

APPLE II
COMPUTER
GRAPHICS

Ken Williams
Bab Kernaghan
Lisa Kernaghan

illustrations by
Gregory Paul Steffen

Robert J. Brady Ca.
A Prentice-Hall Publishing and

Communications Campany
Bowie, MD 20715

Executive Editor: David T. Culverwell
Production Editor/Text Designer: Michael J. Rogers
Art Director: Bernard Vervin
Typesetting: Creative Communications Corporation

Cockeysville, MD
Typefaces: Eurostile (display); Optima (text)
Printed by: R.R. Donnelley & Sons Company

Harrisonburg, VA
Cover Design: Don Sellers
Indexer: Leah Kramer

Apple 11 Computer Graphics

Copyright© 1983 by Robert J. Brady Company.
All rights reserved. No part of this publication may be reproduced or
transmitted in any form or by any means, electronic or mechanical, in
cluding photocopying and recording, or by any information storage and
retrieval system, without permission in writing from the publisher. For
information, address Robert J. Brady Co., Bowie, Maryland 2071 5

Library of Congress Cataloging in Publication Data

Williams, Ken, 1938-
Apple 11 computer graphics.

Includes index.
1. Apple II (Computer)-Programming. 2. Computer

graphics. I. Kernaghan, Bob. 11. Kernaghan, Lisa.
111. Steffen, Gregory Paul. IV. Title. V. Title:
Apple 2 computer graphics. VI. Title: Apple Two
computer graphics.
QA76.8.A662W54 1983 001.64'43 83-3871
ISBN 0-89303-315-4

Prentice-Hall International, Inc., London
Prentice-Hall Canada, Inc., Scarborough, Ontario
Prentice-Hall of Australia, Pty., Ltd., Sydney
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books, Limited, Petone, New Zealand
Editora Prentice-Hall Do Brasil LTDA., Rio de Janeiro

Printed in the United States of America

83 84 85 86 87 88 89 90 91 92 93 10 9 8 7 6 5 4 3 2 1

Contents

1 Introduction 1
2 Computer Physiology 3
3 System Monitor-Memory Tricks 13
4 APPLESOFT Extensions 21
5 Graphics Modes and Soft Switches 31
6 Text and Low-Res 39
7 Preserving Your Pictures 53
8 Hi-Res Graphics 65
9 Hi-Res Color 81

10 Shaping Up 99
11 Graphs and Charts 119
12 Byte-Move Shapes 135
13 Advanced Moves 147
14 Collision Course 157
Appendix 1: Decimal, Hex, and Binary 165
Appendix 2: Character Codes: ASCII vs APPLE 175
Appendix 3: Memory Maps 177
Glossary 181
Index 186

iii

Foreword

The introduction of the Apple II computer marked a revolution in com
puters. For the first time there was a fully functional computing machine
available which was priced affordably for home users. In addition to its
powerful data processing capabilities, APPLESOFT had the first set of
BASIC extensions which allowed the programmer true power and conven
ience when working with graphics. The six-color high resolution mode
with the HCOLOR and HPLOT commands were "state of the art," and the
SHAPE construct and associated DRAW, XDRAW, SCALE, and ROTate
functions were ahead of their time.

When I acquired my first Apple, the Low-Res "Little Brick Out" was
considered a very good game, and Bob Bishop's "Applevision" demo was,
and still is, awe-inspiring. But with literally millions of people seeing and
using the Apple, advances in style and technique came rapidly as program
mers and "hackers" accepted and surmounted one challenge after an
other in their attempt to "do it better."

The manuals state that only six colors are available on the High-Res
screen, but Sierra On-Line soon developed over 100 colors. It was not
supposed to be possible to put text on the High-Res screen, but doing so is
now commonplace. The power, ingenuity, and persistence of the human
mind has extended the capabilities of the Apple further than anyone had
imagined possible. Like most of the current software companies, Sierra
On-Line was born in long and solitary hours of developing newer, faster,
and better methods of producing graphics on the Apple. In writing this
book, it is my hope to introduce you to those advanced techniques such as
Byte-Move, animation, and collision detection, as well as the standard
Apple graphics.

With the aid of my co-authors, who are professional teachers in addition
to being experts in the field of home computers, I have tried to present
those ideas in a manner which is clear and understandable, and which
relies only on a knowledge of BASIC. I hope you find this book enjoyable
to read as well as useful in your own program development.

Ken Williams

The author and publisher of this book have used their best efforts in
preparing this book and the programs contained in it. These efforts
include the development, research, and testing of the theories and pro
grams to determine their effectiveness. The author and publisher make
no warranty of any kind, expressed or implied, with regard to these pro
grams or the documentation contained in this book. The author and
publisher shall not be liable in any event for incidental or consequential
damages m connection with, or arising out of, the furnishing, perfor
mance, or use of these programs.

iv

1
Introduction

The level of graphics for the Apple II has risen considerably since the early
days when Little Brick Out was considered a major accomplishment. The
industry standards now virtually require that good graphics be multi
colored and high resolution, and that the animation be smooth, clean, and
fast, and collision detection quick and accurate.

If you are at all familiar with the remarkable graphics effects on the
market today, you have probably become curious about the methods used
to generate them. This text will detail those aspects of Apple II graphics
which are currently in common use; particularly with regard to Hi-Res,
Low-Res, and Text Mode graphics, color generation, animation, and colli
sion detection. All subjects are presented for use by the APPLESOFT pro
grammer, but have extensions for the assembly and machine language
programmers.

In using this text, it is necessary to have the following equipment handy
and ready to use:

Apple II, Apple II+, or Apple lie computer

Color Monitor or TV

One or more disk drives and disks

or

A tape recorder and tapes

Lots of paper

A printer is helpful for graphics, but not necessary.

This book is not written for the beginning BASIC programmer; it is neces
sary that the user of this book have some knowledge of BASIC program-

1

2 APPLE II COMPUTER GRAPHICS

ming. The user should be familiar with the following commands: GR,
COLOR, PLOT, HUN, VLIN, SCRN, HGR, HGR2, HCOLOR, HPLOT,
DRAW, and XDRAW. If you are unfamiliar with APPLESOFT BASIC or
these commands, please review the APPLESOFT Reference Manual before
continuing.

Before starting our journey into the world of graphics, it is prudent to
arm ourselves with some relatively technical, often frustrating, but quite
essential material. We assume you have a rudimentary knowledge of
APPLESOFT BASIC and your Apple II system. So, let us begin with a
discussion of the binary, decimal, and hexadecimal systems of numeration.

The time has come, the walrus said
To speak of many things.
Of bits and bytes and peeks and pokes ...

2
Computer Physiology

Objectives

After reading Chapter 2 you should be able to:

• Convert binary numbers to hexadecimal numbers and back.

• Convert hexadecimal to decimal.

• Understand the idea of memory addressing.

• Use the post office box model for computer memory.

Most beginning programmers work exclusively with the software phases
of computing, and are content to leave the concern for such things as
circuitry, memory allocation, and video display to computer engineers. But
when one tries to work with microcomputer graphics using only the con
structs and commands available to BASIC or other high-level languages, he
or she finds the going slow and awkward. To effectively utilize the graph
ics capabilities of your machine, you need at least a rudimentary concep
tual understanding of what is happening within the beast.

To gain that necessary understanding, you will need a working knowl
edge of the binary, decimal, and hexadecimal systems of numeration.
Decimal is the common base ten system which you ordinarily use, binary
is the base two system which your computer uses, and hexadecimal, or
hex, is the base sixteen system which is a useful compromise serving as the
system of communication between you and your computer.

Although your computer is capable of "speaking" BASIC and perhaps
other languages, good graphics effects often require you to deal directly
with system memory and use some machine level routines. Working at the

3

4 APPLE II COMPUTER GRAPHICS

machine's level means learning something about how the computer stores
and processes data.

Digressing ta Digital

All of today's microcomputers use two-state digital circuitry. In relation to
computers, digital circuitry means, in very loose terms, that all information
is represented within the computer as a discreet state of a circuit-usually
either off or on. The power light on your Apple is a good example; the
light is either off or on, and by looking at the light, you can infer the state
of your machine.

There are analog computers whose basis for processing is not the pres
ence or absence of voltage, but instead the amount of voltage present in a
circuit. However, it is operationally much easier to test for the presence or
absence of voltage in a circuit than it is to determine the precise amount of
voltage. You can imagine the complexity and accuracy required of a com
puter circuit to correctly and reliably represent a number such as 36,741
by analyzing only the amount of the voltage. For that reason the memory
of your computer is digital, and consists of thousands of two-state microcir
cuits, where each circuit can be set either on or off. Since each circuit
maintains or "remembers" the on or off state to which it was set, these
circuits can be used to store all of the information which the machine is
supposed to remember.

RAM and ROM

Your Apple II has two types of memory: RAM and ROM. ROM stands for
Read Only Memory. The information contained in ROM is essentially per
manent and unalterable. You may read the information from ROM, but
you cannot write to it or change it in any way (that is why it is termed
"Read Only"). Your version of BASIC is stored in ROM, as are most of the
other instructions which make your system operate. That is what makes
the Apple II "intelligent" since its operating system is "on board" or
"ROM resident."

RAM is short for Random Access Memory; RAM is the working memory
for your Apple. Whether you are writing, editing, or running a program,
that program resides in RAM, as do all of the variables and other data you
use. RAM is of great interest in graphics because the video output is simply
displaying data from a secton of the RAM. The use of graphics then be
comes mostly a matter of putting the correct data into the proper place in
memory.

To make it easier to visualize, memory within the computer may be
thought of as a great many switches, each of which is either on or off at
any given time. Those memory switches are commonly called "bits," and

CHAPTER 2-COMPUTER PHYSIOLOGY 5

ONE BIT

~
TWO CHOICES

21

TWO BITS
FIRST BIT SECOND BIT

ON ON

ON OFF

OFF ON

OFF OFF

FOUR CHOICES

22

THREE BITS
FIRS! BIT SECOND BIT THIRD BIT

ON

ON

ON

ON

OFF

OFF

OFF

OFF

ON

ON

OFF

OFF

ON

ON

OFF

OFF

EIGHT CHOICES
23

ON

OFF

ON

OFF

ON

OFF

ON

OFF

Figure 2-1. Bit combinations.

once each RAM bit is set on or off, it remains in that state until altered by a
command, or until the computer is turned off. (At which time the values in
RAM are lost.) All of the computer's impressive capabilities rely on the
lowly bit. One bit is quite a long way from making a computer, just as one
grain of sand is a long way from being a beach. A bit, like a grain of sand,
has little meaning individually, but when grouped with thousands of other
bits, together they are able to take on meaning and form.

Making It Happen with Ones and Zeros

As stated earlier, each bit will take on only one of two states, on or off. In
order to facilitate discussion, if a bit is on, it is said to have a value of 1; a
bit which is off has a value of 0. Since each bit may only be 1 or 0, each bit
conveys a very limited amount of information. In the example of your

6 APPLE II COMPUTER GRAPHICS

computer's power light, you know only that the power is on or off, and
nothing more. Two bits in a group combine in one of four (22) combina
tions: 00, 01, 10, and 11. (10 and 11 are interpreted as one-zero and one
one, respectively, not as ten and eleven.) Using the computer's power light
together with the "in use" light of the disk drive can illustrate how two
digital circuits can convey four pieces of information: If both lights are off,
neither unit is operating. If the power light is on and the disk light is off,
the computer is on but not the disk drive. If the power light is off but the
disk light is on, the disk is operating but not the computer!?!!? (time to call
the repairman). If both lights happen to be on, then both units are operat
ing. Similarly, a group of three bits allows for eight (23) combinations, and
a group of four bits allows for sixteen (24

). The number of possible combi
nations continues to increase exponentially as does the number of bits
used. Figure 2-1 illustrates the possible combinations for one, two, and
three bits.

Bits in a Bag

Your computer contains hundreds of thousands of bits. As we have seen,
however, they must be grouped together in order to convey any significant
information. Most microcomputers, including your Apple, group eight bits
into a unit called a "byte." A byte is the fundamental unit of memory. The
size of memory is usually discussed in terms of kilobytes ("K" for 1,000),
or megabytes ("M" or Meg, for 1,000,000).

A single eight-bit byte can represent any one of 256 possible values (28

= 256). Having 256 combinations works out conveniently to allow any
letter or digit be assigned to one of those 256 combinations and repre
sented by it; the computer stores the character by storing the numeric
code. If bits were only grouped six at a time, for example, you would only
be able to form 64 (26

) distinct combinations. However, the computer
needs to have more than 64 distinct bit patterns available in order to
uniquely represent each of the required characters, including all the keys
on the computer keyboard-both upper and lower case, the special char
acters such as & and *, and the control codes such as CTRL-C.

When you press a key, the computer actually receives an eight bit pat
tern; when you press "A" your Apple sees the pattern 11000001, and
when you press the "*" key, the computer sees 10101010. Each character
has its own unique bit pattern. After you press a key, the computer stores
that particular bit pattern in a byte of memory. But now that the informa
tion is stored, the computer has to be able to locate it when it is needed,
which leads us to

Addressing

Each byte in the Apple's memory is numbered sequentially, and that num-

CHAPTER 2-COMPUTER PHYSIOLOGY 7

ber is called the "address" of that byte. A memory address is much like the
number on a post office box-one can determine what is in any byte of
memory by going to the box with the proper address and looking inside.
The number of boxes available depends upon two things: The number of
boxes installed (memory size), and the maximum number of digits availa
ble in the address. If you were limited to use only three decimal digits in
an address, there would be a maximum of 103 (1000) boxes-addressed
000 through 999. The processor within the Apple allows for two bytes
(sixteen bits) in the address of any location in memory, and that provides a
maximum of 216 addresses. If you have wondered why you can use a
maximum of 64K bytes of memory within an Apple II, consider that each
memory location has to have an address, and that 216

, using a little
arithmetic and a good calculator, equals 65,536-the true maximum for
the number of bytes the 6502 processor can address. Many larger com
puters use three or more bytes for addressing; a three-byte address con
tains 24 bits, so by allowing three bytes in the addresses, a computer can
address 224 memory locations: over SIXTEEN MILLION bytes of memory!

Binary Blindness

Your computer is very happy to work in binary. The early machines did so
exclusively, but most people find it trying-looking at binary numbers all
day makes your eyes cross! To demonstrate, compare the two columns of
binary numbers below, and try to determine where they differ.

10010111 10010111

01010110 01010110

00010010 00010010

11011010 11011010

00100111 00100111

11101100 11100100

01000001 01000001

11110100 11110100

Is it any wonder that there were very few programmers in the days when
computers spoke only binary?

Hex ta the Rescue

The hexadecimal or hex system of numeration, base sixteen, supplies a
welcome solution to the problem of "binary blindness." Hex is advanta
geous because it provides a convenient way to turn the binary ones and

8 APPLE II COMPUTER GRAPHICS

zeros into something more easily communicated to the human brain, so
most modern computers like to speak to people using hex.

Hexadecimal, which uses sixteen digits, is used to represent the 256
different combinations available with an eight-bit byte. It is conceivable to
represent the value of a byte using a single base 256 digit; however, most
people would find it very difficult to remember 256 different digits. There
fore, in the interest of simplicity, instead of one base 256 digit representing
the value of a byte, two hex digits are used. Why not use decimal which is
simpler yet? Do not forget that we are dealing with a group of bits. The ten
decimal digits are too many to represent three bits and too few for four
bits, as three bits make for eight combinations, and four bits make for
sixteen. The fact that sixteen combinations are available to four bits, and
that hexadecimal uses exactly sixteen digits, is very important. This is the
reason that many programmers count like they have sixteen fingers!

BIT BIT BIT BIT
1 2 3 4 HEXADECIMAL BINARY DECIMAL

OFF OFF OFF OFF 0 a a a 0 a

OFF OFF OFF ON 1 0 0 a 1 1

OFF OFF ON OFF 2 a 0 1 0 2

OFF OFF ON ON 3 a a 1 1 3

OFF ON OFF OFF 4 a 1 a 0 4

OFF ON OFF ON 5 a 1 0 1 5

OFF ON ON OFF 6 a 1 1 a 6

OFF ON ON ON 7 0 1 1 1 7

ON OFF OFF OFF 8 1 a a 0 8

ON OFF OFF ON 9 1 0 a 1 9

ON OFF ON OFF A 1 0 1 a 10

ON OFF ON ON B 1 a 1 1 11

ON ON OFF OFF c 1 1 a a 12

ON ON OFF ON 0 1 1 0 1 13

ON ON ON OFF E 1 1 1 a 14

ON ON ON ON F 1 1 1 1 15

Figure 2-2. A binary/hex chart.

CHAPTER 2-COMPUTER PHYSIOLOGY 9

Taking a Smaller Byte

The next problem is to represent each of the 256 different values for one
byte using only the sixteen hex digits-the standard 0 through 9, plus the
letters A, B, C, D, E, and F; where A stands for ten, B for eleven, and so
forth through F which stands for fifteen.

One byte is represented by two hex digits; each digit represents four of
the eight bits in that byte. As modern computer whimsy would dictate,
each of the two half-bytes is called a nibble (sometimes nybble). A binary
nibble corresponds to a hex digit as shown in Figure 2-2.

Suppose that you were looking at a byte with all eight bits turned on.
Separated into the two nibbles, it would look like 1111 1111 and would
correspond to hexadecimal FF, since each nibble (1111) corresponds to F.
The binary byte 1010 0000 is hex A0, and binary 0111 1100 is hex 7C.
(See Figure 2-3.)

Trying to remember which binary number goes with which hex number
can make your head hurt, so you might want to make your own chart like
the one in Figure 2-2 and leave it in a handy place as an aid in converting
between hex and binary.

Since it is not always clear whether a numeral such as 10 is in hex,
decimal, or even binary, it is conventional to write a hexadecimal numeral
with a dollar sign ($) in front, such as $FF. Binary numerals are preceded
by exclamation points (!), and decimal numerals are left alone.

Can11ersian ta Decimal

When dealing directly with the memory of your machine, it is usually best
not to convert to decimal. Thinking in hex is often more efficient since it is

F F

A

I 1 I ~ I 1 I 0 I s I ~ I s I ~ I

7 c

lsl1l1l1l1l1lfJl~I
Figure 2-3. Binary/hex examples.

10 APPLE II COMPUTER GRAPHICS

the system your Apple understands. There are, however, a few instances
where you must convert hex to decimal, such as for use in an APPLESOFT
POKE or CALL statement. When you do have to perform the conversion
you may use the following algorithm:

Reading the hex number from right to left, the decimal value of the
entire number is found by taking the decimal value of the first hex digit
(nibble), plus 16 times the decimal value of the second digit, plus 256
(162

) times the decimal value of the third digit, plus 4096 (163
) times the

decimal value of the fourth digit, and so on.

Example 1

$C057 = 7 + 16*5 + 256*0 + 4096*11

= 7 + 80 + 0 + 45056

= 45143

Example 2

$10 = 0 + 1*16
= 16

Microcomputers rarely deal internally with numbers having more than four
hex digits, but the algorithm does carry on if necessary. If you convert the
largest possible two byte hex number, $FFFF, to decimal you should get
65,536. Since your micro uses two byte addresses, you can again see why
that number is the largest in the Apple's world.

Although conversion methods have been discussed only briefly, the pre
ceding discussion is sufficient to serve our purposes for now. Appendix 1
contains a more thorough treatment of hexadecimal, decimal, and binary
number systems. There are also a number of calculators presently on the
market which are designed for computer programmers; they have func
tions to do all of the conversions for you at the press of a button.

Vocabulary

Address

Binary

Bit

Byte

Decimal

Hex

Hexadecimal

Memory

Nibble

RAM

ROM

ROM Resident

CHAPTER 2-COMPUTER PHYSIOLOGY 11

Exercises

1. Convert the following binary numbers to hex:

a. !1011 0100

b. !0101 1111

c. !0101 0110

2. Convert the following to binary:

a. $7C

b. $FF

c. $AS

d. $DB

3. Convert the following to decimal:

a. $7C e. $7CFF

b. $FF f. $OBAS

c. $AS g. ! 1011 0000 {Hint: convert to

d. $DB h. !0111 0101 hex first.)

4. Convert $3F and $S7 to binary and to decimal numerals.

S. Convert !1001 0110 and !0111 1011 to hexadecimal.

3
System Monitor

Memory Tricks

Objectives

After reading Chapter 3 you should be able to:

• Enter and leave the Monitor.

• Examine RAM and ROM.

• Change the contents of RAM.

• Move blocks of memory.

• Use a memory map to locate reserved and free memory.

In essence, your computer is simply a pile of very fancy circuitry, and
those circuits are designed to respond to a certain set of very, very rudi
mentary instructions. Although BASIC will respond to high level com
mands such as NEW and PRINT, those are commands of your language,
and not your processor. It is the function of the BASIC interpreter to
translate those statements down to the elementary ones and zeros that
your processor requires to operate; the machine takes over from there.
The capabilities of BASIC are good as far as they go, but there are applica
tions to graphics which require that the programmer deal directly with
memory.

Memory is where everything happens, and though you can reach mem
ory using BASIC's PEEK and POKE statements, there is a faster, more
powerful, and sometimes more convenient method. Supplied in the ROM
of every Apple is the system Monitor, with a capital M, which is very

13

14 APPLE II COMPUTER GRAPHICS

different from your video monitor. The Monitor is actually another com
puter language and is designed to let you, the user, communicate directly
with system memory. As related to graphics, you will use Monitor to
inspect, modify, or move the contents of the RAM. You will also learn to
use Monitor to enter short machine language programs which can be
accessed from your BASIC programs to manipulate graphics. But before
you can learn about the Monitor, you have to find it.

Monitor, I Presume

If you have worked much with your Apple you have noticed that, when
you are talking to APPLESOFT, the computer displays a] on the left edge
of the screen; you get a > when you work with INTEGER BASIC. Those
are prompt characters, and their purpose is to remind you which language
you are dealing with. The prompt character for Monitor is *. If you have a
regular Apple II, you see the * prompt every time you turn the system on.
When you power up an Apple II+ or Apple lie, they will immediately
access the disk and load the disk operating system (DOS). After DOS has
been loaded, the screen will display either the > or] prompt, and then
you can reach the Monitor by typing:

CALL-151 <CR>

When you want to return to BASIC from Monitor, type:

<CTRL-C> <CR>

If you have DOS up, an alternate method of returning to BASIC is to type:

JD{t}G<CR>

Examining Memory

You can use Monitor to examine or alter any byte of RAM; you can also
examine ROM, though you cannot change it. Enter the Monitor, then type:

JJ<CR>

The display should respond with the contents of address $33:

YJYJ33- AA

Location $33 is where Apple stores the current prompt character, and $M
is Apple's numeric code for the *. Notice that you did not preface the 33
with a dollar sign, even though you meant hexadecimal 33; Monitor al
ways speaks in hex and assumes that you will do the same.

You may look at more than one byte of memory at a time by specifying
the beginning and ending addresses of the range of memory you wish to
see. Still, from Monitor type:

CHAPTER 3-SYSTEM MONITOR-MEMORY TRICKS 15

Cli'li'.C1F<CR>

Do not use spaces to separate the two elements of the command. The
computer will then display something similar to:

1i'Cli'9J- xx xx xx xx xx xx xx xx
ft'C~8- xx xx xx xx xx xx xx xx
9JC19J- xx xx xx xx xx xx xx xx
9JC18- xx xx xx xx xx xx xx xx

The numbers in the left hand column index the memory locations dis
played in the first column of each line. Each of the xx's will be some
hexadecimal byte, though the precise value of each byte will vary. Shown
in the first row will be the contents of memory locations C00, C01, C02,
C03, C04, C05, C06, and C07. The second row gives the contents of C08,
C09, C0A (remember to count in hex), C0B, C0C, C0D, C0E, and C0F. The
third row begins at Cl 0 and continues in a similar manner.

Changing Your Memory

You can use Monitor to alter the value in any given byte of RAM. To
change the eight bytes beginning with the byte at C9J9J, enter:

C9J9J:FF FF FF FF FF FF FF FF<CR>

The colon is the Monitor command to change the values of memory
starting at the given location (C9J9J}, and the FF's are the values to which
you wish to change. The spaces between each of the bytes are necessary
for the command to execute properly. (From here on out, we will assume
that you will press the return key when required, so we will stop putting
<CR> after each entry.)

To verify that the memory has been changed, enter:

C9J9J.C9J7

and this time you will see:

fl'C9J9J- FF FF FF FF FF FF FF FF

This indicates that the eight bytes beginning at C00 all contain $FF.

Memory Organization

Like all microcomputers, the Apple's RAM is not all available for your use;
some portions are used by the DOS, some by the Monitor, and some areas
are reserved for temporary storage (buffers) or "scratch pad" areas. In the
previous example, we chose to alter the range C9J9J through C9J7 because
that area is not used by the computer for its own purposes, so it is rela
tively safe. If you alter values in an area used· by the system, such as the

16 APPLE II COMPUTER GRAPHICS

DOS vector area ($JC~-$JFF), you have an excellent chance of creating
havoc, so be very careful. The memory map in Figure 3-1 shows which
areas of memory are used for what.

Memory Map of a 4SK Apple 11

Function

APPLE MONITOR
APPLESOFT
RESERVED

1/0 DECODE

DOS

UNUSED
HI· RES PAGE 2

Hl·RES PAGE I

UNUSED
TEXT/LO·RES PAGE 2

TEXT /LO· RES PAGE 1

DOS VECTORS
UNUSED

TEXT INPUT BUFFER

6502 STACK

ZERO PAGE

Address

$ FSOO·S FFFF

$EOOO-$F7FF

$DOOO·SDFFF

SCOOO·SCFFF

$9600·$BFFF

$6000·$95FF

$4000·$5FFF

S2000·$3FFF

SC00·$1FFF

SBOO·SBFF

$400·$7FF

$3C0·$3FF

$300·$3BF

$200·$2FF

$100·$1FF

SO·SFF

Figure 3-1. A memory map.

In a 48K system, RAM extends from location $0, at the "bottom" of
memory, through location $BFFF. The memory above $BFFF ($C000
through $FFFF) is ROM. (Unless you own a 16K RAM expansion, in which
case the entire range is RAM.) The reference manuals for your system
contain several memory maps which are useful in determining which areas
are used by the system, BASIC, and/or DOS.

Write From Memory

You can place characters directly on the Text Screen by inserting the
numeric code for the character into the area of memory which is displayed
(Text, page 1, is the area of memory displayed). The memory map shows
that the memory area for page 1 of Text lies between $400 and $7FF. To
clear the screen from Monitor, type:

<ESC> <SHIFT-P>

Locations $6Df{J through $6D7 are within Text Screen Memory, so let's place
the Apple code for "B" in those locations by typing:

6D{tJ: C2 C2 C2 C2 C2 C2 C2 C2

As soon as you press the return key, eight "B's" will appear near the
bottom of your screen.

CHAPTER 3-SYSTEM MONITOR-MEMORY TRICKS 17

Next, change the same locations to $A0, and the "B's" will disappear.
As you have probably guessed, $C2 is the Apple code for "B", and $A0 is
the code for a blank. You could clear the entire screen by placing $A0 in
every location from $400 through $7FF, but entering 960 copies of $A0 is
not only tedious, it can be avoided by using the Monitor MOVE command
which we will discuss next.

Making Memory Ma11e

The Monitor MOVE command lets you move the contents of one range of
memory to a different range. For example, you could use the MOVE
command to take the contents of the eight bytes which begin at location ·1

$C00 and place those values into the eight bytes which begin at $000.
You would have to tell Monitor several things: that you wish to move
memory, which chunk of memory is to be moved (CfiJfiJ.C{iJ7), and where
you wish to put the values that you are moving (DfiJ{iJ).

First, display the contents of $CfiJfiJ through $C{iJ7 just to see what is there.
Enter:

C{iJ{iJ.C{iJ7

then move those values to $000 by typing:

D{iJ{iJ < C{iJ{iJ. C{iJ7M

Do not use spaces to separate the different parts of the command. This
command tells Monitor that the memory locations beginning at $D{iJ{iJ are to
receive (<} the contents of memory from the range $CfiJfiJ. Cfl}7. The "M" at
the end stands for move. Reverting to the analogy of memory being similar
to post office boxes, the MOVE command is similar to taking the mail in
the eight boxes numbered $CfiJflJ through $Cfl}7, and shifting the mail from
each box up $1fiJfiJ boxes so it ends up in the boxes numbered $DfiJflJ through
$D{iJ7 as illustrated in Figure 3-2.

STEP CONTENTS SHIFTED
OF TO

1 $Cfl}fl} ----> $Dfl}fl}
2 $Cfl}1 ----> $Dfl}1
J $Cfl}2 ----> $Dfl}2
4 $Cfl}J ----> $Dfl}J
5 $Cfl}4 ----> $Dfl}4
6 $C{iJ5 ----> $D{iJ5
7 $Cfl}6 ----> $Dfl}6
8 $C{iJ7 ----> $D{iJ7

Figure 3-2.

18 APPLE II COMPUTER GRAPHICS

The post office box model does have a weakness; the information in the
original locations is not actually taken out of the old boxes and moved to
the new locations, but rather a copy is made and then stored at the new
addresses. Hence the same values actually reside in both memory ranges,
and the values which were originally in the destination addresses are de
stroyed when using the MOVE command.

Now it is time to learn to do something quasi-useful with the MOVE
command: clear the text screen (memory locations $4J"J"-$7FF). Begin by
placing the Apple code for a blank, $A~, into $JFF, by typing:

JFF: Af"

Next enter

4~~<3FF. 7FEM

and the entire screen will clear. You executed a MOVE command where
the source range of memory ($JFF. 7FE) overlapped with the destination
range ($4~f". 7FF). This can produce some startling results and warrants a
closer look.

The Monitor MOVE command works on one byte at a time and pro
ceeds in ascending order. Therefore, the first step copied the contents of
$JFF (an Af"} into $41"1", the second step copied the contents of $41"1" (now
also Af") into $4f,!J1, and so on as shown in Figure 3-3.

STEP CONTENTS SHIFTED ___ .tt. _______ ~J _______________ tQ. __ _

1 $3FF ---- > $41"1"
2 $4f'Jff' ----> $4f'J1
3 $41"1 ----> $4f,!J2
4 $4rtJ2 ----> $4f'JJ
5 $41"3 ---- > $41"4

958
959
96f'J

$7FC
$7FD
$7FE

----> $7FD
----> $7FE
----> $7FF

Figure 3-3.

Though this process may seem a bit complex at first blush, with a little
practice it becomes both routine and useful.

The memory map in Figure 3-1 shows that location $JFF is within an
area of memory used by DOS. To avoid any possibility of clobbering DOS,
it is a good idea to replace the value that was originally there, so use what
you have learned so far to put an $FF back in address $3FF.

CHA~TER 3-SYSTEM MONITOR-MEMORY TRICKS 19

Other Monitor Tricks

There are other Monitor commands, such as the command you use when
you return to BASIC by typing 3D0G. The 300 is the address marking the
beginning of a DOS routine, and the G says GO. However, the value of
those other commands to the BASIC-oriented graphics programmer is mar
ginal, so we will not discuss them further here. If you are interested, refer
to Chapter 3 of the APPLE II Reference Manual for more detail.

Vocabulary

Buffer

Memory Map

Monitor

MOVE

Prompt Character

Exercises

1. Use the Monitor to examine the contents of locations $969JfiJ through
$96Ff{J.

2. Examine memory locations $AA6fiJ and $AA61 using a single Monitor
command.

3. Examine location $A4 without displaying the contents of any other
location.

4. Load $FF' s i.nto locations $CfiJ5 and $CfiJ6.

5. Move the contents of $4~~ through $7FF to the block of memory
which begins at $61~9J.

6. Load $9J9J into each location from $29JfiJ9J through $JFFF.

Objectives

4
APP LESO FT
Extensions

After reading Chapter 4 you should be able to:

• Use the PEEK statement to determine the value in any given memory
location.

• Use POKE to place given values into given memory locations.

• Use CALL and USR to execute a given machine level routine in mem
ory.

APPLESOFT BASIC contains a number of additions or extensions to the
standard set of BASIC commands. Among those extensions are several
commands relating to graphics, such as GR, HGR, HUN, and PLOT. Al
though these commands embody the ease and simplicity of the BASIC
language, they also share its drawbacks-slow execution and limited ac
cess to system memory. There is another set of command extensions, the
PEEK, POKE, CALL, and USR statements, which allow the APPLESOFT
programmer a good deal of access to memory and machine-level opera
tions; this in turn permits more control and faster execution of graphics
effects.

Take a Peek

The PEEK command does very closely what its name implies; it PEEKs at
any given memory location to see what value is stored there. PEEK interro-

21

22 APPLE II COMPUTER GRAPHICS

gates memory from within a BASIC program, without having to enter the
Monitor. The command PRINT PEEK (37), for example, will print the con
tents of the thirty-seventh location in memory. PEEK is a decimal-oriented
command, so in the previous example both the address (37), and the value
printed are in decimal form.

Another application of the statement involves PEEKing to see if a key has
been pressed. This is useful when the computer is required to process
continuously and still look for a signal to interrupt, such as a change of
data. Many of the computer-based arcade games provide examples of this
since they must continuously animate the figures on the screen, but still
check for keyboard, game paddle, and/or joystick input in order to receive
the signal to fire, change the player's direction, and so on.

To illustrate use of the PEEK statement, key in the program given in
Listing 4-1. When you have finished keying in the program, run it. What
do you see? You should see the letter "L" being continuously printed on
the screen. Press another key. The character which was pressed will now
be printed until yet another key is pressed, and so on. Program execution
may be stopped by pressing the reset key.

lfa REM DEMfaNSTRATE PEEK
2fa REM
3fa P$ = "L"
4fa REM
5fa REM TOP OF LOOP
6f!J PRINT P$;
7f!J P = PEEK (49152): REM SEE IF KEY PRESSED
8f!J IF P > 127 THEN PRINT CHR$(7);:

P$ = CHR$(P-128): POKE -16368,~
9~ GOTO 5~

Listing 4-1.

The following line-by-line explanation should clarify the example and its
use of the PEEK command.

3~ P$ = "L"
Line 30 assigns P$ an initial value of L.

6fa PRINT P$;

Line 60 prints the value of P$. The semicolon suppresses the usually auto
matic line feed so that the printing will continue across the screen.

7f!J P = PEEK (49152): REM SEE IF KEY PRESSED

Line 70 assigns P the value in location 49152. Location 49152 has two
functions: the first is to signal when a key has been pressed, and the
second is to temporarily hold the numeric code for that key. When a key is
pressed, the left-most bit in byte 49152 is turned on, so the byte has a

CHAPTER 4-APPLESOFT EXTENSIONS 23

value of 128 (or greater if any other bit in byte 49152 happens to be on).
Also, the value of the key pressed is stored in the other seven bits of byte
49152. If the value in location 49152 is greater than 127, then a key has
been pressed.

8~ IF P > 127 THEN PRINT CHR$(7);:
P$ = CHR$ (P-128) : POKE 49168, ~

If a key is pressed, then printing CHR$(7) will sound the bell, and P$ is
reassigned to be the character pressed. CHR$(P-128) translates the numeric
code for the character into the actual character. The POKE readies the
keyboard for the next input by changing the value of location 49152 to a
value less than 128.

9~ GOTO 5~

This line begins the loop again.

POKE1n Along

The POKE command also states its own function. It lets you POKE a value
into memory from within BASIC, without using the Monitor. The effect of
POKE 37,12 is to place the value 12 into memory location 37. As with the
PEEK statement, the arguments (37 and 12) are decimal-form numerals. As
it happens, the contents of location 37 determine the vertical position of
the cursor, so POKE 37, 12 is equivalent to VTAB (12).

The program given in Listing 4-2 demonstrates a use for POKE which
has direct application to graphics. Type in Listing 4-2 and run it. You will
see the Hi-Res screen fill with dots and lines, all of this occurring without
the use of the HPLOT or HLINE commands. The program POKEs random
values directly into locations within the Hi-Res screen memory area, so
that the dots corresponding to the "on" bits of the byte will appear on the
Hi-Res display. You will have to press reset to stop the program. In later
chapters you will calculate some special values, and create pictures on the
Hi-Res screen using this method.

1~ REM DEMONSTRATE POKE
21(J REM
Jl(J HGR
41(J REM
5~ REM TOP OF LOOP
61(J 1% = (RND(l) * 8192) + 8192
7~ V% = (RND(l) * 256)
8~ POKE 1%, V%
91" GOTO 51"
Listing 4-2.

The following line-by-line explanation should clarify the example.

Jl(J HGR

24 APPLE II COMPUTER GRAPHICS

sets the Hi-Res graphics mode and clears the screen.

6~ 1% = (RND(l) * 8192) + 8192

generates a random location between 8192 ($2000) and 16383 ($3FFF),
inclusive. This area of memory is reserved for page 1 of Hi-Res graphics.

7~ V% = (RND(l) * 256)

generates a value between 0 and 255, inclusive.

8~ POKE 1%, V%

POKEs the value into the memory location within screen memory to make
the dots appear.

9~ GOTO 5~

begins the loop again.

Call far Help

The CALL statement is much like the APPLESOFT GOSUB, except that the
subroutine being CALLed is a machine language routine in memory in
stead of a BASIC routine within your program. At the end of the subrou
tine, the machine code equivalent of a RETURN statement returns to the
instruction which followed the CALL in your program. The use of machine
level routines is helpful because they allow you more control over the
computer, and are much faster than corresponding BASIC routines.
Smooth animation virtually requires the extra speed afforded by machine
level subroutines. On the negative side, the workings of a routine written
in machine code are usually rather obscure; and further, any errors in
using that routine can lead to any number of unpredictable and bizarre
results.

The simplest use of the CALL statement is to CALL one of the routines
within the Apple operating system. CALL -936 clears the text screen and
moves the cursor to the upper left corner-the same effect as the HOME
statement. When one uses the HOME command, APPLESOFT essentially
issues a CALL to that same location. There are many other usable routines
listed in the APPLESOFT manual, see pages 129-130, and the APPLE II
REFERENCE MANUAL, see pages 61-64.

Another way to use CALL is to have your BASIC program POKE a ma
chine language program into memory, then invoke that routine using the
CALL statement. Type in the program from Listing 4-3 by way of an
example. You will see the screen will fill with the inverse @ character. The
first portion of the program POKEs a subroutine into memory using a data
table, and then the subroutine is CALLed. The subroutine itself is of no real
value because all it does is fill the screen with inverse @ characters, but it
does demonstrate the use of CALL.

lf(J REM DEMONSTRATE CALL
2f(J REM
3f(J REM POKE THE MACHINE
4f(J REM LEVEL ROUTINE
5f(J REM INTO MEMORY
6f(J REM
7f(J FOR L = 768 TO 8f(J2
Sf(} READ V
9f(J POKE L, V
lf(JfiJ NEXT L
llfiJ REM
12fiJ REM POKES COMPLETE
13fiJ REM
14fiJ PRINT "GET READY"
15fiJ JfOR I = 1 TO lfiJfiJfiJ: NEXT I
16fiJ CALL 768

CHAPTER 4-APPLESOFT EXTENSIONS 25

17fiJ VTAB (24) : PRINT "ALL DONE" :
GOTO 25f(J

18fiJ REM
19fiJ REM DATA TO POKE
2fiJfiJ REM
21f(J DATA 169,fiJ,133,254,169,7,13

3,255,16fiJ,255
22fiJ DATA 162,4,J2,88,252,165,16

1,145,254
2JfiJ DATA 198, 254,2f(J8,252,136,2

fiJ8,247,2fiJ2,24fiJ,5,198,255,76
24f(J DATA 17,3,96
25fiJ END
Listing 4-3.

To aid your understanding, each- line is explained below.

7f(J FOR L = 768 TO 8fiJ2
8fiJ READ V
9f(J POKE L, V
lfiJfiJ NEXT L

This loop reads the values from the data table and POKEs them into mem
ory locations 768 through 802. This is a common method of placing a
machine level routine into memory.

14f(J PRINT "GET READY"
15fiJ FOR I = 1 TO lf(Jf(Jf(J: NEXT I

These lines build the suspense to great heights!

16fiJ CALL 768

This line executes the subroutine which was set up by lines 70-100.

26 APPLE II COMPUTER GRAPHICS

17{i' VTAB (24) : PRINT "ALL DONE" :
GOTO 25{i'

-\fter the subroutine is complete, this line will print an end of job message
:ind then jump to the END statement.

21~ DATA 169,{i',lJJ,254,169,7,13
3,255,16~,255

22{i' DATA 162,4,32,88,252,165,16
1,145,254

23~ DATA 198, 254,2{i'8,252, 136,2
~8,247,2~2,24{i',5,198,255,76

24{i' DATA 17,3,96

Lines 210-240 constitute the data table of values to be placed into memory
to form the subroutine. They are READ by line 80 and POKEd by line 90.

Using the technique presented above, any machine language program
may be POKEd into memory, and then executed from BASIC using the
CALL statement.

USR
The USR statement is similar to the CALL statement, in that it causes the
execution of a machine level routine in memory. Where CALL simply
executes the indicated routine, USR allows the BASIC program some con
trol over the machine level routine by handing up to two bytes of informa
tion to the subroutine before commencing execution. Further, when the
routine is finished, it passes a value back to the BASIC program.

The USR statement must be used within a larger BASIC statement, for
example, X = USR(8) or PRINT USR(247). The value given within the
parentheses is the decimal value of data passed to the subroutine, and
after the subroutine is executed, USR() represents the value which is given
back to the BASIC routine. Suppose that the two examples cited above use
a subroutine which doubles any value it is given. Then the statement X =
USR(8) would assign X the value 16, and PRINT USR(247) would print 494.

Listing 4-4 is an alteration of Listing 4-3. Key in Listing 4-4 and run the
program. You will see the message

WHAT CHARACTER DO YOU WISH TO PRINT?
appear on the screen. Press any character key and then the RETURN key.
After a short wait, the screen will fill with the character that you have
chosen. When the screen has filled, a number is printed in the upper left
corner of the screen; the "ALL DONE" message is printed near the bot
tom. Next, the message

ANOTHER CHARACTER? (Y/N)
will appear, giving you a chance to try another character.

lft' REM DEMONSTRATE USR
2ft' REM
JftJ REM POKE THE MACHINE
4r,J REM LEVEL ROUTINE
5ftJ REM INTO MEMORY
6ftJ REM

CHAPTER 4-APPLESOFT EXTENSIONS 27

65 POKE lftJ, 76: POKE 11, ft': POKE 1
2,J

7ftJ FOR L = 768 TO 8ftJ5
8ftJ READ V
9ftJ POKE L, V
lftJftJ NEXT L
11ft' REM
12ftJ REM POKES COMPLETE
1JftJ REM
1J4 PRINT "WHAT CHARACTER DO YOU

WISH TO PRINT?"
1J6 GET C$:C = ASC (C$) + 128
14ft' PRINT "GET READY"
15ftJ FOR I = 1 TO lftJftJftJ: NEXT I
16ft' PRINT USR(C)
17ftJ VTAB (22): PRINT "ALL DONE"
172 PRINT "ANOTHER CHARACTER? (Y

/N) ": GET R$
174 IF R$ = "Y" GOTO 1J4
176 IF R$ = "N" GOTO 25ftJ
178 PRINT CHR$ (7): GOTO 172
18ft' REM
19ft' REM DATA TO POKE
2f"f" REM
2ftJ5 DATA J2,12,225
21ftJDATA169,ftJ,1JJ,254,169,7,1J

J,255,16ftJ,255
22ftJ DATA 162,4,J2,88,252,165,16

1,145,254
2JftJ DATA 198, 254,2f,J8,252,1J6,2

ftJ8,247,2ftJ2,24ftJ,5,198,255,76
24ftJ DATA 2ftJ,J,96
25ft' END

Listing 4-4.

The character which you select is passed to the subroutine via the USR
statement. One caution: Pressing the "P" key while holding down the
CTRL and SHIFT keys will generate a syntax error due to the constraints
of the ASC function used in line 136. The number that appears at the top
of the screen is caused by the statement "PRINT USR (C)", which actu-

28 APPLE II COMPUTER GRAPHICS

ally prints the value returned by the subroutine. The subroutine in this
example returns only garbage.

The following alterations are those which have been made to Listing
4-3:

Lines changed: 10, 70, 160, 170, 240
Lines added: 65, 134, 136, 172, 174,

176, 178,205

These differences are explained below.

65 POKE lf{J, 76: POKE 11,f{J: POKE 12,J

Line 65 places information into memory which is needed by the USR
command. When BASIC encounters USR, it automatically jumps to loca
tion 10, and from there to the location of the subroutine which is to be
used. The particular values POKEd here direct the computer to jump to
location $JflJflJ, where lies the subroutine. Location 11 contains the second
byte of the subroutine's address, in this case $f{Jf{J, and location 12 contains
the first byte-$f{JJ. If the subroutine begins in a different location, say
$Cf{J25, the values 37 ($25 = 2*16 + 5) and 192 ($C0 = 12*16 + 0)
would be POKEd into locations 11 and 12, respectively.

7f{J FOR L = 768 TO 8f{J5

The loop goes from 768 to 805 instead of to 802 because of the three extra
data values which have been added in line 205. The effect of those three
extra values is to accept the character code which is passed by the USR
command.

1J4 PRINT "WHAT CHARACTER DO YOU
WISH TO PRINT?"

1J6 GET C$:C = ASC (C$) + 128

These lines GET the character that the user wishes to print and convert it to
its Apple code value.

16f{J PRINT USR (C)

This line passes the selected character code to the subroutine and then
executes it. When the subroutine is finished, this statement also prints the
value which is returned by the subroutine. In this case the value printed is
meaningless and it will not be printed if line 160 is changed to read 16f{J
X=USR(C).

17f{J VTAB (22): PRINT "ALL DONE"

The VT AB has been changed to 22 to allow program line 172 to print on
screen line 23, and the GOTO has been removed since the program no
longer ends at this point.

172 PRINT "ANOTHER CHARACTER? (Y
/N)": GET R$

174 IF R$ = "Y" GOTO 134
176 IF R$ = "N" GOTO 25ft'
178 PRINT CHR$ (7): GOTO 172

CHAPTER 4-APPLESOFT EXTENSIONS 29

These lines inquire whether the user wants to try another character; if yes
then GOTO line 134 to restart, if no then GOTO the END statement, and if
neither then beep the bell and try for another response.

2fl'5 DATA 32,12,225

The three new data values discussed with line 70.

24fl' DATA 2fl',3,96

The first piece of data in this line is different than in Listing 4-3.

The subroutine which prints the characters for Listings 4-3 and 4-4 is
only slightly faster than the BASIC program in Listing 4-1, which also fills
the screen with a selected character. However, it is worth noting that the
machine level subroutine used has been slowed down by a factor of
approximately 125 so that the process will take a noticeable amount of
time. To help demonstrate the speed of execution for machine level rou
tines, replace each of the first four data values in line 230 with the value
234, to disable the delay function, and then run the modified program.

Vocabulary

CALL

PEEK

POKE

USR

Exercises

1. Write a BASIC program to determine the values at memory locations
1020, 1021, 1022, and 1023.

2. Write a BASIC program to poke the following values into memory
locations 4620 through 4677.

32, 88, 252, 169, 217, 32, 24fl', 253, 169, 2fl'7, 32, 24ft', 253, 169,
213, 32, 24fl', 253, 169, 16fl', 32, 24~, 253, 169, 196, 32, 24ft', 253,
169, 2fl'1, 32, 24fl', 253, 169, 196, 32, 24ft', 253, 169, 16fl', 32, 24fl',
253, 169, 2fl'l, 32, 24ft', 253, 169, 212, 32, 24fl', 253, 169, 161, 32,
24fl', 253

3. Alter the program written in Exercise 2 so that it places the machine
code values into memory and then executes them as a subroutine.

30 APPLE II COMPUTER GRAPHICS

4. Write a BASIC program which plots several blocks or lines on the
Low-Res screen, and then clears that screen by CALLing the ROM
routine located at $F832.

5. Write a BASIC program which prints, on line 5 of the text screen, a
message of your choice in the inverse mode, and then prints, on
screen line 10, a second message in the normal mode. Do not use the
VT AB, INVERSE, or NORMAL commands, but instead use the POKE
and CALL commands. The VT AB location is discussed in the POKE
section of this chapter, and the ROM routines to set the INVERSE and
NORMAL modes are located at $FE80 and $FE84, respectively.

5
Graphics Modes and

Soft Switches

Objectives

After reading Chapter 5 you should be able to:

• Set any of the graphics modes and their variations by using the soft
switches.

Your Apple computer contains a chunk of hardware which is responsible
for looking at portions of memory and translating what it finds there into a
video display. Within limits, you may determine which area of memory is
selected, and how the data there is interpreted. Data in memory may be
interpreted for video display in three different ways: as Text, Low-Res (Low
Resolution) graphics, or Hi-Res (High Resolution) graphics. Those three
modes, their ten variations, and the method for selecting each will be
discussed in this chapter.

Text Made

The Text screen of an Apple II or Apple II + comes from the factory able to
display 24 lines of text on the screen with 40 characters across each line. It
can display only 64 different characters; those are the 26 letters of the
alphabet (upper case only), 28 special characters (such as parentheses,
commas, plus signs, and so forth), and the ten numerals (zero through
nine). There are several auxiliary hardware boards on the market today
which connect through one of the interface slots in the back of the com
puter and allow for the display of lower case letters, more than 24 lines per

31

32 APPLE II COMPUTER GRAPHICS

screen, and more than 40 characters per line. We will confine our discus
sions to the unmodified machine.

There are actually two Text screens which may be displayed-Text page
1 and Text page 2. From BASIC the TEXT command automatically displays
the primary screen (page 1); there is no BASIC command to display the
secondary screen (page 2). One reason for this is that the memory range
displayed for page 2 is the same memory which is used to store APPLE
SOFT programs, and so all the BASIC programmer sees on page 2 is a
jumbled picture of his or her program. Therefore, page 2 of text is of
interest only if you are programming in assembly or machine code.

While in the Text mode, each character displayed is represented in
memory by a numeric code. For example, $C1 (193) is the code for "A,"
$C2 (194) is the code for "B," and so on. The standard scheme used for
assigning numeric codes to the characters is ASCII, an acronym for Ameri
can Standard Code for Information Interchange. Unfortunately, your Apple
does not use ASCII for its internal codes. The Apple value for any character
displayed normally (as opposed to displayed as flashing or inverse) turns
out to be $80 (128) greater than the ASCII value for that same character.
Appendix 2 contains charts of both the ASCII and Apple codes for repre
senting characters.

Law-Res Made

As with Text, there are two different Low-Res screens, Low-Res page 1 and
Low-Res page 2. Each page may be displayed as full graphics or as a mixed
mode (graphics with four lines of text at the bottom of the screen). Like
Text page 2, Low-Res page 2 uses the memory range where APPLESOFT
stores programs, so the secondary page is of little use. The mixed screen
Low-Res mode allows for color blocks to be displayed in 40 horizontal
rows and 40 vertical columns (1600 blocks). Each block may be one of 16
colors, and four lines of text are displayed at the bottom of the screen. The
full screen Low-Res mode replaces the four lines of text with an additional
eight rows of blocks, so you have a total of 1920 blocks (40*48). The GR
command sets the mixed screen, Low-Res graphics mode, page 1; there is
no BASIC command to set the full screen, Low-Res mode, page 2.

Hi-Res Made

The Hi-Res graphics mode also has a page 1 and a page 2 screen, both of
which can be set to full graphics or mixed mode (graphics with four lines
of text). There are 288 vertical columns of dots in 192 horizontal rows (or
53,760 total dots), on each full page of the Hi-Res graphics mode. HGR
sets mixed mode, Hi-Res graphics, page 1; HGR2 sets full page, Hi-Res
graphics, page 2. You cannot set any of the other two Hi-Res graphics
modes directly from BASIC.

CHAPTER 5-GRAPHIC MODES AND SOFT SWITCHES 33

For those of you whose computers store APPLESOFT in RAM, Hi-Res
graphics, page 2 is not available for use. It may, however, be displayed if
you would like to see a "picture" of BASIC.

Saft Switches and Yau

The BASIC commands used to set the different display modes are suitable
for many applications, but they do have their drawbacks. Besides the
normal problem BASIC statements have of being slow to execute, BASIC
has no direct way for you to see full page graphics on page one, mixed
graphics on page two, or to switch back and forth between the text and
graphics screens without clobbering the graphics. The solution lies in set
ting the proper graphics mode yourself instead of through BASIC, and that
is where soft switches play their part.

The four switches that control the output mode are called soft because
they are not physical switches, but rather they are features of the operating
system. It is convenient to think of each soft switch as being a two-position
toggle switch, as shown in Figure 5-1.

DANGER! SOFT SWITCHES! HANDLE WITH CARE!

GRAPHICS FULL SCREEN PAGE 1 LO-RES SELF
$C050 $C052 $C054 $C056 DESTRUCT
(49232) (49234) (49236) (49238)

u n u u n
TEXT MIXED SCREEN PAGE 2 Hl·RES
$C051 $C053 $C055 $C057 RUN
(49233) (49235) (49237) (49239)

NUMBERS IN PARENTHESES ARE DECIMAL

Figure 5-1. Toggle switches.

Each switch may be toggled in one of two different directions by referenc
ing the associated memory location.

• Switch 1 determines whether the screen will display in the Text mode
or one of the graphics modes.

• Switch 2 chooses between the full screen graphics mode or mixed
screen graphics with four lines of text at the bottom. If switch 1 is set
to Text, then switch 2 has no visible effect.

• Switch 3 selects which page will be displayed. Each display mode
actually has two entirely different screens which may be used.

34 APPLE II COMPUTER GRAPHICS

• Switch 4 selects between the Low-Res and Hi-Res modes. Switch 4 has
no visible effect unless switch 1 is set to display graphics.

The APPLE lie has several additional display-oriented soft switches.
Those switches are discussed later in this chapter under the heading "For
lle's Only."

Toggling Saft Switches

Dismembering your computer to look for these switches will not help you
locate them; remember, they are not a physical switch, but only exist in
the system software. So how do you flip a switch that does not exist? When
the computer is turned on, the operating system automatically toggles
switch one and switch three to display the primary page of text, but from
there it is up to you.

Each switch may be flipped in the desired direction by referring to the
associated address. To set switch 1 from BASIC to display graphics, you
could PEEK at the value which is in location 49232, or POKE a new value
in there. Neither the value POKEd nor the the value PEEKed is of any
consequence; POKE 49232,0, X = PEEK (49232), PRINT PEEK (49232), and
POKE 49232, 175 all set switch 1 to graphics mode. It is the mere act of
referring to that location which sets the switch. From Monitor you can set
the graphics switch by typing C050 <RETURN>, so that Monitor will
display the value in location C050, or type C050:0 to place a zero in that
location. Again, it is only the reference to the location which is important.

Try setting the switches to view the first page of Hi-Res graphics without
the four lines of text at the bottom and without clearing the screen. Refer
to Figure 5-2 for the associated addresses for each switch. Your sequence
of commands should look something like this. From the BASIC prompt (>
or])type:

POKE 49234,~ (Set full screen)
POKE 49236, ~ (Set page 1)
POKE 49239, ~ (Set Hi-Res mode)
POKE 49232,~ (Set graphics)

The order is not important, but if you set the graphics mode first (POKE
49232,0), then the remainder of the POKEs will not be visible to you since
the text is no longer being displayed.

To set the same display sequence from Monitor, type:

C~52: ~
C~54: ~
C~57: ~
C~5~: ~

CHAPTER 5-GRAPHIC MODES AND SOFT SWITCHES 35

Switching to text page 1 may be accomplished by using only two of the
soft switches. You would type:

From BASIC

POKE 49236, !"
POKE 49233,!"

From Monitor

C!"56: !"
C!"51: !"

The first line sets switch 3 to display the primary page (page 1), and the
second sets switch 1 to display text. The settings of switches two and four
do not matter since they affect only the graphics modes.

A summary of the available video display modes appears in Figure 5-3.
Practice setting each mode and its variations by the use of the soft
switches; when you feel comfortable, proceed to the next chapter.

Switch 1 $C!"5!" (49232) Graphics

Switch 2

Switch 3

Switch 4

$C!"51 (49233) Text

$C!"52 (49234)
$C!"53 (49235)

$C!"54 (49236)
$C!"55 (49237)

$Cf{356 (492J8)
$C!"57 (48239)

Full Screen
Split Screen

Page 1
Page 2

Low-Res
Hi-Res

Figure 5-2. A summary of soft switch addresses.

Text (always full page)
Page 1
Page 2

Low-Res
Page 1

Mixed
Full page

Page 2
Mixed
Full page

Hi-Res
Page 1

Mixed
Full page

Page 2
Mixed
Full page

Figure 5-3. Summary of available modes.

36 APPLE II COMPUTER GRAPHICS

Far lle1s Only

The APPLE lie uses three additional soft switches to help control the dis
play. These switches are referred to by the names 80COL, 88STORE, and
ALTCHARSET.

80COL determines whether the text is displayed with the normal 40
columns per line or with 80 columns per line. (You must have an 80
column card installed to display 80 columns per line!) To set the 40
column mode, POKE a value (any value) into 49164 ($C00C). To enable
the 80 column mode, POKE location 49165 ($C00D).

80STORE determines whether addresses referencing memory locations
within the first page of text (1024 to 2047) actually refer to memory on the
main memory board, or memory on the auxiliary 80 column board. Do
you have the feeling that you missed something? Let's back up a bit.
Allowing an 80 column display doubles the number of characters which
are displayed on one page of text. This requires twice the amount of
memory. The Apple lie designers had to find an additional 1024 bytes of
memory somewhere, without disturbing the existing memory ranges used
in the APPLE II+. The solution was to "clone" Page 1 of Text memory and
put the duplicate memory on the 80 column board. But now there are two
post office boxes with the address 1024, two boxes addressed 1025, and so
on through 2047. When your computer "postman" is told to deliver a
value to one of these addresses (for example, address 1777), he or she
must know which of the two boxes having that address is to receive the
value. The 80STORE switch acts as a mini ZIP code; it specifies which of
the two banks of memory, main or auxiliary, is intended. POKEing any
value into 49152 ($C000) will route all addresses to memory on the main
board, and POKEing into 49153 ($C001) routes addresses from 1024
through 2047 to the memory on the 80 column board.

ALTCHARSET switches the character generator (the thing that takes the
numeric code for an A and makes it appear as A on the on the screen)
between the standard character set (American characters) and some on
board, alternate character set. For, though it may come as a surprise to

80COL

80STORE

ALTCHARSET

$C{lJ{lJC (49164)
$C{lJ{lJD (49165)

$C{lJ{lJ{lJ (49152)
$C{lJ{lJ1 (4915 3)

$C{lJ{lJE (49166)
$C{lJ{lJF (49167)

40 Columns
80 Columns

Store in main memory
Store in auxiliary memory

Standard character set
Alternate character set

Figure 5-4. Summary of Apple lie soft switches.

CHAPTER 5-GRAPHIC MODES AND SOFT SWITCHES 37

some Americans, not every country's alphabet consists of our 26 ABCs.
This switch, however, does little for the BASIC graphics programmer, so
we will not be discussing it further.

In addition to the added switches, the Apple lie allows the programmer
to determine the setting of any of the seven switches by PEEKing the
contents of a related location. This way you can discover if the machine is
set to Page 1 or Page 2, Text or Graphics, Hi-Res or Low-Res, and so forth,
without actually POKEing any of the associated soft switches. For more
discussion of these test locations, please refer to your APPLE lie manual.

Vocabulary

ASCII

Full screen graphics

Hi-Res mode

Low-Res mode

Mixed screen graphics

Primary page

Secondary page

Soft switch

Exercises

Set the given display mode once using BASIC, and again using Monitor.

1. Text mode, page 2.

2. Full screen Low-Res mode, page 1.

3. Mixed screen Hi-Res mode, page 2.

4. Full screen Hi-Res mode, page 1.

6
Text and Low-Res

Objectives

After reading Chapter 6 you should be able to:

• Convert any pair of Low-Res colors into the corresponding value, both
decimal and hex.

• Place any letter or pair of blocks at any given location on the Text or
Low-Res screens, and do so using both Monitor and the POKE state
ment.

• Use the Low-Res editor to develop figures.

• Save the Low-Res screen using BSAVE or the Monitor WRITE com
mand.

Although many programmers have an aversion to graphics in the Low
Res mode, a number of respectable programs have employed Low-Res
with success. The "Little Brick Out" (on your DOS 3.3 system master) and
"Lemonade" games are good examples of what can be done with Low-Res
and a little imagination. We will demonstrate how the Text and
Low-Res modes work, and how you may easily create and display Text and
Low-Res figures.

Let's begin our exploration of Low-Res graphics by examining the Text
mode a bit closer.

Text

To start with, type in Listing 6-1, which is designed to fill the screen with

39

40 APPLE II COMPUTER GRAPHICS

the letter "A" without using a PRINT statement. It is similar in effect to
Listing 4-3, but uses no machine language subroutine.

1~ HOME
2~ FOR I = 1~24 TO 2~4 7
3~ POKE I,19J: REM 193 IS "A"
4(tJ FOR J = 1 TO JftJ :REM DELAY
5ftJ NEXT J
6(tJ NEXT I
7ftJ CALL 65JJ8: REM BEEP SPEAKER
8ftJ GOTO B(tJ

Listing 6-1.

After clearing the screen, the program proceeds to POKE the numeric
code for "A" into every memory location from 1024 through 2047 ($400-
$7FF), which is the range displayed on the Text/Low-Res screen. You will
see the screen fill with "A's"; the speaker will beep when the screen is full.
In order to regain control of your machine you will have to press
<RESET>.

Try replacing the number 30 in line 40 with a different value. The higher
the number you select, the slower the screen will fill. Also try changing the
value POKEd in line 30; for example, using a 1 instead of 193 will fill the
screen with inverse "A's".

Notice that the screen fills in three separate pieces, even though the
program fills memory sequentially. The first line of A's appears at the top of
the screen, the second appears almost a third of the way down the screen,
and the third line appears roughly a third below the second. The fourth
line fills under the first, the fifth under the second, and so on until the
screen is full. This three-part filling sequence is not just coincidence, but is
more of a curse which haunts anyone dealing with graphics. It makes
determining the address of any location on the screen rather difficult. The
reason for the peculiar design of screen memory is tied up with the elec
tronics, though in simple terms it was easier to wire the computer together
that way. As you can see, however, locating the proper address to match a
desired position on the screen could turn into a problem.

This problem is usually solved by the use of a memory map such as the
one in Figure 6-1.

Finding Your Wav

To use the map, first locate the position that you want on the map, say the
second row down and the third box from the right. The address of that
space on the text screen is found by adding the row and column numbers
which are found to the left of the chosen box and directly above it, in this

CHAPTER 6-TEXT AND LOW-RES 41

example 1152 + 37 = 1189. The hex address is $480 + $25 = $4A5.
(Remember: $8 + $2 = $A.)

Example 1

Use POKE to write "ACROSS" horizontally on the text screen, beginning
in the third row and twenty-first column.

~~~~~~~~~~~~~~~~~~~~~~~~ 

soo~~~wN-~oo~~~w-s~~~~~N-s 
s~~-oo~ws~ws~~N~~N~~wsoo~N 
SN~~OOSN~SN~~OOSN~SN~~OOSN~ 

see 
$81 
S82 
S83 
$84 

ses 
S86 
$87 
sea 

9 S89 
t--+-+-+-+-+--+--+--+--+--+--+--+--+--+---+---+--+---+-+-+---1----1--1....._. 18 SSA 

11 see 
12 sec 

l--+----------------------------------....--.-----1----i--.i 13 $80 
14 SSE 

t--+-+-+-+-+--+--+--+--+--+--+--+--+--+---+---+--+---+-+---&---1----1--1....._. IS S8F 

16 SI& 
17 SI I 
18 Sl2 
19 Sil 
28 Sl4 

t--+-+-+--+--+--+--+--+--+--+--+--+--+--+---+-+-+-+---&----1----1--11--~ 21 SIS 

22 Sl6 
t--+-+-+--+--+--+--+--+--+---+--+--+---+--+---+-+--+-+---&----1----1--11--~ 23 SI 7 

l--+-+-+--+--+--+--+--+--+---+--+--+---+-__..-+---+-+-+----1----1--1--11--~ 24 s 18 
2S Sl9 

-----------------------------------------__.__.___. ......... ~ l--+-+--+-+--+--+--+--+--+---+--+--+---+-__..-+---+--+-+----1----1----1--11--~ 26 SI A 
l--+--+-+-+--+--+--+--+--+---+-·-i--+--+-__..-+-+--.+-+----1----1--1--11--~ 27 SIB 

-------------------------------------.-__.__.___. ......... ~ 28 SIC 
-----------------------------------.---1--1--11--~ 29 SID l--+--+-+-+--+--+--+--+--+---+--+--+--+-__..-+---+--+-+----1----1--1----11--~ 38 SI E 
1--+-+--+-+--+--+--+--+--+---+--+--+--+-__..-+---+--+-+----1----1----1--11--~ 31 SI F 
l--+-+-+-+--+--+--+--+--+---+--+--+--+-__..-+---+---+-+----1----1----1----l--I~ 32 $28 
l--+-+--+--+--+--+--+--+--+---+--+--+--+-__..-+-+--+-+----1----1----1----1--I~ 33 $21 
1--+-+--+-+--+--+--+--+--+---+--+--+---+-__..-+-+--+-+-+----1----1----1--1~ 34 S22 
1--+-+-+--+--+--+--+--+--+--+--+--+---+--+--+-+--+-+----1----1----1--1--1~ JS S23 
l--+-+-+--+--+--+--+--+--+--+--+--+---+--+---+-+--+-+----l----1----1--11--~ 36 S24 
l--+-+--+--+--+--+--+--+--+--+--+--+---+--+---+-+--+-+----l----1----1----11--~ 37 S2S 
l--+-+--+-+--+--+--+--+--+--+--+--+--+--+--+-+--+-+----l----l----1--11--............i 38 $26 
....._..__...__-'---'--....._..l..-~.......__...___.__~~ ........... _..___.____,___.___._ __ _....__.--1.._.~ 39 S27 

Figure 6-1. Text/Law-Ras memory map. 

(Used with permission of Apple Computer Corporation) 



42 APPLE II COMPUTER GRAPHICS 

Solution 

Row three, column twenty-one corresponds to the decimal address 
1300, so we will POKE the numeric values for the letters into consecu
tive memory locations beginning there. We must be careful that the 
screen does not scroll up while we are POKEing the values in, for if it 
does, the letters we place in memory will scroll also. To prevent the 
scrolling, we will begin by moving the cursor to the top of the screen. 
From BASIC enter: 

CALL -936 
POKE lJ!lJ!lJ, 193 
POKE 13!'Jl,195 
POKE 1302,210 
POKE lJ!lJJ,2~7 

POKE 13~4,211 
POKE 13~5,211 

(The HOME routine) 
(A) 
(C) 
(R) 
(0) 
(S) 
(S) 

***A special note for you Apple lie users: to make this example work as 
promised, you must have the computer in the 40-column mode. To 
insure that it is, you may add the following two POKEs to the beginning 
of the preceding list. 

POKE 49164,~ 
POKE 49152,~ 

Example 2 

(Set 40-column display) 
(Store values in main 
memory) 

Use Monitor to place the message DOWN vertically on the screen be
ginning at row two, column twenty-four, and in FLASH mode. 

Solution 

The vertical addresses are not consecutive, but with the aid of the mem
ory map and the Apple character chart the proper values are deter
mined. Type: 

CALL -151 
25: 0 
497: 44 
517: 4F 
597: 57 
617: 4E 

(move cursor to top) 
(0) 
(0) 
(W) 
(N) 



CHAPTER 6-TEXT AND LOW-RES 43 

Last and Found 

While running the program (Listing 6-1 ), you may have also noted that 
after each line drawn on the bottom third of the screen, there was a slight 
pause before the filling continued on the upper third. That happens be
cause there are eight bytes of "phantom storage" following each line in 
the lower portion. Those bytes exist in memory, but are not displayed on 
the screen. To illustrate, calculate the address of the right-most box in the 
second row from the bottom of Figure 6-1. You should find it to be 1872 
+ 39, or 1,911. The memory that follows that is the eighth line from the 
top which commences with location 1,920, so locations 1,912 through 
1,919 are "lost." Lost, but not forgotten, for Apple has put that wasted 
memory to use within DOS to remember which drive was most recently 
accessed. As a matter of fact, the next time that you use your disk after 
running this program, you will notice that your disk makes that fearsome 
grunting noise as it recalibrates. 

There are other games to play with Text, such as saving the complete 
screen, but since Text is so similar to Low-Res, we might as well discuss 
those tricks under the more colorful guise of .... 

Law-Res Graphics 

Although Low-Res graphics are not as popular as they once were, they still 
have their uses. Low-Res may be the proper option if your major concerns 
are simplicity, speed, color, and memory conservation; and if the blocky 
nature of the mode is not a debilitating obstacle to you. 

Low-Res graphics use the same area of memory and the same memory 
map as Text, so use of the two modes is similar. Alter the program in 
Listing 6-1 by changing line 10 to read: 

1~ GR: REM SET GRAPHICS DISPLAY 

Run the modified program. The graphics screen will be filled with pairs of 
little boxes-a magenta box on top of a green box. (The precise colors 
may vary with individual TV sets.) The text window at the bottom of the 
screen will still fill with "A's." 

Add a line to the program: 

15 X = PEEK ( 49234) 

and run it again. Line 15 sets the soft switch to display full screen graphics, 
so you will see the pairs of blocks all the way down the screen with no text 
window. 

Haw1d Yau Do That? 

Line 30 POKEs the value 193 ($C1) into every address in Low-Res memory. 



44 APPLE II COMPUTER GRAPHICS 

Each byte of Low-Res memory determines two colored blocks. Refer to the 
Low-Res color chart in Figure 6-2, and you will find that $C is the Low-Res 
code for the light green block, while $1 is the code for the magenta block. 
In Low-Res, the bottom block is determined by the left-hand nibble, and 
the top block is determined by the right-hand nibble. Using only a nibble 
to determine each block leads to some inconvenience because memory 
can be controlled one byte at a time, and no less. This means that calculat
ing the correct combination of two nibbles for the proper two boxes is 
often confusing. 

$0 (0) BLACK 
$1 (1) MAGENTA 
$2 (2) DARK BLUE 
$3 (3) PURPLE 
$4 (4) DARK GREEN 
$5 (5) GREY 
$6 (6) MEDIUM BLUE 
$7 (7) LIGHT BLUE 

$8 (8) BROWN 
$9 (9) ORANGE 
$A (10) GREY 
$B (11) PINK 
$C (12) GREEN 
$D (13) YELLOW 
$E (14) AQUA 
$F (15) WHITE 

Figure B-2. Low-Res color codes. 

Example 3 

Suppose that you want to place a grey block over a yellow block at 
location 1028. First, you must calculate the value that will give you the 
desired combination. Again referring to Figure 6-2, yellow is color num
ber $D and grey is number $5. Arrange the digits as $05 so that grey will 
be on top, and convert $D5 to decimal 213. From BASIC type: 

GR 
POKE 1~28,213 

The grey and yellow pair of blocks will appear near the upper left corner 
of the screen. You can use Monitor to achieve the same end by using the 
hex equivalent of the numbers. Still from BASIC, type: 

GR 
CALL -151 
4~4: D5 

Experiment with Low-Res by plotting various combinations of colored 
blocks in different locations. 

Creating Law-Res Pictures 

Creating a drawing in either Low-Res or Hi-Res requires a good deal of 



CHAPTER 6-TEXT AND LOW-RES 45 

preliminary planning. We will take you through the process of creating a 
Low-Res apple (what else?!). 

The first step is to make a sketch of the figure, in this case an apple. 
Those of you that claim no artistic ability can find patterns to trace
children's coloring books and cross-stitch or embroidery patterns make 
good sources of simple figures. Figure 6-3 represents the preliminary 
sketch of the apple. 

Figure 6-3. An apple. 

After your sketch is completed to your satisfaction, the outline must be 
blocked to fit with the Low-Res bricks as in Figure 6-4. Notice that the leaf 
was omitted in the blocked figure; it proved impossible to block in a 
recognizable manner. It is better to identify that type of problem before 
you begin working with the computer! 

Blocking is not as simple as it might be since the Low-Res blocks are not 
square. The height of each brick is approximately two-thirds its length, and 
that distortion must be accounted for. Perhaps the simplest technique for 
proportioning the blocks is to use very fine graph paper-perhaps ten 
squares to the inch-and define each block to be three squares long and 
two squares high. Place your sketch over the graph paper and go over the 
outline again while applying firm pressure with the pen. This will leave an 
impression of your outline on the blocking paper, and then you may 
square up the outline as in Figure 6-4. 



46 APPLE II COMPUTER GRAPHICS 

Figure 6-4. Apple black diagram. 

Next, decide which of the Low-Res colors you wish to use in your apple 
and indicate them on your block drawing. With all of that done, you are 
now ready to begin putting the picture onto the screen. There are two 
methods of accomplishing this. The first technique is to make use of the 
PLOT, HUN, and VUN statements and place those within your program; 
the second involves using a Low-Res editor program (described later in this 
chapter) to plot the apple directly onto the screen, and then record the 
contents of Low-Res memory. 

Hatching a Plat 

The brute-force method uses the PLOT, HUN, and VUN commands; sim
ply sit down with the blocked figure and develop a list similar to Listing 
6-2 which creates the apple by drawing an obnoxious number of horizon
tal lines. 

1~ REM PLOT APPLE 



2~ REM 
3~ GR 
4~ COLOR= 4 
5~ PLOT 2~,1~ 
6~ VLIN 11,14 AT 21 
7~ COLOR= 12 
8~ HLIN 17,19 AT 13 
9~ HLIN 24,26 AT 13 
1~~ HLIN 16,2~ AT 14 
11~ HLIN 23,27 AT 14 
12~ HLIN 15,27 AT 15 
13~ COLOR= 13 
14~ HLIN 15,26 AT 16 
15~ HLIN 15,25 AT 17 
16~ HLIN 14,25 AT 18 
17~ COLOR= 9 
18~ HLIN 14,25 AT 19 
19~ HLIN 14,25 AT 2~ 
2~~ HLIN 14,26 AT 21 
21~ COLOR= 1 
22~ HLIN 14,26 AT 22 
23~ HLIN 14,27 AT 23 
24~ HLIN 14,27 AT 24 
25~ COLOR= 3 
26~ HLIN 15,26 AT 25 
27~ HLIN 16,25 AT 26 
28~ HLIN 16,25 AT 27 
29~ COLOR= 6 
3~~ HLIN 17,24 AT 28 
31~ HLIN 17,24 AT 29 
32~ HLIN 18,19 AT 3~ 
33~ HLIN 22,23 AT 3~ 

CHAPTER 6-TEXT AND LOW-RES 47 

Listing 6-2. Apple drawn using VLIN and HLIN. 

The PLOT was used for the top, VLIN for the remainder of the stem, and 
since the colors in the apple run horizontally, HUN was used for the rest 
of the figure. Which of the commands you use most will depend solely on 
the figure that you want to draw. This technique has obvious drawbacks if 
the picture is composed of many isolated blocks and few horizontal or 
vertical lines. In any event, it is quite tedious for the programmer; an 
aspect only partially balanced by the efficiency with which the program is 
executed. 

A variation on this technique is to place an HUN statement within a loop 
and read the individual numbers from a data table as shown in Listing 6-3. 

1~ GR 
2~ COLOR = 4 



48 APPLE II COMPUTER GRAPHICS 

3fi' PLOT 2fiJ,lfiJ 
4fiJ VLIN 11,14 AT 21 
5fiJ COLOR = 12 
6fiJ FOR I = 1 TO 5 
7fiJ READ Xl,X2,Y 
Bfi' HLIN X1,X2 AT Y 
9fiJ NEXT I 
lfiJfiJ COLOR = 13 
llfiJ FOR I = 1 TO 3 

35fiJ DATA 17,19,lJ,24,26,13,16, 
2fiJ,14,23,27,14,15,27,15 

36fa DATA 15,26,16,15,25,17, ••• 

Listing 6-3. 

Although this is easier for the programmer, the advantage of speedy 
execution has been sacrificed. Unless the program is to be run only a few 
times, it is usually better for the programmer to expend the extra effort in 
order to enhance the efficiency of the execution. 

Dealing with Memory 

The basic scheme behind this second technique and its variations is to 
draw your figure on the screen initially, and then save the contents of Low
Res screen memory. Then, when you wish to use that figure in a program, 
you need only replace the contents of memory with the data already 
saved. 

The first step is to draw your picture on the screen. This may be done 
using PLOT, HLIN, and VLIN as in the previous discussion, or by using an 
editor. An editor is a program which simplifies creating, altering, and 
saving either text or graphics. A sample Low-Res editor is provided in 
Listing 6-4. The editor will let you plot and erase blocks in any of the Low
Res colors anywhere on the screen, except in the bottom four lines of text. 

lfa HOME : GR 
2(a PF = fiJ:X = 2fa:Y = 2fiJ 
3~ GOSUB 23(a 
4(a C = PEEK (49152): IF C > 127 THEN 

C$ = CHR$ (C-128): POKE -16368,fiJ: 
GOTO 6fi} 

5fa PLOT X,Y: COLOR= fiJ: PLOT X,Y: 
COLOR= CN: GOTO 4fi} 



CHAPTER 6-TEXT AND LOW-RES 49 

6~ REM 
7~ IF PF THEN PLOT X, Y:PF = ~ 

8~ IF C$ = "J" AND X > ~ THEN X = X-1: 
GOTO 19~ 

9~ IF C$ = "I" AND Y > ~ THEN Y = Y-1: 
GOTO 19~ 

1~~ IF C$ = "K" AND X < 39 THEN X = X + 1: 
GOTO 19~ 

llfl' IF C$ = "M" AND Y < 39 THEN Y Y + 1: 
GOTO 19"1 

12fl' IF C$ = "U" AND X > fl' AND Y > ~ THEN 
X = X-l:Y = Y-1: GOTO 19~ 

13~ IF C$ = "0" AND X < 39 AND Y > fl' THEN 
X = X + l:Y = Y-1: GOTO 19"1 

14~ IF C$ = II, II AND x < 39 AND y < 39 THEN 
X = X + 1: Y = Y + 1: GOTO 19"1 

15"1 IF C$ = "N" AND X > fl' AND Y < 39 THEN 
X = X-l:Y = Y + 1: GOTO 19fl' 

16~ IF C$ = "P" THEN PF = 1: GOTO 19"1 
17fl' IF C$ = "Q" THEN GOTO 28fl' 
18~ IF C$ = "C" THEN GOSUB 23fl' 
19"1 GOTO 4fl': REM BACK TO TOP OF LOOP 
2~fl' REM 
21fl' REM SET COLOR 
22~ REM 
23fl' VTAB (24): INPUT "NUMBER FOR NEW 

COLOR:?";CN$ 
24~ CN = VAL (CN$): IF CN < fc1 OR CN > 15 

THEN PRINT CHR$ (7): GOTO 23~ 
25~ PRINT : PRINT : PRINT : PRINT 

"COLOR = "; CN 
26~ COLOR= CN 
27"1 RETURN 
28~ REM 
29fl' REM 
3"1"1 PRINT "QUIT? (Y/N)";: GET R$ 
31~ IF R$ < > "Y" GOTO 4~ 
32~ END 

Listing 6-4. Low-Res editor. 

This editor is not elaborate, but it does give you the functions necessary 
to plot and edit pictures on the Low-Res screen, and it is easily modified to 
suit your individual requirements. 

When you run the editor, you will first be asked to enter the number of 
the color to be plotted. The computer will ask: 

NUMBER FOR NEW COLOR:? 



50 APPLE II COMPUTER GRAPHICS 

Type the decimal number for the color you want (see Figure 6-2) and then 
press return. You will then see a flashing cursor in the center of the screen. 
The cursor may be moved anywhere on the screen by using the keys 
shown below. 

u 

\ 

' \ 

I 

\ 

\!/ 

0 

I 

I 

I 

J----*·--·--K 

/!\ 

I \ 

I \ 

I \ 

Figure 6-5. Cursor movement. 

The I, M, J, and K keys move the cursor up, down, left, and right; the U, 
0, N, and , keys move the cursor diagonally as indicated. Try it!! 

The editor also uses the P, C, and Q keys. To plot a point, press P and 
then move the cursor out of the way. Press C and you will be given the 
opportunity to set the color as you did at the beginning of the program. 
Press Q, and you will be asked 

QUIT? (Y/N) 

Press Y if you wish to quit and N if you do not. 

Any color block may be erased by simply covering the offending block 
with the cursor. That makes erasing very simple-sometimes too simple, 
but you will get used to it.Use the editor to copy the apple from Figure 
6-4. 

Sa11ing Figures 

Now that you have a picture on the screen, you probably would like to be 
able to save it. Assuming that you have a disk drive, type 



CHAPTER 6-TEXT AND LOW-RES 51 

BSAVE APPLE,A$4~~,L$4~~ 

This statement causes the computer to save $4~~ bytes of memory begin
ning with location $4~~. The A parameter indicates the starting address, 
and the L parameter gives the length of the memory range to be BSAVE. 
The Low-Res screen memory begins at $4~~ and is $4fl'~ bytes long. If you 
do not care to work in hex, you may type 

BSAVE APPLE,A1~24,Llfl)24 

and do the same thing since $4fl)fl' equals 1fl)24. 

With the screen safely saved on the disk, you may recall it at any time. 
To demonstrate, type: 

BLOAD APPLE 

and the apple will reappear on the screen. The A and L parameters may be 
used with BLOAD, but they are not necessary. 

You may BLOAD the picture from within a BASIC program by inserting a 
line in the program similar to line 15 below. Load the Low-Res editor and 
type the following: 

15 PRINT CHR$(4)"BLOAD APPLE" 

When you run the editor it will now load the apple picture automatically. 
This is handy if you wish to re-edit an existing picture. 

If you do not have a disk drive, you can save the screen memory on 
cassette tape by using the Monitor. Type: 

CALL -151 
4fl)~.7FFW 

to tell Monitor to write (hence the W) the range of memory from $4~fl' 
through $7FF onto the tape. To insure an accurate recording, it is a wise 
idea to put the tape on "record" and let it run for a few seconds between 
pressing the W key and the return key. After the Low-Res screen is saved 
on the tape, you can rewind the tape and load it from Monitor by typing 

4~{a.7FFR 

The format is the same as the Write command, except the Wis replaced by 
the R or READ command. 

If you have saved and loaded the screen as suggested, you may have 
noticed that when the screen is loaded, it brings with it some garbage in 
the text window. The BSAVE command saves the whole screen, including 
whatever text was in the text window at the time. That may be circum
vented by writing a short BASIC program to first clear the text window and 
then save the screen. That program is left to the reader as an end of the 
chapter exercise. 



52 APPLE II COMPUTER GRAPHICS 

Vocabulary 

BLOAD 

BSAVE 

Editor 

HIMEM 

HUN 

PLOT 

VLIN 

Exercises 

1. Convert the following Low-Res color pairs into the hex value 
necessary to plot the first over the second. 

a. dark blue/green d. orange/purple 

b. green/light blue e. brown/black 

c. aqua/pink f. black/brown 

2. Convert the color pairs in Exercise 1 to their decimal values. 

3. Use the POKE statement to plot the following color pairs at the given 
location. The location is given by its row and column on the screen 
and memory map (see Figure 6-1 ). 

a. white/green at row 5, column 20 

b. orange/black at row 19, column 10 

c. aqua/pink at row 10, column 12 

4. Use Monitor to perform the plotting discussed in Exercise 3 above. 

5. Use the POKE command to place the message "HI-SCORE" in the 
bottom right corner of the Low-Res text window. 

6. Write a BASIC program to BSAVE the Low-Res screen after clearing 
the text window. 

7. Design and plot a picture of a spaceship on the Low-Res screen. 

8. Save the figure plotted in Exercise 7 using BSAVE (or the Monitor 
Write command). 



7 
Preserving Your 

Pictures 

Objectives 

After reading Chapter 7 you should be able to: 

• Save the Low-Res screen using BSAVE, print a list of values, write the 
list of values to a text file on disk, or create a text file of DATA 
statements on disk. 

• Replace a figure on the Low-Res screen by using BLOAD, read the text 
file of values from disk and POKE them into screen memory, POKE 
values from DATA statements-either keyed or EXECed into the pro
gram, or load the screen values into a safe memory area and then 
copy those values to Low-Res screen memory. 

In Chapter 6 you discovered how to save the Low-Res screen using 
BSAVE or the Monitor WRITE command. Both methods were simple, but 
they both have the same drawback-they often save a great deal of empty 
space. Since disk space is a precious commodity, we will devote this 
chapter to discussing alternate methods for saving your pictures. 

Scanning Memory 

One alternate method of saving your picture is to record which bytes of 
Low-Res memory are turned " on," and what values they contain. In the 
apple picture in Chapter 6, only about one of every ten bytes contains a 
non-zero value. That is, nine-tenths of the screen is blank, and we are 
interested only in the non-blank portions-those that are displaying a 

53 



54 APPLE II COMPUTER GRAPHICS 

color. The following program searches through Low-Res memory and 
prints a list giving the location of every non-zero byte and its address. The 
program presumes that your printer is in slot 1, but that may be changed 
by altering the value assigned to SL in line 40. If you do not have a printer, 
set SL equal to 0. 

lfl} REM PRINT LOW-RES VALUES 
2fl} REM 
3flJ REM 
4fl} SL = 1: REM SL = PRINTER SLOT # 
5fl} PR# SL 
6fl} REM 
7fl} REM 
8fl} FOR I = 1 TO 2f(J 
9f(J READ S: REM STARTING ADDRESS OF 

SCREEN LINE 
lfl'f(J FOR L = S TO S + 39 
llfl' IF PEEK (L) < > fl' THEN PRINT L; 

", "; PEEK (L) :COUNT = COUNT + 1 
12fi' NEXT L 
lJflJ NEXT I 
14f(J PRINT "COUNT= "; COUNT; "EOJ" 
15fl' PR# fl' 
16f(J END 
17fi' REM 
18fl' REM DATA TABLE 
19{(l REM 
2f(Jfl' DATA 1fl'24,1152,128f(J,14f(J8,1536 
21f(J DATA 1664,1792,192f(J,lfl}64,1192 
22fl} DATA 1J2fl},1448,1576,17fl}4,1832 
23fl' DATA 196f(J,11ftJ4,1232,1J6~,1488 

Listing 7-1. Law-Ras scan #1. 

The program uses a data table to straighten out the convolutions of screen 
memory. Each piece of data represents the starting address for a line on 
the screen (see Figure 6-1 ), and the 40 bytes beginning with each of those 
addresses are scanned by the FOR-NEXT loop in lines 100 through 120. 
This method scans the screen from top to bottom, and without scanning 
the memory which is not displayed. Line 110 prints the location (L) and 
contents (PEEK L) of any non-zero byte, and increments a counter. Only 
the top 20 lines are scanned, so none of the values in the text window are 
printed. After the scanning is complete, line 140 prints the number of "on" 
bytes, and an end of job message. Scanning the apple will give you a list of 
close to 109 addresses and values, depending on where you placed your 
apple on the screen. 

Try the program out by loading it into memory and then typing: 



GR 
BLOAD APPLE 
RUN 

CHAPTER 7-PRESERVING YOUR PICTURES 55 

This will (1) set the graphics screen, (2) load the picture of the apple back 
onto the screen from disk, and (3) run the program in memory (hopefully 
Listing 7-1). The list of addresses and values will appear on your printer. If 
it does not, check your program against Listing 7-1 and make sure that 
you have the printer slot assigned correctly in line 40. 

What ta Do with Data 

The list of addresses and values printed by the Low-Res scan #1 may be 
written into a program as a data table and POKEd back into memory using 
a BASIC subroutine similar to: 

lfl'fl'lf' FOR I = 1 TO lfl'7 
llf'lfl' READ L,V: POKE L,V 
1j{32fl' NEXT I 
1!f'3fi' RETURN 
1j{34fl' DATA 1684,4,1685,64,1809,192, 

Listing 7-2. 

The data values in line 1040 are those generated from Listing 7-1. This 
method has the advantage of not using up disk space, but it has probably 
occurred to you that entering all of those data values by hand is very 
inefficient, not to mention boring and prone to error. We have two alterna
tives for those of you with a disk drive.· 

The Data File 

Instead of printing the addresses and values on paper, you can write them 
to a text file on the disk. Load Low-Res Scan #1 (Listing 7-1) and then type 
the following lines to modify it. 

!fl' REM WRITE DATA FILE 
35 D$ = CHR$ (13) + CHR$ (4) 
4ft' INPUT "FILENAME:";FL$ 
45 PRINT D$ "OPEN" FL$ 
5ft' PRINT D$ "DELETE" FL$ 
55 PRINT D$ "OPEN" FL$ 
6fl' PRINT D$ "WRITE" FL$ 
11f.ij IF PEEK (L) < > fl' THEN PRINT ,L: 

PRINT PEEK (L) 
14f'J PRINT "*" 
15f'J PRINT D$ "CLOSE" FL$ 
155 PRINT CHR$(7): REM BEEP SPEAKER 

Listing 7-3. Low-Res Scan #2 (modifications only). 



56 APPLE II COMPUTER GRAPHICS 

This modification will create a data fne on the disk which contains the 
same list of addresses and values that you printed out with Low-Res Scan 
#1. Line 40 requires that you give the data file a name, and line 140 prints 
an "*" to mark the end of the file. To test the program, load it into 
memory and type: 

GR 
BLOAD APPLE 
RUN 

So that your filename is the same as the one used in the next example, 
enter APPLE.OTA when the computer requests a filename. After that, the 
disk will spin intermittently as the screen memory is being scanned and 
saved; the speaker will beep to signal the end of the run. 

The data may be read from the file APPLE.OTA and POKEd into the 
proper locations by using a subroutine such as: 

lf{Jf{Jf{J GR 
lf{Jlf{J 0$ = CHR$ (13) + CHR$ (4) 
lf{J2f{J FL$ = "APPLE. OTA" 
lf{JJf{J PRINT 0$ "OPEN" FL$ 
lf{J4f{J PRINT 0$ "READ" FL$ 
lf{J5f{J INPUT L$ 
1ftJ6ftJ IF L$ = "*" GOTO 111ftJ : REM THE 

* MARKS THE END OF THE FILE 
1f{J7f{J L = VAL (L$) 
1f{J8f{J INPUT V 
lf{J9f{J POKE L,V 
llf{Jf{J GOTO 1f{J5f{J 
111f{J REM 
112f{J PRINT 0$ "CLOSE" FL$ 
11Jf{J RETURN 

Listing 7-4. 

To test this subroutine, enter it and these extra lines. 

lf{J REM YOUR PROGRAM 
2ftJ GOSUB lf{Jf{Jf{J 
Jf{J END 

When you run the program, the graphics screen will be set and cleared, 
then the disk will spin, and the apple will appear. If your data file is not 
called APPLE.OTA, change line 1030 to assign FL$ the proper name. 

This method is nice because you do not have to key in the large 
amounts of data, but unfortunately disk access is very slow and delays the 
execution of the program which uses the graphics. Moreover, this proce
dure not only requires that the user have a disk drive, but also opens a 
Pandora's box of problems such as having the disk in a different drive or 



CHAPTER 7-PRESERVING YOUR PICTURES 57 

slot. To remedy those problems we present a slightly more complex tech
nique. 

Using EXEC 

What you will do here is create a text file of DATA statements on disk 
which may be EXECed into any program that you like. Each record in the 
text file will contain a line number followed by the DATA statement which, 
in turn, is followed by ten pairs of entries which are the locations and 
values of the bytes used in screen memory. The last DATA statement may 
contain less than the 20 entries the others have. The line numbers for the 
DATA statements will begin at 10000 and increment by two; the set of 
values in the DATA statements will be the same as those printed with Low
Res Scan #1. 

Load the program from Listing 7-1 once again, then enter the following 
statements to modify it. 

lflJ REM CREATE EXEC FILE 
35 D$ = CHR$ (13) + CHR$ (4) 
4fl} INPUT "FILENAME:";FL$ 
45 PRINT D$ "OPEN" FL$ 
5flJ PRINT D$ "DELETE" FL$ 
55 PRINT D$ "OPEN" FL$ 
6fl} PRINT D$ "WRITE" FL$ 
7fl} LN% = lflJflJflJ~:Cl = 1 
1fl}4 IF PEEK ( L) = fl} GOTO 12fl} 
1fl}6 COUNT COUNT + 1 
1flJ8 IF Cl = 1 THEN PRINT LN%; "DATA"; 
11flJ IF Cl > 1 THEN PRINT ", "; 
112 PRINT L;","; PEEK (L);:Cl =Cl+ 1 
114 IF Cl > lflJ THEN Cl = 1:LN% = LN% + 2: 

PRINT 
14fl} PRINT D$ "CLOSE" FL$ 
15flJ PRINT CHR$ (7); "COUNT =" ;COUNT; "EOJ" 

Listing 7-5. Low-Res Scan #3 (modifications only). 

Line 40 requires that you enter a name for the file being created. Line 70 
sets the line numbers to begin at 10000 (LN% = lflJflJflJflJ), and line 114 
increments each line number by 2 (LN% = LN% + 2). 

With this routine in memory, create the text file for the apple figure by 
typing: 

GR 
BLOAD APPLE 
RUN 

When asked for a filename, enter APPLE.EXC. The disk will behave very 



58 APPLE II COMPUTER GRAPHICS 

much like it did when you created the data file using the previous method. 
When the program is finished, the speaker will beep and the computer will 
print the total number of bytes that it saved-write this number down 
someplace. APPLE.EXC is a text file which contains a number of DATA 
statements, complete with line numbers. Those DATA statements may be 
easily appended to your programs. To demonstrate, type: 

NEW 
1~ GR 
2~ COUNT = xxx 
3~ FOR I = 1 TO COUNT 
4~ READ L,V: POKE L,V 
5~ NEXT I 
1~~ END 

EXEC APPLE.EXC 

The value assigned to COUNT in line 20 should be the number you wrote 
down after running Listing 7-5, for that is the number of data bytes in the 
apple figure. 

When the disk stops spinning, type: 

LIST 

and you will see the program lines you entered above plus several DATA 
statements beginning at line 10000. 

When you are ready, type: 

RUN 

and the computer will draw the apple on the Low-Res screen. 

Since the DATA lines are now part of the code, the program does not 
need to access the disk for the locations and values. This eliminates the 
difficulties inherent in using disk data files. 

We have already stored the data for a figure in two places-the disk and 
the program code. There is yet another place to store that information, and 
that is within the computer itself. 

Ma11ing Memory 

What we will do is store the entire apple screen in memory somewhere 
other than the Low-Res screen memory area. Then when you wish to 
display the figure, you need only copy the information from the storage 
area to Low-Res memory. We will perform the copying function using a 
BASIC routine, and then also do it using a machine language subroutine. 

The first task is to load the apple figure into a safe, unused memory 
range. We will use the top $400 bytes of user memory, from $9200 to 
$95FF (37376-38399). The addresses given here are for a 48K Apple II+, 



CHAPTER 7-PRESERVING YOUR PICTURES 59 

and will need to be adjusted if you have less memory in your machine. 
You may determine the highest usable memory address by referring to the 
Apple DOS 3.3 manual, page 142, or by booting your system and typing: 

PRINT PEEK(115) + 256*PEEK(116) 

If your computer is an Apple II with INTEGER BASIC in ROM, you would 
type: 

PRINT PEEK(76) + 256*PEEK(77) 

The number you get as a result is the address of the "top" of available 
memory. To fit your Low-Res screen data in below that location, subtract 
1024 ($400) to get the starting address of your storage area. Multiple 
screens may be stored one below the other by allowing 1024 bytes for 
each screen. 

Loading the apple figure at $9200 is easily accomplished by: 

BLOAO APPLE,A$92ft}~ 

or 

BLOAD APPLE,A37376 

If you have the apple figure stored on tape, enter Monitor and type: 

92fl'ff.'.95FFR 

After the apple has been loaded in the proper location, you need to reset 
HIMEM so that your BASIC program does not overwrite your data and 
reduce your picture to applesauce! From BASIC type: 

HIMEM:37J75 

To get a preview of the speed of moving memory, enter Monitor and type: 

4ftJftJ < 92ftJfl'. 95FFM 

and, thanks to the Monitor MOVE command, you will see the apple ... in a 
flash! 

This entire procedure was accomplished in your computer's immediate 
execution mode, but now we need a program to do the same things. 
Listing 7-6 is designed to do just that from APPLESOFT. 

5 REM MOVE THE APPLE 
6 REM USING POKE 
7 REM 
lftJ HIMEM: 37375 
2ftJ 0$ = CHR$ (13) + CHR$ (4) 
3ftl PRINT 0$; "BLOAD APPLE,AJ7J76" 
4fl' SOURCE = 37376 
5ftJ GR 
6ft} FOR I = ft} TO 1ft}23 



60 APPLE II COMPUTER GRAPHICS 

7f(J POKE 1f(J24 + I, PEEK (SOURCE + I) 
8f(J NEXT I 
9f(J END 

Listing 7-&. BASIC memory move. 

Line 10 sets HIMEM down below the area needed to store our apple 
data in order to create a safe area of memory. Line 30 loads the data into 
that protected area, and line 40 sets the variable SOURCE equal to the 
address of the first byte of data. After the graphics mode is set, lines 60 
through 80 read the data from the source area and POKE it into the screen 
memory area. When I equals 0, line 70 PEEKs at the beginning address of 
the data (SOURCE + 0 equals 37376), and POKEs that value into the first 
byte of screen memory (1024 + 0). When I equals 1, line 70 PEEKs at the 
second byte of the data (SOURCE + 1 equals 37377) and POKEs that value 
into 1025. The loop continues until I equals 1023, at which time the 
contents of location 38399 is POKEd into location 2047. 

When you run the program, you will see that it does as promised, but 
the time needed to complete the memory transfer is gruesome. 

Once again a machine language routine comes to the rescue. Run the 
program from Listing 7-7 (a modification of Listing 7-6). It POKEs a ma
chine code subroutine into memory in line 40, and the address of the data 
area in line 45. Line 70 CALLs the routine, and the apple appears right 
before your bloodshot little eyes! This routine is very convenient to use in 
your own programs because the subroutine and one or more pictures may 
be loaded in advance, and displayed quickly and easily by using the com
mands in lines 45 and 70. 

5 REM MOVE THE APPLE 
6 REM USING MACHINE CODE 
7 REM 
lfl' HIMEM: J7J75 
2f(J D$ = CHR$ (lJ) + CHR$ (4) 
Jf(J PRINT D$; "BLOAD APPLE,AJ7J76" 
4f(J FOR L = 768 TO 795: READ V: 

POKE L,V: NEXT L 
45 POKE 252,~: POKE 25J,146 
5~ GR 
6~ REM GET READY 
7f(J CALL 768 
8~ REM TA DA! I 
9f(J END 
1~~ DATA 169, ~' lJJ, 254, 168, 169, 

4, lJJ, 255, 17f(J, 177, 252, 145 
11f(J DATA 254, 2f(Jf(J, 2f(J8, 249, 2f(J2, 24f(J, 

7, 2Jf(J, 253, 2Jf(J, 255, 76, lf(J, J, 96 

Listing 7-7. Memory move using CALL. 



CHAPTER 7-PRESERVING YOUR PICTURES 61 

The POKEs in line 45 are very important because they provide the sub
routine with the starting address of the data area. If the data area begins at 
a different location, then you will have to adjust these POKEs. The way to 
calculate the values is to write down the starting address in hex ($9200), 
separate the two bytes so that it looks like 92 00, and convert each byte to 
decimal: $92 = 9*16 + 2 = 146, $00 = 0. Those are the two values to 
be POKEd into 252 and 253, but they must be POKEd in the correct order 
or strange things will happen. Apple wants you to give it the right-hand 
(low order) byte first and then the left-hand (high order) byte-a conspir
acy known as Lo-byte/Hi-byte-so the 0 is placed in 252 and the 146 in 
253. 

Example 1 

Suppose that the subroutine in Listing 7-7 has already been POKEd 
into memory, and that you want to display a picture which is stored at 
$8E0C. 

$8E = 8*16 + 14 = 142 
$ft'C = ft'* 16 + 12 = 12 

so you would 

POKE 252,12: POKE 253,142 
CALL 768 

A further note of caution: The starting address must be POKEd just prior to 
CALLing the subroutine. APPLESOFT uses location 253 for scratch pad 
memory, so after the CALL is executed BASIC clobbers whatever value you 
had in there. 

Sound Assembly, Bugler 

If you speak assembly language, Listing 7-8 may be of interest. It is the 
assembly listing of the subroutine used in Listing 7-7. 

ft'3ft'ft'- A9 ft'ft' 
ft'3ft'2- 85 FE 
f;J3ft'4- AB 
f;J3ft'5- A9 ft'4 

SOURCEL EPZ $FC 
SOURCEH EPZ $FD 
DES TL EPZ $FE 
DES TH EPZ $FF 

; INITIALIZATION 

LDA 
STA 
TAY 
LDA 

#ft'ft' 
DESTL 



62 APPLE II COMPUTER GRAPHICS 

fl'Jfl'7- 85 FF STA DES TH 
~J~9- AA TAX 

; 
;BEGIN LDA/STA LOOP 

ftJJfl'A- Bl FC LOOPTOP LOA (SOURCEL),Y 
fl'JftJC- 91 FE STA (DESTL),Y 
fl'Jfl'E- ca INY 
fl'Jfl'F- D~ F9 BNE LOOPTOP 
fl'J11- CA DEX 
~312- FftJ ft'7 BEQ STOP 
fl'J14- E6 FD INC SOURCEH 
f'JJ16- E6 FF INC DES TH 
fl'J18- 4C fl'A 
~3 JMP LOOPTOP 
fl'J1B- 6ftJ STOP RTS 

END 

Listing 7-8. Assembly language subroutine. 

In essence, this routine takes $4fl'fl' bytes of memory from the source range 
and copies it into the Low-Res page 1 area. 

Wrapping Up 

By now you have probably learned more than you ever wanted to know 
about Low-Res graphics, but do not despair, as many of the same concepts 
will apply in Hi-Res graphics as well. We have shown you how to control 
the individual units of the Text and Low-Res screens, and how to create, 
save, and recall pictures on the Graphics screen. Each of the various 
techniques discussed has its peculiar advantages and disadvantages-some 
are faster than others, some use more memory, some require disks, and so 
forth. It is up to you, the programmer, to choose the method best suited to 
your application. 

Vocabulary 

BLOAD 

BSAVE 

Editor 

EXEC 

HIMEM 

Lo-byte/Hi-byte 

PLOT 



CHAPTER 7-PRESERVING YOUR PICTURES 63 

Exercises 

1. Design and plot a picture of a spaceship on the Low-Res screen. 

2. Save the figure plotted in Exercise 1 using: 

a. The method of Low-Res scan #2 (Listing 7-2). 

b. The method of Low-Res scan #3 (Listing 7-3). 

3. Draw the figure saved in Exercise 2 by: 

a. Using BLOAD (or Monitor's READ command). 

b. Writing a BASIC program to input and plot the data generated in 
Exercise 2a. 

c. EXECing the DATA statements generated in Exercise 2b into a 
BASIC program. 

d. Loading the figure into a safe area of memory and using the 
memory move given in Listing 7-6. 



8 
Hi-Res Graphics 

Objectives 

After reading Chapter 8 you should be able to: 

• Calculate the address for any byte on the Hi-Res screen. 

• Calculate the value needed to produce a given dot pattern in a byte, 
and use both BASIC and Monitor to place that value in Hi-Res screen 
memory. 

• Design, digitize, and display simple figures in Hi-Res. 

A large percentage of the commercial software written for personal com
puters today uses Hi-Res graphics. Games, graphing packages, drafting 
design programs, several word processors, and even some of the alternate 
languages (for example, PILOT and LOGO) use the Hi-Res graphics screen 
for video output. Reflecting the pre-eminence of Hi-Res, the remainder of 
this book will be almost entirely devoted to various methods of controlling 
this mode of output. 

Hi-Res gains an advantage over Low-Res because it lets you have indi
vidual control of each dot on the screen; there are 280 such dots horizon
tally across the screen and up to 192 dots vertically. The appearance of an 
image on the video screen is greatly affected by the degree of resolution 
(the number of dots per inch) in which it is drawn. In Chapter 6 you saw 
how the figure of the apple suffered when it was blocked out for Low-Res 
which has only four "dots" per inch. The Hi-Res dots are seven times 
smaller than the Low-Res blocks, so the Hi-Res mode produces figures that 
look much better; but as with any improvement, there is a price to pay. 

65 



66 APPLE II COMPUTER GRAPHICS 

Hi-Res adds another level to the addressing difficulty experienced with 
the non-contiguous Low-Res mode, and requires four times the memory 
for display. Add to that a reduced number of colors readily available to the 
programmer, plus the limitation of not being able to put all of the colors at 
any one location on the screen, and you may begin to wish you had never 
even heard of Hi-Res. 

Fortunately, there are several Hi-Res graphics editors on the market 
which take most of the work and frustration out of creating Hi-Res figures. 
If you do not have one of these editors, we suggest that you acquire one 
before attempting any serious endeavor. A good Hi-Res editor will take 
care of the multitude of grubby details involved with Hi-Res graphics. It 
will let you draw lines, fill regions with color, and turn individual screen 
dots on and off. It will also let you save Hi-Res figures in shape tables (see 
Chapter 10), and even save the entire screen. Yet, even with an editor you 
must still understand the ins and outs of Hi-Res graphics. 

In the following chapters we intend to show you a number of ways to 
tame the Hi-Res beast. In this chapter we will concentrate on mapping the 
Hi-Res maze, gaining control of individual dots, and creating simple figures 
in black and white. Color, animation, and other nifty topics will be dis
cussed in later chapters. 

Hi-Res Memory 

There are two storage locations for Hi-Res graphics. The primary page, 
page 1, is located from 8192 through 16383 ($2000-$3FFF), and the sec
ondary page, page 2, runs from 16384 through 24575 ($4000-$5FFF). Most 
of our work will be done with page 1, but the techniques and programs 
discussed will work identically on page 2 by simply adding 8192 ($2000) to 
the page 1 addresses. 

Perhaps we should begin with a program designed to turn on every Hi
Res dot, one at a time and sequentially. We will start with location 8192 
and turn on the first bit in that byte, then turn it off and turn on the second 
bit in the same byte. Then the second bit will go off and the third will go 
on, continuing to the eighth bit, which is left on when we begin with the 
next byte (location 8193) and do the same thing with it, and so forth 
throughout the entire screen. Even though we want to turn only one bit on 
or off at a time, we must POKE the entire byte, since bits do not have an 
address and hence cannot be referenced. For each byte we must POKE 
eight values, one after another, and each value will have only one bit on. 
The following lines of BASIC code will generate the eight values required. 

FOR J = 1 TO 8 
x = 2A(8 - J) 
NEXT J 



CHAPTER 8-Hl-RES GRAPHICS 67 

When J equals 1, X equals 2' equals 128, J equals 2 gives X equals 
2" equals 64, and so on as indicated in Figure 8-1. 

J 2"(8-J) x BINARY HEX 
--- -------- ----- ----------- ----
1 27 128 l{{Jfafa fafaf{Jf{J $8~ 
2 26 64 {{Jl~f{J f{Jf{Jfaf{J $4fa 
3 25 32 ~f{Jl~ f{Jfaf{Jf{J $2~ 
4 24 16 ~~~1 ~~fl'~ $1f{J 
5 23 8 ~fl'~~ l{{J~~ $~8 
6 22 4 ~~~~ ~1~~ $~4 
7 21 2 fl'~~~ ~~1~ $~2 
8 20 1 ~~~~ 0~~1 $~1 

Figure 8-1. Powers of two. 

As promised, each value has only one bit turned on, and notice also that, 
as the index "J" goes from one to eight, the "on" bit in the byte goes from 
left to right. The following program uses this algorithm to successively 
POKE each value into a byte of Hi-Res memory. 

lfa REM TURN ON 
2fa REM HI-RES DOTS 
30 REM 
40 HGR : REM TURN HI-RES ON 
50 X = PEEK ( 49234) : REM SWITCH TO 

FULL PAGE 
6~ REM 
70 FOR I = 8192 TO 16J8J 
80 REM BEGINNING AND END OF HI-RES 
9ra FOR J = 1 TO 8 
1rara x = 2 " ( 8-J) : REM TURN ON BIT 
llfa POKE I,X: REM TURN ON DOT 
12fa FOR L = 1 TO 2: REM DELAY 
1Jfa NEXT L 
14fa NEXT J 
15fa NEXT I 
16fa CALL 65338: REM BEEP 
17fa END 

Listing 8-1. Turn on Hi-Res dots. 

From our discussion so far, you should expect a single dot to appear in the 
top left corner, and rapidly be replaced by one a little further to the right. 
That dot should also be quickly replaced by a third yet a little further right, 
and so on until the eighth dot, which remains on. The ninth dot should 
then begin just to the right of the still lit eighth dot, only to be replaced by 
the tenth still slightly more to the right, and so on; it should give the 



68 APPLE II COMPUTER GRAPHICS 

impression of a dot travelling steadily to the right while leaving every 
eighth dot on. 

Run the program and if the screen behaves in an unexpected
bordering on bizarre-manner, then the program is probably working per
fectly. 

Seeing Is Belie11ing 

What you should really see is a dot that appears close to the upper left 
hand corner of the screen, and then travels rapidly to the LEFT. Just as the 
first dot bumps into the edge of the screen, a second dot appears; it also 
moves to the left and stops where the first dot began. A third dot appears 
and moves left, and then a fourth and fifth and so on until the entire screen 
fills with a grid of little dots, all about a quarter-inch apart. (It requires 
approximately five minutes to reach this point.) The routine continues with 
the next set of dots appearing immediately beneath the first set. If you let 
the process continue long enough, the screen will finally display forty 
vertical lines of dots. 

The display is mildly amusing, but after the novelty wears off you might 
realize that the "on" dots moved from right to left while the "on" bits in 
the byte moved from left to right. Apple Hi-Res displays the bits of a byte 
in the reverse order, so the right hand bit turns on the left hand dot of a 
byte, and the left hand bit turns on the right hand dot-er, sort of. You see, 
there is a little more to it. 

Slow down the display process by changing the delay value in line 120 
from 2 to a higher number. If you substitute a large enough value, you will 
be able to count the individual dots as they migrate to the left, and when 
you do, you will count only seven dots per byte to verify yet another Hi
Res oddity: the eighth (left-most) bit of the byte is not displayed at all. In 
other words, seven of the eight bits in each byte are displayed in reverse 
order, and the last (left-most) bit does not correspond to any dot at all. 
Although the reverse display of only seven bits may seem to be a capri
cious flight of "Wozniak whimsy" (named after Apple's designer), there 
truly are good reasons for that particular design. The left hand bit is used in 
a very clever scheme which facilitates Hi-Res color control. 

While running the program you must have also noted that, as with Low
Res, the Hi-Res graphics screen fills in three distinct sections, and that 
there is a pause after filling each line in the lower section while the eight 
bytes of "phantom memory" are filled. By now those peculiarities should 
seem like familiar landmarks. 

With all of these facts presented to you at once, you are bound to be a 
little confused. But one additional point should be made: with a little 
practice, Apple II Hi-Res is surprisingly powerful and easy to use. Suppose 
we demonstrate by turning on a few individual dots "manually." 



<.;HAPTER 8-Hl-RES GRAPHICS 69 

Going Dotty 

Each bit pattern creates a corresponding dot pattern on the screen. Since 
there are seven bits displayed from any byte, there are 128 possible combi
nations, and though we do not propose to show you every combination, 
Figure 8-2 lists which dots are turned on by which bits, and which ones 
may be handy for reference. You can see again that no dot corresponds to 
the left-hand bit. 

lft}ft}f'Jft}ft}ft}ft} OFF OFF OFF OFF OFF OFF OFF 
ft}lft}ft}ft}ft}f(}ft} OFF OFF OFF OFF OFF OFF ON 
ft}ft}lft}ff'ft}ft}ft} OFF OFF OFF OFF OFF ON OFF 
ft}f(Jft}lft}ft}ft}ft} OFF OFF OFF OFF ON OFF OFF 
ft}ft}ft}ft}lft}ft}ft} OFF OFF OFF ON OFF OFF OFF 
ft}ft}ft}ft}ft}lft}ft} OFF OFF ON OFF OFF OFF OFF 
ft}ft}ft}ft}ft}ft}lft} OFF ON OF OFF OFF OFF OFF 
ft}ft}ft}ft)ft}ft}ft}l ON OFF OFF OFF OFF OFF OFF 

Figure 8-2. Bit correspondence. 

To turn on a dot, you must also know the address of the byte which 
controls it. Refer to the Hi-Res memory map in Figure 8-3. 

The boxes shown in the map are very similar to the ones used in the 
Text/Low-Res map in Chapter 6, and the address of each box is found in 
the same manner-add the addresses given on the map for the row and 
column of the box. Within each box there are eight rows of seven dots 
stacked vertically as shown in the inset, and each row of dots in the box 
contributes an additional number called the position address. To turn on a 
dot, you must first find the address of the box and the row of dots within 
that box which contains the dot you are looking for. If you are not con
fused by now, then you must have worked with this before! Perhaps we 
can clear things up by use of an example. 

Example 1 

Suppose that you wish to display the seventeenth dot from the left in the 
third row of dots. 

Solution 

The third row of dots is within the first row of boxes, and since each box 
displays seven (not eight) dots across, the seventeenth dot is in the third 
box across as shown in Figure 8-4. Now that you have located the dot, 
you need to add three numbers to get its address: the address for the 
box's row, column, and the byte's position within the box. 



ot 
0 er .. 
:; 
.,,,. 
n 

"' Q. 
Q. $2000 8192 n 
~ 

~ $2080 8320 
"' $2100 8448 ~ 
!i $2180 8576 
f' .. $2200 8704 Q. 
Q. 

i $2280 8832 
~ $2300 8960 
Q. 

n 
~ $2380 9088 

a $2028 8232 

~ $20A8 8360 

f $2128 8488 
.,.· $21A8 8616 
[ 

i $2228 8744 

[ 
$22A8 8872 

s $2328 9000 
c S23A8 9128 3 
? .. $2050 8272 
::> 
Q. 

l $2000 8400 
g. $2150 8528 
:I 
:;· $2100 8656 
J $2250 8784 

$2208 8912 
$2350 9040 
$2300 9168 

11 n each box: 

le seeee 

1024 $8488 
..... 2048 sesee 

..L-
3e12 secee 

N~ 4896 $1880 

I\ 
5128 $1488 

6144 $1808 

7168 SIC88 

Figure 8-3. Hi-Res memory map. 

(Used with permission af Apple Computer Corporation) 

~ 

> .,, .,, ,.. ,,, 
= 
("') 

0 
~ .,, 
c: 
-4 ,,, 
~ 

~ 

~ .,, 
::t 
?i 
{II 



CHAPTER 8-Hl-RES GRAPHICS 71 

Row Address 8192 
Column Address 2 
Position Address 2~48 

Final Address 1~242 $28~2 

Thus, you at last arrive at the address, but now you need to calculate the 
value to put into it. To do that, again refer to Figure 8-4. 

The top line of the figure shows the first three bytes of screen memory, 
taking into account that only seven bits of each byte are actually dis
played. Dot number seventeen is the third dot from the left in its box; so 
to turn it on, you would turn on the third bit from the RIGHT in the byte 
as shown in the bit pattern on the second line. Remember, the bit 
pattern is the reverse of the dot pattern. 

Dot# 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

BYTE# 1 2 3 

l 
0000 0100 

l 
$4 = 4 

Figure 8-4. Display conversion. 

The left-hand bit has been shown in the second line as a zero (off). The 
binary number in the second line is converted to hex and decimal form 
in the third line, and the decimal value is the one we are about to POKE. 
After all that work, you can turn on the desired dot using the following 
commands from BASIC. 

HGR 
POKE 1~242,4 

(set graphics) 
(turn on the dot) 

You could use Monitor by typing 

HGR 
CALL -151 
28~2: 4 

Example 2 

Turn on dots 57, 58, and 59 in line number 116 of the Hi-Res screen. 



72 APPLE II COMPUTER GRAPHICS 

Solution 

If you count eight lines per box, the fourteenth row of boxes ends with 
the 112th line of dots (8* 14=112), so the 116th line is the fourth line in 
the fifteenth box. Therefore, by using the memory map in Figure 8-3, 
the row address is 9000, and the position in the box address is 3072. 
Dots 57, 58, and 59 of that line are the second, third, and fourth dots in 
the eighth box, which has column address 7 ($7), so the final address is: 

9~~~ $2J28 
J~72 $~C~~ 

7 $ 7 

12~79 $2F2F 

The display for that byte would look like: 

-XXX---

where - represents a dot which is off, and X a dot which is on. 
Reversing the order and supplying the "missing" left zero would 
give you the bit pattern: 00001110, which is equal to 14 ($0E}. 

Now that you have determined the address (12079 or $2F2F} and 
the value (14 or $0E}, type: 

HGR 
POKE 12~79, 14 

or 
HGR 
CALL -151 
2F2F: E 

This is not so bad after you get used to it, is it? Perhaps one 
more example .... 

Example 3 

Turn on the dots 27 and 30 in line 16 of the Hi-Res screen. 

Solution 

Line 16 is the last byte in the second row of boxes, so the row address 
is 8320 ($2080) and the position address is 7168 ($1C00}. Dots 27 and 30 
are in separate boxes-the fourth and fifth columns-so they will have 
different column addresses, and we will have to POKE each byte sepa
rately. 



CHAPTER 8-Hl-RES GRAPHICS 73 

The fourth column address is 3 ($3), so the address of the first byte we 
are after is 8320 + 7168 + 3 = 15491 ($2080 + $1 C00 + $3 = 
$3C83), and the address of the second byte is 15492 ($3C83). The dot 
patterns for the fourth and fifth byte look like: 

-----X- -X-----
so the bit patterns would be: 

~lft' ft'ft'~ft' and ft'ft'~ ft'ft'l~ 

and when you supply the left hand zero you get: 

~ft'l~ fl'~~ft' 
= $2ft' 

and ~fl'~fl' fl'fl'lft' 
$ 2 

= 32 2 

Hence, to plot the dots, type: 

HGR 
POKE 15491,32 
POKE 15492,2 

If you were to supply ones for the left-hand bits you would get: 

lft'lfl' ff'~ff'ff' and 
= $Aft' 
= 16~ 

so: 

HGR 
POKE 15491,16f{l 
POKE 15492,13ft' 

Notice that the same dots were turned on with both sets of state
ments, but that they were different colors- not very impressive un
less you have. a color display, but it does illustrate how the eighth 
bit controls color in Hi-Res. 

Monitor may be used to turn on the same dots, and also to clear 
the screen without the use of the HG R statement. 

The Hi-Res screen may be cleared by moving zeros into every 
byte, so type: 

CALL -151 
2ft'ft'~:~ 
2~JU < 2ft'ft'f{l. 3FFEM 
3C83:6ft' ft'3 

The first command invokes Monitor, the next two clear the 
screen (see Chapter 3), and the last places the proper byte in each 
of the two addresses. 



74 APPLE II COMPUTER GRAPHICS 

Figure 8-5. Alien critter. 

(From The Artist by Warren Schweder, used with permission.) 

Whew! That seems like a lot of work just for a few dots!! As it happens, 
working up an entire figure is not much harder. However, your prelimi
nary planning is extremely important when designing a figure in Hi-Res
let' s put together an alien critter as an example. Figure 8-5 shows a sample 
alien already drawn on graph paper. For simplicity, it is only seven dots 
wide and eight rows high so that it will fit within a single box of the 
memory map. 

The first step is to calculate the value of each byte composing the alien. 
Figure 8-6 shows the dot patterns, the required bit patterns, and the cor
responding hex and decimal values. 

DOT BIT HEX DEC 
PATTERN PATTERN VALUE VALUE 

--XXX--
-XXXXX-
X--X--X 
X--X--X 
-XXXXX-
--XXX--
-X---X-
X-----X 

f{Jf{Jf{Jl llf{Jf{J 
f{Jf{Jll lllfl' 
fl'lfl'f{J 1"'"'1 
fl'l"'f{J lfl'fl'l 
fl'fl'll lllfl' 
fl'fl'fl'l llfl'"' 

"'"'lf{J "'"'!"' 
f{Jlfllf{J "'f{JfU 

$1C 
$JD 
$49 
$49 
$JD 
$1C 
$22 
$41 

Figure 8-6. Alien translation. 

28 
61 
7J 
7J 
61 
28 
J4 
65 

The extra zero has been placed to the left of each bit pattern to supply 
the "missing" eighth bit. Calculating the values was not difficult at all. 
Now you need to calculate the addresses. 



CHAPTER 8-Hl-RES GRAPHICS 75 

The row and column addresses depend on which box you will use to 
plot the alien, but the address for the position in the box is fixed by the 
row's position in the figure. The position address for row one is 0 ($0}, for 
row two it is 1024 ($400}, for row three it is 2048 ($800}, and so forth, as 
shown in the Hi-Res memory map (see Figure 8-3}. The following program 
takes advantage of those facts as it plots the alien in any box you choose 
on the mixed r:node Hi-Res screen. 

1~ REM ALIEN PLOT 
2fl' REM 
Jfl' REM INITIALIZATION 
4~ DIM RA%(2~) 
?fl' FOR I = 1 TO 2fl': READ RA%(I): 

NEXT I 
6fl' REM 
7ft' REM INPUT ROW AND COLUMN 
8~ HGR : HOME : VTAB (24) 
9~ INPUT "ROW NUMBER? (1-2~)";R$ 
l~fl' R% = VAL (R$) 
11~ IF .tt% < 1 OR R% > 2f,:'J THEN PRINT 

CHR$ (7): GOTO 9~ 
12~ INPUT "COLUMN NUMBER? (1-4~)";C$ 
13~ C% = VAL (C$) 
14~ IF C% < 1 OR C% > 4f,:'J THEN PRINT 

CHR$ (7): GOTO 12~ 
15ft' BA% = RA%(R%) + C%-1 
16~ POKE BA%,28 
17fl' POKE BA% + 1ft'24, 62 
18fl' POKE BA% + 2ft'48, 73 
19~ POKE BA% + Jft'72, 73 
2~~ POKE BA% + 4~96, 62 
21~ POKE BA% + 512~, 28 
22~ POKE BA% + 6144, 34 
23ft' POKE BA% + 7168, 65 
24~ REM 
25ft' PRINT "PLOT ANOTHER? (Y/N)": GET A$ 
26fl' IF A$ < > "N" GOTO 9~ 
27~ TEXT : HOME 
28~ END 
29~ DATA 8192,832~,8448,8576,87~4, 

8832,896~,9ftJ88,8232,836~ 
3~~ DATA 8488,8616,8744,8872,9fl'~~' 

9128,8272,84~~,8528,8656 

Listing 8-2. Alien plot. 

Lines 40 through 60 dimension and initialize an array containing the 
twenty row addresses. Line 80 sets the mixed Hi-Res graphics mode with 



76 APPLE II COMPUTER GRAPHICS 

the cursor at the bottom of the text window. Lines 9(/J through 15(/J accept 
your input for the row and column numbers and, after checking to insure 
they are valid, converts them to a base address for the box indicated. Line 
150 ca lculates the base address by adding the row address for the box 
[RA %(R%)] to the column address (which happens to be one less than the 
column number). Having added the row and column addresses for the 
box, it only remains to add the address for the position in the box for each 
byte of the alien (how do aliens taste?). The final address is calculated and 
the proper value POKEd into it in lines 16(/J through 230, lines 25(/J and 26(/J 
give you a chance to plot another one, and then lines 27(/J and 28(/J wrap 
up the program. The data in lines 290 and 300 are the row addresses read 
in line 50. The plotting speed may be enhanced somewhat by calculating 
all of the fina l addresses before starting to POKE any of them. 

Example 4 

Write a simple BASIC program to plot the cannon given in Figure 8- 7. 

A B 

' 

c D 

Figure 8-7. Hi-Res cannon. 
(From Cannonball Blitz by Olaf Lubek, with permission.] 



CHAPTER 8-Hl-RES GRAPHICS 77 

Solution 

The first task is to digitize the cannon. Notice that it is fourteen dots wide 
and ten bytes high, so it will require four boxes to display. The figure has 
already been divided into four quadrants. Figures 8-8A-D show the digi
tizing of the corresponding quadrant. 

DOT BIT HEX DEC 
PATTERN PATTERN VALUE VALUE 

---------------------------------------------
X-X-X-X lfU {U~l $55 85 
X-X-X-X 1~1 ~1~1 $55 85 
X-X-X-X 1~1 ~1~1 $55 85 
X-X-X-X 1~1 ~1~1 $55 85 
------- ~~~ ~~~~ $~~ flJ 
-----X- f(Jl~ f(J~~~ $2f(J 32 
----XX- ~11 ~~~~ $3~ 48 
---XXXX 111 1~~~ $78 12~ 

Figure 8-BA. 

DOT BIT HEX DEC 
PATTERN PATTERN VALUE VALUE 
----------------------------------------------
-X-X-X-
-X-X-XX 
-X-X-XX 
-X-X-X-
--X-X--
X-X-X--
X-X-XX-
---XXXX 

DOT 
PATTERN 

---XXXX 
----XX-

DOT 
PATTERN 

--XXXX 
----XX-

~1~ 1~1~ $2A 
11~ 1~1~ $6A 
11~ 1~1~ $6A 
~1~ 1~1~ $2A 
f(J~l ~1~~ $14 
f(Jf(Jl f(Jlf(Jl $15 
~11 f(Jl~l $35 
111 1~~~ $78 

Figure 8-88. 

BIT 
PATTERN 

HEX 
VALUE 

$78 
$3f(J 

Figure 8-8C. 

BIT 
PATTERN 

HEX 
VALUE 

$78 
$3f(J 

Figure 8-BD. 

42 
1~6 
1~6 
42 
2~ 
21 
53 
12~ 

DEC 
VALUE 

12~ 
48 

DEC 
VALUE 

12~ 
48 



78 APPLE II COMPUTER GRAPHICS 

The following program will POKE into memory the values we just 
generated. We will plot the cannon in the upper left corner of the 
screen. 

1~ REM POKE CANNON 
2~ REM THE HARD WAY! 
3~ REM 
4f{J HGR 
5~ REM QUADRANT A 
6~ POKE 8192,85: POKE 9216,85: 

POKE 1~24~,85: POKE 11264,85 
7~ POKE 12288,~: POKE 13312,32: 

POKE 14336,48: POKE 15J6f{J,12~ 
8~ REM QUADRANT B 
9~ POKE 8193,42: POKE 9217,1~6: 

POKE 1~241,1~6: POKE 11265,42 
l~f{J POKE 12289,2~: POKE lJJlJ,21: 

POKE 14JJ7,5J: POKE 15361,12~ 
llf{J REM QUADRANT C 
12~ POKE 832~,12f{J: POKE 9344,48 
13f{J REM QUADRANT D 
14~ POKE 8321,12~: POKE 9345,48 
15~ END 

Listing 8-3. Cannon poker. 

Listing 8-3 makes no pretense at cleverness, but it does perform as 
promised. 

By now you have seen how the individual bits on the Hi-Res screen are 
controlled, and how you can wade through the memory map to find the 
byte of your dreams. Using those ideas, you have developed the data for 
and plotted some simple figures on the screen. Not bad for a day's work, 
eh? 

Vocabulary 

Column Address 

Digitizing 

Position Address 

Row Address 

Exercises 

1. Place the given dot pattern where indicated on the Hi-Res screen. 

a. -XX-X-X in row 10, column 20 of boxes, and first byte of the box. 



CHAPTER 8-Hl-RES GRAPHICS 79 

b. XX-XX-- in the fifth line and eleventh column of dots. 

c. X-----X in the fourteenth line and 27th column of dots. 

2. Write a BASIC program which lets the user plot the cannon from 
Example 3 in any group of four boxes on the Hi-Res screen. 

3. Digitize and display the butterfly figure given below. 

9J cP. 
,.-

.__ 

Figure 8-9. A butterfly. 



9 
Hi-Res COior 

Objectives 

After reading Chapter 9 you should be able to: 

• Design and display a Hi-Res color figure. 

• When given the location of a dot on the screen and a desired color, 
determine if that color can be displayed at that location, and if so, 
calculate the byte of memory which contains that dot and POKE the 
appropriate value into that location. 

• Use dithering to generate colors other than the six basic Hi-Res 
shades. 

Good color is virtually a requirement for quality Hi-Res products; most 
software publishers will not touch a Hi-Res program unless its color effects 
are clear, clean, and smooth. Color enhances the display by distinguishing 
the different elements of a picture or graph, by adding life to a screen, and 
by making the output more attractive to the eye of the viewer. Your 
Apple's hardware is designed to produce six colors, including black and 
white and, by a software process known as dithering, can be made to 
display upwards of twenty additional hues. 

Getting color on the Hi-Res screen is simple-almost too simple since 
any time you plot a single dot, it is always in color. The trick is to develop 
the right color in the right place. By now you should be familiar with the 
way Hi-Res memory is laid out, and how to use the memory map to find 
your way around. You also need some facility in translating desired dot 
patterns into their corresponding bit patterns, and then into their hex or 
decimal values. Another necessary item is either a color display, or a very 
vivid imagination. 

81 



82 APPLE II COMPUTER GRAPHICS 

A Bit of Color 

In Chapter 8, we pointed out that the left-most bit in a Hi-Res byte was not 
displayed, and alluded to its function in color control. That bit is called the 
color bit of the byte, and its setting determines which group of colors the 
remaining seven bits will display. If the color bit of a byte is off (zero), the 
remaining seven bits will display colors from group 1: BLACK1, GREEN, 
VIOLET, or WHITE1. If the color bit is on (one), the byte will display group 
2 colors: BLACK2, ORANGE, BLUE, or WHITE2. Those colors will vary 
depending on the TV or monitor used, but you can usually adjust the tint 
on your screen so the proper colors are displayed. We will return to the 
color bits and color groups; meanwhile, run the following program as an 
experiment. 

lf'J HGR 
2f'J HCOLOR = J 
Jf'J HPLO~ 1,f'J TO 1,lf'Jf'J 
4f'J GET P$: REM PAUSE 
5f'J HCOLOR = 4 
6f'J FOR I = Y, TO lf'JY, 
7f'J HPLOT ftJ,I 
BY, NEXT I 
Listing 9-1. Vertical line. 

According to the Apple manuals, HCOLOR = 3 is WHITE1 (the white 
belonging to color group 1 ); hence, lines 10 through 30 should plot a 
vertical white line in column 1. But when you run the program you are 
instead greeted by a vertical green line! That is because you are plotting a 
single dot in each row, and any isolated dot always results in a color. But 
there is more. Line 40 halts the program until you press a key, line 50 sets 
the color to BLACK2, which is the black belonging to color group 2. Lines 
60, 70, and 80 plot a vertical line of black dots in column 0. Since column 
0 was already black, you would not expect anything to change, and yet 
the green line slowly changes to orange after you press a key. 

The reason for the color change has to do with the color bit. The dots in 
column 0 and column 1 are controlled by the same byte of Hi-Res mem
ory, and plotting WHITE1 turned on the column 1 bit of each byte and left 
the rest of the bits off, including the color bit. Plotting column 0 in BLACK2 
turned off the column 0 bits, which were off anyway, but also turned on 
the color bit of each byte since BLACK2 is a group 2 color. When the color 
bit of each byte was turned on, it caused the entire byte to display group 2 
colors; thus, the green in column 1, which is a group 1 color, changed to 
the corresponding group 2 color, orange. If column 0 had been plotted in 
BLACK1 instead of BLACK2, the color bit of each byte would have re
mained off and no color change would have occurred. 



CHAPTER 9-Hl-RES COLOR 83 

Let's run a program which illustrates yet another characteristic of Hi-Res 
color. 

lft} HGR 
2ft} HCOLOR = 2 
JftJ FOR I = 1 TO lft}ftJ 
4ft} HPLOT I,ft} 
5ftJ NEXT I 
6ft} REM 
?ft} REM NOW TURN HALF OFF 
8ft} HCOLOR = ft} 
9ft} FOR I = 2 TO lft}ftJ STEP 2 
lft}ftJ HPLOT I, ft} 
11ftJ NEXT I 
12ft} END 
Listing 9-2. Horizontal line. 

An examination of the listing would lead one to believe that the program 
will plot 100 consecutive horizontal blue dots, and then turn all the even 
dots off. However, when the program is run, the blue line is drawn, and 
then erased completely! How can that be when you plot 100 dots and only 
erase 50? If you care to insert a delay loop and signal in the program 
35 FOR J = 1 TO 5ftJftJ: NEXT J: PRINT CHR$(7) and count the dots as they are 
plotted, you will find that only 50 dots are plotted in the first place. Blue is 
only available in even numbered columns (0,2,4, ... ), and so when the 
program attempts to plot blue on the odd numbered dots, it has no effect 
at all. Violet is also available on only even dots, while odd dots may 
display either green or orange. 

To summarize what you have seen so far, if a dot is plotted in an even 
numbered column, it will be either violet or blue, and if a dot is in an odd 
column, it will be green or orange. The color bit selects which of the 
available colors each dot will display: if the color bit is off (group 1 ), even 
dots display violet and odd dots display green; if the color bit is on (group 
2) then even dots are blue and odd dots are orange. The left-most column 
of dots on the screen is counted as column zero, and columns 1 through 
279 follow sequentially across the screen. 

Black is plotted by turning a dot off, and white is plotted by turning on 
two adjacent dots in the same row. Let's experiment using the POKE 
statement. Type: 

HGR 
POKE 8192,1 
POKE 8192,2 
POKE 8192,J 

In the upper left corner of the Hi-Res screen you will display a single violet 
dot, then a lone green dot, and finally a white dot. How did the white dot 



84 APPLE II COMPUTER GRAPHICS 

get there? The chart below takes the values that you POKEd and shows the 
corresponding bit patterns and effects. 

VALUE BIT PATTERN DOT(S) ON 

1 ~~~~ ~~~1 Row ~ 

2 ~~~~ ~~1~ Row 1 

J ~~~~ ~~11 Row ~ and Row 1 

Figure 9-1. Bit patterns and effects. 

When the dots were turned on singly, they displayed their respective 
colors, but when they were both on they displayed white. Any "on" dot 
next to another "on" dot will display white. Plotting one dot under or 
over another has no effect on the color. 

How Do Yau Like Them Apples? 

To practice with Hi-Res colors, we will plot the apple given in Figure 
9-2. The figure has already been sectioned into the nine boxes required 
to display it, and Figures 9-2A through 9-21 show the conversion from 
dot patterns to decimal values for each of the sections. 

A c 

• 8 • • 
@ • • @Ee • F 

@ e • • • e • e I) G 

• • • e ® 
@ 0 • e 
f) e • e 

@ 

G H I 

Figure 9-2. Hi-Rea apple. 

Except for the stem, which will be white, the grid for the apple is com
posed of dots in every second column. That pattern is necessary since 



CHAPTER 9-Hl-RES COLOR 85 

each Hi-Res color is available on only odd or only even dots, and fur-
ther, if two adjacent dots are turned on, they will both display white. 

Colors from both groups are used as indicated in Figure 9-2. 

DOT BIT 
PATTERN PATTERN HEX DEC 

--------------------------------------------------- f{}fl}f{}f{} f'Jf{}fl}f{} ${{}{{} {{} 

------- f{}f{}fl}f{} f{}fl}fl}f{} ${{}{{} {{} 

------- f{}f{}f{}f{} f{}f{}fl}f{} ${{}fl} fl} 
------- fl}fl}f{}fl} fl}fl}f{}fl} $fl}{{} fl} 
----X-X {{}1{{}1 fl}fl}fl}fl} $5{{} 8{{} 
--X-X-X f{}lfl}l fl}lfl}f{} $54 84 
--X-X-X f{}lfl}l f{}lfl}fl} $54 84 
-X-X-X- f'Jfl}lfl} lfl}lfl} $2A 42 

Figure 9-2A. 

DOT BIT 
PATTERN PATTERN HEX DEC 

-------------------------------------------
XX----- fl}fl}f{}f{} fl}fl}ll $fl}3 3 
-XX---- f{}f(Jf{}f{} f{}llf{} $f{}6 6 

--XX--- fl}fl'f{}fl' llfl}f{J $f{}C 12 

--XX--- f{}f{Jf{Jfl} llf{Jfl} $f{JC 12 
--XX--- f{}f{Jfl'f{J llf{Jf{J $f{}C 12 
-X-X-X- f{Jf{Jlf{J lf{Jlf{J $2A 42 
-X-X-X- f{Jf{}lf{J lf{}lf{J $2A 42 
X-X-X-X f{Jlf{Jl f{Jlf{}l $55 85 

Figure 9-28. 

DOT BIT 
PATTERN PATTERN HEX DEC 

-------------------------------------------------- f{Jfl}f{Jf{} f{Jf{Jf{Jf{J $f{}f{J ftJ 
------- f{Jf{}f{Jf{J f{Jf{Jf{Jf{J $f{Jf{J ftJ 
------- f'Jf{Jf{Jf{J f{Jf{}f{Jf{J ${lJf{J fl} 

------- f{Jf{Jfl}f{J f{Jfl}fl}f{} $f{Jf{J ftJ 
X-X---- f{}f{Jf{Jf{J f{Jlf{Jl $f{J5 5 
X-X-X-- f{Jf'Jf{Jl f{Jlf{}l $15 21 
X-X---- f{Jfl'f{}f{J f{Jlfl}l $f{J5 5 
-x----- f{Jf'Jf{Jf{J f{Jf{Jlfl} $f{J2 2 

Figure 9-2C. 



86 APPLE II COMPUTER GRAPHICS 

DOT 
PATTERN 

-X-X-X-
-X-X-X-
X-X-X-X 
X-X-X-X 
X-X-X-X 
-X-X-X-
-X-X-X-
-X-X-X-

DOT 
PATTERN 

BIT 
PATTERN 

flJ{lJlflJ lflJlflJ 
f"fl'lfl' lfl'lfl' 
llfl'l fl'lfl'l 
llfl'l {lll{lll 
ll{lll fl'lfl'l 
lfi}l{ll l{lllf" 
lfUft' lft'lft' 
l{lllfl' lfl'lfl' 

Figure 9-2D. 

BIT 
PATTERN 

HEX 

$2A 
$2A 
$05 
$D5 
$D5 
$AA 
$AA 
$AA 

HEX 

DEC 

42 
42 

213 
213 
213 
17fl' 
17fl' 
17fl' 

DEC 
--------------------------------------------

X-X-X-X 
X-X-X-X 
-X-X-X-
-X-X-X-
-X-X-X-
X-X-X-X 
X-X-X-X 
X-X-X-X 

DOT 
PATTERN 

-X-----
-X-----
X-X----
X-X----
X-X-X-
-X-X---
-X-X---
-X-----

fl'lfl'l fl'lf"l 
f"1fi}1 fi}lfi}l 
lflJlflJ l{lllfl} 
lff'lff' lff'lflJ 
lff'lff' l~l{ll 
llfi}l {lll{lll 
11~1 {lll~l 

ll{lll {lllf"l 

Figure 9-2E. 

BIT 
PATTERN 

f"flJ{lJ{lJ {llfi}lflJ 
{llfl'f"{ll {llf"lf" 
lflJ{lJ{ll fl}l{lll 
lflJ{ll{ll {lll{lll 
lflJ{lll {lllf"l 
lflJ{ll{ll l{lll{ll 
lflJ{lJ{lJ l{lll{ll 
lflJflJ{lJ flJ{lll{ll 

Figure 9-2F. 

$55 
$55 
$AA 
$AA 
$AA 
$D5 
$05 
$D5 

HEX 

${ll2 
$fl}2 
$85 
$85 
$95 
$8A 
$8A 
$82 

85 
85 

17fl} 
17~ 
17{ll 
213 
213 
213 

DEC 

2 
2 

133 
133 
149 
138 
138 
13{ll 



DOT 
PATTERN 

--X-X-X 
--X-X-X 
----X-X 
------X 
-------
-------
-------
-------

DOT 
PATTERN 

BIT 
PATTERN 

flll{U flllfllfll 
flllflll flllfllfll 
flllflll fllfllfllfll 
flllfllfll fllfllfllfll 
fllfllfllfll fllfllfllfll 
fllfllfllfll fllfllfllfll 
fl'fllfllfll fi'fllfllfll 
fi'fllfllfll fl'fllfllfll 

Figure 9-2G. 

BIT 
PATTERN 

CHAPTER 9-Hl-RES COLOR 87 

HEX DEC 

$54 84 
$54 84 
$5fl} 8fll 
$4flJ 64 
$fl}fll fl} 
$fllfll 

"' $f{Jfl} fl} 
$fl}fll fl} 

HEX DEC 
--------------------------------------------

-X-X-X- fllflllfll lflllfll $2A 42 
-X-X-X- fllflllfll lflllfll $2A 42 
-X-X-X- fllflllfll lflllfll $2A 42 
-X-X--- fllfllfllfll lflllfll $fl}A lfll 
------- fllfllfllfll fllfllfllfll $fllfl} flJ 
------- fllfllfllfll fi'fllfllfll $flJflJ 

"' ------- fllfllfllfll fllfllf'Jfll $fl}fl} fl} 
------- fllfl'fllfll fllfllfllfll $fl}f'J fl' 

Figure 9-2H. 

DOT BIT 
PATTERN PATTERN HEX DEC 

-------------------------------------------
X-X---- fllfllfl'fll flllflll $fll5 5 
X------ fl'fllfllfll fllfl'flll $fl}l 1 

------- fl'fllf'Jfll fllfllfllfll $f{Jfl} fl} 
------- fllfllfllfll fl'fllfllfll $ft}fl} fl} 
------- fllft'fllfll fllfllfllfll $fl}fl} fl} 
------- fllfllfllfll fllfllfllfll $f'Jfl} fl} 
------- fllfllfllfll fllfl'fllfll $fl}fl} ft' 
------- fllflJfllfll fllfl'ft'fll $fl}fl} ft' 

Figure 9-21. 



88 APPLE II COMPUTER GRAPHICS 

In Figures 9-20 through 9-2F, some of the color bits are turned on in 
order to select group 2 colors. 

Now that you have digitized the figure, you need a program such as 
Listing 9-3 below to place those values in Hi-Res screen memory. The 
program lets you select the position of the apple on the screen, within 
limits. You will be asked for the row and column number for the upper left 
corner of the apple (Figure 9-2A); the rest of the apple follows from there. 

1~ REM COLOR APPLE 
2~ REM 
J~ REM 
4~ REM INITIALIZE 
5~ REM 
6~ OFST% = l{{J24: DIM SA%(2~) 
7~ FOR I = 1 TO 2~: READ SA%(!): NEXT 
8~ HGR : VTAB (2J) 
9~ REM 

1~~ REM GET ROW & COL # 1S 
11~ REM 
12~ INPUT "BOX ROW #? (1-18)";R$ 
lJ~ R% = VAL (R$): IF R% < 1 OR 

R% > 18 THEN PRINT CHR$ ( 7) : 
GOTO 12~ 

14~ INPUT "BOX COL. #? (1-J8)";C$ 
15~ C% = VAL ( C$) : IF C% < 1 OR 

C% > JS THEN PRINT CHR$ (7): 
GOTO 14~ 

16~ REM 
17~ REM PLOT APPLE 
18~ REM 
19~ FOR K = ~ TO 2 
2~~ FOR J = ~ TO 2 
21~ BA% = SA%(R% + K) + ( C%-1) + J 
22~ FOR I = 1 TO 8 
23~ READ V%: POKE BA% + (I-1) * 

OFST%,V% 
24~ NEXT I,J,K 
25~ END 
J7~ REM 
J8~ REM ADDR. TABLE 
J9~ REM 
4~~ DATA 8192,832~,8448,8576,87~4, 

88J2,896~,9~88,82J2,8J6~,8488 
41~ DATA 8616,8744,8872,9~~~,9128, 

8272,84~~,8528,8656 
48~ REM 
49~ REM APPLE TABLE 



5~~ REM 
51~ DATA ~'~'~'~,8~,84,84,42 
52~ DATA J,6,12,12,12,42,42,85 
53~ DATA ~'~'~'~'5,21,5,2 

CHAPTER 9-Hl-RES COLOR 89 

54~ DATA 42,42,21J,21J,21J,17~,17~,17~ 
55~ DATA 85,85,17~,17~,17~,21J,21J,21J 
56~ DATA 2,2,1JJ,1JJ,149,1J8,1J8,13~ 
57~ DATA 84,84,8~,64,~,~'~'~ 
58~ DATA 42,42,42,1~'~'~'~'~ 
59~ DATA 5,1,~'~'~'~'~'~ 
Listing 9-3. POKE color apple. 

Line 60 initializes the variable OFST%, which represents the offset or 
difference in addresses between each row of dots within a box. Line 60 
also DIMensions the array SA%, which contains the starting addresses for 
the twenty rows of boxes available on the left side of the mixed screen. 
The variables are indicated as integers in order to speed execution. Line 70 
READs the values for the starting address from the address data table, and 
line 80 sets the Hi-Res mode with the cursor in the text window. 

Lines 120 and 13~ input the row number and check to insure that it is 
within the proper range. Even though there are twenty rows of boxes on 
the mixed Hi-Res screen, the starting box for the apple must be between 1 
and 18 since the figure occupies three boxes vertically, and beginning at 
line nineteen would cause the apple to try to plot in the range occupied by 
the text window. Even though it is possible to plot in the last four rows, the 
apple would not be visible in mixed mode, so no provision has been made 
to do so in this listing. 

Lines 140 and 150 accept the column number and verify that it is be
tween 1 and 38 so that the entire width of the apple will plot on the 
screen. 

Lines 190 through 240 do the actual POKEing of the data values devel
oped in Figures 9-2A through 9-21. The variable "K" indexes the rows 
while "J" indexes the columns; they each take on three values, 0, 1, and 
2. In line 210, the address of the box to be filled is calculated by adding 
the starting address of the row of boxes being filled (SA%(R% + K)), to the 
column address ({C%-1) + J). 

Lines 220-240 read each of the eight data values for each box, calculate 
the final addresses by adding the proper multiple of the offset to the base 
address, and then POKE each value into its address. 

Run the program a few times and try different locations for the apple. 
You will notice that the picture changes color depending on which 
column you select. To help understand why, let's consider the dots at the 
extreme left of the apple: the third, fourth, and fifth rows of box D. When 
that box is plotted on the left edge of the screen, those dots will display 



90 APPLE II COMPUTER GRAPHICS 

blue as they are in an even column (zero) and a group 2 byte. When box 
D is plotted in the second column of boxes from the left, those same dots 
display orange since they are now in an odd column of dots (seven). That 
pattern alternates across the width of the screen. 

Another weakness of the program is that you are constrained to always 
select the apple's position in increments of a full box. That is, you may not 
choose to draw the apple starting three and one-half boxes into the screen, 
but instead you must always use a whole number of boxes. There are 
techniques which let you POKE the figure beginning with any of the 280 
columns and 160 rows on the screen, but they will not be pursued here, as 
the results are better accomplished using the methods discussed in the 
chapters covering Shapes and Byte-Move Graphics. 

E11erything You Know Is False 

In this section we appear to contradict a portion of what we have just told 
you. We have said (repeatedly) that there are 280 positions across the Hi
Res screen, but now we attempt to convince you that there are only 40 
positions, and also that there are 560 positions, and sometimes 140 posi
tions. ARRGH!! Hopefully, by temporarily confusing the issue, we will 
clarify it. The purpose is to provide you with several clear and accurate 
models for use with the Hi-Res screen- not physical models, but rather 
conceptual ones which will help structure your thinking and simplify your 
task when designing Hi-Res output. Each model is based on a different 
number of positions across the screen, but they do use the same number 
of positions down the screen: 160 rows of dots (192 for full screen). 

Why4fl? 

The explanation of the 40 position model is easiest since you have already 
dealt with it, perhaps unknowingly. To process any dot, you must unavoid
ably deal with the byte which contains that dot, and there are only 40 
bytes across each line of the screen. When you developed and plotted the 
Hi-Res apple, your design was developed in one-byte increments and 
plotted with the consideration of having only 40 boxes or bytes across the 
screen in which to draw the figure. 

What About 28(1? 

The 280-position model is still valid. Each of the 40 bytes displays seven 
dots, and that yields 280 dots across the screen. The 280-dot concept is 
useful when you are designing your figures, but when you begin to digitize 
the data, you naturally adopt the 40-position model, perhaps without real
izing it. Refer to the section where you worked with the Hi-Res apple, and 



CHAPTER 9-Hl-RES COLOR 91 

notice how the 280-dot model led into the 40-byte model with no trouble 
at all when you began to digitize the figure. 

Only 1411 

When working with colors on the Hi-Res screen, most game programmers 
consider the width of the screen to be composed of only 140 available 
dots. Clearly, it requires two adjacent dots to display white, and if you 
would display a line of green dots, then between each green dot there is a 
black one, so you can see that it takes two dots to display a color also. If 
you look back at Figure 9-2, the picture of the Hi-Res apple, you will see 
that only every second dot was used for the colored portions. Since a unit 
of color requires two dots, you may reasonably interpret the screen to 
allow only 140 units of color across. 

Further, when you plotted the apple in different positions, the colors 
changed depending on where it was plotted. In order to maintain the 
original colors, any dot that was originally even must always be plotted as 
an even dot, and the same idea follows for the odd dots. To accomplish 
that, the figure must be moved in multiples of two dots at a time, so for this 
reason also, there are only 140 possible positions across the screen. 

Would Yau Belie11e 5811? 

Despite what the Apple documentation says, there are actually 560 dots 
available across the Hi-Res screen. By now you probably think we are 
totally bonkers, so we will prove our point by demonstration. First, enter 
the Monitor, and then the Hi-Res mode, by typing: 

CALL -151 
C~5~ 
C~57 

Next, clear the decks for action by typing: 

2~~~: ~ 
2~fU < 2~~~. JFFEM 

If this seems obscure to you, perhaps another reading of the Monitor and 
Soft Switch chapters is needed. 

Figure 9-3 shows the hex address of the first byte for each of the first 14 
screen lines, and the dot and bit patterns for 14 values to be placed in 
those locations. 



92 APPLE II COMPUTER GRAPHICS 

HEX HEX BIT DOT 
_APPBE§§ ___ ~a~\!E ______ f A!!EfiH ______ f AIIEfi.tl __ 

2f{Jf{Jf{J 
24f{Jf{J 
28{{Jf{J 
2Cf{Jf{J 
JYJ{{Jf{J 
J4f{Jf{J 
J8f{Jf{J 
JCYJf{J 
2f{J8f{J 
248f{J 
288f{J 
2C8f{J 
Jf{J8f{J 
J48f{J 

f{Jl 
81 
¥'2 
82 
f{J4 
84 
fl18 
88 
lftJ 
9ftJ 
2ftl 
Af{J 
4f{J 
C{{J 

f{JftJftJftJ fi'fi'fi'l 
lftJftJf{J f{JftJYJl 
f{Jfi'{{Jf{J fi'f{Jlf{J 
lf{Jf{J{{J f{Jf{Jlf{J 
f{Jfi'{{Jfi' y}lf{Jf{J 
lf{Jf{Jfi' f{Jlf{Jf{J 
f{Jfi'f{Jfi' lfi'fi'f{J 
ly}ftlYJ lf{Jf{Jf{J 
f{Jf{Jftll f{Jf{Jf{Jf{J 
lf{Jf{Jl f{Jf{Jf{Jf{J 
f{Jf{Jlf{J f{Jf{Jf{Jfi' 
lf{Jlf{J f{Jf{Jf{Jf{J 
f{Jl{{Jfi' f{Jfi'f{Jf{J 
llff'fi' fi'f{Jf{Jf{J 

Figure 9-3. 

X-----
X-----
-X-----
-X-----
--X----
--X----
---X---
---X---
----X--
----X--
-----X-
-----X-
------X 
------x 

Place the values in memory by typing 
2fi'fi'fi': fi'l 
24fi'f{J: 81 
28f{Jfi': f{J2 

J48f{J: Cf{J 

Looking at the dot patterns, the expected result is seven pairs of dots, with 
one dot of the pair directly above the other. 

However, when you enter the values, what you get is a diagonal line; 
the pairs of dots are not stacked as we expected, even though the same 
dot was turned on in each byte of the pair. This phenomenon relies on the 
fact that the first byte in each pair was in color group one, and the second 
byte was from group two, as determined by the color bit on the left side of 
the byte. 

One byte of screen memory actually controls fourteen dots on the 
screen, and the two sets of seven dots are interleaved as shown in Figure 
9-4. 

DOT # 1 2 3 4 5 6 7 

l•l•l•l•l•l•l•l•l•l•l•l•l•l•I 
• GROUP 1 

! GROUP 2 

Figure 9-4. Double dot picture. 



CHAPTER 9-Hl-RES COLOR 93 

One set of seven dots may be displayed by setting the color bit to display 
group 1, and the other seven are displayed by setting the color bit to group 
2. For example, change the group two value in location $2400, which is 
presently 1000 0001, to the equivalent group one value, 000© 0001, and 
then back again by typing: 

24~~: ~1 
24~~: 81 

You will see the dot in line two move slightly to the left, and then back to 
the right even though in both cases it was the left-most dot of the group 
being displayed. 

The point is that there are actually 560 dots across the Hi-Res screen, 
though only half the dots in any byte are available at any one time. The 
fact that the group 2 dots are slightly to the right of the group 1 dots may 
be exploited to draw a smoother line than possible with just one color 
group, as we did in the example, or to smooth the outlines of figures on 
the screen in order to improve their looks. 

How's That Again? 

The result of all this discussion is that there are 560 dots across the Hi-Res 
screen, 280 of which are potentially displayable. There are 140 pairs of 
dots available when generating color, and all the data for a line on the 
screen must fit into 40 bytes. You use the units and model which are most 
convenient for your immediate purpose. 

Hither, Dither, and Yan 

According to the Apple documentation, there are only six colors available 
in Hi-Res mode, including black and white. Since Apple built the com
puter one would expect them to be correct, and they are-sort of. There 
are programs available in Hi-Res which use many more than six colors, 
and that seems to contradict the reference manuals. 

As you have seen for yourself, the dots on the Hi-Res screen are truly 
capable of producing only black, white, violet, blue, green, and orange; 
but when you add to that a good measure of programmer imagination and 
creativity, it is possible to artificially produce extra hues by a process called 
"dithering." 

Run the following program. 

1~ REM DITHER DEMO 
2~ REM 
3~ DLAY = 2~~: REM DELAY VALUE 
4~ SZ = 50: REM SIZE 



94 APPLE II COMPUTER GRAPHICS 

5~ HGR 
6~ FOR Cl = 1 TO 7 
7~ FOF. C2 = 1 TO 7 
8~ FOR Y = ~ TO SZ STEP 2 
9~ HCOLOR= Cl 
1~~ HPLOT ~,Y TO SZ,Y 
11~ HCOLOR = C2 
12~ HPLOT ~,Y + 1 TO SZ,Y + 1 
13~ NEXT Y 
14~ FOR I = 1 TO OLAY: NEXT I 
15~ NEXT C2 
16~ NEXT Cl 
17~ END 
Listing 9-4. Dithering. 

You should see a rectangle in the upper left corner of the screen which 
continually changes color, and in the process takes on some shades other 
than the basic six. You may change the speed by altering the value of 
DLA Y in line 30, and the size of the rectangle is determined by the value 
of SZ in line 40. 

All the program does is plot pairs of horizontal lines in two alternating 
colors (C1 and C2), then change one or both colors and do it again. As the 
routine cycles, you can see the basic colors-green, blue, violet, orange, 
black, and white-but also some other colors such as light green and hot 
pink. The extra colors are generated by two colors blurring together to 
form a mixture, for instance white and green blurring to form light green. 

There are a great many variations used to produce other shades. For 
example, you might mix the colors orange and black, by alternating them 
in a checkerboard pattern to produce dark orange, or perhaps by drawing 
a pure orange line followed by a line which alternates orange and black. 
The possibilities are limited only by your imagination. 

There are a few considerations, however. For instance, if you tried to 
alternate green and violet dots across the screen, as in the following short 
program, you would run into severe problems. 

1~ HGR 
2~ Cl = 2: C2 = 1 
3~ FOR X = ~ TO 278 STEP 2 
4~ HCOLOR= Cl: HPLOT X, Y: REM VIOLET 
5~ GOSUB 1~~ 
6~ HCOLOR = C2: HPLOT X + 1, Y: REM GREEN 
7~ GOSUB 1~~ 
8~ NEXT X 
9~ END 
1~~ FOR I = 1 TO 2~~: NEXT I : RETURN 

Listing 9-5. 



CHAPTER 9-Hl-RES COLOR 95 

Thanks to the delay loop in line 100, you will be able to see all the 
action when the program runs. The first dot appears in its proper violet, 
but then the next dot comes on-not as the expected green, but as white, 
and the first dot turns white with it. The remaining dots also display white, 
regardless of the color set in the program. Remember, any time two con
secutive dots in a row are on, they display white, so if you wish to alter
nate colors across a line, you must leave one or more black dots between 
each color and the next (see Figure 9-5). 

Figure 9-5. Alternating colors. 

Even if you leave black dots between colored dots, you are still not 
completely safe. The next listing ostensibly plots violet in column 0, blue in 
column 2, violet in column 4, blue again in column 6, and so on across 
the line. 

lf{J HGR 
2f{J Cl = 2: C2 = 6 
JfiJ FOR X = fl' TO 276 STEP 4 
4f{J HCOLOR= Cl: HPLOT X, Y: REM VIOLET 
5flJ GOSUB lf{Jf{J 
6f{J HCOLOR = C2: HPLOT X + 2, Y: REM BLUE 
7f{J GOSUB lff'ff' 
8f{J NEXT X 
9f{J END 
lf{Jf{J FOR I = 1 TO 2f{Jf{J: NEXT I : RETURN 

Listing 9-6. 

When the program runs, a violet (group 1) dot will appear in column 0, 
then a blue dot will appear in column 2. Since blue is in group 2, the 
entire byte will become group 2 and the violet dot will change to blue 
also. Next, a violet dot will be plotted in column 4, turning the previous 
two dots violet, and then a blue dot will be plotted in column 6 to turn 
everything blue again. Column 8 is in the next byte of memory so when 
the violet dot is plotted there, the previous four dots are unaffected. 
Column 10 displays blue, and then column 12 displays violet so that the 
three dots in that byte are all violet. Column 14 begins the third byte, and, 
as it displays blue, the previous three dots remain violet. The final pattern 
is a line which has alternating violet and blue segments. 

This demonstrates a propensity of Hi-Res graphics called "clashing." 
Clashing is the inadvertent switching of a dot from one color group to the 
other and occurs when you attempt to plot colors from opposite color 
groups within the same byte-the computer simply cannot and will not do 
it-so the attempt turns the first colors plotted into colors from the second 
group plotted. You cannot mix green with orange or blue in the same 
byte, nor can you put orange or blue in the same byte as violet. Clashing is 



96 APPLE II COMPUTER GRAPHICS 

one of the facts of Hi-Res life, and it is virtually impossible to avoid com
pletely, though careful planning of your figures will help you to minimize 
it. 

Wrapping It Up 

By their very nature, the topics discussed in this chapter are perhaps the 
most confusing in the book. The color bit controls the colors available to 
the rest of the byte, and the color of an individual dot is determined by 
whether it is in an odd or even column of the screen, and by the setting of 
the color bit. To display a given color, you must first determine whether it 
is in color group 1 or 2, and then whether it is available on an even dot or 
an odd dot. There is no way to display two different color groups in the 
same byte at all, and no way to display two colored dots next to each 
other without both duts turning to white. 

We have seen that, despite what the manuals say, there are 560 dots 
across the Hi-Res screen, though you may display a maximum of 280 dots 
at any time. If you are working in color, you are further limited to 140 
positions since each color is available on only odd or only even dots. 
When you are digitizing the data for a figure, you are forced to think in 
terms of having only 40 bytes across each line. The color groups and the 
odd/even availability of each color is summarized in Figure 9-6. 

Vocabulary 

Clashing 

Color Bit 

Color Group 

Dithering 

Group 1 Colors 

Group 2 Colors 

Group 1: 
Group 2: 

Odd Even 

GREEN 
ORANGE 

Figure 9-8. 

VIOLET 
BLUE 



CHAPTER 9-Hl-RES COLOR 97 

Exercises 

1. Use the POKE statement to display the following colors at the given 
location on the screen. It is assumed that column 0 is the left-most 
column of dots. 

a. Violet in the tenth row and twentieth column of dots. 

b. Orange in row ten, column 71. 

c. Blue in row ninety, column 104. 

d. Green in row 160, column 279. 

2. Write a BASIC program to cycle through each of the eight values for 
HCOLOR and plot a line of that color, followed by a line which alter
nates that color with black, and creates a rectangle containing 15 pairs 
of such lines. The routine needs to account for the fact that green and 
orange may only be plotted on odd columns, and violet and blue only 
on even. 

3. Take the butterfly designed in Exercise 3 of Chapter 8 and display it in 
color. 



11 
Shaping Up 

Objectives 

After reading Chapter 10 you should be able to (if forced): 

• Draw a vector diagram for a figure. 

• List and encode the vectors from the diagram. 

• Group the vector codes into bytes. 

• Develop a shape table from one or more shapes. 

• Save and recover a shape table from disk or tape. 

• Use the shape commands to plot, scale, and rotate a shape. 

In this chapter you will investigate the properties of Apple shapes and 
shape tables. The term "shape" is used here in a very specific sense. From 
the programmer's point of view, a shape could be almost any figure-a 
spaceship, frog, alien, and so on-but to the computer a shape is a set of 
highly formatted data which lets the machine produce a display on the 
screen. 

Though using a shape can cost you extra time at the outset, in practice it 
makes drawing and animating figures much faster and simpler than the 
techniques we have discussed in the previous two chapters. Shapes may 
also be used to simulate text on the Hi-Res screen. 

After you digitize a figure to create a shape, that shape can be plotted on 
the screen as a unit so that you no longer need to concern yourself with 
calculating the necessary addresses, nor the values to POKE. APPLESOFT 
takes care of all those grubby little details, and also plots the shape faster 
than you could if you used the READ and POKE technique discussed in 
earlier chapters. 

99 



100 APPLE II COMPUTER GRAPHICS 

We will show you how to digitize a figure into a shape, put the shape 
into a shape table, and how to save the results of your labor. From there, 
you will use APPLESOFT to draw, erase, rotate, and sca le your shape. You 
will see very quickly how tedious and time-consuming shapes can be if 
you do them yourself. Fortunately, for your sanity, any good Hi-Res graph
ics editor w ill contain a provision fo r making shapes from the figures you 
develop on the screen, so that the machine does all the menial calcula
tions instead of you. We highly recommend using a Hi-Res editor to make 
shapes. 

To the Vector Belong the Spoils 

To draw a shape, the Apple II uses a series of vectors which tell it whether 
o r not to plot the current point, and which direction to move to fi nd the 
next point. Each vector is visually represented by a little arrow with a dot 
on one end. (See Figure 10-1 B.) We wil l begin with a very simple figure in 
order to illustrate the technique and rules for digitizing a shape. Figure 
10-1A is the block diagram of a figure w hich uses only three dots, and 
Figure 10-1 B shows the six vectors used to turn them on. 

I 
b. ry 

l i.• o-
~ • 

A B 

Figure 11-1. 



CHAPTER 10-SHAPING UP 101 

A closed dot at the beginning of a vector indicates that the point is to be 
plotted, and an open dot indicates that the point is to be left alone 
(skipped), and the arrow points the direction to the next point. It is vital to 
remember that the plotting or skipping comes before the moving. We will 
use "P" to represent a dot which is to be plotted, and "S" to represent 
one which is skipped. Also, "U" means that we move up, "R" right, "D" 
down, and "L" left. It requires both a plot/skip and a move command to 
represent each vector. For example, SD represents a vector which skips 
the current point and moves down. With that in mind let's attempt to 
make sense out of Figure 10-1 B. 

Starting at the beginning, the bottom block, we will trace the path of the 
vectors to its terminus. The first vector indicates that the point is to be 
plotted, and then we are to move up (PU). The second vector leaves the 
dot alone and moves right (SR). The third vector plots and moves up (PU), 
while the fourth, fifth, and sixth skip and move left (SL), skip and move up 
(SU), and plot and move right (PR), respectively. You end up with this list 
of vectors: 

PU 
SR 
PU 
SL 
SU 
PR 

The last vector plots before it moves, and the direction of movement is 
unimportant. Right was chosen arbitrarily-the important characteristic of 
that vector was the plot to turn on the last point. 

The computer generates the shape on the screen by following this series 
of instructions: plot-up, skip-right, plot-up, skip-left, skip-up, and plot-right. 
You need to encode those vectors for the machine using binary codes for 
each instruction as shown in Figure 10-2. 

Plot 1 
Skip ~ 

Up f"f" 
Right ~1 

Down lf" 
Left 11 

Figure 11-2. Vector codes. 

To encode the first vector (PU), you would use 1 for Plot and 00 for Up 
to get 100. The second vector (SR) yields 001, and the third (PU) gives you 
100 again. Take a piece of paper and write down the six vectors and their 
related codes. You should end up with: 

PU lf"~ 
SR : ~f"l 



102 APPLE II COMPUTER GRAPHICS 

PU l~ft' 
SL ~11 

SU ~~~ 
PR 1fU 

To communicate those values to the computer, you need to put them 
together to form "byte size" pieces. For the purpose of encoding the 
vectors, each byte is divided into three sections, A, B, and C, as shown in 
Figure 10-3. 

c B A 

BIT # rn 5 0 

Figure 11-3. Byte divisions. 

Begin by placing the first vector code in section A, the second in B, and 
the third (if possible) in C. It is NOT permissible to break a code in the 
middle and carry the remainder over to the next byte; you have no doubt 
noticed that section C contains only two bits, so it cannot contain a com
plete code. The logical conclusion is that section C is unusable, and you 
may always leave it blank (00). However, in certain cases section C can be 
used; the left hand bit of any code in section C is assumed to be 0, and 
only the two bits on the right (the direction bits) are entered. For example, 
10 000 101 would cause the computer to execute PR (101), SU (000), and 
then SD (10). 

Any vector placed in section C must be a "skip" vector; the third vector 
in our shape is a plot vector so it will not fit in section C. Therefore, it must 
be placed in section A of the next byte. When plotting the shape, the 
computer will ignore the two zeros at the left end of a byte. In fact, any 
zero section of a byte is ignored if all of the following sections of that byte 
are zero also. For example, with 00 000 011, the computer will skip and 
move left (011 ), then ignore the rest of the byte, and begin the following 
byte. It follows, then, that section C can never execute an up vector (00), 
since it would be ignored as in 00 111 000 where the computer would 
skip-up (000), plot left (111), and then ignore section C. In that case, the 
skip-up vector would have to be placed in section A of the next byte. 

Refer to Figure 10-4 as we group the vectors for our shape. 

BYTE# 1 

2 

3 

4 

C B A C B 

SR 

SL 

PL 

PU 
PU 
SU 

Figure 19-4. 

00 

00 

00 

00 

001 

011 

111 

000 

A 

100 

100 

011 

000 

HEX 
oc 
1C 

38 

00 



CHAPTER 10-SHAPING UP 103 

In the first byte, section A contains the PU code, section B the code for 
SR, and section C is set to 00 to be ignored. The next PU code is in section 
A of byte number 2, followed by the SL in section B, and 00 in C, which is 
again ignored. The SU is in section A of byte number 3, followed by PR 
and then 00. Byte number four is filled with zeros and marks the end of 
the shape. Any shape is ended by the first zero byte encountered; there
fore, if you intend to put the skip-up code (000) in sections A and B, 
section C MUST NOT BE ZEROS! 

Following these rules, Figure 10-4 shows the entire shape encoded in 
four bytes. The shape may not be displayed until it is entered in· a shape 
table, but before we do that, let's digitize one more sh~pe for practice. 

UFO Time 

If you did not believe in flying saucers before, you will soon, as you are 
about to create one. Figure 10-SA contains the block diagram of the 
saucer you will create and Figure 10-SB contains its vector diagram. 

A 

Figure 19-5. Saucer. 

It is necessary to plot each of the 23 dots shown in Figure 10-SA, but 
the order in which they are traced is not important. However, changing 
the pattern of the vectors will also alter the values used in the shape, so for 
the sake of consistency we suggest that you use the vectors shown in 
Figure 10-SB. Follow the vectors and write down a list of their functions as 
you go. Your list will look like this: 

PR, PR, PR, SR, SD, PL, PL, PL, PL, 
PL, PL, PD, PR, SR, SR, PR, SR, SR, 
PD, PL, PL, PL, PL, PL, PL, PD, SR, 
SR, PR, PR, PR 

Go back and double check your list; accuracy is tedious but imperative!! 

The next step is to encode the instructions as bytes. We have done this 
. in Figure 10-6. To be on the safe side, the encoding is done in a series of 

small steps, each of which is easily checked. The extra care taken now will 



104 APPLE II COMPUTER GRAPHICS 

help minimize errors which can cost you hours of time and frustration, and 
will reduce the urge to physically abuse your computer. 

C B A C B A HEX DECIMAL 

-- PR PR 
SD SR PR 
-- PL PL 

-- PL PL 
-- PL PL 
SR PR PD 

SR PR SR 
-- PD SR 
-- PL PL 

-- PL PL 
-- PL PL 
SR SR PD 

-- PR PR 
-- -- PR 

ff'ff' 1f{J1 1f{J1 
lftJ flJftJ1 1ftJ1 
ftJftJ 111 111 

ftJftJ 111 111 
ftJftJ 111 111 
ftJl lftJl 11ftJ 

ftJl lftJl ftJftJl 
ftJftJ llftJ ftJftJl 
flJftJ 111 111 

f"ftJ 111 111 
ftJftJ 111 111 
ftJl ftJftJl llftJ 

ff'ftJ lftJl 1flJ1 
ftJftJ ftJftJftJ lftJl 
ftJftJ !l'ftJftJ ~ftJftJ 

Figure 11-8. 

2D 
BD 
3F 

3F 
3F 
6E 

69 
31 
JF 

3F 
3F 
4E 

45 
141 

63 

63 
63 

llftJ 

lf{J5 
49 
63 

63 
63 
78 

45 
5 
ftJ 

First, the instructions are inserted into the bytes by sections, and then each 
instruction is converted to its binary code. After that, the resulting byte is 
converted to hex and decimal. You now have digitized the saucer, but as 
with the first shape, you must insert it in a shape table in order to display 
it. 

Setting the Table 

A shape table is a collection of the digitized data for one or more shapes, 
up to a maximum of 255, plus some extra information at the beginning 
which is needed by the machine. The first thing your Apple needs to know 
is the number of shapes contained in the table, and the next thing that it 
will ask is where each of the alleged shapes is located within the table. We 
will use Monitor to set up a shape table containing our two shapes at 
memory location $300. From Monitor begin with 

3~f{J: ftJ2 ft}~ ftJ6 ~ff' ~A ~~ ftJC 1C 

The JftJftJ: tells Monitor to begin filling memory at address $300. The first 
byte (ftJ2), gives the number of shapes in the table, while the second byte 



CHAPTER 10-SHAPING UP 105 

(~~) has no meaning, but it must be there to hold the place. The next two 
bytes (~6 "'"') are used by the system to locate the first shape in the table, 
and the pair following ("'A ft'ft') locate the second shape. (Remember that 
your Apple eats addresses in lo-byte/hi-byte form.) The next byte (~C) is 
the beginning of the first shape. Each shape in a table is located by a pair 
of bytes, and the first shape begins directly following the last pair of locat
ing bytes. 

Continue to enter the shape table by typing: 

3ft'8: 3"' "'"' 20 80 3F 3F 3F 6E 
69 31 3F 3F 3F 4E 20 ~5 "'"' 

The second byte of this line (~"') is the end of your first shape, and the 
second shape follows immediately, beginning with 20 and ending with 
another"'"'· 

Finding Your Shapes 

If you put your finger at the beginning of the table (value "'2) and then 
count in, you will find that the first shape begins with the sixth byte of the 
table as we promised when we entered "'6 {ll"' for the first pair of location 
bytes. (The "'2 counts as the zeroth byte of the table.) The location bytes 
give the location of the corresponding shape RELATIVE TO THE BEGIN
NING OF THE TABLE. A value used to specify a location relative to some 
fixed address is called an offset. The second pair of location bytes is {lJA {lJ{lJ, 
and since $A equals 10 that claims that the second shape begins with the 
tenth byte of the table. When you key in a table on your own, you may 
initially put zeros in the location bytes for each shape, and after the rest of 
the table is entered and the locations are fixed, go back to the location 
bytes and enter the correct offsets. 

Shapes tend to be long (and drawn out?), and it is not unusual to have a 
large number as an offset, such as 2085. To enter that value in the location 
bytes, first turn it into a hex number, 2085 equals $0825. Divide this 
number into lo-byte ($25) and hi-byte ($08). The first byte for the offset 
would be $25, and the second $08. (Remember lo-byte/hi-byte.) 

Using Draw 

If you have worked with your own shapes, at this point you would have 
spent a great many hours in designing, digitizing, and entering the data (a 
marvelous form of self punishment!). You are finally ready to do one of 
three things: (1 ), display the shapes; (2), forget the whole thing or (3), 
assign the project to someone you detest! We will select option one. 

If you have been following along, you presently have the shape table 
entered at $300. Prior to drawing the shapes, you need to inform your 
Apple as to the table's whereabouts by placing the starting address of the 
table at memory locations 232 and 233 ($E8 and $E9). APPLESOFT always 



106 APPLE II COMPUTER GRAPHICS 

looks in those locations to find the starting address of the current shape 
table, and if you forget to load the proper address, there is no telling what 
is going to pop up on the display. Since you are still in Monitor, type 

EB: f{}f{J f{J3 

This will put the address $0300 (remember lo-byte/hi-byte) in the proper 
location. Finally, key in and run the following program. 

1~ REM SHAPE DEMO 
2f{} REM 
3f{J ROT = f{J: REM SET ROTATION TO f{J 
4f{J s = 1 
5f{J HGR: HCOLOR = 3 
6f{J FOR I = 7f{J TO 19f{J STEP 3flJ 
7f{J SCALE = S: REM SET SCALE TO S 
8f{J DRAW 1 AT I,Jf{J 
9f{J DRAW 2 AT I,lf{Jf{J 
lf{Jf{J S = S + 1: REM INCREMENT S 
11f{J NEXT I 
12f{J END 

Listing 11-1. 

Line 30 sets the rotation of the figure to 0 (no rotation) so it will be 
drawn as it was designed, and line 50 sets the Hi-Res graphics mode and 
then sets HCOLOR to 3 (white1). Line 70 sets the scaling factor to the 
present value of S; the scaling factor will increment from one through five. 
At SCALE = 1, the figure is the same size as it was designed, and at SCALE 
= 5, it is five times the original. The SCALE may be set to any number 
from zero to 255, but, as you will see, increasing the SCALE tends to 
greatly distort the shape. If you wish, you may set SCALE = 0, but zero 
corresponds to 256, and the shape will be enlarged beyond recognition. 

Line 80 DRAWs shape number 1 beginning at the coordinates given by 
1,30 and line 90 DRAWs shape 2 at I, 100. The coordinates denote the 
placement of the point of origin for the shape-the place where the chain 
of vectors began. 

If everything was entered as specified, the program will draw five copies 
of both shapes, and each copy will increase in size. 

Sa11ing Shape Tables 

If you have a disk drive, you may save the table by using BSAVE to save 
the range of memory which contains it. Remember to save the final 00 
with the rest of the table, otherwise you will get some unpredictable results 



CHAPTER 10-SHAPING UP 107 

as the computer draws off the end of your shape and on into memory 
garbage. To save the table currently in memory, type: 

BSAVE TABLE1,A$3~~,L$19 

or 

BSAVE TABLE1,A768,L25 

The only difference between the two is that the first gives the address (A) 
and length (L) in hex, and the second gives them in decimal. If you add the 
following lines to Listing 10-1, they will automatically load the table and 
inform the Apple of its location when the program is run. 

22 PRINT CHR$(4);"BLOAD TABLEl" 
24 REM CHR$(4) IS CTRL-D 
26 POKE 232,~: POKE 233,3 
28 REM $~ INTO $E8, $3 INTO $E9 

A longer shape table may not fit at $300 since only the range $300-$3BF is 
available; a total of 192 bytes. (See the memory map in Chapter 3.) Long 
tables are often placed up at the top of available memory, and then 
HIMEM set underneath them so they will not be overwritten by the varia
bles of your APPLESOFT program. For a 48K machine, DOS sets HIMEM to 
$9600 (38400), so if your shape table was $100 (256) bytes long you would 

BLOAD [tablename],A$95~~ 
HIMEM: 38144 

or, in decimal, 

BLOAD [tablename],AJ8144 
HIMEM: 38144 

A more thorough discussion of the use of BLOAD and HIMEM can be 
found in Chapter 7 where we covered saving the Low-Res screen. 

If you wish to save the table on tape, you must enter the Monitor and 
use a variation of the Write command to save the memory range contain
ing the table. You must know the hex values for the first address, the last 
address, and the length of the table. In the table that contains the saucer, 
this would be $300, $318, and $19, respectively. First, you put the length 
of the table in locations 0 and 1 by typing: 

~: 19 ~~ (Remember lo-byte/hi-byte) 

then write the information onto the tape using the Monitor "W". Write 
bytes zero and one onto the tape (they contain the length of the table), 
and then immediately write the table itself. To do all this in one instruc
tion, you could type: 

~.lW 3~~-318W 



108 APPLE II COMPUTER GRAPHICS 

Remember to let the tape run for a moment on the record setting between 
typing the second "W" and pressing the return key. 

You may use the Monitor READ command to reload the table, but 
APPLESOFT has a much better method using the SHLOAD command. 
SHLOAD loads the shape table from tape and stores it just below HIMEM. 
HIMEM is set below the table to protect it, and the starting address of the 
table is placed in $E8 and $E9. The beauty of this process is that all the 
details are taken care of automatically. The only command you give is 
SHLOAD, and, unlike the Monitor command, SH LOAD may be used from 
within a BASIC program. For our example, rewind your shape table tape, 
push the play button, type 

SHLOAD 

and everything is done for you. TA DA!! 

The table may also be loaded directly as part of the program by using the 
POKE statement. Listing 10-2 POKEs the data for our shape table, asks you 
to specify the scaling factor (1-255), and then draws the saucer on the 
screen with ten different rotation values. 

Learning by ROT 

ROT =0 causes the shape to be oriented in the same way as it was 
defined-no rotation. When ROT= 16, DRAW will show the shape rotated 
90 degrees clockwise from the original, ROT= 32 rotates 180 degrees, and 
ROT =48 rotates it 270 degrees clockwise (90 degrees counter-clockwise). 
ROT= 64 is back where it started, and so forth in increments of 16 all the 
way through 256. 

The ROTation parameter is partially dependent on the setting of SCALE. 
According to the APPLESOFT manual, at SCALE= 1, only the four rotation 
values (0, 16,32,48] are recognized. However, as you can see by using 
Listing 10-2, the values [8,24,40,56] also work at SCALE= 1. At SCALE= 2, 
sixteen rotations are available, with (4, 12,20,28,36,44,52,60] being the ad
ditional values. The larger the scale, the more rotations available, up to a 
point. If you set ROT to a value it does not recognize, it will rotate the 
shape to a value it does recognize. 

Hopefully, this program will demonstrate and clarify all of those rules 
concerning ROT. Please run the program and watch the values of ROT at 
the bottom of the screen, and the effects they have on the figure. You will 
have to press reset to end the program. 

1~ REM DEMONSTRATE 
2~ REM POKING TABLE 
J~ REM 
4~ REM POKE ADDRESS 
5lt' REM OF TABLE 



6ff' POKE 232,ff': POKE 233,3 
?ff' REM 
8fa REM READ AND POKE 
9fa FOR L = 768 TO 789 
!faff' READ V: POKE L, V 
llff' NEXT L 
12fa REM 
13fa REM INITIALIZE 
14fa REM 
15fa HOME : VTAB 21 
16fa HGR 
17fa HCOLOR = 3 
18fa INPUT "SCALE? "; S$: SCALE= 

VAL (S$) 
19fa R = fa 
2fafa REM 
21fa REM BEGIN LOOP 
22fa REM TO PLOT SHAPES 
23fa REM 
24fa FOR I = !fa TO 244 STEP 26 
25~ ROT= R 
26~ DRAW 2 AT I,1~~ 
27fa REM PRINT ROT VALUES 
28~ PRINT " ";R;" "; 

CHAPTER 10-SHAPING UP 109 

29fa R = R + 2: REM INCREMENT ROT VALUE 
3fafa NEXT I 
31~ PRINT 
32~ PRINT "ROTATION VALUES" 
33~ INPUT "PRESS RETURN TO 

CONTINUE";R$: GOTO 15~ 
34~ END 
35~ REM 
36~ REM DATA TABLE 
37~ REM 
JS~ DATA 2,ff',6,~,lff',~,12,28,48,~,45, 

141,6J,63,6J,11~,1~5,49,6J,6J,6J, 
78,45,5,ff' 

Listing 11-2. 

An Apple a Day ... 

The following section creates a shape from our perennial apple, and dem
onstrates how to place the point of origin anyplace you like in a shape. 
Only the first several vectors are digitized, then Listing 10-3 gives you the 
entire shape as a shape table in order to spare you the trouble. For (rela
tive) simplicity, the shape is drawn by plotting every dot instead of every 



110 APPLE II COMPUTER GRAPHICS 

second dot, so you would expect to always have a white apple (remember 
that consecutive dots display white!), but you will soon see differently. 
Figure 10-7A gives the block diagram for the shape, and 10-78 shows the 
beginning of the vector diagram. 

A. mm -r:-.· w. 1:;:·: ·:·: 
1::;:; :::: 

1::::: ::::· 
~~ 

:::: ::::: :::: '~ :::: :=;_:;\;;;:: :::: !%~:::: 
:~ :::::~:~: :::: ::::: :::: :::::1::::=~=~= ::::: ·:::: :::: ::::· ::::: ::::· ::::: 
i;:::: t!:=:=::::: :::: ::::· ::::: :::: ::::: ::::: :::: ::::: :=::: :::: ::::: ::::? 

:=~: 1::::: :::: :::: ::::: .:::: ::::· :=::: .. :::: ::.;:. ::::: :::: ::;_:;.;;;::1-:::: 
.:::: ::::· :::::1-:::: :::: ::::: :::: ::::· :::::i:,:::: ::::·':~:: :::: :::: ::::: 
::::: :::: :::: ::::: .:::: :::: ::::: :::: :::: ::::: :::: ::::: ::::: :::: ::::: 

~x~~x~@~~~x$~~~~~ 
~~~~~~~~-~~~~~~~~ 
~**~*~~~~~~~~~**~*

::::· .:::: .:::: :::: :::::1::::: :::: :=::: :::: :::: ,::::: :::: ::::= ::::: .:::: :::::1-::::
~~~~~~~s~~~~~~~~$ 
::::: :,::: :::: :::::1::_;:: :::: ::~ ::::- :::: ::::: .:,;:; ::::· ::::: :::: ::::: ::::: 

~=: .:::: :::: ::::: .:::: :::: ::::: :::: :::: ::::: .. :::: :~::: ::::: .:::: ::::: 
:~ ::::: l~~g~~ f: :t~~~Jtti:~;~~ f :::: :::: 

::::: :~ :::::~::;: :~::. 

I 
l 
[ 

B. ~LC 
0 

' O•O 

' 0 

' t--t--
O•O 

' t--t--
0 

c5 0 

0 

o~o 

0 

0•_2 
0 

' • 

Figure 11-7. Apple figures. 

The vectors plot one point within the apple, and then, without plotting, 
move to the top of the stem. A figure is always ROTated around its origin, 
and by placing the point of origin as we have, the apple will rotate about 
its center instead of the top. The only reason to plot the origin is to show 
its location, and it could just as well have been skipped. The first twenty 
vectors are: 

PU SU SL SU SU SL SU SU SL SU 
SU SL SU SU SL SU SU SR PR PD 

Figure 10-8 gives you the first portion of the digitization. 

C B A C B A HEX DECIMAL 

SL SU PU 
SL SU SU 
SL SU SU 
SL SU SU 
SL SU SU 
SR SU SU 
-- PD PR 
-- PD PR 

11 f(Jf(Jf(J lf(Jf(J 

11 f(Jf(Jf(J f(Jf(Jf(J 

11 f(Jf(Jf(J f(Jf(Jf(J 

11 f(Jf(J~ f(Jf(Jf(J 

11 f(Jf(J~ ~f(Jf(J 
f(Jl f(Jf(J~ f(Jf(Jf(J 

f(Jf(J 11f(J lf(Jl 

f(Jf(J 11f(J lf(Jl 

C4 

Cf(J 

Cf(J 

Cf(J 

Cf(J 

4f(J 

35 
35 

Figure 11-8. 

196 
192 
192 
192 
192 
64 
53 
53 



CHAPTER 10-SHAPING UP 111 

Sections A and B contain the code to move up (f'Jf'J) for the first six bytes, 
and section C contains the code to move left (11) for the first five, while 
the sixth causes a move to the right. It may seem pretty silly to move to the 
left in number 5 and then immediately right in number 6 instead of moving 
straight up in both of them. Remember, however, that if number 5 were 

· only to move up, it would be all zeros-fi'fi' fi'fi'fi' fi'fi'fi'-and would errone
ously signal the end of the shape, so the small deception is necessary. The 
remainder of the shape is digitized in the same manner as the saucer, so 
instead of belaboring the point, just enter Monitor and type the shape table 
given in Listing 10-3. 

Jfi'fi': fi'l fi'fi' rtJ4 fi'fi' C4 Cfi' Cfi' Cfi' 
Jfi'8: Cfi' 4rtJ J5 35 J5 J5 2B 40 
Jlfi': f'J9 89 JF JF FF FF JB FF 
J18: 2A 20 20 20 20 20 20 20 
J2fi': 1E JF JF JF 3F JF JF JF 
J28: 17 20 20 20 20 20 20 20 
JJfiJ: JE JF JF JF JF JF JF 37 
JJ8: 20 20 20 20 20 2D 20 15 
J4rtJ: JF JF JF JF 3F JF JF JF 
J48: 2E 20 20 20 20 20 20 20 
J5f'J: 20 15 JF JF JF JF JF JF 
J58: JF JF JF fi'E 20 20 20 20 
J6fi': 20 20 20 20 3E JF JF JF 
J68: JF JF JF JF J7 20 20 20 
J7fi': 20 20 20 20 J5 JF JF JF 
J78: JF JF JF JF 2E 20 20 2D 
J8fi': 20 20 F5 JB 3F JF JF 4E 
J88: 20 20 fi'5 fi'fi' 

Listing 11-3. Apple shape table. 

The first byte declares that there is one shape in the table, and the 
second byte is unused. The third and fourth bytes give you the offset for 
the first (and only) shape: 4 (remember lo-byte/hi-byte), and the following 
byte is the beginning of the shape. 

Save the table (if you have a disk) by typing 

BSAVE APPLESHAPE,A$JfiJfiJ,L$8C 

To see what you have accomplished, type 

POKE 232,fi':POKE 233,J 
HGR:SCALE = l:ROT =fl' 
DRAW 1 AT lfi'fiJ,lfi'flJ 

The first line tells the system where to find the table, the second is obvious, 
and the third draws the shape from that table on the Hi-Res screen. If you 
managed to get all of the numbers keyed in correctly, you will see a little 



112 APPLE II COMPUTER GRAPHICS 

white apple in the center of your screen. If this is not so, enter Monitor and 
list the memory range for the table by typing 

Jfafa.J8F 

and check your numbers against the ones in Listing 10-3. 

If the apple did turn out correctly, let's label it using a second shape 
table. From within Monitor, place the new table at memory location $4000 
by typing 

4fafafa: fa4 fafa faA fafa 21 fafa 2E fa~ 
4fafa8: J6 ~~ 24 24 24 24 24 ~c 
4falfa: faC 2D 6D 15 J6 36 3E 3F 
4fa18: 3F fa6 49 fa9 36 36 36 36 
4fa2~: fa~ 24 24 2C 2D 35 36 36 
4fa28: 3F 3F 36 36 36 ~fa 24 24 
4fa3fa: 24 24 24 24 24 fafa 24 24 
4fa38: 2C 2D 35 3E JF 96 2D 2D 
4fa4fa: ~~ 

JDfaG 

Listing 11-4. Apple text (courtesy of Dean Lewis). 

This table contains four shapes representing the letters A, P, L, and E. Save 
this table (again, only if you have a disk) by typing 

BSAVE APPLE TEXT,A$4fafa~,L$41 

We can use APPLE TEXT to simulate putting a little text on the Hi-Res 
screen. There is a continuing debate about whether you can put true text 
on a graphics screen, other than that in the text window at the bottom. 
The Apple manuals say absolutely not, and they ought to know-it's their 
machine. However, Bob Bishop says "yes," and he ought to know-he's 
done it. The technique is very complex, difficult to put into practice, and 
impossible for the BASIC programmer, so it will not be covered in this text. 
We refer interested readers to the October 1982 issue of SOFTALK maga
zine, pages 54 through 63. 

The BASIC programmer can do almost as well by designing shapes to 
represent any or all of the letters, as we have done with APPLE TEXT. So 
let's put text on the Hi-Res screen by typing 

BLOAD APPLESHAPE 
BLOAD APPLE TEXT 
HGR:SCALE = 1: ROT = ~ 
POKE 2J2,fa:POKE 2JJ,J 
DRAW 1 AT lfa~,1~~ 

POKE 232,~:POKE 2JJ,64 
DRAW 1 AT 115,12~ 



DRAW 2 AT 130,120 
DRAW 2 AT 140,12~ 
DRAW 3 AT 15~,120 
DRAW 4 AT 156,120 

CHAPTER 10-SHAPING UP 113 

The fourth line puts the address of the apple shape table in locations 232 
and 233, then the fifth line DRAWs from that table. Line number 6 then 
places the address of the APPLE TEXT table in the proper locations so that 
the remaining commands DRAW from it. Location $4000 is $00 and $40 in 
lo-byte/hi-byte form, and $40 = 64. 

You can see how simple it is to put "text" on the Hi-Res screen, and also 
to DRAW from two or more shape tables which are stored in memory at 
the same time. 

Since things seem to be going so smoothly, let's make them a bit more 
complex. Key in and run the program in Listing 10-5. To save time, we 
suggest that you dispense with the 29 REM statements. 

1~ REM BACKGROUND DEMO 
20 REM 
3~ REM 
40 REM INITIALIZE 
50 PRINT CHR$(4);"BLOAD APPLESHAPE" 
6~ SCALE= 1 
7~ POKE 232,~: POKE 233,3 
80 FOR I = ~ TO 7: READ CLR$(I): NEXT I 
9~ VTAB 24 
1~~ REM 
11~ REM 
12~ REM BEGIN LOOPS TO 
130 REM VARY BACKGROUND 
14~ REM AND SHAPE COLORS 
15~ REM 
160 FOR Cl = 1 TO 7 
17~ FOR C2 = ~ TO 6 
180 IF Cl = C2 GOTO 21~ 
19~ PRINT CLR$(C2);" OVER ";CLR$(Cl) 
200 GOSUB 28~ 
21~ NEXT C2,Cl 
220 END 
23~ REM 
24~ DATA BLACKl,GREEN,VIOLET,WHITEl, 

BLACK2,0RANGE,BLUE,WHITE2 
250 REM 
260 REM DRAWING ROUTINE 
27~ REM 
28~ HGR 
290 FLAG = ~: REM FIRST PASS 



114 APPLE 11 COMPUTER GRAPHICS 

3ftJftJ REM 
Jl~ REM DRAW BACKGROUND 
32ftJ HCOLOR = Cl 
33ftJ FOR Y = lflJ TO 16flJ 
34~ HPLOT lftJ,Y TO 18f1J,Y 
35~ NEXT Y 
36ftJ REM 
37~ REM DRAW SHAPE 
38ftJ REM 
39~ HCOLOR = C2 
4flJflJ R = ~: REM ROTATION VALUE 
41flJ REM 
42~ REM BEGIN LOOPS TO DRAW 
43~ REM REPETITIONS OF SHAPE 
44~ REM 
45flJ FOR Y = 2~ TO lflJflJ STEP 8~ 
46flJ FOR X = 2flJ TO 22~ STEP 5~ 
47~ ROT= R: REM SET NEW ROTATION 
48~ DRAW 1 AT X,Y 
49flJ R = R + 2 
5~flJ FOR I = 1 TO 2flJ~: NEXT I : REM DELAY 
51~ NEXT X,Y 
52~ REM 
53~ REM 
54~ REM FLAG = ~ IF FIRST PASS 
55~ REM FLAG = 1 IF SECOND PASS 
56~ REM IF FIRST PASS, PLOT 
57flJ REM AGAIN IN BLACKl 
58~ IF NOT FLAG THEN FLAG = 1: 

HCOLOR = ~: GOTO 4~~ 
59~ RETURN 

Listing 11-5. Pandora1s apple. 

The program is titled "Pandora's Apple" because it displays a whole 
herd of unexpected and sometimes unsettling results. The function of the 
program is to draw the apple shape in various colors and rotations (0, 2, 4, 
... , 18) superimposed on a background of a different color, and then 
"erase" the shape by drawing over it in black1. The background does not 
completely fill the screen so that you may also see the shape plotted on 
the blackl background. The techniques used in the program are standard 
and we will not mess with them since the results are the important topic. 

Haw Do Yau Like Them Apples? 

The program begins by painting a green field, and then DRAWing the 
shape over it in blackl-nothing unusual so far. The colors used are 



CHAPTER 10-SHAPING UP 115 

printed at the bottom of the screen so you can keep up with the action. 
The next pass DRAWs violet on green, and around the border of the apple 
you should notice white spots (mold?) caused by the violet dots of the 
apple plotting next to the green dots of the background. Remember, any
time you plot two adjacent dots, they display as white. 

When black2 is plotted over the green, you see the effect of clashing in 
all its radiant glory. Any time that a group 2 dot is plotted within a group 1 
byte, the entire byte becomes group 2. Hence, some of the green changes 
to its group 2 counterpart, orange. As the program progresses you will see 
several more examples, both of white edges and of clashing (Oh goody!). 

When the program stops, change line 60 to read: 

6~ SCALE = 2 

Run the program again and watch the fun! When it plots blackl over the 
green, it starts by only turning every other line black, and when it gets to 
the lower left corner of the green field, it only plots a few dots! The reason 
for this, and later shennanigans, is that at SCALE = 2, the apple is being 
plotted on every second line only. By coincidence, it happens to be plot
ting on only the odd columns, and green does not exist on those lines. 

At SCALE = 1, the shape data causes the computer to plot across one 
row of the apple, and then execute a plot-down to drop to the following 
row. At SCALE = 2, the machine executes every vector twice, including 
the PD vector, so it drops two l!nes between plotting each row. 

When violet apples are plotted over the green field, the ones rotated 90 
degrees (in the lower right corner of the green field) plot as white (A 
farmer's nightmare!). The apple is plotting on the odd columns causing the 
violet in those columns to be turned on while the field is made up of green 
in the even columns. Since you then have both the odd and even columns 
on, the result is white! For a similar reason, plotting rotated whitel apples 
on a black background produces only violet apples since turning on only 
the odd columns produces violet but no green. 

When the program tries to DRAW rotated green apples on a group 1 
background, nothing is plotted, since the position of the apple causes it to 
attempt to plot green on odd columns, and green exists only on even 
columns. Plotting green apples on a group 2 field will cause portions of 
that field to change to the corresponding group 1 color-another instance 
of clashing. The program will run through all the colors, and similar 
strange combinations will occur. For fun, you might try setting the scale to 
three and watching what that does to the innocent apple. 

XDRAW 

You saw in the last program that using DRAW to plot the shape over 
the background in one color, and erasing it by using black, always left the 



116 APPLE II COMPUTER GRAPHICS 

colored background mangled. You could erase it using the color of the 
field, but that would mess up the black section of the background. The 
XDRAW command eliminates that problem. With Listing 10-5 in memory, 
type 

17ft} 
18~ 
19ft} PRINT CLR$(C1) 
21ft} NEXT Cl 
J9~ 
48~ XDRAW 1 AT X,Y 

Run the modified program and notice the differences. Line 480 changes 
the DRAW to XDRAW, and the other statements eliminate C2 which repre
sents the color in which the apple was DRAWn. Where DRAW attempts to 
plot the apple in the specified color, XDRAW ignores HCOLOR and plots 
the shapes in colors which depend entirely on the background. XDRAW 
automatically plots the shape in the complement of the background color. 
Black and white are complements, as are blue and green, orange and 
violet. XDRAWing on the green field will give you a blue apple, and any 
portion which overlaps into the black will be white. The useful aspect of 
XDRAW is that when it XDRAWs the figure the second time, it erases 
cleanly and completely, regardless of the background. This attribute is very 
handy when animating-a subject we will cover in later chapters. 

Recapping 

We have shown you how to design and digitize shapes, and at the same 
time we have hopefully shown you the value of a good Hi-Res editor. If 
you are planning to do any serious work in Hi-Res, an editor is a necessary 
tool. We have also demonstrated how to use BSAVE or the Monitor "W" 
to save the table, and BLOAD or SHLOAD to recover it. You have also 
been introduced to the commands used to plot, rotate, and scale the 
shape. The initial work involved with shapes is wearisome and frustrating, 
but when the shape is done it is a simple yet powerful element of your 
programming arsenal. 

Vocabulary 

Digitize 

DRAW 

Offset 

Point of Origin 

ROT 

SCALE 

Shape 

Shape Table 

SH LOAD 

Vector 

Vector Diagram 

XDRAW 



CHAPTER 10-SHAPING UP 117 

Exercises 

1. Write a BASIC program to lower HIMEM and then load the shape 
table which contains the saucer in the space created above HIMEM. 

2. Extend the program in Exercise 1 to DRAW the saucer at every even 
point between (6, 100) and (200, 100). 

3. Repeat Exercise 2, but use XDRAW instead of DRAW. 

4. At every point between (6, 100) and (200, 100) XDRAW the saucer 
twice in succession, and then move to the next point and XDRAW 
twice again, and so on. 



11 
Graphs and Charts 

Objectives 

After reading Chapter 11 you should be able to: 

• Have your computer draw a bar, line, or circle graph using our pro-
grams and your data. 

• Use the computer to graph your own equations. 

• Label your graphs. 

Processing data, or "number crunching" as it is sometimes called, has 
long been one of the strengths of the computer. In earlier machines, the 
results of the processing were all too often only pages and pages of num
bers. Long columns of numbers often obscure the meaning those same 
figures are supposed to convey, so displaying data in graphic form is an 
important tool. Bar charts, line graphs, and circle graphs are the three most 
commonly used display methods, and we will give at least one example of 
each in this chapter. In three of the four examples, the data to be graphed 
is contained in BASIC DATA statements so that you need only replace the 
sample data with yours, and the program will graph your data. The other 
example graphs a mathematical equation over a specified range. Modify
ing that program will require you to change the formula and the scaling 
factors. We will talk more about each example when the time comes. 

Belly Up ta the Bar 

Listing 11-1 creates a bar graph with the bars running either vertically or 
horizontally. Key the program in and run it. As usual, you may omit any or 
all of the REM statements. 

119 



120 APPLE 11 COMPUTER GRAPHICS 

lf(J REM BAR CHART DEMO 
2f(J REM 
30 REM ****************** 
4f(J REM * INITIALIZATION * 
50 REM ****************** 
6f(J REM 
7f(J REM DETERMINE VERT/HORIZ CHART 
8f(J REM 
9f(J TEXT : HOME 
lf(Jf{J PRINT "PRESS ft} FOR A VERTICAL CHART" 
llf{J PRINT "PRESS 1 FOR A HORIZONTAL CHART" 
12f(J GET H$ 
13f(J IF H$ < > 11111 AND H$ < > "0" GOTO 9f(J 
14f(J H% = VAL (H$) 
15f(J REM 
16f{J REM READ NUMB BAR, WIDTH BAR, 
17f{J REM AND WIDTH SPACE 
18f{J REM 
19f(J READ NB%,WB%,WS% 
2f(J{i} REM 
21f{J REM CHECK TOTAL WIDTH 
22f{J REM 
2J{i} IF NB% * ( WB% + WS%) < 4f{J GOTO 32f(J 
240 PRINT CHR$ (7); "CHART TOO WIDE" 
25f{J PRINT "CONTINUE? (Y/N)": GET R$ 
26f{J IF R$ = "N" GOTO 67f(J 
27f{J IF R$ = "Y" GOTO J2f(J 
28f{J GOTO 24f{J 
29f(J REM 
3f(Jf(J REM READ DATA & FIND MAXIMUM 
31f(J REM 
32f{J DIM BAR(NB%),LBL$(NB%) 
33f{J FOR I = 1 TO NB% 
J4f{J READ BAR(I),LBL$(I) 
35f{J IF MAX < BAR(I) THEN MAX = BAR(I) 
36f{J NEXT I 
J7f{J REM 
38f{J REM ESTABLISH SCALE 
J9f{J REM 
4f(Jf{J SCL = 39 I MAX 
41f{J REM 
42f(J REM ************** 
4Jf{J REM * DRAW CHART * 
44f{J REM ************** 
45f(J REM 
46f{J GR 
4 70 FOR I = 1 TO NB% 



48~ REM 
49~ REM SET NEW COLOR 
5~~ REM 

CHAPTER 11-GRAPHS AND CHARTS 121 

51~ C% = INT (15 * RND (1) + 1) 
52~ IF C% = 5 OR CO% = C% GOTO 51~ 
5 J~ COLOR= C% 
54~ CO% = C% 
55~ REM 
56~ REM PLOT A BAR AND PRINT LABEL 
57~ REM 
58~ HTAB (XS + 1): VTAB (21) 
59~ PRINT LEFT$ (LBL$(I),WB%); 
6~~ FOR X = XS TO XS + WB%-1 
61~ IF X > 39 THEN PRINT CHR$ (7); 

"CHART TOO WIDE": GOTO 67~ 
62~ IF H% THEN HLIN ~,BAR(I) * SCL AT X 
63~ IF NOT (H%) THEN VLIN 39,39-BAR(I) * SCL AT X 
64~ NEXT X 
65~ XS = X + WS% 
66~ NEXT I 
67~ END 
7~~ REM 
7~5 REM ************** 
71~ REM * DATA TABLE * 
715 REM ************** 
72~ REM 
73~ DATA 4,5,2 
74~ DATA 1~~,'8~ 
75~ DATA 8~,'81 
76~ DATA 5~' I 82 
77~ DATA 4~' I SJ 

Listing 11-1. Bar graphs. 

This routine draws either horizontal or vertical bars. Select the vertical 
bar graph option when the computer screen displays: 

PRESS ~ FOR A VERTICAL CHART 
PRESS 1 FOR A HORIZONTAL CHART 

You will see the bar chart appear with labels underneath to indicate 
years. If you run the program again and select a horizontal graph, the 
years still appear at the bottom. Why? This happens because it is not 
possible to put text labels in the body of the Low-Res screen. As you will 
see in Listing 11-3, labels are often unique to each graph, and many times 
they have to be added after the graph is done, and in a less than elegant 
manner. 



122 APPLE II COMPUTER GRAPHICS 

Let's have more fun with this program before we continue. Change the 
third data value in line 730 from 2 to -1 and run the program another time. 
The item of data you changed specifies the spacing between each bar, and 
setting a space of -1 causes the bars to overlap! The second item in line 730 
sets the width of each bar; try running the program with different values 
for the width. 

The first item on line 730 tells the program how many bars are going to 
be used. You may change that value, but you must be sure to have data 
for each bar you specify in that entry. The value to be plotted by each bar, 
and the label associated with that bar, is given in the data pairs which 
begin at line 740. The first bar plots a value of 100, and is for the year '80. 

It is time to take a closer look at some of the less obvious parts of this 
example. 

23~ IF NB% * (WB% + WS%) < 4~ GOTO 32~ 
24~ PRINT CHR$ (?);"CHART TOO WIDE" 
25~ PRINT "CONTINUE? (Y/N)": GET R$ 
26~ IF R$ = "N" GOTO 67~ 
27~ IF R$ = "Y" GOTO 32~ 
28~ GOTO 24~ 

Line 230 calculates the width of the chart and warns you if it is too wide. 
You have the option to continue nonetheless. 

32~ DIM BAR(NB%),LBL$(NB%) 
33~ FOR I = 1 TO NB% 
34~ READ BAR(I),LBL$(I) 
35~ IF MAX < BAR(I) THEN MAX = BAR(I) 
36~ NEXT I 

This section reads the data and label for each bar. Line 350 causes MAX to 
end up containing the maximum data value to be plotted. The maximum 
must be known in order to establish a scale for the graph. 

4~~ SCL = 39 I MAX 

Line 400 uses the maximum to establish a scaling factor, SCL. By setting 
SCL equal to the ratio 39/MAX, we cause the tallest bar to be 39 units tall. 
By making the constant smaller, say 25, you can reduce the height of the 
bars. You may increase the constant to 40, but any larger value will cause 
the program to try to plot out of its range since the Low-Res screen is only 
40 by 40. 

4 7~ FOR I = 1 TO NB% 

This begins the loop which executes once for each bar to be plotted. 

51~ C% = INT (15 * RND (1) + 1) 
52~ IF C% = 5 OR CO% = C% GOTO 51~ 
53~ COLOR= C% 
54~ CO% = C% 



CHAPTER 11-GRAPHS AND CHARTS 123 

These lines select a random color for each bar. Line 520 prevents the 
new color (C%) from being the same as the previous color (CO%) or color 
number 5. Color number 5 is excluded because there are two greys in 
Low-Res (colors 5 and 10). 

58~ HTAB (XS + 1): VTAB {21) 
59~ PRINT LEFT$ (LBL$(I),WB%); 

These position the cursor at the correct place and print as much of the 
label as will fit in the width of the bar. 

6~~ FOR X = XS TO XS + WB%-1 
61~ IF X > 39 THEN PRINT CHR$ ( 7) ; "CHART TOO WIDE": 

GOTO 67~ 
62~ IF H% THEN HLIN ~,BAR(I) * SCL AT X 
63~ IF NOT (H%) THEN VLIN 39,39-BAR(I) * SCL AT X 
64~ NEXT X 

This loop draws the bar. If you selected a horizontal graph, line 620 will 
execute; line 630 executes if you chose vertical. The length of each bar is 
found by multiplying the data value being graphed by the scaling factor 
calculated earlier. You may have wondered why the bar is drawn from 39 
to 39 minus its length, instead of being drawn from zero. It must be 
continually taken into account that 39 is the bottom of the screen and 0 is 
the top, where most graphs use 0 at the bottom. 

65~ XS = X + WS% 

XS represents the start of the current bar. After the bar has been drawn, 
this line moves the starting location to that of the next bar by adding the 
bar width. 

A very similar routine could be written to plot the bar graph on the Hi
Res screen instead of on the Low-Res display. The limits would be changed 
from 39 to 159 or 279, depending on whether you plan to draw vertically 
or horizontally, and you would be using the HPLOT TO command instead 
of HUN or VLIN. 

This Is Where Yau Draw the Line 

Sometimes data is better represented as a line graph. Listing 11-3 draws 
such a graph in Hi-Res and uses a shape table to put labels on the graphics 
screen. Enter and save the shape table by typing the following from BASIC: 

CALL -151 
3~~: ~B ~~ 18 ~~ 2~ ~~ 2B ~~ 
3~8: 36 ~~ 41 ~~ 4E ~~ 5D ~~ 
31~: 66 ~~ 75 ~~ 81 ~~ 9~ ~~ 
318: 29 2D DB 24 24 JC 32 ~~ 
32~: 29 2D 25 DB ~c ~c ~c 24 



124 APPLE II COMPUTER GRAPHICS 

328: JB JF ~~ ~8 15 2D ~C 24 
33~: 23 44 3F 3F ~7 ~~ 49 21 
338: 24 24 JC 9B J6 2E 2D ~D 
34~: ~~ ~8 ~E ~5 2D 2~ 1C 3F 
348: 1C 24 2D 2D ~3 ~~ ~8 24 
35~: 24 ~C 2D 35 92 36 3B 27 
358: 18 ~8 2D 2D ~~ 21 ~c ~c 
J6~: ~c ~c JC 3F 3F ~0 09 2D 
368: ~c 24 3B 3F 20 ~c 2D 15 
370: 36 DB 13 36 0~ ~9 2D ~C 
378: 24 JB 3F 20 ~C 2D 15 36 
38~: ~0 ~1 29 2D 20 24 24 3B 
388: JF 32 26 2E 28 28 28 ~~ 
390: 24 24 0~ 

3D0G 
BSAVE NUMBER TABLE,A$3~~,L$93 

Listing 11-2. Number tabla. 

This number table contains eleven shapes; first come the digits 1 through 
9, then zero, and finally a critter resembling a hyphen which will be used 
to mark each axis of the graph. 

Now type in and run Listing 11-3. 

1~ REM LINE CHART DEMO 
2~ REM 
3~ REM ****************** 
4~ REM * INITIALIZATION * 
5~ REM ****************** 
60 REM 
7~ TEXT : HOME 
8~ VTAB (21) 
9~ PRINT CHR$ (4);"BLOAD NUMBER TABLE, 

A$300" 
10~ POKE 232,~: POKE 233,3 
110 SCALE= 1 
12~ REM 
130 REM READ NUMBER OF POINTS 
140 REM AND SPACING 
15~ REM 
160 READ NP%,SP% 
170 REM 
180 REM CHECK TOTAL WIDTH 
190 REM 
200 IF (NP%-1) * SP% < 280 GOTO 300 
210 PRINT CHR$ (?);"CHART TOO WIDE" 



CHAPTER 11-GRAPHS AND CHARTS 125 

22~ PRINT "CONTINUE? (Y/N)": GET R$ 
23fi' IF R$ = "N" GOTO 86fi' 
24~ IF R$ = "Y" GOTO 3~~ 
25~ GOTO 21~ 
26~ REM 
27~ REM READ DATA POINTS 
28~ REM AND FIND MAXIMUM 
29~ REM 
3~~ DIM DP(NP%-1) 
31~ FOR I = ~ TO NP%-1 
32~ READ DP(!) 
33~ IF MAX < DP(!) THEN MAX = DP(!) 
34~ NEXT I 
35"' REM 
36~ REM ESTABLISH SCALE 
37~ REM 
38~ SCL = 15"' I MAX 
39~ REM 
4"'~ REM DRAW FRAME 
41~ REM 
42fi' HGR 
43~ HCOLOR= 6 
44~ HPLOT 24,~ TO 24,159 TO 278,159 TO 

278,~ TO 24,"' 
45~ REM 
46~ REM ****************** 
47~ REM * CUSTOM SCALING * 
48"' REM ****************** 
49fi' REM 
5~~ REM SCALE VERTICAL AXIS 
51~ REM 
52~ HCOLOR = 3 
5 3~ FOR I = 2~ TO MAX STEP 2~ 
54~ ROT= 16: DRAW 11 AT 24, 16~-I * SCL 
55~ ROT= ~ 
56~ N$ = STR$ (I) :NL = LEN (N$) 
57~ FOR J = 1 TO NL 
58fi' DIGIT = VAL ( MID$ (N$,J ,1)): 

IF DIGIT = fi' THEN DIGIT = 1~ 

59"' DRAW DIGIT AT (J-1) * 7,16fi'-I * SCL 
6~~ NEXT J 
61fi' NEXT I 
62fi' REM 
63~ REM SCALE HORIZONTAL AXIS 
64ra REM 
65~ ROT= "' 
66~ FOR I = 1 TO NP%-1 



126 APPLE II COMPUTER GRAPHICS 

67flJ X = 24 + I * SP% 
68flJ IF X < 28flJ THEN DRAW 11 AT X,159 
69flJ NEXT I 
7flJflJ VTAB (21) 
71flJ PRINT " J F M A M J J A S 0 N D J F M 

A E A P A U U U E C 0 E A E A 
N B R R Y N L G P T V C N B R"; 

72flJ VTAB (2flJ) 
7JflJ REM 
74flJ REM ******************** 
75flJ REM * PLOT DATA POINTS * 
76flJ REM ******************** 
77flJ REM 
78flJ HCOLOR = 7 
79flJ HPLOT 24,16flJ-DP(flJ) * SCL 
8ft)f{l FOR I = 1 TO NP%-1 
81flJ X = 24 + I * SP% 
82f{l Y = DP(I) * SCL 
8JflJ IF X > 279 THEN PRINT CHR$ (7); 

"CHART TOO WIDE": GOTO 86{lJ: REM (END) 
84f{l HPLOT TO X,16flJ-Y 
85flJ NEXT I 
86flJ END 
9flJ{lJ REM 
91flJ REM ************** 
92flJ REM * DATA TABLE * 
9JflJ REM ************** 
94flJ REM 
95{lJ DATA 15,18 
96{lJ DATA 1flJ{lJ,1JflJ,9{lJ,8flJ,lflJflJ,21{lJ,17{lJ,6f{l, 

12flJ,JflJ,5{lJ,4{lJ,1flJ{lJ,8flJ,9flJ 

Listing 11-3. Line graph. 

You may change the data plotted by changing the values given in line 
960. The numbers on the vertical axis will change accordingly, but will still 
increment by 20. The increment for the vertical scale may be adjusted in 
line 520, but we will talk more about that soon. The first value in line 950 
gives the number of data points to be plotted, and the second item indi
cates the horizontal spacing between plots. Both those numbers may be 
altered and the program will behave properly, except for the horizontal 
labels which remain fixed. 

After you have played for a while, let's look at some of the more interest-
ing parts of this program. 

9flJ PRINT CHR$ (4);"BLOAD NUMBER TABLE,A$Jf{lflJ" 
lflJflJ POKE 232,flJ: POKE 233,3 
llflJ SCALE= 1 



CHAPTER 11-GRAPHS AND CHARTS 127 

These lines load the shape table from disk, and tell the system where it was 
put. (See Chapter 10.) 

31/JllJ DIM DP(NP%-1) 
311/J FOR I = liJ TO NP%-1 
32fa READ DP(I) 
33fa IF MAX < DP(I) THEN MAX DP(!) 
341/J NEXT I 
381/J SCL = 15fa I MAX 

These lines read the data points into an array called DP and establish the 
maximum and the scaling factor. Thanks to line 380 the maximum point is 
plotted at Y-coordinate 150. 

41/JllJ REM DRAW FRAME 
42fa HGR 
431/J HCOLOR= 6 
441/J HPLOT 24,llJ TO 24,159 TO 278,159 TO 278,llJ TO 24,llJ 

Here a blue frame is drawn for the graph, and space is provided on the left 
side for the labels. 

51/Jl/J REM SCALE VERTICAL AXIS 
521/J HCOLOR = 3 
5 31/J FOR I = 21/J TO MAX STEP 2{(} 
541/J ROT= 16: DRAW 11 AT 24, 161/J-I * SCL 
55{(} ROT= 1iJ 
561/J N$ = STR$ (I) :NL = LEN (N$) 
571/J FOR J = 1 TO NL 
581/J DIGIT = VAL ( MID$ (N$,J ,1)): IF 

DIGIT = liJ THEN DIGIT = 11/J 
591/J DRAW DIGIT AT (J-1) * 7,161/J-I * SCL 
6~1/J NEXT J 
611/J NEXT I 

Here we scale the vertical by 20. If you wished to use a different scale, 
such as 10, you would change both occurrences of 20 in line 530 to 10. 
Line 540 rotates our little tic-mark (shape 11) and draws it across the axis. 
Line 550 returns the rotation to 0 and the section from lines 560 through 
600 proceeds to take each digit of the label (I) and draws it on the Hi-Res 
screen by means of the shape table. 

631/J REM SCALE HORIZONTAL AXIS 
651/J ROT= 1iJ 
661/J FOR I = 1 TO NP% - 1 
671/J X = 24 + I * SP% 
681/J IF X < 28fa THEN DRAW 11 AT X, 159 
691/J NEXT I 
7fl~ VTAB (21) 



128 APPLE II COMPUTER GRAPHICS 

71~ PRINT "J F M A M J J A S 0 N D J F M 
AEAPAUUUECOEAEA 
N B R R Y N L G P T V C N B R"; 

72~ VTAB (2~) 

This section labels the horizontal axis by a method which makes up in 
simplicity what it lacks in style. Lines 650-690 draw the little tic-mark on 
the axis, and line 710 prints the labels in the four lines of text at the bottom 
of the Hi-Res page. Line 710 was actually designed after the graph had 
been plotted by using the "Escape Mode" editing features of the Apple. If 
you use HGR2 or leave Hi-Res space below the graph, you could label the 
horizontal axis in the same way we labeled the vertical. 

75~ REM * PLOT DATA POINTS * 
78~ HCOLOR = 7 
79~ HPLOT 24,16~-DP(~) * SCL 
8~~ FOR I = 1 TO NP%-1 
81~ X = 24 + I * SP% 
82~ Y = DP(!) * SCL 
83~ IF X > 279 THEN PRINT CHR$ ( 7) ; 

"CHART TOO WIDE": GOTO 86~: REM (END) 
84~ HPLOT TO X,16~-Y 
85~ NEXT I 

The heart of the routine is in this short section. Line 790 plots the first point 
to establish an initial point for the line, then line 840 plots the rest of the 
points. The X-coordinate is the left side of the frame (24) plus the offset for 
each point. DP(4) will be plotted at 24 + 4 * 18, or 96. 

The Y-coordinate is calculated by multiplying the data value by the 
scaling factor. It should seem curious that the Y-coordinate is not plotted 
directly, but is subtracted from 160. Remember that the Apple thinks 0 is at 
the top of the screen and 160 at the bottom, so the quick little subtraction 
turns things around to put 0 on the bottom where you usually want it. 

The 15 data points are stored in DP(0) through DP(14). This is why the 
FOR/NEXT loop established in line 800 only goes to one less than the 
number of points (NP%-1). 

Functional Platting 

Many times a graph may be drawn from a function or formula instead of 
data points. Listing 11-4 is a short example which graphs a couple of 
formulas. Try it out! 

1~ REM FUNCTION DEMO 
2~ REM 
3~ DEF FN A(X) = .~2 * X " 2 + 5 
4fil DEF FN B(X) = .fil~l * X " 3 



5ftl ex = 14f":CY = Bf" 
6f{j REM 
7f{j REM DRAW AXES 
8f{j REM 
9f{j HGR : HCOLOR = 3 

CHAPTER 11-GRAPHS AND CHARTS 129 

1f'J0 HPLOT CX-75, CY TO ex + 75, CY 
110 HPLOT CX,CY-75 TO CX,CY + 75 
120 REM 
130 REM PLOT GRAPH 
14ft} REM 
150 FOR X = -4f{j TO 4~ 
16~ Y = FN A(X) 
17f{j HPLOT ex + X,CY-Y 
18f{j Y = FN B(X) 
190 HPLOT ex + X,CY-Y 
2f'J0 NEXT X 

Listing 11-4. Formula platting. 

When the program runs, it draws a set of axes with the center at the 
point (140,80) as set in line 50. Then it draws the functions defined in lines 
30 and 40. The Apple thinks that (0,0) is in the upper left corner of the 
screen, but we make it appear to be at (CX,CY) by adding those values 
before plotting the point. As in the other line graph example, we must 
SUBTRACT instead of adding the Y value from CY since Apple believes 
that Y increases from top to bottom, and we require Y to increase from 
bottom to top. Essentially, we flip the graph over by using -Y in place of Y. 

The decimals in the function definition are scaling factors used to keep 
the otherwise large numbers (40 to the third power is 64,000) within range. 
Convenient labels may be added to this as in the previous example. 

Graphing in Circles 

Circle graphs, or pie charts, are a very popular form of presentation, but 
we do not know anyone who enjoys the tedious calculations required to 
draw them. Key in and run Listing 11-5. 

10 REM PIE CHART DEMO 
2~ REM 
Jf'J REM ****************** 
4~ REM * INITIALIZATION * 
5f'J REM ****************** 
6ft} REM 
70 DEF FN X(T) = 80 * COS (T) 
80 DEF FN Y(T) = 70 * SIN (T) 
90 REM 



130 APPLE II COMPUTER GRAPHICS 

lfl'fl' REM READ DATA 
11ft' REM 
12fl' READ NUM% 
lJftJ DIM DTA(NUM%) 
14ft' FOR I = 1 TO NUM% 
15ftJ READ DTA(I) 
16ft' TTL = TTL + DTA(I) 
17fl' NEXT I 
18ft' REM 
19ft' REM ************ 
2ft'ft' REM * DRAW PIE * 
21ftJ REM ************ 
22fl' REM 
23ft' HGR : HCOLOR = 3 
24ft' FOR T = ~ TO 1. 57 STEP .fU 
25~ X = FN X(T) :Y = FN Y(T) 
26~ HPLOT X + 14{tJ, Y + 8~ 
27{tJ HPLOT -X + 14~, Y + 8{tJ 
28ft' HPLOT X + 14{tJ,-Y + 8ft' 
29ft' HPLOT -X + 14ft',-Y + 8ft' 
3ft'ft' NEXT T 
JlftJ REM 
32ft' REM *********** 
33ft' REM * CUT PIE * 
J4ft' REM *********** 
35ft' REM 
J6{tJ FOR I = 1 TO NUM% 
37ft' ACC = ACC + DTA(I) 
38ftJ R = (ACC I TTL) * 6.28 
39ftJ HPLOT 14ft',8fl' TO FN X(R) + 14ft', 

FN Y(R) + 8ftJ 
4{tJ{tJ NEXT I 
41ft' END 
5ft'ft' REM 
51ft' REM ************** 
52ft' REM * DATA TABLE * 
5Jft' REM ************** 
54{tJ REM 
55ftJ DATA 5 
56{tJ DATA 2J1.4,287,J1ft'.84,J4ft',J9ftJ 

Listing 11-5. Pia charts. 

Line 550 gives the number of regions to be graphed, and line 560 lists 
the actual data used for each region. The regions are plotted clockwise 
from the right side of the circle. There are no real restrictions on the 
values, although attempting to plot a region for a negative value will give 
you a rather meaningless result. · 



CHAPTER 11-GRAPHS AND CHARTS 131 

After you have run the program a few times with your own data, we can 
go through it and hit the highlights. 

7f(J DEF FN X(T) = 8f(J * COS (T) 
8~ DEF FN Y(T) = 7~ * SIN (T) 

The functions defined here are used to calculate the X and Y-coordinates 
of points on the circle. The values 80 and 70 define the radius of the circle 
(two radii?!?). The dots on the screen are slightly higher than they are wide, 
so if you let both numbers be 80 (as theoretically they should), the pie 
looks more like an egg. 

12f(J READ NUM% 
lJ~ DIM DTA(NUM%) 
14~ FOR I = 1 TO NUM% 
15f(J READ DTA(I) 
16~ TTL = TTL + DTA( I) 
17~ NEXT I 

NUM% is the number of regions, and the data values are read into the array 
DTA. Since a total is required to calculate the relative size of each "slice," 
we accumulate the data values in TTL. 

24f(J FOR T = ~ TO 1.57 STEP .~1 
25f(J X = FN X(T) :Y = FN Y(T) 
26~ HPLOT X + 14~, Y + 8~ 
27f(J HPLOT -X + 14f(J, Y + Bf() 
28~ HPLOT X + 14~,-Y + 8f{J 
29~ HPLOT -X + 14f{J,-Y + 8f{J 
J~~ NEXT T 

The circle is drawn using a little simple trigonometry. (There is really no 
such thing as simple trigonometry!) You will notice here (and also later in 
the program) that we place the center at (140,80) by adding 140 to each X 
and 80 to each Y as we plot. 

The real question is, why does T go from 0 to 1.57? The SIN and COS 
functions we use measure a circle in radians instead of degrees. There are 
roughly 6.28 radians in a full circle (3.14 in a semicircle), and we use the 
symmetry of the circle so that we only need to calculate the points for one
quarter of the circle. The result of all this is that we go one-quarter of the 
way to 6.28, and one-quarter of 6.28 is the elusive 1.57. 

J6~ FOR I = 1 TO NUM% 
J7f{J ACC = ACC + DTA(I) 
JS~ R = (ACC I TTL) * 6.28 
J9~ HPLOT 14f{J,8f{J TO FN X(R) + 14~, 

FN Y(R) + 8f{J 
4f{J~ NEXT I 
41~ END 



132 APPLE II COMPUTER GRAPHICS 

As we draw the wedges of the pie, our progress around the circle is 
proportional to the amount of the data graphed so far. That is, if we are 
one-third of the way around the circle, then the accumulated amount of 
data already graphed is one-third of the total to be graphed. So, as we go 
around, line 370 accumulates the graphed data in ACC, and line 380 
calculates the fraction of a full rotation. (Remember, in radian measure· 
6.28 represents a full rotation.) 

Line 390 draws the line from the center of the circle (140,80) to the point 
on the circle at the correct rotation. 

Round It: Out: 

You have seen several fairly powerful schemes for graphing. They all pro
duce a reasonable result on the screen, but what about getting a printout 
of the graph? As with most any programming problem, where there's a will 
there's a way, but the most practical solution lies in printer hardware. 
There are several items presently on the market which allow you to 
"dump" the Hi-Res screen to a matrix printer, such as "GRAFTRAX*" for 
Epson printers, or the "GRAPPLER**" interface which works for most dot
matrix machines. If you have, or acquire such an item, it comes with 
instructions for dumping the Hi-Res screen. 

The programs presented here are designed to let you plot your own data 
with a minimum of modifications. After you have used these routines for a 
time they will become clearer to you, and improvements will begin to 
suggest themselves. Down that path lies hours of both creativity and frus
tration. Have fun! 

Vocabulary 

Bar chart 

Circle graph 

Line graph 

Pie chart 

*Graftrax is a trademark of Epson of America. 
**Grappler is a trademark of Microtech, Inc. 



CHAPTER 11-GRAPHS AND CHARTS 133 

Exercises 

1. Use Listing 11-1 to do a bar graph showing a profit of 7,250 in 
January, 4, 173 in February, 5,010 in March, 6,379 in April, 5,703 in 
May, and 6,533 in June. 

2. Use the number table (Listing 11-2) and Listing 11-3 to graph the 
following values: 17.9, 26.4, 25.8, 32, 20.5, 10.9, 8.05, 6.1, 9.0, 12.7, 
and 16. 

3. Use the number table (Listing 11-2) and Listing 11-4 to graph the 
function Y. = X3-8X2-17X + 10. Label each axis. 

4. Use the number table to create a pie chart with the following data: 
150, 470, 173, 217, 301, 522. Label the resulting graph. 



12 
Byte-Move Shapes 

Objectives 
After reading Chapter 12 you should be able to: 

• Use byte-move to perform a stationary and a vertical animation. 

• Draw and digitize the seven horizontal separations of a byte-move 
figure. 

• Animate a simple byte-move figure across the screen. 

The standard Apple shape is a fairly useful construct, particularly for the 
BASIC programmer because it lets the user use a number of fast machine
level routines via the APPLESOFT shape commands (ORA W, XDRA W, 
SCALE, and others). Unfortunately, those routines are not fast enough for 
arcade type animation, so byte-move graphics are often used to gain extra 
speed. To be honest, professional byte-move animation is written in ma
chine language because BASIC is too slow to gain much advantage, 
whereas "look-up tables" are something that a machine-level program 
handles very well. These examples in BASIC serve to give you the "basic" 
idea behind byte-move, so if you are so inclined and endowed you can 
write these strategies into your machine-level program. 

It is important to realize how byte-move shapes differ from standard 
shapes. As you saw in Chapter 10, a shape is defined by a series of 
instructions (vectors). For example, plot-up, skip-left, skip-left, plot-down, 
and so on. Each time the shape is plotted, the drawing routines follow 
those directions and reconstruct the shape. Since shapes can easily run to 
a hundred instructions or more, the vector method can lead to a time 
delay as each vector is reprocessed and reinterpreted. 

135 



136 APPLE II COMPUTER GRAPHICS 

A byte-move shape can be thought of as being pre-defined and pre
drawn someplace in the computer's memory. Plotting a byte-move shape 
is a matter of moving the pre-drawn figure into the screen memory area, 
just as you might use pre-printed rub-on transfers for lettering. In this way, 
a byte-move shape saves time since it does not have to be regenerated 
each time it is used, but has only to be moved from another location
prefab graphics. 

We are getting ahead of ourselves. Listing 12-1 gives a short example of 
animation using the byte-move process. Type it in and try it. You may omit 
the REM statements if you wish. 

1~ REM INITIALIZE Y 
2f(J REM COORDIN~TES 
Jf(J REM ·, 
4f(J Y1% = l:Y2% = 2:YJ% = J:Y4% 4: 

Y5% = 5:Y6% = 6:Y7% = 7 
5f(J REM 
6~ REM READ DATA FOR FIGURE 
7f(J REM 
8f(J FOR I = 1 TO 4: REM 4 FRAMES 
9f(J FOR J = 1 TO 7: REM 7 BYTES PER 

FRAME 
lf(Jf(J READ V%(I,J) 
llf(J NEXT J,I 
12f(J REM 
lJf(J REM INITIALIZE ADDRESSES 
14~ REM OF Y COORDINATES 
15~ REM 
16~ Y%(1) 8192:Y%(2) = 9216:Y%(J) = 1~24f(J: 

Y%(4) = 11264:Y%(5) = 12288:Y%{6) = 13312: 
Y%(7) 14JJ6 

17~ HGR 
18f(J REM 
19~ REM POKE THE FOUR FRAMES 
2~f'J REM 
21f'J FOR I = 1 TO 4 
22f'J POKE Y%(Y1%),V%(I,1): 

POKE Y%(Y7%),V%(I,7) 
23f(J POKE Y%(Y2%),V%(I,2): 

POKE Y%(Y6%),V%{I,6) 
24~ POKE Y%(YJ%),V%(I,J): 

POKE Y%(Y5%),V%(I,5): 
POKE Y%(Y4%),V%{I,4) 

25f(J NEXT 
26~ GOTO 21~: REM START AGAIN 
27f(J REM 
28~ REM DATA FOR THE FOUR FRAMES 



29f(J REM 
3ff'ff' DATA 1,2,4,8,16,32,64 
Jlf(J DATA 8,8,8,8,8,8,8 
32ff' DATA 64,32,16,8,4,2,1 
33ff' DATA !lJ,!lJ,f(J,127,f(J,f(J,!lJ 

Listing 12-1. 

CHAPTER 12-BYTE-MOVE SHAPES 137 

When the program is running correctly, you will see what could pass for 
an airplane propeller spinning in the corner of your screen. The effect is 
accomplished by cycling through four different frames quickly enough to 
fool your eyes and brain into seeing a continuous motion-the POKE is 
quicker than the eye! The four frames are diagrammed in Figure 12-1, 
along with the bit patterns and decimal values required to generate them. 

SCREEN BINARY SCREEN BINARY 
PATTERN VALUE DECIMAL PATTERN VALUE DECIMAL 

--------------------------- ---------------------------
X------ !lJ!lJ!lJ!lJ li'li'li'l 1 ---X--- li'li'li'!lJ ljiJ!lJ!lJ 8 
-X----- li'!lJ!iJ!lJ li'li'lliJ 2 ---X--- !lJli'li'!lJ lJ{JjiJ!lJ 8 
--X---- li'li'li'li' jiJlliJ!lJ 4 ---X--- li'li'li'li' lJ{JjiJ!iJ 8 
---X--- ftlliJ!lJ!lJ lff'llJ!lJ 8 ---X--- li'li'llJ!iJ lJ{JjiJ!iJ 8 
----X-- ((lliJ!lJl li'li'llJ!lJ 16 ---X--- li'li'li'li' ljiJ!lJ!lJ 8 
-----X- li'!l'lff' li'fl'li'li' 32 ---X--- li'li'!lJ!lJ lft'ff'li' 8 
------X f(JljiJjiJ li'li'li'li' 64 ---X--- li'li'li'ff' l!lJ!lJ!iJ 8 

FRAME #1 FRAME #2 

SCREEN BINARY SCREEN BINARY 
PATTERN VALUE DECIMAL PATTERN VALUE DECIMAL 

--------------------------- ---------------------------
------X fi'lliJ!lJ li'li'!lJ!lJ 64 ------ !lJ!lJ!lJ!lJ li'li'li'li' fi' 
-----X- fi'ff'lli' liJ((l!lJ!iJ 32 ------ ff'li'li'li' li'li'li'li' Ii' 
----X-- J(JliJ!lJl !l'li'li'ff' 16 ------ li'liJ!lJJ(J li'ff'li'li' llJ 
---X--- fi'ff'li'!l' l!{JliJ!iJ 8 xxxxxx ff'lll 1111 127 
--X---- fi'ff'li'li' jiJlff'!lJ 4 ------ li'li'li'ff' li'li'li'ff' fi' 
-X----- li'li'li'li' !{JJ{JljiJ 2 ------ li'li'li'li' ll'!l'li'!l' fi' 
X------ J{JJ{JJ{JJ{J J{JJ{JliJl 1 ------ li'li'ff'li' fi'li'li'li' ft' 

FRAME #3 FRAME #4 

Figure 12-1. 

The values for each frame are the ones used in the four DATA statements 
in the program. 

When the program is run, there is a delay before anything seems to 
happen. This delay is a characteristic of byte-move programs, and is 



138 APPLE II COMPUTER GRAPHICS 

caused by the need to initialize a number of variables and arrays before 
beginning the animation. In Listing 12-1, line 40 sets the seven Y coordi
nates used in the figure, and line 160 assigns the corresponding memory 
address to each of those coordinates. Lines 80 through 110 initialize an 
array that contains seven data values for each of the four versions of the 
propeller. 

The actual animating is done in lines 210 through 250 which POKE the 
values for each frame into Hi-Res memory. The variables and arrays used 
in the POKEs tend to obscure some of the mechanics of the program, but 
they also enhance the execution, since it is much faster for the machine to 
look up the value of Y%(4) stored in memory than to generate the corres
ponding value of 12288. 

In general it is faster to look something up in a table than to generate it 
each time it is needed. 

Line 220 POKEs the first and seventh bytes of the figure [V%(1, 1) and 
V%(1,7)], 230 the second and sixth, and 240 the third, fifth, and fourth 
bytes. POKEing the values in that weird order improves the resulting effect, 
but you might try changing the order to POKE them sequentially just to see 
what happens. 

Another reason for the variables is to make it easy to modify this pro
gram so that the figure will plot at different Y coordinates on the screen. 
The array Y% will contain the starting addresses for each of the 192 screen 
lines, and Yl % through Y7% will be the coordinates for the seven lines 
used in the shape. 

The propeller is an example of stationary animation. That is, animation 
that takes place within a fixed region, and the different frames of that 
region are alternated to simulate movement. There are many applications 
for stationary animation. The APPLEVISION program on your DOS 3.3 
master is an excellent example, and so is a Hi-Res scoreboard for a game. 
(The ten different digits compose ten possible frames for display.) 

Drop the Prop 

Most shapes used in a game are required to move about the screen. We 
will now alter our program to allow for this. With Listing 12-1 still in 
memory, type in the following changes. 

16~ GOSUB lftJ~~: REM CALC ADDRESSES 
245 Y1% = Y1% + 1: Y2% = Y2% + 1: 

YJ% = YJ% + 1: Y4% = Y4% + 1: 
Y5% = Y5% + 1: Y6% = Y6% + 1: 
Y7% = Y7% + 1 

246 IF Y7% > 192 THEN END 
l~ftJ~ REM 



1~1~ REM CALCULATE Y 
1~2f(J REM COORDINATES 
1~J~ REM 
1f(J4f(J DIM Y%(192) 

CHAPTER 12-BYTE-MOVE SHAPES 139 

1f(J5{a FOR I = 1 TO 185 STEP 8: READ SA% 
1f(J6{a FOR J = fa TO 7:Y%(I + J) = SA% + 

J * 1f(J24 
1f(J7~ NEXT J,I 
1f(J8f(J DATA 8192,8J2{a,8448,8576,87~4,88J2, 

896{a,9~88 
1f(J9{a DATA 82J2,8J6{a,8488,8616,8744,8872, 

9~~{a,9128 
11{a{a DATA 8272,84~{a,8528,8656,8784,8912, 

9{a4~,9168 
111f(J RETURN 

Listing 12-2. 

Lines 1000 through 1110 calculate the starting addresses for each of the 
192 screen lines by taking the base address of the box that the line lies in 
and adding the position address to it. That position address is calculated as 
a multiple of 1024. If that algorithm escapes you, try reviewing the portion 
of Chapter 8 where we talked about calculating addresses for Hi-Res mem
ory. 

Line 245 is executed after each frame is displayed, and its purpose is to 
increment each of the seven Y coordinates so that the prop will be plotted 
one line lower the next time. 

Run the modified program. You will see the propeller dropping down 
the left edge of the screen as it spins. You will also see a trail of garbage 
left behind as the shape progresses. Most of each frame is wiped out when 
the next one plots over it, but since we are moving down between frames, 
the top line of each frame remains on the screen to haunt you. 

When moving a shape using byte-move, it is often neccesary to make 
special provisions for erasing the left-overs. 

We all know that your first try never runs perfectly anyway, and the 
problem is easily remedied by adding: 

215 POKE Y%(Yf(J%),~ 
244 Y{a% = Y1% 

Line 244 stores the Y-coordinate for the old top line as Y0%, and line 215 
POKEs a zero there to erase that byte. 

Getting It Across 

So far, you have performed a stationary and a vertical animation using 



140 APPLE II COMPUTER GRAPHICS 

byte-move techniques. Now we take up the problem of horizontal anima
tion, and a problem it turns out to be indeed, for it becomes about seven 
times as complex as a vertical animation. For that reason we will confine 
our byte-move examples to the animation of simple figures. 

Lucky Se11en 

Seven seems to be the magic number for horizontal byte-move, and by 
moving a single dot across the screen a little way, we can show you why. 
If you plan to turn on the dot in the extreme upper-left corner of the Hi
Res screen, you need to address yourself to the byte at 8192. The byte 
contains seven bits, and you want to turn on only the left-most, so you 
need the dot pattern: 

X------
wh ich corresponds to: 

!~~~~ ~~~1 or 1 

so you may turn the dot on by typing: 

HGR 
POKE 8192,1 

Next, you want the second dot on, then the third, fourth, fifth, sixth, and 
seventh, in turn. Figure 12-2 sets out the desired dot and bit patterns, and 
then the corresponding values. 

SCREEN BINARY 
PATTERN VALUE DECIMAL 

X------ ~~~~ ~~~1 1 
-X----- ~~~~ ~~1~ 2 
--x---- ~~~~ ~1~~ 4 
---X--- ~~~~ 1~~~ 8 
----X-- ~~~1 ~~~~ 16 
-----X- ~~1~ ~~~~ 32 
------X ~1~~ ~~~~ 64 

Figure 12-2. 

From BASIC type the following: 

HGR 
POKE 8192,1 
POKE 8192,2 
POKE 8192,4 
POKE 8192,8 
POKE 8192,16 



POKE 8192,32 
POKE 8192,64 

CHAPTER 12-BYTE-MOVE SHAPES 141 

The dot will move to the right, and the last statement will leave the dot 
at the right edge of byte number 8192. To continue the journey, the dot 
must move to the first dot of byte number 8193, and then continue across 
that byte. To accomplish that, you can type the same series of values, but 
use 8193 as the address: 

POKE 8193,1 
POKE 8193,2 
POKE 8193,4 
POKE 8193,8 
POKE 8193,16 
POKE 8193,32 
POKE 8193,64 

This pattern will repeat until you get through address 8231, or you get 
tired of it, whichever comes first. 

As you can see, each position across the byte requires a different value, 
and there are seven positions across the byte, so seven becomes a very 
important number. You can also see that the last dot in every byte you 
travelled across was left on. As we mentioned before, some arrangement 
must be made to erase the last value before moving on to the next byte. 
POKEing a zero as the final value in each series will erase that left-over 
dot. 

To move the dot across byte number 16 in that row (the row starts with 
byte number 0), you would find the address by adding the offset, 16, to the 
base address, 8192 (did everybody get 8208?), and then POKE the series of 
values using that address. 

There is a nice relationship between the X-coordinate of a point and the 
offset and value needed to refer to it in byte-move. Consider the seven 
values used to move the dot across the byte as seven versions of the dot, 
and number them zero through six. If you wish to turn on a particular dot 
across the row, you need to determine which version of the dot to POKE, 
and the offset from the beginning of the row. 

For example, let's turn on the dot in the first row which has an X
coordinate of 75. Divide the coordinate by seven to find the quotient (the 
result of the division) and remainder. Seven goes into 75 ten times (remem
ber your g'zintas?) with five remaining. The quotient (10) is the offset, and 
the remainder (5) is the number of the separation (versions of the dot) to 
be used. Therefore, the address is 8202 (8192 + 10), and the value is 32. 
So, 

POKE 82~2,J2 

and you will turn on the dot having 75 as its X-coordinate. 



142 APPLE II COMPUTER GRAPHICS 

For another example, turn on the dot with X-coordinate 100 and Y
coordinate 80. Screen line 80 is at the top of box number 10, so it has a 
starting address of 8488. (See the Hi-Res memory map in Appendix 3.) 
Dividing 100 (the X-coordinate) by seven gives you a quotient of fourteen, 
and a remainder of two. Value number 2 is four, so 

POKE 8488 + 14, 4 

to turn the dot on. In our programming examples, we will represent the 
quotient by Q%, and the remainder by R%. 

Byting Off More 

In the next few examples you will animate a line across the width of the 
screen. The line is to be seven dots long, so initially it will fit nicely in one 
byte. Run this simple example. 

lf{J HGR 
2f{J FOR L = 8192 TO 8231 
JYJ POKE L,127: REM POKE NEW BYTE 
4f{J POKE L-1,f{J: REM ERASE OLD BYTE 
5f{J FOR I = 1 TO 5f{J: NEXT I 
6f{J NEXT L 

Listing 12-3. 

The program moves a line across the top of the screen quickly, even 
with the delay at line 50, but it still has a drawback fatal to any game: the 
animation is jittery instead of smooth. Each cycle of the loop POKEs the 
line one byte further on, equivalent to moving seven dots at a time, and 
that is too large a step. The solution is to move the line only one dot at a 
time, though that is easier said than done. 

Imagine that you are looking out a window which is seven dots wide, 
and a snake (also seven dots worth) crawls across the field of vision from 
left to right. At first you will see only one dot of the snake at the left side of 
the window, then two dots, then three, four, five, six, and finally all seven 
dots as the snake is completely within the window. In computer terms, the 
window you are looking througb is one byte of the Hi-Res screen, and the 
snake is the line progressing across it. 

Meanwhile, Back at the Snake ••• 

We left the snake completely within one byte. As it crawls onward, it 
enters the next window in the same way it entered the first, and at the 
same time it leaves the first window one dot at a time until the first byte is 
empty and the second is filled. This sequence is shown in Figure 12-3. 



CHAPTER 12-BVTE-MOVE SHAPES 143 

VERSION #0 

2 

3 

4 

5 

6 

• 

1 

• Te 

• • 
• 

• 
• 
• 
• 

BYTE# 

• • • 
• • • 
• • • 
• • • 
• • • 

• • 
• 

Figure 12-3. 

2 

• 
• • 
• • • 
• • • • 
• • • • • 
• • • • • • 

If you take the time to calculate the values needed to produce the seven 
versions, you should arrive at: 

BYTE #1 
DEC DOT 

VALUE PATTERN 

126 
124 
12~ 
112 
96 
64 
~ 

-XXXXXX 
--XXXXX 
---XXXX 
----XXX 
-----XX 
------X 

BYTE #2 
DOT DEC 

PATTERN VALUE 

X-----
XX----
XXX----
XXXX--
XXXXX-
XXXXXX
xxxxxxx 

1 
3 
7 

15 
Jl 
63 

127 

What you have in this example is a two-byte animation. Even· though the 
figure appears to be only one byte wide, in six of the seven possible 
placements, it requires two bytes to represent the line. You should con
sider each of the bytes in a figure to have its own set of seven separations. 

It is another characteristic of byte-move that any figure requires seven 
separations for horizontal movement and, further, that each figure takes 
one byte more than you would expect. 

The line which fits in one byte actually requires a two-byte definition. A 
four-byte figure will require five bytes for all the separations. The only 
exception is a figure one dot wide, where all seven versions will fit into 
one byte. 

You can manually move the line from BASIC by typing 

HGR 



144 APPLE II COMPUTER GRAPHICS 

POKE 8192,126: POKE 8193,1 
POKE 8192,124: POKE 8193,J 
POKE 8192,12f{J: POKE 8193,7 
POKE 8192,112: POKE 8193,15 
POKE 8192,96: POKE 8193,Jl 
POKE 8192,64: POKE 8193,63 
POKE 8192,f{J: POKE 8193,127 

Listing 12-4 gives you a program that will do essentially what you did with 
the series of POKEs. 

lfil DIM A%(28fil): REM 28f{J X-COORDINATES 
2f{J REM 
3fiJ REM READ THE VALUES FOR 
4fiJ REM THE 7 PAIRS OF FRAMES 
5fil REM 
6fil FOR I = fiJ TO 6 
?fil READ T%(I),H%(I) 
8fil NEXT I 
9fiJ REM 
lfilfil HGR 
llfil REM 
12fil REM INITIALIZE THE TABLE 
13~ REM OF ADDRESSES 
14~ REM 
15f{J J = fiJ 
16~ FOR I 8192 TO 8231 
1 ?fil A% ( J) = I : J = J + 1 
18fil NEXT 
19f{J REM 
2f{JfiJ REM PLOT THE LINE AT 
21~ REM EACH X-COORDINATE 
22fiJ REM 
23fiJ FOR X = 1 TO 28fil 
24f{J Q% = INT (X I 7) 
25fil R% = X-(7 * Q%) 
260 C% = Q% + 1 
2?f{J POKE A%(Q%),T%(R%): POKE 

A%(C%),H%(R%) 
28f{J NEXT X 
290 END 
294 REM 
295 REM DATA TABLE 
296 REM 
3fiJfiJ DATA 126,1,124,3,12fil,7,112,15 
31fiJ DATA 96,J1,64,6J,fil,12? 

Listing 12-4. 



CHAPTER 12-BYTE-MOVE SHAPES 145 

Again, we use variables to make the program obscure. The values for the 
line are read into arrays T% (for tail) and H% (head) in lines 30 to 80. Array 
A% contains the addresses for each of the 40 bytes across the top of the 
screen, and is initialized in lines 120 through 180. The loop in lines 230 to 
280 plots the line at every X-coordinate across the screen, but lines 240, 
250, and 260 merit more study. 

Their purpose is to determine which pair of bytes is being used, and 
which of the seven pairs of values need to be POKEd. They do this by 
using the quotient and remainder. For example, when the X-coordinate is 
42, seven g'zinta 42 six times, wifh zero left over. So you need to POKE 
the sixth (and seventh) byte, with the zeroth pair of values. 

When designing a byte-move shape, you will need to sketch and digitize 
all seven separations of the figure as we did for the line. That data gets 
stored in a table for use later in the program. As you can see, even as 
simple a figure as the line required seven different versions, and significant 
preparation to animate horizontally, but the resultant animation is as 
smooth as you could wish for, even though it is a bit slow. 

Vocabulary 

Byte-move 

Quotient 

Remainder 

Separation 

Exercises 

1. Design Hi-Res figures for the digits zero through nine, and write a 
BASIC program to place them into a region of the Hi-Res screen in 
ascending order. 

2. Alter the program written for Exercise 1 to move each digit down one 
screen line from the previous one. 

3. Draw and digitize the seven versions of the numeral "5" needed to 
animate it horizontally. 

4. Write the code necessary to animate the numeral "5" across the 
screen. 



13 
Advanced Moves 

Objectives 

After reading Chapter 13 you should be able to: 

• Use pre-calculated tables to help enhance your animation. 

• Animate stationary figures using partial modification. 

• Develop pre-shifts for shapes and use them for animation. 

We commend you for getting this far in your study of Apple II graphics. 
(No fair if you just skimmed to this point!) You have progressed from a 
knowledge of BASIC through the land of binary and hex numbers, on 
through the memory map maze, and to the realm of Low-Res graphics. 
From there you progressed to the world of Hi-Res where you investigated 
color, shapes, shape-table animation, and byte-move animation. 

You have seen most of the major schemes currently used to produce Hi
Res graphics, and we think you are ready for a few advanced techniques. 
In this chapter we will look at three different methods which can increase 
the speed and efficiency of your graphics. Though the ideas discussed may 
be applied in either BASIC or machine-code, the examples are presented 
in BASIC for simplicity. The amount of benefit derived from each tech
nique will depend on the particular application, and may vary from a lot to 
none at all (or worse). However, since a great amount of time spent 
programming any game is devoted to cleaning up the graphics, sometimes 
you have to be satisfied with several small improvements. 

We will start with the idea of partial modification, where instead of 
redrawing the entire figure each time, you only plot those bytes which 
have changed from the previous figure. A good illustration of this idea is 

147 



148 APPLE II COMPUTER GRAPHICS 

provided by a scoreboard in Hi-Res; the digits keep changing in a predicta
ble manner, and you can use that fact to shorten your code. Enter and run 
the following program (you may omit the REM statements if you wish). 

1~ REM PARTIAL MOD. 
2~ REM 
3~ HGR 
4~ REM 
5~ REM POKE EIGHT 
6~ REM 
7~ POKE 8192,6~: POKE 9216,66: 

POKE 1~24~,66: POKE 11264,6~ 
8~ POKE 12288,66: POKE 13312,66: 

POKE 14JJ6,6~: POKE 1536~,~ 
9~ VTAB (24): PRINT "PRESS A KEY": 

GET R$ 
1~~ REM 
11~ REM POKE NINE 
12~ REM 
lJ~ POKE 8192,6~: POKE 9216,66: 

POKE 1~24~ 1 66: POKE 11264,6~ 
14~ POKE 12288,64: POKE 13312,64: 

POKE 14JJ6,6~: POKE 1536~,~ 
15~ VTAB (24): PRINT "PRESS A KEY" 

GET R$ 
16~ REM 
17~ REM POKE ZERO 
18~ REM 
19~ POKE 8192,6~: POKE 9216,66: 

POKE 1~24~,66: POKE 11264,66 
2~~ POKE 12288,66: POKE 13312,66: 

POKE 14336,6~: POKE 1536~,~ 
21~ VTAB (24): PRINT "PRESS A KEY": 

GET R$ 
22~ GOTO 7~ 

Listing 13-1. 



CHAPTER 13-ADVANCED MOVES 149 

When you have everything keyed in correctly, you will see the digits 
eight, nine, and zero cycle on the Hi-Res screen. This was easily done by 
POKEing the appropriate dot patterns into screen memory. 

For example, the numerals eight and nine are composed of eight rows of 
dots which correspond to byte values as shown below. 

DOT BIT DECIMAL DOT BIT DECIMAL 
PATTERN PATTERN VALUE PATTERN PATTERN VALUE 

----------------------------------------------------------
--XXXX- flJflJ11 11flJflJ 6{l} --XXXX- flJflJ11 llflJflJ 6flJ 
-X----X flJlflJflJ flJflJlflJ 66 -X----X flJlflJflJ {alflJflJ 66 
-X----X flJlflJflJ flJflJlflJ 66 -X----X flJlflJflJ flJflJlflJ 66 
--XXXX- flJflJ11 11flJflJ 6fl' --XXXX- flJ{l}l111flJflJ 6{a 
-X----X flJlflJflJ flJflJlflJ 66 ------X flJlfaflJ flJflJlflJ 66 
-X----X flJlflJflJ flJflJlflJ 66 ------X falfaflJ ftJflJlflJ 66 
--XXXX- flJflJ11 11{aflJ 6fl' --XXXX- flJflJ11 11{l}flJ 6f{J 
------- flJflJflJfl' flJflJflJflJ flJ ------- flJflJflJflJ flJflJflJflJ flJ 

Figure 13-1. 

Now, if you take a minute to compare the values used for eight with 
those used for nine, you should notice that all except two of the values are 
the same. So the question naturally arises, "Since nine always follows 
eight, why should I POKE all the values for the nine, when six of them are 
the same as before?!?" Funny you should ask! 

That is the idea behind partial modification-alter the existing figure 
instead of totally replacing it. Type these lines to change the previous 
listing. 

13!0 REM 
14flJ POKE 12288,64: POKE 13312,64 
19flJ POKE 11264,66 
2flJflJ POKE 12288,66: POKE 13312,66 

Now lines 130 and 140 will POKE only the changes needed to turn the 
eight into the nine, and similarly lines 190 and 200 POKE the changes 
required to turn nine into zero. When you run the program you will not 
see much difference, but you will have the satisfaction of knowing that 
your code is more efficient. 

Granted, the time savings is insignificant in this example, but if you are 
trying tb animate 150 bytes worth of Zylon spaceship, or what have you, 
partial n1odification could potentially save a great deal of time. 

Pre-calculation 

The next topic to consider is pre-calculation. When a figure is moving 



150 APPLE II COMPUTER GRAPHICS 

around the screen, there are many calculations to be made: the shape's X 
and Y-coordinates, perhaps the address corresponding to those coordi
nates, and if you are animating using byte-move, which of the seven 
versions of the shape is to be used at each coordinate. 

Sometimes the figuring can be done "on the fly," such as after the shape 
is drawn on the screen and before it is erased to be moved. This increases 
the time the object is on the screen. This increases the ratio of the display 
time to the erase time, which in turn reduces flicker. However, calculating 
all of this within the animation routine will slow it down because 
arithmetic operations tend to gobble up relatively large amounts of proces
sor time-remember, it is usually faster to look it up than to figure it out. 

As an alternative, it is possible to compute the path of an object before it 
starts, and store each of the coordinates in a table (BASIC calls them 
arrays). It is usually faster to look a number up in a table (especially when 
using machine code) than it is to compute it on the spot. The game 
THRESHOLD uses tables, byte-move, and pre-calculation in its animation. 

In Chapter 12 we used byte-move techniques to move a line across the 
screen. If you still have that program lying around on a disk somewhere, 
go get it because we are about to modify it. The complete listing is given 
below, but if you have the old program you can avoid having to type most 
of it in again. 

lfl' DIM A%(28fl'): REM 28fl' X-COORDINATES 
2fl' REM 
Jfl' REM READ THE VALUES FOR 
4ft' REM THE 7 PAIRS OF FRAMES 
5ft' REM 
6fl' FOR I = fl' TO 6 
7fl' READ T%(I),H%(I) 
8fl' NEXT I 
9fl' REM 
lfl'fl' REM 
llfl' REM 
12fl' REM INITIALIZE THE TABLE 
13fl' REM OF ADDRESSES 
14fl' REM 
15fl' J = fl' 
16fl' FOR I = 14JJ6 TO 14J74 
17{a A% ( J) = I : J = J + 1 
18fl' NEXT 
19{a REM 
2fl'{a REM PRE CALC. 
2{a5 REM 
21{a DIM Q%(28fl'),R%(28fl') 
22{a FOR X = 1 TO 28{a 
23{a Q%(X) = X I 7:R%(X) X-Q%(X) * 7 



24fiJ NEXT X 
25~ HGR : REM SET GRAPHICS 
254 REM 
255 REM HERE GOES! ! 
256 REM 
26fiJ FOR X = 1 TO 28fiJ 
27fiJ POKE A%(Q%(X)),T%(R%(X)): 

CHAPTER 13-ADVANCED MOVES 151 

POKE A%(Q%(X) + 1) ,H%(R%(X)) 
28fiJ NEXT X 
29fiJ END 
294 REM 
295 REM DATA TABLE 
296 REM 
JfiJfiJ DATA 126,1,124,J,12fiJ,7,112,15 
JlfiJ DATA 96,Jl,64,6J,fiJ,127 

Listing 13-2. 

Lines 100, 160, and 200 through 270 are the only new modifications. 

The arrays Q% and R% hold the quotients and remainders for each of 
the 280 X-coordinates. Dividing the X value by 7 gives you the offset (0-39) 
used to address the correct byte across the screen, and also which of the 
seven versions of the figure should be used (Remember?). 

Lines 160-180 fill array A% with the addresses for each of the 40 bytes 
across the screen line, and lines 220-240 calculate the 280 quotients and 
remainders. Finally, line 250 turns on Hi-Res, and line 270 does the actual 
POKEing. 

Sorry about the compound indexing [A %(Q%(X))], but it could not be 
helped. X is the coordinate number, so Q%(X) is the quotient belonging to 
that coordinate, and A %(Q%(X)) is the address determined by that quo
tient. 

This new version of the program runs the line across the screen in seven 
seconds, as opposed to nine in the earlier one. Now, seven seconds is still 
pretty slow (blame BASIC), but pre-calculating did result in a significant 
improvement (22 percent, since you asked.) 

Pre-shifting 

And now, on to perhaps the most elegant of the techniques: pre-shifting. 
We are going to animate using a shape table, so take a couple of minutes 
now to enter it. From BASIC type: 

CALL -151 



152 APPLE II COMPUTER GRAPHICS 

3~~: ~2 ~~ ~6 ~~ 45 ~~ JF 3F 
3~8: 3F 3F 3F 3F ~8 20 20 20 
31~: 20 20 2D 18 3F 3F 3F 3F 
318: 3F 3F ~8 2D 2D 20 2D 2D 
32~: 20 18 3F 3F JF 3F 3F JF 
328: ~8 2D 2D 20 2D 2D 20 18 
33~: 3F 3F 3F JF 3F JF ~8 20 
338: 20 2D 2D 20 20 18 3F 3F 
34~: 3F 3F 3F 3F ~~ 24 24 24 
348: 24 DF DB DB DB ~6 36 36 
35~: 36 36 ~~ ~~ ~~ ~~ ~~ ~~ 

3D~G 
BSAVE SQUARE,A$3~~,L$5J 

With the table still in memory, let's find out what we actually have there. 
Type: 

POKE 232,~: POKE 233,3 
HCOLOR = 3:ROT = ~:SCALE = l:HGR 
DRAW 1 AT 5~,5~ 

The first line tells APPLESOFT where the table is stored ($0300) in lo
byte/hi-byte form (00 and 03). The second line sets all the parameters, and 
the third draws the first shape, a rectangle, at 50,50 on the Hi-Res screen. 

The second shape in the table is the horizontal pre-shift (the what!??) of 
the original rectangle. To explain, imagine that you shift the rectangle one 
place to the right. The bulk of the figure is unchanged; there is a single line 
added to the right side, and one deleted from the left side. Pre-shifting, like 
partial modification, is a way to process only that portion of the figure 
which changes while leaving the rest alone. 

Now type: 

DRAW 2 AT 51,6~ 

to draw the pre-shift below the rectangle. Notice that the pre-shift has a 
single line to the right of the rectangle, and another that lines up with the 
left side of the rectangle. To affect the modification, we will XDRAW the 
pre-shift on top of the rectangle. 

Let us digress for a moment. When used to superimpose one figure on 
another, XDRAW has the effect of comparing corresponding dots of the 
two shapes and forming a resultant figure from them. The resultant dot is 
on if either one of the original dots were on, but not both. The chart below 
summarizes the results from the four possibilities. 

Dot#l ON ON OFF OFF 
#2 ON OFF ON OFF 

Result OFF ON ON OFF 



CHAPTER 13-ADVANCED MOVES 153 

So, when the pre-shift is XDRAWn over the rectangle, the dots on the 
left side of both figures are on, so that whole row will be turned off. But 
the right side of the pre-shift is one row beyond the rectangle, and since 
only the pre-shift dots are on, the result will be to turn that row of dots on. 
But enough words, let's try it! From BASIC type: 

XDRAW 2 AT 51,5{{J 
XDRAW 2 AT 52,5{{J 
XDRAW 2 AT 5J,5{{J 
XDRAW 2 AT 54,5{{J 
XDRAW 2 AT 54,5{{J 
XDRAW 2 AT 5J,5{{J 

The rectangle will move to the right, and then back to the left. If you are 
surprised by the repeated XDRAWs at 54, remember that two consecutive 
XDRAWs always cancel out. The first XDRAW moves the rectangle right, 
and the second cancels it out to move the rectangle back to the left. Play 
with XDRAWing this figure manually until you can move it around com
fortably. 

Listing 13-3 uses this idea to move the rectangle across the screen. 

l{{J REM PRE-SHIFT 
2{{J REM 
Jf(J 0$ = CHR$ (4) 
4{{J PRINT 0$ "BLOAD SQUARE" 
5{{J POKE 2J2,{{J: POKE 233,J 
6{{J HCOLOR= 3: ROT= {{J: SCALE= 1 
7{{J HGR 
8{{J DRAW 1 AT 2{{J,1{{J{{J 
9{{J FOR I = 21 TO 275 
l{{J{{J XDRAW 2 AT I,l{{J{{J 
11{{J NEXT I 

Listing 13-3. 

There are two very pleasant surprises with this program. The first is that it 
is short and simple, and the second is that it moves the figure quickly and 
with very little flicker! 

You might wish to compare this method with the earlier one of XDRAW
ing the shape on and off the screen. To do so, just make the following 
changes: 

8{{J FOR I = 2{{J TO 275 
9{{J XDRAW 2 AT I,l{{J{{J 
l{tJ{tJ XDRAW 2 AT I,l{tJ{{J 

Pre-shifting can be used for both horizontal and vertical movement. To 
determine the pre-shift for any figure, just XDRAW it once, shift in the 



154 APPLE II COMPUTER GRAPHICS 

desired direction, and XDRAW it again. To demonstrate, let's find the 
vertical pre-shift of our rectangle. From BASIC type: 

HGR 
XDRAW 1 AT 5~,5~ 
XDRAW 1 AT 5~,49 

The figure remaining on the screen is the vertical pre-shift of the rectan
gle. To use it, you need to include it in a shape table and then XDRAW it 
over the rectangle. Doing this will make the rectangle appear to move 
vertically. Creating a shape out of the pre-shift may still be a small prob
lem, but several of the Hi-Res editors are capable of that. 

Pre-shifting may also be used with byte-move shapes. To do this, the full 
figure is first drawn on the screen, and from then on pre-shifts are used to 
move it. As a consequence, there are seven versions of the pre-shift instead 
of seven yersions of the figure, and the proper pre-shift is selected by 
examining the remainder. 

Pre-shifting with byte-move requires that you "Exclusive Or" (EOR) the 
bytes in the pre-shift over the bytes on the screen. Remember, an "Exclu
sive Or" operation compares two bits and gives a positive (ON) result if 
either one of the originals was ON, but not both. Otherwise, the result is 
negative (OFF). The XDRAW command does exactly that with shape table 
figures, but since byte-move does not use a shape table, you must arrive at 
your own EOR routine. This is a pain from BASIC, but machine language, 
where byte-move is most advantageous anyway, has its own EOR com
mand so the routine is fairly easy to write. 

Back in the Paddle Again 

Just for fun, let's modify Listing 13-3 further to use paddle 0 to control the 
rectangle. 

8~ DRAW 1 AT 2~,1~~ 
9~ X = 2~: XO = 2~ 
1~~ OD = 1 
11~ REM 
12~ IF PDL (~) < 9~ THEN X = X-1: 

ND = ~: GOTO 14~ 
13~ IF PDL (~) > 15~ THEN X = X + 1: 

ND = 1 
14~ IF X < 2~ OR X > 275 THEN X XO 
15~ IF X = XO GOTO 11~ 
16~ IF ND < > OD THEN XDRAW 2 AT 

X0,1~~ 
17~ XDRAW 2 AT X,l~~:XO = X:OD = ND 
18~ GOTO 110 



CHAPTER 13-ADVANCED MOVES 155 

Lines 120 and 130 test the value of PDL(0) and decrement or increment 
the X-coordinate as needed. Line 140 keeps everything within range, and 
line 150 skips the XDRAW statements if there is no movement of the 
square-this helps to avoid flicker. 

In line 160, if the old direction (OD) is different from the new direction 
(ND) then the extra XDRAW is done. (Remember that series of XDRAW 
statements above?) Line 170 does the regular XDRAW and sets the old 
values to the new values. 

With these changes in effect, the rectangle will respond to paddle con
trol. 

When you add partial modification, pre-shifting, and pre-calculation to 
your repertoire, you give the final polish to your animation skills. That is 
about all there is to know about designing and animating figures, and in 
the next chapter we address a slightly different topic: collision detection. 

* * * One extra tid-bit for the Apple lie*** 

One annoying source of flicker in animation stems from changing the 
data being displayed while it is being scanned. The electron beam in your 
monitor or TV sweeps over the entire screen sixty times every second, 
much as a searchlight will sweep across the sky. The trick is to change the 
display data when the beam is not "looking." Over one-quarter of the time 
in each sweep is spent getting the beam from the bottom back to the top 
of the screen so it can begin the next cycle. This is called Vertical Blank
ing. Since nothing new can be displayed during this interval (about one-
200th of a second), this is the best time to switch the display data. With the 
Apple II+ there was no way to tell when the vertical blanking was occur
ring, but the lie has a special Vertical Blanking Location (VBL) at 49177 
($C019) which signals the vertical blanking interval to anyone who cares to 
look. When the vertical blanking interval begins, the value in the VBL 
drops to less than 128, and this value may be read using a PEEK statement. 

Let's suppose that the routine to animate the figure by changing the 
displayed data begins at line 1000, then line 1000 could read: 

lfl'fl'fl' IF PEEK (49177) > 127 GOTO lfl'fl'fl' 
lfl'lfl' Routine to POKE in new values 

Line 1000 will delay the changing of display values until the vertical blank
ing period begins, at which time it will drop through to line 1010 and 
begin changing. 

The VBL is still too new to fairly evaluate its usefulness, but it is getting 
mixed reviews from some of the current game programmers. Although it is 
nice to change the display data during the vertical blanking interval, doing 



156 APPLE II COMPUTER GRAPHICS 

so may slow the animation since movement is always delayed until the 
next vertical blanking interval. Having to wait for less than one-sixtieth of a 
second may not seem like much to you, but to your Apple it is quite a long 
time. We will just have to wait and see what new techniques are devel
oped for the Apple lie. 

Vocabulary 

Exclusive OR (EOR) 

Partial Modification 

Pre-Calculation 

Pre-Shift 

Vertical Blanking 

Vertical Blanking Location (VBL) 

Exercises 

1. Suppose that a figure beginning at (200, 190) on the Hi-Res screen 
travels with a slope of one-half (moves up one and right two each 
time). Develop a table containing its X-Y coordinate pairs from its 
origin until it runs into the TOP of the screen. (In the course of 
moving it will contact the right side of the screen. At that time it 
should begin to move up one and left two with each movement.) 

2. Use the table developed in Exercise 1 to animate the square from the 
shape table discussed in this chapter. 

3. Use partial modification to cycle through ten digits on the Hi-Res 
screen. 

4. Create a shape table containing a rectangle, its horizontal and vertical 
pre-shifts, its two diagonal (up one, over one) pre-shifts, and the pre
shifts required to move the rectangle up one, right two or up one, left 
two. (Use a graphics editor if you own one!) 

5. Use each of the pre-shifts developed in Exercise 4 to move the rectan
gle. 



14 
Collision Course 

Objectives 

After reading Chapter 14 you should be able to: 

• Detect a collision between objects on the screen using either the box 
method or the contact method. 

By this time you should have your figures moving smoothly about the 
screen. In this chapter we will touch on a vital element of most every 
arcade game in existence: detecting a collision between two objects on the 
screen. 

It is trivial for you to see when two objects meet; you simply look at the 
monitor! However, your Apple II does not have eyes, so it is in the same 
position as a blind person who uses a cane to probe for objects in his or 
her path. This analogy actually contains more truth than it has a right to. 

Imagine the problem of dealing with just two objects on the screen. It is 
theoretically possible to keep a list of all the X-Y coordinates used in each 
shape, and then to check for collision by seeing if there is a coordinate 
pair which lies in both shapes. Suppose that one shape is plotted on [(1, 1 ), 
(1,2),(1,3)], and the second uses coordinates [(1,2),(2,2),(3,2)]. In this case 
there must be a collision, since the point (1,2) is a part of both shapes. 
Sound si m pie? 

Unfortunately, this method quickly becomes unworkable since, when 
animating, you are continually changing the points used in each shape, so 
you would have to continually change all of the lists. More important, the 
task of cross-checking each point gets quickly out of hand since even a 
trivial figure will contain perhaps ten points. Cross-checking two such 

157 



158 APPLE II COMPUTER GRAPHICS 

figures leads to 100 checks, and three figures may give you 1000! So much 
for that idea. 

We are going to examine two methods which both use the blind-man's 
cane approach. We will fire a missile at a shape stolen from CROSSFIRE 
(by J. Sullivan), and as the missile moves, we will continually check its 
path. The shape table is given below, so take a few minutes now to enter 
and save it. From BASIC type: 

CALL -151 

3fJfJ: fJ2 fJfJ fJ6 ~fJ 4A fJfJ 4D 49 
3fJ8: 49 69 18 DF DB DF DB fJ7 
31fJ: 48 49 69 4D 49 18 DF DB 
318: DB DB fJ7 48 fJD 6D fJD 6D 
32fJ: fJD D8 DB FB DF DB 48 fJ9 
328: fJD ~ fJD 4D fJl D8 DF FB 
33fJ: DF FB fJ8 4D 49 4D 49 fJ5 
338: 18 DF DB DB DB fJ7 ~8 4D 
34fJ: 49 49 49 fJ5 D8 FB DB DB 
348: DF fJ~ 36 27 ~D 36 ~~ ~~ 

BSAVE XFSHAPE, A$3fJ~,L$5fJ 
3 D~G 
POKE 232,~:POKE 233,3 
HGR: HCOLOR = 3 : SCALE= 1: ROT= fa 
DRAW 1 AT 2~,2~ 
DRAW 2 AT 2~ 5~ 

The first shape is our target. It should look a bit like a spider. The second 
shape is the missile, and it should look like this: 

x 
xxx 
xxx 

When you get the table saved correctly, you are ready to animate. We 
will leave the spider al<;me and move the missile back and forth across the 
bottom of the screen using paddle 0. When the paddle button is pressed, 
we will move the missile up the screen until we bump into either the 
spider or the top of the screen. To effect that movement, we will plot and 
erase the missile, then move up one line and do it again. Before each 
movement of the missile, we will check the space it is moving into and see 
if there is something (the target) already there. Instead of checking to see if 
something hits the target, we will see if something runs into the missile! 

We will develop the program in two stages. The following commands 
will get the basic movement started. You may omit any REM statements 
except 150 and 500 which are used as entry points for GOTO statements. 



l({J D$ = CHR$ (4) 
2({J PRINT D$ "BLOAD XFSHAPE" 
3({J M({J = 5:M = 5 
8({J REM 
85 POKE 232,~: POKE 233,3 

CHAPTER 14-COLLISION COURSE 159 

9({J HGR : HCOLOR= J: ROT= ~: SCALE= 1 
l~(lJ DRAW 1 AT 14({J,5({J 
llrtJ XDRAW 2 AT M,15~ 
12(lJ REM 
13rtJ REM CHECK PADDLE 
14~ REM BUTTON 
15({J REM 
16fa IF PEEK (-16287) > 127 THEN 

GOSUB 5rtJfa 
17({J REM 
18({J REM MOVE MISSILE 
19(lJ REM 
2({J(lJ IF PDL (~) < 9~ THEN M = M-2: 

GOTO 22(lJ 
21~ IF PDL ( ~) > 15~ THEN IF M < 277 

THENM=M+2 
22~ IF M < 1 THEN M = 1 
23(lJ IF M = MrtJ GOTO 25~ 
24({J XDRAW 2 AT M({J,15({J: XDRAW 2 AT M,15~: 

M~= M 
25~ GOTO 15(lJ 
48({J REM 
49~ REM COLLISION DETECT 
5~~ REM 
51({J REM WE'LL PUT THIS IN SHORTLY! 
52({J PRINT CHR$(7):RETURN 

Listing 14-1. 

This listing will get the spider onto the screen and the missile moving 
under paddle control. When you press the paddle 0 button the computer 
will beep at you, which indicates that the (ps yet non-existent) fire/ 
collision-detect routine has been called. 

M0 is the "old" X-coordinate of the missile, and M is the new one. The 
missile is moved by decrementing or incrementing M (lines 200 and 210), 
then XDRAWing to erase the old missile, and then XDRAWing again to 
plot the new one (line 240). 

After you have the missile moving across the bottom of the screen, we 
will talk about the collision routine. Run the program as you have it so far, 
and press CTRL-C to recapture control while leaving the spider on the 
screen. Imagine that there is a little box drawn around the spider. In fact, 
put the box there by typing these four lines from BASIC. 



160 APPLE II COMPUTER GRAPHICS 

HPLOT 137,38 TO 153,38 
HPLOT TO 153,51 
HPLOT TO 137,51 
HPLOT TO 137,JS 

As we move the missile up the screen we will check to see if it moves 
inside that box, and if so-BOOM! To get that to happen, add these lines 
to your program: 

4{i' REM 
5fl' REM SET BOUNDARIES 
6fl' REM 
?fl' YMAX = 51:MINX = 1J7:MAXX = 153 
5lfl' PRINT CHR$ (7): REM BELL 
52fl' C = fl': REM COLLISION FLAG 
5Jfl' FOR Y = 149 TO fl' STEP -1 
54fl' IF Y < YMAX THEN IF M > MINX 

AND M < MAXX THEN C = 1: REM COLLISION! ! 
55fl' IF C THEN PRINT CHR$ (7); CHR$ (7); 

CHR$ (7): XDRAW 2 AT M, Y + 1: GOTO 62fl' 
56fl' XDRAW 2 AT M, Y + 1: XDRAW 2 AT M, Y 
57fl' NEXT Y 
58fl' REM ERASE MISSILE <@ TOP 
59fl' y = y + 1 
6fl'f{J XDRAW 2 AT M,Y 
61fl' REM DRAW NEXT MISSILE 
62f{J XDRAW 2 AT M,15fl' 
6Jft' RETURN 

Listing 14-2. 

Line 70 sets the boundaries for the square. The upper boundary is ig
nored in this example because the missiles always come from below. 

Line 540 is the line that actually detects any collision. It first checks the 
Y-coordinate at the tip of the missile to see if it is high enough to possibly 
strike the box. If so, then the X position is checked to see if it is in the 
correct horizontal range. If the answer to all of these is "yes," then we 
have a collision and the flag (C) is set to 1 for later reference. 

Line 550 is where you jump to get your nifty explosion routine, but since 
this is only an example, all we do is set off the bells and whistles. We then 
erase the missile from its last position and jump to where a new missile i~ 
drawn at the bottom-big deal! 

In this case, since the target is stationary, it would be advantageous to 
check the X-coordinate before the Y. If the X value is within the range of 
the target, there is bound to be a collision. In that case you need to check 
only the Y-coordinate as the missile rises in order to tell you when the 
missile strikes the target. If the X is not within range, then the missile will 



CHAPTER 14-COLLISION COURSE 161 

always miss the spider so you do not have to check either coordinate 
again, just let the missile make its way to the top of the screen. This sort of 
specialized adjustment can often streamline your animation. 

The box method used in the example is fairly simple, but it is a little 
sloppy since it declares a collision based on some imaginary square instead 
of actual contact with the target. Further, we only checked for the center 
of the missile, and the center may actually miss the spider when one of the 
edges hits it. Unfair! If you have ever played a game which has sloppy 
collision detection (and there are a bunch of them) you know how frustrat
ing that can be. 

Checking across the full width of the missile is pretty easy, so we leave 
that to you. The problem of detecting an actual contact is more interesting. 
To accomplish that, you will have to take a PEEK at Hi-Res memory to see 
if the missile is about to move onto a dot which is already turned on. (In 
this example, the only dots turned on are in the target.) Dealing directly 
with memory from BASIC is always complex, and it gets worse because we 
need to look at individual bits. Type the following changes to the existing 
program. 

DEL 4~,7l{3 

5 GOSUB llf'lf'lf': REM CALC Y ADDR. 
515 Q% = M I 7:R% = M-7 * Q%:R% R% + 1 
536 V% = PEEK (Y%(Y) + Q%) 
538 FOR I = 7 TO R% STEP -1 
54l{3 P% = 2 " I 
542 IF V% > = P% THEN V% = V%-P% 
544 NEXT I 
546 IF V% > = 2 " I THEN C = 1 
llf'~lf' REM 
llf'llf' REM CALCULATE Y 
1l{32l{3 REM COORDINATES 
llf'Jlf' REM 
1l{34l{3 DIM Y%(192) 
1l{35l{3 FOR I = l{3 TO 184 STEP 8: READ SA% 
1l{36l{3 FOR J = f{} TO 7:Y%(I + J) = SA% + 

J * 1l{324 
1l{37l{3 NEXT J, I 
1l{38l{3 DATA 8192,8J2l(3,8448,8576, 

87~4,8832,896~,9~88 
1l{39l{3 DATA 8232,836~,8488,8616, 

8744,8872,9~~l{3,9128 
11~~ DATA 8272,84ftJl{3,8528,8656, 

8784,8912,9flJ4~,9168 
111~ RETURN 

Lines 5 and 1000 to 1100 should be familiar from previous chapters; they 



162 APPLE II COMPUTER GRAPHICS 

set up a table which assigns to each line on the screen (0-191) its starting 
address. 

Line 515 divides the X-coordinate by 7 to determine which of the 40 
bytes across the screen the missile is in (Q%), and which dot in that byte 
will be the point of the missile (R%). Let's suppose that the missile is fired 
at X-coordinate 45, so the tip is in byte number 6 and dot number 3 
(counting the first dot in each byte as number 0). As we move the missile 
up, we need to check the third dot in the byte above the missile before we 
move. As long as that dot is off, then there is nothing to hit. If that dot is 
on, then we are about to run into the target, and need to set the collision 
flag. 

Isolating a particular dot is clumsy, but lines 338-546 do the job. Line 
336 sets V% to the value of the byte you need to check. To understand 
how these lines operate, it is instructive (though tedious) to set V% to, say 
!0011 1100 (60), and step through those lines by hand. Here we go. 

If the X-coordinate is 45, then line 515 calculates R% to be three (we are 
checking for dot number 3 in the byte), and then adds 1 to it so R% enters 
the loop at 538 with a value of four. Dot number 3 corresponds to the 
fourth bit from the right, yes the FOURTH bit, for they are numbered 0, 1, 
2, and 3. 

P% is the value determined by two to the "I" power, and that just 
happens to correspond to each digit in a binary byte. Two to the eighth is 
the left-most bit (128), two to the seventh is the next bit over, and so on. 

Each time the loop is executed, it effectively checks one of the bits in the 
byte and turns it off if it happens to be on. This continues until the bit 
indicated by R% is reached. Let's run through the example using Figure 
14-1. 

I P% V% 
---- ------- -----------------------
7 128 6f(J = !f(Jf(Jll llf(Jf(J 
6 64 6f(J = !f(Jf(Jll llf(Jf(J 

5 32 28 = !f(Jf(Jf(Jl llf(Jf(J 
4 16 12 = !f(Jf(Jf(Jf(J llf(Jf(J 

---- ------- -----------------------
3 12 = !f(Jf(Jf(J~ llf(Jf(J 

Figure 14-1. 

The first time through the loop, I = 7, so P% = 128. Line 542 finds the 
comparison (IF V% > = P%) false, so it does not subtract anything from 
V%. The second time through, P% = 64, still greater than V%, so again 
nothing happens. But on the third iteration, I = 5, P% = 32, so P% is 
subtracted from V% to reset V% at !0001 1100. As promised, the bit was 



CHAPTER 14-COLLISION COURSE 163 

turned off. The next time through, when I = 4, the next bit is also turned 
off. After that the loop is halted since I has reached the value of R%. 

Therefore, at the end of the loop, V% equals 12, which in binary is !0000 
1100. We were trying to check the fourth bit from the right, and we do 
that now with line 546. The left-over value of I is three, so V% is compared 
against two to the third, or eight. The only way for V% to be greater than 
or equal to eight is for the fourth bit to be on, so the collision flag is set. 
Whew! 

I 

7 
6 
5 
4 

3 

P% 

128 
64 
32 
16 

52 = 
52 = 
2~ = 
4 = 

4 = 

Figure 14-2. 

V% 

!~~11 ~l~fl' 
!fl'fl'11 fl'l~fl' 
!fl'~~1 ~l~fl' 
!fl'~fl'~ fl'lfl'fl' 

Figure 14-2 shows the same procedure performed when V% = 52 
where the fourth bit is off. There should not be a collision indicated. If you 
follow the loop through, you will see that the comparison at line 546 fails, 
so the flag is not set. We told you that it would be rather awkward to 
check single bits! 

One weakness of this routine (as in the previous one) is that it only 
checks the center of the missile, so it is possible to contact the target with 
the left or right sides and still not detect a collision. Two trivial modifica
tions to the routine will cause it to check across the entire width of the 
missile, but again we leave them for you to discover! 

When you run this version of the program, you will notice that a colli
sion is detected only when the missile actually contacts the target. You will 
also notice that the animation is slower due to the increased processing 
involved in this scheme-you can't have everything. 

With a little effort, the BASIC code can be streamlined to enhance the 
execution, but the real gain is made by writing this collision detect in · 
machine code, something we will not cover here. 

The contact collision detect is further complicated if you have other 
objects on the screen, such as clouds, where the missile is required to 
ignore the contact. There are two commonly used ways to handle this. 

In THRESHOLD, a table is kept of the current position for each target. 
When any collision is flagged, that table is scanned to see if there is a 
target close. If so it is destroyed, and if not the collision is ignored. One 
interesting side effect is that when two THRESHOLD targets are close 



164 APPLE II COMPUTER GRAPHICS 

together, the scanning routine will sometimes decide that the wrong one 
has been shot. 

The other method of dealing with extraneous objects is to use both Hi
Res screens. One screen is displayed with all the missiles, targets and other 
junk on it, while the other has only the missiles and targets on it, and is not 
displayed. The collision detect routine can then check the second screen 
and not even worry about the extra figures! In some applications the extra 
time needed to process two screens is offset by not having to decide what 
you ran into. 

In Summary .••• 

That about wraps it up. Hopefully this book has shed some light on ways 
to make Apple graphics do what you want them to, and how many of the 
games achieve their effects. 

So now you have it-the tricks of the animation trade. The ideas pre
sented here are the most common and effective techniques currently used 
with the APPLE II. Programming personal computers is a creative and fast
paced sport. It is limited only by the programmer's imagination, so we can 
expect that before too long there will be new, improved methods-that's 
(programming) life! However, the animation techniques you have learned 
here will still be useful, and the skills gained will help you to understand 
and implement the new approaches. 

Vocabulary 

Box method 

Collision flag 

Contact method 

Exercises 

1. Use the table which contains the apple shape (from Chapter 10) to 
animate two apples on the screen, each under control of one of the 
paddles. (If you do not have paddles, control the apple's movement 
with the keyboard.) Write a collision detect routine using either the 
box or contact method to determine when the two shapes collide. 

2. Use the program from Chapter 13 (Listing 13-2), which moves the 
byte-move line across the screen, and draw the spider shape in its 
path. Write a routine to signal when they contact. 

3. Write a computer game and make a million bucks. 



Appendix 1 
DecimalJ HexJ and 

Binary 

We are assuming that you have read the discussion of binary and hexade
cimal in Chapter 2, and that you have a reasonable grasp of that material. 
In this section we will delve deeper into the structure of the three systems 
of numeration in order to give you the background needed to understand 
the techniques needed to transform the numbers used by your Apple II. 
For instance, why is the decimal form of an address found from the hex 
form by taking 256 times the decimal value of the hi-byte plus the decimal 
value of the lo-byte? And how can anybody say that 38400 is equivalent to 
-27136??! All of this will be explained ... and more. But first we are going to 
acquire some background which sounds, and is, distressingly like the New 
Math. 

Positions, E11eryone 

When you were just a young sprout, your teachers probably explained to 
you the significance of a digit's position within a number. Five does not 
always mean five; the five in 56 indicates fifty, but more precisely, five 
tens. In 567, the 5 represents five hundreds, and in 5,678 it represents five 
thousands. The position of the digit within the number is significant. From 
right to left, you have the unit's place, the ten's place, hundred's place, 
and so forth. So 5,678 can be written as 

(5 x 103) + (6 x 1([)2) + (7 x 101) + (8 x Hl>0) 

which is 

(5 x 1000) + (6 x 100) + (7 x 10) + (8 x 1) 

Many of us unfortunates spent hours of our young lives writing numbers 
that way, called "expanded form," for no apparent reason. 

There is little or no use in writing decimal numbers in that form, but your 
fourth grade teacher (Miss Whitherstare, or whoever) did you an inadver
tent favor by making you learn it, for expanded form is one way to convert 
numbers from other outlandish bases, like binary and hex, to decimal. To 
convert a long hex number, like $89AB, to decimal, write it as 

(8 x 163
) + (9 x 162

) + (A x 161
) + (B x 16°) 

165 



166 APPLE II COMPUTER GRAPHICS 

Then convert each hex digit to decimal which gives you 

(8 x 4096) + (9 x 256) + (10 x 16) + (11 x 1) = 35243. 

There is a variation on this method which is handy when you are proficient 
with hex bytes. When dealing with bytes, recall from Chapter 2 we men
tioned that two hex digits could be used to represent one base 256 digit. 
Then the address given by $FF3A can be calculated as 

($FF x 2561
) + ($3A x 256°) 

= (255 x 256) + (58 x 1) 
= 35243 

To use this idea efficiently, you must know or be able to quickly calculate 
the value of numbers like $3A-a skill that comes with practice. 

The expanded form method also works when converting binary to deci
mal, but since binary is base two, you get two to all those powers instead 
of sixteen. From right to left in binary, the first position is the ones (2°) 
place, then the two's (21

) place, the four's (22
) place, the eight's (23

) place, 
and so on. Therefore, you may write !110101 as 

(1 x 25
) + (1 x 24

) + (0 x 23
) + (1 x 22

) 

+ (0 x 21
) + (1 x 2°) 

Or even simpler, since it is either one or zero times the place value 

32 + 16 + 4 + 1 
= 53 

This was calculated by adding the place values with ones in them, and 
ignoring the places containing zeros. 

Wonderful, but you already knew how to convert from binary and hex 
to decimal. These ideas will help you to become more familiar with what 
you are doing, and make you faster and more flexible in your conversions. 
Converting to decimal is fairly straightforward, but unfortunately the same 
is not true of converting from decimal to binary or hex. 

Decimal ta Binary 

When converting to binary, you can start by finding the highest power of 
two which will go into the decimal number-if you can get your hands on 
a calculator, now would be a good time to do so. Let's take 421 as an 
example to convert: 29 (512) is too large to divide by 421, but 2° = 256 (a 
number to know in computing), and 256 will divide 421, albeit with a 
remainder of 165 (421-256), so we have a 1 in the 2° place which will be 
on the left end of our binary number. The next lowest power of two is 128, 
which divides 165 leaving a remainder of 37. So far our binary number is 
11 xxxxxxx. Dropping to the next power of two (64) we see that it will not 
divide the present remainder (37) so we put a zero in the next place in our 



APPENDIX 1-DECIMAL, HEX, AND BINARY 167 

number (110xxxxxx). 32 will divide 37 to yield a 1 in the next place 
(1101 xxxxx) and a new remainder of 5. 16 and 8 both fail to divide the 5, 
so we place two more zeros (110100xxx). 4 divides the 5, 2 fails to divide 
the remainder (1 ), and we are left with a 1. So the last three digits are 101, 
to give us the binary equivalent of 421 as !110100101. The algorithm is 
tedious, but simple-a good candidate for a computer program! 

REMEMBER: When converting decimal to binary, divide by the largest 
possible power of two to form the quotient and remainder (no decimal 
points!). Take the remainder of the first division and attempt to divide it by 
the next lower power of two, and so on, attempting to divide each remain
der by the next power of two until you reach a division by 1. Any success
ful division gives you a 1 in the corresponding place, while an 
unsuccessful division yields a 0 in that place. 

Decimal ta Hex 

Converting decimal to hex follows the same general outline as decimal to 
binary, but it is complicated by having sixteen possible values for each 
digit instead of two as in binary. When you were dividing by powers of 
two, each power of two went into your number either once, to give you a 
1, or not at all, which gives you a 0. If your power divided the number 
more than once (two or more), then you knew that you shou Id have been 
dividing by a higher power of two. 

The unfortunate who converts decimal to hex finds himself or herself 
dividing by powers of sixteen (1, 16, 256, 4096), and a power of sixteen 
may divide the number anywhere from zero to fifteen times! For example, 
let's convert 1019 to hex. 

256 is the largest power of sixteen which will divide 1019, and when you 
perform that division on your calculator, the answer is 3.9804 and so on, 
so 256 goes into 1019 three times with something remaining. That means 
you put a 3 in the 256's place (What .256's place?!). Since this is the first 
division, the 3 is on the left end of the hex number, and now you need to 
know the remainder of the division. To find that (since your calculator is 
grossly inaccurate and truncates after ten or fifteen decimal places), multi
ply three by 256 and subtract the result from 1019 (1019-3x256), to get 
251. 

Now divide 251 by the next power of 16 (which happens to be 16 itself), 
and your calculator will display a fifteen, a decimal point, and garbage. 
The fifteen indicates that you have an "F" (the hex equivalent of 15) in the 
next place of your hex number, which so far looks like $3F, and the 
decimal point garbage means that you must calculate a new remainder by 
multiplying sixteen times "F" (15), and subtracting from 251 (251-1.5 x 
16) to get 11. Therefore, the last digit of the hex number is "B" (the hex 
equivalent of eleven, silly!), so the entire number is $3FB. Still a little hazy, 



168 APPLE II COMPUTER GRAPHICS 

you say? It takes some practice before you will be comfortable with hex, 
unless you were born with sixteen fingers! 

Let's convert 41141 to hex. 4096 (163
) is the largest power to divide 

41141, and it does so ten times with a remainder, so the left-most digit will 
be $A (hex for 10). Calculating the remainder (41141-10 x 4096) gives 
you 181. The next power of sixteen (162 or 256) will not divide 181 at all, 
so put a zero in the place following the "A" and get $A0. Dividing 181 by 
16 gives 11 with a remainder of 5, so the last two digits are "B" and 5, and 
the entire number is $A0B5. TA DA!! 

In a Nutshell: 

To convert a decimal number to hex, divide the decimal number by suc
cessively smaller powers of sixteen, each time using the quotient as the 
hex digit, and the remainder as the decimal number for the next division. 

There is an alternate method which uses hex to help convert large ugly 
decimal numbers to large ugly binary numbers and vice versa. Take 65385 
for a sample. Start by converting to hex as we showed you earlier: 

65385 = (15 x 4096) + (15 x 256) + (6 x 16) + (9 x 1) 
= $FF66 

Do not take our word for it-try it yourself! The next step is to convert 
each of the four hexadecimal digits to binary using the chart we gave you 
in Chapter 2: $F = ! 1111, $6 = 0110, and $9 = !1001. Armed with this 
information you can write the entire number in binary: 65385 = $FF69 = 
! 1111 1111 0110 1001. Using hex as an intermediate step saves you from 
having to calculate the highest power of two which goes into 65385. 
(Turns out to be 215 or 32768!) 

To convert a large binary number (say !1001 0110 0000 0000) to decimal 
we use the same scheme in reverse. That binary number is $9600 in hex, 
which in turn is (9 x 4096) + (6 x 256) + (0 x 16) + (0 x 1) = 38400. 

Adding and Subtracting Hex 

When working with the computer's memory, you will at some point or 
other be forced to add and/or subtract addresses. An example is given in 
the discussion of shape tables where it is suggested that you might load 
multiple tables into memory consecutively, and then place the HIMEM 
boundary below them in order to protect the tables from the machinations 
of APPLESOFT. Do not panic if you do not know about shape tables yet. 
For this application just think of a shape table as a bunch of bytes that you 
want to load into memory. 

Let's suppose that you have two tables to load, one $876 bytes long and 



APPENDIX 1-DECIMAL, HEX, AND BINARY 169 

the other $5A7 bytes. You will first add the two lengths together, and then 
subtract the total from the H IMEM value-$9600 if you have 48K and 
DOS. 

There are several methods used to perform the calculations. The way 
most of us began was to convert all the numbers to decimal, perform the 
addition and/or subtraction, and then convert to hex again-a safe, though 
time-consuming approach. The other extreme is to do the entire operation 
in hex, and very few people can actually carry that off. The technique we 
will demonstrate leaves the numbers in hex, but you mentally convert 
each of the digits as you go. Write the two numbers to be added so that 
one is atop the other, as below. 

$876 
+ $5A7 

A 

Figure A1-1. 

1 

$876 
$5A7 
$E1D 

B 

You begin, as usual, from the right and add 6 and 7 to get thirteen. Miss 
Whitherstare told you that thirteen was "three carry one", but (aha!!) you 
are working in hex, so thirteen is written as "D" and there is no carry. Add 
the next two digits, 7 and "A" to get seventeen. Seventeen is one more 
than the magic number for hex (sixteen), so you write down the "1" and 
carry the sixteen over to the next column as a one (See Figure A 1-1 B). If 
that sounds strange, remember how you handle 7 + 4 in decimal: the sum 
is eleven (ten plus one), so you write the one down and carry the ten over 
as a one in the next column! 

In base ten you carry tens to the next column, and in base sixteen (hex) 
you carry sixteens. 

We are down to adding the last column, in which you add the 8, the 5, 
and the 1 from the carry, and get fourteen which is $E. This gives you 
$E1 Das the combined length of the two tables. You are doing very well so 
far. 

Do not get too confident though, you still need to subtract that amount 
from HIMEM ($9600) to find the new value to use. 

The first subtraction pits 0 against "D", and you have the age-old problem 
of borrowing, but in hex you borrow sixteens instead of tens. If you at
tended public elementary school after 1959 you are probably used to 
borrowing across the top, but if you do it differently, bear with us-the 



170 APPLE II COMPUTER GRAPHICS 

821 
5 F16 BF16 

$9600 $9S.0S ss-'1if 
- $0E10 - $0E10 OE10 

$ E3 $87E3 

A B c 

Figure A1-2. 

idea is the same. You borrow one from the 6 and turn it into sixteen in the 
next column to the right, while the 6 becomes a 5. You then borrow one 
from the sixteen, which becomes a fifteen ($F), and the borrowed one 
becomes sixteen in the right-most column-Arrgh! (See Figure A 1-28.) 

Now that the preliminaries are over, we begin the subtraction in earnest 
with the right hand column: sixteen subtract "D" (thirteen) is three. The 
next column shows F (fifteen) subtract 1, which gives E (fourteen) as that 
result. The next column again requires a borrow, so borrow one from the 
9, making it 8, and add sixteen to the five to get 21 (decimal!), as in Figure 
A 1-3C. Now you can calculate twenty-one less "E" (fourteen) to get 7, the 
eight carries down, and so the final result is $87E3. If you got a different 
answer, stay after class and clean the erasers! 

Let's try subtracting $4D from $3A7 for practice. Again the numbers are 
lined up, and you quickly see that a borrow is going to be needed (drat!). 

$3A7 
- $40 

923 

$3A7 
- $40 

$35A 

Figure A1-3. 

Borrowing hex one from the A leaves it a nine, and carries a decimal 
sixteen over to the seven to get decimal twenty-three. Twenty-three minus 
D (13) is A (10). Then you take four from nine to get five, and carry the 
three down. The final answer is $35A. 

Adding and Subtracting Binary 

Having to perform binary arithmetic is a curse that often befalls program
mers, even though the machine is supposed to do all the work. When 
faced with this proposition, you should keep in mind that zero and one are 



APPENDIX 1-DECIMAL, HEX, AND BINARY 171 

the only available digits, and that a binary two is written as 10, and binary 
three is 11. Why are those important? We will demonstrate by adding 
!0011 0110 to !0001 1101. 

~ 
1'1 1 1 

! 0011 0110 
+ ! 0001 1101 

! 0101 0011 

Figure A 1-4. 

Beginning at the right side, the first column. is 0 + 1 which gives you 1. 
You should also get a one in the second column without too much 
trouble-so far, so good. The third column gets more complex as you have 
1 + 1 . Any normal second-grader can tell you that 1 + 1 = 2, but 
programmers should make no pretense at normalcy. As we mentioned 
above, two is written as 10 (one-zero, not ten!}, which puts the zero in the 
answer and carries the one to the next column. Including the carry, that 
next column now requires you to add 1 + 0 + 1, which again gives 10 
(write down the zero and carry the one). The one is carried over to the 
fifth column where you now have 1 + 1 + 1 which yields three (11). For 
that, you must write down a one and carry a one to the next column 
which then looks like 1 + 1 + 0, and requires you to write down a zero 
and carry a one (10). Then the seventh column is 1 + 0 + 0 which is a 
one (and no carry) and the last column is 0 + 0 which is zero. That gives 
us a result of !0101 0011. WOW! 

Figure A 1-5 shows another example of adding binary, this tim~ with a 
carry off the end. · 

1 ~ 1111 .... 

8 11010 1100 
+ 11110 1010 

BIT I O 
BUCKET .10 1 0110 

Figure A1-5. 

The first column (right-most) gives zero, and both of the next two 
columns give ones. See how simple life is without a carry? The fourth 
column gives zero, carry one, and the fifth then gives one with no carry. 
Things warm up a little with the sixth column which gives zero, and carries 
one to the seventh. That column then also gives zero and carries on to the 
eighth column. This makes the eighth addition 1 + 1 + 1 which inevitably 
gives 11-write down one and carry one. Since a byte is only eight bits 
long, the bit you try to carry to the ninth column falls into the bit bucket 



172 APPLE II COMPUTER GRAPHICS 

and is ignored. For any of you interested in machine-level programming, 
when a bit is carried off the end of an addition, the processor sets a signal 
bit, called the carry flag, within the status register. That signals (to anybody 
who knows where to look) that the latest operation had to dump a carry 
into the bucket. 

Subtraction 

Figure A 1-6 shows an example of binary subtraction. 

!0011 0111 
!0010 0101 
!0001 0010 

Figure A1-8. 

Again you work from right to left, and you should have no problem 
arriving at the result. This sample was carefully constructed so that you 
could subtract without having to fiddle around with borrowing, not be
cause of cowardice, but because you never really have to worry about 
borrowing in binary. The fact is, your computer never subtracts, so why 
should you? Instead of subtracting a number, the arithmetic unit of your 
machine always ADDS a thing called the "two's complement." 

Two's Complement 

Forming the two's complement of a binary number takes two steps: first 
change all the ones to zeros, and all the zeros to ones, and second, add 
one to the result. To form the two's complement of !0010 0101, you first 
turn it into !1101 1010 and then add 1 to get !1101 1011. Now we can 
repeat the example from Figure A 1-6 using addition, but instead of sub
tracting !0010 0101, you will add its two's complement, !1101 1011. 

1 ~ 
C:) !0011 0111 
Ll+ !1101 1011 

!0001 0010 

Figure A1-7. 

The addition is shown in Figure A 1-7, and is fairly straightforward. The 
answer comes out th~ same as before, except for the carry from the last 



APPENDIX 1-DECIMAL, HEX, AND BINARY 173 

column which falls into the bit bucket that is ignored anyway. This is why 
the two's complement can be used as if it were a negative number, when 
it really is not. 

If you add any number to its corresponding negative value (five plus 
negative five) you will always get zero. The same thing happens when you 
add any binary number to its two's complement ... almost. Try adding 

!ff'ff'lf(J ff'lff'l 

and its complement: 

!11ff'1 lf(Jll 

You will get all zeros, except for the final carry which falls into the bucket. 
So we always expect that carry, and ignore it when it occurs. 

Figure A 1-8 shows another sample of subtraction using two's comple
ment. 

1, 
!1011 0011 8 !1011 0011 
!0110 1100 ___. !1001 0011 ___. + !1001 0100 

!0100 0111 

Figure A1-8. 

Notice that it is always the number being subtracted which is changed to 
its two's complement form. !0110 1100 is changed to !1001 0011, and then 
a 1 is added to get !1001 0100. This number is then added to !1011 0011 
to get !0100 0111, and as usual we ignore the bit in the bucket. 

Negati11e Addresses 

The two's complement essentially changes a number to its negative equiv
alent, so instead of subtracting a number you end up adding its negative. 
In a decimal setting you can think of it as changing the subtraction 9-3 
into the addition 9 + (-3) and the result is six in either case. 

The same idea lets some addresses be written in negative form for con
venience. When you wish to enter Monitor from BASIC you CALL the 
address -151. The true address for the Monitor entry point is 65385, and 
-151 is the two's complement of that address. If you convert 151 to its two
byte binary form (!0000 0000 1001 0111) and take the two's complement 
(to account for the negative) you get !1111 11,11 0110 1001. The not-so
quick conversion to decimal results in the expected value of 65385. You 
must admit that -151 is much easier to remember that 65385. 

Another reason for using the two's complement, or negative, form for 



174 APPLE II COMPUTER GRAPHICS 

some of the addresses is that the original language tor the Apple II, Integer 
BASIC, was incapable of handling a number greater than 32767. This 
meant that in order to CALL the 65385 address, you had to refer to its 
two's complement, -151. 

You can convert any address to its negative equivalent 'by either sub
tracting 65536 from the address (the easy way) or by forming its two's 
complement (the hard way). 

At this point you have probably learned more than you ever wanted to 
know about the hex and binary systems, but you have really just scratched 
the surface. There are several interesting ties between the topics we cov
ered here and the fundamental algorithms used by a computer. For exam
ple, a computer actually figures the sum of two numbers by comparing 
corresponding bits and using the logical operations "AND" and "EOR" 
(described in the text). Pursuing these topics would take us beyond the 
scope of this text, but that information may be found in a book on Boolean 
logic. 



Inverse 

Decimal 0 16 32 
Hex $00 $10 $20 

0 50 @ p ... 
~ 

1 $1 A Q I 
2 $2 B R II 

3 $3 c s # 
4 $4 0 T $ 
5 $5 E u °lo 
6 $6 F v & 
7 $7 G w ' 
8 $8 H x ( 

9 $9 I y ) 

10 $A J z • 
11 $B K [ + 
12 $C L ' I 

13 $0 M 1 -
14 $E N II 

15 $F 0 - I 

Appendix 2 
Character Codes: 
ASCII vs APPLE 

Table A2-1. Apple Screen Characters. 
Flashing Normal 

(Control) 

48 64 80 96 112 128 144 160 176 192 
$30 $40 $50 $60 $70 $80 $90 $A0 $B0 $C0 
0 @ p 0 @ p 0 @ 
1 A Q ! 1 A Q ! 1 A 
2 B R II 2 B R II 2 B 
3 c s # 3 c s # 3 c 
4 0 T $ 4 0 T $ 4 D 
5 E u °lo 5 E u °lo 5 E 
6 F v & 6 F v & 6 F 
7 G w ' 7 G w ' 7 G 
8 H x ( 8 H x ( 8 H 
9 I y ) 9 I y ) 9 I 
: J z • : J z • : J 
; K [ + ; K [ + ; K 
< L ' I < L ' ' < L 
= M 1 - = M 1 - = M 
> N " > N " > N 
? 0 - I ? 0 - I ? 0 

(Used with permission of Apple Computer Corporation) 

(lowercase) 

208 224 240 
$00 $E0 $F0 

p 0 
Q ! 1 
R II 2 
s # 3 
T $ 4 
u °lo 5 
v & 6 
w I 7 
x ( 8 
y ) 9 
z • : 
[ + ; 

' , < 
1 - = 
II > 
- I ? 



176 APPLE II COMPUTER GRAPHICS 

Table A2-2. ASCII Character Codes. 
DEC is ASCII decimal code 
HEX is ASCII hexadecimal code 
CHAR is ASCII character name 
n/a = not accessible directly from the APPLE II keyboard 

DEC HEX CHAR WHAT TO TYPE DEC HEX CHAR WHAT TO TYPE 

0 00 NULL ctrl@ 48 30 0 0 
1 01 SOH ctrl A 49 31 1 1 
2 02 STX ctrl B 50 32 2 2 
3 03 ETX ctrl C 51 33 3 3 
4 04 ET ctrl D 52 34 4 4 
5 05 ENQ ctrl E 53 35 5 5 
6 06 ACK ctrl F 54 36 6 6 
7 07 BEL ctrl G 55 37 7 7 
8 08 BS ctrl Hor- 56 38 8 8 
9 09 HT ctrl I 57 39 9 9 

10 0A LF ctrl J 58 3A 
11 0B VT ctrl K 59 3B 
12 0C FF ctrl L 60 3C < < 
13 00 CR ctrl Mor RETURN 61 30 
14 0E so ctrl N 62 3E > > 
15 0F SI ctrl 0 63 3F ? ? 
16 10 OLE ctrl P 64 40 @ @ 
17 11 DCl ctrl Q 65 41 A A 
18 12 DC2 ctrl R 66 42 B B 
19 13 DC3 ctrl S 67 43 c c 
20 14 DC4 ctrl T 68 44 D D 
21 15 NAK ctrl U or - 69 45 E E 
22 16 SYN ctrl V 70 46 F F 
23 17 ETB ctrl W 71 47 G G 
24 18 CAN ctrl X 72 48 H H 
25 19 EM ctrl Y 73 49 I I 
26 lA SUB ctrl Z 74 4A J J 
27 lB ESCAPE ESC 75 4B K K 
28 lC FS n/a 76 4C L L 
29 1D GS ctrl shift-M 77 40 M M 
30 lE RS ctrl" 78 4E N N 
31 lF us n/a 79 4F 0 0 
32 20 SPACE space 80 50 p p 
33 21 ! 81 51 Q Q 
34 22 II II 82 52 R R 
35 23 # # 83 53 s s 
36 24 $ $ 84 54 T T 
37 25 °lo % 85 55 u u 
38 26 & & 86 S6 v v 
39 27 I 87 S7 w w 
40 28 88 58 x x 
41 29 89 59 y y 
42 2A 90 SA z z 
43 2B + + 91 SB [ n/a 
44 2C 92 SC '\. n/a 
45 2D 93 SD 1 ] (shift-M) 
46 2E 94 SE 
47 2F 95 SF n/a 

(Used with permission of Apple Computer Corporation) 



Appendix 3 
Memory Maps 

Memory Map of a 4SK Apple II 

Funcrion 

APPLE MONITOR 

APPLESOIT 

RESERVED 

1/0 DECODE 

DOS 

UNUSED 

HI·RES PAGE 2 

HI· RES PAGE I 

UNUSED 

TEXT /LO· RES PAGE 2 

TEXT/LO·RES PAGE 1 

DOS VECTORS 

UNUSED 

TEXT INPUT BUFFER 

6502 STACK 

ZERO PAGE 

Figure A3-1. 

177 

Address 

S FSOO·S FFFF 
$ECOO·$F7FF 

$00<.X'·SDFFF 

SCOOO·SCFFF 

$9600·$ BFFF 

$6000·$9SFF 

$4000·$5FFF 
$2000·$3FFF 

SC00·$1FFF 

S800·SBFF 

S.JOO·S7FF 

SJCO·SJFF 

S300·$3BF 

$200·$2FF 

$100·$IFF 

SO·SFF 



"'"' c m 
CD a. 
E 
it" 
:::r 
"a 
CD 
"I a ;;· 
m c;· 
:I :!! 
D CD 
... II: 
Jiii Cl "a 

"a Jiii 
ii w 
n I 
a !" a 
"a 
II: 
~ 
CD 
"I 

fi? 
"I 

"a a 
"I 

I ;;· 
:I ....., 

$400 1024 
$480 1152 
$500 1280 
$580 1408 
$600 1536 
$680 1664 
$700 1792 
$780 1920 
$428 1064 
$4A8 1192 
$528 1320 
$5A8 1448 
$628 1576 
$6A8 1704 
$728 1832 
$7A8 1960 
$450 1104 
$400 1232 
$550 1360 
$500 1488 
$650 1616 
$600 1744 
$750 1872 
$700 2000 

s-NM1~~~~~<m~C~~S-NM·~~~~~<muC~~S-NM•~~~ 
aaa=~=~==~==~===MMMMMMMMMMMMMMMMaaaaaaaa 

c-N..-.•~~~~~m-N""'.,"'~~~~~-N,....,~~~~~ 
CD - N fl"\ .. V'\ '\Qr- GO~ - - - - - - - - - -.N N N N N N N N N N,....,.... f"'\ fl"\""' f"'\ ..-. I"-"\,..,""" 

.... 
~ 

> -a 
-a ,.. 
"" = 
("') 

0 
~ 
-a c .... 
"" ,., 
C"j 

~ 
-a 
:c 
?i 
Cl' 



-I 
0 
0 

~ ;· 

i 
~ $2000 a 
a $2080 .. S21M 1J 
!f $2180 
!i .. $22"8 Q. 
Q. 

i $2280 
g_ S23e0 Q. 

a $2381 
ll 

a $2028 
[ S20A8 

! $2128 

~ 
$21A8 

i $2228 

~ 
S22A8 

2. $2328 
c S23A8 3 
!3 .. $2150 
:J 
Q. 

l $2000 
c:r $2151 
:J 

;· $2100 
~ $2250 

$2200 
$2350 
$2300 

/' 

" 

8192 
8320 f\-........... 
8448 
8576 
87"4 

\j 
8832 
8960 
9"88 
8232 
8360 
8488 
8616 
8744 
8872 
9""0 
9128 
8272 
8400 
8528 
8656 
8784 
8912 
9040 
9168 

Figure A3-3. 

(Used with permission of Apple Computer Corporation) 

n each box: 

•e seeee 
1824 $8488 

2848 se8ee 

3e12 sec88 

4896 s1eee 

s12e Sl488 

6144 $1888 

7168 s1cee 

> .,, .,, 
m z 
c 
)( 
w 
I 
~ 
m 

§ 
~ 

~ 
J 

.... 
~ 



Glossary 
ADDRESS. A particular number that corresponds to each byte of mem

ory. 

ANIMATE. To make an object seem alive, to cause it to move about. 

ASCII. American Standard Code for Information Interchange; all the 
numbers and letters used on a computer are assigned numeric values. 
See page 138 of the APPLESOFT Reference Manual. 

BINARY. A system of numeration having only two characters, 0 and 1. 
Any number may be represented using multiple digits. For example, 
decimal 3 is binary 11 and decimal 5 is binary 101. Binary files are files 
stored in binary form. 

BIT. The fundamental unit of memory in a computer. A bit can be in one 
of two states-a high or low voltage. It is normally represented as either 
1 or 0. 

BLOAD. The command to load a binary file from disk or tape. 

BOX METHOD. A method of detecting collisions where you consider 
any shape entering a region around the target defined by a range of X
coordinates, and a range of Y-coordinates, to collide with a target. 

BSAVE. The command used to save a binary file on disk or tape. 

BUFFER. A temporary storage area. 

BYTE. A unit of information in memory made up of eight bits. For exam
ple, in binary, 1101 0111; in hexadecimal B7. A byte may contain any 
value between 0 and 255 decimal, inclusive. 

BYTE-MOVE. An animation technique in which the digitized shape is 
stored in memory and then moved into Hi-Res memory for display. 

CALL. A BASIC statement similar to GOSUB, except it executes a 
machine-level routine as opposed to a BASIC routine. 

CLASHING. The result of trying to plot colors from different color groups 
together in the same byte of memory. The results of clashing are unpre
dictable colors. 

COLLISION. In animation, when one shape runs into another. 

COLLISION FLAG. A value which is set by your routine to signal that a 
collision has occurred. 

COLOR BIT. The high-order (left-most) bit in a byte of the Hi-Res screen 
memory. The color bit determines to which of the two color groups the 
byte belongs to. 

181 



182 APPLE II COMPUTER GRAPHICS 

COLOR GROUP. Bytes displayed on the Hi-Res screen belong to one of 
two color groups. Bytes in group 1 may display dots which are black, 
white, green, or violet; bytes in group 2 may display black, white, blue, 
or orange. 

COLUMN ADDRESS. The portion of the address of a byte on the graph
ics screen which must be determined by that byte's position across the 
screen. 

CONTACT METHOD. A method for detecting collisions only when one 
shape actually contacts another, as opposed to the Box Method. 

COORDINATES, X and Y. The X-coordinate indicates a horizontal posi
tion, and the Y-coordinate indicates a vertical position. 

DECIMAL. The normal system of numeration which uses ten digits, 0 
through 9. 

DIGITIZE. To create a series of data values for a figure or other non
numeric item. 

DITHERING. A technique which places several of the the six elementary 
Apple Hi-Res colors in a pattern so it produces non-standard colors. 

DOS. An acronym for disk operating system, the controlling programs 
that make your disks behave properly (usually). 

DRAW. An APPLESOFT command which draws a shape on the Hi-Res 
screen. 

EDITOR. A program to simplify creating, altering, and saving either text 
or graphics. 

EXCLUSIVE OR (EOR). A Boolean (binary) operation which compares 
two bits and results in an ON state if either of the compared bits are ON 
but not if both are ON. 

EXEC. A DOS command which causes the computer to process the con
tents of a text file in the same way it usually handles keyboard input. 

FLICKER. Flash on and off quickly. Flicker is the bane of animation pro
grammers. 

FULL-SCREEN GRAPHICS. The graphics screens without four lines of 
text at the bottom. 

HEX or HEXADECIMAL. Referring to hexadecimal; a system of numera
tion using 16 different characters for digits: 0 through 9 and A through F. 
Hex numbers are conventionally preceded by a "$" to differentiate 
them from other types of numbers. $A is decimal 10, $B is decimal 11, 
and so forth. 

HIMEM. The value which represents the top of user-available memory. 
The APPLESOFT variables use HIMEM as a starting point. 



GLOSSARY 183 

HI-RES. High Resolution graphics. In Hi-Res graphics, all objects dis
played are made up of a number of small dots on the screen. 

HI-RES PAGES. The area in memory which may be displayed as pictures 
on the video output. 

HI-RES ROUTINE. A program designed to manipulate the contents of 
the Hi-Res pages of the Apple memory. 

HI-ORDER BYTE. In an address, the most significant (left-most) byte. For 
example, in the hex address $A30F, A3 is the hi-order byte (hi-byte). 

HUN. A BASIC command used to draw a horizontal line in Low-Res. 

LO-BYTE/HI-BYTE. The form Apple uses for hex addresses; the low
order byte comes before the hi-order byte. 

LOW-RES. A graphics mode of the Apple 11 where the video output is a 
number of small colored blocks. 

LOW-ORDER BYTE. In an address, the least significant (right-most) byte. 
For example, in the hex address $A30F, 0F is the low-order byte (lo
byte). 

MEMORY. Data storage area within the computer. 

MEMORY MAP. A diagram of the computer's memory. 

MIXED SCREEN GRAPHICS. The graphics screen with four lines of text 
at the bottom. 

MONITOR. The ROM resident machine-level language in your Apple. If 
written without the capital "M," the video display. 

MOVE. A command available from Monitor to move a block of memory. 

NIBBLE/NYBBLE. Either of the first or last four bits in a byte-half of a 
byte. 

OFFSET. A value added to the base address to locate a byte with respect 
to that base address. 

OPTIMIST. A programmer who codes in pen. 

PAGE. A unit of memory. 256 bytes of memory make up one page. 
When used in the context of graphics display, a page refers not to 256 
bytes, but to the area of memory which is to be displayed on the video 
screen. 

PARTIAL MODIFICATION. An animation technique where only the por
tions of the figure which change are redrawn. The rest are left alone. 

PEEK. A BASIC command which looks at a specified address in memory 
and returns the value that it finds there. 

PIXEL. The smallest unit of video display controllable by the computer. 



184 APPLE II COMPUTER GRAPHICS 

PLOT. To put something on the screen. 

POINT OF ORIGIN. The point within a shape where the defining vectors 
begin. 

POKE. A BASIC command which puts a specified value into a given 
location. 

POSITION ADDRESS. The portion of the address for a byte on the Hi
Res screen which is given by that byte's position within its box. See the 
Hi-Res memory map. 

PRE-CALCULATION. A method for reducing flicker. All the calculations 
needed for the animation. are done before the figure begins to move. The 
results are stored in a table for reference. 

PRE-SHIFT. (1) The result of DRAWing the shape once, shifting the 
shape in any direction, and then XDRAWing over the original. (2) A way 
of animating a shape by XDRAWing the necessary changes on top of it. 

PRIMARY PAGE. The first of two pages of either graphics or text. 

PROMPT CHARACTER. The character the Apple prints on your screen to 
remind you which language you are speaking to. Either APPLESOFT (]), 
Integer BASIC (> ), or Monitor (*). 

QUOTIENT. The result of a division. 

REMAINDER. The result of subtracting the product of the divisor and the 
integer quotient from the number originally divided. Loosely (and much 
more understandably), what is left over after an integer division. 

RAM. An acronym for random access memory. RAM may be altered by 
the program. 

ROM. An acronym for read only memory. ROM cannot be changed by 
software-you cannot write to it, you may only read it. 

ROM RESIDENT. Something stored in ROM; therefore, it is permanent. 

ROT. BASIC's Hi-Res shape rotation command. A shape rotates about its 
point of origin. 

ROUTINE. A program designed to accomplish a particular task. 

ROW ADDRESS. A portion of a graphics byte's address given by the row 
which the byte's box occupies on the memory map. 

SCALE. A BASIC command used to enlarge shapes. 

SECONDARY PAGE. The second of two pages of either graphics or text. 

SECTOR. A block of storage on a disk. One sector holds 256 bytes of 
data. DOS allows for 496 sectors to be available to the user. 



GLOSSARY 185 

SEPARATION. Any one of the seven versions of a figure required to 
move a byte-move figure horizontally. Each separation is shifted across 
one screen dot from the previous one. 

SHAPE. SHAPE is an Apple graphics construct. Any figure on the screen 
can be digitized so that it will operate with the APPLESOFT DRAW, 
XDRAW, ROT, and SCALE commands. Digitizing the shape can be a 
complex process, but a Hi-Res editor takes care of all the grubby details 
so that creating shapes is a quick, simple task. 

SHAPE TABLE. A number of shapes strung together. Again, a Hi-Res 
editor makes creating the shape tables a trivial exercise. 

SHLOAD. A command to load a shape table from tape. 

SOFT SWITCH. A memory location which controls something. You may 
set and interchange output modes using soft switches. 

TWO'S COMPLEMENT. A binary number formed from another by inter
changing ones and zeros and then adding one. 

USR. A BASIC command which passes a value to a machine language 
routine. The starting address for the routine must be placed in locations 
$0B and $0C, while a $4C must be put into $0A. When the routine is 
finished, control returns to the BASIC program. 

VECTOR. In shapes, a pair of instructions which tell the computer 
whether to plot at the current position, and which way to move next. For 
my math professor, an element of a vector space. 

VECTOR DIAGRAM. A figure drawn on paper showing all of the vectors 
as arrows. 

VLIN. A BASIC command used to draw a vertical line in Low-Res. 

XDRAW. An APPLESOFT command similar to DRAW. XDRAW switches 
on any pixel of the shape which is off, and switches off any pixel which 
is on. XDRAW is very useful for erasing shapes from the screen. 



Index 

Addition, 168-172 
Address(es), negative, 173-174 
Addressing, 6-7 
ALTCHARSET, 36, 37 
Animation, 13 s 

byte-move, see Byte-move process 
flicker in, 155 

APPLE EXC., 57, 58 
Apple screen characters, 175t 
APPLE TEXT, use, 112, 11 3 
APPLESOFT extensions, 21-30 
ASCII character codes, 32, 176t 

Bar graph, creating of, 119-12 3 
BASIC, memory move, 59f-60f 
Binary, 3, 163 

adding and subtracting, 170-172 
conversion of decimal to, 1 66-16 7 
conversion to decimal, 166 
difficulties in, 7 

Binary/hex c;:hart, 8f, 9 
Binary/hex examples, 9, 9f 
Binary number 

conversion of decimal to 168 
writing of, 9 ' 

Binary nibble, 9 
Bit(s),4, 5, 171 

color, 82-84, 92, 96 
combinations, Sf, 5, 6 
Hi-Res, 68, 69 

dot correspondence to, 69f 
patterns, 6 
value of, 5-6 

BLOAD command, 51, 116 
Blocks, plotting and erasing, 48-49 
BSAVE command, use, 51, 53, 106, 107 
Byte(s), 6, 171 

address of, 6-7 
divisions, for vector. encoding, 102f, 

102, 103-104, 105 
value of, 8, 9, 162 

changing of, 14, 15 
Byte-move process, 135-136, 150 

animation by, 136-138 
altering of, 138-139 
for horizontal animation, 13 9-142 
two-byte animation, 142-145 

Byte-move shapes, pre-shiftingwith, 154 

Calculation, 149-151 
CALL command, use, 21, 24-26 

in memory move, 60 

Character codes 
Apple screen, 175t 
ASCII, 176t 

Circle graphs, 129-132 
Circuits, 4 
Clashing, 95-96 
80 COL, 36 
Collision, detecting of, 157, 158-164 
Colon, use, 15 
Color 

Hi-Res, 81-96 
selection of, 123 

Color bit, 9.2, 96 

186 

for Hi-Res graphics, 82-84f 
Color codes, Low-Res, 44f 
Command(s), 2, 19 
Command extensions, 21 
Complements, forming of, 172-173 
Computer, physiology, 3-11 
CTRL-C, 6, 27, 159 
Cursor 

movement, so, sot 
positioning of, 123 

Data, 55 
displaying of, 119 

Data file, 55-57 
Data processing, 119 
DATA statements, 119, 137 
Decimal, 3 

conversion of, to hex, 167-168 
conversion to, 9, 10 

of binary, 166-167, 168 
of numbers, 165-166 

Digit(s), position within numbers 165 
Digital, digressing to, 4 ' 
Digitizing, 99, 100, 109, 116 
Dithering, 81, 93, 94 
3DOG command, 19 
DOS, 15, 16, 18 
Dot(s) 

Hi-Res, 65, 67, 68, 69-78 
double dot picture, 92, 92f 
quantity available, 91-93 

isolating of, 162 
patterns, POKEing of, 149 
plotting of, 109-11 O 
processing of, 90 
shape plotting and, 100, 101, 103 

Draw, use of, 105-106 
DRAWcommand, 108, 113, 114, 116, 135 



Editor(s) 
Hi-Res, 66, 100 
Low-Res, 48, 49-50 

EOR operation, 154, 174 
Equipment, 1 
EXEC, use, 57-58 

Figure(s) 
digitizing of, 99, 100 
saving of, 50-51 

Filename, 56, 57 
FOR-NEXT loop, 5~, 128 
Functional plotting, 128-129 

Glossary, 181-185 
GOTO statement, 28, 29, 158 
Graph, graphing 

circle graphs, 129-132 
drawing, 128-129 

Graphics, speed and efficiency, 147 
Graphics mode, 31-33, 35, 35f 
Graphics switch, setting of, 34 

HCOLOR, 92, 106, 116 
Hex, see Hexadecimal system 
Hexadecimal digit, conversion to num ... 

ber, 166 
Hexadecimal number 

conversion to decimal, 165 
writing of, 9 

Hexadecimal system, 3, 7-8 
adding and subtracting, 168-170 
binary/hex chart, 8, 9f 
binary/hex.examples, 9, 9f 
conversion of decimal to, 167-168 
conversion to decimal, 9-10 
digits, 9 

Hi-Res color, 91, 96 
clarification, 90-91 
color bit, 82-84 
colors available, 93-96 
dots available, 91-93 
positions possible, 91 
program, 84-90 

Hi-Res graphics, 62, 106 
display, 68 
dot pattern, 65, 69-78 
memory, 66-68, 161 
use,65 

Hi-Res graphics editor, 66, 100 
Hi-Res memory map, 69, 70f 
Hi-Res mode, 31, 32-33, 35f 
Hi-Res screen, 111 

clearing of, 73 
dots available, 91-93 
positions available, 90 
text placement on, 112-113 
use. 164 

187 

HIMEN,59,60,168,169 
setting of, 107, 108 

HLIN command, use, 21, 46, 47f, 47 
Horizontal animation, 140-142 
Horizontal axis, labeling of, 128 
Horizontal graph, 121 
Horizontal pre-shift, 1 S2 

Line graph, drawing of, 123-128 
Loop, checking of bits, 162 
Low-Res color codes, 44f 
Low-Res editor, 48, 49-50 
Low-Res graphics, 62 

creating pictures, 44-46 
use, 43-44 
memory, S3, S4, S8 

Low-Res memory map, 41 f 
Low-Res mode, 31, 32, 3Sf, 39 
Low-Res scan, S4f, SS, SSf 
Low-Res screen 

memory, 58 
placing text labels on, 121 

Memory, 4, 13, 161 
changing of, 1 5 
dealing with, 48-SO 
examining of, 14-15 
Hi-Res, 66-68, 161 
interpretation of data, 31 
Low-Res, S3, 54, 58 
moving of, 17-18, 58-61 
organization of, 1 S-16 
scanning of, S3-55 
size, 7 
writing from, 16-17 

Memory address, 7 
Memory map, 16, 16f, 18, 177f-179f 

Hi-Res, 69, 80f 
Low-Res, 41 f 
use, 40-41, 41f 

Memory move, BASIC, S9f-60f 
Modification, partial, 147-149 
Monitor, 13-14, 15 

commands, 19 
use, 14-15, 73 

MOVE command, use, 17, 18, S9 

Negative address(es), 173-174 
Nibble, 9 
Number, digit position within, 16S 
"Number crunching," 119 
Number table, 123, 124 
Numeric codes, assigning of, 32 

Offset, 105 

"P'' key, 27, 50 
Paddle 0, use, 154-15S, 1 S9 
PEEK function, 34, 37 



PEEK statement, use, 13, 21-23, 59, 161 
Pictures 

Low-Res, 44-46 
preserving of, 5 3-63 

Plot, hatching of, 46-48 
PLOT command, use, 21, 46, 47, 48 
Plotting, functional, 128-129 
POKE command, use, 13, 21, 23-24, 25, 

99,108 
POKEfunction,34,37,99, 138, 149, 151 
Power light, 4, 6 
Pre-calculation, 149-151 
Pre-shifting, 141-154 
PRINT PEEK command, 22, 59 
"PRINT USR(C)" statement, 27-28 
Prompt characters, 14 

RAM,4, 5 
altering of bytes, 14, 1 5 
erasure from, 5 

READ command, 51, 99, 108 
ROM, 4, 5, 13, 14 
ROT, use, 108-109, 110 

SCALE, setting of, 106, 108 
Scaling factor (SCU, 122, 12 7 
Scan,Low-Res,54,55 
SCL, see Scaling factor 
Screen 

clearing of, 16, 17 
shape generation on, 101 

SHAPE, use, 99 
Shape(s) 

byte-move, 154 
creating and placing of, 100, 109-115 
designing and digitizing of, 100, 116 
drawing of, 100-103, 105 
finding of, 105 
plotting of, 99 
UFO's, 103-104 
use of DRAW, 105-106 
use of ROT, 108-109, 110 

use of XDRAW, 115-116 
Shape commands, 135 
Shape table, 104-105, 111, 123, 127, 

158,168 
enteringandsaving, 106-108, 123-124 
location of, 105-106, 111 
shape drawing with, 109, 11 O 

Shifting, 1 51-1 54 
SH LOAD command, use, 108, 116 
Soft switches, 33-34 

addresses, 35f 
for display control, 36-37 
toggling, 33, 34 

Sound assembly, 61-62 
Subtraction, 168-1 7 2 

Tape, saving of, 107-108 
Text, placing of, 112-113, 121 
Text modes, 31-32, 35f 

memory map, 40-41 
use, 39-40, 41-42, 43 

Textscreens,31,32 
Toggle switches, 33, 33f 
Trigonometry, circle drawing with, 131 

UFO's, drawing of, 103-104 
USR statement, use, 26-29, 31 

Vector(s), 13 5 
digitizing of, 109 
shape drawing with, 100, 103, 135 

encoding of, 101-103 

188 

Vector codes, 101 f 
placing of, 102 

Vertical address, 42 
Vertical blanking, 155 
Vertical Blanking Location (VBU, 155 
VLIN command, use, 46, 47f, 47, 48 
Voltage, testing for, 4 

XDRAW command, 135, 152, 153, 154, 
155, 159 

use, 115-116 



"This book clearly explains a difficult and complex area 
with understanding, style, and wit . .. " I 

- Theodore Klein, Boston Systems Group 
I 

" Almost indispensable for anyone who wants to create 
graphics on an Apple II computer . .. " I 

-Robert Fisher, Computer Science, De Paul University 
I 

Includes Graphics Programming Features 
Available On The Apple lie! 

Apple II Computer Graphics 
Ken Williams, Bob Kernaghan, Lisa Kernaghan 

Finally-a clear, concise, state-of-the-art treatment of the graphics 
capabilities for the Apple lie-designed for users with a working 
knowledge of BASIC programming. Here you will find the cdmplete 
range of the most current graphics techniques, from placing dots on 
the graphics screen to artificial color generation, animation, and 
even sophisticated Byte-Move techniques. Written in an easy-to
read, self-study style, it's the only book you need to create sp~ctacu
lar high quality computer graphics without assembler or machine 
language skills. 

In this book you will find: 

• A complete explanation of the Apple II and lie graphics 
• Techniques for programming and designing many of today' s pop-

ular computer games _ 
• A complete section on business and technical graphics 
• Stimulating end·of-ch~pter exercises 
• Examples in assembler language for advanced users 
• A complete glossary and continual cross-referencing throughout! 

I 

CONTENTS 

Introduction I Computer Physiology / System Monitor~Mem
ory Tricks I APPLESOFT Extensions I Graphics Modes and Soft 
Switches I Text in Low-Res I Preserving Your Pictures ' 1' Hi-Res 
Graphics I Hi-ResColor I Shaping Up I GraphsandCharts I Byte
Move Shapes I Advanced Mo.ves I Collision Course I Decimal , 
Hex, and Binary I Appendices I Glossary I Index 

I SBN Q- 8 9 303-rLS - 4 


