

< ;"

~-.:)J,.,,,,,, --

APPLE II
USER'S GUIDE

APPLE II
USER'S GUIDE

BY LON POOLE
WITH MARTIN McNIFF

& STEVEN COOK

OSBORNE/McGraw-Hill
Berkeley, California

'

Apple, Apple II, Apple II Plus, Disk II, and Applesoft
are registered trademarks of Apple Computer Inc.
with regard to any computer product.

Published by
OSBORNE/McGraw-Hill
630 Bancroft Way
Berkeley, California 94710
U.S.A.

For information on translations and book distributors outside of the
U.S.A., please write OSBORNE/McGraw-Hill at the above address.

APPLE II USER'S GUIDE

234567890 DODO 8987654321

ISBN 0-931988-46-2

Copyright @ 1 981 McGraw-Hill, Inc. All rights reserved. Printed in the United
States of America. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise without the prior written
permission of the publishers.

PHOTO CREDITS: All photos by Harvey Schwartz unless otherwise indicated.

COVER DESIGN: Timothy Sullivan

ACKNOWLEDGEMENTS

We gratefully acknowledge:

Apple Computer, Inc .. , for supplying equipment and
information needed to write this book, as well as
providing a technical review of the manuscript.

Mike Lipschutz and the Byte Shop of Hayward, who kindly
provided a video monitor on a moment's notice.

Robert Thomson, for his research and writing, which provided
the foundation for Chapter 8 and the appendices.

Janice Enger, for the Blanket program, and the manner in
which it is used to illustrate the text.

it. •.

Acknowledgments v
Introduction xi

1. PRESENTING THE APPLE II 1

Contents

Keyboard and TV 1. Inside the Apple II 2. Memory 4. Cassette Recorder 4. Disk
Drive 5. Programs 5. External Device Controllers 6. Game
Controls 9. Printer 10. Graphics Tablet 10

2. HOW TO OPERATE THE APPLE II 13
Turning the Power On

What You See on the TV 14. The Prompt Character 15

The Keyboard 16
The Cassette Recorder 19
Using the Disk II 21

The Disk Operating System 22. Preparing Blank Diskettes 27

Loading and Running a Program 28
Use the Right Version of BASIC 28. Loading a Program from Cassette 29. Loading a
Program from Disk 29. Starting a Program Running 30. Setting TV Color 30

Miscellaneous Components 32
Coping with Errors 32

Error Messages 32. Correcting Typing Mistakes 32. Accidental Reset 33

3. PROGRAMMING IN BASIC 37
Starting Up BASIC 37

Immediate and Programmed Modes 38
Printing Characters 38. Printing Calculations 39. Error Messages 40. Extra Blank
Statements 41. Statements. Lines and Programs 41. Programmed Mode 43. Saving
Programs on Cassette 4 7

viii

Switching BASICs 49
Advanced Editing Techniques 50

Deleting Program Lines 50. Adding Program Unes 51. Changing Program
Lines 51. Reexecuting in Immediate Mode 56

Programming Languages 56
Elements of BASIC 57

Line Numbers Revisited 57. Blank Spaces 58. Variables 62. Arrays 66. Expressions 68

BASIC Statements 75
Remarks 76. Assignment Statements 76. Declaring Array and String Size 80. Branch
Statements 81. Loops 84. Subroutine 87. Conditional Execution 91. Input and Output
Statements 93. Halting and Resuming Progam Execution 98

Functions 99
Numeric Functions 100. String Functions 102. System Functions 103. User-Defined
Functions 1 03. Function Nesting 1 04.

4. ADVANCED BASIC PROGRAMMING 105
Direct Access and Control 1 05

Memory and Addressing 1 05

Using Peripheral Devices 1 07
Program Output and Data Entry 1 08

More About the PRINT Statement 1 08. PRINT Formatting Functions 116. Cursor Control
and Special Video Effects 119. Text Windows 119. The CHR$ Function: Programming
Characters in ASCII 122. Programming Data Entry 1 23. Forms Data Entry 136. Formatting
Output 142. Programming Printers 148

Storing Data on Cassette 151
Program Optimization 152

Faster Programs 1 52. Compact Programs 1 53

Debugging 154
Immediate and Programmed Mode Restrictions 156

5. THE DISK II 157
About Disks 157. How Data is Stored on Disks 160. Locating Tracks and
Sectors 162. Write Protecting 163

The Disk Operating System 164
Versions of DOS 164. Initializing Disks 164. Disk Files 164. Diskette
Directory 164. Track/Sector List 164. Disk Crash 165

Booting the Disk II 166
How to Boot DOS 166

Beginning Disk Commands 168
CATALOG 168. LOAD 170. The Disk Version of the RUN Command 1 70. Specifying the
Drive Number 170. Slot Specification 170. Volume Specification 1 71

More Disk II Commands 172
INIT 172. SAVE 174. DELETE 174. LOCK 175. UNLOCK 175. RENAME 175. VERIFY 176

Using DOS Commands in Programs 176
Using Disk Files 177

Using Sequential Files 177. How to Append to Sequential Files 186. The POSITION
Command 186. Using Random-Access Files 187. A Practical Random-Access
Example 187. The Byte Parameter 190

Other DOS Commands 191
EXEC 191. MAXFILES 193. Using DOS Debugging Aids 194

Machine Language (Binary Image) Disk Files 195
BSAVE 195. BLOAD 196. BRUN 196

6. GRAPHICS AND SOUND 197
Low-Resolution Graphics 197

Setting Up the Graphics Page 198. Graphics Programming Statements 199

High-Resolution Graphics 1 06
Which Page Should You Use? 203. Setting Up the Graphics Display 204. Alternatives to
HGR and HGR2 205. High-Resolution Colors 207. Plotting Points and lines 208

Using High-Resolution Shapes 210
Defining Shapes 210. Assembling the Shape Table 211. Entering the Shape
Table 218. Shape Drawing Commands 221

Apple II Sound 224
Operating the Speaker 225

7. MACHINE LANGUAGE MONITOR 231
Accessing the Monitor 231. Leaving the Monitor 232

Functions of the Monitor 233
Examining the Microprocessor Registers 235. Altering Memory 236. Altering the
Microprocessor Registers 238. Saving and Retrieving Memory with Apple II
Peripherals 239 Moving and Comparing Blocks of Memory 243. The GO
Command 247. Using the Printer 247. The Keyboard Command 248. Setting Display
Modes. 248 Eight-Bit Binary Arithmetic Using the Monitor 248. User-Definable Monitor
Command 249

The Mini-Assembler 250
Accessing the Mini-Assembler 251. Monitor Commands in the Mini-Assembler 251.
Leaving the Mini-Assembler 251. Instruction Formats 251. Using the Mini
Assembler 252. Disassembled Listings 254. Testing and Debugging
Programs 255. Integrating Your Program with BASIC 260

ix

8. COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 261
Immediate and Programmed Modes 261. BASIC Versions 262. Nomenclature and Format
Conventions 262

Statements (listed alphabetically) 263
Functions (listed alphabetically) 312

APPENDICES
A. Derived Numeric Functions 323
B. Editing Commands 325
C. Error Messages 327

Integer BASIC Error Messages 327. Applesoft Error Messages 328. DOS Error Messages 330

D. Intrinsic Subroutines 333
E. Useful PEEK and POKE Locations 339
F. BASIC Reserved Words 345

Integer BASIC 345. Applesoft 346. DOS 34 7

G. Memory Usage 349
General Memory Organization 349. The BASIC Language Interpreters 350. DOS Memory
Requirements 350. Integer BASIC Memory Usage 350. Applesoft Memory Usage 352

H. Disk II Format 355
The Track/Sector List 356. The Directory 356

I. ASCII Character Codes and Applesoft Reserved Word Tokens 359
J. Hexadecimal-Decimal Integer Conversion Table 363
K. Bibliography 371
L. Screen Layout Forms 373

Index 379

. >·.

Introduction

This book is your guide to the Apple II computer. This one book describes the
Apple II itself and covers the common peripheral devices and accessories includ
ing disk drives and printers.

This book assumes you have access to an Apple II system that is completely
hooked up according to the instructions in the appropriate owner's manual pro
vided with each system component. It does not explain how to install your
system, but rather how to use it once it is installed.

What is an Apple II? How do you make it work? The first two chapters of this
book answer those questions. You have probably noticed that the Apple II system
is made up of several pieces of equipment all strung together with wires and
cables. The first chapter tells you what all the pieces are and what they are good
for. The second chapter tells you how to operate each component part. With this
l<nowledge you are ready to use any of the ready-to-run programs that are widely
available for word processing, financial analysis, bookkeeping, computer-aided
instruction, and entertainment. ·

The next four chapters of the book teach you how to write your own BASIC
programs on the Apple II. Chapter 3 starts things off with a tutorial approach to
the fundamentals of both versions of BASIC that are available on the Apple II,
Integer BASIC and Applesoft. Chapter 4 continues with coverage of advanced
programming topics and BASIC features. Two of the advanced topics, the disk
drive and screen display graphics, are important enough to warrant their own
chapters. Chapter 5 explains how to use the disk drive to store programs and data

xii

files. Chapter 6 tells you how to program graphics on the display screen using
both graphics modes available on the Apple II.

BASIC programs operate on the Apple II under the supervision of the Apple II
Monitor. Chapter 7 explains both the standard Monitor and the Autostart Monitor
from a BASIC programmer's point of view. The chapter also tells you how to
incorporate an assembly language program into your BASIC p·rogram.

Chapter 8 contains a complete description of each statement and function
available in both versions of BASIC, including disk statements. Along with the
appendices, it will serve as a handy reference once you know how to program in
BASIC on the Apple II.

1
Presenting the APPLE II

Figure 1 -1 is a picture of a typical Apple II computer system. Notice that it takes
several separate pieces of equipment to make up a complete system.

Your system may not look exactly like the one pictured in Figure 1-1 . Many
system components come from a long list of optional equipment. But there are
three components that every system has in common: the Apple II itself, the built
in keyboard, and a television. Let's take a closer look at each of these and at some
of the more common pieces of optional equipment. We will not describe how to
hook up any of these components to the Apple II. For complete installation
instructions, refer to the owner's manual supplied with each piece.

KEYBOARD AND TV

The keyboard and TV screen make communications with the Apple II possible. A
standard typewriter-style keyboard comes with the Apple II. It transfers instruc
tions from your fingertips into the Apple II.

The display screen can either be an ordinary color television set or a color
television monitor. A black-and-white TV works fine too, but of course color dis
plays will show up in black-and-white. The screen not only echoes everything you
type so you can visually verify its accuracy, it also displays the reactions of the
Apple II to your instructions.

The standard display screen has three different modes of operation. One is for
black-and-white text characters only and the other two are chiefly for graphics. In

2 APPLE II USER'S GUIDE

FIGURE 1-1 . A Typical Apple II Computer System

· to 24 lines of 40 charact rs each. The
graphics mo es ea w1t points and lines, not characters, and subdivide the
screen more finely (graphics are discussed further in Chapter 7).

Most Apple II owners use a television set for their display screen either because
they have one or because it's a good excuse to get one. The television monitor
produces a sharper picture than a TV set in the computer environment, but you
can't use it to watch Sea Hunt. Highway Patrol, or the 6 o'clock News. Figure 1-2
shows a typical television set hookup.

--I> As you can see, the TV does not connect directly to the Apple II. A slide switch
attaches to the TV antenna terminal. With the switch in one position, the TV is its
normal erudite self; with the switch in the other position, the TV takes its orders
from the Apple II. A cable runs from the slide switch to a special small circuit
board which fits conveniently inside the Apple II. It is called an RF modulator and it
converts the video signal from the Apple II to something your television set can
deal with. Your Apple dealer can sell you an RF modulator and show you how to
hook it up.

A television monitor requires no RF modulator; it attaches directly to the back
of the Apple II as shown in Figure 1 -3.

INSIDE THE APPLE II

The Apple II itself houses the part of the computer that controls the rest of the
system - under your guidance, of course! Lurking behind the keyboard are the
main Apple II memory banks, the microprocessor, the connection points for all the
accessory components, and much more. Figure 1-4 discloses the true identity of
these undercover items.

The inside of your Apple II may look a bit different from the one in Figure 1-4.

Chapter 1 : PRESENTING THE APPLE II 3

The basic layout will be the same - the large flat circuit board with dozens of
small black integrated circuits (also called ICs or chips) in orderly rows and some
small circuit boards mounted vertically in the slots at the back of the main circuit
board. The number of chips and the number· and placement of the vertical circuit
boards varies from one system to the next.

;;apptax

FIGURE 1-2. Television Set Hookup

FIGURE 1-3. Television Monitor Hookup

4

Slots

MEMORY

Cassette Recorder
Connection

"'-..
/

FIGURE 1-4. Inside the Apple II

APPLE II USER'S GUIDE

TV Monitor

TV Set Connection

G~me Control
Connection

Microprocessor

Computer memory is typically measured in units called ~· Each byte of
memory can hold one character or a similar amount of data. Depending on the
number of chips, your Apple II computer has anywhere from 4,096 to 65,536
bytes of memory. This is usually stated 4K to 64K, where K represents 1,024 ~ 2 10

bytes. The amount of memory available determines how much the Apple II can do,
as we will see later.

The Apple II actually has two kinds of memory. One is called read-only memory
(ROMl ; its contents never change, even when you turn the power_2ff. ROM con
tains the programs which give the Apple II its unique ident1ty and enable it to
understand and respond appropriately to the commands you type in at the

CASSETTE RECORDER

Fortunately, you can use a cassette tape recorder to transfer programs to and
from read/ write memory, thereby storing a whole library of programs on cassette
tape. Figure 1-5 shows a typical cassette recorder installation.

Chapter 1 : PRESENTING THE APPLE II 5

FIGURE 1-5. Cassette Recorder Hookup

DISK DRIVE

A disk drive far surpasses a cassette recorder as a program storage device. It is
more reliable, stores more, and operates faster to boot. What's more, the disk
drive easily and quickly stores data such as names and addresses for a mailing list,
or correspondence for a word processor. Disk drives come in all shapes and sizes;
different models have different storage capacities. Figure 1-6 shows two Disk II
units (products of Apple Computer lnc.l.

PROGRAMS

Let's take a slight detour from the guided tour of the Apple II system and look at
the different kinds of programs you will use with your system. We're not talking
here about the different kinds of things you can do with your Apple II, like word
processing, accounting, financial analysis, and so forth, but rather about different
classes of programs that must coexist in order for the Apple II to perform any one
of these chores. Programs that do things like play games, write letters, and so
forth are called application PJ;9Qrams. They always resjde jp read/ wrjte memory,
~t ROM. You transfer them to read/write memory from a cassette or disk. So
when you want your Apple II tp be a word processor, for instagce. you u';e the
Qi:ik wjth the worcl ...,rocessing application program OA it and traosferj be prog•am
into read/wrjte memory. Chapter 2 explains how to do this.

More often than not, programmers write application programs in a program
ming language that is easy for them to use but which is too advanced for the
Apple II to understand without some help. A special program called an interpreter

6 APPLE II USER'S GUIDE

FIGURE 1-6. Disk II Hookup

' does just what its name implies. It translates the application program from the
language it's written in to a language the computer can understand. The Apple II
has a couple of different interpreters, which may exist in either read/ write
memory or ROM.

The interpreter in turn relies on another program to coordinate the system
components. This other program. often called the operating system program. per
forms fundamental system operations like transferring programs from cassette
and disk to memory, and echoing keystrokes on the display screen. The Apple II
operating system program is known as the Monitor. The Monitor always resides in
ROM. -

EXTERNAL DEVICE CONTROLLERS

Notice the small vertical circuit boards which plug into the slots at the back of the
main Apple II circuit board. The slots exist to accommodate such special circyj,t
boards. The circuit .boards called controllecs or cards, contain extra electronics - -which enable the Apple II to use peripheral devices such as disk drives.

Apple Computer Inc. makes a number of cards which plug into the slots in the
back of the Apple II. Some of them vie for the same slot, but most cards can go
into any slot. For the most part, the cards lack scars, birthmarks, or other dis
tinguishing features so it's hard for the uninitiated to tell one from the other. Each
card is labeled with its name. but the printing is not always visible when the card is
installed. You can usually identify a card from the slot it's in and what's connected

Chapter 1 : PRESENTING THE APPLE II 7

to it. As shown in Figure 1-6, the controller card for the Disk II customarily inhabits
slot 6 ; one or two disk drives attach to it. A second DisK'TI'C'Ontroller can go in slot
5 for a third and fourth Disk II drive. a third controller card can occupy slot 4 for
drives 5 and 6, and so on.

Let's take a look at some of the other cards you may have in your Apple II
system.

Each of the three cards shown in Figure 1-7 enhances the programming
language capabilities of the Apple II. There are two versions of the programming
language BASIC available on the Apple II : Integer BASIC and Applesoft. Installing
the appropriate one of these three cards in slot 0 of your Apple II makes it easier
to switch from one version of BASIC to another. The Language System and
Applesoft Firmware cards work on any kind of Apple II, but the Jateqer BASIC card
is-designed only for the Apple II Plus. The Language System card makes other
programmin lan uages, like Pascal- · ·~-,::r.:-a~s~w~e:n-. ---------

The serial interface car Figure 1-8) usually inhabits slot 1 . Probably the most
common device attached to it is a printer.

It's not often that the parallel printer interface card (pictured in Figure 1-9) is
used concurrently with the serial interface card, because it invariably has a printer
attached to it. So the parallel printer interface card usually resides in slot 1.

Figure 1-1 0 shows the communications interface card. With a modem con-
necting the communications card to the telephone lin our Apple II can get in

a remote sites.
I Here are more cards available for mnumerable tasks from sources other than

Apple Computer Inc. For example, you can get cards to control lights and other
electrical devices. Another card lets you write programs that electronically syn
thesize the sounds of musical instruments. There is even a card that works like an
extension cord ; it uses one slot in the Apple II and provides several slots for addi
tional cards on a separate chassis.

FIGURE 1-7. Left to right: Language System, Applesoft Firmware,
and Integer BASIC Cards

8 APPLE II USER'S GUIDE

FIGURE 1-8. Serial Interface Card

FIGURE 1-9. Parallel Printer Interface Card

Some Apple II systems have a special card installed which allows twice as
many characters on each display line as the normal Apple II. In this case, the TV
monitor (a TV set won't work) plugs into the special card instead of the main
Apple II circuit board. The special card plugs into one of the slots at the back of
the main circuit board, usually slot 3 or 4. Figure 1-11 shows a typical card.

Chapter 1 : PRESENTING THE APPLE II 9

FIGURE 1-1 0. Communications Interface Card

FIGURE 1-11. Special Display Screen Setup
Photo courtesy of Vldex.

GAME CONTROLS

We will conclude the tour of the Apple II innards with a look at the game controls
which attach to the Apple II as shown in Figure 1-1 2. The game controls, or pad
dles, are used mostly by game programs but may show up in other places as well.
Sometimes the game controls are not attached to the Apple II at all.

10 APPLE II USER'S GUIDE

FIGURE 1-12. Game Control Hookup

PRINTER

GRAPHICS TABLET

The graphics tablet from Apple Computer Inc .• pictured in Figure 1 -14, is a handy
device that exploits the graphics capabilities of the Apple II in a special way. With
its pen, you can create figures, cartoons, maps, charts, graphs, or any freehand
drawing directly on the display screen, in color. Under your direction, it will draw
straight lines, solid boxes, and dots. Your drawing can take up the whole screen or
just part of it. You can move the drawing around, enlarge it , reduce it, and sepa
rate out its individual colors one by one. At any time during this procedure, you
can save the screen image on the disk drive for later recall. You can even measure
distances with the graphics tablet.

Chapter 1 : PRESENTING THE APPLE II 11

' •••••• ······•of.lil

FIGURE 1-13. Printer Hookup

((({(ttl ttl II II It I

FIGURE 1-14. Graphics Tablet Hookup

2
How to Operate the Apple II

Any computer system can be a bit intimidating when you first sit down in front of
it, even if it's all hooked up, as your Apple II system must be before you go any
further. This chapter will make you more comfortable around the Apple II by ex
plaining how to use it, but it won't tell you how to set it up. The owner's manuals
that come with each piece of equipment have complete instructions in them to
help you with the installation procedure. If you need more assistance to be sure
you've done it right, check with someone else who uses an Apple II like yours, or
with the dealer you bought it from.

TURNING THE POWER ON

Check that all the system components are connected together correctly and tum
on the television set. Turn the volume all the way down. Locate the slide switch
hanging from the TV antenna terminals and set it on the GAME or COMPUTER
setting. Select the channel specified by the RF modulator instructions (usually
channel33).1f you don't know which channel to use, ask someone else who uses
the system or a dealer who sells the RF modulator.

Locate the power switch on the rear of the Apple II, next to where the power
cord plugs into the computer. Turn the switch ON. You should hear a beep from
inside the Apple II. The beep tells you the Apple II is ready. The POWER lamp on
the keyboard will be on now unless it's burned out.

14 APPLE II USER'S GUIDE

If you did not hear a beep, turn the switch OFF, then ON again. If you still do not
hear anything, turn the power OFF. Was the POWER lamp lit? If it was not, unplug
the Apple and plug in a lamp or a radio to see if the wall outlet has power. Read
the instructions again and double check to make sure system components are
hooked up properly. If the Apple still won't start, TURN THE POWER OFF I Unplug
the Apple and get help from someone with more experience (your dealer). You
can do a lot of harm by poking around the insides or switching connecting wires
around.

WHAT YOU SEE ON THE TV

Once the power is on, and you hear the Apple II beep indicating everything is all
.right, an image will appear on the TV screen.

The exact image will depend on which variety of Apple II you have, but one
thing on the screen should be quite obvious because it w ill be blinking on and off
at regular intervals. Tbjs flashjpg white square is called the cursor. It marks the
location where the next character you type will appear on the screen. The next
section explains what to do if you don't see the cursor.

If You Don't See the Cursor

Your Apple II may have the Language System card installed along with one or
more Disk II drives. In this case. you won't see a cursor. Instead there will be some
whirring and clacking noises coming from the Disk II drive, and the red IN USE
lamp on the front of the Disk II cabinet will light up. For the time being. when this
happens press the REsET key. The cursor will appear and the disk drive will quiet
down. Go on to the next section.

Some Apple II systems are set up to allow more than 40 characters on each
display line. In order to see the cursor on such systems you must type a special
command sequence like this:

1 . Press the CrRL key and hold it down, press the B key, and then release
both keys.

2. For the next command. you need to know which slot the special card
(the one the TV monitor attaches to) uses. probably slot 3 or 4. You
can open up your Apple II and look inside - slots are numbered 0
through 7 from left to right. Figure 1-11 shows you what to look for.
Get help from someone (your dealer) if you 're not sure.

3. If your TV monitor attaches to the card in slot 3, type PR=11=3 and press
the RETURN key. If it attaches to slot 4, use PR =II=4 ; for slot 2 type PR=II=2,
and so forth.

4 . The cursor will now be visible, although it may not be f lashing (which
is OK). Continue as described below.

Chapter 2 : HOW TO OPERATE THE APPLE II 15

TABLE 2-1 Prompt Characters

Prompt Character Language

* Monitor

> Integer BASIC

l Applesoft

THE PROMPT CHARACTER

To the left of the cursor there is another character. It is the first character on the
line. It could be an asterisk (*). a greater-than symbol (>). or a right bracket (l).
The Apple II is a multilingual computer and the prompt character indicates which
language it expects its instructions in. Table 2-1 shows the three prompt charac
ters and their corresponding languages.

* is the Monitor

On many versions of the Apple II the first prompt you will see when you turn the
power on is the * prompt. If this is not the case on your Apple II then you can skip
this section and the next.

The asterisk is the prompt for the Apple II Assembly Language Monitor.
Generally only advanced Apple II users need to communicate directly with the
Monitor. If you wish to experiment with the Monitor, you may do so now. While
you can't do any harm by playing with the Monitor at this time, you will have to
turn the power OFF and then ON again to undo the results of your experimenting.

When the * prompt appears, you must tell the Apple II to switch over to
BASIC.

CTRL-B into BASIC

There is a Monitor command which instructs the Apple II to switch to BASIC. To
issue the command, press and hold the CTRL key while you press and release the B
key. Then release the CTRL key and press the RETURN key. A different prompt will
immediately appear underneath the*· Depending on the kind of Apple II you have
and what options it has, you will either see the > prompt or the] prompt.

............ RA$1C is an aqropym for Beginne.r's All-purpose Symbolic Instruction Code, a
widely used computer language that was developed at Dartmouth University. The

-...,t:... Apple II supports two versions at BASIC· Integer BASIC and A pplesoft. Both ver-
sions contain enhancements to the original Dartmouth BASIC. •

> is Integer BASIC

The > prompt indicates that the Apple II is ready for instructions in Integer BASIC.
The rules for Integer BASIC are different from those for Applesoft, but the two

16 APPLE II USER'S GUIDE

have many things in common. For now we will stick to instructions that you can
use in either version, so you need not worry about which BASIC you're using.

] is Applesoft

The 1 prompt tells 't_OU the Apple II is ready in Applesoft. Don't worry for now
which. version of BASIC you' re using. When it becomes a factor, we will talk about
the differences between Integer BASIC and Applesoft.

THE KEYBOARD

The Apple II keyboard (see Figure 2-1) looks much like the keyboard of an ordi
nary typewriter, but it has five keys you won't find on most typewriters. Two are
on the left side, mysteriously marked Esc and CTRL . The other three are on the
right, marked RESET, -and ---. There are two more keys on the right side which
you may not recognize: RETURN and REPT.

Go ahead and type on the keyboard. Nothing you can type can do any harm to
the computer that can't be cured by turning the power off and on again.

As you type, you may notice that all the letters displayed on the screen are
capital letters, regardless of whether or not the SHIFT key was pressed when you
typed them. The standard Apple II only knows how to display capital letters. You
can attach your TV through a special controller which enables both upper and
lower case. Also, some programs know how to display both upper- and lower
case letters.

The RESET Key

RESET is a very special key on the Apple II keyboard. When RESET is pressed, every
thing stops. No matter what the Apple II is doing when REsET is pressed, control of

FIGURE 2-1 . Apple II Keyboard

Chapter 2 : HOW TO OPERATE THE APPLE II 17

the Apple II returns to the keyboard. Depending on the Apple II you are using,
RESET wtil cause the Monitor, Integer BASIC, or Applesoft prompt to appear.

Sometimes REsET can cause a lot of problems, especially if a Disk II is in use
when RESET is pressed. Therefore ou must exercise extreme cautio no o press
the RESET key accidentally. Take care especially when you go after the RETURN key,
as it is easy to get your finger a little too high up on the keyboard and hit the RESET
key by mistake. Some versions of the Apple II guard agajnst thjs hazard by insist
ing you use CTRL-REsET instead of just RESET (see the discussion of the CTRL key
below).

The RETURN Key

As you type along, the characters you type show up on the display screen. In addi
tion, the Apple II saves everything you type in its memory but does not try to
interpret what you type as an instruction until you press the RETURN key. The
RETURN key signals the Apple II that you have finished the line you have been typ
ing. When you press RETURN , the Apple II erases any stray characters that might
be to the right of the cursor. Then it examines everything on the line that you just
typed in. If those characters make up an instruction that the Apple II can under
stand, it will take the appropriate action. Otherwise you w ill hear a beep and see
one of these messages (or possibly some other message):

?:::YNTAX ERROR

*** SYNTAX ERR

The Apple II is letting you know that it did not understand what you meant by
the characters you typed before you pressed RETURN . You must retype the line
(without the error that tripped up the Apple Ill.

The SHIFT Key

Letters are always upper-case on the standard Apple II, so the SHIFT key does not
t - betw en lower-case and upper-case letters. It does allow some keys to
produce two different characters. ou get one c arac er by pressing a ey
the SHIFT key held down and another by pressing the same key without holding
the SHIFT key down. The character you get with the SHIFT key is printed on the top
edge of the key.

We use the notation SHIFT- to describe a double keystroke involving the SHIFT
key. For example, SHIFT-3 produces the # character.

Some letter keys do not display letters when they are typed with the SHIFT key
held down. The N key, for example, will display ", and @ is displayed when you
type a SHIFT-P. Although the G key has the word BELL on it, SHIFT-G does not dis
play a bell, just a G.

The CTRLKey

CTRL is a contraction of control. The CTRL key is always used together with
another key in the same manner as the SHIFT key. Y.g.y hold the CtaL ke'l ~

18 APPLE II USER'S GUIDE

while ou ress and release another key. This book designates the use of the CTRL
key in conjunction with another ey by prefixing the name of the other key with
CTRL-. For example, CTRL-B means press the CTRL and B keys simultaneously.

G
The CTRL key, like the SHIFT key, allows some keys to have an additional tunc

on. The G key is the only key labeled w ith its CTRL function: BELL. The meaning
f BELL becomes obvious when you type CTRL-G and the Apple II responds with a
eep. You are ringing the Apple II bell.

Ther.a.are other CTRL combjgatjpgs wh jch cause various reaction.s. from the
Apple II We recently covered the Monitor command CTRL-B, which puts the Apple
II jgto BASIC. =-

Another handy combination is CTRL-X. It tells the Apple II to d jsreqard eyery
thin ou've typed on the current dis Ia line; you want to start over. Try typing
something and then ty e TAL- . e cursor z1ps ack to the beginning of iheiiiie.
Th ·11 a ear on the disp ay sere p e
recollection of them whatever. As far as it s concerne em.

The Esc Key

Esc stands for escape, which is a term left over from the days when teletypes
were common computer terminals. Somehow the name has stuck, even though
pressing the key causes no breakout. The Esc key has a variety of uses, some of
which come up in this chapter and the balance appear in the next chapter.
~the SHifT and CTRL k~s, the Esc key js geyer used I?Y holding it down

while pressing another key. Esc is alwgywessej and relew hef<i~ the Q'ijt
~ IS pressed a~d released. This two-key operation is called an escaoe seaue~

0
A simple escape sequence is Esc-@. You type this escape sequence by first

pressing and releasing the Esc key, then pressing and holding the SHIFT key while
you press and release the P key (SHIFT-P = @). The result? Everything on the
screen is erased, and the cursor moves to the upper left corner. (In computer
argon, the upper left corner of the display screen is called home.)

The - and - Keys

The two arrow keys are called left-arrow and right-arrow.
You w ill find the -and - keys very useful because they allow you to correct

any typing mistakes you might make, and allow you to change information you
have already entered. The - key works like the backspace key on a typewriter.
Each time you press it, the character under the cursor is erased from the Apple II
memory and the cursor backs up one space. Try it right now. Type in any word
(try PRINT). Press the - key several times and watch the cursor back up along the
word you just typed in. Notice that the characters you back over do not disap ear
from the display screen. You can res assure e pp e u em out of 1ts
memory. Try backing the cursor all the way to the left edge of the screen. When
you get to the edge aod press the - key again, the cursor jurops dowg 9~
and a new prompt character appears.

Chapter 2: HOW TO OPERATE THE APPLE II 19

As you might suspect the - key 1+19¥9 6 tl::le c qrsor to .the right along the dis
j21ay !joe As the cursor moves forward alan the line, ever character it passes
over gets copied into the Apple II memory exactly as though vo!J.had pressed e
key to generate that character. To see the - key in action, type in another word
and back the cursor up a few spaces using the- key. Now press the -key a few
times. Each time you press this key, the character the cursor passes over gets put
back into the Apple II memory exactly the same as if you haa retyped it".

The REPTKey

REPT is short f or repeat. If you hold the REPT key and any other key down at the
same time, the other key will be repeated until you release one or both keys~his
is especially handy when the other key is an arrow key and you have a lot of
characters to erase (-) or recopy (-).']
_ For the repeat feature to work right, you must first hold down the key you wish
repeated and then press the REPT key. Release REPT and the repeating stops. -

The Other Keys

The other keys on the Apple II keyboard are no doubt familiar to you. These are 0
the letters of the alphabet. the numbers zero through nine, and a standard set of ;,.
symbols. C.JII(.,.

Many typists do not distinguish between the number zero and the letter 0 or 1-,A. _
the number 1 and the lower-case letter I. The Apple II can't cope with this ~

ambiguity. You must be very careful to type a numeral when you mean a numeral. J 'I> .t'
To help you remember, the Apple II keyboard shows the zero with a slash through
it. and zeros are displayed on the screen with that slash, too.

THE CASSETTE RECORDER

If your Apple system includes a cassette recorder, you can load programs from
cassette tapes. Some program tapes come w ith the Apple II, you can buy others,
and you can make your own as well (we'll tell you how in Chapter 4).

Handling Cassettes

You should exercise care with the cassettes themselves. They are very easily
damaged, and not easily replaced.

Be very careful not to touch the surface of the tape in the cassette. No matter
how clean your skin is, natural oils will contaminate the tape. Make sure you put
tapes back in their cases when they are not being used. Never store them in hot
areas, direct sunlight, or near magnetic fields (like those found near electric
motors).

20 APPLE II USER'S GUIDE

0 • • • • 0

•

.L - - ~ • I _j

Write protect notches

FIGURE 2-2. Cassette Write-Protect Notches

Label Every Cassette

You should label every cassette with information about the programs it contains.
This avoids the headache of searching through cassette after cassette for the
program you need.

Write-Protecting Cassettes

Each cassette has two notches in the rear edge. Most cassette recorders can
sense the notches and will not record when they are present. Blank cassettes have
tabs covering the notches so the tape may be recorded over. You can protect
important programs by removing the correct tab and exposing the notch.

To determine which tab is correct, hold the cassette so that the exposed tape
is away from you and the side you wish to protect is facing up. Remove the tab on
the right side to prevent recording over the side facing up (see Figure 2-2). Cover
ing a notch with adhesive tape will allow recording over a cassette that has been
protected.

Adjusting the Playback Volume

You must set the volume control on your cassette recorder at the proper level for
the Apple II. If the volume is too low or too high, the information of the tape will be
distorted and the Apple II will not be able to understand it.

The only way to determine what volume level is correct for your tape recorder
is by trial and error. Here is the general procedure. First, try to load a program with
the volume control set very low. If the low setting does not work, set the volume a
little higher and try again. Keep adjusting the volume upward until you can suc
cessfully load the program.

Chapter 2 : HOW TO OPERATE THE APPLE II 21

You can use one of the tapes that come with the Apple II. If the prompt
character next to the flashing cursor is), find the cassette labeled "Color
Demosoft." If the prompt is >, locate the tape labeled "Color Graphics."

Insert the cassette into the recorder. Be sure that the program label faces up.
For each position of the volume control:

1. Rewind the tape completely.

2. On the Apple II keyboard, type the word LOAD.

3. Depress the PLAY button on the cassette recorder to start the tape.

4. Press the RETURN key.

After you press RETURN the cursor will disappear. After 1 5 or 20 seconds you can
analyze your success.

If you get the message ?SYNTAX ERROR or ***SYNTAX ERR, do not adjust
the volume, just go back to Step 1 and try again. If this keeps happening, try
cleaning the cassette recorder heads, or use a different tape.

If nothing happens, or if ERR or ERRERR is displayed, press REsET, set the
volume a little higher, and try again.

If you hear a beep and no message appears, things are going well. The Apple
has found the beginning of the program on the tape and is loading it. After about
1 5 more seconds (depending on the length of the program on the tape), there will
be another beep and the prompt and cursor will reappear on the screen. You can
now stop the tape. Make a note of the volume setting so you don't have to repeat
this procedure after using the recorder away from the Apple II.

When you see the BASIC prompt and cursor, the program has been suc
cessfully loaded.

USING THE DISK II

If you have one or more Disk II drives connected to your Apple II, you can get pro
grams on diskettes instead of cassettes(the "System Master Diskette" supplied
with the Disk II has most of the programs Apple Computer Inc. provides on
cassettes, plus a few extras specially designed for the Disk!]

tha ni§k II drive. Always replace IS ettes m thejr egxelopes wbeg you remo
them from the drive1 and protect them from heat. djrect sunlight, and magnetic
f jelds (like those found near electric motors). Be especially careful with the
"System Master Diskette."

22

How to Insert Diskettes
lnfii the Disk II Drive ..

APPLE II USER'S GUIDE

The proper way to insert a diskette into the Disk II drive is shown in Figure 2-3.
Hold the diskette between your thumb and forefinger so that your thumb covers
the label. Open the door on the Disk II drive and gently slide the diskette all the
way into the drive. There should be almost no resistance. If the diskette will not go
in easily, remove it and try again. Make sure you are holding the diskette as level as
possible. Once the diskette is inside the drive, gently close the drive door. The
door should close very easily. If there is any resistance, release the door and push
the diskette completely into the drive. then try again. If you force the door shut
you will destroy the diskette. Sometimes it helps center the diskette if you wait to
close the door until after the Disk II starts spinning.

111111111

I

FIGURE 2-3. Inserting a Diskette into the Disk II

Chapter 2: HOW TO OPERATE THE APPLE II 23

FIGURE 2-4. Standard Disk Drive for Booting DOS

Booting DOS

There are several different wan to boot DOS, depending on the configuration of
your computer and the language being used to initiate the boot. Each metho~
assumes the disk drive is plu ed into slot number 6 and connected to the drive l""'~· ~lld-

t~mina o t e controller card. This is shown in Figure - .
Insert the 11System Master Diskette" into the correct drive and close the drive

[

door. In some cases when the Language System is present. you must use a special
diskette, the "Integer and Applesoft II" diskette, before the DOS disk. This situa
tion is described below in the section on booting with the Language System.

After a successful boot using one of the methods described below, the screen
should look like one of those shown in Figure 2-5.

Autostart Booting

The easiest way to boot the disk is autostart booting. As the name implies, boot
ing is automatic. In order for autostart booting to be possible your computer must
have an Autostart Monitor. If, when you turn your Apple II on, the Disk II drive
makes clicking and whirring sounds, and the red IN USE lamp on the front of the
drive cabinet lights up, you have an Autostart Monitor.

When the Autostart Monitor is present without the Language System, booting
DOS is a one-step procedure. With the Apple II power switched off, place the

24 APPLE II USER'S GUIDE

FIGURE 2-5. Successful Boot of System Master Diskette

Chapter 2 : HOW TO OPERATE THE APPLE II 25

"System Master Diskette" in the proper Disk II and close the drive door. Turn the
power on. After a few seconds, the disk will stop and the screen will look like one
of those in Figure 2-5.

Booting from the Monitor

When the * prompt character appears on the screen, the Assembly Language
Monitor is waiting to accept commands. There are a couple of ways to boot the
disk from the Monitor.

Monitor Jump Booting

You can boot DOS from drive 1 of slot 6 lsee Figure 2-4) with the following Moni
tor command:

*CC.OOG

Remember to press RETURN. The red IN USE lamp on the Disk II will light up, and
after a few seconds the screen will look like one in Figure 2-5.

CTRL-P Monitor Boot

The other Monitor command you can use to boot the DOS is CTRL-P . To boot from
the Monitor using this command, type the slot number of the drive you wish to
boot from !usually 6). then type CTRL-P (nothing will appear on the screen). Now
press RETURN. After a few seconds the screen will look like one of those in Figure
2-5.

Boptjng. {[em lnt@i)er BASIC
or Applesoft '

The same boot commands are recognized by both Integer BASIC and Applesoft.
After the BASIC prompt character (> in Integer BASIC, or] in Applesoft) type

the letters IN or PR, then a pound sign (#). and then the slot number of the drive
you w ish to boot from (usually drive 6). The command shou ld look like one of
these :

IN#6

PR#6

Now press the RETURN key. After a few seconds the screen will look like one of
those in Figure 2-5.

Booting with the
language System

Under some conditions, booting DOS with the Language System present is a two
step procedure. The version of DOS being booted determines the procedure.

26 APPLE II USER'S GUIDE

The version number of DOS on the "System Master Diskette" is stamped on the
diskette label. It is a number like 3.3, 3.2.1, or 3.2.

Booting version 3.3 of DOS is virtually the same with or without the Language
System. Use the "System Master Diskette" with any one of the procedures de
scribed above. DOS is booted from the diskette into memory. Another step occurs
automatically which makes both Integer BASIC and Applesoft available imme
diately, via the Language System. When the Disk II stops, booting is finished, and
the screen is similar to one of those in Figure 2-5.

Booting DOS versions 3.2.1, 3.2, and lower requires two diskettes. First you
must place the diskette labeled "Integer and Applesoft II" in the correct Disk II,
usually the one connected to slot 6, drive 1 . Then perform any of the boot pro
cedures described above. The drive will make sounds and the red IN USE lamp on
the front of the drive cabinet will light up. In a few seconds, you will see this
message on the display screen:

INSERT BASIC DISK AND PRESS RETURN

Now open the drive door and remove the diskette. Insert the "System Master
Diskette" in the drive and close the door. Press the RETURN key on the keyboard.
After a few more seconds, the screen will look like one of those in Figure 2-5.
DOS is now successfully booted.

How to See the Diskette Catalog

If you have successfully booted the "System Master Diskette," you may be
interested in knowing what programs that diskette contains. On the Apple II
keyboard, type:

CATALOG

The screen display should look something like the one shown below. (Did you
remember to press the RETURN key?)

DISK VOLUME' 254

*I 002 HELLO
*I ()5:~: APPLE-TREK
*I 01:3 ANIMALS
*B 009 UPDATE ~:. 2. 1
*I 014 COPY
*I 009 C:)LOR DEMO
*I 053 BRI(¥ OUT
*I 02~· SPACE WAR
*I 050 THE II'IFINITE NO. OF MONKEY::;
*f 051. COLOR SKETCH
*I 053 SUPERMATH
*I 02~. APPLEVISION
*I 017 BIORHYTHM
*I 027 PINBALL

Chapter 2 : HOW TO OPERATE THE APPLE II 27

NEW

10 REM INITIALIZED ON date

20 REM SYSTEM MEMORY bytes

30 REM DOS VERSION number

40 PRINT "disk name"

50 END

FIGURE 2-6. Model Greeting Program

Diskettes set up for other computers or other kinds of disk drives usually will not
work in the Disk II drive.

=-\(PREPARING BLANK DISKETTES

From time to time you may need extra diskettes for the programs you run on your
Apple II. Before you can use a diskette with the Disk II for the first time, you must
initialize it. If the application program you are using includes specific instructions
for initializing diskettes, by all means use them. In their absence, you can use the
following general instructions for preparing extra diskettes.

The initialization process gets a diskette ready for subsequent use. During
initialization, whatever BASIC program is currently in the Apple II memory is saved
on the diskette and becomes that diskette's greeting program. The greeting pro
gram is automatically loaded and run whenever you boot the diskette. If you have
a greeting program in mind, fine. If not, you can use Figure 2-6 as a model. ~
tQ.e, program exactly as shown except wherever there are italics, replace them.
Wth actual information. The date is the date on which you initialize the diskette.
The bytes are tlie numBer of bytes in the system memory (32K, 36K, etc.). The
number is the version number of DOS that is present on the diskette most recently
booted (something like 3.2, 3.2.1, or 3.3). The diskette name is any name you
want to use for that diskette. Illustrated below is an actual example of the
initialization program:

NEW
10 REM INITI ALI ZED ON 1/ 1/8 1
20 REM SYSTEM MEMORY 48K
30 REM DOS VERS ION 8 . 2 . 1
4 0 PRINT "MI SC., VOL . 3 "
50 END

28 APPLE II USER'S GUIDE

So to initialize a diskette. first prepare the greeting program, put the disket.!r.e in
the drive, and type the following command:

INIT HELLO

Make sure the drive door is shut, and press RETuRN. The red lamp on the drive
li hts up, accompanied by the usUal Whirring and clicking sounds. I he eritii'e
initialjzatjon process takes about two minutes, so be pat1ent. VV en the lamp goes
out, initialization is complete.

N o w prepare a label for the new diskette. Remove the diskette from the drive
and apply the label.

LOADING AND RUNNING
A PROGRAM

There are many programs already written for the Apple II. Some come on
cassette. some on disk. and some on both. Some programs are written in Integer
BASIC while others use ApplesoftVt3enerally speakinH& an Apt:~~t pmgcam !!!!I
not work with the Integer BASIC'" prompT. ana Integer BA lr ms will not
work with the A

1JSE THE RIGHT VERSION OF BASIC -
While most versions of the A le II have both kind

--1> Apple II Pips dpes not have Integer BASIC unless .lbe Lansuage axstem card or
lnte~r BASIC card is present. On the other hand, Applesoft is not available o'ii
many versions of the Apple II until you load its interpreter from cassette or disk.

If your .Apple II system has the Language System or the Applesoft Firmware
card, it will automatically use the ri ht version of BASIC for any application pro
gram ou o t erwise. ou must be sure e c aracter is in
effect when you load a program from cassette or disk.

On a standard Apple II it is eas to get the Integer BASIC prompt (>). Press the
RESET key. and then type CTAL-B (remember to end w1th E.!]RN .

It is harder to get the Applesoft prompt (1) on a standard Apple II since it
resides on either cassette or disk. You must instruct the Apple II to load the
Applesoft interpreter into its memory from the disk or cassette.

Before you can use the disk drive you must boot DOS as described earlier in
this chapter. Once DOS is booted, you can load the Applesoft interpreter by plac
ing the System Master Diskette in the Disk II and typing the following command:

FP

The drive will click and whir for a few seconds and then the Applesoft prompt
character (1) will appear on the display screen.

You can also get the Applesoft interpreter from cassette tape. Use the cassette

Chapter 2 : HOW TO OPERATE THE APPLE II 29

• labeled "Applesoft II" (from Apple Computer Inc.). Put it in the recorder and
rewind it all the way. Type the command:

LOAD -Before you press RETURN, depress the PLAY button to start the tape. Soon you
will hear the Apple II beep, which means it has started to load the Applesoft
interpreter. It takes about one and one-half or two minutes to load the Applesoft
interpreter from a cassette tape. Once it is loaded, you will hear a second beep.
Stop the cassette recorder. The Applesoft prompt will be on the display screen.

From Applesoft, you can switch to Integer BASIC by typing the command:

TNT -If you then wish to switch back to Applesoft, you must reload the Applesoft
interpreter from disk or cassette.

LOADING A PROGRAM
FROM CASSETTE -With the proper version of BASIC selected (or your Apple II able to make the
selection automatically). these are the steps for loading a program from cassette :

1 . Position the tape to the start of the program. This will usually be the
beginning of the tape, in which case you must rewind the tape
completely. If the program you want is not the first program on a
cassette tape, you must load in turn each program that precedes it on
the tape. Repeat the following steps for each extra program you must
pass over.

2. On the Apple II keyboard type the command:

LOAD

3. Depress the PLAY button on the cassette recorder to start the tape.

4 . Press the RETURN key.

After you press RETURN, the cursor will disappear. After a few seconds, the
Apple II will beep to SiQnal that it has started to load the program. Some time later
it will beep again signaling that it has finished loading the program. Use the STOP
button on the cassette recorder to stop the tape.

The program is now loaded. If you hear no beeps or if you get any error
messages during the load process, recheck the volume control adjustments
according to the directions given earlier in this chapter. If you still have problems,
the cassette tape you are using has probably gone bad and you will have to re
place it.

LOADING A PROGRAM FROM DISK

Once DOS is booted, you can load a program from a disk with a command like
this :

LOAD program name -

30 APPLE II USER'S GUIDE

In actual use, program name is the name of the program to load. Naturally, a pro
gram by that name must be present on the disk that is in the drive.

STARTING A PROGRAM RUNNING

When the program you want is loaded, use the following command to get it
staffed: - RUN

The program takes over control of the A
play screen. o regain control, you can type CTRL-C in most pro rams. You may
have to press RETURN as we . IS o wor , c ec the specific operatinQ
instructions for the program you are using. In a dire emergency, you can press the
REsET key or turn the Apple II power off and back on again, but in either case you
may lose the program.

SETTING TV COLOR

The Apple II features full color graphics. If any of the programs you plan to use or
write will use this feature, you should adjust the color settings on your television
set or TV monitor for the correct balance. Apple Computer Inc. provides a pro
gram to assist in this task. With the Integer BASIC prompt (>). use the "Color
Graphics" cassette tape. With the Applesoft prompt (]). use the "Color
Demosoft" cassette tape or the COLOR DEMOSOFT program on diskette. In
either case, load and run the program according to the instructions given earlier in
this chapter.

The screen will look like the one shown in Figure 2-7.
What you see in Figure 2-7 is called a menu. A menu lists several choices (in

this case, four) and asks you to choose one. To set the TV color, select number
one by pressing the 1 key and then the RETuRN key. Now the screen will show 1 6
vertical stripes of color like the photograph in Figure 2-8. except in color.

As you see, the colors are named along the bo~tom of the screen. From left to
right, the colors are :

BLAK Black BROWN Brown
MGTA Magenta ORNG Orange
DBLU Dark Blue GREY Grey
PURP Purple PINK Pink
DGRN Dark Green LGRN Light Green
GREY Grey YELO Yellow
MBLU Medium Blue AQUA Aqua
LBLU Light Blue WITE White

Now adjust the contrast, brightness, color, and tint controls on the TV until you
get acceptable colors that agree with their names. Pay particular attention to pur
ple, pink, yellow, and the three blue colors.

When you have finished adjusting the color. press the RETURN key and the

Chapter 2 : HOW TO OPERATE THE APPLE II 31

FIGURE 2-7. COLOR DEMOSOFT Program Menu

FIGURE 2-8. Adjusting TV Color

32 APPLE II USER'S GUIDE

menu reappears. You can choose any item on the menu if you wish to experiment
a bit. To end the program, type CTRL-C (you'll have to end with the RETURN key).

MISCELLANEOUS COMPONENTS

This concludes the specific operating instructions for system components. For
other components in your system, use the operating manual for that component.
If you have a printer, for example, then you must refer to the printer manual, since
operating instructions for printers vary widely from one brand to another.

COPING WITH ERRORS

The Apple II is a marvelous piece of equipment but it shares a problem common to
all computer systems. It lacks imagination. Every instruction you give must be
exactly right or it will not work as you expected. The results of a mistake can run
the gamut from annoying to aggravating to devastating.

ERROR MESSAGES

When you type something in wrong and press RETURN, the Apple II usually re
sponds with a beep and a somewhat cryptic error message. Often the message
gives you a clue as to what you did wrong; then again it may not. The general
remedy is the same in either case: retype the line. You will find a complete list of
error messages in &?pendix C.

CORRECTING TYPING MISTAKES

As you type on the Apple II keyboard you're bound to make mistakes. Some of the
keys we described earlier make it easy to correct errors you notice on a line before
you press RETURN to end the line. They are the-.-. REPT, CTRL-X, and Esc-@ keys
and key sequences.

The -key backspaces the cursor and erases characters it passes
over. Characters are erased from the program line even though they
still appear on the display screen.

The - key moves the cursor forward, copying over (retyping)
characters it passes over.

The REPT key, used in conjunction with the - and - keys, enables
fast-backspacing and fast-forwarding.

The CTRL-X command cancels the line you're currently typing.

The Esc-@ command clears the display screen and leaves the cursor
in the upper left corner.

Chapter 2 : HOW TO OPERATE THE APPLE II 33

Let's see how you might use these editing features. Suppose you want to type
this:

LOAD 8 0LOR DEMOSOFT

but instead you get this far and notice you've made an error:

LOAS COLOR DEMOSOFT

You have two choices. You can type CTRL-X to cancel the line and start all over
again or you can use the - key to back up and correct the mistake. Press and hold
the -key. Then press the REPT key. The cursor races back to the start of the line.
Take your finger off the REPT key when the cursor gets to the f irst error. Remem
ber that as it backs up, the cursor is wiping every character it passes from the
computer memory. If you back too far, use the - to line the cursor up over the
offending S. Now press the D key, and presto! The line reads correctly. Do you
know what w ill happen if you press RETURN right now?

LOAD COLOR DEMOSOFT

All the characters to the right of the cursor will vanish .

LOAD

That' s not right! Before you press RETURN, you must move the cursor to the end
of the line. You could retype the rest of the line, but you might make another
mistake. The - key (together with the REPT key) moves the cursor to the end of
the line, automatically retyping the characters it passes.

ACCIDENTAL RESET

Sooner or later you will hit the RESET key when you did not intend to. It is inevita
ble, unless your Apple II requires you to type CTRL-REsET instead of just plain REsET.
You can reduce the hazard by carefully prying off the plastic keytop, leaving just
the keyswitch shaft available (Figure 2-9).

You can take this one step further and make it physically harder to push down
the RESET key. Get a small rubber washer about 3/ 8 inches inner diameter, 1/ 2
inch outer diameter, and 1 / 8 inch thick. Remove the RESET keytop as shown in
Figure 2 -9. Work the washer over the exposed square f lange of the keyshaft as
shown in Figure 2-1 0. Replace the keytop.

Recovering from RESET

What you can do about an accidental RESET depends on what you were doing at
the time the REsET occurred, and what kind of Apple II you have.

Any program you use on the Apple II should have specific instructions about
what to do if you accidentally press the REsET key while running that program. Be
sure you know what to do before you start your program. If you press RESET while
running a BASIC program you will be able to restart the program from the begin
ning. This is small consolation during some phases of accounting applications and
the like, since rerunning could foul things up.

34 APPLE II USER'S GUIDE

FIGURE 2-9. Guarding Against Accidental RESET: Phase I

FIGURE 2-10 . Guarding Against Accidental RESET: Phase II

Chapter 2: HOW TO OPERATE THE APPLE II 35

When you press RESET, the Apple II stops everything it was doing. Control
returns to the keyboard ; you will see a prompt character and the flashing cursor
on the bottom of the display screen. If the prompt is a BASIC prompt then you can
restart any program you were running by typing the RUN command. Some of
what you did with the program since the last RUN command will probably be lost.

If you see a Monitor prompt character (*) after pressing REsET then you can
switch back to BASIC by typing CTRL-C unless you were using cassette-based or
disk-based Applesoft. To switch from the Monitor to disk-based Applesoft, type
the following Monitor command:

*3DOO

To switch from the Monitor to cassette-based Applesoft, type the following
Monitor command:

CAUTION Be sure you use the correct command. If you are not sure which to
use, asks meone who is. Use the wrong command and you are dead. You will
have to reload your program, Applesoft, and possibly even DOS.

3
Programming in BASIC

This chapter teaches you how to start writing your own BASIC programs on the
Apple II.

BASIC is a programming language. Like any programming language, it consists
of a set of statements, which you combine to create programs. A program defines
the task you want the computer to perform.

We could teach you BASIC by forcing you first to learn BASIC statements, one
by one. But you would probably give up, since individual statements are not vety
meaningful. A study of individual BASIC statements quickly degenerates into
learning a bunch of arbitrary rules that tell you nothing about programming or
good programming practice. Therefore rigorous definitions of all BASIC state
ments have been relegated to Chapter 8. Look up individual statements in Chapter
8 when you need to, but do not try to read Chapter 8 before you read this chapter.

STARTING UP BASIC

There are two different versions of BASIC available on the Apple II. Some models
of the Apple II have Integer BASIC, some have Applesoft, and many have both.
For now, you don't need to worry about whether you are using Integer BASIC or
Applesoft. Later, when the difference becomes significant, we will discuss it in
more detail.

38 APPLE II USER'S GUIDE

Start with a BASIC Prompt Character

The Apple II is a multilingual computer. If you wish to program it in BASIC, it must
be expecting instructions in that language. You will find complete instructions for
starting up BASIC in Chapter 2. Let's quickly review.

--:1:. On an Apple II with the Autostart Monitor, you need only turn the machine on
and press RESET (CTRL-RESET on some versions of the Apple II keyboard).

--J> If your Apple II does not have the Autostart Monitor, turn it on and press CTRL
B, then RETURN .

--,1::. The prompt character in the left margin, next to the cursor, tells you which
BASIC you are in. You have Integer BASIC if the prompt is a " >". The prompt"] "
means you have Applesoft.

IMMEDIATE AND PROGRAMMED MODES

Before we start worrying about how to switch the Apple II between Integer BASIC
and Applesoft, let's take a look at some simple BASIC statements you can use in
either version of BASIC. Some of the examples in this chapter use the Integer
BASIC prompt (>) while others use the Applesoft prompt (1). You can try the
examples in either version of BASIC, no matter which prompt you see in the book,
unless specifically stated otherwise. Those examples with neither prompt can be
used in either version of BASIC.

PRINTING CHARACTERS

When you first put the Apple II in BASIC, it is jo immediate made alsp called
direct or calculator mode. In this mode, the computer responds immediately to
aA¥ iA&trwetic;ms yay issue it. Try f'Ypmg 10 th1s example:

F'R I NT "LET S LEEF' I NG DOGS LI E "

Don't forget to press the RETURN key after the last quotation mark. The Apple II
prints the following message:

LET S LEEP ING DOGS LIE

If the Apple II prints the message ?SYNTAX E!;WOR m *** s y NTAX ERR it is
telling you yoyr command was indecip_herable. Y~ p~ably....!]lssp2.!led tb.e w2[d
PRINT. If the Apple II just pr jnts the number ,Q iostead at a ny m~ssag,e jt means
you left out the first guotation mark. In either case, you can just type the instruc
tion in again, but be more careful this time! Computers are extremely particular
about spelling and punctuation. Even the slightest error can cause the computer to
balk or - even worse - to do the wrong thing.

A command like the one above instructs the computer to print everything be
tween the quotation marks onto the display screen.

Chapter 3 : PROGRAMMING IN BASIC 39

exceeds the w jdth gf the djsplay screen. This means a comrnan can occupy
more than one display line. l.gpg commands like thjs a1 ctamat jca!!y wrap around
to the next lower line on the display screen. Try this command:

PRINT "UNDER NORMAL CIRCUMSTANCES , THE M
AN WOULD BE CONSIDERED CRAZY"
UNDER NORMAL CIRCUMSTANCES , THE MAN WOUL
D BE CONS IDERED CRAZY

lnte,g_er BASIC allows about 1 20 characters. If you exceed the ljmjt you will get
messa e ***TOO LONG ERR after you press RETURN.

Ap lesoft allows s. s you ap roac the limit, the. Apple II starts
beeping. When you exceed the limjt jt prinis a hackslash (\) and automatically
cancels your entry, as if you had pressed CTRL-X. -

PRINTING CALCULATIONS

You can use the Apple II in immediate mpde as you would a calcu~tor ; it responds
directly with the answers to arithmetic calculations. Try these examples : .,

PRINT 4+6 + Addition
10

PRINT 500-4:37
6 ::::

PRINT 1 00*2::::
2300

PRI NT 96/ 12

PRINT ::::" 2
9

PRINT :;:*4* 1 0- :::oo
-6:::o

Subtraction

~ Multiplication

/ Division

J\ Exponentiation

Combination

The correct answers are on the line immediately following each of the commands.
Notice that you do not use quotation marks in these examples. Do you know what
would happen if you did? Try it and see if you're not sure.

lnte er BASIC has a maximum and minimum limit on the value of a calculation.

>PRINT - :327 66- 2
- ***)-:;:2767 ERR

40

>PRINT 2"15-1
*** >32767 ERR
>PRINT1 0/0
***)<327 6 7 ERR

>PR INT 9/2
4

APPLE II USER'S GUIDE

~ Applesoft does allow fractions. Numeric values can have a total of ojne signifi
cant dtgtts includmg both fractional and nonfractjgnaL parts. This means that
values with more than nine digits are rounded off to nine or r nonzero digits.
These exa ow this wor s:

JPRINT 12 . 3 4567896 Rounded Up
12 . 3 45679

] PRINT 12 . :3456 7894 Rounded Down
12 .3456789

If you try some of your own arithmetic calculations in immediate mode in
Applesoft, you will notice the result is sometimes displayed using scientific nota
tion.

JPRINT 123456 789123

t. 23456789f +t1 ;}!:!> i:'J.ro~
If you do not understand scientific notation, stick to simple calculations for now.
We will talk more about scientific notation and numeric values later in th is
chapter.

Abbreviated PRINT Statement

ARplesoft allows you to abbreviate the PRINT statement w ith a question mark (?).
Here are some examples you can try : -

ERROR MESSAGES

J ? "TIME MARCHES ON"
TIME MARCHES ON

- 263

So far we have mentioned several messages the Apple II will issue when it detects
situations it cannot cope with. It beeps to draw your attention to the fact that
something is wrong, and it tries to diagnose the problem for you. Its diagnostic
abilities are limited, though, so do not expect a definitive analysis of your error.
There are fewer than 35 possible messages the Apple II can use to respond to the
myriad of possible errors and combinations of errors.

Chapter 3 : PROGRAMMING IN BASIC 41

Throughout this chapter and the rest of the book we will make note of some of
the errors that can occur in specific situations, especially the insidious ones. All
error messages are listed alphabetically in Appendix C.

Error Message Format

Error messages have a slightly different format in Integer BASIC than in
Applesoft, as shown below:

{
JPRNIT "THE LAVA FLOW::;"

llppt..~~ ?8YNTAX ERROR
]

{
PRNIT "THE LAVA FLOWS"

.:r..,~t, ... *** :3YNTAX ERR
>

EXTRA BLANK SPACES

Are you struggling with the question of where to put spaces in a line and where
not to? Don't worry. The Apple II interprets a BASIC line by the elements in it.
Spaces. or blanks are irreievant. I be R!J,IY place you must put spaces is within
quotation marks, where you want spaces to be part of a message. -
STATEMENTS, LINES AND PROGRAMS

statements II with an
exact an complete defjn jtjao of the task which it is to perfOI!Il. If the task is short
and simple. the program can be short and simple as well. The immediate mode
instructions we have experimented with so far are each small, simple programs.
Each one has just one statement - one instruction to the Apple II. These are triv
ial cases. Most programs have 1 0. 1 00, 1 000, or even more statements. Consider
the following statements:

PRINT "COWS MOO"
COWS MOO

PRINT "FOR FANCY BLUE"
FOR FANCY BLUE

PRINT "HOOF- 8- NU"
HOOF-8-NU

Each of these immediate mode programs prints a line of text on the display
screen. Each program has exactly one statement and exactly one line.

lesoft allows you to put more than one statement line. You separate
multiple statements on a co on (:). Compare this immediate

42 APPLE II USER'S GUIDE

mode program with the example above:

JPRINT "COWS MOO":PRINT "FOR FANCY BLUE"
: PRINT"HOOF-8-NU"
COW:::: MOO
FOR FANCY BLUE
HOOF-8- NU

start over. It does not perform any gf the jgstructions you typed on the too-lon,a
line. So there is a limjt to hgw much you can dp w jth a pne-ljge immedjate mode
program. -
A One-Line Program in Applesoft

You can put quite a lot of program on one line in immediate mode, thanks to
Applesoft's ability to handle more than one statement per 255-character line. For
example, consider the following statement :

='J> JFOR I=!. TO 800 : ? "A"; :NEXT: ? "F'HEW'"

I . h . f h' " ~ r It o~:rf t 't . tl gnonng t e meamng o t IS m1n1-program or now, ype 1 1n exac y as
shown, ending with a RETURN . If you type it in successfully, you will see the letter A
displayed across the next 20 lines of the 40-column screen, followed by the
message PHEW! on the 21st line.

AA
AA
AAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AA
AA
AA
AA
AAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AA
AA~'\AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
PHEW!

Chapter 3: PROGRAMMING IN BASIC 43

The program line is conveniently left at the top of the screen. This is because
the program displays just enough lines to scroll the program line to the top of the
a 40-column screen, but not off it.

When the one-line program described above is finished, the Applesoft prompt
is displayed with the cursor adjacent to it on the bottom line of the display screen.

PROGRAMMED MODE

The programming we have done so far is educational and, hopefully, interesting,
but there is only so much you can do in immediate mode. This is especially true in
lnte~er BASIC. with its limit of one statement per program line. Another problem
with immediate mode programs is that you have to retype the program eaCFi time
you want to use it. There are some advanced ed1ttng techmques which we will dis
cuss shortly that will allow you to reuse the program as long as it still appears on
the display screen, but this is still a limitation.

What you need is a way to enter several program lines and to hold off using
those lines. That way you can write programs to do tasks that are too complex for
one-line programs.

There is a way to get around the problems of immediate mode, and that is to
write programs in programmed mode, also called deferred or indirect mode. In
p-;:Qgrammed mode, the com uter acce ts and stores the program 1n 1ts memory,
but does not er orm any of the operations s ec1 ou te
it to do so. You can enter as many program lines as you want. Th w
enter the appropriate co m uter erforms the o erations s
by e programme mode program

Program Execution

We say the computer executes or runs a program when it performs the opera
tions which the program specifies.

In immediate mode a ro ram is executed as soon as you ress the RETURN ke .
In programmed mode you must issue t e command to execute a program.

Each time you do so, the program runs all over again. ,

Clearing Out Old Programs

Because the Apple II stores programmed mode programs in its memory, you must
spiQJf!cally tnstruct 1t to erase an old program before you type tn a new progr& .

D=-o~th~i7:s~b~y~t~y~p:in~g~th~e~co~m~m~a;;n~d~N;,Er..;W. If you forget to type NEW, your new pro-:: - ----- .,...._. .._. ~
gram will be mixed in With your Old program.

Ending Programs Properly

rrhe end of an immediate mode program is obvious. Not so with programmed
l mode, as we shall see. The END statement tells BASIC to stop executing your pro-

44 APPLE II USER'S GUIDE

L gram and return to immediate mode. Therefore an END statement should be the
last statement your program executes.

""'!-~~b Applesoft does not require an END statement. It ends a program automatically
when 1t runs out of mstruct1ons.

line Numbers

Line numbers make programmed mode possible. A line number is simply a one,
two, three, four, or five-digit number entered at the beginning of a program line.
The line number is the only difference between a programmed mode program line
and an immediate mode program line. There are some instructions that can be
used only in immediate mode and others that can be used only in programmed
mode; we will discuss them later.

Try this sample programmed mode program:

>NEW

:>10 PRINT "RUBBER BABY BUGGY BUMPER:3"
:>20 END
>RUN
RUBBER BABY BUGGY BUMPERS

Each line number must be unique. No two program ljnes can haye the same
number. If ou u same line number more than once, the com uter only
remembers the last program line you used it with. To see how IS works, type in
these program lines:

:>NEW

> 1 0 PRINT "F I R~;T LINE 1 0"
:> 10 PRINT "SECOND LINE 10"
>20 END
>RUN
:::;ECOND LINE 1 0

Ia~~~~~~~~~~~~~~~~~~~~~~~~
nally rearrange them in the proper sequence
gram, with line numbers out of order:

:>NEW

:>:30 PRINT "CUT "
>10 PRINT "FISH"
:>20 PRINT "OR"
:>40 PRINT "BAI T"
:>50 END
:>RUN
FI:::;H
OR
CUT
BAIT

Chapter 3 : PROGRAMMING IN BASIC 45

To prove that the Apple II does not forget programmed mode in programs.
clear the display screen with the Esc-@ command and then rerun the program.

> -Press Esc- Cl, then R ETuRN

:>RUN
FI S H
OR
CUT
BAIT

It is a simple matter to add program lines to a program that is currently in the
computer's memory. You can add a line to the beginning, the end, or anywhere in
the middle of a program by typing the line with a line number that will position it
where you want it. Suppose you wanted to add a line to the beginning of the last
example program. As long as you have not typed the command NEW, the pro
gram will still be in the Apple ll's memory. Since the lowest line number currently
in that program is 1 0, any program line you type in now with a line number less
than 10 will be placed at the beginning of the program. Try this :

> 5 PRINT " E ITHER"
> RUN
EITHER
FI :;:;H
OR
CUT
BAIT

It's a good thing the original program started with line 1 0 rather than line Ol lt's
always a good practice when assigning line numbers to start your program with a
fairly high line number and leave plenty of room between line numbers so you can
add program lines later on.

L.l.,.""

-::_ - - _L \ (••) Multiple-Statement Program lines ~.'("'<). ~ 10 1
You can put more than one statement on a single program line. The first state
ment follows the line number. The second statement follows the first, with a
colon (:) in between. Colons separate the statements on a multiple-statement line.

Integer BASIC allows you to put more than one statement on a line in program
mode, unlike immediate mode. Line length is limited to approximately 1 50 charac
ters. The exact line length limit varies depending on the content of the line. If you
type a line that is too long, the Apple II displays the error message*** TOO LONG
ERR and you must retype the line.

Multiple-statement program lines are allowed in Applesoft in both programmed
and immediate modes. In both cases, the line length limit is 255 characters, as we
described earlier.

listing Program Lines

You can see what ro ram lines the computer s ed in i mory at any
~e by typing the command MST. Try it rig t now. If you have not type

•

46 APPLE II USER'S GUIDE

since you tried the last example, you should see the following program lines dis
played on the screen:

L I ::::T
5 PRINT "EI THER"

10 PRINT "FI::;H"
20 PRINT "0R 11

30 PRINT "CUT"
40 PRINT "BAIT"
50 END

Th~ is called a w agram /jstinr; . There are variations of the LIST command which
allow you to list one line at a time or a group of lines. This latter option is especially
handy when you have a long program that will not fit on the d1splay screen a~t
~· With the last example program still in the computer's memory, typing the

command
LIST 10

causes the following program line to appear on the display screen :

10 PRINT "FISH"

To list several sequential program lines, you must s

Interrupting a Listing

LIST 20,40
20 PRINT "OR"
30 PRINT "CUT"
40 PRINT "BAIT"

JLIST,10

5 PR INT "E ITHER"
10 PRINT "FISH"

JLI ST 30,

:::0 PRI NT " CUT"
40 PR INT " BAIT"
5 0 END

and

Yoll can hajt a listjng before it reaches the end by typing CTRL-C. This is em ecia.l!y
" seful for aborting the interminable listing of a long program.

Jt,_your Apple II has the Autostart Monitor, you can suspend, or temporarily
f reeze the listing of a program by typing CTRL-S. The listing will resume when you

Chapter 3 : PROGRAMMING IN BASIC 47

press the space bar. CTRL-S allows you to review the listing of a long program at
Y.QUr own pace.

Automatic Line Numbering

The Apple II will automatically number your Integer BASIC program lines for you.
Use the AUTO command to institute this. The computer will then supply the next
line number each t1me you press the RETURN key. It will not advance to the next line
number if it finds an error on the line you just finished, or if you entered nothing on
the line except RETURN.

To get out of the automatic line numbering mode, type CTRL-X. This cancels
theline number prov1ded b the computer. Following. that, type the command

To see how the AUTO and MAN commands work, type in the following :

>AUTO 1000

:>1000 PRINT "HOW MANY YARDS IN A MILE""?"
> 1 0 1 0 Just press RnuAN

> 1010 PRIMT 5280/3
*** SYNTAX ERR
> 1010 PRINT 5280/ 3
)- 1 0 20 \ Press CrRL-X

>MAN

>
As you can see from the example, AUTO requires you to specify which line

number automatic line numbering should start with. You can also speci fy the
increment between line numbers. The following exa mple illustrates this option.

>AUTO 1000 ,1 00

:> 1000 PRINT "FISH OR CUT BAI T "
)- 11 00 \
>MAN Press CrAL-X

In this example, line numbers are incremented by 1 00. If you do not specify the
increment, the Apple II defaults to 1 0 as in the previous example.

Applesoft does not have the automatic line numbering feature.

SAVING PROGRAMS ON CASSETTE

A cassette recorder gives you the means of saving a programmed mode program
outside the main computer and later loading that program back into memory.
Suppose you have the following program in memory.

10 PRINT "TOTO,"
2 0 PRINT "I"
3 0 PRINT "DON··"T"

48 APPLE II USER'S GUIDE

40 PRINT "THINK"
50 PRINT 11 WE""RE 11

60 PRINT 11 IN 11

70 PRINT 11 J(ANSAS 11

80 PRINT 11 ANYMORE 11

90 END

To save this program, put a tape in the cassette recorder. Rewind it to the begin
ning, then press the RECORD and PLAY buttons simultaneously on the cassette.
recorder and enter the following command right away at the keyboard:

SAVE

The Apple II will beep as it starts recording the program on the tape and will beep
once again when it finishes. Press the STOP button on the recorder after the sec
ond beep.

At this point type in NEW followed by LIST to erase the program from the com
puter memory and verify that it is gone. To load the program back into the com
puter from the tape, first rewind the tape to the beginning. Then press the PLAY
button on the cassette recorder and enter the following command at the
keyboard: LOAD

The Apple II beeps as it starts to load the program from the tape and beeps once
again when it finishes. You must manually stop the tape after the second beep.
Use the LIST command to verify that the program is in the computer memory.

In Chapter 5 we will see how to save and load programs onto disk, which is
even more convenient than cassette tape.

Saving Multiple Programs
on One Tape

You may have noticed that it did not take very much tape to save the one pro
gram. A longer program would require more tape, but usually there is enough tape
on one cassette to hold several BASIC programs. You can save programs sequen
tially on the tape: the second follows the first, the third follows the second, and so
on.

Loading the second, third, and subsequent programs on a cassette is not as
straightforward as loading the first. After you rewind the tape to the beginning,
you must get past the first program in order to load the second, past the second
to get at the third, etc. You can do this by typing the LOAD command repeatedly
until the program you want is in memory. This is a slow process, but it works.

You can speed things up considerably if your cassette recorder has a tape
counter. Reset the tape counter to 0 when you rewind the tape to the beginning
before saving a program. After saving the first program, jot down the tape
counter reading. This is the starting tape counter reading for the second program.
Save ~he second program and note the tape counter reading at the end of it (for
the start of the third program).

Now to load the second program, rewind the tape to the beginning and reset

Chapter 3 : PROGRAMMING IN BASIC 49

the tape counter to 0. Then use the FAST FORWARD button on the cassette
recorder to position the tape counter to the reading for the start of the second
program. You can use the REWIND button on the cassette recorder to back the
tape up if you overshoot with the FAST FORWARD button. Now use the LOAD
command to get the second program.

SWITCHING BASICS

On many versions of the Apple II, you have a choice between programming in
Integer BASIC and Applesof,L The reasons for choosing one version of BASIC
over the other will become apparent as you progress thr u h this chapter. We
have already seen, for examp e, t at Integer BASIC will provide ro ram line num:
bers automa 1ca y, while Applesoft will not. On t e other hand, Applesoft allows
you to use numeric values with fractions, while Integer BASIC does not. _,

Wh1le most versions of the Apple II have both versions of BASIC available, not
all do. TIJJ! standard Apple II Plus has only Applesoft, for instance. The procedure
for switching from one version of BASIC to the other varies depending on which
model of Apple II you have, and which options are installed on it.

With the Apple Language System option, you have immediate access to either
version of BASIC. If you are in Integer BASIC, type FP to transfer to Applesoft.
Fm m Applesgft type INT for lnteser BASIC . .

The Applesoft firmware card also allows you immediate access to either ver
sion of BASIC. It has a switch which protrudes through a slot on the back of the
Apple II and determines the version of BASIC. You will get Integer BASIC if you
turn on the Apple II with the firmware card switch in the down position. When you
turn the Apple II on with the firmware card switch in the up position you get
Applesoft. Regardless of the switch setting, you can type FP for Applesoft or INT
for Integer BASIC if the firmware card is installed.

On a standard Apple II it is easy to get Integer BASIC. Press the RESET key, and
then type CrRL-B. It is harder to get Applesoft on a standard Apple II since it
resides on either cassette or disk. You must instruct the Apple II to load Applesoft
into its memory from the disk or cassette.

Before you can use the disk drive you must boot the Disk Operating System
(DOS) as described in Chapter 2. You must do this each time you turn the com
puter back on after it has been off. To review briefly, here are the standard
instructions for booting DOS from the Monitor and Integer BASIC:

*6 Press CrRL-P, then RETURN

>PR#6

Once DOS is booted, you can put the Apple II in Applesoft from Integer BASIC
by placing a disk with Applesoft on it in the disk drive and then typing FP. In a few

60 APPLE II USER'S GUIDE

seconds the Applesoft prompt character (]) will appear on the display screen.
You can also get Applesoft from cassette tape. The complete procedure for

doing this is described in Chapter 2. Briefly, you must put the Applesoft cassette
in the cassette recorder, press the PLAY button on the cassette recorder, and type
the LOAD command from Integer BASIC. In 1-1 /2 or 2 minutes, the Applesoft
copyright notice and prompt character will appear on the display screen.

From Applesoft, you can switch back to Integer BASIC by typing the command
INT. If you then wish to switch back to Applesoft, use the FP command with the
disk drive, or the LOAD command with the cassette tape.

ADVANCED EDITING TECHNIQUES

In Chapter 2 we looked at ways you could correct errors in a line you are typing
before you press the RETURN key. Let's quickly review those simple editing tech
niques.

The - key backspaces the cursor and erases characters it passes over.
Characters are erased from the program line even though they still
appear on the display screen.

The - key moves the cursor forward, copying over (retyping) characters
tt passes over.

The REPT key, used in conjunction with the -and - keys, enables fast
backspacing and fast-forwarding.

The CTRL-X command cancels the line you're currently typing.

The Esc-® command clears the display screen and leaves the cursor in !&
theupper left corner.

We will now discover new ways to edit program lines. These new methods are
particularly useful when you want to make changes to programmed mode lines
(i.e., those with line numbers).

DELETING PROGRAM LINES

To delete an entire line, type its line number followed immediate! b a RETURN.
en y am, you will see that the line and line number are no longer

part of the program. Here is an example:

>NEW

:>100 PRINT "VIRTUE IS ITS OWN REWARD ..
:>110 PRINT II IF THE SHOE FITS~ WEAR IT 11

:>120 PRINT "WHERE THERE"S SMOKE~ THERE"S
FIRE 11

:>130 PRINT "LOOK BEFORE YOU LEAP"
:>140 PRINT 11 BREVITY IS THE SOUL OF WIT 11

Chapter 3 : PROGRAMMING IN BASIC

> 150 END
>1 10
> 1:::o
>LIST

100 PR INT "VIRTUE I S ITS OWN REWARD"

120 PRINT "WHERE THERE / S SMOKE, THER
E·' S FIRE"

140 PRINT "BREVITY I S THE SOUL OF WI
T"

150 END

51

You can use the command DEL to delete a block of program lines. For example:

>DEL 110, 140

>LI::':T
100 PRINT "VIRTUE I S ITS OWN REWARD"

150 END

The command DEL 11 0,140 deletes all program lines starting at line number 11_Q
and ending with line number 140. Even though line 11 0 does not exist, all lines
between 11 0 and 140 are deleted. -

ADDING PROGRAM LINES

You can type in new program lines in any order, at any time. Their line numbers
will determine their position in the program. The Apple II will automatically merge
them with any other program lines currently in memory. Try adding lines 120 and
11 0 back into the example above.

> 12 0 PRINT "WHERE THERE ' S SMOKE, THERE ' S
FIRE"

> 110 PR INT "IF THE SHOE FITS, WEAR IT"
>LI :3T

100 PRINT " VIRTUE IS ITS OWN REWARD"

110 PRINT "IF THE SHOE FITS, WEAR IT

120 PR INT "WHERE THERE ' S SMOKE, THER
E·' S F IRE"

150 END

CHANGING PROGRAM LINES

The simplest way to change a program line is to retype it. This is unsatisfactory
for several reasons. Retyping is a time-consuming chore and the chances of
typographical errors are high. Fortunately there is a way to modify program lines
you have already typed into the computer memory. The feature of both Integer
BASIC and Applesoft that makes this possible is that anything displayed on the

52 APPLE II USER'S GUIDE

s.creen is live . '(.at• can edit anything on the screen. By 11sing the Es;c key in c.Q...n
junction with several other keys. you can move th'f cursor around an the screen at
~his allows you to position the cursor to the beginning of any line that is dis
played on the screen. Then you can use the - key to copy over unchanged parts
of the program line. You can replace, insert. or delete characters anywhere O'!.,the
line.

Here is how it works. First, you use the LIST command to display the program
line or lines you wish to change. You may have noticed that the LIST command
puts in extra spaces when it displays program lines. (This is to make the program
more readable.) These extra spaces can make it more difficult to edit longer pro
gram lines. To keep the LIST command from adding extra spaces when it displays
program lines, clear the display screen (use Esc-®} and type the following mystery
command :

POKE ::::;:::, :33

In addition to suppressing the extra spaces. this command reduces the width qf
the displav screen from 40 characters to 33 characters. We will coyer the POKE
statement in more detail in Chapter 4 . To get the display back to normal t)lp;-

F'OKE :::::3, 40

Moving the Cursor

To...move the cursor around on the screen. you must press two keys in sequence.
Fir..s.t.press the E:;c key and then press either the A, B. C, or D key. You must press
Esc f wed b A, B, C, or D each time you want to move the cursor one position
ri t left down, or up. Figure - 1 us ra e e our possible key sequences
affect cursor movemen .

With the Autostart Monitor, you can also use the I, J, K, and M keys in conjunc
tion with the Esc key to move the cursor. Because of the way these four keys are
situated on the keyboard, they form a directional control pad as shown in Figure
3-2.

The · an important difference in the way Esc works with I, J, K, and M. Press
Esc and the Apple II goes into edit mode . Now press , , . and M to move the

Q Esc- 8

0
Esc-D

Esc-C
0

Esc-A l)

FIGURE 3-1 . Cursor Movement (Two-Key Sequences}

Chapter 3: PROGRAMMING IN BASIC 53

FIGURE 3-2. Cursor Movement (Autostart Monitor Version)

Changing Characters

Replacing one character with another is simplicity itself. Merely position the cur
sor on the offending character and type the replacement right over it. For exam
ple, with the cursor as shown:

100 PRINT "ESTIMATED TIME OF ARRIVAL"

you can type the word DEPARTURE and get this:

100 PRINT "ESTIMATED TIME OF DEPARTURE"

Press RETURN to effect the change.

Deleting Charact.!!_s

You can effectively delete jndividua! characters by typing over them wjth bl!t'k
spaces. Remember that in BASIC extra blan c do not affect anything unless
they are inside of (ll!Otation marks. You can also use the Esc and A keys the K key
in edit mode) to move the cursor forward. Unlike the - key, Esc-A and Esc-K do
not recopy characters they pass over. If th haracters you want to delete are
inside quotation marks, it is easier to use the Esc and A keys. or the J key in e it
mode, to skip over unwanted characters.

54 APPLE II USER'S GUIDE

Jo blank a!Jt all characters from the cursor position to the end of the dis.E!_ay
line,,.press Esc and then E. This has the same effect as pressing the space bar
repeatedly until you reach the end of the display line, except the cursor does~t
move. Characters on the next display line are not erased from the screen even if
t~were part of the same program line. For example, if you press Esc and then E
with the cursor positioned like this :

1 0 0 PRINT " IT I :=; BETTER TO HAVE LOVED AN
[I LO:::;T THAN NEVER TO HAVE LOVED AT ALL"

this is what happens:

1 00 P R INT " IT I S BETTER TO HAVE
[I UXH TH AN NE VER T O HAVE LO VED AT ALL"

e;rware! If you press RETURN right now, line 1 00 will end right where the cursor is.
Use the - key to recopy the rest of the program line.

X.ou can also clear all the text from the cursor position to the end of the disp~
screen. To do this, press Esc and then F.

Inserting Characters

Inserting characters into a line is an easy process. It may seem confusing at first
because the final results are not immediately apparent. The Apple II cannot push
apart characters on a line to make room for insertions. Figure 3-3 diagrams the
way the Apple !!lets you perform insertions. You insert text above the line with the
aid of the cursor movement keys (Esc, etc.). The thing you must remember is that
what is d1splayed on the screen is not an exact replica of what is stored in the
computer memory.

Here is a sample editing session that demonstrates character insertion. The
sam le uses the Integer BASIC prompt character (>) but will work exactly the
same in Applesoft. Consi er the fol owing program line:

> NEW

:> 1 0 PR INT " ON T HE WAGON"

(j) To insert the word BAND in front of the word WAGON, f irst list the program:

> LI :3T
1 0 PRINT "ON T HE WAGON"

)

Us in the cursor movement keys (Esc etc.) only, position the cursor so that it is
directly over the f1rs the line number, as follows:

>LI S T
10 PRINT "ON THE WAGON"

>
@ Now use the - key to copy over the f irst part of the line. Stop at the W .

Chapter 3 : PROGRAMMING IN BASIC

BAND
~

10 PRINT "ON THE WAGON"

FIGURE 3-3. Character Insertion

:>LI:::T
10 PRINT "ON THE WAGON"

) ·

55

the D key to move the cursor up one line. (If th~e
are characters to the right of the cursor on this line, you can erase t em by press
ing the Esc key followed by the E key.)

:>LI :3T
10 PRINT "ON THE WAGON"

)

W Type the word BAND.

>LIST BAND
10 PRINT "ON THE WAGON"

@ Using ~Y the cursor movement ke s osition the cursor over the first letter of
the insertion. not use the - key to back the cursor up. Although it looks li e it
does the same thing on the display screen as Esc- or sc-J . actually erases
the cha;acters it passes over; 1t will un-msert your insertions! -

>LIS T BAND
10 PRINT "ON THE WAGON"

-,, _,

Press the Esc key followed by the C key to return the cursor to the original pro
gram line.

BAND
10 PRINT "ON THE WAGON"

_.:-

Finally, use the- key to copy over the rest of the line. Then press RETURN. Display
the new line with the LIST command.

>LI ST BAND
10 PRINT "ON THE WAGON"

>LIST 10
10 PRINT " ON THE BANDWAOON

Appendix B contains a handy reference table of editing commands.

66 APPLE II USER'S GUIDE

REEXECUTING IN IMMEDIATE MODE

The fact that anything on the Apple II display screen is live allows you to reex
ecute any immediate mode statements that are still visible on the display screen.
You can reexecute an immediate mode statement just as it is, or you can edit it
first.

In either case, the first thing to do is to position the cursor to the beginning of
the immediate mode line. Use the Esc and A, B, C, D keys alternately as described
above (Qr Esc followed by any number of I. J. K, and M keys if you have an
Autostart Monitor). Then use the - key to copy over the immediate mode
instruction. You can, of course, make changes to the line using the techniques we
have just described for replacing, deleting, and inserting characters on a line.

To see how this works, look at the following immediate mode program which
calculates the cubic feet of storage space in a 1 0 x 25 x 8 foot room.

:>PRINT II cu. FT. OF SPACE = II ; 1 0*25*E:
CU. FT. OF SPACE = 2000

You can change this immediate mode program easily to calculate the storage
space in rooms of different sizes. To change the dimensions to 10 x 25 x 14,
for example, first position the cursor to the beginning of the immediate mode line.
(Alternately press Esc and D three times.) Now press and hold the - key while you
hold down the REPT key. The cursor will fast-forward along the immediate mode
line. Release both keys in time to stop the cursor when it gets to the 8. If you over
shoot or undershoot by not releasing the keys at the proper time, you can move
the cursor back and forth one character at a time with the - and - keys. For that
matter, you could move the cursor from the start of the line to the 8 by pressing
the - key 33 times, instead of using the REPT and - keys in conjunction.

With the cursor positioned over the 8, type in the new room dimension of 14
and press RETURN.

:>PRINT "CU. FT. OF SPACE= ";10*25*14
CU. FT. OF SPACE = 3500

PROGRAMMING LANGUAGES

A programming language is the medium of communication between you and the
computer. There are many different programming languages. Some, like BASIC,
are general purpose languages, while others are designed to make it easy to write
programs in specific areas like business, science, graphics, text manipulation, and
so forth. Programming languages are as different as spoken languages. In addition
to BASIC, other common programming languages are Pascal, C, FORTRAN,
COBOL. APL, PL/M, PL-L and FORTJ-t.

Apple II computers can use several programming languages, BASIC and Pascal
among them. This book concentrates on describing how to program the Apple II in
BASIC.

Chapter 3: PROGRAMMING IN BASIC 57

No matter what the programming language, every program statement must be
written following a well-defined set of rules. These rules taken together are re-
ferre to as syntax. 1 erent ro rammin lan ua e has its own syntax.

Programming languages, like spoken languages, have dia ects. ta ec s
manifest themselves as mmor variations tn syntax. I he Apple II has two such
dialects of BASIC: Integer BASIC and Apolesoft. Because of the differences be
tween the two dialects, very often programs written in one dialect will not work
correctly when the Apple II is expecting instructions in the other dialect. Further
more, a BASIC program written for the Apple II may not run on another computer,
even if the other computer also claims to be programmable in BASIC. However,
having learned how to program your Apple II computer in either of its BASIC
dialects, you will have little trouble learning any other dialect of BASIC.

Some programming language syntax rules are obvious. The addition and
subtraction examples at the beginning of this chapter use obvious syntax. You do
not have to be a programmer to understand them. But most syntax rules are
utterly arbitrary and meaningless, until you have learned the syntax. You should
not try to seek a rationale for syntax rules; usually there is none. For example, why
use *to represent multiplication? Normally, you would use an X for multiplication.
But the computer would have no way of differentiating between the use of X to
represent multiplication and to represent the letter X. Therefore, nearly all com
puter languages have opted for the asterisk (*)to represent multiplication. Division
is universally represented by the I sign. There is no real reason for this selection;
the division sign (+) is not present on computer keyboards, so some other
character must be selected.

ELEMENTS OF BASIC

Most of the syntax rules for BASIC concern individual statements. BASIC state
ment syntax deals separately with its three major elements: line numbers, tnstruc
.li9ns to the computer, and data. We will descrtbe each 1n turn. There are also a
few rules that pertain to the program as a whole, such as statement order. We will
cover these rules in appropriate places throughout the chapter.

LINE NUMBERS REVISITED

We've already talked about line numbers to some extent. After a brief review,
we' II go into more detail. In programmed mode, every line of a BASIC program
must have a unique line number. Line numbers determine the sequence of instruc
tions in a program; the statement with the lowest line number is first and the
statement with the highest line number is last.

Integer BASIC allows one- to five-digit line numbers with integer values be
tween 0 and 32767.

68 APPLE II USER'S GUIDE

Applesoft allows one- to five-digit line numbers with integer values between 0
and 63999. ...

Line Numbers as Addresses

In essence, line numbers are a way of addressing program lines. This is an impor
tant concept, since every program will contain two types of statements:

1. Statements which create or modify dat~nd

2. Statements which control the sequence in which operati~s are
performed.

The idea that operations specified by a program must be performed in some
well-defined sequence is a simple enough concept. Normally, program execution
begins with the first statement in the program and continues sequentially, as
illustrated below.

Start-10)
20

C3o~
40

Cso_:::)
etc.

But we will soon discover tbat most programs contain some non-sequential
execution sequences. That is when line numbers become im ortant, because you

BLANK SPACES

10 execu 1on sequ~ce. This may be

Start-10~

C
20

30
40) GOT070

50--)
60~ c70
80
etc.")

Ge_nerally speaking, you can use extra blank spaces freely to improve the
--l8£ldability of your program. ~e each extra space would take extra

memory, the Apple II compresses unnecessary blank spaces out of a program line

Chapter 3: PROGRAMMING IN BASIC &9

when you enter it (and press RETURN}. Then when u is Ia ro ram li with
the L T command, the Apple II reinflates them with blank spaces for readability,
accordtng to a predetermined plan. Recall that you can suppress the reinflation by
typing POKE 33,33 before issuing a LIST command. POKE 33,40 normalizes tlie
display screen.

You do have to be careful about using extra spaces within quotation marks.
Compare the following two commands, for example:

DATA

PRINT 11 ENTER INVOICE DATE"
ENTER INVOICE DATE

PR INT 11 ENTER INVOICE D ATE"
ENTER INVOICE D ATE

The main business of computer programs is to in
o the way a programming language handles data, whether it be numbers or text,

is very important indeed. We will now describe the types of data you may
encounter in an Apple II BASIC program.

Strings --A string is an character or se uence of ch racters enclosed in uotation marks.
e have already used strings with the PRINT statement as messages to be dis-

played on the screen. Here are some more examples of strings:

"IGNORANCE IS BLISS"
"ACCOUNT 4019-181-324-837"
"NICK CHARLES"
"SAM & ELLA CAFE"
"MARCH 18, 1956"

With just a few exceptions, a string can contain any character you can produce
at the keyboard using the normal alphabetic and numeric keys, with or without the
C!RL or SHIFT keys. Tbe excegtjons are-. -.RETURN, Esc, CTRL-H, CTRL-M, CTRL-U,
and CTRL-X. These exceptions ejther move the cursor around or end the line
you're working on. or both.

Strings can be any length from 0 to 255 characters. A string with no charac
ters in it is called the null string.

There are some invisible characters you can produce by pressing certain com
binations of ke¥s. For example, if you press the CTRL and G r<eys stmultaneoosiV,
~ computer beeps. You can put this character in a string. Try using some of
these characters with a PRINT statement.

PR I NT n u Press CTRL-G several times between
the quotation marks

60 APPLE II USER'S GUIDE

In this example you can hear the character even though you can't see it. Tbe.J:a.ru:.e
otheu;haracters that are invisible and inaudible. Such characters are used for CQ!l
trolling printer functions, communications devices, and other components you
ca~ attach to the Apple II.

--£:> Appendix I lists the entire Apple II character set and tells you which keys pro
duce which characters.

In Applesoft there is a way you can include, in a string, characters which you
cannot generate d1rectly by pressmg keys. You do fh1s w1th tl'le C~~$-tul'iction,
which we will describe in Chapter 4.

Numbers

There are two kinds of numbers that can be stored in the Apple II : integers w · h
are m 1mbers without any fract1ona part, and real numbers (also called floating

...poiR-t numbers!. which can have fractional parts. As you might suspect, Integer
BASIC only recognizes integers. Applesoft uses both integers and real numbers.

You must express all numbers without commas. For exam pi~. you -;:;::wstUse
32000, not 32,000.

Integers

An integer is a number that has no fractional portion or decimal point. The number
can be negative (-)or positive (+). An unsigned number is assumed to be positive.
Integer numbers must have values in the range -32767 to 32767. The following
are examples of integers:

Real Numbers

0
1

44
32699
-15

A real number can be a whole number, a whole number with a decimal fraction or
ju;t a decimal fraction. The number can bene ative (-)or ositive (+).If the nu;;;

er as no sign it is assumed to be positive. The smallest (most negative) real
number is:

-100000000000000000000000000000000000000 - /~3~
and the largest is :

100000000000000000000000000000000000000 rJOJ¥

Chapter 3 : PROGRAMMING IN BASIC

Here are some examples of real numbers:

5
-15

65000
161

0
0.5

0.0165432
-0.0000009

1.6
24.0055
-64.2

61

r When the value of any fractional number gets closer to zero than ati[jout
.000000000000000000000000000000000000003, it will be converted to
zero.

Scientific Notation

Very large and very small real numbers are represented in Applesoft using scien
tific notation . Any number that has more than nine digits in front of the decimal
point will be expressed in scientific notation. Any fractional number closer to zero
than ±.0 1 will be expressed in sctenflftc notation. -

A number in scientific notation has the form :

where: number -
E

+
ee

numberE±ee ---is an integer, fraction, or combination, as illustrated above.
The number portion contains the number's significant
digits; it is called the coefficient. It no decimal point
appears, it is assumed to be to the right of the coeffiCient.

---?

is always the letter E. It stands for the word exponent .
is an optional plus sign or minus sign.

is a one-digit or two-digit exponeJ!!. The exponent specifies
the magnitude of the number. that is, the number of places
to the right (positive exponent) or to the left (negative
exponent) that the decimal point must be moved to give
the true decimal point location.

Here are some examples of scientific notation:

Standard Notation Scientific Notation

1000000000
.000000001

200
-123456789

-.00000123456789

1E + 09
1E- 09
2E + 02 ' k

-1.23456789E + 09 ~ +t, . .,. -+ o i'
-1.23456789E- 06

62 APPLE II USER'S GUIDE

As you can see, scientific notation is a convenient way of expressing very large
and very small numbers. The maximum and minimum values for real numbers,
which we just expressed with lots of zeros, can also be expressed as 1 E+38 and
-1 E+38, respectively (much more compact). Similarly, the closest a number can
get to zero is 3E-38.

Roundoff

We mentioned earlier in this chapter that real numbers can have as many as nine
digits of precision. For a number greater than 1 or less than -1, this mecns only
the leftmost nine digits can be nonzero. The Apple II rounds off any digits in
excess of nine. Here are some examples (note that large numbers print in scientific
notation):

JPRINT 1234567891
1. 2:3456789E+09

J?-123456789123456789
-1.23456789E+17,

J?-150000475.75
-150000476

J?90000000.7558
90000000.8

Fractional numbers (those between 1 and -1) are subject to the same limita
tion. In this case, though, the nine digits of precision start with the first nonzero
digit to the right of the decimal point. Here are some examples:

VARIABLES

JPRINT .1234567891
• 12:3456 7:39

J?-123456789123456789
-1. 2345678'i:/E+17

J?-123456789 123456789
-1. 2:3456789E+17

J?.OOOQ00000900000007558
9.00000008E-10

Thus far in our discussions of data we have only considered constant values. It is
often handier to refer to data items by name rather than value. That is what varia
bles are all about.

If you have studied elementary algebra, you will have no trouble understanding
the concept of variables and variable names. If you have never studied algebra,
then think of a variable name as a name which is assigned to a letter box. Any
thing which is placed in the letter box becomes the val~e associated with the let
ter box name, until something new is placed in the letter box. In computer jargon

Chapter 3: PROGRAMMING IN BASIC 63

we say a value is stored in a variable.

A variable does not always have to refer to the same value. That is its real
power - it can represent any legal value. You can change its value during the
course of a program. BASIC has a number of statements to do this; we will de
scribe them later.

Integer BASIC Variable Names

Variable names in Integer BASIC can have 1 to 1 00 characters. These are the
general rules for constructing Integer BASIC variable names:

000· ··00

f-' f....:?Last character must b $ or string variables

~Second, third, fourth, etc. characters (optional) can
ill be any letter or digit -

First character must be a letter *

legal Illegal

{ A$ $
CUSTNAME$ 9$
PART1$ BRAND.NAME$
RESPONSE$
X8$

64 APPLE II USER'S GUIDE

l:lumeric variables in Integer BASIC must have values between -32767 ,2nd
+32767. l!._you surpass these bounds. you will get the *** > 32767 EfiR
message. Here are some examples of numeric variable names in Integer BASIC,
both legal and illegal:

Legal

A
CUSTZIPCODE
xo

Variable Names in Applesoft

Illegal

APPLICANT'S AGE
3X4Z
$TOTAL

A variable name can have one, two. or three characters in Applesoft. The follow-
ing rules apply: "'

~Last character denotes variable typ_e:
$for string variable
%for integer variable
real variable otherwise

L..---~- Second character (optional) can be

~ . any letter or digit

F1rst character must be a letter~

Thus the last character of the variable name tells Applesoft which type of data the
variable represents.

A string variable in Applesoft can store a string value of any length from 0 to
2,55 characters. You do not specify a maximum string length as in Integer BASIC;
Applesoft does not need it. Here are some examples of string variable names,
both legal and illegal:

Legal

A$
MN$
F6$

Illegal

0$
M l$
77$

~er variables can refer to whole numbers between -32767 and +327_§.7.
If you attempt to exceed this limit, you will get the ?ILLEGAL QUANTITY ERROR
message. If you try to store a real value in an integer variab!.!t. Appl~ft w ill con
vert the real value to an integer value first. We'll cover the rules for the conversion
shortly. Here are some examples of legal and illegal integer variables in Applesoft:

Legal Illegal

A%
B%
Al %
X4%

A$%
31 %
30%

Chapter 3 : PROGRAMMING IN BASIC 65

Real variables can refer to numeric values generally restricted to the range
+ 1 0 38 althou h you may be able to compute values as lar e as 1 . 7 "X-

1038 in magnitude (i.e.,+ or-) under some circumstances. you attempt to store
(in a real variable) a value that is too large in magnitude you will get the ?OVERF
LOW ERROR message.
{ When the value of a real variable gets closer to zero than ±2.9388 x 1 0 - 39,

Applesoft converts it to zero)
Remember. real variables can haye integer yalues since an integer is a real

number with a fractional part of zero. Here are some examples of real variables
(legal and illegal): Legal

A
B
A1
AA
Z5

Longer Variable Names in Applesoft

Illegal

0
7B
A:ll=

an ctuall have more than two alphanumeric characters (plus
the % or $ suffix for integer- and stri119-type variables , but only the first t~o
characters count in A lesoft. Therefore, PRICE1 and PRICE2 are the same name,
since both begin with PR. However PRI %are different, since t ey
have different type suffixes.

Applesoft allows variable nam~ to lliule up to 236 eharaetetS..._
Here are some examples of variable names with more than two characters:

Legal

COUNTER%
ACCOUNTBALANCE
NAME$

Illegal

ITEM=II=%
2NDRATE
CUSTOMER. ADDRESS$

Keep the following points in mind if you use variable names with more than two
characters:

1. Only the first two characters and variable type suffix ($or %) are
significant. Do not use extended names like LOOP 1% and LOOP2%;
these refer to the same variable : LO%.

2. Additional characters need extra memory space, which you might
need for longer programs. But the advantage of using longer variable
names is that they make programs easier to read. PARTNO, for
example, is more meaningful than PA as a variable name describing
part numbers in an inventory program.

Reserved Words

All of the words that defin statement's erations are lied reserved
words. ppendix F lists all Integer BASIC and Applesoft reserved words. Yo~ill

66 APPLE II USER'S GUIDE

have encountered many of these reserved words in this chapter, but others are
described elsewhere in this book.

When executing BASIC programs, the Apple II scans eve!Y BASIC statement,
seeking out any character stnng that constitutes a reserved word. The only e"7cep
tion is text strings enclosed in quotes. This can cause trouble if a reserved word is
embedded anywhere within a variable name. The Apple II is not smart en0L;Qh to
identify a variable name by its location in a BASIC tement. Th refore ou must
be very careful to kee reser rds out of our variable names; this is particu
larly important with the short reserved words that can easily slip into a variable

~-
...

ARRAYS

Arrays are really nothing more than a systematic way of naming a large numb~r of
variables. They are used frequently in many types of computer programs. If you
do not understand what arrays are, or how to use them, then read on; the infor
mation that follows will be very important to your programming efforts.

Conceptually, arrays are very simple things. When you have two or more data
• items. instead of giving each data item a separate variable name, youjjive the col

lection of data items a single variable name. The collection is called an arra its
name is an array name. lndividua ata items are o en ca e array elements. Jhe
elements in an array are numbered. You select an individual item using its position
number. which is referred to as its mdex. _,.

Arrays are a useful shorthand means of describing a large number of related
variables. Consider, for example, a table of 200 numbers. How would you like it if
you had to assign a unique variable name to each of the 200 numbers? It would
be far simpler to give the entire table one name, and identify individual numbers
within the table by their table location. That is precisely what an array does.

As an example of array usage, consider how a motel with ten rooms might
keep track of who is staying in each of its rooms. There could be a separate varia
ble name for each room.

Or you could consider the motel guest list an array.

f R$(1) R$(2) R$ (3) R$(4) R$(5) R$ (6) R$(7) R$(8) R$(9) R$(1 0)

In this example, R$ is an array name. It has ten ele_ments; each element is the
.. n~me of the guest in one of the roQ!!l.S.Ao incta !enclosed jp p.aceptheses) follo~s
each variable~- Thus a specific data item (i.e., the guest in one J:QOml js~n
tj!ied by a variable name and an inde~ The guest in the third room is the value of
R$(3), which is DOE.

Chapter 3 : PROGRAMMING IN BASIC 67

arrays.
Arrays in Applesoft can remesent integer variables, real variables, or string

variables; however, a single array variable -eaR er:~ly.-represeot one data type. In
other words, a single variable cannot mix integer and real numbers, except in the
sense that a real variable can have an integer value (but not vice versa). Each type
of array uses a different amount of memory; see Appendix G for details. -

Array Dimension(s)

t ifies a number w1t in the single row. An rra with two dimensions iel an
ordinary table oT num ers w1th rows and columns; one index identifies the ro!",
the other index identifies the column. You can visualize an array with three dimen
sions as a cube of numbers, or perhaps a stack of tables. Four or m e dimensi~ ' s
yield an array that is hard to visua 1ze, but mat ematically no more complex than a
smaller dimensioned array. .__

We can create an example of a two-dimensional array by extending the pre
vious example of the motel guest list. Consider an eight-floor hotel with ten rooms
on each f loor. There are four options for keeping track of the 80 guests' names.
First, each room could have its own variable. Second, the hotel could have one
SO-element array. Third, each f loor could have a separate ten-element array.
Fourth, the hotel could have one two-dimensional array. This final choice may be
illustrated as follows:

H$(8,1) H$(8,2) H$(8,3) H$(8.4) H$(8,5) H$(8,6) H$(8,7) H$(8,8) H$(8,9) H$(8, 10)

H$(7,1) H$(7,2) I H$(7,3) H$(7.4) H$(7,5) H$(7,6) H$(7,7) H$(7,8) H$(7,9) H$(7,10)

H$(6, 1) H$(6,2) H$(6,3) H$(6,4) H$(6,5) H$(6,6) H$(6,7) H$(6,8) H$(6,9)' H$(6,10)

H$(5, 1) H$(5,2) H$ (5,3) H$(5.4) H$(5,5) H$(5,6) H$(5,7) H$(5,8) H$(5,9) H$(5, 1 Ol

H$(4, 1) H$(4.2) H$(4,3) H$(4.4) H$(4,5) H$(4,6) H$(4,7) H$(4,8) H$(4,9) H$(4,10)

H$(3,1) H$(3,2) H$(3,3) H$(3.4) H$(3,5) H$(3,6) H$(3,7) H$(3.8) H$(3,9) H$(3,10)

H$(2, 1) H$(2,2) H$(2,3) H$(2.4) H$(2,5) H$(2,6) H$(2,7) H$(2,8) H$(2,9) H$(2,10)

H$(1, 1) H$(1,2) H$(1,3) H$(1.4) H$(1,5) H$(1 ,6) H$(1 ,7) H$(1,8) H$ (1 ,9) H$(1,10)

68 APPLE II USER'S GUIDE

As you can see, the first index of this two-dimensional array is the floor number,
and the second index is the room number on that floor. So R$(3,2) would be the
name of the guest in the second room on the third floor.

lesoft arrays can have up to 88 dimensions. There is no specific limit on
the number of elements in each dimension. T e amou emory available will
li~it the total number of elements, of course, s1nce each element requ1res a cer
tain amount of memory space.

EXPRESSIONS

In the following section we will explore ways in which you can combine the values
of variables and constants by using expressions. We have already used expres
sions to calculate the value of simple arithmetic problems in immediate mode.
Recall that the statement

PRINT 4+6
10

tells the Apple II computer to add 4 and 6, and then display the sum. The state-
ment PRINT A+B

(l

tells the Apple II computer to add the values of the two numeric variables A and 8,
and then display the sum.

The plus sign (+) specifies addition. Standard computer jargon refers to the
plus Si9£1 as .ao aoerator. The plus sign is an arithmetic operator because it
specifies addition, which is an arithmetic operation.

Arithmetic operators are easy enough to understand; we all learn to add,
subtract, multiply and divide in early childhood. B»t there are other types of opera
_!9rs: string operators, relational ooerators, and Boolean operators. These are also
easy to understand, but they take a little more explanation since they involve more
abstract notions.

Each category of operators defines a type of expression. There are arithmetic
expressions, string expressions, relational expressions, and Boolean expressions.

Precedence of Operators in Expressions

Expressions can call for more than one operation to occur. For example, this state
ment : PR INT A+B/10

0

calls for both addition and division in the same expression. There is a standard
scheme for determining in what order to evaluate an expression. We will lay out ----these rules of precedence for each type of expression starting with string con-
catenation, then integer. real, relational. Boolean,...an!Lm.ixed-type expressions. in
that order. First let's look at a way to override the standard precedence rules.

Chapter 3: PROGRAMMING IN BASIC 69

Overriding Standard Precedence

You can chan e the order in which the A pie II evaluates expressions through the
use of parentheses. Any operation within parentheses is performe 1rst. __J!!'
more than one set of parentheses is present the Apple II evaluates them fro~eft
to nght.

When one set of parentheses is enclosed within another set, it is g.
In this case, the Apple II v tes the innermost se n the next innermost,
~ arentheses can be nested to any level. You may use them freely to c ari y the
order of operations being performed in an expression.

Here are some examples of the immediate mode arithmetic calculations using
parentheses:

String Concatenation

PRINT <2+10>*3
:36

PRINT ((2+10)*3+31)*10
670

>
PRINT -(2A(3+8/4))
-32

Yo~ can join strings together end to end, to form one longer string Thi~led
concatenation. You can visualize this as follows:

lsTRINGll + lsTRING21 + lsTRING31

Becomes
0

lsTRING11STRING21STRING31

With concatenation. you can develop strings up to 255 characters long.
Integer BASIC has no concatenation ooerator. You can concatenate strjo~in

Integer BASIC by using a technique explained at the end of this chapter (introduc
ing it here would be premature).

Applesoft uses the plus sign (+) as a concatenatjoo operatpr. Here are some
examples of string concatenation in Applesoft.

"OVER" + "DUE" becomes "OVERDUE"

"MONTHLY" + " " + "REPORT" becomes "MONTHLY REPORT"

"WEEKLY" + R$

A1$ +VA$+ C$(1)

becomes the characters WEEKLY followed
by the value of R$

becomes the value of A 1 $ followed by the
value of Y A$ followed by the
value of C$(1)

70 APPLE II USER'S GUIDE

Integer Expressions

Integer expressions are arithmetic expressions which involve only integer varia
bles and integer constants. We will cover arithmetic expressions invoTvmg boflr"
integer and real values under the heading "Mixed-Type Expressions."

The operators for integer expression are addition (+). subtraction (-). multi
plication (*l. division (/).and exponentiation (").You can also use a unary minus
(-) to indicate a negative numeric value. Operations are performed in this order:
unary mmus first. followed by exponent1at1on. multiplication and division next, and
finally addition and subtraction. Operations of equal precedence are performed, in
Qfder from left to right.

Here are some examples of integer expressions in Integer BASIC:

100- 30*2

- 9"2
A/B*C

results in 40

results in 81

results in the value of A divided by the value
of B and the integer value of the
quotient multiplied by
the value of C

results in three times the value of X and
the value of D added to that product

results in 4 (the quotient of 5/ 2 is converted
to the integer 2)

Here are some examples of integer expressions in Applesoft:

-120/ 2 + 100 resu lts in 40

2" 3*2 resu lts in 16
N1 %*N2%/N3% results in the value of N 1% times the value of N2%

and the product divided by N3%

AA%/ AB%/ AC% results in the value of AA% divided by the
value of AB% and the quotient
divided by the value of AC%

5/2*2 results in 5 (the quotient of 5/ 2 is
not converted to an integer)

? Integer BASIC has one more operator you can use in integer expressions. It
returns the remainder that is left over from a division operation where the dividend
is not evenly div isible by the divisor. The ooerator is MOD.It has equal preceden~
with multiplication and division. Here are some exampi;s of MOD:

4MOD3 results in 1

3*5 MOD 4 resu lts in 3

(41 +2)/25 MOD A results in the remainder after
dividing 1 8 by the value of A

3MOD4 results in 3

Chapter 3: PROGRAMMING IN BASIC 71

Real Expressions

Applesoft has another kind of arithmetic expression; it yields a real value. Its
operators are the same as those in Applesoft integer expressions: addition (+),
subtraction (-). multiplication (*). division Vl, exponentiation (" j and unary
minus (-). The precedence of operation is the same also: unary minus f irst,
followed by exponentiation, multiplication and division, and finally addition and
subtraction. Here are some examples of real expressions:

87.5- 4.25•2

1.5 1\ (3/ 2/ 2)

results in 79

results in 1.35540301

AL* (PL -3.1 •CB) results in the value of AL times the
result of subtracting the
product of 3 .1 times the value of
CB from the value of PL

results in 3

Relational Expressions

Relational operators allow you to compare two values to see what relationship
one bears to the other. You can compare whether the first is greater than, less
than, equal. not equaT; greater than or equal, or less than or equal to the second
value. Tb!l values you compare can be constants, variables, or any kind of ex.P!'es
sions. (There are some restrictions in Integer BASIC l If the yalue gn one side of a
re ational o erator is a strin , the value on the o · string also.
Otherwise, you can compa one type of value to another type using relatiqr.a
o~rators.

If the relationship is true, the relational expression has a numeric value of 1..J.f
the relationship is false, the relational expression has the value 0.

The relational operators for Integer BASIC and Applesoft are the same, with
one exception, as shown in Table 3-1.

'>I(TABLE 3-1. Relational Operators

Integer BASIC
Operation

Applesoft
Operator Operation

< Less Than• <
> Greater Than• >
= Equal To =

* Not Equal To <>or ><
> = Greater Than or Equal To" > =or= >
< = Less Than or Equal To" < =or <

"Not allowed with strings in Integer BASIC.

72 APPLE II USER'S GUIDE

All relational operators have the same precedence; they are evaluated in order
from left to right.

Here are some examples of relational expressions :

1 = 5-4 results in 1 (true)

14 > 66 results in 0 (false)

15 > =15 results in

"AA" > "AA" results in

"ANDERSON" < "ASHLEY" results in

(A = B) = (A$ > B$) depends

1 (true)

0 (false)

1 (true)

on the values of the variables.
If the value of A is equal to the
value of B and the value of
A$ is greater than the value
of B$, then this expression
results in 1 (true) .

The concept behind relational operators is easy enough to understand. The
values 0 and 1 which BASIC arbitrarily assigns to false and true conditions can be
used in integer and real expression~is is ~t so easy to understand, since i!js
utterly · rar . For example, what meaning does the express1on (1 = 1)•4 have?
Outside of a BASIC ro ram sue an xpress1 wou d be meaningless; ut
within BASIC (1 = 1) is true and true equates to , t ere ore the expression is the
same as 1 *4, which results in 4 You can InC u e relational expressions within
other BASIC expressions. Here are some examples :

25 + (14 > 66)

(A+ (1 = 5 - 4)) * (1 5 > = 15)

String Comparisons

is the same as

is the same as

exhausted or a character m1srrmtch occurs.

25 + 0

(A+ 1) * (1)

[

APplesoft w1ll compare the relative ordering of characters one by one. For com
parison purposes, the letters of the alphabet have the order A > B, B > C, C > D,
etc. Numbers that appear in strings have conventional ordering, namely 0 > 1,
1 > 2, 2 > 3, etc. Other characters that appear in strings, like +, - , $, and so on,
are arbitrarily ranked in the order shown in Appendix I.

Chapter 3 : PROGRAMMING IN BASIC

TABLE 3-2. Boolean Truth Table

The AND operation results in a 1 only if both values are 1.

1 AND 1 = 1 1 AND 0 = 0
0 AND 1 = 0 0 AND 0 = 0

The OR operation results in a 1 if eithef value is 1 .

1 OR 1 = 1 1 OR 0 = 1
0 OR 1 = 1 0 OR 0 = 0

The NOT operation logically complements each value.

NOT 1 = 0
NOT 0 = 1

Boolean Expressions

73

Boolean o erators ive programs the ability to make logical decisions. Hen hey
are often called logical ooerators. There are four standard oolean operators:
AND1 OR, Exclusive OR, and NOT. BASIC on the Apple II supports three of these
operators : AND. OR. and NOT.

If you do not understand Boolean operators then a simple supermarket shop
ping analogy will serve to illustrate Boolean logic. Suppose you are shopping for
breakfast cereals with two children. The AND Boolean operator says you will buy
a cereal if both children select that cereal. The OR Boolean operator says that you
will buy a cereal if either child selects it. The NOT Boolean operator generates an
opposite. If child B insists on disagreeing with chi ld A. then child B's decision is
always the NOT of child A's decision.

Computers do not work with analogies; they work with numbers. Therefore
B~ean io'gic reduces the values it operates on to 1 or 0 (true or false). Since Boo
I!Jan operators work on the values 0 and 1 they are most often used w1th rela
t ional expressions (remember that relational expressions result in the value 0 or
1l. Boolean operators can work on other types of operands, as we shall see
s!:'ortly in the next section. -

Table 3-2 summarizes the way in which Boolean expressions are evaluated.
This table is referred to as a truth table. Boolean o erators have equal prece
dence. I more than one Boolean operator is present in the same expression, ey
Q.!! evaluated from left to right. Here are some examples of Boolean expressions:

NOT ((3 + 4) > = 6) results in

("AA" = " AB") OR ((8•2) = 4 " 2) results in

NOT (" APPLE" = " ORANGE")
AND (A$ = B$) results in

0 (false)

1 (true)

1 (true) if A$ and B$
are equal; 0 (false) if not

74 APPLE II USER'S GUIDE

Mixed· Type Expressions

Very often expressions will not involve values of just one type. This is especially
true in Applesoft, which has both integer and real numeric types. We have already
introduced the idea of mixed-type expressions in our discussion of relational and
Boolean expressions. You can mix types freely in any expression, except that
strings cannot be part of integer, real, or Boolean express1aos. Stnngs can only,be
present 1n string and relational expressions. Here are some examples of mixed
type expressions:

Legal

3.1416 * (R " 2)
A% >=B/3
43AND137
1 OR 4E + 10

Illegal

1600 + "PENNSYLVANIA AVENUE"
ST$ <A%
A$ANDB$
NOT (A$)= B$

(A$ = B$) AND -6.25 NOT(A =B) OR C$

The Apple II has several things to resolve when it evaluates a mixed-type
expression. The first issue is the precedence of operators. Table 3-3 summarizes
the operators for all types of expressions 1n order of precedence, from highest to
lowest. This table shows us that anything in parentheses is evaluated first. If there
is more than one level of parentheses present, the Apple II evaluates the inner
most set first, then the next innermost, etc. (You will recall we covered this con
cept of nesting earlier.) Next, arithmetic expressions are evaluated. After that,
relational expressions are evaluated. Finally, Boolean expressions are evaluated.

TABLE 3-3. Operators

Precedence
Integer BASIC Applesoft BASIC

Meaning
Operator Operator

High Parentheses denote order of
9 () () evaluation

a 1\ 1\ Exponentiation
7 - - Unary Minus
6 • • Multiplication

Arithmetic
Operators

6 I I Division
6 MOD not available Division Remainder••
5 + + Addition
5 - - Subtraction

4 = = Equal
4 # <>or>< Not equal

Relational 4 < < Less than
Operators 4 > > Greater than

4 <= <=or=< Less than or Equal
4 >= >=or=> Greater than or Equal

3 NOT NOT Logical complement
Boolean 2 AND AND Logical AND
Operators 1 OR OR Logical OR

Low

•• Integer BASIC only

Chapter 3 : PROGRAMMING IN BASIC 75

As we noted earlier, relational expressions return a value of 0 or 1 depending
O..!J whether the relationship being tested is false or true. Thus, a relational expres
sion can exist as part of an integer or real expression.

You can also mix types in Boolean expressions. Everything in a Boolean expres
sion is co 1 b fore an Boolean operations take place. Numeric
v~es are converted according to the following rule: 1 t e va ue 1s 0, it rell)ains
zero; any non-zero value is converted to 1.

BASIC cannot automatically convert strings to numeric values, so strings are
~ in integer, real, and Boolean expressions, except as part of a rel~onal
express1on.

In Applesoft both integer and real values can be present in the same real, rela
ti.o_nal, or Boolean expression.

Whenever they occur in a real expression, integer values are converted to real
values temporarily in order to evaluate the expression. The final result of such an
expression can be either an integer value or a real value, depending on the context
in which the expression occurs. Applesoft will convert the value automatically as
appropriate.

~ R al values are converted to integers by discardin the fractional art and using
the next lower who e num er. This is called truncation. For example:

1 .1 becomes 1
1.9 becomes 1

-1 .1 becomes -2
-1 .9 becomes -2

BASIC STATEMENTS

We are now ready to describe the part of the BASIC statements which specifies
the operation the statement will perform. You specify these operations with
BASIC instructions. It is common practice to use the terms statement and com
mandinterchan eabl and somewhat ambiguously. Strictly speaking, a command
is an instruction issued in immed1ate mo e. The same instruction in programmed --rnode is a statement.

Each instruction performs a specific task. This chapter introduces you to pro
gramming concepts, stressing the way statements are used. We do not describe
statements in detail in this chapter. Be sure to read the complete statement
description given in Chapter 8 to get a thorough understanding of how a state
ment works. This chapter will give you an understanding of only part of a state
ment's total capabilities.

One last caveat before we begin. Although this chapter introduces you to pro
gramming concepts, it cannot possibly cover programming in depth. If you want
or need more instruction in programming, consult one of the BASIC primers listed
in Appendix K.

76 APPLE II USER'S GUIDE

REMARKS

It is appropriate that any discussion of BASIC statements begins bv describing the
only BASIC statement which the computer will ignore: the rem![.k. If the first three
characters of a BASIC statement are REM, then the computer ignores the state
ment entirely. So why include such a statement? The answer is that remarks
make your program easier to rea~.
· If you write a short program with five or ten statements, you will probably have

little trouble remembering what the program does - unless you leave it around
for six months and then try to use it again. If you write a longer program with 1 00
or 200 statements, then you are quite likely to forget something very important
about the program the very next time you use it. After you have written dozens of
programs, you will stand no chance of remembering each program in detail. The
solution to this problem is to document your program by including remarks that
describe what is going on.

Good ro rammers use plenty of remarks in all of their ro rams. In all of this
chapter's program examples we WI 1nclude remarks that describe what is going
on, simply to get you into the habit of doing the same thing yourself.

Remark statements have line numbers. like any other statement. A remark
statement's line number can be used like any other statement's line number.

ASSIGNMENT STATEMENTS

Assignment statements let you assign values to variables. You will encounter
assignment statements frequently, in every type of BASIC program.

Here is an example of an assignment statement:

90 REM INITIALIZE VARIABLE X
100 LET X=3

In statement 1 00, variable X is assigned the value 3; this same statement could
be rewritten:

100 X=3

The word LET is optional; usually it is omitted.
Here is a string variable assignment statement:

215 A$= .. ALSO RAN"

The string variable A$ is assigned the two words ALSO RAN.
Here are three assignment statements that assign values to array variable R$(),

which we encountered earlier when describing arrays:

200 REM R$() IS THE MOTEL GUEST LIST
210 R$<1>=".JONES"
220 R$(2)="SMITH 11

2:30 R$ (3)= 11 DOE"

Remember, we can put more than one statement on a single line; therefore the

Chapter 3: PROGRAMMING IN BASIC 17

three R$ assignments could be placed on a single line as follows :

200 REM R$ () I S THE MOTEL GUEST LIST
210 R$ (1 >=",JONES": R$ C 2 > =" :=;MITH": R$ C 3 >="DOE"

Recall that a colon must separate adjacent statements appearing on the same line.
Assignment statements can include any of the arithmetic or logical operators

described earlier in this chapter. Here is an example of such an assignment state
ment:

90 REM THI S A DUMB WAY OF ASS IGNING A VALUE
100 V=3:3+ 7/9

The statement above assigns the value 4 .1764 7059 to real variable V; it is
equivalent to these three statements : ':b ? :r:: -h.. .'~K ~ ~ . ~

90 REM X AND Y NEED TO BE INITIALIZED SEPARATELY FOR
LATER u:=;E

100 X=7
110 Y='7/
120 V=3:3+X/Y

which could be written on one line as follows:

100 X=7:Y=9 :V=33+X /Y

Here are assignment statements that perform the Boolean operations given earlier
in this chapter:

90 REM THESE EXAMPLES WERE DESCRIBED EARLIER IN THE
CHAPTER

100 A= NOT ((3+4> >=6>
110 B=<"AA"="AB"> OR << :=:*2>=<4 ,, 2))

The following example shows how a string variable could have its value
assigned using string concatenation in Applesoft :

90 REM R$(6) IS ASSIGNED THE VALUE MR. ALTON
1(H) MR$ = "MR. II

11 0 MS$ = II MS. II

120 N$ = "ALTON"
200 R$(6) = MR$ + N$

DATA and READ Statements

When a number of variables need data assignments in an Applesoft program, you
can use the DATA and READ statements rather than the preyjous type of as_:!9n
ment statement. Consider the following example:

5 REM INITIALIZE ALL PROGRAM VARIABLES
10 DATA 10, 20, -4 , 300
20 READ A,B,C,D

The statement on line 1 0 specifies four numeric data values. These four values
are assigned to four numeric variables by the statement on line 20. After the
statements on lines 10 and 20 have been executed, A= 10, 8=20, C=-4, and
0=300.

78 APPLE II USER'S GUIDE

If you have one or more DATA statements in your program, then you can
visualize them as building a column of values. For example, a DATA statement
that contains a list of ten values would build a ten-entry column. Two OAT A state
ments each specifying five of the ten data entries would build exactly the same
column. This may be illustrated as follows:

1 0 OAT A 1 0 , 20, 30, 40, 50, 60, 70, 80, 90, 1 00 }

First column entry- 10

1 0 OAT A 1 0 , 20, 30, 40, 50 }
20 DATA 60, 70, 80, 90, 100}

20

~
30
40
50
60
70
80
90

100 -Last column entry

The first READ statement in the program starts at the first column entry and
takes values sequentially, assigning them to variables named in the READ state
ment. The second (and subsequent) READ statements take values from the col
umn, starting at the point where the previous READ statement left off. This may

. ?
be Illustrated as follows:

1 0 OAT A 1 0, 20, 30, 40, 50, 60, 70, 80, 90, 1 00}

A=10 {10
-------8=20 20

220 READ ABc· c = 30 30
. . 140

C=40--- 50

~D=5D {!g
.. _/ 90 340 READ C, D A = 60 1 00 . -----~=~g)

/ G=90 . ~
490 READ A, E, F. G
500 READ 8 8 = 100

Chapter 3: PROGRAMMING IN BASIC 79

RESTORE Statement

You can at any time send the painter back to the beginning of the DATA column
by executing a RESTORE statement in Apolesoft. Here is how RESTORE works:

1 ~ OAT A 1 0, 20, 30, 40, 50, 60, 70, 80, 90, 1 00 }D
: A=10 { 10
: ~-;;::::----a= 20_,..., 20

220 READ A, 8, C C = 30 30
: J 40
: ...-----....C=40_/« 50

340 READ C--D D = 50 60
I 70

3~0 RESTORE A = 1 0 80
: E = 20 90
: ~F=30 100
• ~ G=40

490 READ A, E, F, G
500 READ 8- --8 =50

Clearing Variables

aoth Integer BASIC and Aoplesoft let vou set every numeric variable and array ele
ment to zero. and every string variable and array element to null, all at once.

Jbe CLR command does this in Integer BASIC. You can usd it only in immediate
mode. Here is an example:

>X=37

>PRINT X
37

>CLR

>PRINT X
C)

The CLEAR statement does this in Applesoft. It also resets the DATA column
pointer like RESTORE does. Here is an example:

J10 REM INITIALIZE VARIABLES

J20 X=37

J30 A$== 11 PIG IRON"

J40 PRINT A$

J50 CLEAR

J60 PRINT X

JRUN
PIG IRON
0

80 APPLE II USER'S GUIDE

DECLARING ARRAY AND STRING SIZE

our program. you need to declare
statement or statements called

~::...=.::;:::..:=~~~~:...::.;~~:=;-=-=:-~..._.in e.
n nteger BASIC, you do this by stating the array or string variable name and

then specifying its maximum size. enclosed in parentheses. Only one-dimensional
numeric arrays are allowed - no string arrays or multiPle-dimensioned arrays.
The following example dimensions two strings of 5 and 25 characters respec
tively, and a numeric array of 13 elements (0 through 12):

10 DIM S1$(5),S2$C25) ,NBC1 2)

The number following a string variable name in a DIM statement is the m~

irpum length that string can be during the program. The number following a
numeric array name is equal to the largest index value that you can use for th~t

J15 DIM R$C10),RXC20)

_Ihe double-dimension hotel guest list variable from our earlier example of
arrays would be dimensioned as follows :

J15 DIM H$(8,10)

The number (or numbers) following an arra n
to argest in ex value that can occur in tha sition. B t
. m er that indexes begin at 0 . Therefore R$(1 0) dimensions the variable~()

to have 11 values, not 1 0, since indexes 0 1 2 3 4 5 8 9 and 1 0 will be ~
a owe . (8, 1 0), likewise, specifies a doubly-dimensioned variable with 99 (q ~ 0 -
en'fries, since the first dimension can have values 0, 1, 2, 3, etc., while the second '?- (-7

'!Jimension can have values 0 through 10. l-4 11(8J 1~

Redimensioning Arrays

Ooce you have dimensioned an array variable you cannot redimension it without
rerunning the whole program. Subsequent references cannot use an index higher
than the number of 1ndexes you declared; each index must have a value between
0 and the number of indexes dimensioned.

Chapter 3 : PROGRAMMING IN BASIC 81

BRANCH STATEMENTS

Statements within a BASIC program are normally executed in.assenelin9 order.of
line oumber.s. This execution sequence was explained earlier in this chapter when
we described line numbers. Branch statements change this execution sequence.

GOTO Statement

GOTO is the simplest branch statement; it allo

20 A= 4
30 GOTO 100
40
50
60
70
80
90

100
110
etc.

er t e following example:
ement

U
The statement on line 20 is an assignment statement ; it assigns a value to varia
ble A. The next statement is a GOTO; it specifies that program execution must
branch to line 1 00. Therefore the instruction execution sequence surrounding this
part of the program will be : line 20, then line 30, then line 100.

Of course, some other statement must branch back to line 40, otherwise the
statement on line 40 would never be executed by program logic as illustrated
above.
Y ou can branch to any line number, even if the line has nothing but a remark on
it. However, the computer ignores the remark, so the effect is the same as branch
ing to the next line. For example, consider the following branch:

20 A= 4
30 GOTO 70
40
50
60
70 REM THIS LINE CONTAINS ONLY A REMARK
80
90
etc.

[

Program execution branches from line 30 to line 70; there is nothing but a
remark on line 70, therefore the computer moves on to line 80, executing st~te

ments on this line. Therefore. even though you can branch to a remark, you m1ght
as well branch to the next line. This may be illustrated as follows.

82

(

;g)
40
50
60
70

'80
90
etc.

A=4
GOTO 80

APPLE II USER'S GUIDE

REM THIS LINE CONTAINS ONLY A REMARK

Attempting to branch to a nonexistent line number causes an error message.

Computed GOTO Statement ~ t::. IJ,, 0 ,.. -- / . , _
L.=:.o,.... I vu£ ~ p~ ~-.......

There is also a kind of GOTO statement that lets program logic branch to-ehe of
two or more different line numbers, depending on the current value of a numeric
express1on.

Consider the Integer BASIC statement sequence:

A= 1

A=2

101

(
20'

30)
40
50
60
70
80
90

100
110
120
etc.

A=B-3
GOTO 30*A + 50

The statement on ljne 40 is a comauted GQTO. When this statement is
executed, pro ram lo ic wi ll branch to the tement number c y
eva uating the expression. In this example it branches to statement 50 if variable
A-0, to statement 80 if A= 1, while A=2 causes a branch to statement 11 0. If
the computed line number does not exist in the program a*** BAD BRANCH ERR
message results. Notice that variable A is assigned a value in statement 30. The
value assigned to A depends on the current va lue of variable B. The illustration
does not show how variable B is computed ; however, so long as B has a value of
3, 4, or 5, the statement on line 40 w ill cause a branch to occur.

To test the computed GOTO statement in Integer BASIC, ke't. in the following
program:

>9 REM INITIAl.I ZE VARJARLE B
> .tO 8 = 4
:>:;-~(1 PRINT 8
:>30 A = 8 - :3

Chapter 3 : PROGRAMMING IN BASIC 83

>40 GOTO 30 * A + 50
>49 REM B ;;:
:>50 END
:>79 REM 8 4
:>::::0 PRINT 8
>"::"10 8 = 5
>100 GOTO 20
>109 REM 8 = 5
:>1. 10 PRINT B
> 120 B = 3
>130 GOTO 20

Now execute this program by typing RUN.
Can you account for the sequence in which digits are displayed? Try re

w riting the program so that each number is displayed once, in the sequence:

--...JJ"\1- ~5345345 ...
7\. P\ 'If\ Applesoft has a slightly different version of the computed GOTO statement, as

stiown below.

A% = 10 10)
eo~
30)
40~

50
60

A% = 2 '70
80
90

100
110
120
130
140
150
160
etc.

A% = B% - 2
ON A% GOTO 1 0, 70, 150

The statement on line 40 is the Applesoft form of computed GOTO. When this
statement is executed, program logic will branch to statement 1 0 if variable

... A%-0, to statement 70 if variable A%-2 while A%-3 causes a branch to state:
ment 11 0. If A% has aDXJ'alue other tb.ap 1. 2 or 3, the program continues at
statement 50. ---

The expression in an Applesoft computed GOTO statement is evaluated and its
value determines which line number to branch to from the computed GOTO list of
line numbers. If the value is 1 the first line number is used, if the value is 2 the sec
ond line number is used, and so on. If the value is 0, or exceeds the number of line
numbers in the list, the program falls through to the statement immediately
following the computed GOTO statement.

84 APPLE II USER'S GUIDE

The following Applesoft program demonstrates how the computed GOTO
statement works.

LOOPS

10 B'Y. = 4
20 PRINT B'Y.
30 A'Y. = B'Y. - 2
40 ON A'Y. GOTO 10,70,150
70 PRINT B'Y.
80 B'Y. = 5
'7'0 GOTO 30
150 PRINT B'Y.
160 B'Y. = 3
170 GOTO 20

GOTO and computed GOTO statements let you create any sequence of statement
execution that your program logic may require. But suppose you want to reex
ecute an instruction (or a group of instructions) many times. For example, suppose
array variable A (I) has 1 00 elements and each element needs to be assigned a
value ranging from 0 to 99. Writing 1 00 assignment statements would be very
tedious. It is far simpler to reexecute one statement 1 00 times in a loop.

FOR and NEXT Statements

You can create a loop using the FOR and NEXT statements as follows:

10 DIM AC99>
20 FOR 1=0 TO 99 STEP 1
30 A<I>=I
40 NEXT I

Statement(s) between FOR and NEXT are executed repeatedly. In this case a
single assignment statement appears between FOR and NEXT; therefore this
single statement is reexecuted repeatedly. This kind of program structure is called
a FOR-NEXT loop.

So you can see the workings of FOR-NEXT loops, the following program dis-
plays the values it assigns to array A () within the loop.

10 DIM AC99)
20 FOR 1=0 TO 99 STEP 1
30 A C I >=I
35 PRINT ACI>
40 NEXT I
50 END

When you key in RUN, the program displays 1 00 numbers, starting at 0 and end
ing at 99.

Statements between FOR and NEXT are reexecuted the number of times
specified by the index variable appearing directly after FOR; in the illustration
above this index variable is I. I is specified as going from 0 to 99 in steps of 1.

Chapter 3: PROGRAMMING IN BASIC 85

Variable I also appears in the assignment statement on line 30. Therefore the first
time the assignment statement is executed, I will equal 0 and the assignment
statement will be executed as follows:

30 A<O>=O

I is increased by the step size, which is specified on line 20 as 1 ; I therefore equals
1 the second time the assignment statement on line 30 is executed. The assign
ment statement has effectively become:

30 A<l>=l

I continues to be incremented by the specified step until the maximum value of
99 is reached (or exceeded).

The step does not have to be 1 ; it can have any integer value. Change the step
to 5 on line 20 and reexecute the program. Now the assignment statement is
executed just 20 times, since incrementing I 1 9 times by 5 will take it to 95; the
20th increment will take it to 1 00, which is more than the maximum value of 99.
Keeping the step at 5, we could allow the assignment statement to be executed
1 00 times by increasing the maximum value of I to 500. Can you make this
change? (Remember to change the DIM statement as well.)

The step size does not have to be positive. But if the step size is negative, then
the initial value of I must be larger than the final value of I. For example, if the step
size is -1 and we want to initialize 1 00 elements of A (I) with values ranging from
0 to 99, then we would have to rewrite the statement on line 20 as follows:

10 DIM A(99)
20 FOR I=99 TO 0 STEP -1
30 A<I>=I
35 PRINT A<I>
40 NEXT I
50 END

Execute this program to test the negative step.
If the step size is 1 (and this is frequently the case), you do not have to specify

a step size definition. In the absence of any definition, BASIC assumes a step size
of 1.

You may specify the initial and final index values and the step size using
expressions if you wish. But you should avoid doing so, since this unnecessarily
complicates the program. If you must calculate one of these values, it is more effi
cient to do so in a separate statement ahead of the loop.

You can use real values for the initial and final index values and for the step size
in Applesoft. You do not need to specify the index variable in the NEXT statement
in Applesoft. But if you do, it will make your program easier to read.

Nested Loops

The FOR-NEXT structure is referred to as a program loop since statement execu
tion loops around from FOR to NEXT, and back to FOR. This loop structure is very

86 APPLE II USER'S GUIDE

common; almost every BASIC program that you write will i~clude one or more
such loops. Loops are so common that they are frequently nested one inside the
other like a set of mixing bowls. There can be any number of statements between
FOR and NEXT. Frequently there are tens, or even hundreds of statements. And
within these tens or hundreds of statements additional loops may occur. The
following illustration shows a single level of nesting:

10 DIM A<99)
20 FOR I=O TO 99 STEP 1
30 A< I >=I
40 REM DISPLAY ALL VALUES OF A<I> ASSIGNED THUS FAR
50 FOR .J=O TO I
60 PRINT A<d>
70 NEXT ._1

80 NEXT I
90 END

Complex loop structures appear frequently, even in relatively short programs.
Here is an example, showing the FOR and NEXT statements, but none of the inter
mediate statements:

50 FOR I=1 TO 10
60 FOR X=25 TO 347 STEP 3

(100 FOR A=9 TO 0 STEP -1

140 NEXT A
200 FOR 8=25 TO 100 STEP 5

(280 NEXT El
300 NEXT X

500 FOR Y-1 TO 20 STEP 2

(:00 ~OR P~10
~650 NEXT P

700 NEXT V

TO 20

(1000 ~OR Z=1 TO 10

1090 NEXT Z

1200 NEXT I

Chapter 3: PROGRAMMING IN BASIC 87

The outermost loop uses index variable I; it contains three nested loops that use
indexes X, Y, and Z. The X-loop contains two additional loops which use indexes
A and B. TheY-loop contains one nested loop using index P. The Z-loop contains
no nested loops.

Loop structures are very easy to visualize and use. There is only one common
error which you must avoid: do not terminate an outer loop before you terminate
an inner loop. For example, the following loop structure is illegal:

50 FOR I=l TO 10
60 FOR X=25 TO 347 STEP 3

100 NEXT I

200 NEXT X

Every program must have the same number of FOR and NEXT statements,
since every loop must begin with a FOR statement and end with a NEXT state
ment.
For example, suppose there is one FOR statement, but two NEXT statements.
The first NEXT statement terminates a FOR statement so the loop will execute
correctly~ But the second NEXT statement has no FOR statement, wh1ch cause's -an error.

If you do not include the index variable in the NEXT statement in an Applesoft
.. Program, then program logic will autamaticany terminate loops correctly, since
there is oPiy oPe possible GQFF&Gt loop tera:PiPatioP each tir=Pe a NEXT statement is
encnyntered. If you do not believe this, look again at the complex example illus
trated previously. Then work out some additional complex examples.

SUBROUTINE STATEMENTS

Once you start writing programs that are more than a few statements long, you
will quickly find short sections of program that get used repeatedly. For example,
suppose you have an array variable (such as A()) which is reinitialized frequently
at different points in your program. Would you simply repeat the three instruc
tions that constitute the FOR-NEXT loop that we described earlier? Since there
are just three instructions, you may as well do so.

But suppose the loop has ten or eleven instructions that process array data in
some fashion before it initializes the array. If you had to use this loop many times
within one program, rewriting the same ten to fifteen statements each time you
wished to use the loop would take time, but more importantly it would waste a
lot of computer memory. This concept is illustrated at the top of the following
page.

How about separating out the repeated statements and branching to them?
That is precisely what we will do; the group of statements is then referred to as

a subroutine.

88

Start of program-r

: }
t}

I
i }

T
etc.

APPLE II USER'S GUIDE

But a problem arises. Branching from your program to the subroutine is simple
enough; the subroutine has a specific starting line number. But at the end of the
subroutine, where do you branch back to?

You can execute a GOTO statement whenever you wish to branch to a
subroutine. This may be illustrated as follows:

Start of
Arbitrarily selected line numbers

100
110

190
200

GOTO 2000

GOTO 2000 ~ Subcoutines

2000 -start

250
260

GOTO 2000 ______-}

480 GOTO 2000
500

Return
etc. where?

2150 -End

Chapter 3: PROGRAMMING IN BASIC 89

But at the end of the subroutine, where do you return to 7 If two or more GOTO
statements branch to the subroutine, there are two or more different places to
which you will wish to return after the subroutine has completed execution. The
solution is to use special subroutine statements. Instead of branching to the
subroutine using a GOTO, use a GOSUB statement.

GOSUB Statement

This statement branches in the same way as a GOTO, but in addition it remem
bers where to return to. In computer jargon, we say GOSOB caJ/s a subroutine.
This may be illustrated as follows:

Subroutine

2000 -start

End the subroutine with a RETURN statement. This statement causes a branch
th

s a ement on the line, the ro ram ent on the next line.
e three-statement loop which initializes array A(), if it were converted into a

subroutine, would appear as follows:

MAIN PROGRAM 10 REM
20 REM
30 REM
40 REM
50 REM
60 DIM

YOU CAN DIMENSION A SUBROUTINE~s
VARIABLE IN THE MAIN PROGRAM.

IT IS A GOOD IDEA TO DIMENSION ALL
VARIABLES AT THE START OF THE MAIN PROGRAM

A<99)
70 GOSUB 2000
:30
90

100
200

2000
2010
2020
2030
2040
2050

REM DISPLALV SOMETHING
PRINT 11 RETURNED 11

END
NEXT I
REM SUBROUTINE
FOR 1=0 TO 99
A< I> =I
PRINT A<I>
NEXT I
RETURN

TO PROVE THE RETURN OCCURRED

90 APPLE II USER'S GUIDE

POP Statement

Under some circumstances you will not want a subroutine to return to the state
ment following the GOSUB statement. You might be tempted to j ust use a GOTO
~!ement to return, but that can cause a problem because BASIC js stjll remem
benng where it should return to. In cases like this, use the POP statement. Other
wise you risk an error ca11sed by the acc11mulatipn of unused RETURN statements.
All POP does is make BASIC forget the most recent return location. You can then
ust: a GOTO statement to branch somewhere else in the program.

Bypass the RETURN statement sparingly. Usjng POP excessively to enable
GOTO branching out of subroutines leads to tangled, confusing programs.

Nested Subroutines

Subroutines can be nested. That is to say a subroutine can itself call another
subroutine, which in turn can call a third subroutine. and so on. You do not have to
do anytl'ilng special in order to use nested subrou · I branch to the
su routine using a GOSUB statement and end the subroutine with a RETURN
statement. BASIC will remember the correct line number for each nested return.

The following program illustrates nested subroutines:

10 REM
20 REM
:30 REM
40 REM
50 REM

MAIN PROGRAM
YOU CAN DIMENSION A SUBROUTINE ~ s

VARIABLE IN THE MAIN PROGRAM.
IT IS A GOOD IDEA TO DIMENSION ALL

VARIABLES AT THE START OF THE MAIN PROGRAM
60 DIM A(99)
70 GOSUB 2000
80 REM DISPLAY SOMETHING TO PROVE THE RETURN OCCURRED
·~o PRINT "RETURNED"

100 END
2 000 REM FIRST LEVEL SUBROUTINE
2010 FOR I=O TO 99
2020 A<I>=I
20::::0 G0:3UB 3000
2 040 NEXT I
2050 RETURN
3000 REM NESTED SUBROUTINE
3010 PRINT A<I>
3020 RETURN

(This program moves the PRINT A(l) statement out of the subroutine at line 2000
(and puts it into a nested subroutine at line 3000. Nothing else changes.

While it is erfectly acceptable and even desirable for one subroutine to call
another, a subroutine cannot call itself. Neither can a subroutine ca another
subro11tine wl1ic.l1 in t11ro calls the first subroutine. This is called recursion, and is '
not allowed in BASIC on the Apple II.

Chapter 3: PROGRAMMING IN BASIC 91

Computed GOSUB Statement

GOTO and GOSUB statement logic is very similar. The only difference is that
GOSUB remembers the next line number. It will therefore not come ciS" any
surprise that there is a computed GQSIIB stateme!rt akin to the com[utecfGOTO
statement. The computed GOSUB statement allows you to branch to one of t.yvo
or more subroutines depending on the value of a numeric expres§.i2n. ~
puted GOSUB statement remembers where to return to. It does not matter which
of the subroutines gets called, the called subroutine's RETURN statement will
cause a branch back to the remembered line number.

You can nest subroutines using computed GOSUB statements. just as vou can
nest subroutines using standard GOSUB statements.

Consider the following Integer BASIC statement:

> 100 GOSUB A•500+2000
>110 REM

The expression on _line 1 00 is a computed GOSIIB \Mhen this statement is
executed, programJogic branches to the subroutine at the line number computed
by evaluating the expression. In this example, it branches to statement 2000 if
A=O, to statement 2500 if A= 1, and so on. If the computed line number does not
exist in the program a *.-rB~ANCA ERR message results.

The Applesoft version of the computed GOSUB statement works in a manner
similar to the Applesoft computed GOTO statement. Here is an example:

]90

J100 ON A GOSUB 1000,500,5000, 2300

J110 REM

When the statement on line 100 is executed, if A= 1 the subroutine b~nning
at line 1000 is called. If A-2 the subroutine beginning at line 500 is called lfA=3
th~ubroutine beginning at line 5000 is called. If A-4 the subroutine beginning at
line 2300 is called. If A has any value other than 1, 2. 3 or 4 program exeCJ.Ltion
falls through to line 110 (no subroutine is called).

CONDITIONAL EXECUTION

The computed GOTO and computed GOSUB are conditional statements. That is,
the exact flow of program execution depends on the values of one or more varia
bles which can change as the program is running. The exact program flow
depends on the condition of the variables.

~ IF-THEN Statements

Another conditional statement is the IF-THEN statement. It has the general form:

IF expression THEN....stateme~

92 APPLE II USER'S GUIDE

If the expression is true, then the statement is executed. Relational and Boolean
expressions are most common with IF-THEN statements, but arithmetic expres
sions can be used as well. This gives a BASIC program real decision-making
capabilities. Here are three simple examples of IF-THEN statements:

10 IF A=B+5 THEN PRINT MSG$
40 IF CC$="M" THEN IN=O
50 IF Q< 14 AND M<Ml THEN GOTO 66

The statement on line 1 0 causes a PRINT statement to be executed if the value
of variable A is five more than the value of variable B. The PRINT statement will
not be executed otherwise.

The statement on line 40 sets numeric variable IN to 0 if string variable CC$ is
the letter M.

The statement on line 50 causes program execution to branch to line 66 if
variable Q is less than 14, and variable M is less than variable M 1 . Otherwise pro
gram execution will continue with the statement on the next line.

If you do not understand the evaluation of expressions following IF, then refer
to the discussion of expressions given earlier in this chapter.

); A11..JE-THEN statement can be followed by other statements on the same pro
gram line. Integer BASIC and Applesoft handle this situation somewhat
differently.

\Jt In Integer BASIC, only the statement which immediately follows THEN is condi
'NtioQSIIIY executed Any later statements .on the same R_rogram line are always

executed, oo matter whether the expression in the IE-THEN statement is true or
false. This may be illustrated as follows: '"""'
r---

10 IF V) 100 THEN PRINT "DEWEY WINS ": GOSUB 2000
20 T=T+V: PRINT T

In the example above, the program will only print the message DEWEY WINS if
the value of variable V is greater than 1 00. The program will call the subroutine at
line 2000 no matter what the value of V is.

Applesoft executes statements that follow an IF-THEN statement on the same
ine only if the expression in the IF-THEN statement is true. If the ex ressi n is
tal , gram execution dro s do the fi nt n am
~· In the example above, the program will print the message DEWEY WINS and
call the subroutine at line 2000 only if the value of variable V is greater than 100.
If V is less than or equal to 1 00, the program will not print the message or call the
subroutine, but will instead proceed directly to the first statement on line 20.

There is a special form of the IF-THEN statement available in Applesoft.
Whenever the conditionally executed statement is a GOTO statement. you ca~
omit the word THEN if you wish. The followin two statements are equivalent:

JlO IF MM$=00$ THEN GOTO 100

is the same as:

110 IF MM$=DD$ GOTO 100

Chapter 3: PROGRAMMING IN BASIC 93

INPUT AND OUTPUT STATEMENTS

There are a variety of BASIC statements that control the transfer of data to and
from the computer. Collectively these are referred to as input/ output statements.
The simplest input/output statements control data input from the keyboard and
data output to the display screen. We are going to discuss these simple input/out
put statements in the paragraphs that follow. But there are also more complex
input/output statements that control data transfer between the computer and pe
ripheral devices such as cassette recorder, disk drives, and printers. These more
complex input/output statements are described in Chapters 4 and 5. Chapter 6
covers output statements to the display screen for graphics.

We have already encountered the PRINT statement, which outputs data to the
display screen. So let's discuss this statement first, before looking at input state
ments.

PRINT Statement

Why use PRINT instead of DISPLAY or some abbreviation of the word display?
The answer is that in the early sixties, when the BASIC programming language
was being created, displays were very expensive and generally unavailable on
medium or low cost computers. The standard computer terminal had a keyboard
and a printer. Information was printed where today it is displayed; hence the use
of the word PRINT to describe a statement which causes a display.

The PRINT statement will djsplay text or numbers. For example, the following
statement will display the single word TEXT:

10 PRINT "TEXT 11

To display a number, you place the number:, or a variable name, after PRINT,
like this:

>A=lO

>PRINT 5,A
5 10

The statement above displays the number 5, and then the number 10 on the
same line.

You can display a mixture of text and/or numbers by listing the information to
be displayed after PRINT. Use commas to se a rate individual items. The followin

INT statement 1sp ays the words ONE, TWO, THREE, FOUR, and Fl'tE,
followed by the numeral for each number:

10 PRINT "0NE 11
, 1, 11 TW0 11

, 2, 11 THREE", :3, 11 FOUR", 4, "FIVE", 5
20 END

If -¥Qu separate variables with commas. as we did above. then the Apple II aut9-
matically allocates a fixed number of spaces for each var' bl dis Ia ed. Try
executmg the statement 1 ustrate a ove in immediate mode to prove this to
yourself. If you want the display to take out empty spaces, separate the variables

94 APPLE II USER'S GUIDE

!Ising semicolons, as follows:

10 PRINT "ONE"; 1; "TWO"; 2; "THREE"; ::;:; "FOUR"; 4; "FIVE"; 5
20 END

Again enter this statement in immediate mode to understand how the semicolon
works.

A PRINT statement will automatically return the cursor to the left margin and
drop it down one line as its last action. In computer jargon, this is called a carriage
return. You can suppress the carriage return by outtjng a comma or a semicolon
after the last value in the PRINT list. A comma occurrin after the last v::~lue will
move the cursor to where t e nex va ue wo · th
illustrate this, type in the following three-statement program and run it by typing
in RUN:

10 PRINT "ONE",1,"TW0" ,2
20 PRINT "THREE",3,"FOUR",4
::::0 END

Now add a comma to the end of the statement on line 1 0 and again execute
the program by typing RUN. You will see the two lines of display occur on a single
line.

Now replace the comma at the end of line 1 0 with a semicolon and again run
the program. The display occurs on a single line, but the space between the
numeral 2 and the word THREE has been removed. By changing other commas to
semicolons you can selectively remove additional spaces.

W..Ji have been displaying the numerals by inserting them direc!ly into ~e
PRINT statement. You can if you wish display the contents of variables inst~d.

The following program does the same thing as the first PRINT statement example,
but uses array A() to create digits. Try entering this program and running it:

5 DIM AC5)
10 FOR I=1 TO 5
20 A<I>=I
:30 NE XT I
40 PRINT II ONE II ; A (1) ; II TWO II; A (2) ; II THREE II ; A (::::) ; II FOUR II ; A (4) ;

" F IVE";A< 5>
50 END

In Applesoft, you can put the displayed words into a string variable and ~ve
the PRINT statement into a FOR-NEXT loop by changing the_program as foiiE._ws:

10 DATA "ONE", "TWO ", "THREE" , "FOUR", " FIVE"
20 FOR I = 1 TO 5
40 READ N$
50 PR INT N$; I;
60 NEXT I
70 END

INPUT Statement

When an INPUT statement is executed, the com uter waits for input from the
keyboarq ; until the computer gets the input it requires, nothing else w1l happen.

Chapter 3 : PROGRAMMING IN BASIC 95

In its simplest form. an INPIIT statemeA-t-be§ifls--witR--the word INPUT and is
followed by a variable name. Data entered from the keyboard is assigned t<U.,he
named variable. The variable name tvpe determines the type of data which wst
Qe entered A n'1meric variabte-Aame can be satisfied only bv numeric input. To
demonstrate numeric input, key in the following short program and run it (try
entering some alphabetic data and see what happens) :

10 INPUT A
2 0 PRINT A
25 REM END PROGRAM IF 0 ENTERED
30 I F A = 0 THEN END
40 GOTO 10

"l.- I lpon executing an INPUT statement the computer displays a question mark,
then waits for your entry. The program above displays each key as you press it. In
computer jargon, the display screen echoes the keyboard. In addition, the number
is displayed again because of the PRINT statement on line 20. The first display
occurs when the INPUT statement on line 1 0 is executed and you make an entry
at the keyboard. The second display is in response to the PRINT statement on line
20.

An INPUT statement can input more than one value at a time. To do this, list all
the variables you want to input values for following the word INPUT. Separate the
variables with commas. When such an INPUT statement is executed, you must
respond with a separate value for each variable. Be sure each value is the same
type as the variable it will be assigned to.

When you respond to an INPUT statement, do not use commas as punctuation
in large numbers; enter 1 000 not 1,000.

The following example inputs two numeric values then displays these inputs.

20 INPUT A,B
30 PRINT A, B, .;:_ .. _. REM END PROGRAM IF (I ENTERED
40 IF A=O OR B=O THEN END
50 GOTO 20

Run the program above and try entering one number followed by a comma,
after that another number, and then press RETuRN. Now try something a bit
different. Enter one number and press Rer uRN. As you see, the Apple II reminds
you to enter the next value. So enter another number and press RETURN . Thus,
when an INPUT statement calls for more than one numeric value, you have a
choice of entering all the values on one line or entering them on separate lines.

The INPUT statement works somewhat differently with string variables in
Integer BASIC. First of all, it does not display a question mark. Try this example:

10 DI M A$C 19l
2 0 I NPUT A$
30 PRI NT A$
3 5 REM END PROGRAM I F NULL ENTRY
40 I F A$= "" THEN END
50 GOTO 2 0

96 APPLE II USER'S GUIDE

When you run the program above, try entering a string of more than ten
characters. You will get a *** STR OVFL ERR message and the program will stop.
The length of the string you enter cannot exceed the maximum length of the
string variable used in the INPUT statement

Integer BASIC forces you to enter each string value on a separate line. If an
INPUT statement specifies a list of variables, and there are string variables on the
list, the associated string values must be entered on separate lines. This is
because Integer BASIC lets you include commas as part of a string value. You can
prove this for yourself by running the example program above and entering the
string value DOE, JOHN. The following example illustrates what happens when a
string variable is part of an INPUT statement in Integer BASIC. Experiment with
this program; try to enter all four values on the same line, separated by commas.
What happens? Try entering each value on a separate line. See what happens if
you enter a numeric value or a comma as part of a string value.

10 DIM A$(10),8$(10)
20 INPUT A$,A,B$,B
30 PRINT A$,A,B$,B
35 REM END PROGRAM IF NULL ENTRY
40 IF A$=" 11 THEN END
50 GOTO 20

As we discussed earlier, any real variable can have an integer value in
Applesoft. Therefore you can input an integer value for a real variable. A real value
entered for an integer variable is converted to an integer value according to the
truncation rules presented in the "Mixed-Type Expressions" section of this
chapter.

INPUT Statement Prompts

The INPUT statement is very fussy; its syntax is too demanding for any normal
human operator. Just imagine some poor office worker who knows nothing about
programming; on encountering the types of error message which can occur if one
comma happens to be out of place, he will give up in despair. You are therefore
likely to spend a lot of time writing "idiot proof" data entry programs. These are
programs which are designed to watch out for every type of mistake that an
operator can make when entering data. An idiot proof program will cope with
errors in a way that the operator can understand. Chapter 4 describes these data
entry programming techniques in detail.

One simple trick worth noting, however, is the INPUT statement's ability to dis
play a short message that can describe the expected input. Such a message is
called a prompt message. The message appears in the INPUT statement as a
string value enclosed in quotation marks. The message will be displayed just
ahead of the input request. This certainly beats sticking a bunch of variables into a
single INPUT statement, with only your memory reminding you what to enter next.

In Integer BASIC, you put the prompt message immediately following the word
INPUT. It is followed by a comma and then the list of variables. When the list con
tains more than one variable, the prompt message is still only displayed once, on

Chapter 3: PROGRAMMING IN BASIC 97

the first line of input. If the first variable on the list is numeric, a question mark is
displayed immediately after the prompt message. If the first variable is a string, no
such question mark is displayed. Here is an example:

10 DIM A$(10>
20 INPUT 11 ENTER YOUR NAME AND AGE .. .,A$.,A
:30 PRINT A$; II 18 11

; A
:35 REM IF ENTRY IS NULL., END PROGRAM
40 IF A$=" 11 THEN END
50 GOTO 20

In Applesoft, you put the prompt message immediately after the word INPUT. It
is followed by a semicolon which is in turn followed by the variable list. The exis
tence of a prompt message suppresses the standard INPUT statement question
mark. The prompt message is displayed only once, even if more than one line is
required to enter all of the values requested by the variable list.

Here is an Applesoft example:

20 INPUT 11 ENTER YOUR NAME AND AGE: 11 ;A$.,A
30 PRINT A$; 11 IS 11 ;A
35 REM IF ENTRY IS NULL, END PROGRAM
40 IF A$ = 1111 THEN END
50 GOTO 20

The GET Statement

The GET statement, available only in Applesoft, inputs a single character from the
keyboard. It does not display the character on the screen. You do not press RETURN

after typing the character. The entry is treated as a string value or as a numeric
value, depending on the type of variable that follows the word GET. Type in the
following program and run it:

10 GET A$
20 PRINT A$
25 REM IF ENTRY IS AN E, END PROGRAM
30 IF A$ = "E" THEN END
40 GOTO 10

We can make GET wait for a specific character by testing for the character as
follows:

10 GET A$
20 IF A$ <)· uxu THEN GOTO 10
30 PRINT A$
40 END

This program waits for the letter X to be entered. Nothing else will do.
If the GET statement specifies an integer or real variable, then the entry must

be a numeric digit. Otherwise, the ?SYNTAX ERROR occurs and the program
stops. Because of this and other problems that can occur when using GET with a
numeric variable, GET statements usually receive string characters.

Programs use the GET statement most frequently when generating dialogue

98 APPLE II USER'S GUIDE

with an operator. For example, a program may wait for an operator to prove that
she or he is there by entering a specific character (e.g., Y for yes). Here is appropri
ate program logic:

10
15
20
30
40
50

PRINT "OPERATOR! ARE YOU THERE?"
PRINT "TYPE Y FOR YES"
GET A$
IF A$ < :> "Y" THEN GOTO 20
PRINT "OK, LET'"S GET ON WITH IT"
END

Notice that this sequence never displays the character entered at the keyboard.
Try rewriting the program so that any character entered for the GET statement is
displayed.

HALTING AND RESUMING
PROGRAM EXECUTION

If a program is running and you want to stop it, press CTRL and C concurrently. If
the program is waiting for keyboard input from an INPUT statement when you
type CTRL-C, you will also have to press RETURN after you press CTRL-C.

In Integer BASIC, you will see the message STOPPED AT and then the line
number at which program execution halted. You can resume program execution
by typing the command CON.

In Applesoft, you will see the message BREAK IN followed by the line number
at which program execution halted when you pressed CTRL-C. You can continue
program execution by typing CONT.

The REsET Key

You can of course interrupt your program at any time by pressing the REsET key
(on some versions of the Apple II, you must press CTRL-REsET).

On the Apple II Plus and on an Apple II with the Language System installed,
RESET has the same effect as CTRL-C.

On versions of the Apple II without the Autostart Monitor, pressing RESET
causes the Monitor prompt(*) to appear. If you were using Integer BASIC or Firm
ware Applesoft, type CTRL-C to return to the language you were using. If you were
using cassette-based Applesoft, type OG to return to Applesoft. If you were using
disk-based Applesoft, type 3DOG to return to Applesoft.

If you try to recover incorrectly from an accidental RESET, you will lose your
BASIC program.

The END Statement

The program will halt execution when it encounters an END statement, as we de
scribed earlier in this chapter.

You cannot continue program execution after Integer BASIC executes an END
statement.

Chapter 3: PROGRAMMING IN BASIC 99

The STOP Statement

Applesoft has another command which will halt program execution when it is
executed: the STOP command. When Applesoft executes a STOP command, it
displays the message BREAK IN along with the line number it stopped at.

You can continue program execution in Applesoft after either the END or STOP
command by typing CONT.

The WAIT Statement

Applesoft has a command which allows you to specify a pause in program execu
tion. The WAIT statement causes program execution to halt until a memory loca
tion (which you specify) has a value which you specify. You can, for example,
make your program pause until someone presses the button on game control
number 1. Here is how:

10 REM -WAIT FOR BUTTON ON GAME CONTROLLER N0.1
20 PRINT 11 PRESS BUTTON ON GAME CONTROLLER ONE"
30 WAIT - 16286,128
40 PRINT 11 BANG!"
50 END

See Chapter 8 for more complete details on the WAIT statement.

FUNCTIONS

Another element of BASIC is the function, which in some ways looks like a varia
ble, but in other ways acts more like a BASIC statement.

Perhaps the simplest way of understanding what a function is is to look at an
example. In the assignment statement:

l 1 0 A=St;J.R < B >

the variable A is set equal to the square root of the variable B. SQR specifies the
square root function. Here is a string function:

20 L=LEN<D$)

In this example the string variable L is set equal to the length of string variable 0$.
Functions can substitute for variables or constants anywhere in a BASIC state

ment, except to the left of an equal sign. In other words, you can say that
A=SQR(B), but you cannot say that SQR(A)=B.

The discussion which follows shows you how to use functions. An incomplete
summary of the functions available in Integer BASIC and Applesoft is presented
here but a complete description of all functions is given in Chapter 8. Many func
tions are not available in Integer BASIC. We will note those that are not.

You specify a function using the appropriate reserved word (such as SQR for
square root), followed by an argume!'lt or arguments enClosed in parentheses. In

100 APPLE II USER'S GUIDE

the case of A=SQR(B). SQR requires a single argument, which in this instance is
the value to take the square root of. For L=LEN(D$). LEN specifies the function ;
the argument D$, enclosed in parentheses. is the string to take the length of.

Generally stated, any function will have one of these two formats:

I
Single argument for a

function that has just
one argument

function (arg 1)
function (arg 1 ,arg2) ---- ___,_...

L Two arguments for a
function that needs
two arguments

L-------Reserved word that specifies
the function

A few functions need three arguments. Each function argument can be a cons
tant, a variable, or an expression.

Each and every function in a BASIC statement is reduced to a single numeric or
string value before any other parts of the BASIC statement are evaluated. First,
the function argument is evaluated according to the rules we set down earlier.
Once it is reduced to a numeric or string value, the function is applied to it, yielding
another numeric or string value. Not until all functions in a given expression are
evaluated in this way is the expression itself eva luated. For example, in the follow
ing statement:

JlO B=24 . 7•SQR CC>+5>-S INC0. 2+D)

SQR and SIN functions are evaluated first. Suppose SQR(C)=6.72 and
SIN(0.2+D)=0.625. The expression on line 10 will first be reduced to:

24.7• (6.72 + 5)- 0 .625)

then this simpler expression is evaluated.

NUMERIC FUNCTIONS

Here is a list of the numeric functions that you can use with both Integer BASIC
and Applesoft:

SGN Returns the sign of an argument: + 1 for a positive argument.
-1 for a negative argument, 0 for a zero argument.

ABS Returns the absolute value of an argument. A positive
argument does not change; a negative argument is
converted to its positive equivalent.

Chapter 3 : PROGRAMMING IN BASIC 101

RND Generates a random number. See Chapter 8 for more
details.

Here is a list of the numeric functions that you can use with Applesoft only:

INT

-bsoR
--i!>EXP

LOG

SIN

cos

TAN

ATN

Converts a floating point argument to its integer
equivalent.

Computes the square root of the argument.

Raises the constant eto the power of the argument
(e"'9).

Returns the natural logarithm of the argument.

Returns the trigonometric sine of the argument, which is
treated as a radian quantity.

Returns the trigonometric cosine of the argument.
which is treated as a radian quantity.

Returns the trigonometric tangent of the argument,
which is treated as a radian quantity.

Returns the trigonometric arctangent of the argument.
which is treated as a radian quantity.

Using Numeric Functions

You should start using functions as soon as possible, but do not bother with func
tions you do not already understand. For example, if you do not understand trig
onometry, you are unlikely to use SIN, COS and TAN functions in your programs,
and there is not much point learning what they are.

Here is an example that uses a numeric function :

10 A=- 2:::4
20 B= SGN <A>
:30 PRINT B
40 END

When you execute this program, the result displayed is -1, since the -234 is
negative. As an exercise, change the statement on line 10 to an INPUT. Change
line 40 to GOTO 1 0. Now you can enter a variety of values for A and watch the
SGN function at work.

Here is a more complex example using Applesoft BASIC numeric functions:

10 INPUT A,B
20 IF LOG <A> < 0 THEN A = 1 I A
30 PRINT SQR <A> * EXP
39 REM USE CTRL-C TO END PROGRAM
40 GOTO 10

If you understand logarithms, then as an exercise change the statement on line
20, replacing the LOG function with some other numeric function.

102 APPLE II USER'S GUIDE

¥ STRING FUNCTIONS

String functions allow you to manipulate string data in a variety of ways. You may
not need to use numeric functions that you do not understand, but you must make
an effort to learn every string function.

Here is a list of the string functions that you can use with both Integer BASIC
and Applesoft :

ASC Converts a string character to a standard numeric code

LEN

(ASCII) equivalent.

Returns the number of characters contained in a text
string.

Here are the string functions you can use in Applesoft only:

STR$

VAL

CHR$

LEFT$

RIGHT$

MID$

Converts a numeric value to a string of text characters.

Converts a string of text characters to their equivalent
number (if such a conversion is possible).

Converts a numeric (ASCII) code to its equivalent text
character.

Extracts the left part of a text string. Function arguments
identify the string and the desired left part.

Extracts the right part of a text string. Function
arguments identify the string and the desired right
part.

Extracts the middle section of a text string. Function
arguments identify the string and the required mid
part.

String functions let you determine the length of a string, extract portions of a
string , and convert numeric values, numeric (ASCII) codes, and string characters.
These functions take one, two, or three arguments. Here are some examples :

STR$(14) Converts 14 to " 14".

LEN(" ABC")

LEN(A$+8$)

LEFT$(ST$, 1)

Returns the length of the string. The number 3 is
returned since the string has three characters.

Returns the combined length of the two strings.

Returns the leftmost character of the string ST$.

Integer BASIC Substrings

Although Integer BASIC has no functions that let you extract portions of a string,
there is a way of doing it. You specify the starting position and the number of
characters in the substring, as in the following example:

10 DIM A$<20 1. 8 $(51
20 8$=A$(1,4 l

Chapter 3: PROGRAMMING IN BASIC 103

In the example above, B$ is set equal to the first four characters of A$. It may look
to you as though B$ is being assigned the value of one of the elements of string
array A$(), but remember that Integer BASIC does not allow string arrays, much
less double-dimension string arrays. Instead, this notation refers to a substring.
The first value in parentheses is the starting position of the substring, and the sec
ond value is the number of characters in the substring.

Integer BASIC String Concatenation

The LEN function allows you to concatenate strings in Integer BASIC. Here is an
example:

10 DIM A$C10),8$(10),C$C10)
20 A$= 11 WIND 11

30 B$= 11 PIF'E 11

40 C$= 11 LINE 11

50 A$(LENCA$)+1)=8$
60 PRINT A$
70 B$C LENCB$)+1)=C$
80 PRINT 8$
90 END

>RUN
WINDPIPE
PIPELINE

SYSTEM FUNCTIONS

In the interest of completeness, system functions are listed below. They perform
operations which you are unlikely to need until you are an experienced pro
grammer.

Here is a list of system functions available:

PEEK Fetches the contents of a memory location.
FRE Returns available free space - the number of unused

read/write memory bytes. Not available in Integer BASIC.
USR Transfers to an assembly language program. Not

available in Integer BASIC.

USER-DEFINED FUNCTIONS

In addition to the many functions which are a standard part of BASIC, you can
define your own arithmetic functions in Applesoft, providing they are not very
complicated. User-defined string functions are not allowed. A DEF FN statement
defines the function. You invoke the function with an FN statement. Here is a
short program that uses a DEF FN statement:

10 DEF FN P<X> = 100 * X
20 INPUT A

104 APPLE II USER'S GUIDE

30 PRINT A, FN P<A>
35 REM USE CTRL-C TO END PROGRAM
40 GOTO 20

The function identifier follows the reserved word FN. Rules for naming the
identifier are the same as rules for real variable names. In the example we use P,
therefore the function name becomes FNP. If the identifier were AB, then the
function name would be FNAB.

The arithmetic expression on the righthand side of the equal sign defines the
function. When you invoke the function with the FN statement, the expression is
evaluated (using the current values for any variables mentioned in the expression).
The resulting numeric value is treated the same as any numeric value would be in
the context where the FN statement appears.

In the DEF FN statement, a single variable must follow the function identifier,
and must be enclosed in parentheses. This variable name is local to the function
definition; it has no effect outside of the DEF FN statement. You can use the same
variable name elsewhere in the program without affecting the function, and the
variable in the function will not affect any like-named variable elsewhere in the
program.

In use, the FN statement must be followed by the function identifier, which
must be followed by a numeric constant, variable, or expression enclosed in
parentheses. When Applesoft encounters the FN statement, it assigns the value
of the constant, variable, or expression to the local variable in the DEF FN state
ment. (The value of a variable outside the DEF FN statement which has the same
name as the local variable is unchanged.) If the local variable appears in the func
tion-defining expression, Applesoft uses its recently assigned value when evaluat
ing the expression.

FUNCTION NESTING

The argument of a function can be an expression; the expression may contain
functions. In other words, functions can be nested. Here is an example:

10 INPUT A
20 PRINT SGN < ABS <A>>
25 REM USE CTRL-C TO END THE PROGRAM
30 GOTO 10
40 END

Try experimenting by creating immediate mode PRINT statements that make
complex use of numeric and string functions.

4
Advanced BASIC Programming

This chapter carries on from Chapter 3 in describing how to program the Apple II
in BASIC. It covers many new BASIC statements and explores new facets of some
familiar ones. Chapter 3 taught you enough to let you make your Apple II do some
fancy tricks; this chapter shows you how to make it a really useful tool.

DIRECT ACCESS AND CONTROL

There are a number of statements which allow you direct access to the Apple II.
There are many things you can do only via these statements - things like sensing
the game controls, operating the speaker, and making full use of peripheral
devices.

MEMORY AND ADDRESSING

The Apple II can have up to 65,536 individually addressable memory locations,
each of which can store a number ranging between 0 and 255. (This strange
upper bound is in fact 28.) All programs and data are converted into sequences of
numbers which are stored in this fashion.

You must specify a memory location for each of the following BASIC state
ments. You can specify the address with a number, a variable, or an expresion.ln

106 APPLE II USER'S GUIDE

any case, it must evaluate to a valid memory location. There are two valid
addresses for each memory location. One is positive and is an integer between 0
and 65535. The other is negative and can be derived by subtracting 65536 from
the positive address. For example, -32767 and 32768 address the same
memory location. Another memory location is addressed by either -1 or 65535.

When you remember that the largest number allowed in Integer BASIC is
32767, you can see the utility of using negative numbers for addressing the
higher memory locations.

If you specify a memory location in Applesoft with a real value, it will be con
verted to an integer value for use as an address.

PEEK and POKE

The PEEK function lets you read the value stored in any Apple II memory location.
Consider the following statement:

10 A = PEEKC200)
This statement assigns the content of memory location 200 to variable A.

The POKE statement puts a value into a memory location. For example the
statement: 20 POKE SOOO,A

takes the value of variable A and stores it in memory location 8000. The value to
be written into memory may be a number, a variable, or an expression with a value
between 0 and 255.

You can PEEK into read/write memory or read-only memory (RAM or ROM).
But you can POKE only into read/write memory. This is self-evident; read-only
memory, as its name implies, can have its contents read, but cannot be written
into.

CALL Statement

You can transfer control from BASIC to an assembly language program or
subroutine with the CALL instruction. Look at this sample CALL statement:

100 CALL A1
Control transfers to the memory location specified by variable A 1.

The assembly language subroutine or program can be one that is constantly
resident in the Apple II (in ROM) or it can be one you provide. The Monitor has an
intrinsic subroutine that will clear the display screen, for example. Appendix D has
a complete list of intrinsic subroutines you may find useful. Also, refer to Chapter
7 for more coverage of the Monitor and assembly language.

HIM EM: and LOMEM: Statements

The memory in your Apple II is used in different ways. Part of it is used to store
your BASIC program, part for your program variables, another part for programs

Chapter 4: ADVANCED BASIC PROGRAMMING 107

to manage disk drives (if you are using disk drives), and so on. Some of the
memory is used for graphics, as we will learn later in Chapter 6.

The statements HIMEM: and LOMEM: allow you to set aside safe areas of
memory for assembly language programs and high-resolution graphics.

Here is an example of each of these statements:

50 HIMEM: 38400
60 LOMEM: 12291

The upper and lower boundaries are set automatically by the Apple II to the high
est and lqwest memory locations available for a BASIC program on your particular
Apple II. You may need to reset these boundaries if you are using high-resolution
graphics or assembly language programs, which we will cover in Chapters 6 and
7. For ~ore information on memory uses, see Appendix G.

USING PERIPHERAL DEVICES

When you turn the Apple II on, it expects input from the keyboard and displays its
output on the screen. The keyboard is the standard input device and the display
screen is the standard output device. But as you are no doubt aware, the Apple II
can communicate with peripheral input and output devices. These include:

• A cassette recorder for loading and saving programs (and some data)

• Disk drives for loading and saving programs and data

~ A printer for permanent paper copies of data and programs

• A graphics tablet for inputting freehand graphic designs

• Communications with other computers.

The cassette recorder plugs into the Apple II through two special jacks.
All other input and output devices plug into add-on electronic circuit boards

which connect to slots inside the main Apple II computer. These circuit boards are
called controllers, interface cards, cards, or interfaces. You specify which device
you want to 4se by the slot number its controller is connected to. There are eight
slots, numbered 0 through 7. The screen display and keyboard are always slot 0.

The PR:tl= and IN:tl= Statements

To select a different output slot use the PR:tl= statement. For a different input
source use IN:tl=. The following immediate mode example selects the screen dis
play for output:

PR#O

As long as the Disk Operating System (DOS) is not present, you use PR:tl= and
IN:tl= the same way in programmed mode and immediate mode. Using PR:tl= and
IN:tl= in programmed mode with DOS present is a bit more complicated. You must
use a PRINT statement which prints a CTRL-D character followed immediately by

108 APPLE II USER'S GUIDE

the PR=tt= or IN=tt= command. The following statements direct subsequent PRINT
statement output to slot 1 . Via the interface in this slot, output will go to a printer
or any other device connected to the card.

100 [1$::: uu: REM CTRL-D
110 PRINT [I$; .. PR#1 11

: REM SELECT SLOT NUMBER 1 <PRINTER>

With DOS absent, you would use the following statement instead:

110 PR#1 ~ REM SELECT SLOT 1 <PRINTER>

Notice that PR=tt= and IN=tt= each have a single parameter. It must be a numeric
value between 0 and 7. Any other value will cause unpredictable results. If there is
no interface card in the slot selected by PR=tt= or IN#, then the Apple lllocks up;
your only recourse is to press RESET.

PROGRAM OUTPUT AND DATA ENTRY

The most inexperienced programmer quickly discovers that the input and output
sections of a program are its trickiest parts.

Nearly every program uses data which must be entered at the keyboard. Will a
few INPUT statements suffice? In most cases the answer is no. What if the opera
tor accidentally presses the wrong key? Or worse, what if the operator discovers
that he or she input the wrong data -after entering two or three additional data
items? A usable program must assume that the operator is human, and is likely to
make any conceivable human error.

Results, likewise, cannot simply be displayed, or printed, by executing a bunch
of PRINT statements. A human being will have to read this output. Unless the out
put is carefully designed, it will be very difficult to read; in consequence informa
tion could be misread, or entirely overlooked.

Fortunately BASIC on the Apple II has many capabilities that make it easy to
program input and output correctly. We will describe some of these capabilities
before looking specifically at good input and output programming practices.

MORE ABOUT THE PRINT STATEMENT

Normally a PRINT statement ends by returning to the beginning of the next display
line (it performs a carriage return). This causes the next PRINT statement to begin
displaying in the first character position of the next line. Thus the following pro
gram displays a column of 20 W characters in the first character position of 20
rows:

>NEW

>200 ~"W"
>210 FOR 1=1 TO 20
>220 PRINT C$
>230 NEXT I

Chapter 4 : ADVANCED BASIC PROGRAMMING

) 2 40 PRINT ~ PHEW!~

) 2 50 END
>RUN
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
PHEW!

w:&ng SemicolojlSJ

109

earing after any variable in the PRINT statement arameter list
causes t e next display to hegill-immadiately at the next available character posi
~n. A semicolon following the last (or only) variable in the PRINT statement sup
presses the carriage return. Therefore the following program will display 800 W
characters across 20 rows of a 40-column display.

>NEW

>200 C$=~w~
) 2 10 FOR 1=1 TO 800
>220 PRINT C$;
>230 NEXT I
>240 PRINT ~PHEW!~
)250 END

>RUN
ww
ww
ww
ww
ww
ww
ww
ww
ww
ww

110 APPLE II USER'S GUIDE

ww
ww
ww
ww
ww
ww
ww
ww
ww
ww
PHEW!

The FOR-NEXT loop index, variable I, is used as a counter to indicate the num
ber of W's to be displayed, in this case 800. On the first execution of PRINT, a
new line is begun and the character W is displayed. The semicolon prevents a
return to the next line, so the cursor remains at the character position following
the first W. The second W is then displayed and the cursor is left in the next
character position. This sequence continues up to the end of the first line, then the
cursor moves to the beginning of the next line. This sequence continues for 20
lines (of a 40-column display).

Why does PHEW I print on a new line? It doesn't really; it appears to start a new
line because the last W character is displayed in the last position of the previous
line. Change the FOR-NEXT loop from 800 to 780 iterations and PHEWI is dis
played at the end of the last line of characters. This may be illustrated as follows:

>200 C$= 11 W11

>210 FOR I=1 TO 780
>220 PRINT C$;
>230 NEXT I
>240 PRINT 11 PHEW! 11

>250 END

>RUN
ww
ww
ww
ww
ww
ww
ww
ww
wwwwwwww~wwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
ww
ww
ww
ww
ww
ww
ww
ww
ww
ww
WWWWWWWWWWWWWWWWWWWWPHEW!

Chapter 4: ADVANCED BASIC PROGRAMMING 111

The semicolon concatenates string data by displaying items right next to each
other, with no spaces in between. Numeric data is also displayed in a continuous
line format, with no spaces in between contiguous values.

To illustrate this, change the string variable to a single-digit numeric variable.
The program will look like this:

>200 C=5
>210 FOR 1=1 TO 800
:>220 PRINT C;
>230 NEXT I
>240 PRINT "PHEW! 11

>250 END

The number 5 is displayed as follows:

>RUN
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
PHEW!

>
Now change C to minus 1 :

>200 C=-1
>210 FOR 1=1 TO 800
>22(, PRINT C;
>230 NEXT I
>240 PRINT 11 PHEW! 11

>250 END

>RUN
-1
-1
-1
-1
-1
-1
-1
-1

112 APPLE II USER'S GUIDE

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
PHEW!

What has happened here? When C is -1, the program prints twice as many
lines as when C is 5. It takes an extra position on the screen to display the minus
sign.

Multiple-digit numbers (including negatives) will scroll the display off the
screen unless the FOR-NEXT index is adjusted. If C is changed to 2001, a four
digit display field is needed, so adjust the index from 800 to 800/4=200:

>200 C=2001
>210 FOR I=1 TO 200
)220 PRINT C;
)230 NEXT I
)240 PRINT 11 PHEW! 11

>250 END
:>RUN

2001200120012001200120012001200120012001
2001200120012001200120012001200120012001
2001200120012001200120012001200120012001
2001200120012001200120012001200120012001
2001200120012001200120012001200120012001
2001200120012001200120012001200120012001
2001200120012001200120012001200120012001

Chapter 4 : ADVANCED BASIC PROGRAMMING

200 1200120012001200 1200 12001200 1200 12001
200 1200 1200120012001200120012001200 12001
200 1200 1200120012001200 12001200 1200 12001
200120012001200120012 0 0 1 2 0 0 1200120012001
200120012001200 120012001200120012001200 1
200120012001200120012001200120012001200 1
200 1200120012001 200 1200 12001200120012001
200 1200 120012001200 1200 1200 1200 12001200 1
200 1200 1200 1200 1200 120012001200 1200 12001
2001200120012001200120012001200120012001
200 1200 12001200 1200 1 2 001 200 1 2 001200 12001
2001200 120012001200120012001 200 1200 12001
2 00120012001200120012001 20012001 200 1200 1
PHEW!

113

Numbers are broken across the end of lines if necessary. This is because the
semicolon (;) generates a continuous display, and nothing but an end of line can
cause a return. Try the example above with C equal to 201 to see this.

ommas appea ing after a variable or at the end of a PRINT statement treat the
display as though it were tabbed at specific intervals. The rules for tabbing are
different in Integer BASIC and Applesoft.

Integer BASIC establishes five tab stops on the display screen. They are at col
umns 1, 9, 17, 25, and 33; they are eight spaces apart. Here is an Integer BASIC
example:

)·NEW
:> 200 C=12::::
) 2 10 FOR !=1 TO 100
> 220 PRINT (:,
:> 230 NE XT I
> 2 4 0 PRINT "PHEW !" ., .,. 250 END
:>RUN
123 12:::: 1 2::: 12:::: 123
123 1·"">·? L ·-• 123 12:3 123
123 1 2:::: l.2:::: 1 ~, . .,

L~' 1 2::::
128 12:3 123 123 t2:3
12:::: 12:::: 123 1 '">'=' L~' 123
123 1 ·') ·~· ... ~. 123 123 12::::
12~: 1 2~: 1 ~,.., ..__. 123 12::::
123 12:3 123 123 12:3
123 1 ") ':• L.·-· 123 1 2C:: 123
123 12:::: 123 12:3 123
1 ">':• ""'-' 123 1 "')':• ""--' 12:::: 1 ">'=',
1·")·? L·-'

1 . .,- . .,e...,:. 123 1 •'")':•
L.•.J 1 2:3

123 12::.:: 123 123 1 ~,-:.
.L. •. •

12 :3 12:3 123 123 1 2:3
12:::: 123 123 123 123
123 123 123 123 123
123 12:::: 123 123 123

114 APPLE II USER'S GUIDE

123 123 123 123 123
123 123 123 123 123
123 123 123 123 123
PHEW!

There must be at least one blank space ahead of a tab stop (except the first tab
stop) or that tab stop will be inactivated. Thus, there must not be anything printed
in column 8 for the second tab stop to be active, and so on. The following exam
ple program illustrates this with strings.

>10 REM MUST DIMENSION STRING VARIABLES
:>20 DIM C$(8)
>200 C$;"12345678"
>210 FOR I=1 TO 20
>220 PRINT C$,
:>230 NEXT I
:>240 PRINT "PHEW!"
:>250 END
RUN
12345678 12345678 12345678

12345678 12345678
12345678 12345678 12345678

12345678 12345678
12345678 12345678 12345678

12345678 12345678
12345678 12345678 12345678

12345678 12345678
PHEW!

If you change C$ to "1234567 ," all five tab stops will be used.
There are some special conditions which govern tabbing with commas in

Applesoft, as shown in Figure 4-1 .
To see how commas work in Applesoft using our example program, change

the semicolon in the PRINT statement to a comma. This causes numbers to be
displayed in three columns. At three numbers per line, the FOR-NEXT index will be
3 * 20=60. The complete program is shown at the top of the next page.

First Tab Stop

• Starts in column 1

Second Tab Stop

• Exists only if nothing
printed in column 16

• Starts in column 1 7

Third Tab Stop

• Exists only if nothing printed
in columns 24-32

• Starts in column 33

FIGURE 4-1. Applesoft Tab Stops From PRINT With Commas

Chapter 4: ADVANCED BASIC PROGRAMMING

]200

]210

]220

]230

]240

]250

RUN
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
PHEW!

c = 2001

FOR I

PRINT

NEXT I

PRINT

END

= 1 TO 60

c.

"PHEW!"

2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001

2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001

116

Commas also work with strings. As an example, enter the following immediate
mode program to display twenty lines of tabbed character data:

lNEW

l100 A$="THREE"

l110 8$="BLIND"

l120 C$="MICE"

l210 FOR I=1 TO 20

J220 PRINT A$,B$,C$

l230 NEXT I

J240 PRINT "PHEW!"

J250 END

JRUN
THREE
THREE

BLIND
BLIND

MICE
MICE

116 APPLE II USER'S GUIDE

THREE BLIND MICE
THREE BLIND MICE
THREE BLIND MICE
THREE BLIND MICE
THREE BLIND MICE
THREE BLIND MICE
THREE BLIND MICE
THREE BLIND MICE
THREE BLIND MICE
THREE BLIND MICE
THREE BLIND MICE
THREE BLIND MICE
THREE BLIND MICE
THREE BLIND MICE
THREE BLIND MICE
THREE BLIN[I MICE
THREE BLIND MICE
THREE BLIND MICE
PHEW!

As a further exercise, try letting B$ be VISIONARY instead of BLIND. If you
studied Figure 4-1 , it will come as no surprise to you that the third tab stop is not
used. The word VISIONARY, starting in the second tab stop at column 17, prints
into columns 24 through 32. Printing anything in columns 24 through 32 deacti
vates the third tab stop.

PRINT FORMATTING FUNCTIONS

We use the word formatting to describe the process of arranging information on a
display screen so that the information is easier to understand or more pleasing to
the eye. As we have seen, commas and semicolons help. Still, formatting could
become a complex chore. For example, suppose you want to display a heading in
the middle of the line at the top of the display screen.

Here is an Integer BASIC program which uses commas to tab to the center of
the display screen and print a heading. It also uses the CALL statement, which we
recently discovered, to position the cursor at the upper lefthand corner of the dis
play screen (see Appendix D).

>NEW

>5 REM MUST DIMENSION STRING VARIABLES
>10 DIM HD$(30)
>500 REM CLEAR THE SCREEN AND
>510 REM MOVE THE CURSOR TO THE
>520 REM UPPER LEFT CORNER
>530 CALL -936
>540 HD$="TOP SECRET 11

>550 REM TAB TO CENTER OF SCREEN
>555 REM REM THEN PRINT HEADING
>560 PRINT uu,u",HD$
>570 END
>RUN

TOP SECRET

Chapter 4: ADVANCED BASIC PROGRAMMING 117

The heading is approximately centered on the display screen. Were the heading
longer, say REPORT ON HEAVY HYDROGEN, it would not be centered on the dis
play screen. (Try it.) This new heading will be approximately centered if you
remove one of the commas and its adjoining null string, so that the heading is dis
played starting at the second tab stop rather than the third.

We could use the same technique for displaying headings in Applesoft. But
Applesoft has PRINT statement formatting aids that are much easier to use: the
SPC, TAB, and POS functions.

SPC Function

SPC is a space-over function. You include SPC as one of the terms in a PRINT
statement; after the letters SPC you must enclose (in parentheses) the number of
character positions that you wish to space over. For example, we could center the
heading TOP SECRET with the following:

J100 REM ·cLEAR SCREEN

]110 HOME

J120 REM SPACE OVER AND DISPLAY

J 130 PRINT SPC (15) ; II TOP SECRET 11

J140 END

JRLIN
TOP SECRET

Notice the semicolon after SPC. A comma after SPC will start displaying text at
the next tab stop following the number of spaces specified by SPC.

Any time you include the SPC function in a PRINT statement you simply cause
the next printed or displayed character to be moved over by the number of posi
tions specified after SPC; nothing else is changed.

TAB Function

TAB works much the same as typewriter tabbing.
Suppose you want to print or display information in columns. You must first

calculate the character position where each column is to begin. A form like the
one in Appendix L is handy for this. In Figure 4-2, columns begin at character
positions 1, 15, and 31. Now instead of using blank spaces as you go from col
umn to column, you simply insert a TAB function after each entry in the PRINT
statement.

Consider one line of the display illustrated in Figure 4-2. Counting character
positions, we could display the line without tab stops, as follows:

J 10 ? 11l0NES, P. ,_1 431-25-6277 1420.00 11

118 APPLE II USER'S GUIDE

1 Column Number 15 31

J 0 N E s . p . J 4 3 1 - 2 5 - 6 2 7 7 1 4 2 0 0 0
B U R K E • p . l 4 4 7 - 7 1 - 7 6 1 4 2 0 2 5 0 0
R 0 B I N s 0 N , l .w 2 3 1 - 8 0 - 8 4 2 1 2 1 5 0 0 0

etc. etc. etc.

FIGURE 4-2. Determining Screen Character Positions

Instead of inserting blank spaces, we could use the SPC function and shorten the
statement as follows:

Jlf) ? 11 .JONES,P • .J 11 ;SPC(7);"431-25-6277";SP
C<5>;"1420.00 11

But tabbing is easier because you tab to a known column number instead of
counting spaces:

J 10 ?".JONES, P. ·-' 11
; TAB< 16 >; 11 431-25-6277 11

; T
ABC32); 11 1420.00"

Determining the Cursor Position
(Horizontal)

POS is the last of the Applesoft formatting functions. POS tells you which column
the cursor is in. The position is expressed as a number, equal to the column num
ber where the cursor is blinking. You always include a dummy argument of 0 after
POS, as follows: POS(O).

The following statement demonstrates the capability of POS:

J? 11 CURSOR POSITION IS 11 ;P08(0)

Execute this statement in immediate mode. The display will appear as follows:

J? 11 CURSOR POSITION IS 11 ;POSCO>
CURSOR POSITION IS 19

The cursor was at character position 1 9 after displaying CURSOR POSITION IS. If
you add some spaces after IS, and before the closing quotes, you will change the
number 1 9 to some larger number.

In Integer BASIC you can simulate the POS(O) function with PEEK(36) to deter
mine which column the cursor is currently in. Here is the previous example re
stated:

)·PRINT "CURSOR POSITION IS 11
; PEEKC:36)

CURSOR POSITION IS 19

Note that display screen columns are numbered 0 through 39 for POS,
PEEK(36), and PRINT SPC. Columns are numbered from 1 to 40 for PRINT TAB,
and for two instructions we will cover soon, HT AB and TAB (Integer BASIC).

Chapter 4: ADVANCED BASIC PROGRAMMING

Determining Cursor Position
(Vertical)

PEEK(37) will give you the row which the cursor is currently on.

119

Rows are numbered 0 through 23 for PEEK(37), but 1 through 24 for VT AB
(covered in the next section).

CURSOR CONTROL AND
SPECIAL VIDEO EFFECTS

There are a number of BASIC statements which increase the versatility of the
Apple II display screen. These include the FLASH, INVERSE, SPEED, NORMAL,
HOME, VT AB, and HT AB/T AB statements. Most of these are available only with
Applesoft. There are a number of graphics statements as well; these are covered
in Chapter 6.

Positioning the Cursor

We have already covered several ways of controlling the cursor position by using
commas and semicolons with the PRINT statement. The Applesoft formatting
functions SPC, TAB, and POS are also useful in positioning the cursor.

Clearing the Display Screen

You can clear the display screen and position the cursor to the home position
(upper left corner) with the statement CALL -936, or in Applesoft with the HOME
statement. Try typing these (one in Integer BASIC, the other in Applesoft):

Horizontal and Vertical
Positioning

>CALL -986

lHOME

There are two statements which together allow you to move the cursor to any
position on the screen. VT AB moves the cursor vertically and HT AB (TAB in
Integer BASIC) moves the cursor horizontally. You must specify the line number
for VT AB and the column number for HT AB. The top line of the screen is 1 and
the bottom line is 24. The leftmost column of the screen is 1 and the rightmost
column is 40.

The following program uses these two statements (in Applesoft) to position
the cursor and display an asterisk at that position. If you are using Integer BASIC
use TAB instead of HT AB on lines 90 and 120.

120 APPLE II USER'S GUIDE

90 HTAB 1: VTAB <1>
100 INPUT "ROW? 11 ;R
11.0 JNPUT 11 COLUMN? 11 ;C
120 VTAB R: HTAB C
130 PRINT 11 * 11

;

140 GOTO 90

The INVERSE and NORMAL Statements

You can reverse the black and white parts of characters on the display screen; the
INVERSE statement does this. Once the INVERSE statement is executed, every
thing displayed by PRINT statements appears in reverse video mode. The charac
ters you type on the keyboard will still echo in normal video mode, however.

The Apple II returns to normal video mode when it executes a NORMAL com
mand.

To see how these two commands work, try this (the shaded characters will be
in reverse video):

JINVERSE

l? 11 BLACK ON WHITE 11

BLACK ON WHITE

JNORMAL

J?"WHITE ON BLACK"
WHITE ON BLACK

INVERSE and NORMAL are not available in Integer BASIC.

The FLASH Statement

Not only can you reverse the black and white parts of characters, you can make
characters flash back and forth between normal and reverse video. Use the
FLASH statement to do this. Here again, NORMAL causes the Apple II to revert to
normal video.

Here is an example (the shaded areas will be flashing):
JFLASH.
l? 11 FLASH IN THE F'AN"
FLASH IN THE PAN

JNORMAL

J?"STEADY AS RAIN"
STEADY AS RAIN

FLASH is not available in Integer BASIC.

The SPEED Statement

The rate at which characters display on the screen is variable. You can slow it
down from its normal rate with the SPEED statement.

Chapter 4: ADVANCED BASIC PROGRAMMING 121

The following program illustrates how SPEED works.

J100 INPUT "SPEED = ";SP

1110 SPEED= SP

J120 FOR CT = 1 TO 3

1130 PRINT "HIC"

l140 NEXT

]150 PRINT 11 HICCUP 11

J160 SPEED = 255

J170 END

The value of the expression (e.g., the value of SP on line 11 0) adjusts the dis
play speed; 0 is slowest and 255 is fastest. SPEED also affects the rate at which
characters are sent to other devices, not just the display screen.

SPEED is not available in Integer BASIC.

TEXT WINDOWS

Normally, the Apple II actively uses all 24 lines and 40 columns of its display
screen in text mode. Using POKE statements, you can alter the size and position
of this text window. Four memory locations control the size, shape, and position
of the text window, as shown in Table 4-1.

You must be careful to observe the common-sense range limits shown in Table
4-1 when you set a text window. Trying to set windows outside these bounds will
have unpredictable results.

The sample program below sets a two-line text window in the middle of the
display screen for inputting a numeric value. To appreciate the full utility of this
technique, try entering some non-numeric values and observe what happens with
the error messages. Notice also that setting the text window does not clear the
remainder of the screen, nor does it move the cursor into the text window. You
must provide separate BASIC statements to do this.

TABLE 4-1. Text Window Memory Locations

Memory Location Controls Allowable Range

32 Left Margin 0 to 39
33 Width 1 to 40 minus Left Margin
34 Top Line 0 to Bottom Line
35 Bottom Line Top Line minus 24

122 APPLE II USER'S GUIDE

1000 REM SET WINDOW TOP LINE, WIDTH, LEFT MARG., L BOTTOM
LINE

1010 T = 10:W = 20:LM = 11:8 = 13
1020 REM CLEAR SCREEN
1030 CALL - 936
1040 REM SET TEXT WINDOW FOR INPUT
1050 GOSUB :3200
1060 REM SURROUND INPUT WINDOW WITH ASTERISKS
1070 GOSUB 3000
1080 REM MOVE CURSOR INSIDE WINDOW; JNF'UT
1090 VTAB T + 2
1100 INPUT M1
1110 REM RESET WINDOW TO FULL SCREEN
1120 GOSUB 3300
1130 REM MOVE CURSOR TO BOTTOM LINE
1140 VTAB 2:3
1150 END
2990 REM SURROUND WINDOW WITH ASTERISKS
3000 VTAB T + 1
3010 GOSUB 3100
30?.0 VTAB B + 1
:::C030 GO SUB 3100
3040 RETURN
3090 REM PRINT ASTERISKS
3100 FOR I = 1 TO W
2:110 PRINT 11 * 11

;

3120 NEXT I
3130 RETURN
3190 REM SET INPUT TEXT WINDOW
3200 POKE 32,T
3210 POKE 33,W
3220 POIC::E :34, l.M
:~:230 POKE 35, B
3240 RETURN
3290 REM SET FULl. -SCREEN WINDOW
3300 POKE :32, 0
3310 POKE 33,40
3320 POKE 34,0
3330 POt<E 35, 24
:3340 RETURN

THE CHR$ FUNCTION: PROGRAMMING
CHARACTERS IN ASCII

In the last chapter we discussed how you can generate invisible characters like
CTRL-G, which makes the Apple II beep. But there are some characters (both visi
ble and invisible) which you cannot type directly on the keyboard. These include
"["and"\". You can generate these characters in Applesoft with the CHR$ func
tion.

In order to understand the CHR$ function, you must understand how charac
ters are stored in the Apple II memory. It's really very simple. Computer memory
can store numbers, but not characters. So characters are converted to numeric

Chapter 4: ADVANCED BASIC PROGRAMMING 123

codes. The Apple II uses the same code as all other microcomputers, the ASCII
code (American Standard Code for Information Interchange). For example, the
ASCII code for the letter A is 65, forB it is 66, Cis 67, and so on. You will find a
complete table of ASCII codes in Appendix I. Whenever the Apple II is dealing with
strings, it interprets numeric values as ASCII codes for characters.

In Applesoft, if you cannot press a key to include a character within a text
string, you can still select the character by using its ASCII code.

The CHR$ function translates an ASCII code number into its character equiva
lent. For example, to create the symbol"$", first find its ASCII code in Appendix I.
Then use the code with CHR$ as follows:

lPRINT CHR$(36)
$

Experiment in immediate mode using any ASCII code from 0 to 255.
You can use the CHR$ function in conjunction with regular strings in a PRINT

statement as follows:
l?CHR$(34); 11 ZOUNDS! 11 ;CHR$(34)
11 ZOUNDS! 11

The CHR$ function lets you include otherwise unavailable characters such as
carriage return and quotation marks as part of a string.

PROGRAMMING DATA ENTRY

The goal of any program should be to minimize data entry errors and make it easy
for an operator to spot and correct errors that do occur. There are ways to orga
nize data entry which tend to minimize errors.

First, enter a whole functional block of data and then process it. It is poor pro
gramming practice to process each piece of data as it comes in from the
keyboard.

A mailing list program, for example, requires names and addresses to be
entered as data. You should treat each name-and-address as a single functional
unit. In other words, your program should ask for the name and address, allowing
the operator to enter all of this information, and then change any part of it. When
the operator is satisfied that the name and address is correct, the program can go
ahead and process it. Then the program should ask for the next name and
address.

In the case of a mailing list program it would be poor programmng practice to
ask for the name, process it immediately, then ask for each line of the address,
treating each piece of the name and address as a separate and distinct functional
unit.

It is a good idea to organize data entries so that data items remain on the dis
play screen for a while after they have been entered. That gives the operator more
opportunity to notice an error and correct it. If entries disappear as soon as they
are entered, there is no chance for an operator to casually notice an error. Of
course, the operator must have some way of correcting previous entries.

124 APPLE II USER'S GUIDE

Under some circumstances entering data in functional blocks with ample
opportunity for review and correction is not the best way to go. This set of cir
cumstances is a surprising one. It occurs when a very large amount of data must
be entered by keyboard operators. For example, suppose a keyboard operator
must enter hundreds of names and addresses a day. Experience has shown that
the highest volume of accurate data entry can be achieved by having the
keyboard operator ignore all errors on first entry. The data entry program does not
allow for the correction of any errors, even if the operator notices them right
away. Operators must ignore errors and carry on entering data as fast as possible.
Under this scheme, data is entered twice, preferably by different operators. A
separate program compares the two sets of entries. The chances of both opera
tors making the same error are so small that you can count on all errors being
caught as differences between the two sets of data entry. A subsequent program
allows reentry of incorrect data.

Interactive Data Entry

A program with interactive data entry guides users with displayed instructions
and prompt messages. To demonstrate interactive data input we will begin with a
very simple example. We will make changes to a program you will remember from
earlier in the chapter so that it uses interactive data entry procedures, thereby
making the program easier to use.

Here is the program:
200 C$ = 11 W'i
210 FOR I = 1 TO 800
220 PRINT C$;
2:30 NEXT I
240 PRINT 11 PHEW! 11

250 END
As illustrated, this program will display 800 W characters followed by the

word PHEWI. It works the same in Integer BASIC or Applesoft.
Suppose we want to display any character, instead of just W.
First eliminate the assignment statement in the program. Remember that to

delete a program statement, you type the line number followed immediately by a
RETURN.

210 FOR I = 1 TO 800
220 PRINT C$;
230 NEXT I
240 PRINT 11 PHEW! 11

250 END

Line 200 is no longer in the program.
Type in the statement C$="X" in immediate mode, then run the program.

JC$="X 11

JRUN
PHEW!

Chapter 4: ADVANCED BASIC PROGRAMMING 126

The word PHEWI is printed, but the X's are not. Obviously the value of C$ is
not being transmitted to the program.

RUN clears all numeric variables to 0 and all strings to null before beginning
execution of a program. So C$ was set to null, and a null character was printed in
the program loop (a null is "nothing": it does not print nor does it move the cur
sor).

Is there a way to transmit a different value of C$ each time you run the pro
gram? Instead of using RUN, which initializes variables, use GOTO 21 0 (21 0
being the line number of the first line of the program). This does not change any
variable values.

JC$=uxu

JGOTO 210
xx
xx
X X X X X X X X X X X-X
xx
xx
xx
xx
xx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx~x
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
PHEW'

There are only two steps in running the program, but the procedure is awk
ward. You must type in a line (the assignment statement), and if you enter RUN
instead of GOTO, you must start all over. But the program could fetch the display
character while it is running, using the INPUT statement.

Type in the following line:

J200 INPUT C$

Now list the program and make sure you entered the line correctly.

JLIST

200 INPUT C$
210 FOR I = 1 TO 800
220 PRINT C$;
230 !'IEXT I
240 PRINT 11 PHEW! 11

250 END

126 APPLE II USER'S GUIDE

Run the program. The cursor drops down one line. On Applesoft a question
mark appears next to the cursor, too.) Enter any single character (and press
RETURN). The character you enter is displayed 800 times. Run the program again.
Enter a different character. The display appears with the new character. Note that
if you try to enter more than one character at a time in Integer BASIC, the program
halts with a * * * STR OVFL ERR. This is because C$ has not been dimensioned.

This is a real improvement over the original program. However, it is a little
mystifying to have the cursor just blinking away on the screen while it waits for
you to press a key. Add a prompt line to the beginning of the program, asking for a
key to be pressed. Type in the line:

J190 PRINT "ENTER ONE CHARACTER 11

List the program and check the new line for any errors.
Now the program gives operating instructions. Run the program several ~imes

to display different characters and note how much easier the program is to use.
There is one important modification left to make. If you want the program to

repeat automatically, use a GOTO statement to go back to the beginning of the
program instead of ending it. Then you won't have to type in RUN to reexecute
the program. Add the following line:

1250 GOTO 190

Now it is even easier to use the program. Enter RUN and follow directions.
Of course, you have to use CTRL-C to end the program. This can be eliminated

by programming one particular key to terminate program execution. For example,
the RETURN key could be programmed to terminate execution. Here is how:

190 PRINT 11 ENTER ONE CHARACTER 11

200 INPUT C$
205 IF C$ = IIU THEN END
210 FOR I = 1 TO 800
220 PRINT C$;
230 NEXT I
240 PRINT 11 PHEW!"
250 ooto 190

Line 205 checks to see if C$ has a null value. This will happen if you do not
enter a character in response to the INPUT statement on line 200, but only press
the RETURN key.

As a final task, you might read over the program and add remarks. Include a
comment on how the FOR-NEXT index 800 was devised; you can optionally put
the remark on the same line, using a colon to separate statements:

210 FOR 1=1 TO SOO:REM 800/40=20 LINES

Add a reminder that a null entry ends the program:

203 REM END PROGRAM ON NULL ENTRY

Finally, add a few lines at the beginning of the program to describe it, and give it a
title. The final program is shown in Figure 4-3.

Chapter 4: ADVANCED BASIC PROGRAMMING

10 REM ******* ~LANKET *******
20 REM CONTINUOUS-LINE DISPLAY OF ONE
30 REM CHARACTER ENTERED FROM
40 REM THE KEYBOARD

50 REM **********************
190 PRINT "ENTER ONE CHARACTER"
200 INPUT C$
203 REM END PROGRAM ON NULL ENTRY
205 IF C$ = " " THEN END
210 FOR I = 1 TO 800: REM 800/40 = 20 LINES
220 PRINT C$;
230 NEXT I
240 PRINT "PHEW!"
250 GOTO 190

FIGURE 4-3. Program BLANKET

Prompting Messages

127

Any program that requires data entry should prompt the operator by asking ques
tions. Questions are usually displayed on a single line and demand a simple
response such as "yes" or "no." For example, the following message might be
displayed:

DO YOU WANT TO MAKE ANY CHANGES?

An operator must respond to this message by entering the word YES or the
word NO. Frequently just the letter Y or N suffices. Another common example
may give the operator a number of options. The message:

WHICH ENTRY DO YOU WISH TO CHANGE?

may allow the operator to enter a code which identifies an allowed entry.
Programs that control this type of dialogue should be written as independent

subroutines which do not make any assumptions nor depend on knowledge of
programs which call them. This has three implications:

1. You cannot assume that the space where the prompt message will be
displayed is blank. If it is not blank, then the message will overwrite
whatever was previously there. But existing characters not
overwritten by the prompt message will still be there. This could be
unsightly from the operator's viewpoint. It can be confusing and lead
to entry errors. The following subroutine will erase the number of
spaces determined by the value of variable ER:

5000 REM ERASE SPACES
5010 FOR I= 1 TO ER: PRINT"";: NEXT I: RETURN

128 APPLE II USER'S GUIDE

2. A subroutine must receive information from the calling program. For
example, if a subroutine asks the operator to enter a number, then any
program that uses it must specify the minimum and maximum
acceptable entry value.

3. The subroutine must return the operator's response to the calling
program. This may be a character (e.g., Yor N), a word (e.g., YES or
NO) or a number.

Subroutine logic cannot deduce where on the screen it should display the
prompt message, however. It is therefore fair to demand that the calling program
position the cursor correctly before it calls the subroutine.

Now look at the subroutine needed to ask a question that requires a reply of Y
for yes, or N for no. We will use a PRINT statement to ask the question, followed
by an INPUT statement to receive a one-character response. We will clear parts of
the display screen with the subroutine above. Here is a program with the
subroutines:

100
140
150
160
170
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
5000
5010

REM MOVE CURSOR
VTAB 1
REM CALL SUBROUTINE TO GET RESPONSE
GOSUB :3020
END

REM ++ GET Y/N RESPONSE ++
REM

C:::: POS (0): REM REMEMBER CURSOR COLUMN
R = PEEK <37): REM REMEMBER CURSOR ROW

REM CLEAR SPACE FOR QUERY
ER = 35: REM CLEAR 35 SPACES

OOSUB 5010
HTAB C + t: REM REPOSITION CURSOR
PRINT "DO YOU WANT TO MAKE ANY CHANGES";
INPUT R$
IF R$ = "Y" OR R$ = "N" THEN RETURN
REM IMPROPER RESPONSE
VTAB R + 1: REM REPOSITION CURSOR <VERT>
GOTO 3050: REM TRY AGAIN
REM ++ ERASE SPACES ++
FOR I= 1 TO ER: PRINT" ";: NEXT I: RETURN

Next consider dialogue which allows an operator to enter a number. We will
design a subroutine to accept a response no smaller than the value of variable LO
and no larger than the value of variable HI. The subroutine will return the entered
number in variable NM. Here is the necessary program:

100 REM SET RANGE AND POSITION CURSOR
140 LO = t:HI = 10
150 VTAB 1
160 REM CALL SUBROUTINE TO GET RESPONSE
170 GOSUB 3500
180 END
3500 REM ++ GET NUMERIC RESPONSE ++
3510 RliM ++ LO<=RESPONSE<:::HI++

Chapter 4: ADVANCED BASIC PROGRAMMING 129

3520
:3530
:.::540
3550
3560
3570
35:30
3590
3~·00
3610
3620
3630
5000
5010
5100
5110
51ZO
5130

REM ++ NM IS RESPONSE ++
GOSUB 5110: REM WHERE IS CURSOR NOW?
REM CLEAR SPACE FOR QUERY

ER = 35: REM CLEAR 35 SPACES
GOSUB 5010
HTAB C + 1: REM REPOSITION Cl~SOR
PRINT "WHICH FIELD DO YOU WANT TO CHANGE <1-10)";
INPUT NM
IF NM :> = LO AND NM < = HI' THEN RETURN
REM IMPROPER RESPONSE
VTAB R + 1: REM REPOSITION CURSOR <VERT>
GOTO 3550: REM TRY AGAIN
REM ++ ERASE SPACES ++
FOR I= 1 TO ER: PRINT"";; NEXT I: RETURN
REM ++ REMEMBER CURRENT CURSOR POSITION ++

C = PEEl< <36): REM COLUMN
R = PEEl< <37>: REM ROW

RETURN

Can you change the subroutine so that it accepts two-digit inputs? Try to write
this modified program for yourself. If you cannot do it, then wait until later in the
chapter where you will find the necessary subroutine in the program which con
trols the input of a date.

There is another simple modification you can make to both of the dialogues we
have described. The prompt message printed in both programs could be supplied
by the calling program via a string variable. This would make the subroutines more
general purpose. Can you rewrite the programs to accept a message provided by
the calling program?

Error Detection and Control

If you want to write a really thorough program you will make every effort to antici
pate errors that a user of your program might make. Your program will catch entry
errors and force the user to reenter values that would cause the program to halt
abnormally (termed bombing, bombing out, or blowing up in computer jargon).

It is true that the Apple II will catch some kinds of data entry errors for you. It
will not accept alphabetic entry when inputting a numeric value with a statement
like INPUT A. If you try to enter letters in response to such a statement, the Apple
II issues an error message and asks you to reenter the value.

Built-in error checking capabilities are limited, though. It is very possible to
enter the right kind of value (e.g., numeric or string) which has an unacceptable
value. That is, the value may cause a program error further down the line. Here is a
short program that illustrates the problem:

100 INPUT X
200 PRINT 100 I X
300 END

130 APPLE II USER'S GUIDE

If you enter 0 in response to the INPUT statement, the program will fail when it
tries to divide by 0 in the PRINT statement. It's easy enough to avoid this. The
following lines will check the input to make sure it is not 0, and will request reentry
if it is.

110 IF X <) 0 THEN 200
120 PRINT 11 NOT ALLOWED ••• RE--ENTER"
130 GOTO 100

By extending the principle illustrated in this example, you can see how easy it is
to check an entered value for the correct range. Depending on the circumstances,
it may make sense to do range checking with the Applesoft ON-GOTO or ON
GOSUB statements (computed GOTO or GOSUB in Integer BASIC), rather than a
series of IF-THEN statements. There is an example of more extensive error check
ing in the next section.

The ONERR GOTO
and RESUME Statements

Applesoft has a special statement that allows you to trap errors which it
catches - before it displays an error message and halts program execution. Here
is an example:

50 ONERR GOTO 8000

Once such a statement has been executed, Applesoft will branch to the
specified line number if it detects an error. It will also place a numeric code
describing the error in memory location 222, which you may inspect with the
PEEK statement. Table C-1 in Appendix C lists error conditions detectable by
ONERR GOTO.

The usual procedure for handling errors with ONERR GOTO is to write an error
handling routine which the ONERR GOTO branches to when an error occurs. At
the end of this routine, the RESUME statement causes a branch back to the begin
ning of the statement where the error occurred. Alternately, a GOTO statement
will transfer to any program line. Write the error handling routine so it takes
different actions depending on the nature of the error and the current state of the
program, which can usually be determined by inspecting the values of key varia
bles.

To negate the ONERR GOTO and restore the Apple II to its normal automatic
error handling state, use the statement POKE 216,0.

The following program demonstrates the use of ONERR GOTO. In this pro
gram, any errors that cannot occur as the result of keyboard entries are treated as
fatal errors, with an appropriate advisory message. Entry errors are announced
and reentry requested.

Chapter 4: ADVANCED BASIC PROGRAMMING

ONERR GOTO 8000
PRINT 11 ENTER A STRING VALUE 11

INPUT X$
PRINT 11 ENTER A NUMERIC VALUE 11

INPUT X
PRINT "ENTER AN INTEGER VALUE"
INPUT X'Y.
GOTO 200
REM END OF PROGRAM
PRINT 11 LAST ENTRIES WERE u;X$; .. , ";X;" AND ";X'Y.
POKE 216,0: REM TURN OFF ON ERR
END

REM ++ ERROR HANDLING ROUTINE ++
E = PEEK (222>: REM GET ERROR NO.

131

50
200
210
220
230
240
250
260
500
510
515
520
8000
8010
8020
80:30
8035
8040
8050
8055
8060
8070
8080
8090
8100
8110
81:30
8140

IF E = 255 THEN GOTO 500: REM END PROGRAM ON CTRL-C
IF E = 53 OR E = 176 OR E = 254 THEN 8100
INVERSE
REM PROGRAMMING ERROR DETECTED
PRINT "ARRGH! ERROR NO. 11 ;E;" FOUND."
PRINT "WRITE DOWN THIS NUMBER"
PRINT "AND A DESCRIPTION OF WHAT WAS GOING ON."
PRINT "CALL A PROGRAMMER FOR HEL.P. 11

PRINT "LEAVE THE COMPUTER ON!"
NORMAL : STOP
REM INPUT ERROR DETECTED
PRINT "";: REM CTRL-G CHARACTERS IN QUOTES
PRINT "ERROR ••• TRY AGAIN"
RESUME

Entering a Valid Date

In this section we will develop a program that uses many of the techniques pre
sented so far in this chapter. This program uses some BASIC functions and state
ments available only in Applesoft. The program can be written in Integer BASIC;
you may wish to make the conversion.

Most programs at some point need relatively simple data input: more than a
simple yes or no, but less than a full screen display. Consider a date.

You must take more care with such simple data entry than might at first appear
necessary. In all probability the date will be just one item in a data entry sequence.
By carefully designing data entry for each small item, you can avoid having to
restart or back up in a long data entry sequence whenever the operator messes up
a single entry.

We will assume that the date is to be entered as follows:

MM- DD- YY

,,UkLvear
Separator
Day of the month

L....-------Separator
'----------Month

132 APPLE II USER'S GUIDE

The month, day of the month, and year are each entered as a two-digit num
ber, without any terminating RETURN.

The program supplies the dash that separates the entries. Depending on your
personal preferences, it might be a slash or any other visually pleasing character.
In many parts of the world the day of the month precedes the month.

Program data entry so that it is pleasing to the operator's eye. The operator
should be able to see immediately where data is to be entered, what type of data
is required, and how far the data entry process has proceeded. A good way of
showing where data is to be entered is to reverse the data entry field. For example,
the program that asks for a date to be entered might create the following reverse
field display:

r--------Cursor flashing at entry character
I position

Co-rn-rn
TTT Data must be entered into these

character positions

You can create such a display with the following program:

HOME : VTAB 3: HTAB 20: REM POSITION FOR INPUT
IW = 2: GOSUB 1100: REM 2-CHAR INPUT FIELD

10
20
30
40
50
60
70
80
1090
1100
1110
1120
1130

PRINT "- 11
;

GOSUB 1100: REM 2-CHAR INPUT FIELD
PRINT "-";
GOSUB 1100: REM 2-CHAR INPUT FIELD
VTAB 3: HTAB 20: REM REPOSITION TO START OF INPUT FIELD
END

REM ++ DISPLAY .. rw· REVERSE-BLAN~:::s ++
INVERSE
FOR I= 1 To IW: PRINT .. ";: NEXT I
NORMAL
RETURN

The program above includes statements that position the date entry to begin at
column 21 on row 3. It also clears the screen so that residual garbage on the
screen does not surround the request for a date. After displaying the date entry
field, the cursor moves back to the first character position of the first entry field,
although this is not apparent because of the END statement.

Try using an INPUT statement on line 80 to receive the first part of the date:
the month. This could be done as follows:

80 INPUT M$
90 END

Enter statements on lines 80 and 90, as illustrated above, and execute them.
As you see, the INPUT statement will not do. Apart from the fact that a question
mark displaces the first reverse field character, pressing RETURN at the end of the

Chapter 4: ADVANCED BASIC PROGRAMMING 133

entry erases the rest of the display line. This is an occasion to use the GET state
ment. Add the following program lines:

80 GOSUB 1200:MM$ = C$: REM GET 1ST MONTH DIGIT
90 GOSUB 1200:MM$ = MM$ + 8•= REM GET ~NO MONTH DIGIT
~190 REM ++ACCEPT ONE INPI.IT CHARACTER++
1200 GET C$
1210 PRINT C$;: REM ECHO KEYSTROKE
1220 HF.:TURN

These statements accept a two-digit input. The input is displayed in the first
reverse field of the date. The two-digit input needs no RETURN or other terminating
keystroke. The program automatically terminates the data entry after two charac
ters have been entered.

Three two-digit entries are needed: for the month, the day, and the year. Rather
than repeating satements on lines 80 through 90, we will put these statements
into a subroutine and go to it three times, as follows:

80
·~o

180
190
280
290
1.290
1:300
:1.320

GOSUB 1300:MM$ = CC$: REM GET MONTH
PRINT~~-";: REM SPACE OVER TO NEXT FIELD

GOSI..IB 1 :300: DD$ = CC$: REM GET DAY
PRINT"-";: REM SPACE OVER TO NEXT FIELD
GOSUB 1300:YY$ = CC$: REM GET YEAR
F.ND

REM ++ GET A 2-CHARACTER INPUT ++
GOSUB 1200:CC$ = CC$ + C$: REM GET 2ND CHARACTER
RETURN

The variables MM$, DO$, and YY$ hold the month, day, and year entries,
respectively. Each entry is held as a two-character string.

There are two ways in which we can help the operator recover from errors
while entering a date.

1. The program can automatically test for valid month, day, and year
entries.

2. The operator can be given a means of restarting the data entry.

The program can check that the month lies between 1 and 1 2. The program
will not bother with leap years, but otherwise it will check for the maximum num
ber of days in the specified month. Any year from 00 through 99 will be allowed.
Any invalid entry will cause the entire date entry sequence to restart.

If the operator presses the RETURN key, then the entire date entry sequence
restarts. Our final date entry program now appears· as follows:

10 HOME : VTAB 3: HTAB 20: REM POSITION FOR INPUT
15 RC$ = CHR$ <13): REM ASSIGN RESTART-ENTRY CHARACTER
:1.7 REM
i 0::• J . ._.

19
:20
:30

REM DISPLAY THREE 2-CHAR. INPUT FIELDS
REM

IW = 2: GOSUB 1100
PRINT u_u;

134 APPLE II USER'S GUIDE

40 GOSUB ll.OO
50 PRINT .. _ .. ;
60 GOSUB 1100
65 PRINT nu;: REM CTRL-G<BELL>
67 REM
68 REM GET THREE FIELD ENTRY
6'?1 REM
70 VTAB 3: HTAB 20: REM REPOSITION TO START OF INPUT FIELD
79 REM
80 REM GET MONTH
81 REM
90 GOSUB 1300: IF C$; RC$ THEN GOTO 10: REM CHECK FOR

ENTRY RESTART
100 MM = VAL (CC$): REM MONTH NUMBER
110 IF MM < 1 OR MM > 12 THEN 10: REM CHECK FOR UNREAL

MONTH
120 DT$ = CC$: PRINT u_u;: REM ADVANCE TO NEXT FIE:LD
125 REM DETERMTNE MAX. NO. OF DAYS THIS MONTH
130 DM = :31 : REM ASSUME 31 DAYS
1 ~:5 REM UNLESS FEBRUARY
140 IF MM = 2 THEN DM = 29
150 REM OR APR, JUNE, SEPT, NOV
160 IF MM = 4 OR MM = 6 OR MM = 9 OR MM 11 THEN DM = 30
1~.9 REM
170 REM GET DAY
171 REM
180 GOSUB 1300: IF C$ = RC$ THEN GOTO 10: REM CHECk FOR

ENTRY RESTART
190 DD = VAL <CC$): IF DD < 1 OR DD > DM THEN 10: REM
RESTART IF ENTRY IS INVALID

200 DTt = DT$ + .,_., + C(:$: PRINT,._,.;: REM ADVANCE TO
NEXT FIELD

26'?1 REM
270 REM GET YEAR
271 REM
280 GOSUB 1300: IF C$ = RC$ THEN GOTO 10: REM

ENTRY RESTART
CHECK FOR

290 YY = VAL CCC$): IF YY < 0 OR YY > 99 THEN 10: REM
RESTART IF ENTRY IS INVALID

~:00 DT$ = DT$ + .,_.. + CC$
3:39 REM
390 REM DISPLAY ENTRY
:391 REM
400 VTAB <10): HTAB <18): PRINT "DATE ENTERED:"
410 VTAB (11): HTAB <20): PRINT DT$
420 END
1089 REM
1090 REM ++
1091 REM
l100 INVERSE
1110 FOR I =
11?.0 NORMAL
1130 RETURN
1189 REM
1190 REM ++

DISPLAY 'IW' REVERSE-BLANKS ++

1 TO IW: PRINT II II • • , . NEXT I

ACCEPT ONE CHARA~TER INPUT ++

Chapter 4: ADVANCED BASIC PROGRAMMING

1191 REM
1200 GET C$: IF C$ = "" THEN 1200
1210 IF C$ = RC$ THEN RETURN : REM CHECK FOR RESTART
:1.220 IF C$ < "0 11 OR C$ > "9 11 THEN GOTO 1200
1230 PRINT C$;: REM ECHO KEYSTROKE
1.240 RETURN
12:39 REM
1290 REM ++ GET A 2-CHAR. INPUT ++
1291 REM
1300 REM GET 1ST CHARACTER; CHECK FOR RESTART
1310 GOSUB 1200: IF C$ = RC$ T~~N RETURN
1315 CC$ = C$
1320 REM GET 2ND CHARACTER; CHECK FOR RESTART
13~'30 GOSUB 1200: IF C!t; = RC$ THF.N HETIJRN
1335 CC$ = CC$ + C$
1 :340 RETURN

136

Notice that the date is built up in the eight-character string DT$, as month, day,
and year are entered.

These three checks are made on data as it is entered:

1 . Is the character a carriage return?

2. If the character is not a carriage return, is it a valid digit?

3. Is the two-character combination a valid month for the first entry, a
valid day for the second entry, or a valid year for the third entry?

We selected the carriage return as a restart character. By replacing CHR$(13)
on line 15 you can select any other restart character. When the operator presses
the selected restart key the entire date entry sequence restarts. We must check
for the restart character in the one-character input subroutine (at line 1200) and
again in the two-character input subroutine (at line 1 300) since we want to be
able to restart after the first or second digit has been entered. The main program
also checks for a restart character in order to branch back to line 1 0 and restart
the entire date entry sequence. You could branch directly out of the one-character
input subroutine to line 1 0, thereby eliminating the other tests. But it is bad prac
tice to exit a subroutine with a GOTO statement instead of a RETURN statement.
Every subroutine should be treated as a logical module, with specified entry
point(s) and standard subroutine returns. Branching out of a subroutine any other
way inevitably leads to tangled programs and ultimately to program errors.
(Remember that if you do branch out of the subroutine without using a RETURN
statement, you must use the POP statement to clear the return location.)

Program logic that tests for nondigit characters resides entirely in the one
character input subroutine. We chose to ignore nondigit characters. The state
ment on line 1220 tests for nondigit characters.

Logic to check for valid month, day, and year must exist within the calling pro
gram (not the subroutine) since each of these two-character values has different
allowed limits.

The statement on line 11 0 tests for a valid month.
Statements on lines 1 30, 140, and 1 60 compute the maximum allowed day

136 APPLE II USER'S GUIDE

for the entered month. The statement on line 190 checks for a valid day.
The check for a valid year is very simple; it is on line 290.
It takes extra time to write a good data entry program that displays information

in a pleasing manner and checks for valid data input, allowing the operator to
restart at any time. Is the time worth spending? By all means yes. You will write a
program once; an operator may have to run the program hundreds or thousands
of times. Therefore you spend extra programming time once, in order to save
operators hundreds or thousands of delays.

FORMS DATA ENTRY

The following section describes some programming techniques that are best
implemented in Applesoft. Many of the special effects we use in the example pro
gram in this section are difficult or impossible to obtain in Integer BASIC. If you are
programming exclusively in Integer BASIC, you may still wish to read this section
since some of the techniques presented in it are adaptable to Integer BASIC.

The best way of handling multiple-item data entry is to display a form, and then
fill in the form as data is entered. Consider a name and address. First display a
form as follows:

ENTER NAME AND ADDRESS BELOW
~~NAME:
~ STREET:
~3 CITY:
!! STATE:
,ij ZIP:

Notice that each entry has been assigned a number. The field numbers appear
in reverse video on this form.

The operator enters data sequentially, starting with item 1 and ending with
item 5. The operator can then change any specific data entry.

The following program will clear the screen and display the initial form:

109 REM
110 REM DISPLAY THE DATA ENTRY FORM
111 REM
120 CALL - 936: VTAB 2: REM CLEAR SCREEN AND POSITION

CURSOR
125 PRINT "ENTER NAME AND ADDRESS BF.LOW"
130 REM FIRST DISPLAY FIELD NUMBERS
140 INVERSE
150 FOR I = 1 TO 4: HTAB 2: PRINT I: NEXT I
160 VTAB 6: HTAB 29: PRINT 5
170 NORMAL
180 REM NOW DISPLAY FIELD NAMES
190 VTAB :3: HTAB 6: PRINT "NAME: II

200 HTAB 4: PRINT "STREET: ..

Chapter 4: ADVANCED BASIC PROGRAMMING

210 HTAB 6: PRINT "CITY:u
220 HTAB 5: PRINT 11 STATE:";
230 HTAB 31: PRINT "ZIP: 11

137

As each data item is entered, we will create a reverse field to identify where
data will appear as it is entered. CTRL-X is used to restart data entry in the current
field. The RETURN key ends data entry in the current field. The following instruction
sequence provides us with necessary program logic:

100 RC$ = CHR$ <24>= REM CTRL-X IS THE RESTART CHAR.
299 REM
300 REM ENTER ALL 5 FIELDS
:301 REM
310 FOR F = 1 TO 5: OOSUB 1900: NEXT F
320 END
990 REM
991 REM
992 REM
99:3 REM
994 REM
995 REM
99t. REM
997 REM

+++++++++++SUBROUTINE 1000+++++++++++
ENTER STRING DATA INTO A FIELD WITH LN

THE CURSOR MUST BE IN THE FIELD·' S FIRST
THE RETURN KEY WILL END DATA ENTRY
THE ~LEFT ARROW/ KEY RESTARTS ENTRY
NO VALIDITY CHECKS ON ENTERED DATA
THE ENTERED STRING IS RETURNED IN CC$

CHARACTERS
POSITION

1000 HT = POS <O> + 1: REM REMEMBER START-OF-FIELD
POSITION

1010 REM DISPLAY INVERSE VIDEO ENTRY MASK
1020 INVERSE
1030 FOR I= 1 TO LN: PRINT 11 n;: NEXT I
1040 NORMAL : HTAB <HT>: REM REPOSITION TO START OF FIELD
1050 REM ENTER DATA
1060 CC$ = 1111

: REM INITIALIZE OUTPUT TO NULL
1070 GET C$
1080 IF C$ RC$ THEN HTAB CHT): GOTO 1020: REM RESTART

ENTRY?
1090 IF C$ = CHR$ (13) THEN GOTO 1140: REM END OF ENTRY?
1100 REM WHEN ENTRY IS FULL, WAIT FOR RETURN OR RESTART
1110 IF LEN CCC$) = LN THEN GOTO 1070
1120 PRINT C$;: REM ECHO KEYSTROKE
1130 CC$ = CC$ + C$: GOTO 1070
1135 REM ENTRY FINISHED, FILL THE REST OF CC$ WITH BLANKS
1140 J = LEN CCC$)
1150 FOR I = ._1 TO LN: CC$ = CC$ + II II: NEXT I
1160 REM REDISPLAY ENTRY
1170 HTAB <HT>: PRINT CC$;: RETURN
1889 REM +++++++++++SUBROUTINE 1900+++++++++++
1890 REM BRANCH TO ENTRY ROUTINE FOR FIELD NUMBER F
1891 REM
1900 ON F GOTO 2000,2100,2200,2300,2400: RETURN
1989 REM
1990 REM ENTER 20-CHAR. NAME
1991 REM
2000 VTAB 3: HTAB 11
2010 LN = 20: OOSUB 1000:NA$
2089 REM

CC$: RETURN

138 APPLE II USER'S GUIDE

2090 REM ENTER 20-CHAR STREET
2091 REM
2100 VTAB 4: HTAB 11
2110 LN = 21): GO SUB 1000:CI$ CC$: RETURN
2189 REM
2190 REM ENTER 20-CHAR. CITY
:2191 REM
2200 VTAB 5: HTAB J 1
2210 LN = 20: GOSUB 1 (U)I): RETURN
2289 REM
2290 REM ENTER 18-CHAR. STATE
2291 REM
2~:00 VTAB 6: HTAB 1 1
2310 LN = 1:~: GOSUB lOOO:ST$ = CC$: RETURN
:2389 REM
2390 RE'M ENTER S-CHAR. ZIP CODE
2:391 REM

Key in the entire program from statement 1 00 to statement 2400 and run it.
Remember if you still have statements 1 09 through 230 keyed into your com
puter from the last example, you do not need to reenter them.

If your program does not run correctly, check over your listing carefully. In par
ticular, look for semicolons in PRINT statements.

When you run the program, each of the five fields will be highlighted in turn. As
you enter characters they will echo in the field. When you hit the RETURN key the
entire reverse field is replaced by the data you entered. Try using CTRL-X to restart
data entry.

Carefully go through the logic of the string entry subroutine, beginning at line
1000 and ending at line 1170. Before going any further you should clearly under
stand this program logic.

Note how easy it is to see what you are entering, and how simple it is to restart
any entry to correct errors.

After the complete name and address has been entered, the program should
ask the operator if he or she wishes to make any changes; then the program
should ask which field needs to be changed. A subroutine to ask a yes-or-no
question appeared earlier in this chapter. We will use a modified version of it,
where the calling program provides the question to be asked of the operator. Here
is the complete program with added statements:

9 REM ***
10 REM THIS PROGRAM DISPLAYS A FORM FOR ENTERING A NAME AND
11 REM ADDRESS THEN IT REQUESTS ENTRY OF THAT DATA
12 REM **
13 REM
100 RC$ CHR$ <24): REM CTRL-X IS THE RESTART CHAR.
109 REM
110 REM DISPLAY THE DATA ENTRY FORM
111 REM
120 CALL - 936: VTAB 2: RFM CLEAR SCREEN AND POSITION

CURSOR

Chapter 4: ADVANCED BASIC PROGRAMMING

125 PRINT "ENTER NAME AND ADDRESS BELOW"
130 REM FIRST DISPLAY FIELD NUMBERS
140 INVERSE
150 FOR I = l TO 4: HTAB 2: PRINT I: NEXT
160 VTAB 6: HTAB 29: PRINT 5
1.70 NORMAL
180 REM NOW DISPLAY FIELD NAMES
t·~o VTAB :3: HTAB 6: PRINT "NAME: ..
200 HTAB 4: PRINT "STREET:"
:210 HTAB 6: PRINT "CITY:"
?.20 HTAB 5: PRINT "STATE:";
230 HTAB 31: PRINT "ZIP:"
299 REM
300 REM ENTER ALL 5 FIELDS
301 REM
310 FOR F = 1 TO 5: GOSUB 1900: NEXT F
319 REM
320 REM ALLOW ~HANGES
321 REM
330 VTAB 23: HTAB 1: REM GET ENTRY ON BOTTOM LINE
:340 QU$ = "DO YOU WANT TO MAKE ANY CHANGES? "
350 GOSUB 12:00: REM GET YIN RESPONSE
360 IF YN$ = 11 N11 THEN GOTO 500
370 VTAB 23: HTAB 1: REM GET ENTRY ON BOTTOM LINE
:380 •:::!U$ = "ENTER NUMBER OF FIELD TO CHANGE "
390 LO = t:HI = 5
400 GOSUB 1400: REM GET NUMERIC RESPONSE
410 F = NM: GOSUB 1900: REM CHANGE FIELD F

:?:30
END OF PROGRAM
23: HTAB 1: GOSUB 1200: REM CLEAR BOTTOM LINE

+++++++++++SUBROUTINE 1000++~++++++++

139

420 GOTO
490 REM
500 VTAB
510 END
':i/90 REM
991 REM
9':i/2 REM
993 REM
994 REM
995 REM
996 REM
997 REM

ENTER STRING DATA INTO A FIELD WITH LN
THE CURSOR MUST BE IN THE FIELD,..S FIRST
THE RETURN KEY WILL END DATA ENTRY

CHARACTERS
POSITION

THE ... LEFT ARROW... KEY RESTARTS ENTRY
NO VALIDITY CHECKS ON ENTERED DATA
THE ENTERED STRING IS RETURNED IN CC$

1000 HT = POS (0) + 1: REM REMEMBER START-OF-FIELD POSITION
1010 REM DISPLAY INVERSE VIDEO ENTRY MASK
1020 INVERSE
J. o:~:o For< r = 1 To LN: PRINT " " ; : NE x r 1
1040 NORMAL : HTAB <HT>: REM REPOSITION TO START OF ¢IELD
1050 REM ENTER DATA
:1.060 C:C:$ = "": REM INITIALIZE OUTPUT TO NULL
1070 GET C$
1080 IF C$ = RC$ THEN HTAB <HT>: GOTO 1020: REM RESTART

ENTRY?
1090 IF(:$= CHR$ <13) THEN GOTO 1140: REM END OF ENTRY?
1100 REM WHEN ENTRY IS FULL, WAIT FOR RETURN OR RESTART
1110 IF LEN <CC$) = LN THEN GOTO 1070
1120 PRINT C$;: REM ECHO KEYSTROKE
1130 CC$ = (:(:$ + C$: GOTO 1070
1135 REM ENTRY FINISHED, FILL THE REST OF CC$ WITH BLANKS

140

1140 J = LEN <CC$)
1150 FOR I = ,J TO L N: CC$ = CC$ + II II : NEXT I
1160 REM REDISPLAY ENTRY
1170 HTAB <HT>: PRINT CC$;: RETURN

APPLE II USER'S GUIDE

1189 REM +++++++++++SUBROUTINE 1200+++++++++++
1190 REM CLEAR ROW WHICH THE CURSOR IS ON
t 191 REM
l200 HTAB 1: REM START AT BEGINNING OF ROW
1210 FOR I = 1 TO :39: PRINT II II;: NEXT I
1220 HTAB 1: REM LEAVE CURSOR AT BEGINNING OF ROW
12:30 RETURN
1289 REM +++++++++++SUBROUTINE l300+++++++++++
1290 REM ASK A QUESTION CQU$) AND RETURN A Y OR N RESPONSE

IN YN$
1291 REM
1300 OOSUB 1200: REM CLEAR ENTRY LINE
1310 PRINT QU$;: REM DISP~AY PROMPT
1:?.:20 GET YN$: IF YN$ < > "!'1 11 AND YN$ < > "Y" THEN GOTO

1:?.:20
1:330
1340
1:?.:89
1:390
1391
1:392
139~:

1400
1410
1420
1425
1430
1440"
1450
1.889
1890
1891
l900
1989
1990
1991
2000
2010
2089
2090
2091
2100
2110
:2189
21.90
2191
2200
221.0
2289
:.?290
2291
2::::oo

PRINT YN$;: REM ECHO RESPONSE
RETURN
REM +++++++++++SUBROUTINE l400+++++++++++
REM ASK FOR NU~ERIC ENTRY <PROMPT IS QU$)
REM RETURN RESPONSE IN NM

; ,t

REM NM MUST BE <=HI AND >=LO
REM
GOSUB 1200: REM CLEAR ENTRY LINE
PRINT QU$;: REM DISPLAY PROMPT
GET C$:NM = VAL (C$)
REM CHECK THAT ENTRY IS WITHIN RANGE
IF NM < LO OR NM > HI THEN GOTO 1420
PRINT C$;: REM ECHO RESPONSE
RETURN
REM +++++++++++SUBROUTINE 1900+++++++++++
REM BRANCH TO ENTRY ROUTINE FOR FIELD NUMBER F
REM
ON F GOTO 2000,2100,2200,2300,2400: RETURN
REM
REM ENTER 20-CHAR. NAME
REM
VTAB 3: HTAB 11

LN = 20: GOSUB 1000:NA$ = CC$: RETURN
REM
REM ENTER 20-CHAR STREET
REM
VTAB 4: HTAB 11

LN = 20: GOSIJB lOOO:CI$ = CC$: RETURN
REM
REM ENTER 20-CHAR. CITY
REM
VTAB 5: HTAB 11

LN = :20: GO SUB 1 000: RETURN
REM
REM ENTER 17-CHAR. STATE
REM
VTAB 6: HTAB 11

Chapter 4: ADVANCED BASIC PROGRAMMING 141

2310 LN = 17: GOSUB tOOO:ST$ = CC$: REnJRN
2~:89 REM
2390 R~M ENTER 5-CHAR. liP CODE
2:391 REM
2400 VTAB 6: HTAB 35
2410 LN = 5: GOSUB tOOO:ZI$ = CC$: RETURN

You should study the name and address program carefully-and understand the
data entry aids which have been included. They are:

1 . By labeling each field t:~nd juxtapqsing a reverse video entry mask at
the appropriate time, you clearly hidicate to the operator what data is
expected, and how many entry spaces are available.

2. When an operator enters the number of a field to change, the reverse
field mask again quickly tells the operator whether the correct field
number was specified.

3. An operator does not have to fill ih all the characters of a field; when
the operator presses the RETURN key the balance of the field is filled
out with blank characters.

4. At any time the operator can restart entry in a field with CTRL-X .
.. ' I

5. When the program asks questions, only meahingful character
responses are recognized: Y or N for "yes" and "no," or a number
between 1 and 5 to select a field. It is bad practice to allow any entry
other than a meaningful one. For example, to recognize Y for "yes"
and any other character for "no" could be disastrous, since
accidentally tapping a key could take the operator out of the current
data entry prematurely. Conversely, recognizing N for "no" and any
other character for "yes" would cause the operator to unnecessarily
reenter data into some field, just because the operator accidentally
touched the wrong key.

These are data entry features which we have not included but could add: .
1. Check the ZIP code for any nondigit entry. (Note that similar codes in

some countries do allow alphanumeric entries.)

2. Many cautious programmers will ask the question ARE YOU SURE?
when an operator an~wers NO in resP.onse to the question DO YOU
WANT TO MAKE ANY CHANGES? This gives the operator a second
chance in the event that she or he accidentally touched the wrong key.

3. Provide an additional key which aborts a current data entry and
restores the prior value. For example, if the operator chooses the
wrong field to change, the example program forces the operator to
reenter the field. The program could easily recognize a key which
aborts the current data entry and retains the previous entry.

4. Enable the -key for use as a backspace key. Each time the -key is
pressed, the cursor backs up one space and the last-entered character
is replaced by an entry mask character (reverse video) on the display

142 APPLE II USER'S GUIDE

screen and by a blank character in the subroutine output string (CC$).
Of course there can be no backspace when the cursor is at the left
edge of the entry field.

Try modifying the name and address entry program yourself to include the
additional safety features described above.

FORMATTING OUTPUT

When you turn on an Apple II computer, output automatically goes to the display
screen. There are statements which will send the output to a printer or any other
device capable of receiving output.

There are a number of differences in programming output to a screen display
as compared to a printer. For example, the printer may be wider than the display,
in which case output which will fit on a printed line would run over the display line.
On the other hand, HT AB and VT AB (TAB in Integer BASIC) can be used to move
the cursor around the screen display, but they cannot be used to move a print
head around on a piece of paper.

There are also many similarities in the programming techniques used to create
printer and display screen output. Most of the discussion that follows applies to
both. Any that applies only to display screens is noted. If you are planning to write
programs that output to a printer you should also read the discussion of printer
programming given later in this chapter.

Programming output is much simpler than programming data entry, since there
is no operator interaction to worry about. You must make sure that the informa
tion is easy to use, and that is all. Here are a few rules to follow:

1. Avoid crowding too much information into a very small space.

2. If numbers or character strings are listed in columns, align the data so
that the eye can quickly run down the column.

3. Use reverse fields to highlight key information, top headings, and side
headings (display screen only).

Below are some hints that will help you avoid unnecessary errors when pro
gramming output.

1. Remember to follow individual items in a PRINT statement with a
semicolon unless you specifically want the spacing provided by
commas. This is the most common source of errors in output
programming.

2. Before doing anything else, design your display screen or report. Use a
piece of graph paper or a form made specifically for report or display
design. Appendix L has a display screen that will allow you to compute
rows and columns accurately. The alternative to advance planning is
trial and error, which in the end will take a lot more time than drawing
the display or report first.

Chapter 4: ADVANCED BASIC PROGRAMMING 143

3. Watch for array subscripts which do not divide evenly into columns.
For example, suppose you have 25 items in array N$(I) which you are
printing in three columns. You might be tempted to do something like
this:

1 00 FOR I = 1 TO 25 STEP 3
200 REM PROCESS COLUMN 1

300 REM PROCESS COLUMN 2

400 REM PROCESS COLUMN 3

500 NEXT I

But on the final pass of the FOR-NEXT loop, indexes 26 and 27 will be
computed, although they do not exist. You can easily check for the
end of an a~ray in a FOR-NEXT loop as follows:

100 FOR I= LO TO HI STEP ST

350 I= I+ 1
360 IF I> HI THEN 510

500 NEXT
51 0 REM CONTINUE WITH PROGRAM

The Display Screen as a Data Window

When dealing with large quantities of data, a very common technique is to use the
display screen as a window on the data. At any time the display screen shows only
part of the data available. One way of doing this is to group the data into pages,
each of which will fit on the display screen. Programs that use this technique must
have separate routines to display the field headings and data values for each page.
They must alsp provide some means by which the program user can switch from
one page to another.

Very often arrays are used to hold large amounts of data. In this case, you can

144 APPLE II USER'S GUIDE

use the display screen like the viewfinder of a camera. Imagine that the array data
is written on a large chalkboard and you are looking at the chalkboard through the
viewfinder of a camera. The chalkboard is large enough that you cannot get it all
in the viewfinder at one time, but you can view any part of the chalkboard by mov
ing the viewfinder up, down, right, or left. The display screen can imitate this.

We will illustrate the use of the display screen as a data window by creating an
example in Applesoft of the viewfinder technique just described. To begin, we will
create a two-dimension integer array. As the value of each array element, we will
assign a four-digit number which identifies the array indexes, as follows:

For example:

X%(i ,j)=OiOj

X%(3,2) =0302
X%(19,8)=1908
X%(11,12)=1112

We can initialize this integer array very simply, as follows:

10 DIM X%<14,50>
20 FOR I = 1 TO 14
30 FOR J = 1 TO 50
40 XX<I,J) = I * 100 + J
50 NEXT .J I
60 NEXT I

Now we will display a portion of this array. We will use the top two rows of the
display for top heading, and the first nine spaces of each line for side headings, as
follows:

co L U MN c 0 L U MN co L U MN

X X X X X X

R 0 w y y

R OIW yy

ROW y y

R OIW yy

ROW y y

RO w yy

RO w yy

RO w yy

RO w y y

RO w YY

Chapter 4: ADVANCED BASIC PROGRAMMING 146

The actual column numbers will appear where you see XX above. The actual
row numbers will appear where you see YY. Here are the necessary program
statements to create row and column headings in reverse video:

1.000
1020
1030
1040
1050
1060
1065
1070
1.080
1o·~o

1100
1110
1115
1120
1130
1140
1150

INVERSE
FOR I = 1 TO :3
HTAB 4 + I * 10: PRINT 11 COLUMN";
NEXT I
PRINT
FOR I = 0 TO 2
REM 1 EXTRA SPACE AHEAD OF 1-DIGIT NOS.

SX = 0: IF CX + I < 10 THEN SX = 1
HTAB 18 + I * 10: PRINT SPC< SX>;CX + I;
NEXT t
PRINT
FOR I = RX TO RX + 9
REM 1 EXTRA SPACE AHEAD OF 1-DIGIT NOS.

SX = O: IF I < 10 THEN SX = 1
HTAB 4: PRINT 11 ROW";: HTAB 8: PRINT SPC< SX);I
NEXT I
NORMAL : RETURN

We deliberately created a window that is smaller than the entire screen so
that we can better illustrate the concept of a window on data. There is nothing to
stop you creating a window that occupies your entire screen; however there will
be occasions when you want a small window so that other data can appear on the
screen concurrently.

We will now add instructions that ask the operator to enter two numbers repre
senting the smallest column and row of the array. The array element with this col
umn and row number will appear in the top lefthand display position. The display
window will be filled with array elements from adjacent columns and rows, up to
the end of the window. Here is the complete program:

5 REM WINDOW AN A TABLE DISPLAY PROGRAM
6 REM **·
10 HOME : F'RINT "PLEASE :.JAIT ... INITIALIZATION IN PROCESS";
20 DIM XX<14,50)
30 FOR I = 1 TO 14
40 FOR ~ = 1 TO 50
50 XX<I,J) = I * 100 + J
60 NEXT ,J
70 NEXT I
75 HOME
80 HTAB 1: VTAB :;-!o: INPUT 11 ENTER coLUMN < 1 To 12 >: ";ex
90 IF CX < 1 OR CX) 12 THEN GOTO 80
1.00 VTAB 21: INPUT "ENTER ROW <1 TO 4t>:";RX
110 IF RX < 1 OR RX > 41 THEN OOTO tOO
120 VTAB 1: HTAB 1: GOSUB 1000: REM DISPLAY HEADINGS
130 REM FILL IN WINDOW VALUES
135 VTAB 3
140 FOR I = RX TO RX + 9
150 HTAB 10
160 FOR J = CX TO CX + 2
165 REM DISPLAY RIGHT~JUSTtFIED VALUES IN WINDOW

146

170
1:30
190
200
210
220
230
240
990
991
992
1000
1020
1030
1040
1050
1060
1065
1070
1080
1090
1100
1110
1115
1120
1130
1l40
1150

APPLE II USER'S GUIDE

X$= STR$ <XX<J,I)): PRINT SPC< 10- LEN (X$));X$;
NEXT ._t
PRINT : REM NEXT DISPLAY LINE
NEXT I
VTAB 22: PRINT "CONTINUE? ENTER Y OR N ";
GET C$: IF C$ < :> uyu AND C$ <: > "N" THEN 220
IF C$ = uyu THEN (;(•TO 80
END
REM
REM ++++++++SUBROUTINE 1000+++++++++++++
REM DISPLAY ROW AND COLUMN HEADINGS

INVERSE
FOR I = 1 TO :3
HTAB 4 + I * 10: PRINT "COLUMN";
NEXT I
PRINT
FOR I = 0 TO 2
REM 1 EXTRA SPACE AHEAD OF 1-DIGIT NOS.

SX = 0: IF CX + I < 10 THEN S% = 1
HTAB 18 + I * lO: PRINT SPC(SX>;CX + I;
NEXT I
PRINT
FOR I = RX TO RX + 9
REM 1 EXTRA SPACE AHEAD OF 1-DIGIT NOS.

St. = o: IF I < 10 THEN SX = 1
HTAB 4: PRINT "Row•;: HTAB :3: PRINT SPC< SX>; I
NEXT I
NORMAL : RETURN

Enter this program into the computer and run it. If you enter the program cor
rectly, the first thing you will notice is that the computer stops and appears to do
nothing for a while; it is executing the nested FOR-NEXT statements occurring on
lines 30 through 70.1t takes five or ten seconds to fill array X% with numbers. The
program displays an advisory message about the initialization. Without such a
message, the program user may well assume that the computer is not working. It
is a good idea to display a prominent message whenever such periods of apparent
inactivity occur.

Note that column numbers from 1 through 1 2 are allowed. There are three col
umns, therefore any column number up to 12 will stay within the array dimension
of 14 columns. Row numbers from 1 to 41 are allowed, since ten column num
bers starting with 41 would run through 50, which is the other array dimension.

The integer value from array X% is converted into a string on line 170 before
being printed. We made this conversion to simplify display formatting. It is then
easy to compute the number of spaces between columns, as shown by the PRINT
statement on line 1 70. It is not so easy to align numeric values correctly when dis
playing them directly. To see this for yourself, change line 170 as follows:

170 PRINT SPC <7>; X% <J, I>;

Numbers will align providing you do not display any four-digit numbers - at
which time the display will be too wide for a 40-character screen.

Our program takes great care to terminate the display on the 39th column of

Chapter 4: ADVANCED BASIC PROGRAMMING 147

the display, rather than the 40th and last column. If you run displays out to the
40th column, you will run afoul of the wrap-around logic whereby lines that are
more than 40 characters long automatically continue on the next line. You are
best off not tangling with the display formatting nightmare that can result from
the interaction between carriage returns generated by printing in column 40 and
your own formatting carriage returns.

As an exercise, it is worth modifying the complete table display program so
that it does go out to the 40th column. To do this you must change the horizontal
tab on line 150 from 10 to 11, on line 1030 from 4+1 * 10 to 5+1 •1 0, on line 1080
from 18+1•1 0 to 19+1•1 0, and finally on line 1130 from 4 and 8 to 5 and 9. Now
try running the program; the columns of numbers line up, but you have too many
carriage returns and the column numbers in the top headings are covered by the
first row of array values. See if you can eliminate the extra carriage returns and
generate the correct display. This is not an easy programming task.

Notice that the statements which ask for input on lines 80, 1 00, and 220
are all followed by program steps that don't allow invalid inputs. Even in this sim
ple demonstration program we take the time to program safe input.

A useful refinement to a program that displays a window on an array is to pro
vide the operator with means of moving the window up or down one row, or right
or left one column. This is easily done. We will use the I, J, K, and M keys for
directional control in much the same manner as they are used in edit mode (de
scribed in Chapter 3). The I key moves up one row, M down one row, J left one
column, and K right one column as shown below.

~-- __ :_)

To accomplish this task we must replace lines 21 0 through 240 with the
following statements:

210 VTAB 22: PRINT "CONTINUE?"
215 PRINT "ENTER DIRECTION (I, ,J, K, M>, Y, OR N ";
220 GET C$
225 REM DOWN ONE ROW?
230 IF RF. :> 1 THEN IF C$ = "M" THEN RY. = R'r. - 1: GOTO 120
235 REM UP ONE ROW?
240 IF RY. < 41 THEN IF C$ = "I" THEN RY. = RY. + 1: GOTO 120
245 REM LEFT ONE COLUMN?
250 IF CY. :> 1 THEN IF C$ = ".J 11 THEN CY. = CY. - 1: GOTO 120
255 REM RIGHT ONE COLUMN?

148 APPLE II USER'S GUIDE

260 IF C:i. < 12 THEN IF C$ = "K" THEN Ci. = Ci. + :J.: GOTO 120
270 IF C$ = "Y" THEN GOTO 80: REM ENTER NEW ROW AND COLUMN
2:30 IF C$ = 11 N" THEN END
285 REM SOUND BELL AND REJECT ANY OTHER ENTRY
290 PRINT CHR$ <7>;: GOTO 220

Notice how straightforward the logic is, even though we are still checking for
operator errors. Any entry other than one of the six allowed characters is rejected,
and a directional control character is rejected if it would move the window past
the edge of the array dimensions.

PROGRAMMING PRINTERS

The Apple II treats the printer as a substitute for the screen display. In order to
create printer output, therefore, you must include program statements that
deflect output from the display to the printer. Output must be deflected back to
the display when you have finished printing. This is done using the PR:tt= state
ment.

Printers connect to computers via a serial or parallel interface, depending on
the printer.

Normally, serial interface cards are inserted in slot 1 of an Apple II computer,
while parallel interface cards are inserted in slot 2. But this is a convention rather
than a necessity. In fact, serial and parallel interface cards can be inserted in any
slot (other than slot 0).

Outputting Text
to a Printer

You may recall that PR:tt:: is considered a DOS statement whenever DOS is pres
ent. This means it must be printed with a prefix character of CTRL-D (ASCII code
4). The program below will print two lines of text on a printer connected to an
interface card in slot 1 of an Apple II computer witt) DOS present:

10 REM OUTPUT TWO LINES OF TEXT TO A PRINTER
20 REM CREATE A CTRL·-D CHARACTER
~=o D$=""
40 REM SELECT THE SERIAL I/0 PORT
50 PRINT D$;"PR#1"
60 PRINT 11 TO A SCREEN OR THE PRINTER AN APPLE WILL WRITE"
70 PRINT "AND IN EACH CASE THE DATA GOES OUT BYTE BY BYTE"
80 REM DESELECT THE PRINTER
·~o PRINT D$; aPR#0 11

100 END

The statement on line 30 creates the control character which converts the PR:fi:
command into a BASIC statement. PR:fi: statements appear on lines 50 and 90.

Chapter 4: ADVANCED BASIC PROGRAMMING 149

The statement on line 50 deflects output from the screen to the printer, whereas
the statement on line 90 deflects output back to the screen. The PRINT state
ments on lines 60 and 70 output two lines of text to the printer. Here is the output
created when the program is run:

TO THE SCREEN OR A PRINTER THE APPLE WILL WRITE
AND IN EACH CASE THE DATA GOES OUT BYTE BY BYTE

Here is the same program for an Apple II with DOS absent:

10 REM OUTPUT TWO LINES OF TEXT TO A PRINTER
40 REM SELECT THE SERIAL I/0 PORT
50 PRINT 11 PR#1"
60 PRINT "TO A SCREEN OR THE PRINTER AN APPLE WILL WRITE 11

70 PRINT "AND IN EACH CASE THE DATA GOES OUT BYTE BY BYTE 11

80 REM DESELECT THE PRINTER
90 PRINT "PR#O"

100 END

Programmable Printers

Many printers allow output to be formatted under program control. By including
appropriate control characters in the text data stream going out to the printer, you
can adjust line lengths, character set, page length, and a variety of other printed
page characteristics.

A variety of popular printers are commonly used with Apple II computers. From
a programming viewpoint, however, the Apple II treats all printers identically. For
example, suppose a Texas Instruments model 81 0 printer is connected to an
Apple computer via a serial interface in slot 1. The Texas Instruments manual says
we can set the page size to six lines per page with this character sequence:

Esc-2 CTRL-1 RETURN

~, T I Terminating carriage return
._ ________ Page size: six lines of text plus

three top-of-form lines

These characters tell the Texas
Instruments printer a page size
definition follows

In addition, we can force the printer to advance to the top of the next page (this is
called a form feed) with this character sequence:

CTRL-R

T
RETURN

t
'------------Terminating carriage return

This character tells the Texas Instruments
printer to do a form feed

160 APPLE II USER'S GUIDE

Modifying our earlier printer program, the Applesoft listing below outputs the
same two lines of text 1 5 times, in six-line blocks. The program shown is for use
with DOS present.

10 REM
11 REM
20 REM
:::co 0$ = 1111

OUTPUT TEXT TO THE PRINTER
USING 6 LINES PER PAGE AND 5 PAGES
CREATE A CTRL-D CHARACTER

40 REM SELECT THE SERIAL I/0 PORT
50 PRINT 0$; 11 PR#1 11

51 REM SELECT 6 LINES PER PAGE
52 PRINT CHR$ <27>;"2 11

; CHR$ <6>
53 PRINT CHR$ <12);: REM PRINT FORM FEED TO POSITION FOR

START OF OUTPUT
54 FOR I = 1 TO 15
60 PRINT "TO A SCREEN OR THE PRINTER AN APPLE WILL WRITE"
70 PRINT "AND IN EACH CASE THE DATA GOES OUT BYTE BY BYTE"
75 NEXT I
80 REM DESELECT THE PRINTER
90 PRINT D$;"PR#O"
100 END

In the program above, the statement on line 52 selects six lines per page. The
CHR$(27) function represents the Esc character. CHR$(9) defines a page as being
six lines plus three lines which separate the bottom of one page from the top of
the next. The semicolons concatenate the three characters to give the required
character stream.

The statement on line 53 executes the top of form. The CHR$(12) function is
the form feed character. A semicolon follows the form feed character since with
out it the PRINT statement would produce a carriage return, and that would result
in a blank line. Without the semicolon, therefore, the first page would have one
blank line and five printed lines on it, while subsequent pages would have six
printed lines per page.

Any other programmable printer options are enacted by outputting other
appropriate nonprinting control codes in the same way.

This program will not work in Integer BASIC because it uses the CHR$ func
tion. You can generate almost any string value by pressing some key or combina
tion of keys, though. So you can replace CHR$ with a pair of quotation marks
enclosing a non-printing keystroke. For example, the string value generated by
entering (as three keystrokes) "Esc" is the same as CHR$(27). See Appendix I for
a complete list of such equivalents.

Printing Program Listings

If you type the LIST command at the keyboard, any program in the Apple II
memory will be listed at the display. To print the listing instead, enter appropriate
PR=If commands before and after issuing the LIST command. Assuming that the

Chapter 4: ADVANCED BASIC PROGRAMMING 151

printer is connected to an interface card in slot 1, here are the required steps:

1. Make sure that the program to be listed is is the Apple II memory.

2. With the cursor on a blank screen line, select the printer by typing
PR#1. The cursor will return to the first character of the current line
but will not drop down to the next display line.

3. Now type LIST. This command will not appear on the screen, but it will
show up on the printer along with a printout of the program to be
listed.

4. When the entire program has been listed, return output to the display
screen by typing PR#O. This command will not appear on the display
screen; it may appear on the printer.

STORING DATA ON CASSETTE

We learned in the last chapter how to save and load programs on the cassette
tape. In Applesoft, you can also record numeric and integer arrays on cassette
tape.

The STORE instruction records array values and the RECALL instruction reads
them back in. Neither statement controls tape movement, nor do they display
directives telling the program user when to operate the cassette recorder buttons.
The program below demonstrates the use of STORE and RECALL. It assigns
values to a numeric array, stores the array on a cassette tape, then sets all the
array values to zero, and finally recalls the array values from the tape. The array
values are displayed at key points to document the changes that occur as the pro
gram progresses.

10 REM THIS PROGRAM DEMONSTRATES STORE AND RECALL
20 REM **
30 DIM A<10)
40 HOME
50 PRINT TAB< 4); "STORED"; TAB< 13); "CLEARED"; TAB< 22);

"RECALLED 11

60 REM INITIALIZE ARRAY VALUES
70 FOR I = 1 TO 10:A<I> = I: NEXT I
80 T = a: GOSUB 1000: REM DISPLAY VALUES TO BE STORED
90 VTAB 20: HTAB 1
100 PRINT "PLACE CASSETTE IN RECORDER. REWIND IT."
110 PRINT "PRESS THE "'RECORD ... AND ... PLAY·' BUTTONS, II

120 INPUT 11 AND ENTER "'GO"' ";(:$
130 IF C$ < :> ''GO" THEN GOTO 90
140 STORE A
160 CLEAR : REM SET ARRAY VALUES TO ZERO
170 VTAB 2:T = 18: GOSUB 1000: REM DISPLAY CLEARED ARRAY
180 VTAB 20: HTAB 1
190 GOSLIB 1100: REM ERASE LAST INSTRUCTIONS
200 VTAB 20: HTAB 1
210 PRINT "REWIND TAPE. PRESS ,.PLAY"' BUTTON,"

162

220
230
240
260
265
270
280
290
300
990
991
1000
1090
1091
1100

INPUT "AND ENTER ... GO ... ";C$
IF C$ < > 11 00" THEN GOTO 200
RECALL A

APPLE II USER'S GUIDE

VTAB 2:T = 28: GOSUB 1000: REM DISPLAY RECALLED VALUES
VTAB 20: HTAB 1
GOSUB 1100: REM ERASE LAST INSTRUCTIONS
VTAB 20: HTAB 1
PRINT 11 PRESS 'STOP' BUTTON ...
END
REM +++++++++++++SUBROUTINE 1000+++++++++++++++
REM DISPLAY VALUES OF ARRAY A

FOR I = 1 TO 10: HTAB T: PRINT A<I>: NEXT I: RETURN
REM +++++++++++++SUBROUTINE 1100++++++++++++++++++++
REM ERASE THREE DISPLAY LINES
FOR I = 1 TO 119: PRINT 11

";: NEXT I: RETURN

You can store an array under one variable name and recall it using a different
variable name. But generally speaking, the dimensions of the array you store with
must be the same as the dimensions of the array you recall with. There are some
complicated exceptions which are covered in Chapter 8. Unless you are
specifically trying to achieve some special effects, use RECALL with data from
any given cassette using an array with the same dimensions as the one you used
STORE with.

PROGRAM OPTIMIZATION

Traditionally, the optimal program is the one that, for a given task, runs the fastest
and uses the least memory. Of course this dual goal must be moderated so that
the resulting program is still reliable, easy to write, easy to use, easy to read, and
easy to change. You will benefit more in the long run by spending your time
directly on these aspects of your programs instead of tweaking programs for
maximum speed and minimum memory requirements. Still, if you know how to
optimize program speed and memory usage, you can initially write programs that
are efficient and don't need any fine tuning after they're running. In this spirit, we
present a few ways to write programs that are faster and use less memory.

Some of the techniques for making a program run faster will make it take more
space, while some ways of decreasing space requirements will increase program
execution time. You will have to decide which is more important in your particular
program.

FASTER PROGRAMS

Avoid using constants (e.g., 0, 100, "Y", "ENTER"). Instead, assign the value of
the constant to a variable early in your program. Then use the variable where you
would have used the constant. This is especially important when you are
repeatedly using constant integer values in real expressions. It takes longer to con
vert a constant to a real value than it does to look up the value of a variable. And

Chapter 4: ADVANCED BASIC PROGRAMMING 153

when such a conversion takes place inside a FOR-NEXT loop, an often-used
subroutine, or a user-defined function, the difference becomes that much more
significant. This technique has the added benefit of making your program
easier to change. If you should ever need to change the constant, it will be easier
to change the one assignment statement than to hunt down and change every
occurrence of the constant.

Use those variables that are referenced often in a program as early in the pro
gram execution as possible. Memory space for variables is allocated on a first
come, first serve basis. BASIC will find a variable at the front of the list faster than
one at the end of the list.

When BASIC encounters an instruction to branch to another line number, it
starts looking for that line number at the beginning of the program and searches
sequentially through the program until it finds it. Clearly, the lower a line number is
in relation to the rest of the lines in the program, the faster BASIC can branch to it.
Therefore, assign the lowest line numbers in your program to the most often-used
subroutines.

In Applesoft, do not include index variables with NEXT statements. That way,
Applesoft does not have to verify whether you specified the correct index.

COMPACT PROGRAMS

Use subroutines to avoid duplicate programming for identical logic. This will also
go a long way towards improving the readability, reliability, and changeability of
your program.

Use the zero elements of arrays (e.g., X(O), B(O)).
There are fewer characters in a short variable name than there are in a constant

value that has many digits. So assign constant values to variable names and use
the variable names in place of the constant values.

Put more than one statement on a program line. It takes an extra five bytes of
memory for each extra program line. Note however that compound program lines
are hard to edit and harder yet to read and understand. Figuring out how to make
the program work the first time is bad enough; it's even worse to have to do it
time and time again.

Use REM statements judiciously; abbreviate comments. But be careful; the
fewer remarks your program has, the harder it will be to understand when you
come back to it later on.

Be thrifty with the use of variables. Each variable requires a certain amount of
memory, even if you only use it once. So establish a system of assigning variable
names that includes some scratch variables which can be used for FOR-NEXT
loops, intermediate calculations, and the like. Don't overdo it though; your pro
gram will be easier to understand if you assign variables in a meaningful way. Es
tablish standard identities for individual variables (e.g., CN$ is the customer name)
and groups of variables (e.g., all scratch variables start with X).

Use INPUT statements and data files (if you have a disk drive; see Chapter 5)

154 APPLE II USER'S GUIDE

instead of assignment statements and DATA statements.
In Applesoft, use integer arrays instead of real arrays. Each integer array value

takes tw<? bytes of memory, while real array values require five bytes each. Use
the FRE function periodically in your program to clean up the string storage area
of memory.

DEBUGGING

A new program never seems to work quite the way you expect it to. Even if there
are no errors in the BASIC syntax, there are likely to be errors in the program logic.
Either kind of error is a bug. The process of finding and eliminating program errors
is called debugging. There are several approaches you can take to debugging a
program.

This is an appropriate place for the usual caveat: take your time, plan it out, get
it right the first time. Don't sit down at the keyboard with a half-baked notion
about what you want your program to do and start hacking away. If you are new
to programming, supplement this book with one of the BASIC primers listed in
Appendix K to get some pointers on good programming practices.

If you have written your program and it doesn't seem to be working right and
you can't figure out why, there are some BASIC statements you can use that will
help you debug your program.

The PRINT Statement

Surprisingly, the plain old PRINT statement is a very useful debugging tool. You
can temporarily put extra PRINT statements in your program at strategic points to
display messages to tell you that the program has reached a certain point without
failing, and to print out intermediate values of variables. This way you can trace
the flow of program execution and you can check the results of intermediate
calculations.

The TRACE Statement

The TRACE statement lives up to its name; it traces the flow of program execu
tion by displaying the line number of each statement as it is executed. To see how
it works, type in the following program, then type TRACE followed by RUN.

100 PRINT "ENTER A NUMBER FROM 1 TO 5 (6 TO END>";
110 INPUT N
120 IF N 1 THEN PRINT "UNO";
130 IF N = 2 THEN PRINT "DOS";
:1.40 IF N 3 THEN PRINT "TRES";
150 ·IF N = 4 THEN PRINT "CUATRO";

Chapter 4: ADVANCED BASIC PROGRAMMING 155

160 IF N = 5 THEN PRINT 11 CINC0 11
;

170 IF N) 5 THEN OOTO 100
180 FOR I = 1 TO N
190 PRINT II *II o o REM PRINT N ASTERISKS ' .
200 NEXT I
210 CALL - 98~.: REM CLEAR SCREEN
220 GOTO 100

To cancel TRACE mode and return to normal, execute the statement NO
TRACE.

The DSP Statement

There is another useful debugging statement available only in Integer BASIC: the
DSP statement. Here is an example:

:>tO DSP COUNT

Once this particular DSP statement has been executed, the Apple II will notify you
each time the value of variable COUNT changes, and on which line number the
change occurred. Since the RUN command disables any previously executed DSP
statements, you must use GOTO to start the program, or put your DSP state
ments on program lines.

You can also turn off DSP mode for a variable with a NO DSP statement. Here
is an example:

:>300 NODSP NAME$

Once this statement has been executed, the Apple II ceases to notify you each
time the value variable NAME$ changes.

Try adding the following lines to the example we used with TRACE to see the
effect of DSP. Although you can use both TRACE and DSP simultaneously, try
running the example program without TRACE to more clearly see the effects of
DSP.

10 DSPN
20 DSPI
100 PRINT 11 ENTER A NUMBER FROM 1 TO 5
110 INPUT N
120 IF N = 1
130 IF N 2
140 IF N 3
150 IF N 4
160 IF N 5

THEN
THEN
THEN
THEN
THEN
THEN

PRINT 11 UN0 11
;

PRINT 11 DOS 11
;

PRINT 11 TRES 11
;

PRINT 11 CUATR0 11
;

PRINT 11 CINCO";
GOTO 100

(6 TO END> II;

170 IF N > 5
180 FOR I =
190 PRINT II

200 NEXT I

1 TO N
* 11

;: REM PRINT N ASTERISKS

210 CALL - 936: REM CLEAR SCREEN
215 NODSPN
220 GOTO 100

.I

166 APPLE II USER'S GUIDE

IMMEDIATE AND PROGRAMMED
MODE RESTRICTIONS

You can use most BASIC statements in deferred mode or as commands in
immediate mode. There are some statements that are legal only in deferred mode,
and others that are legal only in immediate mode. Table 4-2 lists the restricted
statements for Integer BASIC. Table 4-3 lists the restricted statements for
Applesoft.

TABLE 4-2. Integer BASIC Statements Restricted to
Immediate or Deferred Mode

Deferred Mode Only Immediate Mode Only

END AUTO
FOR CLR
GOSUB CON
INPUT DEL
NEXT HIMEM:
RETURN LOAD

LOMEM:
MAN
NEW
RUN
SAVE

TABLE 4-3. Applesoft BASIC Statements Restricted to
Immediate Mode

Immediate Mode Only

DATA
DEF FN
GET
INPUT
ON ERR GOTO
RESUME

5
The Disk II

The disk drive is one of the most important components of a computer system.
Disk drives allow almost instantaneous access to any item in a large block of
information. The Apple Disk II can store more than 1 00,000 characters of data on
a single diskette. That is over twice the amount that can be stored in 48K of RAM,
and when the computer is turned off, all of the information stored on a diskette
remains intact.

ABOUT DISKS

Disks store information magnetically, the same way a tape recorder does. The
·biggest difference is that a disk is round, like a record. It spins like a record too.
Inside the disk drive there is a head which can read and write information. The
computer can move the head to any location on the surface of the disk. This
ability is called random access. Thus, the disk is a random access storage device. A
special program, called the Disk Operating System, or DOS, controls all the opera
tions of the disk. There are several different kinds of disks.

Hard Disks

Hard disks are rigid, and coated with a magnetic substance. Hard disks typically
store 5 or 1 0 megabytes of data (a megabyte equals one million bytes). Most hard

168 APPLE II USER'S GUIDE

FIGURE 5-1. Typical Hard Disk System

disks are removable; that is, the disk and the drive are separate. so you can
change disks. Hard disks cost about $150.00 each; hard disk drives cost $3,000
to $10,000. Figure 5-1 shows a typical hard disk system.

Winchester Disks

Winchester disk drives. pictured in Figure 5-2, use a special technology that
allows six to ten times more data to be stored on each disk. Winchester disks are
extremely susceptible to dust and dirt - even cigarette smoke. Because they
must be kept very clean. Winchester disks are sealed inside the disk drive and
cannot be changed. Winchester disk systems cost from $2,500 to $8,000.

Diskettes

Diskettes are the most popular type of disk. A diskette consists of a circular vinyl
disk enclosed in a rigid plastic envelope. The envelope protects the diskette from
damage during normal handling and use. The diskette spins freely inside the
envelope. Openings in the envelope allow the head access to the surface of the
diskette and provide an area where the drive can grip and spin the diskette. The
diskette should never be removed from its envelope. Figure 5-3 shows what a
diskette looks like outside its envelope.

Chapter 5: THE DISK II 159

FIGURE 5-2. W inchester Disk Drive Photo coortesv ot CONus Systems. tnc.

FIGURE 5-3. Diskette Without Protective Envelope

160 APPLE II USER'S GUIDE

FIGURE 5-4. 8-inch and 5-1 / 4-inch Diskettes

Diskettes, also known as floppy disks, come in two sizes: 8-inch diameter and
5-1 /4-inch diameter, both illustrated in Figure 5-4. Apple Disk II uses 5-1 / 4-inch
diskettes, which are also called mini-disks or mini-diskettes. The Disk II can store
over 1 00,000 bytes on each diskette.

HOW DATA IS STORED ON DISKS

You should be familiar with the various facets of the disk storage process. Infor
mation stored on a disk is the result of many coordinated actions.

Tracks

Sectors

Chapter 5: THE DISK II

Edge of diskette

Center of diskette

One track on the
diskette surface

FIGURE 5-5. Diskette Tracks

FIGURE 5-6. A Diskette's Recorded Surface

161

162 APPLE II USER'S GUIDE

LOCATING TRACKS AND SECTORS

Finding a track on a diskette is simple: the drive moves the head to the point on
the diskette where the desired track is located, just as you would go about select
ing a particular song on a record album.

Finding a sector is a little more difficult. There are two common methods used
to locate specific sectors on diskettes. Both methods utilize a hole, called an index
hole, which is punched in the diskette envelope. On most diskettes the index hole
is located near the large hole in the center of the envelope. As the diskette spins, a
hole (or holes) located on the diskette itself passes the hole in the envelope. A
light source inside the drive passes through to a sensor whenever the holes are
aligned. The computer senses pulses of light and computes sector locations
based on this information.

There are two methods used to locate diskette sectors, called hard sectoring
and soft sectoring.

Hard Sectors

Hard sectored diskettes have several holes, as shown in Figure 5-7. Each hole
indicates the location of a sector. An extra hole marks the location of the first sec
tor. The computer locates sectors by counting holes following the first sector.

Soft Sectors

Soft sectored diskettes have just one index hole, as Figure 5-8 shows. It marks
the first sector. Locations of other sectors are computed by timing the floppy
disk's rotation.

The Apple Disk II uses soft sectored or hard sectored diskettes. The extra holes
in hard sectored diskettes are ignored by the Disk II.

Sector

Index Hole

FIGURE 5-7. Hard Sectored Diskette

Chapter 5: THE DISK II 163

Index. Hole

Sector

FIGURE 5-8. Soft Sectored Diskette

WRITE PROTECTING

There is also a notch on the side of the envelope. This notch is used to enable or
prevent information being written on the diskette. On 8-inch diskettes this notch
is a write protect notch, because the computer w ill not write on a diskette if it has
a notch on the diskette cover. On 5-1 /4 -inch diskettes the notch is called the

with the Disk II, are orotected permaoeptly Ihev dp not have a not c h t:Jotche 5-
1 /4-inch diskettes may be protected by covering the notch with a piece of tape.
Figure 5-9 shows how this works.

FIGURE 5-9. Write Protecting a 5-1 / 4-inch Diskette

164 APPLE II USER'S GUIDE

THE DISK OPERATING SYSTEM

All disk-related operations are controlled by a special program called the Disk
Operating System, or DOS. BASIC transmits requests to DOS for any operation
involving the disk. The DOS returns the results to BASIC.

VERSIONS OF DOS

Several versions of DO-S now exist. DOS 3.3 is the most recent; this chapter de
scribes it. The chief difference between DOS 3.3 and DOS 3.2.1, the next most
recent version, is the number of sectors they establish on a disk. DOS 3.2.1 has
13 sectors, while DOS 3.3 has 16. Apple Computer Inc. has a special program
which converts disks from DOS 3.2.1 to DOS 3.3.

INITIALIZING DISKS

Before Apple II can use a diskette, the diskette must be initialized Initializing a
diskette erases all files from the diskette and places a copy of DOS in tracks 0, 1 ,
and 2. Disk II initialization instructions are given later.

DISK FILES

Information is stored on diskettes as files. A file can have any length that can be
physically accommodated by the diskette. Every file has a name. A file may hold
information like text, a computer program, or an image of an Apple II graphics dis
play. The various types of files are discussed in more detail later.

DISKETTE DIRECTORY

The name of every file on a diskette is stored in the diskette's directory. The direc
tory is located in track 1 7 of the diskette. The first entry in the directory is in sec
tor 15. The last entry is in sector 1. The directory has enough room to index up to
84 files.

Stored with each file's name is a code indicating the type of data in the file, the
number of sectors it occupies, and the location of the sector that contains the
file's track/sector list.

TRACK/SECTOR LIST

The track/sector list contains pairs of bytes which specify the track and sector
address of each sector used by the file. Each pair of bytes is called a link. The first
link in a track/sector list gives the address of the next sector used by the list itself.

Chapter 5: THE DISK II 165

The list may occupy as many sectors as it needs. The second link is the address of
the first sector used by the file itself, the third link addresses the next sector used
by the file, and so on. A link of zero marks the end of the list.

Overview of the Disk Storage Process

DOS controls the flow of all data to and from a diskette. When you write to a file,
several things happen:

1. DOS searches the diskette directory for the name of the file. (Your
program names the file in order to identify it, as we will describe later.)

2. If the name is found, DOS reads 256 bytes from the proper sector and
stores them in an area of memory called a buffer. If the name is not
found, or if that sector of the file has never been written to before,
DOS fills the buffer with zeros.

3. Up to 256 bytes of the data being written to the file are copied from
memory into the buffer. If less than 256 bytes of data are copied into
the buffer, prior data remains.

4. If, and only if, 256 bytes are written to the buffer, buffer contents are
written back to the proper diskette sector.

5. This process (steps 3 and 4) repeats until all of the data being written
to the file has been copied into the buffer and stored on the diskette.

6. After all the data has been written to the diskette, DOS updates the
track/sector list and the directory.

[:

Note that unless the number of bytes you write to the f ile is evenly divisable by
256, _the last block of bytes will not fill the buffer, and steps 4 through 6 will never
happen. Therefore a Disk II command called the CLOSE command forces data in
the buffer to be written to the file, after which the track/ sector list and directory
are updated. This process is called closing the file. Failure to close a file after writ-

.._~ ing to it can result in loss of data. Always close a file when you have finished with
~ it. The CLOSE command is discussed in more detail later.

DISK CRASH

One of the worst disk errors that may occur is called a disk crash. There are two
types of disk crashes: hard crashes and soft crashes.

~ A hard crash occurs when the surface of the diskette is damaged, or has a
physical defect, like a rip or a piece of dirt. A hard crash can cause damage to the
read/ write head inside the disk drive. The damaged head can, in turn, damage
more disks. For this reason, always handle disks with care.

~ A soft crash results when the directory track is overwritten with incorrect data.
""'This most frequently occurs when one or more files have been written to but not

closed, a different disk is placed in the drive, then the files from the original disk
ette are closed. To fully appreciate the resulting mess you must experience it.

166 APPLE II USER'S GUIDE

BOOTING THE DISK II

For the Apple II to recognize any disk command, the special Disk Operating
System program (DOS) must be in memory. If you had a lot of time on your hands,
you could type DOS into memory via the keyboard. But there is an easier way: it is
called booting the disk. Booting the disk, or booting DOS, reads a copy of DOS
from a disk and places it in memory.

HOW TO BOOT DOS

There are several different ways to boot DOS, depending on the configuration of
your computer and the language you use to initiate the boot. Each method
assumes that the disk drive is connected to the DRIVE 1 pins on the disk controller
card in slot 6.

Insert the "System Master Diskette" into the drive and close the drive door.
What you do next depends on the Apple system you are using. At the end of a
successful boot, the display screen will look like one of those in Figure
2-5.

Autostarting

Autostarting is the easiest way to boot DOS. As the name implies, booting is auto
matic. But to autostart, your computer must have the Autostart Monitor. You can
tell if you have the Autostart Monitor installed by turning on the computer while
the Disk II is connected. If the red IN USE lamp on the Disk II cabinet lights and the
drive makes whirring and clicking noises, your Apple II has the Autostart Monitor.

To boot with an Autostart Monitor, simply turn on the Apple II power switch.

Booting from the Monitor

When the Monitor prompt character (•) appears on the screen, the Apple II As
sembly Language Monitor is waiting to accept commands. There are several
different ways of booting DOS from tpe Monitor.

Monitor Jump Booting

Type the letter C, followed by the slot number of the drive you wish to boot (6 is
standard), then two zeros and the letter G. The entire jump boot command should
look like this:

*C600G

C600 is the memory address of the program which boots from the drive in slot
#6. G is the command that transfers control to that program. Now press RETURN.

Chapter 5: THE DISK II 167

The lamp on the drive should light and the drive will make whirring and clicking
noises.

CTRL-K and CTRL-P Monitor Boots

The other Monitor commands you can use to boot the DOS are CTRL-K and CrRL
P. To boot from the Monitor using either of these two commands, type the slot
number (normally 6), then type CrRL-K or CTRL-P. Th~ CTRL-K or CTRL-P will not be
displayed on the screen.

After typing the command, press the RETURN key.

Booting from Integer BASIC
or Applesoft

The same boot commands are recognized by both Integer BASIC and Applesoft.

Booting From BASIC
Using the PR=IF and IN# Commands

After the BASIC prompt character(> in Integer BASIC, or 1 in Applesoft), type the
letters PR or IN, then a pound sign (=IF), and finally the slot number of the disk you
want to boot. The command should look like one of these:

PR#(~

or
IN#6

Now press the RETURN key.

Booting with the Apple Language System

If you have the Language System installed in your Apple II, the booting procedures
above may not apply. It takes two disks to boot DOS versions 3.2.1, 3.2, and
lower. But DOS 3.3 does boot as described above.

To boot DOS 3.2.1, 3.2, and lower using the Language System, insert the disk
ette labeled "BASICS: Integer and Applesoft II" (supplied with the Language
System) in place of the "System Master Diskette" described above, then proceed
with any boot procedure described above (autostart, PR=IF6, etc.). After a success
ful boot, the screen will display:

INSERT BASIC DISK AND PRESS RETURN

This is quite misleading. Actually you must insert a DOS diskette (the "System
Master Diskette" will do, or you can use any diskette that has been initialized).
After you have inserted the second diskette and pressed RETURN, booting will pro
ceed normally and you will see one of the displays shown in Figure 2-5.

168 APPLE II USER'S GUIDE

BEGINNING DISK COMMANDS

The Apple II Disk Operating System interprets and executes disk commands.
Many commands allow or require additional parameters that further define the
operation to be executed. A few elementary commands are described below.

CATALOG

The CATALOG command outputs all the file names in the diskette directory to the
current output device, usually the screen.

The catalog first shows the diskette volume number. (Volume numbers are dis
cussed later.)

For each file on the disk, CATALOG lists the type of data in the file, whether or
not the file is locked. the number of sectors the file occupies, and the file name. A
typical catalog is shown in Figure 5-1 0 .

File Types

The type of data in a file is represented by the single-letter code which appears in
the leftmost column of the catalog. The codes used are listed in Table 5-1.

locked Files

Lgcked files may not be written to or deleted. The catalog indicates that a file is
locked b receding the type code with an asterisk (*). If a space appears insteact
of an asterisk, the 1 e IS not oc ed. Locked f1 es are 1scussed later m th1s chapter.

* l 002 HELLO
*I 053 APPLE-TREK
*I 01 ::0: ANIMALS
*B 009 UPDATE 3 .. 2 . 1
*I 014 COPY
* I 0 0 9 COLOR DEMO
* I 0 5 :::: BRICK OUT
* I 02(... SPACE WAR
* I 0 5 0 THE INF IN ITE NO. OF MONI<EYS;
* l 0 5 1 COLOR SKETCH
* I 0 5 3 SUPERMATH
* l 0 2(:. APPL.EVI S ION
* I 01 7 BIORHYTHM
* l 0 2 7 PINBALL

FIGURE 5-1 0 . Typical Disk Catalog

Chapter 5: THE DISK II 169

TABLE 5-1. Disk File Type Codes

Code Meaning

A Applesoft programs
B Binary image files
I Integer BASIC programs
T Text files

Number of Sectors

The number of sectors the file occupies is shown as a three-digit number. The
smallest (empty) files are one sector long. If a file has more than 255 sectors, this
number is reset to 0 and starts over. This does not affect the true size of the file.

File Names

1 . File names must be from 1 to 30 characters in length. Excess
characters are ignored.

2. File names must begin with a letter.

3. Any character you can type on the keyboard may be part of a fi le
name, except commas.

You may use non · · racters (like those created with the CTRL key) as part
of a file name, but the will not show up in the catalog IS m . 1s 1s use u 1 you
want to prevent others from knowing your file names. (But do not
nonprintmg characters you used.)

Using the CATALOG Command

To use the CATALOG command, simply type it in (assuming DOS has been
booted) like this:

CATALOG

The result should look something like Figure 5-1 0 .

{

If the number of lines in the CATALOG printout exceeds 20, the computer will
display the first 21 lines and wait until you press any key on the keyboard (except
REsET, CTRL, and SHIFT) ; then it displays the next 21. This pause gives you time to
read all the file names before they scroll off the top of the screen.

170 APPLE II USER'S GUIDE

LOAD

The LOAD command reads a program f ile from the diskette into memory. You
must specify the name of the f ile to be loaded. This example loads the program
named COLOR DEMOSOFT:

LOAD COLOR DEMOSOFT

If the file name you specify is not in the diskette directory, you will get the error
message FILE NOT FOUND.

If the file is on the diskette, DOS checks the type of data in the file. If it is not a
program file, you will get the error FILE TYPE MISMATCH.

Assuming everything is OK, LOAD erases the program currently in read/write
memory, then copies the program from the file into read/write memory. After the
prompt and cursor return you may list, modify, or run the newly loaded program.

THE DISK VERSION
OF THE RUN COMMAND

Frequently after you issue the LOAD command, you immediately issue the RUN
command. You can abbreviate this two-step process by specifying a file name
with the RUN command. The LOAD command becomes an implicit step, since the
file must be loaded before it can be run. Here are a few examples :

RUN PROGRAM 2
RUN SPOT RUN
RUN COLOR DEMOSOFT

SPECIFYING THE DRIVE NUMBER

Many DOS commands allow a disk drive to be specified. Two parameters specify
a diskette drive: the drive parameter and the slot parameter.

Twg djsk drjyes can be connected to one diskette cggtcpller I p select a drive,
add a comma and D 1 or D2 to a diskette command as follows:

LOAD UP , D2
RUN AROUND ,D l
CATALOCi , D2

After you have used a drive specification once, subsequent disk commands will
default to that same drive until you specify the other drive. The default drive is

lways the drive specified by the most recent command. If none has yet been
pecified, drive 1 is used.

SLOT SPECIFICATION

The Disk II controller cards plug into slots inside the Apple II. There are eight s
available, but slot num er a leaves a

Chapter 5: THE DISK II 171

maximum of seven slots for Disk II controllers. Since each controller will support
one or two disk dnves, a maximum of 14 drives ma be connected to an Apple II.

If you have more than two IS nves connected to your Apple II, you cannot
refer to them as D3 or D4, etc. Instead, you must use another parameter to select
the proper controller card. The parameter is called slot and is used to indicate
which slot the disk controller you want to reference is plugged into.

To use the slot parameter, you add a comma, the letterS, and the slot number
(1-7) to disk commands, like this:

CATALOG, S5
LOAD TRUCKS,S6
RUN OVER , S:3

The slot used when booting DOS becomes the default slot. This slot will be
selected until another slot is selected by a slot parameter.

After you have used a slot parameter once, subsequent disk commands w ill
default to that same slot until you specify another slot.

You may use both the drive and the slot parameters together, in the same com
mand. By specifing a slot number from 1 to 7, and a drive number of 1 or 2, you
can refer to any Disk II connected to your computer. The slot and drive parameters
can appear in any order. The following two commands are equivalent:

CATALOO,[I2, S5
CATALOO, S5,D2

Both commands will produce the catalog of the diskette in drive number 2 of the
controller in slot number 5.

~ Problems with the Slot Parameter

VOLUME SPECIFICATION

Volume is another parameter you may specify with every DOS command that
allows the slot and drive specifications, except CATALOG. Volume allows you to
make sure the correct diskette is in the drive you have selected.

The CATALOG command ignores volume references. When the CATALOG
command lists the diskette directory, the volume number of the disk is the first
item listed.

To use the volume parameter, add a comma and the letter V followed by a
volume number, as follows:

LOAD ZONE,V 191

172 APPLE II USER'S GUIDE

If the volume number you specify is not the same as the volume number
assigned to the diskette when it was initialized, DOS returns the error message
VOLUME MISMATCH.

Volume numbers must be in the range 1 to 254. If you do not specify a volume
number, or if you specify a volume number of 0, the volume parameter is ignored.

You may use the volume parameter in conjunction with either the slot or drive
parameter, or both, in any sequence. Here are some examples:

LOAD CARGO,D2,V24
RUN PAYROLL,S6.V111

MORE DISK II COMMANDS

You now know how to see what is on a disk using CATALOG, and how to load
and run programs. You are ready to put your own programs on disks, using the
commands INIT, SAVE, DELETE, LOCK. RENAME. and VERIFY, which are de
scribed below.

I NIT

Before you can write on a diskette, remember that it must first be initialized. -t When a diskette is initialized, anything stored on it is erased, so make sure you do
not initialize a diskette containing data you want to save.

The INIT command stores on the diskette any program that is in memory when
you use the INIT command. This becomes the greeting program, which is auto
matically run every time you boot from that diskette. The greeting program can be
as simple or as complex as you desire. For example, suppose you have a diskette
that contains a mailing list. You could use the mailing list program as the greeting
program. Then when you put the diskette in the drive and boot. presto! The mail
ing list program is up and running. Another example is a greeting program that
consists of a NEW statement and an END statement. Every time the disk is
booted, you will get the BASIC prompt (> or 1).

A well written greeting program should tell you something about the diskette.
A typical greeting program might look like this:

100 TEX T
2 00 CALL ·- 9 :36
::::oo PRINT "THI S r:;::; MY FIR:::;r [IJ::;f<ETTE."
400 PR INT
500 PR J NT "IN I TI ALIZED 2 / ft:. / ::0: 1"
6 00 PR I NT
700 PRINT "ON A 4::w: SY::;TEM US I NO DO::; :::: . :::: "
8 00 END

The fi le name of the greeting program must be specified when you use the INIT
command. It is your responsibility to make sure there is always a program by that

Chapter 5: THE DISK II 173

name on the diskette. If you delete the greeting program (we'll describe how
later), you will see the error message FILE NOT FOUND every time you boot from
that diskette. The only way to stop that error message is to put a program on the
diskette with the greeting program's file name. That might be difficult to do if you
do not know, or cannot remember what file name was assigned, because there is
no way of determining what the name of the greeting program is. The best solu
tion is prevention. Always specify the same greeting program file name when you
initialize diskettes. The standard greeting program name is HELLO.

Using the INIT Command

A typical I NIT command looks like this:

INIT HELLO,S6,D1,V36

As you might suspect, the slot, drive, and volume specifications are optional. If
you include the volume parameter, DOS assigns the specified volume number to
the diskette. INIT is the only command that assigns the volume number. When the
volume parameter is used with other DOS commands, the number specified must
match the number assigned by IN IT. If you omit the volume parameter, I NIT will
assign a volume number of 254.

As always, omitting the slot or drive parameters will cause them to default to
the values specified by the previous DOS command. Be sure you know which
drive the INIT command is going to select. If you are not positive, specify!

To initialize a new diskette, first remove the "System Master Diskette" from
the drive and replace it with a new, blank diskette. Use the NEW command to
make way in memory for the greeting program. Then type in the greeting program
shown above, or a greeting program of your own. It is a good idea to test run the
greeting program before it is stored on the diskette.

Let's assign a volume number of 123. Now type:

INIT HELLO,S6,D1,V123
Make sure the drive door is shut, and press RETURN. The red lamp on the drive
should light, accompanied by the usual whirring and clicking sounds. The entire
process takes about two minutes, so be patient. After the lamp goes out, use the
CATALOG command to see what is on the new disk. The result should look like
this:

DISK VOLUME 123

I 002 HELLO

or, if you are using Applesoft, you should see:

DISK VOLUME 123

A 002 HELLO

The letter I means the greeting program was written in Integer BASIC. The let
ter A means it was written in Applesoft. The 002 means the program is two sec
tors long. You might see a different number, depending on the length of your

174 APPLE II USER'S GUIDE

greeting program.
Prepare a label for your diskette. You should write the volume number on the

label, along with any information you may want to know about this particular disk
ette. Remove the diskette from the drive, apply the label, and replace the diskette
in the drive. If you want to reboot using the diskette you have just prepared, you
can do so now.

SAVE

If you have kept up with the hands-on part of this chapter, you will now have a
freshly initialized diskette in drive 1 , slot 6 of your Apple II. You probably also have
a copy of your greeting program in memory. Use the LIST command and see if it is
there. If it is not, type:

LOAD HELLO

to get a new copy from the disk.
The SAVE command stores programs on a diskette. To save another copy of

your greeting program, type the SAVE command followed by a file name. For this
example, we will use the file name GREETING PROGRAM. You may use any valid
file name you wish.

SAVE GREETING PROGRAM

The disk should spin and make its usual racket. When SAVE is finished, the
BASIC prompt and cursor will reappear. Next, use the CATALOG command to
check the disk contents. What you see should look something like this:

DISK VOLUME 123

A 002 HELLO
A 002 GREETING PROGRAM

You can save any BASIC program you desire this way.
If you use a file name that is already on the diskette, whatever program you are

saving will replace the program with the same name that was stored on the disk.:.
ette. Thus the old program is automatically erased. This works as long as the old
program and the new program are in the same version of BASIC. If they're not, the
new program will not be saved. Instead, the message FILE TYPE MISMATCH
appears.

DELETE

After a while, you will probably accumulate many programs on a diskette which
no longer serve any useful purpose. The DELETE command removes files from the
diskette.

To delete the copy of the greeting program you just saved, any of the following
commands will do the job (unless you have referenced a different disk drive since
then).

Chapter 5: THE DISK II

DELETE GREETING PROGRAM,S6,Dl,V12
DELETE GREETING PROGRAM,V123
DELETE GREETING PROGRAM

176

Remember that you can use the slot, drive, and volume parameters in any order
you wish, or not at all if the default drive is the one you want to access.

LOCK

Some program or data files on a diskette must be kept permanently. For this pur
pose, DOS supports a protective technique called file locking. Locking a file pre
vents it from being accidentally deleted or written over. To lock a file, enter the
LOCK command, followed by the file name and the optional drive, slot, and
volume parameters. The following command locks the greeting program:

LOCK HELLO

It is a good idea to LOCK the greeting program.
Subsequent attempts to delete or write to locked files will result in the error

message FILE LOCKED.
If the locked file is an Integer BASIC or Applesoft program and you try to save a

program that has the same name but is written in the other BASIC, then you will
get the error FILE TYPE MISMATCH.

On a diskette catalog, locked files are indicated by an asterisk(*) preceding the
file type.

UNLOCK

When you decide to write over or delete a locked file, you can remove the lock
with the command UNLOCK. The following statement unlocks the greeting pro-
gram:

UNLOCK HELLO
As always, slot, drive, and volume specifications are optional and can occur in

any order.

RENAME

You can change the name of any file on a diskette. One way to change the name
of a program file would be to load it, delete it, then save it with the new name. A
better way is to use the RENAME command. RENAME works for any file on the
disk, regardless of which BASIC you are using. RENAME also works for text files
and binary files. Here is an example of RENAME:

RENAME OLDNAME,NEWNAME
DOS will not check to see if the new file name is already on the diskette. If it is,

you will end up with two files that have the same name. This can be very confus
ing and difficult to recover from.

176 APPLE II USER'S GUIDE

Do not RENAME the greeting program unless you put a new program w ith the
old name on the diskette. RENAME does not change the name DOS looks for
when the diskette is booted.

You cannot change the name of a file which is locked.
You may specify slot, drive, and volume numbers (in any order) if you wish.

VERIFY

Occasionally, you may want to check that a file is intact. The best way to do this is
using the VERIFY command. The following command will check out the greeting
program:

VERIFY HELLO,V123

As DOS writes out each sector of a file, it computes a number, referred to as a
checksum. The checksum value is based on the numeric value of each character
in the sector. The checksum is stored with the sector. When you issue the VERIFY
command, DOS recalculates the checksum for each sector of the file and com
pares the computed checksums with the stored checksums. If there is any
difference between the values, DOS returns the error message 1/0 ERROR.

If all the computed values match the stored values, DOS does not return any
message; the BASIC prompt and cursor simply reappear.

As with most other DOS commands, you may specify slot. drive, and volume
numbers in any order if you wish.

USING DOS COMMANDS
IN PROGRAMS

Until now all DOS commands have been typed in on the Apple II keyboard. But
BASIC programs that use files can include DOS commands.

To use a DOS command from within a BASIC program, you put it in a PRINT
statement, prefixed with an ASCII code 4 character. Use CTRL-D to create this
prefix. CTRL-D must be the first character output by the PRINT st n . Be sure
t at the previous PRINT statement did not terminate with a semicolon or a
comma.

Since CTRL-D produces a nonprinting character, it is recommended that you
document each occurrence with a REM statement, like this:

1000 F'R I NT "RUN MENU " : REM THERE I:; A CTRL -D
BETWEEN THE F IRST QUOTE AND THE R IN RUN

You can sim lify things by defining a variable as CTRL-D, then printing the
variable to owed by the command. The variable D$ is common y use or
this, but you can use any name you wish. Using the standard variable D$ in all

Chapter 5 : THE DISK II 177

your programs makes them compatible with each other, and with everyone else's. -Add a line like this to your BASIC programs:

l 0 [1$ = "": REM THERE I!:; AN INVI:=;JBLE
CTRL-D BETWEEN THE QUOTES

or, in Applesoft. you may use:

~ 10 [1$ = CHR$ (4): REM CHR$(4) = CTRL-D

Then wherever D$ is used, it is easy to see that it is a CTRL-D character.
Try running the program shown below on your Apple II:

10 [1$ = "": REM CTRL-[1
20 FOR I = 1 TO 10
::::o PRINT D$; "CATALOG"
40 NEXT I
50 END

~
Unless you have more than 1 B files on the diskette, you should see the catalog
displayed 1 0 times, without touching a key. If there are more than 18 catalog
entries, you'll have to press a key each time a pause occurs.

USING DISK FILES

Apple DOS supports two types of disk files: sequentialfiles and random-access
files. Both types of files contain blocks of data, called fields. A field may be one
character or many characters long.

Sequential Fi les

Sequential files, as the name implies, can be accessed in a sequential manner only.
To read or write the last field in the file, you must first read or write all previous
fields. For some applications, sequential access is fine.

Random-Access Files

Random-access files allow more flexibility than sequential files do. You can read
or write any field in the file without regard to its location. For many applications,
random-access files are the best solution.

USING SEQUENTIAL FILES

In order to use se uential files, you will need to learn a f w more DOS commands :
OPEN, CL SE, READ, and WRITE.

178 APPLE II USER'S GUIDE

Opening Sequential Files

Disk files must be o ened before they can be accessed. Opening a disk file causes
DOS to retrieve information about the file : w et er jt js on the disk, anJU!.. so,
where it is on the disk. OPEN also sets aside an area of memory to be used as a
buffer for the file. The buffer allows you to access a small portion of the file with
out activating the disk drive on every field access, and that saves a lot of time. The
OPEN command looks like this: -

OPEN ~ILENAME,S6,02,V99

If the file does not exist as specified, DOS will create a new file entry in the disk
drrectory. .-
-wiThin a program the OPEN command must be in a PRINT stal'ement and e

e y a CTRL-D character.
The program below will do nothing more than create the sequential file

SEQUENTIAL on the disk in the def ault dnve:

100 0$ = "": REM CTRL-0
2(H) PRINT 0$; "OPEN ~:;E@JENT I AL"
:300 END

'I- We will call this Program 1.
You can include any combination of slot, drive, and volume parameters with

the OPEN command:

or:

100 DS = "": REM CTRL-D
200 PRINT D$;"OPEN SEOUENTIAL,S6,0\,V1 23"
300 END

2 00 PR INT [1$; "OPEN SE171UENT I AL, V 123, S6"

Note that all the parameters occur before the closing quotes, and that they are
separated by commas.

+- After you run the program, the file SEQUENTIAL will be in the catalog. Confirm
this by typing CATALOG. The catalog should look something like this:

DISK VOLUME 12::::

*A 002 HELLO
T 001 SEI~IUENT I AL

*'- Note the letter T before the number of sectors in SEQUENTIAL. T is the code
which designates SEQUENTIAL as a text file, as opposed to an Applesoft or
Integer BASIC program file, or a binary file. The asterisk (*) preceding the type of
file HELLO indicates it has been locked.

Closing Files

Actually, Program 1 is a very poor program. for one big reason: it does not close
the file when it is finished. The CLOSE command js very jmportant. Not cJQ,sing
f iles can result in loss of data, and possible destruction of data gg another diskeTte ..

Chapter 5: THE DISK II 179

(see the section on soft crashes in this chapter). The CLOSE command has two
formats. The first one is:

The CLOSE command with no parameters will close all open files, on all diskettes,
regardless of whlcli driVe, Slot, or volume they res1de on.

"Sometimes you may want to close one or more specific files. You close
indi0idual files by adding the file name to the CLOSE command, hke th1s: -

CLOS E FILENAME

~slot, drive, or volume parameters are allowed or required with either form of
the CLOSE command. DOS knows where the file is, since the file is already open.

Program 1 shou ld be corrected by adding this hne: -

290 F'R I NT D$; "CLO~:;E"

or, you could add:

2',-10 F'R I NT D$; "CLOS E S EG!I.IENT I AL "

Writing to Sequential Files

Program 1 is a pretty useless program. Diskettes are used to store and retrieve
information. Since you cannot retrieve anything that isn't already on the disk, we
wi ll discuss how to store information first.

Information is sent to the Disk II the same way it is sent to the screen or printer:
via the PRINT statement.+Anything you can print can be put in a disk file. ~act,
you might visualize a sequential file as a TV screen, or even better, as paper in a

~er.
When you print something on a file, DOS updates an internal pointer which

points to the next location on the disk surface where data will be stored, just as a
printer advances paper to the next line.

A sequential file pointer can only be moved forward. The OPEN command
moves the pointer back to the beginning of the file.

Before you can rint data to a disk file, you must f irst use a WRITE command to
tell DOS that PRINT statements are o wnte to a 1 e, 1nstea o the display screen.

WRITE FILENAME

After you issue the WRITE command, subsequent output w ill be directed to the
specified file. Note that subsequent output wi ll include any error messages.
However, after the error message is stored on the fi le, the WRITE command is
cancelled. You will see only the BASIC prompt and cursor on the display screen.

The WRITE command must be in a PRINT statement, preceded by a CTRL-D
character. If you issue the WRITE command in immediate mode you will get the
error NOT DIRECT COMMAND.

180 APPLE II USER'S GUIDE

Add the following lines to Program 1 :

210 PRINT D$; 11 WRITE SEQUENTIAL 11

;~20 PRINT 11 THIS TEXT WILL .. BE STORED IN THE. FILE 11

The program does the following:

1 . It creates a file, if it needs to.

2. It opens the file.

3. It stores text in the file.

4. It closes the file.

You may insert as many PRINT statements between lines 210 and 290 as you
wish. You may print text, numbers, and variables, in any combination, as long as
the syntax for the PRINT statement is correct. For example:

220 FOR I = 1 TO 100
:2:30 PRINT I
240 NEXT I
250 PRINT 11 ABCDEFGHJ . .JKLMNOPQRSTUVWXYZ 11

Note that you only use the CTRL-0 character prefix with DOS commands, never
when writing the contents of a file.

Be careful not to print characters to a file while FLASH or INVERSE statements
are in effect, as these characters are not properly handled by DOS.

Remember that each time you run this program, whatever is in the PRINT
statements will overwrite and erase data already stored on the file. If you PRINT
fewer characters than are already in the file, the tail end of the previous data will
remain, following the new data.

One way to circumvent the problem of leftover data is to erase the file before
you store new data in it. The DELETE command (in the usual PRINT statement
context) may be incorporated into the program just prior to the OPEN command.
Every time the program is run the file will be deleted and then recreated by the
OPEN command.

However, a problem will then occur if you try to run the program when there is
no file called SEQUENTIAL on the diskette. If you do, you will see the error FILE
NOT FOUND. You can prevent that by adding another OPEN command, just prior
to the DELETE command. This is what happens:

1 . The first OPEN command creates a file if one does not already exist.

2. The DELETE command erases the file, no matter when it was created.

3. The second OPEN command creates a new, empty file.

As you make these changes to Program 1, remember that once you have
specified the slot, drive, and volume, you don't need to specify them again, unless
you wish to refer to a different disk drive. With this in mind, use an OPEN com
mand with the slot, drive, and volume parameters as the first DOS command, and
allow subsequent commands to default to those values.

Chapter 5: THE DISK II 181

If you have made these changes to Program 1 , your listing should now look like
this:

100 0$ = "": REM CTRL-D
110 PRINT D$;"OPEN SEQUENTIAL,V123,S6,D1"
120 PRINT D$;"DELETE SEQUENTIAL"
200 PRINT D$;"OPEN SEQUENTIAL"
210 PRINT f,I$;"WRITE SEQUENTIAL"
220 PRINT "THIS TEXT WILL BE STORED IN THE FILE"
290 PRINT O$;"CLOSE"
300 END

Whenever you run this program, it will store the contents of the PRINT state
ments between lines 21 0 and 290 in the file SEQUENTIAL. You can use any file
name you wish, but if you change a file name, be sure to also change every
reference to the changed file name.

You can use a variable for the file name and have the program ask for the name
of the file to access. With this modification, the program looks like this:

10 INPUT "FILE NAME: II; F$
100 [1$ = : REM CTRL-D
110 PRINT [I$;"OPEN "; F$; ", v123, s~., Dt"
120 PRINT [!$;"DELETE II; F$
200 PRINT [!$;"OPEN F$"
210 PRINT D$;"WRITE II; F$
220 PRINT "THIS TEXT WILL BE STORED IN THE FILE"
290 PRINT D$;"CLOSE"
300 END

You can go even further and have the program request the slot, drive, and
volume numbers by making these changes:

10 INPUT "FILE NAME: ";F$
20 INPUT "SLOT NUMBER: ";S
:30 I NF'UT II DRIVE NUMBER: II ; D
40 INPUT "VOLUME NUMBER: ";V
100 D$ = "": REM CTRL-D
110 PRINT D$;"OPEN ";F$; .. ,S .. ;S; 11 ,0";D; .. ,V .. ;V

When you make these changes, be sure to enter them exactly as shown. Do
not forget to include the commas before the S, D, and V parameters, or DOS will
not be able to distinguish the parameters from the file name.

To make this program really useful, it should let you input the text to be stored,
instead of having to change the PRINT statements. One way to do this is:

1.50 INPUT "ENTER THE TEXT TO STORE: 11
; T$

220 PRINT T$

But that only allows you to enter and store one line of text. You could fix that by
adding more INPUT statements, followed by more PRINT statements, but once
again you have fixed the amount of text which can be entered and stored. Why
not add a test after the INPUT statement so you can signal the end of your text?

182 APPLE II USER'S GUIDE

Then add a GOTO after the PRINT so you can enter another line:

150 INPUT "F.NTER THE TEXT TO STORE: ";T$
160 IF T$ = "END" THEN 290
210 PRINT D$;"WRITE ";F$
220 PRINT T$
?80 GOTO 150

Now whenever you are finished entering text, you can type END an_d the file will
be closed. But there is still one big problem. Remember that the WRITE command
causes all output to be directed to the file. Since the INPUT statement outputs the
prompt ENTER THE TEXT TO STORE:, that line will not appear on the screen after
the WRITE has been executed; it will be stored as part of the diskette file.

The WRITE command must be cancelled in advance of output not intended for
the diskette. Any DOS command will cancel the WRITE command, but the safest
one to use is the null command, which is the CTRL-D character all by itself. Add
this line to the program. 225 PRINT 0$

With all these changes complete, you now have a program that will allow you
to store any amount of text you wish (up to the maximum amount the diskette will
hold), under any file name you choose, on any drive connected to your Apple II.

Reading Sequential Files

Just as output can be directed to the disk, input can be accepted from a disk file.
The READ command identifies a disk file as the source for data input. For sequen
tial files the READ command looks like this:

READ FILENAME
The READ command must be in a PRINT statement, preceded by a CTRL-D

character. If you issue the READ command in immediate mode you will get the
error NOT DIRECT COMMAND.

After the READ command has been executed, subsequent INPUT statements
receive data from the specified file until another DOS command, or an error, can
cels the READ command. Program 2, below, demonstrates use of the READ com
mand.

100
110
120
1:30
140
150
160
170
180
190
200

D$ = "": REM CTRL-D
INPUT "FILE NAME TO READ: ";F$
INPUT "SLOT NUMBER: ";S
INPUT "DRIVE NUMBER: 11 ;[1

INPUT 11 VOLUME NUMBER: ";V
PRINT D$;,.OPEN u;F$; 11 ,S";S;",D";D;",V";V
PRINT D$;"READ ";F$
INPUT A$
PRINT A$
GOTO 170
END

Program 2 will display all of the text in a disk file created by Program 1. After all
of the file's contents have been output, you will see the message END OF DATA
and the program will stop with the message BREAK IN 1 70.

Chapter 5: THE DISK II 183

You may notice that Program 2 lacks a CLOSE command. We have explained
why files must be closed when they are no longer needed, but in this case the file
is never written to, therefore the directory or track/sector information never needs
to be updated (assuming the file name you specify actually exists). The file should
be closed, just to be safe.

It is not a good practice to write programs that print error messages and stop
under circumstances as predictable as reaching the end of data in a file.

Preventing the END OF DATA Error

The END OF DATA condition can be detected before an error is generated. Pro
gram 2 could branch control to a CLOSE command upon detecting an end of data.
The easiest way to detect an END OF DATA is by using the Applesoft ON ERR
GOTO statement (discussed in Chapter 4), but ONERR GOTO is not available in
Integer BASIC. (DOS error codes are explained in Appendix C.)

Another way to find the end of text in files written by Program 1 is to modify
Program 1 so that when you type the word END all by itself, a special word or
character is written to the file just before it is closed. Then change Program 2 to
look for the special end of text marker and CLOSE the file properly. This method
will work in both Integer BASIC and Applesoft.

Integer BASIC and
Applesoft Differences

The READ command identifies a disk file as the data source for subsequent
INPUT statements. But the INPUT statement syntax must conform to the BASIC
in which the program is written (see Chapter 8). Nevertheless, data supplied by a
file depends on how that data was stored.

In Applesoft, for example:

100 D$ = "": REM CTRL-D
200 PRINT D$;"1)PEN FILEt"
::=:oo PRINT [1$; "WRITE FILEt"
400 PRINT "HELL0"7"THIS IS A TEST"
500 PRINT [I$;"CLOSE"
600 END

and the same program with this minor change:

400 PRINT "HELL07 THIS IS A TEST''

both store two lines of text on FILE 1 . Applesoft does not handle the comma as a
separator the same way Integer BASIC does. If you try to read the text in FILE 1
with:

300 PRINT D$;"READ FILE1"
400 INPUT A$

while in Applesoft, you will get the message ?EXTRA IGNORED and the variable
A$ will be set to HELLO, regardless of which line 400 was used to store that text.

184 APPLE II USER'S GUIDE

In Applesoft, commas separate multiple values in a single PRINT statement.
Integer BASIC will accept both lines as one, so the value of A$ stored by the

first example will be HELLO THIS IS A TEST, and the value of A$ from the second
version of line 400 will be HELLO, THIS IS A TEST.

Using the Applesoft GET
Statement to Read Text Files

In Applesoft the GET statement can be used to read data from a disk file. The GET
statement differs from the INPUT statement in that the GET statement returns
one character at a time. Thus, if a file contains the text THIS FILE CONTAINS
TEXT, and you execute an OPEN, a READ, and then a GET, the first GET will return
the letter T. The next GET will return H, and subsequent GET statements will
return I, S, a blank space, F, I, L, E and so on, until every character of the text has
been read. If the GET returns a comma or a carriage return, the program can
detect it and interpret it properly.

Program 3, shown below, demonstrates how a file may be read by using the
Applesoft GET statement to build a line of text, one character at a time.

100 [1$ = CHR$ (4): REM CTRL-D
200 INPUT "FILE NAME TO READ: u;F$
300 INPUT "SLOT NUMBER: II; s
400 INPUT "DRIVE NUMBER: II; D
500 INPUT 11 VOLUME NUMBER: II; v
600 PRINT D$;"OPEN .. ; F$; II ' v .. ; v; II ' [1 11

; D; II ' :3 11
; s

700 PRINT [I$;"READ II ;F$
800 8$ =
900 GET A$
1000 IF A$ = CHR$ (13) THEN 1300
1100 8$ = 8$ + A$
1200 GOTO 900
1300 REM RETURN CHARACTER FOUND
1400 REM 8$ IS COMPLETE
1500 PRINT B$
1600 GOTO 800
l700 END

But the GET statement has a problem when used with disk files. The first
character printed after a GET has been executed is ignored. If the first character
printed is a DOS command, then the CTRL-D character will be ignored, which
means the entire command will be printed, not executed as a DOS command.

The cure for this problem is to print a throw-away character first, one that is
intended to be ignored. A good character to use is CTRL-A (ASCII code 1), since it
is nonprinting and has no special meaning (as opposed to CTRL-D, for example).

Program 3 can be patched, or corrected, by changing line 1500 to read:

1500 PRINT CHR$ <1>;8$: REM CHR$<1> = CTRL-A

Chapter 5: THE DISK II 186

Storing Numbers in Files

You may have used Program 1 to store numbers in a file, either as part of some
text, as in:

220 PRINT "MY ADDRESS I 8 1234 NORTH STREET·"

or directly as numeric values:

or via numeric variables:

If you stored numbers directly, you will get some strange results when you READ
them back with Program 2.

Using Integer BASIC, numbers separated by commas or semicolons will form
one big number (12345 from line 230 above), for a total of one line of output.

Using Applesoft, things become even more confusing. The first three numbers
are concatenated (123) and printed as one line of output. The next two values (4
and 5) produce one line of output each, for a total of three lines of output.

These problems result from the format used to store information in disk files.
Commas are not stored between the numbers if they would not be displayed on
the screen. Instead, on the screen the commas cause the next value to appear at
the next TAB position. When output is directed to a disk file, however, DOS dis
cards commas completely. Nothing equivalent to tabbing occurs. As a result,
values become concatenated until a carriage return (ASCII code 1 3) separates
them. The carriage return is the only character DOS interprets as a value sepa
rator. Integer BASIC outputs a carriage return after the fifth tab stop (comma),
while Applesoft does it after three tab stops.

To avoid problems, you should make sure that each numeric field you store in a
disk file is followed by a carriage return character. The easiest way to do this is to
output each number with a separate PRINT statement:

230 PRINT 1: F'RINT 2: PRINT 3: PRINT 4:
PRINT 5

Another method available to Applesoft users is to include a carriage return
character as a separator in the PRINT statement parameter list:

230 PRINT 1;CHR$(13);2;CHR$(13);3;CHR$(1
3 >; 4; CHR$ < 1:3); 5

You may prefer to define a variable as a carriage return character, then print the
variable:

11 R$ = CHR$(13): REM RETURN CHARACTER

This makes for a cleaner program.

186 APPLE II USER'S GUIDE

HOW TO APPEND TO SEQUENTIAL FILES

A sequential file should be closed when written into. When you CLOSE a file, you
lose track of where the last item was stored. To add data to the end of the file,
therefore, you must first find the end of the file. You could read each item _in the
file until you reach the last one, but that can be very time consuming with large
files. The APPEND command does the work for you.

The APPEND command places the file pointer at the first unused character
beyond the end of the file. If you read after the APPEND command has been
issued, you'll get an END OF DATA error. If you write after an APPEND, the new
data will be added to the end of the data already on file.

The APPEND command is used in place of the OPEN command. There are two
important differences between the APPEND and OPEN commands:

1. APPEND requires that the file already exist. If it does not, the error FILE
NOT FOUND is returned. APPEND will not create a file; APPEND
assumes the file exists.

2. APPEND places the pointer at the end of the file. OPEN places the
pointer at the beginning of the file.

The format for the APPEND command is the same as for the OPEN command.
Here is an example:

APPEND FILENAME,S6,D2.V99

As always, the slot, drive, and volume commands are optional.

THE POSITION COMMAND

Another useful command is the POSITION command. POSITION moves the
pointer forward (never backward) by the specified number of fields relative to the
current pointer position. POSITION looks like this:

POSITION FILENAME.R30

R indicates relative field; the number after R is the number of fields to skip.
Fields are marked by carriage return characters, so the POSITION command
above counts 30 carriage returns beyond the current position and moves the file
pointer there. If you specify RO, the pointer is not moved.

POSITION actually examines the file character-by-character, starting from the
current position. If there are not enough fields, or if an unused byte is encoun
tered, the error END OF OAT A is displayed immediately. Executing an INPUT or a
GET is not necessary to cause the error.

A file must be open before it can be referenced by a POSITION command.
When you open a file, the pointer is set to the beginning of the file. If you issue a
POSITION command when the pointer is at the beginning of the file, it will effec
tively select the absolute field within the file.

Remember, just like any other DOS command, POSITION cancels both the
READ and WRITE commands. Be sure to execute POSITION before issuing a
READ or WRITE command, not after.

Chapter 5: THE DISK II 187

USING RANDOM-ACCESS FILES

Random-access files are structured into sections called records. Each record in a
particular file holds the same amount of information, which is defined as some
number of bytes (characters) when the file is created.

The amount of information which can be stored in one record is referred to as
the record length.

Records are identified by a number indicating their absolute position in the file.
The first record in every file is record number 0, the next is number 1 , followed by
record 2, and so on.

The smallest random-access file has one record. Files expand as new records
are added, but they do not shrink. To remove unwanted records from a random
access file and shrink the size of the file, you must copy the records which are to
be preserved into a new random-access file.

Programs must specify which record of a random-access file is selected, and
what part of the record is to be accessed.

Opening Random-Access Files

To define a file as a random-access file, you must include an additional parameter
when the file is opened: the length parameter. The length parameter (l) specifies
the length of each record, like this:

OPEN FILENAME,L10,S6,Dl,V100

The length parameter must have a value ranging between 1 3nd 32767. It does
not have to be the first parameter in the list, but it must be present if the file is to
be random-access.

Programs should never write records that are longer than the number of bytes
specified by the length parameter. That includes carriage returns and commas. If
too many characters are stored in a record, the succeeding record may be over
written or combined, creating a real mess.

Closing Random-Access Files

The CLOSE command is identical for both sequential and random-access files.

Random-Access Read and Write

The READ and WRITE commands require a record parameter for random-access
files. The record parameter moves the file pointer to the beginning of a record.
The following example uses the record parameter (R):

or:
READ FILENAME,R13
WRITE FILENAME,R6

The record parameter need not be the only one in the list. You may also specify
slot, drive, and volume. Parameters may appear in any order. If the record
parameter is not present, the pointer is not moved.

188 APPLE II USER'S GUIDE

A PRACTICAL RANDOM-ACCESS EXAMPLE

The following programs demonstrate a practical use of random-access files. The
programs will work in either Applesoft or Integer BASIC. In order to use the sec
ond program in Integer BASIC, you must add a DIM statement before line 1 00 for
variables B$ and C$ (255 characters each).The first program creates a file called
RANDOM.

10 REM
20 REM
:30 REM
40 REM
50 REM
60 REM

RANDOM-ACCESS FILE CREATING PROGRAM

BE SURE TO RUN THIS PROGRAM FIRST AS IT
STORES INFORMATION IN RECORD ZERO WHICH MUST
EXJST FOR THE NEXT PROGRAM TO FUNCTION.

100 D$="" : REM CTRL-D
200 PRINT D$;"OPEN RANDOM,S6,D1,L256" : REM OPEN THE FILE
300 PRINT D$;"WRITE RANDOM,RO" : RE~ WRITE, RECORD ZERO
400 PRINT 0 : REM STORE A ZERO IN RECORD ZERO
500 PRINT D$;"CLOSE 11

: REM CLOSE THE FILE
600 END

Once the file has been created, the second program allows you to read,
change, add, and list the records in the file. Each record will contain one line of
information which you type in at the keyboard.

10 REM RANDOM-ACCESS FILE DEMONSTRATION PROGRAM
20 REM
30 REM
40 REM
50 REM
~.o REM
70 REM
80 REM

THIS PROGRAM WILL MAINTAIN A RANDOM-ACCESS
FILE WHICH CONSISTS OF SINGLE LINE RECORDS.

RECORD ZERO CONTAINS A NUMBER INDICATING
THE LAST RECORD NUMBER IN USE.

85 REM NOTE: FILE "RANDOM" MUST BE CREATED BEFORE
90 REM ATTEMPTING TO USE THIS PROGRAM.
95 REM

100 0$= 1111
: REM CTRL-D

200 PRINT D$;"OPEN RANDOM,S6,D1.L256 11

225 PRINT D$;"READ RANDOM,RO" :REM READ RECORD ZERO
250 INPUT M : REM M = THE LAST RECORD NUMBER IN USE
275 PRINT 0$: REM CANCEL READ COMMAND
300 CALL -936 : REM CLEAR SCREEN
400 PRINT "RANDOM-ACCESS FILE DEMONSTRATION 11

500 PRINT : PRINT : PRINT : PRINT
600 PRINT 11 COMMANDS: 11

: PRINT
700 PRINT II 0 STOP 11

800 PRINT II 1 ;:: READ A RECORD 11

900 PRINT 11 2 ADD A RECORD"
1000 PRINT " 3 = CHANGE A RECORD"
1100 PRINT " 4 LIST ALL RECORDS"
1200 PRINT : PRINT
1300 PRINT "WHICH";
1400 INPUT C
1500 IF C=O THEN 8300
1600 IF C=1 THEN 2200
1700 IF C=2 THEN 3300
1800 IF C=3 THEN 4600

REM
REM
REM
REM

BRANCH
TO
THE
SELECTED

Chapter 5: THE DISK II

1900 IF C=4 THEN 6700
2000 GOTO 300
2050 REM
2100 REM * * * * *
2150 REM

ROUTINE REM
REM COR RE-DISPLAY THE MENU>

READ A RECORD * * * * *

2200 CALL -936 : REM CLEAR SCREEN
2:300 PRINT : PRINT 11 READ A RECORD 11

: PRINT
2400 PRINT 11 WHICH RECORD NUMBER CO TO STOP) 11

;

2500 INPUT R
2600 IF R<1 THEN 300 : REM RETURN TO MAIN MENU
2650 IF R>M THEN 2200 : REM RECORD DOES NOT EXIST

189

2700 PRINT D$; 11 READ RANDOM,R .. ;R: REM PREPARE TO READ RECORD
2800 INPUT B$: REM READ THE DATA
2900 PRINT [1$: REM CANCEL READ COMMAND
3000 PRINT : PRINT B$: PRINT : REM DISPLAY THE DATA
3100 GOTO 2400 : REM ASK FOR ANOTHER RECORD NUMBER
:3150 REM
3200 REM * * * * *
:3250 REM

ADD A RECORD * * * * *

3300 CALL
3400 PRINT
:3500 PRINT
3600 PRINT
3625 PRINT
3700 INPUT
3750 IF B$
3800 PRINT
3900 PRINT
4000 M = M
4100 PRINT

ZERO

-936 : REM CLEAR SCREEN
: PRINT 11 ADD A RECORD" : PRINT
11 NEXT RECORD NUMBER = ";M+1
: PRINT ~ENTER DATA FOR RECORD ";M+1
11 CPRESS [RETURNJ NOW TO STOP ADDING> ..
B$: REM GET USER~::: RESPONSE
= II II THEN 300 : REM QUIT Is .JUST [RETURN J
0$; 11 WRITE RANDOM,R";M+l : REM PREPARE TO WRITE
B$: REM SEND DATA TO FILE
+ 1 : REM INCREMENT LAST RECORD NUMBER
11 WRITE RANDOM,R0 11

: REM PREPARE TO WRITE RECORD

4200 PRINT M : REM STORE UPDATED VALUE
4300 P~I~T [1$: REM CANCEL WRITE COMMAND
4400 OOTO 3500 : REM LOOP FOR ANOTHER RECORD
4450 REM
4500 REM * * * * *
4550 REM

CHANGE A RECORD

4600 CALL -936 : REM CLEAR SCREEN

* * * * *

4700 PRINT : PRINT "CHANGE A RECORD 11
: PRINT

4aoo PRINT .. CHANGE wHIcH REcORD < o TO s;ToP > .. ;
4900 INPUT R
5000 IF R<1 THEN 300 : REM RETURN TO MAIN MENU
5050 IF R>M THEN 4600 : REM TRY AGAIN IF RECORD NOT ON FILE
5100 PRINT [I$; 11 READ RANDOM,R 11 ;R: REM PREPARE TO READ
5200 INPUT B$: REM READ THE RECORD
5300 PRINT D$: REM CANCEL READ COMMAND
5400 PRINT : PRINT B$: PRINT : REM DISPLAY THE DATA
5500 PRINT "ENTER THE NEW DATA 11

5600 PRINT "CPRESS [RETURN] NOW TO CANCEL CHANGES> ..
5700 PRINT
5800 INPUT C$: REM GET USER~s RESPONSE
5'~00 IF C$:>" 11 THEN 6200 : REM BRANCH IF NEW DATA
6000 PRINT 11 RECORD u;R;u UNCHANGED ! ! ! 11

: REM LOOP IF
6100 GOTO 4800 : REM NO CHANGES DESIRED
6200 Pf<INT D$; 11 WRITE RANDOM,R .. ;R: REM PREPARE TO WRITE
6300 PRINT C$: REM STORE CHANGED DATA

190 APPLE II USER'S GUIDE

6400 PRINT D$: REM CANCEL WRITE COMMAND
6500 GOTO 4800 : REM LOOP FOR ANOTHER RECORD TO CHANGE
6550 REM
6600 REM * * * * * LIST ALL RECORDS * * * * *
~.650 REM
6700 CALL -936 : REM CLEAR SCREEN
6800 PRINT : PRINT 11 LIST ALL RECORDS 11

: PRINT
6900 R = 0 : REM RESET THE COUNTER
7000 R = R + 1 : REM INCREMENT THE COUNTER
7100 IF R > M THEN 7700 : ~EM STOP AFTER LAST RECORD
7200 PRINT D$;"READ RANDO ·R";R: REM PREPARE TO READ
7300 INPUT 8$: REM READ -HE DATA
7400 PRINT "RECORD NUMBER · ";R : REM DISPLAY RECORD MJMBER
7500 PRINT B$: PRINT : REM DISPLAY RECORD,.S DATA
7600 GOTO 7000 : REM LOOP FOR NEXT RECORD
7700 PRINT D$: REM CANCEL READ COMMAND
7:300 PRINT : PRINT 11 * * * * END-OF-FILE 11

: REM PRINT
EOF MESSAGE

7900 PRINT 11 PRESS RETURN TO CONTINUE .. ; : REM REQUEST
RESPON8E

8000 INPUT B$ REM GET USER'S RESPONSE
8100 GOTO 300 REM RETURN TO MAIN MENU
8150 REM
8200 REM * * * * * STOP PROGRAM * * * * *
8250 REM
8300 PRINT D$;"CLOSE 11 REM CLOSE THE FILE
8400 CALL -936 : REM CLEAR SCREEN
8500 FOR 1=1 TO 24 : PRINT : NEXT I : REM MOVE TO BOTTOM

LINE
8600 PRINT "PROGRAM COMPLETE."
8700 END

THE BYTE PARAMETER

Byte is another useful random-access file parameter. The byte parameter is used
with the READ, WRITE, and POSITION commands to move the pointer to the
specified byte (character) within any selected record. A comma and the letter B
may be added to a READ, WRITE, or POSITION command. The record parameter
must be present with the byte parameter. Here is an example:

READ FILENAME,R19,B3

In this example, reading will begin at the fourth byte in the 20th record.
(Remember, the first byte is byte number 0.) The byte parameter can move the
pointer backward or forward within the record.

If you are going to use the byte parameter, records must have an exact data
format. You must know the byte position of each field within the record, or you
will probably end up· with meaningless data.

When using the byte parameter with the POSITION command, remember that
POSITION cancels any prior READ or WRITE command. You could execute a
READ or WRITE command that includes a record parameter, then use POSITION
to move forward to the correct field. But you must then execute another READ or

Chapter 5: THE DISK II 191

WRITE, since POSITION cancels the prior READ or WRITE command.
POSITION will only move the pointer forward to another field in the current

record. Within that field, the byte parameter allows you to reference subfields,
one character at a time.

OTHER DOS COMMANDS

There are a few commands which have not been explained yet. These commands
are EXEC, MAXFILES, TRACE, MON, and NOMON.

EXEC

EXEC is a very special command. EXEC allows you to turn control of your Apple II
over to a text file. The EXEC command looks like this:

EXEC FILENAME7R67S5,D27V23

The A parameter is similar to the POSITION command's record parameter. It
refers to the relative field number of the EXEC file where processing should begin.
Since EXEC opens the file and places the pointer at the beginning of the EXEC file,
the A parameter refers to an absolute field number within the file. RO is the default
condition, which starts execution at the beginning of the file. A 1 starts execution
at the second field.

The relative record, slot, drive, and volume specifications are all optional and
can occur in any order.

When EXEC is issued, the file specified is opened, then implicit READ and
INPUT statements take place. The first line in the file is retrieved if no A parameter
is present. If A is present, then the line specified by A is retrieved.

The retrieved line is treated as if it had been typed on the keyboard in immedi
ate mode. If the line is meaningless garbage, you will see the message ?SYNTAX
ERROR or*** SYNTAX ERR. If it is a valid program line, like:

100 PRINT "THIS IS A TEST"

it will be stored in memory, as if you had just typed it. If it is a direct command,
such as LIST or RUN, it will be executed.

After action occasioned by the first line is completed, the next line is read and
acted upon. This continues until the end of the file has been reached; at that time
control of the Apple II returns to the keyboard.

Suppose a text file called BUBBA contains these lines of text:

PRINT "I HAVE CONTROL OF YOUR APPLE ! ! 1 "

FP
100 GR
~00 FOR 1=0 TO 39
300 FOR J=O TO 39
400 COLOR=RND<0>*15

192

500 PLOT I,,J
600 NEXT 1J
700 NEXT I
800 FOR I=1 TO 5000 : NEXT I
900 TEXT : CALL -936
99';> EN[I
LIST
FOR I=l TO 5000 : NEXT I
RUN
NEW

APPLE II USER'S GUIDE

PRINT 11 FINISHED. HERE"'S YOUR DISK CATALOG: 11

CATALOG

When you type the command:

EXEC BUBBA
several things will happen. First a message will be displayed. Then Applesoft will
be invoked. Next, a short program is entered into memory and listed. After a brief
pause the program is RUN, then erased from memory. Another message is dis
played, followed by the catalog of the currently selected disk.

Notes on EXEC

EXEC has several interesting kinks you should know about.
Only one EXEC file may be open at any one time. If a file which is being

accessed by an EXEC command contains an EXEC command, the first file is
closed and the second file takes control.

After the EXEC file runs a program, the next EXEC file field (i.e., line) is
executed. If the program is aborted with CTRL-C, the EXEC will usually not con
tinue.

If a program run by the EXEC command contains an INPUT statement, the
input is taken from the next field in the EXEC file. That causes a problem if the
next field is an immediate mode DOS command (not a program line). The com
mand will be executed instead of being accepted as INPUT data.

If a program executes a CLOSE command, or if the EXEC file contains an
immediate mode CLOSE command, the EXEC file will not be closed.

Using EXEC to Convert a Program
from One BASIC to the Other

EXEC can be used to convert programs between Integer BASIC and Applesoft.
First store the program as a text file. You can do this by adding a few lines to the
program to create the text file, execute a WRITE command, then list the program.
The listing goes into the text file. Here are the necessary statements:

1 D$ = 11
": PRINT 0$; 11 0PEN FILE": PRINT [!$;"WRITE FILE 11

2 LIST 10,32767
8 PRINT O$;"CLOSE": END
10 REM YOUR PROGRAM BEGINS HERE

Chapter 5: THE DISK II 193

When you run the program, only lines 1 , 2, and 3 are executed. They will open a
file and store the program listing in it. When this finishes, you can change to the
other BASIC (with FP or INT, for example). Then type:

EXEC FILE
The old program lines will be loaded from the disk into memory. Now you must
edit the program to correct the parts that don't conform to the rules of the new
language.

MAX FILES

MAXFILES allows you to specify the maximum number of files which may be
open at any one time. Each file has 595 bytes of memory reserved for its use as a
buffer. There are two 256-byte sections in each buffer, one for reading and the
other for writing. The remaining 83 bytes are used for housekeeping information,
such as the track/sector list.

When a file is opened, or a disk operation such as CATALOG or LOCK occurs,
DOS reads 256 bytes of information from the disk and places it in a buffer. If the
information has been changed and needs to be written back to the diskette, 256
bytes are copied from the buffer and stored on the diskette.

The following example specifies eight files maximum:

MAXFILES 8
The number of files must be an integer from 1 to 16. When DOS is booted, three
buffers are allocated. MAXFILES may be set higher if you intend to use more than
three files simultaneously. MAXFILES may be set lower if you need those extra
bytes of memory for your application.

One buffer is used just to execute any of the following DOS commands:

APPEND
BLOAD
BRUN
BSAVE
CATALOG
CHAIN
CLOSE
DELETE
EXEC

FP
I NIT
INT
LOAD
LOCK
MAX FILES
MON
NOMON
OPEN

POSITION
READ
RENAME
RUN
SAVE
UNLOCK
VERIFY
WRITE

Thus, if you have opened disk files up to the limit and then issue the CATALOG
command, the error NO BUFFERS AVAILABLE is returned. No buffer is required
for commands used outside of the DOS context, however (e.g., cassette LOAD).

When MAXFILES is changed, Integer BASIC programs are erased and
Applesoft strings become garbled. Therefore, execute MAXFILES before loading
or running a program.

MAXFILES may be executed within Applesoft programs if preceded by a CTRL
D character in a PRINT statement. MAXFILES will cause GOTO, GOSUB, and other

194 APPLE II USER'S GUIDE

instructions to malfunction unless it is the first statement in the program. In order
to avoid having strings clobbered, use MAXFILES as follows:

J1 REM FIRST ISSUE MAXFILES COMMAND

J2 PRINT CHR$(4); 11 MAXFILES 9 11

J3 REM REGULAR PROGRAM BEGINS HERE

J4 D$=CHR$(4):REM CTRL-D CHARACTER

You can only use MAXFILES in Integer BASIC in the context of an EXEC file. For
example, the EXEC file contains three psuedo-immediate mode statements:

MAXFtLES :3
LOAD PROGRAM
RUN 10

It is invoked in a program as follows:

5 PRINT [I$; 11 EXEC: MXF 11
: REM SET MAXFILES

CONTINUE AT LINE 10
10 REM PROGRAM BEGINS HERE

USING DOS DEBUGGING AIDS

Since programs which access disk files are usually somewhat complex, DOS has
three commands that help you debug programs: MON, NOMON and TRACE.

MON

MON is short for monitor. MON allows you to monitor the information going to
and coming from the disk. MON uses three parameters. The following example
shows all three:

MON C,J,O

MON parameters specify the type of information to be displayed. C causes com
mands to the disk to be monitored. I causes input from the disk to be displayed. 0
causes output to the disk to be displayed.

The parameters may appear in any order, and in any combination. At least one
parameter must be present or the command will be ignored.

MON will remain in effect until a NOMON, INT, or FP command is executed, or
DOS is rebooted.

NOMON

NOMON cancels the effect of the MON command. NOMON uses the same three
parameters MON uses, but the NOMON parameters specify which data is not to

Chapter 5: THE DISK II 196

be monitored. For example, assuming MON I,O,C has been issued, the command:

NOMON 0

will cancel monitoring of output to the disk. Input from the disk and DOS Com
mands will continue to be displayed.

Using the TRACE Command

The TRACE command (see Chapter 4) is used when debugging programs. But
since TRACE prints line numbers with no carriage return, DOS commands
become concatenated to the line number, and ignored. The remedy for this is sim
ple. A carriage return should be output prior to each DOS command. To do this,
change the line:

100 D$ = CHR$ (4): REM CTRL-D
to read:

100 0$ = CHR$ (13) + CHR$<4): REM RETURN+ CTRL·

Then, whenever PRINT D$ occurs, the CTRL-D character will be preceded by a car
riage return, separating it from the traced line numbers.

Another problem exists, though. If a WRITE command is in effect, all those line
numbers will be stored in the file. (Sorry, no way around this one.)

MACHINE LANGUAGE
(BINARY IMAGE) DISK FILES

The Disk II supports machine language and binary image (graphics) files. These
files are shown with the letter B as the file type code in a disk catalog.

Both low-resolution and high-resolution images can be stored on diskettes for
later recall and display.

Machine language programs can be loaded and executed directly, or they may
be called by BASIC programs using the CALL statement or USR function.

DOS has three commands which are specifically designed for binary files. They
are BSAVE, BLOAD, and BRUN. The effect of each command is the same as its
nonbinary equivalent (BSAVE=SAVE, BLOAD=LOAD, BRUN=RUN).

BSAVE

BSAVE, as the name implies, saves a binary image on the disk. Here is an example:

BSAVE FILENAME,A378,L21,S6,D2,V6

Note that there are two parameters not found on other DOS commands. Note
also that these parameters are not optional; they must be specified. The slot,
drive, and volume parameters are optional, as usual.

196 APPLE II USER'S GUIDE

Parameter A is the address parameter; it refers to the starting memory address
of the binary image to be saved. The address may be either decimal or hex
adecimal constants. Hexadecimal values must be preceded by a dollar sign ($).
Decimal values must be in the range 0 to 65535. Negative values are prohibited.

The L parameter specifies the length of the binary image to be saved. The
length is the number of bytes in the image. It may be specified as a decimal or
hexadecimal number, with hexadecimal values preceded by a dollar sign ($). The
length must be in the range 1 through 32767 or a SYNTAX ERROR will be gener
ated. 32767 bytes is the largest size DOS can store as a single field. Two BSAVE
statements must be used to store more than 32767 bytes.

If the memory locations in the range specified do not physically exist, no error
will be returned. It is not very useful to specify a location outside of the installed
range on your Apple II (e.g., 49151 or $BFFF on a 48K system).

BLOAD

BLOAD retrieves the contents of binary files and loads them into memory. The
BLOAD command looks like this:

BLOAD FILENAME,A378,L21,S6,D2,V6

The address parameter is optional with the BLOAD command. If it is absent, the
image will be loaded beginning at the address specified when the image was
saved.

Machine language programs may not function properly if they are loaded into
the wrong memory addresses.

Unlike the LOAD command, BLOAD will not erase programs or data values
unless they reside in the memory locations where the image will be stored. Only
those loce~tions within the BLOAD range are affected; no other memory values are
changed.

No error will be returned if you specify read-only memory (ROM) locations as
part of the BLOAD range. The ROM locations will be unchanged, of course.

BRUN

BRUN is identical to BLOAD except that after the file has been loaded, BRUN
executes a machine language JMP ijump) instruction to the starting address. If no
address was specified, the jump will be to the address from which the image was
saved. The following is a BRUN example:

BRUN FILENAME,A378,L21,S6,D2,V6

Never use BRUN with a graphic image, as the results are unpredictable.

6
Graphics and Sound

The Apple II has capabilities for color video graphics and sound generation.
Together, these features add another dimension to the programs you use, as well
as those you might write yourself. This chapter is suited for the novice who may
have just learned BASIC (perhaps by reading this book), as well as the assembly
language programmer. Graphics are not difficult to master, especially in a high
level language. The Apple II Monitor, with its built-in machine language
subroutines, helps the assembly language programmer use graphics and the
Apple II onboard speaker even more. Once you finish this chapter you will have
enough solid working knowledge of these features to start using them in pro
grams you write.

LOW-RESOLUTION GRAPHICS

The Apple II has two separate areas of memory available for low-resolution
graphics. These two areas are called pages. Either low-resolution page can appear
on the display screen as a graphics display 40 columns across by 48 rows, as
shown in Figure 6-1 .

Each coordinate (intersection of a row and column) appears as a small rec
tangle on the display screen. Each page contains 1 ,920 coordinates (40 columns
times 48 rows), and you can assign any one of 1 6 colors to each coordinate on a

198

1

'

II
12
13
I
1
. •
1' I
I
1
2 ' I 0

I
2
l . • s I

2 7 • I

1
2
3

L
J .
I

' 7
& I

l I

1
2 r .,

r. I
'G . 7

0 I 2 3 • 5 I 7 I 110111213101&11171811:102122232•U%82721213C313233,.3S3037l131

~

APPLE II USER'S GUIDE

One graphics dot,
at row 19,
column 30

FIGURE 6-1 . Low-Resolution Graphics Screen

page. Table 6-1 shows the hues which are available. You don't have to know the
inner workings of the Apple II in order to use low-resolution graphics; a working
knowledge of programming in BASIC (plus a little coordinate plotting) is sufficient
to get you started.

SETTING UP THE GRAPHICS PAGE

The page dedicated to low-resolution graphics also doubles as the text page for
the Apple II. When using BASIC, you switch to graphics mode from text mode by
using the statement:

GR

Once this statement executes, the display screen goes black except for four
lines at the bottom of the screen which hold text. This lower area of the screen is

TABLE 6-1 . Low-Resolution Graphics Colors

Color Number Color Number

Black 0 Brown 8
Magenta 1 Orange 9
Dark Blue 2 Gray#2 10
Purple 3 Pink 11
Dark Green 4 Light Green 12
Gray #1 5 Yellow 13
Medium Blue 6 Aqua 14
Light Blue 7 White 15

Chapter 6 : GRAPHICS AND SOUND 199

called the text window. With the text window at the bottom of the screen, space
exists for 40 of the 48 rows available in low-resolution graphics mode. You can
use this statement more than once in a program, even when you are in low-resolu
tion graphics mode, as a means of clearing the screen.

Full-Screen Graphics

After executing the GR statement, you can eliminate the text window to allow the
last eight lines of graphics by entenng:

POKE -16302.0

The text window disappears, replaced by graphics.

Restoring the Text Window

If the Apple II is in full-screen graphics mode, you can restore the text window in
two ways. To clear the graphics screen and restore the text window at the same
time, use the GR statement. If you want to restore the text window without alter
ing the first 40 rows of graphics, enter the statement:

POKE -16301,0

Once executed, this statement reopens the text window at the bottom of the
screen.

Going Back to Full-Screen Text

To leave the low-resolution graphics mode and return to the full-screen text
mode, this BASIC statement:

TEXT
resets the display from graphics to characters. While the GR statement clears the
screen when it executes, TEXT does not. Remember that text and graphics both
use the same area of memory. Once this statement executes, you will probably
see a screen full of odd characters; this is because the Apple II is now interpreting
graphics data in memory as text. Clear the text screen with the Esc- @ key
sequence, with the CALL -936 BASIC statement, or in Applesoft. with the HOME
command.

GRAPHICS PROGRAMMING STATEMENTS

Both Integer BASIC and Applesoft recognize low-resolution graphics commands
to plot single coordinates on the screen, change the color used for plotting, and
draw vertical or horizontal lines of varying lengths. These commands work only on
low-resolution graphics page 1 (also called the primary page) . If you use page 2,
you eliminate many of these timesaving statements and must resort to such non
descriptive statements as PEEK, POKE and CALL.

200 APPLE II USER'S GUIDE

The COLOR Statement

In Table 6-1, each color listed has a corresponding number from 0 to 15. It is this
number which you use in a COLOR statement to set the current low-resolution
hue. For example:

COLOR=13

sets the drawing color to yellow. If you neglect to select a color, the Apple II
chooses black, equivalent to COLOR=O, as the default color. Although you can
specify a color number as high as 255 without generating a syntax error, COLOR
only pays attention to the low-order nybble of the color number you select.
Therefore, if you enter COLOR=222 (equal to DE hexadecimal), it will evaluate to
COLOR=15 (equal to OE hexadecimal).

The PLOT Statement

This BASIC statement places a single graphics dot - actually a small rectangle -
on the Apple II display screen at the coordinates you specify.

The statement:
PLOT 23,18

illuminates the graphics point at the 24th row and 19th column in the hue
selected by the latest COLOR statement executed. This row number ranges from
0 to 4 7, and the column value from 0 to 39. If you exceed these limits in a PLOT
statement, you will get an error message, and your program will stop. As with any
low-resolution graphics statement (except GR). you can replace literal expressions
with variables:

PLOT Y/2+12 , X-4

A Plotting Example
---,~~~~------

The followmg I~ program uses all of the low-resolution graphics
statements discussed so far in this chapter. The object is to plot a diagonal line
from the upper lefthand to lower righthand corners of the screen.

10 REM DRAW A DIAGONAL LINE
11 REM ACROSS THE LOW-RESSCREEN
20 OR
30 COLOR= RND C16J
40 FOR Y=O TO 39
50 PLOT Y,Y
60 NEXT Y
70 GOTO 3 0

The display screen will look like Figure 6-2, except that the diagonal line
changes colors randomly.

To convert this program to Applesoft, change line 30 as shown below.

~ ::::0 COLOR= RND C 16 1 * 16

Chapter 6: GRAPHICS AND SOUND

I
II
12

~:
II ..
17 ..
II
:ro
21
22
23
2• :•
26
2J
21
21
30
31
32
33
:M u
3J
31
311
40

" '2
'3 ..
·~ " "

0 1 2 3 4 i 0 7 8 I 101112131•1S181111192021222l2 .. 25282l28293031l233a.35o38JJ3831

FIGURE 6-2. Low-Resolution Plotting Example

Drawing Horizontal Lines

201

The HUN command allows you to draw lines of varying lengths from left to right
on the low-resolution graphics page. This statement:

HLIN (>,39 AT 0

draws a horizontal line at the extreme top of the screen, from the left margin to
the right margin. HUN stands for horizontal line. The general format of this state
ment is to enter the lefthand column followed by a comma, the righthand column
to draw to (39 in this case), the word AT, and the row on which to draw the line.

The lefthand and righthand column parameters cannot be negative and must
be less than 256; the righthand column cannot be smaller than the lefthand col
umn parameter. The parameter following AT cannot be negative or larger than 48.
If any of the parameters exceed the limits, an error message appears, stopping
execution. If you specify column numbers greater than 39 in the HUN statement
in Integer BASIC, you will receive unpredictable results. Applesoft gives you an
error message. For example, execute the ~tatements:

10 GR

20 COLOR=12

30 HLIN 45,100 AT 0

In Integer BASIC, they cause two green bars to display. The first bar is not on
row 0 (the highest line on the display) as it should be, and the bar continues
several lines down on the screen. It is rarely a good idea to let these values exceed
actual locations on the low-resolution screen.

202 APPLE II USER'S GUIDE

Drawing Vertical Lines

The VUN (for vertical line) statement draws a line in the selected color, from one
row to another in a specified column.

For example:

VLIN 12,30 AT 33

draws a line from row 1 2 down to row 30 at column 33. The parameter values for
VUN are identical to those for HUN: the first and second expressions must be
integers between 0 and 255 inclusive, the second parameter cannot be less than
the first, and the last parameter (corresponding to the column number) must be
between 0 and 39 inclusive. If any of these parameters is out of the ranges
allowed, an error message displays on the Apple II screen.

Using HLIN and VLIN
in a Program

Another program (listed below) helps explain the use of HUN and VUN. Here, ran
dom lines draw in random colors on the screen. To stop the program, press CrRL
C.

10 REM LOW-RES HLIN AND VLIN DEMO
20 GR : REM USE GRAPHICS PAGE 1
30 POKE -16302,0: REM SET FULL-PAGE
40 CALL -1998: REM CLEAR ALL 48 ROWS
50 REM BEGIN PROGRAM
60 COLOR= RND (16>: REM SELECT RANDOM COLOR
70 HLIN O, RND <40> AT RND <48>
80 COLOR= RND <16)
90 VLIN O, RND <48> AT RND <40)

100 GOTO 60

The SCRN Statement

The SCAN statement is a bit more subtle than the other low-resolution graphics
statements. Suppose you want the computer to figure out what color is displayed
at a certain point on the screen. SCAN does this. This statement:

X=SCRN<12.24)
assigns the color number of the coordinates in parentheses (in this case, the 1 3th
row and 25th column) to the variable X. The color passed back to the variable is
numbered 0 through 15; the number corresponds to one of the low-resolution
colors shown in Table 6-1. For example, if you enter the following immediate
mode statements:

OR
COLOR=14
PLOT 12.12
PRINT SCRN <12,12)

the Apple II responds:
14

Chapter 6: GRAPHICS AND SOUND 203

This statement may be very useful to you when you write advanced low
resolution graphics programs.

HIGH-RESOLUTION GRAPHICS

The most fetching aspect of the Apple II computer is its high-resolution graphics
capability. Like low-resolution graphics, you have two separate areas or pages
available for use. However, this is where the similarity ends. Resolution in this
mode is 280 horizontal positions by 192 vertical positions, an increase over low
resolution by 7 times on the horizontal axis and 4 times on the vertical axis.
Although fewer colors are available for you to use in high-resolution graphics
mode, you can plot much finer lines on the screen.

Built-in high-resolution graphics functions are only available in Applesoft.
Integer BASIC has no intrinsic commands of this kind. However, no matter what
language you use on the Apple II, the computer always has the capability for high
resolution graphics because the Apple II uses part of its memory to store high
resolution dots, lines, and shapes and includes built-in programs which interpret
and display this memory on the TV screen. Certain Applesoft statements auto
matically use the built-in programs and screen memory; we will discuss them first.
Later in this section you will see how to incorporate high-resolution graphics into
an Integer BASIC program as well. As you read further, you will discover some
high-resolution tricks achievable only with Integer BASIC.

WHICH PAGE SHOULD YOU USE?

There are some difficulties in using high-resolution graphics, and they involve
how much memory your Apple II has. If you have firmware Applesoft (i.e., in ROM,
or the Apple II Language System), you can use high-resolution page 1 if your
computer contains more than 1 6K, and you can use page 2 if your Apple II has
24K of memory or more. Add 12K to the minimum memory if you will use the
Disk Operating System (DOS) and Applesoft high-resolution graphics at the same
time.

If you use the versions of Applesoft from cassette or disk, you cannot use
high-resolution page 1, as it is used to hold part of the Applesoft interpreter. If you
try to use high-resolution page 1, you will corrupt or entirely lose the ability to pro
gram in Applesoft, as well as the actual BASIC program currently in memory. You
can use high-resolution page 2 if your Apple II has at least 24K, or 36K if you
want to have DOS in memory at the same time.

Setting Aside High-Resolution
Graphics Memory

Applesoft does not automatically protect memory for high-resolution graphics.

204 APPLE II USER'S GUIDE

As a program becomes larger, either by adding statements or more variables, the
chances of destroying graphics pages increase. The way to solve this problem is
to set two memory pointers, HIMEM: and LOMEM:, to values which will protect
the high-resolution graphics page or pages you use. These pointers act as bound
aries which your program will not cross, thus yielding up to two areas of memory
which you can use freely.

HIMEM: and LOMEM: usage differs in Applesoft and Integer BASIC. Check
the~e differences in the BASIC compendium, located in Chapter 8. Also, Figure
G-1 in Appendix G depicts memory usage pictorially. The following three
paragraphs will be easier to follow if you refer to it.

If you intend to use high-resolution page 1 (remember that you must have firm
ware Applesoft to do this), and you only have a 16K Apple II, set HIME!VI: to 81 91
and leave LOMEM: alone. This keeps your Applesoft program below memory
location 81 91 , which is a significant restriction but one that is unavoidable since
you need 8K for high-resolution screen memory. If you want to use high-resolu
tion page 1 on an Apple II with more than 16K, you may prefer to leave HIMEM:
alone and set LOMEM: to 16384. This places your Applesoft program above
high-resolution page 1. CAUTION: Do not use this latter scheme in conjunction
with DOS unless you have at least 32K of memory. Otherwise, stick to the first
scheme, which keeps your Applesoft program below page 1 .

If you intend to use high-resolution page 2 (possible only with 24K or more),
set LOMEM: to 24576, or set HIMEM: to 16383 and leave LOMEM: unchanged.
By adjusting LOMEM :, you place your Applesoft program ~bove high-resolution
page 2. In order to use DOS at the same time, you need at least 48K of memory. If
you adjust HIMEM: instead, your program resides be/ow high-resolution page 2.1n
this latter case, if you are using a nonfirmwf3re Apples~ft interpreter (from
cassette or disk), your Applesoft program wilt" have to squeeze in above the
interpreter and below high-resolution page 2, a tight fit.

If you plan to use both pages for high-resolution graphics (possible only with
firmware Applesoft), set LOMEM: to 24576 or set HIMEM: to 8191. If you put
your Applesoft program above the high-resolution pages by adjusting LOMEM:
and leaving HIMEM: alone then you will need at least 48K in order to use DOS and
still have a meaningful amount of memory for your Applesoft program.

SETTING UP THE q~APHICS DISPLAY

Although two pages are available for high-resolution graphics, Cf3SSette and disk
Applesoft use part of high-resolution page 1 for storipg the language itself (the
int~~preter). If you have an Apple II Plus or a standard Apple II, either with the
Applesoft Firrnware card or the Language System, you can use page 1 withot~t
adversely affecting BASIC. For the sake of compatibility with other Apple II com
puters, you may want to use hi~~-resQl~tion page 2 anyway.

In Applesoft, the statement: ·
HGR

Chapter 6: GRAPHICS AND SOUND 205

clears and then displays high-resolution page 1 , with a four-line text window at
the bottom of the screen. You can have both graphics and text on the screen in
this mode by using PRINT statements in Applesoft to display text in the text win
dow. However, once the Apple II executes HGR, the screen will show only 160 of
the 1 92 high-resolution horizontal lines available. In order to show full-screen
graphics, perform a POKE -16302,0 after HGR. This will eliminate the text win
dow and replace it with the remaining 32 lines of graphics.

To display high-resolution page 2, use the statement:

HGR2

Execution of HGR2 erases and then displays all 192 lines of high-resolution
page 2, leaving no text window at the bottort1 of the screen. To open the text win
dow at the bottom of the screen, perform a POKE -16301,0 after HGR2. The
text window is more difficult to use with high-resolution page 2, however. The
text which appears in the window is from the secondary text page. BASIC can
only access this page via POKE statements (not via PRINT), which is quite limiting.
Furthermore, the secondary text page is not protected from overwriting by BASIC
as is text page 1, so you will need to set LOMEM: to 3071 or greater.

ALTERNATIVES TO HGR AND HGR2

A principal disadvantage of using HGR and HGR2 is that executing either of these
statements clears the high-resolution page selected whether you like it or not.
Moreover, these statements are not available in integer BASIC. You can use PEEK,
POKE, and CALL statements to set up the graphics pages more flexibly, and you
may find them useful no matter what language you use on the Apple II.

Another Way to Set Up
the Graphics Display

It is possible to go into high-resolution graphics mode without erasing the display
screen. You can liken this procedure to flipping a series of switches. In theory, you
are doing just that to a set of reserved memory locations called soft switches,
which reside at memory locations -16304 through -16297 ($C050 through
$C05 7). Figure E-1 in Appendix E illustrates the available switches. In order to
keep these statements compatible with both Integer BASIC and Applesoft, we
use the negative integer representation of these memory locations (e.g., -16304
instead of 49231).

To display high-resolution graphics page 1 without erasing its previous con
tents, perform the following statements:

POKE -16304, 0 Sets graphics mode

POKE -1l:.297, 0 Sets high-resolution mode

POKE -16300,0 Selects high-resolution page 1
(Only necessary if switching
from high-resolution page 2)

206 APPLE II USER'S GUIDE

Try these statements in immediate mode as an experiment.
To display high-resolution graphics page 2 without erasing its previous con

tents, enter the following statements:

POKE -16304,0

POKE -16297,0

POKE -16299,0

Normal BASIC After
High-Resolution Graphics

Only necessary if graphics
mode has not already been set

Only necessary if high-resolution mode
has not already been set

Selects high-resolution page 2

In Integer BASIC, the TEXT and GR statements may be insufficient to completely
reset the display screen. If you have been using page 2 graphics, you must
explicitly reselect page 1 with a POKE -1 6300,0 statement. Otherwise you will
see page 2 of the text/low-resolution screen memory. This can be especially con
fusing in text mode. The keyboard appears to be dead because everything you
type goes into page 1 screen memory, while you are looking at page 2 screen
memory.

The GR statement does not switch from high-resolution to low-resolution
graphics in Integer BASIC. It only selects graphics mode with a four-line text win
dow (as opposed to all-text mode). You must explicitly select low-resolution
graphics with a POKE -16298,0 statement.

Clearing the High-Resolution Pages

If you use high-resolution graphics under Applesoft, HGR or HGR2 will clear the
selected page whenever the statement is executed. However, under Integer
BASIC there is no single statement which performs this function. The following
subroutine uses a built-in Monitor function to clear the high-resolution screen:

18990 REM ***************************
18991 REM * CLEAR HI-RES SCREEN *
18992 REM * CUSES MONITOR"'S 11 MOVE 11 *
18993 REM * SUBROUTINE AT $FE2C *
18994 REM * TO MOVE DATA QUICKLY *
18995 REM * THROUGH THE HI-RES AREA>*
18996 REM * ------------------------*
18997 REM * SET PAGE=1 OR 2; THE *
18998 REM * ROUTINE DOES THE REST. *
18999 REM ***************************
19000 START=32
19010 IF PAGE=2 THEN START=64
19020 POKE 60,0
19030 POKE 61,START
19040 POKE 62,254
19050 POKE 63,START+33

Chapter 6: GRAPHICS AND SOUND 207

19060 POKE 66,1
19070 POKE 67,START
19080 POKE -16304,0
19090 POKE -16297,0
19100 IF PAGE=! THEN POKE -16300,0
19110 IF PAGE=2 THEN POKE -16299,0
19120 POKE START*256,0
19130 CALL -468
19140 RETLIRN

This BASIC subroutine moves zeros throughout the high-resolution graphics
page you select. If the variable PAGE is set to 1, the subroutine clears page 1; if
set to 2, page 2 is cleared. This subroutine only works in Integer BASIC; however,
don't consider that a disadvantage. Applesoft performs this function much more
efficiently with HGR or HGR2.

HIGH-RESOLUTION COLORS

Eight color choices are available in high-resolution mode, but there are only four
different colors available, plus black and white. Table 6-2 shows these colors and
their corresponding numbers (used when selecting the color).

The HCOLOR Statement

The Applesoft HCOLOR statement selects one of the eight colors available for
high-resolution use. Unlike the COLOR statement in low-resolution graphics
(which will allow you to specify numbers higher than those allocated to colors),
HCOLOR will not accept a color number greater than 7. If you do specify an out
of-range color, your program will abruptly stop with an ?ILLEGAL QUANTITY
ERROR message. HCOLOR does not change the color of any graphics already on
the high-resolution screen, nor does it have any effect on low-resolution graphics.

Setting a High-Resolution Background Color

With a slight modification, the subroutine presented earlier which clears the high-

TABLE 6-2. High-Resolution Graphics Colors

Color Number Color Number

Black 0 Black 4
Green 1 Orange 5
Violet 2 Blue 6
White 3 White 7

208 APPLE II USER'S GUIDE

resolution screen will fill the entire screen with any one of the high-resolution col
ors. The subroutine below does this. Before calling the subroutine, assign the
graphics page number to variable PAGE. Also, assign the high-resolution color
number to variable HCOLR. The calling program must set the soft switches for
high-resolution graphics mode. This subroutine works only in Integer BASIC.

18990 REM *********************
18991 REM * SET BACKGRND COLOR*
18992 REM *-------------------*
18993 REM * SET PAGE=! OR 2; *
18994 REM * ALSO SET HCOLR TO *
18995 REM * APPLESOFT EQUIVA- *
18996 REM * LENT HI-RES COLOR.*
18997 REM *********************
19000 START=32
19010 IF PAOE=2 THEN START=64
19020 POKE 60,0
19030 POKE ~!,START
19040 POKE 62,253
19050 POKE 63,START+33
19060 POKE 66,2
19070 POKE 67,START
19075 Y1=85:X1=42
19080 IF HCOLR>O AND HCOLR<>4 THEN 19090:X1=0:Y1=0
19090 IF HCOLR<>3 AND HCOLR<>7 THEN 19100:X1=127:Y1=127
19100 IF HCOLR=1 OR HC:OLR=5 THEN 19120
19110 X3=Xt:X1=Y1:Y1=X3
19120 IF HCOLR<4 THEN 19140
19130 Y1=Y1+128:X1=X1+128
19140 POKE START*256,X1
19150 POKE START*256+1,Y1
19160 IF PAGE=! THEN POKE -16300,0
19170 IF PAOE=2 THEN POKE -16299,0
19180 CALL -468
19190 RETURN

PLOTTING POINTS AND LINES

One powerful advantage in Applesoft high-resolution graphics is the ability to plot
lines of any angle as well as individual points and horizontal or vertical lines. The
HPLOT statement can be used in three ways:

HPLOT 12,12

This plots a single point on the currently selected high-resolution page at the
intersection of the thirteenth row and thirteenth column, in the currently selected
high-resolution plotting color.

The second use of HPLOT is:

HPLOT Q,O TO 279,191

This statement draws a diagonal line from the upper righthand to lower lefthand
corners of the screen. Using HPLOT with two sets of coordinates as shown
above, you can plot from one point to another on the screen.

Chapter 6: GRAPHICS AND SOUND 209

The third type is more sophisticated:

HPLOT 0,0 TO 279,0 TO 279,191 TO 0,191 TO o,o

This version of HPLOT only works on firmware versions of Applesoft. Cassette
based and disk-based Applesoft do not allow this form of HPLOT. Here you can
define multiple plotting statements very easily. All segments are drawn in the
same color. This can be quite useful if you want to draw a many-sided shape.

Alternatives to HPLOT

The subroutine listed below allows you to program high-resolution graphics in
Integer BASIC, without having to switch pages. You may find this subroutine use
ful; however, it is rather slow because all calculations occur in BASIC. To use this
subroutine, pass the X and Y coordinates of the point you wish to plot. Make sure
that PAGE is set to the high-resolution page you want to use. It is up to you to set
high-resolution, graphics, and full-screen graphics modes. This adds some flex
ibility. If you use this subroutine without first setting high-resolution mode, the
subroutine will plot into high-resolution screen memory but will not change the
screen display itself. Later, after the program finishes plotting in the screen
memory, it can turn on high-resolution graphics with a series of POKE statements
(as described earlier) and the high-resolution plotting that took place behind the
scenes will suddenly be visible. This lets you program points on page 2 while dis
playing page 1 high-resolution graphics, and vice versa.

20000 REM ***********************
20001 REM * HI-RES INTEGER PLOT *
20002 REM * ------------------- *
20003 REM * SET X=COL, Y=ROW, *
20004 REM * PAGE=1 OR 2; USES *
20005 REM * VARS Y1,X1,X3 *
20006 REM ***********************
20007 REM
20010 Y 1 =F'AGE *8192: REM SET BASE ADDRESS
20020 Y1=Yl+CY/64>*40+<Y MOD 8>*1024
20030 Y1=Y1+(Y MOD 64/8)*128+X/7
20040 X1= PEEK <Y1>: REM READ IN THE HI-RES BYTE
20050 X3=2 ·" <X MOD 7>
20060 REM ~oR~ THE BYTE IN Xl WITH
20070 REM THE BIT VALUE IN X3'.
20080 IF Xl MOD (X3 A 2><X3 THEN X1=X1+X3
20090 POKE Y1,X3
21000 X1= PEEK <Yl>
21010 X3=2 A <X MOD 7>
21020 IF X1 MOD <X3*2><X3 THEN X1=Xl+X3
21025 X3=2 A <X MOD 7>
21026 OOTO 21100
21030 POKE Y1,X3
21040 RETURN
21100 POKE Yl,X3
21130 RETURN
25000 OOSUB 19000

210 APPLE II USER'S GUIDE

An Integer BASIC High-Resolution Example

The next program uses two of the subroutines recently introduced to plot points
on the high-resolution screen. The game controls determine the coordinates to
plot. By rotating the controls, you can sketch lines on the screen.

10 REM THIS PROGRAM USES SPECIAL
20 REM SUBROUTINES TO CLEAR AND
30 REM PLOT IN HI-RES GRAPHICS
40 REM USE CTRL-C TO END PROGRAM
89 REM SET GRAPHICS MODE
90 POKE -16304,0
99 REM SET HI-RES GRAPHICS

100 POKE -16297,0
109 REM SELECT FULL-SCREEN GRAPHICS
110 POKE -16302,0
200 PAGE=2
204 REM CLEAR HI-RES SCREEN MEMORY
205 GOSUB 19000
209 REM GET POINT COORDINATES
210 X= PDL C1>
220 Y= PDL CO>
229 REM PLOT HI-RES POINT
230 GOSUB 20010
239 REM GET MORE COORDINATES
240 GOTO 210
260 END

For an interesting variation of this program, try using the subroutine which fills in a
solid color on the screen instead of the clear-screen subroutine.

Try improving the program by checking the game control pushbuttons with
POKE statements, and clearing the screen each time a pushbutton is pushed.

USING HIGH-RESOLUTION SHAPES

Along with coordinate plotting and drawing, the Apple II enables you to define,
draw, and manipulate two-dimensional shapes in high-resolution graphics mode.
This section describes how to create, design, and use a shape under Applesoft.
Thorough as it may be, this section only begins to explore the creative possibilities
open to you.

If you have written any high-resolution graphics programs which plot
geometric figures, you probably encountered some difficulty in manipulating
those figures on the screen. For instance, you may want to rotate the figure on an
axis, or make it appear larger or smaller on the screen. High-resolution shapes
have this manipulation feature.

DEFINING SHAPES

High-resolution shapes require planning. In essence, you go beyond telling the

Chapter 6: GRAPHICS AND SOUND 211

computer to draw a line from point A to point B. When you use shapes on the
Apple II, you describe the entire figure before instructing the computer to draw it.
You define high-resolution shapes in a shape table, so called because it contains
the coded characteristics of the figure to draw. The first step in defining a high
resolution shape is to draw the shape itself on paper. Take the example of draw
ing a square, which consists of four lines of equal length, each one at a right angle
to the previous line drawn:

u
The shape table contains coded instructions to draw a figure; these instruc

tions are called plotting vectors. Each vector describes movement up, down, left,
right, or not at all, and also whether to draw on the screen or not. You can
interpret each side of the square in the illustration above as a direction in which to
draw: one up, one right, one down, and one left. This is the way Applesoft's shape
manipulation routines look at figures.

Figures are more difficult to draw if they contain diagonal lines or curves. A
triangle, although it has one side less than the square, involves much more work
because it contains at least one diagonal line. The broken lines in the illustration
below indicate movement without any drawing (ghost vectors) :

Since you can only define a shape with vectors which move up, down, or side
ways, some shapes, such as circles, may not be worth approximating. In some
cases it may be easier to draw complicated shapes using HPLOT rather than using
shape tables.

ASSEMBLING THE SHAPE TABLE

The figure you drew on paper must go through a conversion to coded plotting
vectors. This section tells you how to make the conversion. The next section pre
sents an Applesoft program that does the conversion for you. So you may skip t"
the next section if you are not interested in all of the inner workings of shape
tables.

212 APPLE II USER'S GUIDE

Vector codes range in value from 0 to 7; each byte of a shape definition (part
of the shape table) can hold up to three vectors. Table 6-3 shows the possible
plotting vector codes. Once the shape is reduced to a set of vectors, the vectors
can be placed in memory, where certain Applesoft commands can decode them
and draw the shape.

Pick a starting point on the shape. Make a list of the plotting vectors needed to
construct the shape, using arrows (l - 1 -).List the vectors in order as you go
around the shape (clockwise or counterclockwise, it doesn't matter). Mark any
vectors to be plotted but not drawn (ghost vectors). Starting in the lower lefthand
corner, our square corresponds to these vectors:

Direction Pl9t

T Yes - Yes

! Yes - Yes

Now write the proper binary code next to each vector (use Table 6-3 to trans
late). This is what you should get:

Vector Code

1 100 - 101
! 110 - 111

As shown in Table 6-4, each byte of the shape table contains three sections,
each of which may contain a plotting vector. Notice that sections 1 and 2 contain
three bits each, while section 3 only contains two bits.

TABLE 6-3. Plotting Vectors and their Binary Codes

Symbol Action Binary Decimal
Code Code

t Move up without plotting 000 0
__ ..

Move right without plotting 001 1
; Move down without plotting 010 2 ~ ., __

Move left without plotting 011 3

1 Move up with plotting 100 4

- Move right with plotting 101 5

! Move down with plotting 110 6 - Move left with plotting 111 7

Chapter 6: GRAPHICS AND SOUND 213

TABLE 6-4. Shape Table Byte

Section 3 Section 2 Section 1

Bit 7 6 5 4 3 2 1 0

M = Movement bit M M p M M p M M
P = Plot/No Plot bit

By inspecting Table 6-3, you can see that some of the codes used for drawing
are three-bit numbers. This is fine for sections 1 and 2 of each shape definition
byte, each of which holds three bits. However section 3, because it only contains
two bits, can only hold certain plotting vectors. The vectors allowed in section 3
are right, left, and down without plotting. No other plotting vectors are recognized
in section 3.

Most of the time you will find that section 3 goes unused. This does not mean
you can forget about using it altogether, but in most cases you can. If section 3 of
a shape definition byte is set to zero, Applesoft ignores the section, moves on to
the next byte of the shape definition and interprets it for drawing.

Plotting vectors equal to zero can mean two things. In section 3 of each shape
definition, a zero plotting vector always means "no movement and no plotting."
However, in Table 6-3, a zero vector means "move up without plotting." This
ambiguity can cause problems in sections 1 and 2 of each shape definition byte,
because under certain circumstances Applesoft ignores zero plotting vectors, and
in others it performs upward movement without plotting. The rule here is to never

-end a shape definition byte with a zero plotting vector if you intend the zero vec
tor to mean "move up without plotting." Applesoft's shape manipulation routines
assume that if the most significant portion (section 3) or portions (sections 2 and
3 together} are set to 0, no drawing action takes place at all for those sections set
to 0.

If all three sections of a shape definition byte are set to 0, Applesoft interprets
this as an "end of shape definition" signal. In fact, you must end each shape
definition with a termination byte, set to 0. Otherwise, Applesoft will draw past
the end of your original shape, and will continue drawing until it encounters a 0
byte.

You can use the "move up without plotting" vector as long as a different plot
ting vector comes after it in the same byte. For example, section 2 can be set to 0
(which is "move up without plotting") and if section 3 is set to 01, 1 0 or 11 (bin
ary), section 2 will be recognized as "move up without plotting." If section 3 is set
to 0 and section 2 is set to 0, no movement occurs and Applesoft looks to section
1 of the next byte for the next valid plotting vector.

Armed with this knowledge, you can now arrange the binary-coded plotting
vectors for each segment of the shape into groups of two or three. In this way,

214 APPLE II USER'S. GUIDE

you transpose the three-bit plotting vector codes into eight-bit bytes which can
be stored in memory. Plotting vectors for a square map into a shape definition as
shown in Table 6-5.

With the shape now mapped into binary-coded bytes, you can easily convert
each byte to hexadecimal notation. Appendix J contains a binary-to-hexadecimal
conversion table. Table 6-5 shows the hexadecimal encoding of the square.

The shape definition is now complete. The next step is to create a series of
pointers to this shape (and others - up to 255 shapes) which Applesoft uses as
a directory.

Assembling the Shape Table Directory

The directory of a shape table is a series of bytes which describes how many
shapes there are in the table, and also points to each shape definition in the table.
The first byte of the directory contains the total number of shapes in the table.
This number ranges from 0 to 255 ($FF). The second byte is unused and should
be set to zero.

The remaining bytes in the directory contain pointers to each shape definition
you have in the table. Each pointer is two bytes long and contains the offset
(absolute distance in bytes) of the shape from the beginning of the directory. The
low-order byte of the pointer precedes the high-order byte. For example, if the
offset of a shape is ten bytes, you encode the pointer in hexadecimal as OA 00. In
the case of our square, there is only the one shape to list in the directory, so the
offset of shape 1 from the beginning of the directory is four bytes. Therefore, 04
00 moves into this section of the directory.

Byte

0 01

1 02

2 04}
3 00
4 25}
5 37
6 00

Number of shapes in the table

Offset of shape 1 from byte 0
(low-order byte first)

---- Shape definition

---- Shape ends with 00

It is good practice to leave extra bytes at the end of a shape table directory to
allow room for future shape table pointers. If you have no room at the end of the
directory to allow for expansion, you will have to reorganize the entire shape table
in order to insert a new shape pointer. Even though you may only need a directory
which holds ten shapes, you should leave unused space at the end of the direc
tory; 20 extra bytes allow for another ten shape pointers which you can use later.
When you want to add another shape to the table, place the new shape definition
just after the last shape definition in the table, calculate the offset of the new

Chapter 6: GRAPHICS AND SOUND 216

Displacement
--

0 Number of shapes
in table (0-$FF)

1 Unused
(set to zero}

~ Offset of shape 1 0 2 ... (low-order byte) u
!
0
CD 3 Offset of shape 1
:c (high-order byte) ca
1- . . '

CD . : I c. .
ca . .

s::. . .
CIJ

Offset of shape i
This section's length

2i+ 2 > depends on the number
(low-order byte) of shapes in the table

(2 bytes per shape)

2i+ 3
Offset of shape i I (high-order byte)

I) -~
2i+ 4

Plotting vectors
Shape 1

U)
CD :c
ca
1-
CD 00 -Always terminate shapes c.
ca . . with 00 s::. . .
(/)

Plotting vectors
Shape i

- -.........

FIGURE 6-3. Shape Table Organization

216 APPLE II USER'S GUIDE

TABLE 6-5. Coding a Shape Table (Square Shape)

Vectors Binary Codes Hexadecimal
Sec.1 Sec.2 Sec.3 Sec.1 Sec.2 Sec.3 Codes

Byte 0 None l - 00 100 101 25
Byte1 None ! - 00 110 111 37
Byte 2 None None None 00 000 000 00
Byte 3 - - - - - - -

shape from the beginning of the directory, place the new pointer immediately
after the last shape pointer in the directory, and add 1 to byte 0 of the directory
(which contains the number of shapes in the table).

Figure 6-3 illustrates the way shape tables and their directory are organized in
memory.

Assembling Vectors by Computer

The following program, written in Applesoft, assembles a shape definition for
you. The program asks you to enter each plotting vector and whether or not to
plot it. After entering the last vector, enter E for "end" and press RETURN. The pro
gram asks you to enter which vector, if any, to change. If you made any mistakes
entering plotting vectors, you can correct them by entering the number of the
plotting vector and then reentering the vector and whether or not to plot.

If you have no further corrections to make, enter 0 as the response to VECTOR
TO CHANGE (O=END). After a few seconds, the plotting vectors display in hex
adecimal notation. Here is a listing of the program and its accompanying sample
run:

1 REM **************************
2 REM * SHAPE CREATION PROGRAM *
3 REM * *
4 REM **************************
10 DIM S!ClOO>,Vl<lOO>
20 I = 0
30 PRINT 11 CREATE SHAPE VECTORS 11

40 PRINT
41 REM ENTER PLOT ACTIONS
50 V = I: GOSUB 270
58 REM CONTINUE ENTRY UNTIL M$
59 REM EQUALS TERMINAL VALUE 11 E 11

60 IF M$ < > 11 E 11 THEN Sl<I> = M:I = I + t: GOTO 50
70 PRINT
71 REM ALLOW CORRECTIONS
80 INPUT 11 VECTOR TO CHANGE CO=EN0): 11 ;V
90 IF·v > 0 THEN V = V- t: GOSUB 270:St<V> = M: GOTO 80
99 REM PACK VECTORS INTO VlC) ARRAY
100 FOR V = 0 TO I

Chapter 6: GRAPHICS AND SOUND

110 IF B = 2 AND S1CV> > 0 AND S1<V> < 4 THEN 140
120 IF B < 2 AND CS1CV> > 0 OR S1<V> > 4) THEN 140
130 8 = O:Q = Q + 1
140 Vl(Q) = Vt(Q) + Sl<V> * (8 A 8)
150 B = B + 1
160 IF B > 2 THEN 8 = O:Q = Q + 1
170 NEXT V
178 REM DISPLAY THE VECTORS AS
179 REM HEXADECIMAL NUMBERS
180 PRINT "BYTE"~ 11 VECTOR 11

190 FOR V = 0 TO Q

200 HY. = V1<V> I 16
210 LY. = V1<V> - HY. * 16
220 IF HY. > 10 THEN HY. = HY. + 7
230 IF LY. > 10 THEN LX = LY. + 7
240 PRINT v~ CHR$ CHY. + 176); CHR$ <LY. + 176>
250 NEXT V
260 END
269 REM VECTOR INPUT SUBROUTINE
270 PRINT "VECTOR u;v + 1;":";
280 INPUT "MOVE: U/D/L/R? u;M$
290 M = 0
300 IF M$ = "R 11 THEN M = 1
310 IF M$ = uon THEN M = 2
320 IF M$ = "L" THEN M = 3
330 IF M$ = "E 11 THEN RETURN
340 INPUT "PLOT CY=YES,N=NO>? ";P$
350 IF P$ = uyu THEN M = M + 4: RETURN
360 IF P$ = 11 N11 THEN RETURN
370 OOTO 340
lRUN
CREATE SHAPE VECTORS
VECTOR 1:MOVE: U/D/L/R? D
PLOT <Y=VES,N=NO>? N
VECTOR 2:MOVE: U/D/L/R? D
PLOT <Y=YES,N=NO>? N
VECTOR 3:MOVE: U/D/L/R? L
PLOT CY=YES,N=NO>? Y
VECTOR 4:MOVE: U/D/L/R? L
PLOT <Y=YES,N=NO>? V
VECTOR 5:MOVE: U/D/L/R? U
PLOT <Y=VES,N=NO>? N
VECTOR 6:MOVE: U/D/L/R? U
PLOT <Y=VES,N=NO>? Y
VECTOR 7:MOVE: U/D/L/R? U
PLOT CY=YES~N=NO>? Y ·
VECTOR S:MOVE: U/D/L/R? U
PLOT CY=YES,N=NO>? Y
VECTOR 9:MOVE: U/D/L/R? R
PLOT CY=VES,N=NO>? N
VECTOR tO:MOVE: U/D/L/R? R
PLOT <Y=VES~N=NO>? Y
VECTOR tt:MOVE: U/D/L/R? R
PLOT CY=YES~N=NO>? Y
VECTOR 12:MOVE: U/D/L/R? R

217

218

PLOT CY=YES,N=NO>? Y
VECTOR 13:MOVE: U/0/L/R? D
PLOT CY=YES,N=NO>? N
VECTOR 14:MOVE: LI/0/L/R? D
PLOT CY=YES,N=NO>? Y
VECTOR t5:MOVE: U/0/L/R? D
PLOT CY=YES,N=NO>? Y
VECTOR t6:MOVE: U/0/L/R? D
PLOT C Y=YES, N=NCt)? Y
VECTOR t7:MOVE: U/0/L/R? L
PLOT CY=YES,N=NO>? N
VECTOR t8:MOVE: LI/D/L/R? L
PLOT <Y=YES,N=NO>? Y
VECTOR 19:MOVE: U/0/L/R? E

VECTOR
BYTE
0
1
2
3
4
5
6
7
8
9

J

TO CHANGE CO=ENO>:O
VECTOR
12
3F
20
64
20
15
36
lE
07
00

ENTERING THE SHAPE TABLE

APPLE II USER'S GUIDE

Before you can display any shapes which you code, you have to enter them into
the computer's memory. In order to do this, you will need to determine what area
of memory the shape table will reside in. The easiest way to allow for this space is
to reset the HIM EM: pointer to a value just below the starting address of DOS, or
just before the high-resolution graphics page you want to use. You must reset
HIMEM: before you execute any Applesoft statements that use strings. If you use
disk-based Applesoft, you will need at least 36K of memory (although 48K is bet
ter) to allow for the Applesoft interpreter and DOS. Addresses 115 and 116 ($73
and $74) contain the latest HIMEM: setting for Applesoft, stored low-order byte
first. To calculate the new HIM EM: value which allows for the shape table, use the
following statement:

PRINT PEEK(116) * 256 + PEEK(115) - X

This statement computes the HIMEM: value you should set, based on the
parameter X which serves as the length of the shape table, including directory.
Using this statement, replace X with the length of the shape table. Set HIM EM: to
the computed value before entering the shape table into memory. This will protect
the shape table from being overwritten by Applesoft.

Chapter 6: GRAPHICS AND SOUND 219

As an alternative, you can place your shape table in memory between locations
768 and 975 ($300 and $3CF) inclusive. Be sure the shape table does not con
flict with any machine language subroutines that you or your Applesoft program
might put there.

You can use POKE statements to place the shape table in memory. For exam
ple, the following series of POKE statements puts the shape table for our square in
memory starting at location 768:

JPOKE 768,01

lPOKE 769,00

JPOKE 770,04

JPOKE 771,00

JPOKE 772,37

lPOKE 773,55

JPOKE 774,00

You can also enter a shape table from the Monitor. Use the statement CALL
-1 51 to switch over to the Monitor. Then enter the hexadecimal memory address
where the shape table will start, follow that with a colon, then enter the first byte
of the shape table directory, enter a blank space, then enter the next directory
byte followed by another space, and so on. Press RETURN. Now enter another
colon followed by each hexadecimal byte of the first shape table (separate the
bytes with spaces), and press RETURN. Repeat this last step for each shape in the
directory. You can review your work by typing the hexadecimal starting memory
address, a period, and the hexadecimal ending address of the shape table, then
pressing RETURN. For more information on how to use the Monitor, see Chapter 7.
This is how you would enter the shape table for our square:

JCALL -151

*
*6000:01 00 04 00

*:2C 3E 00

*6000.6006

6000- 01 00 04 00 2C 3E 00

*

Monitor prompt

Enter the shape table directory

Enter shape 1

Check entries by displaying memory

The shape table is now in memory. The first entry starts with the beginning
address of the shape table (in this case, $6000). The colon (:) tells the Monitor to
place the series of hexadecimal digits into memory. Immediately after the colon
comes the shape table directory: 01 (the number of shapes in the table), 00 (the
second byte is unused), 04 and 00 (the offset of shape 1 from the beginning of

220 APPLE II USER'S GUIDE

the directory - the low-order byte comes first). The next line starts with a colon;
no starting address is necessary if you set it in a previous entry. The Monitor will
place the next series of hexadecimal digits immediately following the first series
entered.

The last line tells the Monitor to display memory addresses $6000 through
$6006. The format for this command is: starting address, followed by a period
(which tells the Monitor to display memory), followed by the last address to dis
play. Carefully check these entries for accuracy every time you use the Monitor to
enter shape tables.

Saving the Shape Table on Tape or Disk

If you have invested a lot of time putting together shape tables, it certainly would
be a good idea to save your work on magnetic media rather than lose it when you
turn the Apple II off. You can use a cassette or disk to save a shape table; disk is
preferable by far because it records and retrieves data much more quickly than
tape.

Applesoft has a command called SHLOAD which works exclusively with tape.
Before you can save the shape table on tape, you must calculate the length (in
hexadecimal) of the table. Continuing with the square as our example, look at the
number of bytes taken up by the shape table; the total length is 7 bytes. Using the
Monitor, enter the length of the table as a two-byte hexadecimal number, starting
at address 0:

*00:07 00

As always with two-byte quantities entered in the Monitor, the low-order byte
comes first. Rewind the tape to the beginning. Then start it in RECORD mode. You
will use the Monitor to record the shape table length and the table itself. This is
done in two write operations, both of which you can enter on the same line:

*O.lW 6000.6006W
The first write command places the two-byte shape table length you entered (at
memory locations 0 and 1 abdve) on the tape. The second write operatiQn places
the seven bytes of the shape table, from address $6000 to $6006, on the tape.
The two write operations take just over 20 seconds. The speaker beeps twice
during the recording process. After the second beep, stop the recorder. The shape
table is now on tape for you to use later. Use your actual shape table length, start
ing location, and ending location in place of the examples.

To use the disk to save shape tables, get into Applesoft under DOS (from the
Monitor, enter 3DOG). The command you use to save shapes is BSAVE. You need
to know the starting address and length of the shape table you entered. To save
the shape table starting at address $6000, the DOS command:

BSAVE SQUARE, A$6000, L7

creates the disk file SQUARE with filetype B for binary. The shape table is now
saved on disk, ready for you to use at a later time. Use your actual shape table
name, starting location, and length in place of the examples.

Chapter 6: GRAPHICS AND SOUND

Loading Shape Tables
from Tape or Disk

221

If you saved a shape table on cassette, Applesoft will read the tape back into
memory. First, rewind the tape to the beginning. Now type in:

SHLOAD

Press the PLAY button on your tape recorder. The Apple II speaker beeps twice
and then returns control of the computer to you. If some problem exists on the
tape, you may see the cryptic message ERR on the display screen. If so, try read
ing the tape back in again, or, if the error persists, check the volume setting on the
cassette recorder, as described in Chapter 2. SHLOAD automatically sets HIMEM:
to the current HJMEM: value minus the length of the shape table in bytes. Make
sure that the HIM EM: setting you have is correct.

If you recorded the shape table on diskette, set HIMEM: before trying to read
the table into memory. The following command reads the shape table in from
disk:

BLOAD SQUARE
DOS remembers what address you saved from ($6000 in our example) and

will put the shape table there automatically. If you want to read the table in start
ing at a different address, say $3000, enter:

BLOAD SQUARE, A$3000
Here again, use the actual name and optional startinQ address in place of the

ex~mple.
After you BLOAD the shape table, you need to place the address of the shape

table in addresses 232 and 233 ($E8 and $E9). Applesoft uses these locations to
point to the shape table in memory (SHLOAD sets this address pointer automat
ically). Enter the Monitor and set the address ($6000 as an example):

Es:oo 06

Alternatively, you can use POKE statements to place the starting address of
your shape table in locations 232 and 233. Remember that with POKE you must
use decimal values.

You are now ready to use the shape table in an Applesoft program.

SHAPE DRAWING COMMANDS

Applesoft has four shape manipulation statements which draw, erase and change
the orientation of shapes:

DRAW, which displays the shape on the Apple II display screen.

XDRAW, which can erase shapes drawn.

ROT, which rotates the shape on the X and Y axes.

SCA~E, which alters the size of the shape drawn.

The shape manipulation commands use the currently selected high-resolution
graphics page (using HGR or HGR2) and color (using HCOLOR).

222 APPLE II USER'S GUIDE

The SCALE Command

As a programmed or immediate mode statement, you should always set SCALE
before drawing a shape for the first time in a program.

SCALE=l
sets the scaling to draw one point for each plotting vector. If SCALE=5, the Apple
II will draw 5 positions for each single plotting vector. You can set SCALE as high
as 255 (255 points plotted for each vector). The maximum scale setting is
SCALE=O, which plots 256 points for each single plotting vector.

The DRAW Command

DRAW plots the shape (numbered from 1 to 255) from the shape table, in the last
color chos~n. at the scale and rotation value last set. This statement:

DRAW 1 AT 140796
plots the first shape definition in the shape table starting at the 141 st column and
97th row of the high-resolution display. Drawing originates at the column and row
coordinates given in the statement. A second option of the ORA W statement uses
an implied starting location.

DRA'W 11
This statement draws the eleventh shape in the table at the point last plotted

by the most recent HPLOT or DRAW statement executed. In case the coordinates
were not set before, Applesoft defaults to zero coordinate values.

IMPORTANT: Applesoft assumes that the shape table is properly located in
memory. Before you execute a DRAW statement, make sure the shape table is in
memory and that addresses 232 and 233 ($E8 and $E9) point to the beginning of
the shape table. If you specify a shape number greater than the number of shapes
actually in the table, or if the ORA W statement uses row or column coordinates
which are not valid, drawing does not occur; instead, the error message ?ILLEGAL
QUANTITY ERROR displays on the screen.

The XDRAW Command

This statement allows you to erase a shape without erasing any high-resolution
background graphics. Here is an example:

XDRAW S AT 90796
This statement is syntactically identical to DRAW; the plotting coordinates can

be explicit as shown above or implicit as shown in the last ORA W statement
example. XDRAW checks the color of the plotting coordinates and draws a shape
in the complement of the color found. In the example above, XDRAW occurs at
the 91 st row and 97th column on the screen. Table 6-61ists the complements of
high-resolution colors.

If the coordinates, rotation, and scale are the same as those of a shape already
on the screen, XDRAW erases the shape, leaving all surrounding graphics intact.

Chapter 6: GRAPHICS AND SOUND 223

TABLE 6-6. Draw Colors

If Color Is XDRAW Color Is

Black White
White Black
Violet Green
Orange Blue
Green Violet
Blue Orange

The ROT Command

ROT rotates the shape about the center of the screen (on the X andY axes). The
statement:

ROT=16
sets the angle of shape rotation to 90 degrees clockwise. The values for ROT
range from 0 to 255, although there are only 64 possible rotation settings, from 0
to 63. Figure 6-4 shows the changes in axis orientation based on ROT values.

When SCALE is set to 1 , ROT only rotates shapes in 90 degree increments,
which means that only four meaningful rotations can be had: 0=0 degrees,
16=90 degrees, 32=180 degrees, and 48=270 degrees. Applesoft rounds the
rotation value you set to the next lowest ROT increment. All 64 rotational posi
tions are available if SCALE is set to 5 or greater.

Using Shapes in a Program

The following program listing uses shapes and should serve as a good example of
how to use them in a program:

1 LOMEM: 24t-.OO
20 HGR2
50 REM SET SHAPE TABLE START ADDRESS
c.O POI<E 2:32, 0
70 POKE 23:.::, 9~.
75 REM USE ALL COLORS IN TURN
76 FOR H = 1 TO 7
7''9 REM INCREMENT ROTATION FACTOR
80 FOR I = 1 TO 80
82 HCOLOR= H
90 ROT= I
92 IF I < 50 THEN SCALE= I
105 DRAW 1 AT 140,96
106 ROT= I + 32
110 DRAW 1 AT 140,96
130 NEXT I
140 NEXT H
150 GOTO 76

Working with high-resolution shapes is especially useful in game programs.

224 APPLE II USER'S GUIDE

ROT= 63

ROT = 48 r>---.......,~----<1 ROT = 16

ROT= 46

ROT= 32

FIGURE 6-4. Shape Rotation

You can build a library of shapes without having to heavily document them as you
would HPLOT statements. Shapes cut down on memory consumption. Fewer
calculations are necessary to manipulate the size and orientation of the high
resolution objects you create, and the calculations themselves are simple when
compared to a series of HPLOT statements designed to display a shape. If you had
some difficulty getting through this section on high-resolution shapes, it is proba
bly because you didn't try constructing shapes of your own. This is fairly complex
material because so many steps are necessary to make even a single shape
appear on the screen. If you use the program presented earlier which automat
ically encodes shapes, you will save some drudgery.

APPLE II SOUND

After the previous sections in this chapter it may be a relief as well as an
annoyance to discuss programming the Apple II onboard speaker. It is a relief
because driving the speaker is really very simple. It can be an annoyance because
you cannot control what the speaker does with BASIC statements. You have to
define every sound the Apple II speaker makes in thorough detail. In essence, all
you can do in programming the speaker is to make it emit a single click. The trick
to making sounds with this speaker is to vary the frequency of these clicks, thus
creating sounds of differing pitch. This section explains how to operate the
speaker, and includes a program which creates a series of sounds.

Chapter 6: GRAPHICS AND SOUND 225

OPERATING THE SPEAKER

The Apple II uses memory location -16336, also known as 49200 and $C030,
as a toggle switch, much the same as the graphics switches discussed earlier in
this chapter. Any time you access this location, a click eminates from the Apple II
speaker. In BASIC, you can operate the speaker by using the statement:

A=PEEK<49200>
or

A=PEEK<-16336>
Using a BASIC program to drive the speaker (shown in the short example below)
is easy, but the speaker will only generate lower frequencies. This is because
BASIC is comparatively slow. In Integer BASIC, the highest frequency possible is
about 256 Hz (cycles per second), and in Applesoft, the highest frequency is
around 7 2 Hz. The only way to generate sounds of any higher frequency is to use
a machine language subroutine to drive the speaker.

The Machine Language
Sound Subroutine

9 REM CLICK THE SPEAKER
10 A= PEEK <-16336)
20 GOTO 10

Applesoft and Integer BASIC allow room in memory between locations 768 and
975 ($300 and $3CF) for machine language subroutines and shape tables with
out having to change LOMEM: settings. (DOS uses this area, eliminating all pre
vious contents, when you boot a DOS master diskette.)

If you have not covered assembly language and machine language yet, you can
still incorporate the following subroutine into Integer BASIC or Applesoft pro
grams by keying in a series of hexadecimal numbers. To place the subroutine into
memory, get into the Monitor by entering the command CALL -1 51 or by press
ing RESET (Important : if you have DOS, make sure you boot it before entering the
Monitor). Next, enter the machine language subroutine as shown below:

:>CALL -151

*F666G

!302:LDY 301

0302- AC 01 03
! LOX 301

0305- AE 01.03
! LOA #4

0308- A9 04
! JSR FCA8

030A- 20 AS FC
! LOA C030

LDY •0301 Computer displays shaded
lines over your entries

L.DX $0.~01

LDA -1$04

JSR SFCA8

226 APPLE II USER'S GUIDE

030D- AD 30 CO LDA $C030
! INX

0310- ES INX
! BNE 310

0311-:' DO FD BNE $0310
! DEY

0313- 88 DEY
! BNE 305

0314- DO EF BNE $0305
! DEC 300

031C.- CE 00 03 DEC $0300
! BNE 302

0319- DO E7 BNE $0302
! RTS

0318- 60 RTS

This subroutine uses addresses $300 and $301 for data storage; addresses
$302 through $31 B hold the routine itself. Once you have entered the sub
routine, check it for correctness as follows:

!$FF69G

*302L

0302- AC 01 03 LOY $0301
0305- AE 01 03 LOX $0301
0308- A9 04 LOA #$04
030A- 20 AS FC JSR $FCA8
0300- AD 30 co LOA $C030
0310- ES INX
0311- DO FD BNE $0310
0313- 88 DEY
0314- DO EF BNE $0305
0316- CE 00 03 DEC $0300
0319- DO E7 BNE $0302
0318- 60 RTS
031C- 20 20 70 JSR $7020
031F- 08 PHP
0320- 18 CLC
0321- 08 CLD
0322- 88 DEY
0323- 08 PHP
0324- AO AO LOY #$AO
0326- 10 38 BPL $0360
* -·CTRL-8 into BASIC here

If you have DOS on your Apple II, you can save this subroutine on a disk with the
BASIC command BSAVE:

BSAVE SOUND~A$302~L26

Chapter 6: GRAPHICS AND SOUND 227

This creates a binary file entitled SOUND; you can load this subroutine at a later
time. If you have a cassette, record the routine by entering the following Monitor
command:

*302.329W

The subroutine is saved on tape for reading in at a future time.

The BASIC Interface

You will need a BASIC subroutine which talks to the machine language sub
routine. Enter the following listing in Applesoft or Integer BASIC:

3200 REM SPEAKER DRIVER
3210 POKE 768,0
3220 POKE 769,F
3230 CALL 770
3240 RETURN

With this subroutine working in conjunction with the machine language routine, a
BASIC program can generate sounds by setting two variables: F (for frequency)
can range from 1 to 255, with 255 as the highest pitch, and D (duration), also
ranging in value from 1 to 255, with 255 the longe~t duration possible. As an
example, enter the following BASIC program after entering the subroutine listed
above:

10 FOR I = 1 TO 254
20 F = 1
30 D = I
40 GOSUB 3200
50 NEXT I
60 END

When you run the program, listen to the duration of each note. On the low-fre
quency and high-frequency ends of the scale, sounds are shorter than those in
mid-frequency. This problem is inevitable because the machine language
subroutine uses instructions rather than elapsed time to change the frequency of
each note. Since there is no real-time clock on the Apple II, this approach is
necessary. By setting longer duration values for very high and very low notes, you
can compensate for this inequality.

A More Elaborate Sound Program

The program listed below uses the sound generation subroutines detailed earlier
to create a series of sounds which you can listen back to, change, and finally print
out for use in other BASIC progams. When you run the progam, you will see the
prompt (E)NTER, (L)ISTEN, (P)RINT? The first action is to enter some tones; enter
E and press RETURN.

Now the prompt TONE 0: FREQUENCY, DURATION? appears. Enter two num
bers separated by a comma. The first is the frequency and the second is the dura
tion. Both numbers must be between 1 and 255. When you press RETURN after

228 APPLE II USER'S GUIDE

entering the frequency and duration of the tone, the Apple II speaker emits the
tone. This process repeats for a series of tones (up to 1 00). After the last tone you
enter, input a 0 tone and 0 duration to complete entry.

After you enter all the tones, the prompt WHICH NOTE TO CHANGE? appears.
If you want to change any tones entered, input the number of the tone you want
to reenter; otherwise, enter 0.

The prompt (E)NTER, (L)ISTEN, (P)RINT? appears again when you finish mak
ing changes; now enter Land press ReTURN. The Apple II now repeats the entire
series of tones you entered. When the last note plays, the prompt message
appears again. Enter P to display or print the frequency and duration values of
each tone.

The program listing below can easily be modified to allow for saving the tone
values on cassette or disk. Then other programs can retrieve the tone values and,
using the sound generation subroutines, can play music or just emit random
noises.

10 REM SOUND GENERATOR PROGRAM
19 REM ARRAY REMEBERS ENTERED TONES
20 DIM A<100,2>
29 REM CLEAR DISPLAY
30 CALL - 936
40 INPUT " < E > NTER, (L > I STEN, < P > R I NT?" ; A$
50 IF A$ = "L" THEN 1000
60 IF A$ = "P" THEN 1200
80 IF A$ < > "E" THEN 30
81 REM ENTER EACH TONE
90 PRINT
100 I = 0
lOS M = I
110 GOSUB 3000
119 REM END OF TONE ENTRY?
120 IF F = 0 AND D = 0 THEN I I - t: GOTO 200
129 REM NO--REMEMBER TONE
130 A<I,1> ~ F:A(I,2> = D
140 I = I + 1
150 GOTO 105
200 REM CHANGE ANY ITEMS HERE
205 PRINT "WHICH NOTE TO CHANGE (0-";I;")";
206 INPUT E
208 IF E = 0 THEN 30
210 IF E < 1 OR E > I THEN 210
220 M = E: GOSUB 3000
230 ACE,l> = F:A(E,2> = D: GOTO 205
1000 REM LISTEN TO THE NOTES SO FAR
1010 FOR K = 0 TO I
J020 F = A<K,1>:D = ACK,2>: GOSUB 3200
1030 NEXT K
1040 GOTO 30
1200 REM PRINT OUT THE NOTES
1210 PRINT "NOTE#","FREQ","DURATION"
1220 FOR K = 0 TO I
1230 PRINT K,ACK,1>,A<K,2>
1240 NEXT K

Chapter 6: GRAPHICS AND SOUND

1250 PRINT
1260 GOTO 30
3000 PRINT 11 TONE n;M;
3010 INPUT 11 ENTER FREQUENCY, DURATION";F,D
3015 IF F = 0 AND D = 0 THEN RETURN

229

3020 IF <F < 0 OR F > 255) OR <D < 1 OR D > 255) THEN 3010
3030 GOSUB 3200
3040 RETURN
3200 REM SPEAKER DRIVER
3210 POKE 768,D
3220 POKE 769,F
3230 CALL 770
3240 RETURN

.;·

7
Machine Language Monitor

Residing permanently in the Apple II read-only memory (ROM) is a control pro
gram called the Monitor. This chapter describes the Monitor's features and uses
and shows how you can use it in conjunction with BASIC programs you write. The
Monitor is written in machine language; it serves as a link between BASIC (and
other languages which the Apple II computer supports) and the various low-level
functions which the machine performs, such as printing a character, plotting a
line, and so forth.

You can also use the Monitor via keyboard commands. Some reasons for doing
this would be to create graphics shape tables (described in Chapter 6), to examine
memory to isolate hardware problems, or to program in assembly language. Most
of the time you will find no pressing need to use it, but the Monitor has some
functions which you may find handy at some time.

After describing the Monitor and its facilities, this chapter explains how to use
the Mini-Assembler. This chapter does not teach you assembly language pro
gramming; Appendix K lists several books which do. You will learn how to inte
grate your assembly language program with a BASIC program, and how to use
the Mini-Assembler to write, test, and debug it.

ACCESSING THE MONITOR

There are two versions of the Monitor: the standard version and the Autostart
version. If your Apple II has a standard Monitor, simply turning on the computer

232 APPLE II USER'S GUIDE

will place you in the Monitor. In this situation you will see a screen full of random
characters, with an asterisk(*) at the bottom lefthand corner of the screen and a
blinking cursor directly to the right of the asterisk. The asterisk is the Monitor
prompt character.

If your Apple II has an Autostart Monitor (either as an add-on feature or as
standard equipment in an Apple II Plus), you will have to use either Integer BASIC
or Applesoft to access the monitor. When you see a BASIC prompt (either > for
Integer BASIC, or 1 for Applesoft), type in the following command:

CALL -151

This statement is actually a subroutine call to hexadecimal address FF69, but
BASIC will not recognize hexadecimal numbers, so you must use the decimal
equivalent of FF69 in this command. Once you key this statement in, the asterisk
prompt, followed by the cursor, appears. At this point you are in the Monitor.

LEAVING THE MONITOR

There are a few ways in which you can exit the Monitor and return to BASIC; they
largely depend on what you want to do when you leave it. To preserve program
statements and variables used in the BASIC program, exit the Monitor by pressing
CTRL-C and then pressing RETURN. After pressing RETURN, the prompt for BASIC
returns. At this point, you can print the values of variables and list the program (if
one happens to be in memory at the time).

To illustrate, let's say that you put a value in a given memory location via the
POKE statement and you want to verify the POKE. Of course, you could use PEEK
to do the same thing, but the Monitor allows you far more access to the Apple II
memory than PEEK and POKE ever will. The Integer BASIC example below shows
how using CTRL-C preserves the BASIC program and variables when leaving the
Monitor:

:>10 A=123
:> 1 9 REM MOVE CURSOR TO 13TH COLUMN
:>20 POKE 36,12
:>30 PRINT A
:>40 END
:>RUN

123

:>CALL -151

* -Press CTRL-C, then RETURN

:>PRINT A
123
:>LIST

10 A=123
19 REM MOVE CURSOR TO 13TH COLUMN
20 POKE 36,12
30 PRINT A
40 END

Chapter 7: MACHINE LANGUAGE MONITOR 233

If you want to leave the Monitor and clear out the current BASIC program and
variables stored in memory, press CTRL-B and RETURN. This entry will return you to
BASIC, but any program statements or variables which may have been in memory
will be erased. Try the example above, substituting CTRL-B for CTRL-C. After
returning to BASIC from the Monitor, you will find that no value exists for A$, and
that you cannot list the program.

CTRL-C works fine with Integer BASIC and firmware Applesoft. It does not
work with cassette-based or disk-based Applesoft.

With disk-based or cassette-based Applesoft you may use CTRL-B to exit the
Monitor. In this case you will return to Integer BASIC, and all your Applesoft pro
gram and variables will be erased. There is a way to return to Applesoft with your
program and variables intact.

To return to disk-based Applesoft from the Monitor, type this command:
*3DOG

To return to cassette-based Applesoft from the Monitor, type this command:
*OG

3DOG and OG are two instances of the Monitor's branch instruction (analogous
to the GOTO instruction in BASIC). More on this later.

IMPORTANT: Use the command OG only with cassette-based Applesoft.

FUNCTIONS OF THE MONITOR

The Monitor performs a limited number of tasks, but each one is fairly powerful
considering how small the Monitor program actually is. You can examine memory
locations or the microprocessor registers, dump the contents of memory to the
screen or to another output device such as a printer, and change memory or
registers. Other functions include moving blocks of data from one address to
another and comparing blocks of memory to each other. Still more miscellaneous
functions appear in this chapter.

EXAMINING MEMORY

There are three methods in the Monitor of looking at the contents of memory
locations: single-address, word, and block modes. A single address refers to a
one-byte memory location. A word is an eight-byte segment of memory, begin
ning with an address divisible by eight. A block is a convenient means of looking
at a range of addresses, starting at one address and ending at another address
higher in memory.

Examining Single Addresses

When you see the Monitor prompt and you want to look at a single memory loca-

234 APPLE II USER'S GUIDE

tion, just type in the hexadecimal address of the location you want to see followed
by the RETURN key, as in this example:

*FF69

The Monitor responds by displaying the contents of that location:

FF69- A9

*
When you enter an address, the Monitor retains it for future use as a pointer.

Therefore, if you enter FF69 (or any other hexadecimal address), the Monitor will
remember that location, using it as a reference for further memory examination
until you change the address. To change the pointer which the Monitor uses,
simply key in a new address. For example, type:

*300F

and the Monitor resets the pointer in addition to displaying the contents of
address 300F.

Examining Words of Memory

Let's say you examined the single address FF69, as in the example above, and you
• want to look at the next higher locations in memory. The monitor will continue

examining memory if you press RETURN, as shown below:

*FF69

FF69- A9
* -Press RETURN

AA 85 33 20 67 FD

FF70- 20 C7 FF 20 A7 FF 84 34
*-Press RETURN again

The first time you press the RETURN key in this example, six bytes of memory
display on the screen. These are the contents of locations FF6A through FF6F.
The second time you press RETURN an entire eight-byte word displays, but first the
starting address of the word is shown (FF70) to remind you what the starting byte
of this word is. All words start at memory locations which are divisible by eight,
which is why an address did not print when you pressed RETURN the first time. The
first RETURN merely finished off the block you had started earlier with the single
address examination.

Examining Blocks of Memory

You can examine a large block of memory (usually more than eight bytes) in block
mode. Enter the starting hexadecimal address, followed by a period, and finally
the ending hexadecimal address. For example:

*F800.F83F

Chapter 7: MACHINE LANGUAGE MONITOR 236

The Monitor responds with the contents of the requested memory locations:

F800- 4A 08 20 47 F8 28 A9 OF
F808- 90 02 69 EO 85 2E Bl 26
F810- 45 30 25 2E 51 26 91 26
F818- 60 20 00 FS C4 2C BO 11
F820- CS 20 OE FS 90 F6 69 01
F828- 48 20 00 FS 68 C5 2D 90
F830- F5 60 AO 2F DO 02 AO 27
F838- 84 20 AO 27 A9 00 85 30

*
The starting address must be greater than or equal to the ending address in

order for you to see more than one address. If the ending address is lower than the
starting address, only the contents of the starting address displays.

You can specify a range of addresses which exceeds the size of the Apple II
screen. In this case, data scrolls off the top of the screen to make room for more
at the bottom. You cannot cancel this display without pressing ResET. If your
Apple II contains the Autostart Monitor, you can temporarily halt the display by
pressing CrRL-5. Using CTRL-S will stop output to the screen, but not to other out
put devices, such as a printer, giving you a chance to view the screen at your
leisure. Press the space bar to restart the display.

The block method of examination is typically called a dump. Once it finishes,
the pointer which maintains the next location to examine updates itself so it is
pointing to the byte after the ending address of the block examine.

A shortened form of this command uses the pointer as the starting address of
the block. You just enter a period followed by the ending address of the block. For
instance, if you just looked at addresses FSOO through F83F, as shown in the
example above, you can continue examining a block beginning with F840 and
ending with F880 by entering:

*.F880

which would result in the following output:

F840- 20 28 F8 88 10 F6 60 48
F848- 4A 29 03 09 04 85 27 68
F850- 29 18 90 02 69 7F 85 26
F858- OA OA 05 26 85 26 60 AS
F860- 30 18 69 03 29 OF 85 30
F868- OA OA OA OA 05 30 85 30
F870- 60 4A 08 20 47 FS 91 26
F878- 28 90 04 4A 4A 4A 4A 29
F880- OF
*

EXAMINING THE MICROPROCESSOR REGISTERS

At some point you may want to inspect the registers in the microcomputer itself.
This is done by typing CrRL-E, followed by the RETURN key. The results look similar
to this:

A=CD X=B1 Y=C3 P=B5 S=FO

236 APPLE II USER'S GUIDE

The values displayed are those stored in the Accumulator (A), Index Register X
(X), Index Register Y (Y), the Program Counter (P), and the Stack Pointer (S). The
values directly to the right of each equal sign are the latest values of the registers.
However, they are not affected by operating the Monitor. In other words, the
register contents are saved by the Monitor and remain unchanged until you either
execute your own assembly language program or return to BASIC.

ALTERING MEMORY

Altering memory is more involved than examining it. You have to specify what
address to alter as well as supply the new data which goes into that address. You
can alter memory by single address (one byte at a time), or you can modify a
serie~ of consec~tive locations in memory, entering new data for many addresses
on one command line.

Altering Single Addresses

The first step in changing a single address is to set the Monitor's address pointer,
which is the same pointer used in examining memory. Because both Monitor com
mands use the same pointer, you set the address to alter the same way you set
the address to examine. Type in the hexadecimal address to alter, and then press
RETURN. For example: *1200

sets the address pointer to 1 200 hexadecimal.
The Monitor responds with the contents of the memory location:

1200- 73

Notice that this entry produces the same result as a single-address examine
command. The Monitor's response shows where the address pointer is set
(1200), and also displays the current contents of thq address (in this case, 73).

The next step is to alter this address to a new value. To change memory at this
address, first type a colon (:) fQIIowed by the two-digit hexadecimal n~mber you
want to place at the address you just set. For example:

*:SF
The colon indicates a memory alteration command to the Monitor. The 5F indi

cates the new data to place at address 1200. You can alter memory using one
command line instead of two, as shown below:

*1200:5F

This command line has the same effect on changing address 1 200 as the two
separate lines shown above. The address pointer updates to 1 200, and the Moni
tor places 5F in that address. The address pointer moves to the next highest
memory location. So if you want to change address 1201 to 7F, for example,
type: *: 7F

and the Monitor automatically updates this address to hold 7F. Again, the address

Chapter 7: MACHINE LANGUAGE MONITOR 237

pointer increments by 1 and you can alter address 1 202 to some different value
by continuing the process of entering data without explicitly entering the address.

Altering More Memory

The Monitor lets you change more than one memory location at a time, provided
that the addresses you change follow each other consecutively in memory (for
example, addresses 1200 to 1_207 inclusive). This command starts the same way
as the single-address method of altering memory. You first set the address
pointer if necessary. Next, use the colon to indicate to the Monitor that this is a
memory alteration command. Finally, enter the data you want at each consecutive
location, separating each hexadecimal number with a space.

For example, to place the quantities 00 through 07 in addresses 1200 through
1207, enter:

*i2oo:oo 01 02 03 04 os 06 07

You can actually alter many more addresses than eight. If you set the pointer at
the beginning of the command, you could enter as many as 83 values on one
command line. If you do not set the pointer, you can enter up to 84 values. In
either case, the command line would wrap around to encompass several display
lines. This is impractical because the wraparound command line makes checking

I •

entries extremely difficult. Moreover, ttie only way to correct errors is to back-
space to them, retyping the balance of the line after making the correction. But if
you are inclined to enter so much data on one command line, the Monitor will
allow you to do so.

Checking Memory Alterations'

It is good practice to check memory alterations if you want the final product
(whether a graphics sh~pe table or a series of machine instructions) to be totally
accurate. To do this you will have_ to use one of the three possible memory
examine commands discussed earUer in this chapter. To begin checking the
alterations you made, you once again have to reset the address pointer to where
you first made alterations.

Assuming you placed 00 through 07 at addresses 1200 through 1207, as
shown in the example above, reset the pointer to 1200:

*1200
The Monitor responds with:

1200- 00

*
By pressing RETURN you can see the remaining seven addresses which you

changed: * -Press RETURN

01 02 03 04 OS 06 07

*
If you altered more than a few locations, keep pressing RETURN until you see the

238 APPLE II USER'S GUIDE

last alterations you made.
You can also use the block examine mode to check this area:

*1200.1207

The Monitor responds with:
1200- 00 01 02 03 04 OS 06 07

*

Correcting Mistakes

If there are any mistakes in the addresses you altered, you can correct them
individually without having to reenter all the data correctly. The simplest way to
do this is to note the address of the incorrect data and enter a single-address
alteration for it.

For instance, if you made a mistake entering numbers 00 through 07 in the
previous example, and the error appears at address 1 204, enter:

*1204:04

to correct the error at this address. The next step is to look back at address 1204
and make sure you got it right this time. Then finish checking over any other
alterations to ensure that all of the data you entered is correct.

ALTERING THE MICROPROCESSOR REGISTERS

The process of altering the microprocessor registers is slightly different from
altering memory, since the registers actually have no addresses. To alter the con
tents of the registers, you first have to examine them using the CTRL-E command.
Immediately following a register examination command, you can change the con
tents of the registers by typing in a colon (signifying an alter operation to the
Monitor), followed by one to five hexadecimal numbers. Separate the numbers
with spaces.

The first hexadecimal number will be the new value of the Accumulator, the
second number will be the new value of Index Register X, the third number
becomes the value of Index Register Y, the fourth number becomes the value of
the Program Counter, and the fifth number is the new value of the Stack Pointer.

You must enter values for all registers up to and including the last register in the
series you intend to change. You may leave off values for any registers beyond
that.

As an example, say you want to change Index Register Y while leaving all other
registers intact. First, examine the registers with CTRL-E.

*-Press CTRL-E, then RETURN

A=CD X=B1 Y=C3 P=BS S=FO

*
(Note that the register contents you see here are just examples.)

To change Index Register Y to hold the hexadecimal quantity SA without

Chapter 7: MACHINE LANGUAGE MONITOR 239

changing any other registers, type the existing values of the Accumulator and
Index Register X, followed by the new value for Index Register Y.

*: CD Bl C3 8A

To alter any register other than the Accumulator (A), you have to reenter the
contents of all registers up to and including the one which you want to alter.

You must press CTRL-E (then RETURN) to examine the registers, or the Monitor
will assume you want to alter a memory address. Examining the registers tells the
Monitor to switch from using the address pointer to a location to alter, and instead
directs it to alter the registers themselves.

To illustrate another register alteration, assume you want to change the Stack
Pointer (its contents follow the S when examining the registers) to hold the quan
tity 48. First, remember to examine the registers:

* -Press CTRL-E, then RETURN

A=FF X=CD Y=Bl P=8A S=FO

*
Now enter the current values, in order, for all other registers, and then the new

value for the last one:
*:FF CD 81 8A 4B

Verify that the change is correct by using CTRL-E to examine the registers once
again.

SAVING AND RETRIEVING MEMORY
WITH APPLE II PERIPHERALS

The Monitor allows you to use a cassette recorder to save the contents of a block
of memory on magnetic tape. You will want to do this if you create high-resolu
tion graphics shapes (see Chapter 6), or if you write assembly language programs
which you want to store. With the Apple II Disk Operating System (DOS), you can
store memory contents even more quickly and reliably, on disk. In order to save
memory on disk you have to temporarily leave the Monitor, using the DOS
through BASIC to save or retrieve memory.

Saving Memory on Cassette Tape

To save memory on tape, use the Monitor's memory write command. You have to
supply the Monitor with the beginning and ending addresses of the memory
which you want to save. The command to write memory to the tape begins with
the starting address you want to save followed immediately by a period, the end
ing address of memory which you want to save, and finally the letter W.

For example, the command:
*2200.2FFFW

tells the Monitor to write the contents of memory, starting at hexadecimal address
2000 and ending with address 2FFF, on the cassette recorder.

240 APPLE II USER'S GUIDE

The memory write command does not check data it sends out the cassette
port; it also does not (and cannot) check for the actual presence of an operating
tape recorder connected to the cassette ports. You should do all you can to
ensure that the tape you use is free from jamming, dropouts, and other problems
which are inherent in using tape cassettes.

When you enter the command to write memory, don't press RETURN until you
put the cassette recorder in RECORD mode and the tape is visibly moving in the
machine. If the cassette you are using is at the beginning of the tape, let it run for
at least five seconds before pressing RETURN, to allow the nonmagnetic leader
tape to pass through the recorder.

When you press RETURN, the computer waits ten seconds before sending data.
This allows the cassette recorder to erase any previous information (music, voice,
or machine-readable data) on the tape. The computer sends a reference tone to
the recorder during this time. The Monitor uses this tone later as a locking-on sig
nal in the memory read command (covered in the next section).

When the memory write command finishes, the Apple II speaker beeps once
and the Monitor prompt returns.

The memory write command enables you to record from one byte to 64
kilobytes (65,536 bytes) on tape. The Monitor sends data through the cassette
output port at an approximate rate of 21 0 characters per second (based on a
16,384-byte move in 77.5 seconds, after the reference tone). After transmitting
the last byte of data, the Monitor sends a checksum byte to the cassette recorder.
The memory read command uses this checksum byte to test incoming data for
validity.

Retrieving Data from Cassette Tape

The memory read command enables you to retrieve data from the cassette
recorder and load it into memory. To perform the memory read command, enter
the starting address (where data from the cassette tape should begin loading into
memory) followed immediately by a period, the ending address (where the last
byte of data read from cassette will go in memory), and lastly the letter R.

For example, the command:
*2000.20FFR

means read data from cassette tape into memory, starting at hexadecimal
address 2000 and ending at 20FF.

Unlike the write command, the memory read command forces the Monitor to
wait until you press the PLAY button on the cassette recorder. The computer
waits for the signal tone from the cassette recorder, and the Monitor will lock out
the computer until it encounters the signal. Before you press PLAY on the cassette
recorder, make sure you position the tape to where the reference tone begins. You
can tell the difference between the reference tone and actual data on the tape by
listening to it. Remove the connector from the earphone jack to listen to the tape
using the cassette recorder speaker. The reference tone is a steady, medium-

Chapter 7: MACHINE LANGUAGE MONITOR 241

pitched hum. Actual data sounds like random noise or static.
Be sure to adjust the cassette recorder playback volume before using the

memory read command. The procedure for adjusting the volume is explained in
Chapter 2.

The memory read command expects to read in exactly as much memory as
you saved using the memory write command. If you write 1 024 bytes from
memory onto tape and want to retrieve only the first 256 bytes which you
recorded, the Monitor will transfer data but you will probably receive an error
message. The same is true for reading more data into memory than was recorded
on tape; an error message is a strong possibility.

Error Conditions in the
Memory Read Command

The Monitor listens to the cassette recorder for at least 3.5 seconds before
expecting data from the cassette input port. This allows the Monitor to lock on to
the frequency of the reference tone. If the tape contains less than 3.5 seconds of
this tone the Monitor will lose the beginning of the data transmission from the
cassette, resulting in a checksum error. Furthermore, you will not be sure where
on the tape the Monitor began reading data, because the Monitor always attempts
to move data into memory from cassette - valid or not. In this case the Monitor
error message occurs (a beep from the Apple II speaker followed by the message
ERR and the Monitor prompt). To correct the error, rewind the tape to the begin
ning of the tone. Press PLAY with the Apple II cassette connector disconnected
from the earphone jack and time the tone. If it is less than 3.5 seconds before you
hear the data transmission, you have to write memory to the tape again. It is pro
bable in this case that you forgot to move past the nonmagnetic leader tape at the
beginning of the cassette before recording.

Reading more or less data into memory from cassette than was originally saved
on the tape will probably cause an error message to display on the Apple II' s
screen. The last byte sent to the cassette recorder in the memory write command
is a checksum byte. Its value depends on how much data was written as well as
what data was written. When a memory read is not equal in length to the original
memory write, the Monitor cannot predict which piece of incoming data will be
the checksum byte. The Monitor assumes that the last byte it reads from cassette
into memory (determined by the ending address in the memory read command)
will be followed by a checksum byte. The Monitor performs its own internal
checksum calculations on incoming data during the memory read operation and
compares this with the checksum byte it reads in from cassette. rf the two bytes
do not agree, the Monitor displays its error message. It is possible for the
checksums to agree by coincidence. As a general rule, you should only read in as
much memory as you wrote to the cassette in the first place. This lets the Monitor
perform meaningful error checking. Later in this chapter you will see how to verify
a memory read operation using the Monitor.

242 APPLE II USER'S GUIDE

Saving Memory on Disk

With the Apple II Disk Operating System, saving memory is much quicker and far
more reliable than with cassettes. The rules for saving memory on disk are slightly
different because you use BASIC rather than the Monitor to perform this function.
Even so, this is a machine-level command which is superior to cassette com
mands included in the Monitor, and you should use it where possible. Before read
ing this section, you should be familiar with DOS (see Chapter 5). DOS must
already be in memory before you begin (see Chapter 2).

If you are in the Monitor, you need to leave it temporarily and get into BASIC
under DOS with the CTRL-B or CTRL-C command if you have the Autostart Moni
tor, or the 3DOG command if you have the standard Monitor.

Here is an example of the DOS command to save memory on disk:

BSAVE SHPTABLE, A$3000, L256, S6, 01, V201

This command will create a DOS file on disk called SHPT ABLE. The next
parameter, A$3000, will save memory on disk starting with address 3000 hex
adecimal. The A stands for address. The third piece of information, L256,
specifies the length (L) of the memory write, in this case the decimal number 256.
The maximum length is 32767 decimal ($7FFF hexadecimal). BSAVE allows you
to use hexadecimal or decimal numbers as address (A) and length (L) parameters.
If you use hexadecimal constants in the BSA VE command, make sure to precede
the constant with a dollar sign.

The last three parameters in this sample statement (56, D 1, V20 1) are
optional. They specify which disk to use. Use the S (slot) parameter only if you
have more than one disk controller card and the disk drive you want to save
memory on uses a controller card other than the one last used (usually slot 6, the
standard disk drive slot). The D (drive number) parameter is useful but not necess
ary; specify the drive number only if it differs from the drive you accessed last.
The optional V (volume number) parameter is the volume number stored on the
directory of the disk you are saving memory on. If the volume number you specify
in the BSAVE statement differs from the volume number on the disk you want to
save memory on, an error message appears.

Retrieving Memory from Disk

As with BSAVE, you use DOS to retrieve data from disk and load it into memory.
The BLOAD command does this.

Here is an example of BLOAD:

BLOAD SHPTABLE, A$3000

This example loads the file named SHPT ABLE from the disk currently in use and
puts the data directly into memory, starting with address 3000 hexadecimal. This
command statement also accepts a decimal address. The A (starting address)
parameter is not necessary if the file contents start at the same location they were

Chapter 7: MACHINE LANGUAGE MONITOR 243

saved from. You need only specify an address if it differs from the BSAVE starting
address. The length parameter (L) is optional but not necessary. DOS checks the
length of the disk file itself and terminates the memory read command automat
ically. The optional disk specification parameters used in BSAVE (S, D, and V) can
also be used in BLOAD to indicate a slot, drive, and volume number.

Be careful not to use this command in areas of memory which may be
occupied by DOS, the Applesoft interpreter, text or graphics pages, or BASIC
variables. It is possible to clobber these areas of memory, losing data which you
may have wanted to keep.

MOVING AND COMPARING
BLOCKS OF MEMORY

If you read or write memory using tape or disk, the Monitor has two functions
which may help you. The move function copies a block of memory into a different
range of addresses. The compare function checks two blocks of memory against
each other and reports any discrepancies between the two blocks. When used
with the Monitor's memory read and memory write commands, these functions
furnish you with added insurance that the files you write contain correct data.

The Move Memory Command

In order to move data from one address in memory to another, you have to supply
the destination start address (where you want to move memory to), the source
start address (where to move memory from), and the source end address (the last
address you want moved). The format of this command is the destination start
address followed by the less-than symbol (<), the source start address, a period,
the source end address, and the letter M (for move). As with other Monitor com
mands, all addresses are hexadecimal numbers.

For example, the command:

*1200<2000.2100M

moves data to address 1200 hexadecimal (the destination start address) from the
block starting at 2000 hexadecimal (the source start address) and ending with
21 00 (the source end address). The Monitor copies the contents of memory,
from addresses 2000 through 21 00 to addresses 1 200 through 1300 in this
example. Since the addresses are hexadecimal, the implied length of the move is
25 7 bytes decimal, or 1 01 bytes hexadecimal. The original contents of addresses
2000 through 21 00 remain undisturbed.

When you specify addresses in the move memory command, the source start
address should be greater than or equal to the source end address. If the source
end address is less than the source start address, the Monitor will only move one
byte from the source start address to the destination start address and then will
terminate the move memory operation.

244 APPLE II USER'S GUIDE

Filling Memory

The move memory command also fills memory. Filling is the process of moving
one or more bytes of data repeatedly to consecutive addresses. Suppose you
want to place zeros in a block of memory, starting with address 1 000 and ending
with 1 OFF. By creative use of the alter memory and move memory commands you
can set a block of memory to a predefined set of values, or pattern.

To begin, you might place zeros in the first byte of memory:
*1000:00

This is the first step of the fill memory procedure. The second step uses the
move memory command to copy the contents of one (or more) bytes into an
adjoining block of memory.

Specify a destination start address which is one greater than the last byte of
the pattern (in this example it would be 1001). Set the source start address to the
beginning of the pattern (1 000 in this case), and set the source end address to
the last byte which you want filled (1 OFF) minus the length of the pattern you
want to fill memory with (1 OFE).

Continuing the example, the command:
*1001<1000.10FEM

fills locations 1001 through 1 OFF with zeros (or more precisely, with the contents
of location 1 000). This procedure only works when the fill pattern exists at the
beginning of the block you want to fill. Here's what happens. Since the destination
start address comes one byte after the source address, the Monitor moves data at
address 1 000 to 1 DO 1 first, moving 00 into this address. When the second byte
is moved, the Monitor takes the contents of location 1 DO 1 and moves it into
address 1 002. This process continues until the contents of address 1 OFE (set to
00 in the last byte transferred) move into address 1 OFF. By examining these loca
tions you can see that addresses 1 000 through 1 OFF are indeed filled with zeros.

You may want to fill memory with a pattern which is more than one byte long.
For example, to move 00 5E 7F FF and fill memory from 1 000 through 1 OFF with
this four-byte pattern you need to alter four bytes of memory starting at address
1000:

*1000:00 SE 7F FF

The pattern is now in place. To fill memory up to 1 OFF with this pattern. enter
the command:

*1004<1000.1DFBM

Note that the destination start address occurs one byte after the end of the
pattern, the source start address points to the beginning of the fill pattern and the
source end address points to the last address to fill minus the length of the pat
tern:

1DFF
-04

1DFB
(Hexadecimal Arithmetic)

Once again, if you try this example you can examine memory from 1 DOO
through 1 OFF to verify that the pattern repeatedly occurs in this block.

Chapter 7: MACHINE LANGUAGE MONITOR 246

The Verify Memory Command

This Monitor command compares two blocks of memory against each other, not
ing differences between the first block and the second. You can use this com
mand in conjunction with the memory read and memory write commands which
the Monitor and the Disk Operating System (DOS) support. If you save memory
onto a peripheral device and want to be sure it was written correctly, you can use
the verify memory command to do that too.

The format for this command is nearly the same as for the move memory com
mand. Enter the destination start address (where to start comparing memory)
followed immediately by the less-than sign (<),the source start address (where
to start comparing to the destination), a period, and the source end address
(where the last byte of the verify memory operation will take place). The last item
on the command line is the letter V, for verify.

Here is an example:

*32DO<O.CV

This instructs the Monitor to start comparing data at address 32DO against
address 0, and to continue the comparison until address 32DC is compared and
verified against address OOOC. Notice that no leading zero digits are needed for
addresses in a Monitor command line.

If the Monitor encounters a byte in the source block which is not the same as
its counterpart in the destination block, the source address displays with its stored
value, along with the value it found at the same relative address in the destination
block.

For example, if you moved memory from addresses 0000 through OOOC to
addresses 3200 through 32DC:

*32DO<O.CM

and then displayed the source and destination blocks:

*O.C

0000- 4C 3C D4 4C 3A DB SC SC
0008- FF FF 4C 99 El
*32D0.32DC

3200- 4C 3C 04 4C 3A DB SC 8C
3208- FF FF 4C 99 El
*

you could visually check the move memory operation. If you alter address 3208
from its present value (FF) to 5A:

*32D8:5A

and then enter the verify memory command:

*32DO<O.CV

the Monitor will compare the source block against the destination block byte-by
byte until it compares data stored at 0008 against the value in 3208. Since

246 APPLE II USER'S GUIDE

address 3208 was just altered, the Monitor displays a discrepancy:
0008-FF <SA>

*
meaning that the value at address 0008 in the source block does not agree with
the same relative address (32D8) in the destination block. The Monitor first dis
plays the value it finds at the source address (0008, the contents of which are FF)
and then displays in parentheses the value stored at the destination address
where the discrepancy occurred (5A).

The address in the destination block does not appear; the Monitor assumes
that you can add numbers in base 1 6 easily to find the address of the discrepancy
in the source block. One way to avoid calculating the address yourself is to switch
source and destination blocks:

*0<32D0.32DC:V
which will produce:

3208-SA <FF>

*
This message shows that source address 32D8 contains SA hexadecimal,

while its relative counterpart (address 0008 as seen above) contains FF. This
method eliminates one calculation but it adds another; that is, you need to calcu
late a new source end address (32DC).

Verifying Memory Stored
on Apple II Peripherals

The verify memory command is especially useful if you save memory contents
onto cassette tape or disk. By saving a portion of memory and then loading it back
in at a different location, you can verify that memory was saved properly. The
following example shows how to perform this procedure for assembly language
programs, shape tables, and other information which you can store from memory
to Apple II peripherals.

If you are using the cassette recorder to save memory onto tape, the first step
is to enter the memory write command as shown in this example:

*2000.20FFW

This command writes data from memory, starting at address 2000 and ending
with address 20FF, onto cassette tape. Don't forget to start the recorder in
RECORD mode before you press RETURN. Once the Apple II speaker emits a beep
to notify you that the memory write operation is finished, stop the cassette
recorder and rewind the tape to where the reference tone begins. Assuming that
memory from 21 00 to 21 FF is available, use the memory read command to load
data from cassette to address 21 00, ending with address 21 FF:

*2100.21FFR

Don't forget to start the recorder with the PLAY button. When the Apple II
speaker emits a beep, the memory read operation is complete. Now you can verify
memory against what you saved on tape:

*2000<2100.21FFV

Chapter 7: MACHINE LANGUAGE MONITOR 247

The verify memory command compares memory, from 2000 to 20FF, to
memory which was written to cassette and read back in starting at address 21 00.
If no discrepancies display, you can be sure that the memory write operation was
successful.

To verify memory saved on disk, the same general procedures apply. Before
attempting to save or retrieve memory using the disk drives, the Disk Operating
System has to be in memory as well. Here, the first step is to BSA VE the block of
memory onto disk:

BSAVE MEMDATA, A$2000,L$FF

Memory saved on disk, in the file named MEMO AT A, can be read back in using
BLOAD: BLOAD MEMDATA, A$2100

Note that the address parameter in this statement is 256 bytes (decimal)
higher in memory than the original block saved. When file MEMDA T A is read in,
the verify memory command compares the two blocks:

CALL -151

*2000<2100.21FFV
If no discrepancies occur, you can be sure that memory was properly saved

onto disk; otherwise, the Monitor will point out differences between the blocks in
order for you to correct them.

THE GO COMMAND

The Monitor has a command which transfers control of the Apple II to a program
at an address you specify. Toward the beginning of this chapter, you saw how to
leave the Monitor and go back to the disk-based Applesoft. The command:

*3DOG
instructs the Monitor to jump to address 3DO in memory and execute the machine
language instruction it finds there. The letter G at the end of the command line
stands for GO. If you enter the command shown above and DOS is in memory,
address 3DO contains the first part of the assembly language instruction:

JMP $9DB9

When the Monitor transfers control to the instruction at address 3DO, the com
puter branches to address 9DB9, where the DOS routines begin.

The general format for the GO command is the address to transfer control to,
followed by the letter G. The address is optional; if none is entered, the Monitor
uses its memory pointer as the assumed address.

USING THE PRINTER

If your Apple II connects to a printer via the Serial Interface or Communications
card, you can use the printer for output. To divert all output from the screen to a

248 APPLE II USER'S GUIDE

printer, enter the slot number of the interface card which controls the printer,
followed by CTRL-P and RETURN. Once you enter this command, all output normally
displaying on the screen will be routed to the printer. To select the Apple II screen
as the console output device, use slot number 0 with the CTRL-P command.

When using this command, be sure that the slot you select has an interface
card in it. If no interface card exists at the slot you specify, the Apple II will lock up.
The only way to recover from this condition is to press REsET.

The printer command works exactly the same way as the PR* (slot number)
command in BASIC. Both of these commands set the two-byte CSW switch
(character output switch) at address 54 ($36). These two bytes contain an
address which points to the character-output subroutine currently in use. By
changing the slot with CTRL-P, you change the contents of the two-byte CSW
switch.

THE KEYBOARD COMMAND

This command directs the Monitor to accept input from a device other than the
Apple II keyboard. As with the printer command, you specify the slot number for
the device. Follow the slot number with CTRL-K, then press RETURN. To return con
trol to the Apple II keyboard, enter a keyboard command with a slot number of 0.

This command sets the KSW (keyboard input switch) at address 56 ($38) to
a two-byte address derived from the slot number entered in the keyboard com
mand.

SETTING DISPLAY MODES

To view Monitor output on the screen in inverse video, enter the inverse video
command, abbreviated as I. This will cause all data which the Apple II displays to
appear as black letters on a white background. However, any Monitor commands
you enter will still display in normal, white-on-black video.

To terminate inverse video, enter the normal video command, abbreviated as N.
Neither of these commands needs any additional parameter other than the letter I
or N.

EIGHT -BIT BINARY ARITHMETIC
USING THE MONITOR

The monitor performs eight-bit binary addition and subtraction. The results of the
arithmetic are also eight bits long. To perform addition, enter a hexadecimal
addend followed by a plus sign (+) and a hexadecimal augend. If the result is
greater than FF, the Monitor truncates the most significant digit and displays the
low-order eight bits of the result, as shown in this example:

*7F+SA
=09

Chapter 7: MACHINE LANGUAGE MONITOR 249

To perform subtraction, enter the minuend followed by a minus sign (-) and
the subtrahend. As with addition, both numbers have to be hexadecimal. If the
result is less than zero, the Monitor displays the ones complement result, as
shown below:

*OA-20
=DD

USER-DEFINABLE MONITOR COMMAND

By entering CrRL-Y in response to a Monitor prompt, you invoke a special user
definable command. The Monitor automatically jumps to hexadecimal address
3F8 when CrRL-Y is entered. There is enough room at location 3F8 for one
machine language jump instruction. If you have a special machine language pro
gram somewhere in memory, CTRL-Y could initiate a jump to it via location 3F8.

The example below shows how to set up CrRL-Y to restart disk-based
Applesoft without typing the familiar 3DOG command. .

First, you need to know the format of a machine language jump instruction. It
takes three bytes. The first byte is the instruction code, 4C. The next two bytes
are the address to jump to, with a twist. You must specify the last byte of the
address first (kind of like last name first).

Here's a memory alteration command that sets up a jump instruction to

address 300: *3F::::: 4c [tO 03

Now try CTRL-Y. That certainly beats 3DOGI
For another example, let's see how you would use CTRL-Y to jump to the Mini

Assembler, which the next section covers in detail. If you enter the Monitor com
mand:

the Mini-Assembler prompt appears:

The address where the Mini-Assembler starts, F666, can be used in a JMP
instruction at address 3 FS:

!3FS:dMP $F666

03F8- 4C 66 F~· .JMP $F ~.66 -The Mini-Assembler
displays this line

Although the Mini-Assembler is not discussed until the next section, the line
above sets the address of this instruction to 3F8 hexadecimal, and the operand
($F666) indicates a jump to the beginning of the Mini-Assembler program. To
return to the Monitor, enter the command:

!$FF69G

*
The Monitor prompt reappears in the lower lefthand corner of the screen. After
this point, if you press CTRL-Y the Mini-Assembler prompt appears. Setting the
user-definable command to the Mini-Assembler saves keystrokes used in invok
ing it. Reset the user-definable command by placing a different jump instruction at
address 3F8.

250 APPLE II USER'S GUIDE

THE MINI-ASSEMBLER

If you have the standard Apple II (or the Integer BASIC card with the Apple II Plus),
you have a program in ROM which spares the machine language programmer the
torture of hand assembly. The Mini-Assembler resides with Integer BASIC in
ROM. It is called mini because the programmer has to use literal addresses, rather
than mnemonic labels, as operands in assembly language statements. Also, each
line of code you enter is automatically and immediately assembled into machine
language. The principal problem here is that you cannot insert or delete instruc
tions at will, as you can with a full-fledged assembler with a text editor.

The principal advantage of the Mini-Assembler is the ability to enter machine
instructions directly into the Apple II, while still keeping the convenience of as
sembly language mnemonic instructions.

The balance of this chapter describes the Mini-Assembler and tells how to use
it. The chapter most definitely does not explain assembly language programming
concepts. Nor does the chapter cover the 6502 instruction set which is the as
sembly language the Apple II uses.

So if you're already confused with this talk of assembly, operands, mnemonics,
and so forth, stop right now. Learn assembly language programming techniques
and the 6502 instruction set first. Then finish reading this chapter.

ACCESSING THE MINI-ASSEMBLER

The entry point address of the Mini-Assembler program is F666 hexadecimal. To
begin from the Monitor, enter the command:

*F666G

This will cause the Monitor to jump to the Mini-Assembler. From Integer BASIC or
Applesoft (disk or cassette version), enter the immediate-mode command:

CALL -2458
When you first invoke the Mini-Assembler, the onboard speaker beeps once.

The prompt character for the Mini-Assembler is an exclamation point (I).

Entry Errors

The Mini-Assembler detects errors which you make when you enter an assembly
language instruction. It displays the error by beeping the speaker once and
redisplaying the instruction with a caret (A) under the first incorrect character in
the instruction. The location counter does not increment; it remains unchanged
since the last character entered so you can reenter the instruction properly.

MONITOR COMMANDS IN THE MINI-ASSEMBLER

At any time you are in the Mini-Assembler, you can execute Monitor commands.

Chapter 7: MACHINE LANGUAGE MONITOR 261

Immediately after the Mini-Assembler prompt (I), enter a dollar sign ($), followed
by the Monitor command. The example below shows how to examine memory
contents from the Mini-Assembler.

!$1CFF

lCFF- E6

This feature saves you the time spent switching back and forth between the
Mini-Assembler and Monitor. You can enter any Monitor command while in the
Mini-Assembler just by entering the dollar sign as the first character of input. In
fact, you will use this feature when you leave the Mini-Assembler.

LEAVING THE MINI-ASSEMBLER

To leave the Mini-Assembler, use one of the Monitor commands, with the dollar
sign prefix. To get back to the Monitor, branch to address FF69 with the $FF69G
command.

$CTRL-B or $CTRL-C will put you in BASIC unless you're using disk-based or
cassette-based Applesoft. For disk-based Applesoft, use $3DOG; use $0G for
cassette-based Applesoft.

INSTRUCTION FORMATS

Although it is not the object of this section to teach you about programming in as
sembly language, there are some aspects of the Mini-Assembler which you
should be aware of before using it. First, the Mini-Assembler maintains an instruc
tion pointer separate from the Monitor's memory pointer. You need to set this
pointer before entering instructions. Second, there are various instruction formats
used in programming the 6502 microprocessor. These formats depend largely on
the addressing scheme used.

The 6502 microprocessor has eleven addressing modes, but only six separate
instruction formats. They are described below.

The first, absolute or direct addressing, only requires the one- or two-byte
memory address of the operand. For example:

AND $303A

The Mini-Assembler does not require a dollar sign ($) before hexadecimal
addresses; it assumes that all addresses used are in base 16.

The second addressing format is the immediate addressing mode, as in this

example: LDA #$04

Note the pound sign (:tt:), the first character of the operand. This is an explicit
indicator that the value 04 will load into the Accumulator. Without the pound sign,
the Mini-Assembler interprets the instruction as "take the contents of memory
location 0004 and load them into the Accumulator," which is actually a default to
absolute addressing.

252 APPLE II USER'S GUIDE

Note also the confusing use of the term immediate. Do not confuse immediate
addressing in assembly language with immediate execution in BASIC. The actions
are quite different. The terms are commonplace so we will use them in spite of the
ambiguity.

The third addressing format is the indexed method, which looks like this:
CMP $23,X

or
AND $80,Y

Both of these instructions are similar in that the X or Y register appears as a
second operand. Basically, this format generates a machine language instruction
to add the contents of the X or Y register to the address in the first operand, and
to use this sum as the address which the instruction references.

Next, the pre-indexed indirect format, as in this example:

AND ($FO,X>

indicates that the sum of the address ($FO) and the register (X) contents point to
an address in the first 256 bytes of memory which, in turn, contains another
address which points to the data to be used as the operand in the instruction.

Post-indexed indirect addressing takes the following form:

ORA ($22>,Y

This instruction format uses the first operand as a pointer to a two-byte
address, located in this case at memory location $22. This instruction adds the
contents of the Y register to the address found at $22; the data at the derived
address is used in the machine language instruction. The Mini-Assembler recogn
izes post-indexed indirect addressing when the first operand is in parentheses, as
in the example above.

Indirect addressing is a bit more straightforward than indexed addressing.
Here's an example: ._IMP ($22FE >

Here, the JMP instruction does not load address $22FE into the program
counter. Instead, a two-byte address at location $22FE loads into the program
counter. Therefore, the operand in the indirect format is actually a pointer rather
than a literal address.

USING THE MINI-ASSEMBLER

As mentioned in the previous section, the Mini-Assembler maintains a location
counter which increments by the length of each assembly language statement
you enter. In other words, once the statement you enter is assembled into
machine language (every time you enter an instruction), the Mini-Assembler
calculates the length of the machine language instruction (1, 2, or 3 bytes) and
increments the location counter for the next line.

The first step in using the Mini-Assembler is to set the location counter. Do this
as part of the first assembly language statement you enter. For example:

!8DBO:LDA #$04

Chapter 7: MACHINE LANGUAGE MONITOR 253

Directly after the Mini-Assembler prompt, enter the base address for the as
sembly language code you are entering (in this case, 8080), followed by a colon
(:) and the first assembly language statement. You do not have to enter a new
location counter value for the next instruction. The Mini-Assembler calculates the
next address unless you reset the location counter by entering another address as
shown above.

Once you set the location counter, enter subsequent assembly language
instructions, one per line. After the first line, enter a blank followed by the next as
sembly language statement, like this:

! .JSR FB1E
This directs the Mini-Assembler to calculate the new location counter value.

A Sample Session

This section explains Mini-Assembler operation in step-by-step detail. The object
of this sample session is to create a small program which uses the Apple II game
control inputs and the onboard speaker to create sounds. The procedure for this
program is to read values from paddle 0 and paddle 1, using the built-in Monitor
subroutine PREAD (at address FB1 E). The value of paddle 0 is the interval be
tween clicking the speaker (O=shortest delay, FF=Iongest delay), and the value of
paddle 1 is another interval, related inversely to paddle 0 (O=Iongest interval,
FF=shortest interval).

The program will begin at 1 000, and will use address 1 CFF for storing the
reading from paddle 0.

When you enter each line of the assembly language program, the Mini-Assem
bler overlays the line you entered with the current location counter value, opera
tion code, and operand in machine language form (also known as object code),
along with the instruction mnemonic you entered. For example:

lDOO- A2 00 LDX #$00

The location counter displays at the beginning of the assembled line, followed
by a dash. After this field, the operation code (A2 for this LOX instruction) dis
plays, followed by the last byte of the instruction. In the case of three-byte
instructions (those which refer to a two-byte address), the low-order byte
appears before the high-order byte. Lastly, the instruction mnemonic appears.

The annotated sample session appears below. Note that each line produced by
the Mini-Assembler appears here below the line you enter to generate it.

! 1DOO: LDX #$00 - Set location counter and enter first instruction

1000- A2 00 LDX #$00
! ·-'SR FB1E - All numbers are hexadecimal ($ prefix unnecessary)

1D02- 20 lE FB ._ISR $FB1E
! STY lCFF

1005- 8C FF 1C STY $1CFF
! INX

254 APPLE II USER'S GUIDE

1008- ES INX
! .JSR FBlE

1D09- 20 1E FB .JSR $FB1E
! LOA C030

!DOC- AD 30 co LDA $C030
! DEC -!C:FF

1DOF- CE FF !C DEC $1CFF
! BNE 1 DOC - Mini-Assembler computes the relative jump (F8)

1012- DO FE: BNE $1DOC
! LOA C030

1D14- AD :;:o co LDA $C0:3o
! !NY

1017- C8 INY
! BNE 1014

1018- DO FA BNE $1[114
! .JMP 1000

1D1A- 4C 00 10 ._IMP $1[100

After entering this program, you should check it for accuracy. The best way to
do this is to list the program in memory, preferably in assembly language format.
But you will need to use the Monitor to do so as described below.

As an additional safeguard, you may want to save the program on cassette
(use the Monitor W command) or disk (with the BASIC BSAVE statement).

To run the program, branch to location 1000. Use the G command in the Moni
tor, or CALL 7 424 from BASIC. Fiddle with the game controls and see how they
affect the speaker. To end the program, press REsET.

DISASSEMBLED LISTINGS

The Monitor contains a command which you can use to list machine language
instructions in a!)sembly language format, even if your Apple II does not have the
Mini-Assembler in ROM. The command L, for List, disassembles 20 machine
language instructions into assembly language statements and displays them on
the screen or other output device you select. The List command uses the location
counter as a pointer to the next instruction to disassemble. Therefore, if you just
enter L after entering the program above, disassembly will start with address
1010, and it will not list any of the program you entered.

It is good practice to set the location counter when using the List command.
Here is a disassembled listing of the sound program:

!$1DOOL

1000- A2 00 LOX #$00

Chapter 7: MACHINE LANGUAGE MONITOR 266

1002- 20 lE FB JSR $FB1E
1005- 8C FF 1C STY $1C:FF
1008- E8 INX
1009- 20 lE FB JSR $FB1E
!DOC- AD 30 CO LOA $C030
1DOF- CE FF lC DEC $1CFF
1012- DO F8 BNE $1DOC
1014- AD 30 co LOA $C030
1017- C8 INY
1018- DO FA BNE $1014
lOlA- 4C 00 10 JMP $1000
1010- 9F ???
1D1E- 4E A5 12 LSR $12A5
1021- A4 96 LOY $96
1023- A3 ???
1024- DO A4 BNE $1CCA
1026- EF ???
1027- A4 62 LOY $62
1029- A2 70 LOX #$70

In this case, the last eight disassembled instructions are immaterial, since the pro
gram ends at address 101 A.

Note that the List command is a Monitor facility, independent of the Mini-As
sembler (hence the dollar sign prefixing the command). By entering L ($Lin the
Mini-Assembler) and pressing RETURN without setting the location counter, you
direct the Monitor to disassemble the next 20 instructions it finds after those just
listed.

TESTING AND DEBUGGING PROGRAMS

Together with the Mini-Assembler, the Monitor in the standard Apple II furnishes
you with debugging features which are very helpful when you are programming in
assembly language. Programs in low-level languages are probably the hardest to
debug and test. Instead of simply printing contents of variables, you must inspect
memory locations, registers, and the program itself. Two Monitor commands,
Step and Trace, are used for this purpose.

The Step and Trace commands are not available on versions of the Apple II
with the Autostart Monitor.

The Step Command

While it is easy enough to try testing an assembly language program by witness
ing the symptoms of its operation, this is frequently not a very efficient or effec
tive method of isolating errors. If the program is small enough, it is possible to run
it step by step, checking the results of each machine language instruction after
the Apple II performs it. The Step command does just that.

When you execute the Step command, the Monitor disassembles and displays
the instruction pointed to by the location counter, executes it, displays the con-

256 APPLE II USER'S GUIDE

tents of the microprocessor registers, and returns control of the Apple II to the
Monitor.

The format of the Step command is an optional address parameter (to set the
location counter) followed by the letter S.

The Step command below performs the first instruction in the sample sound
program. The contents of the X register display as 0. The other three registers
whose contents display are unchanged.

*1DOOS

1000- A2 00 LOX #$00
A=FF X=OO Y=8C P=:32 S=F8

*
You can alternate between the Step command and other monitor commands
(such as examine memory). To see this in action, step through the sample sound
program until you get to the STY instruction at memory location 1005. You will
have to enter the S command nine times, since the JSR instruction at location
1 002 calls a subroutine at location FB 1 E and you must step through it before you
get back to 1 005. Once you're there, use the examine memory Monitor command
to check location 1 CFF. The instruction at address 1005 stores the reading of
paddle 0 at address 1 CFF.

1005- 8C FF 1C STY $1CFF
A=OO X=OO Y=OO P=32 S=F8

*1CFF

1CFF- 00
*

As you can see from the memory examine command, the contents of the Y
register (3F) are now stored at address 1 CFF. You can intersperse most Monitor
commands with the Step command.

The Trace Command

Sometimes a program may be too long to allow you to execute each instruction
step by step. Instead, you may want to see each program step execute, but only
interrupt the execution of the program when it is necessary to do so. The Moni
tor's Trace command performs this function. Its output is similar to th~ Step com
mand, except that it saves you the effort of entering a Step command for each
instruction the Apple II executes. In order to stop the Trace command, you can
press the RESET key or imbed a BRK assembly language instruction in the pro
gram; when the Monitor encounters this instruction it returns control of the com
puter to you (via the Monitor).

The format for the Trace command is an optional address followed by the let
ter T. Here is the first part of a trace of the sample sound program:

Chapter 7: MACHINE LANGUAGE MONITOR 267

*1DOOT

1000- A2 00 LDX #$00
A=FF X=OO Y=8C P=32 S=F6

1002- 20 1E FB ,JSR $FB1E
A=FF X=OO Y=8C P=32 S=F6

FB1E- AD 70 co LDA $C070
A=OO X=OO Y=8C P=32 S=F4

FB21- AO 00 LDY #$00
A=OO X=OO Y=OO P=32 S=F4

FB23- EA NOF'
A=OO X=OO Y=OO P=32 S==F4

FB24- EA NOP
A=OO X=OO Y=OO P=32 S=F4

FB25- BD 64 co LDA $COc.4, X
A=::OO X=OO Y=OO P=32 S=F4

FB28- 10 04 BPL $FB2E
A=::OO X=OO Y=OO P=32 S=F4

FB2E- 60 RTS
A=OO X-=00 Y=OO P=32 ~3=F4

1005- 8C FF 1C STY $1CFF
A~oo X=OO Y=OO P=:32 S=F6

1D08- E8 INX
A==OO X=Ol Y=OO P=30 S=F6

1[109- 20 1E FB ,JSR $FB1E
A=OO X=Ol Y=OO P=30 S=F6

FBlE- AD 70 co LOA $C070
A=27 X=01 Y=OO P=30 S=F4

FB21- AO 00 LDY #$00
A=27 X=Ol Y=OO P=32 S=F4

FB23-- EA NOF'
A=27 X=Ol Y=OO P=32 S=F4

FB24- EA NOP
A=27 X=01 Y=OO P=:32 S=F4

FB25- BD ~.4 co LOA $C064,X
A=27 X=Ol Y=OO P=:30 S=F4

FB28- 10 04 BPL $FB2E
A=27 X=Ol Y=OO P=30 S=F4

t:"~..,~- 1-.() RTS

The disadvantage of using the Trace command over the Step command is that
you have Jess control over the execution of each step of the program. When you
initially enter the program, you have to put in BRK instructions at key points.
These are junctions in the logic of the program. Of course, you can replace these
BRK instructions with NOP instructions (no operation code), but this can be dis
tracting once you have finally debugged the program.

Additionally, the Trace command works at a fraction of the speed of the as
sembly language program. For instance, try substituting the instruction in the
sample sound program at address 1 D 1 A with a BRK instruction. By entering the
command 1 DOOG this routine takes a fraction of a second to execute. However,
by entering 1 DOOT, the program takes anywhere from 60 to 70 seconds to
execute. Therefore, if you have a large program to test, be conservative with the
Trace instruction if you want it to be any help at all.

268 APPLE II USER'S GUIDE

More About the Location Counter

As mentioned before in the section on the Step Command, you can use most
Monitor commands alternately with the Step and Trace commands. There are
some exceptions to this rule, however. The List, Go, and user-defined CTRL-Y
commands all modify the location counter when you enter them. This will disrupt
the flow of the program you are stepping through or tracing unless you reset the
location counter after executing one of these commands. The example below
shows how the location counter's value is disrupted by using one of these com
mands.

*lDOOS
1000- A2 00 LDX #$00

A=62 X=OO Y=OO P=:32 S=F:3
*S

1002- 20 1E FB .JSR $FB1E
A=62 X=OO Y=OO P=:32 S=F:3

*L - list command here

FB1E- AD 70 co LOA $C070
FB21- AO 00 LDY #$00
FB23- EA NOP
FB24- EA NOP
FB25- BD 64 co LOA $C064,X
FB28- 10 04 BPL $FB2E
FB2A- ce: !NY
FB2B- DO F8 BNE $FB25
FB2D- 88 DEY
FB2E- 60 RTS
FB2F- A9 00 LOA #$00
FB31- 85 48 STA $48
FB33- AD 56 co LOA $C0 56
FB36- AD 54 co LDA $C0 54
FB39- AD 51 co LDA $C051
FB3C- A9 00 LDA #$00
FB3E- FO OB BEQ $FB4B
FB40- AD 50 co LDA $COSO
FB43- AD 53 co LDA $C0 53
FB46- 20 36 F8 JSR $F836
*S - Changes location counter, so

next step is at $FB49

FB49- A9 14 LOA #$14 instead of $FB 1 E

A=14 X=OO Y=OO P=30 S=F6
*S

FB4B- 85 22 STA $22
A=14 X=OO Y=OO P=30 S=F6

*

Useful Monitor Subroutines

In some cases, BASIC is not powerful enough to perform all of the functions you
may need in a program. This, of course, is one reason why programmers resort to

Chapter 7: MACHINE LANGUAGE MONITOR 269

assembly language subroutines for their BASIC programs. This section shows
how to reference them from a BASIC program.

By weaving assembly language programs in with a BASIC program, you can
create as many problems as you intended to solve. Where in memory are you
going to put the assembly language programs? Remember, the Apple II memory
contains four large reserved areas (text/low-resolution graphics pages and both
high-resolution graphics pages). DOS and the Applesoft interpreter may take up
memory too. Locating a program where it will not cause problems is dependent on
memory size and the version of Apple II you use.

The Monitor is your best source for assembly language subroutines for three
reasons: first, being in ROM, you don't need to worry about relocating code; sec
ond, the Monitor routines have already been debugged; and lastly, the intrinsic
routines do not take up one byte of additional memory. The useful Monitor
subroutines are listed in Appendix D.

Incorporating the Subroutine

If you decide to use a Monitor subroutine in a BASIC program, first be sure that
there is no BASIC equivalent for it. This will save you the trouble of making a pro
gram more complicated than necessary. Next, check whether the assembly
language subroutines need parameters passsed from the BASIC program. If you
have to set values in the microprocessor registers before executing the
subroutine, or if the result of a subroutine resides in a register after execution, you
will have to use extra assembly language instructions to interface with BASIC.
Most Monitor subr9utines need no parameters from BASIC; those which do fre
quently have a BASIC equivalent anyway.

Once you know which subroutine to use, you may want to document it in a way
which makes the meaning clear. For instance, CALL -936 clears the text screen
and places the cursor in the upper lefthand corner of the screen. One way of mak
ing the CALL statement more descriptive is to set a variable at the beginning of
the program, as follows:

10 CLSCREEN=-936

and to reference it later in the program:

1510 CALL CLSCREEN

This makes the context of the CALL statement clearer to someone who has to
read it, but it does add one statement to the program. These finer elements of
style will make yo~r program easier to read and debug.

Problems to Avoid

If you have an editor/assembler available for the Apple II, it is easy to relocate pro
grams by resetting the origin point and reassembling. However, if you wrote a
machine language subroutine with the Mini-Assembler, and the subroutine is

260 APPLE II USER'S GUIDE

designed to be used with BASIC, you may run into problems which force you to
rewrite the subroutine for versions of the Apple II with different memory sizes.
This will happen if you use memory locations used by DOS, the graphics pages, or
disk-based or cassette-based Applesoft. Try to use Monitor subroutines wherever
possible.

If you program in Applesoft, always use the USR function if you have to pass
parameters to and from the subroutine, instead of the CALL statement.
Addresses 90 through A3 store the value of the parameter passed by USR, and
you can use this area for parameters to pass back to BASIC. Use the POKE state
ment to put a JMP instruction in locations 1 0 through 12 (OA through OC hex
adecimal). These locations must contain a JMP instruction to the beginning of the
machine language subroutine invoked by USR.

INTEGRATING YOUR PROGRAM
WITH BASIC

In BASIC, the statements LOMEM: and HIMEM: protect your assembly language
program from being written over by BASIC. There are some requirements in set
ting up an a~sembly language program if you also intend to have disk-based or
cassett~-based Applesoft or the Disk Operating System in memory at the same
time. The general procedure for using an assembly language subroutine or pro
gram with BASIC and DOS is as follows:

1. Boot DOS.

2. Load the Applesoft interpreter from disk or cassette, if necessary.

3. Set LOMEM: and HIMEM: values.

4. Load the assembly language program.

5. Load the BASIC program from disk or tape (or type it in).

The Disk Operating System resets HIMEM: after you load it from the disk into
memory. The Applesoft interpreter resets LOMEM: after it is loaded. You reset
LOMEM: or HIMEM: to allow room for your assembly language programs, and
then load them into that safe space. Subsequently loading and running a BASIC
program affects only the remaining memory between LOMEM: and HIMEM:.

For more help on finding space for your assembly language program, check the
memory maps in Appendix G. Also, refer to the discussion of LOMEM: and
HIMEM: in Chapter 8.

8
Compendium of BASIC Statements

and Functions

This chapter describes the syntax for all Apple II BASIC statements and functions.
Statements are described first, listed in alphabetical order; then functions are de
scribed, also in alphabetical order.

This chapter serves as a reference for all statements and functions. Chapters 3
through 7 describe programming concepts. They also give examples of state
ments and functions used in programs.

IMMEDIATE AND PROGRAMMED MODES

Most statements can be executed in immediate or programmed mode. Unless
otherwise stated, you can assume that a statement can be used in both modes.
Exceptions are identified. Some statements can be used in one mode, but not the
other; other statements can be used in both modes, but only one mode is practi
cal.

Some statements are Disk Operating System (DOS) statements. They can be
used as shown in immediate mode. In programmed mode, however, they must be
issued as part of a PRINT statement string, the first character of which is CTRL-D
(ASCII code 4). Thus, the following two statements are equivalent:

JCATALOG
JF'RINT CHR$(4); 11 CATALOG 11

Note that instead of using CHR$ (4) as shown above, you can type a quotation
mark, followed by CTRL-D, and then another quotation mark. On the screen it will

262 APPLE II USER'S GUIDE

seem you have only pressed the quotation mark key twice. The CrRL-D character
is there even though you can't see it.

BASIC VERSIONS

All statements and functions are available in both Integer BASIC and· Applesoft
unless otherwise stated. Where a statement or function works differently in the
two versions of BASIC, the differences are noted.

NOMENCLATURE AND FORMAT CONVENTIONS

We use a standard scheme for presenting the general form of each statement and
function. Listed below are the punctuation, capitalization, and other mechanical
conventions we use.

(}

[1

line
numbers

other
punctuation

UPPER
CASE

italics

Braces indicate a choice of items. One of the enclosed
items must be present; braces do not appear in an
actual statement.

Brackets indicate that the enclosed parameter is
optional; brackets do not appear in an actual
statement.

Ellipses indicate that the preceding item can be
repeated; ellipses do not appear in actual statements.

A beginning line number is implied for all programmed
mode statements.

All other punctuation marks - commas, semicolons,
quotation marks, and parentheses- must appear
as shown.

Upper-case words and letters must appear exactly as
shown.

Generic terms are italicized. The programmer supplies
· the exact wording or value, according to lhe generic
term definitions listed below.

The following italicized generic terms are used in statement and function
definitions. Any italicizt!d terms not listed here are peculiar to the statement in
which they appear. They are defined in the text that describes that statement.

col

colh

const
Dn

Low-resolution graphics column number; a numeric
expression which has a value between 0 and 39.

High-resolution graphics column number; a numeric
expression which h~s a value between 0 and 279.

Any numeric or string constant.

A disk drive number which must be specified as DO or D 1.

Chapter 8: COMPENDIUM OF SASIC STATEMENTS AND FUNCTIONS 263

expr

expr$

exprnm

filename

line

line;

memadr

memloc

message

row

rowh

Sn

var

varnm

var(sub)

Vn

APPEND

Any numeric string, relational, or Boolean (Applesoft
only) constant, variable, or expression; any valid
combination thereof.

Any string constant, variable, or expression.

Any numeric constant, variable, or expression.

Any disk file name.

Any BASIC program line number.

One of many BASIC program line numbers.

A numeric expression, variable, or constant that
evaluates to any memory address. Memory addresses
may range from -65535 to 65535 (decimal), where
-65535 is the same as 1, -65534 equals 2, etc.

Any memory location specified by an integer constant
between 0 and 65535 (decimal) or $0 and $FFFF
(hexadecimal). Hexadecimal constants are identified
by a dollar sign ($) prefix.

Any text string enclosed in quotes.

low-resolution graphics row number; a numeric
expression which has a value between 0 and 4 7.

High-resolution graphics row number; a numeric
expression which has a value between 0 and 1 91 .

Slot number for input or output; must be SO, S 1, 52,
53, 54, 55, 56, orS7.

In Integer BASIC, any numeric or string variable. In
Applesoft, any numeric, integer, or string variable.

Any numeric variable name.

In Integer BASIC, any subscripted numeric variable. In
Applesoft, any subscripted integer, numeric, or string
variable.

An identifying disk volume number (between VO and
V255).

STATEMENTS

Opens a file (see OPEN), and positions the file pointer at the end of the file.

Format:
APPEND filename [,On] [,Sn] [,V n]

264 APPLE II USER'S GUIDE

TABLE 8-1. Machine Language Fix for APPEND

MACHINE LANGUAGE 6602ASSEMBLYLANGUAGE

Decimal Hexadecimal Instruction Comments

169 A9 LDA$0 The Monitor routine

0 0
at $FDED outputs
the character in

76 4C JMP $FDED register A ($0 in this

237 ED case) to the currently
selected output device,

253 FD the disk. See Appendix D.

A memory buffer of 595 bytes is allocated for the text file specified. The file must
be a sequential file. The WRITE command can now be used to store information
on the file, starting at the first unused byte. This will be immediately following the
last character in the file unless there are unused bytes in the middle.

Occasionally, APPEND will not start at the first unused byte in the file (often the
end of the file). Instead it starts at the beginning of the file. (Horrors!) To make
sure this doesn't happen, your program should always write an end-of-file marker
before closing a file it has written to. The short machine language subroutine in
Table 8-1 does the trick. POKE this into memory anywhere there are five free
bytes (locations 768 through 772 are OK unless you're using them for something
else). Then call the subroutine (use CALL) just before closing the file.

If the file does not exist on drive Dn of slot Sn, the FILE NOT FOUND error
message is displayed. If the disk in drive Dn of slot Sn is not volume V n, the
VOLUME MISMATCH error results. VO will match any disk. If the file is already
open, APPEND closes it and reopens it (see CLOSE).

Dn, Sn, and V n can be specified in any order. If Dn or Sn is omitted, the last
referenced drive or slot is used. VO is used if V n is absent. Also, n can be absent;
DO, SO, or VO will be used.

APPEND is a DOS command, requiring PRINT and Cnn-D in programmed
mode.

May not be used in immediate mode.

AUTO

Sets automatic line numbering mode in Integer BASIC.

Format:
AUTO line [,increment 1

Line numbers are automatically displayed each time you key RETURN, starting

Chapter 8: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 266

with line, and increasing each time by increment, which defaults to 1 0 if not
specified. Type CrRL-X to erase an automatic line number; automatic line number
ing resumes unless MAN is entered on the next line (see MAN).

Can be used only in immediate mode.
Not available in Applesoft.

BLOAD

Retrieves a binary file from the disk and stores it in the specified section of
memory.

Format:
BLOAD filename [,Amemloc I [,On] [,Sn 1 [,Vn 1

If the A parameter is absent, the specified file is placed in memory beginning at
the memory location from which the file was saved (see BSAVE). If the A
parameter is present, the file goes into memory at memloc.

BLOAD must be used with care. Anything already in the section of memory
where it is placed (such as your program, Applesoft, DOS, etc.) will be overwrit
ten.

If the file does not exist on drive Dn of slot Sn, the FILE NOT FOUND error
message is displayed. If the disk in drive Dn of slot Sn is not volume V n, the
VOLUME MISMATCH error results.

Dn, Sn, and V n can be specified in any order. If Dn or Sn is omitted, the last
referenced drive or slot is used. VO is used if V n is absent.

This is a DOS command, requiring PRINT and CrRL-0 in programmed mode.

BRUN

Retrieves a binary file (which should be a machine language program), stores it in
the specified section of memory, and then executes a machine language jump
(JMP in 6502 assembly language) to the starting memory location.

Format:
BRUN filename [,Amemloc] [,On 1 [,Sn 1 [,V n 1

If the A parameter is absent, the specified file is placed in memory beginning in the
memory location from which the file was saved (see BSAVE). If the A parameter is
present, the file goes into memory at memloc.

A machine language program may work properly at only one memory location.
Check carefully for instructions that are address dependent before loading to a
new memory location. BRUN overwrites anything in the section of memory in
which it stores the file; this could be awkward if DOS or Applesoft is destroyed in
the process.

266 APPLE II USER'S GUIDE

If the file does not exist on drive On of slot Sn, the FILE NOT FOUND error
message is displayed. If the disk in drive Dn of slot Sn is not volume V n, the
VOLUME MISMATCH error results.

Dn, Sn, and V n can be specified in any order. If Dn or Sn is omitted, the last
referenced drive or slot is used. VO is used if V n is absent.

This is a DOS command, requiring PRINT and CTRL-D in programmed mode.

BSAVE

Creates a disk file and saves a section of the Apple ll's memory on it, in binary.

Format:
BSAVE filename ,Amemloc ,Liength [,Dn] [,Sn] [,Vn]

The A parameter specifies the starting address of the memory section to save.
The L parameter specifies the number of bytes to save. length must be an integer
in the range 0 through 32767 (decimal). It may be either a decimal or hexadecimal
constant. Hexadecimal constants are identified by a dollar sign ($) prefix.

If the file does not exist on drive Dn of slot Sn, the FILE NOT FOUND error
message is displayed. If the disk in drive Dn of slot Sn is not volume V n, the
VOLUME MISMATCH error results.

Dn, Sn, and V n can be specified in any order. If On or Sn is omitted, the last
referenced drive or slot is used. VO is used if V n is absent. Also, n can be absent;
DO, SO, or VO will be used.

This is a DOS command, requiring PRINT and CrRL-D in programmed mode.

CALL

Branches to a machine language subroutine at a specified location.

Format:
CALL memadr

CALL can be used with subroutines that you write yourself, as well as with various
intrinsic subroutines which are listed in Appendix D.

CATALOG

Displays a list of all files on the specified disk.

Format:
CATALOG [,On] [,Sn 1

Chapter 8: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 267

CATALOG first prints DISK VOLUME followed by the volume number of the disk.
If the volume parameter V n is included in the CATALOG command, it is ignored.

The list of files on the disk is displayed below the volume number. For each file,
CATALOG prints a code letter indicating the type of file, the number of sectors
required to store the file, and the name of the file. An asterisk appears to the left
of the file type if the file is locked (see LOCK). The file types and their codes are:

I Integer BASIC Program

A Applesoft Program

T Text File

B Binary (Machine Language) File

If a file length exceeds 255 sectors, the file length is displayed modulo 255;
i.e., 0 is printed if the file length is 256, 1 if it is 25 7, etc.

Dn and Sn can be specified in any order. If On or Sn is absent, the last
referenced drive or slot is used.

This is a DOS command, requiring PRINT and CTRL-0 in programmed mode.

CHAIN

Loads and runs an Integer BASIC program from the disk, without clearing the
values of any variables or arrays.

Format:

CHAIN filename [,Dn 1 [,Sn 1 [,V n 1
The CHAIN command may only be used in Integer BASIC, and may only be used to
load an Integer BASIC program.

If the file does not exist on drive On of slot Sn, the FILE NOT FOUND error
message is displayed. If the disk in drive On of slot Sn is not volume V n, the
VOLUME MISMATCH error results.

Dn, Sn, and V n can be specified in any order. If On or Sn is omitted, the last
referenced drive or slot is used. VO is used if V n is absent. Also, n can be absent;
DO, SO, or VO will be used.

This is a DOS command, requiring PRINT and CTRL-0 in programmed mode.

CLEAR

This Applesoft statement assigns 0 to all numeric variables and numeric array ele
ments. Also assigns a null value to all string variables and string array elements.

Format:

CLEAR

268 APPLE II USER'S GUIDE

Executing this statement is equivalent to turning the Apple II off, then turning it
back on and reloading the program into memory. A program will continue to run
following CLEAR providing the effects of the CLEAR statements do not adversely
affect program logic.

For Integer BASIC, use CLR.

CLR

This Integer BASIC command assigns 0 to all numeric variables and array ele
ments, and assigns a null value to strings.

Format:
CLR

Also undimensions all arrays and strings. You can still print array values after
executing a CLR statement, as long as no variables have been assigned values in
the interim.

CLR can be used only in immediate mode.
For Applesoft, use CLEAR.

CLOSE

Deallocates the buffer use~ by the specified dis!< file, and if the last operation on
the file was WRITE, saves anything left in the output buffer on the file.

Format:
CLOSE [filename 1

You must CLOSE any file you have used the WRITE statement with in order to
avoid losing data. If filename is present, only that file is closed. If filename is not
present, all files are closed (except a controlling EXEC file).

Occasionally a sequential file will exactly fill a sector as it is closed. Under these
conditions, a subsequent APPEND will occur at the beginning of the file rather
than the end. To forestall this, call the short machine language subroutine in Table
8-1 just before the CLOSE statement. You can POKE the subroutine anywhere
there are five free bytes (e.g., locations 768 through 772 unless otherwise in use).

This is a DOS command, requiring PRINT and CTRL-D in programmed mode.

COLOR=

Sets the color for low-resolution graphics.

Format:
COLOR= exprnm

Chapter 8: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 269

TABLE 8-2. Low-Resolution Color Code~

Code Color Code Co~or Code Color Code Color

0 Black 4 Dark Green 8 Brown 12 Green
1 Magenta 5 Gtey 9 Orange 13 Yellow
2 Dark Blue 6 Medium Blue 10 Grey 14 Aqua
3 Purple 7 Light Blue 11 Pink 15 White

Until the next COLOR statement, all PLOT, VLIN, and HLIN statements will be in
the color specified. The color codes are listed in Table 8-2. The exprnmmust have
a value in the range 0 to 255; real values are converted to integers. Values greater
than 15 repeat the colors shown above (0, 16, 32, etc. ate black, and so on).
COLOR = 0 if not previously specified.

COLOR has no effect if used while in high-resolution graphics mode. When
used while in text mode, COLOR is one factor in determining which character is
placed on the screen by a PLOT instruction. For a detailed description of this
feature, see PLOT.

CON

This Integer BASIC command resumes program execution at the next instruction
after a halt.

Format:
CON

CON operates after execution has been halted by CTRL-C, and sometimes after
REsET. If there is no interrupted program, CON simply locks up the system. A pro
gram cannot be continued after it is interrupted by CTRL-C during an INPUT state
ment.

If a program line has been changed or added, or an error message generated
since program execution was halted, CON will work sometimes, but may produce
an error message or lock up the system.

CON can be used only in immediate mode.
For Applesoft, see CONT.

CONT

This Applesoft command resumes execution at the next instruction after a halt.

Format:
CONT

270 APPLE II USER'S GUIDE

CONT operates after execution has been halted by STOP, END, or CTRL-C. If an
INPUT statement is interrupted by CTRL-C, the program cannot be continued. If
there is no interrupted program, or a program line has been changed or added, or
an error message generated since program execution was halted, CONT will pro
duce the message ?CAN'T CONTINUE ERROR.

For Integer BASIC, see CON.

DATA

Creates a list of values to be assigned by READ statements in Applesoft.

Format:
DATA const [, const .. .]

OAT A statements may appear anywhere in a program; they need not be executed
to be accessed by a READ command.

The DATA statement specifies either numeric or string values. String constants
are usually enclosed in quotation marks; the quotes are not necessary unless the
string contains blanks (spaces), commas, or colons. A quotation mark cannot be
represented in a const; it must be specified using a CHR$(34) function.

One or more of the const parameters can be null, i.e., nothing but blanks. A null
const is assigned as zero to a numeric variable, or a null string (" ") to a string
variable.

You will receive no error message if you enter a DATA statement in immediate
mode, but the elements will not be accessible to a READ command.

Not available in Integer BASIC.

DEF FN

The DEF FN statement allows special purpose functions to be defined and used
within Applesoft programs.

Format:
DEF FNnvsr (srg)=exprnm

Real variable nvsr identifies the function, which is subsequently invoked using the
name FNnvsr.

The function is defined by exprnm. srg is a dummy variable name which can
(and usually does) appear in exprnm. Its use in a DEF FN statement has no effect
on any other variable with the same name elsewhere in the program.

When FNnvsr is invoked, the value of the dummy variable srg is specified by a
numeric expression, variable, or constant. The values of all other variables in
exprnm must be defined before FNnvsr is invoked. See also FN in the Functions
section of this chapter.

Chapter 8: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 271

The entire DEF FN statement must appear on a single program line. However, a
previously defined function can be included in exprnm , so user-defined functions
of any desired complexity can be developed. A user-defined function cannot,
however, invoke itself directly or indirectly (by invoking a function which even
tually invokes it).

The function name nvsrcan be reused, and therefore redefined by another DEF
FN statement appearing later in the same program.

Not available in Integer BASIC.
The DEF FN definition statement is illegal in immediate mode. However, a user

defined function that has been defined by executing a DEF FN statement since the
last NEW, CLR, or LOAD command can be referenced in an immediate mode
statement.

DEL

Eliminates the specified program lines.

Format:
DEL line,, line2

All program lines greater than or equal to line, and less than or equal to line2 are
removed from the program currently in memory. If line, does not exist, the dele
tion starts at the next higher line number. If line2 does not exist, the deletion ends
at the next lower line number.

DEL must be followed by two line numbers which are separated by a comma.
Neither line number can be negative, and the second line number must be greater
than or equal to the first. If the line numbers are identical, one line (at most) is
deleted.

DEL may only be used in immediate mode in Integer BASIC.
If DEL is used in programmed mode (possible only in Applesoft), the indicated

deletions take place and the program halts. CONT will not continue the program in
this case.

DELETE

Erases a file from the disk.

Format:
DELETE filename [,Dn 1 [,Sn 1 [,Vn 1

The file with the specified name is removed from the disk.
If the file does not exist on drive On of slot Sn, the FILE NOT FOUND error

message is displayed. If the disk in drive Dn of slot Sn is not volume V n, the
VOLUME MISMATCH error results.

272 APPLE II USER'S GUIDE

Dn, Sn, and V n can be specified in any order. If Dn or Sn is omitted, the last
referenced drive or slot is used. VO is used if V n is absent. Also, n can be absent;
DO, SO, or VO will be used.

This is a DOS command, requiring PRINT and CrRL-D in programmed mode.

DIM

Reserves space in memory for an array or string.
Because of the extensive differences between Integer BASIC and Applesoft,

DIM is discussed below as it operates in each language.

Integer BASIC Format:

DIM var (sub) [, var (sub) . . .]

Only numeric arrays of one dimension and simple string variables may be dimen
sioned in Integer BASIC.

When an array is dimensioned, space is set aside in memory for the number of
elements equal to sub plus 1. They are numbered 0 through sub. Element 0 of an
array is identical to the simple variable of the same name (e.g., A(O)=A).

DIM statements declare the maximum lengths of string variables. In this case
sub is the string length.

Every subscript sub must be between 1 and 255 in a DIM statement. Aside
from this, the maximum allowable dimensions are limited by available memory.

If you reference an array using a subscript greater than the largest subscript
declared in the DIM statement for that array, the message *** RANGE ERR
occurs. If you attempt to use more characters in a string than it was dimensioned
for, the message*** STRING ERR is generated.

DIM does not assign the elements of Integer BASIC arrays any particular value
when it is executed. Therefore, you must initialize every array (e.g., to zero) after
dimensioning it. String variables, on the other hand, always have a null value after
first being dimensioned.

Applesoft Format:

DIM var (sub [,sub . ..]) [, var (sub[, sub . ..]) ...]

The DIM statement identifies arrays with one or more dimensions as follows:

var(sub;) Single-dimension array
var(sub;.subi) Two-dimension array
var(sub;. subi, subk . ..) Multiple-dimension array

Applesoft supports three types of arrays: integer, real, and string. Each element
of an array is of the type specified by the variable name for the array. The number
of dimensions in an array is determined by the number of subscripts in the DIM
statement. When an array is referenced, each subscript must fall within the range

Chapter 8: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 273

0 through sub, where sub is the corresponding subscript of the same variable in
the DIM statement.

The number of dimensions in an array is limited by the amount of memory
available. The maximum number of dimensions an array can ever have is 88, and
this is only possible when most of the subscripts are 0. A DIM statement with 89
or more subscripts, or one that otherwise exceeds memory limitations will pro
duce the message ?OUT OF MEMORY ERROR.

If you attempt to use an array with a subscript that is out of range or with the
wrong number of subscripts the message ?BAD SUBSCRIPT ERROR will appear.

If an array is referenced before a DIM statement for that array has been
executed, Applesoft assigns a default value of 1 0 to each subscript. The array is
thereafter treated just as if a DIM statement with a subscript of 1 0 for each
dimension had been executed.

An array can never be dimensioned twice, even one that has been dimensioned
by default. If you attempt to dimension an array that has already been dimen
sioned, you will be treated to the message ?REDIM'D ARRAY ERROR.

DRAW

This Applesoft statement draws a high-resolution graphics shape on the screen.

Format:

DRAW exprnm [AT colh, rowh]

The shape identified by the integer value of exprnm is drawn in the color deter
mined by the last-executed HCOLOR statement. The scale and rotation of the
shape must be set by SCALE and ROT commands before the DRAW is executed.

Starts drawing the shape at the location given by the integer values of numeric
expressions colh and rowh . If you do not specify a location in the ORA W state
ment, the shape starts at the last point plotted by the last-executed DRAW,
XDRAW, or HPLOT command.

The shape number specified (exprnm) must be between 0 and the number of
shapes in the shape table (which must not exceed 255), inclusive.

Avoid using DRAW if there is no shape table in memory. The system might lock
up, or you might find random shapes drawn on the screen. If your program
extends into the high-resolution graphics portion of memory, some or all of it
could be destroyed.

Not available in Integer BASIC.

DSP

Displays the changing values of the specified variable as an Integer BASIC pro
gram progresses.

274 APPLE II USER'S GUIDE

Format:

DSP var
The value of variable var and the current line number are displayed whenever the
value of that variable changes. This display may interact with your program's out
put, rendering one or both illegible. RUN cancels all DSP instructions. Use CON or
GOTO when you are debugging with DSP in immediate mode.

To turn off DSP, use NO DSP.
Not available in Applesoft.

END

Causes a program to halt.

Format:
END

No message is displayed. In Integer BASIC, END must be the last instruction
executed or the warning*** NO END ERR is displayed. END is entirely optional in
an Applesoft program.

Cannot be used in immediate mode in Integer BASIC.

EXEC

Executes a disk text file as if each character in the text file were entered on the
keyboard.

Format:

EXEC filename [,Rn 1 [,On 1 [,Sn 1 [,Vn 1
A text file to be used with EXEC consists of some combination of BASIC com
mands, DOS commands, and program lines. When EXEC is executed, the first line
of the specified file is read from the disk. If a command, it is executed
immediately; if a program line, it is added to any program lines in memory, just as
if you had entered it directly from the keyboard.

An EXEC file can be used to enter an entire program, list it, run it, save it on the
disk, change it, or anything else that can be done from the keyboard. You can
even use an EXEC file to create and execute a second EXEC file.

The R parameter, if present, specifies which field of the file is first executed.
When used with EXEC, the R parameter always counts from the beginning of the
file: the first field in the file is field 0, the second is field 1, etc. The number follow
ing R must be an integer constant in the range 0 through 32767. If Rn specifies
the first field following the end of the file, nothing happens. If it specifies two
fields or more past the end of the file, the END OF DATA message occurs.

Chapter 8: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 276

If an INPUT statement is executed while an EXEC file is open, the response is
taken from the EXEC file.

When the last line in the file has been executed, the EXEC file closes itself (see
CLOSE). When an EXEC command is encountered in a controlling EXEC file, the
original file is closed and any further commands in it are ignored; the new EXEC
file is opened and executed normally.

If the file does not exist on drive On of slot Sn, the FILE NOT FOUND error
message is displayed. If the disk in drive Dn of slot Sn is not volume V n, the
VOLUME MISMATCH error results.

Dn, Sn, and Vn can be specified in any order. If On or Sn is omitted, the last
referenced drive or slot is used. VO is used if V n is absent. Also, n can be absent;
DO, SO, or VO will be used.

This is a DOS command, requiring PRINT and CTRL-D in programmed mode.

FLASH

This Applesoft statement turns on flashing video mode.

Format:
FLASH

All output from subsequently executed PRINT statements will appear alternately
as white-on-black and black-on-white characters. Error messages are similarly
affected. However, characters echoed to the screen by INPUT statements are
unaffected, as are any previously displayed characters.

FLASH works by slightly altering the standard ASCII codes. Therefore any
characters sent to the disk in flash mode will be saved with incorrect codes. When
read back in, the wrong characters will result.

Not available in Integer BASIC.

FN

Listed in the Functions section of this chapter. See also DEF FN.

FOR

Starts a loop that repeats a set of instructions until an automatically incremented
variable attains a certain value.

Format:

FOR varnm = exprnm, TO exprnm2 [STEP exprnm3]

When FOR is first executed varnm is assigned the value of exprnm,. The state-

276 APPLE II USER'S GUIDE

ments following FOR are executed until a NEXT statement is reached. varnm is
then incremented by exprnm3 (or by 1 if the STEP clause is not present). After
that, the new value of varnm is compared to the value of exprnm2 • The sense of
the comparison depends on the sign of exprnm3 . If the sign is positive and the
new value of varnm is less than or equal to exprnm2 , execution loops back to the
statement just after the FOR. The same thing happens if the sign of exprnm3 is
negative and the new value of varnm is greater than or equal to exprnm2 • On the
other hand, execution continues with the instruction that follows the NEXT if
varnm is greater than exprnm2 (exprnm3 positive) or less than exprnm2 (exprnm3

negative). Because the comparison occurs after incrementing varnm, the instruc
tions between FOR and NEXT are always executed at least once.

In Integer BASIC varnm must be an integer variable. In Applesoft varnm must
be a real variable. It can never be a string variable.

The start, end, and increment values are determined from exprnm1, exprnm2 ,

and exprnm3 only once, on the first execution of the FOR statement. If you change
these values inside the loop it will have no effect on the loop itself. You can
change the value of varnm within the loop. This lets you terminate a FOR-NEXT
loop before the end value is reached: set varnm to the end value (exprnm2), and
on the next pass the loop will terminate itself. Do not start the loop outside a
subroutine and terminate it inside the subroutine.

FOR-NEXT loops may be nested. Each nested loop must have a different varnm
variable name. Each nested loop must be wholly contained within the next outer
loop; at most, the loops can end at the same point. Integer BASIC allows 161evels
of FOR-NEXT nesting, Applesoft just 1 0.

FOR may be used in immediate mode only in Applesoft. The entire loop must
be entered on one line. If NEXT is not present, the loop will execute once.

FP

Places the Apple II in Applesoft.

Format:

FP [,On 1 [,Sn 1 [,V n 1

The source of Applesoft depends on what kind of Apple II you have, and what
options are installed:

1. With an Apple II Plus the language is in read-only memory (ROM), no
matter what options may also exist.

2. If you have the Applesoft firmware card installed, FP obtains the
language from it regardless of the switch setting on the card.

3. With the Apple Language System installed, FP takes Applesoft from it.

4. On any other Apple II, FP looks for Applesoft on the specified (or current)

Chapter 8: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 277

disk. If it does not exist there, the message LANGUAGE NOT AVAILABLE
is displayed.

FP erases any BASIC program currently in memory.
If the file does not exist on drive On of slot Sn, the FILE NOT FOUND error

message is displayed. If the disk in drive Dn of slot Sn is not volume V n, the
VOLUME MISMATCH error results.

Dn, Sn, and V n can be specified in any order. If On or Sn is omitted, the last
referenced drive or slot is used. VO is used if V n is absent. Also, n can be absent;
DO, SO, or VO will be used.

Use only in immediate mode.

GET

This Applesoft statement accepts a single character from the keyboard without
echoing it to the screen.

Format:

GET var

Execution pauses until a key is depressed. When var is a string variable, the
character entered is assigned to that variable. If CTRL-® is entered, the null string is
assigned to the variable.

GET is not often used with a numeric variable for var. When it is, entry of one
of the digits 0 through 9 assigns that value to the variable. Entry of a plus sign,
minus sign, comma, colon, CTRL-®, space, E, or period assigns a value of zero to
the variable. Entering any character other than those just listed results in the
message ?SYNTAX ERROR, and the program stops.

GET cannot be used in direct mode.
Not available in Integer BASIC.

GOSUB

Causes the program to branch to the indicated line. When a RETURN statement is
executed the program branches back to the instruction immediately following the
GOSUB.

General Format:

GOSUB line

The GOSUB statement calls a subroutine. The subroutine's entry point must
occur on line number line . A subroutine's entry point is the beginning of the
subroutine in a logical sense. That is to say, it is the line containing the statement

278 APPLE II USER'S GUIDE

(or statements) which are executed first. The entry point need not necessarily be
the subroutine line with the smallest line number.

Upon completing execution the subroutine branches back to the line following
the GOSUB statement. The subroutine uses a RETURN statement in order to
branch back in this fashion.

A GOSUB statement may occur anywhere in a program; in consequence a
subroutine may be called from anywhere in the program.

Subroutines may be nested; that is to say, subroutines may be called from
within subroutines. Twenty-five levels of nesting are allowed in Applesoft; that
means 24 GOSUB statements may be executed before the first RETURN state
ment. The limit in Integer BASIC is 1 6 GOSUB statements.

Normally you must exit from a subroutine with a RETURN statement, not with a
GOTO statement. But, you can use a GOTO statement to branch out of a
subroutine if you first execute a POP statement.

Cannot be used in immediate mode in Integer BASIC.

Additional Integer BASIC Format:

GOSUB exprnm

In Integer BASIC a numeric expression is allowed in place of the line number. If
exprnm does not evaluate to an existing line number, the message *** BAD
BRANCH ERR is displayed. This form of GOSUB enables you to simulate the ON
GOSUB instruction, which is not available in Integer BASIC.

GOTO

Unconditionally causes program execution to branch to the line indicated.

General Format:
GOTO line

Program execution immediately continues with the first instruction in the line
number indicated. If the line number does not exist the message ?UNDEF'D
STATEMENT ERROR is displayed by Applesoft; the message*** BAD BRANCH
ERR is displayed by Integer BASIC.

Additional Integer BASIC Format:

GOTO exprnm

In Integer BASIC a numeric expression is allowed in place of the line number. If
exprnm does not evaluate to an existing line number the message * * * BAD
BRANCH ERR is displayed. This form of computed GOTO enables you to simulate
the ON-GOTO statement, which is not available in Integer BASIC.

Chapter 8: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 279

GR

Converts the screen to low-resolution graphics mode (40 x 40), leaving four
lines for text at the bottom of the screen.

Format
GR

The graphics portion of the screen is cleared to black, the cursor is moved to the
text window, and COLOR is set to 0 (black).

If executed while HGR is in effect, GR behaves normally. However if HGR2 is in
effect, you will be left looking at page 2 of low-resolution graphics and text. This
can be confusing, as the screen will usually be filled with garbage and nothing you
type will appear on the screen. To return to normal mode, type TEXT. Be sure to
use TEXT in your programs before switching from HGR2 to GR.

You can switch to full-screen (40 X 48), low-resolution graphics with the
statement POKE -16302,0 after executing GR. Anything you subsequently type
in immediate mode will show up as color dots on the last four lines of the display
screen, but will execute properly. POKE -16302,0 restores the text window.

HCOLOR=

This Applesoft statement sets the color for plotting in high-resolution graphics
mode.

Format: HCOLOR= exprnm

Until the next HCOLOR statement, all HPLOT and DRAW statements will be
executed in the color specified. The color codes are listed in Table 8-3. The value
of exprnm must be in the range 0 through 7. Values outside this range will pro
duce an ?ILLEGAL QUANTITY ERROR message. A high-resolution graphics plot
executed before the first HCOLOR statement will be in an indeterminate color.

HCOLOR does not affect low-resolution graphics. An HCOLOR statement that

TABLE 8-3. High-Resolution Color Codes

Code Color Code Color

0 Black 4 Black
1 Green 5 Orange•
2 Violet• 6 Blue•
3 White 7 White

• Depends on TV control settings

280 APPLE II USER'S GUIDE

is executed while the Apple II is not in high-resolution graphics mode does not
affect the color of the next high-resolution graphics plot.

Not available in Integer BASIC.

HGR

This Applesoft statement converts the screen to high-resolution graphics mode
(280 x 160), with a four-line text window at the bottom.

Format: HGR

Page 1 of high-resolution screen memory is displayed. The low-resolution (text)
screen memory is unaffected, but only the lowest four lines are visible. The cursor
is not moved into this four-line text window. You might not be able to see it until
you have typed several lines after executing HGR. The graphics portion of the
screen is cleared to black. HCOLOR is left unchanged by this command.

You can switch to full-screen (280 x 192), high-resolution graphics with the
statement POKE -16302,0 after executing HGR. Any immediate mode com
mands you enter subsequently will not be visible but will still execute properly.
POKE -16301,0 restores the text window.

On Apple II systems with less than 32K bytes of memory, you cannot use HGR
and the Disk Operating System (DOS) at the same time since they will try to use
the same area of memory.

Furthermore, the Applesoft interpreter from disk or cassette occupies part of
high-resolution graphics page 1 memory. Thus you cannot use HGR with disk
based or cassette-based Applesoft.

Even with firmware Applesoft, if your program is extremely long it might
extend into high-resolution page 1. You can guard against this with the command
HIMEM: 8192 which keeps your program out of page 1.

Not available in Integer BASIC.

HGR2

Converts the screen to full-screen, high-resolution graphics mode (280 x 192).
Page 2 of high-resolution screen memory is displayed.

Format:
HGR2

The low-resolution (text) screen memory is unaffected. Although you cannot see
what you type, any command that you enter will be executed. The screen is
cleared to black. HCOLOR is not affected by this command.

Page 2 of screen memory is not available if your system has less than 24K of
memory. On 24K systems, set HIMEM: to 16384 before you use HGR2 to protect
your program and variables from your graphics, and vice versa.

Chapter 8: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 281

You cannot use HGR2 and the Disk Operating System concurrently unless your
system has at least 36K bytes of memory. That means you need at least 36K to
use HGR2 in disk-based Applesoft.

Do not try to establish a text window with POKE -1 630 1 ,0. This will display
low-resolution graphics page 2 while your immediate mode commands go into
page 1 and hence are invisible (although they execute correctly).

Not available in Integer BASIC.

HIM EM:

Sets an upper boundary on memory available to BASIC programs, including varia
ble storage.

Format:

HIMEM: exprnm

HIMEM: establishes the highest location in read/write memory (RAM) available to
your BASIC program. The Disk Operating System (DOS) always resides above
HIMEM: if it is present. With the HIMEM: statement you can set aside additional
space for machine language subroutines and high-resolution graphics shape
tables. You can also protect the high-resolution graphics screen memory area of
RAM.

HIM EM: is first set to the highest memory location on your Apple II (e.g., 491 51
on a 48K Apple II). DOS resides in the highest part of memory, so it adjusts
HIM EM: downward approximately 1 0,800 bytes when it is booted. Each addi
tional file buffer you reserve via MAXFILES lowers HIMEM: another 595 bytes. If
your Applesoft program uses strings, their values are stored starting at the result
ing location of HIM EM:, working downwards. Refer to the memory map in Appen
dix G.

The value of exprnm must be in the range -65535 through 65535 (-32767
through 32767 in Integer BASIC) or an error message occurs.

You should not set HIMEM: higher than the maximum memory location availa
ble. If you do, some of your variable storage might end up in nonexistent memory.

You can see the current value of HIMEM: by using the appropriate instruction
shown below:

PRINT PEEK(116) * 256 + PEEK(115)
PRINT PEEK(77) * 256 + PEEK(76)

HIMEM: is not affected by NEW, RUN, or CLEAR.

for Applesoft
for Integer BASIC

If you set HIMEM: lower than LOMEM:, or do not leave enough memory to run
your program, an error message occurs.

Can only be used in immediate mode in Integer BASIC.

282 APPLE II USER'S GUIDE

HLIN

Draws a horizontal line on the screen in low-resolution graphics mode.

Format:

HUN col,, col2 AT row

The line is drawn from col, to co/2 in the row specified. The color is determined by
by the COLOR statement last executed. If the screen is in text mode, or the text
window is present and row is greater than 39, HUN will draw a line of characters
on the screen in the text window where the graphics dots would be plotted. The
characters used are determined by previously executed COLOR statements; see
Table 8-5 (near the PLOT statement in this chapter) for particulars.

In Integer BASIC, col, must be less than or equal to co/2 or the message
* * * RANGE ERR is displayed.

HOME

This Applesoft statement clears the display screen and postions the cursor to the
upper lefthand corner (row 1 and column 1) .

Format:

HOME

In Integer BASIC, use CALL -936.

HPLOT

This Applesoft statement places a dot or draws a line of color on the high-resolu
tion graphics screen.

Formats:

HPLOT colh, rowh

HPLOT TO co/h, rowh

HPLOT colh,, rowh, TO col2 , rowh2 [TO co/h3 , rowh3 •• .]

The first form of the command places a dot of color on the screen at the specified
location. The color of the dot is determined by the HCOLOR statement last
executed.

The second form of the command draws a line of color from the last dot plot
ted to the coordinates colh and rowh. If there has been no dot plotted since the
last HGR or HGR2 command, nothing will be plotted. The color of the line is deter-

Chapter 8: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 283

mined by the HCOLOR statement last executed.
The third form of the command a.lso draws a line of color. With firmware

Applesoft, the line may have more than one segment. The line is first drawn from
colh, and rowh, to colh2 and rowh2 • The color of the line (all segments) is deter
mined by the HCOLOR statement last executed.

Additional coordinates are not allowed in cassette- or disk-based Applesoft.
When present in a firmware Applesoft program, a new line segment is then drawn
from colh2 and rowh2 to colh3 and rowh3 , and so on. There can be any number of
coordinate pairs, as long as they all fit on one program line.

Any portion of a line or dot that lies within the text window will not be visible.
However, if you switch to full-screen graphics with the command POKE
-16302,0 any line or point plotted in the text window will then be visible.

You must always execute an HGR or HGR2 statement before an HPLOT. Other
wise you may destroy your program or variables.

Not available in Integer BASIC.

HTAB

This Applesoft statement positions the cursor to the specified column on the cur
rent display line.

Format:
HTAB co/

The cursor moves right or left to the column specified by the value of col, without
erasing any displayed characters. Columns are numbered from 1 to 40 (left to
right).

In Integer BASIC, use the TAB statement.

IF-THEN

Conditionally causes the program to execute the indicated instruction or instruc
tions. The rules for Integer BASIC and Applesoft are presented separately.

Integer BASIC Formats:

IF expr THEN statement
IF exprTHEN [GOTO] line

In the first form of the IF-THEN statement, the expression specifies a condition
which, if true, causes the statement following the THEN to be executed. If the
condition is false, the statement immediately following the IF-THEN statement is
executed; the statement that follows THEN is not executed in this case.

In the second format of the IF-THEN statement (the conditional branch format),

284 APPLE II USER'S GUIDE

the expression specifies a condition which, if true, causes the program to branch
to the indicated line number.

Relational expressions are the most common type of expression used with IF
THEN. String values can only be compared for equality or nonequality in Integer
BASIC.

expr can also be a numeric expression. In this case, expr is considered true if it
has a nonzero value.

The IF-THEN expression cannot be a string expression (i.e., anything that evalu
ates to a string value) in Integer BASIC.

Applesoft Formats:

IF expr THEN statement [:statement .. .]

IF expr { ~~~~ } line
THEN GOTO

In the first format of the IF-THEN statement, the expression specifies a condition
which, if true, causes every statement that follows THEN on the same program
line to be executed. If the specified condition is false, control passes to the first
statement on the next program line and any statements following the THEN are
not executed.

In the second format (the conditional branch format), the program branches to
line number line if the condition is true. Otherwise execution continues with the
first statement on the next program line after the IF-THEN.

If an unconditional branch is one of many statements following THEN, then the
branch must be the last statement on the line, and it must have the GOTO line for
mat. If the unconditional branch is not the last statement on the line, then state
ments following the unconditional branch can never be executed.

The most common type of expression used with IF-THEN is a relational expres
sion. If string expressions are compared using relational operators, the ASCII
codes (listed in Appendix I) for the characters involved determine the relative
values of the strings. Strings are compared character by character until a
mismatch occurs. Then the string with the higher ASCII code in the mismatch
position is considered greater. If no mismatch occurs, the longer string is greater.

The expression may also be a numeric expression. If the value of the expres
sion is not zero, the condition is considered true. If the value of the expression is
zero (false), execution continues at the first statement on the next higher program
line.

In Applesoft, expr may also be a string expression. However, execution of more
than two or three of such IF-THEN statements in the course of a program gene
rates the message ?FORMULA TOO COMPLEX ERROR.

Applesoft has problems if the last nonspace character preceding THEN is the
letter A. The A is combined with the T to form the reserved word AT. You can

Chapter 8: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 286

avoid this problem by enclosing some or all of the expression (including the trou
blesome A) in parentheses.

If a FOR-NEXT loop follows the THEN, then the loop must be completely con
tained on the IF-THEN line. Additional IF-THEN statements may appear following
the THEN as long as they are completely contained on the original IF-THEN line.
However, a Boolean expression beats nested IF-THEN statements for clarity. For
example, the two statements below are equivalent, but the second is easier to
read.

IN#

10 IF A$= "X" THEN IF B = 2 THEN IF C > D THEN 50
1 0 IF A$ = "X" AND B = 2 AND C > 0 THEN 50

Selects the peripheral slot from which subsequent input will be accepted.

Format:

IN# slot

Subsequent INPUT statements will look for data from the peripheral in the slot
indicated. slot must be an integer constant between 0 and 7. Note that slot 0 is
not a peripheral device; IN# 0 specifies the keyboard as the input device. If there
is no peripheral in the specified slot the system will lock up until you press RESET.

Whenever DOS is present in the Apple II memory, IN# is considered a DOS
command, requiring PRINT and CrRL-D in programmed mode.

I NIT

Initializes a disk.

Format:

INIT filename [,Dn 1 [,Sn 1 [,V n 1
The program currently in memory is saved on the disk under the file name given.
This program becomes the greeting program, and is run automatically whenever
this disk is booted. The disk is assigned the volume number it is initialized with; if
no volume number is specified, the disk is assigned the default volume number of
254.

If the file does not exist on drive Dn of slot Sn, the FILE NOT FOUND error
message is displayed.

Dn, Sn, and V n can be specified in any order. If Dn or Sn is omitted, the last
referenced drive or slot is used. Also, n can be absent; DO or SO will be used.

INIT may only be used in immediate mode.

286 APPLE II USER'S GUIDE

INPUT

Accepts character entry from the keyboard or other input device, evaluates it, and
assigns the value or values entered to the variable or variables specified.

Integer BASIC Format:

INPUT ["prompt",] var [, var . . .]

INPUT in Integer BASIC requests values for any combination of integer and string
variables. If the first variable is an integer, then a question mark is displayed at the
current cursor location as a cue to begin entry. Integer BASIC suppresses the
question mark if a string is the first variable to receive input.

The optional prompt is a string constant. If it is present, it will be displayed just
before the first variable is input; it is not repeated for each variable in the list. A
question mark is displayed after the prompt if an integer variable is to be entered.
The prompt alone is displayed if a string variable is to be entered. Note that the
prompt is followed by a comma in the INPUT statement. The prompt may not be a
string variable or string expression.

When a single INPUT statement calls for more than one integer value in suc
cession, you can enter each one on a separate line; end each value with the
RETURN key. Integer BASIC displays a double question mark (? ?) on each new line
as a cue to continue entries for the INPUT statement. Optionally, you can enter
more than one integer value on a single line; separate the values with commas.

Numeric input must consist only of valid numeric characters. These are the
digits 0 through 9, spaces, and a plus or minus sign. You get an error message if
you simply press RETURN when a numeric value is to be entered.

You must enter each string value on a separate line. All characters (except
CTRL-C and CTRL-X) that you enter prior to pressing the RETURN key are accepted
and assigned to the string variables. The null string ("") is assigned to the variable
if you simply press RETURN when a string value is to be entered.

If you enter unacceptable characters (e.g., letters in a numeric value) the warn
ing message*** SYNTAX ERR and RETYPE LINE appear. You must reenter all
values that you entered on the offending line.

May not be used in immediate mode.

Applesoft Format:

INPUT ["prompt";] var [, var . ..]

INPUT can request values for any combination of numeric and string variables. A
question mark is normally displayed as a cue to begin entry at the current cursor
location. Applesoft suppresses the question mark if the optional prompt is pre
sent.

The optional prompt is a string constant. If it is present, it will be displayed just
before the first variable is input; it is not repe~ted for each variable in the list. No
question mark is displayed after the prompt. Note that the prompt is followed by a

Chapter 8: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 287

semicolon in the INPUT statement.
Generally speaking, when a single INPUT statement calls for more than one

value, you can enter each one on a separate line; end each value with the RETURN
key. Optionally, you can enter more than one value on a single line; separate the
values with commas.

If you enter unacceptable characters (e.g., letters in a numeric value) a warning
message appears and you must completely reenter the value. Applesoft displays
REENTER and reexecutes the INPUT statement from the beginning. The cue
(question mark or prompt) is redisplayed and you must reenter all values for the
INPUT statement.

Numeric input must consist only of valid numeric characters. If you simply
press RETURN when a numeric variable is to be entered, you receive an error
message and must reenter the line. The digits 0 through 9, spaces, and a plus or
minus sign are accepted as numeric input. Applesoft also accepts a decimal point,
an additional plus or minus sign, and the letter E for entering real values and scien
tific notation.

In Applesoft, if the first nonspace character of a string entry is a quotation
mark, all characters (including commas and colons) up to the next quotation mark
or RETURN are assigned to the string variable. If the entry does not begin with a
quotation mark, all characters (including quotation marks) up to the next comma,
colon, or RETURN are assigned to the variable. If two or more strings are requested
by the same INPUT statement, they must be enclosed in quotes and separated by
commas.

If you simply press RETURN when a string variable is to be entered, the null string
("") is assigned to the variable.

In Applesoft, all characters after a colon in an INPUT response are ignored
unless the entry begins with a quotation mark.

INPUT cannot be used in direct mode.

INT

Places the Apple II in Integer BASIC.

Format: INT

Any program currently in memory is erased. If Integer BASIC is not present (e.g.,
on an Apple II Plus without a Language System), the message LANGUAGE NOT
AVAILABLE is displayed.

Use only in immediate mode.

INVERSE

This Applesoft statement turns on inverse video mode (also called reverse video
mode).

288 APPLE II USER'S GUIDE

Format:
INVERSE

All output from subsequently executed PRINT statements will appear as black-on
white characters. Error messages are similarly affected. However, characters
echoed to the screen by INPUT statements are unaffected, as are any previously
displayed characters.

INVERSE works by slightly altering the standard ASCII codes. Therefore any
characters sent to the disk in inverse mode will be saved with incorrect codes.
When read back in, the wrong characters will result.

Not available in Integer BASIC.

LET=

The assignment statement, LET=, or simply =, assigns a value to a specified
variable.

Format:
[LET) var = expr

Variable var is assigned the value computed by evaluating expr.

LIST

Displays all or part of the program currently in memory. There are two formats for
the LIST command. One is recognized by both Integer BASIC and Applesoft, the
other only by Applesoft. They are described separately below.

General Format:
LIST line, [,line.J

Any portion of the program may be listed. If no line numbers follow LIST, the
entire program is displayed. If only line, is present, only that line will be displayed
if it exists. If both line numbers are present, the program will be listed starting at
line, and continuing through line2 •

If line, does not exist, the listing starts at the next higher line number. If line2

does not exist, the listing ends at the next lower line number.
LIST may not be used with variables or expressions in place of the line num

bers.
When LIST displays your program it adds extra spaces around variables and

reserved words to make the listing more readable. If this causes a problem, you
can eliminate the spaces by reducing the text window to a width of 33 (or less)
with the command POKE 33,33. (POKE 33,40 restores the text window to full
width.)

Chapter 8: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 289

Program line lengths are limited but these limits are calculated before LIST
adds the extra spaces. You can therefore extend the apparent length of your pro
gram lines by leaving out spaces when you type the lines in. However, such a line
will be too long to edit or copy after it has been listed with all the spaces put in.

Expanded (Applesoft) Format:

{
line, [{;) 1

LIST
[line, 1 {;} line2

In Applesoft, either a comma (,) or a hyphen (-) may separate the two line num
bers.

In Applesoft you can list from the start of the program to a specific line number
by putting a comma or hyphen ahead of line2 (and omitting line,). You can also
list from a specific line number to the end of the program by putting a comma or
hyphen after line, (and omitting line2).

LOAD

Loads a program from cassette or disk.

Cassette Format:
LOAD

Loads the t.:~ext sequential program from the cassette, replacing any program cur
rently in memory. You must have the cassette recorder running in PLAY mode
when LOAD is executed; the Apple II does not remind you to do this. The Apple II
beeps as it starts to load a program and beeps again when it finishes. The second
beep is your signal to manually stop the cassette recorder.

You can only use LOAD in immediate mode in Integer BASIC.

Disk Format:

LOAD filename [,Dn 1 [,Sn 1 [,Vn 1
The program with the name filename is loaded from the disk. If the LOAD is suc
cessful, any program previously in memory is erased.

If the program to be loaded is in Applesoft and the Apple II is currently in
Integer BASIC, or vice versa, the Apple II switches to the proper language. This
may require loading the language from the specified disk. If the language is not
available, the message LANGUAGE NOT AVAILABLE is displayed.

If the file does not exist on drive Dn of slot Sn, the FILE NOT FOUND error
message is displayed. If the disk in drive Dn of slot Sn is not volume V n, the
VOLUME MISMATCH error results.

290 APPLE II USER'S GUIDE

Dn, Sn, and V n can be specified in any order. If On or Sn is omitted, the last
referenced drive or slot is used. VO is used if V n is absent. Also, n can be absent;
DO, SO, or VO will be used.

This is a DOS command, requiring PRINT and CTRL-0 in programmed mode.

LOCK

Protects a disk file from accidental erasure.

Format:

LOCK filename [,On] [,Sn] [,Vn]

Once locked. a file cannot be deleted or renamed until it is unlocked (see
UNLOCK). No program can be saved using the name of the locked file. A locked
file is indicated in the disk catalog by an asterisk at the left of the file type.

If the file does not exist on drive Dn of slot Sn, the FILE NOT FOUND error
message is displayed. If the disk in drive Dn of slot Sn is not volume V n, the
VOLUME MISMATCH error results.

Dn. Sn, and V n can be specified in any order. If On or Sn is omitted. the last
referenced drive or slot is used. VO is used if V n is absent. Also, n can be absent;
DO, SO, or VO will be used.

This is a DOS command, requiring PRINT and CTRL-D in programmed mode.

LOMEM:

Sets a lower boundary on memory available to BASIC programs for variable
storage and the like.

Format:

LOMEM: exprnm

LOMEM: establishes the lowest location in read/write memory (RAM) available for
your BASIC program lines and variables. The Monitor and the BASIC interpreter
use read/write memory below LOMEM: for pointers, low-resolution graphics and
text screen memory, and so forth. When the Applesoft interpreter is loaded from
disk or cassette it always resides in read/write memory below LOMEM :. You can
set aside additional space for machine language subroutines and high-resolution
graphics shape tables with the LOMEM: statement.

With Integer BASIC or firmware Applesoft, LOMEM: starts out at memory loca
tion 2048, just above the system-use area. Loading the Applesoft interpreter
from disk or cassette raises LOMEM: to 12291. Each time you add an Applesoft
program line or change an existing line, LOMEM: is adjusted up or down. Erasing
an Applesoft program (with NEW or CTRL-B) also changes LOMEM:. So if you

Chapter 8: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 291

want to reserve space below your program, you must do so after erasing any pre
vious program but before loading or typing in the new one.

The value of exprnm must be in the range -65535 through 65535 (-32767
through 32767 in Integer BASIC), or an error message occurs.

You can display the current value of LOMEM: with the instruction PRINT
PEEK(1 06) * 256 + PEEK(1 05).

In Applesoft, if LOMEM: is set higher than the current value of HIMEM:, lower
than the existing value of LOMEM :, or lower than the highest memory location
used by the current operating system or program, then the message ?OUT OF
MEMORY ERROR occurs.

Can only be us~d in immediate mode in Integer BASIC.

MAN

Ends automatic line numbering mode in Integer BASIC.

Format:

MAN

Automatic line numbering is instituted with AUTO.
Type CTRL-X to temporarily halt the generation of line numbers, then enter

MAN.
Not available in Applesoft.

MAX FILES

Specifies the maximum number of disk files that may be active at any one time.

Format:

MAXFILES limit

The Disk Operating System (DOS) supports an absolute maximum of 1 6 open
files at once. When executed, MAXFILES sets aside 595 bytes of memory (a file
t:?uffer) for each file. MAXFILES is automatically set to 3 when you boot DOS.

All DOS commands except MAXFILES use a file buffer while they are execut
ing. Thus, the practical maximum number of files you may have open at any one
time is one less than the MAX FILES limit. If you attempt to execute any DOS com
mand when there is no buffer free, the error message NO BUFFERS AVAILABLE is
generated.

MAXFILES resets HIMEM: when executed, which may erase part of your pro
gram, variable storage, etc. If possible, execute MAXFILES before you load or run
your program.

If you use MAXFILES within an Applesoft program, use it as the first line. To

292 APPLE II USER'S GUIDE

use MAXFILES in an Integer BASIC program, you must create an EXEC file as dis
cussed in Chapter 5 (see also EXEC in this chapter).

limit must be an integer constant in the range 1 through 1 6 or the RANGE
ERROR message occurs.

This is a DOS command, requiring PRINT and CrRL-D in programmed mode.

MON

Causes disk commands and/or data flow to be displayed on the screen.

Format:

MON [C] [,1] [,0]

The three parameters dictate what is displayed. If C is specified, all disk com
mands are displayed on the screen. If I is specified, all data input to the Apple II
from the disk is displayed. If 0 is specified, all data output from the Apple II to the
disk is displayed. These parameters may be used in any combination and in any
order. If none of them is present, MON has no effect. MON remains in effect until a
NOMON, FP, or INT is executed, the system is rebooted, or on some machines,
RESET is struck.

This is a DOS command, requiring PRINT and CrRL-D in programmed mode.

NEW

Deletes the current program and all variables from memory.

Format:
NEW

NEW also resets LOMEM:, but does not affect HIMEM:, COLOR, or HCOLOR.
NEW may only be used in immediate mode in Integer BASIC.

NEXT

Terminates the loop started by a FOR instruction.

General Format:

NEXT varnm [, varnm . . .]

When NEXT is executed, loop index variable varnm is incremented by an amount
specified in the corresponding FOR statement. The program then either continues
with the instruction following NEXT or loops back to the corresponding FOR,

Chapter 8: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 293

depending on the parameters set in the FOR statement. See the discussion of FOR
earlier in this chapter.

If there is no currently active FOR loop that matches varnm, an error will occur.
?NEXT WITHOUT FOR ERROR is displayed by Applesoft; *** BAD NEXT ERR is
displayed by Integer BASIC.

Multiple variables following NEXT must be listed in the proper order (the last
loop initiated must be terminated first) or an error will occur.

NEXT may not be used in immediate mode in Integer BASIC. In Applesoft, an
immediate mode NEXT may cause a branch to a FOR that was executed in pro
grammed mode and is still active.

Additional Applesoft Format:

NEXT

In Applesoft you may use NEXT with no identifying variable name. The loop varia
ble defaults to that of the most recently begun FOR loop that is still in effect.
NEXT with no variable executes more rapidly than NEXT with a variable.

NO DSP

Cancels display mode for the specified variable in Integer BASIC. (See DSP .)

Format:

NO DSP var

Not available in Applesoft.

NOM ON

Ends the display of disk commands or data flow that was initiated by MON.

Format:

NOMON [C] [,1] [,0]

Each parameter specified cancels part of the display started by MON. If C is
specified, disk commands are not displayed. If I is specified, data input to the
Apple II from the disk is not displayed. If 0 is specified, data output from the Apple
II to the disk is not displayed. These parameters may be used in any combination
and in any order. If MON is not in effect for the parameter or parameters specified,
or no parameters are specified, NOMON has no effect.

This is a DOS command, requiring PRINT and CTRL-0 in programmed mode.

294 APPLE II USER'S GUIDE

NORMAL

This Applesoft statement turns off FLASH and INVERSE video modes.

Format:
NORMAL

See FLASH and INVERSE.
Not available in Integer BASIC.

NO TRACE

Turns off the tracing of program execution that was initiated by TRACE.

Format:
NO TRACE

If TRACE is not in effect, NO TRACE has no effect.

ONERR GOTO

Branches to the line number indicated when a subsequent error occurs in an
Applesoft program.

Format:
ONERR GOTO line

This command sets a flag that causes the program to branch to the line number
indicated when an error occurs. ON ERR GOTO must be executed before the error
occurs.

Each type of error has a code number. The code of the most recently occurring
error is stored in memory location 222. PEEK(222) retrieves the error codes.
The error codes and their messages are listed in Table C-1 (Appendix C). When an
error occurs inside a FOR-NEXT loop or in a subroutine the pointers and stacks are
disrupted. Your error-handling routine must return to the FOR or GOSUB state
ment, restarting the loop or subroutine. If your error-handling routine returns to a
NEXT or RETURN statement another error will occur.

ONERR GOTO will not work properly under some circumstances. The Apple II
will lock up if there are two GET errors in a row and the error-handling routine
ends with RESUME, not GOTO. In programs that use PRINT statements (or if
TRACE is in effect), the 43rd error not arising from an INPUT statement causes a
jump to the Monitor. In this situation, if GOTO ends the error-handling routine
(instead of RESUME), the 87th INPUT error causes a jump to the Monitor.

You can circumvent all the problems just described if your error-handling

Chapter 8: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 295

TABLE 8-4. Machine Language Fix for ON ERR GOTO

MACHINE LANGUAGE 6502 ASSEMBLY LANGUAGE

Decimal Hexadecimal Instruction Comments

104 68 PLA Put top byte of stack in
Accumulator

168 AS TAY and save it in Y index register
104 68 PLA Put next byte of stack in

Accumulator
166 A6 LXD $OF Use ONERR pointer
223 OF
154 9A TXS as stack address
72 48 PHA Push saved stack contents on

152 98 TVA 'ONERR' stack (two bytes -
72 48 PHA from Accumulator and Y

register)
96 60 RTS Return to Applesoft

routine includes a call to the machine language program in Table 8-4.
Use the POKE statement to put the decimal numbers into memory locations

768 through 777 (or any available memory locations). Then CALL 768 from your
error-handling routine.

Not available in Integer BASIC.
Cannot be used in immediate mode.

ON-GOSUB

Provides conditional subroutine calls to one of several subroutines in an Applesoft
program, depending on the current value of an expression.

Format:
ON exprnm GOTO line [,line . . .]

The program branches to the first line number if the integer value of the expres
sion is 1, the second if it is 2, etc. The next RETURN statement encountered sends
the program back to the statement following the ON-GOSUB.

The expression must have a value in the range 0 through 255 or the message
?ILLEGAL QUANTITY ERROR occurs. If the expression evaluates to zero or to a
value greater than the number of line numbers listed, program execution con
tinues with the next instruction following the ON-GOSUB.

Not available in Integer BASIC. (But see GOSUB for an Integer BASIC form of
computed GOSUB.)

296 APPLE II USER'S GUIDE

ON-GOTO

Causes a conditional branch to one of several points in an Applesoft program,
depending on the current value of an expression.

Format:
ON exprnm GOTO line [,line .. .]

The program branches to the first line number if the integer value of the expres
sion is 1 , the second if it is 2, etc.

The expression must have a numeric value in the range 0 through 255 or the
message ?ILLEGAL QUANTITY ERROR occurs. If the expression evaluates to zero
or to a value greater than the number of line numbers listed, program execution
continues with the next instruction following the ON-GOTO.

Not available in Integer BASIC. (But see GOTO for an Integer BASIC form of
computed GOTO.)

OPEN

Prepares a sequential or random-access disk text file for accessing.

Format:
OPEN filename [,Ln 1 [,On] [,Sn 1 [, V n]

A memory buffer of 595 bytes is allocated to the text file specified. The READ
and WRITE commands can now be used with the file to retrieve and store infor
mation. If the file specified is not on the disk, one is created. If the file is already
open, it is closed and then reopened.

If the L parameter is not specified, the file is opened as a sequential file.
If the L parameter is specified, the file is opened as a random-access file. The

number n following L is the record length in bytes and must be an integer constant
in the range 1 through 32767. It can be absent; L 1 is used. Each time that a par
ticular random-access file is opened, the record length must be the same.

If the disk in drive Dn of slot Sn is not volume V n, the VOLUME MISMATCH
error results.

Dn, Sn, and V n can be specified in any order. If On or Sn is omitted, the last
referenced drive or slot is used. VO is used if V n is absent. Also, n can be absent;
DO, SO, or VO will be used.

This is a DOS command, requiring PRINT and CTRL-0 in programmed mode.
OPEN may not be used in immediate mode.

POL

Listed in the Functions section of this chapter.

Chapter 8: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 297

PEEK

Listed in the Functions section of this chapter.

PLOT

Displays a point on the low-resolution graphics screen.

Format:
PLOT col, row

In low-resolution graphics mode, PLOT places a dot of color on the screen. The
color of the dot is determined by the COLOR statement last executed. Column
numbers range between 0 and 39. Column 0 is at the left edge of the screen; col
umn 39 is at the right. Row numbers range between 0 and 47. Row 0 is at the top
of the screen; row 4 7 is at the bottom. A point plotted in rows 40 through 4 7 will
be in the four-line text window unless a POKE -16302,0 has been executed to
eliminate the text window.

In text mode or in the text window PLOT places a colored character, rather than
a dot, on the screen. Since a character occupies the space of two vertically
stacked graphics dots, there are two different sets of PLOT coordinates that will
cause some character to appear in a given location. To place a particular character
on the screen, you must PLOT both halves of the character location. The
character that appears is determined by the COLOR statement last executed
before each half is plotted.

Table 8-5 shows the characters generated by each combination of colors in
the upper and lower graphics points. To generate a particular character, find it in
Table 8-5; read up and left to find the colors that you must PLOT in each half of
the character. The upper half of a character is specified by a PLOT in an even row,
the lower half by a PLOT in an odd row. If you only plot one half of a character
location, the character generated is based on the color of the PLOT and the color
already present in the other graphics point.

TABLE 8-5. Characters Generated by Graphics Statements in Text Mode

VIDEO MODE COLOR OF UPPER GRAPHICS POINT

For For
Inverse Flashing For Normal
Video Character Character 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 4 8 12 @ A B c D E F G H I J K L M N 0

COLOR
1\

OF 1 5 9 13 p Q R s T u v w X y z I \ 1 -
LOWER

GRAPHICS 2 6 10 14 ~ I .. :a: $ % & (I . + , - I
POINT

3 7 11 15 0 1 2 3 4 5 6 7 8 9 : ; < ; > 7

298 APPLE II USER'S GUIDE

Note that each character can be generated by four different colors for the
lower graphics point. They are not all identical, however. The character will be in
reverse video if the color number of the lower point is less than 4, it will be flash
ing if the number is in the range 4 through 7, and it will be normal if the number is
in the range 8 through 15.

POKE

The POKE statement stores a byte of data in a specified memory location.

Format:
POKE memadr, byte

A value between 0 and 255, provided by byte, is written into memory at location
memadr. If the memory location specified exceeds the maximum location in
memory (e.g., 16383 if you have 1 6K of memory), or accesses an output device
that is not receiving, POKE has no effect.

Use caution with POKE. Some memory locations contain information essential
to the Apple II' s uninterrupted operation. Change random memory locations and
you can destroy your program, lock up your system, or clobber your BASIC.

POP

Causes the Apple II to forget the return location for the most recently executed
GOSUB statement.

Format:
POP

POP effectively changes the most recently executed GOSUB statement into a
GOTO statement (ex post facto). The next RETURN statement executed will
branch to the instruction immediately following the second most recently
executed GOSUB. If the total number of POP and RETURN statements executed
in a program exceeds the number of GOSUB statements executed, an error
message occurs.

POSITION

Moves the disk file pointer the specified number of fields ahead of its current
position.

Format:
POSITION filename [,Rn]

Chapter 8: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 299

If the file is not open when POSITION.is executed, it is opened (see OPEN). The R
parameter specifies how many fields the file pointer moves forward from its cur
rent position. The number following R must be an integer constant in the range 0
through 32767. If absent, this parameter defaults to zero, i.e., the file pointer is
not moved. If the file is opened by POSITION, the fields are counted from the
beginning of the file. The file must be a sequential file.

A field consists of a sequence of characters ending with a carriage return.
POSITION goes through the file, character by character, counting such charac
ters; the number of carriage return characters encountered is the number of fields
skipped over. If any unused space is encountered in the file before the specified
number of fields are counted, the message END OF DATA is given.

This is a DOS command, requiring PRINT and CrRL-D in programmed mode.
POSITION may not be used in immediate mode.

PR#

Selects the peripheral slot that will receive subsequent output.

Format:
PR# slot

Subsequent PRINT statements will send data to the peripheral in the slot indi
cated. slot must be an integer constant between 0 and 7. Note that slot 0 is not a
peripheral device. PR# 0 specifies the standard 40-column display screen as the
output device. If there is no peripheral in the specified slot the system will lock up
until you press Reser.

Whenever DOS is present in the Apple II memory, PR# is considered a DOS
command, requiring PRINT and CTRL-D in programmed mode.

PRINT

Outputs characters to the screen or other output device.

Format:
r"l PRINT [expr] [,; 1 • • • [expr]] .. .]

There are a number of acceptable variations on the PRINT statement. PRINT by
itself outputs a carriage return and line feed. When PRINT is followed by one or
more expressions, the values of these expressions are printed. The way the values
appear depends on their nature and on the use of semicolons or commas in be
tween values.

All numeric values in Integer BASIC and many in Applesoft are displayed using
standard numeric representation. Negative values are preceded by a minus sign;

300 APPLE II USER'S GUIDE

positive values are not preceded by a sign or a blank space. Scientific notation is
used in Applesoft for values closer to zero than ± .0 1 and for any values with
more than nine digits in front of the decimal point.

String values are displayed just as they are.
Commas and semicolons determine the spacing between printed values. A

semicolon causes the next value to print immediately after the value just printed;
they are concatenated with no intervening spaces. A comma causes the next
value to print at the next tab stop, several spaces over from the last value.

In Integer BASIC, tab stops are eight characters apart, at columns 1, 9, 17, and
so on. If any nonblank character is printed in the space just ahead of a tab stop
(e.g., in column 16), that tab stop is inactivated.

Applesoft places tab stops 1 6 characters apart, at columns 1, 1 7, 33, and so
on. Tab stops on the display screen will be inactivated according to a scheme
illustrated in Figure 4-1 (Chapter 4). For other devices, a tab stop is inactivated if a
nonblank character is printed just ahead of it (e.g., in column 32).

If the list of expressions does not end with a comma or semicolon, a carriage
return and line feed are printed following the last item in the list. If the list ends
with a semicolon the first character printed by the next PRINT statement will print
directly following the last character printed by the current PRINT statement, with
no intervening spaces. If the list ends with a comma the next output will print
starting in the first position of the next tab field.

In Integer BASIC, all items must be separated by either a comma or a semi
colon. In Applesoft, items may be listed with no intervening commas or semi
colons. Output for such items is concatenated as if the items were separated by
semicolons.

Applesoft recognizes a question mark (?) as an abbreviation for PRINT. The
word PRINT will be spelled out when the program is listed, though.

READ (DISK STATEMENT)

Specifies a disk file from which subsequent INPUT and GET commands will
obtain data.

Format:

READ filename [,Rn 1 [,Bn 1
IF the file specified is not already open, it is opened (see OPEN). All INPUT and
GET statements receive characters from the disk until a disk statement (or a CrRL
D character (ASCII code 4) alone) is printed, REsEr is struck, or an error occurs. If
the file is not on the disk, the message FILE NOT FOUND appears.

The file will be read as a sequential file if the R parameter is absent. In a sequen
tial file, the B parameter specifies at which byte (character) the READ begins. If
there is no B parameter, READ begins at the first byte in the file (byte 0). If the
byte to be read was never stored on the disk by a WRITE command, the END OF

Chapter 8: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 301

OAT A message is displayed when INPUT or GET is subsequently executed.
If the R parameter is present, the file will be accessed as a random-access file.

The R parameter specifies which record of a random-access file will be READ.
In a random-access file, the 8 parameter specifies at which byte within the

specified record the read begins. If there is no 8 parameter, READ begins at the
first byte in the record (byte O).lf the byte to be read was never stored on the disk
by a WRITE command, the END OF DATA message is displayed when INPUT or
GET is subsequently executed.

The numbers following 8 and R must be integer constants in the range 0
through 32767. If unspecified, zero is assumed.

Do not use CTRL-C to stop a READ statement in Applesoft. This causes a series
of ?REENTER messages to be displayed. Use only REsET to stop the program.

This is a DOS command, requiring PRINT and CTRL-D in programmed mode.
May not be used in immediate mode.

READ (ASSIGNMENT STATEMENT)

Assigns values from Applesoft DATA statements to variables.

Format:
READ var [, var . . .]

There is a pointer to the DATA list which determines which value to assign to the
first variable in the READ statement. At the start of the program and after a
RESTORE statement, the pointer points to the first DATA value. As each READ
statement variable gets a value, the pointer moves ahead to the next value.

The variables may be of any type, but must match the type of the correspond
ing OAT A list values. A numeric value assigned to a string variable causes no
problem. A string assigned to a numeric variable causes the message ?SYNTAX
ERROR to be displayed. The line number of the offending DATA statement is
announced with the error message.

If READ attempts to assign more variables than there are OAT A values, the
?OUT OF OAT A ERROR message appears, with the line number of the offending
READ statement.

READ may be executed in immediate mode as long as the program in memory
contains enough DATA values. Otherwise, the message ?OUT OF OAT A ERROR
occurs. If the Disk Operating System is present, a READ in immediate mode is
interpreted as a DOS command, and the message NOT DIRECT COMMAND is dis
played.

Not available in Integer BASIC.

RECALL

Retrieves an Applesoft numeric array from cassette tape.

302 APPLE II USER'S GUIDE

Format:

RECALL varnm

Applesoft waits indefinitely until the array is found on the tape; no other instruc
tion can be executed in the meantime. RECALL does not control tape movement
nor does it advise when to start the cassette recorder in PLAY mode. There should
be PRINT statements before and after RECALL which produce advisories. The
Apple II does beep when it starts getting array values, and beeps again when it
stops. The array must be dimensioned before the RECALL statement is executed,
or the message ?OUT OF DATA ERROR is generated (see DIM).

You need not use the same array variable name in the RECALL statement as
was used in the STORE statement for the same values. You should use an array
with the same dimensions as the one that was stored, however. If the array that
was stored contains more elements than the recalled array, the message ?OUT
OF DATA ERROR occurs. If the recalled array contains at least as many elements
as the stored array, but does not have exactly the same dimensions, the message
ERR is generated, but program execution continues.

If the recalled array has more elements than the stored array, the values in the
recalled array will usually be scrambled. There are two exceptions. You may recall
into an array that has the same number of dimensions as the stored array, where
each dimension except the last is the same size as the corresponding dimension in
the stored array. The last dimension may be larger in the recalled array. You may
also recall into an array with more dimensions than are in the stored array, if the
dimensions that are in the array match the corresponding dimensions in the
recalled array (or exceed them, in the case of the last dimension of the stored
array).

String arrays cannot be used with RECALL But recalled numeric values can be
converted to string values with the CHR$ function.

Not available in Integer BASIC.

REM

The Remark statement (REM) allows comments to be placed in the program for
program documentation purposes.

Format:

REM comment

comment is any sequence of characters that will fit on the current program line.
Remark statements are reproduced in program listings, but they are otherwise

ignored. A REM statement may be placed on a line of its own or it may be placed
as the last statement of a multiple-statement line.

REM cannot be placed ahead of any other statements on a multiple-statement
line, since all text following the REM is treated as a comment.

Chapter 8: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 303

RENAME

Changes the name of a disk file without altering the file contents.

Format:
RENAME filename,, filename2 LOn] [,Sn] [,Vn]

The file with the name filename, is found on the disk, and its name is changed to
filename2 • If the file is open, it is closed (see CLOSE). The file is not affected in any
other way.

RENAME will readily change the file name to one that already exists on the
disk; in fact it will do this any number of times. You must make sure that there is
no file already named filename2 before RENAME is executed.

If filename, does not exist on drive On of slot Sn, the FILE NOT FOUND error
message is displayed. If the disk in drive Dn of slot Sn is not volume V n, the
VOLUME MISMATCH error results.

Dn, Sn, and V n can be specified in any order. If On or Sn is omitted, the last
referenced drive or slot is used. VO is used if V n is absent. Also, n can be absent;
DO, SO, or VO will be used.

This is a DOS command, requiring PRINT and CTRL-0 in programmed mode.

RESTORE

Resets the Applesoft DATA list pointer to the beginning of the list.

Format:
RESTORE

Subsequent READ statements start at the first DATA value.
Not available in Integer BASIC.

RESUME

Causes an Applesoft program to resume execution at the beginning of the
instruction in which an error occurred.

Format:
RESUME

RESUME may only be used after an ONERR GOTO branch has been triggered by
an error. If RESUME is executed when no error has occurred, the results are
unpredictable but generally tragic.

Not available in Integer BASIC.
Cannot be used in immediate mode.

304 APPLE II USER'S GUIDE

RETURN

Causes the program to branch to the statement immediately following the most
recently executed GOSUB.

Format: RETURN

The POP statement will obliterate all knowledge of the most recent GOSUB, so
RETURN after POP causes a branch to the statement following the next most
recent GOSUB.

If more RETURN (and POP) than GOSUB statements are executed in a pro
gram, an error message occurs.

ROT=

This Applesoft statement sets the orientation of high-resolution shapes drawn by
DRAW or XDRAW.

Format: ROT=exprnm

ROT =0 draws the shape in the orientation with which it was defined. The shape is
rotated 90 degrees clockwise for each increment of 16 in the value of exprnm.
Thus, ROT=32 draws the shape upside down, and ROT=64 draws the shape in
its original orientation. Values for exprnm greater than 64 are evaluated modulo
64.

When SCALE has been set at 1, there are only four recognized values for
ROT=. They are 0, 16, 32, and 48 (and values greater than 63 equivalent to these
values). When SCALE=2 there are eight values, when SCALE=3 there are 16
values, etc., up to a maximum of 64 different recognized values. An unrecognized
value for ROT= will be treated as if it were the next lower recognized value.

The exprnm must have a value in the range 0 through 255 or the message
?ILLEGAL QUANTITY ERROR is generated when the ROT= command is
executed.

ROT= is not recognized as a reserved word unless the character "=" is the
first following nonspace character.

Not available in Integer BASIC.

RUN (DISK STATEMENT)

Loads and runs a program from a disk.

Format: RUN filename [,Dn 1 [,Sn 1 [,Vn 1

Chapter 8: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 306

The program named filename is loaded from the disk and then run. If the load is
successful, any program previously in memory is erased.

If the program to be loaded and run is in Integer BASIC and the Apple II is cur
rently in Applesoft, or vice versa, the Apple II switches to the proper language. If
necessary, it will load the Applesoft interpreter from the specified disk. If the
language is not available, the message LANGUAGE NOT AVAILABLE is displayed.

If the file does not exist on drive Dn of slot Sn, the FILE NOT FOUND error
message is displayed. If the disk in drive Dn of slot Sn is not volume V n, the
VOLUME MISMATCH error results.

Dn, Sn, and V n can be specified in any order. If Dn or Sn is omitted, the last
referenced drive or slot is used. VO is used if V n is absent. Also, n can be absent;
DO, SO, or VO will be used.

This is a DOS command, requiring PRINT and CTRL-D in programmed mode.

RUN (GENERAL STATEMENT)

Executes the program currently in memory, starting at the specified line number, if
present; otherwise at the lowest numbered line in the program.

General Format:
RUN [line 1

If there is no such line number as line you will receive the*** BAD BRANCH ERR
from Integer BASIC or the ?UNDEF'D STATEMENT ERROR from Applesoft.

Additional Integer BASIC Format:

RUN exprnm

In Integer BASIC, the line number can be a numeric expression.
RUN may only be used in immediate mode in Integer BASIC.

SAVE

Saves the program currently in memory on cassette or disk.

Cassette Format:
SAVE

Saves the program currently in memory on cassette tape. You must have the
cassette recorder running in RECORD mode when SAVE is executed. The Apple II
does not remind you to do this. The Apple II beeps as it starts to save a program
and beeps again when it is finished. The second beep is your signal to manually
stop the cassette recorder.

306 APPLE II USER'S GUIDE

May only be used in immediate mode in Integer BASIC.

Disk Format:
SAVE filename [,Dn] [,Sn 1 [, V n 1

If there is no file with the name filename on the disk, a file is created with that
name and in the language of the current program. The program is saved. If there is
a file named filename in the same language as the current program, the contents
of that file are erased and the current program is saved in their place. If program
filename exists but in a different language or with a different file type, the
message FILE TYPE MISMATCH occurs.

If the disk in drive Dn of slot Sn is not volume V n, the VOLUME MISMATCH
error results.

Dn, Sn, and V n can be specified in any order. If Dn or Sn is omitted, the last
referenced drive or slot is used. VO is used if V n is absent. Also, n can be absent;
DO, SO, or VO will be used.

This is a DOS command, requiring PRINT and CTRL-D in programmed mode.

SCALE

This Applesoft statement sets the size of high-resolution graphics shapes drawn
by DRAW or XDRAW.

Format:
SCALE= exprnm

The size of the shape in the shape table is multiplied by the integer value of
exprnm. Thus, if SCALE=1 the shape will be drawn just as it was defined, if
SCALE=2 it will be drawn twice that size, etc. If SCALE=O the shape is drawn
255 times the size of the original.

The value of exprnm must be in the range 0 through 255 or the message
?ILLEGAL QUANTITY ERROR occurs when the SCALE command is executed.

SCALE is not recognized as a reserved word unless the character"=" is the
first following nonspace character.

Not available in Integer BASIC.

SHLOAD

This Applesoft statement loads a high-resolution graphics shape table from
cassette tape.

Format:
SHLOAD

Chapter 8: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 307

Constructing and storing a shape table on cassette tape is discussed in Chapter 6.
The shape table is loaded into memory just below HIMEM: and HIMEM: is set

just below the shape table. The starting location of the table is stored in memory
locations 22 and 23.

Before you execute SHLOAD be sure that you have set HIMEM: so that the
shape table will not be loaded on top of your program or variables and will not be
erased by your graphics. Refer to the discussion of HIM EM: in this chapter,
memory maps in Appendix G, and to Chapter 6 for m·ore information.

Not available in Integer BASIC.

SPEED

This Applesoft statement changes the rate at which characters are output.

Format:
SPEED exprnm

The value of exprnm establishes the rate at which characters appear on the dis
play screen or other output device. Speeds range from 0 (slowest} to 255
(fastest}.

Not available in Integer BASIC.

STOP
Causes an Applesoft program to halt execution.

Format:
STOP

The Apple II returns to immediate mode. The message BREAK IN line is displayed,
where line is the line number at which the STOP was executed.

Not available in Integer BASIC.

STORE

Saves the specified Applesoft array on cassette tape.

Format:
STORE varnm

STORE does not control tape movement nor does it advise when to start the
cassette recorder in RECORD mode. You must have the cassette recorder running
and ready to record when STORE is executed. Your Applesoft program should
display advisories (via PRINT statements}. The Apple II does beep when it starts

308 APPLE II USER'S GUIDE

saving values and beeps again when it stops.
You may only STORE numeric arrays; string arrays must be converted to

integer values using the ASC function in order to be stored (see also RECALL).
Not available in Integer BASIC.

TAB

This Integer BASIC statement positions the cursor to the specified column on the
current display line.

Format:
TAB col

The cursor moves right or left to the column specified by the value of col, without
erasing any displayed characters. Columns are numbered from 1 to 40 (left to
right).

For Applesoft, use the HT AB statement. See also the TAB function listed in the
Functions section of this chapter.

TEXT

Returns the screen to the usual full-screen text mode from any of the g1·aphics
modes.

Format:

TEXT

The prompt and cursor are moved to the last line of the screen; if issued in text
mode, this is the only result. If the text window has been set to anything other
than full-screen, TEXT resets to full-screen.

TEXT does not clear the screen, or more precisely, does not clear page 1 of
low-resolution screen memory. Since the normal text mode uses the same screen
memory as low-resolution graphics, executing TEXT while in low-resolution
graphics mode will leave the top 20 lines of the screen filled with strange charac
ters.

TRACE

Displays the line number of each statement as it is executed.

Format:

TRACE

Chapter 8: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 309

This debugging aid may cause line numbers to display intermixed with your pro
gram's output, rendering one or both illegible. TRACE is only turned off by NO
TRACE.

UNLOCK

Removes locked status from a disk file, permitting it to be changed or deleted.

Format:
UNLOCK filename [,Dn] [,Sn] [,V n]

If the file specified is locked, the lock is removed. If the specified file is not locked,
nothing happens (see LOCK).

If the file does not exist on drive On of slot Sn, the FILE NOT FOUND error
message is displayed. If the disk in drive On of slot Sn is not volume V n, the
VOLUME MISMATCH error results.

Dn, Sn, and V n can be specified in any order. If On or Sn is omitted, the last
referenced drive or slot is used. VO is used if V n is absent. Also, n can be absent;
DO, SO, or VO will be used.

This is a DOS command, requiring PRINT and CrRL-0 in programmed mode.

USR

Listed in the Functions section of this chapter.

VERIFY

Checks a specified disk file for self-consistency.

Format:
VERIFY filename [,Dn 1 [,Sn 1 [,Vn 1

When a file is saved on a disk with a SAVE, BSAVE, or PRINT statement, a
checksum is calculated for each sector and stored on the disk. VERIFY recalcu
lates these checksums and compares them to the checksums on the disk. If they
match, the file is intact and no message is returned. If one or more do not match,
the message 1/0 ERROR is generated. Any type of file may be verified.

If the file does not exist on drive On of slot Sn, the FILE NOT FOUND error
message is displayed. If the disk in drive On of slot Sn is not volume V n, the
VOLUME MISMATCH error results.

Dn, Sn, and V n can be specified in any order. If On or Sn is omitted, the last
referenced drive or slot is used. VO is used if V n is absent. Also, n can be absent;
DO, SO, or VO will be used.

310 APPLE II USER'S GUIDE

This is a DOS command, requiring PRINT and CTRL-0 in programmed mode.

VLIN

Draws a vertical line on the screen in low-resolution graphics.

Format:

VLIN row,, row2 AT col

The line is drawn from row, to row2 in the column specified by col The color is
determined by the COLOR statement last executed. If the screen is in text mode,
or the text window is present and either row is greater than 39, some or all of the
line will appear as characters instead of graphics dots. The characters used are
determined by previously executed COLOR statements; see Table 8-5 (near the
PLOT statement in this chapter) for. particulars.

In Integer BASIC, row, must be less than or equal to row2 or the message
***RANGE ERR will be displayed.

VTAB

Positions the cursor to the specified line in the current display column.

Format:
VLIN row

The cursor moves up or down to the line specified by the value of row, without
erasing any displayed characters. Rows are numbered from 1 to 24 (top to bot
tom).

WAIT

Halts an Applesoft program until a particular memory location attains a specified
condition.

Format:
WAIT memadr, exprnm, [,exprnm2]

WAIT checks all or part of the eight bits of memory location memadrfor the pat
tern of ones and zeros specified by the binary value of exprnm2 • The binary value
of exprnm, determines which bits of the memory location to consider and which
to ignore. If a particular bit of exprnm 1 is 1 , then the corresponding bit of memory
location memadr is checked. Conversely, WAIT ignores those memory bits that

Chapter 8: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 311

correspond to 0 bits in the binary value of exprnm2 •

As long as the significant bits (as determined by exprnm 1) of memadr are all
different from the corresponding bits of exprnm2 , the wait continues. The
moment any pair of significant bits are the same (either both 0 or both 1) the wait
is over and the Applesoft program continues.

If exprnm2 is absent, 0 is used.
WAIT can only be interrupted by RESET (or power off). The value of the numeric

expressions must be in the range 0 through 255 or the message ?ILLEGAL
QUANTITY ERROR is generated. If the specified memory location is greater thari
the maximum location in memory (e.g., 32767 if you have 32K of memory), or
accesses an output device that is not receiving, WAIT will lock up the system until
you press RESET.

Not available in Integer BASIC.

WRITE

Specifies a disk file to which subsequent PRINT statements will send output.

Format:
WRITE filename [,An] [,Bn]

If the file specified is not already open, it is opened (see OPEN). Subsequent PRINT
statements save data on the disk until a disk statement (or a CTRL-0 character
(ASCII code 4) alone) is printed. If the file is not on the disk, the message FILE NOT
FOUND appears.

The file will be written to as a sequential file if the R parameter is absent. In a
sequential file, the B parameter specifies at which byte (character) the WRITE
begins. If there is noB parameter, WRITE begins at the first byte in the file (byte
0).

If the R parameter is present, the file will be written to as a random-access file.
The WRITE is to the record specified by the R parameter.

In a random-access file, the B parameter specifies at which byte within the
specified record the WRITE begins. If there is noB parameter, WRITE begins at
the first byte in the record (byte 0).

The B parameter can be used to write starting at a point beyond the last
character already in the file (or record). This data can be READ, but any attempt to
READ intervening unused bytes generates the OUT OF DATA message.

The numbers following R and B must be integers in the range 0 through
32767. If unspecified, 0 is assumed.

While WRITE is in effect, every character that the Apple II outputs that would
normally be sent to the screen is sent to the disk. This includes the question mark
generated by INPUT and any error messages.

This is a DOS command, requiring PRINT and CTRL-0 in programmed mode.
May not be used in immediate mode.

312 APPLE II USER'S GUIDE

XDRAW

This Applesoft statement draws a high-resolution graphics shape on the screen
and, if used a second time with the same parameters, erases that shape.

Format:
XDRAW exprnm [AT colh, rowh 1

Shape number exprnm from the shape table is drawn, with each point in the color
that is the complement of the color on the screen at that point. Colors 0 and 3 are
a complementary pair, as are 1 and 2, 4 and 7, and 5 and 6 (see Table 8-3). The
scale and rotation of the shape must be set by SCALE and ROT commands before
the XDRAW command is executed.

You use XDRAW instead of DRAW so that you can easily erase a shape you
have drawn. Since XDRAW draws in the color complementary to the color pre
viously at that point, if you execute two (or four, six, etc.) XDRAW statements
with the same parameters, whatever is on the screen will be unchanged.

If you do not specify a location in the XDRA W statement, the shape is drawn
starting at the point plotted by the last executed DRAW, XDRAW, or HPLOT com
mand. If you do specify a location, the shape is drawn starting at that point (co/h,
rowh).

The shape number, exprnm, must have a value between 0 and the number of
shapes in the shape table (which must not exceed 255), inclusive.

Not available in Integer BASIC.

FUNCTIONS

Apple II BASIC functions are described below in alphabetical order. Nomenclature
and abbreviations are described at the beginning of this chapter.

Many of the functions are available only in Applesoft. Such functions are
appropriately identified.

ABS

Returns the absolute value of a number. This is the value of the number without
regard to sign.

Format:

ABS exprnm

Chapter 8: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 313

ASC

Returns the ASCII code number for a specified character.

Format:

ASC (expr$)

If the string is longer than one character, ASC returns the ASCII code for the first
character in the string. The code returned will not necessarily be the lowest ASCII
code (in the range 0-95) for that character. The characters generated by ASCII
codes between 96 and 255 duplicate those in the lower range on the display
screen. However, they are not evaluated as the same character by relational
operators such as < , >, and =. They may be treated differently by printers and
other output devices as well. If the first character of expr$is CTRL-@ (ASCII code
0), the message ?SYNTAX ERROR is generated. If expr$ is a null string the
message ?ILLEGAL QUANTITY ERROR is produced.

ASCII codes are listed in Appendix I.

ATN

Returns the arctangent of the argument.

Format:

A TN (exprnm)

Computes the arctangent, in radians, of exprnm. The angle returned is in the range
-7T/2 through 1r/2.

Not available in Integer BASIC.

CHR$

Returns the string value of the specified ASCII code.

Format:

CHR$ (exprnm)

Returns the character represented by the integer value of exprnm, interpreted as
an ASCII code. You will find a table of ASCII character codes in Appendix I. Use
this function to generate characters you cannot produce at the keyboard for con
trolling peripheral devices, etc. The value of exprnm must be in the range 0
through 255 or the message ?ILLEGAL QUANTITY ERROR will appear.

Not available in Integer BASIC.

314

cos
Returns the cosine of an angle.

Format:
COS (exprnm)

Computes the cosine of exprnm radians.
Not available in Integer BASIC.

EXP

Returns e raised to a power.

Format:
EXP (exprnm)

APPLE II USER'S GUIDE

Computes e (the base of natural logarithms, 2. 71828183) raised to the power
exprnm.

Not available in Integer BASIC.

FN

Invokes a previously executed user-defined function.

Format:
FN varnm (exprnm)

varnm is the name of the function. The value of the exprnm is assigned every
where the dummy variable occurs in the function definition, and the resulting
expression is evaluated. See DEF FN in the Statements section of this chapter.

A function may not be recursive, i.e., expmm may not refer to FN varnm nor to
any other function which refers to FN varnm.

If you attempt to use FN varnm before the DEF FN varnm statement has been
executed you will receive the ?UNDEF'D FUNCTION ERROR message.

Not available in Integer BASIC.

FRE

Returns the number of bytes of memory currently available to an Applesoft pro
gram.

Format: FRE (exprnm)

Chapter 8: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 316

The memory available to you is that below the string storage area and above the
array storage. If there are more than 32767 bytes of memory available, FRE
returns a negative number. Add 65536 to this number to discover the actual
amount of memory available.

FRE also clears disused strings from the string storage area. When a string
changes value during a program the old value of the string is left in memory, and
the new value is added to the string storage area. Eventually this might infringe on
memory you are using for something else. To prevent this problem, have a state
ment such as A = FRE (0) executed periodically in programs that use strings
extensively.

The value of exprnm is not used by FRE, but it will cause an error if it is illegal.
Not available in Integer BASIC.

INT

Returns the integer portion of a number.

Format:
INT (exprnm)

Returns the largest integer less than or equal to the value of exprnm.
Not available in Integer BASIC.

LEFT$

Returns the leftmost characters of a string.

Format:
LEFT$ (expr$, exprnm)

Returns the leftmost exprnm characters of expr$. exprnm must be in the range 1
through 255, and expr$ may not have more than 255 characters. If exprnm is
greater that the length of expr$, the entire string is returned.

Not available in Integer BASIC.

LEN

Returns the· length of a string.

Format:
LEN (expr$)

Counts the number of characters in expr$, including all spaces and nonprinting

316 APPLE II USER'S GUIDE

characters. If expr$ has more than 255 characters (possible only if expr$ is a
string expression involving concatenation) the message ?STRING TOO LONG
ERROR is generated.

LOG

Returns the natural logarithm of a number.

Format:
LOG (exprnm)

Computes the natural logarithm of exprnm. Returns ?ILLEGAL QUANTITY ERROR
if exprnm is zero or negative.

Not available in Integer BASIC.

MID$

Returns any specified portion of a string.

Format:
MID$ (expr$, exprnm, [,exprnm2])

Returns exprnm2 characters from expr$, starting with the character exprnm,. If
exprnm2 is absent, MID$ returns the portion of expr$ from the character
exprnm, through the last character. If the length of expr$ is less than exprnm,,
the null string is returned. If there are fewer than exprnm2 characters in expr$
after exprnm ', the result is the same as if exprnm 2 were absent. expr$ must not
exceed 255 characters, and exprnm, and exprnm2 must each be in the range 1
through 255.

Not available in Integer BASIC.

POL

Returns the current value of the game control (paddle) specified.

Format:
POL (exprnm)

The value returned is an integer between 0 and 255 based on the rotation of pad
dle number exprnm, or the resistance of a device connected to game control
socket exprnm. The game controls are numbered 0 through 3. If the paddle num
ber is less than 0 or greater than 255 the message ?ILLEGAL QUANTITY ERROR
is displayed. If the paddle number is between 4 and 255, POL returns a somewhat

Chapter 8: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 317

unpredictable number between 0 and 255, and may cause various side effects
such as a click from the speaker or a sudden shift in graphics mode.

If two POL instructions are executed consecutively or nearly consecutively, the
second value may be affected by the first. Make sure that several instructions are
executed between POL functions (an empty FOR-NEXT loop will do).

PEEK

Returns the contents of a memory location.

Format:
PEEK (memadr)

The value returned is the decimal equivalent of the eight bits at memory location
memadr. Appendix E lists some useful memory locations.

POS

Returns the column position of the cursor.

Format:
POS (exprnm)

The expression is a dummy; it is not used and therefore can have any legal value.
POS will return a value between 0 and 39. Character positions begin at 0 for

the leftmost character.
Not available in Integer BASIC.

RIGHT$

Returns the rightmost characters of a string.

Format:
RIGHT$ (expr$, exprnm)

Returns the rightmost exprnm characters of expr$. The value of exprnm must be
in the range 1 through 255, and expr$ may not have more than 255 characters. If
exprnm is greater than the length of expr$, the entire string is returned.

Not available in Integer BASIC.

RND

Returns a random number.

318 APPLE II USER'S GUIDE

Format:
RND (exprnm)

Returns a random number, the range of which depends on the value of exprnm
and the version of BASIC.

In Integer BASIC, RND returns a random integer between 0 and the value of
exprnm, exclusive of exprnm but inclusive of 0. Thus, RND (1) always returns 0,
and RND (.;..2) produces a fifty-fifty mix of 0 and -1. Attempting to use RND (0)
causes the message*** >32767 ERR to be displayed.

In Applesoft, RND always returns a real number greater than or equal to 0 and
less than 1. The value returned can be one of three types, depending on the sign
of exprnm.

If exprnm is positive, RND returns a different value each time it is used, unless
a repeatable sequence has been started.

A repeatable sequence starts when RND is used with a negative exprnm. Any
particular negative value always starts the same sequence; subsequent positive
arguments will return a repeatable sequence of random numbers. A diffe.rent
repeatable sequence is started by each different negative value of exprnm . This
feature is useful for testing and debugging programs that use RND.

If exprnm is 0 in Applesoft, RND returns the random number most recently
generated (this is not affected by CLEAR or NEW).

SCRN

Returns the color code of the low-resolution graphics point with the specified
coordinates.

Format:
SCRN (co/, row)

If the screen is in text mode, or the text window is present and the point specified
is within it, SCRN returns the color code of half of the character. The color code of
the top half of the character is returned if row is even, that of the bottom half if
row is odd. The ASCII code of the character at character position (a ,b) (with a in
the range 0-39 and b in the range 0-23) is returned by the expression
SCRN(a,2*b) + 16*SCRN(a,2*b+1). Thus the character itself is returned by
CHR$ (n), where n is the value returned by the above expression.

If col is in the range 0-39, SCRN returns the color code of the graphics point
(co/, row). If co/is in the range 40-4 7 and row is in the range 0-31 , SCRN returns
the color number of the graphics point (co/-40, row+ 16). If col is in the range
40-4 7 and row is in the range 32-4 7, SCRN returns a number unrelated to any
thing on the screen.

If SCRN is used while the screen is in high-resolution graphics mode, the num
ber returned is related to the low-resolution graphics area of memory rather than
the high-resolution display.

Chapter 8: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 319

SCAN is only recognized as a reserved word if the next nonspace character is a
left parenthesis.

SGN

Determines whether a number is positive, negative, or zero.

Format:

SGN (exprnm)

The SGN function returns + 1 if exprnm is positive, -1 if it is negative, and 0 if it
is zero.

SIN

Returns the sine of an angle.

Format:

SIN (exprnm)

Computes the sine of exprnm radians.
Not available in Integer BASIC.

SPC

Moves the cursor right a specified number of positions.

Format:

SPC (exprnm)

The SPC function is used in PRINT statements to print exprnm blank spaces.
Therefore any characters which the cursor passes over are erased.

The SPC function moves the cursor rightward from whatever column position
the cursor happens to be at when the SPC function is encountered. This is in con
trast to a TAB function, which moves the cursor to some fixed column measured
from the leftmost column of the display.

Not available in Integer BASIC.

SQR

Returns the square root of a positive number.

320 APPLE II USER'S GUIDE

Format:
SQR (exprnm)

A negative value of exprnm causes the ?ILLEGAL QUANTITY ERROR message.
SQR (exprnm) operates faster than (exprnm)" (.5).

Not available in Integer BASIC.

STR$

Converts a numeric value to a string.

Format:
STR$ (exprnm)

The value of exprnm is converted to a string. The string characters are the same
as those that would be printed by a PRINT exprnm statement. Therefore, STR$
(2/3) = ".666666667" and STR$ (2468013579) = "2.46801358E+09". If
exprnm exceeds the limits for real numbers, the message ?OVERFLOW ERROR is
displayed.

Not available in Integer BASIC.

TAB

TAB moves the cursor right to the specified column position.

Format:
TAB (exprnm)

Use TAB with the PRINT statement to move the cursor to column exprnm, if
exprnm is to the right of the cursor's current position. The cursor does not move if
exprnm is not to the right of the current position. TAB prints blank spaces as it
moves the cursor right, thereby erasing anything that was on the screen
beforehand.

For TAB, columns are numbered from 1 to 255. If exprnm is larger than the
width of the output device (40 for the display screen), 'it moves the cursor down
one line and resumes counting at the left margin. If the value of exprnm is 0, TAB
moves to column 256. A value of exprnm outside the range 0 to 255 causes the
error message ?ILLEGAL QUANTITY ERROR.

See also HT AB (Applesoft) and TAB (Integer BASIC) in the Statements section
of this chapter.

Not available in Integer BASIC.

TAN

Returns the tangent of an angle.

Chapter 8: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS

Format:
TAN (exprnm)

Computes the tangent of exprnm radians.
Not available in Integer BASIC.

USR

321

Branches to a machine language subroutine, passing values in the Accumulator.

Format:
USA exprnm

The subroutine starts at memory location 1 0 (OA hexadecimal). locations 1 0
through 1 2 (OA through OC hexadecimal) must contain an assembly language
JMP instruction that branches to the starting location of your subroutine. Since
USA is a function, it returns a numeric real value. Whatever is in the Accumulator
when the assembly language subroutine executes an RTS instruction (returning to
the Applesoft program) is the value returned.

There are many useful machine language subroutines present in the Apple II
Monitor. They are listed in Appendix D.

See also the CALL statement described in the Statements section of this
chapter, which is available in Integer BASIC also.

Not available in Integer BASIC.

VAL

VAL converts a string to a numeric value.

Format:
VAL (expr$)

Returns the numeric value represented by expr$. If the first character of expr$ is
not a numeric character, zero is returned. Otherwise, expr$ is taken character by
character until an unacceptable character is encountered. The acceptable charac
ters are: the digits 0 through 9, spaces, a decimal point, a leading plus or minus
sign, and in the context of scientific notation, an additional plus or minus sign, an
additional decimal point, and the letter E.

If expr$ is a string expression involving concatenation that contains more that
255 characters, the message ?STRING TOO LONG ERROR occurs. If the numeric
value of expr$ exceeds the limits of real numbers, the message ?OVERFLOW
ERROR occurs.

Not available in Integer BASIC.

A
Derived Numeric Functions

While the following list of derived functions is by no means complete, it does pro
vide some of the most frequently needed formulas. Certain values of x will invali
date some functions (for example, if COS(x)=O then SEC(x) is nonreal), so your
program should check for them.

None of the derived functions will operate in Integer BASIC.

ARCCOS(x) = -ATN(x/SQR(-x•x+1))+1.5707633
Returns the inverse cosine of x (ABS(x) < 1).

ARCCOT(x) = -ATN(x)+1.5707633
Returns the inverse cotangent of x.

ARCCOSH(x) = LOG(x+SOR(x •x -1))
Returns the inverse hyperbolic cosine of x (x > = 1).

ARCCOTH(x) = LOG((x+ 1)/(x-1))/2
Returns the inverse hyperbolic cotangent of x (ABS(x > 1).

ARCCSC(x) = ATN(1/SQR(x •x -1))+(SGN(x)-1)•1.5707633
Returns the inverse cosecant of x (ABS(x) > 1).

ARCCSCH(x) = LOG((SGN(x)•SOR(x •x+1)+1)/x)
Returns the inverse hyperbolic cosecant of x (x > 0).

ARCSEC(x) = ATN(SQR(x •x -1))+(SGN(x)-1)•1.5707633
Returns the inverse secant of x (ABS(x) > = 1).

ARCSECH(x) = LOG((SQR(- x •x+ 1)+ 1)/ x)
Returns the inverse hyperbolic secant of x (0 < x < = 1).

324

ARCSIN(x) = ATN(xiSQR(-x •x+1))
Returns the inverse sine of x (ABS(x) < 1).

ARCSINH(x) = LOG(x+SQR(x•x+1))
Returns the inverse hyperbolic sine of x.

ARCTANH(x) = LOG((1 +x)l(1-x))l2

APPLE II USER'S GUIDE

Returns the inverse hyperbolic tangent of x (ABS(x) < 1).

COSH(x) = (EXP(x)+EXP(-x))l2
Returns the hyperbolic cosine of x.

COT(x) = 1ITAN(x)
Returns the cotangent of x (x < > 0).

COTH(x) = EXP(-x)I(EXP(x)-EXP(-x))•2+1
Returns the hyperpolic contangent of x (x < > 0).

CSC(x) = 11SIN(x)
Returns the cosecant of x (x< > 0).

CSCH(x) = 21(EXP(x)-EXP(-x))
Returns the hyperbolic cosecant of x (x < > 0).

LOG 8 (x) = LOG(x)/LOG(a)
Returns the base a logarithm of x (a> 0, x >0).

LOG10 (x) = LOG(x)l2.30258509
Returns the common (base ten) logarithm of x (x > 0).

MOD a (x) = INT((x I a-INT((x I a))* a+.05)*SGN(x I a)
Returns x modulo a: the remainder after division of x by a (a< > 0).

SEC(x) = 1 ICOS(x)
Returns the secant of x (x< > 1TI2).

SECH(x) = 21(EXP(x)+EXP(-x))
Returns the hyperbolic secant of x.

SINH(x) = (EXP(x)-EXP(-x))l2
Returns the hyperbolic sine of x.

TANH(x) = -EXP(-x)IEXP(x)+EXP(-x))•2+1
Returns the hyperbolic tangent of x.

B
Editing Commands

This appendix summarizes the functions of the Apple II keystroke editing com
mands.

Moves the cursor forward along the display line. Each
character passed over is copied into memory as if it had
been typed on the keyboard. Does not alter the screen
display.

Backspaces the cursor along the display line, erasing
passed-over characters from memory but not from the
display screen.

REPT Causes a character printed by another key to be repeated as
long as both keys are held down. The REPT key must be
pressed after the other key.

CTRL-X The Apple II disregards the current display line and moves the
cursor to the left margin on the next line down.

328 APPLE II USER'S GUIDE

Esc Key Sequences

The following seven editing commands are two-key sequences. In each in
stance, press the Esc key, release it, and then press the second key of the
sequence.

Esc-A

Esc-B

Esc-C

Moves the cursor one position to the right. Does not alter the
screen display nor change memory.

Moves the cursor one position to the left. Does not alter the
screen display nor change memory.

Moves the cursor down one line. Does not alter the screen
display nor change memory.

Esc-0 Moves the cursor up one line. Does not alter the screen display
nor change memory.

Esc-E Deletes all characters from the cursor to the end of the display
line.

Esc-F Deletes all characters from the cursor to the end of the display
screen.

Esc-@ Clears the screen and moves the cursor to the upper left
corner.

Edit Mode Commands

The following four editing commands require the Autostart Monitor. They are
effective only in edit mode. Enter edit mode by pressing the Esc key and leave edit
mode by pressing any key other than the I, J, K, M, REPT, CTRL, or SHIFT keys.

I Moves the cursor up one line without leaving edit mode.

J Moves the cursor one position to the left without leaving edit
mode.

K Moves the cursor one position to the right without leaving edit
mode.

M Moves the cursor down one line without leaving edit mode.

c
Error Messages

Error messages are grouped into three categories: Integer BASIC, Applesoft, and
DOS messages, and are listed alphabetically within each category.

DOS error messages and most Applesoft error messages have associated error
codes. After an error has caused an ONERR GOTO branch to occur, the code for
that error can be found in memory location 222. Table C-1, located at the end of
this appendix, lists error messages by their code numbers.

INTEGER BASIC ERROR MESSAGES

*** > 255 ERR
A value which should be between 0 and 255 is outside that range.

*** > 32767 ERR
A number greater than 32767 or less than -32767 has been entered or
calculated.

*** 16 FORS ERR
More than 1 6 FOR loops are active.

*** 16 GOSUBS ERR
Seventeen more GOSUB statements than RETURN statements have been
executed.

328 APPLE II USER'S GUIDE

***BAD BRANCH ERR
A branch to a nonexistent line number has been attempted.

***BAD NEXT ERR
A NEXT with no matching FOR has been executed.

* * * BAD RETURN ERR
More RETURN statements than GOSUB statements have been executed.

***DIM ERR
The same array has been dimensioned more than once.

*** MEM FULL ERR
More memory is needed than is available.

***NO END ERR
The very last instruction executed in a program was not END.

***RANGE ERR
An array has been referenced with a subscript less than zero or greater
than the array's size, or an argument in an HUN, VLIN, PLOT, TAB, or VTAB
instruction was outside the prescribed range.

RETYPE LINE
An error has been generated by an INPUT response. A diagnostic message
is displayed first, and then this directive.

***STRING ERR
An illegal string operation has been executed.

* * * STR OVFL ERR
A string has been assigned more characters than it was dimensioned for.

***SYNTAX ERR
An error in spelling, punctuation, or sequence, or any error not covered by
another error message has occurred.

***TOO LONG ERR
More than 1 2 parentheses have been nested or more than 1 28 characters
have been entered in one line.

APPLESOFT ERROR MESSAGES

?BAD SUBSCRIPT ERROR
An array has been referenced with the wrong number of subscripts or with
one or more subscripts exceeding their dimensions. Error code 1 07.

?CAN'T CONTINUE ERROR
An attempt to continue (with the CONT command) was made when no
program existed, a fatal error had occurred, or a change had been made to
the program.

Appendix C: ERROR MESSAGES 329

?DIVISION BY ZERO ERROR
An attempt has been made to divide by an expression that evaluates to
zero. Error code 133.

?FORMULA TOO COMPLEX ERROR
More than two statements of the form IF string THEN have been executed.
Error code 1 91 .

?ILLEGAL DIRECT ERROR
An INPUT, DEF FN, or a GET command was entered in direct mode.

?ILLEGAL QUANTITY ERROR
A numeric value is outside the acceptable range for a string function,
numeric function, graphics statement, and so forth. Error code 53.

?NEXT WITHOUT FOR ERROR
A NEXT with no matching FOR has been executed. A NEXT with no varia
ble name generates this error only if there is no active FOR. Error code 0.

?OUT OF DATA ERROR
More DATA elements have been read than are available. Error code 42.

?OUT OF MEMORY ERROR
Can be caused by any of the following: program too large, too many varia
bles, more than 1 0 levels of FOR loop nesting, more than 24 levels of
subroutine nesting, more than 36 levels of parentheses nesting, LOMEM:
set too high, or HIMEM: set too low. Error code 77.

?OVERFLOW ERROR
Too large or too small a number has been entered or calculated. The
allowable range is approximately -1.7E+38 to 1.7E+38. Error code 69.

?REDIM'D ARRAY ERROR
A DIM statement for a previously dimensioned array has been executed.
Most commonly occurs when an array was dimensioned by default. Error
code 120.

?RETURN WITHOUT GOSUB ERROR
More RETURN statements than GOSUB statements have been executed.
Error code 22.

?STRING TOO LONG ERROR
An attempt was made to concatenate strings totaling more than 255
characters. Error code 1 7 6.

?SYNTAX ERROR
An error in spelling, punctuation, or sequence, or any error not covered by
another message has occurred. Error code 1 6.

?TYPE MISMATCH ERROR
A numeric expression or variable has been used where a string should be,
or vice versa. Also occurs when the two sides of an assignment statement
do not match in type. Error code 1 63.

330 APPLE II USER'S GUIDE

?UNDEF'D FUNCTION ERROR
A user-defined function that has never been defined has been referenced.
Error code 224.

?UNDEF'D STATEMENT ERROR
A branch to a nonexistent line number has been attempted. Error code 90.

DOS ERROR MESSAGES

DISK FULL
An attempt has been made to store more information on a disk than it can
hold. On a full disk this message may occur in place of a more appropriate
message (e.g., FILE NOT FOUND.) Error code 9.

END OF DATA
An attempt has been made to read from a portion of a text file that has
never been written to. Error code 5.

FILE LOCKED
An attempt has been made to use SAVE, BSAVE, WRITE, DELETE, or
RENAME on a locked file. Error code 10.

FILE NOT FOUND
A file has been referenced that does not exist on the disk. This error only
occurs if the DOS command that referenced the file does not create the
file when it is not found. Error code 6.

FILE TYPE MISMATCH
A DOS command has referenced a file that is not of the required type. The
LOAD, RUN, and SAVE commands .nay only be used with program files.
The CHAIN command may only be ~•sf:d with an Integer BASIC program
file. The OPEN, READ, WRITE, APPEND, POSITION, and EXEC commands
may only be used with text files. The BLOAD, BSAVE, and BRUN com
mands may only be used with binary files. Error code 13.

1/0 ERROR
An unsuccessful attempt to store to or retrieve from a disk has been made.
Some common causes are: the disk drive door is open, the disk has not
been initialized, no disk is in the drive, or the disk is defective. Error code 8.

LANGUAGE NOT AVAILABLE
An attempt to change languages with FP or INT has been made when the
desired language was not in ROM or on the disk, or an attempt to load or
RUN a program was made when the language of the program was similarly
unavailable. Error code 1.

NO BUFFERS AVAILABLE
Another file buffer was required when all the available file buffers were
already in use. Error code 1 2.

Appendix C: ERROR MESSAGES 331

TABLE C-1 . Error Codes

PEEK (222) Error Description Language

0 NEXT without FOR Applesoft
1 Language not available DOS

2 or 3 Range error DOS
4 Write protected DOS
5 End of data DOS
6 File not found DOS
7 Volume mismatch DOS
8 1/0 error DOS
9 Disk full DOS

10 File locked DOS
11 Syntax error DOS
12 No buffers available DOS
13 File type mismatch DOS
14 Program too large DOS
15 Not direct command DOS
16 Syntax error Applesoft
22 RETURN without GOSUB Applesoft
42 Out of DATA Applesoft
53 Illegal quantity Applesoft
69 Overflow Applesoft
77 Out of memory Applesoft
90 Undefined statement Applesoft

107 Bad subscript Applesoft
120 Redimensioned array Applesoft
133 Division by zero Applesoft
163 Type mismatch Applesoft
176 String too long Applesoft
191 Formula too complex Applesoft
224 Undefined function Applesoft
254 Bad response to an INPUT Applesoft
255 CTRL-C has been struck Applesoft

NOT DIRECT COMMAND
The following DOS commands may only be used from within PRINT state
ments in programmed mode: APPEND, OPEN, POSITION, READ, and
WRITE. Error code 15.

PROGRAM TOO LARGE
A DOS command has attempted to put a file from the disk in the Apple II
memory, and found insufficient memory to hold the file. Error code 14.

RANGE ERROR
A parameter used with a DOS command is outside of the range specified

332 APPLE II USER'S GUIDE

for that parameter; for example, the D (drive) parameter must be either 1
or 2. Error code 2 or 3.

SYNTAX ERROR
A DOS command has an error in spelling, punctuation, or sequence. Error
code 11.

VOLUME MISMATCH
The V (volume) parameter in a DOS command does not match the volume
number of the disk accessed. Error code 7.

WRITE PROTECTED
An attempt has been made to use SAVE, BSAVE, or WRITE on a write-pro
tected disk. Error code 4.

D
Intrinsic Subroutines

The following two tables list a number of useful machine language subroutines
available on the Apple II. Table D-1 lists them by general function; it does not pro
vide complete information about each subroutine. Find the entry point listed in
Table D-1 in the first column of Table D-2 for details on registers affected, etc.

Table D-21ists the subroutines in order by entry point. The third column shows
which registers, if any, must contain specific values before the subroutine is
executed. The fourth column shows which registers are affected by the execution
of the subroutine.

Most of these subroutines have an equivalent in a BASIC command, or can be
accessed from BASIC with a single CALL instruction. These equivalents appear in
Table D-2. Some of the BASIC commands listed are only available in Applesoft;
they are marked with an A.

Some subroutines, however, have no equivalent in either version of BASIC, and
cannot be executed by a single CALL because one or more registers must be
loaded with specific values prior to execution. Different techniques are required to
handle this problem in the different versions of BASIC.

Integer BASIC provides a fairly simple solution. First execute a CALL -182 to
place the current values of the registers in read/write memory. Then POKE the
desired values in memory location 69 for the A register, 70 for the X register, and
71 for the Y register. Execute a CALL -1 93 to restore these values in the
registers, and CALL the location of the subroutine you wanted to execute in the
first place.

334 APPLE II USER'S GUIDE

This technique does not work in Applesoft. You must instead write and
execute a machine language subroutine that loads the registers with the desired
values and then executes an assembly language JSR instruction to the entry point
of the desired intrinsic subroutine.

TABLE D-1 . Intrinsic Subroutines Cross-Referenced by Function

Function Entry Point

Plot a low-resolution graphics point. $F800

Draw a low-resolution horizontal line. $F819

Draw a low-resolution vertical line. $F82S

Clear all 48 low-resolution graphics rows to black $F832
(if in text mode, sets to inverse "®".

Low- Clears the top 40 low-resolution rows $F836

Resolution to black (or inverse"®").
Graphics Increment the current low-resolution $F85F

graphics color by three.

Set low-resolution graphics color. $F864

Read the color of a low-resolution grahics point. $F871

Set low-resolution graphics mode, clear screen, $FB40
and set four line text window.

Wait for keystroke while flashing cursor, and seed $FD1B
random number generator at locations $4E and $4F.

Input Same as above except that escape codes $FD35
are also allowed.

Send carriage return to display screen, then allow input $FD67
of an entire line of up to 256 characters.

Send three blanks out to the currently $F948
selected output device.

Send from one to 256 blanks to the $F94A
currently selected output device.

Output Send a carriage return and line feed to the Apple II screen. $FC62

Output a character to the currently $FDED
selected output device.

Output a character to the text window. $FDFO

Send BELL character (ASCII code 7) to the $FBD9
currently selected output device.

Bell Beep the on board speaker for 1/1 0 second. $FBE4
Output

Print the message ERR and beep the onboard speaker. $FF2D

Beep the onboard speaker. $FF3A

Appendix 0: INTRINSIC SUBROUTINES 335

TABLE D-1 . Intrinsic Subroutines Cross-Referenced by Function (Continued)

Function Entry Point

Text Set the Apple II screen to 24 rows by 40 columns. $FB2F
Window Scroll the text window up one line. $FC70

Send a backspace character to the screen, $FC10
updating the cursor position.

Move the cursor up one line. If the cursor is already at $FC1A

Cursor the top of the screen, it does not move.
Control Move the cursor down one line without $FC66

changing its horizontal position.
Scrolls the text window if the cursor
is at the bottom of the screen.

Clear the text window from the current cursor position $FC42
to the lower righthand corner of the screen.

Clear the text window from coordinates passed in $FC46

Screen registers to the lower right hand corner of the screen.
Clearing Clear the entire text screen and move the cursor $FC58

to the upper lefthand corner.

Clear the text from the current cursor position $FC9C
to the end of the line.

Video Set inverse video. mode (black on white). $FE80
Mode Set normal video mode (white on black). $FE84

Print Y and X register contents (in the format YYXX) $F940
on the currently selected output device.

Print A and X register contents (in the format AAXX) $F941
Print on the currently selected output device.

Register
Contents Print X register contents on the $F944

currently selected output device.

Print A register contents on the $FDDA
currently selected output device.

Move Restore register contents (valid only if intrinsic routine $FF3F
Register at $FF4A executed previously).
Contents Save register contents in reserved Page Zero locations. $FF4A

Read status of one paddle. $FB1E

Execute a delay loop. $FCA8

Misc. Return to BASIC, eliminating the program $FEBO
and variables in memory.

Entry point for the monitor. $FF69

336 APPLE II USER'S GUIDE

TABLE D-2. Intrinsic Subroutines by Entry Point

Entry BASIC
Use Registers to Load Before Calling Registers Affected

Point Equivalent

$F800 Plot a graphics point on low- Place row in A, column in Y. None PLOT
resolution page 1.

$F819 Draw a low-resolution Row in A, left column in Y. A.Y HUN
horizontal line. right column at memory

location 44.

$F828 Draw a low-resolution Column in Y, high row in A. None VLIN
vertical line. low row at memory location

45.
$F832 Clear all48 low-resolution None A,Y CALL -1998

graphics rows to black (if in
text mode, sets to all"@").

$F836 Clear the low-resolution None A.Y GR
graphics rows. leaving the (see $FB40l
text window intact.

$F85F Increment the current None A CALL -1985
low-resolution graphics color
by three.

$F864 Set low-resolutton graphics Color number in A. A COLOR
color.

$F871 Read the color of a Row in A. column in Y. A (contains color SCRN
low-resolution graphics point. number)

$F940 Print Y and X register None None CALL -1728
contents (in the format YYXXI
on the screen or other output
device selected.

$F941 Print A and X registers IAAXXI None None CALL -1727
as above.

$F944 Print X register contents. None None CALL -1724

$F948 Send three blanks out to the None X,A CALL -1720
currently selected output
device (determined by CSW
contents).

$F94A Send 1 to 256 blanks to the Number of blank spaces in A; None SI>C()A
currently selected output (loading 0 prints 256 blanks). CALL-1718
device.

$FB1E Read status of paddle 0, 1, Paddle number in X. O-FF in Y register. POL(I
2.or3. A contents destroyed

$FB2F Set the Apple II text screen None A TEXT
to 40 rows by 24 columns.

$F840 Set low-resolution graphics None A,Y GR
mode, clear screen and set
4-line text window.

$FBD9 Send BELL character IASCtl code 71 None A.Y CALL -1063
to the current output device.

$FBE4 Beep Apple 11 speaker for None A,Y Co\LL -1052
1/1 0 second.

$FC10 Send a backspace character None A Co\LL -1008
to the screen. updating
cursor position.

$FC1A Move the cursor up one line. None A CALL -998
If already at the top of the
screen. cursor does not move.

$FC42 Clear the text window from the None A.Y CALL -958

present cursor position to the
tower nghthand comer of the
screen.

$FC46 Clear the text window from Column in Y, row on A. A.Y CALL -954
coordinates passed in regosters
to the lower righthand comer
of the screen.

$FC58 Clear the entire text screen None A.Y HOME A
and move the cursor to the CALL -936
upper lefthand comer.

A Denotes BASIC commands available in Applesoft only.

Appendix 0: INTRINSIC SUBROUTINES 337

TABLE D-2. Intrinsic Subroutines by Entry Point (Continued)

Entry
Use Registers to load Before Calling Registers Affected

BASIC
Point Equivalent

$FC62 Send a carriage return and None CALL-926
line feed to the Apple II
screen

$FC66 Move the cursor down one line None A,Y CALL-922
without chang1ng 1ts horizontal
position. Scrolls text up one
line 1f cursor is at the bottom
of the screen

$FC70 Scroll the text window up one None A.Y CALL-912
line.

$FC9C Clear text from the current None A.Y CALL -868
cursor pos1t1on to the end of
the line. Cursor pos1tion
remains unchanged.

$FCA8 Execute a delay loop wh1ch IS Delay value lx I in A A CALL -856
0 scsx2 + 27x + 261
microseconds long

$FD1B Wait for keystroke; flash None Character returned CALL -756
cursor while wait1ng. Seed 10A
random number generator at X,Y
memory locations 78 and 79.

$FD35 Same as $FD 1 B. except that None Character returned CALL-715
escape codes are also 1nA.
allowed X.Y

$FD67 Send carnage return to Prompt character at memory Y.A INPUT
screen; allow input of an location 51. X contains length
ent~re line of data. up to of entry Data
256 characters. entered starts at

memory location$200

$FDDA Print the value in the Data1nA A CALL-550
accumulator as two
hexadecimal digits

$FDED Output a character to the Character in A. None PRINT
currently selected output
device

SFDFO Output a character to the Character 1n A None PRINT
~pple text w~ndow

$FE80 Set inverse video (black-on- None y INVERSE A

whitetextl CALL -384

$FE84 Set normal video mode (white· None y NORMAL A

on-black textl CALL -380

$FEBO Return to BASIC. eliminating None A.X.Y CALL -336
the program and variables 1n
memory.

$FF20 Print the message ERR and None A CALL -211
beep on board speaker

$FF3A Beep the onboard speaker None A CALL -198

$FF3F Restore reg1ster contents None Register contents CALL -193
(valid only if intrinsic restored from these
routine at $FF4A executed locations:
previously) A register: 69 1$451

S register: 72 1$481
X register: 701$461
Stack Po~nter: 7 3 ($4 91
Y reg1ster: 71 ($471

$FF4A Save register contents None None CALL -182
1n reserved Page 0 locations
A register: 69 1$451
S register: 72 l$481
X register: 70 l$461
Stack Po~nter 73 ($491
Y register: 71 ($471

$FF69 Entry po1nt for the mo01tor None None CALL -151

A Denotes BASIC commands available in Applesoft only.

E
Useful PEEK and POKE Locations

Each of the memory locations listed below is expressed in terms of a decimal
number less than 32767 in magnitude. Memory locations above 32767 are
expressed in terms of a negative number. There is a positive number which refers
to the same location. Add 65536 to the listed negative location to get the positive
equivalent (e.g., 65536 - 16384 = 49152).

Some of the functions described below are actuated by just accessing them.
This means that any time a PEEK statement accesses the specified memory loca
tion, the indicated action takes place. A POKE statement to the specified memory
location also triggers the action, but because of the operating characteristics of
the microprocessor in the Apple II, a POKE statement actually triggers the action
twice. In this case, POKE is the same as two PEEK statements. Usually this makes
no difference, but in cases like -1 6336 (Speaker Click) it does. The value placed
in memory by the POKE statement is irrelevant in such address-actuated actions.

TEXT WINDOW AND CURSOR CONTROL LOCATIONS

32 Left Margin of the Text Window
Specifies the column of the left text window margin. PEEK returns a value in
the range 0 through 39, 0 being the left edge of the screen. Changing this
location does not affect the width of the text window; the left and right
margins both move.

340 APPLE II USER'S GUIDE

If you POKE a value greater than 39 in this location, or if the value of this
location plus the width of the text window exceeds 40, some or all of the
output meant for the screen will be put in memory outside the screen area.
This could destroy part of your program or other essential data.

33 Text Window Width
Specifies the width of the text window. The value in this location must be in
the range 1 through 40. Changing this location sets the right margin at the
column that is the specified number of characters away from the left margin
(memory location 32).

A value of zero in this location (i.e., a width of zero) can destroy the
BASIC interpreter. If you POKE a value greater than 40 into this location, or if
the value in this location plus the value in location 32 (left margin) exceeds
40, some or all of the output meant for the screen will be put in memory
outside the screen area. This could destroy part of your program or other
essential data.

34 Top Margin of the Text Window
Specifies the top margin of the text window. The value in this location must
be in the range 0 through 23; 0 specifies the top row on the screen, 23 the
bottom. If you POKE a value greater than 23 into this location, some or all of
the output meant for the screen will go into memory outside the screen area,
wiping out data that could be important. Do not set the top margin of the
text window below the bottom margin.

35 Bottom Margin of the Text Window
Specifies the bottom margin of the text window. The value in this location
must be in the range 0 through 23; 0 specifies the top row on the screen,
23 the bottom. If you POKE a value greater than 23 into this location, some
or all of the output meant for the screen will go into memory outside the
screen area, wiping out data that could be important. Do not set the bottom
margin of the text window above the top margin.

36 Horizontal Position of the Cursor
Specifies the current horizontal position of the cursor. PEEK returns a value
in the range 0 through 39; it specifies the cursor's position relative to the
left margin of the text window (not necessarily the left edge of the screen).
This location can be used to position beyond the right edge of the text win
dow (and subsequently print there with PRINT}, but the cursor only stays
there long enough to print one character. Do not put a value in this location
that, when added to the left screen margin (location 32}, exceeds 39.

This PEEK is equivalent to the Applesoft function POS.

37 Vertical Position of the Cursor
Specifies the current vertical position of the cursor. PEEK returns a value in
the range 0 through 23, relative to the top of the screen (not the top of the
text window}. Do not put a value over 23 in this location.

Appendix E: USEFUL PEEK AND POKE LOCATIONS

ERROR HANDLING LOCATIONS

21 6 Error Flag

341

Indicates whether an ONERR GOTO is in effect. If bit 7 of this memory loca
tion is 1 (i.e., if this location has a value of 128 or more), an ONERR GOTO
statement has been encountered, and control will branch to the line number
specified when an error occurs. POKE a value less than 1 28 to disable a pre
viously executed ONERR GOTO statement.

21 8 and 21 9 Error-Causing Line Number
When an error triggers a branch according to an ONERR GOTO statement,
these locations specify the line number in which the error occurred. This line
number is PEEK(219)*256+PEEK(218).

222 Error Type Code
Specifies which type of error has occurred. The error codes and their
descriptions are given in Appendix C.

KEYBOARD LOCATIONS

-16384 Character from Keyboard
Reads the keyboard. If the value in this location is greater than 127 (i.e., if bit
7 is 1), a key has been pressed. Determine the ASCII code of the key last
pressed by subtracting 128 from this value.

-1 6368 Keyboard Flag
Resets keyboard strobe (bit 7 of location -16384) to zero so that the next
character may be read in.

"CLICK" OUTPUT LOCATIONS

-16352 Cassette Click
Generates an audible click on the cassette output jack.

-1 6336 Speaker Click
Generates a click on the internal speaker.

DISPLAY SWITCHES

The memory locations listed in this section set certain switches which determine
display characteristics. There are no real physical switches; only PEEK and POKE
commands affect the settings. There are four switches which can each be set in
two different positions, as shown in Figure E-1 . With text mode selected, the only
other switch that has any effect is the Page 1 /Page 2 switch.

342

Graphics
-16304

Text
-16303

Full Screen
-16302

Graphics
Plus Text
-16301

Page 1
-16300

Page 2
-16299

APPLE II USER'S GUIDE

Low-Resolution
-16298

High-Resolution
-16297

FIGURE E-1. PEEK/POKE Graphics and Text Locations

-16304 Select Graphics Mode
Selects graphics mode. The graphics screen is not cleared to black. The
graphics mode may be low or high resolution, page 1 or page 2, full-screen
graphics or mixed graphics and text. These characteristics are determined
by other memory locations.

-16303 Select Text Mode
Selects text mode. The text may be from either page 1 or page 2; this is
determined by other memory locations.

-1 6302 Select Full-Screen Graphics
Selects full-screen graphics. If the screen is in text mode, this will not be
visible until location -16304 is accessed.

-16301 Select Graphics Plus Text
Establishes a four-line text window at the bottom of the screen. If the screen
is in text mode, this will not be visible until location -1 6304 is accessed.

-16300 Select Screen Page 1
Selects graphics or text page 1.

-16299 Select Screen Page 2
Selects graphics or text page 2.

-16298 Select Low-Resolution Graphics
Selects low-resolution graphics. If the screen is in text mode, this will not be
visible until location -16304 is accessed.

-16297 Select High-Resolution Graphics
Selects high-resolution graphics. If the screen is in text mode, this will not be
visible until location -1 6304 is accessed.

Appendix E: USEFUL PEEK AND POKE LOCATIONS

On
-16295

Off
-16296

Annunicator 0

On
-16293

Off
-16294

Annunicator 1

On
-16291

Off
-16292

Annunicator 2

On
-16289

Off
-16290

Annunicator 3

FIGURE E-2. Game Control Outputs (Annunicators) Manipulation

GAME CONTROL LOCATIONS

343

The memory locations in this section turn game control outputs on or off, sense
whether pushbuttons are being pressed or not, and actuate a strobe output.
Figure E-2 shows how the game control outputs are manipulated.

All inputs and outputs for these PEEK and POKE statements connect to the
game control connector, pictured in Figure E-3.

-16296 Annunciator 0 Off
Turns off game control output (annunciator) number 0. The voltage on pin
1 5 of the game control connector is set to approximately 0 volts (TTL high).

-16295 Annunciator 0 On
Turns on game control output (annunciator) number 0. The voltage on pin
1 5 of the game control connector is set to approximately + 5 volts (TTL
low}.

-16294 Annunciator 1 Off
Turns off game control output (annunciator} number 1. The voltage on pin
14 of the game control connector is set to approximately 0 volts (TTL high}.

-16293 Annunciator 1 On
Turns on game control output (annunciator) number 1. The voltage on pin
14 of the game control connector is set to approximately + 5 volts (TTL
low).

-16292 Annunciator 2 Off
Turns off game control output (annunciator) number 2. The voltage on pin
13 of the game control connector is set to approximately 0 volts (TTL high).

-16291 Annunciator 2 On
Turns on game control output (annunciator) number 2. The voltage on pin

344 APPLE II USER'S GUIDE

13 of the game control connector is set to approximately +5 volts (TTL
low).

-16290 Annunciator 3 Off
Turns off game control output (annunciator) number 3. The voltage on pin
12 of the game control connector is set to approximately 0 volts (TTL high).

-16289 Annunciator 3 On
Turns on game control output (annunciator) number 3. The voltage on pin
12 of the game control connector is set to approximately +5 volts (TTL
low).

-16287 Read Pushbutton 0
When the pushbutton on game control number 0 is being pressed, the value
in this location exceeds 1 2 7; when it is not being pressed, the value is 1 2 7
or less. Pushbutton 0 connects to pin 2 of the game control connector.

-1 6286 Read Pushbutton 1
When the pushbutton on game control number 1 is being pressed, the value
in this location exceeds 127; when it is not being pressed, the value is 127
or less. Pushbutton 1 connects to pin 3 of the game control connector.

-16285 Read Pushbutton 2
When the pushbutton on game control number 2 is being pressed. the value
in this location exceeds 1 2 7 ; when it is not being pressed, the value is 1 2 7
or less. Pushbutton 2 connects to pin 4 of the game control connector.

-16272 Strobe Output
Normally pin 5 of the game control connector is +5 volts. If you PEEK
memory location -16285, it drops to 0 volts for one-half microsecond.
POKE will trigger the strobe twice.

Game 1/0

8 0 0 9

0 10

0 11
Strobe

0
12

Annunciator 3
Pushbutton 2

0
Pushbutton 1 Annunciator 2

0 Annunciator 1
Pushbutton 0 0 A nnunciator 0

1 0 0 16

FIGURE E-3. Game Control Inputs and Outputs

F
BASIC Reserved Words

The Apple II interprets every occurrence of the following reserved words as a
BASIC command, statement, or function. The only exception is when they are
part of text strings enclosed in quotation marks. So keep reserved words out of
your variable names. Watch especially for the short reserved words.

You may enter reserved words with embedded blank spaces; the Apple II will
compress the blanks out.

INTEGER BASIC

ABS END LET POL SAVE
AND FOR LIST PEEK SCAN
ASC GOSUB LOAD PLOT SGN
AT GOTO LOMEM: POKE STEP
AUTO GR MAN POP TAB
CALL HIMEM: MOD PRINT TEXT
COLOR= HUN NEW PR# THEN
CON IF NEXT REM TO
DEL IN# NOT RETURN TRACE
DIM INPUT NOTRACE RND VLIN
DSP LEN OR RUN VTAB

346 APPLE II USER'S GUIDE

APPLESOFT

Reserved words in Applesoft are tokenized: each word takes up only one byte of
program storage. The tokens are listed with each reserved word below. They are
also listed in numerical order in Appendix I.

Applesoft will not recognize the reserved word TO properly if:

1. The first non blank character before TO is the letter A, and

2. One or more blanks separate the T and 0.

ABS (212) HTAB (150) REM (178)

AND (205) IF (173) RESTORE (174)

ASC (230) IN# (139) RESUME (166)

AT (197) INPUT (132) RETURN (177)
ATN (225) INT (211) RIGHT$ (233)
CALL (140) INVERSE (158) RND (219)
CHR$ (231) LEFT$ (232) ROT= (152)
CLEAR (189) LEN (227) RUN (172)
COLOR= (160) LET (170) SAVE (183)
CONT (187) LIST (188) SCALE= (153)

cos (222) LOAD (182) SCRN((215)
DATA (131) LOG (220) SGN (21 0)
DEF (184) LOMEM: (164) SHLOAD (154)
DEL (133) MID$ (234) SIN (223)
DIM (134) NEW (191) SPC((195)
END (128) NEXT (130) SPEED= (169)
EXP (221) NORMAL (157) SQR (218)
FLASH (159) NOT (198) STEP (199)
FN (194) NO TRACE (156) STOP (179)
FOR (129) ON (180) STORE (168)
FRE (214) ON ERR (165) STR$ (228)
GET (190) OR (206) TAB((192)
GOSUB (176) POL (216) TAN (224)
GOTO (171) PEEK (226) TEXT (137)
GR (136) PLOT (141) THEN (196)
HCOLOR= (146) POKE (185) TO (193)
HGR (145) POP (161) TRACE (155)
HGR2 (144) POS (217) USA (213)
HIM EM: (163) PRINT (186) VAL (229)
HUN (142) PR=tl= (138) VLIN ('143)
HOME (151) READ (135) VTAB ('162)
HPLOT (147) RECALL (167) WAIT ('181)

XDRAW (149)

Appendix F: BASIC RESERVED WORDS 347

DOS

DOS commands are only considered reserved words if they are used in immediate
mode or in a PRINT statement that begins with a CTRL-D character (ASCII code 4).

APPEND
BLOAD
BRUN
BSAVE

CHAIN
CLOSE
DELETE
EXEC

I NIT
LOAD
LOCK
OPEN

POSITION
READ
RENAME
RUN

SAVE
UNLOCK
VERIFY
WRITE

G
Memory Usage

GENERAL MEMORY ORGANIZATION

The Apple II memory is divided into three general categories: read/write memory
{also called random access memory or RAM), read-only memory {ROM), and
input/output locations {1/0). Memory locations 0 through 49151 {$BFFF hex
adecimal) are in RAM, locations 49152 {$COOO) through 5324 7 {$CFFF) are in
ROM. Your system does not necessarily have actual memory for all of these loca
tions. For instance, if you have only 16K of RAM, memory locations 16384
{$4000) through 49151 {$BFFF) are not usable.

Table G-1 shows how memory is allocated on an Apple II system. Notice there
are two blocks of free memory locations, surrounding the two high-resolution
graphics pages. The system pointer LOMEM: keeps track of the lower bound on
this free area, and the system pointer HIMEM: marks the upper end. This read/
write memory can be used for a number of things. Among them are the nonfirm
ware Applesoft interpreter {from cassette or disk), the Disk Operating System
{DOS), high-resolution graphics, and your BASIC program and its variables.

350 APPLE II USER'S GUIDE

TABLE G-1. BASIC Memory Organization

Location Type of
Memory

Usage
Decimal Hex

0-255 $0-$0FF RAM System programs
256-511 $100-$1 FF RAM System stack
512-767 $200-$2FF RAM Keyboard input buffer
768-1023 $300-$3FF RAM Monitor vector locations

1024-2047 $400-$7FF RAM Text and low-resolution graphics page 1
2048-3071 $800-$BFF RAM Text and low-resolution graphics page 2
3072-8191 $C00-$1 FFF RAM Free
8192-16383 $2000-$3FFF RAM High-resolution graphics page 1

1 6384-245 7 5 $4000-$5FFF RAM High-resolution graphics page 2
24576-49151 $6000-$BFFF RAM Free
49152-49279 $COOO-$C07F 1/0 Special built-in locations
49280-49407 $C080-$COFF 1/0 Peripheral card 1/0 space
49408-51199 $C1 OO-$C7FF 1/0 Peripheral card memory
51200-5324 7 $C800-$CFFF 1/0 Peripheral card expansion memory
53248-65535 $DOOO-$FFFF ROM Integer BASIC, Applesoft, the Monitor

or the Autostart Monitor, etc.

THE BASIC LANGUAGE INTEPRETERS

As you can see in Table G-1, the Integer BASIC interpreter always resides in ROM.
The Applesoft interpreter also resides in ROM if your system has the Applesoft
Firmware card or the Language System installed. Otherwise, the Applesoft
interpreter occupies approximately 1 OK bytes of memory starting at 2048
($800).

DOS MEMORY REQUIREMENTS

You need at least 16K of memory to use DOS. When booted, DOS takes up
approximately 1 OK at the top of memory. HIM EM: is set just below the memory
used by DOS. Figure G-1 shows which sections of memory are used by DOS on
various sizes of systems. Note that you must have at least 24K of RAM to support
both DOS and disk (or cassette) Applesoft, ·and at least 32K to use page 1 of
high-resolution graphics with DOS. Figure G-1 also clearly shows the conflict be
tween disk (or cassette) Applesoft and high-resolution graphics page 1 .

DOS uses several additional sections of memory while it is booting (see Figure
G-2). Anything in those areas before booting will be gone after booting.

INTEGER BASIC MEMORY USAGE

Integer BASIC program lines reside in the high end of free read/write memory,
starting at HIMEM:. As shown in Figure G-3, HIMEM: is automatically adjusted as
you add, delete, and change program lines.

•

Appendix G: MEMORY USAGE 351

~
0
E
Q)

:::!!
0
(I)

.!
> m

48,152 ~ Legend

40,960
DOS [:=:1 Non-firmware

Applesoft Interpreter
r----

32,768-- [=:J High Resolution Graphics
DOS Page 1

24,576
DOS [:=:1 High Resolution Graphics r--

r----
Page 2

16,384 r--
DOS [:=:1 System

DOS
DOS [:=:1 DOS (uses 10,752 bytes) 8,192

0 [=:J Free space
16K 20K 24K 32K 36K 48K

Size of System

FIGURE G-1. Read/Write Memory (RAM) Usage

DOS is relocated
here at end of boot

' ..

: · DOS is first put here

· Buffers. used· during boot

Boot starts here

}-
Highest RAM address (HIMEM:)

10,752 ($2AOO) bytes

16383 ($3FFF)

6912 ($1 BOO)

2559 ($9FF)

2048 ($800)

1023 ($3FF)

768 ($300)

FIGURE G-2. Memory Used During DOS Boot

Variables are stored starting at LOMEM: and working up. As variable storage
requirements change, LOMEM: adjusts automatically. Each numeric variable is
mapped into memory with four attributes: the variable name, the DSP on/off byte,
the memory location of the next variable, and the actual value or values of the
variable.

The variable name may be up to 1 00 characters long. Each character is repre
sented in memory by its ASCII code, with the high-order bit set to 1 .

352 APPLE II USER'S GUIDE

This address can be found
Program lines in locations 202 and 203 (HIMEM:)

J build down 1

f Variable storage f
This address can be found
in locations 204 and 205 (LOMEM:)

builds up

FIGURE G-3. Integer BASIC Program Memory Map

The DSP byte indicates whether the BASIC command DSP is in force for this
variable. This byte, normally 0, is set to 1 when DSP is executed for this variable,
and reset to 0 when NO DSP is executed.

The address of the next variable is stored in two bytes, low-order first.
The data is stored in pairs of bytes, low-order byte first. If the variable is not an

array, there is only one such pair. If the variable is an array, there is one pair per
element, listed in order starting with element zero. There is no distinction between
a simple variable and an array with the same name; the simple variable is the zero
element of the array.

String variables are stored similarly. The variable name, DSP byte, and next
variable address are stored in the same fashion as numeric variables. The ASCII
code for each character of the string takes one byte, with the high-order bit set to
1 . The last character of the string is followed by a string terminator byte, in which
the high-order bit is 0.

APPLESOFT MEMORY USAGE

Applesoft program lines occupy the low end of free read/write memory starting at
LOMEM:, as shown in Figure G-4. As you add, delete, and change program lines,
LOMEM: adjusts automatically. Simple numeric variables and string pointers are
stored directly above the program lines. Arrays and string array pointers are
stored above the simple variables. String values are stored at the top of memory,
starting at HIMEM:. As you use more string values, HIMEM: automatically adjusts
downward.

Each numeric variable and string pointer uses seven bytes of memory. Each
real variable uses two ASCII codes (two bytes) for the variable name (both with
the high-order bit set to 0). The value is stored in scientific notation with one byte
for the exponent and four bytes for the mantissa. The bytes of the mantissa are in
order from the most significant byte to the least significant byte.

Appendix G: MEMORY USAGE 353

HIM EM:

String storage

l builds down l

T Array variables and T
string pointers

f Simple variables and I
string pointers

LOMEM:

f Program lines f
push LOMEM: up

FIGURE G-4. Applesoft Program Memory Map

Each integer variable also uses two ASCII codes (two bytes) for the variable
name (both with the high-order bit set to 1) and two bytes for the value of the
variable, high-order byte first.

Each string pointer uses two ASCII characters (two bytes) for the variable
name (the high-order bit of the first is 1, that of the second is 0), one byte for the
length of the string, and two bytes for the address of the string value, low-order
byte first. The last three bytes of an integer variable and the last two of a string
pointer are unused.

Numeric arrays and string pointer arrays are stored immediately above the
variables. The name of the variable is stored as an ASCII code in the first two
bytes; both high-order bits are 0 for real variables, both are 1 for integer variables,
and the first is 1 and the second 0 for string pointers.

The variable name is followed by two bytes indicating the location of the next
variable. This is given relative to the first byte of this variable name, low-order
byte first. Next is one byte for the number of dimensions, then two bytes per
dimension (high-order first) indicating the size of each dimension. The sizes are
listed in reverse order, i.e., the size of the first dimension is shown last.

Each element of the array is then listed, from element (0,0, ... ,0) to element
(N,N, ... N). The elements are stored in order, with the leftmost index incremented
first. Each real array element uses five bytes, one for the exponent, and four (most
significant first) for the mantissa. Each integer element uses two bytes, high-order
first. Each string pointer element uses three bytes, one for the length of the string
and two (low-order first) for the address of the string.

364 APPLE II USER'S GUIDE

String values are stored at the high end of free read/write memory. They
require one byte of memory per character. Duplicate strings are only stored once;
two or more string pointers can point to one location. As new string values are
created, they are placed in the next available free space (HIMEM: adjusts down
ward). Strings that are no longer being used stay in memory. The FRE function
forces a garbage collection, eliminating all abandoned strings and resetting
HIM EM:.

H
Disk II Format

Information is stored on the diskette in 35 concentric bands, called tracks. These
tracks are numbered 0 through 34 ($0 through $22). Each track is divided into 16
segments, called sectors, numbered 0 through 15 ($0 through $F). Each sector
can hold up to 256 bytes of data. There are a total of 455 sectors on the disk,
holding up to 11 6,480 bytes of data.

DOS transfers data to and from the disk one sector at a time. It uses two 256-
byte file buffers in memory, one for reading and one for writing, for each active
file.

Each type of file (text, program, and binary, has its own format on the disk.
Text files are stored in ASCII code, one byte per character. A zero byte marks the
end of the file. All bytes of a text file are interpreted as text.

The first two bytes of the first sector of a BASIC program file indicate program
length, low-order byte first. The remainder of the file contains the program, in
ASCII code. In an Applesoft file, reserved words are tokenized rather than spelled
out (a token is a single ASCII code byte,. See Appendix F for a list of tokens in
alphabetical order and Appendix I for a list in numerical order.

The first two bytes of the first sector of a binary file show the starting address
for the binary data in read/write memory, low-order byte first. The next two bytes
show the length of the file, low-order byte first. The remainder of the file contains
binary data.

356 APPLE II USER'S GUIDE

THE TRACK/SECTOR LIST

DOS normally writes to the disk wherever it can find a free sector. This means
that one multisector file may be scattered over several tracks. DOS makes a list of
the track and sector numbers used by each file and stores it in one or more addi
tional sectors on the diskette. This is called the track/sector list.

Each sector of the track/sector list contains a pointer to the next sector of the
track/sector list (if any) and points to as many as 122 file-contents sectors.

If a sector of a file is unused, the pointer to it in the track/sector list is 0. If an
entire sector at the beginning of the track/sector list has zero pointers, that sector
is not stored on the disk. Thus, if record number 5000 is the first and only record
in a random-access file that has an L parameter of 256 (one record per sector),
only two diskette sectors will be used: one for the data in record number 5000,
and one for the 41st sector of the track/sector list.

Byte 0 and bytes 3 through 12 of the track/sector list sector are not used.
Bytes 1 and 2 contain the track and sector numbers, respectively, of the next sec
tor of the list. If these bytes are both 0, this is the last sector of the list.

THE DIRECTORY

DOS uses track 1 7 ($11) for the diskette directory. For each file, the directory
contains the name of the file, the file type, the number of sectors occupied by the
file (modulo 256), and the location of the file's track/sector list. Most of this infor
mation is displayed on the screen by the CATALOG command.

Each sector of the directory contains information for up to seven files. The
directory begins in track 17, sector 15. When this sector is filled up, the directory
continues in sector 14, and so on, through sector 1 . The directory can contain
entries for up to 84 files.

Byte 0 and bytes 3 through 1 0 of each directory sector are not used. Bytes 1
and 2 contain, respectively, the track and sector numbers of the next sector of the
directory. If both are 0, this sector is the last in the directory. Bytes 11 through
255 contain the directory entries. Each entry takes 35 bytes; the first entry is in
bytes 11 through 45, the second is in bytes 46 through 80, etc.

Directory entries are all written in the same format. Table H-1 itemizes the con
tents of each entry. Table H-2 explains how the file type is encoded in each direc
tory entry.

Sector 0 of track 1 7 does not have directory entries. Instead, it holds identifica
tion status, physical description, and space availability information for the disk.
Table H-3 outlines the contents of this important sector, called the Volun1e Table
of Contents.

Each four-byte group from byte 56 through 195 of the Volume Table of Con
tents contains an availability map for one of the disk's tracks. Each map identifies
which sectors of the associated track are in use and which are available. A bit has
a value of 0 when the corresponding sector is in use. It has a value of 1 when the
corresponding sector is free. Table H-4 shows which bytes identify which sectors.

Appendix H: DISK II FORMAT 357

TABLE H-1. Directory Entry Format

Relative Contents of Byte Byte Number

0 Track number of the file's track/sector list. Changed to 255
when the file is deleted (former contents retained in relative
byte 34).

1 Sector number of the file's track/sector list.
2 File type. See Table H-2.

3-32 File name, in ASCII.
33 Number of sectors used by the file, modulo 256.
34 End mark. Normally 0, but changed to the former contents

of relative byte 0 when the file is deleted.

TABLE H-2. Disk Directory File Type Encoding

Bit Feature
0 File is an Integer BASIC program file if this bit is 1 .
1 File is an Applesoft program file if this bit is 1.
2 File is a binary file if this bit is 1 .

3-6 Reserved for future expansion.
7 File is locked if this bit is 1 .

If bits 0 through 6 are all 0, file is a text file.

TABLE H-3. Volume Table of Contents (Sector 0, Track 17)

Byte Description

0 Not used
1 Track number of first directory sector
2 Sector number of first directory sector
3 DOS release number

4-5 Not used
6 Diskette volume number

7-38 Not used
39 Maximum number of track/sector pairs possible in each

sector of a track/sector list
40-47 Not used
48-51 Mask for the sector availability maps

52 Number of tracks per diskette
53 Number of sectors per diskette

54-55 Number of bytes per sector: low-order byte in 54, high-order
. byte in 55

56-59 Sector availability map, track 0
60-63 Sector availability map, track 1

64-195 Sector availability maps, tracks 2 through 195
196-255 Not used

368 APPLE II USER'S GUIDE

TABLE H-4. Sector Availability Map

Byte Bit Sector

First 7 12
6 11
5 10
4 9
3 8
2 7
1 6
0 5

Second 7 4
6 3
5 2
4 1
3 0

2-0 Unused
Third All Unused
Fourth All Unused

I
ASCII Character Codes and

Applesoft Reserved Word Tokens

The first table in this appendix shows ASCII codes 1 through 96 and the charac
ters they represent. ASCII codes in the range 96 through 127 produce the same
characters on the Apple II display screen as codes 64 through 95, although on
some other output devices codes 96 through 1 2 7 produce lower-case letters. No
keystrokes generate codes 96 through 127.

ASCII codes 128 through 255 repeat codes 0 through 127. No keystroke will
generate them.

The second table in this appendix lists the Applesoft reserved words. Each
reserved word takes up only one byte in program memory. Each reserved word is
represented by a code, called a token, in the range 128 through 255. The token
replaces the spelled-out reserved word in the Apple II memory and on the disk.
The list is in numerical order by token. Appendix F contains a list of reserved
words in alphabetical order.

360 APPLE II USER'S GUIDE

ASCII Character Codes
ASCII Display Screen

Keystroke
ASCII Display Screen

Keystroke
Code Character Code Character

0 CTRL-@ 48 0 0
1 CTRL-A 49 1 1
2 CTRL-B 50 2 2
3 CTRL-C 51 3 3
4 CTRL-0 52 4 4
5 CTRL-E 53 5 5
6 CTRL-F 54 6 6
7 (bell) CTRL-G 55 7 7
8 (backspace) CTRL-Hor- 56 8 8
9 CTRL-1 57 9 9

10 Oinefeed) CTRL-J 58 :
11 CTRL-K 59
12 CTRL-l 60 < <
13 (carriage return) CTRL-M 61 = =
14 CTRL-N 62 > >
15 CTRL-0 63 ? ?
16 CTRL-P 64 @ @

17 CTRL-0 65 A A
18 CTRL-R 66 B B
19 CTRL-S 67 c c
20 CTRL-T 68 D D
21 (forward space) CTRL-U or - 69 E E
22 CTRL-V 70 F F
23 CTRL-W 71 G G
24 (cancel line) CTRL-X 72 H H
25 CTRL-Y 73 I I
26 CTRL-Z 74 J J
27 Esc 75 K K
28 n.a. 76 L l
29 CTRL-SHIFT-M 77 M M
30 CTRL- A 78 N N
31 n.a. 79 0 0
32 space space bar 80 p p
33 I I 81 Q Q

34 82 R R
35 =II= =II= 83 s s
36 $ $ 84 T T
37 % % 85 u u
38 & & 86 v v
39 87 w w
40 ((88 X X
41)) 89 y y
42 • * 90 z z
43 + + 91 [n.a.
44 , 92 \ n.a.
45 - - 93 1 SHIFT-M
46 94 II II

47 I I 95 n.a.

n.a. = not available on the Apple II keyboard.

Appendix 1: ASCII CHARACTER CODES AND APPLESOFT RESERVED WORD TOKENS 361

Applesoft Reserved Word Tokens

Token Reserved
Token Reserved Token Reserved

Word Word Word

128 END 164 LOMEM: 200 +
129 FOR 165 ON ERR 201 -
130 NEXT 166 RESUME 202 *
131 DATA 167 RECALL 203 I
132 INPUT 168 STORE 204 A

133 DEL 169 SPEED= 205 AND
134 DIM 170 LET 206 OR
135 READ 171 GOTO 207 >
136 GR 172 RUN 208 =
137 TEXT 173 IF 209 <
138 PR:i: 174 RESTORE 210 SGN
139 IN:i: 175 & 211 INT
140 CALL 176 GOSUB 212 ABS
141 PLOT 177 RETURN 213 USA
142 HUN 178 REM 214 FRE
143 VLIN 179 STOP 215 SCAN(
144 HGR2 180 ON 216 POL
145 HGR 181 WAIT 217 POS
146 HCOLOR= 182 LOAD 218 SQR
147 HPLOT 183 SAVE 219 RND
148 DRAW 184 DEF 220 LOG
149 XDRAW 185 POKE 221 EXP
150 HTAB 186 PRINT 222 cos
151 HOME 187 CONT 223 SIN
152 ROT= 188 LIST 224 TAN
153 SCALE= 189 CLEAR 225 ATN
154 SHLOAD 190 GET 226 PEEK
155 TRACE 191 NEW 227 LEN
156 NOTRACE 192 TAB(228 STR$
157 NORMAL 193 TO 229 VAL
158 INVERSE 194 FN 230 ASC
159 FLASH 195 SPC(231 CHR$
160 COLOR= 196 THEN 232 LEFT$
161 POP 197 AT 233 RIGHT$
162 VTAB 198 NOT 234 MID$
163 HIM EM: 199 STEP

.i·.

J
Conversion Tables

This appendix contains the following conversion tables:

• Hexadecimal-Binary Numbers

• Hexadecimal-Decimal Integers

Hexadecimal-Binary Conversion Table

Use the table below to convert between hexadecimal numbers in the range 0-0F
and binary numbers in the range 0000-1111.

Convert larger binary numbers to hexadecimal numbers by converting four bin
ary digits at a time, working from right to left. If there are fewer than four binary
digits in the leftmost group, add leading zeros. Here is an example:

1 001 01 2 = 001 001 01 2
~

2 5
"""-v-

2516

Convert hexadecimal numbers larger than OF to binary one digit at a time. Here is
an example:

Hexadecimal Binary

00 0000
01 0001
02 0010
03 0011
04 0100
05 0101
06 0110
07 0111
08 1000
09 1001
OA 1010
08 1011
oc 1100
00 1101
OE 1110
OF 1111

364 APPLE II USER'S GUIDE

HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE

The table bt>low provides for direct conversions between hexa
decimal integers in the range 0-FFF and decimal integers in
the range 0-4095. For conversion of larger integers, the
table values may be added to the following figures:

Hexadecimal

J1 000
02 000
03 000
04 000
05 000
06 000
07 000
08 000
09000
OA 000
08 000
ocooo
00 000
OE 000
OF 000
10 000
11 000
12 000
13 000
14 000
15 000
16 000
17 000
18 000
19000
lA 000
18 000
IC 000
10 000
IE 000
IF 000

00

0

0000
01 '0016
02 0032
03 0048

04 0064
05 0080
06 0096
07 0112

08 0128
09 0144
OA 0160
08 0176

oc 0192
OD 0208
OE 0224
OF 0240

~
4 096
8 192

12 288
16 384
20 480
24 576
28 672
32 768
36 864
40 960
45 056
49 152
53 248
57 344
61 440
65536
69632
73 728
77 824
81 920
86 016
90 112
94 208
98 304

102 400
106 496
110592
114688
118 784
122 880
126 976

1 2

0001 0002
0017 0018
0033 0034
0049 0050

0065 0066
0081 0082
0097 0098
0113 0114

0129 0130
0145 0146
0161 0162
0177 0178

0193 0194
0209 0210
0225 0226
0241 0242

Hexadecimal

20 000
30 000
40 000
50000
60000
70 000
80000
90 000
AOOOO
80000
coooo
00 000
EO 000
FOOOO

100 000
200 000
300 000
400 000
500 000
600 000
700 000
800 000
900 000

AOO 000
BOO 000
coo 000
000 000
EOO 000
FOO 000

I 000 000
2 000 000

3 4

0003 0004
0019 0020
0035 0036
0051 0052

0067 0068
0083 0084
0099 0100
0115 0116

0131 0132
0147 0148
0163 0164
0179 0180

0195 0196
0211 0212
0227 0228
0243 0244

Decimal

131 072
196 608
262 144
327 680
393 216
458 752
524 288
589 824
655 360
720 896
786 432
851 968
917 504
983 040

I 048 576
2 097 152
3 145 728
4 194 304
5 242 880
6 291 456
7 340 032
8 388 608
9 437 184

10 485 760
II 534 336
12582912
13 631 488
14 680 064
15 728 640

·16 777 216
33 554 432

5 6

0005 0006
0021 0022
0037 0038
0053 0054

0069 0070
0085 0086
0101 0102
0117 0118

0133 0134
0149 0150
0165 0166
0181 0182

0197 0198
0213 0214
0229 0230
0245 0246

7

0007
OJ23
0039
0055

0071
0087
0103
0119

0135
0151
0167
0183

0199
0215
0231
0247

Hexadecimal fractions may be converted to decimal fractions
as follows:

I. Express the hexadecimal fraction as on integer times
16-n, where n is the number of significant hexadecimal
places to the right of the hexadecimal point.

o. CA9SF316 = CA9 8F316 X 16-6

2. Find the decimal equivalent of the helllodecimol integer

CA9 BF3
16

: 13 278 195
10

3. Multiply the decimal equivalent by 16 -n

13 278 195
X 596 046 448 X J0-16
o. 791 442 09610

Decimal fractions may be converted to hexadecimal fractions
by successively multiplying the decimal fraction by 16 10.
After each multiplication, the integer portion is remove<l to
form a hexadecimal fraction by building to the right of the
hexadecimal point. However, since decimal arithmetic is
used in this conversion, the integer portion of each product
must be converted to hexodecimol numbers.

8 9 A B c D E F

0008 0009 0010 0011 0012 0013 0014 0015
0024 0025 0026 0027 0028 0029 0030 0031
0040 0041 0042 0043 0044 0045 0046 0047
0056 0057 0058 0059 0060 0061 0062 0063

0072 0073 0074 0075 0076 oon 0078 0079
0088 0089 0090 0091 0092 0093 ()(194 0095
0104 0105 0106 0107 0108 0109 0110 0111
0120 0121 0122 0123 0124 0125 0126 0127

0136 0137 0138 0139 0140 0141 0142 0143
0152 0153 0154 0155 0156 0157 0158 0159
0168 0169 0170 0171 0172 0173 0174 0175
0184 0185 0186 0187 0188 0189 0190 0191

0200 0201 0202 0203 0204 0205 0206 0207
0216 0217 0218 0219 0220 0221 0222 0223
0232 0233 0234 0235 0236 0237 0238 0239
0248 0249 0250 0251 0252 0253 0254 0255

Appendix J: CONVERSION TABLES 366

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Continued)

0 I 2 3 4 5 6 7 8 9 A 8 c D E r

10 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
II 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
12 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303
13 0304 0305 0306 0307 0308 0309 0310 (1311 0312 0313 0314 0315 0316 0317 0318 0319

14 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335
15 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
16 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
17 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383

18 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
19 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415
lA 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
18 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447

IC 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463
10 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
IE 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495
IF 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511

20 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
21 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
22 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
23 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575

24 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
25 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
26 0608 0609 0610 0611 0612 0613 0614 0615 1'1616 0617 0618 0619 0620 0621 0622 0623
27 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 Q636 0637 0638 0639

28 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
29 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2A 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
28 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703

2C 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
20 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2E 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2F 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

30 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
31 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
32 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
33 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0631

34 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
35 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
36 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
37 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895

38 0896 0897 0898 0899 0900 0901 0902 OCXJ3 0904 0905 0906 0907 0908 0909 0910 0911
39 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3A 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 09-41 0942 0943
38 0944 0945 0946 09-47 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959

3C 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
30 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3E 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3F 1008 1009 1010 lOll 1012 1013 1014 lOIS 1016 1017 1018 1019 1020 1021 1022 1023

366 APPLE II USER'S GUIDE

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Continued)

0 I 2 3 4 5 6 7 8 9 A 8 c D E F

40 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
41 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
42 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
43 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

44 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
45 1104 1105 1106 1107 1108 1109 1110 111 I 1112 1113 1114 II 15 1116 1117 111e 1119
46 1120 1121 1122 1123 1124 1125 1126 1127 1128 I 129 1130 1131 1132 1133 1134 1135
47 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 115 I

48 1152 Tl53 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
49 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4.A 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
48 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

4C 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
4C 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4E 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4F 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

so 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
51 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
!>2 1312 1313 1314 1315 1316 1317 1318 1319 1320 13~1 1322 1323 1324 1325 1326 1327
53 1328 1329 1330 1331 1332 1333 1334 1335 1336 133/ 1338 1339 1340 1341 1342 1343

54 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
55 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
56 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
57 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

58 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
59 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 14)8 1439
5.6 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
58 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

5C 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 14a6 1487
50 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5E 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
SF 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

60 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
61 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
62 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
63 1584 i5as 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599

64 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
65 1616 1617 16J8 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
66 1632 1633 1634 1635 1636 1637 1638 1639 1~40 1641 1642 1643 1644 1645 16<l6 1647
67 1648 1649 16.50 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

68 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 16i'6 1677 1678 1679
69 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6.A 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
68 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 17:?6 1727

6C 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 17•12 1143
6(} 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6E 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
6F 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 17Q() 1791

Appendix J: CONVERSION TABLES 367

HEXADECIMAL-DECIMAL INTEGER CONYERSION (Continued)

0 I 2 3 4 5 6 7 8 9 A 8 c D E F

70 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
71 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
72 1824 1825 1.826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
73 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855

74 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
75 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
76 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
77 1904 1905 1906 1907 1908 1909 1910 1911 1912 IYI~I 1914 1915 1916 1917 1918 1919

78 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
79 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
71> 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
78 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

7C 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
70 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7E 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7F 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

80 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
81 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
82 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
83 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

84 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
85 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
86 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
87 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

88 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
89 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8A 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
8R 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

8C 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
80 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
BE 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
SF 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

90 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
91 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
92 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
93 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

94 2368 2369 2370 2371 2372 2373 23i4 2375 2376 2377 2378 2379 2380 2381 2382 2383
95 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
96 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
97 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

98 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
99 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
91> 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
98 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

9C 2496 2497 24913 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
90 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
9E 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
9F 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

368 APPLE II USER'S GUIDE

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Continued)

0 1 2 3 4 5 6 7 8 9 A 8 c D E r

AO 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
AI 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A2 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A3 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2613

A4 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 26J8 2639
A5 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A6 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A7 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

AS 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A9 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AA 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 27.35
A8 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

AC 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 276?
AD 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AE 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 '1797 2798 2799
AF 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

80 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
81 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2S.~ 2847
82 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
83 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879

84 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
85 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
86 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
87 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

88 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
89 2960 2961 2967 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
Bob 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 298C 2987 2988 2989 2990 2991
88 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

BC 3008 3009 3010 3011 3012 30U 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
80 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BE 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BF 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

co 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
Cl 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C2 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C3 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

C4 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C5 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C6 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C7 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199

cs 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C9 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 :!231
0 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3:?47
CB 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3:?63

cc 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
CD 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CE 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CF 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

Appendix J: CONVERSION TABLES 369

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Continued)

0 1 2 3 4 5 6 7 8 9 A B c 0 E F

DO 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
01 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
02 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
03 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

04 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 .3405 3406 3407
05 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
D6 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
07 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455

08 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
09 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
D~ 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
DB 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519

DC 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
DO 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DE 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
OF 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

EO 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
El 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E2 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E3 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

E4 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
E5 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E6 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E7 3696 3697 3698 3699 3700 3701 3702 3703 3704 370~ 3706 3707 3708 3709 3710 3711

E8 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E9 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EA 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EB 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775

EC 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
EC 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EE 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EF 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

FO 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
Fl 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F2 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F3 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 389C 3899 3900 3901 3902 3903

f4 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
f5 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F6 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F7 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967

F8 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F9 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
F~ 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FB 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031

FC 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FD 4048 4049 4050 4051 4052 4053 4054 4055 40.56 4057 4058 4059 4060 4061 4062 4063
FE 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FF 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

K
Bibliography

BASIC

Albrecht, Finkle, and Brown. BASIC. Peoples Computer Company, Menlo Park,
California, 1967.

Coan, James S. Advanced BASIC. Hayden Book Co., Rochelle Park, New Jersey.

Coan, James S. Basic BASIC Hayden Book Company, Rochelle Park, New Jersey.

Dwyer, T. A Guided Tour of Computer Programming in BASIC. Houghton Mifflin
Company, 1973.

Kemeny, J., and Kurtz, T. BASIC Programming. Peoples Computer Company,
Menlo Park, California, 1967.

Pegels, C. BASIC: A Computer Programming Language. Holden-Day, Inc., 1973.

Peoples Computer Company. What to Do After You Hit Return. Menlo Park,
California.

Sack, J., and Meadows, J. Entering BASIC Science Research Associates, 1 9 7 3.

372 APPLE II USER'S GUIDE

Assembly Language Programming

Leventhal, Lance A. 6502 Assembly Language Programming. Osborne/McGraw
Hill, Berkeley, California, 1979.

Osborne, A. An Introduction to Microcomputers: Volume 1 -Basic Concepts.
2nd ed., Osborne/McGraw-Hill, Berkeley, California, 1980.

Scanlon, Leo J. 6502 Software Design. Howard W. Sams, Indianapolis, Indiana.

Zaks, Rodnay. 6502 Applications Book. Sybex, Berkeley, California .

. Periodicals

Apple Orchard, P. 0. Box 1493, Beaverton, Oregon 97075.

"Apple-Cart," Creative Computing. P.O. Box 789-M, Morristown, New Jersey
07960.

Compute!, P.O. Box 5406, Greensboro, North Carolina 27403.

Micro, P.O. Box 6502, Chelmsford, Massachusetts 01824.

Nibble. P.O. Box 325, Lincoln, Massachusetts 01773.

Personal Computing, P.O. Box 13916, Philadelphia, Pennsylvania 19101.

Purser's Magazine. P.O. Box 466, ElDorado, California 95623.

Softalk. 1 0432 Burbank Bl., N. Hollywood, California 91601.

Apple Publications

Apple 11/11 Plus Reference Manual
Parallel Printer Interface Manual
Apple II BASIC Progr~mming Manual
Applesoft II ~eference Manual
Communications Interface Manual
High-Speed Serial Interface Manual
Disk II Floppy Disk Manual (DOS 3.2.1)
Applesoft Tu~orial Manual
Graphics Tablet Manual
Silentype Manual
The DOS Manual (DOS 3.3)

A2L0001A
A2L0004
A2L0005
A2L0006
A2L0007
A2L0008
A2L0012
A2L0018
A2L0033
A2L0034
A2L0036

L
Screen Layout Forms

Use the forms in this appendix to plan the appearance of the display screen. On
the text screen form, row and column numbers start with 1 , which is appropriate
for text work. On the low-resolution graphics screen form, row and column num
bers in it start with 0, as do low-resolution graphics commands.

...

1 2 3 4

~cr
3

4

5

6
I

71

8

....
CD

9

)C

c:

r+
.2 10

C/)

.~

n

(I) 11

~

0

CD

Q..

CD
.rJ 12

=
ca

1-- 13
di
.~ 14
t::
(I) 15
>

16

17

18

19

20

21

22

23

24

Horizontal Tab Position

5 6 7 8 9 1 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

·· +--t- I I 4---1-t---+--t--+---+-t--+--t--+--+----1~+---+--+--+---i-t-+--i

}>
"0
"0
CD
;:,
a. ;c·
!.
(/)
0
:lJ
m
m z

s
0
c
~ ,
0
:lJ
s::
(/)

w

" Cll

·.:: .. -,

0
1
2
3
4
5
6
7
8
9

r- 10
0 11

~ 12
13 ;a 14

CD en 15
0 16
c 17 ... 18
s· 19

= 20

C) 21
U) 22 ... ·x I» 23 , < 24

:r > 25 n· 26
en 27
(I) 28
n 29 ... 30
CD
CD 31

= 32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

X Axis

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
I I
I 1
l -r
T I

I

T I
i I

j l I
!

I I

T

I

I
l '-- __;_

)>
"0
"0
(1)
:s
Q. ;·
:.
CJ)
0
:0
m
m
z
r-

~
0
c
-t
"T1
0
:0
~
CJ)

w

ABS,312
Accumulator. 236. 238-39
Addressing modes. assembly language, 251
Annuciators. game controls. 343-44
APPEND. 186, 283. See also OPEN

machine langauge fix for. 264
Applesoft. See also Programs

accessing from Monitor. 233
commas in, 114-15
line numbers, 57
memory usage. 352-55
numeric values. 40
program line length, 42
program listing. 46
resenied word tokens. 347. 361
restarting. 33-35
restarting via CTRL-Y. 249
switching to Integer BASIC, 49-50. 192
tab stops in, 114-15
variable names. 64-65

Applesoft Firmware card, 7
Arithmetic expressions. 70
Arrays

dimensions. 6 7
index. 66
initialization. 146, 154
names. 66
redimensioning, 80
storing on cassette, 151-52

Arrow keys. 18-19, 32
ASC,313
ASCII

codes, 360
programming characters in, 122-23

Assembly language
with BASIC. 106, 259-60
built-in subroutines. 258-60
debugging, 255-57
listing programs, 254-55
Mini-Assembler, 251-54
programs on disk. 186-87
relocating, 259-60

Assembly Language Monitor. See Monitor
Assignment statements, 76
ATN,313
AUT0.47, 156,264
Automatic line numbering, 4 7
Autostart Monitor. See Monitor

BASIC, 15. See also Applesoft; Integer
BASIC

accessing, 28
with assembly language, 227-29
prompt characters, 38
restarting. 33-35
starting up, 29, 37-38
versions of. 28, 192

Backspace. See Left-arrow key
Binary arithmetic. 248-49
Binary Image Files. See Files.

machine language
Blank spaces, 58
BLOAD. 196,221,242-43.265

verifying. 24 7
Boolean expressions. 73
Booting DOS. 22-26. 49

Applesoft, 167
autostarting, 166

Index

380

Booting DOS (Cont.)
CTRL-K, CTRL-P Monitor boots, 16 7
Integer BASIC, 167
language System, 16 7
Monitor jump booting, 166

Branching
BASIC statements, 81 -84
Monitor command, 24 7

BRUN. 196, 265
BSAVE. 195.220,266-67

verifying, 24 7

Calculator mode. See Immediate mode
CALL, 106,259,266. SeealsoUSR
Cards. See Circuit boards
Carriage return, 94

as part of string, 123
Cassettes

handling, 19
reading memory from, 240-41
reference tone, 240
saving memory on, 239-40
saving programs on, 47-49
with sound, 227
storing arrays on, 1 51 -52
write-protecting, 20

Cassette recorder. 19. See also Cassettes
adjusting playback volume, 20-21
hookup,4

CATALOG,26, 168.169,266
CHAIN, 267
Character set. changing printed, 149-50
Checksum, 176, 240-41
CHR$,122-23,150,313
Circuit boards

Applesoft Firmware card, 7
communications interface card, 7
controller cards, 6, 7, 107-08
Integer BASIC card, 7
Language System card, 7. 14
main, 2-3
parallel printer interface card. 7
serial interface card, 7

CLEAR, 79,267
CLOSE, 178-79, 183, 142, 268
CLR, 79,156,268
Color, 200

complement. 222
COLOR=, 268
Commas,113-17,142

in data files. 183-85
separating variables. 93

Communications interface card, 7
Compound program lines, 153
Computed GOSUB, 91
Computed GOTO, 82
CON, 98, 156, 269
Concatenation, 69
Conditionals, 283
Constants, 152-53
CONT. 98, 269
Control key. SeeCTRL
cos. 314
CTRL, 17-18
CTRL-B, 15, 28, 49, 233
CTRL-C,30,35,46,98, 192,232,233
CTRL-E, 235, 238-39

CTRL-K. 167
CTRL-P, 167, 248

Monitor boot. 25
CTRL-S, 46, 235
CTRL-X, 18, 32, 50
CTRL-Y. 249
Cursor

control, 119-20
defined, 14

APPLE II USER'S GUIDE

determining horizontal position, 118
determining vertical position, 11 9
moving, 52-53
positioning, 119-20
special video effects, 119-27

DATA, 59-61, 77, 156,270
Data entry, 108, 123-42

allowing changes, 127-29
backspacing, 141 -42
checking for errors, 129-31, 133, 135-36
correcting errors, 141
designing, 131-32
forms, 136
interactive, 1 24-2 7
masks, 132, 136, 138, 141 -42
minimizing errors, 123
operator aids, 14 1 -42
organization, 123
range checking, 128-29
style guidelines. 127-29
valid date, 1 31

Data files. See Files
Data window, 143-48
Debugging programs, 1 54

assembly language, 255-57
DOS aids, 194-96

Deferred mode. See Programmed mode
DEFFN, 156,270.Seea~oFN
DEL, 156,271
DELETE. 174-75,180,271
DIM. 80,272
Direct mode. See Immediate mode
Disassembled listings, 254-55
Disk controller card, 7, 1 6 6
Diskdrive, 5,157-67

drive number, 1 70-71
maximum number available, 171
slot number, 170-71
specifying in disk commands. 1 70-71

Diskettes. See also Disk drives; Disks; DOS
handling, 21
hard sectored, 162
index hole, 162
inserting, 22
soft sectored, 162
System Master Diskette, 21, 23, 25, 26, 28
write protecting. 163

Disk files. See Files
Disk Operating System. See DOS
Disks. See also Diskettes

binary image loading, 242-43
blank,172-74
booting, 166-67
buffer, 165
catalog;26
crash, 165
data storage process, 1 60
deleting programs from, 174-75

INDEX

directory, 165, 168
floppy, 160
hard, 156
initializing, 27-28, 164, 172-74
LOAD, 170
mini-, 160
RUN, 170
shape tables. 220
sectors, 1 60
with sound. 226
storage process, 165
tracks, 160
track/sector list, 164-65
volume, 171 -72
Winchester, 158

Disk II, 5, 21. 1 57
Display screen

adjusting width. 52
avoid last column, 146
clearing, 119
color adjustment. 30
data window, 143-48
design, 142
determining screen color, 202
dimensions of, 2
SO-column, 8, 14
flashing video, 126
formatting, 142
full-screen graphics, 199
high-resolution graphics. 203-10
high-resolution shapes, 210-24
hookup,2
low-resolution graphics, 197-203
program listing, 46
reverse video mode. 120, 248
soft switches. 341 -42
speed, 120
television monitor, 1, 2
television set, 1, 2
text mode. 199
wrap-around, 39, 14 7

DOS
booting, 22-26, 49, 166-67
memory requirements, 350
programmed mode, 1 07. 1 08, 148-49
versions of, 26, 164-65, 167

DRAW, 222, 273
Drive number, 170-71
DSP, 155, 273

Editing, 18, 32
adding lines, 51
changing characters, 53
changing lines. 51-55
deleting characters, 53
deleting lines, 50-51
edit mode, 52-53
erase to end of line. 54
erase to end of screen. 54
ESC sequence. 52-53
inserting characters, 54

Edit mode, 52-53
END,43,98, 156,274
Error message, 32,40-41, 327-32
Errors

checking, input. 1 2 9-31
correcting, 32
correcting during data entry, 1-41

Mini-Assembler, 250
Monitor commands, 238
PEEK and POKE locations, 351

ESC,18,53,54,56
ESC-@, 32, 50
Escape key. See ESC
EXEC, 191-93, 274
EXP. 314
Expressions, 68

arithemetic, 70, 71
Boolean, 73
.real, 71
relational, 71

File pointer, 179-82
moving, 1. 86, 190

Files
buffers, 178, 193
closing, 165
deleting from disk. 1 7 4
disk, 164
ENDOFDATA,183,186
EXEC. 191
field positioning, 186, 190
field separation, 185
GET,184
Integer BASIC/ Applesoft differences. 183
locking, 168, 175
machine language, 195
names. 169,181
random access, 187-91
renaming, 1 7 5
sectors used, 169
sequential, 1 77-83
storing numbers in, 1 85
types, 168
unlocking, 1 7 5
verifying, 176

FN, 314. See also DEF FN
FOR,84,85, 120,156,180,275
Formatting, 11 6
FP, 28, 40, 276
FRE, 1 54, 314
Functions, 99-1 04

nested, 104
numeric, 100-01
string, 102
system, 103
user-defined, 103-04

Game controls, 9, 21 0, 354
operating, 1 05
PEEK and POKE locations, 343-44
sensing, 1 05

Garbage collection, 354
GET,97,133,156.277

read text files. 1 84
Ghost vectors, 211
GOSUB,89,156,277

GOTO, 81-84,278
GR. 198,279
Graphics

low-resolution, 197-203
full screen, 199
high-resolution. 203-24
text window, 199

Graphics tablet. 1 0
Greeting program. 27, 172, 176

381

382

Hard disk crash, 165
Hard disks, 1 57
HCOLOR, 207, 279
Hexadecimal number

arithmetic, 24B-49
conversion to decimal, 365-70

HGR, 204-05, 2BO
alternatives to, 205-06

HGR2, 205, 2BO
alternatives to, 205-06

High-resolution graphics
clearing high-resolution pages, 206-07
colors. 207
disk files with, 195-96
drawing lines. 20B-09
Integer BASIC, 205-1 0
memory requirements, 203-04
pages. 203-04
plotting points, 20B-09
reserving memory, 203-04
restoring text mode. 206
screen dimensions. 203
setting up display, 204-07
shapes. 210-24
text window. 205

HIMEM:, 1 06. 156, 204. 21B. 221. 260, 2B1, 350,
352

HUN, 201, 2B2
HOME. 2B2
HPLOT, 211, 2B2

alternatives to. 209-10
HTAB.119,142. 2B3

IF-THEN, 91, 2B3
Immediate mode, 3B, 156, 261

arithmetic, 39
IN*. 167, 2B5

programmed mode, 1 07 -OB
Index Register X, 236, 23B-39
Index Register Y, 236, 23B-39
Index variable. 84
Indirect mode. See Programmed mode
INIT,172-74, 286
INPUT,94, 125-26,132,153,166,286

checking for errors, 12 9-31
disk files, 1B2
EXEC files, 1 91
mixed-type, 96

INT. 29, 49,287,315
Integer BASIC. See also BASIC; Programs

accessing from Monitor, 232-33
automatic line numbering, 4 7
line numbers, 57
memory usage, 350-52
numeric values. 39
restarting, 33-35
switching to Applesoft. 49-50
tab stops in, 113
variable names. 63

Integer BASIC card, 7
Integer expressions, 70
Integer variables. 64
Interface cards. 1 07 -OB
Intrinsic subroutines, 333-37
INVERSE. 120, 1BO. 2B7

Job queuing, 191

APPLE II USER'S GUIDE

Keyboard, 1, 1 6
deactivating via Monitor, 24B

Language System. 23
booting DOS. 25-26, 16 7
card, 7, 14, 2B

LEFT$, 315
Left-arrow key, 1 8-19, 32. 56
LEN, 315
LET. 76,288
Line length, 149-50

adjusting printed, 149-50
Line numbers, 44, 57, 153

as addresses. 58
LIST, 45, 59, 2BB
Listing. See Program listing
LOAD, 29, 156, 2B9
Loading programs. See Program loading
LOCK, 175, 290
Location counter. 251,252-53.254-55, 25B
LOG. 316
Logical operators. 73
LOMEM:, 1 06, 156, 204. 260, 290. 351-52
Loops. B4-B7. 275,292

nested, B5-87
Lower-case letters. 16. 1 7
Low-resolution graphics

colors, 197-98,200
determining screen color. 202
full-screen graphics, 199
horizontal lines. 201
pages. 197-99
plotting points. 200
screen dimensions. 197
text window. 199
vertical lines, 201

Machine Language Monitor. See Monitor
Machine language programs. 250-60. See elso

Assembly language
MAN. 47, 156, 291
MAXFILES, 193-94,291
Memory

address pointer. 234
addressing, 1 05
allocation. 260
altering blocks. 237
altering single addresses. 1 05, 236
block moves. 196, 244
capacity, 4
comparing blocks, 245
direct access via BASIC, 1 05
examining blocks. 234
examining single addresses. 1 05, 233
examining words. 234
filling with a pattern. 242-43, 244
maps, 350-54
random-access (RAM), 4
read-only (ROM), 4
read/write (RAM), 4
retrieving via Monitor, 240-41
saving via BASIC, 195-96, 2:42
saving via Monitor, 239
setting boundaries, 106, 1 07
specifying in BASIC. 105-06
verifying saved, 246

MID$, 316
Mini-Assembler. 249-54

INDEX

accessing. 250
exiting. 251
instruction formats, 251-52
location counter. 251 -55
Monitor commands, 250
sample session, 2 53 - 54

Mistakes. See Errors
Mixed-type expressions. 74
MOD. 70
MON. 194, 292
Monitor, 15, 231-5 1, 254-59

accessing, 231
address pointer. 235-37, 247
alterregisters. 238-39
Autos tart Monitor. 23, 232
built-in subroutines. 258-60. 333
commands. 238
defined. 6
examine memory, 233,236
examine registers. 235
exiting, 232
fill memory procedure, 244
GO command. 233, 24 7
input device selection. 248
list command. 254-55
location counter. 254-55
move memory. 243
output device selection. 248
read memory, 240-41
reverse video. 248
saving memory. 2 3 9
with sound, 225
standard Monitor, 23 1
step command. 254-56, 258
trace command. 256
user-definable command, 249
verify memory. 244-46
verify saved memory procedure. 246-4 7

NEW, 4 3. 156, 292
NEXT. 84, 156, 292
NO DSP. 155, 293
NOMON, 194-95,293
NORMAL. 120, 294
NO TRACE, 154, 294
Null DOS command, 182
Null string, 59
Numbers, 60-62

integers. 60
real numbers, 60-6 1
scientific notation. 61

Numeric values, printing as strings. 146
Numeric variables, 64

ONERR GOTO. 156, 183, 294
error handling routine. 130
machine language fix for. 295
negating. 1 30

ON-GOSUB. 91,295
ON-GOTO. 83, 296
OPEN 178, 187. 296. See a/so APPEND
Operators

arithmetic. 68
Boolean. 68
precedence of. 68
relational. 68
string. 68

Output
aligning numeric values. 146
array, 143
formatting, 142

Paddles. See Game controls
Parallel printer interface card, 7, 148
Parentheses, 69
POL, 316
PEEK. 106, 317

determining cursor column. 11 8
determining cursor row. 119
useful locations. 339

Peripheral devices
input from. 107-08
output from, 107 -08

PLOT. 200, 297
in text mode. 297

Plotting vectors. 2 11
codes, 2 12
assembling vectors by computer. 216

POKE. 106, 260. 298
with graphics, 199, 205-06
with shapes. 2 19, 221
text window, 121-22
useful locations. 339

POP. 90, 135, 298
POS. 118, 317
Power-on. 13
PR•. 148, 150-5 1, 167,299

programmed mode, 1 07-08
Precedence, 68-69

overriding. 69
PRINT statement, 93, 108, 154, 299

abbreviated, 40
commas in. 113- 15. 142
disk files 179-82. 185
DOS commands. 107 - 08
formatting. 11 6-18
numeric data. 111 - 1 5
numerics as strings. 146
semicolons in. 1 09- 1 3
SPC in, 117
strings. 109-10. 114-15
TAB in. 117

Printer
activating via Monitor, 24h
CHR$ with, 150 'f
control codes, 1 50
character set. 1 49- 50
formatting. 142
hookup, 10
line length, 1 49 - 50
page size. 149-50
programmable. 14 9- 50
selecting for output, 14B

Printing a heading, 116-1 7
Printing program list ings, 150-51
Program Counter. 235. 238-39
Program loading

cassette. 29
disk. 29-30

Progam examples
assembly language sound, 253
blanket. 1 2 7
display data entry form. 136-37
display data window. 145- 46
end of file marker, 264

383

384

Progam examples (Cont.)
greeting program. 172
high-resolution Integer BASIC sketch. 21 0
low-resolution diagonal line, 200
random low-resolution lines, 202
shape definition. 216-18
sound generator. 228-29
speaker driver, 227
text window input, 122
valid date entry, 133-35

Programmed mode. 38. 43, 261
DOS commands, 107-08, 148-49, 176-77
restrictions. 156

Programming languages, 56-57
dialects. 57
syntax, 57

Program output, 1 08-23. 142-51
Programs

adding lines, 45, 51
blank spaces in, 68-59
changing lines. 51-55
compact, 153
debugging, 154-55
deleting from disk, 174-75
deleting lines, 50-51
ending,43
execution, 43
faster, 152-53
line length, 39, 45
line numbers, 44
locking, 175
multiple statement line, 45, 1 53
optimization. 15 2-54
renaming, 175
saving on cassette. 4 7-49
sequence of lines. 44-45, 58

..., statements, 41
· unlocking, 175

verifying, 176
Programs, types of

application. 5
greeting. 2 7, 1 72
intepreter, 5
Monitor, 6
operating system, 6

Prompt character, 15
Applesoft, 1 6
Integer BASIC, 1 5
Monitor. 15

Prompt message, 96-97, 127-29
Prompts, INPUT statement. 96

Quotation marks, as part of string, 123

RAM. SeeMemory
Random-access files

closing. 187
field positioning, 1 90
opening, 187
read, 187
record length, 1 8 7
record number, 187
write, 187

Random-access memory. See Memory
Random numbers. 31 7
READ,77.182-84.186-87, 190-91

assignment statement. 30 1
disk statement, 300

APPLE II USER'S GUIDE

EXEC files. 191
Read-only memory. See Memory
Read/write memory. See Memory
Real variables, 65
RECALL, 151-52
Recopy. See Right-arrow key
Recursion. 90
Registers, 259

altering. 238-39
examining, 235

Relational expressions, 71
Relational operators. 71
REM. 76, 153, 302
RENAME, 175-76.303
REPT. 19.32,50,56
Reserved words, 65-66

tokens, 361
RESET. 16,17,35.98,256

accidental, 17. 33
recovering from, 33

RESTORE. 79. 303
RESUME, 130. 156. 303
RETURN, 156, 304
Reverse video. 1 20, 248
RF modulator. 2. 13
RIGHT$, 317
Right-arrow key, 18-19, 32, 52. 54-56
AND. 317
ROM. See Memory
ROT, 233. 304
Roundoff. 62
RUN

disk statement, 304
general statement. 30. 125. 156, 305

SAVE, 156,174,305
SCALE. 222-23.306
Scientific notation. 61
Scratch variables. 1 53
SCAN, 202, 318
Sectors, 1 60

hard, 162
locating. 162

Semicolon. 1 09-13, 142
in data files, 185
separating variables. 94

Serial interface card. 7. 148
Sequential files

APPEND, 186
closing. 178
opening, 178-79
writing to, 179-84

SGN, 319
Shapes

assembling shape table. 211
assembling vectors by computer, 216
drawing. 222
end of shape definition. 213
erasing. 222
loading shape table, 221
reserving memory for, 218
rotating, 223
saving shape table, 220
size changes. 222

Shape tables. 211
byte coding. 21 2-14
directory. 214
end of shape definition. 213

INDEX

entering, 21 8-20
loading, 221
pointer to, 221
saving. 220
size. 214
zero plotting vector, 213

SHIFT, 17
SHLOAD,220-21,306
SIN, 319
Slot numbers, 3, 6, 7, 148, 170-71

selecting 1 07-08
specifying in disk commands. 1 70

Soft switches. 205, 341-42
Soft disk crash. 165
Sound, 224-29

with machine language, 225, 227
SPC, 117,319
Speaker, 105, 224

PEEK and POKE locations. 341
Special video effects, 119-22
SPEED, 120. 307
SQR, 319
Stack Pointer Register. 236, 238-39
STOP, 99,307
STORE. 151-52,307
STR$,320
Strings

comparisons, 72
concatenation, 69
null string. 59
variables, 63, 64

Subroutine examples
ask yes or no question. 128
clearing high-resolution graphics pages, 206
data entry mask, 132
display row and column headings. 146
enter string data. 1 3 7-38
error handling. 131
get numeric input. 1 28
get two character entry, 133
high-resolution Integer BASIC plot. 209
set high-resolution background color, 208

Subroutines
built-in, 333-37
calling BASIC. 277.295
calling assembly language, 266, 321
data entry, 127-29
exit with GOTO, 135
nested, 90

System Master Diskette, 21, 23. 25-26. 28,
163,167

TAB
PRINT function, 117, 320
statement, 119, 142, 308

Tabstop, 113-14
TAN, 320
Tape recorder. See Cassette recorder
Testing programs. See Debugging programs
TEXT,308
Text mode, plotting in. 297
TEXT window. 121-22

PEEK and POKE locations, 340-41
Tokens, 361
TRACE, 154, 308

with DOS, 195
Tracks. 160

locating, 162
Truncation, 75
Truth table, 73
TV screen. 1. See also Display screen

UNLOCK, 175, 309
Upper-case letters. 16-1 7
User-defined functions, 103, 270
USA. 260, 321

VAL. 321
Variables, 152-53

assigning values. 124-26
format in memory, 351
integer, 64
names. 62. 66
numeric, 64
real. 65
scratch, 153
string, 63-64

Vectors
plotting. 211 - 14
ghost, 211

VERIFY, 176, 309
Viewfinder technique. 144
VLIN, 310
Volume number, 1 71 -7 3
VTAB.119,142,310

WAIT, 310
Wrap-around, 39, 147
WRITE,179-82,186-87,190-91,311
Write enable notch. 163
Write protect notch. 1 63

XDRAW, 222.312

386

-I

._:: ___ _

Other OSBORNE/McGraw-Hill Publications

An Introduction to Microcomputers: Volume 0- The Beginner's Book
An Introduction to Microcomputers: Volume 1 -Basic Concepts, second edition
An Introduction to Microcomputers: Volume 2- Some Real Microprocessors
An Introduction to Microcomputers: Volume 3- Some Real Support Devices
Osborne 4 &. 8-Bit Microprocessor Handbook
Osborne 1 6-Bit Microprocessor Handbook
8089 1/0 Processor Handbook
CRT Controller Handbook
68000 Microprocessor Handbook
8080A/8085 Assembly Language Programming
6800 Assembly Language Programming
Z80 Asembly Language Programming
6502 Assembly Language Programming
Z8000 Assembly Language Programming
6809 Assembly Language Programming
Running Wild - The Next Industrial Revolution
The 8086 Book
PET and the IEEE 488 Bus(GPIB)
PET ICBM Personal Computer Guide, 2nd Edition
Business System Buyer's Guide
Osborne CP/M® User Guide
Microprocessors for Measurement & Control
Some Common BASIC Programs
Some Common BASIC Programs - PET ICBM Edition
Practical BASIC Programs
Payroll with Cost Accounting
Accounts Payable and Accounts Receivable
General Ledger
8080 Programming for Logic Design
6800 Programming for Logic Design
ZSO Programming for Logic Design

(:_:

The Apple 11<~~> User's Guide
is the key to unlocking the full

power of your Apple II
or Apple II Plus computer.

The Apple II Users Guide:

Will help you program in two versions of
BASIC using sound, color, and graphics to

full effect.

Contains detailed information on the disk drive
and the printer.

Includes tips on advanced programming topics.

Fully describes how to use the Machine
Language Monitor.

Shows how to use high resolution graphics
with Integer BASIC.

Provides a compendium which thoroughly
describes every BASIC statement, command,

and function.

This book will save both time and effort.
No longer will you have to search endlessly

for useful information. It's all here, in the
Apple II Users Guide, thoughtfully organized

and easy to use.

Q-931988-46-2

