- =
RND ¢13 % 48, RND l:} %

COUNT + 1
NT <

o e RN I
(v oo SO

28 THEN GOTO 48

Apple lic, Apple lle, Apple llgs™

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects in
the manuals distributed with an
Apple product or in the media on
which a software product is distrib-
uted, Apple will replace the media
or manuals at no charge to you,
provided you return the item to be
replaced with proof of purchase to
Apple or an authorized Apple dealer
during the 90-day period after you
purchased the software. In addition,
Apple will replace damaged soft-
ware media and manuals for as long
as the software product is included
in Apple’s Media Exchange
Program. While not an upgrade or
update method, this program offers
additional protection for up to two
years or more from the date of your
original purchase. See your autho-
rized Apple dealer for program
coverage and details. In some
countries the replacement period
may be different; check with your
authorized Apple dealer.

ALL IMPLIED WARRANTIES ON
THE MEDIA AND MANUALS,
INCLUDING IMPLIED WARRANTIES
OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PUR-
POSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE
DATE OF THE ORIGINAL RETAIL
PURCHASE OF THIS PRODUCT.

Even though Apple has tested the
software and reviewed the docu-
mentation, APPLE MAKES NO WAR-
RANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO SOFTWARE, ITS
QUALITY, PERFORMANCE, MER-
CHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A
RESULT, THIS SOFTWARE IS SOLD
“AS 1IS,” AND YOU THE PUR-
CHASER ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY
AND PERFORMANCE.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSE-
QUENTIAL DAMAGES RESULTING
FROM ANY DEFECT IN THE SOFT-
WARE OR ITS DOCUMENTATION,
even if advised of the possibility of
such damages. In particular, Apple
shall have no liability for any pro-
grams or data stored in or used with
Apple products, including the costs
of recovering such programs or
data.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLU-
SIVE AND IN LIEU OF ALL OTHERS,
ORAL OR WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or
employee is authorized to make any
modification, extension, or addition
to this warranty.

Some states do not allow the ex-
clusion or limitation of implied
warranties or liability for incidental
or consequential damages, so the
above limitation or exclusion may
not apply to you. This warranty
gives you specific legal rights, and
you may also have other rights
which vary from state Lo state.

& Apple, I A Touch of Applesoft BASIC

& APPLE COMPUTER, INC.

© Copyright 1986, Apple
Computer, Inc., for all non-
textual material, graphics,
figures, photographs, and all
computer program listings or
code in any form, including
object and source code. All
rights reserved.

Apple and the Apple logo are
registered trademarks of Apple
Computer, Inc.

Macintosh is a trademark of
McIntosh Laboratories, Inc.,
and is being used with express
permission of its owner.

Microsoft is a registered trade-
mark of Microsoft Corporation.

POSTSCRIPT is a trademark of
Adobe Systems Incorporated.

ITC Garamond, ITC Avant
Garde Gothic, and ITC Zapf
Dingbats are registered
trademarks of International
Typeface Corporation.

Printed in Singapore.

Preface

Session 1

Session 2

Contents

vii

What's a computer language? vii

What's a program? viii

Do you have to program? viii

Why would you want to learn to program? viii
Patience required ix

How to get started ix

And now—begin! x

Getting Started 1
The elementary stuff 2
Editing: program first aid 4

Summary and review 5

Arithmetic and Varlables 7
Arithmetic 8
Precedence: the order of calculations 10
Use parentheses to change precedence 10
Variables 11
Naming variables 13
Break a few rules 14
Summary and review 15

Contents il

Session 3 The Outside World 17
INPUT 18
Prompts 19
More editing: adding lines 20
Cleaning up with HOME 20
LIST 21
String variables 22

Variables rules recap 23

Debugging 23
Summary and review 25

Session 4 Using the Disk and Other Devices 27
Computer memory 28
Files and catalogs 29
How to save programs 29
Reading the catalog and retrieving a program 31
Cleaning up 32
For printer owners: printing your listings 33
Using what you've learned 34

Summary and review 34

Session 5 Loops and Conditions 35
Loops 36
GOTO 36
Conditional branching with IF...THEN 37
Building on the model 38
Relational operators 38
Use REM for remarks 41
Practice time 41

Summary and review 42

iv Contents

Session 6

Session 7

Session 8

Graphics 43
Text and graphics 44
A 40-by-40 canvas 45
Seeing your listing again 46
Plotting colors with COLOR= 47
Using variables for plotting and coloring 47
Incrementing columns and rows 48
Drawing horizontal and vertical lines 48
A universal line-drawer 49
Random graphics 50

Summary and review 52

Controlled Loops 53

FOR\NEXT 54

Using STEP with FOR\NEXT 56
Delay loops 57

A quick review 59

Experiment before you continue 60

Summary and review 60

Programming With Style: Modular Programming 61

GOSUBA\RETURN 62

END protects subroutines 63

Subroutines and organization 64

Multiple instructions on one line 65

Organizing your programs: one step at a lime 66

The great checkbook balancing program challenge 67
One version of a checkbook balancing program 67

Summary and review 68

Contents

Vi

Contents

Session 9

Session 10

Appendix A
Appendix B
Glossary

Index

Formatting Screens 69
Horizontal and vertical tabs 70
Prompt placement 73
Getting noticed: INVERSE and NORMAL 74
A text-centering algorithm 75

One solution to the centering problem 75
Summary and review 76

Programming for People 77

A sordid history 78
People-program guidelines 79
Humanizing programs isn’t easy 81
It gets easier 81

Where do you go from here? 81
Do it! 82

A parting word 83

A Summary of Applesoft Instructions 85
Reserved Words 99
101

107

Preface

This tutorial will help you get started writing simple Applesoft BASIC computer
programs on your Apple® II computer. You won't learn all there is to know about
Applesoft BASIC from just this tutorial; but by the time you finish these ten sessions,
you'll be able to decide whether you want to continue learning about programming.

The product training disk that came with your computer gives you a brief introduction
to Applesoft; you might want to work with that disk before you read this ttorial.

What’s a computer language?

A computer language is like the languages that people speak. It has a vocabulary and
a syntax—word order is important and spelling counts. Your Apple computer speaks
a language called Applesoft BASIC. (It speaks other languages, too, but they aren’t
built into the computer; you buy them on disks.) The computer reads the BASIC
instructions you type from the keyboard, and then it does exactly what it's told.
Luckily, it's easier to learn BASIC than a human language because BASIC has far fewer
words, and its grammar is usually very straightforward.

-

% BASIC by any other name ... There are many variations on the BASIC computer
language. But in this little tutorial the terms BASIC, Applesoft BASIC, and
Applesoft all refer to the same thing.

What's a computer language? vil

What's a program?

Compuler programming is wriling instructions for your computer. The entire set of
instructions you give to a computer to make it do something is the program. Imagine
that your computer is a pet you want to train. You can't talk to your pet in the same
way you talk with a human; you have to use a limited vocabulary to tell it exactly what
to do. If you wanted it to do a series of things, you would give it a set of instructions,
one instruction at a time. For instance, suppose you want your pet to sit, lie down,
and roll over. You'd do it like this:

“King, sit.”
(King sits.)
“King, lie down.”
(King lies down.)
“King, roll over.”
(King rolls over.)
“Good dog!”
(King wags tail.)

Of course your Apple won't sit, lie down, or roll over, but it will do a lot of things for
you if you give it instructions in a systemaltic and logical order. You use the same kind
of directness, simplicity, and order in computer programming as in pet training
(except that you don't have to praise your computer when it does what you tell it).

Do)_/ou have to program?

You don’t have to write programs to use your computer. Thousands of programs
have already been written for your Apple—programs for word processing, financial
analysis, computerized file cabinets, and dozens of other applications. You just put
a disk with programs on it into your disk drive and turn on your computer.

Why would you want to learn to program?

First of all, you might find programming to be a lot of fun. When you learn to
program, you discover that your Apple isn't really magical (although it certainly
scems that way at times); it's just following the instructions that you give it. When you
program your computer, you make it do what you want it to do—you get to create your
own magic. Second, you learn a lot about how a computer works as you learn to

viil Preface

program it. That gives you a better understanding of what your computer can and
can't do. Finally, you might find that programming is something that really intrigues
you and stimulates your own creativity in ways you’d never thought about. You might
eventually decide to become 2a professional programmer.

You can create simple entertainment, educational, and business programs with just
an elementary set of instructions. For example, you can write very effective
educational games in Applesoft BASIC, or even home budgeting and checkbook
programs to keep your finances in order.

Writing your own program is an gption available on your Apple. While you're likely
to find programming useful and interesting, you don’t have to learn how to program
to use your computer. But if you do want to program, you'll find Applesoft BASIC a
great place to start.

Patience required

Learning to program is a little like learning how to become a chef. You've got to be an
experienced chef to pull off great seven-course meals; but the essentials of the craft
begin with melting butter, turning an egg, and so on. And the payoff is similar, too.
You don't have to be a master chef to enjoy a homemade omelette (or amaze your
friends with your culinary prowess).

From time to time, you'll just have to be patient—but only for a little while. Have
faith.

How to get started

Applesoft is built into your Apple II computer. But you need to prepare your
computer to store the programs you create so that you can use them again. (You'll
learn more about storing your programs onto disk in Session 4.) Here are the steps to
take to begin your study of Applesoft BASIC:

1. Read your Apple computer owner’s guide first. It contains lots of valuable
information about the computer that you'll need to know before you can begin to
use Applesoft. Pay special attention to the section on formatting disks. You'll
need at least one formatted disk before you can start.

2. Insert the utilities disk that came with your computer into the disk drive, close the
disk drive door, and turn on the computer. (See your owner’s manual for
instructions.) Choose the Applesoft BASIC option and press Return; you should
see this symbol: 1.

3. Remove the disk from the drive and replace it with a formatted disk. Be sure to
close the drive door.

How fo get started

s Using Applesoft without a disk drive: 1f you don't have a disk drive, you can still
write programs; but you won't be able to store them. To start BASIC without a disk
drive, turn on your computer and then press the Control and Reset keys at the
same time, then release them. You'll see this symbol: 1.

And now—Dbegin!

This tutorial is divided into ten sessions; you'll need about an hour for each session.
Be sure to spend lots of time practicing what you've learned in each session before
going on to the next one; each session builds on the previous one.

Above all, have a good time. Experiment as much as you can. Break the rules. Try
crazy things—the worst thing that can happen is that the computer will beep at you.
(When this happens, beep back.)

Now, all you have to do is turn the page and begin.

X Preface

Session 1

Getting Started

The best way to find out if you like programming is to do some. To keep
things simple, do everything exactly as it's presented in this tutorial. Of
course if you get bored, strike out on your own! You won't break the
computer by typing something wrong, and the important thing is to
experiment, learn, and have fun.

In this first session, you'll learn the rudiments. You'll read about program
lines and line numbers, and how to type in programs. You'll see how to
put messages on the screen with the PRINT instruction, and you’ll learn
some things about programming mistakes and how to fix them.

The elementary stuff

Before you do anything else, type the word new and press the Return key.
NEW tells your Apple computer to make way for a new program. Pressing
Return tells your Apple to look at what you just typed. Until you press
Return, your Apple thinks you're just talking to yourself:

NEW Press Return here,

Now type the following line exactly as you see it, and then press Return:

10 PRINT “SIT" Press Return here.

The number 10 is called a line number. Your Apple executes the lines of
instructions you type in numeric order, always beginning with the lowest

number. For the time being, number your program lines by 10’s. You'll
learn why later in Session 3.

After you've typed all the instructions (which you've just done—your first
program is a short one), type rux and press Return. The RUN command

tells your Apple that you've finished giving it instructions and that you want
it to carry them out:

RUN Press Refurn here.
Your video display should look something like this:

] NEW
]10 PRINT "“SIT"
JRUN
]SIT

1

2 Getting Started

You've just written and executed (another word for run) your first computer
program. Congratulations! You've also just learned one of the most often
used programming instructions: PRINT. The PRINT instruction tells your
computer to display whatever appears within quotation marks. Here’s
some more practice using PRINT. Type the following program exactly as it
appears. (If you make a mistake, just press Return and retype the line.) Be
sure to press Return at the end of each line:

10 print "lie down™
20 Print "Roll Over"
30 pRiNt "GeT wEiRgQ"
RUN

You'll see this on your screen:

lie down
Roll Over
GeT wEiRd

* Why you don’t need NEW here: When you re-use a line number, the new line
replaces the old one. The last program you typed had only one line—line 10.
This new program also has a line 10, replacing the old one. It’s as if you'd typed
NEW anyway.

Your computer doesn’t care whether the letters are uppercase or
lowercase, or some combination of both. But you've got to be careful how
you type your instructions. Your computer expects to be told exactly what
to do in a way that it can understand or you’ll get an error message like this
one:

?SYNTAX ERRCR IN 10

Computers always do exactly what you say, not necessarily what you mean
to say. Even minor typing errors will bring up a syntax error message
(usually with a line number to help you find the error). Type:

NEW
and press Return; then type this one-line program and try running it:

10 PRIMT "WHOOPS" Watch out!!

(Be sure to press Return at the end of the line—this is your last reminder.)

After you run the program, you’ll see this message:

?SYNTAX ERROR IN 10 10 Is the line number.

The elementary stuff

Even though you and any other human who saw it would know that you
meant PRINT instead of PRIMT, the instruction baffled your Apple. Luckily,
most mistakes make your computer show a built-in error message that will
tell you what you did wrong. As you program more (and, naturally, make
more mistakes along the way), you’ll see more messages to help you
understand how your computer operates. Remember: the computer
displays error messages to help you correct mistakes, not to tell you you're
a dummy. Treat these messages as helpful guides and not as nagging
annoyances.

Editing: program first aid

You've just seen that you have to be careful when you enter a computer
program to avoid introducing a bug, or error. Many bugs are the result of
simple typing errors; you can avoid a lot of debugging later by checking
your typing as you go along.

Retyping a whole line every time you make a simple typing error gets

tiresome very quickly. Your Apple has some built-in features to make
debugging easier.

Type the following line, but don't press Return yet:
10 PRINT K "LOOK OUT, YOU BUG"[J] —— Don't press Return yef!

That K between the PRINT instruction and the message is going to cause
problems. You could re-type the whole line, but if you had to do that
every time you made an error, you'd never get anything done. Instead,

locate the four arrow keys in the lower-right corner of your keyboard.
Then do this:

1. Press the Left-Arrow key until the cursor is directly over the offending
K.

2. Press the Space bar once to erase the K (don't use the Delete key; it
won't work with Applesoft).

3. Using the Right-Arrow key, move the cursor until it is to the right of the
last quotation mark in the line. (If you press Return in the middle of the
line, you'll lose everything from that point to the line’s end.)

4. Now check and make sure your line is correct.
Your line should look like this:

10 PRINT "LOCK 0UT, YOU BUG"|

Now you can press Return and run the program; it'll work fine.

4 Getting Started

% The origins of bug: Back in the old days, computers used vacuum tubes, had a
million miles of wires, and required large, air-conditioned rooms to keep them
working. Computer folklore has it that one day a moth got into the computer
room and flew into the computer. The moth was fried to a crisp, but it didn't die
alone—its demise brought the computer to a dead stop. After searching high and
low to find what caused the computer to “crash,” a programmer found the moth’s
remains and announced (with no regard for genus or phylum), “Hey. There'’s a
bug in the computer.” The rest is history.

Summary and review

In this first session, you learned how to make way for new programs with
NEW, how to execute programs with RUN, and how to put messages on the
screen with PRINT. You saw how programs use line numbers to arrange
the sequence of instructions. Finally, you learned a few things about bugs
and how to get rid of them.

Before you go on to the next session, experiment with the PRINT
instruction. Write a five-line program; then change the line numbers by
retyping the lines (making the last line the first one, for example) to see
what happens. And don’t be afraid to make mistakes—nobody’s keeping
score!

Summary and review

Session 2

Arithmetic and Variables

You don’t have to know a lot about arithmetic to learn to program your
Apple computer. But most programs require arithmetic functions to make
them work. (For example, in a checkbook balancing program you might
want to subtract the amount of each check that you write from the account
balance.) In this session, you'll learn the basics of computer arithmetic.
You'll also read about variables, the storage areas in the computer’s
memory that hold values. Finally, you'll learn the rules for giving names to
variables to make them easier to handle—and then you’'ll be encouraged to
break the rules to see what happens.

Arithmetic

You learned in the first session that your Apple displays anything enclosed
in quotation marks after the PRINT instruction. To do arithmetic, use the
PRINT instruction without quotation marks.

For example, type this program and run it:

NEW
10 PRINT "5 + 5"
20 PRINT 5 + 5

EUT 5 Line 10 printed exactly what was inside the quotation marks.
10 Line 20 printed the sum of the two numbers.

In the first line, you told your Apple to print the phrase 5 + 5. But in the
second line, you said, “Add the numbers 5 plus 5, and show the answer on
the screen.”

As you might expect, your Apple can do more than just add. In fact, it can
do some extremely complex math. But in this tutorial, you'll stick to the
basics: addition, subtraction, multiplication, and division. Here's a chart

that shows the symbols (called operators) your computer uses to do simple
arithmetic:

8 Arithmetic and Variables

Operator Action

+ add

- subtract
* multiply
/ divide

The addition and subtraction operators are the same ones you've always
used. You've probably seen the division operator before, used to express
a fraction (as in 7/8). The only one that looks a little different is the
multiplication operator; it’s an asterisk (*) instead of an X. Many
programmers use the letter Xto represent some unknown value, so
somebody decided to use the asterisk (which is like an X with a horizontal
line through its center) instead.

Here's a sample program. Type it; but before you run it, predict what the
answers will be:

Here's simple addition.

+ 51 / Your computer handles decimals easily.

10 PRINT 4

20 PRINT 7.56 - 4.44 Remember: * means multiply.

30 PRINT 4 * 5

40 PRINT 4.6 / 2 Here's simple division.

50 PRINT 11 # 12 = 13 # Mame——0 = '

60 PRINT 12 / 3 + 4\I‘rccn do multiple operations.

70 PRINT 10 * 2 + 8 [/ 2 The computer solves problems from left to right...

-hh“““‘ﬁ“§‘“‘-h

... but there are other considerations (read about
precedence in the next section).

Line 20 shows you that your computer can handle fractions—you just need
to express them in a way your computer can understand. For example, if
you mean to tell your computer to determine the sum of two and one-half
plus three by typing this:

PRINT 2 1/2 + 3

you'll get an answer you hadn’t counted on. Your computer will display
13.5 instead of 5.5. It interprets 2 1/2 + 3 as “divide the number 21 by 2;
take that answer and add 3 to it.” Spaces between numbers mean nothing
to your electronic friend.

If you worked out all of the problems in your head before you ran the
program, the last answer may have been a surprise:

70 PRINT 10 * 2 + 8 / 2 The answer is 24, not 14!

The result of the calculations is based on precedence. Precedence is the
order in which your computer does mathematical operations.

Arithmetic

Precedence: the order of calculations

In general, your Apple does calculations from left to right. But all
multiplication and division happens before addition and subtraction. Step
through the calculations in line 70 to see how precedence works.

Calculation: 10*2+8/2

Step 1: 10*2=20
Step 2: 8/2 =4
Step 3: 20 + 4 = 24

Use parentheses to change precedence

Sometimes you'll need to re-order precedence so that you can first do
addition and subtraction and then do multiplication and division. For
example, what if you meant

PRINT 18 + 4 / 2

to mean you wanted to add 18 and 4 first, and then divide the sum by 2?
Look at the following little program to see how to do it:

NEW
10 PRINT 18 + 4 / 2 This comes out 20...
20 PRINT (18 + 4) [/ 2 ...but this comes out 11,

Line 10 first handles the division, then adds the result to 18. Line 207e-
orders precedence by enclosing the sum within parentheses. Parentheses
change the order of precedence. Whatever you type within parentheses is
solved first, again from left to right and multiplication/division before
addition/subtraction.

If you need to, you can embed parentheses within other parentheses to
show precedence in more complex situations. Just remember to go from
the innermost set of parentheses and move outward.

Take a look at this next program and see if you can guess what the results
will be before you run it:

10 Arithmetic and Variables

10 PRINT (7-3) * 2

20 PRINT 3 * ((10 - 6) / 2)

30 PRINT ((4 - 3) / (9 + 2)) * 2

40 PRINT (((1 + 2) * (2-1)) + 11) / 10

Now run the program and see if you were right.

Whenever you start using a lot of parentheses, check to make sure that the
number of left parentheses matches the number of right parentheses. If
the totals of left and right parentheses are different, you'll get a syntax error
message.

% Pretend you're the computer: Every time you write a program or a section of a
program, run it in your head before you run it in your computer. The more you
“play computer,” the more you’ll understand how your computer operates. As
that happens, you'll automatically type instructions the way the computer needs
to see them; you'll soon find that you get far fewer error messages. Try it for a
while and see what happens.

Experiment with your own arithmetic programs. Try mixing the
precedence up. Mix in some phrases to label what you're doing. For
example:

NEW
10 PRINT "The sum of 12 plus 20, divided by the difference between 5 and 3.5, is "
20 PRINT (12 + 20) [/ (5 - 3.5)

% About unsightly “runover” lines: If your computer is set to display 40 columns on
your screen, line 10’s quotation ran over the edge of the screen and wrapped to
the next line. The word divided was split in the process. As you go along you’ll
pick up little tricks to avoid such unsightly split words; for the time being, try to
ignore them—your computer does.

So now you know how to use your Apple to do arithmetic. And you can
use it as you would a calculator (although using a calculator is probably
quicker and easier). But the simple arithmetic functions you just learned
become much more powerful when you use them with variables.

Variables

Variables are symbols for values. They're called varigbles because their
values can change or vary. Variables look like phrases you forgot to put in
quotation marks:

Variables 11

NEW
10 PRINT "HELLO"
20 PRINT HELLO

RUN ;
HELLO Line 10 prints this.

0 Line 20's work.
In this program, the first HELLOis a phrase for the computer to print just

as it is. The second HELLO is a variable whose value happens to be zero.
You give a value to a variable by using the equal sign (=).

Add these lines to the HELLO program and run it:

30 HELLO = 128

40 PRINT HELLO This will show up as 128!

RUN

HELLO

0

128 New value for variable HELLO assigned in line 30.

You've just assigned the value 128 to a variable called HELLO. Think of a
variable as a temporary storage box. Whatever you put into the box stays
there until you replace it with something else. Add these two lines to your
program and run it again:

50 HELLO = 3500
60 PRINT HELLO
RUN

You can do math with variables. Try the following program:

NEW
10 A = 15
20 B = 95

30 PRINT A + B

Variables can hold the result of calculations on other variables as well as on

numbers. Type the following program and see if you can guess the results
before you run it:

10 LOW = 5

20 HIGH = 9

30 SUM= LOW + HIGH
40 PRINT SUM

The sum of variables LOW and HIGH ends up in the third variable, SUM.

Try out the following program to see the various combinations of numbers
and variables you can get.

12 Arithmetic and Variables

10 W = 14.5

20 X = 6,5

30 PRINT (W + X) * 2
40 Y =W - X + 3
50 PRINT Y

60 Z =3*Y -2

70 PRINT 2

Naming variables

Applesoft imposes a few restrictions on naming variables. Here’s a list:
m A variable name must begin with a letter.

m Characters after the first one can be a mixture of letters and digits (no
symbols).

m Certain letter combinations (called reserved words) have special meaning
to Applesoft and can’t be used in any part of a variable name. (You'll
learn more about this rule in Session 3.)

® A name can be up to 238 characters long, but the computer recognizes
only the first two. (The others are to remind you what the variable
stands for.)

When you write a very short and simple program, using single letter
variables is a safe way to make sure a variable name doesn't conflict with
another variable. (Your computer sees SUM and SUNDAY as the same
variable because of the last rule in the chart.) But when you begin writing
longer programs, it really helps to have variable names that describe what's
going on.

For example, if you're calculating the area of a circle, you'll need the value
of pi (m) in your program. You could have the variable X hold the value of
pi (3.141592). It makes more sense, though, to give variables more
meaningful names:

NEW

10 PI = 3.141592

20 RADIUS = 5

30 AREA = PI * RADIUS * RADIUS—MGTh:A=ﬂ:R2
40 PRINT AREA

Descriptive variable names make it easy for you to see what the program is
doing when you read your code (a synonym for program).

Variables

13

% Store only numbers in numeric variables: The kinds of variables you're learning
about now are called numeric variables. That means that you can use them only
to hold the value of numbers. In Session 3, you'll learn about string variables,
which hold anything—numbers, letters, special characters. If you get an error
message like TYPE MISMATCH, you've probably tried to give a non-numeric
value to a numeric variable.

Break a few rules

One of the best ways to understand a programming rule is to break it.
Break every variable rule there is and see what happens. Go
ahead—question authority. Here are some examples:

NEW

10 PRINT 1V
RUN

10

Your computer thought you wanted it to print a 7 and then the value of the
variable V. (All variable names start with a letter.) Variables that you
haven't assigned a value to automatically hold the value 0; a 7 with a 0 next to
it is 10

10 PRINT =1
RUN
?SYNTAX ERROR IN 10

PRINT is a reserved word; you can't use it as a variable.

10 MIMI = 5
20 MIAMI = 8
30 PRINT MIMI
RUN

8

Only the first two characters of a variable name really count. As far as your
Apple is concerned, you assigned the value 5 tour in line 10; but you
changed it to 8 in line 20.

Finding variable names that are both meaningful and legal can be a bit
tricky at first. So when you run into a program bug, the first thing you
should do is check your variable names.

14 Arithmetic and Variables

Summary and review

This session taught you how to use computer arithmetic and variables. You
learned the rules of precedence and how to program your computer to
calculate simple and then somewhat complicated arithmetic problems.
You found out that variables are storage areas used to hold values and that
the names you give variables should reflect the kinds of values they hold.
And you saw that, like everything else in programming, there are rules for
naming variables (and that breaking those rules is a great way to learn
them).

Summary and review

15

Session 3

The Outside World

Up to now, all the information that went into the computer got there
through your program lines. When you wanted a variable to hold some
value, you used an assignment instruction (as in nvumeer = 23, so called
because it assigns the value 23 to the variable nuMBeR). You, the programmer,
gave the program the variable’s value. In this session, you'll learn how to
use INPUT, an instruction that lets the program get a variable’s value from
the person using your program. You'll read how to construct meaningful
prompting messages so your user will know what information the program
nceds. And you'll learn about string variables, which let you assign letters
and special characters (not just numbers) to variables.

You'll also learn the difference between immediate execution and deferred
execution, and you'll encounter new instructions that let you clear the
screen (HOME) and get an updated listing of your program (LIST).

INPUT

The INPUT instruction is at the heart of interactive programming—
programming that lets the computer and a human hold a conversation.
INPUT lets you give information to your program while it’s running. It
makes the program wait until you (or the person using your program)
types something and presses Return.

Type and run the following program: when a question mark (the INPUT
prompt) appears on the screen, type a number and press Return:

NEW
10 INPUT A
20 PRINT A * 5

Your Apple computer prints whatever number you typed after the
question mark. If you typed 3, your screen would look like this:

23 Your computer supplies the question mark automatically.
15

It's just as if you had typed A = 3 as a program line. Whatever you type in
response to an INPUT prompt gets assigned to the input variable (a variable
whose value is assigned by the user, as opposed to one whose value is
assigned by the programmer).

18 The Outside World

Prompts

The question mark prompts you to type something. You knew what to
type (a number) because this tutorial told you. But people using your
program would have a hard time knowing what to do if all they had to go

on was what appeared on the screen; a question mark in itself doesn't say
much.

Applesoft lets you use descriptive prompts to solve this problem.
Prompts tell a computer user what to do next. You can use either of two
ways to show what the program wants. First, you can print a line that says
what to do; then use an INPUT line.

Type this program and run it:

NEW
10 PRINT "I had a tough night. What year is this?"
20 INPUT Year

Now when you run the program, the message on the screen lets you know
that you need to type the year.

You can also use the INPUT instruction itself to print a prompt. A prompt
with INPUT works almost like a prompt with PRINT, except that the
prompt appears on the same line as the INPUT instruction:

NEW INPUT and prompt.
10 INPUT "I had a tough night. What year is this? "; Yeara””
20 PRINT "Oh, great. I thought it was "; Year + 1— —— New sfuff here!

30 PRINT "and I missed Christmas."

(Be sure to give the computer an answer when it prompts you for one.)
The semicolon between the quotation mark and the variable name in line 10
is important; you have to include a semicolon when you're using a
prompting phrase with an INPUT instruction. Note that when you use a
semicolon after an INPUT instruction, your Apple omits the question mark
prompt.

% Some tips on using PRINT: Line 20 has implications you can investigate on your
own. To get you started, note that:

1. There’s a semicolon after the final quotation mark—the semicolon tells BASIC
to show the value of the variable on the same line as the quotation.

2. Your Apple does a little arithmetic on the variable Year.

Here’s a program that shows several examples of self-prompting INPUT
lines:

Prompts

19

NEW
10 PRINT "TRIVIA PROMPT GAME"

20 PRINT

30 INPUT "How many cards are in a deck? "; Cards

40 INPUT "How many U.S. congresspersons are there? "; CP

50 INPUT "How many keys are there on your Keyboard? "; Keys

60 INPUT "How many days are in a leap year? "; Leap

% lllegal names and syntax errors: The trivia program uses descriptive variable
names in all lines except line 40. The variable name CP is not very descriptive,
but both Congress and Persons contain the reserved word ON. (See the list in
Appendix B.) When you get a syntax error in your program and you don’t know
why, try changing the variable names.

More editing: adding lines

Sometimes you have to add lines to your program. If the new lines belong
at the end of the program, you just type a line number larger than the last

line number in the old program and start typing. But what happens if you
need to add a line in the middle? Nothing to it. All you have to do is type
a line number that's between the numbers that already exist.

For example, suppose you have the following program, and you want to
include a line between lines 10 and 20:

NEW
10 PRINT "Remember to"
20 PRINT "the dog"

You want to remember to feed the dog. All you do is add the following
line to your program:

15 PRINT "feed"

Go ahead and run the program. You'll see that everything turned out in the
right order.

% Leave intervals between line numbers: All the sample programs you've seen in
this tutorial have line numbers spaced 10 apart. If the current program had been
numbered 1, 2 instead of 10, 20, you wouldn’t have had room to insert the new
line, and you would have had to retype the whole program.

Cleaning up with HOME

Your screen gets cluttered after you've typed and run a few programs. The
HOME instruction clears the screen and places the cursor at the upper-left

20 The Cutside World

corner (the cursor’s beginning, or Aome, position). Each time the
program encounters HOME, it clears the screen and homes the cursor:

NEW

10 HOME

20 INPUT “"HOW MANY POUNDS ARE IN A KILOGRAM? "; 1B

30 HCOME

40 INPUT "HOW OLD IS THE PRESIDENT? '"; PRES

RUN

The screen cleared with each new question. That way there’s no confusion

about what the program expects, and there’s no clutter from other
programs.

You can also use HOME without a line number whenever you feel like doing
some light housecleaning. Just type soMe and press Return.

Try it now:
HOME

HOME clears the screen—it doesn’t clear memory. HOME just erases the
junk cluttering your display. It has absolutely no impact on memory.
(Don't confuse it with NEW.) But after you use HOME to clear your screen,
you'll need a way to see your program lines again.

LIST

Type rist and press return to see your program again. Try it now.
LIST

As your programs get longer, you'll use LIST more and more. Type the
following program to test the different ways to use LIST:

NEW

10 HOME

20 PRINT "And Maud Pritchard"

30 PRINT "waddled the bible-black path"

40 PRINT "to the boat-bobbing sea"

50 PRINT "with nary a mind"

60 PRINT "for Mr. Pritchard, dead as biscuits.™

First, run the program; then list it. Once you've listed your program, try
the following variations of the LIST command to see what happens.

LIST 40 Lists line 40 only.
LIST 40 ;
e Lists from line 40 to end of program.

LIST 20 - 40 \ Lists from beginning to line 40,

Lists from line 20 to line 40.

LIST

2]

With the small programs you've written so far, you won’t need all these
variations in the LIST command. But later, when your programs are so
large they roll off the top of your screen, you'll want to list small program
segments.

String variables

In Session 2, you learned how to use variables with numbers. You can also
use variables with text. Variables that hold text are called string variables.
String variable names always end with a dollar sign ($), and you define them
(that is, give them values) in nearly the same way as numeric variables:

NEW

10 HOME

20 Aunt$= "Aunt Lizzy"
30 PRINT Aunts

When you run this program, the words Aunt Lizzy appear on the screen.
Line 30 works the same as

PRINT "Aunt Lizzy"

You can put just about anything into a string variable. Unlike numeric
variables, which accept only numbers, string variables can hold letters,
numbers, symbols—even punctuation:

NEW

10 HOME

20 GARBAGES= "All of this junk -> %43$,*!:;"
30 PRINT GARBAGES

Your computer printed everything between the quotation marks in line 20.
I's important to remember that numbers are not treated as numbers when

they are in string variables. They're treated as text—ijust symbols, a string
(get it?) of characters without meaning to the computer.

Run this next program to see numbers treated at text:

10 HOME
20 AS = "1gQ"
30 B$ = "20"

40 PRINT A$ + BS

Instead of getting 30, you got 7020. The plus sign (+) doesn't “add” the
string variables. (IHow do you add letters?) It just strings them together.
In computer terms, it concatenates them.

22 The Outside World

You can also use string variables with INPUT. You use prompts with a
string variable INPUT just as you do with a numeric variable INPUT. This
next program mixes both kinds of variables:

10 HOME
20 INPUT "What’s your name? "; NAMES
30 INPUT "Type your age: "; NUM
40 HOME
te th :
50 PRINT NAMES; st
60 PRINT " is *; There's a space before the i and aofter the s.

70 PRINT NUM;
80 PRINT " years old."

Just to see what happens, type some letters when your Apple asks for
numbers. (For example, type eighteen instead of the number 18.)

As soon as you press Return, you get this error message:

?REENTER

That just means your program expected a number and got something else.
Do as it says—re-enter a number (your computer wouldn't lie to you), and
everything will work fine.

Variables rules recap

In case you've forgotten, here are the rules for naming variables. The last
one applies only to string variables:

m A variable name must begin with a letter.
m Characters after the first one can be letters or digits.

® A name can be up to 238 characters long, but the computer recognizes
only the first two. (The others are to remind you what the variable
stands for.)

Certain letter combinations (called reserved words) can't be used in any
part of a variable name. See Appendix B for a list.

m All string variable names end with §.

Debugging

Murphy’s law, “If anything can go wrong, it will,” applies doubly to
programming. (Lubarsky’s Law of Cybernetic Entomology applies equally:
“There's always one more bug”; but that's for a more advanced tutorial.)

Debugging

23

Experienced hackers (another term for programmers) and beginners alike
make all kinds of little errors while programming. Debugging a program
(that is, ruthlessly tracking down and exterminating bugs) is a normal part
of creating a computer program; more often than not, it's a major part.
That's why your computer has error messages.

Knowing the difference between immediate and deferred execution is
helpful in debugging programs. When you type rux or New or L1sT without
a line number, the computer does what you want as soon as you press
Return. This is known as immediate execution. When you write a program
with line numbers, the computer defers execution until you run it. This is
called deferred execution. Immediate execution is extremely useful in
debugging programs.

For example, type and run the following program:

NEW

10 HOME

20 MONEY$ = "$1,000"
30 PRINT MONEYS

You get ?synTax ERROR IN 20 instead of the $1,000 you expected. List line
20, and you will be in for a surprise:

20 M ON EY$ = "$1,000"
What happened to ¥ ow evs? It's all broken up. Type:
MONEYS$ = "$1, 000"

As soon as you press Return, you get a syntax error. You have a reserved
word (ON) embedded in your variable name. In your program listing, you
can see that ON has been separated from ¥ ox £vs in lines 20 and 30. You
can rewrite your program with another variable name, but first test the
alternate name by using immediate execution. Try the following:

BUCKS = "$1,000"

There was no error message this time. That means Bucks is acceptable as a
variable name. In this case, changing the program takes only a few
seconds; you've used Monzys only once. But consider a situation in which
you've typed a much longer program, using mMovzys 25 or 30 times—it would
take quite a bit of time to change each instance of monEYs to Bucks. It's a lot
quicker testing out possible errors by using immediate execution than re-
writing your program every time you encounter an error.

The trick to successful debugging is isolating the problem. Some error
messages give you the line number where your computer detects the
problem. This helps you zero in on the problem. Test the possible
problem from the immediate mode as you saw in the example with moxeys
and Bucks. Correct the error in the program, and re-run it to see if more

24 The Outside World

errors occur. If no more errors happen, then your debugging
succeeded—at least as far as variable names are concerned.

You'll find more uses for immediate execution as you go along.
Experimentation is the key. Try everything first with immediate execution;
you'll be in for some pleasant surprises.

Summary and review

In this session, you learned that you can get information from the user with
the INPUT instruction while your programs are running. Be sure to use
descriptive prompts with INPUT; that way people who use your programs
can know what they're supposed to type. Descriptive prompts are to the
users of your programs what descriptive variable names are to you, the
programmer.

You also learned about string variables. You saw that they work and look
much like numeric variables, except that string variables end with $, and
their values are surrounded by quotation marks in a program line.

The HOME instruction clears the screen for you. LIST lets you see all or
some of the lines of the program in memory to make program debugging
easier.

You also learned that you can use many programming instructions with
immediate execution to help you debug programs.

Summary and review

25

Session 4

Using the Disk and Other
Devices

As you write longer and better programs, you'll want to start saving them
to use again. This session explains how to store programs onto disks and
how to get them back again.

You'll learn about three different kinds of memory (RAM, ROM, disk), with
emphasis on disk memory. You'll see how to store a program onto a disk
with SAVE, retrieve the program with LOAD, and see a list of all the
programs on a disk with CAT. You'll learn how to get rid of outdated
programs on a disk by using DELETE.

You'll also learn how to use PR#1 to get a version of your program on
paper instead of on the screen, and how to use PR#0 to use the screen
again. And you'll end the session with a review of everything you've
learned so far.

Computer memory

RAM stands for Random-A ccess Memory. RAM is temporary. When you
first turn on your computer, this memory has nothing meaningful in it.
When you write a program or tell your computer to retrieve a program
stored on a disk, that information goes into RAM. When you turn off your
computer, all of the information in RAM evaporates.

ROM is Read-OnlyMemory. It's a kind of memory that holds information
permanently. The Applesoft BASIC language is stored in this kind of
memory; when you turn your computer off, the language stays in ROM (but

not your program). Nothing that you type gets stored in this kind of
Memory.

A disk is what you save programs on. Disk drives (the devices that disks go
into) work a lot like tape recorders. With a tape recorder, you talk into
the microphone, and your voice is recorded on magnetic tape. Then you
rewind the tape and listen to your voice. Your computer works the same
way, except that instead of using tape recorders to save what's in RAM onto
tape, it uses disk drives to save information onto disks. Once you've got a
program on disk, you can “play it back” again and again.

You don't have to worry about the technical details of RAM, ROM, and
disks. But you'll save yourself a lot of grief if you remember that when you

turn off your computer, everything in RAM disappears into electronic
oblivion.

28 Using the Disk and Other Devices

Files and catalogs

Most well-organized people put written records in files so they can find the
records again. So too with computer records. Programs stored on disk are
also called files. There are several other kinds of files, but the only kind
you have to know about for now are program files—the name given to
programs stored on disks.

Making a list or catalog of what files are stored in a file cabinet makes it
easier to locate a file when you need it. Essentially, that’s what your
computer does when you save a program on a disk. You store your
program by using the SAVE command, and the name of the program is
placed in a catalog. When you want to use a program, you look it up in the
disk’s catalog with the CAT command to make sure it’s there; then you
retrieve it by using the LOAD command.

% Commands versus instructions—a matter of terminology: That last paragraph
used the term command several times. A command is like an instruction in that it
tells the computer to do something. The difference between a command and an
instruction lies almost entirely in when the computer does what you want.
Essentially, a command is an order that the computer executes immediately; an
instruction is an order whose execution is deferred. It's just a matter of
terminology.

How to save programs

Storing a program onto a disk is the easiest thing in the world. You issue
the SAVE command, giving your program a name you can use later to get it
back from the disk.

To get some practice, first type in this program:

NEW

10 PRINT "This is my very first saved program."
20 PRINT "I'm very proud of it"

30 PRINT "(or I will be, if I can get it back)."

Now you need to think of a name. Here are the rules for naming a
program.

m A program’s name can be up to fifteen characters long.
m The name must begin with a letter.

How fo save programs

29

®m You can use letters, digits, and periods in the filename, but you can't use
any other characters, and you can’t include any spaces. You can use
both uppercase and lowercase characters, but the computer converts all
letters to uppercase.

m All filenames on a given disk must be unique. But al characters in the
name count, not just the first two, and you don't have to worry about
reserved words. So coming up with different filenames shouldn’t be
much of a problem.

m The name should reflect what the program does.
Here are some legal filenames:

CHECKBOOK

ADDING.PROGRAM

AH.1ANDAH.2

NOT.4.SALE

These names, though, are illegal:

llegal Name Problem

10NE Begins with a number.
THIS.PROGRAM! Exclamation mark is illegal.
POINT Begins with a period.
AREALLY . TRULY.NIFTY.PROGRAM Too, too, long.

GREAT STUFF There’s a space.

(Many people use periods in filenames where they’d use spaces if they
could.)

Save your program onto a disk now. You can use whatever legal name you
want; MY .FIRST.FILE seems like an appropriate one.

Type this line and press Return:
SAVE MY.FIRST.FILE

The disk whirs and kerchunks a bit. When it stops, a copy of your
program is safely stored on the disk. Note that word—copy. Storing a

program on disk doesn’'t have any effect on what's in the computer’s
memory.

Type nist and press Return; you'll see that the program is still there.

30 Using the Disk and Other Devices

Reading the catalog and retrieving a program

Once you've saved your program to the disk, type NEW and press Return.
Now you know for sure that there’s nothing in memory. (Type List and
press Return to see for yourself.)

To look at the files on your disk, use the CAT command. You'll get a list of
all the files on the disk.

Type this command and press Return:

CAT

Assuming there are no other programs on the disk, your screen will look
like this:

- N
]CAT
JPRACTICE
NAME TYPE BLOCKS MODIFIED
MY.FIRST.FILE $08 33 <NO DATE>
BLOCKS FREE 240 BLOCKS USED: 40
]

N J

(Of course, your screen will look different if the disk already has other
programs on it.) The program MY.FIRST.FILE is now in the catalog. (For
information on what the rest of the display means, see the manual that
came with your computer.) The next step is to retrieve the program. To
do that you need a new command, LOAD.

Type this command and press Return:

LOAD MY.FIRST.FILE

Reading the catalog and retrieving a program

31

You'll hear your disk drive whir a second, and then the prompt and cursor
will reappear. That means your program was successfully loaded into
memory.

To make sure it's the program you saved, list it:
LIST

Your program appears, just as it was when you saved it.

o

* LOAD does a NEW: When you load a program, your computer first clears its
memory of any program that might already be there. This means you don't have
to worry about two programs being mixed together. (It's possible to combine two
programs, but the technique is too advanced for this tutorial.) Think of LOAD as
having an automatic NEW attached to it.

Cleaning up

If you're really careful when you write programs, you'll save different
versions as you go along. For example, you might have saved these
programs on your disk:

STAMPS.V1
STAMPS.V2
STAMPS.V3

If you know for sure that the last version of your program, STAMPS.V3, is
the only one you plan to use, you might as well get rid of the other versions

and free up room on your disk. You delete files by using the DELETE
command.

To delete STAMPS.V1, type
DELETE STAMPS.V1 Press Return.

You'll hear the disk whir, and STAMPS.V1 will be just a memory (human,

not computer). Just think of DELETE as the opposite of SAVE, and use the
same format.

% DELETE’s not reversible: DELETE is forever. Once you delete a program from

the disk, it's gone. Be sure that you want to get rid of a program before you use
DELETE.

32 Using the Disk and Other Devices

For printer owners: printing your listings

So far, you've sent your program to the screen and to the disk. You can
also send your program (and anything else you type) to the printer.

Printing out a program, especially a long one, is extremely helpful in
program debugging; your experience will show you how very true this is.

To list a program on your printer, follow these steps:

1. Make sure your printer is properly connected to the computer.
2. Check that you have paper properly loaded.

3. Be sure the printer is turned on.

4. Type pr#1 and press Return.

(If you don't follow any one of the first three instructions, your computer
will appear to be stuck.) The PR#1 command makes everything that would
go to the screen go to the printer. If you type LIST after you've typed a
PR#1 command, your printer will clank out the listing (unless you've typed
LIST incorrectly—in which case the syntax error message gets printed).

To see the computer's oulpul on your screen again and to stop using your
printer, type this:

PR#0

and press Return. The command will appear on the printed page; but after
that, subsequent commands and listings will appear on the screen instead.

Bugs can be tough to find in longer programs, especially when your listing
is so long that it scrolls off the screen. Printing out your listings can save a
great deal of debugging time.

Type this program and try listing it on your printer:

NEW

10 HOME

20 PRINT "This procram will be listed to my printer."
30 PRINT "If there’s a bug here, the printer"

40 PRINT "will help me track it down."

PR#1

LIST

Your printer gives you a hard copy listing of the program.

Before you turn off your printer with PR#0, run the program to see what
happens. Then type PR#0 to get your BASIC prompt (J) back on your
display screen.

For printer owners: printing your listings

33

Using what you’ve learned

You've had less to learn in this session than in the three previous ones.
Use your remaining BASIC study time to write some programs that use all
the instructions and operators you've learned so far. Here's a list to jog

your memory:

Instructions

HOME INPUT
Operators

+ =

/ (
Commands

CAT DELETE
LIST LOAD
PR#0 RUN
Concepts

Immediate and Deferred Execution
Meaningful Names
Precedence

String Variables

PRINT

NEW
PR#1
SAVE

Line Numbers with Intervals
Numeric Variables

Prompling Messages

Summary and review

In this session, you learned how to store programs onto disks by using the
SAVE command, and how to get them back by using LOAD. You learned
how to name programs, and which characters are legal in a name and which
ones aren’t. You saw that CAT gives you a list of all the files on your disk,
and that if you use PR#1, whatever ordinarily goes to the screen goes to the
printer. (PR#0 sends information to the screen again.)

34 Using the Disk and Other Devices

Session 5

Loops and Conditions

In the first few sessions, you learned the rudiments of BASIC
programming. Now it's time to get down to some more advanced stuff,
In this session you're going to learn about three very powerful principles:
loops, relationals, and conditionals. You'll also read about some BASIC
short cuts that make programming easier, and you’ll learn some other
helpful instructions.

Loops

To loop is to go over the same part of a program more than once. For
example, suppose you want to get ten names with INPUT and print them
one after another onto the screen. It would be a lot easier to repeat the
part of the program with the INPUT instruction than to write ten separate
lines with INPUT:

NEW

10 HOME

20 INPUT "Gimme a name: "; NAMES

30 PRINT NAMES

40 ... How do you get back to line 207

What you need is some instruction that lets your program loop back to line
20 to get another name. That instruction is GOTO.

GOTO

The GOTO instruction directs the program to go to any line you name.
This program clears the screen, then skips to (or branches to) line 40
instead of going to line 30:

NEW

10 HOME

20 GOTO 40

30 PRINT "Hey! I thought I was next!"
40 PRINT "I'm the only line you’ll see!™

This never gets printed!

Here’s another example. Type the first program of this session, but this
lime type

40 GOTO 20

36 Loops and Conditions

for the last line. Then list the program. It should look like this:

10 HOME

20 INPUT "Gimme a name: "; NAMES
30 PRINT NAMES

40 GOTO 20

This program repeatedly asks for a name and then prints out what you
type. The program will go on doing this forever as long as somebody
keeps typing in names (or until somebody pulls the plug); every time the
program reaches line 40,