

r

Apple Files

,
""

Apple Files
\.. ~

,
"""'

David Miller
\... .J

I" "'\
RESTON PUBLISHING COMPANY

l[gJJJ A Prentice-Hall Company
Reston, Virginia

' ~

Library of Congress Cataloging in Publication Data

Miller, David
Apple files.

Includes index.
1. Apple II (Computer)-Programming. 2. File organi­

zation (Computer science) I. Title.
QA 76.8.A662M54 00 1.64'25
ISBN 0-8359-0192-0
ISBN 0-8359-0191-2 (pbk.)

Edit ing and interior design
by Ginger Sasser DeLacey.
Cover design by Joyce Thompson.

82-5432
AACR2

Apple® is a registered trademark of Apple Computer, Inc.

VisiCalc® is a registered trademark of VisiCorp.

~ 1982 by
Reston Publishing Company, Inc.

A Prentice-Hall Company
Reston, Virginia

All rights reserved. No part of this book may
be reproduced in any way, or by any means,
without permission in writing from the publisher.

10 9 8 7 6 5 4 3 2

Printed in the United States of America

As our lives are dedicated to the service of the Lord,
so also is this work.

"Whither thou goest .. . "
To Emmy-the best wife and proofreader ever.

"An Apple a day ... "
To the Apple II-the only computer with personality.

r

Cantents

Preface . ix

Introduction xi

Chapter I Apple's Four File Types I

Chapter 2 Applesoft and Integer Files 6

Chapter 3 Text File Introduction 15

Chapter 4 Creating Sequential Files 27

Chapter 5 Appending Sequential Files 40

Chapter 6 Displaying Sequential Files 56

Chapter 7 Correcting Sequential Files 82

Chapter 8 EXEC and CHAIN 96

Chapter 9 Additional Sequential File Techniques 114

Chapter 10 DIF Files . 144

Chapter 11 Random File Introduction 167

Chapter 12 Home Inventory System 190

Chapter 13 Planning a File System 238

Chapter 14 Binary Files . 258

Appendices 269

Appendix A RWTS (Read/Write Track/Sector) 270

Appendix B Tape Files 274

Appendix C Mailing List System Programs . 278

Appendix D Math System Programs 308

Appendix E Recipe and Drill & Practice Programs 328

Vil

Vlll

Appendix F

Appendix G

Appendix H

Appendix I

Appendix J
Appendix K

CONTENTS

DIF Programs 335

Medical Records System Programs 345

Home Inventory and Back Order System Programs 356

Stockmarket Programs . .

Miscellaneous Programs

Miscellaneous Information

Index

393

409

410

411

r

Preface

The purpose of this book is to take some of the mi sery and mystery
out of using Apple Computer's file structure. The book is aimed at people
who know some BASIC and would like to learn to use the computer to
assist them at home or at work by using the fil e capabilities of the Apple.
Apple Files is designed as a step-by-step tutorial. The book explains some
things that, without adequate manuals, take many painful hours of trial
and error to learn. Progress has been made in creating better file-handling
techniques on the Apple, and an explanation of some of these techniques
is included.

Upon completion of the book, you should fully understand what files
are and how to use them. You will be able to create your own sequential
or random access fil es. Examples of both of these file types are included
throughout the book. Program examples include fil e creation programs for:
the stock market, mailing lists, inventories, grades, recipes, and medical
records.

There are some very good data base programs available commercially.
If your needs require an elaborat e data base structure, you should probably
use one of those programs o r pay a programmer to create one for you.
Reading this book will not make you capable of creating complete data
base programs, but with practice, you will be able to effectively create and
use any type of file you want.

I really enjoy programming and creating programs for my own use. I
like the freedom programming gives me, because I can easily change or
add to what the program does. I hope this book conveys some of that
enjoyment and freedom.

IX

r

lntraductian

No book is magic m that, by possessing the book, you possess the
knowledge of that book. Yet, I have tried to make it relatively easy for
anyone to learn to use the Apple computer.

No single book will suffice for everyone, and this book makes no claim
to being the exception. Nevertheless, I have attempted to make it useful
for the beginner as well as the more experienced Apple user. In answer to
the often-asked question, "What can I do with it besides play games?" the
program examples cover the areas of home, education, business, hobby, or
investment.

Computer vocabulary has been introduced very gradually. Readers
somewhat knowledgeable about the vocabulary may find the process
repetitious at first, but I have found this to be the best method for acquiring
a working knowledge of the multitude of "jargon."

The "system" approach has been used so the reader would not be over­
whelmed with a large number of different application programs. The pro­
grams presented are intended to be useful as well as instructive. The pro­
grams build upon themselves so that something that may appear awkward
to an experienced programmer is used to help explain a concept needed in
later chapters.

Information for the more experienced Apple user includes a thorough
discussion of the "B" parameter with random access and sequential files.
Other items are: EXEC files, tape files , Binary files, DIF fil es with applica­
tion programs, and RWTS. The section on Tape files brieny explains how
this book can be useful to someone without a disk drive.

You cannot just absorb this information. You must read the book
and plan to re-read and/or study the text and programs of parts that are
at first unclear. Invest tim e in learning how to get the most out of the
Apple. Experienced Apple users may find that they can either skip parts

xi

xii INTRODUCTION

or proceed quickly through certain sections. I would encourage everyone
to fini sh the book.

Finally, a disk containing all the programs presented in the book will
be available. You can make the disk yourself by typing in all the programs,
but if you just want to see the programs in operation, then you may want
to purchase the disk. I sincerely hope you enjoy the book and find it
instructive.

The programs in this book are available on disk
with additional documentation and suggestions.
To order your copy, please send $15.00
($17 .SO outside North America) to:
AEN, 9525 Lucerne Street, Ventura, CA 93004.
California residents, add 6% sales tax.

r

I
Apple's Faur File Types

There are as many definitions of the word file as there are kinds of
files. You can quickly become confused if your understanding of the term
differs from an author's intended use, and dictionary definitions are of
little use in the computer world of today. Before becoming involved with
the computer, my understanding of a file was limited to information that
was kept in a folder in a file cabinet. I think we often learn best by trying
to fit that which is new into something we already understand. Therefore,
following this idea, 1 will try to explain Apple® file structure in terms of
a file cabinet.

In a four-drawer file cabinet, one drawer might be for accounts pay­
able, while another could be for accounts receivable, a third for personnel
information, and the fourth for inventory information. These are used
only as examples to show that each drawer might contain different file
types. The file cabinet just as easily can contain game instructions in one
drawer, receipts in another, name and address information in a third, and
medical records in the fourth. The idea is of four drawers containing four
different types of information. The Apple's file cabinet (the disk and dis­
kette) is mainly a four-drawer cabinet. (Actually Apple has eight possible
file types, but only four are usually used.) The first drawer or type of file
contains Applesoft BASIC program files and is marked with an " A". The
second drawer contains Integer BASIC program files and is marked with
an " I". The third holds binary information and is marked with a " B",
and the fourth (and the one we will look at in detail in this book) holds
text information and is mark with a "T". Therefore, each diskette you
use is like that four-drawer file cabinet. It is set up to accept information

Apple® is a regis tered trademark of Apple Computer, Inc.

2 CHAPTER I APPLE'S FOUR FILE TYPES

in any of these drawers, but it does not have to have informatio n in all
of them---just like the real filing cabinet doesn' t have to have something
in all four drawers. If you never have any binary, or B, informa tion, you
are not required to have B files on your diskette. Some diskettes may not
show some of the four file types.

How do you know what files are on your diskettes? We will begin
the tutorial part of this book by going through all the steps necessary in
order to find out just what files are on your diskette. (If you are already
acquainted with the procedure used to start up the computer and di sk
drive---sometimes called " booting the system" ---you can skip the rest of
this paragraph.) Take your SYSTEM MASTER Diskette (or almost any
other diskette) , and insert it into the disk drive. (If you have more than
one drive, make sure to put the diske tte into drive one.) Then do one of
the following: (I) Turn on the computer, or (2) If the computer is already
on, type PR* 6 (or whatever slot number your disk interface card is in)
and press the key marked RETURN, or (3) Turn the computer off and
back on again. The disk drive should make some noise, and the IN USE
light on the disk drive should come on. If you have not already shut the
disk drive door, shut it carefully at this time. Soon the disk drive will
stop, the IN USE light will go out, and there should be a blinking box
somewhere on the screen. (If you have not been able to get to th is point
with the computer, try another diskette, preferably the diske tte marked
"SYSTEM MASTER" . If switching diskettes does not work, you will
need to check the manuals for your particular system.)

Now, type CATALOG. The disk drive will come back on and you will
see a list with three things on each line of text :

I. a single letter ,
2. a three digit number, and
3. a name made up of letters and/ or numbers.

The single letter tells what type o f file it is: usually either an A, B, I, or
T. The three digit number gives the size of the file, which we will discuss
in more detail later. The name, consisting of letters and/or possibly
numbers, is the actual name of the specific file. In our file cabinet
examplt:, this is the same information that might appear on each folder.
You might label each folder with (1) a single letter indica ting which
drawer it goes in, (2) how much information it conta ins, and (3) a name
for the information within the folder. If you were able to see all the names
of the folders in the four-drawer file cabinet, all of the A type files would
be together, as would the B, then I, and finally T type fil es. In reality, most
file cabinets do not have a list of all the files stored within them. It would
be a time-consuming job to update that list every time you added, changed
or threw away a file, but Apple's file manager system does just that and
does it automatically. That list of everything in the fil e cabinet (on the

CHAPTER I APPLE'S FOUR FI LE TYPES 3

diskette is what you get when you type CATALOG. Typing CATALOG
shows the list previously created by the file management system. Since it
doesn't much matter to the disk where the information is stored, an A file
may be followed by a T file, followed by another A file or B file or I file or
another T file. In other words, the list of the files on the disk is not separated
by file type. Instead, usually the list (CATALOG) shows the order in which
the files are created.

How are these files used? By now you know the four main file types used
by Apple, but you don't know much about them. What are they? How are
they different? How are they used? Returning to the four-drawer fil e cabinet,
the person in charge of that cabinet might put some rules or locks on the
drawers. In other words, he or she might say that the A type file could be
used only in a certain way or only by certain people. The same could be true
of the other file types or drawers. This is exactly what Apple's file manage­
ment system has done. Each file type is used differently and can be used only
in certain specific ways. A and I files are instructions (also called programs)
to the computer to do something. Examples of such instructions would be:

20 HOME
40 DIM X$ (30)
50 GOTO 100
100 PRINT "HELLO"

Most T files are not computer instructions but contain information of value
to people such as names, addresses, zip codes, payroll deductions, pay rates,
and book titles. Often T files are just lists of such information. Such lists,
of course, would not make sense as instructions to the computer which is the
reason T files cannot be RUN like A or I files (programs) can be. Binary files
can be either computer instructions or human information (lists), or some­
times a combination of both.

It should be clear that Apple files are used to store information just as
you or I use a filing cabinet, that there are different types of files and that
they are used for different purposes. In the next chapter, we will look
more closely at the four file types and how they are used. In subsequent
chapters, we will look inside the drawer of one of those file types, the
T file, and examine how information is kept, how that information is
used, and how those files are created. The latter, creating fil es, is the
main emphasis of this book and will occupy the remaining chapters. If
you want to know how to create the A or I files (programs), you will
need to learn "programming." Effectively using the T files requires some
knowledge of how to program in either Applesoft or Integer BASIC. The
programs discussed in this book will, for the most part, be Applesoft
BASIC programs, and the discussion will be such that anyone willing to
try the examples should learn to program as well as learn to create and use

4 CHAPTER I APPLE'S FOUR FILE TYPES

T files . In other words, although the main emphasis of this book is on the
T files, you will learn a certain amount of programming---A or I BASIC
program files , in order to be able to create, display and change T files. And
I repeat, anyone willing to try all the examples, and read carefully through
the discussion of the examples, can and will learn to program and thus make
effective use of the T files. Individuals, no matter what their age, background
or experience, can learn the information presented in this book. Programming
and file manipulation are a matter o f learning how to give instructions to the
computer in a manner the computer can understand, or, more simply, prog­
ramming is learning how to talk to the computer and tell it what you want
it to do.

QUESTIONS

I. How many main file types does Apple have?

2. What letter is used in the CATALOG of a diskette for Integer files?

3. What is a " B" file?

4. Which file type will this book concentrate on?

5. What word would you need to type in order to see a list of the files
on a diskette?

6. Which files contain instructions to the computer?

7. Which files contain information of value to people?

8. Which file can contain information of use to both computers and
people?

CHAPTER I APPLE'S FOUR FILE TYPES 5

ANSWERS

1. 4

2. I

3. BINARY

4 . Tor TEXT

5. CATALOG

6. A and I

7. T and B (Programmers aren't human!)

8. BINARY or B

r

2
Applesaft and Integer Files

In this chapter, we are going to take a closer look at the first two main
file types. This would be the same as opening our file cabinet drawers for
a quick look at what is kept inside.

We begin with what are probably the two most common types of
files, the "A" or Applesoft BASIC files, and the " I" or Integer BASIC
files. Some of you might already be confused because you have always
referred to Applesoft BASIC or Integer BASIC as " programs" rather than
files. In reality, they are both. Suppose one drawer in the file cabinet
is used for games. Each folder contains the rules or instructions for
playing a different game. Most of the time, you would simply refer to
the folders as games, not files, yet they are really both games and files.
When you have taken one folder out of the file cabinet and are using
the instructions to play the game, it is not a file; however, when you are
finished with the game and want to put it back in its place, it becomes
a file---one of many game files. The same is true of Applesoft BASIC
program files. The A drawer contains only Applesoft BASIC programs or
computer instructions (rules). When the computer is using the instruc­
tions in one of those Applesoft "folders," the instructions are a program,
but when the computer is not using the instructions, the instructions are
stored as files. The imporiant thing to understand is that the A drawer,
or Applesoft files, contain only computer instructions (programs). Some
of those files contain larger or longer sets of computer instructions than
others, but an A file can only be a set of instructions for the computer
or, therefore, a computer program. The second limitation of the A files is
that they can only be a certain kind of computer program---an Applesoft
BASIC computer program---not an Integer BASIC computer program or
a Fortran computer program or a Cobol computer program, etc. (Fortran

6

CHAPTER 2 APPLESOFT AND INTEGER FILES 7

and Cobol are two other computer languages, just as BASIC is a com­
puter language.) They will always be what is sometimes called floating
point programs. The main difference between Integer BASIC programs
and Applesoft BASIC programs is in the way they work with numbers.
Applesoft BASIC programs are able to work directly with numbers that
contain decimal points such as 23.45 or $59.85, while Integer programs
are not able to work directly with decimals. The number 23.45 in Integer
would be treated as 23. The amount $59.85 would simply be $59. There
are other differences, but this explanation is sufficient for our needs now.

We can see that two of our four drawers contain only computer
instructions or programs. The A drawer is for Applesoft BASIC program
files, and the I drawer is for Integer BASIC program files. Let's look at
the rules for using either of these files, the A or 1 files. In our mythical
office, we have three main secretaries that can use either the A or I files.
Secretary number one can only go and get the file (LOAD). Secretary
number two can only put the file away (SA VE). Secretary number three
can go and get the file and immediately begin execution or operation of
the program (RUN). These three secretaries or commands do not have
access to the other two drawers or file types.

Secretary number three (RUN) does two jobs by loading a program
into memory from a diskette and then beginning the operation or execu­
tion of that program. In other words, the RUN command goes and gets a
copy of the file from the disk, puts it in the computer's memory and tells
the computer to begin operation according to the instructions in the file
(now program).

Secretary number two (SA VE) can only put the file (program) cur­
rently in the computer's memory in the file cabinet (disk).

Secretary number one (LOAD) is only able to get the file (program)
from the file cabinet (disk) and put it on the boss's desk (in the com­
puter's memory). The LOAD command goes to the diskette and gets a
specific file. In order to know which file to get, the LOAD command must
be given the specific name of the file: LOAD MATH DRILL or LOAD
CHECKER GAME. If the file name is not spelled exactly (including
spaces) the way it is spelled on the CATALOG (the list of all the files
in the file cabinet), then the LOAD command or secretary won't be able
to find the file and will come back and tell you "FILE NOT FOUND". On
the other hand, if the LOAD command does have the exact name it will go
to the disk and get a copy of the file. Notice the use of the word "copy."
The LOAD command does not actually go and remove the file from the
diskette like a secretary would remove a file from the file cabinet. The
LOAD command takes only a copy so that the original always remains
on the disk. The copy of the file is loaded into the computer's memory,
similar to a secretary getting a file and putting it on the boss's desk. You,
the boss, must then decide what you want to do with the file. If you

8 CHAPTER 2 APPLESOFr AND INTEGER FILES

want to open it and look at it, you use some form of the LIST command.
(Type LIST or LIST I 00-200 or LIST 400,500 etc.) If you want to see
the program in operation, type RUN.

Secretaries, or Disk Operating System commands, must be given a
specific file name. Usually, after using the LOAD command, you will want
to look at the instructions (LIST) and perhaps change, add, or remove
some instructions. When you have finished, you may want to keep what
you have done by giving the file to secretary number two (SA VE) and
telling the secretary the exact name you want this file kept under. If you
have made changes but still want to keep the original currently on the
disk, then the secretary must be informed of a new file name. If the
secretary uses the same file name as the file currently on the disk, the
secretary will throw out the file on disk (erase it) and replace it with the
one you have changed . This may or may not be what you want, so be
careful what name you use (the SAVE command). '

Let 's actually try some of these commands. Use your SYSTEM
MASTER diskette to get the computer working; i.e., to boot the system.
(Review the procedure in Chapter I, if necessary.) When you get the
blinking box (called cursor) on the screen, type the following carefully,
and remember to press the key marked RETURN after each entry:

NEW
20 PRINT "HELLO"
40 PRINT "MY NAME IS APPLE II"

Check your typing to be sure you have typed everything exactly the way
it is shown above. The word NEW erases anything that is already in
the computer's memory. It does not do anything to the diskette or any
information stored on a diskette. The numbers 20 and 40 are line numbers
in an Applesoft BASIC program. Line numbers can be any number from
0 to 65535. Usually, the numbers chosen are not consecutive in order
to allow other lines to be added, if necessary. The word PRINT instructs
the computer to display on the screen whatever follows it and is between
the quotation marks. Now type the word RUN and press the key marked
RETURN. You should see just the words between the quotation marks.

HELLO
MY NAME IS APPLE I I

You have just written and executed an Applesoft BASIC program. The
program is still in the computer's memory, but if you were to turn off the
computer now, you would lose that program. It would be lost because it
had not been saved anywhere permanently; i.e., on tape or disk. We will
take care of that with our next step.

This next step is very important. Remove the SYSTEM MASTER
diskette and insert a blank or new diskette. If you do not remove the

CHAPTER 2 APPLESOFf AND INTEGER FILES 9

diskette you used to boot the system, you will destroy the information
on it when you follow the next series of instructions. If you do not have
a new diskette, you should: (1) Wait until you do have a new diskette
before doing the next steps, or (2) Use a diskette that you know has some
room on it and skip the first step below, or (3) Use an old diskette that
contains information you no longer need. Once you have chosen and
inserted your diskette, type the following:

INI T HELLO

Remember, this first step destroys any existing information on an old
diskette. This step is used to "format" (INITialize) a new diskette or
re-format an old diskette so that the diskette can store files. The INIT
command is usually used only once on each diskette. A second use
erases whatever is currently on the diskette. The INIT command will
only work with a program in memory. The entire process can take about
30 seconds for DOS 3.3 users to one-and-a-half minutes for DOS 3.2
users. The disk drive makes a noise and the IN USE light comes on.
The computer is transferring numerical information onto the diskette to
enable the computer to later find locations on that diskette. It is also
saving our program as the first file on this diskette.

When the IN USE light goes out and the blinking box (cursor) reap-
pears on the screen, type:

CATALOG

(Remember to press the key marked RETURN.)
You should see:

A 002 HELLO

Then type;

LIST

You should see:

20 PRINT "HELLO"
40 PRINT "MY NAME IS APPLE II"

LIST is similar to CATALOG in that CATALOG shows what is on a
diskette and LIST shows what is in the computer's memory.

Now type:

NEW
LIST

The program is now gone, and there is nothing in the computer's memory.
Type:

LOAD HELLO

10 CHAPTER 2 APPLESOFf AND INTEGER FILES

LIST
and the program is back.

Immediately after the LOAD HELLO, the disk drive comes on for a
brief time. The computer is instructed to go to the diskette, bring in a
copy of the file called HELLO and store that copy in its memory. When
you type LIST, you are telling the computer to show you what it has in its
memory. Therefore, the program now actually exists in two places: (1) in
the computer's memory and (2) as the first file on the diskette.

Type carefully and add a third line like this:

60 PRINT "I AM A SMART COMPUTER"

Then:

SAVE HELLO 2
CATALOG

Now the list shows:

A 002 HELLO
A 002 HELLO 2

There are two files on the diskette. Both are Applesoft BASIC program
files. After you type SA VE HELLO 2, the disk drive comes on briefly
while the computer transfers a copy of the contents of its memory to the
diskette. CATALOG shows the new list of files on the diskette.

Finally type:

NEW
LIST

The program is gone. Type:

RUN HELLO 2

and the screen shows:

HELLO
MY NAME IS APPLE II
I AM A SMART COMPUTER

Now type:

LIST

and the full program is back.
Type:

RUN

(this time without a file name, since the instructions are already in
memory) and you should get the same message.

CHAPTER 2 APPLESOFf AND INTEGER FILES 11

First, you erase the program in the computer's memory (NEW) and then
ask to see if there is anything left in the computer's memory (LIST) just to
verify what you did. Next, RUN HELLO 2 tells the computer to access the
diskette, load the file called HELLO 2 into its memory and begin operation
according to the file 's instructions. LIST shows that the program is back
in memory. To prove it , RUN without a file name tells the computer to
again operate according to the program's instructions.

Let's review from the viewpoint of the secretaries and file cabinet.
Remember, so far we have three main secretaries: number one (LOAD) ,
number two (SAVE), and number three (RUN). In order for these
secretaries to do anything, they must be given a file name:

LOAD MATH DRILL
RUN CHECKER GAME
SAVE ANYTHING

Disk Operating System commands (DOS commands) must be given a
specific file name.

There are live other disk operating commands tha t can be used with
files A, I, T, and B. Commands four and five (LOCK and UNLOCK) are
used to protect and unprotect files. If you have a file you never want
changed or erased, you can lock that specific file: LOCK CHECKERS;
LOCK MATH DRILL. Files that are locked will have an asterisk by their
fil e types in the catalog:

* A 007 MATH DRILL
*I 0 45 CHECKERS
* T 023 NAME FILE

If you change your mind and do want to make changes, then command
number five (UNLOCK) will remove the asterisk and make it possible for
you to change or rename a file or erase it.

Command number six (RENAME) can change the name of any
file. Command number seven (DELETE) can remove or erase any file.
Command number eight (VERIFY) can check on the condition of the file
in the file cabinet (on the disk) to see that it is really there.

I have used the concept of secretaries for two reasons. First, I believe
it gives the impression tha t the Disk Operating System is there to help you.
In the examples, the secretaries are really Disk Operat ing System or DOS
commands. DOS does certain things for you that a number of personal
secretaries might do. The only limita tion is that you must be exact and
specific wi th the secretaries (DOS commands). DOS commands must be
used with a specific file name.

Second, the concept o f secretaries may help to clarify the use of dupli­
cate terms. Some of those DOS commands use the same words, but in
a different manner, as Applesoft BASIC and/ or Apple II computer com-

12 CHAPTER 2 APPLESOFT AND INTEGER FILES

mands; i.e ., RUN, SAVE, and LOAD. When these words are used without
a file name they are no longer seen as secretaries or DOS commands.

Typing SAVE, without a file name, is an Apple II computer command
telling the computer to save whatever is in its program memory to TAPE
(assuming a tape recorder is properly connected to the computer). Yet
typing SAVE, with a file name, is a Disk Operating System command telling
the computer to save whatever is in its program memory to the DISK.
Typing LOAD, without a file name, is an Apple II computer command
telling the computer to attempt to bring a program into its memory from
TAPE. But typing LOAD, with a file name, is a Disk Operating System
command telling the computer to bring a program into its memory from a
DISK. Typing RUN , without a file name, instructs the computer to execute
the instructions currently in memory. RUN, with a file name, instructs the
computer to access the DISK, load the specified program into memory and
begin operation according to that program 's instructions.

We've covered a lot of new information in this chapter. If something
is not clear, you should go back over it and use the Apple and disk drive
to better understand these concepts.

CHAPTER 2 APPLESOFT AND INTEGER FILES 13

QUESTIONS

1. TRUE or FALSE: Applesoft BASIC and Integer BASIC programs are
stored on disk as files .

2. The main difference between Applesoft and Integer programs is in
the way they work with ____ _

3. What does DOS stand for?

4. How many main DOS commands are used with Applesoft BASIC
program files?

5. Which DOS command gets the program from disk and immediately
begins execution or operation of the program?

6. Which DOS command stores programs on the disk as files?

7. TRUE or FALSE: The LOAD command actually removes the program
from the disk and loads it into the computer's memory.

8. What happens when you save back to disk a program you have
changed, and you save it under the same name?

9. Name the other five DOS commands that can be used with all four
file types.

10. TRUE or FALSE: LIST shows what is on the diskette.

11. LOAD and SAVE, without a file name, attempt to access which-{A)
DISK or (B) TAPE?

12. TRUE or FALSE: Applesoft and Integer are programs, never files.

13. Explain what NEW does.

14 CHAPTER 2 APPLESOFT AND INTEGER FILES

ANSWERS

I. TRUE

2. NUMBERS or DECIMALS

3. Disk Operating System

4. 3

5. RUN with a file name

6. SAVE with a file name

7. FALSE, it takes a copy.

8. The previous version is erased and replaced with the new version.
9. LOCK, UNLOCK, RENAME, DELETE, VERIFY.

10. FALSE
11. B or TAPE

12. FALSE

13. Erases whatever is in the computer's memory.

r

3
Text File lntraductian

\..

If you go back to the file cabinet example used in the last two chapters,
this chapter is a quick look inside the T drawer and a superficial look inside
the two different kinds of file folders in this drawer. We will examine the
characteristics that are common to both kinds of TEXT files and look at
how you can get at those files.

or the four main types of files, we have seen that two types are
instructions (called programs) for the computer: Applesoft or Integer
BASIC program files. One of the remaining two types usually contains
information for people rather than machines. By this, I do not mean that
the computer cannot make use of the information, but that the information
usually is not in the form of direct instructions for the computer. An
example of an instruction for the computer is :

20 PRINT "HELLO, HOW ARE YOU?"

An example of information that is not in the form of a computer instruction
would be:

Title : APPLE FILES
Author: David Miller
Publisher: Reston Publishing
Address: Reston, Va.

This last example is the kind of information usually kept in a TEXT file.
Before we get into the process of actually storing and retrieving text files,
we need to understand the main difference between the two kinds of TEXT
files.

Text files have two ways of storing and retrieving inform at ion .
(Remember that the information really stays on the diskette and we are just

15

16 CHAPTER 3 TEXT FILE INTRODUCTION

getting a copy of the information!) These two ways of storing and retrieving
information are sequential access and random access. "Sequential access
text files" basically means that the information stored in the file is kept in
sequential order. "Random access text files" usually means that each part
of the file is divided equally and can be reached directly and at random
instead of going through all previous records. The process of looking at
each record in order (sequence) to decide if it is the record you want is a
characteristic of sequential files and can require more time than the direct
method of random access files.

The basic difference between sequential text files and random text files
is somewhat like the difference between a cassette tape and a phonograph
record. If I want to find a specific song on a cassette tape, even using the
best available tape deck, I must begin at the current location of the tape
and proceed either forward or backward, passing over all intervening songs
until I have found the song I want. The process proceeds in sequence, one
song after another. For example, if I want to only play the fourth song
on the tape, I would have to advance the tape through the first, second
and third songs until I get to the fourth one. On the other hand, if the
songs are on a phonograph record, all I would have to do to play the
fourth song would be to place the phono cartridge containing the needle
at the start of the fourth division instead of at the start of the first song. I
can do that because I am able to clearly see the divisions between songs
and because those individual songs are directly accessible. I do not have
to go through the grooves of the first three songs in order to get to the
fourth. And moving the needle by hand takes only seconds. So imagine that
the T drawer contains two basic divisions: the first division contains files
that operate in a way similar to cassette tapes, while the second division
contains files that operate like phonograph records in the way described.

But these two kinds of TEXT files do have things in common, just
like tapes have things in common with phono records. The most obvious
common characteristic is that they both usually contain information that
is not in the form of instructions for the computer. In other words, they
eontain information like lists of things, addresses, receipts, and inventories.
Second, since they are in the same drawer, they require the same "key"
to get to them : control ' D'. Third, both files make use of the same DOS
commands, but with different parameters.

Because these TEXT files are not computer instructions, they cannot
be used in the same manner as Applesoft or Integer program files. In other
words, you cannot RUN a TEXT file, SAVE or LOAD it. Those three
commands, when combined with a file name, are the computer's means
of access to Applesoft or Integer disk files . The obvious question, then, is
that if you cannot use RUN, SAVE, or LOAD with TEXT files, how does
the computer get the information on the disk in a TEXT file or back off
the disk from a TEXT file? The answer begins with a "key."

CHAPTER 3 TEXT FILE INTRODUCTION 17

We will begin by finding out about this key, the control 'D'. Imagine,
for a moment, that our file cabinet has only one drawer that can lock. In
order to get into that drawer, we would need the key, and the key would
have to be used in the right manner. This is similar to what Apple has
done with TEXT files . As we have said, since these files are not programs
you cannot get at them by using the DOS commands RUN, LOAD, and
SAVE. In fact, it turns out that there is little that can be done to access
TEXT files directly. Usually, TEXT files must be accessed from within
a computer program. In order to let the computer know that we want
information, either to go to the disk or to come from the disk (rather than
to or from the tape or to or from the keyboard), we must use the infamous
control 'D' as our key.

On the last page of the original Disk II manual , we were told that in
order to use DOS commands within a program, we must first print a string
that contained a "CTRL D" followed by a command. What this means is
that, in order to use any DOS command from within a program, several
things need to be done. First, they chose the control 'D' as the method
to tell the computer that the lines in the program that followed were to
access the disk rather than the tape, the keyboard, or the screen.

Outside a program, in what is called the immediate mode (where what
you type is acted upon immediately after the RETURN key is pressed),
the control 'D ' is relatively easy to use. Just like any other control key,
you must press down on the key marked "CTRL" and while holding that
key down, press on one of the other letter keys. Therefore, outside of a
program, the control 'D' key is used by holding down the "CTRL" key and
then, at the same time, pressing the 'D' key. If you want to see how this
works and actually hear the results, hold down the CTRL key and then
press the 'G' key at the same time. You will not see anything appear on
the screen because control keys are usually non-printing characters, but
the control 'G' key also produces a bell-like sound.

There are several methods of making use of this control ' D' from within
a program. Programs operate in what is called the deferred mode, because
the computer does not act according to the instructions in the program
immediately. Rather it waits until it is told to RUN the program. It defers
action until it is specifically told to act. This is the reason for the line
numbers in programs. Line numbers tell the computer the exact sequence
by which the computer is to follow the program instructions. The CTRL
'D' procedure described above can be used within a program, but nothing
is printed on the screen using this method. If you go back to a program
later, you cannot be sure if you remembered to include the control 'D ' or
not because you cannot see it. An example of this method of using the
control 'D' would be:

20 PRINT "OPEN ADDRESS FILE"

18 CHAPTER 3 TEXT FILE INTRODUCTION

The control 'D' should be between the quotation marks, but no one can
tell if the control 'D' key is actua lly included because control keys are non­
printing characters.

Another method, but still not very good, is to set a string variable
equal to a control 'D', and then use the string variable wi th the DOS
command. A string variable is identified in BASIC by a letter or letters
followed by the dollar sign-$. Variables are names assigned to locations
in the computer's memory. String variables can contain just about any
value: i.e., numbers, letters, punctuation, and so forth. They are referred
to as "variables" because their value may vary within a program ; i.e., it is
not constant. An example of a string variable might be NAME$ where the
first value of NAME$ is "ANDY'', the second value is "MARY", the third
value is "PAUL", and the fourth value is "JANE". Using a string variable
(OS), the example would look like this:

20 D$=""
40 PRINT D$; "OPEN ADDRESS FILE"

Now, at least, you can return to a program and see if you included some­
thing before the DOS command, but there is still no way of seeing exactly
what was in line 20. You might have accidenta lly hit a control 'S' instead
of a control 'D'. (Another reason for using a string variable is to substitute
a visible value for an invisible value, or a value tha t is easier to type or
shorter than some other value, especially if the longer value has to be typed
repeatedly.)

Finally, another method for using control ' D' within a program suggests
that line 20 should contain the value of control 'D ' set by the code for all
characters. The code used in the Apple and most micros is called ASCII.
It sets a decimal and hexadecimal value for all characters used. If you look
on page 138 of the APPLESOFT II manual and go down the page under
the column WHAT TO TYPE, until you find "CTRL D," you will fin d three
columns to the left. We are concerned only with the column labeled DEC.
The value for a control 'D' in the DEC (decimal) column is "4". Now we
have a value but need to know how to use that value. Applesoft BASIC
provides the method we need . The reserved characte rs CHR $ are used
wi th parentheses and a DECimal value to display non-printing characters
on the screen. (I nteger BASIC does not have the CHR $command.) Now
our example would look like this:

20 D$=CHR$ (4)
40 PRI NT D$; "OPEN ADDRESS FILE "

Now we have a method of telling exactly what "0 $" stands for. This
method is less than ideal since you must remember the ASCII value o f
control 'D' every time you begin a program. It is not difficult to remember
that a control 'D' is a CHR$(4), but it is somewhat bothersome. A very

CHAPTER 3 TEXT Fl LE INTRODUCTION 19

good habit to get into when programming is to label anything that is not
completely self-evident. BASIC allows a programmer to label something
by using the REM (remark) command. Following this rule, line 20 now
would read:

20 0 $=CHR$ (4): REM CONTROL D

(For Integer users the line should be :

20 D$ =II II : REM CONTROL D BETWEEN QUOTES)

We now have the key and know how to use it , but we need to know with
what DOS commands to use it.

In order to gain access to TEXT files, you must use certain DOS
commands in specific ways, depending on the kind of TEXT file you are
accessing. Both sequential and random access text fil es primarily use four
DOS commands: OPEN, CLOSE, READ , and WRITE. Future chapters
will examine in detail how each of these are to be used for either of the two
kinds of TEXT files . For now, you need only to understand the essential
task of each command. Again, the example of the filing cabinet is useful.
In much the same way tha t a secre tary must open a file folder, so also
must all text files be opened before the informa tion they contain can be
put to use. And as the secretary should properly close the file folder before
replacing it in the fili ng cabinet, all text files should be closed before ending
the program or turning off the computer. If a secretary does not close
the fil e folder, some information might drop out and get lost. The same
is true if text files are not properly closed. Thi s is usually only the case
after new information has been written to the file and the fil e not closed.
Loss of information should not occur after a text file has only been read
and not closed. As implied by their descriptive command names, READ
and WRITE are the processes by which in format ion is either read from or
written to the file . If you only want to see inform ation already in a text
file, the DOS READ comm and is the com mand you would use. If you
want to add in formation to the file or create a new file , the DOS WRITE
command is the one to use.

At this point, let's try out some of this in formation on the computer.
Take the diskette that you initialized in the last chapter, place it in the
disk drive, the n either turn on the computer, or, if the computer is already
on, type PR 'if and the number of the slot your disk interface card is in­
usually slot 6. (Refer to Chapters I and 2 if you are not sure what to do.)
When the cursor (blinking box) appears, type carefully and remember to
press the RETURN key aft er each entry. Type:

CATALOG

And you should see:

20 CHAPTER 3 TEXT FILE I TRODUCTION

A 002 HELLO
A 002 HELLO 2

(Remember, CATALOG shows the names of the files on the diskette.)
Now type:

NEW

(This clears the computer's memory.)

20 D$ =CHR$ (4): REM CONTROL D
40 PRINT D$; "OPEN ADDRESS FILE "
60 PRINT 0$; "WRITE ADDRESS FILE"
80 PRINT "APPLE I I IS A BRIGHT COMPUTER"
100 PRINT D$; "CLOSE ADDRESS FILE"

Check your typing carefully, then type:

SAVE APPLE

(The program is now saved on the diskette under the name APPLE.)
Type:

CATALOG

and you now see :

A 002 HELLO
A 002 HELLO 2
A 002 APPLE

Next type :

LIST

to see that the program is in the computer's memory. Then type :

RUN

The disk drive comes on but little happens on the screen. Once again
type:

CATALOG

This time you get:

A 002 HELLO
A 002 HELLO 2
A 002 APPLE
T 002 ADDRESS FILE

We have created a text file! Even though you did not actually see the text
file being written to the diskette, that is exactly what happened immediately

CHAPTER 3 TEXT Fl LE INTRODUCTION 21

after you typed RU and pressed the RETURN key. The reason you did
not see anything on the screen is because the control ' D' key told the
computer to print our information to the disk rather than to the screen.

We wi ll look at this program to see what each line does and what the
correct syntax for each should be. Line 20 sets the string variable (D $)
equal to the ASC II value of a control 'D'. It acts the same as any other
string variable when used within a program. The colon(:) is the statement
divider allowing more than one BASIC statement on this line. REM is a
BASIC reserved word meaning remark, indicating tha t what fo llows is only
a comment by the programmer and will not be executed by the computer.
The words "CONTRO L D" are the actual comment. Line 40 begi ns with
a PRI NT statement. Apple chose the BASIC reserved word (or command)
PRI NT to be used with the control ' D' key. D $ is set equal to a control ' D'
in line 20 so that in line 40, the first thing that is done is to PRINT a control
' D'. This tells the computer that we want to access the disk in some way.
In other words, we have used the key to gain access to the file cabinet's
T drawer. The rest of line 40 tells the computer what we are going to do
wi th the disk. We are going to open a file called "ADDRESS FILE". If
the file already exists, the computer gets ready to use that file. If no such
file exists, the computer firs t creates such a file and gives it the name of
"ADDRESS FILE". Notice the quotat ion marks around the words OPEN
ADDRESS FILE. These quotation marks must be included in the program
statements. Tha t is how the computer understands where the specific disk
instruction begins and ends. One other observa tion should be made. It
was lirst thought necessary to include the semi-colon between the string
variable and the speci fic instruct ion , but as can be discovered through
experim enting, the semi-colon is not necessary. I include it because it
helps set o ff the key to the disk (the control 'D') and the specilic DOS
instruction and makes the program easier to read. Line 60 again uses
the contro l 'D' key. (Yes, it must be used on every line that contains
a DOS command.) ex t comes the optional semi-colon followed by the
required quotation mark. Then, we tell the computer that we are going to
be adding information to the file with the WRITE command. Since more
than one file could possibly be opened at a time, we must also include
the file name with the WR ITE command. The line is concluded with the
closing quotation mark. Line 80 tells the computer what information to
put in the text lile. Anything between the quotation marks will be written
to the text file on the disk. (The two exceptions are the comma and the
colon which will be explained in a later chapter.) The PR INT sta tement
in this line does not print the string on the screen when the program is
RUN, as would normally be expected, since this PRI NT statement follows
the two previous lines that contain information telling the com puter to
print to the disk rather than to the screen. Line I 00 contains the key to
the disk, control 'D ', fo llowed by the semi-colon , the opening quotation

22 CHAPTER 3 TEXT FILE INTRODUCTION

mark, the DOS command CLOSE, the file name ADDRESS FILE, and the
closing quotation mark. This time the file name is optional since a PRINT
D$;"CLOSE" will close all text files that are open. If there is only one file
open, then that file will be closed with this simplified CLOSE statement.
For clarity's sake, it is a better programming habit to include the specific
file name with the CLOSE command.

We have now put information onto a diskette. The next task is to be
able to read back from the diskette what we wrote. There are a number of
different ways that we can read back the information, but for now, we will
use the single program approach and simply add more lines to the program
that wrote the information to the disk. Type:

LIST

(The program should still be in the computer's memory.)
Add the following lines carefully:

120 HOME
140 PRINT D$; "OPEN ADDRESS FILE"
160 PRINT D$; "READ ADDRESS FILE"
180 INPUT NAME$
200 PRINT D$; "CLOSE ADDRESS FILE"
220 VTAB 10
240 PRINT NAME$

Check your typing. Then type:

SAVE APPLE

(This replaces the previous and shorter version of our program.)

Finally type:

RUN

No file name is necessary since the program, besides being on the diskette,
is also still in the computer's memory. This time the disk drive will come
on for a brief time, then the screen will go blank, and the words "APPLE
IS A BRIGHT COMPUTER" will be printed ten lines from the top of the
screen.

Let 's examine each line of the additional program lines. Line 120
clears the screen of anything left on the screen and places the blinking
cursor in the upper left-hand corner of the screen. Line 140 is exactly
the same as line 40. We need to re-open the file in order to start at the
beginning of the file so that we can read from the file what we have just
written. Line 160 is similar to line 60 except that thi s time we want
to tell the computer we will be reading from the file rather than writing
to it. Line 180 is the opposite of line 80. INPUT brings a copy of the

CHAPTER 3 TEXT FILE INTRODUCTION 23

information in the file called ADDRESS FILE into the computer and stores
it in a string memory location we have labeled NAME$. INPUT brings
information into the computer, usually from the keyboard , but following
a control 'D' and the DOS command READ, INPUT brings information
into the computer from the specified disk file. If there had been more
than one piece of information, we would not have gotten it. We simply
asked the comput er to get one string variable and store tha t string in
memory location NAME$. just like line 80, line 180 accesses the disk
rather than the keyboard because the two previous lines have given the
computer instructions to that effect. I might add tha t following line 80 we
could have included other PRI NT statements that would have wri tten othe r
information to the disk text file ADDRESS FILE. Those statements could
have taken the same format of line 80 or a different format altogether. The
same would then be true following line 180. We could have had more
INPUT statements if there was more information actually in the file. If
there was not and we asked for more with another INPUT, the computer
would have responded with a beep and "O UT OF DATA ERROR" on the
screen. The program would have stopped at that line number. Line 200 is
exactly the same as line 100. Line 220 simply readies the screen fo r line
240 by spacing down from the top of the screen 10 lines (Vertical tab).
Line 240 prints the value contained in memory location NAME$ on the
screen 10 lines from the top. The computer prints this information on the
screen because we have not told it that we wanted the in formation to go
anywhere else. The screen is the default for PRINT statements. Default in
this case means that a certain value, the screen, has been predetermined
and unless the value is specifically changed by a control 'D' and a DOS
command , the predetermined value is taken as the desired value. Since
we have closed our T EXT fil e and not included the control 'D' key in
the two previous statements, the computer understands that we want the
information printed on the screen.

This program is merely to give a brief explanation of the four basic
DOS commands used with either sequential or random access text files.
It is not intended to be a meaningful or useful program in any other sense.
Such programs will begin in the next chapter. Please review this chapter
and the program example with explanation until you are confident you fully
understand wha t each of the DOS text file commands, OPEN, CLOSE,
READ, and WRITE, does and how each rela tes to the use o f the control
'D' within a BASIC statement.

Finally, let's "clean up" our diskette so that we can put some serious
programs on it in the next chapter. By following the instructions given
below, you will gain pract ice in the use of two other DOS commands. lf
you do not wish to erase these programs, you can skip wha t follows and
start the next chapter with a fresh diske tte, providing you remember to
first ini tialize the new diskette. (Refer to Chapter I if necessary.)

24

Type:

CATALOG

The list shows:

A 002 HELLO
A 002 HELLO 2
A 003 APPLE

CHAPTER 3 TEXT FILE I TRODUCTION

T 002 ADDRESS FILE

Now carefully type just the following:

DELETE ADDRESS FILE

Then again type:

CATALOG

and

ADDRESS FILE

should be gone!
Next type:

DELETE HELLO
RENAME HELLO 2 , HELLO

We have erased one more fil e and changed the name of another one. As
the last step, type:

LOAD HELLO
DELETE HELLO
SAVE HELLO

This step puts HELLO back as the first file on the diskette. If you have
followed these instructions carefully, the CATALOG should show just two
files :

A 002 HELLO
A 003 APPLE

CHAPTER 3 TEXT FILE INTRODUCTION 25

QUESTIONS

I . Name the type of file that usually contains lists of information rather
than computer instructions.

2. Give the two kinds of text files.

3. Which kind of text file is similar to a cassette tape?

4. What is the "key" to accessing text files?

5. TRUE or FALSE: You can RUN a text fil e just as you RUN an
Applesoft program.

6. Give the number of modes in which the computer can operate and
name them.

7. Name the four DOS commands usually used with text fil es.

8. What does REM stand for?

9. Explain what the BASIC reserved word HOME does.

I 0. Explain what the BASIC reserved word INPUT does without a control
' D' and a DOS command in the preceding line.

11. What symbol is used to designate string variables?

12. What are variables?

26 CHAPTER 3 TEXT FILE INTRODUCTION

ANSWERS

1 . TEXT FI LES

2. SEQUENTIAL ACCESS, RANDOM ACCESS

3. SEQUENTIAL ACCESS

4. CONTROL D
5. FALSE

6. 2; IMMEDIATE and DEFERRED

7. OPEN, CLOSE, READ, WRITE

8. REMARK

9. Clears the screen, places the cursor in the upper left corner of the
screen

10. Brings information into the computer from the KEYBOARD
11. $

12. Names of locations in the computer's memory where values can be
stored

r

4
Creating Sequential Files

We begin to get into the heart of our study with the first part of our
examinat ion of sequential text files. First, let 's review briefly. We have
seen that there are four main types of files: Applesoft program files, Integer
program files, Binary fil es and Text files. You should understand by now
that Applesoft program files and Integer program files are files tha t contain
specific instructions for the computer. Binary files may be files tha t contain
specific computer instructions, but they may also contain lists of data. Text
files usually conta in only lists or data, not computer instructions. We have
also seen that there are two kinds of text files, sequential text files and
random access text files. The difference between these two kinds of text
files lies in the way the information within them is accessed-sequen tial
requires accessing one record after the other, and random allows access
to any record directly and immediately. In the las t chapter, you were
introduced to the control 'D' character which ac ts as a key allowing access
to the disk from within either an Applesoft or Integer program. A new set
of DOS (Disk O perating Sys tem) commands common to both sequential
and random text files was also introduced. Now we are ready to put some
of this knowledge to work and come up with some useful programs.

We will begin by taking a closer look at the program given in the last
chapter and modifying it to make it more useful.

2 0 D$=CHR$ (4): REM CONTROL D
40 PRINT D$; " OPEN ADDRESS FILE"
60 PRINT D$; "WRI TE ADDRESS FILE"
80 PRI NT "APPLE II IS A BRIGHT COMPUTER"
1 00 P RINT D$; "CLOSE ADDRESS FILE"
120 HOME

27

28 CHAPTER 4 CREATING SEQUENTIAL FILES

140 PRINT D$; "OPEN ADDRESS FILE"
1 60 PRINT D$; "READ ADDRESS FILE"
180 I NPUT NAME$
200 PRINT D$; "CLOSE ADDRESS FILE"
220 VTAB 10
240 PRINT NAME$

This is the same program from the last chapter. Take your diskette that you
have been using and place it in the disk drive. Start the computer (boot
the system) in one o f the ways mentioned in the previous chapters. When
the cursor appears, type the following to see the program instructions:

LOAD APPLE
LIST

(If you have erased the program, use the listing above and type it in again.)
Type:

RUN

Again, you should see the screen clear, and ten lines from the top the
following will appear:

APPLE I I IS A BRIGHT COMPUTER

Type:

CATALOG

ADDRESS FILE is back !

Then change line 80 to :

80 PRINT "APPLE IS OK"

Now type:

LIST

to make sure the change was made. Then type :

RUN (Yes , again)

You should see:

APPLE IS OK

But that is not everything the ADDRESS FILE now contains. To see if
ADDRESS FILE contains anything else, add the following lines to the
program:

1 90 INPUT EXTRA$
260 PRINT EXTRA$

CHAPTER 4 CREATI G SEQUE TIAL FILES 29

Then type RUN once more! You should now see:

APPLE IS OK
A BRIGHT COMPUTER

Why did we get the added phrase "A BRIGHT COMPUTER"? We changed
line 80 so that it only said "APPLE IS OK". Yet, by just adding an extra
INPUT statement (line 190) and an extra display statement (line 260),
we see the last part of our original sentence (A PPLE II IS A BRIGHT
COMPUTER).

In our first example, line 80 wrote 29 characters to the disk. By
changing line 80 to a shorter string, we wrote less than 29 characters to
the same file-ADDRESS FILE. But the difference between 29 and the
length of the shorter string left that amount o f ex traneous characters still
on the disk in the same file-ADDRESS FILE.

In this simple example, extra data in the fil e is not likely to cause
any trouble, but in useful programs, extraneous information may prove
disastrous. An illustration of this would be the confusion that would result
if the numbers in an address file were ove rwritten but the street name was
not. You might end up with the correct numbers going to the wrong street.
There is an easy way to make certain that this overwriting does not occur.

Add:

50 PRINT D$; "DELETE ADDRESS FILE"
55 PRINT D$; "OPEN ADDRESS FILE"

Now when you type RUN, you should get an OUT OF DATA error in line
190 because there is no more extraneous information in the fil e. If you get
the error message as you should, remove line 190 and 260. If you did not
get the error message, you should go back over every step until you do get
the error message. In this case, the error message indicates that you have
been followi ng along correctly and are ready to go on.

After removing lines 190 and 260, RUN the program one last time.
(You can remove unwanted program lines by just typing the line number
and pressing the RETURN key.) This time you should only get the "APPLE
IS OK" phrase.

By first opening the fil e and deleting it , then opening it again and
proceeding as before, we get rid of the extra characters by eliminating the
previous file. There is an obvious danger in doing this since we have erased
what we did the firs t time. In this working example, it makes no difference,
but with a permanent file, we might want to add to the file rather than
erase it. DOS provides a word for just such additions to sequential files :
APPEND. We will soon use APPEND, but let 's go back and make a useful
address file program.

I am not going to get involved in the di scussion over flow-charting or
structured programming, but as in building anything, you should have a

30 CHAPTER 4 CREATING SEQUENTIAL FILES

plan. In this mailing list system, we will need several programs. The first
program should create the file. That first program should probably have
at least three different parts: an input routine, a correction routine, and a
file creation routine. With this minimum plan, let 's begin. We start with
what might be called the housekeeping statements.

10 REM ** - -MAILING LIST CREATOR--**
20 D$= CHR$ (4) : REM CONTROL D
40 DIM NAME$ (20)
60K=1: REM LINE COUNTER

Line 10 simply gives a name to the program. Line 20 is our line from the
first program setting D string equal to a control 'D'. Line 40 uses the DIM
(dimension) statement to reserve space in the computer's memory for 20
lines of 255 characters per line. This number of lines should be enough
for a starter program, but you can change the 20 to a larger or smaller
number. Line 60 uses a counter "K" to keep track of the lines used .

70 REM ** - -INPUT ROUTINE--**
80 HOME: VTAB 5
100 PRINT "TYPE NAME AND ADDRESS AS IF ADDRESSING AN

ENVELOPE. II ;

120 PRINT "DO NOT USE A COMMA OR COLON. "
140 PRINT: PRINT "TYPE 'END I WHEN FINISHED . II

Line 70 labels the routine and line 80 uses the BASIC reserved word
HOME to clear the screen and place the cursor in the upper left-hand
corner. VTAB 5 provides for spacing 5 lines down from the top of the
screen. Lines I 00-140 provide instructions to the person entering infor­
mation : in this case, names, addresses, and phone numbers. All of these
lines are optional, but I have included them because they help the user
to enter the information correctly. And, o f course, the instructions them­
selves can be re-worded to your own preference. The warning concerning
the use of a comma or colon is included because they act as de-limiters
when used in an INPUT statement. (De-limiters define the limit or length
of the string.)

160 PRINT : PRINT "TYPE IN LINE " ; K
180 I NPUT NAME$ (K)
200 IF NAME$ (K) ="END" THEN 300
220K=K+1
240 GOTO 160: REM GO BACK FOR ANOTHER LINE

These lines are the heart of the input routine. Line 160 instructs the
user which line is being typed in. The first PRINT, prints a blank line.
Next, the phrase "TYPE IN LI NE " is displayed. Notice the space b:>etween
the E and the clos ing quotation mark. There is a reason for tha t space.

CHAPTER 4 CREATI G SEGUE TIAL FILES 31

The semi-colon instructs the computer to print the value of the variable
K immediately next to the end of the quotation. If there were no space,
the value of K would be printed next to the E in LINE like this: TYPE IN
LINE I. Line 180 accepts what the individual types in and stores it in the
reserved memory, depending upon the value of K. Remember that we told
the computer to reserve space for 20 possible lines of NAME$. (Reserving
multiple space for a variable creates an ARRAY for that variable.) Line
200 cht:cks what was typed in to see if it equals the word "END". If
it does equal "END", the computer is instructed to jump ahead to line
300 immediately. If it does not equal "END", this line is ignored and the
computer goes to the next instruction in line 220. Line 220 is a method
of increasing the line count. The first time through, K will equal I, so the
formula really is: K = I + I or 2. Once we have increased our line count,
we want to go back and get another line, which is exactly what line 240
does.

300 NAME$ (K) = "*":REM SEPARATOR FOR PHONE NUMBER
320K=K+1
340 PRINT "PHONE: II ;: PRINT "TYPE 'RETURN' IF NONE. II

360 INPUT NAME$ (K)
380K=K+1
400 NAME$ (K) ="!": REM SEPARATOR BETWEEN SETS OF

INFORMATION

These may be the most confusing lines to understand. In order to easily
separate the name and address from the phone number, I have included
a separator, "'~", on a line by itself. The reason for separating the phone
number from the rest of the in fo rmation is that now we can use the first
part of our information to produce mailing labels. I have also included
a separator, " !", to easily differentiate between the name, address, and
phone number of one person and the name, address, and phone number
of the next person. Therefore, line 300 sets the Kth line of NAME$ equal
to "*" . At this point, if the first line contains the name; the second line
the address; and the third line the city, state and zip code; then the fourth
line will contain the word "END," and K will be equal to 4. By making
the fourth line equal to ''*", we have actually accomplished two tasks:
eliminating the word "END" and establishing a one-character separator
before the phone number. We could have required the user to type the "*"
when he/ she finished entering the name and address, but I pref er to have
the user type something natural within the context. Line 320 increases
the line count by one for the phone number. Line 340 gives instructions
about typing in the phone number. Line 360 accepts whatever format the
individual uses to type in the phone number and stores the information in
the string reserved memory. Line 380 again increases the count by one,
this time for the separator between sets of information. Line 400 makes

32 CHAPTER 4 CREATING SEGUE TIAL FILES

the Kth line o f NAME$ equal to " !" . If the fourth line of NAME$ is "*"
and the fifth line is the phone number, then K would be 6 and the sixth
line would equal " !". This concludes the input routine.

410 REM**- - CORRECTION ROUTINE--**
420 HOME: VTAB 5
440 PRINT "DO NOT CHANGE THE LINE WI TH THE '*'"
460 PRINT "THIS SYMBOL IS USED AS A SEPARATOR. "
48 0 PRINT

These lines explain what the routine is, set the format for the correction
routine, and give in structions to the user about the separator"*". Line 4 10
labels the routine, and line 420 clears the screen and places the cursor in
the upper left-hand corner five lines from the top. Lines 440 and 460
print the instructions for the user. Line 480 prints a blank line a fter the
instructions.

500FORI=1 TO K-1
520 PRINT I ; II II ; NAME$ (I)
540 NEXT I

Lines 500-540 make a loop used to get the information stored in the string­
reserved memory and print that information on the screen. Line 500 is
the first line of a FOR-NEXT loop. It uses a counter (I) that starts with
the value of I and counts to the value of K minus I. In our example
above, the sixth line was the las t line and was therefore set equal to "! ".
Since that line should not be changed, there is no reason to di splay the
line. Therefore, the counter only goes to K-1. Line 520 prints the current
value of the counter, a blank space, and then the information contained
in NAME $(!) stored in the computer's memory. Line 540 increases the
counter by one until the counter equals the value of K- 1.

560 PRINT
580 INPUT "CHANGE ANY LINE? TYPE 'Y' OR ' N' " ;YES$
600 IF YES$ = " Y" THEN 640
620 GOTO 740 : REM GO TO FILE CREATION ROUTINE
640 INPUT "CHANGE WHI CH LI NE " ; LINE
660 IF LINE > K- 1 THEN PRINT "NUMBER TOO LARGE " : GOTO 640
680 PRINT "OLD LINE = " ;NAME$ (LINE)
700 INPUT "CORRECT LINE = II; NAME$ (LINE)
720 GOTO 420

These lines are fa irly standard correc tio n routine lines. Line 560 prints a
blank line before the question in 580. Line 580 asks the necessary question
and provides instructions for answering it. The user's response is stored
in the string variable YES $. Line 600 checks the answer, stored in YES $,
to see if it equals "Y". If it does, the computer is instructed to jump to line

CHAPTER 4 CREATING SEQUENTIAL FILES 33

640 and proceed. If it does not e4ual "Y", the computer goes to the next
instruction in line 620. Li ne 620 tells the computer to go to li ne 740 which
will be the start of the file creation routine. It does this because, when the
computer gets to th is line, the user has typed something other than a "Y"
in answer to the question of line 580. Line 640 requests the number of
the line that needs changing and sto res that value in the variable "LI NE".
(Notice that there is no dollar sign following LINE. This indicates that
this variable is a numeric variable rather than a string variable . Numeric
variables can only contain numbers.) Line 660 checks to see if the user
has typed a number larger than the total number of lines displayed. If that
is the case, a message is printed and the computer returns to line 640 to
ask again for the number o f the information-line to be changed . Line 680
prints the originally typed line, and 700 waits for the user to type in the
correct informat ion. Finally, 720 returns to line 420 to begin the correction
process over again. The correction process will be repeat ed until the user
answers the question in 580 with some thing other than a "Y". There are
a number of other lines or checks that could have been included, but for
our present needs, these lines are sufficient.

730 REM ** - -FILE CREATION ROUTINE--**
740 PRINT D$; "OPEN ADDRESS FILE"
760 PRI NT D$; "DELETE ADDRESS FILE"
780 PRINT D$; "OPEN ADDRESS FILE"
800 PRINT D$; "WRITE ADDRESS FILE"
820 PRINT K: REM NUMBER OF LINES
840 PRINT " " : REM 5 SPACES FOR INCREASING COUNTER
860 FOR I= 1 TO K

880 PRINT NAME$ (I)
900 NEXT I
920 PRINT D$; "CLOSE ADDRESS FILE"
940 END

We are fina lly down to the actual file handling routine. As you can see,
the rout ine is quite short. The key to fili ng system programs is often in
proper planning. If you have tried to anticipate and provide for all possible
requirements, present and.future, your text files can become very powerful
and usefu l. If you are not careful in yo ur planning, however, you may
fi nd that some of the informa tion you thought you had in the fil e has been
overwritten, lost, or practically unavailable. This is the reason for including
the two single character separators and the reason for lines 820 and 840 in
this rout ine. Lines 740 through 800 are the sa me sequence we used in our
original work program. Line 740 opens the file; 760 deletes the file in case
there was a previous file by the same name. Line 780 opens the file again,
and 800 tells the com puter that we are going to put information in the file .
Now, we come to the two un familiar lines. Line 820 prints the current

34 CHAPTER 4 CREATING SEQUE TIAL FILES

value of K which, in our example, should be a "6". This is done to keep
track of the total number of lines used so that we know how many lines to
read back into the computer with other programs. The six is a single-digit
number and, therefore, takes up only one space on the disk. (Actually, it
takes up two since a 'RETURN' character is automatically added to the
end of most PRINT statements.) In this program, it doesn't really matter
how many digits represent the value of K, since we are only going to write
this value once. But in the program that wi ll follow, which is used to add
more names to this file, the number of digits in the value of K will be very
important. There is no problem as long as the value of K remains at one
digit. But when it goes to two, three, and possibly four digits, we will have
a problem. If we were to begin writing the first person's name immediately
after the value of K, when K reached two digits, the first letter of the name
would be overwritten. Therefore, we print a line of five blank spaces in
line 840 to provide for overwriting. If you wanted to add more spaces,
you certainly could, but five blank spaces leave enough room for a six-digit
number, and that many li nes would take a very long time to read back into
the computer even if they would fit in memory. Again, there are other
ways of keeping track, but in a sequential f11e, this is one of the easiest
and clearest. Lines 860 through 900 are essentially the same loop as lines
500 to 540, but this time, the information is printed to the disk instead of
just the screen. This time we do want to print the separator"!", so the
counter goes from 1 to the value of K. Finally, we close the file in line 920
and end the program.

If you have been following along and typing in the program, you should
save this program on disk by giving it a name such as the name in line I 0.
Remember that to save a program, you type the word "SAYE" and the
program fil e name. Like this :

SAVE MAILING LIST CREATOR

Now type the word "CATALOG" and see if the file name is listed. It
should be listed something like this:

A 0 0 6 MAILING LIST CREATOR

At this point , you can run the program and enter your own name, address,
and phone number if you wish. When you type the word "RU ," the screen
will clear and fi ve lines down the message from lines I 00-160 appears.
Type in a name and hit the "RETURN" key. You will then be told to type
in line number 2. If you want to type in a title for the name in the first line,
you can. If no title is needed, then simply type in the street address and
press "RETURN". This process should continue until you type in the word
"END". When you do type in the word "END", you wil l be asked for the
phone number and told that if there is no phone number, you should just
hit "RETURN". After the phone number has been typed, you are shown a

CHAPTER 4 CREATING SEQUENTIAL FILES 35

list of the lines you have typed and asked if you wish to change any of those
lines. If you do want to change a line, you must answer the question with
a "Y". If you do not, either type an "N" and the "RETURN" key or just
the "RETURN " key . If you need to make changes and have typed a "Y'',
you will then be asked which line number you want to change. Respond
with a number on the screen. You will then be shown the originally typed
line and asked for the correct information for this line . After typing in the
new line and pressing "RETURN'', you will be shown the list of lines again
with the new line in place of the old line this time . You can make as many
changes as you wish. When you are satisfied and do not wish to make
any more changes, a response of "N" to the question about changes will
instruct the computer to write the information out to the disk. Now, if you
type "CATALOG", you should see:

A 006 MAILING LIST CREATOR
T 002 ADDRESS FILE

But several questions now present themselves. How do l add more nam es
to this file? And how do I actually see what is in the file? As you may
have realized by now, there are a number of possible answers. One answer
would be to add more lines to this program so that the program reads back
what it just wrote to disk. Another answer is to write a separate program
and possibly a program menu tha t would be able to switch easily between
programs that write information and programs that read the informat ion.
ln the next chapter, we will explore a number of these possibilities and
see a little of what can be done with the information once it is safely and
correctly on disk. But to conclude this chapter, 1 am going to show a quick
way to see what is in sequential text files. Type the following:

NEW

(But make sure you have saved your program firs t!)

MON I, 0 , C

(This is a special computer instruction that allows us to actually see dis­
played on the screen what is either written to or read from the disk.)

EXEC ADDRESS FI LE

Do not be upset by the computer beeping at you or the "SYNTAX ERROR"
messages tha t appear. The EXEC command was not intended for this
purpose but does work on sequential files (although not on random access
files). The EXEC command will be discussed in later chapters.

36 CHAPTER 4 CREATING SEQUENTIAL FILES

QUESTIONS

1. TRUE or FALSE: Information in a sequential access file can be over­
writ ten by additional information.

2. What DOS command is used to avoid overwriting to a sequential text
file?

3. Name the three main parts (or routines) in the MAILING LIST
CREATOR program .

4. What does reserving multiple space for a variable create?

5. What symbol did we use to separate sets of information?

6. What does DIM stand for?

7. "FOR I = I TO K" is the first line in what kind of loop?

8. The program user's response is tested by what kind of BASIC s ta te­
ment?

9. What computer instruction allows us to see what goes between the
computer and the disk?

10. What DOS command can read a sequential text file in the immediate
mode?

CHAPTER 4 CREATI G SEGUE 1TIAL FILES

ANSWERS

I. TRUE

2. APPEND

3. Input, Correction , and File rout ines

4. An ARRAY

5.
6. Dimension

7. A FOR-NEXT loop

8. An IF ... THEN statement. Check lines 200, 600, and 660

37

9. MON 1,0,C. The reverse is NOMON 1,0 ,C which turns off the display
of what is going between the computer and the disk.

10. EXEC

38 CHAPTER 4 CREATING SEQUENTIAL FILES

MAILING LIST CREA TOR

10 REM * *- - MAILING LIST CREATOR- -* *
11 :
12 :
20 0$ = CHR$ (4): REM CONTROL D
40 DIM NAME$ (20)
60 K = 1: REM LINE COUNTER
65 :
66 :
70 REM**- -INPUT ROUTINE--**
80 HOME : VTAB 5

100 PRINT "TYPE NAME AND ADDRESS AS IF ADDRESSING AN
ENVELOPE. II ;

120 PRINT "DO NOT USE A COMMA OR COLON . "
140 PRINT : PRINT "TYPE I END I WHEN FINISHED"
160 PRINT : PRINT "TYPE IN LINE "; K
180 INPUT NAME$ (K)
200 IF NAME$ (K) = "END" THEN 300
220 K = K + 1
240 GOTO 160: REM GO BACK FOR ANOTHER LINE
300 NAME$ (K) = "*":REM SEPARATOR FOR PHONE NUMBER
320 K = K + 1
340 PRINT "PHONE: " ; :PRINT "TYPE 'RETURN' IF NONE."
360 INPUT NAME$ (K)
380 K = K + 1

400 NAME$ (K) = "!":REM SEPARATOR BETWEEN SETS OF
INFORMATION

405 :
406 :
410 REM**- -CORRECTION ROUTINE- - **
420 HOME : VTAB 5
440 PRINT "DO NOT CHANGE THE LINE WITH THE '*'"
4 60 PRINT "THIS SYMBOL IS USED AS A SEPARATOR. "
480 PRINT
500 FOR I = 1 TO K - 1
520 PRINT I; " " ; NAME$ (I)
540 NEXT I
560 PRINT
580 INPUT "CHANGE ANY LINE? TYPE 'Y' OR 'N' ";YES$
600 IF YES$ = "Y" THEN 640
620 GOTO 740 : REM GO TO FILE CREATION ROUTINE
640 INPUT "CHANGE WHICH LINE " ; LINE

MAILING LIST CREATOR

660 IF LINE > K - 1 THEN PRINT "NUMBER TOO LARGE"
: GOTO 640

680 PRINT "OLD LINE = ";NAME$ (LINE)
700 INPUT "CORRECT LINE = ";NAME$ (LINE)
720 GOTO 420
725 :
726 :
730 REM**- -FILE CREATION ROUTINE--**
740 PRINT D$; "OPEN ADDRESS FILE"
760 PRINT D$; "DELETE ADDRESS FILE"
780 PRINT D$; "OPEN ADDRESS FILE"
800 PRINT D$; "WRITE ADDRESS FILE"
820 PRINT K: REM NUMBER OF LINES
840 PRINT " " : REM 5 SPACES FOR INCREASING COUNTER
860 FOR I = 1 TO K
880 PRINT NAME$ (I)
900 NEXT I
920 PRINT D$; "CLOSE ADDRESS FILE"
940 END

39

r

6
Appending Sequential Files

\..

Now the fun begins. We have created a file, but as you will soon see,
the creat ion is one of the easiest parts of fi le manipulation. There are two
things we would like to do immediately with this file : add to the fil e, and
read what is in the file. Both tasks are easy to do, but because the job of
reading is simpler to explain and more rewarding, we will go over a short
program to read the fi le first.

10 REM**- -MAILING LIST READER-- **
20 D$=CHR$ (4): REM CONTROL D
30 REM INPUT ROUTINE
40 PRINT D$; "OPEN ADDRESS FILE"
60 PRINT D$; "READ ADDRESS FILE "
80 INPUT K
100 DIM NAME$ (Kl
12 0 FOR I = 1 TO K
1 40 INPUT NAME$ (I)
160 NEXT I
180 PRINT D$; "CLOSE ADDRESS F ILE"

By now, lines I 0 and 20 should be clea r. They name the program and set
the D string equal to a control ' D'. Line 40 uses the D string (control
' D') to tell the computer that we want to use the disk and that we wan t
to open a file called "ADDRESS FILE". Line 60 advises the computer
that we want to read from the "ADDRESS FILE". We tell the computer
exactly what we wa nt to read in line 80. Here we are asking for the
number of lines we wrote to the di sk in our file creation program. If you
are not clea r on thi s, check back to the explanation of lines 820 and 840
in the previous chapter. We are simply reading back the number written

40

CHAJYTER 5 APPEND! G SEQUENTIAL FILES 4 1

in those lines. Line I 00 is our line that reserves space in the computer for
the information we will be bringing in off the disk. Since we are not sure
of the exact number of lines and the number will change every time we
add information, we should use the variable "K" which will always equal
the number of lines that have been written. Now we can bring in a copy
of the information contained in the file. Lines 120, 140 and 160 bring
in that data. Line 120 establishes the boundaries for the loop we want.
We want the count to go from the first line to the last line represented by
the variable K. Because we have previously used the control ' D' key, the
computer understands that the INPUT statement in line 140 refers to the
disk and not the keyboard. This line actually goes to the disk and obtains
a copy of the informa tion contained in the line specified by the variable I.
The operation is on the same principle as was the logic of lines 860 to 900
in our file creation program. But this time, we are bringing information
into the computer from the disk instead of transferring information from
the computer to the disk. Now the information physically exists in two
locations. One location is in the computer's memory, and the other location
is still out on the disk. By bringing the information into the computer,
we have not erased that information on the disk. Merely READing a file
does not disturb the contents of that file. Finally, line 180 closes the file.
If you run this program, you are not likely to see anything happen except
perhaps a little nickering below the word RUN. We need a routine that will
display the information. We will become deeply involved in different ways
of di splaying our information a little bit later, but for now the following
routine will get the job done.

200 REM**- -DISPLAY ROUTINE--**
220 HOME : VTAB 5
240 FOR I = 1 TO K
260 PRINT NAME$ (I)
280 NEXT I

Our input routine can be used in a number of differen t programs to bring
in all the information from the file, but our display routine will not be really
functional in very many situations. We will alter this routine later to make
it more useable (see Chapter 6). Save the program now as MAILING LIST
READER, then type CATALOG to see the list of files now on the disk.
Type:

SAVE MAILING LIST READER
CATALOG

and you should see:

A 002 HELLO
A 006 MAILING LIST CREATOR

42 CHAPTER 5 APPENDING SEQUENTIAL FILES

T 002 ADDRESS FILE
A 003 MAILING LIST READER

To this point, you have created a file , ADDRESS FILE, and written
the first group of lines containing information to that file. Now, you have
read that information back and displayed it. Next, we need to be able to
add more information to the file. If you ran the file creation program again
and used a different set of lines, what would happen? Would the new
information be added to the file? Would the old information be replaced?
If you do not know for certain what would happen, look at line 760 of
the file creation program (MAILING LIST CREATOR). Every time this
program is RUN, the computer is instructed to erase or delete "ADDRESS
FILE" before writing any new information . What happens to the first set of
Jines already on the d isk if you try to use this program to add a second set of
lines? That first set is erased, so we need a third program to add more lines
of informati on to our ADDRESS FILE. (For those of you itching to put all
these programs into one large program, have patience. I wi ll eventually
explain how these programs can be tied together without actually existing
as one large program.) This third program is really just a modification of
the file crea tion program. But the modification needs to be done, or, as
we have seen, the results will be worthless. The modifica tion is relatively
simple if you follow closely the instructions given below.

Down to line 720 of the MAILING LIST CREATOR program (see
the complete listing at the end of Chapter 4), the new program can be
the same with two minor changes. Load the MAILING LIST CREATOR
program first and then li st it to see a complete listing of the instructions
in this program.

LOAD MAILING LIST CREATOR
LIST

The program will not all fit on the screen at one time. The first
instructions disappear from view off the top of the screen. In Applesoft,
you can list to a certain instruction-line number, or from a certa in
instruction-l ine number to the end of the program, or from one line
number to another, like this:

LIST - 200
LIST 350-
LIST 100-800

Line I 0 should be changed to read:

10 REM MAILING L IST ADDER ;

and line 620 should become:

620 GOTO 2000: REM GO TO FILE CREATION ROUTINE.

CHAJYTER 5 APPE DING SEGUE TIAL FILES 43

Except for those two changes, the MAILING LIST CREATOR program
works fine down to line 720 for our new MAILING LIST ADDER program,
so be certain to make those changes before continuing. Next, you should
delete lines 730 through 940. Type:

DEL 730, 940

The logic for the placement of these next two routines will become clear
a little later. For now, add these Jines:

1000 REM**- -REPEAT ROUTINE-- **
1020 HOME : VTAB 5

1040 PRINT "DO YOU WANT TO ADD MORE INFO?"
1060 INPUT "TYPE I y I OR IN I II; YES$
1080 IF YES$= "Y" THEN RUN
1100 END

Line I 000 names the routine. Line 1020, as we have seen, clears the
screen and spaces down fi ve lines. Line I 040 prints the question about
additional information, and line 1060 uses the INPUT statement to wait
for a response from the user. The computer knows to wait for the response
from the keyboard because we have not used the control 'D' key to the
disk before this input statement. Line I 080 checks the response. If
the response equals "Y", then the computer is instructed to "RUN" the
program again. If the response is anything else, the computer goes to
the next line for its instruction. Line 1100 tells the computer to end the
program and go no further, but neither of these choices writes anything
to the disk. That is the reason we need another routine, our fil e addition
routine. This routine wi ll do three things: first , check to see how many
information-lines are currently in the ADDRESS FILE; second, add the
number of information-lines in the file to the number of new information­
lines for a revised information-l ine total ; and fina lly, actually append the
new information-lines to the ADDRESS FILE.

2000 REM* *- -FILE ADDITION ROUTINE- -**
2020 PRINT D$; "OPEN ADDRESS FILE"
2040 PRINT D$; "READ ADDRESS FILE"
2060 INPUT REC
2080 PRINT D$; "CLOSE ADDRESS FILE"

This part of the routine should look somewhat famil iar. It is almost exactly
the same as the first few lines in our program to read the file (MAILING
LIST READER). Line I 000 again names the routine. Line 2020 uses D
strin·g (control 'D') as the key to the disk and opens the file. Line 2040
tells the computer we want to read the file called ADDRESS FILE. Line
2060 inputs the same number as line 60 in the MAILING LIST READER
program but this time stores its value in the variable REC (for record). We

44 CHAPTER 5 APPENDING SEQUENTIAL FILES

cannot use the variable K because we are already using it in the first part
of our program and want to continue using it. Once again, this number
represents the number of lines of information already in the file. Line 2080
then closes the file.

2100 REC = REC + K
2120 PRINT D$; "OPEN ADDRESS FILE"
2140 PRINT D$; "WRITE ADDRESS FILE"
2160 PRINT REC
2180 PRI NT D$; "CLOSE ADDRESS FILE"

These lines simply add up the number of lines already on the disk with
the number of new lines we have just typed into the computer. This new
total is then written back out to the disk over the previous total. Line 2100
provides the method for totaling the previous line count with the additional
number of new lines . The logic for this line is the same as for our now
standard " K = K + 1" Jines. If you are not clear about this logic, it is best
to just accept that this is one way the compute r totals things. The other
lines should be clear. Line 2120 opens the file; 2140 prepares to write to
the file ; 2160 actually writes the new total of the line count to the disk;
and 2180 closes the file. It is necessary to open the file again in order to
write the new line count total in its correct location, at the beginning of
the file.

2200 PRINT D$; "APPEND ADDRESS FILE "
2220 PRINT D$; "WRITE ADDRESS FILE "
2240 FOR I= 1 TO K
22 6 0 PRINT NAME$ (I)
2 2 80 NEXT I
2300 P RINT D$; " CLOSE ADDRESS F ILE"
2320 GOTO 1000 : REM GO TO REPEAT ROUTI NE

This is the actual part of the routine that adds our new information-lines
to the existing ADDRESS FILE. Line 2200 uses a new DOS command
APPEND, to do just what it says. It appends or adds to the file rather than
overwriting any of the information already in the fil e . This line te lls the
computer to prepare to add to the file. Line 2220 seems like a superfluous
line since you cannot add to the file except by wr iting to it , but the line is
necessary. From line 2240 on, the routine is the same as the routine in the
MAILING LI ST CREATOR program (lines 860 to 920). Line 2240 sets
up the loop. Line 2260 prints the information in line "I" to the disk after
the information already on the disk. Line 2280 goes back for another line
of information. Line 2300 closes the file . Line 2320 directs the computer
to jump back up to the instruction in line 1000 which is the start of the
routine asking if the user wants to add more in formation. Thus, we are
finished with the program to add more information to our ADDRESS FILE.

CHAPTER 5 APPENDING SEQUENTIAL FILES 45

You should now save this new program to the disk as MAILING LIST
ADDER. You can check your typing by going over the complete listing of
the program given at the end of this chapter. Please remember that it is
very important to follow along by typing the necessary lines on your Apple.

We now have three complete programs: MAILING LIST CREATOR,
MAILING LIST READER, and MAILING LIST ADDER. The combination
of these programs will create a file, add information to the file, and read
information back from that file. The three adequately demonstrate the
procedures used to accomplish these tasks, but the programs are not really
very useful or practical as they now exist. For instance, every time you run
the MAILING LIST READER program, you wi ll read the entire file and
display the entire file . This happens even if you only want just one name
and address. And after just a few names and addresses are added to the
file, the list begins to disappear off the top of the screen during display. It
is quite obvious that more modification needs to be done in order to make
these programs useful. If you are already a good programmer in BASIC,
you probably have some ideas about "features" you would like to see in one
or more of these programs. If you have little experience in programming,
you will soon become much more experienced. I am going to add a few
"features" to these programs and fully explain each additional step. If
you would like to include these features and become more experienced
at programming, especially with file informa tion data, follow closely with
the different programming lines and explanations given. If you don 't need
these features or want to create your own, you might want to skip ahead
to the chapters on advanced sequential text file manipulation. If you have
had enough of sequential text files, you might want to jump immediately to
the chapters on random access text files. We will use some of these same
routines in the chapters on random access, but I will not go into the same
kind of detail as in these chapters. In other words, the routines will be
repeated, but the full explanations will not be repeated. Let's begin adding
"features" to our three programs and making them more useful.

We will begin with the MAILING LIST ADDER program. If you have
used this program to enter a number of names and addresses, you will
have noticed that the disk operates every time you have accepted a set of
information-lines as correct. This disk operation may not bother you if you
are somewhat slow in typing or are in no hurry to enter a large number of
names and addresses, but there is no reason that the disk needs to operate
after every name. Why not write the informa tion out to disk only after we
have finished entering all of our information lines? Such a change is clearly
a preference "feature" that proponents and opponents often argue about.
In this situation, I prefer to enter all of my in formation before writing any
of it to the disk. But even before typing in a second set of information lines,
I may want to print a mailing label of the information I have just entered.
This is obviously a preference "feature," and it will do you no good if you

46 CHAPTER 5 APPENDING SEQUEl\T IAL FILES

do not have a printer. If you do not have a printer, the routine will still
be of interest because we will be form atting our display in a new way. So
the fi rst two additional routines will be to the MAfLTNG LIST ADDER
program. The first will consist of adding lines of computer instructions to
all ow the user lo print out in a mail ing label the information the user just
en tered. The second includes the computer instructions necessary so that
the information will be written to the disk only after all info rmation for the
current session has been entered and corrected. The additional computer
instructions necessary to include both of these "feat ures" are fai rly small
in number.

First, we wi ll begin with the PRINT LABEL ROUTINE. Add the
following lines lo the program:

80 0 REM **- -PRINT LABEL ROUT INE--**

810 PRINT " DO YOU WANT TO PRINT A LABEL NOW?"
820 I NPUT "TYPE ' y I OR IN I II; YES$

840 IF YES$= "Y" THEN 8 8 0 ,

8 60 GOTO 1000: REM I F NOT 'Y' THEN REPEAT ROUTINE
880 PR# 1 : REM PRINTER SLOT
900 FOR I = 1 TO K

920 IF NAME$ (I) = " *" THEN I = I + 1 : GOTO 980
940 IF NAME$ (I) = II! II THEN 980

960 PRINT NAME$ (I)
980 NEXT I

990 PR#O : GOTO 800: REM RETURN TO SCREEN ONLY

Change line 620 to :

620 GOTO 8 00: REM PRINT LABEL ROUTINE

With these few addi tional instructions, we can now print a mailing label
of the information just ent ered. Line 800 gives the title of the routine, and
line 8 10 prints the question while line 820 wa its for the response from the
keyboard. Line 840 checks the response. If the response is posit ive, which
indicates that a printed label is desired, the computer is instructed to jump
over the next line and go on to the rest or the rout ine. Line 860 is only
reached if the response is something other than "Y." In other words, the
computer will treat everything but a "Y" as a negative response, indi cating
that the user does not want a printed label. If the user wants to press
the RETURN key instead of either the "Y" or " " keys, the computer
will view that as a negative response. Negative responses end the routine
and transfer the computer to the instruction at line 1000 for the REPEAT
ROUTINE. Line 880 tells the computer Lo send its information Lo a printer
interfa ce card located in slot 1 of the APPLE II computer. If there is no
card there, or if the printer is turned off, the computer will "hang;" tha t is,
it will stop operati ng and appear to have a major problem. (Many people

CHAPTER 5 APPE DI G SEGUE 1TIAL FILES 47

have been certain that their computer was broken when al l that was wrong
was that the program they were running was looking for an in terface card
and couldn ' t find the card or found that the peripheral device (usually a
printer) was not turned on.) If you do have a printer but have the interface
ca rd in some other slot, you need to change line 880 so that the number
after the ":#:" symbol matches the number of the slot in which your printer
interface card is located. As you face the APPLE, the numbe rs of the slots
go from left to right beginning with number 0 and ending with number
7. The instruction in line 900 is the now familiar beginning of the loop.
Lines 920 and 940 are different from anything we have had so far. Line
920 checks the contents of each NAME $ string for the"*" symbol. If, and
only if, it locates that symbol, it inst ructs the computer to add I lo the value
of the variable I and then to proceed lo the instruction at line 980. The
reason for this is simple but hard lo explain. When the computer comes
to an asterisk, we do not want that asterisk printed nor do we want the
phone number printed in a maili ng label. So we skip printing the asterisk
and the phone number by adding one to the counter (I) and jumping to
the end of the loop, line numbe r 980. Line number 980 increases the
counter by one more, so we have skipped two lines in the file : the lines
that contained the separator symbol "*" and the phone number. I think
this will become clear, if nol already so, when you type in and try the
rout ine. Line 940 does much the same thing. It tell s the computer to
jump over the print statement and go to the in struction that increases the
counter. Thus, we have the effect of "skipping over" the " ! " separator
symbol and not printing it either. Line 960 does the printing. It prints
the contents of every string in NAME$ that is not either a "*", " !" or
phone number, unless the phone number has been typed in before the "*"
symbol. Line 980, as I have said, increases the counter. When the loop is
finished, when all lines of informa tion have ei ther been printed or skipped
and the I counter has reached the value of K, then the computer can go on
to the next instruction "outside" the loop. Line 990 is the first instruction
out side the loop and because we are finished print ing, we need to "turn
off the output" to the printer . That means we are tell ing the computer to
stop sending information to the printer interface card indicated in line 880.
"PR :!FO" is the method used to do this. That is all there is to the PRINT
LABEL ROUTINE. The new repeat rou tine is even shorter and easier.

Add to line 40:

",LINE$ (100)"

Line 40 now reads:

40 DIM NAME$ (20) , LINE$ (100)

Add the following:

48 CHAPTER 5 APPENDING SEQUENTIAL FILES

1023 FOR I = 1 TOK
1026 LINE$ (TK+ I) NAME$ (I)
1033 NEXT I
1036 TK = TK + K

Change line 1080 to read:

1080 IF YES$= "Y" THEN GOTO 60

Delete line 1100 and 2320, and change the lines to:

2100 REC =REC + TK
2240 FOR I =1 TO TK
2260 PRINT LINE$ (I)

It looks like such a small change, but when viewed by the computer,
the changed and added instructions make quite a difference in the way
the program works. The program now becomes more practical. First ,
we have added another string variable, and therefore, we must have the
computer reserve memory for the contents o f this new variable. That
is what the added code does in line 40. We have D!Mensioned the
string variable LI NE$ so that we can now add 100 lines of informa tion
before we need to write the information to the disk. You can make this
numbe r smaller or larger. The number 100 is a completely arbitrary
choice. Next, we have added four lines of code: 1023, 1026, 1033, and
1036. The choice of these line numbers is also arbitrary. They could
just as easily have been any combination between 102 1 and 1039. Line
1023 is the sta rt of a loop. Line 1026 is the real reason for the loop and
the instruction tha t allows us to continue entering informa ti on without
the necessi ty o f writing each set of information to the disk separately.
Again, the logic is fairly easy. We are going to keep the contents of
the str ing variable NAME$ in the string variable LI NE$ also. Then,
since we have the in formation stored in two locations in the computer,
we can use the NAME$ string variable over again. In other words,
we have moved the information from one memory location to another
memory location. We have moved it from NAME$(I) to LINE$(1),
and from NAME$(2) to U NE$(2), etc. The instruction at 1036 helps
us keep track of all the lines that are typed in. TK (which may stand
for Total K) is a cumulat ive total of all the lines of information typed
in during one session. For the firs t set of information lines, the value
of T K is a zero since we have not previously given TK any value. After
the fi rst set of information lines, T K becomes the value of K or the
number of lines of informa tion in the fi rst set of information. And in
the loop, we have now moved the contents of the second NAME $(1)
to LINE$(TK + I), NAME$(2) to LINE$(TK + 2), etc. This process
can continue until we have accumulated I 00 lines of in form ation (or

QUESTIONS

more if you have dimensioned LINE$ to more than 100). If you are
adding more lines of information, line 1080 must direct the computer
to begin again with the input routine. Finally, line 2260 is changed to
write the information contained in the string variable LINE$ instead
of the contents of NAME$. This last is a very important change and
will mess up the file badly if it is not made. In the next chapter, we
will add some "features" to our display program and combine all our
programs so that they can operate together. When you have made the
necessary changes, be sure to save this new version. There are several
ways of saving a new version of the same program. But for now, type
the following:

SAVE MAILING LIST ADDER2
RENAME MAILING LIST ADDER, MAILING LIST ADDER!

Then type CATALOG and you should see:

A 002 HELLO
A 003 APPLE
A 006 MAILING LIST CREATOR
T 002 ADDRESS FILE
A 003 MAILING LIST READER
A 007 MAILING LIST ADDERl
A 008 MAILING LIST ADDER2

49

Do not worry if your numbers are not the same as the numbers 1 have
given here. These numbers are the number of DOS 3.3 sectors (sections)
of the diskette used by each file. Each diskette has a maximum of 560
sectors, although the number of sectors available for any type of file use is
less. DOS takes up some of the sectors.

QUESTIONS

1. TRUE or FALSE: Running the File Creation Program a second time
with new information does no harm to the first information stored in
the ADDRESS FILE.

2. Give the name of the BASIC command that erases program lines from
the computer's memory.

3. To what does line 2260 in the MAILING LIST ADDER I program
print the information?

4. What is the BASIC word used to tell the computer to jump to a certain
line number?

5. In a DOS 3.3 CATALOG listing, what does the three-digit number
represent?

50 CHAPTER 5 APPENDING SEQUENTIAL FILES

ANSWERS

I. FALSE

2. DEL
3. DISK

4. GOTO

5. SECTORS

-

MAILING LIST ADDER!

MAILING LIST READER 1

10 REM***- -MAILING LIST READER--***
11 :
12 :
20 D$ = CHR$ (4): REM CONTROL D
25 :
26 :
30 REM**- -INPUT ROUTINE- - **
40 PRINT D$; "OPEN ADDRESS FILE"
60 PRINT D$; "READ ADDRESS FILE"
80 INPUT K
100 DIM NAME$ (K)
120 FOR I = 1 TO K
140 INPUT NAME$ (I)
160 NEXT I
180 PRINT D$; "CLOSE ADDRESS FILE"
190 :
191 :
200 REM* * - - DISPLAY ROUTINE--**
220 HOME : VTAB 5
240 FOR I = 1 TO K
260 PRINT NAME$ (I)
280 NEXT I

MAILING LIST ADDER 1

10 REM **- -MAILING LIST ADDERl- -**
11 :
12 :
20 D$ = CHR$ (4): REM CONTROL D
40 DIM NAME$ (20)
60 K = 1: REM LINE COUNTER
65 :

66 :
70 REM**- - INPUT ROUTINE--**
80 HOME : VTAB 5

100 PRINT "TYPE NAME AND ADDRESS AS IF ADDRESSING AN
ENVELOPE. II ;

120 PRINT "DO NOT USE A COMMA OR COLON. "
140 PRINT : PRINT "TYPE I END I WHEN FINISHED"
160 PRINT : PRINT "TYPE IN LINE " ; K

51

52 CHAPTER 5 APPENDING SEQUENTIAL FILES

180 INPUT NAME$ (K)
200 IF NAME$ (K) = " END" THEN 300

220 K = K + 1
240 GOTO 160 : REM GO BACK FOR ANOTHER LINE
300 NAME$ (K) = "*" : REM SEPARATOR FOR PHONE NUMBER
320 K = K + 1
340 PRINT "PHONE:"; : PRINT "TYPE 'RETURN' IF NONE . "
360 INPUT NAME$ (K)
380 K = K + 1

400 NAME$ (K) = "!" : REM SEPARATOR BETWEEN SETS OF
INFORMATION

405 :
406 :
410 REM ** - -CORRECTION ROUTINE-- **
420 HOME : VTAB 5
440 PRINT "DO NOT CHANGE THE LINE WITH THE '* ' "
460 PRINT "THIS SYMBOL IS USED AS A SEPARATOR. "
480 PRINT
500 FOR I = 1 TO K - 1
520 PRINT I ; " " ; NAME$ (I)
540 NEXT I
560 PRINT
580 INPUT "CHANGE ANY LINE? TYPE I y I OR IN' ";YES$
600 IF YES$ = "Y" THEN 640
620 GOTO 2000: REM GO TO FILE CREATION ROUTINE
640 INPUT "CHANGE WHICH LINE ";LINE
660 IF LINE > K - 1 THEN PRINT "NUMBER TOO LARGE"

GOTO 640
680 PRINT "OLD LINE = " ;NAME$ (LINE)
700 INPUT "CORRECT LINE = " ;NAME$ (LINE)
720 GOTO 4 10
740 :
760 :
1000 REM ** - -REPEAT ROUTINE-- **
1020 HOME : VTAB 5
1040 PRINT "DO YOU WANT TO ADD MORE INFO?"
1060 INPUT "TYPE 'Y ' OR 'N' ";YES$
1080 IF YES$ = "Y" THEN RUN
1100 PRINT D$; "RUN MENU"
1120:
1140 :
2000 REM* * - - FILE ADDITION ROUTINE-- **
2020 PRINT D$; "OPEN ADDRESS FILE"
2040 PRINT 0$; "READ ADDRESS FILE "

MAILING LIST ADDER2

2060 INPUT REC
2080 PRINT D$; "CLOSE ADDRESS FILE"
2100 REC = REC + K
2120 PRINT D$; "OPEN ADDRESS FILE"
2140 PRINT D$; "WRITE ADDRESS FILE"
2160 PRINT REC
2180 PRINT D$; "CLOSE ADDRESS FILE"
2200 PRINT D$; "APPEND ADDRESS FILE"
2220 PRINT D$; "WRITE ADDRESS FILE"
2240 FOR I = 1 TO K
2260 PRINT NAME$ (I)
2280 NEXT I
2300 PRINT D$; "CLOSE ADDRESS FILE"
2320 GOTO 1000: REM REPEAT ROUTINE

MAILING LIST ADDER2

10 REM***- -MAILING LIST ADDER2- - ** *
11 :
12 :
20 D$ = CHR$ (4): REM CONTROL D
40 DIM NAME$ (20) I LINE$ (100)
60 K = 1 : REM LINE COUNTER
65 :
66 :
70 REM**- -INPUT ROUTINE-- **
80 HOME : VTAB 5

100 PRINT "TYPE NAME AND ADDRESS AS IF ADDRESSING AN
ENVELOPE . II ;

120 PRINT "DO NOT USE A COMMA OR COLON. "
140 PRINT : PRINT "TYPE 'END' WHEN FINISHED"
160 PRINT : PRINT "TYPE IN LINE " ; K
180 INPUT NAME$ (K)

200 IF NAME$ (K) = "END" THEN 300
220 K = K + 1
240 GOTO 160 : REM GO BACK FOR ANOTHER LINE
300 NAME$ (K) = "*" : REM SEPARATOR FOR PHONE NUMBER
320 K = K + 1
340 PRINT "PHONE: "; : PRINT "TYPE 'RETURN' IF NONE. II

360 INPUT NAME$ (K)

380 K = K + 1

400 NAME$ (K) = " ! " : REM SEPARATOR BETWEEN SETS OF
INFORMATION

53

54

405
406 :

CHAPTER 5 APPENDING SEQUENTIAL FILES

410 REM**- -CORRECTION ROUTINE--**
420 HOME : VTAB 5
440 PRINT "DO NOT CHANGE THE LINE WITH THE I* I II
460 PRINT " THIS SYMBOL IS USED AS A SEPARATOR. "
480 PRINT
500 FOR I = 1 TO K - 1
520 PRINT I; II II; NAME$ (I)
540 NEXT I
560 PRINT
580 INPUT "CHANGE ANY LINE? TYPE 'Y' OR 'N ' " ;YES$
600 IF YES$ = "Y" THEN 640
620 GOTO 800: REM PRINT LABEL ROUTINE
640 INPUT "CHANGE WHICH LINE ";LINE
660 IF LINE > K - 1 THEN PRINT "NUMBER TOO LARGE": GOTO 640
680 PRINT "OLD LINE = ";NAME$ (LINE)
700 INPUT "CORRECT LINE = " ;NAME$ (LINE)
720 GOTO 410
740 :
760 :
800 REM**- -PRINT LABEL ROUTINE--**
810 PRINT "DO YOU WANT TO PRINT A LABEL NOW"
820 INPUT "TYPE I y I OR IN I II; YES$
840 IF YES$ = "Y" THEN 880
860 GOTO 1000: REM REPEAT ROUTINE
880 PR=lf l
900 FOR I = 1 TO K
920 IF NAME$ (I) = "*"THEN I= I + 1: GOTO 980
940 IF NAME$ (I) = II I" THEN 980
960 PRINT NAME$ (I)
980 NEXT I
990 PR=lfO: GOTO 800
995 :
996 :
1000 REM* *- - REPEAT ROUTINE--* *
1020 HOME : VTAB 5
1023 FOR I = 1 TO K
102 6 LINE$ (TK + I) = NAME$ (I)
103 3 NEXT I
1036 TK = TK + K
1040 PRINT "DO YOU WANT TO ADD MORE INFO?"
1060 INPUT "TYPE 'Y' OR 'N' " ; YES$
1080 IF YES$ = "Y" THEN GOTO 60

MAILING LIST ADDER2 55

1100 :
1111 :
2000 REM**- -FILE ADDITION ROUTINE--* *
2020 PRINT D$; "OPEN ADDRESS FILE"
2040 PRINT D$; "READ ADDRESS FILE"
2060 INPUT REC
2080 PRINT D$; "CLOSE ADDRESS FILE"
2100 REC = REC + TK
2120 PRINT D$; "OPEN ADDRESS FILE"
2140 PRINT D$; "WRITE ADDRESS FILE"
2160 PRINT REC
2180 PRINT D$; "CLOSE ADDRESS FILE"
2200 PRINT D$; "APPEND ADDRESS FILE"
2220 PRINT D$; "WRITE ADDRESS FILE"
2240 FOR I = 1 TO TK
2260 PRINT LINE$ (I)
2280 NEXT I
2300 PRINT D$; "CLOSE ADDRESS FILE"
3000 PRINT D$; "RUN MENU"

8
Displaying Sequential Files

By now, if you started with a new diskette, you should have four pro­
gram fil es (or fi ve if you have kept both versions of the ADDER program) ,
the text file ADDRESS FILE, and the HELLO program on your diskette.
When you type CATALOG, your catalog should look similar to the follow­
ing except the order and numbers might not be exact ly the same:

A 002 HELLO
A 003 APPLE
A 007 MAILING LIST CREATOR
T 002 ADDRESS FILE
A 003 MAILING LIST READER
A 007 MAILING LIST ADDER!
A 008 MAIL I NG LIST ADDER2

When you want to use the MAILING LIST READER program, you must
type: RUN MAILING LIST READER. When you are ready to add to the
lile, you need to type: RUN MAILING LIST ADDER2 (or " I" depending
upon your preference.) For occasional use, that amount o f typing is not a
problem, but if you are going to use the programs quite often, the necessity
of typing RUN and the file name can become bothersome. Besides, the
computer can help eliminate the need to type that, so why not le t it do so?
All that is needed is another program. You will still have to type RUN and
the name of this new program. The difference is that when properly set
up, you may need to do the typing only once, and then you will be able
to switch back and forth between programs with li ttle typing other than a
number. Let's see how this can work. Make sure any program currently
in memory is saved on the disk, and then type the following :

56

CHAPTER 6 DISPLAYING SEQUE TIAL FILES

NEW
10 REM**- -MAILING LIST PROGRAM MENU--**
11 :
12 :
20 D$ CHR$ (4): REM CONTROL D
25 :
26 :
30 REM**- -MENU ROUTINE--**
40 HOME : VTAB 5
60 HTAB 1 7: PRINT "PROGRAM MENU"
80 PRINT: PRINT
100 HTAB 8: PRINT "1. FILE CREATION PROGRAM"
120 PRINT
140 HTAB 8: PRINT "2. FILE ADDITION PROGRAM"
160 PRINT
180 HTAB 8: PRINT "3 . FILE DISPLAY PROGRAM"
200 PRINT
300 HTAB 8: PRINT "4. CATALOG"
320 PRINT
340 HTAB 8: PRINT "5. END"
360 PRINT: PRINT
380 HTAB 8: INPUT "WHICH PROGRAM NUMBER? ";NUMBER
400 IF NUMBER < 1 OR NUMBER > 5 THEN 380
420 IF NUMBER = 1 THEN 1000
440 IF NUMBER = 2 THEN 2000
460 IF NUMBER = 3 THEN PRINT D$; "RUN MAILING LI ST

READER"

57

480 IF NUMBER = 4 THEN PRINT D$; "CATALOG" : INPUT "HIT
RETURN TO GOTO MENU" ; L$: GOTO 40

500 IF NUMBER = 5 THEN END
600 :
700 :
1000 REM**- - FILE CREATOR PROGRAM--**
1020 PRINT: PRINT "IF THE ADDRESS FILE ALREADY

EXISTS"
1040 PRINT : PRINT "DO NOT RUN THIS PROGRAM!!"
1060 PRINT: PRINT "DO YOU WANT THE FILE CREATION

PROGRAM?"
1070 PRINT
1080 INPUT "TYPE I YES I IF YOU DO: " ; YES$
1100 IF YES$= "YES" THEN PRINT D$; "RUN MAILING LIST

CREATOR"
1120 GOTO 40
1500 :

58 CHAPTER 6 DISPLAYING SEQUENTIAL FILES

1600 :
2000 REM**- -FILE ADDITION PROGRAM--* *
2020 PRINT : PRINT "YOU WANT TO ADD TO THE EXISTING"
2040 PRINT~ PRINT "ADDRESS FILE. IS THIS CORRECT?"
2060 PRINT : INPUT "TYPE ' YES ' IF IT IS. ";YES$
2080 IF YES$= "YES " THEN PRINT D$; "RUN MAILI NG LIST

ADDER2"
2100 GOTO 40

When you have all the program lines typed in, save it to disk as MENU by
typing:

SAVE MENU

Now all that is needed to run any of our programs is : RUN MENU. Then
choose a number and let the computer do the rest. The program should
be fairly easy to understand by now. Line I 0 is the name of the program
(a name we have considerably shortened for the CATALOG). Lines 20
and 40 are our standard housekeeping lines. Line 60 uses a new BASIC
statement-HTAB. This tells the computer to horizontally tab over 17
spaces and then print the words "PROGRAM MENU". We tab over 17
spaces to place the words we want printed in the approximate center of
the screen. Line 80 gives us two blank horizontal lines after our title .
Lines 100 through 340 set up the actual menu of choices with a blank
line between each choice. Notice that I have left room between 200 and
300, between choice 3 and choice 4. The reason for this is that you may
want to add other programs to this PROGRAM MENU. If you do add
more choices, make certain that all lines relating to specific numbers are
changed. Line 380 requests which program to run. The number typed
is stored in the numeric variable "NUMBER". This value is first checked
(line 400) to see that it is really within the range of actual possibilities.
If the number is either less than 1 or greater than 5, the computer is
instructed to go back to line 380 and request another number. Therefore,
if the computer reaches the instruction at line 420, we know that we have
a number somewhere between (or including) 1 and 5. Instructions 420
to 500 are checking which number is contained in the numeric variable
NUMBER. If, for instance, the value is 3, indicating tha t the user wants to
read the ADDRESS FILE, we simply instruct the computer to go to the disk
(remember we used the control 'D' key) and RUN the appropriate program.
Control is then transferred to the program MAILING LIST READER
and the computer receives and follows the instructions contained in that
program. Such transfer o f control erases the PROGRAM MENU computer
instructions from the computer's memory, replacing those instructions with
the instructions in the selected program. That is why it is important to
SAVE this MENU to disk before RUNning it. It is also the reason why,

CHAPTER 6 DISPLAYING SEQUENTIAL FI LES 59

when you are finished adding information, for example, and the information
has been writ ten out to the disk, that the program simply ends. You are not
returned to the PROGRAM ME U. This is not convenient and certainly
does not allow us to easily switch between programs. To do the switching,
it is necessary to make a one line modificat ion to each of our previous
programs.

MAILING LIST CREATOR:
9 40 PRI NT D$; "RUN MENU "
MAI LING LIST ADDERl:
1100 PRINT D$; "RUN MENU"
MAILING LIST ADDER2:
3000 PRINT D; "RUN MENU"
MAILING LIST READER :
5 00 PRINT D$; "RUN MENU"

If you load each of the programs, make those changes, and then save
each of the revised programs, you will have a SYSTEM of programs
that work together and are controlled by one MASTER program.

LOAD MA I LI NG LIST CREATOR
9 4 0 PRINT D$; "RUN MENU"
SAVE MAILING LIST CREATOR

This same sequence is necessary for the other programs. There is no
need to go through all the antics that are sometimes involved in order
to build one large program . In addi tion, it is much easier to make
changes to individual programs than to change something in a large
program that might have an unnoticed effect.This borders somewhat
on programmer preference, but I have found this method to be easy.

We now have a system tha t will create a file, add to that file, and in
a primitive way, read the file. Two main tasks are left : improving the
display features of the MA ILI NG LIST READER program, and coming
up with a program that will change and delete information in the file.
One other "feature" that we will add within our display program is the
re-formatting of our data and possible creation o f a new file for this
re-formatted data. We will begin with the program to increase our
display options.

All our present program does is display every line in the ADDRESS
FILE, including the two separator symbols. You don't really want to
see those symbols, so eliminating them should be one of the first tasks
in creating a new display program. What else would be nice or useful
to have in this display program? The computer could display a li st
of just the names of the individuals in the file. How about a list of
the names and addresses without the phone numbers? Can we get
a display of a single name, address, and phone number? How about

60 CHAPTER 6 DISPLAYING SEQUENTIAL FILES

a single name and address, without a phone number? What about
an alphabetical list? Can we have a range of names and addresses
displayed rather than just the entire list or a single individual? The
answer to all these questions is "yes;" we can do these things and
others also. With all these possibilities, the obvious solution would be
to have a menu for these choices.

If you LOAD MAILING LIST READER and LIST it, the lines
should go from 10 to 500 if you have made the MENU change (280
if you have not made the change). We can keep lines 10 through
180 pretty much the same. But line I 00 must have some additional
variables dimensioned. So line 100 should read:

100 DIM NAME$ (Kl , ND$ (K) , L (K) , R (K) , AD$ (K)

and add the following lines:

200 REM** - -MENU ROUTINE--**
210 HOME: VTAB 5
220 HTAB 17: PRINT "DISPLAY MENU"
230 PRINT: PRINT
240 HTAB 3: PRINT "l. DISPLAY INFO- -ORIG. ORDER"
250 PRINT
260 HTAB 3: PRINT "2. DISPLAY NAMES ONLY"
270 PRINT
280 HTAB 3: PRINT "3. DISPLAY INFO- -NO PHONE"
290 PRINT
300 HTAB 3: PRINT "4. DISPLAY SPECIFIC NAME "
310 PRINT
320 HTAB 3: PRINT "5. DISPLAY SPECIFIC NAME- -NO

PHONE"
330 PRINT
340 HTAB 3: PRINT "6. DISPLAY INFO- -RANGE"
350 PRINT
360 HTAB 3: PRINT "7. DISPLAY INFO- - ALPHABETICAL"
365 PRINT
3 70 HTAB 3: PRINT "8. RETURN TO PROGRAM MENU"
375 PRINT
380 HTAB 3: INPUT "WHICH NUMBER? " ; NUMBER
385 IF NUMBER < 1 OR NUMBER > 8 THEN PRINT "INCORRECT

NUMBER": GOTO 380

If you have been following along with our programs, these lines of code
should now be easy to understand. We are doing the same sequence of
programming we did when we created the PROGRAM MENU program.
We format the menu display, request a number, and check to see that the
number is within the actual possibilities. The next series of program lines
are familiar also.

ORIGINAL ORDER ROUTINE 6 1

410 IF NUMBER = 1THEN 1000
420 I F NUMBER = 2 THEN 20 00
430 I F NUMBER = 3 THEN 3000
440 IF NUMBER = 4 THEN 4000
450 IF NUMBER = 5 THEN 5000
460 I F NUMBER= 6 THEN 60 00
470 IF NUMBER= 7 THEN 7000
480 I F NUMBER = 8 THEN PRINT D$; " RUN MENU"

Now you have the basic structure for the rest of the program. All that
is necessary is to fill in the code for each routine. The routines get
progressively more difficult to follow, and it is not the intent of this book
to teach the concepts behind routines such as sorting and searching, but
it is within its scope to present examples of such routines so that readers
can make use of these rout ines in their own file manipulation programs.

ORIGINAL ORDER ROUTINE

1000 REM **- -ORIGINAL ORDER ROUTI NE- - **
1020 GOSUB 10000: REM PRI NTER ROUTINE
1040 HOME: VTAB 5
1060 FOR I = 1 TO K
1080 I F NAME$ (I) = " *" THEN 1140
1100 IF NAME$ (I) = "1 " THEN PRINT : GOTO 1140
112 0 PRINT NAME$ (I)
114 0 NEXT I
1160 GOTO 20000 : REM RETURN TO MENU ROUTINE

If you look closely, this routine is very similar to the origina l MAILI NG
LIST READER Display Routine (lines 200 to 280). All this routi ne does is
display all the informat ion lines in the file in the order they were entered .
With lines I 080 and 1100, we have elimina ted the display of the separator
symbols "•" and "! ''. There are two additional lines tha t are new. Lines
I 020 and 1160 direct the computer to separate routines used by each of
the main routines. Line I 020, as indicated by the REM statement, will be
the code that asks if the user wants the information printed on a printer.
This instruction uses a GOSUB sta tement which directs the computer to
go to the instructions that begin at line I 0000 and follow those instructions
until the computer encounters a RETURN sta tement. At tha t point, the
computer returns to the instruction foll owing the GOSUB instruction. Line
1160 is the instruction tha t directs the computer to the routine that returns
the user to the DISPLAY MENU when the user is ready.

62 CHAPTER 6 DISPLAYING SEQUENTIAL FILES

NAME ONLY ROUTINE

2 0 00 REM** - - NAME ONLY ROUTI NE-- **
202 0 GOSUB 1 0 000 : REM PRINTER ROUTI NE
2040 HOME : VTAB 5
206 0 FOR I = 1 TO (K - 1)
2080 IF NAME$ (I) =NAME $ (2) THEN PRINT I ;

" " ; NAME$ (I)
2100 IF NAME$ (I) = " !" THEN PRI NT I ;" " ;NAME$

(I + 1)

2120 NEXT I
2 140 GOTO 20000: REM RETURN TO MENU ROUTINE

This routine should not be very difficult to understand. We want to print
only those lines that foll ow the" !" separator. We print those lines because
those are the lines tha t should contain the name of the individual. We need
the instruction at 2080 because there is no sepa rator for the first name.
We use K - I because we do not want to get to the last " !" separator
since there is no name to follow it yet.

NO PHONE ROUTINE

300 0 REM* * - - NO PHONE ROUTINE-- **
3 0 2 0 GOSUB 1 0 0 00: REM PRINTER ROUTINE
3 0 4 0 HOME : VTAB 5
3060 F OR I = 1 TO K
3 0 80 IF NAME$ (I) = "*"THEN I = I + 1: GOTO 3140
3100 IF NAME$ (I) = " 1 " THEN PRI NT: GOTO 3 140
3120 PRINT NAME $ (I)
3140 NEXT I
3160 GOTO 20000: REM RETURN TO MENU ROUTI NE

This routine should look completely familiar. It is practically the same
routine we used to print a label in MAILING LIST ADDER2 (lines 900
to 980 in tha t program). The effect is the samt: here also. We can print
a mailing label for every person in our file with thi s routine. Because just
about every type of printer handles things diffe rently, you will probably
need to add some code to th is rout ine to get the labels spaced properly.
One method o f spacing would be to find out the number of lines on the
label and between labels and then adjust the routine to always space just
exactly tha t number of lines regardless o f the number of lines to be printed.
That method would always start the pri nter al the top of the label and not
center the material on the label, but it is probably the easiest method to
develop.

SEARCH ROUTINE

SEARCH ROUTINE

4000 REM ** - -SEARCH ROUTINE--**
4020 HOME : VTAB 5
4040 PRINT "TYPE 'END ' WHEN FINISHED . "
4050 INPUT "NAME TO FIND? ";FIND$
4060 IF FIND$ = "END" THEN 4400
4070 GOSUB 10000: REM PRINTER ROUTINE
4080 PRINT
4100 FOR I = 1 TO K
4120 IF NAME$ (I) = FIND$ THEN 4160
4140 GOTO 4340
4160 IF NAME$ (I) = II * II THEN 4340
4180 IF NAME$ (I) = II! II THEN PRINT: GOTO 4340
4200 PRINT NAME$ (I)
4220 PRINT NAME $ (I + 1)
4240 PRINT NAME$ (I + 2)
4260 IF NAME$ {I+ 3) <> "*"THEN PRINT NAME$ (I+ 3)
4280 IF NAME$ (I + 4) = II* II THEN 4320
4300 PRINT NAME$ (I + 4): GOTO 43 4 0
4320 PRINT NAME$ (I + 5)
4340 NEXT I
4360 PRINT
438 0 GOTO 4040: REM REPEAT ROUTINE
440 0 GOTO 20000: REM RETURN TO MENU ROUTINE

63

The routines begin to get more difficult now. Up to this point, we have
not really made any assumptions about the number of lines of information
in each set. But with this routine, we make the assumption that there are
a maximum of 6 Jines of information in any set. If you want a greater
maximum, then additional code will have to be added to print out those
other lines. The additional code would follow the pattern of 4260 to 4320.
We begin in the same way with 4000 and 4020 (our routine name and
clear screen lines). Line 4040 gives instructions to the user to type the
word "END" when the user is finished looking for a specific name. Line
4050 requests the name from the user and stores tha t name in the string
variable "FIND$". Line 4060 checks the contents of "FIND$" to see if it
contains the word "END". If it does, the computer is directed to go to
line 4400 which further directs the computer to go to the "RETURN TO
MENU ROUTINE". One might logically ask why 4060 does not instruct
the computer to go directly to the "RETURN TO MENU ROUTINE". The
reason lies in the necessity of structuring the various routines in the same
way so that any programmer can locate the exit point of the routine easily.
There are a number of GOTO statements in this routine, but all of them

64 CHAPTER 6 DISPLAYING SEQUENTIAL FILES

direct the computer (and any programmer) to various lines within this
rout ine. In following the logic of this and all other routines, you never need
to look outside the routine, except for the print routine and exit routine
which are common to all other routines. The idea is to keep the flow of
logic in one place as much as possible. You enter at the top of the routine
and exit at the base of the routine. This is the case for all the routines.

Lines 4100 to 4340 are the heart of this routine. They are also the
boundaries of the loop used to find and print the information associated
with a specific name. Line 4120 checks the contents of NAME $(1) to see
if it equals the contents of FIND$. If it does, the computer is instructed
to jump over the next instruction. If it does not, the next instruction is
executed. Line 4140 is reached only if the contents of NAME $(1) and
FIND$ do not match, and 4 I 60 is reached only if they do match. Lines
4 I 60 and 4180 check for the separators and skip them when they are
found. At this point in the routine, we have found the name we are
looking for and now want to print out the information associated with
this name. We assume that the first three lines will not contain a separator
and, therefore, will automatically print those lines. Lines 4200, 4220, and
4240 accomplish this task. Lines 4260 through 4320 are lines of code that
require some thought. If the fourth information-line does not contain the
separator "*", then we want to print this line also (4260), but if it does
contain the separator, we do not want the fourth information-line printed.
Rather we know that the fifth information-line contains something to be
printed (the line following the "*" will have the phone number if there
is a phone number). Line 4300 prints this fifth information-line. Line
4280 first checks the fifth information-line to see if it contains the asterisk
separator. If it does contain the separator, then we need to jump over
4300 (the inst ruction tha t prints tha t fifth information-line) and instead,
print the sixt h information-line (4320). Go back through the explanation
if you are not certain you understand. We use this same routine, combined
with the previous one, for our next routine.

SEARCH ROUTINE--NO PHONE

5000 REM**- -SEARCH ROUTI NE- - NO PHONE--**
5020 HOME: VTAB 5
5040 PRINT "TYPE I END I WHEN FINISHED"
5050 INPUT "NAME TO FIND? ";FIND$
5060 IF FIND$ = " END" THEN 5400
5070 GOSUB 10000: REM PRINTER ROUTINE
5080 PRINT

SEARCH ROUTINE- 10 PHO, E

5100 FOR I = 1 TO K
5120 IF NAME$ (I) FIND$ THEN 5160
514 0 GOTO 5340
5160 IF NAME$ (I) 11 * 11 THEN I = I + 1 : GOTO 5340
5180 IF NAME$ (I) 11 ! 11 THEN PRINT: GOTO 5340
5200 PRINT NAME$ (I)
5220 PRINT NAME$ (I + 1)
5240 PRINT NAME$ (I + 2)
5260 IF NAME$ (I+ 3) < > 11 * 11 THEN PRINT NAME$ (I + 3)
5270 IF NAME$ (I+ 3) = 11 * 11 THEN I= I+ 1 : GOTO 5340
5280 IF NAME$ (I + 4) = II* II THEN I = I + 1: GOTO 5340
5300 PRINT NAME$ (I + 4): GOTO 5340
5320 PRINT NAME$ (I + 5)
5340 NEXT I
5360 PRINT
5380 GOTO 5040 : REM REPEAT ROUTINE
5400 GOTO 20000: REM RETURN TO MENU ROUTINE

65

I included this routine for a number of reasons. First, it is a very useful
routine because with a printer, one can print out a specific mailing label.
Second, it shows how two routines can be combined into a third routine.
This latter point is the most important reason. Very few programs will do
everything anyone could ever want of them, but if a person understands
these separate routines, then combining two or more to form others should
be possible. There are quite a number of combinations that are possible
and might be useful to some peopl e. As you can see, this routine is
exactly the same as the previous one down to the instruction at 5 160. The
only difference is that when we find the "*" separator, we add one to 1,
thus skipping the phone number. Lines 5180 through 5260 are the same
instructions as 4180 through 4260. The instructions at 5270 and 5280
are the only different instructions. Both of those instructions are simply
checking to see which information line contains the separator symbol and
then advancing the counter by one. The end of the routine is the same as
the end of the previous routine.

With the routines at 4000 and 5000, you have the ability to search
for a specific name and display that name, either with the phone number
or without the phone number. But both of these routines require that
you know and type in the exact spelling of the name, including spaces.
That presents a reason for our next routine, the range routine. With thi s
routine, you will only need to know the starting and ending information­
line numbers to be able to display the information you want. You can
obtain those numbers from the DISPLAY NAMES ONLY routine. I will
present the range routine only, but you might want to combine this routine
with the DISPLAY NAMES ONLY routine and possibly some others also.

66 CHAPTER 6 DISPLAYING SEQUENTIAL FILES

RANGE ROUTINE

6000 REM ** - -RANGE ROUTINE-- * *
6020 HOME: VTAB 5
6040 INPUT "TYPE BEGINNING LINE NUMBER " ; BL
6060 PRINT
6080 IF BL < 2 THEN PRINT "NUMBER TOO SMALL":

GOTO 6040
6100 INPUT "TYPE ENDING LINE NUMBER ";EL
6120 PRINT
6140 IF EL > K THEN PRINT "NUMBER TOO LARGE" :

GOTO 6100
6 1 60 GOSUB 10000: REM PRINTER ROUTINE
6180 FOR I = BL TO EL
6200 IF NAME$ (I) = "* "THEN I = I + 1 : GOTO 6260
6220 IF NAME$ (I) = "!" THEN PRINT: GOTO 6260
6240 PRINT NAME$ (I)
6260 NEXT I
6280 GOTO 20000 : REM RETURN TO MENU ROUTINE

Line 6040 asks for the beginning information-line number. Remember that
you can check the numbers first by using the DISPLAY NAMES ONLY
routine or by actually including that routine a t the beginning of this one.
Line 6080 checks the number typed to see if it is less than 2, the number
of the first information-line. If it is too small , a message is printed and the
user is again asked for a beginning number. Line 6 100 requests the ending
information-line number and goes through the same checking process, this
time for a number larger than the maximum number of information-lines.
Then comes our loop (6180 to 6260). I have included the code for printing
the information without the phone number (6200), thus providing a routine
that can print out a selected range of mailing labels.

I have tried to show how you can take various routines and combine
them in just about any way you might want. With the addition of each
new routine, the number of possible combinations of routines increases
so much that no single programmer could include all possibilities within
one program, but, with a minimum of understanding, everyone can create
combinations of routines necessary for their needs.

ALPHABETICAL ORDER ROUTINE

We come now to the most complex of our routines. I will not even
attempt to explain the logic involved in all parts of this alphabetizing routine
since complete books have been written on various sorting techniques.

ALPHABETICAL ORDER ROUTINE 67

The sort method I chose to include is sometimes called the QUICKSORT
technique. There are a number of other public domain sorting routines that
I could have used, such as the bubble sort or the Shell-Metzner sort, but
I decided on the Quicksort because it is very efficient and somewhat less
publicized. I modified the sort to enable it to work with string variables.
Otherwise, the sort subroutine is a standard routine that can be used in
a number of different ways to order lists composed of numbers or letters.
For example, if you want to display the information in the ADDRESS
FILE in zip code order, you first need to access the zip codes and then
use the Quicksort subroutine to arrange the zip codes and their associated
information-lines in either ascending or descending order. The creation
of such a routine would require that you comple tely understand another
feature of this routine : the flexibility possible with string variables and the
manner of utilizing that flexibility. This is another subject that complete
books have been written on. Again, I will not try to fully explain the logic
or programming power behind the BASIC statements of LEFT $, MID$, or
RIGHT$. I will strongly encourage you to learn as much as possible about
these BASIC statements and how they can be used to take string variables
apart and put them back together in just about any way you want.

This alphabetizing routine will be presented in two sections. The
first section makes use of this string variable flexibility to: access the last
section of characters in that first information-line ; reverse the order of
that information-line placing the last section of characters first; and then
combine all other inform ation-Jines associa ted with this first line into one
long string variable, AD${I}. The second section alphabetizes the list now
stored in the string variable ND$(J).

7000 REM* * - -ALPHABETICAL ORDER ROUTINE--**
7040 HOME : VTAB 5

7060 PRINT 11 WORKING--PLEASE DON'T TOUCH!! 11

7065 :
7066 :
7070 REM GET FIRST INFO-LINE
7080 FOR I = 2 TO K - 1
7100 IF NAME$ (I) = NAME$ (2) THEN 7160
712 0 IF NAME$ (I) 11

'
11 THEN I = I+ 1 : GOTO 7160

7140 GOTO 7340
7145 :
7146 :

7150 REM REVERSE ORDER
7160 LN = LEN (NAME$ (I))
7180 FOR Jl = 1 TO LN: IF MID$ (NAME$ (I) . Jl, 1) = II II

THEN J2 =Jl
7200 NEXT Jl

68 CHAPTER 6 DISPLAYING SEGUE TIAL FILES

7210 If J2 = 0 OR J2 > LN THEN AD$ (I) = NAME$ (I)
GOTO 7240

7220 AD$ (I) = MID$ (NAME$ (I). J2+ 1 , LN-J 2) + " II

+ LEFT$ (NAME$ (I), J2)
7240AD$(I)=AD$(I)+"** " +NAME$(I+l) +"**"+NAME$

(I+ 2)
7260 IFNAME$ (I+3) <> "*" THENAD$(I) = AD$ (I) +"**"

+ NAME$ (I+ 3)
7 2 8 0 IF NAME$ (I + 4) = II * II THEN 7 3 2 0
7300AD$(I) = AD$(I) + " **" + NAME$(I+4):

GOTO 7340
7320AD$(I) = AD$(I) ="**" + NAME$(I +5)
7340 NEXT I
7345 :
7346 :
7 3 5 0 REM RENUMBER FOR SORT
7360J=l
7380 FOR I = 1 TOK
7400 IF LEN (AD$ (I)) > 0 THEN ND$ (J) = AD$ (I):

J = J + 1
7420 NEXT I
7440 N = J - 1

As I said, the routines get more complex. If you do not understand the
LEFT$, MID$ and RIGHT$ statements, the best thing to do is to get
a clear definition of them from a book devoted to teaching BASIC and
then practice their uses. Essentially, they perform the functions for which
they are named. The LEFT$ statement will retrieve a specified number of
characters beginning at the left side of a string variable. LEFT$(A$,4)
gets the first four characters in the string variable A$. The RIGHT$
statement retrieves a specified number of characters from the right-most
character of a string variable. RIGHT$(B$,3) gets the last three charac­
ters in the string variable B$. The MID$ statement retrieves a specified
number of characters from a specified position within a string variable.
MID$(C$,2,6) gets the next six characters beginning at the second charac­
ter in the string variable C$. Therefore, the instructions in 7080 to 7140
identify the first information-line in each set of data. Lines 7160 through
7 340 reverse the order of the first information-line and then combine all
the other information-lines associated with it. Finally, 7360 to 7440 are
the instructions that renumber the sets of information in such a way that
the sort subroutine can function.

7460 REM***- -QUICKSORT- -***
7480 Sl = l
7500 PRINT "WORKING- -PLEASE DON IT TOUCH! ! II

ALPHABETICAL ORDER ROUTINE

7520 L (1) = 1
7540 R (l) =N
7560 Ll = L (Sl)
7580 Rl = R (Sl)
7600 Sl = Sl-1
7620 L2 = Ll
7640 R2 = Rl
7660 X$ =ND$ (INT ((Ll+Rl) I 2))
7680 c = c + 1
7700 IF ND$ (L2) = ~$OR ND$ (L2) > X$ THEN 7760
7720 L2 = L2 + 1
7740 GOTO 7680
7760 C = Cl
7780 IF X$ = ND$ (R2) OR X$ > ND$ (R2) THEN 7840
7 8 0 0 R2 = R2 - 1
7820 GOTO 7760
7840 IF L2 > R2 THEN 7980
7860 s = s + 1
7880 T$ = ND$ (L2)
7900 ND$ (L2) = ND$ (R2)
7920 ND$ (R2) = T$
7940 L2 = L2 + 1
7960 R2 = R2 - 1
7980 IF L2 = R2 OR L2 < R2 THEN 7680
8000 IF L2 = Rl OR L2 > Rl THEN 8080
8020 Sl = Sl + 1
8040 L (Sl) = L2
8060 R (Sl) = Rl
8080 Rl = R2
8100 IF Ll < Rl THEN 7620
8120 IF Sl > 0 THEN 7560
8140 REM SORT COMPLETED

69

Now you have access to a sorting method. The only code necessary outside
this subroutine to transfer it to another program is to set:

1. The DIM of LO and RO to the number of things to be sorted.
2. The numeric variable "N" =to the number of things to be sorted.

If you have a different sort method that you like or understand better and
want to include it instead, the code for your sort should replace the code
between lines 7 460 and 8140.

The only thing left is to display the results after sorting. I am going
to present the code to display the results in their most elementary way. I
will leave to those of you who want to or are able to use the flexibility in
string variables to format the display in any way you desire.

70 CHAPTER 6 DISPLAYING SEQUENTIAL FILES

8145 REM**- -DISPLAY--**
8150 GOSUB 10000: REM PRINTER ROUTINE
8160 FOR I = 1 TON
8180 PRINT ND$ (I)
8200 PRINT
8220 NEXT I
8240 GOTO 20000: REM RETURN TO MENU ROUTINE

We now have an opportunity to create a sequential access file in a way
that may be more powerful than in our mailing list system. The usefulness
of the new file creation method depends on the programmer's knowledge
of and willingness to work with string variables; i.e., LEFT $, MID$,
RIGHT $, LEN, STR$, VAL, and DIM. All of the associated information
with NAME$(2)-that is the address, city, state, zip code, and phone
number-are all stored in the string variable ND$(1). Everything for the
next name is stored in ND$(2) and so on. If you want to locate the zip
code, all you need to do is use the MID $ function to determine where in the
string the zip code is located. You could use the same MID$ function with
our present file set up, but it might be more difficult to always locate the
zip code. (For instance, some people might put the zip code on a separate
line, while others would put it on the same line as the city and state. If
everything is combined into one string variable, it might be easier to locate
for all possible situations.) I have used a lot of conditional statements
because there are a lot of possibilities, and the correct choice often depends
upon many factors: the programmer' s experience and preference, the value
of the file being established, the necessity of backup, the amount of use
the file wi ll get, and so forth.

The code necessary to establish a separate file for our now-alphabetized
information should be easy to develop. If you have trouble, the appendix
has the code solution for this problem.

To finish, we need two brief subroutines used by each of our main
routines : the printer subroutine and the return-to-menu subroutine.

10000 REM**- -PRINT SUBROUTINE--**
10020 PRI NT "DO YOU WANT A PAPER PRINT OUT? 11

10040 INPUT "TYPE I y I OR IN I II; YES$
10060 IF YES$ = "Y 11 THEN 10120
1 0080 SPEED = 150
10100 RETURN
10120 PR*l
10140 RETURN
10150 :
10160 :
20000 REM**- - RETURN TO MENU SUBROUTINE--**
20020 PR*O : SPEED=255

ALPHABETICAL ORDER ROUTINE

20040 INPUT "HIT RETURN TO GO TO MENU " ; L$
20060 GOTO 200 : REM MENU

Have you saved this new MAILING LIST READER program? If
not, be certain that the program is still in memory and then type the
following:

SAVE MAILING LIST READER

71

By using the same name as our original display program, we have written
over that original program and thus replaced it with this expanded version.
Now the CATALOG should show:

A 002 HELLO
A 003 APPLE
A 007 MAILING LIST CREATOR
T 002 ADDRESS FILE
A 019 MAILING LIST READER
A 007 MAILING LIST ADDERl
A 008 MAILING LIST ADDER2

Notice that the only difference between this display and the display of
the CATALOG at the beginning of this chapter is in the numbers before
MAILING LIST READER. The READ ER program has grown from using
two sectors on the diskette to using about nineteen sectors. (Remember
that the numbers may vary slightly from computer to computer.) That
is quite a difference and now makes the READER program the largest
program on the diskette. In the next chapter, we will examine ways of
correcting, changing, or dele ting information from our file.

72 CHAPTER 6 DISPLAYING SEQUENTIAL FILES

QUESTIONS

I . TRUE or FALSE: DOS allows you to RUN a program from within
another program.

2. What Applesoft BASIC word allows you to horizontally tab on the
screen?

3. Which BASIC word is used to instruct the computer to go to a sub­
routine?

4. Which Basic word is used to instruct the computer to return from a
subroutine?

5. TRUE or FALSE: In programming, it is a good idea to have just one
main entrance and exit point in every routine.

6. Name three public domain sorting routines.

7. What are the three main BASIC words that provide a great deal of
power in working with strings?

8. What BASIC word retrieves a specified number of characters from a
specified position within a string variable?

9. Name three other BASIC words that can be used in some way with
string variables.

10. TRUE or FALSE: When you save a file with the same name as a file
already on the disk, the first file is replaced by the second file.

CHAPTER 6 DISPLAYING SEQUENTIAL FILES 73

ANSWERS

I. TRUE

2. HTAB

3. GOSUB

4. RETURN

5. TRUE

6. Bubble, Quicksort, Shell-Metzner

7. LEFT$, RIGHT$, MID$

8. MID$

9. LEN, STR$, VAL

10. TRUE

74 CHAPTER 6 DISPLAYING SEQUENTIAL FILES

MAILING LIST MENU I

10 REM *** - -MAILING LIST PROGRAM MENU-- ***
11 :
12 :
20 D$ = CHR.$ (4) : REM CONTROL D
25 :
26 :
30 REM**- -MENU ROUTINE--**
40 HOME : VTAB 5
60 HTAB 1 7: PRINT "PROGRAM MENU"
80 PRINT : PRINT
100 HTAB 8: PRINT "l. FILE CREATION PROGRAM"
120 PRINT
140 HTAB 8: PRINT "2 . FILE ADDITION PROGRAM "
160 PRINT
180 HTAB 8: PRINT "3. FILE DISPLAY PROGRAM"
200 PRINT
300 HTAB 8: PRINT "4. CATALOG"
320 PRINT
340 HTAB 8: PRINT "5. END"
360 PRINT : PRINT
380 HTAB 8: INPUT "WHICH PROGRAM NUMBER? " ;NUMBER
400 IF NUMBER < 1 OR NUMBER > 5 THEN 380
420 IF NUMBER = 1 THEN 1000
440 IF NUMBER = 2 THEN 2000
460 IF NUMBER = 3 THEN PRINT D$; "RUN MAILING LIST

READER"
480 IF NUMBER= 4 THEN PRINT D$; " CATALOG" : INPUT "HIT

RETURN TO GO TO MENU "; L$: GOTO 40
500 IF NUMBER = 5 THEN END
6 00 :
700 :
1000 REM **- -FILE CREATOR PROGRAM--**
1020 PRINT : PRINT "IF THE ADDRESS FILE ALREADY EXISTS"
1040 PRINT : PRINT " DO NOT RUN THIS PROGRAM!!"
1060 PRINT : PRINT "DO YOU WANT THE FILE CREATION

PROGRAM?"
1070 PRINT
108 0 INPUT "TYPE I YES I IF YOU DO: " ;YES$
1100 IF YES $ = "YES" THEN PRINT D$; "RUN MAILING r.rn'T'

CREATOR"
1120 GOTO 40

1140 :
1160:

MAILING LIST READER2

2000 REM** - - FILE ADDITION PROGRAM--**
2020 PRINT : PRINT "YOU WANT TO ADD TO THE EXISTING"
2040 PRINT : PRINT "ADDRESS FILE . IS THIS CORRECT? "
2060 PRINT : INPUT "TYPE 'YES' IF IT IS . " ; YES$
2080 IF YES$ = "YES" THEN PRINT D$; "RUN MAILING LIST

ADDER2"
2100 GOTO 40

MAILING LIST READER2

10 REM *** - -MAILING LIST READER--***
11 :
12 :
20 D$ = CHR$ (4) : REM CONTROL D
25 :
26 :
30 REM** - - INPUT ROUTINE-- **
40 PRINT D$; "OPEN ADDRESS FILE"
60 PRINT D$; "READ ADDRESS FILE"
80 INPUT K
100 DIM NAME$ (K) , AD$ (K) , ND$ (K) , L (K) , R (K)
120 FOR I = 1 TO K
140 INPUT NAME$ (I)
160 NEXT I
180 PRINT D$; "CLOSE ADDRESS FILE"
190 :
191 :
200 REM**- -MENU ROUTINE--**
210 HOME : VTAB 2
220 HTAB 17 : PRINT "MENU"
230 PRINT : PRINT
240 HTAB 3: PRINT "l. DISPLAY INFO - -ORIG .
250 PRINT
260 HTAB 3 : PRINT "2 . DISPLAY NAMES ONLY"
270 PRINT

ORDER"

280 HTAB 3 : PRINT "3 . DISPLAY INFO - - NO PHONE"
290 PRINT
300 HTAB 3 : PRINT "4 . DISPLAY SPECIFIC NAME"
310 PRINT
320 HTAB 3: PRINT " 5. DISPLAY SPECIFIC NAME- -NO PHONE"

75

76 CHAPTER 6 DISPLAYING SEQUENTIAL FILES

330 PRINT
340 HTAB 3 : PRINT "6. DISPLAY INFO- -RANGE"
350 PRINT
360 HTAB 3 : PRINT "7. DISPLAY INFO- -ALPHABETICAL"
365 PRINT
370 HTAB 3 : PRINT "8. RETURN TO PROGRAM MENU"
375 PRINT
380 HTAB 3: INPUT "WHICH NUMBER? ";NUMBER
385 IF NUMBER < 1 OR NUMBER > 8 THEN PRINT "INCORRECT

NUMBER II : GOTO 3 8 0

410 IF NUMBER = 1 THEN 1000
420 IF NUMBER = 2 THEN 2000
430 IF NUMBER = 3 THEN 3000
440 IF NUMBER = 4 THEN 4000
450 IF NUMBER = 5 THEN 5000
460 IF NUMBER = 6 THEN 6000
470 IF NUMBER = 7 THEN 7000
480 IF NUMBER = 8 THEN PRINT D$; "RUN MENU"
600 :
700 :
1000 REM ** - -ORIGINAL ORDER ROUTINE-- * *
1020 GOSUB 10000: REM PRINTER ROUTINE
1040 HOME : VTAB 5
1060 FOR I = 1 TO K
1080 IF NAME$ (I) = "*"THEN 1140
1100 IF NAME$ (I) = II I II THEN PRINT : GOTO 1140
1120 PRINT NAME$ (I)
1140 NEXT I
1160 GOTO 20000: REM RETURN TO MENU ROUTINE
1500 :
1600 :
2000 REM ** - - NAME ONLY ROUTINE- -**
2020 GOSUB 10000 : REM PRINTER ROUTINE
2040 HOME : VTAB 5
2060 FOR I = 1 TO K - 1
2080 IF NAME$ (I) = NAME$ (2) THEN PRINT I ; II II ; NAME$ (I)
2100 IF NAME$ (I) = II! II THEN PRINT I ; II II; NAME $ (I + 1)
2120 NEXT I
2140 GOTO 20000 : REM RETURN TO MENU ROUTINE
2500 :
2600 :
3000 REM **- -NO PHONE ROUTINE--**
3020 GOSUB 10000 : REM PRINTER ROUTINE
3040 HOME : VTAB 5

MAILING LIST READER2

3060 FOR I = 1 TO K
3080 IF NAME$ (I) = "*"THEN I= I+ 1: GOTO 3140
3100 IF NAME$(!) = " 1 " THENPRINT : GOT03140
3120 PRINT NAME$ (I)
3140 NEXT I
3160 GOTO 20000 : REM RETURN TO MENU ROUTINE
3500 :
3600 :
4000 REM** - -SEARCH ROUTINE--**
4020 HOME : VTAB 5
4040 PRINT "TYPE I END I WHEN FINISHED"
4050 INPUT "NAME TO FIND? ";FIND$
4060 IF FIND$ = "END" THEN 4400
4070 GOSUB 10000 : REM PRINTER ROUTINE
4080 PRINT
4100 FOR I = 1 TO K
4120 IF NAME$ (I) = FIND$ THEN 4160
4140 GOTO 4340
4160 IF NAME$ (I) = "*" THEN 4340
4180 IF NAME$ (I) = "!" THEN PRINT : GOTO 4340
4200 PRINT NAME$ (I)
4220 PRINT NAME$ (I + 1)
4240 PRINT NAME$ (I + 2)
4 2 60 IF NAME$ (I + 3) <> "*"THEN PRINT NAME$ (I+ 3)
4280 IF NAME$ (I + 4) = "*"THEN 4320
4300 PRINT NAME$ (I + 4): GOTO 4340
4320 PRINT NAME$ (I + 5)
4340 NEXT I
4360 PRINT
4380 GOTO 4040
4400 GOTO 20000 : REM RETURN TO MENU ROUTINE
4500 :
4600 :
5000 REM**- -SEARCH ROUTINE NO PHONE--**
5020 HOME : VTAB 5
5040 PRINT "TYPE I END I WHEN FINISHED"
5050 INPUT "NAME TO FIND? ";FIND$
5060 IF FIND$ = "END" THEN 5400
5070 GOSUB 10000 : REM PRINTER ROUTINE
5080 PRINT
5100 FOR I = 1 TOK
5120 IF NAME$(!) = FIND$ THEN 5160
5140 GOTO 5340
5160 IFNAME$ (l) = " * "THEN! = I+ l : GOT05340

77

78 CHAPTER 6 DISPLAYING SEQUENTIAL FILES

5180 IF NAME$ (I) = II! II THEN PRINT : GOTO 5340
5200 PRINT NAME$ (I)
5220 PRINT NAME$ (I + 1)
5240 PRINT NAME$ (I + 2)
5260 IF NAME$ (I + 3) < > "*"THEN PR INT NAME$ (I + 3)
5 2 7 0 IF NAME$ (I + 3) = II * II THEN I = I + 1 : GOTO 5 3 4 0
5280 IF NAME$ (I + 4) = "*"THEN I= I+ 1: GOTO 5340
5300 PRINT NAME$ (I + 4) : GOTO 5340
532 0 PRINT NAME$ (I + 5)
5340 NEXT I
5360 PRINT
5380 GOTO 5040
5400 GOTO 20000: REM RETURN TO MENU ROUTINE
5500 :
5600:
6000 REM**- -RANGE ROUTINE-- **
6020 HOME : VTAB 5
6040 INPUT "TYPE BEGINNING LINE NUMBER ";BL
6060 PRINT
6080 IF BL < 2 THEN PRINT "NUMBER TOO SMALL" GOTO 6040
6100 INPUT "TYPE ENDING LINE NUMBER "; EL
6120 PRINT
6140 IF EL > K THEN PRINT "NUMBER TOO LARGE" : GOTO 6100
6160 GOSUB 10000: REM PRINTER ROUTINE
6180 FOR I = BL TO EL
6200 IF NAME$ (I) = "*"THEN I = I + 1: GOTO 6260
622 0 IF NAME$ (I) = II! II THEN PRINT : GOTO 6260
6240 PRINT NAME$ (I)
6260 NEXT I
6280 GOTO 20000 : REM RETURN TO MENU ROUTINE
6500 :
660 0 :
6700 :
6800 :
6900 :
7000 REM**- -ALPHABETICAL ORDER ROUTINE--**
7040 HOME : VTAB 5
7060 PRINT "WORKING- - PLEASE DONT TOUCH! ! "
7065 :
7066 :
7070 REM GET FIRST INFO-LINE
7080 FOR I = 2 TOK - 1
7100 IF NAME$ (I) = NAME$ (2) THEN 7160
7120 IF NAME$ (I) = II I II THEN I = I + 1: GOTO 716 0

7140 GOTO 7340
7145 :
7146 :

MAILING LIST READER2

7150 REM REVERSE ORDER
7160 LN = LEN (NAME$ (I))

79

7180 FOR Jl = 1 TO LN: IF MID$ (NAME$ (I) I Jl, 1) = II "THEN J2
= Jl

7200 NEXT Jl
7210 IF J2 = 0 OR J2 > LN THEN AD$ (I) = NAME$ (I): GOTO 7240
7220 AD$ (I) =MID$ (NAME$ (I) I J2 + 1 , LN - J2) + II II +

LEFT$ (NAME$ (I) I J2)
7240 AD$ (I) = AD$ (I) + "**" + NAME$ (I + 1) + "**" +

NAME$ (I + 2)
7260 IF NAME$ (I + 3) <> "*"THEN AD$ (!) = AD$(!) + 11 ** 11

+ NAME$ (I + 3)
7280 IF NAME$ (I + 4)
7300 AD$ (I) =AD$ (I)
7320AD$ (I) =AD$(!)
7340 NEXT I
7345 :
7346 :

II * II THEN 7320

+ "**" + NAME$ (I + 4): GOTO 7340
+ 11 **" + NAME$ (I + 5)

7350 REM RENUMBER FOR SORT
7360 J = 1
7380 FOR I = 1 TOK
7400 IF LEN (AD$ (I)) > 0 THEN ND$ (J) = AD$ (I) : J = J + 1
7420 NEXT I
7440 N = J - 1
7445 :
7446 :
7460 REM** *- -QUICKSORT- -* **
7480 Sl = 1
7500 PRINT "WORKING- -PLEASE DONT TOUCH! ! "
7520 L(l) = 1
7540 R (l) = N
7560 Ll = L (Sl)
7580 Rl = R (Sl)
7600 Sl = Sl - 1
7620 L2 = Ll
7640 R2 = Rl
7660 X$= ND$(INT ((Ll + Rl) I 2))
7680 c = c + 1
7700 IF ND$ (L2) = X$ OR ND$ (L2) > X$ THEN 7760
7720 L2 = L2 + 1
7740 GOTO 7680

80 CHAPTER 6 DISPLAYING SEQUENTIAL FILES

7760 C = Cl
7780 IF X$ = ND$ (R2) OR X$ > ND$ (R2) THEN 7840
7 8 0 0 R2 = R2 - 1
7820 GOTO 7760
7840 IF L2 > R2 THEN 7980
7860 s = s + 1
7880 T$ = ND$ (L2)
7900 ND$ (L2) = ND$ (R2)
7920 ND$ (R2) = T$
7940 L2 = L2 + 1
7960 R2 = R2 - 1
7980 IF L2 = R2 OR L2 < R2 THEN 7680
8000 IF L2 = Rl OR L2 > Rl THEN 8080
8020 Sl = Sl + 1
8040 L (Sl) = L2
8060 R (Sl) = Rl
8080 Rl = R2
8100 IF Ll < Rl THEN 7620
8120 IF Sl > 0 THEN 7560
814 0 REM SORT COMPLETED
8142 :
8143 :
8145 REM**- -DISPLAY--**
8150 GOSUB 10000: REM PRINTER ROUTINE
8160 FOR I = 1 TON
8180 PRINT ND$ (I)
8200 PRINT
8220 NEXT I
8240 GOTO 20000: REM RETURN TO MENU ROUTINE
8500 :
8600 :
8700 :
8800 :
8900 :
10000 REM**- -PRINT ROUTINE--**
10020 PRINT "DO YOU WANT A PAPER PRINT OUT?"
10040 INPUT "TYPE 'Y' OR ' N' ";YES$
10060 IF YES$= "Y" THEN 10120
10080 SPEED = 150
10 100 RETURN
10120 PR# l
101 40 RETURN
15000 :
16000 :

MAILING LIST READER2

20000 REM* * - -RETURN TO MENU ROUTINE-- **
20020 PR*O : SPEED = 255
20040 INPUT "HIT RETURN TO GO TO MENU " ; L$
20060 GOTO 200 : REM MENU

81

r

7
Correcting Sequential Files

We can use the same beginning for our MAILING LIST CORRECTOR
program as we have for all our MAILING LIST READER programs. The
one exception is line 10 which should be changed to reflect the proper name
for this program. Once again we need a menu, so our routine beginning
at line 200 will be much the same also.

200 REM*** - -MENU ROUTINE--***
220 HOME : VTAB 5
240 HTAB 19
260 PRINT "CORRECTOR MENU"
280 PRINT : PRINT
300 HTAB 8: PRINT 11 1. CHANGE OR CORRECT INFO"
320 PRINT
340 HTAB 8: PRINT "2. DELETE INFO"
360 PRINT
380 HTAB 8: PRINT "3. WRITE REVISED FILE"
400 PRINT
420 HTAB 8: PRINT "4. RETURN TO PROGRAM MENU"
430 PRINT: PRINT
440 HTAB 8: INPUT "WHICH NUMBER " ;NB
460 IF NB < 1 OR NB > 4 THEN 440
510 IF NB = 1 THEN 1 000
520 IF NB = 2 THEN 2000
530 IF NB = 3 THEN 3000
540 IF NB = 4 THEN PRINT D$; "RUN MENU"

By now these sta tements should be familiar enough that no further ex­
planation need be given. We are going to simply display a menu or a

82

CHAPTER 7 CORRECTI G SEQUENTIAL FILES 83

number of choices on the screen. Line 460 checks to see if the user has
typed a valid number. If not , control is returned to the instruction (line
410) which again asks for a number.

The correction and deletion routines presented below are only one
method out of many possible methods for accomplishing the same task.
Some may object to rewriting the entire file for a single correction . Later
in the chapter, we will get into the R and B parame ters and how they can
be used to make corrections. We will discuss some of the other methods
also, but for now, the method we will use is to bring the entire file into
memory, make our necessary corrections or deletions, and then write the
file back out to disk again.

1000 REM***- -CORRECTION ROUTINE--* **
1020 HOME: VTAB 5
1040 PRINT "TYPE I 0 I WHEN FINISHED"
1060 INPUT "DISPLAY WHICH LINE ";NUMBER
1080 IF NUMBER = 0 THEN 200
1100 PRINT
1120 PRINT NUMBER ; II II ; NAME$ (NUMBER)
1140 PRINT
1160 PRINT II IS THIS CORRECT? II;

1180 INPUT "TYPE 'y I OR IN I ";YES$
1200 IF YES$ = "Y" THEN 1020
1220 PRINT
1240 PRINT "TYPE IN THE CORRECT INFORMATION"
1260 PRINT
1280 PRINT NUMBER; II II; : INPUT CN$
1300 PRINT: NAME$ (NUMBER) = CN$
1320 PRINT NUMBER; II II ; NAME$ (NUMBER)
1340 PRINT
1360 GOTO 1160

This routine is also simple. We ask for the line number the user believes
to contain incorrect information. The line of information is displayed. If it
is not correct, the individual is given an opportunity to type in the correct
information. The amount of new information or corrected information is
not limited except by the normal 255 character string limitation. This
feature is one big advantage over other correction methods which may
require that the corrected information be exactly the same number of
characters as the original information. Finally, the corrected information
is displayed, and the correct information question is repeated. Line 1200
checks for a positive response to the question about correct information.
If the information is correct, the user is taken back to the original request
concerning the line number to be displayed. Line I 080 checks for a "O"
which indicates that the user wishes to return to the menu. Line 1300 is

84 CHAPTER 7 CORRECTI NG SEQUENTIAL FILES

the instruction that actually exchanges the corrected information for the
old information. You will notice that nothing is written to disk at this
time. This may cause problems for some individuals. Under this system,
it is possible to make a number o f changes before the file is rewritten to
the disk. It is also possible, the refore, to forget to write the corrected file
back to disk. Such a system may be impractical in certain situations-for
example, when a somewhat forgetful person is making the changes. But,
for our purposes, we want to make all corrections and deletions before
rewriting the file .

The deletion rout ine is more complicated than the correction routine.

2000 REM*** - - DELETE ROUTINE-- ***
2020 HOME: VTAB 5
2040 PRINT "TYPE I 0 I WHEN FINISHED"
2060 INPUT "DELETE WHICH LINE ";LINE
2080 IF LINE = 0 THEN 200
2100 PRINT
2120 PRINT LINE ;" " ;NAME$ (LINE)
2140 PRINT
2220 PRINT "ARE YOU SURE ? TYPE 'YES ' IF SURE";
2240 INPUT YES$
2260 IF YES$ = "YES " THEN 2300
2280 GOTO 2000 : REM BEGIN AGAIN
2290 :
2300 J = LINE
2320 IF NAME$ (J) = "!" THEN 2360
2340 J = J + 1: GOTO 2320
2360 FOR I = LINE TO J
2380 PRINT I;" ";NAME$ (I)
2400 NAME$ (I) = "DELETED": D = D + 1
2420 NEXT I
2440 PRINT
2460 PRINT "DELETING THIS INFORMATION"
2480 Q = 2
2 5 0 0 FOR I = 2 TO K
2520 IF NAME$ (I) = "DELETED" THEN 2580
2540 NAME$ (Q) = NAME$ (I)
2560 Q = Q + 1
2580 NEXT I
2590 :
2600 K = K - D
2620D = O: J = 0
2700 GOTO 200

There are other ways of doing the same thing we did in this routine. Some

CHAPTER 7 CORRECTI G SEQUE TIAL FILES 85

of the other ways might be shorter , but this way is understandable. Several
things need to be done in this deletion routine. First, the information to be
deleted must be identified (lines 2000 to 2280). Second, the in formation
following the deleted materia l must be renumbered so tha t there are no
empty lines, otherwise an EN D OF DATA ERRO R will occur when these
lines are encountered (l ines 2300 to 2580) . Finally, the number of deleted
lines must be subtracted from the original to tal number of lines (line 2600).
Down to 2280, there is nothing new. It is essentially the same beginning
as the correction routine. At 2300, we set a counter (J) equal to the line
number of the name of the individual to be deleted. Next, we increase the
counter by one until we have found the information-line for the end of the
information associa ted with the individual to be deleted; i.e., the separator
symbol " !". Now we know which lines to delete: the lines beginning with
LI NE and going through J, so now we can use a loop (2360-2420) to delete
our information. We use another loop (2500-2580) to do the resequencing
of the remaining in formation. We use two additional counters: Q to keep
track of the new information line-numbers, and D to keep track of the
number of deleted lines. Q is set to 2 for the beginning of the file, but it
could be set to LI NE, the start of the deleted ma terial. Line 2520 is the key
to the resequencing. If NAME$(l) equals the word " DELET ED", then the
counter Q is not increased while the counter I is increased. Remember
that Q is keeping track of the new line numbers while 1 is the old line
number. Line 2540 is resequencing the NAME$ string array. Line 2600
subtracts the number of deleted lines from the original number of lines (K).
Line 2620 is necessary in case more information is to be deleted during
thi s session.

3000 REM ***- -FILE ROUTI NE--***
3020 PRINT D$; "OPEN ADDRESS F I LE BACKUP "
3040 PRINT D$; "DELETE ADDRESS FILE BACKUP "
3060 PRI NT D$; "RENAME ADDRESS FILE , ADDRESS FILE

BACKUP "
3080 PRI NT D$; " OPEN ADDRESS FILE "
3 1 00 PRINT D$; "WRITE ADDRESS FILE"
3 1 20 PRINT K
314 0 FOR I = 1 TO K
3160 PRINT NAME$ (I)
3180 NEXT I
3200 PR I NT D$; "CLOSE ADDRESS F ILE "
3220 PRINT D$; " RUN MENU"

There is something different with this file routine. Where did ADDRESS
FILE BACKUP come from? What is RENAME? The DOS command
O PEN will create a fil e by that name if the file does not already exist.
Therefore, if the file , ADDRESS FrLE BACKUP, does not already exist,

86 CHAPTER 7 CORRECT! G SEQUE:--ITIAL FILES

the command, OPEN ADDRESS FILE BACKUP, will create a file by that
name. Next, we delete that file since it must either be an empty file or
a now unnecessary backup copy. (The first time this program is used,
there wi ll not be an ADDRESS FILE BACKUP.) Line 3060 renames the
file ADDRESS FILE (which now contains our uncorrected information)
so that it becomes ADDRESS FILE BACKUP. Finally, we open a new
ADDRESS FILE and write out our corrected in formation to it (lines 3080-
3200). Line 3220 returns to the Program Menu. At this point , if you
have not already done so, you should save this program to the diskette
that contains all the other MAILING LI ST SYSTEM programs.

SAVE MAILING LIST CORRECTOR

Typing CATALOG now should show :

A 002 HELLO
A 003 APPLE
A 006 MAILING LIST CREATOR
T 002 ADDRESS FILE
A 019 MAILING LIST READER
A 007 MAILING LIST ADDERl
A 008 MAILING LIST ADDER2
A 007 MAILING LIST CORRECTOR

It is now necessary to make changes in the MENU Program in order to
include thi s MAILING LIST CREATOR program. Remem ber tha t space
was left between lines 200 and 300. Additional lines need to be changed
also. If you have trouble making the necessary changes, the final version
of the program is included at the end of this chapter. Type:

LOAD MENU

Make the necessary changes. Then type:

SAVE MENU

The MAILING LIST SYSTEM should now be comple te.
This general method of correcting or deleting informat ion has the

added benefit of providing us with a backup copy of our pre-corrected
ADDRESS FILE. The sequence of opening and deleting a backup file,
renaming the uncorrected file as the new backup, and writing out the
corrected information to a new file under the original file name is a very
useful routine. If you have two disk drives, you can put the backup in one
drive and the new master in the other drive and have the computer switch
between the two by simply attaching the appropriate drive number at the
end of the various command lines (but within the quotation marks).

3020 PRINT D$; "OPEN ADDRESS FILE BACKUP, Dl"
3040 PRINT D$; "DELETE ADDRESS FILE BACKUP"

CHAPTER 7 CORRECTING SEQUENTIAL FILES

3060 PRINT D$; "RENAME ADDRESS FILE , ADDRESS FILE
BACKUP , D2"

3080 PRINT D$; "OPEN ADDRESS FILE , Dl"
3100 PRINT D$; "WRITE ADDRESS FILE"

87

The rest of the program would be handled in the same way. The more
drives you have, the greater your flexibility in manipulating files in this
manner.

Even without two drives, the ADDRESS FILE and the ADDRESS
FILE BACKUP can be put on two different diskettes. Some method of
making the computer pause after line 3060 would be necessary in order
to allow the user to swap diskettes. Two possibilities would be : a loop of
a certain duration, or an input statement informing the user that it is time
to switch diskettes.

As mentioned, there are other ways to make corrections to a sequential
access file . One way involves the R and B parameters, but I do not
recommend it. The R and B parameters are supposed to provide somewhat
direct access to a specified record (R) or field and a specified byte (B) . So
theoretically, if I know tha t the hundredth information-line needs to be
changed, I can access just that record or field and make the change. But I
have to make the new information exactly the same number of characters
as the old information or I will end up with a scrambled file. If my new
information contains less characters than the old information, I will have
an extra record composed of the leftover characters. If my corrected
information is longer than the old information, part of the next record
will be overwritten and therefore lost. It is for this reason that I do not
recommend using the R or B parameter to make corrections to a sequential
access file.

These parameters are somewhat more useful if res tricted to reading
file information, but even here they can prove to be troublesome. The R
parameter is supposed to posi tion the file pointer a specific number from
its present location. It is therefore relative, not absolute. When a file is
opened, the file pointer points to record 0 so that RI 00 would access the
1 OOth record in the file. But a following R command of RI 0 would access
the 110th record not the I 0th record of the file.

The B parameter is supposed to be absolute, except when it follows an
R parameter. In other words, a command of BI 00 will access the I OOth
byte of the file. A following command of BI 0 will access the I 0th byte of
the file, not the 110th byte. But an intervening R command is supposed
to set the file pointer R records from its present position and then B bytes
from the beginning of that record. The problem is that, besides this rather
confusing set of rules, it doesn' t actually work the way it should. You
cannot access the Bth byte of the Rth record. The parameters seem to work
fine when used separately, but when combined, some very strange results

88 CHAPTER 7 CORRECTING SEQUENTIAL FILES

occur. Combining the R and B parameters appears to result in adding the
value of R to the value of B and accessing the resultant byte value in the
file . Therefore, the examples will use the parameters separate ly. Type in
the following:

NEW
20 D$ = CHR$ (4) : REM CONTROL D
40 HOME : VTAB 5
60 INPUT "READ WHICH RECORD "; R
80 PRINT D$; "OPEN ADDRESS FILE"
100 PRINT D$; "POSITION ADDRESS FILE , R" ; R
120 PRINT D$; "READ ADDRESS FILE"
140 INPUT LINE$
160 PRINT D$; "CLOSE ADDRESS FILE"
180 PRINT
200 PRINT LINE$
220 PRINT
240 GOTO 60

The only unfamiliar line should be line 100. This is the instruction that
positions the file pointer to the desired record. Remember that this is a
relative pointer. If you add the following four lines, the results will be very
different.

145 PRINT D$; "POSITION ADDRESS FILE, R5 "
150 PRINT D$; "READ ADDRESS FILE"
155 INPUT LINE2$
210 PRINT LINE2$

LINE2$ should be five information-lines beyond LINE$ in the ADDRESS
FILE. If you want to check this, use the display program and the range
selection to see if this is so.

Now change the program so that you will be reading bytes instead of
records.

60 INPUT "READ WHICH BYTE " ; B
120 PRINT D$; "READ ADDRESS FILE , B"; B
DELETE THE FOLLOWING LINES :
100
145
150
1 55
210

This change should make the program able to read specifi c bytes within
the ADDRESS FILE. If you increase the number requested in line 60 by
one, you should see the result of reading specific bytes within a file.

QUESTIONS 89

If you want to attempt writ ing to a specific record or byte, you now
have the necessary information, but I again repeat that I would not recom­
mend using these parameters to make corrections to any file you value.

In the next chapter , we will take a look at some more exotic uses
of sequential access files: the use of the EXEC command and the CHAIN
command plus an explanation of some of the differences between Applesoft
and Integer.

QUESTIONS

1. TRUE or FALSE: Under the correction method presented in this
chapter, corrected information is immediately written to the disk.

2. What happens to the original ADDRESS FILE once information in it
has been changed?

3. What is the DOS command used to remove unwanted files?

4. What is the DOS command used to change the name of files?

5. What are the two parameters that can be used with sequentia l files?

6. Which parameter is relat ive?

7. Which parameter is absolute?

8. Give the DOS command used with the R parameter.

90 CHAPTER 7 CORRECTI G SEGUE TIAL FILES

ANSWERS

1. FALSE
2. It becomes ADDRESS FILE BACKUP
3. DELETE

4. RENAME

5. Rand B

6. R
7. B
8. POSITIO N

MAILI NG LIST CORRECTOR

MAILING LIST CORRECTOR

10 REM**- -MAILING LIST CORRECTOR--**
11 :
12 :
20 D$ = CHR.$ (4) : REM CONTROL D
25 :
26 :
30 REM**- -INPUT ROUTINE- - **
40 PRINT D$; "OPEN ADDRESS FILE"
60 PRINT D$; "READ ADDRESS FILE"
80 INPUT K
100 DIM NAME$ (K) , LINE$ (K)
120 FOR I = 1 TO K
140 INPUT NAME$ (I)
160 NEXT I
180 PRINT D$; "CLOSE ADDRESS FILE"
190
191 :
200 REM ** - -MENU ROUTINE - -**
220 HOME : VTAB 5
240 HTAB 19
260 PRINT "MENU"
280 PRINT : PRINT
300 HTAB 8: PRINT "l. CHANGE OR CORRECT INFO"
320 PRINT
340 HTAB 8: PRINT "2. DELETE INFO "
360 PRINT
380 HTAB 8: PRINT "3 . WRITE REVISED FILE"
400 PRINT
420 HTAB 8: PRINT "4. RETURN TO PROGRAM MENU"
430 PRINT : PRINT
440 HTAB 8: INPUT "WHICH NUMBER"; NB
460 IF NB < 0 OR NB > 4 THEN 4 40
510 IF NB = 1 THEN 1000
520 IF NB = 2 THEN 2000
530 IF NB = 3 THEN 3000
540 IF NB = 4 THEN PRINT D$; "RUN MENU"
600 :
700 :
1000 REM**- -CORRECTION ROUTINE--**
1020 HOME : VTAB 5
1040 PRINT "TYPE '0 ' WHEN F INISHED"

91

92 CHAPTER 7 CORRECTING SEQUENTIAL FILES

1060 INPUT "DISPLAY WHICH LINE ";NUMBER
1080 IF NUMBER = 0 THEN 200
1100 PRINT
1120 PRINT NUMBER; II II; NAME$ (NUMBER)
1140 PRINT
1160 PRINT II IS THIS CORRECT? II;
1180 INPUT "TYPE I y I OR IN I II; YES$

1200 IF YES$ = "Y" THEN 1020
1220 PRINT
1240 PRINT "TYPE I N THE CORRECT INFORMATION"
1260 PRINT
1280 PRINT NUMBER; II II; : INPUT CN$
1300 PRINT : NAME$ (NUMBER) = CN$
1320 PRINT NUMBER; II II; NAME$ (NUMBER)
1340 PRINT
1360 GOTO 1160
1500 :
1600 :
2000 REM ** --DELETE ROUTINE- - **
2020 HOME : VTAB 5
2040 PRINT "TYPE I 0 I WHEN FINISHED"
2060 INPUT "DELETE WHICH LINE ";LINE
2080 IF LINE = 0 THEN 200
2100 PRINT
2120 PRINT LINE ; II II ; NAME$ (LINE)
2140 PRINT
2220 PRINT "ARE YOU SURE? TYPE 'YES' IF SURE" ;
2240 INPUT YES$
2260 IF YES$ = "YES" THEN 2300
2280 GOTO 2000
2300 J = LINE
2320 IF NAME$ (J) = II! II THEN 2360
2340 J = J + 1: GOTO 2320
2360 FOR I = LINE TO J
2380 PRINT I ; II II ; NAME$ (I)
2400 NAME$ (I) = "DELETED": D = D + 1
2420 NEXT I
2440 PRINT
2460 PRINT "DELETING THIS INFORMATION"
2480 Q = 2
2500 FOR I = 2 TO K
2520 IF NAME$ (I) = "DELETED" THEN 2 580
2540 NAME$ (Q) = NAME$ (I)
2560 Q = Q + 1

2580 NEXT I
2600 K = K - D
2620 D = 0: J = 0
2700 GOTO 200
2800 :
2900 :

R&B PROG2

3000 REM**- -FILE ROUTINE- - * *
3020 PRINT D$; "OPEN ADDRESS FILE BACKUP"
3040 PRINT D$; "DELETE ADDRESS FILE BACKUP"

93

3060 PRINT D$; "RENAME ADDRESS FILE, ADDRESS FILE BACKUP"
3080 PRINT D$; "OPEN ADDRESS FILE"
3100 PRINT D$; "WRITE ADDRESS FILE"
3120 PRINT K
3140 FOR I = 1 TO K
3160 PRINT NAME$ (I)
3180 NEXT I
3200 PRINT D$; "CLOSE ADDRESS FILE"
3220 PRINT D$; "RUN MENU"

R&B PROGi

20 D$ = CHR$ (4) : REM CONTROL D
40 HOME : VTAB 5
60 INPUT "READ WHICH RECORD "; R
80 PRINT D$; "OPEN ADDRESS FILE"
100 PRINT D$; "POSITION ADDRESS FILE, R"; R
120 PRINT D$; "READ ADDRESS FILE"
140 INPUT LINE$
160 PRINT D$; "CLOSE ADDRESS FILE"
180 PRINT
200 PRINT LINE$
220 PRINT
240 GOTO 60

R&B PROG2

20 D$ = CHR$ (4) : REM CONTROL D
40 HOME : VTAB 5
60 INPUT "READ WHICH RECORD " ; R
80 PRINT D$; "OPEN ADDRESS FILE"
100 PRINT D$; "POSITION ADDRESS FILE , R"; R

94 CHAPTER 7 CORRECTING SEQUENTIAL FILES

120 PRINT D$; "READ ADDRESS FILE"
140 INPUT LINE$
145 PRINT D$; "POSITION ADDRESS FILE , R5"
150 PRINT D$; "READ ADDRESS FILE"
155 INPUT LINE2$
160 PRINT D$; "CLOSE ADDRESS FILE"
180 PRINT
200 PRINT LINE$
210 PRINT LINE2$
220 PRINT
240 GOTO 60

R&B PROG3

20 D$ = CHR$ (4): REM CONTROL D
40 HOME : VTAB 5
60 INPUT "READ WHICH BYTE " ; B
80 PRINT D$; "OPEN ADDRESS FILE"
120 PRINT D$; "READ ADDRESS FILE, B" ; B
140 INPUT LINE$
160 PRINT D$; "CLOSE ADDRESS FILE"
180 PRINT
200 PRINT LINE$
220 PRINT
240 GOTO 60

MAILING LIST MENU

10 REM *** - -MAILING LIST PROGRAM MENU-- ***
11 :
12 :
2 0 0$ = CHR$ (4): REM CONTROL D

25:
26 :
30 REM * * - -MENU ROUTINE- -* *
40 HOME : VTAB 5
60 HTAB 17 : PRINT "PROGRAM MENU"
80 PRINT : PRINT
100 HTAB 8: PRINT "1. FILE CREATION PROGRAM"
120 PRINT
140 HTAB 8 : PRINT " 2. FILE ADDITION PROGRAM"

MAILING LIST MENU

160 PRINT
180 HTAB 8: PRINT "3. FILE DISPLAY PROGRAM"
200 PRINT
220 HTAB 8: PRINT "4. FILE CORRECTION PROGRAM"
240 PRINT
300 HTAB 8: PRINT "5. CATALOG"
320 PRINT
340 HTAB 8: PRINT "6. END"
360 PRINT : PRINT
380 HTAB 8: INPUT "WHICH PROGRAM NUMBER? ";NUMBER
400 IF NUMBER < 1 OR NUMBER > 6 THEN 380
420 IF NUMBER = 1 THEN 1000
440 IF NUMBER = 2 THEN 2000
460 IF NUMBER = 3 THEN PRINT D$; "RUN MAILING LIST

READER"
470 IF NUMBER= 4 THEN PRINT D$; "RUN MAILING LIST

CORRECTOR"
480 IF NUMBER = 5 THEN PRINT D$; "CATALOG": INPUT "HIT

RETURN TO GO TO MENU " ; L$: GOTO 4 0
500 IF NUMBER = 6 THEN END
600 :
700 :
1000 REM**- -FILE CREATOR PROGRAM--**
1020 PRINT : PRINT "IF THE ADDRESS FILE ALREADY EXISTS"
1040 PRINT : PRINT "DO NOT RUN THIS PROGRAM!!"
1060 PRINT : PRINT "DO YOU WANT THE FILE CREATION

PROGRAM?"
1070 PRINT
1080 INPUT "TYPE I YES I IF YOU DO: II ; YES$
11-00 IE' YES$ = "YES" THEN PRINT D$; "RUN MAILING LIST

CREATOR"
1120 GOTO 40
1140 :
1160 :
2000 REM**- - FILE ADDITION PROGRAM-- * *
2020 PRINT : PRINT "YOU WANT TO ADD TO THE EXISTING"
2040 PRINT : PRINT "ADDRESS FILE. IS THIS CORRECT? "
2060 PRINT : INPUT "TYPE I YES I IF IT IS. " ; YES$
2080 IF YES$ = "YES" THEN PRINT D$; "RUN MAILING LIST

ADDER2"
2100 GOTO 40

95

r

8
EXEC and CHAIN

This chapter is for those who like to try unusual things. It is not
necessary in order to understand normal file handling using Applesoft
BASIC, but if you want to see some ra ther unusual disk use, read on.
Otherwise, unless you are determined to use Integer for your files, you
can skip this chapter. The Di sk Operating System provides two commands
that will form the basis for this chapter: EXEC and CHAIN. CHAIN, as
a command, is only available with Integer BASIC. Apple has provided a
binary routine on their Apple System Master Disket tes (CHAIN) that can
be used from within an Applesoft program to simulate the actual CHAIN
command available to Integer BASIC users. We wil l begin with the EXEC
command.

EXEC

The manuals say that EXEC is a way of controlling the computer as if
the instructions were being typed at the keyboard. The immediate question
arises as to why one would not just type the instructions. The easiest
explanation of the EXEC usefulness is in the form of a demonstration of an
existing program. If you were to try to show a friend what the MA ILI NG
LIST SYSTEM does, you would need to type in all the responses necessary.
But if you had a program that made use of the EXEC command , you could
simply run that program and sit back and watch as the EXEC command
took control of the computer and operated as an automatic and continuous
demonstration of the MAILI NG LIST SYSTEM. Such a program is very
useful when a demonstration is necessary and a knowledgeable operator

96

EXEC 97

is not available. Another example, although probably less useful with the
copy programs available, is the use of the EXEC command to load and save
programs from one disk to anothe r without operator intervention. Such
use might prove benefi cial if only a selected number o f programs were to
be transferred to a working disk and the opera tor did not know how to do
this. Deletions of certa in unwanted programs by an unt rained operator is
best handled by ei ther a program or a text file under the EXEC command .
Another example provided by Apple manuals is a method of transferring
programs from one form of BASIC to the other. They thoughtfully remind
you that transferring the program to the other BASIC will not guarantee
that the program will operate without modifi cation. It probably will not.
These are a few of the uses of this very versat ile command. It is really
fairly unexplored as far as writ ten material goes. It should be possible to
set up a text file in such a way tha t by using the EXEC command, you
could conduct some business while you are away from the computer.

Let's look at how you can set up and use an EXEC fil e. There are at
least three steps to using an EXEC file . The firs t is the creation of a program
that will write out a text fi le containing the instructions the computer will
eventually follow. The second step is the actual text fil e creation, and the
third is the EXECing of that text file. Thus, in the language of the manuals,
you create a program tha t makes a text file that is then EXECed . lt is not
as difficul t to understand and follow as it may sound. The first step is to
create a program that makes a text file. Type the following:

1 0 REM*** - - EXEC FILE CREATOR--***
2 0 D$ = CHR.$ (4): REM CONTROL D
30 Q$ = CHR.$ (34): REM QUOTATION MARK
40 PRINT D$; "OPEN DEMO"
60 PRINT D$; "DELETE DEMO"
80 PRINT D$; "OPEN DEMO "
1 0 0 PRINT D$; "WRITE DEMO "

These are the opening lines in our text file creation program. The only
line that should be unfamiliar is line 30. We need to set a string variable
equal to CHR$(34) in order to do some of the things we will do within
this demonstration program. As previously explained, we open and delete
our file before writing to it so tha t we do not end up wi th unwanted or
unexpected results due to overwriting. After our initial lines, we want to
write instructions to the file. These instructions are the same as if we were
typing at the keyboard, but because the inst ructions are all included wi th
their carriage return, we need to slow down the entire process.

105 PRINT "SPEED = 50 "
107 PRINT "MON I , 0 , C"
110 PRINT "RUN MENU"

98

120 PRINT II 1 II
140 PRINT "N"
160 PRINT "2"
180 PRINT "N"
200 PRINT "3"
220 PRINT "1"
240 PRINT "N"
260 PRINT "N"
280 PRINT "2"
300 PRINT "N"
320 PRINT "N"

CHAPTER 8 EXEC AND CHAIN

Lines 105 through 320 print the information between the quotation marks
to the text file called DEMO. Line 105 sets the speed of the computer at
a rate of 50 rather than its normal 255. Line 107 uses the co mmand that
allows us to see the instructions as they are passed to and from the disk.
Line 110 writes the instruction that will go to the disk, load in the program
MENU, and begin operation of that program. The program MENU will
take command of the computer, and all following text file charac ters will
be viewed by the computer as responses to the various input requests in
the MENU program and any other program called by MENU. Therefore,
line 120 prints out a "1 " . When used under the EXEC command, this
is taken by the computer as a response to the question "WHICH PROGRAM
NUMBER? 11 The N in line 140 indicates that we do not want to continue
with the MAILING LIST CREATOR program. Lines 160 and 180 go
through the same process with program number 2 in the PROGRAM
MENU. In line 200, however, we have requested program number 3, the
MAILING LIST READ ER or display program . Under EXEC control , the
computer will leave the MENU program and go to the MAILI NG LI ST
READER program for its next set of instructions. The print statements
from lines 220 to 660 will all be taken as answers to input questions within
the MAILING LIST READER program. I have le ft room between line 320
and line 500 for you to fill in a name from your own mailing list. At the
end of this chapter, you will find the missing lines and a fi ctitious name.
You can use those lines as a guide if you are having trouble filling in the
proper responses.

500 PRINT 11 6 11

5 20 PRI NT II 50 "
5 40 PRINT II 7 5 "
560 PRINT "N 11

5 80 PRINT 11 N"
600 PRINT " 7 II
620 PRINT " N 11

64 0 PRI NT " N"
660 PRI NT II 8 II

EXEC 99

These lines, again, are taken as responses to questions asked in the
MAILING LIST READER program. In the next section, we will move back
to the MENU program and then on to the MAlLING LIST CORRECTOR
program. Finally, we go back to the MENU program and end.

680 PRINT "4"
700 PRINT "1"
720 PRINT "100"
725 PRINT "N"
730 PRINT "TEST OF CORRECTION PROGRAM"
740 PRINT "Y"
750 PRINT "0"
760 PRINT "2"
780 PRINT "135"
800 PRINT "YES"
820 PRINT "4"
840 PRINT 11 6 11

These are responses to the various questions asked in ei ther the MENU
program or MAILING LIST CORRECTOR program. The final section
puts things back the way they were originally.

860 PRINT "SPEED=255"
880 PRINT "NOMON I, 0, C"
900 PRINT "PRINT"Q$"THE ADDRESS FILE WAS NOT

CHANGED"Q$
920 PRINT "PRINT"Q$"BY THIS DEMO . "Q$
1000 PRINT D$; "CLOSE DEMO"

There are several new things in this section. Line 880 is the opposite of
line I 07 in that it turns off the display of commands to and from the disk.
Line 900 is the first instance of using 0$. To understand why we use 0$,
remember that we are writing this information to a text file. To write to
the disk requires the use of the command PRINT with the characters that
are to be written enclosed by quotation marks. One of the things that we
now want to write to disk is the word PRINT itself, used as a computer
command, with material also enclosed in quotes. In effect, we must have
quotes within quotes. One of the ways to accomplish this is by setting 0$
equal to CHR$(34), which is the value for a quotation mark. Thus, we
actually have quotation marks within quotation marks. Finally, line 1000
closes the file. The first step of the EXEC process is finished.

Once you have this program typed in and checked, save the program
on the same disk as the rest of the programs from this book. Then type:
RUN. The disk should come on for a short time and then the cursor will
return. If you type CATALOG, you should see two new files on the disk.
One file will be the program you saved before typing RUN. The other file

100 CHAPTER 8 EXEC AND CHAIN

should be DEMO and should be a text file. You have just completed the
second step in using EXEC files .

The final step is using the EXEC command. All that is really necessary
now is to type: EXEC DEMO. You should be able to sit back and watch
the computer go through a demonstration of the MAILI NG LIST SYSTEM
programs. Another way would be to modify the MENU program to include
the option of this automatic demo. You can use the EXEC command from
within a program in the same way you use other DOS commands such
as RUN. The time required to complete the demonstra tion will depend
upon the size of your mailing list. If you either have typed an error or
do not have a mailing list with at least 135 lines of information, you will
probably get an error message. You have now used the EXEC command in
a fairly sophisticated way to control the computer without actually typing
in responses. As I indicated, this is only one way to use this ve rsatile
command. I do not think that its potentiali ties have even been approached.

CHAIN

CHAIN allows a programmer to link two or more programs while
keeping the values created or established in the first program. In othe r
words, the variable values remain from one program to the other. If you
have a program that creates a value tha t could be used by a second program ,
one of the ways to accomplish such use is by way of CHAIN.

CHAIN is really two different things. In Integer BASIC, it can be
used as a command. In Applesoft BASIC, however, there is no CHAI N
command. Rather, there is a chain binary file tha t can be called from within
the program. We will go over both methods, but I repeat that knowledge
of CHAIN is not necessary in order to make effective use of the Apple's
file handling capabilities.

INTEGER BASIC CHAIN

We begin with Integer BASIC CHAIN, because it is by far the easiest
to use. Theoretically, all that is necessary to use CHAIN is to include thi s
line as the last executed line of the first program.

PRINT D$; "CHA IN name of program to fo l low"

For example, if you want to pass the values of your variables from program
A to program 8, the line would read: PRINT D $;"CHAIN B". At tha t
point, the computer would go to the disk, load the program called B, and
begin execution according to the instructions o f program B. The values
created or established in program A would remain in memory and not be

APPLESOIT BASIC CHAI 101

erased as is normally the case when a new program is RUN. Program B
can then chain to program C and so on. The time involved for thi s chain to
occur is no longer than if the line read : PRI NT D $; "RUN B". This fact is a
definite advantage for Integer BASIC users, since the Applesoft BASIC
chain method takes more time than simply RUNning a new program.
CHAIN in Integer is very easy to use and might often be nice to have
available. There are some things to watch out for, but they are common
to both me thods and will be discussed after the Applesoft BASIC method.

APPLESOFf BASIC CHAIN

Pages I 06 and I 07, in both the DOS 3.2 and 3.3 manuals, give the
instructions for using CHAIN. In order to be able to pass the values of
variables from one program to another using a chain method, one must
load the binary program CHAIN off of the Apple System Master Diskette
which comes with the purchase of a disk drive and a controller card. The
binary program CHAIN must be transferred to your diskette by either the
FID program (for 3.3 users) or by BLOADing and BSAVEing in one of
the following ways:
I. APPLESOFf ON DISKETTE:

BLOAD CHAIN , Al2 296
Remove Apple diskette, insert your diskette.
BSAVE CHAIN, Al2296 , L456

2. APPLESOFf IN ROM :
BLOAD CHAIN , A2056
Remove Apple diskette, insert your diskette.
BSAVE CHAIN , A2056 , L456

Now you must add two lines as the last two instruction Ji nes executed in
the first program. The las t line must be typed very carefully.

PRINT 0$; "BLOAD CHAIN, A5 2 0"
CALL 520"name of program to follow "

BLOAD, BSAVE and BRUN are the commands necessary to access binary
files. Both of the above lines need line numbers and these lines must be
the last two instructions executed in the initial program. The line with
CALL in it has to be typed without a space between the 0 and the ". For
example, if you want to pass the values of your variables from program A
to program B, the line would read: CALL 520 "B". When executed, the
computer must first load the binary file CHAIN, then protect the variable
values, and finally load program B from disk and begin operation according
to the instructions in program B. I found that thi s procedure can take
quite a while, in some circumstances almost a minute . I know that one
minute does not sound like a very Jong ti me, but when compared to the

102 CHAPTER 8 EXEC A 'D CHAI 1

few seconds tha t same operation ta kes in Integer , it seems quite long.
When chaining programs together in both Integer and Applesoft , you

must make sure that variables that should not overlap, do not overlap. If
you are not careful , the value in chaini ng can be lost by obtaining inaccurate
results. For example, if you try to chain two programs that were created
separately, it is possible to bring from the first program a variable that is
redefined to a constant or one used as a counter in the second program.
Variables tha t require DIMensioning may also cause a problem. If you
have DIMensioned a variable in program A, and also DIMensioned that
same variable in program B, you will get a REDIM 'D ARRAY ERROR
when the cha in occurs.

One way to simulate a chain without using the Applesoft CHAIN
method is to write out the variable values you want to keep to a temporary
sequential text file. Then, any program that you want to use those values
can access them by opening the fil e and reading them in. This method
requires extra code in both programs but, in the long run, may prove fas ter
and safer.

The difference in handling chaining makes Integer BASIC appear to be
the better BAS IC, but this is just about the only time Integer has the edge
over Applesoft when dealing with files. Probably the biggest problem with
Integer is tha t it does not have string array capability. This lack can cause
some real problems when trying to input string data from disk. It can be
done but requi res a great deal more code than Applesoft. A sample Integer
program for reading in and printing out the contents of the ADDRESS
FILE is included at the end of this chapter .

In the next chapter , we will ta ke a look at other sequenti al access
programs and different techniques for sequential file handling.

QUESTIONS

I . What DOS command can contro l the computer as if instructions were
being typed at the keyboard?

2. How ma ny steps are there in using the EX EC command?

3. What does CHR $(34) equal?

4. What Applesoft BASIC word controls the display rate?

5. What function allows a programmer to link two or mo re programs
whilt: preserving the original value of the variables?

6. TRUE or FALSE: Applesoft can make use of the DOS command
CHAIN.

7. Name the commands necessary to access Binary files.

CHAPTER 8 EXEC AND CHAIN 103

ANSWERS

1. EXEC
2. 3
3. A Quotation Mark

4. SPEED

5. Chain

6. FALSE

7. BLOAD, BSAVE, and BRUN

104 CHAPTER 8 EXEC AND CHAIN

EXEC FILE CREATOR

10 REM***- -EXEC FILE CREATOR-- ***
11:
12 :
20 D$ = CHR$ (4): REM CONTROL D
30 Q$ = CHR$ (34): REM QUOTATION MARKS
31
32 :
35 REM**- -FILE CREATION- - **
40 PRINT D$; II OPEN DEMO II
60 PRINT D$; "DELETE DEMO"
80 PRINT 0$; "OPEN DEMO"
100 PRI NT 0 $; "WRITE DEMO"
101
102
104 REM** - - SET UP - - **
105 PRINT "SPEED = 50"
107 PRI NT "MON I , 0 , C"
108 :
109 REM* * - -MENU--**
110 PRINT "RUN MENU"
120 PRINT "1"
140 PRINT "N"
160 PRI NT "2"
180 PRINT "N"
200 PRINT " 3"
205 :
206:
210 REM * * - -READER- -* *
22 0 PRINT "1"
240 PRINT " N"
260 PRINT " N"
280 PRINT "2"
300 PRINT "N"
320 PRINT "N"
340 PRINT "4"
360 PRINT "RON WISE "
380 PRINT "N"
400 PRINT "END"
410 PRINT "N"
420 PRINT "5"

EXEC FILE CREATOR

440 PRINT "RON WISE"
460 PRINT "N"
480 PRINT "END"
490 PRINT "N"
500 PRINT "6"
520 PRINT "50"
540 PRINT " 75 II
560 PRINT "N"
580 PRINT "N"
600 PRINT "7"
620 PRINT " N"
640 PRINT "N"
660 PRINT "8 II
665
666
670 REM** - -MENU--**
680 PRINT "4"
685
686
690 REM** - - CORRECTOR - -**
700 PRINT "1"
720 PRINT "100 II
725 PRINT "N"
730 PRINT "TEST OF CORRECTION PROGRAM"
740 PRINT "Y"
750 PRINT "0"
760 PRINT "2"
780 PRINT "135"
800 PRINT "YES"
820 PRINT " 4"
825
826
830 REM **- - MENU- -* *
840 PRINT " 6"
845
846
850 REM**- -RESTORE--**
860 PRINT "SPEED = 255"
880 PRINT " NOMON I, 0, C"

105

900 PRINT "PRINT"Q$ "THE ADDRESS FILE WAS NOT CHANGED"Q$
920 PRINT "PRI NT"Q$"BY THIS DEMO. "Q$
1000 PRINT D$; "CLOSE DEMO"

106 CHAPTER 8 EXEC A D CHAIN

MENU CHAIN

10 REM MAILING LIST PROGRAM MENU
20 D$ = CHR$ (4): REM CONTROL D
40 HOME : VTAB 5
60 HTAB 1 7 : PRINT "PROGRAM MENU"
80 PRINT : PRINT
100 HTAB 8: PRINT "l. FILE CREATION PROGRAM"
120 PRINT
140 HTAB 8: PRINT "2. FILE ADDITION PROGRAM"
160 PRINT
180 HTAB 8 : PRINT " 3. FILE DISPLAY PROGRAM"
200 PRINT
220 HTAB 8: PRINT "4. FILE CORRECTION PROGRAM "
240 PRINT
300 HTAB 8: PRINT "5. CATALOG"
320 PRINT
340 HTAB 8: PRINT 11 6. END"
360 PRINT : PRINT
380 HTAB 8: INPUT "WHICH PROGRAM NUMBER? ";NUMBER
400 IF NUMBER < 1 OR NUMBER > 6 THEN 380
420 IF NUMBER = 1 THEN 1000
440 IF NUMBER = 2 THEN 2000
460 IF NUMBER = 3 THEN PRINT D$; "RUN MAILING LIST

READER"
470 IF NUMBER = 4 THEN 4000
480 IF NUMBER = 5 THEN PRINT D$; "CATALOG" : INPUT "HIT

RETURN TO GO TO MENU" ; L$: GOTO 40
500 IF NUMBER = 6 THEN END
1000 REM FILE CREATOR PROGRAM
1020 PRINT: PRINT "IF THE ADDRESS FILE ALREADY EXISTS"
1040 PRINT : PRINT "DO NOT RUN THIS PROGRAM! ! "
1060 PRINT : PRINT "DO YOU WANT THE FILE CREATION PROGRAM?"
1070 PRINT
1080 INPUT "TYPE I YES I IF YOU DO : II ; YES$
1100 IF YES$ = "YES THEN PRINT D$; RUN MAILING LIST

CREATOR"
1120 GOTO 40
2000 REM FILE ADDITION PROGRAM
2020 PRINT : PRINT "YOU WANT TO ADD TO THE EXISTING"
2040 PRINT : PRINT "ADDRESS FILE. IS THIS CORRECT? "
2060 PRINT : INPUT "TYPE I YES I IF IT IS. II ; YES$

PROGRAM CAPTURE

2080 IF YES$ = "YES THEN PRINT D$; RUN MAILING LIST
ADDER2"

2100 GOTO 40
4000 PRINT D$; "BLOAD CHAIN, A520"
4020 CALL 520 "MAILING LIST CORRECTOR"

PROGRAM CAPTURE

10 REM***- -PROGRAM CAPTURE--***
15 D$ = CHR$ (4): REM CONTROL D
16 PRINT D$; "OPEN PROGRAM CAPTURE"
17 PRINT D$; "WRITE PROGRAM CAPTURE"
18 POKE 33, 33
19 LIST 1, 2100: PRINT D$; "CLOSE PROGRAM CAPTURE": TEXT

: END
20 D$ = CHR$ (4) : REM CONTROL D
40 HOME : VTAB 5
60 HTAB 17 : PRINT "PROGRAM MENU"
80 PRINT : PRINT
100 HTAB 8: PRINT "1 . FILE CREATION PROGRAM"
120 PRINT
140 HTAB 8 : PRINT "2. FILE ADDITION PROGRAM"
160 PRINT
1 80 HTAB 8 : PRINT " 3. FILE DISPLAY PROGRAM"
200 PRINT
220 HTAB 8: PRINT "4 . FILE CORRECTION PROGRAM"
240 PRINT
300 HTAB 8 : PRINT "5 . CATAlOG"
320 PRINT
340 HTAB 8: PRINT "6 . END"
360 PRINT : PRINT
380 HTAB 8 : INPUT "WHICH PROGRAM NUMBER? ";NUMBER
400 IF NUMBER < 1 OR NUMBER > 6 THEN 380
420 IF NUMBER = 1 'T'HEN 1000
440 IF NUMBER = 2 THEN 2000
460 IF NUMBER = 3 THEN PRINT D$; "RUN MAILING LIST

READER"
470 IF NUMBER = 4 THEN PRINT D$; "RUN MAILING LIST

CORRECTOR"
480 IF NUMBER = 5 THEN PRINT D$; "CATALOG" : INPUT "HIT

RETURN TO GO TO MENU"; L$: GOTO 40
500 IF NUMBER = 6 THEN END

107

108 CHAPTER 8 EXEC A D CHAIN

1000 REM FILE CREATOR PROGRAM
1020 PRINT : PRINT "IF THE ADDRESS FILE ALREADY EXISTS"
1040 PRINT : PRINT "DO NOT RUN THIS PROGRAM!!"
1060 PRINT : PRINT "DO YOU WANT THE FILE CREATION PROGRAM?"
1070 PRINT
1080 INPUT "TYPE 'YES' IF YOU DO : "; YES$
1100 IF YES$ = "YES" THEN PRINT D$; "RUN MAILING LIST

CREATOR"
1120 GOTO 40
2000 REM FILE ADDITION PROGRAM
2020 PRINT : PRINT "YOU WANT TO ADD TO THE EXISTING"
2040 PRINT : PRINT "ADDRESS FILE . IS THIS CORRECT? "
2060 PRINT : INPUT "TYPE I YES I IF IT IS. II; YES$
2080 IF YES$ = "YES" THEN PRINT D$; "RUN MAILING LIST

ADDER2"
2100 GOTO 40

INTEGER MAILING LIST READER

10 REM INTEGER MAILING LIST READER
20 D$ = II II: REM CONTROL D
40 DIM NAME$ (5 0) I A$ (50) ' BLANK$ (10)
50 REM INPUT ROUTINE
60 Q = 1
80 PRINT D$; "OPEN ADDRESS FILE"
100 PRINT D$; "READ ADDRESS FILE "
120 INPUT K
140 INPUT BLANK$
160 DIM A (K*15)
180 FOR I = 1 TO K- 1
200 INPUT NAME$
220 IF NAME$ = II II THEN 380
240 LN = LEN (NAME$)
260 FOR J = 1 TO LN
280 A (Q) = ASC (NAME$ (J)) : REM CONVERT TO NUMBER
3 00 Q = Q+ 1
320 NEXT J
340 A (Q) = 161
360 Q = Q+ 1
380 NEXT I
400 PRINT D$; "CLOSE ADDRESS FILE"
500 REM DISPLAY ROUTINE
520 T = Q- 1

CHARACTER ROUTINE I

540 FOR Q = 1 TO T
560 GOSUB 5000: REM CONVERT TO CHARACTER
580 IF A$ = 11 ! 11 THEN PRINT
600 IF A$= 11 ! 11 THEN 660
620 IF A$ = 11 * 11 THEN 660
640 PRINT A$;
660 NEXT Q
1000 END

CHARACTER ROUTINEI

5000 REM CHARACTER ROUTINE
5160 IF A (Q) 160 THEN 6160
5161 IF A (Q) 161 THEN 6161
5162 IF A (Q) 162 THEN 6162
5163 IF A (Q) 163 THEN 6163
5164 IF A (Q) 164 THEN 6164
5165 IF A (Q) = 165 THEN 6165
5166 IF A (Q) = 166 THEN 6166
5167 IF A (Q) 167 THEN 6167
5168 IF A (Q) 168 THEN 6168
5169 IF A (Q) 169 THEN 6169
5170 IF A (Q) 170 THEN 6170
5171 IF A (Q) 171 THEN 6171
51 72 IF A (Q) = 1 72 THEN 61 72
51 73 IF A (Q) = 1 73 THEN 61 73
5174 IF A (Q) 174 THEN 6174
5175 IF A (Q) 175 THEN 61 75
51 76 IF A (Q) 1 76 THEN 61 76
5177 IF A (Q) 177 THEN 6177
51 78 IF A (Q) = 1 78 THEN 61 78
5179 IF A (Q) = 179 THEN 6179
5180 IF A (Q) 180 THEN 6180
5181 IF A (Q) 181 THEN 6181
5182 IF A (Q) 182 THEN 6182
5183 IF A (Q) 183 THEN 6183
5184 IF A (Q) 184 THEN 6184
5185 IF A (Q) 185 THEN 6185
5186 IF A (Q) 186 THEN 6186
5187 IF A (Q) 187 THEN 6187
5188 IF A (Q) 188 THEN 6188
5189 IF A (Q) 189 THEN 6189
5190 IF A (Q) 190 THEN 6190

109

110

5191 IF A (Q)

5192 IF A (Q)

5193 IF A (Q)

5194 IF A (Q)

5195 IF A (Q)

5196 IF A (Q)

5197 IF A (Q)

5198 IF A (Q)

5199 IF A (Q)

5200 IF A (Q)

CHAPTER 8

191 THEN 6191
192 THEN 6192
193 THEN 6193
194 THEN 6194
195 THEN 6195
196 THEN 6196

= 197 THEN 6197
198 THEN 6198
199 THEN 6199

= 200 THEN 6200
5201 IF A (Q) = 201 THEN 6201
5202 IF A (Q) 202 THEN 6202
5203 IF A (Q) 203 THEN 6203
5204 IF A (Q) 204 THEN 6204
5205 IF A (Q) 205 THEN 6205
5206 IF A (Q) = 206 THEN 6206
5 207 IF A (Q) = 207 THEN 6207
5208 IF A (Q) 208 THEN 6208
5209 IF A (Q) 209 THEN 6209
5210 IF A (Q) = 210 THEN 6210
5211 IF A (Q) 211 THEN 6 2 11
5212 IF A (Q) = 212 THEN 6212
5213 IF A (Q) 213 THEN 6213
5214 IF A (Q) 214 THEN 6214
5215 IF A (Q) = 215 THEN 6215
5216 IF A (Q) 216 THEN 6216
5217 IF A (Q) = 217 THEN 621 7
5 218 IF A (Q) = 218 THEN 6218
6160 A$ = II II : RETURN
61 61 A$ = II! II : RETURN
6162 A$ = II I II : RETURN

61 63 A$ = 11 * II : RETURN
6164 A$= 11 $ 11 : RETURN
6165 A$ = 11 %t1 : RETURN
6166 A$ = t1& t1 : RETURN
6167 A$ = I ti : RETURN
6168 A$ = (t1 : RETURN
6169 A$ =) II : RETURN
61 70 A$ = *II : RETURN
6171 A$ = + II: RETURN
61 72 A$ = II : RETURN
6173 A$ = - II : RETURN
61 7 4 A$ = ti II : RETURN
6175 A$ = ti I II : RETURN

EXEC AND CHAIN

CHARACTER ROUTINE I II I

6176 A$ = "0" : RETURN
6177 A$= "1": RETURN
6178 A$= "2" : RETURN
6179 A$ = "3": RETURN
6180 A$ = "4" : RETURN
6181 A$ = 5": RETURN
6182 A$ = 6 :RETURN
6183 A$ = 7 : RETURN
6184 A$ = 8 : RETURN
6185 A$ = 9 : RETURN
6186 A$ = : RETURN
6187 A$ = : RETURN
6188 A$ = < " : RETURN
6189 A$ = =II : RETURN

6190 A$ = > " :RETURN
6191 A$ = ? II : RETURN

6192 A$ = @ 11 :RETURN
6193 A$ = "A11 :RETURN
6194 A$ = "B :RETURN
6195 A$ = 11c : RETURN
6196 A$ = 110 :RETURN
6197 A$ = llE :RETURN
6198 A$ = "F :RETURN
6199 A$ = llG : RETURN
6200 A$ = 11H11 : RETURN

6201 A$ = II I II :RETURN
6202 A$ = "J" : RETURN
6203 A$ = "K" : RETURN
6204 A$ = "L" : RETURN
6205 A$ = "M" :RETURN
6206 A$ = "N" : RETURN
6207 A$ = 110 11 :RETURN
6208 A$ = "P " : RETURN
6209 A$ = "Q '' : RETURN
6210 A$ = "R" : RETURN
6211 A$ = 115 11 : RETURN
6212 A$ = "T " :RETURN
62 1 3 A$ = 11u 11 : RETURN
6214 A$ = "V '' : RETURN
6215 A$ = 11w" : RETURN
6216 A$ = "X11 :RETURN
6217 A$= 11y11 :RETURN
6218 A$ = "Z" : RETURN

112 CHAPTER 8 EXEC AND CHAI N

CHARACTER ROUTINE2

5000 REM CHARACTER ROUTINE
5160 IF A (Q) 160 THEN A$ = II II

5161 IF A (Q) 161 THEN A$ = "I II

5162 IF A (Q) 162 THEN A$ = It I II

5163 IF A (Q) 163 THEN A$ = "*"
5164 IF A (Q) 164 THEN A$ = "$"
5165 IF A (Q) 165 THEN A$ = "%"
5166 IF A (Q) 166 THEN A$ = "&"
5167 IF A (Q) = 167 THEN A$ = II I ti

5168 IF A (Q) 168 THEN A$ = " ("
5169 IF A (Q) = 169 THEN A$ = ") "
5170 IF A (Q) 170 THEN A$ = "*"
5171IFA(Q) 171 THEN A$ "+If
5172IFA(Q) 172 THEN A$ " " '
5173 IF A (Q) 173 THEN A$ " - "
5174IFA (Q) = 174 THEN A$ " "
5175IFA(Q) 175 THEN A$,, I "
5176IFA(Q) 176 THEN A$ "0"
5177IFA(Q) = 177 THEN A$ "l"
5178IFA(Q) 1 78 THEN A$ "2"
5179 IF A (Q) 179 THEN A$ "3"
5180 IF A (Q) 180 THEN A$ "4"
5181 IF A (Q) = 181 THEN A$ t1511

5182 IF A (Q) = 182 THEN A$ "6"
5183 IF A (Q) 183 THEN A$ 11711

5184 IF A (Q) = 184 THEN A$ ''8"
5185 IF A (Q) 185 THEN A$ 11911

5186 IF A (Q) 186 THEN A$ " .It
5187 IF A (Q) = 187 THEN A$ ".It

'
5188 IF A (Q) 188 THEN A$ "< "
5189 IF A (Q) 189 THEN A$ = ''="
5190 IF A (Q) 190 THEN A$ = "> "
5191 IF A (Q) 191 THEN A$ = ,, ? If

5192 IF A (Q) = 192 THEN A$ = " @ "
5 193 IF A (Q) = 193 THEN A$ = "A"
5194 IF A (Q) 194 THEN A$ = "B"
5195 IF A (Q) 195 THEN A$ = "C"
5196 IF A (Q) = 196 THEN A$ = "D"
5197 IF A (Q) = 197 THEN A$ = ''E "

CHARACTER ROUTINE2 113

5198 IF A (Q) 198 THEN A$ = "F"
5199 IF A (Q) 199 THEN A$ = "G"
5200 IF A (Q) 200 THEN A$ = "H"
5201 IF A(Q) 201 THEN A$ = "I"
5202 IF A (Q) 202 THEN A$ = "J"
5203 IF A (Q) 203 THEN A$ = "K"
5204 IF A (Q) 204 THEN A$ = "L"
5205 IF A (Q) 205 THEN A$ = "M"
5206 IF A (Q) 206 THEN A$ = "N"
5207 IF A (Q) 207 THEN A$ = "0"
5208 IF A (Q) 208 THEN A$= "P"
5209 IF A (Q) 209 THEN A$ = "Q"

5210 IF A (Q) 210 THEN A$ = "R"
5211 IF A (Q) 211 THEN A$ = "S"
5212 IF A (Q) 212 THEN A$ = "Tu

5213 IF A (Q) 213 THEN A$ = "U"
5214 IF A (Q) 214 THEN A$ = "V"
5215 IF A (Q) 215 THEN A$ = "W"
5216 IF A (Q) 216 THEN A$= "X"
5217 IF A(Q) 217 THEN A$ = "Y"
5218 IF A (Q) 218 THEN A$= "Z"
6000 RETURN

r

8
Additianal

Sequential File Techniques

We are going to explore some other ways to work with sequential files
and look at additional techniques for file handling. In this chapter, I am
going to concentrate on the file routines of the various programs presented
and not discuss the rest of the programming. The list ings for the complete
programs are included at the end of this chapter along with an explanation
of the new commands used in these programs.

We will begin with a series of programs that allows an individual to
practice math and keep a record of the scores achieved . These programs
are essentially drill and practice and may not be the best educational use of
the computer, but for the purpose of demonstrating how files can be used
in a variety of ways, these drill and practice programs will be sufficient.

We again start with careful thought and preparation. We need a
separate program for each mathematical operation, along with a program
for the scores. This means that ano ther program menu would be con­
venient. The essential difference between the operation programs is the
sign of the operat ion-"+" for addition , "x" for multiplica tion, and so
fort h. With the exception of division, the numbers can be displayed in
basically the same way. Therefore, the program presented for addition can
also be used for subtractio n and multiplication with changes made to only
five lines: I 0, 140, 220, 500, and 520. In all of those lines, the references
to addition should be changed to the desired operation.

LOAD ADD

LIST 10

Line IO is:

10 REM ***- -ADDITION-- ***

11 11

CHAPTER 9 ADDITIONAL SEQUENTIAL FILE TECHNIQUES

Line I 0 should be:

10 REM***- -SUBTRACTION-- ***

or

10 REM***- -MULTIPLICATION- - ***

Lines 500 and 520 are the most important to change.

500 C = B + A
520 S$ = II+ II

Change to:

500 C = B - A
520 S$ = 11

-
11

or

500 C = B * A
520 S$ = 11 X 11

Once all the changes have been made, SAVE the new program :

SAVE SUBTRACT

or

SAVE MULTIPLY

115

The program for divis ion has additional code because the numbers
must be formatted differently, and provisions have been made so that all
problems come out even. All these programs can be included in one large
program, but the flow of logic in the program would not be as easy to
follow as it is with separate programs. Little would be gained by forcing
everything into one program since DOS allows us to switch from one
program to another.

We must carefully consider what we want to save in our scores file .
There are several pieces of informa tion that might be important to save, but
a good rule is to save only what is absolutely necessary- what it would be
hard or impussiblt: to calculate from existing information. For example, we
could save the total number of problems, the number correct, the number
wrong, the percentage, the name of the individual, the kind of mathematical
operation, the number of digits chosen, and so forth. If the programs
were slightly altered, we could also save the actual problems missed, the
number of tries on a particular problem, and the last question the person
tried. Obviously, all this information is not necessary, although certain
individuals might value and save information others would not want.

The firs t step is to decide what information to save. In this example,
we will save four things : the type of operation, the number of digits in

116 CHAPTER 9 ADDITIONAL SEGUE TIAL FI LE TECHNIQUES

the operation, the number of correct answers, and the number of wrong
answers. Once we decide what to save, we need only save the ass igned
variables for these pieces of information. The code to do this is given
below.

2000 REM* * - - FILE ROUTINE-- **
2020 D$ = CHR$ (4): REM CONTROL D
2040 ONERR GOTO 2180
2060 PRINT D$; "APPEND"; NAME$
2080 PRINT D$; "WRITE " ; NAME$
2085 PRINTS$: REM SIGN OF OPERATION
2090 PRINT DT : REM :#= OF DIGITS
2100 PRINT CR: REM :#: CORRECT
2120 PRINT WR : REM :#= WRONG
2140 PRINT D$; "CLOSE"; NAME$
2160 PRINT D$; "RUN MATH MENU"
2180 POKE 216, 0
2200 PRINT D$; "OPEN"; NAMES
2220 GOTO 2080

Some of th is should be fami liar, but the sequence and a few commands may
appear d ifferent. The statement in 2040, ONERR GOTO, can be a very
useful feature in file manipulation. This statement allows us to combine
easily in one program what it normally takes two program s to do.

Remember that in our MAILING LIST SYSTEM program s, we used
one program to create the ADDRESS FILE and another program to add
to it. Such a sequence is usually necessary when creating a file that
will later be added to. The use of the OPEN command places the file
pointer at the very beginning of the file. Then any information that you
write to the file overwrites in formation already in the file . That is the
reason for the APPEND command. But you cannot create a file with the
APPEND command. However, with the above routine, the need for two
such programs is eliminated.

The ONERR GOTO sta tement tells the computer tha t when it tries to
APPEND information to a non-existent fil e, instead of halting operation and
displaying an error message, control is to be transferred to the instruct ions
beginning with line 2180. The instruction a t 2180 is known as resett ing
the error flag. This simply means that everything is put back the way
it was before the error occurred. I have found that this is usually the
best idea, because some undesirable results can occur if the error flag is
not immediately reset after a disk error has occurred. POKE 2 16,0 is
not exactly descriptive o r memorable, but it is necessary and is one of
those "numbers" important to remember. This combination of ONERR
GOTO .. . POKE 216,0 will be used in other file routines, and you may be
surprised at how useful this combinati on can be. Following 2 180 , 2200

CHAPTER 9 ADDITIONAL SEQUENTIAL FILE TECHNIQUES 117

instructs the computer to PRINT D$;"0PEN";NAME$. So now we have
the following sequence: The first time the program is run, the computer
will attempt to APPEND information into a file that does not yet exist.
When that error occurs, control will be transferred to the instructions
that (I) reset the error flag, then (2) OPEN the file, and finally, (3) send
the computer back up to the instructions that come after the APPEND
command. Thus the file is created, and the first set of information writ ten
into the file . The second time (and succeeding times) the program is run,
the computer APPENDs information into the file because it finds that such
a file does exist. Therefore, no error occurs, and the instructions at 2180,
2200, and 2220 are not encountered. We have accomplished in one routine
what would normally have taken two routines to do.

You should also notice that we are using a variable for the file name.
In our MAILING LIST SYSTEM programs, we always used the constant
"ADDRESS FILE". But in th is situation, and most file routines, it is more
convenient to assign a variable as the file name. Anytime an individual uses
any of these programs, the information is kept in a file under tha t person's
name. By using a variable for the file name, we eliminate the need for
separate programs for each person who uses the ADDITION program or
any of the other math operat ion programs.

You must be careful to type your name the same way every time you
use the programs. For example, if I answer that my name is DAVID the
first time I use these programs, the file will be created under the name
of DAVID. If I come back later and answer that my name is DAVE, a
new and separate file will be created for DAVE. As with most things,
there are advantages to the use of a variable for the file name, but there
are also disadvantages. The user may get ti red of being required to type
his/ her name, but the use of a variable for the file name remains a popular
programming technique. The variable must be a string variable since no
file name can begin with a number. (The file name can contain a number
but just cannot begin with a number.)

The file routine used in the program SCORES is very similar to the one
just discussed, but instead of writing information to the disk, this routine
reads information from the disk.

20 0 $ = Cl-ffi$ (4) : REM CONTROL D
40 ONERR GOTO 380
60 DIMS$ (100) , OT (100)
80 DIM CR (100) , WR (1 00)
100 I = 1
120 HOME: VTAB 5
1 40 INPUT " STUDENT'S NAME PLEASE? " ;NAME$
160
180 :

118 CHAPTER 9 ADDITIONAL SEQUENTIAL FILE TECHN IQUES

200 REM**- -FILE ROUTINE--**
220 PRINT D$; "OPEN"; NAME$
240 PRIND D$; "READ"; NAME$
260 INPUTS$ (I)
280 INPUT DT(I)
300 INPUT CR (I)
320 INPUT WR (I)
340 I = I + 1
360 GOTO 260
380 POKE 216, 0
400 PRINT D$; "CLOSE"; NAME$

Lines 20 to 180 are necessary to set up the file input routine in lines 200
to 400. This time, the ON ERR GOTO is used to test for the end of the file
or the end of the data. If the ONERR GOTO statement is not included,
we have no way of telling how much information or how many records
exist in the file. We did not keep track of that information by writing
out a counter to the file like we did in the MAILING LIST SYSTEM.
Without the ONERR GOTO statement, we would get an END OF DATA
error message and the program would halt. With that ONERR GOTO
statement, the computer is instructed to go to the instruction at line 380
and proceed from there. First, we reset the error flag and then close the
file, since we are now certain that we have all the information the file
contains. Once again, the ONERR GOTO statement has come in very
handy. This time it saves both programming and disk space.

You should notice one other major difference in this routine. In most
of our programs, we have used FOR ... NEXT loops. But this time, we do
not know how many items the file contains and therefore, do not know how
large the counter eventually needs to become. It is true that we could pick
an arbitrary number, but a better method is the one used in this routine.
This method is still a loop since the computer is instructed to follow the
instructions down to line 360 and then go back to the instruction at line
260 and do everything over again. What gets us out of thi s loop? The
ONERR GOTO statement does when it executes as the end of the file is
encountered. When this loop is fini shed, we should have the values we
want from the file and be able to proceed to the display routine.

These math programs provide additional file handling techniques, as
well as a set of useful drill and practice programs. The menu program uses
the same method we have been using to display a set of choices and then
run the appropriate program. Apart from file handling, the math programs
also have some programming techniques tha t might prove interesting.

To conclude this chapter, I have added two other programs that make
use of file handling and fit our purpose of demonstrating filing techniques.
Both programs are presented in a rough form. Individual s may wish to add

CHAPTER 9 ADDITIONAL SEQUENTIAL FILE TECHNIQUES 11 9

parts to these programs or modify the format. A random access recipe file
would probably provide a better method for this particular application. To
make this recipe program useful, recipes should probably be grouped; i.e. ,
desserts, appetizers, main dish, etc. with a separate file for each grouping
(change recipe name to appetizer name, dessert name, and so forth).

In the final chapter on sequential access files, we will take a brief look
at the possibility of a standard method for storing data so tha t the data can
be used by a variety of commercial programs.

r
NEW COMMANDS OR TERMS

IN THE FOLLOWING PROGRAMS

I. ": Raise to the power of the number following this symbol.
2. RND : Generate a random number.
3. INT : Take only the integer portion of the number in parantheses.
4. LEN : Find the length of the string in terms of the number of

characters in the string.
5. STR$: Convert the specified number into a string value.
6. CHR$(95): Display the underl ine character.
7. DEF FN : Define a func tion. This useful command allows a pro­

grammer to set a single variable equal to a complete equation.
8. SGN: Produce the sine of the specified value.
9. VAL: Give the numeric value of a string.

120 CHAPTER 9 ADDITIONAL SEQUENTIAL FI LE TECHNIQUES

QUESTIONS

1. A good rule to follow in deciding what information to save is to save:
(A) everything possible, (B) as little as possible, (C) only what is
absolutely necessary.

2. What Applesoft command allows programmers to check for an error
and then proceed to a specific set of instructions?

3. TRUE or FALSE: APPEND can open a file.

4. TRUE or FALSE: It is never possible to use a variable as a file name.

5. Which BASIC statement retrieves only the integer portion of a num­
ber?

6. Which BASIC statement converts a number into a string?

7. Which BASIC statement converts a string into a number?

CHAPTER 9 ADDITIONAL SEQUENTIAL FILE TECHNIQUES 121

ANSWERS

1. c
2. ONERR .. GOTO

3. FALSE

4. FALSE

5. INT

6. STR$

7. VAL

122 CHAPTER 9 ADDITIONAL SEQUENTIAL FILE TECHNIQUES

MATH MENU

10 REM*** - -MATH MENU--***
20 D$ = CHR$ (4): REM CONTROL D
40 HOME : VTAB 2
60 HTAB 14: PRINT "MATH MENU"
80 PRINT : PRINT
100 HTAB 8: PRINT "1. ADDITION"
120 PRINT
140 HTAB 8: PRINT "2. SUBTRACTION"
160 PRINT
180 HTAB 8: PRINT "3. MULTIPLICATION"
200 PRINT
220 HTAB 8: PRINT "4. DIVISION"
240 PRINT
300 HTAB 8: PRINT "5. SCORES"
320 PRINT
340 HTAB 8: PRINT "6. INFORMATION"
345 PRINT
350 HTAB 8:PRINT "7. END"
360 PRINT : PRINT
380 HTAB 8: INPUT "WHICH PROGRAM NUMBER? ";NUMBER
400 IF NUMBER < OR NUMBER > 7 THEN 380
420 IF NUMBER= 1 THEN PRINT D$; "RUN ADD"
440 IF NUMBER= 2 THEN PRINT D$; "RUN SUBTRACT"
460 IF NUMBER= 3 THEN PRINT D$; "RUN MULTIPLY"
470 IF NUMBER= 4 THEN PRINT D$; "RUN DIVIDE"
480 IF NUMBER = 5 THEN PRINT D$; "RUN SCORES"
500 IF NUMBER = 6 THEN 1000
520 IF NUMBER = 7 THEN END
1000 REM**- -INFORMATION--**
1020 HOME
1040 PRINT "THIS IS A SERIES OF MATH DRILL AND"
1050 PRINT
1060 PRINT "PRACTICE PROGRAMS. IT IS DESIGNED TO"
1070 PRINT
1080 PRINT "ALLOW FOR AS MUCH FLEXIBILITY AS"
1090 PRINT
1100 PRINT "POSSIBLE. THE QUESTION ABOUT THE "
1110 PRINT
1120 PRINT "NUMBER OF DIGITS MIGHT, AT FIRST, "
1130 PRINT
1140 PRINT "SEEM CONFUSING. THE QUESTION SIMPLY"

MATH MENU 123

1150 PRINT
1160 PRINT "ASKS FOR THE GREATEST NUMBER OF "
1170 PRINT
1180 PRINT "DIGITS POSSIBLE IN EITHER FIGURE. "
1190 PRINT
1200 PRINT "THE NEXT TWO QUESTIONS FURTHER ALLOW"
1210 PRINT
1220 PRINT "YOU TO LIMIT THE POSSIBLE PROBLEMS. "
1230 GOSUB 5000
1240 PRINT "FOR EXAMPLE , IF YOU WANTED TO PRACTICE"
1250 PRINT
1260 PRINT "MULTIPLYING BY I 5 I' YOU COULD CHOOSE"
1270 PRINT
1280 PRINT " THREE DIGIT NUMBERS AND THEN ANSWER"
1290 PRINT
1300 PRINT "WITH A '5' FOR EACH OF THE NEXT TWO"
1310 PRINT
1320 PRINT "QUESTIONS . YOU WOULD THEN BE GIVEN"
1330 PRINT
1340 PRINT "PROBLEMS LIKE : 345 X 5 OR 823 X 5."
1350 GOSUB 5000
1360 PRINT "ANOTHER EXAMPLE WOULD BE TO ADD TWO"
1370 PRINT
1380 PRINT "DIGIT NUMBERS BY ANSWERING THE"
1390 PRINT
1400 PRINT "QUESTIONS IN THIS WAY : "
1410 PRINT
1420 PRINT "HOW MANY DIGITS- -2"
1430 PRINT
1440 PRINT "LARGEST NUMBER- -99"
1450 PRINT
1460 PRINT "SMALLEST NUMBER- - 1"
1470 PRINT
1480 PRINT "YOU COULD THEN GET PROBLEMS LIKE : "
1490 PRINT
1500 PRINT "58 + 34 OR 87 + 9 . II

1510 GOSUB 5000
1520 PRINT "TRYING THE DIFFERENT POSSIBILITIES"
1530 PRINT
1540 PRINT "WILL SOON INDICATE THE FLEXIBILITY . "
1550 PRINT
1560 PRINT "THE DIVISION SECTION WILL ONLY GIVE"
1570 PRINT
1580 PRINT "PROBLEMS THAT COME OUT EVEN . "

124 CHAPTER 9 ADDITIONAL SEQUENTIAL FILE TECHNIQUES

1590 PRINT
1600 PRINT "YOU MAY HAVE TO WAIT A SHORT TIME. "
1610 PRINT
1620 PRINT "FOR THE NEXT PROBLEM. THIS"
1630 PRINT
1640 PRINT "IS BECAUSE THE NUMBERS GENERATED"
1650 PRINT
1660 PRINT "MUST MEET CERTAIN SPECIFICATIONS."
1670 GOSUB 5000
1680 PRINT "THIS IS NOT A PROFESSIONAL PROGRAM"
1690 PRINT
1700 PRINT "AND THEREFORE DOES NOT DO A LOT OF"
1710 PRINT
1720 PRINT "ERROR CHECKING. YOU CAN CRASH THE "
1730 PRINT
1740 PRINT "PROGRAMS WITH CONFUSING ANSWERS"
1750 PRINT
1760 PRINT "OR MISTAKES IN TYPING. TYPING A "
1770 PRINT
1780 PRINT II I CTRL I I c' WILL END ANY PROGRAMS. II

1790 PRINT
1800 PRINT "YOU MUST THEN START OVER. "
1810 PRINT
1820 PRINT "THIS SERIES OF PROGRAMS WAS DONE"
1830 PRINT
1840 PRINT "MAINLY TO DEMONSTRATE , IN A USEFUL"
1850 PRINT
1860 PRINT "MANNER, CERTAIN FILE HANDLING"
1870 PRINT
1880 PRINT "CAPABILITIES. II

2000 GOSUB 5000
2020 GOTO 40
5000 PRINT
5020 INPUT "HIT RETURN TO CONTINUE " ; L $
5040 HOME
5060 RETURN

ADD

ADD

10 REM***- -ADDITION--***
11 :
12 :
20 REM**- -VARIABLE LIST--**
21 REMA = BOTTOM NUMBER
22 REMB = TOP NUMBER
23 REM C = CORRECT ANSWER
24 REMD = STUDENT I s ANSWER
25 REM Q = COUNTER
26 REM W = PREVIOUS ANSWER
27 REM Z = NUMBER OF TRIES
28 REM CR = CORRECT ANSWERS
29 REM WR = WRONG ANSWERS
30 REM DT = #OF DIGITS
31 REM LA= # OF DIGITS IN A
32 REM LB = # OF DIGITS IN B
33 REM LN = # OF DIGITS INC
34 REM OTHER VARIABLES ARE
35 REM DESCRIPTIVE
36 :
37 :
40 HOME : VTAB 5
60 INPUT "HOW MANY DIGITS ";DIGIT
80 PRINT
100 PRINT "WHAT IS THE LARGEST FIGURE FOR THE"
120 PRINT
140 INPUT "NUMBER YOU ARE ADDING BY? ";MAX
160 PRINT
180 PRINT "WHAT IS THE SMALLEST FIGURE FOR THE"
200 PRINT
220 INPUT "NUMBER YOU ARE ADDING BY? " ; MN
240 OT = DIGIT: DIGIT = 10 "DIGIT
260 PRINT
280 INPUT "WHAT IS YOUR NAME? ";NAME$
290 :
295 :
300 REM**- -CREATE PROBLEM--**
320 HOME
340 HTAB 10 : VTAB 2
360 PRINT "TYPE I END I WHEN FINISHED"
380 VTAB 10

125

126 CHAPTER 9 ADDITIONAL SEQUENTIAL FILE TECHNIQUES

382 MAX$ = STR$ (MAX)
384 LM = LEN (MAX$)
386 IF DT = LM + 1 OR DT < LM + 1 THEN 400
388 LM = 10 "LM
390 A = INT (RND (1) * LM)
392 IF A < MN THEN 390
394 IF A > MAX THEN 390
396 GOTO 480
400 z = 1
420 A = INT (RND (1) *DIGIT)
440 IF A < MN THEN 420
460 IF A > MAX THEN 420
480 B = INT (RND (1) *DIGIT)
500 C = B + A
520 S$ = "+"
540 IF C < 0 THEN 480
560 IF C = W THEN 480
580 w = c
600 A$ = STR$ (A)
620 LA = LEN (A$)
640 B$ = STR$ (B)
660 LB = LEN (B$)
680 HTAB 22 - LB : PRINT B
700 HTAB 22 - (LA + 1) : PRINTS$; A
720 C$ = STR$ (C)
740 LN = LEN (C$)
760 Q = 1
780 IF LA < LB THEN Q = 0
800 HTAB 22 - (DT + Q) : FOR I 1 TODT + Q: PRINT

CHR$ (95); : NEXT I
810 :
815 :
820 REM**- -GET ANSWER-- * *
840 PRINT : HTAB 22 - (LN + 1): INPUT ANSWER$
860 IF ANSWER$ = "END" THEN 1060
880 D = VAL (ANSWER$)
900 IF D = C THEN PRINT : PRINT : PRINT : HTAB 19: PRINT

"GOOD": FOR I = 1 TO1000 : NEXT I : CR= CR+ 1 : GOTO 320
920 IF Z < 3 THEN PRINT : HTAB 10: PRINT "NO , PLEASE TRY

AGAIN. II : z = z + 1: PRINT: WR= WR+ 1: GOTO 660
940 PRINT
960 PRI NT "NO, THE ANSWER IS II; c
980 PRINT :PRINTB; II ";S$; II "; A; II " ; C
1000 PRINT : Z = 1 : WR = WR + 1

SUBTRACT

1020 INPUT " HIT RETURN WHEN READY TO GO ON" ; L$
1040 GOTO 320
1050 :
1055 :
1060 REM**- -TOTAL ROUTINE--**
1080 HOME : VTAB 5
1100 PRINT "YOU GOT II ; CR; II RIGHT ! II

1120 PRINT
1140 PRINT "YOU MISSED ";WR
1160 :
1180 :
2000 REM**- -FILE ROUTINE--* *
2020 0$ = CHR$ (4)
2040 ONERR GOTO 218 0
2060 PRINT 0$; "APPEND" ; NAME$
2080 PRINT 0$; "WRITE" ; NAME$
2085 PRINTS$
2090 PRINT OT
2100 PRINT CR
2120 PRINT WR
2140 PRINT 0$; "CLOSE" ; NAME$
2160 PRINT 0$; "RUN MATH MENU"
2180 POKE 216, 0
2200 PRINT 0$; "OPEN"; NAME$
2220 GOTO 2080

SUBTRACT

10 REM***- -SUBTRACTION- -***
11:
12 :
20 REM** - -VARIABLE LIST--**
21 REM A = BOTTOM NUMBER
22 REMB =TOP NUMBER
23 REM C = CORRECT ANSWER
24 REM D = STUDENT Is ANSWER

25 REM Q = COUNTER
26 REM W = PREVIOUS ANSWER
27 REM Z = NUMBER OF TRIES
28 REM CR = CORRECT ANSWERS
29 REM WR = WRONG ANSWERS

30 REM DT = # OF DIGITS

127

128 CHAPTER 9 ADDITIONAL SEQUENTIAL FILE TECHNIQUES

31 REM LA = * OF DIGITS IN A
32 REM LB = * OF DIGITS IN B
33 REM LN = * OF DIGITS IN C
34 REM OTHER VARIABLES ARE
35 REM DESCRIPTIVE
36:
37 :

40 HOME : VTAB 5
60 INPUT "HOW MANY DIGITS " ; DIGIT
80 PRINT
100 PRINT "WHAT IS THE LARGEST FIGURE FOR THE"
120 PRINT
140 INPUT "NUMBER YOU ARE SUBTRACTING BY? ";MAX
160 PRINT
180 PRINT "WHAT IS THE SMALLEST FIGURE FOR THE"
200 PRINT
220 INPUT "NUMBER YOU ARE SUBTRACTING BY? ";MN
240 OT = DIGIT: DIGIT = 10 "DIGIT
260 PRINT
280 INPUT "WHAT IS YOUR NAME? ";NAME$
290
295
300 REM** - -CREATE PROBLEM--**
320 HOME
340 HTAB 10: VTAB 2
360 PRINT "TYPE 'END' WHEN FINISHED"
380 VTAB 10
382 MAX$ = STR$ (MAX)
384 LM = LEN (MAX$)
386 IF OT = LM + 1 OR OT < LM + 1 THEN 400
3 88 LM = 1 0 " LM
390 A = INT (RND (1) * LM)
392 IF A < MN THEN 390
394 IF A > MAX THEN 390
396 GOTO 480
400 z = 1

420 A = INT (RND (1) *DIGIT)
440 IF A < MN THEN 420
460 IF A > MAX THEN 420
480 B = INT (RND (1) *DIGIT)
500 C = B - A
520 S$ = "-"

540 IF C < 0 THEN 480
560 IF C = W THEN 480

580 w = c
600 A$ = STR$ (A)
620 LA = LEN (A$)
640 B$ = STR$ (B)
660 LB = LEN (B$)

SUBTRACT

680 HTAB 22 - LB: PRINT B
700 HTAB 22 - (LA + 1): PRINTS$; A
720 C$ = STR$ (C)
740 LN = LEN (C$)
760 Q = 1
780 IF LA < LB THEN Q = 0
800 HTAB 22 - (DT + Q) : FOR I

CHR$ (95);: NEXT I
810 :
815 :
820 REM**- -GET ANSWER- - **

1 TODT + Q: PRINT

840 PRINT : HTAB 22 - (LN + 1) : INPUT ANSWER$
860 IF ANSWER$ = "END" THEN 1060
880 D = VAL (ANSWER$)

129

900 IF D = C THEN PRINT : PRINT : PRINT : HTAB 19: PRINT
"GOOD ":FOR I = 1 TO 1000: NEXT I: CR = CR + 1: GOTO 320

920 IF Z < 3 THEN PRINT : HTAB 10: PRINT "NO , PLEASE TRY
AGAIN. " : Z = Z + 1 : PRINT : WR = WR + 1 : GOTO 660

940 PRINT
960 PRI NT "NO , THE ANSWER IS " ; C
980 PRINT :PRINTB;" " ;S$; " ";A ; " = " ;C
1000 PRINT : Z = 1: WR = WR + 1
1020 INPUT "HIT RETURN WHEN READY TO GO ON"; L$
1040 GOTO 320
1050 :
1055 :
1060 REM * * - -TOTAL ROUTINE- - * *
1080 HOME : VTAB 5
1100 PRINT "YOU GOT ";CR;" RIGHT! II

1120 PRINT
1140 PRINT "YOU MISSED " ; WR
1160:
1180:
2000 REM**- - FILE ROUTINE-- **
2020 D$ = CHR$ (4)
2040 ONERR GOTO 2180
2060 PRINT D$; " APPEND"; NAME$
2080 PRINT D$; "WRITE"; NAME$
2085 PRINT S$

130 CHAPTER 9 ADDITIONAL SEQUENTIAL FILE TECHNIQUES

2090 PRINT OT
2100 PRINT CR
2120 PRINT WR
2140 PRINT 0$; "CLOSE"; NAME$
2160 PRINT 0$; "RUN MATH MENU"
2180 POKE 216, 0
2200 PRINT 0$; "OPEN"; NAME$
2220 GOTO 2080

MULITIPLY

10 REM*** - - MULTIPLICATION--***
11 :
12 :
20 REM**- -VARIABLE LIST- -**
21 REM A = BOTTOM NUMBER
2 2 REM B = TOP NUMBER
23 REM C CORRECT ANSWER
24 REM D = STUDENT Is ANSWER
25 REM Q =COUNTER
26 REM W = PREVIOUS ANSWER
27 REM Z = NUMBER OF TRIES
28 REM CR = CORRECT ANSWERS
29 REM WR = WRONG ANSWERS
30 REM OT = * OF DIGITS
31 REM LA = * OF DIGITS IN A
32 REM LB = * OF DIGITS IN B
33 REM LN = * OF DIGITS INC
34 REM OTHER VARIABLES ARE
35 REM DESCRIPTIVE
36:
37 :
40 HOME: VTAB 5
60 INPUT "HOW MANY DIGITS " ; DIGIT
80 PRINT
100 PRINT "WHAT IS THE LARGEST FIGURE FOR THE"
120 PRINT
140 INPUT " NUMBER YOU ARE MULTIPLYING BY? " ; MAX
160 PRINT
180 P RINT "WHAT IS THE SMALLEST FIGURE FOR THE"
200 PRINT
220 INPUT "NUMBER YOU ARE MULTIPLYING BY? " ; MN

MULITIPLY

240 DT = DIGIT: DIGIT = 10 "DIGIT
260 PRINT
280 INPUT " WHAT IS YOUR NAME? ";NAME$
290 :
295 :
300 REM** - - CREATE PROBLEM--**
320 HOME
340 HTAB 10 : VTAB 2
360 PRINT "TYPE I END I WHEN FINISHED"
380 VTAB 10
382 MAX$ = STR$ (MAX)

384 LM = LEN (MAX$)
386 IF DT = LM + 1 OR DT < LM + 1 THEN 400
388 LM = 10" LM
390 A = INT (RND (1) * LM)
392 IF A < MN THEN 390
394 IF A > MAX THEN 390
396 GOTO 480
400 z = 1
420 A = INT (RND (1) *DIGIT)
440 IF A < MN THEN 420
460 IF A > MAX THEN 420
480 B = INT (RND (1) *DIGIT)
500 C = B *A
520 S$ = " X "
540 IF C < 0 THEN 480
560 IF C = W THEN 480
580 w = c
600 A$ = STR$ (A)
620 LA = LEN (A$)
640 B$ = STR$ (B)
660 LB = LEN (B$)
680 HTAB 22 - LB: PRINT B
700 HTAB 22 - (L A + 1): PRINTS$; A
720 C$ = STR$ (C)
740 LN = LEN (C$)
760 Q = 1

780 I F L A < LB THEN Q = 0
800 HTAB 22 - (DT + Q) : FOR I

CHR$ (95); : NEXT I
810 :
815 :
820 REM * * - - GET ANSWER- - * *

1 TODT + Q: PRINT

840 PRINT : HTAB 22 - (LN + 1): INPUT ANSWER$

131

132 CHAPTER 9 ADDITIONAL SEQUENTIAL FILE TECHNIQUES

860 IF ANSWER$ = "END" THEN 1060
880 D = VAL (ANSWER$)
900 IF D = C THEN PRINT : PRINT : PRINT : HTAB 19: PRINT

" GOOD" : FOR I = 1 TO 1000: NEXT I : CR= CR+ 1: GOTO 32<
920 IF Z < 3 THEN PRINT : HTAB 10: PRINT "NO, PLEASE TRY

AGAIN.": Z = Z + 1: PRINT: WR= WR+ 1: GOTO 660
940 PRINT
960 PRINT "NO, THE ANSWER IS " ; C
980 PRINT :PRINTB;" ";S$;" ";A;"= ";C
1000 PRINT : Z = 1: WR = WR + 1
1020 INPUT "HIT RETURN WHEN READY TO GO ON "; L$
1040 GOTO 320
1050 :
1055 :
1060 REM** - - TOTAL ROUTINE-- **
1080 HOME : VTAB 5
1100 PRINT "YOU GOT ";CR; II RIGHT! "
1120 PRINT
1140 PRINT "YOU MISSED ";WR
1160 :
1180 :
2000 REM**- -FILE ROUTINE- - **
2020 D$ = CHR$ (4)
2040 ONERR GOTO 2180
2060 PRINT D$; "APPEND" ; NAME$
2080 PRINT D$; "WRITE" ; NAME$
2085 PRINTS$
2090 PRINT DT
2100 PRINT CR
2120 PRINT WR
2 140 PRINT D$; "CLOSE"; NAME$
2160 PRINT D$; "RUN MATH MENU"
2180 POKE 216 , 0
2200 PRINT D$; "OPEN"; NAME$
2220 GOTO 2080

DIVIDE

DIVIDE

10 REM *** - -DIVISION--***
11 :
12 :
20 REM ** - -VARIABLE LIST-- **
21 REM A = DIVISOR
22 REMB = DIVIDEND
23 REM C = CORRECT ANSWER
24 REMD = STUDENT Is ANSWER
25 REM Q = COUNTER
26 REMW = PREVIOUS ANSWER
27 REM Z = NUMBER OF TRIES
28 REM CR = CORRECT ANSWERS
29 REM WR = WRONG ANSWERS
30 REM DT = # OF DIGITS
31 REM LA = # OF DIGITS IN A
32 REM LB = # OF DIGITS IN B
33 REM LN = # OF DIGITS INC
34 REM OTHER VARIABLES ARE
35 REM DESCRIPTIVE
36 :
37 :
40 HOME : VTAB 5
60 INPUT "HOW MANY DIGITS ";DIGIT
80 PRINT
100 PRI NT "WHAT IS THE LARGEST FIGURE FOR THE NO . "
120 PRINT
140 INPUT "YOU ARE DIVIDING BY (DIVISOR)? " ; MAX
160 PRINT
180 PRINT "WHAT IS THE SMALLEST FIGURE FOR THE NO . "
200 PRINT
220 INPUT "YOU ARE DIVIDING BY (DIVISOR)? " ; MN
240 DT = DIGIT: DIGIT = 10" DIGIT
260 PRINT
280 I NPUT "WHAT IS YOUR NAME? ";NAME$
290 :
295 :
300 REM ** - -CREATE PROBLEM--**
3 10 MAX$ = STR$ (MAX)
320 LM = LEN (MAX$)
330 IF DT = LM + 1 OR DT < LM + 1 THEN 400
340 LM = 10 ALM

133

134 CHAPTER 9 ADDITIONAL SEQUENTIAL FILE TECHNIQUES

350 A = INT (RND (1) * LM)
360 IF A < MN THEN 350
370 IF A > MAX THEN 350
380 GOTO 480
400 z = 1
420 A = INT (RND (1) * DIGIT)
440 IF A < MN THEN 420
460 IF A > MAX THEN 420
480 B = INT (RND (1) * DIGIT)
485 IF B = 0 ORB < (A) THEN 480
490 DEF FN MOD (C) = INT ((B / A - INT (B I A)) * A + . 05)

* SGN (B I A)
500 C = INT (B) I (A)
510 C = INT (C)
520 S$ = II / "

540 IF C < 0 THEN 420
560 IF C = W THEN 420
570 IF FN MOD (RM) < > 0 THEN 480
580 w = c
600 A$ = STR$ (A)
620 LA = LEN (A$)
640 B$ = STR$ (B)
660 LB = LEN (B$)
662 HOME
664 HTAB 10 : VTAB 2
666 PRINT "TYPE 'END' WHEN FINISHED"
668 VTAB 10
670 HTAB 22: FOR I = 1 TODT+ 1 : PRINT CHR $ (95); : NEXT I
675 PRINT
680 HTAB 22 - LA : PRINT A; II) II; B
720 C$ = STR$ (C)
740 LN = LEN (C$)
760 Q = 1
780 IF LB < DT THEN LN = LN + (OT - LB)
810 :
815 :
820 REM**- -GET ANSWER--**
830 VTAB 9
840 PRINT : HTAB (22 + DT) - (LN - 1) : INPUT "" ;ANSWER$
860 IF ANSWER$ = "END" THEN 1060
880 D = VAL (ANSWER$)
900 IF D = C THEN PRINT : PRINT : PRINT : HTAB 19 : PRINT

"GOOD": FOR I = 1 TO 500 : NEXT I : CR= CR + 1 : GOTO 320

DIVIDE 135

920 IF Z < 3 THEN PRINT : PRINT : PRINT : HTAB 10: PRINT "NO ,
PLEASE TRY AGAIN." : Z = Z + 1: PRINT: WR= WR+ 1
: FOR WT = 1TO1000: NEXT WT: VTAB 10 : GOTO 660

940 PRINT : PRINT : PRINT
960 PRINT "NO , THE ANSWER IS 11

; C
980 PRINT : PRINT B; II II; S$; II II; A; II = II; c
1000 PRINT : Z = 1: WR = WR + 1
1020 INPUT "HIT RETURN WHEN READY TO GO ON 11

; L $
1040 GOTO 320
1050 :
1055 :
1060 REM ** - -TOTAL ROUTINE-- **
1080 HOME : VTAB 5
1100 PRINT "YOU GOT II ; CR ; II RIGHT! II

1120 PRINT
1140 PRINT "YOU MISSED 11

; WR
1160 :
1180 :
2000 REM**- -FILE ROUTINE-- * *
2020D$ = CHR$(4)
2040 ONERR GOTO 2180
2060 PRINTD$; 11 APPEND 11 ; NAME$
2080 PRINT D$; "WRITE" ; NAME$
2085 PRINT S$
2090 PRINT DT
2100 PRINT CR
2120 PRINT WR
2140 PRINT D$; "CLOSE" ; NAME$
2160 PRINT D$; "RUN MATH MENU"
2180 POKE 216 , 0
2200 PRINT D$; "OPEN" ; NAME$
222 0 GOTO 2080

136 CHAPTER 9 ADDITIONAL SEQUENTIAL FILE TECHNIQUES

SCORES

10 REM* ** - -SCORES--***
11 :
12 :
20 D$ = CHR$ (4)
40 ONERR GOTO 380
60 DIM S$ (100) , DT (100)
80 DIM CR (100), WR (100)
100 I = 1
120 HOME : VTAB 5
140 INPUT II STUDENT Is NAME P LEASE? II ; NAME$
160 :
180 :
200 REM**- -FILE ROUTINE--**
220 PRINT D$; "OPEN"; NAME$
240 PRINT D$; "READ"; NAME$
260 INPUT S$ (I)
280 INPUT DT (I)
300 INPUTCR(I)
320 INPUT WR (I)
340 I = I + 1
360 GOTO 260
380 POKE 216, 0
400 PRINT D$; "CLOSE" ; NAME$
420 :
440 :
460 REM**- - DISPLAY ROUTINE--**
480 HOME : VTAB 1: HTAB 19: PRINT NAME$: PRINT : PRINT
500 PRINT "SESS. " ;
520 HTAB 7: PRINT "OPERATION";
540 HTAB 18: PRINT "DIGITS";
560 HTAB 26: PRINT "CORRECT" ;
580 HTAB 35: PRINT "WRONG"
590 POKE 34 , 4: REM SET TOP WINDOW
600 FOR K = 1 TO I - 1
620 IFS$ (K) "+"THENS$ (K) "ADD"
640 IFS$ (K) " - " THENS$ (K) " SUB"
660 IFS$ (K) "X" THENS$ (K) "MLT"
680 IFS$ (K) II I ti THENS$ (K) "DIV"
700 HTAB 3: PRINT K;
720 HTAB 10: PRINT S$ (K) ;
740 HTAB 20: PRINT DT (K) ;

RECIPES

760 IF CR (K) > 9 THEN L = - 1
780 HTAB 29 + L: PRINT CR (K) ;

800 L = 0
820 IF WR (K) > 9 THEN L = - 1
840 HTAB 37 + L : PRINT WR (K)

860 L = 0
880 NEXT K
900 PRINT: INPUT "HIT RETURN WHEN FINISHED " ; L$
910 TEXT
920 PRINT D$; "RUN MATH MENU"

RECIPES

2 REM ***- - REC I PES--***
3 :
4 :
5 REM**- -VARIABLES LIST--**
6 REM RECNBR = NUMBER OF RECORDS
7 REM INGNBR = TOTAL =lF OF INGRED .
8 REM ING$ & ID$ = INGRED.
9 REM REC$ & RC$ = RECIPES
10 REM IG$ = CURRENT SESS. INGRED .
11 REM RZ$ = RECIPE NAMES ONLY
12 :
13 :
14 REM * * - - INITIALIZATION- - **

137

15 DIM REC (100), ING$ (50), IG$ (100, 50) , RC$ (100) , RZ$ (100),
ID$ (5 0)

20 D$ = CHR$ (4): REM CONTROL D
25 TB = 8: REM HTAB VALUE
27 ONERR GOTO 10000
30 PRINT D$; "OPEN RECIPE NAMES"
35 PRINT D$; "READ RECIPE NAMES"
40 INPUT NUMBERS$
45 PRINT D$; "CLOSE RECIPE NAMES"
47 POKE 216 , 0: REM RESET ERROR FLAG
50 LR = LEN (NUMBERS$)
55 T = 1
60 IF MID$ (NUMBERS$, T, 1) = " *"THEN 70
65 T = T + 1: GOTO 60
70 RECNBR = VAL (LEFT$ (NUMBERS$, T - 1))
7 5 INGNBR = VAL (MID$ (NUMBERS$, T + 1 , LR - T))

138 CHAPTER 9 ADDITIONAL SEGUE TIAL FILE TECHNIQUES

97 :
98 :
99 :
100 REM**- -RECIPE MENU--**
120 HOME : VTAB 5: HTAB 15
140 PRINT "RECIPE MENU"
160 PRINT : PRINT
180 HTAB TB
200 PRINT "1. ADD RECIPE TO LIST"
220 PRINT : HTAB TB
240 PRINT "2. SELECT RECIPE FROM LIST"
260 PRINT : HTAB TB
280 PRINT II 3 . END PROGRAM II
380 PRINT : HTAB TB
400 INPUT "WHICH NUMBER? ";NB
420 IF NB < 1 OR NB > 5 THEN PRINT "INCORRECT NUMBER! "

: GOTO 380
510 IF NB 1THEN1000
520 IF NB 2 THEN 2000
530 IF NB 3 THEN END
970 :
980 :
990 :
1000 REM**- - ADD TO RECIPE LIST- - **
1002 R = 1
1005 HOME : VTAB 5
1010 INPUT "NAME OF RECIPE " ; REC$ (R)
1015 I = 1
1020 PRINT : PRINT "TYPE I END I WHEN FINISHED. II : VTAB 10
1025 PRINT "TYPE IN I NGREDIENT =IF"; I ; " BELOW THIS LINE."
1030 INPUT ING$ (I)
1035 IF ING$ (I) = "END" THEN 1050
1040 I = I + 1
1045 HOME : VTAB 6: GOTO 1 020
1050 HOME : VTAB 5: PRINT REC$ (R) : PRINT : PRINT
1055 FOR J = 1 TO I - 1
1060 PR I NT J; II II; ING$ (J)

1065 NEXT J
1070 PRINT
1 075 INPUT "IS THIS CORRECT? " ;YES$
1 080 IF YES$ = "Y" THEN 1110
1085 PRINT
1090 INPUT "WHICH NUMBER IS WRONG? ";WR
1095 PRINT "TYPE IN CORRECT I NFO. FOR I NGREDIENT#"; WR

1100 INPUT ING$ (WR)
1105 GOTO 1050

RECIPES

1110 REC$(R) = REC$(R) +"!II+ STR$(INGNBR) + "*"
+ STR$ (I - 1)

1111 FOR J = 1 TO I - 1
1112 IG$(R,J) = ING$ (J)
1113 NEXT J
1115 INGNBR = INGNBR + I - 1
1120 R = R + 1
1125 PRINT
1130 INPUT "ADD MORE RECIPES? ";YES$
1135 IF YES$= "Y" THEN 1005
1136 RECNBR = RECNBR + R - 1
113 7 NUMBERS$ = STR$ (RECNBR) + II * II + STR$ (INGNBR)
1140 PRINT D$; "APPEND RECIPE NAMES"
1145 PRINT D$; "APPEND INGRED"
114 6 FOR K = 1 TO R - 1
1150 PRINT D$; "WRITE RECIPE NAMES"
1155 PRINT REC$ (K)
1160 LN = LEN (REC$ (K))
1165 T = 1
11 70 IF MID$ (REC$ (K) , T , 1) = II* II THEN 1180
1175 T = T + 1 : GOTO 1170
1180 Q = VAL (MID$ (REC$ (K), T + 1, LN - T))
1185 PRINT D$; "WRITE INGRED"
119 0 FOR H = 1 TO Q
1195 PRINT IG$ (K, H)
1200 NEXT H
1220 NEXT K
1225 PRINT D$; "CLOSE"
1 265 PRINT D$; "OPEN RECIPE NAMES"
1270 PRINT D$; "WRITE RECIPE NAMES"
1275 PRINT NUMBERS$
1280 PRINT D$; "CLOSE"
1285 GOTO 100 : REM MENU
1970 :
1980 :
1990 :
2000 REM**- -SELECT RECIPE-- **
2002 HOME : VTAB 5
2005 PRINT D$; "OPEN RECIPE NAMES "
2007 PRINT D$; "POSITION RECIPE NAMES , R2"
2010 PRINT D$; "READ RECIPE NAMES"
2015 FOR I = 1 TO RECNBR

139

140 CHAPTER 9 ADDITIONAL SEQUENTIAL FILE TECHNIQUES

2020 INPUT RC$ (I)
2021 T = 1
2022 IF MID$ (RC$ (I)' T, 1) = "!II THEN 2024
2023 T = T + 1: GOTO 2022
2024 RZ$ (I) = LEFT$ (RC$ (I), T - 1
2025 NEXT I
2030 PRINT D$; "CLOSE RECIPE NAMES"
2032 FOR I = 1 TO RECNBR
2033 PRINT I;" "; RZ$ (I)
2034 NEXT I
2035 PRINT :PRINT
2040 INPUT "WHICH RECIPE? ";RC
2045 LN = LEN (RC$ (RC))
2050 T = 1
2055 IF MID$ (RC$ (RC) ' T, 1) II I II THEN 2065
2060 T = T + 1: GOTO 2055
2065 Tl = T
2070 IF MID$ (RC$ (RC) , Tl, 1) = "*" THEN 2080
2075 Tl = Tl + 1: GOTO 2070
2080 IGNB = VAL (MID$ (RC$ (RC) , T + 1, Tl - 1)) + 1
2085 LIGNB = VAL (MID$ (RC$ (RC), Tl + 1, LN - Tl))
208 7 HOME : PRINT RZ$ (RC)
2090 PRINT D$; "OPEN INGRED"
2095 PRINT D$; "POSITION INGRED , R" ; IGNB
2100 PRINT D$; "READ INGRED"
2105 FORK = 1 TO LIGNB
2110 INPUT ID$ (K)
2115 PRINT ID$ (K)
2120 NEXT K
2125 PRINT D$; "CLOSE INGRED"
2130 PRINT : PRINT
2135 INPUT "HIT RETURN WHEN READY" ; L$
2140 INPUT "SELECT ANOTHER RECIPE ? " ; YES$
2145 IF YES$ = "Y" THEN 2155
2150 GOTO 100 : REM MENU
2155 HOME
2160 GOTO 2032 : REM SELECT ANOTHER
2970 :
2980:
2990 :
10000 REM**- -FIRST TIME- - **
10002 POKE 216, 0: REM RESET ERROR FLAG
10005 PRINT D$; "WRITE RECIPE NAMES"
10010 PRINT "0 * 0 ----- ----- - -"

CREATE Q & A

10015 PRINT D$; " CLOSE RECIPE NAMES"
10020 PRINT D$; "OPEN INGRED"
10025 PRINT D$; "WRITE INGRED"
10030 PRINT " RECIPE INGREDENTS"
10040 PRINT D$; "CLOSE INGRED"
10045 GOTO 30

CREATE Q & A

10 REM**- -INPUT Q & A--**
11 :
12 :
20 D$ = CHR$ (4) : REM CONTROL D
40 DIM Q$ (50), A$ (50)
60 I = 1

70 :
75 :
100 REM**- -INPUT ROUTINE--**
105 HOME : VTAB 10
llO INPUT "SUBJECT NAME"; SUB$
120 PRINT : PRINT
140 PRINT "QUESTION =II: " ; I: INPUT Q$ (I)
160 IF Q$ (I) = "END" THEN 300
180 INPUT "ANSWER ";A$ (I)
200 PRINT : PRINT : PRINT Q$ (I)
220 PRINT : PRINT A$ (I)
230 PRINT
240 INPUT "IS THIS CORRECT? "; Y$
250 PRINT
260 IF Y$ = "N" THEN 140
2 8 0 I = I + l : GOTO 14 0
290 :
295 :
300 REM* *- -FILE ROUTINE--**
310 PRINT D$; "OPEN" + SUB$
320 PRINT D$; "WRITE" + SUB$
340 PRINT I - 1
360 FOR J = 1 TO I - 1
380 PRINT Q$ (J)
400 PRINT A$ (J)
420 NEXT J
440 PRINT DS ; "CLOSE"

141

142 CHAPTER 9 ADDITIONAL SEQUENTIAL FILE TECHNIQUES

DRILL Q & A

10 REM *** - -DRILL & PRACTICE--***
11 :
12 :
20 D$ = CHR.$ (4): REM CONTROL D
40 DIM Q$ (50) , A$ (50)
50 DIM QP (11), AP (11)
60 D$ = CHR.$ (4)
90 :
95 :
100 REM**- -FILE ROUTINE--**
105 HOME : VTAB 10
110 INPUT "SUBJECT NAME " ; SUB$
115 PRINT : PRINT
120 PRINT D$; "OPEN" + SUB$
140 PRINT D$; "READ" + SUB$
160 INPUT J
180 FOR I = 1 TO J
200 INPUT Q$ (I) , A$ (I)
220 NEXT I
240 PRINT D$; "CLOSE"
245 :
246 :
250 REM**- -GET Q & A- - **
260 I = RND (1) * 10: I = INT (I)
280 IF I > J OR I < 1 THEN 260
300 PRINT Q$ (I)
320 PRINT : PRINT
340 INPUT "YOUR ANSWER IS "; S$
360 IFS$ = "END" THEN 600
380 IFS$ = A$ (I) THEN PRINT "CORRECT" : A= A+ 1

: GOTO 540
400 IF Z > 0 THEN 500
420 PRINT "NO, TRY ONCE MORE"
440 z = 1
460 A2 = A2 + 1
480 GOTO 340
500 PRINT "NO , THE ANSWER IS "; A$ (I)
520 M = M + 1
540 z = 0
560 PRINT : PRINT
580 GOTO 260

590 :
595 :

DRILL Q & A

600 REM**- -DISPLAY SCORE--**
610 A2 = A2 - M
620 A = A - A2

640 HOME : VTAB 10
660 PRINT "YOU GOT ";A;" RIGHT ON THE FIRST TRY "
680 PRINT : PRINT
700 PRINT "YOU GOT "; A2 ; " RIGHT ON THE SECOND TRY"
720 PRINT : PRINT
7 40 PRINT "YOU MISSED " ; M; " ANSWERS"

143

,

ID
DIF Files

\.

One of the more exci ting possibilities in file handling is the prospect
of a standard fo rmat for transferring file informa tio n. At least one such
standard is now being supported by a number of major pieces of applica­
tion software. The DIF@J fil e format was developed by Software Arts,
writers of VisiCalc. ~ It is important to keep in mind the intent of this
standard . The standard does not suggest that all files be stored according
to the DI F fo rmat. Such a requirement would place an impossible burden
on too many applications to ma ke the sta nda rd truly acceptable. Instead ,
the standard sugges ts a specific format for file transfer.

If you never expect to tra nsfer your file informa tion from one pro­
gram to ano ther, you have no real need to use DIF, but if you wish to
have different programs share the same da ta, then a standard such as
DIF is very valuable . For example, if you never expect to use ano ther
program with your MAILI NG LI ST SYSTEM names and addresses, then
there is no reason to store those names and addresses according to the
DIF format. On the other hand, if you want to use VisiCalc with the
scores obtained from the MATH SYST EM, then the DIF format becomes
important. Without the standard, it would be necessary to type all the
scores into the VisiCa lc program . With DIF, VisiCalc can read the scores
direct ly from the disk. O n a small fil e, retyping is not a big consideration,
but as the fil e grows, it becomes a major problem. Regardless of the file

DIF® is a trademark of Software Arts, Inc.

VisiCalc®is a registered trademark of VisiCorp.

144

CHAPTER 10 DIF FILES 145

size, re-keying the information for every applica tion program tha t makes
use of the same data is annoying, inconvenient , and unnecessary. If an
application program such as VisiCalc or VisiPlotl!B> makes use o f or supports
the DIF fi le form at, any information stored according to that standard can
be used by that application program.

Most application programs supporting DIF actually offer you two
methods of saving your information or data. The first or standard method
is the most e fficient and effective way to store information for the spec ifi c
program. The second method is the DI F form at. In o ther words, the fil e is
saved twice, once in the normal manner according to the program needs,
and the second time in a format that allows other programs to access and
use the informati on. This two-method system is necessary because the
DIF format (or any standard format) is not a very effi cient way of storing
and retrieving informa tion. Let's look at the DIF format and use it to
store the scores from the MATH SYSTEM so that VisiCalc can directly
access those scores.

Before getting into the exact way DIF files are stored, it is necessa ry
to understand that in order to make a standard method of saving infor­
mation, the file must contain information about itself; i.e., whe re it starts
and ends, whether the information is numeric or alphabe tic, label infor­
mation, or actual data. The creators of DI F decided tha t all DIF files
must be divided into two basic parts. The firs.t part contains informat ion
about the file itself, and the second contains the actual data. The first
part is called the Header Section and the second part the Da ta Section.
Nex t, since there are many ways of displaying information, they decided to
group all informat ion in to two ca tegories: Vectors and Tuples. Basica lly,
Vectors and Tuples are just columns and rows. Finally, each piece of
information must carry with it the type of information it is: nume ric, al­
phabetic (alphanumeric), or special (descriptive). To dist inguish between
these types of informa tion, they assigned the following codes: a " O" in­
dicates numeric informa tion, a " l " indicates alpha numeric informa tion,
and a "- I" indica tes special or descriptive file information.

The only o ther major decision to be made was the exact organization
of the file. This organizational decision is indeed more complex, but
it does follow a logical pat te rn and can be learned with practice. The
Header Section (the part of the file that carries information about itself)
comes first. Obviously then, the Da ta Section comes after the Header
Section. The begi nning and ending of each of these sections must then
be indicated in some way.

If you remember in the MAILING LI ST SYSTEM, we used two sym­
bols as separators, the "!" and the " '~ " (see Chapter 4). In much the
same way, the creators of DIF have used symbols to set off the beginning
and ending points of the two file sections. The word " TABLE" is used to
begin the file and is the first entry in the Header Section. The characters

146 CHAPTER I 0 DIF FILES

"EOD" (End of Data) are used as the last entry of the file and the end
of the Data Section.

Finally, something must divide the two sections. The DIF creators
decided that the division should occur in the Header Section and had to
be the last entry in that section. That last entry, then, has to follow the
pattern for the Header Section. This means that the division between the
Header Section and the Data Section needs to be in the following format :

DATA
0,0
"It

We now have the beginning and ending of the file and the division be­
tween the two sections.

REM**- -HEADER SECTION--**
TABLE

DATA
0 , 0

If II

REM**- -DATA SECTION--**

EOD

The two sections are organized in slightly different ways. The Header
Section requires three lines of information for each entry, while the Data
Section uses two lines of information for each entry .

HEADER SECTION

The first line in each entry of the Header Section gives the topic of the
entry. TABLE, VECTORS, TUPLES, and DATA are the usual topic lines.
The second line in each entry gives numeric information about each topic,
such as the number of VECTORS and the number of TUPLES. The third
line allows for a name for each topic if a name is necessary. A typical
Header Section might look like the following:

TABLE
0,1
"SCORES"

VECTORS
0,5
1111

TUPLES
0,4
1111

LABEL
1 , 0
"SESSION #"

LABEL
2,0
"OPERATION"

LABEL
3,0
"DIGITS"

LABEL
4 , 0
II # CORRECT"

LABEL
5 , 0
II # WRONG"

DATA
0 , 0
11 11

HEADER SECTION

(I have added the colons to separate the individual entries).

147

Remember that this is the way the information would look in the
file and that this section contains information about the file itself. Since
VECTORS and TUPLES are basically columns and rows, it is not too
difficult to understand the numeric in formation required in the second
line of information in each entry of the Header Section. The first number
is the VECTOR number or column number. The second number is a
specific value related to the topic of the entry.

148 CHAPTER 10 DIF FILES

MATH SCORES

SESSION# OPERATION DIGITS CORRECT WRONG

1 ADD 2 8 2

2 MUL 3 12 8

3 DIV 3 7 13
4 SUB 5 24 1

For example, in a table of five columns, the second line of information un­
der the topic of VECTORS would be "O , 5 " . Since the topic VECTORS
is not actually in the table, it does not have a column number, (Vector
name), so the "O" is first. The "5" indicates the value relating to the
topic, VECTORS or five columns. Under the topic of LABEL, you can list
the actual names of the columns, their relative positions and any specific
value. With a LABEL, the value is usually "O " in a simple table. TUPLES,
or rows, might have a second line of "O , 4" indicating that the topic
TUPLES was not actually in the table but had a value of 4 ; i.e., 4 rows.
The value for the topic TABLE is the version number and must be a "1 ".
So we see that the Header Section describes a file of information that,
in our example, consists of 5 columns and 4 rows (5 VECTORS and 4
TUPLES).

DATA SECTION

Each entry of the Data Section consists of two lines of information .
The first line is numeric and gives two pieces of information: the type of
information and the value associated with that information . The second
line provides alphabetic information associated with the entry. For in­
stance, if the information being stored was the number "62. 5 ", the Data
Section entry would be:

0 ,62.5
v

If the information being stored was the word "PERCENT", the entry
would be :

1 ,0
"PERCENT"

In the first example, the information or data is numeric , so the first
number in the first line of this entry is a "O". The value associa ted with
this entry is the information itself, "62 . 5 ". The second line of a numeric
piece of information can have one of five possibilities: (I) V for a numeric
value, (2) NA for not available, the numeric value is 0 , (3) ERROR when

DATA SECTION 149

an invalid calculation has resulted in an error, the numeric value is 0, (4)
TRUE for the logical value, the numeric value is 1, and (5) FALSE for the
logical value, the numeric value is 0. These five possibilities lend greater
flexibility to those who may have need for complex data manipula tion. In
simpler files, numeric information will usually have a second line of "V".

In the second example, the information being stored is alphabetic,
so the first number in the first line of this entry is a "1 ". The value
associated with alphabetic information is usually "O" so that the first
line is "1 , o ". The second line provides alphabetic information about
the entry, and since the information is alphabetic, this second line is the
information itself. In other words, if the information is alphanumeric (a
"1" is indicated in the first line of the entry), the second line contains
that alphanumeric information.

The other possibility for an entry in the Data Section is that of a
"special value." There are two special values: one for the beginning of
each TUPLE and one for the end of the Data Section. Information is
grouped within the Data Section by TUPLES (rows) with a special entry
marking the beginning of each TUPLE. The entry for this beginning is :

-1 ,0
BOT

And the entry for the end of the Data Section is:

-1 ,0
EOD

The first number in the first line is the type of information (a "-1"
indicating a special entry), and the second is the value associated with
that entry (a "o" for special entries). The second line contains either a
BOT for Beginning Of Tuple or EOD for End Of Data.

We should now be able to write out a sample TUPLE for the file using
the scores from the MATH SYSTEM.

-1 , 0 (beginning of tuple)
BOT

0,1 (math session number)
v

1 , 0 (type of operation)
"ADD "

0,2 (number of digits)
v

0 , 15 (number correct)

150 CHAPTER 10 DIF FILES

v

0, 2 (number wrong)
v

-1 , O (beginning of next tuple)
BOT

The words in parantheses would not be included in the file. They are there
to help explain each entry. Again, I have added the colons to separate
each entry.

The organization of the Header Section and the Data Section allows
for a large variety in file manipulation , far more variety than I have gone
into with this explanation. Further information on the structure and
flexibility of DIF files can be obtained from: (1) the DIF Clearinghouse,
POB 527, Cambridge, MA. 02139, or (2) by reading the informatio n
contained in the VisiCalc program, or (3) by reading " DIF: A Format
for Data Exchange between Applications Programs," BYTE MAGAZINE,
November 1981, p. 174.

Now we should be able to write a simple program that will reformat
our math scores file in such a way that it conforms to the DIF standard.
The first part of this program reads the scores into memory. The second
part does the reformatting.

10 REM * * * - - SCORES. DIF- -* * *
11 :
12 :
20 D$ = CHR$ (4): REM CONTROL D
30 Q$ = CHR$ (34): REM QUOTATION MARK
40 ONERR GOTO 380
60 DIMS$ (100) I DT (100)
80 DIM CR (100) , WR (100)
100 I = 1
120 HOME : VTAB 5
140 INPUT II STUDENT Is NAME PLEASE? II ; NAME$
160 :
180 :
200 REM** - -FILE ROUTINE--**
220 PRINT D$; "OPEN"; NAME$
240 PRINT D$; "READ" ; NAME$
260 INPUTS$ (I): REM SIGN OF OPERATION
280 INPUT DT (I): REM DIGITS
300 INPUT CR (I): REM :ff: CORRECT
320 INPUT WR(I) : REM :ff: WRONG
330 IFS$ (I) = II+ II THENS$ (I) = "ADD"

331 IFS$ (I)
332IFS$(I)
333 IFS$(!)
340 I = I + 1
360 GOTO 260

DATA SECTION

"-"THENS$(!)
"X" THENS$ (I)
" I " THEN S$ (I)

"SUB"
"MLT"
"DIV"

380 POKE 216, 0: REM RESET ERROR FLAG
400 PRINT D$; "CLOSE"; NAME$
420 :
440 :

151

With the exception of line 30, this is the same routine we used for the
SCORES program. Line 30 has been added because we need to put
quotation marks within quotation marks. This is the same procedure
used in our EXEC file (see Chapter 8). The next part of the program
is designed by following the necessary organization of either the Header
Section or the Data Section.

450 REM * * - -DIF ROUTINE- -* *
4 6 0 J = I - 1 : NV = 5 : NT = I - 1
4 70 REM J = COUNTER
4 7 2 REM NV = NUMBER OF VECTORS
4 7 4 REM NT = NUMBER OF TUPLES
475 FILE$ = NAME$
480 NAME$ = NAME$ + " . DIF"
500 PRINT 0$; "OPEN" ; NAME$
510 PRINT D$; "WRITE" ; NAME$
511 :
515 REM**- -HEADER SECTION--**
516:
520 PRINT "TABLE"
530 PRINT "0, 1"
540 PR INT Q$FILE$Q$
545 :
550 PRINT "VECTORS "
560 PRINT "0, " ; NV
570 PRINT QQ
575 :
580 PRINT "TUPLES"
590 PRINT "0 , ";NT
600 PRINT QQ
605 :
610 PRINT "LABEL"
620 PRINT "1 , 0"
630 PRINT Q$" SESS ION :#= "Q$
635 :

152

640 PRINT "LABEL"
650 PRINT "2, 0"

CHAPTER I 0 DIF FILES

660 PRINT Q$"0PERATION"Q$
665 :
670 PRINT "LABEL"
680 PRINT "3, 0"
690 PRINT Q$"DIGITS"Q$
695 :
700 PRINT "LABEL"
710 PRINT "4, 0"
720 PRINT Q$"CORRECT"Q$
725 :
730 PRINT "LABEL"
740 PRINT "5 , 0"
750 PRINT Q$"WRONG"Q$
755 :
760 PRINT "DATA"
770 PRINT "0, 0"
780 PRINT QQ
785 :

These lines create the Header Section. They follow the rules of the Header
Section in that each entry has three lines: the topic line, the numeric line,
and the title or string line. The label entries are optional. The instructions
at line 460 could be handled with input variable statements instead of
constants. Line 480 combines the name of the file with the suffix ". DIF"
to distinguish between the two files. This suffix may be required for some
application programs. The next section of code creates the Data Section.

880 REM**- -DATA SECTION--**
805 :
810 PRINT "-1, 0"
820 PRINT "BOT"
825 :
830 PRINT "1, 0"
840 PRINT Q$" SESSION:#= "Q$
845 :
850 PRINT "1, 0"
860 PRINT Q$"0PERATION"Q$
865 :
870 PRINT "1, 0"
880 PRINT Q$"DIGITS"Q$
885 :
890 PRINT "1 , 0"
900 PRINT Q$ "CORRECT"Q$

DATA SECTION

905 :
910 PRINT "1, 0"
920 PRINT Q$ 11 WRONG 11 Q$
925 :
930 FOR I = 1 TO J
935 :
940 PRINT 11 -l, 0"
950 PRINT "BOT"
955 :
960 PRINT "0 , ";I : REM MATH SESSION #
970 PRINT "V"
975 :
980 PRINT "1 , 0" : REM OPERATION
990 PRINT S$ (I)
995 :
1000 PRINT "0, ";OT (I): REM# OF DIGITS
1010 PRINT "V"
1015 :
1020 PRINT "0, " ;CR (I): REM# CORRECT
1030 PRINT "V"
1035 :
1040 PRINT "0, ";WR (I): REM# WRONG
1050 PRINT "V"
1055 :
1060 NEXT I
1070 PRINT 11 -l, 0"
1080 PRINT "EOD"
1085 :
1090 PRINT 0$; "CLOSE"; NAME$

153

We include the labels with the Data Section so that VisiCalc will view
them as data and include them in the display. (VisiCalc does not support
the "LABEL" topic in the Header Section.) Once the label information
has been included, we write out the actual data by printing the contents
of the various arrays. We use a loop to accomplish thi s. When the loop
is finished, the special entry EOD is written and the file closed. Now we
should have a program that will create a duplicate file of an individual 's
math scores in the DIF file format.

We are able to create a DIF file that can be accessed by DIF support­
ing application programs. One other step remains. We may need to use
data obtained with an application program. This requires that we create
a program that reads DIF files. Reading a DIF fil e is simply reading a
sequential file that has its information stored in a specific order. The fol­
lowing program will read a VisiCalc DIF file. The display portion of the
program is le ft in its original form since each file may require a different

154 CHAPTER I 0 DIF FILES

display format.

10 REM***- -DIF READER--** *
11 :
12 :
20 D$ = CHR.$ (4) : REM CONTROL D
40 DIM A$ (200), S (200) , N (200)
60 I = 1
80 HOME: VTAB 5
100 INPUT "FILE NAME PLEASE? " ; FILE$
120 :
140 :
160 REM**- -INPUT ROUTINE--**
180 PRINT D$; "OPEN" ; FILE$
200 PRINT D$; "READ" ; FILE$
220 INPUT T$: REM READ THE TOPIC NAME
240 INPUTS , N: REM READ THE VECTOR =If, VALUE
260 INPUTS$: REM THE STRING VALUE
280 IF T$ = "VECTORS" THEN NV= N
300 IF T$ = "TUPLES" THEN NT = N
320 IF T$ < > "DATA" THEN 220
340 K = 1
360 INPUT S (K) , N (K)

380 INPUT A$ (K)

400 IF A$ (K) = "EOD" THEN 440
420 K = K + 1: GOTO 360
440 PRINT D$; "CLOSE" ; FILE$
460 :
480 :
500 REM**- -DISPLAY ROUTINE-- **
520 FOR J = 1 TO K
540 PRINT s (J) ; II ' II ; N (J)

560 PRINT A$ (J)

580 NEXT J
600 END

The display routine is left in its elementary form since the point of the
program is to show how to access files from DIF supporting application
programs. All these lines should be familiar. Line 320 simply tells the
computer to go back to line 220 until T$ equals "DATA". At that time,
the computer is to drop down to the loop used to read and store the Data
Section information (lines 340 through 420). When A$(K) reads the
value "EOD", we know that the file is fini shed, and we need to CLOSE
the file and proceed to the display routine.

As with all programs, there are other ways of writing a DIF reader

QUESTIO S 155

program and obtaining essentially the same results. We could have read
and saved all the information contained in the Header Section. We could
have used a number of GOSUBS, especially in the DIF creator program,
but most of these differences are styli stic differences and not substantive
differences. I have included three other programs at the end of th is
chapter that deal with DIF files. The first reads the Header Section and
writes that information back out as a sequential access file (VARIABLES).
The second program reads the Header Sect ion and the Data Section and
writes the information in the Data Section back out as a random access
file. The last program reads the information in both new files and displays
the combined information . All three of these programs could have been
combined into one, but for clarity I have used three programs. The intent
is to show some of the flexibility possible with files in general and DIF
files in part icular and to provide a transition to the random access section
of this book.

You now have the ability to read and write DIF files. That ability
may not prove immediately useful, but I think you will find that thi s may
eventually be the most valuable thing you have learned in this book. If you
are not completely sure you understand the format, a second look through
this chapter and additional work with DIF creator or reader programs
should make you comfortable with DIF.

I have not tried to explain all the possibilities or variations of DIF.
This chapter is intended only as an introduction to this file transfer stan­
dard. I firmly believe that some such standard is essentia l if micros are
to be taken seriously.

QUESTIONS

I . TRUE or FALSE: DIF suggests a standard way of saving all files.

2. Name the two parts of a DIF file.

3. Which part contains in formation about the file itself?

4. Which part contains the actual file information?

5. How many lines are associated with each entry in the Header Section?

6. How many lines are associated with each entry in the Data Section?

7. What value is used to indicate numeric information in the Data
Section?

8. What value is used to indicate alphanumeric information in the Data
Section?

9. What characters are used as the last entry in a DIF file?

156 CHAPTER 10 DIF FILES

ANSWERS

I. FALSE

2. Header Section and Data Section
3. Header Section
4. Data Section
5. 3

6. 2

7. 0
8. I

9. EOD

SCORES- -DIF

SCORES--DIF

10 REM*** - -SCORES. DIF- -***
11 :
12 :
20 D$ = CHR.$ (4): REM CONTROL D
30 Q$ = CHR.$ (34) : REM QUOTATION MARK
40 ONERR GOTO 380
60 DIMS$ (100) , DT (100)
80 DIM CR (100) , WR (100)
100 I = 1
120 HOME : VTAB 5
140 INPUT "STUDENT Is NAME PLEASE? II; NAME$
160 :
180 :
200 REM** - -FILE ROUTINE--**
220 PRINT D$; "OPEN"; NAME$
240 PRINT D$; "READ" ; NAME$
260 INPUTS$ (I): REM SIGN
280 INPUT DT (I) : REM DIGITS
300 INPUT CR(I) : REM=#= RIGHT
320 INPUT WR (I): REM* WRONG
330 IFS$(I) II + II THEN S$ (I) "ADD"
331 IFS$ (I) = II - II THEN S$ (I) "SUB"
332 IFS$ (I) "X" THENS$ (I) = "MLT"
333 IFS$ (I) II /" THENS$ (I) = "DIV"
340 I = I + 1
360 GOTO 260: REM GET ANOTHER
380 POKE 216 , 0 : REM RESET ERR FLAG
400 PRINT D$; II CLOSE II ; NAME$
420 :
44 0 :
450 REM** - - DIF ROUTINE--**
460 J = I - 1 : NV = 5: NT = I - 1
4 70 FILE$ = NAME$
480 NAME$ = NAME$ + II. DIF"
500 PRINT D$; "OPEN"; NAME$
5 10 PRINT D$; "WRITE" ; NAME$
511:
5 1 5 REM **- -HEADER SECTION--**
5 1 6 :
520 PRINT "TABLE "
530 PRINT "0 , 1"

157

158

540 PRINT Q$FILE$Q$
545
550 PRINT "VECTORS II
560 PRINT "0 , II; NV
570 PRINT QQ
575 :
580 PRINT "TUPLES"
590 PRINT "0, II; NT
600 PRINT QQ
605
610 PRINT "LABEL"
620 PRINT "1 , 0"

CHAPTER 10 DIF FILES

630 PRINT Q$"SESSION # "Q$
635
640 PRINT "LABEL"
650 PRINT "2, 0"
660 PRINT Q$ "OPERATION"Q$
665
670 PRINT "LABEL"
680 PRINT "3 , 0"
690 PRINT Q$"DIGITS"Q$
695 :
700 PRINT "LABEL"
710 PRINT "4 , 0"
720 PRINT Q$"CORRECT"Q$
725 :
730 PRINT "LABEL"
740 PRINT "5 , 0"
750 PRINT Q$"WRONG"Q$
755 :
760 PRINT "DATA"
770 PRINT "0 , 0"
780 PRINT QQ
785 :
800 REM ** - -DATA SECTION-- * *
805 :
810 PRINT "-1, 0"
820 PRINT "BOT"
825 :
830 PRINT "1 , 0"
840 PRINT Q$"SESSION # "Q$
845 :
850 PRINT "l , 0"
860 PRINT Q$ "0PERATION"Q$

SCORES- -DIF

865 :
870 PRINT " 1, 0"
880 PRINT Q$"DIGITS"Q$
885 :
890 PRINT "1, 0"
900 PRINT Q$"CORRECT"Q$
905 :
910 PRINT " 1, 0"
920 PRINT Q$"WRONG"Q$
925 :
930 FOR I = 1 TO J
935 :
940 PRINT " - 1, 0"
950 PRINT "BOT"
955 :
960 PRINT "0 , II; I
970 PRINT "V"
975 :
980 PRINT "1, 0"
990 PRINT S$ (I)
995 :
1000 PRINT "0, ";DT(I)
1010 PRINT "V"
1015 :
1020 PRINT "0, II; CR (I)
1030 PRINT "V"
1035 :
1040 PRINT"O,";WR(I)
1050 PRINT "V"
1055 :
1060 NEXT I
1065 :
1070 PRINT II -1, 0"
1080 PRINT "EOD"
1085 :
1100 PRINT D$; "CLOSE"; NAME$

159

160 CHAPTER 10 DIF FILES

DIF READER

10 REM***- -DIF READER--***
11 :
12 :
20 D$ = CHR$ (4): REM CONTROL D
40 DIM A$ (200), S (200) , N (200)
60 I = 1
80 HOME : VTAB 5
100 INPUT "FILE NAME PLEASE? " ; FILE$
120 :
140 :
160 REM* * - -INPUT ROUTINE- - **
180 PRINTD$;"0PEN";FILE$
200 PRINT D$; "READ"; FILE$
220 INPUT T$: REM READ THE TOPIC NAME
240 INPUTS, N : REM READ THE VECTOR 'if , VALUE
260 INPUTS$: REM THE STRING VALUE
280 IF T$ = "VECTORS" THEN NV= N
300 IF T$ = "TUPLES" THEN NT = N
320 IF T$ < > "DATA" THEN 220
340 K = 1
360 INPUT S (K) , N (K)

380 INPUT A$ (K)

400 IF A$ (K) = "EOD" THEN 440
420 K = K + 1: GOTO 360
440 PRINT D$; "CLOSE" ; FILE$
460 :
480 :
500 REM ** - DISPLAY ROUTINE- **
5 2 0 FOR J = 1 TO K
540 PRINTS (J) ; ", "; N (J)

560 PRINT AS (J)

580 NEXT J
600 END

VARIABLE CREATOR

VARIABLE CREATOR

10 REM **-CREATE VARIABLES-**
11 :
12 :
13 REM **--VARIABLES--**
14 REM L1$ = HEAD . SECT. LINE 1
16 REM L3$ = HEAD . SECT. LINE 3
18 REM A() =HEAD . SECT. 2ND LINE
19 REM FIRST VALUE
20 REM B () = HEAD. SECT. 2ND LINE
21 REM SECOND VALUE
22 REM I = SET COUNTER
24 REM RL = RECORD LENGTH
26 REM LL = LABEL LENGTH
46 :
48 :
50 0$ = CHR$ (4) : REM CTRL D
60 DIM L1$ (99), A (99) , B (99), L3$ (99)
80 HOME : VTAB 5
100 INPUT "DIF FILE NAME PLEASE! "; FILE$
110 INPUT "DO YOU WANT A PAPER PRINTOUT? ";YES$
115 IF YES$ = "Y" THEN PRINT 0$; "PR# 1"

161

120 IF RIGHT$ (FILE$, 4) < > ". DIF" THEN FILE$ = FILE$ +
". DIF"

121 :
122 :
130 REM**- -INPUT HEAD. SECT--**
140 PRINT D$; "OPEN"; FILE$
160 PRINT D$; "READ"; FILE$
180 I = 1
200 INPUT L1 $ (I)
220 INPUT A (I) , B (I)
240 INPUT L3$ (I)
260 IF L1$ (I) = "DATA" THEN 305
280 I = I + 1
300 GOTO 200
301 :
302 :
305 REM **-DISPLAY HEAD. SECT-**
310 HOME : PRINT " LABEL" ;: HTAB 23: PRINT "FIELD"
312 PRINT" NAME"; : HTAB 24: PRINT "SIZE"
315 POKE 34 , 3: PRINT : REM SET WINDOW

162 CHAPTER I 0 DJF FILES

320 FOR K = 2 TO I
340 IF LEN (L3$ (K)) < > 0 THEN PRINT A (K) ; II II; L3$ (K); :

HTAB 25: PRINT B (K + 1)
360 LL = LL + LEN (L3$ (K))
420 IF L1$ (K) = "SIZE" THEN RL = RL + B (K)
440 NEXT K
445 RL = RL + B (K - 2)
450 PRINT : PRINT
460 PRINT "RECORD LENGTH = "; RL
480 PRINT "LABEL LENGTH = "; LL
490 PRINT L1$ (2); II = II; B (2)
495 PRINT L1$ (3); II OR NUMBER OF RECORDS = II ; B (3)
496 PRINT : POKE 34, 22: REM SET WINDOW
498 :
499 :
500 REM ** -WRITE LABELS INFO- **
510 NF$ = FILE$ + II. UP"
512 TN= B(3)
520 PRINT D$; "OPEN VARIABLES"
540 PRINT D$; "WRITE VARIABLES"
560 PRINT NF$
580 PRINT TN
600 PRINT RL
640 PRINT B (2)
700 FORK = 2 TO I
720 IF LEN (L3$ (K)) < > 0 THEN PRINT L3 $ (K) : PRINT B (K + 1)
740 NEXT K
1000 PRINT D$; "CLOSE"
1010 PRINT "ALL FINISHED"
1020 TEXT
1030 NORMAL
1040 PRINT D$; "PR* 0 II
1060 END

DIF TRANSLATOR I

DIF TRANSLATOR 1

10 REM* ** - -DIF TRANSLATOR-- ***
11 :
12 :
1 3 REM ** - - VARIABLES--**
14 REM L1$ = HEAD . SECT. LINE 1
16 REM L3$ = HEAD . SECT. L I NE 3
18 REM A() = HEAD . SECT . 2ND LINE
19 REM FIRST VALUE
20 REM B () = HEAD . SECT. 2ND LINE
21 REM SECOND VALUE
22 REM I= SET COUNTER
24 REM RL = RECORD LENGTH
26 REM LL = LABEL LENGTH
28 REM DA$ () = ACTUAL DATA VALUE
30 REM J = ARRAY COUNTER
3 2 REM Q = ARRAY COUNTER
34 REM A$ = DATA SECT. lST LINE
36 REM VARIABLE TYPE
38 REM B$ = DATA SECT. lST LINE
4 0 REM SECOND VALUE
42 REM C$ = DATA SECTION
44 REM STRING VALUE
46 :
48 :
5 0 D$ = CHR$ (4) : REM CTRL D
60 DIM L1$ (99), A (99), B (99), L3$ (99)
8 0 HOME : VTAB 5
100 INPUT "DIF FILE NAME PLEASE! " ;FILE$
110 INPUT "DO YOU WANT A PAPER PRINTOUT? " ;YES $
115 IF YES$ = "Y" THEN PRINT 0$; "PR# 1 "

163

1 2 0 IF RIGHT$ (FILE$, 4) < > ". DIF" THEN FILE$ = FILE$ +
" . DIF"

121 :
122 :
1 3 0 REM ** - - INPUT HEAD. SECT--**
140 PRINT D$; "OPEN"; FILE$
160 PRINT D$; "READ" ; FILE$
180 I = 1
200 INPUT L1$ (I)
22 0 INPUT A (I) , B (I)
240 INPUTL3$(I)

164 CHAPTER 10 DIF FILES

260 IF L1$ (I) = "DATA " THEN 305
280 I = I + 1
300 GOTO 200
301 :
302 :
305 REM **-DISPLAY HEAD. SECT- **
310 HOME : PRINT" LABEL" ; : HTAB 23 : PRINT "FIELD"
312 PRINT" NAME";: HTAB 24 : PRINT " SIZE"
315 POKE 34, 3: PRINT : REM SET WINDOW
320 FOR K = 2 TO I
340 IF LEN (L3$ (K)) < > 0 THEN PRINT A (K); " " ; L3$ (K); :

HTAB 25: PRINT B (K + 1)
360 LL = LL + LEN (L3$ (K))
420 IF L1 $ (K) = "SIZE " THEN RL = RL + B (K)
440 NEXT K
445 RL = RL + B (K - 2)
450 PRINT : PRINT
460 PRINT "RECORD LENGTH = "; RL
480 PRINT "LABEL LENGTH = ";LL
490 PRINT L1$ (2); " = "; B (2)

495 PRINT L1$ (3); " OR NUMBER OF RECORDS = "; B (3)
496 PRINT : POKE 34, 22: REM SET WINDOW
498 :
499 :
500 REM **-INPUT DATA SECT- **
510 VTAB 24: FLASH : PRINT "READING DIF FILE- -DON'T

TOUCH! ! ! " : NORMAL
520 DIMDA$(B(3),B(2))
540 J = 0: Q = 0
560 INPUT A$, B$
580 INPUT C$
600 IF C$ = "BOT" THEN 740
620 IF C$ = "EOD" THEN 770
625 :
630 REM IF ALPHABETICAL THEN
635 REM SAVE C$
640 IFA$ = "1" ANDB$ = "0" THENDA$(Q,J) = C$: GOTO 700
645 :
650 REM IF NUMERICAL THEN
655 REM SAVE B$
660 IF A$ = "0 " AND C$ = "V" THEN DA$ (Q, J) = B$: GOTO 700
665 :
670 REM IF NOT "V" THEN
675 REM SAVE BOTH

DIF TRANSLATOR I

680 DA$ (Q, J) = B$ + C$
685 :
700 J = J + 1
720 GOTO 560
740 J = 1: Q = Q + 1
760 GOTO 560
768 :
769 :
770 REM** - -WRITE NEW FILE--**
775 VTAB 24: FLASH : PRINT "WRITING NEW FILE": NORMAL
780 PRINT D$; "OPEN"; FILE$ + ".UP";", L"; RL
800 FORK = 1 TO Q
840 PRINT 0$; "WRITE" ; FILE$ + ".UP";", R"; K
850 FOR W = 1 TO J - 1
860 PRINT DA$ (K, W)

880 NEXT W
900 NEXT K
920 PRINT 0 $; "CLOSE"; FILE$ + ".UP"
1000 PRINT D$; "CLOSE"
1010 PRINT "ALL FINISHED"
1020 TEXT
1030 NORMAL
1040 PRINT D$; "PR!fO"
1060 END

165

166 CHAPTER 10 DIF FILES

READ NEW FILE

20 D$ = CHR$ (4)
25 PRINT D$; "OPEN VARIABLES"
27 PRINT D$; "READ VARIABLES"
29 INPUT NF$
3 1 INPUT TN
33 I NPUT RL
35 INPUT LABEL
36 DIMLABEL$(LABEL),FIELDSIZE(LABEL) ,DA$(TN,LABEL)
37 FORK = 1 TO LABEL
39 INPUT LABEL$ (K)
41 INPUT FIELDSIZE (K)
43 NEXT K
45 PRINT D$; "CLOSE VARIABLES"
50 FILE$ = NF$
60 PRINTD$; "OPEN" ; FILE$; ",L";RL
80 FOR I = 1 TO TN
100 PRINT D$; "READ"; FILE$;", R"; I
120 FORK = 1 TO LABEL
140 INPUT DA$ (I, K)
160 NEXT K
180 NEXT I
200 PRINT D$; "CLOSE"
220 FOR I = 1 TO TN
240 FORK = 1 TO LABEL
250 PRINT LABEL$ (K); : HTAB 20 : PRINT FIELDSIZE (K)
260 PRINT DA$ (I , K)
280 NEXT K
300 NEXT I
320 END

r

I I
Randam File lntraductian

The biggest barrier I have found in explaining random access files is
fear. People are afraid that random access is too hard for them to learn.
Actually, once you understand the principles behind sequential access,
learning to work with random access is not that difficult. I believe that
if you have followed all the examples in the previous chapte rs, you will
be able to learn to work with random files. Don 't become intimidated by
the different approach random access requires.

Actually, there are two kinds of random access files : random files that
consist of undivided equal length records, and random files that consist
of divided equal length records. Notice the only difference is that in one
kind the records are divided into parts, and in the other kind the records
remain as a whole. This latter kind is the easier to explain and use, so I
will discuss it first.

UNDIVIDED RANDOM FILES

When we use the POSITION command with sequential access files,
we need the R parameter. The R parameter allows us to position the file
pointer at a specific record relative to the last file pointer position. Please
notice this last qualification because it points up the major difference
between sequential access files used with the R parameter and random
access files of the undivided kind. Remember that if you specify R25 in
a sequential file immediately after opening that file, you access the 25th
record, but if you follow that with a specification of RI 0, you access
the 35th record, not the I 0th record. The R parameter is relative to

167

168 CHAPTER 11 RANDOM FILE INTRODUCTION

the file pointer position. This is not the case with random access files.
The R parameter is not relative to the file pointer. It is equal to the
file pointer and is absolute in its position. In the above example, a
specification of R25 with random files accesses the 25th record, but a
following specification of R I 0 does not access the 35th record in random
files. Instead, it accesses the I 0th record. Of course, the numbers used in
this example are arbitrarily chosen and can be any record numbers. The
idea is that the R parameter, when used in random files, gives access to
the specified record. If you want to access the 15th record first and then
the 5th record, you can do so directly.

20 D$ = CHR$ (4): REM CONTROL D
40 PRINT D$; "OPEN TEST FILE, L50"
60 PRINT D$; "READ TEST FILE , R15"
80 INPUT A$
100 PRINT D$; "READ TEST FILE , R5"
120 INPUT B$
140 PRINT D$; "CLOSE TEST FILE"

In this example, you can see how easy it is to use random files of the
undivided kind. Once you open the file properly, you are able to directly
read or write to any record you choose in any order you choose. But
please notice the qualification about opening the file properly. Both
kinds of random files must consist of equal-length records. This means
that you must decide on the length of the longest record you will ever
have. For instance, in our MAILING LIST SYSTEM, each line had a
maximum length of 255 characters because that is the maximum number
of characters allowed in a single string variable. Probably none of your
lines (or records) actually had the maximum length, but that was the
length possible for each record. You did not need to specify this number
because, in sequential files, the next record begins immediately after
the end of the last character and the record delimiter, no matter what
the actual length of the record. In random files, you must specify the
maximum length because the next record does not begin immediately after
the las t character in the previous record. It actually begins at the specified
record length after the beginning of the previous record, regardless of the
number of characters in that record.

In our above example, the length is given as " 50". That means that
each record has a maximum of 50 characters possible and that each record
begins 50 characters or spaces (bytes) from the start of the previous
record. If the first record begins at byte 0, the second begins at 50, the
third record at 100, and so fort h. You do not need to be concerned with
the actual location on the disk. All that is important is to understand that
since each record must be of equal length, it is very easy for the computer
to calculate the starting position of each record and possible for you to

DIVIDED RANDOM FILES 169

specify any record in any order. You must provide the computer with
that maximum length by assigning a value to the L parameter in random
files . The number given after the L in an OPEN statement indicates the
maximum number of characters or bytes you expect in any record in that
file. It also indicates that each record will be that number of characters
or bytes long.

If you have a record that is not as long as the number given after
the L, then you will have a certain amount of disk space that is unused.
It is, therefore, important to figure carefully and keep the number after
the L as low as possible. If the number is very large and most of your
records are rather small, you will be wasting a lot of disk space. A certain
amount of wasted disk space is inevitable when using random files, since
few files will contain information of exactly equal length. But in using
random files, you are willing to waste a little disk space in order to gain
the advantage of much faster disk access.

As you can see, there is not too much difference in learning to use
sequential access files with the R parameter and learning lo use random
access files with the R parameter. Our MAILING LIST SYSTEM would
be somewhat easier to work with now, but it would still be a good idea
to include some kind of separator between addresses and phone numbers
and also between sets of information. We would still have some difficulty
picking out just the zip code or first name or city or any other part of
a record if we needed just that part. It can be done with enough good
programming, but an easier way is to use the second kind of random
access files- the divided equal length record.

DIVIDED RANDOM FILES

The divided random file consis ts of records that are broken into parts
or fields of varying length. Each record is the same length, but within
each record, the fields or parts of the record can be of varying lengths. In
other words, a random access file that consists of records with a length of
I 00 characters or bytes can have each record divided into parts of equal
or unequal lengths. The first field might be 25 bytes long, the second
field I 0 bytes, the third field 15 bytes, and the last fi eld 50 bytes. The
total number of bytes or characters equals I 00, but no two fi elds are the
same length.

In our MAILING LIST SYSTEM example, with random files that
contained divided records, we could specify a certain length for the first
name and other lengths for the last name, city, zip code, etc. For instance,
if we decide that each line of information or each record would have no
more than 30 characters in it, we could further decide that the first field

170 CHAPTER 11 RANDOM FILE INTRODUCTION

of each record would exist from byte 0 to byte 10, the second from byte
11 to byte 24, and the last field from byte 25 to byte 30. The first record
in each set could contain the first name in the first field , the last name
in the second field, and the middle initial in the third field. The second
record could contain the numerical address in the first field, the street
address in the second field, and an apartment number in the third field.
Finally, the third record could contain the city in the first field, the state
in the second field, and the zip code in the third field . Under this set up,
it would be easy to access any part of any record in any order we desired.
For example, if we just wanted the zip code and first name in that order,
we would have no trouble accessing just that information.

I have been using the term " byte" in connection with the word
"character" so that you might get used to the idea that the length of
a record is measured in bytes. Each character or number is one byte.
If a file has equal length records of 50, it has 50 bytes. If the second
field begins 27 characte rs from the first character, it starts at the 27th
byte of the record. To access that byte we use another parameter---the B
parameter. For example:

200 PRINT 0$; "OPEN TEST FILE , L75"
220 PRINT 0$; "READ TEST FILE , R44, 823"
240 INPUT A$
260 PRINT 0$; "CLOSE"

This example would open the existing file called " TEST FILE", the length
of which is 75 bytes for each record. Line 220 sets the fil e pointer to the
23rd byte of the 44th record. Line 240 brings information in starting
from that 23rd byte until the delimiter is encountered or the next field is
reached.

MEDICAL RECORDS SYSTEM

With this background, we are going to go over what I hope is a useful
program. The example is a file used to store personal family medical
records. In these random file examples, I will not go over all the routines
as I did in the sequential file examples. Instead, I will concentrate on the
file routines. The comple te listing for the program will be found at the
end of the chapter. If you take a look at the complete listing, you will see
that we begin with a menu routine and a keyboard input routine in order
to obtain our original information. We are asking the user to supply: (1)
the name of the individual (NAME$), (2) the date (OT$), (3) the type
of record; i.e. , whether it is a record of a Dr. Visit, Medication, Illness,
Accident or Injury, Shot or Immunization, or X-ray (TYPE$), and (4)

MEDICAL RECORDS SYSTEM 171

any miscellaneous information such as the name of the medication and
frequency of use, the kind of illness, location of injury, etc. (MISC$).
Once we have all our information and have verified that it is correct, we
are ready to write that information out to the disk file.

1700 REM **--OUTPUT ROUTINE--**
1710 ONERR GOTO 1950: REM FOR FIRST USE
1720 PRINT D$; "OPEN MEDICAL FILE, L50"
1740 PRINT D$; "READ MEDICAL FILE, RO"
1 760 INPUT PTR
178 0 PTR = PTR + 1
1800 PRINT D$; "WRITE MEDICAL FILE , R" ; PTR; ", B"; 1
1810 PRINT NAME$
1820 PRINT D$; "WRITE MEDICAL FILE, R"; PTR; " , B" ; 15
1830 PRINT DT$
1840 PRINT D$; "WRITE MEDICAL FILE , R"; PTR; ", B"; 25
1850 PRINT TYPE$
1860 PRINT D$; "WRITE MEDICAL FILE; R" ; PTR; ", B"; 27
1870 PRINT MISC$
1880 PRINT D$; "WRITE MEDICAL FILE , RO"
1900 PRINT PTR
1920 PRINT, D$; "CLOSE MEDICAL FILE"
1930 POKE 216 , 0: REM RESET ERROR FLAG
1940 GOTO 100: REM MENU
1945 :
1946 :
1950 REM CREATE PTR FOR FIRST TIME
19 5 5 POKE 216, 0: REM RESET ERROR FLAG
1960 PRINT D$; "WRITE MEDICAL FILE, RO"
1970 PRINT "0"
1975 GOTO 1700: REM BEGIN AGAIN
1980 :
1990 :

Line 1700 names the routine, and I 710 provides a check for a first use
of this program. If this program has not been used before, the input
statement in 1760 (INPUT PTR) will cause an error to occur. Line 1710
does not halt operation of the program upon encountering an error, rather
the computer is directed to a one-time routine designed to correct the
cause of the error. Therefore, upon first use, when the out of data error
occurs, the computer is instructed to proceed to lines 1950 to 1975.
These lines reset the error flag, and then write a " 0 " for the value of
the first pointer. After the file has a value for the pointer, we can direct
the computer to return to the beginning and continue as if no error has
occurred.

172 CHAPTER 11 RANDOM FILE INTRODUCTION

Line 1720 opens the file, while 1740 directs the computer to get ready
to read the file. Line 1760 brings in the value of the pointer and stores
that value in the numeric variable PTR. Line 1780 increases the value of
the pointer by one since we do not want to write over the last record in
this file. Line 1800 begins the process of writing the medical information
to the file .

I am going to go over every character in line 1800, so that anything
that is used in this instruction will be clear. The first part of this line is the
standard PRINT 0$ which you should recognize as a CTRL D providing
the computer with the information that it is to access the disk. After the
0$, comes a " ; " which helps to make this statement easier to read.
Following the semi-colon, we have an opening quotation mark and the
word WRITE with the name of the file we want the information to go into.
The file name is immediately followed by a comma, the letter R and the
closing quotation mark. This sequence is absoiutely necessary with those
exact characters. After the ,R" sequence, another semi-colon is used
with the variable PTR to indicate which specific record this information
is to be written to. The PTR is followed by another semi-colon and
another absolutely necessary sequence when using random files with the
B parameter. This sequence is very much like the earlier one, except that
we substitute a "B" for the previously used "R" : ",B" . This sequence
informs the computer that we not only want to write information to a
specific record, but to a specific location within that record. The exact
location is given by the number following the B sequence---in this case the
number one. That means that we want to write information to the PTRth
record beginning at the first byte of that record. The actual information to
be written is contained in the string variable NAME $ which is PRINTed
out to the file on the disk by the instruction at line 1810.

This same procedure is used to write all of our information to this
particular file. Line 1820 sets the file pointer to the 15th byte of the
same record, and 1830 PRINTs the date stored in the string variable OT$.
Line 1840 sets the file pointer to the 25th byte, and line 1850 writes the
specific type of medical information this record contains. Finally, line
1860 establishes the file pointer at the 27th byte so that line 1870 can
write out any information contained in the string variable MISC$. This
part of the record has the greatest amount of storage available. MISC$
could go from the 27th byte to the 49th byte (leaving one byte for the
record delimiting carriage return). Finally, we go back to record zero in
line 1880 and write out our new value for PTR (line 1900). Line 1920
closes the file, and 1930 resets the error flag. We return to the main
menu with the instruction at 1940.

There are several points that should be emphasized before moving
on. Notice that it is not necessary to use string arrays: NAME$(). We do
not have to use string arrays because of the versatility of random files. In

MEDICAL RECORDS SYSTEM 173

this program, the information for a complete record is written to the disk
before additional information is obtained from the user. The idea that
we can use the disk without extensive use of string arrays will become
more apparent with the section on reading and displaying our medical
information.

Notice also that we use a variable for the value of our record or the
R parameter but use a constant for all values of the byte or B parameter.
It is possible to use either a variable or a constant with either or both of
these parameters: the R can be a constant and the B a variable, both can
be constants, or both variables. The information can go into the file in
any order yet still in the same location, as specified in the above program.
The computer does not care about the sequence of the instructions in this
case, only the location. You may find that by changing the sequence, the
process might take a little longer with some tiles, since the disk head will
be changing direct ion. But with this file, little difference should be noted.

There are quite a variety of methods used to shorten the amount of
programming necessary with random tiles. It is possible to substitute a
string variable for the tile name, and in that case, the closing quotation
mark would come after the word WRITE with another opening quotation
mark necessary before the comma-R-close-quote sequence . Line 1800
would then look like this:

1800 PRINT D$; "WRITE"; FILE$; II . R"; PTR; II. B"; 1

Another possibility is to use string variables for everything. This can be
accomplished by concatenation; i.e., joining strings together.

25 A$ = D$ + "WRITE" + FILE$ + II ' R"
27 B$ = II • B II

Then 1800 would look like:

1800 PRINT A$; PTR; B$; 1

In this book, I will not use any method to shorten the necessary program­
ming statements because I feel that the unshortened version helps the
reader understand the entire process. I grant that it might be easier on
the fingers if string variables are substituted for the necessary sequences,
but I have found that the time and effort saved with these shortened ve::r­
sions is often lost when such programs must be changed or added to.
Regardless of the completeness of the variable list at the beginning of the
program, the statement PRINT A$ is far less self-explanatory than the
statement:

PRINT D$; "WRITE MEDICAL FILE, R"; PTR; " , B"; 15

especially once the syntax is understood. But for those that like to make
their statements as short as possible, I have indicated how these random

174 CHAPTER 11 RANDOM FILE INTRODUCTION

file statements can be shortened.
We move now to the section of ou r program that allows us to see the

information we have stored in the MEDICAL FILE. Jn this first section,
we read the file and immediately display the information.

2000 REM **--READ ROUTINE--**
2020 PRINT D$; "OPEN MEDICAL FILE, L50"
2040 PRINT D$; "READ MEDICAL FILE, RO"
2060 INPUT PTR
2080 FOR I = 1 TO PTR
2100 PRINT D$; "READ MEDICAL FILE, R"; I;" , B"; 1
2120 INPUT NAME$
2140 PRINT D$; "READ MEDICAL FILE, R"; I;", B"; 15
2160 INPUT DT$
2180 PRINT D$; "READ MEDICAL FILE, R"; I; II I B"; 25
2200 INPUT TYPE$
2220 PRINT D$; "READ MED I CAL FILE, R"; I ; 11

, B " ; 27
2240 INPUT MISC$
2260 TP$ = TYPE$: GOSUB 10000: TYPE$ = TP$
2280 PRINT NAME$;
2300 HTAB 10
2320 PRINT DT$;
2340 HTAB 20
2360 PRINT TYPE$
2380 HTAB 20
2400 PRINT MISC$
2420 PRINT
2440 NEXT I
2460 PRINT D$; "CLOSE MEDICAL FILE"
2480 INPUT "HIT RETURN TO GO TO MENU "; L$
2500 GOTO 100: REM MENU
2980 :
2990 :

The first thing that is done is to name the routine (line 2000). Next,
the file is opened (line 2020) and the computer is instructed to read
record zero of the file (line 2040) and bring in the value of the pointer
(line 2060). Line 2080 establishes a loop that goes from the first record
to the value of PTR. Lines 2100 through 2240 set the file pointer to
the desi red location and then read in the necessary information. Lines
2280 to 2440 display the in formation that has just been copied from the
disk file. The instruc tion in line 2260 may look unusual. We first set
the string variable TP$ equal to the string variable TYPE$. Control is
then transferred to a subroutine located in lines I 0000 to 10240. The
purpose of this subroutine is to match the single character symbol with

MEDICAL RECORDS SYSTEM 175

its complete corresponding TYPE name: for example, exchange " D" for
"Dr. Visit ". Once the exchange has been made, control is returned to
the statement immediately following the GOSUB statement. In this case,
the statement immediately following the GOSUB is on the same line and
makes the exchange back to TYPE$. This is one of the few times that
multiple statements on the same instruction line may clarify the purpose
of the instructions. The idea is to use a common variable, go to a routine
that uses that common variable, return from that routine, and switch back
to the original variable. We will use this procedure in other programs.
Line 2480 closes the file, and Jines 2500 and 2520 allow us to return to
the menu portion of the program.

The only section of the program left to examine is the search routine.
Lines 3000 to 3270 establish exactly what we will be searching for, and
lines 3275 through 3990 conduct the actual search and display the results.

3275 REM * * -- INPUT ROUTINE--* *
3280 PRINT D$; "OPEN MEDICAL FILE, L50"
3300 PRINT D$; "READ MEDICAL FILE , RO"
3320 INPUT PTR
3340 FOR I = 1 TO PTR
3360 PRINT D$; "READ MEDICAL FILE, R"; I ; " , B" ; BYTE
3380 INPUT FIND$
3400 IF SRCH$ < > FIND$ THEN 3640 : REM NEXT RECORD
3420 FORK = 1 TO 4
3440 IF K = 1 THEN BT = 1
3460 IF K = 2 THEN BT = 15
3480 IF K = 3 THEN BT = 25
3500 IF K = 4 THEN BT= 27
3520 PRINT D$; "READ MEDICAL FILE, R"; I ; " , B"; BT
3540 INPUT A$ (Kl
3560 IF K = 3 THEN TP$ = A$ (3) : GOSUB 10000 :

A$ (3) = TP $
3580 PRINT A$ (K)
3600 NEXT K
3620 PRINT
3640 NEXT I
3660 PRINT D$; "CLOSE MEDICAL FILE"
3680 INPUT "HIT RETURN WHEN READY " ; L$
3700 GOTO 3000 : REM SEARCH AGAIN

This is an elementary search and display routine. Lines 3275 to 3320
open the file and obtain the value of the pointer. Line 3340 establishes
the boundaries for a loop. Within that loop, we look for just the desired
part of each record. When that part is loca ted , the rest of the information
associated with that part is read and displayed Oines 3380 to 3600) .

176 CHAPTER 11 RANDOM FILE INTRODUCTION

Those instruction-lines are skipped for information that does not match
or equal the string variable for which we are searching. When the entire
file has been searched, the file is closed, and control is transferred back
to the beginning of the search routine to see if the user wishes to search
for more information.

This program provides a reasonable example of the techniques in­
volved with creating, adding to, and reading from a random access file
with the B parameter. It does not get too fancy yet is a useful program.
You may want to supply additional routines such as a printer routine.
In the following chapter, we will use random files in a more elaborate
manner to do some different things. At the end of this chapter, I have
included the medical program that uses arrays. This program provides
better displays on smaller fil es.

One additional comment needs to be made in concluding this chap­
ter. There is another way of using random access files of the divided kind
without using the B parameter. This is the method usually discussed and
is the reason I chose to focus on the B parameter. This other method
substitutes separate variables of varying length for the B parameter. In
other words, within each random record exists a sequential access series
of variables. The programmer cannot get to the third variable within each
record without first reading or writing to the first two variables. An ex­
ample of this type of random access file is given in the DIFTRANSLATOR
program at the end of the previous chapter.

Some may argue that it is not really an inconvenience to read all the
variables within a record in order to access a middle variable because of
the way Apple reads and writes to the disk. But my preference is with
the use of the B parameter. It provides a true random access to any byte
within the file and is clearer to read than many of the programs using
random files without the B parameter.

CHAPTER 11 RANDOM FILE INTRODUCTION 177

QUESTIONS

I . Name the two kinds of random files.

2. What sequential access DOS command uses the same parameter as
random access files?

3. TRUE or FALSE: Random files can contain records of different
lengths.

4. In random files, the R parameter is (a) absolute or (b) relative?

5. TRUE or FALSE: In random files, the next record begins immediately
after the last character in the previous record.

6. What parameter must an OPEN command have in a random file?

7. TRUE or FALSE: Random files waste disk space but have much
faster disk access than do sequential files.

8. How many types of divided random files are there?

9. What is the length of each record measured in?

10. What is the necessary sequence for record identification in random
files?

11. What is the necessary sequence for byte identification in random
files?

12. TRUE or FALSE: Random files require greater use of string arrays
than do sequential files.

13. TRUE or FALSE: The R parameter can be a variable in random files,
but the B parameter must be a constant.

14. Divided random files that do not use the B parameter use what kind
of access for fields within each record?

17& CHAPTER 11 RANDOM FILE INTRODUCTION

ANSWERS

1. Divided and undivided random files.

2. POSITION

3. FALSE

4. A

5. FALSE

6. L

7. TRUE

8. 2

9. BYTES

I 0. " ,R "

11 . " ,B "

12. FALSE

13. FALSE

14. Sequential access

MEDICAL RECORDS

MEDICAL RECORDS

10 REM**- -MEDICAL RECORDS--**
11 :
12 :
20 D$= CHR$ (4): REM CONTROL D
60 TB = 15: REM HTAB VALUE
80 :
90 :
100 REM**- -MENU ROUTINE--**
110 HOME : VTAB 5
120 HTAB TB
140 PRINT "MEDICAL RECORDS"

160 PRINT : PRINT : PRINT
180 HTAB TB
200 PRINT II 1. WRITE RECORD II

210 PRINT : HTAB TB

220 PRINT "2. READ RECORD"
230 PRINT : HTAB TB
240 PRINT "3 . SEARCH RECORDS"
250 PRINT : HTAB TB
260 PRINT "4. END"
280 PRINT : HTAB TB

300 INPUT "WHICH NUMBER"; NUMBER
320 IF NUMBER < 1 OR NUMBER > 4 THEN 280
410 IF NUMBER = 1 THEN 1000
420 IF NUMBER = 2 THEN 2000
430 IF NUMBER = 3 THEN 3000
440 IF NUMBER = 4 THEN END
980 :
990 :
1000 REM**- -WRITE ROUTINE--**
1020 HOME : VTAB 10

1030 HTAB TB

1040 INPUT "NAME ";NAME$
1050 IF LEN (NAME$) > 14 THEN NAME$ = LEFT$ (NAME$, 14)
1060 PRINT
1070 HTAB TB
1080 INPUT "DATE " ; DT$
1100 PRINT
1120 HOME : VTAB 5

1140 HTAB TB
1160 PRINT "TYPE OF RECORD"

179

180 CHAPTER 11 RANDOM FILE INTRODUCTION

1180 PRINT : PRINT
1200 HTAB TB
1220 PRINT "D- -DR. VISIT"
1230 PRINT : HTAB TB
1240 PRINT "M- -MEDICATION"
1250 PRINT : HTAB TB
1260 PRINT II I- -ILLNESS"
1270 PRINT : HTAB TB
1280 PRINT "A- -ACCIDENT/ INJURY"
1290 PRINT : HTAB TB
1300 PRINT "S- -SHOT/ IMMUNIZATION"
1310 PRINT : HTAB TB
1320 PRINT "X- - X-RAY"
1330 PRINT : HTAB TB
1340 INPUT "WHICH TYPE OF RECORD " ; TYPE$
1360 HOME : VTAB 5
1365 HTAB 8: PRINT "TYPE IN ANY MISC . INFO."
1368 VTAB 10
1370 HTAB 8
13 8 0 FOR I = 1 TO 2 2
1400 PRINT CHR.$ (9 5);: REM UNDERLINE
1420 NEXT I
1430 HTAB 8
1440 VTAB 10
1460 INPUT " ";MISC$: REM INPUT OVER UNDERLINE
1480 IF LEN (MISC$) > 22 THEN PRINT "TOO LONG" : PRINT :

PRINT "DO NOT GO BEYOND THE END OF THE DASHES" : FOR I= 1 '
3000: NEXT I : GOTO 1360

1500 HOME : VTAB 5
1520 PRINT NAME$
1530 PRINT
1540 PRINT DT$
1550 PRINT
1555 TP$ = TYPE$: GOSUB 10000: REM TYPE SUBROUTINE
1560 PRINT TP$
1570 PRINT
1580 PRINT MISC$
1590 PRINT
1600 INPUT II IS THIS CORRECT? II ; YES$
1620 IF YES$ < > "Y" THEN 1000: REM START OVER
1640 :
1660:
1 700 REM * * - -OUTPUT ROUTINE- - * *
1710 ONERR GOTO 1950: REM FOR FIRST USE

MEDICAL RECORDS

1720 PRINT D$; " OPEN MEDICAL FILE , L50"
1740 PRINT 0 $; "READ MEDICAL FILE, RO"
1 760 INPUT PTR
1 780 PTR = PTR + 1
1800 PRINT 0$; "WRITE MEDICAL FILE, R" ; PTR; ", B" ; 1
1810 PRINT NAME$
1820 PRINT 0$; "WRITE MEDICAL FILE, R" ; PTR; " , B"; 15
1830 PRINT OT$
1840 PRINT 0$; "WRITE MEDICAL FILE, R" ; PTR; '', B"; 25
1850 PRINT TYPE$
1860 PRINT 0$; "WRITE MEDICAL FILE, R" ; PTR; " , B" ; 27
1870 PRINT MISC$
1880 PRINT 0$; "WRITE MEDICAL FILE, RO"
1900 PRINT PTR
1920 PRINT D$; "CLOSE MEDICAL FILE"
1930 POKE 216 , 0 : REM RESET ERR FLAG
1940 GOTO 100 : REM MENU
1945 :
1946 :
1950 REM CREATE PTR FOR FIRST TIME
1955 POKE 216, 0: REM RESET ERR FLAG
1960 PRINT D$; " WRITE MEDICAL FILE , RO"
1970 PRINT "0"
1975 GOTO 1700: REM BEGIN AGAIN
1980:
1990 :
2000 REM * *- -READ ROUTINE--* *
2020 PRINT 0$; "OPEN MEDICAL FILE, L50"
2040 PRINT 0$; "READ MEDICAL FILE, RO"
2060 INPUT PTR
2 080 FOR I = 1 TO PTR
2100 PRINT D$; "READ MEDICAL FILE , R"; I ; " , B" ; 1
2120 INPUT NAME$
2140 PRINT 0$; "READ MEDICAL FILE , R" ; I ; " , B"; 15
2160 I NPUT DT$
2180 PRINT 0$; "READ MEDICAL FILE , R" ; I ; " , B"; 25
2200 INPUT TYPE$
2220 PRINT 0$; "READ MEDICAL FILE , R" ; I;" , B"; 27
224 0 INPUT MISC$
2260 TP$ = TYPE$: GOSUB 10000: TYPE$ = TP$
2280 PRINT NAME$;
2300 HTAB 1 0
232 0 PRINT DT$;
2340 HTAB 20

181

182 CHAPTER 11 RANDOM FILE INTRODUCTION

2360 PRINT TYPE$
2380 HTAB 20
2400 PRINT MISC$
2420 PRINT
2440 NEXT I
2460 PRINT D$; "CLOSE MEDICAL FILE"
2480 INPUT "HIT RETURN TO GO TO MENU "; L$
2500 GOTO 100: REM MENU
2980 :
2990:
3000 REM**- -SEARCH ROUTINE--**
3020 HOME : VTAB 5: HTAB TB
3030 PRINT "SEARCH FOR ... II

3035 PRINT
3040 HTAB TB
3060 PRINT II 1. NAME"
3070 PRINT : HTAB TB
3080 PRINT "2 . DATE"
3090 PRINT : HTAB TB
3100 PRINT "3 . TYPE"
3110 PRINT: HTAB TB
3120 PRINT "4 . MISC"
3130 PRINT: HTAB TB
3135 PRINT "5. END SEARCH"
3137 PRINT: HTAB TB
3140 INPUT "WHICH NUMBER? ";NB
3160 IF NB < 1 OR NB > 5 THEN 3137
3180 IF NB = 1 THEN BYTE = 1 : B$ = "NAME"
3200 IF NB = 2 THEN BYTE = 15 : B$ = "DATE"
322 0 IF NB = 3 THEN BYTE = 25: B$ = "TYPE"
3240 IF NB = 4 THEN BYTE = 27: B$ = "MISC"
3260 IF NB = 5 THEN 100: REM MENU
3265 PRINT: HTAB TB
3270 PRINT "WHICH " ;B$;: INPUT 11 ? 11 ;SRCH$
3271 HOME : VTAB 2
3272 :
3273 :
3275 REM**- -INPUT ROUTINE--**
3280 PRINT D$; "OPEN MEDICAL FILE, L50 "
3300 PRINT D$; "READ MEDICAL FILE, RO"
3320 INPUT PTR
3340 FOR I = 1 TO PTR
3360 PRI NT 0$; "READ MEDICAL FILE, R" ; I ;", B"; BYTE
3380 INPUT FIND$

MEDICAL RECORDS

3400 IF SRCH$ <> FIND$ THEN 3640: REM NEXT RECORD
3420
3440
3460
3480
3500

FORK= 1 TO 4
IF K = 1 THEN BT =
IF K = 2 THEN BT=
IF K = 3 THEN BT =
IF K = 4 THEN BT=

1
15
25
27

3520 PRINT D$; "READ MEDICAL FILE , R"; I;", B"; BT
3540 INPUT A$ (K)

183

3560 IF K = 3 THEN TP$ = A$ (3) : GOSUB 10000 : A$ (3) = TP$
3580 PRINT A$ (K)
3600 NEXT K
3620 PRINT
3640 NEXT I
3660 PRINT D$; "CLOSE MEDICAL FILE"
3680 INPUT "HIT RETURN WHEN READY II; L$
3700 GOTO 3000: REM SEARCH AGAIN
9998 :
9999 :
10000 REM ** - -SUBROUTINES--* *
10100 REM * - -TYPE SUBROUTINE-- *
10120 IF TP$ = "D" THEN TP$ = "DR. VISIT"
10140 IF TP $ = "M" THEN TP$ = "MEDICATION"
10160 !FTP$ ="!" THENTP$ ="ILLNESS"
10180 !FTP$= "A" THENTP$ ="ACCIDENT/ INJURY"
10200 IF TP$ = "S" THEN TP$ = "SHOT / IMMUNIZATION"
10220 IF TP$ = "X" THEN TP$ = "X-RAYS"
10240 RETURN

184 CHAPTER 11 RANDOM FILE INTRODUCTION

MEDICAL RECORDS WI ARRAYS

10 REM **--MEDICAL RECORDS-- **
11 :
12 :
20 D$ = CHR$ (4): REM CONTROL D
40 DIM NAME$ (50), DT$ (50), TYPE$ (50), MISC$ (50)
60 TB = 15 : REM HTAB VALUE
80:
90 :
100 REM**- -MENU ROUTINE--**
110 HOME : VTAB 5
120 HTAB TB
140 PRINT "MEDICAL RECORDS"
160 PRINT : PRINT : PRINT
180 HTAB TB
200 PRINT "l. WRITE RECORD"
210 PRINT : HTAB TB
220 PRINT "2. READ RECORD"
230 PRINT : HTAB TB
240 PRINT "3 . SEARCH RECORDS"
250 PRINT : HTAB TB
260 PRINT "4 . END"
280 PRINT : HTAB TB
300 INPUT "WHICH NUMBER II; NUMBER
320 IF NUMBER < 1 OR NUMBER > 4 THEN 280
410 IF NUMBER = 1 THEN 1000
420 IF NUMBER = 2 THEN 2000
430 IF NUMBER = 3 THEN 3000
440 IF NUMBER = 4 THEN END
9 8 0 :
990 :
1000 REM **- - WRITE ROUTINE - - **
1020 HOME : VTAB 10
1030 HTAB TB
1040 INPUT "NAME II ; NAME$
1050 IF LEN (NAME$) > 1 4 THEN NAME$ = LEFT$ (NAME$, 14)
1060 PRINT
1070 HTAB TB
1080 INPUT "DATE "; DT$
1100 PRINT
1120 HOME : VTAB 5
1140 HTAB TB

MEDICAL RECORDS W/ARRAYS

1160 PRINT "TYPE OF RECORD"
1180 PRINT : PRINT
1200 HTAB TB
1220 PRINT "D- -DR. VISIT"
1230 PRINT : HTAB TB
1240 PRINT "M- -MEDICATION"
1250 PRINT : HTAB TB
1260 PRINT II I- -ILLNESS"
1270 PRINT : HTAB TB
1280 PRINT "A- -ACCIDENT/INJURY"
1290 PRINT : HTAB TB
1300 PRINT "S- -SHOT/ IMMUNIZATION"
1310 PRINT : HTAB TB
1320 PRINT "X- -X-RAY"
1330 PRINT : HTAB TB
1340 INPUT "WHICH TYPE OF RECORD ";TYPE$
1360 HOME : VTAB 5
1365 HTAB 8: PRINT "TYPE IN ANY MISC. INFO."
1368 VTAB 10
1370 HTAB 8
1380 FOR I = 1 TO 22
1400 PRINT CHR.$ (95); : REM UNDERLINE
1420 NEXT I
1430 HTAB 8
1440 VTAB 10
1460 INPUT " ";MISC$: REM INPUT OVER UNDERLINE

185

1480 IF LEN (MISC$) > 22 THEN PRINT "TOO LONG" : PRINT :
PRINT "DO NOT GO BEYOND THE END OF THE DASHES" : FOR I = 1 TO
3000: NEXT I : GOTO 1360

1500 HOME : VTAB 5
1520 PRINT NAME$
1530 PRINT
1540 PRINT DT$
1550 PRINT
1555 TP$ =TYPE$: GOSUB 10000: REM TYPE SUBROUTINE
1560 PRINT TP$
1570 PRINT
1580 PRINT MISC$
1590 PRINT
1600 INPUT II IS THIS CORRECT? II ; YES$
1620 IF YES$ <> "Y" THEN 1000: REM START OVER
1640 :
1660 :

186 CHAPTER 11 RANDOM FILE INTRODUCTION

1700 REM**- -OUTPUT ROUTINE-- * *
1710 ONERR GOTO 1950: REM FOR FIRST USE
1720 PRINT D$; "OPEN MEDICAL FILE, L50"
1740 PRINT D$; "READ MEDICAL FILE, RO"
1 760 INPUT PTR
178 0 PTR = PTR + 1
1800 PRINT D$; "WRITE MEDICAL FILE, R"; PTR; " , B"; 1
1810 PRINT NAME$
1820 PRINT D$; "WRITE MEDICAL FILE, R" ; PTR; ", B"; 15
1830 PRINT DT$
1840 PRINT D$; "WRITE MEDICAL FILE, R"; PTR; " , B"; 25
1850 PRINT TYPE$
1860 PRINT D$; "WRITE MEDICAL FILE, R" ; PTR; ", B" ; 27
1870 PRINT MISC$
1880 PRINT D$; "WRITE MEDICAL FILE, RO"
1900 PRINT PTR
1920 PRINT D$; "CLOSE MEDICAL FILE"
1930 POKE 216, 0: REM RESET ERR FLAG
1940 GOTO 100: REM MENU
1945 :
1946 :
1950 REM CREATE PTR FOR FIRST TIME
1955 POKE 216, 0: REM RESET ERR FLAG
1960 PRINT D$; "WRITE MEDICAL FILE, RO"
1970 PRINT "0"
1975 GOTO 1700: REM BEGIN AGAIN
1980 :
1990 :
2000 REM**- -READ ROUTINE-- **
2001 :
2002 :
2010 REM**- -INPUT ROUTINE- -* *
2020 PRINT D$; "OPEN MEDICAL FILE , L50"
2040 PRINT D$; "READ MEDICAL FILE, RO"
2060 INPUT PTR
2080 FOR I = 1 TO PTR
2100 PRINT D$; "READ MEDICAL FILE, R" ; I ; II ' B" ; 1
2120 INPUT NAME$
2140 PRINT D$; "READ MEDICAL FILE , R" ; I ; II ' B" ; 15
2160 INPUT DT$
2180 PRINT D$; "READ MEDICAL FILE, R" ; I ; " , B"; 25
2200 INPUT TYPE$
2220 PRINT D$; "READ MEDICAL FILE, R" ; I ; ", B" ; 27
2240 INPUT MISC$

MEDICAL RECORDS W/ARRAYS

2260 TP$ = TYPE$: GOSUB 10000: TYPE$ = TP$
2280 PRINT NAME$;
2300 HTAB 10
2320 PRINT DT$;
2340 HTAB 20
2360 PRINT TYPE$
2380 HTAB 20
2400 PRINT MISC$
2420 PRINT
2440 NEXT I
2460 PRINT D$; "CLOSE MEDICAL FILE"
2480 INPUT "HIT RETURN TO GO TO MENU"; L$
2500 GOTO 100: REM MENU
2980 :
2990 :
3000 REM**- -SEARCH ROUTINE--**
3010 Q = 0
3020 HOME : VTAB 5: HTAB TB
3030 PRINT "SEARCH FOR ... II
3035 PRINT
3040 HTAB TB
3060 PRINT "1. NAME"
3070 PRINT : HTAB TB
3080 PRINT "2. DATE"
3090 PRINT : HTAB TB
3100 PRINT "3. TYPE"
3110 PRINT: HTAB TB
3120 PRINT "4. MISC"
3130 PRINT : HTAB TB
3135 PRINT "5. END SEARCH"
313 7 PRINT : HTAB TB
3140 INPUT "WHICH NUMBER? II; NB
3160 IF NB < 1 OR NB > 5 THEN 3137
3180 IF NB = 1 THEN BYTE = 1 : B$ = "NAME"
3200 IF NB = 2 THEN BYTE = 15: B$ = "DATE"
3220 IF NB= 3 THEN BYTE= 25: B$ = "TYPE"
3240 IF NB = 4 THEN BYTE = 27: B$ = "MISC"
3260 IF NB = 5 THEN 100: REM MENU
3265 PRINT : HTAB TB
3270 PRINT "WHICH ";B$;: INPUT 11 ? 11 ; SRCH$
3271
3272 :
3275 REM** - - INPUT ROUTINE--**
3280 PRINT D$; "OPEN MEDICAL FILE , L50"

187

188 CHAPTER 11 RANDOM FILE INTRODUCTION

3300 PRINT D$; "READ MEDICAL FILE , RO"
3320 INPUT PTR
3340 FOR I = 1 TO PTR
3360 PRINT D$; "READ MEDICAL FILE , R" ; I; " , B" ; BYTE
3380 INPUT FIND$
3400 IF SRCH$ < > FIND$ THEN 3600 : REM NEXT RECORD
3420 K = 1
3430 FOR K = 1 TO 4
3440 IF K = 1 THEN BT = 1
3450 IF K = 2 THEN BT = 15
3460 IF K = 3 THEN BT = 25
34 70 IF K = 4 THEN BT = 27
3480 PRINT D$; "READ MEDICAL FILE, R"; I ; ", B"; BT
3500 INPUT A$ (K)

3620 NEXT K
3540 Q = Q + 1
3560 NAME$ (Q) = A$ (1)
3570 DT$ (Q) = A$ (2)
3580 TYPE$ (Q) =A$ (3): TP$ = TYPE$ (Q) : GOSUB 10000 : TYPE$ (Q)

= TP$
3590 MISC$ (Q) = A$ (4)
3600 NEXT I
3620 PRINT D$; "CLOSE MEDICAL FILE"
3621 :
3622 :
3630 REM ** - DI SPLAY ROUT INE-**
3640 HOME : VTAB 10
3700 FOR I = 1 to Q
3720 PRINT NAME$ (I) ;
3 7 30 HTAB 10
3740 PRINT DT$ (I);
3 7 50 HTAB 20
3 7 60 PRINT TYPE$ (I)
377 0 HTAB 20
3780 PRINT MISC$ (I)
3 7 90 PRINT
3800 NEXT I
3820 INPUT "HIT RETURN WHEN READY " ; L$
3840 GOTO 3000: REM SEARCH AGAIN
9998 :
9999 :
1 0000 REM** - - SUBROUTINES--**
10100 REM*- -TYPE SUBROUTINE- - *
10120 IF TP$ = "D" THEN TP$ = "DR. VISIT"

MEDICAL RECORDS W/ ARRAYS 189

10140 IF TP$ "M" THEN TP$ "MEDICATION"
10160 IF TP$ "I" THEN TP$ "ILLNESS"
10180 IF TP$ = "A" THEN TP$ "ACCIDENT/ INJURY"
10200 IF TP$ "S" THEN TP$ = "SHOT / IMMUNIZATION"
10220 IF TP$ "X" THEN TP$ "X-RAYS"
10240 RETURN

r

12
Harne lnventary System

\.

In this chapter, we are going to look at a simple, yet fairly complete,
random access system for home inventory. We will examine the file
handling portions of the various programs in detail with the expectation
of modifying them for use with other applications. The purpose of such
modification is to suggest the possibility of the development of a general
purpose data base system.

There are five programs in this HOME INVENTORY SYSTEM :
HOME MENU, CREATE HOME INVENTORY, DISPLAY HOME
INVENTORY, SEARCH/ SORT HOME INVENTORY, and CORRECT
HOME INVENTORY. Each program name attempts to describe the
main function of the particular program. HOME MENU is the general
menu that allows the user to easily switch among the other programs.
CREATE HOME INVENTORY is used to create and add to the inven­
tory file. DISPLAY HOME INVENTORY displays the entire inventory
file in the order the information was entered. SEARCH/ SORT HOME
INVENTORY is really the heart of the system. This program has a menu
of its own with seven options. Six of these options relate to pulling
specific information from the fil e and displaying it. The last program,
CORRECT HOME INVENTORY, allows the user to change or delete
information in the inventory file .

CREATE HOME INVENTORY

The HOME MENU program does not contain any new programming
code, so it will not be discussed. The first program we will look at is the
CREATE HOME INVENTORY program. The complete listing for this

190

CREATE HOME INVENTORY 191

program is given at the end of this chapter. You will probably find it
helpful to look over the program before reading this description.

There are several different things included in this program. Line 200
uses two pokes, POKE 34,7 and POKE 32,7. These two pokes set the
screen window so that it begins seven lines below the usual top of the
screen and seven lines to the right of the usual left hand edge. This is
done to simplify input formatting and can be changed without affecting
the rest of the program. In fact, these two pokes actually cause something
to occur that may sound like a problem. After these two pokes have been
encountered, DOS pointers apparently are affected and the disk head
must recalibrate the next time the disk is accessed. Such a recalibration
does not cause any harm, but the noise of the recalibration sounds like
the disk has a problem. The sound is similar to that made when the disk
is booted or the sound that occurs immediately after an 1/0 ERROR. It
is nothing to worry about.

There are two other pieces of code that may be worth explaining.
Each of the input sections includes an SP value. This SP value is the
number of spaces that the various inputs are allowed in the file. This
value is checked to see that the user does not exceed the allotted amount.
Each input statement first contains empty quotation marks. Without those
quotation marks, a question mark is printed for each input. I thought the
format looked better without the question mark and so have included
these empty quotation marks. The GOSUB routine is used to print the
varying number of underline spaces; CHR$(95).

Lines 1400 to 2000 are the instructions used to check the information
and allow the user to change anything before the information is written
to the disk. Lines 2000 to 2700 are the file handling lines and will be
discussed in detail.

2000 REM* * - -FILE ROUTINE--* *
2020 TEXT
2040 ONERR GOTO 2580: REM FIRST USE ONLY
2060 PRINT D$; "OPEN INVENTORY , LlOO"
2080 PRINT D$; "READ INVENTORY, RO"
2100 INPUT PTR
2120 PTR = PTR + 1 : POKE 216, 0: REM RESET ERROR FLAG
2140 PRINT D$; "WRITE INVENTORY , R "; PTR; " , B" ; 0
2160 PRINT ITEM$
2 1 80 PRI NT D$; "WRITE INVENTORY, R"; PTR; " , B" ; 25
2200 PRINT SERIAL$
2220 PRINT D$; "WRITE INVENTORY, R"; PTR; ", B"; 40
2240 PRINT CST$
2260 PRINT D$; "WRITE INVENTORY, R" ; PTR , ", B"; 50
2280 PRINT ROOM$

192 CHAPTER 12 HOME INVENTORY SYSTEM

2300 PRINTD$; "WRITE INVENTORY,R" ; PTR; 11 ,B"; 70
2320 PRINT DESC$
2340 PRINT D$; "WRITE INVENTORY, RO"
2360 PRINT PTR
2380 PRINT D$; "CLOSE INVENTORY"
2400 TEXT: HOME
2420 VTAB 5
2440 PRINT "DO YOU WANT TO ADD MORE ITEMS?"
2460 PRINT
2480 INPUT "TYPE I NO I TO STOP II ; NO$
2500 IF NO$ = "NO" THEN PRINT D$; "RUN HOME MENU"
2520 GOTO 100: REM BEGIN AGAIN

Line 2040 is our method of checking whether or not the file has already
been created. If the file exists, then no error should occur in bringing
in the value of the pointer, but if this is the first time the program has
been used, an error will occur. The error will occur when line 2100 tries
to bring in a value for PTR, since no such value has yet been written to
the disk. We do not wish the program to halt when this error happens,
rather we want the problem fixed. So we use the routine located between
lines 2580 and 2700 to write out a value for PTR and then return to the
beginning of the FILE ROUTINE to start the process over. After use of
this error routine, a value does exist on the disk, and line 2100 can input
a value for PTR without an error occurring. Once we have a value for
the pointer, we add one to that value. We also reset the error flag so that
if some other error should happen, we will not go back to that first time
routine.

Lines 2140 to 2320 instruct the computer to write out the information
collected from the user to the inventory file. Each piece of information
is given a certain maximum number of spaces. Most information will not
take up the maximum, so some space in each field will be left blank.
ITEM$ information can exist between bytes 0 and 24, SERIAL$ informa­
tion between bytes 25 and 39, CST$ (cost) information between bytes
40 and 49, ROOM$ information between bytes 50 and 69, and DESC $
(description) information between bytes 70 and 99.

There is an easy way to type in these lines. Type in the first line,
2140, and then use the edit keys-ESC I, J, K, M-to move the cursor
back to the beginning of 2140, the 2. Next, increase the line number
by 40 so that you are now working on line 2180. Then use the right
arrow key to copy over the line until you come to the zero after the ",B"
sequence. Change the zero to 25 and hit return. Follow the same process
for each of the remaining lines. It may sound complicated, but I have
found this procedure to greatly reduce the amount of typing necessary in
using random files.

SEARCH/SORT HOME INVENTORY 193

When all the information has been transferred to the disk, the pointer
value is placed in record zero and the inventory file closed. The user is
queried about adding more information to the file and the appropriate
action taken upon obtaining a response.

DISPLAY HOME INVENTORY

The DISPLAY HOME INVENTORY program is really the reverse of
the routine just covered. The word READ is substituted for the word
WRITE, and the word INPUT exchanged for PRINT. Otherwise, the
routines are very similar. Each field of each record is read into the com­
puter from the disk and displayed. When all records have been read in
and displayed, the total value of all items is given, and the user is trans­
ferred to the HOME MENU.

SEARCH/SORT HOME INVENTORY

The main program of this HOME INVENTORY SYSTEM is the
SEARCH/SORT HOME INVENTORY program. There are six sort or
search routines and an option to return to the HOME MENU.

I. SEARCH FOR ITEM
2. SEARCH FOR SERIAL =#:
3. SEARCH FOR COST
4. SEARCH FOR ROOM ITEMS
5. SORT ITEMS ALPHABETICALLY
6. SORT ITEMS BY SERIAL =#:
7. RETURN TO MAIN MENU

The first two and selection number four use a common search subroutine.
The two sort options (numbers 5 and 6) use a common sort subroutine,
the Shell-Metzner sort. Option number 3 uses its own search routines for
both parts of this selection. We will cover the common search subroutine
first.

10000 REM **- -SEARCH SUBROUTINE--**
10020 PRINT D$; "READ INVENTORY , R" ; I ; " , B" ; BYTE
10040 INPUT FIND$
10060 IF FIND$ = "D" THEN 10100
10080 IF SRCH$ = FIND$ THEN 10200
10100 I = I + 1
10120 IF < PTR or I = PTR THEN 10000

194 CHAPTER 12 HOME INVENTORY SYSTEM

10140 PRINT : HTAB TB
10160 PRINT "SEARCH COMPLETED!": FORK= 1TO1000:

NEXT K

10180 RETURN
10200 PRINT D$; "READ I NVENTORY, R"; I; ", B"; 0
10220 INPUT ITEM$
10240 PRINT D$; "READ INVENTORY , R"; I;", B"; 25
1 0260 INPUT SERIAL$
10280 PRINT D$; "READ INVENTORY, R "; I;", B"; 40
10300 INPUT CST$
10320 PRINT D$; "READ INVENTORY, R"; I;", B" ; 50
10340 INPUT ROOM$
10360 PRINTD$; "READ INVENTORY , R" ; I; ",B" ; 70
10380 INPUT DESC$
10400 I = I + 1
10420 PRINT D$: REM CANCEL INPUT FROM DISK
10440 RETURN

This subroutine is common to the first two options and to the room search
option . Each of the option-routines that uses this subroutine establishes
the necessary conditions prior to entering the subroutine. The values of
FIND$ and BYTE are determined prior to the GOSUB statement in each
of the option-routines. Once these values are known, the specified part
of the file can be searched for any match (line 10080). If a match occurs,
control passes to the instructions at lines 10200 to 10440. These instruc­
tions read in the informat ion associated with the item being searched for.
The RETURN statement in line I 0440 returns control to the instruction
following the GOSUB statement in the original option-routine---1, 2, or
4. When a match does not occur, the record counter (I) is first checked to
see that its value does not exceed the value of the total number of records
(PTR), then the record counter is incremented by one and the process is
repeated.

One additional instruction-line needs comment. Line I 0420 prints a
control D. The control D is printed to cancel input from the disk and
allow input from the keyboard. A control D wi ll cancel either the READ
or WRITE mode and return control to the keyboard or screen. This
cancellation is necessary in order to allow the user to answer the questions
posed in the option routines after the search has been completed. Without
this control D, the program would attempt to input more information
from the disk whenever another INPUT statement occurred.

The next section of code discussed is part one of the Search For Cost
option. In lines 3000 to 3210, a decision is made by the user: whether
to search for items above a certain cost or items below a certain cost.
The appropriate part of this option-routine is then given control. The
following code is for items above a specific value.

SEARCH/ SORT HOME INVENTORY

3220 REM **- -ITEMS ABOVE$ AMOUNT--**
3230 HTAB TB
3240 INPUT "ABOVE WHICH AMOUNT? ";AMT
3250 HOME : VTAB 2: HTAB 14
3260 PRINT "ITEMS ABOVE$"; AMT
3270 FOR I = 1 TO PTR
3280 PRINT 0$; "READ INVENTORY , R" ; I;" , B"; BYTE
3290 INPUT FIND$
3300 IF FIND$ = "0" THEN 3360
3310 IF AMT > VAL (FIND$) THEN 3360
3320 PRINT 0$; "READ INVENTORY , R" ; I;", B"; 0
3330 INPUT ITEM$
3340 TTLAMT = TTLAMT + VAL (F IND$)
3350 PRINT ITEM$; : HTAB 30: PRINT FIND$
3360 NEXT I
3370 PRINT
3380 PRINT "TOTAL VALUE = $"; TTLAMT
3390 PRINT : GOSUB 9000: REM HOUSEKEEPING
3400 GOTO 40: REM MENU

195

The items that are valued above a certain amount are searched for in line
3310. The amount was previously determined in line 3240 and displayed
in 3260. Line 3270 begins a loop that extends through 3360. Each record
beginning at the 40th byte is searched for costs that exceed the specified
amount. Line 3310 says that if the specified amount exceeds the cost of
the record being examined, then control is passed to the line that increases
the record count (line 3360) . This is done to skip over lines 3320 through
3350. Those lines are to be exercised only when the specified amount
is less than the cost of the record being examined. When such an item
has been found: (I) the item name is read (lines 3320 and 3330), (2) a
running total is kept of the cumulative value of these items, and (3) the
item and its value are displayed on the screen. After all the records have
been examined, the total value of all items above the specific amount is
given, and control is transferred to the housekeeping subroutine. Finally,
control is shifted back to the menu for further instructions.

The routine to find items below a certain value is virtually the same as
that just given. The only significant difference occurs in line 3590 where
the sign is reversed. We are looking for items whose value is less than the
specified amount. Those items whose value is greater than the specified
amount are passed over.

We have looked briefly at the first four options, the search options.
The next two options are sort options and use a common sort subroutine,
the Shell-Metzner sort. I will explain only the procedures involved in
setting up and using a sort subroutine with Apple disk files. We will look
first at the alphabetizing routine.

196 CHAPTER 12 HOME INVENTORY SYSTEM

5000 REM**- -SORT ALPHABETICALLY--**
5020 HOME : VTAB 5
5040 HTAB TB
5060 INVERSE : PRINT "WORKING- -PLEASE DON IT TOUCH! ! II

: NORMAL
5080 Q = 1: REM VALID RECORD COUNTER
5100 FOR I = 1 TO PTR
5120 PRINT D$; "READ INVENTORY IR"; I; II I B"; 0
5140 INPUT C$
5160 IF C$ = "D" THEN 5220
5180 C$ (Q) = C$
5200 Q = Q + 1
5220 NEXT I
5240 N = Q - 1
5260 PRINT : PRINT: HTAB TB
5280 INVERSE: PRINT "STILL WORKING- -PLEASE WAIT!"

: NORMAL
5300 GOSUB 20000: REM SORT SUBROUTINE
5320 REM DISPLAY RESULTS
5340 HOME: VTAB 5
5360 SPEED = 150
5380 FOR I = 1 TO Q - 1
5400 PRINT I; II II; C$ (I)
5420 NEXT I
5440 PRINT
5460 GOSUB 9000: REM HOUSEKEEPING
5480 GOTO 40: REM MENU

The key to this routine is (I) reading in only the item names, (2) stor­
ing them in a string array, (3) sorting them with the sort subroutine lo­
cated between 20000 and 20300, and (4) displaying them in their now
alphabetized order.

Line 5060 prints a warning on the screen for the user to observe.
The word INVERSE is used to instruct the computer to print the warning
in inverse characters. Immediately following the warning, the computer
is instructed to return to NORMAL characters. The word FLASH could
have been used in place of INVERSE and then the warning would have
"blinked" or flashed on and off. Regardless of which mode is used, a
return to NORMAL characters is essential before accessing the disk. If
NORMAL is not restored before the disk is accessed, some type of error
occurs, usually an OUT OF DATA ERROR.

A separate record counter is used (line 5080) to keep track of the
valid records since there may be some records that have been deleted and
now contain the value "D". If there are such records, they are skipped
and the loop (I) is increased by one. But the valid record counter (Q) is

SEARCH/ SORT HOME INVENTORY 197

not increased. If the record is not valid (i.e. , it contains a "D"), it is also
not included in the string array of valid records to be sorted. Once the
loop is completed, the string array C$() should contain all the valid item
names. A new warning message is displayed (line 5280), and control is
transferred to the sort subroutine. When the sorting has been completed,
the results are displayed through another loop (lines 5380 to 5420).

The instruction at line 5360 tells the computer to set the speed of
the character output to the screen to a rate of 150 instead of the normal
or default value of 255. The effect is a visible slowing of the display of
information on the screen and greater readability. The value of 150 is
arbitrary and can be any value between 0 and 255.

The last two lines in this routine (5460 and 5480) are common to
all the routines and simply "clean up" various conditions that may have
been "set" during execution of the routine. A good example is the SPEED
setting in this routine. One of the instructions in the housekeeping sub­
routine restores the speed setting to 255. If you look closely at the in­
structions in this housekeeping subroutine, I have included an instruction
that restores something that no instruction in this program has changed.
I have done so purposely for the following reasons: (I) for the reader to
figure out which instruction does not really need to be included in this
housekeeping routine, (2) to suggest to the reader a possible use for this
apparently useless instruction, and (3) to inspire some of you to modify
this program so that this now useless housekeeping instruction becomes
worthwhile.

The last of the options, sort by serial number, again makes use of
the LEFT$ and MID$ string array commands. It is also the longest of
the routines. The routine sorts by serial number and then displays the
resulting list in serial number order, along with the associated item name.
It is conceivable that an individual or insurance company would need all
of the associated information instead of just the item name. Therefore, if
you are interested in developing a completely useful HOME INVENTORY
SYSTEM, you might wish to add the code necessary to display all related
information in both serial number order and alphabetical order.

6000 REM **--SORT BY SERIAL # --**
6020 HOME : VTAB 5
6040 HTAB TB
6060 INVERSE: PRINT "WORKING- -PLEASEDON'TTOUCH! ! ":

NORMAL
6080 Q = 1: REM VALID RECORD COUNTER
6100 FOR I = 1 TO PTR
6120 PRINT 0$; "READ INVENTORY, R" ; I;" , B" ; 25
6140 INPUT C$
6160 IF C$ = "D" THEN 6280
6180 C$ (Q) = C$
6200 PRINT 0$; "READ INVENTORY, R"; I;" , B" ; 0

198 CHAPTER 12 HOME INVENTORY SYSTEM

6220 INPUT ITEM$
6240 C$ (Q) = C$ (Q) + "*" + ITEM$
6260 Q = Q + 1
6280 NEXT I
6300 N = Q - 1
6320 PRINT : PRINT : HTAB TB
6340 INVERSE: PRINT "STILL WORKING- -PLEASE WAIT! ":

NORMAL
6360 GOSUB 20000: REM SORT ROUTINE
6380 REM DISPLAY RESULTS
6400 HOME: VTAB 5
6420 J = 1

6440 FOR I = 1 TO Q - 1
6460 LN = LEN (C$ (I))
6480 PRINT I; " ";
6500 IF MID$ (C$ (I), J , 1) = "*"THEN PRINT LEFT$ (C$ (I) ,

J - 1);: HTAB 20: PRINT MID$ (C$ (I), J + 1, LN):
GOTO 6540

6520 J = J + 1 : GOTO 6500
6540 J = 1
6560 NEXT I
6580 PRINT
6600 GOSUB 9000: REM HOUSEKEEPING
6620 GOTO 40: REM MENU

Line 6 120 and 6140 bring in the serial number of each item. If the serial
number has been deleted (i.e., contains just the letter " D"), the record
is skipped as in the previous routine. In fact , the two sort routines have
nearly identical beginnings. The main difference occurs in line 6120 when
different byte locations are specified and a different part of the file is
brought in by the INPUT C$ statement. The only other major difference
before the GOSUB statement occurs when the file is read a second time,
this time to bring in and concatenate (join) the item name (lines 6200 to
6240). Line 6240 combines: (I) the existing value of C$(Q) (the serial
number), (2) the current value of C$ (the item name) , and (3) a separator
(the asterisk) into one new string array value---C $(0) .

Once the entire file is read and the correc t number of valid records
determined, control is passed to the sort subroutine (line 6360). Lines
6380 to 6560 are used to display the results of the sort. Here again, we
need to make use of the power of the LEFf$, MID$, and LEN functions.
The numeric variable LN is set to equal the length of each of the string
arrays (line 6460). The MID$ function is used to determine where in
the string the asterisk is located (fi rst part of 6500). The LEFf$ and
MID $ functions are used to print out the desired parts of the string in
an acceptable format (the rest of line 6500). Line 6500 is an IF ... THEN

CORRECT HOME INVENTORY 199

statement that does not execute the last part if the first part is not true.
The print part of 6500 is not reached until the asterisk is found . This
sequence is repeated until all valid records have been displayed in serial
number order. The end of this routine is the same as the end of the other
five routines.

This concludes the discussion of the SEARCH/ SORT HOM E
INVENTORY program. There are a number of other points that could
be discussed, but those points relate mainly to different techniques of
programming in Applesoft rather than techniques for working with Apple
files. By now, if you have worked through all of the programs, you should
be able to " read" a program and recognize some of the different tech­
niques used.

CORRECT HOME INVENTORY

The last program in this HOME INVENTORY SYSTEM provides
the ability to change or delete information in the INVENTORY file.
Both parts of thi s program make use of two subroutines: a READ
FILE SUBROUTINE, and a WRITE FILE SUBROUTINE. These two sub­
routines have been used in our other programs in this system. The
CORRECT RECORD routine (lines 1000 to 1620) is essentially the
same as the correction routine in the CREATE HOME INVENTORY
program (lines 1400 to 1900). The difference is that in the CREATE
HOME INVENTORY program, the information being checked for ac­
curacy comes from the keyboard. In the CORRECT HOME INVENTORY
program, the information comes from the disk. That is the reason for
line 1080. This line transfers control to the READ FILE SUBROUTINE
which inputs from the specified record on the disk the values for ITEM $,
SERIAL$, CST$, ROOM $, and DESC $. These values are then displayed
and a check is made to see if they are correct.

At this point, one other new line of code is encountered (line 1040).
Lines I 040, 1290, 1300, and 1610 are all related . All deal with a string
variable called FLAG$. Line 1040 sets the origina l value of FLAG $
equal to the word "NO ". This indicates that no information has yet been
changed. Lines 1290 and 1300 check the value of FLAG$ and direct
the computer accordingly. If the information is correct and no change
has been made, the value of FLAG$ is scill "NO", and the computer
is directed to start this routine over again. If the information has been
changed, the value of FLAG$ will have been changed by line 16 10 to
" YES" indicating alte red information. If the information is correct and
has been changed, we are now ready to write that information back out
to the file on the disk (the WRITE FILE SUBROUTINE). Thi s technique
allows the user to scan thro ugh the records if he/she is not sure of the
record number of the incorrect information.

200 CHAPTER 12 HOME INVENTORY SYSTEM

The deletion routine is a relatively uncomplicated routine. The
suspected record is brought in from disk (line 2 160) and displayed (lines
2180 to 2300). A request is made of the user to see if this is the infor­
mation to be deleted. If it is not, the dele tion routine starts again. If the
information is to be deleted, the user is requi red to type the word "YES"
rather than just the "Y" . If "YES" is typed, all string variables are given
the value of a single character "D", and control is passed to the WRITE
FILE SUBROUTINE where " D" replaces the now deleted information.
Notice that the entire file does not need to be resequenced and rewritten
to the disk. Instead, only the information requiring change is affected.

The change and delete routines for random access files are con­
siderably easier than similar routines for sequential access files . This ease
is one of the major strengths of random files. Access is direct to any part
of the file desired. In fact, in a very large inventory system, it is possible
to read from disk and check only the desired part of the record, rather
than the entire record. Programming can often be simpler and easier to
read. There is less need of string arrays and therefore less need of large
amounts of internal computer memory. The disk can be used as an exten­
sion of the internal memory with random files since the same principles
are involved. The major difference is in the time involved, disk access
being much slower than internal memory access.

At the end of this chapter, I have included another system , a
BACK ORDER SYSTEM, created by modifying this current HOME
INVENTORY SYSTEM. The modification is not extensive. The main
reason for including the BACK ORDER SYSTEM is to suggest the pos­
sibility of a general purpose data base program. All our systems have in­
cluded some method for: (I) creating and adding to a file , (2) displaying
information from that file in various ways, and (3) editing the file. These
are the essential characteristics in any data base system. It should be pos­
sible to create a general purpose data base system tha t would request cer­
tain necessary information from the user. Based on the supplied informa­
tion, this general data base system would create a file and set up the pro­
cedures to display and edit information in that file. This is the exact pro­
cedure used by programs like DB MASTER, @> TH E DATA REPORTER, ©
THE GENERAL MANAGER, © and PFS.@> They are general purpose data
base systems.

DB Master @> is a trademark of DB Master Associates; The Data Reporter © is
a software package copyrighted by Synergis tic Software; The General Manager©
is a software package copyrightco by ON-LI NE SYSTEMS, INC.; PFS @J is a
trademark of Software Publishing Corp.

QUESTIONS 201

The better data base programs have expanded on the essential charac­
teristics. They have added "features" that some users may need but others
will never use. One feature that I feel is essential is transportability of
file information. If a data base system does not allow some method of
universal access to the files created under its system , I believe that system
is severely limited in its usefulness to anyone other than the casual user.
Files created under a general data base system must be able to be accessed
by other commercial application programs: Without such access, the user
must re-enter data in each application program used with the file infor­
mation. This is the reason DIF is so important (see Chapter 10). Some
of the general purpose data base systems do support DIF while others at
least make their files available through normal DOS file structure.

In the Preface, I said that " Reading this book will not make you
capable of creating complete data base programs .. .," but at this point,
you should have an appreciation of the effort that goes into creating a
good general purpose data base system. For your individual use, you may
find that you can create a semi-general purpose data base system, a system
that can serve your needs but would not be universal in meeting the needs
of everyone. This is the reason for including the BACK ORDER SYSTEM
as a modification of the HOME INVENTORY SYSTEM. Structured care­
fully, with enough user-supplied variables, this series of programs can
form the basis for such a personal data base system.

The next chapter will deal with the planning necessary in creating the
programs for any file system. The example will be a STOCK MARKET
SYSTEM for keeping track of the price and volume changes of certain
issues.

QUESTIONS

1. What does POKE 34,n and POKE 32,n affect?

2. TRUE or FALSE: It is not possible to display the underline character
on the screen.

3. What character is used to cancel input from the disk and allow input
from the keyboard?

4. TRUE or FALSE: It is necessary to return to NORMAL characters as
soon as possible after using either INVERSE or FLASH. Otherwise a
disk error may occur.

5. Name the three essential characteristics in any data base system.

202 CHAPTER 12 HOME INVENTORY SYSTEM

ANSWERS

I . The TEXT window

2. FALSE

3. CONTROL D

4. TRUE

5. a) Creating and adding to a file
b) Displaying information from that file
c) Editing the file

HOME MENU

HOME MENU

10 REM** - - HOME INVENTORY SYSTEM-- **
11 :
12 :
20 D$ = CHR$ (4): REM CONTROL D
40 TB = 8: REM HTAB VALUE
60:
80:
100 REM** - - MENU ROUTINE-- **
120 HOME : VTAB 5
140 HTAB TB
160 PRINT "HOME INVENTORY SYSTEM"
180 PRINT : PRINT : PRINT
200 HTAB TB
220 PRINT "l. WRITE RECORD"
240 PRINT : HTAB TB
260 PRINT "2 . READ RECORD"
280 PRINT : HTAB TB
300 PRINT "3. SEARCH RECORDS"
320 PRINT : HTAB TB
340 PRINT "4. CORRECT RECORD"
360 PRINT : HTAB TB
380 PRINT "5. END"
400 PRINT : HTAB TB
420 INPUT "WHICH NUMBER"; NUMBER
440 IF NUMBER < 1 OR NUMBER > 5 THEN 400
460 IF NUMBER = 1 THEN 1000
480 IF NUMBER = 2 THEN 2000
500 IF NUMBER = 3 THEN 3000
520 IF NUMBER = 4 THEN 4000
540 IF NUMBER = 5 THEN END
560 :
580 :
1000 REM** - - WRITE RECORD - -**
1020 PRINT D$; "RUN CREATE HOME INVENTORY"
1998 :
1999 :
2000 REM** - -READ RECORD--**
2020 PRINT D$; "RUN DISPLAY HOME INVENTORY"
2998 :
2999 :

203

204 CHAPTER 12 HOME INVENTORY SYSTEM

3000 REM** - -SEARCH RECORDS-- **
3020 PRINT D$; ;'RUN SEARCH HOME INVENTORY"
3998 :
3999 :
4000 REM ** - - CORRECT RECORDS--* *
4020 PRINT D$; "RUN CORRECT HOME INVENTORY"

CREATE HOME INVENTORY

10 REM ** - -CREATE HOME INVENTORY--**
11 :
12 :
20 0$ = CHR$ (4) : REM CONTROL D
40 TB = 8: REM HTAB VALUE
60 :
80:
100 REM ** - -INPUT ROUTINE--**
120 HOME : VTAB 5
140 HTAB TB
160 PRINT "CREATE HOME INVENTORY"
180 PRINT : PRINT : PRINT
200 POKE 34, 7 : POKE 32, 7: REM SET WINDOW
220 :
240 :
260 HOME
280 PRINT II ITEM NAME PLEASE . II

300 PRINT : PRINT
320 SP = 25
340 GOSUB 5000: REM INPUT SUBROUTINE
360 INPUT II II; ITEM$
380 IF LEN (ITEM$) > SP THEN PRINT II II. GOTO 260:

REM 5 CTRL G' S
400 :
420 :
440 HOME
460 PRINT" ITEM SERIAL NUMBER PLEASE. "
480 PRINT : PRINT
500 SP = 15
520 GOSUB 5000: REM INPUT SUBROUTINE
540 INPUT II II; SERIAL$
560 IF LEN (SERIAL$) > SP THEN PRINT " 11

: GOTO 440:
REM 5 CTRL GI s

580 :

CREATE HOME INVENTORY

600
620 HOME
640 PRINT II ITEM COST PLEASE II
660 PRINT : PRINT
680 SP = 10
700 GOSUB 5000 : REM INPUT SUBROUTINE
720 INPUT II II; CST$
740 IF LEN (CST$) > SP THEN PRINT II " . GOTO 620:

760 :
780 :

REM 5 CTRL GI s

800 HOME
820 PRINT "ROOM OF ITEM"
840 PRINT : PRINT
860 SP = 20
880 GOSUB 5000: REM INPUT SUBROUTINE
900 INPUT II II ; ROOM$
920 IF LEN (ROOM$) > SP THEN PRINT II II. GOTO 800:

940:
960 :

REM 5 CTRL GI s

980 HOME
1000 PRINT "ITEM DESCRIPTION"
1020 PRINT : PRINT
1040 SP = 30
1060 GOSUB 5000: REM INPUT SUBROUTINE
1080 INPUT II II ; DESC$
1100 IF LEN (DESC$) > SP THEN PRINT II II. GOTO 980:

REM 5 CTRL G'S
1120:
1140 :
1400 REM**- -D ISPLAY FOR CORRECTION--**
1420 HOME
1440 PRINT "l. II ; ITEM$
1460 PRINT "2. ";SERIAL$
1480 PRINT "3. II ; CST$
1500 PRINT "4. II; ROOM$
1520 PRINT "5. " ; DESC$
1540 PRINT : PRINT
1560 INPUT II IS THIS CORRECT (I y I OR IN I) II; YES$
1580 IF YES$ = "Y" THEN 2000: REM FILE ROUTINE
1600 INPUT "WHICH NUMBER IS WRONG"; NB
1610 IF NB < 1 OR NB > 5 THEN PRINT "INCORRECT CHOICE"

: GOTO 1600

205

206 CHAIYfER 12 HOME INVENTORY SYSTEM

1620
1640
1660
1680
1700
1720

IF NB=
IF NB =
IF NB =
IF NB =
IF NB =
PRINT

1 THEN SP = 25
2 THEN SP= 15
3 THEN SP= 10
4 THEN SP = 20
5 THEN SP = 30

1740 PRINT "TYPE IN CORRECT INFO"
1 760 INPUT CT$ (NB)
1780 IF LEN (CT$ (NB)) > SP THEN PRINT "TOO LONG- -TRY

AGAIN PLEASE": GOTO 1740
1800 IF NB = 1 THEN ITEM$ = CT$ (NB)
1820 IF NB = 2 THEN SERIAL$ = CT$ (NB)
1840 IF NB = 3 THEN CST$ = CT$ (NB)
1860 IF NB = 4 THEN ROOM$ = CT$ (NB)
1880 IF NB = 5 THEN DESC$ = CT$ (NB)
1900 GOTO 1400: REM CHECK AGAIN
1998 :
1999 :
2000 REM **- -FILE ROUTINE--**
202 0 TEXT
2040 ONERR GOTO 2580: REM FIRST USE ONLY
2060 PRINT 0$; "OPEN INVENTORY , LlOO"
2080 PRINT 0$; "READ INVENTORY , RO"
2100 INPUT PTR
2120 PTR = PTR + 1: POKE 216, 0: REM RESET ERROR FLAG
2140 PRINT 0$; "WRITE INVENTORY, R"; PTR; 11

, B"; 0
2160 PRINT ITEM$
218 0 PRINTD$; "WRITE INVENTORY,R" ; PTR; " , B";25
2 200 PRINT SERIAL$
2 220 PRINTDS; "WRITE INVENTORY , R" ; PTR; " , B 11 ; 40
2240 PRINT CST$
2260 PRINT 0 $; "WRITE INVENTORY , R"; PTR; ", B" ; 50
2 280 PRINT ROOM$
2300 PRINT D$; "WRITE I NVENTORY, R"; PTR; " , B " ; 70
232 0 PRINT DESC$
2340 PRINT 0$; "WRITE INVENTORY , RO"
2360 PRINT PTR
2380 PRINT 0 $; "CLOSE I NVENTORY"
2400 TEXT : HOME
2420 VTAB 5
2440 PRINT "DO YOU WANT TO ADD MORE ITEMS ? "
2460 PRINT
2480 INPUT "TYPE 'NO' TO STOP 11

; NO$

OISPLA Y HOME INVENTORY

2500 IF NO$ = "NO" THEN PRINT 0$; "RUN HOME MENU"
2520 GOTO 100: REM BEGIN AGAIN
2540 :
2560 :
2580 REM**- -FIRST USE ONLY--**
2600 POKE 216, 0: REM RESET ERROR FLAG
2620 PRINT 0$; "WRITE INVENTORY , RO"
2640 PRINT "0"
2660 PRINT 0$; "CLOSE INVENTORY"
2680 GOTO 2000: REM BEGIN FILE ROUTINE AGAIN
2700:
2720:
5000 REM**- -SUBROUTINE--**
5040 HTAB 1
5060 FOR I = 1 TO SP
5080 PRINT CHR.$ (95);: REM UNDERLINE
5100 NEXT I
5120 HTAB 1
5160 RETURN

DISPLAY HOME INVENTORY

10 REM**- -DISPLAY HOME INVENTORY--**
11 :
12 :
20 D$ = CHR.$ (4): REM CONTROL D
40 PRINT D$; "OPEN INVENTORY, LlOO"
60 PRINT D$; "READ INVENTORY, RO"
80 INPUT PTR
90 HOME
100 FOR I = 1 TO PTR
120 PRINT D$; "READ INVENTORY, R" ; I;" , B"; 0
140 INPUT ITEM$
160 PRINT D$; "READ INVENTORY, R"; I ; " , B"; 25
180 INPUT SERIAL$
200 PRINT D$; "READ INVENTORY, R"; I ; ", B"; 40
220 INPUT CST$
240 PRINT 0$; "READ INVENTORY , R"; I ; II ' B"; 50
260 INPUT ROOM$
280 PRINT D$; "READ INVENTORY , R" ; I; II ' B " ; 70
300 INPUT DESC$
320 PRINT D$

207

208 CHAPTER 12 HOME INVE TORY SYSTEM

340 PRINT I; II II ; ITEM$;
360 HTAB 25 : PRINT SERIAL$
380 PRINT II$ II; CST$;
400 HTAB 15 : PRINT ROOM$
420 PRINT DESC$
440 PRINT : PRINT
450 TTLCST = TTLCST + VAL (CST$)
460 NEXT I
480 PRINT 0$; "CLOSE INVENTORY"
500 PRINT : PRINT : PRINT "TOTAL VALUE OF ITEMS = $";

TTLCST
510 PRINT
520 INPUT "HIT RETURN TO RETURN TO MENU " ; L$
540 PRINT DS ; "RUN HOME MENU"

SEARCH HOME INVENTORY

10 REM***- -SEARCH / SORT RECORDS - -***
11 ;
12 ;
13;
20 0$ = CHR$ (4) : REM CONTROL D
22 PRINT 0$; "OPEN INVENTORY , L100"
24 PRINT 0$; "READ INVENTORY , RO"
26 INPUT PTR
28 PRINT 0$: DIM C$ (PTR)
30;
32 ;
40 REM**- -MENU ROUTINE- - **
50 HOME : VTAB 3
60 TB= 8: HTAB 12
80 PRINT "SEARCH/SORT MENU"
100 PRINT : PRINT
120 HTAB TB
140 PRINT " 1. SEARCH FOR ITEM"
160 PRINT : HTAB TB
180 PRINT "2. SEARCH FOR SERIAL #"
200 PRINT : HTAB TB
220 PRINT "3 . SEARCH FOR COST"
240 PRINT : HTAB TB
260 PRINT "4 . SEARCH FOR ROOM ITEMS"
280 PRINT : HTAB TB

SEARCH HOME INVENTORY

300 PRINT "5. SORT ITEMS ALPHABETICALLY"
320 PRINT : HTAB TB
340 PRINT "6 . SORT ITEMS BY SERIAL * "
360 PRINT : HTAB TB
380 PRINT "7. RETURN TO MAIN MENU"
400 PRINT : HTAB TB
420 INPUT "WHICH NUMBER ";NUMBER
440 IF NUMBER < 1 OR NUMBER > 7 THEN PRINT "INCORRECT

NUMBER! II : GOTO 400
510 IF NUMBER = 1 THEN 1000
520 IF NUMBER = 2 THEN 2000
530 IF NUMBER = 3 THEN 3000
540 IF NUMBER = 4 THEN 4000
550 IF NUMBER = 5 THEN 5000
560 IF NUMBER = 6 THEN 6000
570 IF NUMBER = 7 THEN 7000
970 :
980 :
990 :
1000 REM**- -SEARCH FOR ITEM-- **
1020 HOME : VTAB 5
1040 HTAB TB
1060 INPUT "WHICH ITEM? "; SRCH$
10 8 0 I = 1 : BYTE = 0
1100 GOSUB 10000 : REM SEARCH ROUTINE
1120 PRINT ITEM$; : HTAB 25: PRINT SERIAL$
1140 PRINT CST$; : HTAB 15: PRINT ROOM$
1160 PRINT DESC$

209

1180 PRINT : ITEM$ = II II : SERIAL$ = II II CST$ = II II ROOM$
= II II : DESC $ = II II

1200 IF I = PTR OR I > PTR THEN 1260
1220 INPUT "SEARCH FOR MORE ? ";YES$
1240 IF YES$ = "Y" THEN GOTO 1100
1260 PRINT
1280 GOSUB 9000: REM HOUSKEEPING
1300 GOTO 40 : REM MENU
1970 :
1980 :
1990 :
2000 REM ** - -SEARCH FOR SERIAL *--**
2020 HOME : VTAB 5
2040 HTAB TB
2060 INPUT "WHICH SERIAL * "; SRCH$
2080 I = 1: BYTE = 25

210 CHAPTER 12 HOME INVENTORY SYSTEM

2100 GOSUB 10000: REM SEARCH ROUTINE
2120 PRINT SERIAL$; : HTAB 15: PRINT ITEM$
2140 PRINT
2160 GOSUB 9000: REM HOUSEKEEPING
2180 GOTO 40: REM MENU
2970 :
2980 :
2990 :
3000 REM * * - -SEARCH FOR COST- - * *
3020 HOME: VTAB 5: BYTE= 40: TTLAMT = 0: FIND$= ""
3040 HTAB 14
3060 PRINT "SEARCH FOR ITEMS ... "
3080 PRINT : HTAB TB
3100 PRINT "A ... ABOVE A CERTAIN AMOUNT"
3120 PRINT : HTAB TB
3140 PRINT "B ... BELOW A CERTAIN AMOUNT"
3160 PRINT : HTAB TB
3180 INPUT "WHICH LETTER I A I OR I BI II; LT$

3190 IF LT$ = "A" THEN 3220
3200 IF LT$ = "B" THEN 3500
3210 PRINT "INCORRECT CHOICE ": GOTO 3160
3211
3212
3220 REM**- -ITEMS ABOVE$ AMOUNT--**
3230 HTAB TB
3240 INPUT "ABOVE WHICH AMOUNT? ";AMT
3250 HOME : VTAB 2: HTAB 14
3260 PRINT "ITEMS ABOVE$"; AMT
3270 FOR I= 1 TO PTR
3280 PRINTD$; "READ INVENTORY,R" ; I; ",B";BYTE
3290 INPUT FIND$
3300 IF FIND$ = "D" THEN 3360
3310 IF AMT > VAL (FIND$) THEN 3360
3320 PRINT D$; "READ INVENTORY, R" ; I; ", B"; 0
3330 INPUT ITEM$
3340 TTLAMT = TTLAMT + VAL (FIND$)
3350 PRINT ITEM$; : HTAB 30: PRINT FIND$
3360 NEXT I
3370 PRINT
3380 PRINT "TOTAL VALUE = $" ; TTLAMT
3390 PRINT : GOSUB 9000: REM HOUSEKEEPING
3400 GOTO 40: REM MENU
3496:
3497 :

SEARCH HOME INVENTORY

3500 REM**- -ITEMS BELOW$ AMOUNT-- **
3510 HTAB TB
3520 INPUT "BELOW WHICH AMOUNT" ; AMT

3530 HOME : VTAB 2 : HTAB 14
3540 PRINT "ITEMS BELOW$"; AMT
3550 FOR I = 1 TO PTR
3560 PRINT DS; "READ INVENTORY, R "; I;" , B"; BYTE
3570 INPUT FIND$
3580 IF FINDS = "D" THEN 3640
3590 IF AMT < VAL (FIND$) THEN 3640
3600 PRINT DS; "READ INVENTORY, R" ; I;", B"; 0
3610 INPUT ITEM$
3620 TTLAMT = TTLAMT + VAL (FIND$)
3630 PRINT ITEM$;: HTAB 30: PRINT FIND$
3640 NEXT I
3650 PRINT
3660 PRINT "TOTAL VALUE = $"; TTLAMT
3670 PRINT
3680 GOSUB 9000 : REM HOUSEKEEPING
3690 GOTO 40: REM MENU
3970:
3980:
3990:
4000 REM **- -SEARCH FOR ROOM ITEMS--**
4020 HOME : VTAB 5: TLROOM = 0
4040 HTAB TB
4060 INPUT "WHICH ROOM " ; SRCH$
4080 I = 1 : BYTE = 50: HOME : VTAB 5
4100 HTAB 14 : PRINT SRCH$: PRINT : PRINT
4120 GOSUB 10000: REM SEARCH ROUTINE
4140 PRINT ITEM$; : HTAB 25: PRINT SERIAL$
4160 PRINT CST$;: HTAB 11: PRINT DESC$
4180 TLROOM = TLROOM + VAL (CST$)
4200 PRINT
4220 IF I > PTR THEN 4280: REM SEARCH COMPLETED
4240 ITEM$ = II II: SERIAL$ = II II: CST$ = II II: DESC$ = II II

4260 GOTO 4120: REM CONTINUE SEARCH
4280 PRINT
4300 PRINT "TOTAL VALUE FOR II; SRCH$; II = II ; TLROOM
4320 PRINT : GOSUB 9000: REM HOUSEKEEPING

4340 GOTO 40: REM MENU
4970 :
4980 :
4990 :

211

212 CHAPTER 12 HOME INVENTORY SYSTEM

5000 REM**- -SORT ALPHABETICALLY--**
5020 HOME : VTAB 5
5040 HTAB TB
5060 INVERSE : PRINT "WORKING- -PLEASE DONT' T TOUCH!!"

: NORMAL
5080 Q = 1 : REM VALID RECORD COUNTER
5100 FOR I = 1 TO PTR
5120 PRINTD$; "READ INVENTORY,R" ; I ; " , B" ; 0
5140 INPUT C$
5160 IF C$ = "D" THEN 5220
5180 C$ (Q) = C$
5200 Q = Q + 1
5220 NEXT I
5240 N = Q - 1
5260 PRINT: PRINT: HTAB TB
5280 INVERSE : PRINT "STILL WORKING- -PLEASE WAIT ! "

: NORMAL
5300 GOSUB 20000: REM SORT ROUTINE
5320 REM DISPLAY RESULTS
5340 HOME : VTAB 5
5360 SPEED = 150
5380 FOR I = 1 TO Q - 1
5400 PRINT I ; " "; C$ (I)
5420 NEXT I
5440 PRINT
5460 GOSUB 9000: REM HOUSEKEEPING
5480 GOTO 40: REM MENU
5970 :
5980 :
5990:
6000 REM* *- -SORT BY SERIAL #--**
6020 HOME : VTAB 5
6040 HTAB TB
6060 INVERSE: PRINT "WORKING- -PLEASE DON'T TOUCH! ! "

: NORMAL
6080 Q = 1 : REM VALID RECORD COUNTER
6100 FOR I = 1 TO PTR
6120 PRINTD$; " READ INVENTORY , R"; I ; " , B" ;25
6140 INPUT C$
6160 IF C$ = "D" THEN 6280
6180 C$ (Q) = C$
6200 PRINT D$; "READ INVENTORY , R"; I;", B" ; 0
6220 INPUT ITEM$
6240 C$ (Q) = C$ (Q) + "*" + ITEM$

6260 Q = Q + 1
6280 NEXT I
6300 N = Q - 1

SEARCH HOME INVENTORY

6320 PRINT: PRINT: HTAB TB
6340 INVERSE: PRINT "STILL WORKING- -PLEASE WAIT!"

: NORMAL
6360 GOSUB 20000: REM SORT ROUTINE
6380 REM DISPLAY RESULTS
6400 HOME: VTAB 5
6420 J = 1
6440 FOR I = 1 TO Q - 1
6460 LN = LEN (C$ (I))
6480 PRINT I; II II;

213

6500 IF MID$ (C$ (I) , J, 1) = "*" THEN PRINT LEFT$ (C$ (I) ,
J - 1); : HTAB 20: PRINT MID$ (C$ (I), J + 1, LN): GOTO 6540

6520 J = J + 1: GOTO 6500
6540 J = 1
6560 NEXT I
6580 PRINT
6600 GOSUB 9000: REM HOUSEKEEPING
6620 GOTO 40: REM MENU
6970 :
7000 REM**- -RETURN TO HOME MENU--**
7020 PRINT D$; "CLOSE INVENTORY"
7040 PRINT D$; "RUN HOME MENU"
7970 :
7980 :
7990 :
9000 REM**- -HOUSEKEEPING--**
9020 ITEM$ = II II

9040 SERIAL$ = II II

9060 CST$ = II II

9080 ROOM$ = II II

9100 DESC$ = II II

9120 PRINT D$; "PR'ifO"
9140 SPEED = 255
9160 PRINT D$: REM CANCEL INPUT FROM DISK
9180 INPUT "HIT RETURN TO CONTINUE " ; L$
9900 RETURN
9970 :
9980 :
9990 :
10000 REM**- - SEARCH SUBROUTINE--**
10020 PRINTD$; "READ INVENTORY,R"; I; " , B";BYTE

214 CHAPTER 12 HOM E INVENTORY SYSTEM

10040 INPUT FIND$
10060 IF FIND$ = "D" THEN 10100
10080 IF SRCH$ = FIND$ THEN 10200
10100 I = I + 1
10120 IF I < PTR OR I = PTR THEN 10000
10140 PRINT : HTAB TB
10160 PRINT "SEARCH COMPLETED!" : FORK= 1TO1000:

NEXTK
1018 0 RETURN
10200 PRINTD$; "READ INVENTORY , R"; I; ",B" ; O
10220 INPUT ITEM$
10240 PRINTD$; "READ INVENTORY,R" ; I; " , B" ; 25
10260 INPUT SERIAL$
10280 PRINTD$; "READ INVENTORY , R"; I; " , B"; 40
10300 INPUT CST$
10320 PRINTD$; "READ INVENTORY,R"; I ; ",B"; 50
10340 INPUT ROOM$
10360 PRINTD$; "READ INVENTORY,R"; I; " , B"; 70
10380 INPUT DESC$
10400 I = I + 1
10420 PRINT D$: REM CANCEL INPUT FROM DISK
10440 RETURN
19970 :
19980 :
19990 :
20000 REM* *- - SORT SUBROUTINE--**
20020 M = N
20040 M = I NT (M I 2)
20060 IF M = 0 THEN 20300
20080 J = 1 : K = N - M
20100 I = J

20120 L = I + M
20140 IF C$ (I) < C$ (L) THEN 20240
20160 T$ = C$ (I) : C$ (I) = C$ (L) : C$ (L) = T$
20180 I = I - M
20200 IF I < 1 THEN 20240
2 0 220 GOTO 20120
20240 J = J + 1
20260 IF J > K THEN 20040
20280 GOTO 20100
20300 RETURN

CORRECT HOME INVENTORY

CORRECT HOME INVENTORY

10 REM**- -CORRECT HOME INVENTORY--* *
11 :
12 :
20 D$ = CHR$ (4) : REM CONTROL D
40 TB = 8: REM HTAB VALUE
60 PRINT D$; "OPEN INVENTORY , LlOO"
70 PRINT D$; "READ INVENTORY , RO"
80 INPUT PTR
90 PRINT D$: REM CANCEL INPUT FROM DISK
95 :
96 :
100 REM**- -MENU ROUTINE--**
120 HOME : VTAB 5
140 HTAB 1 2
160 PRINT "CORRECT / DELETE MENU"
18 0 PRINT : PRINT
200 HTAB TB
220 PRINT "C ... CORRECT INVENTORY RECORD"
240 PRINT : HTAB TB
260 PRINT "D . . . DELETE INVENTORY RECORD"
280 PRINT : HTAB TB
300 PRINT "R .. . RETURN TO HOME MENU"
3 20 PRINT : HTAB TB
340 INPUT "WHICH LETTER PLEASE? " ; LT$
360 I F LT$ = "C" THEN 1000
380 IF LT$ = "D" THEN 2000
400 IF LT$ = "R" THEN 3000
4 20 PRINT : HTAB TB
440 PRINT "INCORRECT CHOICE" : GOTO 3 2 0
970 :
9 8 0 :
990 :
1000 REM **- - CORRECT RECORD--**
1005 HOME
1010 POKE 3 2 , 7 : POKE 34 , 7 : REM SET WINDOW
1020 HOME
1040 FLAG$ = " NO" : REM INFO HAS YET TO BE CHANGED
1050 PRINT "TYPE A '0' TO RETURN TO MENU": PRINT
1060 INPUT " CORRECT WHICH RECORD? ";REC
1070 IF REC = 0 THEN TEXT : GOTO 100: REM MENU

215

1075 IF REC > PTR THEN PRINT "INCORRECT CHOICE": GOTO
1060

216 CHAPTER 12 HOME INVENTORY SYSTEM

108 0 GOSUB 6000 : REM READ FILE
112 0 REM**- -DISPLAY FOR CORRECTION--**
1140 HOME
1160 PRINT II 1. II; ITEM$
1180 PRINT "2 . t1; SERIAL$
1200 PRINT II 3. ti; CST$
1220 PRINT "4 . II ; ROOM$
1240 PRINT "5. ";DESC$
1260 PRINT : PRINT
1280 INPUT "IS THIS CORRECT ('Y' OR 'N ') " ; YES$
129 0 IF YES$ = "Y" AND FLAG$ = "NO" THEN 1000
1300 IF YES$ = "Y" AND FLAG$ = "YES" THEN 7000 :

REM FILE ROUTINE
1310 IF NB < 1 OR NB > 5 THEN PRINT "INCORRECT CHOICE"

: GOTO 1320
1320 INPUT "WHICH NUMBER IS WRONG" ; NB
1340 IF NB = 1 THEN SP = 25
1360 IF NB= 2 THEN SP= 15
1380 IF NB= 3 THEN SP= 10
1400 IF NB= 4 THEN SP= 20
1420 IF NB= 5 THEN SP= 30
1440 PRINT
1460 PRINT "TYPE IN CORRECT INFO"
1480 INPUT CT$ (NB)
1500 IF LEN (CT$ (NB)) > SP THEN PRINT "TOO LONG- -TRY

AGAIN PLEASE": GOTO 1460
1520 IF NB = 1 THEN ITEM$ = CT$ (NB)
1 540 IF NB = 2 THEN SERIAL$ = CT$ (NB)
1560 IF NB = 3 THEN CST$ = CT$ (NB)
1580 IF NB = 4 THEN ROOM$ = CT$ (NB)
1600 IF NB = 5 THEN DESC$ = CT$ (NB)
1610 FLAG$ = "YES": REM INFO HAS BEEN CHANGED
1620 GOTO 1120: REM CHECK AGAIN
1997 :
1998 :
1999 :
2000 REM**- -DELETE RECORD- -**
2020 HOME
2040 POKE 32, 7 : POKE 34, 7: REM SET WINDOW
2060 HOME
2100 PRINT "TYPE A I 0 I TO RETURN TO MENU" : PRINT
2120 INPUT "DELETE WHICH RECORD " ;REC
2140 IF REC = 0 THEN TEXT : GOTO 100: REM MENU

CORRECT HOME INVENTORY

2150 IF REC > PTR 'PHEN PRINT "INCORRECT CHOICE" :
GOTO 2120

2160 GOSUB 6000: REM READ RECORD
2180 HOME
2200 PRINT ITEM$
2220 PRINT SERIAL$
2240 PRINT CST$
2260 PRINT ROOM$
2280 PRINT DESC$
2300 PRINT : PRINT
2320 INPUT "DELETE THIS RECORD? " ; YES$
2340 IF YES$ = "Y" THEN 2380
2360 TEXT: GOTO 2000
2380 PRINT II ARE YOU SURE? II: PRINT
2390 INPUT "TYPE I YES I TO DELETE RECORD II; YES$
2400 IF YES$ = "YES" THEN 2440
2420 TEXT: GOTO 2000
2440 ITEM$ = "D"
2460 SERIAL$ = "D"
2480 CST$ = "D"
2500 ROOM$ = "D"
2520 DESC$ = "D"
2540 GOTO 7000: REM FILE ROUTINE
2970 :
2980 :
2990 :
3000 REM** - -RETURN TO HOME MENU--**
3020 TEXT: PRINT D$; "CLOSE INVENTORY"
3040 PRINT D$; "RUN HOME MENU"
3970 :
3980 :
3990 :
6000 REM* *- -READ FILE ROUTINE-- **
6020 PRINTD$; "READ INVENTORY,R" ; REC ; ",B" ; O
6040 INPUT ITEM$
6060 PRINT D$; "READ INVENTORY , R"; REC ; " , B "; 25
6080 INPUT SERIAL$
6100 PRINT D$; "READ INVENTORY, R" ; REC ;", B" ; 40
612 0 INPUT CST$
6140 PRINTD$; "READ INVENTORY , R";REC ; " , B" ; 50
6160 INPUT ROOM$
6180 PRINT D$; "READ INVENTORY, R"; REC;", B" ; 70
6200 INPUT DESC$
6220 PRINT D$: REM CANCEL INPUT FROM DISK

2 17

218 CHAPTER 12 HOME INVENTORY SYSTEM

6240 RETURN
6970 :
6980 :
6990 :
7000 REM ** --FILE ROUTINE--**
7020 TEXT
7040 PRINTD$; "WRITE INVENTORY , R" ; REC; ",B" ; O
7060 PRINT ITEM$
7080 PRINT 0$; "WRITE INVENTORY, R" ; REC;", B"; 25
7100 PRINT SERIAL$
7120 PRINT 0$; "WRITE INVENTORY, R" ; REC;" , B" ; 40
7140 PRINT CST$
7160 PRINT 0$; "WRITE INVENTORY' R II; REC; It. B II ; 50
7180 PRINT ROOM$
7200 PRINT 0$; "WRITE INVENTORY, R" ; REC ; " , B" ; 70
7220 PRINT DESC$
7240 PRINT 0$; "CLOSE INVENTORY"
7260 PRINT 0$; "OPEN I NVENTORY, LlOO"
7280 PRINT 0$
7300 GOTO 100: REM MENU

MENU

10 REM** - -BACK ORDER SYSTEM--**
11 :
12 :
20 0$ = CHR.$ (4) : REM CONTROL D
40 TB = 8: REM HTAB VALUE
60:
80:
100 REM**- -MENU ROUTINE--**
120 HOME : VTAB 5
140 HTAB TB
160 PRINT "BACK ORDER SYSTEM"
180 PRINT : PRINT : PRINT
200 HTAB TB
220 PRINT "l. WRITE RECORD"
240 PRINT : HTAB TB
260 PRINT "2. READ RECORD''
280 PRINT : HTAB TB
300 PRINT "3. SEARCH RECORDS"
320 PRINT : HTAB TB

MENU

340 PRINT "4 . CORRECT RECORD"
360 PRINT : HTAB TB
380 PRINT "5 . END"
400 PRINT : HTAB TB
420 INPUT "WHICH NUMBER ";NUMBER
440 IF NUMBER < 1 OR NUMBER > 5 THEN 400
460 IF NUMBER = 1 THEN 1000
480 IF NUMBER = 2 THEN 2000
500 IF NUMBER = 3 THEN 3000
520 IF NUMBER = 4 THEN 4000
540 IF NUMBER = 5 THEN END
560 :
580 :
1000 REM** - - WRITE RECORD--**
1020 PRINT 0$; "RUN CREATE BACK ORDER"
1998 :
1999 :
2000 REM * * - -READ RECORD- -* *
2020 PRINT 0$; "RUN DISPLAY BACK ORDER"
2998:
2999 :
3000 REM** - - SEARCH RECORDS--**
3020 PRINT 0$; "RUN SEARCH BACK ORDER"
3998 :
3999 :
4000 REM ** - -CORRECT RECORDS--**
4020 PRINT 0$; "RUN CORRECT BACK ORDER"

219

220 CHAPTER 12 HOME INVENTORY SYSTEM

CREATE BACK ORDER

10 REM ** --CREATE BACK ORDER--**
11:
12 :
20 0$ = CHR$ (4): REM CONTROL D
40 TB = 8: REM HTAB VALUE
60:
80 :
100 REM**- -INPUT ROUTINE--**
120 HOME: VTAB 5
140 HTAB TB
160 PRINT "CREATE BACK ORDER"
180 PRINT : PRINT
185 VTAB 20: HTAB 8
190 PRINT "CR= LAST RECORD": PRINT: HTAB 8: PRINT "TYPE

I - I FOR NO VALUE"
200 POKE 34, 7: POKE 32, 7: POKE 35, 19
220 :
240 :
260 HOME
280 PRINT "ITEM NAME PLEASE."
300 PRINT: PRINT
320 SP = 25
340 GOSUB 5000: REM INPUT SUBROUTINE
360 INPUT II II; ITEM$
380 IF LEN (ITEM$) > SP THEN PRINT II II. GOTO 260 :

REM 5 CTRL GI s
385 IF ITEM$ = II II THEN ITEM$ = A$
390 A$ = ITEM$
400 :
420 :
440 HOME
460 PRINT "ITEM DESCRIPTION PLEASE. "
480 PRINT : PRINT
500 SP = 30
520 GOSUB 5000: REM INPUT SUBROUTINE
540 INPUT II II; DESC$
560 IF LEN (DESC$) > SP THEN PRINT II II: GOTO 440 :

REM 5 CTRL GI s
575 IF DESC$ = II II THEN DESC$= B$
576 B$ = DESC$
580 :

CREATE BACK ORDER

600 :
620 HOME
640 PRINT "INDIVIDUAL'S NAME PLEASE."
660 PRINT: PRINT
680 SP = 20
700 GOSUB 5000: REM INPUT SUBROUTINE
720 INPUT II II; NAME$
740 IF LEN (NAME$) > SP THEN PRINT "" GOTO 620 :

REM 5 CTRL GI s
755 IF NAME$ = II II THEN NAME$ = C$
756 C$ = NAME$
760 :
780 :
800 HOME
820 PRINT " PHONE * II

840 PRINT: PRINT
860 SP = 20
880 GOSUB 5000: REM INPUT SUBROUTINE
900 INPUT II II; PHNE$

920 IF LEN (PHNE$) > SP THEN PRINT "": GOTO 800
REM 5 CTRL GI s

935 IF PHNE$ = II II THEN PHNE$ = D1$

936 D1$ = PHNE$
940 :
960 :
980 HOME

1000 PRINT " DATE REQUEST WAS MADE"
1020 PRINT: PRINT
1040 SP = 10
1060 GOSUB 5000 : REM INPUT SUBROUTINE
1080 INPUT II II; DTE$
1100 IF LEN (DTE$) > SP THEN PRINT II II: GOTO 980 :

REM 5 CTRL G'S
1105 IF DTE$ = II II THEN DTE$ = E$
1110 E$ = DTE$
1120:
1140:
1160 HOME
1180 PRINT "ORDERED YET (I y I OR I N I) II

1200 PRINT: PRINT
1220 SP = 1
1240 GOSUB 5000 : REM INPUT SUBROUTINE
1260 INPUT II II ; OD$
1280 IF LEN (OD$) > SP THEN PRINT II II : GOTO 1160:

REM 5 CTRL GI s

221

222 CHAPTER 12 HOME INVENTORY SYSTEM

1285 IF OD$ = II II THEN OD$ = F$
1290 F$ = OD$
1291 :
1292 :
1300 HOME
1310 PRINT "AMOUNT DEPOSITED"
1320 PRINT : PRINT
1330 SP = 10
1340 GOSUB 5000 REM INPUT SUBROUTINE
1350 INPUT II II; AMT$
1360 IF LEN (AMT$) > SP THEN PRINT "": GOTO 1300 :

REM 5 CTRL G'S
1365 IF AMT$ = II II THEN AMT$ = G$
1370 G$ = AMT$
1391 :
1392 :
1400 REM* * - -DISPLAY FOR CORRECTION--* *
1410 TEXT : POKE 34 , 7: POKE 32 , 7
1420 HOME
1440
1460
1480
1500
1520
1525

PRINT "l .
PRINT "2 .
PRINT "3.
PRINT "4.
PRINT "5.
PRINT "6.

";ITEM$
II; DESC$
II ; NAME$
II; PHNE$

";DTE$
II; OD$

1530 PRINT II 7. II ; AMT$
1540 PRINT : PRINT
1560 INPUT II IS THIS CORRECT (I y I OR IN I) II; YES$

1580 IF YES$ = "Y" THEN 2000 : REM FILE ROUTINE
1600 INPUT "WHICH NUMBER IS WRONG ";NB
1610 IF NB < 1 OR NB > 7 THEN PRINT "INCORRECT CHOICE"

: GOTO 1600
1620
1640
1660
1680
1700
1705
1710
1720

IF NB =
IF NB =
IF NB =
IF NB =
IF NB =
IF NB =
IF NB =
PRINT

1 THEN SP = 25
2 THEN SP = 30
3 THEN SP = 20
4 THEN SP = 20
5 THEN SP= 10
6 THEN SP = 1
7 THEN SP= 10

1740 PRINT "TYPE IN CORRECT INFO II

1 760 INPUT CT$ (NB)
1780 IF LEN (CT$ (NB)) > SP THEN PRINT "TOO LONG- -TRY

AGAIN PLEASE": GOTO 1740

CREATE BACK ORDER

1800 IF NB = 1 THEN ITEM$ = CT$ (NB)
1820 IF NB = 2 THEN DESC$ = CT $ (NB)

1840 IF NB = 3 THEN NAME$ = CT $ (NB)
1860 IF NB = 4 THEN PHNE$ = CT$ (NB)
1880 IF NB = 5 THEN DTE$ = CT$ (NB)
188 5 IF NB = 6 THEN 00$ = CT $ (NB)
1890 IF NB = 7 THEN AMT$ = CT $ (NB)
1900 GOTO 1400 : REM CHECK AGAIN
1998 :
1999 :
2000 REM** - -FILE ROUTINE--**
2020 TEXT
2040 ONERR GOTO 2580 : REM F I RST USE ONLY
2060 PRINT 0$; "OPEN BACKORDER, L120 "
2080 PRINT D$; "READ BACKORDER, RO "
2100 INPUT PTR
21 2 0 PTR = PTR + 1 : POKE 216, 0 : REM RESET ERROR FLAG
2140 PRINT 0$; "WRITE BACKORDER, R"; PTR ; ", B"; 0
2160 PRINT ITEM$
2180 PRINT 0$; "WRITE BACKORDER, R" ; PTR; " , B "; 25
22 00 PRINT DESC$
2220 PRINT D$; "WRI TE BACKORDER , R" ; PTR ; " , B "; 5 5
2240 PRINT NAME$
2260 PRINT 0$; " WRITE BACKORDER, R "; PTR ; ", B" ; 75
2280 PRINT PHNE$
23 00 PRINT 0$; "WRITE BACKORDER, R" ; PTR ; " , B " ; 95
2 320 PRINT DTE$
2325 PRINT D$; "WRITE BACKORDER, R "; PTR ; ", B"; 105

2330 PRINT 00$
23 35 PRINT 0 $; " WRITE BACKORDER, R" ; PTR; ", B" ; 110
2 337 PRINT AMT$
234 0 PRINT D$; "WRITE BACKORDER, RO"
2360 PRINT PTR
2380 PRINT D$; "CLOSE BACKORDER"
2400 TEXT : HOME
2420 VTAB 5
2440 PRINT "DO YOU WANT TO ADD MORE ITEMS? "
2460 PRINT
2480 INPUT " TYPE I NO I TO STOP " ; NO$

2500 IF NO$ = "NO" THEN PRINT D$; "RUN MENU"
2520 GOTO 100 : REM BEGIN AGAI N
25 40 :
2560 :

223

224 CHAPTER 12 HOME INVENTORY SYSTEM

2580 REM**- -FIRST USE ONLY--**
2600 POKE 216, 0 : REM RESET ERROR FLAG
2620 PRINT D$; "WRITE BACKORDER, RO"
2640 PRINT "0"
2660 PRINT D$; "CLOSE BACKORDER"
2680 GOTO 2000: REM BEGIN FILE ROUTINE AGAIN
2700 :
2720 :
5000 REM**- -SUBROUTINE-- **
5040 HTAB 1
5060 FOR I = 1 TO SP
5080 PRINT CHR.$ (95); : REM UNDERL INE
5100 NEXT I
5120 HTAB 1
5160 RETURN

DISPLAY BACK ORDER

10 REM **--DISPLAY BACK ORDER- -**
11 :
12 :
20 D$ = CHR.$ (4) : REM CONTROL D
40 PRINT D$; "OPEN BACKORDER, L120"
60 PRINT D$; "READ BACKORDER, RO"
80 INPUT PTR
90 HOME
100 FOR I = 1 TO PTR
120 PRINTD$; "READBACKORDER,R" ; I ; ",B";O
140 INPUT ITEM$
160 PRINT D$; "READ BACKORDER, R" ; I ; " , B" ; 25
180 INPUT DESC$
200 PRINT D$; "READ BACKORDER, R" ; I; " , B" ; 55
220 INPUT NAME$
240 PRINT 0$; "READ BACKORDER, R" ; I;" , B"; 75
260 INPUT PHNE$
280 PRINT D$; " READ BACKORDER, R"; I; ", B" ; 95
300 INPUT DTE$
305 PRINT D$; "READ BACKORDER, R"; I; ", B"; 105
310 INPUT OD$
315 PRINT D$; "READ BACKORDER, R"; I; ", B"; 110
317 INPUT AMT$
320 PRINT D$

SEARCH BACK ORDER 225

340 PRINT I; II II; ITEM$;
360 HTAB 15: PRINT DESC$
380 PRINT NAME$;
400 HTAB 15: PRINT PHNE$
420 PRINT DTE$; : HTAB 12: PRINT OD$; : HTAB 15 : PRINT AMT$
440 PRINT: PRINT
460 NEXT I
480 PRINT D$; "CLOSE INVENTORY"
510 PRINT
520 INPUT "HIT RETURN TO RETURN TO MENU"; L$
540 PRINT D$; "RUN MENU"

SEARCH BACK ORDER

10 REM***- - SEARCH / SORT RECORDS--***
11 :
12 :
13 :
20 D$ = CHR$ (4): REM CONTROL D
22 PRINT D$; "OPEN BACKORDER, Ll20"
24 PRINT D$; "READ BACKORDER, RO"
26 INPUT PTR
28 PRINT D$: DIM C$ (PTR)
30:
32 :
40 REM**- -MENU ROUTINE-- * *
50 HOME : VTAB 3
60 TB = 8: HTAB 12
80 PRINT "SEARCH/ SORT MENU"
100 PRINT: PRINT
120 HTAB TB
140 PRINT "1. SEARCH FOR ITEM"
160 PRINT: HTAB TB
180 PRINT "2. SEARCH FOR NAME"
200 PRINT : HTAB TB
220 PRINT "3. SEARCH FOR DATE"
240 PRINT : HTAB TB
260 PRINT "4. ITEMS NOT YET ORDERED"
280 PRINT : HTAB TB
300 PRINT "5. SORT ITEMS ALPHABETICALLY"
320 PRINT : HTAB TB
340 PRINT "6. SORT BY NAME"

226 CHAPTER 12 HOME INVENTORY SYSTEM

360 PRINT : HTAB TB

380 PRINT "7 . RETURN TO MAIN MENU"
400 PRINT : HTAB TB
420 INPUT "WHICH NUMBER" ; NUMBER

440 IF NUMBER < 1 OR NUMBER > 7 THEN PRINT "INCORRECT
NUMBER! II : GOTO 400

510 IF NUMBER = 1 THEN 1000

520 IF NUMBER = 2 THEN 2000
530 IF NUMBER = 3 THEN 3 000

540 IF NUMBER = 4 THEN 4000
550 IF NUMBER = 5 THEN 6000
5 60 IF NUMBER = 6 THEN 6000
570 IF NUMBER = 7 THEN 7000
970 :
980 :
990 :

1000 REM * *- -SEARCH FOR ITEM--**
1020 HOME : VTAB 5
1040 HTAB TB

1060 INPUT "WHICH ITEM? "; SRCH$
10 8 0 I = 1 : BYTE = 0
1090 GOSUB 8000 : REM PRINT ROUTINE
1100 GOSUB 10000 : REM SEARCH ROUTINE

112 0 PRINT ITEM$; : HTAB 25 : PRINT NAME$
1140 PRINT DTE$; : HTAB 10 : PRINT PHNE$; : HTAB 3 0 : PRINT

OD$
1160 PRINT DESC$
1180 PRINT : ITEM$ = "II : NAME$ = 11 11

: DTE$= II II : PHNE$
= ti II : DESC$ = ti ,, : OD$ = II II : AMT$ = " ti

1200 IF I > PTR THEN 1260
1220 INPUT "SEARCH FOR MORE? ";YES$
1240 IF YES$ = "Y" THEN GOTO 1100
1260 PRINT
1280 GOSUB 9000 : REM HOUSKEEPING
1300 GOTO 40 : REM MENU
1970 :
1980 :
1990 :
2000 REM ** - -SEARCH FOR NAME-- **
2020 HOME : VTAB 5
204 0 HTAB TB
2060 INPUT "WHICH NAME? ti ; SRCH$
2070 GOSUB 8000 : REM PRINT ROUTINE
2080 I = 1 : BYTE = 55

SEARCH BACK ORDER

2100 GOSUB 10000 : REM SEARCH ROUTINE
2120 PRINT ITEM$; : HTAB 25 : PRINT NAME$
2140 PRINT DTE$; : HTAB 10 : PRINT PHNE$; : HTAB 30 :

PRINT OD$
2160 PRINT DESC$
2180 PRINT : ITEM$ = II II : NAME$ = II II : DTE$ = II II. PHNE$

= II II : DESC$ = II II : OD$ = II II : AMT$ = tt It

2200 IF I = PTR OR I > PTR THEN 2260
2220 INPUT "SEARCH FOR MORE? ";YES$
2240 IF YES$ = "Y" THEN GOTO 1100
2260 PRINT
2280 GOSUB 9000 : REM HOUSKEEPING
2300 GOTO 40: REM MENU
2970 :
298 0 :
2990 :
3000 REM ** - -SEARCH FOR DATE--**
3020 HOME : VTAB 5 : BYTE = 95 : FIND$ = ti"
3040 HTAB 1 4
3 060 PRINT " SEARCH FOR ITEMS . .. "
3080 PRINT : HTAB TB
3100 PRINT "A .. . AFTER A CERTAIN DATE"
3120 PRINT : HTAB TB
3140 PRINT "B ... BEFORE A CERTAIN DATE"
3160 PRINT : HTAB TB
3180 INPUT "WHICH LETTER I A I OR I BI II; LT$
3190 IF LT$ = "A" THEN 3220
3200 IF LT$ = "B" THEN 3500
3210 PRINT "INCORRECT CHOICE ": GOTO 3 160
3211 :
3212 :
3220 REM ** - -ITEMS AFTER DATE--* *
3230 HTAB TB
3240 INPUT "AFTER WHICH DATE? " ; DS$
324 5 GOSUB 8000 : REM PRINT ROUTINE
3250 HOME : VTAB 2 : HTAB 14
3260 PRINT II ITEMS AFTER II; DS$
3270 FOR I = 1 TO PTR
3280 PRINT D$; "READ BACKORDER, R"; I;" , B"; BYTE
3290 INPUT FIND$
3300 IF FIND$ = "D" THEN 3360
3310 IF DS$ > FIND$ THEN 3360
3320 PRINT D$; "READ BACKORDER, R" ; I ; " , B" ; 0
3330 INPUT ITEM$

227

228 CHAPTER 12 HOME INVENTORY SYSTEM

3340 PRINT 0$; "READ BACKORDER, R"; I ; ", B"; 55
3345 INPUT NAME$
3350 PRINT ITEM$; : HTAB 30: PRINT FIND$
3355 PRINT NAME$
3357 PRINT
3360 NEXT I
3370 PRINT
3380 REM
3390 PRINT: GOSUB 9000: REM HOUSEKEEPING
3400 GOTO 40: REM MENU
3496:
3497 :
3500 REM**- -ITEMS BEFORE DATE--**
3510 HTAB TB
3520 INPUT "BEFORE WHICH DATE " ; DS$
3525 GOSUB 8000 : REM PRINT ROUTINE
3530 HOME : VTAB 2: HTAB 14
3540 PRINT II ITEMS BEFORE II; DS$
3550 FOR I = 1 TO PTR
3560 PRINTD$; "READBACKORDER, R" ; I ; " , B";BYTE
3570 INPUT FIND$
3580 IF FIND$ = "D" THEN 3640
3590 IF VAL (OS$) < VAL (FIND$) THEN 3640
3600 PRINT 0$; "READ BACKORDER, R"; I; ", B" ; 0
3610 INPUT ITEM$
3615 PRINTD$; "READBACKORDER, R"; I; ",B"; 55
3620 INPUT NAME$
3630 PRINT ITEM$; : HTAB 30 : PRINT FIND$
3635 PRINT NAME$
3637 PRINT
3640 NEXT I
3650 PRINT
3660 REM
3670 PRINT
3680 GOSUB 9000: REM HOUSEKEEPING
3690 GOTO 40: REM MENU
3970:
3980 :
3990 :
4000 REM ** - -SEARCH FOR ROOM ITEMS-- **
4020 HOME : VTAB 5
4040 HTAB TB
4060 SRCH$ = "N"
4070 GOSUB 8000 : REM PRINT ROUTINE

SEARCH BACK ORDER 229

4080 I = 1 : BYTE = 105: HOME : VTAB 5
4100 HTAB 10 : PRINT" ITEMS NOT ORDERED YET" : PRINT: PRINT
4120 GOSUB 10000 : REM SEARCH ROUTINE
4140 PRINT ITEM$; : HTAB 25: PRINT NAME$
4150 PRINT PHNE$;: HTAB 20: PRINT DTE$; : HTAB 30:

PRINT AMT$
4160 PRINT DESC$
4180 TLROOM = TLROOM + VAL (CST$)
4200 PRINT
4220 IF I > PTR THEN 4280: REM SEARCH COMPLETED
4240 ITEM$ = 1111

: DESC$ = 1111
: NAME$ = 1111

: PHNE$ =
DTE$ = II II : AMT$ = II II

4260 GOTO 4120: REM CONTINUE SEARCH
4280
4300
4320
4340
4970 :
4980 :
4990 :

PRINT
REM
PRINT :
GOTO 40 :

GOSUB 9000: REM HOUSEKEEPING
REM MENU

5000 REM **- - SORT ALPHABETICALLY--**
5020 HOME : VTAB 5
5030 IF NUMBER = 5 THEN BYTE = 0
5035 IF NUMBER = 6 THEN BYTE = 55
5040 HTAB TB
5060 INVERSE : PRINT "WORKING- -PLEASE DON'T

TOUCH! ! II : NORMAL
5080 Q = 1: REM VALID RECORD COUNTER
5100 FOR I = 1 TO PTR
5120 PRINT D$; "READ BACK ORDER, R" ; I ;", B"; BYTE
5140 INPUT C$
5160 IF C$ = "D" THEN 5220
5180 C$ (Q) = C$
5200 Q = Q + 1
5220 NEXT I
5240 N = Q - 1
5260 PRINT : PRINT : HTAB TB
5280 INVERSE : PRINT "STILL WORKING- -PLEASE WAIT! "

: NORMAL
5300 GOSUB 20000: REM SORT ROUTINE
5320 REM DISPLAY RESULTS
5340 HOME : VTAB 5
5360 SPEED = 150
5380 FOR I = 1 TO Q - 1

'' " .

230 CHAPTER 12 HOME INVENTORY SYSTEM

5400 PRINT I;" "; C$ (I)
5420 NEXT I
5440 PRINT
5460 GOSUB 9000: REM HOUSEKEEPING
5480 GOTO 40: REM MENU
5970 :
5980 :
5990 :
6000 REM** - - SORT BY SERIAL#--**
6010 GOSUB 8000 : REM PRINT ROUTINE
6020 HOME : VTAB 5
6030 IF NUMBER = 5 THEN BYTE = 0
6035 IF NUMBER = 6 THEN BYTE = 55
6040 HTAB TB
6060 INVERSE : PRINT "WORKING- -PLEASE DON'T

TOUCH! ! " : NORMAL
6080 Q = 1: REM VALID RECORD COUNTER
6100 FOR I = 1 TO PTR
6120 PRINTD$; "READBACKORDER,R"; I; " , B" ; BYTE
6140 INPUT C$
6160 IF C$ = "D" THEN 6280
6180 C$ (Q) = C$
6200 REM
6220 REM
6240C$(Q) = C$(Q) + "*" + STR$ (I)
6260 Q = Q + 1
6280 NEXT I
6300 N = Q - 1
6320 PRINT : PRINT : HTAB TB
6340 INVERSE : PRINT "STILL WORKING- - PLEASE WAIT! "

: NORMAL
6360 GOSUB 20000: REM SORT ROUTINE
6380 REM DISPLAY RESULTS
6400 HOME : VTAB 5
6420 J = 1
6440 FOR I = 1 TO Q - 1
6460 LN = LEN (C$ (I))
6480 PRINT I;" " ;
6500 IFMID$ (C$(I),J,1) = "*"THENPRINTLEFT$ (C$(I),J

- 1) : K$ = MID$ (C$ (I), J + 1, LN) : GOTO 6540
6520 J = J + 1: GOTO 6500
6540 K = VAL (K$)
6560 PRINT D$; "READ BACKORDER, R" ; K; " , B" ; 0
6570 INPUT ITEM$

SEARCH BACK ORDER

6580 PRINT D$; "READ BACKORDER, R"; K; " , B"; 25
6590 INPUT DESC$
6600 PRINT D$; "READ BACKORDER, R"; K; ", B"; 55
6610 INPUT NAME$
6620 PRINT D$; "READ BACKORDER, R"; K; ", B"; 75
6630 INPUT PHNE$
6640 PRINT D$; "READ BACKORDER, R"; K; ", B"; 95
6650 INPUT DTE$
6660 PRINT D$; "READ BACKORDER, R"; K; ", B"; 105
6670 INPUT OD$
6680 PRINT D$; "READ BACKORDER, R"; K; II' B" ; 110
6690 INPUT AMT$
6700 PRINT D$: REM CANCEL INPUT FROM DISK
6710 PRINT ITEM$
6720 PRINT DESC$
6730 PRINT NAME$
6740 PRINT PHNE$
6750 PRINT DTE$
6760 PRINT OD$
6770 PRINT AMT$
6780 PRINT : PRINT
6790 J = 1
6800 NEXT I
6820 PRINT
6840 GOSUB 9000: REM HOUSEKEEPING
6860 GOTO 40: REM MENU
6970 :
6980 :
6990 :
7000 REM**- -RETURN TO HOME MENU--**
7020 PRINT D$; "CLOSE BACKORDER"
7040 PRINT D$; "RUN MENU"
7970 :
7980 :
7990 :
8000 REM **--PRINT ROUTINE--* *
8010 PRINT : HTAB TB
8020 INPUT "DO YOU WANT A PRINTOUT? ";YES$
8040 IF YES$ = "Y" THEN 8080
8050 PRINT
8060 RETURN
8080 PRINT D$; "PRiFl II
8090 PRINT
8100 RETURN

231

232

8980 :
8990:
8995 :

CHAPTER 12 HOME INVENTORY SYSTEM

9000 REM**- -HOUSEKEEPING-- **
9020 ITEM$ = ""
9040 NAME$ = ""
9050 PHNE$ = ""
9060 DTE$ = ""
90700D$ = ""
9080 AMT$ = ""
9100 DESC$ = II II

9120 PRINT D$; "PR:#:O"
9140 SPEED = 255
9160 PRINT D$: REM CANCEL INPUT FROM DISK
9180 INPUT "HIT RETURN TO CONTINUE " ; L$
9900 RETURN
9970 :
9980 :
9990:
10000 REM**- - SEARCH SUBROUTINE--**
10020 PRINTD$; "READBACKORDER,R" ; I; " , B";BYTE
10040 INPUT FIND$
10060 IF FIND$ = "D" THEN 10100
10080 IF SRCH$ = FIND$ THEN 10200
10100 I = I + 1
10120 IF I < PTR OR I = PTR THEN 10000
10140 PRINT : HTAB TB
10160 PRINT "SEARCH COMPLETED!": FORK= 1 TO 1000:

NEXTK
10180 RETURN
10200 PRINT D$; "READ BACKORDER, R"; I; " , B"; 0
10220 INPUT ITEM$
10240 PRINT D$; "READ BACKORDER, R"; I; ", B" ; 25
10260 INPUT DESC$
10280 PRINT D$; "READ BACKORDER, R" ; I; " , B" ; 55
10300 INPUT NAME$
10320 PRINTD$; "READ BACKORDER, R" ; I; " , B"; 75
10340 INPUT PHNE$
10360 PRINT D$; "READ BACKORDER, R"; I; " , B" ; 95
10380 INPUT DTE$
10385 PRINT D$; "READ BACKORDER, R"; I; ", B" ; 105
10390 INPUT OD$
10395 PRINTD$; "READ BACKORDER,R" ; I; " , B" ; 110
10397 INPUT AMT$

CORRECT BACK ORDER

10400 I = I + 1
10420 PRINT D$: REM CANCEL INPUT FROM DISK
10440 RETURN
19970 :
19980 :
20000 REM**- -SORT SUBROUTINE--**
20020 M = N
20040 M = INT (M I 2)
20060 IF M = 0 THEN 20300
20080 J = 1: K = N - M
20100 I = J
20120 L = I + M
20140 IF C$ (I) < C$ (L) THEN 20240
20160 T$ = C$ (I): C$ (I) = C$ (L) : C$ (L) = T$
20180 I = I - M
20200 IF I < 1 THEN 20240
20220 GOTO 20120
202 4 0 J = J + 1
202 60 IF J > K THEN 20040
20280 GOTO 20100
20300 RETURN

CORRECT BACK ORDER

10 REM**- -CORRECT BACK ORDER--**
11 :
12 :
20 D$ = CHR$ (4): REM CONTROL D
40 TB = 8: REM HTAB VALUE
60 PRINT D$; "OPEN BACKORDER, L120"
70 PRINT D$; "READ BACKORDER, RO"
80 INPUT PTR
90 PRINT D$: REM CANCEL INPUT FROM DISK
95 :
96 :
100 REM**- -MENU ROUTINE--* *
120 HOME : VTAB 5
140 HTAB 12
160 PRINT "CORRECT / DELETE MENU"
180 PRINT : PRINT
200 HTAB TB
220 PRINT "C . . . CORRECT BACKORDER RECORD"

233

234 CHAPTER 12 HOME INVENTORY SYSTEM

240 PRINT: HTAB TB
260 PRINT "D .. . DELETE BACKORDER RECORD"
280 PRINT : HTAB TB
300 PRINT "R ... RETURN TO MENU"
320 PRINT : HTAB TB
340 INPUT "WHICH LETI'ER PLEASE? ";LT$
360 IF LT$ "C" THEN 1000
380 IF LT$ = "D" THEN 2000
400 IF LT$ = "R" THEN 3000
420 PRINT : HTAB TB
440 PRINT "INCORRECT CHOICE" : GOTO 320
970 :
980 :
990 :
1000 REM**- -CORRECT RECORD--**
1005 HOME
1010 POKE 32 , 7 : POKE 34 , 7 : REM SET WINDOW
1020 HOME
1040 FLAG$ = "NO": REM INFO HAS YET TO BE CHANGED
1050 PRINT "TYPE A I 0 I TO RETURN TO MENU": PRINT
1060 INPUT "CORRECT WHICH RECORD? ";REC
1070 IF REC= 0 THEN TEXT: GOTO 100 : REM MENU
1075 IF REC > PTR THEN PRINT "INCORRECT CHOICE": GOTO

1060
1080 GOSUB 6000 : REM READ FILE
1120 REM** - - DISPLAY FOR CORRECTION - - **
1140 HOME
1160 PRINT II 1 . II; ITEM$
1180 PRINT "2. "; DESC$
1200 PRINT II 3. II ; NAME$
1220 PRINT "4. ";PHNE$
1240 PRINT "5 . " ; DTE$
1245 PRINT "6 . II ; 00$
1250 PRINT II 7 . II; AMT$
1260 PRI NT : PRINT
1280 INPUT II IS THIS CORRECT (I y I OR IN I) II ; YES$
1290 IF YES$ = "Y" AND FLAG$ = "NO" THEN 1000
1300 IF YES$ = "Y" AND FLAG$ = "YES" THEN 7000 :

REM FILE ROUTINE
1320 INPUT "WHICH NUMBER IS WRONG " ; NB
1330 IF NB < 1 OR NB > 7 THEN PRINT "INCORRECT CHOICE"

: GOTO 1320
1340 IF NB 1 THEN SP = 25
1360 IF NB = 2 THEN SP = 30

CORRECT BACK ORDER

1380 IF NB = 3 THEN SP = 20
1400 IF NB = 4 THEN SP = 20
1420 IF NB = 5 THEN SP = 10
1425 IF NB = 6 THEN SP = 1
1430 IF NB = 7 THEN SP = 10
1440 PRINT
1460 PRINT "TYPE IN CORRECT INFO 11

1480 INPUT CT$ (NB)

235

1500 IF LEN (CT$ (NB)) > SP THEN PRINT "TOO LONG- -TRY

AGAIN PLEASE" : GOTO 1460
1520 IF NB = 1 THEN ITEM$ = CT$ (NB)
1540 IF NB = 2 THEN DESCS = CT$ (NB)
1560 IF NB = 3 THEN NAME$ = CT$ (NB)
1580 IF NB = 4 THEN PHNE$ = CT$ (NB)
1600 IF NB = 5 THEN DTE$ = CT$ (NB)
1603 IF NB = 6 THEN OD$ = CT$ (NB)

1606 IF NB = 7 THEN AMT$ = CT$ (NB)
1610 FLAG$ = "YES": REM INFO HAS BEEN CHANGED
1620 GOTO 1120 : REM CHECK AGAIN
1997 :
1998 :
1999 :
2000 REM ** - - DELETE RECORD- - **
2020 HOME

2040 POKE 32, 7 : POKE 34, 7 : REM SET WINDOW
2060 HOME
2100 PRINT "TYPE A I 0 I TO RETURN TO MENU" : PRINT
2120 INPUT "DELETE WHICH RECORD " ; REC

2140 IF REC = 0 THEN TEXT : GOTO 100: REM MENU
2150 IF REC > PTR THEN PRINT "INCORRECT CHOICE" : GOTO

2120
2160 GOSUB 6000 : REM READ RECORD
2180 HOME
2200 PRINT ITEM$

2220 PRINT DESC$
2240 PRINT NAME$
2260 PRINT PHNE$
2280 PRINT DTE$
2285 PRINT OD$
2290 PRINT AMT$
2300 PRINT : PRINT
2320 INPUT "DELETE THIS RECORD? 11

; YES$
2340 IF YES$ = "Y" THEN 2380
2360 TEXT : GOTO 2000

236 CHAPTER 12 HOME INVENTORY SYSTEM

2380 PRINT II ARE YOU SURE? II : PRINT
2390 INPUT "TYPE I YES I TO DELETE RECORD II ; YES$
2400 IF YES$ = "YES" THEN 2440
2420 TEXT: GOTO 2000
2440 ITEM$ = "D"
2460 NAME$ = "D"
2480 DTE$ = "D"
2500 PHNE$ = "D"
2520 DESC$ = "D"
2525 OD$ = "D"
2530 AMT$ = "D"
2540 GOTO 7000: REM FILE ROUTINE
2970 :
2980 :
2990:
3000 REM** - -RETURN TO HOME MENU--**
3020 TEXT: PRINT D$; "CLOSE BACKORDER"
3040 PRINT D$; "RUN MENU"
3970 :
3980 :
3990 :
6000 REM ** - -READ FILE ROUTINE- - **
6020 PRINT D$; "READ BACKORDER, R"; REC; 11

, B" ; 0
6040 INPUT ITEM$
6060 PRINT D$; "READ BACKORDER, R" ; REC;", B"; 25
6080 INPUT DESC$
6100 PRINT D$; "READ BACKORDER, R" ; REC; 11

, B" ; 55
6120 INPUT NAME$
6140 PRINT D$; "READ BACKORDER, R"; REC; II' B" ; 75
6160 INPUT PHNE$
6180 PRINT D$; "READ BACKORDER, R"; REC; II' B"; 95
6200 INPUT DTE$
6205 PRINT D$; "READ BACKORDER, R" ; REC ; 11

, B" ; 105
6210 INPUT OD$
6215 PRINT D$; "READ BACKORDER, R" ; REC ; 11

, B" ; 110
6217 INPUT AMT$
6220 PRINT D$: REM CANCEL INPUT FROM DISK
6240 RETURN
6970 :
6980 :
6990 :
7000 REM* * - -WRITE FILE ROUTINE--**
7020 TEXT
704 0 PRINT D$; "WRITE BACKORDER, R" ; REC ; ", B" ; 0

CORRECT BACK ORDER

7060 PRINT ITEM$
7080 PRINT D$; "WRITE BACKORDER, R" ; REC ; II ' B" ; 25
7100 PRINT DESC$
7120 PRINT D$; "WRITE BACKORDER, R" ; REC;" , B" ; 55
7140 PRINT NAME$
7160 PRINT D$; "WRITE BACKORDER, R" ; REC ; " , B" ; 75
7180 PRINT PHNE$
7200 PRINT D$; "WRITE BACKORDER, R" ; REC ; " , B" ; 9 5
7220 PRINT DTE$
7225 PRINT D$; "WRITE BACKORDER, R" ; REC ; " , B" ; 105
7230 PRINT OD$
7235 PRINT D$; "WRITE BACKORDER, R" ; REC; " , B" ; 1 10
723 7 PRINT AMT$
7240 PRINT D$; "CLOSE BACKORDER"
7260 PRINT D$; "OPEN BACKORDER , L120"
7280 PRINT D$
7300 GOTO 100 : REM MENU

237

,
13

Planning a File System

Rather than present another chapter explaining the programming of
yet another system, this chapter will present the procedures involved in
conceiving and creating a file system. I will use a STOCK MARKET
SYSTEM as the example. Although shorter than previous chapters, this
chapter is no less important than preceding ones.

There are five main steps involved in conceiving and creating a
specific data base system:

1. Know your subject.
2. Plan carefully and organize your thoughts.
3. Make preliminary decisions on the number of main variables, the

length of each record, and if necessary, the lengths of fields within
each record.

4. Roughly plan the sequence of the data base operation and the code
for each part of that operation.

5. Begin on the code for the first part of the system.

Some programmers will argue wi th either the sequence of the steps
or the steps themselves, and some may say that such an outline is too
limited. All may be right. I am mere ly trying to give a limited amount
of guidance in the development of a specific file system. Some systems
analysts get carried away with the pre-code procedures, but one thing is
clear: A certain amount of planning before coding is absolutely necessary!

238

STOCK MARKET SYSTEM 239

STOCK MARKET SYSTEM

Results of the previous day's trading activity are printed in most daily
newspapers. Normally, these results include such things as : 52 week
high and low stock price; stock symbol; latest dividend; a yield figure;
P/E ratio; sales; daily high, low, and closing price; and, possibly, the
amount of price change from the previous day. That information is avail­
able for active issues on the New York and American Stock Exchanges.
Less information is given for O ver The Counter or NASDAQ issues,
Option, Commodity, and Bond trading. There are figures for the various
averages: NYSE INDEX, DOW, STANDARD & POORS, AMERICAN
INDEX, NASDAQ COMPOSITE and/or INDUSTRIALS, to name just a
few. There are other key items to watch: gold, interest rates, the value
of the dollar overseas, the money supply, the President's daily intake of
vitamins, and so forth. As you might guess, the list is limitless.

Although an investment record may contain more variables than in­
formation maintained on your own library, the principle is the same. You
must thoroughly know your subject in order to be able to make decisions
concerning the information to be saved. The first step in planning your
data base should be deciding which information is of value; i.e., what
information to save.

In our STOCK MARKET SYSTEM, I am going to severely limit the
amount of information saved . Individuals may wish to keep additional
information they believe to be important. For each issue, we will save the
daily high, low and closing price, plus the day's volume and PIE ratio. In
addi tion, we will save any price that makes either a new high or new low
for that issue.

Steps two and three somewhat blend together at this point. In the
planning, decisions are made. Most stock prices are under $1000 per
share, so I will allow a maximum of three places before the decimal point.
Prices are usually given in terms of eighths of a dollar; i. e., 3/8 or 112.
With a little extra planning and coding, significant disk space can be saved
on each issue. If the extreme right figure is always viewed as the decimal
portion of the stock price, then four digits will represent all stock prices
up to $999 and 7 / 8 per share. (This price would be saved on the disk as
9997 .) Saving the high, low, and close each day already means 15 bytes
per issue per day---4 bytes for the number plus one byte for the delimite r
for a total of 5 bytes for each high, low, and closing price.

Volume can be handled in somewhat the same way. Most papers
indicate the sales volume only in hundreds of shares sold per day. A
volume of 2000 shares would be displayed as 20. Since virtually every
stock trades under 9,999,900 shares in one day, we can limit the number
of places to six---99999 plus one for the carriage return delimi ter. Finally,
all PIE ratios are under 999 for any issue. This necessitates ano ther four

240 CHAPTER 13 PLANNING A FILE SYSTEM

bytes for each issue, which brings the tota l number of bytes for each issue
to 25: 4 for the P/ E ratio, 6 for the volume, 5 for the high, 5 for the low,
and 5 for the close. We will save any new high or new low price in a
separate sequential file .

Next, we must decide on the number of issues to follow on a daily
basis. This is an individual choice and often depends upon the time
available for following the market closely. A reasonable figure to start
out with is ten issues. This means that we can calculate the maximum
number of bytes or the length of each record (since each day's transactions
will represent one record). Ten stocks, each requiring 25 bytes, mean a
length of 250 bytes per record. Add an additional ten bytes for each day's
date, and we have a total of 260 bytes. Based on approximately 125,000
available bytes on each diskette, we can store just under 500 days' trading
informat ion, which is more than a year and a half of stock market activity
for ten issues on a single data diskette.

Step four is a rough plan of the sequence of programs and the code
within each program. Following the procedures we have used in our
previous examples, we need programs that will create the necessary files
and add to those files daily. Second, we need programs to display, in a
variety of ways, the information either stored in the file or derived from
the information stored. Finally, we must have correction programs.

I am going to introduce another method of creating random files.
This program does nothing but open the file, write a pointer value to
record zero, and close the file. It is similar to our first MAILING LIST
CREATOR program except that this program does not have any data.

20 D$ = CHR$ (4): REM CONTROL D
40 PRINT D$; "OPEN STOCKS , L260"
60 PRINT D$; "WRITE STOCKS , RO"
80 PRINT "0"
100 PRINT D$; "CLOSE STOCKS "

The sole purpose of this program is to create the file with a pointer value
of zero so that the first time we use the file addition program, we will not
get an END OF DATA error. With this program, we do not need to use
the ONERR statement in the file addition program. This program will
also come in handy if the pointer ever needs to be reset.

Within the file addition program, the sequence of operation is fairly
standard. We need to read in: (I) the value of the file pointer (add one to
that value), (2) the symbols for the various stocks, and (3) their current
high and low prices. Next, the previous day's figures must be entered
for each issue and checked for accuracy. The previous day's figures must
also be compared to the current high and low, and if they exceed those
figures, they need to replace the appropriate fi gure. Finally, all the new
informat ion must be written to the disk.

QUESTIONS 241

The editing programs should follow a similar pattern but with a few
exceptions. The pointer should be determined by an input from the
keyboard. The high, low, close, volume, and PIE should come from the
disk instead of the keyboard, with corrections coming from the keyboard.
Finally, a routine should be included that re-formats the current file,
allowing for expansion of the number of issues. This routine would read
in values from the old fil e and write them back out in a new format to
the new file .

The display programs are more difficult to structure in any absolute
manner. The only certain structure is that information comes from the
disk and is displayed either on the screen or through the printer. In
between, a variety of steps can take place. The information can be used to
calculate certain values that may be used to evaluate a particular situation
and project the price movement of the stock, or the disk information may
simply be formatted for display on either the screen or the printer. The
information may be used to graph the price movement of the stock or
compare its movement against that of another stock or average. The
display portion of the STOCK MARKET SYSTEM is the core of the
system and is usually not a fixed set of programs. User needs change and
require that the display programs change. In the system presented, the
display programs will be limited in their scope. We will display individual
stock histories, along wi th some calculated figures, averages, price and
volume changes, etc. We will not get into graphic representat ion of
stock performance in this book. A future book will deal with graphic
representation of data base information, because it is such a broad topic
that it requires a book of its own.

The fi nal step is coding the programs according to the plans estab­
lished. At the end of this chapter , you will find minimum programs
designed according to the structure outlined in this chapter. You are
encouraged to take these minimum programs and expand upon them to
fit your own interest, or a lter them to cover a topic of your own design.
It is only by practical experience that you will learn to create Apple files.

QUESTIONS

1. TRUE or FALSE: Good programmers can just sit down and start
writing code.

2. What is the first step in planning a data base system?

3. Give the three main parts to any data base system.

4. Which part must be flexible as user needs change?

242 CHAPTER 13 PLANNING A FILE SYSTEM

ANSWERS

I. FALSE
2. Deciding which information is of value.

3. Creation and addition, Display, Correction.

4. Display

STOCK MENU

STOCK MENU

10 REM***- -STOCK MENU--**
11 :
12 :
20 D$ = CHR.$ (4) : REM CONTROL D
40 TB = 8
100 HOME : VTAB 3
120 HTAB 15
140 PRINT "STOCK MENU"
160 PRINT : PRINT
180 HTAB TB
200 PRINT II 1. ADD STOCK INFO. II

220 PRINT
240 HTAB TB
260 PRINT "2. DISPLAY STOCK INFO. "
280 PRINT
300 HTAB TB
320 PRINT "3. DISPLAY HI / LOW VALUES"
340 PRINT
360 HTAB TB
380 PRINT "4 . CREATE/ CORRECT HI / LOW"
400 PRINT
420 HTAB TB
440 PRINT "5. CORRECT DATA"
460 PRINT
480 HTAB TB
500 PRINT "6. CATALOG"
520 PRINT
540 HTAB TB
560 PRINT "7 . END"
580 PRINT
600 HTAB TB
620 INPUT "WHICH NUMBER II; NB

243

640 IF NB < 1 OR NB > 7 THEN PRINT HTAB TB : PRINT
"INCORRECT CHOICE" : GOTO 600

660 IF NB = 1 THEN PRINT D$; "RUN ADD STOCKS"
680 IF NB= 2 THEN PRINT D$; "RUN DISPLAY STOCKS"
700 I F NB = 3 THEN PRINT D$; "RUN DISPLAY HI / LOW"
720 IF NB= 4 THEN PRINT D$; "RUN CREATE HI / LOW"
740 IF NB = 5 THEN PRINT D$; "RUN CORRECT STOCKS"
760 IF NB = 6 THEN PRINT D$; "CATALOG"
780 IF NB = 7 THEN END

244 CHAPTER 13 PLANNING A FILE SYSTEM

800 PRINT
820 INPUT "HIT RETURN TO CONTINUE "; L$
840 GOTO 100

ADD STOCKS

10 REM***- -ADD STOCK INFO--***
11 :
12 :
13 REM** - -VARIABLES LIST--**
14 REM STK$ = STOCK SYMBOL
15 REM HI$ = CURRENT HI PRICE
16 REM LOW$ = CURRENT LOW PRICE
17 REMPE = P/E RATIO
18 REM VOL = SALES VOLUME
19 REMH = DAILY HIGH PRICE
20 REM L = DAILY LOW PRICE
21 REM C = DAILY CLOSING PRICE
22 REM CR = CORRECTED FIGURE
27 :
28 :
29 REM**- -INITIALIZATION--**
30 D$ = CHR$ (4) : REM CONTROL D
40 PRINT D$; "OPEN STOCKS, L260"
60 PRINT D$; II READ STOCKS' RO II
80 INPUT PTR
100 PRINT D$; "CLOSE STOCKS"
120 PTR = PTR + 1
140 PRINT D$; "OPEN STOCKS HI/LOW"
160 PRINT D$; "READ STOCKS HI / LOW"
180 FOR I = 0 TO 9
200 INPUTSTK$(I)
220 INPUT HI$ (I)
240 INPUT LOW$ (I)
260 NEXT I
280 PRINT D$; "CLOSE STOCKS HI / LOW"
297
298 :
299 REM**- -KEYBOARD INPUT--**
300 I = 0
320 HOME : VTAB 5
330 INPUT "TODAY' s DATE II ; DT$

ADD STOCKS

335 HOME : VTAB 5: PRINT DT$: PRINT : PRINT
340 PRINT STK$ (I)
350 PRINT : PRINT
360 INPUT "TODAY'S P / E RATIO ";PE
370 PRINT
380 INPUT "TODAY Is VOLUME II; VOL
390 GOSUB 7000
400 INPUT "TODAY Is HIGH"; H
410 GOSUB 7000
420 INPUT "TODAY Is LOW II; L
430 GOSUB 7000
440 INPUT "TODAY Is CLOSE II; c
457 :
458 :
459 REM**- -CORRECTION ROUTINE--**
460 HOME : VTAB 3
470 HTAB 10
480 PRINT STK$ (I)
490 PRINT : PRINT
500
510
520
530
540
550
560
570
580

PRINT "l.
PRINT
PRINT "2 .
PRINT
PRINT "3.
PRINT
PRINT "4 .
PRINT
PRINT "5.

600 PRINT

TODAY'S P / E RATIO--

TODAY Is VOLUME-----

TODAY'S HIGH-------

TODAY Is LOW- -------

TODAY Is CLOSE------

" ; PE

" ;VOL

" ; H

" ; L

"; c

620 INPUT II ARE THESE FIGURES CORRECT? II ; YES$
640 IF YES$ = "N" THEN 680
660 GOTO 900
680 PRINT
700 INPUT "WHICH NUMBER IS WRONG" ; NB
720 IF NB < 1 OR NB > 5 THEN PRINT "INCORRECT CHOICE"

: GOTO 680
740 INPUT "THE CORRECT FIGURE = " ; CR
7 6 0 IF NB = 1 THEN PE = CR
780 IF NB = 2 THEN VOL = CR
8 0 0 IF NB = 3 THEN H = CR
820 IF NB = 4 THEN L = CR
840 IF NB = 5 THEN C = CR
860 GOTO 460
897 :

245

246 CHAPTER 13 PLANNING A FILE SYSTEM

898 :
899 REM * * - - EXCHANGE HI / LOW- - * *
900 IF H > VAL (HI$ (I)) THEN HI$ (I) STR$ (H)
920 IF L < VAL (LOW$ (I)) THEN LOW$ (I) STR$ (L)
940 IF VAL (LOW$ (I))= 0 THEN LOW$ (I) = STR$ (L)
957 :
958 :
959 REM**- -FILE UPDATE--**
960 PRINT 0$; "OPEN STOCKS, L260"
970 PRINT 0 $; "WRITE STOCKS , R" ; PTR; " , B"; 0
975 PRINT OT$
980 PRINTD$; "WRITE STOCKS , R" ;PTR ; " , B" ; (I * 25) + 10 + 0
1000 PRINT PE
1020 PRINT 0$; "WRITE STOCKS, R"; PTR; ", B"; (I * 25) + 10 + 4
1040 PRINT VOL
1060 PRINT 0$; " WRITE STOCKS, R"; PTR ; ", B"; (I* 25) + 10 + 10
1080 PRINT H
1100 PRINTD$; "WRITESTOCKS,R";PTR; ",B"; (I* 25) + 10 + 15
1120 PRINT L
1140 PRINT 0$; "WRITE STOCKS, R"; PTR; ", B"; (I * 25) + 10 + 20
1160 PRINT C
1180 PRINT 0$; "CLOSE STOCKS"
1200 I = I + 1
1220 IF I < 10 THEN 335
1237 :
1238 :
1239 REM ** - - NEW HI / LOW FILE--**
1240 PRINT 0$; "OPEN STOCKS HI / LOW"
1260 PRINT 0$; "WRITE STOCKS HI / LOW"
1280 FORK = 0 TO 9
1300 PRINT STK$ (K)
1320 PRINT HI$ (K)
1340 PRINT LOW$ (K)
1360 NEXT K
1 380 PRINT 0$; "CLOSE STOCKS HI / LOW"
1 397 :
1398 :
1399 REM** - - FILE POINTER- - **
1400 PRINT 0$; "OPEN STOCKS, L260"
1420 PRINT 0$; "WRITE STOCKS, RO"
1440 PRINT PTR
1460 PRINT 0$; " CLOSE STOCKS"
1998 :

ADD STOCKS

1999 :
5000 REM**- -RETURN TO STOCK MENU"
5020 PRINT D$; "RUN STOCK MENU"
6997 :
6998
6999 REM**- -REMINDER SUBROUTINE--**
7000 HOME : VTAB 3
7020 PRINT"***- -REMEMBER--***"
7040 PRINT "YOU MUST ADD THE FRACTION"
7060 PRINT "AS THE LAST DIGIT"
7080 PRINT "l / 8------ 1"
7100
7120
7140
7160
7180
7200
7220
7222

PRINT "1 / 4------
PRINT "3 / 8------
PRINT "1 / 2------
PRINT "5 / 8------
PRINT "3 / 4------
PRINT "7 / 8------
PRINT "EVEN-----
PRINT: PRINT

2"
3"
4"
5"
6"
7"
0"

7225 PRINT"****- --IMPORTANT---****"
7230 PRINT
7235 PRINT "IF THE NUMBER HAS NO"
7240 PRINT
7245 PRINT "FRACTION, PLEASE ENTER"
7250 PRINT
7255 PRINT "A I 0 I AFTER THE NUMBER. II

7260 PRINT
7280 RETURN

247

248 CHAPTER 13 PLANNING A FILE SYSTEM

DISPLAY STOCKS

10 REM***- -DISPLAY STOCK HISTORY-- ***
11 :
12 :
13 REM ** - - VARIABLES LIST-- **
14 REM STK $
15 REM HI $
16 REM LOW$
17 REMPE
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
46:
47 :
48 :

REM VOL
REM H
REM L
REM C
REM DT $
REM F $
REM AV
REM AP
REM CV
REM Cl
REM C2
REM CD
REMM
REM Ll
REMW

= STOCK SYMBOL
= CURRENT HI PRICE
= CURRENT LOW PRICE
= P / E RATIO
= SALES VOLUME
= DAILY HIGH PRICE
= DAILY LOW PRICE
= DAILY CLOSING PRICE
= DATE
=FRACTION
= AVERAGE VOLUME
= AVERAGE PR! CE
= CLOSING PRICE W/ O CONV.
= lST CLOSE PRICE
= LAST CLOSE PRICE
= DIFF. BETWEEN C2
= COMMON VAR. CONV
= COMMON VAR. CONV

= TEMP . STOCK *

49 REM ** - -INITIALIZATION--**
50 D$ = CHR$ (4) : REM CONTROL D
55 PRINT D$; "OPEN STOCKS , L260"
60 PRINT D$; "READ STOCKS, RO"
80 INPUT PTR
100 PRINT D$; "CLOSE STOCKS"
116 :
1 17 :
118:
119 REM **- -SET UP--**
120 HOME : VTAB 5
140 PRINT D$; "OPEN STOCKS HI / LOW"
160 PRINT D$; "READ STOCKS HI /LOW"
1 80 FOR I = 0 TO 9
200 INPUT STK$ (I)

DISPLAY STOCKS 249

220 INPUT HI$ (I)
230 M = VAL (HI$ (I)):

+ F$
GOSUB 8000: HI$ (I) STR$ (M) + II II

240 INPUT LOW$ (I)
245 M = VAL (LOW$ (I)): GOSUB 8000: LOW$ (I) = STR$ (M)

+ II II + F$
250 PRINT I + 1 ; ". ";: HTAB 5: PRINT STK$ (I)
260 NEXT I
270 STK$ (10) = "STOCK MENU"
275 PRINT "11. ";: HTAB 5: PRINT STK$ (10)
280 PRINT D$; "CLOSE STOCKS HI / LOW"
285 PRINT
290 INPUT "WHICH STOCK II; w
291 IF W < 1 OR W > 11 THEN PRINT "INCORRECT CHOICE"

: GOTO 290
292 IF W = 11 THEN PRINT 0$; "RUN STOCK MENU"
293 I = W - 1
294 :
295 REM***- -TITLES--***
296 HOME: VTAB 5: HTAB 18: PRINT STK$(I): PRINT: PRINT
297 PRINT "DATE";: HTAB 10: PRINT "VOL";: HTAB 15: PRINT

"HI II; : HTAB 23: PRINT "LOW"; : HTAB 31: PRINT "CLOSE"
298 :
299 :
300 REM **- -DISK INPUT ROUTINE--**
320 PRINT 0$; "OPEN STOCKS, L260"
33 0 FOR K = 1 TO PTR
335 PRINT D$; "READ STOCKS, R" ; K; ", B"; 0
33 7 INPUT DT$
340
360
380
400
420
440
460
480

PRINTD$; "READ STOCKS,R";K; ",B";
INPUT PE
PRINT D$; "READ STOCKS, R" ; K; II ' B" ;
INPUT VOL
PRINT D$; "READ STOCKS, R"; K ; II . B";
INPUT H

PRINT 0$; "READ STOCKS, R"; K; II. B";
INPUT L

(I * 25)

(I * 25)

(I * 25)

(I * 25)

+ 10

+ 10 + 4

+ 10 + 10

+ 10 + 15

500 PRINT D$; "READ STOCKS, R" ; K ; " , B" ; (I * 25) + 10 + 20
520 INPUT C
536 :
537 :
538 :
539 REM**- -DISPLAY ROUTINE--**
540 PRINT DT$;

250

600 HTAB 10
620 PRINT VOL;
740 HTAB 15

CHAPTER 13 PLANNING A FILE SYSTEM

750 M = H: GOSUB 8000: H = M
760 PRINTH ; " " ; F$;
780 HTAB 2 3
790 M = L : GOSUB 8000: L = M
800 PRINT L; II "; F$;
820 HTAB 31
825 IF K = 1 THEN Cl = C: Vl = VOL
827 IF K = PTR THEN C2 = C
828 CV = C : Ll = CV: GOSUB 9000 : CV= Ll
830 M = C: GOSUB 8000: C = M
840 PRINT C; II II; F$
850 AV = AV + VOL
860 AP = AP + CV
880 NEXT K
884 PRINT D$
885 PRINT : INPUT "HIT RETURN TO CONTINUE " ; L$
886 :
887 :
888 :
889 REM* * - -DISPLAY SECOND PAGE- - **
890 HOME : VTAB 5
895 HTAB 18 : PRINT STK$ (I)
899 PRINT : PRINT
900 PRINT "CURRENT P / E RATIO= ";PE
920 PRINT
940 PRINT "CURRENT HIGH = " ; HI$ (I)
945 AV = AV / (K - 1)
950 AP = AP I (K - 1)
955 PRINT
960 PRINT "CURRENT LOW = " ; LOW$ (I)
962 PRINT
965 PRINT "AVERAGE VOL . = ";AV
967 PRINT
970 PRINT "AVERAGE PRICE = ";AP
972 PRINT
975 Ll = C2 : GOSUB 9000 : C2 = Ll
976 Ll = Cl : GOSUB 9000 : Cl = Ll
977 CD = C2 - Cl
980 PRINT "PRICE DIFF. FROM lST REC. = ";CD
985 PRINT
990 PRINT "LAST PRICE = II; C;" II ; F$

996 :
997 :
998 :

DISPLAY STOCKS

999 REM ** - -ANOTHER STOCK-- **
1000 PRINT D$
1010 PRINT
1020 INPUT "HIT RETURN TO CONTINUE " ; L$
1040 HOME : VTAB 5
lOSOAV = O: AP = 0
1060 FOR I = 1 TO 11
1080 PRINT I ; II . II; : HTAB 5 : PRINT STK$ {I - 1)
1100 NEXT I
1120 PRINT
1140 GOTO 290
1997 :
1998 :
1999 :
5000 REM**- -RETURN TO STOCK MENU"
5020 PRINT 0$; "RUN STOCK MENU"
6996 :
6997 :
6998 :
8000 REM**- -CONVERT TO FRACTION--**
8005 F = M - INT {M I 10) * 10
8010 M = INT {M I 10)
8020 IF F = 0 THEN F$ = II II

8040 IF F = 1 THEN F$ = "1 / 8"
8060 IF F = 2 THEN F$ = 1 / 4"
8080 IF F = 3 THEN F$ = 3 / 8"
8100 IF F = 4 THEN F$ = 1 / 2"
8120 IF F = 5 THEN F$ = 5 / 8"
8 140 IF F = 6 THEN F$ = 3 / 4"
8160 IF F = 7 THEN F$ = 7 / 8"
8200 RETURN
8997 :
8998 :
8999 :
9000 REM **- -CONVERT TO DECIMAL-- **
9010 Ll = Ll I 10: Sl = INT (Ll) : Dl = Ll - Sl
9020 Dl = {Dl * 10) I 8: Ll = Sl + Dl : Ll = INT

{Ll * 1000 + . 5) I 1000
9040 RETURN

251

252 CHAPTER 13 PLANNING A FILE SYSTEM

DISPLAY HI/ LOW

10 REM**- -READ HI / LOW FILE--**
11 :
12 :
20 D$ = CHR$ (4) : REM CONTROL D
100 REM**- -DISK INPUT--**
120 PRINT D$; "OPEN STOCKS HI / LOW"
140 PRINT D$; "READ STOCKS HI / LOW"
160 FOR I = 1 TO 10
180 INPUT STK$ (I)
200 INPUT HI$ (I)
220 INPUT LOW$ (I)
240 NEXT I
260 PRINT D$; "CLOSE STOCKS HI / LOW"
297 :
298 :
300 REM**- -DISPLAY ROUTINE--**
305 HOME : VTAB 5
310 PRINT "STOCK SYMBOL"; : HTAB 18: PRINT "HI";: HTAB 28

: PRINT "LOW"
315 PRINT
320 FOR I = 1 TO 10
330 PRINT I ; ti • II ;

335 HTAB 5
340 PRINT STK$ (I) ;
360 HTAB 18
370 M =VAL (HI$ (I)): GOSUB 8000: HI$ (I) = STR$ (M)
380 PRINT HI$ (I); II II ; F$;
390 M = VAL (LOW$ (I)) : GOSUB 8000 : LOW$ (I) = STR$ (M)
400 HTAB 28
420 PRINT LOW$ (I); II II ; F$
460 NEXT I
480 PRINT : INPUT "HIT RETURN TO CONTINUE "; L$
497 :
498 :
500 REM ** - -RETURN TO STOCK MENU--* *
520 PRINT D$; "RUN STOCK MENU"
8000 REM
8005 F = M - INT (M I 10) * 10
8010 M = INT (M I 10)

CREA TE STOCKS HI/LOW

8020 IF F = 0 THEN F$ = 11 It

8040 IF F = 1 THEN F$ = II 1 / 8 11

8060 IF F = 2 THEN F$ = "1 / 4"
8080 IF F = 3 THEN F$ = "3 / 8"
8100 IF F = 4 THEN F$ = II 1 / 2 11

8120 IF F = 5 THEN F$ = "5 / 8"
8140 IF F = 6 THEN F$ = "3/4 "
8160 IF F = 7 THEN F$ = "7 / 8"
8200 RETURN

CREATE STOCKS HI/LOW

10 REM***- -STOCKS HI / LOW--***
11 :
12 :
13 REM**- -VARIABLES LIST-- **
14 REM STK$ = STOCK SYMBOL
15 REM HI$ = CURRENT HIGH PRICE
16 REM LOW$ = CURRENT LOW PRICE
18 :
19 :
20 0$ = CHR$ (4): REM CONTROL D

27 :
28 :
30 REM**- -KEYBOARD INPUT--**
40 FOR I = 0 TO 9
60 HOME : VTAB 5
80 INPUT "STOCK SYMBOL"; STK$ (I)
85 PRINT
90 PRINT "IF YOU ARE NOT SURE OF THE"
92 PRINT
94 PRINT "HI OR LOW' ENTER A '0 I . II

95 PRINT
100 INPUT "HI VALUE " ; HI$(I)
110 PRINT
120 INPUT "LOW VALUE " ;LOW$ (I)
128 :
129 :
130 REM**- -CORRECTION ROUTINE--**
140 HOME
160 VTAB 5
180 PRINT "l. ";STK$(I)

253

254 CHAPTER 13 PLANNING A FILE SYSTEM

200 PRINT "2 . ";HI$(I)
220 PRINT "3. II; LOW$ (I)
240 PRINT
260 INPUT "IS THIS CORRECT? " ; YES$
280 IF YES$ = "N" THEN 320
300 GOTO 500
320 PRINT
340 INPUT "WHICH NUMBER IS WRONG? ";NB
360 IF NB < 1 OR NB > 3 THEN PRINT "INCORRECT CHOICE"

: GOTO 320
380 IF NB = 1 THEN INPUT "CORRECT STOCK NAME

PLEASE II ; STK$ (I)
400 IFNB = 2THENINPUT"CORRECTHIVALUEPLEASE ";HI$(I)
420 IF NB = 3 THEN INPUT "CORRECT LOW VALUE

PLEASE " ; LOW$ (I)
440 GOTO 140
500 NEXT I
1198 :
1199 :
1200 REM**- -CREATE HI/LOW FILE--**
1240 PRINT D$; "OPEN STOCKS HI / LOW"
1260 PRINT D$; "WRITE STOCKS HI / LOW"
1280 FOR K = 0 TO 9
1300 PRINT STK$ (K)
1320 PRINT HI$ (K)
1340 PRINT LOW$ (K)
1360 NEXT K
1380 PRINT D$; "CLOSE STOCKS HI / LOW"
1398 :
1399 :
1400 REM**- - RETURN TO STOCK MENU--**
1420 PRINT D$; "RUN STOCK MENU"

STOCK CORRECTION

STOCK CORRECTION

10 REM***- -STOCK CORRECTION--**
11 :
12 :
13 REM ** - - VARIABLES LIST--**
14 REM STK$ = STOCK SYMBOL
15 REM HI$ = CURRENT HI PRICE
16 REM LOW$ = CURRENT LOW PRICE
17 REM PE = P / E RATIO
18 REM VOL = SALES VOLUME
19 REM H = DAILY HIGH PRICE
20 REM L = DAILY LOW PRICE
21 REM C = DAILY CLOSING PRICE
22 REM DT$ = DATE
46 :
47 :
48 :
49 REM* * - -INITIALIZATION--* *
50 D$ = CHR$ (4) : REM CONTROL D
55 PRINT D$; "OPEN STOCKS, L260"
60 PRINT D$; "READ STOCKS , RO "
80 INPUT PTR
100 PRINT D$; "CLOSE STOCKS"
116 :
117 :
118 :
119 REM * * - -SET UP - - * *
120 HOME : VTAB 5
140 PRINT D$; "OPEN STOCKS HI / LOW"
160 PRINT D$; "READ STOCKS HI / LOW"
180 FOR I = 0 TO 9
200 INPUT STK$ (I)
220 INPUT HI$ (I)
240 INPUT LOW$ (I)
250 PRINT I+ l ; ". " ;: HTAB 5 : PRINT STK$(I)
260 NEXT I
270 STK$ (10) = "STOCK MENU"
275 PRINT " 11. "; : HTAB 5 : PRINT STK$ (10)
280 PRINT D$; "CLOSE STOCKS HI / LOW"
285 PRINT

255

290 INPUT "WHICH STOCK "; W: PRINT : PRINT "WHICH RECORD?
1 TO II ; PTR ; II II;: INPUT K: IF K > PTR THEN 290

256 CHAPTER 13 PLANNING A FILE SYSTEM

291 IF W < 1 OR W > 11 THEN PRINT "INCORRECT CHOICE"
: GOTO 290

292 IF W = 11 THEN 5000
293 I = W - 1
294 :
295 REM*** - - TITLES- - ***
296 HOME : VTAB 5: HTAB 1 8: PRINT STK$ (I) : PRINT : PRINT
298 :
299 :
300 REM**- -DISK INPUT ROUT I NE- - **
320 PRINT D$; "OPEN STOCKS , L260"
335 PRINT D$; "READ STOCKS, R"; K; ", B" ; 0
33 7 INPUT DT$
340
360
380
400
420
440
460
480
500
520
536 :
537 :
538

PRINTD$; "READ STOCKS,R";K; ",B";
INPUT PE
PRINT 0$; " READ STOCKS , R"; K; " , B";
INPUT VOL
PRINT D$; "READ STOCKS, R"; K; " , B";
INPUT H
PRINT 0$; "READ STOCKS, R"; K; ", B";
INPUT L
PRINT D$; "READ STOCKS, R" ; K; II' B";
INPUT C

539 REM ** - -CORRECTI ON ROUTINE--**
540 PRINT II 1. DATE II; DT$
545 PRINT
550
555
560
565
570
575
580
585
590
592

PRINT "2 .
PRINT
PRINT "3.
PRINT
PRINT " 4.
PRINT
PRINT "5.
PRINT
PRINT "6.
PRINT

P/E

VOL.

HIGH

LOW

CLOSE

";PE

";VOL

II ;H

" ; L

= "; c

594 PRINT "0. ALL CORRECT "
595 PRINT : PRINT 0$
600 INPUT "WHICH NUMBER IS WRONG" ; NB

(I * 25)

(I * 25)

(I * 25)

(I * 25)

(I * 25)

+ 10

+ 10 +

+ 10 +

+ 10 +

+ 10 +

610 IF NB > 6 THEN PRINT "INCORRECT CHOICE": GOTO 600
615 IF NB = 0 THEN 710

4

10

15

20

STOCK CORRECTION

620 INPUT "CORRECT INFORMATION = 11
; CR$

630 IF NB = 1 THEN DT$ = CR$
640 IF NB = 2 THEN PE = VAL (CR$)
650 IF NB = 3 THEN VOL = VAL (CR$)
660 IF NB = 4 THEN H = VAL (CR$)
670 IF NB = 5 THEN L = VAL (CR$)
680 IF NB = 6 THEN C = VAL (CR$)
690 HOME : VTAB 5 : HTAB 18 : PRINT STK$ (I)
695 PRINT : PRINT
700 GOTO 540
707 :
708 :
709 REM ** - - WRITE CORRECTED FILE- - **
710 PRINTD$; "WRITE STOCKS , R";K; ",B" ; 0
720 PRINT DT$
73 0 PRI NT D$; "WRITE STOCKS , R "; K; " , B" ; (I * 25) + 10
740 PRINT PE

257

750 PRINT D$; "WRITE STOCKS, R" ; K ; " , B"; (I * 25) + 10 + 4
760 PRINT VOL
770 PRINTD$; "WRITE STOCKS , R" ; K ; ",B" ; (I * 25) + 10 + 10
780 PRINT H
790 PRINT D$; "WRITE STOCKS , R" ; K; ", B" ; (I * 25) + 10 + 15
8 00 PRINT L
810 PRINT D$; "WRITE STOCKS , R" ; K ; 11

, B" ; (I * 25) + 10 + 2 0
820 PRINT C
996 :
997 :
998 :
999 REM **- - ANOTHER STOCK-- * *
1000 PRINT D$
1 010 PRINT
1 0 2 0 INPUT "HIT RETURN TO CONTINUE " ; L$
1040 HOME : VTAB 5
1060 FOR I = 1 TO 11
108 0 PRINT I ; " . " ;: HTAB 5: P RI NT STK$ (I - 1)
1100 NEXT I
1120 PRI NT
1140 GOT O 290
1997 :
1 9 9 8 :
19 99 :
5000 REM ** - -RETURN TO STOCK MENU"
5 010 PRINT D$; "CLOSE STOCKS"
5 0 2 0 PRINT D$; "RUN STOCK MENU "

r

14
Binary Files

Binary files are much more complex than any of the other three file
types. By their very nature, they are the least sophisticated and hardest
of all the file types to work with . At the same time, however, they are
the most versatile. First, Binary files may contain either instructions for
the computer or lists of information. and sometimes they may contain
both. Second, the information in Binary files is displayed as hexadecimal
numbers (base 16) when viewed by either the computer or programmers.
Third, the method of accessing those files may depend on the actual
information in them.

To use a Binary file, one needs to put a " B" in front of the three
main commands used with Applesoft or Integer files: BRU N, BLOAD,
and BSA YE. These three commands also need the specific name of the
file. BSA VE needs other information. This command must also include
the actual memory location in the computer: where the Binary file starts
and the exact length of the file. The address and length can be given in
either decimal or hexadecimal numbers. The letters "A" and " L" precede
their respective numbers. An example of saving a Binary file is:

BSAVE MAILING LIST, A7 68, L2000

or

BSAVE MAI LI NG LIST , A$300, L$1DBF

The $ in the second example indicates that the addresses are given in
hexadecimal numbers rather than decimal numbers as in the first example.
Both examples give the same instructions to the computer: save the
contents of a certain amount of the computer's memory to the disk under
the given file name.

258

CHAPTER 14 BINARY FILES 259

You can also load (or run) a Binary file from disk to a specific memory
location in the computer using these same parameters.

BLOAD MAILING L IST, A768

or

BLOAD MAI LING LIST, A$300

The obvious requirement is that you know something about the com­
puter 's storage.

Binary files can contain just about any type of information in addition
to the computer-instruction files we have looked at. Often, a Binary file
will have the information necessary to create some kind of graphic on
the Hi-Resolution screens of the Apple. This information is a form of
computer instruction since it gives specific inform ation to the computer to
place information in certain locations. But it cannot rea lly be considered a
program since most of these files do not contain information necessary to
allow them to be BRUN. Instead, these files are used by other programs:
Applesoft programs, Integer programs, even Binary programs. This use is
true regardless of the type of information in the Binary file; i.e., graphic
information, inventory information, name and address information, etc.
By themselves, these files are often useless. They require a program to be
able to read the information on the disk and decide what to do with that
information.

Programmers who work extensively with Binary files must know other
computer languages. For this reason, our examination of Binary files will
be limited. I will not go through the same process I did with text files,
because these other languages are more complicated to learn than any
form of BASIC, but there are a number of things that can be of use to the
BASIC programmer.

Binary files can be used from within BASIC programs in much the
same manner as other BASIC programs. In other words, you can BLOAD,
BRUN, or BSA VE a Binary file from within a BASIC program. You must
know what is in that Binary file and the exact purpose for using that file
within your BASIC program. One example would be that of BLOADing a
file as a picture to the Hi-Res screens. Another example might be that of
a very large list of information that needs to be sorted quickly. There are
Binary files that do sorting much quicker than any BASIC sort method.
In general, Binary files or programs will operate at a much faster speed
than BASIC programs. The reason for this lies with the nature of the
computer.

The computer operates according to on/off switches. At the lowest
levels, the programmer learns to operate the computer by manually set­
ting these on/off switches. Above this level, there is a progression of
increasingly sophisticated languages. The individual must learn to pro-

260 CHAPTER 14 BINARY FILES

gram the computer according to one or more of these languages. At the
level above sett ing switches are programs with ones and zeros (base 2).
On the next level is hexadecimal programming (base 16) or machine lan­
guage, and just below the higher level languages is assembly language.
Binary files are involved in all of these levels of programming, in addi­
tion to storing lists of informat ion or graphic information. At the point
of higher level languages, a programmer learns to instruct the computer
with a vocabulary much like English. The various languages are really
a link between the computer and humans. They allow people to work
with a sequence of letters and numbers that are much easier to under­
stand than on/off switches. However, when these higher level languages
are interpre ted through a number of levels down to the on/off switches,
the process takes more time than if the program did not require all that
interpretation. That is why programs written in any of the lower level
languages run much faster than programs written in BASIC.

I said that Binary files are displayed as hexadecimal numbers. This
means tha t instead of counting to nine before adding the next digit, we
count to 15.

Decimal Hexadecimal
0 0

I
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 A
11 B
12 c
13 D
14 E
15 F
16 10
17 11

Let's try some examples to see how the Binary DOS commands work.
It is important to follow the examples by actua lly typing them into the

CHAPTER 14 BINARY FILES 261

computer. Make sure you have a blank diskette (a blank diskette is
necessary if you are going to try the material presented in the section
on RWTS in the appendix), and do the following:

Type:

NEW (to erase anyth i n g curren t l y in t h e compu ter's
me mory)
20 D$ = CHR$ (4): REM CONTROL D
40 PRI NT D$; "CATALOG "
LIST (to see ou r p rogram)
!NIT HELLO

Remember that this erases anything currently on the diskette, places DOS
on the diskette, and saves the above program as the fi rst file on this
diskette. Type:

CATALOG

You should see:

HELLO

Now type:

CALL -lSl

You should see:

* a nd t h e c u rsor.

The "*" means tha t you are now in the MONITOR and must work with
machine language (hexadecimal numbers) rather than BASIC. Type the
following exactly!

300: 20 S8 FC A2 00 BD 11 0 3

Do not hit the RETURN key until after the last character; i.e., the 3. Type
the next rows in the same way, and press the RETURN key at the end of
the lines.

308 : 20 FO FD ES EO 32 DO F S

3 1 0: 60 C8 CS CC CC CF 8D CD
318: D9 AO CE Cl CD CS AO C9
320: D3 AO Cl DO DO CC CS AO
328: C9 C9 8D C9 AO Cl CD AO
330: C l AO D3 CD Cl D2 D4 AO
338: C3 CF CD DO DS D4 C5 D2
340 : 8D 8D 8D

We now have a machine language program in the computer's memory.

262 CHAPTER 14 BINARY FILES

We use hexadecimal numbers to enter this program. Once we have a
program in the computer's memory, we need to save it onto something
permanent. Type the next steps carefully.

3DOG

This returns you to BASIC.

BSA VE APPLE 7, A$3 00, L$43

or

BSAVE APPLE7, A768, L67

The disk comes on and the machine language program is saved to the
diskette.

Now type:

BRUN APPLE7

Again the disk comes on briefly and you should see the screen clear. In
the upper left corner of the screen, the following message should appear:

HELLO
MY NAME IS APPLE I I

I AM A SMART COMPUTER

The machine language program has duplicated our first BASIC program.

Type:

BLOAD APPLE7

CALL 768

Again the same message appears.
After a BLOAD, a CALL to the starting decimal address will run the
program.

Finally type:

CALL-151

300G

Once more the message appears.
When you are working in the MONITOR, a G after the starting
hexadecimal address runs the program.

To see all that you entered, type:

300.350

This command lists the program. You should see an exact copy of the

CHAPTER 14 BINARY FILES 263

information you entered above. You can list in another way.
Type:

300L

Now you have the Apple's mini-Assembler version of the program com­
plete with mnemonics (LOA, STA, RTS, JSR, etc.).

When you see a listing in a magazine of an assembly code, it is not
necessary to type in all the information. Assembly listings will look like
the following:

1B9D: 84 35 157 PUT STY YSAVl SAVE Y
1B9F:48 158
!BAO: 20 OA lC 159

You can enter the above by typing:

1B9D: 84 35 48 20 OA lC

PHA
JSR UPDATE HIRES

As long as the memory locations are consecutive, you can continue to
enter the hexadecimal numbers. It is not advisable to go too far before
hitting the return key because of the chance of error.

Now, make the following change to our program:

309:ED

This replaces the value "FO" currently in memory location 309. Type:

300G

The message reappears and everything seems the same. Now type:

3DOG

to get back to BASIC. Then type :

BSAVE APPLE3, A$300, L$43

Now type:

BLOAD APPLE3
CALL 768

Everything is still working the same. But now type:

BRUN APPLE3

You should see some strange things happen. A double message may be
printed, and the cursor will disappear. You must either turn the computer
off and then re-boot the computer and disk, or hit reset to get out of this
mess. By changing that one byte, we altered the program so that it does

264 CHAPTER 14 BI NARY FILES

not work when used with the BRUN command. Yet it does work properly
when we BLOAD and issue a CALL to the starting address. This example
should give you some idea of the complexity involved with programming
in machine code. For those interested, we changed the JSR instruction
from the subroutine at FDFO to the somewhat more standard subroutine
at FDED. The FDED subroutine sends the output to active peripherals
and when combined with a BRUN, in this program, causes the computer
to " hang."

Often, it is necessary to transfer a Binary file from one diskette to
another. There are many programs that can accomplish such a task, but
it is handy to know how to find the address and length of a Binary file
if you do not have access to one of those Binary file transfer programs.
(FID on DOS 3.3 system master diskettes is one such program.)

Type carefully:

BLOAD APPLE 7

If you have a 48k Apple type the following:

PRINT PEEK (43634) + PEEK (43635) * 256

The computer should respond with:

768

This is the decimal starting address; i.e., the number that goes after the
"A".

Then type:

PRINT PEEK (43616) + PEEK (43617) * 256

The computer should respond with:

67

This is the length in decimal, the number that goes after the " L". Finally,
insert the diskette that is to contain the copy of the binary file and type:

BSAVE APPLE?, A768, L67

You have just transferred a copy of the Binary tile APPLE7 to another
diskette. If you have a 32K Apple, the numbers you must use are:

27250 and 27251 for the first set.

and

27232 and 27233 for the second set.

CHAPTER 14 BINARY FILES

For a 16K system, use:

10866 and 10867 for the first set.

and

I 0848 and I 0849 for the second set.

265

If your file is small (under 255 bytes), you can have the computer
figure the length of the file in hexadecimal. When you are in the monitor
(an asterisk prompt), type in the larger number, a minus sign, the smaller
number, and hit return. The computer will respond with the correct
answer as long as the answer is positive and less than 255 ($FF). There
are small machine code programs that can be used to figure the length
when the length grows past 255 bytes. Of course, there is always the
stand-by of subtracting the hex numbers on paper or counting the total
number of bytes of information either by decimal or hex.

You have now had some experience with Binary files, BSAVE,
BLOAD, and BRUN. You have also been exposed to entering hexadecimal
information directly and listing and changing that information. It is some­
what complicated to understand, but if you review this chapter , th ings
should become clear eventually. The Appendix contains a brief tutorial
on RWTS (Read/Write Track/Sector) for those interested in more infor­
mation.

A very good introduction to machine language and assembly language
can be found in the Inman and Inman book , Apple Machine Language
from Reston Publishing Company and Assembly Lines: The Book (A
Beginner's Guide to 6502 Programing on the Apple II) by Robert Wagner
from Softalk Publi shing. For the advanced assembly language program­
mer, Beneath Apple DOS, by Don Worth and Pieter Lechner (Quality
Software) provides excellent information. This book includes example
programs indicating how to create text files or Binary files from within an
assembly language program.

266 CHAPTER 14 BINARY FILES

QUESTIONS

1. In a CATALOG listing, what letter indicates Binary files?

2. Which of the three main Binary DOS commands require additional
parameters?

3. What are these parameters?

4. How are Binary files displayed?

5. TRUE or FALSE: A Binary file containing only graphic information
can be used with a BRUN command.

6. The computer operates according to ---------------.

7. Give the progression of computer languages.

8. What must you type to get to the monitor?

9. What must you type to begin the operation of a program located at
$300 while in the MONITOR?

10. Give the two ways of listing a program beginning at $300.

11. What word, when used with PRINT, shows the contents of memory
as a decimal value?

CHAPTER 14 BINARY FILES 267

ANSWERS

I. B

2. BLOAD

3. A for starting address and L for length of file

4. Binary files are displayed in hexadecimal.

5. FALSE

6. on/off switches

7. a) on/off switches
b) ones and zeros (base 2)
c) hexadecimal (base 16) or machine language
d) assembly language (mnemonics)
e) higher level languages such as BASIC

8. CALL -151

9. 300G---The G following an address instructs the computer to begin
operation a l that address.

I 0. a) 300.400---The period between two addresses instructs the com­
puter to provide a hex dump from the first address to the last address.
b) 300L---The L following an address instructs the computer to provide
an assem bly list ing.

11. PEEK

r

Appendices

269

APPENDIX A.

READ/WRITE TRACK/SECTOR (RWTS)

There are several things that you should know before we get into the
process of looking directly at the contents of a diskette. The information
stored on the diskette, when viewed in its most direct way, appears as
hexadecimal numbers. The letter "A" appears as "Cl ", "B" as " C2",
etc.

The process we are going through is more completely handled by
some utility programs available for purchase. I am going to show how
you can look at and read a diskette. The process is not easy or quick, but
it does work. If your needs do not go beyond this explanation, you might
find that you do not not need an expensive utility program.

We are going to look at the CATALOG listing on the diskette first.
We will not see the file names as they are normally displayed, but as they
look to the computer when it reads the diskette. The CATALOG's first
part of information is on track $ 11, sector $OF. Make certain that the
diskette in the drive conta ins the binary file APPLE7 as the second file. If
APPLE7 is not the second file on the diskette, count the number of files
preceding APPLE7 in such a way that you know which group of seven the
APPLE7 file is in. The following program is set up for computers with a
single disk drive in slot 6. Type very carefully.

CALL -151

You should get the •, and then :

300 : A9 0 3 AO QA 2 0 D9 03 60
308 : 00 FF 01 60 01 00 11 OF
310: 20 OC 00 60 00 00 01 00
318: 00 6 0 01 00 00 00 00 00
320 : 00 01 EF 08

If the file APPLE7 is in the second set of seven files on the diskette,
change the contents of $30F to OE instead of the OF given above, or
OD if it is in the third set of seven files on the diskette. Check your
work carefully. This program is a modification of the one given in the

270

READ/WRITE TRACK/SECTOR CRWfS) 271

DOS manuals. Location $30B is the slot number of the disk drive (6)
multiplied by 16 decimal with the result (96) expressed as a hex number
($60). $30C is the drive number, either a $01 or $02. $30E contains the
value of the track number we are accessing (in hex) . $30F is the sector
number, and $311 and $3 12 contain the locations of the starting address
of the data or program in memory in reverse order. $3 12 contains the
first part of the address, called the high-order byte, and $3 11 contains
the last part of the address or the low-order byte. The location of $6000
will receive information from the disk. By changing location $3 16 to
a $02, we would transfer any information starting at location $6000
from the computer's memory to the diskette. In other words, $3 16 is
the memory location whose value controls the read/write decision. A
value of $0 I in $3 16 reads information on the disk, while a value of
$02 writes informat ion to the diskette. For our examples, I will only
READ information on the diskette. You should be very certain that you
understand what is happening before attempting to write information to
a disk with this routine.

Now type:

3DOG

You should be back in BASIC.

BSAVE RWTS, A$300, L$24

CALL-151

Make sure your diskette is in the drive.

300G

Remember, this runs the program located at $300. The disk comes on
briefly and then the cursor returns. Now the real work begins. Type:

6000.6050

This command lists the contents of the computer's memory between these
two numbers. We have brought the first seven file names into the com­
puter's memory along with information about the actual diskette location
of those files. You must exam ine this information closely. The fil e name
we are looking for is APPLE7, but the let ters are listed as hexadecimal
numbers, so instead we are looking for this sequence:

Cl DO DO CC CS B7

which means:

A P P L E 7

If you do not find this sequence, type:

272 APPENDICES

6050.6100

Look carefully through this information for the above sequence. If you
still do not find it, then either you have missed the sequence or APPLE7
is not one of the first seven files on thi s diskette. If it is not in the first
seven, make the following change :

30F:OE

That is all.

300G again!

6000.6050

We now have the next seven file names.
Examine the contents for the above sequence.
If it is not there, type:

6050.6100

If it is still not there, repeat the process placing " OD" in memory location
30F. That will bring in the third set of seven file names on this diskette.
Finding the file name turns out to be the hardest part of what we are doing,
especially if you have not worked with hexadecimal numbers before. If
you have gone through the third set of seven file names, and still have
not found the APPLE7 sequence, you should go back to the CATALOG
and make certain that the binary file APPLE7 is really on the diskette. At
some point you should come across this sequence.

AO AO 02 00 13 OF 04 Cl DO DO CC C5 B7

If APPLE7 is not the second file on the diskette, the numbers 02 and
13 OF may be different. First, the 04 preceding the CI or the "A" (of
APPLE7) indicates the file type.

04 is a Binary file

00 is a Text file

02 is an Applesoft program file

0 1 is an Integer program file

In other words, the hexadecimal number immediately preceding the first
letter of the file name will always give the type of the file. There are four
other file types possible with codes of:

08- for an S file

I 0---for an R file

20---for a new A file

40---for a new B fil e

READ/WRITE TRACK/SECTOR (RWTSl 273

Immediately preceding the fi le type indicator is the address of the
" track/sector list". As I indicated, these numbers may be different on
your diskette. In the example, the 13 indicates the track number and the
OF the sector number. These are the numbers we are really interested in.
Type the following:

30E: 13 OF (or whatever your numbers are!)

Then type:

300G
6000.60SO

You should see :

00 00 00 00 13 OE 0 0 00

Your numbers may be different, but whatever they are, you will need
the two numbers between the zeros. The first number (13) is the track
number for the start of the file data. The second number (OE) is the
sector number for the start of the file data. Once again, type :

30E: 13 OE (or whatever your numbers are!)

Then

300G
6000.60SO

Now you should see exactly the following:

6000- 00 03 43 00 20 S8 FC A2
6008- 00 BO 11 03 20 FO FD E8
6010- EO 32 DO F S 60 C8 CS CC
6018- CC CF 80 CD 09 AO CE Cl
6020- CD CS AO C9 D3 AO Cl DO
6028- DO CC CS AO C9 C9 80 C9
6030 - AO Cl CD AO Cl AO 0 3 CD
6038 - Cl 0 2 0 4 AO C3 CF CD DO
6040- DS D4 cs 02 80 8D 80 00
6048- 00 00 00 00 00 00 00 00
60SO - 00

The first two numbers are the starting address of the APPLE7 file in
reverse order-00 03 equals $0300. The next two numbers are the length
of the APPLE7 file in reverse order-43 00 equals $0043 or simply $43.
The rest of the listing is the data in the file or the program instructions.
With a little practice, you can quickly examine the CATALOG listing on
the diskette, determine where that file information is on the diskette, and
finally examine the data itself.

APPENDIX B.

TAPE FILES

I have included this section on tape files for those without disk drives.
With the necessary modifications, most of the programs in the sequential
section of the book should also work with tape. The biggest problem is the
lack of string arrays with the Applesoft STORE and RECALL commands.
This means that any character to be saved must be translated into its
ASC equivalent. When the file is retrieved from tape, every ASC value
must then be translated back into its alphanumeric equivalent. Apart
from these necessary translations, and the fact that you are saving to tape
rather than disk, the sequential access programs should work much the
same. Since the introduction of the disks, tape has been largely ignored.
Although much slower than disk, tape can be a very powerful computer
tool.

I chose the DRILL & PRACTICE programs for the examples since
the largest number of Apples wi thout disk drives probably exist in the
schools.

TAPE CREATE QA

10 REM * * - - INPUT Q & A- - * *
11 :
12 :
40 DIM Q$ (50), A$ (50)
60 I = 1
70:
75 :
100 REM **--INPUT ROUTINE-- **
105 HOME : VTAB 10
120 PRINT : PRINT
140 PRINT "QUESTION # " ; I : INPUT Q$ (I)
160 IF Q$ (I) = "END" THEN 300
180 INPUT "ANSWER II; A$ (I)

274

TAPE CREATE QA

200 PRINT : PRINT : PRINT Q$ (I)
220 PRINT: PRINT A$ (I)
230 PRINT
240 INPUT II IS THIS CORRECT? II; Y$
250 PRINT
260 IF Y$ = "N" THEN 140
280 I = I + 1: GOTO 140
290 :
295 :
300 REM ** --TRANSLATION ROUTINE--**
305 z = 1: x = 1
310 FOR J = 1 TO I - 1
320 Ll = Ll + LEN (Q$ (J)): REM QUEST. LEN.
330 L2 = L2 + LEN (A$ (J)): REM ANS. LEN.
340 NEXT J

345 Ll = Ll + 50: L2 = L2 + 50: REM 50 Q&A
350 DIM Q (Ll) , A (L2)
351 :
352 :
355 REM **--QUESTION TRANSLATION--**
360 FOR J = 1 TO I - 1
410 FORK = 1 TO LEN (Q$ (J))

425 Q (Z) = ASC (MID$ (Q$ (J) , K, 1))
427 z = z + 1
430 NEXT K
431 :
432 :
435 REM**- -ANSWER TRANSLAT ION--**
440 FORK = 1 TO LEN (A$ (J))

455 A(X) = ASC (MID$ (A$ (J), K, 1))
457 x = x + 1
460 NEXT K
465Q(Z) = 13:A(X)= 13
467 z = z + 1 : x = x + 1
470 NEXT J
471 :
472 :
475 REM ** --TAPE ROUTINE - -**
480 INPUT "TURN ON THE TAPE RECORDER"; L$
500 QP (1) = Ll
505 AP(l) = L2
508 PRINT "SAVING QUESTION POINTER"
510 STORE QP
513 PRINT "SAVING ANSWER POINTER"

275

276 APPENDICES

515 STORE AP
518 PRINT "SAVING QUESTIONS"
520 STORE Q
530 PRINT "SAVING ANSWERS"
580 STORE A
600 PRINT "ALL FINISHED. TURN OFF TAPE RECORDER."

DRILL QA TAPE

10 REM ***--DRILL & PRACTICE--***
11 :
12 :
40 DIM Q$ (50), A$ (50)
50 DIM QP (11), AP (11)
90:
95 :
100 REM ** --TAPE FILE POINTER--**
103 PRINT "GETTING QUESTIONS POINTER"
105 RECALL QP: REM QUESTION POINTER
108 PRINT "GETTING ANSWERS POINTER"
110 RECALL AP : REM ANSWER POINTER
115 :
116 :
120 REM **--TAPE QUEST. & ANS. - -**
125 DIMQ (QP(l)),A (AP(l))
128 PRINT "GETTING QUESTIONS"
130 RECALL Q
1 35 PRINT "GETTING ANSWERS"
140 RECALL A
150 y = 1 : x = 1
151 :
152 :
155 REM **--QUESTION TRANSLATION--**
160 FOR I = 1 TO QP (1)
170 Q$ (Y) = Q$ (Y) + CHR$ (Q (I))
180 IFQ (I) = 13THENY = Y + 1
190 NEXT I
191 :
192 :
195 REM **--ANSWER TRANSLATION- -* *
200 FOR I = 1 TO AP (1)
205 IF A(I) = 13 THEN X = X + 1 : GOTO 22 0

DRILL QA TAPE

210 A$ (X) = A$ (X) + CHR$ (A (I))
220 NEXT I
230 J = y - 1
245 :
246:
250 REM **--GET Q & A--**
260 I = RND (1) * 10 : I = INT (I)
280 IF I > J OR I < 1 THEN 260
300 PRINT Q$ (I)
320 PRINT : PRINT
340 INPUT "YOUR ANSWER IS "; S$
360 IFS$ = "END " THEN 600

277

380 IFS$ = A$ (I) THEN PRINT "CORRECT": A = A + 1: GOTO
540

400 IF Z > 0 THEN 500
420 PRINT "NO , TRY ONCE MORE"
440 z = 1
460 A2 = A2 + 1
480 GOTO 340
500 PRINT "NO, THE ANSWER IS"; A$ (I)
520 M = M + 1
540 z = 0
560 PRINT : PRINT
580 GOTO 260
590 :
595 :
600 REM **--DISPLAY SCORE--**
610 A2 = A2 - M
620 A = A - A2
640 HOME : VTAB 10
660 PRINT "YOU GOT " ; A; " RIGHT ON THE FIRST TRY"
680 PRINT : PRINT
700 PRINT "YOU GOT "; A2;" RIGHT ON THE SECOND TRY"
720 PRINT : PRINT
740 PRINT "YOU MISSED II; M; II ANSWERS"

APPENDIX C.

MAILING LIST SYSTEM PROGRAMS

MAILING LIST MENU

10 REM *** --MAILING LIST PROGRAM MENU--***
11 :
12 :
20 0$ = CHR.$ (4): REM CONTROL D
25 :
26:
30 REM ** --MENU ROUTINE--**
40 HOME : VTAB 5
60 HTAB 1 7: PRINT "PROGRAM MENU"
80 PRINT : PRINT
100
120
140
160
180
200
220
240
300
320
340
360
380

HTAB 8: PRINT "l . FILE CREATION PROGRAM"
PRINT
HTAB 8: PRINT "2. FILE ADDITION PROGRAM"
PRINT
HTAB 8: PRINT "3. FILE DISPLAY PROGRAM"
PRINT
HTAB 8: PRINT "4 . FILE CORRECTION PROGRAM"
PRINT
HTAB 8: PRINT "5. CATALOG"
PRINT
HTAB 8: PRINT 11 6. END"
PRINT: PRINT
HTAB 8: INPUT "WHICH PROGRAM NUMBER? ";NUMBER

400 IF NUMBER < 1 OR NUMBER > 6 THEN 380
420 IF NUMBER = 1 THEN 1000
440 IF NUMBER = 2 THEN 2000
460 IF NUMBER= 3 THEN PRINT 0 $; "RUN MAILING LIST

READER"

278

MAILI G LIST MENU

470 IFNUMBER = 4THENPRINTD$; "RUNMAILING
LIST CORRECTOR"

480 IF NUMBER = 5 THEN PRINT D$; "CATALOG": INPUT
"HIT RETURN TO GO TO MENU 11

; L$: GOTO 40
500 IF NUMBER = 6 THEN END
600 :
700 :
1000 REM **--FILE CREATOR PROGRAM- -**

279

1020 PRINT : PRINT 11 IF THE ADDRESS FILE ALREADY EXISTS"
1040 PRINT : PRINT "DO NOT RUN THIS PROGRAM!!"
1060 PRINT : PRINT "DO YOU WANT THE FILE CREATION

PROGRAM? "
1070 PRINT
1080 INPUT"TYPE 'YES' IFYOUDO : ";YES$
1100 IF YES$ = "YES" THEN PRINT D$; "RUN MAILING

LIST CREATOR"
1120 GOTO 40
1140:
1160 :
2000 REM* * - -FILE ADDITION PROGRAM-- **
2020 PRINT : PRINT "YOU WANT TO ADD TO THE EXISTING"
2040 PRINT : PRINT "ADDRESS FILE . IS THIS CORRECT? 11

2060 PRINT : INPUT "TYPE I YES I IF IT IS. II; YES$
2080 IF YES$ = "YES" THEN PRINT D$; "RUN MAILING LIST

ADDER2"
2100 GOTO 40

280 APPENDICES

MAILING LIST CREA TOR

10 REM **- - MAILING LIST CREATOR- - **
1 1 :
12 :
20 D$ = CHR$ (4) : REM CONTROL D
40 DIM NAME$ (20)
60 K = 1 : REM LINE COUNTER
65 :
66 :
70 REM **--INPUT ROUTINE--**
80 HOME : VTAB 5
100 PRINT "TYPE NAME AND ADDRESS AS IF ADDRESSING

AN ENVELOPE. II ;

120 PRINT "DO NOT USE A COMMA OR COLON. "
140 PRINT : PRINT "TYPE ' END' WHEN FINISHED"
1 60 PRINT : PRINT "TYPE IN LINE "; K
180 INPUT NAME$ (K)
200 IF NAME$ (K) = "END" THEN 300
220 K = K + 1
240 GOTO 160: REM GO BACK FOR ANOTHER LINE
300 NAME$ (K) = "*" : REM SEPARATOR FOR PHONE NUMBER
320 K = K + 1
340 PRINT "PHONE: ";:PRINT "TYPE 'RETURN' IF NONE."
360 INPUT NAME$ (K)
380 K = K + 1
400 NAME$ (K) = "! ": REM SEPARATOR BETWEEN

SETS OF INFORMATION
405 :
406:
410 REM ** - -CORRECTION ROUTINE- -**
420 HOME : VTAB 5
440 PRINT "DO NOT CHANGE THE LI NE WITH THE I * I II
460 PRINT "THIS SYMBOL IS USED AS A SEPARATOR. "
480 PRINT
500 FOR I = 1 TO K - 1
520 PRINT I; II II ; NAME$ (I)
540 NEXT I
560 PRINT
580 INPUT II CHANGE ANY LINE ? TYPE I y I OR IN I II; YES$
600 IF YES$ = 11 Y 11 THEN 640
620 GOTO 740: REM GO TO FILE CREATION ROUTINE
640 INPUT "CHANGE WHICH LINE " ; LINE

MAILING LIST ADDER I 28 1

660 IF LINE > K - 1 THEN PRINT "NUMBER TOO LARGE": GOTO
640

680 PRINT "OLD LINE = ";NAME$ (LINE)
700 INPUT "CORRECT LINE = ";NAME$ (LINE)
720 GOTO 420
725 :
726 :
730 REM **--FILE CREATION ROUTINE--**
740 PRINT D$; "OPEN ADDRESS FILE"
760 PRINT D$; "DELETE ADDRESS FILE"
780 PRINT D$; "OPEN ADDRESS FILE"
800 PRINT D$; "WRITE ADDRESS FILE"
820 PRINT K: REM NUMBER OF LINES
840 PRINT " " : REM 5 SPACES FOR INCREASING COUNTER
8 60 FOR I = 1 TO K
880 PRINT NAME$ (I)
900 NEXT I
920 PRINT D$; "CLOSE ADDRESS FILE"
940 END

MAILING LIST ADDERI

10 REM **--MAILING LIST ADDERl- -**
1 1 :
12 :
20 D$ = CHR$ (4) : REM CONTROL D
40 DIM NAME$ (20)
60 K = 1 : REM LINE COUNTER
6 5 :
66 :
70 REM **--INPUT ROUTINE--**
80 HOME : VTAB 5
100 PRINT "TYPE NAME AND ADDRESS AS IF ADDRESSING

AN ENVELOPE . II ;

1 2 0 PRINT "DO NOT USE A COMMA OR COLON . "
140 PRINT : PRINT "TYPE I END I WHEN FINISHED"
160 PRINT : PRINT "TYPE IN LINE "; K
180 INPUT NAME$ (K)
200 IF NAME$ (K) = "END" THEN 300
220 K = K + 1
240 GOTO 160 : REM GO BACK FOR ANOTHER LINE
300 NAME$ (K) = "*" : REM SEPARATOR FOR PHONE NUMBER

282

320 K = K + 1
340 PRINT "PHONE: II

360 INPUT NAME$ (K)
380 K = K + 1

APPENDICES

PRINT "TYPE I RETURN I IF NONE. II

400 NAME$ (K) = "! " : REM SEPARATOR BETWEEN SETS OF
INFORMATION

405
406 :
410 REM ** --CORRECTION ROUTINE--**
420 HOME : VTAB 5
440 PRINT "DO NOT CHANGE THE LINE WITH THE I* I II
460 PRINT "THIS SYMBOL IS USED AS A SEPARATOR. "
480 PRINT
500 FOR I = 1 TO K - 1
520 PRINT I; II II; NAME$ (I)
540 NEXT I
560 PRINT
580 INPUT "CHANGE ANY LINE? TYPE 'Y' OR 'N' ";YES$
600 IF YES$ = "Y" THEN 640
620 GOTO 2000: REM GO TO FILE CREATION ROUTINE
640 INPUT "CHANGE WHICH LINE ";LINE
660 IF LINE > K - 1 THEN PRINT "NUMBER TOO LARGE": GOTO

640
680 PRINT "OLD LINE = ";NAME$ (LINE)
700 INPUT "CORRECT LINE = II; NAME$ (LINE)
720 GOTO 410
740 :
760 :
1000 REM ** - -REPEAT ROUTINE--**
1020 HOME : VTAB 5
1040 PRINT "DO YOU WANT TO ADD MORE INFO?"
1060 INPUT "TYPE 'Y' OR 'N' ";YES$
1080 IF YES$ = "Y" THEN RUN
1100 PRINT D$; "RUN MENU"
1120 :
1140 :
2000 REM ** - - FILE ADDITION ROUTINE--**
2020 PRINT D$; "OPEN ADDRESS FILE"
2040 PRINT D$; "READ ADDRESS FILE"
2060 INPUT REC
2080 PRINT D$; "CLOSE ADDRESS FILE"
2100 REC = REC + K
2120 PRINT D$; "OPEN ADDRESS FILE"
2140 PRINT D$; "WRITE ADDRESS FILE"

MAILING LIST ADDER2

2160 PRINT REC
2180 PRINT D$; "CLOSE ADDRESS FILE"
2200 PRINT D$; "APPEND ADDRESS FILE"
2220 PRINT D$; "WRITE ADDRESS FILE"
2240 FOR I = 1 TO K
2260 PRINT NAME$ (I)
2280 NEXT I
2300 PRINT D$; "CLOSE ADDRESS FILE"
2320 GOTO 1000: REM REPEAT ROUTINE

MAILING LIST ADDER2

10 REM ***--MAILING LIST ADDER2- -* **
11 :
12 :
20 D$ = CHR.$ (4): REM CONTROL D
40 DIM NAME$ (20) I LINE$ (100)
60 K = 1: REM LINE COUNTER
65 :
66:
70 REM **--INPUT ROUTINE--**
80 HOME : VTAB 5
100 PRINT " TYPE NAME AND ADDRESS AS IF ADDRESSING AN

ENVELOPE . II ;

120 PRINT "DO NOT USE A COMMA OR COLON . "
140 PRINT : PRINT "TYPE 'END ' WHEN FINISHED"
160 PRINT : PRINT "TYPE IN LINE "; K
180 INPUT NAME$ (K)
200 IF NAME$ (K) = "END" THEN 300
220 K = K + 1
240 GOTO 160: REM GO BACK FOR ANOTHER LINE
300 NAME$ (K) = "*": REM SEPARATOR FOR PHONE NUMBER
320 K = K + 1
340 PRINT "PHONE: "; : PRINT "TYPE 'RETURN' IF NONE. II

360 INPUT NAME$ (K)
380 K = K + 1
400 NAME$ (K) = "! ": REM SEPARATOR BETWEEN SETS OF

INFORMATION
4 05 :
406:
410 REM **--CORRECTION ROUTINE--**
420 HOME : VTAB 5
440 PRINT "DO NOT CHANGE THE LINE WITH THE I* I II

283

284 APPENDICES

460 PRINT "THIS SYMBOL IS USED AS A SEPARATOR. "
480 PRINT
500 FOR I = 1 TO K - 1
520 PRINT I ; II II; NAME$ (I)
540 NEXT I
560 PRINT
580 INPUT "CHANGE ANY LINE? TYPE I y I OR 'NI II; YES$
600 IF YES$ = "Y" THEN 640
620 GOTO 800 : REM PRINT LABEL ROUTINE
640 INPUT "CHANGE WHICH LINE ";LINE
660 IF LINE > K - 1 THEN PRINT "NUMBER TOO LARGE" : GOTO

640
680 PRINT "OLD LINE = ";NAME$ (LINE)
700 INPUT "CORRECT L.INE = II; NAME$ (LINE)
720 GOTO 410
740 :
760 :
800 REM **- -PRINT LABEL ROUTINE--**
810 PRINT "DO YOU WANT TO PRINT A LABEL NOW "
820 INPUT "TYPE I y I OR IN I II ; YES$
840 IF YES$ = "Y" THEN 880
860 GOTO 1000 : REM REPEAT ROUTINE
880 PRi 1

900 FOR I = 1 TO K
920 IFNAME$(I) ="*"THEN I= I+ 1: GOT0980
940 IF NAME$ (I) = "'" THEN 980
960 PRINT NAME$ (I)
980 NEXT I
990 PRi 0 : GOTO 800
995 :
996 :
1000 REM ** --REPEAT ROUTINE--**
1020 HOME : VTAB 5
1023 FOR I = 1 TO K
1026 LINE$ (TK + I) = NAME$ (I)
1033 NEXT I
1036 TK = TK + K
1040 PRINT "DO YOU WANT TO ADD MORE INFO?"
1060 INPUT "TYPE I y I OR IN I ";YES$
1080 IF YES$ = "Y" THEN GOTO 60
1100 :
1111 :
2000 REM **--FILE ADDITION ROUTINE-- **
2020 PRINT D$; "OPEN ADDRESS FILE"

MAILING LIST READER 2

2040 PRINT D$; "READ ADDRESS FILE"
2060 INPUT REC
2080 PRINT D$; "CLOSE ADDRESS FILE"
2100 REC = REC + TK
2120 PRINT D$; "OPEN ADDRESS FILE "
2140 PRINT D$; "WRITE ADDRESS FILE"
2160 PRINT REC
2180 PRINT D$; "CLOSE ADDRESS FILE"
2200 PRINT D$; "APPEND ADDRESS FILE"
2220 PRINT D$; "WRITE ADDRESS FILE"
2240 FOR I = 1 TO TK
2260 PRINT LINE$ (I)
2280 NEXT I
2300 PRINT D$; "CLOSE ADDRESS FILE"
3000 PRINT D$; "RUN MENU"

MAILING LIST READER2

10 REM ***--MAILING LIST READER-- ***
11 :
12 :
20 D$ = CHR$ (4) : REM CONTROL D
25 :
26 :
30 REM **--INPUT ROUTINE--**
40 PRINT D$; "OPEN ADDRESS FILE"
60 PRINT D$; "READ ADDRESS FILE"
80 INPUT K
100 DIM NAME$ (K) , AD$ (K) , ND$ (K) , L (K) , R (K)
120 FOR I = 1 TO K
140 INPUT NAME$ (I)
160 NEXT I
180 PRINT D$; "CLOSE ADDRESS FILE"
190 :
191 :
200 REM * *--MENU ROUTINE- - * *
210 HOME : VTAB 2
220 HTAB 1 7 : PRINT "MENU"
230 PRINT : PRINT
240 HTAB 3: PRINT "1. DISPLAY INFO- -ORIG. ORDER"
250 PRINT
260 HTAB 3: PRINT "2 . DISPLAY NAMES ONLY"

285

286

270
280
290
300
310
320
330
340
350
360
365
370

PRINT
HTAB 3:
PRINT
HTAB 3:
PRINT
HTAB 3 :
PRINT
HTAB 3:
PRINT
HTAB 3 :
PRINT
HTAB 3:

375 PRINT

PRINT " 3.

PRINT " 4.

PRINT "5 .

PRINT " 6 .

PRINT "7 .

PRINT "8 .

APPENDICES

DISPLAY INFO - - NO PHONE "

DISPLAY SPECIFIC NAME"

DISPLAY SPECIFIC NAME - - NO PHONE"

DISPLAY INFO- -RANGE"

DISPLAY INFO- - ALPHABETICAL"

RETURN TO PROGRAM MENU"

380 HTAB 3 : INPUT "WHICH NUMBER? " ; NUMBER
385 IF NUMBER < 1 OR NUMBER > 8 THEN PRINT

" INCORRECT NUMBER" : GOTO 380
4 10 IF NUMBER = 1 THEN 1000
420 IF NUMBER = 2 THEN 2000
430 IF NUMBER = 3 THEN 3 000
440 IF NUMBER = 4 THEN 4000
450 IF NUMBER = 5 THEN 5 000
460 IF NUMBER = 6 THEN 6000
470 IF NUMBER = 7 THEN 7000
480 IF NUMBER = 8 THEN PRINT D$; "RUN MENU"
600 :
700 :
1000 REM ** --ORIGINAL ORDER ROUTINE--* *
1020 GOSUB 10000: REM PRINTER ROUTINE
1040 HOME : VTAB 5
1060 FOR I = 1 TO K
1080 IF NAME$ (I) = " * "THEN 1140
1100 IF NAME$ (I) = "1 " THEN PRINT : GOTO 1140
1120 PRINT NAME$ (I)
1140 NEXT I
1160 GOTO 20000: REM RETURN TO MENU ROUTINE
1500 :
1600 :
2000 REM ** --NAME ONLY ROUTINE--* *
2020 GOSUB 10000: REM PRINTER ROUTI NE
2040 HOME : VTAB 5
2060 FOR I = 1 TO K - 1
2080 IF NAME$ (I) = NAME $ (2) THEN PRINT I ; " " ;NAME$ (I)
2100 IF NAME$ (I) "! II THEN PRINT I; II II ; NAME$ (I + 1)
2120 NEXT I

MAILING LIST READER 2

2140 GOTO 20000: REM RETURN TO MENU ROUTINE
2500 :
2600 :
3000 REM **--NO PHONE ROUTINE--**
3020 GOSUB 10000: REM PRINTER ROUTINE
3040 HOME : VTAB 5
3060 FOR I = 1 TO K
3080 IF NAME$ (I) = "*" THEN I = I + 1: GOTO 3140
3100 IF NAME$ (I) = "' " THEN PRINT : GOTO 3140
3120 PRINT NAME$ (I)
3140 NEXT I
3160 GOTO 20000: REM RETURN TO MENU ROUTINE
3500 :
3600:
4000 REM **--SEARCH ROUTINE--* *
4020 HOME : VTAB 5
4040 INPUT "NAME TO FIND? ";FIND$
4060 IF FIND$ = "END" THEN 4400
4070 GOSUB 10000: REM PRINTER ROUTINE
4080 PRINT
4100 FOR I = 1 TO K
4120 IF NAME$ (I) = FIND$ THEN 4160
4140 GOTO 4340
4160 IF NAME$ (I) = "* "THEN 4340
4 1 80 IF NAME$ (I) = "!" THEN PRINT: GOTO 4340
4200 PRINT NAME$ (I)
4220 PRINT NAME$ (I + 1)
4240 PRINT NAME$ (I + 2)
4260 IF NAME$ (I + 3) < > "*"THEN PRINT NAME$ (I + 3)
4280 IF NAME$ (I + 4) = "*"THEN 4320
4300 PRINT NAME$ (I + 4): GOTO 4340
4320 PRINT NAME$ (I + 5)
4340 NEXT I
4360 PRINT
4380 GOTO 4040
4400 GOTO 20000 : REM RETURN TO MENU ROUTINE
4500 :
4600 :
5000 REM ** --SEARCH ROUTINE NO PHONE- - **
5020 HOME : VTAB 5
5040 PRINT "TYPE I END I WHEN FINISHED"
5050 INPUT "NAME TO FIND? ";FIND$
5060 IF FIND$ = "END" THEN 5400
5070 GOSUB 10000: REM PRINTER ROUTINE

287

288 APPENDICES

5080 PRINT
5100 FOR I = 1 TO K
5120 IF NAME$ (I) = FIND$ THEN 5160
5140 GOTO 5 3 40
5160 IF NAME$ (I) = "*"THEN I= I + 1 : GOTO 5340
5180 IF NAME$ (I) = II! II THEN PRINT : GOTO 5340
5200 PRINT NAME$ (I)
5220 PRINT NAME$ (I + 1)
5240 PRINT NAME$ (I + 2)
5260 IF NAME$ (I + 3) < > II* II THEN PRINT NAME$ (I + 3)
5270 IF NAME$ (I + 3) = "*"THEN I= I + 1 : GOTO 5340
5280 IF NAME$ (I + 4) = "*"THEN I= I + 1 : GOTO 5340
5300 PRINT NAME$ (I + 4) : GOTO 5340
5320 PRINT NAME$ (I + 5)
5340 NEXT I
5360 PRINT
5380 GOTO 5040
5400 GOTO 20000 : REM RETURN TO MENU ROUTINE
5500 :
5600 :
6000 REM **--RANGE ROUTINE--**
6020 HOME : VTAB 5
6040 INPUT "TYPE BEGINNING LINE NUMBER " ; BL
6060 PRINT
6080 IF BL < 2 THEN PRINT "NUMBER TOO SMALL" : GOTO 6040
6100 INPUT "TYPE ENDING L INE NUMBER " ; EL
6120 PRINT
6140 IF EL > K THEN PRINT "NUMBER TOO LARGE" : GOTO 6100
6160 GOSUB 10000 : REM PRINTER ROUTINE
6180 FOR I = BL TO EL
6200 IF NAME$ (I) = "*"THEN I= I + 1 : GOTO 6260
6220 IF NAME$ (I) = "!" THEN PRINT : GOTO 6260
6240 PRINT NAME$ (I)
6260 NEXT I
6280 GOTO 20000: REM RETURN TO MENU ROUTINE
6500 :
6600 :
6700 :
6800 :
6900 :
7000 REM **--ALPHABETICAL ORDER ROUTINE--**
7040 HOME : VTAB 5
7060 PRINT "WORKING- -PLEASE DONT TOUCH! ! "
7065 :

MAILING LIST READER 2

7066 :
7070 REM GET FIRST INFO-LINE
7080 FOR I = 2 TOK - 1
7100 IF NAME$ (I) = NAME$ (2) THEN 7160
7120 IF NAME$ (I) II! II THEN I = I + 1 : GOTO 7160
7140 GOTO 7340
7145 :
7146 :
715 0 REM REVERSE ORDER
7160 LN =LEN (NAME$ (I))

289

7180 FOR Jl = 1 TO LN: IF MID$ (NAME$ (I). Jl, l) = II II THEN
J2 = Jl

7200 NEXT Jl
7210 IF J2 = 0 OR J2 > LN THEN AD$ (I) = NAME$ (I) :

GOTO 7240
7220 AD$ (I) =MID$ (NAME$ (I). J2 + 1 , LN - J2) + II II +

LEFT$ (NAME$ (I), J2)
7240 AD$ (I) =AD$ (I) + "**" +NAME$ (I+ 1) + "* * " +

NAME$ (I + 2)
7260 IF NAMES (I + 3) < > "*"THEN AD$ (I) =AD$ (I) + "**"

+ NAME$ (I + 3)
7280 IF NAME$ (I + 4) = "*"THEN 7320
7300 AD$ (I) =AD$ (I) + "** " +NAME$ (I + 4): GOTO 7340
7320 AD$ (I) = AD$ (I) + "**" +NAME$ (I + 5)
7340 NEXT I
7345 :
7346 :
7350 REM RENUMBER FOR SORT
7360 J = 1
7380 FOR I = 1 TO K
7400 IF LEN (AD$ (I)) > 0 THEN ND$ (J) = AD$ (I): J = J + 1
7420 NEXT I
7440 N = J - 1
7445 :
7446:
7460 REM ***--QUICKSORT--***
7480 Sl = 1
7500 PRINT "WORKING- -PLEASE DONT TOUCH! ! "
7520 L(l) = 1
7540 R(l) = N
7560 Ll = L (Sl)
7580 Rl = R (Sl)
7600 Sl = Sl - 1

290

7620 L2 = Ll
7640 R2 = Rl

APPENDICES

7660 X$ = ND$ (INT ((Ll + Rl) I 2))
7680 c = c + 1
7700 IF ND$ (L2) = X$ OR ND$ (L2) > X$ THEN 7760
7720 L2 = L2 + 1
7740 GOTO 7680
7760 C = Cl
7780 IF X$ = ND$ (R2) OR X$ > ND$ (R2) THEN 7840
7 8 0 0 R2 = R2 - 1
7820 GOTO 7760
7840 IF L2 > R2 THEN 7980
7860 s = s + 1
7880 T$ = ND$ (L2)
7900 ND$ (L2) = ND$ (R2)
7920 ND$ (R2) = T $
7940 L2 = L2 + 1
7960 R2 = R2 - 1
7980 IF L2 = R2 OR L2 < R2 THEN 7680
8000 IF L2 = Rl OR L2 > Rl THEN 8080
8020 Sl = Sl + 1
8040 L (Sl) = L2
8060 R (Sl) = Rl
8080 Rl = R2
8100 IF Ll < Rl THEN 7620
8 120 IF Sl > 0 THEN 7560
814 0 REM SORT COMPLETED
8142 :
8143 :
8145 REM ** --DISPLAY-- **
8150 GOSUB 10000: REM PRINTER ROUTI NE
8160 FOR I = 1 TO N
8180 PRINT ND$ (I)
8200 PRINT
8220 NEXT I
8240 GOTO 20000: REM RETURN TO MENU ROUTINE
8500 :
8600 :
8700 :
8800 :
8900 :
10000 REM **- -PRINT ROUTINE-- **
10020 PRINT "DO YOU WANT A PAPER PRINT OUT?"
10040 INPUT "TYPE I y I OR IN I II ; YES$

MAILING LIST CORRECTOR

10060 IF YES$ = "Y" THEN 10120
10080 SPEED = 150
10100 RETURN
10120 PR# 1
10140 RETURN
15000 :
16000 :
20000 REM **--RETURN TO MENU ROUTINE--**
20020 PRiio 0 : SPEED = 255
20040 INPUT "HIT RETURN TO GO TO MENU "; L$
20060 GOTO 200: REM MENU

MAILING LIST CORRECTOR

10 REM **--MAILING LIST CORRECTOR--**
11 :
12 :
20 D$ = CHR$ (4) : REM CONTROL D
25 :
26 :
30 REM **--INPUT ROUTINE- - **
40 PRINT D$; "OPEN ADDRESS FILE"
60 PRINT D$; "READ ADDRESS FILE"
80 INPUT K
100 DIM NAME$ (K) , LINE$ (K)
12 0 FOR I = 1 TO K
140 INPUT NAME$ (I)
160 NEXT I
180 PRINT D$; "CLOSE ADDRESS FILE"
190 :
191 :
200 REM **--MENU ROUTINE--**
220 HOME: VTAB 5
240 HTAB 19
260 PRINT "MENU"
280 PRINT: PRINT
300 HTAB 8 : PRINT "l. CHANGE OR CORRECT INFO"
320 PRINT
340 HTAB 8: PRINT "2. DELETE INFO"

360 PRINT
380 HTAB 8: PRINT "3 . WRITE REVISED FILE"

400 PRINT

29 1

292 APPENDICES

420 HTAB 8: PRINT "4 . RETURN TO PROGRAM MENU"
430 PRINT : PRINT
440 HTAB 8: INPUT "WHICH NUMBER " ;NB
460 IF NB < 0 OR NB > 4 THEN 440
510 IF NB = 1 THEN 1000
520 IF NB = 2 THEN 2000
530 IF NB = 3 THEN 3000
540 IF NB = 4 THEN PRINT D$; "RUN MENU"

600 :
700 :
1000 REM **--CORRECTION ROUTINE--**
1020 HOME : VTAB 5
1040 PRINT "TYPE I 0 I WHEN FINISHED"
1060 INPUT "DISPLAY WHICH LINE" ; NUMBER
1080 IF NUMBER = 0 THEN 200
1100 PRINT
1120 PRINT NUMBER; II II ; NAME$ (NUMBER)
1140 PRINT
1160 PRINT II IS THIS CORRECT? II ;

1180 INPUT "TYPE 'Y' OR 'N' ";YES$
1200 IF YES$ = "Y" THEN 1020
1220 PRINT
1240 PRINT "TYPE IN THE CORRECT INFORMATION"
1260 PRINT
1280 PRINT NUMBER; II II ; : INPUT CN$
1300 PRINT : NAME$ (NUMBER) = CN$
1320 PRINT NUMBER; II II ; NAME$ (NUMBER)
1 340 PRINT
1360 GOTO 1160
1500:
1600:
2000 REM **--DELETE ROUTINE--**
2020 HOME : VTAB 5
2 040 PRINT "TYPE I 0 I WHEN FINISHED"
2060 INPUT "DELETE WHI CH LINE II ; LINE
2080 IF LINE = 0 THEN 200
2100 PRINT
212 0 PRINT LINE; II II ; NAME$ (LINE)
2140 PRINT
2220 PRINT "ARE YOU SURE? TYPE 'YES ' IF SURE";
2240 INPUT YES$
2260 IF YES$ = "YES" THEN 2300
228 0 GOTO 2000
2300 J = LINE

MAILING LIST READER!

2320 IF NAME$ (J) = II! II THEN 2360
2340 J = J + 1: GOTO 2320
2360 FOR I = LINE TO J
2380 PRINT I ; II ";NAME$(I)
2400 NAME$ (I) = "DELETED": D = D + 1
2420 NEXT I
2440 PRINT
2460 PRINT "DELETING THIS INFORMATION "
2480 Q = 2
2500 FOR I = 2 TO K
2520 IF NAME$ (I) = "DELETED" THEN 2580
2540 NAME$ (Q) = NAME$ (I)
2560 Q = Q + 1
2580 NEXT I
2600 K = K - D
2620D = O:J = 0
2700 GOTO 200
2800:
2900:
3000 REM **--FILE ROUTINE--**
3020 PRINT D$; "OPEN ADDRESS FILE BACKUP"
3040 PRINT D$; "DELETE ADDRESS FILE BACKUP"

293

3060 PRINT D$; "RENAME ADDRESS FILE, ADDRESS FILE BACKUP"
3080 PRINT D$; "OPEN ADDRESS FILE"
3100 PRINT D$; "WRITE ADDRESS FILE"
3120 PRINT K
314 0 FOR I = 1 TO K
3160 PRINT NAME$ (I)
3 180 NEXT I
3200 PRINT D$; "CLOSE ADDRESS FILE "
3220 PRINT D$; "RUN MENU"

MAILING LIST READERI

10 REM *** --MAI LING LIST READER--***
11 :
12 :
20 D$ = CHR$ (4): REM CONTROL D
25 :
26:
30 REM ** --INPUT ROUTINE--**
40 PRINT D$; "OPEN ADDRESS FILE"

294 APPENDICES

60 PRINT D$; "READ ADDRESS FILE"
80 INPUT K
100 DIM NAME$ (K)

120 FOR I = 1 TO K
140 INPUT NAME$ (I)
160 NEXT I
180 PRINT D$; "CLOSE ADDRESS FILE"
190 :
191 :
200 REM **--DISPLAY ROUTINE- - **
220 HOME : VTAB 5
240 FOR I = 1 TO K
2 60 PRINT NAME$ (I)
280 NEXT I

MENU CHAIN

10 REM MAILING LIST PROGRAM MENU
20 D$ = CHR.$ (4): REM CONTROL D
40 HOME : VTAB 5
60 HTAB 1 7: PRINT "PROGRAM MENU"
80 PRINT : PRINT
100 HTAB 8: PRINT "l. FILE CREATION PROGRAM"
120 PRINT
1 4 0 HTAB 8: PRINT "2. FILE ADDITION PROGRAM"
160 PRINT
180 HTAB 8: PRINT "3. FILE DISPLAY PROGRAM"
200 PRINT
220 HTAB 8: PRINT "4 . FILE CORRECTION PROGRAM"
240 PRINT
300 HTAB 8: PRINT "5. CATALOG"
320 PRINT
340 HTAB 8: PRINT 11 6. END"
360 PRINT : PRINT
380 HTAB 8: INPUT "WHICH PROGRAM NUMBER? " ; NUMBER
400 IF NUMBER < 1 OR NUMBER > 6 THEN 380
420 IF NUMBER = 1 THEN 1000
440 IF NUMBER = 2 THEN 2000
460 IF NUMBER = 3 THEN PRINT D$; "RUN MAILING

LIST READER"
4 70 IF NUMBER = 4 THEN 4000
480 IF NUMBER= 5 THEN PRINT D$; "CATALOG" : INPUT

"HIT RETURN TO GO TO MENU " ; L$: GOTO 40

INTEGER MAILING LIST READER

500 IF NUMBER = 6 THEN END
1000 REM FILE CREATOR PROGRAM

295

1020 PRINT: PRINT "IF THE ADDRESS FILE ALREADY EXISTS"
1040 PRI NT : PRINT "DO NOT RUN THIS PROGRAM! ! "
1060 PRINT : PRINT "DO YOU WANT THE FILE CREATION

PROGRAM?"
1070 PRINT
1080 INPUT "TYPE 'YES I IF YOU DO: II ; YES$
1100 IF YES$ = "YES" THEN PRINT D$; "RUN MAILING LIST

CREATOR"
1120 GOTO 40
2000 REM FILE ADDITION PROGRAM
2020 PRINT: PRINT "YOU WANT TO ADD TO THE EXISTING"
2040 PRINT : PRINT "ADDRESS FILE. IS THIS CORRECT? "
2060 PRINT : INPUT "TYPE I YES I IF IT IS . II ; YES$
2080 IF YES$ = "YES" THEN PRINT D$; "RUN MAILING

LIST ADDER2 II

2100 GOTO 40
4000 PRINT D$; "BLOAD CHAIN, A520"
402 0 CALL 520"MAILING LIST CORRECTOR"

INTEGER MAILING LIST READER

10 REM INTEGER MAILING LIST READER
20 D$ = 11

II : REM CONTROL D
40 DIM NAME$ (50) , A$ (5 0) I BLANK$ (10)
50 REM INPUT ROUT INE
60 Q= l
80 PRINT D$; "OPEN ADDRESS FILE"
100 PRINT D$; "READ ADDRESS FILE"
120 INPUT K
140 INPUT BLANK$
160 DIM A (K*15)
180 FOR I=l TO K-1
200 INPUT NAME$
220 IF NAME$= II II THEN 380
240 LN= LEN (NAME$)
260FORJ=1 TO LN
280 A (Q) = ASC (NAME$ (J)): REM CONVERT TO NUMBER
300 Q=Q+l
320 NEXT J

296

340 A (Q) = 161
360Q=Q+l
380 NEXT I

APPENDICES

400 PRINT D$; "CLOSE ADDRESS FILE"
500 REM DISPLAY ROUTINE
520 T=Q-1
540 FOR Q=l TOT
560 GOSUB 5000: REM CONVERT TO CHARACTER
580 IF A$= II ! II THEN PRINT
600 I F A$="! II THEN 660
620 IF A$="*" THEN 660
640 PRINT A$;
660 NEXT Q
1000 END

CHARACTER ROUTINEl

5000 REM CHARACTER ROUTINE
5160 IF A (Q) = 160 THEN 6160
5161 IF A (Q) = 161 THEN 6161
5162 IF A (Q) = 162 THEN 6162
5163 IF A (Q) = 163 THEN 6163
5164 IF A (Q) = 164 THEN 6164
5165 IF A (Q) = 165 THEN 6165
5166 IF A (Q) = 166 THEN 6166
5167 IF A (Q) = 167 THEN 6167
5168 IF A (Q) = 1 68 THEN 6168
5169 IF A (Q) = 169 THEN 6169
5170 IF A (Q) = 1 70 THEN 61 70
51 71 IF A (Q) = 1 71 THEN 6 1 71
5172 IF A (Q) = 172 THEN 61 72
5173 IFA (Q) = 173 THEN 6 173
5174 IF A (Q) = 174 THEN 6 1 74
51 7 5 IF A (Q) = 1 7 5 THEN 6 1 75
5176 IF A(Q) = 176 THEN 6176
5177 IFA(Q) =177THEN6177
5178 IF A (Q) = 178 THEN 61 78
5179 IF A (Q) = 179 THEN 6 1 79
5 1 80 IF A (Q) = 180 THEN 6180
5 1 81 IF A (Q) = 181 THEN 6181
5182 IF A (Q) = 182 THEN 6182
5 183 IF A (Q) = 183 THEN 6183

CHARACTER ROUTINE!

5184 IF A (Q) = 184 THEN 6184
5185 IF A (Q) = 185 THEN 6185
5186 IF A (Q) = 186 THEN 6186
5187 IF A (Q) = 187 THEN 6187
5188 IF A (Q) = 188 THEN 6188
5189 IF A (Q) = 189 THEN 6189
5190 IF A (Q) = 190 THEN 6190
5191 IF A (Q) = 191 THEN 6191
5192 IF A (Q) = 192 THEN 6192
5193 IF A (Q) = 193 THEN 6193
5194 IF A (Q) = 194 THEN 6194
5195 IF A (Q) = 195 THEN 6195
5196 IF A (Q) = 196 THEN 6196
5197 IF A (Q) = 197 THEN 6197
5198 IF A (Q) = 198 THEN 6198
5199 IF A (Q) = 199 THEN 6199
5200 IF A (Q) = 200 THEN 6200
5201 IF A (Q) = 201 THEN 6201
5202 IF A (Q) = 202 THEN 6202
5203 IF A (Q) = 203 THEN 6203
5204 IF A (Q) = 204 THEN 6204
5205 IF A (Q) = 205 THEN 6205
5206 IF A (Q) = 206 THEN 6206
5207 IF A (Q) = 207 THEN 6207
5208 IF A (Q) = 208 THEN 6208
5209 IF A (Q) = 2 09 THEN 6209
5210 IF A (Q) = 2 10 THEN 6210
5211 IF A (Q) = 211 THEN 6211
5212 IF A (Q) = 2 1 2 THEN 6212
5213 IF A (Q) = 213 THEN 6213
5214 IF A (Q) = 2 14 THEN 6214
5215 IF A (Q) = 2 15 THEN 6215
5216 IF A (Q) = 216 THEN 6216
5217 IFA (Q) =217 THEN 6217
521 8 I F A (Q) = 218 THEN 6218
6160 A$= II II : RETURN
6161 A$= II! II : RETURN
6162 A$= II I II : RETURN
6163 A$= II* II : RETURN
6164 A$= 11 $ 11 RETURN
6165 A$ = 11 % 11 RETURN
6166 A$="&" RETURN
6167 A$= II I II RETURN
6168 A$= II (II RETURN

297

298 APPENDICES

6169 A$=) II : RETURN
6170A$= *II : RETURN
6171 A$= +II: RETURN
6172 A$ = " RETURN
6173 A$= " RETURN
6174 A$= " RETURN
6175 A$= / " RETURN
6176 A$= 0" RETURN
6177 A$= 1 RETURN
6178 A$= 2 RETURN
6179 A$= 3 RETURN
6180A$="4 RETURN
6181A$="5 RETURN
6182 A$= 6 RETURN
6183 A$= 7 RETURN
6184 A$= 8 RETURN
6185 A$= 9 RETURN
6186 A$= RETURN
6187 A$= RETURN
6188 A$=" < ' RETURN
6189 A$= "=": RETURN
6190A$=" > 11

: RETURN
6191 A$ = " ? II : RE'TURN
6192 A$="@ ": RETURN
6193 A$ = "A 11 RETURN
6194 A$ = " B 11 RETURN
6195 A$= "C" RETURN
6196 A$= "D" RETURN
6197 A$ = 11 E 11 RETURN
6198 A$= 11 F 11 RETURN
6199 A$= 11 G" RETURN
6200 A$ = "H" RETURN
6201 A$ = "I 11 RETURN
6202 A$ = "J 11 RETURN
6203 A$= "K" RETURN
6204 A$ = "L 11 RETURN
6205 A$= " M11 RETURN
6206 A$= " N" RETURN
6207 A$ = "0" RETURN
6208 A$= "P 11 RETURN
6209 A$ = " Q" RETURN
6210 A$= "R" RETURN
6211 A$ = "S" RETURN
6212 A$ = "T" RETURN

CHARACTER ROUTINE2

6213 A$= 11 U 11 RETURN
6214 A$= 11 V 11 RETURN
6215 A$= 11 W11 RETURN
6216 A$= 11 X 11 RETURN
6217 A$= 11 Y 11 RETURN
6218 A$= 11 Z 11 RETURN

CHARACTER ROUTINE2

5000 REM CHARACTER ROUTINE
5160 IF A (Q) = 160 THEN A$= II II

5161 IF A (Q) = 161 THEN A$= II! II
5162 IF A(Q) =162 THEN A$= II' II
5163 IF A(Q) =163 THEN A$= 11 # 11

5164 IF A (Q) = 164 THEN A$= 11 $ 11

5165 IF A (Q) = 165 THEN A$= 11 % 11

5166 IF A (Q) = 166 THEN A$= 11 & 11

5167 IF A (Q) = 167 THEN A$= II I II

5168 IF A (Q) = 168 THEN A$= II (
11

5169 IF A (Q) = 169 THEN A$= II) II

5 1 70 IF A (Q) = 170 THEN A$= II* II
5171 IF A (Q) = 171 THEN A$= II+ II
5172 IFA (Q) = 172 THENA$= 11

, II
5173 IFA (Q) =173 THENA$= 11

-
11

51 7 4 IF A (Q) = 1 7 4 THEN A$ = II . II

5175 IFA (Q) =175 THENA$= 11
/

11

5176IFA (Q)=176THENA$= 11 0 11

5177 IF A (Q) = 1 77 THEN A$= II 1 II
5178 IF A (Q) = 178 THEN A$= 11 2
5179 IF A (Q) = 179 THEN A$= 11 3
5180 IF A (Q) = 180 THEN A$= II 4
5181 IF A (Q) = 181 THEN A$= II 5
5182 IF A (Q) = 182 THEN A$= II 6
5183 IF A(Q) = 183 THEN A$= 11 7
5184 IF A (Q) = 184 THEN A$= 11 8
5185 IF A (Q) = 185 THEN A$= 11 9
5186 I F A (Q) = 186 THEN A$= II:
5187 IF A (Q) = 187 THEN A$= II ;
5188 IF A (Q) = 188 THEN A$= 11 < I

5189 IF A (Q) = 189 THEN A$ = II= II
5190 IF A (Q) =190 THEN A$= 11 > 11

5191 IF A (Q) = 191 THEN A$= 11 ? II

299

300 APPENDICES

5192 IF A (Q) = 192 THEN A$= 11 @ 11

5193 IF A (Q) = 193 THEN A$= 11 A 11

5194 IF A (Q) = 194 THEN A$= 11 B II
5195 IF A (Q) = 195 THEN A$= 11 C 11

5 196 IF A (Q) = 196 THEN A$= 11 D 11

5197 IF A(Q) = 197 THEN A$= 11 E 11

5198 IF A (Q) = 198 THEN A$= 11 F 11

5199 IF A (Q) = 199 THEN A$= 11 G 11

5200 IF A (Q) = 200 THEN A$= 11 H"
5201 IF A (Q) = 201 THEN A$ = II I II

5202 IF A (Q) = 202 THEN A$= 11 J II

5203 IF A (Q) = 203 THEN A$= 11 K 11

5204 IF A (Q) = 204 THEN A$= 11 L 11

5205 IF A (Q) = 205 THEN A$= "M"
5206 IF A (Q) = 206 THEN A$= "N"
5207 IF A (Q) = 207 THEN A$= "0"
5208 IF A {Q) = 208 THEN A$= "P"
5209 IF A (Q) = 209 THEN A$= "Q 11

5210 IF A (Q) = 210 THEN A$= 11 R 11

5211 IF A (Q) = 211 THEN A$= 11 S 11

5212 IF A (Q) = 212 THEN A$= 11 T 11

5213 IF A (Q) = 213 THEN A$= 11 U 11

5214 IF A (Q) = 214 THEN A$= 11 V 11

5215 IF A (Q) = 215 THEN A$= "W 11

5216 IF A (Q) = 216 THEN A$ = "X"
521 7 IF A (Q) = 21 7 THEN A$= "Y 11

5218 IF A (Q) = 218 THEN A$= 11 Z"
6000 RETURN

ALPHABETICAL FILE CREATOR

ALPHABETICAL FILE CREA TOR

10 REM ALPHABETICAL FILE CREATOR
20 D$ = CHR$ (4): REM CONTROL D
40 PRINT D$; "OPEN ADDRESS FILE"
60 PRINT D$; "READ ADDRESS FILE"
80 INPUT K
100 DIM NAME$ (K) , AD$ (K) , ND$ (K) , L (K) , R (K)
120 FOR I = 1 TO K
140 INPUT NAME$ (I)
160 NEXT I
180 PRINT D$; "CLOSE ADDRESS FILE"
7000 REM ALPHABETICAL ORDER ROUTINE
7040 HOME : VTAB 5
7060 PRINT "WORKING- -PLEASE DONT TOUCH ! ! "
7080 FOR I = 2 TO K - 1
7100 IF NAME$ (I) = NAME$ (2) THEN 7160
7120 IF NAME$ (I) = II ! II THEN I = I + 1 : GOTO 7160
7140 GOTO 7340
7160 LN = LEN (NAME$ (I))

301

7180 FOR Jl = 1 TO LN : IF MID$ (NAME$ (I)' Jl , 1) II II THEN
J2 = Jl

7200 NEXT Jl
7210 IF J2 = 0 OR J2 > LN THEN AD$ (I) = NAME$ (I):

GOTO 7240
7220 AD$ (I) = MID$ (NAME$ (I)' J2 + 1 , LN - J2) + II II +

LEFT$ (NAME$ (I) , J2)
7240AD$(l) =AD$(!)+ " **"+ NAME$(!+ 1) + " ** " +

NAME$ (I + 2)

7260 IF NAME$ (I + 3) <> " * "THEN AD$ (I) =AD$ (!) + "**"
+ NAME$ (I + 3)

7280 IF NAME$ (I + 4)
7300 AD$ (I) = AD$(!)
7320AD$(l) = AD$ (!)
7340 NEXT I
7360 J = 1
7 3 8 0 FOR I = 1 TO K

"*II THEN 7320
+ II * * II + NAME$ (I + 4) : GOTO 7 3 4 0
+ "**"+NAME$(! + 5)

7400 IF LEN (AD$ (I)) > 0 THEN ND$ (J) = AD$ (!): J = J + 1
7420 NEXT I
7440 N = J - 1
7 4 6 0 REM QUI CK SORT 2
7480 Sl = 1
7500 PRINT "WORKING- - PLEASE DONT TOUCH! ! "

302

7520 L(l) = 1
7540 R (l) = N
7560 Ll = L (Sl)
7580 Rl = R (Sl)
7600 Sl = Sl - 1
7620 L2 = Ll
7640 R2 = Rl

APPENDICES

7660X$ = ND$(INT ((Ll + Rl) / 2))
7680 c = c + 1
7700 IF ND$ (L2) = X$ OR ND$ (L2) > X$ THEN 7760
7720 L2 = L2 + 1
7740 GOTO 7680
7760 C = Cl
7780 IF X$ = ND$ (R2) OR X$ > ND$ (R2) THEN 7840
7800 R2 = R2 - 1
7820 GOTO 7760
7840 IF L2 > R2 THEN 7980
7860 s = s + 1
7880 T$ = ND$ (L2)
7900 ND$ (L2) = ND$ (R2)
7920 ND$ (R2) = T$
7940 L2 = L2 + 1
7960 R2 = R2 - 1
7980 IF L2 = R2 OR L2 < R2 THEN 7680
8000 IF L2 = Rl OR L2 > Rl THEN 8080
8020 Sl = Sl + 1
8040 L (Sl) = L2
8060 R (Sl) = Rl
8080 Rl = R2
8100 IF Ll < Rl THEN 7620
812 0 IF Sl > 0 THEN 7560
8 140 REM SORT COMPLETED
9000 REM FILE CREATION ROUTINE
9020 HOME : VTAB 5
9040 INPUT "NAME FOR ALPHABETIZED FILE " ; FILE$
9060 PRINT D$; II OPEN II ; FILE$
9080 PRINT D$; "WRITE" ; FILE$
9100 FOR I = 1 TO N
9120 PRINT ND$ (I)
9140 NEXT I
9160 PRINT D$; "CLOSE" ; FILE$
9200 END

R&B PROG2

R&B PROGi

20 D$ = CHR.$ (4) : REM CONTROL D
40 HOME : VTAB 5
60 INPUT "READ WHICH RECORD "; R
80 PRINT D$; "OPEN ADDRESS FILE"
100 PRINT D$; "POSITION ADDRESS FILE, R" ; R
120 PRINT D$; "READ ADDRESS FILE"
140 INPUT LINE$
160 PRINT D$; "CLOSE ADDRESS FILE"
180 PRINT
200 PRINT LINE$
220 PRINT
240 GOTO 60

R&B PROG2

20 D$ = CHR.$ (4): REM CONTROL D
40 HOME : VTAB 5
60 INPUT "READ WHICH RECORD ", R
80 PRINT D$; "OPEN ADDRESS FILE"
100 PRINT D$; "POSITION ADDRESS FILE, R" ; R
120 PRINT D$; "READ ADDRESS FILE"
140 INPUT LINE$
145 PRINT D$; "POSITION ADDRESS FILE, R5"
150 PRINT D$; "READ ADDRESS FILE"
155 INPUT LINE2$
160 PRINT D$; "CLOSE ADDRESS FILE"
180 PRINT
200 PRINT LINE$
210 PRINT LINE2$
220 PRINT
240 GOTO 60

303

304 APPENDICES

R&B PROG3

20 D$ = CHR$ (4): REM CONTROL D
40 HOME : VTAB 5
60 INPUT "READ WHICH BYTE II ; B
80 PRINT D$; "OPEN ADDRESS FILE"
120 PRINT D$; "READ ADDRESS FILE, B" ; B
140 INPUT LINE$
160 PRINT D$; "CLOSE ADDRESS FILE"
180 PRINT
200 PRINT LINE$
220 PRINT
240 GOTO 60

EXEC FILE CREA TOR

10 REM ***--EXEC FILE CREATOR--***
11 :
12 :
20 D$ = CHR$ { 4) : REM CONTROL D
30 Q$ = CHR$ (34): REM QUOTATION MARKS
3 1 :
32 :
35 REM ** - -FILE CREATION--**
40 PRINT D$; "OPEN DEMO"
60 PRINT D$; "DELETE DEMO II
80 PRINT D$; "OPEN DEMO"
100 PRINT D$; "WRITE DEMO"
101
102
104 REM **--SET UP--**
105 PRINT "SPEED = 50 "
107 PRINT "MON 1 , 0, C"
108 :
109 REM ** --MENU- - * *
110 PRINT "RUN MENU"
12 0 PRI NT "l"
140 PRINT "N"
160 PRINT " 2 "
18 0 PRINT "N"
200 PRI NT "3"
205 :

EXEC FILE CREATOR

206
210 REM **--READER--**
220 PRINT "1"
240 PRINT "N"
260 PRINT "N"
280 PRINT "2"
300 PRINT "N"
320 PRINT "N"
340 PRINT "4"
360 PRINT "RON WISE"
380 PRINT "N"
400 PRINT "END"
410 PRINT "N"
420 PRINT "5"
440 PRINT "RON WISE"
460 PRINT "N"
480 PRINT "END"
490 PRINT "N"
500 PRINT "6"
520 PRINT "50"
540 PRINT "75"
560 PRINT "N"
580 PRINT "N"
600 PRINT "7"
620 PRINT "N"
640 PRINT "N"
660 PRINT 11 8 11

665
666
670 REM **--MENU-- **
680 PRINT II 4 II

685
686
690 REM **--CORRECTOR--**
700 PRINT II 1"
720 PRINT "100"
725 PRINT "N"
730 PRINT "TEST OF CORRECTION PROGRAM"
740 PRINT "Y"
750 PRINT "0"
760 PRINT II 2 II
780 PRINT "135"
800 PRINT "YES"
820 PRINT "4"

305

306

825 :
826 :
830 REM **--MENU--* *
840 PRINT 11 6 11

845 :
846:
850 REM **--RESTORE- -**
860 PRINT "SPEED= 255 II
880 PRINT "NOMON I, 0, C"

APPENDICES

900 PRINT "PRINT"Q$"THE ADDRESS FILE WAS NOT CHANGED"Q$
920 PRINT "PRINT"Q$"BY THIS DEMO. "Q$
1000 PRINT D$; "CLOSE DEMO"

PROGRAM CAPTURE

10 REM * * *--PROGRAM CAPTURE--* **
15 D$ = CHR$ (4): REM CONTROL D
16 PRINT D$; "OPEN PROGRAM CAPTURE"
17 PRINT D$; "WRITE PROGRAM CAPTURE"
18 POKE 33, 33
19 LISTl , 2100: PRINTD$; "CLOSEPROGRAMCAPTURE": TEXT:

END
20 D$ = CHR$ (4): REM CONTROL D
40 HOME : VTAB 5
60 HTAB 17: PRINT "PROGRAM MENU"
80 PRINT : PRINT
100 HTAB 8 : PRINT "l. FILE CREATION PROGRAM"
120 PRINT
140 HTAB 8 : PRINT "2. FILE ADDITION PROGRAM"
160 PRINT
180 HTAB 8 : PRINT "3. FILE DISPLAY PROGRAM"
200 PRINT
220 HTAB 8 : PRINT "4. FILE CORRECTION PROGRAM"
240 PRINT
300 HTAB 8 : PRINT "5 . CATAlOG"
320 PRINT
340 HTAB 8 : PRINT 11 6. END"
360 PRINT: PRINT
380 HTAB 8 : INPUT "WHICH PROGRAM NUMBER? II ; NUMBER
400 IF NUMBER < 1 OR NUMBER > 6 THEN 3 80
420 IF NUMBER = 1 THEN 1000
440 IF NUMBER = 2 THEN 2000

PROGRAM CAPTURE 307

460 IF NUMBER = 3 THEN PRINT D$; "RUN MAILING LIST
READER"

470 IF NUMBER = 4 THEN PRINT D$; "RUN MAILING LIST
CORRECTOR"

480 IF NUMBER= 5 THEN PRINT D$; "CATALOG": INPUT "HIT
RETURN TO GO TO MENU "; L$: GOTO 40

500 IF NUMBER = 6 THEN END
1000 REM FILE CREATOR PROGRAM
1020 PRINT : PRINT "IF THE ADDRESS FILE ALREADY EXISTS"
1040 PRINT: PRINT "DO NOT RUN THIS PROGRAM! ! "
1060 PRINT : PRINT "DO YOU WANT THE FILE CREATION

PROGRAM?"
1070 PRINT
1080 INPUT "TYPE I YES I IF YOU DO: II; YES$
1100 IF YES$ = "YES" THEN PRINT D$; "RUN MAILING LIST

CREATOR"
1120 GOTO 40
2000 REM FILE ADDITION PROGRAM
2020 PRINT : PRINT "YOU WANT TO ADD TO THE EXISTING"
2040 PRINT : PRINT "ADDRESS FILE. IS THIS CORRECT?"
2060 PRINT : INPUT "TYPE I YES I IF IT IS. II ; YES$
2080 IF YES$ = "YES" THEN PRINT D$; "RUN MAILING LIST

ADDER2"
2100 GOTO 40

APPENDIX D.

MATH SYSTEM PROGRAMS

MATH MENU

10 REM ***--MATH MENU--***
20 D$ = CHR$ (4) : REM CONTROL D
40 HOME : VTAB 2
60 HTAB 14 : PRINT "MATH MENU"
80 PRINT : PRINT
100 HTAB 8 : PRINT "1. ADDITION"
120 PRINT
140 HTAB 8: PRINT "2. SUBTRACTION"
160 PRINT
180 HTAB 8 : PRINT "3. MULTIPLICATION"
200 PRINT
220 HTAB 8 : PRINT "4. DIVISION"
240 PRINT
300 HTAB 8 : PRINT "5 . SCORES"
320 PRINT
340 HTAB 8 : PRINT "6 . INFORMATION"
345 PRINT
3 5 0 HTAB 8 : PRINT "7. END"
360 PRINT : PRINT
380 HTAB 8: INPUT "WHICH PROGRAM NUMBER? " ; NUMBER
4 0 0 IF NUMBER < 1 OR NUMBER > 7 THEN 380
420 IF NUMBER= 1 THEN PRINT D$; "RUN ADD"
440 IF NUMBER = 2 THEN PRINT D$; "RUN SUBTRACT"
460 IF NUMBER = 3 THEN PRINT D$; "RUN MULTIPLY"
470 IF NUMBER= 4 THEN PRINT D$; "RUN DIVIDE"
480 IF NUMBER = 5 THEN PRA.\JT D$; "RUN SCORES II
500 IF NUMBER = 6 THEN 1000
520 IF NUMBER = 7 THEN END

308

MATH MENU 309

1000 REM **-- INFORMATION-- **
1020 HOME
1040 PRINT "THIS IS A SERIES OF MATH DRILL AND"
1050 PRINT
1060 PRINT "PRACTICE PROGRAMS. IT IS DESIGNED TO"
1070 PRINT
1080 PRINT "ALLOW FOR AS MUCH FLEXIBILITY AS"
1090 PRINT
1100 PRINT "POSSIBLE. THE QUESTION ABOUT THE "

1110 PRINT
1120 PRINT "NUMBER OF DIGITS MIGHT, AT FIRST ,"
1130 PRINT
1140 PRINT "SEEM CONFUSING. THE QUESTION SIMPLY"
1150 PRINT
1160 PRINT "ASKS FOR THE GREATEST NUMBER OF "
1170 PRINT
1180 PRINT "DIGITS POSSIBLE IN EITHER FIGURE . "
1190 PRINT
1200 PRINT "THE NEXT TWO QUESTIONS FURTHER ALLOW"
1210 PRINT
1220 PRINT "YOU TO LIMIT THE POSSIBLE PROBLEMS."
1230 GOSUB 5000
1240 PRINT "FOR EXAMPLE, IF YOU WANTED TO PRACTICE"
1250 PRINT
1260 PRINT "MULTIPLYING BY '5', YOU COULD CHOOSE"
1270 PRINT
1280 PRINT "THREE DIGIT NUMBERS AND THEN ANSWER"
1290 PRINT
1300 PRINT "WITH A '5' FOR EACH OF THE NEXT TWO"

1310 PRINT
1320 PRINT " QUESTIONS. YOU WOULD THEN BE GIVEN"

1330 PRINT
1340 PRINT "PROBLEMS LIKE: 345 x 5 OR 823 x 5 . II

1350 GOSUB 5000
1360 PRINT "ANOTHER EXAMPLE WOULD BE TO ADD TWO"
1370 PRINT
1380 PRINT "DIGIT NUMBERS BY ANSWERING THE"
1390 PRINT
1400 PRINT "QUESTIONS IN THIS WAY : "
1410 PRINT
1420 PRINT "HOW MANY DIGITS- -2"
1430 PRINT
1440 PRINT "LARGEST NUMBER- -99 II

1450 PRINT

310 APPENDICES

1460 PRINT "SMALLEST NUMBER- -1"
1470 PRINT
1480 PRINT "YOU COULD THEN GET PROBLEMS LIKE: "
1490 PRINT
1500 PRINT "58 + 34 OR 87 + 9 . "
1510 GOSUB 5000
1520 PRINT "TRYING THE DIFFERENT POSSIBILITIES"
1530 PRINT
1540 PRINT "WILL SOON INDICATE THE FLEXIBILITY."
1550 PRINT
1560 PRINT "THE DIVISION SECTION WILL ONLY GIVE"
1570 PRINT
1580 PRINT "PROBLEMS THAT COME OUT EVEN. "
1590 PRINT
1600 PRINT "YOU MAY HAVE TO WAIT A SHORT TIME . "
1610 PRINT
1620 PRINT "FOR THE NEXT PROBLEM. THIS"
1630 PRINT
1640 PRINT "IS BECAUSE THE NUMBERS GENERATED"
1650 PRINT
1660 PRINT "MUST MEET CERTAIN SPECIFICATIONS. "
1670 GOSUB 5000
1680 PRINT "THIS IS NOT A PROFESSIONAL PROGRAM"
1690 PRINT
1700 PRINT "AND THEREFORE DOES NOT DO A LOT OF"
1710 PRINT
1720 PRINT "ERROR CHECKING. YOU CAN CRASH THE "
1730 PRINT
1740 PRINT "PROGRAMS WITH CONFUSING ANSWERS"
1750 PRINT
1760 PRINT "OR MISTAKES IN TYPING. TYPING A "
1770 PRINT
1780 PRINT " I CTRL I I c I WILL END ANY PROGRAM. "
1790 PRINT
1800 PRINT "YOU MUST THEN START OVER. "
1810 PRINT
1820 PRINT "THIS SERIES OF PROGRAMS WAS DONE"
1830 PRINT
1840 PRINT "MAINLY TO DEMONSTRATE, IN A USEFUL "
1850 PRINT
1860 PRINT "MANNER, CERTAIN FILE HANDLING"
1870 PRINT
1880 PRINT "CAPABILITIES. II

2000 GOSUB 5000

ADD

2020 GOTO 40
5000 PRINT
5020 INPUT "HIT RETURN TO CONTINUE " ; L$
5040 HOME
5060 RETURN

ADD

10 REM ***--ADDITION--***
11 :
12 :
20 REM ** - -VARIABLE LIST-- **
21 REM A = BOTTOM NUMBER
22 REM B = TOP NUMBER
23 REM C = CORRECT ANSWER
24 REM D = STUDENT ' S ANSWER
25 REM Q = COUNTER
26 REM W = PREVIOUS ANSWER
27 REM Z = NUMBER OF TRIES
28 REM CR = CORRECT ANSWERS
29 REM WR = WRONG ANSWERS
30 REM DT = *OF DIGITS
31 REM LA= * OF DIGITS IN A
32 REM LB= * OF DIGITS IN B
33 REM LN = * OF DIGITS IN C
34 REM OTHER VARIABLES ARE
35 REM DESCRIPTIVE
36:
37 :
40 HOME : VTAB 5
60 INPUT "HOW MANY DIGITS ";DIGIT
80 PRINT
100 PRINT "WHAT IS THE LARGEST FIGURE FOR THE"
120 PRINT
140 INPUT "NUMBER YOU ARE ADDING BY? ";MAX
160 PRINT
180 PRINT "WHAT IS THE SMALLEST FIGURE FOR THE"
200 PRINT
220 INPUT "NUMBER YOU ARE ADDING BY? ";MN
240 DT = DIGIT: DIGIT = 10 "DIGIT
260 PRINT
280 INPUT "WHAT IS YOUR NAME? ";NAME$

311

312

290 :
295 :

APPENDICES

300 REM **--CREATE PROBLEM--**
320 HOME
340 HTAB 10: VTAB 2
360 PRINT "TYPE I END I WHEN FINISHED"

380 VTAB 10
382 MAX$ = STR$ (MAX)
384 LM = LEN (MAX$)
386 IF DT = LM + 1 OR DT < LM + 1 THEN 400
388 LM = 10" LM
390 A = INT (RND (1) * LM)
392 IF A < MN THEN 390
394 IF A > MAX THEN 390
396 GOTO 480
400 z = 1
420 A = INT (RND (1) *DIGIT)
440 IF A < MN THEN 420
460 IF A > MAX THEN 420
480 B = INT (RND (1) *DIGIT)
500 C = B +A
520 S$ = II+"
540 IF C < 0 THEN 480
560 IF C = W THEN 480
580 w = c
600 A$ = STR$ (A)
620 LA = LEN (A$)
640 B$ = STR$ (B)
660 LB = LEN (B$)
680 HTAB 22 - LB: PRINT B
700 HTAB 22 - (LA + 1): PRINTS$; A
720 C$ = STR$ (C)
740 LN = LEN (C$)
760 Q = 1
780 IF LA < LB THEN Q = 0
800 HTAB 22 - (DT + Q) : FOR I 1 TO DT + Q : PRINT CHR$

810 :
815 :

(9 5) ; : NEXT I

820 REM **- -GET ANSWER--**
840 PRINT : HTAB 22 - (LN + 1) : INPUT ANSWER$
860 IF ANSWER$ = "END" THEN 1060
880 D = VAL (ANSWER$)

ADD 313

900 IF D = C THEN PRINT : PRINT : PRINT : HTAB 19: PRINT
"GOOD ": FOR I = 1TO1000: NEXT I : CR= CR+ 1: GOTO 320

920 IF Z < 3 THEN PRINT : HTAB 10: PRINT "NO, PLEASE TRY
AGAIN.": Z = Z + 1: PRINT: WR= WR + 1 : GOTO 660

940 PRINT
960 PRINT "NO, THE ANSWER IS 11

; C
980 PRINT : PRINT B ; II II; S$; II II ; A; II = II ; c
1000 PRINT : Z = 1: WR = WR + 1
1020 INPUT "HIT RETURN WHEN READY TO GO ON 11

; L$
1040 GOTO 320
1050 :
1055 :
1060 REM **--TOTAL ROUTINE- - **
1080 HOME : VTAB 5
1100 PRINT "YOU GOT II ; CR; II RIGHT! II

1120 PRINT
1140 PRINT "YOU MISSED ";WR
1160 :
1180:
2000 REM **--FILE ROUTINE- - **
2020 0$ = CHR$ (4)
2040 ONERR GOTO 2180
2060 PRINTO$; 11 APPEND 11 ;NAME$
2080 PRINT 0$; "WRITE II ; NAME$
2085 PRINTS$
2090 PRINT OT
2100 PRINT CR
2120 PRINT WR
2140 PRINT 0$; "CLOSE" ; NAME$
2160 PRINT 0$; "RUN MATH MENU"
2180 POKE 216, 0
2200 PRINT 0$; "OPEN"; NAME$
2220 GOTO 2080

314 APPENDICES

SUBTRACT

10 REM *** --SUBTRACTION--** *
11 :
12 :
20 REM **--VARIABLE LIST--**
21 REM A = BOTTOM NUMBER
22 REM B = TOP NUMBER
23 REM C = CORRECT ANSWER
24 REM D = STUDENT ' S ANSWER
25 REM Q =COUNTER
26 REM W = PREVIOUS ANSWER
27 REM Z = NUMBER OF TRIES
28 REM CR = CORRECT ANSWERS
29 REM WR = WRONG ANSWERS
30 REM OT = * OF DIGITS
31 REM LA = * OF DIGITS IN A
32 REM LB = * OF DIGITS IN B
33 REM LN = * OF DIGITS IN C
34 REM OTHER VARI ABLES ARE
35 REM DESCRIPTIVE
36 :
37 :
40 HOME : VTAB 5
60 INPUT "HOW MANY DIGITS ";DIGIT
80 PRINT
100 PRINT "WHAT IS THE LARGEST FIGURE FOR THE"
120 PRINT
140 INPUT "NUMBER YOU ARE SUBTRACTING BY? ";MAX
160 PRINT
180 PRINT "WHAT IS THE SMALLEST FIGURE FOR THE"
200 PRINT
220 INPUT "NUMBER YOU ARE SUBTRACTING BY? " ; MN
240 OT = DIGIT: DIGIT = 10 "DIGIT
260 PRINT
280 INPUT "WHAT IS YOUR NAME? ";NAME$
290 :
295 :
300 REM **- - CREATE PROBLEM--**
320 HOME
340 HTAB 10 : VTAB 2
360 PRINT "TYPE I END I WHEN FINISHED"
380 VTAB 10

382 MAX$ = STR$ (MAX)
384 LM = LEN (MAX$)

SUBTRACT

386 IF OT = LM + 1 OR OT < LM + 1 THEN 400
3 8 8 LM = 10 " LM
390 A = INT (RND (1) * LM)
392 IF A < MN THEN 390
394 IF A > MAX THEN 390
396 GOTO 480
400 z = 1
420 A = INT (RND (1) *DIGIT)
440 IF A < MN THEN 420
460 IF A > MAX THEN 420
480 B = INT (RND (1) *DIGIT)
500 C = B - A
520 S$ = "-"
540 IF C < 0 THEN 480
560 IF C = W THEN 480
580 w = c
600 A$ = STR$ (A)
620 LA = LEN (A$)
640 B$ = STR$ (B)
660 LB = LEN (B$)
680 HTAB 22 - LB: PRINT B
700 HTAB 22 - (LA + 1) : PRINTS$; A
720 C$ = STR$ (C)
740 LN = LEN (C$)
760 Q = 1
780 IF LA < LB THEN Q = 0
800 HTAB 22 - (OT + Q) : FOR I 1 TO OT + Q :

810 :
815 :

PRINT CHR$ (95) ; : NEXT I

820 REM * * - -GET ANSWER--**
840 PRINT : HTAB 22 - (LN + 1): INPUT ANSWER$
860 IF ANSWER$ = "END" THEN 1060
880 D = VAL (ANSWER$)

315

900 IF D = C THEN PRINT : PRINT : PRINT : HTAB 19: PRINT
"GOOD" : FOR I = 1TO1000: NEXT ! : CR = CR + 1: GOTO 3 2 ·

920 IF Z < 3 THEN PRINT: HTAB 10: PRINT "NO , PLEASE TRY
AGAIN . II : z = z + 1: PRINT: WR = WR + 1 : GOTO 660

940 PRINT
960 PRINT "NO , THE ANSWER IS " ; C
980 PRINT: PRINTB; II " ; S$; II ";A ; II ";C
1000 PRINT : Z = 1 : WR = WR + 1

316 APPENDICES

1020 INPUT "HIT RETURN WHEN READY TO GO ON " ; L$
1040 GOTO 320
1050:
1055 :
1060 REM **--TOTAL ROUTINE--**
1080 HOME : VTAB 5
1100 PRINT "YOU GOT II; CR; II RIGHT! II

1120 PRINT
1140 PRINT "YOU MISSED ";WR
1160:
1180 :
2000 REM **--FILE ROUTINE--**
2020D$ = CHR$ (4)
2040 ONERR GOTO 2180
2060 PRINT D$; "APPEND" ; NAME$
2080 PRINT D$; "WRITE"; NAME$
2085 PRINT S$
2090 PRINT DT
2100 PRINT CR
2120 PRINT WR
2140 PRINT D$; "CLOSE" ; NAME$

2160 PRINT D$; "RUN MATH MENU"
2180 POKE 216, 0
2200 PRINT D$; "OPEN"; NAME$
2220 GOTO 2080

MULITIPLY

MULITIPLY

10 REM ***- - MULTIPLICATION--***
11 :
12 :
20 REM **--VARIABLE LIST--**
21 REM A = BOTTOM NUMBER
22 REM B = TOP NUMBER
23 REM C = CORRECT ANSWER
24 REM D = STUDENT I s ANSWER
25 REM Q = COUNTER
26 REM W = PREVIOUS ANSWER
27 REM Z = NUMBER OF TRIES
28 REM CR = CORRECT ANSWERS
29 REM WR = WRONG ANSWERS
30 REM DT = * OF DIGITS
31 REM LA= *OF DIGITS IN A
32 REM LB = * OF DIGITS IN B
33 REM LN = * OF DIGITS INC
34 REM OTHER VARIABLES ARE
35 REM DESCRIPTIVE
36 :
37 :
40 HOME : VTAB 5
60 INPUT "HOW MANY DIGITS " ;DIGIT
80 PRINT
100 PRINT "WHAT IS THE LARGEST FIGURE FOR THE"
120 PRINT
140 INPUT "NUMBER YOU ARE MULTIPLYING BY? ";MAX
160 PRINT
180 PRINT "WHAT IS THE SMALLEST FIGURE FOR THE"
200 PRINT
220 INPUT "NUMBER YOU ARE MULTIPLYING BY? ";MN
240 DT = DIGIT: DIGIT = 10 "DIGIT
260 PRINT
280 INPUT "WHAT IS YOUR NAME? " ;NAME$
290 :
295 :
300 REM ** --CREATE PROBLEM-- **
320 HOME
340 HTAB 10: VTAB 2
360 PRINT "TYPE I END I WHEN FINISHED"
380 VTAB 10

317

318

382 MAX$ = STR$ (MAX)
384 LM = LEN (MAX$)

APPENDICES

386 IF DT = LM + 1 OR DT < LM + 1 THEN 400
388 LM = 10 "LM
390 A = INT (RND (1) * LM)
392 I F A < MN THEN 390
394 IF A > MAX THEN 390
396 GOTO 480
400 z = 1
420 A = INT (RND (1) * DIGIT)
44 0 IF A < MN THEN 420
460 IF A > MAX THEN 420
480 B = INT (RND (1) *DIGIT)
500 C = B *A
520 S$ = "X"
540 IF C < 0 THEN 480
560 I F C = W THEN 480
580 w = c
600 A$ = STR$ (A)
620 LA = LEN (A$)
64 0 B$ = STR$ (8)
660 LB = LEN (B$)
680 HTAB 22 - LB: PRINT B
700 HTAB 22 - (LA + 1) : PRINTS$; A
720 C$ = STR$ (C)
740 LN = LEN (C$)
760 Q = 1
7 80 IF LA < LB THEN Q = 0
800 HTAB 22 - (DT + Q) : FOR I = 1 TODT + Q: PRINT

CHR$ (95) ; : NEXT I
810 :
815 :
820 REM **--GET ANSWER--**
840 PRINT : HTAB 22 - (LN + 1) : INPUT ANSWER$
860 IF ANSWER$ = "END" THEN 1060
880 D = VAL (ANSWER$)
900 IF D = C THEN PRINT : PRINT : PRINT : HTAB 19 : PRINT

"GOOD ": FOR I = 1 TO 1000: NEXT I: CR = CR + 1 : GOTO 320
920 IF Z < 3 THEN PRINT : HTAB 10 : PRINT "NO, PLEASE

TRY AGAIN . " : Z = Z + 1: PRINT : WR = WR + 1: GOTO 660
940 PRINT
960 PRINT "NO , THE ANSWER IS " ; C
980 PRINT :PRINTB; II ";S$; II " ; A; II ";C
1000 PRINT :Z = l : WR = WR+ 1

MULlTIPLY

1020 INPUT "HIT RETURN WHEN READY TO GO ON"; L$
1040 GOTO 320
1050 :
1055 :
1060 REM **--TOTAL ROUTINE - -**
1080 HOME : VTAB 5
1100 PRINT "YOU GOT II ; CR; II RIGHT! II

1120 PRINT
1140 PRINT "YOU MISSED ";WR
1160:
1180 :
2000 REM **--FILE ROUTINE - -**
2020 0$ = CHR$ (4)
2040 ONERR GOTO 218 0
2060 PRINT 0$; II APPEND II ; NAME$
2080 PRINT 0$; "WRITE"; NAME$
2085 PRINTS$
2090 PRINT DT
2100 PRINT CR
2120 PRINT WR
2140 PRINT 0$; "CLOSE" ; NAME$
2160 PRINT 0$; "RUN MATH MENU"
2180 POKE 216 , 0
2200 PRINT 0$; "OPEN"; NAME$
2220 GOTO 2080

319

320

DIVIDE

10 REM
11 :
12 :
20 REM
21 REM
22 REM
23 REM
24 REM
25 REM
26 REM
27 REM
28 REM
29 REM
30 REM
31 REM
32 REM
33 REM
34 REM
35 REM
36 :
37 :

APPENDICES

*** --DIVISION-- ***

** - - VARIABLE LIST- -**
A = DIVISOR
B =DIVIDEND
C = CORRECT ANSWER
D = STUDENT'S ANSWER
Q = COUNTER
W = PREVIOUS ANSWER
Z = NUMBER OF TRIES
CR = CORRECT ANSWERS
WR = WRONG ANSWERS

DT = * OF DIGITS
LA = * OF DIGITS IN A
LB = * OF DIGITS IN B
LN = * OF DIGITS IN C
OTHER VARIABLES ARE
DESCRIPTIVE

40 HOME : VTAB 5
60 INPUT "HOW MANY DIGITS " ; DIGIT
80 PRINT
100 PRINT "WHAT IS THE LARGEST FIGURE FOR THE NO . "
120 PRINT
140 INPUT "YOU ARE DIVIDING BY (DIVISOR)? " ; MAX
160 PRINT
180 PRINT "WHAT IS THE SMALLEST FIGURE FOR THE NO . "
200 PRINT
220 INPUT "YOU ARE DIVIDING BY (DIVISOR)? ";MN
240 DT = DIGIT: DIGIT = 10" DIGIT
260 PRINT
280 INPUT "WHAT IS YOUR NAME? ";NAME$
290 :
295 :
300 REM ** --CREATE PROBLEM- - **
310 MAX$ = STR$ (MAX)
320 LM = LEN (MAX$)
330 IF DT = LM + 1 OR DT < LM + 1 THEN 400
340 LM = 10 " LM

DIVIDE

350 A = INT (RND (1) * LM)
360 IF A < MN THEN 350
370 IF A > MAX THEN 350
380 GOTO 480
400 z = 1
420 A = INT (RND (1) *DIGIT)
440 IF A < MN THEN 420
460 IF A > MAX THEN 420
480 B = INT (RND (1) *DIGIT)
485 IF B = 0 ORB < (A) THEN 480
490 DEF FN MOD (C) = INT ((B I A - INT (B I A))

* A + . 05) * SGN (B I A)
500 C = INT (B) I (A)
510 C = INT (C)

520 S$ = "/ "
540 IF C < 0 THEN 420
560 IF C = W THEN 420
570 IF FN MOD (RM) < > 0 THEN 480

580 w = c
600 A$ = STR$ (A)
620 LA = LEN (A$)
640 B$ = STR$ (B)
660 LB = LEN (B$)
662 HOME
664 HTAB 10: VTAB 2
666 PRINT "TYPE I END I WHEN FINISHED"
668 VTAB 10

321

670 HTAB 22: FOR I = 1 TO DT + 1 : PRINT CHR$ (95) ; : NEXT I

675 PRINT
680 HTAB 22 - LA: PRINT A ; II) II; B
720 C$ = STR$ (C)
740 LN = LEN (C$)
760 Q = 1
780 IF LB < DT THEN LN = LN + (DT - LB)
8 10 :
815 :
820 REM ** --GET ANSWER--**
830 VTAB 9
840 PRINT : HTAB (22 + DT) - (LN - 1): INPUT 1111

; ANSWER$
860 IF ANSWER$ = "END" THEN 1060
880 D = VAL (ANSWER$)
900 IF D = C THEN PRINT : PRINT : PRINT : HTAB 19 : PRINT

"GOOD" : FOR I = 1 TO 500: NEXT I : CR = CR + 1: GOTO 320

322 APPENDICES

920 IF Z < 3 THEN PRINT : PRINT : PRINT : HTAB 10: PRINT
"NO , PLEASE TRY AGAIN . " : Z = Z + 1: PRINT : WR= WR + l
FOR WT = 1TO1000: NEXT WT : VTAB 10: GOTO 660

940 PRINT : PRINT : PRINT
960 PRINT "NO , THE ANSWER IS " ; C
980 PRINT : PRINT B ; II II; S$; II II ; A; " = "; c
1000 PRI NT : Z = 1 : WR = WR + 1
1020 INPUT "HIT RETURN WHEN READY TO GO ON " ; L$
1040 GOTO 320
1050 :
1055 :
1060 REM ** --TOTAL ROUTINE - -**
1080 HOME : VTAB 5
1100 PRINT "YOU GOT II; CR; II RIGHT ! II

1120 PRINT
1140 PRINT "YOU MISSED " ; WR
1160:
1180 :
2000 REM ** --FILE ROUTINE-- **
2020 D$ = CHR$ (4)
2040 ONERR GOTO 2180
2060 PRINT D$; "APPEND"; NAME$
2080 PRINT D$; "WRITE" ; NAME$
2085 PRINTS$
2090 PRINT DT
2100 PRINT CR
2120 PRINT WR
2 140 PRINT D$; "CLOSE"; NAME$
2160 PRINT D$; "RUN MATH MENU"
2180 POKE 216, 0
2200 PRINT D$; " OPEN" ; NAME$
2220 GOTO 2080

SCORES

SCORES

10 REM *** --SCORES--***
11 :
12 :
20 D$ = CHR.$ (4)
40 ONERR GOTO 380
60 DIMS$ (100) , DT (100)
80 DIM CR(lOO), WR (lOO)
100 I = 1
120 HOME : VTAB 5
140 INPUT "STUDENT'S NAME PLEASE? "; NAME$
160 :
180 :
200 REM * * --FILE ROUTINE - -**
220 PRINT D$; "OPEN"; NAME$
240 PRINT D$; "READ" ; NAME$
260 INPUTS$ (!)
280 INPUT DT (I)
300 INPUT CR (I)
320 INPUT WR (I)
340 I = I + 1
360 GOTO 260
380 POKE 216 , 0
400 PRINT D$; "CLOSE" ; NAME$
420 :
440 :
460 REM **--DISPLAY ROUTINE--**
480 HOME : VTAB 1 : HTAB 19: PRINT NAME$: PRINT : PRINT
500 PRINT "SESS . ";
5 20 HTAB 7 : PRINT "OPERATION" ;
540 HTAB 18 : PRINT "DIGITS";
560 HTAB 26 : PRINT "CORRECT";
580 HTAB 35 : PRINT "WRONG"
590 POKE 34 , 4 : REM SET TOP WINDOW
600 FOR K = 1 TO I - 1
620 IFS$ (K) " + "THENS$ (K) "ADD"
640 IFS$ (K) = " -II THENS$ (K) "SUB"
660 IF S$ (K) "X" THEN S$ (K) "MLT"
680 IFS$ (K) II I " THENS$ (K) = "DIV"
700 HTAB 3 : PRINT K;
720 HTAB 10 : PRINT S$ (K) ;
740 HTAB 20 : PRINT DT (K) ;

323

324 APPENDICES

760 IF CR (K) > 9 THEN L = - 1
780 HTAB 29 + L: PRINT CR (K);

800 L = 0
820 IF WR (K) > 9 THEN L = - 1
840 HTAB 37 + L: PRINT WR (K)

860 L = 0
880 NEXT K
900 PRINT : INPUT "HIT RETURN WHEN FINISHED "; L$
910 TEXT
920 PRINT D$; "RUN MATH MENU"

SCORES--DIF

10 REM *** - -SCORES . DIF- - ***
11 :
12 :
20 D$ = CHR.$ (4): REM CONTROL D
30 Q$ = CHR.$ (34): REM QUOTATION MARK
40 ONERR GOTO 380
60 DIMS$ (100) , DT (100)
80 DIM CR (100) , WR (100)
100 I = 1
1 20 HOME : VTAB 5
140 INPUT "STUDENT'S NAME PLEASE? " ; NAME$
1 60 :
180 :
200 REM **- - FILE ROUTINE--**
220 PRINT D$; "OPEN"; NAME$
240 PRINT D$; "READ"; NAME$
260 INPUTS$ (I) : REM SIGN
280 INPUT DT (I) : REM DIGITS
300 INPUT CR (I) : REM * RIGHT
320 INPUT WR (I) : REM * WRONG
330 IFS$(!) "+"THENS$ (I) "ADD"
331 I FS$ (I) " - "THENS$ (I) = "SUB"
332 IFS$ (I) = "X" THENS$ (I) = "MLT"
333 IF S$ (I) II / " THENS$ (I) = "DIV"
340 I = I + 1
360 GOTO 260: REM GET ANOTHER
380 POKE 216 , 0: REM RESET ERR FLAG
400 PRINT D$; "CLOSE"; NAME$
420 :

SCORES--DIF

440 :
450 REM ** - - DIF ROUTINE- - **
460 J = I - 1 : NV = 5: NT = I - 1
470 FILE$ = NAME$
480 NAME$ = NAME$ + II . DIF"
500 PRINT D$; "OPEN" ; NAME$
510 PRINTD$; "WRITE" ;NAME$
511
515 REM **--HEADER SECTION-- **
516 :
520 PRINT "TABLE"
530 PRINT"0 , 1"
540 PRINT Q$FILE$Q$
545
550 PRINT "VECTORS"
560 PRINT "0 , II ; NV
570 PRINT QQ
575
580 PRINT "TUPLES"
590 PRINT "0 , " ; NT
600 PRINT QQ
605
610 PRINT "LABEL"
620 PRINT "1 , 0"
630 PRINT Q$"SESSION # "Q$
635
640 PRINT "LABEL"
650 PRINT "2 , 0"
660 PRINT Q$"0PERATION"Q$
665
670 PRINT "LABEL"
680 PRINT "3 , 0"
690 PRINT Q$"DIGITS"Q$
695 :
700 PRINT "LABEL"
710 PRINT "4, 0"
720 PRINT Q$"CORRECT"Q$
725 :
730 PRINT "LABEL"
740 PRINT "5 , 0"
750 PRINT Q$"WRONG"Q$
755 :
760 PRINT "DATA II
770 PRINT "0 , 0"

325

326

780 PRINT QQ
785 :

APPENDICES

800 REM ** - - DATA SECTION- - **
805 :
810 PRINT "-1, 0"
820 PRINT "BOT"
825 :
830 PRI NT "l, 0"
840 PRINT Q$"SESSION * "Q$
845 :
850 PRI NT "l, 0"
860 PRINT Q$"0PERATION"Q$
865 :
870 PRI NT "1, 0"
880 PRINT Q$"DIGITS"Q$
885 :
890 PRINT "1, 0"
900 PRINT Q$"CORRECT"Q$
905 :
910 PRI NT "1 , 0"
920 PRINT Q$"WRONG"Q$
925 :
930 FOR I = 1 TO J
935 :
940 PRINT " - 1 , 0"
950 PRINT "BOT"
955 :
960 PRINT "0, II; I
970 PRINT "V"
975 :
980 PRINT "1 , 0"
990 PRINT S$ (I)
995 :
1000 PRINT "0 , " ; DT (I)
101 0 PRINT "V"
1015 :
1020 PRINT "0 , " ; CR (I)
1030 PRINT "V"
1035 :
1040 PRINT "0, " ; WR (I)
1050 PRINT "V"
1055 :
1060 NEXT I
1065 :

1070 PRINT "-1, 0"
1080 PRINT "EOD"
1085 :

SCORES--DIF

llOO PRINT D$; "CLOSE" ; NAME$

327

APPENDIX E.

RECIPE AND DRILL & PRACTICE PROGRAMS

RECIPES

2 REM *** --RECIPES--* **
3:
4:
5 REM ** --VARIABLES LIST-- **
6 REM RECNBR =NUMBER OF RECORDS
7 REM INGNBR=TOTAL * OF INGRED.
8 REM ING$ & ID$ = INGRED.
9 REM REC$ & RC$ = RECIPES
10 REM IG$ = CURRENT SESS . INGRED.
11 REM RZ$ = RECIPE NAMES ONLY
12 :
1 3 :
14 REM ** --INITIALIZATION--**
15 DIMREC(lOO) , ING$(50) , IG$ (100,50) ,RC$ (100) ,RZ$

(100) I ID$ (50)
20 D$ = CHR.$ (4) : REM CONTROL D
25 TB = 8 : REM HTAB VALUE
27 ONERR GOTO 10000
3 0 PRINT D$; "OPEN RECIPE NAMES"
35 PRINT D$; "READ RECIPE NAMES"
40 INPUT NUMBERS$
45 PRINT D$; "CLOSE RECIPE NAMES"
47 POKE 21 6, 0: REM RESET ERROR FLAG
50 LR = LEN (NUMBERS$)
55 T = 1
60 IF MID$ (NUMBERS$, T , 1) = " * "THEN 70
65 T = T + 1 : GOTO 60
70 RECNBR = VAL (LEFT$ (NUMBERS$, T - 1))
75 INGNBR = VAL (MID$ (NUMBERS$, T + 1, LR - T))

328

97 :
98 :
99 :

RECIPES

100 REM **--RECIPE MENU--**
120 HOME : VTAB 5: HTAB 15
140 PRINT "RECIPE MENU "
160 PRINT : PRINT
180 HTAB TB
200 PRINT "1. ADD RECIPE TO LIST"
220 PRINT : HTAB TB
240 PRINT "2 . SELECT RECIPE FROM LIST"
260 PRINT : HTAB TB
280 PRINT "3. END PROGRAM"
380 PRINT : HTAB TB
400 INPUT "WHICH NUMBER? II; NB
420 IF NB < 1 OR NB > 5 THEN PRINT "INCORRECT

NUMBER! II: GOTO 380
510 IF NB = 1 THEN 1000
520 IF NB 2 THEN 2000
530 IF NB = 3 THEN END
970 :
980 :
990 :
1000 REM ** --ADD TO RECIPE LIST--**
1002 R = 1
1005 HOME : VTAB 5
1010 INPUT "NAME OF RECIPE " ; REC$ (R)
1015 I = 1

329

1020 PRINT : PRINT "TYPE 'END' WHEN FINISHED . " : VTAB 10
1025 PRINT "TYPE IN INGREDIENT * " ; I ; " BELOW THIS LINE . "
1030 INPUT ING$ (I)
1035 IF ING$ (I) = "END" THEN 105 0
1040 I = I + 1
1045 HOME : VTAB 6 : GOTO 1020
1050 HOME : VTAB 5 : PRINT REC$ (R) : PRINT : PRINT
1055 FOR J = 1 TO I - 1
1060 PRINT J; II II ; ING$ (J)

1065 NEXT J
1070 PRINT
1075 INPUT II IS THIS CORRECT? II; YES$
1080 IF YES$ = "Y" THEN 1110
1085 PRINT
1090 INPUT "WHICH NUMBER IS WRONG? " ; WR
1095 PRINT "TYPE IN CORRECT INFO . FOR INGREDI ENT * " ; WR

330

1100 INPUT ING$ (WR)
1105 GOTO 1050

APPENDICES

1110 REC$ (R) = REC$ (R) + II! II + STR$ (INGNBR) + "*" +
STR$ (I - 1)

1111 FOR J = 1 TO I - 1
1112 IG$ (R, J) = ING$ (J)

1113 NEXT J
1115 INGNBR = INGNBR + I - 1
1120 R = R + 1
1125 PRINT
1130 INPUT "ADD MORE RECIPES? ";YES$
1135 IF YES$ = "Y" THEN 1005
1136 RECNBR = RECNBR + R - 1
113 7 NUMBERS$ = STR$ (RECNBR) + II* II + STR$ (INGNBR)
1140 PRINT D$; "APPEND RECIPE NAMES"
1145 PRINT D$; "APPEND INGRED"
1146 FORK = 1 TOR - 1
1150 PRINT D$; "WRITE RECIPE NAMES"
1155 PRINT REC$ (K)
1160 LN = LEN (REC$ (K))
1165 T = 1

1170 IF MID$ (REC$(K),T,1) = "*" THEN1180
1175 T = T + 1: GOTO 11 70
1180 Q =VAL (MID$ (REC$ (K) IT+ 1, LN - T))
1185 PRINT 0$; "WRITE INGRED"
1190 FOR H = 1 TO Q
1195 PRINT IG$ (K , H)
1200 NEXT H
1220 NEXT K
1225 PRINT D$; "CLOSE"
1265 PRINT 0$; "OPEN RECIPE NAMES"
1270 PRINT D$; "WRITE RECIPE NAMES"
1275 PRINT NUMBERS$
1280 PRINT 0$; "CLOSE"
1285 GOTO 100 : REM MENU
1970 :
1980 :
1990 :
2000 REM **--SELECT RECIPE--**
2002 HOME : VTAB 5
2005 PRINT 0$; " OPEN RECIPE NAMES"
2007 PRINT D$; "POSITION RECIPE NAMES I R2 II
2010 PRINT D$; "READ RECIPE NAMES"
2015 FOR I = 1 TO RECNBR

2020 INPUT RC$ (I)
202 1 T = 1

RECIPES

2022 IF MID$ (RC$ (!) ,T, 1) ="!II THEN 2024
2023 T = T + 1 : GOTO 2022
2024 RZ$ (I) =LEFT$ (RC$(!) , T- 1)
2025 NEXT I
2030 PRINT D$; "CLOSE RECIPE NAMES"
2032 FOR I = 1 TO RECNBR
2033 PRINT I ; II 11 ;RZ$ (I)
2034 NEXT I
2035 PRINT : PRINT
2040 INPUT "WHICH RECIPE? 11

; RC
2045 LN = LEN (RC$ (RC))
2050 T = 1
2055 IF MID$ (RC$ (RC) , T, 1) II I II THEN 2065
2060 T = T + 1: GOTO 2055
2065 Tl = T
2070 IF MID$ (RC$ (RC), Tl , 1) = 11 *" THEN 2080
2075 Tl = T l + 1: GOTO 2070
2080 IGNB = VAL (MID$ (RC$ (RC) , T + 1 , Tl - 1)) + 1
2085 LIGNB = VAL (MID$ (RC$ (RC), Tl + 1, LN - Tl))

208 7 HOME : PRINT RZ$ (RC)
2090 PRINT D$; "OPEN INGRED"
2095 PRINT D$; "POSITION I NGRED, R 11

; IGNB
2100 PRINT D$; "READ INGRED"
2105 FORK = 1 TO LIGNB
2 110 INPUT ID$ (K)
2 115 PRINT ID$ (K)
2 1 20 NEXT K
2125 PRINT D$; "CLOSE INGRED"
2 1 30 PRINT : PRINT
2 1 35 INPUT "HIT RETURN WHEN READY 11

; L $
2140 INPUT "SELECT ANOTHER RECIPE? ";YES$
2145 IF YES$ = "Y" THEN 2155
2150 GOTO 100 : REM MENU
2155 HOME
2160 GOTO 2 032: REM SELECT ANOTHER
2970 :
2980 :
2990 :
10000 REM **--FIRST TIME--* *
10002 POKE 216 , 0 : REM RESET ERROR F LAG
10005 PRINT D$; "WRI TE RECIPE NAMES"
10010 PRINT " 0*0- ------ - --- - "

331

332 APPENDICES

10015 PRINT D$; "CLOSE RECIPE NAMES"
10020 PRINT D$; "OPEN INGRED"
10025 PRINT D$; "WRITE INGRED"
10030 PRINT "RECIPE INGREDENTS"
10040 PRINT D$; "CLOSE INGRED"
10045 GOTO 30

CREATE Q & A

10 REM ** - -INPUT Q & A--**
11 :
12 :
20 D$ = CHR$ (4): REM CONTROL D
40 DIM Q$ (50), A$ (50)
60 I = 1
70:
75 :

100 REM **--INPUT ROUTINE - -**
105 HOME : VTAB 10
110 INPUT "SUBJECT NAME II; SUB$
120 PRINT : PRINT
140 PRINT II QUESTION # II ; I: INPUT Q$ (I)
160 IFQ$(I) = "END" THEN300
180 INPUT "ANSWER II; A$ (I)
200 PRINT : PRINT : PRINT Q$ (I)
220 PRINT : PRINT A$ (I)
230 PRINT
240 INPUT II IS THIS CORRECT? II; Y$
250 PRINT
260 IF Y$ = "N" THEN 140
2 8 0 I = I + 1 : GOTO 14 0
290 :
295 :
300 REM ** - -FILE ROUTINE--**
310 PRINT D$; "OPEN" + SUB$
320 PRINT D$; "WRITE" + SUB$
340 PRINT I - 1
360 FOR J = 1 TO I - 1
380 PRINT Q$ (J)
400 PRINT A$ (J)
420 NEXTJ
440 PRINT D$; "CLOSE"

DRILLQ & A

DRILL Q & A

10 REM ***--DRILL & PRACTICE--***
11 :
12 :
20 D$ = CHR.$ (4): REM CONTROL D
40 DIM Q$ (50), A$ (50)
60 D$ = CHR.$ (4)
90 :
95 :
100 REM **--FILE ROUTINE - -**
105 HOME : VTAB 10
110 INPUT "SUBJECT NAME II; SUB$
115 PRINT : PRINT
120 PRINT D$; "OPEN" + SUB$
140 PRINT D$; "READ" + SUB$
160 INPUT J
180 FOR I = 1 TO J
200 INPUT Q$ (I), A$ (I)
220 NEXT I
240 PRINT D$; "CLOSE"
245 :
246:
250 REM **--GET Q & A--**
260 I = RND (1) * 10: I = INT (I)
280 IF I > J OR I < 1 THEN 260
300 PRINT Q$ (I)
320 PRINT : PRINT
340 INPUT "YOUR ANSWER IS II; S$
360 IFS$ = "END" THEN 600
380 IFS$ = A$ (I) THEN PRINT "CORRECT": A = A + 1

: GOTO 540
400 IF Z > 0 THEN 500
420 PRINT "NO, TRY ONCE MORE"
440 z = 1
460 A2 = A2 + 1
480 GOTO 340
500 PRINT "NO, THE ANSWER IS " ; A$ (I)
520 M = M + 1
540 z = 0
560 PRINT : PRINT
580 GOTO 260
590:

333

334 APPENDICES

595 :
600 REM ** --DISPLAY SCORE--**
610 A2 = A2 - M
620 A = A - A2
640 HOME : VTAB 10
660 PRINT "YOU GOT" ; A ; " RIGHT ON THE FIRST TRY"
680 PRINT : PRINT
700 PRINT "YOU GOT" ; A2 ; " RIGHT ON THE SECOND TRY"
720 PRINT : PRINT
740 PRINT "YOU MISSED II; M; II ANSWERS"

APPENDIX F.

DIF PROGRAMS

SCORES--DIF

10 REM ***--SCORES.DIF--***
11 :
12 :
20 D$ = CHR$ (4): REM CONTROL D
30 Q$ = CHR$ (34): REM QUOTATION MARK
40 ONERR GOTO 380
60 DIMS$ (100) , DT (100)
80 DIM CR (100) , WR (100)
100 I = 1
120 HOME : VTAB 5
140 INPUT II STUDENT Is NAME PLEASE? II ; NAME$
160 :
180 :
200 REM **--FILE ROUTINE--**
220 PRINT D$; "OPEN"; NAME$
240 PRINT D$; "READ" ; NAME$
260 INPUT S$ (I) : REM SIGN
280 INPUT DT (I) : REM DIGITS
300 INPUT CR (I): REM # RIGHT
320 INPUT WR (I) : REM # WRONG
330 IFS$ (I) "+ "THENS$(!) "ADD"
331 IFS$(!) II - II THENS$ (I) "SUB"
332 IFS$ (I) "X" THENS$ (I) = "MLT"
333 IFS$ (I) II / It THENS$ (I) = "DIV"
340 I = I + 1
360 GOTO 260: REM GET ANOTHER
380 POKE 216, 0: REM RESET ERR FLAG
400 PRINT D$; II CLOSE II ; NAME$

335

336

420 :
440 :

APPENDICES

450 REM **- -DIF ROUTINE--**
460 J = I - 1: NV = 5: NT = I - 1
470 FILE$ = NAME$
480 NAME$ = NAME$ + II - DIF"
500 PRINT D$; "OPEN"; NAME$
510 PRINT D$; "WRITE"; NAME$
511 :
5 15 REM **--HEADER SECT ION- - **
516 :
520 PRINT "TABLE"
530 PRINT "0, 1"
540 PRINT Q$FILE$Q$
545 :
550 PRINT "VECTORS"
560 PRINT "0 , ";NV
570 PRINT QQ
575 :
580 PRINT "TUPLES"
590 PRINT "0, II; NT
600 PRINT QQ
605 :
610 PRINT "LABEL"
620 PRINT "1, 0"
630 PRINT Q$"SESSION =IF "Q$
635 :
640 PRINT "LABEL"
650 PRINT "2, 0"
660 PRINT Q$"0PERATION"Q$
665 :
670 PRINT "LABEL"
680 PRINT "3, 0"
690 PRINT Q$"DIGITS"Q$
695 :
700 PRINT "LABEL"
710 PRINT "4, 0"
720 PRINT Q$"CORRECT"Q$
725

·730 PRINT "LABEL"
740 PRINT "5, 0"
750 PRINT Q$"WRONG"Q$
755
760 PRINT "DATA"

770 PRINT "0, 0"
780 PRINT QQ
785 :

SCORES--DIF

800 REM **--DATA SECTION--**
805 :
810 PRINT "-1, 0"
820 PRINT "BOT"
825 :
830 PRINT "l, 0"
840 PRINT Q$ " SESSION # "Q$
845 :
850 PRINT "1 , 0"
860 PRINT Q$"0PERATION"Q$
865 :
870 PRINT "1, 0 "
880 PRINT Q$"DIGITS"Q$
885 :
890 PRINT II 1 , 0"
900 PRINT Q$"CORRECT"Q$
905 :
910 PRINT "1 , 0"
920 PRINT Q$"WRONG"Q$
925 :
930 FOR I = 1 TO J
935 :
940 PRINT "-1, 0"
950 PRINT "BOT"
955 :
960 PRINT "0, ";I
970 PRINT "V"
975 :
980 PRINT "l, 0"
990 PRINT S$ (I)
995 :
1000 PRINT "0, ";DT(I)
1010 PRINT "V"
1015 :
1020 PRINT"O , " ; CR(I)
1030 PRINT "V"
1035 :
1040 PRINT"O,";WR(I)
1050 PRINT "V"
1055 :
1060 NEXT I

337

338

1065
1070 PRINT " -1 , 0"
1080 PRINT "EOD"
1085 :

APPENDICES

1100 PRINT D$; "CLOSE"; NAME$

DIF READER

10 REM ***- -DIF READER--***
11 :
12 :
20 D$ = CHR.$ (4) : REM CONTROL D
40 DIM A$ (200) Is (200) IN (200)
60 I = 1
80 HOME : VTAB 5
100 INPUT "FILE NAME PLEASE? ";FILE$
120
1 40
160 REM **- -INPUT ROUTINE--**
180 PRINT 0$; "OPEN" ; FILE$
200 PRINT D$; "READ" ; FILE$
220 INPUT T$: REM READ THE TOPIC NAME
240 INPUTS, N: REM READ THE VECTOR* , VALUE
260 INPUTS$: REM THE STRING VALUE
280 IF T$ = "VECTORS " THEN NV = N
300 IF T$ = "TUPLES" THEN NT = N
320 IF T$ < > "DATA" THEN 220
340 K = 1
360 INPUT s (K) I N (K)

380 INPUT A$ (K)

400 IF A$ (K) = "EOD" THEN 440
420 K = K + 1: GOTO 360
440 PRINT D$; "CLOSE" ; FILE$
460:
480 :
500 REM **-DISPLAY ROUTINE- **
520 FOR J = 1 TO K
540 PRINT S (J) ; ", " ; N (J)
560 PRINT A$ (J)
580 NEXT J
600 END

DIF TRANSLATOR I

DIF TRANS LA TOR 1

10 REM *** - -DIF TRANSLATOR--***
11 :
12 :
1 3 REM **--VARIABLES--**
14 REM L1$=HEAD. SECT. LINE 1
16 REM L3$=HEAD. SECT. LINE 3
18 REM A() =HEAD. SECT. 2ND LINE
19 REM FIRST VALUE
20 REM B ()=HEAD. SECT. 2ND LINE
21 REM SECOND VALUE
22 REM I = SET COUNTER
24 REM RL =RECORD LENGTH
26 REM LL= LABEL LENGTH
28 REM DA$ () =ACTUAL DATA VALUE
30 REM J = ARRAY COUNTER
32 REM Q =ARRAY COUNTER
34 REM A$=DATA SECT. lST LINE
36 REM VARI ABLE TYPE
38 REM B$ =DATA SECT. lST LINE
40 REM SECOND VALUE
42 REM C$=DATA SECTION
44 REM STRING VALUE
46:
48 :
50 D$ = CHR$ (4): REM CTRL D
60 DIM L1$ (99), A (99), B (99), L3$ (99)
80 HOME : VTAB 5
100 INPUT "DIF FILE NAME PLEASE! " ; FILE$
110 INPUT "DO YOU WANT A PAPER PRINTOUT? ";YES$
115 IF YES$ = "Y" THEN PRINT D$; "PRil II

339

120 IF RIGHT$ (F ILE$, 4) < > " . DIF" THEN FILE$ = FILE$ +
". DIF"

121 :
122 :
130 REM ** --INPUT HEAD. SECT--**
140 PRINT D$; "OPEN"; FILE$
160 PRINT D$; "READ"; FILE$
180 I = 1
200 INPUT L1$ (I)
220 INPUTA (I) , B(I)
240 INPUT L3$ (I)

340

260 IFL1$ (I)
280 I = I + 1
300 GOTO 200
301 :
302 :

APPENDICES

"DATA II THEN 305

305 REM ** - DISPLAY HEAD. SECT-**
310 HOME : PRINT II LABEL"; : HTAB 23: PRINT "FIELD"
312 PRINT II NAME" ;: HTAB 24: PRINT "SIZE"
315 POKE 34 , 3: PRINT : REM SET WINDOW
320 FOR K = 2 TO I
340 IF LEN (L3$ (K)) < > 0 THEN PRINT A (K); II II; L3$ (K) ; :

HTAB 25: PRINT B (K + 1)
360 LL = LL + LEN (L3$ (K))
420 IF Ll$ (K) = "SIZE" THEN RL = RL + B (K)
440 NEXT K
445 RL = RL + B (K - 2)
450 PRINT : PRINT
460 PRINT "RECORD LENGTH = "; RL
480 PRINT "LABEL LENGTH = II; LL
490 PRINT Ll$ (2); II = II; B (2)
495 PRINT Ll$ (3);" OR NUMBER OF RECORDS= "; B (3)
496 PRINT : POKE 34, 22 : REM SET WINDOW
498 :
499 :
500 REM ** -INPUT DATA SECT-**
510 VTAB 24: FLASH : PRINT "READING DIF FILE- -DON'T

TOUCH ! ! ! " : NORMAL
520 DIM DA$ (B (3), B (2))
540 J = 0: Q = 0
560 INPUT A$, B$
580 INPUT C$
600 IF C$ "BOT" THEN 740
620 IF C$ = "EOD" THEN 770
625 :
630 REM IF ALPHABETICAL THEN
635 REM SA VE C$
640 IF A$= 11 1 11 AND B$ = "0" THEN DA$ (Q,J) C$:

GOTO 700
645 :
650 REM IF NUMERICAL THEN
655 REM SAVE B$
660 IF A$ = " 0" AND C$= "V" THEN DA$ (Q, J) B$:

GOTO 700
665:

DIF TRANSLATOR I

670 REM IF NOT "V" THEN
675 REM SAVE BOTH
680 DA$ (Q, J) = B$ + C$
685 :
700 J = J + 1
720 GOTO 560
740 J = 1: Q = Q + 1
760 GOTO 560
768 :
769 :
770 REM **--WRITE NEW FILE--**
775 VTAB 2 4: FLASH : PRINT "WRITING NEW FILE" : NORMAL
780 PRINT 0$; "OPEN"; FILE$ + II. UP"; II' L"; RL
800 FOR K = 1 TO Q
840 PRINTD$; "WRITE";FILE$ + " . UP"; " , R";K
850 FOR W = 1 TO J - 1
860 PRINT DA$ (K, W)
880 NEXT W
900 NEXT K
920 PRINT D$; "CLOSE" ; FILE$ + II. UP"
1000 PRINT 0$; "CLOSE"
1010 PRINT "ALL FINISHED"
1020 TEXT
1030 NORMAL
1040 PRINT 0$; "PRtf' O"
1060 END

341

342 APPENDICES

VARIABLE CREATOR

10 REM * *-CREATE VARIABLES- * *
11 :
12 :
13 REM ** --VARIABLES--* *
14 REM L1$=HEAD . SECT. LINE 1
16 REM L3$=HEAD . SECT. LINE 3
18 REM A() =HEAD . SECT. 2ND LINE
19 REM FIRST VALUE
20 REM B () =HEAD . SECT. 2ND LINE
2 1 REM SECOND VALUE
22 REM I= SET COUNTER
24 REM RL =RECORD LENGTH
26 REM LL= LABEL LENGTH
46 :
4 8 :
50 D$ = CHR$ (4): REM CTRL D
60 DIM L1$ (99), A (99), B (99) , L3$ (99)
80 HOME : VTAB 5
100 INPUT "DIF FILE NAME PLEASE! " ; FILE$
110 INPUT "DO YOU WANT A PAPER PRINTOUT? " ; YES$
115 IF YES$ = "Y" THEN PRINT D$; "PRtH"
120 IF RIGHT$ (FILE$, 4) < > " . DIF" THEN FILE$ = FILE$

+ " . DIF"
121 :
122 :
130 REM ** --INPUT HEAD . SECT--* *
140 PRINT D$; "OPEN" ; FILE$
160 PRINT D$; "READ"; FILE$
180 I = 1
200 INPUT L1$ (I)
2 2 0 INPUT A (I) , B (I)
240 INPUT L3$ (I)
260 IF L1$ (I) = " DATA" THEN 3 05
280 I = I + 1
300 GOTO 200
301 :
3 02 :
305 REM **-DISPLAY HEAD . SECT- **
310 HOME : PRINT " LABEL"; : HTAB 23 : PRINT "FIELD"
3 12 PRINT II NAME" ;: HTAB 24 : PRINT "SIZE"
315 POKE 3 4 , 3 : PRINT : REM SET WINDOW

VARIABLE CREATOR 343

320 FOR K = 2 TO I
340 IF LEN (L3$ (K)) < > 0 THEN PRINT A (K) ; " "; L3$ (K) ; :

HTAB 25: PRINT B (K + 1)
360 LL = LL + LEN (L3$ (K))
420 IF L1$ (K) = "SIZE" THEN RL = RL + B (K)
440 NEXT K
445 RL = RL + B (K - 2)
450 PRINT : PRINT
460 PRINT "RECORD LENGTH = " ; RL
480 PRINT " LABEL LENGTH= " ; LL
490 PRINT L1$ (2); ti = II; B (2)
495 PRINT L1$ (3); " OR NUMBER OF RECORDS = " ; B (3)
496 PRINT : POKE 34 , 22: REM SET WINDOW
498 :
499 :
500 REM ** - WRITE LABELS INFO-* *
510 NF$ = FILE$ + " . UP"
512 TN= B (3)
520 PRINT D$; "OPEN VARIABLES"
540 PRINT D$; " WRITE VARIABLES"
560 PRINT NF$
580 PRINT TN
600 PRINT RL
640 PRINT B (2)
700 FORK = 2 TO I
720 IF LEN (L3$ (K)) < > 0 THEN PRINT L3$ (K):

PRINT B (K + 1)
740 NEXT K
1000 PRINT D$; "CLOSE"
1010 PRINT " ALL FINISHED"
1020 TEXT
1030 NORMAL
1040 PRINT D$; "PRll' O"
1060 END

344 APPENDICES

READ NEW FILE

20 D$ = CHR$ (4)
25 PRINT D$; "OPEN VARIABLES"
27 PRINT D$; "READ VARIABLES"
29 INPUT NF$
31 INPUT TN
33 INPUT RL
35 INPUT LABEL
36 DIMLABEL$(LABEL),FIELDSIZE(LABEL) ,DA$(TN,LABEL)
37 FORK= 1 TO LABEL
39 INPUT LABEL$ (K)
41 INPUT FIELDSIZE (K)
43 NEXT K
45 PRINT D$; "CLOSE VARIABLES"
50 FILE$ = NF$
60 PRINTD$; "0PEN";FILE$; ",L";RL
80 FOR I = 1 TO TN
100 PRINT D$; "READ"; FILE$;", R"; I
120 FORK = 1 TO LABEL
140 INPUT DA$ (I , K)
160 NEXT K
180 NEXT I
200 PRINT D$; "CLOSE"
220 FOR I = 1 TO TN
240 FORK = 1 TO LABEL
250 PRINT LABEL$ (K); : HTAB 20 : PRINT FIELDSIZE (K)
260 PRINT DA$ (I , K)
280 NEXT K
300 NEXT I
320 END

APPENDIX G.

MEDICAL RECORDS SYSTEM PROGRAMS

MEDICAL RECORDS

10 REM ** --MEDICAL RECORDS--**
11 :
12 :
20 D$ = CHR$ (4) : REM CONTROL D
60 TB = 15: REM HTAB VALUE
80 :
90 :
100 REM **--MENU ROUTINE--**
llO HOME : VTAB 5
120 HTAB TB
140 PRINT "MEDICAL RECORDS"
160 PRINT : PRINT : PRINT
180 HTAB TB
200 PRINT "l. WRITE RECORD"
210 PRINT : HTAB TB
220 PRINT "2. READ RECORD"
230 PRINT : HTAB TB
240 PRINT "3. SEARCH RECORDS"
250 PRINT : HTAB TB
260 PRINT "4 . END"
280 PRINT : HTAB TB
300 INPUT "WHICH NUMBER " ; NUMBER
320 IF NUMBER < 1 OR NUMBER > 4 THEN 280
410 IF NUMBER = 1 THEN 1000
420 IF NUMBER = 2 THEN 2000
430 IF NUMBER = 3 THEN 3000
440 IF NUMBER = 4 THEN END
980:

345

346 APPENDICES

990 :
1000 REM **--WRITE ROUTINE-- **
102 0 HOME : VTAB 10
1030 HTAB TB
1040 INPUT "NAME II; NAME$
105 0 IF LEN (NAME$) > 14 THEN NAME$ = LEFT$ (NAME $, 14)
1060 PRINT
1070 HTAB TB
1080 INPUT "DATE II; DT$
1100 PRINT
1120 HOME : VTAB 5
1140 HTAB TB
1160 PRINT "TYPE OF RECORD"
1180 PRINT : PRINT
1200 HTAB TB
1 220 PRINT "D- - DR. VISIT"
1230 PRINT : HTAB TB
1240 PRINT "M- -MEDICAT I ON"
1250 PRINT : HTAB TB
1260 PRINT "I- -ILLNESS"
1 270 PRINT : HTAB TB
1280 PRINT "A- -ACCIDENT/ INJURY"
1290 PRINT : HTAB TB
1300 PRINT "S- - SHOT / IMMUNIZATION"
1310 PRINT : HTAB TB
1320 PRINT "X- -X-RAY"
1330 PRINT : HTAB TB
1340 INPUT "WHICH TYPE OF RECORD ";TYPE$
1360 HOME : VTAB 5
1365 HTAB 8: PRINT "TYPE I N ANY MISC . I NFO. II

1368 VTAB 10
1370 HTAB 8
1380 FOR I = 1 TO 22
1400 PRINT CHR$ (95) ; : REM UNDERLINE
1420 NEXT I
1430 HTAB 8
1440 VTAB 10
1460 INPUT " " ; MISC$: REM INPUT OVER UNDERLINE
1480 IF LEN (MI SC$) > 22 THEN PRINT "TOO LONG" : PRINT :

PRINT "DO NOT GO BEYOND THE END OF THE DASHES": FOR I
TO 3000 : NEXT I : GOTO 1 360

1500 HOME : VTAB 5
1520 PRINT NAME$
1530 PRINT

1540 PRINT DT$
1550 PRINT

MEDICAL RECORDS

1555 TP$ =TYPE$: GOSUB 10000: REM TYPE SUBROUTINE
1560 PRINT TP$
1570 PRINT
1580 PRINT MISC$
1590 PRINT
1600 INPUT "IS THIS CORRECT ? ";YES$
1620 IF YES$ < > "Y" THEN 1000: REM START OVER
1640:
1660 :
1700 REM **--OUTPUT ROUTINE--**
1710 ONERR GOTO 1950: REM FOR FIRST USE
1720 PRINTD$; "0PENMEDICALFILE, L50"
1740 PRINT D$; "READ MEDICAL FILE, RO"
1760 INPUT PTR
178 0 PTR = PTR + 1
1800 PRINT D$; "WRITE MEDICAL FILE, R"; PTR; " , B"; 1
1810 PRINT NAME$
1820 PRINT D$; "WRITE MEDICAL FILE, R" ; PTR; " , B"; 15
1830 PRINT DT$
1840 PRINT D$; "WRITE MEDICAL FILE, R" ; PTR; " , B" ; 25
1850 PRINT TYPE$
1860 PRINT D$; "WRITE MEDICAL FILE, R"; PTR; ", B"; 27
1870 PRINT MISC$
1880 PRINT D$; "WRITE MEDICAL FILE, RO"
1900 PRINT PTR
1920 PRINT D$; "CLOSE MEDICAL FILE"
1930 POKE 216,0 : REM RESET ERR FLAG
1940 GOTO 100: REM MENU
1945 :
1946 :
1950 REM CREATE PTR FOR FIRST TIME
1955 POKE 216 , 0: REM RESET ERR FLAG
1960 PRINT D$; "WRITE MEDICAL FILE, RO"
1970 PRINT "0"
1975 GOTO 1 700 : REM BEGIN AGAIN
1980 :
1990 :
2000 REM **- - READ ROUTINE - -**
2020 PRINT D$; "OPEN MEDICAL FILE, L50"
2040 PRINTD$; "READ MEDICAL FILE, RO"
2060 INPUT PTR
2080 FOR I = 1 TO PTR

347

348 APPENDICES

2100 PRINT D$; "READ MEDICAL FILE, R"; I;" , B"; 1
2120 INPUT NAME$
2140 PRINT D$; "READ MEDICAL FILE, R"; I;", B"; 15
2160 INPUT DT$
2180 PRINT D$; "READ MEDICAL FILE, R"; I;" , B"; 25
2200 INPUT TYPE$
2220 PRINT D$; "READ MEDICAL FILE, R"; I;" , B"; 27
2240 INPUT MISC$
2260 TP$ = TYPE$: GOSUB 10000: TYPE$ = TP$
2280 PRINT NAME$;
2300 HTAB 10
2320 PRINT DT$;
2340 HTAB 20
2360 PRINT TYPE$
2380 HTAB 20
2400 PRINT MISC$
2420 PRINT
2440 NEXT I
2460 PRINT D$; "CLOSE MEDICAL FILE"
2480 INPUT "HIT RETURN TO GO TO MENU "; L$
2500 GOTO 100: REM MENU
2980 :
2990 :
3000 REM **--SEARCH ROUTINE- - **
3020 HOME : VTAB 5: HTAB TB
3030 PRINT "SEARCH FOR .. . "
3035 PRINT
3040 HTAB TB
3060 PRINT "l. NAME"
3070 PRINT : HTAB TB
3080 PRINT "2 . DATE"
3090 PRINT : HTAB TB
3100 PRINT "3. TYPE"
3110 PRINT: HTAB TB
3120 PRINT "4. MISC"
3130 PRINT : HTAB TB
3135 PRINT II 5. END SEARCH"
3137 PRINT : HTAB TB
3140 INPUT "WHICH NUMBER? II ; NB
3160 IF NB < 1 OR NB > 5 THEN 3 137
3180 IF NB = 1 THEN BYTE = 1 : B$ = "NAME"
3200 IF NB = 2 THEN BYTE = 15 : B$ = "DATE"
3220 IF NB = 3 THEN BYTE = 25 : B$ = "TYPE"
3240 IF NB = 4 THEN BYTE = 27 : B$ = "MISC"

MEDICAL RECORDS

3260 IF NB = 5 THEN 100: REM MENU
3265 PRINT : HTAB TB
3270 PRINT "WHICH"; B$;: INPUT"?"; SRCH$
3271 HOME : VTAB 2
3272 :
3273 :
3275 REM **- - INPUT ROUTINE--**
3280 PRINT D$; "OPEN MEDICAL FILE , L50"
3300 PRINT D$; "READ MEDICAL FILE, RO"
3320 INPUT PTR
3340 FOR I = 1 TO PTR
3360 PRINT D$; "READ MEDICAL FILE, R"; I;", B" ; BYTE
3380 INPUT FIND$
3400 IF SRCH$ < > FIND$ THEN 3640 : REM NEXT RECORD
3420 FORK = 1 TO 4
3440 IF K = 1 THEN BT = 1
3460 IF K = 2 THEN BT = 15
3480 IF K = 3 THEN BT = 25
3 5 0 0 IF K = 4 THEN BT = 2 7
3520 PRINT D$; "READ MEDICAL FILE, R" ; I ; ", B"; BT
3540 INPUT A$ (K)

349

3560 IF K = 3 THEN TP$ = A$ (3) : GOSUB 10000: A$ (3) = TP$
3580 PRINT A$ (K)
3600 NEXT K
3620 PRINT
3640 NEXT I
3660 PRINT D$; "CLOSE MEDICAL FILE"
3680 INPUT "HIT RETURN WHEN READY "; L$
3700 GOTO 3000 : REM SEARCH AGAIN
9998 :
9999 :
10000 REM **--SUBROUTINES--**
10100 REM *--TYPE SUBROUTINE--*
10120 IF TP $ = "D" THEN TP$ = "DR. VISIT"
10140 IF TP$ = "M" THEN TP$ = "MEDICATION"
10160 IF TP$ = "I" THEN TP$ = "ILLNESS"
10180 IF TP$ = "A" THEN TP$ = "ACCIDENT/ INJURY"
10200 IF TP$ = "S" THEN TP$ = "SHOT/IMMUNIZATION"
10220 IF TP $ = "X" THEN TP$ = "X-RAYS"
10240 RETURN

350 APPENDICES

MEDICAL RECORDS W/ARRAYS

10 REM ** - - MEDICAL RECORDS-- **
11 :
12 :
20 0$ = CHR$ (4): REM CONTROL D
40 DIM NAME$ (50), OT$ (50), TYPE$ (50), MISC$ (50)
60 TB = 15: REM HTAB VALUE
80:
90:
100 REM ** --MENU ROUTINE--* *
110 HOME : VTAB 5
120 HTAB TB
140 PRINT "MEDICAL RECORDS"
160 PRINT : PRINT : PRINT
180 HTAB TB
200 PRINT " 1. WRITE RECORD "
210 PRINT : HTAB TB
220 PRINT "2 . READ RECORD"
230 PRINT : HTAB TB
240 PRINT "3. SEARCH RECORDS"
250 PRINT : HTAB TB
260 PRINT "4 . END "
280 PRINT : HTAB TB
300 INPUT "WHICH NUMBER"; NUMBER
320 IF NUMBER < 1 OR NUMBER > 4 THEN 280
4 1 0 IF NUMBER = 1 THEN 1000
420 IF NUMBER = 2 THEN 2000
430 IF NUMBER = 3 THEN 3000
440 IF NUMBER = 4 THEN END
980 :
990 :
1000 REM ** - -WRI TE ROUTINE--**
1020 HOME : VTAB 10
1030 HTAB TB
1040 INPUT "NAME" ; NAME$
1050 IF LEN (NAME$) > 14 THEN NAME$ = LEFT$ (NAME$, 1 4)
1060 PRINT
1070 HTAB TB
1080 INPUT "DATE II; OT$
1100 PRINT
1120 HOME : VTAB 5
1140 HTAB TB

MEDICAL RECORDS W/ARRAYS

1160 PRINT "TYPE OF RECORD"
1180 PRINT : PRINT
1200 HTAB TB
1220 PRINT "D- -DR. VISIT"
1230 PRINT : HTAB TB
1240 PRINT "M- -MEDICATION"
1250 PRINT : HTAB TB
1260 PRINT "I- -ILLNESS"
1270 PRINT : HTAB TB
1280 PRINT "A- -ACCIDENT/ INJURY"
1290 PRINT : HTAB TB
1300 PRINT "S- -SHOT / IMMUNIZATION"
1310 PRINT : HTAB TB
1320 PRINT "X- -X-RAY"
1330 PRINT : HTAB TB
1340 INPUT "WHICH TYPE OF RECORD ";TYPE$
1360 HOME : VTAB 5
1365 HTAB 8: PRINT "TYPE IN ANY MISC. INFO . "
1368 VTAB 10
1370 HTAB 8
1380 FOR I = 1 TO 22
1400 PRINT CHR$ (95);: REM UNDERLINE
1420 NEXT I
1430 HTAB 8
1440 VTAB 10
1460 INPUT " ";MISC$: REM INPUT OVER UNDERLINE

351

1480 IF LEN (MISC$) > 22 THEN PRINT "TOO LONG" : PRINT :
PRINT "DO NOT GO BEYOND THE END OF THE DASHES": FOR I
TO 3000: NEXT I : GOTO 1360

1500 HOME : VTAB 5
1520 PRINT NAME$
1530 PRINT
1540 PRINT DT$
1550 PRINT
1555 TP$ = TYPE$: GOSUB 10000: REM TYPE SUBROUTINE
1560 PRINT TP$
1570 PRINT
1580 PRINT MISC$
1590 PRINT
1600 INPUT II IS THIS CORRECT? II ; YES$
1620 IF YES$ < > "Y" THEN 1000 : REM START OVER
1640 :
1660 :
1700 REM **--OUTPUT ROUTINE--**

352 APPENDICES

1710 ONERR GOTO 1950: REM FOR FIRST USE
1 720 PRINT D$; "OPEN MEDICAL FILE, L50"
1 740 PRINT D$; "READ MEDICAL FILE, RO"
1760 INPUT PTR
178 0 PTR = PTR + 1
1800 PRINT D$; "WRITE MEDICAL FILE , R" ; PTR; " , B"; 1
1810 PRINT NAME$
1820 PRINT D$; "WRITE MEDICAL FILE , R"; PTR; " , B"; 15
1830 PRINT DT$
1840 PRINT 0$; "WRITE MEDICAL FILE, R" ; PTR; " , B"; 25
1850 PRINT TYPE$
1860 PRINT D$; "WRITE MEDICAL FILE , R" ; PTR; " , B" ; 27
1870 PRINT MISC$
1880 PRINT D$; "WRITE MEDICAL FILE, RO"
1900 PRINT PTR
1920 PRINT D$; "CLOSE MEDICAL FILE"
1930 POKE 216, 0: REM RESET ERR FLAG
1940 GOTO 100: REM MENU
1945 :
1946 :
1950 REM CREATE PTR FOR FIRST TIME
1955 POKE 216, 0 : REM RESET ERR FLAG
1960 PRINT D$; "WRITE MEDICAL FILE, RO"
1970 PRINT "0"
1975 GOTO 1700: REM BEGIN AGAIN
1980 :
1990 :
2000 REM ** - -READ ROUTINE--**
2001
2002
2010 REM * * --INPUT ROUTINE--**
2020 PRINT D$; "OPEN MEDICAL FILE , L50"
2040 PRINT D$; "READ MEDICAL FILE , RO"
2060 INPUT PTR
2080 FOR I = 1 TO PTR
2100 PRINT 0$; "READ MEDICAL FILE , R"; I ; II I B"; 1
2120 INPUT NAME$
2140 PRINT 0$; "READ MEDICAL FILE, R"; I ; II I B" ; 15
2160 INPUT OT$
2180 PRINT D$; "READ MEDICAL FILE , R" ; I ; II I B"; 25
2200 INPUT TYPE$
2220 PRINT D$; "READ MEDICAL FILE , R" ; I ; II I B"; 27
2240 INPUT MISC$
2260 TP$ = TYPE$: GOSUB 10000 : TYPE$ = TP$

MEDICAL RECORDS W/ ARRA YS

2280 PRINT NAME$;
2300 HTAB 10
2320 PRINT DT$;
2340 HTAB 20
2360 PRINT TYPE$
2380 HTAB 20
2400 PRINT MISC$
2420 PRINT
2440 NEXT I
2460 PRINT D$; "CLOSE MEDICAL FILE"
2480 INPUT "HIT RETURN TO GO TO MENU "; L$
2500 GOTO 100: REM MENU
2980:
2990 :
3000 REM ** --SEARCH ROUTINE--**
3010 Q = 0
3020 HOME : VTAB 5: HTAB TB
3030 PRINT "SEARCH FOR ... II

3035 PRINT
3040 HTAB TB
3060 PRINT "l. NAME"
3070 PRINT : HTAB TB
3080 PRINT "2. DATE"
3090 PRINT : HTAB TB
3100 PRINT "3. TYPE"
3110 PRINT : HTAB TB
3120 PRINT "4. MISC"
3130 PRINT : HTAB TB
3135 PRINT "5. END SEARCH"
313 7 PRINT : HTAB TB
3140 INPUT "WHICH NUMBER? II; NB
3160 IF NB < 1 OR NB > 5 THEN 3137
3180 IF NB = 1 THEN BYTE = 1: B$ = "NAME"
3200 IF NB = 2 THEN BYTE = 15: B$ = "DATE"
3220 IF NB= 3 THEN BYTE= 25: B$ = "TYPE"
3240 IF NB = 4 THEN BYTE = 27: B$ = "MISC"
3260 IF NB = 5 THEN 100 : REM MENU
3265 PRINT : HTAB TB
3270 PRINT "WHICH " ; B$;: INPUT 11 ? 11

; SRCH$
3271
3272 :
3275 REM **--INPUT ROUTINE--**
3280 PRINT D$; "OPEN MEDICAL FILE , L50"
3300 PRINT D$; "READ MEDICAL FILE , RO"

353

354 APPENDICES

3320 INPUT PTR
3340 FOR I = 1 TO PTR
3360 PRINTD$; "READMEDICALFILE,R" ; I ; ",B";BYTE
3380 INPUT FIND$
3400 IF SRCH$ < > FIND$ THEN 3600: REM NEXT RECORD
3420 K = 1
343 0 FOR K = 1 TO 4
3440 IF K = 1 THEN BT = 1
3450 IF K = 2 THEN BT = 15
3460 IF K = 3 THEN BT = 25
3470 IF K = 4 THEN BT = 27
3480 PRINTD$; "READMEDICALFILE , R"; I ; 11 ,B";BT
3500 INPUT A$ (K)
3520 NEXT K
3540 Q = Q + 1
3560 NAME$ (Q) = A$ (1)
3570 DT$ (Q) = A$ (2)
3580 TYPE$ (Q) = A$ (3) : TP$ = TYPE$ (Q):

GOSUB 10000 : TYPE$ (Q) = TP$
3590MISC$(Q) = A$(4)
3600 NEXT I
3620 PRINT D$; "CLOSE MEDICAL FILE"
3621 :
3622 :
3630 REM **--DISPLAY ROUTINE--**
3640 HOME : VTAB 10
3700 FOR I = 1 TO Q
372 0 PRINT NAME$ (I) ;
3730 HTAB 10
3740 PRINT DT$ (I) ;
375 0 HTAB 20
3760 PRINT TYPE$ (I)
3 7 7 0 HTAB 20
3 78 0 PRINT MISC$ (I)
3 790 PRINT
3800 NEXT I
3820 INPUT "HIT RETURN WHEN READY" ; L$
384 0 GOTO 3 000 : REM SEARCH AGAIN
9998 :
9999 :
10000 REM **--SUBROUTINES--**
10100 REM * --TYPE SUBROUTINE- - *
101 20 IF TP $ = "D" THEN TP $ = "DR. VIST"
10140 I F TP $ = "M" THEN TP $ = "MEDICATION"

MEDICAL RECORDS W/ARRA YS 355

10160 IF TP$ = II I II THEN TP$ = "ILLNESS"
10180 IF TP$ = "A" THEN TP$ = "ACCIDENT/ INJURY"
10200 IF TP$ = "S" THEN TP$ = "SHOT/ IMMUNIZATION"
10220 IF TP$ = "X" THEN TP$ = "X-RAYS"
10240 RETURN

APPENDIX H.

HOME INVENTORY AND BACK ORDER SYSTEM PROGRAMS

HOME MENU

10 REM * * - - HOME INVENTORY SYSTEM- - * *
11 :
12 :
20 0$ = CHR$ (4) : REM CONTROL D
40 TB = 8: REM HTAB VALUE
60 :
80:
100 REM **--MENU ROUTINE- - **
120 HOME : VTAB 5
140 HTAB TB
160 PRINT "HOME INVENTORY SYSTEM"
180 PRINT : PRINT : PRINT
200 HTAB TB
220 PRINT "1. WRITE RECORD"
240 PRINT : HTAB TB
260 PRINT "2 . READ RECORD"
280 PRINT : HTAB TB
300 PRINT "3. SEARCH RECORDS"
320 PRINT : HTAB TB
340 PRINT "4 . CORRECT RECORD"
360 PRINT : HTAB TB
380 PRINT "5. END"
400 PRINT : HTAB TB
420 INPUT "WHICH NUMBER ";NUMBER
440 IF NUMBER < 1 OR NUMBER > 5 THEN 400
460 IF NUMBER = 1 THEN 1000
480 IF NUMBER = 2 THEN 2000
500 IF NUMBER = 3 THEN 3000

356

CREATE HOME INVENTORY

520 IF NUMBER = 4 THEN 4000
540 IF NUMBER = 5 THEN END
560 :
580 :
1000 REM ** --WRITE RECORD--* *
1020 PRINT D$; "RUN CREATE HOME INVENTORY"
1998 :
1999 :
2000 REM ** --READ RECORD--**
2020 PRINT D$; "RUN DISPLAY HOME INVENTORY"
2998 :
2999 :
3000 REM **--SEARCH RECORDS--* *
3020 PRI NT D$; "RUN SEARCH HOME INVENTORY "
3998 :
3999 :
4000 REM ** --CORRECT RECORDS--**
4020 PRINT D$; " RUN CORRECT HOME INVENTORY"

CREATE HOME INVENTORY

10 REM ** --CREATE HOME INVENTORY-- **
11 :
12 :
20 D$ = CHR$ (4) : REM CONTROL D
40 TB = 8 : REM HTAB VALUE
60 :
80 :
100 REM ** --INPUT ROUTINE-- **
120 HOME : VTAB 5
140 HTAB TB
160 PRINT "CREATE HOME INVENTORY "
180 PRINT : PRINT : PRINT
200 POKE 34 , 7: POKE 32, 7 : REM SET WI NDOW
220 :
240 :
260 HOME
280 PRINT II ITEM NAME PLEASE. II

300 PRINT : PRI NT
320 SP = 25
340 GOSUB 5000: REM INPUT SUBROUTINE
360 INPUT " II ; ITEM$

357

358 APPENDICES

380 IF LEN (ITEM$) > SP THEN PRINT " " GOTO 260:

400 :
420 :

REM 5 CTRL GI s

440 HOME
460 PRINT "ITEM SERIAL NUMBER PLEASE. "
480 PRINT : PRINT
500 SP = 15
520 GOSUB 5000: REM INPUT SUBROUTINE
540 INPUT " II ; SERIAL$
560 IF LEN (SERIAL$) > SP THEN PRINT"" : GOTO 440:

580 :
600 :

REM 5 CTRL GI s

620 HOME
640 PRINT "ITEM COST PLEASE"
660 PRINT : PRINT
680 SP = 10
700 GOSUB 5000: REM INPUT SUBROUTINE
720 INPUT II II; CST$
740 IF LEN (CST$) > SP THEN PRINT II II : GOTO 620:

760:
780 :

REM 5 CTRL G'S

800 HOME
820 PRINT "ROOM OF ITEM"
840 PRINT : PRINT
860 SP = 20
880 GOSUB 5000: REM INPUT SUBROUTINE
900 INPUT II II; ROOM$
920 IF LEN (ROOM$) > SP THEN PRINT II II . GOTO 800:

940 :
960 :

REM 5 CTRL GI s

980 HOME
1000 PRINT " ITEM DESCRIPTION"
1020 PRINT : PRINT
1040 SP = 30
1060 GOSUB 5000: REM INPUT SUBROUTINE
1080 INPUT II II; DESC$
1100 IF LEN (DESC$) > SP THEN PRINT II II . GOTO 980 :

REM 5 CTRL GI s
1120 :
1140 :

CREATE HOME INVENTORY

1400 REM **--DISPLAY FOR CORRECTION--**
1420 HOME
1440 PRINT "l. II ; ITEM$
1460 PRINT "2 . " ; SERIAL$
1480 PRINT " 3. " ; CST$
1500 PRINT "4. " ; ROOM$
1520 PRINT "5 . II ; DESC$
1540 PRINT : PRINT
1560 INPUT "IS THIS CORRECT (' Y' OR 'N ') " ; YES$
1580 IF YES$ = "Y" THEN 2000: REM FILE ROUTINE
1600 INPUT "WHICH NUMBER IS WRONG " ; NB
1610 IF NB < 1 OR NB > 5 THEN PRINT "INCORRECT

CHOICE" : GOTO 1600
1620 IF NB = 1 THEN SP = 25
1640 IF NB = 2 THEN SP = 15
1660 IF NB = 3 THEN SP = 10
1680 IF NB = 4 THEN SP = 20
1 700 IF NB = 5 THEN SP = 30
1720 PRINT
1740 PRINT "TYPE IN CORRECT INFO"
1 760 INPUT CT$ (NB)

359

1780 IF LEN (CT$ (NB)) > SP THEN PRINT "TOO LONG- -TRY
AGAIN PLEASE" : GOTO 1740

1800 IF NB = 1 THEN ITEM$ = CT$ (NB)
1820 IF NB = 2 THEN SERIAL$ = CT$ (NB)
1840 IF NB = 3 THEN CST$ = CT$ (NB)
1860 IF NB = 4 THEN ROOM$ = CT$ (NB)
1880 IF NB = 5 THEN DESC$ = CT$ (NB)
1900 GOTO 1 400 : REM CHECK AGAIN
1998 :
1999 :
2000 REM **--FILE ROUTINE- - **
2020 TEXT
2040 ONERR GOTO 2580: REM FIRST USE ONLY
2060 PRINT D$; "OPEN INVENTORY, LlOO"
2080 PRINT D$; "READ INVENTORY, RO"
2100 INPUT PTR
2120 PTR = PTR + 1 : POKE 216, 0 : REM RESET ERROR FLAG
2140 PRINT D$; "WRITE INVENTORY, R" ; PTR; " , B" ; 0
2160 PRINT ITEM$
2180 PRINT D$; "WRITE INVENTORY , R"; PTR; " , B" ; 25
2200 PRINT SERIAL$
2220 PRINT D$; "WRITE INVENTORY , R"; PTR; " , B" ; 4 0
2240 PRINT CST$

360 APPENDICES

2260 PRINT D$; "WRITE INVENTORY , R" ; PTR; II I B"; 50
2280 PRINT ROOM$
2300 PRINT D$; "WRITE INVENTORY , R"; PTR; ", B"; 70
2320 PRINT DESC$
2340 PRINT D$; "WRITE INVENTORY, RO"
2360 PRINT PTR
2380 PRINT D$; "CLOSE INVENTORY"
2400 TEXT : HOME
2420 VTAB 5
2440 PRINT "DO YOU WANT TO ADD MORE ITEMS ? "
2460 PRINT
2480 INPUT "TYPE 'NO I TO STOP II; NO$
2500 IF NO$ = "NO" THEN PRINT D$; "RUN HOME MENU"
2520 GOTO 100: REM BEGIN AGAIN
2540 :
2560:
2580 REM ** --FIRST USE ONLY--**
2600 POKE 216, 0: REM RESET ERROR FLAG
2620 PRINTD$; "WRITE INVENTORY , RO"
2640 PRINT "0"
2660 PRINT D$; "CLOSE INVENTORY"
2680 GOTO 2000: REM BEGIN FILE ROUTINE AGAIN
2700 :
2720 :
5000 REM ** --SUBROUTINE-- **
5040 HTAB 1
5060 FOR I = 1 TO SP
5080 PRINT CHR$ (95) ; : REM UNDERLINE
5100 NEXT I
5120 HTAB 1
5160 RETURN

DISPLAY HOME INVENTORY

DISPLAY HOME INVENTORY

10 REM ** - -DISPLAY HOME INVENTORY--**
11 :
12 :
20 D$ = CHR$ (4): REM CONTROL D
40 PRINT D$; "OPEN INVENTORY, L100"
60 PRINT D$; "READ INVENTORY, RO"
80 INPUT PTR
90 HOME
100 FOR I = 1 TO PTR
120 PRINT 0$; "READ INVENTORY, R" ; I;", B"; 0
140 INPUT ITEM$
160 PRINT D$; "READ INVENTORY, R"; I; II ' B"; 25
180 INPUT SERIAL$
200 PRINT D$; "READ INVENTORY' R II ; I; II ' B II; 40
220 INPUT CST$
240 PRINTD$; "READ INVENTORY,R"; I; ",B"; 50
260 INPUT ROOM$
280 PRINTD$; "READ INVENTORY,R"; I; ",B"; 70
300 INPUT DESC$
320 PRINT D$
340 PRINT I; II II; ITEM$;
360 HTAB 25: PRINT SERIAL$
380 PRINT"$"; CST$;
400 HTAB 15: PRINT ROOM$
420 PRINT DESC$
440 PRINT : PRINT
450 TTLCST = TTLCST + VAL (CST$)
460 NEXT I
480 PRINT D$; "CLOSE INVENTORY"
500 PRINT : PRINT : PRINT "TOTAL VALUE OF ITEMS

$";TTLCST
510 PRINT
520 INPUT "HIT RETURN TO RETURN TO MENU "; L$
540 PRINT D$; "RUN HOME MENU"

361

362 APPENDICES

SEARCH HOME INVENTORY

10 REM ***--SEARCH/ SORT RECORDS--***
11 :
12 :
13 :
20 D$ = CHR$ (4): REM CONTROL D
22 PRINT D$; "OPEN INVENTORY , LlOO"
24 PRINT D$; "READ INVENTORY, RO"
26 INPUT PTR
28 PRINT D$: DIM C$ (PTR)
30:
32 :
40 REM ** --MENU ROUTINE--**
50 HOME : VTAB 3
60 TB = 8: HTAB 12
80 PRINT "SEARCH/ SORT MENU"
100 PRINT : PRINT
120 HTAB TB
140 PRINT 11 1. SEARCH FOR ITEM"
160 PRINT : HTAB TB
180 PRINT "2. SEARCH FOR SERIAL 'if"
200 PRINT : HTAB TB
220 PRINT "3. SEARCH FOR COST"
240 PRINT : HTAB TB
260 PRINT "4. SEARCH FOR ROOM ITEMS"
280 PRINT : HTAB TB
300 PRINT "5. SORT ITEMS ALPHABETICALLY"
320 PRINT : HTAB TB
340 PRINT 11 6. SORT ITEMS BY SERIAL 'if "
360 PRINT : HTAB TB
380 PRINT "7. RETURN TO MAIN MENU"
400 PRINT : HTAB TB
420 INPUT "WHICH NUMBER ";NUMBER
440 IF NUMBER < 1 OR NUMBER > 7 THEN PRINT "INCORRECT

NUMBER! II: GOTO 400

510 IF NUMBER= 1THEN1000
520 IF NUMBER= 2 THEN 2000
530 IF NUMBER= 3 THEN 3000
540 IF NUMBER= 4 THEN 4000
550 IF NUMBER= 5 THEN 5000
560 IF NUMBER= 6 THEN 6000

SEARCH HOME INVENTORY

570 IF NUMBER = 7 THEN 7000
970 :
980 :
990 :
1000 REM **- - SEARCH FOR ITEM--* *
1020 HOME : VTAB 5
1040 HTAB TB
1060 INPUT "WHICH ITEM? "; SRCH$
1080 I = 1: BYTE = 0
1100 GOSUB 10000: REM SEARCH ROUTINE
1120 PRINT ITEM$; : HTAB 25: PRINT SERIAL$
1140 PRINT CST$; : HTAB 15: PRINT ROOM$
1160 PRINT DESC$
1180 PRINT : ITEM$ = II II: SERIAL$ = II II: CST$ = II ti

: ROOM$ = ti II : DESC $ = ti ti

1200 IF I = PTR OR I > PTR THEN 1260
1220 INPUT "SEARCH FOR MORE? " ; YES$
1240 IF YES$ = "Y" THEN GOTO 1100
1260 PRINT
1280 GOSUB 9000: REM HOUSKEEPING
1300 GOTO 40 : REM MENU
1970 :
1980 :
1990 :
2000 REM **--SEARCH FOR SERIAL :#: --**
2020 HOME : VTAB 5
2040 HTAB TB
2060 INPUT "WHICH SERIAL :#: "; SRCH$
2080 I = 1: BYTE = 25
2100 GOSUB 10000 : REM SEARCH ROUTINE
2120 PRINT SERIAL$; : HTAB 15: PRINT ITEM$
2140 PRINT
2160 GOSUB 9000: REM HOUSEKEEPING
2180 GOTO 40: REM MENU
2970:
2980 :
2990 :
3000 REM ** - -SEARCH FOR COST-- **
3020 HOME : VTAB 5: BYTE = 40: TTLAMT = 0 : FIND$ = II II

3040 HTAB 14
3060 PRI NT "SEARCH FOR ITEMS ... "
3080 PRINT : HTAB TB
3100 PRINT "A ... ABOVE A CERTAIN AMOUNT"
3120 PRINT : HTAB TB

363

364 APPENDICES

3140 PRINT "B . .. BELOW A CERTAIN AMOUNT"
3160 PRINT : HTAB TB
3180 INPUT "WHICH LETTER I A I OR I BI II ; LT$
3190 IF LT$ = " A" THEN 3220
3200 IF LT$ = "B" THEN 3500
32 1 0 PRINT II INCORRECT CHOICE II : GOTO 3160

3211 :
321 2 :
3220 REM * *-- ITEMS ABOVE$ AMOUNT--**
3230 HTAB TB
3240 INPUT "ABOVE WHICH AMOUNT? " ;AMT
3250 HOME : VTAB 2 : HTAB 14
3260 PRINT " I TEMS ABOVE $ 11

; AMT
3270 FOR I = 1 TO PTR
3280 PRINT 0$; "READ I NVENTORY, R 11

; I ; 11
, B 11

; BYTE
3290 INPUT FIND$
3300 IF FIND$ = 11 0 11 THEN 3 360
331 0 IF AMT > VAL (FIND$) THEN 3360
3320 PRINT D$; "READ INVENTORY, R 11

; I ; 11
, B 11

; 0
3330 INPUT ITEM$
3340 TTLAMT = TTLAMT + VAL (FIND$)
3350 PRINT ITEM$; : HTAB 30: PRINT FIND$
3360 NEXT I
3 3 70 PRINT
3380 PRINT "TOTAL VALUE = $" ; TTLAMT
3390 PRINT : GOSUB 9000: REM HOUSEKEEPING
3400 GOTO 40: REM MENU
3496 :
3 497 :
3500 REM ** - -ITEMS BELOW$ AMOUNT--**
3510 HTAB TB
3520 INPUT "BELOW WHICH AMOUNT"; AMT
3530 HOME : VTAB 2 : HTAB 14
3 540 PRINT " ITEMS BELOW$"; AMT
3550 FOR I = 1 TO PTR
3560 PRINTD$; "READ INVENTORY , R" ; I ; " , B" ; BYTE
3570 INPUT FIND$
3 5 8 0 IF F IND$ = "D" THEN 3 640
3590 IF AMT < VAL (FIND$) THEN 364 0
3 600 PRINT D$; "READ INVENTORY , R" ; I ;", B" ; 0
3610 INPUT ITEM$
3620 TTLAMT = TTLAMT + VAL (FIND$)
3 630 PRINT ITEM$; : HTAB 3 0: PRI NT FIND$
3 640 NEXT I

SEARCH HOME INVENTORY

3650 PRINT

3660 PRINT "TOTAL VALUE = $"; TTLAMT
3670 PRINT

3680 GOSUB 9000: REM HOUSEKEEPING
3690 GOTO 40: REM MENU
3970:

3980:

3990:
4000 REM **--SEARCH FOR ROOM ITEMS--**
4020 HOME : VTAB 5: TLROOM = 0
4040 HTAB TB

4060 INPUT "WHICH ROOM "; SRCH$
4080 I = 1: BYTE = 50: HOME : VTAB 5
4100 HTAB 14 : PRINT SRCH$: PRINT : PRINT
4120 GOSUB 10000: REM SEARCH ROUTINE
4140 PRINT ITEM$; : HTAB 25: PRINT SERIAL$

4160 PRINT CST$; : HTAB 11: PRINT DESC$
4180 TLROOM = TLROOM + VAL (CST$)
4200 PRINT
4220 IF I > PTR THEN 4280: REM SEARCH COMPLETED
4240 ITEM$ = II II: SERIAL$ = II II: CST$ = II II: DESC$ =
4260 GOTO 4120: REM CONTINUE SEARCH
4280 PRINT

II II

4300 PRINT "TOTAL VALUE FOR II; SRCH$; II = II ; TLROOM
4320 PRINT : GOSUB 9000: REM HOUSEKEEPING

4340 GOTO 40: REM MENU
4970 :
4980 :
4990:
5000 REM **--SORT ALPHABETICALLY--**
5020 HOME : VTAB 5

5040 HTAB TB
5060 INVERSE:: PRINT "WORKING- -PLEASE DON'T TOUCH!!"

: NORMAL
5080 Q = 1: REM VALID RECORD COUNTER
5100 FOR I = 1 TO PTR
5120 PRINT D$; "READ INVENTORY I R"; I; II I B II; 0
5140 INPUT C$
5160 IF C$ = "D" THEN 5220
5180 C$ (Q) = C$
5200 Q = Q + 1
5220 NEXT I
5240 N = Q - 1
5260 PRINT : PRINT : HTAB TB

365

366 APPENDICES

5280 INVERSE : PRINT "STILL WORKING- -PLEASE WAIT! "
: NORMAL

5300 GOSUB 20000 : REM SORT ROUTINE
5320 REM DISPLAY RESULTS
5340 HOME : VTAB 5
5360 SPEED= 150
5380 FOR I = 1 TO Q - 1
5400 PRINT I;" ";C$(I)
5420 NEXT I
5440 PRINT
5460 GOSUB 9000 : REM HOUSEKEEPING
5480 GOTO 40: REM MENU
5970 :
5980:
5990 :
6000 REM **--SORT BY SERIAL # --**
6020 HOME : VTAB 5
6040 HTAB TB
6060 INVERSE : PRINT "WORKING- -PLEASE DON'T TOUCH! ! "

: NORMAL
6080 Q = 1: REM VALID RECORD COUNTER
6100 FOR I = 1 TO PTR
6120 PRINTD$; "READ INVENTORY,R"; I; ",B"; 25
6140 INPUT C$
6160 IF C$ = "D" THEN 6280
6180 C$ (Q) = C$
6200 PRINT D$; "READ INVENTORY , R"; I;", B" ; 0
6220 INPUT ITEM$
6240 C$ (QJ = C$ (Q) + "*" + ITEM$
6260 Q = Q + 1
6280 NEXT I
6300 N = Q - 1
6320 PRINT : PRINT : HTAB TB
6340 INVERSE : PRINT "STILL WORKING- -PLEASE WAIT! "

: NORMAL
6360 GOSUB 20000 : REM SORT ROUTINE
6380 REM DISPLAY RESULTS
6400 HOME : VTAB 5
6420 J = 1
6440 FOR I = 1 TO Q - 1
6460 LN = LEN (C$ (I))
6480 PRINT I ;" " ;
6500 IF MID$ (C$ (I) , J , 1) = "*" THEN PRINT LEFT$ (C$ (I) , J - J

; : HTAB 20 : PRINT MID$ (C$ (I) , J + 1, LN) : GOTO 6540

SEARCH HOME INVENTORY

6520 J = J + 1 : GOTO 6500
6540 J = 1
6560 NEXT I
6580 PRINT
6600 GOSUB 9000 : REM HOUSEKEEPING
6620 GOTO 40: REM MENU
6970 :
7000 REM ** --RETURN TO HOME MENU-- **
7020 PRINT D$; "CLOSE INVENTORY"
7040 PRINT D$; "RUN HOME MENU"
7970 :
7980 :
7990:
9000 REM **--HOUSEKEEPING- -* *
9020 ITEM$ = II II

9040 SERIAL$ = II II

9060 CST$ = II "

9080 ROOM$ = II II

9100 DESC$ = II II

9120 PRINT D$; "PRlfO"
9140 SPEED = 255
9160 PRINT D$: REM CANCEL INPUT FROM DISK
9180 INPUT "HIT RETURN TO CONTINUE " ; L$
9900 RETURN
9970 :
9980 :
9990 :
10000 REM* * - - SEARCH SUBROUTINE-- * *
10020 PRINT D$; "READ INVENTORY, R"; I;", B"; BYTE
10040 INPUT FIND$
10060 IF FIND$ = "D" THEN 10100
10080 IF SRCH$ = FIND$ THEN 10200
10100 I = I + 1
10120 IF I < PTR OR I = PTR THEN 10000
10140 PRINT : HTAB TB
10160 PRINT "SEARCH COMPLETED!" : FORK= 1 TO 1000:

NEXT K
10180 RETURN
10200 PRINT D$; "READ INVENTORY , R" ; I ; " , B" ; 0
10220 INPUT ITEM$
10240 PRINTD$; "READ INVENTORY,R"; I; " , B"; 25
10260 INPUT SERIAL$
10280 PRINT D$; "READ INVENTORY , R"; I ; " , B" ; 40
10300 INPUT CST$

367

368 APPENDICES

10320 PRINTD$; "READ INVENTORY ,R"; I; ",B"; 50
10340 INPUT ROOM$
10360 PRINTD$; "READ INVENTORY,R"; I; " , B" ; 70
10380 INPUT DESC$
10400 I = I + 1
10420 PRINT D$: REM CANCEL INPUT FROM DISK
10440 RETURN
19970 :
19980 :
19990 :
20000 REM **- - SORT SUBROUTINE--**
20020 M = N
20040 M = INT (M I 2)
20060 IF M = 0 THEN 20300
20080 J = 1: K = N - M
20100 I = J
20120 L = I + M
20140 IF C$ (I) < C$ (L) THEN 20240
20160 T$ = C$ (I): C$ (I) = C$ (L) : C$ (L) = T$
20180 I = I - M
20200 IF I < 1 THEN 20240
20220 GOTO 20120
20240 J = J + 1
20260 IF J > K THEN 20040
20280 GOTO 20100
20300 RETURN

CORRECT HOME INVENTORY

CORRECT HOME INVENTORY

10 REM **--CORRECT HOME INVENTORY--**
11 :
12 :
20 D$ = CHR.$ (4): REM CONTROL D
40 TB = 8: REM HTAB VALUE
60 PRINT D$; "OPEN INVENTORY, LlOO"
70 PRINT D$; "READ INVENTORY, RO"
80 INPUT PTR
90 PRINT D$: REM CANCEL INPUT FROM DISK
95 :
96 :
100 REM **--MENU ROUTINE--**
120 HOME : VTAB 5
140 HTAB 12
160 PRINT "CORRECT / DELETE MENU"
180 PRINT : PRINT
200 HTAB TB
220 PRINT "C . .. CORRECT INVENTORY RECORD"
240 PRINT : HTAB TB
260 PRINT "D ... DELETE INVENTORY RECORD"
280 PRINT : HTAB TB
300 PRINT "R .. . RETURN TO HOME MENU"
320 PRINT : HTAB TB
340 INPUT "WHICH LETTER PLEASE? " ;LT$
360 IF LT$ = "C" THEN 1000
380 IF LT$ = "D" THEN 2000
400 IF LT$ = "R" THEN 3 000
420 PRINT : HTAB TB
440 PRINT "INCORRECT CHOICE": GOTO 320
970:
980 :
990 :
1000 REM **--CORRECT RECORD--**
1005 HOME
1010 POKE 3 2 , 7 : POKE 3 4 , 7 : REM SET WINDOW
1020 HOME
1040 FLAG$ = "NO" : REM INFO HAS YET TO BE CHANGED
105 0 PRINT "TYPE A '0' TO RETURN TO MENU" : PRINT
1060 INPUT "CORRECT WHICH RECORD? " ;REC
1070 IF REC = 0 THEN TEXT: GOTO 100: REM MENU
1075 IF REC > PTR THEN PRINT "INCORRECT CHOICE"

: GOTO 1060

369

370 APPENDICES

1080 GOSUB 6000: REM READ FILE
1120 REM **--DISPLAY FOR CORRECTION--**
1140 HOME
1160 PRINT II 1. II; ITEM$
1180 PRINT "2. " ;SERIAL$
1200 PRINT "3. ";CST$
1220 PRINT "4. ";ROOM$
1240 PRINT "5. " ; DESC$
1260 PRINT : PRINT
1280 INPUT "IS THIS CORRECT (I y I OR ' N') II; YES$
1290 IF YES$ = "Y" AND FLAG$ = "NO" THEN 1000
1300 IF YES$ = "Y" AND FLAG$ = "YES" THEN 7000: REM FILE

ROUTINE
1320 INPUT "WHICH NUMBER IS WRONG ";NB
1330 IF NB < 1 OR NB > 5 THEN PRINT "INCORRECT CHOICE"

: GOTO 1320
1340
1360
1380
1400
1420
1440

IF NB=
IF NB=
IF NB=
IF NB=
IF NB=
PRINT

1 THEN SP= 25
2 THEN SP= 15
3 THEN SP = 10
4 THEN SP = 20
5 THEN SP = 30

1460 PRINT "TYPE IN CORRECT INFO"
1480 INPUT CT$ (NB)
1500 IF LEN (CT$ (NB)) > SP THEN PRINT "TOO LONG- -TRY

AGAIN PLEASE" : GOTO 1460
1520 IF NB = 1 THEN ITEM$ = CT$ (NB)
1540 IF NB = 2 THEN SERIAL$ = CT$ (NB)
1560 IF NB = 3 THEN CST$ = CT$ (NB)
1580 IF NB = 4 THEN ROOM$ = CT$ (NB)
1600 IF NB = 5 THEN DESC$ = CT$ (NB)
1610 FLAG$ = "YES": REM INFO HAS BEEN CHANGED
1620 GOTO 1120: REM CHECK AGAIN
1997 :
1998 :
1999 :
2000 REM **--DELETE RECORD- -**
2020 HOME
2040 POKE 32 , 7 : POKE 34 , 7 : REM SET WINDOW
2060 HOME
2100 PRINT "TYPE A '0' TO RETURN TO MENU": PRINT
2120 INPUT "DELETE WHICH RECORD ";REC
2140 IF REC = 0 THEN TEXT : GOTO 100 : REM MENU

CORRECT HOME INVENTORY

2150 IF REC > PTR THEN PRINT "INCORRECT CHOICE":
GOTO 2120

2160 GOSUB 6000: REM READ RECORD
2180 HOME
2200 PRINT ITEM$
2220 PRINT SERIAL$
2240 PRINT CST$
2260 PRINT ROOM$
2280 PRINT DESC$
2300 PRINT : PRINT
2320 INPUT "DELETE THIS RECORD? " ; YES$
2340 IF YES$ = "Y" THEN 2380
2360 TEXT : GOTO 2000
2380 PRINT "ARE YOU SURE?": PRINT
2390 INPUT "TYPE I YES I TO DELETE RECORD II; YES$
2400 IF YES$ = "YES " THEN 2440
2420 TEXT : GOTO 2000
2440 ITEM$ = "D"
2460 SERIAL$ = "D II
2480 CST$ = "D"
2500 ROOM$ = "D"
2520 DESC$ = "D"
2540 GOTO 7000 : REM FILE ROUTINE
2970 :
2980 :
2990 :
3000 REM **--RETURN TO HOME MENU--**
3020 TEXT : PRINT D$; "CLOSE INVENTORY"
3040 PRINT D$; "RUN HOME MENU"
3970 :
3980 :
3990:
6000 REM **--READ FILE ROUTINE- -**
6020 PRINT D$; "READ INVENTORY , R" ; REC;" , B" ; 0
604 0 INPUT ITEM$
6060 PRINTO$; "READ INVENTORY,R";REC; " , B" ;25
6080 INPUT SERIAL$
6100 PRINTO$; "READ INVENTORY , R" ; REC; " , B" ;40
6120 INPUT CST$
6140 PRINT 0$; "READ INVENTORY , R" ; REC ; " , B" ; 50
6160 INPUT ROOM$
6180 PRINT 0 $; "READ INVENTORY ' R" ; REC ; II ' B II; 70
6200 INPUT OESC$
6220 PRINT 0$: REM CANCEL INPUT FROM DISK

371

372

6240 RETURN
6970 :
6980 :
6990 :

APPENDICES

7000 REM **--FILE ROUTINE-- **
7020 TEXT
7040 PRINT D$; "WRITE INVENTORY , R"; REC;", B" ; 0
7060 PRINT ITEM$
7080 PRINTD$; "WRITE INVENTORY ,R";REC; ",B" ;25
7100 PRINT SERIAL$
7120 PRINTD$; "WRITE INVENTORY,R";REC; " , B" ;40
7140 PRINT CST$
7160 PRINT D$; "WRITE INVENTORY , R"; REC;", B" ; 50
7180 PRINT ROOM$
7200 PRINTD$; "WRI TE INVENTORY , R";REC; ",B" ; 70
7220 PRINT DESC$
7240 PRINT D$; "CLOSE INVENTORY"
7260 PRINT D$; "OPEN INVENTORY , LlO O"
7280 PRINT D$
7300 GOTO 100: REM MENU

MENU

MENU

10 REM **--BACK ORDER SYSTEM- -**
11 :
12 :
20 D$ = CHR$ (4) : REM CONTROL D
40 TB = 8 : REM HTAB VALUE
60 :
80 :
100 REM **--MENU ROUTINE--**
120 HOME : VTAB 5
140 HTAB TB
160 PRINT "BACK ORDER SYSTEM"
180 PRINT : PRINT : PRINT
200 HTAB TB
220 PRINT "l. WRITE RECORD"
240 PRINT : HTAB TB
260 PRINT "2 . READ RECORD"
280 PRINT : HTAB TB

300 PRINT "3. SEARCH RECORDS"
320 PRINT : HTAB TB
340 PRINT "4 . CORRECT RECORD"
360 PRINT : HTAB TB
380 PRINT "5 . END"
400 PRINT : HTAB TB
420 INPUT "WHICH NUMBER II ; NUMBER

440 IF NUMBER < 1 OR NUMBER > 5 THEN 400
460 IF NUMBER = 1 THEN 1000
480 IF NUMBER = 2 THEN 2 000
500 IF NUMBER = 3 THEN 3000
520 IF NUMBER = 4 THEN 4000
540 IF NUMBER = 5 THEN END
560 :
580 :
1000 REM **--WRITE RECORD-- **
1020 PRINT D$; "RUN CREATE BACK ORDER"
1998
1999 :
2000 REM ** --READ RECORD-- **
2020 PRINT D$; "RUN DISPLAY BACK ORDER"
2998 :
2999 :
3000 REM * *--SEARCH RECORDS--**

373

374 APPENDICES

3020 PRINT D$; "RUN SEARCH BACK ORDER"
3998 :
3999 :
4000 REM ** - -CORRECT RECORDS - -**
4020 PRINT D$; "RUN CORRECT BACK ORDER"

CREATE BACK ORDER

10 REM **--CREATE BACK ORDER--**
11:
12 :
20 D$ = CHR$ (4) : REM CONTROL D
40 TB = 8: REM HTAB VALUE
60:
80:
100 REM **- - INPUT ROUTINE - -**
120 HOME : VTAB 5
140 HTAB TB
160 PRINT "CREATE BACK ORDER"
180 PRINT : PRINT
185 VTAB 20: HTAB 8
190 PRINT "CR = LAST RECORD": PRINT : HTAB 8:

PRINT "TYPE I - I FOR NO VALUE II
200 POKE34 , 7: POKE32,7: POKE35 , 19
220 :
240
260 HOME
280 PRINT II ITEM NAME PLEASE. II

300 PRINT : PRINT
320 SP = 25
340 GOSUB 5000: REM INPUT SUBROUTINE
360 INPUT "" ; ITEM$
380 IF LEN (ITEM$) > SP THEN PRINT " " · GOTO 260 :

REM 5 CTRL G I s
385 IF ITEM$ = "" THEN ITEM$ = A$
390 A$ = ITEM$
400:
420 :
440 HOME
460 PRINT "ITEM DESCRIPTION PLEASE. "
480 PRINT : PRINT
500 SP = 30

CREATE BACK ORDER

520 GOSUB 5000: REM INPUT SUBROUTINE
540 INPUT II II; DESC$
560 IF LEN (DESC$) > SP THEN PRINT II II : GOTO 440 :

REM 5 CTRL G' S
575 IF DESC$ = 1111 THEN DESC$ = B$
576 B$ = DESC$
580 :
600 :
620 HOME
640 PRINT "INDIVIDUAL'S NAME PLEASE. "
660 PRINT : PRINT
680 SP = 20
700 GOSUB 5000: REM INPUT SUBROUTINE
720 INPUT II II ; NAME$
740 IF LEN (NAME$) > SP THEN PRINT 1111

: GOTO 620
REM 5 CTRL G'S

755 IF NAME$ = 1111 THEN NAME$ = C$
756 C$ = NAME$
760 :
780 :
800 HOME
820 PRINT "PHONE *II

840 PRINT : PRINT
860 SP = 20
880 GOSUB 5000: REM INPUT SUBROUTINE
900 INPUT II II ; PHNE$
920 IF LEN (PHNE$) > SP THEN PRINT "": GOTO 800 :

REM 5 CTRL G'S
935 IF PHNE$ = II II THEN PHNE$ = D1$
936 D1$ = PHNE$
940 :
960 :
980 HOME
1000 PRINT "DATE REQUEST WAS-MADE"
1020 PRINT : PRINT
1040 SP = 10
1060 GOSUB 5000: REM INPUT SUBROUTINE
1080 INPUT II II; DTE$
1100 IF LEN (DTE$) > SP THEN PRINT " " : GOTO 980:

REM 5 CTRL G'S
1105 IF DTE$ = II II THEN DTE$ = E$
1110 E$ = DTE$
1120 :
1140 :

375

376 APPENDICES

1160 HOME
1180 PRINT "ORDERED YET ('y' OR IN') II

1200 PRINT : PRINT
1220 SP = 1
1240 GOSUB 5000: REM INPUT SUBROUTINE
1260 INPUT II II; OD$
1280 IF LEN (OD$) > SP THEN PRINT "" : GOTO 1160:

REM 5 CTRL G'S
1285 IF OD$ = II II THEN OD$ = F$
1290 F$ = OD$
1291 :
1292 :
1300 HOME
1310 PRINT "AMOUNT DEPOSITED"
1 320 PRINT : PRINT
1330 SP = 10
1340 GOSUB 5000 REM INPUT SUBROUTINE
1350 INPUT II"; AMT$
1360 IF LEN (AMT$) > SP THEN PRINT II II: GOTO 1300:

REM 5 CTRL G' S
1365 IF AMT$ = II II THEN AMT$ = G$
1370 G$ = AMT$
1391 :
1392 :
1400 REM **--DISPLAY FOR CORRECTION--**
1410 TEXT: POKE 34, 7: POKE 32, 7
1420 HOME
1440
1460
1480
1500
152 0
1525

PRINT "1.

PRINT "2 .
PRINT "3.
PRINT "4.
PRINT "5.
PRINT "6.

" ; ITEM$
II; DESC$
";NAME$
"; PHNE$
";DTE$
" ;OD$

1530 PRINT II 7 . II; AMT$
1540 PRINT : PRINT
1560 INPUT "IS THIS CORRECT ('Y' OR 'N') ";YES$
1580 IF YES$ = "Y" THEN 2000: REM FILE ROUTINE
1600 INPUT "WHICH NUMBER IS WRONG ";NB
1610 IF NB < 1 OR NB > 7 THEN PRINT "INCORRECT

CHOICE": GOTO 1600
1620 IF NB = 1 THEN SP = 25
1640 IF NB = 2 THEN SP = 30
1660 IF NB = 3 THEN SP = 20
1680 IF NB = 4 THEN SP = 20

CREATE BACK ORDER

1700 IF NB= 5 THEN SP= 10
1 705 IF NB = 6 THEN SP = 1
1710 IF NB = 7 THEN SP = 10
1720 PRINT
1740 PRINT "TYPE IN CORRECT INFO "
1760 INPUT CT$ (NB)
1780 IF LEN (CT$ (NB)) > SP THEN PRINT "TOO LONG- - TRY

AGAIN PLEASE": GOTO 1740
1800 IF NB = 1 THEN ITEM$ = CT$ (NB)
1820 IF NB = 2 THEN DESC$ = CT$ (NB)
1840 IF NB = 3 THEN NAME$ = CT$ (NB)
1860 IF NB = 4 THEN PHNE$ = CT$ (NB)
1880 IF NB = 5 THEN DTE$ = CT$ (NB)
1885 IF NB = 6 THEN OD$ = CT$ (NB)
1890 IF NB = 7 THEN AMT$ = CT$ (NB)
1900 GOTO 1400 : REM CHECK AGAIN
1998 :
1999 :
2000 REM **--FILE ROUTINE- - **
2020 TEXT
2040 ONERR GOTO 2580 : REM FIRST USE ONLY
2060 PRINT D$; "OPEN BACKORDER, L120"
2080 PRINT D$; "READ BACKORDER, RO"
2100 INPUT PTR
2120 PTR = PTR + 1: POKE 216, 0: REM RESET ERROR FLAG
2140 PRINT D$; "WRITE BACKORDER, R" ; PTR; ", B"; 0
2160 PRINT ITEM$
2180 PRINT D$; "WRITE BACKORDER, R"; PTR; " , B"; 25
2200 PRINT DESC$
2220 PRINT D$; "WRITE BACKORDER, R"; PTR; " , B" ; 55
2240 PRINT NAME$
2260 PRINT D$; "WRITE BACKORDER, R" ; PTR; ", B"; 75
2280 PRINT PHNE$
2300 PRINT D$; "WRITE BACKORDER, R" ; PTR; ", B" ; 95
2320 PRINT DTE$
2325 PRINT D$; "WRITE BACKORDER, R"; PTR; ", B" ; 105
2330 PRINT OD$
2335 PRINT D$; "WRITE BACKORDER, R" ; PTR ; ", B"; 110
233 7 PRINT AMT$
2340 PRINT D$; "WRITE BACKORDER, RO"
2360 PRINT PTR
238 0 PRINT D$; "CLOSE BACKORDER"
2400 TEXT : HOME
2420 VTAB 5

377

378 APPENDICES

2440 PRINT "DO YOU WANT TO ADD MORE ITEMS?"
2460 PRINT
2480 INPUT "TYPE 'NO ' TO STOP ";NO$
2500 IF NO$ = "NO" THEN PRINT D$; "RUN MENU"
2520 GOTO 100: REM BEGIN AGAIN
2540 :
2560 :
2580 REM ** - -FIRST USE ONLY--**
2600 POKE 216 , 0: REM RESET ERROR FLAG
2620 PRINT D$; "WRITE BACKORDER, RO"
2640 PRINT "0"
2660 PRINT D$; "CLOSE BACKORDER"
2680 GOTO 2000 : REM BEGIN FILE ROUTINE AGAIN
2700 :
2720 :
5000 REM **--SUBROUTINE--**
5040 HTAB 1
5060 FOR I = 1 TO SP
5080 PRINT CHR.$ (95);: REM UNDERLINE
5100 NEXT I
5120 HTAB 1
5160 RETURN

DISPLAY BACK ORDER

DISPLAY BACK ORDER

10 REM **--DISPLAY BACK ORDER--**
11 :
12 :
20 D$ = CHR$ (4) : REM CONTROL D
40 PRINT D$; "OPEN BACKORDER, L120"
60 PRINT D$; "READ BACKORDER, RO"
80 INPUT PTR
90 HOME
100 FOR I = 1 TO PTR
120 PRINT D$; "READ BACKORDER, R"; I;" , B"; 0
140 INPUT ITEM$
160 PRINT D$; "READ BACKORDER, R"; I;", B"; 25
180 INPUT DESC$
200 PRINT D$; "READ BACKORDER, R"; I;", B"; 55
220 INPUT NAME$
240 PRINT D$; "READ BACKORDER, R"; I; II' B" ; 75
260 INPUT PHNE$
280 PRINT D$; "READ BACKORDER, R"; I;", B"; 95
300 INPUT DTE $
305 PRINT D$; "READ BACKORDER, R"; I;", B"; 105
310 INPUT OD$
315 PRINT D$; "READ BACKORDER, R"; I;", B"; 110
3 17 INPUT AMT$
320 PRINT D$
340 PRINT I; II II; ITEM$;
360 HTAB 15 : PRINT DESC$
380 PRINT NAME$;
40 0 HTAB 15: PRINT PHNE$

379

420 PRINT DTE$; : HTAB 12: PRINT OD$; : HTAB 15: PRINT AMT$
440 PRINT : PRINT
460 NEXT I
480 PRINT D$; "CLOSE INVENTORY"
5 10 PRINT
520 INPUT "HIT RETURN TO RETURN TO MENU "; L$
540 PRINT D$; "RUN MENU"

380 APPENDICES

SEARCH BACK ORDER

10 REM *** --SEARCH/ SORT RECORDS- -***
11 :
12 :
13 :
20 D$ = CHR$ (4) : REM CONTROL D
22 PRINT D$; "OPEN BACKORDER, L120"
24 PRINT D$; "READ BACKORDER, RO"
26 INPUT PTR
28 PRINT D$: DIM C$ (PTR)
30 :
32 :
40 REM **--MENU ROUTINE-- **
50 HOME : VTAB 3
60 TB = 8: HTAB 12
80 PRINT "SEARCH/ SORT MENU"
100 PRINT : PRINT
120 HTAB TB
140 PRINT "l . SEARCH FOR ITEM"
160 PRINT : HTAB TB
180 PRINT "2 . SEARCH FOR NAME"
200 PRINT : HTAB TB
220 PRINT "3. SEARCH FOR DATE"
240 PRINT : HTAB TB
260 PRINT "4. ITEMS NOT YET ORDERED"
280 PRINT : HTAB TB
300 PRINT "5 . SORT ITEMS ALPHABETICALLY"
320 PRINT : HTAB TB
340 PRINT "6. SORT BY NAME"
360 PRINT : HTAB TB
380 PRINT "7. RETURN TO MAIN MENU"
400 PRINT : HTAB TB
420 INPUT "WHICH NUMBER"; NUMBER
440 IF NUMBER < 1 OR NUMBER > 7 THEN PRINT

"INCORRECT NUMBER! ": GOTO 400
510 IF NUMBER = 1 THEN 1000
520 IF NUMBER = 2 THEN 2000
530 IF NUMBER = 3 THEN 3000
540 IF NUMBER = 4 THEN 4000
550 IF NUMBER = 5 THEN 6000
560 IF NUMBER = 6 THEN 6000
570 IF NUMBER = 7 THEN 7000

970:
980:
990 :

SEARCH BACK ORDER

1000 REM **--SEARCH FOR ITEM--**
1020 HOME : VTAB 5
1040 HTAB TB
1060 INPUT "WHICH ITEM? "; SRCH$
1080 I= l:BYTE = 0
1090 GOSUB 8000: REM PRINT ROUTINE
1100 GOSUB 10000: REM SEARCH ROUTINE
1120 PRINT ITEM$; : HTAB 25: PRINT NAME$
1140 PRINT DTE$; : HTAB 10: PRINT PHNE$; : HTAB 30:

PRINT OD$
1160 PRINT DESC$
1180 PRINT : ITEM$ = II II : NAME$ = "II: DTE$ II II : PHNE$

II II: DESC$ = II II : OD$ = II II : AMT$ = II II

1200 IF I > PTR THEN 1260
1220 INPUT "SEARCH FOR MORE? ";YES$
1240 IF YES$ = "Y" THEN GOTO 1 100
1260 PRINT
1280 GOSUB 9000 : REM HOUSKEEPING
1300 GOTO 40: REM MENU
1970 :
1980 :
1990:
2000 REM **--SEARCH FOR NAME--**
2020 HOME : VTAB 5
2040 HTAB TB
2060 INPUT "WHICH NAME? "; SRCH$
2070 GOSUB 8000: REM PRINT ROUTINE
2080 I = 1: BYTE = 55
2100 GOSUB 10000 : REM SEARCH ROUTINE
2120 PRINT ITEM$; : HTAB 25: PRINT NAME$
2140 PRINT DTE$;: HTAB 10 : PRINT PHNE$;: HTAB 30 :

PRINT OD$
2160 PRINT DESC$
2180 PRINT : ITEM$ = 1111

: NAME$ = 1111
: DTE$ 1111

: PHNE$
II II : DESC$ = II II : OD$ = II II : AMT$ = II II

2200 IF I = PTR OR I > PTR THEN 2260
2220 INPUT "SEARCH FOR MORE? ";YES$
2240 IF YES$ = "Y" THEN GOTO 1100
2260 PRINT
2280 GOSUB 9000: REM HOUSKEEPING
2300 GOTO 40 : REM MENU

381

382

2970 :
2980 :
2990:

APPENDICES

3000 REM **--SEARCH FOR DATE--**
3020 HOME : VTAB 5: BYTE = 95 : FIND$ = ""
3040 HTAB 14
3060 PRINT "SEARCH FOR ITEMS ... "
3080 PRINT : HTAB TB
3100 PRINT "A ... AFTER A CERTAIN DATE"
3120 PRINT : HTAB TB
3140 PRINT "B ... BEFORE A CERTAIN DATE"
3160 PRINT : HTAB TB
3180 INPUT "WHICH LETTER 'A' OR 'B' " ; LT$
3190 IF LT$ = "A" THEN 3220
3200 IF LT$ = "B" THEN 3500
3210 PRINT "INCORRECT CHOICE ": GOTO 3160
3211 :
3212 :
3220 REM ** -- ITEMS AFTER DATE--**
3230 HTAB TB
3240 INPUT "AFTER WHICH DATE? ";OS$
3245 GOSUB 8000: REM PRINT ROUTINE
3250 HOME : VTAB 2: HTAB 14
3260 PRINT II ITEMS AFTER II; DS$
3270 FOR I = 1 TO PTR
3280 PRINT D$; "READ BACKORDER, R" ; I; ", B"; BYTE
3290 INPUT FIND$
3300 IF FIND$ = "D" THEN 3360
3310 IF OS$ > FIND$ THEN 3360
3320 PRINTD$; "READBACKORDER,R"; I; ",B"; 0
3330 INPUT ITEM$
3340 PRINT 0$; "READ BACKORDER, R" ; I ; " , B"; 55
3345 INPUT NAME$
3350 PRINT ITEM$;: HTAB 30 : PRINT FIND$
3355 PRINT NAME$
3357 PRINT
3360 NEXT I
3370 PRINT
3380 REM
3390 PRINT: GOSUB 9000: REM HOUSEKEEPING
3400 GOTO 40: REM MENU
3496 :
3497 :
3500 REM **--ITEMS BEFORE DATE--**

SEARCH BACK ORDER

3510 HTAB TB
3520 INPUT "BEFORE WHICH DATE "; DS$
3525 GOSUB 8000: REM PRINT ROUTINE
3530 HOME : VTAB 2 : HTAB 14
3540 PRINT II ITEMS BEFORE II ; DS$
3550 FOR I = 1 TO PTR
3560 PRINT D$; "READ BACKORDER, R 11

; I ; 11
, B 11

; BYTE
3570 INPUT FIND$
3580 IF FIND$ = 11 D 11 THEN 3640
3590 IF VAL (DS$) < VAL (FIND$) THEN 3640
3600 PRINT D$; "READ BACKORDER, R 11

; I; 11
, B"; 0

3610 INPUT ITEM$
3615 PRINT D$; "READ BACKORDER, R" ; I ; " , B" ; 55
3620 INPUT NAME$
3630 PRINT ITEM$; : HTAB 30: PRINT FIND$
3635 PRINT NAME$
3637 PRINT
3640 NEXT I
3650 PRINT
3660 REM
3670 PRINT
3680 GOSUB 9000: REM HOUSEKEEPING
3690 GOTO 40: REM MENU
3970 :
3980 :
3990 :
4000 REM ** --SEARCH FOR ROOM ITEMS--**
4020 HOME : VTAB 5
4040 HTAB TB
4060 SRCH$ = "N"
4070 GOSUB 8000 : REM PRINT ROUTINE
4080 I = 1: BYTE = 105: HOME : VTAB 5
4100 HTAB 10 : PRINT "ITEMS NOT ORDERED YET": PRINT

PRINT
4120 GOSUB 10000 : REM SEARCH ROUTINE
4140 PRINT ITEM$; : HTAB 25 : PRINT NAME$

383

415 0 PRINT PHNE$;: HTAB 20: PRI NT DTE$;: HTAB 30 : PRINT
AMT$

4160 PRINT DESC$
4180 TLROOM = TLROOM + VAL (CST$)
4200 PRINT
4220 IF I > PTR THEN 4280: REM SEARCH COMPLETED
4240 I TEM$ = II II : DESC$ = 1111

: NAME$ = II II : PHNE$ = 1111
: DTE$

= II II : AMT$ = II II

384 APPENDICES

4260 GOTO 4120: REM CONTINUE SEARCH
4280 PRINT
4300 REM
4320 PRINT : GOSUB 9000: REM HOUSEKEEPING
4340 GOTO 40: REM MENU
4970 :
4980 :
4990 :
5000 REM **--SORT ALPHABETICALLY--**
5020 HOME : VTAB 5
5030 IF NUMBER= 5 THEN BYTE = 0
5035 IF NUMBER= 6 THEN BYTE = 55
5040 HTAB TB
5060 INVERSE : PRINT "WORKING- -PLEASE DON IT TOUCH! ! II:

NORMAL
5080 Q = 1 : REM VALID RECORD COUNTER
5100 FOR I = 1 TO PTR
5120 PRINT D$; "READ BACKORDER, R"; I ; " , B"; BYTE
5140 INPUT C$
5160 IF C$ = "D" THEN 5220
5180 C$ (Q) = C$
5200 Q = Q + 1
5220 NEXT I
5240 N = Q - 1
5260 PRINT: PRINT: HTABTB
5280 INVERSE : PRINT "STILL WORKING- -PLEASE WAIT! "

NORMAL
5300 GOSUB 20000 : REM SORT ROUTINE
5320 REM DISPLAY RESULTS
5340 HOME : VTAB 5
5360 SPEED= 150
5380 FOR I = 1 TO Q - 1
5400 PRINT I; " " ; C$ (I)
5420 NEXT I
5440 PRINT
5460 GOSUB 9000: REM HOUSEKEEPING
5480 GOTO 40: REM MENU
5970 :
5980 :
5990 :
6000 REM ** - -SORT BY SERIAL # --**
6010 GOSUB 8000: REM PRINT ROUTINE
6020 HOME : VTAB 5
603 0 IF NUMBER = 5 THEN BYTE = 0

SEARCH BACK ORDER

6035 IF NUMBER = 6 THEN BYTE = 55
6040 HTAB TB

385

6060 INVERSE: PRINT "WORKING- -PLEASE DON'T TOUCH!! 11 :

NORMAL
6080 Q = 1: REM VALID RECORD COUNTER
6100 FOR I = 1 TO PTR
6120 PRINT D$; "READ BACKORDER, R" ; I; ", B"; BYTE
6140 INPUT C$
6160 IF C$ = "D" THEN 6280
6180 C$ (Q) = C$
6200 REM
6220 REM
6240 C$ (Q) = C$ (Q) + "*" + STR$ (I)
6260 Q = Q + 1
6280 NEXT I
6300 N = Q - 1
6320 PRINT: PRINT: HTAB TB
6340 INVERSE : PRINT " STILL WORKING- -PLEASE WAIT!":

NORMAL
6360 GOSUB 20000: REM SORT ROUTINE
6380 REM DISPLAY RESULTS
6400 HOME : VTAB 5
6420 J = 1
6440 FOR I = 1 TO Q - 1
6460LN =LEN (C$(I))
6480 PRINT I;" II;
6500 IFMID$ (C$(I) , J,1) ="*"THEN PRINT LEFT$ (C$ (I) ,

J - 1): K$ = MID$ (C$ (I), J + 1, LN) : GOTO 6540
6520 J = J + 1 : GOTO 6500
6540 K = VAL (K$)
6560 PRINT D$; "READ BACKORDER, R"; K ; " , B"; 0
6570 INPUT ITEM$
6580 PRINT D$; "READ BACKORDER, R" ; K; " , B"; 25
6590 INPUT DESC$
6600 PRINT 0$; "READ BACKORDER, R"; K; ", B" ; 55
6610 INPUT NAME$
6620 PRINTD$; "READBACKORDER,R" ; K; ",B" ; 75
6630 INPUT PHNE$
6640 PRINT 0$; "READ BACKORDER, R"; K; ", B"; 95
6650 INPUT DTE$
6660 PRINT 0$; "READ BACKORDER, R"; K; ", B"; 105
6670 INPUT 00$
6680 PRINTD$; "READBACKORDER, R" ; K; ",B" ; llO
6690 INPUT AMT$

386 APPENDICES

6700 PRINT D$: REM CANCEL INPUT FROM DISK
6710 PRINT ITEM$
6720 PRINT DESC$
6730 PRINT NAME$
6740 PRINT PHNE$
6750 PRINT DTE$
6760 PRINT OD$
6770 PRINT AMT$
6780 PRINT : PRINT
6790 J = 1
6800 NEXT I
6820 PRINT
6840 GOSUB 9000: REM HOUSEKEEPING
6860 GOTO 40: REM MENU
6970:
6980 :
6990 :
7000 REM **--RETURN TO HOME MENU--**
7020 PRINT D$; "CLOSE BACKORDER"
7040 PRINT D$; "RUN MENU"
7970 :
7980 :
7990 :
8000 REM ** --PRINT ROUTINE--**
8010 PRINT : HTAB TB
8020 INPUT "DO YOU WANT A PRINTOUT? " ;YES$
8040 IF YES$ = "Y" THEN 8080
8050 PRINT
8060 RETURN
8080 PRINT D$; "PR:#= l"
8090 PRINT
8100 RETURN
8980:
8990 :
8995 :
9000 REM **--HOUSEKEEPING--**
9020 ITEM$ = II II

9040 NAME$ = II II

9050 PHNE$ = II II

9060 DTE$ = II II

9070 OD$ = II II

9080 AMT$ = II II

9100 DESC$ = II II

9120 PRINT D$; 11 PR:#= 0 11

SEARCH BACK ORDER

9140 SPEED = 255
9160 PRINT D$: REM CANCEL INPUT FROM DISK
9180 INPUT "HIT RETURN TO CONTINUE "; L$
9900 RETURN
9970 :
9980 :
9990 :
10000 REM * * - - SEARCH SUBROUTINE- - **
10020 PRINTD$; "READBACKORDER,R"; I; 11 ,B";BYTE
10040 INPUT FIND$
10060 IF FIND$ = "D" THEN 10100
10080 IF SRCH$ = FIND$ THEN 10200
10100 I = I + 1
10120 IF I < PTR OR I = PTR THEN 10000
10140 PRINT : HTAB TB
10160 PRINT "SEARCH COMPLETED!": FORK= 1 TO 1000:

NEXTK
10180 RETURN
10200 PRINT D$; "READ BACKORDER, R" ; I ; " , B" ; 0
10220 INPUT ITEM$
10240 PRINT D$; "READ BACKORDER, R" ; I ; II' B" ; 25
10260 INPUT DESC$
10280 PRINTD$; "READ BACKORDER,R"; I; " , B"; 55
10300 INPUT NAME$
103 2 0 PRINT D$; "READ BACKORDER, R" ; I ; " , B"; 75
10340 INPUT PHNE$
10360 PRINT 0$; "READ BACKORDER, R" ; I ; ", B"; 95
10380 INPUT DTE$
10385 PRINT 0 $; "READ BACKORDER, R" ; I ; " , B" ; 105
10390 INPUT 00$
10395 PRINT 0 $; "READ BACKORDER, R" ; I ; ", B"; 110
10397 INPUT AMT$
10400 I = I + 1
10420 PRINT 0$: REM CANCEL INPUT FROM DISK
1044 0 RETURN
19970 :
19980 :
20000 REM * *--SORT SUBROUTINE--* *
20020 M = N
20040 M = INT (M I 2)
20060 IF M = 0 THEN 20300
20080 J = 1 : K = N - M
20100 I = J
20120 L = I + M

387

388 APPENDICES

20140 IF C$ (I) < C$ (L) THEN 20240
20160 T$ = C$(I) :C$ (I) = C$ (L) :C$(L) = T$
20180 I = I - M
20200 IF I < 1 THEN 20240
20220 GOTO 20120
20240 J = J + 1
20260 IF J > K THEN 20040
20280 GOTO 20100
20300 RETURN

CORRECT BACK ORDER

10 REM * *CORRECT BACK ORDER - - **
11 :
12 :
20 D$ = CHR$ (4) : REM CONTROL D
40 TB= 8: REM HTAB VALUE
60 PRINT D$; "OPEN BACKORDER, L120"
70 PRINT D$; "READ BACKORDER, RO"
80 INPUT PTR
90 PRINT D$: REM CANCEL INPUT FROM DISK
95 :
96:
100 REM **--MENU ROUTINE--* *
120 HOME : VTAB 5
140 HTAB 12
160 PRINT "CORRECT / DELETE MENU"
180 PRINT : PRINT
200 HTAB TB
220 PRINT "C . .. CORRECT BACKORDER RECORD"
240 PRINT : HTAB TB
260 PRINT "D . .. DELETE BACKORDER RECORD"
280 PRINT : HTAB TB
300 PRINT "R .. . RETURN TO MENU "
320 PRINT : HTAB TB
340 I NPUT "WHICH LETTER PLEASE? " ; LT$
360 IF LT$ = "C" THEN 1000
380 IF LT$ = "D" THEN 2000
400 IF LT$ = "R" THEN 3000
420 PRINT : HTAB TB
440 PRINT "INCORRECT CHOICE" : GOTO 320
970 :

980 :
990 :

CORRECT BACK ORDER

1000 REM ** --CORRECT RECORD-- **
1005 HOME
1010 POKE 32 , 7: POKE 34, 7 : REM SET WINDOW
1020 HOME
1040 FLAG$ = "NO": REM INFO HAS YET TO BE CHANGED
1050 PRINT "TYPE A '0' TO RETURN TO MENU": PRINT
1060 INPUT "CORRECT WHICH RECORD? " ; REC
1070 IF REC = 0 THEN TEXT: GOTO 100: REM MENU

389

1075 IF REC > PTR THEN PRINT "INCORRECT CHOICE": GOTO
1060

1080 GOSUB 6000: REM READ FILE
1120 REM **--D ISPLAY FOR CORRECTION--**
1140 HOME
1160
1180
1200
1220
1240
1245

PRINT "1.
PRINT "2.
PRINT " 3.
PR I NT " 4.
PRINT "5.
PRINT "6.

" ;ITEM$
" ; DESC$
" ; NAME$
"; PHNE$
";DTE$
" ; OD$

1250 PRINT "7. ";AMT$
1260 PRINT : PRINT
1280 INPUT "IS THIS CORRECT ('Y' OR 'N') "; YES$
1290 IF YES$ = "Y" AND FLAG$ = "NO" THEN 1000
1300 IF YES$ = "Y" AND FLAG$ = "YES" THEN 7000: REM

FILE ROUTINE
1320 INPUT "WHICH NUMBER IS WRONG"; NB
1330 IF NB < 1 OR NB > 7 THEN PRINT " INCORRECT CHOICE":

1340
1360
1380
1400
1420
142 5
1430

GOTO 1320
IF NB= 1 THEN SP=
IF NB = 2 THEN SP =
IF NB= 3 THEN SP =
IF NB = 4 THEN SP =
IF NB = 5 THEN SP =
IF NB= 6 THEN SP=
IF NB = 7 THEN SP=

1440 PRINT

25
3 0
20
2 0
10
1
10

1460 PRINT ·"TYPE IN CORRECT INFO "
1480 I NPUT CT$ (NB)
1500 IF LEN (CT$ (NB)) > SP THEN PRINT "TOO LONG- -TRY

AGAIN PLEASE": GOTO 1460
1520 IF NB = 1 THEN ITEM$ = CT$ (NB)
1540 IF NB = 2 THEN DESC$ = CT$ (NB)

390 APPENDICES

1560 IF NB = 3 THEN NAME$ = CT$ (NB)
1580 IF NB = 4 THEN PHNE$ = CT$ (NB)
1600 IF NB = 5 THEN DTE$ = CT$ (NB)
1603 IF NB = 6 THEN OD$ = CT$ (NB)
1606 IF NB = 7 THEN AMT$ = CT $ (NB)
1610 FLAG$ = "YES": REM INFO HAS BEEN CHANGED
1620 GOTO 1120: REM CHECK AGAIN
1997 :
1998 :
1999 :
2000 REM **--DELETE RECORD--**
2020 HOME
2040 POKE 32 , 7: POKE 34 , 7: REM SET WINDOW
2060 HOME
2100 PRINT "TYPE A '0' TO RETURN TO MENU": PRINT
2120 INPUT "DELETE WHICH RECORD " ; REC
2140 IF REC = 0 THEN TEXT : GOTO 100: REM MENU
2150 IF REC > PTR THEN PRINT "INCORRECT CHOI CE": GOTO

2120
2160 GOSUB 6000: REM READ RECORD
2180 HOME
2200 PRINT ITEM$
2220 PRINT DESC$
2240 PRINT NAME$
2260 PRINT PHNE$
2280 PRINT DTE$
2285 PRINT OD$
2290 PRINT AMT$
2300 PRINT : PRINT
2320 INPUT "DELETE THIS RECORD? ";YES$
2340 IF YES$ = " Y" THEN 2380
2360 TEXT : GOTO 2 000
2380 PRINT "ARE YOU SURE?": PRINT
2390 INPUT "TYPE 'YES' TO DELETE RECORD "; YES$
2400 IF YES$ = "YES" THEN 2440
2420 TEXT : GOTO 2000
2440 ITEM$ = "D"
2460 NAME$ = "D"
2480 DTE$ = "D"
2500 PHNE$ = "D"
2520 DESC$ = "D"
2525 OD$ = "D"
2530 AMT$ = "D"
2540 GOTO 7000 : REM FILE ROUTINE

2970 :
2980 :
2990 :

CORRECT BACK ORDER

3000 REM **--RETURN TO HOME MENU--**
3020 TEXT : PRINT D$; "CLOSE BACKORDER"
3040 PRINT D$; "RUN MENU"
3970 :
3980 :
3990 :
6000 REM ** --READ FILE ROUTINE--**
6020 PRINT D$; "READ BACKORDER, R"; REC; " , B"; 0
604 0 INPUT ITEM$
6060 PRINT D$; "READ BACKORDER, R"; REC;", B" ; 25
6080 INPUT DESC$
6100 PRINT D$; "READ BACKORDER, R"; REC; ", B"; 55
6120 INPUT NAME$
6140 PRINT D$; "READ BACKORDER, R"; REC; ", B"; 75
6160 INPUT PHNE$
6180 PRINT D$; "READ BACKORDER, R"; REC;", B"; 95
6200 INPUT DTE$
6205 PRINT D$; "READ BACKORDER, R"; REC;", B"; 105
6210 INPUT OD$
6215 PRINT D$; "READ BACKORDER, R"; REC; " , B"; 110
621 7 INPUT AMT$
6220 PRINT D$: REM CANCEL INPUT FROM DISK
6240 RETURN
6970 :
6980:
6990 :
7000 REM **--WRITE FILE ROUTINE--**
7020 TEXT
7040 PRINTD$; "WRITEBACKORDER,R" ; REC; " ,B " ; O
7060 PRINT ITEM$
7080 PRINT D$; "WRITE BACKORDER, R"; REC ; ", B" ; 25
7100 PRINT DESC$
7120 PRINT D$; "WRITE BACKORDER, R"; REC ; ", B" ; 55
7140 PRINT NAME$
7160 PRINT D$; "WRITE BACKORDER, R"; REC ; " , B" ; 75
7180 PRINT PHNE$
7200 PRINT D$; "WRITE BACKORDER, R"; REC;", B"; 95
7220 PRINT DTE$
7225 PRINT D$; "WRITE BACKORDER, R"; REC;", B"; 105
7230 PRINT OD$
7235 PRINT D$; "WRITE BACKORDER, R"; REC ; " , B" ; 110

391

392 APPENDICES

723 7 PRINT AMT$
7240 PRINT 0$; "CLOSE BACKORDER"
7260 PRINT 0$; "OPEN BACKORDER, L120"
7280 PRINT D$
7300 GOTO 100: REM MENU

APPENDIX I.

STOCKMARKET SYSTEM PROGRAMS

STOCK MENU

10 REM ***--STOCK MENU--**
11 :
12 :
20 D$ = CHR$ (4) : REM CONTROL D
40 TB = 8
100 HOME: VTAB 3
120 HTAB 15
140 PRINT "STOCK MENU"
160 PRINT : PRINT
180 HTAB TB
200 PRINT "l . ADD STOCK INFO. "
220 PRINT
240 HTAB TB
260 PRINT "2. DISPLAY STOCK INFO."
280 PRINT
300 HTAB TB
320 PRINT "3. DISPLAY HI / LOW VALUES"
340 PRINT
360 HTAB TB
380 PRINT "4. CREATE / CORRECT HI / LOW"
400 PRINT
420 HTAB TB
440 PRINT "5. CORRECT DATA"
460 PRINT
480 HTAB TB
500 PRINT 11 6. CATALOG"
520 PRINT
540 HTAB TB
560 PRINT "7 . END"

393

394

580 PRINT
600 HTAB TB

APPENDICES

620 INPUT "WHICH NUMBER II ; NB
640 IF NB < 1 OR NB > 7 THEN PRINT : HTAB TB : PRINT

"INCORRECT CHOICE": GOTO 600
660 IF NB = 1 THEN PRINT D$; "RUN ADD STOCKS"
680 IF NB = 2 THEN PRINT D$; "RUN DISPLAY STOCKS"
700 IF NB = 3 THEN PRINT D$; "RUN DISPLAY HI / LOW"
720 IF NB= 4 THEN PRINT D$; "RUN CREATE HI / LOW"
740 IF NB= 5 THEN PRINT D$; "RUN CORRECT STOCKS"
760 IF NB = 6 THEN PRINT D$; "CATALOG"
780 IF NB = 7 THEN END
800 PRINT
820 INPUT "HIT RETURN TO CONTINUE "; L$
840 GOTO 100

ADD STOCKS

10 REM *** - - ADD STOCK INFO--***
11 :
12 :
13 REM ** - - VARIABLES LIST-- **
14 REM STK$ = STOCK SYMBOL
15 REM HI$ = CURRENT HI PRICE
16 REM LOW$ = CURRENT LOW PRICE
17 REM PE = P / E RATIO
18 REM VOL = SALES VOLUME
19 REM H = DAILY HIGH PRICE
20 REM L = DAILY LOW PRICE
21 REM c = DAILY CLOSING PRICE
22 REM CR = CORRECTED FIGURE
27 :
28 :
29 REM **-- INITIALIZATION-- **
30 D$ = CHR$ (4) : REM CONTROL D
40 PRINT D$; "OPEN STOCKS, L260"
60 PRINT D$; "READ STOCKS , RO"
80 INPUT PTR
100 PRINT D$; "CLOSE STOCKS"
120 PTR = PTR+ 1
140 PRINT D$; "OPEN STOCKS HI / LOW"
160 PRINT D$; "READ STOCKS HI / LOW"
180 FOR I = 0 TO 9

200 INPUT STK$ (I)
220 INPUTHI$ (I)
240 INPUT LOW$ (I)
260 NEXT I

ADD STOCKS

280 PRINT D$; "CLOSE STOCKS HI / LOW"
297 :
298 :
299 REM ** --KEYBOARD INPUT--**
300 I = 0
320 HOME : VTAB 5
330 INPUT "TODAY Is DATE II; DT$
335 HOME : VTAB 5: PRINT DT$: PRINT : PRINT
340 PRINT STK$ (I)
350 PRINT : PRINT
360 INPUT "TODAY'S P / E RATIO "; PE
370 PRINT
380 INPUT "TODAY Is VOLUME II; VOL
390 GOSUB 7000
400 INPUT "TODAY Is HIGH II; H
410 GOSUB 7000
420 INPUT "TODAY Is LOW II ; L
430 GOSUB 7000
440 INPUT "TODAY Is CLOSE II ; c
457 :
458 :
459 REM **- - CORRECTION ROUTINE-- **
460 HOME : VTAB 3
470 HTAB 10
480 PRINT STK$ (I)
490 PRINT : PRINT
500 PRINT II 1. TODAY Is p /E RATIO-- II; PE
510 PRINT
520 PRINT "2. TODAY Is VOLUME--- -- II; VOL
530 PRINT
540 PRINT "3. TODAY'S HIGH------- "; H
550 PRINT
560 PRINT "4. TODAY'S LOW------ - - ";L
570 PRINT
580 PRINT "5. TODAY'S CLOSE------ ";C
600 PRINT
620 INPUT "ARE THESE FIGURES CORRECT? ";YES$
640 IF YES$ = "N" THEN 680
660 GOTO 900
680 PRINT

395

396 APPENDICES

700 INPUT "WHICH NUMBER IS WRONG"; NB
720 IF NB < 1 OR NB > 5 THEN PRINT "INCORRECT CHOICE":

GOTO 680
740 INPUT "THE CORRECT FIGURE= ";CR
760 IF NB = 1 THEN PE = CR
780 IF NB = 2 THEN VOL = CR
800 IF NB = 3 THEN H = CR
820 IF NB = 4 THEN L = CR
840 IF NB = 5 THEN C = CR
860 GOTO 460
897 :
898 :
899 REM **--EXCHANGE HI / LOW- -**
900 IF H > VAL (HI$ (I)) THEN HI$ (I) = STR$ '(H)
920 IF L < VAL (LOW$ (I)) THEN LOW$ (I) = STR$ (L)
940 IF VAL (LOW$ (I))= 0 THEN LOW$ (I) = STR$ (L)
957 :
958 :
959 REM **--FILE UPDATE--**
960 PRINT D$; "OPEN STOCKS , L260"
970 PRINTD$; "WRITE STOCKS,R";PTR; ",B";O
9 7 5 PRINT DT$
980 PRINT D$; "WRITE STOCKS, R"; PTR; " , B" ; (I * 25) + 10 + 0
1000 PRINT PE
1020 PRINT D$; "WRITE STOCKS, R"; PTR; ", B"; (I * 25) + 10 + 4
1040 PRINT VOL
1060 PRINT D$; "WRITE STOCKS, R"; PTR; ", B"; (I * 25) + 10 + 10
1080 PRINT H
1100 PRINT D$; "WRITE STOCKS , R"; PTR; ", B"; (I * 25) + 10 + 15

1120 PRINT L
1140 PRINT D$; "WRITE STOCKS, R"; PTR; " , B"; (I * 25) + 10 + 20
1160 PRINT C
1180 PRINT 0$; "CLOSE STOCKS"
1200 I = I + 1
1220 IF I < 10 THEN 335
1237 :
1238 :
1239 REM * *- -NEW HI / LOW FILE- - * *
1240 PRINT 0$; "OPEN STOCKS HI / LOW"
1260 PRINT D$; "WRITE STOCKS HI / LOW"
1280 FORK = 0 TO 9
1300 PRINT STK$ (K)
1320 PRINT HI$ (K)

1340 PRINT LOW$ (K)
1360 NEXT K

ADD STOCKS

1380 PRINT D$; "CLOSE STOCKS HI / LOW"
1397 :
1398 :
1399 REM ** --FILE POINTER--**
1400 PRINT D$; "OPEN STOCKS , L260"
1 420 PRINT D$; "WRITE STOCKS , RO"
1440 PRINT PTR
1460 PRINT D$; "CLOSE STOCKS"
1998 :
1999 :
5000 REM ** --RETURN TO STOCK MENU
5020 PRINT D$; "RUN STOCK MENU"
6997 :
6998 :
6999 REM **--REMINDER SUBROUTINE--* *
7000 HOME : VTAB 3
7020 PRINT" ** *- -REMEMBER-- *** "
704 0 PRINT "YOU MUST ADD THE FRACTION"
7060 PRINT "AS THE LAST DIGIT"
7080 PRINT "1 / 8------ = 1
7100 PRINT "1 / 4------ = 2
7120 PRINT "3 / 8------ = 3
7140 PRINT "1 / 2------= 4
7160 PRINT "5 / 8 ------ = 5
7180 PRINT "3 / 4------ = 6
72 0 0 PR I NT II 7 I 8 - - - - - - = 7
7220 PRINT "EVEN----- = 0
7222 PRINT : PRINT
7225 PRINT"* * **- - -IMPORTANT- - - ** * * "
7230 PRINT
7235 PRINT "IF THE NUMBER HAS NO"
7240 PRINT
7245 PRINT "FRACTION, PLEASE ENTER "
725 0 PRINT
7255 PRINT "A I 0 I AFTER THE NUMBER . II

72 60 PRINT
728 0 RETURN

397

398 APPENDICES

DISPLAY STOCKS

10 REM * * * --DISPLAY STOCK HISTORY--***
11 :
12 :
13 REM **- - VARIABLES LIST--**
14 REM STK$ = STOCK SYMBOL
15 REM HI$ = CURRENT HI PRICE
16 REM LOW$ = CURRENT LOW PRICE
17 REM PE = P / E RATIO
18 REM VOL = SALES VOLUME
19 REM H = DAILY HIGH PRICE
20 REM L = DAILY LOW PRICE
21 REM c = DAILY CLOSING PRICE
22 REM DT$ = DATE
23 REM F$ =FRACTION
24 REM AV = AVERAGE VOLUME
25 REM AP = AVERAGE PR! CE
26 REM CV = CLOS ING PR! CE WI 0 CONV .
27 REM Cl = lST CLOSE PRICE
28 REM C2 = LAST CLOSE PRICE
29 REM CD = DIFF . BETWEEN C2
30 REM M = COMMON VAR . CONV
31 REM Ll = COMMON VAR. CONV
32 REM w = TEMP. STOCK #
46:
47 :
48:
49 REM * * - -INITIALIZATION- - **
50 0$ = CHR$ (4) : REM CONTROL D
55 PRINT D$; "OPEN STOCKS, L260"
60 PRINT D$; "READ STOCKS , RO"
80 INPUT PTR
100 PRINT D$; "CLOSE STOCKS"
116 :
117 :
118 :
119 REM **--SET UP- - * *
120 HOME : VTAB 5
140 PRINT D$; "OPEN STOCKS HI / LOW"
160 PRINT D$; "READ STOCKS HI / LOW"
180 FOR I = 0 TO 9
200 INPUT STK$ (I)
220 INPUT HI$ (I)

DISPLAY STOCKS

230 M = VAL (HI$ (I)): GOSUB 8000: HI$ (I)
+ F$

240 INPUT LOW$ (I)

399

STR$ (M) + II ti

245 M = VAL (LOW$ (I)): GOSUB 8000: LOW$ (I) = STR$ (M) +
II II + F$

250 PRINT I+ 1; ". " ;: HTAB 5: PRINT STK$(I)
260 NEXT I
270 STK$ (10) = "STOCK MENU"
275 PRINT "11. ";: HTAB 5: PRINT STK$ (10)
280 PRINT D$; "CLOSE STOCKS HI / LOW"
285 PRINT
290 INPUT "WHICH STOCK " ; W
291 IF W < 1 OR W > 11 THEN PRINT "INCORRECT CHOICE"

GOTO 290
292 IF W= 11 THEN PRINT D$; "RUN STOCK MENU"
293 I = W - 1
294 ;
295 REM ***--TITLES- -***
296 HOME: VTAB 5: HTAB 18: PRINT STK$ (I): PRINT: PRINT
297 PRINT "DATE"; : HTAB 10: PRINT "VOL"; : HTAB 15: PRINT

298
299 ;

"HI";: HTAB23: PRINT"LOW";: HTAB31: PRINT"CLOSE"

300 REM **- -DISK INPUT ROUTINE--**
320 PRINT D$; "OPEN STOCKS, L260"
330 FORK = 1 TO PTR
335 PRINT D$; "READ STOCKS , R" ; K; " , B"; 0
337 INPUT DT$
340 PRINTD$; "READ STOCKS,R";K; " , B"; (I* 25) + 10
360 INPUT PE
380 PRINT D$; "READ STOCKS , R"; K ; " , B" ; (I * 25) + 10 + 4
400 INPUT VOL
420 PRINT D$; "READ STOCKS , R" ; K; ", B" ; (I * 25) + 10 + 10
440 INPUT H
460 PRINT D$; "READ STOCKS, R" ; K; ", B" ; (I * 25) + 10 + 15
480 INPUT L
500 PRINT D$; "READ STOCKS , R"; K; II' B"; (I * 25) + 10 + 20
520 INPUT C
536 ;
537 ;
538 ;
539 REM ** - -DISPLAY ROUTINE- -**
540 PRINT DT$;
600 HTAB 10

400 APPENDICES

620 PRINT VOL;
740 HTAB 15
750 M = H: GOSUB 8000: H = M
760 PRINT H;" II; F$;
780 HTAB 23
790 M = L: GOSUB 8000: L = M
800 PRINT L ; " "; F$;
820 HTAB 3 1
825 IF K = 1 THEN Cl = C: Vl = VOL
827 IF K= PTR THEN C2 = C
828 CV= C: Ll = CV : GOSUB 9000 : CV = Ll
830 M = C: GOSUB 8000: C = M
840 PRINT C; II II; F$
850 AV = AV + VOL
860 AP = AP + CV
880 NEXT K
884 PRINT D$
885 PRINT : INPUT "HIT RETURN TO CONTINUE " ; L$
886 :
887 :
888 :
889 REM ** --DISPLAY SECOND PAGE-- **
890 HOME : VTAB 5
895 HTAB: PRINT STK$ (I)
899 PRINT : PRINT
900 PRINT "CURRENT P / E RATIO = " ; PE
920 PRINT
940 PRINT "CURRENT HIGH = " ; HI$ (I)
945 AV = AV I (K - 1)
950 AP = AP I (K - 1)
955 PRINT
960 PRINT "CURRENT LOW= "_; LOW$ (I)
962 PRINT
965 PRINT "AVERAGE VOL. = ";AV
967 PRINT
970 PRINT "AVERAGE PRICE = " ; AP
972 P RINT
975 Ll = C2: GOSUB 9000: C2 = Ll
976 Ll = Cl: GOSUB 9000: Cl = Ll
977 CD = C2 - Cl
980 PRINT "PRICE DIFF. FROM lST REC . ";CD
985 PRINT
990 PRINT "LAST PRICE = "; C; II II; F$
996 :

997 :
998 :

DISPLAY STOCKS

999 REM ** --ANOTHER STOCK--**
1000 PRINT D$
1010 PRINT
1020 INPUT "HIT RETURN TO CONTINUE "; L$
1040 HOME : VTAB 5
1050 AV = 0: AP = 0

1060 FOR I = 1 TO 11
1080 PRINT I;".";: HTAB 5: PRINT STK$ (I - 1)
1100 NEXT I
1120 PRINT
1140 GOTO 290
1997 :
1998 :
1999 :
5000 REM **--RETURN TO STOCK MENU"
5020 PRINT D$; "RUN STOCK MENU"
6996:
6997 :
6998 :
8000 REM **--CONVERT TO FRACTION--**
8005 F = M - INT (M I 10) * 10
8010 M = INT (M I 10)
8020 IF F = 0 THEN F$ = II II

8040 IF F = 1 THEN F$ = "1 / 8"
8060 IF F = 2 THEN F$ = "1 / 4"
8080 IF F = 3 THEN F$ = "3 / 8"
8100 IF F = 4 THEN F$ = "1 / 2"
8120 IF F = 5 THEN F$ = "5 / 8"
8140 IF F = 6 THEN F$ = "3 / 4 II
8160 IF F = 7 THEN F$ = "7 / 8"
8200 RETURN
8997 :
8998 :
8999 :
9000 REM ** - -CONVERT TO DECIMAL--**
9010 Ll = Ll I lO:Sl =INT (Ll) :Dl = Ll - Sl

401

9020 Dl = (Dl * 10) / 8 : Ll = Sl + Dl: Ll = INT (Ll * 1000
+ . 5) I 1000

9040 RETURN

402 APPENDICES

CREA TE HI/LOW

10 REM ***- - STOCKS HI / LOW--***
11 :
12 :
13 REM **--VARIABLES LIST--**
14 REM STK$ = STOCK SYMBOL
15 REM HI$ = CURRENT HIGH PRICE
16 REM LOW$ = CURRENT LOW PRICE
18:
19:
20 D$ = CHR$ (4) : REM CONTROL D
27 :
28:
30 REM **--KEYBOARD INPUT--**
40 FOR I = 0 TO 9
60 HOME : VTAB 5
80 INPUT II STOCK SYMBOL II ; STK$ (I)
85 PRINT
90 PRINT" IF YOU ARE NOT SURE OF THE"
92 PRINT
94 PRINT "HI OR LOW , ENTER A I 0 I . II

95 PRINT
100 INPUT "HI VALUE ";HI$(!)
110 PRINT
120 INPUT "LOW VALUE"; LOW$ (I)
128
129
130 REM **--CORRECTION ROUTINE--**
140 HOME
160 VTAB 5
180 PRINT "l. II; STK$ (I)
200 PRINT "2. ";HI$(!)
220 PRINT "3. II; LOW$ (I)
240 PRINT
260 INPUT II IS THIS CORRECT? II; YES$
280 IF YES$ = "N" THEN 320
300 GOTO 500
320 PRINT
340 INPUT "WHICH NUMBER IS WRONG? ";NB
360 IF NB < 1 OR NB > 3 THEN PRINT "INCORRECT CHOICE":

GOTO 320

CREATE HI/LOW 403

380 IF NB = 1 THEN INPUT " CORRECT STOCK NAME PLEASE "
; STK$ (I)

400 IF NB= 2 THEN INPUT "CORRECT HI VALUE PLEASE" ; HI$ (I)
420 IF NB = 3 THEN INPUT "CORRECT LOW VALUE PLEASE "

; LOW$ (I)
440 GOTO 140
500 NEXT I
1198 :
1199 :
1200 REM ** --CREATE HI / LOW FILE--**
1240 PRINT D$; "OPEN STOCKS HI / LOW"
1260 PRINT D$; "WRITE STOCKS HI / LOW"
1280 FORK = 0 TO 9
1300 PRINT STK$ (K)
1320 PRINT HI $ (K)
1340 PRINT LOW$ (K)
1360 NEXT K
1380 PRINT D$; "CLOSE STOCKS HI /LOW"
1398 :
1399 :
1400 REM ** - -RETURN TO STOCK MENU--**
1420 PRINT D$; "RUN STOCK MENU"

404 APPENDICES

DISPLAY HI/ LOW

10 REM ** --READ HI / LOW FILE--**
11 :
12 :
20 0$ = CHR$ (4): REM CONTROL D
100 REM ** --DISK I NPUT--**
120 PRINT D$; "OPEN STOCKS HI / LOW"
140 PRINT 0$; "READ STOCKS HI / LOW"
160 FOR I = 1 TO 10
180 INPUT STK$ (I)
200 INPUT HI$ (I)
2 20 INPUT LOW$ (I)
240 NEXT I
260 PRINT D$; "CLOSE STOCKS HI / LOW"
297 :
298 :
300 REM **--DISPLAY ROUTINE--**
305 HOME : VTAB 5
310 PRINT " STOCKSYMBOL";: HTAB18: PRINT"HI" ;: HTAB28:

PRINT "LOW"
315 PRINT
320 FOR I = 1 TO 10
330 PRINT I ; II . II ;

335 HTAB 5
340 PRINT STK$ (I);
360 HTAB 1 8
370 M = VAL (HI$ (I)) : GOSUB 8000: HI$ (I) = STR$ (M)
380 PRINTHI$ (I); " " ; F$;
390 M =VAL (LOW$ (I)): GOSUB 8000: LOW$ (I) = STR$ (M)
400 HTAB 2 8
420 PRINT LOW$ (I) ; II II; F$
460 NEXT I
480 PRINT : I NPUT "HIT RETURN TO CONTINUE " ; L$
497 :
498 :
500 REM ** --RETURN TO STOCK MENU--* *
520 PRINT D$; "RUN STOCK MENU"
8000 REM * *--CONVERT TO FRACTION-- **
8005 F = M - INT (M I 1 0) * 10
8010 M = INT (M I 10)

STOCK CORRECTIO

8020 IF F = 0 THEN F$ = 1111

8040 IF F = 1 THEN F$ = II 1 / 8 11

8060 IF F = 2 THEN F$ = II 1 / 4 11

8080 IF F = 3 THEN F$ = "3 / 8"
8100 IF F = 4 THEN F$ = "1 / 2"
8120 IF F = 5 THEN F$ = " 5 / 8"
8140 IF F = 6 THEN F$ = "3 / 4 "
8160 IF F = 7 THEN F$ = "7 / 8"
8200 RETURN

STOCK CORRECTION

10 REM
11 :
12 :
13
14
15
16
17
18
19
20
2 1
22
46 :
47 :
48 :

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

*** --DISPLAY STOCK HISTORY--***

--VARIABLES LIST- -
STK$ = STOCK SYMBOL
HI $ = CURRENT HI PRICE
LOW$ = CURRENT LOW PRICE
PE = P / E RATIO
VOL = SALES VOLUME
H = DAILY HIGH PRICE
L = DAILY LOW PRICE
c = DAILY CLOSING PRICE
DT$ = DATE

49 REM ** --INITIALIZATION-- **
50 D$ = Cl-ffi$ (4) : REM CONTROL D
55 PRINT D$; "OPEN STOCKS, L260"
60 PRINT D$; "READ STOCKS , RO"
80 INPUT PTR
100 PRINT D$; "CLOSE STOCKS"
116 :
117 :
118 :
119 REM * * - - SET UP - - * *
120 HOME : VTAB 5
140 PRINT D$; "OPEN STOCKS HI / LOW"
160 PRINT D$; "READ STOCKS HI / LOW"
180 FOR I = 0 TO 9

405

406

200 INPUT STK$ (I)
220 INPUT HI$ (I)
240 INPUT LOW$ (I)

APPENDICES

250 PRINT I + 1 ; II . II ;: HTAB 5 : PRINT STK$ (I)
260 NEXT I
270 STK$ (10) = "STOCK MENU"
275 PRINT "11. " ; : HTAB 5 : PRINT STK$ (10)
280 PRINT D$; "CLOSE STOCKS HI / LOW"
285 PRINT
290 INPUT "WHICH STOCK"; W: PRINT: PRINT "WHICH RECORD?

1 TO II ; PTR; II II;: INPUT K: IF K > PTR THEN 290
291 IF W < 1 OR W > 11 THEN PRINT "INCORRECT CHOICE" :

GOTO 290
292 IF W = 11 THEN 5000
293 I = W - 1
294 :
295 REM *** --TITLES--** *
296 HOME : VTAB 5: HTAB 18: PRINT STK$ (I): PRINT : PRINT
298 :
299 :
300 REM **- - DISK INPUT ROUTINE--**
320 PRINT D$; "OPEN STOCKS , L260"
335 PRINT D$; "READ STOCKS, R"; K; II ' B" ; 0
337 INPUT DT$
340 PRINT D$; "READ STOCKS, R" ; K; ", B"; (I * 25) + 10
360 INPUT PE
380 PRINT D$; "READ STOCKS , R" ; K; " , B" ; (I * 25) + 10 + 4
400 INPUT VOL
420 PRINT D$; "READ STOCKS , R" ; K; II ' B"; (I * 25) + 1 0 + 10
440 INPUT H
460 PRINT D$; "READ STOCKS , R"; K; II' B" ; (I * 25) + 10 + 15
480 INPUT L
500 PRINT D$; "READ STOCKS , R" ; K; II. B" ; (I * 25) + 10 + 20
520 INPUT C
536:
537 :
5 3 8 :
539 REM **--CORRECTION ROUTINE- - **
540 PRINT "l. DATE "; DT$
545 PRINT
550 PRINT "2. P / E ";PE
555 PRINT
560 PRINT "3 . VOL. " ; VOL
565 PRINT

5 70
575
580
585
590
592

PRINT "4 .
PRINT
PRINT " 5 .
PRINT
PRINT "6.
PRINT

HIGH

LOW

CLOSE

STOCK CORRECTION

= " ; H

= " ; L

" ; C

594 PRINT " 0. ALL CORRECT"
595 PRINT : PRINT 0$
600 INPUT "WHICH NUMBER IS WRONG ";NB
610 IF NB > 6 THEN PRINT "INCORRECT CHOICE" : GOTO 600
615 IF NB = 0 THEN 710
620 INPUT " CORRECT I NFORMATI ON = " ; CR$
630 IF NB = 1 THEN OT$ = CR$
640 IF NB = 2 THEN PE = VAL (CR$)
650 IF NB = 3 THEN VOL = VAL (CR$)
660 IF NB = 4 THEN H = VAL (CR$)
670 IF NB = 5 THEN L = VAL (CR$)
680 IF NB = 6 THEN C = VAL (CR$)
690 HOME : VTAB 5 : HTAB 18 : PRINT STK$ (I)
695 PRINT : PRINT
700 GOTO 540
707
708
709 REM ** --WRITE CORRECTED FILE- - **
710 PRINT DS ; "WRITE STOCKS , R" ; K; II' B" ; 0
720 PRINT OT$
7 3 0 PRINT DS; "WRITE STOCKS , R" ; K; " , B" ; (I * 25)
740 PRINT PE
750 PRINT 0$; "WRITE STOCKS , R" ; K; II' B" ; (I * 25)
760 PRINT VOL
770 PRINT 0 $; "WRITE STOCKS , R" ; K ; II ' B" ; (I * 25)
780 PRINT H
790 PRINT 0 $; "WRITE STOCKS , R" ; K ; " , B"; (I* 25)
800 PRINT L

+ 10

+ 10 +

+ 10 +

+ 10 +

407

4

10

15

8 10 PRINTDS; "WRITESTOCKS , R" ; K ; " , B " ; (I *25) + 10 + 2 0
820 PRINT C
996 :
997 :
998 :
999 REM **- -ANOTHER STOCK-- **
1000 PRINT 0$
1 010 PRINT
1020 INPUT "HIT RETURN TO CONTINUE " ; L $

408

1040 HOME : VTAB 5
1060 FOR I = 1 TO 11

APPENDICES

1080 PRINT I ; " .";: HTAB 5: PRINT STK$(I - 1)
1100 NEXT I
1120 PRINT
1140 GOTO 290
1997 :
1998 :
1999 :
5000 REM **--RETURN TO STOCK MENU
5010 PRINT 0$; "CLOSE STOCKS"
5020 PRINT 0$; "RUN STOCK MENU"

APPENDIX J.

MISCELLANEOUS PROGRAMS

HELLO

20 PRINT "HELLO"
40 PRINT "MY NAME IS APPLE II"
60 PRINT "I AM A SMART COMPUTER"

APPLE

20 D$ = CHR$ (4): REM CONTROL D
40 PRINT D$; "OPEN ADDRESS FILE"
60 PRINT D$; "WRITE ADDRESS FILE "
80 PRINT "APPLE II IS A BRIGHT COMPUTER"
100 PRINT D$; " CLOSE ADDRESS FILE"
120 HOME
140 PRINT D$; "OPEN ADDRESS FILE"
160 PRINT D$; "READ ADDRESS FILE"
180 INPUT NAME$
200 PRINT D$; "CLOSE ADDRESS FILE"
220 VTAB 10
240 PRINT NAME$

409

APPENDIX K.

MISCELLANEOUS INFORMATION

1 . POKE 216 , 0----RESET THE ERROR FLAG

2. POKE 32 , n - - - - -SET LEFT WINDOW MARGIN

3. POKE 33 , n- - - - - SET RI GHT WINDOW MARGIN

4 . POKE 34 , n -----SET TOP WINDOW MARGIN

5. POKE 35 , n -----SET BOITOM WINDOW MARGIN

6 . CALL -151-----ENTER MONIT OR

7 . CALL 768---- - - BEGIN ROUTINE AT $300

48K SYSTEM

8 . PEEK (43634) --LOW ORDER BYTE OF BLOAD FILE STARTING
ADDRESS

9. PEEK (43635) --HIGH ORDER BYTE OF BL OAD FILE STARTING
ADDRESS

10 . PEEK (43616) - -LOW ORDER BYTE OF BLOAD FIL E LENGTH

11 . PEEK (43617) --HIGH ORDER BYTE OF BLOAD FILE LENGTH

12 . CHR$ (4) - - - - - - CONTROL D

13 . CHR$ (34) - - - - - QUOTATION MARK

14 . CHR$ (95) - - ---UNDERLINE

410

Index

A (type of file) 1-12
APPEND 29, 37, 43, 44, 116, 117
Apple I, 11, 18, 21 , 96, 97 , 100, 176,

199, 259, 263, 274
Applesoft I, 3, 6, 8, I 0 , 15, 16, 18,

27, 96, 100-102, 199, 259, 274
Arrays 31, 37, 102, 153, 172, 176,

196-198, 200, 274
ASC 274
ASCII 18, 21
Assembly 263

B (type of file) I, 2, 3, 5
BASIC I, 4, 6, 8, 18, 19, 2 1, 45,

58, 67, 68, 96, 97, 100, 102, 259,
260, 262, 267, 271

Binary I , 3, 5, 27, 96, 100, IOI ,
258-267

BLOAD, BSAVE, BRUN IOI, 103,
258. 259. 262-265. 267

Booting the system 2, 8, 28, 263
BOT 149, 153
Byte 87-89, 168-170, 172- 173, 176,

178, 192, 195, 198, 240, 263,
265, 271

CALL 101, 261, 262, 264, 267, 410
CATALOG 2, 3, 5, 7, 9 , 10, 20, 2 1,

34, 35, 4 1, 49, 56, 70, 86, 99, 261 ,
270, 272, 273

41 1

CHAIN 89, 96, 100-103
CHR$(34) 97, 99, 151, 410
CHR$(4) 18, 4 10
CHR$(95) 11 9, 191, 410
CLOSE 19, 22, 26, 33, 54
Cobol 6, 7
Code 48, 60, 61, 63, 69, 70, I 02,

152, 19 1, 194, 238, 24 1, 263, 265
Colon 21 , 30, 147, 150
Comma 21, 30, 172
Computer Instruct ion See Program
Concatenate 198
Constant 17 3
Control D 16-18, 2 1, 23, 26, 27,

30, 40, 4 1, 43, 58, 172, 194, 202
Counter 30-32, 34, 43 , 47, 48, 85,

102, 194, 196
CTRL 17, 18
Cursor 9, 19 , 22, 28, 30, 32, 99,

192, 26 1, 263, 27 1

Data Base 190, 200, 20 I, 238, 24 1
Data Section 145, 146, 148- 152,

154-156
Decimal 14, 18, 239, 264, 27 1
DEF FN 11 9
Default 23
Deferred mode I 7, 26
DEL 43
DELETE 11, 14, 24, 29, 33, 42, 90, 97

412 INDEX

Delimit 30, 168, 170 , 239
DIF 144-155, 201
DIM (D!Mension) 30, 37, 40, 41,

48, 49, 60, 69, 70, I 02
Disk 1- 3, 8, 12, 21 , 200
DiskDrive 2,9, 12, 45,86,87, 173,

191 , 196, 240, 27 1, 274
Diskette I, 2, I 0, 20, 22, 34, 49, 70,

84, 87, 96, 99, 100-102, 169,
172, 176, 200, 239- 24 1, 261,
262, 264, 270-273

Dollar sign($) 18, 26, 33, 258
DOS (Disk Operating System) 8, 9,

11 , 12, 14, 16, 18, 19, 23, 27,
29, 44, 49, 85, 96, 115, 144,
191, 201, 260, 261

Edit on screen (ESC I, J, K, M) 192
END 43
EOD 146, 149, 153, 154, 156
Error 23, 29, 85, 102, 116--118,

148, 171, 19 1, 192, 196, 240
EXEC 35, 37,89, 96-100, 103, 15 1

FID IOI
Field 169
File name 117, 173, 174
File pointer 87 , 88, 168, 171, 172,

175, 191-193, 240, 241
FLASH 196
Floating point 7
FOR-NEXT 32, 37, 11 8
Fortran 6, 7

GOSUB 6 1, 73, 155 , 175, 19 1, 194,
198

GOTO 44, 50, 63, 64, 11 6--1 18, 121

Header Section 145- 147, 150-1 52,
155, 156

Hexidecimal 18, 258, 260-263,
265, 267, 270, 273

HOME 22 , 26, 30, 32, 43
HTAB 58, 73

I (type of file) 1- 12
IF-THEN 30, 32, 33, 37, 46, 47,

58, 63, 64, 66, 198-199
!NIT 9, 23, 26 1
INPUT 22, 23, 26, 30, 40, 4 1, 43,

171 , 193, 194, 198
INT 119, 121
Integer I, 3, 6, 15 , 16, 18, 27, 96,

100-102, 259
Interface card I , 19, 46, 47
Intermediate mode I 7, 26
INVERSE 196

Key 16, 2 1, 23, 27, 43, 58

LEFT$ 67, 68, 70, 73, 197, 198
LEN 70, 73, 119, 198
Line numbers 8, 48, I 0 I , 175
LIST 8-11, 20, 22, 42, 60, 261
LOAD 7, 8, 11, 12 , 16, 17, 59, 60,

86, 100
LOCK 11 , 14
Loops 44, 47, 48, 85, 87, 118, 153,

174, 196, 197

Memory 7- 12, 18, 22, 23, 30-32,
41 , 48, 56, 58, 70, 200, 258-259,
261-263, 27 1

Micros 18, 155
MID$ 67, 68, 70, 73, 197, 198
Mnemonics 263
MON 35, 97, 98
MONITOR 261, 262, 265

NEW 8, 11 , 14, 20, 261
NOMON 37, 99
NORMAL 196
Numeric variables 35, 58, 69, 172

INDEX 413

ONERR 11 6-118, 12 1, 17 1,
19 1- 192, 240

OPEN 19, 2 1, 22, 26, 29, 33, 43, 85,
86,97, 116 , 11 7, 168-170

Parameters (R, B, or L) 83, 87-90,
167-170, 172, 173, 176, 178

PEEK 264, 267,410
Peripheral 4 7, 264
POKE-2 16,0 116, 11 8, 17 1, 172,

191, 4 10
POKE-32,n 410
POKE-33,n 191, 410
POKE-34,n 191 , 41 0
POKE- 35,n 410
POSITION 88, 90, 167, 178
PR:#= I, 19, 46, 47
PRINT 8, 2 1-23, 30, 172, 173, 193
Printer 46, 47, 61 , 62, 65, 70, 24 1
Program I, 3, 6-9, 12, 15, 17, 27,

45, 56, 58, 96, 100-102, 114, 259
Programming 3, 4, 45, 59, 60, 11 4 ,

169, 199, 200, 238, 259-260, 264

Quotation mark 21, 30, 86, 97, 99,
103, 151, 172, 173, 19 1

Random access 16, 18, 23, 26, 27,
45, 119, 155, 167-169, 172,
173-174, 176, 190, 192, 200, 240

READ 19,22,26, 4 1,43, 193, 194,
27 1

RECALL 274
Record 34 , 87, 88, 89, 167- 175 ,

193-199, 238, 240
REM 19, 21 , 26, 116
RENAME 11 , 14, 24, 49, 85, 86, 90
Reset 263
RETURN 34, 61 , 73 , 194
RETURN key 2, 8, 9, 19, 2 1, 29,

34, 35, 46, 26 1, 263
RIGHT$ 67, 68, 70, 73

RND 11 9
Routine 30, 32, 64---Q7, 170, 176,

195, 197, 24 1
RUN 3, 7, 8, 11 , 12 , 14, 16, 17,

20-22, 34, 41 , 43, 56, 58, 99,
100, IOI

R'NTS 261 , 265, 270-273

SAVE 7, 8, 11 , 12, 14, 16, 17, 20,
22, 49, 58, 59, 70, 86, 145

Screen 21, 23, 19 1, 194, 241
Search 6 1, 63-65, 175, 193, 194,

195
Sectors 2, 49, 50, 70, 270, 273
Semicolon 31, 172
Separator 31, 33, 47, 64, 145, 169
Sequential access 16, 18, 23, 26, 27,

45, 70, 87, 102, 114, 119, 155,
167- 170, 176, 178, 200, 240, 274

SGN 119
Slot 19, 46, 47
Sorting 6 1, 66, 67 , 69, 193, 195,

196-198
Sorting- Bubble sort 67 , 73
Sorting-Quicksort 67, 68, 69, 73
Sorting-Shell- Metzner 67, 73 , 193,

195
SPEED 97- 99, 103, 197
STORE 274
STR$ 70, 73, 119, 121
String variables 18, 2 1, 23, 26, 32,

48, 49, 63, 66, 67, 69, 70, 102,
11 7, 168, 172-174, 176, 196,
199, 200

Strings 29, 83, 168, 198
Subroutine 70, 174, 193-197, 199,

264
System 59, 86, 96, 197, 200, 201,

238

T (type of fil e) 1-5, 15- 23
Tab 22, 23 , 30, 32, 43, 58

414 INDEX

Tape 8, 12, 14, 274-277
TEXT 202
Text files I, 15- 24, 26, 27, 33, 259
Track 270, 273
Tuples 145- 149
Type of file 1-4, 27, 258, 272-273

UNLOCK 11 , 14

VAL 70, 73, 11 9, 12 1

Variables 18, 26, 3 1, 43, 44, 60,
IOI, 102, 11 7, 152, 173, 175, 176,
238, 239

Vectors 145- 148
VER IFY 11 , 14
VTAB 22, 23, 30, 32, 43

WRITE 19, 21 , 22, 26, 33, 44, 116,
172, 193, 194, 271

