
USER'S GUIDE
For APPLE~ ll Plus and APPLE" lie

APPLE® II
USER'S GUIDE

THIRD EDITION

By
Lon Poole

with
Martin McNiff

and
Steven Cook

Osborne McGraw-Hill
Berkeley, California

I \

/

Published by
Osborne McGraw-Hill
2600 Tenth Street
Berkeley, California 94710
U.S.A.

For information on translations and book distributors outside of
the U.S.A., please write to Osborne McGraw-Hill at the above
address.

Apple, the Apple logo, and ProDOS are registered trademarks of
Apple Computer, Inc.

Apple® II User's Guide Third Edition
Copyright c 1985 by McGraw-Hill , Inc. All rights reserved. Printed in the United States
of America. Except as permitted under the Copyright Act of 1976, no part of this publica
tion may be reproduced or distributed in any form or by any means, or stored in a data
base or retrieval system, without the prior written permission of the publ isher, with the
exception that the program listings may be entered, stored, and executed in a computer
system, but they may not be reproduced for publication.

1234567890 DODO 898765

ISBN 0-07-881176-7

Cindy Hudson, Acquisitions Editor
Jon Erickson, Technical Editor
Erfert Nielson, Copy Editor
Cheryl Creager, Composition
Yashi Okita, Cover Design

Contents

Chapter 1:

Chapter 2:

Chapter 3:

Introduction xiii
Presenting the Apple II 1

The Apple II Console
The Keyboard
The Display Screen
Cassette Recorder
Disks and Disk Drives
Printers
Modems
Hand-Held controls
Software

Getting Started 23
Starting the Apple II
Using Programs
Starting Programs From Disk
Starting Programs From Cassette
Using a Printer
Resetting the Apple II

Organizing ProDOS Disks 45
ProDOS Disk Organization
Starting the STARTUP Program
The ProDOS Filer
DOS 3.3-ProDOS Conversion
Reviewing Slot Assignments
Setting the Time and Date

Quitting the STARTUP Program for
BASIC

Chapter 4: Organizing DOS 3.3 Disks 71
DOS 3.3 Disk Organization
Duplicating Disks
The FILEM and FID Programs

Chapter 5: Fundamentals of BASIC
Programming 81

Programming Languages
Starting BASIC
Typing Commands
Immediate Mode Commands
Editing Command Lines
Programmed Mode Statements
Editing BASIC Programs
Ending BASIC

Chapter 6: BASIC Programs on Disk and
Cassette 111

ProDOS Commands
DOS 3.3 Commands
BASIC Programs on Cassette

Chapter 7: Using Strings and Numbers 125
Strings
Numbers
Variables
Arrays
Expressions
Assigning Values
Displaying Values
Inputting Values
Functions

Chapter 8: Program Organization and Control 161
Branching
Loops
Subroutines
Conditional Execution

Halting and Resuming Execution
Direct Access and Control
Debugging: Tracing Execution

Chapter 9: Screen Output and Data Entry 183
Formatted Output
Cursor Control
Special Effects
Controlling Keyboard Input
Programming the Mouse II

Chapter 10: Printer Output 241
Programming Printer Output
Printer Command Characters

Chapter 11. Programming Disk Data Files 265
Sequential-Access Files
Using Sequential-Access Files
The EXEC Command
Random-Access Files
Using Random-Access Files
Machine Language (Binary Image)

Disk Files
The ProDOS Smart Run Command
The DOS 3.3 MAXFILES

Command
The DOS 3.3 MON and NOMON

Commands

Chapter 12: Graphics 331
Display Modes
Low-Resolution Graphics
High-Resolution Graphics
High-Resolution Shapes
Manipulating Shapes
Double High-Resolution Graphics

Chapter 13: Sound 375
Programming the Speaker in

BASIC

Programming the Speaker in
Machine Language

Music
Chapter 14: Machine Language Monitor 391

Examining Memory
Examining the Microprocessor

Registers
Altering Memory
Altering the Microprocessor

Registers
Storing Memory Contents on Disk

And Tape
Moving and Comparing Blocks of

Memory
The Go Command
Using the Printer
The Keyboard Command
Changing Display Style
Hexadecimal Arithmetic in the

Machine Language Monitor
User-Definable Machine Language

Monitor Command
The Mini-Assembler
Using the Mini-Assembler
Disassembled Listings
Combining Machine Language and

BASIC
Appendix ft\. Summary of Commands,

Statements, and Functions 419
Editing Commands
Commands and Statements
Functions
Derived Numeric Functions
Reserved Words

Appendix B: Messages 513
Applesoft Error Messages
Integer BASIC Error Messages

ProDOS Error Messages
DOS 3.3 Error Messages

Appendix C: Program Optimization 523
Faster Programs
Compact Programs

Appendix 0:- Comparing Apple II Models 527
External Physical Features
Internal Physical Features
Input and Output
Microprocessor and Memory
Software

Appendix E: Character Codes and
Applesoft Tokens 533

Appendix F: Useful PEEK and POKE
Locations 539

Text Window and Cursor
Control Locations

Error Handling Locations
Keyboard LOcations
Speaker Output Locations
Display Switches
Vertical Blanking Interval
Game Control Locations

Appendix G: Built-In Subroutines 551
Appendix H: Conversion Tables 561
Appendix I: Screen Display Forms 569

Index 573

Preface

In the two years since I last revised this book, Apple has made
some important changes to the Apple II computer, introduced
some new accessories for it, and switched to a new operating sys
tem program. The Apple Ile was introduced in April 1984, and is
the subject of another book, Apple Ile User's Guide. The improve
ments built into it were added to the Apple Ile about a year later
and are covered in this book.

The mouse and Imagewriter printer, both made popular by the
Apple Macintosh computer, now can also be used on an Apple II.
This edition shows how to use them in BASIC programs.

This book also now describes both the ProDOS and DOS 3.3
operating systems. ProDOS replaced DOS 3.3 in January 1984 as
the preferred operating system for BASIC programming on the
Apple II.

In addition to covering the new Apple II developments, I have
once again reorganized parts of the book. Disk and cassette
commands now appear in their own chapter. The examples in the
screen output and keyboard entry chapter have been reworked to
incorporate more up-to-date programming methods.

All the authors thank Robert Thomson, who did the original
research for much of the material now covered in Appendix A.

I wish to thank my wife Karin for her unflagging support and
encouragement.

L. P.

Introduction

The Apple II User's Guide, Third Edition is your guide to the
Apple II computer. It describes the Apple II itself along with the
common· accessories such as disk drives and printers. For those
who aren't interested in programming the computer themselves,
the book explains how to use programs that can be bought off the
shelf. For those who do want to learn how to write their own pro
grams, the book provides detailed lessons with lots of examples.

This book covers all models of the Apple II except the Apple
Ile, which is covered in the companion Apple Ile User's Guide.
This book puts special emphasis on the Apple Ile, both in the
original version first delivered in 1983, and in the enhanced ver
sion first delivered in 1985. If you have an Apple II Plus or a
standard Apple II, much of the material here still applies,
although the part that pertains strictly to the Apple Ile will be
superfluous.

The first four chapters answer two important questions: "What
is an Apple II personal computer?" and "How do you make it
work?" Chapter 1 tells you what the various components of the
Apple II are and what they do. Chapter 2 explains how to get a
program started and how to use the printer. Chapters 3 and 4 tell
you how to get the most from disks. The information in the first
four chapters prepares you to use any of the ready-to-run pro
grams that are widely available for word processing, design,
planning, information management, problem solving, financial
analysis, bookkeeping, education, and entertainment.

The next nine chapters teach you how to write your own pro
grams using the BASIC programming language. Chapter 5 be-

xi

xii I Apple II User's Guide

gins with a tutorial ~J!proach to the fundamentals of both versions
of BASIC available on the Apple II, Applesoft and Integer
BASIC. Chapter 6 explains how to use disks and cassettes for
storing the programs you writb, whether you use the Pro DOS
operating system or the DOS 3.3 operating system.

Chapter 7 discusses the role that character strings and numbers
play in programs. It explains how to store them in variables and
arrays, manipulate them with expressions and functions, enter
them from the keyboard, and display them on the screen.

In Chapter 8, you learn how to control the order in which pro
gram instructions are executed. Topics include branching, loops,
subroutines, decision-making, and halting and resuming execu
tion. You'll also learn how to access the Apple II memory directly
and thereby control some special Apple II features.

Chapter 9 explains how to control where things appear and
what they look like on the display screen. The chapter discusses
how a carefully designed screen display can keep keyboard entry
errors down. You'll also learn how to program the mouse.

Chapter 10 tells you how to switch output from the display
screen to the printer and how to format printed output. The chap
ter explains how you can activate the alternate type styles and
other features available on many printers.

In Chapter 11, you learn how to store and retrieve data on disk
files. The chapter explains file structure and the different
methods of accessing files. It illustrates these with two versions of
a working mailing-list program.

Chapter 12 covers graphics. You'll learn about graphics modes,
color selection, point plotting, line drawing, circle drawing, shape
drawing, and shape manipulation. Program examples show how
to draw scatter graphs, line graphs, bar graphs, pie charts, and
graphics designs.

Chapter 13 explains how to program the built-in speaker to
produce sounds and play music. It includes a program that plays
a minuet by J .S. Bach and another program that lets you com
pose your own music.

The last chapter in the book, Chapter 14, tells you how to use
the built-in Machine Language Monitor program to directly view
and change the contents of memory locations. It also describes
how to use the Mini-Assembler to write short programs in
assembly language.

Introduction I xiii

Appendix A contains a complete description of every com
mand, statement, and function available in both versions of
BASIC and in both operating systems. Along with appendixes B
through H, it will serve as a handy reference once you know how
to program in BASIC on the Apple II.

Presenting
The Apple II 1

A complete -Apple II computer system includes several separ
ate pieces of equipment. Figure 1-1 shows a typical system, cen
tered around an Apple Ile. Your system may not look exactly like
the one pictured, because system components come from a long
list of optional equipment. But there are three components that
every system has in common: the Apple II computer itself, the
built-in keyboard, and a television or monitor. Let's take a closer
look at each of these and at some of the more common pieces of
optional equipment. This chapter does not explain how to hook up
any of these components to the Apple II. For complete installation
instructions, refer to the owner's manual supplied with each
individual piece of equipment.

There are five models of the Apple II computer. The standard
Apple II, produced from 1977 to 1979, looks identical to the Apple
II Plus, produced from 1979 to 1983 (refer to Figure 1-2). The
Apple II Plus has a redefined key (the RESET key, described in
Chapter 2) and some additional features that were once available
only as add-on accessories. The Apple Ile, which was introduced
in 1983, is outwardly similar to the earlier Apple II models (see
Figure 1-3). The Apple Ile has an improved keyboard, a rede
signed back panel, and even more built-in features that were
previously available only as add-on accessories. The Apple Ile
(shown in Figure 1-4), which first appeared in 1984, has a new
look but works very much like a specially equipped Apple Ile.
The enhanced Apple Ile, introduced in 1985, adds to the Ile some
features formerly available only on the Ile. For a comparison of
Apple II mpdels, see Appendix D.

This book covers the standard Apple II, the Apple II Plus, and

1

2 I Apple II Use(s Guide

Figure 1-1. A typical Apple II computer system

~applczlt

Figure 1-2. The Apple II and Apple II Plus

Presenting the Apple II I 3

Figure 1-3. The Apple Ile

Figure 1-4. The Apple Ile

4 / Apple II User's Guide

especially the Apple Ile (both original and enhanced models). It
refers to all these models collectively as the Apple II, unless there
is a reason to distinguish among them. The Apple Ile model is
covered in a separate book, the Apple Ile User's Guide by Lon
Poole (Berkeley: Osborne/McGraw-Hill, 1984).

THE APPLE II CONSOLE ________ _

The Apple II console houses the part of the computer that con
trols the rest of the system -under your guidance, of course.
Lurking behind the keyboard are the main Apple II memory
banks, the microprocessor, the connection points for all the acces
sory components, and much more. You would expect the Apple II
to be a complex device, and one look inside the console confirms
that it is (refer to Figure 1-5).

The exact interior arrangement of any particular Apple II
depends on which model it is and which options are installed. The
basic layout will be the same: a large flat circuit board with
dozens of small black integrated circuits (also called !Cs or chi ps)

Figure 1-5. Inside the Apple Ile

Presenting the Apple II I 5

in orderly rows and some small circuit boards mounted vertically
at the back of the main circuit board. The number of chips and
the number and placement of the vertical circuit boards vary
from one Apple II system to the next.

Memory

Computer memory is typically measured in units called bytes.
One byte of computer memory-one memory cell-can hold one
character, so you can think of bytes as characters, although com
puter memory also stores other information, including numeric
values and programs. Because of certain facts about computer
circuitry architecture, memory capacity is expressed as a mul
tiple of 1024 bytes. That much memory is called one kilobyte
(abbreviated 1K). An Apple II h: 3 anywhere from 4K (4096
bytes) to 128K (131,072 bytes) of uemory; the Apple Ile has at
least 64K (65,532 bytes) of memory.

The Apple II actually has two kinds of memory. One is called
read-only memory (ROM). The contents of ROM never change,
even when you turn the computer's power off. ROM contains the
programs that give the Apple II its unique identity and enable it
to understand and respond appropriately to the commands you
type in at the keyboard. The other kind of memory is called
read/write memory (also called random-access memory or RAM).
The contents of read/write memory do change. In fact, the pro
gram in read/write memory determines what task the Apple II is
currently performing. Read/write memory works only as long as
the power remains on. As soon as you turn the Apple II off, every
thing disappears from read/write memory.

Accessory Cards

At the back of the main Apple II circuit board are seven
sockets, called expansion slots, into which you can plug additional
electronic circuit cards, called accessory cards or interj ace cards
(see Figure 1-6). The Apple Ile has an eighth expansion slot
located near the center of the main circuit board, away from the
standard seven slots. Apple II and Apple II Plus models have an
eighth slot in the back alongside the other seven.

Some accessory cards let you use disk drives, printers, special
video monitors, or other external equipment. Others add memory

6 I Apple II User's Guide

Figure 1-6. Some accessory cards and the expansion slots

or increase the number of characters allowed on a s ingle display
screen line. Most accessory cards can be installed in any of the
seven expansion slots, but there is an established convention for
locating some of the more common cards. Table 1-1 has the
details.

You will probably use the keyboard more than any other part
of your Apple IL The keyboard is the chief means of entering
information and instructions into the computer.

To accommodate those who touch-type, the Apple II keyboard
is arranged the same as a standard typewriter keyboard, although
some of the punctuation and symbols may be in different loca
tions. In fact, the Apple Ile keyboard places punctuation symbols
in different locations from earlier models.

The keyboard also has some keys you won't find on a typewrit
er. These include the ESC, TAB, CONTROL (or CTRL), SHIFT LOCK,

Presenting the Apple II I 7

Table 1-1. Accessory Card/Expansion Slot Conventions

Accessory carda Sloth Purpose

Super Serial 1 Printer
Super Serial 3 Communications
Parallel Interface 1 or 2 Printer; general use

180-column textc A Longer display lines
i 80-column plus memoryc A Longer display lines; memory

expansion
'Language systemd 0 Memory and programming language

expansion
Integer BASIC firmware 0 BASIC interpreter
Applesoft firmwared 0 BASIC interpreter
Disk II controller 6 First pair of Disk II drives
Disk II controller 5 Second pair of Disk II drives
Disk II controller 4 Third pair of Disk II drives

Graphics Tablet controller 7 Graphics tablet

a Cards listed are from Apple Computer, Inc. Others are available.

b Slots are numbered 0 at the left to 7 at the right. Slot A is the unmarked
Apple Ile auxiliary slot.

c Only for the Apple Ile.
d Built into the Apple Ile.

DELETE, RESET, RETURN, OPEN APPLE, SOLID APPLE, -, -, l, and t
keys. The Apple Ile keyboard has all of these keys, but earlier
models have only some of them. Earlier models also have a REPT

key, which the Apple Ile does not have or need. Chapter 2 de
scribes the use of these keys.

THE DISPLAY SCREEN _________ _

The Apple II "speaks" to you with written words and pictures
displayed on the screen. The screen echoes your typing so you can
see if it is correct, and the screen displays the computer's
responses to what you type. The screen can show up to 24 lines of
text, and the lines can have a maximum width of either 40 or 80
characters (including blank spaces). Both 40- and SO-character
lines measure the same length; they reach all the way across the
screen. But the characters on a 40-character line are twice as

8 I Apple II Use(s Guide

wide as the characters on an 80-character line. Naturally, the
larger characters are easier to read.

The Apple II can use any one of several components as a dis
play screen. The Apple Monitor Ile and Monitor ///, for example,
display text and graphics (pictures) in green on a black back
ground. Video monitors manufactured by other companies also
work with the Apple II. Some of them display white letters, some
display green letters, and others display orange letters. Because
single-color, or monochrome, monitors typically display sharp,
clear images, they are the best choice for displaying text on 80-
character lines. Figure 1-7 shows how to attach a monochrome
monitor to the Apple II console.

The Apple II can also display text and graphics in color, but
this requires a different type of display screen. A television set
handles most color graphics well and is adequate for the larger
characters of 40-character text lines. Connecting the Apple II to
a TV set requires a special part, called an RF rrwdulat,or, that
converts the computer's video signal to one the television can tune
in. One kind of RF modulator has two pieces. There is a switch

Figure 1-7. Attaching a monochrome or composite monitor

Presenting the Apple II / 9

box that attaches to the TV antenna terminal and allows you to
switch the reception between the Apple II and your regular TV
antenna or cable. A cable runs from the switch box to a small
converter box that attaches inside the Apple II. Another kind of
RF modulator combines the switch and the converter in a single
box that hangs from the TV antenna terminal. A cable connects
it directly to the back of the Apple II. The second kind of RF
modulator also uses a small power transformer that plugs into a
wall socket. Figure 1-8 shows how to connect a television to the
Apple II.

Because home television sets are engineered for broadcast
shows and not computers, they cannot match the Apple Il's opti
cal resolution. Even the best sets lose detail and are inadequate
for 80-character text lines or critical graphics displays. Fortu
nately, high-quality color monitors are available.

There are two types of color monitors, and they differ in price
and picture quality. The less expensive ones, called cornposite
rrwnitors, offer better optical resolution than the best home TV

-- ~

Figure 1-8. Attaching a television set

10 I Apple II User's Guide

sets. They plug directly into the back of the Apple II without an
RF modulator, just like a monochrome monitor.

The more expensive color monitors, called RGB monitors,
approach the resolution of monochrome monitors. An RGB (Red
Green-Blue) monitor is the choice for those who must have the
sharpest color display and must read the small characters on an
80-character text line. RGB monitors require a special adapter
that plugs in between the Apple II and the monitor, as shown in
Figure 1-9.

DISKS AND DISK DRIVES ________ _

A disk is an auxiliary storage device, a kind of memory exten
sion. Even with 128K of memory in an Apple Ile, the computer
cannot hold all the information it will be working with. Fortu
nately, anything in memory can be recorded on a disk. The
information saved on disk can later be put back into memory so
the computer can work with it directly. Disk drives come in all
shapes and sizes with different storage capacities.

Figure 1-9. Attaching an RGB monitor

Presenting the Apple II I 11

The entire disk setup consists of three parts: a disk controller
card, a disk drive, and several disks (see Figure 1-10). The con
troller card fits in one of the expansion slots inside the Apple II
and coordinates the transfer of information between memory and
the disk drive. The drive is a machine that reads and writes
information on a disk using technology similar to sound or video
tape recording. The disk itself is a platter that spins inside the
drive and stores information magnetically.

Diskettes

The Apple Disk II and Duodisk drives both use removable flex
ible disks, sometimes called diskettes or floppy disks, that mea
sure 5 1/4 inches across. Most other disk drives used on Apple II
computers also use removable 5 1/4-inch disks. Each removable
disk has a protective plastic jacket enclosing a round piece of
flexible plastic that is coated with a magnetic film.

The disk fits into a slot in the front of the Disk II or Duodisk.

Figure 1-10. Disk II drives, controller cards, and disks

12 I Apple II User's Guide

The drive grips the flexible plastic disk through the center hole
and spins it inside the jacket. Through the windows cut out of the
protective jacket, the drive records and retrieves information as
magnetic variations in the coating of the disk.

The Disk II and Duodisk drives can store 140K bytes (143,360
characters) of information on each disk. Because the disk is
removable, you can have many disks, each with different informa
tion recorded on it. However, a single Disk II drive holds only one
disk at a time; a Duodisk drive holds two disks at once. You can
attach up to six Disk II drives, three Duodisk drives, or an equiv
alent combination to one Apple II computer. (The recommended
maximum is four Disk II drives, two Duodisk drives, or an
equivalent combination.) The additional drives allow the comput
er to access more disks at once.

You can prevent the drive from writing on a d isk. All you do is
cover the notch on the side of the disk with a piece of opaque tape
or with a small label made especially for this purpose, as shown
in Figure 1-11.

Hard Disk Drives

The Apple Profile disk drive is called a hard disk drive because
its built-in disks are rigid, not flexible. The disks inside a Profile

Figure 1-11. Write-protecting a 5\4-inch diskette

Presenting the Apple II I 13

drive are not removable because the drive operates at very close
tolerances and must be sealed against dust and smoke. The cur
rent model Profile uses two built-in disk platters to store 10 mega
bytes of information (one megabyte is 1024 kilobytes, or 1,048,576
bytes). Thus a single Profile drive can store more on its built-in
disks than a Disk II or Duodisk could store on 70 removable
diskettes. Figure 1-12 shows a Profile.

CASSETTE RECORDER _________ _

The Apple II can use an ordinary cassette tape recorder as a
storage device. Tape recorders connect directly to the back of the
Apple II (refer to Figure 1-13).

Write-Protecting Cassettes

Each cassette has two notches in the rear edge (see Figure 1-14).
When the notches are uncovered, a cassette recorder can sense

Figure 1-12. The Profile disk drive

14 I Apple II User's Guide

Figure 1-13. Attaching a cassette recorder

Figure 1-14. Cassette write-protect notches

Presenting the Apple II I 15

the holes and will not record on the cassette. New blank cassettes
have tabs covering the holes so information can be recorded on
the tape. You can protect important programs by knocking out
the correct tab and exposing the hole. Later, if you want to record
over a protected tape, simply cover the holes with tape.

Each cassette has two sides. One notch protects one side, while
the other notch protects the other side. To determine which tab to
remove, hold the cassette so that the exposed tape is toward you
and the side you wish to protect is facing up. Remove the tab on
the left-hand side to prevent recording over the side facing up.

PRINTERS ____________ _

With a printer, the Apple II can produce letters, reports,
graphics, and more. There are printers of every size, price, and
description as Figure 1-15 illustrates. Some will print correspon
dence that looks just as good as anything a typewriter can pro
duce. Others can print graphics characters; a few can even print
in color. Each printer provides a different combination of speed,
print quality, number of character sets, types of paper that can
be used, and other features.

Parallel and Serial Communications

The two most popular methods for communications between
computers and printers are called parallel and serial. The differ
ences between them are technical and unimportant here. The
Apple II can use either me~hod, but serial communications are
slightly more common.

A printer connects to the Apple II via an accessory card (see
Figure 1-16). Printers that use parallel communications require
the Apple II Parallel Interface Card or its equivalent. Printers
that use serial communications require the Apple II Super Serial
Card or its equivalent.

When printing, the Apple II stands idle much of the time
because its potential output rate far exceeds the print speed of
even the fastest printer. You can plug in a device between the
Apple II and the printer to act as a reservoir for characters wait
ing to be printed. Called a printer buff er or print spooler, this
device contains read/write memory like that found inside the

16 I Apple II User's Guide

-.~
~---1-

- - - -

..-- - -·.------. .,_,_, _____ _...
- -

~~~~~~~~~~~~~~~ 

Figure 1-15. Some printers 



Presenting the Apple II / 17 

11 - -~ --.____ ___ _ 
- -- --

Figure 1-16. Attaching a printer 

Apple II, but dedicated to storing information destined for the 
printer. The printer buffer accepts information at a fast rate, 
stores it, and gradually releases it as the printer is ready. 

A modem is a device that allows a computer to communicate 
over telephone lines with other computers. The word modem is a 
shortened form of the term modulator/demodulator: a modem 
modulates information and demodulates sound. In other words, it 
converts information from the Apple II into sound patterns and 
sends the sounds over the telephone line. It also converts sound 
patterns received over the phone line from another modem
equipped computer into information for the Apple II. 

You plug one cable from the modem into a serial communica
tions card at the back of the Apple II, another cable into a 
telephone wall jack, a third cable into an electrical outlet, and 



18 I Apple II User's Guide 

/ 

To telephone jack To electricity 

Figure 1-17. Attaching a modem 

sometimes a fourth cable into a telephone (see Figure 1-17). Then, 
under your direction, the Apple II can dial a phone number and 
"talk to" another computer across town or around the world. 

The computer on the other end of the line might be an Apple 
II, some other personal computer, or a huge computer belonging 
to an information service such as The Source or CompuServe. 
These information services offer electronic mail delivery, news
paper stories, airline flight schedules, games, stock market 
prices, sports scores, and more. Once you subscribe, you pay from 
$5 to $300 an hour (plus the cost of the tel~phone call) while 
you're connected to the service. 



Presenting the Apple II I 19 

HAND-HELD CONTROLS ________ _ 

Mouse, J·oystick, and paddle hardly sound like the names of com
puter equipment, but they are. All are hand-held controls. A 
joystick or pair of paddles either plug into the back panel of an 
Apple Ile or attach inside an Apple II, Apple II Plus, or Apple 
Ile (Figure 1-18). The AppleMouse II plugs into its own accessory 
card that attaches inside the Apple II (Figure 1-19). 

Joysticks and paddles are popular as game controls but are also 
useful for other applications. The mouse is most commonly used 
for selecting displayed information and choosing a command 
from a list of options on the screen. The mouse can reduce the 
amount of typing you have to do. 

Figure 1-18. Attaching game controls 



20 I Apple II Use(s Guide 

Figure 1-19. Attaching an AppleMouse II 

SOFTWARE ____________ _ 

An Apple II without a program is like an orchestra without a 
musical score: dormant. Any computer needs instructions to 
bring it to life, just as an orchestra needs sheet music. A pro
gram provides an orderly set of instructions that tell the comput
er how to do something. Programs are as important a part of the 
Apple II as its physical components. The term software refers to 
the repertoire of programs available for a computer. 

Usually, several kinds of programs coexist in Apple II memory 
and cooperate to control the computer system. One kind deter
mines whether the computer is applied to word processing, 
financial analysis, entertainment, accounting, telecommunica
tions, or something else. Such programs are called application 
programs. A large number of application programs have been 
developed over the years for the Apple II, Apple II Plus, and 
Apple Ile computers. 

Application programs may use instructions too advanced for 
the Apple II to understand without some help. In that case, a 
second kind of program translates the application program into 



Presenting the Apple II / 21 

instructions the Apple II understands. A cornpiler program 
prepares a translated version of an application program for sub
sequent use. Alternatively, an interpreter may translate an appli
cation program each time it is used. One interpreter for the 
BASIC programming language resides in part of the Apple H's 
read-only memory; others share read/write memory with the 
application program. 

Application programs, compilers, and interpreters usually rely 
on the existence of another kind of program, called the operating 
systern, to take care of fundamental communication with devices 
like the keyboard, display screen, disk drive, and printer. An 
application program can then delegate simple tasks-such as 
displaying each character of a message on the screen -without 
worrying about how they're done. 

The principal operating system for the Apple II is called Pro
DOS. The Pascal operating system, which must be used with 
application programs written in the Pascal language, is also pop
ular. Many of the application programs written for the Apple II, 
Apple II Plus, and Apple Ile computers use the original Apple 
operating system, called DOS 3.3 (Disk Operating System version 
3.3) or its predecessor, DOS 3.2. Gradually, most of those applica
tion programs are being converted to use ProDOS. 

Part of the programming needed by the BASIC interpreter 
and the operating system resides permanently in read-only 
memory. It is called the Machine Language Monitor. Chapter 14 
describes the Machine Language Monitor in more detail. 



Getting Started 2 

You may never write a program yourself, but instead only use 
programs from the pool of software available for the Apple II. 
This chapter provides general instructions for starting up an 
existing program, but it does not replace the specific instructions 
that come with the program. There is no way this book could 
adequately explain the operating procedures for even the most 
popular programs, let alone all of the programs now available for 
the Apple II. Once started, however, a well-designed program 
displays enough specific instructions to get you going, and for 
details you can consult the program's manual or check with 
someone who already knows the program thoroughly. 

STARTING THE APPLE II ________ _ 

Starting most Apple II systems requires turning on two power 
switches. If your Apple II has disk drives, you also need to put a 
disk into one of them. The program on the disk you insert is 
started automatically. If your Apple II has no disk drives, you 
must start a program from cassette tape instead. The following 
sections explain how to start up in more detail. 

SWitchlng On the Display Screen 

If your Apple II uses a television set as a display screen, you 
must set it for computer reception and switch it on as shown in 
Figure 2-1. Locate the slide switch hanging from the TV antenna 

23 



24 I Apple II User's Guide 

Figure 2-1. Setting a TV for computer reception 

terminals and set it on the GAME or COMPUTER setting. Select 
the channel specified by the RF modulator instructions (usually 
channel 33). If you don't know which channel to use, ask someone 
else who uses the system or a dealer who sells the RF modulator. 
Switch on the TV and turn the volume all the way down. The 
Apple II uses only the television's picture, not its speaker. 

A video monitor is even easier to use. There is no antenna 
switch to set or channel selector to tune. Just switch the monitor 
on, and if it has a volume control, turn it all the way down as 
Figure 2-2 illustrates. 

Inserting a Start-Up Disk 

Before starting an Apple II that has disk drives, you need to 
insert a program disk (see Figure 2-3). Program disks are also 
called start-up disks because you use them to start up the Apple 
II. Start-up disks always contain an operating system such as 
ProDOS and at least one application program. One start-up disk, 
the ProDOS User's Disk, comes with the Apple Disk II and Duo
disk drives. It contains programs that help you organize disks 
that use the ProDOS operating system. Another start-up disk, the 
DOS 3.3 System Master disk, formerly cam~ with Disk II drives 
and can now be purchased separately. You can purchase a wide 
variety of programs on other start-up disks. 

The start-up disk goes into the drive whose cable is attached to 
slot 6 inside the Apple II console. If there are two drives attached 



Getting Started I 25 

, 
Figure 2-2. Switching on a video monitor 

to that accessory card, use the one attached to the accessory card 
socket labeled Drive 1. 

In order to insert a disk in the drive, you must open the disk 
drive door by lifting the flap in the center of the drive. If there is 

Figure 2-3. Inserting a disk in drive 1 



26 I Apple II User's Guide 

already a disk in the drive, grasp it with your thumb and forefin
ger and pull it straight out. Be careful not to bend it as you pull it 
out. Do not touch the shiny inner surface through any of the 
cutouts in the protective outer jacket. Place the disk in a disk 
envelope and set it aside. 

Hold the disk you want to insert so the label is face up. Gently 
slide the disk straight into the drive, taking care not to bend it. 
Push the disk all the way in. If it meets any resistance, stop. 
Remove it, check for obstructions, and try again. If it still sticks, 
try another disk. If that sticks too, there may be something 
wrong inside the drive, and you should have it checked. 

When you have inserted the disk, slowly push down the drive 
door. If the door will only go down a fraction of an inch, the disk 
is not in far enough. · 

Switching On the Apple II Console 

Locate the power switch on the rear of the Apple II, next to 
where the power cord plugs into the computer. Turn the switch 
on (Figure 2-4). You should hear a beep from inside the Apple II. 
The power lamp on the keyboard will now be on. 

If you did not hear a beep, turn the switch off, then on again. If 
you still do not hear anything, turn the power off. Was the power 
lamp lit? If not, unplug the Apple II and plug in a lamp or a 

Figure 2-4. Switching on the Apple II console 



Getting Started I 27 

radio to see if the wall outlet has power. If in doubt, get help from 
someone with more experience. You can ruin parts of the com
puter by ignorantly poking around inside it. 

After Switching On the Console 

Immediately after switching on the Apple II console, you see 
the message Apple ] [ displayed in the middle of the screen. On 
an enhanced Apple Ile, the message Apple Ile appears instead. If 
your computer has no disk drives, a square right bracket ( ]) also 
appears at the left edge of the screen. 

If your Apple II has disk drives, the message on the screen is 
accompanied by chattering sounds from inside drive 1. The "disk 
use" light on the Disk II or Duodisk begins to glow. Within a 
couple of seconds, the disk drive settles down to a smooth whirr 
as the computer reads the operating system from the disk. This is 
called loading or booting the operating system. 

What happens next depends on which operating system the 
start-up disk uses. With the ProDOS operating system, the Apple 
][ (or Apple Ile) message disappears about five seconds after start
up. Another message appears in the middle of the screen -
something like PRODOS 1.1.1 18-SEP-84-and a copyright 
notice appears at the bottom of the screen. About five seconds 
later, those messages disappear and a square bracket (]) appears 
for a few seconds in the upper-left corner of the screen. 

With the DOS 3.3 operating system, the Apple ][ (or Apple Ile) 
message disappears about five seconds after startup. A square 
bracket (]) appears for a few seconds in the lower-left corner. 

With the Pascal operating system, the Apple ][ (or Apple Ile) 
message disappears about four seconds after startup. The screen 
fills with at-sign symbols(@) for an instant and then goes blank. 
A small square or rectangle may be displayed in the upper-left 
corner of the screen. If your Apple II has more than one drive, it 
may chatter and whirr briefly. 

Usually within 45 seconds of startup the screen assumes the 
standard look for the application program you are starting. You 
can begin using the program according to its displayed or pub
lished instructions. 

If the disk drive spins for several minutes with no change in 
the screen display, there is something wrong with the disk or the 
drive. Endless spinning usually means there is no disk in the 



28 I Apple II User's Guide 

drive or the drive door is not closed all the way. It's also possible 
the disk you inserted is upside down, blank, or not an Apple II 
disk. If the message *** UNABLE TO LOAD PRODOS *** 
appears on the screen, the disk you inserted is not a start-up disk. 
Try starting up again (or restart as described in the next section). 
Should a second start-up attempt fail, try another disk. If differ
ent disks fail repeatedly, there may be a problem with the disk 
drive, and you will need to have it serviced. Failure of just one 
disk indicates a damaged disk; in this case, use another copy. 

Restarting With the Power On 

On an Apple Ile, you can restart the program you are using or 
start a different program from the keyboard. Simply insert the 
disk that contains the program you want to start and then hold 
down the OPEN APPLE, CONTROL, and RESET keys all at the same 
time. Neither the Apple II Plus nor the original Apple II has an 
OPEN APPLE key, so you must switch the console power off and 
back on instead. 

Warning: Do not restart the Apple II indiscriminately. Most 
programs have standard procedures for quitting. If you bypass 
them by restarting or by switching the computer off, you risk 
losing everything you did during the current session with the 
program. Restart a program or start another program only after 
quitting the current program normally. 

USING PROGRAMS _________ _ 

Using almost any Apple II program involves some typing. You 
may not have to type whole paragraphs, but you will have to type 
some isolated letters or numbers and a few words. There are 
programs that let you use a mouse to reduce the amount of typing 
you must do. But even in those programs you must still do some 
typing, so you need to be familiar with the Apple II keyboard. 

The Cursor 

A special symbol, called the cursor, marks the location where 
your next typing will appear on the screen. In many programs 
the cursor is a blinking underline, but it can also be a blinking 



Underline 
(blinking) 

Checked square 
(blinking) 

Figure 2-5. Standard cursor designs 

Getting Started I 29 

II I 
Solid square and rectangle 

(steady) 

vertical line, a blinking checked square, or a steady solid square 
or rectangle (see Figure 2-5). 

The Keyboard 

Most of the Apple II's keys are the same as the ones on a type
writer, but there are some special keys. Their functions vary from 
one program to the next. See Table 2-1 for a list of special keys 
and their most common functions. 

Typing Pitfalls 

As you type entries on your Apple II, you will discover that it 
takes everything you say literally. There are a number of typing 
pitfalls to trip up the unwary program user. 

Many typists do not distinguish between the number 0 and the 
letter 0 or the number 1 and the lowercase letter 1. A computer 
program cannot resolve this ambiguity. You must be very careful 
to type a numeral when you mean a numeral. To help you 



30 I Apple II User's Guide 

Table 2-1. Special Key Uses 

Key cap Book's Use 
Apple Ile Other Models Notation 

ESC ESC ESC ESC stands for escape. When 
you work with several levels 
of menus, ESC usually re-
turns you to the previous 
menu. 

TAB (Not TAB Advances the cursor to the 
available) next tab, advances to the 

next entry on the screen, or 
does nothing. 

CONTROL CTRL CONTROL When used with certain 
other keys, CONTROL 
changes the effect of the 
other key. Hold CONTROL 
down while you press and 
release another key. 

SHIFT SHIFT SHIFT Use like the shift keys on a 
typewriter to produce capi-
tal letters or the symbols at 
the tops of the numeral and 
punctuation keys. On most 
Apple II Plus and standard 
Apple II models, SHIFT has 
no effect on letters, since 
they are always capitals. 

CAPS (Not CAPS LOCK Locks the keyboard so it 
LOCK available) generates capital letters with-

out using a SHIFT key. Af-
f ects only the 26 letters of 
the alphabet. 

(Not REPT REPT Hold REPT down while you 
needed) press another key to make 

the other key repeat. 

DELETE (Not DELETE With some programs, 
available) DELETE removes the char-

acter to the left of the cur-
sor. Otherwise, it displays a 
white square. 



Getting Started I 31 

Table 2-1. Special Key Uses (continued) 

Key cap Book's 
Use Apple Ile Other Models Notation 

RETURN 

• 

+ 

+ 

+ 

RESET 

RETURN 

• 

+ 

(Not 
available) 

(Not 
available) 

RESET 

(Not 
available) 

RETURN Signifies the end of an en
try. Most programs do not 
accept an entry until you 
press RETURN. 

- Usually moves the cursor 
left, like the backspace key 
on a typewriter. With some 
programs, it may also delete 
as it moves. 

- Usually moves the cursor 
right, as a reverse-back
space key would on a type
writer. 

1 With some programs, allows 
you to move down the list of 
options in a menu. Has var
ious other uses. 

t With some programs, allows 
you to move up the list of 
options in a menu. Has var
ious other uses. 

RESET On an Apple Ile or Apple II 
Plus, RESET has no effect 
when pressed alone, but 
CONTROL-RESET halts the 
program with a loss of data 
likely. On an Apple Ile, 
CONTROL-OPEN APPLE-RESET 
restarts the computer as if 
you switched the power off 
and on. On a standard Apple 
II, RESET alone halts the 
program with a loss of data 
likely. 

OPEN APPLE Has various uses. CONTROL
OPEN APPLE-RESET restarts 
the computer as if you 



32 I Apple II User's Guide 

Table 2-1. Special Key Uses (continued) 

Key cap Book's Use 
Apple Ile Other Models Notation 

switched the power off and 
on. 

• (Not SOLID Has various uses. CONTROL-

available) APPLE SOLID APPLE-RESET initiates 
a series of diagnostic tests 
lasting about one minute. 

remember, the Apple II displays the zero with a slash through it. 
On the Apple Ile you can type small letters as well as capitals. 

However, some programs do not allow small letters in commands. 
If you're not sure whether a program allows lowercase letters, go 
ahead and try using some. If they don't work, press the CAPS LOCK 

key and stick to uppercase. 
The Apple Ile has two keys that generate a single quote (apos

trophe). In most cases, program commands that use a single 
quote require the conventional character, ', which slants to the 
right. The alternate single quote character, ', which slants to the 
left, will not work. 

There is a DELETE key on the Apple lie, but with many pro
grams it will not back over your entry. Instead, use the - key, as 
described later in this chapter. 

Terminating Entries 

Because the lengths of entries vary, the controlling program 
usually will not accept an entry until you signify that you are 
finished typing it. The RETURN key is the most common entry 
terminator. If you type an entry and nothing happens, you proba
bly need to press the RETURN key. There are entries that don't 
need a terminator, and even a few that use a terminator other 
than RETURN, but such exceptions are well documented. 

Combination Keystrokes 

The SHIFT and CONTROL keys do nothing in and of themselves. 
Instead, they change the effect of other keys. To use one of these 



Getting Started I 33 

keys, you press it, hold it down, and press another key. As an 
obvious example, when you hold down the SHIFT key and press a 
letter, the letter will be capitalized. This book denotes such com
bination keystrokes by separating member keys with a hyphen. 
For example, CONTROL-X means "press the CONTROL and x keys 
simultaneously." 

Automatic Key Repeat 

You may have discovered that when you hold down a key on the 
Apple Ile, it repeats automatically. This feature works with all 
keys except OPEN APPLE, SOLID APPLE, and RESET. 

Earlier models of the Apple II do not have the automatic key 
repeat feature. Instead, they have a REPT key. To make a key 
repeat, hold down the key and then press the REPT key. Release 
the REPT key and the repeating stops. 

STARTING PROGRAMS FROM DISK ____ _ 

Some disk software starts itself. As described earlier in this 
chapter, you need only insert the disk in drive 1, close the drive 
door, and turn on the computer. For example, the ProDOS User's 
Disk contains a self-starting program (described in Chapter 3) 
that helps you organize ProDOS disks. 

Not all programs are self-starting, however. The DOS 3.3 Sys
tem Master disk, for example, contains several programs (de
scribed in Chapter 4) that help you organize DOS 3.3 disks. You 
must start such programs by typing commands at the keyboard. 

The Command Prompt 

Soon after starting an Apple II with a disk in drive 1 that lacks 
a self-starting program, you see the cursor near the left edge of 
the display screen. Next to the cursor is a special character, 
called the command prompt or prompt. It may be a square 
bracket ( ]), an angle bracket (> ), or an asterisk. The Apple II is a 
multilingual computer, and the shape of the command prompt 
indicates in which language it expects instructions. 

The ] and > command prompts signify that the Apple II is 
ready to receive BASIC commands. There are two different 



34 I Apple II User's Gulde 

prompt characters because some Apple II models have two dif
ferent versions of BASIC, called Integer BASIC and Applesoft. 
Integer BASIC uses the > command prompt and Applesoft uses 
the] prompt. It turns out that both versions use the same com
mands for starting programs manually. 

On early models of the Apple II the first command prompt you 
see is an asterisk ( * ). The asterisk is the command prompt for the 
Apple II Machine Language Monitor. In this case, you must 
switch control of the Apple II to BASIC by entering CONTROL-B 
(press the CONTROL and B keys in unison, then press the RETURN 
key). 

Loading the Operating System 

All Apple Ile and Apple II Plus computers-and many orig
inal Apple II computers - load the operating system automati
cally from the disk in drive 1 when you switch on the computer. 
If your Apple II does not automatically load DOS, or if you are 
unsure whether it has been loaded, you can load it manually. 

To manually load an operating system, first determine which 
operating system your program uses. Next, select a disk that con
tains the right operating system, such as the ProDOS User's Disk 
or the DOS 3.3 System Master disk. Then put the selected disk in 
drive 1 and close the drive door. Now see which command 
prompt(],>, or*) is displayed. If the command prompt is] or>, 
type PR#6 and then press the RETURN key. If the command 
prompt is an*, type a 6, then press CONTROL-P, and finally press 
the RETURN key. 

The "in use" lamp on the disk drive will light and you will hear 
noises from inside the drive. The operating system is being copied 
into the Apple II's memory. If you put the disk into the wrong 
drive, take it out and insert it in the one with its lamp lit. Soon a 
message appears on the display screen, telling you which opera
ting system has been loaded. 

Program Names 

Every program on a disk has a name. You need to know the 
name in order to start the program manually. The name of a 
program that uses the DOS 3.3 operating system must be 
between 1 and 30 characters long, including blank spaces. It 



Getting Started I 35 

must begin with a letter, but the rest of the name can be any 
character except a comma. Chapter 4 explains how to display a 
list of all the program names on a DOS 3.3 disk. 

A ProDOS program name starts with a letter. After that, it 
may contain any combination of letters, numerals, and periods. 
However, a simple name cannot be more than 15 characters long. 
With ProDOS, a program can be referred to by a compound 
name that is made up of several simple names separated by 
slashes (/). Chapter 3 explains how to display a list of all the pro
gram names on a ProDOS disk. 

Starting a BASIC Program 

To start a BASIC program, type the command RUN, a blank 
space, and the name of the program you want to start, like this: 

RUN FILEM 

After you press the RETURN key, the command above will start 
the program named FILE M. Chapter 4 explains how to use the 
FILE M program and several other programs on the DOS 3.3 
System Master disk. For instructions on using another program, 
consult its manual. 

If the program doesn't start and you get the message FILE 
NOT FOUND, it means you misspelled the program name, mis
counted the number of spaces in it, used the wrong program 
name altogether, used the wrong disk, or put the disk in the 
wrong drive. 

If the message LANGUAGE NOT AVAILABLE appears, 
then you must manually switch the Apple II to the other version 
of BASIC. Remember, the command prompt at the left edge of 
the screen tells you which version of BASIC the Apple II is cur
rently using. A square bracket (]) means Applesoft, and an angle 
bracket (>) means Integer BASIC. To switch from Applesoft to 
Integer BASIC, type the command INT and press the RETURN 
key. Typing the command FP will switch from Integer BASIC to 
Applesoft. On some models of the Apple II, a disk drive will come 
to life when you use the FP or INT commands. If the message 
LANGUAGE NOT AVAILABLE appears again, insert a DOS 
3.3 System Master disk and type the command again. (There are 
some Apple II models that have only Applesoft, and some that 
have only Integer BASIC.) 



36 I Apple II User's Guide 

Starting a Machine Language Program 

Some programs are written in the Apple II's machine lan
guage, or in assembly language, which is essentially the same 
thing. To start one of these programs, use the BASIC command 
BRUN, like this: 

BRUN FID 

After you press the RETURN key, the command above will start 
the program named FID. The FID program is described in 
Chapter 4. For instructions on using another program, consult its 
manual. 

If the program doesn't start and you get the message FILE 
NOT FOUND, it means you misspelled the program name, mis
counted the number of spaces in it, used the wrong program 
name altogether, used the wrong disk, or put the disk in the 
wrong drive. 

Specifying the Drive 

If your Apple II has more than one disk drive, you can start a 
program from any drive you want. Be aware, however, that some 
programs are designed to work only in a certain drive. Starting a 
program in any drive does not guarantee it will work there; 
check the program's manual for details. 

On an Apple II with a pair of disk drives, each drive is identi
fied by number, 1 or 2. To designate a specific drive with the 
RUN or BRUN command, append a comma, the letter D, and 
the drive number. The following example specifies a file called 
COPYA on drive 2: 

RUN COPYA,D2 

To designate a specific drive on an Apple II with more than 
two drives, you must state the slot number of the accessory card 
to which the drive is attached. Append a comma, the letter S, and 
the slot number, like this: 

RUN MASTER,53 

Once you issue a command with an explicit drive or slot 
number, that drive or slot will be used until another command 



Getting Started I 3 7 

specifies another drive or slot number. Turning off the Apple II 
or reloading the operating system resets the slot to 6 and the 
drive to 1. 

You can combine slot and drive specifications. Here is an 
example: 

BRUN FID,S6,D2 

Caution: Use only drive and slot numbers that actually have 
drives attached. If you specify a nonexistent or vacant slot or 
drive, the computer may lock up, forcing you to reset or restart it. 

Earlier Versions of DOS 3.3 

DOS 3.3 was first released in August 1980. Programs written 
before that were distributed on disks for use with an earlier ver
sion, such as DOS 3.2.1, DOS 3.2, or some lower number. The 
chief difference between DOS 3.3 and earlier versions is in the 
number of sectors into which the disks are divided. DOS 3.3 uses 
16-sector disks, but earlier versions used 13-sector disks. If you 
try to use a 13-sector disk with DOS 3.3, the message UNABLE 
TO READ/WRITE appears on the display screen. 

In order to use a 13-sector disk with DOS 3.3, you must follow a 
slightly more complicated procedure than the one outlined above. 
After loading DOS 3.3, either automatically or manually, you 
must run the Applesoft program named START13 or the machine 
language program named BOOT13. Both programs are on the 
DOS 3.3 System Master disk. The disk drive goes to work. After 
a few seconds a message appears, asking which slot you wish to 
use for your 13-sector disk. Before responding, put the disk that 
was prepared by the earlier version of DOS (DOS 3.2.1, DOS 3.2, 
and so on) into drive 1. Then type the drive's slot number and 
press the RETURN key. After the disk drive stops, you can start 
your program with the RUN or BRUN command, as appropriate. 

STARTING PROGRAMS FROM CASSETTE ___ _ 

If your Apple II has no disk drives, you can start programs 
manually from cassette tapes instead. This section only presents 



38 I Apple II User's Guide 

general instructions for getting a program started from cassette. 
For information on how to use the program once it is started, you 
must consult the program's manual or someone who already 
knows how to use it. 

When you turn on an Apple II that has no disk drives, you hear 
it beep and immediately see the cursor near the left edge of the 
display screen. Next to the cursor is the command prompt, either 
], >,or*· Remember,] and> are command prompts for Apple
soft and Integer BASIC, and * is the command prompt for the 
Machine Language Monitor. 

Adjusting the Playback Volume 

Before a cassette recorder will work properly with an Apple II, 
you must set its volume control. If the volume is too low or too 
high, the information on the tape will be distorted and the Apple 
II will not be able to understand it. 

Trial and error is the only method for determining what 
volume level is correct for your tape recorder. Here is the general 
procedure. First, you set the volume control very low and try to 
transfer a program from cassette to the Apple II's memory. If the 
low setting does not work, you set the volume a little higher and 
try again. You keep adjusting the volume upward until the pro
gram is successfully transferred. 

You can use any of the tapes that came with the Apple II to set 
the recorder volume. If the command prompt is a square bracket 
(]), try the cassette labeled COLOR TESTSOFT. If the command 
prompt is an angle bracket(>), try the tape labeled COLOR TEST. 
Put the cassette into the recorder. Be sure that the program label 
faces up. Then for each position of the volume control, perform 
the following steps: 

1. Rewind the tape completely. 
2. Type the word LOAD at the keyboard. 
3. Press the PLAY button on the cassette recorder to start the 

tape. 
4. Press the RETURN key. 

When you press the RETURN key, the cursor disappears. After 
15 or 20 seconds you can analyze your success. 

If you get the message ?SYNTAX ERROR or ?***SYNTAX 



Getting Started I 39 

ERR, do not adjust the volume, just go back to step 1 and try 
again. If this keeps happening, try cleaning the cassette recorder 
heads, or use a different tape. 

If nothing happens, or if the message ?ERR or ?***MEM 
FULL ERR appears, reset the computer by pressing CONTROL
RESET. If doing this makes the * command prompt appear, re
start BASIC by ·pressing first CONTROL-B and then the RETURN 
key. Next, set the tape recorder volume a little higher and try 
again. 

If you hear a beep and no message appears, things are going 
well. The Apple II has found the beginning of the program on the 
tape and is transferring it. After about 15 more seconds (depend
ing on the length of the program on the tape) you will hear 
another beep, and the command prompt and cursor will reappear 
on the screen. The program has been successfully transferred. 
You can now stop the tape by depressing the STOP button on the 
tape recorder. Make a note of the volume setting so you don't have 
to repeat this procedure after using the recorder away from the 
Apple II. 

Starting a BASIC Program 

Before you start a BASIC program from cassette, the Apple II 
must be ready for the correct version of BASIC. To switch from 
Applesoft to Integer BASIC, type the command INT and press 
the RETURN key. Typing the command FP will switch from Inte
ger BASIC to Applesoft. 

On some models of the Apple II, Integer BASIC is not avail
able. If you have no disk drives and the Applesoft command 
prompt character appears when you first switch on the console, 
your machine does not have Integer BASIC. There are also some 
Apple II Plus machines with disk drives that have only Applesoft. 

With some standard Apple II machines, Integer BASIC is 
always available, but you must get Applesoft from cassette. If 
your machine is one of those, find the tape labeled APPLESOFT 
II. Put it in the recorder and rewind it all the way. Type the word 
LOAD, but before you press the RETURN key, press the PLAY 
button on the cassette recorder to start the tape moving. Then 
press the RETURN key, and soon you will hear the Apple II beep. 
In about two minutes, the computer will beep again, and the 
Applesoft command prompt (]) will appear. Stop the tape. 



40 I Apple II User's Guide 

With the proper version of BASIC selected, these are the steps 
for starting a program from cassette: 

1. Position the tape to the beginning of the program. This will 
usually be the beginning of the tape, in which case you must 
rewind the tape completely. If the program you want is not 
the first program on a cassette, you must go through these 
steps for each program that precedes it on the tape. Repeat 
the following steps for each extra program you must pass 
over. 

2. Type the word LOAD at the keyboard. 
3. Press the PLAY button on the cassette recorder to start the 

tape. 
4. Press the RETURN key. The cursor disappears. 
5. After a few seconds, the Apple II beeps to signal that it has 
· started to transfer the program into the Apple II's memory. 

6. Some time later, the Apple II beeps again, signaling that it 
has finished the transfer. Use the STOP button on the tape 
recorder to stop the tape. 

7. Type the word RUN, press the RETURN key, and the program 
begins. 

If you hear no beeps or if you get any error messages during 
steps 5 and 6, recheck the volume control adjustments according 
to the directions given earlier in this chapter. If you still have 
problems, the cassette you are using is probably defective and you 
will have to replace it. 

USING A PRINTER __________ _ 

In spite of the diversity of printer features, operating one 
printer is much the same as operating another. There are varia
tions in the way you feed paper into the printer or install a new 
ribbon, but most of the differences show up only if you program 
the printer. As long as you stick to existing programs, you need 
only make sure your printer is listed among those supported by a 
program you want to use. This chapter only addresses the operat
ing procedures that apply to all printers. For specific details on 
your printer, refer to its manual. 



Getting Started I 41 

The Printer Controls 

Your printer probably has an on/off switch, some buttons for 
manual control, and several status lamps grouped together in a 
control panel (see Figure 2-6). The on/off switch may be on the 
side or at the back of the printer. There may be secondary control 
switches and levers located inside the printer. Table 2-2 lists the 
most common printer controls and status lamps. 

Many printers know how far the current line is from the bot
tom of the page and will eject the paper at the press of a button. 
At the end of a page printed on continuous paper, the printer 
automatically advances to the top of the next page. For this fea
ture to work properly, you must align the paper before you turn 
the printer on, thereby giving the printer a place from which to 
start reckoning the page length. Some printers have a button you 
can push while the printer is on to reestablish the top of a page at 
the current line. 

Figure 2-6. A typical printer control panel 



42 I Apple II User's Guide 

Table 2-2. Common Printer Controls and Status Lamps 

Switches and Buttons Function 

ON/OFF Turns the printer on and off 
SELECT Suspends/resumes printing 
FORM FEED Advances paper to next page 
LINE FEED Advances paper one line 
CLEAR Resets printer after error 
OVERRIDE Finishes printing last page 

Status Lamp Meaning (when lit) 

Power Power on 
Ready Printer ready to print 
Select Permits printing to proceed 
Paper Out Almost out of paper 
Alarm Ribbon out or broken, or printer error 

Your printer may have a switch labeled AUTO LINE FEED or 
LOCAL LINE FEED. The switch might be on the front panel or 
it might be inside; normally it should be set in the off position. 

Preparing for Printing 

The first step in getting the printer ready to print is to attach 
it to the computer via a serial or parallel accessory card. Then 
you must select the right paper and load it into the printer. Use 
continuous forms for uninterrupted printing, multiple-part for 
carbon copies, label stock for mailings, and so forth. If your 
printer accepts single-sheet stationery, you can use it for printing 
letters or other documents one page at a time. Make sure the 
paper is aligned vertically and horizontally and that its path in 
and out of the printer is unrestricted. 

Next check the ribbon, and if your printer has interchangeable 
type elements (called daisy wheels or thimbles), make sure the 
correct one is securely installed. Set any print density or form 
thickness controls to accommodate the type of paper you are 
us mg. 

Lastly, close all the printer covers and guards. An open cover 
will activate an interlock switch, which will temporarily disable 



Getting Started I 43 

the printer. Switch the printer on and set the SELECT or 
ONLINE switch if there is one. The READY and SELECT status 
lights must be lit for the printer to work. 

RESETTING THE APPLE II ________ _ 

You can interrupt an Apple II program by pressing CONTROL
RESET. On standard Apple II machines, pressing RESET alone 
(without CTRL) will work. However, this feature is of little 
practical use, because you usually cannot resume a program 
from where you left off. If you use the RESET key, you may have 
to redo any work you did since you started the program. You can 
even ruin a disk by using the RESET key while the drive it's in is 
in use. 

Accidental Reset 

On Apple II Plus and standard Apple II keyboards, the RESET 
key is located very near the RETURN key. It's all too easy to hit 

I 
Figure 2-7. Guarding against accidental reset on a standard Apple II 



44 I Apple II User's Guide 

RESET when you meant to hit RETURN . This is not a big problem 
on an Apple II Plus or Apple Ile, since you must press the CON
TROL key along with the RESET key for anything to happen. The 
danger is further minimized on an Apple Ile, since its RESET key 
is also recessed and moved away from the other keys. But there is 
a constant danger of accidental reset on an original Apple II. You 
can reduce the chance of an accidental reset on an original Apple 
II keyboard by carefully prying off the plastic key top, leaving 
just the shaft of the key switch available (see Figure 2-7). 



Organizing ProDOS 
Disks 3 

The STARTUP program on the ProDOS User's Disk lets you 
work on disks and the program and data files they contain with
out memorizing and typing commands. Instead, you choose 
options from displayed menus. From the STARTUP program, 
you can do the following: 

· Identify disk contents. 

· Prepare a new disk for use. 

· Erase a disk. 

· Duplicate a disk. 

· Copy program and data files between disks. 

· Remove selected program and data files from a disk. 

· Rename selected program and data files. 

· Rename a disk. 

· Lock selected program and data files against change or re
moval. 

· Unlock selected program and data files for change or re-
moval. 

· Convert disks from ProDOS to DOS 3.3 and vice versa. 

· Compare two files or two disks. 

· Determine what accessory cards are installed in which slots. 

45 



46 I Apple II User's Gulde 

PRODOS DISK ORGANIZATION ______ ___,, 

Before diving into the STARTUP program, you should under
stand how information is organized on a ProDOS disk. A single 
disk can store a large amount of information. Rarely is all this 
storage space used for one purpose, however. Several small, inde
pendent parcels of information usually coexist on a single disk. 
Every operating system has a scheme for keeping track of all the 
separate parcels of information. 

Flies 

The ProDOS operating system treats each disk as a filing 
cabinet and each parcel of information as a file in the filing 
cabinet. In fact, parcels of information on a disk are called files. 
A ProDOS file may contain a program, a collection of data, or 
even other files. 

Most data files are automatically created by programs as 
needed. Program files are created by the people who write the 
programs. Until you start writing your own programs, you will 
have little occasion to create a program file or data file yourself. 

Directories 

A file that contains other files is called a directory file, or 
simply a directory. If you think of a disk as a filing cabinet, you 
might think of a directory as a drawer in the filing cabinet-that 
is, as the drawer itself, not what may be in the drawer. Every 
disk has at least one directory, called the volume directory. It is 
the main directory for the whole disk and contains as many as 51 
other program files, data files, or directories. ProDOS creates a 
volume directory automatically when you first prepare a disk for 
use, as described later in this chapter. 

Any directory in the volume directory can contain other direc
tories, and these directories can contain other directories, and so 
on. It's as if a filing cabinet could have drawers inside of drawers 
inside of drawers. You can theoretically have up to 64 directory 
levels on a single disk, although it's hard to use more than half a 
dozen. You can create subdirectories with the ProDOS User's 
Disk STARTUP program as described later in this chapter. Fig
ure 3-1 diagrams a typical directory setup on a disk. 



Organizing ProDOS Disks I 47 

STUDIO Second-Level Third-Level 
(Volume Directory) Directories and Files Directories and Files 

LEADING 
SUPPORTING 
CHARACTER 

LEADING 
ACTRESSES SUPPORTING 

CHARACTER 

PRO DOS SCIENCE FICTION 

BASIC SYSTEM DIRECTORS 
COMEDY 

STARTUP DRAMA 

PRODUCER WESTERN 

ENTRY MAKEUP 
PRINT COSTUMES 

KEY GRIPS 
WRITERS 
COMPOSERS 

MEN 
STUNT WOMEN 

TRAINERS 
ANIMAL 

ACTORS 

SPECIAL EFFECTS 
PHOTOGRAPHERS 

Figure 3-1. Directories on a hypothetical disk (64 directory levels allowed) 

Unlike the volume directory, subdirectories have no specific 
limit on the number of files they contain. The only limit is the 
amount of space still available on the disk. Imagine a file drawer 
that can grow to the size of the filing cabinet but no larger. 



48 I Apple II User's Gulde 

Names 

Each ProDOS file and directory has a name so you can identify 
the different files and directories on a disk. File names are 
assigned when files are created. Programs generally assign 
names to the data files they create, and programmers assign 
names to the programs they write. You must make up names for 
directories yourself, including the volume directory on every new 
disk you prepare. The STARTUP program tells you when you 
must assign a file name. 

The rules for composing file and directory names are simple. 
Every name must start with a letter. After that, you can use any 
combination of letters, digits, and periods. However, a name can
not be more than 15 characters long. Files and subdirectories in 
the same directory must have different names, although files and 
subdirectories on different disks or in different directories can 
have the same name. You can use any name that conforms to the 
rules, but a name that reminds you of what the file or directory 
contains works best in the long run. 

Paths 

When you want to get at a file in a subdirectory, you must spec
ify the path to it. You do this by stating the directories that Pro
DOS must traverse, starting with the volume directory, in order 
to find the file you want. In Figure 3-1, for example, the path to 
file LEADING in the third level starts at volume directory 
STUDIO, goes through directory PRODUCER, then through 
directory ACTORS, and finally to the file LEADING. 

To specify a path, you type a slash, the volume directory name, 
another slash, the next directory name, and so on, listing each 
directory name with a slash in front of it and ending with the 
name of the file you want. The result is called a pathname. The 
pathname for the example cited in the previous paragraph is 
/STUDIO/PRODUCER/ACTORS/LEADING. 

The Prefix and Partial Pathnames 

Typing pathnames can be a tedious proposition, especially if 
you're using files buried several directory levels below the volume 
directory. ProDOS provides a shortcut to repeatedly typing in all 



Organizing ProDOS Disks / 49 

or part of a pathname. It allows you to define a prefix and after 
that to type only partial pathnames. To every partial pathname 
you type, ProDOS automatically adds the prefix you defined. The 
result, prefix plus partial pathname, is the complete pathname. 

In Figure 3-1, for example, if the prefix were /STUDIO/PRO
DUCER/, you could type the partial pathname COSTUMES for 
the file /STUDIO/PRODUCER/COSTUMES, and DIRECTORS/ 
DRAMA instead of the full pathname /STUDIO/PRODUCER/ 
DIRECTORS/DRAMA. 

STARTING THE STARTUP PROGRAM _____ _ 

Now that you understand how ProDOS organizes information 
on disks, you can use the STARTUP program on the ProDOS 
User's Disk to do all the tasks listed at the beginning of this chap
ter and more. 

To start the STARTUP program when the Apple II is on, 
insert the ProDOS User's Disk and restart the computer by 
pressing CONTROL-OPEN APPLE-RESET. If the Apple II is off, 
insert the disk, switch on the display (TV or monitor), and switch 
on the computer. As usual, the message Apple ] [ or Apple Ile 
appears on the screen immediately, followed in about five seconds 
by ProDOS version and copyright information. 

Four or five seconds after the ProDOS version-number mes
sage appears, the screen goes blank again. Seven or eight seconds 
after that (about thirteen seconds after switching on or restarting 
the Apple II), the screen displays the Startup Menu, shown in 
Figure 3-2. 

General Instructions 

The Startup Menu lists six options. Two of the options, F and C, 
lead to other menus of more options, all of which do something 
different with a disk or disk files. The Startup Menu options ?, S, 
T, and B do not directly affect disks or disk files. 

In spite of its diversity, the STARTUP program uses fairly 
consistent procedures. You only have to learn once how to choose 
from a menu, get on-screen help, change menu levels, and type 
entries. Let's take a look at how you do those things before inves
tigating the menu options. 



50 I Apple II User's Guide 

*************************************** 
* 
* 
* 

PRODOS USER'S DISK * 
* 
* * COPYRIGHT APPLE COMPUTER, INC. 1983 * 

* * 
*************************************** 

YOUR OPTIONS ARE: 

? - TUTOR: PRODOS EXPLANATION 

F - PRODOS FILER (UTILITIES) 

C - DOS <-> PRODOS CONVERSION 

S - DISPLAY SLOT ASSIGNMENTS 

T - DISPLAY/SET TIME 

B - APPLESOFT BASIC 

PLEASE SELECT ONE OF THE ABOVE m 

Figure 3-2. The Startup Menu 

CHOOSING A MENU OPTION Every menu option is keyed by a 
letter or by a question mark. To choose an option, you type its key 
letter but do not press RETURN. 

ESC TO PREVIOUS MENU Many menu requests invoke other 
menus; however, during most phases of the STARTUP program 
you can return to the previous menu by pressing the ESC key. 
This allows you to cancel a menu choice before any irreversible 
action occurs, in case you make a wrong choice or change your 
mind. In the upper-right portion of the screen, the program 
sometimes displays the effect of pressing the ESC key. 



Organizing ProDOS Disks I 51 

TYPING ENTRIES For some menu options, you have to type the 
name of a file, path, directory, and so on. The ProDOS User's 
Disk STARTUP program has a standard procedure for request
ing such information from you. First it prompts you with a brief 
message, such as PATHNAME:. Then it displays some blank 
spaces enclosed in parentheses, showing you how many charac
ters you can type and where they will appear on the screen. A 
cursor in the form of a blinking checkerboard marks the spot 
where the next character you type will appear. As you type, the 
characters appear between the parentheses and the cursor moves 
to the right. Figure 3-3 shows a typical entry in progress. 

**************************************** 
* * 
* RENAME A VOLUME * 
* * 
**************************************** 

--RENAME--
THE VOLUME IN SLOT: 6 

DRIVE: 1 

NEW VOLUME NAf~E: C/LETTERS.855 

--PRESS <RET> TO ACCEPT:<ESC> TO EXIT--

Figure 3-3. A typical keyboard-entry scenario 



52 I Apple II User's Guide 

While typing, you can use the - and - keys to move the cursor 
back and forth. In some cases, pressing ESC restores the original 
entry line. 

Sometimes the program displays the existing value of an entry, 
or a standard value for an entry, between the parentheses. You 
can accept the proposed entry by just pressing the RETURN key, 
or you can change or replace the proposal by typing another 
response before pressing RETURN. 

ON-SCREEN HELP FROM THE TUTOR The main menu and several 
other menus in the ProDOS User's Disk STARTUP program 
contain a "tutor" option, which you choose by typing a question 
mark. The tutor option displays several paragraphs that explain 
the program features and options available from the menu cur
rently displayed. 

THE PRODOS FILER _________ _ 

Typing the letter F from the Startup Menu chooses the Pro
DOS Filer Menu (Figure 3-4). This menu's five options allow you 
to read some explanatory text, work on individual files, work on 
whole disks, change some of the the program's standard responses, 
or return to the Startup Menu. 

Working on Individual Flies 

Typing the letter F froip the ProDOS Filer Menu chooses the 
File Commands Menu, which contains a tutor option and eight 
commands for working on individual files (Figure 3-5). You can 
copy, delete, lock, unlock, or rename one or more files at a time. 
You can also list the files in a directory, compare two files, make 
a new directory, or change the ProDOS prefix. 

FILE NAMES AND PATHS IN THE PRODOS FILER As part of every 
Filer Menu option, you must specify a pathname for one or two 
files. Each pathname you type must conform to the normal Pro
DOS rules described earlier in this chapter. The ProDOS prefix, 
which is initially set to the name of the volume directory (that is, 
the disk name), is added to the beginning of a pathname you type, 
unless the pathname you type begins with a / character. 



Organizing ProDOS Disks I 53 

**************************************** 
* * * APPLE'S PRODOS SYSTEM UTILITIES * 
* * * FILER VERSION 1.1 * 
* * * COPYRIGHT APPLE COMPUTER, 1983-84 * 
* * 
**************************************** 

1 - TUTOR 

F - FILE COMMANDS 

V - VOLUME COMMANDS 

D - CONFIGURATION DEFAULTS 

Q - QUIT 

PLEASE SELECT AN OPTION: m 

Figure 3-4. The Filer Menu 

You can always type an explicit pathname, but sometimes it is 
more convenient to specify a group of files to be acted on at once. 
The ProDOS Filer lets you do that by specifying an ambiguous 
pathname, that is, a single name that can identify several files. To 
specify an ambiguous pathname, you include the character= or ? 
as a "wild card" that stands for any character or string of charac
ters. For example, the simple pathname "PRODUCERS/=" spec
ifies every file in directory PRODUCERS. As another example, 
the name "PRODUCERS/A=" specifies all files in directory 
PRODUCERS that have names starting with the letter A. Sim
ilarly, the name "DIRECTORS/= N" specifies all files in directory 



54 I Apple II User's Guide 

**************************************** 
* * 
* 
* 

FILE COMMANDS * 
* **************************************** 

? - TUTOR 

L - LIST PROOOS DIRECTORY 

C - COPY FILES 

0 - DELETE FILES 

K - COMPARE FILES 

A - ALTER WRITE-PROTECTION 

R - RENAME FILES 

M - MAKE DIRECTORY 

P - SET PREFIX 
SELECT AN OPTION OR <ESC>: B 

Figure 3-5. The File Commands Menu 

DIRECTORS that have names ending with the letter N. Only one 
wild card character is allowed in a pathname. 

The ? wild card specifies an ambiguous pathname in the same 
manner as the = wild card. If you use a = wild card, the program 
acts without further approval on every file identified by the 
ambiguous file name. If you use a ? wild card, the program gets 
your approval before it acts on any file specified by the ambigu
ous file name. It does this by displaying a file name and waiting 
for your reponse. Type Y if you want the file acted on, N if you 
want it skipped, or press ESC if you want to cancel the command 
at that point and return to the File Command Menu. 



Organizing ProDOS Disks I 55 

IDENTIFYING DISK CONTENTS Menu option L (List ProDOS Direc
tory) lists all the files and subdirectories in one disk directory. 
You must specify the pathname of the directory to be listed. For 
example, typing the wild card = and pressing RETURN specifies 
the directory named by the ProDOS prefix. 

If there are more than 18 names to list, they are listed in pages, 
with 18 names to a page. After displaying each page, the pro
gram waits until you press the RETURN key before it begins the 
next page. 

Figure 3-6 shows a sample ProDOS directory listing. At the 
top is the directory name. Following that is a list of file and 

DIRECTORY:/USERS.DISK 

NAME TYP BLOCKS MODIFIED 

*PROOOS SYS 30 18-SEP-84 
*BASIC.SYSTEM SYS 21 18-JUN-84 
*FILER SYS 51 18-JUN-84 
*CONVERT SYS 42 1-NOV-83 
*STARTUP BAS 24 26-JUL-84 
*MOIRE BAS 3 15-0CT-83 
*HYPNOSIS BAS 3 15-0CT-83 
*ANIMALS BAS 10 15-0CT-83 

BLOCKS FREEE: 89 USED: 191 

--PRESS <RET> TO BEGIN: <ESC> TO EXIT--m 

Figure 3-6. A sample ProDOS directory listing 



56 I Apple II User's Guide 

directory names, including the name, type, and size of each. 
Table 3-1 identifies the file types used by the ProDOS operating 
system. At the end of the listing is the amount of disk space used 
and the amount available. All sizes are reported as a number of 
blocks, each of which is 512 bytes. 

COPYING FILES With menu option C (Copy Files), you can copy 
one or more files from one disk to another. You can also copy a 
file from one directory to another directory on the same disk. You 
must specify the source and destination pathnames in the usual 
manner. Remember, the program prefixes the pathname you 
type with the ProDOS prefix unless you type a I as the first 
pathname character. 

If the ProDOS Filer finds that you have specified the name of 
an existing file for the destination, it asks whether you want to 
delete the existing file and replace it with the source file. 

If you are copying from one disk to another and using a single 
drive, you will have to swap disks at least once for each file 
copied. For a long file, you may have to swap more than once. No 
swapping is required if you copy from a disk in one drive to a 
disk in the other drive, or from one ProDOS directory to another 
on the same disk. 

DELETING FILES To delete one or more files and make the space 
they occupy on the disk available for other files, choose option D 
(Delete Files) from the File Commands Menu. You must specify a 
pathname for the files you want to delete. Menu option D can also 
delete a ProDOS subdirectory, but only if it is empty. 

Table 3-1. ProDOS File Types 

Abbreviation Type 

DIR Directory 
TXT Text or other data 
BAS Applesoft program 
VAR Applesoft variables 
BIN Binary 
REL Relocatable 
$Fu User defined (n = a number from 1 to 8) 
SYS ProDOS system program or system file 



Organizing ProDOS Disks I 57 

COMPARING FILES Menu option K (Compare Files) allows you 
to compare two ProDOS files to see if their contents are identical. 
You specify the pathnames. If the files match, the message 
COMPARE COMPLETE appears. If the files do not match, the 
message FILES DO NOT MATCH appears. 

LOCKING AND UNLOCKING FILES Some programs, data files, or 
ProDOS directories must be kept permanently. To protect such 
files against accidental erasure, renaming, or change, ProDOS 
supports file locking. To lock or unlock a file or ProDOS direc
tory, choose option A (Alter Write-Protection) from the File 
Commands Menu. Specify an explicit pathname for a single file 
or directory, or an ambiguous pathname for a group of files and 
directories. The ProDOS Filer displays the message LOCK 
FILES?; type Y if you want the file or files to be locked, or N if 
you want them to be unlocked. 

RENAMING FILES You can change the name of any file or Pro
DOS directory with menu option R (Rename Files). You specify 
the current pathname and the new pathname. Both pathnames 
must specify a file in the same directory, and the new pathname 
cannot already be used by another file in the directory. 

CREATING A PRODOS SUBDIRECTORY Menu option M (Make Direc
tory) allows you to make a new subdirectory in any other di
rectory. You must enter a pathname for the new directory. 
Remember, the new subdirectory name is automatically prefixed 
with the current ProDOS prefix. 

SETIING THE PRODOS PREFIX The normal ProDOS prefix is the 
name of the volume directory of the last disk you used. By choos
ing option P (Set Prefix) from the File Commands Menu, you can 
specify a new prefix. The current prefix is proposed as a basis 
for the new prefix. You can edit the proposal with the - and -
keys before pressing RETURN to confirm the name. 

Working on Entire Disks 

Typing the letter V from the ProDOS Filer Menu chooses the 
Volume Commands Menu, which contains a tutor option and 
seven commands for working on whole disks (Figure 3-7). You 



58 I Apple II User's Guide 

can format, copy, or rename a disk. You can also list the names of 
the disks known to ProDOS, compare two disks, check for disk 
defects, and review disk space allocation. 

SPECIFYING THE DISK TO USE As part of most volume commands, 
you must specify slot and drive numbers for one or two disks. You 
are asked first for a slot number and then for a drive number. 
The slot you specify must have disk drives attached, and the drive 
number must be 1 or 2. In addition, an Apple Ile with 128K of 
RAM can use part of the memory for an electronic "disk drive;" it 
has slot number 3 and drive number 2. 

**************************************** 
* 
* 
* 

VOLUME COMMANDS * 
* 
* 

**************************************** 

? - TUTOR 

F - FORMAT A VOLUME 

c - COPY A VOLUME 

L - LIST VOLUMES 

R - RENAME A VOLUME 

D - DETECT BAD BLOCKS 

B - BLOCK ALLOCATION 

K - COMPARE VOLUMES 

SELECT AN OPTION OR <ESC>: ~ 

Figure 3- 7. The Volume Commands Menu 



Organizing ProDOS Disks I 59 

FORMATTING A DISK Before you can use a brand-new disk, you 
must use option F (Format a Volume) from the Volume Com
mands Menu to map the disk surface, check for defects, and set 
up a blank volume directory. This initialization process is called 
formatting. You can also format a used disk in order to erase it 
completely. 

Be carefu~ when you specify the slot and drive numbers. If you 
specify the wrong ones, you may accidentally format (and erase) 
the wrong disk. As a safeguard, you must approve formatting if 
the disk already has a recognizable ProDOS name. 

You must specify a name for the volume directory on a newly 
formatted disk. The name BLANK, followed by a couple of digits, 
will be proposed. You can accept the proposal by pressing 
RETURN or replace it by typing a name of your own choosing. 

Formatting a 5 1/4-inch diskette takes about 20 seconds. Other 
types of disk drives may take more or less time. While formatting 
is in progress, the message FORMATTING appears alongside 
the slot number on the screen. When formatting is finished, the 
message FORMAT COMPLETE appears near the bottom of the 
screen. 

DUPLICATING A DISK Option C (Copy a Volume) of the Volume 
Command Menu is important because it can make backup copies 
of your disks. Before choosing option C, get the original and 
duplicate disks ready. First, cover the write-enable notch on the 
original disk with a write-protect sticker. This simple precaution 
may save you considerable grief if you make a mistake later in 
the procedure. Choose any spare disk for the duplicate, even a 
new, unformatted one. Duplicating a disk automatically formats 
the duplicate disk just as menu option F does, completely erasing 
the former contents of the duplicate disk before making the copy. 

You must specify slot and drive numbers for the original and 
duplicate disks. The duplicate disk can use the same drive as the 
original disk, though the copy is made much faster if the disks 
are placed in separate drives. 

At this point the program tells you to place the original and 
duplicate disks in their respective drives. If both disks ·share the 
same drive, the copy utility asks you to insert the original disk 
and then remove the original disk and insert the duplicate disk. 

Before the duplication begins, you must specify a name for the 
volume di.rectory on the duplicate disk; the name of the original 



60 I Apple II User's Guide 

disk is proposed. You can accept the suggestion by pressing 
RETURN, or you can type a different name before pressing 
RETURN. 

If the original and duplicate disks use the same drive, the 
screen displays messages asking you to insert one disk and then 
the other, over and over again. You have to swap disks many 
times before the copy process is finished. Each time you insert 
the original disk, a small part of it is read into the Apple II's 
memory. Then when you insert the duplicate disk, the part that 
was read into memory is written onto the disk. If the original and 
duplicate disks use different drives, you do not need to swap 
disks. 

An error message appears during the copying procedure if you 
leave a drive door open, forget to insert a disk, or try to copy 
information onto a write-protected disk. If this happens, try the 
duplicating procedure again. 

Warning: Some programs are produced on copy-protected 
disks to prevent copyright infringement. Menu option C cannot 
successfully duplicate a copy-protected disk. The disk may 
appear to be duplicated successfully but will not work properly 
when you try to use it later. Always try a duplicate program disk 
before assuming that it works. 

LISTING AVAILABLE DISKS When you choose option L (List 
Volumes) from the Volume Commands Menu, a list of currently 
inserted disks is displayed. On an Apple lie with 128K of 
memory, the list may include an electronic disk. The slot number, 
drive number, and volume directory name are given for each disk 
on the list. 

RENAMING A DISK Menu option R (Rename a Volume) allows 
you to change a disk name (the name of its vo~ume directory). You 
specify slot and drive numbers. The program proposes the exist
ing name, which you can accept by pressing RETURN or change 
by typing a new name before pressing RETURN. 

CHECKING DISK CONDITION Menu option D (Detect Bad Blocks) 
checks the disk whose slot and drive number& you specify for un
usable areas. It reads the disk and reports 0 BAD BLOCKS if it 
finds no problems, or it lists the block numbers where the prob
lems exist. If you have a disk with bad blocks, try copying all its 
files to a newly formatted disk and reformatting the bad disk. 



Organizing ProDOS Disks I 61 

CHECKING DISK USAGE To get a report of disk space allocation, 
choose option B (Block Allocation) from the Volume Commands 
Menu. For the disk you specify by slot and drive numbers, the 
program displays the number of 512-byte blocks in use, the 
number not in use, and the total number on the disk. 

COMPARING DISKS Menu option K (Compare Volumes) allows 
you to compare two disks to see if their contents are identical. 
You specify slot and drive numbers for each disk. If the files 
match, the message COMPARE COMPLETE appears. If the 
disks do not match, the disparate block numbers are listed. 

Changing ProDOS Filer Standard Responses 

Recall that when you choose any of the options in the Volume 
Commands Menu, the ProDOS Filer normally proposes that it 
act on the disk in slot 6, drive 1. If the option you choose requires 
two disks, the ProDOS Filer proposes that it use the disk in slot 
6, drive 2 for the second disk. Of course you can override the 
proposals each time you choose an option from the Volume Com
mands Menu. However, option D (Configuration Defaults) of the 
main ProDOS Filer Menu allows you to change the slot and drive 
numbers proposed by default. The Filer calls these numbers 
defaults. 

Option D of the main Filer Menu allows you to choose another 
default: whether output will appear on the screen or on the 
screen and the printer. The output is affected from options L, D, 
and K of the Volume Commands Menu and from options L and K 
of the File Commands Menu. 

To change the slot, drive, or output defaults, choose option S 
(Select Defaults) from the Configuration Defaults Menu. As 
shown in Figure 3-8, you must specify the slot and drive numbers 
you want proposed for both source and destination drives, and you 
must specify where you want output sent. The Filer proposes 
entries that you can accept by pressing RETURN or reject by typ
ing your own entries. 

To restore the Filer defaults to their initial values, choose 
option R (Restore Defaults) from the Configuration Defaults 
Menu. 



62 I Apple II User's Guide 

**************************************** 
* 
* 
* 

SELECT DEFAULTS * 
* 
* **************************************** 

--SELECT DEFAULTS--
FOR SOURCE SLOT: 6 

DRIVE: 1 

DESTINATION SLOT: 6 
DRIVE: 2 

SELECT AN OUTPUT DEVICE: 

PRINTER SLOT: <m> 

p 

--PRESS <RET> TO ACCEPT:<ESC> TO EXIT--

Figure 3-8. Selecting Filer defaults 

Quitting the Flier 

To quit the Filer, press the ESC key repeatedly until the main 
Filer Menu appears. Then choose option Q (Quit). You· must spec
ify the pathname of a file of type SYS to which the Filer can 
transfer control of the Apple II. For example, specifying the 
name BASIC.SYSTEM transfers control to the BASIC interpret
er and then automatically starts the BASIC program named 
STARTUP. 



Organizing ProDOS Disks I 63 

DOS 3.3-PRODOS CONVERSION _____ _ 

Typing the letter C from the Startup Menu chooses the Convert 
Menu (Figure 3-9), which you can use to convert ProDOS files to 
DOS 3.3 files or vice versa. Its options allow you to designate the 
direction of conversion, specify the location of the source and des
tination disks, set a date to be attached to new ProDOS files, and 
mark files to be converted. 

CONVERT Menu 
Direction: DOS 3.3 S6,D2 ---> ProDOS 
Date: <NO DATE> 
Prefix: /USERS.DISK/ 

R - Reverse Direction of Transfer 

C - Change DOS 3.3 Slot and Drive 

D - Set ProDOS Date 

P - Set ProDOS Prefix 

T - Transfer Cor List) Files 

Enter Command: • ? - Tutor, Q - Quit 

Figure 3-9. The Convert Menu 



64 I Apple II User's Guide 

Reversing Conversion Direction 

The second line of the Convert Menu screen shows which way 
files will be converted, DOS 3.3 to ProDOS or ProDOS to DOS 
3.3. You can change the direction by choosing option R (Reverse 
Direction of Transfer) from the Convert Menu. 

The DOS 3.3 Disk Drive 

Normally, the DOS 3.3 disk is assumed to be in a drive other 
than the one occupied by the ProDOS disk (as determined by the 
ProDOS prefix). You can specify any drive for the DOS 3.3 disk 
by choosing option C (Change DOS 3.3 Slot and Drive) from the 
Convert Menu. 

The ProDOS Date 

ProDOS can "stamp" a date on a file when the file is written on 
a disk. Some Apple II machines have an accessory card with a 
clock/calendar that provides the current date automatically. You 
can enter a date by choosing option D (Set ProDOS Date) from 
the Convert Menu. If you choose option D, you must enter a legiti
mate date in the format 28-FEB-85. The year must be any 
number between 0 and 99, the month must be a three-letter 
abbreviation such as JAN or SEP, and the day number must 
make sense with the month (for example, 31-FEB is not allowed). 

Entering a date via the Convert Menu does not set an accessory 
clock card if one is installed. Also, the accessory clock card may 
reset the date at midnight after you set the date via the Convert 
Menu. 

The ProDOS Prefix 

The ProDOS prefix designates which disk to use for the Pro
DOS files and may specify a partial pathname for them as well. 
The prefix is initially set to the name of the volume directory that 
contains file CONVERT. Option P (Set ProDOS Prefix) allows 
you to change the prefix. You may specify a prefix by typing a 
partial pathname directly or by entering the slot and drive 
numbers of a disk from which the volume directory name can be 
read. 



Organizing ProDOS Disks I 65 

Selecting and Converting ~iles 

Files are converted individually, not en masse, so you must 
specify which files to convert. After you choose option T (Transfer 
or List Files) from the Convert Menu, you are asked to enter a 
file name. You may type a single explicit file name or an ambigu
ous file name. The explicit file name specifies one file to be con
verted, but an ambiguous file name specifies a group of files. 

You specify an ambiguous name by including the character = 
or ? as a "wild card" that stands for any character or string of 
characters. For example, the simple name "=" specifies every 
file, the name "VIS!=" specifies all files that have names starting 
with the letters VIS!, and the name "=.TEXT" specifies all files 
that have names ending with .TEXT. The? wild card specifies an 
ambiguous name in the same manner as the = wild card. Only 
one wild card character is allowed in a name. 

Use a = wild card to convert all files identified by the ambigu
ous file name. You make no further entries or choices. 

Use a ? wild card if you wish to convert only some of the files 
identified by the ambiguous file name. A list of the matching file 
names is displayed (Figure 3-10), and one of the file names is 
highlighted in inverse characters. You can pick the highlighted 
file by pressing the SPACEBAR; an arrow will appear next to the 
file name. You can move down the list of file names by pressing l 
or - and up the list by pressing t or - . To unmark a file if you 
change your mind, move to it and press the SPACEBAR again. 
When you have marked all the files you want to convert, press 
RETURN and the conversion begins. You can cancel the conver
sion by pressing ESC. 

ProDOS has more stringent rules for naming files than does 
DOS 3.3. When going from DOS 3.3 to ProDOS, all blanks, punc
tuation, and symbols are changed to periods. In addition, long 
DOS 3.3 names are shortened to 15 characters. 

A DOS 3.3 directory can hold up to 105 files, but a ProDOS 
volume directory is limited to 51 files. Therefore, when convert
ing from DOS 3.3 to ProDOS, it's possible to fill the ProDOS 
volume directory before all files are converted. If this happens, 
the conversion stops and an advisory message appears. To con
vert a DOS 3.3 disk with more than 51 files to ProDOS, specify a 
ProDOS subdirectory, not the volume directory, as the destina
tion. ProDOS subdirectories can hold any number of files as long 



66 I Apple II User's Guide 

Transfer Cor List> Files 
Direction: ProDOS ---> DOS 3.3 S6,D1 
Date: 13-JUN-85 
Prefix: /EXAMPLES/PROGRAMS/ 

->WHIZBOOM 
TWO. LINER 
VERY.SHORT 

->ONERR.DEMO 
PART1 
PART2 
E.S.P. 
LISTSELF 
MAKE. FRUIT 
GET. FRUIT 
CONJUGATE 
CONJUGEATEN 
CONJUGEAT 
USE.SUB 
MAKE.TEXT 

ESC: CONVERT Menu 

BAS 01-0CT-83 
BAS 01-0CT-83 
BAS 01-0CT-83 
BAS 01-0CT-83 
BAS 01-0CT-83 
BAS 01-0CT-83 
BAS 01-0CT-83 
BAS 01-0CT-83 
BAS 01-0CT-83 
BAS 01-0CT-83 
BAS 01-0CT-83 
BAS 01-0CT-83 
BAS 01-0CT-83 
BAS 01-0CT-83 
BAS 01-0CT-83 

---------------- More -----------------

Enter Command: ~ ? - Help 

Figure 3-10. Selecting files to be converted 

as there is space available on the disk. 
ProDOS files of type DIR, VAR, BIN, REL, and $Fn cannot be 

converted to DOS 3.3. DOS 3.3 files of type I (Integer BASIC 
programs) can be converted to ProDOS but cannot be executed. 

You can use some files immediately after converting them to a 
different operating system. This is generally true of data files 
consisting of text or binary numbers. Program files, however, 
often require additional changes that must be made manually. 
For this reason, do not expect a program from a DOS 3.3 disk to 
work with ProDOS just because you transferred it to a ProDOS 
disk. 



Organizing ProDOS Disks I 67 

Quitting File Conversion 

To quit converting files from one operating system to another, 
press the ESC key repeatedly until the main Convert Menu 
appears. Then type the letter Q. You must specify the pathname 
of a file of type SYS to which the Filer can transfer control of the 
Apple II. For example, specifying USERS.DISK BASIC.SYS
TEM transfers control to the BASIC interpreter and automati
cally starts the BASIC program named STARTUP, thereby 
returning you to the Startup Menu. 

REVIEWING SLOT ASSIGNMENTS _____ _ 

To review the configuration of your Apple II, choose option S 
(Display Slot Assignments) from the Startup Menu. As shown in 
Figure 3-11, the displayed summary includes the name of the 
volume directory on the last disk accessed, model of Apple II, 
amount of memory (RAM), version of BASIC in ROM, and names 
of accessory cards installed in slots 1 through 7 (0 to 7 for the 
Apple II Plus and the standard Apple II). 

SETTING THE TIME.AND DATE ______ _ 

The ProDOS operating system keeps track of a date and time, 
which you can set by choosing option T (Display/Set Time) from 
the Startup Menu. When you choose option T, the current date 
and time are displayed and you are asked whether you wish to 
change them (Figure 3-12). The date and time are not displayed 
unless you have already set them or unless your Apple II has a 
clock/calendar accessory card that sets them automatically. 

Should you choose to enter the date and time, you will be 
required to enter them completely-you cannot cancel this 
procedure by pressing ESC. The date format is Ol-APR-86. The 
year must be any number between 0 and 99, the month must be a 
three-letter abbreviation such as JAN or SEP, and the day 
number must make sense with the month (for example, 31-JUN 
is not allowed). A 12-hour clock format is used, not a 24-hour 
format. You enter the hours, minutes, and A for A.M. or P for P.M. 



68 / Apple II User's Guide 

*************************************** 
* * 
* DISPLAY SLOT ASSIGNMENTS * 
* * 
*************************************** 

STARTUP DISK: /USERS.DISK/ 

YOUR Apple lie HAS: 

128K OF RANDOM ACCESS MEMORY 

APPLESOFT IN ROM 

SLOT 1: I/0 CARD 
SLOT 2: PARALLEL CARD 
SLOT 3: 80-COLUMN CARD 
SLOT 4: MOUSE/JOYSTICK 
SLOT 5: EMPTY 
SLOT 6: DISK DRIVE 
SLOT 7: EMPTY 

PRESS RETURN TO DIPLAY MAIN MENU ~ 

Figure 3-11. Reviewing Apple II configuration 

QUITTING THE STARTUP PROGRAM FOR BASIC __ 

To exit the ProDOS User's Disk STARTUP program alto
gether, choose option B (Applesoft BASIC). When you do, the 
STARTUP program ends, leaving you on a BASIC command 
line. Chapter 5 begins to explain what you can do from there. 



Organizing ProDOS Disks / 69 

*************************************** 
* 
* 
* 

SYSTEM DATE AND TIME UTILITY * 
* 
* *************************************** 

THE CURRENT SETTINGS ARE: 

DATE: <NO DATE> 

TIME: <NO TIME> 

UPDATE SYSTEM DATE AND TIME? YIN ~ 

Figure 3-12. Setting the date and time 



Organizing DOS 3.3 
Disks 4 

The DOS 3.3 System Master disk contains several programs 
that help you organize the programs and data files on DOS 3.3 
disks without memorizing and typing DOS 3.3 commands. 
Instead, you choose options from displayed menus and select pro
grams and data files from lists of displayed names. With 
programs on the DOS 3. 3 System Master disk, you can do the 
following: 

· Duplicate a disk. 
· Identify disk contents. 
· Copy program and data files between disks. 
· Remove selected program and data files from a disk. 
· Lock selected program and data files against change or re

moval. 
· Unlock selected program and data files for change or re

moval. 
· Check disks for readability. 

DOS 3.3 DISK ORGANIZATION ______ _ 

Before using the programs on the DOS 3.3 System Master 
disk, you must understand how information is organized on a 
DOS 3.3 disk. Although a single disk can store a large amount of 
information, all the storage space is rarely used for one purpose. 
Instead, several small, independent parcels of information usual-

71 



72 I Apple II User's Guide 

ly coexist on a single disk. Every operating system has a scheme 
for keeping track of all the separate parcels of information. 

DOS 3.3 Flies 

The DOS 3.3 operating system treats each disk as a filing 
cabinet and each parcel of information as a file in the filing 
cabinet. In fact, parcels of information on a disk are called files. 
A DOS 3.3 file may contain a program or a collection of data. 

Most data files are automatically created by programs as 
needed. Program files are created by the people who write the 
programs. Until you start writing your own programs, you will 
have little occasion to create a program file or data file yourself. 

DOS 3.3 Fiie Names 

Each DOS 3.3 file has a name so you can identify the different 
files on a disk. File names are assigned when files are created. 
The programs on the DOS 3.3 System Master disk tell you when 
you must assign a file name. 

The rules for composing file names are simple. Every name 
must start with a letter. After that, you can use any combination 
of letters, digits, symbols, blank spaces, and other characters that 
can be typed on the keyboard-but no commas. A DOS 3.3 file 
name cannot be more than 30 characters long. You can use any 
name that conforms to the rules, but a name that reminds you of 
what the file contains works best in the long run. 

DUPLICATING DISKS _________ _ 

The DOS 3.3 System Master disk contains a program for 
duplicating disks. There are two versions of the program. One, 
named COPY, is used with Integer BASIC, when the command 
prompt > is next to the cursor. The other version, COPYA, is 
used with Applesoft, when the command prompt] is next to the 
cursor. 

Before starting the duplication program, get the original 
(source) and duplicate (destination) disks ready. First, write
protect the original disk. This simple precaution may save you 
considerable grief if you make a mistake later in the procedure. 



Organizing DOS 3.3 Disks I 73 

Choose any spare disk for the duplicate, even a brand-new one. 
Make sure the duplicate disk is not write-protected. 

To start the duplication program, insert the DOS 3.3 System 
Master disk and type a RUN COPYA or RUN COPY command. 
When you press the RETURN key, the disk drive becomes active, 
and soon the message APPLE DISK DUPLICATION PRO
GRAM appears at the top of the screen. 

The duplication program begins by requesting the slot number 
of the drive that will hold the original (source) disk. On the right 
side of the display screen, the message DEFAULT...:...6 tells you 
that if you enter no slot number, but just press the RETURN key 
instead, the program will use slot 6 by default. If you want to use 
a different slot, type its number now and press RETURN. 

Next the program asks you to enter the number of the drive, 1 
or 2, that the original disk will occupy. It also tells you that if you 
specify no drive number, but just press the RETURN key, it will 
use drive 1. 

After you designate the slot and drive numbers for the original 
disk, the program requests the slot and drive numbers for the 
duplicate (destination) disk. You can specify any drive for the 
duplicate disk, including the same drive as the original disk. This 
time if you enter no numbers, but just press the RETURN key, the 
program will use slot 6 and drive 2 by default. 

At this point you will see the message -PRESS 'RETURN' 
KEY TO BEGIN COPY - on the display screen. If you wish to 
abort the copy operation you can do so now, but only by pressing 
CONTROL-RESET. The procedure from this point on differs 
depending on whether you are using one or two drives for the 
duplication. 

If the original and duplicate disks use the same drive, press the 
RETURN key now to proceed. Messages appear on the display 
screen asking you to insert first one disk, then the other. The 
program tells you to swap disks several times. You insert the orig
inal disk and the program reads part of it into memory, then you 
insert the duplicate disk and the program writes part of it out, 
and so on until the whole disk is duplicated. The first time you 
insert the duplicate disk, the program displays the message 
INITIALIZING. 

If the original and duplicate disks are in separate drives, the 
program does not tell you to insert them. You must do that before 
pressing the RETURN key in response to the message -PRESS 



74 I Apple II User's Guide 

'RETURN' KEY TO BEGIN COPY-. There is no need to swap 
disks; the copy proceeds without intervention. 

When the copy is finished, the message -DO YOU WISH TO 
MAKE ANOTHER COPY? - appears on the display screen. 
You can choose to make another copy using the same slot and 
drive numbers, or you can end the program. 

An error message appears during the copying procedure if you 
leave a drive door open, forget to insert the disk, or try to dupli
cate onto a write-protected disk. If this happens, restart the pro
gram with another RUN command. 

THE FILEM AND FID PROGRAMS _____ _ 

The DOS 3.3 System Master disk includes a file developer pro
gram, named FID, that lets you catalog, lock, unlock, delete, and 
verify files. It can also report the amount of space available on a 
disk. With the FID program you can copy a file or a set of files 
from one disk to another, even if your system has only one drive. 

To start the FID program, insert the DOS 3.3 System Master 
disk and type a RUN FILEM command as described in Chapter 
2. When you press the RETURN key, the disk drive becomes active 
and the message EXECUTING FID appears in the center of the 
screen. The FILEM program is starting the machine language 
program named FID. Soon the menu of FID program commands 
appears on the display screen (Figure 4-1). To execute one of the 
listed commands, type the number displayed next to it and press 
RETURN. 

File Names In the FID Program 

Some of the commands in the FID program require you to 
enter file names. You can always type an explicit file name, but 
sometimes it is easier to refer to a whole set of files at once. In the 
FID program, you can do that by using an ambiguous file name, 
that is, a single name that can identify any of several files. 

The FID program treats an equal sign ( =) as a "wild card" 
that stands for any character or string of characters. For exam
ple, the simple file name "=" specifies every file on the disk. As 
another example, the name "H =" specifies all files that have 
names starting with the letter H. Similarly, the name "=0" spec-



Organizing DOS 3.3 Disks I 75 

************************************** 
* APPLE ][ FILE DEVELOPER * 
* 
* 
* 

FID VERSION M * 
* 
* * COPYRIGHT APPLE COMPUTER,INC. 1979 * 

************************************** 

CHOOSE ONE OF THE FOLLOWING OPTIONS 

<1> COPY FILES 
<2> CATALOG 
<3> SPACE ON DISK 
<4> UNLOCK FILES 
<5> LOCK FILES 
<6> DELETE FILES 
<7> RESET SLOT & DRIVE 
<8> VERIFY FILES 
<9> QUIT 

WHICH WOULD YOU LIKE? • 

Figure 4-1. FID program command menu 

ifies all files that have names ending with the letter 0. You can 
use more than one = character in an ambiguous file name. The 
name "= L=" specifies any file that has a name with the letter L 
in it. In fact, all of the examples in this paragraph would specify 
the standard greeting program name, HELLO. 

The presence of an = character in a file name signals the FID 
program to ask this question: DO YOU WANT PROMPTS? If 
you answer N (for no), the FID program acts without further 
approval on every file identified by the ambiguous file name. If 
you answer Y, the FID program gets your approval before it acts 



76 I Apple II User's Guide 

on any file specified by the ambiguous file name. It does this by 
displaying a file name and waiting for your response. Type Y if 
you want the file acted on, N if you want it skipped, or Q if you 
want to quit the command at that point and return to the com
mand menu. 

Specifying a Drive 

The FID program identifies drives by slot and drive number, a 
concept explained in Chapter 2. When you first start the FID 
program, it does not know which drive to use. Therefore, on the 
first command you request, it asks for a slot and drive number. If 
the first command you choose is <1> COPY FILES, you must 
specify two drives, one to copy from and one to copy to (this pro
cess is described in detail later in this chapter). 

Once you specify a drive, the FID program continues to use 
that drive with subsequent commands until you specify a differ
ent drive using command <7> RESET SLOT AND DRIVE, as 
described later in this chapter. Also, if you switch back and forth 
between command <6> COPY FILES and any other command, 
you must specify the slot and drive again at each command. 

If you specify a slot or drive number that has no drive attached, 
you will eventually see the message INVALID SLOT or 
INVALID DRIVE. If that happens, press any key to return to 
the command menu. 

Copying Files 

The FID command <1> COPY FILES copies one or more files 
from one disk to another. You must enter the name of the file you 
wish copied; use an ambiguous file name to specify a set of files. 
The program tells you to insert the appropriate disks; you may 
want to first affix a write-protect label to the source disk as a 
safety measure. 

After typing a file name to copy, you may abort the copy opera
tion by pressing the ESC key. Press any other key to proceed. If 
the file or files you specify exist on the source disk and there is 
room for them, they will be copied. As each file is copied, it is 
announced on the display screen. If problems arise, you will see 
an error message and the copy operation will be canceled. Copies 
made before the error occurred will be intact. 



Organizing DOS 3.3 Disks I 77 

If the FID program discovers a file on the destination disk that 
has the same name as the source file, it asks you what to do about 
it. Press CONTROL-C, followed by RETURN, to skip copying that 
file. Or type a new destination file name, and the source file will 
be copied under that name. Press only the RETURN key and the 
source file will replace the destination file. However, if the desti
nation file is locked, the FID program requests your permission 
to ignore the lock before it goes ahead with the replacement. 

You can copy from one disk to another using a single drive by 
specifying the same slot and drive numbers for both the source 
and destination drives. If you do, the FID program has you insert 
the source disk first so it can transfer the file into the Apple II's 
memory. Then it asks you to replace the source disk with the des
tination disk so it can copy the file from memory to the destina
tion disk. If the file is too large to fit in memory all at once, or if 
there are several files involved, the copy operation occurs piece
meal: the FID program asks you to switch disks several times. 

Identifying Disk Contents 

Menu choice <2> CATALOG lists all the file names on a disk. 
If· he disk contains more than 18 files, the FID program displays 
the first 18 names and waits until you press a key; it then dis
play~ the next 20 names. The pause gives you time to read a 
screenful of file names before they disappear off the top of the 
scre<1n. 

The catalog listing includes three items for each file on the 
disk, as shown in Figure 4-2. From left to right, it reports 

1. The file type (A=Applesoft, !=Integer BASIC, B=Binary, 
T=Text). If the file is locked, the file type is prefixed with an 
asterisk. 

2. The amount of disk space the file currently uses, as a 
number of 256-byte blocks. When the file size reaches 256 
blocks, the number that appears in the catalog starts over at 
0 and thus does not reflect the true size of the file. 

3. The file name. 

In addition, the disk volume number appears on the first line of 
the catalog listing. 



78 I Apple II User's Guide 

CATALOG 

DISK VOLUME 254 

*A 003 HELLO 
*I 003 APPLESO FT 
*B 006 LOADER.OBJO 
*B 042 FPBASIC 
*B 042 INTBASIC 
*A 003 MASTER 
*B 009 MASTER CREATE 
*I 009 COPY 
*B 003 COPY .OBJ 0 
*A 009 COPY A 
*B 003 CHAIN 
*A 014 RENUMBER 
*A 003 FI LEM 
*B 020 FID 
*A 003 CONVERT13 
*B 027 MUFFIN 
*A 003 START13 
*B 007 BOOT13 

• 

Figure 4- 2. Partial catalog of a DOS 3.3 Syst~m Master disk 

Space on Disk 

To learn the amount of disk space used and available, choose 
command <3> SPACE ON DISK. Disk space is measured in 
256-byte blocks that the FID program calls sectors. 

Locking and Unlocking Files 

Some program or data files on a disk must be kept perma
nently. To protect such files against accidental erasure, renaming, 



Organizing DOS 3.3 Disks I 79 

or change, DOS 3.3 supports file locking. To lock a file, choose the 
command <5> LOCK FILES and specify the file's name. To 
unlock a file, choose the command <4> UNLOCK FILES and 
specify the file's name. You can lock or unlock more than one file 
at a time by specifying an ambiguous file name. 

Deleting Flies 

With command <6> DELETE FILES, you can delete a single 
file or, by using an ambiguous file name, you can delete several 
files at once. Be careful about deleting with ambiguous file 
names; it is all too easy to delete files you want to keep. 

The disk space formerly occupied by deleted files becomes 
available immediately for other files. 

Resetting the Slot and Drive 

Choosing command <7> RESET SLOT & DRIVE forces the 
FID program to ask you for slot and drive numbers immediately 
after you choose the next command from the menu. 

Verifying Files 

Command <8> VERIFY FILES checks a file or files you 
specify for readability. If it detects any problems, the message 
1/0 ERROR appears. You may check out a whole set of files by 
specifying an ambiguous file name. 

Quitting FID 

To end the FID program and return to the BASIC command 
prompt, choose command <9> QUIT. 

FID Program Errors 

One of the following error messages may appear during a 
FID program command: DISK FULL, DISK WRITE PRO
TECTED, FILE LOCKED, or 1/0 ERROR. Press any key and 
the command menu will reappear. 

Should an error code number appear instead of one of the mes-



80 I Apple II User's Gulde 

sages cited in the last paragraph, you must restart the Apple II 
by pressing CONTROL-OPEN APPLE-RESET or switching the con
sole off and back on. Then you must restart the FID program. 

If an error occurs during a file copy operation, immediately 
check the catalog of the destination disk for an incomplete file. 
The incomplete file will have the same name as the last source 
file displayed (or a different name if you gave it one) but will use 
fewer sectors than the source file. Delete the incomplete file at 
once, before attempting to copy any more files to the same disk. 



Fundamentals of 
BASIC Programming 5 

This chapter teaches you how to start writing your own pro
grams on the Apple II using the BASIC programming language. 
It explains the two different modes of operation available in 
BASIC, tells you how to type BASIC commands, and details 
advanced techniques for correcting and changing those 
commands. 

PROGRAMMING LANGUAGES ______ _ 

A programming language is the medium of communication 
between you and the computer. You use it to tell the computer 
exactly how to perform a given task. A program is simply a list 
of instructions that the computer follows to get a job done. 

There are many programming languages. Some, like BASIC, 
are general-purpose languages, while others are designed for spe
cific areas like business, science, graphics, and text manipula
tion. Programming languages are as varied as spoken languages. 
In addition to BASIC, other common programming languages 
are Pascal, C, FORTRAN, COBOL, PILOT, Logo, and FORTH. 

Apple II computers can use several programming languages, 
BASIC and Pascal among them. This book concentrates on de
scribing how to program the Apple II in BASIC. 

Syntax 

No matter what the programming language, every program 
statement must be written following a well-defined set of rules. 

81 



82 I Apple II User's Guide 

These rules taken together are referred to as syntax. Each pro
gramming language has its own syntax. 

Some programming language syntax rules are obvious. For 
example, a plus sign ( +) represents addition. You do not have to 
be a programmer to understand that. Normally, you would use an 
X or . for multiplication, but computer keyboards have no such 
symbols. Therefore, most programming languages use an aster
isk ( *) to represent multiplication. You will simply have to 
memorize that fact, along with some other rules that may seem 
arbitrary and meaningless at first. 

About BASIC 

BASIC is a popular programming language because it is easy 
to learn but still powerful enough to handle most applications in 
business, industry, and at home. Its roots date to 1964, when it 
emerged from Dartmouth College as an introductory language 
for programmers who shared a single large computer system. 
Those programmers never saw the computer itself, only a tele
type. Since then, dozens of computer manufacturers have 
expanded and improved BASIC to enable it to handle keyboards, 
display screens, printers, disk drives, and so on. Each manufac
turer changed the language in its own way. The result is that 
BASIC, like English, has many dialects. 

Dialects of BASIC 

Apple II computers give you a choice of two dialects of BASIC: 
Integer BASIC and Applesoft. Most programmers choose Apple
soft over Integer BASIC. Applesoft has more commands and fea
tures, including more graphics commands and the ability to use 
numbers with decimal fractions. Integer BASIC programs, how
ever, execute faster than Applesoft programs. 

Because of the differences between the two dialects, programs 
written in one dialect usually do not work correctly when the 
Apple II is expecting instructions in the other dialect. Further
more, a BASIC program written for the Apple II may not work 
on another computer, even if the other computer also claims to be 
programmable in BASIC. You must manually translate an exist
ing BASIC program to the dialect of BASIC that is used by the 
computer on which you wish to run the program. 



Fundamentals of BASIC Programming / 83 

Generally speaking, the descriptions and examples in this 
chapter and throughout the rest of the book pertain equally to 
Applesoft and Integer BASIC. Any features peculiar to one ver
sion will be clearly identified. Unless the text states otherwise, all 
program examples will work in Integer BASIC or Applesoft. 

STARTING BASIC __________ _ 

There are many ways to start BASIC on an Apple II. The 
method you use depends on which model you have, what accesso
ries it has, and which operating system -ProDOS or DOS 3.3-
you use. Also, the method for starting Applesoft differs from the 
method for starting Integer BASIC. 

All the instructions in this section assume you have already 
turned on your computer as described in Chapter 2. 

Starting Applesoft on an Apple lie 

If you wish to use the ProDOS operating system, you can start 
Applesoft as follows: 

1. Insert the ProDOS User's Disk in drive 1. 

2. Press CONTROL-OPEN APPLE-RESET to restart the computer. 
3. When the STARTUP program's main menu appears, choose 

Applesoft by pressing the B key. 

If you wish to use the DOS 3.3 operating system, you can start 
Applesoft as follows: 

1. Insert the DOS 3.3 System Master disk in drive 1. 

2. Press CONTROL-OPEN APPLE-RESET to restart the computer. 

If your Apple Ile has no disk drives, or if its drives are not 
working, you can also start Applesoft without an operating sys
tem. Follow these steps: 

1. Open the door on drive l, and leave it open. (Skip this step if 
your computer does not have drives.) 

2. Press CONTROL-OPEN APPLE-RESET to restart the computer. 
3. If drive 1 starts chattering and whirring, press CONTROL

RESET. 



84 I Apple II User's Gulde 

Starting Applesoft on an Apple II Plus 

If your Apple II Plus has 64K or more of read/write memory 
(RAM), follow the instructions in the previous section for starting 
Applesoft on an Apple Ile. 

If your Apple II Plus has less than 64K of RAM, you cannot use 
ProDOS. Follow the instructions in the previous section for start
ing with the DOS 3.3 System Master disk or for starting with no 
disk on an Apple Ile. 

Starting Applesoft 
On a Standard Apple II 

If your standard Apple II has a Language card installed, follow 
the instructil:tns in the section above for starting Applesoft on an 
Apple Ile using a DOS 3.3 System Master disk. 

If your standard Apple II has an Applesoft ROM accessory 
card inside the computer in slot 0, you have firmware Applesoft. 
You can follow the instructions in the section above for starting 
Applesoft on an Apple Ile using a DOS 3.3 System Master disk. 
You can also start Applesoft without an operating system as 
follows: 

1. Locate the switch that protrudes through the back panel 
from the Applesoft ROM accessory card. Flip the switch up. 

2. Press the RESET key. 
3. Press CONTROL-Band then RETURN. 

if your standard Apple II has neither a Language card nor an 
Applesoft ROM card in slot 0, you must load Applesoft from 
cassette tape. The procedure is explained in Chapter 2. 

After Starting Applesoft 

You can tell Applesoft is started and ready when you see its 
prompt character, a square bracket (D, at the left edge of the 
screen with the cursor next to it. At this point, the Apple II is 
waiting for you to type an Applesoft command. 



Fundamentals of BASIC Programming I 85 

SWltching to Integer BASIC 

You can switch to Integer BASIC from Applesoft by typing the 
command INT and pressing the RETURN key. After you switch to 
Integer BASIC, the command prompt is an angle bracket (> ). 
You can switch back to Applesoft by typing the command FP and 
pressing the RETURN key. 

Integer BASIC is not available on any Apple II when you use 
the ProDOS operating system. It is available on an Apple Ile or 
Apple II Plus when you use the DOS 3.3 operating system, but 
unavailable when you use no operating system. Integer BASIC is 
available on any standard Apple II when you use the DOS 3.3 
operating system or no operating system. 

Creating a ProDOS BASIC Disk 

Using the STARTUP program on the ProDOS User's Disk as 
described in Chapter 3, you can easily create a disk that starts 
Applesoft automatically. First you format a disk (remember that 
formatting erases all the information on the disk). Then you copy 
the files named PRODOS and BASIC.SYSTEM from the ProDOS 
User's Disk to the newly formatted disk. 

Now to start BASIC, merely insert the newly created BASIC 
disk in drive 1 and switch on the computer. You no longer have to 
go through the main menu in the STARTUP program on the 
ProDOS User's Disk. If the computer is already on, you can start 
BASIC by inserting your BASIC disk and pressing CONTROL
OPEN APPLE-RESET to restart the Apple II. 

TYPING COMMANDS _________ _ 

When the Apple II seems to be doing nothing except flashing 
the cursor, it is probably waiting for a command. You issue 
BASIC commands by typing them on the keyboard. The BASIC 
interpreter (Applesoft or Integer BASIC) examines each com
mand you enter and tries to determine what to do. If you type 
everything correctly, the BASIC interpreter can direct the com
puter to carry out your command. Thus, the BASIC interpreter, 



86 I Apple II User's Guide 

not the Apple II, determines the validity of the commands you 
type. 

On any machine except an enhanced Apple Ile, you must type 
commands in capital letters. To avoid confusion, you snould 
depress the CAPS LOCK key if you have an original Apple Ile. On 
an enhanced. Apple Ile, you can type commands in any combina
tion of uppercase and lowercase letters. 

If you make a mistake while typing in a command, you cannot 
use the DELETE key to correct it. The DELETE key does not back 
up along a command line. Instead, use the - key as described 
later in this chapter. 

Terminating Commands 

In most cases, the BASIC interpreter does not act on a com
mand until you press the RETURN key to indicate you are finished 
typing it. If you type a command and nothing happens, you prob
ably forgot to terminate it by pressing RETURN. 

You can cancel a command by pressing CONTROL-X instead of 
RETURN. 

Display Screen Line Length 

All Apple II models can display 40 characters on each screen 
line. Many have a special accessory card installed that makes it 
possible to display up to 80 characters per screen line. This fea
ture is especially common on Apple Ile machines. 

When you first turn on an Apple II, the 80-column adapter is 
inactive, so each display line is 40 characters wide. To activate 
the adapter and enable SO-character lines, use the following 
command: 

J PR#3 

The command above works only if the 80-column adapter is 
installed either in slot 3 of a standard Apple II or Apple II Plus, 
or in the special auxiliary slot provided for it on an Apple Ile. If 
the adapter card is in a different slot, use that slot number 
instead of the 3 in the PR# command. If you use the PR# com
mand with the wrong slot number, the computer will behave 
unpredictably, and may even lock up, forcing you to reset it with 
CONTROL-RESET. 



Fundamentals of BASIC Programming I 8 7 

Many companies make 80-column adapter cards for the Apple 
II, and while all enable SO-character display lines, there are 
some differences among them. The following description of 80-
character mode applies specifically to an Apple Ile fitted with an 
Apple brand 80-column adapter card. 

When you press the RETURN key after typing a PR#3 com
mand, the Apple Ile clears the display screen. The cursor and 
command prompt reappear in the upper left-hand corner of the 
screen, which is called the home position. The cursor changes 
from a flashing checked square to a solid-color rectangle. Like 
the cursor, characters you type now will be half their former 
width. This is called active-BO mode, because the 80-column adapt
er is active and enabling SO-character lines. 

If the characters are too small to read easily, you can shift back 
to the wider size by pressing the ESC key, releasing it, and then 
pressing the 4 key. Every character on the left half of the display 
screen doubles in size, and the characters on the right half are 
lost. This is called active-40 mode. The 80-column adapter is still 
active, but has switched over to 40-character lines. To switch 
back to active-80 mode and its 80-character lines, press ESC, 
then 8. 

You may notice that when you switch between active-80 and 
active-40 modes, the cursor design changes momentarily. Press
ing the ESC key when the 80-column adapter is active etches a 
cross onto the cursor. The cross disappears as soon as you press 
the 4 or 8 key. You can ignore the cross for now; you will use it 
when editing commands and program lines, topics discussed 
later in this chapter. 

Typing ESC-CONTROL-Q changes the cursor back to a blinking 
checked square and the line width to 40. Notice that none of these 
ESC key commands require you to press the RETURN key. Typing 
CONTROL-RESET also deactivates the 80-column adapter, but may 
leave meaningless random characters on the display screen. 

IMMEDIATE MODE COMMANDS _____ _ 

When you first start BASIC, it is in immediate mode, also 
called direct or calculator mode. In this mode, the computer 
responds immediately to any instructions you issue. 



88 I Apple II User's Guide 

Displaying Characters 

The PRINT command lets you write your own messages on the 
display screen. Try typing in this example: 

JPRINT "LET SLEEPING DOGS LIE" 

Don't forget to press the RETURN key after the last quotation 
mark. The Apple II prints the following message: 

LET SLEEPING DOGS LIE 

A PRINT command like the one above instructs the computer 
to display everything between the quotation marks. The cursor 
disappears momentarily while the computer executes the com
mand, then reappears, telling you the computer is ready for 
another command. 

There is a limit to the length of the message you can put 
between quotation marks. The limit is different for Integer 
BASIC and Applesoft, but in both cases it exceeds the width of 
the display screen. This means a command can occupy more than 
one display line. Long commands like this automatically wrap 
around to the next line on the display screen. Try this command: 

JPRINT "UNDER NORMAL CIRCUMSTANCES, THE 
MAN WOULD BE CONSIDERED CRAZY" 

When you press RETURN, you'll see this (on a 40-column screen): 

UNDER NORMAL CIRCUMSTANCES, THE MAN WOUL 
D BE CONSIDERED CRAZY 

Integer BASIC allows about 120 characters per command. If 
you exceed the limit, you will get the message *** TOO LONG 
ERR after you press the RETURN key. 

Applesoft allows 255 characters per command. As you approach 
the limit, the Apple II starts beeping. When you exceed the limit, 
it displays a backslash ( \) and automatically cancels your entry, 
as if you had pressed CONTROL-X. 



Fundamentals of BASIC Programming I 89 

Displaying Calculations 

You can use the PRINT command in immediate mode as you 
would use a calculator; it responds directly with the answers to 
arithmetic calculations. Try these examples: 

]PRINT 4+6 
10 

]PRINT 500-437 
63 

J PRINT 100•23 
2300 

]PRINT 3"2 
9 

]PRINT 3•4•10-800 
-680 

HI 

In each calculation above, the answer will appear on the line 
immediately following the command when you press RETURN. 
Notice that you do not use quotation marks in these examples. 
Type one of the examples above with quotation marks and watch 
what happens. (The computer prints the problem, not the 
answer.) 

Integer BASIC has a maximum and minimum limit on the 
value of a calculation. If the value of a calculation is more than 
32767 at any point during the calculation, the error message *** 
>32767 ERR appears. If the value is less than -32767, the mes
sage-••• >32767 ERR appears. Some examples of these errors 
are shown below. The last example shows division by zero. 

>PRINT -32766-2 
-*** >32767 ERR 
>PRINT 2"15-1 
*** >32767 ERR 
>PRINT 10/0 
*** >32767 ERR 
>B 

Decimal fractions are not allowed in Integer BASIC. If you 



90 I Apple II User's Guide 

perform a division calculation that does not come out even, the 
remainder will be discarded. For example, try this calculation: 

>PRINT 9/2 
4 
>If 

Applesoft does allow fractions. Numeric values can have a total 
of nine significant digits, including both fractional and nonfrac
tional parts. This means that values with more than nine digits 
are rounded off to nine or fewer nonzero digits. The following 
examples illustrate how this works: 

JPRINT 12.34567896 
12.345679 

J PRINT 12.34567894 
12.3456789 

HI 

If you try some of your own arithmetic calculations in im
mediate mode in Applesoft, you will notice that the result is 
sometimes displayed using scientific notation. 

JPRINT 10 .. 9 
1 E+09 

HJ 

If you do not understand scientific notation, stick to simple cal
culations for now. We will investigate scientific notation and 
numeric values in the next chapter. 

Mixing Characters and Calculations 

The PRINT command can also mix messages and calculations. 
To do that, type the command word PRINT, then type the first 
message or calculation. Next, type a semicolon, and after that 
type the second message or calculation. Here is an example: 

JPRiNT 2*8*11+2*8*14;" SQ. FT." 
400 SQ. FT. 



Fundamentals of BASIC Programming I 91 

You can include as many messages and calculations as you like, 
in any combination. Just separate one from anotlier with ~ 
semicolon. 

Abbreviated PRINT Command 

Applesoft allows you to abbreviate the PRINT statement as ~ 
question mark. Here are some examples you can try: 

]1"TIME MARCHES ON" 
TIME MARCHES ON 

]113-46•6 
-263 

i• 

Error Messages 

Both Applesoft and Integer BASIC are very fussy about the 
way you type commands. If you make a spelling or punctuation 
error in a command, the Apple II beeps to draw your attention to 
the error, and a message appears to suggest the likely cause of 
trouble. Applesoft and Integer BASIC have limited diagnostic 
abilities, so do not expect a definitive analysis of your error. They 
must choose from fewer than 40 messages to describe one of the 
thousands of errors and combinations of errors that can occur. 

There are some errors the computer cannot detect. Suppose you 
want to multiply 28 times 187, and you type this by mistake: 

]PRINT 28+187 
215 

Hi 

In this example, the Apple II has responded with the correct 
answer to the calculation. It cannot tell that you accidentally 
typed the wrong arithmetic operation. Likewise, neither Apple
soft nor Integer BASIC check the accuracy of text you type 
between quotation marks, so they do not detect mistakes there. 

Error messages have a slightly different format in Integer 
BASIC than in Applesoft, as the following shows. 



92 I Apple II User's Gulde 

Applesoft 

lPRNIT "THE LAVA FLOWS" 

?SYNTAX ERROR l• 
Integer BASIC 

>PRNIT "THE LAVA FLOWS" 
*** SYNTAX ERR >• 

EDITING COMMAND LINES _______ _ 

The simplest way to change a command line is to retype it. 
This is unsatisfactory for several reasons. Retyping is a time
consuming chore and the chances of typographical errors are 
high. Fortunately, there is a way to modify command lines you 
have already typed, as long as they are still visible. This is possi
ble both in Integer BASIC and in Applesoft because anything 
displayed on the screen is live. In other words, you can edit any
thing on the screen. By using the ESC key in conjunction with 
several other keys, you can move the cursor around on the screen 
at will. This allows you to position the cursor to the beginning of 
any line that is displayed on the screen. Then you can use the -
key to pass over parts of the command line you wish to leave un
changed. You can replace, insert, or delete characters anywhere 
on the line. 

Moving the Cursor 

There are three ways to move the cursor using keystrokes. The 
easiest method works only on the Apple Ile; a slightly less con
venient method works on most Apple II models; and the most 
awkward method works on any Apple II. 

On the Apple Ile, you can use the-,-, I, and t keys to move 
the cursor around on the display scr.een. But first you must press 
the ESC key to put the computer in escape rrwde (sometimes called 
edit rrwde). If the Apple Ile is in active-40 or active-80 mode (80-
column adapter active), pressing ESC etches a cross on the solid 
white cursor. The cross reminds you that the computer is in 



Fundamentals of BASIC Programming / 93 

SHIFT 

CAPS ,..,, 
LOCK • 

Figure 5-1. Cursor movement keys in escape mode (most Apple II models) 

escape mode. If the 80-column adapter is inactive (or not 
installed), pressing the ESC key still puts the computer in escape 
mode, even though the cursor remains a flashing checked square. 

On an Apple II Plus (or Apple Ile), you can use the I, J, K, and 
M keys for cursor movement in escape mode. Because of the way 
these four keys are situated on the keyboard, they form a direc
tional control pad (Figure 5-1). As with the arrow keys on the 
Apple Ile, you must press the ESC key to put the computer in 
escape mode before the I, J, K, or M key will move the cursor. 

On any Apple II, you can move the cursor around on the screen 
by pressing two keys in sequence. First press and release the ESC 
key, then press either the A, B, c, or D key. The A key moves the 
cursor right, the B key moves it left, c moves it down, and D 
moves it up (Figure 5-2). Each time you want to move the cursor 
one position, you must press the ESC key and the appropriate let
ter key, A, B, c, or D. 

~ 
ESC,D 

¢ ESC,8 ESC,A ~ 
ESC,C 

* 
Figure 5-2. Cursor movement (any Apple II) 



94 I Apple II User's Guide 

On an Apple Ile, the -, -, l, and t keys will repeat if you hold 
them down, moving the cursor longer distances with fewer key
strokes. On an Apple II Plus, you can use the REPT key with the I, 
J, K, and M keys to do the same thing. 

Changing Characters 

Replacing one character with another is easy. Using one of the 
methods described above, move the cursor to the first character 
of the line in which you want to make a change. Then, making 
sure the computer is not in escape mode, use the - key to copy 
over the characters you want to leave alone. Stop when you get to 
the first character you want to change. Type the new characters 
right over the old ones. Use the - key again to recopy to the end 
of the line. Finally, press the RETURN key to effect the change. 

For example, suppose you have just typed the following com
mand to calculate the cubic feet of storage space in a 10 X 25 X 
8-foot storage locker: 

JPRINT "CU. FT. OF SPACE= ";10•25*8 
CU. FT. OF SPACE = 2000 J. 
You can easily change this immediate mode line to calculate the 

storage space in storage lockers of different sizes. To change the 
dimensions to 10 X 25 X 14, for example, first position the cursor 
at the beginning of the immediate mode line. Use any of the cur
sor movement techniques described above. On an Apple Ile, for 
example, press the ESC key to put the computer in escape mode 
and then press the t key three times to move the cursor up to the 
line where you want to make the change. 

J::RINT "CU. FT. OF SPACE= ";10•25*8 
CU. FT. OF SPACE = 2000 

J 

Next, press ESC again to take the computer out of escape mode. 
Press and hold the - key. The cursor will fast-forward along the 
line as the characters it passes over are recopied. (If you do not 
have an Apple Ile, you will have to use the REPT key, too.) Release 
the key (or keys) in time to stop the cursor when it gets to the 8. 



Fundamentals of BASIC Programming I 95 

If you overshoot or undershoot by not releasing the key at the 
proper time, backspace or recopy one character at a time by tap
ping the - and - keys. 

] p R I N T II c u. F T. 0 F s p A c E = II; 1 0 * 2 5 * .4 
CU. FT. OF SPACE = 2000 

] 

With the cursor positioned over the 8, type in the new room 
dimension of 14 and press the RETURN key. 

]PRINT "CU. FT. OF SPACE= ";10*25*14 
CU. FT. OF SPACE = 3500 

Deleting Characters 

With a slight change, the general procedure outlined above for 
changing characters will also work for deleting them. The only 
difference comes when, instead of typing new characters over 
old, you use cursor movement techniques to skip over the old, 
unwanted characters. On an Apple Ile, you can use the - key to 
skip over characters. Be sure the computer is in escape mode, or 
you will recopy the characters instead of deleting them. For 
example, with the cursor like this, 

l•RINT "OUT, DAMNED SPOT! OUT, I STRAY!" 

use the - key (not in escape mode) to recopy the characters up to 
the mistake: 

]PRINT "OUT, DAMNED SPOT! OUT, I s•RAY!" 

Using cursor movement keys only, skip over the two extra 
characters T and R. On an Apple Ile, for example, you would 
press the ESC key to put the computer in escape mode and then 
press the - key twice. 

] p R I NT II 0 u T, DA M NED s p 0 T ! 0 u T, I s TR:: y ! II 

Now press ESC again to take the computer out of escape mode, 
and recopy the remaining characters with the - key. Press the 
RETURN key, and the message is printed correctly. 



96 I Apple II User's Guide 

]PRINT "OUT, DAMNED SPOT! OUT, I STRAY!" 
OUT, DAMNED SPOT! OUT, I SAY! J. 
You can also use the SPACEBAR to delete characters by replac

ing them with blank spaces. To blank out all characters from the 
cursor position to the end of the display line, press ESC and then 
E. This has the same effect as pressing the SP ACE BAR repeatedly 
until you reach the end of the display line, but in this case the 
cursor doesn't move. Characters on the next display line are not 
erased from the screen even if they were part of the same 
command. 

Inserting Characters 

Inserting characters into a line may seem confusing at first 
because the final results are not immediately apparent. The 
Apple II cannot push apart characters on a line to make room for 
insertions. Instead, you insert text above the line with the aid of 
the cursor movement keys. You must remember that the com
mand line displayed on the screen is not necessarily an exact 
replica of the command line stored in the computer's memory. 

For example, suppose you want to insert the word BAND in 
front of the word WAGON in the example below: 

]PRINT "ON THE WAGON" 
ON THE WAGON J. 

Press ESC to put the computer in escape mode. Then use the cur
sor movement keys (t, -, I, J, and so on) to position the cursor so it 
is on the first character of the command line, as follows: 

J::RINT "ON THE WAGON" 
ON THE WAGON 

J 

Press ESC again to take the computer out of escape mode, and use 
the - key to copy over the first part of the line, stopping at the W. 
Make sure the computer is not in escape mode while you do this. 



JPRINT "ON THE .AGON" 
ON T~E WAGON 

J 

Fundamentals of BASIC Programming I 97 

Press the ESC key followed by the t key (or I key) to move the 
cursor up one line. If there are characters to the right of the cur
sor on this line; you can erase them by first pressing the E key 
and then ESC to get back into escape mode). 

:: 
JPRINT "ON THE WAGON" 
ON THE WAGON 

] 

Press ESC again to take the computer out of escape mode, and 
type the word BAND. 

BAND. 
JPRINT "ON THE WAGON" 
ON THE WAGON 

J 

In escape mode again, position the cursor on the letter W on the 
original line. Remember, if you're not in escape mode the - key 
will erase the characters it passes over; do not un-insert your 
insertions! 

BAND 
l PR INT "ON THE ::1AGON" 
ON THE WAGON 

J 

Finally, use the - key to copy over the rest of the line. (Make sure 
the computer is not in escape mode.) Press the RETURN key to 
reexecute the command. 

BAND 
JPRINT "ON THE WAGON" 
ON THE BANDWAGON 



98 I Apple II User's Guide 

PROGRAMMED MODE STATEMENTS ____ _ 

There is only so much you can do in immediate mode. Instead 
of typing commands for immediate execution, you can type them 
into a program and def er their execution until later. This is 
called programmed mode (also called deferred mode or indirect 
mode). In programmed mode, the computer accepts and stores 
commands in its memory, but does not act on them until you tell 
it to do so. In this mode, commands are usually called statements, 
but people do use the terms interchangeably. Most immediate 
mode commands can be used as programmed mode statements, 
and vice versa, although there are a few that work in only one 
mode. Appendix A lists all commands and statements and speci
fies those that are limited to immediate or programmed mode. 

Line Numbers 

Most immediate mode commands can be converted to program 
statements by adding a line number. A line number is simply a 
one- to five-digit number entered at the beginning of a program 
line. Here is an example: 

J10 PRINT "RUBBER BABY BUGGY BUMPERS" 

In Applesoft, line numbers can range between 0 and 63999. Inte
ger BASIC allows line numbers between 0 and 32767. 

Line numbers determine the sequence of program lines in a 
BASIC program. The first line must have the smallest line 
number, and the last line must have the largest. Even if you type 
the lines out of order, the Apple II will internally rearrange them 
in the proper sequence by line number. 

Listing Program Lines 

You can see what program lines the computer has stored in its 
memory at any time by typing the command LIST. Suppose you 
type in the following program: 

J30 PRINT "CUT" 
J10 PRINT "FISH" 
J20 PRINT "OR" 
J40 PRINT "BAIT" 
J8 



Fundamentals of BASIC Programming I 99 

Looking back at your work, you notice that the lines are out of 
order. This makes no difference, because the Apple II has inter
nally rearranged them by line number. To reassure yourself, you 
can list the lines the computer has in its memory with a LIST 
command: 

JLIST 

10 PRINT "FISH" 
20 PRINT "OR" 
30 PRINT "CUT" 
40 PRINT "BAIT" 

This is called a program listing. There are variations of the 
LIST command that allow you to list one line at a time or a group 
of lines. This latter option is especially handy when you have a 
long program that will not fit on the display screen all at once. 
With the last example program still in the computer's memory, 
the command LIST 10 will list just line 10, like this: 

JLIST 10 

10 PRINT "FISH" 

To list several sequential program lines, you must specify both 
the starting and ending line numbers, as in this example: 

J LIST 20,40 

20 PRINT "OR" 
30 PRINT "CUT" 
40 PRINT "BAIT" 

n~ 

In Applesoft, you can list all program lines up to and including 
a specific program line. You can also list all program lines from a 
specific line to the end of the program. Here are examples of 
those two versions of the LIST command: 

JLIST ,20 

10 PRINT "FISH" 
20 PRINT "OR" 



100 I Apple II User's Gulde 

JLIST 20, 

20 PRINT "OR" 
30 PR INT "CUT" 
40 PRINT "BAIT" 

ni 

You can halt a listing before it reaches the end by typing 
CONTROL-C. This is especially useful for halting the interminable 
listing of a long program. 

On Apple Ile and Apple II Plus machines you can temporarily 
suspend the listing of a program by pressing CONTROL-S. The 
listing resumes when you press CONTROL-S again. This feature 
allows you to review the listing of a long program at your own 
pace. 

Program Execution 

The computer executes or runs a program when it performs the 
operations the program specifies. An immediate mode command 
is like a one·line program that is executed as soon as you press 
the RETURN key. In programmed mode you must issue the RUN 
command to execute a program. Each time you do so, the entire 
program runs again. The following example illustrates this: 

JLIST 

10 PRINT "FISH" 
2 0 p R I N T 11 0 R II 

30 PRINT "CUT" 
40 PRINT "BAIT" 
50 END 

]RUN 

EITHER 
FISH 
OR 
CUT 
BAIT 

J}I 

An END statement like the one on line 50 in the example above 
tells BASIC to stop executing the program and to then return to 



Fundamentals of BASIC Programming I 101 

immediate mode. Therefore an END statement should be the last 
statement your program executes. Applesoft does not require an 
END statement. It ends a program automatically when it runs 
out of statements. Still, it's a good idea to end your programs 
properly, with END statements. 

A plain RUN command like the one in the previous example 
starts the program at its lowest line number. With a variation of 
the RUN command, you can specify which line to start on. The 
following RUN command executes the last two lines of the pre
vious program: 

JRUN 30 
CUT 
BAIT 

JS 

Multiple-statement Lines 

You can put more than one statement on a single program line. 
The first statement follows the line number. The second state
ment follows the first, with a colon(:) in between. In other words, 
use colons to separate the statements on a multiple-statement 
line. Here is an example: 

]10 PRINT "FISH":PRINT "BAIT":END 

Applesoft allows multiple-statement program lines in both pro
grammed and immediate modes. In both cases, the line length 
limit is 255 characters, as described earlier in this chapter. 

Integer BASIC allows multiple-statement lines only in pro
grammed mode. Immediate mode lines can have just one com
mand each. Line length is limited to approximately 150 charac
ters. The exact line length limit depends on the content of the 
line. 

Program Comments 

If you write a short program with five or ten statements, you 
will probably have little trouble remembering what the program 
does-unless you leave it around for six months and then try to 
use it again. If you write a longer program with 100 or 200 



102 I Apple II User's Guide 

statements, then you are quite likely to forget something impor
tant about the program the very next time you use it. After you 
have written dozens of programs, you will stand no chance of 
remembering each program in detail. The solution to this prob
lem is to document your program by including comments or 
remarks that describe what is going on. 

Use REM statements to put remarks in your program. Here is 
an example: 

]10 REM DISPLAY BOILING POINT OF WATER 
]20 REM IN SEVERAL TEMPERATURE SCALES 
J30 PRINT 212: REM FAHRENHEIT 
]40 PRINT 100: REM CELSIUS 
J50 PRINT 80: REM REAUMUR 

The computer skips over REM statements; it does not execute 
them. Everything on a program line that follows the command 
word REM is treated as an explanatory comment, so a REM 
statement must come last on a multiple-statement line. 

Automatic Line Numbering 

Integer BASIC will automatically number your program lines 
for you. Use the AUTO command to institute this feature. The 
computer will then supply the next line number each time you 
press the RETURN key. Here is an example: 

>AUTO 1000 

>1010 PRINT "HOW MANY YARDS IN A MILE?" 
>1020 PRINT 5280/3 
>1030 >• 
As you can see from the example, the AUTO command 

requires you to specify the line number where automatic line 
numbering should start. You can also specify the increment 
between line numbers. The following example illustrates this: 

>AUTO 1000, 100 

>1100 PRINT "HOW MANY YARDS IN A MILE?" 
>1200 PRINT 5280/3 
>1300 
>m 



Fundamentals of BASIC Programming I 103 

In the example above, line numbers are incremented by 100. If 
you do not specify the increment, the Apple II uses an increment 
of 10 by def a ult. 

The computer will not advance to the next line number if it 
finds an error on the line you just finished, or if you entered 
nothing on the line except RETURN. 

To get out of the automatic line numbering mode, type 
CONTROL-X. This cancels the line number provided by the com
puter. Following that, type the command MAN to return to man
ual line numbering. 

EDITING BASIC PROGRAMS ______ _ 

Few programmers can write perfect programs and type them 
in without a mistake. Even fewer can avoid making changes and 
improvements as they go along. Fortunately, the techniques pre
sented earlier in this chapter for editing command lines also 
work with programmed mode lines. There are also ways to add, 
delete, and replace entire program lines. 

Changing Lines 

In order to edit anything, whether it is an immediate mode 
command or a program line, it must be visible on the display 
screen. In the case of an immediate mode line, if it's not visible 
you'll have to retype it. But you can redisplay programmed mode 
lines with the LIST command. Simply specify starting and end
ing line numbers for a screen-sized section of the program. If you 
list too much, stop the listing by pressing CONTROL-C while the 
line you want to change is still on the screen. It doesn't matter 
how a line gets on the screen; once it's there, you can change it. 

When a program line is too long to fit on one display line, the 
LIST command automatically continues it on the next display 
line. The continuation lines are indented five spaces. You can 
keep the LIST command from indenting continuation lines. 
First, clear the entire display screen by pressing ESC followed by 
@. Then type the following command: 

POKE 33,30 



104 I Apple II User's Guide 

In addition to suppressing the indentation, the preceding com
mand reduces the width of the display screen to 30 characters. 
This technique works only when the screen width is 40 and does 
not change the character size. Don't worry for now about how the 
POKE command works; we will explore it in more detail in 
Chapter 8. 

To return the display to a width of 40, type this: 

POKE 33,4.0 

Replacing Lines 

To replace a program line with a new one, just type in the new 
line using the old line number. The Apple II automatically 
deletes an existing program line that has the same line number 
as one you type in later. 

Deleting Lines 

To delete an entire line, type its line number and then press the 
RETURN key. When you list the program, you will see that the 
line and line number are no longer part of the program. Here is 
an example: 

J100 PRINT "VIRTUE IS ITS OWN REWARD" 
J 110 PRINT "IF THE SHOE FITS, WEAR IT" 
J120 PRINT "WHERE THERE'S SMOKE, THERE'S 

FIRE" 
J130 PRINT "LOOK BEFORE YOU LEAP" 
J 140 PRINT "BREVITY IS THE SOUL OF WIT" 
]150 END 
J110 
]130 
]LIST 

100 PRINT "VIRTUE IS ITS OWN REW 
ARD" 

120 PRINT "WHERE THERE'S SMOKE, 
THERE'S FIRE" 

140 PRINT "BREVITY IS THE SOUL 0 
F WIT" 



Fundamentals of BASIC Programming / 105 

150 END 

]}I 

You can use the DEL command to delete a block of program 
lines. Continuing the example above, 

]DEL 110,140 

]LIST 

100 PRINT "VIRTUE IS ITS OWN REW 
ARD" 

150 END 
]If 

In the example above, the command DEL 110,140 deletes all 
program lines starting at line number 110 and ending with line 
number 140. Even though line 110 does not exist, all lines 
between 110 and 140 are deleted. 

Adding Lines 

You can type in new program lines in any order, at any time. 
Their line numbers determine their position in the program. The 
Apple II automatically merges them with any other program 
lines currently in memory. Try adding Ifnes 120 and 110 back 
into the example above. · 

1120 PRINT "WHERE THERE'S SMOKE, THERE'S 
FIRE" 

]110 PRINT "IF THE SHOE FITS, WEAR IT" 
JLIST 

100 PRINT "VIRTUE IS ITS OWN REW 
ARD" 

110 PRINT "IF THE SHOE FITS, WEA 
R IT" 

120 PRINT "WHERE THERE'S SMOKE, 
THERE'S FIRE" 

150 END 



106 I Apple II User's Guide 

Renumbering Program Lines 

The DOS 3.3 System Master disk contains a program, named 
RENUMBER, that can renumber the lines in an Applesoft pro
gram. You must run RENUMBER before you start typing any 
program lines; you may want to do this right after starting the 
computer. The RENUMBER program adds a new command to 
Applesoft and displays a summary of its options (Figure 5-3). 

Running the RENUMBER program adds the ampersand 

RENUMBER (DEFAULT VALUES) 

& {FIRST 10] [,INC 10] C,S OJ C,E 63999] 

MERGE 

&H PUT PROGRAM ON HOLD 
&M MERGE TO PROGRAM ON HOLD 

PRESS 'RETURN' TO CONTINUE •••• 

Figure 5-3. Renumber (&command) options 



Fundamentals of BASIC Programming I 107 

command, &, to Applesoft. It can go through your program and 
assign new, equally spaced line numbers. The following example 
illustrates this: 

]LIST 

6 PRINT "FISH" 
73 PRINT "OR" 
85 PRINT "CUT" 
99 PRINT "BAIT" 
1400 END 

l& 

]LIST 

10 PRINT "FISH" 
20 PRINT "OR" 
30 PRINT "CUT" 
40 PRINT "BAIT" 
50 END 

Hi 

The & command has two options that let you restrict the part of 
the program that is renumbered. The S option specifies the line 
number to start on and the E option specifies the number to end 
on. To use these options, add an S followed by the starting line 
number, then a comma, and after that an E followed by the end
ing line number, like this: 

]LIST 

6 PRINT "FISH" 
73 PRINT "OR" 
85 PRINT "CUT" 
99 PRINT "BAIT" 
1400 ENO 

l&S73,E99 
]LIST 

6 PRINT "FISH" 
10 PRINT "OR" 
20 PRINT "CUT" 
30 PRINT "BAIT" 
1400 END 

JS 



108 I Apple II User's Guide 

Two other options, F and I, let you designate the first new line 
number to use and the increment between newly assigned line 
numbers. Here is an example: 

JLIST 

6 PRINT ''FISH" 
73 PRINT "OR" 
85 PRINT "CUT" 
99 PRINT "BAIT" 
1400 END 

J&F100,I20 

]LIST 

100 PRINT "FISH" 
120 PRINT "OR" 
140 PRINT "CUT" 
160 PRINT "BAIT" 
180 END 

Hi 

You can use all four options in one & command, and can list 
them in any order. You can also use one option alone, any two 
options, or any three options. If any option is missing, the & 
command uses a standard number by default, as listed in Table 
5-1. If an error occurs during the renumbering process, a 
message explains the problem. The messages are listed in 
Appendix B. 

A program may contain statements that ref er to other pro
gram line numbers. The & command automatically corrects the 

Table 5-1. Renumber Command Options 

Option Specifies 

s Line number to start renumbering 

E Line number ~o end renumbering 

F First new line number to use 

I Increment between newly assigned line numbers 



Fundamentals of BASIC Programming I 109 

line number references in those statements. That includes DEL, 
LIST, and RUN when they are used in programmed mode. It 
also includes some statements that are covered in later chapters: 
GOTO, ON-GOTO, GOSUB, ON-GOSUB, and IF-THEN. The & 
command does not correct line numbers that are in REM 
statements. 

Caution: Do not reset the computer by pressing CONTROL
RESET while renumbering is in process, or you will destroy your 
program. The FP command may destroy the & command, forc
ing you to rerun the RENUMBER program to restore it. Doing 
that erases your Applesoft program. 

Clearing Out Old Programs 

Because the Apple II stores programs in its memory, you must 
specifically instruct it to erase an old program before you type in 
a new one. Do this by typing the command NEW. If you forget to 
type NEW, your new program will be mixed in with your old 
program. 

ENDING BASIC __________ _ 

Switching off the Apple II ends a session with Applesoft or 
Integer BASIC, as does restarting with another disk (by inserting 
the new disk and pressing CONTROL-OPEN APPLE-RESET). Be 
careful not to switch off or restart the computer while it is exe
cuting a command or program. 



BASIC Programs on 
Disk and Cassette 6 

Since the Apple II can keep only one BASIC program in its 
memory at a time, you need some way to store a program outside 
memory and retrieve it on demand. Depending on how you start 
the Apple II and on which dialect of BASIC you use, you can 
store programs on cassettes only, DOS 3.3 disks and cassettes, or 
ProDOS disks. Table 6-1 lists the possibilities. 

Applesoft and Integer BASIC have commands for working 
with programs and other files on disk. In many cases, the com
mands parallel features of the STARTUP program on the Pro
DOS User's Disk and the FILEM program on the DOS 3.3 Sys
tem Master disk. The commands for ProDOS disks are similar to 
the commands for DOS 3.3, but they are not identical. (ProDOS 
commands are not available in Integer BASIC.) 

This chapter presents the disk and cassette commands in three 
sections: one for ProDOS disks, one for DOS 3.3 disks, and one 
for cassettes. The sections are completely self-contained, so read 
only the ones that interest you. You will find additional informa
tion about using cassettes in Chapter 2. Chapter 4 contains an 
introduction to DOS 3.3 files, catalogs, and names. The introduc
tion to ProDOS files, directories, names, paths, and prefixes is in 
Chapter 3. 

PRODOS COMMANDS ________ _ 

When you start an Apple II with a ProDOS disk, Applesoft 
includes commands for storing and retrieving programs on disks. 

111 



112 I Apple II User's Guide 

Table 6-1. Disk and Cassette Command Availability 

Startup BASIC Commands 
Disk Dialect Available 

Pro DOS Applesoft Pro DOS 
DOS 3.3 Applesoft DOS 3.3 and cassette 
DOS 3.3 Integer BASIC DOS 3.3 and cassette 
None Applesoft Cassette 
None Integer BASIC Cassette 

It also includes commands that mimic many of the menu choices 
in the STARTUP program on the ProDOS User's Disk, which is 
described in Chapter 3. There are commands to change the pro
gram name prefix, to display and create directories, and to 
delete, rename, lock, and unlock files and directories. For file 
copying, disk duplication, and disk formatting, you must use the 
STARTUP program on the ProDOS User's Disk. 

Saving Programs 

The SAVE command writes onto disk a copy of the BASIC 
program currently in the computer's memory. You specify the 
program's name. For example: 

]SAVE MONEY 

This statement saves the BASIC program currently in memory 
under the name MONEY. It uses the volume directory on the 
drive where the last disk activity occurred (unless you have speci
fied a prefix, as described later in "Changing the Prefix"). 

You can also specify a full pathname when you save a file. The 
following example saves a file named LEADING, which is 
located in a directory named ACTOR that is on a disk volume 
named PRODUCER: 

JSAVE /PRODUCER/ACTOR/LEADING 

Warning: Be careful which name you use when saving a pro
gram. If another file with the same pathname already exists, 
ProDOS replaces it with the program you are saving. 



BASIC Programs on Disk and Cassette / 113 

Loading Programs 

The LOAD command reads a program file from disk into the 
computer's memory. The incoming program replaces any exist
ing program. You must specify the name of the file to be loaded. 
The following example loads a program named HELLO: 

JLOAD HELLO 

If the name you specify is not in the volume directory, you will 
get the message PATH NOT FOUND. If the name exists but 
does not identify a BASIC program file, the message FILE 
TYPE MISMATCH appears. 

As with the SAVE command, you can specify a full pathname 
as part of a LOAD command. The following statement loads the 
file LEADING that was saved earlier: 

JLOAD /PRODUCER/ACTOR/LEADING 

Changing the Prefix 

When most of your files are in the same directory, you can save 
yourself some typing by using a ProDOS prefix to specify the 
part of the pathname they all have in common. You do this with 
the PREFIX command. Here is an example: 

]PREFIX /PRODUCER/ACTOR 

This sets the prefix to the volume (that is, the disk) named 
PRODUCER and the directory named ACTOR. The prefix is 
added to the file names or partial pathnames in any subsequent 
ProDOS commands such as LOAD and SAVE. 

To learn the current prefix, type the PREFIX command alone 
(without any pathname) in immediate mode. Unless you change 
the prefix, it is set to the volume directory name of the disk you 
used most recently. 

Starting a BASIC Program 

After loading a BASIC program with the LOAD command, 
you can execute it with the RUN command. As a shortcut, you 
can both load and run a BASIC program with just the RUN 



114 I Apple II User's Guide 

command. All you do is add the program name or pathname, like 
this: 

JRUN /MAIL.LIST/ENTRY 

If you entered this example and pressed the RETURN key, the 
command would start the program named ENTRY from the disk 
volume named. MAIL.LIST. 

The Disk Directory 

Both the CAT and CATALOG commands display a listing of 
the programs and other files in a directory. You can specify a 
pathname for the directory or let ProDOS use the current prefix 
directory. Here is an example that specifies a pathname: 

]CATALOG /PRODUCER/STUNT/WOMEN 

For each file in the directory, the CATALOG command dis
plays seven items across 80 columns, as shown· in Figure 6-1. (If 
your screen is set for 40 columns, two lines are used to display the 
nine items for each file.) From left to right, it reports: 

1. The file name. If the file is locked, the name is prefixed with 
an asterisk. 

JCRTIUJG 

/USERS.DISK 

IR£ TYPE BLOCKS tD>IFIED CfEATED EllFILE UTYPE 

l9fRIJOS SYS 30 18-SEP-84 0:00 18-SEP-84 13 51 14848 
~IC.SYSTElt SYS 21 18-..ut-84 0:00 18-.ut-84 0 00 10240 
4'f1LER SYS 51 <ttO DATE> 1&-J.tt-94 0 00 25600 
~ SYS 42 1-fOJ-83 0:00 1-tOJ-83 0 00 20481 
*STflml> BAS 24 26-4-84 0:00 26-4-84 0 00 11470 
*tlUPE BAS 3 15-0CT-83 0:00 15-0CT-83 0 00 941 
~IS BAS 3 15-0CT-83 0:00 15-0CT-83 0 00 637 
*AHltlLS BAS 10 15-0CT-83 0:00 15-0CT-83 0 00 4578 

EllOCICS FREE: 9Q EllOCICS USED: 1Q1 TOTfl.. ll..OCICS: 2SO 

JI 

Figure 6-1. A ProDos CATALOG command directory listing 



BASIC Programs on Disk and Cassette I 115 

2. The file type (see Table 6-2). 
3. The amount of disk space the file currently uses, as a 

number of 512-byte blocks. 
4. The last date the file was modified. 
5. The date the file was created. 
6. The amount of space allotted for the file, as a number of 

bytes. 
7. A random-access file's record length, a binary file's load 

address, or a blank space for any other type of file. 

In addition, the CATALOG command displays the directory 
name at the top of the listing. It also displays the number of 512-
byte blocks free, the number of blocks used, and the total number 
of blocks on the disk at the bottom of the listing. The endfile and 
subtype columns are of interest primarily to advanced 
programmers. 

The CAT command displays an abbreviated version for 40-
column screens. It displays only the first four items from the 
CATALOG listing, plus the directory name, the number of blocks 
free, and the total blocks on the entire disk. 

Creating a Directory 

You can create new directories with the CREATE command. 
You specify the directory name (or the pathname ending with the 

Table 6-2. ProDos File Type Abbreviations 

Abbreviation Type 

DIR Directory 
TXT Text or other data 
BAS Applesoft program 
VAR Applesoft variables 
BIN Binary 
REL Relocatable 
$F n User defined (n = a number from 1 to 8) 
SYS ProDOS system program or system file 



116 I Apple II User's Gulde 

new directory name) as follows: 

JCREATE /PRODUCER/SPECIAL.EFFECTS 

After creating a directory, you can save programs and other 
files or create more directories (subdirectories) in it. If you try to 
create a file or directory that already exists, the error message 
DUPLICATE FILE NAME will appear on the screen. 

Deleting Flies and Directories 

With the DELETE command you can remove a file or direc
tory from the disk. You specify a file name, pathname, or partial 
pathname for the file. Here is an example: 

JDELETE /PRODUCER/ANIMAL/TRAINERS 

The DELETE command cannot remove a locked file (indicated 
by an asterisk in a directory listing) or a directory that is not 
empty. It can never remove the volume directory. 

Renaming Flies and Directories 

To change the name of a file or directory (including the volume 
directory), use the RENAME command. You first specify the old 
name and then the new name, as in the following example: 

JRENAME MAKE.UP, MAKEUP 

This renames the file MAKE.UP to MAKEUP in the directory 
specified by the ProDOS prefix. 

The RENAME command cannot move a file from one direc
tory to another, so both names must be in the same directory. You 
cannot rename a locked file or directory. Nor can you rename a 
file to a file name that already exists. If you do, you will be 
greeted by the error message DUPLICATE FILE NAME. 

Locking and Unlocking Files and Directories 

The LOCK command protects a file or a directory against 
removal, renaming, or having any modifications made to it. The 
UNLOCK command removes this protection. Here is an example 
of each command. 



]LOCK COSTUMES 
]UNLOCK COSTUMES 

Specifying the Drive 

BASIC Programs on Disk and Cossette I 117 

On an Apple II that has more than one disk drive, you can use 
the ProDOS commands with any drive you want. If you specify a 
volume name that doesn't match the name of the disk in the start
up drive, ProDOS automatically checks all other disk drives. In 
fact, ProDOS can find a disk by its volume name even if you 
switch drives between commands. 

Another way to specify a disk drive-and the disk in it-is by 
number. Drives are identified by the numbers 1 and 2. If your 
Apple II has more than two drives, the additional drives are also 
numbered 1 and 2, in pairs. Drive pairs are identified by the slot 
number of the accessory card to which they are attached. To add 
a drive number to a ProDOS command such as LOAD or SAVE, 
type a comma, the letter D, and the drive number at the end of 
the command. To specify a slot number, append a comma, the 
letter S, and the slot number. For example, the following com
mand saves the current program under the name ENTRY on 
drive 2, slot 5: 

]SAVE ENTRY,D2,S5 

You can add just a drive number or a slot number and have 
ProDOS supply the missing information. If you omit the slot 
number, ProDOS uses the slot where the last disk activity 
occurred. Similarly, if you omit the disk drive number, ProDOS 
uses the same disk drive number as the most recent ProDOS 
command. 

If you specify a drive or slot number in a ProDOS command 
and the ProDOS prefix is just a volume directory name (no sub
directory name included), the prefix changes to the name of the 
volume directory in the specified drive. Subsequent ProDOS 
commands will use that same drive until you specify another 
drive or slot number, or until you change the prefix with the 
PREFIX command. 

However, specifying a drive or slot number has no effect on the 
ProDOS prefix if the prefix includes more than a volume direc
tory. In this case, the prefix determines which drive and which slot 



118 I Apple II User's Guide 

subsequent ProDOS commands use (unless they include an ex
plicit drive or slot number). 

If you specify a drive or slot number where no drive is con
nected, the message NO DEVICE CONNECTED appears. 

Confused? The relationship between the drive and slot numbers 
and the prefix is complicated. You may wish to take the safe but 
tedious approach: never use drive or slot numbers; only use 
pathnames and prefixes. 

DOS 3.3 COMMANDS ________ _ 

When you start an Apple II with a DOS 3.3 disk, Applesoft 
includes commands for storing and retrieving programs on disks. 
It also includes commands that mimic many of the menu choices 
in the FILEM program on the DOS 3.3 System Master disk, 
which is described in Chapter 4. There are commands to display 
the disk catalog, initialize a disk, and to delete, rename, lock, 
unlock, and verify files. For file copying and disk duplication you 
must use the FILEM and COPYA programs on the DOS 3.3 Sys
tem Disk. 

Saving Programs 

The SAVE command writes a copy of the BASIC program cur
rently in the computer's memory onto disk. You specify the pro
gram's name. For example: 

JSAVE MONEY 

This statement saves the BASIC program currently in memory 
under the name MONEY. 

Warning: Be careful which name you use when saving a pro
gram. If another file with the same name already exists, DOS 3.3 
replaces it with the program you are saving. 

Loading Programs 

The LOAD command reads a program file from disk into the 
computer's memory. The incoming program replaces any exist
ing program. You must specify the name of the file to be loaded. 
The following example loads a program named HELLO. 



BASIC Programs on Disk and Cassette I 119 

]LOAD HELLO 

If the name you specify is not in the volume directory, you will 
get the message FILE NOT FOUND. If the name exists but 
does not identify a BASIC program file, the message FILE 
TYPE MISMATCH appears. 

Starting a BASIC Program 

After loading a BASIC program with the LOAD command, 
you can execute it with the RUN command. As a shortcut, you 
can load and run a BASIC program with just the RUN com
mand. All you do is add the program name, like this: 

]RUN ENTRY 

If you entered this example and pressed the RETURN key, the 
command would start the program named ENTRY from the disk 
most recently used. 

The Disk Catalog 

The CATALOG command displays a listing of the programs 
and other files on a disk. Here is an example: 

JC AT A LOG 

For each file on the disk, the CATALOG command displays 
three items across 40 columns, as shown in Figure 6-2. From left 
to right, it reports: 

1. The file type (A=Applesoft, !=Integer BASIC, B=Binary, 
T=Text). If the file is locked, the type is prefixed with an 
asterisk. 

2. The amount of disk space the file currently uses, as a 
number of 256-byte blocks. When the file size reaches 256 
blocks, the number that appears in the catalog starts over at 
zero, and thus does not reflect the true size of the file. 

3. The file name. 

In addition, the CATALOG command displays the volume number 
at the top of the listing (DISK VOLUME 254 in Figure 6-2). 

If there are more than 18 files in the catalog, DOS 3.3 splits the 



120 I Apple II User's Guide 

DISK VOLUME 254 

*A 003 HELLO 
*I 003 APPLESOFT 
*B 006 LOADER.OBJO 
*B 042 FPBASIC 
*B 042 INTBASIC 
*A 003 MASTER 
*B 009 MASTER CREATE 
*I 009 COPY 
*B 003 COPY.OBJO 
*A 009 COPYA 
*B 003 CHAIN 
*A 014 RENUMBER 
*A 003 FI LEM 
*B 020 FID 
*A 003 CONVERT13 
*B 027 MUFFIN 
*A 003 START13 
*B 007 BOOT13 
*A 004 SLOT# 

]~ 

Figure 6-2. A DOS 3.3 CATALOG command listing 

listing into "pages." The first page lists the first 18 files and sub
sequent pages list 21 files each. DOS 3.3 waits at the end of each 
page for you to press a key. When you do, it goes on to the next 
page. 

Initializing Disks 

The INIT command prepares brand-new disks for the DOS 3.3 
operating system by mapping the disk surface and setting up a 
blank catalog. You can also initialize a used disk in order to erase 
it completely. The INIT command specifies the name of the 



BASIC Programs on Disk and Cassette I 121 

greeting program, which will be run automatically if you later 
start the Apple II with the initialized disk. Here is an example: 

JIN IT HELLO 

This example initializes the disk and saves the BASIC program 
currently in memory as the greeting program. It uses the stan-
dard greeting program name, HELLO. · 

Del et Ing Files 

With the DELETE command you can remove a file from the 
disk. You specify the name of the file to be deleted, as in this 
example: 

]DELETE TRAINERS 

The DELETE command cannot remove a locked file (indicated 
by an asterisk in a catalog listing). 

Renaming Flies 

To change the name of a file, use the RENAME command. You 
first specify the old name and then the new name, as in the fol
lowing example: 

]RENAME MAKE.UP, MAKEUP 

This renames the file MAKE.UP to MAKEUP. 
Warning: The RENAME command does not check to see if the 

new file name is already in use. If it is, you will end up with two 
files that have the same name. This can be very confusing and 
difficult to fix. 

Locking and Unlocking Files 

The LOCK command protects a file against removal, renam
ing, or having any modifications made to it. The UNLOCK com
mand removes this protection. Here is an example of each 
command: 

]LOCK COSTUMES 
]UNLOCK COSTUMES 



122 I Apple II User's Gulde 

Specifying the Drive 

If your Apple II has more than one disk drive, you can use the 
DOS 3.3 commands with any drive you want. Drives are identi
fied by the numbers 1 and 2. If your Apple II has more than two 
drives, the additional drives are also numbered 1 and 2, in pairs. 
Drive pairs are identified by the slot number of the accessory 
card to which they are attached. 

To add a drive number to a DOS 3.3 command such as LOAD 
or SAVE, .type a comma, the letter D, and the drive number at 
the end of the command. To specify a slot number, append a 
comma, the letter S, and the slot number. For example, the fol
lowing command saves the current program under the name 
ENTRY on drive 2, slot 5: 

JSAVE ENTRY,D2,SS 

You can add just a drive number or a slot number and have 
DOS 3.3 supply the missing information. If you omit the slot 
number, DOS 3.3 uses the slot where the last disk activity 
occurred. Similarly, if you omit the disk drive number, DOS 3.3 
uses the disk drive number most recently specified. And if you 
omit both th.e drive and slot numbers, DOS 3.3 uses the drive and 
slot where the last disk activity occurred. 

If you specify a drive or slot number where no drive is con
nected, the message 1/0 ERROR appears. 

BASIC PROGRAMS ON CASSETIE _____ _ 

The Apple II can save and retrieve programs on cassette even 
if no disk drives are present. The cassette commands work with 
DOS 3.3, but not with ProDOS. They also work on an Apple II 
started without a disk, in which case neither ProDOS nor DOS 
3.3 is present. 

Saving a Program on Cassette 

To save the program currently in memory on cassette, put a 
tape in the cassette recorder and follow these steps: 

1. Rewind the cassette to the beginning. 



BASIC Programs on Disk and Cassette I 123 

2. Type the command word SAVE, but do not press the 
RETURN key yet. 

3. Depress the cassette recorder's RECORD and PLAY buttons 
simultaneously. 

4. Now press the RETUR!'f key. 
5. The Apple II beeps as it starts recording the program on the 

tape. 
6. The Apple II beeps again when it finishes the recording. 
7. Depress the STOP button on the recorder after the second 

beep. 

Loading a Program From Cossette 

To replace the program curre~~lY in memory (if any) with one 
from tape, put the tape in the cassette recorder and follow these 
steps: 

1. Rewind the tape to the begipning. 
2. Type the command word LOAD, but do not press the 

RETURN key yet. . 
3. Depress the PLAY button on the cassette recorder. 
4. Now press the RETURN key. 
5. The Apple II beeps as it starts to load the program from the 

tape. 
6. The Apple II beeps again when it finishes. 
7. Depress the STOP button on the recorder after the second 

beep. Use the LIST ~ommand to verify that the program is 
in memory. 

Saving Multiple Prog~ams 

It doesn't take very much tape to record a single BASIC pro
gram. There is usually enough tape on one cassette to hold sev
eral programs. You can record programs one after another if you 
omit step 1 above. Instead of re~inding to the beginning of a new 
tape, start recording after the ~nd of a program on a used tape. 

Loading the second, third, and subsequent programs on a 
cassette is not as straightforward as loading the first. After you 



124 I Apple II User's Guide 

rewind the tape to the beginning, you must get past the first pro
gram in order to load the second, past the second to get at the 
third, and so on. You can do this by issuing the LOAD command 
repeatedly until the program you want is in memory. This is a 
slow process, but it works. 

You can speed things up considerably if your cassette recorder 
has a tape counter. When you rewind the tape to the beginning 
before saving a program, reset the tape counter to zero. After 
saving the first program, jot down the tape counter reading. This 
is the starting tape counter reading for the second program. Save 
the second program and note the tape counter reading at the end 
of it (for the start of the third program). 

To load the second program, rewind the tape to the beginning 
and once again reset the tape counter to zero. Then use the FAST 
FORWARD button on the cassette recorder to position the tape 
counter to the reading for the start of the second program. You 
can use the REWIND button on the cassette recorder to back up 
the tape if you overshoot with the FAST FORWARD button. Now 
use the LOAD command to load the· second program. 



Using Strings 
And Numbers 7 

The business of computer programs is to input, manipulate, 
and output data. So the way a programming language handles 
data, whether numbers or text, is very important. This chapter 
describes the types of data you may encounter in an Applesoft or 
Integer BASIC program. 

STRINGS ____________ _ 

A string is any character or sequence of characters enclosed in 
quotation marks. You have already seen strings with the PRINT 
statement as messages to be displayed on the screen. Here are 
some more examples of strings: 

"IGNORANCE IS BLISS" 
'~CCOUNT 4019-181-324-837" 
"NICK CHARLES" 
"SAM & ELLA CAFE" 
"MARCH 18, 1956" 

With a few exceptions, a string can contain any character you 
can produce at the keyboard using the letter and number keys, 
with or without the CONTROL or SHIFT key. The keys you cannot 
use to generate characters are -, -, t, l, RETURN, ESC, CON
TROL-H, CONTROL-M, CONTROL-U, and CONTROL-X, because they 
either move the cursor or end the line you're working on, or both. 

Strings can be any length from 0 to 255 characters. A string 
with no characters in it is called a null string. There are some 

125 



126 I Apple II User's Guide 

invisible characters you can produce by pressing certain combi
nations of keys. For example, if you press the CONTROL and G 
keys simultaneously, the computer beeps. You can put this char
acter in a string. Try pressing CONTROL-G between quotation 
marks in a PRINT statement. 

]PRINT " 11 

Jm 
In this example you can hear the characters between the quota

tion marks even though you can't see them. There are other char
acters that are invisible and inaudible. Such characters are used 
for controlling printer functions, communications devices, and 
other components you can attach to the Apple II. 

In order to make full use of strings, you must understand how 
characters are stored in the computer's memory. It's really very 
simple. Computer memory can store numbers, but it cannot store 
characters. When you type a character, the computer automati
cally converts it to a number, using a standard code called ASCII 
(American Standard Code for Information Interchange). Later, 
as the computer gets ready to display character strings, it auto
matically converts the code numbers back to characters. All this 
happens behind the scenes, so most computer users aren't even 
aware of how it works. If you write programs in BASIC, however, 
you may have to work directly with the code numbers. The ASCII 
code for the letter A is 65, for B it is 66, C is 67, and so on. You 
will find a complete table of characters and their ASCII code 
numbers in Appendix E. 

In Applesoft, there is a way to generate a character by specify
ing its ASCII code number. This technique, described at the end 
of this chapter, lets strings include characters that move the cur
sor or cannot be generated from the keyboard for other reasons. 

NUMBERS ____________ _ 

There are two kinds of numbers that can be stored in the Apple 
II: integers, which are numbers without any fractional part, and 
real numbers (also called floating point numbers), which can have 
fractional parts. As you might suspect, Integer BASIC only rec
ognizes integers. Applesoft uses both integers and real numbers. 

You must express all numbers without commas. For example, 
you must use 32000, not 32, 000. 



Using Strings and Numbers I 127 

Integers 

An integer is a number that has no fractional portion or 
decimal point. The number can be negative(-) or positive(+). An 
unsigned number is assumed to be positive. Integer numbers 
must have values in the range -32767 to 32767. The following are 
examples of integers: 

0 
1 
44 
32699 
-15 

Real Numbers 

A real number can be a whole number, a whole number with a 
decimal fraction, or just a decimal fraction. The number can be 
negative (-) or positive (+). If the number has no sign, it is 
assumed to be positive. The smallest (most negative) real number 
is 

-100000000000000000000000000000000000000 

and the largest is 

100000000000000000000000000000000000000 

Here are some examples of real numbers: 

5 
-15 
65000 
161 
0 
0.5 
0.0165432 
-0.0000009 
1.6 
24.0055 
-64.2 

When the value of any fractional number gets closer to zero than 
about 0.000000000000000000000000000000000000003, it will 
be converted to zero. 



128 I Apple II User's Guide 

Scientific Notation 

Very large and very small real numbers are presented in 
Apple using scientific notation. Any number that has more than 
nine digits in front of the decimal point will be expressed in 
scientific notation. Any fractional number closer to zero than 
± 0. 01 will be expressed in scientific notation. 

Scientific notation simply expresses a number as a multiple of 
10, 100, 1000, or some other power of 10 (see Figure 7-1). There
fore it is a convenient way of expressing very large and very 
small numbers. The maximum and minimum values for real 
numbers, which we just expressed with dozens of zeros, can also 
be expressed using scientific notation as 1E+38 and -1E+38, 
respectively. Expressed in scientific notation, the closest a num
ber can get to zero is 3E-38. 

The coefficient, which 
specifies the value's 
significant digits; the 
decimal point is assumed 
to be to the right of the 

Always the letter E (stands 
for exponent) 

coefficient unless 

__ s_pe_c_if_ie_d_o_th_e_r_w_is_e ___ "'_ I 
..-~~~~~--~±e\..-A~o-ne---o-r-tw-o---di-g-it-----. 

exponent, which 
specifies the 

Optional plus or 
minus signs 

Figure 7-1. Scientific notation 

magnitude of the 
coefficient-that is, 
the number of places 
to move the decimal 
point right (positive 
exponent) or left 
(negative exponent) 



Using Strings and Numbers I 129 

Roundoff 

We saw earlier that real numbers can have as many as nine 
digits of precision. For a number greater than 1 or less than -1, 
this means only the leftmost nine digits can be nonzero. Applesoft 
rounds off any digits in excess of nine. Here are some examples 
(note that large numbers are printed in scientific notation): 

]PRINT 1234567891 
1.23456789E+09 

J?-123456789123456789 
-1.23456789E+17 

J?-150000475.75 
-150000476 

J?900000Q0.7558 
90000000.8 

JD 

Fractional numbers (those between 1 and -1) are subject to the 
same limitation. In this case, though, the nine digits of precision 
start with the first nonzero digit to the right of the decimal point. 
Here are some examples: · 

]PRINT .1234567891 

J?.000000000900000007558 
9.0000000SE-10 

H~ 

VARIABLES ____________ _ 

Thus far in our discussions of data we have only considered 
constant values. It is often more convenient to refer to data items 
by name rather than value. That is what variables are all about. 

If you have studied elementary algebra, you will have no trou
ble understanding the concept of variables and variable names. If 
you have never studied algebra, then think of a variable name as 
a name that is assigned to a letter box such as that in Figure 7-2. 
Anything that is placed in the letter box becomes the value asso
ciated with the letter box name, until something new is placed in 



130 I Apple II User's Guide 

APPLE II MEMORY 
MAX ANGIE 

Figure 7-2. Variables are like letter boxes 

the letter box. In computer jargon we say a value is stored in a 
variable. 

A variable does not always have to refer to the same value. That 
is its real power -it can represent any legal value. You can 
change a variable's value during the course of a program. Apple
soft and Integer BASIC have a number of statements that do this; 
we will investigate them later in this chapter. 

Variable Names in Applesoft 

As Figure 7-3 illustrates, Applesoft uses one, two, or three 
characters in variable names. The first character must be a let
ter. The second character, which is optional, can be any letter or 
digit. The third character is a suffix that designates the type of 
value the variable has. A dollar sign suffix designates a variable 
with a string value. A percent sign designates a variable with an 
integer value. A variable whose name has no suffix can have any 
numeric value, including a fractional one. 

A string variable in Applesoft can store a string value of any 
length from 0 to 255 characters. Here are some examples of 
string variable names, both legal and illegal: 

Legal 
A$ 
MN$ 
F6$ 

Illegal 
0$ 
M!$ 
77$ 



Using Strings and Numbers I 131 

D DD 

C 
Last character denotes variable type: 

$ for string variable 
% for integer variable 
real variable if absent 

Second character (optional) can be 
any letter or digit 

L.....------- First character must be a letter 

Figure 7-3. Applesoft variable name rules 

Integer variables can refer to whole numbers between -32767 
and +32767. If you attempt to exceed this limit, you will get the 
?ILLEGAL QUANTITY ERROR message. If you try to store a 
real value in an integer variable, Applesoft will convert the real 
value to an integer value first. We'll cover the rules for the con
version shortly. Here are some examples of legal and illegal inte
ger variables in Applesoft: 

Legal Illegal 
A% A$% 
B% 31% 
Al% 3D% 
X4% 

Real variables can ref er to numeric values generally restricted 
to the range from -1038 to +1038

, although you may be able to 
compute values as large as 1. 7 X 1038 or as small as -1. 7 X 1038 

under some circumstances. If you attempt to store a value that is 
too large in magnitude in a real variable, you will get the 
?OVERFLOW ERROR message. When the value of a real vari
able gets closer to zero than ±2. 9388 X lff39

, Applesoft converts it 
to zero. Also, real variables can have integer values, since an in
teger is a real number with a fractional part of zero. Here are 
some examples of legal and illegal real variables: 

Legal 
A 
B 
Al 
AA 

Illegal 
0 
7B 
A# 



132 I Apple II User's Guide 

Longer Variable Names in Applesoft 

Applesoft variable names can actually have more than two 
characters (plus the % or $ suffix for integer- and string-type 
variables), but only the first two characters count. Therefore, 
PRICE! and PRICE2 are the same name, since both begin with 
PR. However, PRICE 1 and PRICE 1 % are different, since they 
have different suffixes. Here are some examples of variable 
names with more than two characters: 

Legal 
COUNTER% 
ACCOUNTBALANCE 
NAME$ 

Illegal 
ITEM#% 
2NDRATE 
CUSTOMER.ADDRESS$ 

Keep the following points in mind if you use variable names 
with more than two characters: 

· Only the first two characters and the variable type suffix($ 
or %) are significant. Do not use extended names like 
LOO Pl% and LOOP2%; these refer to the same variable: LO% 

· Additional characters need extra memory space, which you 
might need for longer programs. But the advantage of using 
longer variable names is that they make programs easier to 
read. PARTNO, for example, is more meaningful than PA as 
a variable name describing part numbers in an inventory 
program. 

Variable Names in Integer BASIC 

Variable names in Integer BASIC can have from 1 to 100 char
acters (refer to Figure 7-4). The first character must be a letter, 
but the rest can be either letters or digits. A dollar sign as the 
last character of the variable name designates a string variable. 
A letter or digit as the last character designates a numeric 
variable. 

String variables can ref er to strings of any length between 0 
and 255 characters. Blank spaces in a string count toward its 
total length. Before you use a string variable in Integer BASIC, 
you must specify the maximum length it will have. You do this 
with the DIM statement, which will be described later in this 
chapter. If you fail to declare the maximum length, you will get a 



Using Strings and Numbers I 133 

Figure 7-4. Integer BASIC variable name rules 

*** STR OVFL ERR message. Here are some examples of string 
variable names, legal and illegal: 

Legal Illegal 
A$ $ 
CUSTNAME$ 8$ 
PART1$ BRAND.NAME$ 
X8$ . 

Numeric variables in Integer BASIC must have values between 
-32767 and +32767. If you exceed these bounds, you will get the 
*** > 32767 ERR message. Here are some examples of numeric 
variable names in Integer BASIC, both legal and illegal: 

Legal Illegal 
A 
CUSTZIPCODE 
XO 

Reserved Words 

APPLICANT'S AGE 
3X4Z 
$TOTAL 

All of the command words in BASIC commands and state
ments are reserved and cannot appear in variable names. 
Appendix A lists all Applesoft and Integer BASIC reserved 
words. 

When executing BASIC programs, the Apple II scans every 
BASIC statement, seeking out any character string that consti
tutes a reserved word. (The only exception is text strings enclosed 
in quotation marks.) This can cause trouble if a reserved word is 
embedded anywhere within a variable name. The Apple II is not 
smart enough to identify a variable name by its location in a 



134 I Apple II User's Gulde 

BASIC statement. Be very careful to keep reserved words out of 
your variable names; watch especially for the short reserved 
words that can easily slip into a variable name. 

Arrays provide a useful shorthand means of describing a large 
number of related variables. Consider, for example, a table of 200 
numbers. How would you like it if you had to assign a unique 
variable name to each of the 200 numbers? It would be far 
simpler to give the entire table one name and identify individual 
numbers within the table by their table locations. That is pre
cisely what an array does. 

Conceptually, arrays are very simple. When you have two or 
more data items, instead of giving each data item a separate 
variable name, you give the collection of data items a single vari
able name. The collection is called an array, and its name is an 
array name. Individual data items are often called array ele
ments. The elements in an array are numbered. You select an 
individual item using its position number, which is referred to as 
its index. 

As an example of using an array, consider how a motel with ten 
rooms might keep track of who is staying in each of the rooms. 
There could be ten separate variable names for each room, say 
Rl$, R2$, R3$, and so on (see Figure 7-5). The value of variable 
R1$ would be the name of the guest in Room l, the value of R2$ 
would be the name of the guest in Room 2, and so on. Alterna
tively, there could be one array with ten elements, possibly 
named R$ (see Figure 7-6). In this case, the index after the array 
name specifies the room number, and the value of the corre
sponding array element is the name of the guest in that room. 

Arrays in Applesoft can represent integer variables, real vari
ables, or string variables; however, a single array variable can 

' ,. ;''· 
Jones Smith Doe Littke Altcm Davis Hanson •Shorteit. -. 

I- ---

R1$ R2$ R3$ R4$ R5$ R6$ R7$ R8$ R9$ Rl0$ 

Figure 7-5. Using separate variable names 



Using Strings and Numbers / 135 

Jones Smith Doe Littke Alton Davis Hanson Shorten 

R$(1) R$(2) R$(3) R$(4) R$(5) R$(6) R$(7) R$(8) R$(9) R$(10) 

Figure 7-6. Using an array 

only represent one data type. In other words, a single variable 
cannot mix strings and numbers (except in the sense that a string 
can be a series of digits). Each type of array uses a different 
amount of memory; see Appendix H for details. 

Integer BASIC does not allow string arrays, only numeric 
arrays. 

Array Dimensions 

If you plan to use arrays in your program, you may need to 
declare their maximum sizes, or dimensions, in a DIM statement 
or statements early in the program. A dimension statement can 
provide dimensions for any number of arrays, as long as the 
statement fits on a standard program line. The following exam
ple dimensions a string array of 11 elements and an integer 
array of 21 elements. 

JDIM R$C10),R%C20) 

The number following an array name in a DIM statement is 
equal to the largest index value that can occur in that particular 
index position. But remember that indexes begin at 0. Therefore 
R$(10) dimensions the variable R$() to have 11 values, not 10, 
since indexes 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 will be allowed. 

Applesoft arrays can have more than one dimension, in which 
case it takes more than o'ne index to select an individual element. 
An array with a single dimension is equivalent to a table with 
just one row of numbers. The index identifies a number within 
the single row. An array with two dimensions yields an ordinary 
table of numbers with rows and columns; one index identifies the 
row, while the other identifies the column. You can visualize an 
array with three dimensions as a cube of numbers, or perhaps a 
stack of tables. Four or more dimensions yield an array that is 
hard to visualize, but no harder to use than an array with fewer 
dimensions. 



136 / Apple II User's Guide 

We can create an example of a two-dimensional array by 
extending the previous example of the motel guest list. Consider 
an eight-story hotel with ten rooms on each floor. There are four 
options for keeping track of the 80 guests' names. First, each 
room could have its own variable. Second, the hotel could have 
one 80-element array. Third, each floor could have a separate ten
element array. Fourth, the hotel could have one two-dimensional 
array. 

In the last case (shown in Figure 7-7), the first index of the 
two-dimensional array could be the floor number, and the second 
index could be the room number on that floor. That would make 
R$(3,2) the name of the guest in the second room on the third 
floor. The following example dimensions a two-dimensional array: 

J15 DIM HSC8,10) 

Applesoft arrays can have up to 88 dimensions. There is no spe
cific limit on the number of elements in each dimension. The 
amount of memory available limits the total number of elements, 
of course, since each element requires a certain amount of 
memory space. 

An Applesoft array does not have to appear in a DIM statement 
unless it has more than 11 indexes in any one dimension. If 
Applesoft encounters an array name for the first time somewhere 
other than in a DIM statement, it automatically dimensions the 
array with indexes 0 through 10 for each dimension used. 

In Integer BASIC, you must dimension all arrays and all sim
ple string variables too. Only one-dimensional numeric arrays 
are allowed -no string arrays or multidimensional arrays. The 
following example dimensions 2 strings of 5 and 25 characters, 

H$(8,l) H$(8,2) H$(8,3) H$(8,4) H$(8,5) H$(8,6) H$(8.7) H$(8,8) H$(8,9) H$(8.10) 

H$(7,l) H$(7,2) H$(7,3) H$(7,4) H$(7,5) H$(7,6) H$(7.7) H$(7,8) H$(7,H) H$(7, 10) 

H$(6,1) H$(6,2) H$(6,3) H$(6,4) H$(6,5) H$(6,6) H$(6,7) H$(6.8) H$(6,9) H$(6,10) 

H$(5.l) H$(5.2) H$(5,3) H$(5.4) 11$(5.5) H$(5.6) H$(5,7) H$(5,8) H$(5.9) H$(5.10) 

H$(4,l) H$(4,2) H$(4,3) H$(4.4) H$(4,5) H$(4,6) H$(4.7) H$(4.8) H$(4.9) H$(4.10) 

H$(3,l) H$(3.2) H$(3,3) H$(3.4) H$(3,5) H$(3.6) H$(3,7) H$(3.8) H$(3.9) H$(3,10) 

H$(2,1) H$(2,2) H$(2,3) H$(2.4) H$(2,5) H$(2,6) H$(2.7) H$(2.8) H$(2,9) H$(2,10) 

H$(1.1) H$(1,2) H$(1,3) H$(1,4) H$(1,5) H$(1,6) H$(1.7) H$(1.8) H$(1,9) H$(1,10) 

Figure 7-7. Using a two-dimensional array 



Using Strings and Numbers I 137 

respectively, and a numeric array of 13 elements (0 through 12): 

>10 DIM SISCS>,S2SC25),NBC12> 

The number following a string variable name in an Integer 
BASIC DIM statement is the maximum length that string can 
have during the program. The number following a numeric array 
name is equal to the largest index value that you can use for that 
array. 

Redlmensloning Arrays 

Once you have dimensioned an array variable, you cannot redi
mension it without rerunning the whole program. Subsequent 
references cannot use an index higher than the number of 
indexes you declared; each index must have a value between 0 
and the number of indexes dimensioned. 

EXPRESSIONS ___________ _ 

You can combine the values of variables and constants by using 
expressions. We have already used expressions to calculate the 
value of simple arithmetic problems in immediate mode. Recall 
that the statement 

JPRINT 4 + 6 

tells the Apple II to add 4 and 6 and display the sum. The 
statement 

JPRINT A + B 

tells the Apple II to add the values of the two numeric variables 
A and B and display the sum. 

The plus sign specifies addition. Standard computer jargon 
refers to the plus sign as an operator. The plus sign is an arith
metic operator because it specifies addition, which is an arith
metic operation. 

Arithmetic operators are easy enough to understand; we all 
learn to add, subtract, multiply, and divide in early childhood. 
But there are other types of operators: string operators, rela
tional operators, and logical operators. These are also easy to 



138 I Apple II User's Guide 

understand, but they take a little more explanation since they 
involve more abstract notions. 

Each category of operators defines a type of expression. There 
are arithmetic expressions, string expressions, relational expres
sions, and logical expressions. 

Precedence of Operators 

Expressions can call for more than one operation to occur. For 
example, the following statement calls for both addition and divi
sion in the same expression: 

]PRINT A + B/10 

There is a standard scheme for determining in what order to 
evaluate an expression. We will go through these rules of prece
dence for each type of expression, starting with string concatena
tion, then integer, real, relational, logical, and mixed-type expres
sions. First, let's look at a way to override the standard rules of 
precedence. 

Overriding Standard Precedence 

You can change the order in which Applesoft and Integer 
BASIC evaluate expressions by using parentheses. Any operation 
within parentheses is performed first. When more than one set of 
parentheses is present, BASIC evaluates them from left to right. 

When one set of parentheses is enclosed within another set, it is 
called nesting. In this case, BASIC evaluates the innermost set 
first, then the next innermost, and so on. Parentheses can be 
nested to any level. You may use them freely to clarify the order 
of operations being performed in an expression. 

Here are some examples of the immediate mode arithmetic 
calculations using parentheses: 

]PRINT (2 + 10> * 3 
36 

]PRINT ((2 + 10) * 3 + 31) * 10 
670 

]PRINT -(2 A (3 + 8/4)) 
32 



Using strings and Numbers I 139 

String Concatenation 

You can join strings together end to end to form one longer 
string. This is called concatenation (see Figure 7-8). With con
catenation, you can develop strings up to 255 characters long. 

Applesoft uses the plus sign as a concatenation operator. Here 
are some examples of string concatenation in Applesoft: 

Before 
"OVER" + "DUE" 
"MONTHLY"+ "" + "REPORT" 

"WEEKLY" + R$ 

Al$ + YA$ + C$(1) 

Integer Expressions 

After 
becomes "OVERDUE" 
becomes "MONTHLY 
REPORT" 
becomes the characters 
WEEKLY followed by the 
value of R$ 
becomes the value of A 1$ 
followed by the value of 
YA$ followed by the value 
of C$(1) 

Integer expressions are arithmetic expressions that involve 
only integer variables and integer constants. We will cover 
arithmetic expressions involving both integer and real values 
under the heading "Mixed-Type Expressions." 

The operators for integer expressions are addition(+), subtrac
tion (-), multiplication ( •), division (/), and exponentiation (" ). 
You can also use negation (-) to indicate a negative numeric 
value. Operations are performed in this order: negation first, fol
lowed by exponentiation; multiplication and division next; and 

I STRING 1 I + I STRING2 I + I STRINGa l 
becomes 

• I STRING 1 I STRING2 f STRINGa I 
Figure 7-8. String concatenation 



140 I Apple II User's Gulde 

finally addition and subtraction. Operations of equal precedence 
are performed in order from left to right. 

Here are some examples of integer expressions in Applesoft: 

-120/2 + 100 
2"3*2 
N1%*N2%/N3% 

AA%/AB%/AC% 

results in 40 
results in 16 
results in the value of N1% times the 

value of N2% and the prod
uct divided by N3% 

results in the value of AA% divided by 
the value of AB% and the 
quotient divided by the value 
of AC% 

results in 5 (the quotient of 5/2 is not 
converted to an integer) 

Here are some examples of integer expressions in Integer 
BASIC: 

-9"2 

A/B*C 

results in 40 
results in 81 
results in the value of A divided by the 

value of B and the integer 
value of the quotient multi
plied by the value of C 

results in three times the value of X 
and the value of D added to 
that product 

results in 4 (the quotient of 5/2 is con
verted to the integer 2) 

Integer BASIC has one more operator you can use in integer 
expressions. It returns the remainder that is left over from a 
division operation where the dividend is not evenly divisible by 
the divisor. The operator is MOD. It has equal precedence with 
multiplication and division. Here are some examples of MOD: 

4MOD 3 results in 1 
3*5 MOD 4 results in 3 
36/2 MOD A results in the remainder after dividing 

18 by the value of A 
3 MOD 4 results in 3 



Using Strings and Numbers I 141 

Real Expressions 

Applesoft has another type of arithmetic expression; it yields a 
real value. Its operators are the same as those in Applesoft inte- . 
ger expressions: addition (+),subtraction(-), multiplication(*), 
division(/), exponentiation("), and negation(-). The precedence 
of operation is the same also: negation first, followed by exponen
tiation, multiplication and division, and finally addition and sub
traction. Here are some examples of real expressions: 

87.5 - 4.25*2 
1.5 A (3/2/2) 
A*(P - 3.1*C) 

results in 79 
results in 1.35540301 
results in the value of A times the 

result of subtracting the prod- · 
uct of 3.1 times the value of 
C from the value of P 

results in 3 

Relational Expressions 

Relational operators allow you to compare two values to see 
what relationship one bears to the other. You can compare 
whether the first is greater than, less than, equal to, not equal to, 
greater than or equal to, or less than or equal to the second value. 
The values you compare can be constants, variables, or any kind 
of expression. (There are some restrictions in Integer BASIC.) If 
the value on one side of a relational operator is a string, the value 
on the other side must also be a string. Otherwise, you can com
pare one type of value to another type using relational operators. 

If the relationship is true, the relational expression has a 
numeric value of 1. If the relationship is false, the relational 
expression has the value 0. 

The relational operators for Integer BASIC and Applesoft are 
much the same, as shown in Table 7-1. All relational operators 
have the same precedence; they are evaluated in order from left 
to right. Here are some examples of relational expressions: 

1 = 5-4 results in 1 (true) 
14 > 66 results in 0 (false) 
15>=15 results in 1 (true) 
"AA" > ''AA" results in 0 (false) 



142 I Apple II User's Guide 

"ACE"< '~CME" results in 1 (true) 

(A = B) = (A$ > B$) depends on the values of the 
variables. If the value of A is 
equal to the value of B and 
the value of A$ is greater 
than the value of B$, then 
this expression results in 1 
(true). 

The concept behind relational operators is easy enough to 
understand. The values 0 and 1 that BASIC arbitrarily assigns to 
false and true conditions can be used in integer and real expres
sions. This is not so easy to understand, since it is utterly arbi
trary. For example, what meaning does the expression (1 = 1)*4 
have? Outside of a BASIC program, such an expression would be 
meaningless, but within BASIC (1 = 1) is true and true equates 
to 1, so the expression is the same as 1*4, which results in 4. You 
can include relational expressions within other BASIC expres
sions. Here are some examples: 

25 + (14 > 66) is the same as 25 + 0 
(A+ (1 = 5-4)) * (15 >= 15) is the same as (A+ 1) * 1 

String Comparisons 

Strings are compared one character at a time, starting with 
the leftmost character - the first character of one string with the 

Table 7-1. Relational Operators 

Integer BASIC Operation Applesoft 
Operator Operator 

< Less Than* < 
> Greater Than* > 
= Equal To = 

#or<> Not Equal To <>or>< 
>= Greater Than or Equal To* >=or=> 
<= Less Than or Equal To* <=or=< 

*Not allowed with strings in Integer BASIC 



Using strings and Numbers I 143 

first character of the other, the second character with the second 
character, third with the third, and so on until one of the strings 
is exhausted or a character mismatch occurs. The strings are 
equal only if they are the same length and no mismatches occur. 
Integer BASIC can only determine string equality or inequality. 

Applesoft determines which of two unequal strings is larger 
according to the ASCII code numbers of the first mismatched 
characters it finds. The character with the higher code number 
is greater. Thus the letters of the alphabet have the order A<B, 
B<C, C<D. Digits that appear in strings have conventional order
ing, namely 1 <2, 2<3, and so on. For other characters such as +, 
- , $, and so on, look up the ASCII code numbers in Appendix E. 

Logical Expressions 

Logical operators give programs the ability to make logical 
decisions. There are four standard logical operators: AND, OR, 
Exclusive OR, and NOT. BASIC on the Apple II has three of 
these operators: AND, OR, and NOT. 

If you do not understand logical operators, then a simple 
supermarket shopping analogy will illustrate the concepts. Sup
pose you are shopping for breakfast cereals with two children, 
Spike and Iola. The AND operator says you will buy a cereal if 
both children select that cereal. The OR operator says you will 
buy a cereal if either Spike or Iola selects it. The NOT operator 
generates an opposite. If Spike insists on disagreeing with Iola, 
then Spike's decision is always the NOT of Iola's decision. 

Computers do not work with analogies; they work with 
numbers. Therefore BASIC reduces the values in a logical 
expression to 1 or 0 (true or false). Since logical operators work 
on the values 0 and l, they are most often used with relational 
expressions (remember that relational expressions result in the 
value 0 or 1). Logical operators can work on other types of oper
ands, as we will see in the next section. 

Table 7-2 summarizes the way in which logical expressions are 
evaluated. This table is ref erred to as a truth table. Logical opera
tors have equal precedence. If more than one logical operator is 
present in the same expression, they are evaluated from left to 
right. Here are some examples of logical expressions: 



144 / Apple II User's Guide 

NOT ((3 + 4) > = 6) 
(''AA" = "AB") OR 

((8*2) = 4 I\ 2) 

results in 0 (false) 

results in 1 (true) 
NOT (''APPLE" = "ORANGE") 

AND (A$= B$) results in 1 (true) if A$ and 
B$ are equal; 0 (false) if not 

Mixed-Type Expressions 

Very often expressions involve values of more than one type; for 
example, an expression may involve real and integer values, or 
perhaps relational and logical values. You can mix types freely in 
any expression, but strings cannot be part of integer, real, or log
ical expressions. Strings can be present only in string and rela
tional expressions. Here are some examples of mixed-type 
expressions: 

Legal 
3.1416 * (R I\ 2) 
A%>= B/3 
43 AND 137 
1 OR 4E + 10 
(A$= B$) AND 

-6.25 

Illegal 
1600 + "PENNSYLVANIA AVENUE" 
ST$< A% 
A$ AND B$ 
NOT (A$)= B$ 

NOT(A = B) OR C$ 

Table 7-2. Logical Expression Truth Table 

First 
value 

T 
T 
F 
F 

T 
T 
F 
F 

Op er-
and 

NOT 
NOT 

AND 
AND 
AND 
AND 

OR 
OR 
OR 
OR 

Second Value of 
value expression 

T = F 
F = T 

T = T 
F = F 
T = F 
F F 

T = T 
F T 
T = T 
F = F 



Using Strings and Numbers I 145 

BASIC has several things to resolve when it evaluates a mixed
type expression. The first issue is the precedence of operators. 
Table 7-3 summarizes the operators for all types of expressions in 
order of precedence, from highest to lowest. This table shows that 
anything in parentheses is evaluated first. If there is more than 
one level of parentheses present, BASIC evaluates the innermost 
set first, then the next innermost, and so on. (You will recall that 
we covered this concept of nesting earlier.) Next, arithmetic 
expressions are evaluated. After that, relational expressions are 
evaluated. Finally, logical expressions are evaluated. 

As we noted earlier, relational expressions return a value of 0 
or 1 depending on whether the relationship being tested is false 
or true. Thus, a relational expression can exist as part of an inte
ger or real expression. 

You can also include numeric values in logical expressions. A 
numeric value is considered true if it is zero; otherwise it is con
sidered false. 

Table 7-3. Operators 

Integer 
BASIC Applesoft 

Precedence Operator Operator Meaning 

1st () () Parentheses denote order 
of evaluation 

2nd /\ /\ Exponentiation 
3rd - - Unary Minus 

Arithmetic 4th • • Multiplication 
Operators 4th I I Division 

4th MOD N/A Division 
5th + + Addition 
5th - - Subtraction 

6th = = Equal 
6th # <>or>< Not equal 

Relational 6th < < Less than 
Operators 6th > > Greater than 

6th <= <=or=< Less than or equal 
6th >= >=or=> Greater than or equal 

Logical 
7th NOT NOT Logical complement 
8th AND AND Logical AND 

Operators 9th OR OR Logical OR 



146 I Apple II User's Guide 

BASIC cannot automatically convert strings to numeric values, 
so strings ·are illegal in integer, real, and logical expressions, 
except as part of a relational expression. 

In Applesoft, both integer and real values can be present in the 
same real, relational, or logical expression. Whenever they occur 
in a real expression, integer values are temporarily converted to 
real values in order to evaluate the expression. Applesoft converts 
the final result of such an expression to integer or real, depend
ing on the context in which the expression occurs. 

When a real value occurs in a context that requires an integer, 
it is converted by discarding the fractional part and using the 
next lower whole number. This is called truncation. Here are 
some examples of truncation: 

1.1 becomes 1 
1.9 becomes 1 

-1.1 becomes -2 
-1.9 becomes -2 

ASSIGNING VALUES _________ _ 

Variables and arrays are not much good without values. The 
simplest way to assign a value to a variable is with a LET state
ment. Here is an example: 

J90 REM INITIALIZE VARIABLE X 
J100 LET X = 3 

In statement 100, variable X is assigned the value 3. This same. 
statement could be rewritten as follows: 

J100 x = 3 

The word LET is optional; it is usually omitted. 
Here is a string variable assignment statement: 

J215 AS = "ALSO RAN" 

The string variable A$ is assigned the two words ALSO RAN. 
Here are three assignment statements that assign values to 

array variable R$( ), which you encountered earlier in the de
scription of arrays: 



Using Strings and Numbers I 147 

]200 REM R$() IS THE MOTEL GUEST LIST 
J210 R$(1) = "JONES" 
J220 R$(2) = "SMITH" 
]230 R$(3) = "DOE" 

Remember, you can put more than one statement on a single 
line; therefore, three R$ assignments could be placed on a single 
line as follows: 

J200 REM R$() IS THE MOTEL GUEST LIST 
J210 R$(1) = "JONES": R$(2) = "SMITH": RSC3> = 

"DOE" 

Recall that a colon must separate adjacent statements appear
ing on the same line. 

Assignment statements can include any of the arithmetic or 
logical operators described earlier in this chapter. Here is an 
example of such an assignment statement: 

]90 REM THIS IS A DUMB WAY OF ASSIGNING A 
VALUE 

]100 v = 33 + 719 

The statement above assigns the value 33. 7777778 to the real 
variable V. It is equivalent to these three statements: 

]90 REM X AND Y USED LATER 
]100 x = 7 
]110 y = 9 
J120 V = 33 + X/Y 

which could be written on one line as follows: 

]100 X = 7: Y = 9: V = 33 + X/Y 

Here are assignment statements that perform the logical oper
ations given earlier in this chapter: 

)90 REM THESE EXAMPLES WERE DESCRIBED EARLIER 
IN THE CHAPTER 

]100 A = NOT ((3 + 4) >= 6> 
]110 B = ("AA"+ "AB") OR CS* 2) = C4 .. 2)) 

The following example shows how a string variable could have 
its value assigned using string concatenation in Applesoft: 

J90 REM R$(6) IS ASSIGNED THE VALUE "MR. ALTON" 
]100 MR$ = ",.1R. " 
J110 MS$ = "MS. " 
]120 N$ = "ALTON" 
]200 R$(6) = MR$ + NS 



148 I Apple II User's Gulde 

DATA and READ Statements 

When a number of variables need value assignments in an 
Applesoft program, you can use the DATA and READ statements 
rather than the previous type of assignment statement. Consider 
the following example: 

JS REM INITIALIZE ALL PROGRAM VARIABLES 
]10 DATA 10, 20, -4, 300 
]20 READ A,B,C,D 

The statement on line 10 specifies four numeric data values. 
These four values are assigned to four numeric variables by the 
statement on line 20. After the statements on lines 10 and 20 have 
been executed, A = 10, B = 20, C = -4, and D = 300. 

If you have one or more DATA statements in your program, 
then you can visualize them as building a column of values (Fig
ure 7-9). For example, a DATA statement that contains a list of 
ten values would build a ten-entry column. Two DATA state
ments each specifying five of the ten data entries would build 
exactly the same column. 

READ statements use a pointer to the coiumn of DATA state
ment values. The pointer starts at the beginning of the column. 

10 DATA 10,20,30,40,50,60,70,80,90,100 

10 DATA 
20 DATA 

First column entry~ l 1 O 
20 
30 
40 
50 

{ 

60 
70 
80 

10,Z0,30,40,50 ~ ~~O 
60,70,80,90;100 

..,._Last column entry 

Figure 7-9. How DATA statements build a column of values 



Using Strings and Numbers I 149 

Each time a READ statement uses a value from the column, it 
moves the pointer down to the next value (Figure 7-10). 

The first READ statement in the program starts at the first 
column entry and takes values sequentially, assigning them to 
variables named in the READ statement. The second and subse
quent READ statements take values from the column, starting at 
the point where the previous READ statement left off. 

The DATA column can contain both numeric and string values. 
When you assign the values to variables using a READ state
ment, each variable must be the same type (string or numeric) as 
the corresponding value it is assigned. 

You can at any time send the pointer back to the beginning of 
the DATA column by executing a RE STORE statement in Apple
soft (Figure 7-11). 

Clearing Variables 

Both Integer BASIC and Applesoft let you set every numeric 
variable and array element to zero and every string variable and 
array element to null, all at once. 

10 DATA 10,20,30,40,50,60,70,80,90,100 

A = 10 ro B = 20 - 20 
220 READ ---- c = 30 30 A,B,C 

{ 40 c = 40 .---- 50 

c,o/ 
D = 50 r 340 READ / i~ A = 60 100 
E = 70 

/ 
F = 

80 / G = 90 

490 READ A,E,F,G 
500 READ B B = 100 

Figure 7-10. How READ statements assign values 



150 I Apple II User's Gulde 

10 DATA 10,20,30,40,50,60,70,80,90,100 

= 10 { f° = 20 +- 20 
220 READ A,B,C = 30 30 

{ 40 

40/ 
50 

= 60 
= 50 70 

80 
340 READ C,D 90 
350 RESTORE 100 

A = 10 
E = 20 ;: = 30 

= 40 

490 READ A,E,F,G 
500 READ B B = 50 

Figure 7-11. How a RESTORE statement affects READ statements 

The CLEAR statement does this in Applesoft. Like RESTORE, 
it also resets the DATA column pointer. Here is an example: 

]LIST 

10 REM INITIALIZE VARIABLES 
20 x = 37 
30 AS = "PIG IRON" 
40 PRINT AS 
50 CLEAR 
60 PRINT X 

]RUN 

PIG IRON 
0 

]JI 

The CLR command does this in Integer BASIC. You can use it 
only in immediate mode. Here is an example: 

>X = 37 

>PRINT X 
37 



>CLR 

>PRINT X 
0 

>8 

Using Strings and Numbers I 151 

DISPLAYING VALUES _________ _ 

You can use a PRINT statement in immediate or programmed 
mode to display the values of variables and arrays. The following 
example uses DATA and READ statements to assign values to 
several variables, then displays the values with PRINT 
statements: 

lLIST 

100 REM READ A NAME & ADDRESS 
110 READ NAS,SRS,CIS,STS,ZI 
200 REM DISPLAY NAME & ADDRESS 
210 PRINT " NAME: ";NA$ 
220 PRINT "STREET: ";SR$ 
230 PRINT " CITY: ";CU 
240 PRINT " STATE: ";ST$ 
250 PRINT " ZIP: ";ZI 
500 ENO 
9990 REM NAME AND ADDRESS 
10000 DATA FRANK N. STINE, 1 BLIND ALLEY, 

UPSTATE, NY, 10101 

]RUN 

NAME: FRANK N. STINE 
STREET: 1 BLIND ALLEY 

CITY: UPSTATE 
STATE: NY 

ZIP: 10101 

JS 

A single PRINT statement can display any mixture of constant 
and variable values. In the example above, each PRINT state
ment displays both a string constant and a variable. The follow
ing program illustrates another way to display the same 
variables: 

]LIST 

100 REM READ A NAME & ADDRESS 
110 READ NAS,SRS,CIS,STS,ZI 



152 I Apple II User's Guide 

200 REM DISPLAY NAME & ADDRESS 
210 PRINT NAS 
220 PRINT SRS 
230 PRINT CIS;", ";STS;" ";ZI 
500 END 
9990 REM NAME AND ADDRESS 
10000 DATA FRANK N. STINE, 1 BLIND ALLEY, 

UPSTATE, NY, 10101 

]RUN 

FRANK N. STINE 
1 BLIND ALLEY 
UPSTATE, NY 10101 

INPUTIING VALUES _________ _ 

The INPUT statement makes it possible for a program to 
request the value for a variable from its user, via the keyboard. 
When the computer executes an INPUT statement, it waits for 
input from the keyboard. Nothing happens until the computer 
receives the input. 

In its simplest form, an INPUT statement begins with the 
word INPUT and is followed by a variable name. Data entered 
from the keyboard is assigned to the named variable. The vari
able name type determines the type of data that must be entered. 
A numeric variable name can be satisfied only by numeric input. 
To demonstrate numeric input, type in the following short pro
gram and run it (try entering some letters and see what happens): 

J10 INPUT A 
]20 PRINT A 
]30 END 

Upon executing an INPUT statement like the one on line 10 
above, the computer displays a question mark, then waits for 
your entry. Each time you press a key, the corresponding charac
ter appears immediately on the screen at the location marked by 
the cursor. When you press the RETURN key to end the entry, the 
whole entry is displayed again. The first display occurs when the 
INPUT statement on line 10 is executed and you make an entry 



Using Strings and Numbers I 153 

at the keyboard. The second display is in response to the PRINT 
statement on line 20. 

An INPUT statement can input more than one value at a time. 
To do this, list all the variables for which you want to input values 
following the word INPUT. Separate the variables with commas. 
When such an INPUT statement is executed, you must respond 
with a separate value for each variable. Be sure each value is the 
same type as the variable it will be assigned to. The following 
example inputs two numeric values, then displays them: 

J10 INPUT A,B 
J20 PRINT A,B 
J30 END 

Run the program above and enter one number followed by a 
comma, then another number, and then press RETURN. Now try 
something a bit different. Enter one number and press RETURN; 
Applesoft reminds you to enter the next value by displaying a 
double question mark (Integer BASIC displays a single question 
mark). So enter another number and press RETURN. Thus, when 
an INPUT statement calls for more than one numeric value, you 
have a choice of entering all the values on one line or entering 
them on separate lines. Because you use commas to separate the 
values for different variables, you cannot use commas as punc
tuation in a single number; enter 1000, not 1,000. 

The INPUT statement works somewhat differently with string 
variables in Integer BASIC. First of all, it does not display a 
question mark. Try this Integer BASIC example: 

>10 DIM A$(19> 
>20 INPUT AS 
>30 PRINT AS 
>40 END 

When you run the program above, try entering a string of more 
than 19 characters. You will get a *** STR OVFL ERR message 
and the program will stop. The length of the string you enter 
cannot exceed the maximum length of the string variable used in 
the INPUT statement. 

Integer BASIC forces you to enter each string value on a 
separate line. If an INPUT statement specifies a list of variables 
and there are string variables in the list, the associated string 
values must be entered on separate lines. This is because Integer 



154 I Apple II User's Gulde 

BASIC lets you include commas as part of a string value. You can 
prove this for yourself by running the example program above 
and entering the string value DOE, JOHN. 

As we saw earlier, any real variable can have an integer value 
in Applesoft. Therefore you can input an integer value for a real 
variable. A real value entered for an integer variable is converted 
to an integer value according to the truncation rules presented in 
the "Mixed-Type Expressions" section of this chapter. 

INPUT Statement Prompts 

The INPUT statement is very fussy; its syntax is too demand
ing for any normal person. Upon encountering the types of error 
messages that can occur if one comma happens to be out of place, 
the person using the program is like to give up in despair. You 
should therefore do your best to write foolproof data entry pro
grams. These programs watch out for every mistake that the 
pr9gram user can make when entering data. A foolproof pro
gram will cope with errors in a way that anyone can understand. 

Orte simple trick is the INPUT statement's ability to display a 
short message that can describe the expected input. Such a mes
sage is called a prompt message. The message appears in the 
INPUT statement as a string value enclosed in quotation marks. 
The message will be displayed just ahead of the input request. 
This certainly beats sticking a bunch of variables into a single 
INPUT statement, with only your memory reminding you what 
to enter next. 

In Applesoft, the prompt message should be placed imme
diately after the word INPUT. It is followed by a semicolon, 
which is in turn followed by the list of variables to be input. The 
existence of a prompt message suppresses the standard INPUT 
statement question mark. The prompt message is displayed only 
once, even if more than one line is required to enter all of the 
values requested by the variable list. Here is an Applesoft 
example: 

J100 
J110 
J 1.20 
J130 
J140 
J150 

REM INPUT NAME AND ADDRESS 
INPUT II NAME? ";NAS 
INPUT "STREET? "·SRS '· INPUT " CITY? ";CIS 
INPUT " STATE? ";STS 
INPUT " ZIP? ";ZI 



Using Strings and Numbers / 155 

J200 REM DISPLAY NAME AND ADDRESS 
J210 PRINT NAS 
J220 PRINT SRS 
J230 PRINT CIS;", ";STS;" ";ZI 
JSOO END 
JRUN 

NAME? MARY GOLD 
STREET? 300 BLOSSOM LANE 

CITY? VERDANT VALLEY 
STATE? KY 

ZIP? ii 

In Integer BASIC, the prompt message should immediately fol
low the word INPUT: It is followed by a comma and then the list 
of variables to be input. When the list contains more than one 
variable, the prompt message is still displayed only once, on the 
first line of input. If the first variable on the list is numeric, a 
question mark is displayed immediately after the prompt mes
sage. If the first variable is a string, no such question mark is 
displayed. Here is an Integer BASIC example: 

>DIM ASC10) 
>20 INPUT "ENTER YOUR NAME AND AGE ",AS,A 
>30 PRINT AS;" IS ";A 
>40 END 

FUNCTIONS ___________ _ 

Another element of BASIC is the function. Functions act like 
expressions, but they look more like BASIC statements. The rest 
of this chapter shows you how to use selected functions, and later 
chapters explain how other functions work. Appendix A sum
marizes all 28 predefined BASIC functions. 

Some functions calculate a numeric amount: 

J10 A = SQR(B) 

In this example, the variable A is set equal to the square root of 
the variable B. The reserved word· SQR specifies the square root 
function. 

Other functions generate a string value, as in the following 
example: 

JZO HTS=STRSCIN/12) 



156 I Apple II User's Gulde 

The STR$ in the example above generates the same string of 
characters that would result if the expression in parentheses, 
IN /12, were displayed using a PRINT statement. In this case, 
though, the characters are not displayed. Instead they are assigned 
to variable HT$. 

You specify a function with a reserved word (like SQR for the 
square root function or STR$ for the numeric-to-string conver
sion function). In this respect functions are similar to statements. 
But functions are always followed by an operand or operands 
enclosed in parentheses. 

You can use a function anywhere you can use a variable or con
stant in a BASIC statement, except to the left of an equal sign. In 
other words, you can ~ay that A= SQR(B), but you cannot say 
that SQR(A) = B. 

Every function in a BASIC statement is reduced to a single 
numeric or string value before any other parts of the BASIC 
statement are evaluated. Function operands can be constants, 
variables, or expressions. So before the Apple II can perform the 
function, it may have to evaluate the function operand. Then it 
can apply the function to the operand, yielding the final numeric 
or string value. 

Not until all functions in a given expression are evaluated 
is the expression. itself evaluated. For example, consider this 
statement: 

J10 B = 24.7 * (SQRCC) + 5) - SINC0.2 + D) 

In this example, the Apple II evaluates the SQR function as 
soon as it retrieves·the value of variable C from memory. Then it 
evaluates the expression 0.2+ D and applies the SIN function to 
it. Finally, it uses the function results in evaluating the entire 
expression. Suppose SQR(C)=6.72 and SIN(0.2+D)=0.625. The 
expression is first reduced to 24. 7*(6. 72+5)~0.625. Then this 
simpler expression is evaluated. Variable B ends up equaling 
288.859. 

Substring Functions 

Three widely used Applesoft string functions each extract a 
portion of a larger string value, called a substring. You specify a 
source string and the number of characters to extract. The 
LEFT$ function starts with the first character, the RIGHT$ 



Using Strings and Numbers I 157 

function starts with the last character, and the MID$ function 
takes a piece out of the middle. For the MID$ function, you must 
specify where to start extracting. The following Applesoft exam
ple illustrates substring functions: 

]LIST 

10 INPUT "TYPE SOMETHING! ";SS 
20 PRINT "THE FIRST THREE CHARACTERS ARE: ": 

LEFTSCSS,3) 
30 PRINT "THE MIDDLE THREE CHARACTERS ARE:"; 

MIDSCSS,CLENCSS/2),3) 
40 PRINT "THE LAST THREE CHARACTERS ARE: "; 

RIGHTSCSS,3) 
50 END 

]RUN 

TYPE SOMETHING! COMPUTERS 
THE FIRST THREE CHARACTERS ARE: COM 
THE MIDDLE THREE CHARACTERS ARE:PUT 
THE LAST THREE CHARACTERS ARE: ERS 

ll1 

Although Integer BASIC has no functions that let you extract 
portions of a string, there is a way of doing it. You specify the 
starting position and the number of characters in the substring, 
as in the following example: 

>10 DIM ASC20>,BSC5) 
>20 BS = ASC1,4) 
>30 END 

In this example, B$ is set equal to the first four characters of 
A$. It may look to you as though B$ is being assigned the value of 
one of the elements of string array A$( ), but remember that 
Integer BASIC does not allow string arrays, much less two
dimensional string arrays. Instead, this notation refers to a sub
string. The first value in parentheses is the starting position of 
the substring, and the second value is the number of characters 
in the substring. 

Integer BASIC String Concatenation 

Unlike Applesoft, Integer BASIC has no string concatenation 
operator. However, the LEN function allows you to concatenate 
strings in Integer BASIC. 



158 I Apple II User's Gulde 

>10 DIM A$(10),8$(10),CS(1Q) 
>20 AS = "WIND" 
>30 BS = "PIPE" 
>40 CS = "LINE" 
>SO ASCLENCAS) + 1) = BS 
>60 PRINT AS 
>70 BSCLENCBS) + 1) = CS 
>80 PRINT BS 
>90 END 
>RUN 
WINDPIPE 
PIPELINE 

>II 

ASCII Conversion Functions 

In Applesoft, the CHR$ function translates a number into its 
ASCII character equivalent. For example, to generate a$ char
acter, first find its ASCII code in Appendix E. Then use the code 
with CHR$, like this: 

JPRINT CHRSC36);954.32 
$954.32 

Jll 

Going the other way, the ASC function converts a string char
acter to its ASCII code number. The following example illus
trates this: 

JPRINT ASC("A") 
65 

JB 

User-Defined Functions 

In addition to the many functions that are a standard part of 
BASIC, you can define your own arithmetic functions in Apple
soft, provided that they are not very complicated. User-defined 
string functions are not allowed. A DEF FN statement defines 
the function. You invoke the function with an FN statement. 
Next is a short program that uses a DEF FN statement. 



Using Strings and Numbers / 159 

]LIST 

10 DEF FNR(X) = INTCX * 100 + 0.5)/100 
100 INPUT "AMOUNT OF SALE? ";A 
110 INPUT "SALES TAX RATE? ";R 
120 T = FNRCA * R/100) 
130 PRINT "AMOUNT OF SALE S";A 
140 PRINT " SALES TAX S";T;" C";R;"X)" 
150 PRINT " -----------" 
160 PRINT " TOTAL S";A + T 

lRUN 

AMOUNT OF SALE? 99.95 
SALES TAX RATE? 6.5 
AMOUNT OF SALE $99.95 

SALES TAX $6.5 C6.SX> 

TOTAL $106.45 

In this example, line 10 defines a function that rounds an 
amount to the nearest hundredth. On line 120, the program 
employs the function to round off a sales tax calculation to the 
nearest cent. 

The function name follows the reserved words DEF FN. It con
sists of one or two characters that uniquely identify the function. 
The first character must be a letter. The second character, if 
present, can be either a letter or a digit. 

The arithmetic expression in a DEF FN statement defines 
what the function does. It can be made up of any combination of 
constants, variables, array elements, and other functions. How
ever, the expression cannot refer to itself, nor to any other func
tion that in turn refers to it. 

In a DEF FN statement, a single variable, enclosed in paren
theses, must follow the function name. This variable name is local 
to the function definition; it is a dummy variable and has no 
effect outside of the DEF FN statement. You can use the same 
variable name elsewhere in the program without affecting the 
function, and the dummy variable will not affect any like-named 
variable elsewhere in the program. 

To use a function you have defined with a DEF FN statement, 
start with the reserved word FN, then state the function name. 



160 I Apple II User's Guide 

Following that, specify an operand in the form of a constant, vari
able, or expression enclosed in parentheses. When Applesoft 
encounters such a function reference, it uses the value of the 
operand everywhere the dummy variable appears in the DEF 
FN statement expression that defines the function. 



Program Organization 
And Control 8 

To use the full power of the Apple II, you must be able to con
trol the execution path in your programs. That can be done in 
several ways. This chapter explains controlling program execu
tion with branch statements, executing statements repeatedly 
with program loops, making decisions with conditional state
ments, and structuring programs with subroutine ·statements. It 
also describes how to halt and resume program execution, how to 
directly access and cinange the contents of individual memory 
cells, and how to track program execution. 

BRANCHING ___________ _ 

Normally, program execution begins with the first statement 
in the program and continues sequentially, as Figure 8-1 illus
trates. Branch statements change this execution sequence by 
explicitly designating the line number of the next statement to be 
executed (see Figure 8-2). 

The GOTO Statement 

GOTO is the simplest branch statement; it allows you to specify 
the statement that will be executed next. In Figure 8-2, which 
illustrates unconditional branching, the statement on line 20 
assigns a value to variable A. The next statement is a GOTO, 
which specifies that program execution must branch to line 70. 
Therefore, the instruction execution sequence surrounding this 

161 



162 I Apple II User's Guide 

10 INPUT A 
20 INPUT B 
30 PRINT A*B 
40 
50 
60 
70 
80 
90 

100 END 

Figure 8-1. Normal program execution 

part of the program will be as follows: line 20, then line 30, then 
line 70. Of course, some other statement must branch back to line 
40; otherwise the statement on line 40 would never be executed 
by program logic, as illustrated in Figure 8-2. 

You can branch to any line number, even if the line has nothing 
on it but a remark. However, the computer ignores the remark, so 
the effect is the same as branching to the next line. In Figure 
8-2, for example, program execution branches from line 30 to 
line 70. Since there is nothing but a remark on line 70, the com
puter moves on to line 80, executing the statement on that line. 
Therefore, even though you can branch to a remark, you might as 
well branch to the next line. Attempting to branch to a nonexis
tent line number causes an error message. 

(

ig1 
40 
50 
60 
70 
80 
90 

A=4 
GOTO 70 

REM THIS LINE CONTAINS ONLY A REMARK 

Figure 8-2. Unconditional branching to a REM statement 



A%= 1 

A% = 2 

A%= 3 

10 \ 

( 
20.1 

30) 
40 
50 
60 
70 
80 
90 

100 
110 
120 
130 
140 
150 
160 

Program Organization and Control / 163 

A% = BX - 2 
ON AX GOTO 10, 70, 150 

Figure 8-3. Computed GOTO in Applesoft 

Computed GOTO Statement 

Another type of GOTO statement lets program logic branch to 
one of two or more different line numbers, depending on the cur
rent value of a numeric expression. The statement on line 40 in 
Figure 8-3 is an Applesoft computed GOTO. When this statement 
is executed, program logic branches to statement 10 if variable 
A%= l, to statement 70 if variable A%= 2, and to statement 150 
if A%= 3. If A% has any value other than 1, 2, or 3, the program 
continues at statement 50. 

The value of the expression in an Applesoft computed GOTO 
statement determines which line number to branch to from the 
computed GOTO statement's list of line numbers. If the value is 
1, the first line number is used, if the value is 2, the second line 
number is used, and so on. If the value is 0 or exceeds the number 
of line numbers in the list, the program will go to the statement 
that follows the computed GOTO statement. 

The following Applesoft program demonstrates how the com-
puted GOTO statement works: 

]10 BX = 4 
J20 PRINT BX 
J30 AX = BX - 2 



164 I Apple II User's Guide 

]40 ON AX GOTO 180,70,150 
]70 PRINT 8% 
]80 8% = 5 
]90 GOTO 30 
]150 
]160 
]170 
]180 
]RUN 

4 
4 
5 
3 

l!I 

PRINT BX 
8%=3 
GOTO 20 
END 

Execute this program by typing RUN and pressing RETURN. 
Can you account for the sequence in which the numbers are dis
played (4, 4, 5, 3)? Try rewriting the program so that each 
number is displayed in the sequence 3, 4, 5. 

Figure 8-4 shows a computed GOTO in Integer BASIC. When 
the statement on line 40 is executed, program logic branches to 
the statement number computed by evaluating the expression. In 
this example, it branches to statement 50 if variable A = 0, to 
statement 80 if A = 1, and to statement 110 if A = 2. If the com
puted line number does not exist in the program, a *** BAD 
BRANCH ERR message results. Notice that variable A is 
assigned a value in statement 30. The value assigned to A 

A=O 

A=l 

A=2 

1~ 
C~o) A = 0 - 3 

40 GOTO 30 * A + 50 
50 
60 
70 
80 
90 

100 
10 

120 

etc. 

Figure 8-4. Computed GOTO in Integer BASIC 



Program Organization and Control I 165 

depends on the current value of variable B. The illustration does 
not show how variable B is computed; however, as long as B has a 
value of 3, 4, or 5, the statement on line 40 will cause a branch to 
occur. 

GOTO and computed GOTO statements let you create any 
sequence of statement execution that your program logic may 
require. But suppose you want to reexecute an instruction (or a 
group of instructions) many times. For example, suppose that 
array variable A(I) has 100 elements and that each element needs 
to be assigned a value ranging from 0 to 99. Writing 100 assign
ment statements would be tedious. It is far simpler to reexecute 
one statement 100 times in a program loop. 

FOR and NEXT Statements 

You can create a loop using the FOR and NEXT statements, as 
follows: 

J10 DIM AC99) 
]20 FOR INDE X = 0 TO 99 STEP 1 
]30 A(INDE X) = INDEX 
]40 NEXT INDEX 
]50 END 

Statements between FOR and NEXT are executed repeatedly. In 
the example above, a single assignment statement appears 
between FOR and NEXT; therefore, this s ingle statement is 
reexecuted repeatedly. This kind of program structure is called a 
FOR-NEXT loop. 

So you can see the workings of a FOR-NEXT loop, the follow
ing program displays the values it assigns to ar ray A( ) within 
the loop: 

J10 DIM AC99) 
] 20 FOR INDEX = 0 TO 99 STEP 1 
]30 ACINDEX) = INDEX 
]35 PRINT ACINDEX) 
J40 NEXT INDEX 
]50 END 



166 I Apple II User's Gulde 

When you run this program, it displays 100 numbers, starting at 
0 and ending at 99. 

Statements between FOR and NEXT are reexecuted the 
number of times specified by the index variable, which appears 
directly after the word FOR. In the preceding example, this 
index variable is INDEX. Variable INDEX is specified as going 
from 0 to 99 in steps of 1. Variable INDEX also appears in the 
assignment statement on line 30. Therefore, the first time the 
assignment statement is executed, INDEX will equal 0, and the 
assignment statement will be executed as follows: 

J30 ACQ) = 0 

Variable INDEX is increased by the step size, which is speci
fied on line 20 as 1; INDEX therefore equals 1 the second time 
the assignment statement on line 30 is executed. The assignment 
statement has effectively become 

]30 AC1> = 1 

Variable INDEX continues to be incremented by the specified 
step until the maximum value of 99 is reached (or exceeded). 

The step does not have to be 1; it can have any integer value. 
Change the step to 5 on line 20 and reexecute the program. Now 
the assignment statement is executed just 20 times, since incre
menting INDEX 19 times by 5 will take it to 95; the 20th incre
ment will take it to 100, which is more than the maximum value 
of 99. Keeping the step at 5, you could allow the assignment 
statement to be executed 100 times by increasing the maximum 
value of INDEX to 500. Try making this change. (Remember to 
change the DIM statement as well.) 

The step size does not have to be positive. If the step size is 
negative, however, the initial value of the loop index must be 
larger than the final value of the loop index. For example, if the 
step size is -1 and you want to initialize 100 elements of array 
A( ) with values ranging from 0 to 99, you will have to rewrite 
the statement on line 20 as follows: 

J10 DIM AC99) 
]20 FOR INDEX = 99 TO 0 STEP -1 
]30 ACINDEX) = INDEX 
J35 PRINT ACINDEX) 
J40 NEXT INDEX 
J50 END 



Program Organization and Control / 167 

If the step size is 1 (and this is frequently the case), you do not 
have to specify a step size definition. In the absence of any defini
tion, BASIC assumes a step size of 1. 

You may specify the initial and final index values and the step 
size using expressions if you wish, but you should avoid doing so, 
since this unnecessarily complicates the program. If you must 
calculate one of these values, it is more efficient to do so in a 
separate statement ahead of the loop. 

In an Applesoft program, you can use real values for the initial 
and final index values and for the step size. Also, Applesoft does 
not require an index variable in the NEXT statement. A plain 
NEXT statement matches the most recently executed FOR 
statement. 

Nested Loops 

Loops are frequently nested one inside the other like a set of 
mixing bowls. There can be any number of statements between 
FOR and NEXT. Often there are tens or even hundreds of state
ments, and within these tens or hundreds of statements addi
tional loops may occur. Figure 8-5 illustrates a single level of 
nesting. 

Complex loop structures appear frequently, even in relatively 
short programs. Figure 8-6 shows an example with the FOR and 
NEXT statements, but none of the intermediate statements. In 
this example the outermost loop uses index variable I; it contains 

10 DIM AC99) 
20 FOR INDEX = 0 TO 99 STEP 1 
30 ACINDEX) = INDEX 
40 REM DISPLAY ALL VALUES OF AC) ASSIGNED 

THUS FAR 
SO FOR COUNTER = 0 TO INDEX 
60 PRINT ACCOUNTER) 
70 NEXT COUNTER 
80 NEXT INDEX 
90 END 

Figure 8-5. Single-level FOR-NEXT loop nesting 



168 I Apple II User's Gulde 

50 FOR I = 1 TO 10 
60 FOR X = 25 TO 347 STEP 3 

(

100 

140 

coo 
280 
300 

500 

(

600 

650 
700 

(

1000 

1090 

FOR A = 9 TO 0 STEP -1 

NEXT A 
FOR B = 25 TO 100 STEP 5 

NEXT B 
NEXT X 

FOR Y = 1 TO 20 STEP 2 

FOR P = 10 TO 20 

NEXT P 
NEXT Y 

FOR Z = 1 TO 10 
• 

NEXT Z 

1200 NEXT I 

Figure 8-6. Complex FOR-NEXT loop nesting (intermediate program steps 
omitted for clarity) 



Program Organization and Control / 169 

NEXT :1 

Figure 8-7. Illegal FOR-NEXT loop nesting 

three nested loops that use indexes X, Y, and Z. The X loop con
tains two additional loops that use indexes A and B. The Y loop 
contains one nested loop using index P. The Z loop contains no 
nested loops. 

Loop structures are easy to visualize and use. There is only one 
common error that you must avoid: do not terminate an outer 
loop before you terminate an inner loop (see Figure 8-7). 

Every program must have the same number of FOR and 
NEXT statements, since every loop must begin with a FOR 
statement and end with a NEXT statement. For example, sup
pose your program has one FOR statement but two NEXT 
statements. The first NEXT statement terminates a FOR state
ment, so the loop executes correctly. But the second NEXT 
statement has no FOR statement, which causes an error. 

SUBROUTINES ______ _ ____ _ 

Once you start writing programs that are more than a few 
statements long, you will quickly find short sections that are used 
repeatedly. For example, suppose you have an array variable, 
such as A( ), that is reinitialized frequently at different points in 
your program. Would you simply repeat the three instructions 
that constitute the FOR-NEXT loop described earlier? Since 
there are just three instructions, you may as well do so. 



170 I Apple II User's Guide 

But suppose the loop has 10 or 11 instructions that process 
array data in some fashion. If you had to use this loop many times 
within one program, rewriting the same 10 to 15 statements each 
time you wished to use the loop would take time, but more impor
tantly, it would waste a lot of computer memory (Figure 8-8). 

To solve ·this problem, you could separate out the repeated 
statements and branch to them. The group of statements is then 
called a subroutine. But another problem arises. Branching from 
your program to the subroutine is simple enough; the subroutine 
has a specific starting line number. You can execute a GOTO 
statement whenever you wish to branch to a subroutine, but to 
what line would the program return at the end of the subroutine, 
as in Figure 8-9? If two or more GOTO statements branch to the 
subroutine, there are two or more different places to which the 

- program may have to return when the subroutine has completed 
execution. The solution is to use special subroutine statements. 
Instead of branching to the subroutine using a GOTO, you should 
use a GOSUB statement. 

Start of program___.. I 
: } 

f 1~ 
+\.....---------.Repeated routine 

=F1---'l 
f 1_-/ 
T 
etc. 

Figure 8-8. Duplicate routines waste memory 



Start of 
program 

etc. 

Program Organization and Control / 171 

10 

. 
100 GOTO 2000 
11 o 

Subroutine 
190 GOTO 2000~ 
200 

2000 .,..___ Start 

250 GOTO 2000~ 2150 .,..___End 
260 

480 GOTO 2000 
500 

Return 
where? 

Figure 8-9. Branching to a subroutine with GOTO 

GOSUB and RETURN Statements 

The GOSUB statement branches in the same way as a GOTO, 
but in addition it remembers where to return, as Figure 8-10 
shows. In computer jargon, we say GOSUB calls a subroutine. 
You must end the subroutine with a RETURN statement, which 
causes a branch back to the statement following the GOSUB 
statement. If the GOSUB is the last statement on the line, the 
program returns to the first statement on the next line. 



172 I Apple II User's Gulde 

2000 ~Start 

100 GOSUB 2000 
110 

~TURN-End 

Figure 8-10. Branching to a subroutine with GOSUB 

The three-statement loop that initializes array A( ) can be con-
verted into a subroutine as follows: 

J10 REM MAIN PROGRAM 
]20 REM 
J30 REM IT IS A GOOD IDEA TO DIMENSION ALL 
J40 REM ARRAYS AT THE START OF THE MAIN PROGRAM 
J50 REM 
J60 DIM AC99) 
J70 PRINT "INITIALIZING ••• "; 
]80 GOSUB 2000: REM INITIALIZE AC) 
J90 PRINT "COMPLETE" 
J100 END 
J1985 REM 
J1990 REM INITIALIZATION SUBROUTINE 
J1995 REM 
]2000 FOR INDEX = 0 TO 99 
]2010 ACINDEX) = INDEX 
J2020 PRINT ACINDEX) 
]2030 NEXT INDEX 
J2040 RETURN 

The POP Statement 

Under some circumstances you will not want a subroutine to 
return to the statement following the GOSUB statement. You 



Program Organization and Control I 173 

might be tempted to use a GOTO statement to return, but that 
can cause a problem because BASIC is still remembering where 
it should return to. In cases like this, use the POP statement. 
Otherwise you risk an error caused by the accumulation of 
unused RETURN statements. All POP does is make BASIC 
forget the most recent return location. You can then use a GOTO 
statement to branch somewhere else in the program. 

Bypass the RETURN statement sparingly. Using POP exces
sively to enable branching out of subroutines with GOTO state
ments leads to tangled, confusing programs. 

Nested Subroutines 

Subroutines can be nested. That is to say, a subroutine can 
itself call another subroutine, which in turn can call a third sub
routine, and so on. You do not have to do anything special in order 
to use nested subroutines. Simply branch to the subroutine using 
a GOSUB statement and end the subroutine with a RETURN 
statement. BASIC will remember the line number for each 
nested return. 

The following program illustrates nested subroutines: 

J10 REM MAIN PROGRAM 
J20 REM 
J30 REM IT IS A GOOD IDEA TO DIMENSION ALL 
J40 REM ARRAYS AT THE START OF THE MAIN PROGRAM 
JSO REM 
J60 DIM AC99) 
J70 PRINT "INITIALIZING ••• "; 
J80 GOSUB 2000: REM INITIALIZE AC> 
J90 PRINT "COMPLETE" 
]100 END 
J1985 REM 
]1990 REM INITIALIZATION SUBROUTINE 
J1995 REM 
12000 FOR INDEX = 0 TO 99 
J2010 ACINDEX) = INDEX 
J2020 GOSUB 3000: REM PRINT VALUES 
J2030 NEXT INDEX 
J2040 RETURN 
J2985 REM 
J2990 REM PRINT-VALUES SUBROUTINE 
]2995 REM 
]3000 PRINT ACINDEX) 
J3010 RETURN 



174 I Apple II User's Gulde 

This program moves the PRINT A(INDE X) statement out of the 
subroutine at line 2000 and puts it into a nested subroutine at line 
3000. Nothing else changes. 

While it is perfectly acceptable and even desirable for one sub
routine to call another, a subroutine cannot call itself. Neither can 
a subroutine call another subroutine that in turn calls the first 
subroutine. This is called recursion and is not allowed in Apple
soft or Integer BASIC. 

Computed GOSUB Statement 

There is a computed GOSUB statement that is akin to the 
computed GOTO statement. The computed GOSUB statement 
allows you to branch to one of two or more subroutines depending 
on the value of a numeric expression. The computed GOSUB 
statement remembers where to return. It does not matter which 
of the subroutines is called; the called subroutine's RETURN 
statement causes a branch back to the remembered line number. 
You can nest subroutines using computed GOSUB statements, 
just as you can nest them using standard GOSUB statements. 

Consider the following Applesoft statements: 

J100 ON A GOSUB 1000,500,5000,2300 
J110 REM 

If A = 1 when the statement on line 100 is executed, the subrou
tine beginning at line 1000 is called. If A = 2 the subroutine 
beginning at line 500 is called. If A = 3 the subroutine beginning 
at line 5000 is called. If A = 4 the subroutine beginning at line 
2300 is called. If A has any value other than 1, 2, 3, or 4, program 
execution falls through to line 110, and no subroutine is called. 

The Integer BASIC version of the computed GOSUB statement 
works in a manner similar to the Integer BASIC computed 
GOTO statement. 

CONDITIONAL EXECUTION _______ _ 

The computed GOTO and computed GOSUB statements are 
conditional statements. That is, the exact flow of program execu
tion depends on the values of one or more variables that can 
change as the program is running. The exact program flow 
depends on the condition of the variables. 



Program Organization and Control / 175 

IF-THEN Statements 

Another conditional statement is the IF-THEN statement. It 
has the following general form: 

IF expression THEN sta1ement 

If the expression is true (that is, reduces to a value of 1), then the 
statement is executed. Relational and logical expressions are 
most common with IF-THEN statements, but arithmetic expres
sions can be used as well. This gives a BASIC program real 
decision-making capabilities. Here are three simple examples of 
IF-THEN statements: 

J10 IF A = B + 5 THEN PRINT MSG$ 
J40 IF CC$ = 11 M" THEN IN = 0 
JSO IF Q < 14 AND M < M1 THEN GOTO 66 

The statement on line 10 causes a PRINT statement to be exe
cuted if the value of variable A is five more than the value of 
variable B. The PRINT MSG$ statement will not be executed 
otherwise. The statement on line 40 sets numeric variable IN to 0 
if string variable CC$ is the letter M. The statement on line 50 
causes program execution to branch to line 66 if variable Q is less 
than 14 and variable M is less than variable Ml. Otherwise, pro
gram execution will continue with the statement on the next line. 
If you do not understand the evaluation of expressions following 
IF, refer to the discussion of expressions in Chapter 7. 

An IF-THEN statement can be followed by other statements on 
the same program line. Integer BASIC and Applesoft handle this 
situation somewhat differently. Applesoft executes statements 
that follow an IF-THEN statement on the same line only if the 
expression in the IF-THEN statement is true. If the expression is 
false, program execution drops down to the first statement on the 
next program line. This may be illustrated as follows: 

J10 IF V > 100 THEN PRINT "DEWEY WINS": GOSUB 2000 
J20 T = T + V: PRINT T 

In the example above, the program will print the message 
DEWEY WINS and call the subroutine at line 2000 only if the 
value of variable V is greater than 100. If V is less than or equal 
to 100, the program will not print the message or call the subrou
tine, but will instead proceed directly to the first statement on 
line 20. 



176 I Apple II User's Guide 

In Integer BASIC, only the statement that immediately follows 
THEN is conditionally executed. Any later statements on the 
same program line are always executed, regardless of whether 
the expression in the IF-THEN statement is true or false. If the 
example above were in Integer BASIC, the program would print 
the message DEWEY WINS only if the value of variable V were 
greater than 100. The program would call the subroutine at line 
2000 no matter what the value of V was. 

There is a special form of the IF-THEN statement available 
in Applesoft. Whenever the conditionally executed statement is 
a GOTO statement, you can omit the word THEN or the word 
GOTO if you wish. The following three statements are equivalent: 

]10 IF MM$ = 00$ THEN GOTO 100 
J10 IF MM$ = 00$ THEN 100 
J10 IF MM$ = DDS GOTO 100 

HALTING AND RESUMING EXECUTION ___ _ 

If a program is running and you want to stop it, press 
CONTROL-C. If the program is waiting for keyboard input from an 
INPUT statement, you will have to press RETURN after you press 
CONTROL-C. 

In Applesoft, you will see the message BREAK IN followed by 
the line number at which program execution halted when you 
pressed CONTROL-C. You can continue program execution by typ
ing the command CONT. 

In Integer BASIC, you will see the message STOPPED AT 
and then the line number at which program execution halted. 
You can resume program execution by typing the command 
CON. 

The RESET Key 

You can interrupt your program at any time by pressing 
CONTROL-RESET (RESET alone on a standard Apple II). 

On the Apple Ile, the Apple II Plus, and on a standard Apple II 
with a Language Card installed, CONTROL-RESET has the same 
effect as CONTROL-C. However, after CONTROL-RESET the CONT 
command (CON in Integer BASIC) does not work and the 80-
column adapter is deactivated. 



Program Organization and Control / 177 

On some standard Apple II machines, pressing RESET causes 
the Machine Language Monitor command prompt (an asterisk) to 
appear. If you were using Integer BASIC or if your Apple II has 
an Applesoft ROM accessory card, press CONTROL-C and then 
RETURN to get back to BASIC. However, if you had loaded Apple
soft from cassette, you return to Applesoft by typing OG and then 
pressing RETURN. If you use the wrong procedure when trying to 
recover from an accidental reset, you will lose your BASIC 
program. 

The END Statement 

As described earlier in this chapter, the program stops run
ning when it encounters an END statement. The Applesoft com
mand CONT works after an END statement, but the Integer 
BASIC command CON does not. 

The STOP Statement 

The Applesoft STOP statement halts program execution. When 
Applesoft executes a STOP statement, it displays the message 
BREAK IN along with the line number where program execu
tion stopped. You can continue program execution with the 
CONT command. 

The WAIT Statement 

The Applesoft WAIT statement causes program execution to 
pause until a memory location that you specify has a value that 
you specify. You can, for example, make your program pause 
until someone presses the button on game control number 1 (or 
on an Apple Ile, until someone presses the SOLID APPLE key). 
This is how: 

]10 REM WAIT FOR BUTTON ON GAME CONTROL NO. 1 
]20 REM OR THE SOLi D APPLE KEY. 
]30 REM 
]40 PRINT "PLEASE PRESS THE BUTTON ON " 
]50 PRINT "GAME CONTROL ONE," 
J60 PRINT "OR THE SOLID APPLE KEY." 
]70 WA IT -16286, 128 
J80 PRINT "THANKS. THAT FEELS MUCH BETTER." 
J90 END 



178 I Apple II User's Guide 

See Appendix A for a more complete description of the WAIT 
statement. 

DIRECT ACCESS AND CONTROL _____ _ 

A number of statements give you direct access to the Apple II. 
There are many things you can do only by using these.statements, 
such as sensing the game controls and operating the speaker. 

Memory and Addressing 

The Apple Ile can have two banks of memory, each with 65,536 
individually addressable memory locations, for a total of 131,072 
memory locations. The Apple II Plus and standard Apple II have 
one memory bank, with up to 65,536 memory locations. Each 
location can store a number ranging between 0 and 255. All pro
grams and data are converted into sequences of numbers -each 
between 0 and 255-that are stored in this memory. 

You must specify the numeric address of a memory location for 
each of the BASIC statements covered in this section. You can 
specify the address with a number, a variable, or an expression, 
as long as the value is a legitimate address. There are two legiti
mate addresses for each memory location. One is positive and is a 
number between 0 and 65535. The other is negative and can be 
derived by subtracting 65536 from the positive address. For 
example, - 32768 and 32768 address the same memory location. 
Another memory location is addressed by either -1 or 65535. 
When you remember that the largest integer value allowed is 
32767, you can see the utility of using negative numbers for 
addressing the higher memory locations. 

PEEK and POKE 

The PEEK function lets you read the value stored in any 
memory location. Consider the following statement: 

J10 A = PEEKC222) 

This statement assigns the content of memory location 222 to 
variable A. 



Program Organization and Control I 179 

The POKE statement puts a value into a memory location. For 
example, the statement 

JJ10 POKE 768,A 

takes the value of variable A and stores it in memory location 
768. A POKE statement stores any number, variable, or expres
sion with a value between 0 and 255 in a memory location. 

You can use PEEK with read/write memory (RAM) or read
only memory (ROM), but you can use POKE only with read/write 
memory. This is self-evident; read-only memory, as its name 
implies, can have its contents read but cannot be written into. 

It takes two consecutive memory locations to store values 
greater than 255. In this case, the total value of both cells equals 
the value of the first location, plus 256 times the value of the 
second. For example, the expression PEEK(218)+ PEEK(219)*256 
reports the value that is stored in the pair of memory cells at 
locations 218 and 219. Conversely, the two statements POKE 232, 
SA-INT(SA/256)*256 and POKE 233, INT(SA/256) will store the 
value of variable SA, which may range between 0 and 65535, in 
the pair of memory cells at locations 232 and 233. 

The CALL Statement 

You can transfer control from BASIC to an assembly language 
program or subroutine with the CALL instruction. Look at this 
sample CALL statement: 

J 100 CALL A1 

Control is transferred to a machine language program that starts 
at the memory location specified by variable Al. 

The assembly language subroutine or program can be one that 
is permanently resident in the Apple II (in ROM), or it can be one 
you provide. Appendix G has a complete list of built-in subrou
tines. In addition, you may refer to Chapter 12 for more coverage 
of the machine language Monitor and assembly language. 

DEBUGGING: TRACING EXECUTION ____ _ 

A new program never seems to work quite the way you expect 
it to. Even if there are no errors in the BASIC syntax, there are 



180 I Apple II User's Gulde 

likely to be errors in the program logic. Either kind of error is 
called a bug. The process of finding and eliminating program 
errors is called debugging. 

The computer will catch and announce some errors for you. 
Those are the easy ones. The insidious errors require careful 
detective work that always includes tracing the flow of program 
execution. You must make sure that program statements are 
being executed in the order you expect and that the values of 
variables are being assigned as you expect. If you have carefully 
designed and written your program but it still doesn't work 
properly, there are some BASIC statements you can use to trace 
what happens after you type RUN. 

The PRINT Statement 

Surprisingly, the PRINT statement is a very useful debugging 
tool. You can temporarily put extra PRINT statements in your 
program at strategic points to display messages telling you that 
the program has reached a certain point without failing and to 
print out intermediate values of variables. This way you can trace 
the flow of program execution and check the results of interme
diate calculations. 

The TRACE statement 

The TRACE statement lives up to its name; it traces the flow of 
program execution by displaying the line number of each state
ment as it is executed. To see how it works, type in the following 
program, then enter TRACE followed by RUN. 

J100 PRINT "ENTER A NUMBER FROM 1 TO 5 
(6 TO END)"; 

]110 INPUT N 
1120 IF N = 1 THEN PRINT "UNO"; 
]130 IF N = 2 THEN PRINT "DOS"; 
]140 IF N = 3 THEN PRINT "TRES"; 
]150 IF N = 4 THEN PRINT "CUATRO"; 
]160 IF N = 5 THEN PRINT "CINCO"; 
]170 IF N > 5 THEN END 
]180 FOR X = 1 TO N 
]190 PRINT " *" •• , . REM PRINT N ASTERISKS 
]200 NEXT X 
1210 PRINT 
]220 GOTO 100 



Program Organization and Control I 181 

To cancel TRACE mode and return to normal, execute the state
ment NOTRACE. 

The DSP Statement 

There is another useful debugging statement available in Inte
ger BASIC: the DSP statement. Here is an example: 

>10 DSP COUNT 

Once this particular DSP statement has been executed, Integer 
BASIC notifies you each time the value of variable COUNT 
changes and tells you at which line number the change occurred. 
Since the RUN command disables any previously executed DSP 
statements, you must either use GOTO to start the program or 
put your DSP statements in program lines. · 

You can also turn off DSP mode for a variable with a NODSP 
statement. Here is an example: 

>300 NODSP NAMES 

Once this statement has been executed, Integer BASIC ceases to 
notify you each time the value of variable NAME$ changes. 



Screen Output 
And Data Entry 9 

The most inexperienced programmer quickly discovers that 
the input and output sections of a program are its trickiest parts. 
Input and output are perhaps the most important program fea
tures as far as the user is concerned, so it is worth spending some 
time to make your programs clear and easy to use. People will 
get far less out of a program that simply displays its results with 
several unplanned PRINT statements than from a program with 
carefully designed output. And nearly every program uses data 
that must be entered at the keyboard. Will a few INPUT state
ments suffice? In most cases the answer is no. What if the pro
gram user accidentally presses the wrong key? Or worse, what if 
the user discovers that he or she input the wrong data-after 
entering two or three data items? A usable program must assume 
that its user is human and therefore likely to make mistakes. 
This chapter explores some ways of arranging information on the 
display screen for best readability. It also discusses ways to min
imize data-entry errors and techniques for correcting those that 
do occur. 

CLEARING THE DISPLAY SCREEN _____ _ 

The statement CALL - 936 clears the display screen and moves 
the cursor to the home position (the upper-left corner of the 
screen). In Applesoft, the HOME statement does the same thing. 
Either statement works in immediate mode as well as pro
grammed mode. 

183 



184 I Apple II User's Guide 

Display-Screen Line Length 

An Apple II with an 80-column adapter can display up to 80 
characters per screen line. Initially, the adapter is not active, and 
the display line length is limited to 40 characters. In immediate 
mode, you activate the adapter when you type the PR#3 com
mand. This same command works from within a BASIC program. 

The PR#3 command is actually a command to the operating 
system (ProDOS or DOS 3.3). To issue any operating system 
command from within a BASIC program, you put it in a PRINT 
statement, prefixed with the character whose ASCII code is 4. 
Here is an example: 

J10 PRINT: PRINT CHRS<4>;"PR#3": REM •• Activate 
80-col. adapter 

Warning: The operating system prefix character (ASCII code 
4) must be the first character printed by the PRINT statement. 
Furthermore, the PRINT statement executed most recently (if 
any) must not end with a semicolon. If you violate either of these 
restrictions, you may disconnect the operating system, forcing 
you to restart the Apple II and causing you to lose your BASIC 
program in the process. 

In the example above, the second PRINT statement contains 
the operating system command. It uses the CHR$ function to 
generate the required operating system prefix character and 
then lists the operating system command between quotes. The 
first PRINT statement ensures that the most recent PRINT 
statement did not end with a semicolon. 

When the operating system receives a PR#3 command, it acti
vates the accessory card installed in slot 3, or on an Apple Ile, the 
adapter card installed in the auxiliary slot. If the 80-column 
adapter is installed in a different slot, use that slot number 
instead of the 3 in the PR# command. If you use the PR# com
mand with the wrong slot number, the computer will behave 
unpredictably, and may even lock up, forcing you to restart it. 

Many Applesoft programmers assign a string variable to the 
value CHR$(4) and then use that variable in PRINT statements. 
The following example shows how: 

]10 DS=CHRS<4>: REM •• Prefix for op. sys. commands 
]20 PRINT: PRINT DS;"PR#3": REM •• Activate 80-col. 

Integer BASIC does not allow the CHR$ function. You can create 



Screen Output and Data Entry I 185 

the operating system prefix by typing CONTROL-D between quotes 
instead. This example illustrates: 

>10 DS="": REM •• CONTROL-D prefix for DOS 3.3 
cbmmands 

>20 PRINT: PRINT DS;"PR#3": REM •• Activate 80-co l. 

Activating an 80-column adapter automatically sets the display 
width to 80, but you can switch to 40 by printing CHR$(17) and 
back to 80 by printing CHR$(18). There is no need to activate the 
80-column adapter each time, for once it is active, it remains so 
until deactivated. You can deactivate the 80-column adapter by 
printing CHR$(21). 

You can tell whether the 80-column adapter is active or not by 
looking at the cursor's design. Table 9-1 shows the different 
forms of the cursor. 

Table 9-1. Standard Apple II Cursor Designs 

Cursor 
SO-Column Line Escape 

Design Blinking Adapter Width Mode 

II Yes Inactive 40 • 

Yes Inactive 40 * 

I No Active 80 No 

No Active 40 No 

II No Active 80 Yes II 

1111 No Active 40 Yes 1111 

•With 80-column adapter inactive, the cursor does not indicate escape mode status. 



186 I Apple II User's Gulde 

FORMATTED OUTPUT _________ _ 

Format,ting is the process of arranging information on a display 
screen so that the information is easy to understand or pleasing 
to the eye. The basic tool for displaying information is the PRINT 
statement. We used it in Chapter 5 to print numeric and string 
data. 

The key to formatting output on the display screen is cursor 
control. Printed output starts wherever the cursor is located. 
Each character displayed on the screen moves the cursor. In most 
cases, after a character is displayed the cursor moves one column 
to the right. A few characters move the cursor in other direc
tions. The PRINT statement may end by forcing the cursor to the 
beginning of the next display line. As in typewriter terminology, 
this is called a carriage return. 

Carriage Return 

When you press the RETURN key, the cursor advances to the 
beginning of the next display line. The RETURN key generates an 
invisible character that causes a carriage return. The PRINT 
statement also generates the carriage return character. 

Normally, a PRINT statement outputs a carriage return char
acter as its last action. That explains why the cursor advances to 
the next display line at the end of a PRINT statement. For 
example, the following program displays a column of 20 Z's in 
the first position of each display line: 

] 200 CS="Z II 
]210 FOR N = 1 TO 20 
l220 PRiNT CS 
l230 NEXT N 
]240 PRINT "PHEW!" 
l250 END 

Of course a semicolon at the end of a PRINT statement will 
suppress the carriage return. Or will it? Try this variation· on the 
last program: 

l200 CS="Z" 
]210 FOR N = 1 TO 800 
] 220 PRINT CS; 
J230 NEXT N 
]240 PRINT "PHEW!" 
J250 END 



Screen Output and Data Entry I 187 

Assuming that the screen displays 40 characters per line, the 
screen fills with 20 lines of Z's, and the word PHEW! appears at 
the beginning of the twenty-first line. Where did thos~ 20 car
riage return characters come from? The semicolon ~t tqe end of 
the PRINT statement on line 220 is supposed to suppress the car
riage return character. However, it doesn't seem to work at the 
end of a display line. 

Whenever anything is displayed in the last column pf any dis
play line, it triggers a carriage return. This is a feature of the 
display screen. Rather than lose the characters off the screen to 
the right, the display screen generates a carriage return charac
ter and continues the same output line on the next display line. 

Suppose you display something in the last column of the last 
line on the screen. A carriage return occurs, but there is no next 
line for the cursor to advance to. However, the computer for~es 
the first line off the top of the screen so the cursor will have 
somewhere to go. The following program illustrates this with a 
line width of 40: 

J300 PRINT "FIRST LINE" 
l310 REM Skip down to bottom line 
J320 FOR N = 1 TO 22 
]330 PRINT 
J340 NEXT N 
]350 REM Space over to last character 
J360 PRINT "WATCH TOP LINE AS CHARACTER 

APPEARS--->"; 
J370 REM Ring the bell awhile 
J380 FOR N = 1 TO 25 
]390 PRINT CHRSC7>; 
J400 NEXT N 
l410 REM Display last col., last line 
J420 PRINT "&l"; 
J430 REM Pause until RETURN pressed 
J440 INPUT AS 
]450 END 

This program first displays the FIRST LINE message (line 
300). Then it outputs 22 carriage returns, moving the FIRST 
LINE messag~ to the top of the screen and leaving the cursor at 
the beginnir~g of the bottom line of the screen (lines 320-340). 
Next it displays a message that moves the cursor to the penulti
mate column of th~ last row (line 360). After that, it sounds the 
console speaker for a few seconds (lines 380-400). This gives you a 
chance to watch the top line carefully. Finally, the program dis
plays a character in the last column of the bottom line (line 420); 



188 I Apple II User's Guide 

a carriage return occurs. The FIRST LINE message is instantly 
pushed off the top of the screen so the cursor can advance to the 
next display line. The program waits for some keyboard entry 
before ending (line 440). To use the example above in Integer 
BASIC, you must eliminate the CHR$ function in line 380 and in 
its place type a quotation mark, press CONTROL-G, and type 
another quotation mark. 

Were you surprised that sounding the speaker did not cause a 
carriage return? After all, the PRINT statement on line 390 
looks as if it should display a character in the last column of the 
bottom line. It doesn't, however, because the bell character, 
ASCII code 7, is an invisible character. It does not affect the cur
sor's position. 

Columnar Output 

A list of items is easy to scan if it is aligned in columns. Apple
soft provides two ways to output information in columns. One is 
to use commas between values in PRINT statements, and the 
other is to use the TAB and SPC functions. The TAB and SPC 
functions are not available in Integer BASIC. 

If the computer finds a comma after a PRINT statement value, 
it moves the cursor to the right after displaying the value, put
ting blank spaces between the end of the value and the next tab 
stop. Integer BASIC tab stops on a 40-column screen are eight 
columns apart, at columns l, 9, 17, 25, and 33. Applesoft has three 
tab stops on a 40-column screen, at columns l, 17, and 33. The 
following Applesoft program uses commas to align equivalent 
Celsius and Fahrenheit temperatures in two columns: 

]10 INPUT "LOWEST CELSIUS TEMPERATURE? ";L 
]20 PRINT 11 CELSIUS 11

,
11 FAHRENHEIT" 

130 FOR C = L TO L + 20 
140 F = C * 9 I 5 + 32: REM FAHRENHEIT 
]50 F = INT C ABS CF) + .5) * SGN CF>: REM ROUND 
160 PRINT C,F 
170 NEXT C 
l80 END 

Instead of using semicolons between PRINT statement items, 
the program uses commas (lines 20 and 60). When BASIC 
encounters a comma in a PRINT statement, it advances the cur
sor to the next active tab stop before it displays the next value, 
thereby aligning the display in columns (see Figure 9 -1). The 



CELSIUS 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

HI 

Screen Output and Data Entry / 189 

FAHRENHEIT 
50 
52 
54 
55 
57 
59 
61 
63 
64 
66 
68 
70 
72 
73 
75 
77 
79 
81 
82 
84 
86 

Figure 9-1. Columnar output generated by using commas in PRINT 
statements 

program also uses the INT, ABS, and SGN functions to round the 
converted temperature to the nearest whole degree (line 50). 

There is a catch to using commas, however. At least one blank 
space must be left just ahead of a tab stop (except the first tab 
stop), or that stop will be deactivated for the current display line. 
Except on an Enhanced Apple IIE, Applesoft will also deactivate 
the tab stop in column 33 if anything is displayed in columns 24 
through 32 (see Figure 9-2). 

On older Apple II machines, tabbing with commas in PRINT 
statements has little value when the display line width is 80. 
There are essentially only two tab stops, the first at column 1 and 
the second at column 9 in Integer BASIC or column 17 in Apple
soft. Every comma in a PRINT statement (except those enclosed 
in quotes) sends the cursor to that second tab stop, which means 
values will be displayed on top of each other. However, on an 
Enhanced Apple Ile, tabbing with commas works correctly on an 
80-column screen. 



190 I Apple II User's Guide 

First Tab Stop 
· Starts in column 1 

Second Tab Stop 
· Exists only if 

nothing printed in 
column 16 

· Starts in column 17 

lllllil!lll 

Third Tab Stop 
· Exists only if nothing 

printed in column 
32, or columns 24-32 
if not an Enhanced 
Apple Ile 

· Starts in column 33 

16 spaces wide---1--16 spaces wide-.ls spaces 
wide 

Figure 9-2. Applesoft tab stops set on a 40-column screen by PRINT state
ment with commas 

The TAB Function 

Suppose you want to align information in columns, but not the 
columns set by PRINT statement commas. In an Applesoft pro
gram, you can use the TAB function in PRINT statements to 
advance the cursor to any column you specify. For this purpose, 
columns on the display screen are numbered from 1 to 40. Com
pare the following example to the previous program: 

J10 INPUT "LOWEST CELSIUS TEMPERATURE? ";L 
J20 PRINT TABC ?>;"CELSIUS"; TAB( 15);"FAHRENHEIT" 
J30 FOR C = L TO L + 20 
J40 PRINT TABC 9);C; 
JSO F = C * 9 I 5 + 32: REM FAHRENHEIT 
]60 F = INT (ABS CF)+ .5) * SGN CF): REM ROUND 
]70 PRINT TAB( 19>;F 
J80 NEXT C 
]90 END 

This program uses the TAB function to align its output in two 
columns down the center of the screen (see Figure 9-3). Notice 
that it uses semicolons to separate adjacent items in PRINT 
statements (lines 20, 40, and 70), including the TAB functions. 

The TAB function works with any column number from 1 to 
80. However, TAB is erratic with column numbers 41-80 on any 
machine except an Enhanced Apple Ile. 



Screen Output and Data Entry / 191 

CELSIUS 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

FAHRENHEIT 
68 
70 
72 
73 
75 
77 
79 
81 
82 
84 
86 
88 
90 
91 
93 
95 
97 
99 
100 
102 
104 

Figure 9-3. Columnar output generated by the TAB function 

Right-Justified Output 

Both of Applesoft's methods for aligning output in columns line 
up values on the left, leaving a ragged right edge. This is called 
left-justified output and is fine for words and other alphabetic 
strings. Numbers, on the other hand, are easier to read if they 
line up on the right. The Applesoft functions SPC, STR$, and 
LEN make right-justified output easy. To use them you must 
know the width of the widest value (see Figure 9-4). The fol
lowing program is a further modification of the previous two 
examples: 

J10 INPUT "LOWEST CELSIUS TEMPERATURE? ";L 
J20 PRINT TAB( 7>;"CELSlUS"; TABC 15);"FAHRENHEIT" 
]30 FOR C = L TO L + 20 
J40 W = LEN C STRS CC)): REM CELSIUS WIDTH 



192 I Apple II User's Guide 

]50 PRINT TAB( 7>; SPCC 6 - W + 1);C; 
]60 F = C * 9 I 5 + 32: REM FAHRENHEIT 
]70 F = INT CABS Cf) + .5) * SGN CF): REM ROUND 
]80 W =LEN C STRS CF)): REM FAHR. WIDTH 
]90 PRINT TAB( 18); SPC( 6 - W + 1);F 
]100 NEXT C 
]110 END 

This program converts numeric values to strings so it can use 
the LEN function to determine their lengths (lines 40 and 80). It 
uses a TAB function to arrive at a predetermined column, and 
then it uses the SPC function to move far enough over to align the 
string values on the right (lines 50 and 90). The program allows 
six spaces per number: five for digits and one for a possible 
minus sign. The right-justified output in Figure 9-5 is a definite 
improvement over the original output (Figure 9-1). As an exer
cise, try changing the program so it right-justifies the output 
without using the SPC function. 

Decimal-Aligned Output 

Columns of numbers with decimal points are easy to read if the 
numbers line up on the decimal point. Aligning decimals is 
almost the same as right-justifying numbers, but in this case the 
numbers are right-justified on the decimal point instead of the 
last digit. Therefore, the program must figure out where the 
decimal point is. This is easy enough to determine by applying 
the LEN function to a string version of the integer part of the 

-------..... Column Width (CW)-------~ 

Blanks Value(V$) 

~ CW-LEN(V$) LEN(V$) 

C The value of V$ starts her e, 
at CW-LEN(V$)+1 

Figure 9-4. Right-justifying a string value (convert numeric values to strings 
with STR$) 



JS 

CELSIUS 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
so 

Screen Output and Data Entry I 193 

FAHRENHEIT 
86 
88 
90 
91 
93 
95 
97 
99 

100 
102 
104 
106 
108 
109 
111 
113 
115 
117 
118 
120 
122 

Figure 9-5. Right-justified column output 

number. The number will be wider with its decimal point and 
post-decimal digits, so you must plan for this when determining 
the starting point for .each number. 

As an example, consider a program that converts from whole 
degrees in Fahrenheit to the nearest tenth of a degree in Celsius. 
The following program aligns the Celsius temperatures on their 
decimal points, making them easy to read. The results are shown 
in Figure 9-6. 

]10 INPUT "LOWEST FAHRENHEIT TEMPERATURE? ";L 
l20 PRINT TAB( 7>;"FAHRENHEIT"; TABC 20);"CELSIUS" 
]30 FOR F = L TO L + 20 
J40 W =LEN C STRS CF)): REM FAHR. WIDTH 
]50 PRINT TABC 10); SPCC 6 - W + 1);F; 
]60 C = 5 I 9 * CF - 32>: REM CELSIUS 
]70 C = INT CABS CC) * 10 + .5) I 10 * SGN CC): 

REM ROUND 



194 I Apple II User's Guide 

J80 W =LEN C STRS C INT CC))): REM CELSIUS WIDTH 
J90 PRINT TABC 18); SPCC 6 - W + 1);C 
J100 NEXT F 
J110 END 

After converting a temperature to Celsius, the program rounds 
it to the nearest tenth of a degree (lines 60 and 70). Then, for the 
Celsius temperatures, the TAB function advances to the prede
termined leftmost column, which is two columns farther left than 
in earlier examples, in order to allow for the decimal point and 
fractional digit (line 90). From there the SPC function right
justifies based on the integer portion of the value, and the entire 
value-including its fractional part-is displayed (line 90). This 
program aligns Celsius temperatures 0.6 and -0.6 (Fahrenheit 
31 and 33) incorrectly. See if you can figure out how to fix that. 

FAHRENHEIT 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
so 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

Figure 9-6. Decimal-aligned output 

CELSIUS 
4.4 
5 
5.6 
6.1 
6.7 
7.2 
7.8 
8.3 
8.9 
9.4 

10 
10.6 
11 .1 
11 • 7 
12.2 
12.8 
13.3 
13.9 
14.4 
15 
15.6 



Screen Output and Data Entry I 195 

CURSOR CONTROL _________ _ 

Semicolons, commas, and the TAB and SPC functions are fine 
for formatting simple tables like those you've seen so far. More 
complicated displays demand more cursor control. Applesoft 
offers two ways of directly controlling the cursor. One is to pro
gram cursor movement characters with the CHR$ function. The 
other is to use the VTAB and HTAB statements. Integer BASIC 
also recognizes the VTAB statement, and has a TAB statement 
equivalent to HTAB. 

When used together, VTAB and HTAB (TAB in Integer 
BASIC) allow you to move the cursor to any position on the 
screen. VTAB moves the cursor vertically and HTAB moves the 
cursor horizontally. You must specify the row number for VTAB 
and the column number for HTAB. The following Applesoft pro
gram uses these two statements to position the cursor and display 
an asterisk at that location. 

J80 HOME 
J90 VTAB 1: HTAB 1 
J100 INPUT "Row?";R 
]110 INPUT "Column?";C 
J 120 VTAB R: HTAB C 
]130 PRINT"*"; 
J140 GOTO 90 

The VTAB statement works with row numbers 1 through 24. 
Row 1 is at the top of the screen and row 24 is at the bottom. A 
number outside that range causes an error. 

When the screen width is 40, the HTAB (or TAB) statement 
works with column numbers 1 through 40. Column 1 is at the left 
edge of the screen and column 40 is at the right edge. A row 
number less than 0 causes an error, but a row number larger 
than 40 wraps around to the beginning of the next lower line and 
keeps on going. For example, HTAB 50 is the same as HTAB 10 
on the next line down. 

Except on an Enhanced Apple Ile, you cannot use an HTAB 
statement to position the cursor in a column between 41 and 80 
on an 80-column display. Instead, you must use a POKE state
ment with memory location 36. However, column numbers for the 
POKE statement range between 0 and 79 (instead of 1 and 80). 
Column 0 is at the left edge of the screen and column 79 is at the 
right edge. Another variation of the last example works on an 
80-column screen. 



196 I Apple II User's Guide 

J10 PRINT CHRS C4>;"PR#3": REM •• Activate 80-column 
adapter 

]80 HOME 
J90 VTAB 1: HTAB 1 
]100 INPUT "Row?";R 
J110 INPUT "Column?";C 
J120 VTAB R: POKE 36,C - 1 
J130 PRINT "*" 
J140 GOTO 90 

Warning: Do not put a value greater than the current width of 
the screen (40 or 80) in memory location 36. The results are 
unpredictable and may destroy your program or even force you to 
restart the Apple II. 

An Applesoft program can move the cursor left or down by dis
playing the - or 1 characters; their ASCII codes are 8 and 10 
respectively. These cursor movement characters do not erase any 
other characters they pass over. To program one of the cursor 
movement characters, use the CHR$ function with the appropri
ate ASCII code. For example, CHR$(8) will backspace the cursor. 

Determining Cursor Position 

The Applesoft function POS reports the column in which the 
cursor is located. POS requires a single numeric operand but 
does not use it for anything. Here is an example: 

J10 PRINT "123456789"; 
]20 C = POS CO) + 1 
]30 PRINT 
J40 PRINT "LAST LINE ENDED AT COLUMN ";C 
]50 END 

If you run this example, it will report that the message displayed 
by line 10 ended at column 10. Line 20 adds 1 to the column 
number that POS reports because the POS function numbers 
columns from 0 to 39, unlike the TAB function and the HTAB 
(TAB in Integer BASIC) statement. 

You can also use PEEK(36) to learn the current cursor column 
(Oto 39 or 0 to 79). In fact, this is the only way to get the current 
column position on an 80-column screen. 

To determine the current cursor row, use PEEK(37). It reports 
a number between 0 (top of screen) and 23 (bottom of screen). 



Screen Output and Data Entry / 197 

SPECIAL EFFECTS __________ _ 

The Apple II actually has two sets of characters. It uses its 
standard set when the 80-column adapter is not active (the cur
sor is a blinking checkered square), and its alternate set when 
the 80-column adapter is active (the cursor is a solid white box). 
Both sets have a full complement of uppercase and lowercase let
ters, numbers, and symbols. They differ in the styles in which the 
characters can be displayed. 

The character styles available are normal, inverse, and flash
ing. Normal characters are white (or green or orange, depending 
on your monitor) on a black screen. Inverse character' are black 
on a white (or green or orange) screen. Flashing characters 
alternate between normal and inverse several times a second. 

The standard character set (80-column adapter not active) can 
display all characters in normal style. Lowercase letters are not 
available in inverse or flashing style, however. The alternate 
character set (80-column adapter active) can display all charac
ters in both normal and inverse style but does not display in 
flashing style. On an Enhanced Apple Ile, the alternate character 
set can also display 33 special graphics symbols called Mousetext. 

You can control the speed at which characters appear on the 
screen with either character set and in any character style. 

The INVERSE Statement 

Applesoft can reverse the black and white parts of characters 
on the display screen with the INVERSE statement. Once the 
INVERSE statement is executed, everything displayed by PRINT 
statements appears in inverse style. However, inverse lowercase 
letters are only available when the 80-column adapter is active. 
The Apple II returns to normal style when Applesoft executes a 
NORMAL statement. To see how e1ese two statements work, try 
the following example. The shaded characters will be in inverse 
style. 

]INVERSE 

] ?"BLACK ON WHITE" 
BLACK ON WHITE 

]NORMAL 



198 I Apple II User's Guide 

]?"WHITE ON BLACK" 
WHITE ON BLACK 

The FLASH Statement 

When the 80-column adapter is not active, everything dis
played after an Applesoft FLASH statement alternates between 
normal and inverse style. Remember, though, that flashing style 
does not work with lowercase letters. Here again, a NORMAL 
statement causes the Apple II to revert to normal style. In the 
next example, the shaded areas will be flashing: 

]FLASH 

J?"FLASH IN THE PAN" 
FLASR IN TH~ PAN 

]NORMAL 

]?"STEADY AS RAIN" 
STEADY AS RAIN 

The SPEED Statement 

The rate at which characters display on the screen is variable. 
You can slow down the display speed with an Applesoft SPEED 
statement. The following program illustrates how SPEED works: 

]100 INPUT "SPEED=";SP 
]110 SPEED= SP 
]120 FOR CT = 1 TO 3 
]130 PRINT "HIC" 
]140 NEXT 
]150 PRINT "HICCUP" 
]160 SPEED= 255 
l170 END 

The value of SP on line 110 adjusts the display speed; 0 is slowest 
and 255 is fastest. SPEED also affects the rate at which charac
ters are sent to other devices, not just the display screen. 



Screen Output and Data Entry / 199 

Mousetext 

When the 80-column adapter is active, the Enhanced Apple Ile 
can display 33 graphics characters called Mousetext. Table 9-2 
identifies the Mousetext characters. The screen display depicted 
in Figure 9-7 gives you some idea of how they can be used. The 
program listed -in Figure 9-8 generates the display in Figure 9-7. 
(To quit the program listed in Figure 9-8, press any key.) On 
other Apple II machines, inverse uppercase letters and punctua
tion replace the Mousetext characters. 

To display Mousetext, a program must: 

· Activate the 80-column adapter with the statement PRINT 
CHR$( 4); "PR# 3", or its equivalent. 

· Set inverse style (with an INVERSE statement). 
· Turn on Mousetext by using CHR$(27) or its equivalent to 

print the invisible character whose ASCII code is 27. 
· Display the appropriate uppercase letters and punctuation 

marks (see Table 9-2). 

Table 9-2. Mousetext Graphics Characters 

Mousetext Regular Mousetext Regular Mousetext Regular 
Character Character Character Character Character Character 

• tb 1' K («a v 2 
1:•:4' 

0 A - L ~~~ 
w 2 

~ B +I M c x 
% c I N => y 

y D ~ 0 I z 3 

• E t: p • [ 

~ F 1 .. Q - \ -
'- G , +. R .... ] .,,. 
~ H - s !J A 3 

·-· I L T I -

"' J ~ u 

1Combine F and G to make a runner. 
~combine V and W to make a continuous gray line. 
:
3Combine Z and I\ to make a boxed dot. 



200 I Apple II User's Guide 

Figure 9-7. Mousetext characters demonstration 

To display inverse uppercase letters or symbols again, a pro
gram must turn off Mousetext by using CHR$(24) or its equiv
alent to print the invisible character whose ASCII code is 24. To 
display normal characters again, a program must turn off 
Mousetext with CHR$(24) and set normal style (with a NORMAL 
statement). 

100 REM ••• Set variables ••• 
110 MTS= CHRS (27): 

REM •• Mousetext on 
120 RTS = CHRS C24): 

REM •• Regular text on 
130 DS = CHRS (4): REM •• ProDOS command prefix 

Figure 9-8. Mousetext demonstration program (Enhanced Apple Ile only; see 
Figure 9-7 for sample output) 



Screen Output and Data Entry I 201 

140 W4$ = CHRS C17): 
REM •• Display width 40 

1000 PRINT : PRINT D$;"PR#3": 
REM •• Enhanced video on 

1010 PRINT : PRINT W4S;: 

1100 
1110 
1120 
1130 
1140 

REM •• Screen width 40 
TIS = "Mousetext" 

GOSUB 10000: REM •• Display title bar 
GOSUB 10100: REM •• Display left border 

TR = 12: REM •• vertical thumb row 
GOSUB 10200: REM •• Display vertical 
scroll bar 

1150 TC = 8: REM •• Horizontal thumb column 
1160 GOSUB 10320: REM •• Display horizontal 

scroll bar 
1200 REM ••• Display Icons ••• 
1210 INVERSE : PRINT MTS;: 

REM •• Mousetext on 
1220 VTAB 3: HTAB 9: PRINT "C": 

REM •• Hourglass 
1230 VTAB 4: HTAB 13: PRINT "D": 

REM •• Check 
1240 VTAB 5: HTAB 11: PRINT"]": 

REM •• Crosshairs 
1250 VTAB 7: HTAB 10: PRINT "T": 

REM •• Text 
1260 VTAB 8: HTAB 12: PRINT "B": 

1270 

1280 
1300 
1310 

1320 

1330 

1340 

1350 

1360 

REM •• Arrow 
NORMAL : PRINT RTS;: 
REM •• Mousetext off 
VTAB 10: HTAB 9: PRINT "Cursors"; 
REM ••• Keycaps ••• 
INVERSE : PRINT MTS;: 
REM •• Mousetext on 
VTAB 4: HTAB 24: PRINT "A": 
REM •• Open apple 
VTAB 4: HTAB 29: PRINT "@";: 
REM •• Solid apple 
VTAB 4: HTAB 31: PRINT "H";: 
REM •• Left arrow 
VTAB 4: HTAS 33: PRINT "U";: 
REM •• Right arrow 
VTAB 4: HTAB 35: PRINT "J";: 
REM •• Down arrow 

Figure 9-8. Mousetext demonstration program (Enhanced Apple Ile only; see 
Figure 9-7 for sample output) (continued) 



202 I Apple II User's Guide 

1370 VTAB 4: HTAB 37: PRINT "K";: 
REM •• Up arrow 

1380 NORMAL : PRINT RT$;: 
REM •• Mousetext off 

1390 VTAB 6: HTAB 26: PRINT "Keycaps"; 
1400 REM ••• Icons ••• 
1410 INVERSE : PRINT MTS;: 

REM •• Mousetext on 
1420 VTAB 9: HTAB 23: PRINT "XV";: 

REM •• Folder 
1430 VTAB 10: HTAB 29: PRINT "[";: 

REM •• Diamond 
1440 VTAB 11: HTAB 24: PRINT "Z"";: 

REM •• Close box 
1450 VTAB 12: HTAB 27: PRINT "FG";: 

REM •• Runner 
1460 NORMAL : PRINT RTS;: 

REM •• Mousetext off 
1470 VTAB 14: ~TAB 24: PRINT "Icons"; 
1500 REM ••• Lines ••• 
1510 VTAB 12: HTAB 5: PRINT " " 
1520 INVERSE : PRINT MTS;: REM •• Mousetext on 
1530 VTAB 18: HTAB 5: PRINT "LLLLLL" 
1540 FOR ROW = 13 TO 17 
1550 VTAB ROW: HTAB 5: PRINT " "; 
1560 HTAB 10: PRINT "Z"; -
1570 NEXT ROW 
1580 VTAB 16: HTAB 2: PRINT "SSSS"; 
1590 VTAB 14: HTAB 10: PRINT "\\\\\\" 
1600 VTAB 19: HTAB 14: PRINT "N" 
1610 tiTAB 14: PRINT "N" 
1620 HTAB 14: PRINT "N" 
1630 VTAB 18: HTAB 4: PRINT "T" 
1640 HTAB 3: PRINT "T" 
1650 VTAB 17: HTAB 14: PRINT II " 

1660 HTAB 14: PRINT " " 
1670 NORMAL : PRINT RT$;: VTAB 11 
1680 FOR ROW = 11 TO 13 
1690 HTAB 6: PRINT "I" 
1700 NEXT ROW 
1710 VTAB 2Z: HTAB 6: PRINT "Lines" 
1800 VTAB 17: HTAB 20: PRINT "Entry field"; 
1810 INVERSE : PRINT MTS;"IIIIIII";RTS: NORMAL 
1900 VTAB 21: HTAB 26: PRINT "Scroll bars" 
1910 HTAB 36: PRINT "I"; 

Figure 9-8. Mousetext demonstration program (Enhanced Apple Ile only; see 
Figure 9-7 for sample output) (continued) 



Screen Output and Data Entry I 203 

1920 INVERSE : VTAB 21: HTAB 37: PRINT MTS;"SU" 
1930 VTAB 23: HTAB 36: PRINT "J";RT$: NORMAL 
2000 GET A $ 
2010 END 
9989 REM 
9990 REM ••• Title Bar Subroutine ••• 
9991 REM 
10000 INVERSE 
10010 VTAB 1: HTAB 2 
10020 PRINT " ";MTS; 

10030 
10040 
10050 
10089 
10090 
10100 
10110 
10120 
10130 
10140 
10150 
10160 
10189 
10190 
10191 
10200 
10210 
10220 
10230 
10240 
10250 
10260 
10270 
10280 
10290 
10300 
10310 
10320 
10330 

11 
.. \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\";RTS; 

" ... , 
VTAB 1: HTAB C40 - LEN CTI$)) I 2 
PRINT TIS; 
NORMAL : RETURN 
REM 
REM ••• Print Left Border Subroutine ••• 
INVERSE : PRINT MTS;: REM •• Mousetext on 
FOR ROW = 1 TO 24 
VTAB ROW: HTAB 1 
PRINT "Z"; 
NEXT ROW 
NORMAL : PRINT RTS;: REM •• Mousetext off 
RETURN 
REM 
REM ••• Vertical Scroll Bar Subroutine ••• 
REM 
INVERSE : VTAB 2: HTAB 39 
PRINT MTS;"R": REM •• Up-arrow 

22 FOR ROW = 3 TO 
HTAB 39: PRINT "V": REM •• Gray area 
NEXT ROW 
HTAB 39: 
HTAB 39: 
VTAB TR: 
NORMAL : 
REM 

PRINT "Q": REM •• Down-arrow 
PRINT RTS;"\";: REM •• Corner box 
HTAB 39: PRINT " ": REM •• Thumb 
RETURN 

REM ••• Horizontal Scroll Bar Subroutine ••• 
REM 
INVERSE : VTAB 24: HTAB 2 
PRINT MTS; 
"OVWVWVWVWVWVWVWVWVWVWVWVWVWVWVWVWVWVP";RTS; 
"\"; 

10340 VTAB 24: HTAB TC: PRINT"";: REM •• Thumb 
10350 NORMAL : RETURN 

Figure 9-8. Mousetext demonstration program (Enhanced Apple Ile only; see 
Figure 9-7 for sample output) (continued) 



204 I Apple II User's Gulde 

Control Characters 

Some of the example programs in this chapter have used the 
CHR$ function with ASCII codes between 0 and 31. You may 
have noticed that characters with those codes are invisible. For 
example, when the 80-column adapter is active, CHR$(17) sets 
the display width to 40 and CHR$(18) sets the display width to 
80. Such characters are called control characters because they 
control special effects, display format, cursor movement, and the 
like. Most control characters are effective only when the 80-
column adapter is active. Table 9-3 lists the ASCII code numbers 
of all control characters for the display screen. 

Table 9-3. Display Screen Control Characters (Programmable With the 
CHR$ Function) 

Effect with 
ASCII 80-column card: 
Code Active Inactive 

4* Deactivate control characters except codes 
5, 7, 8, 10, and 13 None 

5* Reactivate control characters None 
7 Sound console speaker Same 
8 Move cursor left Same 

10 Move cursor down Same 
11 Clear from cursor to end of text window None 
12 Clear text window None 
13 Carriage return Same 
14 Set normal video None 
15 Set inverse video None 
17 Set active-40 mode None 
18 Set active-80 mode None 
21 Deactivate 80-column adapter None 
22 Scroll down one line None 
23 Scroll up one line None 
24* Deactivate Mousetext None 
25 Move cursor home None 
26 Clear cursor line None 
27* Activate Moustext None 
28 Move cursor right None 
29 Clear from cursor to end of display line None 

*Only on Enhanced Apple Ile. 



Screen Output and Data Entry I 205 

CONTROLLING KEYBOARD INPUT _____ _ 

Nearly every program requires some kind of input from the 
person using it. The goal of any program should be to minimize 
input errors and make it easy for someone using the program to 
spot and correct errors that do occur. There are ways to organize 
input that tend to minimize input errors. This section discusses 
the following methods: 

· Displaying helpful messages 
· Checking inputs for reasonableness and range 
· Anticipating errors and handling them smoothly 
· Grouping inputs logically 
· Allowing review and modification of grouped inputs. 

Prompt Messages 

Prompt messages were introduced in Chapter 7 and have been 
used since then in the example programs. As the examples have 
illustrated, prompt messages should be succinct. Space on the 
display screen is usually at a premium, so verbosity is a luxury. 
Keep the prompt brief and try to leave enough room on the same 
line for the entire input response. When this is impossible, put 
the prompt message on one line and the response on the next. 

Checking Input Responses 

No matter how carefully you design your input requests, you 
can't be sure how people will respond. If incorrect input could 
cause a problem, the program should check for it. Are string 
entries too long? Are numeric entries within range? Does the 
entry make sense in context? Will it cause an error later in the 
program? If you want to write a thorough program, you will 
make every effort to anticipate errors that a user might make. 
Your program should catch entry errors and force the user to 
reenter values that would cause the program to halt abnormally. 

BASIC will catch some kinds of data-entry errors for you~ For 
example, it will not accept alphabetic entry when inputting a 
numeric value with a statement like INPUT A. If you try to enter 
letters in response to such a statement, an error message appears 
and you must reenter the value. 



206 I Apple II User's Gulde 

Built-in error-checking capabilities are limited, though. It is 
entirely possible to enter the right kind of value, numeric or 
string, which will nevertheless cause a program error farther 
down the line. Here is a short program that illustrates the 
problem: 

]100 INPUT X 
J200 PRINT 100/X 
J300 END 

If you enter 0 in response to the INPUT statement, the pro
gram will fail when it tries to divide by 0 in the PRINT state
ment. It is easy enough to avoid this. The following lines will 
check the input to make sure it is not 0, and will request reentry 
if it is 0: 

]110 IF X <> 0 THEN 200 
J120 PRINT "NOT ALLOWED ••• RE-ENTER" 
J130 GOTO 100 

By extending the principle illustrated in this example, you can 
see how easy it is to check an entered value for the correct range. 
Depending on the circumstances, it may make sense to do range 
checking with ON-GOTO or ON-GOSUB statements, rather than 
a series of IF-THEN statements. 

Sometimes checking for errors is expensive. It can take a lot of 
programming time, program space, and execution time. Consid
er a typical yes-or-no question, for example. The program should 
allow any of the correct natural responses: yes, no, Yes, No, YES, 
NO, y, n, Y, or N. There are ten answers in all, which is quite a 
few for a program to have to check. You can easily reduce the 
number of input tests: simply check the first character input. If 
the response is not allowed, the program repeats the input 
request. The following program fragment illustrates this: 

]200 PRINT 
]210 PRINT "ENTER ANOTHER BILL"; 
J220 INPUT RS:RS = LEFTS CRS,1) 
J230 IF RS = "Y" OR RS = "y" THEN 90 
J240 IF RS = "N" OR RS = "n" THEN END 
J250 GOTO 210 

This Applesoft program fragment uses the LEFT$ function to 
discard all characters input except the first one (line 220). That 
reduces the number of checks it has to make to ensure that a 
response is acceptable. 



Screen Output and Data Entry I 207 

The GET Statement 

For even more control over input in an Applesoft program, use 
the GET statement. GET accepts a single character from the 
keyboard. The entry is treated as a string or numeric value, 
depending on the type of variable following the command word 
GET. 

]30010 GET CS 

The program waits until you enter a character and then pro
ceeds. You do not press the RETURN key after typing the 
character. 

The GET statement does not display your keystroke on the 
screen; it simply inputs the character that the keystroke gener
ates. If you want to display the keystroke, you can always do so 
with a PRINT statement. But before displaying the keystroke, 
check for undesirable characters. Your program can simply 
reject any characters that would adversely affect the display. The 
following short Applesoft program shows one approach: 

l10 PRINT "Type anything: "; 
l20 GET CS 
]30 IF ASCCC$)>31 AND ASCCCS)<128 THEN PRINT CS; 
]40 GOTO 20 

Control characters, whose ASCII code numbers are less than 
32, are the ones that wreak havoc on a display. For purposes of 
keyboard input, the code numbers above 127 are meaningless 
also. The previous program avoids trouble by ignoring any key
stroke that generates a code less than 32 or more than 127 (line 
30). Note, however, that you must press CONTROL-RESET to stop 
the program because it ignores the RETURN key (code number 
13) and CONTROL-C (code 3). 

Indicating Entry Fields 

Neither the INPUT nor the GET statement tells the program 
user much about the number of characters allowed, information 
that would make the user's job easier. The program can indicate 
the number of characters allowed by displaying an entry field 
template just before it requests keyboard entry. The following 
example illustrates this. 



208 I Apple II User's Guide 

9 REM ••• Set Variable Values ••• 
10 OS= CHRS (4): REM •• ProDOS/DOS 3.3 prefix 
20 W4$ = CHRS C17>: REM •• Display width 40 
30 FOR X1 = 1 TO 40:EFS = EFS + ".": NEXT X1: 

REM •• Entry field chars. 
989 REM 
990 REM ••• Start Main Program ••• 
991 REM 
1000 PRINT: PRINT D$;"PR#3": REM •• Activate 

80-col. card 
1010 PRINT W4$;: REM •• Set display width to 40 
1020 VTAB 12: HTAB 5: PRINT "Type anything: "; 
1030 GOSUB 20000 
1040 VTAB 22: HTAB 1: PRINT NTRY$ 
1050 END 
19990 REM 
20000 REM ••• GetEntry ••• 
20001 REM 
20010 NTRY$ = "": REM •• Empty entry 
20020 CL% = LEN CNTRYS): REM •• Current entry length 
20030 HTAB 20: PRINT NTRYS; 
20040 IF 10 > CL% THEN PRINT 

LEFTS CEFS,10 - CLU;: 
REM •• Fill unused entry field 

20050 HTAB 20 + CLX: GET CS: REM •• Get one character 
20090 IF CS= CHRS C13) THEN: RETURN: 

REM •• Return means done 
20100 IF cs>= II" AND C$ <= ..... AND CL%< 10 

THEN NTRYS = NTRYS + CS: 
REM •• Add valid characters if room 

20110 GOTO 20020: REM .qGet another keystroke 

This example adds several features to the previous one. It 
begins by assigning control character values to two variables and 
entry field template characters to another variable (lines 10-30). 
Next, it activates the 80-column adapter and sets the display 
width to 40 (lines 1000 and 1010). After that, it displays a prompt 
message (line 1020) and then calls a subroutine to input a value 
up to ten characters long (line 1030). After calling the subroutine, 
the program displays the entered value near the bottom of the 
screen and ends. 

The entry subroutine begins by clearing the variable that will 
contain the entry (line 20010); then it prints the current entry, 
which is empty at this point (line 20030). The subroutine next 
fills the remaining space in the entry field with periods (line 
20040). After setting up the entry field, the subroutine uses a 
GET statement to wait for a keystroke. 



Screen Output and Data Entry I 209 

When a keystroke occurs, the entry subroutine checks to see if 
the RETURN key (ASCII code 13) was pressed. If so, the sub
routine returns to the main program (line 20090). If not, the sub
routine checks for troublesome keystrokes (those with code 
numbers below 32 or above 127) and adds a valid character to the 
entry value (line 20100). After processing one keystroke, the sub
routine goes back to display the current entry value again (line 
20030) and to wait for another keystroke. 

Multiple Entries 

A program that requires a good deal of keyboard input is usu
ally easier to write and use if the user's input is organized in 
some fashion. Rather than having the user enter values in a run
ning stream, the program can display a form that identifies the 
fields to be entered and leaves blank spaces for the user to fill in. 
The program can then request a value for each field in turn and 
allow changes or corrections to any field. 

A sheet of graph paper turned sideways is handy for designing 
entry forms for the screen. Let each square on the paper corre
spond to one character position on the screen. Write the column 
numbers across the top of the paper and the row numbers down 
the side for reference (See Appendix I for a 40-column form). 
Write in the description for each entry field and mark off the 
space the entry itself will occupy. Designing a form on paper first 
will save time in the long run; it's much faster to rearrange entry 
items or reword descriptions on paper than it is to reprogram 
them again and again. 

For example, Figure 9-9 shows the entry form for a program 
that inputs names and addresses for a mailing list. Notice the 
program title is centered at the top of the form and specific 
instructions appear on three lines near the bottom of the form. 
the mailing-list entry form has seven numbered fields. The user 
can select any of the seven fields by typing its number or press
ing the f or l key. The currently selected field is highlighted by 
bracketing it and changing its description to all capital letters. 
However, nothing else happens unless the user presses the 
RETURN key to confirm the current selection. If the user chooses 
one of the first five fields, an entry field template made of periods 
appears on the form to define the maximum entry length. While 
entering the field value, the user can backspace by pressing the 



210 I Apple II User's Guide 

1 2 3 4 5 6 7 B 910111213141516171819202122232425262728293031323334353637383940 

~l6t~liAl4-~li~lf fEI,,~,~ 

I# •••••••••••• ' •••••• . , .... , ..... ,. ...... . 
'J . r,,- Li lll"' : ,, ................. , 

" . , .. , .. ,,. 
10 

11 H+-+~+.+-+~~~~1-t-~~If~~~~~,1r~~f-:;rl-,~e~ID+l,~~-+-+-t-1-t-+-+-++-+-1-+-+-+-+-+-+-+-+H~ 

12 t3' . IQl11 li II 
13 

H+--+-+-+-+-+-+-t--+-+-+---+-1-+--+-+-+--+-+--+-+-+-+-+--+-+-+-+-+--+-1-+-+-+--+-I-+-~ 
14 

1-tt--+-+-+-+-+--+-t-+-+-+-+-1-t-+-+-+-+-+--+-+-+-+-+--+-+-+-+-+-~-+-+-+~-+--1-H--1 
15 

H+--+-+-+-+-+-+-t-+-+-+---+-1-+--+-+-+--+-+--+-+-+-+-+--+-+-+-+-+--+-1-+-+-+-+--1-+-~ 
16 

H+--+-+-+--f-+-+-t-t-+-+-+-1-+-+-+-+-+-+--+-+-+-+-+--+-+-+-+-+-~-+-+-+-~-+--1-H--1 
17 

H+--+-+--+-+-+-+-~--+-+-+-+-1-+--+-+-+-+-+--+-+--+-+-+--+-+-+-+-+--+-1-+-+-+-+--1-+-~ 
18 

H+--+--+-+-+-+--+-+-+-+-+~f-+-+-+-t-t-+--+--+--+-t-+-+-+-+-+-+--+-+--+-+-+-~--+-~ 
19 

20 t-tt-+-:rE+-~~Il+-le+-_ll'"+-hl~rhlA+-l~~ls+_~+l/_ri-1 P-+lc:!-+l/.*1e-+ld-r+~~lL-+e_-+[l~ld-+-+. -+--+-+--+--+-+--+-+~-+H~ 
2 1 lf'ili~I,, 11"1 ........ .,l< ttfffTriJ~~ to IA A. .;17" )IJ"'IA i(i,;.,11r1w. 
u ~ 

23 
1-+--+--+--+-+-+--+--+-+-+-+--+-4f-+-+-+-+-1-+--+--+-+-t--+-+-+-+-+-+--+-+--+-+-+--+-4--+-~ 

24 

Figure 9-9. Designing a mailing-list entry form 

DELETE key or cancel and restart the entry by pressing 
CONTROL-X. Pressing the RETURN key confirms the entry. If the 
user chooses field 6 or 7, a yes-or-no question appears in a box 
that temporarily overlays the main display. The answer choices 
(yes or no) are displayed inside the box and can be selected by 
typing Y or N in uppercase or lowercase, or by pressing - or - . 

Figure 9-10 lists a Mailing-List Entry program that creates 
the form and enters values for each field. Table 9-4 lists the vari
ables the program uses. Figures 9-11, 9-12, and 9-13 show what 
the screen looks like while making an entry, selecting a field, and 
answering a yes-or-no question. 

The Mailing-List Entry program starts by calling a subroutine 
to initialize eight variables and three arrays (line 1000). Then the 
program activates the 80-column adapter, sets the screen width 
to 40, and displays the entry form (lines 1010-1060). 



Screen Output and Data Entry I 211 

1000 GOSUB 10000: REM •• Initialize variables 
1010 PRINT: PRINT DS;"PR#3": REM •• Activate 

80-col. card 
1020 PRINT W4S;: REM •• set display width to 40 
1030 GOSUB 11000: REM •• DisplayEntryWindow 
1040 FOR X1 = 1 TO LFX 
1050 FIELD% = X1: GOSUB 23500: REM •• Display 

field description 
1060 NEXT X1 
1070 FOR X1 = 1 TO 5: REM •• Enter all fields 
1080 FIELD% = X1 
1090 GOSUB 23000: GOSUB 12000: GOSUB 23500: 

REM •• SelectField:EnterField:DeselectField 
1100 NEXT X1 
1110 FIELD% = 6: GOSUB 23000: REM •• SelectField 
1120 GOSUB 22000: REM •• GetFieldNumber 
1130 IF FIELD%= 6 THEN FR%= 4:LR% = 8: 

GOSUB 30100: GOSUB 23500: GOTO 1040: 
REM •• If field=6, blank last entries, 
deselect and get another 

1140 IF FIELD% < LFX THEN GOSUB 12000: GOTO 1120: 
REM •• EnterField 

1150 REM ••• Quit? ••• 
1160 TX= 12:L% = 4:8% = 17:R% = 37: GOSUB 30200: 

REM •• DisplayBox 
1170 VTAB 14: HTAB 5: PRINT BEEPS;"Are you sure 

you want to quit?"; 
1180 VTAB 16: HTAB 8:CS = "Y": GOSUB 21000: 

REM •• GetYesNo 
1190 IF NTRYS ="NO" THEN FR%= 12:LR% = 17: 

GOSUB 30100: GOSUB 23000: GOTO 1120: 
REM •• If no, erase box, restore field, 
and get another field 

1200 HOME: END: REM if yes, then quit 

9989 REM 
9990 REM ••• Initializevariables ••• 
9991 REM 
10000 D$ = CHRS (4): REM •• ProDOS/DOS 3.3 prefix 
10010 W4$ = CHRS (17): REM •• Display width 40 
10020 BEEPS = CHR$ C07>: REM •• Beep char. 
10030 FOR X1 = 1 TO 40 
10040 EFS = EFS +".":REM •• Entry field chars. 
10050 TLS = TLS +" ":REM •• Top line chars. 
10060 BL$= BL$+ .. - .. : REM •• Bottom Line chars. 
10070 NEXT X1 -
10080 SL$= "f": REM •• Side Line chars. 
10090 LFX = 7: REM •• Last field number 

Figure 9-10. Mailing-List Entry program 



212 I Apple II User's Gulde 

10100 DIM FRXC2,LFX),FCXC2,LFX>,FDSC2,LFX) 
10110 FOR X1=1 TO LFX: REM •• Read field 

locations and descriptions 
10120 READ ~RXC1,X1),FCXC1,X1),FDSC1,X1) 
10130 READ FRXC2,X1),FCXC2,X1),FDSC2,X1) 
10140 NEXT X1 
10150 RETURN 
10489 REM 
10490 REM ••• Field Descriptions and Locations ••• 
10491 REM 
10500 DATA 4,3," 1. <NAME:> II 

10510 DATA 4,3," 1. Name: 11 

10520 DATA 5,3," 2. <STREET:>" 
10530 DATA 5,3," 2. Street: 
10540 DATA 6,3," 3. <CITY:> 
10550 DATA 6,3," 3. City: 
10560 DATA 7,3," 4. <STATE:> 
10570 DATA 7 ,3," 4. State: 
10580 DATA 8,3," 5. <ZIP:> 
10590 DATA 8,3," 5. Zip: 
10600 DATA 11,3," 6. <ANOTHER RECORD>" 
10610 DATA 11,3," 6. Another Record 11 

10620 DATA 12,3," 7. <QUIT>" 
10630 DATA 12,3," 7. Quit " 
10989 REM 
10990 REM ••• DisplayEntryWindow ••• 
10991 REM 
11000 HOME 
11010 TX= 1:LX = 1:8% = 22:R% = 39: GOSUB 30200: 

REM •• DisplayBox 
11020 TITLES= "Mailing List Entry" 
11030 INVERSE: VTAB 1: 

HTAB (40 - LEN (TITLES)) I 2: 
PRINT TITLES;: NORMAL: REM •• Display title 

11040 RETURN 
11989 REM 
11990 REM ••• Enterfield ••• 
11991 REM 
12000 VTAB 20: HTAB 3: PRINT "Enter the 

selected field." 
12010 HTAB 3: PRINT "Then press RETURN to confirm 

entry."; 
12020 ON FIELD% GOSUB 13100,13200,13300, 

13400,13500 
12030 FRX = 19:LRX = 21: GOSUB 30100: 

REM •• ClearDisplayLines 
12040 RETURN 

Figure 9-10. Mailing-List Entry program (continued) 



Screen Output and Data Entry I 213 

13089 REM 
13090 REM ••• EnterName ••• 
13100 MLX = 20: VTAB 4: HTAB 17: GOSUB 20000 
13110 NAMES = NTRYS: RETURN 
13189 REM 
13190 REM ••• EnterStreet ••• 
13200 MLX = 20: VTAB 5: HTAB 17: GOSUB 20000 
13210 STREETS = NTRYS: RETURN 
13289 REM 
13290 REM ••• EnterCity ••• 
13300 MLX = 20: VTAB 6: HTAB 17: GOSUB 20000 
13310 CITYS = NTRYS: RETURN 
13389 REM 
13390 REM ••• EnterState ••• 
13400 MLX = 2: VTAB 7: HTAB 17: GOSUB 20000 
13410 SES = NTRYS: RETURN 
13489 REM 
13490 REM ••• EnterZip ••• 
13500 MLX = 9: VTAB 8: HTAB 17: GOSUB 20000 
13510 ZIPS = NTRYS: RETURN 
19989 REM 
19990 REM ••• GetEntry ••• 
19991 REM 
20000 HTX =PEEK C36) + 1: REM •• Cursor column 
20010 NY-RYS = "": REM •• Empty entry 
2 0 0 2 0 .CL X = LEN C NT RY$) : REM •• Cu r rent en t r y 

length 
20030 HTAB HTX: PRINT NTRYS; 
20040 IF MLX > CLX THEN PRINT 

LEFTS CEFS,MLX - CLU;: 
REM •• Fill unused entry field 

20050 HTAB HTX + CLX: GOSUB 30000: REM •• Get one 
character 

20060 IF CS = CHRS C127> AND CLX < = 1 THEN 20010: 
REM •• Delete key with empty entry? 

20070 IF CS= CHRS C127) THEN NTRYS = 
LEFTS CNTRYS,CLX - 1>: GOTO 20020: 
REM •• Delete key? 

20080 IF CS= CHRS C24) THEN 20010~ 
REM •• Control-X means cancel 

20090 IF CS= CHRS C13) THEN 
PRINT SPCC ML% - CL%);: 
RETURN: REM •• Return means done 

20100 IF CS > =" " AND CS < = 11
•

11 AND CLX < MLX 
THEN NTRYS = NTRYS + CS: REM •• Add valid 
characters if room 

20110 GOTO 20020: REM •• Get another keystroke 

Figure 9-10. Mailing-List Entry program (continued) 



214 I Apple II User's Guide 

20989 REM 
20990 REM ••• GetYesNo ••• 
20991 REM 
21000 HTX = PEEK C36) + 1 :VTX = PEEK C37> + 1: 

REM •• Cursor position 
21010 IF CS = "Y" OR CS = "y" OR CC$ = CHRS (8) 

AND NTRYS = "NO") THEN VTAB VTX: HTAB HTX: 
PRINT "<YES> No ";:NTRYS ="YES" 

21020 IF CS = "N" OR CS = "n" OR CCS = CHRS C21) 
AND NTRYS = "YES") THEN VTAB VTX: HTAB HTX: 
PRINT 11 Yes <NO>";:NTRYS ="NO" 

21030 VTAB 19: HTAB 3: PRINT "Type Y for Yes or N 
for No, 11 

21040 HTAB 3: PRINT "or press <-- or --> to 
change." 

21050 HTAB 3: PRINT "Then press RETURN. 
21060 GOSUB 30000: REM •• GetChar 
21070 IF cs= II II THEN cs= CHRS (21): 

REM •• Accommodate 80-col. card 
"feature" 

21080 IF CS<> CHRS (13) THEN 21010: 
REM •• Only RETURN confirms 

21090 FRX = 19:LRX = 21: GOSUB 30100: 
REM •• ClearDisplayLines 

21100 RETURN 
21989 REM 
21990 REM ••• Get Fie ldNumber ••• 
21991 REM 

II• , 

22000 VTAB 19: HTAB 3: PRINT "To select a field, 
type a number or 11 

22010 HTAB 3: PRINT "press UP-ARROW or 
DOWN-ARROW." 

22020 HTAB 3: PRINT "Then press RETURN. "; 
22030 GOSUB 30000: REM •• GetChar 
22040 IF CS = CHRS C10) AND FIELDX < LFX THEN 

GOSUB 23SOO:FIELDX = FIELD% + 1: GOSUB 
23000: REM •• Down-arrow key 

22050 IF CS= CHRS C11) AND FIELD%> 1 THEN GOSUB 
23500:FIELD% = FIELD% - 1: GOSUB 23000: 
REM •• Up-arrow key 

22060 IF CS > = "1" AND CS < = STRS CLFX> THEN 
GOSUB 23SOO:FIELDX = VAL CCS>: GOSUB 23000: 
REM •• Digit key 

22070 IF CS<> CHRS C13) THEN 22030: 
REM •• Only RETURN confirms 

22080 FRX = 19:LRX = 21: GOSUB 30100: 
REM •• ClearDisplayLines 

Figure 9-10. Mailing-List Entry program (continued) 



22090 RETURN 
22989 REM 

Screen Output and Data Entry I 215 

22990 REM ••• SelectField ••• 
22991 REM 
23000 VTX = PEEK C37> + 1 :HT% = PEEK (36) + 1: 

REM •• Cursor location 
23010 VTAB FRXC1,FIELDU: HTAB FCXC1,FIELDU: 

PRINT FDSC1,FIELDX);: 
REM •• Display selected description 

23020 VTAB VT%: HTAB HTX: REM •• Reset cursor 
23030 RETURN 
23489 REM 
23490 REM ••• Deselectfield ••• 
23491 REM 
23500 VTX :: PEEK C37> + 1 :HTX = PEEK (36) + 1: 

REM •• Cursor location 
23510 VTAB FRXC2,FIELDU: HTAB FCXC2,f IELDU: 

PRINT FO$C2,FIELDU;: REM •• Display 
deselected description 

23520 VTAB VT%: HTAB HT%: REM •• Reset cursor 
23530 RETURN 
29989 REM 
29990 REM ••• GetCharacter ••• 
29991 REM 
30000 GET .CS: REM •• Wait for keystroke 
30010 RETURN 
30089 REM 
30090 REM ••• ClearDisplaylines ••• 
30091 REM 
30100 FOR ROW = FR% TO LRX 
30110 VTAB ROW: HTAB 2: PRINT SPC( 37>; 
30120 NEXT ROW 
30130 RETURN 
30189 REM 
30190 REM ••• Di sp layBox ••• 
30191 REM 
30200 VTAB TX: HTAB LX + 1 
30210 PRINT LEFTS CTLS,RX - LX - 1);: REM •• Top 

line 
30220 FOR ROW:: TX+ 1 TO BX: REM •• Side lines 
30230 VTAB ROW: HTAB LX: PRINT SLS; 
30240 HTAB RX: PRINT SLS 
30250 NEXT ROW 
30260 VTAB BX: HTAB LX + 1: PRINT 

LEFTS (BLS,RX - LX - 1>;: REM •• Bottom line 
30270 RETURN 

Figure 9-10. Mailing-List Entry program (continued) 



216 I Apple II User's Gulde 

Table 9-4. Mailing-List Entry With Mouse Program Variables 

Variable Purpose Used on lines: 

B% Bottom row of box 1160, 11010, 30220, 30260 

BEEP$ Sound console speaker 1170, 10020 

BL$ Characters for bottom 
edge of box 10060, 30260 

C$ Keystroke 1180, 20060, 20070, 20080, 20090, 
20100, 21010, 21020, 21070, 21080, 
22040, 22050, 22060, 22070, 30000 

CITY$ Value of City field 13310 

CL% Current entry length 20020, 20040, 20050, 20060, 
20070, 20090, 20100 

D$ ProDOS or DOS 3.3 
command prefix 1010, 10000 

EF$ Characters for entry 
field indicator 10040, 20040 

FC%() Field columns 10100, 10120, 10130, 23010, 23510 

FD$() Field descriptions 10100, 10120, 10130, 23010, 23510 

FIELD% Current field number 1050, 1080, 1110, 1130, 1140, 12020, 
22040, 22050, 22060, 23010, 23510 

FR% First row to clear 1130, 1190, 12030, 21090, 22080, 
30100 

FR%() Field rows 10100, 10120, 10130, 23010, 23510 

HT% Current horizontal tab 20000, 20030, 20050, 21000, 21010, 
position 21020, 23000, 23020, 23500, 23520 

L% Left column of box 1160, 11010, 30200, 30210, 30230, 
30260 

LF% Last field number 1040, 1140, 10090, 10100, 10110, 
22040, 22060 

LR% Last row to clear 1130, 1190, 12030, 21090, 22080, 
30100 

ML% Maximum entry length 13100, 13200, 13300, 13400, 13500, 
20040, 20090, 20100 

NAME$ Value of Name field 13110 

NTRY$ Current entry value 1190, 13110, 13210, 13310, 13410, 
13510, 20010, 20020, 20030, 20070, 
20100, 21010, 21020 



Screen Output and Data Entry I 217 

Table 9-4. Mailing-List Entry With Mouse Program Variables (continued) 

Variable Purpose Used on lines: 

R% Right column of box 1160, 11010, 30210, 30240, 30260 

ROW Row counter 30100, 30110, 30120, 30220, 30230, 
30250 

SE$ Value of State field 13410 

SL$ Character for side lines 10080, 30230, 30240 
of box 

STREET$ Value of Street field 13210 

T% Top row of box 1160, 11010, 30200, 30220 

TITLE$ Title of window 11020, 11030 

TL$ Characters for top edge 10050, 30210 
of box 

VT% Current vertical tab 21000, 21010, 21020, 23000, 23020, 
position 23500, 23520 

W4$ Code for screen width 1020, 10010 
of 40 

Xl Loop counter 1040, 1050, 1060, 1070, 1080, 1100, 
10030, 10070, 10110, 10120, 10130, 
10140 

ZIP$ Value for ZIP field 13510 

Next, the program has the user provide the information for one 
complete name and address in the first five fields (lines 1070-
1100). When the user finishes, the program selects field 6 and 
waits (lines 1110-1120). 

The user now has three options: 

· Change any of the first five fields 
· Go on to enter another name and address 
· Quit the program. 

To choose one of these options, the user selects the appropriate 
field by typing its number or by pressing the f or l key, and then 
presses the RETURN key to choose the selection. The program has 
preselected field 6, so the user can choose to enter a new name 
and address merely by pressing RETURN. 



218 I Apple II User's Guide 

1. Name: Zina Hansen 
2. Street: 1433 Mulberry St. 
3. City: Rexburg 
4. State: ID 
s. <ZIP:> 841l •••••• 

6. Another Record 
7. Quit 

Enter the selected field. 
Then press RETURN to confirm entry. 

Figure 9-li. Filling in blanks in the Mailing-List Entry program 

If the user chooses field 6, tlie program erases the first five 
fields, removes "selected" status from field 6, and branches to the 
first field to begin entering another name and address (line 1130). 
If the user instead chooses a field from 1 through 5, the program 
calls the subroutine that inputs the selected field (line 1140 and 
then 1120). If the user chooses field 7, the program displays a 
dialog box in which it asks the user to verify quitting the pro
gram (lines 1160-1200). 



Screen Output and Data Entry / 219 

Mailing-List En t ry 

1 • Name: Zina Hansen 
2. Street: 143~ Mulbe r ry St. 
3. City: Rexburg 
4. State: ID 
s. Zip ; 84500 

6. <ANOTHER RECQRD> 
1. Quit 

To select a field, type a number or 
press UP-ARROW or DOWN-ARROW. 
Then press RETURN. ~ 

Figure 9-12. Selecting a fi eld in the Mailing-List Entry program 

The program uses 16 subroutines in all. The first eight are very 
specific to this program (l ines 10000-13510). The next five are 
more general-purpose; they might be used in any program that 
inputs several values (lines 20000-23530). The last three subrou
tines could be used in almost any program, whether an entry 
program or some other kind (lines 30000-30270). 

The InitializeVariables subroutine (line 10000) assigns values 
to variables and ar rays used by the main program and by other 



220 I Apple II User's Guide 

I 
.. ·.,·1· 1'. Namej:. 

· ... ;··~-•-.·.·_•.•.~·.: -.Str:•e;:t: 
~ .'.Chy: 

I 4. State: 
\ s·. z; P: 

I 

"-er ry Ea;s Ley 
813 S~afford Lane 
L.athrop 
IL 
65333 

I 6,:ii 1 Anc;>~he.{' ~uord 
·1, .. 1 .... ··, _______________ _ 

I F~~ yqu SIU'& you wan.t to qui U 

.1 I <Y~S> No 

J.~------~~~~-~-------~ 
· · ".1fp~· 'Y for Yes or N for No, 
· ·.of pr:-ess <-- s:>r --> to change. 

T~:e;n preu R~TURN. • 

Figure 9-13. Answering a yes-no question in the Mailing-List Entry program 

subroutines. The subroµtine includes DATA statements that spec
ify the field descriptions and their locations on the screen. There 
are two versions of each description, one to show a field is 
selected (all uppercase letters) and the other to show the field is 
not selected. 

The DisplayEntryWindow subroutine (line 11000) calls another 
subroutine to display a screen-sized box and then displays a title 
centered above the box. 



Screen Output and Data Entry / 221 

The Enter Field subroutine (line 12000) displays instructions at 
the bottom of the screen for entering values in the fields. Then it 
calls one of five other subroutines (described in the next para
graph) to enter the currently selected field. After the field has 
been entered, the Enter Field subroutine clears its instructions 
from the bottom of the screen. 

The subroutines that enter individual fields include Enter
Name (line 13100), EnterStreet (line 13200), EnterCity (line 
13300), EnterState (line 13400), and EnterZip (line 13500). Each 
sets the maximum entry length, positions the cursor, calls a sub
routine to enter a value, and assigns the entered value to a dedi
cated field variable. 

The GetEntry subroutine (line 20000) is very similar to the 
entry subroutine in the previous example program. This new 
version allows the calling program or subroutine to establish the 
screen location for entry and to set the maximum entry length. It 
also allows the user to correct typographical errors with the 
DELETE and CONTROL-X keys. 

The GetYesNo subroutine (line 21000) requests a yes-or-no 
answer from the user. It assumes a prompt message has already 
been displayed and the cursor set to a location at least ten spaces , · 
from the right edge of the screen. Variable C$, which must be set' 
to "y" or "n" before calling the subroutine, determines which 
response will be proposed initially. The subroutine displays 
instructions near the bottom of the screen and waits for input 
there. It allows the user to select a response in one of two ways: 
pressing Y selects Yes and pressing N selects No (shifted or not); 
alternatively, pressing - selects Yes, and pressing - selects No. 
When the 80-column adapter is active, pressing the - key copies 
the character displayed at the position of the cursor-in this 
case, a blank space. Therefore the subroutine treats pressing the 
SPACEBAR the same as pressing the - key (line 21070). Pressing 
RETURN confirms the currently selected response. Just before 
ending, the subroutine clears its instructions from the bottom of 
the screen. 

The GetFieldNumber subroutine (line 22000) allows the user to 
select a field. The subroutine displays instructions at the bottom 
of the screen and waits for a response. The user can select a field 
in one of two ways: typing a number selects a field directly; 
pressing ! moves the selection down and pressing f moves the 
selection up. Pressing RETURN confirms the selection. As the 



222 I Apple II User's Guide 

subroutine ends, it clears its instructions from the screen. 
The SelectField subroutine (line 23000) and DeselectField sub

routine (line 23500) are very similar. SelectField displays the 
version of a field description that indicates the field is currently 
selected. The DeselectField displays the version of a field 
description that indicates the field is not currently selected. In 
both cases, variable FIELD% determines which description is 
displayed and where it is displayed. After displaying the descrip
tion, the subroutine moves the cursor back to where it was when 
the subroutine was called. 

The GetCharacter subroutine (line 30000) waits for a keystroke. 
The ClearDisplayLines subroutine (lines 30100-30130) erases 

lines on the screen by displaying blank spaces. Variable FR% is 
the first line to erase; variable LR% is the last line to erase. 

The Display Box subroutine (lines 30200-30270) draws a rect
angle. Variable T% establishes the top edge, L% the left edge, B% 
the bottom edge, and R% the right edge. 

To use the subroutines in Figure 9-10 with entry forms that 
span an 80-column screen, you will have to replace the HTAB 
statements with POKE statements to memory location 36. Also, 
variables EF$, TL$, and BL$ must be initialized to lengths of 80, 
not 40 (lines 10030-10070). Naturally, you will change subroutines 
DisplayEntryWindow and Enter Field, since they display specific 
details of the mailing-list entry form (lines 11010, 11020, and 
12000-12030). You may also want to recast the instructions dis
played by the GetYesNo subroutine (lines 21030-21050) and the 
GetFieldNumber subroutine (lines 22000-22020). 

The Apple II Plus and standard Apple II have no ! and t keys. 
Change the GetFieldNumber subroutine to recognize the I key 
instead of t and the M key instead of ! (lines 22010, 22040, and 
22050). 

To use the Mailing-List Entry program on an Apple II without 
an 80-column adapter, omit lines 1010 and 1020. Also, do not use 
lowercase letters for the program title, since it is displayed in 
inverse style (line 11030). 

PROGRAMMING THE MOUSE II ______ _ 

The Apple Mouse II is a small device generally used as the 
remote control for a pointer displayed on the screen. Sliding the 
mouse with your hand on a flat surface moves the pointer on the 



Screen Output and Data Entry I 223 

screen. Slide the mouse in any direction -up, down, sideways, or 
diagonally-and the pointer moves the same distance in the same 
direction. If the mouse bumps into an obstacle before the pointer 
arrives at its destination, you can lift the mouse straight up, set it 
back down in a clear area, and start sliding it again. The pointer 
does not move when the mouse is in midair. 

Moving the mouse moves the pointer, but pressing the button 
on top of the mouse makes things happen. For example, you 
might choose an option from a displayed list by pointing at it and 
pressing the mouse button. Or you might draw a line by pressing 
and holding the mouse button while you drag the displayed point
er around the screen by sliding the mouse. 

Simply plugging in a mouse does not make a pointer appear on 
the screen, however. A program has to display the pointer. Even 
then, sliding the mouse affects the pointer only if the program 
realizes the mouse has moved and responds by redisplaying the 
pointer in the new location. Furthermore, pressing the mouse 
button does nothing until the program senses that the button has 
been pressed and takes appropriate action. The following five 
program examples show how to program the mouse. They can be 
combined to make a small program that draws on the screen in 
response to the movements of the mouse. Figure 9-14 lists the 
complete program, and Figure 9-15 shows a sample of its output. 

10 OS = CHRS (4): REM •• ProDOS/DOS command prefix 
20 PTRS = "+": REM •• Pointer shape 
30 CR= 1:CC = 1: REM •• Initialize pointer's 

current row and col. 
40 PRINT CHRS C21>;: REM •• Deactivate 80-col. card 
100 PRINT: PRINT DS;"PR#4": PRINT CHRS (1): 

REM •• Activate mouse 
110 PRINT: PRINT DS;"PR#O": REM •• Switch back to 

screen output 
120 PRINT: PRINT DS;"IN#4": REM •• Switch to 

input from mouse 
130 HOME 
140 VTAB CR: HTAB CC: PRINT PTRS;: 

REM •• Display pointer 
150 VTAB 23: HTAB 39: REM •• Accomodate INPUT 

"feature" 

Figure 9-14. Mouse Drawing program 



224 I Apple II User's Guide 

160 INPUT "";CC,CR,MS: REM •• Read mouse pos. and 
status · 

170 CC= CC I 25.6 + 1: REM •• Compute current 
column no. 

180 CR = CR I 42.667 + 1: REM •• Compute current 
row no. 

190 IF ABS CMS)< 4 THEN 130: REM •• Clear screen 
if mouse is down 

200 IF MS > 0 THEN 140: REM •• Keep pointing until 
keystroke 

210 PRINT: PRINT DS;''IN#O": REM •• Switch back to 
keyboard input 

220 PRINT: PRINT DS;"PR#4": PRINT CHRS (Q): 

REM •• Deactivate mouse 
230 PRINT: PRINT DS;"PR#O": REM •• switch back to 

screen output 
240 POKE - 16368,0: REM •• Clear keyboard 
250 END 

Figure 9-14. Mouse Drawing program (continued) 

++ + 
+++ 
++ 

++ +++ 
+++++ +++ ++ 

++++++ +++++++ 
++ ++++++++ 

+++++++ 
+++++ 

+++ +++ 

++ 

+++ +++ + 
++ +++++++++ 
++ ++++++ 

+++++++++ 
++++++ 

+++++ 
+++ 
+++ 
+++ 
+++++ 

+++++++++ 

Figure 9-15. Sample output from Mouse Drawing program -



Screen Output and Data Entry I 225 

Activating the Mouse 

You can monitor the mouse's position and the button's status 
from within a BASIC program. The first step is to activate the 
mouse· with statements like these: 

J10 0$ = CHRS (4): REM •• ProDOS/DOS command prefix 
J40 PRINT CHRS (21>;: REM •• Deactivate 

80-col. card 
]100 PRINT: PRINT D$;"PR#4": PRINT CHRS C1>: 

REM •• Activate mouse 
J110 PRINT: PRINT DS;"PR#O": REM •• Switch back to 

screen output 
]120 PRINT: PRINT DS;"IN#4": REM •• Switch to input 

from mouse 

Activating the mouse will partially deactivate an 80-column 
adapter, which may result in a crazy display, so the PRINT 
CHR$(21) statement on line 40 completely deactivates the 80-
column adapter. In line 100, a PR#4 command switches output 
from the screen to the mouse. The next statement outputs a single 
control character (ASCII code 1) to activate the mouse. No fur
ther output to the mouse is required, so a PR#O command 
switches output back to the screen. You can reactivate the 80-
column adapter by using a PR#3 command instead of PR#O, but 
PR#3 has the side effect of clearing the display screen. 

The IN #4 statement on line 120 switches input from the key
board to the mouse. The next INPUT statement will read the 
mouse position and button status. (The program excerpt above 
won't work by itself because it doesn't include such an INPUT 
statement.) 

The PR#4, PR#O, and IN#4 commands, like the PR#3 command 
that activates the 80-column adapter, are operating system com
mands. In programmed mode, they must be used from within 
PRINT statements and prefixed by the operating system prefix 
(ASCII code 4). 

Warning: The PRINT D$;"PR#4" and the PRINT CHR$(1) 
statements must be on the same program line, as shown on line 
100. Otherwise the mouse will not work and you will have to press 
CONTROL-RESET to regain control of the Apple II. 

Displaying a Pointer 

Before reading the mouse's position and the button's status for 
the first time, the program should display the pointer at its start-



226 I Apple II User's Guide 

ing position. The following example illustrates this: 

]20 PTRS = "+": REM •• Pointer shape 
J30 CR= 1:CC = 1: REM •• Initialize pointer's 

current row and col. 
J130 HOME 
]140 VTAB CR: HTAB CC: PRINT PTRS;: 

REM •• Display pointer 

These program lines display a cross-shaped pointer (that is, a 
plus sign) in the upper-left corner of a blank screen. Activating 
the mouse initially puts the pointer at that spot. The text cursor is 
presently at the same spot, though only by coincidence. The 
mouse's position is not directly linked to the cursor's position. 

Reading the Mouse 

Having displayed the pointer, the program immediately needs 
to see whether the mouse has moved and find out what's happen
ing with the button and the keyboard. It's time for an INPUT 
statement, as follows: 

]150 VTAB 23: HTAB 39: REM •• Accommodate INPUT 
"feature" 

]160 INPUT "";CC,CR,MS: REM •• Read mouse pos. 
and status 

After executing the INPUT statement, variables CC and CR 
report the horizontal and vertical positions of the mouse, and 
variable MS reports the status of the mouse button and the key
board. The empty prompt string on line 160 suppresses an unde
sirable feature of the INPUT statement: a question mark would 
otherwise appear on the screen at the current cursor location as 
if input were expected from the keyboard. The empty string 
eliminates this problem. The VTAB and HTAB statements on 
line 150 eliminate another INPUT statement quirk: when read
ing from the mouse, the INPUT statement usually erases the dis
play from the current cursor position to the end of the line the 
cursor is on. It doesn't always erase, but most of the time it does. 
There is no way to suppress this feature, but its effects can be 
minimized by repositioning the cursor at the spot where the least 
damage will be done. Note that moving the cursor has no effect 
on the position reported by the mouse. 

The mouse position is measured from the upper-left corner of 



Screen Output and Data Entry I 227 

Table 9-5. Mouse Status Values 

Current Last Key 
Value INPUT INPUT Pressed• 

+1 Pressed Pressed No 
-1 Pressed Pressed Yes 

+2 Pressed Released No 
-2 Pressed Released Yes 

+3 Released Pressed No 
-3 Released Pressed Yes 

+4 Released Released No 
-4 Released Released Yes 

*Since the keyboard was last reset with POKE -163680,0 

the screen, the home position. The first variable input, CC in the 
previous example, reports how far the mouse is to the left of the 
home position. The second variable, CR, reports how far the 
mouse is below the home position. Both variables will have values 
between 0 and 1023, with 0 as the home position. 

The third value input from the mouse, variable MS in the pre
vious example, reports the status of the mouse button and the 
keyboard. It reports not only the current status of the button, but 
also the status during the last INPUT statement. If you press 
a key on the Apple II keyboard, the status value changes from 
positive to negative. The status value stays negative until the 
keyboard is reset with a POKE -16368,0 statement. Table 9-5 
interprets the status values. 

Moving the Pointer 

Because there is no direct link between the mouse's position 
and the pointer's location, the program must establish one. It 
could use the mouse's position directly in VTAB and HTAB 
statements, but that would be asking for trouble. VTAB only 
allows rows 1 to 24; HTAB only works with columns 1 to 40. And 
as you know, the mouse's positions extend from 0 to 1023 both 
horizontally and vertically. A few simple calculations reduce the 
mouse's position to an acceptable range for the VTAB and HTAB 
statements as shown in the next example. 



228 I Apple II User's Guide 

J170 CC = CC I 25.6 + 1: REM •• Compute current 
column no. 

]180 CR = CR I 42.667 + 1: REM •• Compute current 
row no. 

]190 IF ABS CMS)< 4 THEN 130: REM •• Clear screen 
if mouse is down 

J200 IF PIS > 0 THEN 140: REM •• Keep pointing 
until keystroke 

The first two program lines, 170 and 180, scale the mouse's posi
tion to keep it within normal text-screen limits. The last two 
lines, 190 and 200, branch to an earlier part of the program to 
redisplay the pointer. 

You may find that these scaling factors make the pointer unac
ceptably sluggish. If so, try smaller scaling factors. But if you do, 
make sure you add statements to guarantee that the variables 
stay within HTAB and VTAB limits. For example, putting the 
statement IF CC>40 THEN CC=40 on line 175 would keep the 
column number to 40 or less no matter where the mouse went. 

If you want to use a screen width of 80, replace the HTAB CC 
statement on line 140 with a POKE 36,CC-1 statement, and 
change the horizontal scaling factor on line 170 from 25.6 to 12.8. 
In addition, change the HTAB 39 statement on line 150 to POKE 
36,79. 

Deactivating the Mouse 

In order to accept input from the keyboard again, the program 
must turn off the mouse. The following statements do the job: 

]210 PRINT: PRINT DS;"IN#O": REM •• Switch back to 
keyboard input 

l220 PRINT: PRINT DS;"PR#4": PRINT CHR$ CO>: 
REM •• Deactivate mouse 

l230 PRINT: PRINT DS;"PR#O": REM •• Switch back 
to screen output 

l240 POKE - 16368,0: REM •• Clear keyboard 
l250 END 

First, on line 210, an IN #0 command cancels the effect of the 
earlier IN#4 command, switching back to the keyboard for input. 
Next, a PR#4 command switches output to the mouse so a control 
character (ASCII code O) can deactivate the mouse. A PR#O 
command then switches back to the screen for output. Finally, on 
line 240, putting 0 in memory location -16368 with a POKE 



Screen Output and Data Entry I 229 

statement clears the keyboard, since you must have struck a key 
to end the program. 

Using the Mouse 

The mouse is well suited to making choices from a list of dis
played options. As you may recall, this situation occurs in the 
Mailing-List Entry program (Figure 9-10) when it comes time to 
change an entry, enter another name and address, or quit the 
program. Making the choice is a two-step procedure: 

1. Select a field by pressing the l or f key or by typing the field 
number (see Figure 9-11). 

2. Press the RETURN key to choose the selected field. 

You can replace this keyboard navigation with the mouse. You 
will select a field by pointing at it and choose the selection by 
pressing the mouse button. Figure 9-16 lists the new Mailing-List 
Entry With Mouse program; the lines that are different from the 
original Mailing-List Entry program are shaded. Table 9-6 lists 
the variables used by the new program. 

1000 GOSUB 10000: REM •• InitiaUze varhbles ... -::::_!~=:.~::~i::~l::d;.~~!:i:r~t,.y~;t.e .... •:.~i~,~~ •. ·.•:.;· .. 
1030 GOSUB 11000: REM •• DisplayEntryWindow 
1040 FOR X1 = 1 TO LFX 
1050 FIELD% = X1: GOSUB 23500: 

REM •• Display field description 
'1060 NEXT X1 
1070 FOR X1 = 1 TO 5: REM •• Enter all fields 
1080 FIELD% = X1 
1090 GOSUB 23000: GOSUB 12000: GOSUB 23500: 

REM •• SelectField:EnterField:DeselectField 
1100 NEXT X1 
1110 FIELDX = 6: GOSUB 23000: REM •• SelectField 
1120 GOSUB 22000: REM •• GetFieldNumber 
1130 IF FIELD%= 6 THEN FRX = 4:LRX = 8: 

GOSUB 30100: GOSUB 23500: GOTO 1040: 

Figure 9-16. Mailing-List Entry With Mouse Program 



230 I Apple II User's Guide 

REM •• If field=6, blank last entries, 
deselect and get another 

1140 IF FIELDX < LFX THEN GOSUB 12000: GOTO 1120: 
REM •• EnterField 

1150 REM ••• Quit? ••• 
1160 TX= 12:LX = 4:BX = 17:RX = 37: 

GO SUB 30200: REM •• Di sp layBox 
1170 VTAB 14: HTAB 5: PRINT BEEPS;"Are you 

sure you want to quit?"; 
1180 VTAB 16: HTAB 8:CS = "Y": GOSUB 21000: 

REM •• GetYesNo 
1190 IF NTRY$ ="NO" THEN FRX = 12:LRX = 17: 

GOSUB 3'&-1~00: GOSUB 23000: GOTO 1120: 
REM •• If no, erase box, restore field, 
and get another field 

1200 HOME: END: REM if yes, then quit 
9989 REM 
9990 REM ••• InitializeVariables ••• 
9991 REM 
10000 0$ = CHRS (4): REM •• ProDOS/OOS 3.3 prefix 
10010 W4S = CHRS (17): REM •• Display width 40 
10020 BEEPS= CHRS (07>: REM •• Beep char. 
10030 FOR X1 = 1 TO 40 
10040 EF$ = EFS + ".": REM •• Entry field chars. 
10050 TLS = TLS +" ":REM •• Top line chars. 
10060 BLS = BLS + .. - .. : REM •• Bottom line chars. 
10070 NEXT X1 -
10080 SLS ="I": REM •• Side line chars. 
10090 LFX = 7: REM •• Last field number 
10100 DIM FRXC2,LFX>,FCXC2,LFX>,FDSC2,LFU 
10110 FOR X1 = 1 TO LFX: REM •• Read field 

locations and descriptions 
10120 READ FRXC1,X1),FCXC1,X1),FOSC1,X1) 
10130 READ FRXC2,X1>,FCXC2,X1>,FDSC2,X1> 
10140 NEXT X1 
10150 PTRS = ""'": REM .•• Pointer shape 
10160 TRACK = 0.25: R~M •• Mouse-poi~ter tracking 

factor 
10170 RETURN 
10489 REM 
10490 REM ••• Field Descriptions and Locations ••• 
10491 REM 
10500 DATA 4,3," 1. <NAME:> II 

10510 DATA 4,3," 1. Name: " 
10520 DATA 5,3," 2. <STREET:>" 
10530 DATA 5,3," 2. Street: " 
10540 DATA 6,3," 3. <CITY:> II 

Figure 9-16. Mailing-List Entry With Mouse program (continued) 



Screen Output and Data Entry / 231 

10550 DATA 6,3," 3. City: " 
10560 DATA 7,3," 4. <STATE:> II 

10570 DATA 7,3," 4. State: " 
10580 DATA 8,3," 5. <ZIP:> II 

10590 DATA 8,3," 5. Zip: II 

10600 DATA 11,3," 6. <ANOTHER RECORD>" 
10610 DATA 11,3," 6. Another Record " 
10620 DATA 12,3," 7. <QUIT>" 
10630 DATA 12,3," 7. Quit" 
10989 REM 
10990 REM ••• DisplayEntryWindow ••• 
10991 REM 
11000 HOME 
11010 TX= 1:L% = 1:8% = 22:R% = 39: GOSUB 30200: 

REM •• DisplayBox 
11020 TITLES = "MAILING LIST ENTRY" 
11030 INVERSE: VTAB 1: 

HTAB C40 - LEN (TITLE$)) I 2: 
PRINT TITLES;: NORMAL: REM •• Display title 

11040 RETURN 
11989 REM 
11990 REM ••• EnterField ••• 
11991 REM 
12000 VTAB 19: HTAB 3: PRINT "Enter the 

selected field." 
12010 HTAB 3: PRINT "Then press RETURN to 

confirm entry."; 
12020 ON FIELD% GOSUB 13100,13200,13300, 

13400,13500 
12030 FU = 19:LR% = 21: GOSUB 30100: 

REM •• ClearDisplayLines 
12040 RETURN 
13089 REM 
13090 REM ••• EnterName ••• 
13100 ML% = 20: VTAB 4: HTAB 17: GOSUB 20000 
13110 NAMES = NTRY$: RETURN 
13189 REM 
13190 REM ••• EnterStreet ••• 
13200 MLX = 20: VTAB 5: HTAB 17: GOSUB 20000 
13210 STREETS = NTRYS: RETURN 
13289 REM 
13290 REM ••• EnterCity ••• 
13300 ML% = 20: VTAB 6: HTAB 17: GOSUB 20000 
13310 CITY$ = NTRYS: RETURN 
13389 REM 
13390 REM ••• EnterState ••• 
13400 MLX = 2: VTAB 7: HTAB 17: GOSUB 20000 

Figure 9-16. Mailing-List Entry With Mouse program (continued) 



232 I Apple II User's Gulde 

13410 SES = NTRYS: RETURN 
13489 REM 
13490 REM ••• EnterZip ••• 
13500 MLX = 9: VTAB 8: HTAB 17: GOSUB 20000 
13510 ZIPS = NTRYS: RETURN 
19989 REM 
19990 REM ••• GetEntry ••• 
19991 REM 
20000 HTX =PEEK C36) + 1: REM •• cursor column 
20010 NTRYS = 1111

: REM •• Empty entry 
20020 CLX = LEN CNTRYS): REM •• Current entry length 
20030 HTAB HTX: PRINT NTRYS; 
20040 IF MLX >CL% THEN PRINT 

LEFT$ CEFS,MLX - CLU;: 
REM •• Fill unused entry field 

20050 HTAB HTX + CLX: GOSUB 30000: REM •• Get one 
character 

20060 IF CS= CHRS (127) AND CLX < = 1 THEN 20010: 
REM •• Delete key with empty entry? 

20070 IF CS = CHRS (127> THEN NTRYS = 
LEFTS CNTRYS,CLX - 1): GOTO 20020: 
REM •• Delete key? 

20080 IF CS = CHRS C24> THEN 20010: 
REM •• Control-X means cancel 

20090 IF CS= CHRS C13) THEN 
PRINT SPCC MLX - CLX>;: 
RETURN: REM •• Return means done 

20100 IF cs>= II II AND cs<= 11
•

11 AND CLX < MLX 
THEN NTRYS = NTRYS + CS: 
REM •• Add valid characters if room 

20110 GOTO 20020: REM •• Get another keystroke 
20989 REM 
20990 REM ••• GetYesNo ••• 
20991 REM 
21000 HTX =PEEK C36) + 1:VTX =PEEK (37) + 1: 

REM •• Cursor position 
21010 IF CS= "Y" OR CS= "y" OR CCS = 

CHRS (8) AND NTRYS = "NO") THEN VTAB VTX: 
HTAB HTX: PRINT "<YES> No ";:NTRYS ="YES" 

21020 IF CS = "N" OR CS = "n" OR CC$ = 
CHRS C21) AND NTRYS ="YES") THEN VTAB VTX: 
HTAB HTX: PRINT "Yes <NO>";:NTRYS ="NO" 

21030 VTAB 19: HTAB 3: PRINT "Type Y for Yes or N 
for No," 

21040 HTAB 3: PRINT "or press <-- or --> to 
change." 

21050 HTAB 3: PRINT "Then press RETURN. "; 

Figure 9-16. Mailing-List Entry With Mouse program (continued) 



Screen Output and Data Entry I 233 

21060 GOSUB 30000: REM •• GetChar 
21070 IF CS="" THEN CS= CHR$ C21): 

REM •• Accommodate 80-col. card "feature" 
21080 IF CS<> CHRS C13) THEN 21010: 

REM •• Only RETURN confirms 
21090 FRX = 19:LRX = 21: GOSUB 30100: 

REM •• ClearDisplayLines 
21100 RETURN 
21989 REM 
21990 REM ••• GetfieldNumber ••• 
2199-1 REM 
22000 ·CR% = 1:CC% = 1: REM •• Initial pointer 

posi·ti on 
2~01Q :VTAB 19: HTAB 3: PRINT "Pe>int with .the mo.use 

t·o · s e l e ct a•• 
2202.0 HTAB 3: PRlNT"field. Then click the mouse 

button."; 
22030 GOSUB 30400: REM •• Mouseon 
22040 GQSUB 30600: REM •• Follow~ouse 
2205:0 Jf CR.%= PRX THEN 2·213.o: REM •• If no row 

chang~, sktp selection ch~ng~ 
22.06.0 if FI.ELD·X < > Q THE;N G'OS0.8. 23500: 

R-EM •• Deselect previ OU$ .selectfon 
22070 FIELD% = 0: REM •• Clear previous field 

selection 
22080 FOR X1 = 1 TO LFX: REM •• Find current field 

$election 
22090 IF CRX < > FR%C2,X1> THEN 22120: REM •• Is 

pointer on a field?. 
22100 FIELD% = X1: GOSUB 230.00: REM •• Yes; select 

it. 
22110 X1 = LFX: REM •• and stop loo,ing 
2212d NEXT X1 . 
22130 IF ABS CMSU > 2 OR FIELD% = 0 THEN 22040: 

· REM •• Keep polling until valid sel~ction 
22140 F~X = t9:LR% = 21: GOSUa 30100: 

REM •• ClearDisplayLines 
221$0 GOS.US 30500: REM .;.MouseOff 
22'160 RETURN 
22989.REM 
2 2 9 9 0 R·E M ••• S e l e c t F i e l d ••• 
22991 REM 
23000 VT% = PEEK (37) + 1 :HT% = PEEK (36) + 1: 

REM •• Cursor location 
23010 VTAB FR%C1,FIELD%>: HTAB FCXC1,FIELDU: 

PRINT FDSC1,FIELDX>;: REM •• Display selected 
description 

Figure 9-16. Mailing-List Entry With Mouse program (continued) 



234 I Apple II User's Guide 

23020 VTAB VT%: HTAB HTX: REM •• Reset cursor 
23030 RETURN 
23489 REM 
23490 REM ••• DeselectField ••• 
23491 REM 
23500 VTX =PEEK (37) + 1:HTX =PEEK (36) + 1: 

REM •• Cursor location 
23510 VTAB FRXC2,FIELD%>: HTAB FCXC2,FIELDX>: 

PRINT FD$C2,FIELDX>;: REM •• Display 
deselected description 

23520 VTAB VTX: HTAB HT%: REM •• Reset cursor 
23530 RETURN 
29989 REM 
29990 REM ••• GetCharacter ••• 
29991 REM 
30000 GET CS: REM •• Wait for keystroke 
30010 RETURN 
30089 REM 
30090 REM ••• ClearDisplayLines ••• 
30091 REM 
30100 FOR ROW = FR% TO LRX 
30110 VTAB ROW: HTAB 2: PRINT SPC( 37>; 
30120 NEXT ROW 
30130 RETURN 
30189 REM 
30190 REM ••• Di sp layBox ••• 
30191 REM 
30200 VTAB TX: HTAB L% + 1 
30210 PRINT LEFTS CTLS,RX - L% - 1);: REM •• Top 

line 
30220 FOR ROW= TX+ 1 TO BX: REM •• Side lines 
30230 VTAB ROW: HTAB LX: PRINT SL$; 
30240 HTAB RX: PRINT SL$ 
30250 NEXT ROW 
30260 VTAB 8%: HTAB LX + 1: PRINT 

LEFTS CBLS,RX - LX - 1);: REM •• Bottom line 
30270 RETURN 
30389 REM 
30390 REM ••• MouseOn ••• 
30391 REM 
30400 PRINT: PRINT DS;"PR#4": PRINT CHRS (1): 

REM •• Turn mouse on 
30410 PRINT: PRINT DS;"PR#O": REM •• Switch back 

to screen output 
30420 PRINT: PRINT DS;"IN#4": REM •• Get input 

from mouse 
30430 RETURN 

Figure 9-16. Mailing-List Entry With Mouse program (continued) 



304·89 R.EM 
30490 REM ••• MouseOff ••• 
30491 REM 

Screen Output and Data Entry / 235 

30500 PRINT: PRINT DS;"IN#O": REM •• switch back 
t~ keyboard input 

30510 PRINT: PRINT DS;"PR#4'~.: PRINT CHRS CO>: 
REM •• Turn mouse off 

30520 PRINT: PRINT D$; 0 PR#O": REM •• switch back to 
screen output 

3053·0 POKE 49168,0: REM •• c Lear keyboard 
30540 Rf'TURN 
30589 REM 
3 059·0 RE M ••• F o l low Mouse ••• 
30591 REM 
30600 FCCX = SCRNC CCX - 1,2 *CCR% - 1)) + 16 * 

SCRNC CC% - 1,2 * CCR% - 1) + 1): 
REM .•• Former character's code 

30610 VTAB CRX: HTAB CC%: PRlNT PTRS;: 
RE M •• D i s p lay poi n t e r 

30620· 'p·c·% = CC%:PR% = CRX: REM •• Previous pointer 
pos. = current pos. 

30630 VTAB 23: HTAB 39: REM •• Accomodate INPUT 
"feature" 

30640 INPUT "";CC%,CRX,MSX: REM •• Read mouse pos. 
and status 

30650 CC%= CCX I 25.6 I TRACK+ 1: REM •• Compute 
cur rent co Lu mn no. 

30660 ·CR%= CR% I 42.667 I TRACK+ 1: 
REM •• Compute cur rent row no. 

30670 IF CCX> 40 THEN CCX= 40: REM •• Restrict 
col. to 40 max. 

3 0 6 8'.o IF c R % > 2 4 THEN c Rx = 2.4: REM •• Rest r i ct 
r'OW to 24 max. 

3.Qi6'90 I·F CR%= PR% AND CCX::: PC% AND ABS CMS%>> 2 
THEN 30630: REM •• If mouse hasn't moved and 
button is up, read again 

30700 VTAB PRX:. HTAB PCX: REM •• If it has, 
redisplay prev. character 

30710 If FCCX > 127 THEN PRINT CHRS CFCCX);: GOTO 
30740: REM •• Redisplay normal character 

30720 If FCC% < 32 THEN INVE,RS.E: 
PRINT CHRS CFCCX + 64);: NORMAL: 
GOTO 30740: REM •• Redisplay 
inverse uppercase 

30730 INVERSE: PRINT CHRS CFCCU;: NORMAL: 
REM •• Redisplay other inverse 

30740 RETURN 

Figure 9-16. Mailing-List Entry With Mouse program (continued) 



236 I Apple II User's Guide 

Table 9-6. Mailing-List Entry With Mouse Program Variables 

Variable Purpose Used on lines: 

B% Bottom row of box 1160, 11010, 30220, 30260 

BEEP$ Sound console speaker 1170, 10020 

BL$ Characters for bottom 10060, 30260 
edge of box 

C$ Keystroke 1180, 20060, 20070, 20080, 20090, 
20100, 21010, 21020, 21070, 21080, 
30000 

CC% Current pointer column 22000, 30600, 30610, 30620, 30640, 
30650, 30670, 30690 

CITY$ Value of City field 13310 

CL% Current entry length 20020, 20040, 20050, 20060, 
20070, 20090, 20100 

CR% Current pointer row 22000, 22050, 22090, 30600, 30610, 
30620, 30640, 30660, 30680, 30690 

D$ ProDOS or DOS 3.3 10000, 30400, 30410, 30420, 30500, 
command prefix 30510, 30520 

EF$ Characters for entry 10040, 20040 
field indicator 

FCC% Former character's 30600, 30710, 30720, 30730 
screen code 

FC%() Field columns 10100, 10120, 10130, 23010, 23510 

FD$() Field descriptions 10100, 10120, 10130, 23010, 23510 

FIELD% Current field number 1050, 1080, 1110, 1130, 1140, 12020, 
22060, 22070, 22100, 22130, 23010, 
23510 

FR% First row to clear 1130, 1190, 12030, 21090, 22140, 
30100 

FR%() Field rows 10100, 10120, 10130, 22090, 23010, 
23510 

HT% Current horizontal tab 20000, 20030, 20050, 21000, 21010, 
position 21020, 23000, 23020, 23500, 23520 

L% Left column of box 1160, 11010, 30200, 30210, 30230, 
30260 

LF% Last field number 1040, 1140, 10090, 10100, 10110, 
22080, 22110 



Screen Output and Data Entry I 237 

Table 9-6. Mailing-List Entry With Mouse Program Variables (continued) 

Variable Purpose Used on lines: 

LR% Last row to clear 1130, 1190, 12030, 21090, 22140, 
30100 

ML% Maximum entry length 13100, 13200, 13300, 13400, 13500, 
20040, 20090, 20100 

MS% Mouse button status 22130, 30640, 30690 

NAME$ Value of Name field 13110 

NTRY$ Current entry value 1190, 13110, 13210, 13310, 13410, 
13510, 20010, 20020, 20030, 20070, 
20100, 21010, 21020 

PC% Previous pointer 30620, 30690, 30700 
column 

PR% Previous pointer row 22050, 30620, 30690, 30700 

PTR$ Pointer shape 10150, 30610 

R% Right column of box 1160, 11010, 30210, 30240, 30260 

ROW Row counter 30100, 30110, 30120, 30220, 30230, 
30250 

SE$ Value of State field 13410 

SL$ Character for side 10080, 30230, 30240 
lines of box 

STREET$ Value of Street field 13210 

T% Top row of box 1160, 11010, 30200, 30220 

TITLE$ Title of window 11020, 11030 

TL$ Characters for top 10050, 30210 
edge of box 

TRACK Mouse-pointer tracking 10160, 30650, 30660 
factor 

VT% Current vertical tab 21000, 21010, 21020, 23000, 23020, 
position 23500, 23520 

W4$ Code for screen width 10010 
of 40 

Xl Loop counter 1040, 1050, 1060, 1070, 1080, 1100, 
10030, 10070, 10110, 10120, 10130, 
10140, 22080, 22090, 22100, 22110, 
22120 

ZIP$ Value for ZIP field 13510 



238 I Apple II User's Guide 

The main part of the mouse selection program in Figure 9-16 
is identical with the main part of the original program in Figure 
9-10 (lines 1000-1200), with one exception. The mouse version 
does not activate the 80-column adapter; in fact, it deactivates 
the adapter (lines 1010-1020). When using the mouse in a BASIC 
program, it's easier to keep the screen under control if the 80-
column adapter is inactive. 

There are some additional lines in the subroutine that initial
izes variables (lines 10150-10170). Variable PTR$ defines the 
shape of the mouse pointer. Variable TRACK establishes a mouse
pointer tracking factor; the smaller its value, the less you must 
move the mouse to move the pointer a given distance on the 
screen. 

The standard subroutines from Figure 9-10 are used for speci
fying field descriptions and locations, displaying the entry form, 
entering a field value, inputting a value, and getting a yes-or-no 
response (lines 10500-21100). However, the program title is 
changed to all uppercase letters, since it will be displayed in 
inverse style (line 11020). Remember, lowercase letters are not 
available in inverse style unless the 80-column adapter is active. 

More standard subroutines from Figure 9-10 select and deselect 
a field, get a single character from the key board, clear display 
lines, and draw a box on the screen (lines 23000-30270). 

Subroutine GetFieldNumber is entirely new. It begins by set
ting the starting position for the pointer to the upper-left corner 
of the screen (line 22000). Next, it displays mouse instructions at 
the bottom of the entry window (lines 22010 and 22020). It then 
calls another new subroutine, MouseOn, to activate the mouse 
(line 22030). Yet another new subroutine, FollowMouse, is called 
to take care of moving the pointer (line 22040). 

When the mouse moves or its button is pressed, the Follow
Mouse subroutine returns to the GetFieldNumber subroutine, 
which interprets the latest mouse activity. The GetFieldNumber 
subroutine ignores side-to-side movement (line 22050), but if the 
mouse has changed rows, it changes field selection according to 
the new position. First it deselects the currently selected field, if 
any (line 22060); then it finds out if the mouse is on the same line 
as a field description (lines 22070-22120). If so, it selects that field 
(line 22100). If not, it does nothing. This particular subroutine 
does not care whether a key has been struck. 

After changing field selection as needed, the GetFieldNumber 



Screen Output and Data Entry / 239 

subroutine checks. the reported status of the mouse button. If the 
button was up, or if no field is currently selected, the subroutine 
branches back to follow the mouse again (line 22130). If the but
ton was pressed with the pointer over a field, the subroutine ends, 
clearing its instructions and deactivating the mouse on its way 
out (lines 22140-22160). 

The new MouseOn subroutine activates the mouse as described 
earlier in this chapter (lines 30400-30430). The new MouseOff 
subroutine deactivates the mouse and clears the keyboard as de
scribed earlier (lines 30500-30540). 

The last new subroutine, Follow Mouse, displays the mouse 
pointer and waits until the mouse is moved or its button is 
pressed. The subroutine begins by determining the code number 
of the character at the spot where it is about to display the point
er, so it can restore the character after the pointer moves (line 
30600). It determines the character code by a trick with the 
SCRN function, whose main purpose is to report the color of a dot 
on a graphics screen (see Chapter 12). Next it displays the pointer 
and calls its position the "previous" position (lines 30610 and 
30620). 

After displaying the pointer, the FollowMouse subroutine 
immediately reads the mouse, handling the undesirable INPUT 
statement features as described earlier (lines 30630 and 30640). 
Then it scales the new mouse position and keeps it within text
screen boundaries (lines 30650-30680). If the pew position is the 
same as the previous position and the button is and was up, the 
subroutine branches back to read the mouse again (line 30690). 

When the Follow Mouse subroutine detects mouse movement or 
button activity, it restores the character that the pointer has been 
covering and returns (lines 30700-30740). Because of the way the 
Apple II displays inverse characters when the 80-column adapter 
is inactive, restoring the character when using the mouse is 
somewhat complicated. 

On the screen, it turns out that all normal-style characters have 
code numbers 128 higher than their standard ASCII character 
codes. For example, the ASCII code for capital A is 65. But the 
code for a normal-style A on the screen is 193. The screen codes 
for uppercase inverse letters and a few special symbols are be
tween 0 and 32. Screen codes for the other inverse punctuation 
and symbols are between 32 and 63. Screen codes 64 to 127 are 
for flashing characters. See Appendix E for a detailed comparison 

\ 



240 I Apple II User's Guide 

of screen and ASCII codes. 
To display a normal-style character given its screen code, the 

program simply uses the CHR$ function, which automatically 
converts the screen code to the corresponding ASCII code. 

For inverse characters, the program must use the INVERSE 
statement before restoring the character, and the NORMAL 
statement afterwards. For uppercase inverse, the program must 
also add 64 to the screen code in order to convert it to the proper 
ASCII code. For example, a capital A has a screen code of 1 and 
an ASCII code of 65. 

The performance of the mouse is not very satisfactory in this 
program. By modifying the program, you may be able to make 
the pointer move a bit more smoothly and flicker slightly less, 
but only to a point. No matter how well written, BASIC pro
grams simply cannot run fast enough for good mouse perfor
mance. What's more, BASIC provides access to only part of the 
mouse's capabilities. For the rest, and for more speed, you must 
program in assembly language. 



Printer Output 10 

When you turn on an Apple II, all of the text generated by 
statements such as PRINT and INPUT automatically appears on 
the display screen, as do error messages, disk directory listings, 
and program listings. It is easy to divert any of this text to a 
printer. All you have to know is the number of the slot that holds 
the accessory card your printer plugs into. This is usually slot 1. 
If you're not sure of the slot number, simply follow the cable from 
the printer to its destination inside the Apple II. The printer will 
connect to either an Apple II Parallel Interface Card, an Apple II 
Super Serial Card, an Apple II Serial Interface Card, an Apple 
II Communications Card, or the equivalent of one of those cards. 

ACTIVATING THE PRINTER _______ _ 

The Apple II treats a printer as a substitute for the display 
screen. In order to create printer output, therefore, you must type 
a command that sends output meant for the display screen to the 
printer. The PR# command does this by switching output to a 
specified slot. The following command selects slot 1 for output: 

JPR#1 

This command activates a printer that is attached to an accessory 
card in slot 1. Everything you type will then be printed on the 
printer, as will the output of PRINT, INPUT, LIST, CATALOG, 
and other commands. 

Activating a printer with a PR# command will partially deac
tivate an 80-column adapter. To avoid a garbled display, deacti-

241 



242 I Apple II User's Guide 

vate the SO-column adapter completely by pressing ESC and then 
CONTROL-Q. 

If the PR# 1 command does not activate your printer or if 
strange characters are printed, the fault could be due to one of 
the following conditions: 

· Printer turned off. 
· Printer "Select" or "Ready" light off. 
· Printer covers are loose or missing. 
· Printer out of paper, or nearly so. 
· Printer ribbon broken or missing. 
· PR# command mistyped (wrong slot specified). 
· Switches set incorrectly on the accessory card or inside 

the printer. 
· Wrong cable connecting printer and accessory card. 
· Serial printer attached to parallel accessory card or vice versa. 
· Malfunctioning accessory card, cable, or printer. 

The occurrence of any of these problems may cause the Apple II 
to lock up until you correct the problem or press CONTROL
RESET. For specific advice on correcting printing problems on 
your system, consult your printer and accessory card manuals or 
talk to your dealer. 

DISPLAYING AND PRINTING CONCURRENTLY __ 

The serial and parallel accessory cards for printers may be set 
up initially so that output appears on the display screen and 
printer simultaneously. In this case, the length of a printed line is 
usually restricted to 40 characters. The Apple Super Serial Card 
has switches that control line length and determine whether out
put appears on the display screen. Both this card and the Apple 
Parallel Interface Card also respond to programmed commands 
to change these features. 

You can instruct the Super Serial Card or Parallel Interface 
Card to stop the screen display and change the maximum line 
length. Output to the printer continues, however. The following 
example illustrates: 

JPRINT CHRSC9>;"80N" 



Printer Output I 243 

Commands to the Super Serial Card and Parallel Interface Card 
start with the character whose ASCII code number is 9. In the 
example above, CHR$(9) generates that prefix, alerting the 
printer accessory card that a command follows, not just another 
character to be sent to the printer. You can also generate the 
prefix character by pressing CONTROL-I. 

The example command, SON, does two things: it blocks the 
flow of characters to the display screen, and it sets the maximum 
line width to 80. You can set the line width to anything between 1 
and 255, but your printer imposes its own line width limit. 
There's no point in setting the line width past 80 at the Super 
Serial Card or Parallel Interface Card unless your printer can 
print wider lines. 

Another command restarts the screen display and resets the 
maximum line width to 40. Here is an example: 

]PRINT CHR$(9);"I" 

In this example, CHR$(9) once again generates the prefix that 
signals a command to the Super Serial Card or Parallel Interface 
Card. The letter I, when prefixed by CHR$(9), is the command to 
start displaying and printing at the same time. 

If CHR$(9) does not work with your Apple Super Serial Card, 
the card may be set to recognize a different prefix. In that case, 
try CHR$(1) where you see CHR$(9) in the examples above. If 
CHR$(1) works, use it wherever you see CHR$(9) throughout the 
rest of the chapter. Pressing CONTROL-A generates the same 
character as CHR$(1). 

PRINTING A DISK DIRECTORY ______ _ 

To make a printed copy of a disk directory, first activate the 
printer as described earlier. Make sure the printer is turned on 
and ready to go, and then type a CAT or CATALOG command. 
The directory listing will be printed out. You can also specify a 
drive and slot number or ProDOS pathname with the CAT or 
CATALOG command, as explained in Chapter 6. 

PRINTING A PROGRAM LISTING _____ _ 

If the printer is active when you type a LIST command, it will 
print the program lines in exactly the same format as they 



244 I Apple II User's Gulde 

appear on the display screen. All of the LIST command options 
that affect which lines will be displayed also affect which lines 
will be printed; see Chapter 5 for details. 

DEACTIVATING. THE PRINTER ______ _ 

Yet another command to the Super Serial Card or Parallel 
Interface Card turns the card off, deactivating the printer. The 
following example illustrates: 

]PRINT CHR$(9);"R" 

All of the following actions also turn off the serial or parallel 
accessory card to deactivate the printer: 

Executing the command PR# 0. 
Restarting the Apple II by pressing OPEN APPLE-CONTROL
RESET or switching the Apple II off and back on. 
Resetting the Apple II by pressing CONTROL-RESET. 

Activating the 80-colµmn adapter with the PR# 3 command. 
Deactivating the 80-column adapter by pressing ESC and 
CONTROL-Q or by sending CHR$(21) or its equivalent to the 
display screen. 

PROGRAMMING PRINTER OUTPUT _____ _ 

Programming output on the printer is almost the same as pro
gramming output on the display screen. It is certainly no harder, 
although some differences do exist. For example, the printer has 
no cursor. The VTAB statement will move the cursor up and 
down on the display screen, but it cannot move a print head up 
and down on a piece of paper. Lines print sequentially, one line 
after another, one whole line at a time. On the screen, you can 
display the descriptions for a form (as in Figure 9-9); then you 
can go back and fill in values for each description. You cannot do 
that on the printer. Instead you must print the descriptions and 
values for one line before you go on to the next. 

The PR# command works in programmed mode as well as in 
immediate mode. PR# is an operating system command, so in 
programmed mode you must use it from within a PRINT state-



Printer Output I 245 

ment and prefix it with CHR$( 4) (in Integer BASIC, press 
CONTROL-D between quotes). It's also a good idea to deactivate the 
80-column adapter by printing CHR$(21) (or CONTROL-U in 
quotes) before activating the printer. Here is ·an example: 

J11 PRINT CHR$C21): REM DEACTIVATE 
80-COL~MN ADAPTER 

J12 PRINT: PRINT CHR$C4>;"PR#1": REM SWITCH 
TO PRINTER 

Perhaps you recall using this technique with the PR#4 command 
in Chapter 9 in order to activate the mouse. 

Formatting Printer Output 

Formatting output for the printer is similar to formatting out
put for the display screen. However, commas and TAB functions 
in PRINT statements do not work properly with the Super Serial 
Card or Parallel Interface Card. Fortunately, the SPC function 
does work reliably. For example, with a few changes and addi
tions, the program from Chapter 9 that displays two columns of 
equivalent Celsius and Fahrenheit temperatures will print the 
same information in exactly the same format. Here is the new 
program: 

]10 INPUT "LOWEST FAHRENHEIT TEMPERATURE? ";L 
J11 PRINT CHRSC21): REM DEACTIVATE 

80-COLUMN ADAPTER 
J12 PRINT: PRINT CHR$C4>;"PR#1": REM SWITCH 

TO PRINTER 
J13 PRINT CHR$C9); "40N": REM SET COLUMN WIDTH 
J20 PRINT SPCC 6);"FAHRENHEIT"; SPCC 3);"CELSIUS" 
J30 FOR F = L TO L + 20 
J40 W =LEN C STRS Cf)): REM FAHR. WIDTH 
]50 PRINT SPCC 9 + 6 - W + 1>;F; 
J60 C = 5 I 9 * CF - 32): REM CELSIUS 
]70 C = INT CABS CC) * 10 + .5) I 10 * SGN CC) 

: REM ROUND 
]80 W =LEN C STRS C INT CC))): REM CELSIUS WIDTH 
J90 PRINT SPCC 1 + 6 - W + 1>;C 
J100 NEXT F 
J101 PRINT CHR$C9);"R": REM SWITCH TO SCREEN 
J110 END 

As in the original program, this program starts by displaying a 



246 I Apple II User's Guide 

prompt message and by inputting the lowest Fahrenheit tempera
ture (line 10). Three new program line.s then deactivate the 80-
column adapter (if any), switch output from the screen to the 
printer, set the line length to 40 characters, and turn off the dis
play screen (lines 11-13). The program now uses SPC functions to 
position the column headings (line 20). It also uses SPC functions 
to position the column values (lines 50 and 90). Lines 50 and 90 
could be simplified by combining the SPC function operands; 
they are separate in this example only for clarification. 

You can use the HTAB statement in an Applesoft program (the 
TAB statement in Integer BASIC) to advance to a character posi
tion farther along the printed line. Except on an Enhanced Apple 
Ile, the HTAB statement only works with column numbers 1 
through 40. For larger numbers, use the POKE statement with 
memory location 36 instead. For example, POKE 36, 70 will 
advance to column 70. The printer ignores HTAB, TAB, and 
POKE statements that try to move to a column that the printer 
has already passed, so you cannot use them to back up along the 
printed line. 

Paging 

Most printers pay no attention to page length; they assume they 
are printing on an endless roll of paper with no page boundaries. 
You can print program listings page by page, however, by using a 
separate LIST statement to list one page-sized chunk at a time. 
Explicitly specify a starting and ending line number for each 
chunk, so that the program lines within that piece will fit on one 
page. Later in the chapter, we'll see a way to make the Apple 
Imagewriter page listings automatically. 

Paging program output is much less tedious, because the pro
gram can count output lines for you. A special subroutine, shown 
in Figure 10-1, will do most of the work. Each time the program 
prints a line or group of lines, it increments the line count and 
calls the subroutine. The subroutine checks to see if the page is 
full (line 15000). If not, it does nothing. If the page is full, the 
subroutine prints enough blank lines to advance to the beginning 
of the next page (lines 15010 and 15020). There it prints a title 
and column headings (lines 15030-15050). Finally, it resets the 
line count (line 15060). 



14989 REM 
14990 REM ••• TopPage ••• 
14991 REM 
15000 IF PL% < 55 THEN RETURN: 

REM •• Page full yet? 

Printer Output I 247 

15010 FOR X1 = 1 TO (66 - PLX>: REM •• Space to 
bottom of page 

15020 PRINT: NEXT X1 
15030 PRINT ,"TITLE": REM •• Print title here 
15040 PRINT 
15050 PRINT "COL1","COL2","COL3": 

REM •• Print column headings here 
15060 PL%= 3: RETURN: REM •• Reset 

printed line counter 

Figure 10-1. TopPage subroutine 

Printed Malling-List Program 

Chapter 9 introduced a program to enter names and addresses 
for a mailing list (Figures 9-9 through 9-13). The Mailing-List 
Entry program would be much more useful if it printed the 
names and addresses you entered. The printed output could take 
any of several forms, as Figure 10-2 shows. It could be a simple 
list of names and addresses printed on plain paper, listing one 
name and address per line, with page and column headings; or 
the program could print mailing labels. With printers that allow 
it, the program could even print each name and address directly 
on an envelope. 

The changes to the Mailing-List Entry program required for 
the first format -a list of names and addresses on plain paper -
are quite simple. After each name and address is entered, the 
program needs to activate the printer, print the values just 
entered, and deactivate the printer. It can also use the TopPage 
subroutine to check for a full page. Figure 10-3 shows the 
improved program, with changes and additions to Figure 9-10 
shaded. 

The new program initializes variables, displays an entry win
dow, and inputs values on the screen in much the same way as the 



248 I Apple II User's Guide 

Figure 10-2. 

... ,, SfREET cnr, S!•TE,Zfp 
Frfd Frrtti ----:-----__ 8or 1 t. Al'ldro)ov 
l1n• H• n s• n 
Iris f"lcDon• ld 

P• l11P1 l1n, , 

Grrtrudt u,, 
"'' 'hr Kf'n...ooa 
''°'"' "'• Ount • n 
l .-wr , nc., Cu J ro" 

Gr•cr Lt., r,,. 
Phyl 1,, Or,.no1> 
f'lo,.ct G• lfcw,,. p, ,.,.,. Eoi., 

Troy H19bo 
Ar ltnt H1 It 

• Ariq 41 Ah• 1 hr 
8• v l • l'I HoMnono • 1,,,, Conr , a 

e l t ro,. Pr., 1 lpoh 

• 
• 
• 
• 
• 
• 
• 
• . \------
• 
• 
• 
• 
• 
• 
• 

1200 ~Ooti,. Cour 1 
14 D•nv rr s l •nt 
14)3 Hulbtrr y St. 
l25'o Ct nr.,,.,. Blvd, 
4JOO Av1 u on Av t . 

Ut w G1t1,ti.,.9, "1 10089 1.:.,, ,,,.,, ,, GA 32sn 
Rt:1rbur9, 10 84!100 
los An9r1,,, CA • 0023 
Tonop411'1, II.I 83100 

21!1 lrncoln Avt. 
162 Ct11I1cort1, St . 
200 Or tro, I A\;,, 

"" lrn41p 41 ft S t , 

414 th rcoi. Av, , 
218 fru r on Ro• a 
497 tf•a l S 1,.,,, 
813 StHfora L.,,, 

Jn "'ho Cour I 
21 48 Aq111 I • Avt . 
2040 rn~ t h St. 
175 !Joo Ir r d9• S t . 

E'l t cir1c C11,. , UM 0~ 10 0 
' " O•P•notrcr, P"4 2J9~s 
lOl'chvr I I t , T:.c 0!120 J 

1111 1 l nCl'll• h, OR '1!1800 

l urpon , HT 890JO 
K1ngsv 1 I I t, Nt 54332 
~•rculu , CA 04355 
l • lhroo, IL 65JJJ 

Too1on, lA 186ol 
r.,c,o", A! •50•o 
Twi n 8rrd9 , ,, '1E OlJoo 
sn, ,.,o• n, NT •~ooo 

211 Spr"c• SI. 
JJ .. £v •ro Avr, 
354 £Ir ''lton St. 

l.'r t111rn U111 , Lii 10011 
Gun , ,9111 , t'1 o5J02 
Ent r rpr1s., (!I( 18210 

G• rtrud• Nu 

215 Lincoln Av •~ 98760 
El i c t r 1c Cit r , 



Printer Output I 249 

1000 GOSUB 10000: REM •• Initialize variables 
1010 PRINT CHR.$ <tt>. ~ REM ••. i>:~4~:rrvate - ·~. - . -c-

80-co l. card 
1020 REJ-i •• Display widt·h is 4.0 
1030 GOSUB 11000: REM •• DisplayEntryWindow 
1040 FOR X1 = 1 TO LF% 
1050 FIELD% = X1: GOSUB 23500: 

REM •• Display field description 
1060 NEXT X1 
1070 FOR X1=1 TO 5: REM •• Enter all fields 
1080 FIELD% = X1 
1090 GOSUB 23000: GOSUB 12000: GOSU0 23500: 

REM •• select Field: Enter Field: Des e le ct Fi e l d 
1100 NEXT X1 
1110 FIELD% = 6: GOSUB 23000: REM •• Selectfield 
1120 GOSUB 22000: REM •• GetFieldNumber 
1130 IF FIELDX = 6. ,.~~N GQSUB l4'oo.(f:F~X :: 1+.; .. ,.,--.' 

LRX = 8: GO SUB 301 QO: G·O:S.Oii· ·23:5:0.Q; .~.()'FO· 
1040:: REM •• If f ielc;f=6; pdnt,. 'bla·n•k· J; .. ~,~ ·· 
entries, des·elect_,, .!":~. :Q~·J.~ri9.th.er · ____ ,,_. 

1140 IF FIELD% < LF% THEN GOSUB 12000: GOTO 1120: 
REM •• EnterField 

1150 REM ••• Quit? ••• 
1160 TX= 12:L% = 4:8% = 17:R% = 37: 

GOSUB 30200: REM •• DisplayBox 
1170 VTAB 14: HTAB 5: PRINT BEEP$;"Are you sure 

you want to quit?"; 
1180 VTAB 16: HTAB 8:C$ = "Y": GOSUB 21000: 

REM .•• GetYesNo 
1190 IF NTRY$ ="NO" THEN FR%= 12: LR%= 17: 

GOSUB 30100: GOSUB 23000: GOTO 1120: 
REM •• If no, erase box, restore field, and 
get another field 

1200 GOSUB 14000: ti0J'1E: ' EN.D.:1 R,eji( ~-If yes.,. th.~h: 
·print and quit 

9989 REM 
9990 REM ••• InitializeVariables ••• 
9991 REM 
10000 0$ = CHR$ (4): REM •• ProDOS/DOS 3.3 prefix 
10010 W4$ = CHR$ (17): REM •• Display width 40 
10020 BEEP$= CHR$ C07>: REM •• Beep char. 
10030 FOR X1 = 1 TO 40 
10040 EF$ = EF$ + ".": REM •• Entry field chars. 
10050 TL$= TL$+" ":REM •• Top line chars. 
10060 BL$= BL$+ .. - .. : REM •• Bottom Line chars. 
10070 NEXT X1 

Figure 10-3. Printed Mailing-List program 



250 I Apple II User's Guide 

10080 SL$= "I": REM •• Side Line chars. 
10090 LFX = 7: REM •• Last field number 
10100 DIM FRXC2,LFX>,FCXC2,LFX),FD$C2,LFX) 
10110 FOR X1 = 1 TO LFX: REM •• Read field 

locations and descriptions 
10120 READ FRXC1,X1>,FCXC1,X1),FDSC1,X1) 
10130 READ FRXC2,X1),FCXC2,X1>,FD$C2,X1) 
10140 NEXT X1 
1 also PLX = 6.5: REM 
10460. R~TU.RN 
10489 REflt 
10490 REM ••• Field Descriptions and Locations ••• 
10491 REM 
10500 DATA 4,3," 1. <NAME:> II 

10510 DATA 4,3," 1. Name: " 
10520 DATA 5,3," 2. <STREET:>" 
10530 DAtA 5,3," 2. Street: 
10540 bATA 6,3," 3. <CITY:> 
10550 DATA 6,3," 3. City: 
10560 &ATA 7,3," 4. <STATE:> 
10570 DATA 7,3," 4. State: 
10580 DATA 8,3," 5. <ZIP:> 
10590 DATA 8,3," 5. Zip: 
10600 DATA 11,3," 6. <ANOTHER RECORD>" 
10610 DATA 11,3," 6. Another Record " 
10620 DATA 12,3," 7. <QUIT>" 
10630 DATA 12,3," 7. Quit" 
10989 REM 
10990 REM ••• DisplayEntryWindow ••• 
10991 REM 
11000 HOME 
11010 TX = 1 :LX = 1 :BX= 22:RX = 39: GOSUB 30200: 

REM •• Displa)'~OX 
1102:.0 ... t'ITLE1$ ·::::~ '0 'MA'l:il.tN,G. ii.lI'.S/r ,'E'NTttf'.'•' 
1fo3a ·£NvERsl:: vTAe 1:'--HTAa c4ii·-.;.·LEN 

(TITLES)) I 2: PRINT TITLES;: NORMAL: 
REM •• Display title 

11040 RETURN 
11989 REM 
11990 REM ••• Enterfield ••• 
11991 REM 
12000 VTAB 20: HTAB 3: PRINT "Enter the selected 

field." 
12010 HTAB 3: PRINT "Then press RETURN to 

confirm entry."; 
12020 ON FIELDX GOSUB 13100,13200,13300, 

13400,13500 

Figure 10-3. Printed Mailing-List program (continued) 



Printer Output I 251 

12030 FU = 19:LRX = 21: GOSUB 30100: 
REM •• ClearDisplayLines 

12040 RETURN 
13089 REM 
13090 REM ••• EnterName ••• 
13100 ML% = 20: VTAB 4: HTAB 17: GOSUB 20000 
13110 NAMES = NTRY$: RETURN 
13189 REM 
13190 REM ••• EnterStreet ••• 
13200 ML% = 20: VTAB 5: HTAB 17: GOSUB 20000 
13210 STREETS = NTRYS: RETURN 
13289 REM 
13290 REM ••• EnterCity ••• 
13300 ML% = 20: VTAB 6: HTAB 17: GOSUB 20000 
13310 CITY$ = NTRYS: RETURN 
13389 REM 
13390 REM ••• EnterState ••• 
13400 ML% = 2: VTAB 7: HTAB 17: GOSUB 20000 
13410 SES = NTRYS: RETURN 
13489 REM 
13490 REM ••• EnterZip ••• 
13500 ML% = 9: VTAB 8: HTAB 17: GOSUB 20000 
13510 ZIPS = NTRY$: RETURN 
13:989 REM . ., 
1 3 9 9 0 R ~. M ••• P r i nt R e c o rd,. ... 
13991"ifEM 
140Q,Q VlAl;J 21: HTA'B ~:': P.RZ.NJ ... Printing ••• "; 
1401'.o·., P;R"l~T: ·PRINT DS;'*P'R#1 ": 

1

REM •• switch 
. .to pri~ter. .. . -

14020 p.~INT C·HR.$ C9);"80N'';:: ~Er-1 •• Line width 80 
14030 p:Lx = PLI + 1: GO SUB 1 S·QQO: REM •• T9pPage 
1404.0 PR:lNT NAM ES; . . . . . 
1401rn tttM:. 2:2·: PR:rNr ·s,n,eetu:- , 
1406.0 P·O.f.(E 36,42.:,frRlNT C:ItYS:;'',. ";SES;" ";ZIP$ 
14'(f7it: ,f:f: P·:LX I S :: INT ('PLX .(" 5«f tH EN PRINT: 

p'.~:~ = PL X + 1 : RE M • • P r i n~ ~ b l a n k l i n e e v e r y 
5°t.h addre.ss · -

14.080' PfflNT CH~S C9>;"R": REM ... Switch to screen 
14090 ·vt·Ae 21: HTA8 2: PRINT_:SP~( 37>;: 

.. ll!E:fl ~ •. c l~a r bottom l in,e, 
141·0·0:. .RiS:'.tU.R'N 
1·49,s9 :l'e,r. 
14990. ·~:e·M ••• T.opPage ••• 
1 ~991 ·~·E:M • , . _ 
15000 I'F PLI < SS THEN RETURN:-

REM •• Page full yet? 

'''' 

Figure 10-3. Printed Mailing-List program (continued) 



252 I Apple II User's Guide 

i tsi.G;:t'.o F;OR X1 = 1 TO (66 - PLU: 
;· , ., · -R;E'M •• spa'ce. to bottoJ!l of page 
1s~o;20 PRINT: NEXT X1 
··i:S'j~O,· P·RINT . TAB( 28);"MAI-LlNG. LIST" 
1'S~O;ifQ PRINT . 
tS:Q'.~:q· PJUtiT ''NAME"; SPC t · 1 u;"STREET"; 

.· spt·(. 1·6l;'1CITY, S.TAT.E1ZiP1' 

~1~$;6·60 PRUT " . 
·11 s·6f7~tl PRI,'N'.T .. ----------

"· I 

". , 
If 1f1S:ti:a'o PrfrN T ·'' 

1'5190· ·p·Rl:NT --------~-------------
·1 ~-1~t:hi ~LX = 6: ~ETURN: REM ••• Reset 

·. ·-·- _· ... ·· prin·ted line ~ounter 
19989 REM 
19990 REM ••• GetEntry ••• 
19991 REM 
20000 HT% = PEEK (36) + 1: REM •• Cursor column 
20010 NTRYS = "": REM •• Empty entry 
20020 CLX = LEN CNTRYS): REM •• Current 

entry length 
20030 HTAB HTX: PRINT NTRYS; 

20040 If MLX > CLX THEN PRINT LEFTS 
CEFS,MLX - CLU;: REM •• Fill unused entry 
field 

20050 HTAB HTX + CL%: GOSUB 30000: REM •• Get 
one character 

20060 IF CS = CHRS (127) AND CL% < = 1 THEN 20010: 
REM •• Delete key with empty entry? 

20070 IF CS= CHRS C127) THEN NTRY$ = 
LE FT$ CNTRYS,CU' - 1): GOTO 20020: 
REM •• Delete key? 

20080 IF CS = CHRS (24) THEN 20010: REM •• Control
X means cancel 

20090 IF CS = CHRS C13) THEN PRINT 
SPCC MLX - CLU;: RETURN: REM •• Return means 
done 

20100 IF cs>= II II AND C$ < = ll-tt AND CL%< ML% 
THEN NTRY$ = NTRYS + CS: REM •• Add valid 
characters if room 

20110 GOTO 20020: REM •• Get another keystroke 
20989 REM 
20990 REM ••• GetYesNo ••• 
20991 REM 
21000 HT% = PEEK (36) + 1 :VT% = PEEK C37) + 1: 

REM •• Cursor position 

Figure 10-3. Printed Mailing-List program (continued) 



Printer Output I 253 

21010 IF CS = "Y" OR CS = "y" OR CC$ = CHRS C8) 
AND NTRY$ = "NO") THEN VTAB VTX: HTAB HTX: 
PRINT "<YES> No ";:NT RYS = "YES" 

21020 IF CS = "N" OR CS = "n" OR CC$ = CHRS C21) 
AND NTRY$ ="YES") THEN VTAB VT%: HTAB HTX: 
PRINT" Yes <NO>";:NTRYS = "NO" 

21030 VTAB 19: HTAB 3: PRINT "Type Y for Yes or N 
for No," 

21040 HTAB 3: PRINT "or press <-- or --> to 
change." 

21050 HTAB 3: PRINT "Then press RETURN. "; 
21060 GOSUB 30000: REM •• GetChar 
21070 lF cs=" II THEN cs= CHRS C21): 

REM •• Accommodate 80-col. card "feature" 
21080 IF CS<> CHRS C13) THEN 21010: REM •• Only 

RETURN confirms 
21090 FRX = 19:LRX = 21: GOSUB 30100: 

REM •• ClearDisplayLines 
21100 RETURN 
21989 REM 
21990 REM ••• GetFieldNumber ••• 
21991 REM 
22000 VTAB 19: HTAB 3: PRINT "To select a field, 

type a number or " 
22010 HTAB 3: PRINT "press UP-ARROW or 

DOWN-ARROW." 
22020 HTAB 3: PRINT "Then press RETURN. "; 
22030 GOSUB 30000: REM •• GetChar 
22040 IF CS= CHRS C10) AND FIELD% < LFX THEN 

GOSUB 23500:FIELDX = FIELDX + 1: GOSUB 23000: 
REM •• Down-arrow key 

22050 IF CS= CHRS C11) AND FIELD%> 1 THEN GOSUB 
23500:FIELD% = FIELD% - 1: GOSUB 23000: 
REM •• Up-arrow key 

22060 IF CS>= "1" AND CS<= STR$ CLFX) THEN 
GOSUB 23500:FIELDX = VAL CC$): GOSUB 23000: 
REM •• Digit key 

22070 IF CS<> CHRS C13) THEN 22030: REM •• Only 
RETURN confirms 

22080 FRX = 19:LR% = 21: GOSUB 30100: 
REM •• ClearDisplayLines 

22090 RETURN 
22989 REM 
22990 REM ••• SelectField ••• 
22991 REM 

Figure 10-3. Printed Mailing-List program (continued) 



254 I Apple II User's Gulde 

23000 VTX = PEEK C37) + 1 :HTX = PEEK (36) + 1: 
REM •• cursor location 

23010 VTAB FRXC1,FIELO%): HTAB FCXC1,FIELDX>: 
PRINT FDSC1,FIELDU;: REM •• Display selected 
description 

23020 VTAB VTX: HTAB HT%: REM •• Reset cursor 
23030 RETURN 
23489 REM 
23490 REM ••• Deselectfield ••• 
23491 REM 
23500 VTX = PEEK C37> + 1 :HTX = PEEK (36> + 1: 

REM •• Cursor location 
23510 VTAB FRXC2,FIELDU: HTAB FCXC2,FIELDX>: 

PRINT FDSC2,FIELDX>;: REM •• Display 
deselected description 

23520 VTAB VTX: HTAB HTX: REM •• Reset cursor 
23530 RETURN 
29989 REM 
29990 REM ••• GetCharacter ••• 
29991 REM 
30000 GET CS: REM •• Wait for keystroke 
30010 RETURN 
30089 REM 
30090 REM ••• ClearDisplayLines ••• 
30091 REM 
30100 FOR ROW = FRX TO LRX 
30110 VTAB ROW: HTAB 2: PRINT SPCC 37>; 
30120 NEXT ROW 
30130 RETURN 
30189 REM 
30190 REM ••• DisplayBox ••• 
30191 REM 
30200 VTAB TX: HTAB LX + 1 
30210 PRINT LEFTS CTLS,RX - LX - 1);: 

REM •• Top line 
30220 FOR ROW = TX + 1 TO BX: REM •• Side lines 
30230 VTAB ROW: HTAB LX: PRINT SLS; 
30240 HTAB RX: PRINT SL$ 
30250 NEXT ROW 
30260 VTAB BX: HTAB LX + 1: PRINT LEFTS 

CBLS,RX - LX - 1>;: REM •• Bottom line 
30270 RETURN 

Figure 10-3. Printed Mailing-List program (continued) 



Printer Output I 255 

original entry program in Figure 9-10 (lines 1000-13510). Both 
programs use the same subroutines to display the entry form, 
enter a field, get an entry, get a yes-or-no response, get a field 
number, select and deselect a field, get a single character, clear 
lines on the display, and draw a box (lines 20000-30270). Table 
10-1 identifies the variables used in the new version of the pro
gram lines. 

The first new line the Printed Mailing-List program executes 
is part of the variable initialization subroutine (line 10150). It sets 
the page-count variable (PL%) at a high value so that when the 
TopPage subroutine (beginning at line 15000) is called for the 
first time, it will print the page title and column headings on the 
first page. 

Table 10-1. Printed Mailing-List Program Variables 

Variable Purpose Used on lines: 

B% Bottom row of box 1160, 11010, 30220, 30260 

BEEP$ Sound console speaker 1170, 10020 

BL$ Characters for bottom 10060, 30260 
edge of box 

C$ Keystroke 1180, 20060, 20070, 20080, 20090, 
20100, 21010, 21020, 21070, 21080, 
22040, 22050, 22060, 22070, 30000 

CITY$ Value of City field 13310, 14060 

CL% Current entry length 20020, 20040, 20050, 20060, 20070, 
20090, 20100 

D$ ProDOS or DOS 3.3 10000, 14010 
command prefix 

EF$ Characters for entry 10040, 20040 
field indicator 

FC%() Field columns 10100, 10120, 10130, 23010, 23510 

FD$() Field descriptions 10100, 10120, 10130, 23010, 23510 

FIELD% Current field number 1050, 1080, 1110, 1130, 1140, 12020, 
22040, 22050, 22060, 23010, 23510 

FR% First row to clear 1130, 1190, 12030, 21090, 22080, 
30100 



256 / Apple II User's Guide 

Table 10-1. Printed Mailing-List Program Variables (continued) 

Variable Purpose Used on lines: 

FR%() Field rows 10100, 10120, 10130, 23010, 23510 

HT% Current horizontal tab 20000, 20030, 20050, 21000, 21010, 
position 21020, 23000, 23020, 23500, 23520 

L% Left column of box 1160, 11010, 30200, 30210, 30230, 
30260 

LF% Last field number 1040, 1140, 10090, 10100, 10110, 
22040, 22060 

LR% Last row to clear 1130, 1190, 12030, 21090, 22080, 
30100 

ML% Maximum entry length 13100, 13200, 13300, 13400, 13500, 
20040, 20090, 20100 

NAME$ Value of Name field 13110, 14040 
N.TRY$ Current entry value 1190, 13110, 13210, 13310, 13410, 

13510, 20010, 20020, 20030, 20070, 
20100, 21010, 21020 

PL% Page length counter 10150, 14030, 14070, 15000, 15010, 
15100 

R% Right column of box 1160, 11010, 30210, 30240, 30260 
ROW Row counter 30100, 30110, 30120, 30220, 30230, 

30250 

SE$ Value of State field 13410, 14060 

SL$ Character for side lines 10080, 30230, 30240 
of box 

STREET$ Value of Street field 13210, 14050 

T% Top row of box 1160, 11010, 30200, 30220 
TITLE$ Title of window 11020, 11030 
TL$ Characters for top edge 10050, 30210 

of box 
VT% Current vertical tab 21000, 21010, 21020, 23000, 23020, 

position 23500, 23520 

W4$ Code for screen width 10010 
of 40 

Xl Loop counter 1040, 1050, 1060, 1070, 1080, 1100, 
10030, 10070, 10110, 10120, 10130, 
10140, 15010, 15020 

ZIP$ Value for Zip field 13510, 14060 



Printer Output I 257 

Unlike the original program, the new program deactivates the 
80-column adapter (lines 1010-1020). Also, the program title is 
changed to all uppercase letters, since it will be displayed in 
inverse style (line 11020). Remember, lowercase letters are not 
available in inverse style unless the 80-column adapter is active. 

In addition, the new program now prints the name and address 
whenever the user selects field 6 (Another Record) or 7 (Quit). 
This requires calling the PrintRecord subroutine, which prints a 
name and address. 

The PrintRecord subroutine prints the currently displayed 
name and address (lines 14000-14100). It starts by displaying an 
advisory message at the bottom of the entry window (line 14000). 
With most printers the subroutine executes so quickly that the 
message just flashes on the screen. Note that if the printer is off 
or not ready, the message Printing ... will display until the user 
corrects the printer problem. · 

The subroutine next switches output from the screen to the 
accessory card in slot 1 and sets the printer line width to 80 with 
no display-screen echo (lines 14010 and 14020). (This overrides a 
width and echo setting indicated by the switches on the accessory 
card.) The subroutine then increments the line counter variable 
by 1 (line 14030) in anticipation of the line about to be printed, 
and calls the TopPage subroutine in case the incremented line 
count exceeds the page limit. After that, the subroutine prints 
the name and address (lines 14040-14060). If the line counter 
value is divisible by 5, the subroutine prints a blank line to make 
the report more readable (line 14070). Finally, the subroutine 
switches from the Super Serial Card back to the display screen, 
clears the advisory it displayed, and returns to the main program 
(lines 1408(}.14100). 

PRINTER COMMAND CHARACTERS ____ _ 

Most printers have a number of special features that are acti
vated by command characters. The command characters them
selves do not print, but they affect the way printing appears. The 
remainder of this chapter will illustrate the use of printer com
mand characters by discussing those listed in Tables 10-2 and 
10-3, which control some of the features available on the Apple 
Imagewriter printer. Command characters for more advanced 



258 I Apple II User's Gulde 

Table 10-2. Some Apple Imagewriter General Command Characters 

Command Characters Effect 

CHR$(27) + "Lnnn" Set left margin to position nnn 

CHR$(27) + "Rnnn" + "c" Repeat character c nnn times (nnn is 001 to 
999) 

CHR$(8) + "c" Backspace one character before printing 
character c 

CHR$(27) + "r" Reverse line feed direction (subsequent line 
feeds back paper up) 

CHR$(27) + "f" Forward line feed direction (subsequent line 
feeds advance paper) 

CHR$(10) Feed paper one line (advance one line 
unless reverse direction set) 

CHR$(31) + "c" Feed paper from 1 to 15 lines (c is l, 2, 3, 
4, 5, 6, 7, 8, 9, :, ;, <. =, >, or ?) 

CHR$(27) + "11" Automatic carriage return with subsequent 
line feed characters 

CHR$(27) + "IO" No automatic carriage return with subse-
quent line feed characters 

CHR$(27) + "A" Set line spacing to 6 lines per inch (line 
height is 24/144-inch) 

CHR$(27) + "B" Set line spacing to 8 lines per inch (line 
height is 18/144-inch) 

CHR$(27) + "Tnn" Set line height to nn/144-inch lines per inch 
(nn is 01 to 99); each dot is 1/72-inch tall 

CHR$(12) Advance the paper to the top of the next 
form 

CHR$(27) + ''v" Set the top-of-form at the current position 

CHR$(27) + ">" Print going left-to-right only 

CHR$(27) + "<" Print going both directions 

CHR$(27) + "O" Keep printing if paper runs out 

CHR$(27) + "o" Stop printing 1 inch before paper runs out 
CHR$(24) Cancel all unprinted characters stored in 

Imagewriter's memory 

CHR$(27) + "c" Cancel special features; revert to internal 
switch settings 



Printer Output I 259 

Table 10-3. Some Apple lmagewriter 'Type-Style Command Characters 

Command Characters Effect 

CHR$(27) + "n" Extended (9 characters per inch) 

CHR$(27) + "N" Pica (10 characters per inch) 

CHR$(27) + "E" Elite (12 characters per inch) 

CHR$(27) + "p" Pica proportional (144 dots per inch) 

CHR$(27) + "P" Elite proportional (160 dots per inch) 

CHR$(27) + "e" Semicondensed (13.4 characters per inch) 

CHR$(27) + "q" Condensed (15 characters per inch) 

CHR$(27) + "Q" Ultracondensed (17 characters per inch) 

CHR$(27) + CHR$(n) Set spacing between proportional characters 
to n (n is 1-9) 

CHR$(27) + "s" + CHR$(n) With elite proportional style only, add n 
dots of spacing between adjacent characters 
(n is 1-6) 

CHR$(14) Start headline style 

CHR$(15) End headline style 

CHR$(27) + "X" Start underline style 

CHR$(27) + "Y" End underline style 

CHR$(27) + "!" Start boldface style 

CHR$(27) + CHR$(34) End boldface style 

CHR$(27) + "D" 

+ CHR$(1) + CHR$(0) Slash zeros 

CHR$(27) + "Z" 

+ CHR$(1) + CHR$(0) Don't slash zeros 

CHR$(27) + "c" Cancel all special styles and sizes; revert to 
internal switch settings 

features are also available; consult the Imagewriter manual for 
details. 

You send the printer a command character the same way you 
send it any regular character: with a PRINT statement. The 
simplest way to generate many command characters is with the 



260 I Apple II User's Guide 

CHR$ function. For example, you can instruct the printer to back 
up instead of advancing after printing a line. You do this by 
"printing" the pair of command characters CHR$(27) and 
CHR$(114) (or CHR$(27) + "r"). To go forward again, you "print" 
command characters CHR$(27) and CHR$(102) (or CHR$(27) + 
"f''). The following program uses this feature to strike a word 
through with hyphens. 

J 10 REVS = CHR$ (27) + CHR$ (114): 
REM •• Reverse line feeding 

J20 FWD$= CHR$ (27) + CHR$ (102): 
REM •• Forward line feeding 

J30 0$ = CHRS (4): REM •• ProOOS/DOS command prefix 
J40 SSCS = CHR$ (9): REM •• Super Serial 

card command prefix 
J100 PRINT D$;"PR#1": REM •• Switch to printer 
J110 PRINT "This is a demonstration of strikeout" 
J120 PRINT REVS: REM •• Back up a line 
J130 PRINT II ---------

";FWD$ 
J190 PRINT SSCS;"R": REM •• Switch to di splay 
J200 END 

Backing up the paper does have its problems, however. You can
not count on the pin-feed sprockets to reverse accurately. You 
must push the paper release lever to the friction feed (rear) posi
tion. Here are the results: 

This is a demonstration of 5t~~*~ 

Other command characters enable you to use different type styles 
and sizes. Figure 10-4 shows some of the possibilities. Figure 10-5 
lists the program that prints Figure 10- 4. 

Setting Page Length 

Wouldn't it be great if the printer would automatically skip 
over the perforation between sheets of continuous paper? Long 
program listings would then have margins at the top and bottom 
of each page. This can be done on an Imagewriter by using sev
eral command characters (not listed in Tables 10-2 and 10-3) that 



Printer Output I 261 

lm&gewr!ter TYpe Samples 

E x t e nded print s 72 ch a racter s per eight- i nch 1 i ne. 
P i c a print s 80 characters per ei ght-inch I i ne. 
El i te pri nts 96 char acters ptr tight - inch 1 int . 
Pie& proportional prints diffl!r1nt width character& at 1152 dots per e ight-inch line . 
B:litt proportional prinb difftrent width ch1ract1r1 at 1280 dots per 1ight- inch line. 
Stmicondensed prints 107 charachrs per tight- inch lint . 
Condtnud prints 120 characltrs pt r tight-i nch I int . 
Ultracondtnud prinh 136 charachrs ptr tight-inch lint . 

E x t e nded Hea.dl i ne> 
Pica Headline 
El it• H•&dl In• 
Pie:& Proportion&l Headline 
S:lite Proportional H•adline 
Semic:ondensed H•adl ine 
Condensed Headl lne 
Ultracondense d Headline 

This i s boldftct El l tt 
Th lt ls under li n1d Elite 
Th l t it und1rl lntd boldftct El itt 

Figure 10-4. Sample Apple Imagewriter type styles 

10 REM •• Set up c o mmand characters •• 
20 REM 
30 0$ = CHRS (4): REM •• Pro DOS/DOS command prefi x 
40 SSC$ = CHRS (9): REM •• Super Serial Card prefi x 
50 ESCS = CHRS C2 7): REM •• "E s cape" character 
60 EXS = ESCS + "n": REM •• E x tended 
70 PNS = ESCS + "N": REM •• P i ca 
80 ENS= E S CS + "E": REM .;Elite 
90 PPS= ESCS + "p": REM •• Pi c a proportional 
100 EPS = ESCS + "P": REM •• Elit e proportional 
110 SC$= ESCS + "e": REM •• Semicondensed 
120 CS= ESCS + "q": REM •• Conden se d 
1 3 0 UCS = ESCS + "Q": REM •• Ultrac onden s ed 
140 HS$= CHRS C14): REM •• He adline start 
150 HES= CHR$ (15): REM •• Headline end 
160 BS$= ESCS +"!":REM •• Boldface star t 
170 BES= E SC$ + CHRS (34): REM •• Boldfa ce end 

F igure 10-5. Sample Type-Style Print program 



262 I Apple II User's Guide 

180 USS= ESC$ + "X": REM •• Underline start 
190 UES = ESC$ + "Y": REM •• Underline end 
200 CFS= ESC$ + "c": REM •• Cancel all special 

features 
1000 PRINT CHRS C21): REM •• Deactivate 80-col. 

card 
1010 PRINT D$;"PR#1": REM •• Switch to printer 
1020 PRINT SSCS;"132N": REM •• Line width & 

display off 
1030 PRINT HSS;BS$;EX$;" 11;US$; 11 Imagewriter 

Type Samples";CFS 
1040 PRINT: PRINT 
1050 PRINT EXS;"Extended prints 72 characters 

per eight-inch line." 
1060 PRINT PNS;"Pica prints 80 characters 

per eight-inch line." 
1070 PRINT ENS;"Elite prints 96 characters per 

eight-inch line." 
1080 PRINT PPS;"Pica proportional prints different 

width characters at 1152 dots per eight-
i nch line." 

1090 PRINT EPS;"Elite proportional prints 
different width characters at 1280 dots per 
eight-inch line." 

1100 PRINT SCS;"Semi condensed prints 107 
characters per eight-inch line." 

1110 PRINT CS;"Condensed prints 120 characters per 
eight-inch line." 

1120 PRINT UCS;"Ultracondensed prints 136 
characters per eight-inch line." 

1130 PRINT: PRINT HS$ 
1140 PRINT EXS;"Extended Headline" 
1150 PRINT PNS;"Pica Headline" 
1160 PRINT ENS;"Elite Headline" 
1170 PRINT PPS;"Pica Proportional Headline" 
1180 PRINT EPS;"Elite Proportional Headline" 
1190 PRINT SCS;"Semicondensed Headline" 
1200 PRINT CS;"Condensed Headline" 
1210 PRINT UCS;"U l t ra condensed Headline" 
1220 PRINT HES: PRINT 
1230 PRINT BSS;ENS;"This is boldface Elite";BE$ 
1240 PRINT USS;"This is underlined Elite" 
1250 PRINT BSS;"This is underlined boldface 

Elite";BES;UES 
1260 PRINT SSCS;"R": REM •• Switch back to display 

screen 
1270 END 

Figure 10-5. Sample Type-Style Print program (continued) 



Printer Output I 263 

usually set vertical tabs. The following program shows how: 

]100 PRINT CHR$ (21): REM •• Deactivate 
80-co l. ca rd 

J110 PRINT "** PRINTER PAGE LENGTH SETUP **" 
]120 PRINT 
130 INPUT "Leave how many lines blank? ";MARGIN 
J140 PRINT CHRS (4);"PR#1": 

REM •• Switch to printer 
J150 PRINT CHR$ C9>;"80N": 

REM •• No screen echo 
J160 FOR X = 1 TO 132:A$ = A$ + "@": NEXT X: 

REM •• String of iii characters 
J170 PRINT CHR$ C29>;"A@"; LEFTS CAS,2 * C64 -

MARGIN));"Ciil"; LEFTS CAS,2 * 
MARGIN);"Aiil"; CHR$ (30); 

J180 PRINT CHRS C9);"R": REM •• Switch to display 
J190 PRINT 
J200 PRINT "Load paper into the Imagewriter" 
]210 PRINT INT CMARGIN I 2 + O.S>;" lines below 

the top· edge." 
J220 PRINT "Text will be vertically centered, 

with" 
]230 PRINT 66 - MARGIN;" lines per page." 
J240 END 

The program begins by deactivating the 80-column adapter (if 
any) and inputting the number of lines to leave blank between 
pages (lines 100-140). Next the program switches to the printer 
and turns off output to the display screen (lines 140 and 150). 
Then the program prints the Imagewriter command characters 
that set the page length and margin between pages (lines 160 and 
170). Finally, the program switches back to the display screen 
and displays some instructions (lines 180 to 230). 

The page length remains in effect until you turn off the 
Imagewriter or run the program again. PR# commands have no 
effect, since they affect the serial card, not the printer. 



Programming 
Disk Data Files 11 

Did you notice the serious flaw in the mailing-list program that 
was presented in the last two chapters? In both versions of the 
program, each new name and address you enter erases all 
memory of the one entered before it. The program in Chapter 10 
solves this problem by printing out each name and address as you 
enter it, but if you want to print the list again, you must reenter 
it. You could change the program to store several names and ad
dresses in arrays, but before long you would use up all of the 
Apple H's memory. In addition, the names and addresses would 
vanish the minute you turned the power off. A disk drive takes 
care of this problem. Instead of throwing away information after 
it is entered, a program can save it on a disk for later use. 

Generally, the same BASIC commands can be used for storing 
and retrieving data on disks whether you use the ProDOS operat
ing system or the DOS 3.3 operating system. Some differences 
exist, but the two operating systems are more alike than not. 
Unless stated otherwise, the examples and explanations in this 
chapter apply to both operating systems. 

Data Fiie Structure 

The computer stores data on a disk in files, much as you might 
store information in a filing cabinet. Each disk is the equivalent 
of a filing cabinet, and each disk file is the equivalent of a file 
folder in the cabinet. A disk can contain one file or many, just as 
a filing cabinet can contain one folder or many. A disk file can 
have nothing in it, as can a file folder. 

265 



266 I Apple II User's Guide 

Data files are further divided into records and fields. You 
might think of a record as a piece of paper in a file folder, and a 
field as one line of information on the piece of paper. There can 
be any number of records in a data file, as long as the disk has 
room to hold them all. A record can have any assortment of 
fields, although all records in the same file generally have the 
same configuration. The number of fields, their sequence, and 
often their lengths are all the same from one record to the next. 
For example, one file might contain a mailing list. Each record 
in the mailing-list file would contain the same kind of informa
tion: a name and address. The same five fields would make up 
every record: name, street, city, state, and ZIP code. Every 
record has the same fields; only the values of the fields vary. 

Therefore, two things define a file's structure: the configura
tion of fields in a record and the number of records the file con
tains. Thus, to describe a file's structure, you can usually just list 
the fields contained in one record and state the number of 
records in the file. The result is called a file layout and is shown 
in Figure 11-1. The file layout shows the description of each field, 
its length, and the variable name used to hold the value of each 
field in a BASIC program. 

File Accessing Methods 

You can locate a particular record in a disk file in either of two 
ways. The simplest method is called sequential access, because the 
program starts at the beginning of the file and reads each record 
in turn until it finds the one it wants. The alternative, random 
access, lets the program access records by number in any order. 

Each accessing method has its advantages and disadvantages. 
Sequential access is somewhat easier to program than random 
access and tends to use less disk space. In operation, however, 
sequential access is usually slower than random access, especially 
if you need a record near the end of a large file. Also, updating 
existing records is either difficult or impossible in a sequential
access file. In a random-access file, updating records is easy. 

Every record in a random-access file must have the same 
length, so each field in a record gets a fixed amount of space. 
Your program must abbreviate long values to fit in the space 
allotted. To minimize the loss of data inherent in abbreviation, 



Programming Disk Data Files I 267 

FILE LAYOUT 

File Name Record Size 1 No. of Records 
/t1JJ)f?£SS 76 

Description R d 
a..n 0111- access n,4;/:,,,1 //st: 

Variable Field Description Max. Size Comments 

)I/If ,,Va.me 2.o 

SR$ 5-fl'eG-i:- -< 0 

crt c,·+3 ~o 

sr:t 5+a,-fe -< 
2.II :z /P Coe/e 9 

Figure 11-1. File layout for a sample mailing list file 



268 I Apple II User's Gulde 

it's a good idea to make the records long enough for the largest 
likely field values. 

The lengths of records in a sequential-access file can vary. In 
this case, your program need not adjust field values to fit within 
a fixed length. 

Opening Data Files 

To access a particular field in a record, a program must first 
open the file. Then it can locate the record, transfer it from disk 
to the Apple II's memory, and finally isolate the desired field as 
the value of a variable. Writing data to a file is similar, but in 
this case the program transfers data in the other direction, from 
the Apple II's memory to the disk file. 

The OPEN command opens a disk file. It is allowed only in 
programmed mode, and it must be in a PRINT statement and be 
preceded by the usual ProDOS and DOS 3.3 prefix character 
(ASCII code 4). Here is an example: 

]150 PRINT CHR$C4>;"0PEN SAMPLE" 

This opens the disk file named SAMPLE on the currently 
active disk drive. The CHR$( 4) function generates the character 
that tells the Apple II to execute the operating system command 
that follows, and not to display or print it as text. If the file does 
not exist, the operating system creates a new file entry in the disk 
directory. You can use the CAT or CATALOG command to verify 
that the file has been created. 

With ProDOS, you can specify slot and drive numbers. With 
DOS 3.3, you can also specify a volume number. The following 
example illustrates: 

J150 PRINT CHR$(4);"0PEN SAMPLE,S6,D2" 

ProDOS looks for a simple file name (no directory path speci
fied) in the volume directory. If the program has used the 
PREFIX command to set up a pathname prefix, however, Pro
DOS combines the file name you specify in the OPEN command 
with the prefix to form a complete pathname. You can also spec
ify a full or partial pathname as part of an OPEN command. The 
following example illustrates: 

]1000 SF$ = "/STUDIO/PRODUCER/STUNT/WOMEN" 
]1010 PRINT CHRSC4>;"0PEN ";SF$ 



Programming Disk Data Files I 269 

Warning: Once you open a ProDOS file, you must refer to it by 
exactly the same name throughout the rest of your program, even 
if you later change the prefix with the PREFIX command. For 
example, suppose the prefix is STUDIO/PRODUCER/STUNT 
and your program opens a file named WOMEN. The program 
must continue to use the name WOMEN for that file, even if the 
program later changes the prefix to STUDIO/PRODUCER/ 
DIRECTORS. However, the next time you open the file, you can 
change the way you refer to it. 

Fiie Buffers 

ProDOS and DOS 3.3 reduce the number of times they access 
the disk by transferring data to and from the disk in blocks, 
rather than one field or record at a time. Both operating systems 
set aside part of memory for transfer areas, called file buffers. 
When a program opens a file, the operating system assigns the 
file its own buffer. 

Normally, ProDOS can allocate space in memory for as many 
as eight file buffers, which means there can be as many as eight 
files open simultaneously. DOS 3.3 normally allocates memory 
space for three file buffers, although you can raise this limit to as 
high as 16 with the MAXFILES command, as described later in 
this chapter. 

Closing Data Files 

Generally, ProDOS and DOS 3.3 manage the file buffers 
automatically, and you do not have to be concerned with them. 
But when a program finishes writ ing to a file, there will proba
bly be some data left in the fi le buffer that the operating system 
has not written to the disk. The program must somehow force the 
operating system to write out the final buffer contents. Closing a 
file does that. At the same time it updates the disk directory with 
changes to the file extents and other statistics kept there. There
fore, when a program finishes with a file, it must close the file or 
risk losing part of the file's contents. 

The CLOSE command closes a disk file. In programmed mode, 
it must be in a PRINT statement and be preceded by the usual 
prefix character (ASCII code 4). Here is an example: 

]290 PRINT CHR$(4);"CLOSE SAMPLE" 



270 I Apple II User's Guide 

This closes the disk file named SAMPLE on the currently active 
disk drive. The CHR$( 4) function generates the character that 
tells the Apple II to execute the operating system command that 
follows it and not to display or print it as text. If the file does not 
exist, the operating system ignores the command. 

A single CLOSE command can close all open files. To do that, 
use just the command word with no mention of a file name. The 
following example illustrates: 

J290 PRINT CHRSC4>;"CLOSE" 

Slot and drive numbers are not allowed with either form of the 
CLOSE command. DOS 3.3 also does not allow volume numbers. 
The operating system knows where the file is, since the file is 
already open. 

SEQUENTIAL-ACCESS FILES _______ _ 

BASIC programs can easily do three things with a sequential
access data file: save data starting at the beginning of a new file, 
save data starting at the end of an existing file, or read data from 
an existing file. It is also possible to rewrite a record in the same 
place in the same file, but this is a risky procedure with sequen
tial access. 

Writing to Sequential Flies 

Information is sent to the disk drives in the same way it is sent 
to the screen or printer: via the PRINT statement. Anything you 
can print can be put in a disk file. In fact, you might visualize a 
sequential file as a display screen, or more accurately, as paper 
in a printer. 

When you print something in a file, the operating system 
updates an internal pointer that points to the next location on the 
disk surface where data will be stored, just as a printer advances 
paper to the next line. Since a sequential file pointer can only be 
moved forward, you need to reissue the OPEN command to move 
the pointer back to the beginning of the file. 

Before you can output data to a disk file, you must first use a 
WRITE command to tell ProDOS or DOS 3.3 that subsequent 
PRINT statements are to write to the file instead of the display 



Programming Disk Data Flies I 271 

screen. For sequential files, the WRITE command looks like this: 

J200 PRINT CHRSC4>;"WRITE SAMPLE" 

After you issue the WRITE command, subsequent output is 
directed to the named file. DOS 3.3 outputs even the prompt mes
sages of INPUT statements and the text of error messages to an 
open disk file. If an error occurs, the program stops, the WRITE 
command is canceled, and you see the cursor and the BASIC 
prompt character on the screen. 

In contrast to DOS 3.3, ProDOS does not output INPUT state
ment prompts or error messages to a disk file. However, the 
occurrence of an error does stop the program. Any time the pro
gram stops before closing ProDOS files it opened (except when 
you press (CONTROL-RESET), the message FILE(S) STILL OPEN 
is displayed. You should type a simple CLOSE command in 
immediate mode to close all open files. 

The WRITE command must be in a PRINT statement and 
preceded by the usual prefix character (ASCII code 4). If you 
issue the WRITE command in immediate mode, you will see the 
error message NOT DIRECT COMMAND. 

The following program opens a file (or creates it if it does not 
already exist), stores data on the file, and closes the file. Notice 
that the operating system command prefix character (ASCII 
code 4) only prefixes operating system commands, not the data to 
be stored. 

1100 0$ = CHR$ (4): REM •• ProDOS/DOS 
command prefix 

1150 PRINT DS;"OPEN SAMPLE" 
J200 PRINT DS;"WRITE SAMPLE" 
1210 PRINT "This text will be stored in the file" 
1290 PRINT DS;"CLOSE SAMPLE" 
1500 END 

You may insert as many PRINT statements as you like between 
lines 200 and 290. They may output text, numbers, or the values 
of variables in any combination. All data will be written to the 
file. With DOS 3.3 you must be careful not to output to a file 
while a FLASH or INVERSE statement is in effect, as DOS 3.3 
does not handle flashing or inverse characters correctly. However, 
ProDOS converts inverse and flashing characters to normal 
characters. 

Each time you run this program, whatever is in the PRINT 



272 I Apple II User's Gulde 

statements will overwrite and erase data already stored in the 
file. If you output fewer characters than are already in the file, 
the tail end of the previous data will remain, following the new 
data. 

One way to circumvent the problem of leftover data is to erase 
the old file before you store new data in it. The DELETE com
mand (in the usual PRINT statement context) may be incorpo
rated into the program just prior to the OPEN command. Every 
time the program is run, the file is deleted and then recreated by 
the OPEN command. 

An error occurs if you try to run the program when the file 
named in the DELETE command is not on the disk. You can 
prevent this by adding another OPEN command and a matching 
CLOSE command just before the DELETE command. This is 
what happens: 

· The first OPEN command creates a file if one does not 
already exist, and the matching CLOSE command closes it. 

· The DELETE command erases the file, no matter when it 
was created. 

· The second OPEN command creates a new, empty file. 

Try changing the last example as just described. The modified 
program looks like this: 

]100 0$ = CHRS C4): REM •• ProOOS/OOS 
command prefix 

]110 PRINT OS;"OPEN SAMPLE": REM •• Create the 
file if necessary 

J120 PRINT DS;"CLOSE SAMPLE" 
]130 PRINT OS;"DELETE SAMPLE": REM •• Delete 

the file 
1150 PRINT DS;"OPEN SAMPLE" 
1200 PRINT DS;"WRITE SAMPLE" 
J210 PRINT "This text will be stored in the file" 
J290 PRINT DS;"CLOSE SAMPLE" 
JSOO END 

This new program would be more useful if it let you input the 
text to be stored, instead of having to add PRINT statements 
between lines 200 and 290. Here is one approach: 

]100 DS = CHRS (4): REM •• ProDOS/DOS command 
prefix 

1110 PRINT OS;"OPEN SAMPLE": REM •• Create the 
file if necessary 



Programming Disk Data Files / 273 

J120 PRINT D$;"CLOSE SAMPLE" 
J130 PRINT DS;"DELETE SAMPLE": REM •• Delete 

the file 
J150 PRINT DS;"OPEN SAMPLE" 
J160 PRINT "Enter some text to save: ";: 

REM •• Entry prompt 
J170 INPUT "";TS: REM •• Supress question mark 
J 180 IF TS = "END" THEN 290 
J200 PRINT DS;"WRITE SAMPLE" 
J210 PRINT T$ 

J230 GOTO 160 
J290 PRINT DS;"CLOSE SAMPLE" 
JSOO END 

This program accepts a string value to be saved on disk (lines 160 
and 170). The program ends if the word END (which must be 
capitalized) is input (line 180). Otherwise, it writes the entry to 
the file (lines 200 and 210) and branches back to get another 
string for output. 

A serious error occurs the second time line 160 is executed. 
Remember that the WRITE command directs all output to the 
disk file. This includes the prompt Enter some text to save: out
put by the PRINT statement on line 160. You must cancel the 
WRITE command before displaying or printing anything not 
intended for the disk. Any operating system command will cancel 
the WRITE command, but the safest one to use is the null com
mand, which is the usual operating system prefix character 
(ASCII code 4) by itself. Add the following line to the program: 

J225 PRINT D$ 

With this change complete, you now have a program that allows 
you to store any amount of text up to the maximum amount the 
disk will hold. 

Reading Sequential Files 

Just as output can be directed to the disk, input can be 
accepted from a disk file. The READ command identifies a disk 
file as the source for data input. For sequential files the READ 
command looks like this: 

J360 PRINT DS;"READ SAMPLE" 

The READ command must be in a PRINT statement, preceded 
by the usual prefix character (ASCII code 4). If you issue the 



27 4 I Apple II User's Guide 

READ command in immediate mode, you will see the error mes
sage NOT DIRECT COMMAND. 

After the READ command has been executed, subsequent 
INPUT statements receive data from the specified file until 
another operating system command, or an error, cancels the 
READ command. 

The following program will display everything the last exam
ple saved on the disk file named SAMPLE: 

]100 0$ = CHR$ (4): REM •• ProOOS/DOS 
command prefix 

J350 PRINT 0$;"0PEN SAMPLE" 
J360 PRINT DS;"READ SAMPLE" 
]400 INPUT T$ 
]410 PRINT T$ 
]420 GOTO 400 
]500 END 

The example contains a small loop that reads a string from the 
disk with an INPUT statement and uses the familiar PRINT 
statement to display it on the screen (lines 400-420). This PRINT 
statement does not output to the disk file because there is no 
WRITE command in effect. The program would loop indefinitely 
if the supply of data were endless, but eventually the INPUT 
statement has nothing left to input. The message END OF 
DATA appears; the program stops with the message BREAK 
IN 400, and with ProDOS, FILE(S) STILL OPEN. 

Recognizing the End of a File 

A program should not display error messages and stop under 
circumstances as predictable as reaching the end of data in a file. 
Instead, the program should recognize the end of data and 
branch to a CLOSE command. 

Applesoft has a special statement that allows you to intercept 
an error before Applesoft displays an error message and halts 
program execution. The ONERR GOTO statement stipulates a 
line number to which Applesoft will branch upon detecting an 
error. Here is an example: 

]90 ONERR GOTO 8000 

Most programmers place a statement like this one in the first 
part of a program and put a special routine at the specified line 



Programming Disk Data Flies I 275 

number to handle the errors that occur. The type of error can be 
determined with function PEEK(222), which produces an error 
code number. For example, the error number for an end-of-data 
error is 5. Appendix B includes a list of all error code numbers. 

The error-handling routine can take different action depending 
on the error number. But sometimes an error number alone is not 
enough. For example, a program that uses more than one data 
file may encounter an end-of-data error on any file, and it may 
need to handle each error differently. The program can deter
mine by using PEEK(219)*256+ PEEK(218), the line on which 
an error occurred. By knowing the line number, the program can 
differentiate between errors that have the same code number. 

The error-handling routine can end with a regular GOTO 
statement, an ON GOTO statement, an END statement, or a 
RESUME statement. The RESUME statement causes a branch 
back to the statement where the error occurred. 

Use the statement POKE 216,0 to deactivate the ONERR 
GOTO statement so that Applesoft will halt the program and 
print an error message when an error occurs. 

The fallowing program shows how to use error interception to 
detect the end of a file: 

]90 ONERR GOTO 8000 
]100 D$ = CHR$ (4): REM •• ProDOS command prefix 
J350 PRINT DS;"OPEN SAMPLE" 
J360 PRINT D$;"READ SAMPLE" 
J 400 INPUT TS 
]410 PRINT TS 
]420 GOTO 400 
JSOO END 
]8000 REM ••• Error Handling Routine ••• 
]8010 EN = PEEK (222>: REM •• Get error number 
]8020 EL = PEEK (219) * 256 + PEEK (218): 

REM •• Error line 
]8030 IF EN = 5 AND EL= 400 THEN 8200: 

REM •• End of file SAMPLE? 
]8090 REM •• No--unexpected error occurred 
]8100 POKE 216,0: REM •• Turn off error trapping 
]8110 RESUME: REM •• Re-execute error 
]8200 PRINT D$;"CLOSE SAMPLE": REM •• End of 

file found 
]8210 GOTO 500 

This program adds an ONERR GOTO statement and error
handling routine to the previous example. When an error occurs, 

\ 



276 I Apple II User's Gulde 

it is intercepted (line 90), and execution branches to line 8000. 
There the program determines the error code number and the 
line number at which the error occurred (lines 8010 and 8020). If 
an end-of-data error occurs on line 400, the program closes the 
file and ends (lines 8030, 8200, and 8210). Otherwise, the pro
gram disables error interception and reexecutes the statement 
that caused the error (lines 8100 and 8110). This causes the error 
to occur again without being intercepted, and a standard error 
message appears. 

For Integer BASIC programmers, there is a way to recognize 
the end of a file without an ONERR GOTO statement. Here is 
how it works. Any program that writes to a file must save a spe
cial trailer record just before closing the file, giving the trailer 
record a value that is not likely to occur or impossible as real 
data. A program that reads the file later c~n check each value it 
reads for the special trailer record value. When that value comes 
up, the program knows the end of the file has been reached. This 
method also works in Applesoft programs. 

Error Interception Problems 

Except on an Enhanced Apple lie, there are some irregulari
ties in the performance of the ONERR GOTO and RESUME 
statements. When the TRACE command is active, or in a pro
gram with a PRINT statement, the 43rd error interception stops 
the program and passes control of the Apple II to the Machine 
Language Monitor. This does not happen, however, if the errors 
are intercepted in INPUT statements and resolved with 
RESUME statements. But if the INPUT errors are resolved 
with GOTO im~tead of RESUME statements, the program stops 
and passes control of the Apple II to the Machine Language Mon
itor after the 86th INPUT error. From the Machine Language 
Monitor, you must type CONTROL-C and press RETURN to get back 
to BASIC. 

Also, a program that uses the RESUME statement after inter
cepting errors in GET statements will lock up the Apple II if two 
consecutive GET errors occur without an intervening successful 
GET. To regain keyboard control, type CONTROL-RESET. On some 
standard Apple II machines you then must type CONTROL-C and 
press the RETURN key in order to get back to BASIC. 



Programming Disk Data Ales I 277 

You can get around some of these irregularities by calling a 
short machine language subroutine after intercepting each error, 
as part of your error-handling routine. The machine language 
subroutine is not built into the Apple II, but your BASIC pro
gram can put it in memory with POKE statements. It can usual
ly reside between memory locations 768 and 777. The following 
program lines will put it there: 

JSO REM •• Set up the fix for ONERR GOTO 
J60 DATA 104,168,104,166,223,154,72,152,72,96 
J70 FOR ML = 768 TO 777: READ MC: POKE ML,MC: 

NEXT ML 

The DATA statement (line 60) contains the necessary machine 
language instructions to fix some of the error-interception irreg
ularities. The FOR-NEXT loop reads the machine language 
instructions from the DATA statement and puts them in memory 
locations 768 to 777 with a POKE statement (line 70). After exe
cuting the lines above, a program must call the machine lan
guage subroutine with a CALL 768 statement each time it inter
cepts an error. 

Separating Fields 

In order for INPUT statements to read values from a disk file 
correctly, the values must be separated from each other on the 
disk file. If they are not separated, an INPUT statement will run 
neighboring values together. Consider what happens in the fol
lowing Applesoft example: 

J10 0$ = CHRS (4): REM •• ProDOS prefix character 
J100 PRINT D$;"OPEN TEST1" 
J110 PRINT DS;"WRITE TEST1" 
J120 PRINT "CARBON";6;12.011 
J130 PRINT DS;"CLOSE TEST1" 
J140 PRINT DS;"OPEN TEST1" 
J150 PRINT DS;"READ TEST1" 
J160 INPUT ELEMENT$ 
J170 PRINT ELEMENTS 
J200 PRINT D$;"CLOSE TEST1" 
J210 END 

Line 120 looks as if it would write three values out to disk file 
TESTl, and line 160 looks as if it would read back the first value, 



278 I Apple II User's Guide 

CARBON, and display it on the screen. In fact, this is what 
happens: 

JRUN 

CARBON612.011 

]Ji 

The PRINT statement (line 120) writes three values, but the 
semicolons that separate them cause them to run together in the 
file. When the INPUT statement tries to read the first one back 
(line 160), all the values come back combined into one value. 

In Applesoft, fields are separated on disk by a comma or car
riage return character. Carriage return characters also separate 
fields in Integer BASIC, but commas can separate only numbers, 
not text fields. There are many ways to make sure a carriage 
return character occurs between values. One easy way is to use a 
separate PRINT statement for every field value, like this: 

J120 PRINT "CARBON" 
J122 PRINT 6 
J124 PRINT 12.011 

Remember that a PRINT statement always generates a carriage 
return character as its last action, unless it ends with a semicolon. 

Appending Sequential Files 

To add data to the end of a file, you must first find the end of 
the file. You could read each item in the file until you reach the 
last one, but that can be very time-consuming with large files. 
The APPEND command does the work for you. 

The APPEND command places the file pointer at the first 
unused character beyond the end of the file. If you read after the 
APPEND command has been issued, you'll get an END OF 
DATA error. If you write after an APPEND, the new data will 
be added to the end of the data already in the file. 

The APPEND command takes the place of an OPEN com
mand; however, there are some important differences between 
APPEND and OPEN: 

· APPEND places the pointer at the end of the file. OPEN 
places the pointer at the beginning of the file. 

· With ProDOS, APPEND automatically issues a WRITE 
command, so the next output goes directly to the file. To can-



Programming Disk Data Flies I 279 

eel the WRITE command, use the null ProDOS command, 
PRINT CHR$( 4), or its equivalent. 

· With DOS 3.3, APPEND requires that the file already exist. 
If it does not, the error message FILE NOT FOUND 
appears. Unlike OPEN, APPEND will not create a new file. 

The format for the APPEND command is the same as for the 
OPEN command. Here is an example: 

J110 PRINT CHR$(4);"APPEND SAMPLE" 

Drive and slot numbers are optional in ProDOS and DOS 3.3, as 
is a volume number in DOS 3.3. 

Skipping Past Fields 

Another useful command is the POSITION command. The 
POSITION command moves the pointer forward (never back
ward) by the specified number of fields relative to the current 
position of the file pointer. With ProDOS, the POSITION com
mand looks like this: 

J160 PRINT CHRS C4);"POSITION SAMPLE,F30" 

The letter F indicates relative field; the number after the letter F 
is the number of fields to skip. Every field ends with a carriage 
return character, so the POSITION command above counts 30 
carriage return characters beyond the current position and 
moves the file pointer there. If you specify only F, the pointer is 
not moved. 

With DOS 3.3, the POSITION command works the same as 
with ProDOS, but you specify the relative field number with the 
letter R instead of the letter F. (The letter R happens to work 
with ProDOS, too.) Here is an example: 

J160 PRINT CHR$C4);"POSITION SAMPLE,R30" 

POSITION examines the file character by character, starting 
from the current pointer position. If there are not enough car
riage return characters, the END OF DATA error message is 
displayed immediately. The error occurs whether or not an 
INPUT statement is executed. 

A file must be open before it can be referenced by a POSITION 



280 I Apple II User's Guide 

command. Opening a file with the OPEN command sets the point
er to the beginning of the file. 

Remember, just like any other ProDOS or DOS 3.3 command, 
POSITION cancels both the READ and WRITE commands. Be 
sure to execute POSITION before issuing a READ or WRITE 
command, not after doing so. 

Since a POSITION command is usually followed by a READ 
or WRITE command, the program would be much simpler if you 
could specify the field number as part of the READ or WRITE 
command. In fact, Pro DOS allows this shortcut. The following 
example illustrates: 

J360 PRINT CHR$ C4>;"READ SAMPLE,F";RECRD% 

This READ command skips ahead the number of fields deter
mined by the value of variable RECRD%. The next INPUT 
statement will read the field at that point. 

Be careful if you use the POSITION command before a 
WRITE command, or the F option with a ProDOS WRITE 
command, in a sequential file. You can use either technique to 
position to an existing field and then write a new value over the 
old one, but you risk disrupting the file in the process. The new 
value you write must be exactly the same length as the old value 
it replaces. If the new value is shorter, you'll end up with an extra 
carriage return character (and hence an extra field) in the file. If 
it is longer, you'll write over part of the following field. 

USING SEQUENTIAL-ACCESS FILES _____ _ 

Sequential access is adequate for files whose contents do not 
change, or for files that have new records added to them only 
from time to time. A few changes made to the Mailing-List Entry 
program presented in Chapter 9 (Figure 9-10) will turn it into a 
useful sequential-access program, one that creates a mailing-list 
file on a ProDOS disk. Then a separate program can read the 
mailing-list file and print the names and addresses on plain 
paper, labels, or envelopes. 

Mailing-List Creation Program 

Figure 11-2 shows the changes (shaded in gray) required to 
make the Mailing-List Entry program in Figure 9-10 create a 



Programming Disk Data Ries I 281 

900 ONERR GOTO 8000: REM •,•.~-'!~;g,,~-~" ~.rf.P:r ,.f:~ppi;t'liJi~LLl:i 
1000 GOSUB 10000: REM •• Initialize variables 
1010 PRINT: PRINT DS;"PR#3": REM •• Activate 

enhanced video 
1020 PRINT W4S;: REM •• Set display width to 40 
1025 GOSUEI 16000: REM •• Display·we.lco·me and 

set up disk _ 
1030 GOSUB 11000: REM •• DisplayEntryWindow 
1040 FOR X1 = 1 TO LF% 
1050 FIELD% = X1: GOSUB 23500: REM •• Display 

field description 
1060 NEXT X1 
1063 CHANGED= 0: REM •• Re~·e.t _ch,~_ang~s-m<ac:i.e fl.a9. 
1070 FOR X1 = 1 TO 5: REM·.~Enter all fields 
1080 FIELD% = X1 
1090 GOSUB 23000: GOSUB 12000: GOSUB 23500: 

REM •• SelectField:EnterField:DeselectField 
1100 NEXT X1 
1110 FIELDX = 6: GOSUB 23000: REM •• SelectField 
1120 GO SUB 22000: REM •• Get Fie ldNumber 
1130 IF FIELD% = 6 THEN (iOSUB 11QOO:FRX = 4: .. .• 

LRX = 8: GO SUB 30100: GOSUB 23500: GOTO 10~0·!, ' 
REM •• If field=6, Wri:t·e.~'~cQ.r-d,. blank· la,s•t" .-- ·· 
entries, deselect an·d g,et ~.l"tot~er . . . .. . ., 

1140 IF FI ELDX < L FX THEN ·c;·osus '12000: GOT·o 112tr:·-·' 
REM •• Enterfield 

1150 REM ••• Quit? ••• 
1160 TX= 12:L% = 4:8% = 17:R% = 37: GOSUB 30200: 

REM •• DisplayBox 
1170 VTAB 14: HTAB 5: PRINT BEEP$;"Are you sure 

you want to quit?"; 
1180 VTAB 16: HTAB 8:C$ = "Y": GOSUB 21000: 

REM •• GetYesNo 
1190 IF NTRY$ ="NO" THEN FR%= 12:LR% = 17: 

GOSUB 30100: GOSUB 23000: GOTO 1120: 
REM •• If no, erase box, restore field, and 
get another field 

1200 GO SUB 17000: REM •• Wd t:eRec.ord 
1210 PRINT: PRINT DS;"CLOSE" 
1220 HOME: VTAB 12: HTAB 8: PRINT .. End of 

Mailing-Li st Entry" .- ·· 
1230 VTAB 23: HTAB 1: END 
7989 REM 
7990 REM ••• ErrorHand ler ••• 
7991 REM 
8000 EN = PEEK C222): REM •• Er ro.t number 
8010 EL= PEEK C219) * 256 + PE~K C218): 

REM •• Error Line 

Figure 11-2. Sequential-access Mailing-List Creation program 



282 I Apple II User's Guide 

80"0 PR,lNT bEEPS;BEEPS; 
·8050 FRX = :9:LRX = 14: GOSUB 30100: 

REM •• ClearDisplayLines 
8060 TX = 9:L% = 4:8% = '14:R% = .37: GOSUB 302.0.0: 

REM ·-:Dtsp layBo>< ' . 
8070 VTAB 11:.·. REM •• Positi,«;>f' for error, m.es.sa.g.e 
8080 ON EN GOTQ 8100, 8100, 8500, 8200, 8f0.C), 

8400, 8400; 8500; 8600~ 87UO 
8100 HTAB 5: PRINT "Unexpected error 

(code ";EN;">." 
8110 PRINT 
8120 HTAB 5: PRINT "Press RETURN to q·uit. "; 
8130 GOSUB 30000: REM •• GetChar . ' 
81 4 0 I F, C$ < > C H R S ( 1 3 ) T H:t: N 813 0 : R E M ••. W a it 

for .RETURN . . 
8150 GOTO 1210: REM uQuit 

. 8200 HTAB .5: .; PRINT 0'1).f~k' .i S" w.. rlte-p .• r'.QteQ,ted~··. 
82to HTAB s: PRINT 0 Reniove tab o.r .use · · 

~no~che.r disk,'' , · · · · 
s220 sor·o s120 
8400 HTAB 5: :PRINT "Volum·e riot fo.und." 
8410 HTAB 5: ·PRiNT "Check prefix an.d driVe." 
'8420 GOTO 8120 
8500 HTAB 5:· PRINT 0 i>isk or drive·· error .• "· 
8510 HTAB 5: PRINT "Check disk, drive, 

and •prefix." 
8520 GOTO 8120 
8 6·0 0 HT A 8 5 : P R 1 NT 11·0 i s k .f u l t.u 
8610 HTAB 5: PRINT "L~st few r,e:·cord:s may 

. be- mis si:ng. 0 · 

~620 GOTQ 81ZQ .... · ..... , . . :'. , ... >• 
· 87 o:o· H t~~a' s: p.ft INT "f':i~ Le- ,~·;j::·1L.t:${'• ·t9·c·,;k.;e;d~,•.• 
8710 ,PRINT: GOTO' 81.2:o· . . '· . 
9989 REM •, ' 
9990 REM ••• InitializeVariables ••• 
9991 REM 
10000 D$ = CHRS (4): REM •• ProDOS/DOS 3.3 prefix 
10010 W4$ = CHRS (17): REM •• Display width 40 
10020 BEEPS= CHR$ (07): REM •• Beep char. 
10030 FOR X1 = 1 TO 40 
10040 EF$ = EFS + 11

•
11

: REM •• Entry field chars. 
10050 TL$= TL$+ 11 11

: REM •• Top line chars. 
1 0 O 6 O B L $ = B L $ + 11 

-
11 

: R E M •• B o t t o m l i n e c h a r s • 
10070 NEXT X1 -
10080 SL$= 11 111

: REM •• Side line chars. 
10090 LFX = 7: REM •• Last field number 
10100 DIM FRXC2,LFX>,FC%C2,LFX>,FDSC2,LFX) 

Figure 11-2. Sequential-access Mailing-List Creation program (continued) 



Programming Disk Data Flies I 283 

10110 FOR X1 = 1 TO LF%: REM •• Read field 
locations and descriptions 

10120 READ FR%(1,X1),FCXC1,X1),FD$C1,X1> 
10130 READ FR%C2,X1),FC%(2,X1>,FDSC2,X1> 
10140 NEXT X1 

r-:~~q~~~~~,-~,{~Jf,~~~ ____ #~-'1~ ... ~,~jL,1N_r(i~!~*t7§Jr~~r::-
, ~- ~ 1e:2·~nl(:;RlETnU 1R1N' -----.; - :. - -_ ::: :-.-~;:; ?' '-104SL9 ,REl~f .. __ ----------'--_: ______ ,,_-·-~-=------~--

10490 REM ••• Field Descriptions and Locations ••• 
10491 REM 
10500 DATA 4,3," 1. <NAME:> " 
10510 DATA 4,3," 1. Name: " 
10520 DATA 5,3," 2. <STREET:>" 
10530 DATA 5,3," 2. Street: 
10540 DATA 6,3," 3. <CITY:> 
10550 DATA 6,3," 3. City: 
10560 DATA 7,3;" 4. <STATE:> 
10570 DATA 7,3," 4. State: 
10580 DATA 8,3," 5. <ZIP:> 
10590 DATA 8,3," 5. Zip: 
10600 DATA 11,3," 6. <ANOTHER RECORD>" 
10610 DATA 11,3," 6. Another Record " 
10620 DATA 12,3," 7. <QUIT>" 
10630 DATA 12,3," 7. Quit" 
10989 REM 
10990 REM ••• DisplayEntryWindow ••• 
10991 REM 
11000 HOME 
11010 TX= 1:LX = 1:8% = 22:RX = 39: GOSUB 30200: 

REM •• DisplayBox 
11020 TITLES ="Mailing-List Entry" 
11030 INVERSE: VTAB 1: HTAB C40 - LEN (TITLES)) 

I 2: PRINT TITLES;: NORMAL: REM •• Display 
title 

11040 RETURN 
11989 REM 
11990 REM ••• EnterField ••• 
11991 REM 
12000 VTAB 20: HTAB 3: PRINT "Enter the selected 

field." 
12010 HTAB 3: PRINT "Then press RETURN to confirm 

entry."; 
12020 ON FIELD% GOSUB 13100,13200, 

13300,13400,13500 
12030 FR% = 19:LR% = 21: GOSUB 30100: 

REM •• ClearDisplayLines 

i-~~1~1:@~·0.?-11~1~;~:~_-::~~-:~ •••• ,-.~~=~·~,~~~~~'!:~.1]'. --~~---·_f--~-~.~---

Figure 11-2. Sequential-access Mailing-List Creation program (continued) 



284 I Apple II User's Guide 

R._EM •• se-t changes-m·ade flag 
:._ .f~o§.o . R ET.URN. 

13089 REM 
13090 REM ••• EnterName ••• 
13100 ML% = 20: VTAB 4: HTAB 17: GOSUB 20000 
13110 NAMES = NTRYS: RETURN 
13189 REM 
13190 REM ••• EnterStreet ••• 
13200 ML% = 20: VTAB 5: HTAB 17: GOSUB 20000 
13210 STREETS = NTRYS: RETURN 
13289 REM 
13290 REM ••• EnterCity ••• 
13300 MLX = 20: VTAB 6: HTAB 17: GOSUB 20000 
13310 CITY$ = NTRYS: RETURN 
13389 REM 
13390 REM ••• EnterState ••• 
13400 MLX = 2: VTAB 7: HTAB 17: GOSUB 20000 
13410 SES = NTRY$: RETURN 
13489 REM 
13490 REM ••• EnterZip ••• 
13500 ML% = 9: VTAB 8: HTAB 17: GOSUB 20000 
13510 ZIPS = NTRYS: RETURN 

... ,1'.i~9.'.8~9 REM 
·. ,1,:~Qi9,,~0 REM ••• Di splay w e l come and set up di s k ••• 

' · !n:,~:9,9'<1 RE "1 
1.~p,Q,Q H.O M E 

I· 

·t6:t:J;1'0 .VT AB 3 : HT A 8 5 : PR l NT LE.FT$ (TL$, 31 ) : 
' · REM •• Draw top Line 

16,:0·ZO VTAB 5: HTAB 6: PRINT "Welcome to 
Mailing-List Entry" 

'1 6.Q ~ 0 VT A B 1 0 : HT AB 1 2 : PR INT "J u s t a m i nu t e ••• " 
J~'tl4() VTAB 16·: HTAB 9: PRINT "A Forrest Lake 

Program" 
L 'i1'(>0.5Q 
I ,. , .. 

HTAB 5: PRINT LEFT$ (BLS,31): 

i> 'J:,6tf6 0 
.'1;§:910 

RE . .,, •• Draw ~b.ottom line 
PR~I.NT l>S;"APPEND ";FILES 
PRINT o·$: RE"1 •• cancel automatic WRITE 
co'mmand 

' 1qnso RETURN 
t(;·9~9 REM 
l1i6:,9 ~to· R e M ••• W r it e R e c o r d ••• 

. -·16;9'91 REM .. _ . -
/f?:cioo IF NOT c·HAN;GED THEN RETURN: REM •• Don't ::!:<>. _•... w.rite. unt~ss. .. changes m».a·de 

-;,i·4;t"Q10 VTAB. 2:1 :< HTAB 3:. PRIN'r "'Saving to di s.k ••• 11
; 

1'. ''1itO·~o PRINT: PRINT DS;"WRITE ";FILE$ 
~toso· PRINT NAM£$ 
17Q40 PRINT STREETS 

Figure 11-2. Sequential-access Mailing-List Creation program (continued) 



17050 PRINT CITY$ 
17060 PRINT SES 
17070 PRINT ZIP$ 

Programming Disk Data Files / 285 

17080 PRINT DS: REM •• Deactivate disk output 
17090 FR% = 21:LR% = 21: GOSUB 30100: 

REM •• ClearDisplaylines 
17100 RETURN 
19989 REM 
19990 REM ••• Get Entry ••• 
19991 REM 
20000 HT% = PEEK (36) + 1: REM •• Cursor column 
20010 NTRYS ="":REM •• Empty entry 
20020 CLX = LEN CNTRYS): REM •• Current 

entry length 
20030 HTAB HU: PRINT NTRYS; 
20040 IF MLX > CLX THEN PRINT LEFTS CEFS,MLX -

CLU;: REM •• Fi LL unused entry field 
20050 HTAB HTX + CLX: GOSUB 30000: REM •• Get one 

character 
20060 IF CS= CHR$ (127> AND CL%<= 1 THEN 20010: 

REM •• Delete key with empty entry? 
20070 IF CS= CHRS (127) THEN NTRY$ = 

LEFTS CNTRYS,CLX - 1>: GOTO 20020: 
REM •• Delete key? 

20080 IF CS= CHRS C24) THEN 20010: 
REM •• Control-X means cancel 

20090 If CS= CHR$ (13) THEN PRINT SPCC MLX -
CLX>;: RETURN: REM •• Return means done 

20100 IF cs > = II " AND cs < = .. - .. AND CL% < ML% 
THEN NTRYS = NTRYS +CS: REM •• Add valid 
characters if room 

20110 GOTO 20020: REM •• Get another keystroke 
20989 REM 
20990 REM ••• GetYesNo ••• 
20991 REM 
21000 HTX = PEEK (36) + 1 :VT% = PEEK C37) + 1: 

REM •• Cursor position 
21010 IF C$ = "Y" OR CS = "y" OR CC$ = CH RS (8) 

AND NTRYS = "NO") THEN VTAB VTX: HTAB HTX: 
PRINT "<YES> No ";:NTRY$ ="YES" 

21020 IF C$ = "N" OR C$ = "n" OR CC$= CHRS C21) 
AND NTRY$ = "YES") THEN VTAB VT%: HTAB HT%: 
PRINT " Yes <NO>";:NTRYS = "NO" 

21030 VTA8 19: HTAB 3: PRINT "Type Y for Yes or N 
for No," 

21040 HTAB 3: PRINT "or press <-- or --> to 
change." 

21050 HTAB 3: PRINT "Then press RETURN. "; 

Figure 11-2. Sequential-access Mailing-List Creation program (continued) 



286 I Apple II User's Gulde 

21060 GOSUB 30000: REM •• GetChar 
21070 IF cs= It II THEN cs= CHRS (21): 

REM •• Accommodate 80-col. card "feature" 
21080 IF CS < > CHRS (13) THEN 21010: REM •• Only 

RETURN confirms 
21090 FRX = 19:LRX = 21: GOSUB 30100: 

REM •• ClearDisplayLines 
21100 RETURN 
21989 REM 
21990 REM ••• Get Fie ldNumber ••• 
21991 REM 
22000 VTAB 19: HTAB 3: PRINT "To select a field, 

type a number or " 
22010 HTAB 3: PRINT "press UP-ARROW or 

DOWN-ARROW." 
22020 HTAB 3: PRINT "Then press RETURN. "; 
22030 GOSUB 30000: REM •• GetChar 
22040 IF CS = CHRS (10) AND FIELDX < LFX THEN 

· GOSUB 23500:FIELDX = FIELD% + 1: 
GOSUB 23000: REM •• Down-arrow key 

22050 IF CS = CHRS C11) AND FIELDX > 1 THEN 
GOSUB 23500: FIELDX = FIELDX - 1: 
GOSUB 23000: REM •• Up-arrow key 

22060 IF CS > = "1" AND CS < = STR$ (LFX) THEN 
GOSUB 23500:FIELDX = VAL (CS): GOSUB 23000: 
REM •• Digit key 

22070 IF CS < > CHRS (13) THEN· 22030: REM •• Only 
RETURN confirms 

22080 FRX = 19:LRX = 21: GOSUB 30100: 
REM •• ClearDisplayLines 

22090 RETURN 
22989 REM 
22990 REM ••• Selectfield ••• 
22991 REM 
23000 VTX =PEEK (37) + 1:HTX =PEEK (36) + 1: 

REM •• Cursor location 
23010 VTAB FRXC1,FIELDU: HTAB FCXC1,FIELDX>: 

PRINT FDSC1,FIELDX>;: REM •• Display selected 
description 

23020 VTAB VTX: HTAB HTX: REM •• Reset cursor 
23030 RETURN 
23489 REM 
23490 REM ••• Deselectfield ••• 
23491 REM 
23500 VTX = PEEK (37) + 1 :HTX = PEEK (36) + 1: 

REM •• Cursor location 
23510 VTAB FRXCZ,FIELDU: HTAB FCXC2,FIELOU: 

Figure 11-2. Sequential-access Mailing-List Creation program (continued) 



Programming Disk Data Files I 287 

PRINT FDS(2,FIELDX>;: REM •• Display 
deselected description 

23520 VTAB VT%: HTAB HT%: REM •• Reset cursor 
23530 RETURN 
29989 REM 
29990 REM ••• GetCharacter ••• 
29991 REM 
30000 GET CS: REM •• Wait for keystroke 
30010 RETURN 
30089 REM 
30090 REM ••• ClearDisplayLines ••• 
30091 REM 
30100 FOR ROW = FR% TO LRX 
30110 VTAB RO.W: HTAB 2: PRINT SPC( 37); 
30120 NEXT ROW 
30130 RETURN 
30189 REM 
30190 REM ••• Di sp layBox ••• 
30191 REM 
30200 VTAB TX: HTAB LX + 1 
30210 PRINT LEFTS (TLS,RX - LX - 1>;: 

REM •• Top line 
30220 FOR ROW:;: TX+ 1 TO BX: REM •• Side lines 
30230 VTAB ROW: HTAB LX: PRINT SLS; 
30240 HTAB RX: PRINT SL$ 
30250 NEXT ROW 
30260 VTAB BX: HTAB LX + 1: PRINT 

LEFTS CBLS,RX - LX - 1);: REM •• Bottom line 
30270 RETURN 

Figure 11-2. Sequential-access Mailing-List Creation program (continued) 

ProDOS sequential-access file of names and addresses. The pro
gram can handle some of the disk errors that that may arise 
without halting altogether, because it intercepts errors (line 900) 
and uses an error-handling routine (lines 8000-8710). 

The new version of the program calls a subroutine that dis
plays a welcome message for you to read while it opens the 
mailing-list file (lines 1025 and 16000-16080). The subroutine uses 
the APPEND command to open the file, assuming you want to 
add more names to an existing list. To start a new file, you must 
delete or rename the mailing-list file before starting the entry 
program. Note that the program uses a variable for the file name 
(lines 8700, 10170, 16060, and 17020), so you can change the file 
name by changing the variable assignment on line 10170. 



288 I Apple II User's Guide 

Aside from lines 1025 and 1063, the program does not differ 
from Figure 9-10 in the way it displays an entry form, inputs a 
name and address, and allows changes to the entries (lines 1000-
1120). After changes are made, however, the program writes the 
entries onto the end of the sequential disk file (lines 1130 and 
1200). Because ProDOS accumulates data headed for the disk in 
a file buffer, the disk drive will come to life only when the buffer 
fills up. Th€ program closes the file after the last entry, forcing 
ProDOS to write the final, partially filled file buffer onto the 
disk (line 1210). 

When the user chooses field 6 (Another Record), the program 
calls a subroutine to write out the most recent entries (line 1130). 
The subroutine (lines 17000-17100) writes a record only if vari
able CHANGED has a nonzero value, which is equivalent to a 
logical value of True (lines 1063, 12040, and 17000). This allows 
the user to quit without having to enter a new record. By press
ing RETURN at fields 1-5 and then choosing field 7, the user gives 
the variable CHANGED a zero value, which is the same as a 
logical value of False, at quitting time. 

As the program ends, it calls the record-writing subroutine 
(line 1200). Then it closes all files, clears the screen, and displays 
a parting message in the middle of the screen (lines 1210 and 
1220). 

The ErrorHandler subroutine starts by determining the error 
code (line 8000) and line number (line 8010). Next it beeps the 
console speaker, clears a space on the screen, and draws a box in 
which to display an error message (lines 8040-8070). The subrou
tine then uses the error code number to branch to the lines that 
will display an appropriate message (line 8080). 

For error codes 3 (no device), 4 (write-protected), 6 and 7 (path 
not found), 8 (can't read or write to the disk-1/0 error), 9 (disk 
full), and 10 (file locked), the program displays a specific mes
sage (lines 8200-8710). For all other codes, it displays a general 
message that includes the code number (line 8100). After display
ing a message, the program waits for the user to press RETURN 
before quitting (lines 8120-8150). 

By expanding ErrorHandler, you could have the program let 
the user fix certain problems and continue instead of quitting. 
For example, if the disk were write-protected, the program could 
wait while the user removed the tape that covers the notch, and 
then resume when the user pressed RE TURN. If the file were 



Programming Disk Data Files I 289 

locked, the program could off er the option of unlocking and 
resuming, or of not unlocking and quitting. If you decide to make 
improvements like these, be sure to leave the user a way out that 
is free of consequences. For example, don't force the user to 
remove the write-protect tab in order to quit. 

The sequential-access Mailing-List Creation program will not 
always work properly with DOS 3.3. Error diagnosis will be 
inaccurate because DOS 3.3 errors do not exactly match those of 
ProDOS. Also, the APPEND command will not create a DOS 3.3 
file if none exists. These differences can be accommodated by 
rewriting the Error Handler subroutine as follows: 

J7989 REM 
J7990 REM ••• ErrorHandler ••• 
J7991 RE"1 
J8000 EN = PEEK (222>: REM •• Error number 
J8010 EL= Pl!EK C219) * 256 +PEEK C218): 

REM •• Error line 
J8040 PRINT BEEPS;BEEPS; 
J8050 FRX = 9:LRX = 14: GOSUB 30100: 

REM •• ClearOisplayLines 
J8060 TX= 9:LX = 4:8% = 14:RX = 37: GOSUB 30200: 

REM •• Di sp layBox 
]8070 VTAB 11: REM •• Position for error message 
J8080 ON EN GOTO 8100, 8100, 8100, 8200, 8100, 

8400, 8400, 8500, 8600, 1700 
J8100 HTAB 5: PRINT "Unexpected error 

Ccode ";EN;">." 
J 811 0 PR I.NT 
J8120 HTAB 5: PRINT "Press RETURN to quit."; 
]8130 GOSUB 30000: REM •• GetChar 
J8140 IF CS < > CHRS C13) THEN 8130: 

REM •• Wait for RETURN 
]8150 GOTO 1210: REM •• Quit 
J8200 HTAB 5: PRINT "Disk is write-protected." 
l 8 21 O HT AB 5 : PR I NT "Re m o v e t ab o r u s e a:rfo t he r 

disk" 
J 822·0 GOTO 8120 
J8400 HTAB 5: PRINT "File ";FILES;" missing." 
18410 HTAB 5: PRINT "Create a new one?" 
]8420 HTAB 8:CS = "Y": GOSUB 21000: REM •• GetYesNo 
18430 IF NTRYS ="NO" THEN GOTO 1210: REM •• If no, 

then quit 
18440 PRINT: PR.INT DS;"OPEN ";FILES 
]8450 GOTO 1030 
J8500 HTAB S: PRINT "Disk or drive error." 
J8510 HTAB 5: PRINT "Check disk, drive, 

and cab le." 



290 I Apple II User's Guide 

J8520 GOTO 8120 
J8600 HTAB 5: PRINT "Disk full." 
J8610 HTAB 5: PRINT "Last few records may be 

missing." 
J8620 GOTO 8120 
J8700 HTAB 5: PRINT "File ";FILES;" locked." 
]8710 PRINT: GOTO 8120 

This DOS 3.3 version of ErrorHandler handles error code 3 
(Range Error) as an unexpected error (line 8080). Also, the mes
sage for error code 8 (1/0 Error) is slightly different (line 8510). 
The major change is in the handling of a nonexistent file (lines 
8400-8450). The program now offers the user a choice: create a 
new file or quit. 

Mailing-List Print Program 

By combining parts of the sequential-access Mailing-List Crea
tion program (Figure 11-2) and the Mailing-List Print Program 
(Figure 10-3), you can construct a new program to print the 
sequential-access mailing-list file. The new program will display 
the fovm shown in Figure 11-3; you input the first and last record 
numbers to be printed. 

This program uses subroutines from Figure 10-3 to print a list 
of names and addresses, one entry per line. This program also 
uses variations on the subroutines in Figure 11-2 that display a 
welcome message, open the file, and handle errors. The only 
completely new subroutine reads records. Figure 11-4 lists the 
new Mailing-List Print program; the areas shaded in gray are 
different from Figure 11-2. The new program also eliminates 
lines 1063, 8700-8710, 10580-10630, 12050, 13289-13510, 16080, 
and 16989-17100 from Figure 11-2. 

Believe it or not, the main part of the print program in Figure 
11-4 is almost identical to the main part of the entry program in 
Figure 11-2. However, the print program has only two input 
fields: which record will be the first to print and which will be 
the second. Another difference is that when the user finishes the 
entries, the program calls a subroutine to print the requested 
range of records (lines 1130 and 3000-3110). When the printing 
finishes, the program branches back to get another range of 
record numbers (line 1130). And as usual, the user ends the pro
gram by choosing the displayed Quit option (lines 1150-1220). 



Programming Disk Data Files / 291 

I MAILILNG-LIST PRINT l 

1. < FIR S T RE CORD TO PRINT: > 
2 . Last Re co rd to Print: 

3. Print 
4. Quit 

Enter the selected field. 
Th e n press RETURN t o confirm entr y 

Figure 11-3. Mailing-List Print program entries 

900 ONERR GOTO 8000: REM •• Enable error trapping 
1000 GOSUB 10000: REM •• Initialize variables 
fill PRINT CHRS C21): REM •• De act l vate ---

80-co l . card 
1020 REM w "dth is .4&0 __ _ 
1025 GOSUB 16000: REM •• Display welc o me and set up 

disk 
1030 GOSUB 11000: REM •• Displa y Entr y Window 
1040 FOR X1 = 1 TO LFX . 
1050 FIELD X = X1: GOSUB 23500: REM •• Displa y field 

des c r i pt i on 
NEXT X1 

OR X1 = TO 2: REM •• Enter all f h lCls 
1080 FIELDX = X1 
1090 GOSUB 23000: GOSUB 12000: GOSUB 23500: 

REM •• sele c t Fi el d: Enter Fi el d: Des e le ct F i el d 

Figure ll -4. Sequential-access Mailing-List Print program 



292 I Apple II User's Guide 

1100 NEXT X1 
, J M 0 FI ELD% = 3 : G 0 SUB 2 3 0 0 0: REM •• S e l e c t F i e l d 

1120 GOSUB 22000: REM •• GetfieldNumber 
.. 11:'30 .l.t F:IELD% = 3 THEN G,OSUB 3000:FR% = 4: 

LRX = 5: GOSUB 30100: GOSUB 23500: GOTO 1040: 
REM •• If field=3, print requested records, 
bl~nk last entries, deselect and ge~ another 

range 
1140 IF FIELDX < LFX THEN GOSUB 12000: GOTO 1120: 

REM •• Enterfield 
1150 REM ••• Quit? ••• 
1160 TX= 12:LX = 4:8% = 17:R% = 37: GOSUB 30200: 

REM •• Di sp layBox 
1170 VTAB 14: HTAB 5: PRINT BEEP$;"Are you sure 

you want to quit?"; 
1180 VTAB 16: HTAB 8:C$ = "Y": GOSUB 21000: 

REM •• GetYesNo 
1190 IF NTRY$ ="NO" THEN FR%= 12:LR% = 17: 

GOSUB 30100: GOSUB 23000: GOTO 1120: 
REM •• If no, erase box, restore field, and 
get another field 

120.'0 · '~RINT: PRINT .D·S;"CLO.~E" 
ta10 HO:ME: V'FAB 1.~: HTAB 8: PRINT "End of 

Mailing-List ~rint" 
1'220 VlAB 23: HTAB 1: END 
2,989 REM 
2.9 9·0 R.E M , • •. P .r i n t t h e s e l e c. :t e d r a n g e o f r e c o r d s ••• 
2991 REM 
3000 VTAB 21: HTAB 3: PRINT "Finding 

first record ••• " 
3010 PRINT DS;"OPEN ";FILE$ 
3 02 0 PR ~8 T: I F EN ·< > S THEN PRINT D $; 

"POSITION ";FILE$;",F";5 *CSR% - 1> 

1 
3030 FRX ~ 21:LRl = 21: GOSUB 30100: 

R E M •• C le a r Di s·p lay Li n es 
3040 FO]t RECRD = SRX TO ER% 
.3'.050 ~OSUB 18000: REM •• ReadRecord 
3 () 6. 0 I f EN = 5 T H.E N R E C R 0 = E R % : G 0 T 0 3 0 8 0 : 

REM .~ha.hd le e·nd-of ""'.file 
30;7.Q G'OSlJB 14000: REM •• PriritRecord 

·3'0'80 NE-XT RE;CRD 
3Q90 EN== 0: REM •• Clear error flag 
3100 PRINT: PRINT DS;"CLOSE ";FILE$ 
3'1iO RETURN 
,7989 REM 
'7;9 9 O R If M ••• Er r or Hand le r ••• 
7991 REM 

Figure 11-4. Sequential-access Mailing-List Print program (continued) 



Programming Disk Data Flies I 293 

.aooo EN = PEEIC <222>: REM •.• E·r ror .number 
80'1 o· EL = PEEK c219> * 2s6 + PEEK c2181: 

REM •• Error line 
8020 IF EN= S THEN RESUME: REM ~.End of file 
803.0 P'.R~·NT BEEPS;BEEPS; 
8040 .FR~ = .9: LR% :: 14: GOS,UB 30,100: 

REM •• C.learDfsplayL.i.il'es 
'8Q50 T,J = 9:LX = 4:8% = 14:,.X = 37: GOSU.B 30200: 

REM •• DisplayBox 
8060 VTAB 11: REM •• Positton for. e.rror mes.sg·. 
83'90 IF EN < > 6 AND E:N < > 7 T-HEN 8490 
8400 HTAB S: PRINT 11 Fi le i•;FILE.$; 11 not found." 
8410 HTAB 5: PRINT "Check prefix and drive." 
8420 GOT.O 8620: REM ••. Quft: 
8490 IF. EN < > 8 . THEN 8.600 
8500 HTAB 5: PRINT "Disk or dri . .:e error." 
8510 HTAB 5: PRINT "Check disk, drive, 

and prefix." 
8~ 2 0. GOT 0. 8 6 2 0: REM •• Q u i ~ . 
8600 HTAa 5: PRLNT "Unexpected ·er~or 

C c o de "; E N ; '' > • " 
8610 PRINT 
8 6 2 0 HT AB 5 : P R IN T "P r e s s R E TUR N t o q u i t • "; 
8630 GOSUB 30000:, REM ~.Get.Char 
8640 IF CS < > CHRS C1J> THEN 8630: 

REM •• Wait for RETURN 
8650 GOTO 1200: REM •• Gui t 
9989 REM 
9990 REM ••• InitializeVariables ••• 
9991 REM 
10000 DS = CHRS (4): REM •• ProDOS/DOS 3.3 prefix 
10010 W4$ = CHR$ (17): REM •• Display width 40 
10020 BEEP$= CHR$ (07): REM •• Beep char. 
10030 FOR X1 = 1 TO 40 
10040 EF$ = EFS + ".": REM •• Entry field chars. 
10050 TLS =TL$+" ":REM •• Top line chars. 
10060 SL$= BLS + .. - .. : REM •• Bottom line chars. 
10070 NEXT X1 
10080 SL$= "I": REM •• Side line chars. 
10090 LFX = 4: REM •• Last field number 
10100 DIM FR%C2,LF%),FC%C2,LF%),FDSC2,LF%) 
10110 FOR X1 = 1 TO LFX: REM •• Read 

field locations and descriptions 
10120 READ FR%C1,X1>,FC%C1,X1),FD$C1,X1> 
10130 READ FR%C2,X1),FC%C2,X1>,FDSC2,X1) 
10140 NEXT X1 
10170 FILES = "MAILING.LIST" 
10190 PLX = 65: REM •• Force headings on 1st 

Figure 11-4. Sequential-access Mailing-List Print program (continued) 



294 I Apple II User's Guide 

p rjnt,ed page 
102()0 R E'TU RN 
10489 REM 
10490 REM ••• Field Descriptions and Locations ••• 
10491 REM 
10500 DATA 4,3," 1. <FIRS-T REC,ORD TO- PRINT:>" 
10.p~,O J.>.-AT!A. 4.,,3,." t. , Fi.'r~s-.1: R1e::.cord. to Prtn.t.:~'" 

; 1 os·z;·o ]);A'TA ·s:;3~·· 1 2'~ {liA'.$;t':8:~C;O'R:Q 'T~· P'R:l;NT:~.:~,·~· 
10530 DATA 5,3,''" 2. Last~-R-e•'cord to Print:.·.·••: 
1054;0· 't>ATA 8,3,1' 3. <PRI:N:ft~> " . . 
10'550 _DATA 8,3,11 ··3-. Pri-pf " 
1 056:0 D.Ai'-A 9 ,3.," 4. <QUI.T'->" " 
10S70 t>,ATA.·9·,3·~·;• 4.· Q·utt '' 
10989 REM . . 
10990 REM ••• DisplayEntryWindow ••• 
10991 REM 
11000 HOME 
11010 TX = 1 :LX = 1 :8% = 22:R% = 39: GOSUB 30200: 

REM •• Di sp layBox 
11020 i'J:TLES =,""MAILING-LIST PRINT0 

11030 I NV ERSE: VTA.B 1: HTAB (4·0 :.. LEN CT IT LES)) 
I 2: PRINT TITLES;: NORMAL: REM •• Display 
title 

11040 RETURN 
11989 REM 
11990 REM ••• Enterfield ••• 
11991 REM 
12000 VTAB 20: HTAB 3: PRINT "Enter the selected 

field." 
12010 HTAB 3: PRINT "Then press RETURN to confirm 

entry."; 
12020 ON FIEL~X GOSUB 1~100,13200 
12030 fR.X = 19:LR"% = .. 21 : :~<?OSU~ 3UtOO,: 

R;e M •• c.l.ee1.ro i sp layL,;~mu. 
1'204•0 . RETUR.iN' . 
13089 REM 
13090 REM ••• Enter Fi rstRe_cordNumber •••. 
13100 MLX = 3: VTAB 4: HiAB 32: GO~UB 20000 
13 11 0 S RX = VAL (NT R Y S) :: . I F S. RX < 1 T H EN 1 310 0 

· 13120. RETURN . 
1:3.18.9 REM. · ,· ' · __ ,. . .. 

13190 REM •• .-en.t er Last Re,c.or~Numbe.r.~~ 
13200 MLX = 3: 'VT'AB 5: HT.AB 32: GOSUB 20000 
13.2.10 ER%;= VAL-CNTRYU:.I.F E.~X < 1THE.N132:00 
1;322,0 RETURN 

· 13,9a,9 ·.RE:M 
139.90 ·REM ••• Print Record .... 

Figure 11-4. Sequential-access Mailing-List Print program (continued) 



Programming Disk Data Files I 295 

_,-:1'3·991. -R-EM· 
1.:400~0-VTAB 21: HTAB 3.: PRINT "Printing ••• "; 
1:401-0: PRINT: PRINT DS;"PR#1": RE.M •• Switch 

to pri.nter 
1·40_2"() PRINT CHRS C9) ;"SON";: REM •• Line width 80 
140~-.0~P.LX = PL% + 1: GOSUJ~_.1,,5000: REM •• Top Page 
l4,040 :fiR'INT NAM ES; . 
:H.oso -HTAB 22: PRINT STREETS; 
1.40,~-(tP'OKE 36,42: PRINT CITYS;", 11 ;SE$; 11 ";ZIPS 
140.7'9: Lf PL% I 5 = INT CPL% . I 5) THEN PRINT: 

' ·- · , {P:L X = PL% + 1 : R E M •• P r i n t a b l a n k l i n e 
! ' _ every 5th address 

't408p "P!llNT -CHRS C9>;"R": REM •• Switch to screen 
14:090 _V'T AB 21 : HT AB 2: PRINT SP CC 37);: 

RE fl1 ·• C le a r bottom l i n e 
, 1:4100 RETURN 

14989 .R'EM 
l4.9;90 -:~-~ M ••• TopPage ••• 

-1'~991 -·1,e.M 

:'1'5'0 0 0 I f P L X < 5 5 T H EN R E TU RN : R E M •• Pa g e 
. ,. . full Y~-t? 
· l50'1 •0:_ FOR X 1 = 1 T 0 C66 - P L:O: REM •• space to 

bottom of page 
.PRINT: NEXT X1 1.502Q 

15.03Q 
}fs.:0:40 

pJfaNT TAB( 28);"MAILI~G LIST" 
PUNT 

fs·o'-5~0 PR-INT "NAME"; SPC C 18) ;"STREET"; 
SPCC 16);"CITY, STATE,ZIP" 

1·so6Q. _ :p1U.NT " ---------------------· 1 sot o 'PRINT " 
'fS08Cl .fRINT .. ---------------

u. , 
II• 

I 

t~_(l?.-0 RRI NT 
15,1.00 :PLX = 6: R.ETURN: REM •• Reset printed 

.. line counter 
15989 REM 

" 

15990 REM ••• Display welcome and set up disk ••• 
15991 REM 
16000 HOME 
16010 VTAB 2: HTAB 5: PRINT LEFT$ CTLS,31>: 

REM •• Draw top line 
16020 VTAB 5: HTAB 6: PRINT "Welcome to 

Mailing-List Print" 
16030 VTAB 10: HTAB 12: PRINT "Just a minute ••• " 
16040 VTAB 16: HTAB 9: PRINT "A Forrest 

Lake Program" 
16050 HTAB 5: PRINT LEFT$ CBLS,31>: REM •• Draw 

bottom line 

Figure 11-4. Sequential-access Mailing-List Print program (continued) 



296 I Apple II User's Guide 

: ·:1, :. ' ,, . . ., . -,- •.. . ' .. ' ' ' .· :: ' 

'1 .. 6:·060~ P R'l;N T D.$.;lt~,ENAME ";FILE$;" , 11
; FILE$: 

.· ..... Rl~C·, •• $e·e· ·;f fi l.e ·ex.ists 
H>~.;70'. RE·TU.RN , 

•:, 't~~,~:~9. ,~-f1<: ' '• .. . ' . ' . 
· ~t·~:9:,90 ~.:E'M • .;.R.ealdRecof,<h •• 

1l9}11 R:·or· . . . -~ .. 
-1~a'Qpo. p.~i:~!= ;PRINT DS,;"READ ";FILE$ 
·f.~;ti~fQ1 'VTA.~ ·23_;.,;.:JHl"'~B. :3,i-,::. R·E1M' •• Accomodate 
· ' · · · 1 N:p,o t '•t.:fii'i u re•• 

. 1 $~l2.0 IF -~" <. > S THEN 
. ' : . ~.N·r1U:J '1111 ;J~,,A·M:E$,:~JR.EETS,GITYS,SES,ZIPS 

;1~$J]:3'0., e'l~_~:J,:Jn Q $t: d~ EM , ~ l),e:4:1 ~·t i v a't e · RE A.D .com m and 
·fa_o!ft'o.· Rt;Jll'RN . .. ' ... ' .. 
f9989 REM· . .-
19990 REM ••• GetEntry ••• 
19991 REM 
20000 HTX =PEEK (36) + 1: REM •• Cursor column 
20010 NTRY$ ="":REM •• Empty entry 
20020 CLX = LEN (NTRY$): REM •• Current entry 

length 
20030 HTAB HTX: PRINT NTRY$; 
20040 IF MLX > CLX THEN PRINT LEFT$ 

CEFS,MLX - CLX>;: REM •• Fill unused entry 
field 

20050 HTAB HTX + CLX: GOSUB 30000: REM •• Get 
one character 

20060 IF CS = CHRS (127> AND CLX < = 1 THEN 20010: 
REM •• Delete key with empty entry? 

20070 IF C$ = CHRS C127) THEN NTRYS = 
LEFTS CNTRYS,CLX - 1>: GOTO 20020: 
REM •• Delete key'? 

20080 IF CS = CHRS (24) THEN 20010: 
REM •• Control-X means cancel 

20090 IF CS = CHRS (13) THEN PRINT 
SPCC ML% - CLX>;: RETURN: REM •• Return 
means done 

20100 IF C$ >=II II AND cs<= ...... AND CLX < 
ML% THEN NTRYS = NTRYS + CS: REM •• Add valid 
characters if room 

20110 GOTO 20020: REM •• Get another keystroke 
20989 REM 
20990 REM ••• GetYesNo ••• 
20991 REM 
21000 HT% = PEEK (36) + 1 :VTX = PEEK (37) + 1: 

REM •• Cursor position 
21010 IF CS = "Y" OR CS = "y" OR CC$ = CHR$ (8) 

AND NTRY$ ="NO") THEN VTAB VT%: HTAB HTX: 

Figure 11-4. Sequential-access Mailing-List Print program (continued) 

.. 



Programming Disk Data Files / 297 

PRINT "<YES> No ";:NTRY$ ="YES" 
21020 IF C$ = "N" OR C$ = "n" OR (C$ = CHR$ (21) 

AND NTRY$ ="YES") THEN VTAB VT%: HTAB HT%: 
PRINT " Yes <NO>";:NTRYS = "NO" 

21030 VTAB 19: HTAB 3: PRINT "Type Y for Yes or 
N for No," 

21040 HTAB 3: PRINT "or press <-- or --> to 
change." 

21050 HTAB 3: PRINT "Then press RETURN. "; 
21060 GOSUB 30000: REM •• GetChar 
21070 IF C$ =""THEN C$ = CHR$ (21): 

REM •• Accommodate 80-col. card "feature" 
21080 IF C$ < > CHR$ (13) THEN 21010: REM •• Only 

RETURN confirms 
21090 FR% = 19:LR% = 21: GOSUB 30100: 

REM •• ClearDisplayLines 
21100 RETURN 
21989 REM 
21990 REM ••• GetFieldNumber ••• 
21991 REM 
22000 VTAB 19: HTAB 3: PRINT "To select a field, 

type a number or " 
22010 HTAB 3: PRINT "press UP-ARROW or 

DOWN-ARROW." 
22020 HTAB 3: PRINT "Then press RETURN. "; 
22030 GOSUB 30000: REM •• GetChar 
22040 IF CS = CHR$ C10) AND FIELD% < LF% THEN 

GOSUB 23SOO:FIELD% = FIELD% + 1: GOSUB 
23000: REM •• Down-arrow key 

22050 IF CS= CHR$ (11) AND FIELD%> 1 THEN 
GOSUB 23SOO:FIELD% = FIELD% - 1: 
GOSUB 23000: REM •• Up-arrow key 

22060 IF CS > = "1" AND C$ < = STR$ CLFX> THEN 
GOSUB 23SOO:FIELD% = VAL (C$): GOSUB 23000: 
REM •• Digit key 

22070 IF CS<> CHR$ (13) THEN 22030: REM •• Only 
RETURN confirms 

22080 FR% = 19:LRX = 21: GOSUB 30100: 
REM •• ClearDisplayLines 

22090 RETURN 
22989 REM 
22990 REM ••• SelectField ••• 
22991 REM 
23000 VT% = PEEK (37) + 1 :HT% = PEEK (36) + 1: 

REM •• Cursor location 
23010 VTAB FR%C1,FIELD%): HTAB FCXC1,FIELD%>: 

PRINT FD$C1,FIELD%>;: REM •• Display selected 
description 

Figure 11-4. Sequential-access Mailing-List Print program (continued) 

-



298 I Apple II User's Guide 

23020 VTAB VTX: HTAB HT%: REM •• Reset cursor 
23030 RETURN 
23489 REM 
23490 REM ••• Deselectfield ••• 
23491 REM 
23500 VT% = PEEK (37) + 1 :HTX = PEEK (36) + 1: 

REM •• Cursor location 
23510 VTAB FRXC2,FIELDU: HTAB FCXC2,FIELDX>: 

PRINT FDSC2,FIELDU;: REM •• Display 
deselected description 

23520 VTAB VTX: HTAB HTX: REM •• Reset cursor 
23530 RETURN 
29989 REM 
29990 REM ••• GetCharacter ••• 
29991 REM 
30000 GET CS: REM •• Wait for keystroke 
30010 RETURN 
30089 REM 
30090 REM ••• ClearDisplayLines ••• 
30091 REM 
30100 FOR ROW= FR% TO LR% 
30110 VTAB ROW: HTAB 2: PRINT SPCC 37>; 
30120 NEXT ROW 
30130 RETURN 
30189 REM 
30190 REM ••• DisplayBox ••• 
30191 REM 
30200 VTAB TX: HTAB LX + 1 
30210 PRINT LEFTS CTLS,RX - LX - 1);: 

REM •• Top line 
30220 FOR ROW= TX+ 1 TO BX: REM •• Side Unes 
30230 VTAB ROW: HTAB LX: PRINT SL$; 
30240 HTAB RX: PRINT SLS 
30250 NEXT ROW 
30260 VTAB BX: HTAB LX + 1: PRINT 

LEFTS CBLS,RX - LX - 1>;: REM •• Bottom line 
30270 RETURN 

Figure 11-4. Sequential-access Mailing-List Print program (continued) 

The field descriptions are new (lines 10500-10570), and so is the 
title (line 11020). A new version of the EnterField subroutine 
inputs the first and last record numbers to be printed (lines 
12000-13220). The subroutine that displays a welcome message 
(lines 16000-16070) does not open the mailing-list file; it only 
checks to see if the file exists by attempting to rename the file 
with its existing name (line 16060). 

The new subroutine that prints a report (lines 3000-3110) starts 



Programming Disk Data Flies I 299 

by displaying an advisory in case it takes a while to find the first 
record (line 3000). It then opens the mailing-list file and positions 
to the first record in the file (lines 3010 and 3020). Next it erases 
the advisory message (line 3030) and starts a loop that reads and 
prints records sequentially (lines 3040-3080). If the end-of-data 
condition turns up before the loop ends, the program forces an 
end to the report (line 3060). When the report is finished, the 
subroutine resets the error code in case it was set to 5 by an end
of-data condition (line 3090). Finally, it closes the file and returns 
to the main program. 

Another new subroutine, ReadRecord, reads the next record 
from the mailing-list file (lines 18000-18040). The subroutine does 
a couple of weird things to counter certain irregularities in 
Applesoft and ProDOS. Under some mysterious circumstances, 
using an INPUT statement to read from a disk file may erase the 
display screen from the current cursor position to the end of the 
current display line. Therefore, the subroutine moves the cursor 
to a spot on the screen where this "feature" cannot disrupt the 
display (line 18010). What's more, an INPUT statement that 
reads from the disk may display a question mark on the screen 
unless it contains a null prompt string (line 18020). Notice that 
the INPUT statement is not executed if an end-of-data condition 
has occurred; this is because trying to read past the end of the 
file simply causes another end-of-data error. 

The program checks specifically for three errors: end-of-data 
errors, file-not-found errors, and disk-drive errors (lines 8000-
8650). If and end-of-data error (code 5) occurs, the program 
simply reexecutes the statement that caused the error. This 
would normally result in an endless program loop, but the POSI
TION and INPUT statements, which cause the end-of-data error, 
are executed only if the error number is not 5 (lines 3020 and 
18020). There are specific messages for a file-not-found error 
(lines 8390-8420) and a disk-drive error (lines 8490-8520). 

All other errors use the same general message (lines 8600 and 
8610). After displaying an error message, the program waits for 
the user to press RETURN before ending automatically (lines 
8620-8650). 

The Byte Number 

You can specify a byte (character) number with the READ and 
WRITE commands to move the file pointer ahead a specified 



300 I Apple II User's Gulde 

number of characters. With ProDOS, you can also specify a byte 
number with the POSITION command. To the file name (or 
pathname in ProDOS) you add a comma, the letter B, and the 
number of characters you want to move the pointer. Here is an 
example: 

J160 PRINT CHR$(4);"READ SAMPLE,B64" 

With ProDOS, both a field and a byte number can be listed in 
the same command. In that case, ProDOS first advances the file 
pointer by the number of fields specified (by the READ, WRITE, 
or POSTION command), and then advances the pointer again by 
the number of bytes specified by the same command. 

THE EXEC COMMAND ________ _ 

With the EXEC command you can turn control of the Apple II 
over to a sequential file. Text from the file you name is used 
instead of being typed from the keyboard. Here is an example: 

JEXEC FILENAME,R3,D2,S5 

As usual, the slot and drive numbers are optional. 
When EXEC is issued, the file specified is opened, then implicit 

READ and INPUT statements follow. The whole file is retrieved, 
starting with the first line if no R parameter is present. If R is 
present, the line specified by R is retrieved (RO for the first line, 
Rl for the second, and so on). With ProDOS, you may specify the 
line to use first with the letter F instead of the letter R. 

The retrieved line is treated as if it were typed on the keyboard 
in immediate mode. If the line is meaningless, you will see the 
message ?SYNTAX ERROR or ***SYNTAX ERR. If it is a 
program line, such as 

100 PRINT "THIS IS A TEST" 

it will be stored in the Apple II's memory as if you had just typed 
it. If it is a direct command like LIST or RUN, it will be 
executed. 

After the action caused by the first line is completed, the next 
line is read and acted upon. This continues until the end of the 
file has been reached, at which time control of the Apple II 
returns to the keyboard. 



Programming Disk Data Ries I 301 

Merging Programs 

One application of the EXEC command is program merging. 
For example, you could use this method to copy subroutines from 
the original Mailing-List Entry program (Figure 9-10) to the 
sequential-access Mailing-List Creation program (Figure 11-2). 

Start by loading the program from which you want to copy 
lines. Next, enter a few program lines at the beginning of the 
program, as follows: 

]1 0$ = CHRS C4): REM •• ProDOS command prefix 
J2 FS = "FIG.11.2A": REM •• Name of sequential file 
]3 POKE 33,33: REM •• Inhibit LIST formatting 
]4 PRINT DS;"OPEN "; f$ 
JS PRINT DS;"WRITE ";FS 
]6 LIST 9989 - 13510 
]7 LIST 19989 - 30270 
]8 PRINT DS;"CLOSE ";FS 
]9 POKE 33,40: END: REM •• Enable LIST formatting 

The Apple II now has the source program plus these lines in its 
memory. When executed, these lines open a sequential file named 
FIG.11.2A, list lines 9989-13510 and 19989-30270 from memory 
into FIG.11.2A, close the file, and end. The source program itself 
never executes, thanks to the END statement on line 9. Because 
of the WRITE command on line 5, the listed program lines go 
into the sequential file named FIG.11.2A, not onto the screen. If 
you want to copy other line numbers, change lines 6 and 7. You 
can also use a different name for the sequential file by changing 
line 2. 

After creating the sequential file containing the program lines 
you want to copy, load the second program that you want to 
merge. If it doesn't exist, clear the existing program with a NEW 
command and type in the new program. Finally, use an EXEC 
command to "type" the lines from the sequential file into Apple II 
memory, where they will merge with the existing lines. The fol
lowing statement works with the sequential file created by the 
previous example: 

]EXEC FIG.11.2A 

The commands, program lines, and data taken from the sequen
tial file are stored in memory but not displayed on the screen. 
You see nothing on the screen but a series of Applesoft prompt 
characters(]). During the process of merging two files, if any two 



302 I Apple II User's Guide 

lines have the same number, the last line loaded will be 
preserved. 

RANDOM-ACCESS FILES ________ _ 

Random access solves the two major problems of sequential 
access: it makes access time to all records identical and allows 
easy record updating. The only constraint is that all records in a 
random-access file must be the same length. The record length 
fixes the amount of information that can be stored in one record 
at a number of bytes (characters) that you specify. 

A record is identified by a number indicating its position in the 
file. The first record in every file is record number 0, the next is 
number 1, followed by record 2, and so on. 

The smallest random-access file has one record. Files expand 
as new records are added, but they do not shrink. To remove 
unwanted records from a random-access file and shrink the size 
of the file, you must copy the records to be preserved into a new 
random-access file. 

Programs must specify which record of a random-access file is 
selected. They may also specify what part of the record is to be 
accessed. 

Opening Random-Access Files 

To define a file as a random-access file, you must include an 
additional parameter when the file is opened: the length parame
ter, L. The length parameter specifies the length of each record. 

J200 PRINT D$;"0PEN SAMPLE,L40" 

The length parameter must have a value ranging from 1 to 65535 
(32767 with DOS 3.3). You can also list drive and slot numbers 
(and a volume number with DOS 3.3) in addition to the record 
length. The record length does not have to be the first item in the 
list, but it must be present if the file is to be random-access. 
Other parameters, including the slot, drive, and record numbers, 
may also be present in any order. 

To compute the length of a record, start by writing down a list 
of the fields it contains, noting the maximum number of bytes 
(characters) each will occupy (Figure 11-5). Next, add up the field 



Programming Disk Data Files / 303 

FILE LAYOUT 

File Name l Record Size , I i No. of Records 
MliJLIKG i.JST 'ltllL fseit1.e111'"14 ) -

Description 

Variable Field Description Max. Size Comments 

JrAf ¥4nte. ~o 

s /{ :/ St-reef ,;zo 

czt City ~o 

ST$ 'S-ht:fe. .2 

2:.I$ 2I P CoJe 'I 

Figure 11-5. File layout for a sample random-access mailing-list file 



304 I Apple II User's Guide 

lengths. To that sum add one extra byte per field, thereby taking 
into account the carriage return characters that separate the 
fields. The result is the record length. 

Programs should never write records that are longer-includ
ing carriage return characters-than the number of bytes spec
ified by the length parameter in the OPEN command. If too 
many characters are stored in a record, the succeeding record 
may be overwritten or combined with the first one. 

Closing Random-Access Files 

The CLOSE command is identical for both sequential- and 
random-access files. 

Random-Access Read and Write 

The READ and WRITE commands require a record param
eter, R, for random-access files. The record parameter moves the 
file pointer to the beginning of a record. The following example 
uses the record parameter: 

J250 PRINT D$;"WRITE SAMPLE,R";RN 
J350 PRINT D$;"READ SAMPLE,R";RN 

Both statements in this example access the record specified by 
the value of variable RN. If the record parameter is not present, 
the pointer is not moved. 

With ProDOS random-access files, the READ and WRITE 
commands can include a field number, a byte (character) number, 
or both. Starting at the beginning of the current record, the field 
number moves the file pointer ahead the specified number of 
fields, and from there the byte number moves the pointer a speci
fied number of bytes. 

With DOS 3.3 random-aceess files, the READ and WRITE 
commands can include a byte (character) number, but not a field 
number. Starting at the beginning of the current record, the byte 
number moves the pointer ahead a specified number of bytes. 

The field and byte numbers can be used only to advance within 
the current record of the random-access file. If either attempts to 
move out of the record, an end-of-data error occurs. 

After a random-access READ or WRITE command, you can 
use a POSITION command to move the file pointer forward in 
the current record. However, the POSITION command also can-



Programming Disk Data Files I 305 

eels the last READ or WRITE command. To read or write at the 
new position in the record, you must use another READ or 
WRITE command, this time without a record number. 

End of File 

At any given time, the nominal end of a random-access file 
falls right after the highest record number written. ProDOS and 
DOS 3.3 behave differently if a program tries to read a record 
with a higher number than that of the last record. With DOS 3.3, 
an end-of-data error (error code 5) occurs, but with ProDOS, a 
range error (code 2) occurs. 

With DOS 3.3, an end-of-data error (error code 5) also occurs if 
a program tries to read a record that has never been written. For 
example, suppose only records l, 3, and 500 have been written. 
The end-of-data error· will occur if a program tries to read any 
other record, including (but not limited to) records 2, 100, and 
501. Also, when an end-of-data error occurs, DOS 3.3 resets the 
random-access record length to 1. 

If a program tries to read a ProDOS record that has never 
been written, an end-of-data error (code 5) may occur, or there 
may be no error at all. For example, suppose only records l, 3, 
and 500 have been written. The end-of-data error may occur if a 
program tries to read any other record, including (but not 
limited to) records 2, 100, and 501. If no error occurs, the first 
field read will be empty. 

USING RANDOM-ACCESS FILES _____ _ 

While a sequential-access mailing-list file is better than no file 
at all, it is not as convenient as a random-access file. A few 
changes made to the sequential-access Mailing-List Creation 
program (Figure 11-2) will convert it to use a random-access file, 
allowing you to change existing records. A few similar changes to 
the sequential-access Mailing-List Print program will convert it 
to use the same new random-access file. 

Random-Access Mailing-List Program 

Like the sequential-access Mailing-List Creation program, a 
random-access version must be able to create new records. Unlike 



306 I Apple II User's Guide 

the sequential-access program, the random-access program must 
also be able to read an existing record, display it, and allow 
changes to it. Where formerly there was just one operation, 
record creation, now there are three: record creation, record 
review, and record changes. 

Both record review and record changes begin by reading an 
existing record and displaying its values. But those values must 
be input from the keyboard to create the record. How does the 
program know where to go for record input? It can ask the pro
gram user to indicate this, or it can make the decision itself. 
Suppose the program tries to read a nonexistent record from a 
file. One of three things happens: 

· An end-of-data error (code 5) occurs 
· A range error (code 2) occurs 
· No error occurs, but the first field is empty. 

The program can intercept the errors with an ONERR GOTO 
statement and an error-handling routine. In addition, it can test 
the variable containing the first field value to see if it is empty. If 
any of the three conditions occurs, the program assumes the 
record is new and asks the user to enter all five fields in sequence 
before it allows field-by-field changes. 

The complete listing for the random-access Mailing-List Entry/ 
Review program appears in Figure 11-6, with changes to the 
original sequential-access version from Figure 11-2 shaded. In 
addition to the shaded changes, line 16070 from Figure 11-2 must 
be deleted. 

900 ONERR GOTO 8000: REM •• Enable· error trapping 
1000 GOSUB 10000: REM •• Initialize variables 
1010 PRINT: PRINT DS;"PR#3": REM •• Activate 

80-col. card 

1020 PRINT W4S;: REM •• Set display width to 40 
1025 GOSUB 16000: REM •• Display welcome and set 

up disk 
1030 GOSUB 11000: REM •• DisplayEntryWindow 

}~:g;,~.~ .. '·~·.~. · ,.~· · .Pl:~,~. -'~;E'~::t~~J,P::t~i~C~-;:~~{9r~.I?:P~~·:-d~.~·~(· .. ~ .. 9Q;.~~~J:,:.!f .-,.:: ... ».'.· .. ·. ! 
••.''"'O· '·~'6' ··.·.·01·~AB ···3•:, •. ''H'.fi~B'~'''8\io'.i· ·:ffR}f,Ni"f.1 '·'.!tl;ft:e:ic•o·:r:a·•:'•,/(~·1.•i•:;D.1ETGtffD;.• ··.:AY,/''.·'i·,:.: j 
1 · '-'"· .~J . .. ·.-.... ~-.~' '. ~~ ''··. ,,. :,···'' ....:•\ '·_,' ... _.· ~ f.<'.; .;~:i~'··~~l~~~;. ~ ' . . ~,.'!_:; .. IH~ --·.,.~.,,., ~ .. ~··'·· :':>:)~-~<~ 

. S'P'C ( ~J . ' , -
- . .. . .. -"- - -- - -· 

Figure 11-6. Random-access Mailing-List Entry/Review program 



Programming Disk Data Flies I 307 

1040 FOR X1 = 1 TO LFX 
1050 FIELD% = X1: GOSUB 23500: REM •• Display field 

description 
1060 NEXT X1 

· t0·63. GO~·,llJ- _ 1-~00Q:~ .•. RE~.- _ •• Re-aq.Reco.rd 
1 Q:§s•: rf.,,,,~J1'. <";~ :5 TH:l:N'. ·(;',Q.Stt1,,B,.1~9·q9·0: GOTO 1 f1,.Q·.=· 

8'.~!_f( .st not .end..;..(rf-.d~a:{a, Dtsp l«i')'Re~9:r.d 
1070 FOR X1 = 1 TO 5: REM •• Enter all fields 
1080 FIELD% = X1 
1090 GOSUB 23000: GOSUB 12000: GOSUB 23500: 

REM •• Selectfield:Enterfield:Deselectfield 
1100 NEXT X1 
1110 FIELD% = 6: GOSUB 23000: REM •• Selectfield 
1120 GOSUB 22000: REM •• GetfieldNumber 
lf~;a; M: ;f~:iL1ii =· '6_-_.t·HEtf·.so~_yQ .. 1r.ouo: ·sos us ;235.Qo·.: 

&Q;~.p-q:. t~~O.O::.f'.R-J ;:; . 3: L·R"~ = 8;t Go~·us 30c:t o:o.: 
G\~1:~·~.· .. 1~~~.t . ~:g·M . ..,.,~r t t!'~1,.c;o r:c:I-~ .. ~ t! s e le ·s.i F i"e·,~·~!' 

. . . ·•(i\f~~:(fic;o.t--dNum·b'e:r, Cle'a.r'l>'i·'$'Pla;Y-L:1 n·e $, t·hen QO: 
~ ---~~ __ :~~'t'... ,.,_~,e>:t'.'~ ~ r -- . - - --.. 

1140 IF FIELDX < LF% THEN GOSUB 12000: GOTO 1120: 
REM •• Enterfield 

1150 REM ••• Quit? ••• 
1160 TX= 12:LX = 4:BX = 17:R% = 37: GOSUB 30200: 

REM •• DisplayBox 
1170 VTAB 14: HTAB 5: PRINT BEEPS;"Are you sure 

you want to quit?"; 
1180 VTAB 16: HTAB 8:CS = "Y": GOSUB 21000: 

REM •• GetYesNo 
1190 IF NTRYS ="NO" THEN FR%= 12:LR% = 17: 

GOSUB 30100: GOSUB 23000: GOTO 1120: 
REM •• If no, erase box, restore field, and 
get another field 

1200 GOSUB 17000: REM •• WriteRecord 
1.?~() P,R!NT: t:>~_IN.I. ~S;~'~l:-0~.~·~ ...... 
11?;?\Q' :.lf.lQ.'f~l~~:' V.l?AE,) t2.: H1tAl3, . ~·::1'.i~~~;tiJ "·~rtq of 
. _ ~ <tt2tkL.t10;9..-~_j $~~.:£.in.-~J·:y_/Jtev.i 1 ~~·f'1 

· 

1230 VTAB 23: HTAB 1: END 
7989 REM 
7990 REM ••• ErrorHandler ••• 
7'·991 REM 
8000 EN = PEEK (222): REM •• Error number 
8010 EL = PEEK (219) * 256 + PEEK (218): 

REM •• Error line 
·. e·:·o.{a'.i1 .1.r ~)[·:;;. :~;·Ttf1J:N E:N,;:: $.·; B~~; .. 1: 1;·,!9!Atte1f1iptec;L r~icl!~'.. 

_· .P~:s·-t last ·re.c-ord , ... · 
8!03~0 -:f:f EiN = ~ T,HEN RESllM1E:.-·,R'EM i~_.l:nd p;:f dafJt 

.::L.~n:e1~:v:n,·u7rJi d1
•• ~ • • , ,. ~- •• ~- .. 

8040 PRINT BEEP$;BEEP$; 

Figure 11-6. Random-access Mailing-List Entry/Review program (continued) 



308 I Apple II User's Guide 

8050 FRX = 9:LRX = 14: GOSUB 30100: 
REM •• ClearDisplayLines 

8060 TX= 9:LX = 4:BX = 14:RX = 37: GOSUB 30200: 
REM •• DisplayBox 

8070 VTAB 11: REM •• Position for error message 
8080 ON EN GOTO 8100, 8100, 8500, 8200, 8100, 

8400, 8400, 8500, 8600, 8700 
8100 HTAB 5: PRINT "Unexpected error 

(code ";EN;">." 
8110 PRINT 
8120 HTAB 5: PRINT "Press RETURN to quit. "; 
8130 GOSUB 30000: REM •• GetChar 
8140 IF cs<> CHRS (13) THEN 8130: REM •• Wait for 

RETURN 
8150 GOTO 1210: REM •• Quit 
8200 HTAB 5: PRINT "Disk is write-protected." 
8210 HTAB 5: PRINT "Remove tab or use 

another disk" 
8220 GOTO 8120 
8400 HTAB 5: PRINT "Volume not found." 
8410 HTAB 5: PRINT "Check prefix and drive." 
8420 GOTO 8120 
8500 HTAB 5: PRINT "Disk or drive error." 
8510 HTAB 5: PRINT "Check disk, drive, 

and prefix." 
8520 GOTO 8120 
8600 HTAB 5: PRINT "Disk full." 
8610 HTAB 5: PRINT "Last few records may 

be missing." 
8620 GOTO 8120 
8700 HTAB 5: PRINT "Fi le ";FILES;" locked." 
8710 PRINT: GOTO 8120 
9989 REM 
9990 REM ••• InitializeVariables ••• 
9991 REM 
10000 DS = CHRS (4): REM •• ProDOS/DOS 3.3 prefix 
10010 W4$ = CHRS (17): REM •• Display width 40 
10020 BEEPS= CHRS (07>: REM •• Beep char. 
10030 FOR X1 = 1 TO 40 
10040 EFS:: EFS + ".": REM •• Entry field chars. 
10050 TL$= TLS +" ": REM •• Top line chars. 
10060 BLS = BLS + .. - .. : REM •• Bottom line chars. 
10070 NEXT X1 
10080 SLS ="I": REM •• Side line chars. 
10090 LFX = 7: REM •• Last field number 
10100 DIM FRXC2,LFU,FCXC2,LFX>,FDSC2,LFX> 
10110 FOR X1=1 TO LFX: REM •• Read field 

Figure 11-6. Random-access Mailing-List Entry/Review program (continued) 



Programming Disk Data Files I 309 

locations and descriptions 
10120 READ FRXC1,X1>,FCXC1,X1>,FDSC1,X1) 
10130 READ FR%C2,X1>,FC%C2,X1),FDSC2,X1) 
10140 NEXT X1 

-lf ff gF!~!~~·~tr:::~~$)::~~~;~~%2~tt~: ~r~rd 1 · 
10489 REM 

10490 REM ••• Field Descriptions and Locations ••• 
10491 REM 
10500 DATA 4,3," 1. <NAME:> " 
10510 DATA 4,3," 1. Name: " 
10520 DATA 5,3," 2. <STREET:>" 
10530 DATA 5,3," 2. Street: 
10540 DATA 6,3," 3. <CITY:> 
10550 DATA 6,3," 3. City: 
10560 DATA 7 ,3," 4. <STATE:> 
10570 DATA 7,3," 4. State: 
10580 DATA 8,3," 5. <ZIP:> 
10590 DATA 8,3," 5. Zip: 
10600 DATA 11,3," 6. <ANOTHER RECORD>" 
10610 DATA 11,3," 6. Another Record " 
10620 DATA 12,3," 7. <QUIT>" 
10630 DATA 12,3," 7. Quit " 
10989 REM 
10990 REM ••• DisplayEntryWindow ••• 
10991 REM 
11000 HOME 
11010 TX= 1:L% = 1:8% = 22:R% = 39: GOSUB 30200: 

REM •• DisplayBox 

L~H~~:g.: ~:?~~,~~ E ~· ~t~~~:~~'·9·~Li~i~0·t~~~~~~it~ivi~~'n l. es>> . ·" 
I 2: PRINT TITLES;: NORMAL: REM •• Display 
title 

11040 RETURN 
11989 REM 
11990 REM ••• Enterfield ••• 
11991 REM 
12000 VTAB 20: HTAB 3: PRINT "Enter the 

selected field." 
12010 HTAB 3: PRINT "Then press RETURN to 

confirm entry."; 
12020 ON FIELD% GOSUB 13100,13200, 

13300,13400,13500 
12030 FR% = 19:LR% = 21: GOSUB 30100: 

Figure 11-6. Random-access Mailing-List Entry/Review program (continued) 



310 I Apple II User's Guide 

13089 REM 
13090 REM ••• EnterName ••• 
13100 MLX = 20: VTAB 4: HTAB 17: GOSUB 20000 
13110 NAMES = NTRYS: RETURN 
13189 REM 
13190 REM ••• EnterStreet ••• 
13200 MLX = 20: VTAB 5: HTAB 17: GOSUB 20000 
13210 STREET$ = NTRYS: RETURN 
13289 REM 
13290 REM ••• EnterCity ••• 
13300 ML% = 20: VTAB 6: HTAB 17: GOSUB 20000 
13310 CITY$ = NTRYS: RETURN 
13389 REM 
13390 REM ••• EnterState ••• 
13400 ML% = 2: VTAB 7: HTAB 17: GOSUB 20000 
13410 SES = NTRYS: RETURN 
13489 REM 
13490 REM ••• EnterZip ••• 
1~500 ML% = 9: VTAB 8: HTAB 17: GOSUB 20000 
13510 ZIPS = NTRY$: RETURN 

f If ;t;~;\~~.~~~i~;:~,~~~;wtp~:-;.~b;_~··~~.,h~·~" ·df···'·: : 
t ,:~i~(j~~1~1 ,;"!:~:A,)ft/ '~;: ~.l.f~:X.NT. · ~!t.~1 ~o,te.,·r.~ .. revi e111;, ot ·chat'lftre,.!1 

f '~t3;J'2:a'. ''fl~!A·B _3}t'. :if?·a11:N,1} :';l)'t::h en:& 'p r·e.~!s~ 'R E$U'R;N~~·· I ·, ' ' ' 

I ~~f~~$1Q 'V~~AIB.·~~} :tiJr~~·.e· 7- ::~PRi~~T "·<_'S'~C-ORD :>"; s'1fc ( 1:0·l 

t·rt~1~~}='.,11Jj;!lf Mt ,_:~~,r:~·. · 1;;r,,;;, . G~~Et- . ~9'9-~P=t 
13650 RECRD = VAL CNTRYS): IF RECRD < 0 'fHEN 

PRINT BEEPS;: GOTO 13640 
13660 FR% = 19:LR% = 21: GOSUB 30100: 

REM •• ClearDisplayLines 
13670 RETURN 
15989 REM 
15990 REM ••• Display welcome and set up disk ••• 
15991 REM 
16000 HOME 

. · ·i~~~.,il~lf, 1V·T/~·B ,.~c; ,'~-R:~1N~ -~:,E_f.T~-- CTL$'"3.~): REM .•• ~raw 
• 

1 
• toJ:>' · C,1·ne · · · · · ~ ·,,,. ·.- '' · 

1,«o~Z.0-"··v:tAe: .s::, wfl',A"e 2~:r":P,Rili'~t _:••w.eL·~om:e to 
: .. :i.;:;~j:~~·~ ...• jm;i)1:·i~;~~rfo;~:~1i~~i .. )~JiJ.tr*,~&~i'ti.~~&.Y.~· : · . '.:.:... . .. _ 

16030 VTAB 10: HTAB 12: PRINT "Just a minute ••• " 
16040 VTAB 16: HTAB 9: PRINT "A Forrest 

Lake Program" 
1..,'~t.~Q~,Q ,·.,:i~1$'NT .. ':4,·e.'rf:'rt.·· <Q~;$';;$ .. 9~2:i~···~e1 .. ,~ ~.l)'.;r·a\f b .. q.tit~m · .L ftt.~' 
: 1'";-6"0'6'0· "' 'P~--;0!·7 N'°l€.c~o··et: ···~"ip" ·e- 'N"' ,,:,.:F-'·,~''t':·e· ,s·,;0;•1'""1'7'6'•"·: ,_ .. :,,........:._.1 . .,~ .. ..:.,;~'. ;~11.:.: •. ...1Pr :Y. :; ... :'.:.,.· J~. ~·~< J__.:. .... ,:1'~·.1,.,~ ·"· •. · , 

16080 RETURN 

Figure 11-6. Random-access Mailing-List Entry/Review program (continued) 



16989 REM 
16990 REM ••• WriteRecord • •• 
16991 REM 

Programming Disk Data Flies I 311 

17000 IF NOT CHANGED THEN RETURN: REM • • Don't 
write unless changes made 

17010 VTAB 21: HTAB 3: PRINT "Saving to disk • • • "; 
17020 PRINT: PRINT DS;"WRITE ";FIL:ES;" R";RECRD ---=-
17030 PRINT NAMES 
17040 PRINT STREET$ 
17050 PRINT CITY$ 
17060 PRINT SES 
17070 PRINT ZIPS 
17080 PRINT DS: REM •• Deactivate dis k output 
17090 FR X = 21:LR X = 21: GOSUB 30100: 

REM •• Clea r Di splayLines 
17100 RETURN 
17989 REM 
17990 REM ••• ReadRecord ••• 
17991 REM 
18000 VTAB 21: HTAB 3: PRINT "Reading 

record ";RECRD;" from disk ••• "; SPCC 5) 
18010 PRINT: IF EN<> 5 THEN PRINT DS; 

"READ ";FILES;",R";RECRD 
18020 VTAB 23: HTAB 39: REM •• Accomodate 

INPUT "feature" 
18030 IF EN < > 5 THEN INPUT 

"";NAMES,STREETS,CITYS,SES,ZIPS 
18040 PRINT DS: REM •• Deactivate READ command 
18050 IF NAMES="" THEN EN= 5: REM •• Handle 

nonexistent records 
18060 FRX = 21 :LRX = 21: GO SUB 30100: 

REM •• ClearDisplayLines 
18070 IF EN= 5 THEN VTAB 19: HTAB 3: PRINT "New 

Record." 
18080 CHANGED = 0: REM •• Reset changes-made flag 
18090 RETURN 
18989 REM 
18990 REM ••• DisplayRecord ••• 
18991 REM 
19000 VTAB 4: HTAB 17: PRINT NAMES 
19010 VTAB 5: HTAB 17: PRINT STREETS 
19020 VTAB 6: HTAB 17: PRINT CITY$ 
19030 VTAB 7: HTAB 17: PRINT SES 
19040 VTAB 8: HTAB 17: PRINT ZIPS 
19050 RETURN 
19989 REM 
19990 REM ••• Ge t Entr y ••• 
19991 REM 

Figure 11-6. Random-access Mailing-List Entry/ Review program (continued) 



312 I Apple II User's Gulde 

20000 HTX = PEEK C36) + 1: REM •• Cursor column 
20010 NTRY$ = "": REM •• Empty entry 
20020 CLX = LEN CNTRY$): REM •• Current 

entry length 
20030 HTAB HTX: PRINT NTRYS; 
20040 IF MLX > CLX THEN PRINT LEFTS 

CEFS,MLX - CLU;: REM •• Fill unused entry 
field 

20050 HTAB HT% + CLX: GOSUB 30000: REM •• Get one 
character 

20060 IF C$ = CHRS C127) AND CLX < = 1 THEN 20010: 
REM •• Delete key with empty entry? 

20070 IF C$ = CHRS C127> THEN NTRY$ = 
LEFTS (NTRYS,CLX - 1): GOTO 20020: 
REM •• Delete key? 

20080 IF CS = CHRS C24) THEN 20010: REM •• Control
X means cancel 

20090 IF CS = CHRS C13) THEN PRINT 
SPCC ML% - CL%>;: RETURN: REM •• Return means 
done 

20100 IF C$ > = II II AND C$ < = .. - .. AND CLX < MLX 
THEN NT RYS = NT RYS + CS: REM •• Add valid 
characters if room 

20110 GOTO 20020: REM •• Get another keystroke 
20989 REM 
20990 REM ••• G~tYesNo ••• 
20991 REM 
21000 HTX = PEEK (36) + 1 :VT% = PEEK C37) + 1: 

REM •• Cursor position 

21010 IF CS = "Y" OR CS = "y" OR CCS = CHRS (8) 
AND NTRYS ="NO") THEN VTAB VT%: HTAB HT%: 
PRINT "<YES> No ";:NTRYS ="YES" 

21020 IF CS = "N" OR CS = "n" OR CC$ = CHRS C21 > 
AND NTRYS ="YES") THEN VTAB VT%: HTAB HT%: 
PRINT " Yes <NO>";:NTRYS ="NO" 

21030 VTAB 19: HTAB 3: PRINT "Type Y for Yes or N 
for No," 

21040 HTAB 3: PRINT "or press <-- or --> to 
change." 

21050 HTAB 3: PRINT "Then press RETURN. 
21060 GOSUB 30000: REM •• GetChar 
21070 IF CS="" THEN C$ = CHRS C21): 

"· , 

REM •• Accommodate 80-col. card "feature" 
21080 IF C$ < > CHR$ (13) THEN 21010: REM •• Only 

RETURN confirms 
21090 FRX = 19:LRX = 21: GOSUB 30100: 

REM •• ClearDisplayLines 

Figure 11-6. Random-access Mailing-List Entry/Review program (continued) 



21100 RETURN 
21989 REM 

Programming Disk Data Files I 313 

21990 REM ••• Get Fie ldNumber ••• 
21991 REM 
22000 VTAB 19: HTAB 3: PRINT "To select a field, 

type a number or " 
22010 HTAB 3: PRINT "press UP-ARROW or 

DOWN-ARROW." 
22020 HTAB 3: PRINT "Then press RETURN. "; 
22030 GOSUB 30000: REM •• GetChar 
22040 IF C$ = CHRS C10) AND FIELD% < LFX THEN 

GOSUB 23500:FIELD% = FIELD% + 1: 
GOSUB 23000: REM •• Down-arrow key 

22050 IF CS= CHRS C11) AND FIELOX > 1 THEN GOSUB 
23500:FIELO% = FIELD% - 1: GOSUB 23000: 
REM •• Up-arrow key 

22060 IF CS>= "1" AND C$ < = STR$ CLF%) THEN 
GOSUB 23500:FIELD% = VAL CC$): GOSUB 23000: 
REM •• Digit key 

22070 IF CS<> CHR$ (13) THEN 22030: REM •• Only 
RETURN confirms / 

22080 FR% = 19:LR% = 21: GOSUB 30100: 
REM •• ClearDisplaylines 

22090 RETURN 
22989 REM 
22990 REM ••• SelectField ••• 
22991 REM 
23000 VT% = PEEK (37) + 1 :HT% = PEEK (36) + 1: 

REM •• Cursor location 
23010 VTAB FR%C1,FIELD%>: HTAB FC%C1,FIELOU: 

PRINT FDSC1,FIELDX>;: REM •• Display selected 
description 

23020 VTAB VT%: HTAB HT%: REM •• Reset cursor 
23030 RETURN 
23489 REM 
23490 REM ••• Deselectfield ••• 
23491 REM 
23500 VTX = PEEK (37) + 1 :HTX = PEEK C36) + 1: 

REM •• Cursor location 
23510 VTAB FRXC2,FIELDX>: HTAB FC%C2,FIELDX>: 

PRINT F0$(2,FIELD%>;: REM •• Display 
deselected description 

23520 VTAB VT%: HTAB HU: REM •• Reset cursor 
23530 RETURN 
29989 REM 
29990 REM ••• GetCharacter ••• 
29991 REM 
30000 GET CS: REM •• Wait for keystroke 

Figure 11-6. Random-access Mailing-List Entry/Review program (continued) 



314 I Apple II User's Gulde 

30010 RETURN 
30089 REM 
30090 REM ••• ClearDisplayLines ••• 
30091 REM 
30100 FOR ROW = FRX TO LRX 
30110 VTAB ROW: HTAB 2: PRINT SPCC 37>; 
30120 NEXT ROW 
30130 RETURN 
30189 REM 
30190 REM ••• DisplayBox ••• 
30191 REM 
30200 VTAB TX: HTAB LX + 1 
30210 PRINT LEFTS CTLS,RX - LX - 1);: REM •• Top 

line 
30220 FOR ROW= TX+ 1 TO BX: REM •• Side lines 
30230 VTAB ROW: HTAB LX: PRINT SL$; 
30240 HTAB RX: PRINT SL$ 
30250 NEXT ROW 
30260 VTAB BX: HTAB LX + 1: PRINT LEFTS 

CBLS,RX - LX - 1>;: REM •• Bottom line 
30270 RETURN 

Figure 11-6. Random-access Mailing-List Entry/Review program (continued) 

The random-access program begins in the usual manner, by 
enabling error interception, initializing variables, activating the 
80-column adapter, setting the display width, displaying a wel
come message, opening the mailing-list file, and displaying the 
entry window (lines 900-1030). The variable initialization subrou
tine sets the file name to ADDRESS and the initial record 
number to 1 (lines 10170 and 10180). Next, the program clears 
variable EN, which contains the code number of the most recent 
error intercepted, if any (line 1033). After that, it displays the 
current record number and field descriptions (lines 1036-1060). 
It then tries to read the record (line 1063). If successful, the pro
gram displays the record values (line 1066). If unsuccessful, it 
has the user input the values at the keyboard (lines 1070-1100). 

After displaying the values of an existing record or inputting 
values for a new record, the program selects field 6 (Another 
Entry) and waits for the user. to confirm that selection or make 
another (lines 1110 and 1120). If the user chooses field 6, the pro
gram writes the current record to disk, asks for another record 
number, clears the old record from the screen, and branches 
back to display or input the requested record (line 1130). If the 



Programming Disk Data Files I 315 

user chooses a field between 1 and 5 instead, the program 
requests a new value for it (line 1140). If the user chooses field 7, 
the program quits (lines 1150-1230). Quitting involvt)s getting the 
user's approval (lines 1160-1190), writing the last record (line 
1200), closing all files (line 1210), and displaying a parting mes
sage in the middle of an empty screen (lines 1220 and 1230). 

The error-handling routine is almost identical to the one ~n the 
sequential-access entry program. It displays specific messages 
for a few error codes and a general message for the rest (lines 
8040-8710). It also checks for error codes 2 and 5, which indicate 
an attempt to read a nonexistent record (lines 8020 and 8030). In 
either case, variable EN is set to 5 and the statement that caused 
the error is reexecuted. The rest of the program uses variable 
EN to determine whether it is dealing with a nonexistent record. 

The DisplayEntryWindow subroutine (lines 11000-11060) is 
identical to the subroutine in Figure 11-2 except for the title on 
the entry window display. 

The EnterField subroutine (lines 12000-13510) is also identical 
with one exception: just before returning, the subroutine always 
sets variable CHANGED to 1, which is the same as the logical 
value of True. Later, the variable CHANGED tells the Write
Record subroutine to write the record, since it may have been 
changed. 

The GetRecordNumber subroutine is new (lines 13600-13640). 
It replaces the current record number with a message that 
prompts the user to enter another record number (line 13630); it 
then inputs the record number (line 13640). If the number is less 
than 0, the console speaker beeps and the subroutine asks the 
user to enter another number. Before returning, the subroutine 
erases the instructions it displayed at the bottom of the screen 
(line 13660). 

The subroutine used to display a welcome message and s~t up 
the disk in the sequential-access entry program can be used.here 
(lines 16000-16070). The display is slightly changed (lines 16010-
16020 and 16050). Also, the file is opened by indicating a record 
length, thus identifying it as a random-access file (line 16060). 

With a few changes, the same subroutines that read and write 
records sequentially in Figure 11-2 will work for a random
access file (lines 17000-17100 and 18000-18090). The READ and 
WRITE commands now specify a record number (lines 17020 
and 18010). The ReadRecord subroutine checks for an empty 



316 I Apple II User's Guide 

value in the first field. If the value is empty, the subroutine sets 
variable EN to indicate that an attempt was made to read a non
existent record (line 18050). If the record is empty or if an end-of
data error or a range error occurred while it tried to read the 
record, the subroutine displays the message New Record (line 
18070). 

A new subroutine, DisplayRecord, displays the current record 
alongside the field descriptions on the screen (lines 19000-19050). 

The random-access Mailing-List Entry /Review program works 
with DOS 3.3 with just one change. Since DOS 3.3 resets the 
record length to 1 when an end-of-data error occurs, the program 
must reset the record length to its proper value at that time. 
Adding an OPEN command to the Error Handler subroutine does 
the job: 

]8030 IF EN = 5 THEN PRINT: PRINT D$; 
11 O P E N 11

; F I L E $ ; " , L 7 6 " : R E S U M E : R E M'. • E n d o f 
data; reset length 

The FLUSH Command 

You may recall that ProDOS uses disk buffers to cut down on 
the number of times it must physically record information on the 
disk. Both the sequential-access and random-access entry pro
grams demonstrate this feature clearly. In the previous program, 
the message Saving to disk ... flashes by quickly as the record is 
written into the disk buffer in the Apple II's memory. Only after 
the buff er is full and the information is recorded on the disk does 
the message linger. If the power is interrupted before the buff er 
is written to the disk, the new records and changed records still 
in the buffer will never be written on the disk. 

The FLUSH command prevents this loss of data by forcing 
ProDOS to write the disk buffer onto the disk. Here is an 
example: 

J17075 PRINT D$;"FLUSH ";FILES 

If you add this program line to either of the entry programs 
(Figure 11-2 or Figure 11-6), the disk buffer will immediately be 
written to the disk every time a record is saved. The program 
will slow down noticeably, but you may consider the sacrifice 
worth the security. 



Programming Disk Data Files I 317 

A file name or pathname is optional in the FLUSH command. 
If it is absent, the buffers for all open files are written to disk. 

Random-Access Print Program 

It takes very few changes to convert the sequential-access 
Mailing-List Print program (Figure 11-4) to a random-access 
printing program as shown in Figure 11-7. The changes from 
Figure 11-4 are shaded; you must also delete line 3020. 

First, you need to change the file name to the name of the 
random-access file (line 10170). Next, replace the sequential
access ReadRecord subroutine (lines 18000-18040) with the random
access subroutine from the random-access Mailing-List program 
(Figure 11-6, lines 18000-18090). You should eliminate line 18070 
since there is no need to display a New Record message in the 
print program. The print program will not print nonexistent 
records. 

The error-handling routine must check for a range error (code 
2), which will occur if the user specifies a nonexistent record 
number beyond the highest record number (Hne 8015). 

The subroutine that prints the report (lines 3000-3110) must 
open the file with a proper record length (line 3010). It no longer 
needs a POSITION command since the READ command in the 
ReadRecord subroutine specifies the record by number, so line 
3020 must be deleted. Finally, the subroutine must skip each 
nonexistent record it encounters in the middle of the file and each 
record that causes an end-of-data error. Variable EN will have a 
value of 5 in those instances (line 3060). 

900 ONERR GOTO 8000: REM •• Enable error trapping 
1000 GOSUB 10000: REM •• Initialize variables 
1010 PRINT CHRS C21): REM •• Deactivate 

80-col. card 
1020 REM •• Display width is 40 
1025 GOSUB 16000: REM •• Display welcome and 

set up disk 
1030 GOSUB 11000: REM •• DisplayEntryWindow 
1040 FOR X1 = 1 TO LFX 

Figure 11-7. Random-access Mailing-List Print program 



318 I Apple II User's Gulde 

1050 FIELDX = X1: GOSUB 23500: REM •• Display field 
description 

1060 NEXT X1 
1070 FOR X1 = 1 TO 2: REM •• Enter all fields 
1080 FIELDX = X1 
1090 GOSUB 23000: GOSUB 12000: GOSUB 23500: 

REM •• Selectfield:Enterfield:Deselectfield 
1100 NEXT X1 
1110 FIELDX = 3: GOSUB 23000: REM •• Selectfield 
1120 GOSUB 22000: REM •• GetfieldNumber 
1130 IF FIELDX = 3 THEN GOSUB 3000:FR% = 4: 

LRX = 5: GOSUB 30100: GOSUB 23500: GOTO 1040: 
REM •• If field=3, print requested records, 
blank last entries, deselect and get another 
range 

1140 IF FIELDX < LFX THEN GOSUB 12000: GOTO 1120: 
REM •• Enterfield 

1150 REM ••• Quit? ••• 
1160 TX= 12:LX = 4:8% = 17:RX = 37: GOSUB 30200: 

REM •• DisplayBox 
1170 VTAB 14: HTAB 5: PRINT BEEPS;"Are you sure 

you want to quit?"; 
1180 VTAB 16: HTAB 8:CS = "Y": GOSUB 21000: 

REM •• Get-YesNo 
1190 IF NTRY$ ="NO" THEN FRX = 12:LRX = 17: 

GOSUB 30100: GOSUB 23000: GOTO 1120: REM •• If 
no, erase box, restore field, and get another 
field 

1200 PRINT: PRINT DS;"CLOSE" 
1210 HOME: VTAB 12: HTAB 8: PRINT "End of 

Mailing- List Print" 
1220 VTAB 23: HTAB 1: END 
2989 REM 
2990 REM ••• Print the selected range of records ••• 
2991 REM 
3000 VTAB 21: HTAB 3: PRINT "Finding 

first record ••• " 
(fG~~lLQ]-J~J.'.~liNftiL_-~:fJJ!Jtf:~~1tC~'i:~:~~~~~!~J!!:,L~J:~I'.-_ : . _ -~ ____ .- -·--··- . _,c _ ~~ _ 

3030 FRX = 21 :LRX = 21: GOSUB 30100: 
REM •• ClearDisplayLines 

3040 FOR RECRD = SRX TO ERX 
3050 GOSUB 18000: REM •• ReadRecord 

lf-:~-,~~~~L.~:,~~~i;.k~~~:1J~~,!~f:~'~~s~:x~.
1

~&i:::·;~~-~-.OJ:: 
3070 GOSUB 14000: REM •• PrintRecord 
3080 NEXT RECRD 
3090 EN= 0: REM •• Clear error flag 
3100 PRINT: PRINT DS;"CLOSE ";FILE$ 

Figure 11-7. Random-access Mailing-List Print program (continued) 



3110 RETURN 
7989 REM 

Programming Disk Data Ries I 319 

7990 REM ••• ErrorHandler ••• 
7991 REM 
8000 EN = PEEK (222>: REM •• Error number 
8010 EL = PEEK (219) * 256 + PEEK (218): 

REM •• Error line 
~)e·,0?f§"-~!if~;e;'.~-~#L1C~EHIE(tf".!ElRr:;~:;:sr:]i~~G-:i1P'il°:-$~j,@j_t~~t~ 

8020 IF EN = 5 THEN RESUME: REM •• End of file 
8030 PRINT BEEPS;BEEPS; 
8040 FRX = 9:LRX = 14: GOSUB 30100: 

REM •• ClearDisplayLines 
8050 TX= 9:LX = 4:BX = 14:RX = 37: GOSUB 30200: 

REM •• DisplayBox 
8060 VTAB 11: REM •• Position for error messg. 
8390 IF EN < > 6 AND EN < > 7 THEN 8490 
8400 HTAB 5: PRINT "Fi le ";FILES;" not found." 
8410 HTAB 5: PRINT "Check prefix and drive." 
8420 GOTO 8620: REM •• Quit 
8490 IF EN < > 8 THEN 8600 
8500 HTAB 5: PRINT "Disk or drive error." 
8510 HTAB 5: PRINT "Check disk, drive, 

and prefix." 
8520 GOTO 8620: REM •• Quit 
8600 HTAB 5: PRINT "Unexpected error 

<code ";EN;">." 
8610 PRINT 
8620 HTAB 5: PRINT "Press RETURN to quit."; 
8630 GOSUB 30000: REM •• GetChar 
8640 IF CS<> CHRS (13) THEN 8630: REM •• Wait 

for RETURN 
8650 GOTO 1200: REM •• Quit 
9989 REM 
9990 REM ••• InitialheVariables ••• 
9991 REM 
10000 D$ = CHRS (4): REM •• ProDOS/DOS 3.3 prefix 
10010 W4S = CHRS (17): REM •• Display width 40 
10020 BEEPS= CHRS C07>: REM •• Beep char. 
10030 FOR X1 = 1 TO 40 
10040 EFS = EFS + ".": REM •• Entry field chars. 
10050 TLS = TLS +" ":REM •• Top line chars. 
10060 BLS = BLS +"-":REM •• Bottom line chars. 
10070 NEXT X1 -
10080 SLS ="I": REM •• Side line chars. 
10090 LFX = 4: REM •• Last field number 
10100 DIM FR%(2,LFU,FCXC2,LF%>,FDSC2,LFU 
10110 FOR X1=1 TO LFX: REM •• Read field 

locations and descriptions 

Figure 11-7. Random-access Mailing-List Print program (continued) 



320 I Apple II User's Guide 

10120 READ FRXC1,X1),FCXC1,X1>,FDSC1,X1> 
10130 READ FRXC2,X1),FCXC2,X1),FDSC2,X1> 
10140 NEXT X1 

CtZ.Oi,i~([J!':~:~;J.i#.~~·i.*'-~:P.i~I-~~$:$~~ ~:~~,-~J~~,_c_ .. ' ,-:. .-_ _ _ . __ _ 
10190 PLX = 65: REM •• Force headings on 1st 

printed page 
10200 RETURN 
10489 REM 
10490 REM ••• Field Descriptions and Locations ••• 
10491 REM 
10500 DATA 4,3,'' 1. <FIRST RECORD TO PRINT:>" 
10510 DATA 4,3," 1. First Record to Print:" 
10520 DATA 5,3," 2. <LAST RECORD TO PRINT:>" 
10530 DATA 5,3," 2. Last Record to Print: " 
10540 DATA 8,3," 3. <PRINT> " 
10550 DATA 8,3," 3. Print " 
10560 DATA 9,3," 4. <QUIT> II 

10570 DATA 9,3," 4. Quit " 
10989 REM 
10990 REM ••• DisplayEntryWindow ••• 
10991 REM 
11000 HOME 
11010 TX = 1 :LX = 1 :BX = 22:RX = 39: GOSUB 30200: 

REM •• DisplayBox 
11020 TITLES = "MAILING-LIST PRINT" 
11030 INVERSE: VTAB 1: HTAB C40 - LEN CTITLES)) I 

2: PRINT TITLES;: NORMAL: REM •• Display 
title 

11040 RETURN 
11989 REM 
11990 REM ••• EnterField ••• 
11991 REM 
12000 VTAB 20: HTAB 3: PRINT "Enter the selected 

field." 
12010 HTAB 3: PRINT "Then press RETURN to confirm 

entry."; 
12020 ON FIELD% GOSUB 13100,13200 
12030 FU = 19:LRX = 21: GOSUB 30100: 

REM •• ClearDisplaylines 
12040 RETURN 
13089 REM 
13090 REM ••• EnterFirstRecordNumber ••• 
13100 MLX = 3: VTAB 4: HTAB 32: GOSUB 20000 
13110 SRX =VAL CNTRY$): IF SRX < 1 THEN 13100 
13120 RETURN 
13189 REM 
13190 REM ••• EnterLastRecordNumber ••• 

Figure 11-7. Random-access Mailing-List Print program (continued) 



Programming Disk Data Ries I 321 

13200 MLX = 3: VTAB 5: HTAB 32: GOSUB 20000 
13210 ER% = VAL CNTRY$): IF ERX < 1 THEN 13200 
13220 RETURN 
13989 REM 
13990 REM ••• PrintRecord ••• 
13991 REM 
14000 VTAB 21: HTAB 3: PRINT "Printing ••• "; 
14010 PRINT: PRINT D$; 11 PR#1": REM •• Switch 

to printer 
14020 PRINT CHR$ C9>;"80N";: REM •• Line width 80 
14030 PLX = PLX + 1: GOSUB 15000: REM •• TopPage 
14040 PRINT NAMES; 
14050 HTAB 22: PRINT STREETS; 
14060 POKE 36,42: PRINT CITYS;", ";SES;" ";ZIPS 
14070 IF PLX I 5 =INT CPLX IS> THEN PRINT: 

PL%= PLX + 1: REM •• Print a blank line 
every 5th address 

14080 PRINT CHRS C9>;"R": REM •• Switch to screen 
14090 VTAB 21: HTAB 2: PRINT SPC C 37>;: 

REM •• Clear bottom line 
14100 RETURN 
14989 REM 
14990 REM ••• TopPage ••• 
14991 REM 
15000 IF PLX < 55 THEN RETURN: REM •• Page 

full yet? 
15010 FOR X1 = 1 TO C66 - PL%>: REM •• Space to 

15020 
15030 
15040 
15050 

15060 
15070 
15080 
15090 
15100 

bottom of page 
PRINT: NEXT X1 
PRINT TAB( 28>;"MAILING LIST" 
PRINT 
PRINT "NAME"; SPCC 18);"STREET"; 
SPCC 16);"CITY, STATE,ZIP" 

PRINT "--------------
PRINT "~--------~ 

"· , 
ti. , 

PR I NT "-----------------" 
PRINT 
PLX = 6: RETURN: REM •• Reset printed 
line counter 

15989 REM 
15990 REM ••• Display welcome and set up disk ••• 
15991 REM 
16000 HOME 
16010 VTAB 2: HTAB 5: PRINT LEFTS CTLS,31): 

REM •• Draw top line 
16020 VTAB 5: HTAB 6: PRINT "Welcome to 

Mailing-List Print" 
16030 VTAB 10: HTAB 12: PRINT "Just a minute ••• " 

Figure 11-7. Random-access Mailing-List Print program (continued) 



322 I Apple II User's Guide 

16040_ VTAB 16: HTAB 9: PRINT "A Forrest 
Lake Program" 

16050 HTAB 5: PRINT LEFTS CBLS,31): REM •• Draw 
bottom line 

16060 PRINT DS;"RENAME ";FILES;",";FILES: 
REM •• See if file exists 

16070 RETURN 
17-989- REM _ 

< 17 9:~ 0 RE M ••• Re a ·d R e c o r d. •-~ 
1'7'-9:91 REM 
t~bo,o VTAB 2u HTAB_ 3:- PR-l'NT "Readin.g· 
- record •i.;;R e,c·R D; '' f r:c>in: .disk • .-."; _$-'P:·~ l. 5;). · 
_ ~~-Q1.Q PR 1.N T: - J. f . t::N . < , :> , 5-_ nt E": Pit I NJ J~•i";R'~~LQ 

•• ~ ULE$:;••·,~R ~·-; R~E_'CR\D -·· , , . . __ . -.··-.-.. - .. ·-···-·· ... · _ 
j:$ip.a'.Q' -Vif'A'EI ·. 2l/: :,t:fTA'~- 3,·9= -'.RiE.,,:: i~~~:F (:'OmQ$i:~;:t!.<l1N.P'..~iT· 

''fea·ture·i• :-; 
1:'1lQ.3Q IF EN < > 5 TH~N IN~U.T 

• 111• ;NA.M~$,STR;EETS;C~;'FY$-,SES,ZIPS' 
1i8.0.40 PR:INT -D:S::. REM •• D'.eac;,:ttvate -READ- .C:O.m~ma,n.d, 

- .1ta(J'S'.o· I F N ~\fl.ES ;: , ..... T~H E ti·- -~ N : 5 : R E'M •• 1i a.n-tft:e 
__ i : nonoi.:st:e.',lt. r~cords, ,, .. · . . ____ . .. -
~!:8.0'60: ,fR·x_:. :;:·-:g"~:_:t~'R~,' # ~l: .. .;$:()s,~:s, .3~1;:00:::-
.... -"_·n .-_ .,te,, •"11.·a:t,,~rr.o i sp:l~(Y:~'~?~-i$' .·-.- .. · .' :.· , . ·:~.;·~ .. ···L·.·a··_··.:g·_ •• -.'--.·.' 1·.·._-.:.: __ •. -.'~.--,·.-.-~ 
11~~U'.l~,O -,C·H:At-jG·~1p;_'::; o; Ri;M: -.,c.::.Rg$,:t_ c,h'a.ntioe ... ';:IJl~i.t:e ;1· __ . •• 

,::ta;o9~o R:e ru·R-N - · 
- 1<i9-89 REM. - . 

19990 REM ••• GetEntry ••• 
19991 REM 
20000 HTX = PEEK C36) + 1: REM •• Cursor column 
20010 NT RYS = "": REM •• Empty entry 
20020 CLX = LEN CNTRYS): REM •• Current entry 

length 
20030 HTAB HTX: PRINT NTRYS; 
20040 IF MLX > CLX THEN PRINT LEFT$ 

CEFS,MLX - CLU;: REM •• Fi LL unused entry 
field 

20050 HTAB HTX + CL%: GOSUB 30000: REM •• Get one 
character 

20060 IF CS= CHRS C127> AND CLX < = 1 THEN 20010: 
REM •• Delete key with empty entry? 

20070 IF CS = CHRS C127) THEN NTRYS = LEFTS 
CNTRYS,CL% - 1): GOTO 20020: REM •• Delete 
key? 

20080 IF CS = CHR$ C24) THEN 20010: REM •• Control
X means cancel 

20090 IF CS = CHRS C13) THEN PRINT 
SPCC ML% - CLX>;: RETURN: REM •• Return 
means done 

Figure 11-7. Random-access Mailing-List Print program (continued) 



Programming Disk Data Ries I 323 

20100 IF C$ >=""AND C$ <=., ..... AND CLX < MLX 
THEN NTRY$ = NT RYS + CS: REM •• Add val; d 
characters ;f room 

20110 GOTO 20020: REM •• Get another keystroke 
20989 REM 
20990 REM ••• GetYesNo ••• 
20991 REM 
21000 HTX = PEEK C36) + 1 :VTX = PEEK C37) + 1: 

REM· •• Cursor posH;on 
21010 If CS= "Y" OR CS = "y" OR CCS = CHRS C8) 

AND NTRYS = "NO") THEN VTAB VTX: HTAB HTX: 
PRINT "<YES> No ";:NTRY$ ="YES" 

21020 IF CS= "N" OR CS= "n" OR CC$= CHRS C21) 
AND NTRY$ ="YES") THEN VTAB VT%: HTAB HTX: 
PRINT" Yes <NO>";:NTRY$ = "NO" 

21030 VTAB 19: HTAB 3: PRINT "Type Y for Yes or 
N for No," 

21040 HTAB 3: PRINT "or press <-- or --> 
to change." 

21050 HTAB 3: PRINT "Then press RETURN. "; 
21060 GOSUB 30000: REM •• GetChar 
21070 IF CS="" THEN CS= CHRS C21): 

REM •• Accommodate 80-col. card "feature" 
21080 If CS<> CHR$ (13) THEN 21010: REM •• Only 

RETURN conf;rms 
21090 FU = 19:LRX = 21: GOSUB 30100: 

REM •• ClearDhplayL;nes 
21100 RETURN 
21989 REM 
21990 REM ••• Get F; e ldNumber ••• 
21991 REM 
22000 VTAB 19: HTAB 3: PRINT "To select a fhld, 

type a number or " 
22010 HTAB 3: PRINT "press UP-ARROW or 

DOWN-ARROW." 
22020 HTAB 3: PRINT "Then press RETURN. "; 
22030 GOSUB 30000: REM •• GetChar 
22040 IF C$ = CHRS C10) AND FIELD% < LFX THEN 

GOSUB 23500:FIELDX = FIELD% + 1: GOSUB 
23000: REM •• Down-arrow key 

22050 If CS= CHR~ C11> AND FIELD%> 1 THEN 
GOSUB 23500:FIELDX = FIELD% - 1: 
GOSUB 23000: REM •• Up-arrow key 

22060 IF CS > = "1" AND CS < = STRS CLFX> THEN 
GOSUB 23500:FIELD% = VAL (CS): GOSUB 23000: 
REM •• D;g;t key 

22070 IF CS<> CHRS C13) THEN 22030: REM •• Only 
RETURN cont; rms 

Figure 11-7. Random-Access Mailing-List Print program (continued) 



324 I Apple II User's Gulde 

22080 FRX = 19:LRX = 21: GOSUB 30100: 
REM •• ClearDisplayLines 

22090 RETURN 
22989 REM 
22990 REM ••• Se le ct Field ••• 
22991 REM 
23000 VTX = PEEK C37) + 1 :HTX = PEEK C36) + 1: 

REM •• cursor location 
23010 VTAB FRXC1,FIELDU: HTAB FCXC1,FIELDX>: 

PRINT FDSC1,FIELDU;: REM •• Display selected 
description 

23020 VTAB VTX: HTAB HTX: REM •• Reset cursor 
23030 RETURN 
23489 REM 
23490 REM ••• DeselectField ••• 
23491 REM 
23500 VT% = PEEK (37) + 1 :HT% = PEEK (36) + 1: 

REM •• Cursor location 
23510 VTAB FRXC2,FIELDU: HTAB FCXC2,FIELD%>: 

PRINT FD$~2,FIELDX>;: REM •• Display 
deselected description 

23520 VTAB VTX: HTAB HTX: REM •• Reset cursor 
23530 RETURN 
29989 REM 
29990 REM ••• GetCharacter ••• 
29991 REM 
30000 GET CS: REM •• Wait for keystroke 
30010 RETURN 
30089 REM 
30090 REM ••• ClearDisplaylines ••• 
30091 REM 
30100 FOR ROW = FR% TO LRX 
30110 VTAB ROW: HTAB 2: PRINT SPCC 37>; 
30120 NEXT ROW 
30130 RETURN 
30189 REM 
30190 REM ••• DisplayBox ••• 
30191 REM 
30200 VTAB TX: HTAB LX + 1 
30210 PRINT LEFTS CTLS,RX - LX - 1>;: 

REM •• Top line 
30220 FOR ROW= TX+ 1 TO 8%: REM •• Side lines 
30230 VTAB ROW: HTAB LX: PRINT SL$; 
30240 HTAB RX: PRINT SL$ 
30250 NEXT ROW 
30260 VTAB BX: HTAB L% + 1: PRINT 

LEFTS CBLS,RX - LX - 1>;: REM •• Bottom line 
30270 RETURN 

Figure 11-7. Random-access Mailing-List Print program (continued) 



Programming Disk Data Ales I 325 

MACHINE LANGUAGE (BINARY IMAGE) 
DISK FILES ____________ _ 

ProDOS supports machine language and binary image (graph
ics) files. These files are shown with a BIN file type code next to 
the file in a ProDOS disk directory, or the letter B in a DOS 3.3 
catalog. Both low- and high-resolution graphics images can be 
stored on disk for later recall and display. Machine language 
programs can be loaded and executed directly, or they can be 
called by BASIC programs using the CALL statement or USR 
function. 

ProDOS and DOS 3.3 have three commands that are specifi
cally designed for binary files. They are BSAVE, BLOAD, and 
BRUN. The function of each command corresponds to its nonbi
nary equivalent-SAVE, LOAD, and RUN. With ProDOS, the 
BLOAD and BSAVE commands can be used to load and save files 
of any type. 

The BSAVE Command 

BSAVE, as the name implies, saves a binary image on disk. 
Here is an example: 

JBSAVE FILENAME,A378,L21,S6,D2 

Note that there are two parameters not found in other ProDOS 
commands. These parameters are rwt optional; they must be 
specified. The drive and slot numbers are optional, as usual. 

The first parameter, A, is the address parameter; it refers to 
the starting memory address of the binary image to be saved. 
The address may be either a decimal or hexadecimal constant. 
Hexadecimal values must be preceded by a dollar sign. Decimal 
values must be in the range 0-65535. Negative values are 
prohibited. 

The L parameter specifies the length of the binary image to be 
saved. The length is the number of bytes in the image. It may be 
specified as a decimal or hexadecimal number, with hexadecimal 
values preceded by a dollar sign. The length must be in the range 
0 through 65535 with ProDOS (1 through 32767 with DOS 3.3), 
or an error message will be displayed. 

With ProDOS, instead of specifying the length with the L 



326 I Apple II User's Gulde 

parameter, you could specify the ending address in memory with 
the E parameter. The following example is equivalent to the last 
one: 

JBSAVE FILENAME,A378,E399,S6,D2 

Normally, the BSAVE command starts saving at the beginning of 
the file. ProDOS lets you specify an offset by including the B 
parameter. The following example skips over the first 30 bytes of 
the file before it starts saving: 

]BSAVE FILENAME,A378,E399,B30 

Another ProDOS option lets you specify the type of file you want 
saved. All you do is add a comma, the letter T, and the file type 
code. Table 11-1 lists ProDOS file type codes. Any file type listed 
in the table is allowed, not just BIN. However, it is your responsi
bility to make sure the contents of the file are consistent with the 
file type you specify. For example, there would be no point in 
specifying type BAS (for "BASIC program") with graphics data 
written in binary. 

The BLOAD Command 

BLOAD retrieves the contents of binary files and loads them 
into memory. The BLOAD command looks like this: 

JBLOAD FILENAME,A378,B30,L21 

Table 11-1. ProDOS File Type Codes 

File Code Meaning 

DIR Directory 
TXT Human-readable letters, digits, and symbols 
BAS Applesoft BASIC program 
VAR Applesoft BASIC variables 
BIN Machine code or data 
REL Machine code that can be loaded anywhere in memory 
$Fn User- (programmer-) defined type number n 
SYS System program or data 



Programming Disk Data Ales / 327 

With ProDOS, all the parameters available with the BSAVE 
command can be used with the BLOAD command: A for start
ing address, L for length or E for ending address, T for type, D 
for drive number, and S for slot number. With BLOAD, however, 
all of these parameters are optional. DOS 3.3 also allows a 
volume number parameter, V, but does not allow the L, E, and T 
parameters. 

BLOAD requires only a file name. If the starting address is 
absent, the image will be loaded starting at the address that was 
specified when the image was saved. Machine language pro
grams may not function properly if they are loaded into the 
wrong memory addresses. 

Unlike the LOAD command, BLOAD will not erase programs 
and data values that reside in the memory locations where the 
image will be stored. Only those locations within the BLOAD 
range are affected; no other memory values are changed. 

No error will occur if you specify read-only memory (ROM) 
locations as part of the BLOAD range. The ROM locations will be 
unchanged, of course. 

The BRUN Command 

BRUN is identical to BLOAD except that after the file has 
been loaded, BRUN executes a machine language JMP (jump) 
instruction to the starting address. If no address is specified, the 
jump is to the address from which the image was saved. The fol
lowing is an example of BRUN: 

]BRUN FILENAME,A378 

The BRUN command allows several optional parameters: A 
for starting address, D for drive number, and S for slot number. 
With ProDOS, you can also specify L for length or E for ending 
address, and T for type. If the starting address is missing, the file 
is loaded and run starting at the address from which it was 
saved. If the L and E parameters are absent, the whole file is 
loaded. 

Use BRUN only with files that contain machine language pro
grams. If you use it with a BASIC program file, an error mes
sage appears. The results are unpredictable if you use it with 
graphics or other data and may cause the Apple II to lock up, 
forcing you to restart with CONTROL-OPEN APPLE-RESET. 



328 I Apple II User's Guide 

THE PRODOS SMART RUN COMMAND ___ _ 

If you're not sure which type of program resides in memory, 
use the ProDOS - command. That's right, the command is a dash 
(the HYPHEN key). It is a smart run command that can deter
mine whether the file is a BASIC program, a machine language 
program, or an EXEC command file. Here is an example: 

]-FILENAME 

The - command has only two options: drive and slot numbers. 
None of the options available with RUN, EXEC, or BRUN are 
available with the - command. 

THE DOS 3.3 MAXFILES COMMAND ____ _ 

The DOS 3.3 MAXFILES command allows you to specify the 
maximum number of files that may be open at any one time. 
Each open file reserves 595 bytes of memory for use as a file 
buffer. There are two 256-byte sections in each buffer, one for 
reading and the other for writing. The remaining 83 bytes are 
used for housekeeping information. The following example speci
fies a maximum of eight files: 

lMAXFILES 8 

The number of files must be an integer from 1 to 16. Initially, 
three buffers are allocated. MAXFILES may be set higher if you 
intend to use more than three files simultaneously. MAXFILES 
may be set lower if you need those extra bytes of memory for your 
BASIC program. 

All DOS 3.3 commands except PR#, IN#, and MAXFILES 
require a file buff er to execute. Thus, if you have opened disk 
files up to the limit and then use a RENAME command, the 
error NO BUFFERS AVAILABLE occurs. No buffer is required 
for commands used outside of the disk context, however (cassette 
LOAD, for example). 

When a MAXFILES command is executed in immediate 
mode, Integer BASIC programs are erased and Applesoft strings 
become garbled. You should therefore execute MAXFILES 
before loading or running a program. MAXFILES also disables 
the RENUMBER program. 



Programming Disk Data Flies I 329 

MAXFILES may be executed within Applesoft programs if 
preceded by the usual prefix character (ASCII code 4) in a 
PRINT statement. MAXFILES will cause GOTO, GOSUB, and 
other instructions to malfunction unless it is the first statement 
in the program. In order to avoid destroying string values, use 
MAXFILES as follows: 

J1 REM First use MAXFILES command 
J2 PRINT CHR$C4>;"MAXFILES 9" 
J3 REM Then begin regular program 

You can use MAXFILES in Integer BASIC only in immediate 
mode. ProDOS manages file buffers automatically, so it has no 
MAXFILES command. 

THE DOS 3.3 MON AND NOMON COMMANDS_ 

The MON command allows you to monitor the information 
going to and coming from the disk. MON uses three parameters, 
as shown in the following example: 

JMON C I 0 

MON parameters specify the type of information to be display~d. 
The letter C causes commands to the disk to be displayed. The 
letter I causes input from the disk to be displayed. The letter 0 
causes output to the disk to be displayed. 

The NO MON command cancels the effect of the MON com
mand. NOMON uses the same three parameters MON uses, but 
the NOMON parameters specify which data is not to be moni
tored. For example, assuming you have issued MON C I 0, the 
command NOMON 0 will cancel monitoring of output to the disk, 
but input from the disk and DOS 3.3 commands will continue to 
be displayed. 

The MON and NOMON parameters may appear in any order 
and in any combination. Blank spaces and commas between the 
parameters are optional. At least one parameter must be present 
or the command will be ignored. MON remains in effect until a 
NOMON, INT, or FP command is executed, or until DOS 3.3 is 
restarted. 



Graphics 12 

The Apple II's color graphics can add another dimension to the 
programs you use, as well as to those you might write yourself. 
Graphics are not difficult to master, especially in a high-level 
language like BASIC. This chapter explains how graphics dis
plays are produced and shows some practical and recreational 
applications. 

DISPLAY MODES __________ _ 

The Apple II display screen has four modes of operation. 
PRINT statements always display in text rrwde using letters, dig
its, and symbols from the Apple II character set (see Appendix 
E). The other three modes display points and lines that you can 
combine to create graphics. The chief difference between the 
three graphics modes is the size and number of points each can 
fit on the display screen. Low-resolution graphics uses larger 
points than do high-resolution graphics and double high-resolution 
graphics, and consequently has room on the screen for fewer 
points. Another difference is the number of colors available on the 
screen simultaneously; low-resolution and double high-resolution 
graphics both permit up to 16, and high-resolution allows six. In 
all graphics modes the bottom of the screen can be reserved for a 
four-line text window, where you can immediately see mode 
commands or display characters. 

331 



332 I Apple II User's Guide 

LOW-RESOLUTION GRAPHICS ______ _ 

Low-resolution graphics mode divides the screen into 40 
columns and 48 rows (see Figure 12-1). Each coordinate (inter
section of a row and column) appears as a small rectangle on the 
display screen. There are 1920 coordinates in all ( 40 columns 
times 48 rows), and you can assign any one of 16 colors to each 
coordinate. Table 12-1 shows the available hues. You don't have to 
know the inner workings of the Apple II in order to use low
resolution graphics; a working knowledge of programming in 
BASIC is sufficient to get you started. 

Selecting Low-Resolution Mode 

When using BASIC, you switch to low-resolution graphics 
mode from text mode by using the following statement: 

]GR 

Once this statement executes, the display screen goes black 
except for four lines of text at the bottom. This lower area of the 
screen is called the text window. With the text window at the bot
tom of the screen, the space available for low-resolution graphics 

Figure 12-1. Low-resolution graphics screen 



Graphics I 333 

Table 12-1. Low-Resolution Graphics Colors 

Color Number Color Number 

Black 0 Brown 8 
Magenta 1 Orange 9 
Dark Blue 2 Grey #2 10 
Purple 3 Pink 11 
Dark Green 4 Light Green 12 
Grey #1 5 Yellow 13 
Medium Blue 6 Aqua 14 
Light Blue 7 White 15 

shrinks from 48 to 40 rows. You can use the GR statement more 
than once in a program, even in low-resolution graphics mode, as 
a means of clearing the screen. 

You can activate the 80-column adapter if you wish; doing so 
has no effect on the graphics area. The text window at the bottom 
of the screen can be 40 or 80 characters wide. However, the small 
cqaracters used when the width is 80 are almost impossible to 
read on most television sets. 

Full-Screen Graphics 

After executing the GR statement, you can eliminate the text 
window in order to display graphics in the last eight lines. You do 
this by entering 

J POKE -16302,0 

The text window disappears and is replaced by graphics. Any
thing you type in immediate mode will still appear in the text 
window, but because the Apple II is now using that area of the 
screen for graphics, the characters will appear as graphics 
points, not characters. Commands will still work properly as long 
as you type them correctly. 

To clear all 48 rows of the graphics screen, including the four
line text window, use the following command: 

]CALL -1998 

This command works best in programmed mode. In immediate 
mode the Apple II automatically displays the graphics equiva-



334 I Apple II User's Guide 

lents of the Applesoft prompt character (a yellow square), the cur
sor (a blue or flashing white square), and a row of blank spaces (a 
gray line). 

Restoring the Text Window 

If the Apple II is in full-screen graphics mode, you can restore 
the text window in two ways. To clear the graphics screen and 
restore the text window at the same time, use the GR statement. 
If you want to restore the text window without altering the first 
40 rows of graphics, enter the following statement: 

]POKE -16301,0 

Once executed, this statement reopens the text window at the 
bottom of the graphics screen. You may see some strange charac
ters on the text window where graphics dots used to be. The 
characters are caused by the Apple II interpreting the graphics 
dots as ASCII character codes. You can clear the text window 
without affecting the graphics area with a HOME or CALL -936 
statement. 

Returning to Full-Screen Text 

To leave low-resolution graphics mode and return to full-screen 
text mode, use the command TEXT. It resets the display from 
graphics to characters. The screen will probably be full of odd 
characters caused by Apple II interpreting graphics dots as text. 
Clear the text sceen with the HOME or CALL -936 statement. 

Color Selection 

In Table 12-1, each color listed has a corresponding number 
from 0 to 15. It is this number that you use in a COLOR statement 
to set the current low-resolution hue. For example, the following 
statement sets the drawing color to yellow: 

lCOLOR = 13 

If you neglect to select a color, the Apple II chooses black, 
equivalent to COLOR 0, as the default color. Executing a GR 
command always resets the color number to O. 



Graphics I 335 

Point Plotting 

The PLOT statement places a single graphics dot-actually a 
small rectangle -on the Apple II display screen at the coordi
nates you specify. 

The statement 

]PLOT 23,18 

illuminates the graphics point at the 24th column and 19th 
row in the hue selected by the last COLOR statement executed. 
The row number ranges from 0 to 47, and the column value from 
0 to 39. If you exceed these limits in a PLOT statement, you will 
see an error message and your program will stop. As with any 
low-resolution graphics statement (except GR), you can replace 
constants with variables or expressions: 

]PLOT Y /2 + 12, X-4 

Diagonal Lines 

The following Applesoft program uses all of the low-resolution 
graphics statements discussed so far in this chapter. It plots a 
diagonal line from the upper-left corner to the lower-right corner 
of the screen. 

J10 REM •• Draw a diagonal Line across the 
Low-res screen 

J20 GR 
J30 HOME 
]40 COLOR= RNO (16> * 16 + 1 
JSO FOR Y = 0 TO 39 
J60 PLOT Y ,Y 
J70 NEXT Y 
J80 GOTO 40 

The display screen will look like Figure 12-2, except that the 
diagonal line will change colors randomly. Since the program 
runs continuously, you must press CONTROL-C to interrupt it. 

To use this program in Integer BASIC, change line 40 as 
follows: 

> 40 C 0 L 0 R = RN 0 ( 1 6) + 1 



336 I Apple II User's Guide 

Figure 12-2. A low-resolution diagonal line 

Horizontal Lines 

The HLIN statement allows you to draw lines of varying 
lengths from left to right on the low-resolution graphics screen. 
The following statement draws a horizontal line at the extreme 
top of the screen, from the left margin to the right margin: 

JHLIN 0,39 AT 0 

HLIN stands for horizontal line. The first two numbers specify 
the columns between which the line is drawn. The last number 
specifies at which row the line is drawn. 

Neither of the column numbers can be negative, and both must 
be less than 39. The row number cannot be negative or larger 
than 47. Numbers outside the limits in an Applesoft program 
cause an error message to appear. In Integer BASIC, the results 
are unpredictable. 

Vertical Lines 

The VLIN (or vertical line) statement draws a line in a selected 
color from one row to another at a specified column. For example, 
the following VLIN command will draw a line starting in row 12 



down and ending in row 30, at column 33. 

]VLIN 12,30 AT 33 

Graphics I 33 7 

In a VLIN command, row numbers must be between 0 and 39, 
and column numbers must be between 0 and 47. If any value is 
outside of this range, an error message is displayed. 

Background Color 

By repeatedly using the VLIN statement, you can fill the entire 
screen with one color, effectively changing the background color 
on which subsequent statements will draw lines and plot points. 
The following program illustrates this: 

l10 REM •• Low-res background color demo 
l20 GR 
l30 INPUT "BACKGROUND COLOR'? ";C 
]40 COLOR= C 
]50 GOSUB 1040 
]60 GOTO 30 
J1000 REM •• Subroutine to fi LL lo-res 
J1010 REM screen with one color. 
J1020 REM Assumes col~r has already 
]1030 REM been set. 
]1040 FOR J = 0 TO 39 
]1050 VLIN 0,39 AT J 
]1060 NEXT J 
]1070 RETURN 

In this program, the subroutine beginning at line 1040 fills in 
the screen. It assumes the background color was set with a 
COLOR statement before it was called. As written, the VLIN 
statement at line 1050 does not draw into the text window. 

Random Colors Program 

This program shows how you can create a simple animated 
pattern of randomly changing colors with just one HLIN state
ment and one VLIN statement. It employs a full-screen version of 
the subroutine just introduced to set a background color. To halt 
the program, press CONTROL-C. 

J10 REM •• Low-res HLIN and VLIN demo 
J20 GR 
J30 POKE -16302,0: REM •• Full screen 



338 I Apple II User's Gulde 

J40 COLOR= 14: GOSUB 1040: REM •• Background color 
]50 REM •• Use random colors and locations 
]60 COLOR= RND C1) * 16 + 1 
l70 HLIN 0,39 AT RND C1) * 48 
J80 COLOR= RND C16> 
]90 VLIN 0,47 AT RND C1> * 40 
J100 GOTO 60 
J1000 REM •• Subroutine to fill lo-res 
J1010 REM screen with one color. 
J1020 REM Assumes color has already 
l1030 REM been set. 
l1040 FOR J = 0 TO 39 
]1050 VLIN 0,47 AT J 
J1060 NEXT J 
J1070 RETURN 

Determining Point Color 

The SCRN function is a bit more subtle than the low-resolution 
graphics statements presented so far. Suppose you want the com
puter to figure out what color is displayed at a certain point on 
the screen. SCRN does this. The statement 

lX = SCRNC12,24) 

assigns the color number of the point at column 12, row 24 to 
the variable X. The color passed back to the variable is numbered 
from 0 to 15; the number corresponds to one of the low-resolution 
colors listed in Table 12-1. For example, if you enter the following 
immediate mode statements 

lGR 
lCOLOR=14 
J PLOT 12, 12 
JPRINT SCRNC12,12) 

the Apple II responds with 

14 

l8 

Future Projections Program 

Many programs that display a list of values could display a 
graph instead. Graphing is one practical application for low-



Graphics I 339 

resolution graphics. For example, a program that makes future 
projections based on past amounts could display the exact amount 
of each projection, or it could draw a graph that illustrates the 
general trend. In this case, a graph is clearly superior because 
the projections are only estimates, and the trend is more impor
tant than the exact numbers. 

There are several statistical methods used to calculate future 
projections, and there are different circumstances that dictate 
using one rather than another. One popular method uses a tech
nique called exponential regression, which projects the increase 
or decrease of anything with an exponential growth factor. A typ
ical application is a birth or reproduction rate, and that can be 
extended to include such related items as sales, income, and 
patronage. 

Figure 12-3 displays three output alternatives for a future pro
jections program: (a) a list of numbers, (b) a scatter graph, and 
(c) a bar graph. Figure 12-4 lists a program that uses exponen
tial regression to make projections. To use this program, you 
must know several actual amounts that were measured at equally 
spaced points in time, like once a month, once a week, or once an 
hour. The program will calculate a growth factor based on those 

Ar10UHT 1 125 
Ar10UHT 2 90 
Al10UHT 3 103 
Ar10UHT 4 85 
A110UHT 5 61 
AP10UHT 6 95 
AMOUNT 7 100 
AMOUNT 8 110 
AMOUNT 9 130 
AMOUNT 10 87 
AMOUNT 11 98 
AMOUNT 12 99 
AMOUNT 13 99 
AMOUNT 14 100 
AMOUNT 15 100 
AMOUNT 16 100 
AMOUNT 17 101 
AMOUNT 18 101 
At10UHT 19 101 
AMOUNT 20 102 

<GROWTH RATE= .34%) 
<PRESS ANY KEY TO CONT I HUE) 

Figure 12-3a. Program output alternatives
list of numbers 



340 I Apple II User's Guide 

Figure 12-3b. Program output alternatives
scatter graph 

Figure 12-3c. Program output alternatives -bar graph 

past amounts and will project future amounts by using the same 
time scale. 

The program has been kept simple by using simple keyboard 



Graphics I 341 

entry techniques that are not up to the standards discussed in 
Chapter 9. The program user must divide up the analysis period 
into past and future (lines 1200-1220) and then must enter each 
past amount (lines 1230-1340). During the entry phase, the pro
gram calculates some cumulative amounts that it will use later to 
compute the growth factor (lines 1300-1330). 

Following the input phase, the program calculates the growth 
factor and rounds it to the nearest hundredth (lines 1400-1420). 
Then it uses that factor to compute projections (lines 1500-1520). 

For its first display of results, the program prints the exact 
past and future amounts (lines 1600-1650). It waits for the user to 
press a key before proceeding to the next display (line 1670). 

Before the program can display a graph, it must compute a 
scaling factor. It will use the scaling factor to make sure the 
highest point fits on the screen. First it finds the largest value 
among the past and future amounts (lines 2000-2060). Then it 
computes a scaling factor by dividing the number of rows avail
able for graphing, 37, by the largest value (line 2080). 

The program prepares for graphing by setting low-resolution 
graphics mode and drawing a purple border above and below the 

50 DIM AMC21) 
60 P1 = O:P2 = O:P3 = O:P4 = O:P5 = 0 
1010 HOME 
1100 PRINT 
1110 PRINT " THLS PROGRAM USES AN EXPONENTIAL" 
1120 PRINT "REGRESSION TECHNIQUE TO ANALYZE PAST" 
1130 PRINT "AMOUNTS AND MAKE FUTURE PROJECTIONS." 
1140 PRINT "YOU SPECIFY PAST AMOUNTS AND 

THE NUMBER" 
1150 PRINT "OF PAST AND FUTURE AMOUNTS. THE TOTAL" 
1160 PRINT "NUMBER OF AMOUNTS CANNOT EXCEED 20." 
1170 PRINT 
1200 INPUT "HOW MANY PAST AMOUNTS? ";PT% 
1210 INPUT "HOW MANY AMOUNTS TO PROJECT? ";FT% 
1220 IF PT%+ FT%> 20 THEN PRINT: PRINT "ONLY 20 

AMOUNTS, PLEASE!": GOTO 1170 
1230 PRINT 
1240 PRINT "NOW ENTER PAST AMOUNTS:" 

Figure 12-4. Average Growth Rate program 



342 I Apple II User's Gulde 

1250 PRINT 
1260 FOR NB = 1 TO PTX 
1270 PRINT "AMOUNT ";NB; 
1280 INPUT ":";AM(NB) 
128S REM 
1290 REM •• Accumulate intermediate exponectial 

regression values 
129S REM 
1300 X =NB - 1:Y =LOG CAMCNB)) 
1310 P1 = P1 + X:P2 = P2 + Y 
1320 P3 = P3 + x A 2:P4 = P4 + y A 2 
1330 PS = PS + X * Y 
1340 NEXT NB 
134S REM 
1390 REM •• Calculate coefficients of 

exponential equations 
1395 REM 
1400 B = CPTX * PS - P2 * P1) I CPTX * 

P3 - P1 A 2) 

1410 A = CP2 - B * P1) I PT% 
1420 RT= INT CC EXP CB) - 1) * 10000) I 100 
1485 REM 
1490 REM •• Project future amounts 
1495 R~M 
1500 FOR NB = PTX + 1 TO PTX + FTX 
1S10 AMCNB) =INT (EXP (A)* EXP CB* CNB - 1)) 

+ 0.5) 
1520 NEXT NB 
1585 REM 
1590 REM •• Display exact amounts 
159S REM 
1600 HOME 
1610 FOR NB = 1 TO PTX + FTX 
1640 PRINT "AMOUNT ";NB; TAB( 11>;AMCNB) 
1650 NEXT NB 
1660 PRINT TAB( 18);"CGROWTH RATE:";RT;"U" 
1670 PRINT TAB( 6>;"CPRESS ANY KEY TO CONTINUE)": 

GET AS 
198S REM 
1990 REM •• Compute vertical scaling factor 

· 1995 REM 
2000 MN = AIHC1> 
2010 MX = AMTC1> 
2020 REM •• Find max. and min. amounts 
2030 FOR NB = 1 TO PTX + FTX 

Figure 12-4. Average Growth Rate program (continued) 



2040 IF AM(NB) > MX THEN MX = AM(NB) 
2050 IF AM(NB) < MN THEN MN = AMCNB) 
2060 NEXT NB 

Graphics I 343 

2070 REM •• Scale so both max. and min. amounts fit 
2080 SC = 37 I MX 
2085 REM 
2090 REM •• Display scatter graph 
2095 REM 
2100 GR: COLOR= 3: REM •• Purple border 
2110 HLIN 0,39 AT 0: HLIN 0,39 AT 39 
2150 FOR NB = 1 TO PTX + FTX 
2160 COLOR= 10: IF NB > PTX THEN COLOR= 11: 

REM •• Make projections different color 
than past 

2170 PLOT NB* 2 - 1,38 - AMCNB) *SC 
2180 NEXT NB 
2190 GOSUB 2490 
2295 REM 
2300 REM •• Display bar graph 
2305 REM 
2310 GR: COLOR= 3: REM •• Purple border 
2320 HLIN 0,39 AT 0: HLIN 0,39 AT 39 
2330 FOR NB = 1 TO PTX + FTX 
2340 COLOR= 10: IF NB > PTX THEN COLOR= 11: 

REM •• Make projections different color 
than past 

2350 VLIN (38 - AMCNB> * SC),38 AT NB * 2 - 1 
2360 NEXT NB 
2370 GOSUB 2490 
2390 TEXT: HOME 
2400 END 
2485 REM 
2490 REM •• Subroutine to print data in text window 
2495 REM 
2500 HOME: REM •• Clear text window 
2510 PRINT "1"; TABC CPTX + FTX) * 2 - 1>; 
2520 IF PTX +FT%< 10 THEN PRINT" ";PTX + FTX: 

GOTO 2540 
2530 PR!NT PTX + FT% 
2540 VTAB 22: PRINT "AVERAGE GROWTH 

RATE IS ";RT;"%" 
2550 PRINT "VALUES RANGE FROM ";MN;" TO ";MX 
2560 HTAB 8: INVERSE: PRINT "PRESS ANY KEY TO 

CONTINUE.";: NORMAL: GET A$ 
2570 RETURN 

Figure 12-4. Average Growth Rate program (continued) 



344 I Apple II User's Gulde 

graph area (lines 2100 and 2110). Next, it uses a loop to plot all of 
the points (lines 2150-2180). It plots past amounts in gray and 
future amounts in pink (line 2160). The magnitude of the amount 
determines on which row the point will appear (line 2170). In the 
text window at the bottom of the screen, a subroutine displays the 
amount of the growth factor and the range of values (lines 2500-
2570). Once again, the program waits for the user to press a key 
before proceeding to the next display (line 2560). 

Program logic for the bar graph is exactly the same as for the 
scatter graph (lines 2300-2370), except that the program uses a 
VLIN statement to draw each bar (line 2350). In this case, the 
magnitude of each amount determines how tall the bar will be. 

HIGH-RESOLUTION GRAPHICS ______ _ 

The Apple II's high-resolution graphics mode trades some color 
flexibility for sharper drawing detail. Resolution in this mode is 
280 horizontal positions by 192 vertical positions, an increase of 7 
times on the horizontal axis and 4 times on the vertical axis over 
low-resolution. Each position on the screen in high-resolution 
mode is no larger than a dot and is ref erred to as a pixel. 
Although only six colors are available in high-resolution graphics 
mode, you can plot much finer lines than you can in low-resolution 
mode. 

Applesoft has three built-in high-resolution graphics com
mands, HGR, HCOLOR, and HPLOT. In addition, it has several 
dedicated memory locations and built-in machine language sub
routines that you can use with POKE and CALL statements to 
display high-resolution graphics. Some of the memory locations 
and built-in subroutines duplicate the Applesoft commands HGR, 
HCOLOR, and HPLOT, but there are some features that can only 
be controlled by POKE and CALL statements. Integer BASIC 
has no special high-resolution graphics commands, only the 
POKE and CALL statements. 

Selecting High-Resolution Mode 

To switch the display screen to high-resolution graphics mode, 
use the Applesoft command HGR. The screen will go black 
except for the four-line text window at the bottom of the screen. 



Graphics I 345 

The presence of the text window shrinks the vertical dimension 
of the high-resolution area from 192 to 160 positions; the horizon
tal dimension still contains 280 positions. Executing HGR while 
in high-resolution mode clears the screen above the text window. 

You can eliminate the text window with a POKE -16302,0 
command and restore it with a POKE -16301,0 command. Use 
the TEXT command to switch back to text mode or the GR com
mand to switch to low-resolution graphics mode. 

When you switch to high-resolution mode, the cursor may not 
appear in the text window. Don't worry, the cursor hasn't van
ished. The high-resolution screen acts as a curtain over the text 
screen, and the cursor is not advanced to the text window. This 
isn't a problem if the cursor is at the bottom of the screen when 
the switch occurs. To be safe, it is a good idea to include a VTAB 
statement that moves the cursor to the text window after the pro
gram switches to high-resolution mode. If you're working in 
immediate mode, you can advance the cursor to the text window 
by pressing RETURN until you see the command prompt. 

Color Selection 

High-resolution mode has eight color code numbers, but only 
four different colors plus black and white. Table 12-2 lists the 
available colors and their corresponding code numbers. 

The Applesoft HCOLOR statement specifies one of the eight 
color codes used in high-resolution mode. As in low-resolution 
graphics, the default for HCOLOR is 0, which is black. HCOLOR 
does not change the color of any graphics already on the high
resolution screen, nor does it have any effect on low-resolution 
graphics. 

Table 12-2. High-Resolution Graphics Colors 

Color Number Color Number 

Black 0 Black 4 
Green 1 Orange 5 
Purple 2 Blue 6 
White 3 White 7 



346 I Apple II User's Gulde 

-
Points and Lines 

One great advantage of Applesoft high-resolution graphics is 
its ability to plot lines at any angle as well as individual points 
and horizontal or vertical lines. The HPLOT statement can be 
used in three ways. Here is one way: 

JHPLOT 12,12 

This statement plots a single point on the currently selected 
high-resolution page at the intersection of the thirteenth column 
and thirteenth row in the currently selected high-resolution plot
ting color. 

The second use of HPLOT is shown here: 

JHPLOT O,O TO 279,191 

This statement draws a diagonal line from the upper-left 
corner to the lower-right corner of the screen. Using HPLOT 
with two sets of coordinates, as shown in the example, you can 
plot from one point to another on the screen. 

The third use of HPLOT is more sophisticated: 

]HPLOT O,O TO 279,0 TO 279,159 TO 0,159 TO O,O 

This example draws a rectangle around the perimeter of the 
high-resolution screen. Each additional coordinate is used as the 
endpoint of another line segment. All segments are drawn in the 
same color, but you see different colors due to phenomena 
explained in the next section. 

Color Phenomena 

Because of the way televisions generate colors, the Apple II can 
only plot certain colors in odd-numbered columns and other 
colors in even-numbered columns. Even-numbered columns can 
display black, purple, or blue (color number 0, 2, 4, or 6). Odd
numbered columns can display black, green, or orange (color 
number 0, 1, 4, or 5). If you try to plot a green or orange point in 
an even-numbered column, it will be black instead. Attempting 
to plot purple or blue in an odd-numbered column will also yield 
black. 

However, if neither of two adjacent dots in the same row is 
black, both appear white. Therefore, plotting a green point next 



Graphics I 34 7 

to a purple point turns both points white, and the same thing 
happens with orange and blue. Plotting white (color number 3 or 
7) next to green, purple, orange, or blue also makes both points 
white. In fact, you can display white only by plotting two adja
cent non black points. If you set the color to white (color number 3 
or 7) and plot in an even-numbered column with black on both 
sides, the point will appear purple or blue. Likewise, plotting a 
white point in ·an odd-numbered column with black on both sides 
actually produces a green or orange point. 

The Apple II can display six colors in high-resolution graphics 
mode, but it divides them into two palettes. One palette has 
black, green, purple, and white (color numbers 0-3) and the other 
has black, orange, blue, and white (colors 4-7). The Apple II also 
subdivides each high-resolution row into 40 zones of 7 columns 
each. A single zone can only display colors from one of the two 
palettes. Both palettes have white and black, so those colors are 
always available. But a single zone-columns 0 through 6, for 
instance-cannot contain both green and orange or both purple 
and blue. If green and purple points are displayed in a zone and 
you later display either an orange or a blue point in the same 
zone, all of the green points immediately turn orange and the 
purple points turn blue. The reverse is also true: plotting green 
or purple changes any orange or blue points in the same zone to 
green or purple. Table 12-2 identifies the two palettes and their 
colors. 

Background Colors 

Filling the entire screen with a single color is easier in high
resolution graphics mode than in low-resolution mode, although 
it does involve using a CALL statement. To clear the screen to 
black, use this command: -

JCALL -3086 

In order to fill the screen with a color other than black, you 
must set the color you want with an· HCOLOR statement, plot a 
point anywhere, and then use a CALL -3082 statement. The fol
lowing example fills the high-resolution screen with blue: 

J10 HGR 
J20 HCOLOR = 6: REM •• Blue 
J30 HPLOT 1,1: CALL· -3082: REM •• Fi LL screen 



348 / Apple II User's Guide 

Circles 

Applesoft has no command that draws circles, but you can eas
ily write a circle-drawing subroutine with HPLOT. The following 
program draws five concentric circles, each in a different color 
(Figure 12-5a): 

J10 REM •• Circle drawing demo 
J20 HOME: HGR 
J30 X = 140:Y = 90: REM •• Center point 
]40 FOR J = 1 TO 5 
]50 READ R,HC 
]60 HCOLOR= HC: GOSUB 9200 
HO NEXT J 
]80 END 
]100 DATA 80,1,70,2,60,3,50,5,40,6 
]9189 REM 
J9190 REM •• Subroutine to draw circles 
]9191 REM 
]9192 REM 
J91"93 REM 
]9194 REM 
]9195 REM 
]9196 REM 
]9197 REM 
]9198 REM 
]9199 REM 

Parameters are: 
X,Y - center coordinates 
R - radius 

Routine assumes that all 
these parameters are set 
by the calling program. 
This routine also uses the 
variables CX,CY,CT 

]9200 HPLOT X + R,Y: REM •• Plot 1ST point 
]9210 REM •• Now plot all 360 points 
]9220 FOR CT = 0 TO 6.28318531 STEP .0174532925 
]92~0 ex = R * cos (CT):CY = 6 I 7 * R * SIN (CT) 
J9240 HPLOT TO (X + CX),(Y - CY> 
]9250 NEXT CT 
]9260 RETURN 

The subroutine beginning on line 9200 assumes that the screen 
is already in high-resolution graphics mode and that the desired 
color has been set. Variable X must be assigned the column 
number and variable Y the row number for the center of the 
circle. The value of variable R determines the radius of the cir
cle; one unit of radius equals the width of one column. 

The subroutine constructs a circle by plotting 360 individual 
points along the circumference of the circle and by connecting 
the points with short line segments. It uses SIN and COS func
tions to compute the column and row coordinates of each point, 
and compensates for the difference in size between the columns 
and rows by multiplying the row coordinate by a factor of 6/7. 



Graphics / 349 

a 

c d 

e 

Figure 12-5. High-resolution circles (a), octagons (b), hexagons(<:), pentagons 
(cl), squares (e), and discs (j) 



350 / Apple II User's Gulde 

You may notice that it takes about 25 seconds to draw each 
circle, which is rather a long time. The drawing time is con
trolled by the STEP value in the FOR-NEXT loop on line 
9220: larger STEP values mean faster but coarser plotting, and 
smaller values mean finer but slower plotting. For example, 
changing the STEP value to 0.125 draws a fair circle in less than 
four seconds. As the STEP value increases, the number of points 
plotted decreases, making the circle less and less round. When 
the STEP value exceeds about 0.448, the subroutine's drawings 
look less like circles and more like polygons. For example, a value 
of 0. 7853 draws an octagon (Figure 12-5b), 1.047 draws a hex
agon (Figure 12-5c), 1.256 draws a pentagon (Figure 12-5d), and 
1.57 draws a square (Figure 12-5e). 

The large gaps near the 9 o'clock position on green and orange 
circles, and near the 3 o'clock position on purple and blue circles, 
are due to the color phenomenon related to odd-even column 
numbering as described earlier in this chapter. The same phe
nomenon makes white circles appear green in the 3 o'clock posi
tion and purple in the 9 o'clock position. 

The circle-drawing subroutine can draw solid-color discs as 
easily as hollow circles (Figure 12-5.f). All it takes is a simple 
change to the HPLOT statement. Substitute this line in the origi
nal example: 

l9240 HPLOT CX+CX) ,CY+CY) TO X,Y 

Instead of plotting 360 points to define a circle, the subroutine 
will draw 360 lines to produce a disc. Each line runs from one of 
the 360 points along the circumference of the circle to the center 
point. 

Arcs, Rays, and Ellipses 

With a small change, the circle-drawing subroutine can draw a 
half-circle, a quarter-circle, or any other arc. Instead of plotting 
all 360 points around the circumference of a circle, the subrou
tine could plot only those on a designated arc. But how do you 
specify which arc to draw? The answer relies on the fact that 
every circle has 360 degrees, just like a compass. There is one 
small difference, however. A circle starts with 0 degrees at the 3 
o'clock position and goes counterclockwise, with 90 degrees at 12 



Graphics I 351 

o'clock, 180 degrees at 9 o'clock, 270 degrees at 6 o'clock, and 
back around to 3 o'clock for 360 degrees. 

Mathematics measures circles not in degrees, but in radians 
(Figure 12-6). One degree equals 0.0174532925 radians. In fact, 
the circle-drawing subroutine plots points in a loop that goes 
from 0 radians to 6.283183531 radians in steps of 0.0174532925 
radians (line 9220). To draw part of a circle, you need only 
change the starting and ending FOR-NEXT loop values in the 
circle-drawing subroutine. For example, plotting from 0 radians 
to 3.141592654 radians draws a half-circle, from 2.35619449 radi
ans to 3.92699082 radians draws a quarter-circle, and from 4.5 
radians to 5 radians draws a small arc (Figure 12-7). 

There is another feature worth adding to the circle-drawing 
subroutine: the ability to draw a line from the center of the circle 
to either arc endpoint. This can be done by having the subroutine 
draw a ray to an endpoint that is specified by a negative value. Of 
course, the subroutine will have to ignore the signs of the end
points when it draws the arc. Also, since the Apple II treats - 0 
and +Oas the same number, you will have to use -0.001 instead 
of - 0 if you want an arc drawn to the 0-degree endpoint. 

90 

180 Degrees 0 or 360 

270 

3.141592654 

Figure 12-6. Degrees and radians 

1.57079633 

4.71238898 

0 or 
6.28318531 



352 I Apple II User's Guide 

Figure 12-7. Endpoints of sample arcs 

One last refinement to the subroutine will allow you to draw 
ellipses as well as circles. All this requires is specifying the 
aspect ratio of the ellipse, that is, the ratio of height to width. You 
can think of the aspect ratio as a fraction like 1/ 2 or 10/ 3. The 
numerator tells how many rows the subroutine should consider 
equal to the number of rows specified by the denominator. Thus, 
an aspect ratio of 1/2 produces a short, wide ellipse, and an 
aspect ratio of 10/3 yields a tall, narrow ellipse. You can also 
specify the aspect ratio as a decimal fraction, as in 0.5 or 
3.33333333. Since the aspect ratio of a circle is 1, a smaller value 
specifies a short, wide ellipse and a greater value specifies a tall, 
narrow ellipse. 

The improved circle-drawing subroutine is listed in Figure 
12-8. Before a program calls the subroutine, it must set high
resolution graphics mode, choose a color, and assign values to six 
variables: X, Y, R, S, E, and A. Variables X and Y specify the 
center point of the circle or ellipse, and variable R specifies its 
radius. Variable S specifies the starting point of the arc to be 
drawn and variable E the ending point, going counterclockwise. 
Use radians for both S and E. A negative value for S or E yields 
a ray to that end of the arc. Variable A specifies the aspect 
ratio: 1 for a circle, less than 1 for a short ellipse, or greater than 
1 for a tall ellipse. 



8980 REM 
8981 REM 
8982 REM 
8983 REM 
8984 REM 
8985 REM 
8986 REM 
8987 REM 
8988 REM 
8989 REM 
8990 REM 
8991 REM 
8992 REM 
8993 REM 

•• Subroutine to draw circles, 
ellipses, and arcs. 
Parameters are: 

X,Y - center coordinates 
R - radius · 
S - start point (radians> 
E - end point (radians> 
A - aspect ratio 

Graphics I 353 

Draws a ray to neg. start or end point. 
Set hi-res mode, HCOLOR, and assign 
parameter values before calling 
This routine also uses 
variables CA, CB, CX, CY, CT 

8994 REM •• First apply aspect ratio for ellipses 
9000 IF A < = 1 THEN CA = R:CB = CA * A: 

REM •• Short ellipse 
9010 IF A > 1 THEN CB = R:CA = CB * A: 

REM •• Tall ellipse 
9020 REM •• Draw ray to negative start point 
9030 ex = CA * cos ( ABS (S)):CY =CB * 6 I 7 * 

SIN C ABS (S)) 
9040 IF s < 0 THEN HPLOT X,Y TO ex + CX>,CY - CY) 
9050 REM •• Plot First point 
9060 HPLOT ex + CX),CY - CY) 
9070 REM •• Now plot circle 
9080 FOR CT = ABS CS) TO ABS CE) STEP .0174532925 
9090 ex = CA * cos CCT):CY = CB * 6 I 7 * SIN (CT) 
9100 HPLOT TO ex+ CX),CY - CY) 
9110 NEXT CT 
9120 REM •• Draw ray to negative endpoint 
9130 IF E < 0 THEN HPLOT TO X,Y 
9140 RETURN 

Figure 12-8. Circle-drawing subroutine 

The subroutine begins by translating the aspect ratio into ver
tical and horizontal scaling factors (lines 9000 and 9010). Then it 
calculates the column and row coordinates of the starting point 
with COS and SIN functions, applies the aspect-ratio scaling fac
tor to each, and adjusts the height to compensate for the rectan
gular dimensions of the display screen (line 9030). If the starting 
point value is negative, the subroutine draws a ray to it (line 
9040). Next, it plots the starting point (line 9060). After that, it 
uses a loop to plot each point on the arc, using an ABS function to 
ignore the sign of the starting and ending points (lines 9080-9110). 



354 I Apple II User's Guide 

If the ending point value is negative, the subroutine draws a line 
from it to the center of the circle (line 9130). 

Pie Chart Program 

The classic practical application of circles and rays is the pie 
chart (Figure 12-9). The circle-drawing subroutine (Figure 12-8) 
makes it easy to create pie charts. For example, the program 
listed in Figure 12-10 constructs a pie chart with as many as 25 
wedges. 

The program begins by dimensioning an array to hold the size 
of each wedge and by assigning the number of radians in a half
circle to variable PI (lines 10 and 20). It then clears the display 
screen and inputs the number of wedges (lines 30-50). Next it 
inputs the amount of each wedge, keeping a running total of the 
wedge amounts (lines 7(}-110). 

With the input finished, the program sets high-resolution 
graphics mode and color, clears the text window, and assigns 
values to parameters for the circle-drawing subroutine (lines 13(}-
180). It starts the first wedge at 0 radians. Only variables S and 
E, the arc starting and ending points, will change during con
struction of the pie chart. 

Figure 12-9. Pie chart 



10 DIM PTC25) 
20 PI = 3.141592654 
30 TEXT: HOME 
40 REM •• Input all amounts 
50 INPUT "HOW MANY PARTS? ";N 

Graphics I 355 

60 IF N < 0 OR N > 25 THEN PRINT: PRINT "NO MORE 
THAN 25 PARTS, PLEASE!": PRINT: GOTO 50 

70 FOR J = 1 TO N 
80 PRINT "SIZE OF PART ";J; 
90 INPUT "? ";PTCJ) 
100 TT= TT+ PTCJ): REM •• Keep running total 
110 NEXT J 
120 REM •• Prepare to display pie chart 
130 HGR: HCOLOR= 3: HOME 
140 VTAB 21: HTAB 14 
150 PRINT TT;" TOTAL" 
160 S = 0: REM •• Start point of first wedge 
170 R = 75:X = 140:Y = 80: REM •• ra~ius and 

center coordinates 
180 A= 1: REM •• aspect ratio for a circle 
190 REM •• Display all wedges 
200 FOR J = 1 TO N 
210 E = - (2 * Pl * PT(J) I TT + S): 

REM •• Compute endpoint 
220 VTAB 23: HTAB 1: PRINT "SIZE=";PT(J); SPCC 9>; 
230 GOSUB 9000: REM •• Draw wedge 
240 s = - E: REM •• Next wedge starts where 

last one ended 
250 NEXT J 
260 VTAB 23: HTAB 0: PRINT "DONE!" 
270 END 
8980 REM •• Remember to add the circle-drawing 
8981 REM subroutine from Figure 12-8 

Figure 12-10. Pie Chart program 

The program uses a loop to draw the wedges (lines 200-250). 
First it computes the wedge ending point by using the ratio of the 
wedge size to the total of all wedges (line 210). It makes the end
ing point negative so the subroutine will draw a ray to it. Then 
the program displays the size of the wedge in the text window 
and calls the subroutine to draw the wedge (lines 220 and 230). 
The next wedge starts where the current wedge ends (line 240). 

Several variations on the Pie Chart program are possible. You 
could modify the program to fill the screen with a background 



356 I Apple II User's Guide 

color before it begins drawing the chart. You could use a polygon 
instead of a circle for the chart shape. Each wedge could be 
drawn in a different color or in alternating solid colors. Be sure 
to keep the background distinct from the pie chart, though. If you 
plan to construct any wedges in the same color as the back
ground, you should outline all the wedges in a contrasting color. 

HIGH-RESOLUTION SHAPES _______ _ 

If you have written any high-resolution graphics programs that 
plot geometric figures, you have probably wanted to know how 
you could manipulate those figures on the screen. For instance, 
you might want to rotate the figure or make it appear larger or 
smaller on the screen. 

Along with coordinate plotting and drawing, the Apple II 
allows you to define, draw, and manipulate two-dimensional 
shapes in high-resolution graphics mode. This section describes 
how to create, design, and use a shape in an Applesoft program. 
Thorough as it may be, this section only begins to explore the 
creative possibilities open to you. 

There are six steps involved in using shapes: 

1. Draw the shape on paper using only straight lines and right 
angles. 

2. Convert the drawing into a sequence of numbers, either 
using the program presented later in this section or by hand. 

3. Assemble one or more coded shapes into a table of shapes. 
4. Use POKE statements to store the table of coded shapes in 

memory. 
5. If desired, save the memory image on disk. 
6. Use Applesoft commands to draw and manipulate a coded 

shape from memory. 

Defining Shapes 

In order to use shapes on the Apple II, you must describe the 
entire figure before instructing the computer to draw it. You 
define high-resolution shapes in a shape table, so called because it 
contains the coded characterstics of the figures. The first step in 



Graphics I 357 

I I 
Figure 12-11. Steps in drawing a square 

defining a high-resolution shape is to draw the shape on paper. A 
square, for example, consists of four lines of equal length, each 
one at a right angle to the previous line drawn (Figure 12-11). 

The shape table contains coded instructions for drawing a fig
ure; these instructions are called plotting vectors. Each vector 
describes movement up, down, left, or right (or lack of move
ment) and shows whether to draw on the screen or not. You can 
interpret each side of the square in Figure 12-11 as a direction in 
which to draw: one up, one right, one down, and one left. This is 
the way Appleson's shape manipulation commands look at figures. 

Figures are more difficult to draw if they contain diagonal 
lines or curves. A triangle, although it has one side less than a 
square, involves much more work because it has at least one 
diagonal line. Since you can only define a shape with vectors that 
move up, down, or sideways, some shapes, such as circles, may 
not be worth approximating. In some cases it may be easier to 
draw complicated shapes with HPLOT than by means of shape 
tables. 

Shape Coding Program 

The figure you draw on paper must be converted to coded plot
ting vectors. This section presents an Applesoft program that 
does the conversion for you (Figure 12-12). The program asks you 
to enter each plotting vector and whether or not to plot it. After 
entering the last vector, press E for "end" and press RETURN. The 
program asks you to enter the vector, if any, to be changed. If you 
make any mistakes in entering plotting vectors, you can correct 
them by entering the number of the plotting vector and then 



358 I Apple II User's Guide 

1 REM 
2 REM •• Shape Coding program 
3 REM 
10 DIM S1 C100),V1 C100) 
20 I = 0 
30 PRINT "CODE SHAPE VECTORS" 
40 PRINT 
41 REM •• Enter plot actions 
SO V = I: GOSUB 270 
S9 REM •• Continue entry until MS equals terminal 

va Lue "E" 
60 IF MS<> "E" THEN S1 (I)= M:I =I+ 1: GOTO SO 
70 PRINT 
71 REM •• Allow corrections 
80 INPUT "VECTOR TO CHANGE CO=END>:";V 
90 IF V > 0 THEN V = V - 1: GOSUB 270:S1CV) = M: 

GOTO 80 
99 REM •• Pack vectors into VO 
100 FOR V = 0 TO I 
110 IF B = 2 AND S1 CV> > 0 AND S1 CV) < 4 THEN 140 
120 IF B < 2 AND CS1 CV) > 0 OR S1 CV) > 4) THEN 140 
130 B = O:Q = Q + 1 
140 V1CQ) = V1CQ) + S1CV) * (8 ~ 8) 
150 B = B + 1 
1 60 IF B > 2 THEN B = 0: Q = Q + 1 
170 NEXT V 
178 REM 
179 REM •• Display the vecotrs as 

hexadeci ma L numbers 
180 PRINT 
182 PRINT "MEMORY"; TAB( 10>;"POKE"; TAB( 

20);"HEXADECIMAL" 
184 PRINT "LOCATION"; TAB( 10);"VALUE"; 

TAB( 20);"VALUE" 
186 PRINT "--------"; TAB( 10);"-----"; 

TAB( 20>;"-----" 
190 FOR V = 0 TO Q 
200 HX = V1CV) I 16 
210 LX = V1CV> - HX * 16 
220 IF HX > 10 THEN HX = H% + 7 
230 IF L% > 10 THEN LX = L% + 7 
240 PRINT "+";V; TAB( 10);V1 CV); TAB( 20); 

CHRSCHX + 176>; CHRS CLX + 176) 
250 NEXT V 
260 END 
269 REM •• Vector input subroutine 
270 PRINT "VECTOR ";V + 1;":"; 

Figure 12-12. Shape Coding program 



280 INPUT "MOVE: U/D/L/R?";MS 
290 M = 0 
300 IF MS= "R" THEN M = 1 
310 IF MS = "D" THEN M = 2 
320 IF MS = "L" THEN M = 3 
330 IF MS = "E" THEN RETURN 
340 INPUT "PLOT CY=Y ES,N=NO) ?";PS 
350 IF P$ = "Y" THEN M = f.1 + 4: RETURN 
360 IF PS= "N" THEN RETURN 
370 GOTO 340 

Figure 12-12. Shape Coding Program (continued) 

Graphics I 359 

reentering the vector and specifying whether or not to plot it. If 
you have no further corrections to make, enter 0 as the response 
to VECTOR TO CHANGE (O=END). 

The program computes and displays the numeric codes that 
define the shape for which you entered plotting vectors. Each 
code number can specify one, two, or three plotting vectors, so 
don't expect to see one number for each plotting vector. For 
example, the following dialogue shows how to use the Shape Cod
ing program to code the shape definition for a square: 

]RUN 
CODE SHAPE VECTORS 

VECTOR 1:MOVE: U/D/L/R?U 
PLOT CY=YES,N=NO)?Y 
VECTOR 2:MOVE: U/D/L/R?R 
PLOT CY=YES,N=NO)?Y 
VECTOR 3:MOVE: U/D/L/R?D 
PLOT CY=YES,N=NO>?Y 
VECTOR 4:MOVE: U/D/L/R?L 
PLOT CY=YES,N=NO)?Y 
VECTOR S:MOVE: U/D/L/R?E 

VECTOR TO CHANGE CO=END):O 

MEMORY POKE HEXADECIMAL 
LOCATION VALUE VALUE --------
+O 44 2C 
+1 62 3E 
+2 0 00 

]Ji 



360 / Apple II User's Guide 

The program always displays three columns of numbers, which 
you will use to store the coded shape definition in memory. The 
left-hand column tells you the memory locations relative to the 
beginning of the shape definition. The other two columns specify 
the value to be stored in each memory location. You can use 
POKE statements to store the coded shape definition values 
shown in the middle column. 

This example shows that the four plotting vectors it takes to 
define a square require only three memory locations. The last of 
the three memory locations has a zero value to designate the end 
of the shape definition. 

Coding Shapes by Hand 

If you want to understand how the Shape Coding program 
works, you will have to learn how to code shapes yourself, without 
the computer. You may take the program on faith and skip this 
section entirely if you wish. Manual shape coding involves work
ing with binary and hexadecimal numbers, because you must 
determine bit by bit what the value in each byte, or memory cell, 
will be. 

Plotting vector codes range in value from 0 to 7; each byte of a 
shape definition can hold as many as three vectors. Table 12-3 
shows the possible plotting vector codes. Once a shape is reduced 
to a set of vectors, the vectors can be placed in memory, where 

Table 12-3. Plotting Vectors and Their Binary Codes 

Binary Decimal 
Symbol Action Code Code 

1 Move up without plotting 000 0 
- Move right without plotting 001 1 
l Move down without plotting 010 2 - Move left without plotting 011 3 
1 Move up with plotting 100 4 - Move right with plotting 101 5 
l Move down with plotting 110 6 

- Move left with plotting 111 7 



Graphics I 361 

JJiru,f,·dl1 f'lot B;,,,A,,.Y ~""'e 
,,. 

Ye.~ fOO 
' 
~ Yes fOf 

~ fe~ 110 

~ Yes, 111 

Figure 12-13. Coding plotting vectors by hand 

certain Applesoft commands can decode them and draw the 
shape. 

To begin, pick a starting point on the shape you wish to draw. 
Make a list of the plotting vectors needed to construct the shape, 
using arrows. List the vectors in order as you go around the shape 
either clockwise or counterclockwise. Mark any vectors to be 
plotted but not drawn ("ghost" vectors). For example, starting in 
the lower left-hand corner, a square has four vectors: up, right, 
down, and left (Figure 12-13). Write the appropriate binary code 
next to each vector (use Table 12-3 to translate). 

As shown in Table 12-4, every byte of the shape definition con
tains three sections, each of which may contain a plotting vector. 
Notice that sections 1 and 2 contain three bits each, while section 
3 contains only two bits. 

Table 12-4. Shape Table Byte 

Section 3 Section 2 
Bit 

7 6 5 4 3 

M = Movement bit 
M M p M M P = Plot/No Plot bit l ~'}~:-~'; f~;J 

-- ···-..i:. = . - - .,, 



362 I Apple II User's Guide 

Four of the plotting vector codes require two binary digits 
because the leading digit is 0. However, the other four codes 
require three binary digits. The three-digit codes will not fit in 
section 3 of a shape definition byte because it has room for only 
two digits. The only vectors that fit in section 3 are right, left, 
and down -all without plotting. 

You will find that section 3 is rarely used. If section 3 of a 
shape definition byte is set to 0, Applesoft ignores the section, 
moves. on to the next byte of the shape definition, and interprets it 
for drawing. 

Plotting vectors equal to zero can mean two things. In section 3 
of each shape definition, a zero plotting vector always means "no 
movement and no plotting." However, in Table 12-3 a zero vector 
means "move up without plotting." This ambiguity can cause 
problems in sections 1 and 2 of each shape definition byte, 
because under certain circumstances Applesoft ignores zero plot
ting vectors, and in others it performs upward movement without 
plotting. The rule is as follows: If you intend the zero vector to 
mean "move up without plotting," do not end the shape definition 
byte with a zero plotting vector. Applesoft's shape manipulation 
routines assume that if the most significant portion (section 3) or 
portions (sections 2 and 3 together) are set to 0, no drawing takes 
place for any sections set to 0 in the same byte. 

If all three sections of a shape definition byte are set to 0, 
Applesoft interprets this as an "end of shape definition" signal. In 
fact, you must end each shape definition with a termination byte 
set to 0. Otherwise, Applesoft will draw past the end of your orig
inal shape and will continue drawing until it encounters a zero 
byte. 

You can use the "move up without plotting'' vector as long as a 
different plotting vector follows it in the same byte. For example, 
section 2 can be set to 0 ("move up without plotting'') and if sec
tion 3 is set to 01, 10, or 11 (binary), section 2 will be recognized 
as "move up without plotting." If sections 3 and 2 are set to 0, no 
movement occurs and Applesoft looks to section 1 of the next byte 
for the next valid plotting vector. 

Armed with this knowledge, you can now arrange the binary
coded plotting vectors for each segment of the shape into groups 
of two or three. In this way you transpose the three-digit binary 
plotting vector codes into eight-digit bytes that can be stored in 
memory. For example, the coded plotting vectors listed in Figure 



Graphics I 363 

Memory 
Plo1tir.~, Vedon. 'Din~ry Co,e!> 

Hex JJer..,;m::d hy ~tdion by .5tef,'on 
Lo u.1 t ,"" ri 3 2 1 3 J. I f.otl.t Code 

+-0 Wont- ~ t I 00 
101 100 lt 4Lt 

t- 1 1 Nonl ~ + 00 111 110 3£ 6~ 

r'2 /Jone tlo~ Nont 00 000 000 00 () 

Figure 12-14. Packing coded plotting vectors into bytes 

12-13 fit into three bytes, including the final end-of-shape byte 
(Figure 12-14). 

With the shape packed into binary-coded bytes, you can easily 
convert each byte to hexadecimal and decimal numbers. Appen
dix J contains binary-to-hexadecimal-to-decimal conversion ta
bles. Notice that the byte values that resulted from coding the 
plotting vectors by hand are the same as the ones the Shape Cod
ing program computed. 

Shape Tables and Directories 

At this point the plotting vectors have been coded by the Shape 
Coding program or by hand into a sequence of numbers. The 
next step is to create a shape table. A shape table has two 
parts: the directory or index, followed by one or more coded 
shape definitions. Figure 12-15 illustrates shape table organiza
tion, and Figure 12-16 shows the shape table for the square. 

The directory of a shape table is a series of bytes that describes 
how many shapes there are in the table and also points to each 
shape definition in the table. The first byte of the directory con
tains the total number of shapes in the table. This number ranges 
from 0 to 255. The second byte is unused and should be set to 0. 

The remaining bytes in the directory contain pointers to each 
shape definition in the table. Each pointer specifies the number 
of bytes that the shape is offset from the beginning of the direc
tory. In the case of the example square, there is only one shape to 



364 / Apple II User's Guide 

Figure 12-15. Shape table organization 



Graphics I 365 

Memory POKE Hexadecimal Interpretation Location Value Value 

+o 1 01 Number of shape defini-
tions in the table 

+l 0 00 Unused (must be O) 

+2 4 04 Offset of Shape 1 from 
start of shape table, low-
byte 

+3 0 00 Offset of Shape 1 from start 
of shape table, high-byte 

+4 44 2C Shape definition no. 1 
+5 62 3E starts 

+6 0 00 Shape definition no. 1 
ends 

Figure 12-16. Sample shape table 

list in the directory, so the offset of shape 1 from the beginning of 
the directory is four bytes. 

Each shape pointer in the shape table directory occupies two 
bytes of memory. To calculate the value for the first byte, use the 
expression SP-INT(SP /256)*256, where variable SP is the num
ber of bytes from the beginning of the directory to the beginning 
of the shape. To compute the second byte, use INT(SP /256). In 
the example, SP equals 4, so the first byte computes to 04 and the 
second byte to 00. 

It is a good idea to leave extra bytes at the end of a shape table 
directory to allow room for pointers to future shape definitions. If 
you have no room at the end of the directory to allow for expan
sion, you will have to reorganize the entire shape table in order to 
insert a new shape pointer. Even though you may only need a 
directory that holds ten shapes, you should leave unused space at 
the end of the directory; 20 extra bytes allow for another ten 
shape pointers, which you can use later. When you want to add 
another shape to 1the table, place the new shape definition just 
after the last shape definition in the table, calculate the offset of 
the new shape from the beginning of the directory, place the new 
pointer immediately after the last shape pointer in the directory, 
and add 1 to the first byte of the directory (which contains the 
number of shapes in the table). 



366 I Apple II User's Guide 

Storing the Shape Table In Memory 

Before you can display coded shapes, you have to put them into 
the computer's memory. In order to do that, you must decide in 
what area of memory the shape table will reside. Memory loca
tions 768-975 are generally free for shape tables. Chapter 13 
introduces a short machine language subroutine that uses the 
same area, but no conflict will arise unless you try to put such a 
subroutine and a shape table into the same part of memory at the 
same time. 

You can use POKE statements to place the shape table in 
memory. For example, the following series of POKE statements 
puts the shape table for the square (Figure 12-16) into memory, 
starting at location 768: 

JPOKE 768,01 

JPOKE 769,00 

]POKE 770,04 

JPOKE 771,00 

]POKE 772,44 

JPOKE 773,62 

JPOKE 774,00 

Since you can put the shape table anywhere in memory where 
it will fit, you must somehow tell Applesoft where it is. Memory 
locations 232 and 233 are reserved for that purpose. For example, 
the following POKE statements tell Applesoft that the shape 
table starts at memory location 768: 

J POKE 232,0U 

J POKE 233,03 

As with all values that require two memory locations, you can 
determine what to put in the first location with the expression 
VALUE-INT(VALUE/256)*256, and the second location with 
INT(VALUE/256). Here the variable VALUE is the memory 
location where the shape table begins. Thus the value 768 breaks 
down to 0 for the first location and 3 for the second location. You 



Graphics I 367 

can confirm the POKE statements' success with the command 
PRINT PEEK(233)*256+ PEEK(232). 

Saving the Shape Table on Disk · 

If you have invested a lot of time putting together shape tables, 
it would be a good idea to save your work on disk rather than lose 
it when you switch off the Apple II. You can use the BSAVE 
command to save a shape table on disk. Before you can save the 
shape table, however, you must determine its length. Continuing 
with the square as an example, look at the number of memory 
locations it takes up; the total is seven (Figure 12-16). The follow
ing example will save the square, assuming you have put it in 
memory at location 768: 

JBSAVE SQUARE,A768,L7 

This BSAVE command creates a binary disk file named 
SQUARE and copies seven bytes of memory into it. The shape 
table is now saved on disk, ready for use at a later time. Use your 
actual shape table name, starting location, and length in place of 
those shown in the example. 

Retrieving a Saved Shape Table 

If you recorded the shape table on disk, the BLOAD command 
will read it back into memory. Here is an example: 

JBLOAD SQUARE 

This copies the contents of the file named SQUARE into 
memory, starting at the location from which the file was saved. If 
you want the file to go to a different memory location, follow the 
file name with a comma, the letter A, and the new memory loca
tion. The following example puts the shape table at memory loca
tion 8000: 

JBLOAD SQUARE, A8000 

After copying the shape table into memory with BLOAD, you 
need to place its starting location in memory locations 232 and 
233. As described earlier, you can use POKE statements to do 
this. 



368 I Apple II User's Gulde 

MANIPULATING SHAPES ________ _ 

Applesoft has four shape manipulation commands that draw, 
erase, and change the orientation of shapes: 

· SCALE alters the size of the shape 
· DRAW displays the shape on the screen 
· XDRAW erases the shape 
· ROT rotates the shape. 

The shape manipulation commands only work in high-resolution 
graphics mode. The HCOLOR statement selects the shape color. 

Shape Size 

You should always set SCALE as a programmed or immediate 
mode statement before drawing a shape for the first time in a 
program: 

]SCALE = 1 

This statement sets the scaling to draw one point for each plot
ting vector. If SCALE= 5, the Apple II draws five positions for 
each single plotting vector. You can set SCALE as high as 255 
(255 points plotted for each vector). The maximum scale setting 
is SCALE=O, which plots 256 points for each single plotting 
vector. 

Drawing a Shape 

DRAW plots the shape (numbered from 1 to 255) from the 
shape table in the last color chosen and at the scale and rotation 
value last set. The following statement plots the first shape defi
nition in the shape table, starting at column 140 and row 96 of the 
high-resolution display: 

]DRAW 1 AT 140,96 

Drawing originates at the column and row coordinates given in 
the statement. A second DRAW statement option uses an implied 
starting location: 

]DRAW 11 



Graphics I 369 

This statement draws the eleventh shape in the table at the point 
last plotted by the most recent HPLOT or DRAW statement exe
cuted. If the coordinates were not set earlier, Applesoft uses row 0 
and column 0 by default. 

Important: Applesoft assumes that the shape table is properly 
located in memory. Before you execute a DRAW statement, make 
sure the shape table is in memory and that memory locations 232 
and 233 point to the beginning of the shape table. If you specify a 
shape number greater than the number of shapes actually in the 
table, or if the DRAW statement uses invalid row or column 
coordinates, drawing does not occur; instead, the error message 
?ILLEGAL QUANTITY ERROR is displayed. 

Erasing Shapes 

The XDRAW statement allows you to erase a shape without 
erasing any high-resolution background graphics. Here is an 
example: 

JXDRAW 8 AT 90,96 

The XDRAW statement is identical in format to DRAW; the plot
ting coordinates can be explicit, as shown in this example, or 
implicit, as shown in the last DRAW statement example. XDRAW 
checks the color on the screen at the plotting coordinates and 
draws a shape in the complement of the color found. In the exam
ple above, XDRAW occurs at column 90 and row 96 on the screen. 
Table 12-5 lists the complements of high-resolution colors. 

If the coordinates, rotation, and scale are the same as those of a 

Table 12-5. XDRAW Colors 

If color is XDRAW color is 

Black White 
White Black 
Purple Green 
Orange Blue 
Green Purple 
Blue Orange 



370 I Apple II User's Guide 

ROT= 63 
ROT= 0 

ROT = 48 1>-----=:::oo"1E'"----<1 ROT = 16 

ROT= 46 

ROT= 32 

Figure 12-17. Shape rotation 

shape already on the screen, XDRAW erases the shape, leaving 
all surrounding graphics intact. 

Rotating a Shape 

With the ROT command, you tell Applesoft to rotate subse
quent shapes clockwise around the center point of the screen 
before it draws them. The following statement sets the angle of 
shape rotation to 90 degrees. 

JROT = 16 

The values for ROT range from 0 to 255, although there are only 
64 possible rotation settings, from 0 to 63. Figure 12-17 shows the 
changes in orientation based on ROT values. 

When SCALE is set to l, ROT rotates shapes in 90-degree 
increments, which means there are only four meaningful rota
tions: O= 0 degrees, 16= 90 degrees, 32= 180 degrees, and 48= 270 
degrees. Applesoft rounds the rotation value you set to the next 
lowest ROT increment. All 64 rotational positions are availableif 
SCALE is set to 5 or greater. 



Graphics I 371 

Shape Demonstration Programs 

One of the simplest yet most rewarding ways to use shapes is in 
the creation of graphics designs. Starting with just a simple 
shape like a square, you can create innumerable designs. 

You have already done the hardest part: coding the shape table. 
It is easy to write a program that uses POKE statements to put a 
shape table in memory. Figure 12-18 lists a program that does 
this. The program starts by switching to high-resolution graphics 
mode and eliminating the four-line text window (line 10). Then it 
establishes the starting memory location of the shape table, in 
this case location 768 (line 20). Next, the program reads the shape 
table length from a DATA statement (lines 30 and 80). It uses this 
length to control the number of iterations in the FOR-NEXT loop 
that reads the coded shape table from a DATA statement and 
stores it in memory, one byte at a time (lines 40-70 and 90). 

All that remains is to experiment with the Applesoft com
mands that draw and manipulate shapes. For example, the fol
lowing program lines, added to Figure 12-18, plot three sizes of 
squares in random colors and random rotations all over the 
screen (Figure 12-19). 

]10 REM •• Remember to add lines 1 to 90 
]20 REM from Figure 12-18, since 
]30 REM they put the sha~e table in memory 
]189 REM 
J190 REM •• Display random squares 
]191 REM 
]200 HCOLOR= RND (1) * 6 + 1: REM •• Any color 
J210 S = RND (1) * 3 + 1: REM •• 1<=S<=3 
]220 SCALE= INT (S) * 10: REM •• 10, 20, or 30 
]230 ROT= RND (1) * 64: REM •• any angle . 
J240 X = RND (1) * 280: REM •• any coordinates 
]250 Y = RND (1) * 192 
]260 DRAW 1 AT X,Y 
l270 GOTO 200 

The program loops endlessly, filling the screen with more and 
more colored squares. Use CONTROL-C to stop the program, and 
type the TEXT command to switch the screen back to text mode. 
The TEXT command will be invisible when you type it, since the 
program eliminates the text window at the bottom of the screen. 

Replace lines 189-270 with the following lines, and a com-



372 I Apple II User's Guide 

1 REM 
2 REM •• Put shape table in memory 
3 REM 
1 0 HG R: P 0 KE -1 6 3 0 2, 0: REM •• No text w i n do w 
19 REM •• Set shape table start location 
20 POKE 233,03: POKE 232,00: REM •• 768 
29 REM •• Put .shape table in memory 
30 READ L: REM •• Shape tab le length 
40 FOR ML = 768 TO 767 + L 
50 READ V: REM •• Read vector 
60 POKE ML,V: REM •• Store in memory 
70 NEXT ML 
80 DATA 7: REM •• Shape table length 
89 REM •• Coded shape table follow s 
90 DATA 1,0,4,0,44,62,0 

Figure 12-18. POKE Shape Table program 

pletely different image appears, although it too is composed of 
squares. To replace the old program lines, first enter DEL 
189,270 to delete the last portion of the program, but keep the 

' '.I~ \··/··" 

: . o .. :¢1 ..... :/.. Io 
I I ·•· .. 11 ,1, •.. .. 1 ·, .. , 

l 
• . 

,·o I 1' 11..-1'·.-·,,',•" ' 
.•.•. .•.•. I " \_ I I 

··-.. 1 .• · ..... I .1'.:'-·. '._ ... 

• •, 111 •· •J "" " "·. I I 

•••.• > .,.<~'\ ~::~F:·d.· .. , 
·-·.·.·.1 .. ..r: .. ·f . I ./\> \ ···~ : '\ ') .· · /, .. 

1\ ~ ... · ... A ..... ,....... . ... '! \ ·:. . 
. · . '•- --·· .. ·· · ... ' 

' . 1' o, I 

I '•, ,':1'• I I 

Figure 12-19. Random squares (see F igure 12-18 
and text for program listing) 



Graphics I 373 

program from Figure 12-18 intact; then type in the new lines 
189-310. 

l10 REM •• Remember to add lines 12 to 90 
J20 REM from Figure 12-18, since 
J30 REM they put the shape table in memory 
]189 REM 
]190 REM •• Display rosettes using square shape 
]191 REM 
]200 FOR C = 1 TO 6 
l210 HCOLOR= C 
]220 REM •• Rotate 100 ways 
]230 FOR F = 1 TO 100 
J240 ROT= F 
J245 REM •• Change size the 1ST 62 times 
]250 IF F < 63 THEN SCALE= F 
]260 DRAW 1 AT 140,96: REM •• One square 
]270 ROT= F + 32: REM •• Rotate 180 degrees 
]280 DRAW 1 AT 140,96: REM •• Another square 
J290 NEXT F 
l300 NEXT C 
]310 .GOTO 200 

In the new program, two squares are rotated around the center 
of the screen, tracing a rosette (Figure 12-20). The program loops 

Figure 12-20. Rosette (see Figure 12-18 and text for 
program listing) 



374 I Apple II User's Gulde 

endlessly, changing colors each time it draws the design. Once 
again, type CONTROL-C to stop the program. 

DOUBLE HIGH-RESOLUTION GRAPHICS ___ _ 

The Apple II has another graphics mode, called double high
resolution, that combines the 16-color capability of low-resolution 
mode with the small dots of high-resolution mode. Unfortunately, 
standard Applesoft BASIC has no commands for using double 
high-resolution mode. It's possible to use double high-resolution 
mode by writing assembly language programs, but the methods 
involved are beyond the scope of this book. Perhaps Applesoft 
BASIC will support double high-resolution graphics in the 
future. 



Sound 13 

The Apple II has a built-in speaker that can make sounds and 
play music under program control. Earlier chapters showed how 
to use CONTROL-G or the CHR$ function to direct the speaker to 
emit its familiar beep. This chapter explains how to go beyond 
that simple sound to program a variety of tones and vary their 
length. Also included is a program that plays music, and another 
that lets you compose your own music. 

PROGRAMMING THE SPEAKER IN BASIC ___ _ 

Memory location -16336 is connected to the speaker in such a 
way that when you read it with a PEEK function, the speaker 
makes a brief sound. The following example illustrates: 

150 A = PEEKC-16336) 
1100 END 

If you listen closely to the speaker as you run this program, you 
will hear a single click. Run the program a second time and no 
sound occurs. The first time the Apple II was holding back the 
speaker cone, and the PEEK(-16336) function caused its release, 
creating a sound. The second time, the PEEK(-16336) function 
silently pulled back the speaker cone again. If you run the pro
gram a third time, you will hear another click. This is much like 
picking a guitar: the sound you hear comes not from pulling back 
on a string, but from letting it go. 

375 



376 I Apple II User's Gulde 

To get a tone instead of a single click, you must "pluck" the 
speaker repeatedly. Try this variation on the last example: 

JSO A = PEEKC-16336) 
J100 GOTO 50 

This simple loop does nothing but pluck the speaker over and 
over again, as fast as is possible with BASIC statements. This 
generates a continuous low-pitched tone. In Applesoft, the fre
quency is about 70 cycles per second, and in Integer BASIC it is 
about 250 cycles per second. To stop the program, press 
CONTROL-C. 

Varying the Pitch 

Plucking the speaker at a slower rate lowers the pitch of the 
tone you hear. In programming terms, that means executing the 
PEEK(-16336) function less often will generate a lower tone. You 
can make the last program generate a lower-pitched tone by 
inserting program lines in the middle of the loop, between lines 
50 and 100. Any delay in reexecuting the PEEK statement will 
have an effect. Different BASIC statements execute at different 
speeds, so how much the pitch goes down depends on the kind of 
statement you add as well as the number of times it occurs. Here 
is one approach: 

]10 INPUT "PITCH, 1 (HIGH) TO 11 (LOW)? ";P 
JSO A = PEEKC-16336) 
J60 FOR W = 1 TO P 
J70 NEXT W 
]100 GOTO 50 

This program uses a FOR-NEXT loop to alter the frequency with 
which the PEEK(-16336) function plucks the speaker. The value 
of variable P, which you input from the keyboard, determines 
how many times the loop iterates. The more times the loop iter
ates, the longer it takes to finish. The longer the loop takes, the 
more it retards the frequency of speaker plucking, and the lower 
the pitch of the resulting tone. 

Fixed-Length Tones 

All it takes to generate tones of a fixed length instead of con
tinuous tones is another FOR-NEXT loop. Here is an example. 



Sound I 377 

]10 INPUT "PITCH, 1 CHIGH) TO 11 CLOW>? ";P 
]20 INPUT "LENGTH, 10 (SHORT> TO 200 (LONG)'? ";L 
]30 FOR D = 1 TO L 
]50 A = PEEKC-16336) 
]60 FOR W = 1 TO P 
]70 NEXT W 
]80 NEXT D 
]100 GOTO 50 

This program is just like the previous example, except that vari
able L determines how long the tone will last. Strictly speaking, 
pitch also affects length, because lower-pitched notes spend more 
time in the FOR-NEXT loop on lines 50 and 60 than do high
pitched notes. If you listen closely while you enter the same 
length for pitch 1 and pitch 11, you will notice that the actual 
lengths are not identical. This disparity is greatest between notes 
at opposite ends of the pitch spectrum. To halt the program, 
press CONTROL-C and then press RETURN. 

PROGRAMMING THE SPEAKER 
IN MACHINE LANGUAGE _______ _ 

As the previous examples show, the range of tones you can get 
with a BASIC program is quite limited. Machine language can 
generate much higher tones and also has a wider pitch range. 
This is possible because machine language is much faster than 
BASIC, and speed is the key to high notes. The faster the speaker 
vibrates, the higher the note will be. 

A Machine Language Speaker Subroutine 

This section presents a speaker subroutine, written in machine 
language, and explains how the subroutine works. You don't need 
to know why the subroutine works in order to use it, so you can go 
on to the next section if you wish to skip the technical details. 

It only takes a few machine language instructions to vibrate 
the speaker and produce tones of different pitch and length. The 
subroutine in Figure 13-1 shows one approach; the machine lan
guage code appears along with its assembly language equivalent 
to make it easier to understand. 

In the Machine Language Speaker subroutine, pitch is deter
mined by the frequency with which the subroutine reads the 
speaker location, -16336 ($C030), and that is affected by two 



378 I Apple II Users Gulde 

0360-
0361-

0362-
0365-
0368-
0369-
036B-
036D-
0370-
0373-
0374-
0376-
0379-
0378-

-i-
i 
I 
I 
I 

00 
00 

AC 61 03 
AE 61 03 
ES 
DO FD 
A9 04 
20 AS FC 
AD 30 co 
88 
DO EF 
CE 60 03 
DO E7 
60 

1--' 
I 
I 
I 

; PROGRAN: APPLE Ile SPEAKER DRIVER 
; 

MEMORY REQUIRED: 
; I/O REQUIRENENTS: 

27 ($18) BYTES 
SPEAKER AT SC030 
'WAIT' AT SFCAB 
A,X,Y,S 

; MONITOR SUBROUTINES: 
; REGISTERS AFFECTED: 
; INPUT REQUIRENENTS: LENGTH OF TONE IN S64 

($360) ; 
; 
; 

PITCH OF TONE IN S65 
($361) 

; NETHOD: 
; 1. LOW VALUE FOR 'PITCH' YIELDS LOW NOTE, 
; HIGH VALUE FOR 'PITCH' YIELDS HIGH NOTE. 
; Z. 'RANGE' FACTOR ALSO AFFECTS PITCH. 
; 3. COMPENSATES SOMEWHAT FOR PlTCH-INDUCED 
; LENGTH DISPARITIES BY REPEATING THE TONE 
; 'PITCH' TIMES. 
; 4. REPEATS EVERYTHING 'LENGTH' TINES. 
; NOT RELOCATABLE UNLESS REASSEMBLED 
; 
WAIT =SFCAS ;MONITOR'S WAIT SUBROUTINE 
SPEAKR =SC030 ;SPEAKER LOCATION 
RANGE =#4 ;ESTABLISHES PITCH RANGE 

•=$360 ;STARTING LOCATION 
LENGTH .BYTE 0 ;LENGTH OF TONE 
PITCH .BYTE 0 ; PITCH OF TONE 
; 
; 
TONE LDY PITCH 
Y1 LDX PITCH 
X1 INX ;VARIABLE DELAY 

BNE X1 ; USING PITCH NUMBER 
LDA RANGE ; FIXED DELAY 
JSR WAIT ; USING RANGE NUMBER 
LDA SPEAKR ;PLUCK SPEAKER 
DEY ;REPEAT, USING INVERSE 
BNE Y1 ; OF PITCH NUMBER 
DEC LENGTH ;REPEAT ALL, USING 
BNE TONE ; LENGTH NUMBER 
RTS 

..........._, ____ ..... y 
I 

Assembly Language Instructions 

Machine Language Codes (Hexadecimal numbers) 

Memory Locations (Hexadecimal numbers) 

Figure 13-1. Machine Language Speaker subroutine 



Sound I 379 

things. First, a simple loop creates a delay whose length is in
versely proportional to the value of the pitch number in location 
865 ($361). In other words, a high pitch number yields a short 
delay, resulting in a high-pitched tone. The pitch is also affected 
by a second, fixed delay caused by calling the Machine Language 
Monitor Wait subroutine. The value in location 876 ($36C) deter
mines the length of the fixed delay, thereby affecting th~ range of 
available pitches. The standard value is 4. A higher number 
would yield lower notes with a narrower pitch range, and a lower 
number the opposite. 

An earlier BASIC example in this chapter demonstrated how a 
note's pitch can affect its length. This is a serious problem in 
machine language because of the relatively wide pitch range 
available. The Machine Language Speaker subroutine compen
sates so mew hat for this variation by holding a tone for a length of 
time directly proportional to its pitch number. Thus the length of 
a note is approximately equal to the time spent in the pitch delay 
loop multiplied by a number inversely proportional to that. For 
example, pitch 1 and pitch 255 are both held for approximately 
the same length of time (1*(256-1)=255 and 255*(256-255)= 
255. However, midrange notes such as pitch 130 are held longer 
(130*(256-130)=16380). This compensation is not perfect, but is 
better than none at all. Without the compensation the ratio of 
longest tone to shortest is 255:1, but with it that ratio is about 
64: 1. Further improvement would require a longer and more 
complex machine language subroutine.· 

The overall tone length is also affected by the value of memory 
location 864 ($360), which is the tone's length number. It deter
mines the number of times the subroutine repeats itself before 
ending. 

Using the Speaker Subroutine 

To use the Machine Language Speaker subroutine from BASIC, 
you must first put it into memory. It is designed to occupy 
memory locations 864-891 and will not work in any other location. 
Those memory locations will be vacant unless you are using them 
for shape tables or another machine language subroutine. The 



380 I Apple II User's Gulde 

simplest way to put the subroutine in memory is with a program 
like this one: 

]5 REM 
]6 REM •• Put speaker subroutine in memory 
J7 REM 
]10 FOR ML= 864 TO 891 
]20 READ MC 
]30 POKE ML,MC 
]40 NEXT ML 
]300 END 
]3090 REM 
]3091 REM •• Machine Language Speaker Subroutine 
code 
J3092 REM 
]4000 DATA 0,115,172,97,3,174,97,3,232,208,253,169 
]4010 DATA 4,32,168,252,173,48,192,136,208,239,206 
]4020 DATA 96,3,208,231,96 

This program contains the machine language instruction codes 
in DATA statements (lines 4000-4020). It puts those codes in 
memory locations 864-891 with a FOR-NEXT loop (lines 10-40). 

With the subroutine installed in memory, a BASIC program 
can generate tones of different pitches and frequencies. Use a 
POKE statement to put a tone length in memory location 864, 
another POKE statement to put a tone pitch in memory location 
865, and a CALL statement to call the subroutine at location 866. 
Here is.an example: 

J210 INPUT "PITCH, 1 CLOW) TO 255 (HIGH)? ";P 
1220 INPUT "LENGTH, 1 (SHORT> TO 255 (LONG)? ";L 
1230 POKE 864,L 
1240 POKE 865,P 
1250 CALL 866: REM •• Play a note 
1260 GOTO 210 

To end this program, press CONTROL-C followed by RETURN. 

MUSIC ____________ _ 

The speaker subroutine hardly makes an Apple II a sophisti
cated musical instrument, but it can play 43 notes on the Western 
chromatic scale, and it can play them as eighth notes, quarter 
notes, half notes, or whole notes. This is enough to do a credible 
job with simple melodies. 



Sound I 381 

B bBb A# A Ab G# G Gb F# F E Eb D# D Db C# C 

'f f~~~~€~~~~~~F~~f 
254 253 250 248 246 241 239 234 231 

253 252 250 246 243 239 237 234 

B 
1 
Bb wA# A Ab G# G Gb F# F E Eb D# D Db C# C 

' ~ p~ fff € ~~ # p # ~ 

~ B Bb A# A Ab G# G Gb F# F E Eb D# D Db C# C 

=FtdlJ J~t.J HJBJ J HJBJ hlOJ 
m m ~ w m m m % ~ 

172 166 159 143 134 115 105 95 

B Bb A# A Ab I G# G Gb F# 

?Fbrt rTur rt•r 
74 63 63 52 39 39 24 8 8 

Figure 13-2. The chromatic scale and pitch numbers for the speaker sub
routine 

A pitch number determines which note will be played from the 
speaker subroutine's range, which includes most of the notes in 
the octave below middle C and all of the notes in the three octaves 
above it (Figure 13-2). Likewise, a length number determines the 
note's approximate length: whole, half, quarter, or eighth (Figure 
13-3). The length is only approximate because the pitch value 
also affects how long the note is held, as demonstrated earlier in 
this chapter. You may wish to individually adjust length numbers 
for pitch numbers below 85 and above 210. For example, length 
number 3 may sound more like an eighth note when the pitch 
number is 214 or higher. 



382 I Apple II User's Guide 

Dotted Dotted Dotted 
Whole Half Half Quarter Quarter Eighth Eighth 

.. r.J r J f!· .e ~ :i •• , 
F [! F iii <f .JI - .. jl jl <f J>r: t-

16 12 8 6 4 3 2 

Figure 13-3. Note lengths for the speaker subroutine (pitch numbers 85-210) 

Playing Music 

The first step in performing written music with a BASIC pro
gram and the speaker subroutine is to select a suitable piece. As 
far as sound quality goes, compositions written for the piano and 
organ work best. The piece must have a strong melody line, since 
the program can only perform solo; it cannot accompany itself. 
For this reason, songs are usually good choices too. One suitable 
keyboard piece is the Minuet in G from the Anna Magdalena 
Notebook by Johann Sebastian Bach (Figure 13-4). 

Having selected the music, you must next translate every note 
to a pitch and length number with Figures 13-2 and 13-3. Figure 
13-4 shows those numbers for the Bach minuet. Notice in the 
first part of the fifth line how the pitch numbers above 210 use 
length numbers that are slightly longer than normal, thereby 
compensating for the length variations owing to pitch. 

A long but simple BASIC program will play the Bach minuet 
or any other piece (Figure 13-5). It starts with a FOR-NEXT 
loop that reads the machine language code for the speaker sub
routine from DATA statements and puts the codes in memory 
(lines 10-40 and lines 4000-4020). From more DATA statements 
it reads the title and composer of the tune and displays them 
centered on the screen (lines 100-140 and 5000-5020). 

The length and pitch numbers for each note are kept in still 
more DATA statements, along with the number of notes to be 
played (lines 6000 and up). To play the tune, the program first 
reads the number of notes to play (line 200). Then, in a FOR
NEXT loop, it reads the length and pitch for each note (line 220) 
and calls the speaker subroutine using those values (lines 230-
250). An empty FOR-NEXT loop pauses very briefly after each 



,....---..... 

J I t 

Sound I 383 

...--------.... 
er rJ 1 r w J I 

4 2 2 2 2 4 4 4 4 2222 4 4 4 
D G A B C D G G E C D E Fit G G G 

192 151 166 177 182 192 151 151 202 182 192 202 210 214 151 151 

,.-------___ ~ 

11r E r E J I F @? J D j J J J I F I 
4 2 2 2 2 42 22 2 422 22 4 8 
C D C B A B C B A G Flt G A B G B A 

182 192 182 li7 166 177 182 177 166 151 143 151 166 177 151 177 166 

I~ 
<::::: 

~~ 
----...... .......---.. ~ 

r J J I r J J I t er 5- I F J J I J 
4 2 2 2 2 4 4 4 4 2 2 2 2 4 4 4 
D G A B c D G G E c D E F11 G G G 

192 151 166 177 182 192 151 151 202 182 192 202 210 214 151 151 

4 2 2 2 2 42 22 2 422 22 12 
C D C B A B C B A G A 8 A G F11 G 

182 192 182 177 166 177 182 177 166 151 166 177 166 151 143 151 

5 3 3 3 3 5 2 2 2 2 4 2 2 2 2 4 2 2 4 
B G A B G A D E F11 D G E F11 G D Cu B C11 A 

228 214 222 228 214 222 192 202 210 192 214 202 210 214 192 18; Iii 18i 166 

t .--------. 
J F F I F tlf j' 

4 4 4 4 4 4 12 
G Fii E F11 A Cu D 

214 210 202 210 166 18i 192 

......-----.... 
I F J?J J ------=====--F F r IJ J J J i 

4 2 2 4 4 2 2 4 4 4 4 2 2 2 2 4 
D G F1t G E G f'11 G D c B A G Fa G A 

192 151 143 151 202 151 143 151 192 182 Iii 166 151 143 151 166 

------... 
CJ J j ;. 

2 2 2 2 2 2 4 4 4 2 2 4 12 
D E F11 G A B C B A B D G F1: G 

105 125 143 151 166 Iii 182 Iii 166 177 192 151 14:J 151 

Figure 13-4. Pitch and length numbers for the Bach minuet 



384 I Apple II User's Guide 

5 REM 
6 REM •• First put Speaker Subroutine in memory 
7 REM 
10 FOR ML= 864 TO 891 
20 READ MC 
30 POKE ML,MC 
40 NEXT ML 
90 REM t 
91 REM •• Display title and composer 
92 REM 
100 HOME 
110 READ TS: REM •• Tit le of tune 
120 VTAB 10: PRINT SPCC C40 - LEN <TS» I Z>;TS 
130 READ CS: REM •• Composer 
140 VTAB 12: PRINT SPCC C40 - LEN (CS)) I Z>;CS 
190 REM 
191 REM •• Play the tune 
192 REM 
200 READ N: REM •• Number of notes 
210 FOR T = 1 TO N 
220 READ L,P: REM •• Length and pitch 
230 POKE 864,L 
240 POKE 865,P 
250 CALL 866: REM •• Play a note 
260 REM •• Slight pause between notes 
270 FOR S = 1 TO 5 
280 NEXT S 
290 NEXT T 
300 END 
:S090 REM 
3091 REM •• Machine Language Speaker 

Subroutine code 
3092 REM 
4000 DATA 0,115,172,97,3,174,97,3,232,208,253,169 
4010 DATA 4,32,168,252,173,48,192,136,208,239,206 
4020 DATA 96,3,208,2::S1,96 
4990 REM 
4991 REM •• Music 
4992 REM 
5000 DATA MINUET: REM •• Title 
5010 DATA J.S. BACH: RE" •• Co•poser 
5020 DATA 127: REM •• Number of notes 
5080 REM 
5081 REM •• Note lengths and pitches, 
5082 REM •• measure by •easure 
5083 REM 
5090 REM •• Line 1 

Figure 13-5. Program to play the Bach minuet (see Figure 13-4) 



6000 DATA 4,192,2,151,2,166,2,177,2,182 
6010 DATA 4,192,4,151,4,151 
6020 DATA 4,202,2,182,2,192,2,202,2,210 
6030 DATA 4,214,4,151,4,151 
6040 REM •• Line 2 
6050 DATA 4,182,2,192,2,182,2,177,2,166 
6U60 DATA 4,177,2,182,2,177,2,166,2,151 
6070 DATA 4,143,2,151,2,166,2,177,2,151 
6080 DATA 4,177,8,166 
6090 REM •• Line 3 
6100 DATA 4,192,2,151,2,166,2,177,2,182 
6110 DATA 4,192,4,151,4,151 
6120 DATA 4,202,2,182,2,192,2,202,2,210 
6130 DATA 4,214,4,151,4,151 
6140 REM •• Line 4 
6150 DATA 4,182,2,192,2,182,2,177,2,166 
6160 DATA 4,177,~,182,2,177,2,166,2,151 
6170 DATA 4,166,2,177,2,166,2,151,2,143 
6180 DATA 12,151 
6190 REM •• Line 5 
6200 DATA 5,228,3,214,3,222,3,228,3,214 
6210 DATA 5,222,2,192,2,202,2,210,2,192 
6220 DATA 4,214,2,202,2,210,2,214,2,192 
6230 DATA 4,187,2,177,2,187,4,166 
6240 REM •• Line 6 

Sound I 385 

6250 DATA 2,166,2,177,2,187,2,192,2,202,2,210 
6260 DATA 4,214,4,210,4,202 
6270 DATA 4,210,4,166,4,187 
6280 DATA 12,192 
6290 REM •• Line 7 
6300 DATA 4,192,2,151,2,143,4,151 
6310 DATA 4,202,2,151,2,143,4,151 
6320 DATA 4,192,4,182,4,177 
6330 DATA 2,166,2,151,2,143,2,151,4,166 
6340 REM •• Line 8 
6350 DATA 2,105,2,125,2,143,2,151,2,166,2,177 
6360 DATA 4,182,4,177,4,166 
6370 DATA 2,177,2,192,4,151,4,143 
6380 DATA 12,151 

Figure 13-5. Program to play the Bach minuet (continued) 

note is played in order to keep the notes from slurring together 
(lines 270 and 280). For a legato performance, you could change 
the loop to iterate once instead of five times. For a staccato per
formance, you could change the loop to iterate 10 or 15 times. In 



386 I Apple II User's Guide 

fact, the number of iterations for this loop could be stored in the 
DATA statements along with the length and pitch of each note, 
allowing the program to vary the performance to match the writ
ten music more closely. 

As written, neither the speaker subroutine nor the BASIC pro
gram that plays music has any provision for rests. You may wish 
to add that feature. 

The program listed in Figure 13-6 lets you compose music for 
the speaker subroutine. You specify each note of your composition 

1 REM 
2 REM •• Music Composer Program 
S REM 
6 REM •• Put speaker subroutine in memory 
7 REM 
10 FOR ML= 864 TO 891 
20 READ MC 
30 POKE ML,MC 
40 NEXT ML 
90 REM 
91 REM •• Find out what to do 
92 REM 
100 DIM AC100,2>: REM •• Stores the composition 
110 HOME 
120 INPUT "CE)NTER, CL>ISTEN, (P)RINT, 

CC)HANGE? ";A$ 
130 IF A$= "L" OR A$= "l" THEN GOSUB 1400 
140 IF A$ = "P" OR A$ = "p" THEN GO SUB 1600 
150 IF AS= "E" OR AS= "e" THEN GOSUB 1000 
160 IF AS= "C" OR AS= "c" THEN GOSUB 1200 
170 PRINT 
180 GOTO 110 
300 END 
990 REM 
991 REM •• Enter more notes in sequence 
992 REM 
1000 I = I + 1: REM •• Current end of composition 
1010 M = I: REM •• Note number to enter 
1020 GOSUB 1800: REM •• Input lenght & pitch 
1030 IF P = 0 AND L = 0 THEN I= I - 1: RETURN: 

REM •• Quit? 
1040 ACI,1> = P:ACI,2) = L: REM •• Remember note 

Figure 13-6. Music Composer program 



1050 GOTO 1000: REM •• Get next note 
1190 REM 
1191 REM •• Allow changes to composition 
1192 REM 

Sound I 387 

1200 PRINT "NOTE TO CHANGE C1 TO ";I;"; 0 ENDS)"; 
1210 INPUT E 
1220 IF E = 0 THEN RETURN 
1230 IF E < 1 OR E > I THEN PRINT CHRS (7);: 

GOTO 1200 
1240 M = E: GOSUB 1800: REM •• Input length & Pitch 
1250 ACE,1) = P:ACE,2) = L: REM •• Remember 

the change 
1260 GOTO 1200 
1390 REM 
1391 REM •• Listen to the composition 
1392 REM 
1400 FOR K = 1 TO I 
1410 POKE 864,ACK,2) 
1420 POKE 865 ,A CK, 1) 
1430 CALL 866: REM •• Play a note 
1440 NEXT K 
1450 RETURN 
1590 REM 
1591 REM •• Print the composition 
1592 REM 
1600 PRINT "NOTE"; TABC ?>;"LENGTH"; 

TAB( 15>;"PITCH" 
1610 FOR K = 1 TO I 
1620 PRINT K; TABC 7);ACK,2>; TASC 15>;ACK,1) 
1630 NEXT K 
1640 PRINT 
1650 PRINT "PRESS RETURN TO CONTINUE": INPUT ZS 
1660 RETURN 
1790 REM 
1791 REM •• Input one note 
1792 REM 
1800 PRINT "NOTE NO. ";M; 
1810 INPUT " - ENTER LENGTH, PITCH: ";L,P 
1820 IF P = 0 AND L = 0 THEN RETURN 
1830 IF CP < 0 OR P > 255) OR CL < 1 OR L > 255) 

THEN PRINT CHRS (7); GOTO 1810 
1840 POKE 864,L 
1850 POKE 865,P 
1860 CALL 866: REM •• Play a note 
1870 RETURN 
3090 REM 

Figure 13-6. Music Composer program (continued) 



388 I Apple II User's Guide 

3091 REM •• Machine Language Speaker 
Subroutine code 

3092 REM 
4000 DATA 0,115,172,97,3,174,97,3,232,208,253,169 
4010 DATA 4,32,168,252,173,48,192,136,208,239,206 
4020 DATA 96,3,208,231,96 

Figure 13-6. Music Composer program (continued) 

by entering its length and pitch. The program will then play 
back your composition, let you change individual notes, or print 
the length and pitch numbers. 

When you run the program, you will see the message 
(E)NTER, (L)ISTEN, (P)RINT, (C)HANGE? Your first action 
will be to enter some notes, so press E and then RETURN. 

Next, the message NOTE NO. 1- ENTER LENGTH, PITCH: 
appears. Enter two numbers separated by a comma. The first is 
the length of the note and the second is the pitch. Both numbers 
must be between 1and255. When you press RETURN after enter
ing these values, the program plays the note. Repeat this process 
to enter a series of tones (up to 100). To stop entering notes, enter 
a length and pitch of 0. The program will ask you to specify 
another action. 

If you choose to change entries you have made, the message 
NOTE TO CHANGE (1 to 12; 0 ENDS)? appears, except that 
where you see the 12 here, the number of the last note you actu
ally entered will appear. Enter the number of the note you want 
to change. The program will ask you for the length and pitch 
once more. To end changes for now, enter note number 0, and the 
program will ask you to specify another action. 

When you listen to your composition, the program displays all 
the notes you have entered so far. It displays them all at once, so 
if there are more than 22, some will disappear off the top of the 
screen. You can always freeze and unfreeze the display by press
ing CONTROL-S as required. 

You may wish to modify the program to print your composition 
in addition to, or instead of, displaying it. Use the techniques de
scribed in Chapter 10. Also, you may wish to add to the progam 
so it will save the notes you enter in a disk file. Either sequential 



Sound I 389 

or random-access programs may suit your needs; see Chapter 11. 
With your compositions or disk files, another program you write 
could retrieve one and then play it using the speaker subroutine. 



Machine Language 
Monitor 14 

Residing permanently in the Apple II's read-only memory 
(ROM) is a control program called the Machine Language Moni
tor. The Machine Language Monitor serves as a link between the 
BASIC interpreter (or another programming language) and 
many low-level functions that the computer performs, such as 
displaying a character or drawing a line. 

This chapter describes how to use the Machine Language Mon
itor via keyboard commands. For example, you can use it to put 
graphics shape tables and machine language subroutines into 
memory. You can examine memory locations or the micro
processor registers, and change them if you wish. You can also 
move blocks of data from one part of memory to another and 
compare one block of memory to another. 

In addition to describing the Machine Language Monitor, this 
chapter explains how to use the Mini-Assembler to enter an 
assembly language program. However, this chapter does not 
teach you assembly language programming. For that, read 6502 
Assembly Language Programming by Lance Leventhal (Berkeley: 
Osborne/McGraw-Hill, 1979) or another 6502 assembly language 
text. 

Accessing the Machine Language Monitor 

To transfer control of an Apple Ile or Apple II Plus directly to 
the Machine Language Monitor, type the command CALL -151. 
The command prompt changes to an asterisk, reminding you that 

391 



392 I Apple II User's Gulde 

BASIC commands will no longer work. 
On most standard Apple II machines, the asterisk command 

prompt appears immediately when you switch on the computer. 
The Machine Language Monitor is already in control; there is no 
need to type the CALL -151 command. 

Leaving the Machine Language Monitor 

On an Apple Ile or Apple II Plus, you can exit the Machine 
Language Monitor and return control to BASIC by pressing 
CONTROL-C and then RETURN. After you press RETURN' the 
BASIC command prompt appears: ] for Applesoft or > for Inte
ger BASIC. If there was a BASIC program in memory before you 
transferred to the Machine Language Monitor, the program and 
its variables will be unchanged when you return to BASIC, 
unless you did something with the Machine Language Monitor to 
change them. 

On a standard Apple II, you can exit the Machine Language 
Monitor by pressing CONTROL-C and then RETURN. But unless the 
standard Apple II is equipped with an Applesoft Firmware card, 
CONTROL-C always restarts Integer BASIC. To restart Applesoft 
if you are using ProDOS or DOS 3.3, type 3DOG and then press 
RETURN. (That's a zero between the D and the G.) To restart 
Applesoft that you loaded from cassette, type OG and press 
RETURN. 

Important: Use the command OG only with cassette-based 
Applesoft. 

Hexadecimal Numbers 

The Machine Language Monitor does not use the decimal (base 
10) number system you are familiar with. It uses the hexadecimal 
(base 16) number system instead. Hexadecimal numbers make a 
convenient shorthand for the binary (base 2) numbers used inter
nally by the Apple II's 6502 microprocessor. You normally count 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and so on. The Machine Language 
Monitor counts l, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10, 11, and 
so on. The microprocessor counts 0, l, 10, 11, 100, 101, and so on. 

BASIC isolates you from hexadecimal and binary numbers by 
converting to and from decimal behind the scenes. When you use 



Machine Language Monitor / 393 

the Machine Language Monitor, you must learn to think in hexa
decimal or use the conversion table in Appendix H. 

Loading ProDOS or DOS 3.3 

You can load· the ProDOS or DOS 3.3 operating system pro
gram with a Machine Language Monitor command. On most 
Apple II systems you simply type a 6, press CONTROL-P, and then 
press RETURN. This command loads the operating system from 
drive 1 attached to slot 6, just as the PR#6 command does in 
BASIC. To load DOS from a drive attached to a different slot, 
enter that slot number instead of the 6. 

Activating the 80-Column Adapter 

On an Apple Ile equipped with an SO-column adapter, you can 
put the computer in active-SO mode with a Machine Language 
Monitor command. Type a 3, press CONTROL-P, and then press 
RETURN. This works just like the PR#3 command in BASIC. 

EXAMINING MEMORY ________ _ 

The Machine Language Monitor allows you to examine the con
tents of memory locations one at a time, eight at a time, or a 
block at a time. 

Examining Single Locations 

To look at a single memory location from the Machine Lan
guage Monitor, type the address (in hexadecimal) of the location 
and press RETURN, as in this example: 

*f F69 

FF69- A9 

*• 
When you enter an address, the Machine Language Monitor 
retains it for future use as a memory location pointer. To change 
the memory location pointer, simply type a new address. For 



394 I Apple II User's Guide 

example, type the following: 

*300F 

and the Machine Language Monitor resets the memory location 
pointer in addition to displaying the contents of location 300F. 

Examining Words of Memory 

To examine more memory locations starting at the memory 
location pointer, enter nothing after a Machine Language Moni
tor command prompt; just press RETURN. For example, suppose 
you examined location FF69 as in the example above, and at the 
next command prompt pressed RETURN, as follows: 

*FF69 

FF6·9- A9 

* 
AA 85 33 20 67 FD 

* FF7U- 20 C7 FF 20 A7 FF 84 
*ti 

The RETURN key is pressed three times in this example, once on 
each line that begins with an asterisk command prompt. The 
first time, the contents of location FF69 are displayed. The 
second time, the contents of the next seven locations, FF6A 
through FF6F, appear. The third time, the contents of the next 
eight locations appear, along with the first address for the group 
of eight. 

Examining Blocks of Memory 

You can examine a large block of memory (usually more than 
eight bytes) in block mode. Type the starting address (in hexa
decimal), a period, and the ending address (in hexadecimal), and 
then press RETURN. Here is an example: 

*F800.F83F 

F800- 4A 08 20 47 F8 28 A9 OF 
F808- 90 02 69 EO 85 2E B1 26 
F810- 45 30 25 2E 51 26 91 26 
F818- 60 20 00 F8 C4 2C BO 11 
F82U- CB 20 UE F8 90 F6 69 01 



Machine Language Monitor I 395 

F828- 48 20 00 F8 68 CS 20 90 
F820- FS 60 AO 2F DO 02 AO 27 
F838- 84 2D AO 27 A9 00 85 30 

*• 
If you specify an ending address lower than the starting address, 
only the contents of the starting address are displayed. 

You can specify a block of memory too large to display at once 
on the screen. In this case, data scrolls off the top of the screen to 
make room for more at the bottom. You cannot cancel this display 
without pressing CONTROL-RESET. On most Apple II machines, 
you can temporarily halt the display by pressing CONTROL-S. 
Using CONTROL-S freezes output to the screen, giving you a 
chance to view the screen at your leisure. Press CONTROL-S again 
to restart the display. 

A shortened form of the block-examine command uses the 
memory location pointer for the starting address of the block. 
Enter a period followed by the ending address of the block. For 
instance, if you just looked at memory locations F800 through 
F83F, as shown in the example above, you can continue examin
ing a block beginning with F840 and ending with F880 as 
follows: 

*.F880 
F840- 20 28 F8 88 10 F6 60 48 
F848- 4A 29 03 09 04 85 27 68 
f 850- 29 18 90 02 69 7f 85 26 
f 858- OA OA 05 26 85 26 60 AS 
F860- 30 18 69 03 29 OF 85 30 
F868- OA OA OA OA 05 30 85 30 
F870- 60 4A 08 20 47 F8 81 26 
f 878- 28 90 04 4A 4A 4A 4A 29 
F880- OF 
*II 

EXAMINING THE MICROPROCESSOR 
REGISTERS ____________ _ 

With the Machine Language Monitor, you can inspect the reg
isters in the Apple H's 6502 microprocessor. This is done by 
pressing CONTROL-E and then RETURN. The next example illus
trates the results. 



396 I Apple II User's Gulde 

* A=F6 X=02 Y=OO P=OO S=98 

*• 
The values displayed are those stored in the Accumulator regis
ter (A), Index Register X (X), Index Register Y (Y), Processor 
Status Register (P), and Stack Pointer (S). The values directly to 
the right of each equal sign are the latest values of the registers. 
However, they are not affected by operating the Machine Lan
guage Monitor. In other words, the register contents are saved by 
the Machine Language Monitor and remain unchanged until you 
either execute your own machine language program or return to 
BASIC. 

ALTERING MEMORY _________ _ 

Altering memory is more complicated than examining it. You 
must specify which location to alter and you must supply the new 
data that goes into that location. You can alter a single location, 
or you can modify a range of consecutive memory locations with 
one command. 

Altering a Single Memory Location 

The first step in changing a single memory location is to set the 
memory location pointer, which is the same pointer used in exam
ining memory. You specify a location to alter the same way you 
specify a location to examine: type its address (in hexadecimal) 
and then press RETURN. The Machine Language Monitor 
responds with the contents of the memory location. For example, 
the following command line sets the memory location pointer to 
1200 hexadecimal: 

*1200 
1200- 44 

*• 
The next step is to alter the value stored in this location. To do 

that, type a colon and the two-digit hexadecimal number you 
want to store at the location you just set (then press RETURN). For 
example, type 



Machine Language Monitor / 397 

The colon indicates a memory alteration command to the Machine 
Language Monitor. The 5F is the new data to place at memory 
location 1200. You can alter memory using one command line 
instead of two, as shown below: 

•1200:5F 

This command line has the same effect on location 1200 as the 
two separate lines shown previously. The memory location point
er becomes 1200, and the Machine Language Monitor places 5F 
at that location. The memory location pointer moves to the next 
highest memory location. If you want to change location 1201 to 
7F, for example, type this: 

Again, the memory location pointer is increased by 1. Now you 
can alter memory location 1202 without explicitly entering its 
address. 

Altering a Range of Memory Locations 

The Machine Language Monitor lets you change more than one 
memory location at a time, provided the locations are consecutive. 
First, you set the memory location pointer. Next, you type a colon 
and, on the same line, you enter a series of two-digit hexadecimal 
numbers -one two-digit number for each consecutive location 
you want to alter. The following example places the numbers 00 
through 07 in locations 1200 through 1207: 

*1200:00 01 02 03 04 05 06 07 

This example alters eight addresses at once, but you can alter 
more than 80 with one command. If necessary, the command line 
wraps around to encompass several display lines. 

Checking Memory Alterations 

It is good practice to check memory alterations if you want the 
final product (whether a graphics shape table or a series of 
machine language instructions) to be accurate. To do this you can 
use any of the three examine-memory commands discussed ear
lier in this chapter. The following example checks the alterations 



398 I Apple II User's Guide 

made by the previous example: 

*1200.1207 
1200- 00 01 02 03 04 05 06 U7 •• 

If you spot any mistakes in the memory locations you altered, you 
can correct them individually without having to reenter all the 
data. Simply note the address of each incorrect location and alter 
it again. For instance, suppose you made a mistake entering the 
fourth number above, at location 1203. You can correct it by typ
ing this: 

*1203:03 

ALTERING THE MICROPROCESSOR REGISTERS __ 

The process of altering the microprocessor registers is slightly 
different from altering memory, since the registers have no 
addresses. To alter the contents of a registe.r, you first examine 
them all using CONTROL-E. On the next line, you can change the 
contents of the registers by typing a colon followed by one to five 
hexadecimal numbers. Separate the numbers with spaces. 

The first hexadecimal number will be the new value of the 
Accumulator register, the second number will be the new value 
of Index Register X, the third number the value of Index Regis
ter Y, the fourth the value of the Processor Status Register, and 
the fifth the new value of the Stack Pointer. You must enter 
values for all registers up to and including the last register in the 
series you intend to change. You need not enter values for any 
registers beyond that. 

As an example, say you want to change Index Register Y while 
leaving all other registers intact. First, examine the registers 
with CONTROL-E: 

* 
A=FF X=02 Y=OO P=OO S=98 

*• 
(These register contents are just examples.) 

To change Index Register Y to SA without changing any other 
registers, type the existing values of the Accumulator register 
and Index Register X, followed by the new value for Index Regis-



Machine Language Monitor I 399 

ter Y. Don't type values for the last two registers and they will be 
unchanged. 

*: FF 02 8A 

Verify that the change is correct by using CONTROL-E to examine 
the registers once again. 

STORING MEMORY CONTENTS 
ON DISK AND TAPE _________ _ 

The Machine Language Monitor allows you to use a cassette 
recorder to save the contents of a block of memory on tape. With 
the ProDOS and DOS 3.3 operating systems, you can store 
memory contents even more quickly and reliably on disk. In 
order to save memory on disk, you have to leave the Machine 
Language Monitor temporarily and use BASIC commands. 

Saving Memory on Tape 

The Machine Language Monitor's write-memory command 
saves a block of memory on tape. You specify the beginning and 
ending addresses of the memory block you want to save. The fol
lowing example illustrates: 

•360.366\I 

This command tells the Machine Language Monitor to write the 
contents of memory on the cassette recorder, starting at memory 
location 360 (hexadecimal) and ending with memory location 366. 

When you enter the command to write memory, don't press 
RETURN until you have pressed the cassette recorder's RECORD 
button and you can see the tape moving. If the cassette you are 
using is at the beginning of the tape, let it run for at least five 
seconds before pressing RETURN. This allows the nonmagnetic 
leader tape to pass through the recorder. The write-memory 
command does not check for the presence of an operating tape 
recorder and usable tape. 

When you press RETURN, the Machine Language Monitor 
command prompt disappears from the screen and the computer 
sends a ten-second reference tone to the recorder. The Machine 
Language Monitor uses this tone later as a locking-on signal dur-



400 I Apple II User's Gulde 

ing the read-memory command, as described in the next section. 
When the write-memory command finishes, the Apple II speaker 
beeps once and the Machine Language Monitor command prompt 
reappears on the screen. 

The write-memory command enables you to record from one 
byte to 64K bytes ( 65, 536 bytes) on tape. The Machine Language 
Monitor sends data through the cassette output port at a rate of 
approximately 210 characters per second (based on a 16,384-byte 
move in 77.5 seconds, after the reference tone). 

Retrieving Data From Cossette Tape 

The read-memory command enables you to transfer data from 
the cassette recorder into the Apple II's memory. You specify the 
starting address and the ending address. The following example 
illustrates: 

*360.366R 

This command reads data from cassette tape into memory, start
ing at memory location 360 (hexadecimal) and ending at 366. 

The read-memory command waits for a reference tone from 
the cassette recorder and locks up the computer until it encoun
ters the tone. So before you press PLAY on the cassette recorder, 
make sure you position the tape to where the reference tone be
gins. You can tell the difference between the reference tone and 
actual data on the tape by listening to it. Unplug the cable from 
the earphone jack to listen to the tape using the cassette 
recorder's speaker. The reference tone is a steady, medium
pitched hum. Actual data sounds like random noise or static. 

Be sure to adjust the cassette recorder playback volume before 
using the read-memory command. The procedure for adjusting 
the volume is explained in Chapter 2. 

Error Conditions In the Read-Memory Command 

The Machine Language Monitor listens to the cassette recorder 
for at least 3. 5 seconds before expecting data from it. This allows 
the Machine Language Monitor to lock onto the reference tone. If 
the tape contains less than 3. 5 seconds of this tone, the Machine 
Language Monitor loses the beginning of the data transmission 



Machine Language Monitor I 401 

from the cassette, resulting in a checksum error. Should this 
happen, you will hear a beep from the Apple II speaker and see 
the message ERR on the screen. To check the cause of the error, 
you can time the reference tone. To do that, rewind the tape to the 
beginning of the tone, unplug the cable from the recorder's ear
phone jack, and depress the PLAY button. Note when the tone 
starts and stops. If it is less than 3.5 seconds long, you must write 
memory to the tape again. You probably forgot to move past the 
nonmagnetic leader tape at the beginning of the cassette before 
recording. 

Reading more or less data into memory from cassette than was 
originally saved on the tape usually causes an error message to 
appear on the screen. As a general rule, you should only read in 
as much memory as you wrote to the cassette in the first place. 

Saving Memory on Disk 

The BSAVE command saves a block of memory on disk. First 
you must leave the Machine Language Monitor and return to 
BASIC using CONTROL-C or one of the methods described at the 
beginning of this chapter. Then you can type a BSAVE com
mand. Here is an example: 

]BSAVE SHAPE.TABLE,A$360,L6 

This command creates a disk file named SHAPE. TABLE. The 
parameter A$360 designates the starting address of the block of 
memory to write, and the dollar sign prefix means the number is 
hexadecimal. The parameter L6 specifies the length of the block 
of memory to write, in this case 6 bytes. You can use hexadecimal 
or decimal numbers for the address and length parameters. 

Retrieving Memory From Disk 

The BLOAD command retrieves data from a disk file and loads 
it into memory. To use the BLOAD command, you must leave the 
Machine Language Monitor and return to BASIC using 
CONTROL-C or one of the methods described at the beginning of 
this chapter. Then you can type a BLOAD command. Here is an 
example: 

]BLOAD SHAPE.TABLE,A$360 



402 I Apple II User's Gulde 

This example loads the file named SHAPE. TABLE from the 
disk currently in use and puts the data directly into memory, 
starting at address 360 (hexadecimal). This command also accepts 
a decimal address. The starting address parameter is not neces
sary if you want the file contents to start at the same location they 
were saved from. You need only specify an address if it differs 
from the BSAVE starting address. A length parameter is also 
optional. If no length is specified, the operating system checks the 
length of the disk file and terminates the transfer of data 
automatically. 

MOVING AND COMPARING 
BLOCKS OF MEMORY ________ _ 

The Machine Language Monitor has a move-memory command 
that copies a block of data from one part of memory to another. It 
also has a compare-memory command that reports any discrep
ancies between two blocks of memory. When used with the 
Machine Language Monitor's read-memory and write-memory 
commands, these new commands allow you to verify the success 
of a write-memory command. 

The Move-Memory Command 

In order to move data from one part of memory to another, you 
must specify where you want to move memory to, where you want 
to move memory from, and the last address you want moved. As 
with other Machine Language Monitor commands, all addresses 
are hexadecimal numbers. Here is an example: 

*1200<2U00.2100M 

This example moves data to address 1200 from the block starting 
at location 2000 and ending at location 2100. The implied length 
of the block moved is 101 bytes hexadecimal (257 bytes decimal). 
The original contents of addresses 2000 through 2100 remain 
undisturbed. 



Machine Language Monitor / 403 

Filling, Memory 

The move-memory command can also be used to fill consecu
tive memory locations with a repeated set of values. For example, 
with two commands you could place a zero value in the entire 
block of memory starting with address lDOO and ending with 
lDFF. To begin, you make the first block location zero, as follows: 

*1000:00 

Next you copy the first block location to all the rest of the block 
locations with one move-memory command. The following exam
ple shows how: 

*1DU1<100U.1DFEM 

You specify a destination starting address that is one greater 
than the last byte of the pattern (in this example it is lDOl). Set 
the source starting address to the beginning of the pattern (lDOO 
in this case), and set the source ending address to the last byte 
that you want filled (lDFF) minus the length of the pattern you 
want to fill memory with (lDFE). 

This example fills locations lDOl through lDFF with the con
tents of location lDOO, which contains 00. To move the first byte, 
the Machine Language Monitor moves data from location lDOO to 
location lDOl first, moving 00 into location IDOL To move the 
second byte, the Machine Language Monitor moves 00 from loca
tion lDOl to location 1D02. Similarly, the contents of 1D02 are 
moved to 1D03, and so on, until the contents of location IDFE are 
moved into location lDFF. 

You can also fill memory with a pattern that is more than one 
byte long. For example, to fill from lDOO through lDFF with the 
four-byte pattern 00 5E 7F FF, you first alter four bytes of 
memory starting at address lDOO: 

*1000:00 SE 7F FF 

This sets the pattern. Now you can fill successive memory loca
tions with the pattern, as follows: 

*1D04<1D00.1DFBM 



404 I Apple II User's Guide 

Note that the destination starting address occurs one byte after 
the end of the pattern, the source starting address points to the 
beginning of the fill pattern, and the source ending address 
points to the last address to fill minus the length of the pattern 
(lDFF - 04 = lDFB in hexadecimal arithmetic). 

The Verify-Memory Command 

The Machine Language Monitor verify-memory command com
pares two blocks of memory, noting differences. It looks much 
like the move-memory command. You sp~cify where the first 
block starts and where the second block starts and ends. Here is 
an example: 

*32DO<O.CV 

This example instructs the Machine Language Monitor to start 
comparing data at location 32DO with location 0, and to continue 
the comparison until address 32DC is compared with location 
OOOC. Notice that no leading zeros are needed for addresses in a 
Machine Language Monitor command line. 

If the Machine Language Monitor encounters a byte in the first 
block that is not the same as its counterpart in the second block, 
it displays the address from the first block and its value, and 
then the value at the same relative address in the second block. 
For example, suppose you moved memory from locations 0000 
through OOOC to locations 32DO through 32DC, as follows: 

*3200<0.CM 

You could visually check the move-memory operation by display
ing the source and destination blocks. 

*O.C 
0000- 4C 3C 04 4C 3A DB 00 00 
0008- FF FF 4C 99 E1 
*32DO • .S2DC 
3200- 4C 3C 04 4C 3A DB 00 00 
3208- FF FF 4C 99 E1 

Now suppose you altered location 32D8 from its present value 
(FF) to 5A, and then verified the two blocks. 



*32D8:5A 
•32DO<O.CV 
0008- FF CS A) 

Machine Language Monitor / 405 

In this example, the Machine Language Monitor compares the 
two blocks of memory, byte by byte, and finds a discrepancy 
between location 32D8 and location 0008. The value at location 
0008 is FF, but the value at location 32D8 is 5A. 

Verifying a Write-Memory Command 

The verify-memory command is especially useful if you save 
memory contents onto cassette tape or disk. By saving a portion 
of memory and then loading it back at a different location, you 
can verify that memory was saved properly. The following exam
ple illustrates with cassette commands: 

•2U00.20FFW 
•2100. 21 FFR 
•2000<21U0.21FFV 

*• 
This example writes data from memory onto cassette tape, start
ing at location 2000 and ending at location 20FF. Then it reads 
the same data back, but, but locations 2100 through 21FF. 
Finally, it verifies locations 2000 through 20FF with locations 
2100 through 21FF. Since no discrepancies are displayed, you can 
be sure that the write-memory operation was successful. 

To verify memory saved on disk, the same general procedures 
apply. First, you return to BASIC (with CONTROL-C) and type a 
BSAVE command. Next, you type a BLOAD command, but spec
ify a different starting address than you used with BSAVE. Then 
you switch to the Machine Language Monitor and type a verify
memory command. Here is an example: 

* 
]BSAVE MEM.DATA,AS2000,LS10U 
JBLOAD MEM.OATA,A$2100 
]CALL -151 

*2000<2100.21FFV 

*• 



406 I Apple II User's Guide 

If no discrepancies occur, you can be sure that memory was prop
erly saved onto disk. 

THE GO COMMAND _________ _ 

The Machine Language Monitor has a command that transfers 
control of the Apple II to a program at a location you specify. 
Here is an example: 

*3DOG 

This example instructs the Machine Language Monitor to jump 
to location 3DO in memory and execute the machine language 
instruction it finds there. The letter G at the end of the command 
line stands for "Go." Transferring control to the instruction at 
location 3DO restarts BASIC with the ProDOS or DOS 3.3 oper
ating system. 

The address is optional; if no address is entered, the Machine 
Language Monitor uses its memory location pointer as the 
assumed address. 

USING THE PRINTER _________ _ 

If your Apple II connects to a printer via a serial or parallel 
accessory card, you can use the printer for output from the 
Machine Language Monitor. To divert all output from the screen 
to a printer, type the slot number of the accessory card that con
trols the printer, press CONTROL-P, and then press RETURN. To 
reselect the screen for output, use slot number 0 with the 
CONTROL-P command. The printer command works in exactly the 
same way as the PR# command in BASIC. 

When using this command, be sure the slot you select has an 
accessory card in it. If no accessory card exists in the slot you 
specify, the Apple II will lock up. The only way to recover from 
this condition is .to press CONTROL-RESET. 

THE KEYBOARD COMMAND _______ _ 

You can direct the Machine Language Monitor to accept input 
from a device other than the Apple II keyboard. To do that, type 



Machine Language Monitor I 407 

the slot number for the new input device, press CONTROL-K, and 
then press RETURN. To return control to the Apple II keyboard, 
use slot number 0 with CONTROL-K. 

CHANGING DISPLAY STYLE _______ _ 

To view Machine Language Monitor output on the screen with 
inverse characters, enter the inverse video command, I. To cancel 
inverse style, enter the normal video command, N. Neither of 
these commands needs any additional parameter other than the 
letter I or N. 

HEXADECIMAL ARITHMETIC IN THE MACHINE 
LANGUAGE MONITOR ________ _ 

The Machine Language Monitor can perform hexadecimal 
addition and subtraction. To perform addition, enter a hexadec
imal addend followed by a plus sign and a hexadecimal augend. 
If the result is greater than FF, the Machine Language Monitor 
truncates the most significant digit and displays the low-order 
eight bits of the result, as shown in this example: 

•7F+8A 
=09 

To perform subtraction, enter the minuend followed by a 
minus sign and the subtrahend. As with addition, both numbers 
must be hexadecimal. If the result is less than zero, the Machine 
Language Monitor displays the one's complement result, as ~ 
shown below: 

•OA-2D 
=DD 

USER-DEFINABLE MACHINE LANGUAGE 
MONITOR COMMAND ________ _ 

By entering CONTROL-Y in response to a Machine Language 
Monitor prompt, you invoke a special user-definable command. 
The Machine Language Monitor automatically jumps to location 



408 I Apple II User's Guide 

3F8 when CONTROL-Y is entered. There is enough room at loca
tion 3F8 for one machine language jump instruction. If you have 
a special machine language program somewhere in memory, 
CONTROL-Y could initiate a jump to it via location 3F8. 

The example below shows how to use CONTROL-Y to restart 
Applesoft on a standard Apple II without typing the 3DOG com
mand. First, you need to know the format of a machine language 
jump instruction. It takes three bytes. The first byte is the 
instruction code, 4C. The next two bytes are the address to jump 
to, with a twist: you must specify the last byte of the address 
first. Here's an alter-memory command that sets up a jump 
instruction to address 3DO: 

*3F8:4C DU 03 

Now pressing CONTROL-Y and RETURN will restart Applesoft, 
just as CONTROL-C does on an Apple He or Apple II Plus. Reset 
the user-definable command by placing a different jump instruc
tion at address 3F 8. 

THE MINI-ASSEMBLER _________ _ 

The Apple II has a built-in program called the Mini-Assembler 
that spares the assembly language programmer the torture of 
translating to machine language by hand. The Mini-Assembler 
resides with Integer BASIC in ROM. It is called "mini" because 
you have to specify memory locations with addresses, rather than 
mnemonic labels as in a full assembler. Also, each assembly lan
guage instruction you enter is immediately translated into 
machine language. The principal problem here is that you cannot 

~ insert or delete instructions with a text editor prior to translation 
by a full assembler. The principal advantage of the Mini
Assembler is that you can enter machine instructions directly 
into the Apple II, while still keeping the convenience of assembly 
language mnemonic instructions. 

Although this chapter describes the Mini-Assembler and tells 
how to use it, it does not explain assembly language program
ming concepts. Nor does the chapter cover the entire 6502 
instruction set, which is the assembly language the Apple II uses. 
If you don't understand terms such as assembly, operands, and 
mnemonics, stop right now. Learn assembly language program
ming techniques and the 6502 instruction set first. Then finish 
reading this chapter. 

The Mini-Assembler works only with the assembly language 



Machine Language Monitor I 409 

instructions of the 6502 microprocessor found in a standard 
Apple II, an Apple II Plus, and an original Apple Ile. The 65C02 
microprocessor found in an Enhanced Apple Ile recognizes all 
the 6502 instructions and more, but the Mini-Assembler does not 
work with the additional 65C02 instructions. 

Accessing the Mini-Assembler 

The entry point address of the Mini-Assembler program is at 
location F666. To start it from the Machine Language Monitor, 
enter the following command: 

*f 666G 

From Integer BASIC (or Applesoft on some machines), enter the 
following immediate mode command: 

>CALL -2458 

When you first start the Mini-Assembler, the Apple II's speaker 
beeps once. The command prompt for the Mini-Assembler is an 
exclamation point (!). 

The Mini-Assembler is not always available on an original 
Apple Ile. On an original Apple Ile, the Mini-Assembler is a sup
plement to the Integer BASIC interpreter, but not to the Apple
soft interpreter. Thus, on the Apple Ile, you must use an INT 
command from Applesoft before you can start the Mini
Assembler. Since Integer BASIC is only available with the DOS 
3.3 operating system, the Mini-Assembler is not available with 
the ProDOS operating system on an original Apple Ile. None of 
these restrictions apply to an Enhanced Apple Ile. 

Machine Language Monitor Commands 
In the Mini-Assembler 

Except on an Enhanced Apple Ile, you can execute Machine 
Language Monitor commands while you are using the Mini
Assembler. Immediately after the Mini-Assembler command 
prompt (! ), enter a dollar sign followed by the Machine Language 
Monitor command. The example below shows how to examine 
memory contents from the Mini-Assembler: 

! $1 C FF 

1CFF- FD 
!}J 



410 I Apple II User's Guide 

This feature saves you the time spent switching back and forth 
between the Mini-Assembler and the Machine Language Moni
tor. You can enter any Machine Language Monitor command 
while in the Mini-Assembler just by entering the dollar sign as 
the first character of input. In.fact, you will use this feature to 
leave the Mini-Assembler. Again, this feature is not available on 
an Enhanced Apple Ile. 

Leaving the Mini-Assembler 

To leave the Mini-Assembler, use one of the Machine Language 
Monitor commands (described at the beginning of this chapter) 
with a dollar sign prefix. To get back to the Machine Language 
Monitor, branch to location FF69 with an $FF69G command. 

Typing a dollar sign followed by CONTROL-C will put you in 
BASIC on an Apple II Plus and some standard Apple II 
machines. On a standard Apple II not equipped with an Apple II 
Firmware card, use CONTROL-C for Integer BASIC, $3DOG for 
disk-based Applesoft, or $0G for cassette-based Applesoft. 

On an Enhanced Apple Ile, you must press CONTROL-RESET to 
leave the Mini-Assembler. 

Instruction Formats 

There are six instruction formats used in programming the 
6502 microprocessor. These formats accommodate the micropro
cessor's eleven addressing modes. They are described below. 

Absolute or direct addressing requires only the one- or two-byte 
address of an operand in memory. Here is an example: 

! AND 303A 

The Mini-Assembler does not require a dollar sign before hexa
decimal addresses; it assumes that all addresses used are in base 
16. 

Immediate addressing mode specifies the actual value to be 
used as an operand, as in this example: 

! LDA #04 

Note that a number sign (#) is the first character of the operand. 
This indicates that the value of the operand is to be used literally. 



Machine Language Monitor I 411 

Without the number sign, the Mini-Assembler interprets the 
operand as an address, not a literal value. 

Note also the confusing use of the term "immediate." Do not 
confuse immediate addressing in assembly language with imme
diate execution in BASIC. The actions are quite different. The 
terms are commonplace, so we will use them despite the 
ambiguity. 

Indexed addressing adds the contents of the X or Y register to 
an address you specify and uses the sum as the address that the 
instruction references. Here is an example: 

! CMP 36F,X 

Pre-indexed indirect addressing indicates that the sum of a 
number and the contents of a register (both specified in the 
instruction) form the address of a memory location in the first 
256 bytes of memory. This location and the one after it together 
contain the address of the memory location to be used as the 
operand in the instruction. Here is an example: 

! AND CFO,X) 

Post-indexed indirect addressing looks at an address specified 
in the instruction for another address, to which it adds the con
tents of a register specified in the instruction, forming the final 
address of the data to be used by the instruction. Here is an 
example: 

! OR (22>,Y 

Indirect addressing is a bit more straightforward than indexed 
addressing. Here is an example: 

! JMP C22FE) 

Here, the JMP instruction does not branch directly to location 
22FE. Instead, it branches to the two-byte address contained in 
locations 22FE and 22FF. 

Typing Errors 

The Mini-Assembler detects errors that you make when you 
enter an assembly language instruction. It displays the error by 
beeping once and redisplaying the instruction with a caret (") 
under the first incorrect character in the instruction.· 



412 I Apple II User's Guide 

USING THE MINI-ASSEMBLER ______ _ 

The Mini-Assembler maintains a location counter separate 
from the Machine Language Monitor's memory location pointer. 
When you enter an assembly language instruction, the Mini
Assembler calculates the length of its machine language equiv
alent (1, 2, or 3 bytes) and increments the location counter auto
matically. You need to set the location counter before you enter 
any instructions. 

You can set the location counter as part of the first assembly 
language statement you enter. Here is an example: 

!8DBO:LDA #04 

Directly after the Mini-Assembler command prompt, type the 
starting address for the assembly language code you are about to 
enter, type a colon and the first assembly language instruction, 
and then press RETURN. You do not have to enter a new location 
counter value for the next instruction. 

For subsequent instructions, type a blank space and enter the 
next instruction. This example illustrates: 

! JSR FB1E 

A Sample Session 

This section explains Mini-Assembler operation in step-by-step 
detail. The object of this sample session is to create a small pro
gram that uses the Apple II game control inputs and the onboard 
speaker to create sounds. This program reads values from paddle 
0 and paddle 1 using the built-in Machine Language Monitor 
subroutine PRE AD (at location FB lE). The value of paddle 0 
determines the interval between clicking the speaker (O=shortest 
delay, FF= longest delay), and the value of paddle 1 determines 
another interval, related inversely to paddle O (O= longest inter
val, FF= shortest interval). The program begins at location lDOO 
and uses location lCFF to store the reading from paddle 0. 

When you enter each line of the assembly language program, 
the Mini-Assembler overlays the line you entered with the cur
rent location counter value, operation code, and operand in 
machine language form (also known as object code), along with 
the instruction mnemonic you entered. Here is an example. 



Machine Language Monitor I 413 

1000- A2 00 LD )( #$00 

The location counter appears at the beginning of the assembled 
line, followed by a dash. After that comes the operation code (A2 
for this LDX instruction), followed by the last byte of the instruc
tion. In the case of three-byte instructions (those that use a two
byte address), the low-order byte appears before the high-order 
byte. Finally, the instruction mnemonic appears. 

The annotated sample session appears in Figure 14-1. Note 
that in the figure, each line produced by the Mini-Assembler 
appears below the line you enter to generate it. In practice, the 
Mini-Assembler displays its output over the top of your typed 
input. 

After entering an assembly language program, you should save 
it on disk or cassette as described earlier in this chapter. You 
should also check the program for accuracy. The best way to do 
this is to list the program, preferably in assembly language for
mat. You will need to use the Machine Language Monitor to do so. 

To run the program, branch to location lDOO. Use the G com
mand in the Machine Language Monitor, or CALL 7424 from 
BASIC. Fiddle with the game controls and see how they affect 
the speaker. To end the program, press CONTROL-RESET. 

DISASSEMBLED LISTINGS _______ _ 

The Machine Language Monitor has a command you can use to 
list machine language instructions in assembly language format, 
even if the Mini-Assembler is not available. The command L, for 
list, d'isassembles 20 machine language instructions into assembly 
language statements and displays them on the screen or any 
other output device you select. The list command uses the location 
counter as a pointer to the next instruction to disassemble. There
fore, if you just enter L after entering the program above, disas
sembly will start with address lD lD. 

It is a good idea to set the location counter when using the list 
command. Here is a disassembled listing of the sound program: 

•1DOOL 

1000-
1002-

A2 00 
20 1 E FB 

LDX 
JSR 

11$00 
$F81E 



414 I Apple II User's Guide 

! 1000: LOX #SOO~Set location counter and enter first instruction 

1000- A2 00 LOX #SQQ 
JSR F B 1 E .,...._All numbers are hexadecimal ($ prefix unnecessary) 

1002- 20 1E FB JSR SFB1E 
! STY 1 C FF 

1005- 8C FF 1C STY $1CFF 
! INX 

1008- E8 INX 
! JSR FB1E 

1009- 20 1E FB JSR SFB1E 
! LOA C030 

1 DO.C- AD 30 co LOA SC030 
1 DEC 1 CFF 

1 DOF- CE FF 1C DEC S1CFF 
1 BNE 1DOC Mini-Assembler computes the relative jump (F8) 

1012- DO f 8 BNE S1DOC 
1 LOA C030 

1D14- AD 30 co LOA SC030 
! INV 

1017- ca INV 
! BNE 1D14 

1018- DO FA BNE $1014 
! JMP 1000 

1D1A- 4C 00 10 JMP $1000 

Figure 14-1. A sample session with the Mini-Assembler 

1005- 8C Ff 1 c STY $1 CFF 
1DU8- E8 INX 
1D09- 20 1E FB JSR $fB1E 
1l>OC- AD 30 co LDA $C030 
1DOF- CE FF 1 c OEC $1CFF 
11> 1 2- DO f 8 BNE $1DOC 
1D14- AD 30 cu LDA $C030 



Machine Language Monitor I 415 

1D17- C8 INV 
1D18- DO FA BNE $1014 
1D1A- 4C 00 1 D JMP $1000 
1010- 9F ??? 
1D1E- 4E AS 12 LSR S12AS 
1021- A4 96 LOY $96 
1D23- A3 ??? 
1024- DO A4 BNE S1CCA 
1D26- EF ??? 
1027- A4 62 LOY $62 
1D29- A2 70 LDX #S70 
• ! • 

In this case, the last eight disassembled instructions are immate
rial, since the program ends at address lD lA. 

Note that the list command is a Machine Language Monitor 
feature, independent of the Mini-Assembler. By entering L ($L 
from the Mini-Assembler) and pressing RETURN without setting 
the location counter, you direct the Machine Language Monitor to 
disassemble the next 20 instructions it finds after those just 
listed. 

COMBINING MACHINE LANGUAGE 
AND BASIC ___________ _ 

In some cases BASIC is not powerful enough to perform all of 
the functions you may need in a program. This is one reason why 
programmers resort to assembly language subroutines in their 
BASIC programs. This section shows how to reference these sub
routines from a BASIC program. 

By weaving assembly language programs in with a BASIC 
program, you can create as many problems as you intended to 
solve. Where in memory are you going to put the assembly lan
guage programs? The Apple II's memory contains four large 
reserved areas, two for text and low-resolution graphics and two 
for high-resolution graphics. The operating system and the 
Applesoft interpreter may take up memory too. Locating a pro
gram where it will not cause problems is dependent on memory 
size and the model of Apple II you use. 

The Machine Language Monitor is your best source for assem
bly language subroutines for three reasons: first, since it is in 
ROM, you don't need to worry about finding space; second, the 
Machine Language Monitor routines have already been debugged; 



416 I Apple II User's Guide 

and third, the intrinsic routines do not take up any additional 
memory. The useful Machine Language Monitor subroutines are 
listed in Appendix G. 

Incorporating the Subroutine 

If you decide to use a Machine Language Monitor subroutine 
in a BASIC program, first be sure there is no BASIC equivalent 
for it. This will save you the trouble of making a program more 
complicated than necessary. Next, check whether the assembly 
language subroutines need parameters passed from the BASIC 
program. If you have to set values in the microprocessor registers 
before executing the subroutine, or if the result of a subroutine 
resides in a register after execution, you will have to use extra 
assembly language instructions to interface with BASIC. Most 
Machine Language Monitor subroutines need no parameters from 
BASIC; those that do frequently have a BASIC equivalent 
anyway. 

Once you know which subroutine to use, you may want to docu
ment it in a way that makes the meaning clear. For instance, 
CALL - 936 clears the text screen and places the cursor in the 
upper left-hand corner of the screen. One way of making the 
CALL statement more descriptive is to set a variable at the 
beginning of the program, as follows: 

>10 CLSCREEN = -936 

and to reference it later in the program: 

>1510 CALL CLSCREEN 

This makes the context of the CALL statement clearer to some
one who has to read it, but it does add one statement to the pro
gram. These finer elements of style will make your program eas
ier to read and debug. 

Problems to Avoid 

If you have an editor/assembler for the Apple II, it is easy to 
relocate programs by resetting the origin point and reassem
bling. However, if you write a machine language subroutine with 
the Mini-Assembler, and the subroutine is designed to be used 



Machine Language Monitor I 417 

with BASIC, you may run into problems that force you to rewrite 
the subroutine for versions of the Apple II with different memory 
sizes. This will happen if you use memory locations used by the 
operating system, the graphics areas, or the Applesoft interpre
ter. Try to use Machine Language Monitor subroutines wherever 
possible. 

If you program in Applesoft, always use the USR function 
instead of the CALL statement if you have to pass parameters to 
and from the subroutine. Locations 9P through A3 store the 
value of the parameter passed by USR, and you can use this area 
for parameters to pass back to BASIC. Use the POKE statement 
to put a JMP instruction in locations 10 through 12 (OA through 
OC hexadecimal). These locations must contain a JMP instruction 
to the beginning of the machine language subroutine invoked by 
USR. 



Summary of Commands, 
Statements, and 
Functions A 

This appendix serves as a one-stop reference for all commands, 
statements, and functions used in the BASIC programming 
environment. It includes the following items: 

· Editing commands and keystrokes 
· ProDOS commands 
· DOS 3.3 commands 
· Applesoft commands, statements, and functions 
· Integer BASIC commands, statements, and functions 
· Immediate and programmed mode restrictions 
· Derived mathematical functions 
· Reserved command words. 

EDITING COMMANDS ________ _ 

When the Apple II is in immediate mode, you can edit any
thing displayed on the screen. You can reexecute commands or 
change program lines. Table A-1 lists the keystrokes you can use 
in escape mode to move the cursor around the screen. Table A-2 
lists the keystrokes that delete and copy displayed characters. 
Table A-3 summarizes how to insert, delete, or replace whole 
program lines. Table A-4 summarizes the program line renum
bering commands available for Applesoft programs after you run 
the DOS 3.3 RENUMBER program. 

419 



420 I Apple II User's Gulde 

Table A-1. Cursor Movement Keystrokes 

Cursor Moves Available on: 
Keystroke One Position Ile II Plus Standard 

- Left Yes No No - Right Yes No No 
1 Down Yes No No 
t Up Yes No No 

J• Left Yes Yes No 
K• Right Yes Yes No 
M• Down Yes Yes No 
1• Up Yes Yes No 

ESC,A•• Right Yes Yes Yes 
ESC,B•• Left Yes Yes Yes 
Esc,c•• Down Yes Yes Yes 
ESC,D .. Up Yes Yes Yes 

•works only in escape mode. To enter escape mode, press the ESC key. To leave it, press 
the ESC key again. 
••Press the ESC key, release it, then press the second key. 

Table A-2. Deleting and Recopying Characters 

Keystroke Effect 

- Moves cursor forward, recopying characters 
passed over 

- Backspaces the cursor, deleting characters passed over 
without erasing them from the screen 

CONTROL-X Cancels the current line 

ESC,E Deletes from cursor to end of line 

ESC,F Deletes from cursor to end of text window 

ESC,@ Clears text window and moves cursor home 



Commands, Statements, and Functions I 421 

Table A-3. Editing Whole Program Lines 

Action Procedure 

Add Type new line with new line number; line number 
determines sequence in program 

Change Display line with LIST command; use editing com-
mands in Tables A-1 and A-2 

Delete Type line number and press RETURN key, or use DEL 
command 

Renumber* Run RENUMBER program before loading or typing 
your program; see Table A-4 for commands 

Replace Type new line with old line number 

*Does not work with ProDOS or Integer BASIC. 

Table A-4. Renumbering Applesoft Program Lines (DOS 3.3 only) 

Command* Effect 

& Renumber the entire program, using an increment of 
10 between line numbers 

&Sline,Eline, Renumber part of the program, starting with the 
Fl1'.ne,Iincrement line number listed after S, ending with the line 

number listed after E, using the first new line number 
listed after F, and using an increment between line 
numbers listed after I. The S, E, F, and I clauses 
are all optional and can be listed in any combination 
and any order. 

&H Put the program into a holding area of memory 

&M Merge the program lines in the holding area of 
memory with the program in the main program 
memory 

•These commands only work after running the RENUMBER program. The FP, HIMEM, and 
MAXFILES commands all disable renumbering until you rerun the RENUMBER program. 



422 I Apple II User's Guide 

Table A-5. Applesoft Restrictions 

Programmed Mode Only 

DATA ONERRGOTO 

DEF FN READ 

GET RESUME 

INPUT 

COMMANDS AND STATEMENTS ______ _ 

All ProDOS, DOS 3.3, Applesoft, and Integer BASIC commands 
and statements are listed here together, in alphabetical order. 
This appendix includes syntax definitions and functional descrip
tions; for examples in context, refer to Chapters 2 through 14. 

Immediate and Programmed Modes 

Most Applesoft and Integer BASIC statements can be used in 
either immediate mode or programmed mode. Tables A-5 and 
A-6 list the exceptions. 

All ProDOS and DOS 3.3 commands can be used in immediate 
mode or programmed mode, except the data file commands 
APPEND, OPEN, POSITION, READ, and WRITE, which are 
allowed only in programmed mode. ProDOS and DOS 3.3 com-

Table A-6. Integer BASIC Restrictions 

Programmed Mode Only Immediate Mode Only 

END AUTO LOMEM: 
FOR CLR MAN 
GO SUB CON NEW 
INPUT DEL RUN 
NEXT HIMEM: SAVE 
RETURN LOAD 



Commands, Statements, and Functions I 423 

mands in programmed mode must be issued indirectly, as part of 
a PRINT statement string, the first character of which is ASCII 
code 4 (CHR$(4) or CONTROL-D). 

Nomenclature and Format Conventions 

This appendix uses a standard scheme for presenting the gen
eral form of each statement and function. The following is a list 
of the punctuation, capitalization, and other mechanical conven
tions used. 

{ } 

[ ] 

line numbers 

other 
punctuation 

UPPERCASE 

italics 

Braces indicate a choice of items; one of the 
enclosed items must be present; braces do not 
appear in an actual statement. 
Brackets indicate that the enclosed parameter 
is optional; brackets do not appear in an actual 
statement. 
Ellipses indicate that the preceding item can 
be repeated; ellipses do not appear in actual 
statements. 
A programmed mode statement has an implied 
line number. 
All other punctuation marks -commas, semi
colons, quotation marks, and parentheses
must appear as shown. 
Uppercase words and letters must appear 
exactly as shown. 
Generic terms are italicized. The programmer 
supplies the exact wording or value, according 
to the definitions for generic terms listed in 
the next section. 

Generic Term Definitions 

The following italicized generic terms are used in statement 
and function definitions. Any italicized terms not listed here are 
peculiar to the statement in which they appear and will be 
defined in the text that describes that statement. 



424 I Apple II User's Guide 

BlYyte 

col 

colh 

const 
Dn 

e,xpr 

e,xpr$ 
exprnm 
Ffield 

filename 
line 
linei 
memadr 

memloc 

The number of bytes, between 0 and 65535, 
ahead of the current file pointer position. If 
the number specified is past the end of a sequential
access file or past the end of a random-access 
record, an error results. 
Low-resolution graphics column number; a 
numeric expression that has a value between 0 
and 39. 
High-resolution graphics column number; a 
numeric expression that has a value between 0 
and 279. 
Any numeric or string constant. 
A disk drive number that must be specified as 
Dl or D2. 
Any numeric, string, relational, or logical 
(Applesoft only) constant, variable, or expres
sion; any valid combination thereof. 
Any string constant, variable, or expression. 
Any numeric constant, variable, or expression. 
The number of fields, between 0 and 65535 
(32767 with DOS 3.3), ahead of the current file 
pointer position. If the number specified is 
past the end of a sequential-access file or past 
the end of a random-access record, an error results. 
A carriage return character marks the end of 
every field. 
Any DOS 3.3 file name. 
Any BASIC program line number. 
One of many BASIC program line numbers. 
A numeric expression, variable, or constant 
that evaluates t.o any memory address. Memory 
addresses may range from -32767 t.o 32767, or 
from 0 t.o 65535, where -32767 is the same as 
32769, -32766 equals 32770, and so on t.o -1, 
which equals 65535. 
Any memory location specified by an integer 
constant between 0 and 65535 (decimal) or $0 
and $FFFF (hexadecimal). Hexadecimal con
stants are identified by a dollar sign ($) prefix. 



pathname 

Rrecord 

Wield 

row 

rowh 

Sn 

Ttype 

var 

varnm 

Commands, Statements, and Functions I 425 

A full or partial ProDOS pathname, which in 
combination with the current ProDOS prefix 
specifies the path to a ProDOS file or directory 
from the volume directory. 
The record number in a random-access file. 
Same as Ffield, but must be between 0 and 
32767 with DOS 3.3. 
Low-resolution graphics row number; a nu
meric expression that has a value between 0 
and 47. 
High-resolution graphics row number; a nu
meric expression that has a value between 0 
and 191. 
Slot number for input or output; must be SO, 
Sl, S2, S3, S4, S5, S6, or S7. 
One of the file-type codes listed in Table A-7. 
In Integer BASIC, any numeric or string vari
able. In Applesoft, any numeric, integer, or 
string variable. 
Any numeric variable name. 

Table A-7. ProDOS File-Type Codes 

Abbreviation File Type 

DIR Directory 

TXT Human-readable letters, digits, and symbols (ASCII 
code) 

BAS Applesoft BASIC program 

VAR Applesoft BASIC variables 

BIN Machine code or data 

REL Machine c9de that can be loaded anywhere in 
memory 

$Fn User- (programmer-) defined type number n; n is 
an integer from 1 to 8 

SYS System program or data 



426 I Apple II User's Gulde 

var(sub) 

Vn 

In Integer BASIC, any subscripted numeric 
variable. In Applesoft, any subscripted integer, 
numeric, or string variable. 
An identifying DOS 3.3 disk volume number 
between VO and V255. 

I APPEND (ProDOS) I 

Opens a ProDOS file, positions to the end of the file, and issues 
a WRITE command. 

Format: APPEND pathname [,Ttype] [,Llength] [,Dn] [,Sn] 

If the named file does not exist, ProDOS creates the file. If the 
file is already open, an error occurs. APPEND allocates a 1024-
byte buffer in memory for the file. Half the buffer is for input 
and half is for output. If there is too little memory available for 
the buffer, an error occurs. The CLOSE command closes a file. 

As many as eight files can be open at once. Note that the com
mand EXEC opens a file automatically and closes it when it's 
done. 

After an APPEND statement is executed, all PRINT state
ments send characters to the named file. Other characters that 
would normally appear on the screen also go to the disk file, 
including error messages. However, the question mark or prompt 
message displayed by an INPUT statement is not sent to the disk 
file. The next ProDOS command, including CHR$(4), disables 
this aspect of the APPEND command, but does not close the file 
(unless it is the CLOSE command). 

The Ttype option can be used to specify a file type other than 
text. If Ttype is used, the file must exist as named. 

The Llength option specifies the record length of a random
access file. If the length is absent and the file exists, ProDOS uses 
the length with which the file was created; if the file does not 
exist, ProDOS uses a record length of 1. 

Dn and Sn can be specified in an)r order. If Dn or Sn is omit
ted, the ProDOS prefix specifies the drive and slot. 

This is a Pro DOS command, requiring PRINT and CHR$( 4) in 
programmed mode. 

APPEND cannot be used in immediate mode. 



Commands, Statements, and Functions I 427 

I APPEND (DOS 3.3) I 
Opens a DOS 3.3 file (see OPEN) and positions the file pointer 

at the end of the file. 

Format: APPEND filename [,Dn] [,Sn] [,Vn] 

A memory buffer of 595 bytes is allocated for the text file speci
fied. The file must be a sequential file. The WRITE command 
can now be used to store information on the file, starting at the 
first unused byte. This will be immediately following the last 
character in the file unless there are unused bytes in the middle. 

With DOS version 3.2.1 and earlier versions, APPEND does 
not always start at the first unused byte in the file (often the end 
of the file). Instead, it starts at the beginning of the file. (This is 
not a problem on an Apple Ile.) To make sure this doesn't happen, 
your program should always write an end-of-file marker before 
closing a file it has written to. The short machine language sub
routine in Table A-8 does the trick. With POKE, put it into 
memory anywhere there are five free bytes (locations 768 through 
772 are OK unless you are using them for something else). Then 
call the subroutine (use CALL) just before closing the file. 

If the file does not exist on drive Dn of slot Sn, the FILE NOT 
FOUND error message is displayed. If the disk in drive Dn of 
slot Sn is not volume Vn, the VOLUME MISMATCH error 

Table A-8. Machine Language Fix for DOS 3.2.1 APPEND 

MACHINE LANGUAGE 6502 ASSEMBLY LANGUAGE 

Decimal Hexadecimal Instruction Comments 

169 A9 LDA $0 The Monitor routine at 
$FDED outputs the 

0 0 character in register A 
($0 in this case) to the 

76 4C JMP $FDED currently selected out-
put device, the disk. 

237 ED 

253 FD 



428 I Apple II User's Guide 

results. Volume number VO will match any disk. If the file is 
already open, APPEND closes and reopens it (see CLOSE). 

Dn, Sn, and V n can be specified in any order. If Dn or Sn is 
omitted, the last-referenced drive or slot is used. Volume number 
VO is used if Vn is absent. 

APPEND is a DOS 3.3 command, requiring PRINT and 
CHR$(4) or CONTROL-Din programmed mode. 

APPEND cannot be used in immediate mode. 

Sets automatic line numbering mode in Integer BASIC. 

Format: AUTO line [,increment] 

Line numbers are automatically displayed each time you press 
RETURN, starting with line, and increasing each time by incre
ment, which defaults to 10 if not specified. Type CONTROL-X to 
erase an automatic line number. Automatic line numbering 
resumes unless MAN is entered on the next line (see MAN). 

AUTO can be used only in immediate mode. 
AUTO is not available in Applesoft. 

I BLOAD (ProDOS) I 
Retrieves a binary image from a ProDOS disk and st.ores it in a 

specified area of the Apple II memory. 

Formats: BLOAD pathname [,Amemloc] [,Bbyte] [,Ememloc] 
[,Ttype] [,Dn] [,Sn] 

BLOAD pathname [,Amemloc] [,Bbyte] [,Llength] 
[,Ttype] [,Dn] [,Sn] 

The Amemloc option specifies where in memory to start storing 
the binary image. If the memory location is absent, ProDOS uses 
the location from which the image was saved. The Bbyte option 
specifies which byte in the file t.o start transferring from. Any
thing ear lier in the file is ignored. 

The Ememloc option specifies the last memory location to fill 
from the file. Instead of specifying the endpoint in memory, you 



Commands, statements, and Functions I 429 

can specify the length of the file with the Llength option. If no 
endpoint or length is specified, the entire file is transferred to 
memory. 

The Ttype option specifies the file type. If the file type is not 
specified, the file must be type BIN (binary). 

Dn and Sn can be specified in any order. If Dn or Sn is omit
ted, the ProDOS prefix specifies the drive and slot. 

This is a ProDOS command, requiring PRINT and CHR$(4) in 
eprogrammed mode. 

I BLOAD (DOS 3.3) I 
Retrieves a binary file from a DOS 3.3 disk and st.ores it in the 

specified section of memory. 

Format: BLOAD filename [,Amemloc] [,Dn] [,Sn] [,Vn] 

If the Amemloc option is absent, the specified file is placed in 
memory beginning at the memory location from which the file 
was saved (see BSAVE). If the option is present, the file goes int.o 
memory at memloc. 

If the file does not exist on drive Dn of slot Sn, the FILE NOT 
FOUND error message is displayed. If the disk in drive Dn of 
slot Sn is not volume Vn, the VOLUME MISMATCH error 
results. 

Dn, Sn, and Vn can be specified in any order. If Dn or Sn is 
omitted, the last-referenced drive or slot is used. VO is used if V n 
is absent. 

This is a DOS 3.3 command, requiring PRINT and CHR$( 4) or 
CONTROL-D in programmed mode. 

I BRUN (ProDOS) J 

Retrieves a machine language program from a ProDOS disk, 
stores it in a specified area of memory, and executes it. 

Formats: BRUN pathname [,Amemloc] [,Bbyte] [,Ememloc] 
[,Dn] [,Sn] 

BRUN pathname [,Amemloc] [,Bbyte] [,Llength] 
[,Dn] [,Sn] 



430 I Apple II User's Gulde 

The file must be type BIN (binary) and must contain a 6502 
machine language program. After loading the program, ProDOS 
executes a machine language jump (JMP in 6502 assembly lan
guage) to the starting memory location. If the machine language 
program ends with a return-from-subroutine instruction (RTS in 
6502 assembly language), Applesoft and ProDOS regain control 
of the Apple II. 

The Amemloc option specifies where in memory to start storing 
the binary image. If the location is absent, ProDOS uses the loca
tion from which the image came. The Bbyte option specifies 
which byte in the file to start transferring from. Anything earlier 
in the file is ignored. 

The Ememloc option specifies the last memory location to fill 
from the file. In the alternative format, the Llength option tells 
how many bytes to tr an sf er. Any bytes beyond the specified 
length are ignored. If no endpoint or length is specified, the 
entire file is transferred to memory. 

Dn and Sn can be specified in any order. If Dn or Sn is omit
ted, the ProDOS prefix specifies the drive and slot. 

This is a ProDOS command, requiring PRINT and CHR$( 4) in 
programmed mode. 

I BRUN (DOS 3.3) I 
Retrieves a machine language program from a DOS 3.3 disk, 

stores it in the specified section of memory, and executes it. 

Format: BRUN filename [,Amemloc] [,Dn] [,Sn] [,Vn] 

The file must be type B (binary) and must contain a 6502 
machine language program. After loading the program, DOS 3.3 
executes a machine language jump (JMP in 6502 assembly lan
guage) to the starting memory location. If the machine language 
program ends with a return-from-subroutine instruction (RTS in 
6502 assembly language), Applesoft and DOS 3.3 regain control 
of the Apple II. 

The Amemloc option specifies where in memory to start storing 
the binary image. If the location is absent, DOS uses the location 
from which the image came. A machine language program may 



Commands, Statements, and Functions I 431 

work properly at only one memory location. Check carefully for 
instructions that are address-dependent before loading to a new 
memory location. 

If the file does not exist on drive Dn connected to slot Sn, the 
FILE NOT FOUND error message is displayed. If the disk in 
drive Dn of slot Sn is not volume Vn, the VOLUME MIS
MATCH error results. 

Dn, Sn, and V n can be specified in any order. If Dn or Sn is 
omitted, the last-referenced drive or slot is used. VO is used if V n 
is absent. 

This is a DOS 3.3 command, requiring PRINT and CHR$(4) or 
CONTROL-Din programmed mode. 

I BSAVE (ProDOS) I 
Saves part of the Apple H's memory as a binary image on a 

ProDOS disk file. 

Formats: BSAVE pathname,Amemloc,Ememloc [,Bbyte] [, Ttype] 
[,Dn] [,Sn] 

BSAVE pathname,Amemloc,Llength [,Bbyte] [,Ttype] 
[,Dn] [,Sn] 

The Amemloc parameter specifies the memory address of the 
first byte at which to start storing the binary image. The Bbyte 
parameter specifies which byte in the file to start saving at. 

The Ememloc parameter specifies the last location in memory 
to fill in the file. In the alternative for:rnat, the Llength option tells 
how many bytes to transfer to the disk. 

The Ttype option specifies the file type. If the file type is not 
specified, the file must be type BIN (binary). 

If there is no file as specified, a file is created and the memory 
image is saved in it. If a file of the type specified exists as named, 
the memory image is saved in it. If a file of a different type exists 
as named, an error message appears. 

Warning: Be careful to type the correct pathname. If you inad
vertently type a wrong name, and that name exists, ProDOS 
replaces the information that the file contains with the specified 
memory image-without giving you a warning. 



432 I Apple II User's Gulde 

Dn and Sn can be specified in any order. If Dn or Sn is omit
ted, the ProDOS prefix specifies the drive and slot. 

This is a ProDOS command, requiring PRINT and CHR$( 4) in 
programmed mode. 

I BSAVE (DOS 3.3) I 
Saves part of the Apple H's memory as a binary image on a 

DOS 3.3 disk file. 

Format: BSAVE filename ,Amemloc ,Llengt,h [,Dn] [,Sn] [,Vn] 

The Amemloc parameter specifies the starting address of the 
memory section to save. The Llength parameter specifies the 
number of bytes to save. The length must be an integer between 0 
and 32767 (decimal). It may be either a decimal or hexadecimal 
constant. Hexadecimal constants are identified by a dollar sign 
($)prefix. 

If the disk in drive Dn of slot Sn is not volume V n, the 
VOLUME MISMATCH error results. 

Dn, Sn, and V n can be specified in any order. If Dn or Sn is 
omitted, the last-referenced drive or slot is used. VO is used if Vn 
is absent. 

This is a DOS 3.3 command, requiring PRINT and CHR$( 4) or 
CONTROL-D in programmed mode. 

Branches to a machine language subroutine at a specified 
location. 

Format: CALL memadr 

CALL can be used with subroutines that you write yourself, as 
well as with various built-in subroutines that are listed in 
Appendix G. 



Commands, Statements, and Functions / 433 

I CAT (ProDOS) I 

Displays a list 40 characters wide of all files in a specified 
ProDOS directory. 

Format: CAT [pathname] [,Dn] [,Sn] 

For each file, CAT lists the following' (from left to right): 

1. An asterisk if the file is locked 
2. Name 
3. Type (Table A-7 lists type codes) 
4. Number of 512-byte blocks used 
5. Last date modified (usually no date). 

For the whole directory, CAT reports the total number of 512-
byte blocks, the number free, and the number used. 

If you omit the pathname, ProDOS uses the current prefix. 
Dn and Sn can be specified in any order. If Dn or Sn is omit

ted, the ProDOS prefix specifies the drive and slot. 
This is a ProDOS command, requiring PRINT and CHR$( 4) in 

programmed mode. 

I CATALOG (ProDOS) I 
Displays a list 80 characters wide of all files in a specified 

ProDOS directory. 

Format: CATALOG fpathname] [,Dn] 

For each file, CATALOG lists the following (from left to right): 

1. An asterisk if the file is locked. 
2. Name. 
3. Type (Table A-5 lists type codes). 
4. Number of 512-byte blocks used. 
5. Last date and time modified (usually no date or time). 



434 I Apple II User's Gulde 

6. Date and time created (usually no date or time). 

7. Number of bytes used, or for random-access files, the 
number that would be used if every record (from record 
number 0 to the highest record number in the file) were used. 

8. Loading address of a binary file or record length of a 
random-access file. This item not included for any other type 
of file. 

For the whole directory, CATALOG reports the total number of 
512-byte blocks, the number free, and the number used. If you 
omit the pathname, ProDOS uses the current prefix. 

Dn and Sn can be specified in any order. If Dn or Sn is omit
ted, the ProDOS prefix specifies the drive and slot. 

CATALOG is a ProDOS command, requiring PRINT and 
CHR$(4) in programmed mode. 

I CATALOG (DOS 3.3) I 
Displays a list of all files on a DOS 3.3 disk. 

Format: CATALOG [,Dn] [,Sn] 

CATALOG prints the volume number of the disk, followed by a 
list of files on the disk. For each file, CATALOG prints a code 
letter in di ca. Oting the type of file, the number of sectors required 
to store the file, and the name of the file. An asterisk appears to 
the left of the file type if the file is locked. The file types and 
their codes are as follows: 

I Integer BASIC Program 
A Applesoft Program 
T Text File 
B Binary (Machine Language) File 
R Relocatable created by BSAVE 
S Reserved for future use. 

If a file length exceeds 255 sectors, the file length is displayed'" 
modulo 255; that is, 0 is printed if the file length is 256,~t if ·it is 
257, and so on. 



Commands, Statements, and Functions I 435 

Dn and Sn can be specified in any order. If Dn or Sn is absent, 
the last-referenced drive or slot is used. 

This is a DOS 3.3 command, requiring PRINT and CHR$( 4) or 
CONTROL-D in programmed mode. 

I CHAIN (ProDOS) I 
Loads and runs an Applesoft program from a i>roDOS disk 

without clearing the values of any variables or arrays. 

Format: CHAIN pathname [,@line] [,Dn] [,Sn] 

The program specified by pathname is loaded from disk and 
then run. The program replaces any program previously in the 
Apple Il's memory. All variables and arrays retain their values, 
and any open files remain open. If no program exists as named, 
an error message appears and the existing program, variables, 
and files will be untouched. 

The @line option indicates the line number at which the pro
gram is started. If the specified line number does not exist, the 
next-higher line number is used. 

Dn and Sn can be specified in any order. If Dn or Sn is omit
ted, the ProDOS prefix specifies the drive and slot. 

This is a ProDOS command, requiring PRINT and CHR$(4) in 
programmed mode. 

I CHAIN (DOS 3.3) I 
Loads and runs an Integer BASIC program from a DOS 3.3 

disk, without clearing the values of any variables or arrays. 

Format: CHAIN filename [,Dn] [,Sn] [,Vn] 

If the file does not exist on drive Dn of slot Sn, the FILE NOT 
FOUND error message is displayed. If the disk in drive Dn of 
slot Sn is not volume Vn, the VOLUME MISMATCH error 
results. 

Dn, Sn, and V n can be specified in any order. If Dn or Sn is 



436 I Apple II User's Guide 

omitted, the last-referenced drive or slot is used. VO is used if Vn 
is absent. 

This is a DOS 3.3 command, requiring PRINT and CHR$( 4) or 
CONTROL-D in programmed mode. 

I CLEAR I 
This Applesoft statement assigns 0 to all numeric variables and 

numeric array elements. CLEAR also assigns a null value to all 
string variables and string array elements. 

Format: CLEAR 

Executing this statement is equivalent to turning the Apple II 
off and then back on, and reloading the program into memory. A 
program will continue to run following CLEAR, provided the 
effects of the CLEAR statements do not adversely affect program 
logic. 

For Integer BASIC, use CLR. 

I CLOSE (ProDOS) I 
Closes one or all open ProDOS disk files. 

Format: CLOSE [pathname] 

Closing a file writes anything being held in the file buffer to 
the disk file and then releases the file buffer. You must close any 
file you have opened to avoid losing information it contains. 

Specifying a pathname closes only the named file. CLOSE 
without a pathname closes all open files, except a controlling 
EXEC file (if any). 

This is a ProDOS command, requiring PRINT and CHR$( 4) in 
programmed mode. 

I CLOSE (DOS 3.3) I 
Closes one or all open DOS 3.3 disk files. 

Format: CLOSE ffilename] 



Commands, Statements, and Functions I 437 

Closing a file writes anything being held in the file buffer to 
the disk file and then releases the file buffer. You must close any 
file you have opened to avoid losing information it contains. 

Specifying afilename closes only the named file. CLOSE with
out afilename closes all open files, except a controlling EXEC file 
(if any). 

With DOS 3.2.1 and earlier versions, a sequential file will 
occasionally exactly fill a sector as it is closed. Under these condi
tions, a subsequent APPEND will occur at the beginning of the 
file rather than at the end. To forestall this, call the short 
machine language subroutine in Table A-8 just before the 
CLOSE statement. You can use POKE statements to put the sub
routine anywhere there are five free bytes (for example, locations 
768 through 772 unless they are otherwise used). This is not 
necessary on an Apple Ile. 

This is a DOS 3.3 command, requiring PRINT and CHR$( 4) or 
CONTROL-D in programmed mode. 

This Integer BASIC command assigns 0 to all numeric vari
ables and array elements and assigns a null value to strings. 

Format: CLR 

This command also undimensions all arrays and strings. You 
can still print array values after executing a CLR statement, as 
long as no variables have been assigned values in the interim. 

CLR can be used only in immediate mode. 
For Applesoft, use CLEAR. 

I COLOR== I 
Sets the color for low-resolution graphics. 

Format: COLOR= exprnm 

Until the next COLOR statement, all PLOT, VLIN, and HLIN 
statements will be in the color specified. The color codes are 



438 I Apple II User's Gulde 

listed in Table 12-1. The exprnm must have a value in the range 0 
to 255; real values are converted to integers. Values greater than 
15 repeat the colors shown in Table 12-1 ( 0, 16, and 32 are black, 
and so on). COLOR = 0 if not previously specified. 

COLOR has no effect if used in high-resolution graphics mode. 
When used in text mode, COLOR is one factor in determining 
which character is placed on the screen by a PLOT instruction. 
For a detailed description of this feature, see PLOT. 

This Integer BASIC command resumes program execution at 
the next instruction after a halt. 

Format: CON 

CON operates after execution has been halted by CONTROL-C, 
and sometimes after CONTROL-RESET. If there is no interrupted 
program, CON simply locks up the system. A program cannot be 
continued after it is interrupted by CONTROL-C during an INPUT 
statement. 

If a program line has been changed or added or an error mes
sage generated since program execution was halted, CON will 
sometimes work, but may produce an error message or lock up 
the system. 

CON can be used only in immediate mode. 
For Applesoft, see CONT. 

This Applesoft command resumes execution at the next in
struction after a halt. 

Format: CONT 

CONT operates after execution has been halted by STOP, END, 
or CONTROL-C. If an INPUT statement is interrupted by 
CONTROL-C, the program cannot be continued. If there is no inter-



Commands, Statements, and Functions I 439 

rupted program, if a program line has been changed or added, or 
if an error message has been generated since program execution 
was halted, CONT will produce the message ?CAN'T CONTIN
UE ERROR. 

For Integer BASIC, see CON. 

I CREATE (ProDOS) I 
Creates a ProDOS file or directory. 

Formm: CREATE pathname [,Ttype] [,Dn] [,Sn] 

The Ttype parameter specifies the type of file to create. If it is 
absent, a directory is created. 

Dn and Sn can be specified in any order. If Dn or Sn is omit
ted, the ProDOS prefix specifies the drive and slot. 

This is a ProDOS command, requiring PRINT and CHR$( 4) in 
programmed mode. 

I - (DASH Command; ProDOS) I 

Loads and runs a program of any type-Applesoft, machine 
language, or EXEC-from a ProDOS disk. 

Formm: - pathname [,Dn] [,Sn] 

The so-called Dash command does the same thing as a RUN, 
BRUN, or EXEC command, depending on the type of file you 
name. It works with file types BAS, BIN, TXT, and SYS. 

If the file you specify is found, the previous program is erased 
from memory before the named program is loaded and executed. 
If the file is not found, an error message appears and any existing 
program is untouched. 

Dn and Sn can be specified in any order. If Dn or Sn is omit
ted, the ProDOS prefix specifies the drive and slot. 

This is a ProDOS command, requiring PRINT and CHR$(4) in 
programmed mode. 



440 I Apple II User's Gulde 

Creates a list of values to be assigned by READ statements in 
an Applesoft program. 

Format: DATA const [ ,const .. . ] 

DATA statements may appear anywhere in a program; they 
need not be executed to be accessed by a READ command. 

The DATA statement specifies numeric and string constants. 
String constants are usually enclosed in quotation marks, but the 
quotation marks are necessary only if the string contains blanks 
(spaces), commas, or colons. A quotation mark cannot be repre
sented in a DATA statement const. 

One or more of the const parameters can be null (that is, 
nothing but blanks). A null const is assigned as zero to a numeric 
variable; a null string (" ") is assigned to a string variable. 

You will receive no error message if you enter a DATA state
ment in immediate mode, but the elements will not be accessible 
t.o a READ command. 

DATA is not available in Integer BASIC. 

joEFFNj 

The DEF FN statement allows special-purpose functions to be 
defined and used within Applesoft programs. 

Format: DEF FNname (dummy)=exprnm 

The name, which must conform to the rules for numeric vari
able names, identifies the function. 

The function is defined by exprnm. The dummy is a dummy 
variable name that can (and usually does) appear in exprnm. Its 
use in a DEF FN statement has no effect on another variable 
with the same name elsewhere in the program. 

The function is subsequently invoked using FNname. At that 
time, the value of the dummy variable dummy is specified by a 
numeric expression, variable, or constant. The values of all other 
variables in exprnm must be defined before FNname is used. (See 
also FN in the Functions section of this appendix.) 



Commands, Statements, and Functions I 441 

The entire DEF FN statement must appear on a single pro
gram line. However, a previously defined function can be included 
in exprnm, so that user-defined functions of any desired complex
ity can be developed. A user-defined function cannot, however, 
invoke itself directly or indirectly (that is, by referring to a func
tion that eventually refers to it). 

If the name appears in more than one DEF FN statement, the 
most recently used definition is used. 

This statement is not available in Integer BASIC. 
The DEF FN statement is illegal in immediate mode. However, 

a user-defined function that has been defined by executing a 
DEF FN statement since the last NEW, CLR, or LOAD com
mand can be referenced in an immediate mode statement. 

Eliminates specified program lines. 

Format: DEL linel, line2 

All program lines greater than or equal to linel and less than 
or equal to line2 are removed from the program currently in 
memory. If linel does not exist, the deletion starts at the next
higher line number. If line2 does not exist, the deletion ends at 
the next-lower line number. 

DEL must be followed by two line numbers that are separated 
by a comma. Neither line number can be negative, and the 
second line number must be greater than or equal to the first. If 
the line numbers are identical, one line (at most) is deleted. 

DEL may only be used in immediate mode in Integer BASIC. 
If DEL is used in programmed mode (legal only in Applesoft), 

the indicated deletions take place and the program halts. CONT 
will not continue the program in this case. 

I DELETE (ProDOS) I 
Erases a file from a ProDOS disk. 

Format: DELETE pat,hname [,Dn] [,Sn] 



.. 
442 I Apple II User's Gulde 

The file specified by the pathname is removed from the disk 
dir~ctory. An open or locked file cannot be deleted. If the path
name specifies a directory, the directory must be empty. The 
volume directory cannot be deleted, even if it is empty. An error 
message appears if the file does not exist as specified. 

Dn and Sn can be specified in any order. If Dn or Sn is omit
ted, the ProDOS prefix specifies the drive and slot. 

This is a Proi>OS command, requiring PRINT and CHR$( 4) in 
programmed mode. 

I DELETE (DOS 3.3) I 

Erases a file from a DOS 3.3 disk. 

Format: DELETE filename [,Dn] [,Sn] [,Vn] 

The file with the specified name is removed from the disk. 
If the file does not exist on drive Dn of slot Sn, the FILE NOT 

FOUND error message is displayed. If the disk in drive Dn of 
slot Sn is not volume Vn, the VOLUME MISMATCH error 
results. · 

Dn, Sn, and V n can be specified in any order. If Dn or Sn is 
omitted, the last-referenced drive or slot is used. VO is used if Vn 
is absent. _ 

This is a DOS 3.3 command, requiring PRINT and CHR$( 4) or 
CONTROL-D ih programmed mode. 

I DIM (Applesoft) I 

Reserves space in memory for Applesoft arrays. 

Format: DIM var(sub[,sub . .. ]),var(sub[,sub .. . ]) ... ] 

The Applesoft DIM statement identifies arrays with one or 
more dimensions as follows: 

var(subJ 
var(subi,sub;) 
var(subi,sub;,subk . .. ) 

Singl~dimension array 
Two-dimension array 
Multiple-dimension array 



Commands. Statements, and Functions I 443 

Applesoft allows three types of arrays: integer, real, and string. 
Each element of an array is of the type specified by the variable 
name for the array. The number of dimensions in an' array is 
determined by the number of subscripts in the DIM statement. 
When an array is referenced, each subscript must fall within the 
range 0 through sub, where sub is the corresponding sub~cript of 
the same variable in the DIM statement. 

The number of dimensions in an array is limited by the am9unt 
of memory available. The maximum number of dim~nsiqns an 
array can have is 88, and this is only possible when most of the 
subscripts are 0. A DIM statement with 89 or more subscripts, or 
one that otherwise exceeds memory limitations, will produce the 
message ?OUT OF MEMORY ERROR. . 

If you attempt to use an array with a subscript that is out of 
range or one with the wrong number of subscripts, the message 
?BAD SUBSCRIPT ERROR will appear. 

If an array is referenced be.fore a DiM statement for that array 
has been executed, Applesoft assigns a default value of 10 to each 
subscript. The array is thereafter treated as if a DIM statement 
with a subscript of 10 for each dimehsion had been executed. 

An array can never be dimensioned twice, even if it has been 
dimensioned by default. If you attempt to dimension an array 
that has already been dimensioned, you will be presented with 
the message ?REDIM'D ARRAY ERROR. 

I PIM (Integer BASIC) I 
Reserves space in memory for Integer BASIC arrays and 

strings. 

Format: DIM var (sub) [,var(sub) .. . ] 

Only numeric arrays of one dimension and simple string vari
ables may be dimensioned in. Integer BASIC. When an array is 
dimensioned, space is set aside in memory for the number of 
elements equal to sub plus 1. They ar~ numbered 0 thr011gh sub. 
Element 0 of an array is identical to the simple variable of the 
same name that is, A(O)=A. · 

DIM statements declare the maximum lengths of string vari
ables. In this c.ase sub is· the string length. 



444 I Apple II User's Guide 

Every subscript sub must be between 1 and 255 in a DIM 
statement. Aside from this, the maximum allowable dimensions 
are limited by available memory. 

If you reference an array using a subscript greater than the 
largest subscript declared in the DIM statement for that array, 
the message *** RANGE ERR occurs. If you attempt to use more 
characters in a string than it was dimensioned for, the message 
*** STRING ERR is displayed. 

DIM does not clear the elements of Integer BASIC arrays when 
it is executed. Therefore, you must initialize every array (that is, 
set it to zero) after dimensioning it. String variables, on the other 
hand, always have a null value after first being dimensioned. 

loRAwl 
This Applesoft statement draws a high-resolution graphics 

shape on the screen. 

Format: DRAW exprnm [AT colh, rowh] 

The shape identified by the integer value of exprnm is drawn in 
the color determined by the last-executed HCOLOR statement. 
The scale and rotation of the shape must be set by SCALE and 
ROT commands before the DRAW statement is executed. 

DRAW starts drawing the shape at the location given by the 
integer values of numeric expressions colh and rowh. If you do not 
specify a location in the DRAW statement, the shape starts at the 
last point plotted by the last-executed DRAW, XDRAW, or 
HPLOT command. 

The shape number specified (exprnm) must be between 0 and 
the number of shapes in the shape table (which must not exceed 
255). 

This statement is not available in Integer BASIC. 

Displays the changing values of a specified variable as an Inte
ger BASIC program progresses. 



Commands, statements, and Functions I 445 

Format: DSP var 

The value of variable var and the current line number are dis
played whenever the value of that variable changes. This display 
may interact with your program's output, rendering one or both 
illegible. RUN cancels all DSP instructions. Use CON or GOTO 
when you are debugging with DSP in immediate mode. 

To turn off DSP, use NO DSP. 
DSP is not available in Applesoft. 

Causes a program t.o halt. 

Format: END 

No message is displayed. In Integer BASIC, END must be the 
last statement executed or the warning *** NO END ERR is 
displayed. END is optional in an Applesoft program. 

END cannot be used in immediate mode in Integer BASIC. 

I EXEC (ProDOS) I 
Treats a sequential-access ProDOS text file as a substitute for 

the keyboard. 

Formats: EXEC pathname [,Ffield] [,Dn] [,Sn] 
EXEC pathname [,Rfield] [,Dn] [,Sn] 

A text file to be used with EXEC consists of some combination 
of Applesoft commands, Applesoft program lines, and ProDOS 
commands. When EXEC is executed, the first line of the speci
fied file is read from the disk. If the first line is a command, it is 
executed immediately. If it is a program line, it is added to 
memory, just as if you had entered it directly from the keyboard. 
If a keyboard INPUT statement is executed while an EXEC file 
is open, the response is taken from the EXEC file. 

An EXEC file can be used to enter an entire program, list it, 
run it, save it on disk, change it, or to do anything else that can be 



446 I Apple II User's Gulde 

done from the keyboard. You can even use an EXEC file to create 
and execute a second EXEC file. 

The Ffield option specifies a number of command lines (car
riage return characters) to be skipped from the beginning of the 
file. The Rfield option does exactly the same thing. 

When the last line in the file has been used, the EXEC file is 
automatically closed. When an EXEC command is encountered 
in a controlling EXEC file, the original, controlling, file is closed 
and any further commands in it are ignored. The new EXEC file 
is opened and used instead. 

Dn and Sn can be specified in any order. If Dn or Sn is omit
ted, the ProDOS prefix specifies the drive and slot. 

This is a ProDOS command, requiring PRINT and CHR$( 4) in 
programmed mode. 

I EXEC (DOS 3.3) I 
Treats a sequential-access DOS 3.3 text file as a substitute for 

the keyboard. 

Format: Format: EXEC filename [,Rfield] [,Dn] 
[,Sn] [,Vn] 

A text file to be used with EXEC consists f some combination 
of BASIC commands, BASIC program lines, and DOS 3.3 com
mands. When EXEC is executed, the first line of the specified 
file is read from the disk. If the first line is a command, it is 
executed immediately. If it is a program line, it is added to 
memory, just as if you had entered it directly from the keyboard. 
If a keyboard INPUT statement is executed while an EXEC file 
is open, the response is taken from the EXEC file. 

An EXEC file can be used to enter an entire program, list it, 
run it, save it on disk, change it, or to do anything else that can be 
done from the keyboard. You can even use an EXEC file to create 
and execute a second EXEC file. 

The Rfield option specifies a number of command lines (car
riage return characters) to be skipped from the beginning of the 
file. 

When the last line in the file has been used, the EXEC file is 
automatically closed. When an EXEC command is encountered 



Commands, statements, and Functions I 447 

in a controlling EXEC file, the original, controlling, file is closed 
and any further commands in it are ignored. The new EXEC file 
is opened and used instead. 

If the file does not exist on drive Dn of slot Sn, the FILE NOT 
FOUND error message is displayed. If the disk in drive Dn of 
slot Sn is not volume Vn, the VOLUME MISMATCH error 
results. 

Dn, Sn, and Vn can be specified in any order. If Dn or Sn is 
omitted, the last-referenced drive or slot is used. VO is used if Vn 
is absent. 

This is a DOS 3.3 command, requiring PRINT and CHR$( 4) or 
CONTROL-D in programmed mode. 

I FLASH I 
This Applesoft statement switches to flashing character style. 

Format: FLASH 

All output from subsequently executed PRINT statements will 
alternate between white characters on a black background and 
black characters on a white background. Error messages are 
similarly affected. However, any previously displayed characters 
are unaffected. 

FLASH works by slightly altering the standard ASCII codes. 
Any flashing characters sent to a DOS 3.3 disk will be saved with 
incorrect codes. When those codes are read back in, the wrong 
characters will result. 

This statement is not available in Integer BASIC. Flashing 
characters are not available when the 80-column adapter is active. 

I FLUSH (ProDOS) I 
Writes the contents of one or more Pro DOS file buffers to the 

disk. 

Format: FLUSH [pathname] 

Flushing a file forces all characters waiting in the file's buffer 



448 I Apple II User's Gulde 

in memory to be written to the file on disk, and it updates the 
directory that contains the file. If you specify a file, its buffer is 
the only one written. If you do not specify a file, the buffers of all 
open files are written. 

This is a ProDOS command, requiring PRINT and CHR$( 4) in 
programmed mode. 

Listed in the Functions section of this appendix. See also DEF 
FN. 

Starts a loop that repeats a set of instructions until an automat
ically incremented variable attains a certain value. 

Format: FOR varnm = exprnm1 TO exprnm2 [STEP exprnm3] 

When FOR is first executed, the varnm is assigned the value of 
exprnm1• The statements following FOR are executed until a 
NEXT statement is reached. The varnm is then incremented by 
exprnm3 (or by 1 if the STEP clause is not present). After that, 
the new value of varnm is compared to the value of exprnm2• The 
sense of the comparison depends on the sign of exprnm3• If the 
sign is positive and the new value of varnm is less than or equal 
to exprnm2, execution loops back to the statement just after the 
FOR. The same thing happens if the sign of exprnm3 is negative 
and the new value of varnm is greater than or equal to exprnm2• 

On the other hand, execution continues with the instruction that 
follows the NEXT if varnm is greater than exprnm2 (exprnm3 

positive) or less than exprnm2 (exprnm3 negative). Because the 
comparison occurs after incrementing varnm, the instructions 
between FOR and NEXT are always executed at least once. 

In Integer BASIC varnm must be an integer variable. In 
Applesoft varnm must be a real variable. It can never be a string 
variable. 

The start, end, and increment values are determined from 



Commands, Statements, and Functions I 449 

exprnmH exprnm2, and exprnm3 only once, on the first execution 
of the FOR statement. If you change these values inside the loop, 
it will have no effect on the loop itself. You can change the value 
of varnm within the loop. This lets you terminate a FOR-NEXT 
loop before the end value is reached. To do so, set varnm to the 
end value ( exprnm2), and on the next pass the loop will terminate 
itself. Do not start the loop outside a subroutine and then termi
nate it inside the subroutine. 

FOR-NEXT loops may be nested. Each nested loop must have a 
different variable name. Each nested loop must be wholly con
tained within the next outer loop; at most, the loops can end at the 
same point. Integer BASIC allows 16 levels of FOR-NEXT nest
ing, while Applesoft allows just 10. 

FOR may be used in immediate mode, but only in Applesoft. 
The entire loop must be entered on one line. If NEXT is not pres
ent, the loop will execute once. 

Switches from Integer BASIC to Applesoft (not available with 
ProDOS). 

Format: FP [,Dn] [,Sn] [,Vn] 

The source of the Applesoft interpreter depends on what kind 
of Apple II you have and what accessories are installed: 

With an Apple Ile or Apple II Plus, the interpreter is in 
read-on.ly memory (ROM), no matter what options may also 
exist. 
If you have the Applesoft firmware card installed, FP obtains 
the language from it regardless of the switch setting on the 
card. 
With the Apple Language System installed, FP takes Apple
soft from it. 
On any other Apple II, FP looks for Applesoft on the speci
fied (or current) disk. If it does not exist there, the message 
LANGUAGE NOT AVAILABLE is displayed. 

FP erases any BASIC program currently in memory. 



450 I Apple II User's Guide 

If the file does not exist on drive Dn of slot Sn, the FILE NOT 
FOUND error message is displayed. If the disk in drive Dn of 
slot Sn is not volume Vn, the VOLUME MISMATCH error 
results. 

Dn, Sn, and Vn can be specified in any order. If Dn or Sn is 
omitted, the last-referenced drive or slot is used. VO is used if Vn 
is absent. 

Use FP only in immediate mode. 

I FRE (ProDOS) I 

The ProDOS FRE command removes string values left in 
memory by previous Applesoft programs. 

Format: FRE 

Like the FRE( ) function, the FRE command clears unused 
strings from the string storage area, but it is much faster. 
Unused string values are also cleared from memory when you 
switch off the Apple II, of course. 

This is a ProDOS command, requiring PRINT and CHR$( 4) in 
programmed mode. 

This Applesoft statement accepts a single character from the 
keyboard pr ot~er input device without echoing it to the screen. 

Format: GET var 

Execution pauses until a key is pressed or a character is input 
from some other device. When var is a string variable, the char
acter entered is assigned to that variable. If CONTROlr@ is 
entered, the null string is assigned to the variable. 

GET is not often used with a numeric variable. When it is, 
entry of one of the digits 0 through 9 assigns that value to the 
variable. Entry of a plus sign, minus sign, comma, colon, 
CONTROlr@, space, E, or period ·assigns a value of zero to the vari
able. Entering any character other than those just listed results 
fo the message ?SYNTAX ERROR, and the program stops. 



Commands, Statements, and Functions I 451 

GET cannot be used in immediate mode. 
GET is not available in Integer BASIC. 

I GOSUB I 
Causes the program to branch to the indicated line. When a 

RETURN statement is executed, the program branches back to 
the instruction immediately following the GOSUB. 

General Format: GOSUB line 

Additional Integer BASIC Format: GOSUB exprnm 

The GOSUB statement calls a subroutine. The subroutine's 
entry point must occur on line number line. A subroutine's entry 
point is the beginning of the subroutine in a logical sense; that is 
to say, it is the line containing the statement (or statements) that 
are executed first. The entry point need not necessarily be the 
subroutine line with the smallest line number. 

In Integer BASIC a numeric expression is allowed in place of 
the line number. If exprnm does not evaluate to an existing line 
number, the message *** BAD BRANCH ERR is displayed. 
This form of GOSUB enables you to simulate the ON-GOSUB 
instruction, which is not available in Integer BASIC. 

Upon completing execution, the subroutine branches back to 
the line following the GOSUB statement. The subroutine uses a 
RETURN statement in order to branch back in this fashion. 

A GOSUB statement may occur anywhere in a program, and 
as a result, a subroutine may be called from anywhere in the 
program. 

Subroutines may be nested; that is to say, subroutines may be 
called from within subroutines. Twenty-five levels of nesting are 
allowed in Applesoft; that means 24 GOSUB statements may be 
executed before the first RETURN statement. The limit in I~te
ger BASIC is 16 GOSUB statements. 

Normally you must exit from a subroutine with a RETURN 
statement, not with a GOTO statement. In Applesoft, though, you 
can use a GOTO statement to branch out of a subroutine if you 
first execute a POP statement. 

GOSUB cannot be used in immediate mode in Integer BASIC. 



452 I Apple II User's Guide 

Unconditionally causes program execution to branch to the line 
indicated. 

General Format: GOTO line 
Additional Integer BASIC Format: GOTO exprnm 

Program execution immediately continues with the first instruc
tion in the line number indicated. If the line numb.er does not 
exist, the message ?UNDEF'D STATEMENT ERROR is dis
played by Applesoft. The message *** BAD BRANCH ERR is 
displayed by Integer BASIC. 

In Integer BASIC a numeric expression is allowed in place of 
the line number. If exprnm does not evaluate to an existing line 
number, the message *** BAD BRANCH ERR is displayed. 
This form of computed GOTO enables you to simulate the ON
GOTO statement, which is not available in Integer BASIC. 

Converts the screen to low-resolution graphics mode (40 X 40), 
leaving four lines for text at the bottom of the screen. 

Format: GR 

The graphics portion of the screen is cleared to black, the cur
sor is moved to the text window, and COLOR is set to 0 (black). 

If executed while HGR is in effect, GR behaves normally. How
ever, if HGR2 is in effect, you will be left looking at page 2 of 
low-resolution graphics and text. This can be confusing, as the 
screen will usually be filled with garbage, and nothing you type 
will appear on the screen. To return to normal mode, type TEXT. 
Be sure to use TEXT in your programs before switching from 
HGR2 to GR. 

You can switch to full-screen (40 X 48), low-resolution graphics 
with the statement POKE -16302,0 after executing GR. Any
thing you subsequently type in immediate mode will show up as 
coior dots on the last four lines of the display screen, but will 
still execute properly. POKE -16302,0 sets full-screen graphics; 
POKE -16301,0 restores the text window. 



Commands, Statements, and Functions I 453 

I HCOLOR= I 

This Applesoft statement sets the color for plotting in high
resolution graphics mode. 

Format: HCOLOR= exprnm 

Until the next HCOLOR statement, all HPLOT and DRAW 
statements will be executed in the color specified. The color codes 
are listed in Table 12-2. The value of exprnm must be in the 
range 0 through 7. Values outside this range produce an ?ILLE
GAL QUANTITY ERROR message. A high-resolution graphics 
plot executed before the first HCOLOR statement may be any 
color. 

HCOLOR does not affect low-resolution graphics. An HCOLOR 
statement that is executed while the Apple II is not in high
resolution graphics mode does not affect the color of the next 
high-resolution graphics plot. 

HCOLOR is not available in Integer BASIC. 

This Applesoft statement converts the screen to high-resolution 
graphics mode (280 X 160), with a four-line text window at the 
bottom. 

Format: HGR 

Page 1 of high-resolution screen memory is displayed. The low
resolution (text) screen memory is unaffected, but only the lowest 
four lines are visible. The cursor is not moved into this four-line 
text window, and you might not be able t.o see it until you have 
typed several lines after executing HGR. The graphics portion of 
the screen is cleared to black. HCOLOR is left unchanged by this 
command. 

You can switch to full-screen (280 X 192) high-resolution graph
ics with the statement POKE -16302,0 after executing HGR. Any 
immediate mode commands you enter subsequently will not be 
visible but will still execute properly. POKE -16301,0 restores 
the text window. 

On Apple II systems with less than 32K bytes of memory, you 



454 I Apple II User's Guide 

cannot use HGR and DOS 3.3 at the same time since they will try 
to use the same area of memory. Furthermore, the Applesoft 
interpreter from disk or cassette occupies part of high-resolution 
graphics page 1 memory. Thus you cannot use HGR on a standard 
Apple II with disk-based or cassette-based Applesoft. 

If your program is extremely long, it might extend into high
resolution page 1. You can guard against this with the command 
HIMEM: 16384 or HIMEM: 8192, which will keep your program 
out of high-resolution graphics page 1. These commands also sig
nificantly reduce the amount of memory available to your BASIC 
program. 

HGR is not available in Integer BASIC. 

I HGR21 

Converts the screen to full-screen, high-resolution graphics 
mode (280 x 192). Page 2 of high-resolution screen memory is 
displayed. 

Formal: HGR2 

The low-resolution (text) screen memory is unaffected. Although 
you cannot see what you type, any command that you enter will 
be executed. The screen is cleared to black. HCOLOR is not 
affected by this command. 

Page 2 of screen memory is not available if your Apple II has 
less than 24K of memory. On 24K systems, set HIMEM: to 16384 
before you use HGR2 to protect your program and variables from 
your graphics, and vice versa. You cannot use HGR2 and DOS 3.3 
concurrently unless your system has at least 36K of memory. 

You cannot establish a text window with POKE -16301,0. This 
will display low-resolution graphics page 2 while your immediate 
mode commands go into page 1 and hence are invisible (although 
they execute correctly). 

HGR2 is not available in Integer BASIC. 

I HIMEM: I 
Sets an upper boundary on memory available to BASIC pro

grams, including variable storage. 



Commands, Statements, and Functions I 455 

Format: HIMEM: exprnm 

HIMEM: establishes the highest location in read/write memory 
(RAM) available to your BASIC program and variables. ProDOS 
or DOS 3.3 resides above HIMEM: if either is present. With the 
HIMEM: statement you can set aside additional space for 
machine language subroutines and high-resolution graphics shape 
tables. You can also protect the high-resolution graphics screen 
memory area of RAM. 

Each additional file buffer you reserve by opening another 
ProDOS file lowers HIMEM: another 1024 bytes. With DOS 3.3, 
each additional file buffer you reserve with the MAXFILES 
command lowers HIME M: by 595 bytes. If your Applesoft pro
gram uses strings, their values are stored starting at the resulting 
location of HIMEM:, working downwards. 

The value of exprnm must be in the range -65535 through 
65535 (-32767 through 32767 in Integer BASIC), or an error 
message occurs. You should not set HIMEM: higher than the 
maximum memory location available. If you do, some of your 
variable storage might end up in nonexistent memory. If you set 
HIMEM: lower than LOMEM: or if you do not leave enough 
memory to run your program, an error message occurs. 

You can see the current value of HIMEM: by using PEEK(116) 
* 256 + PEEK(115) in Applesoft, or PEEK(77) * 256 + PEEK(76) 
in Integer BASIC. 

HIMEM: is not affected by NEW, RUN, or CLEAR. 
HIMEM: can only be used in immediate mode in Integer 

BASIC. 

Draws a horizontal line on the screen in low-resolution graphics 
mode. 

Format: HLIN col1, col2 AT raw 

The line is drawn from col1 to col2 in the raw specified. The 
color is determined by the COLOR statement last executed. If the 
screen is in text mode, or the text window is present and raw is 
greater than 39, HLIN will draw a line of characters on the 
screen in the text window where the graphics dots would be plot
ted. The characters used are determined by previously executed 



456 I Apple II User's Gulde 

COLOR statements; see the PLOT statement for particulars. 
In Integer BASIC, col1 must be less than or equal to col2 or the 

message *** RANGE ERR is displayed. 

IHOMEI 

This Applesoft statement clears the display screen and posi
tions the cursor at the upper left-hand corner of the text window. 

Format: HOME 

In Integer BASIC, use CALL -936. 

I HPLOT I 
This Applesoft statement places a dot or draws a line of color on 

the high-resolution graphics screen. 

Formats: HPLOT colh,roioh 

HPLOT TO colh,roioh 

HPLOT colhvroioh1 TO colh2,roioh2 [TO colh3, 

roioh3 •• • ] 

The first form of the command places a dot of color on the 
screen at the specified location. The color of the dot is determined 
by the HCOLOR statement last executed. 

The second form of the command draws a line of color from the 
last dot plotted to the coordinates colh and roioh. If there has been 
no dot plotted since the last HGR or HGR2 command, nothing 
will be plotted. The color of the line is determined by the HCOL
OR statement last executed. 

The third form of the command also draws a line of color, and 
the line may have more than one segment. The line is first drawn 
from colh1 and roioh1 to colh2 and roioh2• The next line segment is 
then drawn from colh2 and roioh2 to colh3 and roioh3, and so on. 
There can be any number of coordinates, as long as they all fit on 
one program line. The color of the line (all segments) is deter
mined by the HCOLOR statement last executed. 



Commands, Statements, and Functions I 457 

Any portion of a line or dot that lies within the text window will 
not be visible. However, if you switch to full-screen graphics with 
the command POKE -16302,0, any line or point plotted pre
viously in the text window will become visible. 

You must always execute an HGR or HGR2 statement before an 
HPLOT. Otherwise you may destroy your program or variables. 

Not available in Integer BASIC. 

This Applesoft statement positions the cursor to the specified 
column on the current display line. 

Format: HTAB col 

The cursor moves right or left to the column specified by the 
value of col, without erasing any displayed characters. Columns 
are numbered from 1to40 (left to right). Except on an Enhanced 
Apple Ile, use POKE 36, col, greater than 40 for column 
numbers. HTAB works the same way with printers. 

In Integer BASIC, use the TAB statement. 

I if.THEN (Applesoft) I 
Conditionally causes the program to execute the indicated 

instruction or branch to the designated line. 

Formats: IF expr THEN statement [:statement ... ] 
IF expr THEN GOTO line 

In the first format of the IF-THEN statement, the expr speci
fies a condition which, if true, causes every statement that follows 
THEN on the same program line to be executed. If the specified 
condition is false, control passes to the first statement on the next 
program line and any statements following the THEN are not 
executed. 

In the second format (the conditional branch format), the pro-



458 I Apple II User's Gulde 

gram branches to ljne number line if the condition is true. Oth
erwise execution continues with the first statement on the next 
program line after the IF-THEN. 

If an unconqitional branch is one of many statements following 
THEN, the branch must be the last statement on the line, and it 
must have the GOTO line format. If the unconditional branch is 
not the last statement on the line, the statements following the 
unconditional branch can never be executed. 

The most common type of expression used with IF-THEN is a 
relational expression. If string expressions are compared using 
relational operators, the ASCII codes (listed in AppeIJdix E) for 
the characters involved determine the relative values of the 
strings. Strings are compared character by character until a 
mismatch occurs. Then the string with the higher ASCII code in 
the mismatch position is considered greater~ If no mismatch 
occurs, the longer string is greater. Execution of more than two 
or three IF-THEN statements in which expr is a string expres
sion during the course of a program generates the message 
?FORMULA TOO COMPLEX ERROR. 

The expression may also be a numeric expression. If the value 
of the expression is not zero, the condition is considered true. If 
the value of the expression is zero (false), execution continues at 
the first statement on the next-higher program line. 

Applesoft has problems if the last nonspace character preced
ing THEN is the letter A. The A is combined with the T to form 
the reserved word AT. You can avoid this problem by enclosing 
some or all of the expression (including the troublesome A) in 
parentheses. 

I if.THEN (Integer BASIC) J 

Conditionally causes the program to execute the indicated 
instruction or branch to the designated line. 

Formats: IF expr THEN statement 
IF expr THEN [GOTO] line 



Commands, statements, and Functions / 459 

In the first form of the IF-THEN statement, the expr specifies 
a condition which, if true, causes the statement following the 
THEN to be executed. If the condition is false, the statement 
immediately following the IF-THEN statement is executed; the 
statement that follows THEN is not executed in this case. 

In the second format of the IF-THEN statement (the condi
tional branch format), the expr specifies a condition which, if 
true, causes the program to branch to the indicated line number. 

Relational expressions are the most common type of expr used 
with IF-THEN. String values can only be compared for equality 
or nonequality in Integer BASIC. The expr can also be a numeric 
expression. In this case, the expr is considered true if it has a 
nonzero value. The expr cannot be a string expression (that is, 
anything that evaluates to a string value) in Integer BASIC. 

If a FOR-NEXT loop follows the THEN, the loop must be com
pletely contained on the IF-THEN line. Additional IF-THEN 
statements may appear following the THEN as long as they are 
completely contained on the original IF-THEN line. However, a 
logical expression is clearer than nested IF-THEN statements. 

Switches input to a specified input device. 

General Format: IN# slot 
Additional ProDOS Format: IN# Amemloc 

The general IN# format is the most common. It redirects the 
input of subsequent INPUT or GET statements to a device at
tached to one of the numbered accessory card slots. 

The additional ProDOS IN# format also redirects input of sub
sequent INPUT or GET statements. Instead of a slot number, it 
specifies the memory location of a program that controls an input 
device (called a device driver). Table A-9 lists the memory loca
tions of standard ProDOS input device driver programs. 

This ProDOS or DOS 3.3 command requires PRINT and 
CHR$(4) or CONTROL-Din programmed mode. 



460 I Apple II User's Guide 

Table A-9. Standard ProDOS Input Device Drivers 

Memory 
Number Location Device 

0 47182* Keyboard 
1 49408 Slot 1 (Serial or parallel adapter) 
2 49664 Slot 2 (Serial or parallel adapter) 
3 49920 Slot 3 or Ile Auxiliary slot (80-column 

adapter) 
4 50176 Slot 4 (Mouse) 
5 50432 Slot 5 (Disk drives) 
6 50688 Slot 6 (Disk drives) 
7 50944 Slot 7 

*64795 if ProDOS is disabled. 

Initializes a DOS 3.3 disk. 

Format: INIT filename [,Dn] [,Sn] [,Vn] 

The program currently in memory is saved on the disk under 
the filename given. This program becomes the greeting program, 
and it is run automatically whenever this disk is booted. The disk 
is assigned the volume number specified by the INIT command. 
If no volume number is specified, the disk is assigned a volume 
number of 254. 

If the file does not exist on drive Dn of slot Sn, the FILE NOT 
FOUND error message is displayed. 

Dn, Sn, and V n can be specified in any order. If Dn or Sn is 
omitted, the last-referenced drive or slot is used. 

INIT may only be used in immediate mode. 

I INPUT (Applesoft) I 
Accepts character entry from the keyboard or another input 

device, evaluates it, and assigns the value or values entered to the 
variable or variables specified. 



Commands, statements, and Functions / 461 

Format: INPUT ["prampt";] var [,var ... ] 

INPUT ·can request values for any combination of numeric and 
string variables. A question mark is normally displayed as a cue 
t.o begin entry at the current cursor location. Applesoft sup
presses the question mark if the optional prampt is present. 

The optional prompt is a string constant. If it is present, it will 
be displayed just before the first variable is input; it is not 
repeated for each variable in the list. No question mark is dis
played after the prampt. Note that the prompt is followed by a 
semicolon in an Applesoft INPUT statement. 

Generally speaking, when a single Applesoft INPUT statement 
calls for more than one value, you can enter each one on a sepa
rate line, ending each value with the RETURN key. Optionally, you 
can enter more than one value on a single line and separate the 
values with commas. 

If you enter unacceptable characters (for example, letters in a 
numeric value) a warning message appears and you must reenter 
the value. Applesoft displays REENTER and reexecutes the 
INPUT statement from the beginning. The cue (question mark or 
prampt) is redisplayed and you must reenter all values for the 
INPUT statement. 

Numeric input must consist only of valid numeric characters. 
If you simply press RETURN when a numeric variable is t;o be 
entered, you receive an error message and must reenter the line. 
The digits 0 through 9, spaces, and a plus or minus sign are 
accepted as numeric input. Applesoft also accepts a decimal 
point, an additional plus or minus sign, and the letter E for 
entering real values and scientific notation. 

In Applesoft, if the first nonspace character of a string entry is 
a quotation mark, all characters (including commas and colons) 
up t.o the next quotation mark or carriage return are assigned t.o 
the string variable. If the entry does not begin with a quotation 
mark, all characters (including quotation marks) up to the next 
comma, colon, or carriage return are assigned t.o the variable. If 
two or more strings are requested by the same INPUT statement, 
they must be enclosed in quotes and separated by commas. If you 
simply press RETURN when a string variable is to be entered, the 
null string (" ") is assigned to the variable. 

In Applesoft, all characters after a colon in an INPUT response 
are ignored unless the entry begins with a quotation mark. 

INPUT cannot be used in immediate mode. 



462 I Apple II User's Guide 

j 1NPUT (Integer BASIC) I 

Accepts character entry from the keyboard or another input 
device, evaluates it, and assigns the value or values entered to the 
variable or variables specified. 

Format: INPUT ["prompt",] var [,var ... ] 

INPUT in Integer BASIC requests values for any combination 
of integer and string variables. If the first variable is an integer, 
a question mark is displayed at the current cursor location as a 
cue to begin entry. Integer BASIC suppresses the question mark 
if a string is the first variable listed. 

The optional prompt is a string constant. If it is present, it will 
be displayed just before the first variable is input; it is not 
repeated for each variable in the list. A question mark is dis
played after the prompt if an integer variable is to be entered. 
The prompt alone is displayed if a string variable is to be entered. 
Note that the prompt is followed by a comma in Integer BASIC. 
The prompt may not be a string variable or string expression. 

When a single INPUT statement calls for more than one inte
ger value in succession, you can enter each one on a separate line; 
end each value with the RETURN key. Integer BASIC displays a 
double question mark(??) on each new line as a cue to continue 
entries for the INPUT statement. Optionally, you can enter more 
than one integer value on a single line by separating the values 
with commas. 

Numeric input must consist only of valid numeric characters. 
These are the digits 0 through 9, spaces, and a plus or minus 
sign. You get an error message if you simply press RETURN when 
a numeric value is to be entered. 

You must enter each string value on a separate line. All char
acters (except CONTROL-C, CONTROL-M, CONTROL-H, CONTROL-U, 
and CONTROL-X) that you enter prior to pressing the RETURN key 
are accepted and assigned to the string variables. The null string 
(" ") is assigned to the variable if you simply press RETURN when 
a string value is to be entered. If you enter unacceptable charac
ters (for example, letters in a numeric value), the warning mes
sages *** SYNTAX ERR and RETYPE LINE appear. You 
must reenter all values that you entered on the offending line. 

INPUT cannot be used in immediate mode. 



Commands, Statements, and Functions I 463 

Switches from Applesoft to Integer BASIC (not available with 
ProDOS). 

Format: INT 

Any program currently in memory is erased. If Integer BASIC 
is not present (for example, on an Apple II Plus without a Lan
guage System), the message LANGUAGE NOT AVAILABLE is 
displayed. 

Use INT only in immediate mode. 

I INVERSE I 

This Applesoft statement switches to inverse character style. 

Format: INVERSE 

All output from subsequently executed PRINT statements will 
appear as black characters on a white background. Error mes
sages are similarly affected. However, any previously displayed 
characters are unaffected. 

INVERSE works by slightly altering the standard ASCII 
codes. Therefore, any inverse characters sent to a DOS 3.3 disk 
will be saved with incorrect codes. When read back in, the wrong 
characters will result. 

This statement is not available in Integer BASIC. Lowercase 
inverse characters are not available on most Apple II Plus and 
standard Apple II machines. 

The assignment statement, LET= or simply =, assigns a value 
to a specified variable. 

Format: [LET] var=expr 

The var is assigned the value computed by evaluating the expr. 



464 I Apple II User's Guide 

Displays all or part of the program lines currently in memory. 

General Format: LIST line1 [,line2] 

Applesoft Format: LIST [line 1] {;} [line2] 

Any portion of the program may be listed. If no line numbers 
follow LIST, all program lines are displayed. If only line1 is spec
ified, only that line is displayed. If both line numbers are speci
fied, the program is listed starting at line1 and continuing 
through line2• If line1 does not exist, the listing starts at the next
higher line number. If line2 does not exist, the listing ends at the 
next-lower line number. LIST may not be used with variables or 
expressions in place of the line numbers. 

In Applesoft, either a comma(,) or a hyphen(-) may separate 
the two line numbers. 

In Applesoft you can list from the start of the program to a 
specific line number by putting a comma or hyphen ahead of 
line2 (and omitting line1). You can also list from a specific line 
number to the end of the program by putting a comma or hyphen 
after line1 (and omitting line2). 

When LIST displays your program, it adds spaces to make the 
listing more readable. You can eliminate some of the spaces by 
reducing the text window to a width of 33 with the command 
POKE 33,33. (POKE 33,40, POKE 33,80 or TEXT restores the 
text window to full width.) 

Program line lengths are limited, but these limits are calcu
lated before the LIST command adds the extra spaces. You can 
therefore extend the apparent length of your program lines by 
leaving out spaces when you type the lines in; LIST will make the 
lines longer. However, lines such as these will be too long to be 
edited or copied after they have been listed with all the spaces 
put in. 

I LOAD (ProDOS) I 
Loads an Applesoft program from a ProDOS disk. 

Format: LOAD pathname [, Dn] [,Sn] 



Commands, Statements, and Functions I 465 

The named program is loaded from the disk. The program 
replaces any program previously in memory. All variables and 
arrays are cleared, and any open files are closed. If no program 
exists as named, the existing program, variables, and files will be 
untouched. 

Dn and Sn can be specified in any order. If Dn or Sn is omit
ted, the ProDOS prefix specifies the drive and slot. 

This is a ProDOS command, requiring PRINT and CHR$(4) in 
programmed mode. 

I LOAD (DOS 3.3) I 
Loads a program from a DOS 3.3 disk. 

Format: LOAD filename [, Dn] [,Sn] [,V n] 

The program with the name filename is loaded from the disk. 
If the LOAD is successful, any program previously in memory is 
erased. 

If the program to be loaded is in Applesoft and the Apple II is 
currently in Integer BASIC, or vice versa, the Apple II switches 
to the proper language. This may require loading the language 
from the specified disk. If the language is not available, the mes
sage LANGUAGE NOT AVAILABLE is displayed. 

If the file does not exist on drive Dn of slot Sn, the FILE NOT 
FOUND error message is displayed. If the disk in drive Dn of 
slot Sn is not volume Vn, the VOLUME MISMATCH error 
results. 

Dn, Sn, and Vn can be specified in any order. If Dn or Sn is 
omitted, the last-referenced drive or slot is used. VO is used if Vn 
is absent. 

This is a DOS 3.3 command, requiring PRINT and CHR$( 4) or 
CONTROL-D in programmed mode. 

I LOAD (Cassette) I 
Loads a program from cassette. 

Format: LOAD 



466 I Apple II User's Gulde 

Loads the next sequential program from the cassette, replacing 
any program currently in memory. You must have the cassette 
recorder running in playback mode when LOAD is executed; the 
Apple II does not remind you to do this. The Apple II beeps as it 
starts to load a program and beeps again when it finishes. The 
second beep is your signal to manually stop the cassette recorder. 

In Integer BASIC, you can only use LOAD in immediate mode. 

I LOCK (ProDOS) J 

Protects a ProDOS disk file or directory against change. 

Format: LOCK pathname [,Dn] [,Sn] 

Once locked, a file cannot be deleted, changed, or renamed 
until it is unlocked (see UNLOCK). No program can be saved 
using the name of a locked file. A locked file is indicated in a disk 
directory listing by an asterisk in front of the file name. 

Dn and Sn can be specified in any order. If Dn or Sn is omit
ted, the ProDOS prefix specifies the drive and slot. 

This is a ProDOS command, requiring PRINT and CHR$(4) in 
programmed mode. 

I LOCK (DOS 3.3) I 
Protects a DOS 3.3 disk file against change. 

Format: LOCK filename [,Dn] [,Sn] [,Vn] 

Once locked, a file cannot be deleted, changed, or renamed 
until it is unlocked (see UNLOCK). No program can be saved 
using the name of the locked file. A locked file is indicated in the 
disk catalog by an asterisk at the left of the file type. 

If the file does not exist on drive Dn of slot Sn, the FILE NOT 
FOUND error message is displayed. If the disk in drive Dn of 
slot Sn is not volume Vn, the VOLUME MISMATCH error 
results. 

Dn, Sn, and Vn can be specified in any order. If Dn or Sn is 



Commands, Statements, and Functions I 467 

omitted, the last-referenced drive or slot is used. VO is used if Vn 
is absent. 

This is a DOS 3.3 command, requiring PRINT and CHR$(4) or 
CONTROL-D in programmed mode. 

I LOMEM: I 
Sets a lower boundary on the memory available to BASIC 

programs. 

Format,: LOMEM: exprnm 

LOMEM: establishes the lowest location in read/write memory 
(RAM) available for your BASIC program lines and variables. 
The operating system and the BASIC interpreter use RAM below 
LOMEM: for pointers, low-resolution graphics and text screen 
memory, and so forth. When the Applesoft interpreter is not in 
ROM, it resides in RAM below LOMEM:. You can set aside addi
tional space for machine language subroutines and high-resolution 
graphics shape tables with a LOMEM: command. 

LOMEM: starts out at memory location 2048, just above the 
low-resolution graphics area. Loading the Applesoft interpreter 
into RAM from disk or cassette raises LOMEM: to 12291. Each 
time you add an Applesoft program line or change an existing 
line, LOMEM: is adjusted up or down. Erasing an Applesoft pro
gram (with NEW) also changes LOMEM:. So if you want to 
reserve space below your program, you must do so after erasing 
one program but before loading or typing in a new one. 

The value of exprnm must be in the range -65535 through 
65535 (-32767 through 32767 in Integer BASIC), or an error 
message will occur. 

You can display the current value of LOMEM: with PRINT 
PEEK(106) * 256 + PEEK(105). 

In Applesoft, if LOMEM: is set higher than the current value 
of HIMEM:, lower than the existing value of LOMEM:, or lower 
than the highest memory location used by the current operating 
system or program, the message ?OUT OF MEMORY ERROR 
occurs. 

LOMEM: can only be used in immediate mode in Integer 
BASIC. 



468 I Apple II User's Gulde 

Ends automatic line numbering mode in Integer BASIC. 

Format: MAN 

Automatic line ?)Umbering is instituted with AUTO. 
Type CONTROL-X to temporarily halt the generation of line 

numbers, and then enter MAN. 
MAN is not available in Applesoft. 

I MAXFILES I 

Specifies the maximum number of DOS 3.3 files that may be 
active at any one time. 

Format: MAXFILES limit 

When executed, MAXFILES sets aside 595 bytes of memory (a 
file buffer) for each file. MAXFILES is automatically set to 3 
when you load DOS 3.3, and it can be increased to a maximum of 
16. 

All DOS 3.3 commands except MAXFILES, PR#, and IN# use 
a file buffer while they are executing. If you attempt to execute 
any DOS 3.3 command when there is no buffer free, the error 
message NO BUFFERS AVAILABLE appears. 

MAXFILES resets HIMEM:, and that may erase part of your 
program or its variable storage. Execute MAXFILES before you 
run your program. If you use MAXFILES within an Applesoft 
program, use it as the first statement. 

This is a DOS 3.3 command, requiring PRINT and CHR$( 4) or 
CONTROL-D in programmed mode. 

IMoNI 
Causes DOS 3.3 commands and data flow to be displayed on 

the screen. 

Format: MON [C] [,][I] [,][0] 



Commands, Statements, and Functions I 469 

The three parameters dictate what is displayed. If C is speci
fied, all DOS 3.3 commands are displayed on the screen. If I is 
specified, all data input to the Apple II from the disk is dis
played. If 0 is specified, all data output from the Apple II to the 
disk is displayed. These parameters may be used in any combina
tion and in any order. If none of them are present, MON has no 
effect. MON remains in effect until a NO MON, FP, or INT is 
executed, the system is restarted, or on some machines, RESET is 
struck. 

This is a DOS 3.3 command, requiring PRINT and CHR$( 4) or 
CONTROL-D in programmed mode. 

Deletes the current program and all variables from memory. 

Format: NEW 

NEW also resets LOMEM:, but does not affect HIMEM:, 
COLOR, or HCOLOR. 

NEW may only be used in immediate mode in Integer BASIC. 

Terminates the loop started by a FOR instruction. 

General Format: NEXT varnm [,varnm . .. ] 
Additional Applesoft Format: NEXT 

When NEXT is executed, loop index variable varnm is incre
mented by an amount specified in the corresponding FOR state
ment. The program then either continues with the instruction 
following NEXT or loops back to the corresponding FOR, 
depending on the parameters set in the FOR statement. See the 
discussion of FOR earlier in this appendix. 

If there is no currently active FOR loop that matches varnm, an 
error will occur. The message ?NEXT WITHOUT FOR ERROR 
is displayed by Applesoft; *** BAD NEXT ERR is displayed by 
Integer BASIC. 



470 I Apple II User's Gulde 

Multiple variables following NEXT must be listed in the 
proper order (the last loop initiated must be terminated first), or 
an error will occur. 

In Applesoft you may use NEXT with no identifying variable 
name. The loop variable defaults to that of the most recently 
begun FOR loop that is still in effect. NEXT with no variable 
executes more rapidly than NEXT with a variable. 

NEXT may not be used in immediate mode in Integer BASIC. 
In Applesoft, an immediate mode NEXT may cause a branch to a 
FOR that was executed in programmed mode and is still active. 

Cancels the display of changing values for the specified vari
able in Integer BASIC. 

Format: NO DSP var 

NO DSP is not available in Applesoft. 

I NOMONI 

Ends the display of DOS 3.3 commands or data flow that was 
initiated by MON. 

Format: NOMON [C] [,][I] [,][0] 

Each parameter specified cancels part of the display started by 
MON. If C is specified, DOS 3.3 commands are not displayed. If I 
is specified, data input to the Apple II from the disk is not dis
played. If 0 is specified, data output from the Apple II to the disk 
is not displayed. These parameters may be used in any combina
tion and in any order. If MON is not in effect for the parameter or 
parameters specified or if no parameters are specified, NOMON 
has no effect. 

This is a DOS 3.3 command, requiring PRINT and CHR$(4) or 
CONTROL-D in programmed mode. 



Commands. Statements, and Functions I 471 

I NORMAL I 
This Applesoft stat.ement switches to normal character style. 

Format: NORMAL 

All output from subsequently executed PRINT statements will 
appear as white characters on a black background. However, any 
previously displayed characters are unaffected. 

NORMAL is not available in Integer BASIC. 

I NO TRACE I 
Turns off the tracing of program execution that was initiated 

by TRACE. 

Format: NO TRACE 

If TRACE is not in effect, NO TRACE has no effect. 

I ONERR GOTO I 

Branches t.o a specified line number when a subsequent error 
occurs in an Applesoft program. 

Format: ONERR GOTO line 

This command sets a flag that causes the program t.o branch t.o 
the line when an error occurs. ONERR GOTO must be executed 
before the error occurs. 

Each type of error has a code number. The code of the most 
recently occurring error is stored in memory location 222. 
PEEK(222) retrieves the error codes. The error codes and their 
messages are listed in Appendix B. 

Except on an Enhanced Apple Ile, when an error occurs inside 
a FOR-NEXT loop or in a subroutine, the pointers and stacks 
may be disrupted. If your error-handling routine returns to a 



472 I Apple II User's Gulde 

Table A-10. Machine Language Fix for ONERR GOTO 

MACHINE LANGUAGE 6502 ASSEMBLY LANGUAGE 

Decimal Hexadecimal Instruction Comments 

104 68 PLA Put top byte of stack 
in Accumulator 

168 AS TAY And save it in Y index 
register 

104 68 PLA Put next byte of stack 
in Accumulator 

166 A6 LDX $DF Use ONERR pointer 
223 DF as stack address 
154 9A TXS Push saved stack con-
72 48 PHA tents on 'ONERR' 

152 98 TYA stack (two bytes -
72 48 PHA from Accumulator 

and Y register) 
96 60 RTS Return to Applesoft 

NEXT or RETURN statement, an error may occur. The Apple II 
will lock up if there are two GET errors in a row and if the error
handling routine ends with RESUME, not GOTO. In programs 
that use PRINT statements (or if TRACE is in effect), the 43rd 
error not arising from an INPUT statement causes a jump to the 
Monitor. In this situation, if GOTO ends the error-handling rou
tine (instead of RESUME), the 87th INPUT error causes a jump 
to the Monitor. 

To circumvent the problems just described, your program can 
call the machine language program listed in Table A-10 each time 
it intercepts an error. Use POKE statements to put the decimal 
numbers into memory locations 768 through 777 (or any available 
memory locations). Then use a CALL 768 statement from your 
error-handling routine. 

ONERR GOTO is not available in Integer BASIC and cannot 
be used in immediate mode. 

I ON-GOSUB I 
Provides conditional subroutine calls to one of several subrou

tines in an Applesoft program, depending on the current value of 
an expression. 



Commands, Statements. and Functions I 473 

Format: ON exprnm GOTO line [,line . .. ] 

The program branches to the first line number when the inte
ger value of the expression isl, to the second when it is 2, and so 
on. The next RETURN statement encountered sends the program 
back to the line following the ON-GOSUB. 

The expression must have a value in the range 0 through 255 or 
the message ?ILLEGAL QUANTITY ERROR will occur. If the 
expression evaluates to zero or to a value greater than the number 
of line numbers listed, program execution continues with the next 
instruction following the ON-GOSUB. 

ON-GOSUB is not available in Integer BASIC. (But ref er to 
GOSUB for an Integer BASIC form of computed GOSUB.) 

I ON-GOTO I 
Causes a conditional branch to one of several points in an Apple

soft program, depending on the current value of an expression. 

Format: ON exprnm GOTO line [,line ... ] 

The program branches to the first line number when the inte
ger value of the expression is l, to the second when the integer 
value is 2, and so on. 

The expression must have a numeric value in the range 0 
through 255, or the message ?ILLEGAL QUANTITY ERROR 
will occur. When the expression evaluates to zero or to a value 
greater than the number of line numbers listed, program execu
tion continues with the next instruction following the ON-GOTO. 

ON-GOTO is not available in Integer BASIC. (But see GOTO 
for an Integer BASIC form of computed GOTO.) 

I OPEN (ProDOS) I 
Prepares a ProDOS disk file for accessing. 

Format: OPEN pathname [,Llength] [,Ttype] [,Dn] [,Sn] 

If the named file does not exist, ProDOS creates it. If the file is 
already open, an error occurs. OPEN allocates a 1024-byte buffer 
in memory for the file named. Half the buffer is for input and 



474 I Apple II User's Guide 

half is for output. If too little memory is available, an error 
occurs. 

As many as eight files can be open at once. Note that the EXEC 
command opens a file automatically and closes the file when it's 
done. The CLOSE command closes the file. 

The Llengt,h option specifies the record length of a random
access file. If the length is not specified and the file exists, Pro
DOS opens the fiie for sequential access. If the length is not 
stated and the file does not exist, ProDOS creates a sequential
access file. 

The Ttype option can be used to specify a file type other than 
text. In that case, the file must exist as named. 

Dn and Sn can be specified in any order. If Dn or Sn is omit
ted, the ProDOS prefix specifies the drive and slot. 

This is a ProDOS command, requiring PRINT and CHR$( 4) in 
programmed mode. 

OPEN cannot be used in immediate mode. 

I OPEN (DOS 3.3) I 
Prepares a sequential or random-access DOS 3.3 disk text file 

for accessing. 

Format: OPEN filename [,Llength] [,Dn] [,Sn] [,Vn] 

If the named file does not exist, DOS 3.3 creates it. If the file is 
already open, it is closed and then reopened. OPEN requisitions 
one of the 595-byte file buffers in memory for the text file speci
fied. If all buffers are in use, an error occurs. 

The· Llengt,h option specifies the record length of a random
access file. The record length must be an integer constant 
between 1 and 32767. If the option is absent, the file is opened as a 
sequential file. 

If the disk in drive Dn. of slot Sn is not volume Vn, the 
VOLUME MISMATCH error results. 

Dn, Sn, and Vn can be specified in any order. If Dn or Sn is 
omitted, the last-referenced drive or slot is used. VO is used if Vn 
is absent. 

This is a DOS 3.3 command, requiring PRINT and CHR$(4) or 
CONTROL-D in programmed mode. 

OPEN cannot be used in immediate mode. 



Commands, statements, and Functions I 475 

Listed in the Functions section of this appendix. 

Listed in the Functions section of this appendix. 

Displays a point on the low-resolution graphics screen. 

Format: ~LOT col, row 

In low-resolution graphics mode, PLOT places a dot of color on 
the screen. The color of the dot is determined by the COLOR 
statement last executed. Column numbers range between 0 and 
39. Column 0 is at the left edge of the screen; column 39 is at the 
right. Row numbers range between 0 and 47. Row 0 is at the t.op 
of the screen, and row 47 is at the bott.om. A point plotted in rows 
40 through 47 will be in the four-line text window unless a POKE 
-16302,0 has been executed to eliminate the text window. 

In text mode or in the text window, PLOT places a character, 
rather than a dot, on the screen. Since a character occupies the 
space of two vertically stacked graphics dots, there are two dif
ferent sets of PLOT coordinates that will cause a character t.o 
appear in a given location. To place a particular character on the 
screen, you must PLOT both halves of the character location. The 
character that appears is determined by the COLOR statement 
last executed before each half is plotted. 

You can determine which character will be displayed by com
puting the screen code from the color numbers of the upper and 
lower points and looking up the screen code in Appendix E. To 
compute the screen code, multiply the color number of the lower 
point by 16 and then add the color number of the upper point. For 
example, if the color of column 10, row 21 is 0 and the color of 
column 10, row 20 is 1, the screen code is 1 (O* 16+ 1), which is an 
inverse-style capital A. 



476 I Apple II User's Guide 

The POKE statement stores a byte of data in a specified mem
ory location. 

Format: POKE mem,adr, /Jyte 

A value between 0 and 255, provided by /Jyte, is written into 
memory at location meniadr. If the memory location specified 
exceeds the maximum location in memory (for example, 16383 if 
you have 16K of memory) or accesses an output device that is not 
receiving, POKE has no effect. 

Use caution with POKE. Some memory locations contain 
information essential to the Apple H's uninterrupted operation. 
Changing random memory locations can destroy your program,
lock up your system, or clobber your BASIC. 

Causes Applesoft to forget the return location for the most 
recently executed GOSUB statement. 

Format: POP 

POP effectively changes the most recently executed GOSUB 
statement into a GOTO statement (retroactively). The next 
RETURN statement executed will branch to the instruction 
immediately following the second most recently executed GOSUB. 
If the total number of POP and RETURN statements executed in 
a program exceeds the number of GOSUB statements executed, 
an error message will occur. 

I POSITION (ProDOS) I 
Moves the ProDOS disk file pointer the specified number of 

fields ahead of its current position. 

Formats: POSITION pat,hname,Ffield 
POSITION pathname,Rfield 



Commands, Statements, and Functions I 477 

The Ffield option specifies a number of fields (carriage return 
characters) to be skipped in the file. The Rfield option does 
exactly the same thing and is compatible with the DOS 3.3 oper
ating system. 

This is a Pro DOS command, requiring PRINT and CHR$( 4) in 
programmed mode. 

POSITION cannot be used in immediate mode. 

I POSITION (DOS 3.3) I 
Moves the DOS 3.3 disk file pointer the specified number of 

records ahead of its current position. 

Format: POSITION filename [, Rfield] 

If the file is not open when POSITION is executed, it is opened 
(see OPEN). The Rfield option specifies a number of fields (car
riage return characters) t.o be skipped in the file. If the file is 
opened by POSITION, the fields are skipped from the beginning 
of the file. If any unused space is encountered in the file before 
the specified number of fields are skipped, the message END OF 
DATA occurs. 

This is a DOS 3.3 command, requiring PRINT and CHR$( 4) or 
CONTROL-D in programmed mode. 

POSITION cannot be used in immediate mode. 

I PREFIX I 
'-, 

Sets or reports the current ProDOS path prefix. 

Format: PREFIX [pathname] [,Dn] [,Sn] 

The pathname you specify in the PREFIX command will 
prefix all pathnames (including simple file names) in subsequent 
ProDOS commands. If a subsequent ProDOS command specifies 
no pathname or file name, the prefix is used alone. The prefix 
cannot be longer than 64 characters, including slashes. 

To clear the prefix, use PREFIX/. 
To see what the current prefix is, type PREFIX with no path-



478 I Apple II User's Gulde 

name. In programmed mode, the next INPUT statement after a 
simple PREFIX command reads the current prefix. 

Dn and Sn can be specified in any order. If Dn or Sn is omit
ted, the ProDOS prefix specifies the drive and slot. 

This is a ProDOS command, requiring PRINT and CHR$(4) in 
programmed mode. 

Usually used to switch output to a specified output device. 

General Format: PR# slot 
Additional ProDOS Formats: PR# Amemloc 

PR# Amemloc,slot 

The general PR# format is the most common. It redirects the 
output of subsequent PRINT statements to a device attached to 
one of the numbered accessory card slots. 

The first additional ProDOS PR# format also redirects output 
of subsequent PRINT statements. Instead of a device number, it 
specifies the memory location of a program that controls an out
put device (called a device driver). Table A-11 lists the memory 
locations of standard ProDOS output device driver programs. 

Table A-11. Standard ProDOS Output Device Drivers 

Memory 
Number Location Device 

0 47179* Display screen 
1 49408 Slot 1 (Serial or parallel adapter) 
2 49664 Slot 2 (Serial or parallel adapter) 
3 49920 Slot 3 or Ile Auxiliary slot (SO-column 

adapter) 
4 50176 Slot 4 (Mouse-commands only) 
5 50432 Slot 5 (Disk drives) 
6 50688 Slot 6 (Disk drives) 
7 50944 Slot 7 

*65008 if ProDOS is disabled. 



Commands, Statements. and Functions I 479 

The second additional ProDOS PR# format does· not redirect 
output of subsequent PRINT statements. It only assigns the 
memory location of a device driver program to one of the device 
numbers. 

This ProDOS or DOS 3.3 command requires PRINT and 
CHR$(4) or CONTROL-D in programmed mode. 

I PRINT I 
Outputs characters to the screen or another output device. 

Format: PRINT [expr][{i} ... [expr]] .. . ] 

There are a number of acceptable variations on the PRINT 
statement. PRINT by itself outputs a carriage return character. 
When PRINT is followed by one or more expressions, the values 
of these expressions are printed. The way the values appear 
depends on their nature and on the use of semicolons or commas 
between values. 

Negative values are preceded by a minus sign; positive values 
are not preceded by a sign or a blank space. Scientific notation is 
used in Applesoft for values closer to zero than ±.01 and for any 
values with more than nine digits in front of the decimal point. 
String values are displayed just as they are. 

Commas and semicolons determine the spacing between printed 
values. A semicolon causes the next value to print immediately 
after the value just printed; the values are concatenated with no 
intervening spaces. A comma causes the next value to print at the 
next tab location, several spaces over from the last value. Except 
on an Enhanced Apple Ile, commas do not work reliably for tab
bing when the screen is displaying 80-column lines. 

In Integer BASIC, tabs are eight characters apart, at columns 
1, 9, 17, and so on. If any nonblank character is printed in the 
space just ahead of a tab (for example, in column 16), that tab 
stop is inactivated. 

Applesoft places tabs 16 characters apart, at columns. Tabs on 
the display screen are inactivated according to a scheme illus
trated in Figure 9-2. For other devices, a tab is inactivated if a 
nonblank character is printed just ahead of it (for example, in 
column 32). 



480 I Apple II User's Guide 

If the list of expressions does not end with a comma or semi
colon, a carriage return character is output following the last item 
in the list. If the list ends with a semicolon, the first character 
printed by the next PRINT statement will print directly follow
ing the last character printed by the current PRINT statement, 
with no intervening spaces. If the list ends with a comma, the 
next output will be in the first position of the next tab field. 

In Applesoft, items may be listed with no intervening commas 
or semicolons. Output for such items is concatenated as if the 
items were separated by semicolons. In Integer BASIC, all items 
must be separated by either a comma or a semicolon. 

Applesoft recognizes a question mark(?) as an abbreviation for 
PRINT. The word PRINT will be spelled out when the program 
is listed, however. 

\ READ (ProDOS) I 
Switches to input from a ProDOS disk file. 

Format: READ pathname [,Rrecord] [,Ffield] [,Bb-yte] 

After a READ statement is executed, all INPUT and GET 
statements take characters from the named file, starting at the 
optional record number (random-access files only).· The next 
ProDOS command, including CHR$( 4), disables the READ 
command. 

The Ffield option specifies a number of fields (carriage return 
characters) to be skipped before reading. The Bayte option speci
fies a number of bytes (characters) to skip ahead before reading. 

This is a ProDOS command, requiring PRINT and CHR$( 4) in 
programmed mode. 

READ cannot be used in immediate mode. 

I READ (DOS 3.3) I 
Specifies a DOS 3.3 disk file from which subsequent INPUT 

and GET commands will obtain data. 

Format: READ filename [, Rrecord] [, Bb-yte] 



Commands, Statements, and Functions / 481 

If the file specified is not already open, it is opened (see OPEN). 
All subsequent INPUT and GET statements receive characters 
from the disk until the next DOS 3.3 command occurs. If the file 
is not on the disk, the message FILE NOT FOUND appears. 

The Rrecord option specifies the record number of a random
access file. If that option is absent, the file will be read as a 
sequential-access file. The Bbyte option specifies a number of 
bytes (characters) to skip ahead before reading. The numbers fol
lowing B and R must be integer constants between 0 and 32767. 

This is a DOS 3.3 command, requiring PRINT and CHR$( 4) or 
CONTROL-D in programmed mode. 

This statement may not be used in immediate mode. 

I READ (Applesoft) I 
Assigns values from Applesoft DATA statements to variables. 

Format: READ var[, var ... ] 

A pointer to the list of DATA statement values determines 
which value to assign to the first variable in the READ state
ment. At the start of the program and after a RESTORE state
ment, the pointer points to the first DATA value. As each READ 
statement variable gets a value, the pointer moves ~head to the 
next value. 

The variables may be of any type but must match the type of 
the corresponding DATA list values. A numeric value assigned to 
a string variable causes no problem. A string assigned to a 
numeric variable causes the message ?SYNTAX ERROR to be 
displayed. The line number of the off ending DATA statement is 
announced with the error message. 

If READ attempts to assign more variables than there are 
DATA values, the ?OUT OF DATA ERROR message appears, 
with the line number of the offending READ statement. 

READ may be executed in immediate mode as long as the pro
gram in memory contains enough DATA values. Otherwise, the 
message ?OUT OF DATA ERROR occurs. If ProDOS or DOS 
3.3 is present, a READ in immediate mode is interpreted as an 
operating system command, and the message NOT DIRECT 
COMMAND is displayed. 

READ is not available in Integer BASIC. 



482 I Apple II User's Gulde 

I RECALL I 

Retrieves an Applesoft numeric array from cassette tape. 

Format: RECALL varnm 

Applesoft waits indefinitely until the array is found on the 
tape; no other instruction can be executed in the meantime. 
RECALL does not control tape movement nor advise when to 
start the cassette recorder in playback mode. The Apple II does 
beep when it starts getting array values, and it beeps again when 
the array values stop. The array must be dimensioned before the 
RECALL statement is executed, or the tpessage ?OUT OF 
DATA ERROR is generated (see DIM). 

You need not use the same array variable name in the 
RECALL statement as was used in the STORE statement for the 
same values. You should use an array with the same dimensions 
as the one that was stored, however. If the array that was stored 
contains more elements than the recalled array, the message 
?OUT OF DATA ERROR occurs. If the recalled array contains 
at least as many elements as the stored array but does not have 
exactly the same dimensions, the message ERR is generated, but 
program execution continues. 

If the recalled array has more elements than the stored array, 
the values in the recalled array will usually be scrambled. There 
are two exceptions. You may recall into an array that has the 
same number of dimensions as the stored array, where each 
dimension except the last is the same size as the corresponding 
dimension in the stored array. The last dimension may be larger 
in the recalled array. You may also recall into an array with 
more dimensions than are in the stored array, if the dimensions 
that are in the array match the corresponding dimensions in the 
recalled array (or exceed them, in the case of the last dimension 
of the stored array). 

String arrays cannot be used with RECALL. Recalled numeric 
values can be converted to string values with the CHR$ function, 
however. 

RECALL is not available in Integer BASIC. 



Commands, Statements, and Functions I 483 

The REM statement allows comments to be placed in the pro
gram for documentation purposes. 

Format: REM comment 

The comment is any sequence of characters that will fit on the 
current program line. 

Remark statements are reproduced in program listings, but 
they are otherwise ignored. A REM statement may be placed on 
a line of its own, or it may be placed as the last statement of a 
multiple-statement line. REM cannot be placed ahead of any 
other statements on a multiple-statement line, since all text fol
lowing the REM is treated as a comment. 

J RENAME (ProDOS) I 

Changes the name of a ProDOS disk file without altering the 
file's contents. 

Format: RENAME old pathname, new pathname [,Dn] [,Sn] 

Both the old pathname and the new pathname must be in the 
same directory. RENAME cannot move a file from one directory 
to another; use the STARTUP program on the System Master 
disk to do that. The file cannot be open or locked. Duplicate file 
names are not allowed in the same directory. However, a file in 
one directory can have the same name as another file in a differ
ent directory, because their paths are different. 

Dn and Sn can be specified in any order. If Dn or Sn is omit
ted, the ProDOS prefix specifies the drive and slot. 

This is a ProDOS command, requiring PRINT and CHR$(4) in 
programmed mode. 



48~ I Apple II User's Guide 

I RENAME (DOS 3.3) I 

Changes the name of a DOS 3.3 disk file without altering the 
file contents. 

Format: RENAME old filename, new filename [,Dn] [,Sn] [,Vn] 

The file named old filename is found on the disk, and its name 
is changed to new filename. If the file is open, it is closed (see 
CLOSE). The file is not affected in any other way. 

RENAME will readily change the file name to one that 
already exists on the disk; in fact, it will do this any number of 
times. You must make sure that there is no file already named 
new filename before RENAME is executed. 

If the old filename does not exist on drive Dn of slot Sn, the 
FILE NOT FOUND error message is displayed. If the disk in 
drive Dn of slot Sn is not volume V n, the VOLUME MIS
MATCH error results. 

Dn, Sn, and Vn can be specified in any order. If Dn or Sn is 
omitted, the last-referenced drive or slot is used. VO is used if Vn 
is absent. 

This is a DOS 3.3 command, requiring PRINT and CHR$(4) or 
CONTROL-D in programmed mode. 

I RESTORE (ProDOS) J 

Reads a set of Applesoft variables and values from a ProDOS 
disk file. 

Format: RESTORE pathname [,Dn] [,Sn] 

RESTORE clears all existing variables and their values from 
memory and replaces theni with variables and values unpacked 
from the specified disk file. The file must be type VAR. (See also 
STORE.) 

Dn and Sn can be specified in any order. If Dn or Sn is omit
ted, the ProDOS prefix specifies the drive and slot. 

This is a ProDOS command, requiring PRINT and CHR$( 4) in 
programmed mode. 



Commands, Statements, and Functions / 485 

I RESTORE (Applesoft) I 
Resets the Applesoft DATA list pointer to the beginning of the 

list. 

Format: RESTORE 

Subsequent READ statements start at the first DATA value. 
RESTORE is not available in Integer BASIC. 

I RESUME I 
Causes an Applesoft program to resume execution at the 

beginning of the statement in which an error occurred. 

Format": RESUME 

RESUME may only be used after an ONERR GOTO branch 
has been triggered by an error. If RESUME is executed when no 
error has occurred, the results are unpredictable but generally 
tragic. 

RESUME is not available in Integer BASIC and cannot be 
used in immediate mode. 

I RETURN I 
Causes the program to branch to the statement immediately 

following the most recently executed GOSUB. 

Format: RETURN 

The POP statement will obliterate all knowledge of the most 
recent GOSUB, with the result that RETURN after POP causes 
a branch to the statement following the next most recent 
GO SUB. 

If more RETURN (and POP) statements than GOSUB state
ments are executed in a program, an error message will occur. 



486 I Apple II User's Guide 

jROT= I 
This Applesoft statement sets the orientation of high-resolution 

shapes drawn by DRAW. or XDRAW. 

Format: ROT=exprnm 

ROT= 0 draws the shape in the orientation with which it was 
defined. The shape is rotated 90 degrees clockwise for each 
increment of 16 in the value of exprnm. Thus, ROT=32 draws the 
shape upside down, and ROT=64 draws the shape in its original 
orientation. Values for exprnm greater than 64 are evaluated 
modulo 64 ( 65 is the same as 1, 66 is the same as 2, and so on). 

When SCALE has been set to l, there are only four recognized 
values for ROT. They are 0, 16, 32, and 48 (and values greater 
than 63 equivalent to these values). When SCALE=2 there are 
eight values, when SCALE=3 there are 16 values, and so on up to 
a maximum of 64 different recognized values. An unrecognized 
value for ROT will be treated as if it were the next-lower recog
nized value. 

The exprnm must have a value in the range 0 through 255 or 
the message ?ILLEGAL QUANTITY ERROR will be gener
ated when the ROT command is executed. 

ROT is not recognized as a reserved word unless the character 
"=" is the first nonspace charact.er following the command. 

ROT is not available in Integer BASIC. 

I RUN (ProDOS) I 

Loads and runs an Applesoft program from a ProDOS disk. 

Format: RUN pathname [,@line] [,Dn] [,Sn] 

The named program is loaded from the disk and then run. The 
program replaces any program previously in the Apple II 
memory. All variables and arrays are cleared, and any open files 
are closed. If no program exists as named, the existing program, 
variables, and files will be untouched. 

The @line option, if present, specifies a line number at which 



Commands, Statements, and Functions I 487 

the program is started. If the specified line number does not 
exist, the next-higher line number is used. 

Dn and Sn can be specified in any order. If Dn or Sn is omit
t.ed, the ProDOS prefix specifies the drive and slot. 

This is a ProDOS command, requiring PRINT and CHR$(4) in 
programmed mode. 

I RUN (DOS 3.3) I 
Loads and runs a program from a DOS 3.3 disk. 

Format: RUN filename [,Dn] [,Sn] [,Vn] 

The program named filename is loaded from the disk and then 
run. If the load is successful, any program previously in memory 
is erased. 

If the program to be loaded and run is in Integer BASIC and 
the Apple II is currently in Applesoft, or vice versa, the Apple II 
switches to the proper language. If necessary, it will load the 
Applesoft interpreter from the specified disk. If the language is 
not available, the message LANGUAGE NOT AVAILABLE is 
displayed. 

If the file does not exist on drive Dn of slot Sn, the FILE NOT 
FOUND error message is displayed. If the disk in drive Dn of 
slot Sn is not volume V n, the VOLUME MISMATCH error 
results. 

Dn, Sn, and V n can be specified in any order. If Dn or Sn is 
omitted, the last-referenced drive or slot is used. VO is used if Vn 
is absent. 

This is a DOS 3.3 command, requiring PRINT and CHR$(4) or 
CONTROL-D in programmed mode. 

I RUN (BASIC) I 
Executes the program currently in memory, optionally starting 

at the specified line number. 

General Format: RUN [line] 



488 I Apple II User's Gulde 

If there is no line number line, an error occurs. 

Additional Integer BASIC Format,: RUN exprnm 

In Integer BASIC, the starting line number can be a numeric 
expression. This form of RUN may only be used in immediate 
mode and in Integer BASIC. 

I SAVE (ProDOS) I 

Saves an Applesoft program onto a ProDOS disk. 

Format,: SAVE pathname [, Dn] [,Sn] 

If there is no file as named, a file is created and the program 
currently in memory is saved in it. If a file of type BAS exists as 
named, the program is saved in it. If a file of a different type 
exists as named, an error message occurs. 

Warning: Be careful t.o type the right pathname. If you use the 
wrong name and a file with that name exists, ProDOS replaces 
the program it contains with the program in memory-with no 
warning. 

Dn and Sn can be specified in any order. If Dn or Sn is omit
ted, the ProDOS prefix specifies the drive and slot. 

This is a ProDOS command, requiring PRINT and CHR$( 4) in 
programmed mode. 

I SAVE (DOS 3.3) I 
Saves the program currently in memory onto a DOS 3.3 disk. 

Format: SAVE filename [,Dn] [,Sn] [,Vn] 

If there is no file as named, a file is created with that name in 
the language of the current program, and the program currently 
in memory is saved on it. If there is a file named filename in the 
same language as the current program, the contents of that file 
are erased and the current program is saved in its place. If the 
filename exists but in a different language or with a different file 
type, the message FILE TYPE MISMATCH will occur. 



Commands, statements, and Functions I 489 

Warning: Be careful to type the right filename. If you use the 
wrong name and a file with that name exists, DOS 3.3 replaces 
the program it contains with the program in memory-with no 
warning. 

If the disk in drive Dn of slot Sn is not volume Vn, the 
VOLUME MISMATCH error results. 

Dn, Sn, and Vn can be specified in any order. If Dn or Sn is 
omitted, the last-referenced drive or slot is used. VO is used if Vn 
is absent. 

This is a DOS 3.3 command, requiring PRINT and CHR$(4) or 
CONTROL-D in programmed mode. 

I SAVE (Cassette) I 
Saves the program currently in memory onto a cassette. 

Format: SAVE 

This form saves the program currently in memory on cassette 
tape. You must have the cassette recorder running in RECORD 
mode when SAVE is executed. The Apple II does not remind you 
to do this. The Apple II beeps as it starts to save a program and 
beeps again when it is finished. The second beep is your signal to 
manually stop the cassette recorder. 

SAVE may only be used in immediate mode in Integer BASIC. 

I SCALE=I 

This Applesoft statement sets the size of high-resolution graph
ics shapes drawn by DRAW or XDRAW. 

Format: SCALE= exprnm 

The size of the shape in the shape table is multiplied by the 
integer value of exprnm. Thus, if SCALE=l the shape will be 
drawn just as it was defined; if SCALE= 2 it will be drawn twice 
that size, and so on. If SCALE= 0 the shape is drawn 255 times 
the size of the original. 

The value of exprnm must be in the range 0 through 255 or the 



490 I Apple II User's Gulde 

message ?ILLEGAL QUANTITY ERROR will occur when the 
SCALE command is executed. 

SCALE is not recognized as a reserved word unless the charac
ter "=" is the first nonspace character following the command. 

SCALE is not available in Integer BASIC. 

I SHLOAD I 
This Applesoft statement loads a high-resolution graphics 

shape table from cassette tape. 

Format: SHLOAD 

The shape table is loaded into memory just below HIMEM: and 
HIMEM: is set just below the shape table. The starting location 
of the table is stored in memory locations 232 and 233. In order to 
save a shape table on tape, you must use the Machine Language 
Monit.or's write-memory command, as described in Chapter 14. 

SHLOAD is not available in Integer BASIC. 

I SPEED I 
This Applesoft statement changes the rate at which characters 

are output. 

Format: SPEED exprnm 

The value of exprnm establishes the rate at which characters 
appear on the display screen or other output device. Speeds range 
from 0 (slowest) to 255 (fastest). 

SPEED is not available in Integer BASIC. 

Causes an Applesoft program to halt. 

Format: STOP 



Commands, Statements, and Functions I 491 

The Apple II returns to immediate mode. The message BREAK 
IN line is displayed, where line is the line number at which the 
STOP was executed. 

STOP is not available in Integer BASIC. 

I STORE (ProDOS) I 
Saves all variables and their current values in a ProDOS disk 

file. 

Format: STORE pathname [,Dn] [,Sn] 

The variables and values are saved in a special packed format 
on the named file. STORE also cleans up the string storage area 
of memory (like FRE) before writing to disk. (See also 
RESTORE.) 

Dn and Sn can be specified in any order. If Dn or Sn is omit
ted, the ProDOS prefix specifies the drive and slot. 

This is a ProDOS command, requiring PRINT and CHR$( 4) in 
programmed mode. 

I STORE (Cassette) I 
Saves the specified Applesoft array on cassette tape. 

Format: STORE varnm 

STORE does not control tape movement, nor does it advise 
when to start the cassette recorder in RECORD mode~ You must 
have the cassette recorder running and ready to record when 
STORE is executed. Your Applesoft program should display advi
sories (via PRINT statements). The Apple II does beep when it 
starts saving values, and beeps again when it stops. 

You may only STORE numeric arrays. String arrays must be 
converted to integer values using the ASC function in order to be 
stored (see also RECALL). 

STORE is not available in Integer BASIC. 



492 I Apple II User's Guide 

This Integer BASIC statement positions the cursor to the speci
fied column on the current display line. 

Format,: TAB col 

The cursor moves right or left to the column specified by the 
value of col, without erasing any displayed characters. Columns 
are numbered from 1 to 40 (left to right). For column numbers 
greater than 40, use POKE 36, col. TAB works the same way with 
printers. 

For Applesoft, use the HTAB statement. See also the TAB 
function listed in the Functions section of this appendix. 

Returns the screen to the usual full-screen text mode from any 
of the graphics modes. 

Format,: TEXT 

The prompt character and cursor are moved to the last line of 
the screen. If issued in text mode, this is the only result. If the 
text window has been set to anything other than full-screen, 
TEXT resets it to full-screen. 

TEXT does not clear the screen, or more precisely, does not 
clear page 1 of low-resolution screen memory. Since the normal 
text mode uses the same screen memory as low-resolution graph
ics, executing TEXT while in low-resolution graphics mode will 
leave the top 20 lines of the screen filled with strange characters. 

ltRAcel 
Displays the line number of each statement as it is executed. 

Format,: TRACE 



Commands, Statements, and Functions I 493 

This debugging aid may cause line numbers to be displayed 
intermixed with your program's output, rendering one or both 
illegible. TRACE can only be turned off by NO TRACE. 

I UNLOCK (ProDOS) I 

Unlocks a ProDOS disk file or directory, permitting it to be 
changed. 

Format: UNLOCK pathname [,Dn] [,Sn] 

Once unlocked, a file can be deleted, changed, or renamed. No 
asterisk precedes the name of an unlocked file in a disk directory 
listing. 

Dn and Sn can be specified in any order. If Dn or Sn is omit
t.ed, the ProDOS prefix specifies the drive and slot. 

This is a ProDOS command, requiring PRINT and CHR$(4) in 
programmed mode. 

I UNLOCK (DOS 3.3) I 
Unlocks a DOS 3.3 file, permitting it to be changed. 

Format: UNLOCK filename [,Dn] [,Sn] [,Vn] 

Once unlocked, a file can be deleted, changed, or renamed. 
If the file does not exist on drive Dn of slot Sn, the FILE NOT 

FOUND error message is displayed. If the disk in drive Dn of 
slot Sn is not volume Vn, the VOLUME MISMATCH error 
results. 

Dn, Sn, and Vn can be specified in any order. If Dn or Sn is 
omitted, the last-referenced drive or slot is used. VO is used if Vn 
is absent. 

This is a DOS 3.3 command, requiring PRINT and CHR~4) or 
CONTROL-D in programmed mode. 



494 / Apple II User's Guide 

Listed in the Functions section of this appendix. 

I VERIFY I 

Checks that a DOS 3.3 file can be read. 

Format: VERIFY filename [,Dn] [,Sn] [,Vn] 

If a file can be read, no message is returned. If it cannot, the 
message 1/0 ERROR is generated. Any type of file may be 
verified. 

If the file does not exist on drive Dn of slot Sn, the FILE NOT 
FOUND error message is displayed. If the disk in drive Dn of 
slot Sn is not volume Vn, the VOLUME MISMATCH error 
results. 

Dn, Sn, and Vn can be specified in any order. If Dn or Sn is 
omitted, the last-referenced drive or slot is used. VO is used if Vn 
is absent. 

This is a DOS 3.3 command, requiring PRINT and CHR$(4) or 
CONTROL-D in programmed mode. 

Draws a vertical line on the screen in low-resolution graphics 
mode. 

Format: VLIN raw1, raw2 AT col 

The line is drawn from raw1 to raw2 in the column specified by 
col. The color is determined by the COLOR statement last exe
cuted. If the screen is in text mode, or if the text window is pres
ent and either raw is greater than 39, some or all of the line will 
appear as characters instead of graphics dots. The characters 
used are determined by previously executed COLOR statements 
(see PLOT for particulars). 

In Integer BASIC, raw1 must be less than or equal to raw2 or 
the message ***RANGE ERR will be displayed. 



Commands, Statements, and Functions I 495 

Positions the cursor to the specified line in the current display 
column. 

Format: VTAB row 

The cursor moves up or down to the line specified by the value 
of row, without erasing any displayed characters. Rows are num
bered from 1 to 24 (top to bottom). 

Halts an Applesoft program until a particular memory location 
attains a specified condition. 

Format: WAIT memadr, exprnm1 [,exprnm2] 

WAIT checks all or part of the eight bits of memory location 
memadr for the pattern of ones and zeros specified by the binary 
value of exprnm2• The binary value of exprnm1 determines which 
bits of the memory location to consider and which to ignore. If a 
particular bit of exprnm1 is l, the corresponding bit of memory 
location memadr is checked. Conversely, WAIT ignores those 
memory bits that correspond to 0 bits in the binary value of 
exprnm2• 

As long as the significant bits (as determined by exprnm1) of 
memadr are all different from the corresponding bits of exprnm2, 

the wait continues. The moment any pair of significant bits are 
the same (either both 0 or both 1), the wait is over and the Apple
soft program continues. 

If exprnm2 is absent, 0 is used. 
WAIT can only be interrupted by CONTROL-RESET (or a power

off). The value of the numeric expressions must be in the range 0 
through 255 or the message ?ILLEGAL QUANTITY ERROR 
will be generated. If the specified memory location is greater 
than the maximum location in memory (for example, 32767 if you 
have 32K of memory) or if the specified location accesses an out
put device that is not receiving, WAIT will lock up the system 
until you press CONTROL-RESET. 

WAIT is not available in Integer BASIC. 



496 I Apple II User's Gulde 

I WRITE (ProDOS) I 
Switches output to a ProDOS disk file. 

Format: WRITE pathname [, Rrecord] [, Ffield] [, Bbyte] 

After a WRITE statement is executed, all PRINT statements 
send characters to the named file, starting at the optional record 
number (random-access files only). Other characters, including 
error messages, that would normally appear on the screen also go 
to the disk file. However, the question mark or prompt message 
displayed by an INPUT statement is not sent to the disk file. The 
next Pro DOS command, including CHR$( 4), disables the WRITE 
command. 

The Ffield option specifies a number of fields (carriage return 
characters) to be skipped before writing. The Bbyte option speci
fies a number of bytes (characters) to skip ahead before writing. 

This .is a Pro DOS command, requiring PRINT and CHR$( 4) in 
programmed mode. 

WRITE cannot be used in immediate mode. 

I WRITE (DOS 3.3) I 

Specifies a DOS 3.3 disk file to which subsequent PRINT 
statements will send output. 

Format: WRITE filename [,Rrecord] [,Bbyte] 

If the file specified is not already open, it is opened (see OPEN). 
Subsequent PRINT statements save data on the disk until the 
next DOS 3.3 command occurs. While WRITE is in effect, every 
character that the Apple II outputs that would normally be sent 
to the screen is sent to the disk. This includes the question mark 
generated by INPUT and any error messages. If the file is not on 
the disk, the message FILE NOT FOUND appears. 

The Rrecord option specifies the record number of a random
access file. If that option is absent, the file will be written to as a 
sequential-access file. The Bbyte option specifies a number of 



Commands, Statements, and Functions I 497 

bytes (characters) to skip ahead before writing. The numbers fol
lowing B and R must be integer constants between 0 and 32767. 

The Bbyte option can be used to write beyond the last character 
already in the file. This data can later be read, but any attempt to 
read intervening unused bytes generates the OUT OF DATA 
message. 

WRITE is a DOS 3.3 command, requiring PRINT and CHR$(4) 
or CONTROL-D in programmed mode. 

WRITE may not be used in immediate mode. 

I XDRAW I 
This Applesoft statement draws a high-resolution graphics 

shape on the screen, and if used a second time with the same 
parameters, erases that shape. 

Format: XDRAW exprnm [AT colh, rowh] 

Shape number exprnm from the shape table is drawn, with 
each point in the color that is the complement of the color on the 
screen at that point. White and black are a complementary pair, 
as are green and blue and the two colors set by HCOLOR values 5 
and 6 (see Table 12-5). The scale and rotation of the shape must 
be set by the SCALE and ROT commands before the XDRAW 
command is executed. 

You use XDRAW instead of DRAW so that you can easily erase 
a shape you have drawn. Since XDRAW draws in the color com
plementary to the color that was previously at that point, if you 
execute two (or four, six, and so on) XDRAW statements with the 
same parameters, whatever is on the screen will be unchanged. 

If you do not specify a location in the XDRAW statement, the 
shape is drawn starting at the point plotted by the last executed 
DRAW, XDRAW, or HPLOT command. If you do specify a loca
tion, the shape is drawn starting at that point (colh, rowh). 

The shape number, exprnm, must have a value between 0 and 
the number of shapes in the shape table (which must not exceed 
255), inclusive. 

This statement is not available in Integer BASIC. 



498 I Apple II User's Gulde 

FUNCTIONS ___________ _ 

Apple II BASIC functions are described below in alphabetical 
order. Nomenclature and abbreviations are described at the 
beginning of this appendix. 

Many of the functions are available only in Applesoft. These 
functions are appropriately identified. 

Computes the absolute value of a number. This is the value of 
the number without regard to sign. 

Format: ABS exprnm 

Determines the ASCII code number for a specified character. 

Format: ASC (ex'JW$) 

If the string is longer than one character, ASC returns the 
ASCII code for the first character in the string. The code 
returned will not necessarily be the lowest ASCII code (in the 
range 0 through 127) for that character. When displayed on the 
screen, the characters generated by ASCII codes between 128 
and 255 duplicate those between 0 and 127. However, they are not 
evaluated as the same character by relational operators such as 
<, >, and =. They may be treated differently by printers and 
other output devices as well. If the first character of expr$ is 
ASCII code 0, the message ?SYNTAX ERROR is generated. If 
expr$ is a null string, the message ?ILLEGAL QUANTITY 
ERROR is produced. 

ASCII codes are listed in Appendix E. 

Computes the arctangent of the argument. 



Commands, Statements, and Functions I 499 

Format: ATN (exprnm) 

Computes the arctangent, in radians, of exprnm. The angle 
returned is in the range - rr/2 through rr/2. 

This function is not available in Integer BASIC. 

I CHR$ I 
Determines the string value of the specified ASCII code. 

Format: CHR$ (exprnm) 

Determines the character represented by the integer value of 
exprnm, interpreted as an ASCII code. You will find a table of 
ASCII character codes in Appendix E. Use this function to gen
erate characters you cannot produce at the keyboard for control
ling external devices and accessories. The value of exprnm must 
be in the range 0 through 255 or the message ?ILLEGAL 
QUANTITY ERROR will appear. 

This function is not available in Integer BASIC. 

Computes the cosine of an angle. 

Format: COS (exprnm) 

Computes the cosine of exprnm radians. This function is not 
available in Integer BASIC. 

Computes e raised to a power. 

Format: EXP (exprnm) 

Computes e (the base of natural logarithms, 2. 71828183) raised 
to the power exprnm. This function is not available in Integer 
BASIC. 



500 I Apple II User's Guide 

Invokes a previously defined user-defined function. 

Format: FN varnm (exprnm) 

The varnm is the name of the function. The value of the 
exprnm is assigned everywhere the dummy variable occurs in the 
function definition, and the resulting expression is evaluated. See 
DEF FN in the Commands and Statements section of this 
appendix. 

A function may not be recursive; that is, exprnm may not refer 
to FN varnm nor to any other function which refers to FN 
varnm. 

If you attempt to use FN varnm before the DEF FN varnm 
statement has been executed, you will receive the ?UNDEF'D 
FUNCTION ERROR message. 

This function is not available in Integer BASIC. 

Determines the number of bytes of memory currently available 
to an Applesoft program. 

Format: FRE (exprnm) 

The memory available is that below the string storage area and 
above the array storage. If there are more than 32767 bytes of 
memory available, FRE returns a negative number. Add 65536 to 
this number to discover the actual amount of memory available. 

FRE also clears disused strings from the string storage area. 
When a string changes value during a program, the old value of 
the string is left in memory, and the new value is added to the 
string storage area. Eventually, this might infringe on memory 
you are using for something else. To prevent this problem, have a 
statement such as A = FRE (0) executed periodically in pro
grams that use strings extensively. 

The value of exprnm is not used by FRE, but it will cause an 
error if it is illegal. 

This function is not available in Integer BASIC. 



Commands, Statements, and Functions I 501 

Computes the integer portion of a number. 

Format: INT (exprnm) 

Computes the largest integer less than or equal to the value of 
exprnm. This function is not available in Integer BASIC. 

Extracts the leftmost characters of a string. 

Format: LEFT$ (expr$, exprnm) 

Extracts the leftmost exprnm characters of expr$. The exprnm 
must be in the range 1 through 255, and expr$ may not have 
more than 255 characters. If exprnm is greater than the length of 
expr$, the entire string is returned. 

This function is not available in Integer BASIC. 

Determines the length of a string. 

Format: LEN (expr$) 

Counts the number of characters in expr$, including all spaces 
and nonprinting characters. If expr$ has more than 255 charac
ters (possible only if expr$ is a string expression involving con
catenation), the message ?STRING TOO LONG ERROR is 
generated. 

Computes the natural logarithm of a number. 

Format: LOG (exprnm) 



502 I Apple II User's Gulde 

Computes the natural logarithm of exprnm. If exprnm is zero 
or negative, returns ?ILLEGAL QUANTITY ERROR. 

This function is not available in Integer BASIC. 

Extracts any specified portion of a string. 

Format: MID$ (expr$ exprnm1 [,exprnm2D 
Extracts exprnm2 characters from expr$, starting with the 

character exprnm1• If exprnm2 is absent, MID$ returns the por
tion of expr$ from the character exprnm1 through the last char
acter. If the length of expr $ is less than exprnm1, the null string is 
returned. If there are fewer than exprnm2 characters in expr$ 
after exprnmv the result is the same as if exprnm2 were absent. 
The expr$ must not exceed 255 characters, and exprnm1 and 
exprnm2 must each be in the range 1 through 255. 

This funcion is not available in Integer BASIC. 

Determines the current value of the game control (paddle) 
specified. 

Format: PDL (exprnm) 

The value returned is an integer between 0 and 255 based on 
the rotation of paddle number exprnm, or the resistance of a 
device connected to game controller socket exprnm. The game 
controls are numbered 0 through 3. If the paddle number is less 
than 0 or greater than 255, the message ?ILLEGAL QUAN
TITY ERROR is displayed. If the paddle number is between 4 
and 255, PDL returns a somewhat unpredictable number between 
0 and 255 and may cause various side effects, such as a click 
from the speaker or a sudden shift in graphics mode. 

If two PDL instructions are executed consecutively or nearly 
consecutively, the second value may be affected by the first. 



Commands, Statements, and Functfons I 503 

Make sure that several instructions are executed between PDL 
functions (an empty FOR-NEXT loop will do). 

Determines the contents of a memory location. 

Format: PEEK (memadr) 

The value returned is the decimal equivalent of the eight bits 
at memory location memadr. Appendix F lists some useful 
memory locations. 

Determines the column position of the cursor. 

Format: POS (exprnm) 

The expression is a dummy. It is not used and can therefore 
have any legal value. 

POS will return a value between 0 and 39. Character positions 
begin at 0 for the leftmost character. 

This function is not available in Integer BASIC. 

I RIGHT$ I 
Extracts the rightmost characters of a string. 

Format: RIGHT$ (expr$, exprnm) 

Extracts the rightmost exprnm characters of expr$. The value 
of exprnm must be in the range 1 through 255, and expr$ may not 
have more than 255 characters. If exprnm is greater than the 
length of expr$, the entire string is returned. 

This function is not available in Integer BASIC. 



504 I Apple II User's Gulde 

Computes a random number. 

Format: RND (exprnm) 

Computes a random number, the range of which depends on 
the value of exprnm and the version of BASIC. 

In Integer BASIC, RND returns a random integer between 0 
and exprnm - 1. Thus, RND (1) always returns 0, and RND (-2) 
produces a fifty-fifty mix of 0 and -1. Attempting to use RND 
(0) causes the message ***>32767 ERR to be displayed. 

In Applesoft, RND always returns a real number greater than 
or equal to 0 and less than 1. The value returned can be one of 
three types, depending on the sign of exprnm. If exprnm is posi
tive, RND returns a different value each time it is used, unless a 
repeatable sequence has been started. 

A repeatable sequence starts when RND is used in Applesoft 
with a negative exprnm. Any particular negative value always 
starts the same sequence; subsequent positive arguments will 
return a repeatable sequence of random numbers. A different 
repeatable sequence is started by each different negative value of 
exprnm. This feature is useful for testing and debugging pro
grams that use RND. 

If exprnm is 0 in Applesoft, RND returns the random number 
most recently generated (this is not affected by CLEAR or by 
NEW). 

Determines the color code of the low-resolution graphics point 
with the specified coordinates. 

Format: SCRN (col, row) 

If col is between 0 and 39, SCRN determines the color code of 
the graphics point (col, row). If col is between 40 and 47 and raw 
is between 0 and 31, SCRN determines the color number of the 
graphics point (col - 40, raw + 16). If col is between 40 and 47 
and raw is between 32 and 47, SCRN returns a number unrelated 
to anything on the screen. 



Commands, Statements, and Functions I 505 

If SCRN is used while the screen is in high-resolution graphics 
mode, the number returned is related to the low-resolution 
graphics area of memory rather than the high-resolution display. 

If the screen is in text mode, or the text window is present and 
the point specified is within it, SCRN returns the color code of 
half of the character. The color code of the top half of the char
acter is returned if the row is even, while that of the bottom half 
is returned if the row is odd. The ASCII code of the character at 
character position (a,b) (with a between 0 and 39 and b between 
0 and 23) is returned by the expression SCRN(a,2*b) + 
16*SCRN(a,2*b+I). Appendix E compares screen codes and 
ASCII codes. 

SCRN is only recognized as a reserved word if the next non
space character is a left parenthesis. 

Determines whether a number is positive, negative, or zero. 

Format: SGN (exprnm) 

The SGN function returns + 1 if exprnm is positive, -1 if it is 
negative, and 0 if it is zero. 

Computes the sine of an angle. 

Format: SIN (exprnm) 

Computes the sine of exprnm radians. This function is not 
available in Integer BASIC. 

Generates a specified number of blank spaces. 

Format: SPC (exprnm) 



506 I Apple II User's Gulde 

The SPC function is used in PRINT statements to print 
exprnm blank spaces. On the display screen, any characters that 
the cursor passes over are erased. 

The SPC function moves right exprnm columns from the cur
rent column position of the cursor. This is in contrast to a TAB 
function, which moves to a fixed column as measured from the 
leftmost column. 

This function is not available in Integer BASIC. 

Computes the square root of a positive number. 

Format: SQR (exprnm) 

A negative value of exprnm causes the ?ILLEGAL QUAN
TITY ERROR message. SQR (exprnm) operates faster than 
(exprnm) /\ (.5). 

This function is not available in Integer BASIC. 

Converts a numeric value to a string. 

Format: STR$ (exprnm) 

The value of exprnm is converted to a string. The string char
acters are the same as those that would be printed by a PRINT 
exprnm statement. Therefore, STR$ (2/3) = ".666666667" and 
STR$ (2468013579) = "2.46801358E+09". If exprnm exceeds the 
limits for real numbers, the message ?OVERFLOW ERROR is 
displayed. 

This function is not available in Integer BASIC. 

Moves the cursor right to the specified column position. 



Commands, Statements, and Functions I 507 

Format: TAB (exprnm) 

Use TAB with the PRINT statement to move the cursor to 
column exprnm if exprnm is to the right of the cursor's current 
position. The cursor does not move if exprnm is not to the right of 
the current position. TAB prints blank spaces as it moves the 
cursor right, thereby erasing anything that was on the screen. 

For TAB, columns are numbered from 1 to 40. Except on an 
Enhanced Apple Ile, use POKE 36, exprnm for column numbers 
greater than 40. TAB works the same way with printers. 

See also HTAB (Applesoft) and TAB (Integer BASIC) in the 
Commands and Statements section of this appendix. 

This function is not available in Integer BASIC. 

Computes the tangent of an angle. 

Format: TAN (exprnm) 

Computes the tangent of exprnm radians. 
This function is not available in Integer BASIC. 

Branches to a machine language subroutine, passing values in 
the floating point accumulator area of memory. 

Format: USR exprnm 

The value of exprnm is placed in the floating point accumulator 
(memory locations 157 through 163, $90 through $A3). Then an 
assembly language JSR $000A instruction is executed, branching 
to your subroutine via memory locations 10 through 12 ($QA 
through $0C). Those locations must contain an assembly lan
guage JMP instruction that branches to the starting location of 
your subroutine. Since USR is a function, it returns a numeric 
real value. Whatever is in the accumulator when the assembly 
language subroutine executes an RTS instruction (returning to 
the Applesoft program) is the value returned. 



508 I Apple II User's Guide 

There are many useful machine language subroutines present 
in the Machine Language Monitor. They are listed in Appendix G. 

See also the CALL statement described in the Commands and 
Statements section of this appendix. The CALL statement is 
available in Integer BASIC, but the USR function is not. 

Converts a string to a numeric value. 

Formal: VAL (expr$) 

Returns the numeric value represented by expr$. If the first 
character of expr$ is not a numeric character, zero is returned. 
Otherwise, expr$ is taken character by character until an unac
ceptable character is encountered. The acceptable characters are 
as follows: the digits 0 through 9, spaces, a decimal point, a lead
ing plus or minus sign, and in the context of scientific notation, 
an additional plus or minus sign, an additional period, and the 
letter E. 

If expr$ is a string expression involving concatenation that con
tains more than 255 characters, the message ?STRING TOO 
LONG ERROR occurs. If the numeric value of expr$ exceeds the 
limits of real numbers, the message ?OVERFLOW ERROR 
occurs. 

This function is not available in Integer BASIC. 

DERIVED NUMERIC FUNCTIONS _____ _ 

While the following list of derived functions is by no means 
complete, it does provide some of the most frequently needed 
formulas. Certain values of x will invalidate some functions -for 
example, if COS(x)=O, then SEC(x) is nonreal-so your program 
should check for them. 

None of the derived functions will operate in Integer BASIC. 

ARCCOS(x) = -ATN(x/SQR(-x*x+l))+l.5707633 
Computes the inverse cosine of x (ABS(x) < 1). 



Commands, Statements, and Functions I 509 

ARCCOT(x) = -ATN(x)+l.5707633 
Computes the inverse cotangent of x. 

ARCCOSH(x) = LOG(x+SQR(x*x>-1)) 
Computes the inverse hyperbolic cosine of x (x > = 1). 

ARCCOTH(x) = LOG((x+l)/(x-1))/2 
Computes the inverse hyperbolic cotangent of x (ABS(x)> 1). 

ARCCSC(x) = ATN(l/SQR(x*x-l))+(SGN(x)-l)*l.5707633 
Computes the inverse cosecant of x (ABS(x) > 1). 

ARCCSCH(x) = LOG((SGN(x)*SQR(x*x+l)+l)/x) 
Computes the inverse hyperbolic cosecant of x (x > 0). 

ARCSEC(x) = ATN(SQR(x*x-l))+(SGN(x)-1)*1.5707633 
Computes the inverse secant of x (ABS(x) > = 1). 

ARCSECH(x) = LOG((SQR(-x*x+l)+l)/x) 
Computes the inverse hyperbolic secant of x (0 < x < = 1). 

ARCSIN(x) = ATN(x/SQR(-x*X+l)) 
Computes the inverse sine of x (ABS(x) < 1). 

ARCSINH(x) = LOG(x+SQR(x*x+l)) 
Computes the inverse hyperbolic sine of x. 

ARTCTANH(x) = LOG((l +x)/(1-x))/2 
Computes the inverse hyperbolic tangent of x (ABS(x) < 1). 

COSH(x) = (EXP(x)+ EXP(-x))/2 
Computes the hyperbolic cosine of x. 

COT(x) = 1/TAN(x) 
Computes the cotangent of x (x < > O). 

COTH(x) = EXP(-x)/(EXP(x)-EXP(-x))*2+ 1 
Computes the hyperbolic cotangent of x (x < > 0). 

CSC(x) = 1/SIN(x) 
Computes the cosecant of x (x < > 0). 

CSCH(x) = 2/(EXP(x)-EXP(-x)) 
Computes the hyperbolic cosecant of x (x < > 0). 

LOGa (x) = LOG(x)/LOG(a) 
Computes the base a logarithm of x (a> 0, x > 0). 



510 I Apple II User's Gulde 

Table A-12. Applesoft Reserved Words and Tokens• 

Reserved Reserved Reserved 
Word Token Word Token Word Token 

ABS (212) HTAB (150) REM (178) 
ABO (205) IF (173) RESTORE (174) 
ASC (230) IN# (139) RESUME (166) 
AT (197) INPUT (132) RETURN (177) 
ATN (225) INT (211) RIGHT$ (233) 
CALL (140) INVERSE (158) RND (219) 
CHR$ (231) LEFT$ (232) ROT= (152) 
CLEAR (189) LEN (227) RUN (172) 
COLOR= (160) LET (170) SAVE (188) 
CONT (187) LIST (188) SCALE= (153) 
cos (222) LOAD (182) SCRN( (215) 
DATA (131) LOG (220) SGN (210) 
DEF (184) LOMEM: (164) SH LOAD (154) 
DEL (133) MID$ (234) SIN (223) 
DIM (134) NEW (191) SPC( (195) 
END (128) NEXT (130) SPEED= (169) 
EXP (221) NORMAL (157) SQR (218) 
FLASH (159) NOT (198) STEP (199) 
FN (194) NOTRACE (156) STOP (179) 
FOR (129) ON (180) STORE (168) 
FRE (214) ONE RR (165) STR$ (228) 
GET (190) OR (206) TAB( (192) 
GO SUB (176) PDL (216) TAN (224) 
GOTO (171) PEEK (226) TEXT (137) 
GR (136) PLOT (141) THEN (196) 
HCOLOR= (146) POKE (185) TO (193) 
HGR (145) POP (161) TRACE (155) 
HGR2 (144) POS (217) USR (213) 
HIMEM: (163) PRINT (186) VAL (229) 
HLIN (142) PR# (138) VLIN (143) 
HOME (151) READ (135) VTAB (162) 
HPLOT (147) RECALL (167) WAIT (181) 

XDRAW (149) 

•Reserved words in Applesoft are tokenized: each word takes up only one byte of program 
storage. The tokens are listed with each reserved word here. They are also listed in numerical 
order in Appendix E. 

LOG10(x) = LOG(x)/2.30258509 
Computes the common (base ten) logarithm of x (x > O). 

MODa(x) = INT((x/a-INT(x/a))*a +0.5)*SGN(x/a) 
Computes x modulo a: the remainder after division of x by a 
(a<> 0). 



Commands, Statements, and Functions I 511 

Table A-13. Integer BASIC Reserved Words 

Reserved Words 

ABS END LET PDL 
AND FOR LIST PEEK 
ASC GO SUB LOAD PLOT 
AT GOTO LOMEM: POKE 
AUTO GR MAN POP 
CALL HIMEM: MOD PRINT 
COLOR= HLIN NEW PR# 
CON IF NEXT REM 
DEL IN# NOT RETURN 
DIM INPUT NOTRACE RND 
DSP LEN OR RUN 

SEC(x) = 1/COS(x) 
Computes the secant of x (x < > 7r/2). 

SECH(x) = 2/(EXP(x)+ EXP(-x)) 
Computes the hyperbolic secant of x. 

SINH(x) = (EXP(x)-EXP(-x))/2 
Computes the hyperbolic sine of x. 

TANH(x) = (-EXP(x)/EXP(x)+ EXP(-x))•2+1 
Computes the hyperbolic tangent of x. 

SAVE 
SCRN 
SGN 
STEP 
TAB 
TEXT 
THEN 
TO 
TRACE 
VLIN 
VTAB 

RESERVED WORDS _________ _ 

Applesoft and Integer BASIC interpret every occurrence of 
certain key words as part of a command, statement, or function. 
The only exception is when a command, statement, or function is 
part of text strings enclosed in quotation marks. As a result, it is 
important to keep reserved words out of your variable names. 
Watch especially for the short reserved words. If you type a 
reserved word with embedded blank spaces, Applesoft and Inte
ger BASIC will compress the blanks out and recognize the 
reserved word. Table A-12 lists Applesoft reserved words and 
Table A-13 lists Integer BASIC reserved words. 



Messages B 

This appendix lists the messages that the Apple II may display. 
Messages are listed alphabetically within each of these categories: 

· Applesoft, which prefixes all error messages with a question 
mark. 

· Integer BASIC, which prefixes all error messages with three 
asterisks. 

· The ProDOS operating system, which does not prefix error 
messages with anything. 

· The DOS 3.3 operating system, which does not prefix error 
messages with anything. 

All ProDOS and DOS 3.3 messages and most Applesoft messages 
have associated error codes. Table B-1 lists the codes in numeri
cal order. When an error causes an ONERR GOTO statement 
branch to occur, the error code is placed in memory location 222. 
Use PEEK(222) to retrieve it. Also, the line number where the 
error occurred will be in memory locations 218 and 219. Use the 
expression PEEK(219) *256+ PEEK(218) to retrieve it. 

APPLESOFT ERROR MESSAGES ______ _ 

#110 #120 #130 etc. 
When you run a program and a stream of line numbers 
appears on the display screen, the TRACE command is in 
effect. Use NOTRACE to turn it off. 

513 



514 I Apple II User's Guide 

Table B-1. Error Codes 

Code Description Source 

0 NEXT without FOR Applesoft 
1 Language not available DOS 3.3 
2 Range error ProDOS or DOS 3.3 
3 No device connected Pro DOS 
4 Write protected ProDOS or DOS 3.3 
5 End of data ProDOS or DOS 3.3 
6 Path or file not found ProDOS or DOS 3.3 
7 Path or volume not found ProDOS or DOS 3.3 
8 I/0 error ProDOS or DOS 3.3 
9 Disk full ProDOS or DOS 3.3 

10 File locked ProDOS or DOS 3.3 
11 Invalid option or syntax error ProDOS or DOS 3.3 
12 No buffers available ProDOS or DOS 3.3 
13 File type mismatch ProDOS or DOS 3.3 
14 Program too large ProDOS or DOS 3.3 
15 Not direct command ProDOS or DOS 3.3 
16 Syntax error ProDOS or DOS 3.3 
17 Directory full Pro DOS 
18 File not open Pro DOS 
19 Duplicate file name Pro DOS 
20 File busy ProDOS 
21 File(s) still open ProDOS 
22 RETURN without GOSUB Applesoft 
42 Out of data Applesoft 
53 Illegal quantity Applesoft 
69 Overflow Applesoft 
77 Out of memory Applesoft 
90 Undefined statement Applesoft 

107 Bad subscript error Applesoft 
120 Redimensioned array Applesoft 
133 Division by zero Applesoft 
163 Type mismatch Applesoft 
176 String too long Applesoft 
191 Formula too complex Applesoft 
224 Undefined function Applesoft 
254 Bad reponse to an INPUT Applesoft 
255 CONTROL-Chas been struck Applesoft 

?BAD SUBSCRIPT ERROR 
An array was referenced with the wrong number of subscripts 
or with one or more subscripts exceeding their dimensions. 
Error code 107. 



Messages I 515 

BREAK IN 115 

Announces the line number at which the program stopped 
when it executed a STOP statement or when you pressed 
CONTROL-C to end the program prematurely. 

?CAN'T CONTINUE ERROR 
An attempt to continue (with the CONT command) was made 
when no program existed, after a fatal error occurred, or after 
a change was made to the program. 

?DIVISION BY ZERO ERROR 
An attempt was made to divide by an expression that evaluates 
to zero. Error code 133. 

?FORMULA TOO COMPLEX ERROR 
More than two statements of the form IF string THEN were 
executed. Error code 191. 

?ILLEGAL DIRECT ERROR 
An INPUT, DEF FN, or a GET command was entered in 
immediate mode. 

?ILLEGAL QUANTITY ERROR 
A numeric value is outside the acceptable range for a string 
function, numeric function, graphics statement, and so forth. 
Error code 53. 

?NEXT WITHOUT FOR ERROR 
A NEXT with no matching FOR was executed. A NEXT with 
no variable name generates this error only if there is no active 
FOR. Error code 0. 

?OUT OF DATA ERROR 
More DATA elements were read than are available. Error code 
42. 

?OUT OF MEMORY ERROR 
Can be caused by any of the following: program too large, too 
many variables, more than ten levels of FOR loop nesting, more 
than 24 levels of subroutine nesting, more than 36 levels of 
parentheses nesting, LOMEM: set too high, or HIMEM: set 
too low. Error code 77. 



516 I Apple II User's Gulde 

?OVERFLOW ERROR 
Too large or too small a number was input or calculated. The 
allowable range is approximately -1. 7E + 38 to 1. 7E + 38. 
Error code 69. 

?REDIM'D ARRAY ERROR 
A DIM statement for a previously dimensioned array was exe
cuted. This error most commonly occurs when an array was 
dimensioned by default. Error code 120. 

RETURN WITHOUT GOSUB ERROR 
More RETURN statements than GOSUB statements were exe
cuted. Error code 22. 

?STRING TOO LONG ERROR 
An attempt was made to concatenate strings totaling more than 
255 characters. Error code 176. 

?SYNTAX ERROR 
An error in spelling, punctuation, or sequence, or any error not 
covered by another message has occurred. Error code 16. 

?TYPE MISMATCH ERROR 
A numeric expression or variable was used where a string 
should have been used, or vice versa. This error also occurs 
when the two sides of an assignment statement do not match in 
type. Error code 163. 

?UNDEF'D FUNCTION ERROR 
A user-defined function that was never defined was referenced. 
Error code 224. 

?UNDEF'D STATEMENT ERROR 
A branch to a nonexistent line number was attempted. Error 
code 90. 

INTEGER BASIC ERROR MESSAGES _____ _ 

*** > 255 ERR 
A value that should be between 0 and 255 is outside that range. 



Messages I 517 

*** > 32767 ERR 
A number greater than 32767 or less than - 32767 was entered 
or calculated. 

#110 #120 #130 etc. 
When you run a program and a stream of line numbers 
appears on the display screen, the TRACE command is in 
effect. Use NOTRACE to turn it off. 

#110 A=200 #120 B=300 etc. 
A stream of line numbers and variable assignments on the dis
play screen results from DSP statements in the program. 

*** 16 FORS ERR 
More than 16 FOR loops are active. 

*** 16 GOSUBS ERR 
Seventeen GOSUB statements were executed, accompanied by 
only 16 RE TURN statements. 

***BAD BRANCH ERR 
A branch to a nonexistent line number was attempted. 

***BAD NEXT ERR 
A NEXT with no matching FOR was executed. 

***BAD RETURN ERR 
More RETURN statements than GOSUB statements were 
executed. 

***DIM ERR 
The same array was dimensioned more than once. 

*** MEM FULL ERR 
More memory is needed than is available. 

***NO END ERR 
The last instruction executed in a program was not END. 

***RANGE ERR 
An array was referenced with a subscript less than zero or 
greater than the array's size, or an argument in an HLIN, 



518 I Apple II User's Guide 

VLIN, PLOT, TAB, or VTAB instruction was outside the pre
scribed range. 

RETYPE LINE 
An error was generated by an INPUT response. A diagnostic 
message is displayed first, and then this directive. 

STOPPED AT 110 

Announces the line number at which an error just occurred, or 
where the pro~·ram stopped when you pressed CONTROL-C to 
end it prem?.l.urely. 

*** STRING ERR 
An illegal string operation was executed. 

*** STR OVFL ERR 
A string was assigned more characters than it was dimen
sioned for. 

***SYNTAX ERR 
An error in spelling, punctuation, or sequence, or any error not 
covered by another error message has occurred. 

*** TOO LONG ERR 
More than 12 parentheses were nested or more than 128 char
acters were entered in one line. 

PRODOS ERROR MESSAGES _______ _ 

DIRECTORY FULL 
The volume directory on any disk can hold at most 51 files (and 
directories). Error code 17. 

DISK FULL 
An attempt was made to store more information on a disk than 
it can hold. Error code 9. 

DUPLICATE FILE NAME 
You tried to create or rename a file using a file name that 
already exists in the directory. Error code 19. 



Messages I 519 

END OF DATA 
An attempt was made to read from a portion of a text file that 
does not exist. Error code 5. 

FILE BUSY 
A ProDOS command referenced a file that is still open. Error 
code 20. 

FILE LOCKED 
An attempt was made to use APPEND, BSAVE, DELETE, 
RENAME, SAVE, STORE, or WRITE on a locked file. Error 
code 10. 

FILE NOT OPEN 
The file named in a POSITION, READ, or WRITE command 
was not open. Error code 18. 

FILE(S) STILL OPEN 
Program execution was suspended with one or more files left 
open. Error code 21. 

FILE TYPE MISMATCH 
A ProDOS command has referenced a file that is not of the 
required type. The CHAIN, LOAD, RUN, and SAVE com
mands may be used only with Applesoft program files (type 
BAS). The EXEC command requires a text file (type TXT). 
The CAT, CATALOG, and PREFIX commands work only with 
directories (type DIR). The RESTORE and STORE commands 
require type VAR files. The OPEN and APPEND commands 
use text files (type TXT) unless the Ttype option is used, in 
which case the file type must match the option. BRUN 
requires a binary file (type BIN). The BLOAD and BSAVE 
commands use binary files unless the Ttype option is used, in 
which case the file type must match the option. The-command 
works with type BAS, BIN, TXT, and SYS files. The file 
named STARTUP in the volume directory must be type BAS, 
BIN, or TXT. Error code 13. 

INVALID OPTION 
An option in the last ProDOS command executed is incorrect. 
Error code 11. 



520 I Apple II User's Guide 

I/OERROR 
An unsuccessful attempt to store data to or retrieve it from a 
disk was made. Some common causes are that the disk drive 
door is open, that the disk has not been initialized, that no disk 
is in the drive, or that the disk is defective. Error code 8. 

NO BUFFERS AVAILABLE 
Another file buffer was required when all the available file 
buffers were already in use. Error code 12. 

NO DEVICE CONNECTED 
No external drive is connected or no disk is in the drive. Error 
code 3. 

NOT DIRECT COMMAND 
The following ProDOS commands may be used only in pro
grammed mode: APPEND, OPEN, POSITION, READ, and 
WRITE. Error code 15. 

PATH NOT FOUND 
The current prefix and partial pathname together specify a 
file that does not exist. Error code 6 or 7. 

PROGRAM TOO LARGE 
A ProDOS command attempted to put a file from the disk in 
the Apple II memory and found insufficient memory to hold 
the file. Error code 14. 

RANGE ERROR 
A parameter used with a ProDOS command is outside of the 
range specified for that parameter; for example, the D (drive) 
parameter must be either 1 or 2. This error also occurs when 
an attempt is made to read past the highest record in a 
random-access file. Error code 2. 

SYNTAX ERROR 
A ProDOS command has an error in spelling, punctuation, or 
sequence. Error code 16. 

WRITE PROTECTED 
An attempt was made to use SAVE, BSAVE, WRITE, 
DELETE, APPEND, STORE, or RENAME on a write
protected disk. Error code 4. 



Messages I 521 

DOS 3.3 ERROR MESSAGES _______ _ 

DISK FULL 
An attempt was made to store more information on a disk than 
it can hold. On a full disk this message may occur in place of a 
more appropriate message (for example, FILE NOT FOUND). 
Error code 9. 

END OF DATA 
An attempt was made to read from a portion of a text file that 
has never been written to. Error code 5. 

FILE LOCKED 
An attempt was made to use SAVE, BSAVE, WRITE, 
DELETE, or RENAME on a locked file. Error code 10. 

FILE NOT FOUND 
A file was referenced that does not exist on the disk. This error 
only occurs if the DOS 3.3 command that referenced the file 
does not create the file when it is not found. Error code 6. 

FILE TYPE MISMATCH 
A DOS 3.3 command has referenced a file that is not of the 
required type. The LOAD, RUN, and SAVE commands may be 
used only with program files. The CHAIN command may be 
used only with an Integer BASIC program file. The OPEN, 
READ, WRITE, APPEND, POSITION, and EXEC commands 
may be used only with text files. The BLOAD, BSAVE, and 
BRUN commands may be used only with binary files. Error 
code 13. 

l/OERROR 
An unsuccessful attempt was made to store data to or retrieve 
it from a disk. Some common causes are that the disk drive 
door is open, that the disk has not been initialized, that no disk 
is in the drive, or that the disk is defective. Error code 8. 

LANGUAGE NOT AVAILABLE 
An attempt to change languages with FP or INT was made 
when the desired language was not in ROM or on the disk, or an 
attempt to load or RUN a program was made when the lan
guage of the program was similarly unavailable. Error code 1. 



522 I Apple II User's Gulde 

NO BUFFERS AVAILABLE 
Another file buffer was required when all the available file 
buffers were already in use. Error code 12. 

NOT DIRECT COMMAND 
The following DOS 3. 3 commands may be used only from 
within PRINT statements in programmed mode: APPEND, 
OPEN, POSITION, READ, and WRITE. Error code 15. 

PROGRAM TOO LARGE 
A DOS 3.3 command has attempted to put a file from the disk 
into the Apple II's memory and found insufficient memory to 
hold the file. Error code 14. 

RANGE ERROR 
A parameter used with a DOS 3.3 command is outside of the 
range specified for that parameter; for example, the D (drive) 
parameter must be either 1 or 2. Error code 2 or 3. 

SYNTAX ERROR 
A DOS 3.3 command has an error in spelling, punctuation, or 
sequence. Error code 11. 

VOLUME MISMATCH 
The V (volume) parameter in a DOS 3.3 command does not 
match the volume number of the disk accessed. Error code 7. 

WRITE PROTECTED 
An attempt was made to use SAVE, BSAVE, or WRITE on a 
writ~-protected disk. Error code 4. 



Program Optimization C 

The optimal program is the one that, for a given task, runs the 
fastest and uses the least memory. Of course, this dual goal must 
be moderated so that the resulting program is still reliable, easy 
to write, easy to use, easy to read, and easy to change. You will 
benefit more in the long run by spending your time directly on 
these aspects of your programs instead of tweaking programs for 
maximum speed and minimum memory requirements. Still, if 
you know how to optimize program speed and memory use, you 
can initially write programs that are efficient and that do not 
need any fine-tuning after they are running. In this spirit, we 
present a few ways to write programs that are faster and that use 
less memory. 

Some of the techniques for making a program run faster will 
make it take more space, while some ways of decreasing space 
requirements will increase execution time. You will have to 
decide which is more important in your program. 

FASTER PROGRAMS _________ _ 

The most dramatic increase in program speed comes from 
translating an Applesoft program into machine language. Chap
ter 13 demonstrated the difference with a machine language sub
routine that produces sound (Figure 13-1). Translating a BASIC 
program to machine language yourself is a chore, but you can 
buy a compiler program that can translate your BASIC program 
into machine language in a matter of minutes. However, the com-

523 



524 I Apple II User's Guide 

piled version of a BASIC program usually requires more memory 
than the interpreted version. 

If you decide to program with Applesoft, there are several 
other ways to speed up your program. First, use real variables 
instead of integer variables. Applesoft takes longer to convert an 
integer value to a real value than it does to fetch the real value in 
the first place. When such a conversion takes place inside a FOR
NE XT loop, a frequently used subroutine, or a user-defined func
tion, the difference in speed becomes significant. 

Avoid using constants (for example, 0, 100, "Y", "ENTER"). 
Instead, assign the value of the constant to a variable early in 
your program. Then use the variable where you would have used 
the constant. This is especially important when you are repeat
edly using constant integer values in real expressions. It takes 
longer to convert a constant to a real value than it does to look up 
the value of a variable. This technique has the added benefit of 
making your program easier to change. If you should ever need to 
change the constant, it will be easier to change the one assign
ment statement than to hunt down and change every occurrence 
of the constant. 

Use those variables that are referenced often as early in the 
program execution as possible. Memory space for variables is 
allocated on a first-come, first-served basis. BASIC will find a 
variable at the front of the list faster than one at the end of it. 

When BASIC encounters an instruction to branch to another 
line number, it starts looking for that line number at the begin
ning of the program and searches sequentially through the 
program until it finds it. Clearly, the lower a line number is in 
relation to the rest of the lines in the program, the faster BASIC 
can branch to it. Therefore, assign the lowest line numbers in 
your program to the most often used subroutines. 

Do not include loop index variables with NEXT statements in 
an Applesoft program. That way, Applesoft does not have to 
verify whether you specified the correct loop index. 

COMPACT PROGRAMS ________ _ 

To shorten the length of a program, use subroutines to avoid 
duplicate programming for identical sections of the program. 
This will also go a long way toward improving the readability 



Program Optimization I 525 

and reliability of your program, as well as making it easier to 
change. 

Using the zero elements of arrays-for example, X(O), B(O)
will also shorten a program. So will assigning constant values to 
variable names, and using the variable names in place of the con
stant values. There are fewer characters in a short variable name 
than there are in a constant value that has many digits. 

Put more than one statement on a program line. Each program 
line uses five bytes of memory. Note, however, that compound 
program lines are hard to edit and harder yet to read and under
stand. Figuring out how to make the program work the first time 
is bad enough. It is even worse to have to do it time and time 
again. 

Use REM statements judiciously; abbreviate comments if pos
sible. But be careful: the fewer remarks your program has, the 
harder it will be to undrstand when you come back to it later on. 
You can buy programs that actually remove all the REM state
ments from an Applesoft program. If you do that, however, you 
almost have to keep two versions of your Applesoft program: one 
with REM statements and one without. 

Be thrifty with your use of variables. Each variable requires a 
certain amount of memory, even if you only use it once. So estab
lish a system of assigning variable names that includes some 
"scratch" variables that can be used for FOR-NEXT loops, 
intermediate calculations, and the like. Even "scratch" variables 
can be overused. Establish standard identities for individual 
variables (for example, CN$ is the customer name) and groups of 
variables (for example, all "scratch" variables start with X). 

Use INPUT statements and data files instead of assignment 
statements and DATA statements. 

In an Applesoft program, use integer arrays instead of real 
arrays. Each integer array element takes two bytes of memory, 
while real array elements require five bytes each. Use the FRE 
command or FRE function periodically in your program to clean 
up the string storage area of memory. 



Comparing Apple II 
Models D 

The Apple Ile, Apple Ile (original and enhanced models), Apple 
II Plus, and standard Apple II are different in many~ ways: 
external and internal physical features, input and output capabil
ities, hardware, and software. This appendix compares these 
aspects of the various Apple II models. 

EXTERNAL PHYSICAL FEATURES ______ _ 

The Apple Ile and Apple Ile keyboards have 63 keys, while the 
Apple II Plus and standard Apple II have 52 keys. Seven of the 
additional keys are control keys: OPEN APPLE' SOLID APPLE, t' l, 
SHIFT LOCK, TAB, and DELE~E. The Apple Ile and Apple Ile have 
no REPEAT key as do the standard Apple II and Apple II Plus. 
Some characters are typed by different keys on the Ile and Ile 
than on earlier models, namely @, ", &, (, ), *, :, +, =, ", ', and ]. 
Several new characters can be typed on a Ile or Ile keyboard: \, 
I,[,{,},', and-. The RESET key on the Ile and Ile is recessed, and 
on the Ile, Ile, and II Plus, RESET only works if pressed along 
with the CONTROL key. 

The Apple Ile keyboard has a different "feel" than the key
boards of other models and is better protected against spilled 
liquids. It can also be switched between conventional typewriter 
layout (the QWERTY keyboard) and a simplified layout (the 
Dvorak keyboard). 

The Apple Ile has a button above the keyboard for selecting a 
display width of 40 or 80 characters. However, the program 

527 



528 I Apple II User's Guide 

being run has control over the display width. None of the other 
. models has the width switch. 

The Apple Ile has a headphone jack and volume control on the 
left side and a built-in disk drive on the right side. None of the 
other models has any of these features built in. 

The Apple II, Apple II Plus, and Apple Ile all have a removable 
cover, which provides access to the inside of the console. This 
makes it possible for an average user to install accessory cards. 
The Apple He is designed to be opened only for servicing. 

The Apple Ile, Apple II Plus, and standard Apple II have 
sockets on the back panel for attaching a video monitor and 
cassette recorder. The back panel of the He also has a socket for 
attaching game controls. The Apple Ile has a metal back panel 
with 12 cutouts that accommodate accessory sockets of different 
sizes for a wide variety of devices. Seven sockets are built into the 
back panel of the Apple Ile for attaching a video display, a televi
sion, an external disk drive, a mouse or game controls, a printer, 
and a modem or some other serial device. The Apple II and Apple 
II Plus have five notches in the back panel for mounting sockets 
or passing cables through. 

INTERNAL PHYSICAL FEATURES ______ _ 

Though the Apple II models work much the same, there are a 
number of internal physical differences between them. The 
Apple II and Apple II Plus have eight slots for auxiliary circuit 
cards so you can plug in a variety of input and output devices. 
The Apple Ile has seven regular slots and -one slot specially 
designed for an accessory card that enables an 80-column screen 
display. The Apple Ile has no slots and accommodates no acces
sory cards; the functions of the most popular accessory cards are 
built into the Apple Ile. 

The standard Apple II, Apple II Plus, and Apple Ile all have an 
internal socket for attaching three switch inputs, four analog 
inputs, and four annunciator outputs. For example, two joysticks 
or two pairs of paddles can be plugged into the socket. The Apple 
Ile and Apple Ile have a socket on the back panel for making the 
same attachments, except that the external socket has no annun
ciator outputs (and only two analog input sockets on the Ile). 

The entire power supply is housed inside the Apple II, Apple II 



Comparing Apple II Models / 529 

Plus, and Apple Ile. The Apple Ile has an external power 
transformer. 

INPUT AND OUTPUT _________ _ 

All models can display uppercase letters, punctuation, and 
numbers in normal, flashing, and inverse styles. The Apple Ile 
and Apple Ile display normal-style lowercase letters. They also 
have an alternate set of characters that has no flashing style but 
does include lowercase letters in inverse style. 

The Apple Ile and Enhanced Apple Ile alternate character set 
includes 33 special graphic symbols called Mousetext in place of 
the inverse uppercase letters and symbols@, [, ], ., \, ", and-· 
The Mousetext symbols have screen codes 64 to 95. 

The keyboard on the Apple Ile and Apple Ile can generate all 
128 ASCII codes. Unless they are modified, the Apple II Plus and 
standard Apple II cannot generate lowercase characters and 
some punctuation symbols. On the Apple Ile and enhanced Apple 
Ile, commands can be typed in any combination of uppercase and 
lowercase letters. On other models, all commands must be typed 
in uppercase letters. 

In addition to text, all models can display low-resolution and 
high-resolution graphics. The Apple Ile and Ile can also display 
double high-resolution graphics. 

All Apple II models except the Apple Ile can use a cassette 
recorder for program and data storage. 

The Apple Ile has a built-in provision for attaching and read
ing a mouse. The other models require an accessory card in order 
to use a mouse. 

MICROPROCESSOR AND MEMORY ____ _ 

The Apple II and Apple II Plus use a 6502 microprocessor. The 
original Apple Ile uses a 6502A microprocessor, which is more 
reliable and has a higher tolerance level than the 6502. The 
Apple Ile and Enhanced Apple Ile use a 65C02 microprocessor, 
which is an upgraded version of the 6502 that offers new address
ing modes, 27 new instructions, and more. Machine language 
programs that use these new features will not work on other 



530 I Apple II User's Gulde 

models. The original Apple Ile can be retrofitted with a 65C02, 
but the standard Apple II and Apple II Plus cannot. 

The Apple Ile has 128K (131,072 bytes) of read/write memory 
(RAM). The Apple Ile has at least 64K (65,536 bytes) of read/ 
write memory (RAM), and can easily be upgraded to 128K by 
installing an 80-column adapter that contains another 64K. The 
Apple II Plus has at least 48K (49,152 bytes) of read/write 
memory (RAM), and can easily be upgraded to 64K ~Y installing 
a Language card, which contains another 16K. The memory 
capacity of standard Apple II models ranges from 4K to 64K. 

All models come with built-in machine language software in 
ROM. Each model includes at least some subroutines that handle 
fundamental tasks such as inputting and outputting characters. 
These subroutines are called the Machine Language Monitor, or 
simply the Monitor. On the Apple Ile, Apple Ile, and Apple II 
Plus, the Machine Language Monitor tries to start a program 
automatically from the disk when you switch on the computer. 
The standard Apple II can be retrofitted with this type of 
Monitor. 

In addition to the Monitor, the Apple Ile has built-in pro
gramming for dual screen width ( 40 or 80), the alternate charac
ter set, and Mousetext characters. It also has software to control 
two serial ports, two disk drives, and a mouse. All of this software 
is part of optional accesory cards on other models. 

The Apple Ile has built-in diagnostic software that is activated 
by pressing CONTROL-SOLID APPLE-RESET. 

Pascal versions 1.1 and 1. 2 work on all models; version 1. 0 
works on all models except the Apple Ile and Enhanced Apple Ile. 

Applesoft 

The Applesoft BASIC interpreter is built into ROM on the 
Apple Ile, Apple Ile, and Apple II Plus. The standard Apple II 
has the Integer BASIC interpreter built in. 

Several glitches present in the Applesoft interpreter on Apple 
Ile and Apple II Plus ROMs have been fixed on the Apple Ile and 
the Enhanced Apple Ile. Now PRINT statement commas, the 



Comparing Apple II Models I 531 

HTAB command, the TAB function, and the SPC function all 
work properly on an 80-column screen. 

Operating Systems 

Pro DOS is the pref erred operating system for the Apple Ile, 
though it can use DOS 3.3 too. The Apple II Plus and standard 
Apple II can use ProDOS only if they have been retrofitted with 
64K RAM and the built-in Applesoft interpreter. (The Integer 
BASIC interpreter does not work with ProDOS.) 

By plugging in an adapter card, you can adapt the Apple Ile, 
Apple II Plus, and standard Apple II to the CP /M operating 
system. Another adapter card, plus a special disk drive, allows 
the use of the MS-DOS operating system. The Apple Ile has no 
slots, so it cannot be adapted for CP /M or MS-DOS by plugging 
in a card. 



Character Codes 
And Applesoft Tokens E 

The first table in this appendix (Table E-1) shows ASCII codes 
0 through 127, the characters they represent, and the keystrokes 
that generate them. ASCII codes 128 through 255 repeat codes 0 
through 127. Table E-2 shows the relationship between ASCII 
codes and the codes used to represent characters on the screen. 
The screen codes also carry information about character style: 
normal, inverse, or flashing. 

Table E-3 lists the Applesoft reserved words. Each reserved 
word takes up only one byte in program memory and is repre-

Table E-1. Characters, Keystrokes, and ASCII Codes 

ASCII Display Screen Character Keystroke 

Code Apple Ile Other Models Apple Ile Other Models 

0 None None CTRL-@ CTRL-@ 
1 None None CTRL-A CTRL-A 
2 None None CTRL-B CTRL-B 
3 None None CTRL-C CTRL-C 
4 None None CTRL-D CTRL-D 
5 None None CTRL-E CTRL-E 
6 None None CTRL-F CTRL-F 
7 Bell Bell CTRL-G CTRL-G 
8 Backspace Backspace CTRL-H CTRL-H 
9 None None CTRL-1 CTRL-1 

533 



534 I Apple II User's Gulde 

Table E-1. Characters, Keystrokes, and ASCII Codes (continued) 

ASCII Display Screen Character Keystroke 
Code Apple Ile Other Models Apple Ile Other Models 

10 Linefeed Linefeed CTRL-J CTRL-J 
11 Nonet None CTRL-K CTRL-K 
12 Nonet None CTRL-L CTRL-L 
13 Return Return CTRL-M CTRL-M 
14 Nonet None CTRL-N CTRL-N 
15 Nonet None CTRL-0 CTRL-0 
16 None None CTRL-P CTRL-P 
17 Nonet None CTRL-Q CTRL-Q 
18 Nonet None CTRL-R CTRL-R 
19 None None CTRL-S CTRL-S 
20 None None CTRL-T CTRL-T 
21 Nonet Fwd. space CTRL-U CTRL-U 
22 Non et None CTRL-V CTRL-V 
23 Nonet None CTRL-W CTRL-W 
24 None Cancel line CTRL-X CTRL-X 
25 Nonet None CTRL-Y CTRL-Y 
26 Nonet None CTRL-Z CTRL-Z 
27 None None ESC ESC 
28 Nonet None CTRL-\ None 
29 Nonet None CTRL-] CTRL-SHIFT-M 
30 None None None CTRL-" 
31 None None CTRL-SHIFT- None 
32 Space Space SPACE BAR SPACE BAR 
33 ! ! SHIFT-I SHIFT-1 
34 ,, 

" SHIFT-' SHIFT-2 
35 # # SHIFT-3 SHIFT-3 
36 $ $ SHIFT-4 SHIFT-4 
37 % % SHIFT-5 SHIFT-5 
38 & & SHIFT-7 SHIFT-6 
39 I I SHIFT-7 
40 ( ( SHIFT-9 SHIFT-8 
41 ) ) SHIFT-0 SHIFT-9 
42 • • SHIFT-8 SHIFT-: 
43 + + SHIFT-= SHIFT-; 
44 I ' 45 - - -
46 
47 I I I I 
48 0 0 0 0 
49 1 1 1 1 

t Acts as a display screen control code when the SO-column adapter is active. Table 9-2 lists the 
control code uses. 



Character Codes and Applesoft Tokens I 535 

Table E-1. Characters, Keystrokes, and ASCII Codes (continued) 

ASCII Display Screen Character Keystroke 
Code Apple Ile Other Models Apple Ile Other Models 

50 2 2 2 2 
51 3 3 3 3 
52 4 4 4 4 
53 5 5 5 5 
54 6 6 6 6 
55 7 7 7 7 
56 8 8 8 8 
57 9 9 9 9 

58 : : SHIFT-; : 

59 ; ; ; ; 

60 < < SHIFT-. SHIFT-. 
61 = = :::: SHIFT--
62 > > SHIFT-. SHIFT-. 
63 ? ? SHIFT-/ SHIFT-/ 
64 @ @ SHIFT-2 SHIFT-P 
65 A A SHIFT-A A 
66 B B SHIFT-B B 
67 c c SHIFT-C c 
68 D D SHIFT-D D 
69 E E SHIFT-E E 
70 F F SHIFT-F F 
71 G G SHIFT-G G 
72 H H SHIFT-ff H 
73 I I SHIFT-I I 
74 J J SHIFT-J J 
75 K K SHIFT-K K 
76 L L SHIFT-L L 
77 M M SHIFT-M M 
78 N N SHIFT-N N 
79 0 0 SHIFT-0 0 
80 p p SHIFT-P p 

81 Q Q SHIFT-Q Q 

82 R R SHIFT-R R 
83 s s SHIFT-$ s 
84 T T SHIFT-T T 
85 u u SHIFT-U u 
86 v v SHIFT-V v 
87 w w SHIFT-W w 
88 x x SHIFT-X x 
89 y y SHIFT-Y y 

90 z z SHIFT-Z z 
91 [ [ [ None 



536 I Apple II User's Guide 

Table E-1. Characters, Keystrokes, and ASCII Codes (continued) 

ASCII Display Screen Character Keystroke 
Code Apple Ile Other Models Apple Ile Other Models 

92 \ \ \ None 
93 ] ] J SHIFT-M 

94 f\ f\ 
SHIFT-6 SHIFT-N 

95 - None SHIFT-- None 
96 ' None None 
97 a A A None 
98 b B B None 
99 c c c None 

100 d D D None 
101 e E E None 
102 f F F None 
103 g G G None 
104 h H H None 
105 i I I None 
106 j J J None 
107 k K K None 
108 1 L L None 
109 m M M None 
110 n N N None 
111 0 0 0 None 
112 p p p None 
113 q Q Q None 
114 r R R None 
115 s s s None 
116 t T T None 
117 u u u None 
118 v v v None 
119 w w w None 
120 x x x None 
121 y y y None 
122 z z z None 
123 { None SHIFT-[ None 
124 I None SHIFT-\ None 
125 } None SHIFT-] None 
126 - None SHIFT-' None 
127 r.;; None DELETE None 

sented by a code, called a token, with a numeric value between 128 
and 255. The token replaces the spelled-out reserved word in the 
Apple II's memory and on the disk. The list is in numerical order 



Character Codes and Applesoft Tokens I 537 

by token. Appendix A contains a list of reserved words in alpha
betical order. 

Table E-2. Screen Codes and ASCII Codes 

Alternate Primary 
Screen ASCII ASCII 
Codes Codes Characters Codes Characters 

0-31 64-95 Inverse upper- 64-95 Inverse upper-
case letters case letters 

32-63 32-63 Inverse punctua- 32-63 Inverse punctua-
tion and numbers tion and numbers 

64-95 64-95 Inverse upper- 64-95 Flashing upper-
case letters* case letters 

96-127 96-127 Inverse lower- 32-63 Flashing punctua-
case letters tion and numbers 

128-159 64-95 Normal upper- 64-95 Normal upper-
case letters case letters 

160-191 32-63 Normal punctua- 32-63 Normal punctua-
tion and numbers tion and numbers 

192-223 64-95 Normal upper- 64-95 Normal upper-
case letters case letters 

224-255 96-127 Normal lower- 96-127 Normal lower-
case letters case letters 

•Screen codes 64-95 are also used for Mousetext characters (Apple Ile and Enhanced Apple lie) 



538 I Apple II User's Guide 

Table E-3. Applesoft Reserved Word Tokens 

Token Reserved Token Reserved Token Reserved 
Word Word Word 

128 END 164 LOMEM: 200 + 
129 FOR 165 ONE RR 201 -
130 NEXT 166 RESUME 202 * 
131 OATA 167 RECALL 203 I 
132 INPUT 168 STORE 204 /\ 

133 DEL 169 SPEED= 205 AND 
134 DIM 170 LET 206 OR 
135 RttAD 171 GOTO 207 > 
136 GR 172 RUN 208 = 
137 TEXT 173 IF 209 < 
138 PR# 174 RESTORE 210 SGN 
139 iN# 175 & 211 INT 
140 CALL 176 GOSUB 212 ABS 
141 PLOT 177 RETURN 213 USR 
142 HLIN 178 REM 214 FRE 
143 VLIN 179 STOP 215 SCRN( 
144 HGR2 180 ON 216 PDL 
145 HGR 181 WAIT 217 POS 
146 HCOLOR= 182 LOAD 218 SQR 
147 HP LOT 183 SAVE 219 RND 
148 DRAW 184 DEF 220 LOG 
149 XDRAW 185 POKE 221 EXP 
150 HTAB 186 PRINT 222 cos 
151 HOME 187 CONT 223 SIN 
152 ROT= 188 LIST 224 TAN 
153 SCALE= 189 CLEAR 225 ATN 
154 SH LOAD 190 GET 226 PEEK 
155 TRACE 191 NEW 227 LEN 
156 NOTRACE 192 TAB( 228 STR$ 
157 NORMAL 193 TO 229 VAL 
158 INVERSE 194 FN 230 ASC 
159 FLASH 195 SPC( 231 CHR$ 
160 COLOR= 196 THEN 232 LEFT$ 
161 POP 197 AT 233 RIGHT$ 
162 VTAB 198 NOT 234 MID$ 
163 HIMEM: 199 STEP 



Useful PEEK 
And POKE Locations F 

Each of the memory locations listed in this appendix is 
expressed as a decimal number less than 32767. Memory loca
tions above 32767 are expressed as negative numbers. There is a 
positive number that refers to the same location. To get the posi
tive equivalent, add 65536 to the listed negative location (for 
example, 65536 - 16384 = 49152). 

Some of the functions described here may be actuated just by 
accessing them. This means that any time a PEEK statement 
accesses the specified memory location, the indicated action takes 
place. A POKE statement to the specified memory location also 
triggers the action, but because of the operating characteristics 
of the microproc~ssor in the Apple II, a POKE statement actually 
triggers the action twice. In this case, POI{E is the same as two 
PEEK statements. Usually this makes no difference, but in cases 
like -16336 (Speaker Click), it does. The value placed in memory 
by the POKE statement is irrelevant in such address-actuated 
actions. 

/ 

TEXT WINDOW AND CURSOR 
CONTROL LOCATIONS ________ _ 

The memory locations listed in this section enable you to 
change the dimensions of the text window, to determine the row 
and column the cursor is in, and to change the cursor's position. 

539 



540 I Apple II User's Guide 

32 Left Margin of the Text Window 

Specifies the column of the left text window margin. PEEK 
returns a value in the range 0 through 39 (for a 40-column dis
play) or O through 79 (for an 80-column display). The left edge of 
the screen is 0. Changing location 32 does not affect the width of 
the text window, since the left and right margins both move. 

If you place a value greater than 39 (on a 40-column display) or 
79 (for an 80-column display) into this location, or if the value of 
this location plus the width of the text window exceeds 40 (or 80), 
some or all of the output meant for the screen will be put in 
memory outside the screen area. This could destroy part of your 
program or other essential data. 

33 Text Window Width 

Specifies the width of the text window. The value in this loca
tion must be in the range 1 through 40, or 1 through 80 if the 
display width is 80. Changing this location sets the right margin 
at the column that is the specified number of characters away 
from the left margin (memory location 32). 

A value of zero in this location (that is, a width of zero) can 
destroy the BASIC interpreter. If you POKE a value greater than 
40 (or 80) into this location, or if the value in this location plus the 
value in location 32 (left margin) exceeds 40 (or 80), some or all of 
the output meant for the screen will be put in memory outside the 
screen area. This could destroy part of your program or other 
essential data. 

34 Top Margin of the Text Window 

Specifies the top margin of the text window. The value in this 
location must be in the range 0 through 23; 0 specifies the top 
row on the screen, 23 the bottom. If you POKE a value greater 
than 23 into this location, some or all of the output meant for the 
screen will go into memory outside the screen area, wiping out 
data that could be important. Do not set the top margin of the 
text window below the bottom margin. 



Useful PEEK and POKE Locations / 541 

35 Bottom Margin of the Text Window 

Specifies the bottom margin of the text window. The value in 
this location must be in the range 0 through 23; 0 specifies the top 
row on the screen, 23 the bottom. If you POKE a value greater 
than 23 into this location, some or all of the output meant for the 
screen will go into memory outside the screen area, wiping out 
data that could be important. Do not set the bottom margin of the 
text window above the top margin. 

36 Horizontal Position of the Cursor 

Specifies the current horizontal position of the cursor. 
PEEK(36) returns a value in the range 0 through 39, or 0 
through 79 if the display width is 80. PEEK(36) specifies the 
cursor's position relative to the left margin of the text window 
(not necessarily the left edge of the screen). This location can be 
used to position beyond the right edge of the text window (and 
subsequently print there with PRINT), but the cursor stays there 
only long enough to print one character. Do not put a value in this 
location that, when added to the left screen margin (location 32), 
exceeds 39, or 79 with an 80-column screen. 

PEEK(36) is equivalent to the Applesoft function POS. 

37 Vertical Position of the Cursor 

Specifies the current vertical position of the cursor. PEEK(37) 
returns a value in the range 0 through 23, relative to the top of 
the screen (not the top of the text window). Do not put a value 
over 23 in this location. 

ERROR-HANDLING LOCATIONS ______ _ 

The memory locations in this section report the code of an 
intercepted error and the line on which it occurred, and enable 
you to cancel error interception. 



542 I Apple II User's Guide 

216 Error Flag 

Indicates whether an ONERR GOTO is in effect. If location 216 
has a value of 128 or more, an ONERR GOTO statement has been 
encountered, and control will branch to the line number specified 
when an error occurs. Place a value less than 128 in this location 
to disable a previously executed ONE RR GOTO statement. 

218 and 219 Error-Causing Line Number 

When an error triggers a branch according to an ONERR 
GOTO statement, these locations specify the line number in 
which the error occurred. This line number is computed by the 
expression PEEK(219)*256+ PEEK(218). 

222 Error Type Code 

Specifies which type of error has occurred. The error codes 
and their descriptions are listed in Appendix B. 

KEYBOARD LOCATIONS ________ _ 

The memory locations listed in this section enable you to read a 
character directly from the keyboard and to reset the keyboard 
after doing so. 

-16384 Character from Keyboard 

Reads the keyboard. If the value in this location is greater than 
127, a key has been pressed. Determine the ASCII code of the key 
last pressed by subtracting 128 from PEEK(-16384). 

-16368 Keyboard Flag 

POKE -16368,0 resets the keyboard strobe so that another 
character may be read from the keyboard. 



Useful PEEK and POKE Locations / 543 

SPEAKER OUTPUT LOCATIONS ______ _ 

The memory locations listed in this section enable you to output 
directly to a cassette recorder or the built-in speaker. 

-16352 Cassette Cl lck 

Generates a click at the cassette output jack. 

-16336 Speaker Ciiek 

Generates a click on the internal speaker. 

DISPLAY SWITCHES _________ _ 

The memory locations listed in this section control certain 
switches that determine display screen characteristics. There are 
no physical switches; instead, there are imaginary switches, 
called soft switches, that you set by accessing certain memory loca
tions with PEEK functions or POKE statements. Every Apple II 
has four soft switches; each can be set in two different positions. 
The Apple Ile has an additional soft switch (Figure F-1). 

Primary 
Character Set* Graphics Full Screen Page 1 Low Resolution 

-16370 -16304 -16302 -16300 -16298 

Secondary Text 
Character Set* -16303 

-16369 
*Apple Ile only 

Graphics 
Plus Text 
-16301 

Page 2 High Resolution 
-16299 -16297 

Figure F-1. Display screen soft switch memory locations 



544 I Apple II User's Guide 

Table F-1. Apple Ile Soft Switch Status 

Status, if 
Soft Switch Memory PEEK (Location) is: 

Function Location <128 >127 

Character set -16354 Primary Alternate 
Screen mode -16358 Graphics Text 
Text window -16357 Absent Present 
Screen memory -16356 Page 1 Page 2 
Graphics mode -16355 Low-resolution High-resolution 

You cannot use the PEEK function to determine a soft switch 
setting, because the act of accessing the memory location may 
change the setting. The Apple Ile has additional memory loca
tions that disclose the soft switch settings, as listed in Table F-1. 
If the PEEK function reports the value in one of these locations 
to be less than 128, the soft switch is set one way, and if the value 
is 128 or greater, the soft switch is set the other way. 

-16370 Select Primary Character Set 

On the Apple Ile, selects the primary character set, which 
includes uppercase and lowercase letters, punctuation, and spe
cial symbols in normal, white-on-black style. Also included are 
flashing or inverse uppercase letters, punctuation, and special 
symbols. Use POKE only, not PEEK. 

-16369 Select Alternate Character Set 

On the Apple Ile, selects the alternate character set, which 
includes uppercase and lowercase letters, punctuation, and spe
cial symbols in normal, white-on-black style or in inverse, black
on-white style. Does not include any flashing characters. Use 
POKE only, not PEEK. 

-16304 Select Graphics Mode 

Selects graphics mode. The graphics screen is not cleared to 
black. The graphics mode may be low- or high-resolution, page 1 



Useful PEEK and POKE Locations / 545 

or page 2, full-screen graphics or mixed graphics and text. These 
characteristics are determined by other soft switch memory 
locations. 

-16303 Select Text Mode 

Selects text mode. The text may be from either page 1 or page 
2, as. determined by memory locations -16300 and -16299 . 

. -16302 Select Full-Screen Graphics 

Selects full-screen graphics. If the screen is in text mode, this 
will not be visible until location -16304 is accessed. 

-16301 Select Graphics Plus Text 

Establishes a four-line text window at the bottom of the screen. 
If the screen is in text mode, this will not be visible until location 
-16304 is accessed. 

-16300 Select Screen Page 1 

Selects graphics or text page 1. 

-16299 Select Screen Page 2 

Selects graphics or text page 2. 

-16298 Select Low-Resolution Graphics 

Selects low-resolution graphics. If the screen is in text mode, 
the effect will not be visible until location -16304 is accessed. 

-16297 Select High-Resolution Graphics 

Selects high-resolution graphics. If the screen is in text mode, 
the effect will not be visible until ~ocation -16304 is accessed. 



546 I Apple II User's Gulde 

VERTICAL BLANKING INTERVAL ______ _ 

The Apple II must continuously refresh the display screen 
image or the image will fade away. The Apple II refreshes the 
screen display by reading the contents of the display screen from 
its memory and broadcasting the data. This refresh cycle occurs 
automatically, many times each second, so that normally you are 
not even aware of it. There is· even a brief period at the end of 
each refresh cycle, called the vertical blanking interval, during 
which the Apple II does not broadcast anything. 

High-speed programs, usually written in machine language, 
may be able to change the display screen memory contents while 
the Apple II is in the process of broadcasting them. The result is 
an erratic flickering or blinking on the screen. The cure for this 
is to change the display screen memory only during the vertical 
blanking interval, when the Apple II is not broadcasting. The 
vertical blanking interval can be detected on an Apple Ile by 
checking the value in a memory location. 

-16359 Vertical Blanking Signal 

As long as PEE K(-16359) is 128 or greater, the Apple II is 
broadcasting a refresh signal to the display screen. During the 
brief vertical blanking interval, the value of PEEK(-16359) is 
less than 128. 

GAME CONTROL LOCATIONS ______ _ 

The memory locations in this section can turn game control 
outputs on or off, sense whether the SOLID APPLE key, OPEN 
APPLE key, or game control pushbuttons are being pressed or not, 
and actuate a strobe output. Figure F-2 shows how the game con
trol outputs are manipulated. 

The inputs for these locations connect to the game control con
nector, shown in Figure F-3. 

-16296 Annunciator O Off 

Turns off game control output (annunciator) number 0. The 
voltage on pin 15 of the game control connector is set to approxi
mately 0 volts (TTL low). 



Useful PEEK and POKE Locations / 547 

On 
-16295 

Off 
-16296 

Annunciator 0 

On 
-16293 

Off 
-16294 

Annunciator 1 

On 
-16291 

Off 
-16292 

Annunciator 2 

Figure F -2. Game control outputs (soft switches) 

8. Ground 
7. Game Control 2 
6. Game Control 0 

5. Strobe 
~ . Pushbutton 2 
3. Pushbutton I 
2. Pushbutton 0 

I. +5V Power 

Figure F-3. Game control pin assignments 

On 
-16289 

Off 
- 16290 

Annunciator 3 

9. No Connection 
1 O. Game Control 1 
11. Game Control 3 
12. Annuncialll r 3 
13.. Annunciator 2 
14. Annunciator 1 
15. Annunciator 0 
16. No Connection 

5. Game Control 0 

6. Pushbutton 2 
7. Pushbutton 0 

8. Game Control 1 
9. Game Control 3 



548 I Apple II User's Guide 

-16295 Annunciator O On 

Turns on game control output (annunciator) number 0. The volt
age on pin 15 of the game control connector is set to approxi
mately +5 volts (TTL high). 

-16294 Annunciator 1 Off 

Turns off game control output (annunciator) number 1. The 
voltage on pin 14 of the game control connector is set to approxi
mately 0 volts (TTL low). 

-16293 Annunciator 1 On 

Turns on game control output (annunciator) number 1. The volt
age on pin 14 of the game control connector is set to approxi
mately + 5 volts (TTL high). 

-16292 Annunciator 2 Off 

Turns off game control output (annunciator) number 2. The 
voltage on pin 13 of the game control connector is set to approxi
mately 0 volts (TTL low). 

-16291 Annunciator 2 On 

Turns on game control output (annunciator) number 2. The volt
age on pin 13 of the game control connector is set to approxi
mately +5 volts (TTL high). 

-16290 Annunciator 3 Off 

Turns off game control output (annunciator) number 3. The 
voltage on pin 12 of the game control connector is set to approxi
mately 0 volts (TTL low). 

-16289 Annunciator 3 On 

Turns on game control output (annunciator) number 3. The volt
age on pin 12 of the game control connector is set to approxi-
mately + 5 volts (TTL high). · 



Useful PEEK and POKE Locations / 549 

-16287 Read Pushbutton O 

When the pushbutton on game control number 0 or the OPEN 
APPLE key is being pressed, the value in this location exceeds 127. 
When it is not being pressed, the value is 127 or less. Pushbutton 
0 connects to pin 2 of the internal game control connector. 

-16286 Read Pushbutton 1 

When the pushbutton on game control number 1 or the SOLID 
APPLE key is being pressed, the value in this location exceeds 127. 
When it is not being pressed, the value is 127 or less. Pushbutton 
1 connects to pin 3 of the internal game control connector. 

-16285 Read Pushbutton 2 

When the pushbutton on game control number 2 is being 
pressed, the value in this location exceeds 127; when it is not 
being pressed, the value is 127 or less. Pushbutton 2 connects to 
pin 4 of the internal game control connector. 

-16272 Strobe Output 

Normally pin 5 of the game control connector is +5 volts. Exe
cuting PEEK(-16285) drops it to 0 volts for one-half microse
cond. A POKE statement will trigger the strobe twice. 



Built-in Subroutines G 

The following two tables list a number of useful machine lan
guage subroutines available on the Apple II. Table G-1 lists them 
by general function; it does not provide complete information 
about each subroutine. Find the entry point listed in Table G-1 in 
the first column of Table G-2 for additional information, includ
ing details on microprocessor registers affected. 

Table G-2 lists the subroutines in order by entry point. The 
third column shows which registers, if any, must contain specific 
values before the subroutine is executed. The fourth column 
shows which microprocessor registers are affected by the execu
tion of the subroutine. 

Most of these subroutines have an equivalent in a BASIC com
mand, or else can be accessed from BASIC with a single CALL 
statement. These equivalents appear in Table G-2. Some of the 
BASIC commands listed are only available in Applesoft; they are 
marked with an A. 

Some subroutines, however, have no equivalent in either ver
sion of BASIC and cannot be executed by a single CALL because 
one or more microprocessor registers must be loaded with spe
cific values prior to execution. Different techniques are required 
to handle this problem in Applesoft and Integer BASIC. 

Integer BASIC provides a simple solution. First execute a 
CALL -182 to save the current values of the registers in RAM. 
Then, using POKE statements, place the desired values in mem
ory location 69 for the A register, 70 for the X register, and 71 for 
the Y register. Execute a CALL -193 to load the values into the 
registers, and call the built-in machine language subroutine. 

551 



552 I Apple II User's Guide 

This technique does not work in Applesoft. Instead, you must 
write your own machine language subroutine to load the regis-

Table G-1. Built-in Subroutines by Function 

Function Entry Point 

Plot a low-resolution graphics point. $F800 
Draw a low-resolution horizontal line. $F819 
Draw a low-resolution vertical line. $F828 
Clear all 48 low-resolution graphics rows to $F832 

black (if in text mode, sets to inverse "@"). 

Low-
Clear the top 40 low-resolution rows to black $F836 

Resolution 
(or inverse "@"). 

Graphics Increment the current low-resolution $F85F 
graphics color by three. 

Set low-resolution graphics color. $F864 
Read the color of a low-resolution graphics $F871 

point. 
Set low-resolution graphics mode, clear $FB40 

screen, and set four-line text window. 

Wait for keystroke while cursor is flashing, $FD1B 
and seed the random number generator at 
locations $4E and $4F. 

Input Same as above except that escape codes are $FD35 
also allowed. 

Send carriage return to display screen, and $FD67 
then allow input of an entire line of up to 
256 characters. 

Send three blanks to the currently selected $F948 
output device . 

. Send from 1 to 256 blanks to the currently $F94A 
selected output device. 

Output Send a carriage return and linefeed to the $FC62 
Apple II screen. 

Output a character to the currently selected $FDED 
output device. 

Output a character to the text window. $FDFO 

BeU 
Send BELL character (ASCII code 7) to the $FBDD 

currently selected output device. 
Output Beep the onboard speaker for 1/10 second. $FBE4 



Built-in Subroutines I 553 

Table G-1. Built-in Subroutines by Function (continued) 

Function Entry Point 

Bell 
Print the message ERR and beep the $FF2D 

Output 
onboard speaker. 

Beep the onboard speaker. $FF3A 

Text 
Set the Apple II screen to 24 rows by 40 $FB2F 

columns. 
Window Scroll the text window up one line. $FC70 

Send a backspace character to the screen, $FC10 
updating the cursor position. 

Move the cursor up one line. If the cursor $FC1A 

Cursor is already at the top of the screen, it does 

Control not move. 
Move the cursor down one line without $FC66 

changing its horizontal position. Scrolls 
the text window if the cursor is at the 
bottom of the screen. 

Clear the text window from the current $FC42 
cursor position to the lower right-hand 

Screen 
corner of the screen. 

Clear the entire text screen and move the $FC58 
Clearing cursor to the upper left-hand corner. 

Clear the text from the current cursor $FC9C 
position to the end of the line. 

Video Set inverse video mode (black on white). $FE80 
Mode Set normal video ~de (white on black). $FE84 

Print Y and X register contents (in the $F940 
format YYXX) on the currently selected 
output device. 

Print A and X register contents (in the $F941 
Print format AAXX) on the currently selected 

Register output device. 
Contents Print X register contents on the currently $F944 

selected output device. 
Print A register contents on the currently $FDDA 

selected output device. 



554 I Apple II User's Gulde 

Table G-1. Built-in Subroutines by Function (continued) 

Function Entry Point 

Restore register contents (valid only if $FF3F 
Move intrinsic routine at $FF4A executed 

Register previously). 
Contents Save register contents in reserved page 0 $FF4A 

locations. 

Read status of one paddle. $FB1E 
Execute a delay loop. $FCA8 

Misc. Return to BASIC, eliminating the program $FEBO 
and variables in memory. 

Entry point for the Monitor. $FF69 

ters with the necessary values and then execute an assembly lan
guage JSR instruction to the entry point of the built-in machine 
language subroutine. 



Table G-2. Built-in Subroutines by Entry Point 

Entry Registers to Load 
Point Use Before Calling 

$F800 Plot a graphics point on low- Place row in A, column in Y. 
resolution page 1. 

$F819 Draw a low-resolution Row in A, left column in Y, 
horizontal line. right column at memory 

location 44. 

$F828 Draw a low-resolution Column in Y, high row in A, low 
vertical line. row at memory location 45. 

$F832 Clear all 48 low-resolution None 
graphics rows to black (if in 
text mode, sets to all "@"). 

$F836 Clear the low-resolution None 
graphics rows, leaving the 
text window intact. 

$F85F Increment the current low- None 
resolution graphics color by 3. 

$F864 Set low-resolution graphics color. Color number in A. 

$F871 Read the color of a Row in A, column in Y. 
low-resolution graphics point. 

$F940 Print Y and X register None 
contents (in the format YYXX) 
on the screen or other output 
device selected. 

$F941 Print A and X registers (AAXX) None 
as above. 

.·I Denotes BASIC commands available in Applesoft only. 

Registers 
Affected 

A 

A,Y 

None 

A,Y 

A,Y 

A 

A 

A (contains color 
number) 

None 

None 

BASIC 
Equivalent 

PLOT 

HLIN 

VLIN 

CALL· -1998 

GR 
(see $FB40} 

CALL-1953 

COLOR 

SCRN 

CALL-1728 

CALL -1727 

Cl1 
~ 
=;t= 
:r 
~ 

[ 
i" 
......... 

~ 



Table G-2. Built-in Subroutines by Entry Point (continued) 

Entry Registers to Load 
Point Use Before Calling 

$F944 Print X register contents. None 

$F948 Send 3 blanks to the currently None 
selected output device 
(determined by CSW contents). 

$F94A Send 1 to 256 blanks to the Number of blank spaces in A 
currently selected output (loading 0 prints 256 blanks). 
device. 

$FB1E Read status of paddle 0, 1, Paddle number in X. 
2, or 3. 

$FB2F Set the text screen to text mode. None 

$FB40 Set low-resolution graphics None 
mode, clear screen, and set 
4-line text window. 

$FBDD Send BELL character (ASCII None 
code 7) to the current output 
device. 

$FBE4 Beep speaker for 1/10 second. None 

$FC10 Send a backspace character to None 
the screen, updating cursor 
position. 

$FC1A Move the cursor up one line. None 
If already at the top of the 
screen, cursor does not move. 

A Denotes BASIC commands available in Applesoft onl~·-

Registers 
Affected 

None 

X.A 

None 

0-FF in Y register. 
A contents destroyed. 

A 

A.Y 

A.Y 

A,Y 

A 

A 

BASIC 
Equivalent 

CALL -1724 

CALL-1720 

SPC( yt 
CALL -1718 

PDL() 

TEXT 

GR 

CALL-1059 

CALL -1052 

CALL -1008 

CALL -998 

~ 
........ 

~ 
'Q. 
<D 
= 

i 
u.' 
(j) 
c 
~ 



Table G-2. Built-in Subroutines by Entry Point (continued) 

Entry Registers to Load 
Point Use Before Calling 

$FC42 Clear the text window from the None 
present cursor position to the 
lower right-hand corner of 
the screen. 

$FC58 Clear the entire text screen None 
and move the cursor to the 
upper left-hand corner. 

$FC62 Send a carriage return and None 
linefeed to the screen. 

$FC66 Move the cursor down one line None 
without changing its horizontal 
position. Scrolls text up one 
line if cursor is at the bottom 
of the screen. 

$FC70 Scroll the text window up None 
one line. 

$FC9C Clear text from the current None 
cursor position to the end of 
the line. Cursor position 
remains unchanged. 

$FCA8 Execute a delay loop that is Delay value (x) in A. 
0.5(5xt + 27x + 26) 
microseconds long. 

A Denotes BASIC commands availab)e in App)esoft only. 

Registers 
Affected 

A,Y 

A,Y 

A,Y 

A,Y 

A,Y 

A 

BASIC 
Equivalent 

CALL-958 

CALL -936 

CALL -926 

CALL-922 

CALL-912 

CALL-868 

CALL-856 

m c 
=ii= s 
~ 
0-g 
i 
......... 

~ ....... 



Table G-2. Built-in Subroutines by Entry Point (continued) 

Entry 
Use 

Registers to Load 
Point Before Calling 

$FDOC Wait for keystroke; flash None 
cursor while waiting. Seed 
random number generator at 
memory locations 78 and 79. 

$FD35 Same as $FDOC, except that None 
escape codes are also 
allowed. 

$FD67 Send carriage return to Prompt character at memory 
screen; allow input of an location 51. 
entire line of data, up to 
256 characters. 

$FDDA Print the value in the Data in A. 
accumulator as two hexadec-
imal digits. 

$FDED Output a character to the Character in A. 
currently selected output 
device. 

$FDFO Output a character to the Character in A. 
text window. 

$FEBO Set inverse video mode (black-on- None 
white text). 

$FE84 Set normal video mode (white- None 
on-black text). 

A Denotes BASIC commands available in Applesoft only. 

Registers 
Affected 

Character returned 
in A. 
X.Y 

Character returned 
in A. 
X,Y 

Y,A. 
X contains length 
of entry. Data 
entered starts at 
memory location 
$200. 

A 

None 

None 

y 

y 

BASIC 
Equivalent 

CALL-756 

CALL -715 

INPUT 

CALL-550 

PRINT 

PRINT 

INVERSEA 
CALL-384 

NORMALA 
CALL-380 

~ 
CX> 

......... 

-6> 
Y. 
<D 
= 

i 
VI' 

(j) 
c a: 
<D 



Table G-2. Built-in Subroutines by Entry Point (continued) 

Entry Registers to Load 
Point Use Before Calling 

$FEBO Return to BASIC. eliminating None 
the program and variables in 
memory. 

$FF2D Print the message ERR and None 
beep onboard speaker. 

$FF3A Beep the onboard speaker. None 

$FF3F Restore register contents. None 

$FF4A Save register contents in None 
reserved page O locations: 

A register: 69 ($45) 
S register: 72 ($48) 
X register: 70 ($46) 
Stack Pointer: 73 ($49) 
Y register: 71 ($47). 

$FF69 Entry point for the Monitor. None 

A Denotes BASIC commands available in Applesoft only. 

Registers 
Affected 

A.X.Y 

A 

A 

Register contents 
restored from these 
locations: 

A register: 69 ($45) 
S register: 72 ($48) 
X register: 70 ($46) 
Stack Pointer: 73 ($49) 
Y register: 71 ($47). 

None 

None 

BASIC 
Equivalent 

CALL-336 

CALL-211 

CALL-198 

CALL-193 

CALL-182 

CALL-151 

tD c: 
=ii= 
5" 
g> 
O" a 
3: 
m 

......... 

~ 



Conversion Tables H 

This appendix contains tables for the following conversions: 

· Binary-Hexadecimal Numbers (Table H-1) 
· Hexadecimal-Decimal Integers (Table H -2). 

Convert binary numbers larger than 1111 to hexadecimal numbers 
four binary digits at a time, working from right to left. If there 
are fewer than four binary digits in the leftmost group, add lead
ing zeros. Here is an example: 

1001012 = 001001012 -----
216 516 

2516 

Convert hexadecimal numbers larger than OF to binary one digit 
at a time. Here is an example: 

6716 
,.-...__ 

616 716 

01102 01112 
-·--~ 

011001112 

561 



562 I Apple II User's Gulde 

Table H-1. Binary-Hexadecimal Conv.ersion Table 

Hexadecimal Binary 

00 0000 
01 0001 
02 0010 
03 0011 
04 0100 
05 0101 
06 0110 
07 0111 
08 1000 
09 1001 
OA 1010 
OB 1011 
oc 1100 
OD 1101 
OE 1110 
OF 11 , , 

Table H-2. Hexadecimal-Decimal Conversion Table 

The table below provides for direct conversions between hexo- Hexodecimol fractions may be converted to decimal lroclions 
decimol iniegers in the range 0-FFF end decimal integers in cs follows: 
the range 0-4095. For conversion of lorger integers, the 
table volues moy be odded to the following figures: I. Expr!Hs the hexodecimol fraction os on integer times 

16-n, where n is the number of significant hexodecimol 
liexodecimol Decimal Hexadecimal Decimal plac!H to the right of the hexadecimal point. 

;;ii 000 4 096 20 000 131 072 O. CA98F31 6 = CA9 BF316 x 16-6 
02 000 8 192 30 000 196 608 
03 000 12 288 40 000 262 144 2. Find the decimal equivalent of the hexadecimol integer 
04 000 16 384 50000 327 680 
OS 000 20480 60000 393 216 CA9 BF3

16 
= 13 278 195

10 
06 000 24 576 70000 458 752 
07 000 28 672 80 000 524 288 3. Multiply the decimal equivalent by 16-n 
08000 32 768 90000 589 824 
09000 36 864 AOOOO 6SS 360 13 278 195 
OA 000 40 960 80000 720 896 JI 596 046 448 JI 10·16 
OB 000 45 OS6 co 000 786 432 0. 791 442 09610 
oc 000 49 152 00000 as1 968 
OD 000 53 248 EOOOO 917 504 Decimal fractions moy be converted to hexadecimal fractions 
OE 000 57 344 FO 000 983 040 by succeisively multiplying the decimal fraction by 1610. 
OF 000 61 440 100 000 1048576 After each multiplication, the integer portion il removeCI to 
10000 6S 536 200 000 2 097 152 form o hexadecimal froct~on by building to the right of the 
11 000 69632 300 000 3 145 728 hexadecimal point. However, since decimal arithmetic is 
12 000 73 728 400 000 4 194 304 used in this conversion, the integer portion of each product 
13 000 77 824 500 000 5 242 880 must be converted to hexodecimol numbers. 
14 000 81 920 600 000 6 291 456 
15 000 86 016 700 000 7 340 032 Example: Convert 0.89510 to its hexadecimal equivalent 
16 000 90 112 800 000 8 388 608 

0.895 
17 000 94 208 900 000 9 437 184 
18 000 98 304 AOOOOO 10 4&5 760 

IF=-~ 19000 102 400 BOO 000 11 534 336 
lAOOO 106 496 coo 000 12 582 912 

~ ~ 18 000 110 592 000000 13 631 488 
IC 000 114 688 EOO 000 14 680 064 
ID 000 118 784 FOO 000 15 728 640 1 CD.Jg 
IE 000 122 880 1 000000 16 777 216 

O.E51E16 ~ IF 000 126 976 2booooo 33 554 432 



Conversion Tables / 563 

Table H-2. Hexadecimal-Decimal Conversion Table (continued) 

0 I 2 3 4 5 6 7 8 9 A 8 c D E F 

00 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015 
01 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031 
02 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 
03 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063 

04 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079 
05 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 ()(\94 0095 
06 0096 0097· 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111 
07 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127 

08 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143 
09 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 
OA 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175 
OB 0176 0177 0178 0179 0180 0181 0182 0183 OllW 0185 0186 0187 0188 0189 0190 0191 

oc 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207 
OD 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223 
OE 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239 
OF 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255 

10 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271 
II 0272 0273 0274 0275 0"176 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287 
12 0289 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303 
13 0304 0305 0306 0307 0308 0309 0310 (1311 0312 0313 0314 0315 0316 0317 0318 0319 

14 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335 
15 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351 
16 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 '0366 0367 
17 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 03RO 0381 0382 0383 

18 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399 
19 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415 
IA 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431 
18 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447 

IC 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463 
ID 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479 
IE 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495 
IF 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511 

20 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527 
21 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543 
22 0544 0545 0546 0547 0548 0549 OSSO 0551 0552 0553 0554 0555 0556 0557 0558 0559 
23 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575 

24 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591 
25 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607 
26 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623 
27 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639 

28 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655 
29 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671 
2A 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687 
28 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703 

2C 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 J719 
20 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735 
2E 0136 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751 
2f 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767 



564 I Apple II User's Guide 

Table H-2. Hexadecimal-Decimal Conversion Table (continued) 

0 j 1 2 3 4 5 6 7 8 9 A 8 c 0 E F 

30 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783 
31 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799 
32 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 081S 
33 0816 0817 0818 0819 0820 o821 0822 0823 0824 082S 0826 0827 0828 0829 0830 0631 

34 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 084S 0846 0847 
3S 0848 0849 08.50 0851 0852 0853 0854 085S 0856 0857 0858 0859 0860 0861 0862 0863 
36 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879 
37 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 089S 

38 0896 0897 0898 0899 0900 0901 0902 0900 0904 0905 0906 0907 0908 0909 0910 0911 
39 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927 
3A 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 
38 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 09S5 0956 09S7 0958 09S9 

JC 0960 0961 0962 0963 0964 0965 0966 '1967 0968 0969 0970 0971 0972 0973 0974 097S 
30 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991 
JE 0992 0993 09CM 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 IOOS 1006 1007 
3F 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 

4C 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 
41 1040 1041 1042 1043 1044 1045 1046 1047 1()48 1049 1050 1051 1052 1053 1054 1055 
42 1056 1057 1058 10S9 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 
43 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 

44 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 llO:l 1103 
45 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 I lie 1119 
46 1120 1121 1122 1123 1124 1125 1126 1127 1128 1\29 1130 1131 1132 1133 1134 1135 
47 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 

48 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 
49 1168 1169 1170 I 171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 
4~ 1184 1185 1186 1187 1188 1189 1190 1191 1192 1\93 1194 1195 1196 1197 1198 1199 
48 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 

4C 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 
4[ 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 
4E 1248 1249 1250 1251 1252 1253 1254 12S5 1256 1257 12S8 1259 1260 1261 1262 1263 
4F 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 

50 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 
51 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 
!>2 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 132S 1326 1327 
S3 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 

S4 1344 134S 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 
SS 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 
56 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 
S7 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 

SS 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 
si; 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 
s~ 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 
SB 1456 1457 1458 14S9 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 

SC 1472 1473 1474 147S 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 
SD 1488 1489 1490 1491 1492 1493 1494 149S 1496 1497 1498 1499 1500 1501 1502 1503 
SE IS04 1S05 1S06 1S07 1508 IS09 1510 IS II 1512 1513 ISl4 1515 1516 1517 1518 1519 
SF 1520 IS21 1522 1S23 1524 1525 1S26 1527 IS28 1529 IS30 IS31 1532 1533 1534 1535 



Conversion Tables I 565 

Table H-2. Hexadecimal-Decimal Conversion Table (continued) 

0 1 2 3 4 s 6 7 8 9 A B c D E F 

60 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 154S 1549 1550 1551 
61 1552 1553 1554 1555 1556 1557 155S 1559 1560 1561 1562 1563 1564 1565 156<> 1567 
62 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 
63 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 

64 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 
65 1616 1617 16J8 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 
66 1632 1633 1634 1635 1636 1637 163S 1639 li140 1641 1642 1643 1644 1645 1646 1647 
67 1648 1649 16~0 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1~2 1663 

68 1664 1665 1666 1667 166S 1669 1670 1671 1672 1673 1674 1675 16/6 1677 1678 1679 
69 16SO 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 
6A 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 
68 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 

6C 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 
6D 1744 1745 1746 1747 174S 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 
6E 1760 1761 1762 1763 1764 1765 1766 1767 l76S 1769 1770 1771 177:? 1773 1774 1775 
6F 1776 1777 1778 1779 1780 17SI 1782 17S3 1784 17S5 1786 1787 17SS 1789 1790 1791 

70 17Q] 1793 1794 1795 1796 1797 1798 1799 lSOO 1801 1802 1S03 1804 1805 IS06 1807 
71 1808 1809 1810 1811 1812 IS13 ISl4 IS15 IS16 1817 1818 1819 1820 1821 1822 1823 
n 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 IS39 
73 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 IS51 1852 1853 1854 1855 

74 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 IS71 
75 1872 1a73 1874 1875 1876 1877 1878 1879 1880 18S1 ISS2 18S3 1884 ISS5 1886 1S87 
76 IS88 ISS9 1890 1891 18'f2 1893 1894 1895 1S96 1897 1898 IS99 1900 1991 1902 1903 
77 1904 1905 1906 1907 1908 1909 1910 1911 1912 l~l.t 1914 1915 1916 1917 1918 1919 

78 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 
79 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 194S 1949 1950 1951 
7A 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 
78 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 197S 1979 1980 1981 1982 19S3 

7C 1984 1985 1986 19S7 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 
70 2000 2001 2002 2003 2004 ioo5 L006 2007 2008 2009 2010 2011 2012 2013 2014 2015 
7E 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 202S 2029 2030 2031 
7F 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 

80 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 
81 2064 2065 2066 2067 206S 2069 2070 2071 2072 2073 2074 2075 2076 2077 207S 2079 
82 2080 2081 2082 20S3 2084 2085 2086 20S7 2088 2089 2090 2091 2092 2093 2094 2095 
S3 2096 2097 209S 2099 2100 2101 2102 2103 2104 2105 2106 2107 210S 2109 2110 2111 

84 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 
85 212S 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 
86 2144 2145 2146 2147 214S 2149 2150 2151 2152 2153 2154 2155 2156 2157 215S 2159 
S7 2160 2161 2162 2163 2164 2165 2166 2167 216S 2169 2170 2171 :?172 2173 2174 2175 

88 2176 2177 217S 2179 2180 2181 2182 2183 2184 2185 2186 2187 21S8 2189 2190 2191 
89 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2L07 
SA 220S 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 
811 2224 2225 2226 2227 222S 2229 2230 2231 2232 2233 2234 2235 2236 2237 223S 2239 

SC 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 
80 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 
SE 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 
SF 22S8 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 



566 I Apple II User's Gulde 

Table H-2. Hexadecimal-Decimal Conversion Table (continued) 

0 I 2 3 4 5 6 7 8 9 A B c D E F 

90 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 
91 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 
92 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 
93 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 

94 2368 2369 2370 2371 2372 2373 23;4 2375 2376 2377 2378 2379 2380 2381 2382 2383 
95 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 
96 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 
97 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 

98 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 
99 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 
9A 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 
98 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 

9C 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 25\0 2511 
90 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 
9E 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 
9f 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 

AO ?560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2577 2573 2574 2575 
Al 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 
A? 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 
AJ 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 76'10 2621 2627 2623 

A4 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 7636 2637 2638 2639 
A5 2640 2641 2642 2643 264.4 2645 2646 2647 2648 2649 2650 2651 2652 2653 7654 2655 
A6 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 
A7 2677 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 

AB 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 269!1 2699 2700 2701 1702 2703 
A9 2704 2705 2706 2707 2708 2709 2710 2711 271<' 2713 2714 <'715 2716 2717 2718 2719 
AA 2720 <'721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2Z35 
AB 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 

AC 2752 2753 2754 2755 2756 275/ 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 
AD 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 
AE 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 
AF 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 

BO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 
Bl 2832 2833 2834 2835 2836 2837 2838 2839 2840' 2841 2842 2843 2844 2845 2846 2847 
82 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 
BJ 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 

84 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 
B5 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 
86 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 7926 2927 
87 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 

88 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 
89 2960 2961 2967 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 
8~ 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 i98C 2987 2988 /989 2990 2991 
88 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 

BC 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3027 3023 
BO 3024 3025 3026 3027 3078 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 
BE 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 
BF 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 



Conversion Tables I 567 

Table H-2. Hexadecimal-Decimal Conversion Table (continued) 

0 I 2 3 4 5 6 7 8 9 A B c D E F 

co 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 
Cl 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 310:.> 3103 
C2 3104 3105 JI06 Jl07 3108 JI09 JllO 3111 Jll 2 31 IJ 3114 3115 3116 JI 17 3118 3119 
CJ 3120 J121 3122 312J 3124 Jl25 3126 3127 3128 3129 Jl30 3131 3132 3133 3134 3135 

C4 3136 31J7 3138 3139 3140 3141 3142 J143 3144 3145 Jl46 3147 3148 Jl49 3150 3151 
cs 3152 3153 3154 Jl55 3156 3157 Jl58 3159 Jl60 3161 Jl62 Jl6J 3164 3165 Jl66 3167 
C6 3168 3169 3170 3171 3172 Jl73 3174 3175 3176 3177 3178 Jl79 JISO 3181 3182 3183 
C7 3184 3185 3186 J187 J188 3189 J190 J191 3192 3193 3194 3195 3196 3197 3198 3199 

CB 3200 J201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 J212 3213 Jn4 3215 
C9 3216 J217 3218 3219 3220 3221 3222 322J 3224 3225 3226 J227 3228 3n9 3730 :?231 
0 3232 32J3 3234 J235 3216 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 J:.?47 
CB 3248 3249 3250 3251 3252 J25J 3254 3255 3256 3257 3258 3259 3260 3261 3262 3:.'63 

cc J264 3265 J266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3:178 3279 
CD 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 
CE 3296 J297 3298 J299 J300 3301 3302 3JOJ 3304 3305 3306 3J07 3308 3309 3310 3311 
CF 3Jl2 3313 J314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 

DO J328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 
DI 3344 3345 3346 3347 3J48 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 
02 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 J371 3371 3373 3J74 3375 
DJ 3376 J377 3378 J379 J380 3381 3382 3383 3J84 3385 3386 3387 3388 3389 3390 3391 

04 3392 3393 3394 3395 JJ96 JJ97 3398 3399 3400 J"401 3402 J403 J404 J405 3406 J407 
05 3408 3409 3410 3411 3412 341J 3414 3415 3416 J417 J418 3419 3420 3421 34n J423 
06 3424 3425 3426 3427 3428 J429 34JO 3431 3432 J4J3 3434 3435 3436 34J7 3438 3439 
07 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 J45J 3454 3455 

DB 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 
09 3472 3473 3474 3475 J476 3477 3478 3'79 3480 J481 3482 3483 J484 3485 3486 3487 
0,6 3488 J489 3'90 3491 3492 3'93 3494 3'95 3'96 3497 3498 3499 3500 3501 J502 350J 
DB J504 3505 3506 3507 3508 3509 3510 3511 3512 3513 J514 3515 3516 J517 3518 3519 

DC 3520 3521 3522 J523 3524 3525 3526 3527 3528 3529 3530 J531 3532 3533 3534 3535 
DD 3536 J537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 
DE 3552 3553 3554 JSSS 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 
OF 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 

EO 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 
EI 3600 3601 3602 360J 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 
E2 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 
EJ 3632 36J3 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 

E4 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 
ES 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 
E6 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 
E7 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 

EB 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 
E9 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 
E.A 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 
EB 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 

EC 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 
EC 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 
EE 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 
EF 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 



568 I Apple II User's Guide 

Table H-2. Hexadecimal-Decimal Conversion Table (continued) 

0 I 2 J 4 5 6 7 8 9 A 8 c D E F 

FO 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 
Fl 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 
F2 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 
f3 3888 3889 38~ 3891 3892 3893 3894 3895 3896 3897 389C 3899 3900 3901 3902 3903 
f4 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 

F5 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 
f6 3936 3937 393B 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 
F7 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 
F8 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 

F9 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 
FIS 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 
F8 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 
FC 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 

FO 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 
FE 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 
FF 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 



Screen Display Forms I 

Use photocopies of the forms in this appendix to plan the 
appearance of the display screen. On the text screen form (Figure 
I-1), row and column numbers start with 1, which is appropriate 
for text work. On the low-resolution graphics screen form (Figure 
I-2), row and column numbers start with 0, as do low-resolution 
graphics commands. For 80-column text screen planning, use 
graph paper with eight squares to the inch. For high-resolution 
graphics design, use graph paper with 20 squares to the inch. 



~ 

~· 
1 2 3 4 5 6 7 8 

"1 
(t) 

Horizontal Tab Position 
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

c.n 
Cj 

-.... 
..... 
I 2 
~ 

3 

~ 4 
:>< 
r-+-

51 
00 I I I I ,, 
n 6 "'1 

~ 
a> 
= 
c: 
m 
U>' 

(t) 

7 (t) 
::s 

8 

~ 9 

g> 
~ 

"'1 
r-+- 10 ;· 
~ 11 
1-".3 

12 ~ er 

a' 
13 

r.n 14 
~ 
5· 15 
::s 

16 

17 

18 

19 

20 

21 

22 

23 

24 



~ 

~-

"" ~ 
~ 
I 

~ 

~ 
i 
0 c 
~ 

5· 
:::s 

~ 
~ 
'C 
:f" 
~· 
Ul 
r.i 

~ 
tD ::s 

w 
~ 
3 
O"' 
tD 
""S 

Column Number 

0 1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930313233343536373839 

?1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

~I I I I I I 1 · I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

i1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

~I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

~I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

~?t--+-+-+-+-+--+--+--+--+--+--+-+-+--t---lt--t--+-+-+-+--+--+--+--+--+--+-+--tt--t--+-+--+--+--+--+--+--+-+--+---4 
~~t--+-+-+-+-+--+--+--+--+--+--+-+-+--t---lt--t--+-+-+--+--+--+--+--+--+-+-+--tl--t--+-+--+--+--+--+--+--+-+--+---4 

~it-+-+-+-+--t--t--t--+--t--+-+---t---t--t--11--t--t-+-+--t--t--+--t--t--+-+---t--t~t--+-+--t--t--+--+--+--+-+--+--4 
~~t-+-+-+-+--+--+--+--+--t--+-+---t---t--t--11--t--t-+-+--t--t--t--t--+--+-+---t--tl--t--+-+-+--+--+--+--+--+-+-+--4 
~:~.-+--+--+--+--+--+--+-+-+-+--+--+--+--t--t--1--1~~1--t--t--+-+-+-+-+-+--+--+-.............. -+--+--+--+-+-+--+--+........f 

~~t--+-+-+-+--+--+--+--+--+--+-+-+--+--t---lt--t--+-+-+-+--+--+--+--+--+-+--+--t'--t--+-+-+--+--+--+--+-......... -+--+........f 

~~t--+-+-+-+--+--+--+--+--+--+-+--+--+--t---lt--t--+-+-+-+--+--+--+--+--+-+--+---11--t--+-+--+--+--+--+--+-......... ~--+ ......... 

~:t--+-+-+-+--+-+--+--+--+--+-+-+-+--t---lt--t--+-+-+-+--+--+--+--+--+-+--+---11--t--+-+-+--+--+--+--+--+-+--+--I 

~~t-+-+-+-+--t--t--+--+--t--+-+---t---t--t---11--t--+-+-+--t--t--r--+--+--+-+---t--11--t--+-+--t--t--+--+--+--+-+--+--4 
~3t--+-+-+-+-+--+--+--+--+--+-+--+--+--t---lt--t--+-+-+-+--+--+--+--+--+-+-+--t~t--+-+-+--+--+--+--+-......... -+--+........f 

~~r--t--+-+-+-+-+--t--t--+--+---t--+-+---t--t---11--t--t-+-+--t--t--+--+--+--+-+---t--1t--+-+-+-+--t--+--+--+--+-+---4 
~~t--+-+-+-+-+-+--t--t--+--+-+-+-+--1---i~t--+-+-+-+-+--t--+--+--+-+-+--t~t--+-+-+-+--t--+--+--+--+--+--f 
34 
35t--+-+-+-+--t--+--+--+--+---t--+---t---t--t--1t--t--+-+-+--t--+--+--+--+--+-+---t--t~t--+-+-+--+--+--+--+--+-+--+--t 

~~t--+-+-+-+--+--+--+--+--+--+-+-+--+--t---lt--t--+-+-+-+--+--+--+--+--+--+--+--t--lt--+-+-+-+--+--+--+--+-+-+--t 
38,_...+-+-+-+--t--+--+--+--t--+-+---t---t--t--11--t--t--+-+--t--t--t--t--+--+-+---t--t--1t--t-+-+--+--+--+--+--+-+-+--t 
~t--+-+-+-+--+--+--+--+--+--+--+---t--+--t---lt--t--+-+-+-+--+--+--+--+--+--+--+--t--1t--+-+-+--+--+--+--+--+-+-+--t 

:~ ............. ______ .............. ___________ -+-+---1---1--t--+-+-1---....... __ ---------+---t~t--+------------------+--
~t--+-+-+-+-+-+--t--+--t--+-+-+-+--l---i~t--+-+-+-+-+--t--+--+--+-+-+--l--lt--+-+-+-+--+--+--+--+-t---+--f 
45,_...+-+-+-+--+--+--+--+--t--+-+---t---t--t--11--t--t--+-+-+--+--+--+--+--+-+---t--tt--t--+-+-+--+--+--+--+--+--+--+--t 
:~t--t--+-+-+-+-+--+--+--+--+--+-+-+---t--t--11--t--+-+-+--t--t--+--+--+--+--+--+---lt--t--+-+-+--+--+--+--+--+-+--I 

w 
m ;:, 

CJ 
~· 

~ 

~ 
.......... 

(11 
........ 
-lo 



Index 

A 
ABS function, 498 
Accessory cards, 5-7 

Disk II controller, 7 
80-column, 7 
Graphics Tablet controller, 7 
Integer BASIC firmware, 7 
Language System, 7 
Parallel Interface, 7 
Super Serial, 7 

Active-40 mode, 87 
Active-80 mode, 87 
Addresses, memory, 178 
Ampersand command, 106-09 
AND, 143 
APPEND command, 278-79 

DOS 3.3, 427-28 
ProDOS, 426 

Apple II 
models compared, 1, 527-31 
resetting, 43-44 
restarting, 28 
starting, 23-28 
starting without disks, 38 

Applesoft 
array dimension limits, 136 
command prompt character, 

34-84 
commands, 426-97 
error message format, 91-92 
functions, 498- 511 

line length, 88 
line number range, 98 
loading from tape, 39-40 
machine language programs 

with, 415-16 
multiple-statement lines, 101 
quitting, 109 
restarting from Machine 

Language Monitor, 392 
significant digits, 90 
starting, 83-84 
statements, 426-97 
variable names, 130-32 

Application programs, 20 
Arcs, drawing, 350-51 
Arrays, 134-37 

assigning values to, 
146-47 

clearing, 149-50 
dimensioning, 135-37 
elements, 134 
indexes, 134 
inputting values, 152-55 
memory used by, 525 
multidimensional, 135-36 
names, 134 
redimensioning, 137 
types, 134, 135 
zero element of, 525 

Arrow keys, 31 
cursor movement with, 92-93 

573 



574 I Apple II User's Guide 

ASC function, 498 
ASCII, 126, 239-40 

code numbers, 533-36 
conversion functions, 158 

Aspect ratio, 352 
Assembly language, 

408-09, 413-15 
Asterisk 

indicating locked 
file, 114-19 

Machine Language 
Monitor command prompt, 
391-92 

multiplication symbol, 145 
ATN function, 498-99 
AUTO command, 102-03, 428 
Average Growth Rate program 

B 

description, 339-41, 344 
listing, 341-43 

Bach Minuet program 
description, 382, 385-86 
listing, 384-85 
musical score, 383 

BASIC. See al,so 
Applesoft; Integer BASIC 
command prompts, 33-34 
commands, 426-97 
commands, terminating, 

86 
commands, typing, 85-86 
compiler, 523-24 
dialects of, 82-83 
functions, 498-511 
immediate mode, 87 
line length, 86-87, 88 
machine language 

programs with, 415-16 
origin of, 82 
starting, 83-85 
starting programs, 35, 

39-40 
startup disk, creating, 85 
statements, 426-97 

Beep character, 126 
BLOAD command, 326-27 

DOS 3.3, 429 
ProDOS, 428-29 

Booting, 27 
Branching, 161-65 

computed, 163-65 
from subroutines, 171-73 
to subroutines, 170-72 
unconditional, 161-62 

BRUN command, 36, 327 
DOS 3.3, 430-31 
ProDOS, 429-30 

BSAVE command, 325-26 
DOS 3.3, 432 
ProDOS, 431-32 

Buffers, 269 
flushing, ProDOS, 316-17 
maximum, DOS 3.3, 

328-29 
printer, 15-16 

Byte number, 299-300, 304 
Bytes, 5, 362-63 

c 
CALL statement, 179, 416, 

432 
accessing Machine Language 

Monitor, 391-92 
accessing Mini-Assembler 

with, 409 
clearing graphics screen 

with, 347 
clearing text screen with, 

183 
filling graphics screen with, 

347 
Capital letters, 32 

BASIC commands, 86 
CAPS LOCK key, 30 
Carriage return, 186-88, 278, 

304 
Cassette recorder, 13-15 

loading programs from, 123 
retrieving memory contents 

from, 400-01 
saving memory contents 

on, 399-400 
saving programs on, 122-23 
saving several programs 

on, 122-23 
starting programs from, 

37-40 



volume adjustment, 38-39 
write-protecting cassettes, 

13-15 
CAT command, 433, 115 
CATALOG command 

DOS 3.3, 119-20, 433-35 
ProDOS, 114-15, 433-34 

Catalog, DOS 3.3 disk, 77-78 
CHAIN command 

DOS 3.3, 435-36 
ProDOS, 435 

Characters 
ASCII, 126 
ASCII codes, 533-36 
carriage return, 186-88 
changing, 94-95 
control, display screen, 204 
control, printer, 257-63 
control, with GET statement, 

207 
deleting, 95-96, 420 
determining from screen, 

239 
displaying, 88 
flashing style, 198 
inserting, 96-97 
inverse style, 197-98 
invisible, 126, 188 
keystrokes for, 533-36 
Mousetext, 199-200 
output rate, 198 
recopying, 420 
screen codes, 537 
style in Machine 

Language Monitor, 407 
CHR$ function, 184-85, 

243, 499 
Circles, drawing, 348-54 
CLEAR command, 150, 436 
CLOSE command, 269-70 

DOS 3.3, 436-37 
ProDOS, 436 
random-access files, 304 

CLR command, 150-51, 437 
Colon, in program lines, 101 
Color 

background, high
resolution, 347 

Index I 575 

background, low
resolution, 337 

complement, 369 
determining, low

resolution, 338 
low-resolution, 333 
palettes, high-resolution, 

347 
phenomena, high

resolution, 346-47 
selecting, high-resolution, 

345 
selecting, low-resolution, 

334 
COLOR= statement, 334, 

437-38 
Combination keystrokes, 

32-33 
Command prompts. See Prompt 
Command summary. See 

also specific command name 
format of, 423 
generic terms in, 423-25 
nomenclature in, 423 

Commands. See also 
specific command name 
DOS 3.3, 118-22 
editing, 92-97 
ProDOS, 111-18 
summary, 426-97 
terminating, BASIC, 86 
typing, BASIC, 85-86 

Commas 
prohibited in numbers, 

126, 153 
separating variables with, 

153 
setting tab stops with, 

188-90 
Comments, program, 101-02, 

525 
Compilers, 20-21 
Composite monitor, 9-10 
CON command, 176, 438 
Concatenation, string 

Applesoft, 139 
Integer BASIC, 157-58 

Conditional execution, 174-76 



576 I Apple II User's Gulde 

Console 
contents of, 4-5 
switching on, 26-28 

CONT command, 176, 
438-39 

Control characters, 204, 207, 
257-63 

CONTROL key, 30, 32-33 
CONTROL-A, 243 
CONTROL-B, 34 
CONTROL-C, 177, 392 
CONTROL-D, 185 
CONTROL-E, 395-96, 398-99 
CONTROL-I, 243 
CONTROL-K, 407 
CONTROL-P, 407 
CONTROL-S, 100 
CONTROL-X, 33, 86, 103 
CONTROL-Y, 407-08 
Conversion tables, number, 

562-68 
CONVERT Menu, 63-67 
COPY program, 72-74 
COPYA program, 72-74 
COS function, 499 
CREATE command, 115-16, 

439 
Cursor, 28-29 
control from BASIC, 195-96 

control subroutines, 

D 

machine language, 553 
designs of, 92-93, 185 
determining position of, 196 
invisible in text window, 345 
movement with keystrokes, 

420 
moving, 92-94 
position of, 541 

Dash command, 328, 439 
Data Files. See Files 
DATA statement, 148-49, 440 
Date, setting ProDOS, 67 
Debugging, 179-81 
DEF FN statement, 158-60, 

440-41 
Degrees, 351, 370 
DEL command, 105, 441 

DELETE command, 272-73 
DOS 3.3, 121, 442 
ProDOS, 116, 441-42 

DELETE key, 30 
DIM statement, 132-33, 

135-37 
Applesoft, 442-43 
Integer BASIC, 443-44 

Directories, ProDOS disk, 
46-47 
creating, 57, 115-16 
deleting, 116 
listing, 114-15 
locking, 116 
renaming, 116 
unlocking, 116 

Disk drives. See also Disks, 
11-13 
Disk 11, 11-12 
Duodisk, 11-12 
hard disk, 12-13 
inserting disk into, 25-26 
Profile, 12-13 
specifying, 36-37, 58 
specifying, DOS 3.3, 122 
specifying, ProDOS, 

117-18 
Diskettes. See Disks 
Disks 

capacity of, 12 
catalog, DOS 3.3, 77-78, 

119-20 
checking, ProDOS, 60 
comparing, ProDOS, 61 
converting, DOS 3.3 

to/from ProDOS, 63-67 
directories, ProDOS, 

46-47 
diskettes, 12 
duplicating, DOS 3.3, 

72-74 
duplicating, ProDOS, 

59-60 
files, DOS 3.3, 72 
files, ProDOS, 46 
floppy, 12 
formatting, ProDOS, 59 
initializing, DOS 3.3, 

120-21 



inserting, 25-26 
listing available, ProDOS, 

60 
renaming, ProDOS, 60 
retrieving memory from, 

401-02 
saving memory contents 

on, 401 
space available, DOS 3.3, 

78 
space available, ProDOS, 

61 
start-up, 24-25, 27 
starting programs from, 

33-37 
13-sector, 37 
volume number, DOS 3.3, 

77-78 
write-protecting, 12 

Display screen. See also 
Output 
carriage return, 187-88 
character codes, 239-40, 

537 
clearing, 183, 333-34, 347 
color monitors, 9-10 
control characters, 204 
controlling, 543-45 
cursor control, 195-96 
design forms, 569-71 
designing input forms for, 

209-10 
freezing with CONTROi.rs, 

100 
line width, text, 7-8, 

86-87, 184-85 
modes, 331 
monochrome monitors, 8 
special effects, 197-204 
subroutines, built-in, 553 
switching on, 23-24 
television, 8-9 
vertical blanking interval, 

546 
DOS 3.3. See also Disks; 

Files; individual command 
names 
commands, 426-97 

Index I 577 

converting to ProDOS, 
63-67 

earlier versions of, 37 
error interception 

problems and, 276-77 
file buffers, 269 
files, 72 
immediate mode 

restrictions, 422 
loading from Machine 

Language Monitor, 393 
starting up with, 27 
System Master Disk, 71 

Double high-resolution 
graphics, 331, 374 

Down-arrow key, 31 
cursor movement with, 

92-93 
DRAW statement, 368-69, 444 
Drives. See Disk drives 
DSP command, 181, 444-45 

E 
Edit mode, 92-93 
Editing techniques, 92-97, 

103-09 
80-column adapter 

activating, 86-87, 184-85 
activating from Machine 

Language Monitor, 393 
deactivating, 87 
mouse effect on, 225 
printer effect on, 241-42 
slot used, 7 · 

Ellipses, drawing, 352 
END statement, 100-01, 177, 

445 
Entries, terminating with 

RETURN key, 32 
Errors 

Applesoft messages, 513-16 
code, determining, 542 
codes, 514 
DOS 3.3 messages, 521-22 
formats of, BASIC, 91-92 
Integer BASIC messages, 

516-18 
intercepting program, 274-77 



578 I Apple II User's Gulde 

interception indicator, 542 
line number, determining, 542 
problems with, 276-77 
ProDOS messages, 518-20 

ESC key, 30 
changing line width with, 87 
editing commands with, 92-97 
in STARTUP program, 50, 52 

Escape mode, 92-93 
EXEC command, 300-02 

DOS 3.3, 446-47 
ProDOS, 445-46 

EXP function, 499 
Expansion slots, 5-7 
Exponential regression, 339 
Expressions 

F 

arithmetic, 139-41 
functions in, 156 
integer, 139-40, 146 
logical, 143-44, 145 
mixed-type, 144:46 
operators, 145 
precedence of operators 

in, 138, 145 
real, 141, 146 
relational, 141-43, 145, 175 
string, 139 

FID program 
copying files with, 76-77, 80 
disk catalog with, 77-78 
disk space available, 78 
drive and slot, specifying, 

76, 79 
errors, 79-80 
file deleting with, 79 
file locking with, 78-79 
file names in, 74-76 
file unlocking with, 78-79 
file verifying with, 79 
quitting, 79 
starting, 36, 74 
wildcard characters in, 74-76 

Fields, 266 
separating values of, 277-78 
skipping, 279-80 

File Commands Menu. See 
also Files, 52-57 

FILEM program. See 
FID program 

Filer Menu 
default response selection, 

61-62 
File Commands Menu, 52-57 
file names in, 52-54 
paths in, 52-54 
quitting, 62 
specifying the disk drive 

in, 58 
starting, 52 
Volume Commands Menu, 

57-61 
wildcard characters in, 

53-54, 55 
Files 

accessing methods, 266-68 
appending to sequential, 

278-79 
binary, 325-27 
buffers, 269 
buffers, flushing ProDOS, 

316-17 
closing, 269-70 
closing, random-access, 304 
comparing, ProDOS, 57 
copying DOS 3.3, 76-77, 80 
copying ProDOS, 56 
deleting, 272 
deleting DOS 3.3, 79, 121 
deleting ProDOS, 56, 116 
DOS 3.3, 72 
end of, in Integer BASIC, 

276 
end of random-access, 305 
end of sequential-access, 

274-76 
layout, 266-67 
listing ProDOS, 55-56 
locking DOS 3.3, 78-79, 121 
locking ProDOS, 57, 116 
machine language, 325-27 
names, DOS 3.3, 72 
names, ProDOS, 48 
number open, DOS 3.3, 

328-29 
opening, 268-69 



opening random-access, 
302-04 

ProDOS, 46 
reading random-access, 

304-05 
reading sequential, 273-74 
record length, 302-04 
renaming, 116 
renaming DOS 3.3, 121 
renaming ProDOS, 57 
separating data values in, 

277-78 
skipping characters in, 

299-300 
skipping fields in, 279-80 
structure of, 265-66 
types, DOS 3.3, 77 
types, ProDOS, 56 
unlocking, 116 
unlocking· DOS 3.3, 78-79, 

121 
unlocking ProDOS, 57 
verifying DOS 3.3, 79 
writing random-access, 

304-05 
writing sequential, 270-73 

FLASH command, 198, 447 
DOS 3.3 data file 

problems, 271 
Floppy disks. See Disks 
FLUSH command, 316-17, 

447-48 
FN function, 158-60, 500 
FOR statement, 166-69, 

448-49 
Formatting, disk, 59, 120-21 
FP command, 85, 449-50 
FRE command, 450 
FRE function, 500 
Function summary. See 

Command summary; specific 
function name 

Functions. See also specific 
function name, 155-60, 
498-511 
ASCII conversion, 158 
derived numeric, 508-11 
string concatenation, 157-58 

Index I 579 

substring, 156-57 
user-defined, 158-60 

Future Projections program 
description, 340-41, 343 
features, 338-40 
listing, 341-43 

G 
Game controls, 19-20 
memory locations, 546-49 
GET statement, 207, 450-51 

ONERR GOTO problems and, 
276-77 

GOSUB statement, 171-72, 
174, 451 

GOTO statement, 161-62, 
164-65, 452 
and subroutines, 170-71 
in IF-THEN statements, 176 

GR statement, 332-33, 452 
Graphics. See also High

resolution graphics; Low-
resolution graphics 
background color, 337, 347 
colors, 333, 334, 345, 346 
double high-resolution, 

331, 374 
full-screen, 333-34 
line drawing, 335-37, 346 
modes, 331 
Mousetext characters, 

199-203 
shapes, 356-74 
text window, 332-34, 345 

Graphics Tablet controller 
card, 7 

Graphs, 338-43 
Greeting program, 121 

H 
Hand controls. See Game controls 
HCOLOR= statement, 345, 453 
Hexadecimal arithmetic, 407 
Hexadecimal numbers, 392-93 
HGR statement, 344-45, 453-54 
HGR2 statement, 454 
High-resolution graphics 

arcs, 350-51 
background color, 347 



580 I Apple II User's Guide 

circles, 348-50 
clearing screen, 347 
color phenomena, 346-47 
colors, 345 
ellipses, 352 
line drawing, 346 
point plotting, 346 
polygons, 350 
rays, 351 
resolution of, 344 
shapes, 356-74 
starting, 344-45 
text window with, 345 

HIMEM: command, 454-55 
HLIN statement, 336, 455-56 
HOME command, 183, 456 
HPLOT statement, 346, 456-57 
HTAB statement, 195-96, 457 

with printer, 246 

I 
IF-THEN statement, 175-76 

Applesoft, 457-58 
Integer BASIC, 458-59 

Imagewriter. See Printer 
Immediate mode, 87 

Integer BASIC 
restrictions, 422 

IN# command, 459-60 
INIT command, 120-21, 460 
Initializing, disk, 59, 120-21 
Input 

redirecting, with Machine 
Language Monitor, 408-09 

subroutines, built-in, 552 
Input, keyboard 

checking responses, 205-06 
controlling, 205 
demonstration program, 

210-17 
entry field templates, 207-09 
grouped, 209-10 

INPUT statement, 152-55 
Applesoft, 460-61 
Integer BASIC, 462 
ON-ERR GOTO problems 

and, 276-77 
prompt message, 154-55 
reading data files with, 274 

reading mouse with, 226 
writing data files with, 

277-78 
INT command, 85, 463 
INT function, 501 
Integer BASIC 

array dimension limits, 136 
command prompt, 34 
commands, 426-97 
error message format, 91-92 
functions, 498-511 
line length, 88 
line number range, 98 
line numbering, automatic, 

102-03 
machine language programs 

with, 415-16 
multiple-statement lines, 101 
number range, 89 
quitting, 109 
restarting from Machine 

Language Monitor, 392 
starting from Applesoft, 85 
statements, 426-97 
variable names, 132-33 

Integer BASIC firmware 
card, 7 

Interface cards. See 
Accessory cards 

Interpreters, 20-21 
INVERSE command, 

197-98, 463 

J 

DOS 3.3 data file problems 
with, 271 

Joystick, 19 

K 
K, 5 
Keyboard. See also specific 

key names, 6-7 
character typed, 542 
repeating keys, 33 
status, 542 
status with mouse 

active, 227 
using, 29-32 

Language System card, 7 



LEFT$ function, 501 
Left-arrow key, 31 

cursor movement with, 
92-93 

deleting characters with, 
94-95 

LEN function, 157-58, 501 
LET= statement, 146-47, 

463 
Line numbers, 98 
Line width, BASIC, 86-87, 

88 
setting, 184, 185 

Lines 
drawing high-resolution, 

346 
drawing low-resolution, 

335-37 
editing program, 420 

LIST command, 98-100, 
103-04, 464 
paging with, 246 
printer, 243-44 

LOAD command 
cassette, 123, 465-66 
DOS 3.3, 118-19, 465 
ProDOS, 113, 464-65 

LOCK command 
DOS 3.3, 121, 466-67 
ProDOS, 116, 466 

Locking 
disks, 12 
files, DOS 3.3, 78-79, 121 
files, ProDOS, 57, 116 

LOG function, 501-02 
LOMEM: command, 467 
Loops, 166-69 

illegal, 169 
nested, 167-69 

Low-resolution graphics 
background color, 337 
clearing screen, 333-34 
color, determining, 338 
color, selecting, 334 
colors, 333 
design form, 571 
diagonal line drawing, 

335-36 
ending, 334 

Index I 581 

full-screen, 333 
graphing with, 338-43 
horizontal line drawing, 

336 
point plotting, 335 
resolution, 332 
starting, 332-33 
subroutines, built-in, 552 
text window, eliminating, 

333 
text window, rest.oring, 334 
vertical line drawing, 

336-37 
Lowercase letters, 32 

BASIC commands, 86 

M 
Machine Language 

Monit.or, 21 
accessing, 391-92 
altering memory with, 

396-98 
altering registers with, 

398-99 
command prompt, 34, 

391-92 
comparing memory with, 

404-05 
disassembling machine 

language programs with, 
413-15 

examining memory with, 
393-95 

examining registers with, 
395-96 

filling memory with, 
403-04 

hexadecimal arithmetic 
with, 407 

hexadecimal numbers with, 
392-93 

leaving, 392 
memory location pointer, 

393, 395, 396, 397 
moving memory with, 402 
printers with, 407 
purpose of, 391 
redirecting input with, 

408-09 



582 I Apple II User's Guide 

retrieving memory contents 
from tape, 400-01 

saving memory contents on 
tape, 399-400 

starting machine language 
program from, 406 

user-definable command, 
407-08 

verifying memory with, 405 
Machine language programs 

from BASIC, 179, 415-16 
location in memory, 416 
putting in memory, 379-80 
registers and, 416 
relocating in memory, 416-17 
speaker driver, 378-79 
starting from Machine 

Language Monitor, 406 
Mailing-List Creation 

program 
description, 287-89 
DOS 3.3 changes for, 

289-90 
listing, 281-87 

Mailing-List Entry program 
description, 210, 217-22 
listing, 210-15 
variables, 216-17 
with 80-column screen, 222 

Mailing-List Entry With 
Mouse program 
description, 238-40 
listing, 229-35 
variables, 236-37 

Mailing-List Print program 
description, 290, 298-99 
listing, 291-98 

MAN command, 103, 468 
MAXFILES command, 269, 

328-29, 468 
Memory 

addressing, 178 
altering several locations, 

397 
altering single locations, 

396-97 
capacity, 5 
changing, 179 

checking alterations to, 397 
comparing blocks of, 404-05 
cursor position locations, 

541 
display screen control 

locations, 543-45 
error locations, 542 
examining blocks of, 394-95 
examining single locations, 

393-94 
examining words of, 394 
filling, 403-04 
game control locations, 

546-49 
inspecting, 178-79 
keyboard locations, 542 
location pointer, 393, 

396, 397 
moving, 402 
read-only, 5 
read/write, 5 
retrieving from disk, 401-02 
retrieving from tape, 400-01 
saving contents on disk, 

401 
saving on tape, 399-400 
speaker locations, 543 
text window locations, 

539-41 
two-location values, 179 
verifying with copy on tape 

or disk, 405 
vertical blanking interval 

location, 546 
Messages, error 

Applesoft, 513-16 
DOS 3.3, 521-22 
Integer BASIC, 516-18 
ProDOS, 518-20 

MID$ function, 502 
Mini-Assembler 

accessing, 409 
addressing modes, 410-11 
availability, 409 
command prompt, 409 
disassembly, 413-15 
features, 408-09 
instruction formats, 410-11 



leaving, 410 
location counter, 412 
Machine Language Monitor 

commands from, 409-10 
sample session, 412-14 
typing errors, 411 

Modems, 17-18 
MON command, 329, 468-69 
Monitor. See Display screen· 

Machine Language Moni~r 
Mouse, 19-20 

activating, 225 
button status, 227 
deactivating, 228-29 
keyboard status with, 227 
pointer, 225-26, 227-28 
position, 226-27 
programming, 222, 239 
reading, 226-27 

Mouse Drawing program, 223-24 
Mousetext characters 

activating, 199 
deactivating, 200 
demonstration program, 

200-03 
Music 

note lengths, 381-82 
notes, 381 
pitch numbers, 381 
playing, 382-86 
rests, 386 

Music Composer program 
description, 386, 388-89 
listing, 386-88 

N 
NEW command, 109, 469 
NEXT statement, 166-69, 469-70 
NODSP command, 181, 470 
NOMON command, 329, 470 
NORMAL command, 471 
NOT, 144 
NOTRACE command, 181, 471 
Null command, ProDOS and 

DOS 3.3, 273 
Numbers 

commas in, 126 
integers, 127 
real, 126 

0 

Index I. 583 

roundoff, 129 
scientific notation, 126 
significant digits, 129 

ON -GOSUB statement, 174, 
472-73 

ON -GOTO statement, 163-64, 
473 

ONERR GOTO statement, 274-
77, 471-72 
problems with, 276-77 

OPEN command, 268-69 
DOS 3.3, 474 
ProDOS, 473-74 
random-access files, 302-04 

OPEN APPLE key, 31 
Operating system. See also DOS 

3.3; ProDOS, 21 
loading, 34 
loading from Machine 

Language Monitor, 393 
prefix character, 184 

Operators 
arithmetic, 137, 139-41 
integer, 139-40 
logical, 143-44 
precedence of, 138, 145 
real, 141 
relational, 141-43 
string, 139 

OR, 143 
Output 

p 

columnar, 188-94 
concurrent display and print-

er, 242-43 
decimal-aligned, 192-94 
formatting screen, 186-94 
right justified, 191-92 
subroutines, built-in, 552 

Paddle, 19 
Parallel communications, 15 
Parallel Interface card, 7 

commands, 242-43, 244 
Pascal, starting up with, 27 
PDL function, 502-03 
PEEK function, 503 



584 I Apple II User's Guide 

clicking the speaker with, 
375-76 

determining cursor position 
with, 196 

determining error line with, 
275 

determining error number 
with, 275 

useful locations, 539-49 
Pie Chart program 

description, 354-56 
listing, 355 

Pixel, 344 
PLOT statement, 335, 475 
Plotting vectors 

codes for, 360, 362 
coding by hand, 360-63 
coding by program, 357-60 
defining shapes with, 357 
zero, 362 

POKE Shape Table program, 
371-72 

POKE statement, 476 
clearing graphics screen with, 

333-34 
clearing keyboard with, 

228-29 
eliminating text window with, 

333 
printer spacing with, 246 
restoring text window with, 

333 
shape table storing with, 366 
spacing with, 195-96 
useful locations, 539-49 

Polygons, drawing, 350 
POP statement, 172-73, 476 
POS function, 196, 503 
POSITION command, 279-80 

DOS 3.3, 477 
ProDOS, 4 76-77 
random-access files, 304 

PR# command, 184, 478-79 
activating 80-column adapter 

with, 86-87 
activating mouse with, 225 
activating printer with, 241-42 
deactivating mouse with, 228 

PREFIX command, 113, 477-78 
Prefix, ProDOS, 48-49, 57, 113, 

117-18 
PRINT statement, 88-91, 479-80 

abbreviated, 91 
carriage return, 186-88 
commas in, 188-90 
debugging with, 180 
semicolons in, 90-91 
variables in, 151-52 
writing data files with, 270-71 

Printed Mailing-List program 
description, 247, 255, 257 
listing, 249-54 
variables, 255-56 

Printers, 15-17 
accessory card commands, 

242-43 
activating, 241-42 
buffers, 15-16 
command characters, 257-63 
controls, 41-42 
deactivating, 244 
formatted output, 245-46 
Machine Language Monitor 

and, 407 
page length command, 260, 

263 
paging, 246-4 7 
paper, 42 
programming output, 244-57 
spoolers, 15-16 
status lamps, 41-42 
troubleshooting, 242 
using, 40-43 

ProDOS. See also Disks; Files; 
individual command names 
BASIC disk, creating, 85 
closing data files, 269-70 
commands, 426-97 
converting to DOS 3.3, 63-67 
directories, 46-47 
file buffers, 269, 316-17 
files, 46 
immediate mode restrictions, 

422 
loading from Machine 

Language Monitor, 393 



names, 48 
paths, 48 
prefix, 48-49, 113 
setting time and date, 67 
starting up with, 27 

ProDOS Filer. See Filer Menu 
Program lines 

adding, 105 
changing, 103-04 
deleting, 104-05 
editing, 420-21 
multiple-statement, 101, 525 
renumbering, 106-09, 421 
replacing, 104 

Programmed mode, 98 
Applesoft restrictions, 422 
Integer BASIC restrictions, 

422 
Programming languages, 81-83 

syntax, 81-82 
Programs 

branching in, 161-65 
clearing, 109 
comments in, 101-02, 525 
compact, 524-25 
conditional execution in, 

174-76 
debugging, 179-81 
editing, 103-09 
executing, 100-01 
faster, 523-24 
greeting, 121 
halting, 176-78 
intercepting errors in, 274-77 
line numbering, automatic, 

102-03 
listing, 98-100 
listing, printed, 243-44 
loading DOS 3.3, 118-19 
loading ProDOS, 113 
loops in, 166-69 
machine language from 

BASIC, 179 
merging with EXEC 

command, 301-02 
multiple-statement lines, 101 
names, 34-35 
optimizing, 523-25 

Index I 585 

remarks, 101-02 
resuming, 176 
running, 100-01 
saving DOS 3.3, 118 
saving ProDOS, 112 
starting BASIC, 35, 39-40, 

113-14 
starting DOS 3.3, 119 
starting from cassette, 33-37 
starting from disk, 33-37 
starting from Machine Lan-

guage Monitor, 406 
starting machine language, 36 
subroutines in, 169-74 
using, 28-33 

Prompt, command 
Applesoft, 34 
BASIC, 33-34 
INPUT statement, 154-55 
Integer BASIC, 34 
Machine Language Monitor, 

34 
Mini-Assembler, 409 

Prompt messages, 205 

Q 
Quotation marks, 32, 88, 125-26 

R 
Radians, 351 
RAM,5 
Random Colors program, 337-38 
Random Squares program, 

371-72 
Random-access files 

advantages, 266 
byte number, 304 
closing, 304 
end of, 305 
opening, 302-04 
organization of, 302 
reading, 304-05 
record length, 302-04 
record number, 304 
writing, 304-05 

Random-access Mailing-List 
program 
description, 314-16 
DOS 3.3 changes for, 316 



586 I Apple II User's Guide 

features of, 305-06 
listing, 306-14 

Random-access memory, 5 
Random-access Print program 

description, 317 
listing, 317-24 

Rays, drawing, 351 
READ command 

Applesoft, 148-49, 481 
byte number option, 299-300 
DOS 3.3, 480-81 
field number option, 280 
ProDOS, 480 
random-access files, 304-05 
sequential-access files, 273-74 

Read-only memory, 5 
Read/write memory, 5 
RECALL command, 482 
Records, 266 

length, 302-04 
Recursion, 174 
Registers, microprocessor 

altering, 398-99 
examining, 395-96 

REM statement, 101-02, 483, 525 
branching to, 162 
in IF-THEN statements, 176 

RENAME command 
DOS 3.3, 121, 484 
ProDOS, 116, 483 

RENUMBER program, 106-09 
commands, 421 
options, 108 

REPT key, 30 
Reserved words, 133-34, 510-11 

Applesoft tokens for, 538 
RESET key, 31, 176-77 

accidentally pressing, 43-44 
restarting with, 28 

RESTORE statement 
Applesoft, 149-50, 485 
ProDOS, 484 

RESUME statement, 485 
RETURN key, 31 

terminating commands with, 
86 

terminating entries with, 32 
RETURN statement, 171-72, 485 

RF modulator, 8-9, 24 
RGB monitor, 10 
RIGHT$ function, 503 
Right-arrow key, 31 

cursor movement with, 92-93 
recopying characters with, 

94-95 
RND function, 504 
ROM, 5 
Rosette program, 372-74 
ROT= statement, 370, 486 
RUN command 

s 

BASIC, 35, 100-01, 487-88 
DOS 3.3, 119, 487 
ProDOS, 113-14, 486-87 
smart, 328 

Sample Type-Style Print 
program, 261-62 

SAVE command 
cassette, 123, 489 
DOS 3.3, 118, 488-89 
ProDOS, 112, 488 

SCALE= statement, 368, 489-90 
Scientific notation, 128 
Screen display. See Display 

screen 
SCRN function, 338, 504-05 
Semicolon, 90-91 
Sequential-access files 

appending to, 278-79 
controlling Apple II with, 

300-02 
reading, 273-74 
skipping fields in, 279-80 
writing to, 270-73 

Serial card. See Super Serial 
Card 

Serial communications, 15 
SGN function, 505 
Shape Coding program 

description, 357, 359-60 
listing, 358 

Shape table. See also Plotting 
vectors 

adding shapes to, 365 
byte contents, 361 



demonstration programs, 
371-74 

directory, 363-65 
end of, 362 
memory address of, 366-67 
organization, 363-65 
retrieving from disk, 367 
saving on disk, 367 
storing in memory, 366-67 

Shapes, high-resolution. See also 
Plotting vectors; Shape table 
coding by hand, 360-63 
coding by program, 357-60 
defining, 356-57 
drawing, 368-69 
erasing, 369, 370 
rotation, 370 
size, 368 
steps for using, 356 

SHIFT key, 30, 32-33 
SHLOAD command, 490 
SIN function, 505 
Slots 

conventional uses, 7 
numbering, 7 
reviewing assignments, 67 
specifying, DOS 3.3, 122 
specifying, ProDOS, 117-18 

Software. See Programs, 20-21 
SOLID APPLE key, 32, 177 
Sound. S ee also Music 

beep, 375 
length, 376-77, 379 
machine language driver, 

377-80 
pitch, 376, 377, 379 

SPC function, 505-06 
with printer, 245-46 

Speaker, 543 
SPEED= statement, 198, 490 
SQR function, 506 
Start-up disk, 24-25 
STARTUP program, 45 

choosing a menu option, 50 
CONVERT Menu, 63-67 
ESC to previous menu, 50 
general instructions, 49-52 
help, on-screen, 52 

Index I 587 

quitting, 68 
setting time and date, 67 
starting, 49 
typing entries, 51-52 

Statement summary. See 
Command summary; specific 
statement name 

STOP statement, 177, 490-91 
STORE command 

cassette, 491 
ProDOS, 491 

STR$ function, 506 
Strings 

characters allowed, 125 
comparing, 142-43 
concatenation, Applesoft, 139 
concatenation, Integer BASIC, 

157-58 
null, 125 
substrings, 156-57 

Subdirectories. S ee also 
Directories, ProDOS, 46-47 

Subroutines, 169-74 
built-in, 551-59 
GOTO statements and, 170-71 
location in program, 524 
nested, 173-74 
recursive, 174 
returning from, 171-73 

Super Serial card, 7 
commands, 242-43, 244 

System Master Disk, DOS 3.3, 71 

T 
TAB function, 190, 506-07 

display screen, 190 
printer, 240 
with printer, 245 

TAB key, 30 
TAB statement, 195-96, 492 
Tabs, comma, 188-90 
TAN function, 507 
Tape recorder. See Cassette 

recorder 
Telecommuntications, 17-18 
Television. See also Display 

screen, 8-9 
switching on, 24 



588 I Apple II User's Gulde 

Temperature conversion programs 
displayed output, 189-94 
printed output, 245-46 

TEXT command, 334, 492 
Text window 

dimensions of, 539-41 
eliminating in graphics mode, 

333-34 
high-resolution graphics and, 

345 
low-resolution graphics and, 

332 
restoring in graphics mode, 

334 
subroutines, built-in, 553 

Time, setting ProDOS, 67 
TRACE command, 180-81, 492-93 

ONERR GOTO problems, 
276-77 

Truth table, 144-45 
u 
UNLOCK command 

DOS 3.3, 121, 493 
ProDOS, 116, 493 

Up-arrow key, 31 
cursor movement with, 92-93 

Uppercase letters, 32 
BASIC commands, 86 

USR function, 417, 507-08 
v 
VAL function, 508 
Variables. See a/,so Arrays, 129-34 

assigning values to, 146-47 
clearing, 149-50 
conserving, 525 

v 

displaying values of, 151-52 
dummy, 159-60 
inputting values for, 152-55 
instead of constants, 524 
integer, Applesoft, 131, 524 
location in program, 524 
loop index, 166 
numeric, Integer BASIC, 133 
real, Applesoft, 131, 524 
string, Applesoft, 130 
string, Integer BASIC, 132-33 

VERIFY command, 494 
Video monitor. See Display 

screen 
VLIN statement, 336-37, 494 
Volume Commands Menu. See 

also Disks, 57-61 
Volume directory, ProDOS, 46 
Volume. See Disk 
VTAB statement, 195-96, 495 

w 
WAIT statement, 177-78, 495 
WRITE command, 270-73 

byte number option, 299-300 
DOS 3.3, 496-97 
ProDOS, 496 
random-access files, 304-05 

Write-protecting 
cassettes, 13-15 
disks, 12 

x 
XDRAW statement, 369-70, 497 



APPLE~ll USER'S GUIDE 
For APPLE'll Plus and APPLE' lie 

''. .. an exhaustive hands-on resource book - must reading for every 
Apple II owner." PERSONAL COMPUTING 

"A classic user's guide . .. excellently written and organized." 
COMPUTER BOOK REVIEW 

''. . .the appendices alo ne ore worth the purchase price . . '.' 
INFOWORLD 

''. .. a true programming guide . .. No longer will you have to 
search through separate sources to find those useful tidbits as it is 
o il here properly ind exed and under one cover." COMPUTER 
M ERCHANDISING 

The Apple" II User's Guide for Apple~ II Plus and Apple« 
lie is the key to unlocking the full power of your Applec computer. 
A n extensive hands-on resource, this newly revised and expanded 
edition explains more about the App le II, A pple II Plus, Apple lie, 
and the enhanced Apple lie, than any other single source. 
This edition also thoroughly covers ProDOS°' and DOS 3.3. Truly 
a valuable guide, this is the only book that con stand a lone as a 
complete introduction to A pple II computers. 

Lon Poole is the co-author of severa l other Osborne/McGraw-Hill 
books, including the best-selling Apple'" II User's Guide and 
Your ATARI" Computer, as well as the series, Practical BASIC 
Programs and Some Common BASIC Programs. He is a lso 
the author of the Apple" lie User's Guide. Poole is currently 
a contributing editor of MACWORLD magazine. 

Martin McNiff, former Technical Director of Osborne/ McGraw-Hill, 
and Steven Cook, former Technical Editor of Osborne/ McGrow
Hill, ore co-authors of Apple., II User's cfuide and Your Atari .. 
Computer. 

• A pple is a registered tradema rk of Apple Computer, Inc. 
• A tari is a registered trademark o f Atari, Inc. 


