

Apple
Machine Language

Don Inman

Reston Publishing Company, Inc.
A Prentice-Hall Company
Reston, Virginia

Kurt Inman

Library of Congress Cataloging in Publication Data
Inman, Don.

Apple machine language.
Includes in!lex.
1. Apple computer-Programming. 2. Basic

(Computer program language) I. Inman, Kurt, joint
author. II. Title.
QA 76.8.A66156 001.65'2 80-20083
ISBN 0-8359-0231-5

0-8359-0230- 7 pbk.

©1981 by Reston Publishing Company, Inc.
A Prentice-Hal/ Company
Reston, Virginia 22090

All rights reserved. No part of this book
may be reproduced, In any way or by any means,
without permission in writing from the publisher.

10 9

Printed in the United States

Chapter 1

IBASICI

Chapter 2

I Bos I

Chapter 3

I sos I

Contents

PREFACE vii

REVIEW OF APPLESOFT II BASIC 1
Commands, 2
Assignment Statements, 6
Display Statements, 8
Loop Statements and Subroutines, 11
Graphic Statements, 13
Relational Statements, 15
Precedence of Mathematical and Logical Relationships, 15
Strings and Functions, 16
BASIC Statements of Special Importance, 17
Exercises, 20
Answers to Exercises, 21

CROSSING THE BRIDGE 22
Memory Use, 25
A Simple BASIC Operating System, 29
The Completed BASIC Operating System, 41
Exercises, 44
Answers to Exercises, 44

INSTRUCTION CODE FORMAT 46
Number Systems, 47
Accumulator, 53
Instructions in Memory, 57.
Use of the BASIC-M/L Operating System, 57
Summary, 68
Exercises, 70
Answers to Exercises, 71

Iii

Chapter 4

I Bos I

Chapter 5

lBosl

Chapter 6

I Bos I

Chapter 7

I Bos I

Chapter 8

lsMI

SIMPLE GRAPHICS 72
Plotting a Point on the Screen, 73
Four-Corner Plot, 79
Drawing a Horizontal Line, 83
Drawing Vertical Lines, 86
Drawing a Rectangle, 89
Summary, 92
Exercises, 93
Answers to Exercises, 94

DI SP LA YING TEXT 95
Displaying a Character, 95
Discussion of the New Instructions, 99
Running Through the Alphabet, 106
Displaying ASCII Codes, 109
Running the Program, 112
Displaying More Than One Line, 113
Summary, 120
Exercises, 122
Answers to Exercises, 124

APPLE SOUNDS 125
Modification to the BASIC Operating System, 127
Description of the Tone Experiment Program, 128
Executing the Program, 130
How Sections 2 and 3 Work, 136
Summary, 138
Exercises, 140
Answers to Exercises, 141

MORE SOUNDS AND GRAPHICS 142
Combining the Speaker and Video Display, 142
Entering and Running the Program, 147
Using the Keyboard to Play the Notes, 148
Description of the Program, 151
Entering and Running the Program, 155
Summary, 156
Exercises, 158
Answers to Exercises, 159

THE APPLE SYSTEM MONITOR 160
The Processor Status Register, 167
Subtraction, 172
Summary, 176
Exercises, 177
Answers to Exercises, 178

iv

Chapter 9

I sMI

Chapter 10

lsMI

Chapter 11

IMAI
lsMI

Chapter 12

lBASICl

jBosl
lsMI
IMAI

Appendix A-1

A-2

A-3

MULTIPLE PRECISION AND
NEGATIVE NUMBERS 179
Two-Byte Addition, 179
Two-Byte Subtraction, 184
Negative Numbers, 186
A Number Guessing Game, 189
Summary, 200
Exercises, 201
Answers to Exercises, 202

MORE MONITOR MAGIC 203
Hexadecimal Addition-Immediate Mode, 203
Hexadecimal Subtraction, 206
Decimal Arithmetic, 208
Examining and Altering Registers, 217
Summary, 223
Exercises, 224
Answers to Exercises, 225

MINI-ASSEMBLER AND ADDRESSING MODES 227
Using the Mini-Assembler, 228
Indexed Addressing, 234
Zero Page Indexing, 235
Absolute Indexed Addressing, 240
Indexed Indirect Addressing, 244
Indirect Indexed Addressing, 251
Summary, 255
Exercises, 257
Answers to Exercises, 258

PUTTING IT ALL TOGETHER 259
8-Bit Multiplication, 259
Multiplication Directly From BASIC, 265
Multiplication Using the BASIC Operating System, 266
Multiplication Using the System Monitor, 268
Multiplication Using the Mini-Assembler, 269
8-Bit Division, 271
Summary, 276
Exercises, 277
Answers to Exercises, 279

BAS IC ST A TEM ENTS 280

MACHINE LANGUAGE INSTRUCTIONS 281

BUILT-IN SUBROUTINES 282

v

A-4 DI SPLAY SYMBOLS 282

A-5 PROGRAMS 283

Appendix B

Appendix C-1

C-2

C-3

Appendix D

HEX EQUIVALENTS FOR
DECIMAL NEGATIVES 284

VIDEO MEMORY 285

ASCII SCREEN CODES 287

COLOR CODES FOR
LOW RESOLUTION GRAPHICS 288

6502 INSTRUCTION CODES 289

INDEX 294

vi

Preface

The purpose of this book is to introduce Apple computer users, who have a
knowledge of BASIC language, to machine language programming. The transi
tion from BASIC is made in small, easy steps. Color, graphics, and sound are
used early in the book to make the demonstration programs interesting and
action-packed. Each new instruction is explained, and the demonstration pro
grams are discussed step-by-step in functional sections.

The reader first uses the BASIC statements POKE, PEEK, and CALL to
enter and execute machine language programs from within a BASIC language
program. A BASIC Operating System is then developed from which machine
language programs can be entered and executed.

The introduction from BASIC, a language the reader already knows, pro
vides a natural approach that leads to the use of the Apple System Monitor. The
System Monitor allows the reader to enter, examine, and execute machine lan
guage programs directly. The time used by the computer to interpret BASIC
statements is thus eliminated.

The final step in the transition is to the Apple's Mini-Assembler, which re
lieves the programmer of many of the tedious details involved with direct ma
chine language programming.

Approaching machine language through BASIC provides a means for the
reader to use his or her previous knowledge as a stepping stone to explore a new
area.

You will proceed through this book in four definite stages. Machine lan
guage programs are entered and executed by four distinct methods. One method
is introduced at each stage of the book.

1. I BASIC I Introduced in Chap. 1. Machine language programs are
under full control of BASIC, using the instructions POKE,
CALL, and PEEK.

2. l BOS I Introduced in Chap. 2. Machine language programs are con
trolled by a BASIC Operating System.

vii

3. I SM I Introduced in Chap. 8. Machine language programs are
hand-assembled and entered directly from the Apple Sys
tem Monitor.

4. I MA I Introduced in Chap. 11. Machine language programs are
assembled by the Apple Mini-Assembler.

The I BASIC I , I BOS I , I SM l , and I MA I logos appear in the table
of contents and in the appropriate chapter headings where they are used.

viii

Chapter 1

Review of Applesoft 11 Basic

I BASIC I
Several assumptions are made in writing this book. The authors felt this to be
necessary because of the numerous versions of Apple computers presently in
use.

1. You have made the necessary hardware connections. If not, see the reference
manuals provided with your Apple computer.

2. The authors have used a version of the Apple that has:
a. Applesoft 11 BASIC on a plug-in ROM printed circuit card.
b. A switch on the card to select either Applesoft II or Integer BASIC.

3. You will read and use the Apple manuals pertinent to your particular ma
chine.

4. You know how to switch back and forth between the programming languages
available to you.

The Apple computer can speak several languages. The prompt character
indicates which language your Apple is currently ready to understand. The aster
isk (*) indicates that you are in the machine language mode. This language is
always in the computer and does not have to be "loaded" (entered from an ex
ternal source) from a cassette or diskette. The machine language monitor that
controls the use of this language is discussed in the latter part of this book (from
Chap. 8 on).

Asterisk
prompt

*•

Cursor

When using
Machine Language

If your Applesoft is on the plug-in ROM pc card, your Apple also contains
a high-level English-oriented language called Integer BASIC* stored permanentlv

*BASIC was developed at Dartmouth College by John Kemeny and Thomas Kurtz as
an all-purpose computer language suitable for beginning programmers with diverse educa
tional backgrounds.

1

in its ROM memory. ROM, which is an abbreviation for Read Only Memory, can
be "read" (used by your programs), but cannot be "written into" (changed by
you). The prompt character for Integer BASIC is a right facing arrow(>). Inte
ger BASIC is not discussed in this book. For more information, see the Apple II
BASIC Programming Manual (Apple product #A2L005X).

Applesoft II is Apple's extended BASIC language. The prompt character of
Applesoft II is a right square bracket (]).This extended BASIC is now available
in three forms:

1. The Apple 11 Plus System with the Autostart Monitor ROM

2. The Applesoft pll.jg-in interface card

3. The Apple Language System

The Apple II Plus System has Applesoft II BASIC in ROM. Therefore, the
Apple Mini-Assembler, the Floating Point Package, and the SWEET-16 inter
preter (which are stored in the Integer BASIC ROMs) are not available on the
Apple 11 Plus system.

Since we will be using the Mini-Assembler later in the book, we will focus
on the system containing the Applesoft 11 ROM card rather than the Apple 11
Plus system.

Right bracket
prompt

] . APPLESOFT 11

Cursor

This book is designed to provide a bridge over which the reader may cross
from programming in BASIC to programming in the computer's native machine
language. While the book assumes a background knowledge of Applesoft II
BASIC, a brief review of BASIC statements used by the Apple computer is pre
sented in this chapter. If you feel confident of your knowledge of Applesoft II
BASIC, feel free to move on to Chap. 2. However, if your BASIC is rusty, spend
some time reviewing the material here.

Although this material is not a complete discussion of Applesoft capabil
ities, all those statements and commands necessary for understanding the re
maining chapters of. the book are given. An Apple computer with 16K of RAM,
a tape recorder or disk drive, and Applesoft II BASIC are all that are necessary
to perform the demonstrations and exercises presented.

COMMANDS

Certain fundamental commands are necessary in preparing, debugging, and
executing a program. Those discussed here are NEW, LIST, RUN, TEXT,
GRaphics, LOAD, SAVE, CONTinue, TRACE, and NOTRACE.

2

/NEW

-LIST

"-RUN

COMMANDER

NEW - This erases any old program that may be in the computer's memory.
It not only deletes the current program, but also clears all variables that
may have been set by this program. It is used before a new program is
entered.

Example:

10LETM=50
20 PRINT M
30 LET M = M+l
40 IF M<60 THEN GOTO 20
50 END

] NEW ------ When you type this and
press the RETURN key.

PRESTO! EVERYTHING IS GONE!

LIST - This causes the current program to be displayed on the video screen.
Several versions of this command are shown in the examples. All versions
assume that you have a program in the computer.

Examples:

1. Type: LIST and press the RETURN key.
The whole program will be displayed. If the program is very long, the
display will scroll upwards after the screen is filled.

2. Type: LIST 20, 100
or

LIST 20-100 and press the RETURN key.
This will display lines 20 through 100 of the program.

3

3. Type: LIST-1SO and press the RETURN key.
This will display all lines from the beginning of the program through
line lSO.

4. Type: LIST 1 SO- and press the RETURN key.
This will display all lines from line 1 SO through the end of the program.

S. Type: LIST 1 SO and press the RETURN key.
This will display only line 1 SO.

To stop the listing temporarily at some point, hold down the CTRL (con
trol) key and press the letter S. Use CTRL S again to resume the listing.
This will allow you to examine parts of the desired listing. A listing is
aborted by a CTRL C, but the listing cannot be continued from the point
at which it is aborted unless you note where the listing was stopped and
continue from that point with the LIST command.

RUN - This causes the computer to RUN {or execute) the program that is cur
rently stored in its memory. All variables are cleared and execution begins
at the lowest numbered line in the program (unless a beginning line num
ber follows the word RUN, as in Example 2).

Examples:
1. Type: RUN and press the RETURN key.

The program is executed from the lowest line number.

2. Type: RUN 200 and press the RETURN key.
The program is executed beginning with line 200.

TEXT - This command sets the video screen format to display a full screen of
text with a maximum of 40 characters per line and 24 lines. This is the
normal format used when Applesoft 11 BASIC is accessed. This command
is used when returning from a Graphics mode to display a full screen of
text. It can also be used as a statement within a program to change from
Graphics to Text format.

Example:
Type: TEXT and press RETURN

GR - This command sets the low resolution graphics format for screen display.
With this command, a 40 by 40 grid is available for graphics. The screen is
cleared with a black background, and the cursor is moved to the beginning
of a 4-line text window at the bottom of the screen. The color to be used
for graphics is automatically set to black (COLOR = 0). Some other
COLOR value must be given to display graphics (black on black doesn't
show up too well).

4

Example:

Type: GR and press RETURN

Cursor

40 by 40
graphics area

4 lines for text

LOAD - This command causes the computer to read an Apple program from a
cassette tape into the computer's memory. The user must have the re
corder ready (set to the beginning of the desired program and in the PLAY
mode) before the LOAD command is given. A "beep" is sounded when the
Apple has found the information on the tape. A second beep will sound
when the program on tape has been successfully LOADed. The Applesoft
prompt will appear on the screen at that time. A LOAD may only be
interrupted by pressing the RESET key or turning off the power.

Example:

Ready your recorder, then
Type: LOAD and press RETURN.
When finished, the display will show:

- Indicates successfully
LOADcd program

SAVE - This stores the program currently in the computer's memory on cas
sette tape. The user must press the RECORD and PLAY buttons on the
tape recorder before SA VE is executed. Beeps signal the beginning and end
of the SA VE procedure.

Example:

Ready your recorder, then
Type: SAV!i: and press RETURN.

CONT - If the execution of a program has been halted by a STOP, END, or
CTRL C, this command causes execution to resume at the next instruction
following the halt. Nothing is cleared. CONT cannot be used if you have
(1) modified, added, or deleted any program line or (2) received an error
message since stopping execution.

Example:

Type: CONT and press RETURN

5

TRACE - This is used in debugging programs. It causes line numbers to be dis
played on the screen as the lines are executed. You can then see if the pro
gram is performing the desired sequence of operations. The TRACE
feature is turned off by the command NOTRACE.

Example:
Type: TRACE and press RETURN
Then type RUN to see the sequence of line execution.

NOT RACE - This turns off the TRACE feature discussed above.

Example:
Type: NOTRACE and press RETURN
When the program is RUN again, no line numbers will be printed.

ASSIGNMENT STATEMENTS

There are several ways that data (both numeric and string) may be assigned
to variables. Instructions used for this purpose in this section are LET, INPUT,
READ, and GET. DATA and RESTORE instructions are also discussed; they are
used in conjunction with the READ instruction.

LET - This statement may be used to assign values to variables. The word LET
is optional, as seen in the example at lines 50 and 60.

Examples:
10 LET M = 50
20 FOR X = 1 TO 9
30 LET A$= "APPLES"
40 LET M = M+l
50 8=1
60 8$ = " PER CARTON "
70 PRINT M;A$,8;8$
80 NEXT X

-
Assign a numeric value to M

Assign the string APPLES to A$
Alter a variable's value
The word LET does not have to
be used. It is optional.

INPUT - This instruction is used to assign a value to a variable during execution
of a program. When the computer reaches this instruction, it stops and
waits for the user to type in the value to be assigned to the variable.

Examples:

50 INPUT A

70 INPUT A,8,C

6

The execution of this statement dis
plays a question mark and waits for
the user to type in the value and press
RETURN.

More than one variable can be assigned
by one INPUT statement. The values
are typed in, separated by a comma.

80 INPUT "PLEASE TYPE YOUR NAME"; C$

PLEASE TYPE YOUR NAME•

90 INPUT A$

A message may be printed to tell you
what INPUT is desired. The message is
typed in quotes. The variable C$ calls
for a string INPUT. A question mark is
not printed with this format.

No message this time. Display will
show a question mark when this in
struction is executed.

100 INPUT "WHAT IS THE VALUE OF A?"; A

(WHAT IS THE VALUE OF A?•

If you want a question mark when
quotes are used in a rnessage, include
the question mark inside the quote.

READ - This instructs the computer to READ a value from a DAT A list and
assign that value to a variable. The first time a READ is executed, the first
item in the first DAT A list will be used. The second time, the second item
from the DAT A list will be used, etc. (See DAT A for example.)

DAT A - This lets you store DAT A inside your program. The items will be read
sequentially. More than one DAT A statement may be used in a program.
Items will be READ from the first DAT A statement until all its items have
been READ. Then items will be read from the next DAT A statement, etc.

Example:

110FORX=1T010
120 READY ---Reads DATA in this order:
130 NEXT X
140 DAT A 10,30,20,40;50
150 DATA 60,80,90,70,100

7

10
30
20
40
50
60
80
90
70
100

RESTORE - This causes the next READ statement executed to start from the
first item in the first DAT A list.

Example:

100 FOR X = 1 TO 5
110 READY:PRINTY
120 NEXT X
130 RESTORE
140 FOR Z = 1 TO 10

- Reads and prints
10,30,50,20,40

- Go back to start of DAT A list

150 READ W: PRINT W - Reads and prints
160 NEXT Z 10,30,50,20,40,60,80, 100, 70,90
170 DAT A 10,30,50,20,40
180 DATA 60,80,100,70,90

0 30 50 20 40 1----------.

60 80 100 70 90

RESTORE

GET - This gets (or reads) a single character from the keyboard. The computer
waits for a key to be pressed, as in an INPUT statement. The character is
not displayed and does not require that the RETURN key be pressed.

Example:

200 GET H$
210 IF H$ = "Y" THEN GOTO 500
220GOTO 100
Line 200 would wait for a key to be pressed. The typed character would
be stored as the variable H$. If the typed character is a Y, line 500 would
be executed after line 210. If not, line 220 would return execution to line
100.

DISPLAY STATEMENTS

The PRINT statement is used in many forms to display data on the video
screen. The display can also be changed from white on black to black on white
by the INVERSE statement. You can also alternate these two formats by using
the FLASH statement. The NORMAL statement returns the display to the
normal white-on-black format. HOME is used to clear the video screen. SPC is
used to format print statements.

Examples:

320 PRINT

8

The word PRINT used by itself
causes a line feed and return to be

l~PRINTA
300 A= 5: B = 6
310 PRINT A
320 PRINT
330 PRINT B

executed on the screen. (See line 320
in example below.)

Prints the value of A and causes a line
feed and return. (See line 310 in the
example below.)

Display when these lines are executed:

5

6

400 PRINT "A STRING"

(ASTRING

cQ:; 410 PRINT A,B

s CP
6 (5

~ff(420 PRINT A;B

$ ~ (56

430 PRINT A$;A

440 PRINT A$;A,
450 PRINT B$;B

6

B=6

9

From PRINT A
Blank line caused by PRINT
From PRINT B

Prints the words A STRING, and
moves to the next line.

IF A= 5 and B = 6, this will cause the
two values to be printed on the same
line spaced far apart.

This time the values will be printed on
the same line but close together.

If A$="A=" and A=S, this will print
the string, A=, and the value of A.

If A$="A= "and B$="B= "with A=5
and B=6, the comma keeps the display
on the same line. The result of these
two lines will be as shown.

500 PRINl TAB(1 O)A$;A

(A=5

10t~.~
pos1t1on

The TAB function moves the printed
display over to the stated print posi
tion. (Print positions on a given line
are 1 through 40.)

FLASH - This statement sets the video mode to flashing. The output is alter
nately shown as white on black and black on white. Use the NORMAL
statement to return to a nonflashing white-on-black mode.

Example:

70 FLASH
80 PRINT "FLASHING" - The word FLASHING will flash back

and forth.

INVERSE - This sets the video mode so that the computer's output is displayed
as black letters on a white background.

ID] Example:
100 INVERSE
100 PRINT "INVERTED" - The word INVERTED will appear in

black letters on a white background.

NORMAL - This sets the video mode back to the usual display c:if white letters
on a black background with no flashing and no inversion.

Example:

70 FLASH
80 PRINT "FLASHING" - The word FLASHING will FLASH

and remain flashing
100 INVERSE
110 PRINT "INVERTED" - The word INVERTED will appear as

black on white and will stay that way
120 NORMAL
130 PRINT "NORMAL" --- The word NORMAL and all future

printed material will be in the normal
mode (unless changed by FLASH or
INVERSE again).

HOME - This statement moves the cursor to the upper left screen position
within the text window. It also clears all text within the text window.
HOME may be used in the TEXT or GRaphics mode.

70

SPC(X) - This provides for X number of blank spaces to be inserted between
the last item printed and the next item printed if semicolons precede and
follow the SPC statement. It is only used within a PRINT statement.

Example:

400 PRINT A;SPC(2); B
If A= 768 and B = 5, line 400 (when executed) would display:

(768 5

£ ~~ThonBis
printed spaces printed

LOOP STATEMENTS AND SUBROUTINES 0
Portions of a program may be repeated by several BASIC statements such

as GOTO, ON ... GOTO, IF-THEN, and FOR-NEXT. Subroutines may be per
formed by GOSUB and RETURN.

GOTO - This statement causes the program to branch from the line where the
GOTO is located to the line that is specified following the word GOTO.

Examples:

30GOTO 200

70 A= 73
80 PRINT A
90 END

200 PRINT "THE END"
210GOTO 70

- All lines between 30 and 200 are
skipped.

- The program branches from line 210
to line 70.

ON ... GOTO 100,200,300 ... - This statement evaluates the arithmetic ex
pression following the word ON. It then branches to the line number
(100,200,300, ...) corresponding to the result of the evaluation. 100,

- 200,300, etc., must be valid line numbers in. the program.

11

Example:

150 ON INT(B/100) GOTO 200,300,400
160 PRINT "INT(B/100) is 0 or >3"

The expression INT(B/100) is evaluated. Then,
a. If the value= 1, line 200 will be executed following line 150.
b. If the value = 2, line 300 will be executed following line 150.
c. If the value= 3, line 400 will be executed following line 150.
d. If the value = 0 or is >3, line 160 will be executed following line 150.

IF-THEN - If the condition stated between the words IF and THEN is true,
then the instruction following the word THEN is executed. Otherwise, the
instruction following the word THEN is ignored.

Examples:

200 IF X>5 THEN GOTO 400 - Branches to line 400 if, and only if,
X>5

210 IF X < =5 THEN PRINT "XIS NOT >5"
220 X = X+l '-.If X<=5, then the words X IS NOT

>5 are printed, then line 220 is
executed.

"-otherwise, the words are not printed.
Line 220 is then executed.

FOR-NEXT - This is a combination of two statements. It allows you to "loop
through" a set of statements between the FOR statement and the NEXT
statement a specified number of times.

Examples:

20 FOR X = 1 TO 2f
30 PLOT X,10
40NEXT X -

-Upper limit
----Plots 25 points from 1,10 through

25,10
-Increments X by 1

20 FOR N = -10 TO 10 STEP 2 -Increase N in steps of 2
30 PRINT N Prints even integers from -10 through
40 NEXT N 10

GOSUB - This causes the program to branch to a subroutine which you have
written at the specified line number. When the subroutine is completed, a
RETURN statement in the subroutine will return to execution of the pro
gram at the line following the most recently used GOSUB statement.

12

Example:

2QO GOSUB 2000 From here ...
. . . here 210

2000 FOR X = 1 TO 3000 to here
2010 NEXT X
2020 RETURN

Then back to ...

RETURN - This statement is used at the end of a subroutine to return to the
statement immediately following the most recently executed GOSUB.
(See example above.)

GRAPHIC STATEMENTS

Graphic statements shown here are GRaphics, COLOR, PLOT, HLIN, VLIN,
PDL, and TEXT. The Graphics mode presents a display that is quite different
from the TEXT mode. You must be able to change from one mode to the other.

GR - This statement sets the low resolution Graphics mode. (See GR under
"Commands" section.)

COLOR - This sets the color for plotting in the low resolution Graphics mode.
Color is set to black (0) by the GR statement. The color values used are:
0 black 4 dark green 8 brown 12 green
1 magenta 5 grey 9 orange 13 yellow
2 dark blue 6 medium blue 10 grey 14 aqua
3 purple 7 light blue 11 pink 15 white

PLOT - This turns on one of the 40 by 40 low resolution dots in the graphics
area at the column and row specified. The dot will be of the color selected
by the COLOR statement. The three statements are used together.

Example:

()
10GR

• 20COLOR=9

----- 30 PLOT 20,30

- Set Graphics mode
- Use orange
- Plot a point in column 20, row 30

13

HUN - This statement is used to draw a horizontal line. Included in the state
ment are the beginning and ending columns, as well as the row where the
line is to be drawn.

Example:

10GR
20 COLOR = 4 Dark green color
30 HUN 10,20 AT 30 Draw at row 30

\ -------- End at column 20
~------- Start at column 10

VUN - This command is used to draw a vertical line from one row to another
at the specified column.

Example:

10GR
20 COLOR= 11 Pink color

(§) 30 VUN 6,14 AT 12 Draw in column 12

\ End at row 14
Start at row 6

PDL(O) or PDL(l) - This reads the current value of one of the game controls
(a number from 0 through 255). The paddles (game controls) can be used
to plot points in the low resolution Graphics mode, as shown below. (They
can also be used with high resolution graphics.)

Example:

10GR
20COLOR = 14
30 PLOT PDL(0)/7, PDL(l)/7

\ '--Row
'-· ----Column

TEXT - This statement is used to return to the TEXT mode following the use
of high or low resolution graphics.

Example:

10GR
20 COLOR= 14
30 VUN 6,14AT12
40 FOK X = 1 TO 3000 }--- Delay to view the color bar
50 NEXT X
60TEXT
70 HOME

-------- Return to the TEXT mode
-------- Home the cursor

14

r--- For a few seconds you see the aqua
colored bar

Then the screen returns to the TEXT
mode and the cursor appears at the
upper left corner.

RELATIONAL STATEMENTS

Two values may be compared by using one of several relational statements.
The result of this comparison may be used by the computer to "make a de
cision" as to what action to perform next.

MATHEMATICAL RELATIONSHIPS

is equal to
> is greater than
< is less than
>= is greater than or equal to
<= is less than or equal to
is not equal to

LOGICAL RELATIONSHIPS

AND true if both conditions are true; otherwise false
OR true if either or both conditions are true; otherwise false
NOT Negation of the expression

Examples:
200 IF A>S THEN GOTO 340
300 IF A#B THEN PRINT "A IS NOT EQUAL TO B"
400 IF A=S AND B>=6 THEN C=A+B

PRECEDENCE OF MATHEMATICAL AND LOGICAL
RELATIONSHIPS

The computer evaluates expressions by performing operations in a specific
order. The order in which it performs these operations is in accordance with the
following list. Their order of precedence is from the top downward.

15

Order Operation

1. ()
2. NOT
3. /\
4. *,/
5. +, -
6. =, >, <, >=, <=, #
7. AND
8. OR

STRINGS AND FUNCTIONS

Function

Evaluate expression in parentheses
Negate
Raise to a power (exponentiate)
Multiply or divide (left to right)
Add or subtract (left to right)
Compare
AND two expressions
OR two expressions

Several statements are used to manipulate strings. We will define only
those which will be used in this book. They are ASC, CHR$, and LEFT$. Several
intrinsic functions are also available, but we will only use the INTeger function.

ASC - This command returns (or supplies) the decimal ASCII code for the first
character in the string which is enclosed in parentheses following the let
ters ASC.

Example: ~
100 PRINT ASC("YES") would print 89 (the ASCII code for

the letter Y)

190 GET H$ ~would get a single character
200 IF ASC(H$)<60 THEN GOTO 100
210 '\ If the ASCII code for the character
~ typed is <60, then go to line 100.

Otherwise, line 210

CHR$ - This returns (or supplies) the ASCII character that corresponds to the
value given in parentheses. This value must be between 0 and 255, in
clusive.

Example:

300 H = 14
310 PRINT CHR$(H+55)

If H =the decimal number 14,
then H+55 = 69. The character
whose ASCII code is 69 is the letter
E. The letter E would be printed.

LEFT$ - Returns (or supplies) the specified number of leftmost characters in
the string enclosed in parentheses. If no number is specified, it returns
only the leftmost character in the string.

16

Examples:

200 PRINT LEFT$("YESTERDAY", 3)

250 INPUT H$

would print: YES (the 3 leftmost
characters of YESTERDAY)

260 IF LEFT$(H$,1) = "Y"THEN GOTO 100
270 . . . If the leftmost character of the string

input for H$ is a Y, then GOTO line
100. If not, go on to line 270

INT - The INTeger function returns the largest integer less than or equal to the
expression in parentheses following the letters INT.

Examples:

100 X = INT (A/3)
If A= 5, A/3 = 1.66667 and INT(A/3) = 1
If A= 1, A/3 = 0.333333 and INT(A/3) = 0
If A= 15, A/3 = 5 and INT(A/3) = 5
If A= -5, A/3 = -1.66667 and INT(A/3) = -2

BASIC STATEMENTS OF SPECIAL IMPORTANCE

There are three instructions that you will be using over and over again to
establish the bridge between BASIC and the machine language programs that
you will be creating. These instructions are POKE, PEEK, and CALL.

In BASIC, the line numbers serve as a reference for the computer. In
dividual statements are found and executed according to the line number associ
ated with a given statement.

Machine language instructions are executed according to their placement
in memory. There are no line numbers. Execution begins at a memory location
which must be specified. Then the instructions are normally executed in the
order that they appear in memory.

The BASIC Operating System (described in Chap. 2) is used to put the
machine language instructions and data into the correct memory locations to be
used by the machine language program. This is done primarily by the following
BASIC instructions.

POKE address,data Where address is the decimal address
of the memory location where the
data is to be placed.

Since POKE is a BASIC instruction, the values for address and data must
be given as decimal values.

17

Examples:

100 POKE 768, 169

768

Memory Address

110 POKE 769, 19

~
..----___,~

769 ~

We now have:

768 169 I
769

POKE the value 169 into memory

location 768

value POKEd

POKE the value 19 into memory loca
tion 769

' Address of "Data POKEd
memory locations into memory

Each machine language instruction and each data value used in the ma
chine language program will be entered from the BASIC Operating System by a
POKE instruction.

Once the machine language program and data have been entered by BASIC
POKE statements, control must be passed from BASIC to the machine language
program. This is done by the statement:

CALL address

CAL Ls for th~cution "The decimal ad-
of a machine language
program (or subroutine)

dress where the
machine language
program begins

Example:

CALL 768 ~This would cause the computer
to execute the machine lan
guage program that begins at
memory location 768.

18

A third BASIC instruction that you will frequently use allows you to
examine the content of a specified memory location. You can PEEK at a mem
ory locati.on with the instruction:

r f - Parentheses

~PEEK (atdress)

It says, "Show me what is in PEEK into this memory location
the specified memory location."

LiV!A19 ------, ,,.--·

~ C'.:> ~-,,I 1 ' ""J I~ I\~"

If you want to see what you PEEKed at, use the PRINT statement.

Example:

900 PRINT PEEK (768)
This statement would cause the value contained in memory location 768
to be displayed on the video screen.

768 169

) PRINT PEEK (768)
169

]•

If 169 is in memory 768 and we ex
ecuted the PRINT PEEK instruction in
the Immediate mode, we would see
this on the display.

The content of 768 is displayed

The PEEK statement can be used to examine the machine language pro
gram itself, or it can be used to display the results of a machine language pro
gram that has been placed in a given memory location.

These three statements (POKE, CALL, and PEEK) will be used repeatedly
to establish a link between BASIC and machine language. The machine language
is POKEd into memory by BASIC. It is then executed by the CALL statement
from BASIC. The PEEK statement of BASIC can be used to look at the results
of a machine language program or at the program itself.

You can see that you will by relying heavily on these three BASIC state
ments. If a solid connection is to be made between BASIC and machine lan
guage, the three building block statements must be understood. You will see
their use again in Chap. 2 when the BASIC Operating System is discussed.

19

EXERCISES

1. Tell what function each of the following commands performs.
a. NEW ______________________ _

b. LIST ____________________ _

2. The TRACE command causes line numbers to be displayed as a program is
executed. What command turns off the TRACE feature?-------

3. Name three BASIC statements used to assign values to variables.

a. -------------~
b.~------------
c. -------------~

4. If you are currently using low resolution graphics and want to return to the
Text Display Mode with the cursor in the upper left corner of the screen,
what two commands should be entered?

a. ~------------
b .~-------------

5. Some of the operations shown below are in the wrong order of precedence.
Rearrange them correctly according to their precedence.

()
*,I
>=

' AND _____ _
NOT _____ _

6. Fill in the values in the correct memory boxes as performed by the following
statements.

100 POKE 768, 19
110 POKE 770,14
120 POKE 772, 18
130 POKE 771, 15
140 POKE 769,16

768
769
770
771
772

7. What will be displayed on the screen when the instructions of exercise 6 plus
the following,struction have been executed?

150 PRINT PEEK (772)

20

8. If a machine language program has been POKEd into memory and you desire
to execute that program from BASIC, what BASIC statement could you use?
160~~~~~~~~~-

ANSWERS TO EXERCISES

1. a. NEW-Erases any old program and clears all variables
b. LIST - Displays the current program on the video screen
c. GR - Sets the screen display to the low resolution graphics format

2. NOTRACE

3. a. LET A= 5 (or just plain A=5)
b. INPUT A
c. READ A

4. a. TEXT
b. HOME

5. ()
NOT

, *,I

6.

7.

>=
AND

768
769
770
771
772

(18

19
16
14
15
18

8. 160 CALL 768

21

Chapter 2

Crossing the Bridge

BOS

When you communicate with the computer in BASIC, you are talking
through an interpreter. Each program line must be examined in detail by the
interpreter and translated into a code which the computer can understand. It is
easy for you to write programs in BASIC, but it is a "foreign" language to the
computer. The computer cannot understand a single simple BASIC statement.
BASIC words and statements must be translated into binary number codes that
have a precise meaning to the computer. These number codes are "words" that
the computer can understand. They are "the language of the computer, called
machine language. Instructions must be in machine language code before the
computer can understand them.

Enter BASIC
here

INTERPRETER -lcOMPUTER 0
Translate to Take action
machine language

Once the BASIC statements have been interpreted, the computer acts on
them. Its actions and the results it obtains must be translated once more into a
form which BASIC can use and which you will be able to understand easily.

(COMPUTER ~ - L 71 E]J
MAGIC BLACK - G~

BOX v
Action and Translated to a Output
results in form that you and
machine language BASIC can "read"

22

Translating BASIC is a time-consuming chore for the interpreter, and it is
wasteful of computer time. In addition, the BASIC language may not be able to
handle everything that you might want the computer to do.

Although machine language programming may be a more time-consuming
and detailed task for you than programming in BASIC, it brings you into much
closer contact with the computer. When you speak to the computer in machine
language, you are talking to it directly. You will get quick responses and will
gain a better understanding of your computer's "personality," its full capabil
ities, and also its shortcomings. You will find that the computer speaks and
understands a very limited, formal language. Each word is the same length and
follows a rigid format. But its rules of form and syntax are much simpler than
those of the English language.

The machine language words can be broken down into eight bits (binary
digits) that have only two possible states (or conditions). These tiny bits are
much like a light that is either on or off.

!
OFF

~
~

ON

The computer interprets these bits as being one of two numeric symbols,
0 or 1. The pattern of 1 's and O's make a meaningful word, or a complete idea,
to the computer. Therefore, we need to learn these words if we are to communi
cate directly with it.

! =0
--::'g' /~ - --1 . . o: OFF

An example of a pattern of 8 computer bits (a pattern with a size and
shape that the computer can understand) is shown.

0 1 0 1 1 0 1 1
OF.F ON OFF ON ON OFF ON ON

The computer would recognize this pattern as a unique number code and
would respond by taking a specific action or using the number as a specific
piece of pata.

23

Since machine language instructions are merely numbers that are placed
in the computer's memory, we can use BASIC to perform this operation. The
BASIC instruction:

POKE address, data

will store the given data into the memory location whose address is given. (See
Chap. 1 for a review of this instruction.)

Example:
POKE 768, 173___

f Data value 173 is POKEd
Data value is POKEd into
memory location 768

The data given in the POKE statement must be in the range of 0 through
255, due to the nature of the computer's memory locations. Larger numbers will
take up more than one memory location. If you try to POKE a number larger
than 255 into memory, the computer will not accept the POKE. However, it
won't POKE you back. Instead it will merely respond with an ILLEGAL QUAN
TITY ERROR.

Example:

Too big
POKE 769,256~

?ILLEGAL QUANTITY ERROR
]•

It is important that you be careful where you POKE values. You may
destroy essential values or instructions if you POKE into the wrong memory
location.

APPLESOFT 11 also has an instruction that will let you display the deci
mal value of the contents of a given memory location. It is:

PEEK (address)

To dis~lay the value in a given address, you could use the statement 200 PRl0NT
PEEK(768). The computer would print the decimal value (0 through 255) that
was contained in the memory location whose address is 768.

So, you see, the Apple will let you POKE values into its memory, and it
will 'let you PEEK at values that are already in its memory. You should spend
some time experimenting with these two instructions in the Immediate Execu
tion mode. Try the following examples and others of your own.

24

Examples:

First POKE

] POKE 768, 173
] POKE 769,25
]POKE 770,3
]•

Then PEEK

] POKE 768, 173
] POKE 769,25
]POKE 770,3
] PRINT PEEK(768) / You see, the value 173 is in memory
173 1---------- location 768
] PRINT PEEK(769) / And the value 25 is in memory loca-
25 • · tion 769
] PRINT PEEK(770) / And the value 3 is in memory location
3 • 770
]•

The decimal values that can be used for the address in the POKE and
PEEK statements depend on the memory capacity of your computer.

MEMORY USE

Many memory addresses cannot be used for machine language programs,
as they contain information necessary for the Apple's operating system. The
operating system might be compared to an airport traffic controller who directs
the flow of traffic in and out of the airport. The operating system directs the flow
of actions taken by the computer. A POKE into the operating system's memory
locations might alter the operation of the system or the operation of your
BASIC program.

In addition to the Apple's operating system, you will be using the BASIC
Operating System that will be discussed in this chapter. It is written in BASIC,
and will be stored in the section of memory that is reserved for BASIC programs
(see Memory Map below). It will control the input, revisions, and operation of
the machine language programs that you will be using.

Nor can data be successfully stored at addresses that contain Monitor
ROMS, APPLESOFT ROMS, or unused Input/Output ports. The ROMs are
Read Only Memories from which information can be read, but into which you
cannot put information. They already contain information that is protected
(cannot be changed by a program or immediate mode input).

A memory map follows for the Applesoft firmware version of the Apple
computer.

25

Address

00000-00511
00512-00767

*00768-01023
01024-0204 7
02048-XXXXX

08192-16383
16384-24575
49152-5324 7
53248-63487
53248-57343 }
57344-63487

64488-65535

MEMORY MAP

APPLESOFT IN FIRMWARE (ROM)

Function

Program workspace - not for user
Keyboard character buffer
Free to user for short machine language programs
Screen Display area
User area for BASIC programs and variables. XXXXX is de
termined by the maximum amount of RAM memory in
stalled in your machine.
16K installed - XXXXX = 16383
32K installed - XXXXX = 32767
64K installed - XXXXX = 49151
Used by high resolution graphics (page 1)
Used by high resolution graphics (page 2)
Hardware 1/0 addresses
Applesoft Interpreter (if switch set for Applesoft BASIC)

I ROM Area) (If switch set for Integer
Apple Integer BASIC and BASIC)
Mini-Assembler
Apple System Monitor

*This is the area that you will be using for your machine language programs.

Note: If you have Applesoft on diskette, see your Disk Operating System In
structional and Reference Manual (Apple Product #A2L0012) for a mem
ory map.

The area that will be used for your machine language programs has been
marked with an asterisk on each memory map. This area, from memory address
768 through address 1023, is the same for both Applesoft versions. It can be
used safely for most, if not all, of your machine language programs. If you need
more space when your programs get longer, we can place them in the area nor
mally reserved for BASIC programs.

We will use the program below to demopstrate the method of using BASIC
to POKE a machine language program into memory. The data in the POKE state
ments are the elements of the machine language program. We will also PEEK to
make sure that the program was correctly POKEd in at the right addresses.

26

POKE AND PEEK DEMONSTRATION

100 REM *CLEAR THE SCREEN *
110 HOME

200 REM * POKE MACHINE LANGUAGE PROGRAM *
210 POKE 768, 169
220 POKE 769, 19
230 POKE 770, 141
240 POKE 771,37
250 POKE 772,3
260 POKE 773,96

300 REM* PEEK AT THE PROGRAM*
310 FOR X = 768 TO 773
320 PRINT PEEK(X)
330 NEXT X

Now if you RUN this BASIC program, the values POKEd into memory
will be displayed.

169
19
141
37
3
96
)•

Yes, the machine language program has been POKEd into the correct
memory locations by the BASIC program. By using just two BASIC instructions,
you have the tools necessary to enter machine language programs (with POKE)
and to look at the machine language program (with PEEK). However, we also
need a method of executing the machine language program after it has been
entered.

The CALL instruction causes the computer to execute the machine lan
guage program beginning at a specified address. The address to use with the
machine language program that you have just entered is 768. We would execute
the program by using the statement:

410 CALL 768

The CALL statement is used to execute a machine language program that
is a subroutine of a BASIC program. A GOSUB statement executes a BASIC sub
routine from a BASIC program; a CALL statement executes a machine language
subroutine from a BASIC program.

27

We'll add the CALL statement to our program so that we can execute the
machine language subroutine. We'll also add a PEEK statement to look at the
results of the machine language program to make sure that it executed correctly.

The last instruction executed in the machine language program must be a
RETURN FROM SUBROUTINE (RTS). This is a machine language instruction
that performs the same function for a machine language subroutine as the
RETURN statement in BASIC does for a subroutine in BASIC. It returns con
trol to the BASIC program from which the machine language program was
CAL Led.

Don't worry now about the machine language instructions being used in
the program. Machine language codes will be introduced slowly starting in Chap.
3. For now, an explanation of each section of the program is given to the right
of the machine codes. Our completed program looks like this.

POKE and PEEK, THEN PEEK AGAIN

100 REM *CLEAR THE SCREEN *
110 HOME

200 REM * POKE MACHINE LANGUAGE PROGRAM *
210 POKE 768,169 Loads the value 19
220 POKE 769,19
230 POKE 770,141 Store it in memory
240 POKE 771,37
250 POKE 772,3
260 POKE 773,96 Return from subroutine

300 REM* PEEK AT THE PROGRAM*
310 FOR X = 768 TO 773
320 PRINT PEEK(X)
330 NEXT X

400 REM * EXECUTE THE PROGRAM *
410 CALL 768

500 REM * LOOK INTO MEMORY FOR RESULT*
510 PRINT: PRINT PEEK(805)

' We stored the 19 here.

28

When the program is run, this is what you'll see:

169
19
141
37
3
96

..,. ______ Peeking at the program now (caused

by lines 310-330)

19 -...---------Yes, the 19 was stored in the correct

]•
location (executed by line 410 and
memory PEEKed at by line 510).

When the program is RUN, you do not see the machine language instruc
tions being POKEd in by statements 210-260. The results of the PEE Ks per
formed by the FOR-NEXT loop (lines 310-330) are seen on the screen:

169 These are machine language codes and data values
19 which were POKEd in by lines 210-260 and
141 PRINTed by the statement at line 320 in the
37 FOR-NEXT loop.
3
96

After the data has been PEEKed at, line 410 causes execution of the machine
language program. When the computer returns to the BASIC program (caused by
the last instruction in the machine language program), line 510 PRINTs the value
19, thus assuring us that the data has been placed in the memory location that
we requested.

A SIMPLE BASIC OPERATING SYSTEM

Based on the BASIC instructions just used, we'll soon build a simple
BASIC program that can accept, run, and read the results of a machine language
program. It will lack many features that are desirable for more sophisticated pro
gramming, but it will be sufficient for our purposes.

It is a BASIC language program, but you may use it to enter each machine
language program that you encounter in the rest of this book. You may also use
it to examine the machine language programs for errors once they have been
entered. You will use it to execute the machine language programs by using the
CALL statement at the appropriate time. You can even use the BASIC program
to examine the results of the machine language program that it creates.

29

The BASIC program will be used for so many things that we have decided
to call it an Operating System. It is the operator and is in control of all the ac
tions that will be taken by the computer once it has been entered and run. Since
it is written in BASIC, we have given it the full name of: BASIC Operating Sys
tem (Operating System for short).

Keep in mind that the Operating System is written in BASIC, so it under
stands (or uses) BASIC statements and decimal numbers. However, as we stated
before, the computer can only understand machine language instructions that
are coded as binary numbers. In fact, most standard machine language references
list the machine language codes as hexadecimal numbers. These strange hexadeci
mal numbers will be explained in Chap. 3, where you will be introduced to ma
chine language instructions.

Here is our dilemma:
1. References list machine language codes as

hexadecimal numbers.

2. The computer only understands the
codes as binary numbers.

3. The BASIC interpreter must receive
decimal numbers, which it then converts
to binary numbers for the computer's
use.

We could ask you to convert every hexadecimal machine language code to
a decimal value for the BASIC interpreter to use. This conversion is a tedious
and time-consuming chore. The computer could do the conversion much faster
than a human if it was provided with a program to make the conversion. So, we
will include this conversion as part of the BASIC Operating System program.

Come along with us as we design the BASIC Operating System that will
form a bridge to take you from BASIC to machine language programming.

~c
BASIC OPERATING SYSTEM

We will now begin the construction of our Operating System. Each func
tional section will be explained. The short machine language program given
previously will be used to show how each section of the Operating System
works. Here is a brief description of the Operating System by sections.

30

FIRST

Input the preliminary information

T
SECOND

Enter machine language program and
convert hexadecimal data to decimal

I
THIRD

Print the program and check for
corrections

1
FOURTH

Check again for additional changes

1
FIFTH

Execute the machine language
program; then return to BASIC

1
SIXTH

Subroutines used by the Operating
System

First a
We must have some vital information about the machine language program

to be used. We need to know its starting address in memory, and we need to
know how long the program will be (how many memory locations it will use).
In computer terminology, each memory location will hold one byte of informa
tion. A byte is made up of 8 bits (_!?inary dig!_!s). Bits were discussed briefly
earlier in this chapter, and both bytes and bits will be discussed more thoroughly
in Chap. 3. Here is how we get the information for each memory location.

SECTION 1

100 REM* GET MACHINE LANGUAGE INFORMATION*
110 HOME
120 INPUT "STARTING ADDRESS FOR M/~=?";S _7 both inputs
130 INPUT "HOW MANY BYTES?"; B in decimal
140 INPUT "PRESS RETURN TO ENTER PROGRAM"; A$
150A=S

31

Line 110 clears the screen. You input the starting address at line 120. (We
will be using 768 as our starting address.) Line 130 asks for the number of bytes.
(The program we will use has 6 bytes.) The starting address is assigned to the
variable S in line 120. The number of bytes is assigned to the variable B in line
130. The computer waits at line 140 for you to gather your courage before
plunging into the program. After you press the RETURN key, the variable A
is assigned the same value that S was assigned. This is done so that the starting
address is saved as S. Meanwhile A is used as a working address. It changes to tell
the computer which address to POKE successive data into.

Example:

STARTING ADDRESS FOR M/L=?768 - S=768 from your input
HOW MANY BYTES?6 B=6 from your input
PRESS RETURN TO ENTER PROGRAM•

Second

--- A=768 after RETURN is
pressed

We will next have the Operating System print each address in turn and
wait for you to enter a two-digit hexadecimal code for either an instruction code
from your machine language reference or a byte of hexadecimal data. Remem
ber, the Operating System will take care of converting the hexadecimal values to
decimal values. It does this in a subroutine located at line 1000. After the con
version takes place, the decimal result is POKEd into the specified address. The
address is then increased by one at line 290, and the next entry is requested.
This continues until you have entered the entire program.

Address + 1 = Next Address

SECTION 2

200 REM *ENTER PROGRAM IN HEX - CONVERT TO DECIMAL *
210 FOR E = 1 TO B
220 PRINT A; SPC(2); -Address is printed
230 GET H$: PRINT H$; } - Hex data follows
240 GET U$: PRINT U$
250 IF ASC(H$)<48 OR ASC(H$}>70 OR (ASC(H$)>57 AND

ASC(H$}<65) THEN PRINT "lST DIGIT NOT HEX -TRY
AGAIN": GOTO 220

260 IF ASC(U$}<48 OR ASC(U$)>70 OR (ASC(U$)>57 AND
ASC(U$)<65) THEN PRINT "2ND DIGIT NOT HEX - TRY
AGAIN": GOTO 220

270 GOSUB 1000
280 POKE A,D
290 A= A+l
300 NEXT E

----- Convert to decimal
---- Put data in memory
---- Next address

32

Lines 250 and 260 ensure that your data entries are in valid hexadecimal
format. They do not ensure that a valid machine language instruction has been
used. This is up to you, the programmer.

Example:

ST ART ING ADDRESS FOR M/L=?768
HOW MANY BYTES?6
PRESS RETURN TO ENTER PROGRAM
768.

Computer waits for the data entry

After all except the last instruction has been entered.

Third

ST ART ING ADDRESS FOR M/L=?768
HOW MANY BYTES?6
PRESS RETURN TO ENTER PROGRAM
768 A9
769 13
770 8D
771 25
772 03

} - Hexadecimal equivalents to the values shown
in the POKE and PEEK DEMONSTRATION
program.

773 •
\ -----This entry will be 60. Then the program will

A increases for proceed to the next section .
. each entry (768,

769, etc.)

We should now print the program so that you can check it for errors. A
subroutine will be written at line 2000 to do this. We'll assume that it has been
done for now but come back to it later. We also want to allow provision for
making changes in the program in case an error is discovered. Our demonstration
program is very short and can be shown in its entirety on the screen by the
Section 2 routine. Therefore, this section may seem unnecessary to you. How
ever, your programs will be longer in the future, and some will probably not
fit on the screen. The printing subroutine will display your programs 20 lines
at a time so that you may see 20-line blocks of your program.

When using this section, look through the entire program and note any
changes that you want to make. Changes are made after the complete pro·
gram has been displayed by the subroutine and a RETURN is made to line 420.

33

SECTION 3

400 REM *PRINT M/L PROGRAM AND CHECK FOR CHANGES*
410 GOSUB 2000 - Print the program
420 PRINT "IF ANY CHANGES-TYPE ADDRESS"
430 PRINT "IF NOT -TYPE 99"
440 INPUT AD
450 IF AD=99 GOTO 700 - Execute the program
460 PRINT AD;
470 PRINT "DATA=?"; - Get the change
480 GET H$: PRINT H$;
490 GET U$: PRINT U$
500 IF ASC (H$}<48 OR ASC(H$}>70 OR (ASC{H$)>57 AND

ASC{H$)<65) THEN PRINT "1ST DIGIT NOT HEX - TRY
AGAIN": GOTO 460

510 IF ASC (U$)<48 OR ASC(U$)>70 OR (ASC(U$)>57 AND
ASC(U$)<65) THEN PRINT "2ND DIGIT NOT HEX - TRY
AGAIN": GOTO 460

520GOSUB1000
530 POKE AD,D - Change it

If there are some changes, you should type in the address where the
change is to be made (line 440). That address is then printed followed by the
question DATA=?. You then enter the correct data in hexadecimal format. It
is converted to decimal form by the subroutine at line 1000 and entered into
memory by line 530.

Example:

No changes to be made after the program is printed.

HERE IS YOUR PROGRAM

768 A9
769 13
770 8D
771 25
772 03
773 60
PRESS ANY KEY TO CONTINUE -we pressed a key here
IF ANY CHANGES-TYPE ADDRESS
IF NOT -TYPE 99
?99 We typed 99 here - no changes. The

program would then be executed.

If a change is to be made after the program is printed

34

HERE IS YOUR PROGRAM

768 AO
769 13
770 8D
771 25
772 03
773 60

------- Error seen here Oh, Oh!

PRESS ANY KEY TO CONTINUE -we pressed a key here after
IF ANY CHANGES-TYPE ADDRESS spotting the error.
IF NOT-TYPE 99
?768
768 DAT A=? A9

We typed the address
-------- Then the correct data

We must wait for the next sectlon to see what happens now. 9
Fourth

More than one change may be necessary. So we follow Section 3 with an
opportunity for you to make more changes. This section is only executed fol
lowing a correction to the program.

SECTION4

600 REM * CHECK FOR MORE CHANGES *
610 INPUT "ANY OTHER CHANGES (YES OR NO)?"; C$
620 IF LEFT$(C$, 1) = "Y" THEN GOTO 420- If yes, make changes
630 GOSUB 2000 Then print the program again
640 INPUT "ANY OTHER CHANGES (YES OR NO)?"; C$
650 IF LEFT$(C$,1} = "Y" THEN GOTO 420

Line 610 asks if there are any more changes. If the response is NO, the
program is printed again to let you examine it one more time. It then returns to
give you one last chance for another change at line 640. If your answer is NO
again, the program moves on to the execution section.

If your response is YES (or at least begins with Y because of the LEFT$
statement in line 620 and 650), the computer goes back to line 420 for another
change. You will stay in this loop until the program has finally changed to your
satisfaction.

Let's suppose that you have made two errors in the original entry of your
program.

35

Example:

Olde Myth
HERE IS YOUR PROGRAM

768 89
769 13
770 8C
771 25
772 03
773 60

l To err is human I

Do you see the errors?
New Myth

I Computers never err I
PRESS ANY KEY TO CONTINUE•

You spot the errors and want to make changes. Press any key.

HERE IS YOUR PROGRAM

768 89
769 13
770 8C
771 25
772 03
773 60
PRESS ANY KEY TO CONTINUE-+ You pressed a key
IF ANY CHANGES-TYPE ADDRESS
IF NOT-TYPE 99
?768 You typed the address

first change - 768 DAT A=? A9 Then the data
ANY OTHER CHANGES (YES OR NO)? YES-.You an-
IF ANY CHANGES-TYPE ADDRESS swered YES
IF NOT -TYPE 99
?770 You typed the address

second change- 770 DAT A=?8D Then the data
ANY OTHER CHANGES (YES OR NO)?NO--You typed

NO

The screen then goes blank, and the corrected program is shown.

36

Fifth

HERE IS YOUR PROGRAM

768 A9
769 13
770 80
771 25 - it looks ok, so you press a key .

. 772 03 /
773 60
PRESS ANY KEY TO CONTINUE To this last chance,
ANY OTHER CHANGES (YES OR NO)?NO/you type NO

The program then goes on to execute the program in the next section.

This section executes the machine language program. It stops at line 710
to allow you to gather your courage once more. Will it run correctly or not? You
press a key and presto! It's finished, quick as a wink. Boy, that was fast.

SECTION 5

700 REM* EXECUTE THE MACHINE LANGUAGE PROGRAM*
710 PRINT "PRESS ANY KEY TO RUN": GET A$

800 CALLS

900 END

} ---Plenty of space left here to add any custom
inputs to the program

}
---S is the variable for the starting address.

___ More space for statements to get results of
machine language program

The machine language program is called at line 800. Notice the space left
between line 710 and 800. You can enter additional BASIC statements here to
provide special inputs to your machine language programs if you desire, i.e.,
POKE address, DATA. The space between lines 800 and 900 allows BASIC
statements to read results from your machine language programs, i.e., PEEK
(address).

For example, our demonstration program supposedly loaded the hexa
decimal value of 13 and put it into memory location 0325 (also a hexadecimal
value). If the program worked correctly, the decimal value 19 (HEX 13) should
have been placed into the memory location whose address is 0325 (lines 771
and 772 of the machine language program). This value in decimal form would be
805 (3 X 162 + 2 X 16 + 5). We can find out if it really did this by typing:

PRINT PEEK(805)

after the machine language program has been executed.

37

Example:

HERE IS YOUR PROGRAM

768 A9
769 13
770 SD
771 25
772 03

773 60 ? rc;i ?
PRESS ANY KEY TO CONTINUE 1----You pressed a key . ~ .
ANY OTHER CHANGES (YES OR NO)?NO'-. 0 @)?
PRESS ANY KEY TO RUN ,.,____You typed NO 7 r:1 7

You pressed a key · ~ ·
J PRINT PEEK (805)
19

] •""The value PEEKed at is 19. This is the decimal equivalent
of the hexadecimal value 13 that was entered, and it has
been moved to the correct memory location.

Sixth (8j
Last of all come the subroutines of the Operating System. The first one

converts the hexadecimal data to decimal values for the BASIC interpreter.

SECTION 6A

1000 REM* CONVERT HEX TO DECIMAL*
1010 M=ASC(H$): N=ASC(U$)
1020 IF M>S7 THEN M=M-55: GOTO 1040
1030 M=M-48
1040 IF N>S7 THEN N=N-55: GOTO 1060
1050 N=N-48
1060 D=16*M+N
1070 RETURN

HEX IN

OUT

DECIMAL

Line 1020 checks the ASCII code for the first hexadecimal digit. It will be
one of the values shown in the following table under the heading ASCII. Lines
1020 and 1030 convert the HEX value to its equivalent decimal value.

38

.Examples:

1. A hexadecimal value of 8 has an ASCII code of 56. Therefore, M is not
>57, so line 1030 is executed. The new M = 56 - 48 = 8 (the decimal
equivalent of 8).

2. A hex value of B has an ASCII code of 66. Therefore, M>57 in line
1020. The New M = 66 - 55 = 11 (the decimal equivalent of B).

The same procedure is followed for the second digit at lines 1040 and 1050.
Here is a table of conversions between hexadecimal, ASCII, and decimal values.

CONVERSION TABLE

Hexadecimal ASCII Converted
digit code decimal value

0 48 0
1 49 1
2 50 2
3 51 3
4 52 4
5 53 5
6 54 6
7 55 7
8 56 8
9 57 9
A 65 10
B 66 11
c 67 12
D 68 13
E 69 14
F 70 15

A two-digit hexadecimal number has the following place values:

first digit~M N~second digit
tells how tells how
many 16's many 1 's

In hexadecimal form, M and N may be any HEX digit 0 through F. Lines 1020
through 1050 convert these hexadecimal digits (0 through F) to their decimal
equivalents (0 through 15).

Mis now the decimal number of 16's (0 through 15)
N is now the decimal number of 1 's (0 through 15)

The decimal equivalents are then combined into a decimal number by multiply
ing 16 times the decimal equivalent of M and adding the decimal equivalent of
N. Line 1060 performs this final operation.

39

Example:

~ASCll67
Original hexadecimal number= C7

' ASCII 55
from line 1020 New M = 67-55 = 12
from line 1050 New N = 55-48 = 7
from line 1060 D = 16x12 + 7 = 199 (the decimal equivalent of C7

hexadecimal)

The print subroutine displays up to 20 lines of your machine langauge pro
gram at one time. The computer waits for you to examine these lines and press a
key before displaying the next 20 lines of the program. This subroutine may be
entered from the third or fourth section of the program depending on whether
changes have been made. It returns to the same section from which the entry
was made.

Line 2030 initializes counters J to 0 and I to 19 so that 20 addresses and
data values will be displayed on the screen by the FOR-NEXT loop at lines 2200
through 2220.

SECTION 68

2000 REM *SUBROUTINE TO DISPLAY PROGRAM *
2010 HOME: PRINT "HERE IS YOUR PROGRAM"
2020 PRINT
2030 J=O: 1=19
2040 ON INT((B-1)/20)+1 GOTO 2090, 2080, 2070, 2060, 2050
2050 GOSUB 2200
2060 GOSUB 2200
2070 GOSUB 2200
2080 GOS U B 2200
2090 l=B-l:GOSUB 2200
2100 RETURN

2200 HOME
2210 FOR E = J TO I
2220 PRINT S+E; SPC(2);: GOSUB 3000
2230 NEXT E
2240 PRINT "PRESS ANY KEY TO CONTINUE": GET A$
2250 J=1+1: 1=1+20
2260 RETURN

Line 2040 uses the number of program bytes to calculate how many blocks of
20 lines must be displayed. It uses the ON-GOTO statement to select the number
of times the block print subroutine will be used (at line 2200). Line 2090 dis
plays the last block of program lines. This block may not be 20 lines long. There-

40

fore; the upper limit of the FOR-NEXT loop is changed to reflect the number of
program lines left to be displayed. The screen is cleared at line 2200 each time
a new block of lines is to be printed. The program halts at line 2240 so that you
can closely examine the lines for errors. When you press any key, the next block
of lines is displayed.

Last is the subroutine that converts the data from the decimal values
selected by the PEEK (at line 3010) to the hexadecimal values used for data.

SECTION 6C

3000 REM *CHANGE TO ASCII AND DISPLAY*
3010 Y = PEEK(S+E)
3020 H = INT(Y/16)
3030 U = Y-16*H
3040 IF H<lO THEN PRINT H;: GOTO 3060
3050 PRINT CHR$(H+55);
3060 IF U<lO THEN PRINT U: GOTO 3080
3070 PRINT CHR$(U+55)
3080 RETURN

Line 3010 PEE Ks at the content of the address being displayed. Lines
3020 and 3030 separate the decimal value into the number of 16's (H) and the
number of 1 's (U). Lines 3040 through 3070 convert H and U to their ASCII
equivalents for display.

Since we will be using this Operating System quite often in future chap
ters, it would be to your advantage to enter it in the computer and then save it
on cassette or diskette. Then it can be loaded quickly when needed.

Basically the Operating System allows you to:
1. Enter a machine language program

2. Alter any of your entries

3. Run the machine language program

Instruction in the use of the Operating System will be given as needed in the fol
lowing chapters.

THE COMPLETED BASIC OPERATING SYSTEM

Here is the completed BASIC Operating System. You should enter it into
your Apple. When you have tried it out to make sure it works correctly, save it
on cassette tape or disk. It will be too tedious to type it in every time you want
to use it.

41

BASIC OPERATING SYSTEM

100 REM* GET MACHINE LANGUAGE INFORMATION*
110 HOME
120 INPUT "STARTING ADDRESS FOR M/L=?"; S
130 INPUT "HOW MANY BYTES?"; B
140 INPUT "PRESS RETURN TO ENTER PROGRAM"; A$
150 A= S

200 REM * ENTER PROGRAM IN HEX - CONVERT TO DECIMAL*
210FORE=1 TOB
220 PRINT A; SPC(2);
230 GET H$: PRINT H$;
240 GET U$: PRINT U$
250 IF ASC(H$)<48 OR ASC(H$)>70 OR (ASC(H$)>57 AND

ASC(H$)<65) THEN PRINT "lST DIGIT NOT HEX -TRY
AGAIN": GOTO 220

260 IF ASC(U$)<48 OR ASC(U$)>70 OR (ASC(U$)>57 AND
ASC(U$)<65) THEN PRINT "2ND DIGIT NOT HEX -TRY
AGAIN": GOTO 220

270 GOSUB 1000
280 POKE A,D
290 A= A+1
300 NEXT E

400 REM* PRINT M/L PROGRAM AND CHECK FOR CHANGES*
410 GOSUB 2000
420 PRINT "IF ANY CHANGES-TYPE ADDRESS"
430 PRINT "IF NOT - TYPE 99"
440 INPUT AD
450 IF AD=99 GOTO 700
460 PRINT AD;
470 PRINT "DATA=?";
480 GET H$: PRINT H$;
490 GET U$: PRINT U$
500 IF ASC(H$)<48 OR ASC(H$)>70 OR (ASC(H$)>57 AND

ASC(H$)<65) THEN PRINT "1ST DIGIT NOT HEX - TRY
AGAIN": GOTO 460

510 IF ASC{U$)<48 OR ASC(U$)>70 OR (ASC{U$)>57 AND
ASC(U$)<65) THEN PRINT 2ND DIGIT NOT HEX - TRY
AGAIN": GOTO 460

520 GOSUB 1000
530 POKE AD,D

42

600 REM * CHECK FOR MORE CHANGES *
610 INPUT "ANY OTHER CHANGES (YES OR NO)?"; C$
620 IF LEFT${C$,1) = "Y" THEN GOTO 420
630 GOSUB 2000
640 INPUT "ANY OTHER CHANGES {YES OR NO)?"; C$
650 IF LEFT${C$,1) = "Y" THEN GOTO 420

700 REM * EXECUTE THE MACHINE LANGUAGE PROGRAM *
710 PRINT "PRESS ANY KEY TO RUN": GET A$

800 CALLS

900 END

1000 REM *CONVERT HEX TO DECIMAL*
1010 M=ASC{H$): N=ASC(U$)
1020 IF M>57THEN M=M-55: GOTO 1040
1030 M=M-48
1040 IF N>57 THEN N=N-55: GOTO 1060
1050 N=N-48
1060 D=16*M+N
1070 RETURN

2000 REM* SUBROUTINE TO DISPLAY PROGRAM*
2010 HOME: PRINT "HERE IS YOUR PROGRAM"
2020 PRINT
2030 J=O: 1=19
2040 ON INT{(B-1)/20)+1 GOTO 2090,2080,2070,2060,2050
2050 GOSUB 2210
2060 GOSUB 2210
2070 GOSUB 2210
2080 GOSUB 2210
2090 l=B-1: GOSUB 2210
2100 RETURN

2200 HOME
2210 FOR E = J TO I
2220 PRINT S+E; SPC{2);: GOSUB 3000
2230 NEXT E
2240 PRINT "PRESS ANY KEY TO CONTINUE": GET A$
2250 J=1+1: 1=1+20
2260 RETURN

43

3000 REM * CHANGE TO ASCII AND DI SPLAY *
3010 Y = PEEK(S+E)
3020 H = INT(Y/16)
3030 U = Y-16*H
3040 IF H<10 THEN PRINT H;: GOTO 3060
3050 PRINT CHR$(H+55);
3060 IF U<10 THEN PRINT U: GOTO 3080
3070 PRINT CHR$(U+55)
3080 RETURN

EXERCISES

1. The BASIC language uses ______________ numbers.
(HEX, binary, decimal)

2. When you use the statement:
POKE address, data

both address and data must be ____________ numbers.
{HEX, binary, decimal)

3. If you executed the following four statements in the Immediate Mode, fill in
what would be printed on the line following the PRINT PEEK statement.

POKE 768, 169
POKE 769,19
POKE 770, 141
PRINT PEEK(769)

4. Explain the function of the CALL statement. -----------

5. When using the BASIC Operating System, the addresses for the machine
language program being entered will be printed on the screen using
______________ numbers.

(decimal, HEX, binary)

6. The data and instructions which you enter (by the BASIC Operating Sys-
tem) for the machine language program must be entered using __ _
_____________ numbers.

(decimal, HEX, binary)

ANSWERS TO EXERCISES

1. Decimal

2. Decimal

3. 19

44

4. The CALL statement causes a machine language subroutine to be executed.
The beginning address of the subroutine must be given. (Example: CALL
768 would call a machine language subroutine beginning at the memory
location whose address is 768.)

5. Decimal

6. HEX

45

Chapter 3

Instruction Code Format

BOS

The Central Processing Unit (CPU) of the Apple computer was originally
manufactured by MOS Technology, Inc. At the present time, two other com
panies (Synertek and Rockwell) also manufacture the CPU. This unit is named
the 6502 microprocessor. It is called a central processing unit because all in
structions and numerical values are routed there for processing.

The 6502 microprocessor (and hence, the Apple computer), like many
other microprocessors, understands only instructions that are coded in blocks
of eight binary digits, called bytes. Therefore, the biggest hurdle to machine
language programming is to learn to work with information in binary form.

I 0 0 1 I --Block of 8 "bits"
----------- or 1 "byte"

[I-one bit

UQJ-Two bits (not worth much these days)

~-Four bits (sometimes referred to as anybble)

I 01111101 I-Eight bits (commonly called a byte)

The Apple uses words that are eight bits in length; that is, it can digest
words whose size is one byte. All instructions and numerical values must be
sent to its central processing unit in this byte size. A typical instruction, shown
below, loads the computer's accumulator with the one byte of data following
the instruction in a machine language program.

46

LOAD ACCUMULATOR IMMEDIATE

MNEMONIC CODE BINARY CODE
(abbreviation)

LDA 10101001

Don't let the computer terminology throw you. The accumulator is similar
to a memory location that is used in special ways we will discuss later on. We are
just introducing it here to show the format of an instruction.

The computer is composed of many functional parts that we will intro
duce as needed to explain the operations taking place. The central processing
unit of the Apple is a 6502 microprocessor. The following block diagram shows
the "parts" we are presently concerned with.

6502 MICROPROCESSOR

Instruction decoder

Accumulator

Other controls and
registers

MEMORY

The instruction decoder of the 6502 "reads" the instruction and decodes
it. Most instructions involve the accumulator (discussed later in this chapter) as a
center for moving and manipulating data. Memory is separate from the 6502
microprocessor.

NUMBER SYSTEMS

You can see that entering many binary-coded instructions would be tedi
ous. Since there are only two symbols (0 and 1), the binary representation of
numbers is quite long. Most computers, including the Apple, have the ability to
accept a shorthand representation of binary. This shorthand is the hexadecimal
number system (which we will often refer to as HEX). Four binary digits may be
represented by one HEX digit. Thus, our 8-bit instruction may be represented by
a 2-digit HEX number by breaking the byte (8 bits) into two parts (nybbles).

47

Binary Number

101111101!

/ \
~~
~\e ~~ I(\" ~le\

0111 = 7 HEX 1101 = D HEX

Therefore:

The hexadecimal number system has 16 symbols (0,1,2,3,4,5,6,7,8,9,A,B,
C,D,E,F}. The relationship of decimal, binary, and HEX values is shown in the
following table.

Decimal Binary HEX

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9

10 1010 A
11 1011 B
12 1100 c
13 1101 D
14 1110 E
15 1111 F

48

0
00

000
0000

0 0 0 0 0

0CALL me 15, CALL me 1111, or CALL me F - they all
represent the same thing.

To give the table meaning, let's take a look at the binary system. Each place
value in the binary system is a power of two, just as each place value in the
decimal system is a power of ten. Two is called the base of the binary system,
and ten is called the base of the decimal system. If we look at the place values
of the binary numbers 0000 through 1111, we can attach more meaning to
them.

Binary Places
Decimal

23 22 2' 20 Equivalent

0 0 0 1 0+0+0+1=1
0 0 1 0 0+0+2+0 = 2
0 1 0 0 0+4+0+0 = 4
1 0 0 0 8+0+0+0= 8

Using combinations of these place values, we may obtain any decimal value from
0 through 15 or any HEX value from 0 through F.

Examples:

0101 = 22 + 2°= 4 + 1 = 5 decimal and also 5 HEX
1010 = 23 + 21 =8+2=10 decimal which is A HEX
1100 = 23 + 22 = 8 + 4 = 12 decimal which is C HEX
1101 = 23 + 22 + 2° = 8 + 4 + 1 = 13 decimal which is D HEX

Let's now take a closer look at how we may express any 8-bit binary num
ber by two HEX digits. We saw earlier that the highest HEX digit (F} corres
ponds to the four-bit binary value 1111. The next higher binary value is 10000.
The one is in the 24 place, which equals 16. Therefore, we have one 16 and
nothing else. This can be expressed by the HEX value 10, which means one 16
and no 1 's. There is ·a direct relationship between the upper 4 bits of an eight
bit binary number and the sixteen's place digit of a HEX number.

Binary Places

21 26 25

0 0 0
0 0 1
0 1 0
1 0 0

2"

1
0
0
0

HEX value
761

1
2
4
8

49

24 = 16
25 = 2*16 = 32
26 = 4*16 = 64
27 = 8*16 = 128

Next look at the binary place values of the complete 8-bit number.

Binary Places
Decimal HEX

2' 26 2s 24 23 22 21 20 Equivalent Equivalent

0 0 0 0 0 0 0 1 O+O+O+O+O+O+O+ 1 = 1 1
0 0 0 0 0 0 1 0 0+0+0+0+0+0+2+0 = 2 2
0 0 0 0 0 1 0 0 0+0+0+0+0+4+0+0 = 4 4
0 0 0 0 1 0 0 0 0+0+0+0+8+0+0+0 = 8 8
0 0 0 1 0 0 0 0 O+O+O+ 16+0+0+0+0 = 16 10
0 0 1 0 0 0 0 0 0+0+32+0+0+0+0+0 = 32 20
0 1 0 0 0 0 0 0 0+64+0+0+0+0+0+0 = 64 40
1 0 0 0 0 0 0 0 128+0+0+0+0+0+0+0 = 1 28 80

Using combinations of all eight bits, you may obtain any decimal value
from 0 through 255, or any HEX value from 0 through FF. If we break an 8-bit
binary number into two 4-bit parts, each part may be represented by one HEX
digit.

Examples:

BINARY
~SPLIT-BINARY

Broken (split) HEX
into
two
parts

BINARY
SPLIT-BINARY

HEX

BINARY
SPLIT-BINARY

HEX

01111101 64+32+16+8+4+1 = 125 in decimal
0111 1101

7 D 7*16+13=125 in decimal

11000011 128+64+2+1=195 in decimal
1100 0011

C 3 12*16+3 = 195 in decimal

10101010 128+32+8+2 = 170 in decimal
1010 1010

A A 10*16+10 = 170 in decimal

Instruction manuals for machine language quite often list the instruc
tion codes in both binary and HEX forms. Our BASIC (to machine language)
Operating System will use HEX format for entering the instructions of ma
chine language programs. Since BASIC doesn't understand HEX numbers, the
operating system will convert them to decimal numbers for BASIC and to
binary numbers for the computer. Even though the BASIC Operating System
was discussed in Chap. 2, we believe the data-entry section should be repeated
here.

Instructions are input in lines 200-300 of the BASIC (to machine lan
guage) Operating System as hexadecimal numbers.

50

SECTION 2

200 REM * ENTER PROGRAM IN HEX - CONVERT TO DECIMAL*
210 FOR E = 1 TO B
220 PRINT A; SPC(2); Address is printed
230 GET H$: PRINT H$; }---HEX data follows
240 GET U$: PRINT U$
250 IF ASC(H$)<48 OR ASC(H$)>70 OR (ASC{H$)>57 AND

ASC(H$)<65) THEN PRINT "1 ST DIGIT NOT HEX - TRY
AGAIN": GOTO 220

260 IF ASC(U$)<48 OR ASC{U$)>70 OR (ASC(U$}>57 AND
ASC(U$)<65) THEN PRINT "2ND DIGIT NOT HEX - TRY
AGAIN": GOTO 220

270 GOSUB 1000 Convert to decimal
280 POKE A,D Put data in memory
290 A= A+l Next address
300 NEXT E

The HEX-to-decimal conversion takes place in the subroutine at lines
1000-1070 of the operating system program. The BASIC interpreter then
changes the decimal numbers to binary equivalents for the computer.

1000 REM *CONVERT HEX TO DECIMAL*
ASCII codes- 1010 M=ASC(H$): N=ASC(U$)
in decimal 11020 IF M>57 THEN M=M-55: GOTO 10401
(M,N) 1030 M=M-48
Conversion- 1040 IF N>57 THEN N=N-55: GOTO 1060

1050 N=N-48
1060 D=16*M+N
1070 RETURN

HEX TO DECIMAL

BLOCK DIAGRAM OF INPUTS

~--.H_E_X-TO--~ DECIMAL TO USES THE L___J _DECIMAL -- BINARY _. BINARY

Keyboard
Input

Operating BASIC
System Interpreter

ots is on pages 40 and 41

51

Computer

The computer handles data in 8-bit blocks called bytes. Therefore, one
byte of data is limited to the binary value 11111111 (FF hex or 255 decimal).
However, by combining two bytes of data, much larger values may be handled.
The computer uses this method to access locations in its memory.

When a two-byte number is used, one byte is referred to as the Least
Significant Byte (LSB). The other is referred to as the Most Significant Byte
(MSB).

Example:

MSB (Most Significant Byte) LSB (Leas~ Significant Byte)

0 0 0 0 0 0 0 0 0

Don't confuse the Most and Least Significant Bytes with the most and least sig
nificant bits. Each byte has an msb (most significant bit) and an lsb (least signifi
cant bit).

MOST SIGNIFICANT BYTE LEAST SIGNIFICANT BYTE

21 26 25 24 23 22 21 20 27 26 2s 24 23 22 21 20

0 0 0 0 0 0 0 0 0

I / I /
most least most least
significant significant significant significant
bit bit bit bit

To use a two-byte number, you consider the Most Significant Byte as an exten
sion of the Least Significant Byte. The place values of the Least Significant Byte
were assigned powers of two from 0 through 7.

LSB

0 0 0 0 = 64 + 4 + 2 + 1 = 71 (decimal)
L-~~~~~~~~~~~~--'

The place values of the Most Significant Byte are assigned the next higher
powers of two (8 through 15).

52

MSB

0 0 0 0 0 = 32768 + 2048 + 256 = 35072
(decimal)

The decimal value resulting from the combined bytes (considered as one num
ber) is:

0 0 0 0 0 0 0 0 0

In decimal: 32768 + 2048 + 256 + 64 + 4 + 2 + 1 = 35143

Split into 4-bit parts:
1000 1001

HEX digits

HEX
format:

MSB

89

8

LSB

46

ACCUMULATOR

9

0100 0110 - This binary value
is equivalent to

4 6 - this HEX value

8 9 4 7 - 8*4096 = 32768
.._ ______ __. + 9*256 = 2304

+ 4* 16 = 64
+ 7*1 = 7

35143
(decimal)

The accumulator is a register (a storage place similar to a memory loca
tion) in which data is placed. It is used as a temporary storage area when mov
ing data from one memory location to another. Arithmetic and logical opera
tions on data also take place in the accumulator. Thus it is frequently used, and
many of the 6502 instructions involve it. Remember, the Apple computer uses
the 6502 central processing unit. The instructions are fixed in the 6502; that is,
each instruction has a unique, unchanging machine language code.

The accumulator also holds one byte of data.

53

0 0 0 0

The necessity for two-byte values becomes apparent when an instruction
is used to acquire data from a memory location. If you want to load data into
the accumulator from memory, the following instruction could be used.

One instruction for putting a number into the accumulator was shown
previously. It loads the accumulator with. a number which immediately follows
the instruction.

Example:

Binary
Value

10101001
00001101

HEX -This is the value typed in
Value

A9 -Load the accumulator
13 -with HEX value 13

The two bytes (each occupying a separate memory location) provide:

First: the instruction, Load the accumulator (A9)
Second: with the HEX value 13

The next instruction introduced shows a second way to put a number into
the accumulator. It obtains the number to be loaded from a specified memory
location. Even though the mnemonic code for this instruction is LDA (the same
as the one referred to at the beginning of the chapter), the HEX value represent
ing this instruction is different.

When you are loading the accumulator from a specified memory location,
the LDA instruction has a HEX code of AD. Even though this means nothing to
you, it is a specific instruction to your Apple. The memory location is specified
following the instruction. Notice that the two bytes necessary for specifying
the address of the memory are given in reverse order. This may seem ridiculous
to you. But to the computer, it is entirely logical. The Least Significant Byte
is stored in the lower address of memory, and the Most Significant Byte is stored
in the higher memory address.

Memory HEX Mnemonic
Address Value Code Operand Remarks

768 r-AD LDA 0325 Load the accumulator from
769 25}

~
memory location 0325

770 03 (HEX)

Instruction ~i Reversed order for address

54

This is an example of a three-byte instruction.

1. The instruction is given in the first byte.

2. The LSB of the memory appears as the next byte.

3. The MSB of the memory appears as the last byte.

When the computer executes this instruction, the data in memory location
0325 is copied into the accumulator. This one change occurs:

BEFORE:

AFTER:

Memory 0325

,__?_?_??_?_??_?__.! /I 101111 oo I
.__10_1_1 _11_0_0 _.I I 101111 oo I

Accumulator

The value in the memory location remains unchanged and is copied into
the accumulator. Operations can be performed on the value in the accumulator.
The results can then be transferred to another location if desired. The important
thing to remember is that most of the computer's action takes place in the
accumulator. Therefore, many of the 6502 instructions involve this useful
register.

Data from the accumulator can be copied into some memory location
with a store instruction such as:

Instruction -
Memory

Location {

HEX
Value

8D
26
03

Mnemonic
Code

STA

Operand Remarks

0326 Store the value contained
in the accumulator into
memory location 0326
HEX

This is another three-byte instruction. In general, most instructions that
refer to a memory location require three bytes. Exceptions will be noted later.

When the computer executes this instruction, the data in the accumulator
is copied into the specified memory location. This change occurs:

Accumulator Memory 0326

BEFORE: 10011001 I""- I 11111111 I
AFTER: .---10_0_1_10_0_1___,I ~ I 10011001 I

The value in the accumulator stays the same, but that value is copied {or writ
ten) into memory location 0326 as well. You can see that with instructions like
LDA and ST A, the accumulator is going to be a busy place.

SS

It will also be important for you to keep track of what memory locations
are being used for different operations. Remember, we are using memory loca
tions 0300 HEX upward {see memory map in Chap. 2). Whenever data is stored
in a memory location, the data that was previously there is lost.

Example:

Suppose that the following values are in the memory locations shown.

Memory (Hex)
0325
0326
0327

Content
19
24
00

This machine language program is then executed.

These machine lan
guage instructions
work in a similar
way to the two
consecutive BASIC
instructions:

200 LET A=19
210 LET A=24

768
769
770

771
772
773

774
775
776

777

AD
25
03

SD
27
03

AD
26
03

Load accumulator from
memory location 0325

!l2J now in accumulator

~re accumulator in
me'lnory location 0327

Memory locations now
0325 19
0326 24
0327 ~--This has been changed

Load accumulator from
memory location 0326.

~ now in accumulator

Store accumulator in
memory location 0327

Memory locations now
0325 19
0326 24
0327 ~

56

INSTRUCTIONS IN MEMORY

Programs must be put into memory before they can be run. Even your
BASIC programs occupy memory space. Your BASIC interpreter takes care of
BASIC program memory assignments for you, and you are unaware of the exact
locations of BASIC instructions. However, you must assign memory locations to
your machine language programs. Each instruction byte and each data byte must
be assigned specific locations. Each byte occupies one memory location.

Example:

Memory Data or Instruction
Location Byte Remarks

0300 AD Load accumulator
0301 25 from memory location
0302 03 0325

0325 2B Data to be loaded

Some instructions have many forms. This load instruction differs from
that used in "Memory Use" in Chap. 2 in that a value is loaded from a memory
location rather than from the byte following the instruction.

We will use memory locations 0300 through 03FF (HEX) for our machine
language programs. This area of memory is not used by the Apple Operating
System nor by the BASIC interpreter. Therefore, it is safe for our use.

We'll use our BASIC Machine Language Operating System to POKE
machine language instructions and data into this area of memory.

USE OF THE BASIC-M/L OPERATING SYSTEM

To demonstrate the use of the Operating System, we must first decide on
the machine language program that we want to run. Your first effort will be a
very short program that places some data into the accumulator and then moves
it from there to a memory location.

This program accomplishes the same thing as the BASIC instruction:

LET A= 19 ----This stores 19 in location named A

*Notice again that the memory location 0325 is entered in the program LSB
first, then MSB. This may seem backwards to you, but it is quite normal for the
computer. The Most Significant Byte (MSB) is now stored in a higher memory
location than the Least Significant Byte (LSB).

57

The LET statement merely stores the value 19 into a memory location assigned
by the BASIC interpreter.

The machine language equivalent takes two instructions:

LDA (load accumulator with data)
ST A (store accumulator's contents in memory)

1. We first load the accumulator with the data.
The 6502 instruction for loading the accumulator with data that immediately
follows is made up of two bytes.

A9 - First byte
XX - Second byte

A9 is the machine language code telling the computer to load the data
which follows into the accumulator.

XX is a two-digit HEX value that is to be loaded.

The mnemonic code for the instruction and the Operand are usually added to
give some meaning to the coded instruction. The actual instruction is called
the Operation Code (Op Code for short).

Example:

Op Code 'Mnemonic Code Operand \

Two--{A9~ LDA l~the data
bytes 13~ \

\This says LoaD Accumulator
This tells what value to load

The mnemonic code is just the abbreviation for the instruction. The operand
is the data or other item used. The operation code is the HEX code for the
instruction to be performed or the data to be used. In this case it is the in
struction, Load Accumulator with immediate data.

A list of machine language instructions used in this book is given in Appen
dix A-2. A complete list of 6502 instructions is given in Appendix D.
The instruction actually consists of two bytes:

A9
xx

(the instruction)
(the HEX data to be loaded)

In our demonstration, we will load the value 19 (HEX=l 3). Therefore, the
two-byte instruction will be:

A9
13

58

In the different number systems that we have discussed:
Binary
10101001
00010011

Split-binary
1010 1001
0001 0011

HEX
A9
13
• ... --These values are entered using

the BASIC Operating System.

2. We will then store the data in the memory location whose address is 0325
(HEX).

The 6502 instruction necessary to do this is:

STORE ACCUMULATOR ABSOLUTE

OPERATION CODE MNEMONIC OPERAND

~ ~ ~
8D STA memory

This instruction takes three bytes:
8D (The instruction)
25 (The least significant memory byte)
03 (The most significant memory byte)

The instruction
is placed in three

successive memory locations

3. We will then return from the machine language program to the operating
system.

The 6502 instruction used is:

RETURN FROM SUBROUTINE

OPERATION CODE MNEMONIC OPERAND

~ ~ ~
60 RTS none

This is a one-byte instruction.

60 (The instruction)

It performs the same function as the BASIC instruction:

RETURN

We noted on the Apple memory maps (Chap. 2) that memory locations
768-1023 (decimal) would be used for machine language programs. That part of
the map is shown here for reference.

59

Decimal HEX
Address Equivalent

768 0300
769 0301
770 0302
771 0303
772 0304

1022 03FE
1023 03FF

Our first program will begin at memory location 0300 HEX. We must tell
our Operating System this location as a decimal value. The addresses are POKEd
into the computer using decimal numbers that BASIC understands. But the in
structions and data must be POKEd in as HEX numbers, which the computer
will use in their binary form.

163 762 761 76°

0 3 0 0 = 3 X 162 = 3 X 256 = 768 decimal

This is the address where the first instruction of the program will be entered. We
will also have to supply the Operating System with the operation codes for each
address.

Address OP Code Remarks

768 A9 LDAw~
769 13 data
770 8D STAT
771 25 Memory (LSB)
772 03 Memory (MSB)
773 60 RTS

Notice: The program has 6 bytes (we will have to tell the
Operating System this fact).

60

Here is a step-by-step description of how to use the Operating System
to enter and run the above program.

1. Enter the Operating System (see Chap. 2). This can be done from the
keyboard, or from cassette or disk if you have previously saved the
program.

2. Type: RUN (and press RETURN)

STARTING ADDRESS FOR M/L=?•

3. Type: 768 (and press RETURN)

STARTING ADDRESS FOR M/L=?768
HOW MANY BYTES?•

4. Type: 6 (and press RETURN)

STARTING ADDRESS FOR M/L=?768
HOW MANY BYTES?6
PRESS RETURN TO ENTER PROGRAM•

5. Press the RETURN key

STARTING ADDRESS FOR M/L=?768
HOW MANY BYTES?6
PRESS RETURN TO ENTER PROGRAM
768 • /Computer supplies

--------/ first address

Now you type in the program. You do not have to press the RETURN key
after each entry. The computer will automatically print the next address follow
ing your two-digit entry. If you make a mistake, go right on to the next entry.
You will be able to correct any errors when the program has been entered
completely.

6. Type: A

STARTING ADDRESS FOR M/L=?768
HOW MANY BYTES?6
PRESS RETURN TO ENTER PROGRAM
768 A'-. /1st digit of
~ 1st address

61

7. Type: 9

STARTING ADDRESS FOR M/L=?768
HOW MANY BYTES?6
PRESS RETURN TO ENTER PROGRAM
768 A9 1st entry complete
769......._• ~Computer prints next
~ address

Since you don't have to press RETURN after each keystroke, we will include
both keystrokes for each address in each step from now on.

/768 A'

Computer You type this

d;splaysth;s bu~ ~uj(9

NO,NO!

The GET instruction does not require you to press RETURN. If you do
press RETURN, the GET instruction interprets it as one of your characters, and
the Operating System will display: ·

768
1ST DIGITNOT HEX - TRY AGAIN
768.

Getting back to the program,

8. Type: 13

STARTING ADDRESS FOR M/L=?768
HOW MANY BYTES?6
PRESS RETURN TO ENTER PROGRAM
768 A9
769 13
770 •

62

9. Type: 8D

10. Type: 25

11. Type: 03

12. Type: 60

STARTING ADDRESS FOR M/L=?76S
HOW MANY BYTES?6
PRESS RETURN TO ENTER PROGRAM
76S A9
769 13
770 SD
771 •

STARTING ADDRESS FOR M/L=?76S
HOW MANY BYTES?6
PRESS RETURN TO ENTER PROGRAM
76S A9
769 13
770 SD
771 25
772 •

STARTING ADDRESS FOR M/L=?768
HOW MANY BYTES?6
PRESS RETURN TO ENTER PROGRAM
768 A9
769 13
770 8D
771 25
772 03
773 •

HERE IS YOUR PROGRAM

76S A9
769 13
770 8D
771 25
772 03
773 60
IF ANY CHANGES-TYPE ADDRESS
IF NOT-TYPE 99
?•

63

Before going on, let's compare this machine language program with its
equivalent in BASIC. These six machine language instructions perform a func
tion very similar to two BASIC instructions:

BASIC MACHINE LANGUAGE

100LETA=19~{ 768 A9 LDA 13
110 RETURN 769 13

770 8D ST A 0325
771 25
772 03

773 60 RTS

The machine language program loaded the accumulator with the HEX
number 13 (19 decimal). It then stored it in a memory location. The BASIC
statement LET A = 19 does the same thing. It stores the value named by the let
ter A into memory. The machine language instruction RTS (ReTurn from Sub
routine) performs the same function as the RETURN instruction in BASIC.

Study the program to make sure all entries are correct. If you made an
error in your entries, you would type in the address where the error was made.
The computer would then display:

IF ANY CHANGES-TYPE ADDRESS
IF NOT - TYPE 99 Suppose:
?771 DAT A=?• Error seen at

address 771

You would then type in the correct data (two digits).

IF ANY CHANGES-TYPE ADDRESS
IF NOT -TYPE 99
?771 DAT A=?25 - Correct data entered
ANY OTHER CHANGES (YES OR NO)?

You would then type YES or NO. If you type YES, the computer would
again ask for the address and data. The process is repeated until you give a nega
tive reply (NO more changes). The computer then prints the corrected program
and asks if there are any more changes. On the last negative reply to changes, the
computer displays:

LPRESS ANY KEY TO RUN•

64

You press any key, and the machine language program is run. You will immedi
ately see the prompt and blinking cursor. My, that machine language is fast!

PRESS ANY KEY TO RUN
]•

Did our machine language program really run? How can we find out?
BASIC has an instruction named PEEK which will let you see what is in a

specified memory location. If you tell it:

PRINT PEEK (805} 325 HEX (the location where the
program stored the value, 19

it will print the value that is stored in memory location 805 (decimal}.
Since the M/L program was supposed to put the HEX number 13 (decimal

19} into memory location 0325 HEX, we can PEEK at that location to see
what's there.

0325 HEX= (3 X 256)+(2 X 16)+(5 X 1) = 768 + 32 + 5 = 805 decimal

Type: PRINT PEEK(805} and press RETURN

Presto! There it is!

) PRINT PEEK(805}
19 -------- It really worked!

]•

You can add a line to the Operating System between lines 800 and 900 to
print the value in memory using the PEEK statement.

810 PRINT PEEK(805}

This part of the operating system (lines 800-900} can be changed to custorn fit
each program you run. Add line 810 to the Operating System for your next
program.

The first program loads data into the accumulator and then stores it in
memory. Practically all programs use this type of operation to move data from
place to place within the computer. /

65

The accumulator is also used in performing operations on numbers. One
such operation shifts each bit in the accumulator left one place. This operation is
abbreviated ASL (Arithmetic Shift Left). Its OPeration CODE (OP CODE) is
OA.

Example:

Accumulator's contents
before the shift instruc· I 00010011

tion Is execured ~~~~:_)_[JJJJJJ
I 16+2+1=19 (decimal)

Accumulator's contents I
after the shift instruc· 00100110 32+4+2 = 38 (decimal)
tion is executed '

"'-zero is automatically
placed in the last bit

You can see that an ASL instruction is one way to multiply a number by
two, since the value of each bit is doubled.

You can now load a number into the accumulator and shift each bit one
place to the left (or multiply it by two). You cah then store the result in a mem
ory location. The PEEK statement, which you have added at line 810 in the
Operating System program, will then print the result stored in memory.

Use the Operating System to load this program. After all 7 bytes have been
entered, the display should show:

HERE IS YOUR PROGRAM

768 A9
769 13
770 OA
771 8D
772 25
773 03

._ Load Accumulator with HEX value 13
(19 decimal)

._ Shift bits left 1 place

._ Store results in memory (0325)

774 60 ._ Return to Operating System
IF ANY CHANGES-TYPE ADDRESS
IF NOT-TYPE 99

When you type in 99, the program will immediately show the value that
has been stored in memory 0325 HEX (805 decimal). Remember that the value
will be displayed as a decimal number. It should be 38. Here is the display when
the program has been run:

66

HERE IS YOUR PROGRAM

768 A9
769 13 (13HEX=19decimal)
770 OA
771 8D
772 25
773 03
774 60
IF ANY CHANGES-TYPE ADDRESS
IF NOT -TYPE 99
?99
PRESS ANY KEY TO RUN
38 Answer comes back in decimal form from

the BASIC instruction: PRINT PEEK(805)
]•

Since the value in the accumulator is doubled each time the ASL instruc
tion is executed, you can imagine what would happen if we executed ASL twice.
The value would be doubled and then redoubled (or multiplied by four). Try it
by adding a second ASL instruction to the program above. After you have en
tered the revised program and executed it, your display should look like this
(remember, the program will now be 8 bytes long).

HERE IS YOUR PROGRAM

768 A9
769 13
770 OA }..,..---Two ASL instructions
771 OA
772 8D
773 25
774 03
775 60
IF ANY CHANGES-TYPE ADDRESS
IF NOT-TYPE 99
?99
PRESS ANY KEY TO RUN
76
]•
-------- (19 times 4 = 76)

67

Here is what happened:

00010011 - Original value in accumulator
ASL executed:

00100110 - Shifted left once
ASL executed again:

01001100 - Shifted left twice, which is 4 times 19

I t \
Result: 64 + 8 + 4 = 76

We will cover the arithmetic capabilities in more detail later in the book.
Remember that the accumulator can hold only eight bits of data. Memory loca
tions also hold only eight bits. If we shift left too many times, the number will
be shifted right out of the accumulator. We will have to find new techniques to
take care of big numbers.

Arithmetic and logic functions are performed by the Arithmetic Logic
Unit of the 6502 microprocessor.

6502 MICROPROCESSOR

Instruction decoder

Accumulator

Arithmetic Logic Unit

You have discovered that you can load numbers into the computer, change
the values that you put in, move the values within the computer, and print out
the results. In the next chapter, you'll discover something far more fascinating.
You'll find out how to display graphics on the video display.

SUMMARY

You're off to a good start. In this chapter, you have learned:
1. That the computer only understands binary instructions and data

2. How to convert between decimal, binary, and HEX values

3. That memory locations hold one byte or eight bits of data

4. That the accumulator (a special register similar to a memory location) is used
to conduct most computer operations

68

5. To use machine language instructions:

a. LDA (LoaD Accumulator) used to load the accumulator with an immedi
ate value. Its OP CODE (A9) is followed by one byte of data which is
loaded into the accumulator.

Example: A9 - OPCODE
13 - data to be used

b. ST A (ST ore Accumulator) used to store the value in the accumulator in an
absolute memory location. Its OP CODE (8D) is followed by the two-byte
address.

Example: 8D -OPCODE
25 -- least significant byte of address
03 -- most significant byte of address

c. RTS (ReTurn from Subroutine) used to cause a return from a machine
language program (or subroutine).

Example: 60 -- OPCODE

d. ASL (Arithmetic Shift Left) used to shift each bit in the accumulator one
place to the left. It doubles the value in the accumulator.

Example: OA -- OPCODE

6. To put all these instructions into a machine language program, entered and
controlled by the BASIC Operating System

Although you have only touched on a few machine language instructions, you
were able to understand and use a machine language program.

Most of the instructions that you will be using have several forms (or
modes). They are shown in Appendix A. The ones that you will be using most
are Immediate, Absolute, Implied, and Zero Page.

You have used LDA in the Immediate Mode. In this mode, the data to be
used immediately follows the OP CODE. You have also used the STA instruction
in the Absolute Mode. In this mode, the complete (or absolute) address follows
the OP CODE of the instruction. This address is given with the Least Significant
Byte first, followed by the Most Significant Byte. The Implied Mode was used
for the RTS instruction. Its function is implied by the instruction. Therefore, no
address or data is needed.

These modes will become more familiar to you as they are used in future
chapters.

69

EXERCISES

Fill in the blanks in the following exercises.
1. BASIC uses ___________ numbers, but the computer only

(decimal, binary)
understands ___________ numbers.

(decimal, binary)

2. One HEX digit can be used to represent how many binary digits?----

3. Give the HEX and decimal equivalents of these binary numbers.
Binary HEX Decimal
1001
1101
01010111

4. Data is copied into the accumulator from memory with a------
instruction. (load, store)

5. Data is copied into memory from the accumulator with a------
instruction. (load, store)

6. Explain what the execution of the following instruction would do.
Address Op Code Remarks
771 8D STA
772 40 memory
773 03

7. The BASIC Operating System displays __________ values for
(decimal, HEX)

program addresses and ________ values for Op Codes and data.
(decimal, HEX)

8. Fill in the results that would be placed in memory location 0333 by this
program.

768 A9 LDA 2C
769 2C
770 OA ASL
771 8D STA 0333
772 33
773 03
774 60 RTS

_______ hex (in memory) ----~-decimal equivalent

9. Tell what each of the following instructions accomplishes when executed.
a. A9 LDA 15

15

70

b. 8D STA0310
10
03

c. OA ASL

d. 60 RTS

1. Decimal; binary

2. 4

3. Binary
1001
1101

01010111

4. Load

5. Store

ANSWERS TO EXERCISES

HEX
9
D

57

Decimal
9

13
87

6. Store the value contained in the accumulator in memory location 0340.

7. Decimal; HEX

8. 58 HEX (in memory); 88 decimal equivalent
(0010 1100 shifted left= 0101 1000 = 58 HEX
58 HEX= 5 X 16 + 8 = 88 decimal)

9. a. LDA 15 loads the accumulator with the value 15 (HEX).
b. ST A 0310 stores the accumulator's content into memory location 0310.
c. ASL shifts each bit in the accumulator one place to the left.
d. RTS causes a return from the subroutine where it is used.

71

Chapter 4

Simple Graphics

In Chap. 3, you found out how to load a number into the accumulator,
perform an operation on it (shift the bits left), and store it into memory. In this
chapter, you'll learn how to plot points and draw lines on the screen. You'll
use some of the built-in capabilities of the Apple machine language monitor.
You'll take advantage of some subroutines that are permanently stored in
Read Only Memory (ROM). This will save you a lot of work, since these routines
will be used over and over again in future programs.

You have no doubt used subroutines in BASIC many times. A machine
language subroutine works the same way, but the instructions are different, of
course. In BASIC, you used GOSUB 2000 to tell the computer to go to the sub
routine located at line 2000. Then the last line of the BASIC subroutine RE
TURNed the computer to the main program.

In machine language, the instruction used is:

JSR XXXX -- -
Jump to ------•
SubRoutine

+ ____ HEX memory address

where subroutine is
located

The machine language OPeration CODE for JSR is 20.
Example of JSR as used in a program:

779 20 - JSR F800
780 00:..__/
781 F8

Jump to subroutine
at memory location
F800 (hex)

The last instruction used in the subroutine must be a return to the main
program. In machine language, this would be:

RTS (ReTurn from Subroutine)

If you are using one of Apple's built-in subroutines, the RTS instruction is
already there, and you don't have to worry about it.

72

PLOTTING A POINT ON THE SCREEN

We will use three subroutines in our program to plot a point, the beginning
step in learning to use graphics. If you have used Applesoft BASIC, you know
that several program steps are necessary to do this. In planning our machine
language program, we khow that we must:

1. Clear the screen

2. Set the Graphics mode

3. Select the color to be used

4. Select the screen position of the point to
be plotted

5. Plot the point

6. Return to BASIC Operating System

BASIC Equivalent Statements
HOME

GR

COLOR= 15

C=5
R=32

PLOTC,R

RETURN

Here is a sample program to plot a point. Each function of the program is
presented in a block that is numbered according to the above plan. The com
puter prints the first column. You type in the second column.

1. REMARK ** CLEAR THE SCREEN **
768 20 _..JSR FC58
769 58 ...;___/
770 FC

2. REMARK** SET GRAPHICS MODE**
771 20 _..JSR FB40
772 40 ~
773 FB

3. REMARK** SELECT COLOR**
774 A9_.. LDA FF
775 FF--/

776 85 _.. ST A 0030
777 30 ...__/

4. REMARK** SCREEN POSITION **
778 AO_.. LDY 05
779 05 ...__/

780 A9_.. LDA 20
781 20 ...__/

5. REMARK ** PLOT THE POINT **
782 20 _..JSR F800
783 00--/
784 F8

6. REMARK** RETURN TO BASIC**
785 60 _.. RTS

73

Jump to the subroutine
at FC58. A built-in sub-
routine

Jump to the subroutine
at FB40. Another built
in subroutine

Load accumulator with
color value = 15 or Fin
HEX (both bytes).
Store in memory at lo
cation 0030

Load the Y register
with column number, 5

Load the accumulator
with row, 32 (20 HEX)

Jump to the subroutine
at F800. Another built
in subroutine.

Return to BASIC Oper
ating System

Notice the store instruction (85 HEX) at memory location 776. Ordinar
ily, a load from or store to a memory location requires two additional bytes to
give the full memory address. The 6502 central processor unit recognizes the
code 85 as a special instruction that will supply only the Least Significant Byte
of the address. The computer "understands" that the Most Significant Byte of
these special Zero Page instructions is zero. Hence, they are called Zero Page in
structions. They can be executed faster than those where a two-byte address is
needed.

The operation of this program is dependent upon the correct performance
of the subroutine at location F800 that plots the point. Steps 3 and 4 of the pro
gram supply values that must be used by the point-plotting subroutine.

STEP 3 - Puts the color value (0-15) into memory location .0030. Note that this
store instruction ST A uses only the last part of the address (the first part
00 is not needed). The color value is given at program location 775. The
color values are entered as HEX numbers 0 through F (0 through 15 in
decimal numbers). The correct HEX digit must be entered in both bytes.

Example:

Orange: A9 LOA 99

99 l'
85 STA 3~9 in both
30 HEX digits

The color values are given in the following table.

COLOR TABLE

Color HEX Color
Value Value

0 0 Black
1 1 Magenta
2 2 Dark blue
3 3 Light purple
4 4 Dark green
5 5 Grey
6 6 Medium blue
7 7 Light blue
8 8 Brown
9 9 Orange
10 A Grey
11 B Pink
12 c Green
13 D Yellow
14 E Blue/green
15 F White

74

When the PLOT-THE-POINT subroutine is executed, it looks for the color
value in memory location 0030. Therefore, the machine language program must
store the color value there (which it does at program locations 776 and 777).

The subroutine must also be told where to plot the point on the video
screen. This information is supplied in Step 4 of the program.

STEP 4 - Provides the column and row where you desire the point to be plotted.
In low resolution graphics, these values may range from 0 through 39 in
clusive. The column is loaded into the Y register (a special storage location
used by several machine instructions - 8 bits long). The row is loaded into
the accumulator. Remember that these are machine language instructions;
hence the values must be in HEX format.

STEP 5 - The PLOT-THE-POINT subroutine looks at the Y register and the ac
cumulator to find the row and column where the point is to be plotted.
The subroutine then plots the point.

6502 MICROPROCESSOR

Instruction decoder

Arithmetic Logic Unit

Accumulator - Row for the point

Index Register Y - Column for the point

, Other controls and registers 1

STEP 6 - After the point has been plotted, the Return from Subroutine instruc
tion returns the program to the BASIC Operating System at the point fol
lowing the CALL S instruction at line 800 (see Operating System, Chap.
2).

The subroutines at Steps 1 and 2 merely clear the screen and set the low
resolution Graphics mode so that the points may be plotted.

For this program, it would be convenient to be able to change the color
value, the column of the plot, and the row of the plot. To do this easily, add
these lines to the BASIC Operating System Program.

75

810 INPUT "WANT TO CHANGE DATA (YES OR NO)?"; A$
820 IF A$= "YES" GOTO 420

Then, when you want to change values after a run, you can change the COLOR
value at 775, the Column at 779, or the Row at 781. This change saves you the
trouble of typing the complete program again.

Here is a sample display just after entry.

HERE IS YOUR PROGRAM

768 20 - Home cursor and clear screen
769 58
770 FC
771 20 - Set Graphics mode
772 40
773 FB
774 A9 - Select color
775 FF

18 776 85 - Store color value
bytes 777 30

778 AO - Column
779 05
780 A9 - Row
781 20
782 20 - Plot the point
783 00
784 F8
785 60 - Return
IF ANY CHANGES-TYPE ADDRESS
IF NOT -TYPE 99
?•

Here is the display after the run.

~ White point plotted
/ at column 5, row 32

0

WANT TO CHANGE DATA (YES OR NO)?•

76

Now change the color to 3 (light purple), the column to 14 (HEX), and
the row to 14 (HEX). This would put a light purple point at the center of the
screen. After typing YES to the question for data, the display shows:

0

{
WANT TO CHANGE DATA (YES OR NO)?YES

4 lines IF ANY CHANGES-TYPE ADDRESS

of text.....-~~: NOT - TYPE 99

Type: 775 and press RETURN. The bottom 4 lines of text now show:

IF ANY CHANGES-TYPE ADDRESS
IF NOT - TYPE 99
?775
775 DATA=?•

Type: 33 and press RETURN. The bottom 4 lines now show:

IF NOT -TYPE 99
?775
775 DATA=?33
ANY OTHER CHANGES (YES OR NO)?•

Type: YES and press RETURN. The 4 lines now show:

ANY OTHER CHANGES (YES OR NO)?YES
IF ANY CHANGES-TYPE ADDRESS
IF NOT -TYPE 99
?•

77

Type: 779 and press RETURN. The 4 lines show:

IF ANY CHANGES-TYPE ADDRESS
IF NOT -TYPE 99
?779
779 DATA=?•

Type: 14 and press RETURN. The 4 lines show:

IF NOT -TYPE 99
?779
779 DATA=?14
ANY OTHER CHANGES (YES OR NO)?•

Type: YES and press RETURN. The 4 lines show:

ANY OTHER CHANGES (YES OR NO)?YES
IF ANY CHANGES-TYPE ADDRESS
IF NOT-TYPE 99
?•

Type: 781 and press RETURN. The 4 lines show:

IF ANY CHANGES-TYPE ADDRESS
IF NOT-TYPE 99
?781
781 DATA=?•

Type: 14 and press RETURN. The 4 lines show:

IF NOT-TYPE 99
?781
781 DATA=?14
ANY OTHER CHANGES (YES OR NO)?il

78

Type: NO and press RETURN. Your program spins by on the four lines at the
bottom of the screen and ends up at:

783 00
784 F8
785 60
ANY OTHER CHANGES (YES OR NO)?il

Type: NO and press RETURN. The 4 lines show:

785 60
ANY OTHER CHANGES (YES OR NO}?NO
PRESS ANY KEY TO RUN•

Type: Any key that you desire to see your newly plotted point.

New light purple point
0 ~ near the center of the screen

WANT TO CHANGE DATA (YES OR NO)?

Now it's up to you. If you want to plot some points in other colors
and in other places, type YES and repeat the process. If you have had enough,
type NO and the computer will return to the BASIC Operating System. You
will then be ready to enter the next program.

FOUR-CORNER PLOT

Before we leave the point plotting technique, let's write a program to put a
point at each corner of the graphics area. The points would be:

Column Row

I I

Dec. I HEX Dec. I HEX
------~-------- ------~----------0 I o o I o

o I o 39 I 21
39 I 27 o I o
39 I 21 39 I 27

I I

79

Upper left
Lower left
Upper right
Lower right

The program will be similar to the last one. The exception will be that
sections 4 and 5 will be repeated, once for each additional point.

FOUR-CORNER PLOT PROGRAM

{ 768 20 Clear the screen
1. 769 58

770 FC

(771 20
Set Graphics mode

2. 772 40
773 FB

{ 774 A9 Select color
775 FF WHITE

3.
776 85 Store it in 0030
777 30

{ 778 AO
Column 0

779 00
4.

780 A9 RowO
781 00

{ 782 20 Plot upper left corner
5. 783 00

784 F8

{ 785 A9
4· 786 27

Change row, leave column the same

{ 787 20 Plot lower left corner
5. 788 00

789 F8

{ 790 AO
Change column, leave row the same

791 27
4.

792 A9 Reload row in accumulator
793 27

{ 794 20 Plot lower right corner
5. 795 00

796 F8

80

4. { 797 A9 Change row, leave column the same
798 00

5. {

799 20 Plot upper right corner
800 00
801 F8
802 60 Return to BASIC Operating System

This is the longest machine language program that you have had so far.
There are 35 bytes. When the program has been completely entered, the com
puter will display the first 20 lines as follows:

HERE IS YOUR PROGRAM

768 20
769 58
770 FC
771 20
772 40
773 FB
774 A9
775 FF
776 85
777 30
778 AO
779 00
780 A9
781 00
782 20
783 00
784 F8
785 A9
786 27
787 20
PRESS ANY KEY TO CONTINUE

•

Do not make any changes yet, but make a note of any errors in the first 20 lines.
You will have your chance for corrections after the entire program has been
displayed.

To look at the rest of the program, press any key. The computer will clear
the screen and display the next 20 lines if there are that many. This is what you
will see this time:

81

788 00
789 F8
790 AO
791 27
792 A9
793 27
794 20
795 00
796 F8
797 A9
798 00
799 20
800 00
801 F8
802 60
PRESS ANY KEY TO CONTINUE

•

You can see now that the complete program has been displayed. When you
press any key on the keyboard, you will see your chance for corrections. The
lines following PRESS ANY KEY TO CONTINUE are:

IF ANY CHANGES-TYPE ADDRESS
IF NOT -TYPE 99
?•

Type: 99 if there are no changes.
The program then says: PRESS ANY KEY TO RUN
Type: Any key qnd you will see:

D ----;;;;:....+:::::::::::~ Points in all four

D D --- -------------------------------]

corners of the
graphic area

Once again you can add temporary lines to the BASIC Operating System pro
gram to let you change values.

82

DRAWING A HORIZONTAL LINE

If you can plot a point, you can draw a line by plotting a series of points.
In the last program, it took quite a long program just to draw four points. For
tunately, the Apple Machine Language Monitor contains a built-in subroutine
that will draw a horizontal line. All we have to do is store the row of the last
point of the line in memory location 002C where the line-drawing subroutine
can find it.

The subroutine used in Step 6 below is equivalent to the Applesoft BASIC
statement:

HUN 16,32 AT 20

Here is the entire program laid out in functional sections.

HORIZONTAL LINE PROGRAM

1. REMARK** CLEAR THE SCREEN **

768 20
769 58
770 FC

JSR FC58 Built-in subroutine

2. REMARK** SET GRAPHICS MODE**

771 20
772 40
773 FB

JSR FB40

3. REMARK ** SET COLOR **

774 A9
775 FF

776 85
777 30

LDA FF

STA30

Built-in subroutine

Load white color

Store in 0030

4. REMARK** GIVE END POINT**

778 A9
779 20

780 85
781 2C

LDA20

STA2C

End point at 20 (32 decimal)

Store in 002C

83

5. REMARK** GIVE START POINT**

782 AO
783 10

784 A9
785 14

LDY10

LDA14

Start point at 10 (16 decimal)

Load accumulator with
row 14 (20 decimal)

6. REMARK ** PLOT THE LINE **

786 20
787 19
788 F8

JSR F819 Built-in subroutine

7. REMARK** RETURN TO BASIC**

789 60 RTS Return to Operating System

If you compare this program with the original PLOT-THE-POINT program
shown earlier in this chapter, you will find that they are very similar. In our new
program, we must give the end value (column) before plotting the line. The sub
routine to plot the line is located at a different memory location than the one
that plotted a point in the old program.

After you have entered the program by means of the BASIC Operating
System, the program is displayed as usual. There are 22 bytes starting at memory
location 768.

HERE IS YOUR PROGRAM

768 20
769 58
770 FC
771 20
772 40
773 FB
774 A9
775 FF
776 85
777 30
778 A9
779 20
780 85
781 2C
782 AO
783 10
784 A9
785 14
786 20
787 19
PRESS ANY KEY TO CONTINUE
•

84

Check for correctness. Then press any key.

788 F8
789 60
PRESS ANY KEY TO CONTINUE

•

After pressing a key:

788 F8
789 60
PRESS ANY KEY TO CONTINUE
IF ANY CHANGES-TYPE ADDRESS
IF NOT -TYPE 99
?•

If all is correct, you type 99.

788 F8
789 60
PRESS ANY KEY TO CONTINUE
IF ANY CHANGES-TYPE ADDRESS
IF NOT -TYPE 99
?99
PRESS ANY KEY TO RUN

•

Now when you press a key, you see:

]•

White bar iri row 20
(decimal}.

frorn column 16-32
(decimal}

Once again, you may want to make some changes. The lines you used be
fore would work well in the Operating System.

810 INPUT "WANT TO CHANGE DATA (YES OR NO)?"; A$
820 IF A$="YES" GOTO 420

85

If these lines are used, the program will display the line and then let you change
the data in any address that you want. If lines 810 and 820 are in the Operating
System, it will be easy to change from the HORIZONTAL LINE PROGRAM to
the next program that draws vertical lines.

DRAWING VERTICAL LINES

The Clear Screen, Set Graphics, and Set Color sections of the Horizontal
Line Program will also work for the Vertical Line Program, so we will leave them
as they are.

Section 4, the Give-End-Point routine, requires that we change only the
storage location of the vertical end point. This will now be stored in location
0020 instead of 002C as in the Horizontal Line Program. The subroutine that
draws vertical lines looks for its end point at 0020. This will require that we
change the value stored in program memory location 781.

Section 5 of the Horizontal Line Program gave the beginning point of the
line (the column where the line started). It also gave the row in which the hori
zontal line was to be drawn. You must change the beginning point of the hori
zontal line to the column at which the vertical line will begin. To do this, change
the value stored in program memory location 783. You must also change pro
gram memory location 785, which did contain the row in which the horizontal
line was drawn. This must now be changed to the starting row at which the ver
tical line will be drawn.

Section 6 must also be changed. Instead of jumping to the subroutine that
draws a horizontal line, you must jump to the subroutine that draws a vertical
line. You need only to change program memory location 787.

Here is a summary of the four changes:

Change 781 from 2C to 20
Change 783 from 10 to 14
Change 785 from 14 to 10
Change 787 from 19 to 28

Storage for End Point
Column for the line
Start point of line
Address of subroutine F828

instead of F819

The subroutine at memory location F828 is equivalent to the BASIC
statement:

VLIN 16,32 AT 20

If lines 810 and 820 have been added to the Operating System and the
Horizontal Line Program has been run, the computer will end with the question
that asks for changes.

86

WANT TO CHANGE DATA (YES OR NO)?•

Type: YES and press RETURN. The four bottom lines show:

WANT TO CHANGE DATA (YES OR NO)?YES
IF ANY CHANGES-TYPE ADDRESS
IF NOT - TYPE 99
?•

Type: 781 and press RETURN.

IF ANY CHANGES-TYPE ADDRESS
IF NOT-TYPE 99
?781
781 DATA=?•

Type: 2D Memory location where end point is stored

IF NOT - TYPE 99
?781
781 DAT A=?2D
ANY OTHER CHANGES (YES OR NO)?•

Type: YES and press RETURN.

ANY OTHER CHANGES (YES OR NO)?YES
IF ANY CHANGES-TYPE ADDRESS
IF NOT-TYPE 99
?•

Type: 783 and press RETURN.

IF ANY CHANGES-TYPE ADDRESS
IF NOT -TYPE 99
?783.
783 DATA=?•

Type: 14 --- Column of line

IF NOT - TYPE 99
?783
783 DATA=?14
ANY OTHER CHANGES (YES OR NO)?•

87

Type: YES and press RETURN

ANY OTHER CHANGES (YES OR NO)?YES
IF ANY CHANGES-TYPE ADDRESS
IF NOT -TYPE 99
?•

Type: 785 and press RETURN

IF ANY CHANGES-TYPE ADDRESS
IF NOT-TYPE 99
?785
785 DATA=?•

Type: 10

IF NOT-TYPE 99
?785
785 DATA=?10
ANY OTHER CHANGES (YES OR NO)?•

Type: YES and press RETURN

ANY OTHER CHANGES (YES OR NO)?YES
IF ANY CHANGES-TYPE ADDRESS
IF NOT -TYPE 99
?•

Type: 787 and press RETURN

IF ANY CHANGES-TYPE ADDRESS
IF NOT-TYPE 99
?787
787 DATA=?•

Start point of line

Type:28 Address of new subroutine
(Least Significant Byte of F828)

IF NOT-TYPE 99
?787
787 DAT A=?28
ANY OTHER CHANGES (YES OR NO)?

Type: NO

Your program is then listed for you in two sections, as was done for the
Horizontal Line Program.

88

When you RUN the program, you will see:

,,,,,,_---- White vertical line
in column 20 from

row 16-32

WANT TO CHANGE DATA (YES OR NO)?

If you want to experiment with the Vertical Line Program, make your
changes at this time and try the program again. You will soon be an expert in
plotting points and drawing lines at any place you wish on the screen. Practice
so you will be ready for a program that will join lines together to form a rec
tangle.

DRAWING A RECTANGLE

Since you know how to draw horizontal and vertical lines, you will be able
to draw a rectangle by joining pairs of lines together. The program that follows
will draw the rectangle shown.

55
/--column

34,5__
------------------------ ---.Row

5,34 34,34

No new instructions are used, but the program is longer (45 bytes this
time). We'll once again show the program in sections with the mnemonic codes
as well as the OP CODES.

RECTANGLE PROGRAM

1. REMARK **CLEAR THE SCREEN **

768 20
769 58
770 FC

JSR FC58 Jump to subroutine FC58

89

2. REMARK ** SET GRAPHICS MODE **

771 20
772 40
773 FB

JSR FB40

3. REMARK ** SET COLOR **

774 A9
77S FF

776 8S
777 30

LDA FF

STA 0030

Jump to subroutihe FB40

Load accumulator with color

Store value in memory 0030

4. REMARK** END POINT FOR BOTH LINES**

778 A9 LDA22 End at column and at row 34
779 22 (decimal)

780 8S STA2C End column stored at 002C
781 2C

782 8S STA2D End row stored at 002D
783 2D

S. REMARK** START HORIZONTAL AND ROW**

784 AO
78S OS

786 A9
787 OS

LDYOS

LDAOS

Start of horiz. lines

Rows

6. REMARK** DRAW TOP OF RECTANGLE**

788 20
789 19
790 F8

JSR F819 Jump to subroutine F819

7. REMARK** RESET START AND ROW**

791 AO
792 OS

793 A9
794 22

LDYOS

LDA 22

Reset start point

Move to row 34 (dee.)

90

8. REMARK** DRAW BOTTOM OF RECTANGLE**

795 20
796 19
797 F8

JSR F819 Jump to subroutine F819

9. REMARK **ST ART VERTICAL AND COLUMN **

798 AO
799 05

800 A9
801 05

LDY05

LDA05

Column 5

Start of vert. lines

10. REMARK** DRAW LEFT SIDE**

802 20
803 28
804 F8

JSR F828 Jump to subroutine F8?.8

11. REMARK** RESET START AND COLUMN **

805 AO
806 22

807 A9
808 05

LDY22

LDA05

Move to column 34 (dee.)

Reset start point

12. REMARK ** DRAW RIGHT SIDE **

809 20
810 28
811 F8

JSR F828 Jump to subroutine F828

13. REMARK** RETURN TO BASIC**

812 60 RTS

This program has 45 bytes. After you have entered it, the computer will
display it in 3 sections (20 lines at a time). If there are mistakes, correct them. If
not, RUN it. Here is what you will see:

91

WANT TO CHANGE DATA (YES OR NO)?

SUMMARY

Here is your
rectangle

Machine language subroutines were used heavily in this chapter. The Apple
Machine Language Monitor has several built-in programs for this purpose. You
used the subroutines to clear the screen, to set the Graphics mode, to plot
points, and to draw horizontal and vertical lines.

You again used the load and store instructions to move data to locations
where they could be found by the appropriate subroutine.

You learned to use these instructions:

1. JSR Jump to SubRoutine) - used in the Absolute Mode to take advantage of
built-in subroutines to supplement your programs.

Example: 20 OP CODE
19 least significant address byte
FB most significant address byte

2. LDY (LoaD Y register) - used as a special place to store a value in the Imme
diate Mode. This value was used by a subroutine.

Example: AO OP CODE
22 data loaded in Y register

3. ST A (ST ore Accumulator) - used this time in the Zero Page Mode. This
mode is only used when data is to be transferred to or from low memory
(where the most significant byte of the memory address is zero). Memory
from 0000 through OOFF is called zero page memory.

Example: 85 OP CODE
30 least significant address byte

The machine language instructions that you have used so far in this book
are:

92

Mnemonic Addressing Bytes
Code Mode OPCODE Used Function

LDA Immediate A9 2 Load accumulator
LDY Immediate AO 2 Load Y register
STA Absolute 8D 3 Store accumulator in
STA Zero Page 85 2 memory
JSR Absolute 20 3 Jump to subroutine
RTS Implied 60 1 Return from sub-

routine
ASL Accumulator OA 1 Shift bits left in

accumulator

The accumulator and Y register and certain memory locations were used
to store values to be used by the built-in subroutines. Here is a summary of these
uses.

Subroutine Yreg. Accum. 0030 002C 002D

jclear Screen - - - - -
Set Graphics Mode - - - - -

Plot a Point Column Row Color - -

Horizontal Line Start Row Color End -

column column
Vertical Line Column Start Color - End

row row

You are well on your way to machine language programming. In the next
chapter we'll look at how to put alphanumeric characters on the video screen.

EXERCISES

Fill in the blanks.
1. The mnemonic code JSR is an abbreviation of __________ _

2. The color values used in a machine language program are two-digit HEX num
bers. Which of the following are within the recommended range?
a. CC b. OH c. FG d. 33

93

3. To plot a point on the screen using the built-in subroutine, these things must
be done first.
a. set the graphics mode
b. select a color value
c. load the Y register with------------
d. load the accumulator with-----------

4. What range of values may be used to plot a point in the low resolution
graphics that we have used in Chap. 3?
a. Column to inclusive
b. Row to inclusive

5. The built-in program that draws a vertical line and the one that draws a hori-
zontal line use subroutine(s}.

(the same, different)

6. Explain when the Zero Page Mode instruction ST A (Op Code 85} may be
used.

ANSWERS TO EXERCISES

1. Jump to SubRoutine

2. a and d

3. c. column number (0-27 HEX}
d. row number (0-27 HEX}

4. a. column 0 to 39 decimal (or 0 to 27 HEX}
b. row 0 to 39 decimal (or 0 to 27 HEX}

5. Different (horizontal line at F819, vertical line at F828}

6. When data from the accumulator is to be stored in zero page memory (0000
through OOFF}. The most significant byte is 00 and is unneccessary for a
Zero Page Mode instruction.

94

Chapter 5

Displaying Text

The video display is a window through which you may see what the com
puter is doing. The screen can display the contents of certain memory locations.
In Chap. 4, you displayed graphics on the screen by using the computer's sub
routines. In this chapter, you will learn how to place text directly into the video
display's memory area so that messages can be seen on the screen.

You will be introduced to some new instructions that will be used to form
a loop similar to IF-THEN and FOR-NEXT loops that you have used in BASIC.

The computer has two registers that can be used as "counters." These
counters (the X register and the Y register) can be used to index, or count, the
number of times the computer executes a loop. They can also be used to index
the memory locations from which data is loaded or to which data is stored.
This operation leads to the use of a new addressing mode called Absolute In
dexed Addressing.

DISPLAYING A CHARACTER

We'll start with a simple program that will display the letter A in the
upper left corner of the screen. You have used all the instructions that appear
in this program. The only new item is the use of ASCII codes. Since the com
puter can understand only numerical instructions and data, all alphabetic and
punctuation characters (as well as certain other special characters) must be given
in numerical form. ASCII codes are used for this purpose. (A complete list of
codes is given later in this chapter.)

DISPLAY ONE LETTER PROGRAM

1. REMARK **CLEAR SCREEN **

768 20 JSR FC58 Jump to subroutine
769 58
770 FC

95

2. REMARK** SELECT LETTER·~ Cl is the HEX code for

~--' __________ an "A"
771 A9 LOA Cl Load accumulator with ASCII code
772 Cl for A

3. REMARK ** DISPLAY IT **

773 80 ST A 0400
774 00
775 04

Store it in display's memory area

4. REMARK** RETURN TO BASIC**

776 60 RTS Return to Operating System

You have seen Section 1 before. It is the built-in subroutine that clears
the screen.

In Section 2, the ASCII code for the letter A (HEX value Cl) is loaded
into the accumulator. Other values would give other characters.

Section 3 uses the Absolute Addressing Mode for the ST A instruction.
The location of this memory element (0400 HEX) is the upper left corner of the
display.

Section 4 returns to the BASIC Operating System.

Enter the program using the BASIC Operating System. Then, RUN the
short machine language program. You will see the letter A appear in the upper
left corner of the screen. The blinking cursor will indicate that the program has
returned to the Operating System.

The display:

Next comes a program that will display an alphabetic character several
times across the top of the screen. You may want to experiment with this pro
gram. Add these lines to the BASIC Operating System:

810 PRINT: PRINT
820 INPUT "WANT TO CHANGE DAT A (YES OR NO)?"; A$
830 IF A$="YES" THEN 420

Then, use the Operating System to enter this program. Do not enter the RE
MARKS, Mnemonic Codes, or Operands.

96

Example:

1. REMARK ** CLEAR SCREEN **

768 20
769 58
770 FC

JSR FC58 Clear the screen

~/
\ ~ OONOTENTERTHESE

Computer) You enter
prints these these

Only the address and data are entered. The rest of the notes and comments are
just to help you understand the function of each program section. The program
contains 16 bytes.

CHARACTER DISPLAY PROGRAM

1. REMARK ** CLEAR SCREEN **

768 20 JSR FC58 Clear the screen again
769 58
770 FC

2. REMARK** SET INDEX TO ZERO**

771 AO LDY 0
772 00

Used to index display memory and to
exit loop

3. REMARK** SELECT CHARACTER**

773 A9 LDA Cl Load an A, just like the last program
774 Cl

4. REMARK** HERE IS THE LOOP**

775 99 STA0400, Y Store in memory location 0400+con-
776 00 tents of Y register
777 04

778 C8 INY Increment Y register for next location
Loop

779 co CPY28 Compare Y with 40 (decimal)
780 28

781 DO BNE F8 Branch (if the two values are not equal)
782 F8 to location 0775

97

5. REMARK ** RETURN TO BASIC **

783 60 RTS

Let's now go through the program section by section. We will discuss the
instructions used and what each does when the program is run.

The screen is cleared in Section 1. This subroutine will be used in most, if
not all, of our programs.

In Section 2, the Y register is loaded with the value zero. The LOY instruc
tion was discussed in Chap. 4. For this program, the Y register is used to keep
track of how many times the loop in Section 4 is performed. We set it to zero in
preparation for the counting process.

Y register iooooooool (in binary)

In Section 3, the LOA instruction is used in the Immediate Mode to load
the HEX value C1 into the accumulator. This value will be used to display the
letter A in Section 4 of the program.

Accumulator (in binary)

A complete set of ASCII codes is given in the Appendix. C1, the code for the
letter A, is the only ASCII code used in this program.

Section 4 forms the loop that prints the letter A at each position along the
top line of the video display. The loop works this way:

First time through the loop: Y register = 0

1. The ST A instruction stores the code for A in memory location 0400+0 (1st
position, top line). Notice that the value stored in Y (0 at this time) is added
to the value 0400 to determine the memory location used for storage.

2. The INY instruction (Operation Code = C8) increments the value held in the
Y register by one. Therefore, the Y register now holds a value of 1.

3. The CPY instruction (Operation Code = CO) compares the value in the Y
register (now 1) with the HEX value 28 (the second byte of the instruction).

4. The BNE instruction (Operation Code = DO) will cause a branch back to the
beginning of the loop if the two values compared in Step 3 are not equal.
Since 1 and 28 are not equal, the computer returns to the beginning of the
loop this time. If the values were equal, the computer would go on to Section
5 of the program.

Second time through the loop: Y register = 1
1. The STA instruction stores the A in the memory location 0400+1 (0401 is

the 2nd position, top line).

2. The Y register is incremented by the INY instruction and now holds a value
of2.

3. The value of 2 in the Y register is compared to the value 28.

98

4. Since 2 does not equal 28, the BNE instruction once again sends the com
puter back to the beginning of the loop.

Third time through the loop: Y register = 2

etc.

Each time through the loop, the character A is printed one place to the
right of the preceding position.

Fortieth time through the loop, Y = 27 HEX

1. The ST A instruction stores A in the last position on the top line (0400+27).

2. The Y register is incremented to 28.

3. The content of the Y register is compared to 28 HEX.

4. Since Y = 28, do not branch back. Go on to the next instruction, which is in
Section 5.

Section 5 returns the computer to the BASIC Operating System, where
you are asked if you want to change data.

Since the Apple computer displays 40 characters on each line, you will see
40 A's on the screen.

AA
WANT TO CHANGE DATA(YES OR NO)?•

DISCUSSION OF THE NEW INSTRUCTIONS

The first new instruction encountered in the program was:

99 ST A 0400, Y

OP CODE/ Opeltor ~Index
This instruction is an Absolute Indexed Address instruction and is similar to the
Absolute Address store instruction. However, this new instruction adds the con
tent of the Y register to the absolute value of the address used.

Example:

~Absolute address
STA 0400, Y~ Index

If Y=O, ST A 0400+0 is equivalent to ST A 0400
If Y=l, ST A 0400+ 1 is equivalent to ST A 0401
If Y=27, ST A 0400+27 is equivalent to ST A 0427

99

Thus we have a way to make the store instruction store in different loca
tions each time the loop is executed.

In the previous program you have discovered that the top line of the dis
play screen is assigned consecutive memory locations, 0400 through 0427, in
clusive.

Top line
memory
locations

AA

\~ I I
0400 Oif.01 0402 etc. to 0427

The INY instruction at program memory location 778 is an Implied Ad
dressing instruction that increases the value of the Y register. It is similar to the
BASIC instruction Y = Y + 1, and is used to increment the memory location for
storing the character A on the display each time through the loop.

The CPY 28 instruction is used here in the Immediate Addressing Mode.
The current value of the Y register is compared to the HEX value 28. This com
parison enables the computer to make a decision in the next step as to whether
or not to return to the start of the loop. Together with the BNE instruction,
CPY performs a similar function to the BASIC statement:

IF N<>28 THEN GOTO XX (where XX is the line that will be
branched to)

The final new instruction, BNE F8, requires some explanation. It is a
Relative Addressing instruction that completes the loop.

f
BNE F8

t
Branch if Not Equal -8 locations

'-r-"
If the result of the preceding instruction (CPY 28) is not zero, a hranch is taken
back to the beginning of the loop. The branch is made to a memory location
relative to the position of the program counter. The value F8 HEX is equivalent
to the negative number -8, and will cause a branch backwards 8 steps from the
current position of the program counter.

When used as the operand in a branch instruction such as BNE, all HEX
values from 01 through 7F inclusive cause a branch forward from the current
position of the program counter. The following instruction would cause a branch
forward from memory location 783 (where the program counter points as the
BNE instruction is executed) to memory location 78B (783+8).

781 DO
782 08

BNE 08

700

An example of the above as used in a section of a program follows.

Program}
counter
starts
here

Branch
forward
8 steps
ifY
not= 28

779 CO CPY 28
780 28

781 DO
782 08

,-. 783
784
785
786
787
788
789
78A

- 78B
78C

BNE 08

Compare the value of the Y register
with 28 HEX

Branch if Y is not equal to 28
forward 8 steps

All HEX values from 80 through FF are used by branch instructions as
backward (or negative) branches. In the Character Display Program, the instruc
tion used is:

781 DO
782 F8

BNE F8 Branch if Y is not equal to 28 back
ward 8 steps

The branch is made backwards (or in the negative direction) since F8 is between
80 and FF. Counting back 8 steps from location 783 puts the branch destina
tion at 775, the start of the loop.

branch
back 8

t-. 775 99
776 00
777 04
778 C8
779 co
780 28
781 DO
782 F8

STA0400,Y

INY
CPY 28

BNE F8

...__. 783 60 RTS
Program /
Counter here
when BNE is executed

We will not go into the method used by the computer to determine the
values of negative numbers. Instead, we will provide tables to determine the
operand used with branch instructions.

101

TABLE TO DETERMINE FORWARD BRANCHES

Steps Branch Steps Branch Steps Branch
Forward Operand Forward .Operand Forward Operand

(Decimal) (HEX) (Decimal) (HEX) (Decimal) (HEX)

1 01 49 31 97 61
2 02 50 32 98 62
3 03 51 33 99 63
4 04 52 34 100 64
5 05 53 35 101 65
6 06 54 36 102 66
7 07 55 37 103 67
8 08 56 38 104 68
9 09 57 39 105 69

10 OA 58 3A 106 6A
11 OB 59 38 107 68
12 QC 60 3C 108 6C
13 OD 61 30 109 60
14 OE 62 3E 110 6E
15 OF 63 3F 111 6F
16 10 64 40 112 70

17 11 65 41 113 71
18 12 66 42 114 72
19 13 67 43 115 73
20 14 68 44 116 74
21 15 69 45 117 75
22 16 70 46 118 76
23 17 71 47 119 77
24 18 72 48 120 78
2S 19 73 49 121 79
26 lA 74 4A 122 7A
27 lB 7S 48 123 78
28 lC 76 4C 124 7C
29 1D 77 40 125 70
30 lE 78 4E 126 7E
31 lF 79 4F 127 7F
32 20 80 so

33 21 81 Sl
34 22 82 52
3S 23 83 S3
36 24 84 54
37 2S 8S SS
38 26 86 56
39 27 87 57
40 28 88 S8
41 29 89 S9
42 2A 90 SA
43 28 91 SB
44 2C 92 SC
4S 2D 93 SD
46 2E 94 SE
47 2F 9S SF
48 30 96 60

702

Examples Using Forward Branches:
1. 792 DO BNE 07 Program counter starts at 794

793 07 Branch desired to 801 (7 steps)
r+-794 .
I
I
I
I
I
I
I

Look up in table:

L801

Steps
Forward
(Decimal)
7

Branch
Operand
(HEX)
07 ---Operand

If condition tested is not equal to zero, branch forward to 801
(794+ 7 steps).

2. 798 DO BNE1F Program counter starts at 800
Branch desired to 831 (31 steps)

3.

4.

799 1 F
r-800
I
I
I
I
I
I
I

Look up ih table:
Branch
Operand
(HEX)

Ls31

Steps
Forward
(Decimal)
31 1 F ---Operand

If condition tested is not equal to zero, branch forward to 831
(800+31 steps).

814 DO BNE 77 Program counter starts at 816
81S 77 Branch desired to 93S (119 steps)

..-816
I Look up in table: I
I Steps Branch I
I Forward Operand I
I (Decimal) (HEX)
L~ns 119 77

If condition tested is not equal to zero, branch forward to 93S
(816+119 steps).

922 DO BNE SB Program counter starts at 924
923 SB Branch desired to 101 S (91 steps)

..-924.
I Look up in table: I
I Steps Branch I
I Forward Operand I
I (Decimal) (HEX)
Li01s: 91 SB

Operand

Operand

If condition tested is not equal to zero, branch forward to 101 S
(924+91 steps).

103

TABLE TO DETERMINE BACKWARD BRANCHES

Steps Bron ch Steps Branch Steps Branch
Bock word Operand Bock word Operand Bock word Operand
(Dec/mo/) (HEX} (Decimal) (HEX} (Decimal} (HEX)

1 FF 49 CF 97 9F
2 FE so CE 9S 9E
3 FD Sl CD 99 90
4 FC S2 cc 100 9C
s FB S3 CB 101 9B
6 FA S4 CA 102 9A
7 F9 SS C9 103 99
s FS S6 cs 104 9S
9 F7 S7 C7 lOS 97

10 F6 SS C6 106 96
11 FS S9 cs 107 9S
12 F4 60 C4 lOS 94
13 F3 61 C3 109 93
14 F2 62 C2 110 92
lS Fl 63 Cl 111 91
16 FO 64 co 112 90

17 EF 6S BF 113 SF
lS EE 66 BE 114 SE
19 ED 67 BD llS SD
20 EC 6S BC 116 SC
21 EB 69 BB 117 SB
22 EA 70 BA llS SA
23 E9 71 B9 119 S9
24 ES 72 BS 120 SS
2S E7 73 B7 121 S7
26 E6 74 B6 122 S6
27 ES 7S BS 123 SS
2S E4 76 B4 124 S4
29 E3 77 B3 12S 83
30 E2 7S B2 126 82
31 El 79 Bl 127 Sl
32 EO so BO 128 80

33 OF Sl AF
34 DE S2 AE
3S DD S3 AD
36 DC S4 AC
37 DB SS AB
3S DA S6 AA
39 09 S7 A9
40 OS SS AS
41 07 S9 A7
42 06 90 A6
43 DS 91 AS
44 D4 92 A4
4S 03 93 A3
46 02 94 A2
47 Dl 9S Al
4S DO 96 AO

104

Examples of Backward Branches:
1. Program counter starts at 782

Branch desired to 775 (-7 steps) .775

780 DO
781 F9

--782

BNE F9

Look up in table:
Steps
Backward
(Decimal)
7

Branch
Operand
(HEX)
F9 ---Operand

If condition tested is not equal to zero, branch backward to 775
(782-7 steps).

2.
.778

Program counter starts at 809
Branch desired to 778 (-31 steps)

3.

807 DO
808 El

--809

BNE El

Look up in table:
Steps
Backward
(Decimal)
31

Branch
Operand
(HEX)
El ---Operand

If condition tested is not equal to zero, branch backward to 778
(809-31 steps).

-- 781 •

898 DO
899 89

.... 900 .

BNE 89

Program counter starts at 900
Branch desired to 781 (-119 steps)

Look up in table:
Steps
Backward
(Decimal)
119

Branch
Operand
(HEX)
89 ---Operand

If condition tested is not equal to zero, branch backward to 781
(900-119 steps).

105

4.
.+79S

884 DO
88S AS

-886

BNE AS

Program counter starts at 886
Branch desired to 79S (-91 steps)

Look up in table:
Steps
Backward
(Decimal)
91

Branch
Operand
(HEX)
AS -----Operand

While you have the program in the computer, experiment by changing
the ASCII values used at memory address 774. Use the values Cl through DA to
see different letters of the alphabet. When you have finished experimenting, the
next program displays all the 26 alphabetic characters on one line.

We have now talked about these parts of the 6S02 microprocessor.

6S02

Instruction decoder

Accumulator

X register

Y register

Program counter

Other controls and registers

'
RUNNING THROUGH THE ALPHABET

._Keeps track of where
the computer is in a
program

In the previous program ST A 0400, Y was used to place a letter in consec
utive positions on the top line of the video display. The Y register was used to
index the position.

The X register can be used in the same way. If the ASCII codes for the let
ters of the alphabet are stored in consecutive memory locations, they can be
loaded into the accumulator by the instruction:

106

~LDA 03,4,X ""

Load the from Absolute 't contents ot
accumulator Address 0314 X register

Either of the two registers (X or Y) may be used with the ST A instruction or the
LDA instruction. They may also be used with other instructions, as we will see
later.

After each ASCII code is accessed in the program, the X register can be in
cremented to provide the correct code for the next pass through the loop. By
adding a new section to the previous program, you can access each alphabetic
character in order while displaying it in a new position on the screen.

Loop

RUNNING ALPHABET PROGRAM

1. REMARK** INITIALIZATION**

768 20
769 58
770 FC

771 AO
772 00

773 A2
774 00

JSR FC58

LDYO

LDXO

Clear the screen

New instruction - load X register with
zero

2. REMARK** LOAD AND DISPLAY LOOP**

775 BD LDA 0314,X New instruction - load accumulator
776 14 from 0314+X
777 03

778 99 STA 0400,Y
779 00
780 04

781 E8 INX New instruction - increment the X
register

782 C8 INY

783 co CPY lA 1 A hex = 26 (the number of letters in
784 lA alphabet)

785 DO BNE F4 Branch if not =, back 12 locations (F4
786 F4 from table)

107

3. REMARK ** BACK TO BASIC **

7B7 60 RTS

4. REMARK ** DAT A LIST **

7BB Cl
7B9 C2
790 C3
791 C4
792 cs
793 C6
794 C7
795 CB
796 C9
797 CA
79B CB
799 cc
BOO CD
B01 CE
B02 CF
B03 DO
B04 Dl
BOS D2
B06 D3
B07 D4
BOB DS
B09 D6
B10 D7
B11 DB
B12 D9
B13 DA

Letter A
Letter B
Letter C

Letter Y
Letter Z

Section 1 initializes the X and Y registers to zero.

ASCII codes

Section 2 loads an ASCII character from memory and displays it on the
top line.

I ASCII CODE I .. 1ACCUMULATOR1-1 DISPLAY I
t to to t

From memory screen memory

The LDA 0311,X instruction is similar to the BASIC READ statement. The
ASCII code is READ from the DATA stored in memory. Section 2 is a loop that
is executed 26 times (one for each letter of the alphabet).

Section 3 returns control to the BASIC Operating System after the RUN is
completed.

108

Section 4 provides the DAT A to be READ by the LOA 0314,X instruc
tion. This section is used Ii ke the DAT A statement in BAS IC.

Use your BASIC Operating System to load and run the program. The pro
gram begins at memory location 768 and is 46 bytes long. Here is how the
display looks after the program is run.

ABC DE FGH I J KLMNOPQRSTUVWXYZ

WANT TO CHANGE DATA (YES OR NO)?•

You have learned how to display information on the top line of the screen.
In the next program, you will use a built-in subroutine that will let you type in
characters from the keyboard. It will display the ASCII codes that are used to
represent the letters of the alphabet.

~
A

~
B

~ c
DISPLAYING ASCII CODES

This program uses a built-in subroutine (JSR FD35) that reads a character
you have typed on the keyboard. It puts the ASCII code for that character in
the accumulator.

Another subroutine (JSR FDDA) is used to print the ASCII code for the
character you have typed. The program is designed to let you input all 26 alpha
betic characters from the keyboard before returning to the BASIC Operating
System. Spaces and carriage returns are provided in the program so that the
typed characters and the ASCII codes will be clearly shown in columns along the
left side of the screen. There are 41 bytes.

DISPLAY ASCII CODES PROGRAM

1. REMARK** CLEAR SCREEN AND INITIALIZE**

768 A2 LDXO Set counter
769 00

770 20 JSR FC58 Clear screen
771 58
772 FC

X register= I 00000000 I
109

Start

CJ Clear

2. REMARK** GET KEYSTROKE AND PRINT**

773 20 JSR FD35 Get keystroke
774 35
775 FD

776 8D STA 0340 Save it in memory
777 40
778 03

779 20 JSR FDED Print it
780 ED
781 FD

3. REMARK** SPACE DISPLAY**

782 A9 LDAAO Load ASCII code for a space
783 AO

784 20 JSR FDED Display the space. The subroutine uses
785 ED the accumulator for other things so if
786 FD we want another space we~

787 A9 LDAAO Load another space
788 AO

789 20 JSR FDED Display it
790 ED
791 FD

4. REMARK** PRINT ASCII CODE**

792 AD LDA 0340
793 40
794 03

795 20 JSR FDDA
796 DA
797 FD

Load accumulator from memory
where character was saved

Print the code as two hex digits

170

Loop

5. REMARK** MOVE TO NEW LINE**

798 A9 LOA 80
799 80

800 20 JSR FDED
801 ED
802 FD

Load an ASCII code for a carriage re
turn

Do a carriage return

6. REMARK** BRANCH BACK IF NOT DONE**

803 E8 INX Increase counter (X register)

804 EO CPX 1A Compare X register with 26 (dee)
to 773 805 1A
for new
key- 806 DO BNE DD If not equal, branch back 35 steps (DD
stroke 807 DD from Table to Determine Backward

I Branches)

7. REMARK** RETURN TO BASIC**

808 60 RTS Return from this subroutine to the
Operating System

Section 1 sets the X register (counter for the number of keystrokes) to
zero and clears the screen.

Section 2 uses the subroutine at FD35 to read the character that is typed.
The character is then saved in memory 0340 for future use in section 4. The sub
routine at FDED then prints the character on the screen.

Section 3 provides two spaces between the character that was typed and
the ASCII code that will be printed in section 4. The ASCII code for space is
EO.

Section 4 loads the accumulator with the character that was saved in
memory 0340 in section 2. It then uses the subroutine at FDDA to print the
character as two HEX digits (the ASCII code for the character).

Section 5 provides a carriage return (ASCII code 80) so that the next
keystroke and code will appear on a new line.

Section 6 increases the counter (register X), compares its value with 26
(since there are 26 letters in the alphabet), and branches back to get a new key
stroke if its value is not equal to 26. If it does equal 26, it moves on to section 7.

Section 7 returns control to the BASIC Operating System.

A suggested addition to the BASIC Operating System for this program is:

111

810 PRINT
820 INPUT "DO YOU WANT TO RUN AGAIN {YES OR NO)?"; A$
830 IF A$="YES" THEN 700

This would allow you to repeat the program with new inputs from the keyboard.

RUNNING THE PROGRAM

When the program is run, you will see the blinking cursor in the upper left
corner of the screen. This means that the computer is ready for your first entry.

Type: A

~ ASCllcodeforA I • - Blinking cursor

Type:B r 2~11codeforB
Blinking cursor

Type:C

A Cl /ASCII code for C
B C2/
C C3

• .----Blinking cursor

Continue in this manner until you have seen all 26 character codes.

Y D9
Z DA

DO YOU WANT TO RUN AGAIN {YES OR NO)?•

If you are curious, you will type in YES and try some characters that are
not alphabetic. Remember that the program is only fixed to let you input 26
keystrokes before returning to the Operating System.

You may want to try the decimal numerals 0 through 9, punctuation
marks, spaces, etc.

112

Here are the results that we saw when we typed in decimal symbols.

0 BO
1 B1
2 B2
3 B3
4 B4
5 BS
6 86
7 87
8 88
9 B9

•
You may want to make a table of ASCII codes for all the keys that you

try. Compare them with the ASCII code table in Appendix A.
Would you like to see the letters printed on an inverted background

(black-on-white)? Or even blinking back and forth from black-on-white to white
on-black? The next program will demonstrate how to do just that. Move on
when you are ready.

DISPLAYING MORE THAN ONE LINE

The last program and the next one make use of one of the Apple Monitor's
built-in subroutines that places a character (whose ASCII code is contained in
the accumulator) on the screen. It then moves over automatically to the next
printing position on that line. The ASCII code for a carriage return (8D) is used
to move to the beginning of the next line when desired.

You will want to experiment with this program, so be sure to include lines
in the BASIC Operating System that will allow you to change data. We will be
using:

810 PRINT
820 INPUT "WANT TO CHANGE DATA (YES OR NO)?"; A$
830 IF A$="YES" THEN 420

You will want to change data because we will show you how to PRINT white
on black, black on white, and letters blinking on and off.

MUL Tl-LINE DISPLAY PROGRAM

1. REMARK** CLEAR SCREEN AND INITIALIZE**

768 20 JSR FC58
769 58
770 FC

771 A2 LDX 0
772 00

113

2. REMARK** GET CHARACTER AND PRINT**

773 BD LDA 0311,X
774 11
77S 03

776 20 JSR FDED
777 ED
778 FD

779 E8 INX

780 EO CPX 16
781 16

782 DO BNE FS
783 FS

Put character in accumulator on the
screen

New instruction - compares value in
X register with 16

Branch back if not equal (-11 loca
tions)

3. REMARK** BACK TO BASIC**

784 60 RTS Return to BASIC

4. REMARK ** DAT A LIST OF ASCII CODES **

78S Cl Letter A
786 DO Letter P
787 DO Letter P
788 cc Letter L
789 cs Letter E
790 8D A carriage return (new line)
791 C3 Letter C
792 CF Letter 0
793 CD Letter M
794 DO Letter P
79S DS Letter U
796 04 Letter T
797 cs Letter E
798 02 Letter R
799 8D A carriage return (new line)
800 C4 Letter 0
801 C9 Letter I
802 03 Letter S
803 DO Letter P
804 cc Letter L
80S Cl Letter A
806 D9 Letter Y

114

Section 1 initializes the X register to zero and clears the screen.
Section 2 loads an ASCII code from memory (indexed by X) and uses the

built-in subroutine to display it on the screen. This section is a loop. Each time
through, the X register is incremented so that the next ASCII code in memory
can be loaded. The value in the X register is compared to 16 HEX (22 decimal)
since there are 22 characters in the data list. If X is not equal to 22, a branch is
taken back to the beginning of the loop (location 773).

Section 4 is the data list used by the loop.

Once again, use the BASIC Operating System to load and run the program.
Everything begins at location 768 and is 39 bytes long. We saved a few lines by
using the built-in subroutine to display the data. When the run is completed, the
display will show:

APPLE
COMPUTER
DISPLAY

WANT TO CHANGE DATA (YES OR NO)?•

This program is similar to the Running Alphabet Program. However, the carriage
returns in the data list allowed the use of more than one line on the screen.

Up to now, the book has shown the video display as black letters on a
white background. Actually, your computer displays light-colored letters on a
dark background. However, books are traditionally printed in black letters on
white pages. Oh well, we can't all be perfect. The versatility of computers is
amazing. Read on and you will see.

The Apple computer has the ability to reverse the color of text material
so that the background for an individual letter is white and the letter is black.
This is called an inverse display. To accomplish this inverse effect, you change
the normal ASCII code as in the following examples:

a. ASCII code for the letter A = C1
In binary: 1 1 0 0 0 0 0 1 --c

INVERSE code for the letter A= 01
In binary: 0 0 0 0 0 0 0 1 --0

b. ASCII code for the letter P = DO
In binary: 1 1 0 1 0 0 0 0 --D 0

115

INVERSE code for the letter P = 10
In binary: 0 0 0 1 0 0 0 0 -- --0

To cause the character to be inverted, the two most significant bits (those in the
two far left positions) are removed.

[]o o o o o 1
to

0000 0001

C1
or

01

~o 0 0 0 0
to

0001 0000

DO

10

To demonstrate this feature, make the following changes to the MUL Tl
LINE DISPLAY PROGRAM.

785 01 Inverted A
786 10 Inverted P
787 10'. Inverted P
788 oc Inverted L
789 05 Inverted E

Now, when you run the changed program, you will see this difference in

the display.

Original Program Changed Program

Another change ·to the ASCII code of the character to be displayed will
make the character blink on and off. To demonstrate, change the codes of the
word DISPLAY.

800 44
801 49
802 53
803 50
804 4C
805 41
806 59

blinking D
blinking I
blinking S
blinking P
blinking L
blinking A
blinking Y

Once again, notice the changes for the three possibilities for the letter A.

Normal A= C1
Inverse A= 01
Blink A= 41

1100 0001 in binary
0000 0001 in binary
of OO 0001 in binary

116

(left 2 digits= 0)
(left digit= 0)

Use the BASIC Operating System to make the changes in memory at loca
tions 800 through 806. Now when you run the program, the word DISPLAY
will blink - first inverse, then normal, then inverse, then normal, etc.

Black on white

Blinking

You can change the message displayed by this program by using any letters
in the following table at the data locations beginning at 800. You may make the
message longer or shorter by changing the value in location 781 to match the
number of characters used.

CODE TABLE FOR ALPHABET

NORMAL INVERSE BLINK LETTER

Cl 01 41 A
C2 02 42 B
C3 03 43 c
C4 04 44 D
cs OS 4S E
C6 06 46 F
C7 07 47 G
CB 08 48 H
C9 09 49 I
CA OA 4A J
CB OB 4B K
cc OC 4C L
CD OD 4D M
CE OE 4E N
CF OF 4F 0
DO 10 so p

D1 11 S1 Q
D2 12 S2 R
D3 13 S3 s
D4 14 S4 T
DS 1S SS u
D6 16 S6 v
D7 17 S7 w
DB 18 S8 x
D9 19 S9 y
DA 1A SA z

117

Other codes that you might want to try are:

Blank space EO

Solid block 20

Blinking block 60

..-. You can't see a blank space

---Solid white block (like
the cursor)

---- Solid white block blinks
on and off

Have some fun experimenting with this program before moving on to a
program that will let you print information on the screen as you type from the
keyboard. I bet you always wanted to see your name in flashing lights. Now's
your chance!

The last program of this chapter is one of the simplest that you have had
so far, but it is one of the most powerful. It will allow you to fill the screen with
text as you type it in from the keyboard. You may use spaces, punctuation, the
return key, numbers, letters, etc. Three new instructions are used.

After a key is read from the keyboard, the CMP (Compare) instruction is
used to compare the value taken from the keyboard (whose ASCII code is in
the accumulator after the key is pressed) with the value AF (the ASCII code for
a slash, /). If the. keystroke has been a slash, the next instruction BEQ
(branch if equal) will cause a branch to the end of the subroutine. Therefore,
you type a slash when you are through using the keyboard. This would be
similar to the BASIC statement:

776 IF X = 175 THEN GOTO 784

784 RETURN ~(AF HEX=175 decimal)

or
776 IF X$ ="/"THEN GOTO 784

784 RETURN

A JMP (Jump Absolute) instruction follows the print subroutine. JMP sends the
computer back to look for another keystroke, and is similar to the BASIC
statement:

781GOTO771

DISPLAY ANY MESSAGE PROGRAM

1. REMARK ** CLEAR SCREEN **

768 20 JSR FC58
769 58
770 FC

118

2. REMARK ** LOOP TO GET AND PRINT KEY **

771 20 JSR FD35 Geta key
772 35
773 FD

774 C9 CMPAF Compare accumulator to AF
115 AF

776 FO BEQ06 Branch if equal 6 steps
777 06 EXIT from loop

778 20 JSR FDED Print the character
779 ED
780 FD

781 4C JMP 0303 Go back for another keystroke
782 03 (0303 HEX=771 decimal)
783 03

3. REMARK** BACK TO BASIC**

784 60 RTS Return to Operating System

In Section 2 of the program we used three new instructions. The CMP in
struction is similar to CPX and CPY. The Immediate mode is used to compare
the value in the accumulator with the value that follows the instruction. The
BEQ instruction that follows CMP causes a branch to take place if the two
values are equal. If the branch is taken, it is to the RTS instruction 6 steps for
ward (from the program counters present position 778). If the branch is not
taken, the JSR FDED instruction prints the character and steps the cursor for
ward one place.

At the end of Section 2 is the third new instruction - JMP. This is an Ab
solute Jump. The program will always perform the jump if this instruction is
executed. It works like the GOTO statement in BASIC.

The program is only 17 bytes long, but it will let you type all day on the
screen. When the screen is filled, it merely scrolls up to make room for more
entries. When you want the program to stop, type the backslash mark. That will
get you out of the loop to return to the BASIC Operating System. Of course,
if you want to use the backslash while you are typing, YO\J are out of luck.
This program uses the backslash to end its operation.

We can't show you how the screen looks, as you are in complete com
mand. It will display whatever you type.

119

SUMMARY

You found additional useful built-in subroutines in this chapter for dis
playing characters and reading characters from the keyboard. Thus you are
now able to use machine language programs to display both graphics and text.
You learned the memory locations that are assigned to the video display, and
you learned to use ASCII codes.

You used all the instructions that were introduced in previous chapters as
well as several new instructions. Here is a summary of the instructions intro
duced in this chapter:

1. LDX (Load X register) - used in the Immediate mode as a counter in the
same way that LDY was used with the Y register.

Example: A2 OP CODE
00 data loaded into the X register

2. INY (Increment register Y) - used to increase the value held in the Y regis
ter by one. Implied mode.

Example: C8 OP CODE

3. INX (Increment register X) - used to increase the value held in the X regis
ter by one. Implied mode.

Example: E8 OP CODE

4. CPY (Compare Y register) - used to compare the value held in the Y regis
ter to the given number. It was used in the Immediate mode.

Example: CO OP CODE
1 A data to which the value held in the Y register is

compared

5. CPX (Compare X register) - used to compare the value held in the X
register to the given number. It was used in the Immediate mode.

Example: EO OP CODE
06 data to which the value held in the X register is

compared

6. BNE (Branch if Not Equal) - used after a compare instruction to tell where
the next instruction to be executed will be found if the result of the com
parison is not equal to zero. It is a Relative Mode instruction that includes
data telling the computer where to move the program counter relative to
its present position.

Example: DO OP CODE
FS data telling how

far to move the
program counter
(-11 in this
example)

720

7. STA (Store Accumulator) - used this time in the Absolute Indexed mode.
Stores whatever value the accumulator holds in memory assigned by the
Absolute location given plus the value held in the Y register.

Example: 99 OP CODE
00 Least Significant Byte of Absolute location
04 Most Significant Byte of Absolute location

8. LOA (Load Accumulator) - used in the Absolute Indexed Mode this time.
Loads the accumulator with data from the Absolute memory location given
plus the value held in the X register.

Example: BD OP CODE
14 Least Significant Byte of Absolute location
03 Most Significant Byte of Absolute location

9. CMP (Compare Accumulator) - used in the Immediate mode to compare
the value held in the accumulator with the given number.

Example: CO OP CODE
AF data to which the value held in the accumulator is

compared

10. BEQ (Branch if equal) - used in the Relative mode after a compare instruc
tion. Causes a branch if the values compared are equal. The data following
the instruction tells how far and in what direction the branch will be taken.

Example: FO OPCODE
06 data telling where to branch (6 locations forward in this

example)

11. JMP (Jump) - used in the Absolute mode to cause an unconditional jump
to the specified memory location.

Example: 4C OP CODE
03 Least Significant Byte of destination address
03 Most Significant Byte of destination address

TABLE OF SUBROUTINES USED SO FAR

Location in
Function Memory

Clear the screen FC58
Set Graphics Mode FB40
Plot a point F800
Draw a horizontal line F819
Draw a vertical line F828
Get a keystroke FD35
Print character in accumulator FDED
Print value in accumulator as two hex digits FDDA

727

TABLE OF MACHINE LANGUAGE INSTRUCTIONS USED SO FAR

Mnemonic Addressing Bytes
Code Mode OPCODE Used Function

ASL Accumulator OA 1 Shift bits left

BEQ Relative FO 2 Branch if equal
BNE Relative DO 2 Branch if not = 0

CMP Immediate C9 2 Compare accumulator
CPX Immediate EO 2 Compare Xreg. to value
CPY Immediate co 2 Compare Y reg. to value

INX Implied E8 1 Increment X register
INY Implied C8 1 Increment Y register

JMP Absolute 4C 3 Jump
JSR Absolute 20 3 Jump to subroutine

LOA Immediate A9 2 Load Accumulator
LDA Absolute BD 3 Load Accumulator

Indexed
LOX Immediate A2 2 Load X register
LDY Immediate AO 2 Load Y register

RTS Implied 60 1 Return from subroutine

STA Zero Page 85 2 Store Accumulator
STA Absolute 8D 3 Store Accumulator
STA Absolute 99 3 Store Accumulator

Indexed

You covered a lot of ground in this chapter. You can now display both
graphics and text on the screen. In the next chapter, we'll see if you can bring
the Apple to life with some living sounds.

EXERCISES

1. The Absolute mode instruction ST A 0400 would store the value contained in
the accumulator into memory location 0400. Describe what the Absolute
Indexed mode instruction ST A 0400, Y would do.---------

122

2. How many characters can the Apple computer display on each line? __ _
_____ (decimal value)

3. If the value in the Y register is currently 26(HEX) as the following portion of
a machine language program is executed, tell which instruction will be exe
cuted following the BNE instruction.

778 C8 INY
779 CO CPY 28
780 28
781 DO BNE FB
782 FB
783 60 RTS

4. If the value in Y is 27(HEX) and that portion of the program shown in Exer
cise 3 is executed again, which instruction would be executed following the
BNE instruction? _______________ _

5. If the ASCII code for the letter A is C1, what is the ASCII code for the
letter G? -------------

6. Given that the accumulator holds the ASCII code for the letter A. If the
built-in subroutine at FDED is executed, an A is displayed on the screen.
If the built-in subroutine at FDDA is executed while the same value is in the
accumulator what will be displayed on the screen? ________ _

7. The ASCII code for the normal display of white on black for the letter C is
C3 HEX (11000011 binary). The code for an inverted (black on white)
letter C would be:
a. HEX or binary.
The code for a blinking C would be:
b. HEX or binary.

8. Explain what the following instructions cause when executed.
a. EO CPX 06

06

b. CO CPY 1A
1A

c. C9 CMP AF
AF

123

ANSWERS TO EXERCISES

1. Store the value contained in the accumulator into memory location 0400 +
the content of the Y register. (If Y=5, the location where stored would be
0400+5 or 0405.)

2. 40

3. 778 CS INY (FB = -5 counting from 783)

4. 783 60 RTS (Y= 27+1 = 28. Therefore BNE is not taken)

5. C7

6. C1 (the ASCII code for A)

7. a. 03 HEX or 00000011 binary
b. 43 HEX or 01000011 binary

8. a. The value in the X register is compared to 06.
b. The value in the Y register is compared to 1 A HEX.
c. The value in the accumulator is compared to AF HEX.

124

Chapter 6

Apple Sounds

You learned how to plot points and draw lines in Chap. 4. In this chapter,
we'll explore an Apple feature that. will appeal to another of your senses.

Inside the Apple computer is a speaker that you can "tweak" or "strum"
to your heart's content. A program can control the speaker so that it will make
various sounds. The paper cone of the speaker can be in either of two positions,
in or out.

Cone in Cone out

Exaggerated Side View of the Speaker Cone

Each time a program references memory address C030 (HEX), the speaker
changes from in to out or vice versa. This change causes the speaker to emit an
audible click. By referencing address C030 frequently (which we call "tweaking"
the speaker) a tone is produced. If you tweak it at different rates, different tones
will be produced. You can also control the duration of the tweaking to produce
tones of various lengths.

Tweaker
Speaker

With a little patience, you can produce a musical scale that you can use to play
tunes. If you desire, you can draw graphics on the screen and accompany them
with music of your own creation.

125

But, first let's take a look at the sound capabilities of the Apple with a
simple tone-producing program. An addition is made to the BASIC Operating
System to allow you to choose the pitch for each sound you wish to play. After
the pitch is selected, the machine language program is called to play the note.
Then control is returned to the Operating System so that you can select a new
pitch. This process is continued until you decide to quit.

TONE EXPERIMENT PROGRAM

1. REMARK** INITIALIZE AND CLEAR SCREEN **

768 A9 LDA C8 Set the duration of the note
769 C8

770 85 ST A 0001 Store it in a special memory location
771 01

772 20 JSR FC58 Clear the screen
773 58
774 FC

2. REMARK** SPEAKER TWEAKER**

* 775 AD LOA C030 Load accumulator from memory
776 30 C030; this reference to C030 tweaks
777 co the speaker

* 778 88 DEY Decrement the Y register

779 DO BNE 04 Branch +4 (if not equal to zero) to
780 04 785

* 781 C6 DEC 0001 Decrement memory location 0001
782 01

783 FO BEQ08 Branch +8 (if equal to zero) to 793
784 08

* 785 CA DEX Decrement the X register

786 DO BNE F6 Branch -10 (if not equal to zero) to
787 F6 778

* 788 A6 LOX 0000 Load X register from memory 0000
789 00

126

790 4C JMP 0307 jump back to 0307 hex (775 decimal)
791 07
792 03

3. REMARK ** BACK TO BASIC ** .

793 60 RTS Return to Operating System

*New instructions or subroutines

MODIFICATION TO THE BASIC OPERATING SYSTEM

The Tone Experiment Program requires that we add some lines to the
BASIC Operating System (Chap. 2) to choose the pitch of the notes to be
played. We will also include a statement that will let us decide when to terminate
the program. The added lines are:

720 INPUT "PITCH (1-255 OR 0 TO QUIT)?"; P ·
. ~

730 IF P=O THEN 900......_____ Input 1-255 for pitch or
a zero (0) to quit

740 POKE O,P

810GOTO 720

These new lines are inserted in the Operating System in the section that executes
the machine language program as shown. Notice that the lines 720, 730, and 740
are inserted before subroutine S is ca,lled in line 800 of the Operating System.
Line 810 is executed after the return frpm the subroutine so that a new pitch
may be selected.

added

added

700 REM * EXECUTE THE MACHINE LANGUAGE PROGRAM *
710 PRINT "PRESS ANY KEY TO RUN": GET A$

{
720 INPUT "PITCH (1-255 OR 0 TO QUIT)?"; P
730 IF P=O THEN 900
740 POKE O,P

800CALL S
{ 810 GOTO 720

900 END

127

Line 720 allows you to input the desired pitch. The value that you input
should be in the range of 1 through 255 as indicated by the INPUT prompt in
line 720. If you input a zero (0), line 730 will cause a branch to line 900, where
the program will END.

DESCRIPTION OF THE TONE EXPERIMENT PROGRAM

Section 1 loads the value CB HEX (200 decimal) into memory location
0001 using the zero page store instruction. This value is used to control the
duration of the notes. The video screen is also cleared in this section to avoid
visual distractions.

Section 2 is a loop that tweaks the speaker. It uses the X and Y registers
to control the number of times the speaker is tweaked within the duration of the
note.

Several new instructions appear in this section.

at 775:

at 778

at 781

at 785

at 788

AD LDAC030
30
co

88 DEY

Loads the accumulator from memory
location C030, causing the speaker to
be tweaked. An Absolute Mode in
struction.

:::: Twang

An Implied mode instruction that de
creases the value in the Y register by 1.

Y = Y-1 in BASIC I
C6 DEC 0001 A zero page instruction that decreases

the value in memory location 0001 by
1.

01

MEM = MEM-1 in BASIC I
CA DEX An Implied mode instruction that de

creases the value in the X register by 1.

I X = X-1 in BASIC I
A6 LDX 0000 A zero page instruction that loads the
00 X register from memory location 0000

~-~~pitch).
Memory 0000 X register

128

Section 2 is composed of several values used as counting functions to de
termine how often and for how long the speaker is to be tweaked. If this section
is not completely clear to you, don't worry about it - it works.

Here is a flowchart showing the operation of Section 2.

775 TWEAK SPEAKER

~
778 DECREMENTY

~
TESTER 779 NO-

781 TESTER

~
Another Thief 783 RETURN

TO
BASIC

785 DECREMENT X Tu;,*
786

~
YES Tester

LOAD X FROM 0000

~
~~ JUMP TO 0307 HEX looool

~
Loader

129

Section 3 returns control to the BASIC Operating System to allow a new
note to be selected.

Thus we have created a loop from the operating system to the milchine
language program and back to the operating system.

Loop

Flow Diagram
r---------~------

1 Enter machine language I
I program I
I I

I Select the pitch I
I I
I I
I I
I I
I I
I I
I I
I Call machine language I
I program I
L______ --------~

~-------------- --~---------------1 I I

: Execute note :
: Return to Operating :
1 Sy mm • I I

~-------------- ------------------!

OPERATING
SYSTEM

MACHINE
LANGUAGE
PROGRAM

By studying the flow diagram, you can get some idea as to the usefulness
of a machine language program used as a subroutine to a BASIC program. Al
though BASIC may be easier for you to program, there are times when some
part of a program may require great speed. The computer can execute a ma
chine language program much faster than it can BASIC (since BASIC rriust be
interpreted). Therefore, a machine language subroutine can be used to execute
that part of the program which must be done quickly. A return to BASIC is
then used to perform the rest of the program, which does not require such
quickness.

EXECUTING THE PROGRAM

After you have modified the operating system by adding lines 720, 730,
740, and 810 as suggested, enter the machine language program. It begins at
memory location 768 and is 26 bytes long. When it has been entered and checked
for errors, you will see the usual message:

130

IF ANY CHANGES-TYPE ADDRESS
IF NOT -TYPE 99
?•

After you type: 99 it will request the pitch.

IF ANY CHANGES-TYPE ADDRESS
IF NOT - TYPE 99
?99
PITCH (1-255 OR 0 TO QUIT)?•

Type in a value that is in the requested range (1-255) and press the return
key. The screen will go blank, the note will be played, and you will get a request
for another pitch.

Stay in the range
or you will get an
Error message

Try the complete range of tones from very low (255) to very high (1).
Don't try 0 unless you want to stop experimenting.

You will probably want to see if you can construct a musical scale. If you
have a piano or other musical instrument handy, this should be fairly easy. If
your musical ear is not too good, don't let it bother you. Experiment anyway.
We do not profess to be experts in the field of music, but we couldn't resist
trying to build a musical scale.

Our piano is upstairs in the living room, and our Apple is downstairs in the
den. Therefore, we used a tape recorder to copy the notes of one octave from
the piano. We than took the tape recorder downstairs to the computer and
played back the results to construct the scale.

PIANO-TO-COMPUTER CONVERSION

"> ~

4

~

1 j_ j_ -, -i

Piano C D E F G A B C
Pitch value- 133 127 121 116 111 107 103 100

Middle C !

731

Try keying in the~e values in quick succession to see how it sounds to you.
We will be using these values {and others) in future programs. If some notes
don't sound quite right to you, make the necessary changes to the offending
values. Then play the scale up and down. Get in lots of practice so that you will
be ready for the music of the future.

ITJ[Q] ill] do)
ITJ[Q][l] ti)

DJ[Q][l] ~

[IJITJITJ s~

OJOJ[§] ~

OJ[l]ITJ ~

mrnrn :f1
mrnrn d~

After practicing the scale, you can relax with the next program. It plays
the scale for you. A loop is used to play all eight notes in an octave. Then con
trol is returned to the operating system. Several useful new instructions are
introduced.

Two of these new instructions are used to transfer data back and forth be
tween the X register and the accumulator.

TXA is used to transfer the value in the X register to the accumulator.
It is a single-byte instruction in the Implied mode. Its operation code is 8A.

~
8A TXA CQQ:J [QQJ

Op code Mnemonic Accumulator X
code register

Value transferred
but also remains

TAX is used to transfer data in the opposite direction, from the accumu
lator to the X register. It, too, is a single-byte instruction. Its operation code is
AA.

...----....
AA TAX []QJ [Q[)

Op code Mnemonic Accumulator X
code register

132

The other two new instructions involve the use of a special section of
memory called a stack. You might think of the stack as a pile of papers. You
add to the pile by placing a paper on the top of the pile. You remove papers
from the pile, one at a time, from the top.

~
3rd paper

---- 2nd paper

~1st paper

In the sketch above, the third paper must be removed before the second. The
second must be removed before the first. For you business-oriented people, it's
like a Last In - First Out (LIFO) file. ·

To push a value on the stack, the PHA (PusH Accumulator on stack) in
struction is used. Its operation code is 48.

The Call instruction of the BASIC Operating System automatically causes
the correct address for the return from the machine language subroutine to be
pushed on the stack.

~ -o32A (810 HEX) is saved on top of the stack

M
If the accumulator holds a value of zero and the PHA instruction is exe

cuted, the value of zero is pushed on top of the stack, and the other two values
are pushed down one spot.

~

48 PHA
[QQJ ~o accumulator 2A

03

stack

--- 00 pushed on

} - these two are pushed
down one spot

To pull a value off the stack, the PLA (Pull off stack to Accumulator) is
used. Its operation code is 68.

Suppose the stack holds the previous values.

133

The PLA instruction is then executed:

,---.........
[QQJ ~

Accumulator Fl - The value 00 is removed, and these values
move up one spot ready to be used when the
RTS machine language instruction is exe
cuted stack

AUTOMATED SCALE PROGRAM

1. REMARK** CLEAR SCREEN AND INITIALIZE**

76S 20 JSR FC5S Clear screen
769 5S
770 FC

771 A9 LDACS Set duration
772 cs

773 S5 STA 0001
774 01

775 A2 LDXOO Set counter to zero
776 00

Section 1 of the program clears the screen.

(..._______.) Screen cleared

The duration of CS (190 decimal) is loaded into the accumulator and
stored from there into memory location 0001. It will be used in the note-playing
loop in Section 3.

0001 ~

The X register, which is used to index the LDA instruction in Section 2, is
set to zero.

x 00

All instructions used in this section are familiar friends to you.

134

2. REMARK ** LOAD PITCH **

777 BD LDA 032E,X Indexed Absolute load,
77B 2E X register used to index
779 03

7BO B5 STA 0000 Put in memory 0000
7B1 00

7B2 EB INX Get ready for next note

*7B3 BA TXA Transfer value in X register to
accumulator

*7B4 4B PHA Save on the stack
7B5 EO CPX OB See if all notes have been played
7B6 OB

7B7 FO BEQ 17 Branch (if they have) to end
78B 17

3. REMARK ** PLAY THE NOTE **

7B9 AD LDA C030 Tweak speaker
790 30
791 co Same loop as in the last program. This

loop is nested inside the loop that gets
792 BB DEY a new note.

793 DO BNE 04
794 04

795 C6 DEC 0001
Get 796 01
new
note Note 797 FO BEQOB
loop loop 79B OB

799 CA DEX

BOO DO BNE F6
BOl F6

B02 A6 LDX 0000
B03 00

B04 4C JMP0315
B05 15
B06 03

*B07 6B PLA Pull saved value off stack

*BOB AA TAX Transfer to X register

B09 4C JMP 0309 Go back for new note
BlO 09
Bll 03

135

HOW SECTIONS 2 AND 3 WORK

Get the note 777-781
from the memory
and put into 0000

Increment X 782
register

Put new X value
into accumulator

Save it on the stack

Compare X with 8 785-6
to see if all
notes have been
played

If so, GOTO END.

If not, play the
note in Section 3

787-8

789-806

Then pull the 807
value off the
stack and put
in accumulator

Transfer it back. 808
to the X register

Go back for a new note

"---=-~- ~:;H~: (~1: :~m~I~ -~
032F ooooD

79 0330

I X=X+l

783

etc.

I\
~ Accumulator

l ____ , ~ Stack

784 H
IS X = 8?

This way if YES
'----'-~~~~~, END

way
if
NO

Section 3

play the note

809-811

When the last note has been played, a branch is made to Section 4. The old
value of X is pulled off the stack so that the correct return address will be avail
able at the top of the stack. If we didn't remove the old X register value from
the stack, the computer would think that number was part of the address to
which it was to return.

136

The RTS instruction at 813 returns the computer to the BASIC Operating
System.

Section 5 holds the data used for the notes.

4. REMARK ** BACK TO BASIC **

812 68 PLA Pull value off stack

813 60 RTS

5. REMARK** DATA LIST**

814 85
815 7F
816 79
817 74
818 6F
819 6B
820 67
821 64

._ Music scale in HEX

Just as a DAT A list in BASIC is not executed, so the data list in the ma
chine language program is not executed. It is there to provide the values accessed
in Section 2 by the LDA instruction at location 777.

Enter the program as usual by means of the Operating System. The pro
gram begins at memory location 768 and is 54 bytes long. Check for any errors.
When all is ready, run the program. Although you will see nothing on the screen,
an octave of notes is played from low note to high note. The computer then
obediently returns to the Operating System. If you want to repeat the scale,
type:

GOTO 700 and press the RETURN key.

The display will show:

] GOTO 700 ---
PRESS ANY KEY TO RUN•

When you press a key, the octave will be repeated.
You could add more data to Section 5 so that the notes would go up and

then back down the scale. You would also have to change the value at 786 in the
program to give the total number of notes in the new data list.

That wraps up this chapter. In the next chapter, we'll add graphics to our
sounds and learn to play some notes directly from the keyboard.

137

SUMMARY

One new built-in subroutine and seven new machine language instructions
were added to your programming capabilities in this chapter. The use of sound
has added a new dimension to your programming power. You can now use the
speaker to go along with the keyboard and video display.

You learned to move data back and forth between the accumulator and
the X register. You also learned to use the stack to save information for later
retrieval.

Here is a summary of the new subroutine and the new instructions intro
duced in this chapter.

New Subroutine

1. LDA C030 was used to toggle the speaker. When this is done rapidly,
the speaker produces a tone. The pitch of the tone as well as its dura
tion can be controlled by the program.

Example: AD OP code for Load Accumulator
30 least significant byte of address
CO most significant byte of address

New Instructions

1. DEC (DECrement memory) - used in the Zero Page mode to decre
ment (decrease by one) the value held in the specified memory location
of zero page memory.

Example: C6 OP code for DEC
01 least significant byte of memory location 0001

(the most significant byte is implied to be 00)

2. DEX (DEcrement X register) - used in the Implied mode to decrease
the value held in the X register by one.

Example: CA OP code for DEX

3. LDX (LoaD the X register) - used in the Zero Page mode to load the X
register with the value held in the specified memory location of zero
page memory

Example: A6 OP code for LDX
00 least significant byte of memory location 0000

(most significant byte is implied as 00)

4. PHA (PusH Accumulator on stack) - used to push the value held in the
accumulator on the top of the stack. This value is later retrieved for fur
ther use. Implied mode.

Example: 48 · OP code for PHA

738

5. PLA (Pull from stack to Accumulator) - used to retrieve a value pre
viously pushed on the stack. The value is placed in the accumulator for
use. Implied mode.

Example: 68 OP code for PLA

6. TAX (Transfer data from Accumulator to X register) - used to transfer
(or copy) data from the accumulator to the X register. Implied mode.

Example: AA OP code for TAX

7. TXA (Transfer data from the X register to the Accumulator) - used to
transfer (or copy) data from the X register to the accumulator. Implied
mode.

Example: BA OP code for TXA

TABLE OF SUBROUTINES USED SO FAR

Function Location in Memory

Toggle the speaker C030
Clear the screen FCSS
Set graphics mode FB40
Plot a point FSOO
Draw a horizontal line FS19
Draw a vertical line FS2S
Get a keystroke FD35
Print character in accumulator FDED
Print accumulator content as hex digits FDDA

TABLE OF MACHINE LANGUAGE INSTRUCTIONS

Mnemonic Addressing Op Bytes
Code Mode Code Used Function

ASL Accumulator OA 1 Shift bits left

BEQ Relative FO 2 Branch if equal
BNE Relative DO 2 Branch if not equal

CMP Immediate C9 2 Compare accumulator
CPX Immediate EO 2 Compare X register
Ci>Y Immediate co 2 Compare Y register

*DEC Zero Page C6 2 Decrement memory
*DEX Implied CA 1 Decrement X register

INX Implied ES 1 Increment X register
INY Implied cs 1 Increment Y register

139

Mnemonic Addressing Op Bytes

Code Mode Code Used Function

JMP Absolute 4C 3 Jump to memory
JSR Absolute 20 3 Jump to subroutine

LDA Immediate A9 2 Load accumulator
LDA Abs. Indexed BD 3 Load accumulator
LDX Immediate A2 2 Load X register

*LDX Zero Page A6 2 Load X register
LDY Immediate AO 2 Load Y register

NOP Implied EA 1 No operation

*PHA Implied 48 1 Push accumulator on stack
*PLA Implied 68 1 Pull stack to accumulator

RST Implied 60 1 Return from subroutine

STA Zero Page 85 2 Store accumulator
STA Absolute SD 3 Store accumulator
STA Abs. Indexed 99 3 Store accumulator

*TAX Implied AA 1 Transfer Acc. to X register
*TXA Implied BA 1 Transfer X register to Acc.

*Instructions introduced in this chapter

EXERCISES

1. Explain the result of executing each of the following machine language in
structions.
a. CA DEX

b. C6 DEC 0001
01

c. A6 LDX 0000
00

2. What happens if you input a 0 (zero) for the pitch in the Tone Experiment
Program?

3. A low value for pitch in the Tone Experiment Program produces a---
(low, high)

tone. A high value produces a _____ tone.
(low, high)

140

4. Describe the operation caused by these instructions:
a. 8A TAX

b. AA TXA

5. The stack looks like this -------~ sq
The accumulator holds the value@].
The instruction PHA is then executed. Show how the stack looks following
that execution.

6. If the stack looks like this

and the instruction PLA is executed, show the value in the accumulator and
the contents of the top of the stack.

D
Accumulator

Stack

ANSWERS TO EXERCISES

1. a. Decrease the value in the X register by 1.
b. Decrease the value in memory location 0001 by 1.
c. Load the X register from memory location 0000.

2. Execution of the machine language program is stopped. Control is returned
to the Operating System.

3. high, low

4. a. TXA copies data from the X register into the accumulator.
b. TAX copies data from the accumulator into the X register.

32
5. ~1 •Cl on top

43 Everything else pushed down one

Stack

6.@] ~
Accumulator ~

Stack

17 has been pulled off.
Everything else moves up one.

141

Chapter 7

More Sounds and Graphics

You learned how to tweak the Apple's speaker in Chap. 6 in order to pro
duce sounds. Sound is fine, but it is not very satisfying by itself. In this chapter,
we'll combine some sounds with graphics to stimulate two of our senses at the
same time.

COMBINING THE SPEAKER AND VIDEO DISPLAY

We'll build a new program using the graphics techniques learned in Chap. 4
with the Automated Scale Program used in Chap. 6. The length of the program
will increase, and some modification will be made to make the sound and
graphics fit together in a smooth, coordinated manner.

Only one new instruction will be necessary. That instruction, LDY, loads
the Y register from a memory location program indexed by the X register. Re
member, the point-plotting program uses the Y register to hold the column for
plotting a point. These values are held in a data list starting at memory location
0834.

Before looking at the program, study the flow diagram that follows. The
diagram is laid out in blocks that correspond to individual sections of the pro
gram.

You have seen every instruction in Section 1 before. The duration of the
notes is loaded in the accumulator (by the LDA instruction at 768). The screen
is cleared (by the subroutine at FC58). The X register, which is used as a count
er, is set to zero (by the LOX instruction at 775). The low resolution Graphics
mode is set (by the subroutine at FB40). The color to be used for plotting the
notes is set to white (by. the LDA instruction at 780 and the ST A instruction at
782).

142

Flow Diagram for Scale with Notes Program

Section 1 INITIALIZE VALUES
for graphics and
duration of notes

Section 2 PLOT THE POINT l Section 6
Column and row from
data lists 834-849

Section 3 SET PITCH of note 1-... Pitch from data list

and save value in 826-833
X register

:I
Section 4 PLAY THE NOTE

+
Section 5 CHECK to see if

all notes have been
played

If NO

If YES

BACK to BASIC
Operating system

SCALE WITH NOTES PROGRAM

1. REMARK** INITIALIZE**

768 A9 LDAC8 Set duration
769 C8

770 85 STA 0001
771 01

772 20 JSR FC58 Clear screeh

775 A2 LDXOO Set counter to zero
776 00

777 20 JSR FB40 Set Graphics mode
778 40
779 FB

780 A9 LDAOF Set color to white
781 OF

782 85 STA 0030 Store it in memory
783 30

143

Section 2 loads the column where the point is to be plotted into the Y
register and the row where the point is to be plotted into the accumulator. A
subroutine is then called to plot the point. The column and row values are stored
in data tables at the end of the program. The X register is used as a pointer to
access this data.

2. REMARK** PLOT THE POINT**

784 BC LDY 0342,X
785 42
786 03

787 BD LDA 034A,X
788 4A
789 03

790 20 JSR F800
791 00
792 F8

Load Y register from 0342 indexed by
value in X register

Load accumulator for 034A indexed
by value in X register

Call the point-plotting subroutine
built-in

In Section 3, the value for the pitch of the note is loaded into the accumu
lator from the data table and is then placed in memory location 0000, where it
will be needed when the note is played. The value in the X register is placed in
the accumulator and then pushed onto the stack for safekeeping. This has to be
done, as the X register is used in Section 4 for another purpose. The value (saved
on the stack) will be retrieved later when needed.

3. REMARK ** GET READY FOR NOTE **

793 BD LDA 033A,X Load the pitch value from 033A in-
794 3A dexed by the value in X register
795 03

796 85 STA 0000 Store in memory 0000
797 00

798 8A TXA Put the value in the X register into
accumulator

799 48 PHA Push on the stack to save it

Section 4 plays the note. It is the same as that used in Section 3 of the
Automated Scale Program in Chap. 6.

4. REMARK ** PLAY THE NOTE *"'

800 AD LDA C030 Tweak the speaker
801 30
802 co

744

803 88 DEY Same as previous sound programs

804 DO BNE 04
805 04

806 C6 DEC 0001
807 01

808 FO BEQ08
809 08

810 CA DEX

811 DO BNE F6 (-lO)
812 F6

813 A6 LDX 0000
814 00

815 4C JUMP 0320
816 20
817 03

In Section 5, the computer checks to see if all of the notes of the scale
have been played. If they have not, the program returns to Section 2 where a
new note is plotted and played. If all notes have been played, control is returned
to the BASIC Operating System. The old value of the X register is pulled off
the stack and placed back in the X register. This value is then increased by one.
Then the new value is compared to 8 (the number of notes desired).

5. REMARK **CHECK FOR ALL NOTES PLAYED **

818 68 PLA Pull old X value from stack

819 AA TAX Transfer it into X register

820 ES INX Increase count by one

821 EO CPX08 Compare notes played with 8
822 08

823 DO BNE D7 If not, go back to get values for a new
824 D7 note to plot and play at 784

825 60 RTS If done, go back to monitor

745

The data tables for the column and row used for plotting the notes and the
pitch values of the notes make up Section 6.

6. REMARK** DATA LIST**

826 88
827 79
828 60
829 67
830 59
831 51
832 48
833 44

834 07
835 09
836 OB
837 OD
838 OF
839 11
840 13
841 15

842 16
843 14
844 12
845 10
846 OE
847 oc
848 OA
849 08

- Pitch values

- Column values for plotting notes

- Row values for plotting notes

By combining graphics with the Automated Scale Program, you are able
to display each note as it is played.

Section 1 sets the note duration, clears the screen, and sets the X register
to zero so that data may be accessed from various memory locations. The
Graphics mode is then set, and the color is selected (you may change this if you
like at location 781).

Section 2 loads the Y register with the column and the accumulator with
the row at which the note will be plotted. Both instructions use the X register
as an index to select the correct values from a table lo~ated in memory beginning
at the specified locations. The point·plotting routine flt F800 is then "called" to
plot the point.

Section 3 selects the pitch by the LDA and ST A instructions at 793 and
796. It also performs some housekeeping chores at 798·799 to save the index
value on the stack.

746

Section 4 is an old friend that plays the note.
Section S restores the index value and compares it to 8 to see whether all

the notes have been played. If they have not, the branch instruction at 823
causes a return to 784 to plot and play a new note. If all eight notes have been
played, a return is made to the BASIC Operating System.

Section 6 provides the data in three blocks. The first block (826-833) pro
vides pitch values for playing the 8 notes. The second block (834-841) provides
values for the column in which each of the 8 notes is to be plotted. The third
block (842-849) provides values for the row in which the riotes are to be plotted.

ENTERING AND RUNNING THE PROGRAM

It's now time to enter the program. Once again, it begins at memory loca
tion 768. It is a long program, 82 bytes.

After you have entered it, be sure to check for errors. When it is error free,
run the program.

First one note appears, and middle C is heard from the speaker.

Then a second note appears, and the second tone is heard .

•
This continues until all 8 notes have been displayed and played .

•
•

•
•

•
•

•
] "'

The program then returns to the BASIC Operating System. If you want to see
and hear the results again, type: GOTO 700 and press RETURN. The display
shows:

147

•
•

•
•

•
•

•
•

)GOTO 700
PRESS ANY KEY TO RUN

Press any key, and the process will repeat.
By now, you are thinking of many variations that could be made. You

could plot each note in a different color. You could put in a short melody in
stead of the scale. You could make each note disappear after it has been played.
There are many variations you can try. We encourage you to try all of these and
any others that you may think of. You now have the basis for a color organ that
can play music as well as displaying colors on the screen. You don't have to stick
to plotting a single point. You may want to fill the screen with color or project
random color patterns as the notes are played.

When you have experimented with the above program for some time, you
may desire a change of pace. Wouldn't it be nice to be able to play notes that
you select from the keyboard? Then you would be able to compose and play
your own music. Read on, and we will show you a program that allows you to
"tickle the ebonies" on the keyboard to play your own music.

USING THE KEYBOARD TO PLAY THE NOTES

You have used a program where you input the note that you wanted
played. You also had a program where the computer played the musical scale
for you. The next program combines the two techniques so that you can key in
continuous notes. It restricts you to one octave to keep things simple. The values
for each note are stored in a data list, and by striking one of the numeric keys
1, 2, 3, 4, 5, 6, 7, or 8, the computer will select the corresponding note. You do
not even have to press the RETURN key. Remember, our crude scale is sup
posed to contain the octave starting with middle C. The keystrokes and corres
ponding notes are shown below.

02
-e-1

04

Not~__Keystrokes

148

08

06

PLAY YOUR OWN TUNE PROGRAM

1. REMARK ** CLEAR THE SCREEN **

768 20 JSR FC58 Built-in routine to clear screen
769 58
770 FC

2. REMARK ** GET A KEYSTROKE **

771 20
772 35
773 FD

774 C9
775 BO

*776 30
777 F9

778 FO
779 25

780 C9
781 B9

*782 10
783 F3

JSR FD35

CMP BO

BMI F9

BEQ 25

CMP B9

BPL F3

Built-in routine to read keyboard

Is key too low?

If so, go back and look again
(-7 steps)

If it is a zero, go back to BASIC

Is key too high?

If so, go back and look again
(-13 steps)

3. REMARK** CONVERT ASCII KEYSTROKE - USE TO INDEX**

*784 29 AND OF
785 OF

786 AA TAX

Strip off upper 4 bits of ASCII code

Transfer result to X register to use as
an index

4. REMARK** GET DURATION AND PITCH**

787 A9 LDA60 Load duration
788 60

789 85 STA 0001 Store it
790 01

791 BD LDA 0332,X Load accumulator from data list
792 32
793 03

794 85 STA 0000 Store it
795 00

749

5. REMARK ** PLAY THE NOTE **

796 AD LDAC030 Tweak speaker
797 30
798 co

799 88 DEY

80000 BNE04
801 04

802 C6 DECOOOl
803 01

804 FO BEQ08
805 08

806 CA DEX

807 DO BNE F6
808 F6

809 A6 LOX 0000
810 00

811 4C JMP 031C
812 lC
813 03

6. REMARK** GET A NEW NOTE OR END **

814 4C JMP 0303 Get a new note
815 03
816 03

817 60 RTS Back to BASIC Operating System

7. REMARK** DATA LIST**

*818 EA NOP
819 85 - Lowest note in octave
820 7F
821 79
822 74
823 6F
824 6B
825 67
826 64 - Highest note in octave

*New instruction

150

2 3 5 6 7 8

C D E G A B C

4=F=116

/ t ' keystroke note note value

DESCRIPTION OF THE PROGRAM

Section 1 clears the screen. Section 2 uses the Apple machine language
monitor's built-in subroutine to look for a keystroke. When found, the ASCII
code for the character of that key is placed in the accumulator. The ASCII codes
for the ten symbols used are:

Digits ASCII Codes (in HEX)
0 BO
1 Bl
2 B2
3 B3
4 B4
5 BS
6 B6
7 B7
8 BS
9 B9

After a keystroke has been made, the value in the accumulator is compared to
BO and B9 (the correct range for the djgits). If the ASCII code is below BO or
above·B9, the keystroke will not be accepted. The program will not play a note,
but will return to read another keystroke. This is accomplished by the BMI
(Branch if Minus) and the BPL (Branch if Plus) instructions. These two new
instructions are similar to the BNE (Branch if Not Equal) and BEQ (Branch if
EQual) instructions that you have used before.

BMI (BRANCH ON RESULT MINUS)

Addressing Mode Mnemonic Code OP Code

Relative BMI 30

151

As used in the Program:

774 C9
775 BO

776 30
777 F9

Compare ASCII code for keystroke to BO

Branch on result minus back 7 steps (F9=-7)

If the ASCII code of the keystroke is less than BO, the Branch on Minus
instruction sends the program execution back to 771 to read the keyboard again.
Thus, any keystroke whose ASCII code is less than BO will not be accepted.

BPL (BRANCH ON RESULT PLUS)

Addressing Mode Mnemonic Code OP Code

Relative BPL 10

As used in the program:

780 C9
781 B9

782 10
783 F3

Compare ASCII code for keystroke to B9

Branch on result plus back 13 steps (F3=-13)

If the ASCII code of the keystroke is greater than B8 (zero is considered
positive by this instruction), the Branch on Plus instruction sends the program
execution back to 771 to read the keystroke again. Thus, any keystroke whose
ASCII code is greater than B8 will not be accepted.

If the zero key is struck, a branch is taken to the RTS hstruction which
returns you to the Operating System. It is used to stop the program after you
have decided to discontinue playing notes.

Section 3 converts the ASCII value to a decimal digit so that it can be used
in the X register as an index to access the correct note from the data list. By
looking at the above ASCII code table for the decimal digits, you can see a
similarity between the digit and its ASCII code. A new instruction, AND, is
used to "strip" the upper four bits from the ASCII code. In other words, the
B is removed from the values BO through B9, leaving only the decimal digit on
the right side of the two-digit HEX value.

AND (AND WITH ACCUMULATOR)

Addressing Mode Mnemonic Code OP Code

Immediate AND 29

752

As used in this program:

ASCII code for the keystroke is in the accumulator.

784 29
78S OF

AND the value in the accumulator
with the HEX value OF

To show an example, we will look at the ASCII code in its binary form.
The AND instruction operates on the ASCII code in the accumulator and the
value immediately following the AND instruction. It compares corresponding
bits of the two values. If a particular bit is a one (1) for both values, the corres
ponding bit of the result will be a one. If the bit of either value (or both) is a
zero, the corresponding bit of the result will be a zero.

Examples:

AND accumulator with the value OF

The keystroke is a S.

ASCII code is BS = 1 0 1 1 0 1 0 1 in binary

AND with value OF = 0 0 0 0 1 1 1 1 in binary

~ ~
Result left in
accumulator

0 0 0 0 0 1 0 1 Ones only in the bits that
V have a 1 in BS AND OF

Result= OS (the keystroke)

AND accumulator with the value OF

The keystroke is a 9.

ASCII code is B9 = 1 0 1 1 1 0 0 1 in binary

AND with OF

Result left in
accumulator

= 0 0 0 0 1 1 1 1 in binary

~ ~~
0 0 0 0 1 0 0 1 Ones only if B9 AND OF both

~ contain ones

Reslut = 09 (the keystroke)

Because of the way the AND is used in this program (AND OF), the result
will always throw away the left four bits (Most Significant Bits) of the value in
the accumulator and keep the right four bits (Least Significant Bits) the same.
The program then places this result in the X register (instruction TAX at 786)
so that it can be used to index the LOA command in Section 4 to load the cor
rect pitch for a given keystroke from memory.

153

The sequence resulting from a keystroke is shown below:

If you
type tis, this note will be played. '--------~~

Key
Stroke

1
2
3
4
5
6
7
8

ASCII After
Code AND

Bl
B2
B3
B4
BS
B6
B7
B8

01
02
03
04
05
06
07
08

Memory
accessed
byLDA
0332,X

0332+1 •
0332+2•
0332+3•
0332+4•
0332+5•
0332+6•
0332+7•
0332+8•

Thi4 put in X regisJ
for this index -

Memory Address Memory Content
HEX Decimal (Note Value)

0333
0334
0335
0336
0337
0338
0339
033A

819
820
821
822
823
824
825
826

85
7F
79
74
6F
6B
67
64

Once again, we see that the action takes place in the accumulator (caused by the
AND instruction), and the result is then transferred to the location (X register
in this case) where it will be used.

Section 4 loads the note duration (60 HEX) into memory location 0001.
Then the pitch value is loaded from memory location 0332 + the value in the X
register. This is stored in memory location 0000. Because of the AND instruc
tion used in Section 3, the note will be loaded from 0332 + whatever key was
struck (1, 2, 3, 4, 5, 6, 7, or 8).

Section 5 should be very familiar to you by now. It plays the note using
the values for pitch and duration that were stored in Section 4.

Section 6 provides a Jump instruction to return for another note. It also
has an RTS instruction following the jump. The RTS instruction will only be
reached from the branch in Section 2 (778 BEQ) resulting from the keystroke
of zero (0). RTS, of course, returns you to the Operating System as in previous
programs.

Section 7 is the data list from which the note selections are made. A new
instruction (NOP) that does nothing is used at the begin'ning of the data list. This
instruction (No OPeration) is used as a buffer to separate the program from the
data list. The instruction that loads from the data list (BD at location 791)
points to the value EA (No OPeration), but it is indexed by the X register which
is always equal to or greater than one. Therefore, the NOP instruction (EA) is
never executed. NOP instructions are quite often used to "save a place" for in
structions that may be added later to modify a program. If we wanted to insert a . . .

154

note lower than middle C, we could use the memory occupied by the NOP in
struction. The program could then be modified to use the keystroke zero to
access this new note.

The data list pointer works like this:

From 1791 BD
Section 4 792 32

793 03

LDA 0332,X

From
Section 7

Data pointer starts here
If X=1, 0332+1 points here
If X=2, 0332+2 points here
If X=3, 0332+3 points here
If X=4, 0332+4 points here
If X=5, 0332+5 points here
If X=6, 0332+6 points here
If X=7, 0332+7 points here
If X=8, 0332+8 points here

(0332= 818 decimal)

X holds the value keyed in (1 through
8) and determines what value will be
accessed here ----

818 EA
819 85
820 7F
821 79
822 74
823 6F
824 6B
825 67
826 64

ENTERING AND RUNNING THE PROGRAM

Enter the program that begins at memory location 768 decimal. It is 59
bytes long. Check your entries for errors, correct any errors, and run the pro
gram.

The screen will go blank. Then the blinking cursor will appear in the upper
left corner.

r·
It's time now for you to enter notes. Pressing any of the number keys 1 through
8 will cause a note to be played. After each note, the blinking cursor flashes in
the upper left corner. The computer is waiting for your next entry. Play around
with the scale until you have a good feel for the computer "organ." Then call in
your friends and show off your musical talent.

There are many modifications that you can make to this program. By in
creasing the size of the data list, you can increase the number of notes available
to you. You might want to add some color graphics to this program in order to
have a color organ.

/J_=~}0~
Color and Sound ·

155

SUMMARY

Two long programs were used in this chapter to demonstrate the use of
color and sound. You learned to coordinate the use of the speaker, the video dis
play, and the keyboard. Five additional instructions were introduced. The list of
instructions that you have used has grown large enough to construct more com
plex and useful programs.

You learned more about the capabilities of the Y register through two new
instructions. Two new branch instructions were introduced, and you used the
logic instruction (AND) to convert an ASCII code into its equivalent decimal
digit.

Here is a summary of the new instructions introduced in this chapter.

1. AND (AND with accumulator) - used in the Immediate mode to logically
AND the value following the instruction with the value in the accumulator.
The result contains 1 's in the bits where both values have ones. Otherwise,
zeros.

Example: 29 OP code for AND
OF HEX value to be ANDed

2. BMI (Branch on Minus) - used in the Immediate mode to branch when a
given condition is negative. The data following the instruction tells which
direction and how far to branch from the existing position of the program
counter.

Example: 30 OP code for BM I
F9 data says to go back 7 steps (F9 = -7)

3. BPL (Branch on Plus) - used in the Immediate mode to branch when a given
condition is positive or zero. The data following the instruction tells which
direction and how far to branch from the existing position of the program
counter.

Example: 10 OP code for BPL
F3 data says go back 13 steps (F3 = -13)

4. DEY (DEcrement Y register) - used in the Implied mode to decrease the
value held in the Y register by one.

Example: 88 OP code for DEY

5. LDY (LoaD Y register) - used in the Absolute Indexed mode to load the Y
register from a memory location indexed by the value in the X register.

Example: BC
42
03

OP code for LDY (Absolute Indexed)
least significant byte of memory location
most significant byte of memory location

The value in the X register is added on to this "base" address to get the
true address

756

TABLE OF MACHINE LANGUAGE INSTRUCTIONS USED

Mnemonic Addressing Op Bytes
Code Mode Code Used Function

*AND Immediate 29 2 AND bits with accumulator
ASL Accumulator OA 1 Shift bits left

BEQ Relative FO · 2 Branch if equal
*BMI Relative 30 2 Branch if minus

BNE Relative DO 2 Branch if not equal
*BPL Relative 10 2 Branch if plus

CMP Immediate C9 2 Coll)pare accumulator
CPX Immediate EO 2 Compare X register
CPY Immediate co 2 Compare Y register

DEC Zero Page C6 2 Decrement memory
DEX Implied CA 1 Decrement X register

*DEY Implied SS 1 Decrement Y·register

INX Implied ES 1 Increment X register
INY Implied cs 1 Increment Y register

JMP Absolute 4C 3 Jump to memory
JSR Absolute 20 3 Jump to subroutine

LOA Immediate A9 2 Load accumulator
LOA Abs. Indexed BD 3 Load accumulator
LOX Immediate A2 2 Load X register
LOX Zero Page A6 2 Load X register
LOY Immediate AO 2 Load Y register

*LOY Abs. Indexed BC 3 Load Y register

NOP Implied EA 1 No operation

PHA Implied 4S 1 Push accumulator on stack
PLA Implied 6S 1 Pull from stack to accumulator

RST Implied 60 1 Return from subroutine

STA Zero Page SS 2 Store accumulator
STA Absolute Si:> 3 Store accumulator
STA Abs. Indexed 99 3 Store accumulator

TAX Implied AA 1 Transfer accumulator to X register
TXA Implied SA 1 Transfer X register to accumulator

*Instructions introduced in this chapter

157

TABLE OF SUBROUTINES USED SO FAR

Function Location in Memory

Toggle the speaker C030
Clear the screen FC58
Set graphics mode FB40
Plot a point F800
Draw a horizontal line F819
Draw a vertical line F828
Get a keystroke FD35
Print character in accumulator FDED
Print accumulator content as hex digits FDDA

EXERCISES

1. Explain the result of executing the following machine language instructions.
a. BC LOY 0342,X

42
03

b. 88 DEY

2. A Compare X with 08 (CPX 08) instruction is used at 821 and 822 of the
Scale with Notes Program. Which of the following operations does it per
form?
a. 08 - value in X register
b. value in X register - 08

3. A subroutine at memory address FD35 is used to read the keyboard in the
Play Your Own Tune Program. When you press a key in this program to play
a note, is it necessary to press the RETURN key following the keystroke?

4. If the following HEX values are ANDed with OF, what are the results?
a. B7 b. B4 c. ES----

5. What would be the result of 3F (HEX) ANDed with 63 (HEX)?

6. In the Play Your Own Tune Program, which of the following ASCII values
will cause a note to be played?
a. A9 b. B3 c. BA d. BO

158

ANSWERS TO EXERCISES

1. a. The Y register is loaded from the memory location whose address is
0342 +the value in the X register.

b. The value in the Y register is decreased (decremented) by one.

2. b. Value in X register - 08

3. No

4. a. 07 (or 7)
b. 04 (or 4)
c. 05 (or 5)

5. 23 3F = 0011 1111
63 = 0110 0011

AND= 0010 0011

2 3
6. b. (B3 only) (A9 is too low-not accepted, BA is too high-not accepted,

BO will return the machine language program to the BASIC Operating
System)

159

Chapter 8

The Apple System Monitor

In the previous chapters you have been using BASIC to write and execute
machine language programs. This convention has allowed you to make use of
your knowledge of BASIC as you became acquainted with the language of the
computer. It's time now to discard the BASIC Operating System as a tool.
You've outgrown your need for it.

The Apple computer has a System Monitor way up high in its memory (see
memory maps in Chap. 2).

\
Way up high

The monitor controls all programs, and all programs use it. Maybe you didn't
realize it, but you have been using it all through this book. From here on, you'll
communicate with it directly.

You can use the monitor to look directly into memory locations, change
the contents of memory, and even write machine language programs to be exe
cuted directly by the 6502 microprocessor.

Remember, the computer understands only binary-coded instructions. The
System Monitor will accept these instructions in hexadecimal form from the
keyboard. You may want to return to Chap. 3 for a brief review of instruction
code format.

Let's go back to one of your first machine language programs described in
Chap. 3. It loaded the accumulator with the HEX value 13 and stored the value
in memory location 0325 (HEX). The program was stored in memory as:

160

Address Op
Decimal HEX Code Remarks

768 0300 A9 LDAwith
769 0301 13 data
770 0302 80 ST A in memory
771 0303 25
772 0304 03 0325
773 0305 60 RTS

That program was called from our BASIC Operating System, so the last in·
struction was RTS (Re Turn from Subroutine). The Apple System Monitor treats
machine language programs as subroutines. Therefore, RTS can also be used as
the last instruction in its machine language programs. The program above can be
entered directly using the System Monitor.

We'll now show you how to use the monitor so that you can see how easy
it is to load, examine, and execute a machine language program directly.

Look at your User's Manual to see how to enter the System Monitor for
your Apple version. For ours, all we have to do is press the RESET key. Another
way would be to turn the computer off and then back on. When first turned on,
our version always comes up in the monitor. If you have an Apple 11 Plus System
with Autostart ROM, you enter the System Monitor by executing the BASIC
statement:

CALL 65385
or

CALL-151

When you are in the System Monitor, the screen will show the asterisk as a
prompt signal.

*•~
~sterisk prompt Cursor

To enter the program, first type the starting address in HEX: 300

1*300•
Follow this with a colon, which tells the monitor that you want to alter

the contents of memory. Follow the colon by each two-digit HEX code for
the instructions or data (only one digit is needed if the lead digit is a zero). Sep·
arate each code by a blank space. The program can be typed on one complete
line as follows:

161

,,WOW!!! 'T'\ SD\ 6~ ~- E~YI
Just the starting colon Each instruction in order separated by one blank
address is ne.eded space·

Just as in a BASIC program, the RETURN key is pressed at the end of
each complete entry. When the RETURN key is pressed at the end of the above
line, you see:

*300:A9 13 80 25 3 60

*•

' Ready for more, but that's all we have

That's all there is to it. If you are not confident that the program has been en
tered correctly, you can examine memory to verify what you just entered. To
show what is in a given block of successive memory locations, type in the start
ing address of the block and the ending address of the block separated by a
period.

*300:A913 80 25 3 60 - You entered

*300.305• ---- Type this and press RETURN

·~
Starting address Ending address

period

Then you see:

*300:A913 80 25 3 60 - You entered

*300.305 ------ You want examined

0300- A9 13 80 25 03 60 - Computer shows you *•,
Ready for more

162

Yes, the program is there. Now, how easy is it to make the program run?
Very easy! just type: 300G

*300:A913 80 25 3 60 - Ready

*300.305

0300- A9 13 80 25 03 60 - Set
*300G• -----

BY" typing the starting ad~GO!
followed by the letter G (for GO),
the program is executed.

*300:A9 13 80 25 3 60

*300.305

0300- A9 13 80 25 03 60
*300G

*•_____Well, what happened? Oh, we didn't ask the computer
to display anything, so it just did its job and stored the
value 13 in memory location 0325. How can we check
it?

To find out if the 13 was really moved to memory location 0325, we must
examine that memory location. To look at just one memory location, merely
type the address of the location and press the RETURN key.

*300:A9 13 80 25 3 60

*300.305

0300- A9 13 80 25 03 60
*300G

*325 --------To see memory location 0325

0325- 13_____

*• ~
Yes, there it is.

163

Well, you know how to store some data in memory. That's not very useful
by itself, but most problems to be solved by the computer involve moving data
back and forth between memory and the accumulator. Let's see how it works in
some programs that serve some useful purpose.

We've made it all the way to Chap. 8 without doing a bit of arithmetic.
Who ever heard of a computer that couldn't add and subtract?

The 6502 microprocessor includes instructions that are capable of addi
tion and subtraction. Multiplication and division instructions are not available,
but routines can be created by the programmer to perform those operations.
These routines will be discussed in Chap. 12.

Addition and subtraction are performed by two instructions that have
several different addressing modes (Immediate, Zero Page, Absolute, etc.). We
will be using the Immediate Addressing mode first.

The mnemonic codes for the add and subtract instructions are:

ADC (ADd to accumulator with Carry)
and

SBC (SuBtract from accumulator with borrow)
Borrow is the inverse of Carry

Remember that the 6502 is an 8-bit microprocessor and can only handle
8 bits (one byte) of data at one time. The addition and subtraction operations
are performed in a binary fashion, on one bit at a time.

Example:

00111100
+ 00100011

1
0

0

1
1

1
1

--- In accumulator (3C HEX)
--- To be added (23 HEX)

lst(O+l=l)
2nd(0+1=1)
3rd (1+0=1)
4th (1+0=1)
5th(1+0=1)
6th (1+1=10, put down 0 and carry 1)
7th (O+O=O+carry=l)
8th (O+O=O)

01011111 - Result (SF HEX)

Let's try our example in a short machine language program. These are the
instructions that we will need.
1. 1 ~ CLC (Clear Carry flag - or carry bit, Implied mode)

Op '\
code mnemonic code
This is a new instruction that is necessary to make sure that a.zero is placed in
the carry bit of the status register. If the carry bit happened to be set to one,
we would get an incorrect result (one too large).

164-

2. A' LDA (LoaD the Accumulator, Immediate mode)

Op '\
code mnemonic code
You have used this instruction before. It puts the first value to be added (3C
HEX= 00111100 binary) in the accumulator.

3. 69 ADC (ADd to accumulator with Carry, Immediate mode)
O~ CODE m~monic code
Another new instruction. It adds the value immediately following the instruc
tion (23 HEX= 00100011 binary), the value in the accumulator (3C HEX=
00111100 binary), and the value in the carry bit of the status register (0 or
1).

We'll also use the monitor subroutine that displays the contents of the
accumulator at the end of the program so that we can see the result of the addi
tion.

This is the program.

300 18
301 A9
302 3C
303 69
304 23
30S 20
306 DA
307 FD
308 60

CLC
LDA3C

ADC23

JSR FDDA

RTS

Now we're ready to go.
1. Enter the program.

Clear carry flag
Load 3C in the accumulator

Add 23

Display a hexadecimal byte from the
accumulator

Return to monitor

*300:18 A9 3C 69 23 20 DA FD 60

2. Run the program starting at 300.

*300:18 A9 3C 69 23 20 DA FD 60

*300G
SF
*•___3C+23 = SF

165

Try adding some other pairs of HEX numbers with the addition program.
The HEX values should be substituted in the original program at memory loca
tions 302 and 304.

To change a given memory location, type in the address followed by a
colon and the new value.

*300G
SF
*302:28

*304:1E

--- First change

---Second change

Here are some examples you might try.
Examples and results you should obtain:

Enter the~
1. 40 decima1.rmt-1Ex-00101000 binary

30 decimal~ · HEX-00011110 binary

01000110 binary =

46 HEX ---This will be displayed
Enter thes.!,::>

2. 120decimal..[Zfil HEX-01111000binary
105 decimal~ HEX- 01101001 binary

11100001 binary =

[fil] HEX Displayed
Enter thes;;i

3. 165 decimal~ HEX-10100101 binary
4 7 decimal~ HEX-00101111 binary

11010100 binary=

l D4 I HEX ---Displayed

One caution must be observed when using this addition program. The sum
of the two values to be added must be less than 256 decimal or it will not fit
in the accumulator. Remember, you are using an 8-bit computer.

The accumulator and all memory locations can hold only 8 bits of data.
The largest 8-bit binary number is 11111111, which is FF HEX or 255 decimal.

166

Example:

In accumulator - 11100000 = EO HEX
Add - + 10000001 = 81 HEX

1 01100001=161 HEX

Extra bit~ly these•8 bits fit ~True result
will not fit in the accumulator (61 HEX)

In order to take care of results larger than FF HEX when adding two 8-bit
numbers, the 6502 has a way to keep track of that extra bit that won't fit in the
accumulator. It uses a speci<1I register.

THE PROCESSOR STATUS REGISTER

The 6502 microprocessor has a special register called the processor status
register (status register for short), which keeps track of such things as overflow,
carry, negative result, zero result, etc. Each bit in this 8-bit register is assigned a
special condition as shown.

bit number 7 6 5
N V

3

Carry
,_____ Zero result

.....__ ___ Interrupt disable
,__ ____ Decimal mode

,__ ______ Break command
.....__ _______ Expansion

,__________ Overflow

'------------ Negative result

It is this status register that determines whether branches are made or not
made when using the instructions:

BMI (Branch on minus) - the N bit= 1
BPL (Branch on plus) - the N bit= 0
BEQ (Branch if equal zero) - the Z bit= 1
BNE (Branch if not equal to zero) - the Z bit= 0

Notice bit zero (labeled C) of the status register. If a carry occurs when an in
struction is executed, this bit in the status register is set to a one (1). In our pre
vious example:

167

11100000
10000001

1 01100001

In accumulator
Added

/
Will appear "'-..wm be in the accumulator
in the carry
bit of the status
register

Even though the extra bit does not appear in the accumulator, it has not
been lost. It is in the carry bit of the status register. You, the programmer, must
make some provision to test the carry bit to see if a carry has occurred. The
6502 instruction set provides for a way to do this. In fact, there are two instruc
tions that may be used.

BO BCS (Branch on Carry Set)

~code
When this instruction is executed, a branch is taken the specified num
ber of steps forward or backward if the carry bit has been set.

90 BCC (Branch on Carry Clear)

I
Op code

When this instruction is executed, a branch is taken the specified num
ber of steps forward or backward if the carry bit has not been set (or
has been cleared).

Our first addition program worked like this:

SYSTEM MONITOR ~-------.

Clear carry
Load accumulator

with 1st number
Add 2nd number

Display result

To take care of the carry created by a sum greater than FF, we must modify the
program's flow.

168

The modified addition program will work like this:

SYSTEM MONITOR

Clear carry bit
Load accumulator

with first number
Add second number

YES

Store accumulator
in memory 330

Load accumulator
with a 1

Display it
Load accumulator

from memory 330

Display accumulator

NO

Two possibilities exist when the addition has been made. The action taken
depends upon whether or not the carry bit has been set.

1. NO CARRY 32
+28

SA

c@] I 01011010 I Accumulator

ANSWER IMMEDIATELY DISPLAYED

M
2. CARRY 32

+E3

115

169

C [!]I 00010101 I Accumulator
stored
I 00010101 I Memory 330

/l00000001 l Accumulator loaded
displayed.------.

100010101 I Load Acc.umulator

5
J from memory 330

~ayed

We will use the Branch on Carry Clear instrudion to modify our addition
program to take care of sums greater than FF.

MODIFIED ADDITION PROGRAM

1. Clear the Carry bit

300 18 CLC Clear Carry

2. Load and Add Two Numbers; then Branch if No Carry

301 A9 LDA EO Load 1st number
302 EO
303 69 ADC 81 Add 2nd number
304 81
305 90 BCC OB Branch if no carry 11 steps forward
306 OB

3. If Carry, Store accumulator; Load and Display Carry

307 8D ST A 0330 Save low order part of result
308 30
309 03
30A A9 LDA 01 Load carry
30B 01
30C 20 JSR FDDA Display it
30D DA
30E FD
30F AD LDA 0330 Reload low-order part of result
310 30
311 03

4. Display Accumulator and Return to Monitor

312 20 JSR FDDA Display accumulator
313 DA
314 FD
315 60 RTS Go back to Monitor

170

If the sum of the two numbers is FF or less, no carry will result. There
fore, the accumulator contains the true result. The branch will be taken at 305,
and the value in the accumulator will be displayed by the JSR instruction at 312
(Lines 307-311 are skipped).

If the sum is greater than FF, the carry bit will be set. The accumulator
will not hold the true result. It will only contain the lower 8 bits of the true
result. Since the display subroutine prints the contents of the accumulator, we
must first save the lower 8 bits so that the display will first show the bit that was
carried. After storing the lower part in memory, the accumulator is loaded with
a one. After the one is displayed, the accumulator is reloaded with the lower 8
bits, and it is displayed. The result will appear as one complete number:

0 1 6 1 - -
From carry/

\
From accumulator

In our example, we know the result will be greater than FF (from our
paper-and-pencil result).

EO = 1110 0000
81 = 1000 0001

~10110 0001

Set the carry bit I~ accumulator

The true result is: 1 6 1

/ --\
From carry

/
From accumulator

'\
Loaded into accumulator Held in memory 0330

Now, since you know the result, enter the program.

*300:18 A9 EO 69 81 90 OB 8D 30 03 A9 01
20 DA FD AD 30 03 20 DA FD 60

/
*• Press RETURN after all codes are entered

Now run the program.

*300:18 A9 EO 69 81 90 OB 8D 30 03 A9 01
20 DA FD AD 30 03 20 DA FD 60

*300G
0161 ._ ______ The correct answer is displayed. First 1 from
*• the JSR at 30C, then 61 from the JSR at

312.

777

One new instruction was used in the program.

at 30F: LDA0330

SUBTRACTION

This is the load accumulator from memory
using the Absolute Addressing mode. The
data is loaded from the specified memory
location.

Let's take a look at subtraction now. First consider a binary subtraction as
it would be performed with pencil and paper. Remember that binary arithmetic
is done in base two. So when a borrow occurs, you borrow a power of two in
stead of a power of ten, as you would if you used the decimal system.

If a bit is a 0, the borrow makes it 10.

Examples:

Suppose we have the binary number 110. Look at the place values of
each bit.

22 21
1 1

20
0

............._This bit is 0

If a borrow is made to enlarge the 2° bit,
22 21 20
1 1 0

'-Borrow is made from the 21 bit

Think of the result of the borrow to be:
22 21 20

1 /0 10,

Borrow was We borrowed one 21 , which is equal to two (1 O
made from binary) 2°
here

Subtraction example:

6 decimal - 3 decimal in binary is:

1 0
- 0 1 1 1. Borrow a 22

1~
- 0 1 1

Two - one is one, but now we must borrow again
~for the next place

0 10 10
- 0 1 1

0 1 Result of 6-3 = 3

172

It's really just like subtraction in the decimal system, except that you
borrow powers of two instead of powers of ten. Here are some examples of sub
traction of 8-bit binary numbers.

No borrow

10101101 = AD HEX= 173 decimal
- 00100101 = 25 HEX= 37 decimal

10001000 = 88 HEX= 136 decimal

With borrow

~
00111100 Can't subtract 1 from 0 so - borrow one 4 = (10)

- 00100011 two's in binary

" 001110 10 0 Now borrow one 2 = 10 one's
- 001000 1 1 This leaves one 2 = 1 two

001110 1~
- 001000 1 1

000110 0
3C - 23 = 19 HEX

After all this, I must admit that the computer doesn't do subtraction that
way. It doesn't have paper and pencil. In fact, it doesn't really know how to sub
tract at all. It uses a method called two's complement addition. It may sound
odd to use the addition process to perform a subtraction operation. However, by
doing so, the arithmetic unit of the 6502 microprocessor need only contain an
adder to perform all of its arithmetic. Therefore, it doesn't have to be so com
plex as it would have to be if it had an adder and a subtracter.

To understand what is meant by two'.s complement, look at the following
examples of a binary one's complement.

1. A binary number 10011100
Its one's complement- 01100011 All 1 's become O's.

All O's become 1 's.

2. A binary number 01010101
Its one's complement - 10101010

The one's complement is obtained by changing each bit of the number (a one or
a zero) to its opposite (or complement). All 1 's are changed to O's, and all O's are
changed to 1 's.

To obtain the two's complement of a binary number, just add one (1) to
the one's complement of the number as shown in the following examples.

173

1. The number 10011101
One's complement - 01100010

Add one + 1

Two's complement- 01100011

2. The number 10011100
One's complement - 01100011

Add one + 1

Two's complement- 01100100

3. The number 01010101
One's complement- 10101010

Add one + 1

Two's complement - 10101011

Now let's see how the computer uses the two's complement in a subtrac
tion problem. Compare it with our paper-and-pencil subtractions above.

Examples:

1. 10101101
- 00100101-.This number is changed to its

11011011 two's complement

Then the two's complement is added to the original number.
10101101

+ 11011011

1 10001000

lgno~
Extra bit

88 HEX or 136 decimal

2. 00111100
- 00100011

Two's (= 00111100
complement 1011100+1 - +11011101

1 00011001 19 HEX or 25 decimal
Ignore / ::--' /
Extra bit '-__../

If the computer's method of subtraction is puzzling to you, relax! You
don't have to worry about how it does the subtraction. You can check the re
sults by the old paper-and-pencil method.

Let's try a subtraction in a machine language program. By changing two
instructions in our original Addition program, we will have:

174

SUBTRACT TWO NUMBERS

1. REMARK * SET THE CARRY BIT *

300 38 SEC (SEt the Carry bit)

2. REMARK* LOAD AND SUBTRACT TWO NUMBERS*

301 A9 LOA 3C (Load the first number)
302 3C

303 E9 SBC 23 (subtract the second number)
304 23

3. REMARK* DISPLAY RESULT AND RETURN TO BASIC*

305 20 JSR FDDA (display the result)
306 DA
307 FD

308 60 RTS (Go back to Monitor)

In Section 1, the Set Carry Bit instruction is used to place a one (1) in the
carry bit of the status register. In subtraction, the carry bit is used to obtain the
two's complement of the number to be subtracted. Therefore, SEC (SEt Carry
flag) is given before the subtraction is performed. The Op code for SEC is 38.
The instruction is only used in the Implied mode.

In Section 2, the first number is loaded in the accumulator. Then the SBC
(SuBtract with borrow) instruction is used in the Immediate mode (Op code
E9). The two's complement of the number immediately following the instruc
tion is added to the number in the accumulator. The result of the subtraction
(or two's complement addition) is left in the accumulator.

Section 3 displays the results as before and returns to the System Monitor.
Enter the program with the System Monitor.

*300:38 A9 3C E9 23 20 DA FD 60

Then run the program.

*300:38 A9 3C E9 23 20 DA FD 60

*300G

19------
*• The result 19 (HEX), just like pencil arid paper

175

Try other numbers at locations 302 and 304. Be sure that the number used
at 302 is larger than the number that you are subtracting (at 304) if you want
positive results.

We have restricted our discussion so far to positive numbers that can be
expressed in 8 bits (one byte). These numbers are less than 256 (lOOHEX). In
the next chapter we'll take a look at negative numbers and at positive numbers
that may be larger than 255.

SUMMARY

The System Monitor was introduced along with the following symbols and
commands.

*
*300:A9
*300:A9 13 80 25 3 60

*300
*300.305

*300G

The System Monitor prompt
Modify a single memory location
Modify successive memory locations

Used in entering new programs
Examine a single memory location
Examine memory locations 300 through

305 (HEX)
Execute the machine language program be

ginning at memory location 300
(HEX)

You also learned to enter an addition program that added 2 one-byte HEX
numbers and displayed the result. The carry bit was used to detect results that
were larger than could be held in a single byte.

Subtraction by means of two's complement addition was demonstrated.
The individual bits in the Processor Status Register were discussed.

IN vi lslol 1izlcl
Several new instructions were introduced.

176

Mnemonic Addressing Op Bytes
Code Mode Code Used Function

CLC Implied 18 1 Clear the carry flag
ADC Immediate 69 2 Add immediate data to

accumulator
BCS Relative BO 2 Branch on carry set
BCC Relative 90 2 Branch on carry clear
LDA Absolute AD 3 Add contents to memory

to accumulator
FBC Immediate E9 2 Subtract immediate data

from accumulator
SEC Implied 38 1 Set carry flag

EXERCISES

1. Name the mnemonic codes for the instructions Add with carry and Subtract
with borrow.
______ and _____ _

2. The Add with carry instruction adds a number to the value in the accumula
tor. It also adds in what other value?

3. If the HEX values 35 and 6A are added by the Add Two Numbers Program,
what value will be displayed?

4. If the HEX values 85 and 9A are added by the Add Two Numbers Program,
what value will be displayed?

5. If the Modified Addition Program is used to add the HEX numbers 85 and
9A, what value would be stored in:
0330, ____ _

6. In exercise 5, what would be displayed after the program has been run?

7. What is the one's complement of 10110011? ---------

8. What is the two's complement of 01101101? ---------

9. If the Subtract Two Numbers Program is used to subtract 23 (HEX) from
AF (HEX), what would be displayed when the program is run?

10. What would be the result of A3 - 2F (HEX values)?

177

ANSWERS TO EXERCISES

1. ADC and SBC

2. The value in the carry bit

3. 9F (HEX)

4. 1 F (HEX) (The actual result is 11 F, but the carry bit is not displayed.)

5. 0330 = 1 F

6. 011 F (HEX)

7. 01001100

8. 10010011

9. BC (HEX)

10. 74 (HEX)

178

Chapter 9

Multiple Precision and
Negative Numbers

In order to handle large numbers, it is necessary to work with values in
multiple bytes. We will consider two-byte numbers in this section. If we restrict
ourselves to positive numbers, two bytes can provide for numbers as large as:

11111111 11111111 = FF FF HEX

' M S. 'f' I ost 1gn1 1cant Lease Significant
Byte Byte

FF FF HEX= (15X4096)+(15X256)+(15X16)+15

= 61440))
3840:__/ .

240.,.._ __ _

+ 15

65,535 decimal
'-..Largest decimal number for two bytes

Larger values can be obtained by extending the number of bytes as desired.

TWO-BYTE ADDITION

Two Bytes are Better than One

179

A paper and pencil addition of two-byte numbers will help us decide how
to write a program to perform the operation on the computer. Suppose we want
to add these two-byte HEX numbers.

Most Significant Least Significant

iyte / Byte

SSA4 = 01010101 10100100
+ 3CB3 = 00111100 10110011

The binary addition 01010101 10100100
by bytes - + 00111100 10110011 - LSB first

Then MSB

1 01010111

Extra~ Least Significant Byte (LSB}
is in the carry bit of result

01010101 10100100
+ 00111100 10110011

+ 1 01010111 - From LSB

10010010

Most Significant Byte (MSB)
of result

MSB LSB
The final result= 10010010 01010111

t I t I
9 2 5 7 HEX

Notice that in this example a carry results from the addition of the Least Signif
icant Bytes. The ADC (ADd with Carry) instruction will automatically add in
this carry bit to the sum of the Most Significant Bytes. Therefore, it appears that
the two-byte numbers are summed by adding:

First, the Least Significant Bytes and
Second, the Most Significant Bytes.

If we draw a flowchart of the operations that must be performed, it will
help us write the program step by step.

180

SYSTEM
MONITOR

FLOWCHART

Clear carry bit

Load accumulator with
LSB of 1st number

Add LSB of 2nd number

Store LSB of result
in memory 31 B

Load accumulator with
MSB of 1st number

Add MSB of 2nd number

Store MSB of result
in memory 31 A

It looks like a very straightforward program. We'll set up a block of mem
ory to store the bytes that are to be added ancl the bytes of the result of the
addition. Since there are 2 bytes for each number, we'll set aside 6 bytes.

Memory locations
\

316
317
318
319
31 A 1------1

318 .___ _ ___..

Value stored

i
LSB of 1st number
MSB of 1st number
LSB of 2nd number
MSB of 2nd number
MSB of result}
LSB of result ~

These bytes are
reversed for
convenience of display

By looking at the flowchart, we can write the program.

181

TWO-BYTE ADDITION

1. REMARK * CLEAR THE CARRY BIT *

300 18 CLC

2. REMARK * LOAD, ADD AND STORE LSB *

301 AD LOA, 0316 - Load LSB of 1st number
302 16
303 03

304 60 ADC, 0318 - Add LSB of 2nd number
305 18
306 03

307 80 ST A, 031 B - Store result of LSB
308 1B
309 03

3. REMARK* LOAD, ADD AND STORE MSB THEN RETURN *

30A AD LDA, 0317 - Load MSB of 1st number
308 17
30C 03

300 60 ADC, 0319 - Add MSB of 2nd number
30E 19
30F 03

310 80 STA,031A - StoreresultofMSB
311 lA
312 03

313 60 RTS

4. REMARK* DATA*

314 00 BRK
315 00 BRK
316 A4
317 55
318 B3
319 3C

- Go back to Monitor

Filler
Filler

- LSB 1st number
- MSB 1st number
- LSB 2nd number
- MSB 2nd number

182

Notice that we used the LDA and ADC instructions in the Absolute mode this
time. The Op code for LDA when used in this mode is AD. The Op code is fol
lowed by the least significant byte of the address containing the data to be
loaded. The most significant byte of this address follows as the third byte of the
instruction.

AD - Op code for LDA (Absolute mode)
16 - Least Significant Byte of address
03 - Most Significant Byte of add ·~ss

The Op code for ADC in the Absolute mode is 6D. The Op code is also followed
by the address containing the. number to be added. The Least Significant Byte
of the address is given, then the Most Significant Byte.

6D - Op code for ADC (Absolute mode)
18 - Least Significant Byte of address
03 - Most Significant Byte of address

In our paper-and-pencil addition, we calculated a result of 9257 HEX.
Let's let the computer have a try at it.

First, enter the program.

*300:18AD16 03 6D 18 03 8D 1B03 AD 17
03 6D 19 03 8D 1 A 03 60 00 00 A4 55 B3
3C

Then run it.

*300:18· AD 16 03 6D 18 03 8D 1 B 03 AD 17
03 6D 19 03 8D lA 03 60 00 00 A4 55 B3
3C

All entered

*300G------------RUN

183

Then examine memory locations 31 A and 31 B to see the results.

*300:18AD16 036D18 03 8D 1B 03 AD 17
03 6D 19 03 8D 1 A 03 60 00 00 A4 55 B3
3C

*300G

*31A.31 B

031 A- 92 57 -There it is - the same as with pencil and paper

*•

TWO-BYTE SUBTRACTION

Subtraction of two-byte numbers is performed in a similar manner. The
Add Two Numbers Program can be modified by three simple changes:

at 300

at 304 l
and

at 30D

change 18 (CLC) to 38 (SEC) - Set the carry bit

change 6D (ADC) to ED (SBC) - Subtract with borrow

The change at 300 sets the carry bit in preparation for the subtraction just
as it did in the one-byte subtraction program. The Add with carry instruction
(ADC) is replaced by the Subtract with borrow instruction (SBC). The subtract
instruction is used in the Absolute mode with the address that contains the num
ber to be subtracted following the Op code.

ED - Op code for SBC (Absolute mode)
18 - Least significant byte of address
03 -- Most significant byte of address

Thus, the least significant byte of the value to be subtracted is contained
in address 0318 HEX. The most significant byte of the value to be subtracted is
contained in address 0319 HEX. It is subtracted from the most significant byte
of the first value by the instruction:

ED -- Op code for SBC (Absolute Mode)
19 - Least Significant Byte of address
03 - Most Significant Byte of address

You have two choices.
(a) If you still have the two-byte addition program in memory, just

make the three changes.

184

*300:38
*304:ED
*30D:ED

(b) If you do not have the two-byte program in memory, enter the new
program with the changes.

*300:38 AD 16 03 ED 18 03 8D 1 B 03 AD 17
03ED19 038D1A 03 60 00 00 A4 55 83

3C

Then run the program.

*300G

Then examine the memory locations that hold the result.

*300G

*31A.31B

031A-18 Fl

' *•
55A4=

- 3CB3 =

--------- Answer

0101 0101 1010 0100
0011 1100 1011 0011

0001 1000 1111 0001 binary

8 F 1 HEX - Yes, it checks!

185

= (1X163) + (8X162) + (15X16) + 1

4096 + 2048 + 240 + 1

6385 Decimal

To add or subtract numbers that require more than two bytes, an exten
sion of this two-byte procedure can be made. The operation is always performed
from the least significant byte forward (or from right to left).

MULTIPLE-BYTE ADDITION FLOW

1. Clear carry bit

2.

3.

Load LSB of 1st number
Add LSB of 2nd number
Store result

Load next byte of 1st number
Add next byte of 2nd number
Store result

4. Repeat Step 3 until all
bytes have been stored away.

5. Load MSB of 1st number
Add MSB of 2nd number
Store resu It

6. Back to the Monitor

NEGATIVE NUMBERS

®
@

First
Byte

Second
Byte

It is possible to look at the way data is represented in the computer in a
different way. If signed numbers (those that are either positive, negative, or
zero) are to be represented, the computer must have some way to tell them
apart.

186

Consider an 8-bit block of data as being composed of one sign bit and
seven data bits.

Bit position, 7 6 I 5 I 4 I 3 I 2 I I 0 I
S. /.. 1gn pos1t1on ' 'Yoata

positions

(a) If the sign position holds a zero, the data is considered to be a positive
number.

Examples:

0 1 1 1
0 1 1
0 1 1
0 1 1

1 1 = +127 (64+32+16+8+4+2+1)
1 0 = +126 (64+32+16+8+4+2)
0 1 = +125 (64+32+16+8+4 +1)
0 0 = +124 (64+32+16+8+4)

0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

= +3 +2+1)
= +2 +2)
= +1 +1)
= +O ()

~Zero is considered a positive number
by Branch Instructions

(b) If the sign position holds a one (1), the data is considered to be a negative
number.

Examples:
1 0 0 0 0 0 0 0 = -1 28
1 0 0 0 0 0 0 1 = -1 27
1 0 0 0 0 0 1 0 = -1 26
1 0 0 0 0 0 1 1 = - 125
1 0 0 0 0 1 0 0 = -1 24

1 1 0 1 1 = -5
1 1 1 0 0 =-4
1 1 1 0 1 = -3
1 1 1 1 0 = -2
1 1 1 1 1 = -1

787

We have learned to interpret positive binary numbers as positive decimal
numbers, but what about these negative critters? They don't look familiar at
all. However, it is plain to see that each 8-bit code could represent all the inte
gers from -128 through +127.

00000000 = +O
00000001 = +1

01111110 = +126
01111111 = + 127.
10000000 = -12
10000001 = -127
10000010 = -126

11111110 = -2
11111111 =-1

Positive

Negative

above
positive

fil} Zero and

n' } Belo~ zero M negative

Let's take a look at the negatives and see if there is any meaningful rela
tionship to their positive counterparts.

Consider the positive number 126 = 01111110.
Its one's complement= 10000001
Its two's complement = 10000010

Compare the latter with -126 = 10000010

The binary representation of a negative number (-1 through -127) is equal to
the two's complement of its positive counterpart.

-127 = the two's complement of+ 127
-126 =the two's complement of +126
-125 =the two's complement of+125

-2 = the two's complement of +2
-1 =the two's complement of +1

For two-byte numbers, the sign position is considered to be in the most
significant bit of the most significant byte.

Most Significant Byte Least Significant Byte

Biti 71 6 151 41 31 2 11 I 0 I I 71 6 15 1413 12 11 I 0 I
Sig/ 15 Data bits .
position

188

A complete discussion of the arithmetic of signed numbers is beyond the
scope of this book. A more thorough discussion of signed numbers and signed
number arithmetic can be found in the MOS Technology Programming Manual
available in some computer stores or from MOS Technology, Inc., 950 Ritten
house Road, Norristown, PA 19401.

For our purposes, we must realize that certain branch instructions test the
result of numbers to see whether they are negative or positive. This determina
tion depends on whether or not the Negative flag of the Processor Status Regis
ter has been set to a 1. The Negative flag is set to 1 when the computer inter
prets the results of certain instructions as negative numbers (a result of 1 in bit
7). We will stress this fact in the recreational activities that follow.

A NUMBER GUESSING GAME

You probably have seen this game many times in books and magazines. It
is usually published in BASIC. We will show a machine language version that
makes use of the two-branch instructions that are based on an interpretation of
signed numbers. This interpretation hinges on the negative flag (or bit) in the
Processor Status Register.

BMI (Branch on result minus)

Op code= 30

Relative Addressing mode

BPL (Branch on result plus)

Op code= 10

Relative Addressing mode

Branch if the
negative flag is
set to 1 (negative
result)

Branch if the
negative flag is
reset to 0 (positive
result)

We will also use the branch on result equal instruction, which makes use of
the zero flag in the Processor Status Register.

BEQ (Branch on result equal) Branch if the

Op code= FO

Relative Addressing mode

zero flag is
set to 1 (result
equal zero)

Bit position
1
~

1
6

1
5

1
4

1
3

1
2

1
i

1
0

1
Processor Status Register

Used for / Use/for
BMI and BPL BEQ and BNE

189

2

3

4

5

6

7

FLOW OF NUMBER GAME PROGRAM

Get random number
Store it
Clear Screen

Get first digit of guess
Shift it left
Get second digit of guess 1---

I
Add to first digit ...,._ +----t-,
Store result in 0354 I

I
Load computer's number I
Compare with guess I
Go to appropriate

response

Display a - if
guess is low

Go back for new guess

Display a + if
guess is high

Go back for new guess

Display *** and
ring bell if guess
is correct

Go back to Monitor

Display a ? prompt i
Get one digit of

...,. __ ._ __] I
guess I

Go back to main I
1----~ program

Many useful subroutines are used from the System Monitor by the pro
gram. Without these subroutines, the program would take several pages to list
and would become quite complex. You should study the Apple II Reference
Manual thoroughly so that you can take advantage of these subroutines when
ever possible. The manual is available from Apple Computer, Inc., 10260 Band
ley Dr., Cupertino, CA 95014. (Apple product number A2L0001A).

190

Let's look at the program in detail. If you understand how it works, you
will be able to modify it as you wish. We have provided the fundamental pro
gram, but you may provide numerous additions.

Section 1

Get a random number
Store it
Clear the screen

t
300 20 1B FD
303 AS 4F
305 29 7F
307 8D 53 03
30A 20 58 FC

JSR FD1B
LDA,4F
AND7F
STA 0353
JSR FC58

Get Random number
Read it
Strip upper bit
Store it
Clear screen

We first make use of the KEYl.N subroutine at FD1 B. It reads the key
board and waits for a keypress. When a key is pressed, a random number is
placed in memory location 004F. The keycode for the character typed is placed
in the accumulator, but our program ignores this code. We are inter
ested only in the random number that is generated. The random number is
loaded in the accumulator from 004F. It is ANDed with 7F. This restricts the
random value to a positive HEX number in the range of 0 through 7F. Remem
ber, the computer would interpret 80 through FF as negative numbers. Let's
stay away from those. If we included negatives, the program would get much
more complicated.

Remember the AND instruction from Chap. 7? This time we are using
it to "strip off" the upper bit of the random number to make sure the com
puter does not produce a negative number.

Example: Suppose the random number was F3 (a negative).

F3 = 1111 0011
0111 1111 AND with 7F

0111 0011 = 73 a positive number

The number produced has ones in only the
bits where both F3 and 7F have ones.

The random number is then stored in memory location 0353. We will re
call it later to compare it to the number guessed; The screen is then cleared, by
the monitor routine at FC58, in preparation for the guessing portion of the
program.

191

Section 2

Jump to subroutine (Section 7)
to get 1st digit

Shift it left 4 times and
save it in memory

Jump to subroutine (section 7)
to get 2nd digit

Add the two digits
Store the guess in memory

300 20 55 03 JSR 0355

310 OA OA OA ASL
313 OA
314 8D 54 03 STA 0354

317 20 SA 03 JSR 035A

31A 18 CLC
318 6D 54 03 ADC 0354
31E 8D 54 03 STA 0354

See
Sec.

7

Get first digit of guess

Shift left four times

Store first digit

Get 2nd digit of guess

Combine 2 digits
Store it back

At 300, a subroutine (see Section 7) is called that displays a question
mark as a prompt to let you know that the computer is waiting for your guess
(a two-digit HEX number less than 80).

The subroutine allows the entry of one digit of your two-digit guess, modi
fies its ASCII code, and then returns to 310, where the value is shifted left 4
places.

Suppose that you enter a 5:

1~1~1~161~1~1~1~ I
-...-

5

Accumulator before the shifts

192

lbl~l~l~l~l~l~l~I
-.-

Bits 3,2, ~ 4~eros inserted
were shifte-d)

to positions 7 ,6,5,4
respectively

Accumulator after the shifts

This result is stored in memory location 0354 as 50 (HEX). At 317, the
subroutine (Section 7) is called again to get the second digit of the guess. The
subroutine modifies the ASCII code of that digit and returns to the main pro
gram at 31A.

The first digit is now added to the second digit.
Suppose that your second digit was 7.

0 0 0 0 0 1 1 1 Accumulator (second digit)
+

0 1 0 1 0 0 0 0 From memory 0354

01010111 The two-digit guess

The guess is then stored back in memory location 0354.

Section 3

Put computer's number in accumulator
Compare computer's number with guess
If equal goto Section 6
If guess is too big goto Section 5
If guess is too small go on to Section 4

321 AD 53 03
324 CD 54 03
327 FO 12
329 30 08

LDA 0353
CMP 0354
BEQ 12
BMI 08

Load computer's number
Compare with guess
If= goto 033B
If guess is high goto 0333

The computer's number and your guess are compared. If the result is
equal, the BEQ instruction at 327 sends the program to 338 (Section 6) to dis
play the victory message. If the guess is too high, the comparison (computer
guess) is negative, and the BM I instruction at 329 sends the program to 333
(Section 5) to display a + sign and go back for a new guess. If the guess is too
low, the program proceeds to Section 4.

793

Section 4

Display a - sign
Go back to Section 2

for a new guess

32B A9 AD
32D 20 ED FD
330 4C OD 03

LDA #AD
JSR FDED
JMP 030D

Load (-)
Display it
Go back for new guess

A minus sign is displayed to indicate the guess was too low. The program
then jumps back to get the first digit of the new guess.

Section 5

Display a+ sign
Go back to Section 2

for a new guess

333 A9 AB
335 20 ED FD
338 4C OD 03

LDA #AB
JSR FDED
JMP 030D

Load(+)
Display it
Go back for new guess

A plus sign is displayed to indicate the guess was too high . .The program
then jumps back to get the first digit of the new guess.

Section 6
t

Display***
Ring the bell 3 times
End the game

33B 20 8E FD
33E A9 AA
340 20 ED FD
343 20 ED FD
346 20 ED FD
349 20 3A FF
34C 20 3A FF
34F 20 3A FF
352 60
353 00 00

JSR FD8E
LDAAA
JSR FDED
JSR FDED
JSR FDED
JSR FF3A
JSR FF3A
JSR FF3A
RTS

RETURN the carriage
Load(*)
Display it 3 times

Ring bell 3 times

Go back to Monitor
Storage for data

This is the victory message. Three asterisks are displayed followed by three
rings of the bell (Monitor subroutine at FF3A). Control is then returned to the
Monitor. Location 353 and 354 are used to store the numbers (random and
guess).

794

Section 7

Display a ? prompt for guess
Get digit and display it
Make sure it is a HEX digit
Change to proper form
Return to main program

This subroutine is entered after the random number has been selected in
Section 1. A question mark is displayed to prompt you to make your guess. The
first digit is displayed after being typed. The subroutine then goes through a
series of tests to make sure that the digit has an ASCII code in the range of BO
B9 for the decimal digits 0, 1,2,3,4,5,6, 7,8,9 or C1-C6 for the letters A,B,C,D,E,
F. This allows for the entry of the complete set of HEX digits.

355 A9 BF LDA #BF Load (?) as prompt for guess
357 20 ED FD JSR FDED Display it
35A 20 35 FD JSR FD35 Get digit
35D 20 ED FD JSR FDED Display it
360 C9 BO CMP#BO Tests for legal HEX digits
362 30 15 BMI 15 If low go to 379
364 C9 BA CMP#BA
366 30 OE BMI OE In range BO-B9 goto 376
368 C9 Cl CMP#C1
36A 30 OD BMI OD Between B9 and C1 goto 379
36C C9 C7 CMP #C7
36E 10 09 BPL 09 If too high, goto 379
370 29 OF AND #OF Strip off upper bits (C)
372 18 CLC
373 69 09 ADC #09 Change to (A-F)
375 60 RTS Return to main program
376 29 OF AND #OF Strip upper bits (B)
378 60 RTS Return to main program
379 20 3A FF JSR FF3A Ring bell bad input
37C 20 8E FD JSR FD8E Carriage return
37F 4C 55 03 JMP0355 Give another prompt

If a key out of the acceptable range is typed, a bell rings and the com
puter displays a new question mark prompt. If the keystroke has an ASCII
code in the BO-B9 range, the BMI instruction at 366 sends the computer to
376, where the B of the ASCII code is removed by ANDing with OF. The com
puter then returns to the main program with the adjusted value in the accumu
lator. If the keystroke has an ASCII code in the C1-C6 range, the AND instruc
tion at 370 strips off the C. Nine is added to the remaining value to produce
a HEX digit A-F. The computer then returns to the main program.

195

Now we're ready to enter the program. Use great care! This is a long pro
gram. Take your time. Try entering it in sections and examining memory after
each section is entered.

Then

Then

*300:20 1 B FD AS 4F 29 7F 8D S3 03 20 S8
FC 20 SS 03 OA OA OA OA 8D S4 03 20 SA

03 18 6D S4 03 8D S4 03 AD S3 03 CD S4 0
3 FO____Enter

*300.327

0300"'." 20 1 B FD AS 4F 29 7F 8D ----Check
0308- S3 03 20 S8 FC 20 SS 03
0310- OA OA OA OA 8D S4 03 20
0318- SA 03 18 6D S4 03 8D S4
0320- 03 AD S3 03 CD S4 03 FO

*328 :12 30 08 A9 AD 20 ED FD 4C OD 03 A9
AB 20 ED FD 4C OD 03 20 8E FD A9 AA 20

ED FD 20 ED FD 20 ED

*328.347

0328-12 30 08 A9 AD 20 ED FD
0330- 4C OD 03 A9 AB 20 ED FD
0338- 4C OD 03 20 8E FD A9 AA
0340- 20 ED FD 20 ED FD 20 ED

*348:FD 20 3A FF 20 3A FF 20 3A FF 60 00
00 A9 BF 20 ED FD 20 3S FD 20 ED FD C9

BO 30 1 S C9 BA 30 OE

*348.367

0348- FD 20 3A FF 20 3A FF 20
03SO- 3A FF 60 00 00 A9 BF 20
03S8- ED FO 20 3S FD 20 ED FD
0360- C9 BO 30 1 S C9 BA 30 OE

196

Last of all

*368:C9 Cl 30 OD C9 C7 10 09 29 OF 18 69
09 60 29 OF 60 20 3A FF 20 8E FD 4C 55

03

*368.381

0368- C9 Cl 30 OD C9 C7 10 09
0370- 29 OF 18 69 09 60 29 OF
0378- 60 20 3A FF 20 8E FD 4C
0380- 55 03

Check over your entries. Make sure that some of those zeros did not turn
out to be capital letter O's. Gather up your courage and try a run. Here is one of
our typical runs (after we found and corrected all of our typing errors).

9 OF 60 20 3A FF 20 8E FD 4C 55 03

*300G

When you press the return key, the cursor disappears and nothing seems to
happen. The computer is now generating a random number. When you press any
key, the process will stop, and the computer will have a random number. So ...
press a key.

1. PRESS ANY KEY.

~
I ~Now it has the random number and wants a guess.

We typed 40

(?40+?•
'--The guess was too high Ready for a new guess

We typed 20

?40+?20-?•
\...__The guess was too low

197

We typed 30

?40+?20-?30+?•
'-The guess was too high

We typed 28

?40+?20-?30+?28+?•
'-Still too high

We typed 24

?40+?20-?30+?28+?24

*•
Three bells rang and 3 asterisks appeared on

the screen. The number was 24 !

cJ:Di~g
Dmg

In 5 guesses!

Ding

Let's try one more round to see what will happen if we input some non
HEX characters.

Type 300G for another round with a new number.

?4o+?20-?30+?28+?24

*300G

Type any key and a random number is again chosen. The screen is cleared
and a ? appears.

~
j "--Ready for a new guess

Here are some results of inputs that are not hexadecimal.

(iN
I?•....._

. .______The N was not accepted. A new ? appears.

~ I ?~V~
?• ~The 1 was accepted but not the V

198

?N
?1V
?4-?•

"'-----The 4 was accepted. The value 14 is shown to be too low
by the - sign.

?N
?1V
?4-?40-?•

...___ 40 is also too low

?N
?1V
?4-?40-?60-60-?•

"'-.....60 also too low

?N
?1V
?4-?40-?60-?70+?•

""""--- 70 is too high

?N
?1V
?4-?40-?60-?70+?68
*** ------- Bells and asterisks again. 68 is the number.

*•

Let's check the memory and see if the two numbers really match.

*353.354

0353- 68 68
.....___Yes they match.

199

SUMMARY

In this chapter you learned that two-byte addition could be performed by
formatting large numbers into two separate bytes. The same proved true for the
subtraction of two-byte numbers. This procedure can be extended to higher
multiple-byte arithmetic.

Demonstration programs were given for two-byte addition and subtrac
tion. You had a chance to practice examining and modifying memory contents
by means of the System Monitor.

You learned that the format for signed numbers is:

Single-byte numbers:.--.....--.--~-.---,---..--....~

Bit position 17161 5 14131211 I 0 I
sign bit__} data bits

Two-byte numbers:

Bit position ~[7161..---.---,5 141..--.---.3121,........,...._1 I 0 l.---;---716 .---.---,I 5 141....-,.--,3121~1 I 0 I

. b' / d b' sign 1t ata its

You also learned to interpret negative binary numbers to decimal equiva
lents by using the two's complement procedure.

A number guessing game used decisions based on signed numbers.

New Instructions Used

Mnemonic Addressing Op Bytes
Code Mode Code Used Function

ADC Absolute 60 3 Add contents of memory to
accumulator

SBC Absolute ED 3 Subtract contents of memory
from accumulator

LOA Zero Page AS 2 Load accumulator from zero
page memory (OOXX)

CMP Absolute CD 3 Compare accumulator contents
and contents of memory

New Subroutines Used

Function Location in Memory

KEVIN to get a random number FDlB
CROUT to execute a carriage return FD8E
BELLl to ring a bell FF3A

200

EXERCISES

1. What is the 4-digit HEX representation of the following two-byte unsigned
binary value?

I 0 1 1 0 1 1 1 I 1 0 1 0 0 0 1 1 I= ____ (HEX)

most significant least significant
byte byte

2. The Two-Byte Addition Program added 55A4 and 3CB3 HEX. Show how
to modify the program to change these two values to 5A45 and 3B3C HEX.

3. If the Two-Byte Addition Program was executed with the modifications of
Exercise 2, what result would be displayed by the following command?

*300G

*31A.31 B

4. In two-byte subtraction, which byte is operated on first? _____ _
(most, least)

significant byte

5. Subtract 03C5 from 25A2 (HEX). Use a computer program, two's comple
ment addition, or pencil-and-paper method.

Result= (HEX)

6. What is the bit position used to interpret signed numbers?

7. What would be the decimal interpretation of the signed number 1011101 O?

8. If the computer selects a random HEX number of 6D and you input a guess
of 40 when running the Number Guessing Game, what will the display
show?

(?40 _____ _
9. If a random number of 9E is generated at location 300 of the Number

Guessing Game, what number will be stored in memory location 353?

10. If the first digit of a guess in the Number Guessing Game is 7 and the
second digit has not been selected, what value is stored in memory loca
tion 354? (Hint: See Section 2 and Section 7 of the program.)

207

ANSWERS TO EXERCISES

1. 6FA3

2
· 1 *316,45 SA 3C 38 or *316:45

*317:5A

*318:3C

*319:38

3' (031A-95 81

4. Least

5. 21 DD

6. Bit 7 of the most significant byte

7. -70

8.~
I ?40-?

9. 1 E (9E ANDed with 7F = 1 E

10. 70 (the value was shifted left 4 times)

202

1001 1110
0111 1111

0001 1110 = 1 E)

Chapter 10

More Monitor Magic

We have relied on pencil and paper to check the results of hexadecimal ad
ditions and subtractions. Computers are made to take over the drudgery of
tedious tasks, and pencil-and-paper hexadecimal arithmetic is surely a tedious
task. It's also highly subject to errors.

The Monitor will perform simple hexadecimal addition and subtraction of
two-digit hexadecimal numbers. You just type in the values separated by the
operation symbol. It is not necessary to write a program to do the operation.

HEXADECIMAL ADDITION - IMMEDIA~Og + CJV
Here is the method used. It's almost like using a calculator.

*3C+2F
=6B

*•

*59+C
=65

*•

- You type this
.,_ _____ Computer responds

-You type this
-------Computer responds

You may notice that our addition examples produce a result that is less than
FF. What do you suppose happens if the result is larger than FF? Try it.

*FF+13
=12
*• -----The result is less than either addend. Why?

203

Look at the binary addition of FF and 13 to discover the reason.

FF=
13 =

1 1 1 1
0 0 0 1

1 1 1
0 0 1

1 , 0 0 0 1 0 0 1 0 / The real answer is 112
/ ¥

One bit too many \There's the result displayed
to fit in the
accumulator

This feature of the monitor is restricted to display the results of the addi
tion of two-digit values whose sum is FF or less. However, you can use the
addition feature for sums greater than FF if you keep track of this extra bit.

You can even use the addition feature for multiple-byte addition if you
keep track of the extra bit that must be "carried over" to the next place.

Example: Add 3SD and 2FS

First, separate the bytes: 3 SD
2 FS

Second, add the low-order bytes:

*SD+FS
=S2 ---Low-order result, but there was a carry - don't lose it.

*•
Third, add the high-order bytes and the carry.

*3+2
=OS -Temporary high-order result
* S+ 1 Add carry
=06
*•_____Final high-order result

Therefore, the final result is: 3SD+2FS = 6S2

The third step has to be done in two parts since the immediate addition
and subtraction will only operate on two values. If you try to add three values,
the second value will be ignored. Only the first and last values will be added.

Examples:

*3+2+1
=4 -Actually 3+1

*1 F+2F+1
=20 -Actually 1 F+1

*2A+11+37
=61 -Actually 2A+37

204

OUT

+

IN

Here are some other examples:

1F30+25C8

*30+C8
=F8 - Low order - no carry
*1 F+25
=44

*•
High order - no carry

Therefore, 1 F30+25C8 = 44F8

1F33 + 2FF5

._Low order - carry 1
*33+FS
=28
*1F+2F
=4E
*4E+1
=4F

---Temporary high order
Add carry

------Final high order

*• The result is 4F28

It is possible to exceed a two-byte result, as shown in this last addition
example.

D14F + E213

----Low order - no carry
*4F+13
=62
*Dl+E2
=83 ------High order, but there is a carry.

*•
The answer is really: 18362

205

If you are going to use the hexadecimal addition feature of the Monitor
when results are larger than a single byte (FF maximum), you must be able
to estimate results so that you will know when a carry occurs.

HEXADECIMAL SUBTRACTION v '{J-\r 11
Subtraction may also be performed with similar precautions. Here are

some examples.

3D- 28

~-You type I :'~ ----Computer responds

A4-2D

~-You type I : II ----Computer responds

It looks easy, but what happens if you try to subtract a large number from
a smaller one?

22 - 24 = ??

That's what it says.

If your algebra is not too rusty, you know that you get a negative value when
large positive numbers are subtracted from smaller positive numbers. Could
FE be a negative number? Yes. Look back to the negative number table in
Appendix B. FE is equivalent to the signed number -2.

You could use subtraction to create a table of negative values for future
reference. For example,

*0-1
=FF

and *0-4
=FC

You can omit the 0 as an entry value if you wish. Try entering:

*-1
=FF

and

206

*-4
=FC

Now create a table of negatives.

*-0
=00
*-1
=FF
*-2
=FE
*-3
=FD
*-4
=FC
*-5
=FB

*-7C
=84
*-7D
=83
*-7E
=82
*-7F
=81
*

Table of
Negatives

FF= -1

FE= -2

FD=-3

FC=-4

FB= -5

84= -7C

83 = -7D

82 = -7E

81 = -7F

Subtraction can come in very handy when calculating the operand used in
branch instructions. Turn back to "Description of the Program" in Chap. 7, and
check the branch instructions used there.

At 776 and 777 of the Play Your Own Tune Program, we used F9 for a
backward branch of -7. At 782 and 783, we used F3 for a backward branch of
-13. Let's check these values.

*0-7
=F9

or *-7
=F9

:~;D' =~~~
*• ~ *•~

Remember, Dis the HEX
equivalent of -13

They do check.

207

DECIMAL ARITHMETIC ~ JI)
Are you tired of converting binary to HEX to decimal? If so, the 6502 in

struction set includes an instruction to help you out. If you are careful to
express the values that you wish to add or subtract as binary-coded decimal ;
(BCD) numbers, the Apple can add or subtract those numbers and express the
result as a decimal value. What are binary-coded decimal numbers? That's just a
fancy name for a binary number that has been separated into two 4-bit parts.
These parts are then interpreted as decimal digits.

Examples:

Binary Binary-coded decimal Decimal

01011000 0101 1000 58
10010011 1001 0011 93
00010110 0001 0110 16

Since each 4 bits are interpreted as a decimal digit, the binary inputs must
be chosen with care.

11001001 = 1100 1001
--------NOT a BCD value

10101011 = 1010 1011
\....___\..__ _____ NOT BCD values

Each 4-bit part must be one of these:

BCD DECIMAL

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9

208

The instruction needed to request the computer to perform decimal
addition or subtraction is:

SED (SEt Decimal mode)

Op code= F8
Implied Addressing Mode
One byte long
Status flags affected - D

This instruction sets the decimal flag in the Processor Status
Register to 1. Once this instruction has been used, all of the
Add and Subtract instructions will be carried out as decimal
operations because of the status of the decimal flag. The oper
ation of any of the other instructions is not affected. If the
SED instruction has been executed in a program, and a binary
addition or subtraction is desired, the computer must execute the Clear Decimal
Mode instruction.

CLD (Clear Decimal Mode)

Op code= D8
Implied Addressing Mode
One byte long
Status flags affected - D

This instruction resets the decimal flag in the Processor Status Register to zero.
Suppose that we want to add the decimal numbers 18 and 23. We might use

this program.

300 F8
301 18

302 A9
303 23

304 69
305 18

306 20
307 DA
308 FD

309 60

ADD TWO DECIMAL NUMBERS

SED
CLC

LDA 23

ADC 18

JSR FDDA

RTS

Set decimal mode
Clear the carry bit

Load 23 in accumulator

Add 18

Display result as two HEX digits

Return to Monitor

209

To enter the program using the Monitor, type:

300:F818 A9 23 6918 20 DA FD 60

following the asterisk prompt. Then execute the program by typing: 300G.

*300:F8 18 A9 23 6918 20 DA FD 60

*300G

41------
* There's our answer

The decimal result of 18 + 23 is 41. If we had been adding the hexadeci
mal values of 18 and 23, the result would have been 38. Remember, 18 and 23
in hexadecimal notation are different values from 18 and 23 in decimal notation.
Therefore, 41 decimal and 38 HEX are not equivalent values.

Now let's execute the program starting from location 301 (omitting the
Set Decimal instruction) and observe the result.

*300:F818 A9 23 69 18 20 DA FD 60

*300G
------ First answer 41

*301G
38 ------- Second answer

*•

Once the SED instruction has been executed, all additions in
the program are performed in the decimal mode. The CLD
(Clear Decimal Mode) instruction must be used to get back
to binary addition while the program is running.

When the computer returned to the Monitor after the first run of the above pro
gram, the Monitor automatically executed its own CLD instruction. Therefore,
when we skipped the SED instruction in the second run, the computer treated
the two numbers (18 and 23) as hexadecimal values. The result was 38. The
SED instruction must be executed in every program if you want to use decimal
arithmetic. The Monitor will automatically set the decimal bit of the Processor
Status Register to 0 (the binary arithmetic mode) when the Monitor is entered.

The advantage of decimal addition is that it relieves you of converting
numbers from one base to another for interpretation. You can input decimal
values (such as 23 and 18) and obtain decimal results.

210

Try the Add Two Decimal Numbers Program with other pairs of decimal
values. Substitute them for the values at memory locations 303 and 305.

Example:

*303:47 - Modify first number

*305 :35 - Modify second number

*300G - Run
82
*~Result

One caution again - make sure that the sum of the two numbers is less than
100. Any sum whose value is greater than 99 will not fit in the accumulator or
any memory location. Remember, this is an 8-bit computer. Here is what will
happen to you if you insist on experimenting (we secretly encourage you).

Again

*303:84

*305:29

*300G
13.........__
* --- If my arithmetic is right, that ought to be 113

*303:99

*305:1

*300G
00 ---Anyone knows 99 + 1 is 100. It's

losing the hundred's place *

211

Back to the paper and pencil to see what's happening to our result.

84 =
+ 19 =

1000 0100 as BCD
0010 1001 as BCD

113 = 1 0001 0011 as BCD

Extra bit~t t~~Decimal add gives 13
will not in accumulator
fit are correct

Since the 6502 microprocessor handles blocks of data in 8-bit sizes, some
provision must be made for the situation that may result when a sum is larger
than can be held in 8 bits. This technique was shown in Chap. 8. We will show
two-byte decimal addition later in this chapter. First let's have a look at decimal
subtraction.

We'll use some Monitor Magic to move our addition program to a new
area of memory so that it will still be available if we need it later.

Memory
Address

300
301
302
303
304
305
306
307
308
309

330

!
339

Data

F8
18
A9
23
69
18
20
DA
FD
60

??

!
??

IJ

1...1

We'll copy the data
from 300-309 into
memory locations
330-339

Then we'll alter the original decimal addition program to make it a decimal
subtraction program.

212

1. Move the program.
The Monitor must be told the range of the memory block to be moved

(300 through 309 in our case). It must also be told the beginning memory
location to which the program is to be moved (330 in our case). The format
for this command is:

destination <st/en'

330~mal 3~M,forMOVE
for us pointing for us point for us

carat

As seen on the display:

(*330<300.309M

Deslnation "st~MOVE
To see how it works, first examine the original program.

*300.309

0300- F818 A9 23 6918 20 DA
0308- FD 60

*•

Then make the MOVE.

*300.309

0300- F818 A9 23 6918 20 DA
0308- FD 60
*330<300.309M"-..
*• Move it

MOVER

Then, to make sure the move was successful, we can examine both areas of
memory.

213

*300.309
0300- F818 A9 23 6918 20 DA
0308- FD 60
*300<300.309M

*330.339

0330- F818 A9 23 6918 20 DA
0338- FD 60
*300.309

0300- F8 18 A9 23 69 18 20 DA
0308- FD 60

*•

Examine 330-339 l
Examine 300-309

both
alike

A simpler way to do this takes advantage of more Monitor Magic. We can
compare two areas of memory and verify that they are the same by one
Monitor command called VERIFY. To use the Verify command, the monitor
also needs to know a range and a destination. The format used is:

destination<start.end V .

330~ ~mti \~VERIFY IT
carat point

The Monitor compares the range specified with the range beginning at the
destination address. If there are any discrepancies, the address where the
difference is found is displayed along with the two unlike values. If no dif
ferences are found, nothing is displayed.

300<300.309V

*• ---Nothing displayed, no errors

Let's modify one location so that we can see how discrepancies are displayed.

*303:25 - 23 changed to 25 for mismatch

*330<300.309V

0303-25 (23)~

' .__at 0333

*• ""' at 0303
) Different values

214

The error should then be corrected (whichever version is wrong) and re
verified.

*303 :23 Change it

*330<300.309V Verify it

*• No discrepancy displayed; everything O.K.

ALIKE?

ALIKE NOW?

2. Change the original program
Now we will alter the original program for subtraction. We need to change the
CLC (18) at location 301 to SEC (38) and ADC (69) at location 304 to SBC
{E9).

*301 :38 ---Change 18 to 38

*304:E9---Change 69 to E9

215

Now examine the modified program.

*301 :38

*304:E9

*300.309
0300- F8 38 A9 23 E9 18 20 DA
0308- FD 60~ \
*• Changes were made

Now run the subtraction program

*300G
05

*• ------23-18 = 5 when working with decimal numbers

If you need to run the addition program,

*300G
05
*330G
41

---23-18=5

---23+18 = 41

*•

Both programs still exist in memory. You can make the choice as to which
one is executed.

..---------1 GO 1---------.

300
Subtract

216

330
Add

EXAMINING AND ALTERING REGISTERS

You've seen how to examine and alter memory, but how about the regis
ters? Can they be examined and changed? Yes, you can do both.

To examine the registers, hold down the CTRL key. At the same time,
press the E key. Then release both. Press the RETURN key, and the registers will
be displayed on the screen. The contents of registers A, X, Y, P, and S will be
displayed in that order from left to right. Do you remember what the letters
stand for?

A Accumulator
X Index register X
Y Index register Y
P Processor status register
S Stack pointer register

The values that we see just after turning on the Apple and pressing CTRL
E together followed by RETURN are:

* ---CTRL Eis not displayed

A=FF X=FF Y=FF P=OO S=FF

*•

After you have examined the registers, their contents may be changed (in
order from left to right) by typing a colon(:) followed by the new values.

Try these:

*
A=FF X=FF Y=FF P=OO S=FF
*:88 FF 80 33 40

*•;t \ \ \ \ ~Changes
A X Y P S

To find out if they have really been changed, press CTRL E to examine
them again.

A=FF X=FF Y=FF P=OO S=FF Originally
*:88 FF 80 33 40 The change

* ----CTRL E pressed here

A=88 X=FF Y=80 P=33 5=40
*• 'changes have been made

217

One of the changes made was to the Processor status register. Its new value
is 33. Broken down into the individual status bits we now have:

I 0 0 1 1 0 0 1 1 I Processor status register

~xpan~ bit1 \'carry bit set
1s always on

Break command on Zero result bit on

Notice that we have set the carry bit. If an addition is performed now, the carry
bit would be included for the ADC instruction. Let's try it.

*
A=88 X=FF Y=80 P=33 5=40
*330:A9 33 69 22 20 DA FD 60 ----Program to add 33

and 22
*300G
S6

*•

----Run the program
---------The carry was included

(33+22 + carry = S6)

Now let's examine the registers again and then turn off the carry bit by
changing the P register (Processor status register). Then we'll add the two num
bers again.

*330G
S6

*
-Examine registers

A=88 X=FF Y=80 P=33 5=40
*:88 FF 80 32 40

........._ ______ p register set for 32

*330G
SS

Run again
----------Result is SS since carry bit was off

(33+22+0 = SS) *•

This time we'll load 33 into the accumulator, transfer the result to the X
register, add 22 to the accumulator, and display the result. Then we'll take
ahother look at the registers to see how they have changed.

218

The program: 300 A9 LDA33
301 33
302 AA TAX (transfer accumulator to X)
303 69 ADC22
304 22
305 20 JSR FDDA Display result
306 DA
307 FD
308 60 RTS Return to Monitor

One of the best methods for finding errors in programs is the Monitor's
Single-Step feature. The Single-Step command decodes, displays, and executes
one instruction at a time. The instruction is displayed in both machine and
assembler codes (the Mini-Assembler will be discussed in Chap. 11).

When the instruction is executed, the contents of the registers are dis
played. We'll use the single-step command to watch the registers change as each
instruction is executed.

The Single-Step command is an S. To use the command, first type the
starting address of the program followed by the S.

Example:

/Machine code
*3005 /

0300- A9 / ___ L_D_A __ #$_3_3_, Assembler code

A=33 X=FF Y=80 P=30 S=FB
*• -----Registers

Address

For each successive instruction, type an S and press the RETURN key, as
in the following example.

Enter the program and then single-step through it.

*300:A9 33 AA 69 22 20 DA FD 60

*
A=88 X=FF Y=80 P=32 S=40
*300S

CTRL E to examine
.---- the registers

0300- A9 LDA #$33
A=33 X=FF Y=80 P=30 S=FB
*S 33 is loaded

219

0302- AA TAX
A=33 X=33 Y=90 P=30 S=FB
*S -------------33 is transferred

0303- 69 22 ADC #$22
A=55 X=33 Y=80 P=30 S=FB

*S ~---------------- Sum= 55
0305 20 DA FD JSR $FDDA
A=55 X=33 Y=80 P=30 S=FB
*• 'subroutine would display result

By single-stepping through the program you can see the results of execut
ing instructions. Registers affected by each instruction can be seen to change as
requested. In this example, the Accumulator and the X register were altered as
the program was executed.

The subroutine at FDDA contains many, many steps, so we stopped when
we came to that instruction. ~

You might notice also that the value in the Processor status register was 32
before the first instruction (LDA) was executed. After execution of the LDA
instruction, the Processor status register changed to 30. The zero bit has been
turned off because 33 is not equal to zero.

Let's now add one instruction, TAY (A8), to transfer the result of the
addition to the Y register. We won't display the result this time.

*300:A9 33 AA 69 22 A8 60
'--TAY

*
Examine registers (CTRL E)

A=55 X=33 Y=80 P=30 S=FB
*:FF FF FF 00 FF

-----Set them to original values
*3005

0300- A9 33 LDA #$33
A=33 X=FF Y=FF P=30 S=FB

*S"-----
33 loaded

0302 AA TAX
A=33 X=33 Y=FF P=30 S=FB

*S ~
33 transferred to X

220

0303- 69 22 ADC #$22
A=55 X=33 Y=FF P=30 S=FB

*S""'
~------~22added

0305 A8 TAY
A=55 X=33 Y=55 P=30 S=FB
*S

'----- 55 transferred to Y
0306 60 RTS
A=55 X=33 Y=55 P=30 S=F~
*• Return to monitor

So, you see that the X and Y registers can be used for temporary storage.
In Chap. 11, we'll show how they are used as index registers for instructions
in the Indexed Addressing modes.

Let's try one last program to wind up this chapter. This time we'll incre
ment the X register, compare it with zero, branching back to increment X again
if the contents of the X register are not equal to zero.

The program 300 E8
301 EO
302 00
303 DO
304 FB
305 60

Enter the program

*300:E8 EO 00 DO FB 60

~~~o ]~ 
3 loop 

BNE FB 2 
11-FB = -5, check it 

RTS if you wish on the 
Apple (0-5=FB) 

Before we run the program, let's put a value of FD in the X register. How 
long will it be before the contents of the X register reach zero? We'll single-step 
the program to find out. 

*300: E8 EO 00 DO FB 60 

* 

A=55 X=33 Y=55 P=30 S=EF 

::1 Ff 
A X 

We don't care about the other registers, so 
we only change the first two, A and X 

221 



Next, single-step through the program. 

*300:E8 EO 00 DO FB 60 

* 
A=SS X=33 Y=SS P=30 S=EF 
*:00 FD 

*300S -Request first step 

0300- E8 INX 
A=OO X=FE Y=SS P=BO S=Fl 
*S 

0301- EO 00 CPX 
A=OO X=FE Y=SS P=Bl S=Fl 
*S 

0303- DO FB BNE 
A=OO X=FE Y=SS P=Bl S=Fl 
*S 

0300- E8 INX 
A=OO X=FF Y=SS P=Bl S=Fl 
*S 

0301- EO 00 CPX 
A=OO X=FF Y=SS P=Bl S=Fl 
*S 

0303- DO FB BNE 
A=OO X=FF Y=SS P=Bl S=Fl 
*S 

0300- +8 INX 

-X=FD+l=FE 
- Next step requested 

#$00 

- Next step requested 

$0300 

- Next step requested 

-X=FE+l=FF 
-Next step 

#$00 

-Next step 

$0300 

-Next step 

A=OO X=OO Y=SS P=33 S=Fl - X=FF+l=OO~ 

*S ' '---- _, ___ ._) 
""""- Carry bit on due to 

0301- EO 00 CPX 
A=OO X=OO Y=SS P=33 S=Fl 
*S 

0303- DO FB BNE 
A=OO X=OO Y=SS P=33 S=Fl 
*S 

0305- 60 RTS 
A=OO X=OO Y=SS P=33 S=Fl 

*• 

#$00 

-Next step 

$0300 

-Next step 

----Branch was not taken 
since X register = 
CPX value {00) 

222 



SUMMARY 

You have had a tour of the Apple System Monitor in this chapter. You 
have explored some of the features that it has to make machine language pro
gramming easier. We hope you will extend these explorations with other experi
ments of your own until you are thoroughly familiar with the Monitor's capa
bilities. 

You have: 
1. Used hexadecimal addition and subtraction in the Immediate mode, 

2. Discovered how negative numbers are interpreted using hexadecimal 
values, 

3. Learned how to perform addition and subtraction operations with 
binary-coded decimal numbers, 

4. Learned now to move blocks of data from one memory area to another, 

5. Learned how to verify that two blocks of memory are the same, and 

6. Learned how to examine and alter registers. 

New Instructions 

1. SEO (SEt Decimal mode) - used to set the decimal flag in the Proces
sor status register to 1. All subsequent add-and-subtract instructions 
are then executed as if the values to be operated on are binary-coded 
decimal numbers. 

2. CLO (Clear Decimal mode) - resets the decimal flag in the Processor 
status register to 0. This returns addition and subtraction operations 
to binary format. 

3. TAY (Transfer Accumulator to Y register) - copies the contents of 
the accumulator into the Y register. 

New Monitor Commands and Uses 

1. Hexadecimal add and subtract - type in two 2-digit HEX numbers 
separated by the operation symbol and press RETURN. A 2-digit HEX 
result is displayed. 

2. Move a block of data in memory - provide the Monitor with the ad
dress range of the block to be moved and the beginning destination 
address. The Monitor will then copy the data into the destination 
area. 

Format: destination start.endM 

Example: *33CK300.309M 
-would copy the block of data in memory 

locations 300 through 309 into memory 
locations 330 through 309. 

3. Verify two blocks of data - provide the Monitor with the address 
range of one block of data and the starting address of the second 

223 



block of data. The Moni'tor will compare the two blocks and let you 
know if a discrepancy exists. 

Format: destination start.endM 

Example: *330<300.309V 
-would compare data in memory 

locations 300 through 309 with 
data in memory locations 330 
through 339. 

4. Examine registers - The A,X,Y,P, and S registers may be examined by 
pressing the CTRL and E keys together followed by a RETURN. 

5. Alter registers - The A,X,Y,P, and S registers may be modified by 
first examining them as in 4 above, then typing a colon followed by 
the new values, in order, separated by one blank space. 

EXERCISES 

1. Using hexadecimal addition in the Immediate mode, provide answers to the 
following: 
a. *2E+35 c. *A4-31 

= 

b. *E5+F *5A-2E 
= 

2. What would be displayed if the following were executed in the Immediate 
mode? 
a. *D7+4F b. *24-27 

3. Express the following decimal numbers in binary-coded decimal form. 
a. 28 = --------
b. 37= _______ _ 

c. 91 = --------
4. If the Add Two Decimal Numbers Program is modified as shown below, fill 

in the displayed result. 

*303:42 

*305:53 

*300G 

________ -+-fill in answer here 

224 



5. Show how to use the Monitor Move command to move the Add Two Deci
mal Numbers Program to memory locations 350 through 359. 

6. Show how to verify that the Move of Exercise 5 was made correctly. 

r~--
7. Describe how to examine the registers. 

8. Suppose that you had examined the registers, and the display shows the re
sults below. Show what would be typed to change the accumulator to 00, the 
X register to 80, and the Y register to 40. 

A=FF X=FF Y=FF P=OO S=FF 

ANSWERS TO EXERCISES 

1. a. =63 
b. =F4 

c. =73 
d. =2C 

2. a. =26 
(carry is not shown, 
D7+4F=126) 

3. a. 28 = 0010 1000 
b. 37=00110111 
c. 91 = 1001 0001 

4. 95 (42+53=95 in decimal) 

5. --------
(*350<300.309M 

6. 
( *350<300.309V 

b. =FD 
(FD=-3) 

225 



7. Press the CTRL and E keys together. 

8. 
Then press the RETURN key. 

A=FF X=FF Y=FF P=OO S=FF 
*:00 80 40 

(the others do not have to be changed) 

226 



Chapter 11 

Mini-Assembler and 
Addressing Modes 

There is another program that is part of the Apple Integer BASIC ROM, 
but is not available in the Apple 11 Plus systems. This program is called the Apple 
Mini-Assembler. It is called "mini" because it cannot understand symbolic labels 
that full-sized assemblers can. It is very useful in creating machine language 
programs. 

In past chapters, we have been showing machine language codes along with 
their mnemonic codes. The mnemonic code is an abbreviated name for each in
struction. We have been translating these mnemonic codes into hexadecimal or 
binary machine language instructions (Op codes). This process is called hand 
assembly. 

Examples: 

Mnemonic Addressing Machine 
Code Code Code 

LDA Immediate A9 
ADC Immediate 69 
CLC Implied 18 

Hand assembly is an uninteresting and tedious task that is very prone to 
small, but disastrous, errors. The length of instructions vary, and branch des
tinations may be calculated. Some instructions require data as operands, while 
others require memory addresses or registers. It is easy to pick wrong Op codes 
or addresses. It is also easy to transpose or mistype digits, etc. It would be much 
easier for us to assign the job of assembling a program to the computer. The 
Apple Mini-Assembler can easily take care of assembling programs for us if we 
write the programs using assembly language instructions. This chapter will be 
~evoted to learning the rules for using the Mini-Assembler and the assembly 
language form for the many addressing modes used. 

227 



Comparing Assembling Methods 

HAND ASSEMBLE 

Decide on Mnemonic Code 

Look up Machine Code 

Translate Operand from HEX to 
DECIMAL ) 

~~ 
w_~ 
~ 
~ 

Assign memory location J 
Write Op Code and Operand 

Repeat until done 

Enter program via Monitor 

Run via Monitor 

USING THE MINI-ASSEMBLER 

MINI-ASSEMBLER 

Decide on Mnemonic Code 

Translate Operand from HEX to 
DECIMAL 

Type in Computer 

Repeat until done 

Run via Monitor 

In order to use the Mini-Assembler, you must know how to access it, and 
how to get out of it when you have finished assembling your program. If you 
have the Applesoft 11 ROM card in your Apple, turn the switch on the back of 
the computer to Integer BASIC. The Mini-Assembler program is in this ROM. If 
your machine does not have Integer BASIC, it does not have the Mini-Assembler. 
This chapter would not then be applicable to your system. Other assemblers are 
available that can be entered from tape or disk. 

228 



To run the Mini-Assembler, type: F666G 

~ You type 

I !• ----Assembler responds with its prompt, the 
exclamation point(!) 

Eventually, you'll want to leave the Mini-Assembler and re-enter the Moni
tor to run the program that you have assembled. This can be done in either of 
two ways: 

1. Press the RESET key 

2. Type the Monitor Command (preceded by a dollar sign): $ FF69G 

E -Youtype 

The Monitor prompt appears 

After accessing the Mini-Assembler and before returning to the Monitor, 
an assembly language program is entered. We'll use the Add Two Decimal Num
bers Program from Chap. 10 for a brief demonstration. 

*F666G ---Starting in the Monitor, type this 1.f: 
!• --- Mini-Assembler prompt appears 

Ready to go 

2. Type in the address of the first instruction, a colon, and the mnemonic 
code for the first instruction. The Mini-Assembler displays each instruc
tion as it is assembled. 

*F666G 

!300:SED -You enter address: instruction 

When you press the RETURN key, your assembly instruction disap
pears, and the assembled machine language code appears. 

229 



*F666G 

0300- F8 SED-There it is 

1
\ ~~"Mnemonic 

Cursor, rea~ Op code 
for next Address 
instruction 

3. Type only the mnemonic for Clear carry. 

*F666G 

0300- F8 SED 
! CLC• ------- Clear carry 

\ 
1 blank space 

Press RETURN 

*F666G 

0300- F8 SED 
0301- 18 CLC 
!• ---------Next? 

Notice the blank space following the Mini-Assembler prompt. If the 
blank space is not placed there, the instruction will not be accepted. 
The Mini-Assembler will show where an error occurs in an improper 
entry. 

Example: 

*F666G 

0300- F8 SED 
!CLC 
/\ 

!• Up arrow shows where the error is. 
Try again. 

230 



4. So far, both instructions used have been in the Implied mode and need 
no operand. The next instruction, LOA, is in the Immediate mode, and 
must be followed by the # sign followed by the operand 23 to tell the 
computer that this is an immediate operand. 

*F666G 

0300- F8 SEO 
0301- 18 CLC 
! LOA #23• Type 
L_ Blank space 

Press RETURN 

*F666G 

0300- F8 
0301- 18 
0302- A9 23 
!• 

SEO 
CLC 
LOA #$23 

5. Next, the ADC instruction followed by #18. 

r ~DC #18• -----Type 

Press RETURN 

*F666G 

0300- F8 
0301- 18 
0302- A9 23 
0304- 6918 
!• 

SEO 
CLC 
LOA #$23 
ADC #$18 

231 



6. Next, the JSR instruction followed by the Absolute address FDDA. 

! JSR FDDA• ------Type 

Press RETURN 

*F666G 

0300- F8 
0301- 18 
0302- A9 23 
0304- 69 18 
0306- 20 DA FD 
!• 

SED 
CLC 
LDA #$23 
ADC #$18 
JSR $FDDA 

7. Last, the RTS instruction (Implied mode) 

! RTS• ------Type 

Press RETURN 

*F666G 

0300- F8 
0301- 18 
0302- A9 23 
0304- 69 18 
0306- 20 DA FD 
0309- 60 
!• 

SED 
CLC 
LDA #$23 
ADC #$18 
JSR $FDDA 
RTS 

232 



8. Now, leave the Mini-Assembler. The program has been assembled. 

0306- 20 DA FD 
0309- 60 

JSR $FDDA 
RTS 

!$FF69G ...,.. ________ , 

Type this to get back to 
the Monitor * 

The assembled program is now in memory. You may list it with the Moni· 
tor command L. 

The list command of the Monitor works just like the LIST command of 
BASIC language. If you type: 

300L and press RETURN 

the Monitor lists the contents of 20 consecutive memory locations starting with 
300. 

*300L List command 

0300- F8 SED 
0301- 18 CLC 
0302- A9 23 LDA #$23 
0304- 6918 ADC #$18 
0306- 20 DA FD JSR $FDDA 
0309- 60 RTS 
030A- FF ??? 
0308- FF ??? 
030C- FF ??? 
030D- FF ??? All this data is 
030E- FF ??? / meanln~ess to us 
030F- FF ??? and to the 
0310- FF ??? Mini-Assembler 
0311- FF ??? 
0312- FF ??? 
0313- FF ??? 
0314- FF ??? 
0315- FF ??? 
0316- FF ??? 
0317- FF ??? 
* 

233 



The first few lines are your assembly language program. The rest of the 
lines are not used by the program. Each time the List command is given, 20 
address locations are displayed. For longer programs, 20 more locations will 
be displayed each time that you press the L key and RETURN. 

Now it's time to run the program. 

*300G 
41 -+------Same result as before 

* 

Notice that when using the Mini-Assembler, we didn't have to look up the 
machine language codes for the instructions. Mnemonic codes are much easier to 
remember than numeric codes. Remember, though, as we mentioned earlier, 
that some instructions can be used in several Addressing modes. How does the 
Mini-Assembler know which mode we want? 

In the Add Two Decimal Numbers Program, the choices to be made by the 
Mini-Assembler were easy. Look at the instructions that were used. 

1. SEO (Set decimal mode) - this instruction is only used in the Implied 
mode. No choice necessary. 

2. CLO (Clear carry) - this instruction is also used only in the Implied 
mode. No choice necessary. 

3. LOA (Load accumulator) - Notice the pound sign (#) in front of the 
number 23. That tells the assembler that the code for the Immediate 
Addressing mode is needed. 

4. ADC (Add with carry) - Once again, the #sign is used to denote the 
Immediate Addressing mode. 

5. JSR (Jump to subroutine) - this instruction is only used in the Ab
solute Addressing mode. No choice necessary. 

You have used th~ Implied, Immediate, Zero Page, and Absolute Address
ing modes frequently. We'll now turn our attention to Indexed Addressing, 
which is quite useful although a little more complex. 

INDEXED ADDRESSING 

Two of the most frequently used instructions either load the accumulator 
or store the contents of the accumulator into memory. We'll use these t.wo in
structions fo demonstrate the Indexed Addressing modes. Here is a list of In
dexed modes. 

234 



LDA 

Assembly Addressing Op Number of 
Language Form Mode Code Bytes Used 

LDA oper, X Zero Page, X BS 2 
LDA oper, X Absolute, X BD 3 
LDA oper, Y Absolute, Y B9 3 
LDA{oper, X) {Indirect, X) Al 2 
LDA{oper),Y {Indirect), Y Bl 2 

STA 

Assembly Addressing Op Number of 
Language Form Mode Code Bytes Used 

STA oper, X Zero Page, X 9S 2 
STA oper, X Absolute, X 9D 3 
STA oper, Y Absolute, Y 99 3 
ST A{oper, X) {Indirect, X) 81 2 
ST A{oper), Y {Indirect), Y 91 2 

ZERO PAGE INDEXING 

Because zero page instructions execute quicker than other addressing 
modes, the Apple computer already uses most of the necessary locations used by 
these instructions. Zero page memory locations are those from 0000 through 
OOFF. Only the low-order part of the address is necessary for the computer to 
recognize the location required. By looking at the Zero Page Memory Map {pages 
74 and 7S of the Apple 11 Reference Manual), you may notice that 0000 through 
001 F are not used by the Monitor or by the Integer BASIC ROM. They are used 
by Applesoft 11 BASIC. If we stay out of Applesoft 11 BASIC, we may be able 
to use that area of memory for demonstrating Zero Page Addressing. 

All instructions that use this mode of addressing except LDX {Load the X 
register) and STX {Store the X register) use the X register to modifY the instruc
tion's operand {the address used). 

LDA oper, X 
Op code BS {Zero page) 
2nd byte, operand 

{low order address) 

Load accumulator from the zero 
page address + contents of the 
X register 

235 



Examples: 

1. Contents of X register = 3 

304 LDA O,X would load the accumulator from 
the memory address 0003 
(0000 + 03) -- -~ . ' Zero page Operand Contents of 

X register 

2. Contents of X register = 2 

307 LDA 3,X would load the accumulator from 
memory address 0005 
(0003 + 02) -- ...._ 

/_ . ' Zero page Operand Contents of 

STA oper, X 
Op code 95 (zero page) 
2nd byte, operand 

(low order address) 

X register 

Load accumulator from the zero 
page address + contents of 
X register 

This instruction works just like the LDA oper, X (Zero Page mode) 
except that the accumulator's contents are stored. 

Both types are demonstrated in the following program, which moves the 
values from memory locations 0005 and 0006 to memory locations 0015 and 
0016. We'll use the Mini-Assembler to assemble the program. 

~F66~ 
!• 

Type: 300:LDX #5 

*F666G 

0300- A2 05 
Type.- ! LDA #22 

LDX #$05 .-First instruction assembled 

236 



*F666G 

0300- A2 05 
0302- A9 22 

Type~ ! STA O,X 

*F666G 

0300- A2 05 
0302- A9 22 
0304- 95 00 

Type... ! LDA #33 

Type.,.. 

*F666G 

0300- A205 
0302- A922 
0304- 95 00 
0306- A9 33 
! STA 1,X 

*F666G 

0300- A2 05 
0302- A9 22 
0304- 95 00 
0306- A9 33 
0308- 95 01 

Type.,.. ! LDA O,X 

LDX #$05 
LDA #$22 .- Next instruction added 

LDX #$05 
LDA #$22 
ST A $00,X ._ Next 

LDX #$05 
LDA #$22 
STA $00,X 
LDA #$33 .-Next 

LDX #$05 
LDA #$22 
STA $00,X 
LDA #$33 
ST A $01,X ._ Next 

One new instruction added each time 

*F666G 

0300- A2 05 
0302- A9 22 
0304- 95 00 
0306- A9 33 
0308- 95 01 
030A- BS 00 
! STA 10,X 

LDX #$05 
LDA#$22 
STA $00,X 
LDA #$33 
STA $01,X 
LDA $00,X 

237 



*F666G 

0300- A20S LOX #$OS 

0302- A9 22 LOA #$22 

0304- 9S 00 STA $00,X 

0306- A9 33 LOA #$33 

0308- 9S 01 STA $01,X 
030A- BS 00 LOA $00,X 
030C- 9S 10 STA $10,X 
! INX 

*F666G 

0300- A2 OS LOX #$OS 
0302- A9 22 LOA #$22 
0304- 9S 00 STA $00,X 
0306- A9 33 LOA #$33 
0308- 9S 01 STA $01,X 
030A- BS 00 LOA $0().,X 
030C- 9S 10 STA $10,X 
030E- E8 INX 
! LOAO,X 

F666G 

0300- A2 OS LOX #$OS 
0302- A9 22 LOA #$22 
0304- 9S 00 STA $00,X 
0306- A9 33 LOA #$33 
0308- 9S 01 STA $01,X 
030A- BS 00 LOA $00,X 
030C- 9S 10 STA $10,X 
030E- E8 INX 
030F- BS 00 LOA $00,X 
! STA 10,X 

238 



F666G 

0300-
0302-
0304-
0306-
0308-
030A-
030C-
030E-
030F-
0311-
! RTS 

F666G 

0300-
0302-
0304-
0306-
0308-
030A-
030C-
030E-
030F-
0311-
0313-

* 

A20S 
A9 22 
9S 00 
A9 33 
9S 01 
BS 00 
9S 10 
E8 
BS 00 
9S 10 

A2 OS 
A9 22 
9S 00 
A9 33 
9S 01 
BS 00 
9S 10 
E8 
BS 00 
9S 10 
60 

LOX #$OS 
LOA #$22 
STA $00,X 
LOA#$33 
STA $01,X 
LOA $00,X 
STA $10,X 
INX 

· LDA $00,X 
STA $10,X 

LOX #$OS 
LDA #$22 
STA $00,X 
LDA #$33 
STA $01,X 
LOA $00,X 
STA $10,X 
INX 
LOA $00,X 
STA $10,X 
RTS 

- Leave the Mini-Assembler 

Zero Page Indexed instructions were used at 0304, 0308, 030A, 030C, 
030F, and 0311. Now run the program. Then examine locations OOOS, 0006, 
001 S, and 0016. 

*300G 

*OOOS.0006 

OOOS- 22 33 ----Original 
*001 S.0016 

001 S- 22 33 ----Copy 

* 

239 



ABSOLUTE INDEXED ADDRESSING 

Either the X or the Y index register can be used to index an absolute ad
dress in this mode. You do not have to restrict yourself to zero page memory. 

Examples: 

LOA 310,X 
Op code BO (Absolute indexed) 
2nd byte, low-order address (10) 
3rd byte, high-order address (03) 

This instruction loads the accumulator from the memory address 0310 + 
contents of the X register. (Y could also be used.) 

STA 320,Y 
Op code 99 (Absolute indexed) 
2nd byte, low-order address (20) 
3rd byte, high-order address (03) 

This instruction stores the contents of the accumulator into memory 
address 0320 +contents of the Y register. (X could also be used.) 

We'll use these instructions to store some characters from the keyboard 
into memory and to retrieve them for display on the video screen. We'll use the 
Mini-Assembler to put the program together. 

First we'll store 17 characters from the keyboard in a consecutive memory 
block using the ST A Indexed Addressing mode with X as the index register. 

*F666G 

!300:LDX #0 

*F666G 

0300- A2 00 
! JSR FD35 

*F666G 

0300- A2 00 
0302- 20 35 FD 
! STA 1000,X 

- Load X with zero 

LOX #$00 
- Get a character 

LOX #$00 
JSR $FD35 

- Store it 

240 



*F666G 

0300- A2 00 
0302- 20 35 FD 
0305- 9D 00 10 
!INX 

*F666G 

0300- A2 00 
0302- 20 35 FD 
0305- 9D 00 10 
0308- E8 
! CPX #11 

*F666G 

0300- A2 00 
0302- 20 35 FD 
0305- 9D 00 10 
0308- E8 
0309- EO 11 
! BNE 302 

*F666G 

0300- A2 00 
0302- 20 35 FD 
0305- 9D 00 10 
0308- E8 
0309- EO 11 
0308- DO F5 
! JSR FC58 

*F666G 

0300- A2 00 
0302- 20 35 FD 
0305- 9D 00 10 
0308- E8 
0309- EO 11 
0308- DO F5 
030D- 20 58 FC 
!• 

LDX #$00 
JSR $FD35 
STA $1000,X 

- Increase X by one 

LDX #$00 
JSR $FD35 
STA $1000,X 
INX 

- Done yet? 

LDX #$00 
JSR $FD35 
STA $1000,X 
INX 
CPX #$11 

- If not, go back to 302 

LDX #$00 
JSR $FD35 
STA $1000,X 
INX 
CPX #$11 
BNE $0302 

- Clear the screen 

LDX #$00 
JSR $FD35 
STA $1000,X 
INX 
CPX #$11 
BNE $0302 
JSR $FC58 

241 



Let's pause here to see how this part of the program works. Notice that 
this part contains a loop that is much like a BASIC FOR-NEXT loop. The sub
routine at FD35 waits for a character to be typed from the keyboard. The char
acter is then stored by the Absolute Indexed instruction (STA 1000,X). The X 
register is increased by one and tested to see if it has reached 11 (HEX). If 
not, a loop is made back to the subroutine for another character. Wi1en the 
seventeenth character has been typed, X will have reached 11. The screen is 
then cleared by the subroutine at FC58. Not only does the X value control the 
exit from the loop; it also indexes the memory address at which the character 
is stored. Thus, the characters are stored in consecutive memory locations like 
this. 

Pass Through Xreg. Memory Used to Store 
the Loop (HEX) Character 

1 0 1000 
2 1 1001 
3 2 1002 
4 3 1003 

15 E lOOE 
16 F lOOF 
17 10 1010 

Continuing on with the second part of the program, input the following 
instructions each time you see the Mini-Assembler prompt: 

LDX#O 
LDA 1000,X 
JSR FDED 
INX 
CPX #11 
BNE 312 
RTS 

Reset X to zero 
Load a character from memory 
Display it 
Get ready for the next one 
Done yet? 
If not, go back to 312 
If done, go to Monitor 

After this, the display will show: 

242 



*F666G 

0300- A200 
0302- 20 35 FD 
0305- 9D 0010 
0308- E8 
0309- EO 11 
0308- DO F5 
030D- 20 58 FC 
0310- A200 
0312- BD 00 10 
0315- 20 ED FD 
0318- E8 
0319- EO 11 
0318- DO F5 
031 D- 60 
!$FF69G 

* 

LDX #$00 
JSR $FD35 
STA $1000,X 
INX 
CPX #$11 
BNE $0302 
JSR $FC58 
LDX #$00 
LDA $1000,X 
JSR $FDED 
INX 
CPX #$11 
BNE $0312 
RTS 

First part 

Second part 

End it by leaving the 
Mini-Assembler 

The second part of the program also contains a loop that loads a charac
ter from memory and displays it. The loop continues until all 17 characters 
have been displayed. It then returns to the Monitor. The Indexed Addressing 
instruction (LDA 1000,X) is used to load the accumulator on each pass through 
the loop. Since the X register was reset to zero at the start of the loop, the 
instruction retrieves the previously stored characters in the same order that they 
were stored (see table shown earlier in this chapter). Indexed addressing is very 
handy to load and store values in blocks of consecutive memory locations. 

When you run the program, type in 17 characters from the keyboard 
(count spaces as characters). You won't see the characters as they are typed in. 
They will be displayed after you have entered all 17. Here is a typical run with 
the message "ABSOLUTE INDEXING." You may use any 17 character mes
sage. Or make a few alterations to the program and fill the screen. 

0310- 60 
!$FF69G 

*300G 

• 

( ~BSOLUTE INDEXING 

RTS 

243 

Nothing more is displayed until 
you have finished typing in your 
message. When it is finished: 



The Y register could have been used instead of the X register for indexing. 
Either may be used. -

STA 1000,X or STA 1000,Y 
LDA 1000,X or LDA 1000,Y 

You could also use a combination of the two: 

STA 1000,X 
LDA 1000,Y 

Of course, the proper register must be given the correct initial value and incre
mented. 

INDEXED INDIRECT ADDRESSING 

The major use of this mode is in picking up data from a table or list of 
addresses to perform an operation. 

Since there is not much unused space in our zero page memory·, we can 
only present a trivial demonstration of this addressing mode. Once again, the 
LDA instruction will be used as an example. 

The format is: 

LDA (oper,X) 
Op code Al 
2nd byte, offset 

The second byte of the instruction (the offset) is added to the contents of 
the X register (any carry is dropped). The result points to a location in zero page 
that contains the low order part of the effective address from which the data is 
loaded. The next zero page location holds the high-order part of the effective 
address. 

Example: 

Memory location 0019 contains the value 45 
Memory location 001 A contains the value 10 
The X register contains the value 14 
The instruction to be executed is: 

LDA (05,X) 

First, the value in the X register is added to the operand (offset) 14 + 5 = 
19. The result is the zero page address that contains the low-order address 
of the memory location from which the accumulator will be loaded. 
Second, the high-order address of the memory from which the data will 
be loaded is found in the next zero page address (19 + 1 = 1 A). 

244 



In the example: 

Operand @TI 
+ 

X reg. mJ rm 
Zero 
page Memory Contents 
location 

1045 33 

.10 45 Data pointer --
001A 1°0~ 

0019 
Low order 

After LOA (05,X) is executed: Accumulator~ 

Now let's try a short demonstration of the Indexed Indirect Addressing 
mode for the LDA instruction using the Mini-Assembler to assemble the pro
gram. First, type in the instructions after the ! orompt. Each line is assembled 
as you make your entries, but we will not show the display until all entries have 
been made. 

!300:LDX #14 
! LOA #10 
! STA lA 
I LDA#45 

STA 19 
LDA#33 
STA 1045 
LDA#O 
LOA (05,X) 
JSR FDDA 
RTS 

The display: 

Put 14 in the X register 
Put 10 in accumulator 
Store it in 001 A 
Put 45 in accumulator 
Store it in 0019 
Put 33 in accumulator 
Store 33 in 1045 
Put in zero 
Indexed Indirect Addressing mode 
Display accumulator 

245 



*F666G 

0300- A214 
0302- A9 10 
0304- 85 lA 
0306- A9 45 
0308- 85 19 
030A- A9 33 
030C- 8D 45 10 
030F- A9 00 
0311- Al OS 
0313- 20 DA FD 
0316- 60 

LDX #$14 
LDA #$10 
STA $1A 
LDA #$45 
STA $19 
LDA #$33 
STA $1045 
LDA #$00 
LDA ($05,X) 
JSR $FDDA 
RTS 

!$FF69G .----------- Leave the Mini-Assembler 

* 

Run the program. The accumulator is loaded by the Indexed Indirect Ad
dressing mode instruction at 0311. Then the value 33 is displayed. 

0313- 20 DA FD 
0316- 60 
!$FF69G 

JSR $FDDA 
RTS 

*300G 
33 

--------------There it is! * 

We can see that 33 has been displayed as we expected. How do we know 
that it was really displayed because of the Indexed Indirect Addressing instruc
tion at location 0311? 

If you want to watch each step, single-step through the program until you 
reach the jump to subroutine instruction at 0313. At that point the 33 should 
have been moved into the accumulator by the Indexed Indirect Addressing 
instruction, LDA (05,X). 

246 



*3005 

0300- A2 14 LDX #$14 
A=OO X=14 Y=FF P=30 S=OC 

*S 

0302- A910 LDA #$10 
A=lO X=14 Y=FF P=30 S=OC 
*S 

0304- 85 lA STA $1A 
A=lO X=14 Y=FF P=30 S=OC 
*S 

0306- A9 45 LDA #$45 
A=45 X=l 4 Y=FF P=30 S=OC 

*S 

0308- 85 19 ST A $19 
A=45 X=14 Y=FF P=30 S=OC 

*S 

030A- A9 33 LDA #$33 
A=33 X=14 Y=FF P=30 S=OC 
*S 

030C- 8D 45 10 STA $1045 
A=33 X=14 Y=FF P=30 S=OC 

*S 
This was done to make 

030F- A9 00 LDA #$00- sure the accumulator 
A=OO X=l 4 Y=FF P=30 S=OC was cleared of the 33 

*S 

0311- Al05 LDA($05,X) 
A=33 X=14 Y=FF P=30 S,;,OC "-Accumulator loaded 

*S by Indexed Indirect 
Addressing 

0313- 20 DA FD JSR $FDDA 
A=33 X=l 4 Y=FF P=30 S=OC 

* 
Stop here 

That last program wasn't very interesting, was it? This time let's use In
dexed Indirect Addressing to access two different lists of data. The first list 

247 



will consist of color values, and the second will contain rows at which lines will 
be plotted. • 

We'll use the Mini-Assembler to enter the program and the Monitor to 
enter the data lists. 

Start with the Mini-Assembler. 

*F666G 

!300:JSR FC58• - Starting address, colon, and 1st instruction 

*F666G 

0300- 20 58 FC 
! JSR FB40• 

t 
Don't forget the space 

*F666G 

0300- 20 58 FC 
0303- 20 40 FB 
! LOA #40• 

Press the RETURN key 

JSR $FC58 

JSR $FC58 
JSR $FB40 

2nd instruction 

3rd instruction 

Continue in the same manner until all of the following instructions have 
been entered. 

The complete instruction list. 

*F666G 

!300:JSR FC58 
JSR FB40 
LOA #40 
STA 10 
LOA #50 
STA 12 
LOA #10 
STA 11 
STA 13 

/Set up the Indexed Pointers 

248 



LOOP 

! LDY #S Starting point for line 
! LDA #20 } ! STA 2C End point for line 
! LDX #0 

}-! LDA (10,X) -Set color 
! STA 30 
! LDX #2 }-LDA (10,X) -Set row 

JSR F819 Draw the line 
INC 10 }- - Increase pointer values 
INC 12 
LDA10 }------ See if don' 
CMP#47 
BNE 314 
RTS 

When you have entered all the instructions, the screen will look like this: 

*F666G 

0300- 20 S8 FC 
0303- 20 40 FB 
0306- A9 40 
3008- 8S 10 
030A- A9 SO 
030C- 8S 12 
030E- A910 
0310- 8S 11 
0312- 8S 13 
0314- AO OS 
0316- A9 20 
0318- 8S 2C 
031A- A2 00 
031C- Al 10 
031E- 8S 30 
0320- A2 02 
0322- Al 10 
0324- 20 19 F8 
0327- E6 10 
0329- E612 
0328- AS 10 
032D- C947 
032F- DO E3 
0331- 60 
!• 

JSR $FCS8 
JSR $FB40 
LDA #$40 
STA $10 
LDA #$SO 
STA $12 
LDA #$10 
STA $11 
STA $13 
LDY #$OS 
LDA #$20 
STA $2C 
LDX #$00 
LDA ($10,X) 
STA $30 
LDX #$02 
LOA ($10,X) 
JSR $F819 
INC $10 
INC $12 
LDA $10 
CMP #$47 
BNE $0314 
RTS 

249 



To enter the data, return to the Monitor. If you try to enter the data lists 
from the assembler, it will try to interpret the data as instructions. That would 
foul everything up. 

0331- 60 
!$FF69G 

RTS 

*1040:FF 119966 CC 33 DD - colors 

*1050:05 07 09 OB OD OF 11 - rows 

Now you can run the program. 

The screen is cleared, and 7 colored lines are picked out of the data lists 
and displayed on the screen. 

Here is how the values are picked out to draw the lines. 

lfX=O -

lfX=2 -

Memory Pointer 

0010 
0011 

0012 
0013 

'4017 These values are incremen. ted 1 at a 
L!.QJ time through the loop to point to 
~ the looations for color and row. 

250 



Color 

Row 

( 
1040 
1041 
1042 

etc. 

( 
1050 
1051 
1052 

etc. 

INDIRECT INDEXED ADDRESSING 

This mode differs in its operation from Indexed Indirect Addressing, al
though their names are so similar as to be confusing. 

x 

This mode uses the Y register as an index. We'll use the ST A instruction to illus
trate how it works. 

The format is: 

ST A (oper},Y 
Op code 91 
2nd byte, zero page address 

The second byte of the i_i:istruction is a zero page memory address that 
contains a base address. The value of the Y register is added to this base address 
to form the actual low-order part of the address where the contents of the 
accumulator are to be stored. The zero page following that given in the second 
byte provides the high-order part of the storage address. 

Example: 

Accumulator contains the value 55 
Memory location 01 contains the value 32 
Memory location 02 contains the value 11 
The Y register contains the value 7 
The instruction to be executed is: 

STA (01 }, Y 

257 



First, the value 32 is obtained from location 0001. 
Second, the contents of the Y register (7) are added. This value (32+ 7=39) 
is the low-order part of the storage address. 
Third, the value 11 from location 0002 is used as the high-order part of 
the storage address. 
Thus, the contents of the accumulator will be stored in memory location 
1139. 

In the example: 

Accumulator [~ 

The instruction ST A (01), Y is executed: 

Memory Contents 

1139 55 

l Accumulator's 
contents go 
here 

11 39 
0002 11 -----J 

\ 0001 32 
From - ...... 32 + 7 = 39 
STA (01),Y 0000 ?? \ 

Y register 

A short demonstration program utilizing the ST A (oper), Y instruction 
follows. Once again we show the entries first. 

*F666G 

!300:LDY #7 
LDA #32 
STA 1 
LDA #11 
STA2 
LDA #55 
STA (01),Y 
RTS 

Load 7 into Y register 
Load accumulator with 32 
Store in 0001 
Load 11 
Store in 0002 
Load 55 
Indirect Indexed Addressing Mode 

252 



The display after entering instructions: 

*F666G 

0300- AO 07 
0302- A9 32 
0304- 85 01 
0306- A911 
0308- 85 02 
030A- A9 55 
030C- 91 01 
030E- 60 
!$FF69G 

* 

LOY #$07 
LOA #$32 
STA $01 
LOA #$11 
STA $02 
LOA #$55 
STA ($01),Y 
RTS 

Once again type this in to 
leave Mini-Assembler 

Run the program. Nothing will be displayed. When the prompt shows at 
the end of the program, examine memory location 1139. 

!$FF69G 

*300G 

*1139 ------- Examine memory 

1139- 55 ------ Sure enough, there it is 

* 

Refer back to the Automated Scale program in Chap. 6. We'll modify that 
program to provide some changing durations for the notes. The durations and 
pitch values will be obtained from two data lists. They will be accessed by Indi
rect Indexed instructions. 

253 



MODIFIED AUTOMATED SCALE PROGRAM 

*F666G 

0300- 20 SB FC JSR $FCSB 
0303- AOOO LDY #0 
030S- Bl 03 LDA (03},Y Load duration from table 
0307- BS 01 STA $01 Store it 
0309- Bl OS LDA (OS),Y Load pitch from table 
030B- BS 00 STA $00 Store it 
030D- CB INY 
030E- 9B TVA Save Y value 
030F- 4B PHA 
0310- C009 CPY #09 See if done 
0312- FO 17 BEQ $032B If so goto end 
0314- AD 30CO LDA $C030 
0317- BB DEY 
031B- 0004 BNE $031 E The tweak speaker 
031A- C6 01 DEC $01 part of the program 
031C- FO OB BEQ $0326 
031E- CA DEX 
031F- DO F6 BNE $0317 
0321- A6 00 LDX $00 
0323- 4C 14 03 JMP $0314 
0326- 6B PLA Get saved Y value back 
0327- AB TAY 
032B- 4C OS 03 JMP $030S Get another note 
032B- 6B PLA 
032C- 60 RTS Go back to Monitor 
!$FF69G 

*1040:FF CB BO 40 CB 40 BO FF Duration 
*lOSO:BS 7F 79 74 6F 6B 67 64 Pitch 
*03:40 10 so 10 Pointers for Indirect 
* Indexed Addressing 

At the start of the program the values in memory used by the Indirect 
Indexed Addressing are: 

Memory 03=40 Memory OS=SO 
04=10 06=10 

The Y value is added to each of the low-order parts of the addresses (40 at 0003 
and SO at OOOS} to find the correct values of duration and pitch for the notes 
that are to be played. Since the Y value is incremented each time through the 
loop, a new pitch and duration are played each time. 

254 



Memory Duration Memory Pitch 

1040 FF 1050 85 
1041 C8 1051 7F 
1042 80 1052 79 
1043 40 1053 74 
1044 C8 1054 6F 
1045 40 1055 6B 
1046 80 1056 67 
1047 FF 1057 64 

By changing any of these memory locations, you can vary the pitch and 
duration. With a little imagination, you can extend these !'.lata lists to play a 
complete song with notes of varying lengths. If you do, don't forget to re
place the CPY value in memory location 0311 to reflect the number of notes 
you wish to play. 

When you run the program, the automated scale will be played. How
ever, the length of the notes varies. 

*300G 

SUMMARY 

Congratulations! You are now an assembly language programmer. You 
have had an introduction to the Apple Mini-Assembler and have explored some 
of its uses. You can now program in BASIC, 6502 machine language, and assem
bly language. 

We hope you will spend some additional time using the Mini-Assembler. 
Go back through some of the machine language programs that appeared earlier 
in the book and enter them by mearis of the assembler. Try some of your own 
programs. The more you use assembly language programming, the better you 
will become and the easier it will be. 

255 



In this chapter you have learned how to: 

1. Get back and forth between the Mini-Assembler and the System Monitor 

2. Use the mnemonic codes of machine language instructions with the Mini
Assembler 

3. Enter assembler instructions 

4. Use 4 Indexed Addressing modes: 
a. Zero Page Indexed 
b. Absolute Indexed 
c. Indexed Indirect 
d. Indirect Indexed. 

New Instructions 

1. LOA oper,X - Zero Page Indexed load accumulator - loads the accumulator 
from the operand's zero page address+ the contents of the X register 

2. ST A oper,X - Zero Page Indexed store accumulator - stores the accumula
tor's value into the operand's zero page address + the contents of the X 
register 

3. LDA oper,X - Absolute Indexed load accumulator - loads the accumulator 
from the operand's full address + the contents of the X register (Y can also 
be used) 

4. ST A oper,X - Absolute Indexed store accumulator - stores the accumula
tor's value into the operand's full address + the contents of the X register 
(Y can also be used) 

5. LOA (oper,X) - Indexed Indirect load accumulator - loads the accumulator 
from a memory location that is indirectly addressed by the operand's offset 
+ the contents of the X register. The result "points to" zero page locations 
containing the effective address 

6. STA (oper),Y - Indirect Indexed store accumulator - stores the value in the 
accumulator into a memory location that is obtained from the operand's 
zero page memory (and zero page +1 ). The contents of the Y register are 
added to obtain the low-order part of the effective address. Zero page + 1 
contains the upper part of the effective address. 

7. LOA (oper),Y - Indirect Indexed load accumulator - loads the accumula
tor from a memory location that is obtained from the operand's zero page 
memory (and zero page +1 ). The value in the Y register is added to obtain 
the low-order part of the effective address. Zero page + 1 contains the high
order part of the effective address. 

Mini-Assembler Symbols and Commands 

1. F666G - to enter the Mini-Assembler from the Monitor 

2. $FF69G - to return to the Monitor from the Mini-Assembler 

3. ! - the Mini-Assembler prompt 

256 



EXERCISES 

1. What is the four-digit hexadecimal command for entering the Mini-Assembler? 
*--------G 

2. What is the Mini-Assembler's prompt symbol? 

3. What is the command to leave the Mini-Assembler and return to the System 
Monitor? 

! __________ G 

4. The following program has been entered by the Mini-Assembler. Complete 
the display to show a run. 

*F666G 

0300-
0301-
0302-
0304-
0306-
0309 
!$FF69G 

* 

F8 
18 
A917 
69 78 
20 DA FD 
60 

SEO 
CLC 
LDA #$17 
ADC #$78 
JSR $FDDA 
RTS 

Your answers here 

. / 
5. A program contains the following two instructions. Explain the result of 

their execution. Assume that the X register contains 08. 
Memory Op code Assembler code 
0302 A9 22 LDA #$22 
0304 95 03 ST A $03,X 

6. Tell what kind of addressing mode would be used for the following: 
a. STA $03,X --------------
b. STA$1033,V ____________ _ 

c. LDA (05,X) ------------
d. STA (07),V ____________ _ 

7. How many bytes are used for each of the following types of addressing 
instructions? 
a. Absolute Indexed---------------
b. Zero Page Indexed------
c. Indexed Indirect-----

257 



8. The program on page 240-44 allowed you to input 17 characters from the 
keyboard. Tell which locations must be changed and what the changes 
would be in order for the program to accept 64 characters. 

Memory Change to 

9. Suppose the X register contains 9, the Y register contains 8, and the follow-
ing values are in the given memory locations: 

Memory Contents 
0012 .10 
0013 11 
0014 12 

The.instruction is executed: LOA (04,X) 
From what memory location would the accumulator be loaded? 

10. Suppose the same cqnditions exist as in Exercise 9. 
This instruction is executed: STA (12),Y 
Into what location would the accumulator's contents be stored? 

ANSWERS TO EXERCISES 

1. *F666G 

2. 

3. ! $FF 6 9 G 

4. * 3 0 0 G ----
2~ 
* 

5. The value 22 would be loaded into the accumulator and then stored in 
memory location 0008. {0003+0008=0008) 

6. a. Zero page Indexed c. Indexed Indirect 
b. Absolute Indexed d. Indirect Indexed 

7. a. 3 b. 2 c. 2 

8. Memory Change to 
a. 030A 40 (40 HEX = 64 decimal) 
b. 031A 40 

9. 1211 X register= 9 Plus operand= 4 gives 13 
high-order address obtained from 0014 = 12 

10. 1118 10 from location 0012 (operand) 
+ 8 from Y register 

18 = low-order address 
11 from location (0012+1) =high-order address 

. 258 



Chapter 12 

Putting It All Together 

You have learned four methods of entering and executing machine lan
guage programs in this book. 

1. Directly from BASIC using POKE, CALL, and PEEK 

2. By the BASIC Operating System 

3. Directly in machine language using the System Monitor 

4. By the Mini-Assembler 

We'll use each of the four methods to enter and execute an 8-bit multiplication 
problem in this last chapter. 

The 6502 instruction set does not contain an instruction for multiplication 
or division. However, there are many ways that these two operations can be pro
grammed. We will show one that is simple and straightforward. 

8-BIT MULTIPLICATION 

Remember, the computer does its arithmetic using binary numbers. Let's 
first look at a pencil-and-paper example of binary multiplication. We'll multiply 
18 (decimal) by 58 (decimal) using both decimal and binary multiplication. 

259 



Decimal 

18 
x 58 

----Multiplicand----i~ 

---Multiplier--• 

Binary 

0001 0010 
x 00111010 -----

144 
90 

0000 0000 
0 0010 010 

00 0000 00 
1044 000 1001 0 

0001 0010 
0 0010 010 

00 0000 00 

1 

Product~ _oo_o_o_o_o_o_o ___ _ 

~ 00001000001 0100 

IT CHECKS! 

"-.. >;4 (decimal) 
"' 16 (decimal) ---------------.+ 1024 (decimal) 

1044 (decimal) 

Notice that our multiplication involves adding the multiplicand every 
time a 1 appears in the multiplier. Of course, there is a shift to the left each 
time a bit of the multiplier is used, just as there is in decimal multiplication. 
We also proceed from right to left as we "use up" the bits of the multiplier. 

The program we will use does much the same thing. The first part of the 
program will initialize the memories with the appropriate values. We will store 
these quantities in memory as follows: 

Memory 
Address Contents 

1000 Most Significant Byte 
of product 

1001 Least Significant Byte 
of product 

1002 Multiplicand 
(12) 

1003 Multiplier 
(3A) 

The accumulator will temporarily hold the Least Significant Byte of the 
product as the program is executed. You may notice that the multiplier is used 
from left to right (the opposite· of the paper-and-pencil method) to simplify 
the process. 

260 



lolol1 l1 l1lol1lol 
./ \ 

Used first Used last 

The multiplier is shifted left as it multiplies. 

A flowchart is shown to clarify the program. 

ENTER'---------

Housekeeping 

Load X with 8 
Load memory 1002 with 12 
Load memory 1003 with 3A 
Load accumulator with zero 
Store zero in memory 1000 
Store zero in memory 1001 

Loo 8 Times 

No 

Shift accumulator left 
Rotate MSB of product left 
Shift Multiplier left 

No 

Clear carry 
Add Multiplicand 

No 

Increment MSB of product 

Decrement the X register 

Store accumulator in 1001 

261 



The housekeeping chores at the beginning of the program are easy for us 
now. You have used each instruction in this section of the program before. 
They are all either load or store instructions in various addressing modes. 

The following table shows the values to be entered in both decimal and 
hexadecimal forms. 

Memory Address Machine 
Assembler 

Dec. Hex. Dec. Hex. Mnemonic 

76S 0300 162 A2 LDX #OS 
769 0301 s OS 

770 0302 169 A9 LDA #12 
771 0303 lS 12 

772 0304 141 SD STA $1002 
773 0305 2 02 
774 0306 16 10 

775 0307 169 A9 LDA#3A 
776 030S 5S 3A 

777 0309 141 SD STA $1003 
77S 030A 3 03 
779 0308 16 10 

7SO 030C 169 A9 LDA #00 
7Sl 030D 0 00 

7S2 030E 141 SD STA $1000 
7S3 030F 0 00 
7S4 0310 16 10 

7S5 0311 141 SD STA $1001 
7S6 0312 1 01 
7S7 0313 16 10 

The loop section performs the multiplication. Two new instructions ap
pear. One of them, ASL (Arithmetic Shift Left), was discussed in Chap. 3. This 
time we use it to shift the contents of the accumulator at 788 (decimal). We 
also use it in the Absolute Addressing mode at 792 (decimal). When used in 
this mode, the bits of the specified memory are shifted left. 

Example: 

To carry ..... 
bit of 
Processor 
Status 
Register 

Memory 1003 after ASL $1003 

262 



We will make use of the fact that the Most Significant Bit from the shift is 
moved to the carry bit of the Processor Status Register. 

Another new instruction ROL (ROtate one bit Left) is used at 789 (deci
mal) in the Absolute Addressing mode. This instruction is similar to ASL but 
different in one important way. 

Example: 

Memory 1000 before ROL $1000 

...,---- '--'-.-L..,..J.-..,....L-,-'--r..J...,...J........J 
To the carry 
bit of the 
Processor 
Status 
Register 

Old carry bit 

X .is either 0 or 1 
depending on the 
carry bit when the 
instruction is 
executed 

As each instruction is executed, the Most Significant Bit moves into the carry 
bit of the Processor Status Register. In the ASL instruction, the Least Significant 
Bit is filled with a zero. In the ROL instruction, the Least Significant bit is 
filled from the carry bit of the status register (either a 1 or a Q). 

The instructions derive their names from the action ttiat takes place. 

ASL ROL 

0 ~) 
The Arithmetic Shift Left instruction merely shifts each bit to the left one 

place. A zero is shifted into the low-order bit, and the high·order bit shifts into 
the carry bit. The old carry bit is lost. 

The ROtate Left instruction is like a circle. Each bit moves one place 
around the circle (like Musical Chairs). Hence, the bits are rotated one position 
to the left. 

263 



If you rotate left nine times, everything will be right back where it started. If 
you shift left nine times, you will have zeros in every bit (including the carry 
bit). 

The following table shows both decimal and hexadecimal values to be 
entered for the loop and exit from the program. 

Memory Address Machine 
Assembler 

Dec. Hex. Dec. Hex. Mnemonic 

788 0314 10 OA ASl...A 
~------< -------- -------- --------~-------------

789 0315 46 2E ROL $1000 
790 0316 0 00 
791 0317 16 10 

--------!-----------~---------- ---------- -----------------
792 
793 
794 

0318 
0319 
031A 

14 
3 

16 

OE 
03 
10 

ASL $1003 

~------------------+----------- ---------- -----------------
795 
796 

0318 
031C 

144 
9 

90 
09 

BCC $0326 

~------- ---------- ---------- ---------- -----------------
797 031D 24 18 CLC 

~-------~---------- ---------- ---------- -----------------
798 
799 
800 

031E 
031F 
0320 

109 
2 

16 

6D 
02 
10 

ADC $1002 

------- ---------- ---------- -----------~----------------
801 
802 

0321 
0322 

144 
3 

90 
03 

BCC $0326 

~------- ---------- ---------- ---------- -----------------
803 0323 238 EE INC $1000 
804 0324 0 00 
805 0325 16 10 

~------- ---------- ---------- -----------+-----------------
806 0326 202 CA DEX 

~------- ---------- ---------- ---------- -----------------
807 
808 

0327 
0328 

208 
235 

DO 
EB 

BNE $0314 

~------- ----------~---------- ---------- -----------------
809 0329 141 8D STA $1001 
810 032A 1 01 
811 0328 16 10 

-------- ----------~---------- ---------- -----------------
812 032C 96 60 RTS 

264 



MULTIPLICATION DIRECTLY FROM BASIC 

The machine language program can be directly POKEd into memory from 
BASIC. A FOR-NEXT loop filled with READ and POKE statements will accom
plish this. The program is then executed by a CALL statement, and a PRINT 
PEEK statement is used to display the result. Be sure you are in the Applesoft 
II BASIC mode. 

MULTIPLICATION FROM BASIC 

10 FORM= 768 TO 812 
20 READ D 
30 POKE M,D 
40 NEXT M 
50 CALL 768 
60 PRINT PEEK(4096)*256+PEEK(4097) 
70 END 
80 DATA 162,8, 169, 18, 141,2, 16, 169,58, 141 
90 DATA 3,16,169,0,141,0,16,141,1,16 
100 DATA 10,46,0,16,14,3,16,144,9,24,109 
110 DAT A 2, 16, 144,3,238,0, 16,202,208 
120 DATA 235,141,1,16,96 

After the program has been entered, type RUN to execute it. The follow
ing is displayed. 

)RUN 
1044 

)• 

-4----The result is displayed 

Entering the program directly from BASIC has the advantage of speed of 
entry. A simple FOR-NEXT loop POKEs all the machine language codes into 
their proper places. The program is then executed by one CALL statement, and 
the result is displayed by PRINT PEEK. 

However, there are disadvantages. Each instruction and address referenced 
in the program must be converted from hexadecimal notation to its decimal 
equivalent before the program can be entered. Remember, machine language 
references are in hexadecimal code, and BASIC uses decimal numbers. The con
version can be time-consuming if the program is long. The process is subject to 
many human errors. Though seemingly small, these errors can prove disastrous 
to a program in execution. If mistakes are made, there is no way of debugging 
the program directly, since you are not using the Apple System Monitor when 
you are in BASIC. 

265 



MULTIPLICATION USING THE BASIC OPERATING SYSTEM 

When using the BASIC Op~rating System, the addresses are entered by 
the system (except for the starting address). The machine language Op codes are 
entered in hexadecimal form directly from the reference manual. 

The Operating System must be loaded from tape or entered from the 
keyboard (See Chap. 2). When RUN, the program requests the starting address 
and the number of bytes. Our starting address is 768, and there are 45 bytes. 

STARTING ADDRESS FOR M/L=?768 
HOW MANY BYTES?45 
PRESS RETURN TO ENTER PROGRAM 
768. 

Now enter the program. The computer will keep track and print each 
memory location in order. All you have to do is type in the correct hexadecimal 
code. (See tables shown earlier in chapter for the hexadecimal Op codes to be 
entered.) After the program has been completely entered, the Operating Sys
tem displays your entries in blocks of 20 bytes, as follows. 

HERE IS YOUR PROGRAM 

768 A2 
769 08 
770 A9 
771 12 
772 8D 
773 02 
774 10 
775 A9 
776 3A 
777 8D 
778 03 
779 10 
780 A9 
781 00 
782 8D 
783 00 
784 10 
785 8D 
786 01 
787 10 
PRESS ANY KEY TO CONTINUE 

• 
266 



\ 

You should then check over this partial listing for any errors. Make a note 
of the corrections to be made, but do not make the corrections until asked for 
at the end of the final display block. You are now ready to look at the next 
block of 20 {or fewer) data bytes. 

788 OA 
789 2E 
790 00 
791 10 
792 OE 
793 03 
794 10 
795 90 
796 09 
797 18 
798 6D 
799 02 
800 10 
801 90 
802 03 
803 EE 
804 00 
805 10 
806 CA 
807 DO 
PRESS ANY KEY TO CONTINUE 

• 
Now the last block of data. 

808 EB 
809 SD 
810 01 
811 10 
812 60 
PRESS ANY KEY TO CONTINUE 

• 
Now when you press any key, you get a chance to make your changes. 

IF ANY CHANGES-TYPE ADDRESS 
IF NOT -TYPE 99 
?• 

267 



If no changes, type 99 and press any key to RUN. 

IF ANY CHANGES-TYPE ADDRESS 
IF NOT-TYPE 99 
?99 
PRESS ANY KEY TO RUN• 

When the program has stopped, type: 

PRINT PEEK(4096)*256+Peek(4097) 

] PRINT PEEK(4096)*256+PEEK(4097) 
1044 

]• 

This method overcomes the disadvantage of having to convert the hexa
decimal codes to decimal values for BASIC. The Operating System does this 
for us. All the user has to do is to type in the starting address, the number of 
bytes, and each hexadecimal data byte. 

Of course, we must go to the trouble of loading the BASIC Operating 
System each time we want to use it. If you have a disk system, this is no big 
problem. Loading from a cassette recorder is slower, and entering from the 
keyboard is the slowest of all. The BASIC Operating System is rather cumber
some to use, but it has served the purpose of introducing you to machine lan
guage programming in nice, easy steps through BASIC commands and state
ments. 

MULTIPLICATION USING THE SYSTEM MONITOR 

This is the most direct way to enter a machine language program. All 
you have to do is type in the starting address and each hexadecimal value separ
ated by a blank space. Long programs should be broken up into sections of 
approximately 3 physical line lengths. This time we will use hexadecimal data. 

*300:A2 08 A9 12 8D 02 10 A9 3A 80 03 10 
A9 00 80 00 10 80 01 10 OA 2E 00 10 OE 

03 10 90 09 18 6D 02 10 90 03 EE 00 10 C 
A DO EB 80 01 10 60 

* 

268 



To run the program, you merely type in: 

*300G 

* 

To see results, t~ye: 

*300G 

*1000.1001 
1000- 0414 

............... 0414 HEX = 4X256=1024 decimal 
* 1 X 16 = 16 decimal 

4 X 1 = 4 decimal 

1044 

This method allows the direct entry of machine codes, a direct command 
for execution, and a way to examine the appropriate memory locations to see 
the results. 

The preparation necessary before entry is a disadvantage. Mnemonic codes 
must be looked up. All branch destinations must be calculated and converted to 
hexadecimal values. All data must be entered in hexadecimal notation also. Re
sults, too, are in hexadecimal and must be converted to decimal values to be 
meaningful (unless you have eight fingers on each hand). 

·~~1 .... 
\ "7"' 

Not many people like to go through all that mathematical calculation, so they 
use an assembler to create machine language programs. 

MULTIPLICATION USING THE MINI-ASSEMBLER 

When using the Mini-Assembler, the programmer need only be concerned 
with the starting address and the mnemonic codes for the instructions. Mne
monic codes are much easier to remember than hexadecimal numbers. After 
some use, you will find that you don't have to look up the codes. Since they 
are abbreviations of actual instruction names, they have some meaning. 

269 



To access the Mini-Assembler, type: F666G 

~ I,. Assembler responds with its prompt 

Type in the starting address, a colon, and the first mnemonic code. 

*F666G 

!300:LDX #8• 

The Mini-Assembler assembles this instruction and replaces your line with 
the address, Op code, and mnemonic. The cursor moves to the next line, ready 
for the next mnemonic code and any operand. 

*F666G 

0300- A2 08 
!• 

LOX #$08 

Continue entering the mnemonic codes with their operands until the pro
gram is complete. 

*F666G 

0300- A2 OS 
0302- A912 
0304- SD 02 10 
0307- A9 3A 
0309- SD 03 10 
030C- A9 00 
030E- SD 00 10 
0311- SD 0110 
0314- OA 
0315- 2E 00 10 
031S- OE 03 10 
0318- 90 09 
031 D- 1S 
031E- 6D0210 
0321- 90 03 
0323- EE 00 10 
0326- CA 
0327- DO EB 
0329- SD 01 10 
032C- 60 

LDX #$OS 
LDA #$12 
STA $1002 
LDA #$3A 
STA $1003 
LDA #$00 
STA $1000 
STA $1001 
ASL 
ROL $1000 
ASL $1003 
BCC $0326 
CLC 
ADC $1002 
BCC $0326 
INC $1000 
DEX 
BNE $0314 
STA $1001 
RTS 

!$FF69G ~-------
To re-enter Monitor 

* 

270 



To run the program, use the Monitor command: 300G 

*300G 

To see the result, use the Monitor examine: 1000.1001 

*300G 

*1000.1001 
1000- 0414 

"""--.._Same hexadecimal result 

Most people working with machine language agree that an assembler re
moves much of the drudgery of machine language programming. It cannot 
provide execution of programs, but it takes care of assigning Op codes and the 
operands that go with them. 

The Mini-Assembler does rely on the System Monitor for execution of the 
assembled program and for examination of memory for results (although a dis
play of the results could have been included in the program). 

You have seen each of the four methods in action working on the same 
program. Keep in mind that we provided you with the necessary instruction 
codes and data for the program. You should try all four methods on a program 
of your own creation and then decide which method you prefer. 

The combination of the Mini-Assembler and System Monitor is hard to 
beat. The Mini-Assembler does all the detail work, and the Monitor provides the 
execution and debugging capabilities. 

8-BIT DIVISION 

Once again, we'll take a look at pencil-and-paper division before looking 
at the computer's method. Since division is the inverse operation of multiplica
tion, we'll use the same numbers that we used in the multiplication example, 
with one exception. That exception is made to the dividend so that the division 
example will not come out even. There will be a remainder. 

271 



Example: 
1046 (decimal) 

Decimal 

18 quotient 
58)1046 

58 

466 
464 

2 remainder 

58 (decimal) 

Binary 

1 0010 quotient -------
0011 1010) 0100 0001 0110 

00111010 

111 011 
111 010 

10 remainder 

t 
It checks 

------{10010=12 HEX= 18 dee. 

10 = 2 HEX = 2 dee. 

Just as in multiplication, you can see shifts being made as the division 
takes place. Place value is very important in this process. Notice that a subtrac
tion is made only if the divisor is smaller than part of the dividend that is being 
tested. A 1 then is placed in the quotient. If the divisor is larger, a 0 is placed in 
the quotient. 

Our machine language program will operate in much the same way. The 
first part of the program places the appropriate values in their respective memo
ry locations. The values are stores as follows: 

Memory Address Contents 

accumulator Most Significant Byte of the 
dividend 

1000 Divisor 

1001 Least Significant Byte of 
dividend 

1002 Remainder 

The accumulator and memory location 1001 hold the original dividend. 
Each time through the loop, memory location 1001 is shifted left and the 
accumulator is rotated left. If a carry occurs from memory 1001 's shift, it will 
appear as a 1 in the least significant bit of the accumulator when it is rotated. 
If no carry occurs from the memory 1001 shift, a zero appears in the least 
significant bit of the accumulator. Thus, each time through the loop, the divi
dend is shifted one place from memory 1001 to the accumulator. This lets the 
computer compare the divisor with the most significant part of the dividend for 
a trial division. 

272 



The division is accomplished by comparing the divisor with the accumula
tor. Every time the divisor is smaller than or equal to the accumulator, the di
visor is subtracted from the accumulator, and memory 1001 is incremented by 
one. This means a 1 is appearing in the quotient. 

If the divisor is larger than the accumulator, no subtraction is made, and 
memory 1001 is not incremented. This means a 0 appears in the quotient. 

As the bits in the accumulator and memory 1001 move to the left, the 
quotient appears in memory 1001 from the right (0 if divisor did not go into 
dividend; 1 if divisor did go into dividend). 

After the loop is completed (8 passes through), the remainder is placed in 
memory location 1002. When the program is complete, you'll find the 8-bit quo
tient in memory location 1001 and the remainder in memory location 1002. 

ENTER 

DIVISION FLOWCHART 

Housekeeping 

Load X register with 8 
Load accumulator with divisor 
Store it in memory 1000 
Load accumulator with Least 

Significant Byte of dividend 
Store it in memory 1001 
Load accumulator with Most 

Significant Byte of dividend 

Loop 8 times 

Shift memory 1001 left 
Rotate accumulator left 

No 

Subtract divisor from accumulator 
Increment memory 1001 (quotient) 

No 

EXIT 

273 



The housekeeping chores are similar to those of the multiplication pro-
gram. 

Memory Address Machine 
Assembler 

Dec. Hex. Dec. Hex. Mnemonic 

768 0300 162 A2 LOX #08 
769 0301 8 08 

------ ., _______ -------- !-----------------------
770 0302 169 A9 LOA#3A 
771 0303 58 3A 

------ ------- !---------· ----------1------------
772 0304 141 80 STA $1000 
773 0305 0 00 
774 0306 16 10 

------· -------1--------- ----------1------------
775 0307 169 A9 LOA #16 
776 0308 22 16 

------ ------- --------· ----------!-------------
777 0309 141 80 STA $1001 
778 030A 1 01 
779 0308 16 10 

------· ------- -------- ----------!------------
780 030C 169 A9 LOA#4 
781 0300 4 04 

------ ------- --------· ----------~-----------

The rotate instruction appears in a new form in the loop in this program. 
We are using ROL A to rotate the accumulator. It works the same way as it did 
when we rotated a memory location, but this time the accumulator's contents 
are rotated. The loop is again executed 8 times using the X register as a counter. 

Now, the division section. 

274 



Memory Address Machine 
Assembler 

Dec. Hex. Dec. Hex. Mnemonic 

782 030E 14 OE ASL $1001 
783 030F 1 01 
784 0310 16 10 

------ -------1--------- ----------1------------
785 0311 42 2A ROLA 

------~-------1---------+----------1------------
786 0312 199 CD CMP $1000 
787 0313 0 00 
788 0314 16 10 

-----·-1--------1--------- ----------1------------
789 0315 144 90 BCC $0310 
790 0316 6 06 

------ -------1---------+----------1------------
791 0317 237 ED SBC $1000 
792 0318 0 00 
793 0319 16 10 

------ ------- --------r----------1------------
794 031A 238 EE INC $1001 
795 0318 1 01 
796 031C 16 10 

------ -------1---------+----------1------------
797 0310 196 CA DEX 

------ -------1--------- ----------1------------
798 031 E 208 DO BNE $030E 
799 031 F 239 EF 

------1--------1--------- ----------~----------~ 
800 0320 141 SD STA $1002 
801 0321 2 02 
802 0322 16 10 

------ ------- -------- ----------1------------
803 0323 96 60 RTS 

Take your choice as to how you want to enter and run the program: 
1. BASIC 

2. BASIC Operating System 

3. System Monitor 

4. Assembler 

We'll use the Assembler. 

275 



*F666G 

0300- A2 08 
0302- A9 3A 
0304- 8D 00 10 
0307- A9 16 
0309- 8D 01 10 
030C- A9 04 
030E- OE 01 10 
0311- 2A 
0312- CD 00 10 
0315- 90 06 
0317- ED0010 
031 A- EE 01 10 
031D- CA 
031E- DO EF 
0320- 8D 02 10 
0323- 60 
!$FF69G 

*300G 

LDX #$08 
LDA#$3A 
STA $1000 
LDA #$16 
STA $1001 
LDA #$04 
ASL $1001 
ROL 
CMP $1000 
BCC $031D 
SBC $1000 
INC $1001 
DEX 
BNE $030E 
STA $1002 
RTS 

*1001.1002 
1001-12 02 

* \ ~Remainder 
Quotient 

This ends the chapter and the explorations of machine language for this 
book. There are many more things for you to try. There are some instructions 
that haven't been covered; but with the knowledge you now have, you will be 
able to dig everything else out by yourself. The complete list of instructions 
is given in Appendix D. They may also be found, along with a description of 
their use, in MCS6500 Microcomputer Family Programming Manual, available 
from MOS Technology, Inc., 950 Rittenhouse Road, Norristown, PA 19401. 

SUMMARY 

In this chapter you've had a chance to compare four ways to produce a 
machine language program: 

1. Directly from BASIC 

2. From the BASIC Operating System 

3. From the Apple System Monitor 

4. From the Mini-Assembler 

276 



Each method has its advantages and disadvantages. Multiplication and division 
examples were used to demonstrate the different methods. 

You learned that 
1. Multiplication of two 8-bit numbers produces a 16-bit product 

2. The computer can multiply by shifting and rotating data and adding the 
multiplicand in a predetermined way 

3. Each of the four methods produces equivalent results 

4. All the methods except the assembler require looking up instructions and/or 
converting numbers from one base to another 

5. The assembler requires the least amount of preparation of the four methods 
- it assembles a machine language program doing all the necessary calcula
tions and selecting the Op codes from the mnemonics that you provide 

6. The computer performs division in a similar way to the common paper-and
pencil method 

7. Division of a 16-bit dividend by an 8-bit divisor produces an 8-bit quotient 
with a remainder 

New Instructions 

ROL oper - an Absolute Addressed instruction that rotates each bit in the 
specified memory location one place to the left. The Most Significant 
Bit moves into the carry bit, and the carry bit moves into the Least 
Significant Bit of the specified memory. 

ASL oper - an Absolute Addressed instruction that shifts each bit in the spe
cified memory location one place to the left. The Most Significant Bit 
moves into the carry bit, and a zero is moved into the Least Significant 
Bit of the specified memory. 

ROL A - rotates the bits in the accumulator one place to the left. The Most 
Significant Bit moves into the carry bit, and the carry bit moves into the 
Least Significant Bit of the accumulator. 

EXERCISES 

1. Name the four methods given for entering machine language programs. 
a. 
b. 
c. 
d. 

2. Explain what happens in the carry bit following the execution of the ASL A 
instruction. 

The carry bit---------------------

277 



3. Explain why the X register was set to 8 at the beginning of the Multiplica
tion programs. 

4. Given that memory location 1234 contains the following and the carry bit 
is set to one, 

C memory 1234 

show what each contains after a ROL $1234 instruction is executed. 

D .___I _ ____. 

C memory 1234 

5. In what memory locations will the product be found in the Multiplication 
from BASIC program? 
________ (decimal) and _______ (decimal) 

6. If a machine language program is 50 bytes long and it is entered by the 
BASIC Operating System, the data is displayed in specific-sized blocks. 
How many blocks of data would be needed to store the SO-byte program? 

7. If the Apple System Monitor is used to enter a machine language program, 
what number system(s) (decimal, hexadecimal, or binary) is(are) used to 
enter the program? 

8. Explain the results of executing the command *F666G. 

9. What would be displayed on the screen if the RETURN key were pressed 
following *F666G? r *F666G 

10. If you wish to leave the Mini-Assembler and return to the System Monitor, 
what command is typed? 

278 



11. What memory location is used to hold the quotient in the Division program? 
_______ (HEX) 

ANSWERS TO EXERCISES 

1. a. 
b. 

Directly from BASIC using POKE, CALL, and PEEK 
The BASIC Operating System 

c. The System Monitor 
d. The Mini-Assembler 

2. The carry bit {original) is lost. It is replaced by the Most Significant Bit 
from the accumulator. 

3. The X register is used to count the number of passes through the loop. 
Since we are multiplying by an 8-bit number, there are 8 passes through the 
loop. 

4. CQJI ~1-1_1_0_1_0_1~ 

Old Carry 

5. 4097 and 4096 (Most and Least Significant Bytes, respectively) 

6. 3 (The display shows 20 blocks at a time) 

7. hexadecimal only 

8. The Mini-Assembler is entered from the Monitor 

9. 

~ \~cursor 
Prompt 

10. 

r;$FF69G 
11. 1001 (HEX) 

279 



Appendixes 

Appendix A contains information that has been used in this book with a 
page reference for each item. The page reference gives the location of either 
the first occurrence of the item or an explanation of the item. 

Appendix B contains a table of conversions for negative decimal numbers 
to their hexadecimal equivalents. 

Appendix C is an explanation of the memory map used for the video dis
play. Also given are a table of codes used for displaying characters on the screen 
and a table of color codes used for display of graphics. 

Appendix D is a list of 6502 instruction codes. 

APPENDIX A-1 BASIC STATEMENTS 

Statement Page Statement Page 

ASC 16 LOAD 5 
CALL 18 LOGIC 15 
CHR$ 16 MATH 15 
COLOR 13 NEW 3 
CONT 5 NORMAL 10 

DATA 7 NOT RACE 6 
FLASH 10 ON.GOTO 11 
FOR-NEXT 12 POL 14 
GET 8 PEEK 19 
GOSUB 12 PLOT 13 

GOTO 11 POKE 17 
GR 4 PRINT 8 
HUN 14 READ 7 
HOME 10 RESTORE 8 
IF.THEN 12 RETURN 13 

INPUT 6 RUN 4 
INT 17 SAVE 5 
INVERSE 10 SPC 11 
LEFT$ 16 TEXT 4,14 
LET 6 TRACE 6 
LIST 3 VLIN 14 

280 



APPENDIX A-2 MACHINE LANGUAGE INSTRUCTIONS 

Mnemonic Addressing Page Mnemonic Addressing Page 
Code Mode Code Mode 

ADC Absolute 183 LDA Index. Ind. 244 
ADC Immediate 165 LDA Ind. Index 256 
AND Immediate 152 LDA Zero Page 200 
ASL Absolute 262 LDA Zero P. Ind. 236 
ASL Accumulator 66 LDX Immediate 120 
BCC Relative 168 LDX Zero Page 128 
BCS Relative 168 LDY Abs. Index. 156 
BEQ Relative 121 LDY Immediate 84 
BMI Relative 151 NOP Implied 154 
BNE Relative 100 PHA Implied 133 
BPL Relative 152 PLA Implied 139 
CIC Implied 164 ROL Absolute 263 
CLD Implied 209 ROL Accumulator 274 
CMP Absolute 200 RTS Implied 59 
CPX Immediate 120 SBC Absolute 184 
CPY Immediate 100 SBC Immediate 175 
DEC Implied 128 SEC Implied 175 
DEX Implied 128 SED Implied 209 
DEY Implied 128 STA Absolute 55,59 
INX Implied 120 STA Abs. Index 99 
INY Implied 100 STA Ind. Index. 251 
JMP Absolute 121 STA Zero Page 83 
JSR Absolute 72 STA Zero P. Ind. 236 
LDA Absolute 54 TAX Implied 132 
LDA Abs. Ind. 107 TAY Implied 223 
LDA Immediate 54 TXA Implied 132 

281 



APPENDIX A-3 BUILT-IN SUBROUTINES 

Memory Function Performed Page 

Address 

F800 Plot a point 73 
F819 Plot a horizontal line 84 
F828 Plot a vertical line 86 
FB40 Set Graphics Mode 73 
FC58 Clear the screen 73 
FDlB Random number 191 
FD35 Get a keystroke 109 
FD8E Carriage return 200 
FDDA Display accumulator (HEX) 111 
FDED Display accumulator 111 
FF3A Ring the bell 194 

LDA C030 is not really a subroutine, but performs like one. It 
tweaks (or toggles) the speaker. 

APPENDIX A-4 DISPLAY SYMBOLS 

Symbol Function 

* System Monitor Prompt - used for machine 
language 

] Applesoft 11 prompt - used for Applesoft 11 
BASIC 

> Integer BASIC prompt - used for Integer 
BASIC 

! Mini-Assembler prompt - used to assemble 
machine language programs 

• Cursor - shows next print position to be used 
(blinks normally) 

282 



APPENDIX A-5 PROGRAMS 

Title 

Add Two Decimal Numbers 
Add Two Decimal Numbers 
Add Two Numbers 
Automated Scale 
Automated Scale 
BASIC Operating System 
Color Bars 
Copy Memory Locations 
Display a Message 
Display ASCII Codes 
Display a String of One Letter 
Display One Letter 
Division 
Four-Corner Plot 
Horizontal Line 
Indexed Indirect Addressing Demo 
Indirect Indexed Addressing Demo 
Increment the X Register 
Load Accumulator and Store 
Modified Addition 
Multiplication from BASIC 
Multiplication from BASIC Op. Sys. 
Multiplication from Mini-Assembler 
Multiplication from System Monitor 
Number Guessing Game 
PEEK and POKE Demonstration 
Play Your Own Tune 
Plot a Point 
POKE and PEEK, Then POKE Again 
Rectangle Drawing 
Running Alphabet 
Scale with Notes 
Storing Data from Keyboard 
Subtract Two Numbers 
Tone Experiment 
Two-Byte Addition 
Two-Byte Subtraction 
Vertical Line 

M/L = Machine Language 
A/L = Assembly Language 
BASIC= Applesoft II BASIC 

283 

Language Page 

A/L 229-233 
M/L 209 
M/L 165 
A/L 253-254 
M/L 134-137 

BASIC 42-44 
A/L 248-249 
A/L 236-239 
M/L 118-119 
M/L 109-111 
M/L 97 
M/L 95 
A/L 274-276 
M/L 80-81 
M/L 83 
A/L 245 
A/L 252-253 
M/L 221 
M/L 60 
M/L 170 
M/L 265 
M/L 266-267 
A/L 270 
M/L 268 
M/L 191-195 

BASIC 27 
M/L 149-150 
M/L 73 

BASIC 28 
M/L 89-91 
M/L 107-108 
M/L 143-146 
A/L 240-243 
M/L 175 
M/L 126-127 
M/L 182 
M/L 184 

M/L 86 



APPENDIX B HEX EQUIVALENTS FOR DECIMAL NEGATIVES 

Dec. HEX Dec. HEX Dec. HEX 

-1 FF -44 D4 -B7 A9 
-2 FE -45 D3 -BB AB 
-3 FD -46 D2 -89 A7 
-4 FC -47 Dl -90 A6 
-5 FB -4B DO -91 AS 
-6 FA -49 CF -92 A4 

-7 F9 -50 CE -93 A3 
-B FB -51 CD -94 A2 
-9 F7 -52 cc -95 Al 
-10 F6 -53 CB -96 AO 
-11 F5 -54 CA -97 9F 
-12 F4 -55 C9 -9B 9E 
-13 F3 -56 CB -99 9D 
-14 F2 -57 C7 -100 9C 
-15 Fl -SB C6 -101 9B 
-16 FO -59 cs -102 9A 
-17 EF -60 C4 -103 99 
-lB EE -61 C3 -104 9B 
-19 ED -62 C2 -105 97 
-20 EC -63 Cl -106 96 
-21 EB -64 co -107 95 
-22 EA -65 BF -108 94 
-23 E9 -66 BE -109 93 
-24 EB -67 BD -110 92 
-25 E7 -6B BC -111 91 
-26 E6 -69 BB -112 90 
-27 E5 -70 BA -113 BF 
-2B E4 -71 B9 -114 BE 
-29 E3 -72 BB -115 BD 
-30 E2 -73 B7 -116 BC 
-31 El -74 B6 -117 8B 
-32 EO -75 BS -118 BA 
-33 DF -76 B4 -119 B9 
-34 DE -77 B3 -120 BB 
-35 DD -7B B2 -121 B7 
-36 DC -79 Bl -122 B6 
-37 DB -BO BO -123 BS 
-3B DA -Bl AF -124 B4 
-39 D9 -B2 AE -125 83 
-40 DB -B3 AD -126 B2 
-41 D7 -B4 AC -127 Bl 
-42 D6 -BS AB -l 2B BO 
-43 D5 -B6 AA 

284 



APPENDIX C-1 VIDEO MEMORY 

You discovered in Chap. 5 that the top line (or line 1) of the video display 
is associated with memory locations 0400 through 0427: hex. You might suspect 
that the next line would be assoeiated with memory locations 0428 through 
044F, but this is not so. 

If you go back to the CHARACTER DISPLAY PROGRAM in Chap. 4 
and change the instruction at memory locations 775, 776, and 777 to: ST A 
0428, the program would store a string of A's in those locations. 

775 99 STA 0428,Y 
776 28 
777 04 

Here is where the A's would be printed on the display if the program is 
run with these values. 

9th line 

If the value stored in memory location 776 is changed to 50, where do you 
think the string of A's would appear? If you said the seventeenth line, you were 
correct. 

17th line --~AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

So far, we have found lines 1, 9, and 17. 

line 1 0400 ................................... 0427 

line 9 0428 ................................... 044F 

line 17 0450 ................................... 0477 

By this time, you may have guessed what memory locations are associated 
with all 24 lines of the video display. 

285 



Line 1 
Line 2 
Line 3 
Line 4 
Line 5 
Line 6 
Line 7 
Line 8 
Line 9 
Line 10 
Line 11 
Line 12 
Line 13 
Line 14 
Line 15 
Line 16 
Line 17 
Line 18 
Line 19 
Line 20 
Line 21 
Line 22 
Line 23 
Line 24 

0400 - ................................ 0427 
0480..,.. ................................ 04A7 
0500 - ................................ 0527 
0580 ..,.. ............... : ................ 05A7 
0600 - ................................ 0627 
0680..,.. ................................ 06A7 
0700 - ................................ 0727 
0780-. ................................ 07A7 
0428..,.. ................................ 044F 
04A8.,.. ................................ 04CF 
0528..,.. ................................ 054F 
05A8-. ................................ 05CF 
0628-. ................................ 064F 
06A8-. ................................ 06CF 
0728-. ................................ 074F 
07A8-. ................................ 07CF 
0450 -- ................................ 0477 
0400-. ................................ 04F7 
0550 -- ................................ 0577 
0500-. ................................ 05F7 
0650 -- ................................ 0677 
0600-. ................................ 06F7 
0750 -- ................................ 0777 
0700-. ................................ 07F7 

286 



APPENDIX C-2 ASCII SCREEN CODES 

Char Nor. Fla. 

AO 60 
! Al 61 
" A2 62 
# A3 63 
$ A4 64 
% AS 6S 
& A6 66 , A7 67 
( AS 6S 
) A9 69 
* AA 6A 
+ AB 6B 

' 
AC 6C 

- AD 6D 
AE 

I AF 
0 BO 
1 Bl 
2 B2 
3 B3 
4 B4 
s BS 
6 B6 
7 B7 
s BS 
9 B9 

BA 
; BB 

< BC 
= BD 
> BE 
? BF 

Char = Character 
Nor.= Normal mode 
Fla. = Flashing mode 
Inv. = Inverse mode 

6E 
6F 
70 
71 
72 
73 
74 
7S 
76 
77 
7S 
79 
7A 
7B 
7C 
7D 
7E 
7F 

Inv. Char 

20 @ 

21 A 
22 B 
23 c 
24 D 
2S E 
26 F 
27 G 
:is H 
29 I 
2A J 
2B K 
2C L 
2D M 
2E N 
2F 0 
30 p 

31 Q 
32 R 
33 s 
34 T 
3S u 
36 v 
37 w 
3S x 
39 y 

3A z 
3B [ 
3C \ 
3D ] 
3E " 3F -

287 

Nor. Fla. Inv. 

co 40 00 
Cl 41 01 
C2 42 02 
C3 43 03 
C4 44 04 
cs 4S OS 
C6 46 06 
C7 47 07 
cs 4S OS 
C9 49 09 
CA 4A OA 
CB 4B OB 
cc 4C oc 
CD 4D OD 
CE 4E OE 
CF 4F OF 
DO so 10 
Dl Sl 11 
D2 S2 12 
D3 S3 13 
D4 S4 14 
DS SS 1S 
D6 S6 16 
D7 S7 17 
DS SS 1S 
D9 S9 19 
DA SA lA 
DB SB 1B 
DC SC lC 
DD SD 1D 
DE SE 1E 
DF SF lF 



APPENDIX C-3 COLOR CODES FOR LOW RESOLUTION 
GRAPHICS 

Decimal HEX Color 

0 0 Black 
1 1 Magenta 
2 2 Dark blue 
3 3 Light purple 
4 4 Dark green 
5 5 Grey 
6 6 Medium blue 
7 7 Light blue 
8 8 Brown 
9 9 Orange 
10 A Grey 
11 B Pink 
12 c Green 
13 D Yellow 
14 E Blue/green 
15 F White 

The colors may vary somewhat depending on the settings of your TV set. 

288 



APPENDIX D 6502 INSTRUCTION CODES 

Mnemonic Addressing Assembler Op No. Flags 
Code Mode Form Code Bytes Affected 

ADC Immediate ADC #oper 69 2 NZCV 
Zero Page ADC oper 65 2 
Zero Page,X ADC oper,X 75 2 
Absolute ADC oper 6D 3 
Absolute,X ADC oper,X 7D 3 
Absolute,Y ADC oper,Y 79 3 
(lndirect,X) ADC (oper,X) 61 2 
(lndirect),Y ADC (oper),Y 71 2 

AND Immediate AND #oper 29 2 NZ 
Zero Page AND oper 25 2 
Zero Page,X AND oper,X 35 2 
Absolute AND oper 2D 3 
Absolute,X AND oper,X 3D 3 
Absolute,Y AND oper,Y 39 3 
(lndirect,X) AND (oper,X) 21 2 
(Indirect), Y AND (oper),Y 31 2 

ASL Accumulator ASLA OA 1 NZC 
Zero Page ASL oper 06 2 
Zero Page,X ASL oper,X 16 2 
Absolute ASL oper OE 3 
Absolute,X ASL oper,X lE 3 

BCC Relative BCC oper 90 2 none 

BCS Relative BCS oper BO 2 none 

BEQ Relative BEQ oper FO 2 none 

BIT Zero Page BIT oper 24 2 NZV 
Absolute BIT oper 2C 3 

BMI Relative BMI oper 30 2 none 

BNE Relative BNE oper DO 2 none 

BPL Relative BPL oper 10 2 none 

BRK Implied BRK 00 1 I 

289 



Mnemonic Addressing Assembler Op No. Flags 
Code Mode Form Code Bytes Affected 

BVC Relative BVC oper 50 2 none 

BVS Relative BVS oper 70 2 none 

CLC Implied CLC 18 1 c 

CLO Implied CLO 08 1 D 

CLI Implied CLI 58 1 I 

CLV Implied CLV 88 1 v 

CMP Immediate CMP #oper C9 2 NZC 
Zero Page CMP oper cs 2 
Zero Page,X CMP oper,X 05 2 
Absolute CMP oper CD 3 
Absolute,X CMP oper,X DD 3 
Absolute,Y CMP oper,Y 09 3 
(lndirect,X) CMP (oper,X) Cl 2 
(lndirect),Y CMP (oper),Y Dl 2 

CPX Immediate CPX #oper EO 2 NZC 
Zero Page CPX oper E4 2 
Abso!ute CPX oper EC 3 

CPY Immediate CPY #oper co 2 NZC 
Zero P~ge CPY oper C4 2 
Absolute CPY oper cc 3 

DEC Zero Page DEC oper C6 2 NZ 
Zero Page,X DEC oper,X 06 2 
Absolute DEC oper CE 3 
Absolute,X DEC oper,X DE 3 

DEX Implied DEX CA 1 NZ 

DEY Implied DEY 88 1 NZ 

EOR Immediate EOR #oper 49 2 NZ 
Zero Page EOR oper 45 2 
Zero Page,X EOR oper,X 55 2 

290 



Mnemonic Addressing Assembler Op No. Flags 
Code Mode Form Code Bytes Affected 

Absolute EOR oper 40 3 
Absolute,X EOR oper,X SD 3 
Absolute,Y EOR oper,Y S9 3 
(lndirect,X) EOR (oper,X) 41 2 
(Indirect), Y EOR (oper),Y S1 2 

INC Zero Page INC oper E6 2 NZ 
Zero Page,X INC oper,X F6 2 
Absolute INC oper EE 3 
Absolute,X INC oper,X FE 3 

INX Implied INX E8 1 NZ 

INY Implied INY C8 1 NZ 

JMP Absolute JMP oper 4C 3 none 
Indirect JMP (oper) 6C 3 

JSR Absolute JSR oper 20 3 none 

LOA Immediate LDA #oper A9 2 NZ 
Zero Page LDA oper AS 2 
Zero Page,X LOA oper,X BS 2 
Absolute LDA oper AD 3 
Absolute,X LOA oper,X BD 3 
Absolute,Y LDA oper,Y B9 3 
(lndirect,X) LDA (oper,X) A1 2 
(lndirect),Y LDA (oper),Y B1 2 

LOX Immediate LOX #oper A2 2 NZ 
Zero Page LOX oper A6 2 
Zero Page,Y LDX oper,Y B6 2 
Absolute LOX oper AE 3 
Absolute,Y LOX oper,Y BE 3 

LOY Immediate LOY #oper AO 2 NZ 
Zero Page LOY oper A4 2 
Zero Page,X LDY oper,X B4 2 
Absolute LDY oper AC 3 
Absolute,X LOY oper,X BC 3 

291 



Mnemonic Addressing Assembler Op No. Flags 

Code Mode Form Code Bytes Affected 

LSR Accumulator LSRA 4A 1 NZC 
Zero Page LSR oper 46 2 
Zero Page,X LSR oper,X S6 2 
Absolute LSR oper 4E 3 
Absolute,X LSR oper,X SE 3 

NOP Implied NOP EA 1 none 

ORA Immediate ORA #oper 09 2 NZ 
Zero Page ORA oper OS 2 
Zero Page,X ORA oper,X 1S 2 
Absolute ORA oper OD 3 
Absolute,X ORA oper,X 1D 3 
Absolute,Y ORA oper,Y 19 3 
(lndirect,X) ORA (oper,X) 01 2 
(Indirect), Y ORA (oper),Y 11 2 

PHA Implied PHA 48 1 none 

PHP Implied PHP 08 1 none 

PLA Implied PLA 68 1 NZ 

PLP Implied PLP 28 1 all 

ROL Accumulator ROLA 2A 1 NZC 
Zero Page ROL oper 26 2 
Zero Page,X ROL oper,X 36 2 
Absolute ROL oper 2E 3 
Absolute,X ROL oper,X 3E 3 

RTI Implied RTI 40 1 all 

RTS Implied RTS 60 1 none 

SBC Immediate SBC #oper E9 2 NZCV 
Zero Page SBC oper ES 2 
Zero Page,X SBC oper,X FS 2 
Absolute SBC oper ED 3 

292 



Mnemonic Addressing Assembler Op No. Flogs 
Code Mode Form Code Bytes Affected 

Absolute,X SBC oper,X FD 3 
Absolute,Y SBC (oper,Y) F9 3 
(lndirect,X) SBC (oper,X) El 2 
(lndirect),Y SBC (oper),Y Fl 2 

SEC Implied SEC 38 1 c 

SED Implied SED F8 1 D 

SEI Implied SEI 78 1 I 

STA Zero Page STA oper 85 2 none 
Zero Page,X STA oper,X 95 2 
Absolute STA oper 8D 3 
Absolute,X STA oper,X 9D 3 
Absolute,Y STA oper,Y 99 3 
(lndirect,X) ST A (oper,X) 81 2 
(lndirect),Y STA (oper},Y 91 2 

STX Zero Page STX oper 86 2 none 
Zero Page,Y STX oper,Y 96 2 
Absolute STX oper 8E 3 

STY Zero Page STY oper 84 2 none 
Zero Page,X STY oper,X 94 2 
Absolute STY oper SC 3 

TAX Implied TAX AA 1 NZ 

TAY Implied TAY A8 1 NZ 

TVA Implied TVA 98 1 NZ 

TSX Implied TSX BA 1 NZ 

TXA Implied TXA 8A 1 NZ 

TXS Implied TXS 9A 1 none 

293 



Absolute indexed addressing, 239 
Accumulator, 47, 53 
ADC 

absolute mode, 182 
immediate mode, 164 

Addition, 163, 179-80 
Alter memory, 161 
AND, 152 
Apple languages, 1 
Applesoft 11 BASIC, 2 
Arithmetic Logic Unit, 68 
ASC, 16 
ASCII Codes, 95, 108, 109-110, 113 
ASL 

Absolute Mode, 262 
Immediate mbde, 66 

Assumptions (System), 1 
Asterisk prompt, 1 

BASIC, 1 
Basic Apple Computer, 2 
BASIC Operating System, 25, 29-30, 

41-44 
BCC, 167 
BCS, 167 
BEQ, 119 
Binary numbers, 47-48 
Bits, 23, 46 
Blinking text, 116 
BMI, 156 
BNE, 97 

Index 

294 

BPL, 156 
Branching, 100 

backward, 104 
forward, 102 

Byte, 31, 46 

CALL, 18, 27 
Carriage return, 193 
Carry flag, 167 
Central Processing Unit, 28, 46 
Changing errors, 35 
CHR$, 16 
CLC, 164 
CLO, 209 
Clear Screen, 93 
CMP, 119, 193 
COLOR, 13 
Color Table, 74 
Column for Graphs, 75 
CONT,5 
Counters, 95 
CPX, 114 
CPY, 97 
Cursor, 1 

DATA, 7 
Data block move, 210 
Data block verify, 212 
Decimal arithmetic, 208 
Decimal flag, 209 
DEX; 128 



DEY, 128 
Display a character, 111 
Display two HEX digits, 111 
Dividend, 270 
Divisor, 271 

Errors, 35 
Examine memory, 161 
Executing machine language 

programs, 163 

Firmware ROM, 2 
FLASH, 10 
FOR-NEXT, 12 
Four-Corner Plot, 80 

GET, 8, 62 
Get a keystroke, 111 
GOSUB, 12-13 
GOTO, 11 
GRaphics, 4 
Graphics and sound, 146 

Hexadecimal, 29, 32, 37-38 
Hexadecimal addition, 203 
Hexadecimal digit, 39, 48 
Hexadecimal subtraction, 206-7 
HUN, 14 
HOME, 10 
Horizontal Lines, 83-84 

IF-THEN, 12 
INC, 171 
Index, 95 
Indexed Addressing, 234 

Indexed Indirect, 244 
Indirect Indexed, 251 

Index Register, 75 
INPUT, 6-7 
Instruction decoder, 47 
INVERSE, 10 
Inverse Text, 115 
INX, 107 
INY,97 

JMP, 118 
JSR, 72 

LDA 
absolute, 171 
Absolute Indexed, 240 
C030, 128 
immediate, 58 
Indexed Indirect, 244 
zero page, 191 
Zero Page Indexed, 235 

LDX 
absolute, 128 
immediate, 107 

LDY 

absolute, 142 
immediate, 93 

Least significant bit, 52 
Least Significant Byte, 52 
LEFT$, 16 
LET,6 
LIST, 3 
LOAD, 5 
Loop, 11 

Machine language, 22, 28-29 
Memory, assigned, 57 
Memory map, 26 
Mini-Assembler, 227 
Mnemonic code, 58, 227 
Monitor, 160 
Most significant bit, 52 
Most Significant Byte, 52 
Move data block, 210 
Multiple-byte arithmetic, 179-80 
Multiplicand, 260 
Multiplication, 259-60 
Multiplier, 260 

Negative numbers, 186-89 
NEW,3 
NOP, 154-55 
NORMAL, 10 
NOTRACE,6 

295 



One's complement, 173 
ON-GOTO, 11-12 
Op Code, 58 
Operating system, 25 
Order of Operations, 16 

PDL, 14 
PEEK, 19, 24-25 
PHA, 133 
Pitch for Sound, 131 
PLA, 134 
PLOT, 13 
Plot a Point, 73 
Plug-in ROM card, 2 
POKE, 17-18, 24 
PRINT, 8-10 
Processor status register, 166 

Quotient, 272 

Random number, 191 
READ, 7 
Rectangles, 89-92 
Registers, 214 
Relationships, 15 
Remainder, 12-17 
RESTORE, 8 
RETURN, 13 
Ring bell, 193 
ROL 

absolute mode, 262 
accumulator, 273 

ROM, 1 
Row for Graphics, 75 
RTS, 59 

SAVE, 5 
SBC, 174, 184 

SEC, 174 
SEO, 209 
Single step, 217 
SPC, 11 
STA 

absolute, 59 
Absolute Indexed, 97, 239 
Indirect Indexed, 247 
Zero Page, 92 
Zero Page Indexed, 235 

Stack, 133 
Starting address, 31 
Status flags, 164-65 
Subroutine, 27-28 
Subtraction, 172, 184 
System monitor, 160 

TAX, 132 
TAY, 220-21 
TEXT, 4, 14-15 
TRACE, 6 
Tweak speaker, 125 
Two-byte addition, 179-84 
Two-byte subtraction, 184-86 
Two's complement, 173 
TXA, 132 

Verify data blocks, 212 
Vertical Lines, 86-89 
VLIN, 14 

X register, 106 

Y register, 98 

Zero Page Indexed Addressing, 234 
Zero Page instructions, 73 

296 




