

APPLE® BASIC: ·
DATA FILE PROGRAMMING

More than a million people have learned to program, use, and enjoy microcomputers
with Wiley paperback guides. Look for them all at your favorite bookshop or
computer store:

BASIC; 2nd ed., Albrecht, Finkel, & Brown
BASIC for Home Computers, Albrecht, Finkel, & Brown
TRS-80 BASIC, Albrecht., Inman,·& Zamora
More TRS-80 BASIC, Inman, Zamora, & Albrecht
ATARI.BASIC, Albrecl:tt, Finkel, & Brown
Data File Programming in BASIC, Finkel & Brown
Data File Programming for the Apple Computer, Finkel & Brown
ATARI Sound & Graphics, Moore, Lo.wer, & Albrecht
Using CP/M, Fernandez & Ashley
Introduction to 8080/8085 Assembly Langu~ge Programming, Fernandez & Ashley
8080/Z80 Assembly Language, Miller
Personal Computing, McGlynn

· Why Do You Need a Personal Computer? Leventhal & Stafford
Problem-Solving on the TRS-80 Pocket Computer, Inman & Conlan
Using Programmable Calculators for Business, Hohenstein

· How to Buy the Right Small Business Computer System, Smolin
The TRS-80 Means Business, Lewis
ANS COBOL, 2nd ed., Ashley
Structured COBOL, Ashley
FORTRAN IV, 2nd ed., Friedmann, Greenberg, & Hoffberg
Job Control Language, Ashley & Fernandez
Background Math for a Computer World, 2nd ed., Ashley
Flowcharting, Stern
Introduction fo Data Professing, 2nd ed., Harris

APPLE® BASIC:
DATA FILE PROGRAMMING

LEROY FINKEL

San Carlos High School

and

JERALD R. BROWN

Educational Consultant

John Wiley & Sons, Inc.

New York • Chichester • Brisbane • Toronto • Singapore

Publisher: Judy V.Wilson
Editor: Dianne Littwin
Composition and Make-up: Trotta Composition

Copyright © 1982, by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work
beyond that permitted by Sections 107 or 108 of the 1976
United States Copyright Act without the permission of
the copyright owner is unlawful. Requests for permission
or further information should be addressed to the

. PermisSions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging in Publication Data

Finkel, LeRoy.
Apple BASIC, data ftle programming.

(Wiley self-teaching guides)
Includes index.
1. Basic (Computer-program language) 2. Apple

computer-Programming. I. Brown, Jerald, 1940-
11. Title. III. Series: Self-teaching guide.
QA76.73.B3F52 001.64'24 81-13100
ISBN 0-471-09157-X

Pripted in the United States of America

82 83 10 9 8 7 6 s.

How To Use This Book

When you use the self-instruction f<,mnat in this book, you will be actively involved in
learning data file programming in APPLESOFf* BASIC .. Most of the material is
presented in sections called frames, each of which teaches you something new oi
provides practice. Each frame also gives you questions to answer or asks you to
write a pmgram or program segment.

You will learn best if you actually write out the answers and try the programs
on your APPLE II computer (with at least one disk drive). The questions are carefully
designed to call your attention to important points in the examples and explanations
and to help· apply what is being explained or demonstrated.

Each chapter begins with a list of objectives - what you will be able to do after
completing that chapter. At the end of each chapter is a self-test to provide valuable
practice.

The self-test can be used as a review of the material covered in the chapter. You
can test yourself immediately after reading the chapter. Or you can read a chapter,
take a break, and save the self-test as a review before you begin the next chapter. At
the end of the book is a final self-test to assess your overall understanding of data file
programming.

This book is designed to be used with an APPLE computer close at hand. What .
you learn will be theoretical only until you actually sit down at a computer and apply
your knowledge "hands-on." We strongly recommend that you and this book get
together with a computer! Learning data file programming in BASIC will be easier
and clearer if you have regular access to a computer so you can try the examples and
exercises, make your own modifications, and invent programs for your own purposes.
You are now ready to teach yourself to use data files in BASIC.

*APPLE and APPLESOFf are registered trademarks of Apple Computer, Inc.

v

. -

~··

Preface

Titls text will teach you to program data files in APPLESOFT BASIC. As a pre
requisite to its use, you should have already completed an introductory course or
book in BASIC programming and be able to read program listings and write simple
programs: This is not a book for the absolute novice in BASIC. You should already
be comfortable writing your own programs that use statements including string vari
ables, string functions, and arrays. We do start the book with a review of statements
that you already know, though we cover them in more depth and show you new ways
to use them.

The book is designed for use by readers who have little or no experience using
data files in BASIC (or elsewhere, for that matter). We take you slowly and carefully
through experiences that "teach by doing." You will be asked to complete many
programs and program segments~ By doing so, you will learn the essentials and a lot
more. If you already have data file experience, you can use this book to learn about
data files in more depth.

The particular data files explained in this text are for APPLESOFT BASIC. Data
files in other versions of BASIC will be similar, but not identical, to those taught in
this book.* You will find this book most useful when used in conjunction with the
reference manual for your computer system.

Data files are used to·store quantities of information that you may want to use
now and later; for example, mailing addresses, numeric or statistical information, or
tax and bookkeeping data. The examples presented in this book will help you use
files for home applications, for home business applications, and for your small
business or profession. When you have completed this book, you will be able to
write your owri programs, modify programs purchased from commercial sources,. and
adapt programs using data files that you find in magazines and other sources.

*For programrriing data files in TRS-80 BASIC, MICROSOFf BASIC-80, and Northstar BASIC, read our
other book, Data File Programming in BASIC by Finkel and Brown (John Wiley & Sons, Inc., N.Y., 1981).
For programming data files on the IBM PC, read IBM PC: Data File Programming by Brown and Finkel
(John Wiley & Sons, Inc., N.Y., 1983).

vii

Contents

Chapter 1 Writing BASIC Programs for Clarity, Readability,
and Logic 1

Chapter 2 An Important Review of BASIC Statements 15

Chapter 3 Building 'Data Entry and Error Checking Routines 49

Chapter 4 Creating and Reading Back Sequential Data Files 79
' Chapter 5 Sequential Data File Utility Programs 134

Chapter 6 Random Access Data Files 198

Chapter 7 Random Access File Applications 252

Final Self-Test 281

Appendix A ASCII Chart Code 294

Appendix B List of Programs 296

Index 302

ix

CHAPTER ONE

Writing BASIC Programs for
Clarity, Readability~ and Logic

Objectives: When you have completed this chapter you will be able to:

1. ·describe how a program can be written using a top-to-bottom format.
2. write an introductory module using REMARK statements.
3. ·describe seven rules to write programs ·that save memory space.

INTRODUCTION

_This text will teach you to use data files in APPLESOFT BASIC. You should have
already completed an introductory course or book in BASIC prograniming, and be able
to read program listings and write simple programs. This is not a book for the abso
lute novice in BASIC, but is for those who have never used data files in BASIC (or
elsewhere, for that matter). The particular data files explained in this text are for the
APPLE II computer and the BASIC languages found on it.

Data files in other versions of BASIC and for other computers will be similar,
but not identical, to those in this book. (If you are using a computer other than the
APPLE II, you may want to read.Data Files Programming in BASIC, or IBM PC: Data
File Programming, available at your local computer store or bookstore.) You will find
this text most useful when used in conjunction with the APPLE II reference manuals and
the Disk Operating System (DOS) Manual: It is not a substitute for your careful reading
of the APPLE II DOS Manual, though the workings of sequential and random access
files are explained here in far more depth and with more examples.

Since it is assumed you have some knowledge of programming in BA~IC and have
practiced by writing small programs., the next step is for you to begin thinking about
program organization and clarity. Because data file programs can: become fairly large
and complex, the inevitable de\:mgging process - making the program actually work
·- can be proportionately complex. Therefore, this chapter is important to you be
cause it provides some program organization methods to help make your future
programming easier ..

1

2. APPLE BASIC: DATA FILE PROGRAMMING

THE. BASIC LANGUAGE

The computer language called BASIC was developed at Dartmouth College in the early
1960s. It was intended for use by people with. little or no previous computer experi
ence who were not necessarily adept at mathematics. The original language syntax
included only those functions that a beginner would need. As other colleges, computer
manufacturers, and institutions began to adopt BASIC, they added embellishments to
µieet their own needs. Soon BASIC grew in syntax to what various sources called
Extended BASIC, Expanded BASIC, SUPERBASIC, XBASIC, BASIC PLUS, and so 0!1·
Finally, in 1978 an industry standard was developed for BASIC, but that standard was
for only a "minimal BASIC," as defined by the American National Standards Institute
{ANSI). Despite· the ANSI standard, today we have a plethora of different BASIC
langu~ges, most of which "look alike," but each with its own special characteristics
and quirks. ·

In the microcomputer field, the most widely used versions of BASIC were
developed by the Microsoft Company and are generally referred to as MICROSOFT
BASICs. These BASICs are available on a variety of microcomputers but, unfortu
nately, the language is implemented differently on each computer system. The
APPLE version of MICROSOFT BASIC is called APPLESOFT.

. The programs and· runs shown in this text were ·actually performed on an
APPLE II and an APPLE II PLUS computer using Disk Operating System (DOS) 3.3.
{They will work in .DOS 3.2, as well.) We wrote all of our programs using APPLE
SOFT BASIC. To use the programs in INTEGER BASIC, you will have to ma).ce the
usual APPLESOFT to INTEGER modifications described in your reference manual.
The file commands described in this text may be used in APPLESOFT or INTEGER
BASIC. For INTEGER BASIC you may have to modify the file .input and output
statements, as described in your DOS Manual. · ·

Where possible, we use BASIC language features that are common to all versions
of BASIC, regardless of manufacturer. We do nc:it attempt to show off all of the ·
bells and whistles found in APPLESOFT BASIC, but rather to present easy-to-under
stand programs that will be readily adaptable to a variety of computers.

I

THE BASIC LANGUAGE YOU SHOULD USE

Conservative Programming

Since you will now be writing longer and more complex programs, you should adopt
conservative programming techniques so that e"ors will be easier to isolate and locate.
(Yes, you will still make errors. We all do!) This means that you should NOT use
all the fanciest features available in APPLESOFT BASIC until you have tested the
features to be sure they work the way you think they work. Even then, you still
might decide against using the fancy features, many of which relate to printing or
graphic output and do not work the same on other computers. Some· are special
functions that simply do not exist on other computers. Leave them out of your
programs unless you feel you must include them. The more conservative your pro
gramming techniques, the less chance there is of running into a software "glitch. "

WRITING BASIC PROGRAM~ FOR CLARITY, READABILITY, AND LOGIC 3

This chapter discusses a program format that, in itself, is a conservative programming
technique.

One reason for conservative programming is that your programs will be more
portable or transportable to ·other computers. ''Why should I care about portability?"
you ask. Perhaps the most important reason is that you will want to trade programs
with friends. But do all of your friends have ·a coinputer IDENTICAL to yours?
Unless they do, they will probably be unable to use your programs without modifying
them. Conservative programming. techniques will minimize the number of changes
required ..

Portability is also important for your own c9nvenience. The computer you use
or own today may not be the one you will use one year from now; you may replace
or enhance your system. In order to use today's programs on tomorrow's computer be
conservative in your programming.

Use conservative programming to:

• Isolate and locate errors more easily.
• Avoid software "glitch."
• Enhance portability.

WRITING READABLE PROGRAMS

Look at the sample programs throughout this book and you will see that they are easy
to read and understand because the programs and the individual statements are written
in simple, straight-line BASIC code without fancy methodology or language syntax. It
is as if the statements are written with the READER rather than the computer in mind.

Writing readable BASIC programs requires th.inking ahead, planning your program
in a logical flow, and using a few special formats that make the program listing easier
to the eye. If you plan to program for a living, you may find yourself bound by your
employer's programming style. However, if you program for pleasure,. adding readable
style to your programs will make them that much easier to debug or change later, not
to mention the pride inherent in trading a clean, readable program to someone else .

. A readable programming style provides its own documentation. Such self
documentation is not only pleasing to the eye, it provides the reader/user with suffi
cient information to understand exactly how the program works. This style is not as ·
precise as "structured programming," though we have borrowed features usually
promoted by structured programming enthusiasts. Our foniza.t organizes programs in
MODULES, each module containing one major fu.nction or program activity. We also
include techniques long accepted as good programming, but for some reason forgotten
in recent years. Most of our suggestions do NOT save memory space or speed up the
program nin. Rather, readability is our primary concern, at the expense of memory
space. Later in this chapter, we will present some procedures to shorten and speed
up your programs. Modular style programs wiiI usually be better running programs
and will effectively communicate your thought processes to a reader.

4 APPLE BASIC: DATA FILE PROGRAMMING

THE TOP-TO-BOTTOM ORGANIZATION

When planning your program, think in terms of r_najor program functions. These might
include some or all of the functions from this list:

DATA ENTRY
DATA ANALYSIS
COMPUTATION
FILE UPDATE
EDITING
REPORT GENERATION

Using our modular process, divide your ·program into modules, each containing
one of these functions. Your program should flow from module one to module two
and continue to the next higher numbered module. This "top-to-bettom organiza
tion" makes your program easy to follow. Program modules might be broken up into
smaller "blocks," each containing one procedure or computation. The size or scope- of
a' program block within a module is determined by the programmer and the task to be
accomplished. Block style will vaiy from person to person, and perhaps from program
t-0 program.

USE A MODULAR FORMAT AND. TOP-TO-BOTTOM APPROACH

REMARK Statements

Separate program modules and blocks from each other using REMARK statements or
nearly blank program lines. In general, programs designed for readability make liberal
use of REMARK statements, but don't be overzealous. A nearly blank program line
can be created by typing a line number followed by a colon {150:). A line number
followed by REM (150 REM) can also be used .

. lOO REM DATA ENTRY MODULE
llO HEM uu READ DATA FROM DATA STATEMENTS 9000-9090
lZO
130 REH
ZOO REM COMPUTATION MODULE
UO REM. ARJC

(Note-: Your Apple computer will split the word REMARK into two words, as shown
in line 210. Because this looks awkward, we encourage use of the word REM in
place of the complete word.)

Begin each program module, block, or subroutine with ·an explanatory REM
statement.(line 100 and 110) and end it with a nearly blank line (line 120) or blank
REM statement (line 130) indicating the end of the section. .

WRITING BAsIC PROGRAMS FOR CLARITY, READABILITY~ AND LOGIC S

Consistency in your use of REMs enhances readability. Use either REM or the
nearly blank line with a colon,. but be consistent. Some writers use the asterisks
(****) shown in line 110 tq set off REM statements containing actual remarks from
blank REM statements; others use spaces four to six pla1<es after the REM before they
add a comment (line 200). Both formats effectively separate REM statements from
BASIC' code.

You can place remarks on the same line as BASIC code usingmultiple statement
lirtes, but be sure your REM is the LAST statement on the line. Such "on-line"
remarks can be used to explain what a particular statement is doing. A common
practice is to leave considerable· space between an on-line remar~ and the BASIC code,
as shown below.

ZZD LET CCI> • CCI> + ·u: REM U*COUNT UNITS JN C ARRAY

Z4D LET T<X> • T<X> + C<X>: REM ***INCREASE TOTALS. ARJIAY

Using REMs to explain what the program is doing is desirable, but don't overuse
it. (LET C = A + B does not require a REM or explanation!) REM should add
information, not merely state an obvious step. ·

Like everything else said in these first chapters, there will be exceptions to
What we say here. Keep in mind that we are trying to get you to. think through your
programming techniques and formats a little more than you are· probably accustomed

· · to doing. Thus, our suggested "rules" are just that - suggestions to which there will
be exceptions. ·

GOTO STATEMENTS

Perhap~ the most· controversial statement in the BASIC language is the unconditional
GOTO statement .. Its use and abuse causes more controversy than any other statement.
Purists say you would NEVER, use an unconditional GOTO statement such as GOTO
100. A more realistic approach suggests that all GOTOs and GOSUBs go DOWN the
page to a line number larger than the line number where the. GOTO or GOSUB. appears.
This is consistent with the "top-to..:.bottoni" program organization. This same ap
proach-down the page-also applies to using IF .•. THEN statements (there will be
obvious exceptions to this rule).

140 COTO 210
150 IF X < Y THEN BOD
lSD COSUB BODO

A final suggestion: A GOTO, GOSUB, or IF .. ;THEN should not go to a stat.e
ment containing only a REM. If you or the next user of your prograin run short of
memory space you will delete extra REM statements. This, in tum, requires you t9
change all of your GOTO line numbers, so plan ahead first. Some BASICs do not

. even allow a program to branch to a statement starting with REM.

6 APPLE BASIC: DATA FILE PROGRAMMING

Bad Good

150 GOTO 300 150 GOTO 300

300 REM DATA ENTRY 299 REM DATA ENTRY
310 INPUT "ENTER NAME:";NS 300 INPUT "ENTER NAME:";NS

A FORMAT FOR THE INTRODUCTORY MODULE

The first module of BASIC code (lines 100 through 199 or 1000 through 1999)
should contain a br;ief description of the program, user instructions when needed, a
list of all variables used, and the initialization of constants, variables, and arrays.

The very first program statement should be a REM statement containing
the program name. Carefully choose a name that tells the reader what the program
does, not just a randomly selected name. After the program's name comes the author's
or programmer's name and the date. For the benefit of someone else who may like
to use your program, include a REM describing the computer system and/or
software system used when writing the program: Whenever the program is altered or
updated, the opening remarks should .reflect the change.

100 REM
110 REM
lZO REM
130 REM
140 REM
150 REM

PAYROLL SUBSYSTEM
COPYRIGHT CONSUMER PROGRAMMING CORP. 9/82

HP ZOOO BASIC
MODIFIED FOR APPLESOFT BASIC BY J. BROWN
ON APPLE II, 48X

Follow these remarks with a brief explanation of what the program does,
contained either in REM ·statements or in PRINT statements. Next add user
instructions. For some programs you might offer the user the choice of having
instructions printed or not. If instructions are long, place the request for instructions
in the introductory module and the actual printed instructions in a subroutine toward
the end of your program. That way, the long instructions will not be listed each time
you LIST your program.

170 REM THIS PROGRAM WILL COMPUTE PAY AND PRODUCE PRINTED PAYROLL
180 REM REGISTER USING DATA ENTERED BY OPERATOR
190 . REM
ZOO INPUT "DO YOU NEED INSTRUCTIONS?";Rf
210 IF RS = "YES" THEN GOSUB 800
ZZO REM

Follow. the description/instructions with a series of statements to identify the
variables, string variables, arrays, constants, and files used in the program. Again,
these statements communicate informatio11 to a READER, making it that much easier
for you or someone else to modify the program later. We usually complete this
section AFTER we have completed the program so we don't forget to include any-
thing. ·

Assign a variable name to all "constants" used. Even though a constant wil~ not
change during the run of the program, a constant may change values between rims.
By assigning it a variable name, you make it that much easier to change the value;

WRITING BASIC PROGRAMS FOR CLARITY, READABILITY, AND LOGIC 7

that is, by merely changing one statement in the program. It is a good idea to jot
down notes while writing the program so important details do not slip your mind or
escape notice. When the program has been written and tested (debugged), go back
through it, bring your notes up-to-date, and polish the descriptions in the REMs.

2ZO REM VARIABLES USED
230 REM G:GROSS PAY
240 REM N=NET PAY
250 REM Tl=FEDERAL INCOME TAX
260 REM TZ=STATE INCOME TAX
270 REM F:SOC.SEC.TAX
280 REM D:DISABILITY ISDI> TAX
290 REM X,Y,Z=FOR-NEXT LOOP CONTROL VARIABLE
300 REM HCX>=HOURS ARRAY
310 REM NS•EMPLOYEE NAME <ID CHAR>
320 REM PNhEMPLOYEE NO. <5 CHAR>
330 REM
340 REM CONSTANTS
350 LET FR = .0613: REM SOC.SEC. RATE
360 LET DR• .Dl: REM SDI RATE
370 REM
380 REM FILES USED
390 REM ITM=FEDL. TAX MASTER FILE
400 REM STM=STATE TAX MASTER FILE
410 REM

(Notice the method used to indicate string length in lines 310 and 320.)
(Notice the use of on-line remarks in lines 350 and 360.)

The final part of the introductory module is the initialization section. In this
section, dimension the size of all single and double arrays and all string arrays, even
though DIMENSION is not required by your computer. This is valuable information
for a reader. Any variables that need to be initialized to zero should be done here for
clear communication, even though your computer initializes all variables to zero auto
matically. This section also includes any user-defined functions before they are used
in the program.

410
uo
430
440
450

REM INITIALIZE

DIM H<7>,R<l0,13>,NS<30)

R~

THE MODULES THAT FOLLOW THE INTRODUCTION

The remainder of your program consists of major. function modules and subroutines
(and DATA statements, when they are used). Remember to separate each module
from others by a blank line REM statement and a remark identifying the module.
These modules can be further divided into user-defined program blocks, each separated
by a blank line REM statement.

A typical second module would be for data entry. Data can be operator-entered
from the keyboard or entered directly from DATA statements, a file, or some other device.
Chapter 3 discusses in detail how to write data entry routines with extensive error
chti"cking procedures to ensure the accuracy .and integrity of each data item entering
the computer.

For now, we suggest that you write data entry routines so that even a completely

8 APPLE BASIC: DATA FILE PROGRAMMING

inexperienced operator would have no trouble entering data to your program. This
means the operator should ALWAYS be prompted as to what to enter and provided
with an example when necessary.

240 INPUT "ENTER TODAY'S DATE (MM/DD/YYl";DS

If data are entered from DATA statements, place the DATA statements near the
end of your program (some suggest even past the END statement) using REM state
ments to clearly identify the typ~ of data and the order of placement of items within
the DATA statements.

9400 REM DATA FOR CORRECT ANSWER ARRAY IN QUESTION NUMBER ORDER.
9410 REM 10 ANSWERS, HULT.CHOICE 1-5
BUD
9430 DATA 4,5,1,3,2,l,l,4,4,5
9440
9450 REM RESPONDENTS ANSWERS TO QUIZ
9480 REM DATA STATEMENT FORMAT:
9470 REM RESP. ID I FOLLOWED BY 10 RESPONSES TO QUIZ QUESTIONS
9480
9490 DATA 17842, 4,5,1,3,2,2,l,4,4,4
9500 DATA 98126, 3,5,2,3,2,1,5,4,S,2
9580

You can think of DATA statements as comprising a separate program module.
The "inbetween" program modules might do computations, data handling, file reading
and writing, and report writing. Modular programming style dictates that all printing
and report generation, except error messages, be done in one program module labeled
as such. This limits the use of PRINT statements to one easy-to-find location within
your program. (There might be more than on~ print module.) This makes it that
much easier for yoµ to make subsequent changes on reports when paper forms change

. or new reports are designed. In the print module your program should NOT perform
any computations exct:pt trivial ones. Make important computations BEFORE the
program executes the print module(s). This may require greater use of variables
and/or arrays to "hold" data pending report printirig, but your programs will be
much cleaner and easier to debug, since everything will be easy to find in 'its own
"right" place. -

SUBROUTINES

Program control flows smoothly from one module to the next. A well-designed
module has one entry point at its beginning and one exit point at its end. The
exception to this is a mid-module exit to a subroutine:

290
300
310
320
330
340
350
360
370

REM COMPUTATION MODULE

LET T = CV * Xl I Q
LET T9 = T9 + 'I'.
GOSUB 800

REM REPORT PRINTING MODULE

WRITING BASIC PROGRAMS FOR CLARITY, READABILITY, AND LOGIC · 9

A subroutine exit from a module always RETURNs to the next statement in the
module. The use of subroutines is desirable provided you don't overdo it. Some
program stylists recommend that the entire main program consist of nothing. but
GOSUB statements "calling up" a series of subroutines located later in the program.
Such a technique is probably guilty of overkill. Strive for a happy medium between
the two extremes of no subroutines and nothing but subroutines.

Technically, you need use a subroutine only to avoid duplicating the same
program statements in two or more places in your program. A subroutine should be
called from MQRE than one place in your program. Otherwise, why use a formal
subroutine? Program stylists now agree that subroutines enhance readability and
clarity and can be used at the convenience of the programmer (you!) .. However, again
the caution - don't overdo it. Use subroutines to enhance the flow and readability
of your program. Stylists also agree that subroutines should be clearly identified
using REM statements and set off from other program sections with blank
REM statements. Program stylists disagree, however, on where to place the
subroutines. There are two schools of thought. Placement of subroutines can be
either immediately past the end of the module that calls the subroutine or in one
common module toward the end of the program.

10 APPLE BASIC: DATA FILE PROGRAMMING

JUST FORLOOKS

You can do a host of things to your programs to enhance looks and clarity. These
techniques are generally called "prettyprinting." Your Apple computer automatically
performs many "prettyprinting" activities. All statement lines are evenly spaced. -
Extra spaces are added to BASIC statements to enhance readability of your program,
even if you t)'l>e the statements with no spaces at all. In fact, extra spaces that you
typed accidentally-or on purpose-may be deleted automatically by your Apple
computer.

Spacing

One way to make your programs look nice is to use line numbers of equal length
throughout the pn;>gram. If your program is small, use line numbers 100 through 999.
If long, start the program at 1000 and continue to 9999. When your program is
listed, it will be aligned neatly. It also improves the appearance if the entire program
is incremented by steps of ten. Without a resequence command this is virtually im
possible to do. A partial solution is to enter statements in sequence increments of
ten when you first enter your program. When you have completed the program, even

. with changes, MOST of the program will still be in increments of ten. Learn how to
use the RENUMBER program that is provided on your Apple System Master diskette.
The RENUMBER INSTRUCTION PROGRAM will teach you how to renumber pro
grams and program parts iri "prettyprinting."

Other Techniques To Enhance Looks and Readability

You can do still more to make your program clearer to you and another reader. These
few ideas .are the "finishing touches."

Using the LET statement, even when unnecessary, enhances readability. The
absence of LET can be confusing, especially in a multiple-statement line.

CONFUSING

280 X = Y:C = X * Y: IF X = N THEN X = C

BETTER

140 LET X = O:Y = O:C = 0

BEST

260 LET X = Y: LET C = X * Y: IF N = X THEN LET X = C

Arrange BASIC statements so that they read smoothly from left to right, just as
the readers' eyes flow across the paper. This includes placing A before B and 1 before
2. Some stylists recommend that in IF ... THEN statements, you place the least vary
ing, variable last, as shown in lines 270 and 300 below.

WRITING BASIC PROGRAMS FOR CLARITY, REAJ;>ABILITY, AND LOGIC · 11

150 READ A,B,C

ZIO FOR I • l TO 8
Z7D IF HCll C > N THEN ZID
ZBO LET HCU c H'
ZIO NEJT I
300 IF Dt a ':STOP" THEN BBB

If your typed statement is long, it is probably confusing, especially if it is a
mathematical equation. Break it into two or more pieces' so it is easy to read. Read
the statements aloud to test their readability. -

CONFUSING

Z5D LETT• CH * 3.75) + CCN - tDl * 3._Z5> + <<N - &DJ I 3) I <<D * N> * A>

CLEARER

Z50 LETT= <N * 3.75> + CCN - tO> • -3.Z5)
Z60 LETT= T + C(N - 60> I 3l ! <CD* Nl *A>

UNDOING IT ALL TO SAVE SPACE AND SPEED UP RUN TIME

After reading all these rilles and ways to enhance readability, you are probably wonder
ing how you will remember them all. Chances are yciu won't, but we hope we
have at least sensitized you to the need for writing clear, readable programs. You will
adopt your own typh;lg style based on some of these techniques; plus others that you
devise for aonvenience.

Nearly every technique illustrated in this chapter uses what some would consider
to be unnecessitry memory space. You may in fact find that your computer memory
is filled before you have completely entered your program. When this happens,.either
rethink your entire problem-solving technique or look for ways to save memory space
by making changes to your program. A well-written, readable program takes up more
memory space than a poorly written, less readable program. Thus, to save memory
space, you may have to undo some of the things you did to enhance readability.

To save large numbers of memory "bytes:" __

1. Use multiple statements per line.
2. Delete all REM statements beginning with the introductory module.

For further space saving:

1. Use one-letter variable names.
2. Delete unneces&ary parentheses.
3. Reuse variables when possible (normally a terrible technique).
4. Dimension arrays sparingly.
5. Use GOTO, not GOSUB, for a routine accessed from only one place in a program.

12 APPLE BASIC: DATA FILE PROGRAMMING .

If you are concerned about the speed of your program run, you can use some·
techniques to shave microseconds, even seconds, off the run time. Some of these
overlap with the space-saving techniques. ·

L Delete all REMs and/or move the introductory module to the end.
2. Use multi-statement lines.
3. Use variables rather than constants (as recommended earlier).

· 4. Define the most commonly used variables first.
5. Place subroutines before the main program .
. 6. Use FOR NEXT loops whenever possible.
7. Remove extra parentheses.
8. Limit the use of GOSUBs.

Reipember, these techniques may speed up your run,-but they are generally
considered to be bad programming techniques and contrary to nearly everything said
in this chapter .

. To save space and lessen distraction we have not followed ALL the rules suggest
ed in this chapter in the rest of this book. However, you will still find. our programs
easy to read and self-documenting. ·

CHAPTER 1 SELF-TEST

1. Will a useful program written in BASIC on one computer system also RUN on a
different brand of computer that uses BASIC? Why or why not?

2. How can you be most certain that a program you write will also run on another
person's computer?

3. What is meant by the portability of a computer program?

WRITING BASIC PROGRAMS FOR CLARITY, ~ADABILITY, AND LOGIC 13

4. Name at least three types of information to include in REM statemeJ?.tS in a
program's introductory module.

· 5. Describe the "top-to-bottom format" for organizing programs.

6. When branching statements such as GOTO and GOSUB are used, what statements
should not be branched to and why?

i

7. Define "initializing."

8. What is the most important reason for designating a segment of a program as a
subroutine accessed by GOSUB?

9. When writing a self-documenting, easy to read program, what sacrifices are made?

10. In a multiple statement line with three statements, the first being a REM
statement, how many statements will be executed?

/

14 APPLE BASIC: DATA FILE PROGRAMMING

Answer Key

1. The program might not run on a different brand of computer, because different
computers use different versions of BASIC.

2. Use conservative programming techniques and the least fancy statements· in your
. version of BASIC. '

3. Portability means that the program is likely to run on many computers with few
or no modifications.

4. Variables used and what they stand for, files used, descriptive name for program,
description of program if necessary, author of program, last revision of program, . ·
version of BASIC and/or system used. (any three answers)

5. To the extent possible, the program is written so that it begins execution at the
smallest line number and procedes toward the largest, with a minimum of con
fusing branching within the program. . .

6. REM statements, in case they are removed from a program to save computer
memory space.

7. The first time in a program that value(s) are assigned to variables or elements in
an array (often means assignment of zeros); DIMENSIONING where needed.

8. The segment would otherwise have to be repeated because it is used more than
once in executing the program.

9. Amount of memory used and possibly speed of program execution.

10. None. The computer goes on to the next line numbered statement if it sees that
the first statement in the line is a REM.

CHAPTER TWO.

An Important Review of
-BASIC Statements

Objectives: To review important aspects of BASIC. When you finish this chapter,
you will be able to write BASIC statements using: LET, READ, DATA, INPUT,
IF ... THEN, FOR NEXT, GOSUB, RETURN, ON •.. GOTO, LEN, ASC, MID$,
LEFT$, RIGHT$, and ONERR. .GOTO. .

INTRODUCTION

We assume you have used BASIC to write programs and that you can read and under
stand a listing of a BASIC program (are you BASICly literate?); this information serves
as a review. Many of the programming techniques in this and the next chapter will
be used over and over again in programming data files. Even masters at programming
in BASIC should give the material a quick run through. This is important information
and skill to have .under your belt so that you can give your fullest attention to learning
file-handling BASIC statements and techniques in Chapter 4.

VARIABLE NAMES

In early versions of BASIC, the names you could choose for a variable were limited to
one letter, or one letter and one number only. A, Al, Z7, Zf/J, B$, arid Bl$ were all
acceptable variable names: while AA, A25, SALARY, or NAME$ were unacceptable
to the computer. In contrast, APPLESOFT BASIC and other new dialects of BASIC
permit the use of multi-letter variable names. The unacceptable variable names men
tiones above are all acceptable in APPLESOFT BASIC, as are NETPAY, GUESS,
OLDNAME$, and many others you may think of. The temptation to use long variable
names may be overwhelming, but beware! APPLESOFT BASIC recognizes and identi
fies the variable using only the first two letters of the variable name. Thus, the vari
ables SALES and SALARY are not really two variables, but rather one - SA. PAY
MENT and PAYROLL are also really the same variable - PA - in APPLESOFT
BASIC. ·Be extremely cautious selecting variable names to avoid unusual errors that
are hard to detect. Also note that longer variable names take up more computer

15

. 16 APPLE BASIC: DATA FILE PROGRAMMING

memory space, which may become a problem as the programs you write become longer
and more complex.

Another limitation when using long variable names is that you canf).ot use a
combination of letters that are also used for a BASIC statement, command, or function.
A'Reserved Word.List in your reference manual tells you which words cannot be a
part of a long variable name. Examples are:

FOR, DATA, NOT, LIST, PRINT, DIM, IF, THEN

Use of simple variable names (A, Tl, Y$) precludes having to debug a program when
the problem is a reserved word accidentally used (embedded) in a long variable name.
Notice in our examples, that even with simple variables we have selected names that
are more likely to be remembered and make sense to someone reading the program.
We encourage you to do the same. Use T for total, T9 for grand total, S for salary,
N$ for name, etc.

The letters 0 and I are poor variable names since they are easily confused with
the number (/J (zero), the number 1 (one), or the lower case letter 1 (el). Some experi
enced progra.mmers reserve a few variables and use them the same way in all programs
they ·write. X, Y, and Z are popular as control variables in FOR NEXT loops. K and
C are popular for counting in statements like LET C = C + 1.

Variables, also called variable names or labels, identify for the computer a
particular place in its memory where information is stored. The infoqnation may be
numeric (a value) Qr alphanumeric (a string, discussed more fully later). A value or
string is first stored by an assignment statement (LET, READ, INPUT), and sub
sequent references to the variable tell the computer to use the value or string assigne.d
to (and identified by) that variable. Assignment statements are included in this review
of BASIC.

I
(a) Give two reasons for using simple variable names such as A, X3, and Y$.

(a)

AN IMPoRTANT REVIEW OF BASIC STATEMENTS 17

1. Conserves computer memory space.
2. No reserved words are accidentally embedded in the variable.
3. Portability. of programs between different versions of BASIC.

(any two answers)

String Variables

The rules for constructing names for string variables are the same as for numeric
variables, except that a string variable always has a dollar sign($) as its last character.
A is a numeric variable, w!iereas A$ is· a string variable. A string is one or more letters,
symbols, or numbers that can be used as information in a BASIC program. Strings
are stored in the computer's memory with an assignni.ent statement such a,s LET B$ =
"EXAMPLE OF A STRING." The string variable B$ acts as .a label in the computer's
memory for the place where the string assigned to ·B$ is stored. A reference to B$
.elsewhere in the program automatically tells the computer to use the string assigned
to B$.. The string assigned to a string variable is often referred to as the "value" of
the string variable.

String variables act much like numeric variables and can generally be manipulated
just like numeric variables. The crucial difference is that you cannot use string .
variables in arithmetic expressions and calculations, even if numeric information is
assigned to the string variable. For example, LET F$ = "8.99" does not let you use
F$ in numeric calculations, even though the string is comprised of numbers. .

String variables and the strings assigned to them take up space in your computer's
memory. You can visualize this as a box or compartment that contains alphanumeric
information identified by a string variable. For example, the assignment statement
LF;T N_$ ="ALPHA PRODUCTS COMPANY" can be thought of as creating a storage
compartment in the computer's memory like this:

I N$ I ALPHA PRODUCTS COMP ANY I .
t t

the string variable the string

Remember that a string assigned to a string variable in this way has the string enclos_ed
in quotation marks. Only the information between the quotation marks comprises
·the string; the quotes themselves are not part of the string.

Many, if not most, business and personal applications of data files make much
greater use of alphanumeric data (strings) than numeric data (numbers or values), so
we are taking this opportunity to reinforce and extend your understanding of the use
of string variables. Notice the word "alphanumeric." This term comes from the data
processing industry and refers to data that may consist of alphabetic characters, numeric
characters, ~d/or special characters. For example, the product identification n~ber
FC1372 appearing in a catalog is alphanumeric data consisting of two alphabetic
characters followed by four nWneric characters. An address or hyphenated phone
number is also alphanumeric data. To use and store such information in BASIC,
assign it to a string variable (LET P$ = "FC1372") because a simple numeric variable
would not accept the .two alphabetic characters. If an identificatiol)._ number is mostlr

18 APPLE BASIC: DATA FILE PROGRAMMING

numeric, but includes a hyphen, asterisk, or- even a space (e.g., 84992*, where the"*"
denotes a special location, price, etc.), then it too requires the use of a string vari
able.

One string variable can have from zero to 255 characters, including all spaces,
·punctuation, and special characters. A string with no characters (zero characters) is
called a null string or empty string, An assignment statement for a null string would
be: lo LET z • = "" • (There is no space between the two sets of quotatioh
~arks.)

There is a crucial difference between the maximum length of a string (255
characters) and its actual length. The actual length is the number of alphanumeric
characters presently assigned to the string variable and stored· in the computer's
memory. Remember, spaces count as characters. Consider the lengths of the follow
ing strings assigned to string variables;

I N$ ALPHA PRODUCTS I

I C$ · I MENLO p ARK, CA. 94025

Now you do this one:

Actual length: Fourteen characters

Actual length: Twenty-one characters
(includes comma, period, and spaces)

A$ I' 161 DAWN ST. SUITE 3

(a) What is the maximum length for a string assigned to A$?

(b) What is the actual length of the string shown as assigned to A$ above?

(a) 255 characters
(b) Twenty characters

Since APPLE SOFT BASIC automatically assumes that a string variable can
be assigned a string with up to 255 characters, there is no need to DIMENSION
string variables. However, we recommend that_ you show a person using your program
what the string size (maximum actual size) is for all string variables listed in the
program. Do. this by including REM statements in the introductory module,
as shown:

140 REM
150 REM
l&O REM
170 REM
180 REM
190

AN IMPORTANT REVIEW OF BASIC STATEMENTS 19

STRING VARIABLES
Nt=CUSTOHER NAHECZO>
AhCUST.STREET ADDRESSC25>
ChCUST. CITY C 15), STATE CZ>., Zl PC 5 >
Ct HAS U CHAR. TOTAL INCLUDI.!'G SPACH

(a) How many characters are contained in a null string assigned to a string .variable?

(b) In the actual length of a string, how many characters does a space use?

(a) zero {none)
(b), one

As noted earlier, you can assign a string to a .string variable using the LET
statement.. Remember to place the string inside quotation marks, or the computer
will reject the statement; it will tell you that an error has been made. Example:

UD LET NS a "TYPE A POSITIVE"

Almost all versions of BASIC allow omitting the word LET from an assignment
statement. For this reason, LET statements are sometimes called direct assignment
statements to distinguish them from INPUT and READ assignment statements. A
variable (numetic or string) followed by an equal sign(=) hnplies LET to BASIC; thus,
the "implied LET" direct assignment statement can save a bit of typing and a little
memory space. We generally include LET for clarity in reading a program listing. This
statement:

· Z4D NS = "TYPE A POSITIVE"

means the same in BASIC as the example before this paragraph.

READ-DATA ASSIGNMENT STATEMENTS

DATA statements are like data files in that they hold data to be assigned to va)jables -
and are then used in a program. The difference is that a DATA statement holds data
that can be used only by the program in which the DATA statement appears, whereas
a data file can ·l:>e created and the data used by a variety of different programs, since
it is separate from the program itself. This will be explained in greater detail later.

20 APPLE BASIC: DATA FILE PROGRAMMING

The READ statement, which must have one or more DAT~ statements in the
same program to READ from, is an assignment statement. One or more data items
from a DATA statement are assigned to one or more variables by a READ statement.

10 READ A
ZD DATA 15, 76.5, 1882, -888

The statement READ A assigns a nwneric value from the DATA statement to variable
A.

10 READ A,B
ZD DATA .15, 78.5, 1892, -899

The statement READ A, B assigns two consecutive values from the DATA statement;
the first to variable A, the second t6 B.

A program c.an also use the READ and DATA statements to assign strings to
string variables. A DATA statement can contain strings as data items, and these
strings are assigned to string variables by a READ statement using the same procedure
as for reading nwneric values.

ZZO ~EAD AS,BS,CS

910 DATA BLUE, GREEN, COLD

In APPLESOFT BASIC, the individual string items in the DATA statement do
not have to be enclosed in quotation marks unless the string data· i,dem includes a
comma, semicolon, or one or more leading spaces· (blank spaces that are to be included
and considered part of the string). In the latter cases, enclose the string data item in
quotation marks, just as for a LET direct assignment statement. Any trailing spaces
left between a string data item and the comma separating it from the. next item in the
same data statement are accepted as part of the string and duly assigned to the string
variable. Note that the actual length of such a data item includes these trailing spaces,
eveµ though they seem invisible.

In the following example, quotation marks are necessary around each data item
because a comma is part of the string data items themselves.

ZZO READ NS

910 DATA "BROWN, JERALD R; ",·"FINKEL, LEROY P."

AN IMPORTANT REVIEW OF BASIC STATEMENTS 21

Try this test program to see how the "trailing space" rule works on your APPLE.

220 READ NG ,AS
230 PRINT NS ;AS
910 DATA TEST ITEMS

JRUN
TEST ITEMS

There should be only three spaces between the words TEST and ITEMS because
the leading spaces before items are not included, while the trailing spaces after TEST

,and before the comma are included. Now change line 910 as shown below and RUN
the program segment again.

910 DATA "TEST "," ITEMS"

(a) How many spaces should now appear between the strings when the program is

RUN?

(a) six spaces

The computer uses an internal "pointer" system to keep track of items in a
DATA statement that are "used up" or already assigned to variables in a program
RUN. When executing READ-DATA statements, each time a data item is read and
assigned to a variable the internal pointer advances one position in the DATA state
ment to the next data item. If the pointer is pointed at alphanumeric data (a
string) and the READ statement is looking for numeric information to assign to a
numeric variable, the program will ternlinate in an error condition. For example:

210 READ A
910 DATA ALPHA.NUMERIC

An error condition would result from executing this program segment because
the statement READ A is "looking" for numeric data to assign to the numeric variable
A, but the pointer is pointing at alphanumeric information.

What will happen if this program is RUN?

210 READ AS ,BS
220 PRINT-AS ;BS
910 DATA 17926, NUMERIC

(a) Will the program RUN without an error condition?

(b) What wilr be assigned to A$ and why?

22 APPLE BASIC: DATA FILE PROGRAMMING

(a) Yes·
{b) A$ = 1.7926, since a number can be assigned as a string to a string variable (but

not Vice versa)

UNDERSrANDING INPUT,
AN IMPORTANT ASSIGNMENT STATEMENT

You can enter numeric 9r alphanumeric information to be assigned to a numeric
variable or a string variable using the INPUT ,statement. When using INPUT statements,
make certain that the· data entry person using your program at a ·computer t.erminal
knows exactly what kind of _information to enter for assignment to a variabie by the
INPUT statement. To do so, you must fully understand how INPUT works in
APPLESOFT.

The INPUT statement should always include a prompting string (a message that
appears on the printer or display screen) to tell the user exactly what sort of informa
tion is to be entered. A typical format for an INPUT statement is:

lBD INPUT "ENTER YOUR NAME, FIRST NAME THEN i:.AST:";NS

An INPUT statement without a prompting message {the part enclosed by quotes)
causes the computer to pril;tt or display a question mark; the computer then waits for
a response from the keyboard. There is nothing_more frustrating to a computer usei:
than an INPUT question mark with no hint as to what sort of response is requested.
Always use a prompting string in an INPUT statement. If necessary, use PRINT
statements preceding the INPUT statement to expiain to the user what information
to enter.

· Another source of user frustration is the funny responses the computer can make
when incorrect data are entered. Consider the following example: -

38D INPUT "ENTER PRODUCT NUMBER AND QUANTITY:" ;N,O

JRUN
ENTER PRODUCT NUMBER AND OUANTITY:l37

"
The user entered the number 137 after the prompting message and then pressed the
RETURN key. The computer responded with a double question mark (??), indicating·
that more data were expected. Notice that the INPUT statement had two. variables
to assign values to but only one value {137) was entered. An inexperienced user
would not know that.

AN IMPORTANT REVIEW OF BASIC STATEMENTS 23

RUN the same program segment again and _enter three items of data.

lRUN
ENTER PRODUCT NUMBER-AND QUANTITY:l37,lZ,l64
?£XTRA IGNORED

This general error message doesn't provide any help to the user since it doesn't pin
point the problem. To make matters worse, the computer may accept incorrect data
and assign it to the INPUT variables! Consider this example!

llD INPUT "ENTER -TlilO VALUES;";A,B
lZD PRINT A,B

JRUN
ENTER TWO VALUES:3
11
?REENTER . ·

?REENTER ENTER TWO VALUES:ll1

ENTER TlilO VALUES:~ ·

USER E. NTERS ONE VALUE ONLY AND PRESSES RETURN.

USER.ENTERS NO VALUE AND PRESSES RETURN.

IT'S BACK LOOKING FOR A VALUE FOR 'A' AGAIN!

The same error conditions and input problems can occur in string data with an·
additional peculiarity. Consider the following program segment:

180 INPUT "ENTER CUSTOMER NUMBER AND NAME:";C,NS
l9D PRINT C,NS

lRUN
ENTER CUSTOMER NUMBER AND NAME:l37Z6
? ?
13728

Here the user entered the customer number (13726) and pressed RETURN, and the
number was duly assigned to variable C. But when the ?? appeared, indicating that
the computer expected yet another entry, the user pressed the RETURN key again
without making another entry. While the computer wanted a second entry to assign
to N$, it accepted "nothing" as an entry; that is, it accepted a null string and assigned
it to N$. If we changed the INPUT variables to C$ and N$ (instead of C and N$),
the computer would accept null strings for assignment to both string variables. In that
case, the computer interprets two presses on the RETURN key as meaning that it -
should assign null strings to both variables.

Our insistence on the importance of understanding INPUT should now be hitting
home. So what do you do for the accidental'null string entry and the other eccentri
cities of the INPUT statement.

Two programming techniques can help eliminate errors. First, ask the user to
enter only one value or string per INPUT statement, period! This makes data entry
(and data checking, as we will discuss in the next chapter) nice and clean. For
example:

24 APPLE BASIC: DATA.FILE PROGRAMMING

RUN
ENTER CUSTOMER NUMBER:137
ENTER CUSTOMER NAME:BISHOP BROTHERS
ENTER PRODUCT NUMBER:l862S
ENTER 00ANTITY ORDERED:106

Second, to have all input entries, whether string or numeric, assigned to string
variables. This eliminates error messages for numeric variables that cannot· accept
alphanumeric information for assignment. In the next chapter you will learn to test
for null strings (no entry made} and appropriately advise the user with explicit mes
sages as to the proper entry to be made. Numbers (numeric values) assigned to string
variables can be converted from strings to numeric values for arithmetic operations using
the VAL function. If Q$ = 106 (a string}, then V AL(Q$) converts 106 to a numeric
value that can be assigned to a numeric variable and/or used directly as a numeric
value in a BASIC expression. VAL is discussed in the next chapter.

(a) Write an INPUT statement that will result in the following RUN:

RUN
ENTER YOUR HOME ADDRESS:

(a) lDD INPUT "ENTER YOUR HOME ADDRESS: ";AS (Your line number and string
variable may be different.)

CONCATENATION

Strings can be joined to form longer strings; a process called concatenation. _ Strings
·are concatenated_in BASIC using the plus(+) sign. The process, however, is one of
joirting, not of arithmetic addition. For example, the strings assigned to F$ and L$
can be concatenated and the new, longer string assigned to another variable N$ in an
assignment statement like this:

llD LFT NS = YS + LS

Strings assigned to variables can be concatenated with string constants, like' this:

120 LET GS = NS + "CUSTOMl;R"

AN IMPoRTANT REviEW OF BASIC STATEMENTS 25

or

150 LET Nf = FS + " " + LS

The statement above concatenates the strings associated with F$ and L$ and assigns
them to N$, but it also places a space in the new N$ string between the parts of N$

. that were assigned to F$ and L$. Look at the following program and show what will
be printed when it is RUN.

(a) 10 LET FG • ~JANET"
20 LET LS a "BARRINGTON"
30 LET NS • Ft + " " + LS
40 PRINT NS

RUN

(a) JANET BARRINGTON

IF .. ~THEN STATEMENTS

The IF ... THEN statement in BASIC gives the language real power. Its syntax varies
· from one BASIC system to another .. Some BASICs permit only a GOTO statement
to follow an IF ... THEN expression.

140 IF I < Y THEN COTO 800 .

However, the GOTO can be, and usually is, omitted. The simplest form of IF ... THEN
is a COMPARISON between two numeric values or expressions. IF the comparison is
true, THEN (GOTO) a given line number and continue executing the program with the
statement at that line number. Since GOTO is usually omitted, just the line number
follows THEN. The possible comparisons are: /

26 APPLE BASIC: DATA FILE PROGRAMMING

= equals

< less than

> greater than

<= less than or. equal to

> = greater than or equal· to

<> not equal to

APPLESOFT BASIC also includes in the IF ... THEN family of statements:

IF ... THEN LET ...

IF ... THEN GOSUB .. ·.
IF ... THEN RETURN .. .
IF ... THEN PRINT .. .

. IF ... THEN INPUT .. :
IF ... THEN READ ...

IF ... THEN STOP .. .
IF ... THEN END .. .
IF ... THEN IF ... THEN ...

(Follow rules for regular LET statements.
LET can be omitted.)

(Line number follows GOSUB.)
(Unusual, but possible.)
(Follow all the rules for regular PRINT
statements.)

(These two are possible, but are not recom
mended because of confusion and debugging
complications.) ·

(Possible, but confusing and unnecessary.)

(a) What statement is implied after the THEN in the simplest form of the IF ... THEN

statement? _____ _

(b). List at least five BASIC statements that can be part of an IF ... THEN statement
and that will be executed if the condition (comparison) is true.

(a) GOTO
(b) PRINT, GOTO (assuming a line nuniber appears after THEN),

LET (direct assignment statement, with the option of omitting the word LET),
READ, INPUT, another IF ... THEN statement (not recommended),
GOSUB, RETURN (any 5 answers)

AN IMPORTANT REVIEW OF BASIC STATEMENTS 27

IF ... AND ... THEN ... and IF ... OR ... THEN ... are called the logical AND
and logical OR. They allow you to put more than one comparison in a single
IF ... THEN statement. The comparisons on both sides of an AND must be true for
.the entire IF THEN comparison to be true. Only one comparison on either side
of an OR must be true for the comparison to be true. You can use more than one
AND and more than one OR between IF and THEN, and you may use both AND
and OR in the same IF ... THEN statement, which allows three or more comparisons
in one IF ... THEN statement! Be certain you understand how to use the logical
AND and OR to produce the results you want. We find they are useful for certain
checks on user INPUT entries. If an INPUT value should be between five 'and twenty,
then the following statement would check that the value was within these parameters.

150 IF F < 5 OR F > ZO THEN PRINT "ENTRY JS INCORRECT"

Alternately, the following line would check for "within bounds" parameters for the
value assigned to F, instead of "out of bounds" values.

150 IF F > = 5 AND F < = ZD THEN PRINT "ENTRY JS WITHIN BOUNDS"

Note: Be very careful tc:i have your logic straight or such eomparison .statements will
not do what you want. For some, flow charts help visualize the alternatives so you
can properly construct your comparison statements. Thoroughly. testing programs
and program segments for every conceivable mistake that you could enter is a must.

(a) Write two IF ... THEN statements, one using a logical AND and another using a
logical OR. The statement should test to see if the value assigned to variable Y
is greater than, but not equal to, zero, and less than, but not equal to, one. When
the comparison is true, one statement should print the message BETWEEN ZERO
AND ONE, and the other should print NOT BETWEEN ZERO AND ONE.

(a) SD IF Y > 0 AND Y < l THEN PRINT "BETWEEN ZERO AND l"

70 IF Y < " 0 OR Y > = l THEN PRINT "NOT BETWEEN ZERO AND l"

Having seen how more than one comparison can be made within a single
IF ... THEN statement, now consider the other end of the comparison statement and
how to have more than one instruction executed in the case of a true IF ... THEN
comparison.

APPLESOFT BASIC permits you to do nearly anything after an IF ... THEN
expression, frequently encouraging you to place multiple statements on one line.

28 APPLE BASIC: DATA FILE PROGRAMMING

150 IF I (Y THEN PRINT "TOO LOW": LET C "' C + 1: GOTO 10
160 IF I > Y THEN' LET C "' C + l: LET G " 0: GOTO 10

When you use this APPLESOFT BASIC feature, keep in mind that you may be
hindering the portability of your program. · If this. doesn't concern you, forget it! We
do urge you to complete your entire "activity" on one ~ne after an IF ... THEN
statement, otherwise the program is extremely awkward to follow. If you cannot
complete your activity on one line, then GOTO a section where all of the activity can
be dohe together. Follow the acceptable example:

BAD

·150 IF I < Y THEN LET X = I + D: LET Y = Y I N: GOTO ZOD
18 0 IF I > Y THEN LET X X - D: Y = Y I N: GOTO l 0

ZOO LET ·C = C + l: PRINT "TOO LOW": GOTO 10

ACCEPTABLE

150 IF I Y THEN ZOO
160 IF X Y THEN 250

ZOO LET I = I + D
210 LET Y = Y I N
zzo· LET c = c + l
230 PRINT "TOO LOW"
Z40 GOTO 10

... or all on one line

Most of us who program for fun ignore what is going on inside the computer
because we don't have to pay attention. However, on occasion, little "bugs," in
consistencies, and our own ignorance can cause some interesting (and frustrating)
problem~. BASIC software sometimes does funny things, barely detectable because
the problem exists at the seventh or eighth decimal location, which may be invisible
to the BASIC user. We once spent hours trying to fix a "money changing" program

.... that kept giving us-4.9999 peruues change instead of a nickel. (This points out a very
important lesson: Your BASIC language interpreter does not always do things with
the accuracy and consistency you might expect. Therefore, when you are comparing
numeric values, especially numbers that have been computed by your computer, try

. to compare using less than (<), greater than (>), or not equal(<>).

GOOD

~F X<ll25.75 THEN •••
IF X>1125.75 THEN •••
IF X <> 1125.75.THEN •.••.

NOT WISE

IF X 1125.75 THEN •• :.

AN IMPORTANT REVIEW OF BASIC STATEMENTS 29

(a) Why should. you avoid IF ... THEN comparisons for equality?

(a) Internal round-off errors may produce very slightly inaccurate values in calcula
tions. Therefore, a comparison for equality might fail (be false) where you would
expect the comparison to be true.

IF. .. THEN String. Comparison$. and the ASCII Code

So far.the only comparisons used in IF ... '.fHEN examples have been between two
, numeric expressions or values. Comparing strings in IF ... THEN statements begins to get a
little tricky. However, comparisons for equality or inequality are fairly straightforward.
Examine these statements: ' . ·

ZZO INPUT "ENTER YOUR LEGAL NAME:" ;NS
ZJO IF NS = "STOP" THEN 999

Notice that in line 230 a string variable (N$) is compared with a string·constant
("STOP"). A string constant in a comparison must be enclosed in quotation marks.
In order for a comparison for equality between two strings to be true, each and every
character in the two strings must be identical (upper and lower case are different), and
the length of the strings and any leading or trailing spaces must be the same. An.y
difference whatsoever will make the equality comparison false.

In line 230 above, the string assigned to a string variable was compared to a
string constant. Likewise, the contents of two string variables can be compared.

310 INPUT "ENTER OLD TITLE:" ;TS
320 IF TS < > DS THEN PRINT "WRONG TITLE. TRY ANOTHER."

The difficulty in string comparisons comes with the "less than" or "greater
than" comparisons. These have application in sorting strings, alphabetizing data, or
inserting new information into an alphabetically organized data file. In IF ... THEN
comparisons, BASIC compares the two strings one character at a time, from left to
right.

Rather than comparing within the construct of a twenty-six-character alphabet,
BASIC uses a standard code that represents every possible signal a terminal keyboard
can send to the computer (and vice versa). Each key and each permitted combination
of keys, such as the shift or CONTROL key along with another key.., sends a ·
unique electronic code pattern to the computer. These patterns are represented by

30 APPLE BASIC: DATA FILE PROGRAMMING

· the decimal numbers 0 through 12 7 in the ASCII Code chart. Mercifully, here is one
instance of standardization throughout the computer industry. ASCII stands for
American Standard Code for Information Interchange. The ASCII code's 128-character
set includes the upper and lower case letters of the alphabet, numbers, punctuation,
and other special characters and special function keys. The ASCII code also inciudes
128 other special codes that are numbered 129 through 255, that do not concern us.
Refer to the ASCII chart· in the Appendix for your understanding of the following.

·Notice that the numbers 0 through 9 have ASCII codes of 48 to 57. The alpha
bet has ASCII codes of 65 to ·90 for upp~r case letters; lower case starts at 96. There
fore, the lower case equivalent of an upper case letter is the upper case letter's ASCII
code number plus 31.

A = 65, so a·= 65 + 31 = 96

This fact will be of use later.
What actually happens in an IF ... THEN string comparison? BASIC compares

the ASCII code number for each character in the two strings, comparing just one
character at a time. As soon as an inequality exists between characters, the stririg
with the character that has the lower ASCII code number will be considered "less
than" the other string. BASIC does not add up the ASCII code values for the two
stririgs being compared to deterinine "less than" or "greater than." The following
chart shows the results of comparing a series of strings assigned to A$ and B$.

. '
A$ 8$

ABC ABD A$ IS LESS THAN 8$
MN! MNO A$ IS LESS THAN 8$
STOP STD 8$ IS LESS THAN A$ (A$ is greater than B$)
123A 123a A$ IS LESS THAN 8$

In the comparison process, if one string ends before the other and no other
difference has been found, then the shorter string is said to be "less than" the longer
one. One result is that a null string is always "less than" a non-null string; since the
ASCII code for null is zero. Here are some more examples of string comparisons:.

A$ 8$

SMITH SMITHE
ALCOTJONES ALCOT
JOHNSEN JOHNSON
KELLOG KELLOGG
E0-8 EQ 8

A$ IS LESS THAN 8$
A$ IS GREATER THAN 8$ (B$islessthanA$)
A$ IS LESS THAN 8$
A$ IS LESS THAN 8$
8$ IS LESS THAN A$

Now it's your turn to familiarize yourself with ASCII code comparisons. Fill in the
blanks with the· appropriate string variable. Of course you can refer to the Appendix!

AN IMPORTANT REVIEW OF BASIC STAT!j:ME~S 31

C$ 0$

(a) JACOB JACOBS is greater than

(b) L.,OREN LORAN is less than

(c) SMITH-HILL SMITH HILL is less than

(d) ABLE12 ABLE"'-12 is less than

(e) Theater THEATER is less than

(t) 95.2 95-2 is less than

(a) 0$,C$ D$ has more characters, others being equal
(b) O$.C$ Letter A is less than letter E
(c) 0$,C$ A"space is less than a hyphen
(d) 0$,C$ A hyphen is less than the number 1
(e) 0$,C$ Uppercase letters are less than lower case letters
(t) 0$, C$ A hyphen is less than a decimal point

Two string functions are used in conjunction with the ASCII code. The ASC ()
function gives the ASCII code number for the first character of the string contained
in the parentheses or for the first character of the string assigned to the string variable
contained in the parentheses. The ASCII number produced by ASC. () may be assigned to
a variable, displayed by a PRINT statement, used in arithmetic expressions, and used as a
value in an IF ... THEN comparison. The following examples illustrate these points.

LET X = ASC(A$)
LET X = ASC("ANTWERP"l
PR I NT ASC (A$)
IF ASC(N$) = 0 THEN •••

Give the ASCII number or value that will be printed for each of these program
segments. Refer to the ASCII chart in the appendix.

(a) LET DS = "DOLLAR"
PRINT ASC CDS>
RUN

(b) PRINT ASC C "YES">
RUN

32 APPLE BASIC: DATA FILE PROGRAMMING

(c)

(a)
- (b).

(c)

10 LET Ft .. "FRANK"
20 LET Lt ,. "JONES"
30 LET Nt ., Lt + "• " + FS
40 PRINT ASC CFS>
50 PRINT ASC <LS>
SD PRINT ASC (NS>

RUN

68
89
70
74
74

(d) 32

(d) 10 PRINT ASC «" ">
RUN

Describe the string that must be assigned to A$ in order for the following IF ... THEN
comparisons to be true.

(a) IF ASC(A$) = 53 THEN 510

(b) IF ASC(A$) < > 48 THEN 810

(c) IF ASC(A$) = f/J THEN 950 ------------

(a) First character in A$ is 5
(b) First character in A$ is not zero
(c) A$ must be a null string

The -opposite of the ASC() function is the CHR$() function. An ASCII number
is placed in the parentheses: It causes the computer to send that ASCII code signal
to the terminal, which can cause the printing of an alphanumeric character. CHR$()
is also used to send special control signals to the CRT screen or ·printer (ASCII num
bers 0 through31) or in a PRINT statement to print characters corresponding to the
ASCII number-in the CHR$() parentheses. ·

840 PRINT CHRS 169>; CHRS C78>; CHRS C6B>

AN IMPORTANT REVIEW OF BASIC STATEMENTS 33

(a) By running this program or by reference to the ASCII chart, what Will this

program line pririt? _____ _

(a) END

CHR$(7) sounds the beeper on the APPLE keyboard. CHR$(34) produces
quotation marks in situations where they would not otherwise be printed around a
string. Remember these possibilities. Check the ASCII codes, especially 0 through .
31, in your APPLESOFT reference manual. There may be some interesting capa-
bilities to explore. · ·

When a program user has limited options for a response to input statements, it
is necessary to check the input for t)le options available. For example, it is often
useful to have the computer user answer yes or no, or to select from a specific list
of options for the response to an input statement. Examine the following program
segment:

330 INPUT "DO YOU WISH TO CONTINUE DATA ENTJ!Y IY OJ! N>?" ;J!S
340 tF J!S (> "Y" AND J!S. < > "N" THEN PJ!INT CHJ!S 17); "PLEASE TYPE 'Y'

FOJ! YES OJ! 'N' FOJ! NO.": COTO 330
350 IF J!S 11 "Y" THEN 4SD

If line 340 were omitted and the user typed YES instead of Y, the program
would not operate as the programmer intended. Suppose a program displays the
following "menu" or list of possible responses!

ENTER 'I' TO INSERT DATA
ENTER 'C' TO CHANGE DATA
ENTER 'D' TO DELETE DATA
ENTER 'N' FOR NO CHANGE OF DATA
YOUR CHOICE:

The selection of each option directs the computer to branch to a different section of
the remaining program to accomplish this activity.

210 INPUT "YOUJ! CHOICE:";J!S
UD IF RS " "I" THEN SID
UD IF J!S = "C" THEN 610
240 IF J!S ,. ;'D" THEN 710
250 IF J!S " "N" THEN 150

If the user entered a response other than I, C, D, or N, this program would not
detect the error. If the user pressed RETURN with no response, the computer would
not catch the error either. ·

34 APPLE BASIC: DATA FILF;c,PROGR.AMMING

(a) Now write a statement for line 215 that ensures that the response entered was
among the list of options on the menu, and, if not, informs the user of the
options available and branches back to the INPUT statement.

(a)

215

215 IF Jlt (> "I" AND RS < > "C" AND RS < > "D" AND Rt < > "N" THEN
PRINT "PLEASE TYPE ONLY THE LETTER I, C, D, OJI N.": COTO 210

THE LEN FUNCTION

Recall that while the maximum length of a string that can be assigned to a string .
variable is 255 characters, the actual length of the string is the number of characters
cu"entiy assigned to a stri'ng variable. BASIC provides a function to "count" and
report the actual length of a string, or of a string assigned to a particular variable; a
function appropriately called the LEN (for LENgth) function. LEN can be used in
a print statement to print the number of characters in the string in question. Since
the execution of LEN results in a numeric value, it can be assigned as a value to a
numeric variable, used as a value in an IF ... THEN comparison, or used in c~cula
tions.

For example:

lD LET CS a '~WHAT A CAS"
20 PRINT .LEN <CS>

JJIUN
lil

lDO PJIINT LEN <"NOJITHEJIN MUSIC">

JJIUN
14

lil LET Ht m 11 1.582 ANCHOJIACE DRIVE"
20 LET) a LEN CHS>
30 PJIINT A

JRUN
20

150 LET Rt a "YES"
160 IF LEN. <RS> = 3 THEN PJIINT "CO ON TO THE NEXT QUESTION."

lJIUN
CO ON TO THE NEXT QUESTION

AN IMPORTANT REVIEW O_F BASIC STATEMENTS 35

10 LET Hf = "AME.RICAN"
20 LET NS = "FOREIGN"
30 PRINT LEN CMS> + LEN CNS>
RUN

15

Show the results of executing each of the following program segments:

(a)

(b)

(a)

10 LET CS = " "
20 PRINT LEN <CS>

RUN

10 LET FS = "F.RANX"
20 LET LS = "JONES"
30 · LET NS = LS + ", " + F$
40 PRINT NS
50 PRINT LEN CNS>

RUN

(b) JONES, FRANK

12

SUBSTRING FUNCTIONS:
VERSATILE TOOLS TO MANIPULATE STRING DATA

Three APPLESOFT BASIC string functions (MID$, RIGHT$, LEFT$) allow you to
manipulate the parts of a string called substrings. The MID$ function is by far the
most useful substring manipulating function. It allows you to select substrings from
Within a larger string. The MID$ selection function has the following forms:

(1) . MIO$ ("CHARGE IT", 1 '6)

(2) Ml0$(T$, 3. 15)

(3) Ml0$(0$, 10)

(4) Ml0$(W$, A, C*D)

In example (1), the MID$ function selects characters 1 through 6 inclusive as the
substring within the string constant CHARGE IT, with the substring starting at char
acter position 1 (the C) and including six characters total, making the substring

36 APPLE BASIC: DATA FILE PROGRAMMING

CHARGE. Example (2) a8sumes that a string has been assigned to T$, and the sub
string comprises fifteen characters of the T$ string, starting with the third character
in the string and continuing on to the 15th character after the third one. In example
(3), the "last character position" notation (the last value inside the MID$ parentheses) .
has been omitted, which tells the computer that the substring will start at character
position 10, and will include all the rest of the string to the right of the character at
position 10. Example (4) shows that the starting position for the substring, as well
as the number of characters to be included in the substring, can be represented by
variables or expressions that evaluate to a numeric value. Of course, these variables
must have been previously assigned values, just as the string variable must have .Pre
viously been assigned a string. So in general, the MID$ function has the form

MID$ (string variable or constant, substring starting position, how many
characters in the substring from the start position)

Note that the three parameters in the MID$ function are separated by commas.
The first is usually a string variable to which a string has previously been assigned.
The second parameter is the starting position for the substring. The third parameter
does not tell the last character position number in the substring, but r,ather tells how
many characters to include in the substring - a point that sometimes confuses people.

'Notice the use of the MID$ selection function in PRINT statements in the
program below. Remember, it allows you to select and print any part or substring of
the string assigned to the string variable in the MID$ parentheses. The other two
values or parameters inside the parentheses still indicate where the substring to be
printed starts and how many characters it includes.

lSO LET NS " ",FOGHORN£ WHILDEFLOWER"
180 PRINT' MIDS <NS,1,8>
170 PRINT MIDS CNS,lD,lZl
180 PRINT NS

JRUN
FOGHORN£
WHILDEFLOWER
FOGHORN£ WHILDEFLOWER

Notice the use of MID$ as a selection function in lines 160 and 170 above. This
same selection function can be used to assign a substring from a string assigned to a
string variable, without changing the original string from which the substring was
selected. Notice in the program segment below that a substring from an existing
string can be assigned to a new variable without changing the string from which it
was selected. F$ (for first name) and L$. (for last name) are selected from the entire
name (N$) without changing N$.

lSO LET NS = "FOGHORN£ WHILDEFLOWER"
180. LET.Ft = MIDS CNS,1,8>
170 LET LS = MIDS CNl,10,lZ>
180 PRINT NS .
190 PRINT "FIRST NAME IS ";FS
zoo PRINT "LAST NAME IS II ;Lt

AN IMPORTANT REVIEW OF BASIC STATEMENTS 37

(a) Show the RUN for the program segment above.

(b) Which character in N$ is not selected for inclusion in either F$ or L$?

- -. - - - - - - - - - ---:' - - -

(a)- RUN
·FOGHORNE WHILDFLOWER .
FIRST NAME IS FOGHORNE .
LAST NAME IS WHILDEFLOWER

(b) The space at character position 9 of N$

The LEFT$ and RIGHT$ string functions are not as versatile as MID$ and are
not used as much in our programming. They both work the same way, however, as
shown in these program segments: ·

180 PRINT LEFTS <At,8>

170 LET R = 12
180 LET It = RIGHTS lAt,R>

means print the left-most eight characters of A$ (the
first eight characters in the string assigned to A$)

means assign to B$ the twelve·right-most characters
of A$ (the last twelve characters 'in the string
assigned to A$)

These ,examples demonstrate the substring selection capabilities of LEFT$ and
·RIGHT$. They are strictly selection functions, selecting one or more characters
from one end or th~ other of an existing string to treat as a substring.

We often use LEFT$ for convenience to check for a user's YES or NO response
to an INPUT prompting question. Using an IF ... THEN statement, we have the
computer look at the first character of the response string to determine whether or
not the answer was YES, as shown in the following program segment: ·

Zf D INPUT "DO YOU NEED INSTRUCTIONS <YES OR NO> ? " , RS
ZSD IF LEFTS- lRS,l> = "Y" THEN BOD

38 APPLE BASIC: DATA FILE PROGRAMMING

(a) What responses could a user make to the INPUT prompt above in order for the
IF ... THEN comparison to be true?

(a) Could type YES or -Y or any string that started with the letter Y

We have found less use for the RIGHT$ function than for MID$ or for LEFT$,
but here is an example. Remember, the numeric value inside the RIGHT$ function's
parentheses means to start counting the characters for the substring at the right-most -
end of the string from which the substring is being selected; counting toward the
beginning of the string.

240- INPUT "WHICH HIGH SCHOOL CLASS DID YOU GRADUATE FROM?";YS
250 . PRINT "YOU GRADUATED JN 19"; RIGHTS <Y9,2)

Assume that several people responded to the INPUT prompting question when the
above program segment was RUN. Show what the computer will print for each user's
response.

(a) User responds:. CLASS OF 1938

Line 250 prints:

(b) User responds: CLASS OF '64

Line 250 prints: -----------

(c) User responds: 1958

Line 250 prints: -----------

(d) User respond,s: FORTY EIGHT

Line 250 prints: -------------

(a) . YOU GRADUATED IN 1938
(b) YOU GRADUATED IN 1964

MULTI-BRANCHING WITH ON ... GOTO

(c) YOU GRADUATED IN 1958
(d) YOU GRADUATED IN 19HT

The ON ... GOTO statement allows the computer to branch to a number of different
statements throughout a program. The format for the statement is a list of line numbers:

AN IMPORTANT REVIEW OF BASIC STATEMENTS . 39

10 ON I COTO 3lD,45D,8BD,66D,66D,7Z0,830,9lD

Note:· X = any variable or exp(ession from which a value will result.

If the value of Xis 1 when the ON ... GOTO statement is encountered and
executed, the computer branches (goes to) the first line num_ber in the list of line
numbers (in our example, line 310). If the value of X is 2, the second 1ine number
in the list is branched to. As many line numbers can follow GOTO as will fit in a
statement line. Notice also in our example that if X = 3, 4, or 5, the same line
number (660) will be branched to.

If the value of X is a zer6, a negative .number; or larger than the number of
line numbers in the list, then the ON ... GOTO statement will be skipped without
execution and the next statement executed. ·

Here is a method to arrive at an ON ... GOTO value in a menu-section situation.
Ill the following program segment, the ASC() function is used to convert a letter
entered by the user to an ASCII value that is used to determine the value for an
ON ... GOTO statement. The ON ... GOTO is a multi-branching instruction. In line
260, if the value of R is l, then the program goes to the first line number given after
GOTO. If R = 2, then the program branches to the second line number given, and
so on. The value of R must be greater than 1 and no higher than the number of line
numbers that follow GOTO. ·

zoo
210
tzD
23'0 INPUT "ENTER YOUR CHOICE, A-E: ";RS
240 LET R = ASC <RS> - 64
Z5D IF R < l OR R ·> 5 THEN 270
280 ON R COTO 30D,400,S00,600,7DO .
Z7D PRINT "ENTRY ERROR. PLEASE REENTER AS REQUESTED": COTO 230
280
290

(a) In the program above, why is line 250 included?

(a) If R evaluates to less than 1 due to a data entry error or larger than 5, an error
would occur; so the checking is done by line 250.

FOR NEXT STATEMENTS

It is preferable to use a FOR NEXT loop when you have a controlled, repeating
sequence of instructions.

'<. ..

40. APPLE BASIC: DATA FILE J.>ROG.RAMMJNG

.PREFERRED UNDESIRABLE

100 FOB X a l TO N
110 PR.INT 1,1 " Z ·
120 NEXT I

100 LET X ,. l
110 PRINT X,I " Z
120 LET I • I + l
130 IF I > N THEN ZOO
lfO COTO 110

As you can see, the FOR NEXT loop is· more space-efficient (it could ·even have been
done i.J;l _one line}, looks better, and is easier to ·read. ·

· A general rule when using FOR NEXT loops is:. DO NOT .EXIT from the middle
of·a FOR NEXT loop, except to GOSUB to a subroutine. Leaving the controlled
_loop makes the program difficult to read and hard to understand. Further, internally ·
your computer wants to complete the entire FOR NEXT sequence. If you exit
prematurely, there is no certainty that your computer will behave "normally" the next
time it encounters the loop variable (X in the example above). This·uncertainty can

. cause-some very serious program errors that are extremely hard to detect. An exit to a
silbroutine is acceptable because a subroutine will RETURN the program to the inside

· of the FOR NEXT ioop to continue in sequence, a8 if there was no exit at all.

NEVER

100 FOB I = l TO N
110 IF A<X> • BIX) THEN ZOD
lZO NEXT X

NOT DESIREABLE

100 FOB I = l TO N
110 IF A<X> • B!I) THEN 13D
lZO NEXT I
130 LET S = S + l
lfO COTO U<i

PREFERRED

100 FOB I = l TO N
110 IF A<X> (> B<X> THEN 130
120 LET S a S + l ·
130 NEXT I

You can usually write your program to inciude everything you need to do inside the
loop, rather thw leaving the loop. (Ther-e will be exceptions.)

(a) Write a program segment using nested FOR NEXT loops that will print the word
HELLO three times, but will print the word GOODBY four times after each
appearance of the. word HELLO.

AN IMPORTANT REVIEW OF BASIC STATEMENTS 41

(a) 10 FOR X " l .. TO 3
20 PRINT "HELLO"
30 FOR Y " l TO 4
40 PRINT "COODBY"
50 NEXT Y
ID NEXT X

MULTIPLE-STATEMENT LINES

Many language features in APPLESOFT BASIC are not available on other computer·
systems. Some of these features speed up the program's run time, others save memory
space, and some do both. Some features enhance program readability while others
confuse the reader. A popular feature is the ,ability to place multiple BASIC statements
on one line separated by a colon, as we showed earlier in discussing IF ... THEN.

14D FOR J = l TO lD: PRINT J,J A Z: NEXT X

or

ZOO IF J = Y THEN PRINT "YOU WON!": COTO lD
21D PRiln' "SORRY, \olRONC NUMBER": COTO ID

A few cautions and suggestions are applicable as you use multiple-statement
· lines:

1. Multiple-statement lines are often hard to read and sometimes ·hard to understand.
If you later change a program, readability may be a problem. It is more clear
to use one statement to a· line.

2. If you must use multiple-statement lines, carry out a complete procedure or
action on one line, whenever possible. Carryover to other lines makes reading
more· difficult and less clear.

3. Finding program errors buried in multiple-statement lines is difficwt.
4. Understand completely how IF ... THEN statements work in a multiple-statement

line. In line 200 above, if X does equal Y, then "You won" will be printed and
the program will branch to line 10. If the X=Y condition is false, line 210 will
be executed next. Some people incorrectly presume that GOTO 10 will be
executed whether the condition is true or false.

5. REM statements must be the last statement on a multiple-statement line. Any
executable statement after a remark will not be executed.

Special consideration of the GOSUB statement in multiple-statement lines is
warranted.· Remember that each GOSUB.statement mu~t have a corresponding.
RETURN statement that appears as the last statement in the subroutine which the
GOSUB branches to. '

Say, a GOSUB is executed when an IF ... THEN condition is true. After com-

42 APPLE BASIC: DATA FILE PROGRAMMING

pleting the subroutine, the computer must always be instructed to RETURN. The
statement it returns to will be:
(1) the next statement after GOSUB if it is a multiple-statement line, or
(2) the next lined numbered statement in normal line number order.

(a) Assume that the comparison in line 120 below is true and the GOSUB statement
is executed. Which statement will be executed next after the RETURN from
subroutine execution?

. (a) . GOTO 360

lZO IF X = Z THEN GOS1JB 510; GOTO 360
130 PRINT "X IS LESS THAN TWO."

TRAPPING ERRORS WITH ONERR GOTO

APPLESOFT BASIC has the ability to detect errors while your program is executing.
If you wish, you can have the program stop execution altogether and print an error
message. Or you can "trap" the error using the ONERR GOTO statement and then
determine if you want the program to continue, terminate, or print a message to the
program user.

The main reason for using the ONERR trap procedure is to avoid having your
program terminate unexpectedly in the middle of execution. This is especially im
portant when using data files in your programs. If you do not use the error trapping
procedure, any programming or data entry errors will cause your program to terminate
with an error message. And most error messages do not do an adequate job of
explaining what is wrong to a naive computer user.

ONERR GOTO works much like an IF ... THEN statement; if there is an error,
THEN GOTO the statement number indicated.

10 ONERR GOTO 300

If there is no error, then continue program operation.
The ONERR statement sets what we call a "flag." ANY error that occurs after

the ONERR statement has been executed will cause the statement to execute. In that
regard it is unlike an IF ... THEN statement. You need execute the ONERR state
ment only once and the flag is "set" for the rest of the program or until the flag is
"unset," or reset with.another ONERR statement that may direct the ·computer to a
different line number than the first ONERR.

To ''unset" the ONERR flag, use the statement POKE 216, 0. Alternatively, a

AN IMPORTANT REVIEW OF BASIC STATEMENTS 43

second ONERR statement executed after the first one in a program will cancel the
first one.

Here is an example of the use of ONERR. The program reads information from
DATA statements into an array. We do not know exactly how much data is contained
in the DATA statements; less than fifty items is assumed. When we run "out of data"
(an error condition), we wish to continue operation of the program at line 200, where
the array information will then be used in some way.

llJD
110
120
130
140
150
180
170
180
190
zoo
ZJO

ltE1f ONERR DEMO PROGRAM

DIM A<5D>
LET K a l

ONERR GOTO ZOO
READ A<K>
LET K a K + l
GOTO 180

POKE Zl&,D: REM RESET ERROR TRAP
REM PROGRAM CONTINUES

Notice that the ONERR statement is only executed once (line 150). That sets the
flag until the flag is "unset" or reset at line 200. As the program continues at line
200, you may have wanted· to set another error trap to send the program to line 300
if an error occurs.

(a) Write the statement that will set another error trap in line 200 to send the
program to line 300.

200

(a) 200 ONERR GOTO 300

A NOTE ON POKE AND· PEEK

The BASIC statements PEEK and POKE provide the. BASIC user with a way to get
"inside" of the computer and observe or change the machine language codes.

You are aware that all data, even BASIC programs, are translated in the compu·
ter into a binary code.' This code is called "machine langauge." The PEEK statement
will show you the numeric machine language code-value at a particular memory
location. These locations are numbered. For example, the following program segment
"looks at" the numeric code found at memory location 222, assigns it to the variable
A, and then displays. it on the screen.

10 LET A ~ PEEK <ZZZ>
20 PRINT A

~ APPLE BASIC: __ DATA FlLE PROGRAMMING

The POKE statement, on the other hand, allows you to change the numeric
machine langauge code found at a particular memory location. You need not learn
machine language to use PEEK and POKE to accomplish specific jobs when you are
provided with the necessary machine language code and/or memory location. Here
is an example of a POKE statement.

50 POKE Zl&,O

This statement tells the computer to place a zero value at memory location 216.
A zero at this memory location turns off;· or cancels, a previous ONE RR instruction.
This is discussed further in the next section. ·

USING ONERR

You can use ONERR to trap bad data in data entry routines (discussed in more detail
in Chapter 3). If a user responds with alphabetic information when numeric data is
requested, that is a trapable error. Look these program segments over carefully.

100 JfEJI DATA ENTRY ERROR TRAP
110
120 ONE RR COTO ZOO
130 INPUT "ENTE.R YOUR COMPLETE NAME:" ;NS
140 INPUT "ENTER YOUR ACE IN YEARS:";A
150
160 JIEM PJIOGJIAM CONTINUES

ZOO PRINT "YOU HAVE MADE A DATA ENTRY ERROR. PLEASE TRY AGAIN,"
210 RESUME
220

If the user makes a trapable error, the message at line 200 is printed. The
RESUME statement in line 210 sends the computer back to the line in which th,e
error was originally made (where the error was trapped). We do not normally en

.. courage the use of the RESUME statement, however, as you will see in Chapter 3 ..
Each normal error message has a numeric error code. The code for "out of

data" is 42. For "bad response to INPUT statement,_" the code is 254. Other error
codes are in your reference manual and DOS manual. We will point out particular
error codes as we use them. The numeric code for a particular error encountered
by the ONERR erroi: trap is saved in the computer memory in location 222. · To
see the error code, or to check to see if it is the one you expected, use PEEK(222)
in a BASIC statement. For instance, in line 200 we might have said:

ZOO IF PEEK fZU> = 254 THEN PRINT "YOU HAVE MADE A DATA ENTRY ERROR.
PLEASE TJIY ACAI-N. ": .RESUME .

205. PRINT "UNUSUAL EJi.RO.R CONDITION. PLEASE .REENTER."

Now line 200 checks to be sure that it is a data entry error before the message is
printed. If it is not a data entry error, the message in line 205 is displayed to caution
the operator of an unusual error.

(a)

(a)

AN IMPORTANT REVIEW OF BASIC STATEMENTS .· 45

Rewrite the error trappillg routine for the first example to trap for bad data
(alphabetic infol1Ilation) and for out of data. Print an appropriate message if
the data are bad, then continue to the next data item.

100
110
lZO
130
140

/ 150
180
170
180
190
zoo
Z05
210
ZZO

REM SECOND ONERR DEMO PROGRAM

DIM A!50)
LET K = l
ONERR COTO ZOO
READ A<K>
LET K :: X· + l
COTO' 160

IF PEEK < ZZZ> a Z54 THEN PRINT "BAD DATA ITEM REJECTED.": COTO l&O
IF PEEK !2Z2> a 4Z THEN ZZO
PRINT· "UNUSUAL ERROR CONDITION": STOP
REM PROGRAM CONTINUES

46 APPLE BASIC: DATA FILE PROGRAMMING

{;HAPTER 2 SELF-TEST

1. Why do the authors recommend using "greater than" and "less than" compari
sqns in IF ... THEN numeric comparisons, rather than comparisons for equality?

2. When must quotation marks be placed around string data items in a DATA
statement?

3. How can a null string be assigned to an INPUT string variable?

4. Show the results of a RUN of the following program:

lU LET AS • "ALFRED"
ZD LET BS • "CONTRACT"
3D LET CS • "3ZC"

. 4D PRINT ASC CAS>, ASC CBS>, ASC CCS>
BUN

· 5. Describe the string that must have been assigned to D$ for each of these com
parisons to be true:

(a) lD IF ASC CDS> C 48 OB ASC CDS> > 57 THEN 66D

(b)- 3D IF ASC CDS> > 64 AND. ASC CDS> C 91 THEN GOSVB lHD

(a)

(b)

6. What value will the LEN function show for a string to which fifteen spaces have
been assigned?

AN IMPORTANT REVIEW OF BASIC STATEMENTS 47

7. Write a statement to check that the user response to an INPUT is among the
options requested. The INPUT prompt asks: DO YOU WANT INSTRUCTIONS
{YES OR NO): .

8. Give an example o~ a simple numeric variable and a simple string variable.

9. Give a reason for avoiding multiple-statements in one program line.

10. Examine the following statement:

120 IF X > 10 THEN GOSUB 810 GOTO 110

After executing the subroutine starting at like 810, to which statement will the
computer return?

11. If a variable name has more than two· alphanumeric characters, how many of
those characters does the computer use to identify the value assigned to that
variable?

48 APPLE BASIC: DATA FILE PROGRAMMING

Answer Key

1. Round-off error in the computer's computational process may introduce tiny
errors that make expected values slightly more or less. Therefore, an equality
comparison may fail where you would expect it to succeed.

2. When the string data item includes a comma as part of the string or leading
spaces are to be included as part of the string.

3. By pressing the ENTER key without entering anything else from the keyboard.

4. 65 67 57

5. (a) First character of D$ must not be a number (r/J to 9).
(b) · First character of D$ must be a capital letter (A to Z).

~. 15 (Spaces count as characters in a string.)

7. 220 JF JU < > "YES" AND RS < > "NO" THEN PRINT "PLEASE TYPE 'YES.' OR
. 'NO' " : GOTO 31 D

8. Numeric variable: A (or any letter of the alphabet); string variable: A$ or any
\

letter of the alphabet followed by a dollar sign.

' - 9. May make it harder to read the program; may make errors in programming
harder to detect. (either answer)

10. GOTO 110

11. Only the first two c.liaracters.

CHAPTER THREE

Building Data Entry and
Error Checking Ron tines

Objectives: When you finish this chapter, you will be able to write statements in a
data entry program tnodule to check the following aspects of data items:

Proper length
Non-response (null strings)
Type of data (numeric or alphanumeric)
Inadvertant inclusion of wrong characters
Parameters for numeric data

In addition, you will be able to write data entry modules that:

Have clearly stated prompts
Use reasonable data fields
Concatenate data items into a single field
Check and "pad" entries, as necessary, for proper field length
Remove excess spaces from data taken from data fields
'Replace data items contained in a data field
Provide complete explanations of a data entry error to the user

INTRODUCTION

If you are wondering when you are going to get into data files themselves, be _patient.
Experience has shown that you need a good background in some special techniques
associated with data file programming which use BASIC statements you already know.
This will make it much easier and faster to learn the ne'Y BASIC statements and func
tions specifically applied to data file handling.· You shouldn't have to struggle to
understand a new 4se for a familiar BASIC statem.ent while trying to absorb the data
file statements and techniques, so please don't gloss over this material.

Concern for data entry procedures was introduced in the section on INPUT
in the previous chapter. For our purposes data are defined as any information that
is or will be stored in a data file on disk. Common examples of data include mail
ing, subscription, or billing lists; inventories of retail merchandise; accounting infor
mation; files of books, recordings, journal articles, or notes for a book; statistical

- 49

SO APPLE BASIC: DATA FILE PROGRAMMING

information. Data entry includes the process of getting such information into the
computer so that it can be stored in a data file. Data files usually contain large ..
amounts of data, which, to be useful, must be accurate, valid, and error-free in con
tent and format. The accuracy and usefulness of your program output depends en
tirely on the accuracy of the ~ta in these files. Furthermore, inaccurate or invalid
data in a data file (or any place in a program) can cause your program to interrupt,
halt, or abort in an error condition in the middle of its run. If your program ter
minates unexpe.ctedly, there may be no telling what is happening inside the compu
ter. .Printed reports can be only partially completep, entered data can be lost or
destroyed, data in the files can be half processed; the list goes on.

The result of an unexpected program interruption can be catastrophic, though
it may not always be so. It is almost impossible: to predict exactly what will happen.
Therefore, always do everything you can in your progr3mming to avoid errors that
can precipitate program interruptions.

Unfortunately most errors occur at data entry time. That is why w_e emphasize
the use of data entry checking procedures in this chapter - procedures to guarantee
that data are entered as clean, valid, and accurate in content and format as your
ingenuity and knowledge of programming techniques can make it. Throughout the
remainder of this book "error-traps" and places where programming errors are likely
to occur are illustrated .

. This chapter focuses on constructing the data entry module of a program~ This.
is where, usually with INPUT statements, the computer user is instructed to ·type in
information that is going to be placed in a new data file, or to tell the. computer to
loc_ate info~ation in an already existing data file. After each response to an INPUT
statement we will use one or more statements to check the response for possible
errors. These error-checking statements comprise the largest part of a data entry
program module.

DATA FIELD LENGTH

Many data entry problems are avoided by establishing a certain amount of space; a cer
tain number of character positions into which a given element of data or data item is
placed. Establish strings, or defined substring positions within one string, where data ,
must be located (data fields). A data field can be thought of as a string that contains
more than one data item. These data items always fit beriveen two defined character
positions within the string. A simple example would be one string variable to which .
both a customer's first and last names are assigned like this: ·

NS = "VIVIAN VANCE"

The first name field is a six-character field in N$, occupying the first six character
positions of that string (l through 6). The separator field is a one-character field,
located' at character position 7.

The last name field has (a) characters and occupies character positions

(b) iri the string assigned to (c) -------

(a) five
(b) 8 to 12
(c) N$

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 51

Below is a graphic look at the fields in N$ with a slash (/) marking the field designa-
tion: ·

N$=---~--f-f ____ _
_ t_ 1 t
first name last name

separating
. space

This particular data field works for the name in the examJ?le. However, the· goal
is to establish reasonable data fields. In this case, a reasonable data field should hold
ANY first or last name that might be assi~ed to N$. Certainly, many names contain
more than six letters for the first name and five letters for the last. On one hand, you
want to provide reasonably sized fields for the data. On the other hand, much storage
space will be wasted if you try to cover all possibilities. There really may be someone
named John Jacobjingleheimerschmidt, but reserving twenty-four character positions
for a last name data field wou!d waste storage space; if 95 percent of the· last names
in a data file has twelve letters or less, then half or more of the last name data
field goes unused 95 percent of the time. In a file ·of 1,000, 10,000, or 100,000
names, such. as a mailing list, this can amount· to a vast amount of unused string and
disk storage space.

Data field lengths must be adequate and reasonable. If all the catalog numbers
in an inventory data ftle are five characters, then obviously a five-character data field
is sufficient.

To review, use a slash(/) to mark off the fields in a twenty-six character string
assigned to A$, where the data fields hold the city, state, and zip code (the last line
in a mailing address). Place a number in. each field indicating which of the following
data items are to occupy that field.

1. City name (fifteen characters maximum)
2. Two separator spaces
3. State code (standard two-letter postal abbreviation)
4. Two separator spaces
5. Zip code (Sve characters)

W A$=--------------~-----------

52 APPLE BAsIC: DATA FILE PROGRAMMING

(a)
- Q) . @@© © A$- _______________ / __ / __ / __ / ____ _

Next, consider the following data entry module to enter the city, state, and
zip code. These data are to be placed into the data fields you just defined above.

100 INPUT "ENTER NAME OF CITY~";CS
110 INPUT "ENTER STATE CODE:";SS
120 INPUT "ENTER ZIP CODE:";ZS
130 LET At = ft + " " + SS + " " + ZS
140 PRINT AS

Notice the concatenating statement in line 130 - an attempt to get the data items into
data fields. But these two RUNs demonstrate a serious problem that relates to the
length of the city name.

(a)

(b)

JRUN
ENTER NAME OF CJTY:IOWA CITY
ENTER STATE CODE: IA
ENTER ZIP CODE:S2240
IOWA CITY IA S2Z40

JRUN
ENTER NAME OF CITY:SOUTH SAN FRANCISCO
·ENTER STATE CODE: CA
ENTER ZIP CODE:94080
SOUTH SAN FRANCISCO CA 94080

Fill in the spaces to show the results of line 130 in the program for each of the sample
RUNs:

(a) A$ =---------------1--1--1--1----
(b) A$ =-----'----------1--1--1--1-----

(a) A$= ~!l.lfl.fi__f2.£L:f __ !_!i_ __ / 5.~/ ~!I./ f!_/ ____ _

(b) A$= ~QJ!:f.tf._~fi.{f__£5.l!.!i.~/ .!.§./ §.Q/ __ / !l!! __ f. ¥080

. '

The fact that all cities don't have fifteen letters means that simple concatenation
. of this data does not place it into the defined character positions for the data fields:

Checking Data Entries for Acceptable Length

One programming technique to check data entries for acceptable length uses the LEN
function in an IF ... THEN comparison. ff the data requested always have a defined
number of characters, then an important check for mistakes in data entry would be

BUILDING DATA JNIRY AND ERROR CHECKING ROUTINES 53

to s~e whether the entry has the exact length it should. A U.S. zip· code always has
five characters, so a check for that data item would look like line 170: ·

l&D INPUT "ENTER ZIP CODE: ";ZS
l7D IF LEN <ZS> (> 5 THEM PRINT "REENTER AS 5 DIGIT CODE": PRINT

COTO l&D

lRUN
ENTER ZIP CODE:9543
REENTER AS 5 DIGIT CODE

ENTER ZIP CODE:9543J6
REENTER. AS 5 DJCI_T CODE

ENTER ZJ P CODE:
REENTER AS 5 DIGIT CODE

If the entry for the zip code does not have exactly five characters, then a mistake has been
made, the user is so advised, and the computer repeats the prompting message and waits
for another entry: With new zip code formats, a bit of reprogramming will be necessary.

Now you write a statement to check for proper length of the entry for- the
INPUT statement below: ·

(a) 14D INPUT "ENTER STATE CODE:";SS

150

(a) JSD IF LEN <Sf> (> 2 THEM PRINT "REENTER AS STANDARD 2-LETTER CODE.":
PRINT : COTO 14D

How can you check something like a city name, which is allowed fifteen charac
ters or less? The city name could have less than fifteen characters, exactly fifteen, or
more than fifteen. If it has more, you must advise the user that a shorter entry is
needed and allow the user to reenter the data item with an intelligent abbreviation.

lZD INPUT "ENTER CITY NAME:";CS
J3D IF LEN <CS> > J5 THEN PRINT "REENTER USING 15 CHARACTERS OR LESS.":

PRINT : COTO lZD

lRUN
ENTER CITY NAME:SOUTH SAN FRANCISCO
REENTER USIHC 15 CHARACTERS OR LESS.

ENTER CITY NAME:

Write a statement (similar to line 130 above) to check the entry for the INPUT
statement below, where the data field for the entry is twenty characters maximum;

(a) 310 INPUT "ENTER STREET ADDRESS:";SS

320

54 APPLE BASIC: DATA FILE PROGRAMMING

. .
~---------""°"':'----

(a) 320 IF LEN CS$) > ZO THEN PRINT "REENTER USINC ZO CHARACTERS OR LESS.":
PRINT : .COTO .310

''Padding" Entries With Spaces to Co"ect Field Lengths

You are probably wondering how to increase ·the length of an entry that has fewer
characters than its data field. The solution involves automating the additicim of spaces
to "pad" the short entry (say, a short city name) with trailing spaces, so that the
resulting city name string, which includes the padding spaces, exactly fits· the data field.
Remember, spaces occupy character positions and count as characters in the length of
the string. Line 140 shows how to pad with spaces:

120 INPUT "ENTER CITY NAME:";C$
130 IF LEN CCS> > 15 THEN PRINT "REENTER USINC 15 CHARACTERS OR LESS.":

PRINT : COTO l ZO
140 IF LEN CCS> < 15 THEN LET CS =CS .,. " ": GOTO 140

In line 140, if the city name entered and assigned to C$ has less than fifteen char
acters, then a space is concatenated on to the end of the string. The new string
assigned to C$ is the old string plus a space. The statement "goes back to itself'
(GOTO 140) and keeps adding another space to the end of the C$ string until the
string contains exactly fifteen characters, including. the spaces. Clever?

Now you write a statement to pad an entry with spaces if it has less than the
eight characters required to fit in its data field.

(a) 120 INPUT "ENTER' YOUR FIRST NAME:";FS
130 IF LEN C Ft> > 8 THEN PRINT "SHORTEN ENTRY TO 8 CHARACTERS OR LESS.":

PRINT. : COTO 120

(a) 140 _IF. LEN CFS> C 8 THEN LET E'S = E'S .,. " ": GOTO 140

Now apply the techniques you have been using in a data entry module.

(a) Write a program routine to request that a user enter an alphanumeric product
. identification code with three characters, plus a product description with up to
twenty characters maximum, followed by a two~character code identifying the
person making the entries, using their first and last name initials. Once these
three data items have been entered and tested, combine the data into one string
of twenty-five characters assigned to a single string variable.

(a) 100
110
120
130

140
15Q

180
170
180

190
200
UD

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES SS

REM DATA ENTRY MODULE

INPUT "ENTER A THREE CHARACTER CODE:";CS
IF LEN (ct) < > 3 THEN PRINT "ENTRY MUST BE 3 CHARACTERS .. PL.EASE
REENTER.": PRINT: COTO 120
INPUT "ENTER DESCRIPTION;";DS
IF LEN (DS> > ZO THEN PRINT "ENTRY TOO LOHC. PLEASE REENTER USIHC
ZO CHARACTERS OR LESS.": PRINT : COTO 140
IF LEN lDS> < ZO THEN . LET DS c DS + " ": COTO 160
INPUT "ENTER YOUR TwO INITIALS:" ;NS
IF LEN <Hf) < > Z THEN PRINT "PLEASE USE THE FIRST LETTERS OF YOUR
FIRST AND LAST NAME ONLY.": PRINT: COTO 170
LET RS • CS + Df + Ht
REM FOR DEMONSTRATION PURPOSES ONLY WE DISPLAY RS
PRINT : PRINT Rt

What's the advantage in setting up data fields in a single string and putting more
than one data item into it? The reasons will become clear in later chapters. For now,
the answer has to do with how data files can store information using some automated
data entry procedures and equipment and with the ease with which BASIC allows the
manipulation of substrings using MID$ for particular applications.

56 APPLE BASIC: DATA FILE PROGltAMMING

lDD
110
lZD
13D

14D
150
18D

17.D
l8D

19D
ZDO
ZlD
ZZD

(a)

{b)

Examine the program below and answer the questions that follow it.

REM El.AMPLE DATA ENTRY MODULE

INPUT "ENTER CITY NAME:";Tt
IF LEN CTt> > 15 THEN PRINT ;,REENTER USING 1l5 CHARACTERS OR LESS.":
PRINT : GOTO lZO . .
IF LEN CTt> (15 THEN LET Tf • TS + " ": GOTO 14D
INPUT "ENTER STATE CODE:";S.S .
IF LEN <SS> < > Z THEN PRINT "PLEASE REENTER AS Z CHARACTERS.":
PRINT : GOTO 150
IN1UT .,,ENTER ZIP CODE:" ;ZS
IF LEN CZS> < > 5 THEN PRINT "REENTER AS A 5 DIGIT CODE": PRINT
GOTO 17D
LET CS = TS + " " + SS + " • + ZS

REM FOR DEMONSTRATION PURPOSES ETC.
PRINT : PRINT CS

What is the purpose of line 130?

What does T$ = T$ + " " in line 140 do?

(c) · In line 190, what is the purpose of" " in the concatenation?

(a) Tests to be sure user has not entered more than the acceptable numoer of char
acters (fifteen) for the city name field

(b) Fills in, adds on, or concatenates spaces from the last character of the T$ string
up to and including character field position 15. Changes T$ to a fifteen-character
string if there wer!' fewer than fifteen characters in the string entered for T$.

(c) Places spaces in the C$ string, one between the fields f~r city and state and two
between state code and zip code.

BUILDING DATA ENTR'°' AND ERROR CHECKING ROUTINES .57

Stripping the Padding Spaces From Substrings in Fields

You know how to pad a.string with extra spaces to arrive at the proper field length
for that data item. Now. let's explore a way to eliminate the extra blank spaces when
you extract data packed into a string. In the example where we wanted to change a
person's la:st name, it was necessary to pad names with spaces to the proper field length
so that corrections colild be made, if necessary, and so the first and last names could
be found separately. But for name printing purposes, you want to eliminate all the
·extra blank spaces. The method shown below uses the MID$ function. ·In our exam
ple, N$ really consists of eight characters, one space separating the two fields, twelve
characters for LS, and one final space. If the name concatenated into NS is Jenny
Smiles, then:

N$ = "JENNY SMILES "

This includes the field-separating space at character position 9. The string NS has this
format:

-;----t---/t/-----1------/t
first name space last name· space

The procedure used in the following example is called "parsing." It means search
ing through the string variable, one character at a time, until you find the character(s)
you are seeking, We use a FOR NEXT loop to help us "parse" the string variable NS
to find the first space in the first name field and first space in tb.e lai;t name field. If
no padding spaces were used, the spaces at the end of each field are found. The exam~ ·
ple program below shows how to use first and l~st names separately, without extra ·
spaces, in a computer-printed "thank you" letter.

58 APPLE BASIC: DATA FILE PROGRAMMING

REM

JI.EM
REM
REM
REM
REM
REM

REM

PARSINC DEMO PROCRAM

VARIABLES USED
FhFIRST NAME
LhLA.ST NAME
NSmCONCATENATED NAMES

.S AND .SlaCHARACTEJI PO.SI.TION OF
XaFOR-NEXT LOOP CONTROL VARIABLE

DATA ENTRY MODULE

INPUT "ENTER FIR.ST NAME:";FS

.SPACE

lDD
llD
UD
13D
HD
UD
180
17D
lBD
lBD
ZDD
Zlll
ZZD IF LEN CFS> > 8 THEN PRINT "NAME TOO LONC. REENTER

CHARACTERS OR LE.S.S.": PRINT : COTO ZlD
U.sJNC 8

IF LEN CFS> (8 THEN UT FS .. Ft + II II; C()TO Z3D
INPUT "ENTER LA.ST NAHE:";Lt

UD
HD
UD IF LEN CLS> > lZ THEN PRINT "NAME TOO LONC. REENTER

CHARACTERS OR LES.S.":.PRINT: COTO Z40
U.&INC lZ

UD
Z7D

IF LEN CLS> c lZ THEN~ LET LS = LS + II II; COTO ZID

"ZBD REM
ZID :

CONCATENATE.& ENTIRE NAME INTO NS

3DD LET N• ~ Ft + II II + Lt + II II

31D
3ZD REM

·33D ;
PARS1NC ROUTINE TO DETECT FIRST SPACE IN FIELD

34D FOR J • l TO 9 .
35D . IF MID• CNt,J,l> .. II II THEN LET .s .. X: COTO 380: REM

.SaCHAR.PO.SJTION OF FIRST SPACE FOUND IN FIRST NAME FIELD
31D NEXT J
37D
38D
31D

FOR X =.lD TO Z3
IF MIDS CNt,X;l> • II II THEN LET Sl .. X: GOTO HD: REM
SPACE FOUND IN LAST NAME FIELD
NEXT J

REM ·LETTER PRINT ROUTINE

PRINT : PRINT : PRINT

Sl JS FIRST

4DD
41D
4ZD
43D
HD
45D
480

PRINT "DEAR "; MIDS CNS,l,.S.- H;",": REM PRINT.S FIRST NAME IN SALUTATION
PRINT "IT SURE WAS COOD TO SEE YOU AND MRS. "; MIDS CNt,10,Sl - lD>;"
AT THE CE·T ·ToCETHER THE OTHER EVENING. II

JRUN
ENTER FIR.ST NAME:DANIEL
ENTER LAST NAME: ROBERTS

DEAR DANIEL,
IT SURE WAS GOOD TO SEE YOU AND MRS. ROBERTS AT THE GET TOGETHER THE OTHER

EVENING. .

. .
NOTE: Lines 350 and 390 are one of those exceptions when the program leaves or
exits j. FOR NEXT loop without necessarily completing all of the loops.

(a) In lines 350 and 390, what does the MID$ function search for?

(b) . What value is assigned ~o S and SI in the same lines?

(c) In line 450, why does S appear in the MID$ function?

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 59

(d) In line 460, why is 10 subtracted from Sl in the MID$ function?

(a) Looks for the first space in each name field
(b) Character position number of first space in each field
(c) Counts the number of characters in the first name field, with .the space at the

end subtracted from the character count
(d) Subtracts the characters in the first name field (B), the space at character posi

tion nine (1), and the first space in the last name field (1) from the MID$
character count.

CHECKING ENTRIES FOR NULL STRINGS

One idiosyncracy of the INPUT statement already pointed out is that if the user mere
ly presses the RETURN key when the computer is waiting .for a response to an INPUT
statement, a null string is assigned to the string variable. If the computer then encoun
ters a checking statement that pads the entry with spaces to the proper field length,
the entire entry would end up as a string of spaces and be duly included in the data
field for that entry. So checking data entries for null string assignments is a must and
should be part of your data entry program modules.

You can use two different techniques to test whether a string variable has been
assigned a null value. They work equally well.

IF A$= "" THEN •••

or

IF LEN(A$l = 0 THEN •••

The decisiqn the programmer must make (and it will vary with each situation) is what
to do after the THEN when the IF ... THEN condition is true and a null assignment
has been mistakenly made. Whatever you do, do not have the computer merely repeat
the INPUT prompt, as in the "what-not-to-do" example below.

l7D INPUT "ENTE.R CUSTOME.R NUMBE.R:";CS
lBD IF LEN !CS> D 0 THEN 170
J.RUN
ENTE.R CUSTOME.R NUMBE.R
ENTE.R CUSTOMER NUMBER
ENTE.R CUSTOME.R NUMBE.R
ENTER CUSTOMER NUMBER

60 APPLE BASIC: DATA FILE PROGRAMMING

A user who persists in not entering the customer number gets no information as to
what is wrong. Always provide a helpful error message; perhaps even a beep, bell, or
other sound if available on the terminal, so the user knows something is amiss with
the present response or entry.

17D INPUT "ENTER CUSTOMER NUMBER:";Ct
lBD IF LEN CCS> = D THEN GOSUB lDlD

lDlD PRINT "PLEASE, VE MUST HAVE THE CUSTOMER NUMBER TO CONTINUE."
lDZD

JRUN
ENTER CUSTOMER NUMBER:_
PLEASE, VE MUST HAVE THE CUSTOMER NUMBER TO CONTINUE.

With this information in mind, write the data entry routine that will produce the
prompts shown below. Test each data item for null response iritmediately after it is
entered with a message to the user that if reentry is made then all data entered are .
assigned to string variable_s.

(a) ENTER CUSTOMER NUMBER:
ENTER CUSTOMER NAME:
ENTER PRODUCT NUMBER:
ENTER QUANTITY ORDERED:

. '.

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 61

(a) ZlD·:
ZZD INPUT "ENTU CUSTOMER NUMBER:";Ct
Z3D IF LEN CCU " 0 THEN PJIINT "ENTRY ERROR. PLEASE REENTER.": PRINT

GOTO UO
Z4D INPUT "ENTER CUSTOMER NAME:";NS
ZSD IF LEN <NU • 0 THEN PRINT "Pl.EASE RESPOND AS REQUESTED.": PRINT :

GOTO Z40
ZID INPUT "ENTER PJIODUCT NUMBER:";PS
Z70 IF LEN-<P9> "0 THEN PJIINT "WE CANNOT CONTIUE WITHOUT THU J>.&TA.":

PRINT : GOTO_ZID
ZSD· iNPUT "ENTER OUANTITY:";Ot
ZIO IF LEN <OS>" 0 THEN PRJNT "PLEASE ENTER THE CORRECT VALUE.": _Pll'iNT

GOTO Z.8.0

(or some similar messages)

Depending upon the program user's sophistication, even more detailed error
messages for problems like the null string entry and others may be necessary. Our
examples have given minimum messages to keep the examples short, uncluttered, and
easy 'to understand, but they may not be adequate to ensure a proper response.
Return to this example. ·

i70 INPUT "ENTER CUSTOMER NUMBER:";C9
180 IF LEN <CS> " 0 THEN GOSUB 1010: PRINT GOTO 170

lDlO PRINT "YOU .APPARENTLY PRE.SSEI> THE 'RETURN' XE~ WITHOUT MAXING AN
ENTRY."

lDZO PRINT "WE NEED A CUSTOMER NUMBER WITH THIS FORMAT: A-lU."
1030 RETURN

Anot4er example:

Z30 INPUT "ENTER COMP.ANY NAME:";CS
Z40 IF LEN <CU > lZ THEN GOSUB lOlD: PR,INT GOTO Z3D

lDlO PRINT : PRINT : PRINT "YOU ENTERED: ";CS
lDZD PRINT "PLEASE ABBREVIATE THE COMPANY NAME TO lZ CHARACTERS OR LESS."
l03D PRINT "EXAMPLE: ALPHA PRODUCTS COMPANY COULD BE SHORTENED TO 'ALPHA

PRO CO'"
l04D RETURN

Subroutines need to be protected from the main program that calls or branches
to them. Depending on how a program is constructed, a subroutine could be encounter-· ·
ed and executed as if it were part of the main program, especially if the subroutine
section is one of the progra,m's last modules. Use.a STOP or END statement between
the main program and the module(s). containing the subroutines. This protects the
first subroutine in the subroutine module from being executed in normal line number
order. If the first subroutine is executed, the computer will stop executing- the
program and give an error me8sage when it encounters a RETURN statement for which
the program has no matching GOSUB statement that sent it to the subroutine.

62 APPLE BASIC: DATA FILE PROGRAMMING

(a) Write an error message subroutine accessed by a GOSUB statement executed after
a true IF ... THEN comparison; one that displays an INPUT entry and describes
how to comply with the limit of twenty characters (because of data field length)
for entries to the following statement:

3ZO . INPUT "ENTEJI PRODUCT DESCJllPTION:";PS

Sample entry to above statement:

RUN
ENTER PRODUCT DESCRIPTION:LEFT HANDED MONKEY WRENCH

(a) Your solution should be similar to this:

330 IF LEN CPS> > ZO THEN COSUB 1120: PRINT COTO 320

lllO
ll20

1130
lHO

1150
1180

STOP
PRINT : PJllNT : PJllNT "YOU ENTERED » ";PS;" ((FOR PRODUCT
DESCRIPTION." . .
PRINT "PLEASE REENTER, BUT SHORTEN YOUR ENTRY BY USING ABBREVIATIONS"
PRINT "50 THAT THE PRODUCT DESCRIPTION IS 20 CHARACTEJIS OR LESS IN
LENGTH,"
PRINT "INCLUDING THE SPACES AND PUNCTU.ATI ON. "
JIETUJIN

REPLACEMENT OF DATA ITEMS CONTAINED IN A DATA FIELD

You may encounter problems when you attempt to change a data item in a data field.
The most practical solution is always use data fiekls of predefined lengths for each
data item in a string. That way any changes or replacements with MID$ will be com
plete, rather than partial, as happened above.

Now design program modules to accomplish assignment and extraction of data in
fields within strings, using first and last names as examples.

Step 1. Define the field for the first name to have eight characters and that for the
last name, twelve characters, with a space after each name field .

. Step 2. Create the data entry routine.

100
110

120

130
140
150

180

170
180
180
200

·11./.

BUll.DING DATA ENTRY AND ERROR. CHECKING ROUTINES 63

INPUT "ENTER FIRST NAME:";Ff
IF LEN CFS>= 0 THEN PRINT PRINT "PLEASE, WE MUST HAVE THE NAME.":
PJllNT : COTO 100 ,
IF LEN CFS> > 8 THEN PJI INT PR INT "F JJIST NAME TOO LARCE. 8 CHAR.
MU.": PRINT: COTO 100
It LEN (ts) (8 THEN LET Ff = Ff + " II : COTO 13 0
INPUT "ENTER LAST NAME:";LS
IF LEN !LS> " 0 THEN PRINT : PRINT "PLEASE, WE MUST HAVE THE LAST
NAME.": PRINT : COTO 140
Jt LEN (LS> > 12 THEN PRINT : PRINT "LAST NAME TOO LONC. lZ.
CHAR.MU.": PRINT : COTO 140
11 LEN !LS> I 12 THEN LET .LS =LS,+ " ": COTO l.70

REM CONCATENATED NAMES

210 LET NS • FS + " " + LS + • "
220 · PRINT PRINT NS: PRINT
130

Step 3. Replacement routine for last name field.

24D REM NEW LAST NAME TO REPLACE OLD LAST NAME
250
UO INPUT "ENTER NEW LAST NAME:";LH
Z7D IF LEN (LH> ,. D THEN PRINT : PRINT "PLEASE, WE MUST HAVE A LAST

NAME.": PRIN'f _: COTO 280
Uil IF LEN ILHl > 12 THEN PRINT : PRINT "LAST NAME TOO LONC. 12

CHAR.MU.": PRINT_: COTO 280 .
UD IF LEN (LH> (12 THEN LET LH " LH + " ": COTO 290
300 LET NS m MIDS <NS,l,I> + Llt + • "
3lD

Step 4. Name printing routines.

320 JIEM NAME PRINTINC.ROUTINE
330
HD REM TO PRINT FIRST NAME ONLY
35D
HD PRINT : PRINT MIDS <NS,l,8>
370
38D REM TO PRINT LAST NAME ONLY
380
4DD PRINT : PRINT MIDS <NS,10,12>
41D
UD REM TO PRINT COMPLETE NAME
430
HO PRINT : PRINT NS

Check your understanding of the routines above by answering the following
questions.

(a) In line 170, what is the purpose of L$ = L$ + " "?

(b) What does line 210 do? -------------------

64 APPLE BASIC: DATA FILE PROGRAMMING

(c) ·In line 300, what does the MID$ function do?

(d) If F$ ="VAL" and L$ ="JEANS", how will N$ appear when printed or dis-·

played by line 220?

(a)

(b)
(c)

(d)

Fills in unused character positions with blanks to the correct field length (same
technique used in lines 160 and 420)
Packs first and last names into N$
Concatenates the first' nine characters of original N$ with the new last name

· (Fl$), creating a new N$ assignment · ·
VAL JEANS
(All "padding" spaces are included when N$ is printed.)

. THE VAL FUNCTION IN DATA ENTRY CHECKS·

If the product number and quantity ordered in a program must be numeric quantities,
V Al() can easily convert these numbers stored as strings to numeric values.

330 LET At a "118.85"
340 PRINT VAL !At>
350 LET A a VAL !At>
380 PRINT A

lRUN
Ul.95
1Z8. 85

In the conversion, either a leading space is added for the implied plus sign, or a minus
sign is provided if the quantities were negative. /

But the VAL() function does not completely solve the problem of converting
string numbers to numeric values. For example, alphabetic information included in a
strjng you wish to convert to a numeric value presents a very real problem that can
range from accidentally using the letter 0 (oh) for a zero, to a quantity that includes
the units that measure that quantity (12 quarts). Therefore, always test to be sure
that if numeric values are needed, that is what was entered. ·

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 65

Following are some sample values i:un on our APPLE IL

The RUN:

lDD
llD
lZD
13D
lfD
lSD.
18D
17D
llD
llD
ZDD
UD
UD
UD
HD
UD
UD
no

REM VAL fUHCTION TESTll

LET At • "ABC"
PRINT At, VAL CAt>

REM. TESTIZ-NULL STRING

LET At .• Hll.

PRINT At, VAL CAt>

REM TESTl3

LET AS • "1Z3ABC"
PRINT .U, VAL C.U>

REM TES TH
LET At a "ABC1Z3"
PRINT AS, VAL CAf>

JRUN
ABC

lUABC
ABC1Z3

D
D
1Z3
D

Notice in the RUN above that alphab~tic characters result in a value of 0, as do
a null string and the mixed alphanumeric data where the alpha information precedes
the numeric (ABC123). Notice also that the mixed data 123ABC resuits in a value of
123. The APPLESOFT BASIC's VAL function disregards the alphabet information
that follows numeric information in the same string. This is convenient if you wish to -
enter the' quantity and the units, su9h as 14 gallons, but inconvenient if y.ou wish to
check for the validity of the data entered. Here, you want to ascertain that the data
entered are numeric, so when. the VAL function entry test is used you get valid numer- ·
ic values. At this point, for mixed numbers and letters, assume that the user did enter
the correct value. ·

The test to validate numeric information would be:

lDD IF VAL <AS> • D THEN PRINT "ENTER NUMERIC VALUES ONLY."

Note that the entry passes the test if only the first character entered is numeric.

(a) . Now do some programming. For the data entry problem on page 60, you wrote a
program to produce a data entry sequence with null string checks added. Now add
data checks that ensure that the product number and quantity ordered are numeric
values. Also incluqe a data check to be certain that the product number is a four
digit number.

.,:.

66 APPLE BASIC: DATA-FILE PROGRAMMING

(a) ZlO
220
Z.3 0

240
250

280
270

272

274

280.
ZIO

295

INPUT "ENTER CUSTOMER NUMBER:";CS
IF LEN !CS> = 0 THEN PRINT "ENTRY ERROR. PLEASE REENTER.": PRINT
GOTO 220
INPUT "ENTER CUSTOMER NAME:";NS
IF LEN !NS>" 0 THEN PRINT "PLEASE RESPOND AS REQUESTED.": PRINT
GOTO 240
INPUT "ENTER PRODUCT NUMBER:";PS
IF LEN <PS>" 0 THEN PRINT "WE CANNOT CONTINUE WITHOUT THIS DATA.":
PRINT : GOTO ZSO
IF VAL !pf)• 0 THEN PRINT: PRINT "PLEASE ENTER NUMBERS ONLY.":
PRINT : GOTO Z&O
IF LEN !PS> < > 4 THEN PRINT : PRINT "THIS ENTRY MUST BE A 4-DICIT
NUMBER, so REENTER.": PRINT: GOTO no
INPUT "ENTER QUANTJTY:";QS

.IF LEN !Qt>" 0 THEN PRINT "PLEASE ENTER THE CORRECT VALUE.":
PRINT : GOTO 280
IF VAL !QS) • 0 THEN PRINT : PRINT ."ENTER NUMBERS ONLY, PLEAS.£.":
PRINT : COTO 280

BUILDING DATA ENTRY AND ERROR CHECKING ROU11NES 67

USING STR$ TO CONVERT VALUES· TO STRINGS

The STR$() function serves the opposite purpose of the VAL() function. It converts
numeric values into strings. This allows you to manipulate numbers with string func
tions. You can use it to convert numeric values to strings assigned to variables, in
concatenating several small strings into a string variable, as done earlier in this chapter.
For example, you may have combined product number, product description, and
quantity in inventory into one long string. You may then need the quantity in inven
tory for an accounting procedure or another calculation. Suph operations require a
numeric value. You would convert the striilg to a numeric value by using the VAL()
of the entry. string. When the quantity is stored, you can convert back to a string by

· taking the STR$() of the numeric value to place it into the P$ string.

P$ 17633 I BOOK TITLE .

PS PS + STRS{Q)

or

QS STRS(Q)
PS PS + QS

144

When the computer converts a numeric value to a string with STR$(), a minus
sign is included in the string if the value is negative.

I

Try this demonstration program:

~4~ LET Im 847.ZS
150 LET XS = STRS IX>
l&O PRINT "I c";X
170 PRINT "XS m";XS

JRUN
I s:847. ZS
XS =847. ZS

In the example above, the LEN(X$) is six - five numeric characters and the
decimal point. (Remember, blank spaces, decimal pofu.ts, and other punctuation marks
are characters.) If you fail to provide enough string length or field space, you will in
advertently lose significant digits or characters due to computer truncation. A six
digit number with a decimal point does not fir in a six-character field.

How many characters will the following data items have if they are converted
from values to strings with the STR$ function?

(a) 171.83" ___ _

(b) 2001 ----

(c) -999-,--__ _

68 APPLE BASIC: DATA FILE PROGR.AMMING

(a) 6 ·
(b) 4
(c) 4

CHECKING FOR ILLEGAL CHARACTERS

Using the ASC function in a data entry checking statement is a powerful tool to
determine whether illegal or unlikely characters have been included in an INPUT
string. Checking is done by a combination of the ASC function, the MID$ function,
an IF ... THEN statement, and a FOR NEX:T loop. First the length of the entry is
determined by the LEN function, which is used as the upper limit of the FOR control
.variable, like this:

350 INPUT "ENTER 8 CHARACTER CATALOG CODE:"; CS
310 FOJI X m l TO I.EH <CS> ·

Then the MID$ function, using the I:"OR control variable (value of X for any iteration)
to determine which character to examine, selects each character in the string for
comparison to an ASCII number, like this:

TTD IF ASC I MIDS ICS,.1,1)) = 32 THEN PJIIHT "JIEEHTER BUT DO NOT INCLUDE
SPACES.": PRIHT : GOTO 350

380 .rU:.11" X

(Note: Here is one of those exceptions when the computer leaves or exits a FOR
NEXT loop before completing all iterations of the lo<?p.)

Notice that any character that can be entered as part of a string can be· checked to see·
that legal characters that should be there are included, or that illegal characters are not
included. Notice, too, that the error message could be located in a subroutine outside
of the FOR NEXT loop. In addition, you can use the logical AND and OR to check
for more than one character or group of characters in the same IF ... THEN statement.

What if a user made the following response to lin.e 350 in the example above?
Answer the questions based on this response and this program segment:

JJIUH
EHTEi 8 CHARACTER CATALOG CODE:A - 1341
REENTER BUT DO NOT INCLUDE SPACES.

ENTER I CHARACTER CATALOG CODE:A-1341

(a) What is the length of the substring selected by the MID$ function in line 370?

(b) What ASCII value is compared to 32 the first time through the FOR NEXT

loop?---------

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 69

(c) The second time through?

(d) On which iteration of (time through) the FOR NEXT loop is the comparison in

line 370 true?

(e) What value does the FOR statement control variable have as an upper limit for

this user's response? ------------~---

(a) 1
(b) 64 (for A)
(c) 32 (for a space)
(d) second iteration·
(e) LEN(C$) = 8

(a) Write a data entry checking routine similar to the one before that prints an
error message if an illegal character is encountered. Use more than one IF .. .
THEN statement with the ASC function in· the comparison, or a single IF .. .
THEN statement that uses the Jogical AND and OR. The only legal characters
for the entry are the digits~ (zero) through 9 inclusive.and the decimal point,
such as would be entered for a dollar and cents entry without a dollar sign.
Include a null entry test.

70 . APPLE BASIC: DATA FILE PROGRAMMING

(a) 101! INPUT "ENTER A VALUE;"; VS
110 IF LEN (VS) = D THEN PRINT : PRINT "PLEASE ENTER AS REQUESTED.";

PRINT : GOTO JOO
l"ZD FOR I a l TO LEN (VS)
130 IF ASC (MIDS CVS,1,1))) = 49 "ND ASC (MIDS CVS,J,l)) (.. 57

ASC (HIDS(VS,l,J)) ,. 46 THEN 150
140 PRINT "INVALID ENTRY. ENTER NUMBERS ANDDECIHAL PT. ONLY.": PRINT :

GOTO 100
150 NEXT I
l&O REH PROGRAM CONTINUES

THE HOME INSTRUCTION

It is sometimes desireable to remove "clutter" from the screen, especially when asking
the computer user for specific input, or after a data entry or data display operation is
completed. Use APPLESOFT HOME instruction to accomplish this. HOME should
generally be used just before a new display operation. (If HOME is placed in the pro
gram after a display or entry instruction, the screen may be cleared before the user has
a chance to absorl;> the information). HOME may also be used in direct mode to clear
a screen.

lOD HOME
110 INPUT "ENTER A VALUE:"; VS
HD HOME
130 IF LEN CVS) " D THEN PRINT PRINT "PLEASE ENTER AS REQUESTED.":

HOME : PRINT : GOTO 110
140 HOl!E
150 FOR X " l TO LEN <VS)
160 IF .ASC (MIDS CVS,X,l)) > = 49 AND ASC C MIDS CVS,J,l)) < = 57 OR

ASC (HI DH VS ,J, l)) = ·45 THEN 190
170 HOME: PRINT "INVALID ENTRY. ENTER NUMBERS AND DECIMAL PT. ONLY.":

PRINT : HOME : GOTO 110
180 HOME
190 NEXT X
ZOO REH PROGRAM CONTINUES

(a) The HOME instruction appears five times in this segment. Which ones should be

removed so that adequate information is displayed for the user.? _____ _

(a) All except line 100.

OR

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 71

A DISCUSSION OF DATA ENTRY AND CHECKING PROCEDURES

This chapter has included recommendations, hints, and techniques for dealing with
and checking data. This section describes and summarizes procedures used to check
and validate all data entries.

There are two schools of thought regarding at what point incoming data should .
be checked for errors. One states that since the data entry operator's time is costly,
the operator should merely enter data using the fastest possible procedures, with no .
checks for accuracy at the time data are entered. This position requires that more
time be spent training the data-entry operator in fast, accurate computer entry
techniques .. Then, later, another program does the error checking on the data at fast
computer speeds. Whenever a data error is encountered, the computer "kicks out"
or rejects the entire data entry transaction for that set of data and prints the rejected
information in a special report. The rejected data set is then reprocessed or reentered
by the data-entry staff. This procedure works well if the number of rejects is low.

In contrast, we prefer the second approach - checking data on the way in. As
each item is entered, it is error-checked immediately. If an error is detected, the
computer operator is advised to reenter the data; One advantage is that the person
making the entry error is responsible for correcting it. This method also gives man
agement a better measure of an operator's work flow since only accurate,.accepted
information is completed during a work day. In the alternate method, data entry rates
may seem high, but so may be the reject rate, and special procedures are need to ver
ify who is making the entry errors. A less subtle technique is to signal an entry error
with a terminal beeper or bell. Each time faulty data are detected, the sound signals
the operator (and the manager, if present) that an error was made and draws attention
to the "culprit." But these are concerns in a business environment. The immediate
error check is more in keeping with the small business or personal nature of most
programming applications presented here. And since all the error checking routines
follow the data entry immediately, you can easily read the program to see what kinds
of error checks are being made.

Two general data entry techniques are universally accepted. One uses a grapltlc
reproduction on the video screen of the paper form from whlch data are entered. It
makes sense to reproduce that form on the screen and have the computer prompt the
operator to "fill in the blanks" just as they appear on the paper form or data source
sheet.

A second generally accepted technique is one that repeats back to the operator
one or more sets of data entered. The operator is then given the chance to reenter
any incorrect items, even after the· entry checking has been performed by the computer.
This is the "last chance" to pick up spelling errors, number transpositions, typographi·
cal errors, and anything else for which entry error checks cannot be designed into the
program itself. An exampfo of such a post-data entry display appears below:

72 APPLE BASIC: DATA FILE PROGRAMMING ·

THANK YOU. HERE IS THE DATA YOU ENTE~ED.

CUST. -II

1 ..., 98213
2 - 98213
3 - 98213

PROD• II

17892
24618
81811

QUANTITY

18
12
144

ARE THERE ANY CHANGES (YES OR NO)? YES
ENTER THE NUMBER OF THE LINE IN WHICH A CHANGE IS NECESSARY:

Before a summary report such as the one above is displayed, clear the screen of
previously displayed information. If fact, clearing the screen before each new entry
or after the entry of a data set is important in the entire concept of avoiding errors .

. If the graphic display of a data source form is used, then the screen should be cleared
and the form redisplayed with the just-entered data. The operator can then double
check with the option to make any corrections dire_ctly on the new form.

Many error-checking procedures depend on personal preference or company
policy. Either way, plan ahead. Look carefully at the complete problem or job for
which you are using your computer. In what form and format should the data be
entered? Are there subtle limits or tests that you can apply to data to detect operator
errors? For instance, if you are entering addresses with zip codes and a large percentage
of your business is in California, then you know that most zip codes should start with
the number 9. It would be appropriate to test whether the entered zip -code value be
gins with a 9, and if. not, to inform the operator of a possible error.

140 INPUT "ENTER·ZIP CODE:";Zt
150 IF LEN CU> C > 5 THEN PJIINT : PRINT "ZIP CODE MUST BE EXACTLY 5

DIGITS. PLEASE REENTER.": PRINT: GOTO 140
180 JF LEFTS CZS,l> = "9" THEN 210
170 PRINT : PRINT "THE ZIP CODE YOU ENTERED, ";ZS;" JS NOT FOR CALIFORNIA."
180 INPUT "IS IT CORRECT ANYIJAY?";Rt
190 IF LEFTS CRt,l> < > "Y" AND LEFTS CRS,l> < > "N" THEN PRINT

PRINT "ENTER •y• FOR YES OR 'N' FOR NO.": PRINT : GOTO 170
ZOO IF LEFT.$ CRS,l> < > "Y" THEN PRINT "PLEASE REENTER.": PRINT :

GOTO 140
210 REM PROGRAM CONTINUES

We also strongly recommend consistency in your data entry formats, especially
for such things as data field lengths. Don't confuse yourseif or others who use your
programs. If you write several programs that use personal names, use the same size
delimiters or data fields, This also allows you to have compatible data files for
various uses. The same goes for address sizes and formats, product descriptions, and
other alphanumeric data. Remember, your company may have already made the
decision for you, so be sure you know the policies!

For numeric values, quantities, and entries involving monetary values, you may_
have to dig a little to discover the lim~~s for which the data should -be tested. Company
policy, common sense, and actual experience may give you the logical limits for a
"not less than" or "not to exceed" data entry check. And you can always use the
operator override procedure for possibly erroneous data, as shown below:

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 73

33D INPUT "ENTEJI QUANTITY OJIDEJIED.: ";Qt
34D IF VAL (Qt> (• 98 THEN 4DD
35D PJIJNT : PJIJNT "THE QUANTITY ENTEJIED EICEEDS OJIDEJI LIMIT OF 98 UNITS.

PLEAJIE JIEl:NTER.": PJIJNT: COTO 330
380
37D
38D
390
4DD
410
4ZD
43D
HD

450

48D

JIEM ANOTHER PJIOCEDUJIE

INPUT "ENTEJI PJIICE QUOTED:";Pt
IF VAL <Pt> < • 75.DD THEN 480
PJIINT: PJIINT'"THE .PJIICE QUOTED EICEEDS NOJIMAL LIMITS OF t75.DD."
INPUT "JS IT CORRECT ANYWAY?"; Rt
IF LEFTt (Jlt,l> < > "Y" AND LEFTf (Rf,l> < > "N" THEN PJIINT
PJIINT "DTEASE ENTER 'Y' OR 'N'. ": PRINT : COTO 42D
IF LEFTt <JU,l> < > "Y·,; THEN PJIINT: PJIINT "PLEASE REENTER.":
PJIINT : GOTO 4DD .
JIEM PJIOCJIAM CONTINUES

Let's review the general data entry error-checking procedures for alphabetic and
numeric information.
1. . Enter all data into string variables after a clearly stated prompt request from the

computer.
2. Enter only one data item per prompt.
3. If you are going to pack a number of data items (a data set) into one string,

enter the data into separate string variables and then concatenate after all check
ing has been accomplished. Do not enter data directly into a substring position.

4. Checking should include a test for non response (a null string) of the type IF
LEN(R$) = f/J •••

5. When an error is discovered, include a message not only to tell the operator that
an error was made, but also to describe as completely as possible what the error
was. Do not merely request a reentry.

6. Check alphabetic data for field length using the LEN function.
7. It may be necessary to pad the entry with spaces to the proper field length,

especially for alphabetic data.
8. Thoroughly test numeric data (which we recommend be entered into a string

variable) in this order:
(a) for non-response (a null string)
(b) for excess string length, if applicable
(c) for the inadvertent inclusion of alphabetic characters in numeric values,

using VAL or ASC
(d) for any company policy tests or size limit
(e) if the datum is an integer value, test the value to see if it is an integer with

a statement like IF X < > INT(X). : ..
(t) for negative values if they are not acceptable.
If this sounds like a lot of work, re.member that your 'otherwise excellent pro

gram inust .liave valid and accurate data to do its job. Don't skimp. Be complete. For
example, the capability of the IF ... THEN statement to PRINT a message may lull ·
you into trying to oversimplify an error message in order to fit .it into the same pro
gramming line as the IF ... THEN statement. Don't fall into this trap. Use GOSUBs
and provide complete, clear messages to the operator.

You may want to place all error tests and messages into subroutines. This gives
your program neatness and clarity. Various entries may be put to the same tests,
allowing the check statements to work for various entries if variables and other factors
are compatable.

74 APPLE BASIC: DATA FILE PROGRAMMING

Be alert to other occasions throughout your programs where data errors may
occur. While we encourage sensitivity to errors at data entry time, always check for
data errors later in your program; especially if the data are subject to various.mani
pulations after the entry routines. Watch for strange results from functions such as
VAL. Get to know the version of BASIC you are using inside and out by thoroughly
exploring the reactions of statements and functions in various circumstances. The
error conditions you encounter will depend largely on your programming skills and·
the kinds of applications you program. · Be alert to the errors that occur and include
tests for them. Don't get psychologically locked in to your first, second, or third
version of a program or programming technique.

Finally, be aware that many programmers test their programs with only sensible
data, neglecting the ridiculous mistakes that can, and without a doubt will, be made.
When you thirik you have covered every possibility, let a child with no computer
experience try it out. If the program survives, you've checked it all out!

CHAPTER 3 SELF-TEST

1. Write an IF ... THEN comparison that will be true if:
(a) the entry has exactly seven characters.
{b) the entry does not have exactly seven characters.
(c) the first character in any entry is not a number.
{d) the first character in an entry is a number other than zero.
(e) the entry is not a null string.

(a)

{b)

(c)

{d)

(e)

2. Write a statement line that checks to see if an entry has less than twelve char
acters, and if so, pads the entry with spaces so that the resulting string has
exactly twelve characters.

3. Write a data entry checking routine that checks .to see th~t no numbers have been
included in a string entry. Write an accompanying subroutine, to be called when
a number is found, that tells the user what was entered, and to reenter without
including numbers in the entry.

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 75

4. You now have the background to write a data entry module for most kinds of
data to be later placed into a data file (covered ill the next chapter). Write the
data entry module and complete it with data entry error checks, as described
below:

(a) Write a data entry routine that prompts the use to enter:
(1) a five-character alphanumeric product code (must always have five

characters) ·
(2) a product name with a twelve-character maximum length
(3) the quantity ordered into a three-digit field with a limit of 288 per

order
(4) the price, into a five-digit field, with no price exceeding $99.99

(b) Pack the information entered into one long string (M$) with the following
fields:

M$
_____ / ____________ / ___ / ____ _

C$ ~N$ 0$ P$

Note: Do not include slashes in the data field string.

(c) Print parts of M$ in a "report". with the format shown below:

J9RJ CE: J. 25
QUANTITY: 24
PROD. CODE: 11234

Refer back through this chapter for ideas, and try debugging your solution
program before looking at our way of doing it. Our solutions are not the
only ones possible. The real test is whether the program works, and how
foolproof it is.

I

76 APPLE BASIC: DATA FILE PROGRAMMING

1.

2.

3.

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 77

Answer Key

(a) IF LEN <AS> " 7 THEN

(b) IF LEN (A$) (> 7 THEN

(c) IF ASC <AS) (48 AND ASC (Af) > -57 THEN

(d) IF VAL (Af) (> 0 THEN

(e) IF LEN <AS> (> 0 THEN

lZO IF LEN <AS> (12 THEN LET U • A$ + " ": GOTO 120

(Your string variable and line number may be different, of course.)

100
110

. 300
310

320
330

340

REM SOLUTION, CH3, PROB3, SELF-TEST

INPUT "ENTER YOUR NAME;";U
IF LEN <·AS> " 0 THEN PRINT : PRINT "NO ENTRY MADE. PLEASE TRY
AGAIN.": PRINT : GOTO 300 .
FOR I " l TO LEN <AS>
IF ASC C MIDS <U,I,l>·> > 47 AND ASC < MIDS. CU,I,l» < 58 THEN
GOSUB 1100: PRINT : GOTO 300
NUT I

1090 STOP
1100 JIRINT : PRINT "YOU ENTERED: ";AS
1110 PRINT "PLEASE REENTER, BUT DO NOT INCLUDE ANY NUMBERS.": PllINT
1120 RETURN

78 APPLE BASIC: DATA FJl,E PROG~G

4. lDD
llD
lZD
l.3D
140
lSD
180
l7D
180
llD
ZDD
UD
no
UD
Z35

HD

UD
ZBD
Z83

zu
Z7D

ZID
ZID

3DD
3D5

3lD

3ZD
33D
HD
358
HD
37D
38D
38D
4DD
HD
47D
UD
41D

REM SOLUTION, CH3, PROB4 SELF-TEST

REM VARIABLE LIST
REM CSmPRODUCT CODECS CHAR.>
REM NSaPRODUCT NAMECJZ CHAR.MAX.>
REM OtaOUANTITY ORDEREDC3 CHAR.MAX.>
REM PSaPRICEC5 CHAR.MAX.>
REM MtaCONCATENATED DATASETCZ5 CHAR.>

REM DATA ENTRY MODULE

INPUT "ENTER PRODUCT CODE:";CS 1
IF. LEN <Ct> < > 5 THEN PRINT : PRINT "CODE MUST BE 5 CHARACTERS
EXACTLY. PLEASE.REENTER.": PRINT : COTO ZJD
INPUT "ENTER PRODUCT NAME:" ;Nt .,.
IF LEN CNS> • D THEN PRINT : ·PRINT "NO ENTRY HADE. PLEASE ENTER AS
REQUESTED. II: PRINT : COTO Z3D
IF LEN .CNS) > JZ THEN PRINT : PRINT "ENTRY TOO LONC. PLEASE REDUCE
TO lZ. CHARACTEli MAI. 11 : PRINT : COTO Z3D
IF LEN CNS> < lZ THEN LET NS • NS + " ": COTO Z5D
INPUT "ENTER QUANT I T-Y ORDERID: " ; 0 S
IF LEN <Ot> • D THEN PRINT: PRINT "PLEASE ENTER AS REQUESTED.":
PRINT : COTO ZBD
IF VAL CQt) • D THEN PRINT : PRINT "ENTRY ERROR. NUMBERS ONLY,
PLEASE.": PRINT : COTO ZB'D .
IF LEN COS>> 3 THEN PRINT: PRINT "T.00 MANY DIGITS. 3 MAI.":
PRINT : COTO ZID
IF LEN COU < .3 THEN LET OS • OS + " ": COTO ZID
IF VAL COS> > Z88 ·THEN PR"INT : PRINT "ORDER EXCEED.S LIMIT OF Z88
UNITS. PLEASE.REENTER."; PRINT : COTO ZBD
INPUT "ENTER UNIT PRICE:";PS
IF LEN <Pf> • D THEN PRINT : PRINT "NO ENTRY HADE. PLEASE ENTER AS
REQUESTED.•: PRINT: COTO 3DD
It "Vlt CPS> > II. 99 THEN PRINT : PRINT "PRICE ERROR. MAIIHUH PRICE
MUST BE LESS THAN lDD.": PRINT: COTO 3DD
IF LEN <Pt> (5 THEN LET PS • Pt + " 0 : COTO 3ZD

REM CONCATENATE DATA

LET Mt • CS + Nt + Of + PS

REH DISPLAY DATA

HOME
PRINT "PRICE: "; RJCHTt UIS,5>
PRINT "QUANTITY: ";MIDS CHt,18,3>
PllNT "PROD.· CODE: "; LEFTS CHS,5>

CHAPTER FOUR

Creating and Reading Back
Sequential Data Files

Objectives: When you complete this chapter, you will be able to store and retrieve
numeric and/or alphanumeric data in sequential disk data files, using the following
BASIC data file statements in their special formats: OPEN, CLOSE, DELETE, READ
and INPUT, and WRITE and PRINT.

INTRODUCTION

A data file is stored alphanumeric information that is separate and distinct from any
particular BASIC program. It is located (recorded) on either a magnetic disk, diskette,
or cassette tape. This chapter discusses using sequential {also called serial) data files on
disks and diskettes.

In your previous BASIC programming experiences you probably hand-entered all
data needed by.your programs using INPUT statements. You did this each time you
ran your programs. Or, if you had larger amounts of data, you might have entered
the data with DATA statements and used the READ statement to access and mani
pulate the data. In either case, the data were program-Oependent; that is, they were
part of that one progi:am and not usable by other programs ..

A data file is program-independent. It is separate from any one program and
can be accessed and used by many different programs. In most cases, you will use
only one program to load a data file with infom:iation. But once your data file is
loaded (entered and recorded) on a disk, you can read the information from that file
using many different programs, each performing a different activity with that file's
data.

For example, perhaps you have computerized your personal telephone and
address directory using data files stored on a disk.' You may need just one program
to originally load information into that file and add names to it. (This chapter will
show you how.) Another program allows you to select phone numbers from the file
using NAME as the selection criterion. You can use still another program to change
addresses or phone numbers for entries previously made in the file. Another program
could print gummed mailing labels in zip code order using the same data file. You
could design yet another program to print names and phone numbers by phone num-

79

80 · APPL)i: BASIC: DATA FILE PROGRAMMING

her area code. The possibilities go on and on. Notice that one data file can be
accessed by many different computer programs. The data file is located separately on
the disk in a defined place. Each program mentioned above copies the information
from the disk into the electronic memory of the computer as it is needed by that
particular program. Alternatively, the program could transfer information from the
computer's memory to be recorded onto the disk. · ·

If you already use your disk to SAVE and/or LOAD BASIC programs, then you
have some experience with disk files. When you SAVE a BASIC program, it is re
corded on this disk in a file. Such files containing BASIC programs are called pro-·
iram files. In contrast, the files discussed in this chapter contain data arid are there
fore called data files or text files. Program files and data files are different and
are used differently. A BASIC program file contains a copy of a BASIC program that
you can LOAD, RUN, LIST, and SAVE. A data file contains information only. You
access this information using a BASIC program that includes special BASIC statements
that access data files; that is, transfer all or part of the data from the magn,etic record
ing on the disk into the computer's electronic memory so the program can use it. You
cannot LOAD, RUN, LIST, or SAVE a data file. You can access the information only
by using a BASIC program. .

You can tell what type of files is contained on your diskette by listing a CATA
LOG on your screen or printer. Type the word CATALOG and press RETURN. Here
is a CATALOG of one of our diskette contents:

*A 002 HELLO
*I 002 APPLESOFT
*B 0.27 MUFFIN
A 01.3 RENUMBER

*T 023 QUIZ
T 015 APPLE CHAPTERS

The column to the far left with the letter A, I, B, or T indicates-whether the file
is an _Applesoft BASIC program file, Integer BASIC program file, Binary program file,
or Text (or data) file. The asterisk (*) indicates whether or not the file is "locked,"
If it is, you cannot accidentally erase that file. See the APPLE II DOS Manual for the
locking procedures.

The numeric entry in the second column indicates how mariy "sectors" of disk
space are taken by the file, and, of course, the file name. A file name can be from
one to thirty characters in length. The only "rule" is that the file name. must begin
with a letter. "Sectors" are explained in next section.

(a) Describe in general-terms how you can access data in a data file.

CREATING AND READING BACK SEQUENTIAL DATA FILES 81

(a) Using a BASIC program that includes special file accessing BASIC statements.

DATA STORAGE ON DISKS

A magnetic disk (or diskette) has limited data storage ~apacity that varies from one
computer to . another' from one size disk to another' and from one recording system
to another. For our APPLE II computer using version 3.3 DOS with sixteen-sector
diskettes, the user storage capacity of the diskette is nearly 127 ,000 bytes of infor
mation. (The term "byte" will be explained shortly.) Using the 3.2 DOS, with
diskettes of only thirteen sectors, the storage capacity is slightly over 103,000 bytes
of information.

A disk refers to several styles of magnetic storage. Floppy disks are made of a
flexible, magnetic-coated plastic, and ·come in two sizes - 8-inch and 5¥1-inch. The
smaller is often called a diskette. Hard disks are also available for microcomputers.
Although more expensive, they have larger data storage capacities. Fortunately, these
physical variations do not affect the BASIC statements used to store and access data
files. ·

Other variations occur in the way data are recorded on disks. A disk can be
recorded on one. or both sides and in more or less space, depending on the disk drive
system. A double-density system records twice as much data in the same space as a
single-density system. A quad-density system is double-density recording on a system
that can record both sides of a disk without "turning it over." Again, such variations
do not affect the BASIC statements used to store and access data files. · ·

Let's take a closer look at the single-density, 5-¥1 inch diskette that is used by .
the standard disk drive available with your APPLE computer. The disk is divided into
thirty-five concentric circles called tracks. Each track, in tum, is divided into thirteen,
or.sixteen sectors, depending on whether you use DOS 3.2 or 3.3 Each sector has
the capacity to store 256 bytes of information. The DOS uses three complete tracks.
Therefore, the DOS 3.3 diskette has a user capacity of 496 sectors, while the DOS 3.2
user has only 403 sectors of storage capacity.

What is this thing called a byte? A byte is computer jargon for both a unit of
computer niemory and a unit of disk storage. Each byte has an electronic pattern
that corresponds to one alphanumeric character of information. One letter of the
alphabet, one special character, or one numeric character entered as a string (such as
LET B$ = "3") takes up one byte of storage space. A twenty-character name takes

·twenty bytes of disk storage .space. The general rule for storing strings in data files is
that the amount of storage needed for each string is equal to the actual length of the
string p~us one byte for "overhead." ·

(a) How many bytes of disk storage are required by the string assigned to N$?

NS= "BASIC.DATA FILES ARE FUN"

82 APPLE BASIC: DATA FILE PROGRAMMING

(a) Twenty-four, plus one for "overhead" (Spaces also take one byte.)

Keeping track of disk storage requirements for alphanumeric data in strings is
easy, since one character equals one byte. Numeric values not entered as strings work
in much the same way. Each character ui the number, the sign (if negative), and the
decimal point all take one byte, plus one byte for "overhead." The trick is knowing
in advance about how large each number will be so that you can approximate how
much storage space will be needed for numeric entries. With string entries you can
limit the size of the data field, as we showed you in Chapter 3. You cannot, how
ever, limit the size of a_ numeric entry. Therefore, you must plan ahead and estimate
the space requirements for your numeric file entries. The examples below give the
space requirements for each entry. ·

234 = 3 characters + 1 = 4 bytes
-127.5 = 6 characters + 1 = 7 bytes
12.509 = 6 characters +l = 7 bytes
.0002 = S characters + l = 6 bytes

For a personal telephone and address directory application, let's see how much
disk storage space is reqliired for each person on file. Each data item has a defined
field length.

Name
Address (street)
City
State
Zip code
Phone (xxx-xxx-xxxx)
Age
Birthdate (xx/xx/xx)

Subtotal
Overhead

Total

20 characters
25
10
2
s

12
2 (Entered as an integer number)
8

84
7

91

(a) How many bytes would be required to store the zip code as numeric value

instead of a string?

(b) Why was a twelve-character string rather than a numeric value used for the phone

number?

CREATING AND READING BACK SEQUENTIAL DATA FILES 83.

(c) How many sectors would 150 entries in the address and. phone directory take up

in storage? ------------------------

(d) What is the maximwn nwnber of people you could file in your directory· on one

disk with a capacity of 103,000 bytes?

(a) 5, plus 1 "overhead"
(b) Could not have included hyphens, which make nwnber easier to read
(c) 92 times 150 = 13,800 bytes. 13,800 divided by 256 = 53.9, or 54 sectors

(Note that if you placed all eight data items into one long string, you could
save .seven bytes of overhead, leaving eighty-five bytes per entry for a total of
fifty sectors. This technique can save bytes per entry and, therefore, valuable
storage space.)

(d) 103,000 divided by 92 = 1119

The eight items in each entry in the personal directory are called a dataset. A dataset
consists of all data that are included.in one complete transaction or entry into a data
file. Grouping information by dataset and then accessing or otherwise manipulating
the dataset as a group of data items makes programming and reading programs much
easier.

Sequential data files can be visualized as one long,· continuous stream of informa
tion, with datasets recorded one after the other. Imagine datasets recorded continuous
ly on a magnetic tape cassette (a single, long ribbon of tape) and you have a fairly
accurate image of how a sequential file looks in theory. That is how you as a file user
should think of it. The truth is, a file can be partially located on one track or one
sector, and partially on another, depending on the computer system and how the file
was filled. Fortunately, the physical location of the file on a disk is "invisible" to the
user. All you need.remember is the long, continuous stream of information.

SEQUENTIAL VS RANDOM ACCESS DATA FILES

Data filing systems can use sequential data files or random access data files. The latter
are explained fully in Chapters 6 and 7. Sequential data files use disk storage space
more efficiently than random access data files. It will quickly become clear to you
truit a disk is easy to fill to capacity, despite the seemingly large nwnber of bytes that
can be stored on it. Thus, sequential files are space-efficient. However, it is somewhat
difficult to change data stored in a sequential file. Sequential files are designed for
"permanent" information that changes.infrequently. You can chan~e data in sequen-

84- APPLE BASIC: DATA FILE PROGRAMMING

tial files, but it is not as easy or efficient as in random access files, Thus, another
criterion for choosing between sequential and random access data files is how often
changes in data can be expected.

A third consideration is the time it takes to access information stored on a disk.
When you have a large data file with loads of information, it takes more computer
time to find or access a particular dataset at the end of a sequential file than it would
in a random access file. To access the 450th data set in a sequential file of 475 data·
sets, the computer must sequentially search through 449 datasets before coming upon
the 450th dataset. Using random access files, the computer can impiediately access
the 450th dataset without having to search through the other 449 datasets. ·Therefore
access time is another factor in selection of sequential or random access data files.

(a) What are three factors to consider when ch.oosing between sequential and random
access data files? -----------------------

(a) Storage space efficiency, changing data, and time for accessing data

INITIALIZING SEQUENTIAL DATA FILES

To prepare to use data files, you must first tell your APPLE how many different data
files you plan to use at one time in your programs. When you first load the DOS,
your APPLE assumes that you will use no more than three separate data files at one
time and reserves enough buffer memory space for tpose three files. If you know that
you will use more than three files at the same time in one BASIC program, then you
must execute a MAXFILES command.

APPLE will allow up to sixteen files to be used at one time. The MAXFILES
command tells the ·computer how many files you plan to use. To allocate space for
eight files, use this format:

MAXFILES8

You should execute the MAXFILES command before you even load your BASIC
program, since its execution will sometimes interfere with the internal pointers (ex
plained later) set by your program. If you must execute a MAXFILES command a:s
part of a program, make the MAXFILES command the first executable statement in
your program.

The MAXFILES command actually sets aside 595 bytes of memory for each file
that will be used. This space Is called a buffer; it acts as a go-between for the compu
ter and the _disk data file (see Figure 1). Input information accessed from a disk file is
first copied into the buffer, 256 bytes at a time. It is then available for manipulation

CREATING AND READING BACK SEQUENTIAL DATA FILES 8S

by the program. Likewise, data to be output from the computer· for recording onto
the disk are first accumulated in the buffer. When the buffer is full, the information
is copied from the buffer to the disk file. The buffer is a holding area for all data
coming to or from a data file.

diskette

0

#2

Memory

#1

t
Buffers

#2 is Input Buffer
#1 is Output Buffer

Figure 1: Data flow through buffers:

APPLESOFT BASIC statements that deal with data files fall into a special cate
gory of BASIC statements that require an unusual format to execute. These statements
look like PRINT statements but are not really the same. The special format requires a
PRINT followed by a CONTROL D character, followed by the executable statement:

lDD PRINT "CONTROL D";MAIFILES5

While this looks easy, when you see a line such as 100 in a program listing, you will
not see the CONTROL D. Control characters do not print in a program listing, so at
some later time you may forget what you were trying to do .. To establish a clean,
readable procedure, we do the following in our programs:
1. Define ilie string variable D$ with the Control D character in the initialization

routine at the beginning of each program, as shown below.

150 LET Dt • CHRS C4>: REM SET CONTROL D

2. Use D$ in all special file statements.

ZDD PRINT DS;"MAIFILES 5"

. Notice the punctuation in line 200. A semicolon (;) follows the PRINT state
ment and the BASIC file statement.is inside quotations marks.

86 APPLE BASIC: DATA·FILE PROGRAMMING

. Normally, the first statement in your pro8ram that relates directly to data files is
the OPEN statement(s) that identify to the computer the·names of the files that will
be used in the program. The OPEN statement causes the computer to assign one of
the buffers to the file named in the OPEN statement. A buffer. is needed for each file
that is open at the same time in the program. ·The buffer assignment is done auto
matically on execution of the OPEN statement; the user and programmer need do
nothing. The OPEN statement searches the disk to see if the named file aready exists.
If not, it readies the disk to accept a new file with the indicated home. The OPEN
statement has the following forin:

140 PRINT Dt;"OPEN NAMEll"

This statement opens a sequential file with the name NAMES I if none already exists,
and assigns a buffer to it. Another example:

140 INPUT "ENTEJt FILE NAME: II ;Ft
150 PRINT DS;"OPEN"FS

This shows that the file name can be assigned with a string variable. Line ISO opens
the file designated by the user in F$.

Just as every file must be OPENed by the program, every OPEN file must be
CLOSEd with a CLOSE statement before the program finishes execution. As soon as
your program is through using a file, and always before the program terminates, in
clude a CLOSE statement to close each of the files or to close all of them at once.
This also completes any transaction inside the computer system that the buffer was
involved in, as 'explained in more detail in the next section. Once a file has been
closed and the buffer unassigned, the same buffer may be used again by the program
if you. open new files. Here are some examples of CLOSE statements:

The Buffer Problem

8DD PJtINT Dt;"C£0SE HAHE.Sl"

810 PRINT DS; "C£0SE"Ft

IZD PJtINT Dt;"C£0.SE"

CLOSE is a vitally important statement and, in most cases, is used to maintain the
integrity and accuracy of your data files. Recall that the buffer acts as a go-between
for the computer and the disk system. When you output data from the computer to
the disk file, the data go first to the buffer. Then, when the buffer is full (256 bytes),

. the data are output and recorded onto the disk. This is often referred. to as updating
the disk file.

What happens if the buffer is only partly full of data and there are no more data
to finish filling it? You might expect the half-full buffer to simply transfer its contents
to the disk for recording when the program finishes execution. But it won't do that.
The data in the half-filled buffer will not necessarily be recorded into the file; your
file, therefore, may not contain all the information you expected. One important pur
pose of the CLOSE statement is to force the buffer to transfer its contents to the data
file even though the buffer is not full. As a rule of thumb, any program with an

CREATING AND READING BACK SEQUENTIAL DATA FILES 87

OPEN statement should have a CLOSE statement that is always executed before the
program terminates. If you get trapped with a program that aborts or terminates and
the buffer still contains data, CLOSE can be executed in direct mode, forcing the
buffer to transfer its contents to the disk file. However, to have to do so indicates
poor programming technique and would be completely unacceptable in a work
environment. Further instructions on writing your programs to always execute a
CLOSE statement are given later in the chapter.

(a) What are two purposes of the CLOSE statement?

(a) To unassign the buffer and to force the buffer to transfer its contents to the disk
data file. '

Our APPLE reference material states that the buffer will automatically "flush"
(transfer its contents to the disk data file) under normal conditions if the program
executes an OPEN to the same file, CLOSE or MAXIFILES, or if the user switches
languages by typing INT or FP (for Integer Basic or Floating-Point Basic). Don't count
on anything else to flush the buffer! To repeat: Always include a CLOSE statement ·
that is executed before the program terminates, so that buffer-flushing is automatic.
You should only force buffer-flushing under emergency conditions, and then you should
use the CLOSE statement in direct mode.

The buffer-flushing problem - and it is a real problem - makes it imperative that
you never remove a disk from the disk drive if the disk contains an open file. Be
certain all files are closed before you remove the disk from the drive, or you may find
yourself with data from a half-filled buffer placed in the wrong file on the wrong disk,
which can create some nasty errors. Be cautious, and remember that data go first to
the buffer. They then transfer to the disk file once the buffer is full. If the buffer
is not full, force it to transfer the data to the disk file with the CLOSE statement.

(a) If you are outputting data in a program to a data file and the program accidental
ly terminates without executing a CLOSE statement, what should you do?

(a) Close the file with a CLOSE statement in direct mode.

88 APPLE BASIC: DATA FILE PROGRAMMING

WRITING DATA TO A SEQl.IENTIAL DATA FILE

You have learned to set up communication between your APPLE and the disk system
with the. OPEN and CLOSE statement. Now you will learn how to place data irito a
file; that is, actually record data onto the disk. APPLESOFT BASIC does this using a
special WRITE statement followed by a PRINT statement. The procedure is a little
tricky, mainly because you have to plan the sequence of operation in your program.

To write to a file, you must use a PRINT D$ statement with a WRITE statement
to begin the WRITE operation.

360 PRINT 0$; "WRITE DEM01"

Once you start the WRITE operation, any normal PRINT statement that follows will
cause data to be printed to the file, rather than printed to the screen or printer. You
can see how this is done in the next program segment in lines 360 and 370. The
PRINT statement, then, actually causes the data to be printed to the file (after going
first to the buffer)~ The WRITE operation is terminated by a blank PRINT D$ state
ment, like this:

410 PRINT 0$

An INPUT statement INPUT N$ by itself will. also terminate the file WRITE
operation. However, an INPUT with a prompt string (INPUT "ENTER NAME:"; N$)
will place unwanted data in your file by printing the prompt string message (ENTER
NAME:) to your file before terminating the write-to-file operation.

In our example, we want to enter data from the keyboard, and then write the
data to the disk file. We then enter more data and write it to the file. We will con
tinue this procedure until we "signal" the computer that no more- data are forthcom
ing, then close the file. The program creates a data file containing the information
found in a school transcript showing classes taken, grades received, and units of college
credit for the course. The general programming steps are shown below.

1. OPEN the file.
2. Enter the data.
3. Tell the computer to start the WRITE procedure.
4. PRINT to the ftle.
S. Terminate the WRITE operation.
6. Return to step 2 above.
7. CLOSE the file.

Here is our program. r Read it over carefully.

CREATING AND-READING BACK SEQUENTIAL DATA FILES 89

lDD
110
lZD
l3D
l4D
l5D
l&D
l7D
lBD
l9D
ZDD
ZlD
no
Z3D
Z4D
Z5D
ZSD
270
280
290
3DD
31D
3ZD
330
34D
35D
HD
37D
3BD
39D
4DO
4lD
4ZD
UD
44D
450
48D
47D

REM FILE PRINT DEMO tl

REM VARIABLES USED
REM NSaCOURSE NAME
REM ChCOURSE GRADE
REM NaNUMBER OF ACADEMIC UNITS

REM FILES USED
REM SEQUENTIAL FILE NAME: DEMO!
REM DATASET FORMAT:NS,CS,N

REM INITIALIZE

LET Dt c CHRS (4)
PRINT DS;"OPEN DEMO!"

REM 'BARE BONES' DATA ENTRY MODULE

PRINT "TYPE 'STOP' INSTEAD OF COURSE NAME
INPUT "ENTER COURSE NAME:";NS
IF NS = "STOP" THEN 48D
INPUT "ENTER COURSE CRADE:";CS
INPUT "ENTER NUMBER OF UNITS:";N

REM START FILE WRITE OPERATION

PRINT Dt;"WRITE DEMOl"
PRINT NS: PRINT CS: PRINT N

REM TERMINATE WRITE OPERATION

PRINT DS
PRINT : COTO ZBD

REM CLOSE FILE

PRINT DS; "CLOSE DEMOl"
END

TO END DATA ENTRY."

(a) What is the name of the file used in this program? ______ _;_ ___ _

(b) Data entry takes place in-what statements?------------

(c) What signal is used to tell the computer there are no more data forthcoming?

(d) What is the purpose of line 410?

(a) DEMOl
(b) - 290, 310, 320
(c) STOP
(d) It turns OFF the file write operation before you return for more data entry.

Line 360 tells the computer to begin the write-to-file operation, also referred to
as print-to-file, copy-to-file, or. record-to-file operations. The PRINT statements in line

90 APPLE BASIC: DATA FILE PROGRAMMING

370 actually cause the data to be printed to the file (buffer). You can only PRINT
. one data item to the file with each PRINT statement. You cannot easily use one state

ment to print all three items as you would likely do if you were using a PRINT state
ment to display data on the screen or printer. Rather than use three separate PRINT
statements on three different lines, we have chosen to complete the file PRINTing on
one multiple-statement line (see line 370). The three data items are called a dataset,
PRINTed to the file by us on one line. This method creates one file PRINT statement
in the program, making it easier to check the program for errors.

Before the program returns for more data entry, the WRITE operation must be
terminated. The blank or empty PRINT D$ statement at line 410 terminates the
WRITE. Notice that there is no punctuation following the D$. Strange happenings
can occur in programs when you accidentally place a semicolon after the D$.

The final operation is the CLOSE routine at line 460.

(a) What causes the program to· execute line 460?

- - - - - - - -,- - ~ - - - -

(a) The operator enters "STOP" as the course name: line 300 tests for "STOP" and
branches to 460 to CLOSE the file.

There are other ways to use PRINT statements to print to a file. We mention
them here in case you encounter them in programs written by other people. We do
NOT recommend these procedures, primarily. because it is too easy to make errors as
you type the statements.

For numeric data only, you can use either ofthe PRINT statements shown be
low to print to a file. Notice that this procedure requires only one PRINT statement
to print three data items.

lDD PRJHT A;",";B;",";C

llD PRJHT A;";";B;";";C

(a) What is the difference between the two statements?

(a) Line 100 uses commas(",") to separate the variables; line 110 uses semicolons
(";").

CREATING.AND READING BACK SEQUENTIAL DATA FILES 91

Notice the use of semicolons and quotations. With all that typing, you are bound to
make errors. We think the procedure described earlier is easier and clearer: use one
PRINT statement for each numeric variable holding data for the file.

For alphanumeric data, you must use separate PRINT statements for each string variable,
as described before:

130 PRINT At: PRINT If: PRINT Ct

A possible problem arises when you want to write information that includes commas to
your file.

UO LET It a "PUBLIC, JOHN 0."

You would expect that the file print sequence below would cause the complete name to
be printed to the file:

220 PRINT Df;"WRITE FILENAME"
230 PRINT IS

But it doesn't: The quotation marks are essentially ignored. The computer accepts the
word "Public" and rejects the words ""John Q .. " The only item placed on your file is
the word "Public." Replacing line 210 with this statement compounds the problem
even more:

210 INPUT "ENTER NAME: II ;Hf

When RUN, the operator responds with:

JRUN
ENTER NAHE:"PUILIC,JOHN 0."

Enclosing the name in quotes, you would expect the complete name to be written
to the file. Again, the computer confounds us by accepting the word "PUBLIC," reject
ing "JOHN Q.," printing the error message "EXTRA INPUT IGNORED," and placing
both the word PUBLIC and the error message on your file! And you thought this was
going to be easy!

· As you might expect, there is a way to program the APPLE to accept alp:{iabetic
data that includes embedded commas. The solution is to "force" quotation marks on
either side of the· name string variable by using the CHR$0 function. CHR$(34) is the
ASCII code for the quote (") symbol. Here is a PRINT statement that will accept and
print to the file any alphabetic information that includes commas:

230 PRINT CHRf <34>;: PRINT NS;: PRINT CHRS <34>

Note carefully the format and the use of semicolons and colons. The typing alone in the
statement above may cause you anxiety. However, you need to worry about forcing

92 APPLE BASIC: DATA FILE PROGRAMMING

quotation marks only when your string includes commas. This .should not happen
often afld with careful planning it may never be necessary.

As noted earlier, using files requires planning. Your plan should consider:
1. What to include in each dataset.
2. How large each data item or dataset will be.
3. Whether technical points, such as imbedded commas in strings, must be handled

with special techniques.
4. How to test each data item in the dataset as completely as possible for accuracy

and validity.
With these considerations in mind, here is a program to help you place a

simple inventory from your home or business into a disk file. The introductory
modllle and possible checks for data validity are Included.

100
110
lZD
13D
ltD
lSD
180

.170
180
190
ZOD
ZlD
UD
Z3D
UD
Z5D
HD
Z7D
IBD
UD
3DD
UD

UD

330
HD

350

380
370
380
39D
ODD
41D

·UD
430

·uo
450
480
470

480

490
SOD
SlD
5ZD
530
540
550

REM INVENTORY FILE LOAD PROGRAM

REM VARIABLES USED
REM Tt•DESCRIPTION<ZD CHAR.MAI.>
REM N • NUMBER OF ITEMS
REM V • DOLLAR VALUE
REM Dt • CONTROL D
REM RtaUSER RESPONSE

REM FILES USED
REM SEQUENTIAL FILE NAME: PROPERTY
REM DATASET FORMAT: Tt,N,V

REM JNJTJALIZE

LET Dt • CHRt 14>
PRINT Dt;"OPEN PROPERTY"

REM DATA ENTRY ROUTINES

INPUT "ENTER ITEM DESCRJPTJON:";Tt
JF LEN <Tt> • D THEN PRINT: PRINT "PLEASE ENTER AS REQUESTED.":
PRINT : GOTO 300
IF LEN <TU > ZD THEN PRINT : PRINT "PLEASE ABBREVIATE TO ZD
CHARACTERS OR LESS.": PRINT : GOTO 300 .
INPUT "HOW MANY ITEMS:" ;N
IF N < .> INT <N> THEN PRINT : PRINT "ENTER INTEGERS ONLY, PLEASE.":
PRINT : GOTO 33D
IF N < • D THEN PRINT : PRINT "THERE MUST BE SOME UNITS! PLEASE
ENTER A QUANTITY." : PRINT: GOTO 330
INPUT "WHAT U THI DOllAJI VltlJI OF IACH:n;V
IF V < • D THEN PRINT : GOTO 480
PRINT Dt.; "WR I.TE PROPERTY"
PRINT Tt: PRINT N: PRINT V
PRINT Dt

PRINT : GOTO 3DD

REM ERROR MESSAGI MODULE

INPUT "DID YOU REALLY MEAN ZERO VALUE, YES OR NO:";Rt
IF LEFTt <Rt,l> < > "Y" AND LEFTS <Rt.l> < > "N" THEN PRINT
PRINT "PLEASE.TYPE •y• FOR YES OR 'N' FOR NO.": PRINT : GOTO 480
it- LEFTt <RS,l) a "N" THEN PRINT : PRfNT "REENTER THE CORRECT
VALUE.": PRINT : GOTO 360 "
COTO 380

REM FILE CLOSE ROUTINE

PRINT Dt;"CLOSE PROPERTY"

EMD

CREATING AND REA 11NG BACK SEQUENTIAL DATA FILES 93

(a) What is the purpose-of the blank PRINT D$ statement in line 400?

(b) The apove program has one small but important "bug." Find and describe the
error.

(a) To turn OFF. the WRITE operation so you can resume data entry·
(b) The program never executes the file closing routine at line 530; the CLOSE

statement is needed to assure flushing the last data items frorri the buffer to
the file.

The problem of how to indicate to the program when to close the file is part
of replanning. The program should include a way for the user to' indicate to the
computer that the user is don.e with the program for now, or that all data have been
entered. Either of the two procedures shown below could be included in the previous
program for this p~rpose. The choice is yours.

Z95 PRINT "TYPE 'STOP' JF NO MORE DATA·. OTHERllISE,"

315 JF Tt "' "STOP" THEN 530

or

405 INPUT "IS THERE MORE DATA TO ENTER CY OR N>?";Rt
40.8 IF LEFTS CR •• l> < > "Y" AND LEFTS !Rt,l> C > "N" THEN PRIJfT

.. HINT "PLEASE.TYPE 'Y' FOR YES OR 'N' FOR NO": PRINT : COTO 405
407 IF LEFTS CRl,l) ,. "H" THEN 530

Now enter and RUN the program, creating a sequential data file named
PROPERTY, which you will use later. This procedure works for terminating a pro
gram and closing files which contain discrete datasets, as have been described in the
inventory program. But what about a variable length dataset - one with' no prede
fined field lengths, such as a data file of recipes or a file of letters? How do you
indicate to the program when one recipe or letter ends and another begins? And then,

94 APPLE BASIC: DATA FILE PROGRAMMING

how· can the computer "sense" the end ofsuch data when inputting or reading back
from the recorded data file?

One popular procedure is to place a flag or "dummy" character at the end of
each dataset as a separator. The dummy character could be any character that would
never be part of or found in the data. An asterisk (*) is often used as. a dummy sepa
rator. Here is one way to insert such markers into the data file.

3U INPUT "JS THIS THE END OF ONE DATASET?";JU
323 REM Y OR N DATA TEST COES HERE
324 JF LEFTt CRt,l> • "Y" THEN PRlNT Dt;"lolJUTE FILENAME": PRINT"•":

PRINT Dt: COTO 410

A word of advice! When you write file programs (or any program for that
matter) prepare some written documentation for yourself and other users. At least
some description of the file layout is needed. Without.written documentation, even
you may have trouble seeing how the program works six months from now. A good
procedure is to include such information in REM statements in the program itself as
part of the introductory module.

(a) Why'is it important to inform the computer that all data to be included in the
data file have been entered?

(a) so that a CLOSE statement can be executed to flush an unfilled buffer

And a word of extreme caution: When you WRITE to a file after an OPEN
statement, you destroy any previous data that may be in that file! If you reuse a file,
and place data into it from the beginning, you destroy the previous information that
was placed in the file - but not completely. What happens is that some of the new
data overwrite the old data (old data are erased and new data are recorded on the
same disk space), but some of the old data may still be in the file! That means that
when you use the file, you may have some of the new data you want and some old
data you thought were destroyed. There is a way out of this mess. Follow these
steps when you first initialize your file and you can be sure you have completely
destroyed all previous data. Remember though, reuse only data files in which the old
data are no longer of use.

140 PRINT Df; "OPEN FILENAME"
150 PRINT Df;"DELETE FILENAME"
180 PRINT Df; "OPEN FILENAME"

You must first OPEN the file before you DELETE it. This is done because the
DELETE instruction first looks for a data file with the specified file name. If there is
no file by that name, the DELETE statement will cause an error message and your

CREATING AND READING BACK SEQUENTIAL DATA FILES 95

program will stop altogether. Yau can see that using the first OPEN statement prevents
the potential error condition. The moral of this lesson is think twice before you begin to
WRITE to a file. Make sure the file is either new or deleted before you start to write new
data into it; otherwise, you may end up with a file that contains a lot of "garbage."

Now you create a data file using the inventory program shown above. The data file
should include several datasets and a procedure to inform the computer that all data have
been entered, so that the file can be properly closed. Do NOT include a routine that
places a dummy separator between datasets. The file you create will be used in another
program later in this chapter.

READING DATA FROM A FILE

Now that you can output data from the computer to the data file, let's examine how to
input or read data back into the computer's memory from an existing disk file. To do
this, the most important thing to know is how the data were placed in the file in the first
place; that is, what order and format a dataset has in the file. After that, reading from a
file is simple and straightforward, with none of the complications that can accompany
writing to a file.

To read from a file, first OPEN the file as you did for the PRINT to file operation.
You then use a PRINT D$ statement to begin the READ operation. Any INPUT state·
ments that follow the READ statement will input data to the computer from the file.
The READ operation is terminated by a blank PRINT D$ statement, as before.

JZD PRINT J>t; "OPEN FILENAME"
l3D PRINT Dt;"READ FILENAME"
ltD INPUT At,B,Ct
150 PRINT Dt

Notice the use of commas to separate the variables in line 140 above.

It is important that the variables in the INPUT statements be the correct variable
· type (string or numeric) to match the data that appear next in the file. If the INPUT

statement "looks" for numeric data in the file to assign to a numeric variable (B), and
the next flle data item is alphanumeric, then your program may terminate in an error
condition or, perhaps worse, it will continue with bad data. If the INPUT statement
looks for string data and the next file item is numeric, the number will be accepted and
assigned to the string variable.

Is that good or bad? While the problem of having an open file and the program
stopping in an error condition is avoided and the new problem of having invalid data
takes its place - and after all that error checking at data entry time to place accurate
data into the file in the first placetf To avoid such hassels, be sure you know how the
data \\'ere initially placed into the file, whether numeric or string data; and if strings, how
long. Your documentation should show the format of your dataset, at least in the section
of the program showing the variables used./

Returning to the simple inventory file named PROPERTY described earlier in the
chapter, recall that the alphanumeric description (T$), followed by number of units (N),
followed by value (V) were placed in the file in that order. The variable names T$, N,

96 · APPLE BASIC: DATA FILE PROGRAMMING

and V were used in the program when the data were printed to the file. The variable
names themselves are separate from the data items. Therefore, you can use any appro
priate string or numeric variable name in the INPUT statement when data are read
from the file, as long as they match the variable type in the file, nmperic or string.

(a) Which of the following statements is appropriate to input data from the inven-
tory data file named PROPERTY?

1) 270 INPUT A,B,C
2) 270 INPUT A$,8,C
3) 270 INPUT 01$,0,D'

(a) Statements 2 and 3 are both acceptable.

Below is the companion program to the property inventory file program, to read the
PROPERTY file and print a simple screen report with the data. Enter and RUN the
program. Make sure the disk containing the datafile called PROPERTY is in the disk
drive.

100
llD
120
13D
lfO
15D
180
l7D
180
190
zoo
ZlD
zzo
Z3D
Z40
ZSD
280
Z70
ZSD
zao
30D
310
32D
330
340
350
380
370
380
390
40D
410
420

REM READ DATA FROM PROPERTY FILE

REM VAR JABLES USED
REM ThDESCRlPTlON
REM N11NUMBER OF ITEMS.
REM VaDOLLAR VALUE
REM Dt "'· CONTROL D

REM FILES USED
REM SEQUENTIAL FILE NAME: PROPERTY
REM DATASET FORMAT:Tt,N,V

REJJ INITIALIZE

LET Dt • CHR$ ·<4>
PRINT DS;"OPEN PROPERTY"

REM

PRINT
PJUNT

PRINT HEADINGS

PRINT "DESCRIPTION"; TAB< ZZ>;"OUANTITY"; TAB! 33>;"VALUE":

REM FILE READ ROUTINE/PRINT REPORT

PRINT Dt;"READ PROPERTY"
INPUT TS,N,V
PRINT Dt
PRINT TS, TAB!' ZZ>;N; TAB! ~3>;V
COTO 33D'

REM CLOSE FILE ROUTINE

PRINT Dt;"CLOSE PROPERTY"
END

/

CREATING AND READING BACK SEQUENTIAit DATA FILES 97

llUJ'f
QUANTITY VALllE DE.SCJIJPTJOH

FILES z 49
COMPUTEJIS l 4500
CLASSES Z4 5
DISKS 15 ~· 4. 25

(a) What is the line number of the statement that begins the READ operation?

(b) What is the line number of the statement that terminates the READ operation?

(c) What is the purpose of line 360?

(a) line 330
(b) line 350
(c) Displays the report on the. screen

This RUN terminated in ari error condition with the message END OF DATA.
This was an aborted end to the program execution. What if you wanted to do more
with the data and did not want the program to terininate when the end of the data
file was reached? A technique exists that allows the program to read to the end of
the file without the program stopping at that point. To understand the technique, yo_u
must know how the data file "pointer" works. What follows is not an exact explana
tion of how the APPLE works, but it serves to explain how to detect the end of the
file. The procedures used do, indeed, work on the APPLE.

Just as with regular READ and DATA statements in BASIC, the ,data file uses a
pointer to point "to" the next data item available in the buffer holdmg data from the
disk file .. When a file is opened, the pointer is positioned automatically at the begin
ning of the file and points to the first data item. Each execution of a file INPUT
statement or a file PRINT statement pushes that pointer forward as many places as
there are variables in the statement-variable list.

lD PJUHT AS moves the pointer one position, to the place whe.re the second data
item may be recorded.

· u IHPUT H,Ht moves the pointer past data items 1 and 2 to item 3. The pointer
is always looking at the position of the next ·available data ietm.

3D IHPUT V,J, Y ,z moves the pointer four places, so the next data item read by an
INPUT statement will be the fifth data item

98 APPLE BASIC: DATA FILE PROGRAMMING

When your program uses a PRINT statement to add data to a file, each PRINT
statement moves the pointer and an end-of-file marker ahead one position. When all

· data have been· entered, the end-of-file marker is located just past the last data item.
The end-of-file marker is automatically put in place by the computer.

When you INPUT data from the file, the file pointer is always looking at the next
data item available in the file (or in the buffer, to be more exact). An attempt to
INPUT the end-of-file marker or anything beyond the last item of data results in an
error condition that can be detected using the~ statement. The end-of-file
error number is number five (5). Here are the statements needed to detect the end-of
file condition.

220 ONEBR COTO 300
230 PRINT DS;"READ FILENAME"
240 INPUT AS ,B

300 IF PEEX 1222> • 5 THEN PRINT DS;"CLOSE": COTO 800

Line 220 sets the error condition test. Notice that we placed it before the READ
operation, since it does not have to be set more than once. One execution of line 220
sets the error condition trap, which continues in effect until the program stops execu
tion or until another ONERR statement is executed during the program RUN. Line
300 tests to be sure that the error detected is the end-of-file condition. If it is, the
file is closed.

You can modify the previous program so that it does not terminate with an END
OF-DAT A error condition. Make these changes to your program.

325 ONERJI GOTO 410

..;""410 IF PEEX 1222> • 5 THEN 430
420 PR INT "UNUSUAL FI LE ERROR. PROGRAM TERMINATED. ''
430 PRINT Dt;"CLOSE PROPERTY"
440 END

An alternative modification would be as follows:

410 IF PEEX 1222> a 5 THEN PRINT Dt;"CLOSE PROPERTY"; COTO 440

With either "fix," the file will be properly closed.

Areminder: This is NOT a precise description of how the end-of-file mark works on
the APPLE. However, while the explanation has been simplified, the procedures
described to detect the end of a file do work correctly on your APPLE.

· (a) In the program to read and display PROPERTY, with the end-of-data error trap
included, under what conditions is line 420 executed?

CREA.TING AND READING BACK SEQUENTIAL DATA FILES 99

(a) If the error detected by ONERR is not the out-of-data error

PERMANENTLY REMOVING FILES FROM· DISKS

Situations will arise when you want to erase a data file from a disk. It may be a
temporary file such as those created for demonstration programs in this book or a file
that is of no further use to you for other reasons. Use the DELETE command. Using
this command deletes the file named after the command from the disk, destroying the
file's contents and deleting all reference to the file from the disk file directory.
DELETE is a system command that is entered and executed like RUN or LIST.
DELETE can also be used in an executable statement in APPLESOFT BASIC, but we
discourage this use except, ·perhaps, for very temporary files. Here is the form:

DELETE FILENAME

Use the file destroying command very carefully, as the action is irreversible. Once the
file has been deleted, there is no going back. Accidentally destroying the wrong file,
especially if you have not made a backup copy, can mean that you wasted hours or
days entering data into a file. Think carefully before using DELETE.

Be sure you understand the difference between DELETE and CLOSE. CLOSE
merely disassociates a buffer from the file it was assigned to and flushes the buffer
contents onto the disk if you are outputting data. After a CLOSE statement, the
data file is still recorded on the disk. DELETE eliminates the file entirely from the
disk, as well as all reference to it in the file directory.

We have used the word "copy" to describe how the INPUT statement works
when data are transferred from the disk data file into the computer's memory. Copy
implies that the data in the file do not change when they are input irito the part of
the computer's electronic memory designated as the buffer. The data in the file are
unaffected and unchanged and remain in the file for another use. The only way to
change data in a data file is with a WRITE and PRINT statement.

You can fill a file with data and read from the same file in the same program.
But you must always CLOSE a file after outputting or recording information into it
before you can reopen the file for input or copying data back into the computer
memory. You must OPEN to output, then CLOSE and OPEN to read back the data.
This procedure resets the file pointer to the beginning of the file.

100 APPLE BASIC: DATA FILE PROGRAMMING

The following program illustrates the procedure to open and close the files at
the appropriate times. Quality assurance data are entered from a manufacturing pro
cess into a file. The program will read the QA values from the file and accumulate
the number of responses in each category (1 through 6) in an array, and then print
the results. The program is self-documented by REM statements.

RUN
QUALITY CONTROL MEASUREMENTS:
ACCUMULATED R'ESULTS

QA HUMBER

l
2
3 • 5'
8

QUANTITY

8
5
z
10
9
z

,)

lDD
llD
lZD
130
HD
lSD
180
170
180
llD
ZDD
UD
ZZD
UD
HD
ZSD
ZID
Z7D
ZID
ZID
3DD
310
no
330
HD
350
310
370
380
380
400
410
UD
410
440
450
480
470
480
480
SOD
SlD .

. UD
S3D
S4D
SSD
SID
570
SID
SID
BOD
llD
IZD
830
840
BSD
BID
170
BID
BID
700
710
720
730
740
750
780
770
780
780
8DD
llD
IZD
830
840
850

, CR.EATING AND READING BACK SEQUENTIAL DATA.FILES 101

FILE INPUT/OUTPUT DEMO HEJi

HEJi
REJI
REJI

.PRQGRAJI TO ENTER OUALITJ CONTROL RESULTS
INTO FILE. PREPARE SIMPLE· REPORT

REJI
REJI
HEJi

·== REJI

HEJi
HEJi
REJI

REJI

FROM FILE

VARIABLES USED
Fl • FILE
N a DUALITY ASSURANCE MEASURE
V a DUALITY ASSURANCE MEASURE
CC> • COUNTING ARRAY
DI • CONTROL D

FILES USED
SEQUENTIAL FILE NAME CUSER ENTERED>: DUALITY CONTROL
DATASET FORJIAT:N <EACH DATASET IS ACTUALLY ONE NUMERIC VALUE>

.INITIALIZE

LET DI • CHIS. CO

INPUT "ENTER FILE NAJIE:";FS
PRINT Dl;"OPEN"FI

REJI DATA ENTRY ROUTINE

PRINT: PRINT "ENTER INTEGER NUMBERS 1-8-0NU"
PRINT "ENTER 'll'·WHEN DONE ENTERING DATA.": PRINT
INPUT "OA NUJllER:";J'C
IF N a· U THEN SlD
IF N C l OR N > 8 THEN PRINT "PLEASE ENTER 1-8 ONLY": GOTO 380

HEJi WRITE-TO-FILE ROUTINE

PRINT Dl;"WRITE"FS
PRINT N
PRINT DI
GOTO 38D

REJI CLOSE FILE

PRINT i>t;"CLOSE"FS

REJI ' OPEN FILE TO READ

PRINT Dt;"OPEN"FI

REJI READ FILE AND·ACCUJIULATE IN ARRAY

ONERR GOTO 870
PRINT Dli"READ"FI
INPUT V
LET CCV> • C<V> + 1
GOTO llD

REJI ERROR TEST

IF PEEi CZZZ> • 5 THEN 730
PRINT "UNUSUAL ERROR. STOP PROGRAM"
STOP

:REJI PRINT REPORT FROM ARRAY

POKE ZlB, 0
HOME
PRINT : PRINT "DUALITY CONTROL MEASUREMENTS:"
PRINT "ACCUMULATED RESULTS": PRINT
PRINT "OA NUJllER","OUANTITY": PRINT
FOR V " l TO 8 .
PRINT V,CCV>
NEJT V

REM CLOSE FILE

PRINT DS; "CLOSE"FS
END

102 APPLE BASIC: DATA FILE PROGRAMMING .

Refer to the program on p~ 101 to answer the following questions:

(a) Through which statement does the computer obtain the name of the data file?

(b} · Which statement checks the parameters for the quality control numbers?

(c) How does the computer know that all data have been entered? -----,---

(d) Why are two CLOSE 'Statements used in the same program?

(e) What does line 590 do? ------------------

(f) In line 620, how many different values can V have?------~---

(a) line 310
(b) line 400
(c) user enters 99 as input value
(d) the data file must be closed after output and after input
(e) sets trap for end-of-data error
(f) six (1 to 6)

Help us write another program that first creates a data file called TEST, and
then displays the contents of that data file. Complete lines 280, 320, 410, 470, 550,
590, 630, 670, 710, and 750. (Read the REMs and comments.)

100
110
lZO
130
140
150
180
170
180
lBD
ZOO
ZlO
zzo
Z30
UO
Z50
ZIO
Z70
Z80
ZBD
300
310
3ZO
330
340
350
380
370
380
390
400
410
4ZD
430
440
450
480
470
480
490
50D
510
520
530
54D
550
58D
57D
580
590
BDO
810
620
830
&4D
850
880
670
880
890
700
710
7ZO
730
740
750
780
770
780
790
800
810
BZO
830
840

CREA, TING AND READING BACK SEQUENTIAL DATA FILES 103

REM DATAFILE DEMONSTRATION

REM VARIABLES USED
REM AS = OUTPUT VARIABLE
REM BS " INPUT VARIABLE
REM DS • CONTROL D
REM J = FOR NEJT LOOP CONTROL VARIABLE

REM FILE USED
REM SEQUENTIAL FILE NAME: TEST
REM DATASET FORMAT: AS !DATASET IS ONE STRING DATA ITEM>

REM INITI~LIZE

LET DS c CHRt 14>

REM OPEN THE FILE

REM START WRITE OPERATION

REM USING A FOR-NEJT LOOP, PLACE 8 STRINGS INTO A DATA FILE

FOR J " l TO 8
LET AS = "TEST" + STRS <J>

REM PRINT TO THE FILE

NEJT J

REM CLOSE THE FILE

REM A PRINT STATEMENT TO TELL US ALL IS WELL, SO FAR

PRINT "FILE WRITTEN AND CLOSED"

REM REOPEN THE FILE

REM SET END-OF-DATA ERROR TRAP

REM START THE READ OPERATION

REM INPUT DATA ITEM

.REM TERMINATE READ OPERATION

REM PRINT TO THE SCREEN

COTO 830

REM CLOSE FILE

IF PEEX !ZZZ> = 5 THEN BZO
PRINT: PRINT "UNUSUAL ERROR. PROGRAM TERMINATED.": PRINT
PRINT DS;"CLOSE TEST"
PRINT "FILE CLOSED."
END

'·

104 APPLE BASIC: DATA FiLE PROGRAMMING

(a) ZBO PJUHT Dt; "OPEN TEST"
(b) 320 · PRJHT DS;"VRITE TEST"
(c) 410 PJUHT A.S
(d) 470 PRIHT DS;"CLOSE TEST"
.(e) 550 . PRIHT Dt; "OPEN TEST"
(f) 590 ONE RR GOTO 800
(g) 830 PRIHT DS;"READ TEST"
(h) 870 INPUT IS

(i) 710 PRINT Dt
G) 750 PRINT IS

(a) Now show everything that will be printed or displayed when this program is
.RUN.

(a) JRUH
FILE WRITTEN AND CLOSED
TES Tl
TESTZ
TEST3
TESTt
TIST5
TESTS
TEST7
TESTS
FILE CLOSED

CREATING AND READING BACK SEQUENTIAL DATA FILES 105

One unique feature of file programs is that sometimes nothing appears to be hap- .
pening when the program is RUN. There may be no printed report or any CRT dis
play other than RUN and READY. To the novice, this seeming lack of activity may
be alarming. Be forewarned.

(a) Which statements in the previous program help assure the user that "invisible"

data file activity has taken place?

(a) lines 290 and 450

A final word about the blank PRINT D$ statement that we have used to temn
nate the READ or WRITE operation: If you follow our examples and procedures in
your own programming, everything should work in your file-related programming.
However, when you start to deviate from our procedures, you can run into some real
problems.

We have been repeatedly warned by other people that there are times when the
blank PRINT D$ statement will not work. On investigation (it never happened to us),
we discovered that file PRINT statements must always end with a carriage return. If
your most recent PRINT to file statement ends with a com.ma or semicolon, then a.
Mank PRINT D$ statement will not terminate the WRITE operation. As a matter of
fact, it will place the code for a Control D in your file and your file will end up· filled
with garbage.

UO PJUNT Df; "WRITE FILENAME"
280 PRINT U,
270 PRINT Df

Line 270 does NOT tum off the WRITE operation because of the comma at the end
of line 260.

If you ignore our file programming procedures, which never use a PRINT to file
statement that ends with a comma or semicolon, you must use the ASCII code signal
for a carriage return, which is CHR$(13); before a READ or WRITE operation can be
terminated. The procedure is to first PRINT CHR$(13), to force a carriage return,
and then to PRINT D$. This forces a carriage return into your file. Some program
mers do the following:

340 PRINT CHRf (13> + CHRS <t>

CHR$(13) puts in the carriage return. CHR$(4) turns off the READ or WRITE condi
tion.

Now you are probably saying, "l'Ujust always use the CHR$(13) + CHR$(4)
technique. That will solve the problem forever." Not so! If you always print a

106 APPLE BASIC: DATA FILE PROGRAMMING

carriage return before the blank PRINT D$, you will be placing an "extra" carriage
return in your file. This could· ruin your future file reading because of the dataset
format problem {the extra carriage return here and there looks like a distinct data
item to the comp:uter) and would certainly foul the operation of the end-of-file check
that you use. The easiest way to resolve this problem is to make sure your program
is nice and "clean." ·

CHAPTER 4 SELF-TEST

The problems in this self-test require you to write programs to store data in data files
and then to write companion programs to display the data in those data files. All
data files th~t you create in this self-test will be used in Chapter 5, so don't skip this
section. The introductory module is given so your solutions will look something like
the solution provided. Save the programs and files for later use, modification, and
reference. Try your solutions (and debugging the programs) before looking at the
solutions provided. Believe me, our "first draft" programs had to be debugged, too!
Good luck and keep on hackin'. ·

1 a. Write a program to fill a data file with the information and format specified
below: ·

Four data items per dataset.
First two data items are strings.
Second two data items are numeric values entered as strings.
Include data entry checks for null strings.
For the numeric values assigned to strings, include data entry tests to see

that only numeric values were entered. Then convert these strings to
numeric values assigned to numeric variables before storing them in the
data file. ·

Place at least three datasets in the data file. Name this file CUST.

100 RE" SOLUTION TO CH4 SELFTEST PROB lA
110
uo RE" VARIABLE LIST
130 REM Al, Bl • ALPHA DATA
140 RE" "l,M, Nl,N aNU"ERIC DATA
150 RE" DI • CONTROL D
lBD RE" Rt m USER RESPONSE
l 7D
l8D RE" FILE USED
lBD REM SEQUENTIAL FILE NAME: CUST
zoo JIE" DATASET FOR"AT: Al,Bl,",N

CREATING AND READING BACK SEQUENTIAL DATA FILES 107

,.

108 APPLE BASIC: DATA FILE PROGRAMMING

1 b. Write a companion program to display the contents of the data file named CUST
that you created in 1 a.

2 a. Write a program to make a data file called GROCERY that stores your grocery
shopping list. Include the description or name of each grocery item (maximum
of twenty characters) and a numeric value telling the quantity of that item to
buy. Store at least six datasets in the file.

CREATING AND READING BACK SEQUENTIAL DATA FILES 109

108 . JIE~
111 ;

IOLUTIOH Cfft IELFTEIT PROB Zl

UI REJI VARIABLES USED
UI REM Nt • ITEM DESCRIPTION
HD REM Q • QUANTITY TO ORDER
15D RIM Dt • CONTROL D
llD REM Rt • USER RESPONSE
l7D RIM Ft • USER ENTERID FILE NAME
llD :
llD REM FILES USED
ZDD REM SEQUENTIAL FILE NAME:· GROCERY !USER ENTERED>
UD REM DATASET FORMAT: Nt,Q

110 APPLE BASIC: l)ATA FILE PROGRAMMING

2 b. Write a companion program to display the contents of GROCERY.

JRVN
INTER HUii OF FILE:GROCERY

. ITIM

Bl.ANS
1111AD
JULI
IVTTIR

FILI CLOSED

QIJAHTITY

ID
3
II
3

CREATING AND READING BACK SEQUENTIAL DATA FILES 111

3 a. Write a program to enter the following data in a data file for a customer credit
file maintained by a small business. Each dataset consists of three items:
1. five-digit customer·number (must have exactly five digits)
2. customer name (twenty characters maximum)
3. customer credit rating (a single digit number 1, 2, 3, 4, or 5)
Include data entry checks for null entries and for the parameters set forth in the.
list above. Enter at least three datasets in the 'data file. Remember, the customer
numbers must be different for each customer and should be in ascending order,
i.e., each larger than-the previous one, such as 19652, 19653, 19654, etc. Name
this file CREDIT.

lDD REM SOLUTION CH4 SELFTEST PROB 3A
llD REM CRE~IT FILE LOADER
UD
l3D REM Y AR UBLES USED
140 REM Ft • FILE HAME
150 REM Cf • CUSTOMER 1- <5 CHAR.>
180 REM Hf• CUST. HAME <ZD CHAR.MAI.>
170 REM -Rf AHD R • CREDIT RATIHC 11 CHAR>
180 REM Df D CONTROL D
llD REM Of • USER RESPONSE
ZDD
ZlD REM FILES USED
UD REM SEOUENTUL FILE HAJfE: CREDIT !USER ENTERED>
230 REM DATASET FORMAT: Cl,HS,R
240

112 APPLE BASIC: DATA FILE PROGRAMMING

CREATING AND READING BACK SEQUENTIAL DATA FILES 113

114 APPLE BASIC: DATA FILE PROGRAMMING

3 b. Write a companion program to display the contents of the file named CREDIT.
Our RUN looks like· this.

ENTER FILE NAME:TRANSACTION-l
lD78Z
l
57

18102
I
8.U

43811
l
4.34

43'911
I
58. 85

43811
I
88. 5

8DU3
l
450

987DZ
I
43.45

ALL DATA DISPLAYED AND FILE CLOSED

CREATING AND READING BACK SEQUENTIAL DATA FIL~ 115

4 a. Write a program to enter data into a transaction data file. A trans~ction file is
the data on a business transaction, such as that of a bank, a retail store, or a
mail-order business. For our example, each transaction produces a dataset with
three items, as shown below: ·

Account number = five characters
Transaction code = two characters (for a bank, 1 = check, 2 = deposit, etc.)
Cash amount = seven characters (9999 .99 maximum amount)

Include data entry checks for 'null entries and for the parameters set forth above.
Check cash amount entries for non-numeric characters, except the decimal point.
Your program should allow the user to select (input) a name for the data file.

Create two different data files with your program, with seven datasets
(seven transactions) in each data file. Name file #1, TRANSAC'.J'ION-1, and
name file #2, TRANSACTION-2. Use the account numbers given below for the
two files. For duplicate account numbers, make a complete dataset entry, so
that each of the two files contain seven datasets.

file #1 file #2

10762 10761
18102 18203
43611 43611
43611 80111
43§11 80772
80223. 80772
98702 89012

Note: Only the account numbers are shown here; the complete datasets also include
transaction codes and amounts.

llD
UD REM
130 REM
HD JIEM
lSD REM
llD JIEM
170 REM
180 JIEM
llD REM
ZDD

VAJIJABLES USED
Fl • USER ENTERED FILE NAME
Dll • DATASETS FJIOM FILE l,Z
Al• ACC'T.NUMBEJI CS CHAR.>
Tl• TRANSACTION CODE 11 CHAR.>
Ct• CASH AK'~ Cllll.11 OR 7 CHAR.MAI.>
I • FOJI NEl1 LOOP CONTJOL VAJIABLE
Dt • CONTJIOL D

ZlD JIEM FILES USED
ZZD JIEM SEQUENTIAL FILE NAMES: TJIANSACTION l, TJIANSACTION Z CUSIJI

SEtECTID AND ENTERED> '
Z3D JIEH DATASET FOJIMAT:.Al,Tl,CI
Z4D

116 APPLE BASIC: DATA FILE PROGRAMMING

CREATING AND READING BACK SEQUENTIAL DATA FILES 117

US. APPLE llASIC: DATA FILE PROGRAMMING

4 b. Write a companion program to display the contents of a data file with the above
dataset format. Agaiti, the file name should be user entered so that it can be
used to display the contents of TRANSACTION-I or TRANSACTION-2 ..

Our sample RUN:

JRVN ·
FI£E NAllE:TR.ANSACTIOH-Z

AJCI T-CODE

lD71l l
18ZD3 Z
~3811 z
IDlll l
ID77Z l
8D77Z l
89DlZ Z
FI£E PRINTED AND CLOSED

AMOUNT

33. 33
Zl
500
54. 58
51. &8
88.88.
t85.77

.I

CREATING AND READING BACK SEQUENTIAL DATA FILES 119

5 a. Write a program to load a data file named ADDRESS with (surprise!) names and
addresses. The data has the format shown below, with each dafaset containing
five items in fields with one string

55
/1 20/21 40/41 50/12/53 57/
~~~~~~~~~~~~~~~~~~ 

name address city state zip code 

Include appropriate data entry checks and field padding routines. Enter at least 
four addresses in the data file. · 

lDD REH SOLUTION CH4 SELFTEST PROB SA 
110 
12D BEH VARIABLES USED 
l3D BEH NS "' NAKE<ZD> 
140 REH AS a STREET ADDRESSCZD> 
150 BEK CS '" CITY< 10> 
180 REH St = STATECZ> 
170 REH U = Z1 P CODEC 5 > 
180 REH ES m CONCATENATED DATASETC57> 
190 REM DS '" CONTROL D 
ZOO REH Rt = USER RESPONSE 
ZlD 
ZZD . REM FILE USED 
230 BEK SEQUENTIAL FILE NAME: ADDRESS 
240 REH DATASET FORHAT:Ct CONE STRING> 



120. APPLE BASIC: DATA FILE PROGRAMMING 

5 b. Write a companion program to display the contents of ADDRESS. Here is our 
sample RUN. 

JJIUN 
JEJIAtD JI. IJIOWN 
13140. FRATI LANE 
HBUTOPOt 
CA 
IH?a 

JIEGGJE JACKSON 
11 BALLPARK JID 
EYEJIYWHEH 
us 
DD ODD 

JACK· SPJIAT 
l LEAN DRIVE 
SXJNNYVJtt 
EA 
DDDD3 

FILE CLOSED 



CREATING~ READING BACK SEQUENTIAL DATA FILES 121 

6 a. Write one program and use it to create three different data files called LETTER!, 
LETTER2, and LE'i'TER3. Each file should contain the text of a form letter with 
at least three lines of te:ir.t per letter. Each line of text in the letters is to be entered 
and stored as one dataset. 

100 HEM 
110 : 
lZO .REM 
130 REM 
14'0 .REM 
150 .REM 
180 .REM 
170 : 
180 .REM 
180 REM 
ZOO .REM 
210 

SOLUTION CHt SELFTEST P.ROJBA 

· YA.RUBLES USED 
Tt • TUT LINE 
Ft a FILE NAME 
Dt a CONTROL D 
.Rt a.USE.R .RESPONSE 

FILES USED 
SEO. FILE NAME: LETTE.RI 
Cl, IS USE.R SELECTED & ENTERED> 



122. APPLE BASIC: DATA FILE PROGRAMMING 

6 b. Write a companion program to display the data files above selected by the user. 
Our sample RUN: 

JRUN 
ENTER FORM LETTER NUMBER:l 
YOU ARE HEREBY INFORMED THAT ALL ELECTRI.CAL SERVICE TO YOUR AREA VJLL BE 
DJSCOHTINUED AS or JAN. l . WE HOPE TH IS \n LL NOT JNCONVEN JENCE YOU. 
FILE CLOSED I 



1 a. 

100 
110 
uo 
l3D 
HD 
lSD 
llD 
l7D 
18D 
190 
ZDD 
21D 
uo 
UD 
HO 
ZSD 
ZBD 
no 
ZID 
HO 
JDD 
3lD 
no 
33D 
HO 

350 

380 
37D 
380 

38D 

HO 
41D 
no 
43D 
HD 
UD 
410 
47D 
HO 

. UD 
SDD 
510 
520 
530 
54D 
550 

CREATING AND READING BACK SEQUENTIAL DATA FILES 123 

Answer Key 

REM SOLUTION TO CH4 SELFTEST PROB lA 

REM VARIABLE LIST 
REM AS, It ~ ALPHA DATA 
REM Mt,M, Nt.,N •NUMERIC DATA 
REM Dt • CONTROL D 
REM Rt • USER RESPONSE 

REM FI LE USED 
REM SEQUENTIAL FILE NAME: CUST 
REM DATASET FORMAT: At,Bt.,M.N 

REM INITIALIZE 

LET Dt • CHRS C4> 
PRINT Dt;"OPEN CUST" 

REM DATA ENTRY ROUTINE 

INPUT "ENTER DATA ITEM:";At 
IF LEN CAt> • D THEN. PRINT "PLEASE ENTER SOMETHING": COTO ZID 
INPUT "ENTER DATA ITEM Z:";Bt 
IF LEN Cit> • D THEN PRINT "LEASE ENTER SOME DATA": COTO 310 
INPUT "ENTER NUMERIC DATA:";Mt 
IF UH CMt> • D THEN PRINT : PRINT "PLEASE ENTER SOMETHING": PRINT 
COTO 330 

· IF VAL CMt >- • D THEN PRINT : PRINT "PLEASE ENTER NUMBERS ONLY": 
PRINT : COTO 330 
LET M • VAL CMt> 
INPUT "ENTER NUMERIC ITEM Z: 0 ;Nt 
IF LEN CNS> • D THEN PRINT : PRINT "PLEASE ENTER SOMETHING": PRINT 
COTO 370 
IF VAL CHU • D THEN PRINT : PRINT "PLEASE ENTER NUMBERS ONLY": 
PRINT : COTO 370 . 
LIT N • VAL CHS> 

REM VRITE TO FILE 

PRINT Dt;"VRITE CUST" 
PRINT At: PRINT It: PRINT M: PRINT N 
PRINT DI 
INPUT "MORE DATA?";Rt 
IF i.EFTt CRt,l> C > uyu AND LEFTt CRt,l> C > "N" THEN PRINT 
PRINT "TYPE 'Y' F.OR YES OR 'N' FOR NO.": .PRINT: COTO 470 
tJ•· Rt • "Y'; THEN ZID . 

REM CLOSE FILE 

PRINT Dt;"CLOSE CUST" 
PRINT "FILE CLOSED" 
END 



'124 APPLE BASIC: DATA FILE PROGRAMMING 

1 b. 

JDD 
HD 
JZD 
13D 
J4D 
UD 
llD 
l7D 
18D 
JID 
2DD 
UD 
UO 
Z3D 
24.D 
UD 
UD 
Z7D 
ZBD 
UD 
3DD 
31D 
3ZD 
330 
340 
350 
310 
37D 
380 
39D 
400 
410 

REM SOLUTIOH TO CH4 SELFTEST PROB JB 

REM VARIABLES USED 
REM At,BS • ALPHA DATA 
REM M,N • NUMERIC DATA 
REM DS "' CONTROL D 

REM FILE USED 
REM SEQUENTIAL FILE NAME: CUST 
REM DATASET FORMAT:AS,BS,M,N 

REM INITIALIZE 

LET DS a CHRt (4) 
PRINT Dt;"OPEN CUST" 

REM INPUT DATA FROM FILE & DISPLAY· 

ONERR COTO 37 D 
PRINT Dt;"READ CUST" 
INPUT At ,BS ,M,N 
PRINT Dt 
PRINT AS: PRINT IS: PRINT M: PRINT N: PRINT 
COTO 290 

REM CLOSE FILE 

IF PEEK <ZZZ> • 5 THEN 390 
PRINT: PRINT "UNUSUAL ERROR. PROGRAM TERMINATED.": PRINT 
PRINT DS;"CLOSE CUST" 
PRINT "ALL DATA DISPLAYED' AND ULE CLOSED" 
END 



2 a. 

100 
110 
uo 
l3D 
HD 
lSD 
llD 
l7D 
180 
lBD 
ZDD 
uo 
UD 
UD 
Z4D 
ZSD 
210 
no 
HD 
ZID 
3DD 
310 
3U 
330 
HD 
3SD 
380 
310 

380 

HD 
4DD 
410 
4ZD 
430 

HD 
4SD 
HD 
470 
HD 
OD 
SOD 
510 
SZD 
S3D 
S4D 
S5D 
SID 
S7D 

CREATING AND READING BACK SEQUENTIAL DATA FILES 125 

REM SOLUTION CH4 SELFTEST PROB ZA 

JIEM YAJIUBLES USED 
JIEM Nt • ITEM DESCRIPTION 
JIEM Q D QUANTITY TO ORDER 
REH Dt D CONTROL D ' 
REM Jlt • USEJI RESPONSE 
REH Ft • USER ENTERED FILE NAME 

JIEM Fii.ES USED 
JIEM SEQUENTIAL FILE NAME: CJIOCEJIY CUSEJI ENTEJIED> 
REM DATASET FORMAT: Nt,Q 

JIEM JNJTJALJ ZATJ ON 

LET Dt • CHJlt <4> 
INPUT "ENTER NAME OF FILE:";Ft 
PJIJNT Dt; 11 0PEN"Ft 
PRINT Dt; 11 DELET£•Ft 
PJIJNT Dt;"OPEN"Ft 

REM DATA ENTJIY ROUTINE 

HOME 
PJIINT "ENTEJI 'STOP' VHEN ALL DATA JS ENTERED.": PRINT 
INPUT "ENTER ITEM DESCRJPTJON:";Nt 
IF Nt a "STOP" THEN SSD 
IF LEK <NS> • D THEN PJIJNT : PJIINT "PLEASE ENTER A DESCJIIPTION OJI 
'STOP' II : PJI INT :_ COTO 35 0 
IF LEN <NS> > ZD THEN PJIJNT : PJIJNT "SHORTEN DESCRIPTION TO ZD 
CHAJIS. AND REENTEJI": PRINT : COTO 351 
INPUT "ENTEJI QUANTITY: II ;O 
IF Q > • 1 ANQ Q < lD THEN 480 
PJIJNT "YOU ENTEJIED A QUANTITY OF ";0 
INPUT "JS THAT VHAT YOU VANTED?";Rt 
IF LEFTS <Jlt,U < > "Y" AND LEFTS <Rt,l> < > "N" THEN PRINT 
PRINT "TYPE 'Y' FOR YES OR 'N' FOR NO": PRINT : COTO 410 
IF LEFT• <Jlt,l> • "N11 THEN 390 

REM WRITE TO FILE ROUTINE 

PRINT Dt; "WRITE" Ft 
PRINT Nt: PRINT Q 
PRINT Dt 
COTO 330 

REM CLOSE FILE 

PJIJNT Dt;"CLOSE"Ft 
PRINT 11 FJLE CLOSED" 
END 



126 APPLE BASIC: DATA FILE PROGRAMMING 

2 b. 

JOO 
llO 
JZO 
130 
l40 
150 
180 
l70 
JBO 
190 
ioo 
UO 
ZZO 
230 
HO 
250 
uo 
Z70 
Z80 
UD 
300 
310 
3ZO 
330 
340 
350 
380 
370 
380 
310 
uo 
UD 
no 
430 
44D 

JIEM · SOLUTION CH4 SELFTEST PJIOB ZB 

JIEM VAJIIA.LES USED 
REH NS m ITEK DESCRIPTION 
JIEM Q = QUANTITY TO OJIDEJI 
REM Dt m CONTJIOL D 
JIEK Ft • USEJI ENTEJIED FILE NAME 

JIEK FILES USED 
JIEM SEQUENTIAL FILE NAME: CJIOCEJIY <USER ENTEJIED> 
JIEH DATASET FOJIKAT: NS,O 

REH INlTIALIZATION 

L&T Dt ., CJfRS < 4 > 
INPUT "ENTER NAME OF FILE:";FS 
PRINT Dt; "OPEN"Ft . 

REM JIEAD AND PRINT FILE 

PRINT : PRINT "ITEM", "QUANTITY": PJIINT 
ONERR COTO 400 
PJIINT Dt; "JIEAD"Ft 
INPUT NS,O 
PRINT Dt 
PJIINT Nt,O 
COTO 3ZO 

JIEH CLOSE FILE 

IF PEEX <ZZZ> • 5 THEN 4ZD 
PRINT : PRINT "UNUSUAL EJIROJI. PJIOCRAH TEJIHINATED": 'PRINT : . COTO 4ZO 
PRINT Dt;"CLOSE"FS 
PRINT : PRINT "FILE CLOSED" 
END 



3 a. 
100 
110 
ao 
130 
140 
UD 
180 
170 
180 
190 
zoo 
UD 
UD 
230 
UD 
Z5D 
ZIO 

:~= 
ZID 
300 
310 
320 
330 
HD· 
35D 
31D 
37D 
38D 
38D 

4DD 

4lD 

4ZD 
43D 
44D 
45D 

480 
470 
48D 

490 

5DD 
51D 
520 
53D 
540 
550 
58D 
57D 
58D 
590 
BOD 
810 
BZD 

83D 
84D 
85D 
880 
87D 
880 
89D 

CREATING AND READING BACK SEQUENTIAL DATA FILES 127 

REM SOLUTION CH4 SELFTEST PROB 3A 
REM CREDIT FILE LOADER 

I 

REM VARIABLES USED 
REM Ft • FILE NAME 
REM Ct• CUSTOMER I (5 CHAR.> 
REM Ht• CUST. NAME <ZD CHAR.MAI.> 
REM Rt AND R • CREDIT RATING Cl CHAR> 
REM Dt • CONTROL D 
REM Qt. .. USER RESPONSE 

REM FILES USED 
REM SEQUENTIAL FILE NAME: CREDIT <USER ENTERED> 
REM DATASET FORMAT: Ct,Nt,R 

REK INITIALIZE 

LET Dt • CHRf <4> 
HOME 
INPUT "ENTER FILE NAME:";Ff 
PRINT Df; "OPEN"Ft 
PRINT Df; "DELETE"Ft 
PRINT Dt; "OPEN"Ft 

REM DATA ENTRY ROUTINE 

PBINT "ENTER 'STOP' WHEN FINISHED ENTERING DATA.": PBINT 
INPUT "ENTER CUSTOMER NUMBER:";Ct 
IF Ct • "STOP" THEN 17D 
IF LEN <Ct> a D THEN PRINT : PRINT "ENTER NUMBERS OR TYPE 'STOP'": 
PRINT : COTO 370 
It UN (Cf> < > 5 THEN PBINT : PRINT "ENTRY ERROR. NUMBER HAS 5 
DI CITS.": PRINT : COTO 37D 
IF VAL <Ct> • D THEN PRINT : PBINT "ENTRY ERROR. NUMBERS ONLY, 
PLEASE. " : PR INT : COTO 29 D 

PRINT : INPUT "ENTER CUSTOMER NAME:" ;Hf 
IF LEN <Ht> a 'D THEN PRINT "PLEASE ENTER A NAME, NOW.": COTO 430 
IF LEN (Hf> > ZD ·THEN PRINT "PLEASE LIMIT NAME TO ZD CHARS AND 
REENTER. ": COTO 43 D 

PRINT: INPUT "CREDIT RATINC:";Rt 
IF LEN (Rf> ( > l THEN PBINT "ONLY A ONE DICIT NUMBER. IS 
ACCEPTABLE.": COTO 470 
IF VAL !Rt> < 1 OR VAL <Rf> > 5 THEN PRINT "NUMBERS 1-5 ONLY, 
PLEASE. II: COTO 470 
LET R • VAL !Rt> 

REM PRINT TO FILE 

PRINT Dt; "WRITE"Ft 
PRINT Ct: PRINT Ht: PRINT R 
PRINT Dt 

REM MORE DATA ROUTINE 

HOME . 
INPUT "DO YOU HAVE MORE DATA TO ENTERV";Qt 
IF LEFTf (Qt,l> < > "Y" AND LEFTS (Qf,1> < > "N" THEN PRINT 
PRINT "ENTER 'Y' FOR YES OR '.N' FOR NO": PRINT: COTO 810 
U' LEFTt !Ot,l> ,. "Y" THEN 380 

REM CLOSE FILE 

PRINT Dt; "CLOSE"Ft 
PRINT "JOB COMPLETED" 
END 



128 APPLE BASIC: DATA FILE PROGRAMMING 

3 b, 
lDD 
llD 
UD 
139 
140 
150 
180 
170 
180 
190 
ZDD 
UD 
no 
Z3D 
UD 
UD 
ZID 
Z7D 
Z8D 
290 
3DD 
31D 
320 
330 
340 
350 
310 
37D 
380 
39D 
ODD 
41D 
UD 
430 
040 
050 
080 

REH· SOLUTION CHO SELFTEST PROB 31 
REH CREDIT FILE DISPLAY 

REH VARIABLES USED 
REM Ft • USER ENTERED FILE NAHE 
REH Ct • CUST. I 
REH Nt a CUST. NAME 
REH R a CREDIT RATING 

.REH Dt • CONTROL D 

REM 'FILES USED 
REM SEQUENTIAL FILE NAME: CREDIT !USER ENTERED> 
REH DATASET FORMAT: Ct,Nt,R 

REM INITIALIZE 

LET Dt • CHIS (4) 
HOME 
INPUT "ENTEi FILE NAHE:";Ft 
PRINT Dt;"OPEN"Ft 

REH READ/PRINT FILE 

ONEii COTO UO 
PRI'NT Dt;"READ"Ft 
INPUT Ct,Nt,I. 
PRINT Dt 
PRINT Ct: PRINT NS: PRINT I: PRINT 
COTO 340 

REH CLOSE FILE 

IF PEEX 1222> a s THEN 440 
PRINT : PRINT "UNUSUAL ERROR. PROGRAM TERMINATED": PRINT 
PRINT Dt; "CLOSE" Ff .1 • 

PRINT " ALL DATA DISPLAYED AND FILE CLOSED" 
END 



4a. 

100 
110 
lZO 
130 
140 
150 

. 180 
170 
180 
190 
ZOO 
ZlO 
UO 

Z30 
Z40 
250 
280 
Z70 
Z80 
ZIO 
300 
310 
3ZO 
330 
340 
350 
380 
310 
380 
310 
400 

410 
4ZO 
430 

440 
450 
480 

470 
480 

490 

500 
510 
5ZO 
530 
540 
550 
580 
570 
580 
580 
800 
810 
BZO 
830 
840 

CREATING AND READING BACK SEQUENTIAL DATA FILES 129 

REH SOLUTION CH4 SELFTEST PROB 4A 

REH VARIABLES USED 
REH FS " USER ENTERED FILE NAME 
REH DlS •DATASETS· FROM FILE l,Z 
REH At a ACC'T NUMBER <5 CHAR.> 
REH Tl "TRANSACTION CODE Cl CHAR.> 
REH CS" CASH AH'T <9898.99 OR 7 CHAR.HAI.> 
REH I = FOR NEXT LOOP CONTROL VARIABLE 
REH· DS a CONTROL D 

REH FILES USED 
REM SEQUENTIAL FILE NAMES: TRANSACTION l, TRANSACTION Z CUSER 
SELECTED AND ENTERED> 
REM DATASET FORJilAT: AS,TS,CI 

REH INITtALIZATION 

LET DI a CHRI <4> 
INPUT "ENTER FILE NAME:-" ;FH 
PRINT DS;"OPEN"Fll 
PRINT DS;"DELETE"FlS 
PRINT DI; "OPEN"F H 

REM DATA ENTRY/TESTS 

HOME 
PRINT "ENTER -1 TO END DATA ENTRY" 
PRINT : INPUT," ENTER ACCOUNT NUMBER <5 DIGITS>: ";U 
IF Al a "-1" THEN 620 
IF. VAL <U> "0 THEN .PRINT "PLEASE MAJCE AN ENTRY.": GOTO 370 
IF LEN <AS> C > 5 THEN PRINT "YOU ENTERED ";U;" PLEASE REENTER.": 
GOTO 370 
INPUT "ENTER TRANSACTION CODECl DICIT>:";TS 
IF VAL CTt> "0 THEN PRINT "PLEASE MAKE AN ENTRY.": GOTO 410 
IF LEN CTI> C > l THEN PRINT "YOU ENTERED ";TS;" PLEASE REENTER.": 
GOTO 410 
INPUT "ENTER THE AMOUNT:";Ct 
IF VAL CCS> = 0 THEN PRINT "PLEASE MAKE AN ENTRY.": COTO 440 
IF VAL CCI> > 9898.98 THEN PRINT : PRINT "MAXIMUM AMOUNT IS 9898.99. 
PLEASE, REENTER.": PRINT : GOTO 440 
FOR I a l TO LEN <Ct> 
IF ASC < MIDS CCS,X,l>> > a 48 AND ASC < MIDS !Ct,X,l>> ( " 57 OR 
ASC < MIDI !CS,X,l>> = 48 THEN 500 . . 
PRINT "INVALID ENTRY. ONLY NUMBERS AND DECIMAL POINTS ALLOWED.": GOTO 
440 
NEXT X 

REM PRINT TO FILE 

PRINT DS; "WRITE" Flt 
PRINT AS: PRINT TS: PRINT CS 
PRINT DS 
HOME 
COTO 360 

REH CLOSE FILE 

. PRINT DS;"CLOSE"FH 
PRINT "FILE CLOSED" 
END 



130 APPLE BASIC: DATA FILE PROGRAMMING 

4 b. 

IDO 
110 
120 
130 
HO 
150 
180 
17D 
180 
190 
zoo 
uo 
UD 
:uo 
HO 
ZSD 
ZID 
270 
ZBD 
ZID 
3DO 
UD 
UD 
330· 
340 
350 
38D 
37D 
38D 
380 
4DD 
41D 
4ZD 
430 
HD 
45D 
48D 
·470 

REK SOLUTION CH4 SE~FTEST P.ROB 4B 

REK VARIABLES USED 
REM Ft • USER ENTERED FILE NAME140 
REK At • ACCOUNT NUMBER 
REK Tt a TRANSACTION CODE 
REK Ct • CASH AMOUNT 
REK I • FOR HEIT LOOP CONTROL VARIABLE 
REK Dt s CONTROL D ' 

REM · FILES USED 
REK .SEO.FILE NAMES: TRANSACTION-1, TRANSACTION-I <USER SELECTED 
AND ENTERED> -
REM DATASET FORMAT:At,Tt,CS 

REM INITIALIZATION 

LET Dt • CHRt 14) 
INPUT "FI LE NAME:"; Ft 
PRINT Dt; "OPEN"Ft 
HOME 

REK READ/DISPLAY 
I 

PRINT ;. PRINT "A/Cl", "T-CODE", "AMOUNT": PRINT 
ONERR GOTO 430 
PRINT Dt; "READ"Ft 
INPUT At,TS,Ct 
PRINT Dt ·· 
PRINT At, TS, CS 
GOTO 350 

REK CLOSE FILE 

IF PEEX IZZZ> • 5 THEN 450 
PRINT: PRINT "UNUSUAL ERROR. PROGRAM TERMINATED.": PRINT 
PRINT Dt; "CLO.SE"Ft 
PRINT "FILE PRINTED AND CLOSED" 
END 



5 a. 

100 
110 
120 
130 
140 
lSO 
180 
170 
18D 
190 
ZDO 
ZlO 
ZZD 
230 
240 
2SD 
ZBO 
270 
ZBO 
290 
300 
310 
320 
330 
340 
350 
380 
370 
380 
380 
400 
410 
uo 
430 
440 

450 
480 
470 
48D 
UD 
SOD 
510 
S20 
530 
540 
550 
580 

570 
58D 
SID 
BOD 
110 
BZO 
830 

CREATING AND READING BACK SEQUENTIAL DATA FILES 131 

~EM SOLUTION CH4 SELFTEST PROB 5A 

REM VARIABLES USED 
REM - NS " NAME<ZO> 
REM AS = STREET ADDRESSC20> 
REH Ct • CITYClD> 
REM SS = STATEC2> 
REH ZS a ZIP CODECS> 
REH ES a CONCATENATED DATASETC57> 
REH DS m CONTROL D 
REM RS s USER RESPONSE 

REM FI LE USE'D 
REH SEQUENTIAL FILE NAME: ADDRESS 
REM DATASET FORMAT: CS CONE STRING> 

REM INITIALIZE 

LET Dt " CHRS <4> 
PRINT DS;"OPEN ADDRESS" 
HOME 

REM DATA ENTRY 

INPUT "ENTER NAME:";NS 
IF LEN CNS> < ZO THEN LET NS a NS + 

INPUT "ENTER ADDRESS:";.U 
IF LEN <AS> < 20 THEN LET AS a AS + 

INPUT "ENTER CITY NAME:";CS 
IF LEN <Ct>.< 10 THEN LET CS " CS + 

INPUT "ENTER STATE CODE:";SS 

GOTO 350 

GOTO 380 

COTO 410 

IF LEN <SS> < > Z THEN PRINT "PLEASE ENTER AZ CHAR CODE.": GOTO 
430 

INPUT "ENTER ZIP CODE:";ZS 
IF LEN <ZS> < > 5 THEN PRINT "PLEASE ENTER 5-DICIT CODE.": GOTO 460 

LET ES • NS + AS + CS + SS + z• 
PRINT DS; "WRITE A.DDRESS" 
PRINT ES 
PRINT DS 

INPUT "MORE ENTRJES?";RS 
IF LEFTS CRS,l> < > "Y" AND .LEFTS <RS,l> < > "N" THEN PRINT 
PRINT "ENTER 'Y'_FOR YES OR ''N' FOR NO": PRINT : GOTO 550 
IF LEFTS <IU,l> " 11 Y0 TH£N HOME: GOTO 340 

REM CLOSE FILE 

PRINT Dt;"CLOSE ADDRESS" 
PRINT "FILE CLOSED" 
END 



132 APPLE BASIC: DATA FILEJ>ROGRAMMING 

. s b. 

100 
110 
UO 
130 
140 
150 
180 
170 
180 
190 
zoo 
210 
no 
230 
Z40 
uo 
ZBD 
no 
zso 
290 
300 
310 
320 
330 
340 
350 
380 
370 
380 
390 
UO . 
410 
4ZO 
430 
440 

6 a. 

.REM SOLUTION CH4 SELFTEST P.ROB SB 

.REM VA.RUBLES USED 

.REM Et " CONCATENATED DATASET 

.REM Dt "' CONT.ROL D 

.REM FILE USED 
JIEM SEO. FILE NAME: ADD.RESS 
REM DATASET FO.RMAT: Et <ONE ST.RING> 

.REM INITIALIZE 

LET Dt • CH.Rt <4> 
PRINT Dt;"OPEN ADDRESS" 
HOME 

.REM .READ FILE/PRINT 

ONE.R.R GOTO UO 
PRINT Dt;"READ ADDRESS" 
INPUT Et 
P.RINT DI 
PRINT LEFTS <Et,ZO> 
PRINT MIDS <ES,21,ZO> 
P.RINT HIDt <Et,41,10> 
PRINT HIDt tEt,51,Z> 
P.RINT .RIGHTt <Et,S> 
PRINT 
GOTO 290 

.REM CLOSE FILES 

P.RINT Dt;"CLOSE ADD.RESS" 
PRINT "FILE CLOSED"· 
END 

100 .REH SOLUTION CH SELFTEST P.RDBBA 
110 : 
lZO .REM VA.RIABLES USED 
130 REH TS = TEJT LINE 
140 REM Ft = FILE NAME 
150 · REH Dt " CONTROL D 
180 .REH .Rt a USE.R .RESPONSE 
170 : 
180 .REM FILES USED 
190 REH SEO. FILE NAME: LETTERI 
200 .REM Cl IS USE.R SELECTED & ENTE.RED> 
210 : 
ZZO REM INITIALIZE 
no : 
240 . LET Dt • CH.Rt <4> 
ZSD INPUT "ENTER LETTER FILE NUHBER:";Ft 
U.O LET Ft • "LETTE.R" + Ft 
270 PRINT Dt;"OPEN"FS 
280 : 
290 .REM DATA ENT.RY 
300 : 
310 HOME 
320 P.RINT "ENTE.R TEJT LINE. USE QUOTES AT BEGINNING AND END" 
330. INPUT "TEXT LINE: ";TS 
340: 
350 PRINT Dt; "W.RITE"Ft 
380 PRINT CH.Rt C34);: P.RINTTt;: P.RINT CH.Rt C34> 
370 PRINT Dt 
380 INPUT "HORE .ENT.RIE..B:";.RS 
390 IF LEFTS <.RS,1> < > "Y" AND LEFTS !.RS,l> < > "N" THEN PRINT 

PRINT "ENTE.R' 'Y' FOR YES AND 'N' FOR NO": PRINT :310 
400 It LEFT-. !Rt,l) D "Y" THEN 310 
410 : 
4ZO .REH CLOSE FILE 
430 : 
440 P.RINT DS; "CLOSE"Ft 
450 PRINT "FILE CLOSED" 
480 END 



6b. 

100 
110 
120 
130 
140 
150 
180 
170 
180 
190 
200 
210 
220 
230 
240 
250 
280 
270 
280 
290 
300 
310 
320 
330 
340 
350 
360 
370 
380 
390 
400 
410 
420 
430 
440 
450 
410 

CREATING AND READING BACK SEQUENTIAL DATA FILES 133 

REM SOLUTION CH4 SELFTEST PROB BB 

REM VARIABLES USED 
REM TS = TEXT LINE 
REM FS m FILE NAME 
REM DS = CONTROL D 
REM Rt c USER RESPONSE 

REM FILES USED 
REM SEQ. FILE NAME: LETTERI 
REM <WHERE I JS USER SELECTED & ENTERED> 
REM DATASET FORMAT:TS <ONE STRING.> 

REM INITIALIZE 

LET DS = CHRt <4> 
INPUT "ENTER FORM LETTER NUMBER:";FS 
LET Ft ., "LETTER" + Ft 
PRINT Dt;"OPEN"FS 

REM READ FILE 

HOME 
ONERR COTO 420. 
PRINT DS;"READ"FS 
INPUT TS 
PRINT DS 
PRINT TS 
COTO 340 

REM CLOSE FILE 

IF PEEK <222> • 5 THEN 440 
PRINT : PRINT "UNUSUAL ERROR.· PROCRAH TERMINATED.": ·PRINT 
PJU?q Dt; "CLOSE"FS 
PRINT "FILE CLOSED" 
END 



CHAPTER FIVE 

Sequential Data File 
Utility Programs 

Objectives: When you finish this chapter you will be able to: 

· 1. Write a program to add data to an existing sequential file. 
2. Write a program to make a copy of a sequential data file. 
3. Write a program to change the data in an existing sequential file. 
4. Write a program to examine the contents in a sequential file and to change, 

add, or delete data. 
5. Write a program to merge the contents of two sequential files into one file, 

maintaining the numeric or alphabetic order of the data. 
6. Write a program that uses or combines selected data from more than one 

sequential file. 

Now_ that you understand the BASIC statements to create and use sequential data 
files, let's build on this with more advanced techniques, including writing some file 
utility programs that help in your overall programming using data files. You will also 
develop embryonic file applications to practice what you have learned and provide a 
basis from which to develop personally useful programs. Most of the data files u!led 
in this chapter are created with programs you should have written for the Chapter 4 
Self-Test, so if yo.u skipped that, go back and write those programs before starting 
this chapter. 

ADDING DATA TO THE END OF A SEQUENTIAL FILE 

Unlike other versions of BASIC, it is quite easy to add data to the end of an existing 
APPLESOFT sequential ftle. To accomplish this you must APPEND your file rather 
than OPEN it. When you OPEN a file, the ftle pointer is moved to the first position 
in that file so that all subsequent file WRITE operations take place from the beginning 
of the file (recall the problem that arises when you attempt to overwrite an existing 
file). When you APPEND to an existing file, however, the file pointer is moved to 
the end of the file data, so that subsequent file WRITE operations take place st,arting 
after the last piece of existing data, and new data are added or appended beyond the 
previous end of the file. The file WRITE procedure is the same as the one used when 

134 



SEQUENTIAL DATA FILE UTIUTY PROGRAMS 135 

the file was OPENed. The ftle APPEND statement looks 'like the other file operation 
statements: 

100 PRINT Dt;"APPEND FILENAME" 

The only "hitch" we have found with the ftle APPEND operation is that you 
can only APPEND to an existing file. If you attempt an APPEND operation to a file 
not previously OPENed, the error· condition - FILE NOT FOUND - will abort your 
program. To get around this problem (there's always a way), we will use this pro
cedure: 

ZOO PRINT DS; "OPEN FILENAME" 
ZlO PRINT Dt; "CLOSE FILENAME" 
ZZO PRINT Dt;"APPEND FILENAME" 

Let's try an easy application. Assume you are using your personal computer to 
prepare a grocery list for your periodic trips to the grocery store (see problem 2 of the 
Chapter 4 Self-Test). Or better yet, in this modern electronic age, your list can be 
telecommunicated to the store of your choice and the gobds will be ready for your 
pickup, with no shopping needed! In any event, every few days. you think of new 
items to be added to the list to be entered into your APPLE and added to the file. 
Each dataset consists of one twenty-character string for the item description and one 
numeric value for the quantity of the item needed. With one program, you can enter 
the fust items into the file and subsequent items as you think of them. 

Here is the introductory module: 

100 REM 
110 
lZD REM 
130 REM 
UO REM 
150 REM 
180 REM 
170 REM 
180 
190 REM 
ZOO REM 
ZlO REM 
ZZO 

APPEND DATA TO EXISTING FILE 

VARIABLES USED 
NS • ITEK DESCRIPTION-
0 • QUANTITY TO ORDER 
Dt a CONTROL D 
Rt a U'SER RESPONSE 
Ft a USER ENTERED FILE NAME 

FILES USED 
SEQUENTIAL FILE NAME: GROCERY CUSER ENTERED> 
DATASET FORMAT• NS,O 

(a) To complete the next program segment, fill in 270, 280, and 290. 

ZZD 
Z30 
Z40 
Z50 
ZBD 
270 
UD 
UD 
300 

REM INITIALIZE 

LET Dt a CHRt Cf> 
'INPUT "ENTER FILE NAKE:";FS 

._ - - ..... - - - - - - - - - - -



. 136 APPLE BAsIC: DATA FILE PROGRAMMING 

(a) no 
UD 
zn 
UD 
ZID 
170 
ZID 
ZID 
300 

REM INITIXLIZE 

LET Df • CHRf Ct> 
INPUT "ENTER Fl'LE NAMl:";Ft 
PRINT Df; "OPEN"Ft 
PRINT Dt; "CLOSE"Ft 
PRINT Df;"APPEND"Ft 

Here is the data entry routine with five blank lines for you to fill in. Use these 
clues: 

Lirte 370 - test for stop entry. 
line 380 - test for null entry. 
J.,ine 390 - test for maximum entry length. 
line 420 - test for minimum entry of 1 and maximum entry of 10. 
line 460 - test for user response of N or NO and branch accordingly. · 

(a) 

(a) 

300 
310 
3ZD 
330 
HD 
350 
380 
370 
380 
390 
HD 
tlD 
uo 
uo 
HD. 
no 
HD 
no 

300 
UD 
3ZD 
330 
HD 
350 
310 
370 
380 

380 

too 
UD 
UD 
UD 
HD 
no 
HD 
no 

REM DATA ENTRY ROUTINE 

HOME 
PRINT "TYPE 'STOP·' WHEN ALL ITEMS ARE ENTERED." 
PRINT 
JNP.UT "ENTER ITEM DESCRJPTJON:";Nt 

INPUT "ENTER OUANTJTY:";O 

PRINT "YOU ENTERED A QUANTITY OF:";Q 
INPUT "JS THAT WHAT YOU WANTED?";Rt 
IF LEFTS CRt,l> ( > "N" AND LEFTS CRt,l> ( > "Y" THEN PRINT 
CHJlt C7>; "PLEASE TYPE 'Y' FOR YES OR 'N' FOR NO. u: PRINT : GOTO UD 

REM DATA ENTRY ROUTINE 

HOME 
PRINT "TYPE 'STOP' WHEN ALL ITEMS ARE ENTERED." 
PRINT 
INPUT "ENTER ITEM DESCRIPTION:" ;NI 
IF Nt = "STOP" THEN 570 
IF LEN CNt> • D THEN PRINT : PRINT "PLEASE ENTER A DESCRIPTION. OR 
'STOP'": PRINT : GOTO 31D . 
IF LEN CNH > ZD THEN. PRINT : PRINT "PLEASE LIMIT DESCRIPTION TO U 
CHARS.MAJ.": PRINT.: GOTO 310 

INPUT "ENTER OUANTJTY:";O 
IF a ) .. 1 AND a ( • lD THEN 500 
PRINT "YOU ENTERED A QUANTITY OF:";O 
INPUT "JS THAT WHAT YOU WANTED?";Rt 
IF LEFTS CRt,l> ( > "R" AND LEFTt CRt,l> ( > "Y" THEN PRINT CHRt 
C7>;"PLEASE TYPE 'Y' FOR YES OR 'N' FOR NO.": PRINT: GOTO t3D 
J F LEFTt CRt, l> " "N" THEN U D 



SEQUENTIAL DATA FILE UTILITY PROGRAMS 137 

The file WRITE routine should be familiar since it is the same procedure you 
used in the last chapter. Fill in lines 500, 510, and 520. 

(a) 

(a) 

no 
tlO 
410 
500 
510 
no 
530 
540 
550 
580 
570 
580 
590 

no 
tlO 
410 
500 
510 
520 
530 
540 
550 
580 
570 
580 
590 

REii WRITE TO FILE ROUTINE 

COTO 330 

REii CLOSE FILE 

PRINT DS; "CLOSE"Ff 
PRINT: PRINT "NEW DATA APPENDED AND.FILE 
END 

REii WRITE TO FILE ROUTINE 

PRINT Df; "WRiTE"Ff 
PRINT NS: PRINT Q -
PRINT Dt 
COTO 330 

REii CLOSE FILE 

PRINT Dt;"CLOSE"Ft 

CLOSED." 

PRINT: PRINT "NEW DATA APPENDED AND FILE CLOSED." 
END 

Following is a complete listing.of the program you have developed: 



138 APPLE BASIC: DATA FILE PROGRAMMING 

lDD 
110 
ao 
130 

. 14D 
150 
lBD 
170 
180 
180 
ZDD 
uo 
uo 
Z3D 
240 

REM 

REH 
REM 
REM 
REM 
REM 
REM 

REM 
REM 
REH 

REH 

APPEND DATA TO EXISTING FILE 

VARIABLES USED 
Nt • ITEM DESCRIPTION 
Q • QUANTITY TD ORDER 
DS II CONTROL D 
RS = USER RESPONSE 
FS " USER ENTERED FILE NAME 

FILES USED . 
SEQUENTIAL FILE NAME: GROCERY CUSER ENTERED) 
DATASET FORMAT• NS,Q 

INITIALIZE 

250 LET DS m CHRS C4l 
ZIO INPUT "ENTER FILE NAME:"; Ft 
Z7D PRINT DS;"OPEN"Ft 
ZIO PRINT DS; 1'CLOSE"FS 
ZBD PRINT DS; "APPEND" Ft 
300 : . 
31D REM DATA ENTRY ROUTINE 
3ZD : 
33D HOME 
34D · PRINT "TYPE 'STOP' WHEN ALL ITEMS ARE ENTERED." 
350 PRINT 
38D INPUT "ENTER ITEM DESCRIPTION:" ;NS 
37D IF NS • "STOP" THEN 5-70 
HD IF LEN .CNS> = 0 THEN PRINT : PRINT "PLEASE ENTER A DESCRIPTION OR_ 

'STOP'"; PRINT : GOTO 310 . 
390 IF LEN (NS> > ZD THEN PRINT : PRINT "PLEASE LIMIT DESCRIPTION TO ZD 

CHARS.HU.": PRINT : GOTO 380 
400 : 
410 INPUT "ENTER QUANTITY:";Q 
4ZO I.F Q > " l AND Q <· • JO THEN 5DO 
430 PBINT "YOU ENTERED A QUANTITY OF:";Q 
440 INPUT "IS THAT WHAT YOU WANTED?";RS 
45D IF LEFTS CRS,l> C > "N" AND LEFTS CRS,l> C > uyu THEN PRINT 

C7l;"PLEASE TYPE 'Y' FOR YES OR 'N' FOR NO.": PRINT: GOTO 430 
410 IF LEFTS CRS,l) = "N" THEN 41D. 
470 
48D 
480 
5DD 
51D 
5ZD 
530 
HD 
55D 
510 
570 
580 
596 

REM WRITE TO FILE ROUTINE 

PRINT Df;"WRITE"Ft 
PRINT NS; PRINT Q 
PRINT DS 
GOTO 33D 

REM CLOSE FILE 

PRINT DS;"CLOSE"FS 
PRINT: PRINT "HEW DATA APPENDED AND FILE CLOSED." 
END 

(a) Write the corresponding program line number(s) for each step listed below. 

1. Open the file for the APPEND operation. 

2. Enter and test the next dataset. 

3. Write the dataset to the file. 

4. Close the file. 

5. What must the user enter to cause the close operation to take place? 

CHRS 



SEQUENTIAL DATA FILE UTILITY PROGRAMS 139 

(a) 1. 290 
2. 310-460 
3. 480-530 
4. 570 
5. STOP 

Now enter and RUN the program-appending data to the file named GROCERY. 
Use the program to read GROCERY (Chapter 4 Self-Test, problei:n 2a) to verify the 
success of the APPEND procedure. 

You can use another procedure to add data io the end of the sequential data file 
or to make changes in the contents of a file. (We'll show you how to do that later.) 
The success of this procedure depends on how much data the file contains and the 
amount of available memory in your computer. The procedure uses arrays. Follow 
these steps: , 

1. OPEN the file 
2. READ the file contents into one or more arrays. 
3. Add to the array or change the items in the array. 
4. CLOSE the file, DELETE the file. 
5. OPEN the file. 
6. WRITE the current array contents to the file. 

, 7. CLOSE the file. 

Use this procedure only if the file is rather small and the datasets are easy to 
manage (for example, when the data are all packed into one string variable). If these 
two circumstances are present, you are not likely to encounter errors. However, when 
files are large or data are placed into more than one array or into a two-dimensional 
array, then the probability increases that data will get lost or "forgotten," resulting 
in errors. 

You will see this procedure used in program listings ;for computers other than 
the APPLE. For the APPLE, we recommend the APPEND procedure as illustrated in 
the grocery list program. It' is clean and neat! 

MAKING A FILE COPY 

A very useful file utility program is one that makes a duplicate copy of your data file. 
Your APPLE system master disk is equipped with such a program. This allows you to 
make back-up copies of data files or copy a file from one disk to another. In this 
section, however, we will show you how to write such a program in BASIC. A file 
copy utility program in BASIC not only allows you to make back-up copies of data 
files, it can also be incorporated into later programs to change data in existing data 
files. 

You now have the background to write a file copying program. Follow these 
steps: 

1. OPEN the source or original file. (Use the file named CUST created in the 
Chapter 4 Self-Test.) 



140 APPLE BASIC: DATA FILE PROGRAMMING 

2. OPEN the file that will become the copy. (Name this file CUST COPY.) 
3. Test the source file for end-of-data using ONERR. 
4. READ the first dataset. 
5. Terminate the READ operation. 
6. WRITE to the copy file. 
7. Terminate the WRITE operation. 
8. Return to step 3 above. 
9. CLOSE both files. 

Assume that you are going to copy a file that contains an unknown number of 
datasets, with each dataset containing two twenty-five~character strings and two · 
numeric variables. Use the file named CUST created in the Chapter 4 Self-Test. 
Here is the introductory module and the initialization section. Fill in the blanks in 
lines 260, 290, and 320 to complete steps 1 and 2 of the outline. 

(a) 

(a) 

lOO REM· .UTILITY PROGRAM TO COPY FILES 
110 : 
lZO· REM 
130 REM 
HO REM. 
150 REM 
lSO REM 
170 REM 
l80 

VARIABLES USED 
At, Bt •. STIUNC VARIABLES 
A,B • NUMERIC VARIABLES 
DI " CONTROL D 
rs = USER ENTERED SOURCE FILE NAME 

FlS = USER ENTERED COPY FILE NAME 

l90 REM 
ZOO REM 
210 REM 
ZZO JIEM 
230 

FILES USED 
.SEQUENTIAL SOURCE FILE NAME: CUST CUSER ENTERED> 
SEO. COPY FILE NAME: CUST COPY CUSER ENTERED> 

DATA.SET FORMAT:AS,BS,A,B 

240 JIEM 
250 

INITIALIZATION 

280 
270 INPUT "ENTER SOURCE FILE NAME:";Ft 
280 INPUT "ENTER COPY FILE NAME:";FH 
280 
300 PRINT Dt; "OPEN"F lS 
310 PRINT DS; "DELETE"FU 
320 
330 

lOO 
110 
lZO 
130 
HO 
150 
l&O 
170 
l80 
l90 
ZOO 
210 
zzo 
230 
240 
250 
280 
270 
280 
290 
300 
310 
320 
330 

REM UTILITY PROCHAK TO COPY FILES 

REM VARIABLES USED 
REM AS, BS " STRING VARIABLES 
REM A,B "' NUMERIC VARIABLES 
REM DS = CONTROL D 
REM rs .. USER ENTERED .SOURCE FILE NAME 
REM FlS = USER ENTERED COPY FILE NAME 

REM FILES USED 
REM .SEQUENTIAL .SOURCE FILE NAME: CU.ST <USER ENTERED> 
REM SEQ. COPY FILE NAME: CUST COPY !USER ENTERED> 
REM DATASET FORKAT:AS,BS,A,B 

REM INITIALIZATION 

LET DS " CHRS Ct) 
INPUT "ENTER SOURCE FILE NAME:";FS 
INPUT "ENTER 'COPY FI LE HAKE: " ;·Fl S 
PRINT DS;"OPEN"Ft 
PRINT Dl;"OPEN"FlS 
PRINT Dl;"DELETE"FH 
PRINT DI; "OPEH"FH 



SEQUENTIAL DATA FILE UTIUTY PROGRAMS 141 

The routine at lines 300, 310, and 320 is a good procedure to follow; always 
OPEN, then DELETE, a file to which you plan to WRITE, to avoid overprinting 
existing data (if any) and ending up with a possible mixture of new and old data in 
your file. The second OPEN statement at line 320 assures an empty OPEN file for 
the copy. 

Here is the program module to READ from the source file and WRITE to the 
copy file. Fill in the blanks in lines 370, 380, 430, and 440 to complete steps 3, 4, 
5, 6, 7, and 8 of the outline. 

(a) 

(a) 

340 REM READ FROM SOURCE FILE 
35D 
380 ONEJtR GOTO 500 
370 
380 
380 PRINT DS 
400 
410 REM WRITE TO COPY FILE 
420 
430 
440 
450 PRINT DS 
480 GOTO 370 
470 

340 RIJJ READ FROM SOURCE FILE 
350 
380 - ONERR GOTO 500 
370 PRINT DS;"READ"FS 
380 INPUT AS,BS,A,B 
390 PRINT DS 
400 
410 REM WRITE TO COPY FILE 
420 
430 
440 
450 
480 
470 

PRINT DS; "WRITE"F H 
PRINT AS: PRINT BS: PRINT A: PRINT B 
PRINT Dt 
GOTO 370 

And finally, the close file routine. Fill in the blank at line 490 to close both 
files with one CLOSE statement, completing step 9 of the outline. 

(a)-

(a) 

UO 
480 
5·00 

510 
520 

REM CLOSE FILES 

IF PEEX f 222> ( > 5 THEN PRINT 
TERMINATED.": PRINT: GOTO 510 

END 

-480 -REM CLOSE FILES 
480 
500 IF PEEX <ZZ2> ( > 5 THEN PRINT 

TERMINATED.": PRINT: GOTO 510 · 
510 PRINT Dt;"CLOSi" 
520 END 

PRINT "UNUSUAL ERROR PROGRAM 

PRINT "UNUSUAL ERROR PROGJ!AM 



142 APPLE BASIC: DATA FILE PROGRAMMING 

Here is a complete listing of the program you have just completed. 

UTILITY PROGRAM TQ COPY FILES 

VARIABLES USED 
AS, Bt 11 STRING VARIABLES 
A,B • NUMERIC VARIABLES 
Dt .. CONTROL D 

lDD 
llD 
lZD 
130 
HD 
150 
lBD 
170 
180 
llD 
ZDD 
ZlO 
ZZD 
Z3D 
Z4D 
ZSD 
ZID 
Z7D 
ZBD 
HO 
300 
31D 
UD 
3 3D 
HD 
350 
380 
37D 
380 
38D 
4DD 
410 
no 
UD 
440 
UD 
410 
no 
480 
490 
HD 

REM 

REM 
REM 
REM 
REM 
REM 
REM 

Ft 11 USER ENTERED SOURCE FILE NAME 
Flt • USER ENTERED COPY FILE NAME 

FILES USED REM 
REM 
REM 
REM 

SEQUENTIAL SOURCE FILE NAME: CUST <USER ENTERED> 
SEQ. COPY FILE NAME: CUST COPY <USER ENTERED>. 

DATASET FORMAT:U,Bt,A,B 

REM INITIALIZATION 

LET Dt II CHRt (4) 
INPUT "ENTER SOURCE FILE NAME:";FS. 
INPUT "ENTER COPY 'FI LE NAME: "; F H 
PRINT Dt; "OPEN"Ft 
PRINT Dt;"OPEN"FH 
PRINT Dt; "DELETE"FH 
PRINT Dt;"OPEN"Flt 

REM READ FROM SOURCE FILE 

ONERR COTO 5DD 
PRINT DS; "READ"Ft 
INPUT At ,BS ,A,B 
PRINT .Dt 

REM WRITE TO COPY FILE 

PRINT Dt; "WRITE" Flt 
PRINT At: PRINT Bt: PRINT A: PRINT B 
PRINT Dt 
COTO 37D 

REM CLOSE FILES 

IF PEEX <ZZZ> < > 5 THEN PRINT 
TERMINATED.": PRINT : COTO 51 D 

5.lD PRINT Dt; "CLOSE" 
5ZO END 

PRINT "UNUSUAL ERROR PROGRAM 

(a) When you RUN this program, what appears on the screen? 

(a) RUN 

ENTER SOURCE FILE NAME: 

ENTER .COPY FILE NAME: 

(CURSOR) 



SEQUENTIAL DATA FILE UTILITY PROGRAMS 143 

It can be unsettling to get no more than the above display from a program when 
so much internal activity is supposed to be taking place, The final flashing "cursor" 
is the only clue that your program completed its task. But you don't know for sure 
that it did. We have a suggestion. 

Add a statement at line SOS that prints a message indicating that the job is 
complete. For example, 

505 PRINT "COPY COMPLETED" 

A statement such as this lets you know that the program did execute past the error 
trap at line SOO. This will verify that at least that much was done. Then add line 51S 
PRINT "FILE CLOSED" to indicate to th~ user that· the program has executed past 
the CLOSE operation. 

The blank PRINT D$ in lines 390 and 450 were _placed there to terminate the 
operation in progress before starting a new operation. In this case, however, the 
termination procedure was not necessary, as a new PRINT D$ of any type terminates 
the previous file operation. That is, the WRITE statement in line 430 would have 
automatically terminated the READ from line 370. We left the blank PRINT D$ 
statements in our program for clarity to the reader, and encourage you to do the 
same. Though not always necessary, the blank PRINT D$ to terminate a file operation 
makes your program much more readable and avoids the question, "Is this the time 
CTRL D is needed or not?" 

You now have a complete file-copying utility program. You can use it to copy 
any sequential data file by simply changing the INPUT and PRINT statements to 
conform to the data format or datasets in the particular data file you want to copy. 
We encourage you to enter and RUN this program using the datafile named CUST with 
the corresponding dataset format that you created in the Chapter 4 Self-Test, problem 
la. 

After you have created CUST COPY, modify the program you wrote for the 
Chapter 4 Self-Test, problem lb,. to read and display the contents of CUST COPY. 
Modify lines 240, 290, and 390 in the solution we provided for Chapter 4 Self-Test, 
problem lb. 

(a) 240 

(a) 

290 

390 

240 PRINT DS; "OPEN CUST COPY" 
290 PRINT DS; "READ CUST COPY" 
390 PRINT DS; "CLOSE CUST COPY" 



144 APPLE BASI~: DATA FILE PROGRAMMING 

CHANGING DATA IN A FILE 

We implied earlier in this book that it is not easy to change data that are already 
located in a sequential data file, but it can be done. The procedure is straightforward: 
copy all unchanged data into a temporary file, make any changes by writing to the , 
temporary file, and then either copy the temporary file back into the original file or 
use the RENAME statement. A few tricks will be explained, as you are guided in 
writing this program. 

J.RUN 
ENTER FILE NAME:C.REDIT 
ENTER 'STOP' TO END DATA ENTRY. 

ENTER CUSTOMER •:12345 
PAUL ARMITICE CREDIT .RATINC: 4 
ENTER NEW CREDIT .RATINC:5 
RENAME COMPLETED 
DO .YOU HAVE MORE CREDIT .RATINC CHANCES?Y 
ENTER 'STOP' TO END DATA ENTRY. 

ENTER CUSTOMER •:12348 
MISS PICCY CREDIT RATINC: l 
ENTER NEW CREDIT .RATINC:2 
RENAME COMPLETED 
DO YOU HAVE MO.RE CREDIT RATINC CHANCES?NO 

PROCRAM COMPLETED AS REQUESTED. 

While the procedure outlined below is tailored to the particular dataset used in this 
example, the basic idea is easily adaptable to data files with different datasets. 

1. OPEN the customer credit file. Use the file named CREDIT created in the 
Chapter 4 Self-Test. 

2. OPEN a temporary file. Name this file TEMP. 
3. Enter the customer number for the client whose credit rating is to be 

changed. Include data-entry tests and a "no more searches" option. 
4. Check for end-of-data in credit file using ONERR. If end-of-data is found: 

a. display an error message indicating .an unsuccessful sea:rch. 
b. CLOSE both files. 
c. return to step 1. 

5. READ,a complete dataset. 
6. Test for wanted customer number. 
7. PRINT rejected datasets to temporacy file (those which are to be copied 

to the new file unchanged). 
8. Display data; ask user to enter changes, with data entry test for the changes. 
9. PRINT dataset with new data to temporary file. 

10. PRINT remainder of credit file datasets (those with no changes) to 
temporary file. 

11. CLOSE both files. 
12. Copy temporary file to CREDIT file, or use the RENAME operation to 

make the temporary file the new corrected credit file. 
13. Provide the user with the option of repeating the process. 

The program will be developed one segment at a time, with blanks for you to 
·fill in, as before. Below is the introductory module, which you should understand by 
now, followed by the first data entry routine with data entry checks. Read it over 



SEQUENTIAL DATA FILE UTILITY PROGRAMS 145 

carefully to get the flow of the program. The first three steps of the outline are 
completed in this module. 

100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
zoo 
uo 
no 
230 

· Z40 
250 
Z60 
270 
Z80 
290 
300 
310 
3ZO 
330 
340 
350 
360 
370 
380 
390 
400 

410 

4ZO 
430 

JIE'H CREDIT FILE CHANG.ER 

JIEM VARIABLES USED 
REH FS = FILE NAME 
JIEH CS = CUST. I 
REH ClS = CUST. I 
JIEM NS = NAME 
JIEH JIS = ENTRY VARIABLE 
REM Jl,Jll = CREDIT RATING VALUE 
REH DS = CONTROL D 

JIEH FILES USED 
JIEH SEO.FILE NAME: CREDIT CUSEJI ENTERED> 
REH TEMPORARY FILE NAME: TEMP 
JIEH DATSET FORMAT: CS,NS,JI 

JIEH INITIALIZE 

LET DS E CHJIS (4) 
HOME : INPUT "ENTER FI LE NAME: "; FS 
PRINT DS;"OPEN"FS 
PRINT Dt;"OPEN TEMP" 

JIEM DATA ENTRY ROUTINE 

HOME 
PRINT "ENTER 'STOP' TO END DATA ENTRY." 
PRINT 
INPUT "ENTER CUSTOMER l:";CS 
IF CS a "STOP" THEN 1070 
IF LEH <CS> • 0 THEN PRINT "ENTER CUSTOMER NUMBER OJI TYPE 'STOP"': 
GOTO 380 ' 
IF LEN CCS> C > 5 THEN PRINT "ENTRY EJIJIOJI. JIEENTEJI WITH 5 DIGITS.": 
COTO 380 
IF VAL !CS> E D THEN PJIINT "ENTRY EJIJIOJI. NUMBERS ONLY.": GOTO 380 

Now for the interesting part. The program must search through the data file for 
the customer number that the user entered. 

(a) When searching the data file for the customer number and encountering the end 
of the file without finding the customer, what should the program do? 

(b) Before another search is made for a customer number in the file, what must be 
done to the file? 



146 APPLE BASIC: DATA FILE PROGRAMMING 

(a) 

(b) 

(a) 

Print an error message indicating that the customer· was not in the file (see the 
sample RUN shown earlier). 
CLOSE and reOPEN th.e ftles to reset the file pointer to the beginning of the 
data ftles. (Very important!) · 

Fill in lines 470, 480, 490, 510, 520, and 530 below. These correspond to 
outline steps 5, 6, and 7. 

HD 
4SD 
HD 
no 
UD 
410 
500 
510 
UD 
530 
HD 
550 
580 
570 

.58.D 
590 
800 

HD 
4SD 
UD 
470 
UD 
410 
500 
510 
SZD 
530 
HD 
550 
510 
57D 
SID 
590 
800 

REM IJLE SEARCH ROUTINE 

ONEH COTO 550 

JI CS • CH THEN 830 

COTO 470 
PRINT -CHIS C7);•EBROR MESSAGE. VE CANNOT llND" 
PRINT acUSTOMER t ";CS;u ON THE FILE." 
PJIJNT ap£EASE CHECK YOUR NUMBER AND REENTER." 
PRINT DS;"CLOIE" 
COTO 300 

JEM FILE SEARCH ROUTINE 

ONERR COTO 55 D 
PRINT Dt;"READ"FS 
INP.UT CH ,NS ,R 
PRINT Dt 
IF CS • ClS THEN 830 
PRINT DS;"VRITE TEMP" . 
PRINT ClS: PRINT NS: PRINT R 
PRINT DS 
COTO no 
PRINT CHIS C7>;"ERROR MESSAGE. VE CANNOT FIND" 
PRINT °CUSTOMER .t ";Ct;" ON THE FILE.• 
PRINT 0 PLEAIE CHECK YOUR NUMBER AND REENTER." 
PRINT DS;"CLOIE" . 
COTO 300 

(a) In the solution above, why was variable Cl$ used instead of C$? in line 480? 
(See line 380.) 

(b) If you delete line 580 above, then RUN the program, what will happen if an 
incorrect customer number is entered at Une 300 and then, after the error 
message at line 570, a correct customer number is entered? 



"' 

SEQUENTIAL DATA FILE UTIUTY PROGRAMS 147 

(a) Two different assignments would have been made to C$, creating a program error. 
Note the error message at lines 550 to 570. 

(b) The ONERR check in line 460 will detect the end of the file for both entries, 
and the error message will be printed after both entries. The second customer 
number may be valid, but since the pointer was not reset to the beginning of 
the file, the error message will reappear. 

When the file has been searched and the correct customer found, the program 
prillts the customer name on the screen (line 640) as a double check to the operator 
that the correction is being made for the right customer. Outline steps 8 and 9 are 
contained in this module . 

&10 
BZD 
830 
840 
850 
880 

870 

&SD 
890 
700 
710 
720 
730 
740 
750 

.REM CUST t FOUND. PROCEED 'rl/ DATA ENTRY 

HOME 
PRINT NS;" CREDIT RATJNC: "; R 
INPUT "EHTE.R NE'rl C.REDJT RATINC:";RS 
IF LEN I.Rt> < > l THEN PRINT "ONLY ONE DICJT NUMBER JS 
ACCEPTABLE. ": COTO 85 0 
IF VAL IRS> < 1 OR VAL CRt> > 5 THEN PRINT "NUMBERS 1-5 ONLY, 
PLEASE. ": COTO 85 0 
LET Rl a VAL IRt1 

REM PRINT NE'rl INFO TO TEMP 

PRINT DS;"'r/RJTE TEMP" 
PRINT CS: PRINT NS: PRINT Rl 
PRINT Dt 

In line 730, the new customer rating (Rl} is written into the temporary file, 
along with the accompanying customer number and name. You have now completed 
the routines to search the original file and to place old and new data into the tempo· 
rary file. 

(a) Considering the location of the file pointer in the CREDIT file, what should the 
program do next? · 



148 APPLE BASIC: DATA FILE PROGRAMMING 

(a) Write the remainder of the CREDIT file to the temporary file. 

Fill in all the blanks in the program segment below, including lines 790, 800, 
810, 820, 830, 840, and 910, completing steps 10 and 11 of the outline. 

(a) 

(a) 

780 
771 
781 
791 
BID 
'llD 
BZD 
B3D 
HD 
B5D 

• BBD 
B7D 
BBD 
.BID 
BDD 
Bll 
921 

71D 
77D 
7BD 

.78D 
BDD 
BlD 
HD 
83D 
HD 
15D 
88D 
17D 
880 
BID 
BOD 
810 
8ZD 

•EK PRINT REMAINDER OF FILE TD TEKP 

DNERR GOTO BID 

GOTO 79D 

REM CLOSE FILES 

IF PEEK CZZZ> • 5 THEN 81D 
PRINT: PRINT "UNUSUAL ERROR. PRDCRAM TERMINATED.": PRINT 

/ 

REK PRINT REMAINDER OF FILE TD TEMP 

DNERR GOTO 88D 
PRINT DS;"READ"Ft 
INPUT CS ,NS ,R 
PRINT DS 
PRINT DS; "WRITE TEMP" 
PRINT CS: PRINT NS: PRINT R 

. PRINT DS 
GOTO 790 

REM CLOSE FILES 

IF PEEK CZZZ> " 5 THEN 910 
PRINT: PRINT "UNUSUAL ERROR. PROCRAM TERMINATED.": PRINT 
PRINT DS;"CLDSE" 

The final program module should copy the complete temporary file back into 
the original credit file. We could use a file copy program like the one completed 
earlier in this chapter for that. However, your APPLE has a command· that allows you 
to RENAME a program or file. It is quite easy to use: 

JOO PRINT DS;"RENAME OLD NAME.NEW NAME" 

Or, if you are using files named in variables: 

llD PRINT DS; "RENAME"FS ,FH 

or 

lZO PRINT DS; "RENAME OLD NAME, "F H 

. Note: The punctuation shown above (the comma) is very important. 



SEQUENTIAL DATA FILE UTILITY PROGRAMS 149 

Your files should be closed before you RENAME. If :not, however, RENAME 
will close them first. There is one problem with RENAME: It does not bother to 
check whether there is already another program with the new name on your disk. It 
just moves ahead. This can result in two files on your disk with the same name - in 
which case you have a real problem. The solution we devised was to DELETE the 
old copy of the credit file before we RENAMEd the temporary file. Here is the final 
module of the program that completes the copy or RENAME operation, including 
steps 12 and 13 of our original procedure outline. 

930 
940 
950 
810 
970 
980 
990 
1000 
1010 
1020 

1030 
1040 
1050 

REM DELETE/RENAME FILE 

PRINT Dt;"DELETE"FS 
PRINT Dt; "RENAME TEMP, "Ft 
PRINT "RENAME COMPLETED" 

REM CONTINUE REQUEST 

INPUT "DO YOU HAVE HORE CREDIT RATING CHANGES?";Rt 
IF LEFTt <Rt,l> < > "Y" AND LEFTt <Rt,l> < > "N" 
CHRt (7);"ENTER 'Y' FOR YES OR 'N' FOR NO.": PRINT 
IF LEFTS <RS,l> 11 "Y" THEN 300 
PRINT: PRINT "PROGRAM COMPLETED AS REQUESTED." 
END . 

THEN PRINT 
GOTO 1010 

If you RUN this program with large files, each change will talce considerable 
computer time. If you enter the data fu the original file in·customer number order, 
and also enter all changes ill customer number order; the need to repeatedly execute 
the RENAME routine is eliminated, reducing the computer time between transactions. 

Here is a complete listing of the credit file change program. You are encouraged 
to enter and RUN this program u,sing the datafile named CREDIT that you. created in 
the Chapter 4 Self-Test. 



150 APPLE BASIC: DATA FILE PROGRAMMING 

180 
110 
120 
130 
l40 
150 
uo 
170 
180 
190 
200 
uo 
zzo 
230 
UO 
250 
210 
270 
280 
290 
300 
310 
no 
330 
340 
350 
380 
370 
380 
380 
400 

410 

420 
430 
HD 
450 
480 
470 
480 
490 
500 
510 
szo 
530 
HD 
550 
580 
570 
580 
590 
BOD 
810 
no 
830 
HD 
850 
180 

870 

880 
890 
700 
710 
7ZD 
730 
740 
750 

REH CREDIT FJLE CHANGER 

REH VARIABLES.USED 
REH Ft = FILE NAME 
REH Ct = CUST. I 
REH ClS • CUST. I 
REH NS a NAME 
REM RS " ENTRY VARIABLE 
REM R,Rl • CREDIT RATING VALUE 
REM DS a CONTROL D 

REH FILES USED 
REM SEQ.FILE NAME: CREDIT !USER ENTERED> 
REM .TEMPORARY FILE NAME: TEMP 
REM DATSET FORMAT: CS,NS,R 

REM INITIALIZE 

LET DS e CHRS <4> 
HOME : INPUT "ENTER FILE NAME: " ; F S 
PRINT DS;"OPEN"Ft 
PRINT DS;"OPEN TEMP" 

REH DATA ENTRY ROUTINE 

HOME 
PRINT "ENTER 'STOP' TO END DATA ENTRY." 
PRINT 
INPUT "ENTER CUSTOMER l:";CS 
IF CS a "STOP" THEN 1080 
IF LEN !Ct> • D THEN PRINT "ENTER CUSTOMER NUMBER OR TYPE 'STOP"'; 
GOTO 380 
IF LEN !CU < > 5 THEN PRINT "ENTRY ERROR. REENTER WITH 5 DIGITS.": 
GOTO 380 . 
IF VAL !Ct> a D THEN PRINT "ENTRY ERROR. NUMBERS ONLY.": GOTO 380 

REH FILE SEARCH ROUTINE 

ONERR GOTO 550 
PRINT DS;"READ"FS 
INPUT CU,Nt,R 
PRINT Dt 
IF CS a ClS THEN 630 
PRINT DS;"WRITE TEHPn 
PRINT ClS; PRINT Ht: PRINT R 
PRINT DS 
GOTO 470 
PRINT CHRS <7>; "ERROR MESSAGE. WE CANNOT FIND" 
PRINT i•cuSTOHER I ";CS;" ON THE FILE ... 
PRINT "PLEASE CHECK YOUR NUMBER AND REENTER." 
PRINT DS;"CLOSE" 
GOTO 300 

REH CUST I FOUND. PROCEED W/ DATA ENTRY 

HOME 
PRINT NS;" CREDIT RATING: ";R 
INPUT "ENTER NEW CREDIT RATING:";RS 
IF LEN !RS> ! > l THEN PRINT "ONLY ONE DIGIT NUMBER IS 
ACCEPTABLE.": GOTO &SD 
IF VAL !RS> < 1 OR VAL <RS> > 5 THEN PRINT "NUMBERS 1-5 ONLY, 
PLEASE.": GOTO 850 
LET Rl • VAL !RS> 

REM PRINT NEW INFO TO TEMP 

PRINT DS; "WRITE TEMP" 
PRINT ~t: PRINT NS: PRINT Rl 
PRINT Df 



710 
no 
780 
710 
SOD 
BlD 
BZD 
830 
HO 
850 
880 
870 
880 
890 
900 
910 
UO 
130 
940 
950 
9110 
970 
980 
990 
1000 
1010 
1020 

·l 030 
!HD 
1050 

(a) 

SEQUENTIAL DATA FILE UTILITY PROGRAMS 151 

REM PRINT REMAINDER OF FILE TO TEMP 

ONERR GOTO 89 O 
PRINT Dt;"READ"Ft 
INPUT Ct ,Nt ,R 
PRINT Dt 
PRINT Dt; "WRITE TEMP" 
PRINT Ct: PRINT Nt: PRINT R 
PRINT Dt 
GOTO 790 

REM CLOSE FILES 

IF PEEK <222> = 5 THEN BlD 
PRINT: PRINT "UNUSUAL ERROR. PROGRAM TERMINATED.": PRINT 
PRINT Dt; "CLOSE" . 

REH DELETE/RENAME FILE 

PRINT Df;"DELETE"Ft 
PRINT DS;"RENMHE TEHP,"Ft 
PRINT "RENAME COMPLETED" 

REH CONTINUE REQUEST 

INPUT "DO YOU HAVE MORE CREDIT RATING CHANCES?";RS 
IF LEFTt CRf,l> < > "ll'" AND LEFTS CRS,l> <- > "N" THEN PRINT 
CHRt <7>;."ENTER 'll'' FOR YES OJI 'N' FOR NO.": PRINT: COTO JOJO 
IF LEFT .. CRS,Jl = "ll'" THEN 300 
PRINT : PRINT "PROGRAM COMPLETED AS REQUESTED." 
END 

Write the corresponding program line number(s) for each step in the outline. 

1. OPEN the credit file. 

2. OPEN a temporary file. 
3. Enter the customer number; the item to he searched (include data entry 

tests and a "no more searches" option), 
4. Check for end-of-data in credit file. If end-of-data is found: 

a. display an error message indicating an unsuccessful search 

b. CLOSE both files. 

c. return to step 1. 

5. READ a complete dataset. 

6. Test for wanted customer number. 

7. PRINT rejected datasets to temporary file. 
· 8. Display needed information; ask user for changes with data entry test. 

9. PRINT dataset with new data to tem-porary ftle. 

10. PRINT remainder of credit file to temporary file. 

11. CLOSE both files. 

12. RENAME temporary file as credit file. 

13. Provide the user with the option of repeating the process. 



152' APPLE BASIC: DATA FILE PROGRAMMING 

(a) 1. 300 
2. 310 
3. 360-420 
4. 460 
ia. 550-570 

4b. 580. 
4c. 590 
5. 470-490 
6. 500 
7. 510-530 
8. 640-680 
9. 720-740 

10. 780-850 
11. 910 
12. 950-970 
13 . 1010-1040 

. EDITING, DELETING, AND INSERTING FILE DATA 

Whenever we work extensively with files, we write a small utility program that lets us 
read through the file, one item at a time, 'to verify that everything is as it should be. ·· 
A properly written data file editing program also lets you make changes in the file 
data as it reads through the file. We will start with a simple program to examine the 
contents of a file, one data item at a time. Our example will use the previous appli
cation - the CREDIT file. Remember the dataset consists of: 

1. · a five-digit customer number stored as a string 
2. a twenty-character customer name 
3. a credit rating, stored as a numeric value from 1 through 5 

The first program below allows you to look at each dataset, one item at a time, 
with the prompt "PRESS RETURN TO CONTINUE." The PRESS RETURN TO 
CONTINUE technique is very popular for CRT screen-oriented systems. The program 
allows the user to review the data displayed for. the length of time needed and then 
move to the next dataset. The program then refreshes, or clears, the screen to remove 
"screen clutter" before the next data are displayed, using the HOME instruction. 
Examine the program to see how the user INPUT statement is used in the PRESS 
RETURN TO CONTINUE technique. 



SEQUENTIAL DATA FILE UTILITY PROGRAMS 153 

100 .REH 
110 REM 
lZD REH 
130 : 

CBEDIT FILE EDITOR <VERSION l) 
THIS PROCRAM DEMONSTRATES 

PRESS 'RETURN' TO CONTINUE 

VARIABLES USED 
CS = CUST I C5> 
NS m CUST NAME C20) 

HO REM 
150 REM 
180 REH 
170 REM 
180 REH 
190 REM 
200 REM 
uo-: 

R ., CREDIT .RAT INC 'Cl) 
RS a USER RESPONSE 
Ft " FILE NAME 
Dt ,. CONTROL D 

' 
FILES USED U!!-- REM 

230 REH 
HD REH 
uo: 

SEO .. FILE NAME: CREDIT <USER ENTERED> 
DATASET FORMAT: CS,NS,R 

280 REH 
no: 

INITIALIZATION 

280 LET Dt = CHRf C4> 
290 INPUT "ENTER FILE NAME:";Ft 
300 PRINT Df;"OPEN"Ft 
310 : 
320 REM 
330 
340 HOME 

READ FILE AND DISPLAY 

350 
380 

PRINT ''PRESS 'RETURN' TO DISPLAY HEIT ITEM.": PRINT 
ONERR COTO 5 l·D 

370 
380 
390 

. 400 
UD 
420 
430 
440 
450 
480 
no 
480 

PRINT Df;"READ"Ft 
INPUT Ct,Nt,R 
PRINT Df 
PRINT Ct 
INPUT "";Rf 
PRINT Nt 
INPUT "";Rt 
PRINT R 
INPUT "";Rt 
PRINT 
COTO 340 

480 REH 
500 : 

CLOSE FILE · 

510 IF PEE.K CUU = 5 THEN 530 
·520 PRINT : PRINT "UNUSUAL .ERROR. 
53.0 PRINT DI; "CLOSE" 
540 HOME 
550 . PRINT "JOB COMPLETED" 
580 END 

PROCRAM TERMINATED." 

(a) What is assigned to R$ in lines 410, 430, and 450? 

· (b) Since R$ acts as a dunimy variable in the program above, what is the purpose of 
lines 410, 430, and 450? 

(c) How often was the screen "refreshed" in the program above? 



154 APPLE BA$1C: DATA FILE PROGiAMMJNG 

(a) Nothing (a null string) 
(b) Keeps the data items on the CRT display until the user presses RETURN to 

continue (Program waits at INPUT statement until RETURN key is pressed, 
with or without any other entry.) 

(c) Before (or after) each complete dataset of three items·was displayed 

The next version of this program allows the user to change any data items as 
they are displayed on the screen, or accept data "as is" by pressing RETURN to 
continue. The procedure includes copying the credit data file to a temporary file 
"TEMPFIL" as you read through the file makfug changes. Here is the first part of 
the program, which includes the ability to change the customer number. 

I 

CREDIT FILE EDITOR <~ERSION Z> 
THIS PROGRAM DEMONSTRATES 
TYPE 'C' TO CHANGE ITEM, OR 

.PRESS 'RETuRN' TO CONTINUE. 

VARJABLES USED 
C• ::s CUST I· <5> 
Nf a CUST NAME <ZD> 
R • CREDIT RATING 
RI c USEI RESPONSE 
Ft • FILE NAME 
DI ., CONTIOL D 

FILES USED . 

100 REH 
110 REH 
lZO REH 
130 REH 
140 : 
150 REH 
180 REH 
170 REH 
180 Ri:H 
190 REH 
ZOO ·REH 
UO ·REH 
uo:, 
UO REH 
HO REH 
no REH 
UO REH 
no : 

SEO. FILE NAME: CREDIT <USEI ENTERED> 
SEO. TEMPORARY FILE NAME: TEHPFIL 
DATASET~FORHAT: CS,Nt,I 

UO REH 
uo JNITJALIZATION 

300 
310 
310 
330 
no 
350 
310 

LET D.I • CHIS <t> 
INPUT "ENTER FILE NAHE:";Ft 
PRINT Dt;"OPEN"FI 
PRINT Dl;"OPEN T~HPFita 
PIJNT Dl;"DEJ;ETE TEHPFIL" 
PRINT D•;"OPEN TEHPFIL" 

370 REH 
380 

BEAD FILE AND DISPLAY 

310 
400 
410 
uo 
430 
HO 
no 
HO 

HOME . 
PIJNT "TYPE 'C' TO.CHANGE ITEM DISPLAYED.a 
PRINT "PRESS 'RETURN' TO CONTINUE WITHOUT CHANGES." 
ONEIR GOTO 770 
PRINT Dt;"READ°Ft 
INPUT Ct ,NS, R 
PRINT DI ' 

no REH 
480 

DISPLAY & CHANGE OPTION FOi CUST .. I 

HO 
SOD 
510 

5ZO 
530 
150 
810 
870 
880 
810 
800 

910 
IZO 
830 

PRINT : PRINT Cl 
INPUT • 11 ;R• 
IF II < ~ "" AND IS 
AGAIN "· GOTO soi 
IF · J,EFTS (RI 1 l ) a 11 Ca 

> "C" THEN PIJNT 

THEN GOSUB 880 

REM CHANGE CUST I SUBIOUTINE 

CHIS <7>;•ENTRY ERROR. TIY 

INPUT "ENTEi NEW CUST. l:";Ct 
IF LEN <Ct> • D THEN PRINT "ENTER NUMBERS PLEASE.": GOTO 7t0 
IF LEN <CU < > 5 THEN HINT "ENTRY 11101. IEENTEI WITH S 
DIGITS. II:. GOTO 880 . ' 
IF VAL CCS> • D THEN PIJNT "ENTRY ERROR, NUMBERS ONLY.": GOTO 880 
RETUIN 



SEQUENTIAL DATA FILE UTIUTY PROGRAMS 155 

Notice the few additions: the temporary file (lines 260 and 340); the instruction 
changes (lines 130 and 370); and the entry test (line 470). For reasons that will be
come apparent, a subroutine (lines 700 through 75.0) is used for entering the change 
to the customer number. The same data entry checks are used that were originally 
used in the credit file creating program. Caution: This program segment does not 
write the new customer number to TEMPFIL. In order to maintain identical files, 
use one statement to write the entire dataset into TEMPFIL as was originally done 
with the credit rating data file. If you are particularly sharp, you may have noted 
that the new customer number was assigned to C$, replacing the old customer number 
stored there. Can you look ahead and see why? 

Now its your tum. Write a routine that will allow a change in the customer 
name. Use the subroutine format like that above. Fill in lines 960, 970, 980, and 
990. 

(a) 

(a) 

HD 
55D 
580 
510 
580 

590 
&DD 
HD 
95D 
980 
970 
980 
B9D 
1000 

540 
55D 
5&D 
57D 

· 58D 

58D . 
&DD 
HD 
95D 
9&D 
97D 

98D 

990 
1000 

REM DISPLAY, AND CHANGE OPTION FOR NAME 

PRINT : PRINT Nt 
INPUT "";Rt 
IF LEFTt CRt,l> < > 1111 AND LEFTt CRt,l> < > "C" THEN PRINT : 
PRINT "PRESS 'RETURN' FOR NO CHANGE OR ENTER 'C' TO CHANGE NAME,": 
PRINT ; GOTO s?o 
IF Rt • "C" THEN GOSUB 980 

REM NAME CHANGE SUBROUTINE 

REM DISPLAY AND CHANGE OPTION FOR NAME 

PRINT : PRINT NS 
INPUT "";RS 
IF LEFTS CRS,l> < > 1111 AND LEFTS -CJ!t,l> < > ''C"· THEN PJIINT : 
PJIINT "PRESS 'JIETURN' FOR NO CHANCE OR ENTER 'C' TO CHANCE NAME.": 
PJIINT : COTO 570 . 
IF RS .. ''C" THEN COSUB ·sso 

REM NAME CHANGE SUBJIOUTINE 

INPUT "ENTEJI NEW NAME:";NS 
IF LEN CNS> ., D THEN PJIINT : PJIINT "NO ENTJIY MADE. PLEASE ENTEJI AS 
JIEOUESTED.": PJIINT: COTO 980 
IF LEN CNS> > ZD THEN HINT : PJIINT "ABBJIEVIATE NAME TO 20 
CHJIRACTEJIS OJI LESS. " : PJI INT : COTO 9 6 0 
JIETUJIN . , 



15.6 APPLE BASIC: DATA FILE PROGRAMMING 

Nice work! Now, write a program segment that allows a change to be entered 
for the credit rating. Upon returning from the subroutine, have the program record 
the entire dataset, including changes, if any, to TEMPFIL. Fill in lines 700, 710, 720, 
1030, 1040, 1050, and 1060~-

(a) 810 
8ZD 
830 
840 
850 

880 
870 

REM DISPLAY & CHANCE OPTION FOB BATINC 

PRINT : PRINT B 
INPUT. "";Rt 
IF Bf < > "" AND R9 < > "C" THEN PRU4T : PRINT "PLEASE PRESS 
'RETURN' IF NO CHANCE, OR TYPE'C' TO CHANCE RATINC.": PRINT: GOTO 640 
IF Bf : "C" THEN CQSUB 1030 

880 REM . 
890 . ' 

WRITE ONE DATASET BACX TO FILE 

700 
710 
7ZO 
730 
740 
1010 
lOZO 
1030 
1040 
1050 
1080 
1070 
1080 

COTO 390 

REM CREDIT BATINC CHANCE SUBROUTINE 

RETURN 

---------------/ 

(a) BJO 
8ZD 
630 
6411 
850 

880 
870 
880 
880 
700 
710 
7ZO 
730 
740 
1010 
lOZO 
1030 
1041! 

1050 

1080 
1070 
lOU 

REM DISPLAY & CHANCE OPTION FOB BATINC 

PRINT : PRINT JI 
INPUT "";Rt 
IF BS ( > "" AND BS < > "C" THEN PR.INT : PRINT "PLEASE PRESS 
'RETURN; IF NO.CHANCE, OB TYPE'C' TO CHANCE RATING.": PRINT: COTO 840 
IF Bf " "C" THEN COSUB 1030 

REM WRITE ONE DATASET BACX TO FILE 

PRINT DS; "WJIJTE TEMPFJL" 
PRINT CS: PRINT NS: PRINT R 
PRINT DS 
COTO 390 . 

REM CREDIT BATINC CHANCE SUBROUTINE 

INPUT "ENTER NEW CREDIT BATINC:";Bf 
IF LEN CBS> C > l THEN PRINT : PRINT "ENTER ONE DIGIT NUMBER ONLY, 
PLEASE.": PRINT: COTO 1030 
IF VAL (BS> < l OB VAL <BS> > S THEN PRINT : PRINT "ENTER DI CITS 
l TO SONLY.": PRINT.: GOTO 1030 
LET R = VAL CRS> 
RETURN 

Did you get line 710? Carefully planned., the routine that prints or writes to the 
file uses the same variables (C$, N$, and R) that can contain either new data or the 
original unchanged data items. · 



SEQUENTIAL DATA FILE UTILl1'YPROGRAMS 157 

(a) Describe the last routine needed to complete this program. 

(a) Close the files and RENAME TEMPFIL to F$. 

The end of data error trap is already set up in line 420 to branch to line 770. 

While experiencing a bit of deja vu, complete the final s~ction to RENAME 
TEMPFIL by filling in lines 770, 780, 800, 810, and 820. 

(a) 

(a) 

750 . JIEM CLOSE FILES 
760 
770 
780 
790 HOME PJIINT "WOJIKING" 
800 
810 
BZO 
830 PJIINT PJIINT "JOB COMPLETE." 
840 END 
850 

750 JIEM 
760 I 

CLOSE FILES 

770 
. 780 

790 
800 
BlO 
BZO 
830 
840 
850 

IF PEEK <ZZZ> s 5 THEN·780 
PJIINT : PJIINT "UNUSUAL EJIJIOJI. PJIOGJIAM TEJIMINATED. JIEAD AND DI.SPLAY 
FILE CONTENTS TO CHECK FOJI EJIRORS. ": PRINT : GOTO 800 .. 
HOME : PJIIHT "WOJIKINC" 
PRINT Dt;"CLOSE" 
PJIINT Dt;"DELETE"Ft 
PRINT DS; "RENAME TEMPFIL, "Ft 
PJIINT: PJIINT "JOB COMPLETE." 

·END 

Here is a complete listing of the second version of the credit file 'editor program. 
Be sure to enter and RUN this program before continuing. 



158 APPLE BASIC: DATA FILE PROGRAMMING 

lDD 
llD 
l2D 
13D 
l4D 
l5D 
llD 
17D 
llP 
llD 
ZDD 
ZlD 
zzD· 
Z3D 
HD 
ZSD 
ZID 
no 
ZID 
Z9D 
3DD 
310 
3ZD 
330 
HO 
no 
HD 
370 
380 
390 
4DD 
41D 
HO 
430 
HD 
450 
410 
470 
UD 
UD 
SOD 
SlD 

SZD 
53D 
.540 
55D 
510 
57D 
58D 

580 
SDD 

REH 
REH 
REH 
REK 

CREDIT FILE EDITOR <VERSION Z> 
THIS PROCHAK DEMONSTRATES 
TYPE 'C' TO CHANCE ITEM, OR 
PRESS 'RETURN' TO CONTINUE. 

REH 
REM 
REH 
REM 
REH 
REK 
REH 

VARIABLES USED 
Ct • CUST I CS> 
NS • CUST NAME <ZD> 
R '" CREDIT RATINC · 
Rt = USER RESPONSE 
Ft • FILE NAME 
Dt " CONTROL D 

FILES USED REH 
REH 
REM 
REM 

SEO. FILE NAME: CREDIT <USER ENTERED> 
SEQ. TEMPORARY FI LE NAKE:. TEKPF IL 
DATASET FORMAT: Cf ,Nf ,R 

REM INITIALIZATION 

LET Dt • CHRS C4> 
INPUT "ENTER FILE NAKE:";Ft 
PRINT Df;"OPEN"Ft 
PRINT DS;"OPEN TEMPFIL" 
PRINT Dt;"DELETE TEMPFIL" 
PRINT DS;"OPEN TEMPFIL" 

REM READ FILE AND DISPLAY 

HOME 
PRINT "TYPE 'C' TO CHANCE ITEM DISPLAYED." 
PRINT ~PRESS 'RETURN' TO CONTINUE WITHOUT CHANCES." 
ONER.R COTO 770 
PRINT Dt; "READ"Ff 
INPUT Ct,NS,R 
PRINT D.S. 

REM DISPLAY & CHANCE OPTION FOR CUST. I 

PRINT : PRINT CS 
INPUT "";RS 
IF Rt ( > UH AND 
ACAiN. ": COTO SOD 

Rt ( > "C" THEN PRINT CH.Rt <7l;"ENTRY ERROR. TRY 

IF LEFTt C.RS,l) c "C" THEN COS.VB BID 

. REM DISPLAY AND CHANCE OPTION FOR NAME 

PRINT : PRINT NS 
INPUT 0 ";Rt 
u: urn <.Rt,p ( > .... AND _LEFTf·<Rt,l) ( > "C" THEN PRIMT; 
PRINT "PRESS '.RETURN' FOR NO CHANCE OR ENTER 'C' TO CHANCE NAME."; 
PRINT : COTO 570 
IF .Rt • "C" THEN COSUB UD 

610 REM 
IZD : 

DISPLAY & CHANCE OPTION FO.R RATJNC 

630 . PRINT : PRINT .R 
&4D INl'VT "";lit 
BSD JF JU ( > HH AND Rt ( > "C" THEN PRINT ; 

'JiETURN' IF NO CHANCE, OR TYPE'C' TO CHANCE 
IF Rt • "C" 1HEN GOSUB 1D30 880 

170 
180 
890 
700 
710 
7ZD 
730 
740 

REM WRITE ONE DATASET BACX TO FILE 

PRINT Dt; "WRITE. TEMPFIL" 
PRINT CS: PRINT NS: PRINT R 
PRINT Dt 
COTO 39D 

P.RINT' 11 PLEASE PRESS 
RATINC. 11 : PRINT : COTO 840 



750 
780 
770 
780 

790 
800 
810 
820 
830 
li40 
850 
380 
870 
880 
890 
900 

910 
920 
930 
940 
950 
960 
970 

980 

990 
1000 
1010 
1020 
1030 
1.040 

1050 

1060 
1070 
1080 

SEQUENTIAL DATA FILE UTILITY PROGRAMS 159 

REH CLOSE FlLES 

IF PEEX <222> = 5 THEN 780 
PRlNT : PRlNT "UNUSUAL EHOR. PROGRAM TERHlNATED. READ AND DlSPLAY 
Fl LE CONTENTS TO CHECX FOJI ERRORS.": PJIJNT : -GOTO 800 
HOME : PRlNT "WORXJNG" 
PRINT DS; "CLOSE" 
PRlNT DS;"DELETE"FS 
PRINT DS;"RENAME TEHPFIL,"FS 
PJIJNT : PJIJNT "JOB COMPLETE." 
END 

REH CHANGE CUST i SUBROUTINE 

INPUT "ENTER NEW CUST. I: " ; CS 
IF LEN <CS> = 0 THEN PRINT "ENTER NUHBEJIS PLEASE.": GOTO 740 
IF LEN <CS> ( > 5 THEN PRINT "ENTRY ERROR. REENTER WITH 5 
DIGITS.": GOTO 880 
IF VAL <CS> = 0 THEN PRINT "ENTRY ERROR, NUMBERS ONLY.": GOTO 880 
RETURN 

REH NAME CHANGE SUBROUTINE 

INPUT "ENTER NEW NAME:" ;NS . 
lF LEN CNS> = 0 THEN PRINT : PRINT "NO ENTRY HADE. PLEAS.£ ENTER AS 
REQUESTED.": PRINT; GOTO 960 
IF LEN CNt> > ZO THEN PRINT : PRINT "ABBREVIATE NAME TO 20 
CHARACTERS OJI LESS.": PRINT: GOTO 980 
RETURN . 

. REM CREDIT RATING CHANGE SUBROUTINE 

·INPUT "ENTER NEW CREDIT RATING:" ;Rt 
IF LEN CR$> < >. l THEN .PRINT : PRINT "ENTER ONE DIGIT NUMBER ONLY, 
PLEASE. ": PR INT : GOTO l D 3 0 ' 
IF VAL CJIS> < l OR VAL CR$) > 5 THEN PRINT : PRINT "ENTER DIGlTS 
l TO 5 ONLY.": PRINT.: GOTO 1030 
LET JI = VAL CRS> 
RETURN 

Yet another desireable editing feature is the ability to delete a complete dataset 
from a data file. This is in addition to the program's ability to make changes in an 
existing dataset. To delete a dataset, have the program read the dataset from the file, 
but not copy it into TEMPFIL. Thus, the dataset "disappears." This editing option 
can be integrated into the existing program you have been developing. First, enter a 
statement to inform the user of the option to delete a dataset. 

395 PRINT PRINT "TYPE 'D' TO DELETE THIS ENTIRE DATASET FROM THE FILE." 

(a) Complete the change in the statement line that tests for legal user inputs. 

(b) Write a statement to branch to line 390, thus never writing the current dataset if 
the user entered 'D'. 
[525] 



16~ APPLE BASIC: DATA FILE PROGRAMMING· 

(a) 51D .. IF Jlf < > "" AND JIG < > "C" AND Jlt < > "D" THEN PJllNT : PJllNT 
·CHJlt c;>;"ENTJIY ERJIOR. JIEAD THE INSTRUCTIONS AND TRY AGAIN:": PRINT 
GOTO SOD 

(b) 535 JF Jlt a "D" THEN 430 

You now have a model for a file editor that alloWs for .changes, deletions, or no 
changes. Another useful editing 'feature allows you to keep_ data in numerical or 
alphabetical order by insertion of a new dataset part way through an existing data 
.file. After locating a certain dataset, the .new dataset is inserted by using the sub
routines used to make changes in the file. How's that for program efficiency. 
Following are l!Oine of the new statements needed, with space for you to complete, 
lines 396, 510, and 526. 

(a) HI 

. (a) 

5lD 

518 

841 
ltl JIEM SUIROUTI.HE TO VRITE CURRENT. DATASET TO FILE UNCHANGED BEFORE NEV 

DATASET I.S INSERTED· 
H3 
Ht PRINT Df; "VRITE TEMPFIL" 
8U HINT Cf: PRINT Nf: PRINT JI 
HI PJIINT Df . . 
847 RETURN ... 

318 PJIINT ·: PRINT "TYPE . 'I' TO INSEJIT A NEV DATASET AF']'.ER THE ONE 
DISPLAYED. CURJIENT,DATASET DISPLAYED VILL BE PLACED IN THE FILE 

317 
388 

UNCHANGED.": PRINT . 

518 IF Rf < > "" AND Rt < > "C" AND Rf < > "D" AND JIS < > "l" THEN 
PRINT : PRJNT CHJIS C7 >; "ENTJIY EJIROR. RE~D DIRECTIONS AND ENTER 
ACCOJIDINCLY.":· PRINT : GOTO 500 

511· : 
511 
518 IF ·Rf • "I" THEN GOSUI IH: CO.SUI 88D: GO.SUI HD: GO.SUI 1D3D: GOTO 

7DD 
5Z7 
518 
Hl 
ltl REM .SUBROUTINE TO VJIITE CURRENT DATA.SET TO FILE UNCHANGED BEFORE 

NEV DATA.SET l.S.IN.SERTED 843 . . 
8H PRINT Df;"VRITE TEMPFIL" 
8t5 PRINT Cf: PRINT NS: PRINT JI 
HI PRINT. Df 
H7 RETURN ... 
To change, delete, or insert data in the CREDIT file gather together this data file 

editing utility program. 



SEQUENTIAL DATA FILE UTILITY PROGRAMS 161 

JOO REM CREDIT FILE EDITOR <VERSION 3> . 
JJO REM THIS PROCRAM ALLOWS CHANCES IN CURRENT DATA, DELETION OF 

DATASETS, AND 
120 REM INSERTION OF NEW DATASETS. IT ALSO ·ALLOWS YOU TO 
130 REM PRESS 'RETURN' TO CONTINUE DISPLAY OF DATA WITH NO CHANCES TO 

DATA ITEMS. . 
140 
150 REM 
JBO REM 
170 REM 
180 . REH 
190 BEH 
200 REH 
210 BEM 
220 

VARIABLES USED 
CS = CU.ST I 15> 
NS = CUST NAME.120) 
JI = CREDIT RATINC 
RS = USER RESPONSE 
FS = FILE NAME 
DS = CONTBOL D 

230 
240 
250 
260 
270 

BEM 
REM 
REM 
BEM 

FILES .USED 
SEQ. FILE NAME: CREDIT IUSEB ENTEBED> 
SEQ. TEMPORARY FILE NAME: TEHPFIL 
DATASET FOBMAT: CS ,NS ,B· 

280 BEM 
290 

JNJ.TJAL JZAT~ ON 

300 
310 
320 
330 
340 
350 
380 

LET DS = CHRS C4> 
INPUT "ENTER FILE· NAHE:";~S 
PRUIT DS;"OPEN"FS 
PRINT DS;"OPEN TEHPFIL" 
PB INT DS; "DELETE TEMPFJL" 
PRINT DS;"OPEN.TEHPFIL" 

370 REH 
380 

BEAD FILE AND DISPLAY 

390 
395 
398 

400 
410 
420 
430 
440 
450 
460 
470 
480 
490 
500 
510 

520 
525 
526 

5 30 

HOME 
PBJNT: PJIJNT "TYPE 'D' TO DELETE THIS ENTIBE DATASET FBOK THE FILE." 
PRINT : PBINT "TYPE 'I' TO INSERT A NEW DATASET AFTER THE ONE 
DISPLAYED. CURRENT DATASET DISPLAYED WILL BE PLACED JN THE FILE 
UNCHANCED. ": PRINT . 
PBINT "TYPE 'C' TO CHANCE ITEM DISPLAYED.": PRINT 
PRINT "PBESS 'BETUBN' TO CONTINUE liJTHOUT CHANCES." 
ONEJIR COTO 770 
P.RINT Df; "BEAD" Ff 
INPUT Ct ,NS ,JI 
PBINT Dt 

BEH DISPLAY & CHANCE OPTION FOB CUST. I 

PJIJNT : PRINT CS 
INPUT "";Rt 
JF JI$ ( > "" AND BS < > "C" AND BS < > "D" AND Bl < > "I" THEN 
PRINT : PBINT CHBfl7>;"ENTRY ERROR. READ DIRECTIONS AND ENTER 
ACCORDINCLY.": PRINT: COTO SOD . 
IF LEFTS IRS ,ll = "C" THEN COSUB 880 
IF Bf = "I)'" THEN 430 
JF RI = "J" THEN COSUB 844: COSUB 880: COSUB 960; COSUB 1030: COTO 
700 . 

540 BEH DISPLAY AND CHANCE OPTION FOB NAME 
550 : . 
560 PBINT : PRINT NS 
570 INPUT "";RS. 
580 IF LEFTS CRl,J> < > "" AND LEFTS IBl,l> < > "C" THEN PRINT : 

PRINT "PRESS 'RETURN' FOB NO CHANCE OR ENTER 'C' TO CHANCE NAME.": 
PRINT : COTO 570 

590 IF RS = "C" THEN COSUB 960 
600 : 
610 BEH DISPLAY & CHANCE OPTION FOB JIATINC 
620 : 
830 PBINT : PRINT JI 
840 INPUT "";RS 
150 IF RS < > "" AND JIS < > "C" THEN PRINT : PBINT "PLEASE PRESS 

'BETURN' IF NO CHANCE, OR TYPE'C' TO CHANCE RATINC.": PRINT 
COTO 840 

880 JI JU = "C" THEN· COSUB 1030 
870 

continued on next page 



,162 APPLE BASIC: DATA FILE PROGRAMMING 

BID 
llD 

REM WRITE ONE DATASET BACX TO FILE 

'1DD PRINT Dt;"WRITE TEMPFIL" 
71D PRINT Ct: PRINT Nt: PRINT R 
7.ZD PRINT Dt 
73D COTO HD 
7H : 
75D REM CLOSE FILES 
780 : 
770 IF PEEX <ZZZ> • 5 THEN 79D 
78D PRINT : PRINT "UNUSUAL ERROR. PROCRAM TERMINATED. READ AND DISPLAY 

FILE CONTENTS 'l'O.CHICX tOR ERRORS.": PRINT : COTO 8DD 
790 HOME : PRINT "WORXINC" 
BDD PR.INT Dt; "CLOSE" 
llD PRINT Dt;"DELETE"Ft 
UD PRINT Dt;"RINAME TEMPFIL,"FS 
830 PRINT: PRINT "JOB COMPLETE." 
840 END 
BU : 
84Z REM SUBROUTINE TO WRITE CURRENT DATASET TO FILE UNCHANGED BEFORE 

NEW DATASET IS INSERTED 
843 : 
844 PRINT Dt;"WRITE TEMPFIL" 
845 PRINT Ct: PRINT NS: PRINT R 
848 PRINT Dt 
847 RETURN 
850: 
880 REM CHANCE CUST t SUBROUTINE 
870 : 
BSD INPUT "ENTER NEW CUST. t:";Ct 
890 IF L.EN <CU ,. 0 THEN PRINT "ENTER NUMBERS PLEASE.": COTO 740 
900 IF LEN !CS> < > 5 THEN PRINT "ENTRY ERROR. REENTER WITH 5 

DICITS.": COTO 880 
910 IF VAL !Ct> " O THEN PRINT "ENTRY ERROR, NUMBERS ONLY.": COTO 880 
9ZO RETURN 
930 ; 

. 940 REM NAME CHANCE SUBROUTINE 
850. 
980. 
970 

980 

990 
1000 
1010 
1020 
1030 
lOto 

1050 

1060 
l 0'70 
1080 

INPUT "ENTER NEW NAME:";Nt 
IF LEN !NS> " 0 THEN PRINT : PRINT "NO ENTRY MADE. PL.EASE ENTER AS 
REQUESTED. ": PR INT : COTO 98 0 . 
IF LEN !NS> > ZO THEN PRINT : PRINT "ABBREVIATE NAME TO 20 

. CHARACTERS OR LESS.": PRINT.: COTO 980 
RETURN 

REM CREDIT RATING CHANCE SUBROUTINE 

INPUT "ENTER NEW CREDIT RATINC:";RS 
IF LEN !RS> < > l THEN PRINT: PRINT "ENTER ONE DIGIT NUMBER ONLY, 

: PLEASE.": PRINT COTO 1030 . 
It VAL <RS> < l OR VAL IRS> > S THEN PRINT : PRINT "ENTER DIGITS 

: l TO S ONLY.": PRINT COTO 1030 . 
L~T R = VAL <RS> 
RETURN 

The following outline for the final version of the program allows for insertion, 
deletion, or_ changes of data in the file. · 

(1) Open the source file. 
(2) Open the temporary file. 
(3) Display a "menu" for the user to select changes to be made, including a "no 

changes" option. 
(4) Set ONERR for end-of-file detection. . 
(5) Read the entire dataset from the file and display the first data item (not 

dataset) in the current dataset. 
(6) Allow the user to enter a selection from the "menu" and test for the legal 

selection· possibilities. 
(7) If user entered "C" for change: 

(a) Allow user to enter change with data entry checks. 



' 

SEQUENTIAL· DATA FILE UTILITY PROGRAMS 163 

{b) Display next data item from current dataset (if any items remain in this 
dataset). 

(c) User entered option for another change and test selection. 
( d) User entered ·change with data entry checks. 
(e) Repeat (7) {b), (c), and {d) until all iten;is in a dataset have been through 

the change option. 
(f) Print the dataset {with any changes) to the _temporary file. 
(g) Go to step {3). 

(8) If user entered "I" for insert: 
(a) Print the dataset to the temporary file. 
{b) User enters new dataset with data entry checks. 
(c) Print the newly entered data to the temporary file. 
( d) Go to step {3). · 

(9) If user entered "D" for delete, go to step (5). 
{10) If the user entered no response Gust pressed the RETURN key), go to steps (7) 

(b) to (g). 
{11) Close both files. 
{12). RENAME TEMPFIL to source file name. 

(a) Write the corresponding program line number(s) for each step in the outline 
below, except for item {10), where you are to fill in the blanks in the 
parentheses. 

{1) Open the source file. 

(2) Open the temporary file. 

(3) Display a "menu" for the user to· seleCt changes to be made, including a 

"no changes" option. 

(4) Set ONERR for end-of-file detection. -----------

(5) Read the entire dataset from the file ·and display the first data item (not 

dataset) in the current dataset. 

(6) Allow the user' to enter a selection from the "menu" and test for the 

legal selection possibilities. 

· (7) If user entered "C" for change: 

·(a) Allow user.to enter change with data entry checks. ------

{b) Display next data item from current dataset (if any items remain in 

this dataset). 

( c) User entered option for another change and test selection. 



164 APPLE BABIC: DATA FltE PROGRAMMING 

(d) User-entered change with data entry checks. 

(e) Repeat (7) {b), (c), and {d) until all items in a dataset have be~n 

through the change option. ·-------------

(£) Print the dataset {with any changes) to the temporary file. __ _ 

. (g) Go to step {3). 

(8) If user entered "I" for insert.: 

. (a) Print the dataset to the temporary file. 

{b) User enters new dataset with data entry checks. 

(c) Print the newly entered data to the temporary file. ~---

{d) GQ to step {3) . 

. (9) If user entered "D" for delete, go to step (5). 

{10) If the user entered no respon8e Gust pressed the RETURN key), go to 

steps LJ L) to LJ L). {Fill'in the blanks.) 

{11) Close both files. 

(12) RENAME TEMPFIL. to source file, name. 

(a) · {l) line 320 . 
(2) lines 330 to 350 
{3r lines 390 to 410 
(4) line 420 
(5) lines 430 to 490 
(6) . lines 500 to 526 
(7) (a) lines 880 to 920 

{b) line 560 
(c) lines 570 to ·590 
{d) lines 880 to 920 
· (e) lines 560 to 590, 880 to 920 
(f) lines 700 to 720 
(g) line 730 

(8) (a) lines 844 to 847 
{b) lines 880 to 920, 960 to 990, and 1030 to 1070. 



(c) lines 700 to 720 
( d) line 730 , 

(9) line 525 
(10) steps (7) (b) to (7) (g) 
(11) line 800 
(12) lines 810 and 820 

. SEQUENTIAL DATA FILE UTIµTY PROGRAMS 165 

Enter and RUN the program; put it through its paces. Test all of the possible 
change options that this program makes available, and verify that the changes were 
actually made to the file. 

MERGING THE CONTENTS OF FILE· 

In many business applications of computers, information in data files is maintained in 
alphabetic or numeric order. This can be done by customer number, customer name, 
product number, or some other key to filing. It is often necessary or desirable to 
merge the contents of two data files, both already in some order, to a make a third 
data file with the same order or sequence. A utility program to merge files also allows 
you to learn some nevv file .programniing techniques with wider applications. 

Follow these steps to merge two data files into one. 

(1) · Open the two files to be merged (#1 and #2). 
(2) Open, delete, and reopen the file (#3) that will contain the merged data. 
(3) Use ONERR to branch to step (10) if end-of-file is encountered for either file 

# 1 or file #2. · 
(4) Read the first dataset_ from file #1. _ 
(5) Read the first dataset from file #2. 
(6) Test datasets to see which file dataset (#1 or #2) is to be copied or printed to 

the merge file (#3). 
(7) Print the selected dataset to file #3; this requires two separate routines: 

(a) One if file #1 dataset is selected, or 
(b) Another if file #2 dataset is selected. 

(8) Read another dataset from whichever file's dataset was printed to file #3 in 
step (7); Again, two separate routines are needed: 
(a) Read another dataset from file #1, or 
(b) Read another dataset from file #2. 

(9) Again, separate routines are needed to "dump" or transfer the remaining data 
in file #1 or #2 to file #3: 
(a) If file #1 comes to end-of-file first, copy the remaining datasets ·in file #2 

to file #3, or 
(b) If file #2 comes to end-of-file first, copy the remaining datasets in file #1 

to file #3. 
(10) Close all files. 
(11) Optional routine to display merged data files for confirmation of a &uccessful 

merge. 



166 APPLE BASIC: DATA FILE PR.PGR,AMMING 

. . . 
The'model program merges two transaction files into a third larger file that 

combines. the other two. In the example, each transaction produces a dataset as 
· shown below. · 

Account number = five characters 
Transaction code = two characters (for a bank, 1 = check, 2 = deposit, etc.) 
Amount = seven characters · 

This data is contained in the files named TRANSACTION-I and TRANS
ACTION-2. Assume that the datasets are stored in two· data ftles each in ascending 
numerical order by account number ~roblem 3 in the Chapter 4 Self-Test). The goal 
is to produce ·a third file named TRANSACTION-MERGE that combines the data in 
the- firs~ two files, but maintains the numerical order when the file merging is com
plete. Also· assume that more than one. dataset can have the same account number in 
either or both data fdes •. - . 

This last assumption requires a decision. ·When merging, if two datasets have 
the same account number, the program will copy the dataset from file #1 first, then 
the dat11Set with the same number from file #2. 

FILE U FILE #2 

10762 10761 
18102 18203 
43611 43611 
43611 80111 
43611 80772 
80223 80772 
98702 89012 

File #3 (files # 1 an4 #2 merged into one) · 

10761 
10762 
18102 
18203 

.43611 
43611 
43611 
43611 
80111 
80223 
80772 
80772 
89102 
98702 

(Note: ·Only the account.numbers are shown here; the complete datasets also include 
transaction codes and amounts.) · 

While the outline provides the logic, structure, and flow Of the program, the 
summary of the program modules is given below to further aid your understanding of 
what may seem, at first, to .be a very complicated program. The modules are: 



Introduction 
Initialize 

SEQUENTIAL DATA FILE UTILITY PROGRAMS 167 

Read first datase( from file #1 
Read first dataset from file #2 
Compare datasets . 
Print one dataset from file # 1 to ·merged file 
Read subsequent dataset from file #1 
Print one dataset from file #2 to merged file 
Read subsequent dataset from file #2 
Copy leftover datasets from file #1. to merged file 
Copy leftover datasets from file #2 to merged file 
Close files · 
Open, display all datasets and close merged file 

This program is called Merge. It gets tricky, so read the text and program 
segments carefully. The initializing process is familiar; you should have no trouble 
completing steps 1 and 2 of the outline. 

100 
llD 
UD 
130 
140 
150 
180 
l?D 
180 
190 
zoo 
ZlD 

UD 
UD 
HD 
250 
HD 
no 
UD 
280 
3DD 
31D 

. 3ZD 
330 
340 
350 
380 
37D 

JIEH HEJICE FILES UTILITY PJIOCJIAH 

JIEH VAJIJAILES USED 
REH FlS,FZS,F3S = USER ENTERED FILE NAMES 
JIEH Alt,AZS a ACC'T NUHIEJllS CHAJI.> 
REH TH, TU ,. TRANSACTION CODE I 1 CHAR. l 
JIEH CH,CU •CASH AH'Tl9999.99 OJI 7 CHAJI. HU.> 
REH X • FOR NEXT LOOP CONTROL VARIABLE 
JIEH DS c COMTJIOL D 

REH FILES USED 
REH SEO. FILE NAMES: TJIAHSACTIOH-1, TJIANSACTION-Z, 
TJIANSACTION"'.HEJICE !ALL USEJI ENTERED>. 
REH DATAsET FOJIHAT: AS ,TS, Ct 

JIEH INITIALIZE 

LET Dt a CHRS 14> 
INPUT "ENTER SOURCE FILE l:";FH 
INPUT u ENTER SOUJICE FI LE z : " ; Fu 
INPUT HENTER OUTPUT !MERCED> FILE NAHE:";F3t 
HOME : PJIJNT "WOJllINC" . . 

PJIJNT Dt; "0PEN°FH 
. PRINT Dt;"OPEN°FU 

PRINT Dt;"OPEN"F3t 
PRINT Dt; "DELETE"FU 
PRINT Dt;"OPEN"F3t 

(a) Why is the OPEN-DELETE-OPEN sequence used for the F3$ ftle? 



168 · APPLE BASIC: DATAFILE PROG~G 

_(a) The other two files are·source files. F3$ (the merged file) 1s the only one to be 
written to, and this section of the program makes certain no extraneous data 
are in the file to begin with. 

Next, the fir8t dataset is read from file #1. Notice that the end-of-file error 
test is made· before the first. dataset is read, just in case the file has no data. This 

·corresponds to steps 3 and 4 of the outline. If file #1 is empty to begin with, 
GOTO 1010. 

HD 
31D 
fDD 
UD 
UD 
UD 

- HD 
45D 

REM READ SOURCE l 

ONERR GOTO -lDlD 
PRINT Dt; "READ" FU 
INPUT Alt,Tlt,Clt 
PRINT Dt 
LET Al • VAL tAlt) 

Line 440. coverts the string that ~ontains the account number into a numeric 
value. Nqw write the next segment corresponding to step 5 in the outlirte. The 
program ~ould read the first data item from file #2. Fill in lines 490, 500, 510, 
and 520. 

(a) 

(a} 

41D REM' READ SPURCE Z 
47D ·. 
41D ONERR GOTO IDD 
4H 
SDD 
SlD 
UD 
S3D 

UD. HM HAD SOURCE 
47D 
HD ONHR GOTO 9ilD 
HD PRINT DS · "RIAD"FZI 
SDD -INPUT uLTu,czs . 
SlD PRINT Dt 

.SZD LIT AZ• VAL CUtl 
S3D 

z 

.The next decision is which dat11.set - that from ftle #1 or that from file #2 -
will be copied into file #3 fir$t? This corresponds to step 6 in the outline. 

S4D 
SSD 
SID 
S7D 
SID 
SID 

REM MERGE TESTING 

IF Al • AZ THIN IZD 
IF Al < ·AZ THIN BZD 
GOTO 74D 

The program so far, as shown below, provides only for input of the first dataset 
from each of the two Ttles to be merged, and compares the numeric values of the 
account numbers. . 



lOll 
llD 
llD 
l3'D 
ltD 
15D 
18D 
17D 
18D · 
llD 
ZDD 
ZfD 

ZZD 
Z30 
UD 
ZSD 
UD 
Z7D 
UD 
280 
3DD 
31D 
UD 
33D 
HD 
350 
38D 
370 
38D 
3BD 
UD 
41D 
UD 
no· 
HO 
45D 
48D 
47D 
480 
490 
5DD 
SlD 
SZD 

. 530 
54D 
550 
580 
570 
580 
590 

SEQUENTIAL DATA FILE.UTILITY PROGRAMS 169 

REH MERGE FILES UTILITY PROGRAM 

REH VARIABLES USED 
REH Flt,FZt,F3t ··USER ENTERED FILE NAMES 
REH Alt,AZt • ACC 1 T NUHBER<S CHAR.> 
REH TH,TU •TRANSACTION CODEil CHAR.> 
REH Clt,CZt •CASH AM'T<llll.99 OR 7 CHAR. MAJ.> 
REH J •FOR HEIT.LOOP. CONTROL VARIABLE 
REH Dt • CONTROL D 

REH FILES USED . 
REH SEO. FILE NAMES: TRAHSACTJON-1, TRAHSACTIOH-Z, 
TRAHSACTION-HiRGE <ALL USER ENTERED> 
REH DATASET FORMAT: U,Tt,Ct 

REH INITIALIZE 

LET Dt • CHRt <4> 
INPUT "ENTER SOURCE FILE l:";FlS 
I~PUT "ENTER SOURCE FIU Z.: II ;FU 
INPUT. "ENTER OUTPUT <MERGED> FILE NAME: 11 ;FU 
HOME .: PRJ.NT "VDRXJNG" 

PRINT i:>t "OPEN"FH 
. PRINT Dt "OPEH .. ru 

PRINT Dt "0PEN"F3t 
PRINT Dt 0 DEi.ETE"F3t 
PRINT Dt "0PEN"F3t 

REH READ SOURCE 1 

ONE RR GOTO 1Dl0 
PRINT Dt; "READ°FU 
INPUT Alt,Tlt,Clt 
PRINT DS 
LET Al • VAL <Alt> 

REH READ SOURCE Z 

ONERR GOTO 900 
PRINT· DS; "READ" FU 
INPUT AZt,TZt,CZt 
PRINT Dt 
LET AZ • VAL <AZS> 

REM HER,GE TESTING 

IF Al = AZ THEN BZO 
IF.Al <AZ THEN SZD 
GOTO 700, 

(a) Look at lines 560 and 570. What shoul.d happen in the program routine that 
starts at line 620? 

(b) The program tests for equality in line 560. In line 570, the test was for Al less 
than A2. If both tests are false, what is the relationship. of Al to A2? 

(c) What should ha,ppen in the program routine at line 740 that fine 580 branches 
to? 



170 APPLE .BASIC: DATA FILE PR.OGRAMMIN(; . 

(a) The dataset from source file #1 is copied. 
(b) Al is greater thaii A2. 
(c) · The dataset from source file #2 to file #3 is printed. 

Continue with the file. copying .segment for copying a·dataset from file #1 to 
file #3.(outline step 7a). 

IDD REM PRINT fl TO 13, READ 11 
11D 
IZD PRINT Dt; "VRITE 11 J'3t 
13D PRINT AU; PRI.NT Tlt: PRINT CU 
HD PRINT Dt 

(a) After executing the above segment, the program should now read another dataset 
from file #1. You might want to have the program branch back to the routine 
at line 410 8.nd continue executing from there.· Why would this result in a 
program error? 

(a) The routine at line 410 read.s from file #1, but then continues to read another 
datas!lt from file #2, replacing the dataset already assigned to A2$, T2$, and 
C2$ without copying them to file #3. . -

The rest of this program segment is used for reading the next data item from 
fiie #1. This corresponds to outline step 8a . 

,. 

.IDD 
11D 
IZD 
13D 
HD 
ISD 
llD 
17D 
llD 
llD 
7DD 
710 

REM PRINT 11 TO 13, READ 11 

PRINT DS; 11VRITE 11 F3t -
PRINT Alt: PRINT Tlt: PRINT Clt 
PRINT .Dt 
OMERR GOTO l Dl D 
l'RINT Dt;"RIAD"FH 
INPUT Ale,Tlt,Clt 
PRINT Dt 
LIT Al • VAL CAlt> 
GOTO SID 

(a) When the pr<?gram finds the end of file #1, it branches to line 1010. Think 
ahead: What shoul~ happen in the routine at line 1010? · 



SEQUENTIAL DATA FILE UTILITY PROGRAMS 171 

(a) · Since all datasets have been read from file #1 and copied to file #3, all the 
remaining data from file #2 should be copied into file #3 (you'll see this 
routine soon). 

Here is the routine we need to copy a dataset from file #2 to file #3, and to 
read a new dataset from file #2. This corresponds to outline steps 7b.and 8b. 

720 
730 
740 
750 
180 
770 
780 
780 
800 
810 
820 
830 

REM PRINT IZ TO 13, READ IZ 

PRI1'!T DS; 11 \olRITE"FU 
PRINT AZS: PRINT TZS: PRINT CZS 
PRINT DS 
ONERR COTO IDD 
PRINT DS; "READ" FU 
INPUT AU,TU,CU 
PRINT DS 
LET AZ D VAL <AZ•> 
COTO 580 

Notice how carefully you must think through these file utility .programs. You 
are nearing the end; only a few more "clean up" routines are needed. Two similar 
routines are needed to copy or dump the remainders of file #2. to file #3, and file 
#1 to file #3; First, here are the program instructions that correspond to the outline, 
step 9a. 

#1. 

950 REM DUMP IZ TO 13 
BID : 
lDlD PRINT DS; "lolRITE"F3t 
1020 PRINT AU: PRINT TU: PRINT CU 
1030 PRINT DS 
1040 GOTO 970 
1050 

Line 1010 is branched to from lines 400 oi: 650 on end of file checks for file 

The rest is easy. Here is the complete routine. Check file #2 for end of file and, 
if encountered, dump any remaining file #2 datasets to-file #3 .. 

950 
980 
970 
980 
HD 
lDDO 
lDlD 
lDZO 
1030 
1040 
1050 

REM DUMP IZ TO 13 

ONERR GOT.O l'DBO 
PRINT DS; "READ" FU 
INPUT AU,TU,CU 

PRINT DS 
PRINT DS; "WRITE"F3S 
PRINT AZS: PRINT TZS: 
PRINT DS 
GOTO 970 

PRINT CU 

Write the corresponding routine to dump file #1 to file #3. The end of data 
error statement should branch to l~e 1080. Complete lines 860, 870, 880, 890, 900, 
910, and 920. 



172 APPLE BASIC: DATA FILE PROG~G 

(a) HD REM DUllP ll TO 13 
BSD 
880 
870 · uo· · 
HD 
9DD 
910 
no 
930 COTO 880 
940 

(b) The ONERR trap in lines 860 and 970 both branch to line 1080. What final 
routine should appear there? 

(a) 940 
BSD 
880 
870 

• 880 
890 
900 
910 
UD 
93-D 
940 

REif .DUMP ll TO I 3 

ONERR .COTO 1080 
PRINT Dt;"READ"FlS 
INPUT Alt,TJt,CJS 
PRINT llt 
PRINT .Dt; "VRITE"F39 
PRINT llt: PRINT TlS: 
PRINT 11t 
COTO BBD 

PRINT CH 

(b) . Close all files, since all data have been copied and merged. 

Once the files are closed, the program gives the user the option t9 display the 
contents of the merged files to verify that it did happen and to judge whether the 
program works.properly. In Merge all the activity takes place betwee~ the computer 
:inemoi:y and the disk with no evidence of the action appearing on the CRT screen . 
.You only see RUN, so did it really happen? The routine included at the end of the 

· complete listing of Merge lets you be sure (see 1150 thr01,igh 1330). 



100 
110 
lZD 
13 Ii 
HD 
150 
1110 
170 
180 
190 
zoo 
zio 
ZZD 
230 
240 
250 
260 
270 
Z80 
Z90 
300 
310 
3ZD 
330 
340 
350 
380 
370 
380 
390 
400 
410 
UD 

- 430 
440 
450 
480 
470 
480 
480 
SOD 
510 
SZD 
530 
540 
550 
580 
570 
580 
590 
BOD 
&10 
6ZD 
830 
640 
650 
880 
870 
880 
880 
700 
710 
720 
730 
740 
750 
780 

. 770 
780 
790 
800 
810 
BZD 
830 

SEQUENTIAL DATA FILE UTIUTY PROGRAMS 173 

REM . MERGE FILES UTILITY PROGRAM 

REM VARIABLES USED 
REM F lS, FU, FU = USER ENTERED FILE NAMES 
REM Alt,AZS m ACC'T NUMBER!5 CHAR.> 
REM TU,TU a TRANS.ACTION CODE!! CHAR.> 
REM CH,CZS "CASH AM'T!8999.88 OR 7 CHAR. MAJ.) 
REM X = FOR NEXT LOOP CONTROL VARIABLE 
REM DS = CONTROL D 

REM FILES USED 
REM SEO. FILE NAMES: TRANSACTION-!, TRANSACTION-Z, 
TRANSACTION-ME.RCE <ALL USER ENTERED> 
iEM DATASET FORMAT: AS,Tt,C~ 

REM INITIALIZE. 

LET DS = CHRS !4> 
INPUT "ENTER SOURCE .tILE l:";FlS 
INPUT "ENTER SOURCE F0ILE Z: .. ;FZS 
INPUT "ENTER OUTPUT !MERCED> FILE NAME:";F3$ 
HOME : PRINT "WORKING" 

PRINT DS "OPEN"FlS 
PRINT Dt "OPEN"FZS 
PRINT Df "OPEN"FH 
PRINT DS "DELETE"FU 
PRINT Dt "OPEN"F3S 

REM READ SOURCE 1 

ONERR GOTO 1010 
PRINT Dt; "READ"FlS 
INPUT Alf;TlS,Clt 
PRINT Dt 
LET Al a VAL !Alt> 

REM READ SOURCE Z 

ONERR GOTO 900 
PRINT Dt; "READ" FU 
INPUT AZt,TZS,CZS 
PJIINT Dt 
LET AZ a VAL UZS> 

REM MERGE TESTING 

IF Al ,. AZ TH!;N 6ZD. 
IF Al ( AZ THEN BZD 
COTO 740 

REM PRINT 11 TO 13, READ 11 

PJIINT Dt;"WilITE"F3S 
PRINT Alt: PRINT Tlt: PRINT ClS 
PJIINT Ds 
ONE RR COTO 1010 
PRINT DS; "READ"FH 
INPUT Alt,TlS,Clt 
PRINT Dt 
LET Al " VAL !AH> 
GOTO 580 

REM PRINT IZ TO 13, READ IZ 

PRINT Dt; "WRITE"F3S 
PRINT AZS: PRINT TZS: PRINT CZt 
PJIINT Df 

.ONERR COTO 800 
PRINT DS; "READ" FU 
INPUT AZS, TZf, CU · 
PRINT DS 
LET AZ " VAL CAU> 
GOTO 560 

co.ntinued on next page 



174 APPLE BASIC: DATA FILE PaOGRAMMING. 

840 · REii DUJIP 11 TO 13 
BSD : . 
880, OJllEBB GOTO 'lDID 
870 PRINT Dl;"READaFll 
880 INPVT.Alf,Tlt,Cll 
BID PRINT DI 
IDD PRINT Dt;"WRITEaF31 
110· PRINT AU: PRINT TU: PRINT CU 
no PRINT l>• 
131 GOTO BID 
HD : 
150 REM DUKP II TD 13 
HD: 
17D OJllERR GOTO lDID 
HD PRINT Dt; "READ"FU 
.HD. INPUT AU,TU,CU 
lDDD PRIJn' Df 
lDlD PRINT Dl;"WRITE"F3S 
lUD PRINT AU.: PRINT TU: PRINT CU 
lD3D PRINT Dt 
lD4D COTO- 17D 
lD5D : 
lDID RiK CLOSE FILES 
lD7D : 
lDID JF PE~X <Ill) a 5 THEN llDD 
lDID- PRINT_; PRINT CHIS (7);"UNUSUAL E'IROR. PROGRAM TERMINATED." 
llDD PRINT Dt;"CLOSE" 
-111D PRINT : PRINT ~.JOB COMPLETED." 

u:: : iEK BEQUEST TO DISPLAY MERGED FILiS 
ll4D ; 
ll5D PRINT : INPUT "DO YOU WANT TO SEE THE MERGED DATA?" ;Rt 
1180 IF LEFTS ("l,l> < > "N" AND LEFTS <Rt,l> < > "Y" THEN PRINT 

PRINT "ENTER 'lf" FOR YES OR 'N' FOR ND.": PRINT: GOTO ll5D 
1170 IF .... nyu THEN lUD 
1180 IF Rs •. "N" THEN l33D 
lllD ; 
llDD REM PRINT CONTENTS OF MERGED FILE 
lUD : 
JUD PRINT DS; "OPEN" FU 
1230 ONEii COTO 13ZD 
lHD PRINT DS; "READ"FIS 
lZSD 'INPUT AS,TS,Ct 
lUD PRINT Dt 
lZ7D PRINT AS,Ts,cs· 
lUD COTO 1240 

·.lZID : 
1300 REM CLOSE FILE 
1310 ; 
lUD PRINT Dt; "CLOSE" 
1330 END 

(a) Write the corresponding program line number(s) for e.ach step of the followmg 
outline. 

(1) Open the two fdes to be merged (#1 and #2). 

(2) Open, delete, and reopen the fde (#3) that will contain the merged data. 

· (3) Use ONERR to branch to step (9) if end-of-fde is .encountered for either 

ftle #1 or ftle #2. 

(4) Read the first dataset from file #1. 

(5) Read the first dataset from file #2. 



_SEQUENTIAL DATA FILE UTILITY PRQGRAMS 175 

(6) Test datasets to see which file dataset (#1 or #2) is to be copied or 

printed to the merge file (#3). 

(7) . Print the selected dataset to file #3; this requires two separate routines:· 

(a) One if file #1 dataset is selected, or 

(b) Another if file #2 dataset is selected. 

(8) Read another dataset from whichever file's dataset was printed in file #3 
· in step (7). Again, two separate routines are needed: 

/ 

(a) Read another dataset from file #1, 

------------or 

(b) Read another dataset from file #2. 

(9) Again, separate routines are needed to "dump" or transfer the remaining 
data in file #1 or #2 to file #3: 

(a) If file #1 comes to end-of-file first, copy the remaining datasets in 

file #2 to file #3, or 

(b) If file #2 comes to end-of-file first, copy the remaining datasets in 

file #1 to file #3. ----------------

(10) Close all files. ------------------

(11) Optional routine to display merged data files for confirmation of a 

successful merge. --------~----------

(a) (1) lines 320 and 330 
(2) lines 340 to 360 
(3) lines 400 and 480 
(4) lines 410 to 430 
(5) lines 490 to 510 
(6) lines 560 to 580 
(7) (a) lines 620 to 640 

(b) lines 740 to 760 

(8) (a) lines 660 to 680 
(b) lines 780 to 800 

(9) · (a) lines 970 to 1040 
(b) lines 860 to 930 

(10) line 1100 
(11) lines 1150 to 1330 

Enter and RUN the program, using the two data files named TRANSACTION-1 
and TRANSACTION-2 that you created in the Chapter 4 Self-Test, problem 4a. . 



176 APPLE BASIC: DATA FILE PROGRAMMING 

PROBLEMS WITH SEQUENTIAL DATA FILES 

You should be aware of some. frequent errors made in using sequential files and some 
programming techniques used for successful programs accessing data files .. 

The most frequent programming error is failing to keep track of the file pointers. 
Each time you use a file INPUT statement in a program, ask yourself how the file· 
pointer is. affected and where it is located before and after executing the statement. 

(a) How can you reset the datafile pointer to the beginning of a file? 

(a) Close the file. Pointer is at beginning of file when file is reopened. 

Another frequent error occurs when a program sequentially searches through a 
data file for a particular dataset or data item. Let's say you have a data file of names 
arranged alphabetically by last names. After you enter the name to be searcl!ed, the 
program searches through the file until it finds the name and then prints the informa- · 
tion on your printer for that person. Then you enter a second name. When Writing 
the program, ask yourself where the file pointer will be located after the first search. 
Assume. the first name searched and located is DORIAN SCHMIDT and the second 
name is HAMILTON ANDERSON. The data file search for the second name takes up 
where the search for the first name left off. The second name obviously will not be 
found before you reach the end-of-file. If the data file pointer was not reset to the · 
beginning of the file after ·the first search, ANDERSON will never be found because 
the file was in alphabetical order and the search for the second name .started at 
SCHMIDT. The solution, of course, is to make sure the program resets the pointer 
to the beginning o'f the file after every search, by using a CLOSE followed by an 
OPEN statement. 

(a) When a file has been partially read through during a data search, why must the. 
file pointer be reset to the beginning of the file before a new search of the file 
commences? 

(a) Because if the pointer is midway in the file ·and the new datum searched for is 
near the beginning of the file, the search would not find the datum. 



SEQ~ DATA FILE UTILITY PROGRAMS 177, 

Errors can also occur when the contents of arrays are copied into a data file, a 
topic mentioned earlier. The contents of a one- or two-dimensional array can be 

. copied into a file or read from a file back into an array, provided you use the correct 
programming techniques. Such data manipulation has many uses. There is a tendency 
to think of array data as something that is used up or consumed, but storing array 
data in a file gives it permanence. 

To load array data into a data file from a one-dimensional array: 

p (1) 

(2) 

(3) 

(4) 

(5) 

(6) 

1761 

18 

1942 

24 

8209 

2 

The correct procedure: 

ZDD PRINT Dt; "WRITE FILENAME" 
ZlO FOR X " l TO 8 
ZZD PRINT PCll · 
Z30 NEXT X 
UD PRINT DS 

Similarly, _to load array- data into a data file from a two-dimensional array: 

c 
(1,1) 

(2,1) 

(3,1)_ 

(4,1) 

(1,1) (1,2) (1,3) 

A c p 

N M s 
G H T 

B D E 

The correct procedure: 

300 PRINT DS;"VRITE FILENAME" 
310 FOR X " l TO t 
3ZD FOR y D 1 TO 3 
330 PRINT C!X,Yl 
HD NEXT Y 
350 NEXT X 
380 PRINT Dt 

(a) To read data into (or out of) an array from (or to) a data file,' what programming 

technique is used? 

(a) FOR NEXT loop 

Another useful technique deals with applications where data are to be added to_ 
a file. Let's say a client number needs to be assigned to a new client or customer as 

. part of a: new dataset. In a business environment, the new client number might be 
assigned by data preparation personnel or the data entry person, relying on a list or on 
their knowledge of what number was last used. However, if you let the computer do 
it you can avoid "human error" commonly rnislabeled·"computer error." In the data 



· 178 . APPLE BASIC: DATA FILE PROGRAMMING 

file and after any copy made for modification of the file, reserve the very first file 
data position for the next available client number. Then when new clients are added 
to the file, follow these steps. 

1. Read the first data item (next available client number) = N. 
2. Assign N to the next client. 
3. Increment N by 1 (or perhaps by +2 or +5 or +10 to leave room for future client 

data to be squeezed in) = Nl. 
4. - Then have the program place Nl as the first item in the temporary file. 
5. Copy the rest of the old file to the temporary file. 
6. Place the new client data in the temporary file. 
7. Copy the temporary file (including Nl} back to the old file. 
8. Repeat from step 1 for each new client. 

Using the first part of a data ftle to hold information needed by the program, 
followed by the regular data, is a broadly useful technique. For example, the contents 
of an array could be placed at the head or beginning of a file, followed by the main 
datasets that make up the ftle. This procedure prevents using a separate data ftle for 
array data that are a part of the ftle. Just don't forget.how the data ftle is set up, or 
some rather horrific file iriput errors could ensue. Such information should be in
cluded in the documentation prepared for each program and its corresponding data 
files. We recommend including the dataset format in the introductory module of all 
programs that deal with data ftles. 

A LETIER..,.WRITING PROGRAM 

The next sequential ftle application example is a letter-writing program you may find 
useful in your home or business. This application presents some new techniques and 
reviews others. 

Assume that you did the Chapter 4 Self-Test and have three form letters stored, 
in data files called LETTER!, LETTER2, and LETTER3. When these letters are 
printed, you want the program to put the inside address and salutation in the letter 
from data located in yet another sequential data ftle called ADDRESS. The ftle 
ADDRESS contains the names and addresses in the mailing list. The data have the 
format shown b~low, with each dataset containing five items in fields within one string. 

55 
/1 20/21 40/41 50/12/53 57/ 
~~~~~~~~~~~~~~~~~-

name address city state zip code

The salutation for each letter will be:

Dear resident of (name of city)

SEQUENTIAL DATA FILE UTILITY PROGRAMS 179

To print the letters on.your line printer, be sure to tum the printer on by using
PR#l or PR#2. See your system's reference material for details if you are unfamiliar,
with these instructions.

The program uses the CRT screen to enter which form letter (1, 2, or 3) you
want to send to each name on the mailing list. This program, then, uses four data
ftles (only two data files at a time), a line printer, and a CRT screen. If you don't
have a line printer, the program is easily adapted to have all the program output
displayed on a CRT screen. Some interesting techniques can be learned from this
example. · · ·

·Follow these steps for this particular program.

(1) Open the ADDRESS data file.
(2) Use ONERR to check for end-of-file for ADDRESS and if found; close all files

and end the program.
(3) · Input the address dataset and display the name.
(4) User entry option to select the form letter to this address (or to skip this

address), with data entry checks. I.f skipped, go to step (2).
(5) Open selected form letter file.
(6) Print inside heading address.
(7) Print salutation with addressee's last name.
(8) Use ONERR to check for end-of-file for letter file and if found,

(a) close that form letter file, and
(b) repeat from step (2).

(9) Input a dataset (one line of text from the letter file) and print it.
(10) Repeat steps (8) and (9).

Look at the introductory module of the program. The ADDRESS file is opened
and, as indicated in the line 290 remark, the LETTER files are user selected and
opened when selected.

lDD
llD
lZD
130
HD
150
lBD
170
lBD
llD
zoo
UD

UD
UD
HD
no
ZBD.
270
ZID
ZID
300
310
3ZD
330
340
350
3&0
370

REM LETTER WRITINC PROCRAM

REM VARIABLES USED
REM NI • FIELDED ADDRESS STRJNC
REM Rf • USER RESPONSE
REM Tl • LETTER FILE TEIT STRJNC
REM Ff • FILE NAME ·
REM DS • CONTROL D
REM FILES USED .
REM SEO.FILE NAME: ADDRESS
REM DATASET FORMAT: ONE FIELDED STRINC
REM SEO.FILE_NAMES; LETTER.!, LETTERZ, LETTERZ CNUMBER FOR FILE

NAME JS USER SELECTED>
REM DATASET FORMAT: ONE OR MORE LONC STRINCS

REM INITIALIZATION

LET DI • CHRS C4>
PRINT DI; "OPEN ADDRESS"

REM LETTER FILE IS USER SELECTED AND OPENED WHEN NEEDED

REM READ NAME/ADDRESS

ONERR COTO 850
PRINT DS;"READ ADDRESS"
INPUT NS
PRINT DS

. 180 APPLE BASIC: DATA FILE PROGRAMMING

The program assigns the first name and address dataset stririg to variable N$ in .
line 350. Notice that the program tests for the end of ftle marker before the first
datum is read from the file. Always i,Ilclude this ONERR strategy in your programs
dealing with sequential data files. ·

Now it's your tum. Have the program display the· party's name on the CRT,
and then ask the user to select the letter to be printed to this party. Fill in lines
410, 440, and 450.

(a)

(a)

31D REM DISPLAY NAME/LETTER REQUEST
39D
4DD HOME
UD
42D PRINT "ENTER l, Z, OJI 3 TO SELECT LETTEJll,.LETTEJIZ, OJI LETTER3 FOR

ABOVE ADRESSEE. II .

43D INPUT "ENTER '9,' TO SXIP ABOVE ADDRESS:" ;Rt
HD
45D
HD

38D Jl~M DISPLAY NAME/LETTER REQUEST
39D
4DD HOME
41D PRINT LEFTt !Nt,ZD): PJIINT
4ZD PRINT "ENTER l, Z, OJI 3 TO SELECT LETTERl, LETTEJIZ, OJI LETTEJl3 FOR

ABOVE ADDRESSEE."
4 3 D INPUT II ENTER ' 9 ' TO Sil p ABOVE ADDRESS; II i R.
440 IF JI.$.. 11 8 11 THEN 34D
45D IF VAL <RS> (l OJI VAL <RS> > 3 THEN PRINT ;,EJtROJI. LETTERS 1-3

ONLY. II: GOTO 42D
48D .; . .

Examine the following routine for creating the name of an existing data file.

47D
48D
49D
50D
51D

JIEM INITIALIZE LETTER FILE

LET FS ., "LETTER" + Rt
PRINT DS;"OPEN"FS

(a) If the user enters 2 in response to lirie 430, what file name is created and
assigned to F$?

(a) LETTER2 (Note the string concate~ation in line 000)

SEQUENTIAL DATA FILE UTILITY PROGRAMS 181

. Write the inside address printing statements (to be printed by the line printer).
Fill in lines 560, 570, and 580. ·

(a)

(a)

520 REH PRINT INSIDE ADDRESS"
530 :
540 PR'JNTDS;"PR11"
550 · PRINT : PRINT : PRINT
580
570
580
580 :

REH PRINT INSIDE ADDRESS"

PRINT DS;"PRtl"

5ZO
530
540
550
580
570
580
590

PRINT : PRINT : PRINT
PRINT LEFTS <NS,ZOl

.PRINT HIDS <Nt,Zl,ZD>
PRINT HJDS <NS,41,10>, HJDS <N9,5l,Z>, RIGHTS CNS,5>

'This next routine prints the salutation. Notice how the city name is extracted
from N$ in line 630. ·

800
81D
BZO
830
84D

REH PRINT SALUTATION

PRINT : PRINT
PRINT "DEAR RESIDENT OF "; HJDS <NS,41;10>

(a) For practice, write a BASIC statement that would print this alternate salutation:
HELLO IBERE ALL YOU FOLKS AT (street address)

. (a) 830 PRINT "HELLO THERE ALL YOU FOLi! AT "; HJDS <NS,Zl,ZO>

The next routine to print the text of the letter is fairly straightforward. The
data input loop continues until that file data are e.xhausted. Assume that all line feeds
and carriage returns are includt'!tf with the text in the data ftle.

182 APPLE BASIC: DATA FILE PROGRAMMING

650
610
670
880'
&BO
700
710
720
730
740
750
7irO
770
780
790
800

810

(a)

'(b}

REM PRINT TEJT OF LETTER

ONERR COTO 780
PRINT DS;"PRIO"
PRIN.T DS; "READ''Ff
INPUT TS
PRINT DS
PRINT DS; "PRll"
PRINT TS .
COTO 880

REM CLOSE LETTER FILE AND RETURN FOR NEXT ADDRESS

PRINT Dt;"CLOSE"FS
IF PEEX.<ZZZ> • 5 THEN 810
PHI-NT : PRINT CHRS <7> ;"UNUSUAL ERROR. PROGRAM TERMINATED.-": PRINT
COTO 850
COTO. 330

Give two reasons for closing the letter file in line 780.

Without checking back, what happens in the routine starting at line 330, which
l.s branched to from line 810 GOTO 330?

(a) Resets the pointer so that the letter can be used again, and only one OPEN
statement is needed for all letter files

(b) . End-of-data tests and next name and addfess data set are read.

And now, you write the last routine necessary to properly complete this program
by completing line 850.

(a)

(a)

830
840
850
880

REH CLO~£ ADDRESS FILE

PRINT "JOB ,COMPLETED"

830 REH CLOSE ADDRESS FILE
840
850 PRINT DS;"CLOSE"
880 PRINT "J_OB COMPLETED"

lDD
llD
lZD
l3D
l4D
UD
llD
17D
llD
19D
ZDD
ZlD

ZZD
UD
Z4D
UD
ZID
Z7D
ZID
UD
3DD
310
3ZD
330
34D
350
38D
37D
38D
390
400
4l0
420

430
HD
uo
OD

SEQUENTIAL DATA FILE UTILITY PROGRAMS 183

FolloWing is a complete listing of the letter-writing program.

REM LETTER WRITING PROGRAM

REM
REM
.REM
REM
REM
REM

- REM
REM
REM
REM
NAME
REM

VARIABLES USED
NI a FIELDED ADDRESS STRING
RI • USER RESPONSE
TS • LETTER FILE TEXT STRING
Fl • FILE NAME
DI • CONTROL D

FILES USED
SEO.FILE NAME: ADDRESS
DATASET FORMAT: ONE FIELDED STRING
SEO.FILE NAMES: LETTERl, LETTERZ, LETTERZ-<NUMBER FOR FILE

IS USER SELECTED>
DATASET FO.RMAT: ONE O.R MORE LONG STRINGS

REM INJTJALJZATJON

LET Dt a CHRI <4>
PRINT Dl;"OPEN ADDRESS"

REM LETTER FILE JS USER SELECTED AND OPENED WHEN NEEDED

.REM READ NAME/ADDRESS

ONE RR GOTO 85 D
PRINT Dt;"READ ADDRESS"
INPUT NI
PRINT Dt

REM DISPLAY NAME/LETTER_REOUEST

HOME
P.RJNT LEFTS <Nt,ZD>: PRINT
PRINT "ENTER l, Z, OR 3 TO SELECT LETTERl, LETTERZ, OR LETTER3 FO.R
ABOVE ADD.HESSEE."
INPUT "ENTER 'I' TO SKIP ABOVE ADDRESS:";Rt
IF RS • "9" THEN 34D
JF · VAL <Re> (l OR VAL !RI> > 3 THEN PRINT "ERROR. LETTERS l-3
ONLY.": GOTO UD

470 REM
49D :

JNJTJALJZE LETTER FILE

490 LET Ft a "LETTER"·+ RI
5DD · PRINT DS; "OPEN"Ft
510 :
5zo- REM
53D· :

PRINT JNSJDE ADDRESS"

54D PRINT Dt;"P.Rll"
·55D PRINT : PRINT : PRINT
580 PRINT LEFTS !NS,ZD>
57D PRINT MIDS <NS,Zl,20>
58D PRINT MIDI !Nl,41,JD>, MIDI !Nt,51,Z>, RIGHTS !Nf,5>
580 :
&DD REM
61D :

PRINT SALUTATION

BZD P.RINT : PRINT
630 P.RJNT "DEAR RESIDENT OF "; MIDI !Nl,U,10)
840 :
850 REM
880

PRINT TEJT OF LETTER

870
880
890
7DD
71.D
7ZD
73D
74D
750

ONERR GOTO 780
PRINT Dl;"PRID"
PRINT Dl;"READ"FI
INPUT Tt
PRINT DI
PRINT bS; "PRll"
PRINT Tl
GOTO 88D

continued on next page

18'4 APPLE BASIC: DATA FILE PROGRAMMING

710
710
780
78D
.80D .

810
UD
830
840
850
880

REH CLOSE LETTER FILE AND RETURN FOB ~EXT ADDRESS

PBIHT Dt ; 11 CLOSE 11 Ft
IF PEEK <222> • 5 THEN 810 _
PRINT : PRINT CHBt C7 >;"UNUSUAL EHOB. PROCRAH TERMINATED."; PRINT
COTO 850
COTO 330

REH ·CLOSE ADDRESS ·FILE

PBIHT DS;"CLOSE"
PRINT "JOB COMPLETED"

Enter and RUN the program. If you are not using a printer, modify lines 540,
680, and 720. Be sure the disks with the ADDRESS and LETTER files are in the
disk drive.

CHAPTER 5 SELF-TEST

1. Write a program to make· a copy of the ADDRESS file that you created in the
Chapter 4 Self-Test, problem 5, and that you used in the letter-writing program.
Name the copy file ADDRESS COPY. Include a routine to display the contents
of ADDRESS COPY to verify a successful copy ..

100 REH
110 REH
lZO REH
130 REH
140 .REH
150 REH
180 BEH
170 REM

COPY PROCHAK FOR 'ADDRESS'
VARIABLES USED

NS • CONCATENATED DATASET
Rt a USER RESPONSE
Dt • CONTROL D

· FILES USED
SEO. FILE NAMES: ADDRESS, ADDRESS COPY
DATASET FORMAT: NS <BOTH FILES>

SEQUENTIAL DATA FILE UTILITY PROGRAMS 185

186 APPLE BASIC: DATA FILE PROGRAMMING

2a. Write a program that you can use to create a sequential data file whose items are
the titles of computer magazines. Use the program to create two separate files,
named MAGLISTl and MAGLIST2, using the titles given below. Maintain
alphabetical order of the data items within each file.

File One: File Two:
BYTE Magazine
Compute

Creative Computing
DATAMATION
Interface Age Dr. Dobbs Journal

Kilobaud Microcomputing
Recreational computing

ON Computing
Personal Computing

100 JIEM
110
lZO JIEM
130 REM
140 JIEM
150 REM
110 REM
170 REM

180 REM
190

CREATE MAGAZINE TITLE FILES

VAJIIABLES USED
MS a MAGAZINE TITLE
.Ft • USEJI SELECTED FI LE NAME
Dt " CONTROL D
FILES USED

SEO. FILE HAMES: MAGLISTl, MAGLISTZ <USEJI SELECTED AND
EHTEJIED>
DATASET FORMAT: ·MS CONE STRING FOR TITLE>

SEQUENTIAL DATA FILE UTILITY PROGRAMS 187

188 APPLE BASIC: DATA FILE PROGRAMMING

2b. Write a program that can display the contents of the_ user-selected file of
magazine titles, including either MAGLISTl or MAGLIST2. Use the program
to verify the contents of the files mentioned.

JOO. BEM
llO
UO BEM
130 BEM
lfO BEM
l50 REH.
l60 BEH
l70 BEM

180 REH
l90

READ/DJSPL.AY HAGLIST FILES

VABIABLE.S. USED
Ht = MAGAZINE TITLE
Ft c U.SEB .SELECTED FILE NAME
Dt '" CONTROL D
FILES USED

SEQ. FILE NAMES: MAGLI.STl, MAGLJSTZ CU.SEB SELECTED AND
ENTEBED>
DATA.SET FOBMAT: HS CONE STRING FOR TITLE>

SEQUENTIAL DATA FILE UTIUTY PROGRAMS 189

2c. Write. a program to merge into one alphabeticlilly organized sequential data file
the contents of MAGLISTl and MAGLIST2. These two files should have their
own data organized alphabeti~ally w!thin each file. Name the merged file
MAGLISTMERGE. Include a routine at the end of this program (similar to the
program from Chapter 5, Self-Test question 2b) ·to automatically display
MAGLISTMERGE to verify a successful and complete merge. Refer back to
this chapter for guidelines to organizing your program.

100 REH
110
120 REH
130 REH
140 REH
150 REH
lBO REH
170 REH
180
190 REH
200

SOLUTJOH TO CH5 SELFTEST PROB ZC

VARI BLES USED ·
HlS, HZS'= HACAZINE TITLES
DS = CONTROL D .

FILES USED
SEO. FILE .NAHES:HACLISTl, HACLJSTZ, HACLJSTHERCE
DATASET FORMAT: HS <ONE STRINC DATASET; ALL FILES>

J.NJTIALJZE

190 APPLE BASIC: DATA FILE PROGRAMMING

,_

SEQUENTIAL DATA FILE UTILITY PROGRAMS 191

3. Write a program that allows you to enter a list of household maintenance tasks
to be done into a sequential data file, and allows you to add to or delete from
the data file using a temporary file for the updates. Name the source file
WORK REMINDER and the temporary file TEMPFILE ..

100 JIEM
110
lZO JIEM
130 JIEH
ltO JIEM
150 JIEM
110 JIEM
170 REM
lBD
19D JIEM
200

SOLUTION CHS SELFTEST PJIOB 3

VAJIJABLES USED
AS • WORX DESCRIPTION
Rt • RESPONSE VARIABLE
DS a CONTJIOL D

FILES USED
SEO. FILE NAMES: WOJIX JIEMINDEJI, TEMPFILE

DATASET FOJIMATS: AS IONE STJIING, SAME FOJI BOTH FILES>

192 APPLE BASIC: DATA FILE PROGRAMMING

1.
lDD
llD
lZD
13D
HD
lSD
llD ·
l7D
llD
llD
ZDD
UD
UD
UD
HD
ZSD
UD
Z7D
UD
UD
3DD
31D
UD
33D
HD
35D
38D
37D
38D
39D
HD
41D
UD
43D
HD
fSD
48D
070
480
49D

500
51D
52D
53D
54D
55D
SID
57D
58D
580
BDD
BlD

SEQUENTIAL DATA FILE UTILITY PROGRAMS 193

Answer Key

REJI COPY PROGRAM FOR 'ADDRESS'
REM VARIABLES USED
REM Ht • COHCATEHATED DATASET
REM Rt • USER RESPOHSE
REM DS • COHTROL D
REM FILES USED
REM SEQ. FILE HAMES: ADDRESS, ADDRESS COPY
REM DATASET FORMAT: Ht <BOTH FILES>

REM IHITIALIZE

HOME : PRIHT
PRINT "FILE COPYJNC JN PROGRESS."
LET Dt • CHRS 14>
PRIHT Dt;"OPEN ADDRESS COPY"
'PRIHT Dt; "DELETE ADDRESS COPY"
PRIHT Df"OPEN ADDRESS COPY"
PRJHT Dt;"OPEH ADDRESS"
OHERR GOTO 42D

REM COPYIHG ROUTIHE

PJIIHT Dt; "READ ADDRESS"
INPUT Ht
PRIHT Dt
PJIIHT Dt; "VJUTE 'ADDRESS COPY"
PRJHT Ht
PRJHT Dt
COTO 320

REM CLOSE FILES

PRIHT Dt; "CLOSE"
PRJHT "FILE COPIED AND CLOSED."

REM DISPLAY OPTION

PR~ . . .
IHPUT "WOULD YOU LIXE TO SEE .THE COPIED FILE CY OR N> ?";RS
IF Rt< > "Y" AHD Rt< > "H" THEN PRIHT CHRS <7>;"TYPE 'Y' FOR YES
OR 'N' FOR NO.": PRINT: GOTO 48D
IF Rt D "N" THEN ilO
OHERR COTO 5 90.
PRIHT
PRIHT Dt;"OPEN ADDRESS COPY"

. PRJHT Dt; "READ ADD.RESS COPY"
IHPUT Ht
PRINT Dt
PRIHT Ht
PRJHT : COTO 540
PRIHT Dt; "CLOSE"
PRJHT "END OF COPIED FILE"
EHD

194 APPLE BASIC: DATA FILE PROGRAMMING

2a. lDD
llD
12D
13D
14D
150
llD
17D

llD
19D
ZDD
ZlD
ZZD
Z3D
Z4D
250
ZBD

. Z7D
ZBD
ZID
300
31D

320
33D
340
350
36D
370
38D
39D
40D
41D
42D
430
44D

2b. lDD
110
120
13D
140
150
180
17D

lBD
19D
2DD
210
ZZD
23D
Z4D
250
ZID
270
ZBD
ZID
3DD
31D.
32D
330
34D
35D
3BD
370
380
39D
40D
410

REM .CREATE MAGAZINE TITU FILES

REM VARIABLES USED
REM . MS • MAGAZINE TITLE
REM Ff • USER SELECTED FILE NAME
REK DS = ,CONTROL D
REM FILES USED
REM SEO. FILE NAMES; MAGLISTl, MAGLISTZ CUSER SELECTED AND

ENTERED> .
~EM DATASET FOJIMAT: KS CONE STRING FOR TITLE>

REM INITIALIZE

LET DS = CHRS C4)
INPUT "ENTER FI LE NAKE: "; FS

·PRINT DS; "OPEN"FS

REM DATA ENTRY ROUTINE

HOME
PRINT "ENTER '8' IF NO KORE TITLES."
INPUT "ENTER TITLE:";MS
IF LEN CMS> " D. THEN PRINT : PRINT CHRS C7>; "PLEASE ENTER AS
REQUESTED.": PRINT: COTci3DO
IF Mt " "9" THEN 430

REM WRITE TO FILE ROUTINE

PRINT Dt; "VRITE"F9
PRINT MS
PRIN.T DS
COTO 280

REM CLOSE FI LE

PRINT DS;"CLOSE"FS
PRINT "FILE CLOSED"

REM READ/DISPLAY MACLIST FILES

REM VARIABLES USED
REK KS = KACAZINE TITLE
REM FS = USER SELECTED FILE NAME
REK DS = CONTROL D
REM FILES USED
REM SEO. FILE NAMES: MACLISTl, MACLIST2 CUSER SELECTED AND

. ENTERED>
REM DATASET FORMAT: MS CONE STRING FOR TITLE')

REM INITIALIZE

LET DS = CHRS 14)
INPUT "ENTER FILE NAME:";FS
PRINT DS;"OPEN"FS

REM 'READ/DISPLAY ROUTINE

PRINT
ONERR COTO 380
PRINT DS; "READ"FS
INP·UT MS
PRINT DS
PRINT Kt
COTO 3DD

REM CLOSE FILE

IF PEEX 12ZZ> • 5 THEN 4DD
PRINT; PRINT CHRS <?>;"UNUSUAL ERROR. PROCHAK TERMINATED."
PRINT DS;"CLO.SE"FS .
PRINT : PRINT "FILE CLOSED"

SEQUENTIAL DATA FJ:IJJ;um,.ITtP.:gOORAMS 195

2c. · 100 .REM SOLUTION TO CHS SELFTEST P.ROB ZC
110 :
120 JIEM VA.RIBLES USED
130 REM MlS, MZS a MACAZINE TITLES
ltO .REM DS = CONTROL D
15D REM FILES USED
lBD JIEM SEO. FILE NAMES:MACLISTl, MACL'ISTZ, MACLISTMEJICE
17D REM DATASET FORMAT: MS <ONE STRJNC DATASET, ALL FILES)
18D : .
190 .REM INITIALIZE
ZDD :
ZlD HOME : PJII.NT : PRINT "WORXINC"
ZZD LET DS = CHRs· !t)
Z3D PJllNT DS; "OPEN MACLISTl"
ztD PRINT DS; "OPEN MACLJSTZ"
250 PRINT DS;"OPEN MACLJSTMERCE"
280 PRINT DS; "DELETE MACLJSTMERCE"
Z7D PJIINT DS;"OPEN MACLISTME.RCE"
280 :
290 .REM JIEAD DATASET FJIOM FILE i
3DO -:
310 ONE.RR COTO 870
32D PRINT DS;"READ MACLISTl"
330 INPUT MH
HD PRINT DS
350 :
31D .REM .READ DATASET F.ROM FILE Z
37D : -
38D ONE.RR COTO 770
38D PRINT DS; "READ MACLISTZ"
tDD INPUT MU
UD PRINT DS
UD :
t3D .REM COMPARE FO.R ALPHABETICAL ORDER
HD: .
UO IF MH < MU THEN 510
41D IF MlS >.MZS THEN BZD
t7D COTO 510
48D : .
UO REM W.RJTE FILE l ITEM TO ME.RCE, THEN READ FILE l
SDD : .
510 .PRINT DS;"WJIJTE MACLISTMEJICE"
5ZD PRINT MlS
530 PRINT I!f
540 ONEJIJI COTO. 88D
550 PRINT DS; "READ MACLISTl"
5BD INPUT HlS
570 PRINT Dt
58D COTO 45D
590 :
BOO REM WRITE FILE Z ITEM TO MERCE, THEN READ FILE l
81D :
820 PRINT Dt;"WJIITE MACLISTMERGE"
830 PRINT JfZS
HO PRINT Dt
850 ONEJIR COTO 77D
BIO PRINT .Dt; "READ MAGLlSTZ"
B7D INPUT JIU
880 PRINT .Dt.
BID COTO UD
700 :
710 REM DUMP REMAINING FILE l TO MERGE
7ZD : .
73D ONEJIJI GOTO ISO
7tD PRINT .Dt;"JIEAD MACLlSTl"
750 INPUT MH
78D PRINT DS
770 PRINT DS;"W.RITE MAGLISTMEJIGE"
78C PRINT JflS
780 PHI.NT Dt
80D COTO 73D
llD

continued on next page

. 196 APPLE BASIC: DATA FILE PROGRAMMING

820.
830
800
850
880
870
880
890
900
910
9ZO
930
940
950
HO
970
980
990
1000
1010
1020
1030
1040
1050
108.0
1070
lOttO
1090
1100

REM DUMP REMAINING FILE 2. TO MERGE

ONE RR GOTO IS 0
PRINT DS; "READ MACLIST2"
INPUT MU.
PRINT DS
PRINT Dt; "WRITE MAGLISTMERGE"
PRINT MU
PRINT ·Ds
GOTO 840

REM CLOSE· FILES

PRINT DS;"CLOSE MAGLISTl"
PRINT Dt;"CLOSE MACLISTi"
P~INT Dt;"CLOSE MAGLISTMERGE"

REM DISPLAY MERGED DATA

PRINT
ONERR COTO 1090
PRINT DS;"OPEN MAGLISTM.ERGE"
PRINT DS;"READ MACLISTMERCE"
INPUT MS
PRINT DS
PRINT MS
COTO 100
PRINT DS;"CLOSE MAGLISTM.ERC.£ 11

PRINT: PRINT "FILE DISPLAYED AND CLOSED."

3. lDD
110
lZO
130
lH
150
180
170
180
190
200
UD
no
UD
240
250
no
270
280
UD
300
3lD
UD
33D
34D
35D
38D
370
380
310
400

UD
4ZD
f30
440
450
480
f?D
480
48D
5DD
510
520

530
540.
55D
510

570
58D
590

.BOD
810
820
830
84D
850
680
670
BBD
690
700
710

SEQUENTIAL DATA FILE UTIUTY PROGRAMS 197

REM SOLUTION CH5 SILFTEST PROB 3

REM VARIABLES USED
REM A• m WORK DESCRIPTION
JIEM JIS • RESPONSE VARIABLE
REM Dt • CONT-ROt D
REM FILES USED .
REM SEO. FILE NAMES: WORK REMINDER, TEMPFILE

JIEK DATASET FORMATS: At <ONE STRINC,· SAHE FOR BOTH FJtES>

REM . INITIALIZE

LET D• • CHR• (4)
PRINT Dt; "OPEN. WOJIK REMINDER"
PRINT D•; "OPEN TEMPFILE"
PRINT Dt; "CLOSE TEMPF I tE"
PRINT D•;"OPEN TEMPFILE"

REM READ/DISPLAY FILE DATA

HOME
PRINT "TYPE 'D' TO DELETE.AN ITEK"
PRINT "PRESS 'RETURN' TO DISPLAY NEIT ITEM."
ONEH COTO 540
PRINT D•; "READ WORK REMINDER"
INPUT At
PRINT D•
PRINT At
INPUT "";st
IF st < > ""AND H C > "D".THEN PlRJNT CHRt C7>;"PtEASE TYPE 'D'
TO DELETE THE ITEM DISPLAYED ABOVE, OR PRESS 'RETURN' TO DISPLAY THE
NEIT ITEM.": COTO 390
lF H • "D" THEN PRINT At;" JIEMOVED FROM LIST.": PRINT: COTO 350

REM ROUTINE TO RETAIN DATA ITEM

PRINT Dt; "WRITE TEMPFILE"
PRiNT .U
PRINT Dt
COTO 350

JIEH ROUTINE TO ADD ITEMS TO FILE
IF PEEK CUZ> ,;; 5 THEN. 530
PRINT: PRINT CHRt C7);"UNUSUAt ERROR. PROCRAM TERMINATED.": PRINT
COTO BSD
HOME
HOKE : PRINT
INPUT "DO YOU WISH TO ADD ANOTHER ITEM CY OR N>P";Rt
IF Rt < > "Y" AND Rt C > "N" THEN. PRINT CHRt C7>;"PLEASE TYPE 'Y'
FOR YES OR 'N' FOR NO.•: COTO 550 -
ft Rt m ••N" THEN 8'0
PRINT
INPUT "ENTER NEW ITEH:";At
PRINT Dt;"WRITE TEHPFitE"
PRINT At
PRINT Dt
COTO 540

REH CLOSE FILES, RENAME TEMPFILE

PRINT D•;"CLOSE TEHPFILE"
PRINT Dt;"CLOSE WORK REMINDER"
PRINT Dt; "DELETE WORK REMINDER" ·
PRINT DS;"R.ENAME TEMPFltE,WORX REMINDER"
PRINT ; PRINT "FILE CLOSED"

CHAPTER SIX

.Random Access Data Files

Objectives: When you complete this chapter, you will be able to create, verify, copy, and
change random access disk data files. You will also be able to convert sequential files
to random access files. The random access file manipulating statements you will use
are similar to those used with sequential files and, therefore, should be familiar to you.

WHAT IS A RANDOM ACCESS FILE?

A random access data file is a disk file divided into sections called records. Each
record can contain one complete dataset.· The typical random access data file format
of placing only one entire dataset into each record makes finding and changing data
easy .. The structure also allows for fast access of data, whether located in the first or
last record in the file. These two strengths of random access files are the greatest
weakness of sequential data files.

· . Random access f!Jes use the same BASIC file manipulation statements as sequen
tial files. The only difference in statement formats is the provision for the record
number and the length of the record. Random access files on your APPLE computer
use what is called a variable length record. This means that the programmer deter-

. mines how long, in bytes, the records for the file will be. Once established, each
record in the file has the same length.

The length of the record is dependent on the amount of data_in the dataset be
ing written to the file. In Chapter 4 we discussed the storage requirements of data
that are placed in the file. With random access files it is imperative that you plan your
file structure based on storage requirements or you will experience file errors. To
review, the storage requirement for string information is one byte per character in the
string, plus one byte for "overhead." If you include a twenty-character name in each
dataset, then each name will occupy, at most, twenty-one bytes of storage. Numeric
information works the same way: one byte per character in the number, plus one
byte for "overhead." A numeric integer value of 1 through 999 tiikes a maximum of
four bytes in a random access file: t:\lree for the number, plus one for "overhead." A
value such as 542.45 has 6 characters (counting the decimal point), and will take seven
bytes, including "overhead."

198

RANDOM ACCESS DATA FILF.s 199

(a) In a random access file application that uses a twenty-character name, a twenty
character address, and a twelve-character phone number string, how large will the

record need to be in bytes?

(a) SS bytes

. For each random access file, you will need to compute the record size based on
the dataset that is used for that file. It is important that you indicate the record size
in the introductory module of your program so that the record size is permanently
recorded somewhere. Once a file program is written, there is no instruction that will
help you find the record size. You should include the 'record size ~the introductory
module of the program, and in any other documentation you prepare. This is as im
portant as documenting the dataset formats; it should not be taken lightly.

The variable-size record available in APPLESOFT BASIC means that the use of
diskette space is very efficient. Other computers use a fixed-size record length of 2S6
bytes. In those systems, if the dataset only uses fifty bytes; the remaining 206 bytes
in the record are wasted, and much valuable disk storage space goes unused~ This will
not be the case in your APPLESOFT programs where you will tailor the record size to r .

the dataset used in each random access file.
Random access files require more planning and more carefully designed systems

for organizing and using data. Once planned, random access files may require much
less programming to accomplish the same activities as sequential files. Random access
files are best used when the data in the files will change frequently. This might be the
case with a customer charge account file or when you have a large data base, such as a
credit information file that will be accessed in no particular order (randomly). For
large scale applications, you may find yourself designing systems that use both sequen
tial files and some random access files.

(a) What are two advantages of randoni access. files over sequential files?

(a) Fast access to all datasets (records), regardless of position within the file, and
ease of changing data within a particular dataset or record.

\

200· APPLE BASIC: DATA FILE PROGRAMMING

INITIALIZING RANDOM' ACCESS FILES
. . .

For random access files, the OPEN statement serves the same purpose of opening the
file and assigning the buffer. In addition, the OPEN statement indicates the length of
the file records in bytes. The format of the OPEN statement for random access files
is as follows:

JU PRINT Dt;"OPEH FILEHAME,L5D"

HD PRINT Dt;"OPEH"Ftt:)5D"

Notice the unusual punctuation in line 130 above. The comma is an integral and
essential part of the OPEN statement. Therefore, :it must be included inside the quota- .
tion marks, as shown in lines 120 and 130, You will NOT get an error message if you
use an incorrect format in the OPEN statement. However, you will not open the file
the way you intended either, so enter these statements carefully. Notice how a file
name assigned to a string variable (F$) is outside the quotations that enclose "OPEN"
and ",LSO" in line 130.

·(a) What is the record length in the OPEN statements above?· _______ _

(a) Fifty bytes

SIMPLE READ AND WRITE OPERATIONS TO RANDOM ACCESS FILES

Our first random access file application is to create an inventory of repair parts. The
dataset llicludes a six-digit product number entered as a string, a product description of
twenty characters;and a numeric quantity that will be no larger than 999, with no
fractional amount.

(a) What is the record size needed for this application? ----------

(b) Here is the introductory module. Complete the OPEN statement by filling in
line 310.

RANDOM.ACCESS DATA FILFS 201

2 :
lOO REM INVENTORY RANDOM FILE
110.
lZO REM VARIABLES USED
130 REM Nt • PRODUCT NUMBER C&l
140 REM Pt a PROD. DESCRIPTION CZOl
150 REM Q aOUANTITY C<a999l
180 ·REM Dt a CONTROL D
170 REM Rl • RECORD COUNT
180 RE)f. . RS • USER RESPONSE
190
ZOO REM FILES USED
ZlO REM RANDOM ACCESS FILE NAME: INVEN
ZZO REM RECORD SIZE: 32 BYTES
Z30 REM DATASET FORMAT:NS,Pt,Q
UO
Z50 REM INITIALIZE
ZSD
Z70 LET Rl " l
Z80 LET DS a CHRS Ctl
Z90 PRINT DS; "OPEN INVEN"
300 PRINT Dt;"DELETE INVEN"
3l0
320

(a) 32 bytes. six+ one for the product number, twenty+ one for the description
and three + one for the quantity.

(b) 310 PRINT DS;"OPEN INVEN,L3Z"

In line 270 in problem (b) we initialized the variable Rl to one (1). This vari
able is used to keep track of the file record count in this program. Dataset number
one is in record number one, dataset number two is in record number two, etc.

·Here is the data entry module for this application. We have left out the data
entry tests so that the structure of the program is more clearly revealed in the program
listings. By now, you know how to· design good data entry error traps, and your com
pleted programs should include them. You will see how difficult accurate data entry
can be if you use the "bare bones" program listed below. .

330 REM DATA ENTRY MODULE
340
350 HOME
360 INPUT "ENTER PRODUCT NUMBER < 6>: ";NS
370 REM DATA ENTRY TESTS
380 INPUT "ENTER PROD. DESCRIPT.<ZO CHAR>:" ;PS
390 REM DATA ENTRY TESTS
400 INPUT "ENTER OUANTITY:";O
UO REM DATA ENTRY TESTS
UO

The file is OPEN; the data are entered. The next operation is to print the data
to the file in the first record. The file WRITE instruction for random access files is
similar to the sequential file instruction, but now also includes the record number of
the random access record to be printed:

202 APPLE BA;SIC: DATA FILE PROGRAMMING

Z4D P.RINT Dt;"V.RITE FILENAME,.R51"

ZSD P.RINT Dt;"V.RITE"Ft",.R".Rl .

In line 240 above, the WRITE statement moves the file pointer to -record num
ber 51, where the next PRINT statements will write the information to the ftle.
Notice in line 250 how all variables are placed outside of the quotation marks. Notice,
too, the similarity in format to the random access OPEN statement, where the L, for
length of file, and the comma that precedes it·are always within quotation marks. In
random access file READ and WRITE statements, the R for Record and the comma
that precedes it must be enclosed in quotation marks.

(a) What record will be printed by the WRITE statement in line 250 above? __ _

(a) Whatever record value is assigned to variable Rl. (In our example program, the
. record number is 1, for the first dataset.)

. The PRINT statements for random access files use the same format as the state
ments used with sequential files. You must tum the WRITE operation on, PRINT the
dataset to the file, and tum ·the WRITE operation off.
(a) Here is the next part of our inventory program. Fill in the blank lines .at 450,

460, and 470.

430
HD
uo

. 480
470
480
490
500

51D
no
530
540
550
580
5'10

(b)

.REM P.RINT TO FILE

INPUT "MO.RE ENTRJESP";Rt
IF LEFTS <.Rt, l> < > "Y" AND LEFTS C Rt, l> C > "N" THEN P.RINT :
P.RJNT CHRt C7>;"TYPE 'Y' FOR·YES OR 'N' FOR NO.": PRINT: COTO 490
IF LEFTt C.Rt,l> • "N" THEN 800

REM INCREASE RECORD COUNT

LET .Rl •"Rl + l
COTO 350

What is the purpose of line 550? -----------------

(a) 430
440
450
480
f7D
480
410
500

510
no
530
54D
550
580

--570

HEJi l'RINT TOFU.I

PIINT Dt;"WllTE INVEM, 1";11
PRINT NS: PRINT Pt: PRINT Q
PRINT Dt

INPUT "HORE ENTIIESP";RI

RANDOM ACCESS DATA FILF.S 203

IF LEFTS <Rt,l> < > "Y" AND £EFTI <RS,l> < > "'N" THEN PRINT :
PilINT -CHH (7);"TYPE 'Y' .FOR YES OR.'N' FOR NO.": PRINT: GOTO UD
I-F 'LEFTS <RS,l) • "N" THEN IDD

REH INCREASE RECORD COUNT

LET Rl • 111 + ·l
GOTO 35D

(b) Increments the record number by one so that if another dataset is entered, it will
be recorded in the next random access record.·

The fmal program module is the file close routine. The format of the random
access- CLOSE statement is the same as that used with sequential files.

580
590
800
810
IZD

REH CLOSE FILE

PRINT Dt;"CLOSE INVEN"
PRINT "FILE CLOSED"
END

204 APPLE BASIC: DATA FILE PROGRAMMING

I

Here is the complete listing -of our random access file printing inventory applica-
tion.

JOO .REM INVENTORY RANDOM FILE
110 :
lZO REM VARIABLES USED
130 REM N9 • PRODUCT NUMBER CB>

·1to REM P9 • PROD. DESCRIPTION CZO>
l5D RIM Q •QUANTITY C(a891>
l8D REM D9 • CONTROL D
l7D REM Rl • RECORD COUNT
JIO REM R9 • USER RESPONSE
llD :
ZOD REM FILES USED
ZlD REM RANDOM ACCESS FILE NAME: INVEN
ZZO REM RECORD SIZE: 32 BYTES
Z3D REM DATASET FORMAT:N9 ,Pt ,O
HD :
UO REM INITIALIZE
ZBD :
no LET Rl • l
ZBD LET D9 • CHR9 It>
UO PRINT Dt "OPEN INVEN"
3DO PRINT D9 "DELETE INVEN"
3l0. PRINT IU "OPEN INVEN, L3Z"
3ZD
330
HD
350
380
370
380
39D
400
41D
uo
f30
HD
uo·
480
47D
OD
490
soo
5JD
520
530
540
550
SID
510
580
HD
800
810
BZO

REM

HOME
INPUT
REM
INPUT
REM
INPUT
RE".

REM

DATA ENTRY MODULE

"ENTER PRODUCT NUMBER Cl>:";N9
DATA ENTRY TESTS

"ENTER PROD. DESCRIPT.CZO CHAR>:";Pt
DATA ENTRY TESTS

"ENTER OUANTITY:";O
DATA ENTRY TESTS

PRINT TD FILE

PRINT D9;"WRITE INVEN, R";Rl
PRINT N9: PRINT Pt: PRINT 0
PRINT DS.

INPUT i•MORE ENTR JES, II ; ..

. JF LEFT9 <RS,l> < > "Y" AND LEFTS CRS,l> < > "N" THEN .PRINT ;
PRINT CHRS <7>;"TYPE 'Y' FOR YES OR. 'N' FOR N0. 11 : PRINT : COTO 49D
IF LEFTS CRS,J> • "N" THEN 800

.REM INCREASE RECORD COUNT

LET Rl • Rl + l
COTO 350

REM CLOSE FILE

PRIN1 D9;"CLOSE INVEN"
PRINT "FILE CLOSED"
END

Many uses of random access files require that the. BASIC program accessing the
file know where the file ends or how many datasets (records) exist in the file. As no
system command is available in APPLESOFT to count or display the number of
records in a file, your programs to ·create and use random· access files should provide a
counting variable to keep track of the total number of records that are used in the file.
This process is used often in programming applications.

The numbering of random access file records actually begins at zero, so the very
first record in a random access file is reco!d zero (RO). This record is sometimes used
to keep "housekeeping" information. One item of data that could be saved in RO is

RANDOM ACCESS DATA FILES 205

the record number for the last filled record in the file. Then, when you want to add
data to the file, you would follow these steps:

1. OPEN the file.
2. READ RO to find the record number for the last filled record.
3. Increment the last record by one (1).
4. Enter data.
5. PRINT to the file.
6. Ask for more entries.
6a. If yes, increment the record counter by one and return for more data.
6b. If no, PRINT the current record counter value to RO, so that the record 1,1umber

for the last filled record is available the next time it is needed.
7. CLOSE the file.

When creating a random access file, a counting statement such as LET Rl = Rl
+ 1 can be used. The placement of the counting statement within a program is crucial
for counting accuracy. Only datasets actually entered must be counted, so the count
ing statement is usually after the dataset PRINT statement. In this way, if no more
data are forthcoming, the record number will not have already been increased.

Notice where the record counting statement is placed in the previous program.
The logic in this case is to increase the record counting variable by one after the user
responds ''yes" to the question, MORE ENTRIES?

In the example program to create the INVEN file, no provision is made to store
the record count for tJi.e future reference or use by BASIC programs that access the
file. Our strategy is to store the record count in Ro; the first record in the file. This
record is accessed by using RO in a READ or WRITE statement. .

410 PRJHT Df;"READ FJLEHAME, RO"

980 PRJHT DS;"VRITE FILENAME, RO"

Caution: Don't accidentally type the letter 0 (oh) for the number zero.

(a) Modify the program that creates the INVEN file so that the total number of
records contaming data (record count) is placed in RO. This routine should be
included in the Close File Module.

/

206 APPLE BASIC: DATA FILEPROGRAMMING

(a) 580
5911-
IDD
810
IZD
830
HD
850

BEK J:LOSE FILE

PRIMT.Dt;"WBITE INVEN, BO"
PRINT Rl
PRINT Dt
PRINT DS; "CLOSE INVEN"
PRINT "FILE.CLOSED"
END

Enter and RUN the modified program. Create the file INVEN for use in this
section, as well as later programs.

Now let's write a separate program to display the contents of this random access
file. Here is the introductory module and initialization module.

lDD
110
UD

· 13D
HD
150
180
170
180
180
ZOD

. UO
ZZO
230
Z40
ZSD
UD
270
280
290

BEK INVEN BEAD/PBINT

BEK VABIABLES USED
REM Ht • PRODUCT NUMBER (8)
BEK Pt • PBOD. DESCBIPTION <ZD>
REM 0 •OUAHTITY ((a999>
BEK DJ • CONTROL D '

'REM Rl a RECORD I

REM FILES USED
REM I.A.FILE NAME: JNVEN
REM RECOBD LENGTH: 32 BYTES
REM DATASET FORMAT:Nt,Pt,0

REM INITIALIZE

LET Rl " l
LET Dt m CHRt <4>
PRINT Dt;"OPEN JNVEN, L3Z"

(a) What is the purpose of line 260 above?

(b) What does the L32 in line 280 represent? ----------~--

(a) Assigns the number one (I) to Rl to initialize the record counting variable
(b) · The record length of thirty-two bytes

The random access READ statement follows the same format as the WRITE state
ment, in that it requires a record number be included in the statement.

Z50 PRINT Dl;"READ FILENAME,R"Rl

RANDOM ACCESS DATA FILES 207

Here is the file read and report printing module of the inventory reading pro
gram.

300
310
3ZD
330
HD
350
380
370
380
390
400
410
UD
430
UD
450
480
47D

BEK PBINT HEADING

PHJNT "PBOD I"; TAB< lD>;"PJIOD DESCJI"; TAB< .ZB>;"OUANT~TY"

BEK FILE JIEAD/PBINT

ONEHJI GOTO 48 D
PJIINT Dt;"READ JNVEN,Jl";Jll
INPUT NS,Pt,O
PHJNT Dt
PBINT NS; TAB< lD>;PS; TAB< 31>;0
LET Ill = Ill + 1
GOTO 37D

JIEK CLOSE FILES

PHJNT Dt;"CLOSE"
END

The INPUT statement at line 380 has the same format as__ that used ·with sequen
tial files. The ONERR st;1tement at line 360 works the same way as with sequential
files. The only real difference between a sequential file program and this one is the
READ statement format and the addition of line 410.

(a) · What is the purpose of line 410 above?

(a) Increments the record number variable by one so that the next record in the file
will be read.

Next, let's make use of the record count, instead of depending oµ ONERR to
determine the end of the file. You can do this using a FOR NEXT loop to read only
the number. of datasets {records) that contain information. Notice how importarit this
makes the accuracy of the record count. An "extra" count will lead to an OUT OF
DATA error message if the program tries to read a nonexistent record. On the other
hand, if the count is one short, one dataset will be left inaccessible.

First the record count is accessed and assigned to variable Rl.

310 PHJNT Dt;"READ JNVEN,JID"
32D INPUT Jll
330 PHJNT Dt

Next, the value of Rl is used to tell the FOR NEXT loop how many datasets to
read, and the FOR NEXT loop control variable Xis used to count off the records.

208 APPLE BASIC: DATA FILE PROGRAMMING

34D FOR X a l TO Rl
. 350 PRINT DS;"READ INVEN,R"X

380 INPUT NS,PS,Q
370 PRINT IH
38D PRINT NS; TAB< lO>;PS; TAB< 31>;0
390 NEXT I

(a) In which line is the record number to INPUT determined?

(b) What is the record number of the first dataset accessed? --------~

(c) How many records will have been accessed when the FOR NEXT loop finishes

execution? --~--------

(a) line 350 (value of FOR NEXT loop control variable, X)
(b) one
(c) equal to value of RI

Below is another version of the program. Enter the program (and the first ver
sion if you wish) and display the contents of the INVEN file on your screen.

IDO
110
120
130
HD
150
160
l7D
18D
190
zoo
ZlD
zzo
Z30
ZfD
250
ZID
270
280
zso
30D
310
320
330
uo
350
310
370
380
390
4DO
410
420
430
440
450
480
470
480

REM INVEN READ/PRINT

REM VARIABLES USED
REM NS a PRODUCT.NUMBER 18>
REH PS a PROD. DESCRIPTION !ZD>
REM Q =QUANTITY ((·a999 >
REH DS a CONTROL D
REM Rl a RECORD I

REM FILES USED
REH.' ff.A.FILE NAME; INVEN
REH RECORD LENGTH; 3Z BYTES
REM DATASET FORMAT; NS, PS ,Q

REM JNITIALIZE

LET Dt m CHRt < 4>
PRINT DS; "OPEN INVEN, L3Z" .

REM PRINT HEADING

PRINT "PROD I";· TAB< 10>; "PROD DESCH"; TAB! ZS>; "QUANTITY';: _PRINT

REM . FILE READ/PRINT

PRINT DS;"READ INVEN,RO"
INPUT Rl
PJIINT Df
FOR X " l TO Rl
PRINT DS;"READ INVEN,R"X
INPUT NS,PS,Q
PRINT DS
PRINT NS; TAB! lO>;Pt; TAB< _31>;0
NEXT I

REM CLOSE FILES

PRINT DS; 11 CLOS£ 11

END

. ~M ACCESS DATA F'IU'$. . ~09

ADDING DATA TO THE END OF A RANDOM ACCESS FILE

In the next application we want a program to add new datasets to an already existing
random access file. To make it easy, we will add data to the current end of an exist·
ing file, rather than insert new.records into the middle of the file.

First, create the random access itle to which you will later be asked to add or
change data. Name the file PHONE. The program should keep track of the number
of records used in the file and place this information in record RO .before closing the
file. The dataset has the following items entered as strings:

customer number (five characters)
C\Jstomer name (twenty-character maximum)
customer phone number (eight characters, e.g., 999-9999)

. Here is the introductory· module. You complete the program.

(a) lDli REii CBEATE FILE HAMED. 'PHOHE'
llD
UD REM VARIABLES USED
130 REM Ht a CUSTOMER I <5 CHAR.>
HD REM Ct• 'CUST. HAKE <ZD CHAR. MAI.>
lSD REM Pt • PHONE HUMBER (111-IJll OR 8 CHAR.>_
llD REM RS • USER RESOHSE
l7D REM Dt • CONTROL D
llD HEM FILE USED
ltD REM R-A FILE NAME: PHOHE
ZDD REM BECORD .J.EHGTH: 38 BYTES
UD REM DATASET FORMAT: NS , CS , PS ·
UD

210 APPLE BASIC: DATA FILE PROGRAMMING

-------~-----:---

(a) lDD
llD
UD
13D
HD
lSD
llD
17D
l8D
llD
ZDD
UD
UD
UD
240
Z5D
UD
27D
UD
ZID
3DD
31D

. 32D
33D
HD
35D
311D
37D
38D
39D
fDD
410·
UD
43D
HD
HD
480
47D
48D
HD
5DD
51D

. UD
53D
HD
550

RANDOM ACCESS DATA FILES . 211

REH CREATE FILE NAMED 'PHONE'

REM VARIABLES USED
REH NS • CUSTOMER I · ! 5 CHAR. >
REH. CS • CUST. NAME <ZD CHAR. MAI.>
REH Pt • PHONE NUMIER ! 111-1111 OR 8 CHAR. >
REH Rt • USER RESONSE
REH Dt • CO.NTROL D
REM FILE VIED .
REH R-A FILE NAME: PHONE
REM RECORD LENGTH: 38 BYTES
REH DATASET FORMAT: NS, Ct, Pt

REM INITIALIZE

LET Dt • CHRt U>
PRINT Dt;"OPEN PHONE, L38"
LET Bl • D

REH DATA ENTRY MODULE

HOME
INPUT "ENTER •·STOP I OR CUSTOMER NUMBER. (5 CHAR.) II ;Nt
IF NS·• "STOP" THEN 520
LET Bl • Bl + l

REH DATA ENTRY TESTS

INPUT "ENTER CUSTOMER NAME !ZD CHAR. HAl.>:";ct
REH DATA ENTRY TESTS
INPUT "ENTER.PHONE NVHIER:";Pt
REH DATA ENTRY TUTS

REM VRITE TO FILE

PJIJNT Dt;"VRITE PHONE,R";Rl
PRINT Ht: PRINT CS: PRINT Pt
PRINT DS
GOTO 320

REM CLOSE FILE

PJIJNT Dt;"VRITE PHONE,RD"
PRINT Rl
PJIJNT Dt; "CLOSE"
PRINT : PRINT "FILE CLOSED"

Next, write a companion program that will display the contents of PHONE, using
the FOR NEXT loop technique to cycle through the records in the file.

(a)

212 ~EB.ASIC: .DATAFILE PROGRAMMING

·.

(a) 100
llD
lZD

REM CREATE FILE NAMED 'PHONE'

REM VARIABLES USED
REM Nt ,. CUSTOMER I 15 CHAR.>

RANDOM ACCESS DATA FILES 213

. 130
140
150
180
170
180
190
200
210
UD
Z3D
UD
no
ZID
no

REH CS • CUST. NAME IZD CHAR. HAI.>
REH PS • PHONE NUMBER I XXl-XllX OR 8 CHAR.>
REM RS a USER RESONSE
REH DS a CONTROL D
REM FILE USED
REM R-A FILI NAME: PHONE
REM RECORD LENGTH: 38 BYTES
REH DATASET FORMAT: NS,CS,PS

REM INITIALIZE

LET Dt a CHRS It>
PRINT DS;"OPEN PHONE,.L38"

ZBD REM READ RECORD 0
290 : .
300 HOME
310 PRINT DS; "READ PHONE, RD"
3ZD . INPUT RI
330 PRINT DS
340 IF Rl ,. 0 THEN PRINT "FILE EMPTY": GOTO 470
350 ; .
380 REM READ/DISPLAY ROUTINE
370 ;
380. FOR I al TO Rl
390 PRINT os·; "READ PHONE,R" ;X
too iNPUT NS,CS,Pt
tlD PRINT DS
tZO PRINT NS;CS;PS
no NEXT I
HD:
tSD REM CLOSE FILE
00 .:
470 PRINT DS; "CLOSE"
00 PRINT ; PRINT "FILE DISPLAYED AND CLOSED."

Our random access file is a customer list entered by customer number. ·The data
set includes the customer number, name, and phone number. To add new datasets to
the file we must follow these steps:

1. Initialize and OPEN the file.
2. Ascertain the number of records in the file containing information.
3. · Enter new data.
4. WRITE new data to the file.
5. Increment record count.
6. Return to step 3.
7. Write the new record count to RO and CLOSE the file.

'·

214 ·APPLE BASIC: DATA FILE PROGRAMMING

Here is the introductory module and initialization module. (Nothing ·really new .
. ·here!)

lDD JIEM ADDING TO R-A FILE NAMED PHONE
llD :

' lZD JIEM YHJABJ.EI USED
13D JIEM Nt • CUST. NUMBER CS>
HD REM Ct a CUST. NAME CZD>
!SD JIEM Pi • PHONE NUMBER <lD>
180 JIEM Bl • !ECORD COUNTER
l7D REM Dt • CONTROL D
llD :
ll"D REM FJJ.EI USED

· ZDD REM RANDOM ACCESS FILE NAME: PHONE
ZlD REM RECORD LENGTH: 38 BYTES
ZZD REM DATASET FORMAT: Nt,Ct,Pt
UD :
HD JIEM INITIALIZATION
UD:
ZID I.ET Dt a CHRt Cf>
Z7D PRINT DS; 0 0PEN PHONE, J.38"
ZID

The. next program module ascertains the end of file location by reading record
RO. Complete lines 310, 320, and 330.

(a) ZID
3DD

. 310
3ZD
33D
HD
UD

JIEM LOCATE I.AST FUJ.J. RECORD

PRINT PRJNT 0 JIECORD COUNT: ";Bl: PRINT

-----.-.....;,~-,--:-----

(a) . ZID JIEM LOCATE I.AST FUJ.L JIECORD .
3DD :
UD PRINT Dt;"JIEAD PHONE,BD"
3ZD INPUT Bl
33D PRINT Dt
HD PRINT : PRINT "JIECORD COUNT: ";Bl: PRINT
3H •

RANDOM ACCESS DATA FILES 215

Next comes the data entzy module and the file WRITE module. Fill in lines
480, 490, 500, and 540 below. (You may also wish to construct the data entry
checks now.)

(a)

(a)

310
370
380
380
400
41D
UD
43D
44D
45D
480
470
48D
49D
5DD
510
5ZD

53D
540
550

380
370
380
390
4DD
410
UD
43D
440
450
41D
470
48D
490
500
HD
5ZD

530
54D
550

REM DATA ENTRY MODULE

LET Rl =.Rl +.1·
INPUT "ENTER CUST. I: ";NS
REM DATA ENTRY TESTS
INPUT "ENTER CUST. NAHE:";CS
REM DATA ENTRY TEST
INPUT "ENTER PHONE l:";PS
REH DATA ENTRY TESTS

REM VRITE TO FILE ROUTINE

INPUT "HORE ENTRIES?";RS
IF LEFTS CRS,l> < > "Y" AND LEFTS <RS,l> C > "N" THEN
PRINT CHJIS <7>;"ENTER 'Y' FOR YU OR 'N' FOR NO": PRINT
IF LEFTS <RS, l > • "N° THEN 58D

JI.EM DATA ENTRY MODULE

LET Ri " Rl + l
INPUT "ENTER C.UST. l:";NS
REM DATA ENTRY TESTS
INPUT "ENTER CUST. NAHE:";CS
REM DATA ENTRY TEST
INPUT "ENTER PHONE I: ";PS
REH DATA ENTRY TESTS

: REM VRITE TO FILE ROUTINE

PRINT DS; "WRITE PHONE, ·Ru; Rl
PRINT NS: PRINT CS: PRINT PS
PRINT DS
INPUT "HORE ENTRIES?";RS .

PRINT :
COTO 51·0

IF LEFTS <RS,l> < > "Y" AND LEFTS (RS,l> < > "N" THEN PRINT :
PRINT CHRS <7>; "ENTER 'Y' FOR YES OR 'N' FOR NO": PRINT : COTO 51D
IF LEFTS <RS,l> = "N" THEN 58D. .
COTO 38D

The final program segment shown below closes the file and posts the record
count to record zero.

S&D
$7D
580
590
SOD
HD
SZD
830

REH CLOSE FILE

PRINT Dt;"VJIITE PHONE, RD"
PRINT Rl
PRINT DS
PRINT Dt;"CLOSE PHONE"
PRINT : PRINT "FILE CLOSED"
PRINT : PR.INT "NEV RECORD COUNT: II; Rl

216 APPLE BASIC: DATA FILE PROGRAMMING

Here is the complete listing of the program to add data to an existing random
access ftle program

lDO JIEK
llD :
lZD JIEK
130 JIEK
140 JIEK
150 JIEK
180 JIEK
170 JIEK
180 :
190 JIEK
ZDD JIEK
UD JIEK
UO REK
230 :

ADDING TO Jl~A FILE NAKED PHONE

VAJIIABLES USED
NS m CUST. NUMBER <S>
Ct a CUST. HAKE !ZO>
PS a PHONE NUMBER !10>
Jll a JIECOJID COUHTER
Dt m CONTJIOL D

FILES USED
JIANDOK ACCESS FILE NAME: PHONE
JIECOJID LENGTH: 38 BYTES
DATASET FORMAT: -Nt,Ct,Pt

HD JIEK
Z5D :·

INITIALIZATION

ZIO LET Dt = CHJIS
Z7D PJIIHT DS;"OPEN
ZBO- :

(f)
PHONE ,-L 38 u

ZBD JIEK
300

LOCATE LAST FULL JIECOJID

310
320
330

PJIIHT DS;"JIEAD PHONE,JID"
INPUT Rl
PJIIHT DS

340 PJIIHT : PJIIHT "JIECOJID COUNT: ";Jll: PJIINT
350
310 JIEK
370

DATA EHTJIY MODULE

380 LET Jll a -Jll + l
390 INPUT "EHTER CUST. l:";NS
400 JIEK DATA EHTJIY TESTS
410 INPUT "EHTEJI CUST. NAKE:";CS
4ZD - JIEK DATA ENTJIY TEST
430 INPUT "EHTER PHONE l:";PS
440 JIEK DATA ENTJIY TESTS
450
410 : JIEK
470

WJIITE TO FILE JIOUTINE

480
490
5DD
510

PJIINT DS; "WJIITE PHONE, JI"; Jll
PRINT NS: PRIHT Ct: PJIINT PS
PJIIHT DS
INPUT "KORE EHTJllES?";JIS

5ZO

530'
540
550
580
570
580
SID
800
810
IZO
630

IF LEFTS <11s;u () "Y" AND LEFTS <JIS,l> () "N" THEN_
PJIIHT CHJIS !7>;"ENTER 'Y' FOJI YES OJI 'N' FOJI NO"· PJIIHT :
lF LEFTS CJIS,l> = "N" THEN 580
GOTO 380

· JIEK - CLOSE FILE

PJIJNT Dt; "WJIITE PHONE, JID"
PJIINT Jll
PJIINT DS
PJIINT DS; 1' CLOSE "PHONE~
PJIINT : PJIJNT "FILE CLOSED"
PRINT : PJIINT. "NEW JIECOJID COUNT: "; Jll

PJIJNT :
COTO 510

Enter the program and add data to PHONE. Then use the previously written
program that reads and displays PHONE to v~rify that the additions are now in the
file.

RANDOM ACCESS FILE UTILITY PROGRAMS

Having covered the essentials of using random access files, let's write two file utility
programs to further your understanding and provide models for similar programs you

RANDOM ACCESS DATA FILES 217

can write. The first program simply copies the data from one random access file into
another random access file, record for record. The data are both iilphabetic and
numeric.

Write a program to create a random access ftle named MASTER. This file will
be used later in this section by a file utility program that ·makes a copy of a random
access file. You can decide· what information corresponds to the variables listed in the
introductory module given below. Use your imagination!

(a) lDD
110

REH CREATE FILE NAMED MASTER

JZO REH VARIABLES USED
130 REH GSa20 CHAR. MAX.
HD REH Sal CHAR." MAX.
150 REM 0=4 CHAR. MAX.
JID JIEH Hh3D CHAR. MAX.
170 REM RlaRECORD NUMBER
JIO. REH Df aCONTROL D
18.D
200 REH- FILES USED
210 REH R-A SOURCE FILE NAME: MASTER
215 JIEH REC.ORD LENGTH: 88 BYTES
211 REH DATASET FORMAT: GS,S,O,HS
230

\

218 APPLE BASIC: DATA FILEPR.OGRAMMING

(a) UD
Z40
ZSD
ZIO
Z7D
Z80
UD
300
310
3ZO
330
340
350
380
370
380
390
400
410
4ZD
430
440
450
480
470
480
485
488
487
480
SOD

- 510
SZO
530

.REM INITIALIZJ;

LET Df m CHRf 14>
LET Rl • l
PRIHT Df;"OPEN MASTER,LSS"

DATA ENTRY.ROUTINE

~M ACCESS DATA FILES 219

REM

I.NPUT
REM
I.NPUT
REM

"EHTIR STRINC DATA UD CHAR.MU.>:";CS
DATA ENTRY TESTS CO HERE

. INPUT
REM
INPUT
REM

.REM

"EHTER NUMERIC VALUE 18 CHAR.MAJ.); 11 ;S
DATA EHTRY TESTS CO HERE

"EHTER NUMERIC VALUE (4 CHAR.MAJ.):";O
DATA EHTRY TESTS CO HERE

"EHTER STRINC DATA 130 CHAR.M.Al.):";MS
DATA EHTRY TESTS CO HERE

WRITE DATASET TO FILE

PRINT D•;"WRITE MASTER,R"Rl
PRIHT CS: PRIHT S: PRIHT 0: PRINT MS
PRIHT Df
INPUT "MORE DATA TO ENTERCY O.R N>P";RS
REM USER RESPONSE DATA ENTRY TESTS CO HERE
IF Rt • "N" THEN 500
LET .Rl • Rl + l

'HOME
COTO 3ZD
.REM CLOSE FILE
PRINT Dt;"WRITE MASTE.R,RD"
PRIHT .Rl
PRINT Dt
PRINT Dt; "CLOSE"

Now write a companion program to read and display the contents of MASTER.
Allow the user· to enter the file name. Include a "PRESS RETURN TO DISPLAY
NEXT DATASET" routine inside the read/display loop.

220 APPLE BASIC: DATA FILEPROORAMMING

(a) JOO JIEJI
110 :
UO JIEJI ·
130 REJI
JH JIEJI
!SD REJI
JID JIEJI
170 REJI
l8D REJI __
190. REJI

. zoo JIEJI
UD REM
UD REM
230 REM
UO REM
250

JIEAD AND DI.SPLAY MASTEJI FILE

VAJUABLES USED
Ct • 30 CHAR. MAX.
S • B CHAJI. MAX.
Q a 4 CHAR. MAX.
Mt • 50 CHAR. MAJ.
DS .. CONTROL D
JIJ = JIECORD COUNTEJI

RS • USER RESPONSE VARIABLE
Ft ='USER ENTEJIED FILE NAME CHASTER> '

FILES USED .
JI-A FILE NAME: MASTEJI
DATASET FORMAT: CS,S,O,Mt
RECOJID LENCTH: BB

RANDOM ACCESS DATA FILBs 221

'

222 APPLE BASIC: DATA FILE PROGRAMMING

(a) 250
uo
27D
ZBD
290
300
310
UD
3 30
340
35D

. .REM INITIALIZE

LET Dt • CH.Rt <4>
INPUT II ENTER NAME .OF FI LE: II; Ft
.REM DATA ENT.RY TESTS GO HERE
PRINT
P.RINT Dt; 11.0PEN 11 FS 11 ,Ll8 11

REM .DATA ENT.RY MODULE

380. P.RINT Dt;".READ"Ft",RO"
370 INPUT Rl
380 P.RINT Dt
390 FOR I D l TO Rl
400 P.RINT Dt; 11 .RE'.AD"FS" ,.R"X
410 INPUT Ct,S,O,Kt
420 P.RINT Dt
430 PRINT Ct: P.RINT S: P.RINT 0: P.RINT Ht
440 PRINT : INPUT "PRESS '.HETU.RN' TO DISPLAY
450 HOKE .
480 NEXT I
470 ;
480 .REM CLOSE FILE
410
500
510
5zo

P.RINT Dt; "CLOSE"
PRINT : PRINT "FILE DISPLAYED AND CLOSED"
END/

NEXT DATASET";.RS: !'HINT

Follow these steps to create a random access file copying program:

1. - OPEN the source file.
2. ·OPEN and clear the copy fil~.
3. Determine record count. ·

· 4. READ source file record.
5. WRITE copy file.
6. Return to step 4 until end of file.
7. . CLOSE the files after posting record count in copy file.

We will now help you write a program that will make a copy of MASTER. The
copy file is named STOREI. Here is the introductory module:

100 REM PROGRAM TO MAXE A COPY OF R-A FILE 'KASTER'
110 ;
120 REM VARIABLES USED
130 REH Gt a C20>
140 REM s • (8)

150 REM 0 .. (4)
180 .REM MS D (30)
170 REH Rl m RECO.RD COUNTER
180 REH Dt a CONTROL D
190 ;
zoo REM FILES USED
210 REH R-A SOURCE FILE NAME: MASTER
ZZO REM R-A COPY FILE NAME: STOREl

. 230 REH RECORD LENCTH: IB BYTES
240 REM DATASET FORMAT: GS,S,O,KS

- 250

Notice that we have only indicated the length of the variables; what data they
represent is not important and has been left to your discretion and imagination.

As with sequential files,. we recommend the OPEN-DELETE-OPEN sequence to
clear a file of any previous data, thus preventing the accidental appearance at the end
of the file of data left over from any previous version of STOREl. Complete the fol-

RANDOM A~S DATA FILF.S 223

lowing segment to initialize the two files. ·Fill in lines 310, 320, 330, and 340.

(a) ZID
Z7D
28D
HD
30D
310
UD
33D
HD
3SD

(a) ZID
Z7D
ZBO
ZID
30D
310
3ZD
33D
HD
3SD

. JIEM JNI'TULJZE

HOME : PRINT "WOJIXINGn
LET Dt • CHJlt I 4>.
LET Jll • l

REM INITIALIZE

HOME : PRINT "WORKING"
LET Dt • CHlt 14>
LET Jll • l
PRINT Dt;"OPEN MASTER, Lii•
PRINT Dt;"OPEN ITOJIEl"'
PRINT Dt; "DELETE STORE!•
PRINT Dt;•OPEN .iTOREl, Lii"

The next section reads froni the source file and writes to the copy file. Fill in
the blanks in lines 380, 390, 400, 420, 430, 440, 480, 490, and 500.

(a) HD
37D

REM READ IOUICE PILE

38D
HD
HD
41D PDR J • l TO Rl
4ZD
43D
44D
45D
41D REM PR INT COPY Pl LE
47D
41D
41D
HD
SlD NEIT I
SZD

224 .~BASIC: DATA FILE PROGRAMMING

(a) 3U
37D
HD
39D
HD
41D
UD
43D
HD
45D
HD
47D
HD
41D
5DD
51D
UD

REH READ SOURCE FILE

PJIINT Dt; "JI.I.AD HASTEJI, JID"
INPUT Jll
.PRINT. Dt
FOR I • ·1 TO Rl
PJIINT Dt;"REAll HA.STEJl,Jl"I
JNPUT ca;s,O,H•
PRINT DS

JIEH PRINT COPY FILE

0 PRINT DS;"WRITE .STOJIEl,Jl"I
PRINT C$: PJIINT S: PJIINT Q:
PRINT D8
NEIT I

PRINT HS

You probably found completing that program easy. Random access files are
easy to manipulate, once you get the hang of it.

Here is a· complete copy of the program.

lOD JIEH
llD :

PJIOCJIAH TO HAXE A COPY OF JI-A FILE 'HA.STEJI'

lZD JIEM
1311 JIEK
l4D JIEH
15D JIEH.
llD JIEH
170 JIEH
llD JIEH
llD :

. IDD JIEH
UD JIEH
UD JIEM
UD REM
HD JIEH
250 :
Zlil ·JIEM
·no:

VARIABLES _USED
Ct • CID> .s • (8)
Q • (4)

MS • C 30)
Jll •'JIECORD COUNTER
D8 • CONTROL D

FILES USED
R-A SOUJICE FILE NAME: MASTER
JI-A COPY FILE NAME: STOJIEl
JIECORD LENCTH: II BYTES
DATASET FOJIHAT: Ct,S,O,Ht

INITIALIZE

ZBD . HOME : PRINT "WOJIXINC 11

HD LET DS _• CHRS. Ct>
3DD · LET Rl " 1
310 PJllNT DS "OPEN MASTEJI, i.88"
320 PRINT Dt "OPEN·STOJIEl"
330 PJllNT Dt "DELETE STOJIEl"
HD PRINT Dt "OPEN .STOJIEl, ti I"
350
380 JIEH
370

JIEAD . .SOURCE FILE

380
390

·PJIINT Dt;"JIEAD HASTER,JID"
INPUT Jll ·

HD PJIIMT DI
410 FOR I • 1 TO Jll
UD
430

PRINT DI· "JIEAll HA.STER Jl"I
INPUT.c1:s,Q,Mt ,

HD PRINT DI .
450
410 JIEM
471

PRINT COPY FILE

410
-410
500
510

·PRINT Dt;"WRITE STOREl,Jl"I
'PRINT CS: PRINT S: PRINT 0: PRINT Mt
PRINT DI
NEIT I

no ..
530 · JIEM
540 :

CLOSE FILES

550 PJIINT Dh"WRITE STOREl, JID"
58D PRINT Rl
570 PRINT Dt
580 PRINT DI; "CLOSE"
590 . PRINT : PRINT "FILE COPY COMPtE'l'E"
BOD END

'

_\

RANDOM ACCESS DATA FILES 225

(a) Check your understanding of the file copying program by filling in -the. corre-
sponding program line number(s) for each step in the following outline.

1. OPEN the source file.

2.. . OPEN and clear the copy file.-~~-------

3. Determine record count ----------,-

4. READ source file record. ----------

5. WRITE copy file. ----------

6. Return to step 4 until end-of-file.

7. CLOSE the file after posting the record count in copy file. --------

(a) 1. line 310
2. liiles 320 to 340
3. lines 380 to 400
4. lines 420 to 440
5. lines 480 to 500
6. lines 410 to 510
7. lines 550 to 580

CHANGING DATA IN AN EXISTING RANDOM ACCESS FILE

So far, you have learned how to add data to a random access file and how to make a copy
of a random access file. Next, let's consider a versatile utility program that allows a num
ber of options for changing the data in a random access file. We will be using the INVEN
file you created earlier in this chapter. We will use the complete dataset with product
code number, product description, quantity available, and record count stored in RO.
You want your program to display the datasets in the file, one record at a time, and allow
the user the following options: ·

1. Change all data items.
2. Change the code number only.
3. Change the description only.
4. Change the quantity only.
5. No change to this record.

Follow these steps:

1. OPEN the file.
2. Determine record count.
3. READ a dataset.
4. Display the dataset.

226 APPLE BASIC: DATA FILE PROGRAMMING

S. ' Display the "menu" of choices.
6. · Request and test choice.
7. Branch to appropriate subroutines according to choice made.
8. Return to step 3 above.
9. CLOSE the file.

Here is the complete program:

RANDOM ACCESS DATA FILES 227

100 REJI INVEN. FILE EDITOR . '-
llD :
lZD REJI VARIABLES USED
l3D REJI . Ct '" PART NO. 11>
ltD REJI Pt a DESCRIPTION CZD>
15D REJI 0 m QUANTITY C3>
IID REM DS a COHTROL D
17D REJI Rl a RECORD NUMBER
I80 :
IID REM FILES USED
ZDD REM R-A FILE NAJIE: INVEN
ZID REM . RECORD LENGTH: 3Z IYTES
ZZD REJI DATASET FORMAT: Ct,Pt,O
Z3D·:
ZtD REM INITIALIZE
UD:
ZID LET.DI a CHRS Ct>
Z1D PRINT Dt; "OPEN INVEN, L3Z"
ZfD :
ZiD REJI READ ONE RECORD
3DD :
31D PRINT Dt; "READ JNVEN,RD"
3ZD INPUT Rl
33D PRINT D ..
HD FOR I 11 l TO Rl
35D PRINT Dt; "READ INVEN, R"I
HD INPUTCt,Pt,O
310 PJllNT Dt
380 :·
39D REJI DISPLAY DATASET AND OPTIONS .,
4DD :
UD HOME
UD PRINT A PROD I: II; Ct
UD PRINT "DESCRIPT: II ;PS
HD PRINT "QUANTITY: a ;0
UD PRINT
HD PRINT "ENTER ONE OF THESE OPTIONS:" no PJIINT " l.. CHANGE ALL" .
UD· PJllNT " Z. CHANGE NUJllER ONLY"
OD PJIINT " 3. CHANGE DESCRIPTION ONLY"
5DD PRINT " t. CHANGE QUANTITY ONLY"
51D PRINT " 5. NO tHANGE FOR THIS DATA"
5ZD PRINT -
5.3D : .
HD INPUT "ENTER YOUR CHOJCE:n;Rt
S.SD IF LEN <Rt>'• D THEN PJIINT: PJllNT 'CHRt '7>;"PLEASE MAXE A CHOICE'

FROM THE MENU": PiI.NT : COTO 5tD
SID LET RZ • VAL US> .
57D IF RZ (I OR RZ > 5 THEN PRINT "ENTIR NUMBER ·I-5 ONLY, PLEASE": GOTO

HD
580 IF RZ • l THEN GOSUB BID: GOSUB 7ZD GOSUB 78D: GOSUB 810: COTO 13D
51D IF RZ • Z THEN COSUI IBO: GOSUI BID GOTO 13D
UD IF RZ • 3 THEN GOSUB 7ZD: GOSUI BlD GOTO 13D
IID IF RZ G t THEN GOSUI 71D: GOSUI BID GOTO 13D
IZD IF RZ • 5 THEN COSUI llD
13D NEXT I
HD COTO 88D
150 ;
llD REM DATA ENTRY SUBROUTINES
87D :
880 INPUT "ENTER NEV PJIODUCT CODE: 0 ;Ct
BID REM DATA ENTRY TESTS
7DD RETURN
71D :
7ZD INPUT "ENTER NEW DESCRIPTION: "';Pt
73D REM DATA ENTRY TESTS
7tD RETURN
7SD :
71D INPUT "ENTER NEV OUANTITY:";O
77D REM DATA ENTRY TESTS
78D RETURN
790 :
BDD REJI FILE PRINT SUBROUTINE
BlD PRINT Dt;"VRITE INVEN,R";I
BZD PRINT Ct: PRINT Pt: PRINT Q
83D PRINT DS
HD RETURN
BSD : .
BID REJI CLOSE. FJI,E
B7D :
BID PRINT Dt; "CLOSE"
llD END

228 APPLE BASIC: DATA FILE PROGRAMMING

(a) Study the program earefully and write the corresponding line numbers for each
step in the outline shown below.

1. OPEN the file.

2.. Determine record count.----------

3. READ a dataset. ----------

4.. Display the dataset.----------

5. Display the "menu" of ·choices.----------

6. Request and test choice.----------

7. Branch to appropriate subroutines according to ch<_>ice made~-------

8. Return to step 3 above. ----------

9. CLOSE the file.---------

(a) 1. line 270
2. lines 310 to 330
3. lines 350 to 370
4. lines 420 to 440
5. lines -460 to 510
6. lines 540 to 570
7. lines 580 to 620
8. line. 640
9. line 880

Now enter aild RUN the program, testing out all change options available. Then
use the final version of your program that reads and displays INVEN to verify correc
tions or changes made in the file.

CONVERTING SEQUENTIAL FILES TO RANDOM ACCESS FILES

Another useful file utility program is one that converts a sequential file to a random
. I

access file. The procedure involves making a copy of the sequential file and placing
one dataset from the sequential file into one record in a random· access file. If at some ·
point you want to standardize your entire software collection or system into random
access file format, a program modeled on the one you are about to write would do the
job ..

The example· is a small business-type application where a sequential file contains
data in this format: · ·

RANDOM ACCESS DATA FILF.8 . 229

customer number = five-cliaracter string
customer name = twenty-character string
credit status code = single~digit number, one to five . One_-character

numeric value. . -

You may recognize this .as the format of the customer credit 1tle named CREDIT,
a sequential file you created in Chapter 4 Self Test, problem 3. It is the same ftle you
used in Chapter 5 for ftle editing application pr~grams. The task is to copy a sequen
tial data file into a random access ftle, one dataset (as described above) per record.
The outline of steps is as follows:

1. OPEN the sequential ftle.
2. OPEN the random access file.
3. End-of-file trap for the sequential file.
4. READ one dataset from sequential file.
5. WRITE to the random access file.
6. Increment the record counter by one.
1: Return to step 4 above .. · .
8. CLOSE the files after posting record count to random access file.

Here are the introductory and initiillizing modules. Read them over carefully~

100
. 110

120
130

· lH
150

. 180

. 170
180
190
20'0
zio
zzo
Z30
HO
Z50
ZBO
Z70
ZIO
ZIO
300
310
3ZO

REM COPY SEQ FILE TO RA FILE

REM VARIABLES USED . .
REM NS " CUSTOMER NUMBER CS CHAR>
HEM Cf '" CUST.NAMECZO CHAR.MAJ.>
REM R = CREDIT RATING Cl CHAR>
REM Df a CONTROL .D .

.REM Rl m RECORD COUNT

REM FILES USED .
REM SEO FILE NAME: CREDIT
REM R,;.A FILE NAME:· R-A CREDIT
REM RECORD LENGTH: ZB BYTES

REH INITIALIZE

HOME
PRINT "WORKING"
LET Dt- ·= CHRS C 4)
LET Rl " 0
PRINT DS;"OPEN CREDIT"
PRINT Dt;"OPEN R-A CREDJT,LZI"

(a) What is the length of the random access file record? _______ __, __ _

{b) WIµch will be the first record to be filled by the program? -------

(a) twenty-nine bytes {L29 in line 310)
(b) Rl {Rl = 1)

230 APPLE BASIC: DATA~ PROGRAMMING

Here is the rest of the program. Fill in the blanks on lines 360, 370, 380, 420,
430, 440, 450, 500, ·510, and 520.

(a)

(a)

330
340
350
380
370
380
380
HD
410

. UD
430
HD
450
410
470
410
480
500
510
no
530
$40
550

330
340
350
380
370
380
310
IDD
410
4Z!J
HD
Hll
450
410
470
HD
480
500
510
no
530
SID
550

REM READ SEQ FILE

OHERR GOTO 500

REM WRITE RA FILE

GOTO 380

REM CLOSE FILE.&

PRINT Df; "CLO.IE''
PRINT PHI.NT "FILE COPY COMPLiTE. 11

END

REM READ .SEQ FILE

ONERR GOTO $0 D
PRINT Dt; "READ 'CREDIT"
INPUT JO,CS,R
PRINT Df

REM WRITE RA FILE

LET Bl " Bl + l
PRINT DS;"WRITE R-A CREDIT,R"Rl
PRINT NS: PRINT Cf: PRINT R
PRINT Dt
GOTO 310

REM CLO.SE F!LE.S

PRINT Df;"WRITE R-A CRDEIT,RD"
PRINT Bl
PRINT Dt
PRINT Dt;"CLOSE"
PRINT: PRINT 0 FILE COPY COMPLETE."
END

Here is the complete file conversion progrartl. Look it over and complete the
outline that follows with corresponding line numbers from the program.

(a) 100
110
120
130
HO
150
uo
170
180
190
200

·210
no
230
240
250
zso
270
280
290
300
310
320
330
340
350
380
370
380
390
400
410
420
430
440
450

. 460
470
48C
490
500
510
520
530
540
550

RANDOM ACCESS DATA FILES 231

HEM COPY SEO FILE TO HA FILE

HEM VARIABLES· USED
REH NS = CUSTOMER NUMBER <5 CHAR>
REM CS m CUST.NAME!2D CHAR.MAX.>
REM R c CREDIT RATINC !l CHAR>
HEM Dt = CONTROL D
REM Rl c RECORD COUNT

HEM FILES USED
REH SEO FILE NAME: CREDIT
REM R-A FILE NAME: R-A CREDIT
REM RECORD LENCTH: 29 BYTES

REM INITIALI~E

HOKE
PRINT "WORXINC"
LET DS = CHHS" <4>
LET Rl • D
PRINT DS;"OPEN CREDIT"
PRINT DS;"OPEN R-A CREDIT,L29"

HEM READ SEO FILE

ONEHH COTO 500
PRINT DS;"READ CREDIT"
INPUT NS,CS,H
PRINT OS

REM WHITE RA FILE

LET Hl " Hl + l
PRINT DS;"WRITE R-A CREDIT,R"Rl
PRINT NG: PRINT CS: PRINT R
PRINT DS
COTO 310

REM CLOSE FILES

PRINT DS;"WRITE R-A CREDIT,RD"
PRINT Rl
PJIINT DS
PRINT D.t; "CLOSE"
PRINT: PRINT "FILE COPY COMPLETE."
END

1. OPEN the sequential file. ----------

2. OPEN the random access file.-----------

3. Test for end-of-file of the sequential file. _________ _

4. READ one dataset from sequential file. _________ _

5. Increment the record counter by one. __________ _

6. WRITE to the random access file. __________ _

7. Return to step 4 above.-----------

8. Post the record count to the random access file and CLOSE the files.

232 APPLE BASIC: DATA);l'ILE PROGRAMMING

(a) · 1. line 300

(a)

2. line 310
3. line 350
4. lines 360 to 380
5. line 420
6. lines 430 to 450
7. line 460
8. lines 500 to 530

Write a program to display the random access CREDIT file:

lDD .REH
110
lZD .REH
l3D REH
140 .REH
150 REH
l&D .REH
170 REH
180 · .REH
l9D REH
ZDD
ZlD .REH
ZZD .RiH
Z3D REH
HD .REH
250

DISPLAY .R-A FILE NAMED .R-A CREDIT

VA.RUBLES USED
N .. USER ENTERED FILE NAME
Cf " CUST. I

· Nf " CUST. NAME
.R • C.REDJT RATING
Dt '" CONTROL D
Rl • .RICO.RD COUNT
X aFOR NEXT LOOP VARIABLE

Flt.ES USED
.R-A FILE NAME: .R-A CREDIT <USER ENTE.RED>

DATASET FORMAT: Cf,Nf ,R
.RICO.RD LENGTH: ZB BYTES

RANDOM ACCESS DATA FiLES 233

2.34 APPLE BASIC: DATA FILE PROGRAMMING .

(a) ZIO
270
ZIO
UO
300

,uo
UO
330

.340

REM INITIALIZE

LET Dt • CHRt 14>
HOME ·
INPUT "ENTER FILE NAME:" ;Ft
PRINT DS;"OPEN"Ft"~LZI"

REM READ/PRINT FILE

350 PJIINT Dt;"JIEAD"Ft",RO"
380 . INPUT Rl
370 PRINT Dt
3.80 FOR I • 1 TO Rl
310 PJIINT Dt;"READ"Ft",R"J
400 INPUT Ct,Nt,R
410 PRINT Dt
420 · PJIINT Ct: PRINT Nt·: PRINT R: PRINT
430 NUT J
440
450 REM CLOSE FILE
480
470
480
410

PRINT DS;"CLOSE"
PRINT" ALL DATA DISPLAYED AND FILE CLOSED"
END

CHAPTER 6 SELF-TEST

la. Write a program to create a random access data file that contains the inventory
of products carried by an imaginary business. Each random access record con
tains the following data for one item of inventory in the order shown below ..
Numbers in parentheses indicate maXimum character counts. Name this file
BUSINESS INVENTORY. Create the file with your program.

N$ =product number (4)
P$ = description of inventory item (20)
S$ = supplier (20)
L = reorder point (how low the stock of item can be before reordering)

(3) .

Y =reorder quantity (4)
Q =quantity available (currently in stock) (4)
C = cost (from supplier) (6)
U =unit selling price (what the item is sold for) (6)

RANDOM ACCF.SS DATA FILES 235

Here is the introductory module and a sample RUN .

100
110
uo
130
140
150
180
170
ltO
!ID
IOD
UD
UO
230
240
250
280
270
180

JRUN

.REM. .SOLUTION, CJIB .sEtFTEST PROB 1A

.REM
REM
.REM
.REM
REM
REM
.REM
REM
.REM
.REM
.RIM
REM
.REM
.REM
.REM
.REM

VARI.AILES USED
Nt•PROD.NUMBERC4>
l't•DESC.RIPTIOfl!C2D>

. Sh.SUPPL J E.RUO >
L=REO.RDE.R POINTC3>
Y.REO.RDE.R OUANTITYC4>
O•OUANTJTY IN STOCXC4)
c•cosTcTo .RETAILER><&>
UaUNITC.RETAIL>P.RJCECB>
JIS=USER RESPONSE
BS.CONTROL D
.RlsRECOJID COUNT

NI.ES USED
'RA FILE NAME: BUSINESS INVENTORY

.RICO.RD LENGTH: 7 5 BYTES ··
DATASET FORMAT:Nt,Pt,SS;L,Y,o,c,u

ENTER P.RODUCT NUMIE.RC4 DIGITS>: 1234
ENTER PRODUCT DESCRJPTIONC2D CHAR.MAl.>:SAMPLE DATA
ENTER NAM£ OF.·SUPPI.JERC20 CHAR.MAI.) :SOULE SOURCE
REORDER POINT: 12
REORDER OUANTITY~24
QUANTITY NOV JN STOCX:3B
WHOLESALE COSf:.55
UNIT SELLING P.RJCE: .1. l 0
MORE DATACTYPE 'Y' FOR YES OR 'N' FOR HOHN

1 TOTAL DATASETS. FILE CLOSED.

236 APPLE BASIC: DATA FILEPROGRAMMING

I · I

RANDOM ACCESS.DATA FILFB 237

lb; Using the program from self test problem (la), create a random aceess file named
BUSINJ;!SS INVENTORY. Make up your own data for at least 5 records (inven- ·
tory items) and enter them into the file~ This file will be used in Chapter 7 · _
examples apd activities. Write a program to display the contents of BUSINESS
INVENTORY, including the record count. · ·

238 APPLE BASIC: DATA FILE PROGRAMMING

RANDOM ACCESS DATA FILES. 239

le. Write a program to create a sequential. (not random access) file called POINTER
that contains the following two items in each dataset:

1) Account numbers from BUSINESS INVENTORY file (a four-character
string).

2) The record number (a numeric value) corresponding to the record location
of each account number.

The program should read the first data item from each record in BUSINESS
INVENTORY and write the account number (4 character string) and the record
count number for that record into the sequential file called POINTER

lDD JIE11
llD :
lZD REM
l3D REM
HD REM
l8D REM
17D JIEM
l8D JIEM
llD JIEM
195 JIEM
ZDD JIEM
ZlD JIEM
UD

CREATE SEO POJHTEJI FILE FJIOM BUSINESS JHVEHTOJIY JI-A FILE

VARIABLES USED
DhCONTROL D
Ht•PJIODUCT l(f CHAJI.)
JllaJIECOJID COUNT
JaFOJl-HEJT CONTROL VARIABLE

FILES USED .
JI-A FILE HAME-:BUSJNESS IHVENTOJIY
FILE LENCTH:75 IYTES
SEO FILE'HAME:POINTEJI
DATASET FORMAT:Nt ,J

240 APPLE BASIC: DATA FILE PROGRAMMING .

ld. Write a program to read and display the data items in POINTER.

--·------------------'----------

RANDOM ACCESS D~J'A·FILES 241

- 242 . APPLE BASIC: DATA FILE PROGRAMMING

2. Write a program to make a copy of the random access file named R-A CREDIT
that you 'transferred from a sequentialfile in the last example program in Chap
ter 6. The copy should be another random access file named R-A CREDIT
COPY.

RANDOM ACCESS DATA FILES 243

Here is the introductory module:

lDD REM
llD
lZD REM
130 REM.
HD REM
150 REM
llD REM
170 REM
180 REM
190 REM
200 REM
UD REM
2ZD REM
230. REM
Z4D

SOLUTION CHI SELFTEST PROB Z

V•RIABLES USED: .
NhCUSTOMER NiJMBER'5 CHAR>
CtaCUST. NAME CZD CHAR.MAI.>
R•CREDIT RATINC .
DhCONTROL D
XmFOR NEXT LOOP VARIABLE
RlaRECORD COUNTER VARIABLE

FILES USED .
R-A SOURCE FILE NAME: R-A CREDIT
R-A COPY FILE NAME: R-A CREDI.T COPY
RECORD LENGTH: 29
DATASET FORMATS: NS,CS,R

I'

244 APPLE BASIC: DATA FILE PROGRAMMING

3. Write a program to display the contents of the original data file and the copy in
the previous problem (2), for verification of the completeness and accuracy of
the copy. The program should display the data in record 1 of the original file,
and then the data from record 1 in the file copy, then the data from record 2 in
the· original file, followed by the data from record ~ in the copy, and so on to
the end of the files.

RANDOM ACCESS DATA FILES . 245

100 REM SOLUTION, CHS SELFTEST PROB 3
110 REM READ & DISPLAY TWO R-A FILES
120 :
130 REM VARIABLES USED
140 REM NS ,NlS=CUST. I(5. CHAR>
150 REM CS,ClS=CUST.NAME<ZO CHAR.MAX.>
180 REM C,ClaCREDlT RATING< 1 CHAR>
170 REM R,Rl=RECORD COUNTS
180 REM X=FOR NEXT LOOP VARIABLE
190 REM DS=CONTROL D

·zoo :
ZlO REM FILES USED
220 REM R-A FILE NAMES: R-A CREDIT, R-A CREDIT COPY
230 REM RECORD LENGTH: 29 BYTES
240 REM DATASET FORMAT: NS,CS,C
250

JRUN .
ORIGINAL FILE REPORTS 3 RECORDS.
COPY FILE REPORTS 3 RECORDS.

ORIG: 1Z345PAUL ARMITIGE5
COPY: 12345PAUL ARMITIGE5

PRESS 'RETURN' TO DISPLAY NEXT DATASETS.
~RIC: 1234SMISS PIGGYl
COPY: 1Z34SMISS PIGGYl

PRESS 'RETURN' TO DISPLAY NEXT DATASETS.
ORIG: 1Z347SIR GALAHAD3
COPY: 12347SIR GlLAHAD3

PRESS 'RETURN' TO DISPLAY NEXT DATASETS.

COMPARISON COMPLETE.

246 APPLE BASIC: DATA FILE PROGAAMMIN9

la.

lOD
llD
lZD
130
UD
lSD
llD
170
180
llD
ZDD
UD.
UD
23D
HD
ZSD
UD
no
HD
ZID
300
UD
UD
33D
34D
350
380
370
380
310
400
4lD
4ZD
430
440
450
HD
47.D
HD
490
500
510
5ZD
530
54D
550
5BD
570

580
510
BDD
BID
BID
OD
HD
BH
HD
670
180
BID
7DD
710
7ZD
73D

RANDOM A~_,J:!AT.\ F1LP$ 247

Answer Key

REK SOLUTION, CHB SELFTEST PROB lA

REK VARIABLES USED
REM NlmPROD.NUKBEJ<4>
RIK PhDESCRJPTJONUD>
REM SSaSUPPLJERCZD> .
REK LaREORDER POJNT<3>
REK YaREORDER OUAJfTJTY<4>
REK OmOUANTJTY JN STOCXC4>
REK C•COST<TO RETAJLEl><t>
RIK UaUNJT<RITAJL>PRJCECB>
REM RSaUSER RESPONSE
REK DtmCONTROL D
REM RlaRECORD COUNT
REK FILES USED
REM RA FILE NAME: BUSINESS INVENTORY
RIK RECORD LENGTH: 75 BYTES
REM DATASET FORMAT:Nt,Pt,St,L,Y,Q,C,U

REK INITIALIZE

LET.Dt II CHR• (4)
LET RI II I
PRJHT Dt;"OPEH BUSINESS JNV.ENTORY,L75"

REK _DATA ENTRY MODULE-DATA ENTRY TESTS OMITTED

INPUT ",SNTER PRODUCT NUKBERC4 DIGITS> i" ;Nt
REK -DATA ENTRY TESTS GO HERE
INPUT "ENTER PRODUCT DESCRJPTIONUD CHAR.KAJ.>: 11 ;PS
REM -DATA ENTRY TESTS GO-HERE.
INPUT "ENTER HAKE OF SUPPLJERUD CHAR.KAI.>: 0 ;SS
REM -DATA ENTRY TESTS GO.HERE
INPUT 0 REORDER POINT: II ;L
REK -DATA ENTRY TESTS GO HERE
INPUT "REORDER OUANTJTY:";Y
REM -DATA ENTRY TESTS GO HERE
INPUT "QUANTITY NOW JN STOCX:";O
REif' -DATA ENTRY TESTS GO HERE
INPUT "WHOLESALE COST:";C
REM -DATA EN'l'RY TESTS GO HERE
INPUT "UNIT SELLING PJU CE:"; U
REM -DATA ENTRY ~ESTS GO HERE

REK WRITE DATASET TO FILE

·PRINT Dt;"WRJTE BUSINESS JNVENTORY,R 11 Rl
PRINT Nt: PRINT Pt: PRINT St: PRINT.L: PRINTY: PRINT 0: PRINT C·:
PJiUrt Ii
PRINT Dt

REK HORE DATA REQUEST

INPUT ''HORE DATA<TYPE 'Y' FOR YES OR 'N' FOR NO> P" ;RS
REM -Y OR N ENTRY TEST
IF RS c 11 Y11 THEN Rl 11 Rl ·+ l: HOKE : GOTO 370

REK -PRINT.RECORD COUNTER VALUE & CLOSE FILE

PRINT Dt; 11WRJTE BUSINESS JNVENTORY,JID"
PRINT RI
PRINT Dt
PRINT Dt; 11 CLOSE"
PRINT : PRINT Rl; II TOTAL DATASETS. FJLE CLOSED. II

END

~48 APPLE BASIC; DATA FILE PROGRAMMING ·

lb.
100
110
120
130
140
150
llD
170
lBD
190
ZDD
no
ZZD
Z3D
Z4D
ZSD
UD
270
ZBD
ZID
3DD
310
3ZD
330
340
350
380
.370
380
390
400
410
420
430
440

450
480
470
480
480
SOD
510
SZD

REM BUSINESS INVENTORY READER

REM VARIABLES USED
REM NtaPROD.NUMBER(4)
REM PhDESCRJPTJON(ZD>
RIM StaSUPPLJER(ZD>
REM LmREORDER POJNT(3>
REM YmREORDER QUANTITY(4>
REM OaOUANTJTY JN STOCX(4)
REM CmCOST(.'i'O RETAILERHB>
REM UaUNJT(RETAIL>PRICE(ll
REM RtaUSER.RESPONSE
REM DSaCONTROL D
REM RlaiECORD COUNT
REM FILES USED
REM · RA FILE NAME: BUSINESS INVENTORY
REM RECORD LENGTH: 75 BYTE.a
REM DATASET FORMAT:NS,Pt,SS,L,_Y,O,C,U

REM INITIALIZE

DS ., CHRS (4)
PRINT DS;"OPEN BUSINESS INVENTORY,L75"
PRINT DS;"READ BUSINESS INVENTORY.RD"
INPUT Rl
PRINT DS
PRINT Rl;" TOTAL DATASETS.": PRINT

REM READ AND DISPLAY

FOR J • 1 TO Rl
PRINT DS;"READ BUSINESS INVENTORY,R"X
INPUT NS,PS,SS,L,Y,O,C,U
PRINT.DS
PRINT NS: PRINT Pt: PRINT SS: PRINT L: PRINT Yl PRINT 0: PRINT C:
PRINT U: PiiNT
PRINT : INPUT "PR.EH RETURN FOR NEXT DISPLAY. ";RS
HOJIE
NEXT X

REM CLOSE FILE

PRINT DS;"CLOSE"
PRINT : PRINT "ALL DATASETS DISPLAY.ED."

-RANDOM ACCESS DATA FILF.S 249

le.
JDD
llD
JZD
13D
l4D
llD
170
180
190
185
ZDD
ZlD
Z2D
Z3D
Z4D
zu
ZSD
ZID
Z7D
ZID
ZID

RIM CREATE SEO POINTER FILE FROM BUSINESS INVENTORY R-A FILE

REM VARIABLES USED
REM DSsCONTROt D
REM NSaPRODUCT 114 CHAR.>
REM Rl•RECORD COUNT
REJI hFOR-NEJT CONTJiOt VARIABLE
REM FILES USED

.. REM R-A FILE NAME: BUSINESS INVENTORY

3DD

REM FILE LENGTH:75 BYTES
REM SEO FILE NAME:POINTER
REM DATASET FORMAT:NS,X

REM INITIALIZE

HOME : PRINT "WORKING"
LET DS a CHRS 14>
PRINT DS;"OPEN BUSINESS INVENTORY,L75"
PRINT Dt;"OPEN POINTERn

REM READ FIRST DATA ITEM FROJI R-A FILE AND WRITE THAT ITEM+RECORD
COUNT TO SEO. FILE

310 PRINT Dt;"READ BUSINESS INVENTORY,RD"
3-ZD INPUT Rl
315 PRINT Dt
33D FOR X • l TO Rl .
HD PRINT Dt;"READ BUSINESS INVENTORY,R"X
35D INPUT NS
310 PRINT DS
380 · PRINT DS; "WRITE POINTER"
390 PRINT NS: PRINT X
400 PRINT DS
410 NEXT J
4ZD :
430 REM CLOSE FILES
44D : ·
45D PRINT DS;"CLOSE"
41D PRINT: PRINT "FILES CLOSED."
470 END

ld. lDil
llD
lZD
130
140
!SD
llD
170
180
llD
ZDD
ZlD
ZZD
Z3D
HD
150
ZID
27D
Z.80
ZID
300
310
UD
330
340
3SD
380
370
310
390
400
UD
no

REM POINTER FILE READER

REM VARIABLES USED
RE" DSaCONTROL D
REM NSa1CCOUNT I
REM R 1 a RECORD. COUNT
REM RScUSER RESPONSE VARIABLE
REM FILE USED
REM SEO. FILE NAME: POINTER
REM DATASET FORMAT: NS,Rl

REM INITIALIZE

LET Dt a CHRS 14)
PRINT DS;"OPEN POINTER"

REM READ AND »ISPLAY

ONERR GOTO ODD
PRINT DS;"READ POINTER"
INPUT NS , Rl .
PRINT DS
PRINT Nt,Rl
PRINT
INPUT "PRESS RETURN UY TO DISPLAY NEXT DATA.";RS
PRINT
GOTO ZID

REM CLOSE FILJ

PRINT DS;"CLOSE"
PRINT :· PRINT "CONTENTS DISPLAYED & FILE CLOSED."
END

250 APPLE BASIC: DATA FILE PROGRAMMING

2. 100
110
12D
130
HD
!SD
180
17D
180
lBD
ZDO
uo
ZZD
Z3D
Z4D
Z5D
:UD
Z7D
ZBD
290
3DO
310
3ZD
33D
340
35D
380
370
380
390
4DD
41D
4ZD
430
440
450
48D
47D
48D
490
5DD
51D
SZD
53D
54D
55D

HEM SOLUTION CHI SELFTEST PROB Z

REM VARIABLES USED:
REM Nt=CUSTOKER NUKBERCS CHAR>
REM CtaCUST. NAME CZD CHAR.MAX.)
REM R•CREDIT RATING
REM ' DtsCONTROL D
REM XaFOR NEXT LOOP VARIABLE
REM RlaRECORD COUNTER VARIABLE
REM · FILES USED .
REM R-A SOURCE FILE NAME: R-A CREDIT
REM R-A COPY FJLl NAME: R-A CREDIT COPY
REM RECORD LENGTH: 29
REM DATASET FORMATS: Nt,CS,R

REH JNJTJALJZE

HOME
PRINT "WORKING"
LET DS ~ CHRS C4>
PRINT Dt;"OPEN R-A CREDJT,L29"
PRINT Df;"OPEN R-A CREDIT COPY,LZS"
PRINT Dt;"DELETE R-A CREDIT COPY"
PRINT Dt ;·"OPEN R-A CREDIT COPY, LZB"

REM COPY ROUTlNE

PRINT Dt;"READ R-A CREDIT,RD"
INPUT Rl
PRINT Dt
FOR X a l TO Rl
PRINT DS;"READ R-A CREDIT,R"X
INPUT NS,CS,R
PRINT DS
PRINT DS;"WRITE R-A CREDIT COPY,R"X

.PRINT Nt: PRINT CS: PRINT R
·PRINT Dt
NEXT X

REH WRITE RECORD COUNT &. CLOSE

PRINT DS;"WRITE R-A CREDIT COPY,RD"
PRINT Rl
PRINT DS;"CLOSE"
PRINT: PRINT "FILE DUPLICATED AND CLOSED."'
END

3.

RANDOM ACCESS DATA FILES 251

100
110
120
130
140

REii SOLUTION, CHS SELFTEST PJIOB 3

·15D
lBD
17D
lBD
llD
2DO
210
UO
230
Z4D
250
ZID

. 270
28D
290
300
31D
32D
330

REM READ & DISPLAY TWO R-A FILES

JIEM VARIABLES USED
REM HS,HlSaCUST.ICS CHAR)
JIEM CS,CHaCUST.HAllEC20 CHAR.MAJ.>
REM C, ClaCREDIT RAT I NIH J CHAR>
"JIEM R, RlaJIECORD COUNTS
REM JaFOR NEXT LOOP VARIABLE
REii DSaCOHTROL D

JIEll FILES USED
REii . R-A FILE NAMES: R-A CREDIT, R-A CREDIT COPY
JIEM JIECORD LENGTH: 29 BYTES
REii DATASET FORMAT: HS,CS,C

REii INITIALIZE

LET Dt • CHBS 14>
PRINT Dt;nOPEN JI-A CREDIT,L29"
PRINT Dt;"OPEN R-A CREDIT COPY,I.29"

I
JIEM READ & DISPLAY RECORD COUNTS

340 PJIIHT Dt;"JIEAD JI-A CJIEDIT,JIO"
350 INPUT R
31D PJIINT Dt
370 PJIJNT Dt;"JIEAD JI-A CJIEDIT COPY,JIO"
380 INPUT Jll
39D PJIINT Dt
400 PJIINT "OJIIGUfAL FILE JIEPOJITS ";JI;" JIECOJIDS. 11

410 PRINT ,;COPY FILE REPORTS ";Rl;" RECORDS."
415 PJIJNT
4ZD :
43D JIEll · JIEAD & DISPLAY OHE DATASET AT A TillE IJIOM EACH FILE
440 : .
450 fOJI J • l TO JI
48'D PRINT Dt;"JIEAD JI-A CREDIT,R"J
47D INPUT Ht,Ct,C
48D PRINT Dt
HD PJIINT Dt;"JIEAD JI-A CJIEDIT COPY,Jl"J
SOD· INPUT NJStClt,Cl
51D PJIJNT DS
52D PRINT "ORIG: 0 ;Nt;Ct;C
530 PRINT "COPY: ";Hlt;Clf;Cl
54D PRINT
55D INPUT "PRESS 'JIETURH' TO DISPLAY HEIT DATASETS.";Jl9
58D HOKE
57D NEJT J
SID :
590 REii CLOSE FILES
BOO
UD
UD
83D

PRINT Dt;"CLOSE"
PRINT : PJIINT "COMPARISON COMPLETE."
END

CHAPTER SEVEN

Random Access Fiie
Applications

Objectives: In this chapter you will learn expanded techniques for random access data
file applications and how to use sequential "pointer". data files as an index for a ran
dom access data file.

SEQUENTIAL POINTER FlLES FOR RANDOM ACCESS FILES

Two file applications are designed to be somewhat typical of the programs you might
encounter as you design your own computer software systems and write your own
programs. The programs are not really long, as you might expect, but they are only
one component of a larger software system composed of many programs.

The first exercise is an inventory control application that uses both a sequential
file and a random access file in the same program.. The objective is to show how to
use a ~quential "pointer" file and how to change data located in a random access file
record. The application could as well have been a mailing list, a credit information
file, or any sort of master file application. While a pointer file may be superfluous in
our sirriple example, the technique may be valuable in more complex software systems;

In this case, all the data regarding the invenfory of products carried are stored in
a random access file named BUSINESS INVENTORY. Each random access record con-
tains the following data for one item of inventory in the order shown below: .·

252

N$ = PROD # (4)
P$ =DESCRIPTION (20)
S$ =SUPPLIER (20)
L = REORDER POINT (3)
Y = REORDE.R QUANTITY (4)
Q =QUANTITY AVAILABLE (4)
C =COST (6)
U = UNIT SELLING PRICE (6)

If you wanted to change some data from product number 9827' you would have

RANDOM ACCESS FILE APPLICA'.flON~ 253

to search through the ra,nd<>m access file records one at a time, until you found prod
uct number 9827. Alternatively you could add a sequential "pointer" file that con
tains the product numbers (in a string variable) followed by the record number where
the proper dataset is located in the random access file. To change the cost and selling

· price data in the random access file, follow these steps:

1. Enter product number.
2. Quickly search the sequential pointer file for the product number and corres

ponding record location.
3. Access the correct random access record.
4. Make the changes in the randoi;n access file record.

It looks easy, but there are a few "tricks." Here is the first part of the program.
Read it through carefully.

100
110
lZO
130
HO
150
180
170
180
190
zoo
ZlO
zzo
Z30
Z40
zso
ZBO
270
Z80
Z80
300
310
3ZO
330
340
350
310
370
380
390
400
410
420
430

JIEM SEO.POINTEJI FILE USED WITH JI-A FILE 'BUSINESS JNVENTOJIY'
REM THIS PROCRAM PERMITS THE USER TO CHANCE THE COST AND
JIEM UNIT SELLINC PJIJCE FOJI AN E.IISTINC JNVENTOJIY ITEM JN FILE

JIEM VARIABLES USED
JIEM RS a DATA ENTRY STJIINC
JIEM JllaJIECOJID COUNT
REM NSaNlSaNZt•PROD.I <4 CHAR>
REH PS=PJIOD.DESCJIJPTJONCZO CHAJI>
REM SS " SUPPLIER CZO>
JIEM L = REOJIDER POINT CJ>
REM Y '" REORDEJI QUANTITY <3>
REH· OsOUANTITY JN STOCX <3 CHAJI>
REM C:ClaCOST (8 CHAR>
JIEM U=UlaUNJT SELLING PJIJCE ! B CHAR>

JIEM FILES USED
REH SEO. FILE NAME: POINTER
REH DATASET FOJIHAT: NS,Rl

.REH JI-A FILE NAME: BUSINESS INVENTORY
JIEM FILE LENCTH: 75 BYTES
REM DATASET FORMAT: NS,Pt,SS,L,Y,0,C,U

REH INITIALIZE

LET Dt • CHJIS <4>
JIEH 'POINTEJI' OPENED AT TIME OF FILE SEARCH
PRINT Dt;"OPEN BUSINESS INVENTORY,L75"

JIEH DATA ENTRY MODULE

INPUT "ENTEJI PJIODUCT I <4 CHAR>:• ;Nzt
REM DATA ENTRY TESTS

This segment provides for entry and testing of the product number. It is time to
search the sequential file for the record location for this product number in the ran
dom access file .. On chance that the operator made an entry error that escaped the
error tests, include an error trap in case you read all the way to the end of the sequen
ti~ file and find no matching product number. This error message routine is shown ·
below in lines 560 through 610. You fill in lines 460, 480, 490, and 500.

~· APPLE BASIC: DATA FILE PB,OG:RAMMJ:NG .

"(a) HO
450 ·oo ·

REM SEARCH POINTER FILE

no ONERR ' GOTO 580
480
HD
5DD
5.iD Ir NH a NU THEN PRINT Df; "CLOSE POINTER": GOTO BSD
SH GOTO 480
530
S fD · RIM ERROR TRAP
SSD
SID Ir PIEX CZZZ> 11 5· THEN 580
570 PRINT·: PRINT CHRf C7>;"UNUSUAL ERROR. PROGRAM TERMINATED.": PR.INT

GOTO 840 .
S8D PRINT DS;"CLDSI POINTER"
StD PRINT 11 THIS PRODUCT I IS NOT JN DUR FltE"

'800 PRINT "CHECK YOUR NUMBERS AND REENTERn
llD . GOTO· 410'
IZD

(b) In which variable is the record nwnber of the random access file located? __ _

(c) Under what conditions is the POINTER file closed?~~--------

(a)

(b)
(c)

440
450
480
470

' 480'
480

,500
5.1,D
UD
S30
HD
S5D
SID
S70

SID
SID
800
llD
82D

Rl

RIM SEARCH PO·JNTER ll ti

PRINT Df; "OPEN ·POINTER"
ONERR GOTO SID .
PRINT DS;"READ POINTER"
INPUT NU, Rl
PRINT Df
Ir NH • NU THEN PRINT DS; "CLOSE POJNT£R": GOTO BSD·
GOTO 48D

REM ERROR TRAP

Ir . PIEX C ZZZ> 11 5 THEN SID
PRifil'.l'.:· PRINT CHRS C7l;"UNUSUAL ERROR. P.ROGRAM TERMINATED .• ": PRINT
GOTO HD
PRINT Df;"CLOSE POINTER•
PRINT "THIS PRODUCT I IS NOT IN OUJI FILE!'
PRINT "CHECK YOUR NUMBERS AND REENTER"
GOTO 410

If the account number entered by the user is found (line 510), or if the end of
file is encountered (lines 500 to 610) · ·

Next the correct dataset is accessed from th~ random access file. Fill in lines
650, 660, and 670.

(a) 830 RIM
840 :
850
llD
87D
880 :

READ RECORD FROM R-A FILE

(a)

(a)

(a)

83D
HO
850
88D
870
BBD

RANDOM ACCESS FILE APPUCATIONS 255

REM READ .RECORD FROM R-A FJLE

PRJNT Dt;uREAD BUSJNESS JNVENTORY,R"Rl
JNPUT Nt,Pt,St,L~Y,O,Cl,Ul. .
PRJNT Dt . ·

Complete lines 820, 830, and 840 below.

890
7DD
710
720
730
HO
750
78D
77D
780
790
IDD
8 lD
IZD
83D
HD
85D

REM ENTER DATA CHANGES

PRJNT : PRJNT "OLD COST: ";Cl
PRINT "OLD UNIT SELLING PRICE: "(u1
PRINT
INPUT "ENTER NEW COST:";C
REM DATA ENTRY TESTS GO HERE
INPUT "ENTER NEW SELLJNG PRJCE: ";U
REM DATA ENTRY TESTS GO HERE

REM REPLACE WJTH NEW DATA

890 REM ENTER DATA CHANGES
70D
71D
72D
730
HD
75D
78D
77D
780
190

PRJNT : PRINT "OLD COST: ";Cl
PRINT "OLD UNIT SELLING PRICE: ";Ul
PRJNT
JNPUT "ENTER NEW COST:";C
REM DA7A ENTRY TESTS GO HERE
JNPUT "ENTER· NEW SELUNG PIUCE:";U
REM DATA ENTRY TESTS GO HERE

BOD : REM
810

REPLACE WITH NEW DATA

BZD PRJNT Dt; "WRITE BUSINESS INVENTORY ,R"Rl
830 PRINT Nt: PRINT Pt: PRINT St: PRINT L: PRINTY: PRINT 0: PRINT C:

PRINT U
HD PRINT D.t
850

The remainder of the program looks like this:

BID
870
BID
89D
9DD
9.10
92D
930
HD
950

REM MORE?

INPUT "MORE ENTRJES?";RS
REM DATA ENTRY CHECK GOES HERE
IF LEFTt !Rt;l> '" "Y" .THEN 41D

REM CLOSE

PRINT DS;"CLOSE"
END

256 APPLE BASIC: D~TA FILE PROGRAMMING

This completes the first random access file application-one part of an entire
product inventory application. Now enter and RUN the program. After that, display
the contents of BUSINESS INVENTORY to verify the changes.

lDD REM
110 JIEM
lZD REH
130

SEO.POINTER FILE USED VITH R-A FILE 'BUSINESS INVENTORY'
THIS PROGRAM PERMITS THE USER TO CHANCE THE COST AND
UNIT SELLING PRICE FOJI AN EXISTING INVENTORY JTE!f JN FILE

140
150
180
170
180
190
zoo
210
zzo
230
240
Z5D

REH
REH
REM
REH
JIE!f -
REH
JIE!f

·REH
REif
REH
REif

ZBO . REH
z70· REH
ZBO REH
290 REH
300 REH
310 REH
320 :
330 REH
340 :

VARIABLES USED
RS = DATA ENTRY STRING
RlsRECORD COUNT .
NS•NlSmNZS=PROD.I C4 CHAR>
PtcPROD.DESCRIPTIONCZD CHAR>
SS • SUPPLIER CZD>
L = REORDER POINT C3>
Y = REORDER QUANTITY C3>
OcOUANTJTY,IN STOCX 13 CHAR>
C=Cl=COST 18 CHAR> .
UeUJ=UNIT SELLING PRICE C6 CHAR>

FILES USED
SEO. FILE NAME: POINTER
DATASET FORMAT: NS,Rl
R-A FILE NAHE:-BUSJNESS INVENTORY
FILE.LENGTH: 75 BYTES
DATASET FORMAT: NS,PS,SS,L,Y,O,C,U

INITIALIZE

350 LET DS • CHRS <4>
380 REH 'POINTER' OPENED AT TIME OF FILE SEARCH
370 PJIINT DS;"OPEN BUSINESS INVENTORY,L75"
380 : .
390 REH
400 :

DATA ENTRY 110DULE

410 INPUT "ENTER PRODUCT i C4 CHAR>:";NZS
420 REH DATA ENTRY TESTS
430
440 JIEM
450 :

SEARCH POINTER FiLE

480 PRINT Dt;"OPEN POINTER"
470 ONERR COTO .580
480 PRINT DS;"READ POINTER"
490 INPUT NlS,Rl
500 PRINT Df
510 IF NJ S '" NU THEN PRINT DS; "CLOSE POINTER": COTO 650
5ZD COTO 480
530- :·
540 REM
550

ERROR TRAP

580 IF PEEK CZZZ> • 5 THEN 580

. -~,-.

570 PRINT:. PRINT CHRS C7>;"UNUSUAL ERROR. PROGRA!f TER!IINATED.": PRINT

580
590
&DO
810
BZD
no
140
850
880
870
680
890
700
710
720
730
740
750
.~60

GOTO 940 .
PRINT DS ;"CLOSE POINTER"
PRINT "THIS PRODUCT I IS NOT JN OUR FILE"
PRINT "CHECK YOUR NUMBERS AND REENTER"
GOTO 410

REH READ RECORD FRO!f R-A FILE

PRINT DS;".READ BUSINESS INVENTORY,.R"Rl
INPUT NS ,PS, SS ,L, Y ,0, Cl, Ul
PRINT DS ..

REH ENTER DATA CHANGES

.P.RINT : PRINT "OLD COST: ";Cl
PRINT "OLD UNIT SELLING ·PRICE: ";Ul
PRINT
INPUT "ENTER NElilCOST:";C
REH DATA ENTRY TESTS GO HERE
J,NPUT "ENTER NEV SELLING PRICE:";U

continued on next page

770
780
790
BOD
810
820
B30

840
BSD
HD
B7D
8BD
890
900
910
9ZO

. 9 30
940
950

(a)

RANDOM ACCESS FILE ~PLICATIONS 257_

RE" DATA ENTRY TESTS GO HERE

REM . REPLACE WITH NEV DATA

l'RINT Dt;"VRITE BUSINESS INVENTORY,R"Rl
PRINT NS: .PRINT PS: PRINT SS: PRINT L: PRINT Y: PRINT 0: PRINT C:
PRINT U
PRINT Dt

REM MORE?

INPUT ""ORE ENTRJES?";RS
RE" DATA ENTRY CHECK GOES HERE
IF LEFTS CRt,l> " "Y" THEN 410

REM CLOSE

PRINT DS; "CLOSE"
END A.

What other programs are needed to complete this series of application prograins?

(a) 1) Add new inventory items. 2) Delete inventory items. 3) Change supplier and/
or description. 4) Change reorder point, etc., to name a few.

PERSONAL MONEY MANAGEMENT ·APPLICATION

The .s~cond example program in this chapter could form part of a large home financial
management software package. The example gives some hints for setting up your own
home finance programs: The objectives of this application are to show you how to
process a "transaction" file and to demonstrate how account numbers can be used to
point out the file and record in a random access file.

The first step is to decide exactly what expenditures you want to computerize.
Record all income and all expenditures into particular accounts. Include the capability
to discern taxable from non-taxable items so these records can be used as data for your
income tax returns .. To keep things simple, the following chart of accounts has been
prepared fot this application:

.258 APPLE BASIC: DATA FILE PROGRAMMING

1001
1002
1003
1004
1005
1006
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
20 11
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
3001
3002
3003
3004
3005
3006
3007

. 3008
3009
3010
3011
3012

TAXABLE SALARIES
~AXABLE INTEREST
TAXABLE DIVIDENDS
TAXABLE OTHER INCOME
NON-TAXABLE lNCOME
MISC. NON-TAXABLE MONEYS
GROCERIES
NON FOOD STAPLES
MORTGAGE
GAS/ELECTRICITY
WATER & GARBAGE
TELEPHONE
HOME INSURANCE
PROPERTY TAXES
FURNITURE
AUTO PAYMENTS
GAS AND OIL
AUTO REPAIR
PARKING/TOLLS
AUTO INSURANCE
FATHER 1 S CLOTH·E S
MOTHER'S CLOTHES
SON'S CLOTHES
DAUGHTER'S CLOTH~S
CLOTHING REPAIR/CLEANING
SPORTS FEES/TICKETS
SPORTS EQUIPMENT
MAGAZINES/BOOKS
MOVIES/PLAYS
ALCOHOL
DINING OUT
VACATION EXPENSES
POSTAGE
SCHOOL/HOUSEHOLD SUPPLIES
LEGAL/ACCTG. FEES
LIFE INSURANCE
MEDICAL INSURANCE
DENTAL INSURANCE
UNREIMBURSED MEDICAL EXPENSES
DRUG EXPENSES
EDUCATIONAL FEES AND TUITIONS
BOOKS AND SUPPLIES
EXCESS SALES TAXES PAID
CONTRIBUTIONS
SAVINGS DEPOSITS
INVESTMENTS

The account .number has important significance. The first digit of the account
number is the number of the random access file in which the account details can be
found. All random access files are called BUDGET#. The details of the taxable sal
aries account are found in file BUDGET! (account number 1001). The details of the
telephone account are in file BUDGET2 (account n~ber 2008).

(a) Which file contains the details of the dining out account? ---------

-- --...:--~ -- - --- - -- -

RANDOM ACCESS FILE APPLICATIONS 259

(a) BUDGET2 (account number 2006)

The last three digits of the account number indicate the record number of the
random access file containing the account details. The investment account (3010) will
be found in the file BUDGET3, record number 10.

(a) The legal/accounting account details are foun<l in file---------~

record number ----------

(a) BUDGET2, record 30

For convenience, the account number is always entered as a strlng variable so
that you can use the LEFT$ and RIGHT$ functions to separate the file number and
record number.

To demonstrate the file number concept~. we use three separate files (BUDGET!,
BUDGET2, and BUDGET3) for this small list of accounts. Of course, all these ·ac
counts could be placed in one file, but that will not be the case when your account
list grows.· At, that point you may want to use this scheme.

The random access files (BUDGET#) contain the details of each account. Each
record contains the following information in the order shown.

N$ = ACCOUNT # (4)
A$= ACCOUNT NAME (20)
B$ = BUDGETED AMOUNT (8). ANNUAL BUDGET
E$ =EXPENDED/EARNED AMOUNT (8). YEAR-TO-DATE

Write one program that you can use to create three random access file' named
BUDGET!, BUDGET2, and BUDGET3, using the dataset shown above as the format
in- each record. Using the chart of accounts we have provided, enter the correct num
ber. of datasets (one per record) for each file; i.e., six records in BUDGET!, twenty
eight records in BUDGET2, and twelve records in BUDGET3. Use the value of the
right-most three digits of the account chart number· (N$) to determine the record num
ber into which each dataset will be placed. You decide on the value for BUDGETED
AMOUNT in each record, and enter zero (0) as the value for EXPENDED/EARNED
amount in all records in all files (happy new fiscal year). Also write the companion
program to display the contents of the file one dataset at a time.

260 . APPLE BASIC: DATA FILE PROGRAMMING

(a) lDD REM
llD
lZO REM
130 REM
140 REM
150 REM
160 REM
170 REM
l71 REM
172 REM
180 REM
190 REM
ZOD REM
210 , REM
ZZD REM
230 REM

CREATE BUDGETI R-A FILES

VA.RUBLES USED
NS = ACCOUNT CHART NUMBER <4>
AS = ACCOUNT NAME 120>
BS = BUDGETED AMOUNT (8)
ES·= EIPENDED/EARNED AMOUNT CS)
Rl " RECORD NUMBER C EXTRACTED FROM NS l
N = U.SER. ENTERED NUMBER FOR BUDGETI FI LE NAME
FU = BUDGET FILE NAME
DS = CONTROL D .
RS a USER RESPONSE

FILE USED
R-A FILE NAMES: BUDGETl,Z,3
DATA.SET FORMAT:NS,AS,BS,ES
RECORD LENGTH: 44

(a) lDD
110
lZD
l3D
l4D
150
JSD
170
180
190
zoo
210
ZZD
230
240
Z5D
ZSD
Z7D
ZBD
290
300
310
320
330

RANDOM ACCESS FILE APPLICATIONS 261

REM CREATE BUDGET# R-A FILES

REM VARIABLES USED .
REH NS = ACCOUNT CHART NUMBER <4>
REM AS = ACCOUNT NAME <ZD>
REH BS = BUDGETED AMOUNT CB)
REM ES = EXPENDED/EARNED AMOUNT

REM FILE USED
REH R-A FILE NAMES: BUDGETl,Z,3
REM DATASET FORMAT:NS,DlS,B,E
REH RECORD LENGTH: 44

REM INITIALIZE

LET Ds = CHRs (4)
LET Rl " 1
INPUT "1"HJCH BUDGET FILE Cl, Z, OR 3) 1"; FZS
REH DATA ENTRY TESTS GO HERE
LET FlS " "BUDGET" + FZS
PRINT DS;"OPEN"FH",L44"

34D REM READ FILE
3SO. :
380 ONERR GOTO 47D
37D , PRINT DS;"READ"FH",R"Rl·
380 INPUT NS,AS,BS,Ef
390 PRINT DS
4DD PRINT : PRINT NS; PRINT AS: PRINT BS: .PRlNT ES: PRINT
41D PRINT : PRJNT : INPUT "PRESS RETURN TO CONTINUE. ";RS
4ZD LEr Rl = Rl + l
43D GOTO 370
440
450 REM CLOSE FILE
480
410
48D

PRINT DS;"CLOSE" _
PRINT : PRINT "FILE DISPLAYED AND CLOSED."

You have now created the budget files for the personal money management sys
tem of programs. A second set. of files is needed to store data on all money transac
tions. E~ch month a new sequential transaction file is cre~ted containing the iriforma
tion found in your checking account check register. For the month of January, the
file is called MONTHl. March is MONTH3, etc. You may keep "old" files on your
disk for other analyses you may want to do. Each month you will create a transaction
file, then process or "post" it to the BUDGET# file.· Each sequential transaction file
entry includes the following information in the order shown:

C = CHECK #/DEPOSiT SLIP #
Y$ = DATE (6)
W$ = PARTY TO WHOM CHECK IS DRAWN/SOURCE OF FUNDS (20)
A$ = ACCOUNT # (4)
D = DOLLAR AMOUNT

Notice that the format is set up to be used with deposits and payments and that ·
the transaction file includes more information than you will actually be using. This
file, however, can be used for other things as well, so all this information is included.

262 APPLE BASIC: DATA FILE PROGRAMMING

' . (a) . Using the dataset information above as a guide,.write a program that allows you
· to create the sequential monthly transaction file. Use your checkbook register ·or

your imagination for the monthly checks and deposits to enter in the file. Then
write the companion program to display MONTH#, using the "PRESS RETURN

·TO CONTINUE" technique.

lDD
110
lZO
130
140
150
160

17D
180
19D
zoo
ZlD
220
230

REM CREATE A SEO.FILE or CHECKBOOK TRANSACTIONS FOJI EACH MONTH or YEAJI

REM VARIABLES USED
REM . DS:CONTJIOL D
REM C:CHECK I OJI DEPOSIT SLIP I C3 CHAR>
REM YS:DATE CXX-XX-XX> C8)
REM WS=PAJITY TO WHOM CHECK IS WRITTEN. OJI SOURCE or FUNDS FOR
DEPOSIT CZD CHAR.MAX.>
JIEM NS=ACCOUNT NUMBER 14 CHAJI>
REM D:DOLLAR AMOUNT
REM M = USEJI ENTERED MONTH NUMBER FOJI FILE NAME
REH FS:FILE NAME
REM RS=USEJI RESPONSE VARIABLE
REH SEO'. FILE NAME:MONTHI
.REM DATASET FORMAT: C,YS,WS,NS,D

(a}
lDD
110
l2D
13D
l4D
l5D

· l&D

170
180
190
200
ZlO
220
230
240
ZSO
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
44D
450
460
470
480

RANDOM ACCESS FILE APPLICATIONS 263 ·

.REM .R.EAD MONTHLY T.RANSACTJON FILES

.REM
REM
REM
REM
.REM
DEPOSIT
JIEM
REM
JIEM
REM

VARIABLES USED
DS=CONTROL D
C=CHECX I O.R DEPOSIT SLIP I 13 CHAii>
YhDATE CS CHAR>
VhPA.RTY TO VHOM CHECX JS W.RJTTEN OJI SOURCE OF FUNDS F.O.R

CZD CHAR.MAX.> .
AS=ACCOUNT t 14 CHAR>
D=DOLLAR AMOUNT
M=U.SE.R·ENTEJIED MONTH NUMBER
FS=FILE NAME

.REM
REM
JIEM

.RS=lNPUT VARIABLE FOR PRE.SS .RETURN TO CONTINUE
SEO.FILE NAME:MONTHI
DATA.SET FO.RMAT:C,YS,WS,AS,D

JIEM INITIALIZE

LET DS = CH.RS 14)
INPUT "WHAT MONTH tll!"JAN,2=FEB,ETC>?";M
IF M < l OJI M > l2 THEN .PRINT "ENTER l TO 12 ONLY."; GOTO ZBD
REM OTHER DATA ENTRY TESTS CO HERE
LET FS = '~MONTH" + ST.RS IM>
PRINT DS;"OPEN"FS .

.REM .READ AND DJ.SPLAY

ONE.RR GOTO 470
PRINT DS;"READ"FS
INPUT C,YS,WS,AS,D
PRINT DS
PRINT C: PRINT YS: PJIJNT WS: PRINT AS: PRINT D
PRINT : PRINT
INPUT "PRESS .RETURN FOR NEXT DISPLAY";JIS
HOME : GOTO 370

.REM CLOSE FILE

PRINT DS·"CLOSE"
PRINT ; PJIJNT "ALL T.RANSACTJONS DJ.SPLAYED.,;

264 APPLE BASIC: DATA FILE PROGRAMMING

Let's review the application. Each year, create random access files (BUDGET#)
that contain the beginning status of all your personal accounts. This status includes a
yearly budget estimate. Each month create a sequential file (MONTH#) using the in
formation found in your checkbook register. After the MONTH# file is completed,
process or post it to the BUDGET# files. Periodically, you can print a status report
of the BUDGET# files. ·

The task is to write the program that processes the monthly transaction. file.
Here is the introductory module with the file initialization module:

100
110
lZO
130
140
150
180
l70
180
llD
.zoo
210
220
Z30
240
Z50
UD
Z70
ZBD
uo
·3DO
310
320
330
340
350
380
.370
380
3BD
400
410
4ZO
430
440

(a)

REM · PERSONAL MONEY MANAGEMENT
REM SEO/BA FILE APPLICATION

REM VARIABLES USED
REM NhNlhACCOUNT CHART NUMBER<4>
REM AS = ACCOUNT NAME < ZO)
REM YS = DATE <8>
REM Wt = CHECX WRITTEN TO/SOURC.E OF DEPOSIT <ZO>
REM . M = .USER ENTERED MONTH NUMBER <VSE l FOB JAN, Z FOB FEB, ETC>-
REM N = BUDGET FILE NUMBER <EXTRACTED FROM NS>
REM C = CHECK I OR DEPOSIT SLIP I

.REM D a DOLLAR AMT. OF CHECK OB DEPOSIT
REM BS m BUDGETED AMT. 18)
REM ES =·AMT. EXPENDED OR EARNED TO DATE
REM rs = SEO FILE NAME
REM Flt a R-A FILE NAME
REM Rl a RECORD .NUMBER <EXTRACTED FROM NS)
REM Dt a CONTROL D

REM FI LES USED .
REM MONTHI a SEO/TRANSACTION FILE. I IS USER SELECTED

.TIEM DATASET FORMAT: C,Yt,WS,AS,D
REM BUDGETI a R-A FILE. I IS EXTRACTED FROM NS
REM AND CHANGES WITH EACH TRANSACTION
REM DATASET FORMAT: NS,AS,BS,ES
REM RECORD LENGTH: 44 BYTES

REM FILE INITIALIZATION

LET DS c CHRS <4>
INPUT "WHAT IS THE MONTH NUMBER TO BE PBOCESSED?";M
REM· DATA ENTRY TESTS
LET FS " "MONTH" + STRt <M>
PRINT : PRINT "WORKING"

In lines 400 through 420, if the user enters 3 for M, what is the ftle name F$ in

line420?~~~~~~~~

(a) - MONTH3.

\ ·.

uo
460
410
480
490
500
510
5ZO
5 30
540
550
560
510
580
590

RANDOM ACCESS FILE APPUcATIONS 265

REM READ SEQ FILE' TRANSACTIONS

PRINT DS;"OPEN"FS
ONERR GOTO 920
PRINT DS; "READ"FS
INPUT C,Y$,WS,NS,D
PRINT Ds
POXE .Zl&,O; REM TURN OFF ERROR TRAP

REM EXTRACT FILE I/ INITIALIZE R-A FII,E

LET FlS • "BUDGET" + STRS CN>
PRINT DS;"OPEN"FlS",L44"

Llne 480 t~sts for the end of the transaction file. When all datasets in that file have
been read, the program terminates. Line 500 reads an entire dataset from the trans
action file. Then the file number is "extracted" from tlie account number, to be used
in line 570 to make the complete BUDGET file name. Complete line 560, extracting
the file number from the account number (it's the first digit of N$).

{a) 560 ____________________ _

(a) 580 LET N •. VAL C LEFTS CN$,l))

The next operation extracts the record number from the account number (the
last three digits of N$).
Fill in line 620.

(a) &OD _BEM
810 ';
&ZD
830 :

EXTRACT/CONVERT R·ECORD I

(a) &DD
81D
&ZD
83D·

REH EXTRACT/CONVERT RECORD I

LET Rl • VAL C RIGHTS CNS,3>>

(Warning: Don't forget the double closing parentheses.)

'file remaining modules accesses the proper random access file and recqrd, .up
dates the amount expended/earned, and prints the new value back to the file.

l66 . APPLE BASIC: DATA FILE PROGRAMMING

Complete this module (lines 660, 670, 680, 720, 740, 780, 790, and 800.)

(a) 840 REM READ R-A FILE RECORD
85D
880
67D
680
690
700 REM MAKE CHANCES TO DATA
7 lD
no
730 LET E = E + D
74D
750
760 . REM UPDATE BUDCETI FILE
770
780
790.
800
BlD
820 REM CLOSE BUDCET FILE
830 ;
840 PRINT DS; "CLOSE"FH
BSD :
860 REM RETURN FOR NEXT TRANSACTION
870 :
880 COTO .UO
BID :
BDO
91D :

REM CLOSE .FILE

920 PRINT Df.;"CLOSE"
93D PRINT : PRINT "TRANSACTIONS POSTED"

(a) 840 REM READ R-A FILE RECORD
850
810
17D
880

. 890
7DO
710
7ZO
730
740
750
760
770
780
79D
800
81D
820
83D
840
BSD
HD
87D
88D
BID
900
910
920
93D

PRINT DS;"READ"Flt",R";.Rl
INPUT NlS,AS,Bt,ES
PHI~ DS

.REM MAKE CHANCES TO DATA

LET E = VAL <ES)
LET E ,. E + D
LET Et = ST.RS <E>

.REM UPDATE BUDCETI FILE

P.RINT DS;"W.RITE"FJS",.R".Rl
PRINT NlS: PRINT At: PRINT BS: PRINT ES
PRINT DS

.REM CLOSE BUDCtT FILE

PRINT Dt; "CLOSE"FJS

.REM .RETU.RN FO.R NEXT T.RAHSACTION

COTO HO

.REM CLOSE FILE

P.RINT DS; "CLOSE"
PRINT : PRINT "TRANSACTIONS POSTED"

RANDOM ACCESS FILE APPUCA'J'IONS 267

This completes the program. It will continue reading checking transactions and
processing them until the end of the transaction file is reached, at which point files
are closed and the program ends. This program keeps your disk drive working, but
does nothing on your screen or printer. ,

Enter and RUN the program, then read -and display the BUDGET# files to see
the posted and updated accounts.

lDD
110
lZD
130
140
150
180
170
180
190
ZDD
UD
ZZD

. Z3D
HD
Z5D
ZSO
Z7D
280
ZID
300
310
3ZO
330
340
350
380
370
380
390
400
41D
4ZD
43D
HD
45D
480
470
48D
49D
SDD
SlD
SZD
5 3D
54D
5 SD
SID
570
SID
590
BOD
810
IZD
8 3D
840
85D
880
870
880
890

REH PERSONAL HONEY MANAGEMENT
REM SEO/RA FILE APPLICATION

REH VARIABLES USED
REH NhNl hACCOUNT CHART NUMBER I 4 >
REH At• ACCOUNT.NAME IZD>
REH Yt • DATE 11>
REH Wt • CHECK WRITTEN TO/SOURCE OF DEPOSIT IZO>
REH M •USER ENTERED MONTH NUMBER !USE 1 FOR JAN,'Z FOR FEB, ETC>
REH· N • BUDGET FILE NUMBER !EXTRACTED FROM Ht>
REH C • CHECK t OR DEPOSIT SLIP I
REH D = DOLLAR AMT. OF CHECK DR DEPOSIT
REH St • BUDGETED AMT. II>
REH Et • AMT. EXPENDED OR EARNED TO DATE 18>
REH Ft • SEO FILE NAME
REH Flt • R-A FILE NAME
REH Rl • RECORD NUMBER !EXTRACTED FROM Nt>

.REH Dt •CONTROL D

REH FILES USED
REH HONTHt • SEO/TRANSACTION FILE. I IS USER SELECTED
REH DATASET FORMAT: C,Yt,Wt,At,D
REH BUDGETI • R-A FILE. I IS EXTRACTED FROM Ht
REH AND CHANGES WITH EACH TRANSACTION
REH DATASET FORMAT: Nt,At,Bt,Et
REH RECORD LENGTH: 44 BYTES

REH FILE INITIALIZATION

LET Dt • CHRf 14>
INPUT "WHAT- IS THE MONTH HUH.BER TO BE PROCESSED?" ;H
REH DATA ENTRY TESTS
LET Ft • "MONTH" + STRt <H>
PRINT : PRINT "WORKING"

REH READ SEO FILE TRANSACTIONS

PRINT Dt; "OPEN"Ff
ONE RR GOTO 9Z D
PRINT Dt;"READ"Ff
INPUT C,YS,Wt,NS,D
PRINT tit .
POKE 218,D: REH TURN OFF ERROR TRAP

REH EXTRACT FILE I/INITIALIZE R-A FILE

LET N • VAL < LEFTS !Nt,1>>
LET Flt • "BUDGET" + STRt IN>
PRINT Dt;"OPEN"FH",L44"

REH UTRACT/ CONVERT RECORD I

LET Rl '" VAL I RI.GHTS !Nt,3»

REH READ R-A FILE RECORD

PRINT Dti"READ"FH" ,R" ;Bl
INPUT Nlt,AS,Bt,ES
PRINT Dt

continued on next page

. 268 APPLE BASIC: D~TA FILE PRO(;RAMMING

700 REM MAKE. CHANGES TO DATA
710
7ZO LET E a VAL <Et>
730 LIT I • I + D
7f0 LET Et = STRt CE>
750
780 REM UPDATE BUDCETI FILE
770
780 PRINT Dt;"WRITE"FH",R"Rl ,
790 PRINT Nlt: PRINT AS: PRINT Bt: ,RINT ES
800 PRINT 1)9 -
810
8ZO REM CLOSE BUDGET FIU ·
830 ;
uo· PRINT DS;"CLOSE"FH·
850 ;
880 REM RETURN FOR NEXT TRANSACTION
870,:
880 GOTO 480
BID
900 REM CLOSE FILE
910
9ZO PRINT Dt;"CLOSE".
930 PRINT : . PRINT "TRANSACTIONS POSTED"

(a) Only one small component of this application has been completed. List the other
programs you would need to make a complete personal finance management
system?

(a) Programs:
1. Edit MONTH# file for entry errors
2. Print BUDGET# file accounts
3. "E:i~ception report" showing over budget accounts or projeeted over budget

accounts

We have found random access files much easier to use than sequential files. But
le~'s not forget that sequential files have their place in computing; With the knowledge
gained from this book, you should now be able to read the reference manual for your
computer with new understanding. _You should also be able to write your own data file ·
programs and read programs written by others.

RANDOM ACCESS FILE APPUCATIONS 269

CHAPTER 7 SELF-TEST

1. The firsl application in this chapter was an inventory control system. Before you
continue you may want to review the system description so you are familiar with
the contents of BUSINESS INVENTORY and POINTER. -

To this system is added a third file; a sequential transaction file in which is
placed _the data regarding each transaction that affects the inventory. Two types
of transactions will affect inventory:

no REM
liO REM
lZD REM

. 130
140 REM
150 REM
160 REM
170 REM
180 REM
190 REM
200 REM
2'l 0 REM
220 REM
230 REM
240

Type 1 ~ units are added to inventory.
Type 2 - units are taken-from inventory.

Data is recorded in the sequential transaction- file in this format.

T = TRANSACTION TYPE (1 OR 2)
Y$ =DATE
1$ = INVOICE #OR RE~EIPT #
N$ = PROD # (4) _
01 = QUANTITY ADDED OR DEDUCTED

Write a program to create the transaction file described above. Name this
sequential file BUSINVTRANSACT.

PROGRAM CREATES A SEO FILE
OF INVENTORY CHANCES FOR FILE
NAMED 'BUSINESS IVENTORY'

VARIABLE LIST
T=TRANSACTION TYPE!l OR 2>
Yt=DATE !XX-XX-XX> ,

- IhINVOICE OR RECEIPT NUMBER
NS=PRODUCT I 14 CHAR>
OlcOUANTITY ADDED OR SUBTRACTED FROM INVENTORY 13 CHAR MAX>
DhCONTROL D

FILES USED
SEQ FILE NAME: BUSINVTRANSACT
DATASET FORMAT: T,Yt,IS,Nt,01

270 APPLE B~C: DATA FILE PROGRAMMING

... RANDOM AccEss FILE APPlJCATIONS 271

2. Write the companion program to display the contents of BUSINVTRANSACT.

100
110
lZD
130
·140

. 150
ilO
170
180
110
zoo
UO
UO

REM DISPLAY COHTENTS OF BUSIHVTRANSACT

REM VARIABLES USED
REM TaTRAHSACTION TYPE·
REM YhDITE
REM IS.INVOICE OR RECEIPT I

·REM HS•ACCOUNT HUMBER
REM Ol•OUANTITY ADDED OR SUBTRACTED
REM DtmCOHTROL D .
REM RSmUSER.RESPONSE VARIABLE
REM SEQ FILE USED:BUSINVTRAHSACT
REM DATASET FORMAT:T, YS, JS ,HS ,Ql

lRUH
TRAHSACTION TYPE: Z
DATE: Z-Zl-83
INVOICE OR RECEIPT I: S738fl
ACCOUNT I: l Z 34
QUANTITY ADDED.OR SUBTRACTED: 10

PRESS RETURN TO CONTINUE

272 APPLE BASIC: DATAFILE.PltOGRAMMING

RANDOM ACCES$ ~E APPUCATIONS 273

. .
, 3. Write a program to post the inventory changes in BUSINVTRANSACT to

BUSINESS INVENTORY. . .

100
110
l2Q
130
140
150

.160
170
180
190
ZOO
ZlO
ZZO
230
240
Z50
zso
Z70
ZBO
Z90
300
310
3ZO
330
340
350
380
370

REM. PROCESS BUSINVTRANSACT.FILE TO BUSINESS INVENTORY FUE

REM VARIABLE LIST
'REM DhCONTROL D

REM RS=USER RESPONSE VARIABLE
REM NS=Nl$mNZS•PRODUCT I <4 CHAR>
REM PS=PROD.DESCRIPT. CZO CHAR MAX>
REM SS:SUPPLIER NAME CZO CHAR MAX>
REM L=REORDER POINT C3 CHAR>
REM Y=REORDER QUANTITY. C 3 CHAR>.
REM O=OUANITIY IN STOCX 13 CHAR>
REM Ql=QUANTITY ADDED OR SUBTRACTED FROM STOCX <3 CHAR>
REM C=COST 18 CHAR>

.REM . U:UNIT SELLING PRICE 18 CHAR>
REM Rl=RECORD COUNT .
REM T=TRANSACTION TYPE
REM YS::TRANSACTION DATE CXX-XX-XX>
REM. IhINVOICE OR RECE-IPT NUMBER

REM Fl LES. USED
REM SEQ FILE NAME:POJNTER
REM DATASET FORMAT:NS,Rl
REM R-A FILE NAME:BUSJNESS INVENTORY
REM DATASET FORMAT:NS,PS,SS,L,Y,Q,C,U
REM FILE LENGTH:75 BYTES
REM SEQ FILE NAME:BUSINVTRANSACT
REM DATASET FORMAT:T,YS,1S,Nl$,Ql

274 APPLE BASIC: DATA FILE.PR.OORAMMING

RANDOM ACCESS FILE APPUCATIONS 275

4. Write a program that, after all the transactions have been processed, will search
the entire BUSINESS INVENTORY file and display a report of products th~t
have fallen below the reorder point and need reordering.

100 JIEM
110
lZO JIEM
130 REM
140 JIEM
150 REM
160 REM
170 JIEM
lilO JIEM
180 REM
zoo JIEM
ZlO REM
ZZO JIEM
230 REM
Z40 JIEM
250 REM
280 JIEM
270 REM
280 JIEM
UO ..

lJIUN

SEAJICH BUSINESS .INVENTOJIY FILE FOR REOJIDEJIS AND DISPLAY REPOJIT

VAJIJABLE.S USED
NSaPRODUCT I f4 CHAR>
PtaPJIOD.DESCJIIPT.fZO CHAJI MAX>
SSaSUPPLIER <ZO CHAR MAX>
LaJIEORDEJI POINT 13 CHAJI>
YmREORDEJI OUANITIY
OaOUANTITY IN STOCX
c .. cosT
U•UNIT SELLING PJIICE
DhCONTROL D
XmFOJI HEIT LOOP CONTJIOL VARIABLE
RlmJIECOJID COUNT ,
JlhUSEJI J,IESPONSE VAJIJABLE

FILES USED
JI-A FILE NAME:BUSINESS INVENTORY
DATASET FORMAT:Nt,PS,SS,L,Y,O,C,U
FILE LENGTH:75 BYTES

ACCOUNT I: 1234.
SUPPLIER: COVEN INC
JIEOJIDEJI POINT; 35
REORDER QUANTITY: 50
OUANITIY NOV IN STOCX: 30
COST: .45
UNIT SELLING PJllCE: 1.375

PRESS JIETUJIN TO CONTINUE .

. -

276 APPLE BASIC: DATA FILE PROGRAMMING

1.
lDD
110
120
130
14D
15D
18.D
17D
180
llD
zoo
UD
UD
Z30
24D
UD
21D
Z70
28D
ZID
3DO
310
32D
3 30
34D
35D
38D
37D
380

380
400
UD
420
430
440
45.D
410
470
UO
490
SOD
51D
520
530
540

550
580
570
5BD
SID
800
810

RANDOM ACCESS FILE APPIJCATIONS 277

Answer Key

REM PROGRAM CREATES A SEO FILE
REM OF INVENTORY CHANCES FOR FILE
REM HAMID 'BUSINESS IVEHTORY'

REM VARIABLE LIST ,
REM T=TRANSACTIOH TYPE<l OR 2>
REM YhDATE (IJ-U-IX>
REM IS.INVOICE OR' RECEIPT HUMBER
REM NS•PRODUCT I <4 CHAR>
REM OlaiOUANTITY ADDED OR SUBTRACTED FROM INVENTORY <3 CHAR MAil .
REM DhCONTROL D
REM FILES USED
REM SEO FILE NAME: BUSIHVTRAHSACT
REM DATASET FORMAT: T,YS,IS,H$,Ol

REM INITIALIZE

LIT DS a CHRS C4>
PRINT D9; "OPEN BUSINVTRAHSACT"
PRINT DS;"DELETI BUSIHVTRAHSACT"
PRINT D9;"0PEN BUSINVTRAHSACT"

RIM DATA ENTRY

PRINT "TRANSACTION CODES:"
PRINT " ENTER 'l' . FOR UNITS ADDED TO INVENTORY."
PRINT" ENTER 'Z' FOR UHITS.TAXIN FROM INVENTORY."
INPUT "ENTER TRANSACTION TYPE: •;T
IF T < > l AND T (> Z THIN PRINT : PRINT CHRt 17 >;"ENTER THE
DIGITS l .OR Z ONLY.": PRINT : GOTO 370
INPUT "ENTER TRANSACTION DATE: II ;·yt
REM DATA ENTRY TESTS GO HERE
INPUT "INTER. IKVOICE OR RE.CE.I PT I:"; It
REM DATA ENTRY TESTS GO.HERE
INPUT "ENTER PRODUCT I < 4 CHAR> : "·;N9
REM DATA ENTRY TESTS CO HERE
INPUT "ENTER OUANTITY:";Ol
REM DATA ENTRY TESTS GO HERE

REM WRITE TO FILE

PRINT DS; "WRITE BUSIHVTRAHSACT"
PRINT T: PRINT YS: PRlHT U: PRINT Ht: PRINT 01
PRINT Dt '
INPUT "MORE TRANSACTIONS<Y OR H> ?";Rt
IF Rt (> "Y" AND Rt < · > "N" THEN PRINT . CHRS 17 >;"PLEASE ENTER 'Y'
FOR YES OR 'H' FOR .HO.": PRINT: GOTO 530
IF RS • "Y" THEN HOME : GOTO 340

REM CLOSE FILES

PRINT Dt; "CLOSE"
PRINT: PRINT "FILE CLOSED."
END

278 APPLE BASiC: DATA FILE PROORAMMING

2.
100' HEM DISPLAY CONTENTS or BUSINVTRANSACT
110 -
lZD
130
140
150
180

- 170
180
180
zoo
ZlD
ZZO

REM
REM
REM
REM
REM
REM
REM
REM
REM
~EK

VARIABLES USED
TmTRANSACTION TYPE
YhDATE
ItmINVOICE OR' RECEIPT I
N9aACCOUNT NUMBER
OlmOUANTITY ADDED OR SUBTRACTED
DhCONTROL D
Rt=USER RESPONSE VARIABLE

SEQ FILE USED:BUSINVT~AHSACT
DATASET FORKAT:T1YS,IS,NS,Ql

Z30 REM
240 :

INITIALIZE

"' 250 LET Df = CHRS 14)
280 PRINT DS;"OPEN BUSINVTRANSACT"
270 :
ZBD REM
290

READ & DISPLAY

300
310
320
330
340
350
380
370
380
380
400
410

ONERR GOTO 440
PRINT DS;"READ BUSINVTRANSACT"
INPUT T,Y9,Il,Nt,Ql
PRINT Dt
PRINT "TRANSACTION.TYPE: ";T
PRINT "DATE: ''; YS
PRINT "INVOICE OR RECEIPT I: "; J$
PRINT "ACCOUNT I: ";NS
PRINT "QUANTITY ADDED OR SUBTRACTED: ";01
PRINT : INPUT "PRESS RETURN TO CONTINUE";Rt
PRINT : GOTO 310 .

4ZO REM
430 :

END OF FILE ERROR TRAP

HD IF PEEK < 222> = 5 THEN PRINT : PRINT "CONTENTS DISPLAYED": GOTO 490
450 PRINT: PRINT "UNUSUAL ERROR. PROGRAM TERMINATED.": GOTO 490
480 :
47'0' REM
480 :

CLOSE FILE

480 PRINT DS;"CLOSE"
500 PRINT "FILE CLOSED"
510 END

3. lDD
110
JZD
13D
14D
150
lBD
170
lBD
180
200
210
220
Z3D
240
250
280
270
280
290
300
31D
320
33D
34D
350
380
370
38D
390
4DD
410
420
430
HO
450

480
47D
48D
480
500
510
520
530
540
550
580
570
580
58D
BOD
810
820
83D
840
BSD
8811
870
BSD
69D
7DD
71D

72D
73D
74D
750
780
77D

78D
780

8DD
BlD
82D
83D
840
BSD

RANDOM ACCESS FILE APPLICATIONS 279

REH PROCESS BUSJNVTRANSACT FILE TO BUSINESS INVENTORY FILE

REH VARIABLE LIST
REH DS=CONTROL D
REH RS:USER RESPONSE VARIABLE
REH NhNl hN2 hi PRODUCT I C 4 CHAR)
REM PS=PROD.DESCRJPT. CZD CHAR MAX>
REM SS:SUPPLJER NAME C2D CHAR MAX>
REH L=REORDER POINT C3 CHAR>
REH Y=REORDER QUANTITY C3 CHAR>
REH o .. ouANJTJY JN STOCX C3 CHAR)
REH OJ.QUANTITY ADDED OR SUBTRACTED FROM STOCX C 3 CifAR>
REH C:COST CB CHAR>
REH U=UNIT SELLINC PRICE CB CHAR>
REH Rl•RECORD COUNT
REH T=TRANSACTION TYPE
REH YSaTRANSACTION DATE CXX-Xl-XX)
REH JS:INVOICE OR RECEIPT NUMBER

REH FILES USED
RIM SIO FILE NAHE:POJNTER
REH DATASET FORHAT:NS,Rl
Riff R-A FILE NAMl:BUSINESS INVENTORY
REH DATAS!T FORHAT:Nt,PS,SS,L,Y,O,C,U
REH FILE LENCTH:75 BYTES
REM SEO FILE NAME:BUSJNVTRANSACT
KEH liATASET FORMAT:T,YS,IS,NU,01

REH INITIALIZE

HO.KE : PRINT "liORXJNC"
LET Dt • CHRS C4>
PRINT Dt; "OPEN BUSINESS INVENTORY ,L75"
PRINT DS;"OPEN BUSINVTRANSACT"

REM READ ONE BUSJNVTRANSACT DATASET AND FIND CORRESPONDING RECORD I
FROM POINTER

ONERR GOTO 79D
PRINT DS;"READ BUSINVTRANSACT"
INPUT T,YS,It,Nlt,01
PRINT DS
ONERR GOTO 770
PRINT DS;"OPEN POINTER"
PRINT DS;"READ POINTER"
INPUT NS,Rl
PRINT DS
IF Ht = NH THEN PRINT Dt; "CLOSE POINTER": GOTO BlD
GOTO 53D .

REH FIND AND CHANGE 0 JN R-A FILE

POXE 218,D: REH TURN OFF ERROR TRAP
PRINT DS;"READ BUSINESS INVENTORY,R"Rl
INPUT NU,PS,SS,L,Y,O,C,U .·
PRINT DS
IF T • l THEN- LET 0" Q + 01: GOTO 7DD
IF T = Z THEN LET Q = Q - 01: GOTO 7DD

REH WRITE UPDATED DATASET TO R-A FILE

PRINT Dt;"liRJTE BUSINESS JNVENTORY,R"Rl
PRINT NU: PRINT PS: PRINT SS: PRINT L: PRINTY: PRINT 0: PRINT C:
PRINT U
PRINT DS
GOTO 470

REH ERROR TRAPS FOR SEO FILES

IF. PEEX CZ2Z> • 5 THEN PRINT: PRINT CHR$ C7);"ACCOUNT I REFERENCED.
IN BUSJNVTRANSACT FILE NOT FOUND IN POINTER FILE. PROCRAH TERMINATED.":
PRINT : GOTO il3ii
PJiJNT: PRINT CHJU C7>;"UNUSUAL ERROR. PROGRAM TERMINATED.": GOTO 83D
IF PEEX CZ22) = 5 THEN PRINT : PRINT "ALL TRANSACTIONS POSTED.":
GOTO 830

REH CLOSE FILES

PRINT DS;"CLOSE"
PRINT "FILES CLOSED"
END

280 . APPLE.BASIC: DATA FILE PROGRAMMING

4.
100
110
lZD
130
HD
150
no
170
180
190
zoo
ZlD
ZZD
230
Zf.D
250
280
270
280
290
300
310
320
330
HD
350

380
370
380
390
400
UD
420
430
440
450
480
470
480
490
500
510
5ZD
530
HD
550
580
570
580
590
800
810
820
830
840

JIEM

JIEM
JIEM
JIEM
JIEM
JIEM
JIEM
JIEM
JIEM

SEARCH BUSINESS INVENTORY f ILE FOJI JIEOJIDEJIS AND DISPLAY JIEPOJIT

VARIABLES USED
NSaPJIODUCT I C4 CHAJI>
PS=PJIOD.DESCJIIPT. CZO' CHAJI MAX>
St:SUPPLIEJI CZD CHAR MAX>
L=JIEOJIDEJI POINT C3 CHAJI>
Y=JIEORDER OUANITIY
O=OUANTIT.Y IN STOCK
Ca COST
U=UNIT SELLING PJIICE
DS=CONTROL D

/
. JIEM

JIEM
JIEM
REM
JIEM
REM
JIEM
JIEM
JIEM

X..FOJI NEXT LOOP CONTROL VARIABLE ·

JIEM

RlaRECORD COUNT .
Jlt=USEJI RESPONSE VARIABLE

FILES USED
JI-A FILE NAME:BUSINESS INVENTORY
DATASET FORMAT:N•.~•.ss,L,Y,O,C,U
FILE LENGTH:75 BYTES

INITIALIZE

LET'Dt = CHJIS 14>
PRINT DS; "OPEN BUSINESS INVENTORY, L75".

JIEM JIEAD ONE DATASET, DETERMINE IF INVENTORY IS BELOW JIEEOJIDEJI
POINT

PJIINT Dt; "JIEAD BUSINESS INVENTORY ,JID"
INPUT Rl
PJIINT Dt
FOR X • l TO Rl
PJIINT DS; "JIEAD BUSINESS INViNTOJIY ,.Jl"J
INPUT Nt,Pt,SS,L,Y,O,C,U
PJIINT Dt
IF 0 < L THEN GOSUB 500
NEXT I
GOTO 8ZD

JIEM

PJIINT
PRINT
PJIIHT
PRINT
PJIINT
PRINT
.PRINT
PRINT
HOME

JIEM

SUBROTUINE TO PJIINT JIEPOJIT

: PJIIl4T "ACCOUNT I: ";Nf
"SUPPLIER: ";SS
"JIEOJIDEJI POINT: II ;L
"JIEORDEJI QUANTITY: II; y
"OU.ANITJY NOlol IN STOCK: ";0
"COST: ";C
"UNIT SELLING PJIICE: ";U
: INPUT "PRESS RETURN TO CONTINUE.";RS

JIETUJIN

CLOSE FILES

PJIINT Dt;"CLOSE"
PJIINT: PJIINT "REOJIDEJI DISPLAY COMPLETED AND FILE CLOSED."
END

Final Self-Test

1. Write a progi;am to creat~ a sequential disk file named PHONE!, containing the
following data concatenated into one string in fields as indicated:

Last name (fifteen character maximum)
first name (fifteen character niaxirnum).
area code (three digits)
phone number (eight characters, including hyphen between third and

fourth character)

100 HEM
llD
UD Jl!M
130 REM
HD REM .
UD REM
llD REM
170 REM
180 . REM
110 REM
ZOO HEM
ZlD REM
UD REM
UD

JRUN

CREATE SEO FILE PHONElCNAME&I DIRECTORY>

VARIABLES USED. .
LhLAST NAME ·C 15 CHAR FIELD>
FhFIRST NAME C 15 .CH:A.R FIELD>
ASmAREA CODE C3 CHAR FJELD>
NS•PHONE I C8 CHAR CODE>

Chts+FS+AS+NS <CONCATENATED DATASET>
DS•CONT.ROL D .
RS:1USER RESPONSE VA.RUBLE

FILE USED
SEO FILE NAME :.PHONEl
DATASET FORMAT: Ct•

·TYPE .'STOP' IF NO MORE ENTRIES.

ENTER LAST NAME: BROWNING
ENTER F J. RST NAME: MAXWELL
ENTER AREA CODE:HD
PHONE NUMBER FORMAT: 999-9999
WHAT JS THE NUMBER11Z3-43Zl
CHECK FOR MISTAKES!
LAST NAME: BROWNING
FIRST NAME: MAXWELL
PHONE NUMBER: 1440> 1Z3-43Zl

JS THE INFO CORRECT!.Y OR NH

281

282 APPLE BJ\SIC: DATA FILE PROGRAMMING

FINAL SELF-TEST 283 -

284 APPLE BASIC: DATA FILE PROGRAMMING

2. Write a program to display all the datasets in PHONE!, with the data items
separated (undo concatenatfon) and displayed.

100 REM
110 :
120 REM
130 REM
140 REM
150 REM
180 REM
170 REM
180

DISPLAY PHONEl FILE CONTENTS

VARIABLES USED
ChDATASET
RhUSER RESPONSE VARIABLE
DS a CONTROL D .

SEO FILE NAME: PHONEl
DATASET FORMAT:· CS

FINAL SELF-TEST 285

286 APPLE BASIC; DATA FILE PROGRAMMING

3. Write a program that will select and display all names and numbers in a user
selected area code from PHONE I, with the option to continue or STOP when
the display is complete.

lDD REM
110
lZO REff
130 REM
HD REM
150. REM
l&D REM
170 REM
180

SELECT PHONEl NUMBERS BY AREA CODE AND DISPLAY

VARIABLES USED
CS.DATASET
RfaUSER RESPONSE VARIABLE
Af aUSER SELECTED AREA CODE

SEO FILE NAME: PHONEl
DATASET FORMAT:CS <FIELDED STRINC 15+15+3+8 CHARACTERS>

FINAL SELF-TEST - · 287

288 APPLE BASIC: DATA FILE.PROGRAMMING

4. Write a program to change each dat_aset in BUSINESS INVENTORY by increasillg
the unit sales price of each item by 10 percent. The program should display the
product number,.the old price, and the new price.

JOO REM INCREASE UNIT SELLING PRICE IN BUSINESS INVENTORY FILE &
DISPLAY OLD AND NEW PRICE

. llO
l!D REM
130 REM
JU REM
150 REM
JIO REM
1.70 REM
180 REM
185 REM
190 REM
ZOO REM
ZJO REM
220 REM
Z30 REM
HD REM
H5 REM
250 REM
.280 REM
27D

lRUN
PRODI
1234
l235

VARIABLES USED ·
NtmACCOUNT NUMBER
Pt•PROD.DESCRIPT.
ShSUPPLIER NAME
LsREORDER POINT
Y..REORDER AMOUNT
OmOUANTITY IN STOCX
Ca COST .
UaOLD UNIT SELLING PRICE
UlaNEW UNIT SEtLINC PRICE
Rt•USER RESPONSE VARIABLE
DhCOHTROL D
RlaRECORD COUNT
X..FOR NEXT LOOP CONTROL .VARIABLE

R-A FILE NAME: BUSINESS INVENTORY
DATASET FORMAT: Nt,PS,St,L,Y,Q,C,U
FILE LENGTH: 75 BYTES

OLD S
1.5125
. 9559

NEW S
1.68375
l.05149

CHANCES DISPLAYED AND FILE CLOSED

FINAL SELF·TEST 289

290 APPLE BASIC: DATA FILE PROGRAMMING

Answer Key

1.

100 REH CREATE SEQ FILE PHOHEl!HAHE&I DIRECTORY>
110.:
lZO REH VARIABLES USED
130 REH LtaLAST NAME <15.CHAR FIELD>

FScFJRST NAME <15 CHAR FJELD>
ASaAREA CODE !3 CHAR FJELD>

140 REH
150 REH
160 REH HSaPHOHE I !8 CHAR CODE>
170 REH CSmLS+FS+AS+HS !CONCATENATED

DhCONTROL D
DATASET>

180 REH
190 REH RS=USEJI RESPONSE VARIABLE
ZOO REH FILE USED
210 REH SEQ FitE·NAHE:PHONEl

DATASET FORHAT:CS ZZO REH · no :
240 REH JHJTJALJZE
ZSD
ZBD
270
ZBD
280
300
310
3ZD
330
340
350
380

370

380
380
400
410

4ZO

430
440
450
UD

470
480
490
500

510

520
53D
540
550
580"
570
580
590
800

810
SZD
830
840
650

.LET D$ = CHRS <4>
PRINT DS;"OPEH PHONEl"
PRINT DS; "DELETE PHONEl"
PRINT DS;"OPEN PHONEl"

REH DATA ENTRY

HOME: PRINT "TYPE 'STOP' IF HO HORE ENTRIES.": PRINT
INPUT "ENTER LAST NAHE:";LS
JF Lt ., "STOP." THEN 710
JF LEH <LS> " D THEN . PRINT CHRS <7>; "HO ENTRY HADE. PLEASE ENTER AS
INDICATED.": PRINT: COTO 340
JF LEH <U>) 15 THEN PRINT CHJU (7); "LIMIT HAHE TO 15 CHAR. AND

REENTER.": PRINT: COTO 340
IF LEH <U> < 15 THEN LET L$ = L$ + " ": COTO 380

INPUT "ENTER FIRST HAHE:";FS
IF LEH <U> • 0 THEN PRINT CHRS <7>;"HO ENTRY HADE. PLEASE ENTER AS
REQUESTED. ": PR INT. : COTO 4 D 0
IF LEH <FS> > 15 THEN PRINT CHRS (7); "LIHJT NAME TO 15 CHAR. AND

REENTER. " : PR INT . : COTO 4 DD
IF LEH -<FS> < 15 THEN LET FS "' FS + " ": COTO 430

INPUT "ENTER AREA CODE:";AS
JF LEH <AS> < > 3 THEN PRINT CHRS (7); "PLEASE ENTER 3 DJCJT AREA
CODE ONLY. ": PR JNT : COTO 4 5 D

PRINT "PHONE HUMBER FORMAT: 999-9899"
INPUT "WHAT IS THE HUMBER? 11 ;HS
JF LEH <HS>< > 8 THEN PRJHT CHRS !7>;"EHTRY ERROR.": PRINT: COTO
480
IF ASC < MIDS !HS,4,1» < > 45 THEN PRINT CHRS <7>;"EHTRY ERROR.
USE HYPHEN AFTEll,F.JRST 3 DJCJTS. II: PRINT : COTO no
REH DISPLAY DATA FOR VERIFICATION BEFORE VRITIHC TO FILE

HOME : PRINT "CHECX FOR HJSTAXES!"
PRINT "LAST NAME: -";Lt
PRINT "FIRST NAME: ";Ft
PRINT "PHONE NUMBER: <";AS;"> ";NS
PRINT : INPUT "IS THE INFO CORRECT<Y OR N>P";Rt
IF RS () "Y" 'AND RS () "N" THEN PRINT CHRt (7); "PLEASE ENTER I y I

FOR YES OR 'N' FOR NO.": PllJHT : COTO 590
JF RS • ~Y" THEN 880
JF RS " "H'! THEN PRJHT : PRINT "PLEASE REENTER THE ENTIRE DATASET."
INPUT "PRESS 'RETURN' WHEN READY.";RS
COTO 330

llD HIM CONCATINATI & WIJTE DATASET
870
llD LET Ct • Lt + Ft + At + NS
llD .PRINT DS; 0 WIITE PHONEl."
100 PJIINT CS
710 PRINT Dt
720 GOTO 330
730
740 HEM CLOSE lILE
750
71.D PRINT Dt; "CLOSE"
770 PRINT ; PRINT °FitE CLOSED"
780 END

2.

REM DISPUY -PHONEl FIU CONTENTS

IEJI VARIABLES USED
HEM CSaD~TASET
REM RtaUSER RESPONSE VARIABLE.
REM DtaCONTROL D

'HEM SEO FILE NAME: PHONEl
HEM DATASET FOIJIAT: Ct

HEM INITIALIZE

LET DS a CHIS <4>
PRINT DS;"OPEN PHONE!"

REM READ AND DISPLAY

ONERR GOTO 370
PRINT Dt;"IEAD PHONE!"
INPUT CS
PJIINT DS

. PRINT "NAME; II; LEFT• (cs' 30)

FINAL SELF-TEST. 291 ·

lDD
llD
120
130
140
150
llD
170
180
UD
ZDD
210
220-
230
HD
ZSD
280
270
280
ZID
300
305
310
320
330
340
350
380
370

PRINT "PHONE:("; MIDI <Ct,31,3>;"> "; RIGHTt CCS,8>
PRINT : INPUT "PJIESS IETUIN FOR NEJT DISPtAY";IS
PRINT : GOTO 280

380
380
400
410
420
430
440

HEM . ERROR TIAP

IF PEIX < 222> a 5 THEN PJIINT : PJIINT "Att NUMBERS DISPLAYED.": GOTO
UO
HINT CHlt (7); 0 UNUSUlt ERROR. PIOGIAJI TEIJIINATED.": GOTO 420

REM CLOSE FILE

PIJNT DS; "CLOSE" ,
PJIINT "FitE CLOSED"
END

292 APPLE BASIC: DATA FILE PROGRAMMING

3.
100
110
lZO
1°30
140
150
18.0
1711
180
18.0
200
210
220
230
240
250
ZIO
270
280
280
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
5fo
520
530
540

REM SELECT PHONEl ~UMBERS BY AREA CODE AND DISPLAY

REM VARIABLES USED.
REM CSmDATASET
REM RfaUSER RESPONSE VARIABLE
REM ASaUSER SELECTED AREA CODE
REM SEQ FILE NAME: PHONE!
REM DATASET FORMAT: CS <FIELDED STRINC 15+15+3+8 CHARACTERS>

REM INITIALIZE

LET-DS = CHRS <4>
PRINT DS; "OPEN PHONEl"

REM USER SELECTS AREA CODE

INPUT "ENTER AREA CODE FOR THIS DISPLAY:";AS
REM DATA ENTRY TESTS CO HERE

HOME : PRINT "AREA CODE SELECTED: ";AS
PRINT : PRINT "PRESS RETURN FOR NEXT DISPLAY"

REM ·READ.AND DISPLAY SELECTED I'S

ONERR COTO 470
PRINT DS;"READ PHONEl"
INPUT CS
PRINT DS
IF AS < > MIDS !CS,31,3> THEN 360
PRINT LEFTS <CS,30>
PRINT"("; MIDt <CS,31,3);"> "; RICHTS <CS,8·>
INPUT "";RS .
COTO 360

REM ERROR TRAP

IF PEEK <222> a 5 THEN PRINT : PRINT "ALL DISPLAYED.": COTO 520
PRINT : PRINT "UNUSUAL ERROR. PROCHAK TERMINATED.": COTO 520

REM CLOSE FILE

PRINT DS;"CLOSE"
PRINT "FILE CLOSED"
END

4.
100

llD
UD
130
HD
150
160
170
lBD
185
.190
200
210
220
230
240
245
250
280
270
280
210
300
310
320
330

340
350
380
370
380
390
400
410
420
430
440
450
480
470

47!
480
no·
SOD
51'1
810
820
830

FINAL SELF-TEST 293

REM INCREASE UNIT SELLJNC PRICE JN BUSINESS INVENTORY FiLE &
DISPLAY OLD AND NEW PRICE .

REM VARIABLES USED
REM NtaACCOUNT NUMBER
JIEM P hPJIOD. DESCJI J PT. ·
REM ShSUPPLJER NAME
JIEM L•JIEOJIDEJI POINT
REM Y=REORDER AMOUNT
JIEM OaOUANTJTY JN STOCX
JIEM Ca COST
JIEM UaOLD UNJ7 SELLJNC PJIJCE

-REM UlaNEW UNIT SELLING PRICE
JIEM Jlt•USEJI JIESPONSE VA~JABLE
REM DtaCONTROL D
JIEM JllmJIECOJID COUNT
REM XaFOR NEXT LOOP CONTROL VARIABLE
JIEM R-A FILE NAME: BUSINESS INVENTORY
REH DATASET FORMAT: Nt,PS,SS,L,Y,O,C,U
~EM FILE LENGTH: 75 BYTES

JIEM JNITULJ.ZE

LET Dt • CHRS 14>
PRINT Dt;"OPEN BUSINESS INVENTORY,L75"

'JIEM JIEAD DATA, INCREASE PJllCE, DISPLAY PJIICES, WJIITE NEW DATA TO
FILE . ·

PJllNT "P-"ODl","OLD S","NEW t"
PRINT Dt;"READ BUSINESS INVENTORY,RD"
INPUT Jll .
PRINT. Dt
FOJl.I al TO Jll .
PRINT Dt;"READ BUSINESS INVENTORY,R"I
INPUT Nt,Pt,S9,L,Y,O,C,U
PRINT Dt
LET Ul • U + U • .l
PRINT Nt,U,Ul
PRINT Dt;"WJllTE BUSINESS INVENTOJIY,Jl"I
PRINT Nt: PRINT Pt: PRINT St: PRINT L: PJIINT Y: PJIINT 0: PRINT C:
PRINT Ul
PRINT Dt
HEIT I

JIEM CLOSE FILE

PJIJNT Dt;"CLOSE"
PRINT : PRINT "CHANCES DISPLAYED AND FILE CLOSED"
END

APPENDIX A

ASCII CHARACTER CODES

DEC = ASCH decimal code
CHAR = ASCII character name

n/a = not accessible directly from the APPLE II keyboard

DEC CHAR WHAT TO TYPE DEC CHAR WHAT TO TYPE

~ NULL ctrl@
1 SOH ctrl A 26 SUB ctrl Z
2 STX ctrl B 27 ESCAPE ES-C I
3 ETX ctrl C 28 FS n/a
4 ET ctrlD 29 GS ctrl shift-M
5 ENQ ctrl E 3~ RS ctrl A

6 ACK ctrl F 31 us n/a
7 BEL ctrl G 32 SPACE space
8 BS ctrl Hor+- 33 !
9. HT ctrl I 34 "
1~ LF ctrlJ 35 # #
11 VT ctrl K 36 $ $
12 FF ctrl L 37 % %
13 CR ctrl M or RETURN 38 & &
14 so ctrl N 39
15 SI ctrl 0 4~ ((
16 DLE ctrlP 41))
17 DCI ctrl Q 42 * *
18 DC2 ctrl R 43 + +
19 DC3 ctrl S 44
2~ DC4 ctrl T 45
21 NAK ctrl U or-+ 46
22 SYN ctrl V 47 I I
23 ETB ctrl W 48 ~ ~
24 CAN ctrl X 49 1 1
25 EM ctrl Y 5~ 2 2

294

ASCII CHARACTER CODES 295

DEC CHAR wilAT TO TYPE DEC CHAR WHAT TO TYPE

51 3 3 74 J J
52 4 4 75 K K
53 5 5 76· L L
54 6 6 77 M M
55 7 7 . 78 N N
56 8 8 79 0 0
57 9 9 80 p p

58 81 Q Q
59 ; ; 82 R R
60 < < 83 s s
61 = = 84 T T
62 > > 85 u u

/. 63 ? ? .. 86 v v
64 @ ® 87 W· w
65 A A 88 x ~
66. B B . 89 y y

67 c c 90 z z
68 D D 91 [n/a
69 E E 92 \ n/a
70 F F . 93]] (shift-M) .
71 G G 94
72 H H 95 n/a
73 .I . I

APPENDIXB

LIST OF PROGRAMS

Chapter 4

Page 89 First example program to create a sequential data file.
SEQ file name: DEMOl .
·dataset format: N$, G$, N

Page 92 This program creates a sequential file inventory of personal property items.
SEQ file name: PROPERTY .
dataset format: T$, N, V

Page 96 Read/display the contents of PROPERTY.

Page 101 Program creating a sequential file of statistical data reflecting the quality of
goods coming out of some manufacturing process. Program then summarizes data and
displays results.
SEQ file name: QUALITY ASSURANCE
dataset format: N, V

Pages 103-104 This program creates within the program a set of data in a sequential
. file without user data entry, then reads/displays the contents of the file.
SEQ file name: TEST
dataset format: A$

Chapter 4 Self-Test

Page 123, prob. la A general format program to create a file whose dataset is two
strings of data followed by two numeric data values. User decides what the data
should represent.
SEQ file name:' CUST
dataset format: A$, B$, M, N

Page 124, prob. lb Read/display CUST.

Page 125, prob. 2a Creates a shopping list sequential file.
SEQ file name: GROCERY
dataset format: N$, Q

296

APPLE DATAFILE PROGRAM INDEX 297

Page 126, prob. 2b Read/display GROCERY.

Page 127, prob. 3a Creates a file of customer credit information.
SEQ file name: CREDIT
dataset format: C$, N$, R

Page 128, prob. 3b Read/display ·CREDIT.

Page 129, prob. 4a Program to create files of checkbook, bank, or retail sales trans
action information. Account number data is provided for the creation of two differ
ent files with the same dataset formats.
SEQ file names: TRANSACTION-I and-TRANSACTION-2
dataset format: A$, T$, C$i

Page 130, prob. 4b Read/display any file with TRANSACTION dataset format.

Page 131, prob. Sa Creates a file of names and addresses, where name, street address,
city, state, and zip code are concatenated into one fielded string.
SEQ file name: ADDRESS
dataset format: E$ (one fielded string)

Page 132, prob. Sb Read/display ADDRESS

Page 132, prob. 6a Program to create files whose data are texts of short form letters.
SEQ file names:_LETTERl, LETTER2, LETTER3
dataset format: T$ (one string, 2SS characters maximum length)

Page 133, prob. 6b Read/display any LETTER# file.

Chapter 5

Page 138 This program will append data to an existing file named GROCERY, or
create the file if no file by that name already exists.
SEQ file name: GROCERY (from page 12S)
dataset format: N$, Q

Page 142 Program to make a copy of the file CUST.
SEQ source file name: CUST (from page 123)
SEQ copy file name: CUST COPY
dataset format: A$, B$, A, B

Pages lSO-lSl Credit File Changer program to search CREDIT for a user-selected
customer number and make changes in the dataset for that customer. A temporary
file is used, and after all changes to the datasets in the file are made, the source file
is deleted and the temporary file renamed CREDIT.
SEQ source file name: CREDIT (from page 127)
SEQ temporary file name: TEMP, renamed CREDIT

Page 1S3 Program called Credit File Editor (Version 1).
SEQ source file: CREDIT (from page 127)
SEQ temporary file name: TEMPFIL, renamed CREDIT
dataset format: C$, N$,_ R

298 APPLE BASIC: DATA FILE PRO(;RAMMING

· Pages 158-159 Credit File Editor (Version 2)
SEQ source file name: CREDIT (from page 127)
SEQ temporary file name: TEMPFIL, renamed CREDIT
dataset format: C$, N$, r

Pages 161-162 Credit File Editor (Version 3) allows qser to delete complete datasets,
change any data item in a dataset, or insert a new dataset.
SEQ source file name: CREDIT (from page 127)
SEQ temporary file name: TEMPFIL, renamed CREDIT

Pages 173-174 Program called Merge which merges the contents of two separate files
into one, maintaining numeric order of account numbers.
SEQ source files: TRANSACTIONl and TRANSACTION2 (from page 129)
SEQ merged file name: TRANSACTIONMERGE
dataset format: A$, T$, C$

Pages 183-184 This program writes (prints) form letters (each was stored as a sequen
tial data file), personalized with names and address information from ADDRESS.
SEQ source file names: LETTER!, LETTER2, LETTER3 (from page 132)
dataset format: T$ (one string)
SEQ source file name: ADDRESS (from page S4-5A
dataset format: A$ (one fielded string)

Chapter 5 Self Test

Page 193, prob. 1 Program to make a copy of ADDRESS.
SEQ source file name: ADDRESS (from page 131)
SEQ copy file name:· ADDRESSCOPY
dataset format: T$ (one fielded string)

Page 194, prob. 2a Program to create files of magazine titles. Two alphabetized lists
of titles are provided for the creation of two files.
SEQ file names: MAGLISTl and MAGLIST2
dataset format: T$

Page 194, prob. 2b Read/display files with MAGLIST# format.

Page 195, prob. 2c Program to merge MAGLISTl and MAGLIST2, maintaining alpha
betized order in merged file.

Page 197, prob. 3 Program to create or add to or delete from a file of reminders for
household or office tasks. ·
SEQ original or source file name: WORK REMINDER
SEQ temporary file name: TEMPFILE, renamed WORK REMINDER
dataset format: one string (255 characters maximum)

Chapter 6

Page 204 First demonstration program to create a random access file whose data is
simplified business inventory information. ·

~-A (Random Access) file name: INVEN
dataset format: N$, P$, Q
record length: 32 bytes

APPLE DATAFILE PROGRAM INDEX 299'

Pages 204-207 Same as above, except the number of records eJC.isting in the file is
written in record number zero.
R-A file name: INVEN

Page 208 Reads/displays INVEN using a FOR NEXT loop and the record count
stored in record zero.

Page 211 · This program creates a file of customer phone numbers, using a customer
. ID number, name, ~d phone number as data.·
R-A file name: PHONE
dataset format: C$, N$, P$
record length: 36 bytes

Page 213 Reads/displays PHONE.

Page 216 Program that allows user to add datasets to PHONE.

Pages 217-219 Program to create· a "master" file for user-determined data.
R-A file name: MASTER ,
dataset format: G$, S, Q, M$

. record length: 66 bytes

Pages 220-222 Reads/displays MASTER.

Page 230 Program to make a random access file copy o(MASTER.
R-A source file name: MASTER
R-A copy file name: STORE!
dataset format: G$, S, Q, M$
record length: 66 bytes

Page 224 This program uses INVEN in an example of how to change data in a ran
dom access file.
R-A source file name: INVEN (from pages 204-207)
dataset format: N$, P$, Q
record length: 32 bytes

Page 231 Program to convert (copy) a sequential file to a random access file.
SEQ file name: .CREDIT (from page 127)
R-A converted file name: R-A CREDIT
dataset formats: N$, C$, R
record length: 29 bytes

Pages 232-234 Reads/displays random access file R-A CREDIT (but not the sequen
tial source file from which it was copied or converted).
R-A file name: R-A CREDIT

300 APPLE BASIC: DATA FILE PROGRAMMING

Chapter 6 Self-Test

Page 247, prob. la Program to create ,a somewhat realistic file of business inventory
data.
R-A file name: BUSINESS INVENTORY
dataset format: N$, P$, S$, L, Y, Q, C, U
record iength: 75 bytes

Page 248, prob. ~b Read/display BUSINESS INVENTORY.

Page 249, prob. le Program to create a sequential pointer file using data from a ran
dom access file. Pointer file's two data items are the customer number and the record
in which that customer number appears in the random access file.
SEQ. pointer file namer: POINTER
dataset format: N$, R
R-A source file name: BUSINESS INVENTORY
dataset format: N$, P$, S$, L, Y, Q, C, U
record length: 75 bytes

Page 249, prob. Id Read/display POINTER.
SEQ file mime: POINTER
dataset format: N$, R

Page 250, prob. 2 Program to make a copy of a random access file. ·
R--:-A source file name: R-A CREDIT (from page 231)
R-A copy file name: R-A CREDIT COPY
dataset formats: N$, C$, R
record lengths: 29 bytes

Page 251, prob. 3 Program to read/display the contents of both R-A CREDIT and
R-A CREDIT COPY to verify a correct copy.

Chapter 7

Pages 256-257 This program permits the user to change the cost,and unit selling
price for an existing dataset in BUSINESS INVENTORY, using POINTER to identify
the record for the dataset to be modified.
SEQ file name: POINTER (from page 249)
dataset format: N$, RI
R-A file name: BUSINESS INVENTORY (from page 247)
dataset format: N$, P$, S$, L, Y, Q, C, U
record length: 75 bytes

·Page 261 This program is used to create three random access files of year to date
budget information, based on the categories in the Chart of Accounts (page 258) ..
R-A file name: BUDGET# (where #'is 1, 2, or 3)
dataset format: N$, A$, B$, E$
record length: 44 bytes

Page 261 Read/display BUDGET# files.

APPLE DATAFILE PROGRAM INDEX 301

Pages 263-265 This program is used to create a sequential data file of checkbook
transactions (checks· and deposits) at the end of eacµ month.
SEQ 'file name:· MONTH# (where# corresponds to months, 1 to 12)
dataset format: C, Y$, W$, N$, D.

'
Pages 264-265 Read/display MONTH# files.

Page 268 .This Personal Money Management program uses the Chart of Accounts
number in the MONTH# dataset to locate the correct BUDGET# file and record in
that file and posts. the checkbook transaction to that record.
SEQ. file name: MONTH#
dataset format: C, Y$, W$, N$, D
R-A file name: BUDG~T#
dataset forma~: N$, A$, B$, E$
record length: 44 bytes

Chapter 7 Self-Test

Page 271, prob. 1 Program to ·create a sequential transaction file ·of items taken from
or added to stock of products on hand, corresponding to data items in BUSINESS .
INVENTORY. .
SEQ file name: BUSINVTRANSACT
dataset format: T, Y$, 1$, N$, Ql

Page 278, prob. 2 Read/display BUSINVTRANSACT.

Page 279, prob. 3 This program processes or posts BUSINVTRANSACT data to
BUSINESS INVENTORY, to maintain up-to-date information on products in stock.
SEQ file name: BUSINVTRANSACT
R-A file name: BUSINESS INVENTORY.

Page 280, prob. 4 This program searches thro.ugh BUSINESS INVENTORY after
transaction posting and generates a report showing all items which have fallen below
the reorder point. R-A file name:. BUSINESS INVENTO.RY

Final Self-Test

Pages 290"'.291, prob. 1 This program creates a sequential file of names and phone
numbers, including separate entry of first and iast names, and area c.ode, and redis
plays data entered (for visual error-checking) before writing to the file.
SEQ file name: PHONEl
dataset format: C$ (one fielded string)

Page 291, prob. 2 Readldisplay PHONEl.

Page 306, prob. 3 This program finds and displays all names and phone numbers
with a user-selected area code.
SEQ file name: PHONE1

Page 293, prob. 4 This program goes through the BUSINESS INVENTORY file and
increases the uilit selling price of all items by 10%; and it displays the product number
as well as the old and new selling prices.
R-A file name: BUSINESS. INVENTORY

Index

AND (logical), 27, 33, 34, 48, 69-70
APPEND, 134-139
Arrays, 139, 177, 178
Assignment statements, 16-24
ASC, 31, 32, 39, 68-70
ASCII code, 29-33, 105
ASCII chart, see Appendix A

BASIC (definition), 2
Branching, see GOTO, Conditional

branching
Buffer, 84-87
Byte, 11, 81-83, 198-199, 200-201

CATALOG, 80
Changing data file data, 134-165, 209-

228
Chart of Accounts, 258
CHR$, 32, 33, 91, 92, 105, 106
CLOSE, 86-88, 90, 93, 99
Comparisons, see IF ... THEN
Concatenation, .24, 25, 53-56
Conditional branching, see GOSUB,

ON ... GOTO, ONERR
Converting data files (Seq to RA),

228-232
Constant, 6

Data entry, 23, 49, 50, 71-74, 78
Data fields, 50, 51, 52, 54-58, 72
Data files, 50, 79, 80, 204, 205
Data item, 50
Dataset, 203, 204
Data statements, 7, 8, 19, 20, 21
Debugging, 1, 3, 7, 74
DELETE, 94, 95, 99, i43, 228

302

DIM (DIMension), 7, 14
Disk, 81-83
Diskette, see Disk
Disk Operating System, see DOS
Double density disk, 81
DOS, 2, 80, 81
Dummy data, 94, 95

Editing data file data, see Changing data
file data

END (statement), 61
End of file marker, 94, 95, 97, 98, 105,

106, 168, 176
Error traps, see ONERR, PEEK, POKE

File pointer, see Pointer .
FOR-NEXT loops, 16, 39, 40, 41, 68,

69, 70

GOSUB, 5, 8, 9, 11, 41, 42, 61, 62, 73
GOTO, 5, 6, 11

HOME, 70, 153

IF ... THEN, 10, 25, 26, 27, 28, 41, 42
Initializing, 84, 85, 86
INPUT (assignment), 22-24, 50, 152,

153
INPUT (data), 88, 95-98, 99
INT, 73
Introductory module, 6, 7, 18, 19

LEFT$, 259
LEN, 34, 35, 52-58, 68, 69, 70, 73 .
LET, 10, 11
Line numbers, I 0

LOAD, .80

MAXFILES, 84, 85
Merging data files, 165-175, 195-196,

200-201
MID$, 35,36, 57, 58,6~ 63, 64, 68,

69, 70
Modules, 3
Multiple statement lines, 10, 11, 41,

42

Null strings, 18, 23, 30, 59-62, 65, 66,
73

ONERR, 42, 43, 44, 45, 98, 99, 168,
180

ON ... GOTO, 38, 39
OPEN, 86-89, 94, 95, 99, 200, 201
OR (logical), 27, 68, 69, 70

Padding strings, 54-58 -
PEEK, 43, 44, 45, 98
Pointer, 21, 97, 98, 134, 135, 176
Pointer file, 249, 252-256
POKE, 43, 44, 45
PR#, 181
Press.RETURN to continue, 154-154
PRINT, 90, 91

· Program files, 80
Prompts, 22, 88

Quad density disks, 81

Random access data files, 83, 84,.
198ff

INDEX 303

READ (assignment), 20, 21, 22
READ (data), 95-98, 1 OS
Record, 198
Record count, 201-216
Record number, see Record count
REM (REMark), 4, S, 6, 12, 41
RENAME, 144, 148, 149-151, 151:-153

· RENUMBER (Program lines), 10
RESUME, 44
RETURN, 9
RIGHT$, 38, 259

SAVE, 80
Sector, 80, 81
SERIAL DATA FILE, see Sequential

data file
Sequential data file, 83ff
STOP, 61
String comparisons, see IF ... THEN
Strings, 19
STR$, 67
Subroutines, 8, 9; see also GOSUB,

ON ... GOTO
Substrings, see LEFT$ RIGHT$ MID$

Text file, see Data files

Updating, 86

VAL, 24, 64, 65,66, 73, 74
Variable length record, see Record
Variables, 15, 16, 17, 18, 19, 95, 96

WRITE, 88, 90, 91, 94, 99, 134, 135,
201, 202

1
-~-

-~-

-~

NOW AVAILABLE! *

All the powerful programs listed in this book will make your APPLE IITM
more effective than ever. The programs and subroutines to set up, main
. tain, and modify data files can go to work for you today!

Save time and don't risk introducing keyboarding errors into your pro
grams. Buy the 5¥.i'' diskette from your favorite computer store, or order
from Wiley:

In the United States:

In the United Kingdom
and Europe:

In Canada:

In Australia:

John Wiley & Sons
1 Wiley Drive
Somerset, NJ 08873

John Wiley & Sons, Ltd.
Baffins Lane, Chichester
Sussex PO 19 lUD UNITED KINGDOM

John Wiley & Sons Canada, Ltd.
22 Worcester Road
Rexdale, Ontario M9W lLl CANADA

Jacaranda Wiley, Ltd.
GPO Box 859
Brisbane, Queensland AUSTRALIA

Finkel-APPLE™ BASIC DATA FILE PROGRAM DISK 0-471-86836-1
*Available April, 1982

NOTES

·\

NOTES

/

·~ .
.:1·_

5.·

I
I·

: ~- .'

. ~.

.·--~:=-

NOTES

NOTES

NOW AVAILABLE
All the powerful programs listed in this book will make your APPLE Il®
more effective than ever. The programs and subroutines to set up, main
tain, and modify data files can go to work for you today!

Save time and don't risk introducing keyboarding errors into your
programs.

The APPLE® DATA FILES PROGRAM DISK is available at your favor
ite computer store. Or use the handy order card below.

THE APPLE® DATA FILES PROGRAM DISK

Yes, I want to manage my data files better. Please send me __ copies of the
APPLE® DATA FILES PROGRAM DISK at $19.95 each.

1-86836-1 $19.95

_ Payment enclosed (including state sales tax). _ Bill me.
_Wiley pays shipping and handling charges. _ Bill my company.

_Charge to my credit card: _Visa _Master Card

Card number DDDDDDDDDDDDDDDD

Expiration date Signature

Name Title

Company

Address

City State Zip Code

1-86836-1 263 Signature <Order invalid unless signed)

We normally ship within ten days. If payment accompanies your order and shipment
cannot be made within 90 days, payment will be refunded.

PUT YOUR APPLE® TO WORK TODAY

Buy the 5114'' disk at your favorite computer store,
or order from Wiley:

In the United States:

In the United Kingdom
and Europe:

In Canada:

In Australia:

John Wiley & Sons
1 Wiley Drive
Somerset, NJ 08873

John Wiley & Sons, Ltd.
Baffins Lane, Chichester
Sussex PO 19 lUD UNITED KINGDOM

John Wiley & Sons Canada, Ltd.
22 Worcester Road
Rexdale, Ontario M9W 111 CANADA

Jacaranda Wiley, Ltd.
GPO Box 859
Brisbane, Queensland AUSTRALIA

Finkel - APPLE~ DATA FILES PROGRAM DISK 1-86836-1

I II I

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 2277, NEW YORK. N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

JOHN WILEY & SONS, Inc.
1 Wiley Drive
Somerset, N .J. 08873

Attn: Apple® Data Files Program Disk

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Computers & Data P~ing
$14.95

The Apple W'" Microcomputer is the computer
success story of the '80s-and data files are the
key to using the Apple computers for your
business, educational, professional, and home
needs. With the help of this easy-to-follow guide,
you can make this powerful tool a part of your
computing capabilities.
In a clear, step-by-step approach, the authors teach
BASIC programmers how to program and maintain
data files for such things as billings,
inventories, and expenses .. .
catalog material and mailing lists ...
numerical and statistical infor
mation ... and much more.

• LE®BASI
DATA FILE
---MMI

You'll learn the principles of file organization, then go
on to more advanced programming techniques using
the BASIC language. Assisted by dozens of sample
programs and practical advice, you'll find out how to
write data file programs, modify programs you've
already purchased, and adapt programs using data
files found in magazines and other sources. And the
book's unique self-teaching format includes self-tests
objectives and exercises to help you learn at your
own pace to get the absolute maximum benefit from
your Apple computer.

LeRoy Finkel and Jerald R. Brown have been teaching
the BASIC language to novice computer users for
over ten years. They are founders of the People's
Computing Company and co-author's of four other

Wiley Self-Teaching Guides. Mr. Finkel is
the lnstructiona.I Computing

Coordinator for the Office of
Education in San Mateo
County, California. Mr.
Brown, an educational TV
producer, holds an M.Ed.
from Harvard in Research
in Instruction.

JOHN WILEY & SONS. INC.
605 Third Avenue,
New York, N.Y. 10158
New York • Chichester •
Brisbane • Toronto
Singapore

ISBN 0 471-09157-X
Any questions concerning the

material in this book should be referred
to the Publisher, John Wiley & Sons, and

not to Apple Computer, which is not
responsible for and was not involved in the

preparation of this book.

Apple is a registered trademark of Apple Computer, Inc.

Wiley Self-Teaching Guides have taught more than a million people to use, program, and enjoy computers.
Look for them all at your favorite bookshop or computer store!
Cover Design: Linda Rettich

