP" .

520 PRINT C1$: PRINT N$: PRINT R

530 PRINT D¢ .

540 GOTO 470

550 PRINT CHRS (7);"ERROR MESSAGE. WE CANNOT FIND"
360 PRINT "CUSTOMER # ";C¢;" ON THE FILE."

570 PRINT "PLEASE CHECK YOUR NUMBER AND REENTER."
580 PRINT D$;"CLOSE"

580 GOTO 300

In the solution above, why was variable C1$ used instead of C$? in line 4807
(See line 380.)

If you delete line 580 above, then RUN the program, what will happen if an
incorrect customer number is entered at line 300 and then, after the error
message at line 570, a correct customer number is entered?

SEQUENTIAL DATA FILE UTILITY PROGRAMS 147

(@) Two different assignments would have been made to C$, creating a program error.
Note the error message at lines 550 to 570.

(b) The ONERR check in line 460 will detect the end of the file for both entries,
and the error message will be printed after both entries. The second customer
number may be valid, but since the pointer was not reset to the beginning of
the file, the error message will reappear. ’

When the file has been searched and the correct customer found, the program
prints the customer name on the screen (line 640) as a double check to the operator
that the correction is being made for the right customer. Outline steps 8 and 9 are
contained in this module.

810

820 :

830
640
850
660

670

750 :

REM CUST # FOUND. PROCEED W/ DATA ENTRY

HOME

PRINT N$;" CREDIT RATING: "R

INPUT “"ENTER NEW CREDIT RATING:" ;RS

IF LEN (R$) () 1 THEN PRINT "ONLY ONE DIGIT NUMBER IS
ACCEPTABLE.": GOTO 850

IF VAL (R$) (1 OR VAL (R$) > 5 THEN PRINT "NUMBERS 1-5 ONLY,
PLEASE.": GOTO 650

LET R1 = VAL (Rs,
"REM PRINT NEW INFO TO TEMP
"PRINT D$;"WRITE TEMP"

PRINT C$6: PRINT N$: PRINT Rl
PRINT Ds$

In line 730, the new customer rating (R1) is written into the temporary file,
along with the accompanying customer number and name. You have now completed
the routines to search the original file and to place old and new data into the tempo-

rary file.

(@) Considering the location of the file p.oilnteI in the CREDIT file, what should the
program do next? .

148 APPLE BASIC: DATA FILE PROGRAMMING

() Write the remainder of the CREDIT file to the temporary file.

Fill in all the blanks in the progia.m segment below, including lines 790, 800,
810, 820, 830, 840, and 910, completing steps 10 and 11 of the outline.

(@ ;gg REM PRINT REMAINDER OF FILE TO TEMP
780 ONERR GOTO 890

850 GOTO 780
870 REM CLOSB FILES

880 "IF PEEK (222) = 5 THEN 910
900 PRINT : PRINT “UNUSUAL ERROR. PROGRAM TERMINATED.": PRINT

(a) 780 REM PRINT REMAINDER OF FILE TO TEMP
780 ONERR GOTO 890
780 PRINT D$;"READ"F$
800 INPUT C$,N$, R
‘820 PRINT D$;"WRITE TEMP"
830 PRINT C$: PRINT N$: PRINT R
840 PRINT Ds
850 COTO 790 _
870 REM CLOSE FILES
890 IF PEEX (222) = 5 THEN

800 PRINT : PRINT "UNUSUAL EBHOR PROGRAM TERMINATED.": PRINT
910 PRINT Ds$;"CLOSE"

The final program module should copy the complete temporary file back into
the original credit file. We could use a file copy program like the one completed
earlier in this chapter for that. However, your APPLE has a command that allows you
to RENAME a program or file. It is quite easy to use:

100 PRINT D$;"RENAME OLD NAME,NEW NAME"

Or, if you are using files named in variables:

110 PRINT D$;"RENAME"FS$ F1$
or
120 PRINT D$;"RENAME OLD NAME,"F1l$

. Note: The punctuation shown above (the comma) is very important.

- SEQUENTIAL DATA FILE UTILITY PROGRAMS 149

Your files should be closed before you RENAME. If not, however, RENAME
will close them first. There is one problem with RENAME: It does not bother to
check whether there is already another program with the new name on your disk. It
just moves ahead. This can result in two files on your disk with the same name — in
which case you have a real problem. The solution we devised was to DELETE the
old copy of the credit file before we RENAMEd the temporary file. Here is the final
module of the program that completes the copy or RENAME operatlon including
~ steps 12 and 13 of our original procedure outline.

930 _REM DELETE/RENAME FILE
350 'PRINT Ds:"DELETE"Fs

860 PRINT D$;"RENAME TEMP,“F$
870 PRINT "RENAME COMPLETED"

890 REM CONTINUE REQUEST

1010 INPUT "DO YOU HAVE MORE CREDIT RATING CHANGES?";R$

1020 IF LEFTS$ (R$,1) ¢) “Y" AND LEFTS$ (R$,1) ¢ > "N" THEN PRINT
CHR$ (7);"ENTER 'Y' FOR YES OR 'N' FOR NO.": PRINT : GOTO 1010

1030 IF LEFTS (R$,1) = "Y" THEN 300D

ig:g ::éNT : PRINT "PROGRAM COMPLETED AS REQUESTED."

If you RUN this program with large files, each change will take considerable
computer time. If you enter the data in the original file in customer number order,
and also enter all changes in customer number order; the need to repeatedly execute
the RENAME routine is eliminated, reducing the computer time between transactions.

Here is a complete listing of the credit file change program. You are encouraged
to enter and RUN this program using the datafile named CREDIT that you. created in
the Chapter 4 Self-Test.

APPLE BASIC: DATA FILE PROGRAMMING

REM CREDIT FILE CHANGER

REM vanxan;zs USED

REM F$ = FILE NAME

REM C$ = CUST. #

REM _ Cls = CUST. #

REM N$ = NAME

REM R$ = ENTRY VARIABLE

REM R,R1 = CREDIT RATING VALUE
REM D$ = CONTROL D

REM FILES USED

REM SEQ.FILE NAME: CREDIT (USER ENTERED)
REM 'TEMPORARY FILE NAME: TEMP
REM DATSET FORMAT: C$,N$,R
REM INITIALIZE

"LET D$ = CHRS (4)

HOME : INPUT "ENTER FILE NAME:";F$
PRINT D$;"OPEN"F$

PRINT D$;“OPEN TEMP"
"REM DATA ENTRY ROUTINE
" HOME

PRINT "ENTER 'STOP' TO END DATA ENTRY."
PRINT

INPUT "ENTER CUSTOMER #:";C$

IF C$ = "STOP" THEN 1080

IF LEN (C$) = 0 THEN PRINT "ENTER CUSTOHER NUMBER OR TYPE 'STOP'":

GOTO 380

éST LEN (C$) ¢ > 5 THEN PRINT "ENTRY ERROR. REENTER WITH 5 DIGITS.":
0 380

IF VAL (C$) = 0 THEN PRINT "ENTRY ERROR. NUMBERS ONLY.": GOTO 380
"REM FILE SEARCH ROUTINE
"ONERR GOTO 550

PRINT D$;"READ"FS$

INPUT Cl$,Ns R

PRINT D¢

IF C$ = Cl8 THEN 630

PRINT D$;"WRITE TEMP"

PRINT C1$: PRINT N$: PRINT R

PRINT D$:

GOTO 470

PRINT CHR$ (7);"ERROR MESSAGE. WE CANNOT FIND"
PRINT "CUSTOMER # “;C$;" ON THE FILE."

PRINT “PLEASE CHECK YOUR NUMBER AND REENTER."
PRINT D$;"CLOSE"

GOTO 300

"REM CUST # FOUND. PROCEED W/ DATA ENTRY
"HOME

PRINT N$;“ CREDIT RATING: ";R

INPUT "ENTER NEW CREDIT RATING:";R$

IF LEN (R$) ¢ > 1 THEN PRINT "ONLY ONE DIGIT NUMBER 18
ACCEPTABLE.": GOTO 650

IF VAL (R$) ¢ 1 OR VAL (R$) > 5 THEN PRINT "NUMBERS 1-5 ONLY,
PLEASE.": GOTO 650

LET Rl = VAL (RS$)
"REM PRINT NEW INFO TO TEMP
"PRINT D$;"WRITE TEMP"

PRINT C$: PRINT N$: PRINT Rl

PRINT D$

SEQUENTIAL DATA.FILE UTILITY PROGRAMS

151

REM PRINT REMAINDER OF FILE TO TEMP
"ONERR COTO 890

PRINT D$;"READ"F$
INPUT C$ NS .R

- PRINT D¢

PRINT D$;"WRITE TEMP"
PRINT Cs: PRINT N$: PRINT R
PRINT Ds$

GOTO 780 ,
"REM CLOSE FILES
"IF PEEK (222) = 5 THEN 9

PRINT : PRINT "UNUSUAL BRROR PROGRAM TERMINATED.": PRINT

PRINT Ds ;" CLOSE"
"REM DELETE/RENAME FILE
"PRINT D$;"DELETE"FS$

PRINT D$;"RENAME TEMP,"F$ -

PRINT "RENAME COMPLETED"
"REM CONTINVE REQUEST

. INPUT "DO YOU HAVE MORE CREDIT RATING CHANGES?" ;RS

IF LEFTS (R$,1) ¢ > “Y" AND LEFTS (R$.1) (. > "N" THEN PRINT
CHRS (7); “ENTBR ‘Y' FOR YES OR 'N' FOR NO.": PRINT : GOTO 1010
IF LEFTS (R$,1) = "¥Y" THEN 300

g:gNT : PRINT "PROGRAM COMPLETED AS REQUESTED."

Write the corresponding program line number(s) for each step in the outline.
1. OPEN the credit file.
2. OPEN a temporary file.

3. Enter the customer number, the item to be searched (include data entry

tests and a “no more searches™ option).
4. Check for end-of-data in credit file. If end-of-data is found:

a. display an error message indicating an unsuccessful search
b. CLOSE both files.
c. return to step 1.

READ a complete dataset.

Test for wanted customer number.

PRINT rejected datasets to temporary file.
Display needed mformatlon ask user for changes wﬂ:h data entry test.

®N o w

9. PRINT dataset with new data to temporary file.
10. PRINT remainder of credit file to temporary file.
11. CLOSE both files.
12. RENAME temporary file as credit ﬁle.

13. Provide the user with the option of repeating the process.

152 APPLE BASIC: DATA FILE PROGRAMMING

(@ 1. 300
2. 310
3. 360-420
4. 460
ta. 550-570
4b. 580 -
4c. 590
5. 470-490
6. 500
7. 510-530
8. 640-680
9. 720-740
10. 780-850
11. 910
12. 950-970
13. 1010-1040

EDITING, DELETING, AND INSERTING FILE DATA

Whenever we work extensively with files, we write a small utility. program that lets us
read through the file, one item at a time, ‘to verify that everything is as it should be. -
A properly written data file editing program also lets you make changes in the file
data as it reads through the file. We will start with a simple program to examine the
contents of a file, one data item at a time. Our example will use the previous apph-
cation — the CREDIT file. Remember the dataset consists of:

1. a five-digit customer number stored as a string
2. a twenty-character customer name ‘
3. a credit rating, stored as a numeric value from 1 through 5

The first program below allows you to look at each dataset, one item at a time,
with the prompt “PRESS RETURN TO CONTINUE.” The PRESS RETURN TO
_ CONTINUE techinique is very popular for CRT screen-oriented systems. The program
allows the user to review the data displayed for the length of time needed and then
move to the next dataset. The program then refreshes, or clears, the screen to remove
“screen clutter” before the next data are displayed, using the HOME instruction.
Examine the program to see how the user INPUT statement is used in the PRESS
RETURN TO CONTINUE technique.

SEQUENTIAL DATA FILE UTILITY PROGRAMS 1-5‘3

100 REM CREDIT FILE EDITOR (VERSION 1)
110 REM THIS PROGRAM DEMONSTRATES . o -
}gg REM PRESS 'RETURN' TO CONTINUE b
140 REM VARIABLES USED
150 REM C$ = CUST # (5)
160 REM N$ = CUST NAME (20) .
170 . REM R = CREDIT RATINC (1)
180 REM RS = USER RESPONSE
180 REM F$ = FILE NAME
%gg REM Ds - CONTROL D
220 REM FILES USED
230 REM SEQ. FILE NAME: CREDIT (USER ENTERED)
:;0 REM DATASET FORMAT: C$,NS$.R
0 :
%3: REM INITIAL!ZATION

280 LET D$ = CHR$ (&)
290 INPUT “ENTER FILE NAME:";Fs$
300 PRINT Ds$;"OPEN"F$

320 REM READ FILE AND DISPLAY

340 HOME .
350 PRINT "PRESS 'RETURN' TO DISPLAY NEXIT ITEM.": PRINT
360 ONERR GOTO 510 .
370 PRINT D$;"READ"FS$
380 INPUT C$,N$.R
380 PRINT D$: . ‘ N
- 400 PRINT C$:

410 INPUT "";R$
420 PRINT N$

: 430 INPUT "":R$

\ 440 PRINT R

450 INPUT ““;R$
460 PRINT
470 GOTO 340

490 REM CLOSE FILE

510 IF PEEXK (222) = 5 THEN 53D

520 PRINT : PRINT "UNUSUAL ERROR PROGRAM TERMINATED. "
530 PRINT D$;"CLOSE"

540 HOME

550 PRINT “JOB COMPLETED"

360 END

(2) What is assigned to R$ in lines 410, 430, and 450?

/

‘(b) Since R$ acts as a dummy vanable in the program above, what is the purpose of
lines 410, 430 and 450?

(c) How often was the screen “refreshed” in the program above?

154

()
(b)

©)

APPLE BASIC: DATA FILE PROGRAMMING

Nothing (a null string)

Keeps the data items on the CRT display until the user presses RETURN to
continue (Program waits at INPUT statement until RETURN key is pressed,
with or without any other entry.)

Before (or after) each complete dataset of three items: was displayed

The next version of this program allows the user to change any data items as

they are displayed on the screen, or accept data “as is” by pressing RETURN to
continue. The procedure includes copying the credit data file to a temporary file
“TEMPFIL” as you read through the file making changes. Here is the first part of
the program, which includes the ability to change the customer number.

'REM CREDIT FILE EDITOR (VERSION 2)
REM THIS PROGRAM DEMONSTRATES
REM TYPE 'C' TO CHANGE ITEM, OR

RENM .PRESS 'RETURN' TO CONTINUE.

REM VARIABLES USED
REM C$ = CUST # (5))
REM N$ = CUST NAME (20)
REM R = CREDIT RATING
REM R$ = USER RESPONSE
* REM F$ = FILE NAME
" REM D$ = CONTROL D
REM FILES USED .
REM SEQ. FILE NAME: CREDIT (USER ENTERED)

REM SEQ. TEMPORARY FILE NAME: TEHPP

REM , DATASET-FORMAT: Cs.N#,R
"REM INITIALIZATION
"LET D$ = CHR$ (4)

INPUT “ENTER FILE NAME:";F$
PRINT D$;"OPEN"F$

PRINT D$;"OPEN TEMPFIL"
PRINT D$;"DELETE TEMPFIL"

PRINT D¢ ;“OPEN TEMPFIL"
"REM READ FILE AND DISPLAY

PRINT "TYPE 'C' TO CHANGE ITEM DISPLAYED."

PRINT “PRESS 'RETURN' TO CONTINUE WITHOUT CHANGES."
ONERR GOTOD 770

PRINT D$;"READ"FS$

INPUT g:,NC,R

'REM DISPLAY & CHANGE OPTION FOR CUST. #
"PRINT : pggm‘ cs

INPUT “*;

IF R$ ¢ > "" AND R$ ¢) “C" THBN PRINT CHR$ (7);"ENTRY ERROR. TRY
AGAIN "- GOTO 500

IF LEPTS (R$,1) = “C" THEN COSUB 880

"REM CHANGE CUST # SUBROUTINE
"INPUT "ENTER NEV CUST. #:";C$

IF LEN (C$) = 0 THEN PR}NT "ENTER NUMBERS PLEASE.": GOTO 740

“IF LEN (C$) ¢) 5 THEN PRINT "ENTRY ERROR. REENTER WITH 5

DIGITS.": GOTO 880 .
IF VAL (C$) = O THEN PRINT "ENTRY ERROR, NUMBERS ONLY.": COTO 880

RETURN

SEQUENTIAL DATA FILE UTILITY PROGRAMS 155

Notice the few additions: the temporary file (lines 260 and 340); the instruction
changes (lines 130 and 370); and the entry test (line 470). For reasons that will be-
come apparent, a subroutine (lines 700 through 750) is used for entering the change
to the customer number. The same data entry checks are used that were originally
used in the credit file creating program. Caution: This program segment does not
write the new customer number to TEMPFIL. ' In order to maintain identical files,
use one statement to write the entire dataset into TEMPFIL as was originally done
with the credit rating data file. If you are particularly sharp, you may have noted
that the new customer number was assigned to C$, replacing the old customer number
stored there. Can you look ahead and see why? ‘

Now its your turn. Write a routine that will allow a change in the customer
name. Use the subroutine format like that above. Fill in lines 960, 970, 980, and
990.

GD 540 REM DISPLAY- AND CHANGE OPTION FOR NAME

580 PRINT : PRINT Ns

370 INPUT “"“;R$ C

580 IF LEFTS (Rs,1) ¢ > "" AND LEFTS (Rs,l)) "C" THEN PRINT :
PRINT "PRESS 'RETURN' FOR NO CHANGE OR BNTER 'C' TO CHANGE NANME.":
PRINT : GOTO 570

380 IF Rs = “C" THEN GOSUB 960

840 REM NAME CHANGE SUBROUTINE

-@0 540 REM DISPLAY AND CHANGE OPTION FOR NAME
550 : :
560 PRINT : PRINT N$:
570 INPUT "";R$!
- 580 IF LEFTS (R$,1) ¢ > "" AND LEFTS$ (R$,1) ¢) "C" THEN PRINT :
PRINT "PRESS 'RETURN' FOR NO CHANGE OR ENTER 'C' TO CHANGE NAME.":
PRINT : GOTO 570 .) .
ggg . IF R$ = “C" THEN GOSUB 960
:;g REM NAME CHANGE SUBROUTINE
960 INPUT "ENTER NEW NAME:";N$)
870 IF LEN (N$) = 0 THEN PRINT : PRINT "NO ENTRY MADE. PLEASE ENTER AS
. REQUESTED.": PRINT : GOTO 9860
980 IF LEN (N$) > 20 THEN PRINT : PRINT "ABBREVIATE NAHE TO 20
CHARACTERS OR LESS.": PRINT : GOTO
Bsgo‘RETURN
10 :

156 APPLE BASIC: DATA FILE PROGRAMMING

Nice work! Now, write a program segment . that allows a change to be entered
for the credit rating. Upon returning from the subroutine, have the program record
the entire dataset, including changes, if any, to TEMPFIL. Fill in lines 700, 710, 720,
1030, 1040 1050, and 1060."

(a) :%o REM DISPLAY & CHANGE OPTION FOR RATING
0 : .
630 PRINT : PRINT R
840 INPUT "";Rs
850 IF R$ ¢ > “" AND R$ ¢) "C" THEN PRINT : PRINT “PLEASE PRESS
"RETURN' IF NO CHANGE, OR TYPE'C' TO CHANGE RATING.": PRINT : GOTO .640
660 IF R$ = "C" THEN GQSUB 1030

880 .FEH " WRITE ONE DATASET BACX TO FILE

\

© 730 GOTO 380
1010 REM CREDIT RATING CHANGE SUBROUTINE

1070 RETURN

(a) 610 REM DISPLAY & CHANGE OPTION FOR RATING

630 PRINT : PRINT R

640 INPUT "";R$

650 IF R$ ¢) ¢ AND R$ ¢) “C" THEN PRINT : PRINT “"PLEASE PRESS
'RETURN' IF NO . CHANGE, OR TYPE'C' TO CHANGE RATING.": PRINT : COTO 640

860 IF R$ = "C" THEN GDSUB 1030

870 :
:gg REM WRITE ONE DATASET BACK TO FILE
700 PRINT D$;"WRITE TEMPFIL" ’

710 PRINT C$: PRINT N$: PRINT R
720 PRINT D$
730 GOTO 390

1010 REM CREDIT RATING CHANGE SUBROUTINE

1030 INPUT "ENTER NEW CREDIT RATING:";R$

104¢ IF LEN (R$) ¢ > 1 THEN PRINT : PRINT “"ENTER ONE DIGIT NUMBER ONLY,
PLEASE.": PRINT : GOTO 1030 -)
- 1050 IF VAL (RS) ¢ 1 OR VAL (R$) > 5 THEN PRINT : PRINT "ENTER DIGITS
1 TO 5 ONLY.": PRINT.: GOTO 1030 .
1060 LET R = VAL (R$)
1070 RETURN

Did you get line 710? Carefully planned, the routine that prints or writes to the
file uses the same variables (C$, N$, and R) that can contain either new data or the
original unchanged data items.

SEQUENTIAL DATA FILE UTILITY PROGRAMS 157

(@) Describe the last routine needed to complete this program.

(4) Close the files and RENAME TEMPFIL to FS.
The end of data error trap is already set up in line 420 to branch to ﬁne,770. -

While experiencing a bit of deja vu, complete the final section to RENAME .
TEMPFIL by filling in lines 770, 780, 800, 810, and 820.

(@) 750 REM CLOSE FILES : : o
760 : : » ‘
770 \ ‘

790 HOME : PRINT "WORKING"

830 PRINT : PRINT "JOB COMPLETE."
END .

(a) 750 REM CLOSE FILES

770 IF PEEK (222) = 5 THEN 780

.780 PRINT : PRINT "UNUSUAL ERROR. PROGRAM TERMINATED. READ AND DISPLAY
. FILE CONTENTS TQ CHECX FOR ERRORS.": PRINT : GOTO 800 .

780 HOME : PRINT "WORKING"

800 PRINT D$;"CLOSE"

810 PRINT D$;"DELETE"F$

820 PRINT D$;"RENAME TEMPFIL,"F$

830 PRINT : PRINT "JOB COMPLETE."

840 - END ‘ :

Here is a complete listing of the second version of the credit file'editor program.
Be sure to enter and RUN this program before continuing.

" APPLE BASIC: DATA FILE PROGRAMMING

158

100 REM CREDIT FILE EDITOR (VERSION 2)

110 REM THIS PROCRAM DEMONSTRATES

120 REM TYPE 'C' TO CHANGE ITEM, OR

130 REM PRESS 'RETURN' TO CONTINUE.

140 :

150 REM _ VARIABLES USED

180 REM Cs$ = CUST # (5) -

170 REM N$ = CUST NAME (20) s

180 REM R = CREDIT RATING

190 REM R$ = USER RESPONSE

200 REM F$ = FILE NAME

210 REM D$ = CONTROL D

220 .

230 REM FILES USED

240 REM SEQ. FILE NAME: CREDIT (USER ENTERED)

250 REM SEQ. TEMPORARY FILE NAME: TEMPFIL

ggg REM DATASET FORMAT: C$,N$, R

280 "REM INITIALIZATION

300 LET D$ =. CHRS$ (4)

310 INPUT "ENTER FILE NAME:";F$

320 PRINT D$;"OPEN"F$

330 PRINT D$;"OPEN TEMPFIL"

340 PRINT D$:"DELETE TEMPFIL"

ago PRINT D$;"OPEN TEMPFIL"

360 :

370 REM READ FILE AND DISPLAY

380

380 HOME :

400 PRINT "TYPE 'C' TO CHANGE ITEM DISPLAYED."

410 PRINT “PRESS 'RETURN' TO CONTINUE WITHOUT CHANGES.*

420 ONERR COTO 770 ' :

430 . PRINT D$;"READ"F$

440 INPUT C$,N$,
»45: PRINT Ds$.

460 :

473 REM DISPLAY & CHANGE OPTION FOR CUST. #

480

480 PRINT : PRINT C$

500 INPUT “";R$.

510 IF R$ ¢ > "" AND R$ ¢ > "C" THEN PRINT CHR$ (7);"ENTRY ERROR. TRY

AGAIN.": GOTD 500 -

ggs IF LEFTS (R$,1) = "C" THEN COSUB 880

ggg "REM DISPLAY AND CHANGE OPTION FOR NAME

560 PRINT : PRINT Ns$

570 INPUT "";R$. :

580 IF LEFTS (R$,1) ¢) " AND _LEFTS (R$,1) ¢ > “C" THEN PRINT : -

. PRINT "PRESS 'RETURN' FOR NO CHANGE OR suwzn 'C' TO CHANGE NAME.": .
PRINT : COTO 570

::: IF RS = "C" THEN GOSUB 860

:ig "REM DISPLAY & CHANGE OPTION FOR RATING

830 PRINT : PRINT R ‘

840 INPUT "";R$

B e o Ml o 15T T R

- ' ' CHANGE RATING.": PRINT : GOTO 640

880 IF Rs = vCh THEN GOSUB 1030

::g "REM VRITE ONE DATASET BACK TO FILE

700 PRINT D$;"WRITE TEMPFIL®

710 PRINT C$: PRINT N$: PRINT R

;gg PRINT Ds

GOTO 350

SEQUENTIAL DATA FILE UTILITY PROGRAMS 159

750 REM CLOSE FILES

770 IF PEEXK (222) = 5 THEN 790

780 PRINT : PRINT "UNUSUAL ERROR. PROGRAM TERMINATED. READ AND DISPLAY
FILE CONTENTS TO CHECX FOR ERRORS.": PRINT : -GOTO 800

780 HOME : PRINT "WORKING" :

800 PRINT D$;"CLOSE"

810 PRINT D$;"DELETE"FS$

820 PRINT D$;"RENAME TEMPFIL,"F$

830 PRINT : PRINT "JOB COMPLETE."

840 END o

860 BREM CHANGE CUST # SUBROUTINE

880 INPUT "ENTER NEW CUST. #:";C$
880 IF LEN (C$) = 0 THEN PRINT "ENTER NUMBERS PLEASE.": GOTO 740

800 IF LEN (C$) () 5 THEN PRINT "ENTRY ERROR. REENTER WITH 5
DIGITS.": GOTO 880

810 IF VAL (C$) = O THEN PRINT "ENTRY ERROR, NUMBERS ONLY.": GOTO 880
920 RETURN

940 REM NAME CHANGE SUBROUTINE

960 ~INPUT "ENTER NEW NAME:";N$
970 IF LEN (N$) = 0 THEN PRINT : PRINT "NO ENTRY MADE. PLEASE ENTER AS
REQUESTED.": PRINT : GOTO 960
980 IF LEN (N$) > 20 THEN PRINT : PRINT "ABBREVIATE NAME TO 20
’ CHARACTERS OR LESS.": PRINT : GOTO. 9 0
990 RETURN

1010 ‘REH CREDIT RATING CHANGE SUBROUTINE ~

1030 :INPUT “"ENTER NEW CREDIT RATING:":R$

1040 IF LEN (R$) ¢ > 1 THEN PRINT : PRINT "ENTER ONE DIGIT NUMBER ONLY,
PLEASE.": PRINT : GOTO 1030

1050 IF VAL (R$) ¢ 1 OR VAL (R$) > S THEN PRINT : PRINT “"ENTER DIGITS
1 TO 5 ONLY.": PRINT.: GOTO 1030

1060 LET R = VAL (RS$) ’

1070 RETURN

Yet another desireable editing feature is the ability to delete a complete dataset
from a data file. This is in addition to the program’s ability to make changes in an
existing dataset. To delete a dataset, have the program read the dataset from the file,
but not copy it into TEMPFIL. Thus, the dataset “disappears.” This editing option
can be integrated into the existing program you have been developing. First, enter a
statement to inform the user of the option to delete a dataset.

395 PRINT : PRINT "TYPE 'D' TO DELETE THIS ENTIRE DATASET FROM THE FILE."

(@) Complete the change in the statement line that tests for legal user inputs.

—

(b) Write a statement to-branch to line 390, thus never wntmg the current dataset if
the user entered ‘D’. :
[625]

160 APPLE BASIC: DATA FILE PROGRAMMING -

(a) 510, IF R$ ¢) "" AND R$ () "C" AND R$ () "D" THEN PRINT : PRINT
ggg; (7) “"ENTRY ERROR. READ THB INSTRUCTIONS AND TRY AGAIN.": PRINT :

~(b) 525 IF R$ = "D" THEN 430

You now have a model for a file editor that allows for changes, deletions, or no
changes. Another useful editing feature allows you to keep_data in numerical or
alphabetical order by insertion of a new dataset part way through an existing data
- file. After locating a certain dataset, the new dataset is inserted by using the sub-
routines used to make changes in the file. How’s that for program efficiency.
Following are some of the new statements needed, with space for you to complete,
lines 396, 510, and 526.

' (a) 398

N

510
528

841 : ' : S ‘
842 REM. SUBROUTINE TO WRITE CURRENT DATASET TO FILE UNCHANGED BEFORE NEW
DATASET 1S INSERTED

844 PRINT D$;"WRITE TEMPFIL"
845 PRINT C$: PRINT N$: PRINT R
848 PRINT Ds

847 RETURN

- GO 396 PRINT : PRINT "TYPE 'I' TO INSERT A NEW DATASET AFTER THE ONE
DISPLAYBD CURRENT, DATASET DISPLAYED WILL BE PLACED IN THE FILE
UNCHANGED. *: PRINT’

" 510 IF RS () " AND R$ ¢ > “"C" AND R$ £) "D" AND R$ ¢ » “I" THEN
PRINT : PRINT CHR$ (7) ;"ENTRY ERROR. READ DIRECTIONS AND ENTER .
- ACCORDINGLY. PRINT : GOTO 500

528 .Ig ‘R$ = "I" THEN GOSUB 800 GDSUB 880: GOSUB 860: GOSUB 1030: GOTO
7 N) -

842 REM SUBRDUTINE TO WRITE CURRENT DATASET TO FILE UNCHANGED BEPO”S
NEW DATASET 1S INSERTED

844 PRINT D$;"WRITE TBHPPIL“

845 PRINT C$: PRINT N$: PRINT R
. 846 PRINT D$)

847 RETURN

To change delete, or insert data in the CREDIT file gather together this data file
edltmg utility program. , ') N .

SEQUENTIAL DATA FILE UTILITY PROGRAMS 161

400

510

REM CREDIT FILE EDITOR (VERSION 3)

REM THIS PROGRAM ALLOWS CHANGES IN CURRENT DATA, DELETION OP
DATASETS, AND

REM INSERTION OF NEW DATASETS. IT ALSO ALLOWS YOU TO

REM PRESS 'RETURN' TO CONTINUE DISPLAY OF DATA WITH NO CHANGES TO

DATA ITEMS.
"REM 'VARIABLES USED .
REM C$ = CUST # (5). ,
REM N$ = CUST NAME.(20)
. REM R = CREDIT RATING
REM R$ = USER RESPONSE
REM F$ = FILE NAME
REM D$ = CONTROL D
"REM FILES USED
REM SEQ. FILE NAME: CREDIT (USER ENTERED)
REM SEQ. TEMPORARY FILE NAME: TEMPFIL
REM DATASET FORMAT: C$,N$.R
"REM INITIALIZATION

"LET D$ = CHR$ (4)

INPUT "ENTER FILE NAME:";F$

PRINT D$;"OPEN"F$

PRINT D$;"OPEN TEMPFIL"

PRINT D$;"DELETE TEMPFIL" .

PRINT D$;"OPEN TEMPFIL"
"REM READ FILE AND DISPLAY
"HOME '

PRINT : PRINT "TYPE 'D' TO DELETE THIS ENTIRE DATASET FROM THE FILE."
PRINT : PRINT "TYPE 'I’' TO INSERT A NEW DATASET AFTER THE ONE
DISPLAYED. CURRENT DATASET DISPLAYED WILL BE PLACED IN THE FILE
UNCHANGED.": PRINT

PRINT "TYPE 'C' TO CHANGE ITEM DISPLAYED.": PRINT

PRINT "PRESS 'RETURN' TO CONTINUE WITHOUT CHANGES."

ONERR - GOTO 770

PRINT D$;"READ"FS$

INPUT C$ NS .R

PRINT D$
"REM DISPLAY & CHANGE OPTION FOR CUST. #
"PRINT : PRINT C$ ’

INPUT “";R$

IF R$ ¢ > ™" AND R$ ¢ > "C"™ AND R$ () "D" AND R$ ¢ > "I" THEN
PRINT : PRINT CHR$(7);"ENTRY ERROR. READ DIRECTIONS AND ENTER
ACCORDINGLY.": PRINT : COTO 500

IF LEFTS (R$.,1) = “C" THEN GOSUB 880

IF R$ = "D" THEN 430

IF R$ = “I1" THEN GOSUB 844: GOSUB 880: GOSUB 8960: GOSUB 1030: COTO

700 .
"REM DISPLAY AND CHANGE OPTION FOR NAME
"PRINT : PRINT N$

INPUT "";R$ '

IF LEFTO (R$,1) ¢ > "" AND LEFTS$ (R$,1) ¢) "C" THEN PRINT :
PRINT “PRESS 'RETURN' FOR NO CHANGE OR ENTER 'C’' TO CHANGE NAME.":
PRINT : GOTO

570
IF R$ = "C" THEN GCOSUB 960

"REM DISPLAY & CHANGE OPTION FOR RATING
"PRINT : PRINT R

INPUT "";RS$ -

IF R$ ¢ > "" AND R$ ¢) "C" THEN PRINT : PRINT "PLEASE PRESS
'RETURN' IF NO CHANGE, OR TYPE'C' TO CHANGE RATING.": PRINT :
GOTO 640

IF R$ = “C" THEN- GOSUB 1030

continued on next page

162 APPLE BASIC: DATA FILE PROGRAMMING B

680 REM 'WRITE ONE DATASET BACK TO FILE

700 PRINT D$;“"WRITE TEMPFIL"
710 PRINT C¢: PRINT N$: PRINT R
720 PRINT D¢ :
730 GOTO 380

750 REM CLOSE FILES

770 IF PEEX (222) = 5 THEN 780

780 PRINT : PRINT "UNUSUAL ERROR. PROGRAM TERMINATED. READ AND DISPLAY -
FILE CONTENTS TO.CHECX FOR ERRORS.": PRINT : GOTO 8

780 HOME : PRINT "WORKING"

800 PRINT D$;"CLOSE"

810 PRINT D$;"DELETE"FS

820 PRINT D$;"RENAME TEMPFIL,"F$

830 PRINT : PRINT "JOB COMPLETE."

840 END

842 REM SUBROUTINE TO WRITE CURRENT DATASET TO FILE UNCHANGED BEFORE
NEW DATASET 1S INSERTED

844 PRINT D$;"WRITE TEMPFIL"
845 PRINT C$: PRINT N$: PRINT R
846 PRINT D¢

847 RETURN

860 REM CHANGE CUST # SUBROUTINE

880 INPUT "ENTER NEW CUST. #:";CS$

8690 IF LEN (C$) = 0 THEN PRINT "ENTER NUMBERS PLEASE.": GOTO 740

800 IF LEN (C$) ¢) 5 THEN PRINT "ENTRY ERROR. REENTER WITH §
DIGITS.": GOTO 880

810 IF VAL (C$) = 0 THEN PRINT "ENTRY ERROR, NUMBERS ONLY.": GOTO 880

820 RETURN

940 REM NAME CHANGE SUBROUTINE

980. INPUT "ENTER NEW NAME:";N$:

870 IF LEN (N$) = 0 THEN PRINT : PRINT "NO ENTRY MADE. PLEASE ENTER AS
REQUESTED.": PRINT : GOTO 860

580 IF LEN (N$)) 20 THEN PRINT : PRINT "ABBREVIATE NAME TO 20
CHARACTERS OR LESS ": PRINT : GOTO 960

890 RETURN :

1010 "REM CREDIT RATING CHANGE SUBROUTINE

1030 INPUT "ENTER NEW CREDIT RATING:";R$

10640 IF LEN (R$) ¢ > 1 THEN PRINT : PRINT "ENTER ONE DIGIT NUMBER. ONLY,
:PLEASE.": PRINT GOTO 1030 - , ,

1050 'IF VAL (R$) (1 OR° VAL (R$) > 5 THEN PRINT : PRINT “ENTER DIGITS
:1 TO 5 ONLY.": PRINT GOTO 1030

1060 LET R = VAL (R$)

1070 RETURN

1080 :

The followmg outline for the final version of the program allows for insertion,
deletion, or changes of data in the file.

(1) Open the source file.

(2) Open the temporary file.

(3) Display a “menu” for the user to select changes to be made, including a *

‘ changes” option.
(4) Set ONERR for end-of-file detection.
(5) Read the entire dataset from the file and display the first data item (not
" dataset) in the current dataset. 4

(6) Allow the user to enter a selection from the “menu” and test for the legal
selection possibilities.

(7) If user entered “C” for change:
(a) Allow user to enter change with data entry checks.

®

©)
(10)

an

(12)

SEQUENTIAL DATA FILE UTILITY PROGRAMS 163

(b) Display next data item from current dataset (if any items remam in this
dataset). :

(c) User entered option for another change and test selectlon

(d) User entered change with data entry checks.

(e) Repeat (7) (b), (c), and (d) until all 1tems ina dataset have been through
the change option.

(f) Print the dataset (with any changes) to the temporary file.

(g) Go to step (3).

If user entered “I” for insert:

(a) Print the dataset to the temporary file.

(b) User enters new dataset with data entry checks.

(c) Print the newly entered data to the temporary file.

(@) Go to step (3).

If user entered “D” for delete, go to step (5).

If the user entered no response (just pressed the RETURN key), go to steps (7)

(b) to (g)-

Close both files.

RENAME TEMPFIL to source file name.

(a) Write the'con'esponding ;;rogram line number(s) for each step in the outline

_ below, except for item (10), where you are to fill in the blanks in the
parentheses :

(1) Open the source file.

2 Open the temporary file.

(3) Display a “menu” for the user to select changes to be made, including a
“no changes” option.

(4) Set ONERR for end-of-file detection.

(5) Read the entire dataset from the file-and display the first data item (not

dataset) in the current dataset.

(6) Allow the user to enter a selectlon from the “menu” and test for the

. legal selection possibi]ities.
“(7) If user entered “C” for change:

‘(a) Allow user to enter change with data entry checks.

~(b) Display next data item from current dataset (if any items remain in
this dataset) v

(c) User entered option for another change and test selectlon

164 APPLE BASIC: DATA FILE PROGRAMMING

®

©

" (10)

] (Ii)

12)

" (g) Go to step (3).

~ (c) Print the newly entered data to the temporary file.

s

(d) - User entered change with data entry checks.

(e) Repeat (7) (b), (c), and (d) until all items in a dataset have been
through the change option.

(f) Print the dataset (with any changes) to the temporary file.

If user entered “I” for insert;

(a) Print the dataset to the temporary file.

(b) User enters new dataset with data entry checks.

(d) Go to step (3).

If user entered “D” for delete, go to step (5).

If the user entered no response (just pressed the RETURN key), go to

steps (_) (_) to (_) (_). (Fill'in the blanks.)
Close both files. ‘

RENAME TEMPFIL . to source file name.

()
)
Q)

®

line 320 .
lines 330 to 350

" lines 390 to 410
" line 420

lines 430 to 490

.lines 500 to 526

(2) lines 880 to 920
(b) line 560

(c) lines 570 to 590
(d) lines 880 to 920

" (e) lines 560 to 590, 880 to 920

(f) lines 700 to 720

(g) line 730

(a) lines 844 to 847

(b) lines 880 to 920, 960 to 990, and 1030 to 1070.

_SEQUENTIAL DATA FILE UTILITY PROGRAMS 165 »

(c) lines 700 to 720
(d) line 730
(9) line 525
(10) steps (7) (b) to (7) (8)
(11) line 800 -
(12) lines 810 and 820

Enter and RUN the program; put it through its paces. Test all of the possible

change options that this program makes available, and verify that the changes were
actually made to the file. '

MERGING THE CONTENTS OF FILE

In many business applications of computers, information in data files is maintained in
alphabetic or numeric order. This can be done by customer number, customer name,
product number, or some other key to filing. It is often necessary or desirable to
merge the contents of two data files, both already in-some order, to a make a third
data file with the same order or sequence. A utility program to merge files also allows
you to learn some new file programming techniques with wider applications.

-

o)
©))

@
)
©)

Q)

®

®

(10
(1n

Follow these steps to merge two data files into one.

Open the two files to be merged (#1 and #2).

Open, delete, and reopen the file (#3) that will contain the merged data.

Use ONERR to branch to step (10) if end-of-file is encountered for either file

#1 or file #2.

Read the first dataset from file #1.

Read the first dataset from file #2.

Test datasets to see which file dataset (#1 or #2) is to be copied or printed to

the merge file (#3). :

Print the selected dataset to file #3; this requires two separate routines:

(a) One if file #1 dataset is selected, or

(b) Another if file #2 dataset is selected.

Read another dataset from whichever file’s dataset was prmted to file #3 in

step (7). Again, two separate routines are needed: :

(a) Read another dataset from file #1, or

(b) Read another dataset from file #2.

Again, separate routines are needed to “dump” or transfer the remaining data

in file #1 or #2 to file #3:

(a) If file #1 comes to end-of-file first, copy the remaining datasets in file #2
to file #3, or A

(b) If file #2 comes to end-of-file first, copy the remaining datasets in file #1
to file #3.

Close all files.

Optional routine to dlsplay merged data files for confirmation of a successful

. merge.

166 APPLE BASIC: DATA FILE PROGRAMMING

The 'model program merges two transaction files into a third larger file that
combines the other two. In the example, each transaction produces a dataset as
- shown below.

Account number = five characters S
Transaction code = two characters (for a bank, 1 = check, 2 = deposit, etc.)
Amount = seven characters

This data is contained in the files named TRANSACTION-1 and TRANS-
ACTION-2 Assume that the datasets are stored in two data files each in ascending
numerical order by account number (problem 3 in the Chapter 4 Self-Test). The goal
is to produce a third file named TRANSACTION-MERGE that combines the data in
the first two files, but maintains the numerical order when the file merging is com-
plete. Also assume that more than one dataset can have the same account number in
either or both data files. :

This last assumption requires a dec1s10n When merging, if two datasets have
the same account number, the program will copy the dataset from file #1 first, then
the dataset with the same number from file #2.

FILE #1 » FILE #2

10762 10761
18102 18203
43611 , 43611
43611 o 80111
43611 80772
80223 - 80772

98702 89012

File #3 (files #1 and #2 merged into one)

10761
10762
18102
18203
.43611
43611
43611
43611
80111
80223
80772
80772
89102
98702

(Note: 'Only the account numbers are shown here; the complete datasets also include
transaction codes and amounts.)

While the outline provides the logic, structure, and flow. of the program, the
summary of the program modules is given below to further aid your understanding of
what may seem, at first, to be a very complicated program. The modules are:

167

SEQUENTIAL DATA FILE UTILITY PROGRAMS

.Introduction

Initialize

Read first dataset from file #1

Read first dataset from file #2

Compare datasets '

Print one dataset from file #1 to merged file
Read subsequent dataset from file #1

Print one dataset from file #2 to merged file
Read subsequent dataset from file #2

Copy leftover datasets from file #1 to merged file
Copy leftover datasets from file #2 to merged file
Close files

Open, display all datasets and close merged file

This program is called Merge. It gets tricky, so read the text and program
segments carefully. The initializing process is familiar; you should have no trouble
completing steps 1 and 2 of the outline.

}gg REM MERGE FILES UTILITY PROGRAM

120 BREM VARIABLES USED

130 REM F1$,F2$,F38 = USER ENTERED FILE NAMES

140 REM AIS AZO = ACC'T NUMBER(5 CHAR.)

150 REM Tl'.Tzl = TRANSACTION CODE(1 CHAR.

180 REM C1$,C2% = CASH AM'T(9999.99 OR 7 CHAR MAX.)

170 REM X = FOR NEXT LOOP CONTROL VARIABLE

::8 REM D$ = CONTROL D

200 REM FILES USED

210 REM SEQ. FILE NAMES: TRANSACTION-1, TRANSACTION-Z.
TRANSACTION-MERGE (ALL USER ENTERED)

g;g REM DATASET FORMAT: AS$,T$.CS

240 REM INITIALIZE

250 : -

260 LET D$ = CHRS (43) !

270 INPUT "ENTER SOURCE FILE 1:";F1$

280 INPUT “ENTER SOURCE FILE 2:";F2$

290 INPUT “ENTER OUTPUT (MERGED) FILE NAME:*“;F3$
300 HOME : PRINT "WORKING"

"320 PRINT D$;"OPEN"F1$
330 PRINT D$;"OPEN"F2$
340 PRINT D$;"OPEN“F3$
350 PRINT D$;"DELETE"F3s$
gg: PRINT D$; "OPEN“F33$

(@ Whyis the OPEN-DELETE-OPEN sequence used for the F3$ file?

168 APPLE BASIC: DATA FILE PROGRAMMING

_(a) The other two files are source files. F3$ (the merged file) is the only one to be
written to, and this section of the program makes certain no extraneous data
are in the file to begm with. :

Next, the first dataset is read from file #1. Notice that the end-of-file error '
test is made- before the first dataset is read, just in case the file has no data. This
corresponds to steps 3 and 4 of the outhne If file #1 is empty to begin with,
GOTO 1016.

g‘g: REM READ SOURCE 1
400 ONERR GOTO 1010

410 PRINT D$;"READ"F1$
420 INPUT Al1$,T1$,C1%
430 PRINT D$

- 440 LET Al = VAL (Alt)
450 : .)

4 -Line 440 coverts the string that contains the account number into a numeric
value. Now write the next segment corresponding to step 5 in the outline. The
program should read the first data item from file #2. Fill in lines 490, 500, 510,
and 520

(@) 480 REM READ SOURCE 2
480 "ONERR COTO 900

GO‘ 438 REM READ SOURCE 2
4 :
480 ONERR GOTO 900
490 PRINT DS$;"READ"F2$
500 -INPUT A2$,T2s.C2$
510 PRINT D$
,ggg LET A2 = VAL (A2$%)

.The next decision is which datasetv— that from file #1 or that from file #2 —
will be copied into file #3 first? This corresponds to step 6 in the outline.

540 REM 'MERGE TESTING

560 IF Al = A2 THEN 620
570 IF Al ¢ Az THEN 620
580 COTO 740

The program so far, as shown below, provides dnly for inplit of the first dataset
from each of the two files to be merged, and compares the numeric values of the
account numbers. :

SEQUENTIAL DATA FILE UTILITY PROGRAMS

169

580 :

(@) Look at lines 560 and 570. What should happen in the program routine that

REM MERGE FILES UTILITY PROCRAM
"REM VARIABLES USED

REM F1$.F20.F3s = USER ENTERED FILE NANES

REM Al$,A2% = ACC'T NUMBER(S CHAR.

REM T10.T2¢ = THANSACTION CODE(] GHAR.)

REM C1$,C28 = CASH AM'T(59989.80 OR 7 CHAR. MAX.)
_ REM X = FOR NEXT LOOP CONTROL VARIABLE
- REM . D$ = CONTROL D

"REM FILES USED

REM SEQ, FILE NAMES: TRANSACTION 1. TRANSACTION-Z.
TRANSACTION-MERGE (ALL USER ENTERED)
REM DATASET FORMAT: As,T$,C$

"REM INITIALIZE
"LET D$ = CHR$ (4)

INPUT "ENTER SOURCE FILE 1:";F1$

INPUT "ENTER SOURCE FILE 2:";F2$

INPUT “"ENTER OUTPUT (MERCED) FILE NAME:";F3$
HOME : PRINT "WORKING"

"PRINT D$;"OPEN"F1$
_PRINT D$;"OPEN"f2$

PRINT D$;"OPEN"F3$
PRINT D$;"DELETE"F3$

PRINT D$;"OPEN"F3$
"REM READ SOURCE 1
"ONERR GOTO 1010

PRINT D$;"READ"F1$
INPUT Al$,T1¢,C1$

" PRINT D¢
LET Al = VAL (Al$)

"REM READ SOURCE 2
"ONERR GOTO 800

PRINT D$;"READ"F2$
INPUT A28 ,T28,C28
PRINT D¢

LET AZ = VAL (A2$)
"REM MERGE TESTING
"IF Al = Az THEN 820

IF. Al ¢ AZ THEN 620
GOTO 740.

starts at line 620?

(b) The program tests for eqﬁality in line 560. In line 570, the test was for Al less
than A2. If both tests are false, what is the relationship of Al to A2?

() What should happen in the program routine at line 740 that line 580 branches

to?

170 APPLE BAstcé DATA FILE PROGRAMMING

(a) The dataset from source file #1 is copled
(b) Al is greater than A2.
(c) The dataset from source file #2 to file #3 is printed.

Continue with the file copying segment for copying a dataset from file #1 to
file #3-(outline step 7a).

8600 REM _PRINT #1 TO ‘3. READ #1

820 PRINT D$;"WRITE"F3$
630 PRINT Als: PRINT Ti1$: PRINT C1$
840 PRINT D¢ :

(a) - After executing the above segment, the program should now read another dataset
. from file #1. You might want to have the program branch back to the routine
at line 410 and continue executing from there. Why would this result in a

program error?

(a) The routine at line 410 reads from file #1, but then continues to read another
dataset from file #2, replacing the dataset already assigned to A28, T2$ and
C2$ without copying them to file #3.

. ~ The rest of this program segment is used for reading the next data item from
_ file #1. This corresponds to outline step 8a.

800 REM FRINT #1 TO #3, READ #1

820 PRINT Ds$;"WRITE"F3s$

830 PRINT Als: PRINT T1$: PRINT Cl$
640 PRINT D¢

850 ONERR GOTO 1010

660 PRINT D$;"READ"F1s$

870 INPUT Als,T1$,Cl$

D$
880 LET Al a VAL (Al$)
700 GOTO 580

(2) When the program finds the end of file #1, it branches to line 1010. Think
~ ahead: What should happen in the routine at line 10107

SEQUENTIAL DATA FILE UTILITY PROGRAMS 171

(a) - Since all datasets have been read from file #1 and copied to file #3, all the
remaining data from file #2 should be copied into file #3 (you’ll see this
routine soon) . .

Here is the routine we need to copy a dataset from file #2 to file #3, and to
read a new dataset from file #2. This corresponds to outline steps 7b.and 8b.

720 REM PRINT 82 TO #3, READ #2

740 PRINT D$;“"WRITE"F3$

750 PRINT A2$: PRINT T2$: PRINT C2Z$
760 PRINT D$

770 ONERR GOTO 800

780 PRINT D$;"READ"F2$

780 INPUT A28,T2$,C2$

800 PRINT D¢

810 LET A2 = VAL (A2$)

820 GOTO 580

Notice how carefully you must think through these file utility programs. You
are nearing the end; only a few more “clean up” routines are needed. Two similar
routines are needed to copy or dump the remainders of file #2 to file #3, and file =~ =

#1 to file #3. First, here are the program instructions that correspond to the outline,
step 9a.

850 REM DUMP #2 TO #3

860) .
1010 PRINT D$;"WRITE"F3$)

1020 PRINT AZ$: PRINT T28: PRINT C2s$_
1030 PRINT D$ v
1040 GOTO 870

1050 :

Line 1010 is branched to from lines 400 or 650 on end of file checks for file
#1.

The rest is easy. Here is the complete routine. Check file #2 for end of file and,
if encountered, dump any remaining file #2 datasets to-file #3.

::: REM DUMP #2 TO #3 -
970 ONERR GOTO 1080
980 PRINT Ds$;"READ"F2$
890 INPUT A2$,T28,C28
1000 PRINT D$
1010 PRINT D$;"WRITE"F3$
1020 PRINT A2$: PRINT T2$: PRINT C2$
1030 PRINT D$
- 1043 GOTO 870

Write the corresponding routine to dump file #1 to file #3. The end of data -
error statement should branch to hne 1080. Complete lines 860, 870, 880, 890, 900
910, and 920.

. 172 APPLE BASIC: DATA FILE PROGRAMMING

(@) :40 REN . DUMP #1 TO #3

830 GOTO 880

(b) The ONERR trap in lines 860 and 970 both branch to line 1080. What final
routine should appear there? ‘

(@) 840 REM DUMP #1 TO #3

860 ONERR . GOTO 1080 =
870 PRINT D$;"READ"F1$:

~880 'INPUT Al$,T1s,C1$

880 PRINT D¢

800 PRINT D$;"WRITE"F3$.
810 PRINT 319: PRINT T18: PRINT Cl1$
820 PRINT D$ '
830 GOTO 860

840 : -

] (b) Close all files, since all data have been copied and merged.

Once the files are closed, the program gives the user the option to display the
contents of the merged. files to verify that it did happen and to judge whether the
program works .properly. In Merge all the activity takes place between the computer
memory and the disk with no evidence of the action appearing on the CRT screen.
~ You only see RUN, so did it really happen? The routine included at the end of the

" complete listing of Merge lets you be sure (see 1150 through 1330).

SEQUENTIAL DATA FILE UTILITY PROGRAMS 173

REM DATASET FORMAT: A$,T$,C$
"REM INITIALIZE -
"LET D$ = CHRS (4) o . : ;

REM . MERGE FILES UTILITY PROGRAM

REM VARIABLES USED -

REM F1$,F2$,F3$ = USER ENTERED FILE NAMES

REM AIS AZS = ACC'T NUMBER(5 CHAR.).

REM T1$,T2$ = TRANSACTION CODE(] CHAR.

REM ’ C1s,C28 = CASH AM'T(98999.988 OR 7 CHAR HAX)
REM X = FOR NEXT LOOP CONTROL VARIABLE

REM D$ = CONTROL D

REM FILES USED

REM -SEQ. FILE NAMES: TRANSACTION-1, TBANSACTION z,
TRANSACTION-MERGE (ALL USER ENTERED)

INPUT "ENTER SOURCE FILE 1:";F1$
INPUT "ENTER SOURCE FILE 2:";F2$
INPUT “ENTER OUTPUT (MERGED) FILE NAME:";F3$

HOME : PRINT "WORKING"®
"PRINT D$;"OPEN"F1$

PRINT D$;"OPEN"F2$
PRINT D$;"OPEN"F3$
PRINT D$;"DELETE"F3$

PRINT D$;"OPEN"F3$
"REM READ SOURCE 1
"ONERR GOTO 1010

PRINT D¢ ;"READ"F1$
INPUT Al$,T1$,Cl$
PRINT D¢

LET Al = VAL (Al$)
"REM READ SOURCE 2
"ONERR COTO 500

PRINT D$;"READ"F2$
INPUT A2$,T26,C2$
PRINT D¢

LET A2 = VAL (A2%)
"REM MERGE TESTING
"IF Al = AZ THEN 620

IF Al ¢ AZ THEN 620

| GOTO 740
'REM PRINT #1 TO #3, READ #1
"PRINT D$;"WRITE"F3s

PRINT Al$: PRINT T1s: PRINT Cl$
PRINT D$

ONERR GOTO 1010

PRINT D$;“READ"F1$

INPUT Al$,T1$,C1$

PRINT D$ _
LET Al = VAL (Al$) ‘ ,

COTO 580
"REM PRINT 82 TO #3, READ #2
"PRINT D$;“WRITE"F3s$

PRINT A2$: PRINT T2$: PRINT C2$
PRINT D¢ : :

_ONERR GOTO 500

PRINT D$;"READ"F2$
INPUT AZ$, Tzf c2s -
PRINT D¢

LET AZ = VAL CAZ$)

GOTO 560

continued on next page

* 174 APPLE BASIC: DATA FILE PROGRAMMING .

REM DUMP #1 TO #3
"ONERR GOTD 1080

PRINT D$;"READ"F1$:
INPUT Al$,T1$,Cl1$

PRINT D$

PRINT D$;"WRITE"F3$

PRINT Al$: PRINT T1$: PRINT C1¢$

PRINT D$.

GOTO 880
"REM DUMP #2 TO #3
"ONERR GOTO 1080

PRINT D$;"READ"F2$

INPUT A2$,T2$,C28

PRINT D$

PRINT D$;"WRITE"F3$

PRINT A2$: PRINT T2$: PRINT C2$
PRINT D¢

GOTO- 870

"REM CLOSE FILES

IF PEEK (222) = 5 THEN 1100

PRINT : PRINT CHBS (7);"UNUSUAL ERROR. PROGRAM TERMINATED. "
PRINT D$;"CLOSE

PRINT : PRINT “JOB COMPLETED."

"REM REQUEST TO DISPLAY MERGED FILES

PRINT : INPUT "DO YOU WANT TO SEE THE MERGED DATA?";R$

IF LEFTS (R$,1) ¢() "N" AND LEFTS (R$,1) ¢ > "Y" THEN PRINT :
PRINT "ENTER 'Y' FOR YES OR 'N' FOR NO.": PRINT : GOTO 1150

IF RS = "Y" THEN 1220 :

) IF R$ =."N" THEN 1330

"REM PRINT CONTENTS OF MERGED FILE .

PRINT D$; "OPEN"F3$
ONERR GOTO 1320
_PRINT D$;"READ"F3$
INPUT A$,T$,C$.
PRINT D$

PRINT As,TS,CS
GOTO 1240

"REM CLOSE FILE

"PRINT D$;"CLOSE"
END

(a) Write the corresponding program line number(s) for each step of the following
outline.

(1) Open the two files to be merged (#1 and #2).

(2) Open, delete, and reopen the file (#3) that will contain the merged data.

“(3) Use ONERR to branch to step (9) if end-of-file is encountered for elther

(4) Read the first dataset from file #1.
(5) Read the first dataset from file #2.

ﬁle #1 or ﬁle #2.

©

)

®

©)

10)
1)

@ @
2
©))
@
(%)
©)
™

SEQUENTIAL DATA FILE UTILITY PROGRAMS 175

Test datasets to see which ﬁle dataset (#1 or #2) is to be copied\or
printed to the merge file (#3). .
. Print the selected dataset to file #3; this requires two separate routines: -
(2) One if file #1 dataset is selected,v ' - or
(b) Another if file #2 dataset is selected. _
Read another dataset from whichever file’s dataset was printed in file #3

- in step (7). Again, two separate routines are needed:

(a) Read another dataset from file #1,

.or

(b) Read another dataset from file #2.

‘Again, separate routines are needed to “dump” or transfer the remaining
data in file #1 or #2 to file #3:

(@) 1If file #1 comes to end-of-file first, copy the remaining datasets in
- file #2 to file #3, : _ or
(b) If file #2 comes to end-of-file ﬁrst ‘copy the remalmng datasets in
file #1 to file #3. :
Close all files.
: Optional routine to display merged data ﬁies for confirmation of a

successful merge.

lines 320 and 330 (8) (a) lines 660 to 680

lines 340 to 360 (b) lines 780 to 800
lines 400 and 480 (9) (@) lines 970 to 1040
lines 410 to 430 - (b) lines 860 to 930
lines 490 to 510 : (10) line 1100

lines 560 to 580 (11) lines 1150 to 1330
(a) lines 620 to 640 .
(b) lines 740 to 760

Enter and RUN the program, using the two data files named TRANSACTION-1
and TRANSACTION-2 that you created in the Chapter 4 Self-Test, problem 4a.

176 APPLE BASIC: DATA FILE PROGRAMMING

PROBLEMS WITH SEQUENTIAL DATA FILES

You should be aware of some frequent errors made in using sequential files and some
programming techniques used for successful programs accessing data files. .

The most frequent programming error is failing to keep track of the file pointers.
Each time you use a file INPUT statement in a program, ask yourself how the file-
pointer is affected and where it is located before and after executing the statement.

(a) How can you reset the datafile pointer to the beginning of a file?

(@) Close the file. Pointer is at beginning of file when file is reopened.

Another frequent error occurs when a program sequentially searches through a
data file for a particular dataset or data item. Let’s say you have a data file of names
arranged alphabetically by last names. After you enter the name to be searched, the
program searches through the file until it finds the name and then prints the informa-
tion on your printer for that person. Then you enter a second name. When writing
" the program, ask yourself where the file pointer will be located after the first search.
Assume the first name searched and located is DORIAN SCHMIDT and the second
name is HAMILTON ANDERSON. The data file search for the second name takes up
where the search for the first name left off. The second name obviously will not be
found before you reach the end-of-file. If the data file pointer was not reset to the
beginning of the file after ‘the first search, ANDERSON will never be found because .
the file was in alphabetical order and the search for the second name started at '
SCHMIDT. The solution, of course, is to make sure the program resets the pointer
to the beginning of the file after every search, by using a CLOSE followed by an
OPEN statement. ‘

(a) When a file has been partially read through during a data search, why must the
file pointer be reset to the beginning of the file before a new search of the file
commences?

(a) Because if \the pointer is midway in the f‘ﬂe ‘and the new datum searched fdr is
- near the beginning of the file, the search would not find the datum.

SEQUENTIAL DATA FILE UTILITY PROGRAMS 177,

Errors can also occur when.the contents of arrays are copied into a data file, a
topic mentioned earlier. The contents of a one- or two-dimensional array can be
- copied into a file or read from a file back into an array, provided you use the correct
programming techniques. Such data manipulation has many uses. There is a tendency
to think of array data as something that is used up or consumed but storing array

data in a file gives it permanence. :
To lodd array data into a data file from a one-dimensional array:

P (1) 1761
) 18
3) 1942
@ | 24 . The correct procedure:
. - 200 T D$;" m'rz FILENAME"
g i RO .
(6) 2 230 NEXT X
240 PRINT D$

Similarly, to load array data into a data file from a two-dimensional array:

C 1) (12 (a3)
a1 A c P

- . The correct procedure:
(2,1) N M S

‘ . R
@(3,1). G H T 320 FOR ¥ = 1 TO 3

— i paeian
4.1) B D E 350 NEST X
380 PRINT D$

(@) To read data into (or out of) an array from (or to) a data ﬁle what programming

technique is used"

(@ FOR NEXT loop

Another useful technique deals with applications where data are to be added to. -
a file. Let’s say a client number needs to be assigned to a new client or customer as
part of a new dataset. In a business environment, the new client number might be
‘assigned by data preparation personnel or the data entry person, relying on a list or on
their knowledge of what number was last used. However, if you let the computer do
it you can avoid “human error” commonly mislabeled “computer error.” In the data

©178 APPI;E'BASIC: DATA FILE PROGRAMMING

file and after any copy made for modification of the file, reserve the very first file
data position for the next available client number. Then when new clients are added
to the file, follow these steps.

1. Read the first data item (next available client number) N.
2. .Assign N to the next client.
3. Increment N by 1 (or perhaps by +2 or +5 or +10 to leave room for future client
data to be squeezed in) = N1.
" Then have the program place N1 as the first item in the temporary file.
Copy the rest of the old file to the temporary file.
Place the new client data in the temporary file. -
Copy the temporary file (including N1) back to the old file.
Repeat from step 1 for each new chent

PR A

Using the first part.of a data file to hold information needed by the program,
followed by the regular data, is a broadly useful technique. For example, the contents
of an array could be placed at the head or beginning of a file, followed by the main
datasets that make up the file. This procedure prevents using a separate data file for
array data that are a part of the file. Just don’t forget. how the data file is set up, or
some rather horrific file input errors could ensue. Such information should be in-

. cluded in the documentation prepared for each program and its corresponding data
files. We recommend including the dataset format in the introductory module of all
programs that deal w1th data files.

A LETTER-WRITING PROGRAM

The next sequential file application example is a letter-writing program you may find
useful in your home or business. This application presents some new techniques and
reviews others.

Assume that you did the Chapter 4 Self Test and -have three form letters stored_
in data files called LETTER1, LETTER2, and LETTER3. When these letters are
printed, you want the program to put the inside address and salutation in the letter
from data located in yet another sequential data file called ADDRESS. The file
ADDRESS contains the names and addresses in the mailing list. The data have the
format shown below, with each dataset: containing five items in fields within one string.

55 :
1 - 20/21 40/41 50/12/53 57/
name address city state zip code

The salutation for each letter will be:

Dear resident of (name of dity)

SEQUENTIAL DATA FILE UTILITY PROGRAMS 179

To print the letters on.your line printet, be sure to turn the printer on by using

PR#1 or PR#2. See your system’s reference matenal for details if you are unfamiliar\
with these instructions.

The program uses the CRT screen to enter wh1ch fonn letter (1, 2, or 3) you .

want to send to each name on the mailing list. This program, then, uses four data
files (only two data files at a time), a line printer, and a CRT screen. If you don’t:
have a line printer, the program is easily adapted to have all the program output
displayed on a CRT screen. Some mterestmg techniques can be learned from ﬂus
example.

0
0]

3)

@

©)
)
Q)
®

®
(10)

Follow these steps for this particular program.

Open the ADDRESS data file.

Use ONERR to check for end-of-file for AD