
Apple BA/IC
For Bu.1ine.1.1
For the Apple][

- Alan J. Parker/John r. /tewart
f .

. - 1 . .
L -

Apple BASIC for Business
for the Apple 1I

Alan J. Parker
Associate Professor of Management
School of Business and Organizational Science
Florida International University
Miami, Florida

John F. Stewart
Associate Professor of Management Science
School of Business
University of Miami
Coral Gables, Florida

Reston Publishing Company, Inc.
1lf'nlll A Prentice-Hall Company
~ Reston. Virginia

Apple II is a trademark of Apple Computer.

Library of Congress Cataloging in Publication Data

Parker, Alan J
Apple BASIC for business for the Apple II

Includes bibliographical references and index.
l. Basic (Computer program language)

I. John F. Stewart, joint author. II. Title.
HF5548.5.B2P36 001.61424 81-11 86
ISBN 0-8359-0228-5
ISBN 0-8359-0226-1 {pbk.)

© 1980 1 198 1 by Al a n J. Parke r a nd John F . Stewart

All rights reserved. No part of this book may be
reproduced in any way, or by any means, without
permission in writing from the publisher.

10 9 8 7 6 5 4 3 2

Printed in the United States of America

To our parents, David, Sally, Harold, and Ethel
and to my wife, Ann

Contents
1 I Introduction 1

The Impact of Computers on Society, 3
Why Use BASIC?, 4
How to Use a Computer, 5
Communicating with the Apple, 6

2 I Performing Simple Calculations 9
Writing a Program, 11
Running a Program, 14
Modifying the Program, 20
Printing Many Values on a line, 26
Handling Alphabetic Titles, 29
Summary, 34
Problems, 36

3 I Data Entry 37
Entering Data from a Terminal, 39
Processing Many Records, 46
Program Verification, 53
How to Catch Some Errors in Data, 53
Summary, 60
Problems, 62

4 I Sequential Files 65
Setting up a File, 67
Reading a File, 76
Finding a Record in a File, 80
Correcting Records in a File, 86
Copying a File, 92
Summary, 93
Problems, 94 v

vi I Contents

5 I Writing Reports from Sequential Files 97
How to Accumulate Totals, 99
How To Calculate Subtotals, 109
Report Writing by Computer, 121
Summary, 123
Problems, 124

6 I Adding and Deleting Records 125
Adding Records to a File, 127
Deleting Records from a File, 146
Summary, 15 5
Problems, 156

7 I Updating Sequential Files 157
Updating Files, 159
Updating with Missing Transactions, 169
Updating with Coded Transactions, 177
Summary, 184
Problems, 185

8 I Using Lists and Tables 187
Summary Output, 189
Reference Tables, 193
Sorting lists and Tables, 207
Summary, 214
Problems, 215

9 I Using Direct Access Files 217
Creating a Relative Record File, 219
Reading and Printing a Relative Record File, 222
Changing Values in a Relative Record File, 224
Updating Master Records in a Relative Record File, 226
Querying Records in a Relative Record File, 231
Summary, 233
Problems, 234

10 I Use and Design of Complex Programs 235
Using Canned Programs, 237
Structured Programming, 242
Summary, 251

11 I Advanced Concepts 253
Editing on the Apple, 255
Graphics on the Apple, 258
Use of EXEC Files, 264
Output Formatting, 267
Summary, 271

12 I Conclusion 273
Batch, On-line and Real-Time Processing, 275
Routine Business Applications, 276
First-Time Users, 276
Conclusion, 283

Appendices
A: Summary of BASIC Commands and Instructions, 287
B: Sorting, 290
C: Selected Error Messages, 293
D: How To ... , 294
E: Initialization of Diskettes, 294
F: More about Diskettes, 295

Index

Contents I vii

285

297

Preface
Courses in computer programming and management information systems
are required in most collegiate business schools. Such courses teach the stu
dent to think logically and they provide an introduction to computer termi
nology. But a knowledge of the terminology is not enough to generate an
understanding of computers, and logical thinking by itself does not unlock
the power of computers. Computers are used to solve problems, and stu
dents must learn how computers can help them solve problems.

In this text we have presented problems from the business data process
ing environment as a reason for learning BASIC. Of course, not all facets of
a problem can be explained at once, since different parts require different
approaches and tools. But step by step, as we look at the many facets of a
problem and introduce the necessary BASIC statements, the student will
collect the tools needed to solve all these problems.

Because of the emphasis on problem-solving, the focus of this book is
the point at which problem elements meet language capabilities. The BASIC
language fundamentals, syntax and grammar, are not the dominant elements
- they are subordinate to the problem requirements. So language capabilities
that do not fi t clearly into a problem context were omitted for the purposes
of this text.

Unlike most introductory BASIC books, this book uses files extensively.
All business applications use files, and most file instructions are different
for the various brands of computers. This book was written specifically for
the Apple II microcomputer with DOS Version 3.2. All programs presented
are compatible with DOS Version 3.3. Since all programs, examples, and
problems deal with business, all listings and output were produced using a
line printer with 132 character lines.

Ix

x I Preface

We would like to express our gratitude to Pat Fiorentino, Parviz Moarefi,
Alan Bigio, and Paul Fraynd all with International Computer Systems, Inc., of
Coral Gables for their assistance. Our thanks also to Maria Martinez who did an
excellent job typing the manuscript.

Our special thanks to Dr. Val Silbey of Ball State University, coauthor of
the first book in this series for his valuable contributions.

Alan J. Parker
John F. Stewart

1 I Introduction

The Impact of Computers on Society I 3

At the end of this chapter you should be able to:

e Understand the importance and impact of computer usage
• Sign-on and sign-off the Apple computer
e Understand how the Apple reacts to system commands

Everyone Living in the United States today is affected by computers. The
federal government uses computers in almost all of its departments. The So
cial Security Administration and the Internal Revenue Service are highly
computerized. State and local governments use computers for tax collections
and assessments. Businesses and utilities use computers for customer billing.
Banks and other financial organizations use computers to handle customer
accounts. Hospitals use computers for hospital administration and patient
billing. Unless you Live as a hermit in a cave, you are affected everyday in
some way by computers.

The computer revolution is approximately thirty years old. Since 1946 when
the ENIAC (the first electronic digital computer) began operating, the
changes that computers have wrought have been prodigious. All areas of our
society have been, and are being, touched by computers. From the time we
read the morning newspaper (typeset by computer) until we go to sleep
watching television (computer allocated programs), we are constantly using
computers either directly or indirectly.

The effect of the Computer Revolution can be compared to the Indus
trial Revolution, which also radically changed society. Both revolutions
changed work and leisure activities. With respect to work, no occupations
were left untouched by the Industrial Revolution, except artisan crafts
(sculptors, painters, etc.). Now, approximately two hundred years after the
beginning of the Industrial Revolution, there are no coopers (barrel makers),
wainwrights (horse drivers), millers (flour makers) or weavers (cloth makers)
in the old sense of those occupations. The products or services are still sup
plied, but the methods of production have been radically altered. Work
hours at the beginning of the Industrial Revolution were dawn to dusk, six
days a week, leaving limited time for leisure activities. Now leisure is avail
able during long weekends and after working hours. The impact of the In
dustrial Revolution may aid us in imagining the breadth of changes that will
result from the computer revolution.

Initially, the few digital computers available were used for numerical
calculations ("number crunching") by an elite group of mathematicians, en
gineers and scientists. Since then, radical changes in the cost, design, and use
of computers have occurred. Today, computers are no longer the exclusive
tool of mathematicians and scientists. More computers are used in busi
nesses, such as insurance, banking, retailing, utilities, manufacturing and
hospitals, than are used in scientific organizations. Al.most daily, television
and newspapers report new uses of computers. The computer has taken the

Performance
Objectives

THE IMPACT OF
COMPUTERS
ON SOCIETY

4 I Introduction

Impact of
Computers on
Management

WHY USE
BASIC?

drudgery out of calculating and printing bills, invoices, paychecks and other
record-keeping tasks, freeing people from many of the routine tasks of add
ing numbers together. With the shift of paperwork from people to com
puters, some significant implications have become apparent. For society the
use of computers is considered by some people to be a mixed blessing. But
blaming the computer for human failings is an error. The computer itself is a
tool. It is simply a new technology and this technology will be used as soci
ety chooses. The first quarter century of the computer revolution has
brought us

• Computer controlled air-defense and air traffic control systems
• The landing of men on the moon
• Large scale and inexpensive use of checking accounts
• Credit cards
• Integrated reservation systems for travel
• Computerized hospitals
• A new field of employment (data processing)
• Management Information Systems

But so far we can barely envision what the second quarter century will bring.

The first computer dedicated to business applications was installed in 1954.
Since that time business applications have become more sophisticated. Ap
plications at first consisted of simple clerical functions: preparation of pay
roll, financial statements, and other bookkeeping tasks. Thousands of
clerical jobs were replaced by computers. The computer could do these rou
tine tasks faster, cheaper, and more accurately.

The next major step was the use of computers to make simple decisions,
e.g., ordering to restock inventory when a low level has been reached. At the
present time, computers are the tools used to implement Management Infor
mation Systems (MIS). Management Information Systems transcend routine
business applications because attention is focused upon providing manage
ment with the proper information for decision making. In many organiza
tions, it is common to see computer terminals in the offices of the president
and other senior executives. And MIS will become more common in organi
zations as computers become less expensive and easier to use. The manager
of the future will need some familiarity with computers in order to make use
of the great potential of MIS.

BASIC @eginners ~_II-purpose ~mbolic Instruction ~ode) is a computer
language. It was chosen for this text for numerous reasons. The first and
most significant reason is that it is the simplest computer language that is
widely available. The second reason is that the time required to learn BASIC
is the shortest of all the common languages. Additionally, the extensions and
enhancements made to BASIC have added power to the language, making
BASIC comparable to other, more difficult languages.

How to Use a Computer I 5

A final reason for learning BASIC is that almost all of the manufac
turers and vendors o f microcomputers and minicomputers provide BASIC
for their machines and systems; and these smaller computers are the fastes t
growing segment of the computer market. Apple alone has sold over 100,000
microcomputers; and every one of these small computers used BASIC for
its higher-level language. Computers of this type a re used by the hobbyist as
well as by the largest organization .

This text is written wi th an assumption that the student has some basic
knowledge of business transactions such as payroll, invoicing, and customer
statements. I t is also helpful if the student has the ability to think logically.
The computer is not affected by emotions. If the student is a disciple of Mar
shall McLuhan, beware: The computer is not!

It is nor important, however, that you possess a mathematical back
ground in order to learn BASIC. (A mathematical background, however,
will not penalize a student.) On the basis of the successful completion of this
text alone, the reader will probably not be able to find employment as a com
puter programmer or technician; but the student will understand the funda
menta ls of programming and be able to write programs of reasonable
complexity.

In business, one usually wishes to computerize a manual system or function.
It is important lo understand bow the manual system operates in order to
successfully perform this function on a computer. Throughout this text, the
maj or example will be the payroll function. It will serve as a vehicle for the
introduction of programming (instructing the computer to perform a func
tion, in this case payroll). A payroll system consists of the colJection and ma
nipulation of data to pay people for their time spent working. An hourly
payroll system will be analyzed and programmed.

The firs t step in computerizing a payroll is an analysis of the system and
a clear definition of the system: The Silpar Company, Inc., has approxi
mately 14 hourly employees used in the fabrication and assembly of com
puter components. All hourly wages are computed on the basis of hourly
rate multiplied by the regular hours worked, plus time-and-a-half for over
time. The normal work week is 40 hours with one paid hour per day for
lunch and coffee breaks. An employee may work a maximum of 20 overtime
hours per week, if work is available. The payroll system should produce
weekly paychecks and the necessary reports for tax and audi ting purposes.

It should be obvious that all of the analysis and definition of the com
puterized payroll system has not been performed in the preceding para
graph. However, enough has been stated to begin the computerization of the
payroll system. T he first step consists of identifying the data necessary to
produce all of the output (paychecks and reports). An examination of the
manual system data will provide the answers to our first step.

In the manual system, each employee has a record that contains infor-

Pre requisites

HOW TO USE
A COMPUTER

6 I Introduction

mation such as employee number, social security number, address, marital
status, number of dependents, hourly wages, wage payments made during
the last year, federal income taxes withheld, FICA (Social Security) and
other miscellaneous data. Each week, time cards are used to accumulate the
regular and overtime hours worked by each employee. At the end of a pay
period (weekly), the time cards are signed by the employee's supervisor and
sent to the payroll department for processing. The payroll department com
putes the employee's pay for the week, the required deductions, issues a
check for the employee's net pay (gross pay minus deductions), enters this
information into the employee's record, and prepares a payroll register. A
payroll register is a listing of the amounts paid to a1l employees, all deduc
tions subtracted from their pay, and totals for all amounts.

In computerizing the payroll function or any other business application,
it is very important to understand that files are used exactly as in the manual
system. In the payroll, two files are used . The first is the employee master
file ; it consists of the records of all the employees. Each employee record
contains data infields. The fields are: employee number, name, hourly rate,
etc. It is important to note that all records in one file must contain the same
fields in the same order. Also , fields may contain data that is numeric,
alphabetic, or both alphabetic and numeric (alphanumeric) . The second file
is the time file; it consists of a record for each employee and contains as
fields the regular and overtime hours worked. With these two files and the
appropriate program, a payroll register will be produced in Chapter 8.

COMMUNICATING Sometime in the not too distant future, we may communicate with com-
WITH THE APPLE puters by simply talking. In many science fiction films this is already the

case. Unfortunately, technology has not taken us that far yet. As a conse
quence, we have to communicate with a computer through some sort of
mechanical device. The common name for this device is a computer terminal
or as it is simply known- a terminal. All terminals have many things in
common. One important feature is a keyboard that is similar to a typewriter
keyboard .

The keyboard allows us to communicate with the Apple. It takes the
information that we transmit by pressing on the keys and transforms it into
electronic signals that can be understood by the computer. Conversely, when
the Apple communicates with us, the terminal transforms the electronic
signals from the computer into characters printed on paper or displayed on
a video screen. A short way of referring to the screen is by the ini tials CRT,
which stands for cathode ray tube. The way messages are written on a CRT
is similar to the way pictures appear on a TV screen. (A television picture
tube is a CRT, but no one calls it tha t, except technicians.) In the Apple II
the computer is housed in the same enclosure as the keyboard .

You should not be timid about using the Apple: The important thing to
remember is that you cannot damage a computer or do any harm to it by

Communicating with the Apple I 7

typing anything on the keyboard. The only way you can cause any damage
is by banging on the keyboard or spilling coffee on it. You may type any
thing on the keyboard and not harm or "break" the computer system.
Similarly, neither the keyboard nor the computer can harm the user in any
physical manner.

Every time you wish to use the Apple, there is a procedure that you must
follow. This procedure is called a sign-on. Silly as it may sound, your first
step , after sitting at the Apple, is to make sure it is on. There are two differ
ent sign-on procedures depending upon whether or not your Apple has what
is called the automatic starting option (autostart).

Without Autostart:
Once the Apple is on, an asterisk (*) will appear on the screen . Then place a
properly initialized diskette in the drive. (See Appendix E for a description
of the initialization procedure.) Close the drive door and type the number 6.
Next, hold down the control key (CTRL) and press the P key. Finally, press
the "RETURN" key. The Apple will respond, after a short time, with a
"prompt" character 0). This tells you that the Apple is ready for you to
program. The computer is prompting you to begin.

If the "prompt" character on the screen appears as a">", type FP and
press "RETURN". This will result in the prompt character"]", and you
are ready to use the Apple.

The "RETURN" key serves the same function as a carriage return key
on a typewriter. When you finish typing a line on a typewriter, you press it.
On the Apple, when you press RETURN, you have told the computer that
you are at the end of a line. The Apple will then respond with a prompt
character m or a message.

To recap:

1. Make sure the Apple is turned on.

2. Insert an initialized diskette in the disk drive and close the door.

3. Type 6 followed by "CTRL" P. Press "RETURN" .

4. The Apple responds with either "]" or ">".

5. If the response is ">" type FP and press "RETURN".

With Autostart and/ or Corvus options:
If you have an Apple with autostart, the sign-on procedure is considerably
easier. Simply place an initialized diskette into the disk drive, close the
door, and turn on the Apple's power switch. The disk will turn on, and in a
few seconds you will see the BASIC prompt character]. If the prompt char-

Sign-On
Procedure

(SON)

8 I Introduction

Sign-Off
Procedure

Programming
In BASIC

acter >appears, type FP and "RETURN" to get a] . You are now ready to be
gin typing a BASIC program.

You may also have an Apple hooked up to a Corvus Winchester disk
drive. In this case, you can use the same procedure as above. The Apple will
respond with the question " PLEASE ENTER YOUR NAME:". Type the
name assigned to you and press the "RETURN" key. Next the Apple will
say "PLEASE ENTER YOUR PASSWORD:" if a password is required
for access to the computer. Enter your assigned password and press
"RETURN". Finally the Apple will respond with the BASIC prompt char
acter]. Type "CATALOG,S4" followed by a RETURN. The computer will
print out some information on the screen and will again give you the]
prompt. You are now ready to begin your terminal session.

The only safe way to sign-off, no matter what type of system you have, is to
remove your diskette from the drive and turn off the power switch.

In order to write programs (instructions understood by the computer), the
sign-on procedure must be used. The program in BASIC is entered through
the terminal after the prompt character, line by line.

The greatest problem that people have when first using a computer is
that they forget to press the "RETURN" key after entering something on a
line. The result is that nothing happens! The "RETURN" must be pressed
to indicate the end of your message to the computer. Until it is pressed, the
computer assumes that you have not finished whatever you are trying to tell
it!

2 I Performing Simple Calculations

9

Writing a Program I 11

At the end of this chapter you should be able to:

• Write a program that will do simple calculations
• Enter a program into the computer and use simple BASIC commands

(NEW, SAVE, LIST, RUN)
• Use BASIC instructions for data manipulation and calculations (assign

ment to data fields, addition, subtraction, multiplication, division, out
put of results, end of program)

• Retrieve and modify an existing program using a BASIC command
(LOAD)

The first uses of computers were computational. The power of the computer
was used to perform engineering and scientific calculations. In business
there are many instances where calculations have to be performed. Com
puters can perform these calculations very quickly. In this chapter we will
show you how to program the computer to perform calculations and how to
display the results of these calculations.

The first problem deals with payroll calculations. Starting with elementary
calculations, this problem will be expanded to include more and more realis
tic elements. For the very first problem you are given the hourly rate and the
number of hours worked. You are asked to calculate the gross pay for an
employee.

One way of showing what a program does is to diagram the general steps of
a program. Such a diagram shows the order in which the various steps are
performed. Conceptually the execution of a program flows from one instruc
tion to another; hence, the name flowchart. Flowcharts are used throughout
this book to illustrate the structure of programs. For simple programs a
flowchart may not be necessary; however, for complex programs flowcharts
are very helpful. The symbols used in program flowcharting are explained
here.

D
The rectangle is used to describe all processing performed by a com

puter. The arrow shows the direction of flow in the flowchart. In general the
flow is top to bottom and left to right on a page.

<> D
The diamond is used to indicate a decision point where the flow may go

in one of two directions depending on the condition in the diamond. The
parallelogram is used to indicate input of data to the computer or output

Performance
Objectives

WRITING A
PROGRAM

Flowcharting
The Logic of
a Program

12 I Performing Simple Calculations

of information from the computer. The oval is used for the beginning or end
of the program.

(_ _____.)

Problem Summary

Input
Hourly rate: $3.00
N umber of hours worked : 40

Processing
Multiply hourly rate times hours worked, giving gross pay.

Output
G ross pay

The paycheck calculation program has to perform the following steps:

I . Assign values to data fields.

2. Calculate the gross pay.

3. Output the gross pay amount.

4. End the program.

The flowchart and a BASIC computer program to perform these four
steps is shown below:

1 0 REM PROGRAM TO COMPUTE PAY Start
1 00 LE T R = 3 . 00
1 1 0 LET H - 40
1 20 LE T p = R * H
1 30 PR INT p Assign Initial
140 STOP Data Va lues
6 3 999 END

Calculate Gross Pay

Output Gross Pay

Terminate

Writing a Program I 13

This program consists of seven lines. Each line starts with a number.
This number, also called the statement number, is important because it tells
the computer the sequence in which this program should be performed. The
statement with the lowest number will be performed first, then the statement
with the next lowest number, and so on until the end of the program is
reached.

In this example the statement numbers go from 10 to 63999. However,
any other sequence of numbers that keeps the same order could have been
used. As long as the order of the lines is not changed, the lines could have
been numbered from 10 to 16. These line numbers would have the same
effect as the present numbers in the example program. Each line of the pro
gram is now explained:

The first line, JO REM PROGRAM TO COMPUTE PAY, serves the
programmer and not the computer. In fact, all " REM" statements are ig
nored by the computer. REM is short for remark. It is used to insert com
ments in a program as an aid to understanding the logic of the program.

The second line, 100 LET R = 3.00, states that the value 3.00 (the hourly
rate of $3.00) is assigned to the field called R (for rate). The programmer
identifies these field s by giving each a name. In BASIC, field names consist
of one letter, or a letter followed by a single-digit number or two letters.
Following are examples of field names with explanations of their validity.

Example Explanation

A Valid field name; one letter

AA Valid field name; two letters

Al Valid field name; one letter followed by single-digit
number

B2 Valid; one letter and one digi t

2B Invalid; the first character has to be a letter

00 Valid ; letter "O" followed by zero "O" (but not recom
mended since it is hard to see the difference)

I 1 Valid ; letter " I" followed by number " l " (also not
recommended since it may be difficult to distinguish be
tween I and 1)

The third line, 110 LETH= 40, sets the value of H (H stands for hours
worked) to 40. It is good practice to use field names that will help you to
remember what is in that field. Such descriptive names are called mnemonic
-memory aids. Of course, with only one letter, two letters, or a letter fol
lowed by a number, BASIC is limited in mnemonic capability.

The fourth line, 120 LET P = R * H , performs the calculations for gross

14 I Performing Simple Calculations

RUNNING THE
PROGRAM

pay. First the hourly rate (R) is multiplied by the number of hours worked
(H). Then the result of this multiplication is placed in the field P. The
asterisk (*) between R and H means multiply. Other arithmetic operations
are + (plus) for addition, - (minus) for subtraction, I (slash) for division
and /\ (caret) for raising to a power. Parentheses may be used to separate
parts of an arithmetic statement.

The next line, 130 PRINT P , tells the system to display the value of field
P. Whatever number has been placed into the field called P, will be written
on the screen.

The last two lines are used to terminate the program. The "STOP" tells
the computer that the processing is finished. The "END", which must be
the last statement of a program, tells the system that the program is finished.
The STOP can be found almost anywhere in a program, but the END must
be the last statement. That is why the END statement has the line number
63999; 63999 is the highest number available for a line in Apple BASIC.

The next step in the problem-solving process is the entry of the program into
the Apple. First, sign-on the system using the procedure from the previous
chapter. Once you are on, then type

NEW

Don't forget-the "RETURN"! The command NEW tells the system that a
new BASIC program will be entered. The computer is now ready to accept
the program and responds with]. At this time, type the program, one line at
a time, ending each line with "RETURN". The program that you enter will
be held in the Apple's memory.

The memory is where anything typed from the keyboard is stored.
When the Apple is turned off, all information stored in memory is wiped
clean. Think about the memory as a blackboard that is wiped clean when
you sign off.

10 REM PROGRAM TO COMPUTE PAY
100 LET R 3.00
110 LETH 40
1 20 LET P R * H
130 PRINT P
140 STOP
63999 END

If a mistake is made in typing a line, the mistake can be corrected by
retyping the line. Do not worry, mistakes will occur; to err is human. Merely
retype the line correctly.

When the program has been entered into the Apple, type

SAVE PAY

Running the Program I 15

This command places a copy of the program onto the diskette and stores it
there under the program name (PAY) . You can use up to 30 characters for a
program name. The first character must be alphabetic. The program itself is
also still in ·the memory (only a copy of the program exists on the diskette).
If you did not SA VE PAY, and turn the Apple off, you would have to
retype the program. To see what is in the memory type

LIST

This command wi ll display the program in memory. Each line of the pro
gram is written on the screen. The command permits you to check that the
program was entered correctly. Errors can be corrected by retyping incor
rect lines. When a new line is typed wit.h an old line number, the new line
wipes out the old line and takes its place in the program sequence. To tell
the computer to do what the program says (i.e., to execute or run the pro
gram) type the word

RUN

If you type RUN, and the screen displays the message "SYNTAX
ERROR IN 100", it means that you have made an error in typing that line
(100). List the program and retype the incorrect line. Syntax errors consist
of typing BASIC instructions wrong. For example, if you typed 100 LT R =

3.00, you would get an error message when you try to run the program. Syn
tax errors are called "dumb errors". The computer wi ll catch these. If you
typed 100 LET R = 300, the computer would not catch that type of error.

) NEW

)10 REM PROGRAM

] l 00 LET R=3.00

l 110 LET H=40

J 120 LET P=R*H

J 130 PRINT p

) 140 STOP

) 63999 END

]SAVE PAY
]LIST

TO COMPU TE PAY

10 REM PROGRAM TO COMPUTE PAY
100 LET R 3.00
120 LET H = 40

16 / Performing Simple Calculations

Examples

130 LET P = R * H
140 STOP
63999 END

] RUN
12 0

BREAK IN 14 0
l

Since the terminal session is now complete, sign-off.
When looking at the process that has occurred, some elements become

apparent. First the problem has to be precisely specified. In this case the
specification included a definition of starting values, hourly rate and hours
worked; a statement of the desired ou tput, gross pay; and a statement of
how to get the output from the given inputs-multiply hourly rate by hours
worked to get gross pay. Second, a program bas to be written to perform the
actions required to solve the problem. Third, the computer performs the in
structions, one at a time in line number sequence. The BASIC instructions
that tell the computer what to do were:

The LET statement, which assigns a value to a field
The PRINT statement, which displays the value of a field
The STOP statement, which tells the computer to stop executing
The END statement, which indicates the end of the program

These are all statements in the BASIC language. Furthermore, to work with
a program, these BASIC commands were used :

NEW: To tell the system that a new program will be input from
the keyboard

SA VE: To tell the system to keep a copy of the program on the
diskette

LIST: To display the program currently in the memory

RUN: To tell the system to perform (execute) the program

BASIC commands do not have line numbers; BASIC instructions (state
ments) must have line numbers. Only after the last command (RUN) is en
tered does the computer actually perform (execute) the instructions of a
program.

Invoice Example: This example deals with invoice calculations. Initial data
are the number of units sold and the price per unit for an item. The output
desired is the dollar amount of the invoice.

Problem Summary

Input
Number of units sold: 50
Price per unit : $ 15

Processing

Running the Program I 17

Multiply number of units sold by price per unit, giving dollar amount of
invoice.

Output
Dollar amount of invoice

]NEW

) 10 REM THIS PROGRAM COMPUTES INVOICE AMOUNT

] 100 LET U=50

) 110 LET P=l5

) l 20 LET D=U*P

) 130 PRINT D

) 140 STOP

]63999 END

)S AVE INVCE
]LIST

10 REM THIS PROGR AM COMPUTES IN
VOICE AMOUNT

100 LET U = 50
110 LET P • 15
120 LET D U * P
130 PRINT D
140 STOP
63999 END

]RUN
750

BREAK IN 140
I

Start

Assign Ini tial Data
Values

Calculate Invoice
Amount

Print Invoice
Amount

Terminate

18 I Performing Simple Calculations

Exercises

Notice that line 10 in the listing looks different from the line 10 that you
typed. When you type in a line, you can type 40 characters across the screen .
However, when you LIST the program on the screen, only 33 characters are
printed on a line, and the next line contains the rest of the original line.
Note: All program listings in this book were produced on a line printer for
clarity.

Inventory Example: This problem asks for the calcula tion of ending inven
tory. The number of units in beginning inventory, the number of units re
ceived into inventory and the number of units released from inventory are
given.

Problem Summary

Input
Number of units in beginning inventory: 120
Number of units received into inventory: 40
Number of units released from inventory: 45

Processing
Add number of units received to inventory; then subtract number of
units released, giving ending inventory.

Output
Number of unit~ in ending inventory

NEW
1 0 REM THIS PROGRAM COMPUTES ENDING INVENTORY
100 LET B=l 20
110 LET Rl=40
1 20 LET R2=4 5
130 LET E=B+Rl - R2
140 PRIN'r E
150 STOP
63999 END
SAVE INVTY

RUN
115

BREAK IN 150

Note: Save all programs. These exercises wi ll be modified in later problems.

Commission Exercise: Wri te a program to calculate the commission that a
salesman has earned. The initial data are gross sales and the commission
rate.

Input
Gross sales: $12000
Commission rate: 0.05

Processing

Running the Program / 19

Problem Summary

Multiply gross sales by commission rate, giving dollar amount of com
mission.

Output
Dollar amount of commission

Program:

Run your program, and see if your output matches the following:

RU!~

600

BREAK I N 1 50

Account Balance Exe rcise: Retail merchants have to update customer ac
counts. The update consists of adding new charges to an account balance
and subtracting customer payments from an account balance. Write a pro
gram that will perform these tasks to arrive a t an ending balance for the
customer.

20 I Performing Simple Calculations

MODIFYING
THE PROGRAM

Problem Summary

Input
Starting balance: $60
Customer payments : $60
New charges: $45

Processing
Subtract customer payments from starting balance; then add customer
charges to balance, giving ending balance.

Output
Ending balance

Program:

Run your program and check your ending balance wi th the following ending
balance:

RUN
45

BREAK IN 150

To change a program that has already been written requires the use of some
new BASIC commands. For the payroll example, a modification is in order,
if the problem is changed.

Assume that the output requirement is changed so that the words
"GROSS PAY" as well as the amount of gross pay are displayed. This
change requires that the print statement in the program be expanded for the
output of alphabetic information. Printing aphabetic information is easy:
Simply type "PRINT" followed by the alphabetic information enclosed in

Modifying the Program I 21

quotation marks as illustrated in line 125 below. Each PRINT causes one
line of output. Therefore to display a line with "GROSS PAY", followed by
a line with the amount of gross pay, the new program would look as follows:

10 REM PROGRAM TO COMPUTE PAY
100 LET R=3.00
llO LET H=40
120 LET P=R*H
125 PRINT "GROSS PAY"
130 PRINT P
140 STOP
63999 END

Start

Assign Initial
Data Values

Calculate Gross Pay

Output Heading for
Gross Pay

Output Gross Pay

Terminate

This new program has an extra line. To add this line to the existing program,
it will be necessary to get the old program, and make the addition. This
modification involves a series of steps.

First, sign-on the system. Next to get a copy of the program from the
diskette, type

LOAD PAY

This command will copy your SA VEd program (PAY) from your disk
ette to memory where you may modify or RUN it.

If you cannot remember the program' s name, type

CATALOG

The command CATALOG gives a list of the program names on the diskette.
Once the program is in memory, list it to make sure that it is the correct

program. If the old and modified program are both to be retained, it will be
necessary to change the program name, since two programs cannot be

22 I Performing Simple Calculations

Review of
Problem

Modification
Procedure

stored with the same name. To place a copy of the program on the diskette
under the name PA Y2, type

SAVE PAY2

Now, if the CATALOG command is issued, it will show two programs:
PAY and PA Y2. The new line can now be inserted into the program. Type
the additional line

125 PRINT "GROSS PAY"

The system will place the line in the proper sequence automatically. In order
to provide space for program modifications, the line numbers were initially
picked so that there was room for the insertion of additional lines . If the
line numbers in the original program had run from 10 to 16, then no open
space for program modifications would have been available. To place a
copy of the modified program on your diskette the command

SAVE PAY

will have to be used.
After saving the modified program, LIST it; then RUN it. Following is

the sequence that performs these tasks.

LOAD PAY
SAVE PAY2

125 PRINT "GROSS PAY"
SAVE PAY

LIST
10 REM PROGRAM TO COMPUTE PAY
100 LET R= 3 . 00
llO LET H= 40
120 LET P=R*H
125 PRINT "GROSS PAY"
130 PRINT P
140 STOP
63 9 99 END

RUN
GROSS PAY

120

BREAK IN 140

The problem modification procedure starts with a change in one of the prob
lem specifications, either a change in initial data, or in the processing re
quirement, or in the desired output. In this example, the output was changed
to include alphabetic information. Then the required changes are identified
in the written program.

Modifying the Program I 23

Next, on the Apple, the old program is retrieved from the diskette and
placed in memory. The program is renamed and saved. The new line is
added to the program. The changed program is then listed and executed.

Invoice Example: In this problem we want to have a heading for the invoice
dollar amount. The remaining problem specifications are unchanged. The
procedure for making this modification is given as follows:

LOAD INVCE
SAVE INVCE2

LIST
10 REM THIS PROGRAM COMPUTES INVOICE AMOUNT
100 LET U=50
llO LET P=l5
120 LET D=U*P
130 PRINT D
140 STOP
63999 END

125 PRINT "INVOICE AMOUNT"
SAVE INVCE

RUN
INVOICE AMOUNT

750

BREAK IN 140

Sales Tax Example: Many states and municipalities require that a sales tax
be added to the purchase price of an item. The initial data for this problem
are a dollar amount of taxable sales and the tax rate. The desired output is
the total amount of the sale that the customer has to pay.

Problem Summary

Input
Dollar amount of sale: $10.00
Tax rate: 4%

Processing
Multiply tax rate by dollar amount to get taxes. Add taxes to dollar
amount, giving total amount of sale.

Output
Total sale

Examples

24 / Performing Simple Calculations

Exercises

NEW

10 REM THIS PROGRAM COMPUTES THE TOTAL SALE
100 LET S=l0.00
llO LET R=.04
120 LET T=S*R
130 LET A=S+T
140 PRINT A
150 STOP
63999 F.ND
SAVE TAX

RUN
10.4

BREAK IN 150

It now becomes desirable to have additional output. Customers would like
to see the tax separate from the total. Therefore, the desired output has
been changed to include printing of the sales amount and of the tax.

LOAD TAX

135 PRINT S
137 PRINT T
SAVE TAX

LIST
10 REM THIS PROGRAM COMPUTES THE TOTAL SALE
100 LET S=l0.00
llO LET R= . 04
120 LET T=S*R
130 LET A=S+T
135 PRINT S
137 PRINT T
140 PRINT A
150 STOP
63999 END
RUN

10
.4
10.4

BREAK IN 150

Account Balance Exercise: Change the account balance problem so that
the title "ENDING BALANCE" will appear as part of the output. Your
output should look similar to the output shown below:

RUN
ENDING BALANCE

45

!3REAK IN 15 0

Modifying the Program I 25

Sales Tax Exercise: Change the sales tax problem to calculate the total sales
amount for a tax rate of 5%. The title "TOTAL SALE" should appear in the
output. You can check your results with the output shown below.

RUN
TOTAL SALE

10 . 5

DREAK. IN 150

26 I Performing Simple Calculations

PRINTING
MANY VALUES

ON A LINE

The PRINT instruction has already been used to display the value of one
field as well as to display a lphabetic information. This PRINT statement can
also be used to output many field values. To output many fields with one
PRINT statement, the fields are separated by commas. This capability is il
lustrated by taking the initial payroll example and changing the desired out
put to a display of the hours worked and the hourly rate in addition to the
output of gross pay.

Input
Hourly rate: $3.00
Hours worked: 40

Processing

Problem Summary

Multiply hours worked by hourly rate, giving gross pay.
Output

Hourly rate, hours worked, and gross pay

This change would alter line 130 of the Pay program to

130 PRINT R, H, P

To make this change in the program, the required sequence of steps is:

l. Sign-on.

2. Get the old program (LOAD PA Y2).

3. Type the new line (130 PRINT R, H, P).

4. Save the program (SA VE PAY2).

5. List the program (LIST).

6. Execute the program (RUN).

7. Sign-off.

This sequence of steps would produce the following output.

LOAD PAY2

LIST
1 0 REM PROGRAM TO COMPUTE PAY

110 LET H=40
120 LET P=R*H
130 PRINT P
140 STOP
63999 P.ND

130 PRINT R,H,P
SAVE PAY2

LIST
10 REM PROGRAM TO COMPUTE PAY
100 LET R=3.00
110 LET H=40
120 LET P=R*H
130 PRIN'r R, H, P
140 STOP
63999 END
RUN

3 40 120

13REAK IN 140

Printing Many Values on a Line / 27

Notice that with the new PRINT instructions, three numbers are printed
on a line. Each of these field values starts at a column position that has been
built into the system. The prespecified column positions are l , 17, and 33.
Therefore, three field values can be printed on one line. If the print instruc
tion contains more than three fields, then another line is used to continue
output on the screen.

With the prespecified columns, headings and associated data will always
line up. As Jong as the alphabetic information has less than 16 characters,
including blanks, any data displayed will fall directly under the headings.
This alignment is shown in the revised payroll problem where headings are
added to the output.

Input
Unchanged

Processing
Unchanged

Output

Problem Summary

Change output to include headings for hourly rate, hours worked, and
gross pay.

This modification requires that a line of headings be added to the program.
After sign-on, the steps are:

28 I Performing Simple Calculations

1. Get the old program.

LOAD PAY2

2. List the program to see where to make the modification.

LIST
10 REM PROGRAM TO COMPUTE PAY
100 LET R=3.00
110 LET H=40
120 LET P=R*H
130 PRINT R,H,P
140 STOP
6 3999 END

3. Make the change. In this example, the data are printed in line 130. Since
the headings have to appear before the data, a line has to be added
before line 130. The headings consist of the words "Hourly Rate",
"Hours Worked", and "Gross Pay". It is good practice to keep headings
and data together. Therefore, line number 125 is used to output the
headings.

125 PRINT "HOURLY RATE","HOURS WORK ED"," GROSS PAY"
LIST
10 REM PROGRAM TO COMPUTE PAY
100 LET R=3. 00
110 LET H= 40
120 LET P=R*H
125 PRINT "HOURLY RATE "," HOURS WORKED","GROSS PA Y"
130 PRINT R,H, P
140 STOP
63999 END

4. Execute the program.

RUN
HOURLY RATE

3

BREAK IN 140

HOURS WORKED
40

GROSS PAY
1 20

5. Check the output. Although this aspect has not been discussed before, it
should be remembered that errors can occur. Therefore, whenever you
execute a program for the first time, make sure that the output is correct.
If you are satisfied with the output, then the program can be
SAVED for fucure use in the current form.

Handling Alphabetic Titles I 29

SAVE PAY3

6. If you are finished, sign-off.

Notice that what you see on the screen of your Apple will differ in many
cases from what is printed in this book. The differences occur since all pro
gram listings and output presented were written on a printer with a 132
character print line while the Apple screen is only 40 characters wide. As
you enter a program line, the first 40 characters will print across a line with
additional characters being continued on the next line, etc.

Program output can, of course, use many more than 40 spaces. Most
programs which generate reports will need more than 40 print positions.
While you can write such a program in BASIC with no thought given to
whether or not you even have a printer, when you RUN it, the output can
look very strange as each printed line takes up two or more lines on the
screen.

Program listings are even more mysterious. Listed lines use 33 charac
ters on the first line and 28 on each additional line with lines after the first
indented six characters for easier reading. Since a line in Apple BASIC can
be up to 239 characters long, a line could be almost six lines long when
entered and over eight lines long when listed.

With a little practice, you can learn to read the screen well enough to
tell whether or not your program listing is correct or whether a program ran
correctly. For final results, though, you would always want to LIST or
RUN your program on a printer.

The output on your screen for the last program (Step 4) would look as
follows:

]RUN
HOURLY RATE
GROSS PAY
3

BREAK IN 140
J

HOURS WORY.En

120

The headings in the last example were all less than the number of positions
avai lable. However, what would happen if the headings were longer? For ex
ample, what would the output look like, if the alphabetic titles that you
wanted were "Hourly Rate of Pay", "Hours Worked" , and "Gross Pay"? To
find out wha t a system would do if requirements change, there is only one
valid test- try it. Make the change and execute the program to see what hap
pens. For the payroll problem, the key steps are shown below:

WHY YOUR
SCREEN DIFFERS
FROM THE BOOK

HANDLING
ALPHABETIC

TITLES

30 / Performing Simple Calculations

LOAD PAY3

125 PRINT "HOURLY RATE OF PAY" ,"HOURS WORKED","GROSS PAY"
RUN
HOURLY RATE OF PAY HOURS WORKED GROSS PAY

3 40 120

BREAK IN 140

Example

Oops! The data do not line up. One way of handling this problem is to
print the headings on two lines. The heading "HOURLY RATE OF PAY"
is separated into two parts "HOURLY" and "RATE OF PAY". The two
parts are then printed separately. The procedure for this change involves re
typing line 125 as

125 PRINT "RATE OF PAY", " HOURS WORKED", "GROSS PAY"

and a new line is added as line number 123

123 PRINT "HOURLY"

Now the output from the program would look as follows:

125 PRINT " RATE OF PAY"," HOURS WORKED","GROSS PAY"
123 PR I NT "HOURLY"
RUN
HOURLY
RATE OF PAY

3

BREAK IN 140
SAVE PAY3

HOURS WORKED
40

GROSS PAY
120

This is the first example where the screen will not appear as the printout.

Inventory Example: Inventory records typically show more than j ust the
number of units in ending inventory. In this example we want to show the
beginning inventory, .the number receive~ into inventory, the number issued
from inventory, the number in ending inventory and the dollar amount of
ending inventory. Furthermore, a general heading for the output is also
worked.

Problem Summary

Input
Number of units at beginning: 120
Number received into inventory: 40
Number of units issued from inventory: 45
Cost per unit: $5.20

Handling Alphabetic ntles I 31

Processing
Add -numher received to beginning inventory and subtract number is
sued from inventory, giving ending inventory. Multiply ending inven
tory by cost per unit to get dollar amount of inventory.

Output
Heading of "Inventory Status'', labels for each field of output "Begin
ning Inventory", "Receipts", " Issued", "Enping Inventory", and "Dol
lar Amount" followed by a line of field values.

Note: Five fields are printed on a line in this program. The heading "Inven
tory Status", should appear centered over the output. Therefore, to align
the words " Inventory Status" over the third column, it is necessary to skip
to the third built-in tab position. Printing two blank fields will skip to the
third column. Similarly, two blank fields are inserted in the print line for
" Receipts" and " Issued" since these titles do not have to be split over print
lines.

Start

Assign Initial Values
to Fields

Calculate Ending Inventory
at Dollar Value

Output Headings

Output Field
Values

Terminate

32 I Performing Simple Calculations

LOAD INVTY

LIST

10 REM THIS
100 LET Bl
110 LET Rl =

1 20 LET R2 =
130 LET E
140 PRINT E
150 STOP
63999 END

PROGRAM COMPUTES ENDING INVENTORY
120
40
45

B + R 1 - R2

132 LET C = 5. 20
134 LET D = E * C
136 PRINT II "," ","INVENTORY STATUS"
138 PRINT "BEGINNING"," "," ","ENDING'~,"DOLLAR"
140 PRINT "INVENTORY","RECEIPTS","ISSUED","INVENTORY","AMOUNT"
14 2 PRINT B,Rl,R2 , E,D

LIST
SAVE INV2

10 REM THIS PROGRAM COMPUTES ENDING INVENTORY
100 LET B = 120
110 LET Rl = 40
120 LET R2 = 45
130 LET E • B + Rl - R2
132 LET C = 5.20
134 LET D - E * C
136 PRINT " "," ","INVENTORY STATUS"
138 PRINT "BEGINNING"," "," "," ENDING","DOLLAR"
140 PRINT "INVENTORY","REC EIPTS","ISSUED","INVENTORY","AMOUNT"
142 PRINT B,Rl,R2,E,D
150 STOP
63999 END

RUN

BEG INNI NG
IN VENTORY
1 20

BREAK IN 15 0

RE CE IPTS
40

INVENTORY STAT US

ISSUED
45

ENDING
INVENTOR Y
115

DOLLAR
AMOUNT
598

Note: In order to have your output appear as shown , it is necessary to use a
line printer.

Exercises Sales Tax Exercise: Change the output of the sales tax p roblem so that it
will print the amount of sale, the tax, and the total wi th appropriate head
ings.

RUN
SALE
AMOUNT

1 0

BREAK IN 150

TAX
.5

TOTAL
SALE AMOUNT

10.5

Handling Alphabetic Titles / 33

Account Balance Exercise: Change the account balance problem so that
the heading "Beginning Balance", "Payments", "New Charges" and "End
ing Balance" will appear over their respective values.

34 I Performing Simple Calculations

SUMMARY

RUN
BEGINNING
BALANCE

60

BREAK IN 1 50

CHARGES
45

PAYMENTS
60

ENDING
BALANCE

45

This chapter has shown you how to use the computer for simple calcula
tions. The instructions of the BASIC language and the BASIC commands
are listed below. BASIC commands are used to manipulate a program; they
have no line numbers. BASIC instructions are used to manipulate data in a
program; they do have line numbers.

Additionally, you have learned, not only how to write a program from
scratch, but also ways of changing your program. The method of program
modification will be continued throughout this book as the problem require
ments and the BASIC capabilities are further developed.

You may be wondering why STOP is used since there is an END state
ment. By using a STOP, the message "BREAK IN __ " appears at the end
of your output. As you proceed through the book, programs become more
complex and it is important to know if your program ran to completion.
The message "BREAK IN __ " tells us that the program finished as it
should.

BASIC Commands Introduced:

NEW

LIST

Tells the Apple that the operator is about to
type in a new program.

Gives a printout (listing) of the program.

SAVE PROGRAM Puts a copy of the program onto the diskette
NAME under program name. Must give program name.

RUN Executes a program, i.e., tells a computer to
perform the program instructions.

LOAD PROGRAM Asks for a copy of a program from the diskette,
NAME and places it in memory so that you can modify,

run, or list it. Must give program name.

CATALOG Lists the names of programs on the diskette.

BASIC Instruct ions Introduced:

Statement Explanation

LET X = Y Assigns the value of Y to the field X

PRINT X,Y Displays the values of X and Y

PRINT "XYZ" Displays the alphabetic information XYZ

STOP Tells the system to stop

END Indicates the physical end of a program

REM Ignored by computer-remarks for programmer

Arithmetic operations

x + y

X -Y

XIY

x h y

()

Definitions

Field Name:

Add Y to X

Subtract Y from X

Multiply X by Y

Divide X by Y

Raise X to the Y power

Parentheses may be used to group parts of arith
metic statements

A field is named by a letter (A - Z), or by a let
ter followed by a number (A - Z, 0 - 9), or by
two letters. Field names used in a program can
actually consist of up to 238 characters, as long
as the firs t character is a letter. The Apple sim
ply ignores all but the first two characters.

Program Name: A program name may be up to 30 characters;
the first character must be a letter. Short pro
gram names are used in this book to minimize
typing.

Summary I 35

36 I Performing Simple Calculations

PROBLEMS Write programs that will do the following:

I. Write your name.

2. Calculate the amount of a sale where 175 units are sold at $1.19 per unit.

3. Calculate the net amount of a sale where 47 units are sold at $4.56 per
unit and a return is made for 3 units at $6.26 per unit.

4. Calculate the average sale for a day in which sales were made for
$126.46, $276.19, $197.50 and $252.71. (Note: Average =the sum of
daily sales divided by the number of sales.)

5. Modify Problem 3 above where the output is labelled Net Sale.

6. Modify Problem 4 above where the output is labelled Average Sale.

7. Modify the inventory program on page 29 so that the amount is printed
on a separate line.

8. Calculate the amount of interest that would be earned in one year on
$527.26 at 4%, 5%, 6%, 6.5%, and 7% annual interest. Display the results
on one line and place headings of the interest rate above the interest
amounts. Also center the heading Interest Calculation in your output.

9. In economics, the concept of unit elasticity means that the price times
the quantity is a constant. If a product is manufactured by a company
whose revenue is $125,000, and output could be 10,000, 8,000, 7,000, or
6,000 units, what would the price be at the four levels of output? Put
headings on your output and write the numeric output on one line.
(Note: pq = r where p = price, q = quantity, r = revenue.)

10. The formula for compound interest is A = P (I + i)" where p = prin
cipal amount, i = interest rate expressed as a decimal, n = the number
of time periods, and A = total amount at the end of n periods. Deter
mine and label the output for p = $1,250, i = .055, and the number of
time periods is from I to 5.

3 I Data Entry

37

Entering Data from a Terminal I 39

At the end of th.is chapter you should be able to:

• Write.a program that wi ll take data from the Apple keyboard
• Write a program that will process many records
• Test data for reasonableness

In many cases the data values are unknown when the program is written.
For example, payroll data change from week to week. Consequently, to use
the program, the data assignments have to be changed. Quite often in busi
ness, the person who runs a program is not the person who wrote the pro
gram. Therefore making changes, such as changing the assignment
statements, would be cumbersome and awkward. Isn' t there a way to give a
program to somebody to run so that the person using the program doesn' t
have to know programming? The answer is yes. There is a way for a program
to get data from a terminal. In th.is chapter, we will show you how to enter
data while a program is running, how to process many records at the same
time, and how to check field values for reasonableness.

The payroll function must calculate the employee's gross pay and the em
ployee's net pay, the amount of his paycheck. Gross pay is the wages for reg
ular and overtime hours. Net pay is gross pay minus deductions. Deductions
include federal income tax and social security contributions (also known as
FICA-Federal Insurance Contribution Act). In the following problems you
are given the tax rate and the social security withholding rate.

The program should be written so that the data for the hourly rate, the
number of regular hours worked, and the number of overtime hours worked
can be entered from a keyboard. The required outputs are gross pay, taxes,
social security deductions, and net pay. Gross pay is calculated by adding
regular wages to overtime wages. Regular wages are regular hours worked
multiplied by the hourly rate. With time-and-a-half for overtime, overtime
wages are calcula ted by multiplying overtime hours by 1.5 and then multi
plying by the hourly rate. The deductions are calculated by multiplying
gross pay by the appropriate rate. Net pay is calculated by subtracting the
deductions from gross pay. The person is identified by name.

Problem Summary

Input
Social security withholding rate: 6.13% (.0613)
Federal income tax rate: 15% (. 15)
Hourly rate: $3.00
Regular hours worked: 40
Overtime hours worked: 2

Processing
Multiply regular hours by hourly rate, giving regular wages. Multiply
overtime hours times 1.5 and then multiply by hourly rate, giving over
time wages. Add regular wages to overtime wages, giving gross pay.

Performance
Objectives

ENTERING
DATA FROM A

TERMINAL

Problem
Description

40 I Data Entry

Multiply gross pay by income tax rate, giving federal income tax deduc
tion. Multiply gross pay by social security rate, giving social security de
duction. Subtract federal income tax and social security deductions
from gross pay, giving net pay.

Our put
Gross pay, payroll deductions, and net pay.

Start

Assign Initial
Data Values

Print
Instruction

for Data
Entry

Get Data
from

Keyboard

Perform
Required

Calculations

Prin t
Headings

for
Output

Output Gross
Pay,

Deducations, and
Net Pay

Terminate

10 REM PROGRAM TO INPUT AND COMPUTE PAY
100 LET Fl = .15
110 LET F2 = .061 3

Entering Data from a Terminal I 41

120 PRINT "TYPE NAME , HOURLY RATP, , REGULAR HOURS , OVERTIME HOURS "
130 I NPUT N$, R,Hl,H2
140 LET G = R * Hl + R * H2 * 1. 5
150 LET Dl = G * Fl
160 LET DZ = G * F2
170 LET N = G - Dl - 02
1 80 PR I NT "NAME: ", N$
190 PRINT "GROSS "," F.I.T.","F. I . C.A."," NET 11

200 PRINT " PAY ","DEDUCTION ","DEDUCTION "," PAY"
210 PRINT G,Dl,02,N
220 STOP
63999 END

This program contains one new BASIC instruction. Line 130 contains
the word " INPUT'. This instruction tells the computer to ask for data from
the keyboard. During program execution, a question mark (?) will be dis
played on the terminal. Data values are typed, each field separated by a
comma, after the question mark. One value has to be entered for each field
of the INPUT statement. In this case, four values separated by commas have
to be typed, one value each for name, hourly rate, regular hours and over
time hours. This program also contains a new type of fiel d name (N$), for
alphabetic information. In line 130, N$ is used to hold alphabetic informa
tion. In line 180 the name is printed. After this program is entered, it can be
executed.

Note: When entering dollar amounts, do not use the dollar sign ($) and
do not use commas to separate thousands. Commas are used to separate
field values; and the"$" has a special meaning in BASIC. It is used to name
a field that contains alphabetic or alphanumeric data. The definition of a
field name remains the same, but a$ is added.

The arithmetic statement in line 140 computes gross pay. IL also could
have been wri tten the following way:

140 LET G = (R•HI) + (R• H2• 1.5)

The parentheses could have been added; but the computation in the pro
gram and the one above with parentheses give us exactly the same result.
Arithmetic s tatements a re performed in BASIC in the following sequence:
First, exponentiation; next, division or multiplication; and last, subtraction
or addition. In the program, G would be calculated in the following way: H2
is multiplied by 1.5, and this result is multiplied by R; HI is multiplied by
R, and this result is then added to the first result, giving us G.

RUN
TYPE NAME, HOURLY RATE , REGU LAR HOURS, OVERT I ME HOURS
?JONES,3.00,40,2
NAME : JONES

42 I Data Entry

GROSS
PAY
129

BREAK IN 220
)SAVE PAY4

Examples

F.I.T.
DEDUCTION
19.35

F.I.C.A.
DEDUCTION
7.9077

NET
PAY
101.7423

Notice that the name, the hourly rate, the regular hours, and .the over
time hours have to be typed in that order. The program will take the first
typed value and assign it to the first field in the input statement, assign the
next value to the next field, and so on, until it has assigned a value to each
field. With the capability of entering data during program execution, it is not
necessary for you, the programmer, to know what the specific data values
wi ll be. You can write the logic of processi ng and use it for different data
values. By this approach you achieve a generally more useful program, since
changes in data values do not require changes in the program. However, the
person who uses the program must know what the data values are and the
order in which they must be entered.

Invoice Example: This example deals with invoice calculations. The data to
be input during execution are the number of units sold and the price per unit
for an item. The output desired is the dollar amount of the invoice.

Problem Summary

Input
Number of units sold: 50
Price per unjt: $ 15

Processing
Multiply number of units sold by price per unit, giving dollar amourt of
invoice.

Output
Dollar amount of invoice

10 REM DETERMINE DOLLAR AMOUNT OF I NVOICE
100 PR I NT "TYPE NUMBER OF UNITS, PRICE PER UNIT"
110 INPUT ll , P
120 LET D = U * P
1 30 PRINT " AMOUNT "
140 PRINT D
150 STOP
63999 END

) SAVE INVCE3

RUN
TYPE NUMBER OF UN I TS, PR I CE PER UNIT
?50, 1 5 . 00
AMOUNT
750

BREAK IN 150

The flowchart to derive this program follows.

Start

Print Instructions
for Data Entry

Get Data from
Keyboard

Calculate Invoice
Amount

Print Headings
for Amount

Print Invoice
Amount

Terminate

Entering Data from a Terminal I 43

Inventory Example: This problem requires the calculation of ending inven
tory. The number of units in beginning inventory, the number of uni ts re
ceived into inventory and the number of units released from inventory are
given.

44 I Data Entry

Problem Summary

Input
N umber of units in beginning inventory : 120
N umber of units received into inventory: 40
Number of units released from inventory: 45

Processing
Add number of units received to inventory; subtract number of units re
leased, giving ending inventory.

Output
Number of units in ending inventory

10 REM CALCULATE EN DI NG I NVENTORY
1 00 PR I NT "TYPE BEGINN I NG UNITS , UNITS RECEIYED, UN I TS RE LEASED"
110 I NPUT B,Rl, R2
120 LET E = B + Rl - R2
1 30 PRINT "ENDING INVENTORY"
140 PRINT E
1 50 STOP
63999 END

] RUN
TYPE BEGI NNING UNITS , UN I TS RECEIVED , UNITS RELEASED
?120 , 40 ,4 5
ENDING I NVENTORY
11 5

BREAK IN 1 50

Exerc ises Commissio n Exercise: Write a program to calculate the commission that a
salesman has earned. The data are gross sales and the commission rate; both
should be input during execution with instructions on the order of input. La
bel the output "Commission."

Input
Gross sales: $ 12000
Commission rate: 0.05

Processing

Problem Summary

Multiply gross sales by commission rate, giving dollar amount of com
mission.

Output
Dollar amount of commission

Entering Data from a Terminal / 45

Program:

Run your program, and see if your output matches the following output.

TYPE GROSS SALES , COMM I SSI ON RATE
? 12000, . 0 5
COMMISSION

600

BREAK I N 150

Account Balance Exercise: Retail merchants have to update customer ac
counts. The update consists of adding new charges to the account balance
and subtracting customer payments from the account balance. Write a pro
gram that will perform these tasks to arrive at an ending balance for the cus
tomer. The data should be input during execution. Label the output
"Account Balance."

Problem Summary

Input
Starting balance: $60
Customer payments: $60
New charges: $45

Processing
Subtract customer payments from starting balance and add customer
charges to balance, giving ending balance.

Output
Ending balance

46 / Data Enny

PROCESSING
MANY

RECORDS

Program:

Run your program and check your ending balance with the ending balance
given below.

TYPE STARTING BALANCE , CUS TOMER PAYME NT , NEW CHARGES
? 60 ,6 0 , 45
ACCOUNT BALANCE

45

BREAK IN 1 50

Let's assume that you have collected the weekly payroll data. You have a
stack of time cards, with each card containing the weekly data on a person.
Depending on the size of the organization, the stack of time cards may con
tain anywhere from 20 to 2,000 records. Therefore, to do the calculations for
the weekly payroll, you would have to run your payroll program 20 to 2,000
times. In this section we will show you how to write a program to process
many records in one run.

The assignment for this problem is similar to the previous problem. But
instead of data for only one person, the weekly time records of many people
have to be processed. The data are listed in Table 3-1. A program for
processing all the data in one run follows.

1 0
10 0
1 10

REM
LET
LET

Name

1. Adams
2. Baker
3. Cohen
4. Johnson
5. Tanner

PROGRAM TO
Fl = . 15
F2 = . 0613

Start

Assign Permanent
Data Values

Print Instruction
for Data Entry

and Get Input Dat a

Calculate Gross Pay,
Deducations, and

Net Pay

Print Headings
for Output

Output Gross Pay,
Deductions and

Net Pay

Weekly Payroll Data

Regular
Hourly Hours
Rate Worked

5.00 40
5.60 40
6.25 38
3.75 40
4.25 36

INPUT AND COMPUTE

Processing Many Records / 47

Table 3-1

Overtime
Hours

Worked

0
4
0
0
0

PAY

1 20 PRINT " TYPE NAME , HOURLY RATE , REGU LAR HOURS, OVERTIME HOURS "
1 30 INPUT N$, R, Hl ,H 2

48 I Doto Entry

1 40 LET G = R * Hl + R * H2 * 1. 5
1 50 LET 01 = G * Fl
160 LET 02 = G * F2
170 LET N = G - Dl - D2
180 PRUIT " NAM E:", N$
190 PR I NT "GROS S "," F. I . T ."," F.I . C. A. " , " NE'r
200 PR I NT " PAY" ," DEDUCTION "," DEDUCTION " ," PA Y"
21 0 PR I NT G, Dl , 0 2 , N
21 5 GOTO 1 20
220 STOP
6 3 9 9 9 END

This program contains one new BASIC instruction,"GO TO 120,"
found in line 215. The instruction means exactly what it says: When the
computer reaches line 2 15, it is instructed there to go back to line 120. When
the program is run, the computer executes lines JOO to 210 in sequence;
when it reaches line 2 15, it goes back to line 120 and executes from 120 on
wards.

This repetition is shown in the flowchart by the arrow that takes the flow
back to steps that have already been executed . Thus the computer effec
tively processes one payroll record , and , since more than one employee is
involved, it goes back to get the next employee record. To stop the program,
after the last employee record has been processed , type C while holding
down the control key (CTRL) when asked for data by the input statement.
Nothing will appear on the screen. Then press the " RETURN" key. The
logical end of the program is therefore entered during execution-after the
last piece of data has been processed and more data is requested.

Since this program is only a one line change from the previous program,
the modification is accomplished speedily. The change and execution actions
are shown as follows:

LOAD PAY4

21 5 GO TO 12 0
SAVE PAYS

RUN
TYPE NAME , HOURLY RATE , REGULAR HOURS , OVERT I ME HOURS
?!\DAMS , 5 . 00 , 40 , 0
NAME : !\DAMS
GROSS F . I . T . F.I . C. A.
PAY DEDUCT ION DEDUCT IO N
200 30 1 2 . 26
TYP E NAME , HOURLY RATE , REGULAR HOURS , OVERTIME
? !3!\KER , 5 . 60 , 40 , 4

NET
P.Z\.Y
157 . 74
HOURS

Processing Many Records I 49

NAME:
GROSS
PAY
257.6

13AlrnR
F. I. •r .
DEDUCTION
38.64

TYPE NAME , HOURLY RATE , REGULAR
?COHEN , 6 . 25,38 , 0
NA~E: COHEN
GROSS F.I. T .
PAY DEDUCTION
237 . 5 35 . 625
TYPE NAME, HOURLY RATE , REGULAR
?JOHNSON,3 .7 5,40 , 0
NAME: JOHNSON
GROSS F.I.T.
PAY DEDUCTION
150 22.5
TYPE NAME , HOURLY RATE, REGULAR
?TANNER,4.25,36,0
NAME: TANNER
GROSS F.I.T.
PAY DEDUCTI ON
153 22.95
TYPE NAME, HOURLY RATE, REGULAR
?

BREAK IN 130

F.I.C.A. NET
DEDUCTION PAY
15.79088 203 .16912
HOURS , OVERTIME HOURS

F.I.C.A. NET
DEDUCTION PAY
14.55875 187.31625
HOURS , OVERTIME HOURS

F.I.C.A. NE'r
DEDUCTION PAY
9.195 118. 305
HOURS , OVERTIME HOURS

F.I.C.A. NET
DEDUCTION PAY
9.3789 120. 6711
HOURS, OVERTIME HOURS

Invoice Example: In this problem we want a heading for the invoice dollar
amount and to process four records. The remaining problem specifications
are unchanged. The procedure for making this modification is given below.

Problem Summary

Input
Uni rs

sold Price per unir

50 $15.00
20 $14.00

120 $ 1.20
30 $ 6.00

Processing
Perform calculations for four records.

Output
Unchanged

Examples

50 I Data Entry

LOAD INVCE3

] LIST

10 REM DETERMINE DOLLAR AMOUNT OF INVOICE
100 PRINT " TYPE NUMBER OF UNITS, PRI CE PER UNIT"
110 INPUT U, P
120 LET D = U * P
130 PRINT " AMOUNT "
140 PRrnT D
150 STOP
63999 END

]145 GO TO 100

] SAVE INVCE4

RUN
TYPE NUMBER OF UN I TS , PRICE PER UNIT
?50 ,1 5 .00
AMOUNT
750
TYPE NUMBER OF UN ITS , PRICE PER UNIT
?20 ,14.00
AMOUNT
280
TYPE NUMBER OF UN ITS , PRICE PER UNIT
?120 ,1. 2
AMOUNT
144
TYPE NUMBER OF UNITS , PRICE PER UNIT
?30 , 6
AMOUNT
180
TYPE NUMBER OF UNITS , PRICE PER UNIT
?

BREAK IN 110

Sales Tax Example: Many states and municipalities require that a sales tax
be added to the purchase price of an item. The initial data for this problem
are a dollar amount of taxable sales and the tax rate. The desired output is
the total amount of the sale that the customer has to pay. Six records should
be processed.

Problem Summary

Input
Dollar amount of sale: $10.00, $42.00, $57.00, $2.50, $726.32, $9.27
Tax rate: 4%

Processing Many Records / 51

Processing
Muhiply tax rate by the dollar amount to get the taxes; add the taxes to
dollar amount, giving the total amount of sale.

Output
Total sale

1 00 PRINT "TYPE AMOUNT OF SALE"
110 INPUT s
120 LET R = • 04
130 LET •r = R * s
140 LET A = s + T
150 PRINT "TOTA L SALE"
160 PRINT A
170 GOTO 100
180 STOP
fi 3999 END

]RUN
TYPE AMOUNT OF SALE
?10.00
TOTAL SALE
10.4
TYPE AMOUNT OF SALE
?42 .00
TOTAL SALE
43.68
TYPE AMOUNT OF SALE
? 57
TOTAL SALE
59.28
TYPE AMOUNT OF SALE
?2.50
TOTAL SALE
2.6
TYPE AMOUNT OF SALE
?726.32
TOTAL SALE
755.3728
TYPE AMOUNT OF SALE
?9. 27
TOTAL SALE
9.6408
TYPE AMOUNT OF SALE
?

BREAK IN llO

Account Balance Exercise: Change the Account Balance Problem so that
five records are input.

Exercise

52 I Data Entry

I nput
Starting balance
Customer payment
New charges

Processing

Problem Summary

Perform calculations for five records.

Output
Unchanged

Program:

60 130 59.95 22.50 37.62
60 120 59.95 22.50 0.00
45 60 39.75 0.00 42.97

TYPE STARTI NG BALANCE , CUSTOMER PAYMENT, NEW CHARGES
?60,60,45
ACCOUNT BALANCE
45
TYPE STARTI NG BALANCE , CUSTOMER PAYMENT , NEW CHARGES
?130,120,60
ACCOUNT BALANCE
70
TYPE STARTI NG BALANCE , CUSTOMER PAYMENT , NEW CHARGES
?59 . 95 , 59.95 , 39 . 75
ACCOUNT BALANCE
39.75
TYPE STARTING BALANCE , CUSTOMER PAY~ENT , NEW CHARGES
?22.50 ,2 2.50,0.00
ACCOUNT BALANCE
0

How to Catch Some Errors in Data I 53

TYPE STARTING BALANCE, CUSTOMER PAYMENT, NEW CHARGES
?37.62,0,42.97
ACCOUNT BALANCE
80.59
TYPE STARTING BALANCE , CUSTOMER PAYMENT, NEW CHARGES
?

BREAK IN 20

When a program is written, it is necessary to make sure it performs its in
tended function. In the examples given so far, the numbers have been suffi
ciently simple so that the calculations can be checked by hand. It is good
practice to check all calculations of a program whenever possible.

Errors do occur in complex programs. Errors crop up in the specifica
tion of a problem: For example, if salesman commissions are defined as a
percentage of gross margin (sales minus cost of goods sold) , then a specifi
cation of commission on the basis of gross sales would be in error. Errors
can happen when the program is first written: For example, if receipts were
subtracted from rather than added to beginning inventory, then a design
error would exist. Errors can happen when the program is entered into the
computer: Hitting the wrong key on the keyboard can cause many prob
lems. These errors, called syntax errors, are caught when the program is
first run. Other errors will be caught when the program tries to do some
thing and can't. Logical errors like these will show up during execution.

But many errors, such as the erroneous calculation of inventories will
not give any error messages. In those cases it is necessary to do the calcula
tions by hand to make sure that the output is correct. However, even hand
calculation wi ll not catch problem specification errors. The salesman com
mission error- the calculation of commission on the basis of gross sales in
stead of gross· margin-would requi re a comparison of the specifications with
the actual operations of the company.

Errors in programs, called "bugs", bedevil even experienced programmers.
But the largest number of errors in data processing is caused by bad data.
This source of errors has been immortalized by the phrase "garbage in, gar
bage out." In this section we show you how to catch some of the "garbage
in." The concept is known as "range checking."

Range checking assumes that you know the permissible range of data
values. Range checks make sure that data are not too high or too low. But
range checking can not catch errors when the erroneous data is within the
range. A transposition error (for example, $3.69 is entered incorrectly as
$3.96) will not be caught by range checks if the erroneous data is wi thin
range. In the case of the payroll example, we know that regular hours
worked cannot exceed 40 hours. Therefore, we can check to make sure that

PROGRAM
VERIFICATION

HOW i:o
CATCH SOME

ERRORS IN
DATA

54 I Data Entry

values for regular hours worked are not larger than 40. The permissible
ranges for the data fields are:

Field Low Value High Value

Hourly rate 3.05 10.00
Regular hours 0 40
Overtime hours 0 20

Checking range values of input fields is only part of the task. Once an error
has been found, it must be identified so that the keyboard operator can cor
rect the mistake. By accident, such as misinterpreting handwritten numbers,
or through carelessness, erroneous data may have been typed. Range checks
help to catch input that is obviously wrong. But the operator also needs to
be told that the input is wrong. Hence, appropriate error messages must be
printed. Following are flowcharts (Figs. 3-1 and 3-2) and a program that
perform these additional requirements:

10 REM PROGRAM TO INPUT AND COMPUTE PAY
100 LET Fl = .1 5
110 LET F2 = . 0613
120 PR I NT "TYPE NAME , HOURLY RATE , REGULAR HOURS, OVERTIME HOURS "
130 INPUT N$,R,Hl,H2
131 IF R < 3.05 THEN 1 38
132 IF R > 10 THEN 138
1 33 IF Hl < 0 THEN 138
1 34 IF Hl > 40 THEN 13 8
135 IF H2 < 0 THEN 1 38
1 36 IF H2 > 20 THEN 1 38
1 37 GOTO 140
1 38 PRINT " ERROR IN INPUT DATA"
1 39 GOT O 120
140 LET G = R * Hl + R * H2 * 1. 5
1 50 LET Dl = G * F l
160 LET 02 = G * F2
1 70 LET N = G - Dl - D2
180 PRINT " NAME :", N$
190 PRINT " GROSS "," F . I . T.","F.I.C.A.","NET
200 PRINT " PAY " , " DEDUCTION "," DEDUCTION", "P AY "
210 PRINT G, Dl,D2,N
2 1 5 GOTO 1 20
220 STOP
63999 END

The difference between this program and the previous program on page
47 is in lines 131 to 139. Here we test the data with a series of IF statements.
An IF statement compares two values.

How to Catch Some Errors In Data I 55

Start

Assign Permanent
Data Values

Print Instruction
.----------------~ for Data Entry

Print
Error

Message

NO

and
Get Input Data

Calculate Gross
Pay Deductions

and Net Pay

Print Headings
for Output

Output Gross
Pay, Deductions,

and Net Pay

Flowchart of Range Test Program Figure 3-1

56 I Data Entry

Figure 3- 2

Print Instruc tion
for Data Entry

and
Get Input Data

Calculate Gross
Pay Deductions

and Net Pay

YES

YES

YES

YES

YES

YES

Range Tests:

Prin t
Error

Message

Expansion of Decision-" Is Data Within Range?"

How to Catch Some Errors in Data I 57

The six comparison operators are:

Equal

< Less than

< = Less than or equal

> Greater than

> = Greater than or equal

<> Not equal

The comparison is followed by THEN and a line number. The "THEN line
number" means GO TO the line number indicated if the comparison is true.
If the comparison is not true, the next line is executed (see Fig. 3-2). Fields
are compared with values or with other fields. Thus we can read line 131 as,
" IF the hourly rate (R) is less than 3.05 THEN go to line 138." Similarly,
line 132 means: " IF the hourly rate (R) is greater than JO THEN go to line
number 138." In line 138 an error message is printed. The error message is
followed by a return to the instruction (line 120) for data entry.

Notice the GO TO 140 in line 137. This GO TO directs control to line
140 for the processing of valid data. When the computer reaches line 137,
the data must be valid because it passed all the tests in lines 131 to 136. If
line 137 did not exist, then valid records would also print the error message.

These changes to the old program are shown below:

LOAD PAYS

SAVE PAY6

1 3 1 IF R < 3.0 5 THEN 138
1 3 2 IF R > 1 0 THEN 1.3 8
133 IF Hl < 0 THEN 138
1 3 4 IF Hl > 40 THEN 138
1 3 5 IF H2 < 0 THEN 138
1 3 6 IF H2 > 20 THEN 138
13 7 GOTO 140
l 3 8 PRINT " ERROR IN INPUT DATA "
139 GOTO 120

) SAVE PAY6

LIST

58 I Doto Entry

10 REH PROGRAM TO INPUT AND COMPUTE PAY
1 00 LET Fl = .15
11 0 LET F2 = .0 6 1 3
1 20 PRINT "TYPE NAtlE, HOURLY RATE, REGULAR HOURS , OVERTIME HOURS "
130 INPUT N$, R , Hl,H2
1 31 IF P. < 3 . 05 THEN 138
132 IF R > 10 THEN 13 8
133 IF Hl < 0 THEN 138
1 34 IF Hl > 40 THEN 138
135 IF H2 < 0 THEN 138
136 IF H2 > 20 THEN 138
1 37 GOTO 1 40
138 PRINT " ERROR IN INPUT DATA"
139 GOTO 120
1 40 LET G = P. * Hl + R * H2 * 1 . 5
150 LET Dl = G * F l
160 LET D2 = G * F2
1 70 LET N = G - Dl - D2
1 80 PRINT " NAME:" , N$
1 90 PRINT " GROSS "," F . I . T . "," F . I .c.A. "," NET
200 PRINT " PAY "," DEDUCTION","D EDUCT I ON "," PAY "
210 PRINT G,Dl,D2 , N
2 15 GOTO 1 20
220 STOP
63999 END

Example Inventory Example: We want to modify the inventory example in Chapter 2
to process three records and check the appropriateness of their values. The
high values were determined by examining the capacity of the company to
store and handle inventory. The low values cannot be negative, and the low
est cost of an item of inventory is $ 1.00.

Problem Summary

Input

Number of units at beginning:
Number received into inventory:
N umber of units issued from inventory:
Cost per unit:

Processing
Test the data for reasonableness.

120
40
45

$5.00

20
70

100
$7.00

60
20
80

$3.25

How to Catch Some Errors In Dato I 59

Data Ranges

Field
Units at Beginning
U ni ts Received
Units Issued
Cost

Low Value
0
0
0

$1.00

High Value
10,000
3,000

•
$ 10.00

*Number of Units in Inventory= Units at Beginning+ Units Received.
Output

Unchanged

10 REM THIS PROGRAM CALCULATES ENDING I NVENTORY VALUE
100 PRINT " TYPE BEGINNING UNITS, UNITS RECEIVED, UNITS RELEASED"
105 PRINT " AND COST SEPARATED BY COMMAS"
110 I NPUT B,Rl,R2,C
111 IF B < 0 THEN 120
112 IF B > 10000 THEN 120
113 IF Rl < 0 THEN 120
114 IF Rl > 3000 THEN 120
115 IF R2 < 0 THEN 120
116 IF R2 > (B + Rl) THEN 120
117 IF C < 1.00 THEN 120
118 IF C > 10.00 THEN 120
119 GOTO 130
120 PRINT "ERROR IN INPUT DATA"
121 GOTO 100
130 LET E = B + Rl - R2
134 LET D = C * E
136 PRINT" "," ","INVENTORY STATUS"
138 PRINT "BEGINNING"," "," ","ENDING"," DOLLAR"
140 PRINT "INVENTORY", "RECEIPTS","ISSUED","INVENTORY" ," VALUE"
142 PRINT B,Rl,R2, E,D
143 GOTO 100
150 STOP
63999 END

RUN
TYPE BEGINNING UN ITS, UNITS RECEIVED, UNITS RELEASED
AND COST SEPARATED BY COMMAS
? 120,40,45, 5 .00

INVENTORY STATUS
BEGINNING ENDING
INVENTORY RECEIPTS ISSUED

45
INVENTORY
115 120 40

TYPE BEGINNING UNITS,
AND COST SEPARATED BY
?20,70,100,7.00
ERROR IN I NPUT DATA

UNITS RECEIVED, UNITS RELEASED
COMMAS

DOLLAR
VALUE
575

60 / Data Entry

TYPE BEGINNING UNITS, UNITS RECEIVED , UNITS RELEASED
AND COST SE PARATED BY COMMAS
?60,20 , 80 ,3 .25

INVENTORY STATUS
BEGINNING ENDING
INVENTORY RECEIPTS I SSUED

80
INVENTORY
0

DOLLAR
VALUE

60 20 0
TYPE BEGINNING UNITS ,
AND COST SEPARATED BY

UNITS RECEIVED, UNITS RELEASED
COMMAS

?

BREAK IN 110

Review of
Validity Check

Operations
and Deleting

Obsolete
Programs

SUMMARY

This sequence o f actions starts with the sign-on procedure. The old program
is copied from the diskette and placed into the memory with the command

LOAD PAYS

When the system indicates that it is ready with a prompt, the program name
is cha nged and a copy of the program with its new name is placed on the
diskette. This SA VE action is taken as a security precaution. If anything
should go wrong while you are working with the program PAY6 then you
can recover by ca lling PAYS, and then repeat the modification steps .

After PAY6 has been saved , th"e new lines between I30 a nd 140 are
typed. T he SAVE and LIST commands save a copy of the modified PAY6
and provide a display of the program so that you can visua lly veri fy your
modifications. If an error has occurred, you can call the old PAYS program
and make the modifications again. This same sequence is used for the inven
tory example.

Note that only the program in memory is changed. The diskette is not
affected unless you SA VE a program. SA VE copies a program from the
memory to the diskette. You can find out what programs are stored for you
on the diskette by typing the BAS IC command CAT ALOG.

You can also delete programs from the diskette with the DELETE com
mand. Old programs that have been superseded by newer programs should
be removed. Look at the catalog. See if you have programs that you no
longer need. If there are obsolete programs in your catalog that you want to
remove, then type DELETE followed by the program name. When the sys
tem responds with the prom pl character, the program has been deleted from
the diskeue.

This chapter covered four new techniques:

• How to get data from a termina l
• How to process many records

• How to check records for reasonableness
• How to delete obsolete programs

All these techniques make your programs more realistic because they add
generality and flexibility. No longer do you need to know specific data val
ues when you write a program. The specific data can be entered when the
program is used. No longer does a program have to be re-run for each re
cord. A loop controlled by a GO TO can process many records in one run.
And with range checks, some of the errors in input data will be caught.
Therefore, programs written this way use the computer more flexibly and
provide important assistance to the users.

BASIC Commands Introduced:

DELETE PROGRAM Eliminates a program from the diskette. Must use
NAME program name.

BASIC Instructions Introduced:
Statement

INPUTX,Y

INPUT X$,Y$

GOTO nnn

IF x THEN nnn

Comparison operators

X=Y

X<Y

X<=Y
X>Y

X>=Y

X<>Y

Explanation

Takes numeric values for fields X and Y from the
keyboard.

Gets alphabetic values for fields X$ and Y$ from
the keyboard.

Tells the system to go to line number nnn for the
next instruction.

If x is true then go to line nnn for the next instruc
tion, otherwise (if x is false) go to the next line in
sequence.

Result of comparison

Result is true if X equals Y

Result is true if X is strictly less than Y

Result is true if X is less than or equal to Y

Result is true if X is strictly greater than Y

Result is true if X is greater than or equal to Y

Result is true if X is not equal to Y

Rather than stating the comparison result as true or false, yes or no may be
used.

Summary I 61

62 I Data Entry

PROBLEMS Write a program to do the following:

1. Modify the invoice problem in this chapter to check the value of the
price per unit. The price should not be less than zero or more than $20.
Data to be input at execution time

Units 20 12 34 27 JOO
Price 1.50 21.22 14.50 1.95 2.56

2. Modify the commission problem in this chapter to check the values of
gross sales and commission rate. Gross sales may range from 0 to
$ 100,000. The commission rate varies from 2% to 6%. Data to be input
at execution time

Gross sales 2,476
Commission rate 4%

29,650
4.2%

400,000
2.1%

97,727
6.7%

Error messages should indicate whether the error detected is in
gross sales or the commission rate.

3. Modify the payroll example on page 56 to output specific error messages
such as "HOURLY RATE TOO HIGH", "HOURLY RATE TOO
LOW", " HOURS TOO HIGH", "HOURS TOO LOW", "OVERTIME
TOO HIGH", "OVERTIME TOO LOW". Use the following data:

Name Hourly Rate Regular Hours Overtime

Able $ 1.95 40 0
Baker 2.96 42 26
Charlie l l.65 -4 0
Fern 5.50 40 25
Graak 7.20 40 10

4. In Problem 3 above, a single error will result in not processing a per
son's data. Modify your program so that multiple errors in a person's
data will be detected and result in appropriate error messages. Use the
same data. Note: Process invalid records.

5. Modify the inventory example on page 58 to output specific error
messages such as "BEGINNING INVENTORY TOO HIGH", "BE
G INN ING INVENTORY TOO LOW", "UNITS RECEIVED TOO
HIGH", "UNITS RECEIVED TOO LOW", "UNITS ISSUED TOO
HIGH'', "UNITS ISSUED TOO LOW", "COST TOO HIGH", "COST
TOO LOW". Use the following data:

Beginning Units Units
Inventory Received Issued Cost

100 20 60 $ 4.00
20 3,500 4,000 $.75

500 200 600 $12.00
20 -40 60 $ 1.50

-100 200 700 $ 14.00

6. Modify your program in Problem 5 so that multiple errors in a data re
cord (a line of input) will be indicated. Use the same data. Note: Process
invalid records.

Problems I 63

4 I Sequential Files

65

Setting up a File I 67

At the end of this chapter you should be able to:

• Use files to store data
• Write a program that will put da ta in a file
• Write a program that will read data from a file
• Find a record in a file

To use a computer, it is necessary to get data into the computer. In many
cases when the amount of data is large, a computer file has to be set up to
store the data. With files, the same data can be used again and again.

With files, entry of data is separated from the processing of data. There
fore, the data can be entered into a computer file at one time to be processed
later.

But the files that a computer uses are different from the files used by
people. Data is stored in a computer file in electromagnetic form. And peo
ple can't read electromagnetic data directly.

It is necessary to write a program to enter data into fi les and to wri te
programs that read data from files. In this chapter, we wi ll show you how to
set up a file for computer processing. The type of file used is a sequential file.
The fi le is called a sequential file because it is organized in a particular se
quence, one record next to another. In a later chapter another type of file, a
direct access fi le, will be discussed.

The payroll problem will illustrate the capabilities of BASIC to handle files.
In this case, we want to write a program that lets a terminal (data entry)
operator enter data into a fi le. Later, we will use the data in the file for cal
culations and reports. When files are used, only one record at a time is read
or written.

The payroll data for this problem consists of records with the following
fields. Field names are in parentheses.

• Employee number (N)
• Employment department number (D)
• Employee name (N$)
• Hourly rate of pay (H)
• Regular hours worked (R)
• Overtime hours worked (V)

The processing consists of entering data through a terminal and placing it in
a file. For output, messages telling the operator what to do are necessary.

Problem Summary

Input
Employee number
Employee department number

Valid Range
100 to 999

I to 20

Performance
Objectives

SffilNG UP
A FILE

68 I Sequential Ries

Employee name
Hourly rate
Regular hours worked
Overtime hours worked

Processing

anything
3.05 to 15.00

0 to 40
0 to 20

T ake da ta from a keyboard and place valid data in a fi le. Check the data
for validity.

Output
Instructions for operator and data on a computer fi le.

Therefore the program has to be able to:

I. Set up a new file.

2. Get data from the terminal when an opera tor types it.

3. Write the data into a file that the computer can use.

4. Stop when all the data has been entered.

See the flowchart (Fig. 4-1) and program to do all of these actions below:

10 REM THIS PROGRAM TAKES DATA FROM THE KEYB OARD AN D
20 REM PLACES IT I N THE EMPLOY FILE
1 00 PRINT CHR$ (4);"0PEN EMPLOY "
110 PRINT "TYP E EMPLOYEE NUMBER, DEPARTMENT NUMB ER , EMPLOYEE NAME"
120 PRINT "HOURLY RATE,REGULAR HOURS"
130 PRINT "OVERTIME HOURS SEPARATED BY COMMAS"
140 PRINT "WHEN FINISHED TYPE 99,99 , AA,99 , 99 ,99 "
150 INPUT N,D,N$,H ,R, V
160 IF N 99 THEN 400
170 IF N < 100 THEN 290
180 IF N > 999 THEN 290
190 IF D < 1 THEN 290
200 IF D > 20 THEN 29 0
210 IF H < 3.05 THEN 290
220 IF H > 15 .0 0 THEN 290
230 IF R < 0 THEN 290
240 IF R > 40 THEN 290
250 IF V < 0 THEN 290
260 IF V > 20 THEN 290
265 PRINT CHR$ (4); "WRITE EMPLOY "
270 PRINT N;",";D;",";N$;",";H;",";R;" ," ; V
275 PRINT CHR$ (4)
280 GOTO 110
290 PRINT "ERROR IN INPUT DATA, PLEASE RETYPE"
300 GOTO 110
400 PRINT CHR $ (4); "CLOSE EMPLOY "
63999 END

Setting up a File I 69

Write
Error

Message

NO

Start

Open
File

Write Operator
Instructions

Get Data from
Terminal

Write Data
onto File

Flowchart for Setting Up a File

This program contains three new statements:

• Line 100 opens a file.
• Lines 265 -275 write data into a ftle.
• Line 400 closes a file.

Let's look closely at these three statements.

Close
File

Terminate

Open a file: Line 100 is PRINT CHR$(4); "OPEN EMPLOY". This
statement is used to open a fi le for either reading or writing. If we do not

Figure 4-1

70 I Sequential Files

have a file, then the computer creates one. The statement says to open a file
and that this file will be called "EMPLOY".

This instruction is always written the same way. The only change neces
sary from program to program is the file name after OPEN. T he instruction
looks strange because it appears to be a PRINT instruction, but as you will
see PRINT CHR$(4) is not an ordinary PRINT instruction. It is the method
by which we tell the computer that we want to use a fi le.

The file name is limited to 30 alphanumeric characters. The first char
acter must be alphabetic. Examples of valid and invalid file names are
shown in the following list. (Note: The rules for filenames are the same as
the rules for program names!)

Example Explanation

A Valid file name. You can use up to 30 characters, but you
don't have to use a ll 30.

Al Valid file name. Numbers are also alphanumeric charac
ters. The file names A and Al are not recommended since
they may be confused with field names.

LIST Valid file name; but not recommended since it is a BASIC
comm and and therefore a possibility of confusion exists.

ACCREC Valid file name. Good choice of a name since ACCREC for
Accounts Receivable has mnemonic (helps you remember)
characteristics.

2PA YROLL Invalid file name. File names must begin with a letter.

At the end of this program you will find that your catalog contains not
only programs but also the data file "EMPLOY".

Write into a file: Line 265 PRINT CHR$(4); "WRITE EMPLOY" tells
the computer that it should write on the fil e "EMPLOY". Line 270 PRINT
N; ","; D; " ,"; N$; ";"; H; ","; R; ","; V looks similar to most PRINT
instructions. However, since it follows line 265, it will PRINT the values of
the fields N, D, N$, H, R and V on the "EMPLOY" file. The strange
looking punctuation between field names (; "," ;) tells the computer how to
store the field values in the file. This punctuation must a lways be used to
separate fields when writing a sequential file. Line 275 PRINT CHR$(4)
tells the computer to stop writing on the file so that when line 110 is executed
the message will be written on the screen.

Setting up a File I 71

Close a file: Line 400 closes a file . That tells the computer that it can
now store the file. Storing a file in this case means that the file is placed onto
your diskette. That way the file will be available to you for processing. It
will remain there until you decide that you no longer need the file. Until
then, you can always gain access to it with an OPEN statement.

The file instructions for the program are:

100 PRINT CHR$(4); " OPEN EMPLOY"
265 PRINT CHR$(4); "WRITE EMPLOY"
270 PRINTN; " ,"; D; "," ; N$; ","; H; ","; R; ","; V
275 PRINT CHR$(4)
400 PRINT CHR$(4); "CLOSE EMPLOY"

Each instruction starts with PRINT, but only one line, 270, actually writes
information on to the file. The other lines are necessary to prepare or finish
handling the file "EMPLOY". In order to write information to any file, the
above sequence should be used. All you have to change is the file name and
the field names.

One last explanation before you try this program. In line 140 the opera
tor is instructed to type "99,99,AA,99,99,99" when no more data has to be
entered. This entry generates a last record. In effect, we have a dummy re
cord . It is used to indicate that the data input to the file is finished.

But the computer doesn't know that you have chosen a record with 99's
and an AA in each field to end the data. This record is called a dummy re
cord since it does not contain usable payroll data. To the machine, it looks
like any other record. We know that this record indicates the end of data
because that's what we told the operator to do in line 140 in order to end
data input. We could have told the operator to enter any other values in line
140 to indicate the end of data. But whatever we told the operator, we have
to pick carefully. The dummy record should be invalid so that it stands out.
It should be the same every time so that when the data changes, we don't
have to rewrite the program.

The instruction to type 99's and AA serves to end the data for the pay
roll problem. When such a record is reached, we know that it is time to close
the file since data entry is finished. The end of data is tested in line 160. If N,
the field for employee number, has a 99 then we assume that no more data
will be forthcoming, and we go to line 400 to close the file.

Sign-on the system and type the program. Once you have finished typ
ing the program and given the RUN command, enter the payroll data shown
below in Table 4-1 .

72 I Sequential Files

Table 4-1

Example

Payroll Data

Employee Department Employee Hourly Regular Overtime
Number Number Name Rate Hours Hours

IOI 1 Adams $5.00 40 0
103 12 Baker 5.60 40 4
104 17 Bravo 4.00 40 2
108 16 Cohen 6.25 38 0
172 2 Johnson 3.75 40 0
198 Tanner 4.25 36 0
202 16 Wilson 4.00 40 0
206 7 Lester 5.25 40 0
255 12 Schmidt 5.60 40 4
281 12 Miller 6.00 40 0
313 7 Smith 4.25 40 4
347 12 Gray 6.00 38 0
368 1 Weaver 3.50 40 2
422 Williams 4.00 40 0

Better yet, write the program and talk somebody else into entering the data
from a terminal. By having somebody else enter the data, you have a
closer approximation to how things are actually done in organizations. If an
error occurs during data entry, then you must stop the program and run it
again from the beginning. So be careful. In the last section of this chapter
you will learn how to correct records in a data file.

Inventory Example: Create a file called "INV" with five fields per record.

Problem Summary

Input
Part Beginning Units Units
Number Units Received Issued Cost
IOI 120 40 45 $5.00
210 20 70 100 7.00
219 60 60 80 3.25
226 5 110 90 2.95
235 100 0 50 6.20
347 0 50 20 4.60
Data ranges remain the same as in Chapter 3.

Processing
Take data from keyboard and place valid records m a file named
" INV".

Output
Instructions for data entry and a file named "INV".

100 REM THIS PROGRAM PUTS DATA INTO THE INV FILE
110 PRINT CHR$ (4);"0PEN INV"

Setting up a File I 73

120 PRINT "TYP E PART NUMBER,BEGINNING UN I TS,UNITS RECEIVED, UN ITS ISSUED";
130 PRINT " AND COST, WITH COMMAS IN BETWEEN"
140 PRI.NT " WHEN FINISHED TYPE 1,1,1,1,99"
150 INPUT P,B,R,I,C
160 IF C 99 THEN 350
170 IF B < 0 THEN 270
180 IF B > 1000 THEN 270
190 IF R < 0 THEN 290
200 IF R > 3000 THEN 290
210 IF I < 0 THEN 310
220 IF I > B + R THEN 310
230 IF C < l THEN 330
2 4 0 IF C > l 0 THEN 3 3 0
245 PRINT CHR$ (4);"WRITE INV"
250 PRINT P;", " ;B;",";R ;"," ;I;",";C
255 PRINT CHR$ (4)
260 GOTO 120
270 PRINT "ERROR IN BEGINNING UNITS-RETYPE"
280 COTO 120
290 PRINT "ERROR IN UNITS RECEIVED - RETYPE"
300 GOTO 120
310 PRINT "ERROR I N UNITS ISSUED-RETYPE"
320 GOTO 120
330 PRINT " ERROR IN COST - RETYPE"
340 GOTO 120
350 PRINT CHR$ (4); " CLOSE INV"
360 STOP
63999 END

]RUN
TYPE PART NUMBER , BEGINNING UNITS , UNITS RECEIVED , UNITS ISSUED

AND COST , WITH COMMAS IN BETWEEN
WHEN FINISHED TYPE l,l,l,l,99
?101,120,40 , 45,5 . 00
TYPE PART NUMBER , BEGINNING UNITS, UNITS RECEIVED , UNITS ISSUED

AND COST, WITH COMMAS IN BETWEEN
WHEN FINISHED TYPE l, l ,l ,l ,9 9
?210, 20 ,70,1 00 , 7 . 00
ERROR IN UN ITS ISSUED-RETYPE
TYPE PART NUMBER , BEGINN I NG UNITS , UNITS RECEIVED , UNITS ISS UED

AND COST , WITH COMMAS IN BETWEEN
WHEN FI~ISHED TYPE l,l , l,l , 99
?219,60 , 60,80 , 3 . 25

74 I Sequential Flies

TYPE PART NUMBER, BEGINNING UN ITS , UN ITS RECE I VED , UNITS ISSUED
AND COST, WI TH COMMAS IN BETWEEN

WHEN FINISHED TYPE l,l,l,1,99
?226,5,110 ,90,2 . 95
TYPE PART NUMBER , BEGINNING UNI TS, UNITS RECE I VED , UNITS ISSUED

AND COST, WITH COMMAS IN BETWEEN
WHEN FINISHED TYP E l,l,l,1,99
?235,100,0,50,6.20
TYPE PART NUMBER, BEGINNING UNITS, UNITS RECE IVED, UNI TS ISSUED

AND COST, WITH COMMAS I N BETWEEN
WHEN FINISHED TYPE l,l,l,1,99
?3 47,0,50,20,4.60
TY~E PART NUMBER, BEGINNING UNITS, UNITS RECEIVED, UNITS ISSUED

AND COST, WITH COMMAS IN BETWEEN
WHEN FINI SHED TYPE l,l,l,1,99
?l,1,1,1,99

BREAK IN 360

Exercises Account Balance Exercise: Set up a customer statement file ("CUST")
with six records that contains the data specified below.

Problem Summary

Input
Customer Customer
Number Name Balance Payments Charges

2741 Fernwood 120 120 40
29.37 Blakey 0 0 90
3246 Grey 250 130 170
3359 Phillips 90 40 100
3426 Bird 180 180 200
3527 Lombard 100 100 250

Processing
Take data from keyboard and place it in a file named "CUST'.

Output
Instructions for data entry and a file named "CUST'.

Setting up a Rle I 75

Sales C o mmission Exercise : Set up a sales file called "SALES" that con
tains seven records with the data specified below.

Problem Summary

Input
•

Sales Gross Commission
Territory Salesman Sales Rate

I Bill $12,050 .05
I Joe 5,270 .045
2 Tom 6,940 .04
2 Phil 11 ,200 .055
3 Clyde 7,340 .04
3 Harry 9,460 .045
3 Bob 14,690 .05

Processing
Take data from keyboard and place it in a file named "SALES".

Output
Instructions for da ta entry and a file named "SALES".

76 I Sequent ial Files

READING A
FILE

In the previous section, you learned how to set up a computer file. To know
what is in a computer file, it is necessary to write a program. The program
will read a file and print its contents.

T he processing for this program consists of reading a file, record by re
cord, and then printing the records. The program continues reading and
printing records until there are no more records in the fi le.

A program to do that is shown below:

10 REM THIS PROGRAM READS AND PRINTS THE EMPLOY FILE
100 PRINT CHR$ (4); " 0PEN EMPLOY "
10 5 PR I NT CHR$ (4); " READ EMPLOY"
110 IN PUT N,D,N$,H,R,V
11 5 PRINT CHR$ (4)
1 20 PRINT N,D,N$,H, R,V
130 GOTO 105
250 PRINT CHR $ (4); " CLOSE EMPLOY "
500 STOP
63999 END

Reading a Rle I 77

This program contains one new instruction:

105 PRINT CHR$(4); "READ EMPLOY"

This instruction has the same form as the fi le write instruction. This instruc
tion is used with an INPUT statement (line 110) to read from a file. The
sequence of file commands is the same as when we wrote on the file.

l 0 l
103
l 04
l 08
l 7 2
198
202
206
255
2 81
313
347
368
422

END

To write a file

100 PRINT CHR$(4); "OPEN EMPLOY"
265 PRINT CHR$(4); "WRITE EMPLOY"
270 PRINTN; ","; D; ","; N$; ","; H; ","; R; ","; V
275 PRINT CHR$(4)
400 PRINT CHR$(4); "CLOSE EMPLOY"

To read a file

100 PRINT CHR$(4); "OPEN EMPLOY"
105 PRINT CHR$(4); "READ EMPLOY"
110 INPUT N,D,N$,H,R,V
115 PRINT CHR$(4)
250 PRINT CHR$(4); "CLOSE EMPLOY"

When we run this program, the content of the file is printed:

1 ADAMS 5
12 BAKER 5. 6
l 7 BRAVO 4
16 COHEN 6. 2 5
2 JOHNSON 3. 7 5
1 TANNER 4.25
l 6 WILSON 4
7 LESTER 5 . 25
l 2 SCHMIDT 5.6
12 MILLER 6
7 SMIT H 4.25
1 2 GRAY 6
1 WEAVER 3.5

WILLIAMS 4

OF DATA

40
40
40
38
40
36
40
40
40
40
40
38
40
40

BREAK IN l 10

You 'II note that, at the end of the file, a message is printed stating that
the end of data has been reached at line 110.

To eliminate the error message, some more new statements are needed.
We need to specify what to do in case of error. And we need to identify what
error has occurred. Adding the following five statements to the program will
remove the "end of data" message.

Sequence of File
Commands

0
4
2
0
0
0
0
0
4
0
4
0
2
0

78 I Sequential Ries

20 ONERR GO TO 200
200 REM ***ERROR CHECKING ROUTINE
210 Y=PEEK(222)
215 IF Y=5 THEN 250
220 PRINT "UNUSUAL ERROR CONDITION",Y

This segment contains two new statements. Line 20 tells the computer
where to go if an error crops up. And line 210 checks which error has oc
curred. PEEK(222) is a BASIC instruction that tells us the error number of
the error condition that has occurred. If the error number is 5 (IF Y=5) then
the error condition is caused by an attempt to read beyond the end of the
file. (A listing of all error numbers and their messages is Appendix C.) If the
error is error number 5, then processing resumes with line 250, otherwise
" UNUSUAL ERROR CONDITION" is printed.

Below you have a listing of the program and its output.

10 REM THIS PROGRAM READS AND PRINTS THE EMPLOY FILE
20 ONERR GOTO 200
100 PRINT CHR$ (4); "OPEN EMPLOY"
105 PRINT CHR $ (4); "READ EMPLOY"
110 INPUT N,D,N$,H,R,V
115 PRINT CHR$ (4)
120 PRINT N,D,N$,H,R,V
130 GOTO 105
2 00 REM ***ERROR CHECKING ROUTINE
210 Y = ~EEK (222)
215 IF Y = 5 THEN 250
218 PRINT CHR$ (4)
220 PRINT "UNUSUAL ERROR CONDITION",Y
250 PRINT CHR$ (4) ;"CLOSE EMPLOY"
500 STOP
63999 END

] RUN
101 1 Al1AMS
103 12 BAKER
104 17 BRAVO
108 16 COHEN
172 2 JOHNSON
198 1 TANNER
202 16 WILSON
206 7 LESTER
255 12 SCHMIDT
28 1 12 MILLER
313 7 SMITH
34 7 12 GRAY
368 1 WEAVEH
422 1 WILLIAMS

BREAK I N 500

5 40
5 .6 40
4 40
6 . 25 38
3.75 40
4.2 5 36
4 40
5 . 25 40
5.6 40
6 40
4.25 40
6 38
3.5 40
4 40

0
4
2
0
0
0
0
0
4
0
4
0
2
0

Reading a Ale / 79

Inventory Example: Read the file " INV" and print each record in that file.

10 REM THIS PROGRAM READS THE INV FILE AND PRINTS IT
20 ONERR GOTO 200
100 PRINT CHR$ (4);"0PEN INV"
105 PRINT CHR$ (4); " READ INV"
11 0 INPUT P,B,R,I,C
115 PRINT CHR$ (4)
120 PRINT P,B,R,I,C
130 GOTO 105
200 REM ***ERROR CHECKING ROUTINE
210 Y = PEEK (222)
215 IF Y = 5 THEN 250
218 PRINT CHR$ (4)
220 PRINT "UNUSUAL ERROR CONDITION",Y
250 PRINT CHR$ (4);"CLOSE INV"
500 STOP
63999 END

) RUN
1 01 120 40
219 60 60
226 5 llO
235 100 0
347 0 50

BREAK IN 500

45
80
90
50
20

Account Balance Exercise: Read the customer statement file "CUST" and
print each record.

Example

5
3.25
2 . 95
6.2
4.6

Exerc ises

80 I Sequential Fi les

FINDING A
RECORD IN

A FILE

•

Sales C ommissio n Exercise : Read the sales file " SALES" and print each
record.

A fi le of data is created for some purpose. Files are not created to be placed
on a shelf in the corner to collect dust. Files are used to hold data until there
is a need for it. When there is a need for data, we must be able to go to a file
and pull data, with the desired characteristics, out of the file.

Suppose that Smith, employee number 31 3, wanted to know how many
hours of overtime he had worked. Smith is one of the people in the fi le "EM
PLOY". To answer his question, we need to write a program that will locate
his record and print it out. But to locate his record in a sequential fi le, all
preceding records will have to be read .

Problem Summary

Input
The fi le " EMPLOY" with each record having six fields:

Finding a Record in a File I 81

• Employee identification number
• Department number
• Employee name
• Hourly rate
• Regular hours worked
• Overtime hours worked

Processing
Search the file until the record with employee number 313 is found.
Print that record and stop.

Output
If the search is successful, the desired record is printed. If the search is
not successful (the record is not in the file) then a "RECORD NOT
FOUN D" message is printed.

The logic of the program for finding a record in a sequential file is:

I. Link to the file.

2. Read a record.

3. If it is the record we want, then print it; otherwise, read the next record.

4. Stop when the search is finished.

A flowchart (Fig. 4-2) and program to do these tasks are shown below:

10 REM PROGRAM TO FIND AN EMP LOYEE RECORD
1 5 D$ = CHR$ (4)
11 0 PRI NT D$;"0PEN EMPLOY "
120 ONERR GOTO 230
1 25 PRINT D$; " READ EMPLOY "
130 I NPUT N, D, N$, H, R, V
135 PR I NT D$
140 I F N = 313 THEN 170
150 GOTO 125
160 REM PR INT THE RECORD FOUND
1 70 PRINT 11 EMPLOYEE ", II EMPLOYEE"' " HOURLY"' II REGULAR"' "OVERTIME"
1 80 PRll"T " NUMBER","NAME"," RATE ","HOURS ","HOURS "
190 PRINT N, N$,H, R,V
200 PRINT 0$; " CLOSE EMPLOY "
2 1 0 STOP
220 REM ERROR CHECK I NG ROUTINE
230 Y = PEEK (222)
235 I F Y = 5 THEN 280
240 PR I NT " UNUSUAL ERROR CONDITION", Y
250 PRINT 0$; "CLOSE EMPLOY "
260 STOP
270 RE~ RECORD NOT IN FILE

82 I Sequential Files

2 80 PRINT "END OF DATA - RECORD NOT FOUND "
290 PRINT D$; " CLOSE EMPLOY "
300 STOP
6 3999 END

RUN
EMPLOYEE
NUMBER
313

BREAK IN 21 0

Figure 4-2

NO

EMPLOYEE
NAME
SMITH

Start

Open
File

Read a
Record

Print the
Record with

Headings

Terminate

HOURLY
RATE
4 . 25

Print

REGULAR
HOURS
40

NO

" END OF DATA"
Message

Term inate

Flowchart of Finding a Record

OVERTI ME
HOURS
4

Print Error
Message

Termina te

Finding a Record In a Rle I 83

In this program all of the file commands start with PRINT 0$ rather
than PRINT CHR$(4). In line 15 0$=CHR$(4), we have defined an alpha
betic field 0$ to consist of CHR$(4). When the PRINT D$ is encountered
after line 15 in the program, the D$ is interpreted as CHR$(4). This is sim
ply a method of reducing the amount of typing you have to do for file
instructions. If you eliminate line 15 from the program and replace 0$ with
CHR$(4), the program will run exactly the same.

The key to the search program lies in statement 140. Here the employee
number of the record that was read from the file is compared to 313, Smith's
employee number. If there is a match (i.e., the value of N, the employee
number, is 313), then we know that the desired record has been found and
can be printed in lines 170- 190. Or, if the employee number is not 313, the
next record in the file is read and the check for a match is repeated.

But notice that we also need to consider the possibility that Smith is not
in the file. Maybe he was on vacation or sick leave and did not work that
week. Or maybe his time card was lost and not entered into the file. Hence,
we must include instructions telling the computer what to do if the end of
file is reached. The ONERR condition in line 120 and the statements follow
ing line 220 take care of that possibility.

No matter the result, whether the desired record is found, or the desired
record is not in the file, or the program "bombs" (fails), the file must be
closed and the program must be terminated.

We have repeated this same logic in the next example. Look it over, and
try the exercises that follow.

Inventory Example: Read the file " INV", find and print out the record for
part number 235 with suitable headings.

100 REM TO FIND INVENTORY RECORD
105 D$ = CHR$ (4)
110 PRINT D$;"0PEN INV"
120 ONERR GOTO 230
130 PRINT D$;"READ INV"
135 INPUT P,B,R,I,C
140 IF P = 235 THEN 170
150 GOTO 13 5
1 6 0 REM PRINT THE RECORD FO UN D
170 PR INT D$
17 2 PRINT "P ART NUMBER","BEG . UNIT S " , "UNITS RE C."
175 PRINT P,B,R
177 PRINT
17 8 PRINT
180 PRINT " UNITS ISSUED ","CO ST "
1 85 PRINT I,C
19 0 PRINT
200 PRINT D$;"CLOSE INV"
205 PRINT
206 PRINT

Example

84 I Sequential Files

Exercises

210 STOP
220 REM ERROR CHECKING ROUTINE
230 Y = PEEK (222)
235 IF Y = 5 THEN 280
240 PRINT "UNUS UAL ERROR ",Y
250 PRINT D$;"CLOSE INV"
260 STOP
270 REM RECORD NOT IN FILE
280 PRINT "END OF DATA - RECORD NOT FOUND"
290 PRINT D$;"CLOSE INV"
300 STOP
6 J 9 9 <l r. ~m

)RUN
PART NUMBER
235

BEG . UNITS
100

UNITS ISSUED COST
50 6 . 2

BREAK IN 210

UNITS REC.
0

Account Balance Exercise: Read the customer statement file "CUST",
find and print out the record fo r customer number 2741 with suitable
headings.

Finding a Record in a File I 85

Sales Commission Exercise: Read the sales file, "SALES", find and print
out the record for salesman Clyde with suitable headings.

86 I Sequential Files

CORRECTING
RECORDS IN

A FILE

Once a file has been created it is good practice to check it by writing a pro
gram that reads and prints the file. Then you can look at what is in the file to
see that all records have been entered correctly. Although the range checks
will catch some errors in data entry, they do not catch errors if the incorrect
value entered is with.in the range specified. These errors can be caught by
comparing the records in a file with what the data should have been. To cor
rect them, a program has to be written.

Assume that the "EMPLOY" file had an error: for some reason the reg
ular hours for Gray, employee number 347, was entered as 38 when it should
have been 40. A program to correct that error is shown below:

10 REM PROGRAM TO CORRECT THE HOURS WORKED FOR GRAY
12 REM
15 D$ = CHR$ (4)
120 REM LINK TO FILES
130 REM
140 PRINT D$;"0PEN EMPLOY"
150 PRINT D$;"0PEN EMPLCR"
160 REM
170 REM READ THE RECORDS FROM EMPLOY
180 REM
190 ONERR GOTO 380
2 0 0 PRINT D$; "READ EMPLOY"
20 5 I NPUT N,D,N$,H,R,V
210 REM
220 REM DETERMINE WHETHER ITS THE RECORD FOR GRAY
230 REM

Correcting Records in a File I 87

240 IF N < > 347 THEN 330
250 REM
260 REM IT IS THE RECORD FOR GRAY, EMPLOYEE NUMBER 347,
270 REM THEREFORE ASSIGN THE CORRECT HOURS WORKED
280 REM
290 R = 40
300 REM
310 REM PUT RECORD INTO EMPLCR -- THE CORRECT FILE
320 REM
330 PRINT D$;"WRITE EMPLCR"
335 PRINT N;",";D;",";N$;",";H;",";R;",";V
340 GOTO 200
350 REM
360 REM *** ERROR CHECKING ROUTINE ***
370 REM
380 Y = PEEK (222)
382 IF Y = 5 THEN 410
385 PRINT 0$
390 PRINT "UNUSUAL ERROR",Y
400 STOP
410 PRINT D$;"CLOSE EMPLOY"
420 PRINT D$;"CLOSE EMPLCR"
430 STOP
63999 n:n

] RUN

BREAK IN 430

If you now change the program that prints the "EMPLOY" file in lines
100, 105 and 250 to

100 PRINT 0$; "OPEN EMPLCR"
105 PRINT D$; "READ EMPLCR"
250 PRINT D$; "CLOSE EMPLCR"

and run it, you can list the "EMPLCR" file as follows:

101 1 AOAMS 5 40
103 12 BAKER 5 . 6 40
104 17 BRAVO 4 40
108 16 COHEN 6 . 25 38
172 7. .lOHNSON 3 . 75 40
198 l TANNER 4.25 36
202 1 6 ,JI J, SQN 4 40
206 7 LESTER 5 . 2 5 40
255 12 SCHM IOT 5 . 6 40
281 12 'I ILLER 6 40
313 7 S'1ITH 4.25 40
347 12 GRAY 6 40
368 l \-IE/\VER 3 . 5 40
422 l WILLIAMS 4 40

ENll OF' DAT/\

BREAK IN 110

0
4
2
0
0
0
0
0
4
0
4
0
2
0

88 I Sequentia l Files

Figure 4-3

The logic for this program is illustrated in Fig. 4-3 (below). This
program is designed to find a specific record, employee number 347, and to
change the value of the regular hours in that record. When you look at the
program two differences from earlier programs emerge:

I. Two files are opened.

2. A LET seems to be missing in line 290.

Start

Open
Files

Read a Record
from EM PLOY

Make Correction
in Record

Wri te Record
into EMPLCR

Y ES

NO

Terminate

Flowchart for Correcting Records in a Fi le

Correcting Records in a File I 89

The program runs despite the apparent error in line 290. It runs because
the LET is optional. Many computer systems permit you to assign values to
a field without the keyword LET. A few systems do not. In Apple BASIC,
the LET is optional. Since the LET is optional, you do not have to use it,
and by this omission you can save time, and energy, not to mention the
added possibility of making typographical errors. In all subsequent pro
grams we have omitted the LET.

Two files are necessary because sequential files can only be used for in
put to the program or for output from the program, but not both. Therefore
to correct an error, we need to read the old file and place the correct data in
a new fi le.

In this program, lines 140 and 150 open the two files. You can open up
to 16 files in a program, but each file must be unique (a filename should
appear only once). At the end, both files are closed.

The logic of this program takes a record from "EMPLOY". Line 240
checks whether it is the record with an error. If it is, the error is corrected;
the statement in line 290 assigns the correct value to R thereby erasing the
old, incorrect value of R. And correct records are written into "EMPLCR".
The process continues until all records have been read from "EMPLOY"
and written into "EMPLCR".

You may notice that a statement seems to be missing. After line 335 we
do not have a line with PRINT 0 $. It is not needed in this program because
nothing is expected to be printed on the screen. However, line 385 PRI NT
D$ appears in the program so that if "UNUSUAL ERROR" has to be writ
ten on the screen, it will do so. If line 385 was omitted and the error was not
number 5, the error message would be written on the file rather than the
screen and you would not know the unusual error occurred.

After this program has been run, both files will appear in your catalog
" EM PLOY" wi th its error, and "EMPLCR" with only correct records. In
effect we have copied the "EMPLOY" file.

A more general error correction program is the next example.

Inventory Example: It has been discovered that when the file " INV" was
initially created, two er rors were made. The unjts received for part number
2 19 should have been 160 instead of 60; and the beginning uni ts for part
number 235 should have been 90 instead of JOO. These records must be cor
rected. Part numbers to be corrected should be entered in ascending order.

Problem Summary

Input
The file "INV" where each record has five fields:
• Part number
• Beginning units
• Units received

Example

90 I Sequential Flies

• Units issued
• Unit cost

Correct field values for erroneous records.
Processing

Get the identification number for incorrect records from the terminal.
Search the file until the desired record has been found. Get correct data
for incorrect records from the terminal. Place correct records into file
"INV CR".

Output

100
110
115
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
295
300
310
320
330
340
350
360
370
380
385
390
400

Instructions for data entry and the file " INVCR" with correct inventory
records.

REM
REM

0$ =
REM
REM
PRINT
PRINT
REM
REM
REM

THIS PROGRAM CORRECTS ERRORS IN THE INV FILE

CHR$ (4)
LINK TO FILES

0$; "OPEN INV"
0$; "OPEN INVCR"

GET PART NUMBER OF RECORD TO BE CORRECTED

PRINT "TYPE PART NUMBER OF RECORD TO BE CORRECTED"
PRINT "WHEN FINISHED -- TYPE 99"
INPUT N
REM
REM CHECK IF ERROR CORRECTIONS ARE FINISHED
REM
IF N = 99 THEN 550
REM
REM
REM
PRINT
INPUT
ONE RR
REM

GET A RECORD FROM INV

0$; "READ INV"
p I B I Rl I R2 I c

GOTO 610

REM CHECK IF THE RECORD NEEDS TO BE CORRECTED
REM
IF P = N THEN 420
REM
REM WRITE A RECORD INTO THE INVCR FILE
REM
PRINT D$; "WRITE INVCR"
PRINT P; ","; B; ",";Rl;" ,";R2;",";C
GOTO 290
REM

Correcting Records In a Ale I 91

410 REM
420 PRINT D$
425 PRINT "FOR PART NUMBER ";P
430 PRINT "ENTER BEGINNING UNITS, UNITS RECEIVED"
440 PRINT "UNITS ISSUED AND COST"
450 INPUT B,Rl,R2,C
460 PRINT D$;"WRITE INVCR"
465 PRINT P;",";B;",";Rl;",";R2;",";C
468 PRINT D$
470 REM
480 REM GET PART NUMBER FOR NEXT RECORD TO BE CORRECTED
490 REM
500 GOTO 190
510 REM
520 REM CORRECTIONS FINISHED, COPY REMAINING RECORDS
530 REM FROM INV TO INVCR
540 REM
550 PRINT D$;"READ INV"
555 INPUT P,B,Rl,R2,C
560 PRINT D$;"WRITE INVCR"
565 PRINT P;",";B;",";Rl;",";R2;",";C
570 GOTO 550
580 REM
590 REM ERROR CHECKING ROUTINE
600 REM
610 PRINT D$
615 Y = PEEK (222)
618 IF Y = 5 THEN 670
620 PRINT "UNUSUAL ERROR", Y
630 STOP
640 REM
650 REM TERMINATE
660 REM
670 PRINT D$;"CLOSE INV"
680 PRINT D$;"CLOSE INVCR"
690 STOP
63999 F.ND

TYPE PART NUMBER OF RECORD TO BE CORRECTED
WHEN FINISHED -- TYPE 99
?219
FOR PART NUMBER 219
ENTER BEGINNING UNITS, UNITS RECEIVED
UNITS ISSUED AND COST
?60,160,80,3.25
TYPE PART NUMBER OF RECORD TO BE CORRECTED
WHEN FINISHED -- TYPE 99
?235
FOR PART NUMBER 235
ENTER BEGINNING UNITS, UNITS RECEIVED

92 I Sequential Ries

101
219
226
235
347

BREAf(IN 50 0

COPYING
A FILE

UNITS ISSUED AND
?90,0,50 ,6.20
TYPE PART NUMBER
WHEN FINISHED
?99

COST

OF RECORD TO BE CORRECTED
TYPE 99

BREAK IN 690

If the old program to list the "INV" file is changed as follows:

100 PRINT 0$; "OPEN INVCR"
105 PRINT 0$; "READ INVCR"
250 PRINT 0$; "CLOSE INVCR"

and run, the "INVCR" file is printed as follows:

120 40 45 5
60 160 80 3.25
5 110 90 2.9 5
90 0 50 6. 2
0 50 20 4. 6

This program can correct any number of erroneous records. No matter
which records are wrong or which fields have false values, the program can
correct them. However, the operator must know in which records the errors
have occurred and what the correct field values are. Both items have to be
entered by the operator from the terminal.

The program finds a record specified by the operator by searching
through the file. As it searches, records that have a lower identification
number are placed in the new file. When the record to be corrected has been
found, the operator is instructed to enter the data for that record. The data
received from the terminal is then placed into the new file. This cycle is re
peated until there are no more records to be corrected. At that time any
records still remaining in the old file are copied into the new file.

At times it is necessary to make a copy of a file for back up. Then if the first
file is accidentally destroyed the copy can be retrieved and used. In the pre
vious section, where errors in records were corrected, a revised version of a
fi le was created.

The general approach to error corrections is also appropriate to copying
a fi le:
• Link to the desired files
• Read data from one file
• Write the data into the other file
• When no more data remains in the first file, then close both files and

terminate.

These steps are included in both examples and in both exercises of the
previous section. They are particularly obvious in lines 550-570 of the last
program (page 9 I) where the records remaining in file " INV" are copied to
fi le " INVCR" .

This chapter introduces you to sequential tiles. Sequential files are very eco
nomical when large volumes of data have to be processed. You have seen
how to set up files and how to enter data into a file. Next the da ta file was
read and printed. Finding a record in a file is an elementary operation that
has uses in many applications. In this chapter finding a record was used to
correct erroneous data. The chapter concluded by pointing out that error
correction has to copy a file. Copying a file is necessary in error correction
because sequential files should only be read or written, not both.

BASIC Instructions Introduced:

Statement

PRINT CHR$(4); "OPEN filename"

PRINT CHR$(4); " READ filename"
INPUT field name 1, fieldname2, etc.
PRINT CHR$(4)

PRINT CHR$(4); "WRITE fi lename"
PRINT field name I;" ,"; fieldname2;","; etc.
PRINT CHR$(4)

PRINT CHR$(4); "CLOSE filename"

ONERR GO TO line number

Y=PEEK(222)
IF Y=N THEN line number

Explanation

Opens the file identified by
the filename. The filename
can be from 1 to 30 charac
ters.

Reads a record from the
fi le. Records are speci fied
by their fieldnames.

Writes a record on the file.
The fields of the record will
be separated by ; ",";

Closes the file and stores it
on the diskette.

Tells the computer to go to
line number when an error
is encountered.

Tells the computer that if
the error encountered is N,
then processing should re
sume at the line number
given. PEEK (222) gives the
error number.

Summary I 93

SUMMARY

94 I Sequential Ries

PROBLEMS l. Set up a file called "XKl" and enter the following data:

l .D. Number Time I Time 2

101 40 0
103 40 4
104 40 2
108 38 0
172 40 0
198 36 0
202 40 0
28 1 40 0
347 38 0
422 40 0

2. Print out the contents of file XKl.

3. Write a simple program that will set up a file "TOP" with the input data
(below) and print out the file.

/ .D. Name

247 Farnsworth
262 Lowell
264 Fergerson
275 Fong

4. Read the sales file, "SALES". Find and print out the record for sales
man Joe with suitable headings.

5. Read the inventory file. Find and print out the records for part numbers
219 and 347 with suitable headings. The END OF DATA-RECORD
NOT FOUND message will be printed.

6. Read the "XKJ" file from Problem 1, above. Find and print out the re
cord for I.D. number 172 with suitable headi ngs.

For problems 7- 10 below, write an additional program to read and print the
file:

7. Write a program that will read the customer statement fi le "CUST" and
place that data in a new file "CUSTI" so that you have two files with
exactly the same data. Verify by printing "CUSTI ".

8. Write a program that will read the customer statement file "CUST" and
place only customer data that have customer numbers from 3000 to
4000 into a new file "CUST2". Verify by printing "CUST2".

9. Write a program that will read the sales commission file "SALES" and
place the name and gross sales data into a new file "SALE I". However,
the company has instituted a new sales policy so that the commission
rate for all salesmen will be 6%. Verify by printing "SALES 1 ".

10. Write a program that will read the payroll file "EMPLOY" and place
the following data fields into a new file "EMPLI" : Employee number,
department number, name, hourly rate.

Problems I 95

5 I Writing Reports from Sequential
Files

97

How to Accumulate Tota ls I 99

At the end of this chapter you should be able to:

• Calculate totals and subtotals for a file
• Produce reports that are clear and legible

Data i·s the lifeblood of a business. Without data, a business could not oper
ate. For example, customer orders tell a firm what items to ship to a cus
tomer. They also tell a business who to bill and how much the customer
owes the business. Data, such as customer orders, direct the operations of a
business.

There are many other items of data that have the same characteristic, i.e.
they support business operations. Production orders, inventory transactions,
vendor invoices, time cards, and the like all serve to direct the activities of
the firm.

But data is also used to support management decision making. From a
management perspective, it is not enough to know that one customer has or
dered one item. For decision making it is necessary to keep track of all cus
tomers. It is necessary to look at inventories as a whole. It is necessary to
judge and evaluate all products. It is necessary to plan and control the oper
ations of the firm as a whole.

Data to support management decisions has to be collected and pro
cessed. The processed data has to be presented to management as informa
tion in a report that will help management keep track of the activities of a
firm. For example, a customer report allows management to determine their
besi customers. A product-line sales summary woulq te!J management which
products are selling well and which products are selling poorly.

This chapter shows you how sequential files are processed to produce
reports. It will show you how to accumulate totals for the whole fi le and how
to calculate subtotals for parts of the file. And it will show you how to use
additional PRINT capabilities to make your reports neat and orderly.

In order to understand the programming involved in accumulating totals,
the following example illustrates what is required.

Problem Summary

Input
"EMPLOY" file

Processing
Accumulate the total number of regular hours worked for all employees.

Output
Total regular hours worked with an appropriate heading.

See the flowchart (Fig. 5- 1) and program to do this on the next page.

Performance
Objectives

HOW TO
ACCUMULATE

TOTALS

100 I Writing Reports from Sequential Files

10 REM PROGRAM TO TOTAL REGULAR HOURS WORKED FOR
11 REM ALL EMPLOYEES; Rl WILL BE THE ACCUMULATION
12 REM OF ALL REGULAR HOURS
15 0$ = CHR$ (4)
100 PRINT 0$;"0PEN EMPLOY"
110 Rl = 0
120 PRINT D$;"REAO EMPLOY"
125 INPUT N,O,N$,H,R,V
130 ONERR GOTO 160
140 Rl = Rl + R
150 GOTO 125
160 Y = PEEK (222)
162 PRINT 0$
165 IF Y = 5 THEN 190
175 PRINT "UNUSUAL ERROR CONOITION",Y
180 STOP
190 PRINT "TOTAL REGULAR HOURS ";Rl
200 PRINT D$; "CLOSE EMPLOY"
2 10 STOP
63 99') E ND

This program is very similar to the last payroll program with the excep
tion of lines 110 and 140.

110 RI = 0

Line 110 sets the value of RI to zero. This is called initializing an accumula
tion. Most computer systems will do this automa tically, however some sys
tems will not. Therefore it is worth the slight additional effort to put in an
ini tialization statement. The choice of the name, RI in this case, is up to the
programmer. Any name could be used provided it is not used to define any
o ther field. R 1 seems a reasonable choice since R is the name assigned to the
regular hours field.

140 RI= RI + R

This statement looks strange until you remember that the equal sign (=) is
no t an equal sign in algebraic terms. This statement looks the same as the
algebra statement a = a + b; however, it is di fferent. The equal sign in BA
SIC is an assignment. Line 140, if translated into English means take the
value that you found in field R, add its value to the current value of RI , and
assign the sum to RI. If we look at the fi rst four records in EMPLOY the
values of R are: 40 for Adams, 40 for Baker, 40 fo r Bravo, and 38 for Cohen.

When the computer executes line 110 it sets the value of RI to 0, at line
120 the value of R for Adams is 40. At line 140 the values to the right of the
equal sign are 0 and 40 which sum to 40. The value 40 is now assigned to
RI ; after line 140 has been executed, RI has the new value of 40. The pro
gram then directs that the next record be input (Baker). Again a t 120 the
value of R for Baker is 40. In line 140 RI is 40 and R is 40. When they are

How to Accumulate Totals I 101

Start

Open File

Set Up Total

Read a Record

Add Hours Worked
for

Employee to Total

YES Close
File

Print
Total

Terminate

Flowchart for Accumulating Totals

summed, the new value of R 1 is 40 + 40 which is 80. The program directs
tha t the next record be input (Bravo). At line 120 the value of R for Bravo is
40. At line 140, RI is now 80 and R is 40. These values are sununed and the
new value of RI is assigned as 120. The next record is input (Cohen). The
value of R is 38, RI is 120. The new value of R I is assigned as 158.

This process repeats until the end of the file is reached and Y=5 is detected.
Then the file is closed and the following output is produced:

TOTAL REGULAR HOUR? 552

BREAK IN 210

As a second example, let us increase the number of totals. For this case,
we want to calculate the total hours worked (both regular and overtime) and
the total wages earned by everyone. The "EMPLOY" fi le will again be used.

Figure 5-1

102 / Writing Reports from Sequential Files

Now, we need to add the regular and overtime hours worked by each em
ployee to get their totals, also we need to add the wages earned by each em
ployee to get the total wages earned.

Problem Summary

Input
"EMPLOY" file

Processing
Accumulate regular hours worked, overtime hours worked, and wages
earned by each employee to get totals.

Output
Totals for regular hours worked, overtime hours worked, and wages
earned with appropriate headings.

The program therefore has to:

1. Link to the " EMPLOY" file.

2. Set up fields for the totals.

3. Read the records in the file.

4. Accumulate totals.

5. Print the totals with appropriate headings.

The program to perform these steps is shown below:

10 REM THIS PROGRAM ACCUMULATES TOTALS FOR REGULAR HOURS
11 REM OVERTIME HOURS AND TOTAL WAGES EARNED IN THE EMPLOY FILE
15 D$ = CHR$ (4)
100 PRINT D$; "OPEN EMPLOY"
120 Rl 0
130 Vl = 0
140 Wl = 0
150 PRINT D$; "READ EMPLOY"
155 INPUT N,D,N$,H,R,V
160 ONERR GOTO 220
170 Rl = Rl + R
180 Vl = Vl + V
190 Wl = Wl + H * R + 1.5 * H * V
200 GOTO 155
210 REM ERROR CHECKING ROUTINE
220 PRINT D$
225 Y = PEEK (222)
230 IF Y = 5 THEN 250
235 PRINT "UNUSUAL ERROR CONDITION", Y
240 STOP

250 PRINT "TOTAL REGULAR HOURS WORKED ";Rl
260 PRINT "TOTAL OVERTIME HOURS WORKED ";Vl

How to Accumulate Totals I 103

270 PRINT "TOTAL WAGES EARNED BY ALL EMPLOYEES ";Wl
280 PRINT D$;"CLOSE EMPLOY"
290 STOP
63999 f.ND

] RUN
TOTAL REGULAR HOURS WORKED 552
TOTAL OVERTIME HOURS WORKED 16
TOTAL WAGES EARNED BY ALL EMPLOYEES 2771.7

BREAK IN 290

The first group of statements, lines I20, 130, and 140, sets the fields
called RI , VJ , and WI to zero. RI will be used to accumulate regular hours.
VI will be used to accumulate overtime hours. And WI is used, later in the
program, to accumulate the wages earned. Again, as in the preceding exam
ple, before you read a record, you have to initialize these fields to zero any
where before the loop.

The second group of statements performs the accumulation of totals. As
each record is read, the data from the record is added to the fields that are
used to hold the accumulation. Remember the = symbol is an assignment
symbol and not an equal sign! What line 170 tells the computer to do is:
Take the value that is currently in RI , add to this the value that is currently
in R, and place the sum back into RI.

A similar operation occurs in lines 180 and 190. In line 180, the current
contents of VI is added to the current contents of V; and the result is placed
into VI. In line 190, a somewhat more complicated procedure is involved:

First, the regular wages are computed when the hourly rate is multiplied
by the hours worked (H•R).

Next, the computer calculates overtime wages when it multiplies the
overtime hours (V) by one-and-a-half times the hourly rate (1.5•H).

Then, the regular wages and the overtime wages are added to the current
wage total (WI).

Finally, that sum is stored again in WI.

In this way, the wages of all employees are accumulated, but only one at
a time.

The third group of statements, in lines 250-270, prints what has been
accumulated in RI, VI, and WI, with appropriate headings, of course.

To further illuminate this process, here is another example. To highlight
how the accumulation procedure works, let's take a simple da ta file and gen
erate the totals of that file.

104 I Writing Reports from Sequential Files

Assume you have a file called "SALORD", that contains sales orders.
Further assume that each sales order has just two fields-order number and
dollar amount of order. The file of data could look like this:

Sales Order Number Dollar A mount of Sale

20473
20474
20475
20476
20477

1800.00
450.00
600.00
150.00
500.00

Of course, a real sales order would have many more fields. For example,
a sales order would have to identify the customer, the customer address, the
salesman who made the sale (for commission calculation if needed), where
to ship the items, who to bill for the sale, and so on. And obviously, a real

sales order file would contain many more records than the five that are
shown. For our simple example, this file will be adequate.

Now, what we need to do is write a program that will accumulate the
total dollar amount of sales, and then print out this total. But let's also print
the value of sales and the value for the total as we are accumulating.

A program to perform this task is given below:

100 REM PROGRAM TO TOTAL SALES ORDERS
105 D$ = CHR$ (4)
110 PRINT D$; "OPEN SALORD"
120 T = 0
130 PR I NT 0$; " READ SA LORD"
135 INPUT N, S
138 PRINT 0$
140 ONERR GOTO 180
150 T = T + S
160 PRINT " S="; S, " T=";T
170 GOTO 130
180 Y = PEEK (222)
185 IF Y = 5 THEN 210
190 PRINT "UNUSUAL ERROR CONDITION ",Y
200 STOP
210 PR I NT "THE TOTAL DOLLAR SALES ARE ";T
220 PR I NT D$;"CLOSE SALORO"
230 STOP
63999 El!D

If you now type RUN, the program will give the following output.

S=l800
S=450
S=600
S=l50
S =SOO
THE TOTAL

T=l800
T=2250
T=2850
T=3000
T=3500

DOLLAR SALES

BREAK IN 230

How to Accumulate Totals I 105

ARE 3500

Look again at the program. We'll go over the steps tha t it performs one
by one, and we' ll trace what happens to the fields labelled N, S, and T.

After opening the file, line 120 sets the field T to zero. So, picture a box
called T and put a zero into it.

Line 130 reads two values from the file and puts these values into N and S.
Thus:

N I 20473 I s 1800

Line 150 (we skipped 140 because it's not yet pertinent) then takes the
value of field T. Look at the box called T above. It contains a zero-right?
So, it takes the zero and adds to it the content of the box called S. S contains
1800. So, 1800 is added to zero and now T would look like:

T I 1800 I
In line 160, we print the contents of Sand T. And line 170 gets us back

to line 130. At line 130, the next set of values is placed into the fields N and
S:

N I 20474 I s I 4so

Line 140 then adds what is in T (the 1800) to the contents of S (the 450).
And the result (2250) is placed into the field T.

T = 2250

Line 160 outputs S and T before line 170 takes us back for another
cycle.

You can now repeat these steps on your own. Use the boxes below for
the third, fourth and fifth records.

ending

3rd starting T I 22so I N I s T
4th N I s T
5th NI s T

106 I Writing Reports from Sequential Ries

Example

Exercises

Note the pattern that is followed in accumulating a total. Start by set
ting a field to zero. Then, add one item at a time to that field until you are
out of data. When you next PRINT that field, the grand total is output.

Problem Summary

Input
"SALES" file

Processing
Accumulate the total sales commissions that must be paid to the sales
men.

Output
Total of all the commissions suitably labelled.

10 REM THIS PROGRAM ACCUMULATES IN Cl
11 REM THE TOTAL COMMISSION PAID TO ALL SALESMEN
12 REM IN THE FILE SALES
15 0$ = CHR$ (4)
100 PRINT D$;"0PEN SALES"
110 Cl = 0
120 PRINT D$;"READ SALES"
125 INPUT D,S$,S,C
130 ONERR GOTO 200
140 Cl = Cl + S * C
150 GOTO 125
180 REM ERROR CHECKING ROUTINE
200 Y = PEEK (222)
202 PRINT 0$
205 IF Y = 5 THEN 250
210 PRINT "UNUSUAL ERROR CONDITION",Y
230 STOP
250 PRINT "TOTAL COMMISSION PAID ";Cl
260 PRINT 0$; "CLOSE SALES"
270 STOP
63'J99 r:nn

RUN
TOTAL COMMISSION PAID 3187.05

BREAK IN 270

Inventory Value Exercise:

Problem Summary

Input
"INV" file

How to Accumulate Totals / 107

Processing
Accumulate the beginning uni ts, units received, and units issued; calcu
late the to tal inventory value at the beginning of the period.

Output
Totals for beginning units, units received, units issued, and beginning
inventory value, with appropriate headings.

108 I Writing Reports from Sequential Files

TOTAL BEGINNING UNITS 305
TOTAL UNITS RECEIVED 330
TOTAL UNITS ISSUED 385
TOTAL VALUE OF THE BEGINNING INVENTORY

Account Balance Exercise:

Input data
"CUST" file

Processsing

Problem Summary

1569.75

Accumulate balances, payments, charges, and new balances for the fi le.
Output

Totals for balances, payments, charges and new balances, with appro
priate headings.

How to Calculate Subtotals I 109

TOTAL BEGINNING BALANCES
TOTAL PAYMENTS
TOTAL CHARGES 850
TOTAL NEW BALANCES

BREAK IN 300

740
570

1020

In many cases, summaries of the fi le as a whole are too gross to make any
decisions. A more refined breakdown of the data is needed. But the detai l is
not at the individual record level. Instead of totals for the file as a whole or
detail at the individual record level, we need an intermediary categorization
of the data. Subtotals provide such intermediary categorizations.

Again, we look to the payroll problem for an illustrative example. Look
at the payroll data file. It contains values for employee number, department
number, employee name, etc. For our example, we need a summary of em
p loyee wages by department.

Departmental subtotals furnish an intermediary breakdown of the data.

HOW TO
CALCULATE
SUBTOTALS

110 I Writing Reports from Sequential Files

Table 5-1

They are not as aggregate as file totals, neither are they as detailed as the
earnings by individual employee. Instead, they fit someplace between the
employee level detail and the all encompassing aggregation of file totals.

But before subtotals can be calculated with sequential files, the data has
to be reorganized. Table 5-1 shows how the EMPLOY file would look once
it's been placed into department number sequence.

Employee File Sorted by Department Number

Employee Dept. Employee Hourly Regular Overtime
Number Number Name Rate Hours Hours

422 Williams $4.00 40 0
368 Weaver 3.50 40 2
198 Tanner 4.25 36 0
101 Adams 5.00 40 0
172 2 Johnson 3.75 40 0
313 7 Smith 4.25 40 4
206 7 Lester 5.25 40 0
347 12 Gray 6.00 38 0
281 12 Miller 6.00 40 0
255 12 Schmidt S.60 40 4
103 12 Baker 5.60 40 4
202 16 Wilson 4.00 40 0
108 16 Cohen 6.25 38 0
104 17 Bravo 4.00 40 2

The process used to order the data in a particular sequence is called
sorting. (Sorting is a complex subject, so we will not cover the logic of sort
ing a data file. Instead, Appendix B contains a sort program with instruc
tions on how to use it. We will indicate where a sort is needed, but sorting
itself is left to your discretion.)

Problem Summary

Input
"EMPLOY" fi le in department number sequence, which will be called
"EMPLDP".

Processing
Accumulate regular hours worked, overtime hours worked, and wages
earned by department and for the fi le as a whole.

Output
Subtotals and totals accumulated.

How to Calculate Subtotals I 111

The program will have to:

1. Link to the "EMPLDP" file.

2. Set up fields for subtotals and totals.

3. Read the records in the file.

4. Accumulate subtotals by department.

5. Print the subtotals.

6. Accumulate totals for the file.

7. Print the totals.

8. Terminate.

The flowchart for the program is shown in Figure 5- 2. A program to do
these steps is shown below.

10 REM PROGRAM TO ACCUMULATE SUB TOTALS FOR THE
11 REM PAYROLL PROBLEM AND TO ACCUMULATE TOTALS
12 REM OF THE SUBTOTALS
15 D$ = CHR$ (4)
1 30 PRINT D$; "0PEN EMPLDP"
140 Rl 0
150 Vl 0
160 Wl 0
170 R2 0
180 V2 0
190 W2 0
200 Dl 0
210 PRINT "DEPARTMENT" , "REGULAR","OVERTIME" ,"WAGES "
220 PRINT "NUMBER","HOURS","HOURS","EARNED"
230 PRINT"------"," "," " ,"------"
240 REM READ THE DATA IN THE FILE
250 PRINT D$;"READ EMPLDP "
255 I NPUT N,D,N$,H,R,V
260 ONERR GOTO 480
265 REM SET UP FOR FIRST DEPARTMENT
270 IF Dl > 0 THEN 280
275 Dl = D
280 IF Dl < D THEN 350
290 REM THEN DEPARTMENT THE SAME AS FOR THE PRE VIOUS RECORD
300 REM THEREFORE ACCUMULATE SU BTOTALS FOR THE DEPARTMENT
3 10 Rl Rl + R
320 Vl = Vl + V
330 Wl = Wl + H * R + 1 . 5 * H * V
331 REM READ THE NEXT RECORD
340 GOTO 250
341 REM PR I NT DEPARTMENT SUBTOTALS
350 PRINT D$
360 PRI NT Dl,Rl,Vl,Wl
361 REM ADD SUBTOTALS TO TOTALS
370 R2 = R2 + Rl

112 I Writing Reports from Sequential Files

380
390
400
410
420
430
440
450

V2 =
W2 =

REM
Rl
Vl =
Wl =

REM
Dl =

V2 +
W2 +

SET
0
0
0

SET
D

460 GOTO 310

Vl
Wl
SUBTOTALS TO ZERO FOR NEXT DEPARTMENT

DEPARTMENT TO CURRENT DEPARTM ENT

470 REM ERROR CHECKING ROUTINE
480 PRINT D$
485 Y = PEEK (222)
490 IF Y = 5 THEN 520
495 PRINT " UNUSUAL ERROR CONDITION",Y
500 STOP
510 REM PRINT SUBTOTALS FOR LAST DEPARTMENT
520 PRINT Dl,Rl,Vl,Wl
530 REM ADD SUBTOTALS FOR LAST DEPARTMENT TO TOTAL S
540 R2 R2 + Rl
550 V2 = V2 + Vl
560 W2 = W2 + Wl
570 REM PRINT THE TOTALS
5 80 PRINT "TOTAL", R2, v2·, W2
590 REM TERMINATE THE PROGRAM
600 PRINT D$;"CLOSE EMP.LDP"
610 STOP
63999 END

)RUN
DEPARTMENT REGULAR
NUMBER HOURS

1 156
2 40
7 80
12 15 8
16 78
1 7 40
TOTAL 55 2

BREAK IN 610

OVERTIME WAGES
HOURS EARNED

2 66 3. 5
0 150
4 405.5
8 9 8 3 . 2
0 397.5
2 172
16 2771.7

We can trace the logic of this program to see what it does. You'll note
the same elements that existed in the process of getting totals.

First, the fields that are used to hold the subtotals (as well as those for
the totals) are set to zero in lines 140-190. Next, they are used to accumulate
the running totals in lines 310-330. Then they are printed in line 360; used
in the accumulation of totals in lines 370-390; and set to zero for the accu
mulation of subtotals for the next department in lines 410-430.

As you can see, calculating subtotals is identical to the process used to

c

Start

Open File

Set Up Totals
and Subtotals

Print Headings

Read a Record

Accumulate
Departmental

Subtotals

Flowchart for Program DEPSUB

How to Calculate Subtotals I 113

A

Set
Department

Number

Figure 5-2

114 I Writing Reports from Sequential Files

Figure 5-2

Print
Subtotals

Accumulate
Totals

Clear
Subtotals

Reset Department
Number

Abnormal
Ending

Message

Stop

NO

Flowchart for Program DEPSUB (Cont'd.)

Print Subtotals
for Last Dept.

Add Sub totals
to Tota ls

Print
Totals

Termi nate

calculate totals. The key difficulty lies in determining when to start and
when to stop accumulating for one department.

How do we know we have finished with a department? Look at Table
5-1, the employee file sorted by department number. Cover up the table
(with a sheet of paper or your hand) except for the titles. Now look at the
first record. Move your sheet of paper down the table one record at a time
(because that is the way the computer does it-the computer sees the whole
file, but only one record at a time). And herein lies the clue for determining
the end of a department. We are finished with one department when we
arrive at the next department.

Try it again. Look at Table 5-1, one record at a time. Look only at the
department number. We start with department number I. Remember that
number. Look at the next record. It is still department 1. And the next one.
Still 1. Look at the fourth record. Department number is 1. Read the next
record. The department number is no longer one. Therefore, we know that
we are finished with department one.

How to Calculate Subtotals I 115

Now let's look at the program. The process that you have just gone
through is in lines 255, 270, 275, 280, and 450. The statement in line 255
reads a record. Line 280 compares the department number of the record just
read with a prior department number. The prior department number is
defined in lines 270 and 275 for the fi rst record read, and it is set in line 450
after each department break. (A "break" in this context refers to the point
where a number changes from one value to another.)

So, Dl " remembers" the previous department number. And when in
line 280 a different department number (D) is encountered (D l not equal to
D) then the accumulated values in Rl, Vl, and Wl represent the subtotals
for the previous department. Hence, the logic flows to line 350 where the
subtotals are printed. Note the use of the PRINT D$ in line 350 to direct
printing to the screen or printer.

One more item needs to be mentioned: printing the last department. We
know we have finished accumulating the subtotals for the last department
when we run out of data. But at that point, while the accumulation is com
plete, the answer resides in the computer. To get it out, it has to be printed.
But a print different from line 360 has to be used. (If we did go to line 360,
then the end of data would be ignored.) Hence, the "GO TO 480" to check
on the error before printing the last set of subtotals.

Look over the inventory example and then try the exercises.

Inventory Example: In the "INV" file, assume that part numbers 100-199
belong to department one (1), numbers 200- 299 belong to department two
(2), and numbers 300- 399 belong to department three (3). Calculate the do~
lar value of the beginning and ending inventory for each department and
print these values as well as their grand totals. We want to write a program
that will calculate the departmental subtotals for the value of the beginning
and ending inventory values, as well as the grand totals.

Problem Summary

Input
"INV" file

Processing
Accumulate beginning and ending inventory dollar values by depart
ment for the file.

Output
Departmental subtotals and grand totals suitably labelled.

The steps in this program are the same as in the previous payroll program in
that the program will have to:

I . Link to the INV file.

Example

116 I Writing Reports from Sequential Files

2. Set up fields for subtotals and totals.

3. Read the records in the fi le.

4. Accumulate subtotals by department.

5. Print the subtotals.

6. Accumulate totals for the file.

7. Print the totals.

8. Terminate.

10 REM THIS PROGRAM ACCUMULATES SUBTOTALS FOR BEGINN I NG
11 REM AND ENDING INVENTORY VALUES BY DEPARTMENT
12 REM AND ACCUMULATES TOTALS FOR THE FILE
15 D$ = CHR$ (4)
100 PRINT D$; "0PEN INV"
110 Bl = 0
120 El = 0
130 B2 = 0
140 E2 = 0
145 Dl = 0
150 PRINT "DEPARTMENT","BEGINNING","ENDING "
160 PRINT "NUMBER","INVENTORY","INVENTORY"
170 PRINT "------","---------","---------"
180 REM READ I N DATA IN THE FILE
210 PRINT D$;"READ INV"
215 INPUT N,B,Rl,R2,C
218 PRINT D$
220 ONERR GOTO 430
225 N = I NT (N I 100)
2 30 IF Dl > 0 THEN 260
250 Dl = N
260 IF Dl < N THEN 330
270 REM DEPARTMENT NUMBER IS THE SAME AS THE PREVIOUS RECORD
280 RE~ THEREFORE ACCUMULATE THE TOTALS
290 Bl = Bl + B * C
300 El = El + B * C + Rl * C - R2 * C
305 REM READ THE NEXT RECORD
310 GOTO 210
320 REM PRINT DEPARTMENT SUBTOTALS
330 PRINT Dl, Bl,El
340 REM ADD THE SUBS TO THE TOTALS
350 E2 = E2 + El
360 B2 = B2 + Bl
370 REM SET SUBS TO ZERO FOR THE NEXT DEPARTMENT
380 Bl = 0
390 El = 0
400 REM SET Dl EQUAL TO THE NEXT DEPARTMENT NUMBER
410 Dl = N
420 GOTO 290
4 30 REM ERROR CHECKING ROUTINE

How to Calculate Subtotals I 117

440 Y = PEEK (222}
445 IF Y = 5 THEN 470
450 PRINT D$
455 PRINT "UNUSUAL ERROR",Y
460 STOP
470 REM END OF FILE REACHED -- PRINT SUBTOTALS FOR LAST DEPARTMENT
480 PRINT Dl , Bl,El
490 ~EM ADD SUBTOTALS FROM LAST DEPARTMENT TO TOTALS
500 E2 = E2 + El
510 B2 = B2 + Bl
520 REM PRINT TOTALS FOR FILE
530 PRINT "TOTAL BEGINNING AND ENDING INVENTORIES ";B2,E2
540 PRINT D$; "CLOSE INV"
63999 END

RUN
DEPARTMENT
NUMBER

1
2
3

BEGINNING
INVENTORY

600
829.75
0

ENDING
INVENTORY

575
513.75
138

TOTAL BEGINNING AND ENDING INVENTORIES 1429.75

The only difference in logic between this program and the previous pay
roll program is the test for a new department. Before, department numbers
were given in a field; in this example, the department number is determined
from the part number. The instruction in line 225 does this. The sta tement

N = INT(N/ IOO)

illustrates the use of a new type of BASIC statement. INT is called a func
tion. It makes an integer (whole number) out of what appears in parenthesis
after it, by dropping anything after the decimal point. For example, if we
had the number 2.73 appearing in the parenthesis after INT, that is, if we
had INT(2.73), the resulting value would be 2. In the particular case of the
expression in this program, when the first record is input, N is equal to IO I.
INT(N/100) divides the value IOI by 100, giving 1.01 , and the integer func
tion makes an integer (I) out of this value.

So DI has the value I. In this way all parts with values I00- 199 will be
accumulated. When the second record with part number 219 is input, at line
250 D 1 is equal to I so that we go to line 330 where departmental subtotals
(for one) are printed. Then in line 4 IO DI has the value of 2 and the program
continues to accumulate the subtotals for department two. Similarly, when
the last record with part number 347 is input, N in line 250 wi ll have the
value of 3. The department subtotals (for two) wi ll be printed and DI in line
410 will have the value 3. The subtotals for department 3 will be calcula ted

1226.75

11 8 I Writing Reports from Sequential Flies

Exercises

and the next record (EOF) read. Since there are no more records, the end of
file (Y = 5) occurs and the subtotals for department 3 as well as the grand
totals are printed .

Sales Commission Exercise:

Input
"SALES" file

Processing

Problem Summary

Accumulate sales and commissions by sales territory and for the file as a
whole.

Output
Territory subtotals and grand totals suitably labelled.

How to Calculate Subtotals I 119

(A ttach additional paper to complete your program.)

TERRITORY
NUMBER

l
2

TERRITORY
SALES

17320
18140

COMMISSIONS
PAID

839.65
893 .6

Account Balance Exercise: The department is indicated by the first digit
of the customer number.

Input
"CUST" file

Processing

Problem Summary

Accumulate initial balances and final balances by department and for
the file as a whole.

Output
Department subtotals and grand totals suitably labelled.

120 I Writing Reports from Sequential Flies

(Attach additional paper to complete your program.)

DEPARTMENT BEGINNING ENDING
NUMBER BALANCE BALANCE ------ ------- -------

2 120 130
3 620 8 90

TOTAL BEGINNING AND ENDING BALANCES 740 10 20

BREAK IN 510

Report Writing by Computer I 121

So far the output of all the programs has been labelled in a manner that
identifies it. The output of the programs up to now has been brief and satis
factory for programmer purposes. The output would be unsatisfactory for
management purposes because it is too brief and is not self-explanatory to a
manager. Managers do not read programs. It is important that the output be
self-explanatory with appropriate headings and follow generaJ business for
mats.

The output to the second payroll example consists of the following:

TOTAL REGULAR HOURS WORKED 552
TOTAL OVERTIME HOURS WORKED 16
TOTAL WAGES EARNED BY ALL EMPLOYEES

BREAK IN 290

2771.7

The program can be modified so that the function of the program can be
made clear in the output. The supporting data that resulted in that output
can aJso be printed. The report that we want to produce is usually called a
payroll report.

Problem Summary

Input
" EMPLOY" file

Processing
Accumulate regular hours, overtime hours, and wages for the company.

Output
An easily readable and understandable payroll report.

100 REM TH I S PROGRAM ACCUMUL ATES TOTALS FOR REGULAR HOURS
110 REM OVERTIME HOURS AND TOT AL WAGES IN THE EMPLOY FI LE
115 DS = CHRS (4)
l 20 PRINT
130 PRINT
140 PRINT TAR(30); " PAYROLL REPORT "
150 PRINT
160 PRINT

REPORT
WRITING BY
COMPUTER

l 70 PRINT " EMPLOYEE DEPT","NAME'',"HOURLY","R EGUL AR OVE RTIME GROSS "
1 80 PRINT " NUMBER NUMBER"," "," RAT E", "HOURS HOURS PAY" "
1 90 PRINT "-------- - --- -- - - - - - - -------------------------------------- - -- - ---------
200 PRINT DS ;" OPEN EMPLOY "
2 l 0Rl=O
220Vl•O
230 WI • 0
240 PRINT DS ;" READ EMPLOY "
245 INPUT N, D, N$, H, R,V
248 PRINT DS
250 ONERR GOTO 330
260 Rl • RI + R
270 Vl = Vl + V
280 W • H * R + 1. 5 * H * V

122 I Writing Reports from Sequential Files

2 9 0 W l • W l + II
2 95 W • I NT (1 00 * W + 0 . 5) / 100
3 0 0 PRI NT N; SPC(6) ; D,N$,H,R; SPC(8) ;V; SPC(7) ;W
3 10 GOTO 240
32 0 REM ERROR CHE CKING ROUT I NE
3 30 Y • PEEK (22 2)
335 IF Y a 5 TH EN 36 0
34 0 PR I NT " UNUSUAL ERROR",Y
360 PR INT D$;"CLOSE EMPLOY "
370 PRINT "*** ''
3 80 PRINT " TOTALS",""," " ,Rl; SPC(7); Vl; SPC(7) ;Wl
63 9 99 END

PAYROL L RE PORT

EMPLOYER DEPT NAME HOURLY
RATE

REGULAR OVERTIME GROSS
NUHBRR NUMBER HOURS HOURS PAY

10 1 1 ADAMS 5 40 0 200
103 1 2 BAKER 5. 6 40 '• 257 . 6
104 l 7 BRA VO 4 40 2 l 72
108 16 COHRN 6 . 25 38 0 23 7 . 5
1 72 2 JO HNSON 3 . 75 40 0 15 0
198 l ':'ANllER 4.25 36 0 15 3
202 l 6 llILSON 4 40 0 160
206 7 LESTER 5 . 2 5 40 0 21 0
255 12 SCHMIDT 5 . 6 40 4 257 . 6
281 12 MILLER 6 40 0 240
313 7 SMITH 4 . 25 40 4 195 . 5
347 1 2 GRAY 6 38 0 22 8
368 1 llEAVER 3 . 5 40 2 150 . 5
422 l WI LLIAMS 4 40 0 16 0
**** *** ************
TOT ALS 55 2 16 2771.7

There are two new BASIC functions in this program-TAB and SPC.
Both of these functions only appear in print statements and are used to
make the output more readable. In line 140 PRINT TAB(30); " PAYROLL
REPORT", the TAB is used to position the heading of the report. The first
" P " of " PAYROLL REPORT" will start printing in column 30. TAB
works the same way as setting manual tabs on a typewriter. The number in
parentheses indicates the column in which you want the printing to start.

The SPC function is used to place spaces between fields on a line of out
put. In line 300 the SPC function specifies six spaces between the N and D
fields; eight spaces between the R and V fields; and seven spaces between
the V and W fields. Spaces should only be inserted between numeric fields
where you know the number of characters in that field will be constant,
otherwise, the cha racters will not line up neatly in columns.

Line 295 W=INT (IOO*W+0.5) / 100 is used to round gross pay to dollars
and cents. Assume tha t the value of Wis $198.6666 at line 280. It would be
printed with four sixes to the right of the decimal. INT(IOO• W+0.5) multi
plies 198.6666 by 100 giving 19866.66, then adds .5 giving 19867 .1 6.

INT(l9867.16) is 19867 and division by 100 results in 198.67. So we have
rounded off gross pay to dollars and cents.

The program does not have a STOP instruction before the END. This
STOP instruction was removed after the program was tested so that the
message BREAK IN 390 would not appear on the report. You may remove
the final STOP instruction after you run the program and it is correct. Then
run the program a final time and the message will not appear at the bottom
of the report.

The preceding program is one example of how a report may be printed
so that it is more readable. There are still some shortcomings in the output:
the department numbers that are single digits should be one column over,
and all decimal numbers should have decimal points and two decimal char
acters. In Chapter 11, you will be shown how to make the output look even
better.

In this chapter you have been shown how to accumulate subtotals and totals
for a file. A use of the BASIC instruction INT has been explained for c~es
where department numbers are part of some identification number. Finally
you have seen how to produce reports for management that are easily reada
ble and understandable .

BASIC Instructions Introduced:

Statement Explanation

INT(X) The value X is made into an integer (whole number).

SPC(X) Allows X spaces between two fields.

T AB(X) Starts printing in the Xth column. X must be 40 or less.

Summary I 123

SUMMARY

124 / Writing Reports from Sequential Ries

PROBLEMS 1. Use the "XK l" file from the first problem in Chapter 4 (page 89) to ac
cumulate the totals from Time I and Time 2. Output these totals suita
bly labelled.

2. Use the "XK I" file to accumulate departmental subtotals from Time I
and Time 2 assuming that departments are defined as follows:

Department

1
2
3
4

Output these totals suitably labelled.

I.D. Number

100-199
200-299
300-399
400-499

3. Use the "INV" fi le to accumulate department subtotals and grand totals
for units received. Assume department one has part numbers 100- 199,
department two has part numbers 200-299, department three has part
numbers 300-399. Output the totals suitably labelled.

4. Modify your program that produces sales and commission department
subtotals and grand totals from the "SALES" file so that it may be read
by management. Title it: Sales and Commission Report.

5. Modify your program that produces initial balances and final balances
by department and grand totals from the "CUST' file so that it may be
read by management. Title it: Customer Sales Report.

6. Modify the program that produces beginning and ending inventory
value by department and grand totals from the " INV" file so that it may
be read by management. Title it: Inventory Value Report.

7. Modify your program in Problem 3 above so that you produce a man
agement report. Title it: Units Issued by Departments.

6 I Adding and Deleting Records

125

Adding Records to a File I 127

At the end of this chapter you should be able to:

• Add records to sequential files
• Delete records from sequential files

Files are not static. The contents of files change as the business changes. In
the payroll example, employees are hired and new employee records are
added to the files. People also leave or retire, and the old employee records
have to be dropped from the file. Customers are acquired and new customer
records have to be inserted into a file. Or a product becomes obsolete and it
must be deleted from the fiie.

In this chapter we will show you how to add and delete records using
sequential files.

An accidental omission has occured. When the data for the employee payroll
(Table 4-1 , Chapter 4) was given, two records were lost. Now they have
been found. Fortunately, the payroll has not been prepared. But these two
records have to be added to the file before the payroll program can be run.

This hypothetical situation (it would never occur in real life, would it?)
serves as the basis for showing you how to add records to a file. Let's assume
that the two missing records are the following:

Employee Department Employee Hourly Regular Overtime

Number Number Name Rate Hours Hours

425 17 Jones 4.80 40 2
426 17 Cooper 4.25 38 0

As you can see, Jones and Cooper belong at the end of the "EMPLOY" file.
So we need to find the end of the file and add the records at that point.

But here we run into a limitation of sequential files. We can either read
from a file or print into a file, but we cannot both read and print the same
sequential file unless we are only adding records to the end of a file. If
records are to be added between existing records or old records are to be
changed, we need to read from one file and print into another file. Since this
is the most typical situation we will use the two file approach in this chapter.

The problem has two sets of input data. First, the payroll file with its
records of six fields:

• Employee number
• Department number
• Employee name
• Hourly rate of pay
• Regular hours worked
• Overtime hours worked

Performance
Objectives

ADDING
RECORDS
TO A FILE

128 I Adding and Deleting Records

Secondly, the two omitted records with the same fields (which must be
added from the keyboard). For output the problem requires a complete file
as well as messages to the keyboard operator.

The processing consists of reading the records in the old file and writing
them into a new file. When the end of data has been reached in the old file,
then records are entered from the keyboard and added to the new file.

Problem Summary

Input Dara
I. "EMPLOY" fi le with six fields per record :

• Employee number
• Employee department number
• Employee name
• Hourly rate
• Regular hours
• Overtime hours
No validity checks necessary since all fields have already been
checked.

2. New records to be added to the file, each record consisting of six
fields.
Field name
Employee number
Employee department number
Employee name
Hourly rate
Regular hours worked
Overtime hours worked

Processing

Valid Range
100 to 999

1 to 20

3.05 to 15.00
0 to 40
0 to 20

Take data from the old file and write into new file until end of data is
reached. Then take data from keyboard and place valid records into new
file.

Output
Instructions for operator and complete payroll data file.

The program, therefore, has to be able to:

I. Link to the file "EMPLOY".
2. Set up a new file.
3. Read from the old file and write into new file until end of data is

reached.
4. Get data from terminal and check it for valid range.
5. Write valid records into new file.
6. Stop when new records have been added.

The flowchart for the program is given in Figure 6-1.

Start

Open
Files

Read a Record
from EMPLOY

Write Record
into EMPL02

Terminate

Write
Operator
Message

Get Data
from Terminal

Write Record
into EMPL02

Adding Records to a File / 129

Print Error
Message

Flowchart for Adding Records to the End of a File Figure 6- 1

130 I Adding and Deleting Records

100 REM THIS PROGRAM APPENDS RECORDS TO A FILE
110 REM
115 D$ = CHR$ (4)
120 REM OPEN FILES FOR INPUT AND OUTPUT
130 PRINT D$;"0PEN EMPLOY"
140 PRINT D$;"0PEN EMPL02"
150 REM
160 REM READ THE FILE EMPLOY
170 REM CHECK FOR END OF FILE
180 REM AND PRINT INTO THE FILE EMPL02
190 REM
200 PRINT D$;"READ EMPLOY"
205 INPUT N,D,N$,H,R,V
210 ONERR GOTO 250
220 PRINT D$; " WRITE EMPL02"
225 PRINT N;",";D;",";N$;",";H;",";R;",";V
230 GOTO 200
250 PRINT D$
255 Y = PEEK (222)
260 IF Y = 5 THEN 300
265 PRINT "UNUSUAL ERROR CONDITION",Y
270 GOTO 590
280 REM READ DATA FROM THE KEYBOARD AND
290 REM ADD IT TO FILE EMPL02
295 PRINT D$;"READ EMPLOY"
300 PRINT "TYPE EMPLOYEE NUMBER, DEPARTMENT NUMBER "
310 PRINT "EMPLOYEE NAME, HOURLY RATE, REGULAR HOURS"
320 PRINT "AND OVERTIME HOURS SEPARATED BY COMMAS"
330 PRINT "WHEN FINISHED TYPE 99,99,AA,99,99,99"
340 INPUT N,D,N$,H,R,V
350 REM
360 REM CHECK FOR END OF DATA
380 IF N = 99 THEN 590
3 9 0 REM
400 REM CHECK THE DATA FOR VALIDITY
410 REM
420
430
440
450
460
470
480
490
500
5 10
520

IF N
IF N
IF D
IF D
IF H
IF H
IF R
I F R
I F v
IF v
PRINT

<
>
<
>
<
>
<
>
<
>

100 THEN 540
999 THEN 540
l THEN 540
20 THEN 540
3.05 THEN 540
15. 00 THEN 540
0 THEN 540
40 THEN 540
0 THEN 54 0
20 THEN 540

D$; " WRITE EM PLO 2 II
525 PRINT N;",";D;",";N$;",";H;",";R; " ,";V
530 PRINT D$
535 GOTO 300

Adding Records to a Ale I 131

540 PRINT " ***ERROR IN INPU T DATA -- PLEASE RETYPE"
550 GOTO 300
560 REM
570 REM TERMINATE PROGRAM
58 0 REM
590 PRINT 0 $;"CLOSE EMPLOY"
595 PRINT D$;"CLOSE EMPL02"
600 STO P
63999 CNO

) RUN
TYPE EMPLOYEE NUMBER, DEPARTMENT NUMBER
EMPLOYEE NAME, HOURLY RATE, REGULAR HOURS
AND OVERTIME HOURS SEPARATED BY CO MMAS
WHEN FINISHED TYPE 99,99,AA,99,99,99
?425, 1 7,JONES , 4 . 80,40,2
TYPE EMPLOYEE NUMBER, DEPARTMENT NUMBER
EMPLOYEE NAME, HOURLY RATE, REGULAR HOURS
AND OVERTIME HOURS SEPARATED BY COMMAS
WHEN FINISHED TYPE 99,99,AA,99,99,99
?42 6,17,COOPER,4.25,38,0
TYPE EMPLOYEE NUMBER, DEPARTMENT NUMBER
EMPLOYEE NAME, HOURLY RATE, REGULAR HOURS
AND OVERTIME HOURS SEPARATED BY COMMAS
WHEN FINISHED TYPE 99,99,AA,99,99,99
?99 ,99,AA,99,99,99

BREAK IN 600

In order to determine whether the program worked, print the "EMPL02"
file wi th the following program.

15 0 $ "' CHR$ (4)
20 ONERR GOTO 200
100 PRINT D$;"0PEN EMPL02"
110 PRINT D$;"READ EMPL02 "
120 INP UT N,D,N$,H, R,V
1 25 PRINT 0$
1 30 PRINT N; SPC(2);D,N$, H,R , V
13 5 GOTO 110
200 REM ***ERROR CHECKING ROUTINE
205 PRINT D$
2 10 Y "' PEEK (222)
215 IF Y "' 5 THEN 250
220 PRINT "U NUSUAL ERROR CONDITION ",Y
250 PRINT 0$; " CLOSE EMP L02 "
500 STOP
63999 END

132 I Adding and Deleting Records

]RUN
101 1
103 12
104 1 7
108 16
1 72 2
198 1
202 16
206 7
255 12
281 12
313 7
347 12
368 1
422 1
425 1 7
426 1 7

BRE AK IN 500

ADAMS 5 40 0
BAKER 5. 6 40 4
BRAVO 4 40 2
CO HEN 6.25 38 0
JOHNSON 3 . 75 40 0
TANNER 4.25 36 0
WILSON 4 40 0
LESTER 5 . 25 40 0
SCHMIDT 5 .6 40 4
MILLER 6 40 0
SMITH 4 . 25 40 4
GRAY 6 38 0
WEAVER 3 , 5 40 2
WILLIAMS 4 40 0
JONES 4 . 8 40 2
COOPER 4 . 25 38 0

This program contains no new statements. The Apple allows a much
shorter version of this program only if we want to add records to the end of
the file. Instead of opening the " EMPLOY" file, the instruction PRINT
0$; " APPEND EMPLOY" could be used. This causes each print to the file
to add the record to the end of "EMPLOY" without the use of a second
file. This is a much easier program but in order for you to better understand
the logic of the next program, this program was written the long way.

Look again a t the program. As you can see, it transfers all of the records
from the old file to the new file before it gets any data from the terminal. But
what if the employees Jones and Cooper had employee numbers 154 and 232
respectively? Then the program would still place their records at the end of
the file, but at the end of the file, their records would be out of sequence by
employee number.

We must change the program so that new records fit into the middle of
the new file. The location of these records is determined by the sequence of
identification numbers, in this case employee number. Records to be added
fit into the file after records with lower numbers, and before records with
higher numbers.

However, the computer cannot see the whole file. It operates on the fi le
one record at a time. It will know where to insert a record only after it has
read a record from the old fi le with a higher identifying number.

Let's look at an example to illustrate this point. Below you have the em
ployee numbers of a section of the payroll fi le. And the employee numbers
of the records to be added.

Employee

Number
in File

104

108
172

198
202

206

255

282

Adding Records to a Rle I 133

New Employee
Numbers of Records

to be Added

154
232

Now look at the first number in each column. Remember, the employee
number stands for the complete record. With the first number in each col
umn you have the whole record. You can see that record I 54 belongs after
record 104. Hence 104 is transferred to the new file.

Now read the next record in the file- 108. Again, since it is Jess than the
record to be added-154, it gets transferred to the new file. When you now
read the next record, we have the following position.

Record to be Added

154
Record from Old File

172

Records in New File

104

108

Here the record from the old file is greater than the record to be added.
Therefore the record to be added is placed into the new file. The new file
now consists of three records in sequential (ascending) order-104, 108 and
154.

Since we do not know where the next record will fit, until we have read
it, a new record to be added is obtained and the comparison is repeated. In
our example, the record to be added is 232. But it could just as easily have
been record 155 or 163 or 171. In that case, the record also should be placed
prior to record 172.

Think your way through the process of placing record 232 into the new
file. Read the old file, one record at a time. Move all records with lower em
ployee numbers to the new file. Once you read a record with a higher ID
number, then place the record to be added into the new file.

You have been playing "computer" when you think through a problem
in this excruciatingly detailed way. And very simple thinking also; but that
is the way the simple-minded computer works: one elementary operation at
a time on small amounts of data.

The general pattern of record insertion hinges on two things :

1. The old records are in ascending order.

134 I Adding and Deleting Records

2. The program must fi nd a record that is larger than the one that has to be
inserted into the sequence.

The program therefore has to transfer all records with lower employee num
bers to the new fi le. Then the record to be added can be written into the new
file. Then the record with a higher employee number is written into the new
file. Finally, another record to be added is input and the process continued.

A program to add records to a file is shown below. The range checks of
the records to be added have been removed for brevity and to highlight the
program logic.

Problem Summary

Input
"EMPLOY" fi le in employee number sequence. Records to be added,
also in employee number sequence.

Processing
Place records to be added into their proper location in the file.

Output
Data entry operator instructions and complete file of payroll records.

Here is the program and flowchart (Fig. 6-2) for placing records in the
middle of a file:

10 REM THIS PROGRAM ADDS RECORDS TO THE MIDDLE OF THE FILE
15 D$ = CHR$ (4)
100 REM OPEN THE FILES
110 REM
130 PRINT D$;"0PEN EMPLOY "
140 PRINT D$;"0PEN EMPL03"
150 REM GET A RECORD FROM THE TERMIN AL
1 60 REM
170 REM
180 PRINT "TYPE EMPLOYE E NUMBER, DEPARTMENT NUMBER, EMPLOYEE NAME"
190 PRINT "HOURLY RATE, REGULAR HOURS, OVERTIME HOURS"
200 PRINT "SEPARAT ED BY COMMAS "
2 10 PRINT "WH EN FINISHED TYPE 99,99,AA,99,99,99"
220 INPUT Nl,Dl,Nl$,Hl,Rl,Vl
230 REM
240 REM CH ECK FOR END OF DATA FROM TERMINAL
250 REM
260 IF Nl = 99 THEN 670
270 REM
280 REM SEARCH THE FILE FOR NUMBER SEQUENCE
290 REM
300 PRINT D$;"READ EMPLOY "
305 INPUT N,D,N$,H,R,V

310 ONERR GOTO 650
320 IF Nl < N THEN 420
330 REM

Adding Records to a Rle I 135

340 REM RECORD FROM FILE LESS THAN RECORD FROM TERMINAL
350 REM
360 PRINT D$;"WRITE EMPL03"
365 PRINT N;",";D;",";N$;",";H;",";R;",";V
370 GOTO 300
380 REM
390 REM RECORD FROM TERMINAL IS LOWER THAN THE ONE IN THE FILE
400 REM PRINT THE RECORD IN THE NEW FILE
410 REM
420 PRINT D$;"WRITE EMPL03"
425 PRINT Nl;",";Dl;",";Nl$;",";Hl;",";Rl;",";Vl
428 PRINT D$
430 REM
440 REM
450 REM

GET ANOTHER RECORD FROM THE TERMINAL

470 PRINT "TYPE EMPLOYEE NUMBER, DEPARTMENT NUMBER, EMPLOYEE"
480 PRINT "NAME, HOURLY RATE, REGULAR HOURS, OVERTIME HOURS"
490 PRINT "WHEN FINISHED TYPE 99,99,AA,99,99,99"
510 INPUT Nl,Dl,Nl$,Hl,Rl,Vl
520 IF Nl = 99 THEN 580
530 GOTO 320
540 REM
550 REM
560 REM
570 REM

NO MORE RECORDS TO BE ADDED
TRANSFER REMAINING RECORDS TO THE NEW FILE

580 PRINT D$;"WRITE EMPL03"
585 PRINT N;",";D;",";N$; " ,";H;",";R;",";V
59 0 PRINT D$;"READ EMPLOY"
595 INPUT N,D,N$,H,R,V
610 GOTO 580
620 REM
640 REM
650 PRINT D$
655 Y = PEEK (222)
660 IF Y = 5 THEN 670
665 PRINT " UNUSUAL ERROR",Y
670 PRINT D$;"CLOSE EMPLOY"
675 PRINT D$;"CLO SE EMPL03"
700 STOP
63999 END

] RUN
TYPE EMPLOYEE NUMBER, DEPARTMENT NUMBER, EMPLOYEE NAME
HOURLY RATE, REGULAR HOURS, OVERTIME HOURS
SEPARATED BY COMMAS
WHEN FINISHED TYPE 99,99,AA,99,99,99
?154,17,JONES,4.80,40,2
TYPE EMPLOYEE NUMBER, DEPARTMENT NUMBER, EMPLOYEE
NAME, HOURLY RATE, REGULAR HOURS, OVERTIME HOURS

136 / Adding and Deleting Records

WHEN FINISHED TYPE 99,99,AA,99,99,99
?232, 17,COOPER, 4.25,38,0
TYPE EMPLOYEE NUMBER, DEPARTMENT NUMBER, EMPLOYEE
NAME, HOURLY RATE, REGULAR HOURS, OVERTIME HOURS
WHEN FINISHED TYPE 99,99,AA,99 , 99,99
? 99,99,AA,99 , 99,99

BREAK IN 700

101 1
103 12
104 1 7
108 16
154 17
172 2
198 1
202 16
206 7
232 1 7
25 5 12
281 12
313 7
347 12
368 1
422

BREAK IN 500

To determine whether the program worked, print the "EMPL03" file. This
may be done by modifying your program that prints the "EMPL02" file.
The change necessary is

JOO PRINT D$; "OPEN EMPL03"
110 PRINT D$; "READ EMPL03"
250 PRINT D$; "CLOSE EMPL03''

Then run the changed program.

ADAMS 5 40 0
BAKER 5.6 40 4
BRAVO 4 40 2
COHEN 6.25 38 0
JONES 4 . 8 40 2
JOHNSON 3. 7 5 40 0
TANNER 4 , 25 36 0
WILSON 4 40 0
LESTER 5 . 25 40 0
COOPER 4 . 25 38 0
SCHMIDT 5 . 6 40 4
MILLER 6 40 0
SMITH 4 , 25 40 4
GRAY 6 38 0
WEAVER 3. 5 40 2
WILLIAMS 4 40 0

Let's take another look at this program. Notice how the end of data in
the file (EOF) for the old file and the end of data from the terminal (EOD)
decisions appear a number of times. The program is made complicated by
having to consider all possibilities:

I . There are no records to be added.

2. The file is empty when more records have to be added. (In our example,
the program merely terminated when that happened; see line 310 and
line 660. The extension of handling such records is left as an exercise for
you.)

Start

Open
Files

Read a
Record from

Terminal

Read a
Record from

File

Write Record
of Old File

into New File

YES
Term inate

NO

Add Record
from Terminal

to New File

Get Nex t
Record from

Terminal

Write Record

Read a Record

Adding Records to a Rle I 137

NO

Term inate

Flowchart for Adding a Record into the Middle of a File Figure 6-2

138 I Adding and Deleting Records

3. No more records have to be added while there are still records in the file.

4. The file is empty and no records need to be added.

For all four cases the program has to provide a means of reaching a satisfac
tory conclusion. In our example, the program merely terminates without tell
ing the operator what has happened. Maybe you can think of some way to
modify the program so that a message appears that would identify why the
program stopped.

Example Inventory Example: To the inventory file ("INV"), add the following two
records.

Problem Summary
Input

Part Beginning Units Units

Number Units Received Issued Cost

Record I 112 0 50 10 8.25
Record 2 300 0 150 70 6.85
"INV" file

Processing
Place records to be added into their proper sequence in the file.

Output
Data entry operator instructions
New file "INVI"
Print the file "INVI"

100 REM PROGRAM TO ADD RECORDS TO THE MIDDLE OF THE INVENTORY FILE
110 REM
115 D$ = CHR$ (4)
1 20 REM LINK TO FILES
130 REM
140 PRINT D$;"0PEN INV"
150 PRINT D$;"0PEN INVl"
160 REM
1 70 REM GET RECORD TO BE ADDED FROM TERMINAL
180 REM
190 PRINT "ENTER PART NUMBER, BEGINNING UNITS, UNITS RECEIVED"
200 PRINT "UNITS ISSUED AND UNIT COST - - SEPARATED BY COMMAS "
210 PRINT "WHEN FINISHED -- TYPE 99 FOR EACH FIEL D"
220 INPUT P9,B9,R9,I9,C9
230 REM
240 REM CHECK FOR END OF DATA FROM TERMIN AL
250 REM
260 IF P9 = 99 THEN 1130
270 REM
280 REM SEARCH FILE FOR PLACE TO ADD NEW RECORD

290
300
310
320
325
330
340
350
360
370
380
385
390
400
410
420
430
440
445
448
450
460
470
480
490
500
510
520
530
54 0
55 0
560
570
580
590
600
610
620
630
6 35
640
645
650
660
780
790
800
810
815
820
830
840

REM
ONERR GOTO 990

T = l
PRINT D$;"READ INV"
IN~UT P,B,Rl,R2,C
IF P9 < P THEN 440
REM

Adding Records to a Ale I 139

REM RECORD FROM TERMINAL GREATER THAN RECORD FROM FILE
REM THEREFORE PLACE RECORD FROM FILE INTO INVl
REM
PRINT D$; " WRITE INVl"
PR I NT p; II' II; B; II' II; R l; II' II; R 2; II' II; c
GOTO 320
REM
REM RECORD FROM TERMINAL LESS THAN RECORD FROM FILE
REM THEREFORE PLACE RECORD FROM TERMINAL INTO INVl
REM
PRINT D$;"WRITE INVl"
PRINT P9;",";B9;",";R9;",";I9;",";C9
PRINT D$
REM
REM GET ANOTHER RECORD FROM TERMINAL
REM
PRINT "ENT ER PART NUMBER, BEGINNING UNITS, UNITS RECEIVED"
PRINT "UNITS ISSUED AND UNIT COST - - SEPARATED BY COMMAS"
PRINT "WHEN FINISHED -- TYPE 99 FOR EACH FIELD"
INPUT P9,B9,R9,I9,C9
REM
REM CHECK FOR END OF DATA ENTRY
REM
IF P9 = 99 THEN 620
GOTO 330
REH
REM NO MORE RECORDS TO BE ADDED, BUT RECORDS STILL IN INV
REM TRANSFER REMAINING RECORDS FROM INV
REM INTO INVl
REM

T = 2
PRINT D$; " WRITE INVl "
PRINT P;",";B;",";Rl;",";R2;",";C
PRINT D$;"READ INV"
INPUT P,B,Rl,R2,C
GOTO 630
REM
REM
REM NEW FILE HAS BEEN GENERATED SO PRINT IT OUT
REM
PRINT D$; "CLOSE INV"
PRINT D$;"CLOSE INVl "
PRINT D$;"0PEN INVl"
REM
REM PRINT HEADINGS

140 I Adding .and Deleting Records

REM
PRINT
PRINT

850
860
870
880
890
900
910
920
930
935
938
940
950
960
970
980
990
995 y
1000
1005
1010
10 20
1030
1040
1050
1060
1070
1080
1090
11 00
111 0
1120
1130
1140
63999

PRINT
PRINT " PART " ,"BEG I NNING", " UN I TS" , "UNITS " ,"UNIT "
PRINT 11 NUMBER 11

,
11 UNITS 11

,
11 RECEIVED 11 , " ISSUED " , " COST "

PRINT 11
- ----- ","-----", "--------" ;

11
- - - - --

11
, "---- "

T = 3
PRINT D$; "READ INV l "
INPUT P,B,Rl,R2,C
PRINT D$

)RUN

PRINT P,B,R l ,R2, C
GOTO 930
REM *******************************
REM *** ERROR CHECKING ROUTINES ***
REM ************ *******************
PRINT D$

PEEK (222)
IF Y = 5 THEN 1080
PRINT "UNUSUAL ERROR",Y
STOP
REM
REM
REM
REM
REM
REM
IF T
IF T
REM
REM
REM

CHECK WHERE END OF FILE WAS ENCOUNTERED
IF T=l THEN INV IS EMPTY BUT ADD MORE DATA
IF T=2 THEN INV IS EMPTY AND DATA ENTRY FINISHED
IF T=3 THEN NEW FILE INVl HAS BEEN WRITTEN

THEN 480
2 THEN 810

T MUST BE 3 -- TERMINATE PROGRAM

PRINT D$; "CLOSE INVl "
STOP
F.ND

ENTER PART NUMBER, BEGINNING UNITS, UNITS RECEIVED
UNITS ISSUED AND UNIT COST -- SEPARATED BY COMMAS
WHEN FINISHED -- TYPE 99 FOR EACH FIELD
?112,0,50,10,8.25
ENTER PART NUMBER, BEGINNING UN I TS, UNITS RECEIVED
UNITS ISSUED AND UNIT COST -- SEPARATED BY COMMAS
WHEN FINISHED -- TYPE 99 FOR EACH FIELD
?300,0,150,70,6 . 85
ENTER PART NUMBER, BEGINNING UNITS, UNITS RECEIVED
UNITS ISSUED AND UNIT COST -- SEPARATED BY COMMAS
WHEN FINISHED -- TYPE 99 FOR EACH FI ELD
?99,99,99 , 99,99

Adding Records to a File

PART BEGINNING UNIT S UNITS
NUMBER UN IT S RECE I VED ISSUED
------ -- - - - - -- ------
101 120 40 45
11 2 0 50 10
2 19 60 60 80
226 5 110 90
235 100 0 50
300 0 150 70
347 0 50 20

BREAK IN 1140

This example contains two new features :
• A file is opened, closed, and reopened.
• A test value is used to determine where an error (end of file) occurs.

Jn line 150 the file " INVl " was opened and the program wrote into the
file. However, the problem summary specifies that the file should also be
printed. Therefore "INVl" must be opened again, as shown in line 820. But be
fore a file can be changed from writing to reading, it must be closed as in line
815.

It is perfectly legal for a program to open a file first for writing, close it,
and then open it again for reading. When it is opened again, the records are
read starting at the beginning of the file.

The second feature, the use of a test value, is necessary because the pro
gram hinges on where the error was encountered. The ONERR in line 300
tells the computer to go to line 990 if an error occurs. If we focus only on
the end-of-file error (Y = 5), then three locations in the program are possible.

1. The EOF was encountered in line 325.

2. The EOF was encountered in line 645 .

3. The EOF was encountered in line 935.

If the culprit is line 325, then we have run out of data in " INV" , but there
are more records to be added. If line 645 was the cause of the error, then we
have run out of data in the file "INV" and no more records have to be
added . If line 935 caused the error, then the program was printing out the
new file " INV I".

In the first case, error caused by line 325, the program should get more
records from the terminal and add them to " INV I". In the second case,
error caused by line 645, data entry is finished and the program should close
the files and start to print out "INV I" . In the third case, error caused by
line 935, the program is finished and it should terminate.

I 141

UNIT
COST

5
8.25
3.25
2.95
6. 2
6.85
4.6

142 I Adding and Deleting Records

Exercises

To distinguish between these three possible EOF conditions a test value
is used. T is set to 1 in line 310 to indicate the first condition. T is set to 2 in
620 to indicate the second condition. It is set a last time to 3 in line 920.

When any error occurs, the computer goes to line 990. If it is an EOF
error (Y = 5) then it checks the T value in lines 1080 and 1090 to determine
which action has to be taken. Depending on the value of T, the program
directs the computer to
• Line 480 to get more data from the terminal
• Line 810 to close the files and print " INVl"
• Next line in succession (line 1130) if T is neither I nor 2, to terminate

the program
With th.is logic the program can add records to the middle of a file.

Account Balance Exercise: The firm has acquired two new customers.
Write a program to add their records to the customer file.

Problem Summary

Input
Customer
Number Name Balance Payments Charges

Record I 2995 Jones 0 0 50
Record 2 3370 Moats 0 0 75
Old "CUST" file

Processing
Get new customer data from the terminal and place it at the end of the
"CUST I" file.

Output
Instructions for data entry
New customer fi le "CUSTI"
Print the "CUSTI " file

(Attach additional paper to complete your program.)

TYPE CUSTOMER NUMBER, CUSTOMER NAME , BALANCE
PAYMENTS, CHARGES --- SEPARATED BY COMMAS
WHEN FINISHED TYPE 999,AAA,999,999,999
?2995,JONES,0,0,50
TYPE CUSTOMER NUMBER, CUSTOMER NAME, BALANCE
PAYMENTS, CHARGES --- SEPARATED BY CO MMAS
WHEN FINISHED TYPE 999,AAA,999,999,999
?3370,MOATS,0,0,75
TYPE CUSTOMER NU MBER, CUSTO MER NAME, BALANCE
PAYMENTS, CHARGES - - - SEPARATED BY COMMAS
WHEN FINISHED TYPE 999 , AAA , 999,999,999
?999,AAA,999,999,999

Adding Records to a Ale I 143

144 I Adding and Deleting Records

CUSTOMER
NUMBER

2741
2937
2995
3246
3 359
3370
3426
3527

BREAK IN 1050

CUSTOMER
NAME BALANCE PAYMENTS CHARGES

------- -------- -------
FERNWOOD 120 120 40
BLAKEY 0 0 90
JONES 0 0 so
GREY 250 130 170
PHILLIPS 90 40 100
MOATS 0 0 75
BIRD 180 180 20 0
LOMBAR D 100 10 0 250

Sales Commission Exercise: The firm has added two salesmen. Add their
records to the file.

Input

Record I
Record 2

"SALES" file

Processing

Sales
Territory

I
2

Problem Summary

Salesman
Kevin
Jack

Gross Sales
2500
500

Commission

Rate
.045
.OS

Get the data from the terminal and place it in the fi le ("SALES!") by
sales territory.

Output
Instructions for data entry
New "SALES I" file
Print the " SALES I" fi le

Adding Records to a Ale I 145

(A ttach additional paper to complete your program.)

146 I Adding and Deleting Records

TYPE SALES TERRITORY, SALESMAN, GROSS
SALES AND COMMISSION RATE --- SEPARATED BY COMMAS
WHEN FINISHED TYPE 0,AA,0,0
?l,KEVIN,2500,.045
TYPE SALES TERRITORY, SALESMAN, GROSS
SALES AND COMMISSION RATE --- SEPARATED BY COMMAS
WHEN FINISHED TYPE 0,AA,0,0
?2 ,JACK,500 ,.05
TYPE SALES TERRITORY, SALESMAN, GROSS
SALES AND COMMISSION RATE --- SEPARATED BY COMMAS
WHEN FINISHED TYPE O,AA,0,0
?0,AA,O,O

SALES
TERRITORY

1
1
1
2
2
2
3
3
3

BREAK IN 1140

DELETING
RECORDS

FROM A FILE

SALESMAN

BILL
JOE
KEVIN
TOM
PHIL
JACK
CLYDE
HARRY
BOB

GROSS
SALES

12050
5270
2500
6940
1 1 200
500
7340
9460
14690

COMMISSION
RATE

• 0 5
• 0 4 5
• 0 45
• 04
.055
• 05
• 04
.045
• 0 5

Sometimes it is necessary to delete records from sequential files. Employees
quit or retire. Occasionally an employee may be fired. Items in inventory be
come obsolete. Suppliers may be dropped. Old customers may shift their
buying elsewhere. There are many instances when files need to be purged of
records that are no longer needed.

In such cases it is necessary to find the records and delete them. Here
again the nature of computer files places a burden on the programmer.
Reading a record does not remove it from a file.

Therefore to delete a record, we have to read all of the records in a se
quential file, and write all of the records into a new fi le-except those records
that should be deleted.

Another aspect to consider is that sequential files are in sequence-and
you can' t go back. Once a record has been processed, it can only be found
again if we start from the beginning of the file.

Therefore if there is more than one record that has to be deleted, they
also must be in sequence. Otherwise, the whole file has to be read for each
record to be removed.

So let's assume that we have to delete some records from our payroll file,
for example, records with employee numbers 104 and 202. A flowchart (Fig.
6- 3) and program to do this follow:

100
110
115
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
285
290
300
310
320
330
340
350
360
370
380
390
400
405
410
420
430
440
450
4 55
460
470
480
490
500
505
510
520
530
540
550
560
570

Deleting Records from a File I 147

REM PROGRAM TO DELETE RECORDS FROM A FILE
REM

D$ = CHR$ (4)
REM OPEN FILES
REM
PRINT D$;"0PEN EMPLOY"
PRINT D$;"0PEN EMPL04"
REM
REM GET THE ID NUMBER OF THE RECORD TO BE DELETED
REM
PRINT
PRINT
PRINT
PRINT
INPUT
IF Nl
REM

"TYPE THE ID
"IF FINISHED
Nl
= 99 THEN 570

NUMBER OF THE RECORD TO BE DELETED"
TYPE 99"

REM READ A RECORD FROM THE EXISTING FILE
REM
PRINT D$;"READ EMPLOY"
INPUT N,D,N$,H,R,V
REM
REM TEST FOR END OF FILE
REM
ONERR GOTO 500
REM
REM CHECK IF RECORD SHOULD BE DELETED
REM
IF Nl = N THEN 450
REM
REM SINCE ID NUMBERS ARE NOT EQUAL THE RECORD REMAINS
REM
PRINT D$; " WRITE EMPL04"
PRINT N;",";D;",";N$; ","; H; "," ;R;",";V
GOTO 280
REM
REM ID NUMBERS EQUAL; RECORD IS REMOVED
REM
PRINT D$
PRINT "RECORD REMOVED ";N; SPC(2);D,N$,H,R; SPC(2);V
GOTO 190
REM
REM END OF FILE REACHED WITH THE RECORD NOT FOUND
REM
PRINT D$
PRINT "END OF FILE REACHED"
PRINT "RECORD ";Nl; " NOT FOUND"
GOTO 640
REM
REM NO MORE RECORD S TO BE DELETED, TRANSFER REMA I NING
REM RECORDS FROM THE OLD FILE TO THE NEW FILE
REM
ONERR GOTO 640

148 I Adding and Deleting Records

580 PRINT D$;"READ EMPLOY"
585 INPUT N,D,N$,H,R,V
590 PR.INT D$; " WRITE EMPL04"
595 PRINT N;",";D;",";N$;",";H;",";R;",";V
600 GOTO 580
610 REM
620 REM END OF PROGRAM
630 REM
640 PRINT D$;"CLOSE EMPLOY"
645 PRINT D$;"CLOSE EMPL04"
650 STOP
63999 END

TYPE THE ID NUMBER OF THE RECORD TO BE DELETED
IF FINISHED TYPE 99
?104
RECORD REMOVED 104 17 BRAVO

TYPE THE ID NUMBER OF THE RECORD TO BE DELETED
IF FINISHED TYPE 99
?202
RECORD REMOVED 202 16 WILSON

TYPE THE ID NUMBER OF THE RECORD TO BE DELETED
IF FINISHED -- TYPE 99
?99

BREAK IN 650

4 40 2

4 40 0

To determine whether the program worked, print the "EMPL04" file.
Modify your program that prints the "EMPL03" file as follows and run it.

100 PRINT D$; "OPEN EMPL04"
110 PRINT D$; "READ EMPL04"
250 PRINT D$; "CLOSE EMPL04"

l 0 l I ADAMS 5 4 0 0
l 03 l 2 RA KER 5. 6 40 4
LOS l 6 COHEN 6 . 2 5 38 0
l 7 2 2 J OHNSON 3 . 7 5 4 0 0
l 98 l TANNER 4 . 2 5 36 0
2 06 7 L ESTER 5. 2 5 40 0
2 55 l 2 SCHMIDT 5. 6 40 4
2 81 12 MILLER 6 4 0 0
3 l 3 7 SMITH 4 . 2 5 4 0 4
34 7 l 2 GRAY 6 38 0
3 68 I WEAVER 3. 5 40 2
4 22 l WILLIAM S 4 40 0

Start

Get Record
from Old

File

Write

Read a
Record

Deleting Records from a File I 149

~-- "RECORD NOT t-----~

Write
Record into

New File

FOUND"

Flowchart for Deleting Records from a File

Terminate

Figure 6-3

There are no new statements in this program. Just old instructions in a new
arrangement. But what an arrangement! Three input statements, four deci
sions, two prints to a file, and many explanatory REM statements.

When we look at such a program, the mind boggles at the amount of
detail. But let's look at it as a computer would see it- one instruction at a
time. That way the whole process is simplified.

150 I Adding and Deleting Records

Example

We start by getting the identification number of a record (employee
number) to be deleted from the terminal:

If the data is not finished (ID number is not 99)
Then

We read a record from the old file
If the file is empty

Then print the record not found message and terminate
Else (there are records in the file)
If the terminal ID matches the record ID from the file

Then the record deleted message is
printed and we go back to get another
record from the terminal

Else (record ID does not match terminal ID)
The record is printed in the new file
and we go back to get another record

Else (there are no more records to be deleted)
If there are no more records in the file (we might have deleted the
last record in the file)

Then terminate
Else Read a record from the file

Print it in the new file
Go back to check end of file (EOF) again.

Notice that when we look at the program from this viewpoint, we do not
look forward. Rather, we work with the limited amount of data available at
any particular time. By golly, the computer is abysmally ignorant; so, we
need to be very precise and consider all possibilities in order to cover all ba
ses in our programs- before they are written. Otherwise, if something is over
looked and that particular condition occurs, the program will not work.

Look at this program again. Then review the other examples provided.
After that you can practice thinking logically by doing the exercises.

Inventory Example: Delete from the new inventory file ("INVl") the
records for Part Numbers 101 , 219, and 300. Print the new file.

100 REM THIS PROGRAM DELETES RECORDS FROM THE INVENTORY FILE
110 REM
115 D$ = CHR$ (4)
120 REM OPEN FILES
130 REM
140 PRINT D$;"0PEN INVl"
150 PRINT D$;"0PEN INV2"
160 REM
170 REM GET THE PART NUMBER OF THE ITEM TO BE DELETED FROM THE TERMIN J

Deleting Records from a File I 151

180 REM
190 PRINT "TYPE THE PART NUMBER OF THE RECORD TO BE DELETED"
200 PRINT "WHEN FINISHED -- TYPE 99"
210 INPUT Nl
220 IF Nl = 99 THEN 550
230 REM
240 REM READ A RECORD FROM THE EXIS TI NG FILE
250 REM
260 PRINT D$; " READ INVl "
265 INPUT N,B,Rl,R2,C
270 REM
280 REM CHECK FOR END OF FILE
290 REM
300 ONERR GOTO 480
310 REM
320 REM CHECK TO SEE IF THE RECORD SHOU LD BE DELETED
330 REM
340 IF Nl = N THEN 430
350 REM
360 REM ID NUMBERS NOT EQUAL -- RECORD REMAINS IN FILE
370 REM
380 PRINT D$; "WRITE INV2"
385 PRINT N; ",";B;",";Rl ; " , ";R 2;" ," ;C
390 GOTO 260
4 00 REM
4 10 REM ID NUMBERS EQUAL -- RECORD NO T TRANSFERRED
420 REM
430 PRINT D$
4 3 1 p R INT II R E c 0 RD REM ov ED II ; N ; s p c (2) ; B ; s pc (2) ; R 1 ' R 2 ; s pc (2) ; c
432 REM
435 REM GET THE NEXT RECORD TO BE REMOVED FROM THE TERMI NAL
440 GOTO 19 0
450 REM
460 REM END OF FILE FOUND WITH RECORD NOT FOUND
470 REM
480 PRINT D$
485 PRINT " END OF FILE REACHED "
490 PRINT " RECORD "; Nl;" NOT FOUND"
500 GOTO 620
510 REM
520 REM NO MORE RECORDS TO BE DELETED
530 REM TRANSFER REMAINING RECORDS TO THE NEW FILE
540 REM
550 ONERR GOTO 620
560 PRINT D$; "READ INVl II
565 INPUT N,B , Rl,R2,C
570 PRINT D$;"WRITE I NV2"
575 PRINT N; " ,";B;",";Rl; ","; R2; ",";C
580 GOTO 560
590 REM
600 REM END OF PROGRAM
610 REM

152 I Adding and Deleting Records

1 12
226
235
347

BREAK IN 500

Exercises

620 PRINT D$;"CLOSE INV!"
625 PRINT D$;"CLOSE INV2"
7 40 STOP
63999 END

)RUN
TYPE THE PART NUMBER OF THE RECORD TO BE DELETED
WHEN FINISHED - - TYPE 99
? 10 1
RECORD REMOVED 101 120 40
TYPE THE PART NUMBER OF THE
WHEN FINISHED -- TYPE 99
?2 1 9
RECORD REMOVED 219 60 60
TYPE THE PART NUMBER OF THE
WHEN FINISHED - - TYPE 99
?300
RECORD REMOVED 300 0 150
TYPE THE PART NUMBER OF THE
WHEN FINISHED -- TYPE 99
?99

BREAK IN 740

45
RECORD

80
RECORD

70
RECORD

5
TO BE DELETED

3.25
TO BE DELETED

6 . 85
TO BE DELETED

Modify your program that prints the " INV" file to print the " INV2"
fi le.

0 so 10 8 . 25
5 110 90 2 . 95
100 0 50 6 . 2
0 50 20 4 . 6

Account Balance Exercise: Delete from the new customer statement file
("CUSTl") the records for customer numbers 2741 , 2937, and 3426. Print
the new file ("CUST2") with another program.

Deleting Records from a File I 153

(A ttach additional paper to complete your program.)

Sales Commission Exercise: Delete from the new sales file ("SALES I ") the
records for salesmen Bill, Tom, and Harry. Print the new file with another
program.

154 I Adding and Deleting Records

SUMMARY

(Attach additional paper to complete your program.)

This chapter did not deal with BASIC statements; it dealt with how to use
what you have already learned in order to solve two problems-deleting and
adding records.

The use of sequential files, and some of their limitations, becomes ap
parent in these problems. Sequential files can only be read from the begin
ning. We cannot start anywhere in the middle. We must start with the first
record in the file, and proceed record by record until the desired record is
found. Then, and only then, can the operation be performed-adding a re
cord or deleting a record.

If sequential files are so restricted, why then are they so common? The
answer is simple- cost. Sequential file processing is efficient when large num
bers of active records are involved. Such is the case for many business appli
cations. We can collect a large amount of data and process it all together in a
batch.

All of the records are processed in an identical way. The basic logic for
sequential processing is simply input-process-output (and repeat the input
process-output sequence until finished). Each transaction receives identical
treatment.

In this chapter you have learned more about how to handle sequential
fi les:
• How to add records to the end and to the middle of a file
• How to remove records from a file
In the next chapter this added skill will become useful when you update se
quential files.

Summary 1155

156 I Adding and Deleting Records

PROBLEMS I. Use the file "XKJ" from Problem I in Chapter 4 (page 89) and add the
following records:

ID Time I Time 2

107 35 0
209 40 4
420 40 2

Call the new file "XK2". PRINT the new file.

2. Use the file "TOP" from Problem 3 in Chapter 4 (page 89) and add the
following records:

ID Name

250 Bong
263 Cabot
270 Walters
273 Beck

Call the new file "TOPI " . Print the new file.

3. Use the file "XK2" from Problem I above and delete records with the
following IDs: IOI , 209, 281 , 422. Call the new file "XK3". Print the
new fi le.

4. Use the file "TOPI" from Problem 2 above and delete records with the
following IDs: 247, 262, 263, 273. Call the. new file "TOP2". Print the
new fi le.

7 I Updating Sequential Files

157

Updating Flies / 159

At the end of this chapter you should be able to update sequential files with:

• One transaction record for each master record
• Transaction records missing
• Master records missing
• Multiple transaction records for each master record
• Coded transaction records

So far, you have used one or two files in a program. The two files have gener
ally had records with the same fields. When you have created files, the
records have also contained the same fields. In this chapter, sequential files
are used ; however, the records of the different files will not contain the same
number of fields. Updating is the term used to describe the processing
and/ or programs that take master files and transaction files and create new
master files.

The programs in this chapter may appear to be long. Most of the state
ments in each program are remarks. The programs contain these remarks so
that you may follow the logic in the programs more easily.

The payroll example has the file "EMPLOY" that contains records with
the following fields: employee number, department number, name, hourly
rate, regular hours worked, overtime hours worked. This file has been suffi
cient for our needs until now. In using this file, you may have thought that
for each pay period (week), this file is input by a data entry operator with
one record per employee. This is not the way it is done by businesses. If the
"EMPLOY" file was prepared this way each week, there would be a great
deal of duplication. To have to type employee number, department number,
and hourly rate for each employee each week would be a great waste of time,
especially if there were thousands of employees.

In order to avoid this duplication, master files and transaction files are
used . A master file contains information that does not change often. A
transaction file contains information that changes regularly. In the payroll
example, the only information about an employee that may change regularly
(with each payroll) will be regular and overtime hours worked. As a conse
quence of this, each employee may have two records in two different files.
The first file will contain the information that does not change from pay pe
riod to pay period; this is the employee master file. The second file will con
tain the information that does change regularly; this is the employee
transaction file.

An example of typical information contained in an employee master file
and transaction file is given in Figure 7- 1. The information that changes
regularly, regular and overtime hours, appears in the transaction file along
with the employee number (for identification of the record). The employee
master file contains information that does not change often: department
number, name, hourly rate, number of exemptions as well as some other in
formation. The year-to-date information is kept in the master record and,

Performance
Objectives

UPDATING
FILES

160 I Updating Sequential Files

Figure 7-1

Employee Master File

Employee Master Records

• Employee Number

• Department Number

• Name

• Marital Status

• Hourly Rate

• Number o f Exemptions

• Year-to-Date Gross Pay (YTD GROSS)

• Year-to-Date Federal Income Tax Withheld (YTD FIT)

• Year· to· Date Social Security Withheld (YTD FICA)

Employee Transaction File

Employee Transaction Record

• Employee Number

• Regu lar Hours Worked

• Overtime Hours Worked

Data in Employee Master and Transaction Files

obviously, these amounts will change with each payroll. So, the definition of
a master record given above must be modified . A master record contains in
formation that does not often change, as well as summary informa tion. In
th.is case the summary information is year-to-date data. In a business, an
employee master record for payroll would contain many more fields, but for
brevity, the record defined in Figure 7- 1 will be sufficient to illustrate an
update.

In programming terms, an update may be thought of as a program that
matches transaction records with master records and updates the summary
information in the master record. As an integral part of th.is procedure, a
payroll can be prepared as well as any management reports concerning pay
roll. In this chapter, to compute the federal income tax (FIT), use 20% of
gross pay; to compute the FICA amount, use 6. 13% of gross pay. Emphasis
is placed on the programming logic needed to deal with master and transac
tion fi les to perform an update. In a later chapter, the tax information will be
given and you wi ll be able to program the exact computa tions for taxes.
There is no field for year-to-da te net pay since it can easily be computed
(YTD NET PAY= YTD GROSS PAY - YTD FIT - YTD FICA).

Table 7- 1 shows the information in the employee master file,
"EMPMAS", Table 7- 2 shows the information in the employee transaction
file, " EMPTRA". You can create the file "EMPMAS" by wri ting a program
that will take the " EMPLOY" file and print on the records of the

Updating Flies I 161

Employee Master File

Employee Dept. Marital Hourly No. of YTD YTD YTD
No. No. Name Sta/Us Rate Exemp. Gross FIT FICA

101 1 Adams 2 5.00 3 1000.00 200.00 61.30
103 12 Baker 1 5.60 2 1288.00 257.60 78.95
104 17 Bravo 2 4.00 4 860.00 172.00 52.72
108 16 Cohen 2 6.25 4 1187.50 237.50 72.79
172 2 Johnson I 3.75 0 750.00 150.00 45.98
198 1 Tanner 2 4.25 4 765.00 153.00 46.89
202 16 Wilson 2 4.00 5 800.00 160.00 49.04
206 7 Lester 2 5.25 3 1050.00 210.00 64. 37
255 12 Schmidt 2 5.60 5 1288.00 257.60 78.95
281 12 Miller 2 6.00 4 1200.00 240.00 73.56
313 7 Smith 2 4.25 3 977.50 195.50 59.92
347 12 Gray 2 6.00 3 1140.00 228.00 69.88
368 Weaver 3.50 I 752.50 150.50 46.13
422 Williams 2 4.00 2 800.00 160.00 49.04

Employee Transaction File
Employee Number Regular Hours Overtime Hours

101 40 0
103 40 4
104 40 2
108 38 0
172 40 0
198 36 0
202 40 0
206 40 0
255 40 4
281 40 0
313 40 4
347 38 0
368 40 2
422 40 0

"EMPMAS" file the following fields: employee number, department
number, name, and hourly rate. Make sure that you leave space for the five
missing fields. Then write another program or continue in the same program
to input from the keyboard the missing fields-marital status, number of ex
emptions, year-to-date gross pay, year-to-date federal income tax withheld,

Table 7- 1

Table 7-2

162 I Updating Sequential Fifes

and year-to-date social security withheld. Marital status is defined as fol
lows: I = single, 2 = married. The alternative way to create the
"EMPMAS" file is to input all of the data from the keyboard by writing a
program as shown in Chapter 4, page 68.

The "EMPTRA" file may be created by writing a program that reads
the "EMPLOY" fi le and places employee number, regular hours, and over
time hours in the "EMPTRA" fi le. Alternatively, you may write a program
that will input the data from the keyboard. Tht:: transaction fi le data is found
in Table 7-2.

A program that combines the creation of the "EMPMAS" and "EMP
TRA" fi les is given below.:

100 REM THIS PROGRAM CREATES THE EMPLOYEE MASTER FILE
11 0 REM AND THE EMPLOYEE TRANSCTION FILE
1 20 ONERR GOTO 260
125 D$ = CHR$ (4)
130 PRINT D$;"OPEN EMPLOY"
140 PRINT D$;"0PEN EMPMAS"
1 50 PRINT D$;"OPEN EMPTRA"
1 55 PRINT D$;"READ EMPLOY"
160 INPUT N,D,N$, H,R,V
165 PRINT D$
170 PRINT "MARITAL STATUS (l OR 2), EXEMPTIONS FOR "; N$
1 80 INPUT M,E
190 PRINT " YTD GROSS , YTD FIT, YTD FICA"
200 I NPUT G,F,F l
225 PRINT D$;"WRITE EMPMAS"
2 3 0 p RI NT N ; II , II ; D ; II , II ; N $; II , II ; M; II , " ; H ; II , II ; E ; II , II ; G ; II , II ; F ; II , II ; Fl
235 PR I NT D$;"WRITE EMPTRA "
240 PRINT N;"," ;R;"," ;V
250 GOTO 155
260 Y = PEEK (222)
26 5 IF Y = 5 THEN 290
2 70 PRINT D$
275 PRINT "UNUSUAL ERROR",Y
280 STOP
290 PRINT D$;"CLOSE EMPLOY"
300 PR I NT D$;"CLOSE EMPMAS"
310 PRINT D$;"CLOSE EMPTRA"
320 STOP
63999 END

In the program, the transaction file with the weekly hours worked will
be used to update the master file. Also a list of employees and their gross
pay will be printed.

In order to understand the programming involved in an update, the fol
lowing example illustrates what is required.

Updating Flies I 163

Problem Summary

Input
1. Employee master file, "EMPMAS"
2. Employee transaction file, "EMPTRA"

Processing
Match transaction records and master records by employee number.
Calculate gross pay, taxes, and net pay.

Output
An updated master file with the new values for year to date fields. Print
out a list of employee numbers, their names, their net pay, and the up
dated master file suitably labelled.

The program therefore has to perform the following steps:

1. Establish a link to the transaction fi le, master file, and the new master
file.

2. Read a transaction record and associated master record.

3. Calculate the taxes and print the employee number, name, and net pay.

4. Update the master record with the payroll data.

S. Write the updated master record into a new master file.

6. Go back to read more records while there is still data in the files.

7. Print out the updated master file.

A program is shown below:

100 REM UPDATE OF HAST ER FILE
105 REM
110 ONERR GOTO 650
11 5 D$ • CHRS (4)
116 DEF FN R(X) a INT (100 * X + 0.5) / 100
120 REM
1 30 REH SET UP HEAD IN GS
140 REH
1 50 PRINT
160 PRINT "EMPLOYEE", "NAME", "NF.T "
170 PRINT " NUHBER" ," ", " PAY"
180 PR INT
190 REH
200 REH
210 PRINT DS ;"O PEN EHPHAS"
220 PRINT DS ;"OPEN EHPTRA"
230 PRINT DS;"O PEN EHPHAl"
240 REM
250 RE M READ A TRANSACT ION RECORD
260 REM
270 PRINT D$;"REAO EllPTRA"
275 INPUT I,R, V
280 REH
290 REM REA D A MASTER RECORD
300 REM
310 PRINT DS;"READ EMPMAS"
3 15 INP UT N, D,N$, M,H, E , G,F,F l

164 I Updating Sequential Flies

320
330
340
350
360
370
380
390

REii
REM
REH
IF
IF
IF
REM
REH

400 REH

I
I
I

COMPAR E IDS

• N THEN 4 10
> !I THEN 3 10
< N THEN 750

IDS HA TCH -- DO CO MP UTATIONS

410 G 1 • (R * H) + (V * H * 1. 5)
420 F2 • . 2 *GI
430 F3 • .0613 *GI
4 40 P • G I - F2 - F3
45 0 G • G +GI
460 F • F + F2
470 Fl • Fl + F 3
480 Pl • Pl + P
490 REH
500 REH PRINT UP DATE D MASTER RECORO
5 10 REM
520 PRINT 0$; "WRI TE El!PMA I"

FOR UP DATE

525 PRINT N; 11 ,";D;",";NS; 11
,

11 ;M; 11
,

11 ;H; 11
,

11 ; E ; " , 11 ;G; " , 11 ;F;., , 11 ;Fl
528 PRINT 0$
530 REH
540 REM PRIN T I D, NAME , NET PAY
550 REH
555 P • FN R(P)
560 PRINT N, NS,P
570 REH
580 REH READ A TRANSACTION RECORD
590 REH
600 PRINT DS;"READ El1 PTKA"
605 INPUT I , R,V
6 10 GOTO 350
620 REH
630 REH *** ERROR CHECK ***
640 REM
650 PRINT 0$
6 55 Y • PEEK (222)
660 IF Y • 5 THEN 690
665 PRINT " UNUSU AL ERROR" , Y
670 PRINT DS ;"CLOS E EMPH AS "
67 2 PRINT DS;" CLOSE EMP TR A"
674 PRINT DS;·" CLOSE E!IPHAl "
680 STOP
690 L • P EEK (218) + 256 * PEEK (2 19)
695 IF L • 60 5 THE N 780
700 IF L = 9 12 THEN 940
710 S'!'OP
720 REM
730 REH HI SSING MASTER RECORD
7 4 0 REH
750 PRINT OS
755 PRINT " MASTER RECORD MISSING FOR EMPLOYEE NUMBER", I
760 PRINT 0$; " CLOSE E!1PMA S"
762 PRINT DS;"CLOSE EMPTRA"
764 PRINT DS;"CLOSE EMPMAl"
770 STOP
780 PRIN T DS; " CLOSE EMP MAS "
782 PRINT DS ;"CLOSE EMPTRA"
784 PRINT DS;"CLOSE EMPMAI"
7 90 REM
800 REM PRIN T OUT OF UPDATED MASTER FILE
8 10 REM
820 PRINT

Updating Files I 165

830 PRINT
840 PRINT
850 PRINT
860 PRINT " UPOATED MASTER FILE "
8 7 0 PRINT
880 PRINT D$; " OPEN EMPMAI "
890 PRINT " EMPLOYEE" ; SPC(2) ; 11 DEPT", 11 NAMF. ", 11 MARITAL "," HOURLY" , 11 Ex - 11

,
11 YTD","YT0 11

,
11 YTD "

900 PRINT 11 NUMBER 11
; SPC(4) ; 11 11

,
11 11 ," STATUS "," RATE 11 , " EMP " , "GROSS 11

,
11 FIT","FICA 11

9 10 PRINT D$; "R EAD EHPHA I"
912 INPUT N, D,N$,M, H, E , G ,F,Fl
913 G ~ FN R(G)
914 F = FN R(F)
915 Fl • FN R(Fl)
9 18 PRINT D$
920 PRUIT N; SPC(7) ; D, N$,ll,H, E,G , F , Fl
930 GOTO 910
940 PRINT DS;"CLOSE EHPHA I "
950 STOP
63999 END

EllPLOYEE NAHP.
NUllBEP.

101 ADAllS
103 BAKER
104 BRAVO
108 COHEN
172 JOHNSON
198 TANNER
202 11ILSON
206 LESTER
255 SCHl!IDT
281 II ILLER
3 I 3 SMITH
347 GRAY
368 WF-AVEP.
422 WILLIAMS

NET
PAY

147.74
190.29
127.06
175 . 44
110 . 81
113 . 02
11 8 . 19
155 . 1 3
190.29
1 77 . 29
144 . 4 2
168 . 42
11 J. I 7
118 . 19

UPDATED MASTER FILE

EMPLOYEE DEPT NAllF. llARITAL HOURLY EX- YTD
NUMBER STATUS RATE EHP GROSS
10 I ADAllS 2 5 3 12 00
103 l 2 BAY.ER I 5 . 6 2 15 4 5. 6
I 04 I 7 BRAVO 2 4 4 1032
108 16 COHEN 2 6. 2 5 4 14 25
I 7 2 2 JOH NSO!! l 3 . 7 5 0 900
198 l TANNER 2 4 . 2 5 4 918
202 l 6 WILSON 2 5 960
20 6 7 LESTER 2 5 . 2 5 3 1260
255 l 2 SCHMIDT 2 s . 6 5 1545 . 6
281 l 2 MILLER 2 6 4 1440
31 3 7 SMITH 2 t, . 2 5 3 1173
347 l 2 CRAY 2 6 3 1368
368 l WEAVER 3 . 5 l 903
422 l llILLIA!IS 4 2 960

BREA!'. IN 950

The easiest way to understand the logic that is required for an update is
to begin with the flowchart (Figure 7-2). This flowchart does not represent
each line in the program with a box. It focuses on the logic of matching
transaction records with master records in (a) and the logic of the error rou
tines in (b). First, a record from the transaction file "EMPTRA" is input
then a record from the master file "EMPMAS" is input. In matching the
transaction record to the appropriate master record three conditions may

YTD YTD
FIT FICA
24 0 73 . 56
309 . 12 94 . 74
206.4 63 . 26
285 87 .35
180 55. 18
183 . 6 56 . 27
192 58 . 85
252 77 . 24
309 . 12 9t, • 7 t,
288 88 . 27
234 . 6 71 . 9
273 . 6 83 . 86
180 . 6 55 . 36
19 2 58 . 85

166 I Updating Sequential Fi les

Figure 7-2

Start

Open
Files

Input
Transaction

Record

Input
Master
Record

Perform
Calculations

Print New
Master Record

Input
Transaction

Record

Print
Master Record

Missing

Close
Files

Terminate

NO

(al Match ing Logic

Flowchart of Update Program

Updating Files I 167

Print
Unusual Close Fi les Terminate

Error

Input New
Close Files Open Fi le Master

Record

NO

Pri nt New
Master
Record

YES
Close Files Terminate

Term inate

{b) Error Logic (Error Routines)

Flowchart of Update Program (cont'd)

occur. The employee number (ID) of the transaction record may be greater
than, less than, or equal to the employee number (ID) of the master record.
• If the transaction record ID is greater than the master record ID: Then,

there is no transaction and input the next master record. This should not
occur since there is one transaction record for each mast~r record.

• If the transaction record ID is equal to the master record ID: Then, per
form the update calculations, print the updated (new) masterfile, and
print the employee ID, name, net pay. Read the next transaction record.

• If the transaction record ID is less than the master record ID: Then, a
master record is missing from the master file. If a master record is miss
ing, a message is generated and the program is terminated.

Note: Remember, the transaction and master files must be in ascending order of
employee number (ID).

Figure 7-2

168 / Updating Sequential Files

Figure 7-3

If the flowchart does not help you understand the program, then let us
perform the job (update) manually. There are two files "EMPMAS" and
"EMPTRA", assume that they are in separate cabinets. Also assume that the
da ta on each record in both files are on a separate sheet of paper, and that
the files are organized in ascending employee number. In order to focus on
the problem of matching master and transaction records only the first field,
employee number (ID), is shown in Figure 7- 3.

Master File Transaction File
"EMPMAS" "EMPTRA"

Record Number Employee Number Employee Number

1 101 101
2 103 103
3 104 104
4 108 108
5 172 172
6 198 198
7 202 202
8 206 206
9 255 255

10 281 281
11 313 313
12 347 347
13 368 368
14 422 422

Employee Number Fields for Master and Transaction Records

Manually we would reach into the transaction file and read the first re
cord. Remember, you can only read one record at a time! We then reach into
the master fi le for a record. The IDs match (both are 101). We update the
master record with the information on the transaction record and then read
the second transaction record. Its ID is 103, the master record ID is still JOI
so we read the next master record. Its ID is 103 and we have a match. We
update and read the third transaction record- ID is 104. The master ID is
still 103, so we read the next (third) master record and have a match. We
update and proceed until there are no more records to be processed.

In the program the ONERR condition is reached after the last master
record is updated. To be more specific, the ONERR is reached at line 605
where an attempt to read a transaction record encounters the end of file.
Then the files are closed and the updated master file ("EMPMAI ") is
printed.

In the program, a new BASIC instruction appears in line 690.

L = PEEK(218) + 256 * PEEK(219)

All of the programs that read files test for the end of a file (after the last
record) with the ONERR instruction. In all of the prior programs, when the

Updating with Missing Transactions I 169

end of a file occurred the program would close the file and terminate. Or, a
test value was set so that other functions could be performed before termi
nation. The instruction in 690 allows us to determine the line number in a pro
gram where an ERR (in this case an end of file) occurs. The computer deter
mines the value when the program is executed. The logic of the program and
a one to one correspondence between master and transaction records will
result in the end of file occurring at line 605 . Lhasa value equal to the line
number at which the ERR occurs. The test IF L = 605 will allow the execu
tion of line 780 next, and result in a print out of the upda ted master file.
When the end of fi le is reached, the ONERR will allow the execution of line
650 again and the program will test for L = 605 which is not the case. Then
it will test for L = 9 12 which is the case. So "EMPMAl" will be closed and
the program will terminate. A flowchart for the testing of the ERR condi
tions is found in Figure 7-2(b).

There is one additional new instruction in the program. Line 116 is an
example of a function This function differs from the INT function in that
it is defined in the program. So it is called a user defined function. The INT
function was ready for you to use because it is part of the BASIC language.
The function in the program

116 DEF FN R(X)=INT(IOO•X+.5) / 100

is an example of a user defined function. This function is used to round off
decimal numbers to two decimal places (dollars and cents). We have already
used the logic of this function in Chapter 5. A function may be defined as
any arithmetic statement. Functions are used to eliminate repetition of
arithmetic statements and abbreviate typing in much the same way as
D$=CHR$(4) was used.

In lines 555, 913, 914, and 915, the function is used to round off numeric
fields to dollars and cents so that our output will be more readable.

You may be thinking at this point that all you have to do is read a trans
action record and a master record and they will match. This is the case here
where there is one, and only one, transaction record for each and every
master record. It is rarely the situation!

The payroll example illustrates an update where there is one transaction re
cord for each master record. There are many instances where there may be
more than one transaction record for each master record or no transaction
record for a master record. Common examples are credit card statements,
sales, inventory, and customer statements.

For the next example, the sales file " SALES" will be used as the master
fi le and the transaction fi le will be called "SALEST". The data in these files
is given in Tables 7-3 and 7-4. If you have the "SALES" file saved, you can
run the alphabetic sort given in Appendix B on this file or create a new

UPDATING
WITH MISSING

TRANSACTIONS

170 I Updating Sequential Files

Table 7-3

Table 7-4

"SALES" file with data shown in Table 7-3. The transaction fi le,
"SALEST'', must be created. The program should print out an error
message if a master record is missing, but it should not terminate.

Sales Master File "SALES" Sorted Alphabetically By Salesman

Gross Sales

Department Salesman Year-to-Date Commission Rate

I Bill 12050 .05

3 Bob 14690 .05

3 Clyde 7340 .04

3 Harry 9460 .045

I Joe 5270 .045

2 Phil 11200 .055

2 Tom 69.<lO .04

Sales Transaction File "SALEST" Sorted Alphabetically By Salesman

Salesman Amoum of Sale

Bill
Bill
Bill
Clyde
Clyde

Harry
Joe
Joe

Problem Summary

Input
I. Sales commission master file, "SALES"
2. Sales transaction file, "SALEST''

Processing

1050

275

390

460

290

1500

280

490

Match transaction records and master record by salesman's name. Cal
culate the commissions for the salesmen due on the transaction data.

Output
A list of commissions for the salesmen for their latest sales, an updated
master file with the new value of year to date sales, and print out the
updated master file.

Updating With Missing Transactions I 171

The program therefore has to perform the following steps:

1. Establish a link to the transaction, master and new master files.
2. Read a transaction record and the associated master record.
3. Calculate the commissions for the latest sales.
4. Print the commissions for the salesmen.
5. Update the master record with the transaction data.
6. Write the updated master record into a new master file.
7. Go back to read more records while there is still data in the files.
8. Print out the updated master file.

See the flowchart (Fig. 7-4) and the following program.

100
110
115
1 20
130
140
150
160
1 70
180
19 0
200
210
220
2 30
240
250
260
2 65
270
280
2 90
300
305
308
310
320
330
340
350
3 60
3 70
380
3 90
400
410

REM PROGRAM TO UPDATE SALES
ONERR GOTO 1040

D$ = CHR$ (4)
REM
REM SET UP HEADINGS FOR OUTPUT
REM
PRINT "NAME"," COMMISS IO N"
PRINT "------------------------- "
REM
REM LINK TO FILE S
REM
PRINT D$; "0PE N SALEST"
PRINT D$;"0PEN SALMAS"
PRINT D$;"0PEN NSALES"
REM
REM READ A TRANSACTION RECORD
REM
PRINT D$;"READ SALEST"
INPUT N$,A
REM
REM READ A MASTER RECORD
REM
PRINT D$;"READ SALMAS"
INPUT D, S$,G,C
PRINT D$
REM
REM COMPARE TRANSACTION WITH MASTER
REM
IF N$ a S$ THEN 4 10
IF N$ > S$ THEN 550
IF N$ < S$ THEN 670
REM
REM TRANSACTION EQUAL TO MASTER
REM UPDATE THE MASTEP
REM

G = G + A

172 I Updating Sequential Files

420
430
440
450
4 60
4 70
4 80
4 90
500
5 05
508
5 10
520
530
540
5 50
5 55
5 60
570
5 80
590
600
6.10
620
630
640
650
660
670
6 7 5
680
6 90
700
7 20
730
7 35
740
745
75 0
760
770
780
790
7 9 2
7 94
80 0
810
820
830
840
850

Cl = A * C
REM
REM PRINT NAME AND COMMI SSION
REM
PR INT S$,Cl
REM
REM READ NEXT TRANSACTION AND GO TO COMPARE
REM
PRINT D$;"READ SALEST"
INPUT N$,A
PRINT D$
GOTO 340
REM
REM TRANSACTION GREATER THAN MASTER
REM
PRIN T D$;"WRITE NSALES"
PRINT D;", "; S$; ","G ;", "; C
REM
REM GO BACK AND GET ANOTHER MASTER
REM
GOTO
REM
R.EM
REM
REM
REM
REM

300

REM
PRINT D$

TRANSACTION LESS THAN MASTER
ERROR -- NO MASTER IN FILE
WRITE ERROR MESSAGE, THEN
READ ANOTHER TRANSACTION AND
CONTINUE PROCESSING

PR INT "** *TRANSACTION WITHOUT MASTER*** ";N$,A
GOTO 500
REM
REM NO MORE TRANSACTIONS -- WRITE REMAININ G MAS TER RECORDS
REM
PRINT D$;"WRITE NSAL ES "
PRINT D;",";S$;",";G;",";C
PRINT D$;"READ SALMAS"
INPUT D,S$,G,C
GOTO 730
REM
REM UPDATE IS FINISHED -- PRINT THE UPDATED MASTER
REM
PRINT D$;"CLOSE SALEST "
PRINT D$;"CLOS E SALMAS "
PRINT D$; "CLOSE NSALES "
PRINT D$; " OPEN NSALES"
REM
REM PRINT HEADIN GS
REM
PRINT
PRINT

8 60
8 70
8 80
8 90
9 00
910
920
930
940
950
955
958
960
970
980
990
1000
1010
l 020
l 030
1040
1045
1050
l 05 5
1060
l 06 2
1064
1070
1080
l 085
1090
1100
1110
63999

NAME

BILL
BILL
BILL
CLYDE
CLYDE
HARRY
JOE
JOE

Updating With Missing Transactions I 173

PRINT "UPDATED FILE -- NSALES"
PRINT "------- --- - - ----------"
PRINT
PRINT "TERRITORY","NAME","YTD","COMMISSION"
PRINT II "," ","SALES","RATE"
PRINT "---------", " ","
REM
REM READ A RECORD AND PRINT
REM
PRINT D$;"READ NSALES"
INPUT D,S$,G,C
PRINT D$
PRINT D,S$,G,C
GOTO 950
REM
PRINT D$;"CLOSE NSALES"

GOTO 1110

" ti ,

REM *******************************
REM *** ERROR CHECKING ROUTINES ***
REM *******************************
PRINT D$

Y = PEEK (222)
IF Y = 5 THEN 1080
PRINT "UNUSUAL ERROR",Y
PRINT D$;"CLOSE SALEST"
PRINT D$;"CLOSE SALMAS"
PRINT D$;"CLOSE NSALES"
STOP

L = PEEK (218) + 256 * PEEK (219)
IF L 505 THEN 730
IF L 745 THEN 790
IF L 955 THEN 990
STOP

END

COMMISSION

52.5
13. 7 5
19.5
18.4
11. 6
67.5
12. 6
22 . 05

II

17 4 I Updating Sequential Flies

UPDATED FILE -- NSALES

TERRITORY

1
3
3
3
1
2
2

BREAK IN 1110

NAME

BILL
BOB

' CLYDE
HARRY
JOE
PHIL
TOM

YTD
SALES

13 765
14690
8090
10960
6040
11200
6940

COMMISSION
RATE

.05

.0 5

.04

.045

.045

.055

.04

The flowcharts and program are different from the payroll update in five
ways:

l. Missing transaction records occur.

2. The new master record is printed on the file when the transaction record
ID is greater than the master record ID.

3. The matching of IDs is on alphabetic data.

4. The program will not terminate when a master record is missing.

5. Multiple transaction records for each master record occur.

Missing transactions are accounted for in the logic in two places. First,
new master records are printed on the file only when the transaction record
ID is greater than the master record ID. Second, if the end of the transac
tion file has been read and master records remain to be processed, line 1085
IF L = 505 THEN 730 and the instructions that follow line 730 take care of
this problem.

IDs that consist of alphabetic information (salesman name) are matched
in this program. There is no essential difference between matching alpha
betic as opposed to numeric IDs as far as the programming is concerned.

The program will not terminate if master records are missing. This prob
lem is solved by printing the appropriate message and reading the next
transaction record.

Finally, the program will handle the case where there is more than one
transaction record for a master record. This is done by not printing a new
master record until the transaction record ID is greater than the master re
cord ID. Also, the accumulation of the gross sales in line 410, G = G + A,
wil l update the gross sales on the master record correctly. The value of G is
changed each time a master record is read, while the value of A will be
added to it for each transaction record.

The program can best be understood by referring to the flowchart (Fig
ure 7- 4), Figure 7- 5, and tracing the logic. The first transaction record is

Print
New Master

Record

Stan

Open
Files

Input
Transaction

Record

Input
Master
Record

Perform
Calculations

Input
Transaction

Record

(a) Matching Logic

NO

Flowchart of the Sales Update

Updating With Missing Transactions I 170

Print
No Master

Record

Figure 7-4

176 I Updating Sequential Flies

Figure 7-4

Terminate

Print
Unusual

Error

Print New
Master
Record

Terminate

Close Files

Input
Master
Record

Open File1--.-1~

Print
Record

(b) Logic of Error Routines

Terminate

Input
Record

Flowchart of the Sales Update (conrd.)

input followed by the first master record. The salesman for both these
records is Bill. There is a match, the name and commission are printed and
the second transaction record is input. The master record ID is Bill and the
second transaction record ID is Bill. So the name and commission are
printed using the data of the second transaction record. The third transac
tion record is read. There is another match and the printout of name and
commission occurs again. The fourth transaction record is read (Clyde) and
the transaction record ID is greater than the master record ID so the master
record for Bill, now fully updated by three transaction records, is printed
and the second master record is read (Bob). You may wonder how Clyde is
greater than Bob. The answer is that the letter "C" is greater, or of higher

Updating With Coded Transactions / 177

value, than the letter "B". The alphabet from A to Z is viewed by the com
puter as just a series of increasing values. It is this fact that allows us to per
form alphabetic sorts as in Appendix B, and compare alphabetic fields with
IF statements.

Master File
SALES

Record Number Salesman

1
2
3
4
5
6
7
B

Bill
Bob

Clyde
Harry
Joe
Phil
Tom

Transaction File
SA LEST

Salesman

Bill
Bill
Bill

Clyde
Clyde
Harry
Joe
Joe

Salesman Fields For Master and Transaction Records

At this point, we have printed Bill's updated master record, input Bob's
master record, and input Clyde's transaction record. Clyde is greater than
Bob (TR> MR) so Bob's master record is printed. There were no transac
tion records for Bob; so his updated master record remains the same and the
next master record is input (Clyde). There is a match, name and commission
are printed, and the next transaction record is input (five). There is another
match, name and commission are printed and the next transaction record is
input (Harry). Harry is greater than Clyde, so Clyde's master record is
printed and the next master record input (Harry). The logic continues in the
above manner until the end of the master file is reached and the program is
finished. Note, there are no transactions for Phil or Tom so that the end of
file for the transaction file occurs at line 505. The statement IF L = 505
THEN 730 will direct the computer to line 730 and the remaining master
records that do not have any transaction records will be printed on the new
master file. The two other L statements (1090, 1100) are used to print out
the updated master file and produce the required report.

The final example of an update program will use exactly the same logic as
the last program, but the transaction file will be more complex. This last ex
ample will be an inventory problem. It will use as the master file the file
"INVMR". Table 7- 5 gives the contents of the master file, Table 7-6 the
transaction file, "INVTR".

Figure 7-5

UPDATING
WITH CODED

TRANSACTIONS

178 I Updating Sequential Files

Table 7-5

Table 7-6

Inventory Master File

Part
Number Units on Hand Cost

101 350 5.00
110 275 7.00
2 19 90 3.25
226 120 2.95
235 360 6.20
247 140 4.60

Inventory Transaction Fi le

Part Transaction
Number Code Quantity

JOI I 150
10 1 2 75
JOI 2 60
JOI 2 20
2 19 2 20
226 I 75
226 I 100
226 2 90
235 2 30
247 70

You will have to write programs to create both the transaction and mas
ter fi le. The transaction records have three fields: the part number (ID), a
transaction code, and a quantity. The transaction code field has either the
number I or 2 in it. A transaction code of I means that the transaction is a
receipt to inventory. A transaction code of 2 means that the transaction is an
issuance of goods from inventory. The first transaction record (101,1 ,150)
means that 150 units of part IOI were received in inventory. The third trans
action record (10 1,2,60) means that 60 units of part 101 were issued from
inven tory.

You may assume that the master file is updated at the end of each week
and that the transactions were generated during this week. The fi les are
sorted by part number and you have to write the program for the update.
For the updated master fi le, the ca lculation is as follows:

Units on Hand = Units on Hand (in the old master file)
+ Units received (transaction code I)

- Units issued (transaction code 2)
Besides updating the master fi le, one report is to be produced. The re

port is an " Inventory Valuation Report." It lists the part numbers and the

Updating With Coded Transactions I 179

amount of money that is tied up in inventory at the end of the week. It is
produced from the updated master file.

Problem Summary

Input
I. Inventory master file, "INVMR"
2. Inventory transaction file, "INVTR"

Processing
Match transaction records and master records by part number. Calcu
late quantities received and issued by transaction code. Calculate units
on hand.

Output
An updated master fi le, "INVSN", and an inventory valuation report.

The program therefore has to perform the following steps:

I . Establish a link to the transaction file and the master and new master
files.

2. Read a transaction record and associated master record.

3. Determine from the transaction code whether the quantity is issued or
received.

4. Update the master record.

5. Write the updated master record.

6. Go back to read more records while there is still data in the files.

7. Print out the new master file.

8. Produce the report from the updated master file.

The program follows:

100 REM PROGRAM TO UPDATE INVENTORY
110 D$ = CHR$ (4)
115 REM
120 REM LINK TO FILES
130 REM
140 PRINT D$;"0PEN INVTR"
150 PRINT D$;"0PEN INVMR"
160 PRINT D$;"0PEN INV SN II
170 REM
180 REM READ A TRANSACTION RECORD
190 REM
200 ON ERR GOTO 1260

180 I Updating Sequential Files

210
215
220
230
240
250
255
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
4 30
440
450
460
470
480
490
500
510
515
520
530
540
550
560
565
570
580
590
600
610
620
630
640
650

PRINT D$; "READ INVTR II
IN PUT P 1, T l , Q 1
REM
REM READ A MASTER RECORD
REM
PRINT D$;"READ INVMR"
INPUT P2,Q2,C2
REM
REM
REM
IF Pl
IF P l
IF Pl
REM

COMPARE TRANSACTION WITH MASTER

P2 THEN 380
> P2 THEN 560
< P2 THEN 680

REM TRANSACTION EQUAL TO MASTER
REM SO UPDATE THE MASTER
REM
REM CHECK IF TRANSACTION IS RECEIPT OR ISSUE
REM
IF Tl = 2 THEN 470
REM
REM Tl=l
REM

Q2 = Q2 + Ql
GOTO 510
REM
REM : Tl=2
REM

Q2 = Q2 - Ql
REM
REM READ NEXT TRANSACTION AND GO TO COMPARE
REM
PR I NT D$;"READ INVTR "
INPUT Pl,Tl,Ql
GOTO 290
REM
REM TRANSACTION GREATER THAN MASTER
REM WRITE UPDATED MASTER RECORD
PRINT D$;"WRITE INVSN"
PRINT P2;",";Q2;",";C2
REM
REM GO BACK AND GET ANOTHER MASTER
REM
GOTO 250
REM
REM TRANSACTION LESS THAN MASTER
REM ERROR - - NO MASTER IN FILE
REM WRITE ERROR MESSAGE, THEN
REM READ ANOTHER TRANSACTION AND

660
670
680
685
690
700
710
730
740
745
750
755
760
770
780
790
800
802
804
8 10
820
830
840
850
860
870
880
890
900
910
920
925
928
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080

REM CONTINUE PROCESS I NG
REM
PRINT D$

Updating With Coded Transactions I 181

PRINT "***TRANSACTION WITHOUT MASTER ";P l,Tl , Ql
GOTO 5 10
REM
REM NO MORE TRANSACT I ONS -- WRITE REMAINING MASTER RECORDS
REM
PRINT D$;"WRITE INVSN"
PRINT P2;",";Q2;",";C2
PRINT D$;"READ IN VMR "
INPUT P2,Q2,C2
GOTO 740
REM
REM UPDATE IS FINISHED -- PRINT THE UPDATED
REM F ILE AND THE REPORT
PRINT D$;"CLOSE I NVT R"
PRINT D$; " CLOSE I NVMR "
PRINT D$;"CLOSE INVSN "
PRINT D$;"0PEN INVSN"
REM
REM HEADINGS FOR UPDATED FIL E
REM
PRINT
PRINT II

PRINT "
PRINT

NEW INVENTO RY MASTER FILE"
------------------------ - ''

PRINT "PART","UNITS","COST"
PRINT " NUMBER ","ON HAND "
PRINT "------","-------","
PRINT D$;"READ INVSN "
INPUT P,Q,C
PRINT D$
PRINT P,Q,C
GOTO 920
PRINT D$;"CLOSE INVSN"
PRINT D$;"0PEN INVSN"
REM
REM PRINT REPORT HEADINGS
PRINT

PRINT

II

PRINT " INVENTORY VALUATION REPORT "
PRINT II -------------- - -----------"

PRINT
PRINT "PART", " DOLLAR"
PRINT "NUMBER","AMOUNT"
PRINT "------", ' ' - - ----"
REM
REM READ A RECORD AN D CALCULATE I NVENTORY VALUES

182 I Updating Sequential Files

1090
1100
1110
111 5
1118
1120
1130
1140
1150
1160
1170
11 80
1190
1195
1200
1210
1220
1230
1240
1250
1260
1265
1270
1275
1280
1282
1284
1290
1300
1305
1310
1320
1 330
1340
63999

REM
T = 0

PRINT D$; "READ INVSN"
INPUT P,Q,C
PRINT D$

D = Q * C
T = T + D

PRINT P,D
GOTO 111 0
REM
REM END OF DATA -- PRINT TOTALS
REM
PRIN T D$
PRINT "------ ------------------"
PRINT " TOTAL",T
PRINT D$;"CLOSE INVSN "
GOTO 13 40
REM *******************************
REM *** ERROR CHECKING ROUT INE S ***
REM *******************************
PRINT D$

Y = PEEK (222)
IF Y = 5 THEN 1300
PRINT "UNUSU AL ERROR",Y
PRINT D$;"CLOSE INVTR"
PRINT D$;"CLOSE INVMR"
PRINT D$;"CLOSE INVSN "
STOP

L = PEEK (2 1 8) + 256 * PEEK (219)
IF L 5 15 THEN 740
IF L 755 THEN 8 00
IF L 925 THEN 950
IF L 1115 THEN 1190
STOP
END

NEW INVENTORY MASTER FILE

PART UNITS COST
NUMBER ON HAND
------ -------
101 345 5
1 10 275 7
2 19 70 3. 2 5
226 205 2. 95
235 330 6 . 2
247 210 4.6

Updating With Coded Transactions I 183

INVENTORY VALUATION REPORT

PART DOLLAR
NUMBER AMOUNT
------ ------
101 1725
110 1925
219 227.5
226 604.75
235 2046
247 966

The flowchart is the same as the flowchart of the sales update program
(Figure 7-4) with one minor exception-the logic for handling the transac
tion codes. The flowchart for this portion of the program is Figure 7- 6.
Since the master record inputs the value of Q2, the two statements

Q2 = Q2 + Ql
Q2 = Q2 - Ql

will accumulate the value of Q2 updated by the transaction records until the
new master record is printed and a new master record is input.

02=02+ 0 1

Input
Transaction

Record

NO

YES

Procedure
for

Nonmatching

02= 02- 01

Flowchart of Transaction Code Logic Figure 7- 6

184 I Updating Sequential Files

SUMMARY

The data for the required report are obtained from the new master file
and the report is the last part of the program.

This chapter covered the updating of sequential files. Descriptions of master
files and transaction files to produce a new updated master file were given.
Various conditions with respect to the correspondence of master and trans
action records were handled by the programs. In each program the third IF
statement used to match master and transaction records could have been re
placed by a GO TO statement. The IF statement was used to emphasize the
logic of matching. The new instruction L = PEEK(2 l 8) + 256 * PEEK(2 I 9)
was discussed and illustrated.

The objective of data processing in a business environment is achieved
by the update. Through the update, customer statements, payrolls, accounts
receivable, accounts payable and general ledgers are produced on some time
cycle, usually once a month.

BASIC Instructions Introduced:

Instruction Explanation

L = PEEK(218) + 256 * PEEK(219) Gives the line number at which an
ONERR condition took place. The
field L was arbitrarily chosen to rep
resent the line number. Any other
field name may be used.

DEF FN R(X) Allows the programmer to define
mathematical functions to avoid rep
etitious typing in a program.

I. Modify the first update progra.m--(payroll example) so that it will provide
the logic required to:

a. Handle a missing transaction record.

b. Continue processing rather than stop after printing the error message
"MASTER RECORD MISSING FOR EMPLOYEE NUMBER".

Create and use the following transaction file to test the program.

Employee Regular Overtime

Number Hours Hours

103 40 4
108 38 0
165 40 0
198 36 0
255 40 4
313 40 4
368 40 2

Use " EMPMAS" as the master file.

Print out the updated master file with sui table headings.

Print out the employee numbers, names and their net pay. Remember
some employees will receive no pay.

2. Modify the sales update program so that it will print out the total com
mission due to each salesman, rather than the commission for each sale.
Also print out the total commission due to all salesmen.

3. Modify the inventory update to print out for each part number the total
units issued and received.

4. Assume that the payroll transaction file can contain more than one re
cord for an employee. Modify your program in Problem I so that it can
use the following transaction file and perform the update.

Employee Regular Overtime

Number Hours /-lours

104 20 0
104 20 5
108 JO 0
198 40 7

202 15 0
202 25 4

Problems I 185

PROBLEMS

186 I Updating Sequential Files

202 0 6

206 20 0
206 20 3
313 30 0
313 10 0
313 0 8

There should be a printout for every employee showing number, name,
and net pay- even if it is zero. Use one line per employee. Also print out the
new master file.

8 I Using Lists and Tables

187

Summary Output I 189

At the end of this chapter you should be able to:

• Set up lists and tables
• Use lists to accumulate summary output
• Use tables to hold data for reference
• Use lists and tables to hold da ta for processing

All the transaction processing applications that we have discussed have basi
cally the same pattern. The pattern consists of getting a transaction, doing
the required computation for that transaction, outputting required results,
and then looping back to get the next transaction. Such processing mini
mizes the amount of data required by the computer.

But business bas problems that require a group of data to be entered at
the beginning and used for all transactions. Tax tables come readily to mind.
And business also has analytic problems, where a ll the data has to be avail
able to solve a problem or where data is collected from all transactions and
held for output until the end of all transactions. An example of the first type
would be a linear programming problem (which is a management science
method). An example of the second type would be analytic reports that clas
sify data in categories.

To help solve these types of problems, BASIC provides lists and tables.
A list is a series of items in a meaningful grouping or sequence. Employee
names in alphabetic sequence would be an example of a list. Total sales in
item number sequence might be another example. Any row or column of
items constitutes a list.

A table is an arrangement of words, numbers, or signs in parallel col
umns. It is used to show a set of facts or relationships in a compact and com
prehensive form. Income tax tables are a clear example of "an arrangement
of ... numbers ... in parallel columns." A table is therefore a grouping of
lists. A list is a one-dimensional (row or column, but not both) presentation
of data; and a table is a two-dimensional (both rows and columns) presenta
tion of data.

Let's derive a problem from the payroll application to get a feel for the use
of lists and tables. Assume that you need to summarize the payroll expense
by department. As you recall, there are 20 departments-numbered consecu
tively from I .to 20. But sorting the file is a time consuming process. Hence
the "EMPLOY" fi le will not be sorted for this problem. A simple representa
tion of this type of problem is shown in Figure 8-1.

Input
"EMPLOY" fi le

Processing

Problem Summary

Calculate gross pay and accumulate gross pay by department.

Performance
Objectives

SUMMARY
OUTPUT

190 I Using Lists and Tables

Figure 8-1

Output
Total gross pay by department

The program therefore has to:

I. Link to the " EMPLOY" file.

2. Read a record.

3. Calculate the gross pay.

4. Accumulate gross pay by department number.

5. When all records have been processed, print the departmental gross pay
totals.

6. Terminate.

A flowchart (Fig. 8- 1), a program to perform these tasks, and the out
put are shown below:

Start

Terminate
Process Data

Store Data

Flowchart for Summary Output

Summary Output I 191

100 REM PROGRAM TO ACCUMULATE GROSS PAY BY DEPARTMENT
110 REM
115 D$ = CHR$ (4)
120 REM OPEN FILE
130 REM
140 PRINT D$;" OPEN EMPLOY"
150 REM
160 REM SET UP A LIST TO HOLD DEPARTMENT TOTALS
170 REM
180 DIM T(2 0)
1 90 REM
200 REM READ A RECORD UNT I L OUT OF DATA
220 ONERR GOTO 360
230 PRINT D$; " READ EMPLOY"
235 INPUT N,D , N$,H,R , V
240 REM
250 REM CALCULATE AMOUNT OF GROSS PAY
260 REM
270 G = H * R + H * V * 1 .5
280 REM
290 REM ACCUMULATE GROSS PAY BY DEPARTMENT NUMBER
300 REM
310 T(D) = T(D) + G
320 GOTO 230
330 REM
340 REM CHECK FOR END OF FI LE AND PRINT RESULTS
350 REM
360 PRINT D$
365 Y = PEEK (222)
370 IF Y = 5 THEN 420
375 PRINT " UNUSUAL ERROR" , Y
380 GOTO 520
390 REM
400 REM PRINT DEPARTMENTAL TOTALS WITH HEADINGS
410 REM
420 PRINT "DEPARTMENTAL GROSS PAY TOTALS "
4 30 PRINT
440 PRINT "DEPARTMENT " , " GRO SS PAY"
450 PRINT "----------", "---------"
460 FOR M = 1 TO 20
465 T(M) = INT (100 * T(M) + .5) / 100
470 PRINT M,T(M)
480 NEXT M
490 REM
5 00 REM TERMINATE
5 1 0 REM
5 20 PRINT D$; "C LOSE EMPL OY"
530 STO P
63999 END

192 I Using Lists and Tables

DE PARTMENTAL GROSS PAY TOTALS

DEPARTMEN T GROSS PAY

------- --- ---------
1 663 . 5
2 15 0
3 0
4 0
5 0
6 0
7 405.5
8 0
9 0
10 0
1 1 0
12 9 83 .2
13 0
14 0
15 0
16 397.5
1 7 172
18 0
19 0
20 0

BREAK IN 530

Now here is a program with some interesting new features:

• The DIM statement in line 180
• The summation in line 310 and the output in 470
• The FOR statement in line 460 and its associated NEXT statement in

line 480

Let's look at each of these three items in turn. The DIM statement sets
up a list, a t least that is what the preceding remark in line 160 says. But what
exactly does it do? In this case, line 180 tells the computer to reserve 20 con
secutive positions all under the name "T." Previously, one field name served
to identify one value. Here, one field name serves to identify many values.

If many values are identified by one name, how can you differentiate be
tween the values? The answer is simple- by position. Line 180 sets up a list
of 20 positions, thus:

r I 1 I 2 I 3 I 4 I 5 I 6 I 1 ~ 13 I 14 I 15 I 16 I 11 I 1 s I 19 I 20 I
To get any' one item in the list, we need to specify its position (1-20).

The value in the first position would be referred to as T(l). If we wanted the
value from the second position, then T(2) is used. The location in the list is
specified by enclosing a number, or a field name that has the position de
sired, in parentheses.

Line 310 refers to T(D). Here the " D" (enclosed in parentheses) speci-

Reference Tables I 193

fies which position in T is involved. Hence the Dth position (whatever the
department number D may be) of T is referenced. Similarly, in line 470, the
reference is to position M (whatever value M may have) in T.

A new BASIC instruction in this program is found in lines 460 and 480.
These two lines define a loop. A loop is a shorthand way of telling the com
puter to repeat a series of instructions a certain number of times. Line 460
sets up the loop and gives the loop parameters. The loop parameters tell the
computer how often the statements in the loop are to be repeated. Line 480
closes the loop.

In general, the FOR-NEXT statements form loops. The statements
wi thin a loop are repeated the number of times specified in the FOR state
ment by the loop parameters. The loop parameters (in line 460), I TO 20,
specify that the loop will be repeated twenty times. Each time the loop is
repeated, the value of M will be increased by one. By this manner, when M
reaches a value of 20, the loop will be repeated one more (final) time.

Line 460 tells the computer to repeat the statements between 460 and
480 (the NEXT M statement) twenty times. In this example, line 470 is per
formed for M values of I, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18,
19 and 20 in turn.

Let us look closely at what the program does. First it opens a file for
input. This is the file "EMPLOY" from past examples. The fi le contains em
ployee records with six fields:

• Employee number

• Department number

• Employee name

• Hourly rate

• Regular hours

• Overtime hours

The department number is between I and 20. The range of department
numbers is important because we want to accumula te gross pay by depart
ment. Next a list "T" with 20 positions: one for each of the departments, is
set up. Then the program reads a record and calculates gross pay. The de
partment number (D) is used to add the gross pay to that location in T. In
other words, whenever the gross pay for a person in department 2 is calcu
lated, it is added to the second position in T. Similarly if the department
were 16, gross pay would be added to the sixteenth position in T.

After the end-of-file has been reached, the gross pay for each of the de
partments is printed in lines 460-480. Notice that line 470 will print M,
which stands for the department number, as well as the Mth value of T
(which is the departmental gross pay total).

Many problems require the use of reference tables. Income tax tables are the
most obvious example. But life insurance companies use actuarial tables;
s ta tisticians use s tatistical tables; and financial analysts use present value o r

REFERENCE
TABLES

194 / Using Lists and Tables

Figure 8-2

annuity tables. If you look closely, you can see tables everywhere. Even this
book has a table, a table of contents.

Tables hold data for reference. When the data is needed, we look it up in
the appropriate table. One problem that requires table referencing is an in
come tax calculation. A simple representation of this type of problem is
shown in Figure 8-2.

Start

Input
Table Data

Input
Transaction

Data

Process Transaction
Using Reference

Data

Output
Results

Y ES

Flowchart for Reference T.ables

Termi nate

The income tax problem requires two tables: one for single people; an
other for married people. Both are shown in Table 8-1. But the tables pro
vided by the Internal Revenue Service have to be changed to fit our require
ments. The tables need to be consistent. Table 8-2 is the same IRS tables
made consistent by the addition of the first line.

Before the tables can be used in the weekly payroll calculation, they
have to be set up. Since tax rates are liable to annual changes, the tax tables

Reference Tables I 195

are stored in separate files: "SINGLE" for single people; and "MARRID"
for married people. The program to get the data into the "SINGLE" file is
shown below.

Percentage Withholding Tables

(a) SINGLE person-including head of household:

If the amount
of wages is:

The amount of income tax
to be withheld shall be:

Not over $27 .. , 0

(b) MARRIED person-
If the amount
of wages Is:

The amount of Income tax
to be withheld shall be:

Not over $46 , .. 0

Table 8- 1

Over- But not over- of excus ovtr- Ovtr- But not ovtt- of fXCUS ovtr-
$27 -$63 15% -$27 $46 - $1 27 15% -$46
$63 -$131 . , . . $5.40 plus 18%
$131 -$196 $17.64 plus 21%

- $63
-$131

$127 -$210 $12.15 plus 18%
$210 -$288 $27.09 plus 21%

-$127
-$210

$196 -$273 $31.29 plus 26% - $196 $288 -$369 $43.47 plus 24% - $288
$273 -$331 . , . . $51.31 plus 30% -$273 $369 -$454 $62.91 plus 28% - $369
$331 - $433 $68.71 plus 34% - $33'1 $454 - $556 ..•. $86.71 plus 32% -$454
$433 $103.39 plus 39% -$433 $556 $119.35 plus 37% -$556

Weekly Tax Tables

a. Single person-including head of household b. Married perso1.

Amount of Wagtl Percentage Amount of Wages
lower and Upper Amount to for Excess Low~r and Upper
End End be Withheld over low End End End
$ 0 $ 27 $ 0 0 $ 0 s 46

27 63 0 .15 46 127
63 131 5.40 .18 127 210

131 196 17.64 .21 2 10 288
196 273 31.29 .26 288 369
273 331 51.3 1 .30 369 454
33 1 433 68.71 .34 454 556
433 999 103.39 .39 556 999

100 REM PROGRAM TO SET UP TAX TABLE
110 REM
120 REM LINK TO FILE
130 REM
135 D$ = CHR$ (4)
140 PRINT D$; " 0PEN SINGLE "
150 REM

Amount to
be Withheld

$ 0
0

12.15
27.09
43.47
62.91
86.7 1

119.35

160 REM SET UP TABLE OF 8 ROWS AN D 4 COLUMN S
1 70 REM
180 DI M T(8,4)
190 REM
200 REM FOR EACH ROW , GET DATA FROM TERMINAL
210 REM
22 0 FO R R = 1 TO 8

Percentage
for Excess

over LDw End
0

0.15
0.18
0.21
0.24
0.28
0.32
0.37

Table 8-2

230 PRI NT "ENTER LOW AND HIGH WAGES,MINIMUM AND PERCENTAGE "
24 0 INPUT T(R,l),T(R,2),T(R,3),T(R,4)
250 NEXT R
260 REM
270 REM PRINT TABLE AND PLACE IT INTO FILE

196 I Using Lists and Tables

280 REM
290 PRINT
300 PRINT
310 FOR L = 1 TO 8
320 PRINT T(L ,l) , T(L , 2) , T(L,3) , T(L , 4)
325 PRINT D$; "WRITE SINGLE "
330 PRINT T(L ,l);","; T(L,2) ;" , "; T(L,3);"," ; T(L,4)
335 PRINT D$
340 NEXT L
350 PRINT D$;"CLOSE SING LE"
360 STOP
63999 END

]RUN
ENTER LOW AND HI GH WAGES,MINIMUM
?0,27 , 0 , 0
ENTER LOW AND HIGH WAGES,MINIMUM
?2 7,63,0,. 15
ENTER LOW AND HIGH WAGES,MINIMUM
? 63,131,5.40,.18
ENTER LOW AND HI GH WAGES,MINIMUM
? 13 1,196,17.64 , . 2 1
ENTER LOW AND HIGH WAGES ,MIN IMUM
? 196 , 273 ,31. 29, . 26
ENTER LOW AND HIGH WAG ES ,MI NIMUM
?27 3,331,51.31,.30
ENTER LOW AND HI GH WAGES ,M INIMUM
?33 1,43 3 ,68.71,.34
ENTER LOW AND HIGH WAGES,MINIMUM
?433 ,999,103.39,.39

0 27
27 63
63 131
131 196
196 273
273 33 1
331 433
433 999

BREAK IN 360

AND PERCENTAG E

AND PERC ENTAGE

AND PER CENTAGE

AND PERCENTAGE

AND PERCENTAGE

AND PER CENTAGE

AND PERCENTAGE

AND PERCENTAGE

0 0
0 . 15
5 . 4 . 18
17 . 64 . 21
31 . 29 . 26
5 1. 31 . 3
68 . 7 1 , 34
10 3 . 39 ,39

The program gets table data from the terminal and places it into the
'"SINGLE" file. The details of its operation deserve closer inspection.

Line 180 reserves the spaces for the table T. The dimensions of the table
are given in parentheses as 8,4. These dimensions show that the table con
sists of 8 rows (first dimension) by 4 columns (second dimension). Therefore
32 positions are reserved for T.

The data is entered into the table by the loop in lines 220- 250. The
"FOR-NEXT" loops the computer through the statements in 230 and 240

Reference Tables I 197

eight times. The first time through the loop, R has the value I. Therefore line
240 gets four values from the terminal and assigns them to row 1 (first di
mension: R is 1), columns I through 4 in turn.

Then the NEXT R is encountered. The computer adds 1 to R and
checks the R value against its limit (the 8 specified in the FOR statement).
(Since R is less than 8, lines 230 and 240 are executed.) This time, the data
are placed into row 2.

Every time the computer encounters the NEXT R (until R would exceed
8), it adds 1 to R and fills the next successive row of T. After the eighth row
has been filled, the looping is finished. The computer continues wi th the next
statement in the program.

Lines 310 through 340 print the data on the terminal and also place it
into the SINGLE file. The FOR-NEXT loop sends the computer through
the statements in 320 and 330 eight times. For each value of L (I to 8), it
prints that row of the table and places the row into the SINGLE fi le. Thus
the eight rows of T are filed away for future use.

A similar program has to be written to place the data into "MARRID".
You can use this program if you change the file name from "SINGLE" to
"MARRID".

These two tables are used in the calculation of the taxes for the employ
ees in "EMPTRA". We will also need the master file "EMPMAS" to get the
number of exemptions and the year-to-date social security (YTD FICA).
Each exemption claimed by the employee deducts $19.23 from taxable
wages. And social security deductions are 6.13% up to a limit of $22,900
gross pay.

The old UPDATE program from Chapter 7 serves as the basis for solv
ing this problem. We have modified it to handle the tax tables and the social
security calculations.

Problem Summary

Input
"SINGLE" and "MARRID" files for the tax tables
"EMPTRA" file for the weekly earnings
"EMPMAS" file for the deductions and year-to-date FICA

Processing
For each employee: Calculate gross pay. social security (FICA), federal
income tax (FIT), and net pay (by subtracting FICA and FIT from
gross pay).

Output
The results of the "pay check" calculations, giving employee name and

number, gross pay, social security and income tax deductions,
and net pay

The updated master fi le, "EMPMA I"

198 I Using Lists and Tables

The program therefore has to
1. Link to the fi les.
2. Read and hold the tax tables.
3. Get an employee record from "EMPTRA".
4. Find the matching record from " EMPMAS".
5. Calculate gross pay.
6. Determine the amount of the social security deduction:

a. If YTD gross pay plus weekly gross pay is less than $22,900, then all
of weekly gross pay is subject to FICA.

b. If YTD gross pay is less than $22,900, but weekly gross pay added to
YTD gross pay makes it greater than $22,900, then only that portion
of weekly gross pay that brings the YTD up to $22,900 is subject to
FICA.

c. If YTD gross pay is greater than $22,900, then no social security is
withheld.

7. Calculate taxable income by subtracting deductions from gross pay.
8. Find the applicable tax in the tax tables.
9. Calculate net pay.

10. Update the master record and place it into "EMPMA l".
11 . Print the output.
12. Repeat steps 3 through 12 for all other " EMPLOY" records.
13. Terminate.

A program to do all those tasks is shown on the following pages.

100
110
I 21)
I 30
l 40
150
I 60
170
l 80
18 5
I 90
201)
20 l
202
2 04
2 l 0
2 21)
230
2 31
232
2 3 3
2 34
2 35
2 36
237
2 38
239
240
250

REM UPDAT P. OF MASTER FILP.
ONE RR GOTO 650
REH
REH SP.T UP HEADINGS
REH
PRINT
PR I NT "EHP LOYEF. " 'ti NAME" , " GROS s II , II FIT", It FI CA .. ," NE T"
PRINT "NUHBER", 11 ","PAY"
PRINT
DEF FN R(X) • INT (100 * X + 0 . 5) / 100
REH
REH

0$ • CHR$ (4)
PRINT 0$; " OPEN SI NGLP."
PRINT DS;"OPEN HARRID"
PRINT DS;"OPEN EHPH AS"
PRINT DS;"OPEN EHPTRA"
PRINT DS;"OPEN EHPHAI "
REH
REH TAX TABLES
REM
DIM S(8 , 4) ,H(8 , 4)
l' OR LI • I TO 8
PRINT DS; "READ SINGLE " : I NPUT S(Ll,l),S(Ll,2),S(L l, 3),S (L l,4)
PRINT DS;"R EAD MARRin": INPUT H(Ll,l),M(L l, 2),H(L l,3),H(L l, 4)
NEXT L 1
REH
REH
REH READ A TRANSACT I ON RECORD

260
270
2 71
2 80
290
300
310
3 11
320
330
340
350
3 60
370
380
390
400
4 05
406
410
4 12
4 13
414
4 15
416
417
418
419
420
4 2 1
422
423
424
425
426
.4 2 7
428
429
430
431
432
4 33
4 34
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
4 52
4 53
4 54
455
456
457

REH
PRINT DS;"READ EMPTRA"
INPUT I , R,V
REH
REH READ A MASTER RECORD
REM
PRINT D$;"READ EHPMAS"
INPUT N,D,N$,H,H,E,G , F , Fl
R'EH
REH COMPARE ID S
REH
IF I • N THEN 410
IF I > N THEN 310
I F I < N THE N 750
REH
REH
REH

ms MATCH DO COMPUTATIONS FOR UPDATE

REM CALCULATE GROSS PAY
REH

Cl • (R * H) + (V * H * 1.5)
REH CALCULATE SOCIAL SECURITY
REH

F3 • 0
REH
REH SOCIAL SECURITY IS ZERO IF YTD CROSS OVER 22,900
REH
IF C > 22900 THEN 433
REH
REH SOCIAL SECURITY IS 0 . 0613 OF WEEKLY GROSS
REH IF YTD CROSS+WEEKLY CROSS LESS THAN 22,900
RF.H
IF C + GI > 22900 THEN 429

F3 •GI * 0.0613
GOTO 433
REH SOCIAL SECURITY IS 0.0613 OF DIFFERENCE
REH BETWEEN 22,900 AND YTD GROSS
REM

F3 • (22900 - G) * 0 . 0613
REM
REH CALCULATE TAXABLE INCOME BY SUBTRACT ING EXEMPT I ONS
REH

T • GI - E * 19.23
REH
REH DETERMINE TAX
REH
IF H • 2 THEN 452
REl1
REH H IS 1; FIND
REH
FOR RI . 1 TO 8

TABLE

ROW IN SINGLE

IF T < . S (R 1, 2) THEN 447
NEXT RI
REH
REH CALCULATE TAX
REH

TABLE

F2 • S(Rl , 3) + (T - S(Rl,l)) * S(Rl,4)
GOTO 462
REH
REH H IS 2; FIND ROW IN HARRID TABLE
REH
FOR RI • I TO 8
IF T < • H(Rl,2) THEN 458
NEXT RI
REH
REH CALCULATE TAX
REH

Reference Tables I 199

200 I Using Lists and Tables

458
4 59
460
461
462
463
464
4 65
466
467
4 70
4 80
490
500
510
520
52 1
522
540
550
556
5 60
570
580
590
600
60 1
6 10
620
630
640
6 50
655
6 60
665
670
6 71
67 2
673
6 74
6 80
690
691
700
710
720
730
7 <40
750
7 55
760
761
762
763
764
7 70
780
78 1
782
783
7 84
790
800
810
820
8 30

F2 • M(Rl , 3) + (T - M(Rl,l)) * M(Rl , 4)
REM
REM CALCULATE NET PAY
REM

P • C 1 - F2 - F3
REM
REM ADD WEEKLY GROSS , FIT AND FICA TO YTD TOTALS
REM

G • G + G l
F • F + F2
Fl • Fl + F3
Pl•Pl+P

REM
REM
REM

PRINT UPDATED MASTER RECORD

PRINT D$;"WRITE EMPMAl"
PRINT N; "'II ;D ;"'It ;NS; ", It ;M; tt, It ;H; ",II; E ; "' " ;G; It' ti ;F; It, It ;F l
PRINT D$
REM PRINT ID, NAME , NET PAY
REM

GI • FN R(Gl):F2 • FN R(F2):F3 • FN R(F3) : P • FN R(P)
PR I N~ N,N$, Gl,F2,F3 , P
REM
REM READ A TRANSACTION RF.CORD
REM
PRINT D$;"R EAD EMPTRA"
INPU T I,R, V
GOTO 350
REM
REM
REM
PR INT D$

*** ERROR CHECK ***"

Y = PEF.K (222)
IF Y • 5 THEN 690
PRINT "UNUSUAL ER ROR ", Y
PRINT D$;"CLOSE EMPMAS "
PRINT D$; " CLOSE EMPTRA"
PRINT D$;"CLOSE EMPMAI "
PRINT D$;"CLOSE SI NGLE "
PRINT D$;" CLOSE MAR RID"
STOP

L • PEEK (218) + 256 * PEF.K (219)
IF L • 60 1 THEN 780
IF L • 911 THEN 940
STOP
REM
REM
REM
PRINT 0$

MISSING MASTER RECORD

PRINT "MASTER RP.CORD MI SSING FOR EMPLOYEE NUMBER", I
PRINT D$;"CLOSE EMPMAS"
PRINT D$;" CLOSE EM PT RA"
PRINT D$;" CLOSE EMPMA l"
PRINT D$;" CLOSE SINGLE "
PRINT D$; " CLOSE HARRID "
STOP
PRINT D$; " CLOSE F.MPHAS "
PRI NT D$;"CLOSE EMPTRA "
PRINT D$; " CLOSE EMPMAl "
PRINT D$; " CLOSE SINGLE "
PRINT D$; "CLOSE MARRID"
RE M
REM
REM
PRINT
PR I NT

PRINT OUT OF UPDATED MASTER FILE

840 PRINT
850 PRINT
860 PRINT " UPDATED MASTER Fll.E"
870 PRINT
880 PRINT D$;"0PEN EMPMAl "

Reference Tables I 201

890 PRINT "EMPLOYE E"; SPC(2);"DEPT " ,"NAME","MA RITAL ","H OURLY " , " EX -"," YTD ","YTD", " YTD "
900 PRINT "NUMBER"; SPC(4);" 11

,
11 "," STATUS","RATE "," EMP", " CROSS","FIT " ,"FICA "

910 PRINT D$;"READ EMPMAI"
911 INPUT N,D,N$,M,H,F.,G,F,F l
912 PRINT D$
915 H a FN R(H):G c FN R(G) : F a FN R(F):Fl - FN R(Fl)
920 PRINT N; SPC(7);0,N$,M,H,P.,G,F,Fl
930 GOTO 910
940 PRINT 0$; " CLOSE EMPHAl"
950 STOP
63999 END

MAX FILES 5

RON

EMPLOYEE NAME
NUMBER

101 ADAMS
103 BAKER
104 BRAVO
108 COREN
172 JOHNSON
198 TANNER
202 WILSON
206 LESTER
255 SCHMIDT
281 MILLER
313 SMITH
347 GRAY
368 WEAVER
422 WILLIAMS

UPDATED MASTER FILE

GROSS FIT
PAY

200 14. 91
257.6 3 7. 31
172 7.36
237.5 18. 19
150 21.63
153 4.51
160 2 . 68
210 16 . 71
257.6 18.35
240 18.64
195.5 14 .1
228 19.95
150.5 1 7 . 7
160 11. 33

FICA NET

12.26 172.83
15.79 204 .5
10.54 154.09
14. 5 6 204.75
9 . 19 119.1 8
9.38 13 9. 11
9.81 14 7. 51
12.87 180.42
15.79 223.4 6
14. 7 1 206.64
11. 98 169. 42
13.98 19 4.08
9.23 123 .5 8
9. 81 13 8 . 86

EMPLOYEE DEPT NAME MARITAL HOURLY EX- YTU YTD YTD
NUMBER STATUS RATE EMP GROSS
101
1 03
1 04
108
1 72
198
202
206
255
281
313
347
368
422

BREAK

1 ADAMS 2 5 3 1200
12 BAKER 1 5 . 6 2 1545 . 6
1 7 BRAVO 2 4 4 1032
16 COHEN 2 6 . 25 4 142 5
2 JORN SON 1 3 . 7 5 0 900
1 TANNER 2 4 . 25 4 918
16 WILSON 2 4 5 960
7 LEST ER 2 5 . 25 3 1260
12 SCHMIDT 2 5 .6 5 1545.6
12 MILLER 2 6 4 1440
7 SMITH 2 4.25 3 1173
12 GRAY 2 6 3 136 8
1 WEAVER 1 3 , 5 1 903
1 WILLIAMS 2 4 2 96 0

IN 950

Lines 236, 237, 556, and 915 look strange. They each have more than
one BASIC statement on their respective lines. You can put more than one
statement per line if you separate each statement with a colon (:). Lines 236
and 237 have two BASIC statements while lines 556 and 915 have four.

The key statements for the table reference are in lines 452-454 for mar
ried employees and in lines 441-443 for single employees, where the appro-

FIT FICA
214 . 91 73. 56
294 . 91 94. 7 4
179.36 63 . 26
255 . 69 87.35
171 .63 55. 18
1 5 7 . 51 56 . 27
162 . 68 58.85
22 6 . 71 7 7 . 24
275 . 95 94. 74
258.64 88. 27
209 .6 71 . 9
247 . 95 83 . 86
168.2 55 . 36
171. 33 58.85

/

202 I Using Lists and Tables

priate row of the table is found. But before we can discuss that, let's look at
how the tables were set up in line 234-238.

First, line 234 reserves the space for two tables: S for single and M for
married employees. Each table consists of eight rows and four columns. Ac
cording to the tax tables of the Internal Revenue Service, each row corre
sponds to a range of income. The columns of the table are as follows:

• Column I: the low end of the weekly income range
• Column 2: the upper end
• Column 3: the taxes up to the low end
• Column 4: the tax rate for anything above the low end (but below the

high end of the range).

Then in lines 235-238 the tables are filled. The field LI stands for the
row number. It is assigned the values I through 8 successively by the FOR
NEXT statement. For each value of LI , the four columns of each table are
input. So if LI is I, then the first row is filled. When LI is two, the second
row of the tables S and M is given values. Once all eight rows are filled, we
exit from the loop and start to process the employee records.

Now we can see how to work with these tables. The taxable income has
already been computed when we arrived at line 437. The statement in 437
checks whether the single person or married person tax table has to be used.
Depending on this test, we go either to line 441 for a single person or to line
452 for a married person.

The taxable income tells us what row of the table is used for the tax cal
culation. Hence taxable income is compared to the upper end of an income
range. Because the ranges are in ascending order, each row holds the data
for a weekly income that is Jess than the upper end of that row, but greater
than the upper end of the earlier rows. Since the rows are checked starting
with the lowest income, as long as taxable income is greater than the upper
end of a range, we have not yet reached the correct row of the table.

Once the right row has been found, then we can use the row number RI
to calculate the taxes. Line 458 calculates the tax for married employees and
line 447 calculates the tax for single employees.

Besides the table reference, this program also contains one other compli
cation- the social security calculation. Actually, there is nothing new in lines
414- 429; it's just cumbersome because we have to follow the rules of the
Internal Revenue Service. All the conditions make it awkward to follow the
calculations. The program handles three conditions :

1. Year-to-date greater than $22,900; in which case no social security is
calculated (determined in line 418).

2. Year-to-date plus weekly wages Jess than $22,900; where all of the
weekly wages are subject to social security (calculated in line 424).

Reference Tables I 203

3. Year-to-date less than $22,900, but year-to-date plus weekly wages
greater than $22,900; here the difference between $22,900 and the year
to-date is subject to a social security deduction. (That deduction is cal
culated in line 429.)

Apple BASIC has the ability to handle up to sixteen files in a program.
However, if you have more than three files open simultaneously in a pro
gram, you must use the BASIC command MAXFILES with the number of
files that the program uses. This command must be given before the run
command.

Of course, the actual payroll calculation for a real fi rm would have many
more deductions. Not included in this example are deductions for health in
surance, pension plans, payroll savings plans, state and local taxes where re
quired, union dues, etc. But from this example you can appreciate what is
needed to do payroll calculations.

Look at the other example that follows.

Inventory Report: Some industries experience rapid price fluctuations.
When prices fluctuate rapidly, it is often convenient to establish and main
tain separate price tables for parts in inventory. Table 8-3 shows the price
table for the parts in inventory.

Inventory Price Table

Parr Number Price

101 5.25
110 7.00
219 3.25
226 3.10
235 6.20
247 4.85

Management has asked for a report that shows the dollar value of issues and
receipts by part number. The issues and receipts are in the transaction file
" INVTR".

Problem Summary

Input
"INVTR" file
Price table file, "INVPRC"

Processing
Accumulate subtotals and totals for the dollar amounts issued and re
ceived by part number and for the file as a whole.

Example

Table 8-3

204 I Using Lists and Tables

Output
An inventory report, giving by part number the dollar amount of issues
and the dollar amount of receipts.

100
101
102
103
104
105
106
107
110
115
118
120
130
140
150
160
170
180
190
200
210
220
225
230
240
250
260
270
280
290
300
305
310
320
330
340
350
360
370
380
390
400
410

REM PROGRAM TO PRICE ISSUES AND RECEIPTS
REM
REM HEADINGS FOR REPORT
PRINT
PRINT
PRINT II RECEIPTS AND ISSUES REPORT"
PRINT
PRINT "PART","RECEIPTS","ISSUES"
REM

D$ =
DEF
REM
REM

CHR $ (4)
FN R(X) INT (100 * X + 0.5) / 100
LINK TO FILES

PRINT D$;"0PEN INVTR"
PRINT D$;"0PEN INVPRC"
REM
REM SET UP PRICE TABLE AND GET DATA FROM INVPRC
REM
DIM P(6,2)

R = 0
ONERR GOTO 770
PRINT D$;"READ IN VPRC"
INPUT N,D

R = R + 1
P(R,l) = N
P(R,2) = D

GOTO 220
REM
REM READ AN INVENTORY TRANSACTION
REM
PRINT D$;"READ INVTR"
INPUT Pl,Tl,Ql
REM
REM SET P9 TO PART NUMBER FOR LATER COMPARISON
REM

P9 = P l
REM
REM DETERMINE PRICE OF PART BY COMPARING Pl TO
REM COLUMN 1 OF TABLE P
REM
FOR R = l TO 6
IF Pl = P(R,l) THEN 450
NEXT R

Reference Tables I 205

420 REM
430 REM DET ERMINE WHETHER TRANSACTION IS SHIPMENT OR RECEIPT
440 REM
450 IF Tl = 2 THEN 540
460 REM
470 REM RECEIPT: Tl=l
480 REM
490 Rl = Rl + Ql * P(R,2)
500 GOTO 580
5 10 REM
520 REM SHIPMENT: T l =2
530 REM
540 Sl = S l + Ql * P(R,2)
550 REM
560 REM READ NEXT TRANSACTION
570 REM
580 PRINT D$; "R EAD INVTR"
585 INPUT Pl,Tl,Ql
590 REM
600 REM CHECK WHETHER ITS THE SAME PART AS BEFORE
610 REM
620 IF Pl = P9 THEN 390
630 REM
640 REM PRINT OUT OLD PART NUMBER, RECEIPTS AND SHIPMENTS
650 REM
660 PRINT D$
665 PRINT P9, FN R(Rl), FN R(Sl)
670 REM
680 REM SET RECEIPT AND SHIPMENT ACCUMULATORS TO ZERO
690 REM AND PROCES S TRANSACT ION
7 00 REM
710 Rl = 0
720 Sl = 0
730 GOTO 340
740 REM
750 REM ERROR CHECKING ROUTINE
760 REM
770 PRINT D$
772 Y = PEEK (2 22)
774 IF Y = 5 THEN 780
776 PRINT "UNUSUAL ERROR" , Y
778 GOTO 80 0
780 L = PEEK (2 18) + 256 * PEEK (219)
785 IF L = 225 THEN 300
790 IF L = 585 THEN 800
800 PRINT D$;"CLOSE INVTR"
810 STOP
63999 END

]RUN

206 I Using Lists and Tables

RECEIPT S AND ISSUES REPORT

PART RECEIPTS ISSUES
101 78]. 5 813 . 75
2 19 0 65
226 542 . 5 279
235 0 186

BREAK IN 810

This program generates a report of receipts and shipments by part num-
ber from the "INVTR" file. It performs the following tasks:

1. It links to files "INVTR" and "INVPRC" (statements 140 and 150).

2. It reserves room for the price table (statement 190).

3. It gets a part number and a price from "INVPRC" and assigns it to the
price table (statements 200-260).

4. It reads the first inventory transaction from "INVTR" (statement 305).

5. It "remembers" the part number (statement 340).

6. It processes the transaction:
a . It determines which row of the price table has the same part number

(statements 390-410).
b. It determines whether the transaction is a shipment or a receipt

(statement 450).
(1) It accumulates the dollar amount of receipts (statement 490).
(2) It accumulates the dollar amount of shipments (statement 540).

7. It reads the next transaction (statement 585) .

8. If the part number of this transaction is the same as the part number on
a prior transaction, then repeat steps 6 and 7 (statement 620).

9. If the part number of this transaction is not the same as the part number
of a prior transaction, then print the prior part number receipts and
shipments (statement 665); set accumulators for receipts and shipments
to zero (statements 710 and 720) and perform steps 5, 6 and 7.

10. It terminates when out of transaction data.

The table reference in this example is in step 6. Let's look at it again to see
the details of its operation. The price table P looks as follows:

Sorting Lists and Tables I 207

Row

2
3
4
5
6

Column

I 2

101 5.25
110 7.00
219 3.35
226 3.10
235 6.20
247 4.85

Now let's take the first transaction:

Part Number Transaction Code Quantity

101 150

The FOR-NEXT loop starts Rat l. So in line 400 when we compare the
part number (P l) to column I of the table, we have a match. Therefore we
skip out of the loop (R is still 1 since it was not changed) and use this row
number to calculate the dollar value of the receipt in line 490.

That example was too easy. Take another transaction:

Part Number Transaction Code Quantity

2U 2 W

Again R starts at 1 in line 390. The comparison between Pl (the part
number) and the table P (Row 1, Column 1) shows they are not equal.
Therefore we come to the NEXT R statement in 410. A one is added to R : R
is now 2; and the comparison in line 400 is between Pl (value of 226) and
row 2, column 1 of table P (value of 110). Again, they are no t equal.

Notice that as R is changed, from 1 to 2, to 3, to 4, the program skips
down the first column of P. At each value of R the next row of the table is
used in the comparison. Once the proper row has been found, the row
number (R) is used with the second column of P to calculate the dollar value
of a transaction, either in line 490 or in line 540.

Sometimes we must change the order of a small amount of data. For exam
ple, we might want a listing of our employees by descending o rder of gross
pay for labor negotiations. Or we might want product lines in ascending or
der of sales. Or we might want to rank our customers by volume of sales.

Sorting of files has already been mentioned. Appendix B has the sorts

SORTING LISTS
AND TABLES

208 I Using Lists and Tables

needed. But sometimes the data is in lists or tables, not on a file, and we
need to sort it.

Let's assume that we need a lis t of employees in descending order of net
pay. The net pay of the employees has already been calculated in the revised
employee payroll program. But the output from that program is in employee
number sequence. Our need is in descending order of net pay.

Input
Employee number
Employee name
Weekly net pay

Processing

Problem Summary

Store the fields in lists. Sort by weekly net pay (in descending order).

Output
Print employee name and number in descending order of pay.

The program therefore has to:

I. Get the employee data and put it into lists.

2. Sort the list into descending order of net pay.

3. Print the sorted data.

4. Terminate.

A program that performs these tasks is shown below:

100 REM PROGRAM TO SORT LISTS
110 REM
120 REM SET UP LISTS TO HOLD DATA
130 REM
140 DIM N(l00),N$(100),P(l00)
150 REM
160 REM GET THE DATA FROM THE TERMINAL AND PLACE IT INTO
170 REM THE LISTS
180 REM
19 0 L = 0
200 PRINT "TYP E EMPLOYEE NUMBER, EMPLOYEE NAME"
210 PRINT " AND NET PAY SEPARATED BY COMMAS"
220 PRINT "WHEN FINISHED TYPE 99 , AA,99"
230 INPUT Nl,M$,Pl
240 IF Nl = 99 THEN 340
260 L = L + 1
270 N(L) = Nl
280 N$(L) = M$

290 P(L) = Pl
300 GOTO 230
310 REM
320 REM SORT THE DATA
330 REM
340 U = L - l
350 F = 0
360 FOR K = l TO U
370 REM COMPARE TWO CONSECUTIVE VALUES

Sorting Lists and Tables I 209

380 REM IF THEY ARE NOT IN ORDER THEN EXCHANGE
390 IF P(K) > P(K + 1) THEN 600
400 REM
410 REM VALUES OUT OF SEQUENCE HENCE EXCHANGE
420 REM
430 T = P(K)
440 P(K) = P(K + 1)
450 P(K + 1) = T
460 REM
470 REM EXCHANGE NAME AND ID ALSO TO KEEP THEM
480 REM AND RATES TOGETHER
490 REM
500 T = N(K)
510 N(K) = N(K + 1)

520 N(K + 1) = T
530 T$ = N$(K)
540 N$(K) = N$(K + 1)
550 N$ (K + 1) T$
560 REM
570 REM SET F TO INDICATE THAT AN EXCHANGE HAS OCCURRED
58 0 REM
590 F = l
600 NEXT K
610 REM
620 REM CHECK IF ANY EXC HANGES HAVE OCCURRED
630 REM
640 IF F = l THEN 350
650 REM
660 REM END OF SORT
670 REM
680 REM PRINT OUT LISTS WITH HEADING S
690 REM
700 PRINT "EMPLOYEE","EMPLOYEE","WEEKLY"
710 PRINT " NUMBER "," NAME", "P AY "
730 FOR K = 1 TO L
740 PRINT N(K) , N$(K),P(K)
750 NEXT K
770 STOP
63999 END

]RUN
TYPE EMPLOYEE NUMBER, EMPLOYEE NAME

210 I Using Lists and Tables

AND NET PAY SEPARATE D BY COMMAS
WHEN FINISHED -- TYP~ 99,AA,99
?10 1, ADAMS, 172.20
?103,BAKER,204.50
? 10 4 ,BRAV0,1 54.09
? 108.COHEM, 204. 44
? 172,JOHNSON,119 . 18
?198,TANNER,139. 11
?202, WILSON,147.51
? 206,LESTER,180 .1 9
?255 ,SCHMIDT,223.15
?28 1,MILLER,206.32
?3 13,SMITH,169 . 32
?347 ,GRAY,19 3 .69
?368,WEAVER,123 . 58
?422,WILLIAMS, 13 8 . 86
?99 ,AA,99
EMPLOYEE
NUMBER
25 5
28 1
103
108
347
2 06
101
313
1 04
202
19 8
422
368
1 7 2

BREAK IN 770

EMPLOYEE
NAME
SCHMIDT
MILLER
BAKER
CO HEM
GRAY
LESTE R
ADAMS
SMITH
BRAVO
WILSON
TA NNER
WILLIAMS
WEAVER
JOHNSON

WEEKLY
PAY
223 .1 5
206 . 32
204 . 5
204.44
193.69
180 . 19
l 7 2. 2
169 . 32
154.09
147. 5 1
139.11
13 8 . 86
123 . 58
11 9 . 18

This program puts da ta into lists in lines 190- 300. Then it sorts the lists
in lines 340 to 640. Finally, it prints out the lists in lines 700 to 750. Let's
look at each of these actions in turn.

The storage of data starts by setting the field L to zero. L will be used in
lines 270 through 290 to indicate the location in a list. Notice that the lists
have 100 spaces each (the dimension is set in line 140), although fewer
spaces will be needed for our data.

Then line 230 gets the first record for the file. The program adds 1 to L
in line 260. Lis now 1. Hence in lines 270- 290, the firs t (L value of 1) loca
tion of N, N$, and Pis filled with the values of N I, M$ and Pl respectively.

Line 300 takes us back to the input of data. As long as there are records
in the fi le, the program reads the data; adds one to L; and places the desired

Sorting Lists and Tables I 211

fields into successive locations in the lists. At the end of the data input, L
will contain the number of records; Lis also the highest position in the lists
that has been filled with data.

Lines 340 to 640 sort the data into descending order of weekly pay. The
sort is fi nished when all items are in order. It works by comparing two adj a
cent positions in the pay list. If they are in sequence, we compare the next
two positions. But if two adjacent positions are out of sequence, they are
fi rst placed in the proper sequence before the next two positions are com
pared.

We know that all items are in their proper sequence if we do not have to
interchange a ny items. Whether an interchange has occurred is shown by a
field (a "flag" called Fin the program). The field is set to zero at the begin
ning of each pass through the array. When an interchange occurs, it is set to
one. Therefore if F is one, we don't know yet that the lists are in their desired
sequence. Line 640 tests F , a nd if F is one, we repeat the process.

We can see the operations of this sort by looking at the first five records
of the lists. These records would be in the lists N, N$ and Pas follows:

Ust

Position N N$ p

I 10 1 Adams 172.83
2 103 Baker 204.50
3 104 Bravo 154.09
4 108 Cohen 204.75
5 172 Johnson 119.18

Now let's start through the steps of the sort. First, U, a field to hold the
upper limit for the comparisons, will be 4. Therefore K, the loop index, wi ll
take on values I to 4 in tum. Line 350 sets F to zero, because at this stage no
exchanges have occurred. Then K is set to I, and we compare the K (first)
posi tion and K + I (second) position in the net pay list. They are out of se
quence. P(2) is $204.50, and P(I) is $172.83. To put them in proper order,
Baker should come before Adams. Hence lines 430 to 450 interchange the
values.

Notice tha t an interchange is a three-step process. If we tried it in two
s teps, it wouldn ' t work:

P (K) = P (K + I)
P (K + I) = P (K)

Why not? Because the computer is a sequential machine. For a K value of I,
the fol lowing would happen in the two-step process: Step I : P (K) =
P (K + I). This means P (I) = P (2) and after the assignment the first two
positions of P would look as follows:

212 I Using Lists and Tables

Posi tion I
Position 2

204.50
204.50

Because we put the value from position 2 into the first position, they are
both identical. The value in the first position is lost, wiped out, erased. And
the second step would put a 204.50 into position 2 again.

The three-step process works, because it puts the value for the first posi
tion temporarily somewhere else-in T. Now when a value is placed in to
P (K), we still have its old value in T as shown below:

P(l) 172.83 T

2 3

P(2) 204.50

The numbers on the arrows give the sequence in which the assignmen ts have
to occur to do the exchange.

At the end of line 450, our lists would look as follows:

N N$ p

101 Adams 204.50
103 Baker 172.83
104 Bravo 154.09
108 Cohen 204.75
172 Johnson 119.1 8

As you can see the net pays are in o rder, but they are not with the right em
ployee name a nd number. Lines 500- 550 interchange the names a nd ID
numbers so that the list will look like this:

N N$ p

103 Baker 204.50
10 1 Adams 172.83
104 Bravo 154.09
108 Cohen 204.75
172 Johnson 11 9. 18

Then line 590 sets F to I because an interchange has occurred and we are
ready for the next K value.

When K is 2. the second (Kth) and third positions of Pare compared.
They are already in sequence. Therefore we go to the next K value.

Sorting Lists and Tables I 213

When K is 3, we compare the third and fourth position. They are out of
sequence. Therefore we interchange and our list would look as follows
before the next K value is executed:

N N$ p

103 Baker 204.50
10 1 Adams 172.83
108 Cohen 204.75
104 Bravo 154.09
172 Johnson 119.18

When K is 4, the comparison between the four th (Kth) and fifth
(K + 1) values of P shows that they are in sequence.

Since K has now reached its upper limit (the value of U), the looping is
finished. But a check with F (in line 640) shows that at least one exchange
has occurred. Since the lists may not be in sequence, the program sends us
back to 350 for another pass through the da ta.

At the end of the second pass (K value of 1, 2, 3 and 4), the lists would
look as follows:

N N$ p

103 Baker 204.50
108 Cohen 204.75
101 Adams 172.83
104 Bravo 154.09
172 Johnson 11 9. 18

It takes one more pass to get the data in order and another to assure us that
no more interchanges are needed. Then we know that the lists are in the de
sired sequence.

Notice that the sequence of the items is basically defined by the test in
line 390. In this example, the contents of two adjacent positions in the list
are compared to see if they are in descending sequence.

It is important tha t two equal va lues not be exchanged . If the test in 390
was just greater than (as opposed to the actual greater than or equal), then
two values tha t were equa l would be exchanged. And they would be ex
changed again in the next pass. And the next. And the next. And the next. In
fact, the exchanges would never end.

A situa tion like that, called an infini te loop, can cost you a lot in com
puter time. Therefore care must be taken to avoid infinite loops. In this case,
the test must be a greater than or equal, or less than or equal, so that an infi
nite loop is not generated.

214 I Using Lists and Tables

SUMMARY This chapter has discussed the use of lists and tables. Lists and tables are
convenient ways to hold data either for subsequent processing or for output
after processing.

In the first example, a list was used to accumulate departmental totals.
To use the list, space for the list had to be reserved and labelled. To access
individual elements of the list, subscripts giving the location of a position in
a list had to be used.

Tables are different from lists, because two subscripts are needed-a row
indicator and a column indicator. Two tables were used to determine income
taxes for the employees.

Besides lists and tables, this chapter also presented a way to perform
looping. The FOR-NEXT construction lets you control how often a set of
BASIC statements would be executed.

BASIC Commands Introduced:

Statement

MAXFILES N

Explanation

Used when more than three files are open at the
same time. N is the number of files.

BASIC Instructions Introduced:

Statement

DIM Y(X),Z(Q,R)

FOR Y = N TOM

NEXTY

Explanation

Sets the lists Y (represented by a letter) to X posi
tions. Defines that Z (represented by a letter) has
Q rows and R columns. Individual elements of
lists and tables are identified by their location:
the position number in a list or the row number
and column number in a table. X, Q, and R must
be numbers.

Sets up a loop. The FOR statement begins the
loop. It sets Y to N (beginning value); the loop
will continue until Y has a value greater than M
(the upper bound). The NEXT statement closes
the loop.

I. Write a program that will generate a summary report of inventory by
department from the " INV" file (see Chapter 5). Use a list to hold the
inventory cost by department.

2. A machine shop has seven machines. When an order for a part arrives,
the sequence in which any of the seven machines will be us mined. To
make a part requires four of the seven machines. The time in minutes for
each machine to make a part is shown below:

M achine Time

20
2 30
3 12
4 26
5 32
6 17
7 14

a. Write a program to store the data as a table in the "MCHTM" file.
b. The data regarding orders will be input from a terminal. Order data

consists of an order number and the numbers of the machines in the
required sequence to make the part. The following orders have ar
rived:

Order Number

7442
7443
7444
7445

Machine Sequence

2,4,5,6
1,5,3,7
1,6,5,4
1,3,6,7

Write a program that will input the "MCHTM" file and the order data ;
then print the order number and the total time required to process that
order.

3. In Problem 2, the time required to transport the orders from one
machine to another has been neglected. Modify your program to take
transportation times into account in determining the total time to pro
cess an order. The transportation time in minutes are as follows:

To Machine

I 2 3 4 5 6 7

I 0 15 23 7 16 5 19
2 12 0 16 9 12 17 5

From 3 25 14 0 12 17 12 18
Machine 4 8 12 13 0 9 8 14

5 19 14 15 11 0 12 JO
6 7 15 JO JO 15 0 9
7 17 8 14 18 12 13 0

Problems I 215

PROBLEMS

216 I Using Lists and Tables

Write a program to store the transportation time as a table in the
"TRTM" file and modify your program in Problem 2 to include trans
portation time. Use the same order data as in Problem 2.

4. Change the sort program in this chapter (page 194) so that it wi ll sort in
ascending order. Use the net pay data to test the program.

9 I Using Direct Access Files

217

Creating a Relative Record File I 219

At the end of this chapter you should be able to:

• Create relative record files
• Read and print relative record files
• Change field values in a relative record record
• Update master records in a relative record file
• Query records in a relative record file

So far, sequential files have been used exclusively for all problems, exercises,
and examples. There is one major drawback in using sequential files-every
time you want to read any record in a file you must start with the first record
and read each record until the desired record is reached. If a file has 2,000
records, and you want to print the l ,995th record, 1,995 records would have
to be read to reach the record to be pi:inted. A great deal of time would be
wasted reading and testing every record until the one to be printed is reached.
The time to reach a record in a sequential file is proportional to the position
of the record (first, middle, last) in the file.

You may still wonder why a few seconds may be important. A sequen
tial file of 2,000 records with the same fields as " EMPLOY" was created to
test the time required to find and print a record. It took less than a second to
read and print the first record. It took over four minutes to read and print
the l,995th record!

In the early days of computers, only sequential files were available. But
to reduce the time required to find a record, direct access files were devel
oped. All direct access files share one characteristic-the time to find any
record in a file is constant. With direct access files, there is a method to find
a record without reading from the beginning of a file.

There is more than one way to create and use direct access files in BASIC.
One of the simplest methods is called relative record. It follows the tech
niques 'Of Chapter 8 where lists and tables were discussed. We shall create a
relative record file in almost the same manner as a table is qeated. An
inventory example will be used throughout this chapter to illustrate the use
of relative record (direct access) files.

The data for the inventory master file are found in Table 9-1. Note that
the part number and the record number are the same! In an actual business,
the part number would be a multi-digit number within whis;li the record
number would exist or be added to the existing part number after a dash.
For example, part number 27364-001 could indicate that part 27364 is re
cord number one. There are other more sophisticated ways of obtaining re
cord numbers from part numbers; but they are beyond the introductory
level of this book.

Performance
Objectives

CREATING A
RELATIVE

RECORD FILE

220 I Using Direct Access Flies

Figure 9-1

Start

Open File

R = 1 to 10

Input
a Record

Write a Record
to File

Next R

Close File

Terminate

Flowchart to Create a Relative Record File

Creating a Relative Record File / 221

Inventory Master File-"INVMST"

Part Stock Unit

Number on Hand Cost

590 1.50
2 750 2.75
3 231 1.39
4 395 5.96
5 674 7.23
6 279 6.79
7 942 4.26
8 27 5.49
9 152 1.26

JO 420 3.74

Problem Summary

Input
Inventory master file.

Processing
Input the data at execution time.

Output
Instructions for input and a relative record file, "INVMST".

The program consists of the following steps:

1. Link to the relative record file.

2. Input the data.

3. Stop when the data has been entered.

See the flowchart (Fig. 9- 1). A program to perform all of these steps is
below:

100 R F.11 PROGRAM TO CREATE RELATIVE RECORD FILE
l l 0 REl1
l 15 D$ = CHR$ (4)
l 20 REM
l 30 REH OPEN THE FILE
140 RE11
150 PR I NT D$; " OPEN INVMST , L l 6"
l 60 REM
l 70 REM INPUT A RECORD
180 REM
190 FOR R = l TO 10

Table 9-1

222 I Using Direct Access Flies

READING
AND PRINTING

A RELATIVE
RECORD FILE

2 00 PRINT " TYPE PART NUMBER, STOCK ON HAND, UNIT COST"
2 1 0 INPUT A 1 , A2, A3
220 PRINT D$; " WP. I TE IN VM s T ' R II ; R
2 30 PP.INT Al;"," ;A2;",";A3
240 PR I NT D$
2 so NEXT R
2 60 REtl
2 70 REH FINISH
2 80 REM
290 PR I NT D$;"CLOSE INVMST "
3 00 ST OP
Ii 399 9 END

Before discussing the program, there is a very important concept that
must be understood. The creation of a relative record file results in a file on
the diskette that is similar lo a table. The rows of the table correspond lo
records in the file. The record is identified by its row number which is the
same as the record number since each row consists of one record.

Rela tive record files are referred to in a program in the same way as
sequential files. The only difference will be expansion of some fi le com
mands that you have al ready used. Line 150 PRINT D$; "OPEN INVMST,
L16" tells the computer lo open a relative record file " INVMST" and that
the length of each record is a maximum of 16 characters. The 16 was deter
mined as follows: 2 characters for the part number, 3 characters for the
stock on ha nd and 4 characters for the unit cost (the decimal point counts as
a character) . This only adds to 9 characters. When you type a record into
the computer you use commas after you enter the part number and stock on
hand. You a lso press "RETURN" at the end of a record. The two commas
and the "RETURN" count as 3 characters, resul ting in a total of 12 charac
ters . Sixteen characters were specified in the open statement. The remaining
fou r cha racters were left in order to leave room for expansion of the fields if
and when it may become necessary.

In line 220 PRINT D$; "WRITE INVMST, R";R a relative record with
record number R wi ll be written on the fil e. The R wi ll change its value,
each Lime the FOR-NEXT loop (lines 190-250) changes the R value from I
to I 0. In these lines ten records wi ll be typed in from the keyboard and writ
ten on the file.

Upon completion of the data input, you have set up and stored the rela
tive record file " INVMST" as if it were a table. The file looks like Figure
9- 2.

The program to read and print out the inventory master file is given below.
It is a very simple program.

Reading and Printing a Relative Record File I 223

Row

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

10

Column

2 3

590 1.50
750 2.75
231 1.39
395 5.96
674 7.23
279 6 .79
942 4.26

Table A (10.3)

27 5.49
152 1.26
420 3.74

The Relative Record File-"INVMST" Figure 9-2

. 00 REM THIS PROGRAM READS AND PRINTS THE RELATIVE RECORD FILE INVMST
10 REM
15 D$ = CHR$ (4)
20 REU
30 REM PRINT HEADINGS FOR REPORT
40 REM
50 PRINT "PART","STOCK","UNIT"
60 PRINT " NUMBER ","ON HAND","COST"
70 PRINT
75 REM
80 REM LINK TO FILE
90 REM

:00 PRINT D$;"OPEN INVM ST ,Ll6"
10 REM

: 20 REM PRINT OUT THE FILE
30 REM

. 40 FOR R = l TO 10
50 PRINT D$;"READ INVMST,R";R
60 INPUT Al,A2,A3
70 PRINT D$
80 PRINT Al,A2,A3
90 NEXT R

.oo REM
: l 0 REM FINISH
. 20 REM
:30- PRINT D$; "CLOSE INVMST"
40 STOP

,3999 .END

In lines 150 and 160 the headings for the output are printed. Next, the
file is opened. Lines 240 through 290 print the file, row by row. The only
new instruction is an extension of the file read-:--Line 250 PRINT 0$;
"READ INVMST,R";R is used the same way as in the write statement. The R
indicates the record number to be read.

224 I Using Direct Access Files

CHANGING
VALUES IN A

RELATIVE
RECORD FILE

It is necessary to change values in an inventory master record due to price
changes and adjustments. The stock on hand has to be adjusted because a
manual count of stock on hand just took place. The following records have
to be adjusted for stock on hand or cost.

Table 9-2 Changes to the Inventory Master File

Part Stock Unit
Number on Hand Cost

1 600 2.00
9 152 1.40
6 230 7.00
3 231 1.50

10 500 4.00
5 674 7.25

Since "INVMST" is a direct access file, you do not have to order the
changes by record (part) number.

Problem Summary

Input
Inventory master file, " INVMST"

Processing

Find the record to be changed. Input the new values.
Output

The inventory master file, "INVMST", wi th the appropriate records
changed.

See the flowchart (Fig 9-3). A program follows:

1 00 REM THI S PROGRAM CHANG ES VALUES IN A RECORD OF A RELATIVE RECORD FI
110 REM
11 5 D$ = CHR$ (4)
l 20 REM
1 30 REM OPEN THE FILE
1 40 REM
1 50 PRINT D$;"OPEN INVMST ,Ll 6 "
160 REM
170 REM INPUT RECORD NUMBER (PART NUMBER)
180 REM
190 PRINT "WHAT IS THE REC ORD NUMBER? TYPE 9999 TO E'ND"
200 I NPUT R
210 REM
220 REM TEST FOR END OF I NPUT
230 REM
240 IF R = 9999 THEN 470

YES

Start

Open File

Input R

Print Record

Input Y or N

Input
New Values

Changing Values in a Relative Record File I 225

Close File

Flowchart for Changing a Record Figure 9-3

226 I Using Direct Access Files

250 REH
260 REM GET THE RECORD AND PRINT IT OUT
270 REM
280 PRINT D$;"READ INVMST,R";R
290 INPUT Al,A2,A3
300 PRINT D$
310 PRINT "I S THIS THE RECORD TO BE CHANGED?"
320 PRINT Al,A2,A3
330 REH
340 REM IS THIS THE CORRECT RECORD?
350 REM
360 PRINT "TYPE Y IF YES, N IF NO"
370 INPUT B$
380 IF B$ = "N" THEN 190
390 REM
400 REM CORRECT THE VALUES
410 REM
420 PRINT "TYPE THE NEW VALUES: STOCK ON HAND, UNIT COST"
430 INPUT A2,A3
440 PRINT D$;"WRITE INVMST,R";R
450 PRINT Al;",";A2;",";A3
455 PRINT D$
460 GOTO 190
470 PRINT D$; " CLOSE INVMST"
4 80 STOP
63999 END

UPDATING
MASTER

RECORDS IN A
RELATIVE

RECORD FILE

The program opens "INVMST" as a relative record file in line 150.
Next, the record (part) number is input in line 200. A test for the end of data
input is on li ne 240. It is important to check that the record to be changed is
the one found. It is printed out in line 320. Note that this line prints out the
entire record. Then a Y or an N is input to verify that the record printed out
is the record to be changed. The Y or N is tested in line 380. If the input is Y,
then the new values for stock on hand and price are input. Upon input, the
values in the "INVMST" file are changed. That is all that is necessary.
Next, the record number is requested. The end of the program is signalled
by input of 9999 for record number. The file is closed and the program ends.

You should notice that the time required to print out a record after the
record (part) number is given, is the same for all records. There is no need to
read from the beginning of the file to reach any record. After you have input
the changes given in Table 9-2, run the program that prints out
" INVMST". The file should look like Table 9-3 after the changes:

The next logical step, after you have mastered changing records in a relative
record file, is to update the fi le. The update described below produces an
instantaneously updated master file. There is no transaction fi le. Each
transaction record updates its appropriate master record as soon as it is
entered. In order to add a touch of realism to the update of the inventory

Updating Moster Records in a Relative Record File 227

Inventory Master File After Changes

Par/ S1ock Uni I
Number on Hand Cos/

I 600 2.00
2 750 2.75
3 231 1.50
4 395 5.96
5 674 7.25
6 230 7.00
7 942 4.26
8 27 5.49
9 152 1.40

10 500 4.00

master file "INYMST", assume that there are two computer terminals in
the area where inventory is kept. The first terminal is located a1 the unload
ing area where shipments a re received from suppliers. The second terminal
is located by the loading area where items are shipped (issued) to the com
pany's customers.

The first terminal is used to enter any receipts to inventory as soon as
they are placed in inventory. The second terminal is used to enter any ship
ments (issues) from inventory.

The update program to handle direct access files is much simpler than
the inventory update progra m in C hapter 7. A transaction code will be used
to indicate a receipt to inventory (code= I) and a shipment from inventory
(code= 2). A transaction consists of three fields: the code, part number,
and amount. If a shipment transaction (code = 2) has an amount greater
than the stock on hand, the order cannot be fi lled. The program should can
cel the shipmen t and keep the o ld value of the stock on hand . The transac
tion data can be found in Table 9-4.

Transact ion Data to Update "INVMST"

Transaction Part (Record)
Code Number Q11a111i1y

I 9 50
2 2 500
1 10 200
I 5 75
2 9 50

1 40
I 2 100
2 8 50

Table 9-3

Table 9-4

228 I Using Direct Access Files

Prob lem Summary

Input
Inventory master fi le, " INVMST" (Table 9-3)
Transactions

Processing
Determine the transaction code and update the appropriate master
record.

Output
An upda ted master file.

See the flowchart (Fig 9-4). A p rogram appears below:

100 REM THIS PROGRAM UPDATES THE RELATIVE P.ECORD FILE INV!1ST
1 10 REM
1 15 D$ = CHRS (4)
1 20 REH
1 30 RCJ1 OPEN THE FILE
1 40 P.EM
1 50 PRINT D$;"0PEN INVMST , Ll6 "
1 60 REM
17 0 REM INPUT THE TRANSACTION CODE
180 REM
1 90 PRINT " TYPE THE TRANSACTION CODE :"
200 P RINT " 1 IS A RECEIPT TO INVENTOP,Y "
2 1 0 PRINT " 2 IS A SHIPHENT FROH NVENTORY "
220 PRINT " TYPE 9999 TO END "
2 30 INPUT T
240 REM
250 REM TEST TO END DATA I NPUT
2 60 REM
2 70 I F T = 9999 THEN 590
280 PR I NT " TYPE THE PART NUHBER, QUANTITY "
290 INPUT H, Q
295 PR I NT D$;" READ INV~ST ,F."; M
300 INPUT Al,A2 , A3
305 PRINT D$
3 08 REH
3 1 0 REM TEST FOR RECEI PT
3 2 0 REM
33 0 IF T = l THEN 540
340 REM
350 REM SHIPHENT
360 REM
3 70 A2 = A 2 - Q
3 90 REt!
400 REM TEST FOR POSITIVE STOCR ON HAND
4 10 REH
420 IF A2 > = 0 THEN 560

Start

Open File

Input
Transaction Code

YES

Input
Part Number and

Quanti ty

Read Record
from File

YES

A2 = A2 - Q

YES

A2 = A2 + Q

Print NOT
SUFFI CIENT STOCK

Updating Moster Records in a Relative Record File / 229

Close File

Terminate

Write Record
to File

A2 = A2 + Q t----~

Flowchart of Direct Access Update Figure 9-4

230 I Using Direct Access Files

430 REM
440 P.EM NOT ENOUGH STOCK ON HAND
450 REM CANCEL OP.DER
470 REH
480 A2 = A2 + Q
490 PRINT "***NOT SUFFI CIENT STOCK *** ONLY ";A2;" UNITS ON HAND"
500 PRINT "SHIPMENT CANCELLED -- NOTIFY CUSTOMER "
5 10 GOTO 190
520 REH RECEIPT TRANSA CTI ON
5 30 REI!
540 A2 = A2 + Q
560 PP.INT D$;"WRITE INVMST,R";M
565 PRINT Al ;","; A2; ",";A3
568 PRINT D$
570 COTO 190
5 80 REM
590 PRINT D$; " CLOSE INVHST"
600 STOP
63999 END

In the program, "INVMST" is opened. In line 230 the transaction code
is input, followed by the test to end data input. The transaction part (record)
number and quantity are input next in line 290. After reading the record
from "INVMST'', the test for the transaction code is at line 330. If the
transaction is a shipment from inventory (code= 2), then lines 340 through
510 are executed. If there is enough stock on hand, A2, to make the required
shipment, then the stock on hand is adjusted for the shipment in line 370:
A2 = A2 - Q. If Q is greater than the stock on hand, A2, then the newly
assigned value of A2 in line 370 will be negative. For example, the stock on
hand is 20 and you wish to ship 30 units, there would be -10 units in stock
on hand. Line 420 tests for this condition . If the condition (stock on hand is
less than zero) exists, then the old value of stock on hand is replaced in line
480, A2 = A2 + Q, and the shipment is cancelled (lines 490 and 500).

If the transaction is a receipt to inventory (code = 1), then in line 540
the quantity received is added to the stock on hand, A2 = A2 + Q, and that
record is written on "INVMST". Then another transaction code is entered.

The writing of the updated master record occurs at lines 560 and 565
where A2 is assigned a value contingent upon the transaction code and other
tests. The update program uses the same concept as the program to change a
record. As soon as a transaction is entered, the master record is updated.
The last transaction will result in a shipment being cancelled.

After the update program is run with the transactions given in Table
9-4, run the program tha t prints the " INVMST" file. The file should look
like Table 9-5.

A relative record master file is organized by ascending record number.
The transactions may be entered in any order. The time required to update a
master record is the same, regardless of its location in the file, because rela
tive record files are one form of direct access files.

Querying Records in a Relative Record File I 2J1

The "INVMST" File After Updating

Part Stock Unit
Number on Hand Cost

640 2.00
2 350 2.75
3 231 1.50
4 395 5.96
5 749 7.25
6 230 7.00
7 942 4.26
8 27 5.49
9 152 1.40

10 700 4.00

If transactions are entered from the two terminals in the inventory area
as stock is received and shipped, then the master file is updated in real-time.
Real-time updating means the master files contain the latest up-to-the-sec
ond information. This is especially important when dealing with inventory.
In order to have real-time updating, direct access files must be used. Real
time updating may be contrasted with batch updating, which has a time cy
cle (a day, a week, or a month) for the running of the update program. The
update programs in Chapter 7 were examples of batch updating. The trans
actions were accumulated in a file during the time cycle. Then they were
sorted and the update program was run at the end of the cycle.

If the update is in real- time, then any time you retrieve and print a record of
the master file, it contains the latest stock on hand. This is very useful when
you consider that a company has a sales department. Salesmen need to know
the latest inventory levels in order to give customers reasonable deljvery
dates. Assume, in our inventory example, that there is a third terminal in the
sales department. When a salesman writes an order for a customer, he
phones the sales department to determine whether sufficient stock is on
hand to fill the order. The program that retrieves and prints master records
is called a query program. "Query" is a short form for "inquire". The pro
gram is the same as the first part of the program for changjng a record.

Problem Summary

Input
Part (record) number
Inventory master file, " INVMST"

Processing
Retrieve a master record.

Table 9-5

QUERYING
RECORDS

IN A

RELATIVE
RECORD FILE

232 I Using Direct Access Files

Output
Print the appropriate master record.

1 00 REH QUERY PROGRAM
l 10 REM
115 D$ = CHR$ (4)
120 REH
130 REH OPEN THE FI LE
1 40 REM
l 5 0 p R I NT D $; II 0 p EN I N Vl1 s T , L 1 6 II
1 60 PRINT " WHAT IS THE PART NUMBER? "
170 PP.INT "TYPE 9999 TO END"
1 80 INPUT R
190 REM
200 REM TEST F OR END OF DATA INPUT
210 REH
220 IF R = 9999 THEN 330
230 PRINT DS; "R EAD I NVMST , R"; R
240 INPUT Al,A2,A3
250 PRINT D$
260 REM
270 REM PRINT OUT RECOR D
280 REM
290 PRINT "PART","STO CK ","UNIT "
300 PP.INT " NUHBER ", " ON HAND", "COST"
310 PRINT Al,A2 ,A3
320 GO TO 1 60
330 PR I NT D$;"CLOSE INVMST"
340 STOP
63999 END

WHAT I S THE PART NUMBER?
T'lPE 9999 TO END
?9
PART STOCK
NUMBER ON HAND
9 152
WHAT IS THE PART NUMBER?
TYPE 9999 TO END
? 1
PART STOCK
NUMBER ON HAND
1 640
WHAT IS THE PART NUMBER?
TYPE 9999 TO END
?5
PAR T STOCK
NUMBER ON HAND
5 74 9

UNIT
COST
1. 4

UNIT
COST
2

UNIT
COST
7. 2 5

~HAT IS THE PART NUMBER?
rYPE 9999 TO END
?10
PART
NUMBER
10

STOCK
ON HAND
700

WHAT IS THE PART NUMBER?
TYPE 9999 TO END
?9999

BREAK IN 340

UNIT
COST
4

The sales department would run this program to see if a customer's or
der could be filled. In a sophisticated company, the salesman would have
portable terminals that use a telephone to reach the computer. Also the pro
grams would be more complex in order to allow a salesman to reserve stock
and to ship partial orders.

In this chapter one type of direct access file is introduced. The programs
necessary to handle a relative record file were given. In essence, a relative
record file can be treated as a table where the rows represent records and the
columns represent fields. The example throughout this chapter was inven
tory, not payroll. Inventory was selected because it represents a good exam
ple of the requirement for real-time updating. The real-time example was
illustrated by an update where, as soon as a transaction was generated, the
master file was updated. The final section dealt with an inquiry program
that reads and prints records from a relative record file.

BASIC Instructions Introduced:

Instruction Explanation

PRINT D$; "OPEN filename,LXX" Opens a relative record file wi th
records of length XX.

PRINT 0 $; "READ filename,R";N Reads relative record N

PRINT 0$; "WRITE filename,R";N Writes relative record N

Summary I 233

SUMMARY

234 I Using Direct Access Flies

PROBLEMS 1. Modify the first program in this chapter so that you can stop an input
session and continue entering the data at any point in the file without
having to re-enter all the earlier records. To test your program, create a
file "Ill".

2. Create a relative record file, "CUMST", with eight records as follows:

Customer Number

1
2
3
4
5
6
7
8

Current Balance

$257.26
194.40
276.00

0.00
51.27
29.32

426.25
972.36

3. Write a program that will print the "CUMST" file as described in Prob
lem 2.

4. Write a program that will update the "CUMST' file. There are three
types of transactions: payments, purchases, and returns. Payments
should be subtracted from the current balance (Transaction code = 1).
Purchases should be added to the current balance (TR CODE= 2). Re
turns should be subtracted from the current balance (TR CODE = 3). If
customers have a current balance less than zero, a message should be
printed to issue a refund check to the customer. Use the following trans-
actions to test your program:

Transaction Code Customer Number Amoulll

I 5 51.27
1 200.00
2 4 57.26

3 250.00
2 8 320.21
3 5 23.27
1 2 194.40
2 I 72.73
3 7 157.29

5. Write an inquiry program for the "CUMST" file, so that customers may
call and be given their latest balance.

10 I Use and Design of Complex
Programs

235

Using Canned Programs / 237

At the end of this chapter you should be able to:

• Use "canned" programs
• Recognize the role of structured programming

Programming is the expensive aspect of computer systems. It is also the
most time-consuming. Without programs the computer cannot solve
problems. However, once a program bas been wri tten and debugged (i.e., the
errors have been removed), then using these programs to help solve recur
ring problems is simple.

In progressing through this book, you have built a program library. If a
problem should develop tha t is similar to those you've already solved, you
don' t have to write a brand new program. Merely modify the appropriate
program to meet the new requirements and it can aid in arriving at a solu
tion. In effect, your program library is a toolbox. Simple changes to your
tools allow you to solve most data processing problems.

You may have access to programs other than those you've written. Any
number of sources may have contributed skills and energies to fill your tool
box: the vendor of your computer system, an independent consultant, other
people in your organization, or other organizations in your industry.

At times it is difficult to transfer programs from one system to another.
The procedures and problems of one organization may not match the proce
dures and problems of another organization. In other cases the transfer of
programs is easy. Statistical, scientific, and engineering programs transfer
easily from one organization to another. No matter what organization uses
them, the rules for performing statistical computations remain the same. The
programming of natural laws is not affected by the organization involved.
And mathematical calculations are not a matter of opinion or preference
(2 + 2 = 4 no matter who is involved, where the calculation is performed,
or what we wish the result to be). Therefore once a statistical, scientific, or
engineering program has been written, it can be copied and used by many
organizations.

This chapter discusses how to use programs that have been written else
where. A sta tistical program serves as an example of a "canned" program.
The chapter also discusses some elements of style that make a program eas
ier to read and modify.

Programs developed by one organization that are transferred as a whole to
another organization are called "canned" or "packaged" programs. No
modification of the program logic is involved, although some statements
may have to be changed to fit your system.

Once the program has been changed so that it will run on another sys
tem, it can be used by anybody with access to that system. A person pro
vides the problem context and the data, runs the appropriate program, and
interprets the output. Problem specification, data collection, selection of an

Performance
Objectives

USING
CANNED

PROGRAMS

238 I Use and Design of Complex Programs

1 COTO 630

appropriate program for solution, and interpretation of output are the key
elements for the successful ase of canned programs. But these elements are
beyond the scope of this book. Here we shall focus on how to enter the data
and run a canned program.

Linear regression is a statistical technique for determining the relation
ship between two variables. (Regression analysis is covered in statistical
textbooks.) LINREG is a program that performs linear regression. A copy
of this program is shown below:

200 DATA 7E22,5E22
205 READ Ql
210 DIM D(l00,20)
215 PRINT
220 I = 0
225 I = I + I
230 READ D(I,l),D(I,2)
235 IF D(I,l) < > 7E22 THEN 225
240 Q2 = I - l
245 89 = 0
250 IF Ql THEN 270
255 IF Ql 2 THEN 325
260 IF Ql 3 THEN 395
265 COTO 220
2 70 89 = l
275 G08UB 490
280 PRINT "LINEAR: Y=A+B*X WITH A=";Q8;" AND B=";Q9
285 G08UB 565
290 FOR J = l TO Q2
295 W7 =QR+ Q9 * D(J,l)
300 Z7 = W7 - P(J,2)
305 Q4 = 100 * Z7 I D(J,2)
310 PRINT D(J,l),D(J,2),W7 , Z7,Q4
315 NEXT J
320 GOTO 999
325 FOR J = l TO Q2
330 D(J,2) = LOG (D(J,2))
335 NEXT J
340 G08UJl 490
345 PRINT " EXPONENTIAL : Y=A*EXP(B*X) WITH A= "; EXP (Q8);" AND B=";
359 G08UB 565
355 FOR J = l TO Q2
360W7 EXP(Q8+Q9*D(J,l))
365 W8 EXP (D(J,2))
3 70 Z 7 W7 - W8
375 Q4 100 * Z7 I W8
380 PRINT D(J,l),W8,H7,Z7,Q4
385 NEXT J
390 GOTO 999
395 FOR J = l TO Q2

0 D(J,l) =
5 D(J , 2) =
0 NEXT J
5 GOSUB 490

LOG (D(J,l))
LOG (D(J , 2))

Using Canned Programs / 239

0
5
0
5
0
5

PRINT "POWER: Y=A*(X-B) WITH A= " ; EXP (Q8) ; " AND B= " ;Q9
GOSUB 565
FOR J = l TO Q2

W7 EXP (D(J,l))
W8 EXP (D(J,2))
W9 EXP (QB) * W7 - Q9

0 Q4 W9 I WB - l
l Z7 W9 - W8
5 IF Q4 < 0 THE~ 470
0 Q4 = INT (1000 * Q4 + Q. 5) I 10
5 GOTO 475
0 Q4 = INT (1 000 * Q4 - 0 . 5) I 10
5 PRINT W7 , W8,W9,Z7 , Q4
0 NEXT J
5 GOTO 999

10 Q3 0
15 Q4 0
0 Q5 0
5 Q6 0
0 Q7 0
5 FOR J = l TO Q2
OQ3 Q3+D(J , l)
5 Q4 Q4 + D(J,2)
0 Q5 Q5 + D(J,l) * D(J,2)
5 Q6 Q6 + D(J,1) - 2
0 Q7 Q7 + D(J , 2) - 2
5 NEXT J
o Q9 = (Q2 * Q5 - Q3 * Q4) I (Q 2 * Q6 - Q3 - 2)
5 QB = (Q4 - Q3 * Q9) I Q2
.o RETURN
,5 QO = (Q2 * Q5 - Q3 * Q4) I
' 0 PRINT
·5 IF S9 = 0 THEN 590
:o PRINT "COEF FICIENTS : " ;

GOTO 595
PRINT " INDICIES : II• ,
PRINT " CORREL = ";QO;"
PRINT

SQR ((Q2 * Q6 - Q3 - 2) * (Q2 * Q7 - Q4 - 2))

DETERH = ";QO - 2

:5
IQ

15
10
15
. 0
. 5

PRINT "COt!PARI SON OF ACTUAL Y'S WITH Y'S ES TIMATED FROM EQUATION: "
PRINT
PRINT " Y. - ACTUAL", " Y-ACTUAL","Y-ESTIM", " DI FFER"," PCT-DIFF "

'. O PRUIT
'.5 RETURN
10 PR INT
15 PRINT " THIS IS A LIN EAR REr.RESSION PROGRAM FOR DATA IN TWO "
10 PRINT " VARIABLES, X ANDY . FROM INPUT POINTS , DESCRIBED BY "
15 PRINT " THEIR :: AND Y COORDINATES, AN EQUATION IS PRODUCED THAT "
iO PRINT " BEST FITS THESE PO I NTS IN THE LEAST- SQUARES SENSE . TO"

240 I Use and Design of Complex Programs

655 PRINT "USE THE PROGRAM, TYPE THE FOLLOWING:"
6 60 PRINT
665 PRI?IT II

6 70 PRINT II

675 PP.INT II

680 PRINT II

6 85 PRINT II

690 PRINT II

695 PP. INT II

700 PRINT II

705 PRINT

l DATA

2 DATA

K"
(WHERE K=l FOR LINEAR, 2 FOR EXPONENTIAL,"
AND 3 FOR POWER FUNCTION TO BE FITTED .)"

x (l) , y (l) , x (2) , y (2) , ••••• , x (N) , y (N) II
(WHERE X(l),Y(l) IS THE FIRST POINT, X(2),"
Y(2) IS THE SECOND AND SO ON UNTIL ALL"
POINTS HAVE BEEN ENTERED . ADD I TIONAL DATA"
STATEMENTS 3-199 MAY BE USED AS NEEDED .)"

710 PRINT "THEN TYPE 'RUN'."
999 STOP
63999 END

You can use LINREG by calling it up (LOAD LINREG), entering your
data, and typing RUN. But data entry for LINREG, as well as many similar
programs, is different from how it was handled in earlier parts of this book .
Data is entered wi th DAT A statements that are part of the program.
LINREG provides instructions for entering data:

LOAD LINREG

RUN

THIS IS A LINEAR REGRESSION PP.OGRAM FOR DATA IN TWO
VARIABLES , X AND y , FROM INPUT POINTS, DESCRIBED BY
THEIR X AND Y COORDINATES, AN EQUATION IS PRODUCED THAT
BEST FITS THESE POINTS IN THE LEAST- SQUARES SENSE. TO
USE THE PROGRAM, TYPE THE FOLLOWINGi

l DATA K
(WHERE K= l FOR LINEAR, 2 FOR EXPONENTIAL,
AND 3 FOR POWER FUNCTION TO BE FITTED .)

2 DATA X(l},Y(l),X(2),Y(2), ,X(N },Y(N)
(WHERE X(l) , Y(l) IS THE FIRST POINT, X(2),
Y(2) IS THE SECOND AND SO ON UNTIL ALL
POINTS HAVE BEEN ENTERED. ADDITIONAL DATA
STATEMENTS 3 - 199 MAY BE USED AS NEEDED .)

THEN TYPE 'RUN',

This RUN shows what has to be entered in DATA statements. A DATA
statement is a non-executable BASIC instruction that holds data for a pro
gram. It starts with a line number, the word DATA, and then the individual
data values separated by commas. For example:

1 DATA 3.7,4.2,3.9,2.5 ,6

The DATA statement holds five values. They may be the values for five

Using Conned Programs I 241

fields of a record, or they may be five values for one field. Either way, DAT A
statements hold a stream of values that are used one after another.

Data values in DAT A statements are assigned to fields by READ state
ments. Look at LINREG, line 205 and line 230. Both contain the BASIC
instruction READ. Line 205, READ Ql , being the first READ, assigns the
first value found in any DATA statements to QI. Line 230, READ
D(I, I),D(l,2), assigns the next data value to D(I, I) and the following value
to D(I,2).

Once an item of data has been assigned, the next READ uses the item of
data that follows. Every READ "uses up" data values. Although data can be
distributed over many DATA statements, they must follow the order of the
READ statements. The READ statements follow the stream of data, using
up data values in sequence.

Now we can run LINREG. First, call up the program. Then enter the
data as specified by the instructions:

1 DATA
2 DATA
3 DATA
4 DATA
5 DATA
6 DATA
7 DATA
8 DATA
9 DATA
10 DATA
11 DATA
1 2 DATA
13 DATA
14 DATA
1 5 DATA

1
719 , 3756
1384,5100
995,4950
231,894
462 , 480
486,1908
1299,5388
233,240

189,468
759, 1662
11 2 ,9 6
1252,5 334
677,786
295 , 648

Then type the word "RUN", and it generates the output.

LIN EAR: Y= A+B* X WI TH A= - 66 2.4 8 762 7 AND B=4 . 5 0729427

COE FFI CIEN TS : CORREL = . 92 7 24 71 4 3 nETERM = . 85 9 787265

CO MPARISON OF ACTUAL Y' S WI TH Y' S ESTIMA TED FROM EQUATION :

X- ACTUAL Y- ACTUAL Y- ESTIM DIFFER

7 19 3756 257 8 . 256 9 5 - 11 77 . 74305
13 84 5 100 5575 . 6076 4 47 5 . 607639
99 5 49 5 0 382 2 .27017 - 11 2 7. 72983
231 894 378 . 697 349 - 5 15 .302651
462 480 14 19 . 88 232 9 39 . 882325
486 1908 152 8 .05 7 3 9 - 3 79 .9 42613
12 99 5388 5192. 487 6 3 - 195 . 512373
2 33 240 387 . 71193 8 147 . 711938

PCT - DI FF

- 3 1. 3563 112
9 . 32 56399 9
- 22 . 782-4208
- 5 7. 6401 1 76
195 . 8088 18
- 19. 9 131348
- 3 . 62866 3 2
61. 5466407

242 I Use and Design of Complex Programs

189
759
l l 2
12 5 2
677
295

BREAK IN 999

STRUCTURED
PROGRAMMING

468
16 6 2
96
5334
786
648

189 . 39099
2758 . 54872
- 157 . 670669
4980 . 6448
2388 .9 5059
667 .1 64183

- 278 . 60901
1096 . 54872
- 253 . 670669
- 353 . 355204
16 02 .9 5059
19.1 64 1822

- 59 . 53 18398
65 . 9776608
- 264 . 24028
- 6 . 62458 199
203 . 937734
2 . 95743552

The interpretation of this output and its use in decision making will de
termine the value of LINREG. But that aspect is peripheral to our focus.
Notice how easy it is to use the program: Enter the data, type run, and the
program can generate reams upon reams of output.

Other statistical programs are just as easy to use. Just enter the data and
the program does the rest. It is not necessary to know anything about statis
tics or about computer programming to use these programs for analysis.
Therein lies the power, as well as the danger, of using compQters. Anybody,
whether knowledgeable in the technique used or not, has the technique
available if he can enter data and type RUN. But knowledge of the problem
context, of the validity of the data, and of the technique of analysis is re
quired to derive the proper conclusions from such use of canned programs.

Another example of a canned program is the file sort in Appendix B.
Again, the detailed instructions of the program are unimportant. What is
important is knowing how to use it properly to do the desired job.

Similar to canned programs, but at a much lower level, are functions.
Functions perform one specific task in a program. For example, the INT
function used in Chapter 6, gives the integer portion of a number. Functions
aFe usually indicated by a three-letter keyword. Table 10-1 lists the mathe
matical functions available in BASIC.

Structured programming is a systematic way of designing a program. It is a
philosophy of design to make a program readable and easy to change.

Structured programming breaks a program into a number of pieces,
called modules. Each module performs one task. Since the modules are
smaller than the whole program, each piece is easier to understand, easier to
code, and easier to change. But breaking a program into modules requires
planning. Structured programming emphasizes planning of what a program
does and how its modules are related. AU modules should be clearly speci
fied before coding. AU variables should be clearly defined and their roles in
the various modules identified. Obviously this planning is not cheap and re
quires careful coordination between programmers.

Structured programming recognizes three types of sequences of instruc-

Structured Programming I 243

Function*

Y = ABS(X)

Y = ATN(X)

Y = COS(X)

Y = EXP(X)

Y = INT(X)

Y = LOG(X)

Y = RND(X)

Y = SGN(X)

Y = SIN(X)

Y = SQR(X)

Y = TAN(X)

Mathematical Functions

Explanation

Assigns to Y the absolute value of X.

Assigns to Y the arc tangent of X; X is ex
pressed in radians.

Assigns to Y the cosine of X; Xis in radians.

Assigns to Y the value of e raised to the X
power; where e is 2.71828.

Assigns to Y the greatest integer in X which is
less than or equal to X.

Assigns to Y the natural logarithm of X.

Assigns to Y a random number uniformly dis
tributed between 0 and 1.

Assigns to Y the value 1 preceded by the sign of
x.
Assigns to Y the sine of X; X is in radians.

Assigns to Y the square root of X.

Assigns to Y the tangent of X; X is in radians.

• Y stands for the name of any field; and X can be a field or a formula, but must be
enclosed in parentheses.

tions-simple sequence, selection, and looping. Any program can be com
posed using one or a combination of these elementary types. For example:

Simple sequence 100 LET R = 3.00
110 LETH= 40
120 LET P = R• H
130 PRINT P

Table 10-1

244 I Use and Design of Complex Programs

100 REM
110 REM
120 REM
130 REM
140 REM
150 REM
16 0 REM
170 REM
180 REM
190 REM
200 REM

Selection

Alternative I
(false)

Alternative 2
(true)

Loop

100 IF T = 2 THEN 300

200 Q2 = Q2 + QI
210 GO TO 400

300 Q2 = Q2 - QI
400

100 FOR RI 1TO8

200 NEXT RI

A simple sequence has no GO TO. Each statement follows the preceding
statement until the sequence is finished.

A selection consists of an IF-THEN and its two possible groups of in
structions. One of these two possible groups is selected when the IF-THEN
is true. The other is selected when the IF- THEN is false.

A loop repeats a group of instructions until a specified condition has
been met.

Of course the alternatives of a selection or the group of instructions in a
loop may contain subsidiary selections or loops. Ideally each type of module
should have one entry ano one exit with no backtracking. The flow of a pro
gram should be top to bottom (except for loops.) GOTO's that jump back
to previously executed code should be eliminated.

To clarify the relationship between the elements of a program, struc
tured programming uses indentations and additional comments (REM state
ments) to highlight the structure of a program. Indentation shows which
elements fit together. Comments aid in understanding both the logic (what
the program does) and the structure (how the program is organized.)

Let's look at some examples to clarify these ideas. First, look at the
SORT program in Chapter 8. It performs three major tasks that can be
diagrammed as follows in Figure 10- I.

This program can be rewritten to make the structure stand out. A rewritten
version follows:

* PROGRAM NAME: LI ST SORT *
* *
* THIS PROGRAM - - *
* 1. GETS DATA FROM A TERMINAL AND STORES THEM IN *
* LISTS *
* 2. SORTS THE LISTS IN DESCENDING ORDER OF NET PAY *
* 3. PRINTS THE SORTED LISTS *
* *
* PROGRAMMER NAME: A.N.LYST *
* DATE: APRIL l' 1979 *

210 REM
220 REM
230 REM
240 REM
250 REM
260 REM
270 REM
280 REM
290 REM
300 REM
310 REM
320 REM
330 REM
340 REM
350 REM
360 REM
370 REM
380 REM
390 REM
400 REM
410 DIM
420 REM
430 REM
440 REM
450 L = 0

*

Start

Assign Data
to Lists

Sort Lists

Print Out
Sorted lists

Terminate

SORT Program

* FIELD NAMES:

Structured Programming I 245

Figure 10-1

*
* * F •• ••• • EXCHANGE FLAG -- SET TO 1 WHEN AN *

* EXCHANGE HAS OCCURRED ; 0 OTHERWISE *
* K • . .. • . INDEX OF FOR - NEXT LOOP *
* L .• POINTER TO A LOCATION IN A LI ST DURING *
* DATA ENTRY; THE NUMBER OF ITEMS IN A LIST *
* AFTER DATA ENTRY *
* M$. • .. . EMPLOYEE NAME ENTERED FROM TERMINAL *
* N() ..•. LIST TO HOLD EMPLOYEE NUMBER *
* Nl EMPLOYEE NUMBER ENTERED FROM TERMINAL *
* N$() . .• LIST TO HOLD EMPLOYEE NAME *
* P() •..• LIST TO HOLD EMP LOYEE NET PAY *
* P l • •.• • EMPLOY EE NET PAY ENTERED FROM TERM I NAL *
* T . ••• •• TEMP ORARY STORAGE OF A NUMERIC VALUE *
* DURING AN EXC HANGE *
* !$ •• .• . TEMPORARY STORAGE OF EMPLO YEE NAME *
* DURING AN EXCHANGE *
************************* ******************************

N(100) ,N$ (100) ,P(l00)

GET DATA FROM TERMINAL AND PUT THEM I NTO THE LI STS

246 I Use and Design of Complex Programs

460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
6 30
640
650
660
670
680
690
700
710
720
7 30
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970

REM *** BEGIN DATA ENTRY LOOP
PRINT "TYPE EMPLOYEE NUMBER, EMPLOYEE NAME,"
PRINT "AND NET PAY -- SEPARATED BY COMMAS."
PRINT " WHEN FINISHED -- TYPE 99,AA,99"
INPUT Nl,M$,Pl
REM -----> EXIT FROM LOOP WHEN DATA ENTRY FINISHED
IF Nl = 99 THEN 640
REM ASSIGN DATA TO ARRAYS

L = L + l
N(L) = Nl
N$(L) = M$
P(L) =Pl

REM *** ENDIF 520
GOTO 470
REM *** END DATA ENTRY LOOP
REM
REM SORT THE LISTS INTO DESCENDING NET PAY ORDER
REM

U = L - l
REM *** BEGIN SORT LOOP

F = 0
FOR K = l TO U
REM
REM COMPARE TO ADJACENT VALUES OF NET PAY
REM IF THEY ARE NOT IN ORDER, EXCHANGE THEM
REM
IF P(K) > P(K + 1) THEN 900
REM
REM NET PAY VALUES OUT OF SEQUENCE, HENCE EXCHANGE
REM

T = P(K)
P(K) = P(K + 1)
P(K + 1) = T
T = N(K)
N(K) = N(K + 1)
N(K + 1) = T
T$ = N$(K)
N$(K) = N$(K + 1)
N$(K + 1) = T$

REM
REM SET EXCHANGE FLAG (F) TO l
REM

F = l
REM *** ENDIF 720
NEXT K
REM ----- > EXIT FROM SORT LOOP WHEN F=O
IF F = l THEN 660
REM *** END SORT LOOP
REM
REM PRINT HEADINGS AND SORTED LISTS
REM
PRINT "EMPLOYEE","EMPLOYEE","WEEKLY"

Structured Programming I ~47

980 PRINT 11 NUMBER 11
,

11 NAME 11
,

11 PAY 11

990 PRINT II ------ II II II II II

' ' 1000 REM *** BEGIN PRINT LOOP
1010 FOR K = l TO L
1020 PRINT N(K),N$(K),P(K)
1030 NEXT K
1040 REM *** END PRINT LOOP
1050 END

As another example, compare the inventory update in Chapter 7 on
page 179 with the structured version of the same program shown below.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
445
450
460
470
480
490

REM **
REM * PROGRAM NAME: INVENTORY UPDATE *
REM
REM
REM
REM
REM
REM

*
* THIS PROGRAM - -
* 1. UPDATES THE OLD INVENTORY MASTER FILE :
* READS INVENTORY TRANSACTION RECORDS
* READS OLD INVENTORY MASTER RECORDS
* UPDATES MASTER RECORDS WITH TRANSACTIONS

REM *
REM *
REM *
REM *

WRITES NEW (UPDATED) MASTER RECORDS
2. PRINTS THE NEW (UPDATED) MASTER FILE
3. PRINTS AN INVENTORY VALUATION REPORT

*
*
*
*
*
*
*
*
*
*
*
*

REM * PROGRAMMER NAME: P. GRAMMER
REM * DATE: APRIL 1, 1980
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

* *
*FIELD NAMES: *
* C •••• UNIT COST OF PART INPUT FROM UPDATED MASTER *
* C2 ••• UNIT COST OF PART INPUT FROM OLD MAS TER FILE *
* D •• , .DOLLAR VALUE OF PART *
* P •••• PART NUMBER INPUT FROM UPDATED MASTER FILE *
* Pl .•• PART NUMBER INPUT FROM TRANSACTION FILE *
* P2 ••• PART NUMBER INPUT FROM OLD MASTER FILE *
* Q •... QUANTITY ON HAND INPUT FROM UPDATED MASTER *
* Ql ••• QUANTITY OF TRANSACTION INPUT FROM *
* TRANSACTION FILE *
* Q2 ••• QUANTITY ON HAND INPUT FROM TRANSACTION FILE *
* T •• •• TOTAL DOLLAR VALUE OF INVENTORY *
* Tl •.• TRANSACTION CODE INPUT FROM TRANSACTION FILE *
* CODE VALUES: l = RECEIPT *
* 2 = ISSUE *
*** * **************

ONERR GOTO 1710
D$ = CHR $ (4)

REM
REM LINK TO FILES
REM
PRINT D$;"0PEN INVTR 11

PRINT D$;"0PEN INVMR 11

248 I Use and Design of Complex Programs

500
510
520
530
540
545
550
560
570
580
585
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
785
790
800
810
820
830
840
850
855
860
870
880
890
895
900
910

PRINT D$;" 0PEN INVSN"
REM
REM READ A TRANSACTION RECORD
REM
PRINT D$;" READ INVTR"
INPUT Pl,Tl,Ql
REM
REM READ A MASTER RECORD
REM
PRINT D$;" READ INVMR "
INPUT P2,Q2,C2
REM *** BEGIN UPDATE LOOP
REM
REM IF TRANSACTION EQUALS MASTER
REM
IF Pl = P2 THEN 670
GOTO 820
REM THEN UPDATE MASTER
REM IF TRANSACTION IS A RECEIPT
IF Tl l THEN 700
GOTO 730
REM THEN ADD TRANSACTION QUANTITY TO QUANTITY ON HAND

Q2 = Q2 + Ql
GOTO 780
REM

Q2 =
REM
REM
REM
REM

ELSE SUBTRACT QUANTITY FROM QUANTITY ON HA ND
Q2 - Ql

***ENDIF 670

READ A TRANSACTION RECORD

PRINT D$; " READ INVTR"
INPUT Pl,Tl,Q l
REM -----> EXI T WHEN OUT OF TRANSACTION RECORDS
GOTO 630
REM ELSE IF TRANSACTION GREATER THAN MAS TER
IF Pl > P2 THEN 850
GOTO 960
REM THEN WRITE UPDATED MASTER
PRINT D$;"WRITE INVSN "
PRINT P2;",";Q2; ","; C2
REM
REM READ A MASTER RECORD
REM
PRINT D$;"READ INVMR"
INPUT P2,Q2 , C2
REM ------> EXIT WHEN OUT OF MASTER RECORDS
GOTO 630

920 REM
930 REM
940 REM
950 REM

ELSE TRANSACTION LESS THAN MASTER

WRITE ERROR MESSAGE -- NO MASTER IN FILE

960
965
970
980
990
1000
1005
1010
1020
10 30
1040
1 050
1060
1070
1080
1090
1095
1100
1 105
1110
1120
1130
1140
1150
1160
1170
1172
1174
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1305
1308
1310
1320
1330
1340
1350
1360
1370
1380

Structured Programming / 249

PRINT D$
PRINT "***TRANSACTION WITHOUT MASTER "; Pl , Tl , Ql
REM
REM READ A TRANSACTION RECORD
REM

PRINT D$;"READ INVTR"
INPUT Pl,Tl,Ql
REM *** ENDIF 820
REM -----> EXIT WHEN OUT OF TRANSACTION RECORDS
GOTO 630
REM *** END UPDATE LOOP
REM
REM TRANSFER REMAINING RECORDS FROM OLD TO NEW MASTER
REM
REM *** BEGIN TRANSFER LOOP
PRINT D$;"WRITE INVSN "

P2; ","; Q2;",";C2
D$; "READ INVMR"
P2,Q2,C2

PRINT
PRINT
INPUT
REM
GOTO

------> EXIT WHEN
1090

OUT OF MASTER RECORDS

REM *** END TRANSFER LOOP
REM
REM PRINT THE UPDATED MASTER FILE
REM
PRINT D$;"CLOSE INVTR"
PRINT D$; " CLOSE INVMR"
PRINT D$;"CLOSE INVSN "
PRINT D$; "OPEN INV SN II
REM
REM HEADINGS FOR UPDATED FILE
REM
PRINT
PRINT II

PRINT II

NEW INVENTORY MASTER FILE"
-------------------------''

PRINT
PRINT " PARTS","UNITS" ,"COST "
PRINT "NUMB ER ","ON HAND "
PRINT 11

11

,
11

11
,

11

REM *** BEGIN PRINT LOOP
PRINT D$;"READ INVSN"
INPUT P,Q,C
PRINT D$
PRINT P,Q,C

II

REM
GOTO
REM
REM
REM
REM

------> EXIT WHEN OUT OF NEW MASTER RECORDS
1300
*** END PRINT LOOP

PRINT INVENTORY VALUATION REPORT

PRINT D$;"CLOSE INVSN "

250 I Use and Design of Complex Programs

1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
15 20
1530
1540
1545
1548
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
164 5
1650
16 6 0
1670
1680
1690
1700
1710
1715
1720
1725
1730
1732
1734
1740
1750
1760
1765
1770
1780
1790
180 0
63999

PRINT D$;"0PEN INVSN"
REM
REM HEADINGS FOR VALUATION REPORT
REM
PRINT
PRINT
PRINT " INVENTORY VALUATION REPORT"
PRINT II -- - --- - ------ - - - ---------- ''
PRINT
PRINT "P ART ", " DOLLAR"
PRINT " NUMBER","AMOUNT "
PRINT 11

11

,
11
--- - - -

11

REM
T = 0

REM *** BEGIN INVENTORY VALUATION LOOP
PRINT D$;"READ INVSN"
INPUT P,Q,C
PRINT 0$

D = Q * C
T = T + D

PRINT P,D
REM ------> EXIT WHEN OUT OF DATA
GOTO 1540
REM *** END INVENTORY VALUATION LOOP
REM
REM PRINT TOTAL VALUATION
REM
PRINT 0$
PRINT "------------------ - ----"
PRINT " TOTAL " ,T
PRINT D$; " CLQSE INVSN "
GOTO 1800
REM *******************************
REM *** ERROR CHECKING ROUTINES ***
REM *******************************
PRINT D$

Y = PEEK (222)
IF Y = 5 THEN 1760
PRINT " UNUSUAL ERROR ",Y
PRINT D$; " CLOSE INVTR"
PRINT D$;"CLOSE INVMR"
PRINT D$;"CLOSE INVSN"
STOP
REM

L = PEEK (218) + 256 * IF L 785 THEN 1090
IF L 110 5 THEN 1170
IF L 1305 THEN 13 80
IF L 15 45 THEN 1640
STOP
END

PEEK (219)

In both of the structured programming examples all THEN's and
GOTO's should be printed at the far right hand side of the line on which
they appear. Since the Apple packs all BASIC instruction lines to the far
left, it was not possible to make the programs look more like "normal"
structured programs.

Now make your evaluations. Which of the two versions of a program
did you find easier to understand? In your opinion, which was easier to
write? Since REM statements make a program larger and take time to write
and enter (they only exist for the benefit of the reader- the computer ignores
them), consider the following: Is the cost in time, effort, and added storage
requirements Jess than, equal to, or greater than the benefit of readability?
Only you can make that decision for yourself and your organization.

BASIC Instructions Introduced:

Inst met ion

READ x~z

DATA 5,2,7

Explanation
Assigns values to fields from DAT A state
ments (X;t:Z are arbitrary field names)
Used to hold data for fields in READ state
ments

Summary I 251

SUMMARY

11 I Advanced Concepts

253

Editing on the Apple / 255

At the end of this chapter you ·Should be able to:

• Use full screen editing
• Use the graphics capability on the Apple
e Use EXEC files
• Format reports

Editing consists of changing data or programs once they are in the com
puter. From your first introduction to BASIC, you realize that the editing
of programs is a very important function. Until that happy day when you
no longer make errors in typing or logic, editing will continue to be one of
the most important and often used functions of the computer.

On the simplest level, editing in BASIC is predicated on line numbers
and consists of the ability to: (I) Replace a line (by retyping it), (2) Delete a
line (by typing its number followed by a return), and (3) Insert a line between
two existing lines (by giving it an appropriate line number). These editing
functions work because of the way in which the Apple responds to a LIST
or RUN. In either case, the Apple will arrange all lines in ascending order of
line number before obeying the command given. If it encounters a second
reference to the same line number, it forgets about the first reference.
Because of this, it does not matter in what order you enter your BASIC pro
gram as long as the line numbers are chosen so that their value indicates
where each goes logically. For example:

If You Enter

100 END
50 PRINT I
40 FOR I=l TO 5
60 NEXT I
63999 END
100

The Apple Uses

40 FOR I=! TO 5
50 PRINT I
60 NEXT I
63999 END

While you can accomplish any editing task using only simple editing,
there are easier, less time consuming ways to get most jobs done.

A very powerful editing technique avai lable on the Apple is known as
full screen editing. Full screen editing gives you the capability of entering
anything that is currently displayed on the screen (or a modification of any
thing displayed) without retyping it. This capabi!ity is very useful when:
(1) You have just entered a long, complicated line and real ize toward the
end that there is a mistake toward the beginning; (2) You wish to modify a
program and change the name of a field or file each time that it occurs; and
(3) You have several similar statements to type, such as OPENing or
CLOSEing a file.

'

Performance
Objectives

EDITING
ON THE APPLE

256 I Advanced Concepts

Full screen editing is based on the ability to control the cursor (that
blinking, white block that always indicates where the next character is going
to be typed on the screen) . There are two situations in which you need to
move the cursor: (I) You wish to position the cursor at a particular point on
the screen where you wish to perform an edit, and (2) You wish to move the
cursor over a string of characters on the screen with the same effect as
though you had just typed them.

In the first case (positioning), you must use the escape (ESC) key fol
lowed by an A to move one space to the right (ignoring any characters over
typed), a B to move one space to the left, a C to move one line down and a D
to move one line up. To move the cursor several positions, you must type
ESC followed by the appropriate letter, ESC letter, etc.

Once the cursor is positioned at the desired location (normally at the
beginning of the line to be edited), the forward (-+) and backward (-)
arrows are used to move the cursor over the characters to be entered or
deleted. Any character to be corrected is simply retyped. When the line is
correct, type RETURN and the new line will be entered into your program
just as though you had typed it from scratch.

As an example, suppose that you typed the following line and have not
yet pressed RETURN (the position of the cursor is indicated by a +):

]IO A=2. 14 1592654•R"2+

You notice that the first digit in the number should have been a " 3" instead
of a "2". To correct this problem, use the.._ to backspace the cursor until it
is positioned on top of the "2". Type "3" and then use the-+ to move the
cursor over the rest of the line. Then press RETURN.

In this example, it was not necessary to retype any character but the
incorrect one. Since the rest of the line was a lready displayed on the screen,
you just had to run the cursor over it and hit RETURN.

As a second example of full screen editing, suppose that you have typed
the same line as above, but have already hit the RETURN. What you see on
the screen is:

] 10 A=2.141592654•R" 2

]+

In this case the cursor must be positioned before the arrows can be used.
Since the cursor is now under the "I", it is necessary to move it up two
lines. Do this by typing ESC D,ESC D. It should now be on top of the" l ".
Use the-+ to run the cursor over until it is on top of the "2", type " 3", and
continue with -+ to cover the rest of the line. Then type RETURN. You
have just corrected and reentered line 10 with a minimum of effort.

Consider now the situation in which three files " EMPLOY",
"EMPTRA" and "EMPMAl " must be opened in a program. You may, of

Editing on the Apple 257

course, type all three OPEN statements, or you can use full screen editing to
make the job easier. To do so, type the first OPEN statement as follows:

) 10 PRINT D$; "OPEN EMPLOY"

]+

Now type ESC D twice to position the cursor on top of the " 1 ", type "2"
(to change the line number), and use the -+ co run the cu~sor over to the
"L" in EMPLOY. Type "TRA", hit the - once to pick up the quotation
mark, then RETURN. You have just entered the line 20 PRINT
D$;"0PEN EMPTRA". Use the same technique to enter line 30 PRINT
D$; "OPEN EMPMA I". Type LIST to make sure that a ll is well.

As a final example, suppose that you have a program in memory with
the following typing error in line 10:

10 PNT A,8$,C

To correct this problem, first LIST 10 to display the bad line. You will see:

)LIST

10 PNTA,8$,C

]+

Notice in this case that the cursor is below the "O" because of the prompt
character. Type ESC D,ESC D,ESC B to position the cursor on top of the
"I" and use the-... to run over to a posi.tion on top of the "N" in PNT.
Now type ESC D to move the cursor up above the line, type "RI' to insert
the missing characters in the word PRINT, then type ESC C,ESC B,ESC B
to reposition the cursor back over the "N" in PNT. Now use the-+ to com
plete the line as before. Notice that it does not matter that what you see on
the screen seems meaningless. What matters is the sequence of characters
that you run the cursor over or type. Remember that characters covered
using the ESC are ignored. A little practice with full screen edi ting will give
you a tool that will save many hours of needless typing.

Most large computers have editing software (programs) as their princi
pal form of editing. These powerful programs allow you to: (!) Enter pro
grams; (2) Delete, replace, and insert whole lines; (3) Delete, replace, and
insert text within a line without retyping it; and (4) Search a specified group
of lines (or the whole program) for each occurrence of a particular series of
characters and leave the series as is, change it, or delete it as you wish. The
computer term for a series of characters is a string. Since alphabetic fields
are nothing more than series of characters, they are called strings. This last
featu re is extremely useful. If you have this capability, then you can do any
edit with a minimum of effort.

258 I Advanced Concepts

GRAPHICS
ON THE APPLE

The Apple has both full screen editing and editing software available.
The editing software, however, must be purchased separately.

The two principal editing programs on the Apple are the PROGRAM
LINE EDITOR distributed by SYNERGISTIC SOFTWARE and the
APPLE WRITER distributed by Apple. The PROGRAM LINE EDITOR
is primarily oriented toward editing single lines at a time. Within a line,
most of the editing functions mentioned above can be performed.

The APPLE WRITER is the most genera l editor currently available on
the Apple. It is a word processor and cannot be used to edit BASIC pro
grams. All of the editing functions mentioned above and many others are
available in APPLE WRITER. With it you can move text from one location
in a file to another location, insert fi les of text into a document, delete indi
vidual words or lines or paragraphs, and print out the resulting text on a
printer with titles, automatically incrementing page numbers, etc. The
APPLE WRITER is a very powerful program for editing papers, books, etc.

The situation often arises in business in which you would like to present
some data in graphical form. Graphs of sales, inventory levels, production,
etc. , are commonly done. The Apple has considerable graphics capabi li ty
built into the BASIC ianguage. Consider the situation in which you would
like to graph sales figures for the last 24 months. The following program
solves this problem and illustrates the principal statements involved in low
resolution graphics, one of the two graphics modes available on the Apple.

In low resolution graphics mode, the Apple separates the screen into a
40 column by 40 row graphics pad at the top and four lines of text at the
bottom. The BASIC statement GR in line 120 accomplishes this division
and initializes the graphics mode.

Any point on the graphics pad can be referenced by giving its column
and row position. The upper lefthand corner is column 0 and row 0 (referred
to as 0,0), the lower left is 0,39, etc. Before a point can be plotted or a line
can be drawn, its color must be specified. Low resolution graphics allows 16
colors. They are:

0 Black 8 Brown
1 Magenta 9 Orange
2 Dark Blue 10 Grey
3 Purple 11 Pink
4 Dark Green 12 Green
5 Grey 13 Yellow
6 Medium Blue 14 Aqua
7 Light Blue 15 White

In line 130 of the program, the color dark blue (2) is selected.

Graphics on the Apple I 259

Output from Low Resolution Graphics Example

100 REM
110 REM

PROGRAM TO ILLUSTRATE LOW RESOLUTION GRAPHICS

115 REM INITIALIZE LOW RES GRAPHICS
118 REM SET COLOR TO DARK BLUE
1 20 GR
130 COLOR• 2
140 REM DRAW BORDER AROUND SCREEN
150 REM
160 HLIN 0,39 AT 0: HLIN 0,39 AT 39
170 VLIN 0,39 AT 0: VLIN 0,39 AT 39
180 REM SE T COLOR TO ORANGE FOR PLOTTING
190 REM
200 COLORm 9
210 REM READ 24 MONTHS OF SALES DATA AND DRAW BAR GRAPH
220 REM
230 FOR I • 1 TO 24
240 READ X
245 P a 38 * x I 34
250 VLIN 38,(39 - P) AT I
260 NEXT I
270 DATA
2 80 DATA
63999 END

12,15,18,27,31,26,17,21,34,7,11,24
14,16,20,25,32,28,18,23,30,10,13,28

Now chat the graphics mode is initialized and a color has been selected,
you are ready to plot points or draw lines on the graphics pad. In line 160,
two horizontal lines (HUN) are drawn. The first extends from column 0 to

Fig ure 11-1

260 I Advanced Concepts

column 39 in row 0. In effect this line forms the top border of the graphics
pad. The second HU N statement draws the bottom border of the pad. The
statements in line 170 finish drawing the borders by filling in first the left ,
then the right border. From this you can see just how easy it is to use low
resolution graphics. All you have to do is figure out where you wish to draw
a line and the Apple does the rest. Plotting points is even easier. Just type
PLOT followed by a point reference. For example, PLOT 20,30 will plot a
single point at the intersection of column 20 and row 30.

Let's get back to our program. We have drawn the borders of the graph
so far. What is necessary now is to read each sales figure, scale it so that it
will fit on the graph (remember the largest bar we can draw without running
into bottom or top borders is 38 blocks high), and then plot it. Lines 230
through 260 accomplish this. In line 240 a value is read into the field X . Line
245 scales this value so that the largest value of X (34 in this example) will
require a 38 block bar (the largest possible). This scaling statement will
work no matter what size the data are. If they are small, the statement will
expand them to occupy the space avai lable. If they are large, it will shr ink
them to fit.

Line 250 is the trickiest line in the program. It is the line that draws the
lines that form the bars on the graph. Because we have a lready used up row
39 as part of the border, the first block in any bar will be in row 38. Let's
suppose that we have a bar JO blocks high to draw. Such a bar would extend
from row 38 to row 29 in its column. In general, it would extend from row
38 through row (39-P) in column I. That is exactly what the statement in line
245 says. This statement is only complicated because the graphics pad on
the Apple is upside down from the way in which you are used to seeing a
graph. When you studied graphs in school, the origin (the 0,0 point) was al
ways in the lower left corner, not in the upper left corner as the Apple sees it.

As a variation lo this program, try replacing line 250 with the statement
PLOT I,(39-P). This gives a similar graph except that only the points on the
top of the bars are plotted.

When you are finished viewing the results of a low resolution graphics
run, type TEXT to return the screen to normal. Even after typing TEXT,
there is a lot of garbage left on the screen. To get a nice, clear screen, type
escape (ESC) followed by a shift-P and then RETURN.

High resolution graphics is similar in concept to low resolution graphics.
The main difference is that the high resolution graphics pad is 280 columns
by 160 rows. This allows much finer work to be done including lines con
necting any two points on the graphics pad, not just horizontal and vertical
lines. The fo llowing program shows how high resolution graphics might be
used in the previous example.

This high resolution example is very similar to the low resolution exam
ple given above. The major differences are due to the increased number of
points on the graphics pad.

Graphics on the Apple 261

Output from High Resolution Graphics Example

100 REM
110 REM
115 REM
118 REM
1 20 HGR

PROGRAM TO ILLUSTRATE HIGH RESOLUTION GRAPHICS

INITIALI ZE HIGH RES GRAPHICS
SET COLOR TO WHITE

130 HCOLORa 7
140 REM DRAW BORDER AROUND SCREEN
150 REM
1 60 HPLOT 0,0 TO 279 ,0: HPLOT 0,159 TO 279,159
170 HPLOT 0,0 TO 0,159: HPLOT 279 ,0 TO 279, 159
190 REM
200 HPLOT 1,158
2 10 REM READ 24 MONT HS OF SALES DATA AND DRAW BAR GRAPH
220 REM
230 FOR I - 1 TO 24
240 READ X
245 P a 1 58 * x I 34
2 50 HPLOT TO (10 * I),(159 - P)
260 NEXT I
270 DATA
280 DATA
63999 END

12 , 15,1 8,27,31,26, 17,21,34,7,11, 24
14, 16,20,25,32,28, 18 ,23,30 ,10,1 3,28

In line 120, high resolution mode is initialized by the statement HG R.
In line 130 the color for the border is chosen to be white. In high resolution
mode, only eight colors are allowed as follows:

Figure 11-2

262 I Advanced Concepts

0 Black
I Green
2 Violet
3 White

4 Black
5 Orange
6 Blue
7 White

White (7) is the best color to choose in order to obtain the clearest
graph.

In line 160 the top and bottom borders are drawn. As before, the origin
(0,0) is in the upper lefthand corner of the graphics pad. Also as before,
points are referenced by column number and row number. Line 170 draws
the side borders.

Lines 230 through 260 read in the data (X), scale it, and graph it as in
the previous example. Line 245 scales X so that its largest value (34) wi ll be
158 points high. This is the highest position available since the borders take
up two of the 160 available positions.

In line 250 the tops of what were the bars in the previous example are
connected by HP LOT. Initially a point is plotted in column l, row 158 (in
line 200) . This is the point in the lower left corner of the graphics pad (tak
ing account of the borders). This point is plotted first because the HPLOT
statement in line 250 draws a line from the previous point plotted to the
coordinates given after the "TO" . The coordinates used wi th the HP LOT
in line 250 are the same as those used in the PLOT modification in the previ
ous example with one exception. The 10•1 is necessary to spread the points
apart enough to be seen. Try running this program with coordinates
1,(159-P) and see what happens.

A final problem that is relevant in both graphics modes is that of label
ling the axes on the graphical results. Unfortunately, there is no easy way to
accomplish this without a special attachment to the Apple which allows
graphics and text to be mixed on the graphics pad. This is a shortcoming in
Apple graphics, but it can be overcome by using a general plotting program
distributed by Apple called APPLE PLOT. APPLE PLOT will allow you
to produce professional looking graphical output with a minimum of effort.
Figures 11-3 and 11-4 are examples of APPLE PLOT outputs.

After you have spent some time developing a graphics application, you
probably will want to have a copy of your work on paper. This does not
represent a problem for the Apple. You will need a special printer, however,
with graphics capability. Two possibilities are the SILENTYPE, an inex
pensive printer with graphics capabilities, and the WATANABE WX4671
plotter.

The Apple's graphics capability is substantial. The examples in this sec
tion are not intended to make you a graphics expert, but to whet your appe
tite for the type of work that you can do on your Apple.

~
E s
F

~
R

I

s
A
L
E s
F
I
G u
R
E s

Graphics on the Apple I 263

8

4

1979/81 SALES OF aIDGETS

8++++-+oo!~t--t-..-..++-1-1-+-iM-fo+++~-+

JF"ANJJASONDJF"ANJJASOND
"DHTHS FOR PLOT

APPLE PLOT Standard Graph

4 1979/88 SALES OF MIDGETS

J6
32
28

JF"ANJJASONDJF"ANJJASDND
"DNTHS FOR PLOT

APPLE PLOT Bar Chart

Figure 11- 3

Figure 11-4

264 I Advanced Concepts

USE OF
EXEC FILES

In many computer applications it is necessary to have a clerk who probably
has little knowledge o f programming run a series of programs one after
another. ln such situations, it is best to tell the computer the order of the
programs to be run in order to save time as well as insure that the proper
programs a re run in the correct sequence. Such a series of programs together
with the instructions concerning their order is known as a turnkey system.

To implement turnkey systems on the Apple, EXEC files are used. An
EXEC fi le is an ordinary data file in which each record is a BASIC com
mand, a BASIC statement, or data for an INPUT statement. Instead of
running an EXEC file, you EXEC it with the result that each record is
treated just as though it had been entered from the keyboard .

As an example of the use o f EXEC files, suppose that you wish to pro
duce two reports from EMPLOY. For the fi rst, the data in EM PLOY must
be sorted in ascending order on numeric field l . For the second, the data in
EMPLOY must be sorted in descending order on alphabetic field 3. The two
reports are identical except for the order of the data and so the same report
program is to be used in each case.

The sort program used is the one described in Appendix B. When it is
run, it asks via INPUT statements for the field to be sorted, whether the
field is a lphabetic or numeric, whether the sort is to be in ascending or
descending order, and the name of the file to be sorted. It produces an out
put file called SORT.FIL.

The report program reads a file called T RANSIN and produces a
labelled report. Here is a listing of the report program.

10 REM REPORT PROGRAM
20 REM
30 PRINT " EMPLOYEE " , " DEPARTMENT"," EMPLOYEE"," HOURLY "," REGULAR " ,"OVERTIME"
40 PRINT " NUMBER " ,"NUMBER "," NAME" , " RATE"," HOURS " , " HOURS "
50 PRINT
100 D$ = CHR$ (4)
105 ONERR GOTO 1 60
1 10 PRINT D$; " OP·EN TRANS IN "
12 0 PRINT D$;"READ TRANSI N"
125 INPUT N,D, N$,H , R, V
130 PRINT D$
140 PRINT N,D , N$,H,R , V
150 GOTO 120
160 PRINT D$; " CLOSE TRANS I N"
63999 END

There is nothing new or unusual about this program.
You wish to have this whole procedure of sort l , report, sort 2, report

run automatically. To create the EXEC file, called T RANS, capable of per
forming this task, use the following program.

100 REM CREATE TRANSACTION PROCESSING EXEC FILE
110 REM
120 D$ = CHR$ (4)
130 PRINT D$;"0PEN TRANS"
140 PRINT D$;"WRITE TRANS"
150 PRINT "RUN SORT UTILITY"
152 PRINT "l"
154 PRINT " N"
156 PRINT "A"
158 PRINT "EMPLOY"
1 60 PRINT "RENAME SORT.FIL ,TRANSIN "
170 PRINT "RUN REPORT"
175 PRINT "DELETE TRANSIN"
180 PRINT "RUN SORT UTILITY"
182 PRINT 11 3 11

184 PRINT "A"
186 PRINT "D"
188 PRINT "EMPLOY"
190 PRINT "RENAME SORT .FIL, TRANSIN "
200 PRINT "RUN REPORT"
205 PRINT "DELETE TRANSIN"
210 PRINT D$;"CLOSE TRANS"
63999 END

Use of EXEC Files I 265

This program is similar to programs used previously to create data files
except that BASIC commands make up most of the records that are written
to the file TRANS. The only lines that are different are lines 152 through
158 and 182 through 188 . These lines supply the information that will be
requested by the sort program in the order in which it will be requested. For
example, lines 152 through 158 tell the sort program that field 1 is to be
sorted (line 152) numerically (line 154) in ascending order (line 156) in file
EMPLOY (line 158). This information is included in the EXEC file because,
while an EXEC file is active, INPUT statements in running programs look
into the EXEC file for the values of the required fields, not to the terminal.
You must have the correct responses in the correct order contained in the
proper spot in the EXEC file. In other words, when a running program
comes to an INPUT statement, the next record in the EXEC file will be used
as the response to that INPUT statement.

This program to create the EXEC file TRANS should be saved in case
the EXEC file is destroyed. Then RUN it to create TRANS. Once this has
been accomplished, any time that you wish to run the two sorts and reports,
all you have to do is type EXEC TRANS, sit back, and relax. If you su ffer
from a touch of voyeurism, type MON C, 1,0 before you EXEC TRANS
and the Apple will print each command from the EXEC file as well as the
details of each file reference performed. Unless you are printing all this on a

266 I Advanced Concepts

printer for future reference, you should probably also type SPEED=l50 so
that you are able to read what is printed on your screen. When it is all over,
don't forget to return things to normal by typing NOMON C ,1,0 and
SPEED=255.

Here is the output from the EXEC TRANS.
EXEC TRANS

I
THIS PROGRAM SORTS A SPECIF I ED FIELD IN A SEQUENT I AL TEXT FILE

(A MAXIM UM OF 100 RECORDS CAN BE SORTED)

THIS PR OGRAM SORTS DISK FILES
TO BUILD A SEQUENTIALLY SORTE D FILE

POSITION OF FIELD TO BE SORTED; 1,2,3, ETC .
SORT ON ALPHABETIC (A) OR NUMERIC (N) KEY
ASCENDING (A) OR DESCENDING (D)
ENTER FILE NAM E

*********~ LOADING ***************
********** SORTING FILE **********
********** SORTED F I LE ***********

101 , 1 , ADAMS , 5 , 40,0
103 ,1 2 ,BA KER ,5.6, 40 , 4
104 ,17 ,BRAV0, 4,40 , 2
108 , 16,COHEN , 6 . 25,38,0
172,2 , JOHNSON , 3 . 75,40,0
198,l,TANNER,4.25,36,0
202 ,1 6 , WILSON , 4,40,0
2 06 ,7,LESTER,5 . 25,40 ,0
255, 12, SC HMIDT, 5 . 6 ,40 ,4
28 1,1 2 , MILLER , 6,40,0
313 , 7,SMITR,4.25,40,4
347,12,GRAY ,6, 38 ,0
368, l,WEAVER,3.5,40, 2
422 , 1 , WI LLIAMS,4,40,0

EMPLOYEE
NUM BER

101
103
1 04
1 08
1 72
1 98
202
206
255
281
313
347
368
4 22

I
J

DEPARTMEN!
NUMB ER

1
1 2
1 7
16
2
1
1 6
7
12
1 2
7
12
I.
1

EMPLOYEE
NAME

ADAMS
BAKl'iR
BRAVO
COHEN
JOHNSON
TANNER
WILSON
LESTER
SCHMIDT
MILLER
SMITH
GRAY
WEAVER
WILLIAMS

HOURLY
RATE

5
5 . 6
4
6. 2 5
3 . 7 5
4 . 25
4
5 . 25
5 .6
6
4. 2 5
6
3.5
4

THIS PROGRAM SORTS A SPEC IFIED F I ELD IN A SEQUENTIAL TEXT FILE
(A MAX IMUM OF 100 RECORDS CAN BE SORTED)

THIS PROGRAM SORTS DISK FI LES
TO BUI LD A SEQUENTIALLY SORTE D FILE

REGULA:\
HOURS

4 0
40
40
38
40
36
40
40
40
40
40
38
40
40

OVERTIME
HOUR S

0
4
2
0
0
0
0
0
4
0
4
0
2
0

Output Formatting I 267

TRIS PROGRAM SORTS DISK FILES
TO BUILD A SEQUENT I ALLY SORTED FILE

PO SITION OF F I ELD TO BE SORTED ; 1,2 , 3, ETC.
SOR T ON ALPHABETIC (A) OR NUMER I C (N) KEY
ASCENDING (A) OR DES CENDI NG (D)
ENTER FILE NAME

********** LOADING ***************
********** SORTING FILE **********
********** SORTED FI LE ***********

202,16,WILSON , 4 , 40 , 0
422, 1 ,WILLIAMS,4 , 40 , 0
368, l, WEAVER,3.5 , 40, 2
198,l,TANNER,4.25,36,0
313 , 7,SMITH,4.25 , 40, 4
255,12,SCHMI DT , 5.6,40,4
28 1, 12,MI LLER,6,40 , 0
206,7,LESTER,5.25 , 40 , 0
172,2 , JORNSON,3.75 , 40,0
347,12,GRAY,6,38,0
108,16 , COHEN,6 . 25,38,0
104,17,BRAV0 , 4 , 40 , 2
103,12,BAKER , 5.6,40 , 4
101,1 , ADAMS,5,40 , 0

EMPLOYEE DEPARTMENT
NUMBER NUMBER

202 16
422 I
368 I
198 I
313 7
255 12
281 12
206 7
172 2
347 12
108 16
104 I 7
103 12
101 I

EMPLOYEE
NAME

..... ~ON
WILLIAMS
WEAVER
TANNER
SMITH
SCHMIDT
MILLER
LESTER
JOHNSON
GRAY
COHEN
BRAVO
BAKER
ADAMS

HOURLY
RATE

4
4
3. 5
4.25
4.25
5.6
6
5,25
3,75
6
6.25
4
5 . 6
5

REGULAR
HOURS

40
40
40
36
40
40
40
40
40
38
38
40
40
40

Nicely formatted output is essentia l in serious business applications. A
report produced by the methods described in Chapter 5 is fine as a training
exercise, but it still does not look perfect.

Many computers implement output formatting in the form of the
PRINT USING statement. As of Version 3.3, Apple DOS does not yet have
this most important tool. So that you might have access to output format
ting, we have written the following routine which can be included in any of
your programs with minimal difficulty.

OVERTIME
HOURS

0
0
2
0
4
4
0
0
0
0
0
2
4
0

OUTPUT
FORMATIING

268 I Advanced Con9epts

l DEF FN R(X) = INT (10 - NN * X + 0.5) / 10 - NN
6000 AA$ = STR$ (FN R(AA))
6050 IF NN < = 0 THEN 7250
6100 FOR II = l TO LEN (AA$)
6200 IF MID$ (AA$,II,l) fl II THEN 7000
6300 NEXT II
6400 AA$ =AA$ + " . "
6500 II = II + l
7000 YY = NN - LEN (MID$ (AA$,II + 1))
7050 IF YY < 0 THEN 7250
7080 FOR JJ = l TO YY
7100 AA$ =AA$ + "0"
7200 NEXT JJ
7250 NN = LEN (AA$)
7260 PRINT SPC(PP - NN - RR);AA$;
7270 RR = PP
7300 RETURN
8000 AA$ = MID$ (AA$, l ,PP + l - NN)
8020 PRINT SPC(NN - RR - l);AA$;
8040 RR = PP
8050 JJ =PP+ l - NN - LEN (AA$): IF JJ > 0 THEN PRINT SPC(JJ);
8100 RETURN

In order to use this routine, you must supply the following information.
For each numeric field: (1) the name of the field (AA), (2) the number of
digits after the decimal to be printed (NN), (3) the rightmost print position
that the field will occupy on the page (PP), and (4) GOSUB 6000. For each
alphabetic field, you must supply: (1) the name of the field (AA$), (2) the
leftmost print position that the field will occupy (NN), (3) the rightmost
print position for the field (PP), and (4) GOSUB 8000.

The following is an example of formatting using the same program that
was given at the end of Chapter 5.

1 DEF FN R(X) • INT (10 - NN * X + 0 . 5) / 10 - NN
100 REM THIS PROGRAM ACCUMULATES TOTALS FOR REGULAR HOURS
110 REM OVERTIME HOURS AND TOTAL WAGES IN THE EMPLOY FILE
115 D$ a CHR$ (4)
120 PRINT
130 PRINT
140 PRINT TAB(29); "PAYROLL REPORT"
150 PRINT
160 PRINT
170 PRINT "EMPLOYEE DEPT NAME HOURLY REGULAR OVERTIME GROSS"
180 PRINT "NUMBER NUMBER RATE HOURS HOURS PAY"

190 PRINT " ---------------- - ----------- - - - - -- ---------- --------------- - ------'
200 PRINT D$;"0PEN EMPLOY"
210 Rl • 0

220
230
240
245
248
250
2 60
2 70
2 80
290
2 95
300
301
3 02
304
307
309
3 11
313
314
3 15
320
330
3 35
340
360

v 1 = 0
Wl • 0

PRINT D$;" READ EMPLOY "
INPUT N,D , N$,H,R,V
PRINT D$
ONERR GO TO 330

Rl • Rl + R
Vl • Vl + V
W = H * R + 1 . 5 * H * V
Wl = Wl + W
H • FN R(H) : W • FN R(W)
RR • 0
NN = O: PP = 6:AA = N: GOSUB 600 0
NN = O:PP = 14:AA = D: GOSUB 6000
NN • 2 l : PP = 29:AA$ = N$: GOSUB 8000
NN • 2 :PP 34:AA a H: GOSUB 6000
NN = O:PP 44:AA • R: GOSUB 6000
NN • O: PP 53:AA V: GOSUB 6000
NN • 2:PP 66:AA = W: GOSUB 6000

PRINT
GOTO 240
REM ERROR CHECKING ROUTINE

Y = PEEK (222)
IF Y - 5 THEN 360
PRINT "UNUSUAL ERROR " ,Y
PRINT D$;"CLOSE Et!PLOY "

Output Formatting I 269

3 70 PRINT "**''
3 80
3 81
3 83
3 85
3 86
390
6000
6050
6100
6200
6300
6400
6500
7000
7050
7080
7100
7200
7250
7260
7270
7300
8000
8020
8040
8050

= 6 PRINT "TOTAL S";: RR
NN = O:PP 44 : AA =
NN • O: PP 5 3 : AA
NN • 2:PP 66:AA •

R l: GOSUB 6000
Vl: GO SUB 6000
Wl : GO SUB 6000

PRINT
GOTO 63999
AA$ = STR$ (FN R(AA))

0 THEN 7250
TO LEN (AA$)

IF NN <
FOR II =
IF MID$
NEXT II

(AA$,II ,l) II II

AA$ = AA$ + "."
1

THEN 7000

II=II +
YY = NN -

IF YY <
FOR JJ =

LEN (MID$ (AA$,I I + 1))
0 THEN 7250
TO YY

AA $ = AA$ + " O"
NEXT JJ

NN = LEN (AA$)
PRINT SPC(PP

RR = PP
RETURN

- NN - RR);AA$;

AA$ • MID$ (AA$,l,PP + 1 - NN)
PRINT SPC(NN - RR - l) ; AA$;

RR • PP
JJ • PP+ 1 - !IN - LEN (AA$): IF JJ > 0 THEN PRINT SP C(JJ) ;

8100 RETURN
63999 END

270 I Advanced Concepts

PAYROLL REPORT

EMPLOYEE DEPT NAME OVERT I ME GROSS
NUMBER NUMBER

HOURLY
RATE

REGULAR
HOURS HOURS PAY

--
101 1 ADAMS 5.00 40 0 200.00
103 1 2 BAKER 5.60 40 4 257.60
104 1 7 BRAVO 4.00 40 2 172.00
10 8 16 COHEN 6.25 38 0 237.50
1.7 2 2 JOHNSON 3.75 40 0 150.00
198 1 TANNER 4 . 25 36 0 153.00
202 16 WILSON 4 .0 0 40 0 160.00
206 7 LESTER 5 . 25 40 0 210.00
255 1 2 SCHM I DT 5.60 40 4 257 . 60
281 12 MILLER 6 . 00 40 0 240 . 00
313 7 SMITH 4 . 25 40 4 195. 50
347 1 2 GRAY 6 . 00 38 0 228.00
368 1 WEAVER 3 . 50 40 2 150 . 50
422 1 WILLIAMS 4.00 40 0 160.00

**
TOTALS 552 16 2771.70

Lines 300 to 314 and 380 to 386 in this program supply the necessary
information to a formatting subroutine. A subroutine is a section of a pro
gram that is needed in several different parts of the program. Instead of
repeating it, it is entered once and then "called" whenever it is needed. The
GOSUB 6000 statement is used to "call" the subroutine. GOSUB is similar
to GO TO except that the computer remembers in what line the subroutine
was "called" and returns to the statement following the "calling" line when
the subroutine finishes with a RETURN statement (line 7300) .

Colons are used to separate two or more statements on the same line.
Without this facility, the printing part of the example program would be
almost as long as the remainder of the program.

The PRINT statements in lines 314 and 386 are necessary so that the
next field printed will be on a new line. Without these PRINT statements,
all the output would run together and be very difficult to read.

Finally, the field RR must be set equal to zero before each line is printed .
This is done in line 300 for the body of the report. Line 386 initializes RR at
6 since the word TOTALS is printed before any field names. The subroutine
uses the field name RR to keep track of position on each printed line.

When you use this subroutine there are a few precautions to follow.
First, the following field names are used in the subroutine and so should not
also be used in your program: AA, AA$, NN, II, JJ, PP, and RR. Use of
any of these field names in your program could result in error messages
when you use the subroutine.

The second precaution relates to the fact that precise output formatting
puts an additional burden on you. You must plan carefully in advance
exactly how you wish the output page to look . You also must allow suffi
cient space for the value of each field to be printed (remember that decimal
points take up one space also). One of the best methods of planning is to use
a piece of graph paper to lay out the report as you want it to appear. From
there it is easy to d_etermine the information necessary to feed the subroutine.

A little care should give you output that you would be proud to give to
anyone as an example of what you can do with a computer .

In this chapter four different uses of the Apple have been covered. You
have been shown how to use the full screen editor. The graphics capability
of the Apple- both high resolution and low resolution- has been dis
cussed. APPLE PLOT examples were given. The use of EXEC files to run a
series of programs automatically was shown. Finally, you have seen how to
produce reports that are perfectly formatted .

BASIC Commands Introduced:

EXEC filename

MON C,1,0

NOMON C,I,O

SPEED=X

TEXT

Explanation

Causes lines in filename LO be treated as if they
were typed from the keyboard.

Prints on screen the execution of an EXEC file
and details of each file reference.

Stops the MON command.

Slows printing to the screen so that it may be
read. X=O-slowest, X=255-fastest.

Clears computer from graphics mode.

BASIC Instructions Introduced:

Statement

COLOR=X

GOSUB X
RETURN

GR

HCOLOR=X

Explanation

Selects the color (X is a number) for use in low
resolution plotting.

Defines a subroutine that starts on line X and
ends with the RETURN.

Initializes for low resolution graphics.

Selects the color (X is a number) for high reso
lution graphics.

Summary I 271

SUMMARY

272 I Advanced Concepts

HGR

HUN X,Y AT Z

HPLOT X,Y TO U,V

HPLOT TO X,Y

PLOT X,Y

VLIN X,Y AT Z

Initializes for high resolution graphics.

Draws a horizontal line from column X to col
umn Y in row Z.

Draws a line between column X row Y and col
umn U row V.

Draws a line from the previous HPLOT point
to column X row Y.

Plots a single point in column X, row Y.

Draws a vertical line from row X to row Y in
column Z.

12 I Conclusion

273

Batch. On-Line and Real-Time Processing / 275

At the end of this chapter you should be able to:

• Recognize the differences between batch, on-line, and real-Lime
• Understand the problems of a first-time user
• Understand trends in software and hardware for small business com-

puter systems

In this concluding chapter, the payroll program that has been the main ex
ample throughout the book will be discussed and put in perspective with re
gard to other programs that are commonly found in business. The concepts
of batch versus real-time programs will be discussed, as well as first-time
user organizations. As a conclusion, we present an article that focuses, from
the management perspective, on the first-time user and his dilemmas regard
ing computers.

One of the vehicles for teaching programming in each chapter has been the
payroll program. It has grown from a very elementary program to a program
that has most of the elements found in an actual payroll program that a bus
iness might use. In its present form it is still missing some major elements.
For example, it will not write paychecks, nor keep track of some data needed
for quarterly tax payments by the employer. The intent of the authors in us
ing payroll as the major example throughout was simple-to pick an applica
tion that everyone either is, or can become, familiar with.

All of the programs that appear in this book, with the exception of Chapter
9, are for batch processing. In its simplest terms, batch processing means
that transactions are allowed to accumulate before they are used to update
master records. Batch processing implies a time cycle- how often the master
file is updated. Transactions will accumulate until the update. Batch process
ing also implies the use of sequential files.

On-line processing is something you have been doing throughout this
book. When you type a program at a terminal, you are on-line. The com
puter accepts or makes comments each time you enter a command or a line
of a program. This interaction between a computer and user is referred to as
on-line. Other examples of on-Line processing are all of the programs that
require data entry. The data is entered by you or a data entry operator in an
on-line mode.

Files may be considered on-line or off-line. When a file is not being
used, it can be stored outside the computer system. When files in computer
readable form are removed from the system, they are off-line. They are
brought on-Line when they need to be used.

The final type of processing is real-time. In real-time, as soon as any
transaction occurs, it is entered into the computer system, and the transac
tion updates the appropriate master record. In Chapter 9, the inventory ex
ample illustrated real-time processing. It is necessary to have real-time

Performance
Objectives

The Payroll
Programs

BATCH,
ON-LINE

AND
REAL-TIME

PROCESSING

276 I Conclusion

ROUTINE
BUSINESS

APPLICATIONS

FIRST-TIME
USERS

processing when there is a limited supply or a need for up-to-the-second in
formation. Airline reservation systems were among the first and largest real
time applications.

Payroll was one of the first manual systems to be computerized. After pay
roll, most accounting systems were computerized. These include invoicing,
accounts receivable, accounts payable, general ledger, and financial state
ments. After the accounting area was computerized, the other functional
areas of business proceeded with applications. Marketing, production, in
ventory, distribution, and finance are areas that have large numbers of com
puter applications. The accounting area was computerized first because it
was the easiest. The rules by which bookkeeping is performed are explicit
and relatively simple. These characteristics lend themselves to relatively easy
computerization.

In simple terms, you have performed two distinct functions in produc
ing the programs in this book. The two functions are: systems analysis and
programming.

Systems analysis deals with defining a problem (application). Most of
the systems analysis was done for you in defining the program requirements.
However, you had to perform some of this function in designing and writing
your programs. It is the systems analysis component that is the most difficult
in converting from manual to computer systems.

As indicated above, the systems analysis function for accounting appli
cations is simple compared to other areas in a business. As a result, the ac
counting area was the first highly affected by computers. This is why most of
the programs in this book are accounting oriented. In contrast, the systems
ana lysis fu

1
nction for a production/ control system is very difficult.

With the price of computers decreasing dramatically, more and more organi
zations are using computers. Organizations that have never used computers
are called first-time users. There are thousands of horror stories about com
puters and first-time users. This is not to say that organizations experienced
with computers do not also have horror stories; but, first-time users are a
special case.

Most first-time users rely on different computer manufacturers' sales
men to provide them with the information they need to choose a computer.
Usually, no one in the organization has had any experience with computers.
A situat ion that can be considered analogous to this is as follows: Assume
tha t a cardiologist has recommended that a pacemaker be implanted in a pa
tient. The patient then calls the various manufacturers' representatives for
presenta tions. The patient then selects a model.

It is obvious in the previous analogy that the patient cannot make a ra
tional choice. The same is true of a first-time user selecting a computer based

First-Time Users I 277

on the sales presentations of manufacturers' representatives. The newspa
pers are full of reports of trials where users are suing manufacturers, or vice
versa, because of basic misunderstandings regarding the computer hardware,
software, or both. The best route for a first-time user is to hire someone with
computer expertise-either as an employee or consultant. By not choosing
either of these alternatives, the use of the computer in an organization might
result in greater trauma than necessary.

The price of computers has dropped dramatically. No longer are large sums
required to get the benefits of computer power. Mini computer systems can
be bought for as little as $25,000 or $10,000 . Alternatively, you can rent a
mini computer system for less than $1,000 per month. An Apple microcom
puter complete with two disk drives and a letter quality printer can be pur
chased for under $5,000. The small price tag lets small organizations, with
three to 25 employees, obtain their first computer. And it lets large organi
zations distribute their data processing capabilities throughout the organi
zation. Therefore, the number of computers in use by business firms is
expected to increase considerably.

But both cases (first-time use in small business and distributed process
ing in large organizations) represent the introduction of computers to people
who before had little or no contact with computers. Therein lies a danger.
Unless managers prepare themselves and their people now, they may not be
ready to meet the challenge when it comes.

Tec hnical Background: Computers have been around for over 30 years.
They've been commercially used since the mid-fifties. However, their cost, at
tha t time, limited them to large-scale operations. This is no longer the case.
With the advent of minicomputers in the '60s and microcomputers in the
'70s, the cost of computers has fallen. Now even small organizations can af
ford computers.

Furthermore, the trend of smaller, cheaper, more powerful computers is
expected to continue. New equipment is continuaJly being developed and in
troduced to the market. The technological cauldron continues to bubble.
New devices will continue to be developed. The cost of computers will drop
even further.

But the cost of computers is not the cost of computer systems. Similarly,
the cost of computation is not the cost of problem solving. The computer is a
smaJI essential part of a computer system. And computation is a small part
of problem solving.

Computer systems are needed to help in solving problems. Computer
systems consist of people, of hardware, and of software. Equipment is re
quired for the input, storage, manipulation, and output of data and instruc
tions. Software is required to specify how the equipment should do its work.

Compute r
Price Trends

and
First-Time User
Organizations

278 I Conclusion

The hardware is the tool, the software is the logic for using the tool. Both
aspects, hardware and software, are discussed in the following two sections.

Hardware: Managers are faced with a wide variety of choices when they
consider hardware. The market is flooded with alternatives. For example,
the August 1978 issue of Datamation' contained a survey covering 57 sys
tems from 46 manufacturers. But that is only a small fraction of what is
available. More extensive and comprehensive listings are available in
Auerbach Reports and Datapro Reports.

The equipment itself presents a wide spectrum of alternatives. From the
$600 TRS- 80 from Radio Shack to the $ 115,000 (starting price) HP 3000, a
whole range of price/performance options are available. Which options to
choose depends on the needs of an organization.

The low end of the cost spectrum, such as the $600 computer from Ra
dio Shack, offers systems which are too small for most businesses. They have
a CRT (cathode ray tube, a TV screen), a keyboard for entering commands,
and a cassette tape recorder to store data and instructions. But these facili
ties are not enough. Business systems need more main storage, more auxil
iary storage, and most important, hardcopy output.

Main storage for microcomputers ranges from 16KB-64KB (KB =
kilobyte, roughly one thousand characters-used as a measure of storage ca
pacity for a computer system). Larger main storage capacity is expected to
be available in the near future. But useable operating systems facilities re
quire from 20- 25KB of main storage. And the application programs will
need additional space for efficient operations. Therefore, 48KB of main stor
age should be considered a minimum for a business system.

Floppy disks provide economic auxiliary storage.2 Each regular floppy
disk holds about 250,000 characters. But at least two (and possibly four)
floppy disk drives will be needed to hold the data and instructions. Multiple
disk drives are also necessary to provide back up for files and programs.

A printing device is needed for the output of invoices, reports, etc. Al
though 15 cps (characters per second) printers are available, that equipment
is too slow for most business applications. Typical requirements are better
served by a line printer capable of printing at least 50 lines per minute. Oth
erwise the output from the system will be inordinately delayed. But even at
50 lines per minute, the printer can be exasperatingly slow.

Considering these additions and their associated programs, a mini com
puter useable by a small business will cost between $15,000 and $25,000.l If

1 Nancy Krottek, "Mini and Micro Computer Survey," Datamation, Vol. 24, No. 8 (Aug.
1978), pp. 113- 130.

' M. Steifel, "Floppy Disk Systems," Mini-Micro Systems, Vol. 11 , No. 10 (Nov. 1978),
pp. 37-5 1.

3 Richard G. Canning and Barbara McNurtin, " MICROS Invade the Business World,"
Datamation, Vol. 24, No. 8 (Aug. 1978), pp. 93-95; and Neil D. Kelley, "Small Business Com
puters: Some New Options for Uses," Infosystems, Vol. 25, No. 10 (Oct. 1978), pp. 59-69.

First-Time Users I 279

a company is very small-750 customers, 100 vendors, and generates less
than 300 statements per month-then an Apple for under $5,000 with a
business software package for $625 will probably suffice.

The described configuration (48-64KB main storage, 500KB- IOOOKB
floppy disk auxiliary storage, keyboard-CRT, and 50 !pm printer) is toward
the low end of the spectrum for small computer systems. Depending on the
needs of an organization, larger systems may be necessary.

Software: Software is the set of programs that makes a computer work.
Without software a computer system is merely a knick-knack that eats elec
tricity. A computer system needs two types of software-systems -software
and applications software. Systems software is the programs that operate the
computer. Applications software uses systems software in the solution of
business problems.

Every computer vendor provides systems software to operate their
machine. The software includes operating systems, assemblers, compilers,
interpreters, and various utilities, such as sort/merge. In general, the systems
software provided with a machine is adequate, although software support
continues to be a problem area.•

However, application software is another story. Application software,
unlike systems software, does not deal directly with the computer. It uses the
computer (and its systems software) for business data processing and for
generating management reports. Application software requires an under
standing of business problems, not of computers. Hence, computer vendors
have been able to provide systems software that does the required job; but
there is a dearth of applications software.

To be sure, most of the standard accounting applications are generally
available. Such applications include programs for general ledger, payroll,
accounts receivable (both open item and balance forward), accounts pay
able, and fixed asset accounting. But other application areas are less well
developed. Order entry, sales analysis, sales forecasting, inventories, mate
rials requirements planning, and master production scheduling are cur
rently available only for some computer systems. But independent program
development is filling the void. Within the next two to three years, adequate
application software should become widely available. Skarbek's Software
Directory-Apple contains a catalog of all Apple software that is currently
available.

In the meantime, an organization will have to satisfy its needs for appli
cation software in other ways. The organization can develop its own special
ized applications or contract for them. In either case, higher level
programming languages speed the development of business applications.

• "The Small Systems Market: A Survey," Datamation, Vol. 24, No. 12 (Nov. 1978), pp.
108- 132.

280 I Conclusion

Plan for
Computers

Currently, two languages, BASIC and FORTRAN, are generally available
on small business computers.

BASIC is the most widely supported higher level programming lan
guage. BASIC Q!eginners ~II-Purpose ~mbolic !nstruction ~ode) has the
advantage of being easy to learn and use. It is interactive: This means that
instructions can be entered and changed instantly. The immediate response
of interactive systems eases the program development process. BASIC is in
terpretive: Each instruction is immediately changed into machine code. In
terpreters typically require less main storage than compilers; therefore, less
hardware is needed.

The other major, higher-level language that is extensively supported is
FORTRAN. FORTRAN (FORmula TRANslator) requires a compiler and
hence more main storage than a BASIC interpreter. It is excellent for ana
lytic applications (engineering, scientific and management science
problems). ..

COBOL (COmrnon ~usiness Qriented 1anguage) and RPG @eport
~rogram Generator) compilers are available on some systems. Support of
other languages, such as PASCAL, APL, ALGOL, etc., is sporadic. There
fore, only BASIC and FORTRAN can be considered for generalized appli
cation development.

Success of a small computer system is not detennined by the choice of
hardware and software alone. Success talces a plan and people to unlock the
power inherent in small computer systems.

The low price of computer systems tempts many managers. They have heard
about the speed and accuracy of computers. They have heard about the pro
digious storage capacity of computers. And they have heard about the al
most miraculous way of providing information.

At the same time, managers have heard about bad experiences with
computers. These horror stories deal with the inflexibility of computerized
systems. They tell of problems in understanding computer professionals.
And they tell of wasted effort, money, and manpower.

But the truth in either case, the glowing success story and the abysmal
horror story, does not lie with the equipment. The computer is merely a tool.
It can support either success or failure. Which will result depends on how it
is used and what it is used for.

Management control of computer use determines whether or not a com
puter system supports organizational objectives. Hence, managers must
know what the organizational objectives are before they can set the objec
tives for computer use. Then actual usage can be compared to the stated
objectives to see if the system is effective.

Setting objectives for the use of computers is an important step. It
should be done before an organization gets a system. But that requires iden
tifying not only where the organization wants to go, but also where the or-

First-Time Users I 281

ganization is at present. Analysis of current operations identifies the areas
where computers can be used to greatest benefit.~

In the analysis, two types of questions need to be asked:

1. What are the data processing needs of the organization?
2. What are the information needs of management?

While the computer system can be designed to perform data processing effi
ciently and while it can answer management's cry for information, the abil
ity of the computer system to respond to either need is only as good as the
clarity and precision of the questions that it is asked. An ambiguous ques
tion will result in an amorphous design that leaves everybody dissatisfied.
And such dissatisfaction perpetuates the horror stories.

Therefore, the organization must determine its data processing needs.
Ask where computers can make a contribution to organizational opera tions.
Are there problems in responding to customer questions? On-line inquiry
systems should be able to speed up the answers. Are there problems with the
accuracy of inventory records? Computers are noted for their accuracy.
(Once a program has been debugged, all calculations will be consistent.)
Have you inadvertently missed discount periods on vendor invoices? Set up
a computerized tickling file so the system won't let you accidentally overlook
a payment due date. Do you have too many stockouts? Delayed billings?
Reports two to three weeks after the end of a period? Administrative people
snowed by a blizzard of paper? Clerical people devoted solely to compiling
reports for regulatory agencies? All of these problems, when carefully ad
dressed, can be solved with the use of computer systems.

But these questions need to be addressed in detail. For each problem
area detailed questions have to be asked, to provide the needed precision for
computerized processing. What reports and documents have to be gener
ated? How often? And how many? What are the input data? What is their
volume and frequency? How much data has to be stored? How many files,
what size, frequency of access, etc. These questions focus on the details of
analysis. But these details are needed to explore a prospective problem area.
A thorough description of the problem ensures tha t your organization adds
to the number of success stories, not to the horror stories.

The use of computers is a business decision.6 The low price of computer
systems makes computer power avai lable to small organizations and to indi
vidual departments in large organizations. To obtain the full benefi ts of

' H. Bromberg, "The Consequences of Minicompute rs," Datamation, Vol 24, No. 12
(Nov. 1978), pp. 98- 103: Canning and McNurtin, Joe. cit.; W. A. Saxon and Morris Edwards,
"Decision Model for Distributed Processing," Jnfosystems, Vol 25, No. 9 (Sept. 1978), pp.
88- 9 1; W. A. Saxon and Morris Edwards, " Inside the Distributed DP Model," Jnfosystems,
Vol. 25. No. 10 (Oct. 1978). pp. 112- 224; and Donald T. Winski, "Distributed Systems-ls
Your Organization Ready?" Jnfosystems, Vol 25, No. 9 (Sept. 1978), pp. 38- 42.

0 Winski, loc. cit.

282 I Conclusion

Prepare your
People

computerized speed, accuracy and memory, an organization needs to plan.
The plan should consider where and how the computer can be put to use.
And in order to plan, an organization must know what its needs are. There
fore, a foundation for the use of a computer system has to exist before the
computer system can be used successfully.

The introduction of a computer system into an organizational unit is a dra
matic change. The computer system changes the nature of the work per
formed by people. It changes the flow of work through an organizational
unit. And therefore the relationships between people are changed.

Even small changes in procedures can be traumatic for some people. But
first-time computerization has more impact than a small change in proce
dures. Therefore, people have to be prepared through orientation and train
ing sessions for the new system. Don't limit the sessions to clerical people.
Management also needs to know what it can and cannot expect from a new
computer system.

Once the requirements have been defined, once a plan for computer use
has been established, once a commitment for hardware and software acquisi
tion has been made, once a specific system has been chosen and purchased,
then intensive preparation for the upcoming change can start. (Note that we
are recommending training and orientation sessions prior to the actual deliv
ery of the computer system.) At this time the organization knows the details
of the system to be delivered and how it will be used. Therefore, it can focus
its training where it will do the most good.

Small business computers are generally easy to operate and use. Hence,
in most cases it will not be necessary to hire computer professionals. In
larger organizations an adequate staff exists already to support the needs of
management. In small organizations, managers will have to do some of the
work themselves and contract outside the organization for the more techni
cal aspects. But in either case, the training and orientation sessions should
prepare the people for interaction with computer systems professionals.
Hence, some understanding of the terminology and capabilities of com
puters in general has to be provided by these sessions.

The low cost of small computer systems has led to predictions of almost
exponential growth in the number of organizations using them. Rather than
being a matter of whether, it becomes a matter of when. When will your
workplace have a computer system? Given this inevitability, then prepara
tion now will pay off in the future. Getting your people prepared now makes
the path of transition to a new system smoother.

Of course, with the passage of time, more and more people will already
be familiar with computers. Business schools require introductory courses in
data processing or information systems for their graduates. They learn the
terminology of computers. They learn about the capabilities and limitations

of hardware. And they learn how to program computers in BASIC. Since
BASIC is so widely supported on small business computer systems, the stu
dents will be ready to make a contribution to any organization that is con
templating the use of a small business computer.

Low cost computer systems are a reality. But a manager should not be hyp
notized by the cost of hardware. To make a computer system successful
takes more than computing equipment. Success takes software, tailored to
the needs of a business. It takes people who are trained to operate the hard
ware and people who are trained to use it. But most of all, it takes manage
ment-managers who are committed to planning for computerization, man
agers who set objectives and control computer usage, and managers who are
willing to devote themselves to the successful introduction of change.

Conclusion I 283

CONCLUSION

Appendices

285

SUMMARY OF BASIC COMMANDS AND INSTRUCTIONS

Summary of BASIC Commands:

CATALOG

DELETE

LIST

LOAD

NEW

RENAME

RUN

SAVE

Lists the names of programs in the
user save area (catalogue).

Eliminates a program from the disk
ette.

Gives a printout (listing) of the pro
gram.

Asks for a copy of a program from
the diskette.

Tells the system that the operator is
about to type in a new program.

Gives a new name to a program on
the diskette.

Executes a program, i.e. , commands
a computer to do what the program
instructions tell it to do.

Puts a copy of the program onto the
diskette under the current program
name.

Summary of BASIC lns1Tuctions:

PRINT D$; "CLOSE filename"

DATA 5,2,7

DIM Y(X),Z(Q,R)

END

Closes file and stores it on the disk
ette.

Used to hold data for fields in READ
statements.

Sets the lists Y (represented by a let
ter) to X positions; defines that Z
(represented by a letter) has Q rows
and R columns; individual elements
of lists and tables are identified by
their location: position number in a
list; row number and column number
in a table.

Indicates the physical end of a pro
gram.

Appendix I 287

APPENDIX A

288 I Appendix

PEEK(218)+256•PEEK(219)

FOR Y = N TOM

NEXTY

GO TO nnn

Y = PEEK(222)

Gives the line number at which an
ONERR condition took place.

Sets up a loop; the FOR statement
begins the loop; it sets Y to M (begin
ning value); the loop will continue
until Y has a value greater than M
(the upper bound); the NEXT state
ment loses the loop.

Tells the system to go to line number
nnn for the next instruction.

IF Y = n THEN line number

IF x THEN nnn

Tells the computer that if the error
encountered is n, then processing
should resume at the line number
given.

If x is true then go to line nnn for the
next instruction, otherwise (if x is
false) go to the next line in sequence.

PRINT D$; "READ filename"
INPUT fieldnames Reads a record from file number n;

the file is identified by its file number.
Records are separated by their field
names.

INPUT X,Y

INPUT X$, Y$

INT(X)

LET X = Y

Takes numeric values for fi elds X and
Y from the keyboard.

Gets alphabetic values for fields X$
and Y$ from the keyboard.

Makes the value X into an integer
(whole number).

Places the value of Y into the mem
ory location X.

ONERR GO TO line number
Tells the computer to go to line num
ber when an error is encountered.

PRINT D$; "OPEN filename"
Opens the file identified by the file
name; the filename can be from 1 to
30 characters.

PRINT 0$; "WRITE filename"
PRINT #n field name;' ' ,'' ; fieldname2;' ' , '';etc.

PRINT X,Y

PRINT "XYZ"

READ X,Y,Z

REM

STOP

Arithmetic operations:

X+Y

X-Y

X•Y

X/ Y

X 11 Y

Comparison operators:

X =Y

X< Y

X< = y

X> Y

X> = y

Writes a record on filename; the fields
of the record will be separated by
commas.

Displays the values of X and Y.

Displays the alphabetic information
XYZ.

Assigns values to fields from DAT A
Statements (X,Y,Z are arbitrary field
names).

Prints remarks for programmer; ig
nored by the computer.

Tells the system to stop.

Add X to Y

Subtract Y from X

Multiply X by Y

Divide X by Y

Raise X to the Y power

Equal (if X equals Y, this comparison
is true).

Less than (if X is strictly less than Y,
this comparison is true).

Less than or equal to (if X is less than
or equal to Y, this comparison is
true).

Greater than (if X is strictly greater
than Y, this comparison is true).

Greater than or equal to (if X is

Appendix I 289

290 / Appendix

X< > Y

APPENDIX B

greater than or equal to Y, this com
parison is true).

Not equal to (if X is greater than or
less than- that is, not equal to- Y,
this expression is true).

SORTING

Records may be sorted either alphabetically or numerically for many appli
cations. In order to use the sort program given in this appendix, it is impor
tant to understand something about the program:

1. The file to be sorted is unchanged at the end of the sort.

2. The sorted file at the conclusion of the program is called "SORT.FIL" .

3. You must rename the "SORT.FIL" with the RENAME command as
soon as the sort is finished . It will automatically be saved .

In the chapter on totals and subtotals, it is necessary to sort the "EMPLOY"
file by department number; then it becomes the "EMPLDP" file.

A listing of the sorting program, an example running the program, and
a command to rename "SORT.FIL" follow:

1 Di M KY$(100),SR$(100)
2 ONERR GOTO 9000
4 PRINT "THIS PROGRAM SO RTS A SPECIFIED FIE LD IN A SEQUENTIAL TEXT FILE"
5 PRINT " (A MAXIMUM OF 100 RECORDS CAN BE SORTED) "
10 REM BUBBLE SORT
20 REM
30 PRINT PRINT
40 PRINT "THIS PROGRAM SORTS DISK FILES"
45 PRINT "TO BUILD A SEQUENT IALLY SORTED FI L E"
50 PRINT : PRI NT
60 INPUT "P OSITION OF FIELD TO BE SO RTE D; 1, 2,3, ETC. " ;FP
65 IF FP < 1 THEN 60
70 INPUT " SORT ON ALP HABETIC (A) OR NUMERIC (N) KEY ";AAS
72 IF AA $ • " A" THEN 80
74 IF AA $ • "N" THEN 80
76 GOTO 70
80 INPUT "ASCENDING (A) OR DE SCEN D ING (D) "; ADS
81 IF ADS • " A " THEN 85
82 IF AD$ • " D" THEN 85
83 GOTO 80
85 REM *** MAIN ROUTINE
90 D$ • CHR$ (4)
2 10 INPUT " ENTER FILE NAME "; Fl$
220 PRINT D$;"0PEN "; FIS
230 PRINT D$;"0PEN SORT.FIL"
240 GOSUB 300
250 GOSUB 400
260 GOSUB 500
270 PRINT D$; " CLOSE " ;FIS
275 PRINT DS;"CLOSE SORT.FIL "
280 GOTO 63999
300 REM ***** LOADING FILE *****

30 2 PRINT
305 PR I NT "* ********* LOADING ***** *** *******"
308 I - 0
309 PRINT D$; " READ " ;FI$
310 I = I + 1
330 GOSUB 600
335 CC • FK
340 IF L2 = 0 THEN 9032
370 KY${!) = MID$ {SR${I),L l ,L2)
380 GOTO 310

RETURN
REM ***** SORTING FILE *****
PRINT " ********** SORTING FI LE **** ******"
FOR J = 1 TO I - 2
FOR K = J + 1 TO I - 1
IF AD$ = " D" THEN 427
IF AA$ = " A" THEN 425
IF VAL {KY${J)) < VAL {KY${K)) THEN 470
GOTO 434
IF KY$(J) < KY${K) THEN 470
GOTO 43 4
IF AA$ = " A" THEN 430
I F VAL {KY$(J)) > VAL {KY$(K)) THEN 47 0
GOTO 434

390
400
410
415
418
420
42 1
422
423
425
426
427
428
429
430
434
435
440
450
455
460

IF KY${J) > KY${K) THEN 470
HI $ • SR${J)
SR$(J) = SR$(K)
SR$(K) = HI$
Hl$ = KY$(J)
KY $ (J) = KY${K)

4 70
475
480
500
5 15
5 18
520
525
530
535
540
545
599
600
605
615
620
625
630
635
640
642
645
650
655
660
670
675
9000
9010
9020
9025
9028
9030
9032

KY${K) = Hl$
NEXT K
NEXT J
RETURN
REM ***** LISTING SORTED FILE *****
PRINT "********** SORT ED FILE *********** "
PRINT
FOR J = 1 TO I - I
PRINT D$;"WRITE SORT.FIL "
PRINT SR$(J)
PRINT D$
PRINT SR $ (J)
NEXT J
RETURN
REM ***** READ RECORD , FIND KEY FIELD ****

LO • l:FD • O: FK = 0
GET 8$

FD • FD +
IF 8$ CHR$ (13) TH EN 640

SR$(!) = SR${I) + B$
IF B $ < > ''," TH EN 61 5

FK • FK + l
OL • LO
LO = FD +

IF FP < > FK THEN 670
LI • OL
L2 • LO - OL - I

IF B$ < > CHR$ (13) THEN 615
RETURN

REM ***** ERROR ROU TINE *****
REM

Y • PE EK (222)
L = PEEK (218) + 256 * PEE K (219)

IF Y < > 5 THEN 9045
GOTO 250
PRINT : PRINT

Appendix I 291

292 I Appendix

PRINT " *** FIELD POSITION
PRINT
PRINT D$; "CLOSE ";FI $
PR I NT D$;"CLOSE SORT .FI L"
GOTO 55
IF Y • 6 THEN 210

"; FP;" FIL E ";Fl $; " HAS ONLY "; CC; " FIELDS***" 90 34
9036
9038
9040
9042
9045
9050
90 60
63999

PRINT CHR$ (7) ;" UNUSUAL ERROR "; Y; " IN " ; L
GOTO 270

END

) RUN
TH I S PROGRAM SORTS A SPECIF IED FIELD IN A SEQUENTIA L TEXT FILE

(A MA XIMUM OF 100 RECORDS CA N BE SORTED)

THIS PRO GRA M SORT S DISK FILE S
TO BUILD A SEQUENTIALLY SO RTED FILE

POSITION OF FIELD TO BE SORTED ; 1,2,3, ETC . 2
SORT ON ALPHABETIC (A) OR NUMERIC (N) KEY N
ASCENDING (A) OR DESCEND ING (D) A
ENTER FILE NAME EMPLOY

********** LOADING ***************
********** SORTING FILE **********
********** SORTED FILE ***********

422,1,WILLIAMS,4,40 , 0
368, l,WEA VER, 3. 5,40 , 2
198,l,TANNER,4.25, 36 ,0
101,1,ADAMS,5,40, 0
172,2,JOH NSO N, 3 . 75 , 40 ,0
313,7,SMITH,4.25,40,4
206,7,L ESTER , 5 . 25 , 40 ,0
347, 12,GRAY , 6,38,0
281, 12,MILLER, 6,40 ,0
255 ,12,SCHMIDT ,5 . 6 , 40,4
103,1 2 , BAKER,5 . 6 , 40 , 4
2 02,16,WIL SON, 4,40,0
108 ,1 6 , CO HEN ,6. 25 , 38 ,0
104,17 , BRAV0 , 4,40,2

)RENAME SO RT . FIL, EMP LDP

In the update chapter, the " SALES" file had to be sorted alphabetically
by salesman name. An example running the program, and the renaming of
"SORT.FIL" follow:

THIS PROGRAM SORTS A SPECIFIED FIELD IN A SEQUENTIAL TEXT FILE
(A MAXIMUM OF 100 RECORDS CAN BE SORTED)

THIS PROGRAM SORTS DISK FILES
TO BUILD A SEQUENTIALLY SORTED FILE

POSIT ION OF FIELD TO BE SORTED; 1, 2, 3, ETC. 2
SORT ON ALPHABETIC (A) OR NUMERIC (N) KEY A
ASCENDING (A) OR DESCENDING (D) A
ENTER FILE NAME SALES

********** LOADING ***************
********** SORTING FILE **********
********** SORTED FILE ***********

l,BILL, l20SO,S
3,BOB , 14690 , .OS
3,CLYDE,7340,.04
3,HARRY,9460, .04S
l,JOE,S270,.04S
2,PHIL, 11200, .ass
2,TOM,6940,.04

SELECTED ERROR MESSAGES

In the ONERR statement, the error that is usually tested for is error number
5 (Y = 5). If another error should occur, the statement PRINT "UNUSUAL
ERROR" will be printed with an error number. The following is an abbre
viated list of error numbers and an interpretation of their meaning:

CODE DOS MESSAGE

0 NEXT without FOR
Language not available

2,3 Range error
4 Disk write protected
5 End of data in file
6 File not found
7 Column mismatch
8 1/0 error
9 Disk full

IO File locked
11 Syntax error
12 No buffers available
13 File type mismatch
14 Program too large
15 Not direct command
16 Syntax error
22 RETURN without GOSUB
42 Out of data
53 Illegal quantity
69 Over now
77 Out of memory
90 Undefined statement

107 Bad subscript
120 Redimensioned array

Appendix I 293

APPENDIX C

294 I Appendix

APPENDIX D

APPENDIX E

CODE

133
163
176
191
224
254
255

Problem ------

DOS MESSAGE

Division by zero
Type mismatch
String too long .
Formula too complex
Undefined function
Bad response to INPUT statement
Control C interrupt attempted

HOW TO ...

Solution

Stop a printout on the terminal or Depress the C key while pressing
CTRL printer

Stop execution of a program if
nothing seems to be happening

Renumber lines in a BASIC
program

Delete programs from the catalog

Delete data files from the catalog

Delete lines from a program

List a data file

Depress the C key while pressing
CTRL

Your computer may have a rese
quence program. Try typing RUN
RE NUMBER. If the program exists,
it will ask for beginning line number
and interval. Input of &FI00,110
wi ll result in the program being
renumbered so that the first state

e numbered
30, etc. All
ements that
e automati-

ment is I 00 and lines a r
consecutively I 00, 120, I
GO TO and other stat
contain line numbers ar
cally changed.

DELETE PROGRAMN AME

DELETE FILENAME

DEL 180- 270: This will cause lines
am in your
d

180-270 of the progr
work space to be delete

DELETE 120: Line 120 wi ll be de-
leted.

Write a program that list sand prints
it.

INITIALIZATION OF DISKETIES

Your diskette must be initialized by Apple DOS before you can save pro
grams on it. In order to initia lize a diskette, you must perform the following
steps:

l. Locate the MASTER diskette that is supplied with your Apple. Place it
in the disk drive and "boot" the system from it.

2. Remove the MASTER and place the diskette to be initialized in the
drive.

3. Type NEW to clear the Apple's memory.

4. Enter the BASIC program that you wish to be executed as the last step
of the "booting" process. It will be saved on the diskette under the
name HELLO. For example,

10 PRINT" MY APPLE SYSTEM"
20 PRINT " CREATED JULY 17, 1980"
63999 END

5. Type INIT HELLO. The disk drive light will come on and remain on
for about two minutes while your disk is being initialized. When the
light goes out, your diskette is ready for use. Test it by "booting DOS"
from it.

MORE ABOUT DISKETIES

Some additional information about Apple diskettes is useful for actual
applications. The diskette's recording surface is logically made up of 35
concentric circles called tracks. Each of these tracks is comprised of 13
equal length sectors. Each sector holds 256 bytes of information (one byte is
the space required to hold one letter, number, or special symbol).

In Apple BASIC, four tracks are reserved for system use, leaving 31
tracks (403 sectors or 103, 168 bytes) for user files (programs and data files).
In DOS Version 3.3, the same physical diskettes will have 31 sixteen sector
tracks of useable space for a total of 496 useable 256-byte sectors.

You can determine how many sectors are being used by a particular
SA VEd program by giving the CATALOG command. In response to this
command, each program generates one line of output as follows:

A 002 MYPROG

In this example, MYPROG is identified as an Applesoft BASIC (A)
program occupying two sectors on the diskette. In addition to Applesoft
which is floating point BASIC, other abbreviations are T for a data file, I for
an integer BASIC program and B for a binary file. By reviewing the space
taken for your files, you can begin to develop a feeling for how much infor
mation can be stored on a diskette.

The Apple can support up to six disk drives simultaneously. This would
be more than adequate for all but the most data intensive applications.

On the inside of the Apple are a number of "slots" into which various
peripheral equipment can be plugged. Three slots are set aside for disk
drives. A card called a disk controller plugged into each of these slots runs

Appendix I 295

APPENDIX F

296 I Appendix

Lwo disk drives (referred lo as DI and D2). Usually lhe firsl disk conlroller
is plugged into slot six (S6), the second into S5, and the third into S4.

If you are lucky enough to have several disk drives, you must specify
which one is intended in any disk reference (SA VE, DELETE, LOAD,
etc.). For example, Lo request a catalog from lhe diskette in drive 2, slol 5,
lhe command would be

CATALOG,S5,D2

If no slot and drive a re specified, S6 and DI are assumed by Lhe Apple.
Thus, if you have only one disk drive, SA VE MYPROG would pul
MYPROG on the diskette in slot 6, drive I.

If you have a CORVU S WINCHESTER disk drive auached to your
system, you have ten million bytes of slorage space. The CORVUS disk is
usually controlled through a card in slot 6. If you also have a floppy disk
drive, it will normally be in slot 4.

To protect your diskelte from inadvertent replacement o f programs and
data, you can use the "write protect" feature. There is a rectangular slol cut
oul of the paper jacket in each diskette. As long as this slot is open, you can
SA VE programs on the diskette and LOAD programs from il. If you cover
up this slot with a piece of the special tape supplied with you r Apple, you
will be able to LOAD programs, but not SA VE lhem. In th is condition, lhe
diskette is "write protected" since nothing can be written onto it.

Index

297

Accumulation, 99, 103
-initializing, I 00
-subtotals, 109
- totals, 100
Alphabetic infonnation, 20, 27, 35 , 41
APPEND, 132
Apple microcomputer, 5, 277
APPLE PLOT, 262
Arithmetic
-field names, 13, 35
-operations, 14, 35, 41
Assignment statement, 13, 35, 89, 100
Autostart, 7

BASIC, 4, 280
-commands, 16,34
-instructions, 16, 34
Bath, 231, 275
Business applications, 4, 276

Calculations
- arithmetic, 11, 35
-subtotals, 109
-totals, 100
Canned programs, 237
CATALOG, 21, 35, 60
Cathode Ray Tube (CRT), 6, 18, 29
CHR $ (4), 69, 83, 93
CLOSE file, 71, 93, 141
Colon, 201, 270
COLOR, 258, 271
Columns for PRINT, 27
Comma
-in input, 41
-in output, 26, 35
Comparison operators, 57, 61
Computer, 3, 277
Cursor, 256

DATA, 240, 251
Data entry, 39, 53

DEF FN, 169, 184
DELETE, 60, 61
Decimal point alignment, 267
DIM, 192, 214
Diskette, 7, 15, 21, 60, 71, 222
Dollar sign($), 41

Editing, 255
END, 14 , 35
End ofdata,48, 71, 136
End of file, 78, 93, 136
ENIAC,3
Errors
- design, 53
-logical, 15, 53
-specification, 53
-syntax, 15, 53
- typographic, 14, 53
EXEC files, 264, 271

Federal income tax (FIT), 6, 39, 194
Federal insurance contribution act (FICA),

6,39, 198, 202
Field, 6
-name (alphabetic), 41
-name (numeric), 13 , 35
File
-creation, 70, 221
-name, 70, 93
- reading, 76, 93, 223
-set up, 67
-sorting, 110, 264
-writing, 70, 93, 222
File organization
- direct (relative record), 219
-sequential, 67, 80, 146, 155, 219
File processing
-adding, 127, 132, 155
-copying, 92
-correcting, 86
-deleting, 146, 15 5
-searching, 80
- updating, 159, 226

Index I 299

300 I Index

File type
- master, 6 , 159
- transaction, 159, 226
Flowcharting, 11
FOR-NEXT, 192, 214
Function, 117, 169, 184,242

GOSUB, 270, 271
GO TO, 48, 57 , 61, 78
GR for graphics, 258 , 271

Hardware, 277
H COLOR, 261, 271
HGR, 261, 272
Hierarchy of arithmetic operations, 41
HUN, 259, 272
HPLOT, 262, 272

IF-THEN, 54, 61 , 244
INPUT, 41, 61 , 93
INT, 117, 122

LET, 13, 35, 89
Line length, 29
Line numbers, 13, 14, 22
LIST, 15,34
list (I-dimensional array), 189, 192
LOAD, 21,34
Loop, 193,213,244

Management information system, 4
Master file, 6, 159, 226
MAXFILES, 203, 2 14
Memory, 14, 21, 60
Microcomputer, 5, 277
Minicomputer, 277
MON, 265 , 271

Name
- field, 13, 35, 41
- file, 70
- program, 15, 35
NEW, 14, 34
NOMON, 266, 271

Off-line, 275
ONERR, 78, 93, 141 , 169
On-line, 275
OPEN file, 69, 93, 141, 222, 233

Password, 8
Parentheses, 14, 35
Payroll,5 , 198,275
PEEK, 78, 93 , 168, 184
PLOT, 260, 272
PRINT, 14,20,26,35,70,93
Program, 8, 34
- flowchart, 11
- modification, 20
- name, 15
- specification, 16
- structured, 242
Programming, 5, 11 , 276
Prompt character, 7, 14

Query, 231
Question mark(?) for INPUT, 41
Quotation marks(") in PAINT, 20

Range check, 53, 86
READ, 241 ,25 1
READ file, 76, 77, 93 , 141, 223, 233
Real-time, 231, 275
Record, 6, 93
- end of data, 71
- master, 159
- transaction, 159

Relational operators, 57, 61
REM, 13, 35
Repetition, 48
Reports , 99, 121, 267
RETURN, 270, 271
RETURN key, 7, 14, 222
RUN, 15, 34

SAVE, 14, 34
Semicolon, 70
Sign-off, 8
Sign-on, 7
Software, 277, 279
Sorting
- files, 110, 264
- lists and tables, 207
SPC (), 122, 123
SPEED, 266, 271
Statement numbers, 13, 14, 22
STOP, 14, 34, 123
Systems analysis, 276

TAB (), 122, 123
Table (2-dimensional array), 189, 196
Terminal, 6
- keyboard, 6
-printer, 18, 29, 32
- video screen, 6, 18, 29, 89
Test value, 141
TEXT, 260, 271
Transaction
- code,178,227
- file , 159
- record, 159

Update
-sequential file, 159
- direct file, 226

Verification, 53
VLIN, 260, 272

WRITE file , 70, 77 , 93, 141 , 222, 233

Index / 301

,~· .. ~ J. ' • •

Apple BA/IC for Bu.1ine.1.1
for the Apple Il
Alan J. Parker/John r. /~ewar~
Here is a totally practical guide to learning BASIC on the Apple II
series of computers. Apple BASIC for Business can help you build
the programming skills you need to succeed in business data pro
cessing. You'll develop speed and technical accuracy for the
scores of business applications encountered in a typical company.
A problem-solving approach leads you through the BASIC language
and its use with the Apple II . Step-by-step you'll master the pro
cessing techniques with sample programs, flowcharts, and prob
lems all designed to give you actual practice in finding program
ming solutions for every business data processing challenge.
. Topics in the Table of Contents include:
performing simple calculations • data entry • sequential files • writ
ing reports from sequential files • adding and deleting records • up
dating sequential files • using lists and tables • using direct access
files • use and design of complex programs • advanced concepts •
conclusion • appendices: summary of BASIC commands and in
structions, sorting, selected error messages, initializing diskettes,
more about diskettes.

RESTON PUBLISHING COMPANY, INC.
A Prentice-Hall Company

.

I

Reston, Virginia 0-8359-0226-9

