
Apple II

Apple Pascal
Language Reference Manual

NOTICE

Apple Computer Inc. reserves the right to make improvements in the
product described in this manual at any time and without notice.

DISCLAIMER OF ALL WARRANTIES AND LIABILITY

APPLE COMPUTER INC. MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO THIS MANUAL OR WITH RESPECT TO THE SOFTWARE DESCRIBED
IN THIS MANUAL, ITS QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS
FOR ANY PARTICULAR PURPOSE. APPLE COMPUTER INC. SOFTWARE IS SOLD OR
LICENSED "AS IS". THE ENTIRE RISK AS TO ITS QUALITY AND PERFORMANCE IS
WITH THE BUYER. SHOULD THE PROGRAMS PROVE DEFECTIVE FOLLOWING THEIR
PURCHASE, THE BUYER (AND NOT APPLE COMPUTER INC., ITS DISTRIBUTOR, OR
ITS RETAILER) ASSUMES THE ENTIRE COST OF ALL NECESSARY SERVICING,
REPAIR, OR CORRECTION AND ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES. IN
NO EVENT WILL APPLE COMPUTER INC. BE LIABLE FOR DIRECT, INDIRECT,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN THE
SOFTWARE, EVEN IF APPLE COMPUTER INC. HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. SOME STATES DO NOT ALLOW THE EXCLUSION OR
LIMITATION OF IMPLIED WARRANTIES OR LIABILITY FOR-INCIDENTAL OR
CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT
APPLY TO YOU.

This manual is copyrighted. All rights are reserved. This document
may not, in whole or part, be copied, photocopied, reproduced,
translated or reduced to any electronic medium or machine readable form
without prior consent, in writing, from Apple Computer Inc.

© 1980 by APPLE COMPUTER INC.
10260 Bandley Drive
Cupertino, California 95014
(408) 996-HH0

The word APPLE and the Apple logo are registered trademarks of
APPLE COMPUTER INC.

APPLE Product #A2L0027
(030-0101-00)

:

Apple II

Apple Pascal
Language Reference Manual

ACKNOWLEDGEMENTS

The Apple Pascal™ system incorporates UCSD Pascal'M and Apple
extensions for graphics and other functions. UCSD Pascal was developed
largely by the Institute for Information Science at the University of
California at San Diego, under the direction of Kenneth L. Bowles.

"UCSD PASCAL" is a trademark of The Regents of The University of
California. Use thereof in conjunction with any goods or services is
authorized by specific license only and is an indication that the
associated product or service has met quality assurance standards
prescribed by the University. Any unauthorized use thereof is contrary
to the laws of the State of California.

APPLE PASCAL LANGUAGE

TABLE OF CONTENTS

CHAPTER 1

INTRODUCTION 1

2 Getting Started
2 Scope of This Document
2 How to Use This Document
3 Organization
4 Notation Used in This Manual
4 Differences Between Apple and Standard Pascal
4 Predefined Variable Types
4 Built-In Procedures and Functions
5 Breaking Programs Into Pieces
5 Special Units for the Apple

CHAPTER 2

PREDEFINED TYPES
8 The STRING Type

11 The FILE Types
11 A Note on Terminology
11 INTERACTIVE Files
12 Untyped Files
12 Predefined Files
12 Textfiles
14 The SET Types
15 Packed Variables
15 PACK and UNPACK
15 Packed Files
15 Packed Arrays
17 Packed Records
18 Using Packed Variables as Parameters
19 The LONG INTEGER Type

7

APPLE PASCAL LANGUAGE

CHAPTER 3

BUILT-IN PROCEDURES AND FUNCTIONS
22 String Built-Ins
22 The LENGTH Function
23 The POS Function
23 The CONCAT Function
24 The COPY Function
24 The DELETE Procedure
25 The INSERT Procedure
25 The STR Procedure
26 Input and Output Built-Ins
26 Overview of Apple Pascal I/O Facilities
27 The REWRITE Procedure
27 The RESET Procedure
28 The CLOSE Procedure
29 The EOF Function
30 The EOLN Function
30 The GET and PUT Procedures
32 The IORESULT Function
32 Introduction to Text I/O
33 The READ Procedure
34 READ With a CHAR Variable
34 READ With a. Numeric Variable
35 The READLN Procedure
36 The WRITE and lvRITELN Procedures
39 The PAGE Procedure
39 The SEEK Procedure
41 The UNITREAD and UNITWRITE Procedures
42 The UNITBUSY Function
42 The UNITWAIT Procedure
43 The UNITCLEAR Procedure
43 The BLOCKREAD and BLOCKWRITE Functions
45 Miscellaneous Built-Ins
45 The ATAN Function
45 The LOG Function
45 The TRUNC Function
45 The PWROFTEN Function
46 The MARK and RELEASE Procedures
48 The HALT Procedure
48 The EXIT Procedure
48 The MEMAVAIL Function
49 The GOTOXY Procedure
49 The TREESEARCH Function
51 Byte-Oriented Built-Ins
51 The SIZEOF Function
51 The SCAN Function
52 The MOVELEFT and MOVERIGHT Procedures
53 The FILLCHAR Procedure
54 Summary

APPLE PASCAL LANGUAGE

CHAPTER 4

THE PASCAL COMPILER 57

58 Introduction
58 Diskette Files Needed
59 Using the Compiler
61 The Compiler Options
61 Compiler Option Syntax
62 The "Comment" Option
62 The "GOTO Statements" Option
63 The "IO Check" Option
63 The "Include File" Option
64 The "Listing" Option
66 The ''Noload" Option
66 The "Page" Option
66 The "Quiet Compile" Option
66 The "Range Check" Option
67 The "Resident" Option
67 The "Swapping" Option
68 The "User Program" Option
68 The "Use Library" Option
70 Compiler Option Summary

CHAPTER 5

PROGRAMS IN PIECES 71

72 Introduction
74 SEGMENT Procedures and Functions
74 Requirements and Limitations
75 Libraries and UNITs
75 UNITs and USES
76 Regular UNITs
76 Intrinsic UNITs
77 The INTERFACE Part of a UNIT
78 The IMPLEMENTATION Part of a ID~IT
78 The Initialization Part of a UNIT
78 An Example UNIT
79 Using the Example UNIT
80 Nesting UNITs
81 Changing a UNIT or its Host Program
82 EXTERNAL Procedures and Functions

APPLE PASCAL LANGUAGE

CHAPTER 6

OTHER DIFFERENCES
84 Identifiers
84 CASE Statements

Comments
GOTO
Program Headings
Size Limits
Extended Comparisons

84
85
85
85
85
86
86
86

Procedures and Functions as Parameters
RECORD Types
The ORD Function

CHAPTER 7

SPECIAL UNITS FOR THE APPLE
90 Apple Graphics: The TURTLEGRAPHICS UNIT
90 The Apple Screen
90 The INITTURTLE Procedure
91 The GRAFHODE Procedure
91 The TEXTMODE Procedure
91 The VIEWPORT Procedure
92 Using Color: PENCOLOR
93 More Color: FILLSCREEN
94 Turtle Graphic Procedures: TURNTO, TURN, and MOVE
95 Turtle Graphic Functions: TURTLEX, TURTLEY, TURTLEANG,

and SCREENBIT
95 Cartesian Graphics: The HOVETO Procedure
96 Graphic Arrays: The DRAWBLOCK Procedure
98 Text as Graphics: WCHAR, WSTRING, and CHARTYPE

101 Other Special Apple Features: The APPLESTUFF UNIT
101 The RANDOM Function
102 The RANDOMIZE Procedure
102 The KEYPRESS Function
103 PADDLE, BUTTON, and TTLOUT
104 ~laking Husic: The NOTE Procedure
105 Transcendental Functions: The TRANSCEND UNIT

APPLE PASCAL LANGUAGE

83

89

APPENDIX A

DEMONSTRATION PROGRAMS
108 Introduction
108 A Fully Annotated Graphics Program
120 Other Demonstration Programs
120 Diskette Files Needed
121 The "TREE" Program
123 The "BALANCED" Program
124 The "CROSSREF" Program
125 The "SPIRODEHO" Program
126 The "HILBERT" Program
126 The "GRAFDEHO" Program
127 The "GRAFCHARS" Program
128 The ''DISKIO" Program

APPENDIX B

TABLES
132 Table 1: Execution Errors
133 Table 2: I/O Errors (IORESULT Values)
134 Table 3: Reserved Words
135 Table 4: Predefined Identifiers
136 Table 5: Identifiers Declared in Supplied UNITs
137 Table 6: Compiler Error Messages
141 Table 7: ASCII Character Codes

APPENDIX C

ADDITIONAL TEXT 1/0 DETAILS

107

131

143

APPLE PASCAL LANGUAGE

APPENDIX D

ONE-DRIVE STARTUP
148 Equipment You Will Need
148 The Two-Step Startup
148 Step One of Startup
149 Step Two of Startup
150 Changing the Date
151 Making Backup Diskette Copies
151 Why We Make Backups
152 How We Make Backups
152 Getting the Big Picture
153 Formatting New Diskettes
155 Making the Actual Copies
158 Do It Again, Sam
158 Using the System
158 A Demonstration
160 Do It Yourself
164 What To Leave In the Drive
165 One-Drive Summary

APPENDIX E

TWO-DRIVE STARTUP
170 Equipment You Will Need
170 More Than Two Disk Drives
171 Numbering the Disk Drives
171 Pascal In Seconds
172 Changing the Date
173 Making Backup Diskette Copies
173 Why We Make Backups
174 How We Make Backups
174 Getting the Big Picture
175 Formatting New Diskettes
177 Making the Actual Copies
179 Do It Again, Sam
180 Using the System
180 A Demonstration
181 Do It Yourself
186 What To Leave In the Drives
186 Using More Than Two Drives
187 Multiple-Drive Summary

APPLE PASCAL LANGUAGE

147

169

APPENDIX F

APPLE PASCAL SYNTAX 191

INDEX 205

APPLE PASCAL LANGUAGE

2 Getting Started
2 Scope of This Document
2 How to Use This Document
3 Organization
4 Notation Used in This Manual
4 Differences Bet1~een Apple and Standard Pascal
4 Predefined Variable Types
4 Built - In Procedures and Functions
5 Breaking Programs Into Pieces
5 Special Units for the Apple

INTRODUCTION 1

GEniNG STARTED
If you don't already know how to start up the Apple Pascal Operating
System for use with the Apple Pascal language, please read Appendix D if
you have one diskette drive, or Appendix E if you have two or more
diskette drives. Each of these Appendices is a tutorial session,
covering system startup, diskette initialization, diskette copying, and
a demonstration of Apple Pascal programming.

SCOPE OF THIS DOCUMENT
This document covers the features of the Apple Pascal programming
language that are different from the "Standard Pascal" language defined
by Jensen and Wirth in the Pascal User Manual and Report (Springer­
Verlag, New York, 1978). This includes the differences introduced in
UCSD Pascal, and also special extensions of UCSD Pascal for the Apple
computer.

The Apple Pascal system facilities such as the Editor, the Linker, etc.
are covered in the Apple Pascal Operating System Reference Manual.
Thes~ facilities are useful in various applications besides Apple Pascal
programming; they are discussed here only as they relate specifically to
Apple Pascal programs.

HOW TO USE THIS DOCUMENT
To use this document you must either have a thorough knowledge of
Standard or UCSD Pascal, or use some book or manual that fully describes
Standard or UCSD Pascal. This is a reference manual, designed to give
you the facts without very much emphasis on teaching you Pascal.

You should also have the Apple Pascal Operating System Reference Manual,
which gives cocplete information on the various system facilities that
support the creation and development of Apple Pascal programs.

One aspect of the Apple Pascal Operating System is covered in this
manual: the procedures for starting up the system when your purpose is
to work with Apple Pascal programs. Appendices D and E describe these
procedures.

2 APPLE PASCAL LANGUAGE

At various places in the text you will see the special symbol

which indicates a feature that you need to be cautious about. Another
special symbol is

which indicates a particularly useful piece of information (usually
something that is not obvious).

ORGANIZATION
Chapters 2 and 3 cover the large differences in Apple Pascal that will
have the most immediate programming impact: the differences in
predefined types, procedures, and functions, especially the procedures
for input and output.

Chapter 4 covers the compiler operation and the compiler options, which
are powerful and important. Further details on compiler operation can
be found in the Apple Pascal Operating System Reference Manual.

Chapter 5 covers techniques for breaking a program into separate pieces
which can be linked together. These techniques are another major area
of difference but are not needed for small programs.

Chapter 6 gives the remaining differences in the language, which are of
minor impact for most programs.

Chapter 7 covers the extremely powerful library options of Apple Pascal,
including the Turtlegraphics package.

Appendix A presents a fully annotated program that uses graphics, and
also describes the demonstration programs supplied with Apple Pascal.

Appendix B contains various tables relating to the Apple Pascal Language
and the system.

Appendix C gives some technical details on textfile I/O operations.

Appendices D and E cover system startup and essential operating
procedures for use with the Apple Pascal language.

Appendix F is a complete set of syntax diagrams for the Apple Pascal
language.

INTRODUCTION 3

NOTATION USED IN THIS MANUAL
In syntax descriptions, the following convention is used:

- Square brackets [] are used to enclose anything that may
legally be omitted from the syntax.

DIFFERENCES BETWEEN APPLE
AND STANDARD PASCAL
The major differences are summarized below; see Chapter 6 for the minor
ones.

PREDEFINED VARIABLE TYPES

- A new variable type, STRING, supported by a set of new
built-in procedures and functions. See Chapters 2
and 3.

- A new file type, INTERACTIVE, supported by the extended file
I/0 procedures and functions. See Chapters 2 and 3.

- Minor restrictions on SET types.

- Minor differences in the treatment of PACKED variables.
Automatic PACK and UNPACK operations, with elimination of the
PACK and UNPACK procedures of Standard Pascal. See
Chapter 2.

- An extension of the INTEGER type called LONG INTEGER. A LONG
INTEGER is a value represented by up to 36 binary-coded
decimal (BCD) digits. See Chapter 2.

BUILT-IN PROCEDURES AND FUNCTIONS
These are the procedures and functions that are part of the Apple Pascal
language itself, as opposed to special-purpose functions implemented in
the system library. Built-in procedures and functions are called
"built-ins" for short.

- New built-ins supporting STRING variables. See Chapters 2
and 3.

- Extended definitions of the built-ins for file I/0, supporting
INTERACTIVE files. See Chapters 2 and 3.

4 APPLE PASCAL LANGUAGE

- A set of new byte-oriented built-ins. See Chapter 3.

- New built-ins called MARK and RELEASE which replace the
DISPOSE of Standard Pascal. See Chapter 3.

- Other new built-ins and redefinitions of Standard Pascal
built-ins. See Chapter 3.

- The transcendental functions SIN, COS, EXP, ATAN, LN, LOG, and
SQRT are not built-ins in Apple Pascal. They are provided as
library functions. See Chapter 7.

BREAKING PROGRAMS INTO PIECES
- SEGMENT procedures and functions, which reside in memory only

when active. See Chapter 5.

- UNITS, which are separately compiled collections of procedures
that can be integrated into any host program via a library
facility. See Chapter 5.

- EXTEP~AL procedures and functions, which are declared in an
Apple Pascal program but implemented in assembly language and
then integrated into a host program via the library facility.
See Chapter 5.

SPECIAL UNITS FOR THE APPLE
-These are major facilities for the Apple, implemented as UNITs

in a system library. They include the Turtlegraphics package
for the high-resolution color display of the Apple. See
Chapter 7.

INTRODUCTION 5

8 The STRING Type
ll The FILE Types
11 A Note on Terminology
11 INTERACTIVE Files
12 Untyped Files
12 Predefined Files
12 Text files
14 The SET Types
15 Packed Variables
15 PACK and UNPACK
15 Packed Files
15 Packed Ar rays
17 Packed Records
18 Using Packed Variables as Parameter s
19 The LONG INTEGER Type

PREDEFINED TYPES 7

In addition to the predefined types of Standard Pascal (REAL, INTEGER,
CHAR, ARRAY, etc.), Apple Pascal has a STRING type, an INTERACTIVE file
type, and a LONG INTEGER type.

Also, the details of certain other predefined types differ from Standard
Pascal.

THE STRING TYPE
Apple Pascal has a new predeclared type, STRING. The value of a STRING
variable is a sequence of characters. Variables of type STRING are
essentially PACKED ARRAYs OF CHAR that have a dynamically changing
number of elements (characters). However, the value of a STRING
variable cannot be assigned to a PACKED ARRAY OF CHAR, and the value of
a PACKED ARRAY OF CHAR cannot be assigned to a STRING variable. Strings
are supported by a set of built-in procedures and functions; see
Chapter 3.

The number of characters in a string at any moment is the lensth of the
string. The default maximum length of a STRING variable is 8~
characters, but this can be overridden in the declaration of a STRING
variable (up to the absolute limit of 255). To do so, put the desired
maximum length in [brackets] after the type identifier STRING. Examples
of declarations of STRING variables are:

TITLE: STRING; (* defaults to a maximum length of 8~ characters *)

N.AtiE: STRING [3~] ; (* allows the STRING to be a maximum of 3~
characters*)

The value of a STRING variable can be altered by using an assignment
statement with a string constant or another STRING variable:

TITLE := THIS IS A TITLE

or

NAME :"" TITLE

or by means of the READ procedure as described in the next chapter:

READLN(TITLE)

or by means of the STRING built-ins, also described in the next
chapter:

NAME:~ COPY(TITLE,l,3~)

Note that a string constant may not contain an end-of-line; the constant
must be on a single line in the program.

8 APPLE PASCAL LANGUAGE

The individual characters \<lithin a STRING are indexed frott 1 to the
LENGTH of the STRING. LENGTH is a built-in function which is described
in Chapter 3. For example, if TITLE is the name of a string, then

TITLE[l)

is a reference to the first character of TITLE, and

TITLE[LENGTH(TITLE))

is a reference to the last character of TITLE.

A variable of type STRING may be compared to any other variable of type
STRING or to a string constant, regardless of its current dynanic
length. The comparison is lexicographical: i.e., one string is "greater
than" another if it would come first in an alphabetic list of strings.
The ordering of the ASCII character set (see Appendix B) is used to
determine this. The following program is a demonstration of legal
comparisons involving variables of type STRING:

PROGRAM COMPARESTRINGS;
VAR S: STRING;

T: STRING[4~);

BEGIN
S: = 'SOl1ETHING';
T:= 'SOMETHING BIGGER';
IF S = T THEN

WRITELN('Strings do not work very well')
ELSE

IF S > T THEN
WRITELN(S,' is greater than ',T)

ELSE
IF S < T THEN

WRITELN(S,' is less than ',T);
IF S = 'SOl-tETHING' THEN

WRITELN (S,' equals ', S);
IF S > 'SAMETUING' THEN

WRITELN(S,' is greater than SAl-tETHING');
IF S = 'SOHETHING ' THEN

WRITELN('BLANKS OON''T COUNT')
ELSE

WRITELN('BLANKS APPEAR TO MAKE A DIFFERENCE');
S :='XXX';
T:""'ABCDEF';
IF S > T THEN

WRITELN(S,' is greater than ',T)
ELSE

WRITELN(S,' is less than ',T)
END.

PREDEFINED lYPES 9

The above program produces the following output:

SOMETHING is less than SOMETHING BIGGER
SOMETHING equals SOMETHING
SOMETHING is greater than SA!-fETHING
BLANKS APPEAR TO 1-!AKE A DIFFERENCE
XXX is greater than ABCDEF

Strings can also be declared as constants, as in the following:

PROGRAM BAZ;

CONST SAMMY c 'Hi there, I''m Sammy the String!';

BEGIN
WRITELN(SAMMY)

END.

The use of STRING variables is discussed further in the next chapter, in
connection with the built-in procedures and functions of Apple Pascal.

A variable of type STRING cannot be indexed beyond its current dynamic
length. The following sequence will result in an invalid index run­
time error:

TITLE:= '1234';
TITLE[S]:= '5'

Beware of zero-length strings: they cannot be indexed at all without
causing unpredictable results or a run-time error. If a program indexes
a string that might have zero length, it should first use the LENGTH
function to see if the length is zero. If the length is zero, the
program should not execute statements that index the string. See
Chapter 3 for details on the LENGTH function.

Notice that a string value containing only one character is not the same
thing as a CHAR value; strings and CHARs are distinct data types. The
one exception is that a string constant containing only one character
has exactly the same form as a CHAR constant, and such a constant can be
used as either a CHAR value or a string value.

You cannot define a function of type STRING. However, there are built­
in functions of type STRING as described in the next chapter.

10 APPLE PASCAL LANGUAGE

THE FILE TYPES

A NOTE ON TERMINOLOGY
For every file named F that is declared in a Pascal program, there is an
automatically declared variable named F..... This is the ''buffer variable"
of the file. Some Pascal manuals also use the looser terrn "window" to
describe the way that different file records can be loaded into the
buffer variable. This manual, instead, talks about a "file pointer"
associated with each open file. The file pointer points to one record
in the file, which is called the "current record." Please understand
that the file pointer is not a Pascal POINTER variable but just a
convenient way of discussing file records.

The following sections describe Apple Pascal's special file features:
the INTERACTIVE file type, untyped files, predefined files, and a
special format for files of characters.

INTERACTIVE FILES
Like a TEXT file, an INTERACTIVE file is a file of characters. The
difference is in the way INTERACTIVE and TEXT files are handled by the
RESET, READ, and READLN procedures.

When a Pascal program READs characters from a TEXT file, the program
must first open the file with RESET. RESET automatically performs a GET
operation: that is, it loads the first character of the file into the
file's buffer variable and then advances the file pointer to the next
character. A subsequent READ or READLN with a variable of type CHAR
begins its operation by first taking the character that is already in
the buffer variable and then performing a GET.

If the file is of type INTERACTIVE instead of TEXT, the opening RESET
does nQt perform a GET. The buffer variable is undefined and the file
pointer points to the first character of the file instead of the
second. Therefore, a subsequent READ or READLN has to begin its
operation by first performing a GET and then taking the character that
was placed in the buffer variable by the GET. This is the reverse of
the READ sequence used with a TEXT file.

There is one primary reason for using the INTERACTIVE type. If a file
is not a diskette file but represents a device such as the keyboard, it
is not possible to perform a GET on it until a character has been
typed. If RESET tried to do a GET, the program would then go no further
until a character was typed. With the INTERACTIVE type, the program
doesn't perform a GET until it is executing a READ or READLN. The
standard predeclared files INPUT and OUTPUT are INTERACTIVE files
representing the console keyboard and screen; another predefined file
called KEYBOARD also represents the keyboard (see the section below on
Predefined Files).

PREDEFINED lYPES 11

UNTYPED FILES
In addition to the standard file types and the INTERACTIVE type, Apple
Pascal allows "untyped" files -- objects that are declared with the word
FILE and nothing more. Example:

VAR F: FILE;

Untyped files can only be used With the built-in functions BLOCKREAD and
BLOCKWRITE for high-speed data transfers.

An untyped file F can be thought of as a file without a buffer variable
F-. All I/0 to this file must be accomplished by BLOCKREAD and
BLOCKWRITE. These functions are described in the next chapter.

PREDEFINED FILES
The standard predefined files INPUT and OUTPUT refer to the keyboard and
the screen respectively. In addition to these, Apple Pascal provides a
predefined file called KEYBOARD. The difference between INPUT and
KEYBOARD is that when INPUT is used to refer to the keyboard, the typed
characters are automatically displayed on the screen; when KEYBOARD is
used, the characters are not automatically displayed. This allows a
Pascal program to have complete control over the response to characters
typed by the user.

All three predefined files are of type INTERACTIVE, and all three are
automatically opened via RESET when the Pascal program begins
executing.

TEXTFILES
The Apple Pascal system provides that a TEXT or INTERACTIVE diskette
file that is created With ".TEXT" as the last part of its title has a
special internal format. Such files are called "textfiles" in this
manual. Do not confuse textfiles with files that are of type TEXT or
INTERACTIVE but do not have titles ending in ".TEXT".

All parts of the Pascal System that deal with files of characters (such
as the editor) are designed to use the special textfile format; and if a
textfile is accessed by a Pascal program, then the Pascal program will
also use the special format. Therefore, the normal procedure is to use
a title ending in ".TEXT" whenever you create a diskette file of the
Pascal type TEXT or INTERACTIVE. The format of a textfile is as
follows:

At the beginning of the file is a 1~24-byte header page, which contains
information for the use of the text editor. This space is respected by
all portions of the system. When a user Pascal program creates a
textfile (via REWRITE), the system will automatically create the

12 APPLE PASCAL LANGUAGE

header. When a user Pascal program accesses an existing textfile (via
RESET) the system skips the header. In other words, the header is
invisible to a user Pascal program using REWRITE and RESET.

4'-
When a program uses BLOCKREAD and BLOCKWRITE to access files, the
special textfile structure is n£t respected.

The system will transfer the header only on a diskette-to-diskette
transfer, and will omit it on a transfer to a serial device (thus
transfers from diskette to a printer or to the console will omit the
header).

Following the header page, the text content itself appears in 1~24-byte
text pages. Each text page is a sequence of lines, and the last line on
a page is followed by enough null characters (ASCII ~~) to fill out the
1~24 bytes. A line is defined as:

[DLE indent) [text] CR

where the brackets indicate that the DLE and the indent code lll8Y be
absent and the text itself may be absent.

CR is the "Carriage Return" control character (ASCII 13), and may be
absent at the end of the last line in the file. DLE is the '~ata Link
Escape" control character (ASCII 16). If present it is followed by a
code indicating the indentation of the line. The code is 32 + the
number of spaces to indent. Thus any leading spaces on a line are
replaced by the DLE and the indent code.

The DLE and indent code and the nulls at the end of a text page are,
like the header, invisible to a Pascal program. The DLE and indent are
automatically translated to leading spaces, and vice versa.

The end of the file is marked by the ETX control character (ASCII 3).

PREDEFINED lYPES 13

THE SET TYPES
APPLE Pascal supports all of the Standard Pascal constructs for sets.
Two limitations are imposed on sets:

- A set may not have more than 512 elements assigned to it.

- A set may not have any INTEGERs less than ~ or greater than
511 assigned to it.

A set of 512 elements will occupy 32 words of memory.

Comparisons and operations on sets are allowed only between sets whose
individual elements are of the same type. For example, in the sample
program below, the base type of the set S is the subrange type ~ •• 49,
while the base type of the set R is the subrange type 1 •• 1~~. The
underlying type of both sets is the type INTEGER, so the comparisons and
operations on the sets S and R in the following program are legal:

PROGRAM SETCOZ.1P ARE;
VAR S: SET OF ~ •• 49;

R: SET OF 1 •• 1~~;

BEGIN
S:= [~,5,1~,15,2~,25,3~,35,4~,45];
R:= [1~,2~,3~,4~,5~,6~,7~,8~,90];
IF S = R THEN

WRITELN('••• oops ••• ')
ELSE

WRITELN('sets work');
S := S + R

END.

In the following example, the comparison I = J is not legal since the
two sets are of two distinct underlying types.

PROGRAM ILLEGALSETS;
TYPE STUFF=(ZERO,ONE,TWO);
VAR I: SET OF STUFF;

J: SET OF ~ •• 2;

BEGIN
I:= [ZERO];
J:= [1,2];
IF I = J THEN

END.

14 APPLE PASCAL LANGUAGE

<<<< error here

PACKED VARIABLES

PACK AND UNPACK
Apple Pascal does not require the Standard Pascal procedures PACK and
UNPACK, and these procedures are not provided. If a variable is PACKED,
all required packing and unpacking are done automatically on an
element-by-element basis.

PACKED FILES
Apple Pascal does not support PACKED FILE types. A PACKED FILE can be
declared, but the data in the file will not actually be packed.

PACKED ARRAYS
The Apple Pascal compiler supports PACKED ARRAYs as defined in Standard
Pascal. For example, consider the following declarations:

A: ARRAY[~ •• 9] OF CHAR;
B: PACKED ARRAY[~ •• 9] OF CHAR;

The array A will occupy ten 16-bit words of memory, with each element of
the array occupying one word. The PACKED ARRAY B on the other hand will
occupy a total of only 5 words, since each 16-bit word contains two
8-bit characters. Each element of B is 8 bits long.

PACKED ARRAYs need not be restricted to arrays of type CHAR. For
example:

C: PACKED ARRAY[~ •• !] OF ~ •• 3;
D: PACKED ARRAY[1 •• 9] OF SET OF ~ •• 15;
D2: PACKED ARRAY£~ •• 239,~ •• 319] OF BOOLEAN;

Each element of the PACKED ARRAY C is only 2 bits long, since only 2
bits are needed to represent the values in the range ~ •• 3. Therefore C
occupies only one 16-bit word of memory, and 12 of the bits in that word
are unused. The PACKED ARRAY D is a 9-word array, since each element of
D is a SET which can be represented in a minimum of 16 bits. Each
element of a PACKED ARRAY OF BOOLEAN, such as D2 in the above example,
occupies only one bit·

PREDEFINED lYPES 15

The details of exactly how variables are packed are unspecified. In
most cases, the minimum space into which an array can be packed is one
word (two eight-bit bytes). For example, consider

BITS: PACKED ARRAY[~ •• 7] OF BOOLEAN;

This is an eight-element array where each element requires one bit, so
you might expect it to occupy eight bits or one byte. In fact, it
occupies one word or two bytes. Furthermore, the two-dimensional array

BATS: PACKED ARRAY[~ •• 3] OF PACKED ARRAY[~ •• 7] OF BOOLEAN;

or its equivalent

BATS: PACKED ARRAY[~ •• 3,~ •• 7] OF BOOLEAN;

consists of four arrays. Each of them, like the previous array,
occupies one word. Therefore BATS occupies four words.

Note that a PACKED ARRAY OF CHAR always occupies one byte per character
and a PACKED ARRAY OF ~ •• 255 always occupies one byte per element.

Also, packing never occurs across word boundaries. This means that if
the type of element to be packed requires a number of bits which does
not divide evenly into 16, there will be some unused bits in each of the
words where the array is stored.

The following two declarations are NOT equivalent because of the way the
Pascal Compiler is implemented:

E: PACKED ARRAY[~ •• 9] OF ARRAY[~ •• 3] OF CHAR;
F: PACKED ARRAY[~ •• 9,~ •• 3] OF CHAR;

In the declaration of E, the second occurrence of the reserved word
ARRAY causes the packing option in the compiler to be turned off. E
becomes an unpacked array of 4~ words. On the other hand, the PACKED
ARRAY F occupies only 2~ words because the reserved word ARRAY occurs
only once in the declaration. If E is declared as

E: PACKED ARRAY[~ •• 9] OF PACKED ARRAY[~ •• 3] OF CHAR;

or as

E: ARRAY[~ •• 9] OF PACKED ARRAY[~ •• 3] OF CHAR;

F and E will have identical configurations.

In declaring a PACKED ARRAY, the word PACKED is only meaningful before
the last appearance of the word ARRAY in the declaration. lfuen in
doubt, a good rule of thumb for declaring a multidimensional PACKED
ARRAY is to place the word PACKED before every appearance of the word
ARRAY to ensure that the resultant array will be PACKED.

16 APPLE PASCAL LANGUAGE

The array will only be packed if the type of each element of the array
is scalar, subrange, or a set and each array element can be represented
in 8 bits or fewer. For an array whose elements are sets, this means
that the underlying type of the set must not contain more than 8
elements, and must not contain any integer greater than 255.

The following declaration will result in no packing whatsoever because
the final type of the array cannot be represented in a field of 8 bits:

G: PACKED ARRAY[~ •• 3] OF ~ •• 1~~~;

G will be an array which occupies four 16-bit words.

Note that a string constant may be assigned to a PACKED ARRAY OF CHAR
(if it has exactly the same length), but not to an unpacked ARRAY OF
CHAR. Likewise, comparisons between an ARRAY OF ClUffi and a string
constant are illegal.

Because of their different sizes, PACKED ARP~Ys cannot be compared to
ordinary unpacked ARRAYs.

A PACKED ARRAY OF CHAR may be printed out with a single write statement
(exactly as if it were a string):

PROGRAM VERYSLICK;
VAR T: PACKED ARRAY[~ •• l~] OF CHAR;
BEGIN

T:~'HELLO THERE';
WRITELN(T)

END.

PACKED RECORDS

The following RECORD declaration declares a RECORD with four fields.
The entire RECORD occupies one 16-bit word as a result of declaring it
to be a PACKED RECORD.

VAR R: PACKED RECORD
I,J,K: 0 •. 31;
B: BOOLEAN

END;

The variables I, J, K each take up five bits in the word. The boolean
variable B is allocated to the 16th bit of the same word.

In much the same manner that PACKED ARRAYs can be multidimensional
PACKED ARRAYs, PACKED RECORDS may contain fields which themselves are
PACKED RECORDS or PACKED ARRAYS. Again, slight differences in the way
in which declarations are made will affect the degree of packing

PREDEFINED TYPES 17

achieved. For example, note that the following two declarations are not
equivalent:

VAR A:PACKED RECORD
C:INTEGER;
F:PACKED RECORD

R: CHAR;
K: BOOLEAN

END;

VAR B:PACKED RECORD
C:INTEGER;
F:RECORD

R:CHAR;
K:BOOLEAN

END;
H:PACKED ARRAY[~ •• 3] OF CHAR

END;
H:PACKED ARRAY[~ •• 3] OF CHAR

END;

As with PACKED ARRAYs, the word PACKED should appear with every
occurrence of the word RECORD in order for the PACKED RECORD to retain
its packed qualities throughout all fields of the RECORD. In the above
example, only RECORD A has all of its fields packed into one word. In
B, the F field is not packed and therefore occupies two 16-bit words.
It is important to note that a packed or unpacked ARRAY or RECORD which
is a field of a PACKED RECORD will always start at the beginning of the
next word boundary. This means that in the case of A, even though the F
field does not completely fill one word, the H field starts at the
beginning of the next word boundary.

A case variant may be used as the last field of a PACKED RECORD, and the
amount of space allocated to it will be the size of the largest variant
among the various cases. The actual nature of the packing is beyond the
scope of this document.

VAR K: PACKED RECORD
B: BOOLEAN;
CASE F: BOOLEAN OF

TRUE: (Z:INTEGER);
FALSE: (M: PACKED ARRAY[~ •• 3] OF CHAR)

END;

In the above example the B and F fields are stored in two bits of the
first 16-bit word of the record. The remaining fourteen bits are not
used. The size of the case variant field is always the size of the
largest variant, so in the above example, the case variant field will
occupy two words. Thus the entire PACKED RECORD will occupy three
words.

USING PACKED VARIABLES AS PARAMETERS
No PACKED variable may be passed as a VAR (call-by-reference) parameter
to a PROCEDURE or FUNCTION. Packed variables may, however, be passed as
ordinary call-by-value parameters.

18 APPLE PASCAL LANGUAGE

THE LONG INTEGER TYPE
In Apple Pascal, the predefined INTEGER type can be modified by a length
attribute as in the following examples:

TYPE BIGNml = INTEGER [12] ;
VAR FATS: INTEGER(25];

This defines BIGNml as a type which can have any integer value requiring
not more than 12 decimal digits. FATS can have any integer value
requiring not more than 25 digits. The length attribute can be any
unsigned INTEGER constant up to and including 36.

This is a new kind of type, which is called a LONG INTEGER in this
manual. The LONG INTEGER is suitable for business, scientific or other
applications which need extended number lengths with complete accuracy.
A LONG INTEGER is represented internally as a binary-coded decimal (BCD)
number; that is, each decimal digit of the value is represented in
binary. This means that there can be no rounding errors in working with
LONG INTEGER values.

LONG INTEGER constants are also allowed. Any integer constant whose
value exceeds ~UlKINT is automatically a constant of the type LONG
INTEGER.

The integer arithmetic operations (+, -, *, and DIV) can all be used
with LONG INTEGER values. However, MOD cannot be used lrlth LONG
INTEGERs. In integer arithemetic, overflow occurs if any intermediate
or final result requires more than 36 decimal digits. When a LONG
INTEGER value is assigned to a LONG INTEGER variable, overflow occurs if
the value requires more decimal digits than the defined length of the
variable.

An INTEGER value can always be assigned to a LONG INTEGER variable; it
is automatically converted to the appropriate length. However, a LONG
INTEGER value can never be assigned to an INTEGER variable. If INTEGER
and LONG INTEGER values are mixed in an expression, the INTEGER values
are converted to LONG INTEGER and the result is a LONG INTEGER value.
LONG INTEGERs and REALs are incompatible; they can never be mixed in an
arithmetic expression or assigned to each other.

All of the standard relational operators may be used with mixed LONG
INTEGER and INTEGER values.

The built-in procedure STR accepts a LONG INTEGER value as a parameter,
and converts it to a string of decimal digits. The built-in function
TRUNC accepts a LONG INTEGER value as a parameter, and returns the
corresponding INTEGER value if the absolute value of the LONG INTEGER is
less than or equal to MAXINT. These built-ins are described in the next
chapter; they are the only built-ins which accept LONG INTEGER
parameters.

PREDEFINED TYPES 19

An attempt to declare a LONG INTEGER in a parameter list will result in
a syntax error. This restriction may be circumvented by defining a type
which is a LONG INTEGER. For example:

TYPE LONG= INTEGER[18];
PROCEDURE BIGNUMBER(BANKACCT: LONG);

EXAl-fPLES:

VAR I: INTEGER;
L: INTEGER[N]; {where N is an integer constant <= 36 }
R: REAL;

I:~ L {syntax error; the TRUNC function can be used to convert a
LONG INTEGER to an INTEGER}

L:=-L {correct, if -L does not require more than 36 digits; the
minus sign doesn't count as a digit}

L:= I {always correct}
L:= R {never accepted}
R:= L {never accepted}

The memory space allocated for a LONG INTEGER is always an integral
number of words. Specifically, a variable of type INTEGER[n] occupies

(n + 3) DIV 4 +1

words.

Therefore, the actual limit on the value of a LONG INTEGER may exceed
the number of decimal digits specified in its declaration. For example,
a length of 5 through 8 occupies three words and can store values up to
and including 99999999; a length of 9 through 12 occupies four words and
can store values up through 999999999999; a length of 13 through 16
occupies five words and can store values up through 9999999999999999.

20 APPLE PASCAL LANGUAGE

22 String Built- Ins
22 The LENGTH Function
23 The POS Function
23 The CONCAT Function
24 The COPY Function
24 The DELETE Procedure
25 The INSERT Procedure
25 The STR Procedure
26 Input and Output Built-Ins
26 Overview of Apple Pascal I/0 Facilities
27 The REWRITE Procedure
2 7 The RESET Procedure
28 The CLOSE Procedure
29 The EOF Function
30 The EOLN Function
30 The GET and PUT Procedures
32 The IORESULT Function
32 Introduction to Text I/0
33 The READ Procedure
34 READ With a CHAR Variable
34 READ With a Numeric Variable
35 The READLN Procedure
36 The WRITE and WRITELN Procedures
39 The PAGE Procedure
39 The SEEK Procedure
41 The UNITREAD and UNITWRITE Procedures
42 The UNITBUSY Function
42 The UNITWAIT Procedure
43 The UNITCLEAR Procedure
43 The BLOCKREAD and BLOCK\-1RITE Functions
45 Miscellaneous Built-Ins
45 The ATAN Function
45 The LOG Function
45 The TRUNC Function
45 The PWROFTEN Function
46 The MARK and RELEASE Procedures
48 The HALT Procedure
48 The EXIT Procedure
48 The ME~IAVAIL Function
49 The GOTOXY Procedure
49 The TREESEARCH Function
51 Byte-Driented Built-Ins
51 The SIZEOF Function
51 The SCAN Function
52 The ~IOVELEFT and HOVERIGHT Procedures
53 The FILLCHAR Procedure
54 Summary

BUILT-IN PROCEDURES AND FUNCTIONS 21

This chapter describes all the built-in procedures and functions of
Apple Pascal that differ from Standard Pascal. This does not include
the procedures and functions that are provided as library UNITs, e.g.
the graphics procedures and functions. Chapter 7 covers the library
UNITs provided with Apple Pascal.

Transcendental functions (e.g. the trig functions SIN, COS, etc.) are a
special case. In Standard Pascal they are built-in functions, but in
Apple Pascal they are in a library UNIT. The ATAN and LOG functions
differ slightly from Standard Pascal, and they are described in this
chapter. The other transcendentals differ only in that to use them your
program must include a USES TRM~SCEND statement as described in
Chapter 7.

Since some of these built-in procedures and functions do no checking for
range validity of parameters, they may easily cause unpredictable
results. Those built-ins which are particularily dangerous are noted as
such in their descriptions. Any necessary range or validity checks are
your responsibility.

STRING BUILT-INS
In the following descriptions, a "string value" means a string variable,
a quoted string, or any function or expression whose value is a string.
Unless otherwise stated all parameters are called by value.

THE LENGTH FUNCTION
The LENGTH function returns the integer value of the length of a
string. The form is

LENGTH (STRG)

where STRG is a string value. Example:

GEESTRING := '1234567';
WRITELN((LENGTH(GEESTRING),

This will print:

7 ~

22 APPLE PASCAL LANGUAGE

, ,
'

LENGTH(''))

THE POS FUNCTION

The POS function returns an integer value. The form is

POS (SUBSTRG, STRG)

where both SUBSTRG and STRG are string values. The POS function scans
STRG to find the first occurrence of SUBSTRG within STRG. POS returns
the index within STRG of the first character in the matched pattern. If
the pattern is not found, POS returns zero. Example:

STUFF := 'TAKE THE BOTTLE WITH A HETAL CAP';
PATTERN := 'TAL';
WRITELN(POS(PATTERN, STUFF))

This will print:

26

THE CONCAT FUNCTION
The CONCAT function returns a string value. The form is

CONCAT (STRGs

where STRGs means any number of string values separated by commas. This
function returns a string which is the concatenation of all the strings
passed to it. Example:

SHORTSTRING := 'THIS IS A STRING';
LONGSTRING := 'THIS IS A VERY LONG STRING.';
LONGSTRING := CONCAT('START ', SHORTSTRING, '-', LONGSTRING);
WRITELN(LONGSTRING)

This will print:

START THIS IS A STRING-THIS IS A VERY LONG STRING.

BUILT-IN PROCEDURES AND FUNCTIONS 23

THE COPY FUNCTION
The COPY function returns a string value. The form is

COPY (STRG, INDEX, COUNT)

where STRG is a string value and both INDEX and COUNT are integer
values. This function returns a string containing COUNT characters
copied from STRG starting at the INDEXth position in STRG. Example:

TL :~ 'KEEP SOMETHING HERE';
KEPT :c COPY(TL, POS('S', TL), 9);
WRITELN(KEPT)

This will print:

SOMETHING

THE DELETE PROCEDURE
The DELETE procedure modifies the value of a string variable. The form
is

DELETE (STRG, INDEX, COUNT)

Where STRG is a string variable called by reference and modified, and
both INDEX and COUNT are integer values. This procedure removes COUNT
characters from STRG starting at the INDEX specified. Example:

OVERSTUFFED := 'THIS STRING HAS FAR TOO HANY CHARACTERS IN IT.';
DELETE(OVERSTUFFED, POS('HAS', OVERSTUFFED)+3, 8);
WRITELN(OVERSTUFFED)

This will print:

THIS STRING HAS HANY CHARACTERS IN IT.

24 APPLE PASCAL LANGUAGE

THE INSERT PROCEDURE
The INSERT procedure modifies the value of a string variable. The form
is

INSERT (SUBSTRG, STRG, INDEX)

where SUBSTRG is a string value, STRG is a string variable called by
reference, and INDEX is an integer value. This inserts SUBSTRG into
STRG at the INDEXth position in STRG. Example:

ID :; 'INSERTIONS';
MORE :; ' DEMONSTRATE';
DELETE(MORE, LENGTH(MORE), 1);
INSERT(MORE, ID, POS('IO', ID));
WRITELN(ID)

This will print:

INSERT DEMONSTRATIONS

THE STR PROCEDURE
The STR procedure modifies the value of a string variable. The form is

PROCEDURE STR (LONG , STRG)

where LONG is an integer value, and STRG is a string variable called by
reference. LONG may be a LONG INTEGER.

This converts the value of LONG into a string. The resulting string is
placed in STRG. See Chapter 2 for more about the use of LONG INTEGERs.
Example:

INTLONG :; 1~2~395~3;
STR(INTLONG, INTSTRING);
INSERT('.', INTSTRING, LENGTH(INTSTRING)-1);
WRITELN('$', INTSTRING)

This will print:

The following program segment Will provide a suitable dollar and cent
routine:

STR(L,S); INSERT('.',S,LENGTH(S)-1); WRITELN(S)

where L and S are appropriately declared.

BUILT-IN PROCEDURES AND FUNCTIONS 25

INPUT AND OUTPUT BUILT-INS

OVERVIEW OF APPLE PASCAL 1/0 FACILITIES
This section deals with data transfers to and from all peripheral
devices, including diskette drives, the screen, the keyboard, printers,
etc. There are also certain "integral" devices such as the TTL game­
control outputs and the built-in speaker, which are not considered as
I/0 devices; see Chapter 7. For complete information on Apple Pascal
file types, see Chapter 2.

Apple Pascal I/0 facilities can be thought of as existing at four
different levels:

- Hardware-oriented I/0: the UNITREAD, UNITWRITE, and UNITCLEAR
procedures are the lowest level of control. They allow a
Pascal program to transfer a specified number of consecutive
bytes between memory and a device. They are not controlled by
filenames, directories, etc., but merely use device numbers
and (for diskette drives) block numbers.

- Untyped file I/0: The BLOCKREAD and BLOCKWRITE functions
provide I/0 for untyped files (see Chapter 2). They make use
of filenames and directories but consider a file to be merely
a sequence of bytes -- not a sequence of records of a
particular type.

- Typed file I/0: The GET, PUT, and SEEK procedures treat a file
as a sequence of records. GET and PUT provide transfers
between individual file records and the file's buffer
variable, and SEEK moves the pointer to a specified record
within the file. The EOF function provides an indication of
when the end of the file has been reached.

- Text file I/0: The READ, READLN, WRITE, and WRITELN procedures
provide transfers between a file of type TEXT or INTERACTIVE
and program variables. The PAGE procedure writes a
top-of-form control character into a textfile. The EOLN
function provides an indication of when the end of a text line
has been reached. This is the highest level of I/0 control,
with many sophisticated features.

As mentioned in Chapter 2, the INPUT, OUTPUT, and KEYBOARD files are
predefined and need not be declared in a program. All other files must
first be declared in the VAR section of a program, and must then be
opened by means of RESET or REWRITE before they can be used in any way.

Opening a file is a means of associating the file's identifier (declared
in the program) with its title (used by the operating system). If the
file to be used does not already exist, open it with REWRITE; this

26 APPLE PASCAL LANGUAGE

causes the operating system to create a directory entry for the file.
If REWRITE is used with the title of an existing file, the existing file
is destroyed and a new directory entry is created. RESET is used to
open an existing file and can also be used to move the file pointer back
to the beginning of a file that is already open. A CLOSE procedure is
also provided. It offers several options for the disposition of the
file when the program is through using it.

If an I/0 operation is unsuccessful, the operating system will normally
tercinate program execution. However, there is a compiler option to
disable this feature. The IORESULT function allows the program itself
to check on the status of the most recent I/O operation and take
appropriate action.

THE REWRITE PROCEDURE
This procedure creates a new file and marks the file as open. As
explained below, it can also be used to open an existing file. The
form is

REWRITE (FILEID , TITLE)

where FILEID is the identifier of a previously declared file, and TITLE
is a string containing any legal file title.

If the device specified in the TITLE is not a diskette, then the file is
opened for both input and output, If the TITLE indicates a diskette
file, RE"~ITE creates a new file and opens it for input and output.

If the file is already open, an I/0 error occurs (see IORESULT below).
The file remains open.

An example showing the use of REWRITE in a program follows the
description of GET and PUT below.

THE RESET PROCEDURE
This procedure opens an existing file for both reading and writing.
There are two forms:

RESET
RESET

FILEID
FILEID

TITLE)

where FILEID is the identifier of a previously declared file, and TITLE
is a string containing any legal file title.

If a TITLF is used and the specified file is already open, an I/O error
occurs {see IORESULT, belol-7). The file's state remains unchanged. If
the file does not exist, an I/0 error occurs.

BUILT-IN PROCEDURES AND FUNCTIONS 27

A RESET without the TITLE can only be used on an open file; the effect
is simply to reposition the file pointer as if the file had just been
opened.

If the file is not of type INTERACTIVE, RESET automatically performs a
GET action -- that is, it loads the first record of the file into the
file's buffer variable and advances the file pointer to the second
record. If the file is INTERACTIVE, no GET is performed; the buffer
variable's value is undefined and the file pointer points to the first
record. (GET is described further on.)

Note that RESETting a non-INTERACTIVE file to an output-only device,
such as PRINTER:, may cause a run-time error as a result of the
automatic GET caused by the RESET.

When an existing file is opened with RESET and is then used for output,
only the file records actually written to are affected.

An example showing the use of RESET in a program follows the description
of GET and PUT below.

THE CLOSE PROCEDURE
This procedure closes a file which was previously opened with RESET or
REWRITE. The form is

CLOSE (FILEID [, OPTION])

where FILEID is the identifier of a previously declared file, and OPTION
may be any one of the following:

NORi~L -- a normal close is done, i.e. CLOSE simply sets the
file state to closed. If the file was opened using R~~ITE
and is a disk file, it is deleted from the directory.

LOCK -- the file is made perManent in the directory if the
file is on a disk and the file was opened with a REWRITE;
otherwise a NORMAL close is done. If the TITLE matches an
existing diskette file, the original contents of the file are
lost.

PURGE -- if the file is a diskette file, it is deleted from
the directory. In the special case of a diskette file that
already exists and is opened with R~~ITE, the original file
remains in the directory, unchanged. If the file is not a
diskette file, the associated unit will go off-line.

CRUNCH -- this is like LOCK except that it locks the
end-of-file to the point of last access, i.e. everything after
the last element accessed is thrown away. If the TITLE
matches an existing diskette file, the original contents of
the file are lost.

28 APPLE PASCAL LANGUAGE

If the OPTION is omitted, the NOIDfAL close is performed.

All CLOSEs regardless of the option will mark the file closed and will
make the file buffer variable FILEIDA undefined. CLOSE on a CLOSEd file
causes no action.

An example showing the use of CLOSE in a program follows the description
of GET and PUT below.

THE EOF FUNCTION
This function returns a BOOLEAN value to indicate whether the end of a
specified file has been reached. When EOF is true, nothing more can be
read from the file. The form is

EOF [(FILEID)]

If (FILEID) is not present, INPUT is assumed.

EOF is false immediately after the file is opened, and true on a closed
file. Whenever EOF (FILEID) is true, FILEIDA is undefined.

After a GET, EOF is true if the GET attempted to access a record that is
after the end of the file. After a PUT or ~miTE, EOF is true if the
file cannot be expanded to accommodate the PUT or WRITE (because of
limited diskette space, for example).

For details on EOF after a READ or READLN operation, see the
descriptions of READ and READLN further on in this chapter, and
Appendix c.

When EOF beco~es true during a READ or GET operation, the value of
FILEIDA is not defined.

When keyboard input is being read (via the predefined files INPUT or
KEYBOARD), EOF only beco~es true when the end-of-file character is
typed. The end-of-file character is ctrl-C (ASCII 3). EOF remains true
until the file INPUT or KEYBOARD is RESET, and no ~ore typed characters
can be read until this is done.

An example showing the use of EOF in a program follows the description
of GET and PUT below.

BUILT-IN PROCEDURES AND FUNCTIONS 29

THE EOLN FUNCTION

EOLN is defined only for a file of type TEXT, FILE OF CHAR, or
INTERACTIVE. This function returns a BOOLEAN value to indicate whether
the pointer for a specified text file is at the end of a line. The
form is

EOLN (FILEID)]

If (FILEID) is not present, INPUT is assumed.

EOLN returns false immediately after the file is opened, and true on a
closed file.

When a GET finds an end-of-line character (the CR character, ASCII 13)
in the file, it sets EOLN to true. Instead of loading the end-of-line
character into the file's buffer variable it loads a space (ASCII 32).

For the behavior of EOLN after a READ or READLN, see the descriptions of
these statements further on.

THE GET AND PUT PROCEDURES
These procedures are used to read or write one logical record from or to
a typed file. The forms are

GET FILEID
PUT FILEID

where FILEID is the identifier of a previously declared typed file. A
typed file is any file for which a type is specified in the variable
declaration, as opposed to untyped files (see Chapter 2).

GET (FILEID) advances the file pointer to the next record and moves the
contents of this record into the file buffer variable FILEID-. The next
GET or PUT with the same FILEID will access the next record in
sequence.

PUT (FILEID) advances the file pointer to the next record and puts the
contents of FILEID- into this record. The next GET or PUT with the same
FILEID will access the next record in sequence.

The actual physical disk access may not occur until the next time the
physically associated block of the disk is no longer considered the
current working block. The kinds of operation which tend to force the
block to be written are: a SEEK to elsewhere in the file, a RESET, and
CLOSE. Successive GETs or PUTs to the file will cause the physical I/O
to happen when the block boundaries are crossed.

The following two example programs illustrate the use of REWRITE, RESET,
CLOSE, EOF, GET, and PUT. The first program creates a new file of type

30 APPLE PASCAL LANGUAGE

REAL, with the title REAL.DATA, and puts ten REAL values into it. The
values are supplied by the user.

To obtain the values, the program uses a WRITE to display a prompt on
the screen and a READ to accept the value typed by the user. READ and
WRITE are described in detail further on in this chapter.

PROGRAM MAKEFILE;

VAR F: FILE OF REAL;
I: INTEGER;

BEGIN
(*Open with REWRITE since this is a new file.*)

REWRITE(F, '*REALS.DATA');
(*Read 10 numbers and store them in the file.*)

FOR I:=1 TO 10 DO BEGIN
(*Put a prompt on the screen.*)

WRITE ('-->');
(*Read a number from the keyboard.*)

READ(F ...);
(*Store the number in the file.*)

PUT(F)
END;

(*Close the file and lock it.*)
CLOSE(F, LOCK)

END.

The second program reads values from the file created by the first
program, and displays them on the screen.

PROGRAM READFILE;

VAR F: FILE OF REAL;

BEGIN
(*Open with RESET since we want to read the file*)

RESET(F, '*REALS.DATA');
(*Read each number from the file and display them*)

WHILE NOT EOF(F) DO BEGIN
(*Display the current number on the screen*)

WRITELN(F ...);
(*Advance to the next number*)

GET(F)
END;

(*Close the file*)
CLOSE(F)

END.

Note that these programs offer no flexibility as to the title of the
file. The example under READLN below shows how to let the user specify
the title of the file to be used.

BUILT-IN PROCEDURES AND FUNCTIONS 31

THE IORESULT FUNCTION
This function returns an integer value which reflects the status of the
last completed I/O operation. The form is

IORESULT

The values returned by IORESULT are as follows (also see Table 2):

~
1
2
3
4
5
6
7
8
9

1~
11
12
13
14
15
16
64

No error; normal I/O completion
Bad block on diskette (not used on Apple)
Bad device (volume) number
Illegal operation (e.g., read from PRINTER:)
Unknown hardware error (not used on Apple)
Lost device -- no longer on line
Lost file -- file is no longer in directory
Bad title -- illegal filename
No room -- insufficient space on diskette
No device -- volume is not on line
No such file on specified volume
Duplicate file title
Attempt to open an already open file
Attempt to access a closed file
Bad input format -- error in reading real or integer
Ring buffer overflow -- input arriving too fast
Write-protect error -- diskette is write-protected
Device error -- bad address or data on diskette

In normal operation, the Compiler will generate code to perform run­
time checks after each I/O operation except UNITREAD, UNITWRITE,
BLOCKREAD, or BLOCKWRITE. This causes the program to get a run-time
error on a bad I/O operation. Therefore if you want to check IORESULT
with your own code in the program, you must disable this compiler
feature by using the (*$I-*) option (see Chapter 4).

Note that IORESULT only gives a valid return the first time it is
referenced after an I/O operation. If it is referenced again (without
another I/O operation), it will always return~.

INTRODUCTION TO TEXT 1/0
In addition to PUT and GET, Apple Pascal provides the standard
procedures READ, READLN, WRITE, and WRITELN, collectively known as the
text I/O procedures. They perform the same tasks as in standard Pascal
and have the same syntax (with the addition of STRING variables).
However, the details of their operation are specific to Apple Pascal and
can be complicated. Also, the use of STRING variables and the
distinction between TEXT and INTERACTIVE files have important effects.

32 APPLE PASCAL LANGUAGE

The text I/0 procedures can only be used with files of type TEXT or
INTERACTIVE. As already mentioned, RESET makes a distinction between
these two file types: when a TEXT file is RESET, a GET is automatically
performed but when an INTERACTIVE file is RESET, no GET is performed.
This requires READ and READLN to be rather complex procedures. Like
many other complex creatures, they will behave simply if you use them
simply. Therefore, this manual is written with some assumptions in mind
about how they will be used. These assumptions can be translated into
the following specific suggestions:

- When using the text I/0 procedures don't use GET or PUT, and
don't refer explicitly to the file buffer variable F~. The
reason is that the text I/0 procedures themselves use GET and
PUT in complicated ways.

- Don't mix reading and writing operations on the same diskette
textfile. If you read from a textfile, CLOSE it and reopen it
before writing to it; and vice versa.

- To open an existing diskette textfile for reading, always use
RESET. To open an existing diskette textfile for writing,
always use REWRITE.

- Don't use READ with a STRING variable. Use READLN.

- Don't use the EOLN function with READLN, and don't use it with
STRING variables.

If you follow these suggestions, the text I/0 procedures will work
exactly as described in the following pages. These are not rules of
Pascal; there is nothing in the system that will enforce them. However,
the exact details of what happens if you ignore the suggestions are
beyond the scope of this chapter.

There may be situations in which these assumptions and suggestions are
too restrictive. If so, you will need the cocplete details on how READ
and READLN behave in all possible situations, as given in Appendix c.

In particular, you need the information in Appendix C if you want to mix
reading and writing operations or overwr~te part of an existing text
file without destroying all of the original contents.

THE READ PROCEDURE
This procedure may be used only on TEXT (FILE OF CHAR) or INTERACTIVE
files. It allows characters and numeric values to be read from a file
without the need for explicit use of GET or explicit reference to the
window variable. The form is

PROCEDURE READ ([FILEID, VBLs)

where FILEID is the identifier of a TEXT or INTERACTIVE file which must

BUILT-IN PROCEDURES AND FUNCTIONS 33

be open. If the FILEID is omitted, INPUT is assumed. VBLs means one or
more variables separated by commas. The variables may be of type CHAR,
STRING, INTEGER, LONG INTEGER, or REAL. (But you should use READLN for
STRING variables).

READ reads values from the file and assigns them to the variables in
sequence.

READ With a CHAR Variable
For a CHAR variable, READ reads one character from the file and assigns
that character to the variable. There are two special cases: Whenever
the end-of-line character (ASCII 13) is READ, the value assigned to the
CHAR variable is a space (ASCII 32), not a CR. Whenever EOF becomes
true, the value assigned to the CHAR variable is not defined.

After the READ, the next READ or READLN will always start with the
character immediately following the one just READ.

The workings of EOLN and EOF depend on whether the file is of type TEXT
or INTERACTIVE. For a TEXT file, EOF is true when the last text
character in the file has been READ. EOLN is true when the last text
character on a line has been READ and whenever EOF is true. (A "text
character" here means a character that is not the end-of-line character
or the end-of-file character.)

For an INTERACTIVE file, EOF is not true until the end-of-file character
has been READ. EOLN is not true until the end-of-line character at the
end of the line has been READ or until EOF is true.

If you are using READ with a CHAR variable and you need to use EOLN, you
may be able to simplify the situation by using READLN With a STRING
variable instead; this gives you line-oriented reading without the need
to check EOLN (see below).

READ With a Numeric Variable
For a variable of one of the numeric types, READ expects to read a
string of characters which can be interpreted as a numeric value of the
same type. Any space or end-of-line characters preceding the numeric
string are skipped; and a space, end-of-line, or end-of-file is expected
after the numeric string. If a numeric string is not found after
skipping spaces and end-of-lines, an I/0 error occurs. Otherwise, the
string is converted to a numeric value and the value is assigned to the
variable.

After the READ, the next READ or READLN will always start with the
character immediately following the last character of the numeric
string.

34 APPLE PASCAL LANGUAGE

If the last character of the numeric string is the last character on the
line, then EOLN will be true. If the last character of the numeric
string is the last character in the file, then EOF and EOLN will both be
true.

If nothing but spaces are found before the EOF, a value of ~ is READ.

Note that the behavior of READ with a numeric variable is exactly the
same regardless of whether the file is TEXT or INTERACTIVE.

THE READLN PROCEDURE
This procedure may be used only on TEXT (FILE OF CHAR) or INTERACTIVE
files. It allows line-oriented reading of characters, strings, and
numeric values. The form is

PROCEDURE READLN ([FILEID, VBLs

where FILEID is the identifier of a TEXT or INTERACTIVE file which must
be open. If the FILEID is omitted, INPUT is assumed. VBLs means one or
more variables separated by commas. The variables may be of type CHAR,
STRING, INTEGER, LONG INTEGER, or REAL.

READLN works exactly like READ, except that after a value has been read
for the last variable, the remainder of the line is skipped (including
the end-of-line). After any READLN, the next READ or READLN will always
start with the first character of the next line, if there is a next
line. If there is no next line, EOF will be true.

READLN with a STRING variable reads all the characters up to but not
including the end-of-line character. Thus repeated READLN's with a
STRING variable have the effect of reading successive lines of the file
as strings.

One of the most common uses of READLN with a STRING variable is to read
a string of characters from the CONSOLE: device. In the following
example, which is a modification of the previous example under GET and
PUT, READLN is used to read a filename typed by the user:

BUILT-IN PROCEDURES AND FUNCTIONS 35

PROGRAM MAKEFILE;

VAR F: FILE OF REAL;
I: INTEGER;
TITLE: STRING;

BEGIN
(*Ask user for title.*)

WRITE('Type name of file: ');
(*Accept line typed by user.*)

READLN(TITLE);
(*If title has no suffix, add .DATA suffix.*)

IF POS('.', TITLE)=0 THEN TITLE:=CONCAT(TITLE, '.DATA');
(*Open with REWRITE since this is a new file*)

REWRITE(F, TITLE);

(*Remainder of program is identical to previous example.*)

Another useful example is given below under WRITE and WRITELN.

THE WRITE AND WRITElN PROCEDURES
These procedures may be used only on TEXT (FILE OF CHAR) or INTERACTIVE
files. They allow characters, strings, and numeric values to be written
to a file without the need for explicit use of PUT or explicit reference
to the window variable. Also, WRITELN allows line-oriented output. The
forms are

WRITE FILEID,] [ITEMs])
WRITELN [([FILEID,) [ITEMs])]

where FILEID is the identifier of a TEXT or INTERACTIVE file which must
be open. If the FILEID is omitted, OUTPUT is assumed.

ITEMs means one or more ITEMs separated by commas. Each ITEM has one of
the following forms:

EXPR

or

EXPR : FIELDWIDTH

or

EXPR : FIELDWIDTH : FRACTIONLENGTH

where EXPR is an expression whose value is to be written, FIELDWIDTH is
an INTEGER expression which specifies the minimum number of characters
to be written, and FRACTIONLENGTH is an INTEGER expression which

36 APPLE PASCAL LANGUAGE

specifies the number of digits to be written after the decimal point if
EXPR is of type REAL. The default FRACTIONLENGTH is 5; the default
FIELDWIDTH is 1. For a non-negative REAL value, one space is always
written before the first digit; for a negative REAL value, the minus
sign occupies this position.

WRITE evaluates the expressions and writes their values to the file in
sequence. If EXPR is of type CHAR, STRING, or PACKED ARRAY of CHAR,
WRITE 'vrites the character (s) to the file and advances the file
pointer. If a FIELDWIDTH has been given and the number of characters
written is less than specified, leading spaces are added to fill the
field.

If EXPR is of a numeric type, \~ITE converts the value to a string of
characters in standard Pascal numeric format, writes this string to the
file, and advances the pointer. If the value is REAL and a
FRACTIONLENGTH has been given, the specified number of digits are
written after the decimal point; if no FRACTIONLENGTH is given, five
decimal places are written. If necessary, the value is rounded (not
truncated) to the number of decimal places available. If a FIELDWIDTH
has been given and the number of characters written is less than
specified, leading spaces are added to fill the field.

WRITELN works exactly like WRITE, except that after the last value has
been written a return character is written to end the line. This allows
line-oriented output with string expressions.

OUTPUT is the identifier of a predeclared INTERACTIVE file which can be
used with WRITE and WRITELN. All characters written to OUTPUT are
displayed on the console screen. When a program is writing to OUTPUT,
the user may type ctrl-S to stop the output. The program halts until
another character is typed, then resumes the output where it left off.
Also, the user may type ctrl-F. This halts the displaying of characters
on the console screen, but the program continues to run.

The following example program illustrates a number of useful
techniques. It uses line-oriented I/0 with STRING variables, but
performs character manipulations on the STRING variables. It also shows
a useful trick for opening a file for output which may or may not exist
already. The effect of the program is to read the input file line by
line, remove any leading periods from the lines, and write the lines out
to the output file.

PROGRMI FLUSHPERIODS;

CONST PERIOD='.';

VAR INFILE, OUTFILE: TEXT;
INNA}lli, OUTNAME, LINEBUF: STRING;

BUILT-IN PROCEDURES AND FUNCTIONS 37

BEGIN

(*First get the files open.*)
(*Get input filename·*)

WRITE('Name of input file: ');
READLN (INNAME) ;

(*Supply the default suffix .TEXT if needed.*)
IF POS('. ', INNMIE)=-(1 THEN INNAl.ffi:=CONCAT(INNMIE, '.TEXT');

(*Turn off automatic error checking so program can do it.*)
(*$I-*)

(*Input file should already exist, so open with reset.*)
RESET(INFILE,INNAME);

(*If it doesn't work, complain and stop program.*)
IF IORESULT<>(I THEN BEGIN

WRITELN('File not found.');
EXIT(PROGRAM)

END;
(*Turn automatic error checking back on.*)

(*$I+*)

(*Get output filename.*)
WRITE('Name of output file: ');
READLN(OUTNAME);

(*Supply default suffix .TEXT if needed.*)
IF POS (' • ' , OUTNAME) =-(1 THEN OUTUAME: =CONCAT (OUTNMfE, ' • TEXT') ;

(*Open file with rewrite.*)
REWRITE(OUTFILE,OUTNAME);

(*Now do the job.*)
WHILE (NOT EOF(INFILE)) AND (NOT EOF(OUTFILE)) DO BEGIN

READLN(INFILE,LINEBUF);
IF LENGTH(LINEBUF) >(I THEN

IF POS(PERIOD, LINEBUF)=1 THEN DELETE(LINEBUF, 1, 1);
WRITELN(OUTFILE,LINEBUF)

END;

(*Now clean up.*)
(*If the output file isn't complete ••• *)

IF EOF(OUTFILE) THEN BEGIN
WRITELN('Not enough room in output file!');

(* ••• Then throw it away.*)
CLOSE(OUTFILE,PURGE)

END
(*If it's okay, then lock it into the directory.*)

ELSE CLOSE(OUTFILE,LOCK);
CLOSE(INFILE)

END.

38 APPLE PASCAL LANGUAGE

THE PAGE PROCEDURE

This procedure sends a top-of-form character (ASCII 12) to the file.
The form is

PAGE (FILEID)

where FILEID is the identifier of an open file of type TEXT or
INTERACTIVE.

THE SEEK PROCEDURE
This procedure allows the program to move a file pointer to any
specified record in a file that is not a textfile. This allows random
access to file records. The form is

SEEK (FILEID , RECNUH)

where FILEID is the identifier of an open file that is not a
textfile(i.e. not created with the .TEXT suffix), and RECNUM is an
integer value interpreted as a record number in the file.

This procedure changes the file pointers so that the next GET or PUT
from/to the file uses the record of FILEID specified by RECNUM. Records
in files are numbered from ~. A GET or PUT must be executed between
SEEK calls since two SEEKs in a row may cause unexpected, unpredictable
junk to be held in the window and associated buffers. Immediately after
a SEEK, EOF will return false; a following GET or PUT will cause EOF to
return the appropriate value.

The following sample program demonstrates the use of SEEK to randomly
access and update records in a file:

PROGRAM RANDOMACCESS;
(*Allows update of any selected record in a file.*)

VAR
RECNUMBER: INTEGER;
FNAME: STRING;
VITALS: FILE OF RECORD

NMlE: STRING [2(J] ;
DAY,MONTH,YEAR: INTEGER;
ADDRESS: STRING[5(J];
ALIVE: BOOLEAN

END;

BUILT-IN PROCEDURES AND FUNCTIONS 39

BEGIN
(*Obtain filename.*)

WRITE('Enter filename: ');
READLN (FNAME) ;

(*Use RESET to preserve existing contents of file; but if it doesn't
exist, use REWRITE to create it.*)

(*$I-*)
RESET(VITALS, FNAME);
IF IORESULT<>~ THEN REWRITE(VITALS, FNAME);
(*$I+*)

(*Repeat the following "forever," i.e. until EXIT is caused by user
typing ctrl-C and causing EOF(INPUT), or by lack of diskette space for
new records. *)

WHILE TRUE DO BEGIN
(*Obtain record number; quit if user types ctrl-c, causing EOF.*)

WRITE('Enter record number: ');
READLN(RECNUMBER);
IF EOF THEN BEGIN

CLOSE(VITALS, LOCK);
EXIT{PROGRAM)

END;

(*GET the specified record*)
SEEK(VITALS,RECNUHBER);
GET (VITALS);

(*Update the record*)
WITH VITALS- DO BEGIN

WRITELN (NAME);
WRITE('Enter correct name: ');
READLN (NAME) ;
WRITELN (DAY);
WRITE('Enter correct day: ');
READLN (DAY) ;

(* ••• and so forth with other fields of record.*)
END;

(*Now SEEK the same record again, since the GET advanced the file
pointer to the next record after it got the current record into
VITALs- *)

SEEK(VITALS,RECNUMBER);

(*PUT updated record into file; exit if this causes EOF.*)
PUT(VITALS);
IF EOF(VITALS) THEN BEGIN

END
END.

40 APPLE PASCAL LANGUAGE

\VR.ITELN ('Not enough file space! ') ;
EXIT(PROGRAM)

END

THE UNITREAD AND UNITWRITE PROCEDURES

THESE ARE DANGEROUS PROCEDURES

These are the low-level procedures which do device-oriented I/O. The
forms are

UNITREAD (UNITNU?·1EER, ARRAY, LENGTH [, [BLOCKNUNBEP.] [, UODE]])
UNIT~~ITE (UNITNUMBER, ARRAY, LENGTH [, (BLOCK~~MEER] (, [MODE]]

where:

UNITNUMBER, an integer, is the volume number of an I/0
device. The Apple Pascal Operating System Reference Manual
describes these numbers.

ARRAY is the name of a packed array, which may be subscripted
to indicate a starting position. This is used as the starting
address to do the transfers from/to. A string may also be
used, but it should have a subscript greater than 0, since the
0th element of a string contains data which usually should not
be transmitted.

LENGTH is an integer value designating the nuober of bytes to
transfer.

BLOCY.!rulffiER, an integer, is meaningful only when using a disk
drive and is the absolute block number at which the transfer
will start. If the BLOCKNU~ffiER is left out, 0 is assumed.

MODE, an integer in the range 0 •• 15, is optional; the default
is 0. It controls two UNITVffiiTE options which are described
below. HODE has no effect on UNITREAD.

The UNITl,'RITE options controlled by the HODE parameter apply only to
text-oriented I/0 devices such as the console or a printer; they do not
apply to diskette drives. Both options are enabled by default, if no
MODE parameter is supplied.

One option is conversion of DLE codes.· In a Pascal textfile, any
leading spaces at the beginning of a line are represented by a DLE
character (ASCII 16) followed by a code value which is 32 plus the
number of spaces. On output to a non-block-structured device such as a
printer, the DLE conversion option detects the DLE code and converts it
into a sequence of spaces.

Conversion of DLE codes is disabled by a NODE value that l>as a one in
Bit 3 (see below).

The other option is automatic line feeds. In a Pascal textfile, the end
of each line is marked by the end-of-line character CR (ASCII 13)
without any line-feed character. On output to a non-block-structured

BUILT-IN PROCEDURES AND FUNCTIONS 41

device such as a printer, the automatic line-feed option inserts an LF
character (ASCII 1~) after every CR character (ASCII 13).

Automatic line feeds are disabled by a MODE value that has a one in
Bit 2 (see below).

Only Bit 2 and Bit 3 of the MODE value have any significance. Bit 2, by
itself, corresponds to a value of 4, and Bit 3 by itself corresponds to
a value of a. The following values can be used to control the options:

- MODE=0 (the default value) causes both options to be enabled.

- MODE=4 causes automatic line feeds to be disabled, while
leaving DLE conversion enabled.

- MODE=8 causes DLE conversion to be disabled, while leaving
automatic line feeds enabled.

- MODE=l2 disables both DLE conversion and automatic line
feeds.

THE UNITBUSY FUNCTION
This is a UCSD Pascal procedure used to indicate whether a specified
device is busy. But since the I/O drivers on the Apple are not
interrupt driven, UNITBUSY will always return the value FALSE. To test
whether a character is available from the Apple keyboard, use the
KEYPRESS function (see Chapter 7).

THE UNITWAIT PROCEDURE
This is a UCSD Pascal procedure which waits for a specified device to
complete the I/O in progress. But since the I/O drivers on the Apple
are not interrupt driven, UNITWAIT does nothing.

42 APPLE PASCAL LANGUAGE

THE UNITCLEAR PROCEDURE

This procedure cancels all I/0 operations to the specified unit and
resets the hardware to its power-up state. The form is

UNITCLEAR (UNITNUMBER)

IORESULT is set to a non-zero value if the specified unit is not present
(you can use this to test whether or not a given device is present in
the system). The form

UNITCLEAR (1)

flushes the type-ahead buffer for CONSOLE: and resets horizontal
scrolling to full left (displays leftmost 4~ characters on Apple's
screen).

THE BLOCKREAD AND BLOCKWRITE FUNCTIONS
These functions transfer data to or from an untyped file. They return
an integer value which is the number of blocks of data actually
transferred. The forms are

BLOCKREAD
BLOCKWRITE

where

FILEID, ARRAYNAME, BLOCKS [, RELBLOCK]
FILEID, ARRAYNAME, BLOCKS [, RELBLOCK]

FILEID must be the identifier of a previously declared untyped
file.

ARRAYNAME is the identifier of a previously declared array.
The length of the array should be an integer multiple of 512.
ARRAYNAME may be indexed to indicate a starting position in
the array.

BLOCKS is the number of blocks to be transferred.

RELBLOCK is the block number relative to the start of the
file, the zero-th block being the first block in the file. If
no RELBLOCK is specified, the reads/writes will be done
sequentially. Specifying RELBLOCK moves the file pointer.

WARNING: Caution should be exercised when using these functions, as the
array bounds are not heeded. EOF(FILEID) becomes true when the last
block in a file is read.

BUILT-IN PROCEDURES AND FUNCTIONS 43

The following program illustrates the use of BLOCKREAD and BLOCKWRITE.

PROGRAM FILEDEt10;

VAR
BLOCKNUMBER,BLOCKSTRANSFERRED:INTEGER;
BADIO: BOOLEAN;
G,F: FILE;
BUFFER: PACKED ARRAY[~ •• Sll] OF CHAR;

(* This program reads a diskfile called 'SOURCE.DATA' and copies
the file into another diskfile called 'DESTINATION' using untyped
files and the built-ins BLOCKREAD and BLOCKWRITE *)

BEGIN
BADIO:=FALSE;
RESET(G,'SOURCE.DATA');
REWRITE(F,'DESTINATION');
BLOCKNUMBER:=(I;
BLOCKSTRANSFERRED:=BLOCKREAD(G,BUFFER,l,BLOCKNUMBER);
WHILE (NOT EOF(G)) AND (IORESULTc(l) AND (NOT BADIO) AND

(BLOCKSTRANSFERREDcl) DO
BEGIN

BLOCKSTRANSFERRED: =BLOCKlolRITE (F, BUFFER, 1, BLOCKNUHBER) ;
BADIO:=((BLOCKSTRANSFERRED<l) OR (IORESULT<>{I));
BLOCKNUHBER: =BLOCKNUHBER+l;
BLOCKSTRANSFERRED:=BLOCKREAD(G,BUFFER,l,BLOCKNUlffiER)

END;
CLOSE(F,LOCK)

END.

44 APPLE PASCAL LANGUAGE

MISCELLANEOUS BUILT-INS

THE ATAN FUNCTION
The ATAN function is simply a different identifier for the ARCTAN
function of Standard Pascal. Along with the other transcendental
functions, it is part of the TRANSCEND UNIT supplied with Apple Pascal
(see Chapter 7).

THE LOG FUNCTION
This function returns a real value which is the logarithm (base 10) of
its argument. Along with the other transcendental functions, it is part
of the TRANSCEND UNIT supplied with Apple Pascal (see Chapter 7). The
form is

LOG (NUMBER)

where NUMBER can be either a real or an integer value.

THE TRUNC FUNCTION
The function TRUNC will accept a LONG INTEGER as well as a REAL as an
argument. Overflow will result if the absolute value of the argument
exceeds MAXINT. With a REAL argument, TRUNC returns an INTEGER value
formed by dropping the fractional part of the REAL value. With a LONG
INTEGER value, TRUNC returns a numerically equivalent INTEGER value.

THE PWROFTEN FUNCTION
This function returns a real value which is 10 to a specified (integer)
power. The form is

PWROFTEN (EXPONENT

where EXPONENT is an integer value in the range a .. 37. This function
returns the value of 10 to the EXPONENT power.

BUILT-IN PROCEDURES AND FUNCTIONS 45

THE MARK AND RELEASE PROCEDURES

The Standard Pascal procedure DISPOSE is not provided in Apple Pascal.
Instead, the MARK and RELEASE procedures are used for returning dynamic
memory allocations to the system. The forms are

MARK (HEAPPTR)
RELEASE (HEAPPTR

where HEAPPTR is of type -INTEGER and is called by reference in the MARK
procedure. }UUlK sets HEAPPTR to the value of the system's current
top-of-heap pointer. RELEASE sets the system's top-of-heap pointer to
the value of HEAPPTR.

The process of recovering memory space described below is only an
approximation to the function of DISPOSE as one cannot explicitly ask
that the storage occupied by one particular variable be released by the
system for other uses.

Variables created by the standard procedure NID~ are stored in a stack­
like structure called the ''heap". The following program is a simple
demonstration of how MARK and RELEASE can be used to change the size of
the heap.

PROGRAM SMALLHEAP;

TYPE PERSON=
RECORD

NAME: PACKED ARRAY[~ •• l5] OF CHAR;
ID: INTEGER

END;

VAR P: -PERSON;
HEAP: -INTEGER;

BEGIN
MARK (HEAP) ;
NEW(P);
p-.NAME:='FARKLE, HENRY J.';
p-. ID: == 999;
RELEASE(HEAP)

END.

The program shows a particularly handy method for deliberately accessing
the contents of memory which is otherwise inaccessable. It first calls
MARK to place the address of the current top of heap into the variable
HEAP.

46 APPLE PASCAL LANGUAGE

Below is a pictorial description of the heap at this point in the
program's execution:

TOP OF HEAP -->

contents of heap at
start of program

<--- HEAP

Next the program calls the standard procedure Nm7 and this results in a
new variable P~ which is located in the heap as shown in the diagram
below:

TOP OF HEAP --->

p~

contents of heap at
start of program

<--- HEAP

After the RELEASE the heap is as follows:

TOP OF HEAP --->

contents of heap at
start of program

<--- HEAP

Once the program no longer needs the variable P~ and l>Ti.shes to "release"
this memory space to the system for other uses, it calls RELEASE which
resets the top of heap to the address contained in the variable HEAP.

If UEH had been called several times between the calls to NARK and
RELEASE, the storage occupied by several variables would have been
RELEASEd at once. Note that because of the stack nature of the heap it
is not possible to release the memory space used by a single item in the
middle of the heap.

Careless use of Z.fARK and RELEASE can leave "dangling pointers", pointing
to areas of memory which are no longer part of the defined heap space.

BUILT-IN PROCEDURES AND FUNCTIONS 47

THE HALT PROCEDURE

This procedure generates a HALT opcode that, when executed, causes a
non-fatal run-time error to occur. The form is

HALT

For a more orderly way to terminate program execution, see EXIT below.

THE EXIT PROCEDURE
The EXIT procedure causes an orderly exit from a procedure or function,
or from the program itself. The forms are

EXIT(procedurename)
EXIT(programname)
EXIT(PROGRAM)

In the first form shown, EXIT accepts as its single parameter the
identifier of a procedure or function to be exited. Note that this need
not be the procedure or function in which the EXIT statement occurs.
EXIT follows the trail of procedure or function calls back to the
procedure or function specified; each procedure or function in the trail
is exited. If the specified procedure is recursive, the most recent
invocation of that procedure will be exited.

When a procedure or function is exited via EXIT, any files local to it
are automatically closed, just as if it had terminated normally.

The use of EXIT to exit a function can cause the function to return an
undefined value if no assignment to the function identifier is made
before EXIT is executed.

When the program name or the reserved word PROGRAM is used as the
parameter for EXIT, EXIT brings the program to an orderly halt.

THE MEMAVAIL FUNCTION
This function returns the number of words currently between the top-of­
stack and top-of-heap. This can be interpreted as the amount of memory
available at that time. The form is

MEMAVAIL

48 APPLE PASCAL LANGUAGE

THE GOTOXY PROCEDURE

This procedure sends the cursor to a specified position on the screen.
The form is

GOTOXY (XCOORD , YCOORD)

where XCOORD and YCOORD are integer values interpreted as X (horizontal)
and Y (vertical) coordinates. XCOORD must be in the range ~ through 79;
YCOORD must be in the range ~ through 23. The cursor is sent to these
coordinates. The upper left corner of the screen is assumed to be
(~,~).

This procedure is written to work with the Apple II's screen. If you
wish to use an external terminal, you will need to bind in a new GOTOXY
using the BINDER package described in the Pascal Operating System
Manual.

THE TREESEARCH FUNCTION
This a fast function for searching a binary tree that has a particular
kind of structure. The form is

TREESEARCH(ROOTPTR, NODEPTR, NAME)

where ROOTPTR is a pointer to the root node of the tree to be searched,
NODEPTR is a pointer variable to be updated by TREESEARCH, and NAME is
the identifier of a PACKED ARRAY[l •• a] OF CHAR which contains the
a-character name to be searched for in the tree.

The nodes of the binary tree are assumed to be linked records of the
form

NODE=RECORD
NAME: PACKED ARRAY[l •• 8] OF CHAR;
LEFTLINK, RIGHTLINK: -NODE;

••• (*other fields can be anything*)•••

END;

The type name and the field names are not important; TREESEARCH only
assumes that the first eight bytes of the record contain an a-character
name and are followed by two pointers to other nodes.

It is also assumed that names are not duplicated within the tree and are
assigned to nodes according to an alphabetical rule: for a given node,
the name of the left subnode is alphabetically less than the name of the
node, and the name of the right subnode is alphabetically greater than
the name of the node. Finally, any links that do not point to other
nodes should be NIL.

BUILT-IN PROCEDURES AND FUNCTIONS 49

TREESEARCH can return any of three values:

0: The NAME passed to TREESEARCH has been found in the tree.
NODEPTR now points to the node with the specified name.

1: The NAME is not in the tree. If it is added to the tree,
it should be the right subnode of the node pointed to by
NODEPTR.

-1: The NAME is not in the tree. If it is added to the tree,
it should be the left subnode of the node pointed to by
NODEPTR.

The TREESEARCH function does not perform any type checking on the
parameters passed to it.

50 APPLE PASCAL LANGUAGE

BYTE-ORIENTED BUILT-INS

These procedures and functions are all byte-oriented. The system does
not protect itself from them, as no range checking of any sort is
performed on the parameters and no type checking is performed on the
source and destination parameters. Read the descriptions carefully
before trying them out. Also, some machine dependencies may lurk in the
implementations.

THE SIZEOF FUNCTION
This function returns an integer value, which is the number of bytes
occupied by a specified variable, or by any variable of a specified
type. SIZEOF is particularly useful for FILLCHAR, :t-IOVERIGHT, and
MOVELEFT built-ins (see below). The form is

SIZEOF (IDENTIFIER)

where IDENTIFIER is either a type identifier or a variable identifier.

THE SCAN FUNCTION
This function scans a range of memory bytes, looking for a one­
character target. The target can be a specified character, or it can be
any character that does not match the specified character. SCAN returns
an integer value, which is the number of bytes scanned. The form is

SCAN (LIMIT , PEXPR , SOURCE)

where

LllliT is an integer value which gives the maximum number of
bytes to scan. If LIMIT is negative, SCAN will scan backward.
If SCAN fails to find the specified target, it will return the
value of LIMIT.

PEXPR is a "partial expression" which specifies the target of
the scan. PEXPR takes one of the following forms:

~ CH
<> CH

(target is a character equal to CH)
(target is a character not equal to CH)

where CH stands for any expression that yields a result of
type char.

BUILT-IN PROCEDURES AND FUNCTIONS 51

SOURCE is a variable of auy type except a file type. The
first byte of the variable is the starting point of the scan.

SCAN terminates when it finds the target or when it has scanned LIMIT
bytes. It then returns the number of bytes scanned. If the target is
found at the starting point, the value returned will be zero. If LIMIT
is negative, the scan will go backward and the value returned will also
be negative.

Examples: Suppose that DEM is declared as follows:

VAR DEM: PACKED ARRAY [~ •• 1001 OF CHAR;

and then the first 53 elements of DEM are loaded with the characters

••••• THE PTERO IS A MEf·1BER OF THF. PTERODACTYL FAHILY.

We then have the following:

SCAN(-26,;':' ,DEM[30]) will return -26

SCAN(l00,<>'.' ,DEM) will return 5

SCAN(t5,=' ',DEM[5]) will return 3.

THE MOVELEFT AND MOVERIGHT PROCEDURES

These procedures do mass moves of a specified number of bytes. The
forms are

MOVELEFT (SOURCE , DESTINATION , COUNT)
HOVERIGHT (SOURCE , DESTINATION , COUNT)

where SOURCE and DESTINATION are two variables of any type except a file
type. The first byte of SOURCE is the beginning of the range of bytes
whose values are copied. The first byte of DESTINATION is the beginning
of the range of bytes that the ·.ralues are copied into. COUNT is an
integer and specifies the number of bytes moved.

JlfOVELEIT starts from the left end of the SOURCE range. It proceeds from
left to right, copying bytes into DESTINATION, starting at the left end
of the DESTINATIOU range.

MOVERIGHT starts from the right end of the SOURCE range. It proceeds
from right to left, copying bytes into DESTINATION, starting at the
right end of the DESTINATION range.

The reason for having both of these is that the SOURCE and DESTINATION
ranges may overlap. If they overlap, the order in which bytes are 100ved

52 APPLE PASCAL LANGUAGE

is critical: each byte must be moved before it gets overwritten by
another byte.

In general this consideration applies when SOURCE and DESTINATION are
subarrays of the same PACKED ARRAY OF CHAR. If bytes are being moved to
the right (DESTTI~ATION has a higher subscript than SOURCE), use
MOVERIGHT. If bytes are being moved to the left (DESTINATION has a
lower subscript than SOURCE), use MOVELEFT.

THE FILLCHAR PROCEDURE

This procedure fills a specified range of memory bytes with a specified
character value. The form is

FILLCHAR (DESTINATION , COUNT , CHARACTER)

where DESTINATION is a variable of any type except a file type. The
first byte of DESTINATION is the beginning of the range of bytes to be
filled. COUNT is an integer value and specifies the number of bytes to
be filled. CHARACTER is a character value to be copied into each byte
in the specified range.

BUILT-IN PROCEDURES AND FUNCTIONS 53

SUMMARY

STRING BUILT-INS
Integer-Valued Functions:

LENGTH (STRG) returns length of string.
POS (SUBSTRG , STRG) returns index of first

occurence of SUBSTRG within STRG.

String-Valued Functions:

CONCAT (STRGs) returns concatenation of strings.
COPY (STRG , INDEX , COUNT) returns a substring

of STRG.

Procedures:

DELETE (STRG , INDEX , COUNT) deletes a substring
of STRG.

INSERT (SUBSTRG , STRG , INDEX) inserts a substring
into STRG.

STR (LONG , STRG) converts integer or long integer to
string of decimal digits.

INPUT AND OUTPUT BUILT-INS

Opening and Closing Files:

RESET (FILEID [, TITLE]) opens existing diskette file,
or resets pointers to beginning if already open.

REWRITE (FILEID , TITLE) opens new diskette file.
CLOSE (FILEID [, OPTION]) closes file. OPTION may be

LOCK, NO~~, PURGE, or CRUNCH. Default is NORMAL.

File Pointer Status:

EOF [(FILEID)] boolean, true if end of file has been reached
or file is closed. Default FILEID is INPUT.

EOLN [(FILEID)] boolean, true if end of line has been reached.
Default FILEID is INPUT.

SEEK (FILEID , INTEGER) moves file pointer to specified
record.

54 APPLE PASCAL LANGUAGE

Typed File I/0:

GET (FILEID) reads current file record into window & advances
file pointer. Default FILEID is INPUT.

PUT (FILEID) writes window into current file record & advances
file pointer. Default FILEID is OUTPUT.

IORESULT returns an integer value which depends on status of
most recent I/O operation. Value is zero for OK completion.

READ ([FILEID,] VBLs) where VBLs means one or more variables
separated by commas. Successive values are read from file
into variables. Default FILEID is INPUT. FILEID must be
of type TEXT (FILE OF CHAR) or INTERACTIVE.

READLN ([FILEID,] VBLs) Like READ, but skips to beginning
of next line after reading value for last VBL.

WRITE ([FILEID,] [EXPRs]) where EXPRs means one or more
expressions separated by commas. Each EXPR may also be
followed by field width and number of decimal places.
Expression values are written to successive file records.
Default FILEID is OUTPUT. FILEID must be of type TEXT
(FILE OF CHAR) or INTERACTIVE.

WRITELN [([FILEID,] [EXPRs])] Like WRITE, but writes an
end-of-line after last EXPR value.

PAGE (FILEID) writes a top-of-form (ASCII 12).

Device I/O:
These built-ins are described in detail in the text.

UN! TREAD (UNITNUMBER , ARRAY , LENGTH [, [BLOCKNUMBER] [, MODE]])
UNITWRITE (UNITNUMBER , ARRAY , LENGTH [, (BLOCKNUMBER] [, }10DE]])
UNITBUSY (UNITNUMBER) : BOOLEAN
UNITWAIT (UNITNUMBER)
UNITCLEAR (UNITNUMBER)

Untyped File I/0:
These built-ins are described in detail in the text.

BLOCKREAD (FILEID, ARRAY, BLOCKS [, RELBLOCK]) INTEGER
BLOCKWRITE (FILEID, ARRAY, BLOCKS [, RELBLOCK]): INTEGER

BUILT-IN PROCEDURES AND FUNCTIONS 55

MISCELLANEOUS BUILT-INS
ATAN (NUMBER) returns a REAL value. This is the ARCTAN

function of Standard Pascal. NUMBER may be REAL or
INTEGER.

LOG (NUMBER) returns a REAL value, the log base 1~ of
NUMBER. NUMBER may be REAL or INTEGER.

TRUNC (NUMBER) returns an INTEGER value. This is like
Standard Pascal except that NUMBER may be LONG INTEGER
instead of REAL. NUHBER may not exceed MAXINT.

PWROFTEN (EXPONENT) returns a REAL value which is
1~ to the EXPONENT power. EXPONENT is an INTEGER in the
range (} •• 37.

HARK (HEAPPTR) where HEAPPTR is of type J:NTEGER. HEAPPTR
is called by name and is set to current top-of-heap.

RELEASE (HEAPPTR) where HEAPPTR is of type -INTEGER. The
current top-of-heap pointer is set to HEAPPTR.

HALT causes non-fatal run-time error; halts program.
EXIT causes orderly exit from procedure, function, or

program.
MEMAVAIL returns an INTEGER value, the number of words between

top-of-stack and top-of-heap.
GOTOXY (XCOORD , YCOORD) moves screen cursor to specified

coordinates. XCOORD is an INTEGER in the range (} •• 79 and
YCOORD is an INTEGER in the range ~ •• 23.

TREESEARCH (ROOTPTR , NODEPTR , NAME) searches for NAME in
a binary tree. See text for details.

BYTE-ORIENTED BUILT-INS
These built-ins are described in detail in the text.

SIZEOF (VARIABLE OR TYPE IDENTIFIER)
SCAN (LIMIT , PEXPR , SOURCE)
}lOVELEFT (SOURCE , DESTINATION , COUNT)
MOVERIGHT (SOURCE , DESTINATION , COUNT)
FILLCHAR (DESTINATION , COUNT , CHARACTER

56 APPLE PASCAL LANGUAGE

58 Introduction
58 Diskette Files Neeoed
59 Using the Compiler
61 The Compiler Options
61 Compiler Option Syntax
62 The "Comment " Option
63 The "GOTO Statements" Option
63 The "IO Check" Option
63 The "Include Fi l e " Option
64 The "Listing" Option
66 The "Noload" Option
66 The "Page" Option
66 The "Quiet Compile" Option
67 The "Range Check" Option
67 The "Resident" Option
68 The "Swapping" Option
68 The ''User Program" Option
69 The "Use Library" Option
70 Compiler Option Summary

THE PASCAL COMPILER 57

INTRODUCTION
The purpose of the Apple Pascal Compiler is to translate the text of a
Pascal program into the compressed P-code version of the program. This
P-code is the "machine language" of the UCSD Pascal interpreter or
"pseudo-machine," described in the Apple Pascal Operating System
Manual.

Complete details on operation of the Compiler are in the Pascal
Operating System Reference Manual; the following two sections on
diskette files needed and on using the Compiler are somewhat abridged·

DISKEnE FILES NEEDED
To operate the Pascal Compiler, you need the following diskette files:

Textfile to be
Compiled

SYSTEM.COMPILER

SYSTEM.LIBRARY

Other Libraries

SYSTEM.EDITOR

SYSTEM.SYNTAX

(Any diskette, any drive; default
is boot diskette's text workfile
SYSTEM.WRK.TEXT, any drive)

(Any diskette, any drive)

(Boot diskette, any drive; required
only if any of the UNITs in the
system library are USEd by the
program. See Chapter 5.)

(Any diskette, any drive; required if
any UNITs not in the system library
are USEd by the program being
compiled. See Chapter 5.)

(Any diskette, any drive; optional;
to fix errors found by Compiler)

(Boot diskette, any drive; optional
messages given on entering Editor)

In addition to the above files, the following files may be needed if you
are invoking the Compiler automatically via the R(un command (see Apple
Pascal Operating System Reference Manual for details):

SYSTEH.LINKER
SYSTEM. PASCAL
SYSTEM. CliARSET

One-drive note: The files SYSTEM.COMPILER, SYSTEM.EDITOR, and
SYSTEM.SYNTAX are all on diskette APPLE~:, which is the normal one­
drive boot diskette. If you have been working on a program in the
Editor, and U(pdating the workfile, your boot diskette has all the files
needed to R(un or C(ompile the workfile. If you wish to R(un or
C(ompile a textfile that is not already on the boot diskette, use the

58 APPLE PASCAL LANGUAGE

Filer's T(ransfer command to transfer that textfile onto your boot
diskette before compiling. If your program requires Linking to external
routines, see the Apple Pascal Operating System ~~nual.

Multi-drive note: The files SYSTEM.EDITOR and SYST~l.SYNTAX are both on
diskette APPLEl:, which is the normal multi-drive boot diskette. The
file SYSTEM.COMPILER is on diskette APPLE2:, which is normally kept in
drive volume #5: in a multi-drive system. With APPLE!: in the boot
drive and APPLE2: in a non-boot drive, your system has all the files
needed to R(un or C(ompile the workfile.

Two-drive note: If you Wish to R(un or C(ompile a textfile that is not
already on APPLE!: or APPLE2:, and your system has only two drives, use
the Filer's T(ransfer command to transfer that textfile onto either
APPLE!: or APPLE2: before compiling. Another possibility for two-drive
systems is to make APPLE~: your boot diskette (just put APPLE~: in the
boot drive and press the Apple's RESET key). This frees your second
drive to hold a source or destination diskette for compilations, saving
you from T(ransferring the source file onto APPLE!: or APPLE2:. APPLE~:
does not contain SYST~i.LINKER; if your program requires Linking to
external routines, use APPLEl: and APPLE2:.

USING THE COMPILER
The Compiler is invoked by typing C for C(ompile or R for R(un from the
outermost Command level of the Pascal system. The screen immediately
shows the message

COMPILING •••

The Compiler automatically compiles the .TEXT part of the workfile and
saves the resulting code (if compilation is successful) as the .CODE
part of the workfile. If there is a workfile, but you do not wish to
compile that file, use the Filer's N(ew command to clear away the
workfile before compiling. If no workfile is available, you are
prompted for a source filename:

COMPILE WHAT TEXT?

You should respond by typing the name of the text file that you lrlsh to
have compiled. Do NOT type the suffix .TEXT -- that suffix is
automatically supplied by the Compiler, in addition to any suffix you
may specify.

Next, if there is no workfile, you will be asked for the name of the
file where you wish to save the compiled version of your program:

TO WHAT CODEFILE?

If you simply press the RETURN key the command will not be terminated,
as you might expect. Instead, the source file Will be compiled and the
compiled version of your program will be saved on the boot diskette's

THE PASCAL COMPILER 59

workfile SYSTEM.WRK.CODE. This is handy if you then wish to R(un the
program.

If you want the compiled version of your program to have the same name
as the text version of your program (of course, the suffix will be .CODE
instead of .TEXT), just type a dollar sign and press the RETURN key.
This is a handy feature, since you will usually want to remember only
one name for both versions of your program. The dollar sign repeats
your entire source file specification, including the volume identifier,
so do NOT specify the volume identifier before typing the dollar sign.
Note that this use is different from the use of the dollar sign in the
Filer.

If you want your program stored under another filename, type the desired
filename. Do NOT type the suffix .CODE -- that suffix is automatically
supplied by the Compiler, in addition to any suffix you may specify.

By default, the compiler places the code file at the beginning of the
largest unused space on the diskette. To override this, you can give a
size specification with the filename. In this case, you DO type the
suffix .CODE, followed by the number of blocks in square brackets,
followed by a period:

TO WHAT CODEFILE? ~ITPROG.CODE[8].

The period at the end prevents the system from adding the .CODE prefix
after the size specification. The size specification [8] causes the
code file to be placed in the first location on the diskette where at
least 8 blocks are available.

While the compiler is running, messages on the screen show the progress
of the compilation as in the following example:

PASCAL CO~~ILER II.1 [B2B]
< 1/J> ••••••
TUNAFISH [2334 WORDS]
< 6> ••••••••
14 LINES
SMALLEST AVAILABLE SPACE ; 2334 WORDS

The identifiers appearing on the screen are the identifiers of the
program and its procedures. The identifier for a procedure is displayed
at the moment when compilation of the procedure body is started.

The numbers within [] indicate the number of (16-bit) words available
for symbol table storage at that point in the compilation. If this
number ever falls below 551/J, the compiler will fail. You must then put
the swapping option (described below) into your program and recompile.

The numbers enclosed within < > are the current line numbers. Each dot
on the screen represents one source line compiled.

If the Compiler detects an error in your program, the screen will show
the text preceding the error, an error number, and a marker <<<<

60 APPLE PASCAL LANGUAGE

pointing to the symbol in the source where the error was detected. The
following is an example:

[<<<<
LINE 9, ERROR 18: <SP>(CONTINUE), <ESC>(TERMINATE), E(DIT

This shows that the bracket [is an illegal symbol at this point in the
program. You have three options when you see a message like this.
Pressing the spacebar instructs the Compiler to continue the
compilation, in case you want to find more of the errors right now.
Pressing the ESC key causes termination of the compilation and return to
the Command level.

Typing E sends you to the Editor, which automatically reads in the
workfile, ready for editing. If you were not compiling the workfile,
the Editor requests the name of the file you were compiling. You should
respond by typing the filename of the file you were compiling, and that
file will then be read into the Editor. When the correct file has been
read into the Editor, the top line of the screen displays the error
message (or number, if SYSTEM.SYNTAX was not available) and the cursor
is placed at the symbol where the error was detected.

If SYSTEM.SYNTAX is not available, you can look up the error in Table 6
of Appendix B. (You may wish to delete the file SYSTEM.SYNTAX to obtain
more diskette space.)

THE COMPILER OPTIONS

COMPILER OPTION SYNTAX
Compiler options (see the following section for details) are placed in
the text to be compiled, and take effect when the Compiler arrives at
the option during compilation.

Compiler options look like a special kind of comment, and take the
following form:

(*$option*)

The Compiler treats material between (*$ and *) as a compiler option.
As shown below, there must be no spaces in (*$ or immediately after the
$ character:

(*$G-*)
(* $G-*)
(*$ G-*)

This is a compiler option.
This is a comment.
This is a comment.

THE PASCAL COMPILER 61

Several options can be combined in one set of (*$ ••• *) brackets, by
separating the options with commas (don't add extra spaces):

(*$option,option*) Example: (*$I-,S+,G-*)

You can't do this with the options that involve names or strings of
characters.

A given option may be turned on or off at any point in the compilation.
The compilation is affected only from the point where the option is
turned on until the point where the option is turned off again. Thus
you can turn an option on (or off) just during the compilation of a
particular routine in your program.

Some options require a filename immediately following the option letter,
instead of the usual + or -. In this case, all characters between the
option letter and the closing *) are taken as the filename, except that
blanks preceding or following the filename are ignored. Therefore, the
filename must be the last item before the *>· If the first character of
a filename is + or -, you must place a blank between the option letter
and the filename. For examples of specifying a filename, see the
section describing the Include-file mechanism.

In Apple Pascal, curly brackets { and } are equivalent to the normal
comment or option delimiters (*and *). The curly brackets cannot be
generated by the Apple keyboard, so no confusion exists for programs
written on the Apple computer. However, other terminals may be able to
generate the curly brackets in programs. These programs will be
executed correctly on the Apple, but the curly brackets will be
displayed on Apple's screen as square brackets (and] •

THE "COMMENT" OPTION
This option consists of the letter C and a line of text. The text is
placed, character for character, in Block 0 of the codefile (where it
will not affect program operation). The purpose of this is to allow a
copyright notice or other comment to be embedded in the codefile.
Example:

(*$C COPYRIGHT ALLUVIAL O. FANSO~m 1979*)

The Comment option must precede the heading statement of the program.

62 APPLE PASCAL LANGUAGE

THE "GOTO STATEMENTS" OPTION
Tells the Compiler whether to allow or forbid the use of the Pascal GOTO
statement within a program.

Default value: G-

(*$G+*) Allows the use of the GOTO statement.

(*$G-*) Causes the Compiler to treat a GOTO as an error.

Teachers sometimes use the G- option to keep novice programmers from
using the GOTO statement where more structured approaches using FOR,
k~ILE, or REPEAT statements would be more appropriate.

THE "10 CHECK" OPTION
This option tells the compiler whether or not to create error-checking
code after each structured file I/0 statement (not the BLOCK or UNIT I/O
statements).

Default value: I+

(*$I+*)

(*$I-*)

Instructs the Compiler to generate code after each
statement which performs any I/0, in order to check
that the I/0 operation was accomplished successfully.
In the case of an unsuccessful I/O operation, the
program will be terminated with a run-time error.

Instructs the Compiler not to generate any I/O­
checking code. In the case of an unsuccessful I/O
operation, the program is not terminated with a run­
time error.

The (*$I-*) option is useful for programs where I/O checking is not
desirable, or which do their own checking via the 10RESULT function.
The program can then detect and report the I/O errors, without being
terminated abnormally with a run-time error. However, the disadvantage
of setting the (*$I-*) option is that I/0 errors, (and possibly severe
program bugs), may go undetected.

THE "INCLUDE FILE" OPTION
The syntax for instructing the CoDpiler to include another source file
into the compilation is as follows:

(*$1 filename *)

All characters between {*$1 and *) are taken as the filename of the
source file to be included. Thus, the filename must be the last item

THE PASCAL COMPILER 63

before the *). Spaces preceding the filename and following it are
ignored.

Note that if the first character of a filename is + or -, you MUST place
a blank space betl-7een (*$I and the filename. Also, you may not use the
* or *: notation in the filename to specify the boot diskette.

If the initial attempt to open the file which is being included (also
called the "include file") fails, the Compiler concatenates the suffix
.TEXT to the filename and tries again. If this second attempt fails, or
if some I/0 error occurs while reading the include file, the Compiler
responds with a fatal error message and terminates its operation.

If the include file option occurs within the body of a procedure or
within the body of the main program, the includ file must not contain
any USES, LABEL, CONST, TYPE, or VAR declarations. Otherwise, the
compiler accepts include files which contain such declarations even
though the declarations of the original program have already been
compiled.

The Compiler cannot keep track of nested include options, i.e. an
include file must not contain an include file option. This results in a
fatal Compiler error.

The include file option makes it easier to compile large programs
without having the entire source in one very large file. This is
especially useful when the combined file would be too large to edit in
the existing Editor's buffer.

THE "LISTING" OPTION
Controls whether the Compiler will generate a program listing.

Default value: 1-

(*$L+*)

(*$1-*)

Instructs the Compiler to save a compiled listing on the
boot diskette under the filename SYSTai.LST.TEXT.

Tells Compiler to make no compiled listing.

(*$1 filename*) Tells Compiler to save compiled listing in the
specified file.

For example, the following will cause the compiled listing to be sent to
the printer:

(*$L PRINTER:*)

64 APPLE PASCAL LANGUAGE

The following will cause the compiled listing to be sent to a diskfile
called DEM01.TEXT on the diskette named ~rrDISK:

(*$L ~~DISK:DEM01.TEXT *)

The specified filename, which must be the last item before the *), is
used exactly as typed. No suffix is added. Note that a diskette
listing file may be edited just like any other text file, provided the
filename which is specified contains the suffix .TEXT.

In the compiled listing, the Compiler places next to each source line
the line number, segment number, procedure number, and the number of
bytes or words (bytes for code, words for data) required by that
procedure's declarations or code to that point. The Compiler also
indicates whether the line lies within the actual code to be executed or
is a part of the declarations for that procedure by printing a "D" for
declaration and an integer 0 •• 9 to designate the level of statement
nesting within the code part.

Here is a sample listing, to which column headings have been added:

Source
line

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Segment Procedure
number number

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Lexical Byte number Program
text level within procedure

1:D
1 :D
1:D
1 :D
1:D
2:D
2:0
2:1
2:1
2:0
2:0
3:D
3:0
3:1
3:2
3:3
3:2
3:0
3:0
1:0
1:1
1:2
1:3
1:3
1:2
1:0

1 (*$L SCRATCH:LIST1.TEXT*)
1
1 PROGRAM DOCTOR;
3 VAR DAY,CURE:INTEGER;
5
1 PROCEDURE DOSE;
0 BEGIN
0 WRITE(' AN APPLE A DAY');

26 WRITE(' AND ')
43 END;
56

1 PROCEDURE TREATMENT;
0 BEGIN
0 FOR CURE:=1 TO 4 DO

11 BEGIN
11 DOSE
11 END
13 END;
34
0 BEGIN
0 FOR DAY:=0 TO 25 DO

13 BEGIN
13 TREATMENT;
15 WRITELN(' ')
35 END
35 END.

The inforcation given in the compiled listing can be very valuable for
debugging a large program. A run-time error message will indicate the
segment number, procedure number, and the offset (byte number within the

THE PASCAL COMPILER 65

current procedure) where the error occurred.

Here is a sample run-time error message:

EXEC ERR II 10
Sf! 1, PI! 7, Ill 56
TYPE <SPACE> TO CONTINUE

where Sf! is the segment number, P# is the procedure number, and Ill is
the byte number in that procedure where the error occurred.

THE "NOLOAD" OPTION
This option prevents the code of a UNIT used by the program (see Chapter
5) from being kept in memory when the program is executed. Instead, the
UNIT's code is in memory only when some portion of it is active.

Default value: N-

(*$N+*)

(*$N-*)

UNIT code will be loaded only when active.

UNIT code will be loaded as soon as program
begins executing.

The (*$N*) option should be placed at the beginning of the main
program. Note that use of the (*$N+*) option does not prevent the
initialization portion of a UNIT from being executed.

THE "PAGE" OPTION
If a listing is being produced, the P option causes one form-feed (ASCII
12) to be inserted into the text of the listing, just before the line
containing the P option. For example, if your program contains the line

(*$P*)

that line will appear at the top of a new page when you print the
program's compiled listing.

THE IIQUIET COMPILE" OPTION
The Q Compiler option is the "quiet compile" option which can be used to
suppress the screen messages that tell the procedure names and line
numbers and detail the progress of the compilation.

66 APPLE PASCAL LANGUAGE

Default value: Q-

(*$Q+*) Causes the Compiler to suppress output to the
screen.

(*$Q-*) Causes the Compiler to send procedure name and
line number messages to the screen.

This is mostly useful when the CONSOLE: device is not the Apple's TV
or monitor screen, for example if you are using a printing terminal. In
normal use with your Apple, this option is not needed.

THE "RANGE CHECK" OPTION
With the (*$R+*) option, the Compiler will produce code which checks on
array and string subscripts and on assignments to variables of subrange
and string types.

Default value: R+

(*$R+*) Turns range checking on.

(*$R-*) Turns range checking off.

Note that programs compiled with the (*$R-*) option selected will run
slightly faster. However if an invalid index occurs or an invalid
assignment is made, the program will not be terminated with a run-time
error. Since you should never assume that a program is absolutely
correct, use (*$R-*) only when speed is critical.

THE "RESIDENT" OPTION
This option forces the code of a specified UNIT or SEG~lliNT procedure to
be kept in memory, for as long as the procedure that contains the option
is active. It can thus override the automatic swapping out of a SEGMENT
PROCEDURE or FUNCTION (see Chapter 5), and the autottatic swapping out of
a UNIT caused by the NOLOAD option (see above). For example, suppose
that MOBY is a large SEGMENT PROCEDURE. ~ormally it is in memory only
when it is active (thus allowing the memory space to be used for
something else). But another procedure, RATS, calls MOBY repeatedly. We
don't want the disk drive to be whizzing NOBY in and out of memory each
time RATS calls it, so we make HOBY a "resident procedure" within RATS:

PROCEDURE RATS (HATS, BATS, CATS:INTEGER);
VAR FOON, ~!OON: STRING;
BEGIN

(*$R MOBY*)

THE PASCAL COMPILER 6 7

Now MOBY will be kept in memory as long as RATS is active. The resident
option must immediately follow the BEGIN that starts the procedure
body.

The resident option is also useful in connection with the noload option
described above.

THE "SWAPPING" OPTION
This option determines whether or not the Compiler operates in
"swapping" mode. There are two main parts of the Compiler: one
processes declarations; the other handles statements. In the S+
swapping mode, only one of these parts is in main memory at a time.
This makes about 3900 additional words available for symbol-table
storage at the cost of slower compilation speed (approximately 300
lines/minute in S- mode, versus about 150 lines/minute inS+ mode)
because of the overhead of swapping the Compiler segments in from disk.
This option must occur before the Compiler encounters any Pascal
syntax.

Default value: s-

(*$S+*)

(*$S-*)

(*$S++*)

Puts Compiler in swapping mode.

Puts Compiler in non-swapping mode.

Compiler does even more swapping than with the S+
option. The program compiles still more slowly, but
still more room is left in memory for symbol-table
storage.

The S+ option should be used when compiling a UNIT.

THE "USER PROGRAM" OPTION

This option determines whether this compilation is a user program
compilation, or a compilation of a system program.

Default value: U+

(*$U+*)

(*$U-*)

Informs the Compiler that this compilation is to take
place on the user program lex level.

Tells the Compiler to compile the program at the system
lex level. This setting of the U compiler option
also causes the following options to be set: R-, G+, I-

NOTE: The U- option will generate programs that do not behave as
expected. Not recommended for non-systems work unless you know its
method of operation.

68 APPLE PASCAL LANGUAGE

THE "USE LIBRARY" OPTION
This option consists of the letter U and a filename. The named file
becomes the library file in which subsequent USEed UNITs are sought.
The specified filename, which must be the last item before the *), is
used exactly as typed. No suffix is added.

The default filename for the library is SYSTEM.LIBRARY, on the boot
diskette. If any USEd UNITs are in the boot diskette's SYSTEM.LIBRARY,
and you refer to those UNITs first, you do not need the Use-library
Compiler option for those UNITs. See Chapter 5 for more details on
UNITs.

Following is an example of a valid USES clause employing the U filename
Compiler option:

USES UNITl,UNIT2, (*FOUND IN *SYSTEH.LIBRARY*)
(*$U MYDISK:A.CODE *) UNIT3,
(*$U APPLEl:B.LIBRARY *)
UNIT4,UNIT5;

Note: In a U filename option, you may not use the * or *: notation to
specify the boot diskette.

Some programs require the Compiler to access another diskette file -­
for example, an "include" file. When this is done, 2K of memory is
required for the diskette directory. If the program is very large, this
additional memory is not available and the compilation fails. If this
happens to you, try the following technique:

Use the Filer command M(ake to create a 4-block file named
SYSTEM.SWAPDISK on the same diskette that contains the Compiler. Now,
when the Compiler reads a diskette file during compilation, it will
write out 2K of information from memory to SYSTEM.SWAPDISK, thus freeing
2K of memory for the diskette directory. When the diskette directory is
no longer needed, the 2K of information is read back into memory from
SYSTEM.SWAPDISK.

THE PASCAL COMPILER 69

COMPILER OPTION SUMMARY
All Compiler options are placed in the source text in "dollar-sign
comments":

(*$option*) Examples: (*$G-*)
(*$I TURTLE.TEXT *)

Compiler-option specifications ~y be combined in one set of (*$···*)
brackets:

(*$option,option*) Example: (*$F-,S+,G+*)

If a filename is specified, it must be the last item before the *)•

C Following characters are placed directly into codefile.

G+ Allows GOTO statements.
G- Forbids GOTO statements (default).

I+ Generates I/O-checking code (default).
I- No I/O checking.
I filename Includes named source file in compilation.

L+ Sends compiled listing to SYSTEM.LST.TEXT, on boot disk.
L- Hakes no compiled listing (default).
L filename Sends compiled listing to named file.

N+ Prevents UNITs from being loaded until activated.
N- Loads UNITs immediately when program runs (default).

P Inserts a pa&e-feed into compiled listing.

Q+ Suppresses screen messages.
Q- Sends procedure names and line numbers to CONSOLE: (default)

R+ Generates range-checking code (default).
R- No range checking.
R name Keeps named procedure loaded while current one is active.

S+ Puts Compiler in swapping mode.
S++ Compiler does even more swapping.
S- Hen-swapping mode.

U+ Compiles user program (default).
U- Compiles system program.
U filename Specifies name of library file for finding UNITs.

70 APPLE PASCAL LANGUAGE

72 Introduction
74 SEG~!ENT Procedures and Functions
74 Requirements and Limitations
75 Libraries and UNITs
7 5 UNITs and USES
76 Regular UNITs
76 Intrinsic UNITs
77 The INTERFACE Part of a UNIT
78 The IMPLEMENTATION Part of a UNIT
78 The Initialization Part of a UNIT
78 An Example UNIT
79 Using the Example UNIT
80 Nesting UNITs
81 Changing a UNIT or its Host Program
82 EXTERNAL Procedures and Funct ions

PROGRAMS IN PIECES 71

INTRODUCTION
Apple Pascal supports the separation of procedures and functions, or
groups of them, from the main program. When you are developing a large
or complex program, this can be very useful as it allows you to reduce
the size of code files, to reduce the memory space used by the program,
and to use a set of procedures and functions in more than one program.

Separation can be achieved both at the P-code level and at the source­
language level. At the P-code level, any procedure or function can be
designated as a SEGMENT. The result is that its code is not loaded into
memory until it is called by some other part of the program. As soon as
the SEGMENT procedure or function is no longer active it is "swapped
out;" that is, its memory space is made available for some other use
such as dynamic memory allocation or swapping in another SEGMENT. This
technique is sometimes called "overlaying."

At the source-language level, a group of one or more procedures or
functions can be compiled separately as a UNIT. The result of compiling
a UNIT is a library file; it can either be used directly or incorporated
into some other library file such as SYSTEM.LIBRARY.

Separate compilation has several advantages in the development of any
large or complicated program, because it allows you to approach the task
as a group of smaller tasks which are linked together in a simple and
logical way. Several of the powerful features of Apple Pascal are
implemented as UNITs, as we Will see in Chapter 7. To use a separately
compiled UNIT, a program must contain a USES declaration with the name
of the UNIT; the program is then called a host program.

There are two kinds of UNITs: Regular UNITs and Intrinsic UNITs. When a
host program USES a Regular UNIT, the UNIT's code is inserted into the
host program's codefile by the Linker. This need only be done once
unless the UNIT is modified and recompiled; then it must be relinked
into the host program.

When a host program USES an Intrinsic UNIT, the UNIT's code remains in
its library file and is automatically loaded into memory when the host
program is executed. This keeps the size of the host program's codefile
down, which is particularly important if many programs use the UNIT. It
also allows the UNIT to be modified and recompiled Without the need to
relink.

The Compiler's NOLOAD and RESIDENT options (see Chapter 4) allow further
control over the handling of Intrinsic UNITs and SEGMENT procedures and
functions. NOLOAD prevents any UNIT from being automatically loaded
until its code is activated by the host program. The RESIDENT option
can modify the effect of NOLOAD or of a SEGMENT procedure or function;
it forces a procedure or function to be kept in memory over a specified
range of program execution -- specifically, as long as the procedure or
function containing the RESIDENT option is active, the procedure named
in the RESIDENT option is kept in memory.

72 APPLE PASCAL LANGUAGE

Finally, there is the EXTERNAL mechanism. This allows a procedure or
function to be declared in a Pascal host program, without any statements
except a heading and the word EXTERNAL. The procedure or function is
implemented separately in assembly language, assembled, and then linked
into the host program with the Linker. This can be advantageous for
procedures or functions which must run very fast.

PROGRAMS IN PIECES 73

SEGMENT PROCEDURES
AND FUNCTIONS

Declarations of SEGMENT procedures and functions are identical to
ordinary Pascal procedures and functions except that the word PROCEDURE
or FUNCTION is preceded by the word SEGMENT. For example:

SEGHENT PROCEDURE INITIALIZE;
BEGIN

(* Pascal statements *)
END;

SEGHENT FUNCTION FFT (DONAIN:~fPTR): NPTR;
BEGIN

(* Pascal statements *)
END;

Program behavior does not differ; however, the code and data for a
SEGMENT procedure or function are in memory only while the procedure or
function is actually running. This can be modified by use of the
Compiler option (*$R name*) as explained in Chapter 4.

Any procedure or function definition may have the word SEGMENT. This
includes FORWARD definitions and nested definitions.

The advantage of using SEGMENT procedures is the ability to fit large
programs into the available memory. To write such a program, divide it
into two or more main tasks to1hich are implemented as SEGMENT
procedures. To be effective, each SEGMENT should be substantial in size
and the program should be designed so that SEGMENTs are not swapped in
and out too frequently.

REQUIREMENTS AND liMITATIONS
The disk which holds the code file for the program must be on line (and
in the same drive as when the program was started) whenever one of the
SEGMENT procedures is to be called. Otherwise, the system will attempt
to retrieve and execute whatever information now occupies that
particular location on the disk now in that drive, usually with very
displeasing results.

SEGHENT procedures must be the first procedure declarations that contain
code-generating statements.

74 APPLE PASCAL LANGUAGE

LIBRARIES AND UNITS
So far, we have seen Pascal programs which are compiled into codefiles;
a codefile can be R(un or eX(ecuted. Now we will consider UNITs, which
are compiled into libraries. Two or more libraries can be combined into
one file. A library is not R(un or eX(ecuted; instead, it is used by
one or more programs.

A library contains code for procedures and/or functions which are
available to any program that uses the library, just as if they were
defined in the program itself. For example, the Apple Pascal System
comes with a library called SYSTEM.LIBRARY which contains code for
several UNITs; one of the UNITs is called TURTLEGRAPHICS, and it
provides a set of procedures and functions for high-resolution graphics
on the Apple. To use these procedures and functions, a program need
only have the line

USES TURTLEGRAPHICS;

after the program heading. The program can then use a TURTLEGRAPHICS
procedure such as TURNTO or MOVE.

You can create and compile your own UNITs, and either add them to
SYSTEM.LIBRARY or build your own libraries by using the LIBRARY utility
described in the Apple Pascal Operating System Reference Manual.

If a UNIT used by your program is contained in the SYSTEM.LIBRARY file,
a R(un command will automatically invoke the Linker to do the necessary
linking. Otherwise, you must explicitly invoke the Linker. Note that
if the UNIT is not contained in the SYSTEM.LIBRARY file, you must use
the (*$U filename*) option of the compiler to tell the compiler which
library file contains the unit. The (*$U filename*) is placed anywhere
before the appearance of the UNIT name in the USES declaration.

UNITS AND USES
The source text for a UNIT has a form somewhat similar to a Pascal
program, as explained in detail further on. Briefly, it consists of
four parts:

- A heading.

- An INTERFACE part which defines the way the host program
communicates with the procedures and functions of the UNIT.

- An IMPLEMENTATION part which defines the procedures and
functions themselves.

- An "initialization" which consists of a BEGIN and an END with
any number of statements between them. This is the "main
program" of the UNIT, and is automatically executed at the
beginning of the host program. Note that the initialization

PROGRAMS IN PIECES 75

may consist of just the BEGIN and END, with no statements
between them.

There are two different flavors of UNITs called Regular and Intrinsic.

Regular UNITs
The heading of a Regular UNIT has the form

UNIT name;

The UNIT is linked into the host program just once after the program is
compiled, and the entire UNIT's code is actually inserted in the host
program's codefile at that time.

Intrinsic UNITs
Intrinsic UNITs can only be used by installing them in the
SYSTDf.LIBRARY file. This is done after compilation by using the
LIBRARY utility program {see Apple Pascal Operating System Reference
Nanual).

An Intrinsic UNIT is "pre-linked," and its
inserted into the host program's codefile.
program, the Linker is not called and does
Intrinsic UNIT's code is loaded into memory
be executed. Thus an intrinsic UNIT can be
programs, but there is only one stored copy

code is never actually
When you R(un the host

not have to be on line. The
when the host program is to
used in many different
of the UNIT's code.

This can be especially useful when writing for a one-drive system which
does not have room for the Linker or for large programs on the main
system diskette. Note that the SYSTEM.LIBRARY file must be on line each
time the calling program is executed.

The heading of an Intrinsic UNIT has the form

UNIT name;
INTRINSIC CODE csegnum [DATA dsegnum];

where csegnum and dsegnum are the segment numbers to be associated with
the UNIT in when it is installed in the SYSTEM.LIBRARY file. You choose
these numbers, and the system uses them to identify the UNIT at run
time. Segment numbers range from ~ to 31, but certain numbers between ~
and 15 must not be used (see below). The UNIT will generate a data
segment if it declares any variables not contained in procedures or
functions.

The code segment will be associated with segment csegnum and its data
segment {if there is one) will be associated with segment dsegnum.

76 APPLE PASCAL LANGUAGE

Every unit in a library has a specific segment number associated with
it. The segment numbers used by items already in the library are shown
in parentheses by the LIBRARY and LIB~~P utility programs (see Apple
Pascal Operating Sys tern Reference 'Hanual). In choosing segment numbers
for an Intrinsic UNIT, the constraint is that when the host program
runs, the segment numbers used by the program must not conflict.
Observe the following:

- ~~ile any program is executing, the system uses segment 0 and
the main program body uses segment 1. Therefore, never use
these numbers for an Intrinsic UNIT.

- Segments 2 through 6 are reserved for use by the system.

- If the program declares any SEGMENT procedures or functions,
these procedures or functions use sequentially increasing
segment numbers starting at 7.

- Each UNIT used by the program uses the segment number shown in
the library listing.

- If possible, avoid any duplication of segment numbers in the
library.

Generally, it is a good idea to use segment numbers in the range from 16
through 31.

The compiler's S\-7APPING option,

(*$S+*)

should always be used when a UNIT is compiled. It should precede the
heading of the UNIT.

The INTERFACE Part of a UNIT
The first part of a UNIT is the INTERFACE.

The INTERFACE part immediately folious the UNIT's heading line. It
declares constants, types, variables, procedures and functions that are
public -- that is, the host program can access them just as if they had
been declared in the host program. The INTERFACE portion is the only
part of the UNIT that is "visible" from the outside; it specifies how a
host program can communicate with the UNIT.

Procedures and functions declared in the INTERFACE are abbreviated to
nothing but the procedure or function name and the parameter
specifications, as shown in the example below.

PROGRAMS IN PIECES 77

The IMPLEMENTATION Part of a UNIT
The IMPLEMENTATION part immediately follows the last declaration in the
INTERFACE.

The IMPLEMENTATION begins by declaring those labels, constants, types,
variables, procedures and functions that are private -- that is, not
accessible to the host program. Then the public procedures and
functions that were declared in the INTERFACE are defined. As shown in
the example below, they are defined without parameters or function
result types, since these have already been defined in the INTERFACE.

The Initialization Part of a UNIT
At the end of the IMPLEMENTATION part, following the last function or
procedure, there is the "initialization" part. This is a sequence of
stateoents preceded by BEGIN and terminated with END. The resulting
code runs automatically when the host program is executed, before the
host program is run. It can be used to make any preparations that may
be needed before the procedures and functions of the UNIT can be used.
For example, the initialization part of the TRANSCEND UNIT in
SYSTEM.LIBRARY generates a table of trigonometric values to be used by
the transcendental functions. If you don't want any initialization to
take place, you must still have the END followed by a period.

AN EXAMPLE UNIT
Let's sketch out an imaginary Intrinsic UNIT that needs a DATA segment,
to demonstrate the information given above.

78 APPLE PASCAL LANGUAGE

(*$S+*) (* Swapping is required for compiling UNITs *)

UNIT FROG; INTRINSIC CODE 25 DATA 26;

INTERFACE (* This stuff is public *)
CONST FLYSIZE = 1~;
TYPE WARTTYPE = (GREEN,BROWN);
VAR FROGNAME:STRING[2~]; (*Will need Data segment*)
PROCEDURE JUMP(DIST:INTEGER);
FUNCTION WARTS:INTEGER;

IMPLEMENTATION (* This stuff is private *)
CONST PI = 3.14159;
TYPE ETC = ~ •• 13;
VAR FROGLOC:INTEGER;

PROCEDURE JUMP; (* Note: no parameters here *)
BEGIN

FROGLOC :~ FROGLOC + DIST
END;

FUNCTION WARTS;
BEGIN

(* Function definition here *)
END;

(* More procedures and functions here *)

BEGIN
(* Initialization code, if any, goes here *)

END.

Variables of type FILE must be declared in the INTERFACE part of a
UNIT. A FILE declared in the IMPLEMENTATION part Will cause a syntax
error upon compilation.

USING THE EXAMPLE UNIT
The UNIT above, properly completed, would then be compiled. Then the
UNIT would be installed in SYSTEM.LIBRARY, using the LIBRARY utility.
Once in the library, the UNIT could then be used by any Pascal host
program. A sample program to use our UNIT is sketched out below:

PROGRAMS IN PIECES 79

PROGRAM JUMPER;

USES FROG;
CONST ••• ;
TYPE • • • ;
VAR •• • ;
PROCEDURE •••
FUNCTION ••• ;

BEGIN

END.

A program must indicate the UNITs that it USES before the declaration
part of the program; procedures and functions may not contain their own
USE declarations. At the occurrence of a USES declaration, the Compiler
references the INTERFACE part of the UNIT as though it were part of the
host text itself. Therefore all constants, types, variables, functions,
and procedures publicly defined in the UNIT are global. Name conflicts
may arise if the user defiues an identifier that has already been
publicly declared by the UNIT. If the UNIT is not in the
SYSTEM. LIBRARY, the USES declaration must be preceded by a "use library"
option to tell the compiler what library file contains the UNIT.

NESTING UNITS
A UNIT may also USE another UNIT, in which case the USES declaration
must appear at the beginning of the INTERFACE part. For example, our
UNIT FROG might use the graphics UNIT TURTLEGRAPHICS:

(*$S+*)
UNIT FROG; INTRINSIC CODE 25 DATA 26;

INTERFACE
USES TURTLEGRAPHICS;
CONST FLYSIZE ; 10;

etc.

When you later use such a UNIT, your host program must declare that it
USES the deepest nested UNIT first:

PROGRAM JUMPER;

USES TURTLEGRAPHICS,FROG;

There is one limitation: an Intrinsic UNIT cannot USE a Regular UNIT.

80 APPLE PASCAL LANGUAGE

CHANGING A UNIT OR ITS HOST PROGRAM
For test purposes, you may define a Regular UNIT right in the host
program, after the heading of the host program. In this case, you will
compile both the UNIT and the host program together. Any subsequent
changes in the UNIT or host program require that you recompile both.

Normally, you will define and compile a Regular UNIT separately and use
it as a library file (or store it in another library by using the
LIBRARY utility). After compiling a host program that uses such a UNIT,
you must link that UNIT into the host program's codefile by executing
the Linker. Trying to R(un an unlinked code file will cause the Linker
to run automatically, looking for the UNIT in the system library.
Trying to X(ecute an unlinked file causes the system to remind you to
link the file.

Changes in the host program require that you recompile the host
program. You must also link in the UNIT again, if it is not Intrinsic.

Changes in a Regular UNIT require you to recompile the UNIT, and then to
recompile and relink all host programs (or other UNITs) which use that
UNIT.

INTRINSIC UNITs and their host programs can be changed as described
above, but they do not have to be relinked.

PROGRAMS IN PIECES 81

EXTERNAL PROCEDURES AND FUNCTIONS
EXTERNAL procedures (.PROC's) are separately assembled assembly­
language procedures, often stored in a library file. Host programs that
require EXTERNAL procedures must have them linked into the compiled code
file.

A host program declares that a procedure (or function) is EXTERNAL in
much the same way as a procedure is declared FORl-TARD. A standard
heading is provided, followed by the keyword EXTERNAL:

PROCEDURE FRAMl-1IS (WIDGET, GIDIBRION: INTEGER);
EXTERNAL;

There is one special rule for the heading of an EXTERNAL procedure or
function: A VAR parameter can be declared without any type.

Calls to the EXTERNAL procedure use standard Pascal syntax, and the
Compiler checks that calls to the EXTERNAL agree in type and number of
parameters with the EXTERNAL declaration. It is the user's
responsibility to ensure that the assembly-language procedure respects
the Pascal EXTERNAL declaration. The Linker checks only that the number
of words of parameters agree between the Pascal and assembly-language
declarations. For more information see the Apple Pascal Operating
System Reference Manual.

The conventions of the surrounding system concerning register use and
calling sequences must be respected by writers of assembly-language
routines. On the Apple, all registers are available, and zero-page
hexadecimal locations 0 through 35 are available as temporary
variables. However, the Apple Pascal system also uses these locations
as temporaries, so you should not expect data left there to be there
when you execute the routine the next time. You can save variables in
non-zero page memory by using the .BYTE or .l-TORD directives in your
program to reserve space.

For assembly language functions (.FUNC's) the sequence is essentially
the same, except that:

- Two words of zeros are pushed by the Compiler after any
parameters are put on the stack.

- After the stack has been completely cleaned up at the routine
exit time, the .FUNC must push the function result on the
stack.

For an example of an EXTERNAL assembly-language procedure and an
EXTERNAL assembly-language function, called from a Pascal program, see
the example in the Apple Pascal Operating System Reference Manual. The
EXTERNAL routine in that example is manually Linked into the calling
program.

82 APPLE PASCAL LANGUAGE

84 Identifiers
84 CASE Statements
84 Comments
85 GOTO
85 Pro~ram Headings
85 Size Limits
85 Extended Comparisons
86 Procedures and Functions as Parameters
86 RECORD Types
86 The ORO Function

OTHER DIFFERENCES 83

IDENTIFIERS
The underscore character is allowed in identifiers; however, the
compiler ignores it. The~efore the identifiers

FIG_LEAF
FIGLEAF

are equivalent. (The Apple keyboard does not have the underscore
character, but some external terminals do.)

CASE STATEMENTS
In Standard Pascal, if there is no case label equal to the value of the
case selector, the result of the case statement is undefined. In Apple
Pascal, if there is no case label matching the value of the case
selector, then the next statement executed is the statement followin8
the case statement.

COMMENTS
The Apple Pascal compiler recognizes any text appearing between either
the symbols (* and *) or the symbols { and } as a comment. Text
appearing between these symbols is ignored by the Compiler unless the
first character of the comment is a dollarsign, in which case the
comment is interpreted as a compiler option (see Chapter 4).

If the beginning of the comment is delimited by the (* symbol, the end
of the comment must be delimited by the matching *) symbol, rather
than the } symbol. When the comment begins with the { symbol, the
comment continues until the matching } symbol appears. This feature
allows you to "comment out" a section of a program which itself contains
comments. This applies to external terminals only, since the only
comment delimiter available on the Apple is the pair (* and *). An
example of how the two kinds of comment delimiters are used on an
external terminal:

{ XCP := XCP + 1; (*ADJUST FOR SPECIAL CASE ••• *) }

The compiler does not keep track of nested comments. When a comment
symbol is encountered, the text is scanned for the matching comment
symbol. The following text will result in a syntax error:

(* THIS IS A COMMENT (* NESTED COMMENT *) END OF FIRST COZ.fMENT *)
""'error here.

84 APPLE PASCAL LANGUAGE

GOTO

Apple Pascal has a more limited form of GOTO statement than Standard
Pascal. The destination of the GOTO statement must be in the same
procedure as the GOTO statement itself (considering the main program to
be a procedure).

The compiler considers a GOTO statement to be illegal unless the
compiler option (*$G+*) is used; see Chapter 4.

PROGRAM HEADINGS
Although the Apple Pascal Compiler will permit a list of file parameters
to be present following the program identifier (as in Standard Pascal),
these parameters are ignored by the compiler and have no affect on the
program being compiled.

SIZE LIMITS
The following is a list of maximum size limitations imposed upon the
user by the current implementation of Apple Pascal:

- 1-taximum number of bytes of object code in a PROCEDURE or
FUNCTIO~~ is 1200. Local variables in a PROCEDURE or FUNCTION
can occupy a maximum of about 18000 words of memory.

- Maximum number of characters in a STRING variable is 255.

- Maximum number of elements in a SET is 32 * 16=512.

- Maximum number of segments a program can use is 16. This
includes one segment for the main program, one for each
SEGMENT PROCEDURE and SEGMENT FUNCTION declared in the
program, and one for each Regular UNIT that the program USES.

- 1-!aximum number of PROCEDUREs or FUNCTIONs within a segment
is 149.

- Maximum integer that can be represented is 32767; minimum
is -32768.

- Maximum precision for REAL values is 32 bits.

EXTENDED COMPARISONS
Apple Pascal allows = and <> comparisons of arrays of exactly the same
type and of record structures of exactly the same type. This can be

OTHER DIFFERENCES 85

done without subscripting (in the case of arrays) or field identifiers
(in the case of records). For example, given the declarations

VAR A: ARRAY[0 •• 10] OF INTEGER;
B: ARRAY[0 •• 10] OF INTEGER;

then the following statement is legal:

IF A""B THEN •••

and the statement following the THEN will be executed if each element of
A is equal to the corresponding element of B.

PROCEDURES AND FUNCTIONS
AS PARAMETERS
Apple Pascal does not allow a PROCEDURE or FUNCTION to be declared as a
formal parameter in the parameter list of another PROCEDURE or
FUNCTION.

RECORD TYPES
There are two restrictions on record type declarations which are
different from Standard Pascal syntax:

- A null field list is illegal; in other words the construction

RECORD END;

will cause an error.

- A null field within the parentheses of a variant field list is
illegal; in other words a semicolon just before the closing
parenthesis will cause an error.

THE ORD FUNCTION
The ORD function will accept a parameter of type POINTER, and return the
numerical value of the pointer.

86 APPLE PASCAL LANGUAGE

When the ORD function is given a BOOLEAN value as an actual parameter,
the result is not always G or 1. It is most unlikely that a working
program will ever encounter this situation, since there is little reason
to take the ORD of a BOOLEAN value.

OTHER DIFFERENCES 87

90
90
90
91
91
91
92
93

Apple Graphics: The TURTLEGRAPHICS UNIT
The Apple Screen
The INITTURTLE Procedure
The GRAFMODE Procedure
The TEXTMODE Procedure
The VIEWPORT Procedure
Using Color: PEN COLOR
More Color: FILL SCREEN

94 Turtle Graphic Procedures: TURNTO, TURN, and MOVE
95 Turtle Graphic Functions: TURTLEX, TURTLEY, TURTLEANG,

and SCREENBIT
95 Cartesian Graphics: The t10VETO Procedure
96 Graphic Arrays: The DRAWBLOCK Procedure
98 Text as Graphics: \~CHAR, WSTRING, and CHARTYPE

101 Other Special Apple Features: The APPLESTUFF UNIT
101 The RANDOM Function
102 The RANDOMIZE Procedure
102 The KEYPRESS Function
103 PADDLE, BUTTON, and TTLOUT
104 Making ~lusic: The NOTE Procedure
105 Transcendental Functions: The TRANSCEND UNIT

SPECIAL UNITS 89

APPLE GRAPHICS:
THE TURTLEGRAPHICS UNIT
This graphics package is called 11Turtlegraphics" since it is based on
the "turtles" devised by s. Papert and his coworkers at the
Massachusetts Institute of Technology. To make graphics easy for
children who might have difficulty understanding Cartesian coordinates,
Papert et al. invented the idea of a "turtle" who could walk a given
distance and turn through a specified angle while dragging a pen along.
Very simple algorithms in this system (which could be called "relative
polar coordinates") can give more interesting images than an algorithm
of the same length in Cartesian coordinates.

Before any graphics can be used, they must be enabled by placing this
declaration immediately after the program heading:

USES TURTLEGRAPHICS;

If this declaration appears, the graphics procedures and functions
described in this section can be used. This declaration tells the
Pascal system to get the graphics programs from the library. The
SYSTEM.LIBRARY file must be on line when the program is R(un or
eX(ecuted.

THE APPLE SCREEN
The Apple screen is a rectangle, with the origin (X=~,Y=~) at the LOWER
LEFT corner. The upper right corner has the coordinates (X=279,Y=l91).
Since points may only be placed at integral coordinates, all arguments
to the graphics functions are INTEGERs. (You can supply a REAL
argument; it will be rounded to an INTEGER.)

There are two different screen images stored in the Apple's memory. One
of them holds the text that you see when the computer is first turned
on. The other holds a graphic image. There are three procedures that
switch between the modes. They are INITTURTLE, TEXTMODE and GRAFMODE.

THE INITTURTLE PROCEDURE
This procedure has no parameters. It clears the screen, and allows the
screen to be used for graphics rather than text. It is a good idea to
use this routine before starting any graphics.

INITTURTLE does a few other things as well: the turtle (more about it
later) is placed in the center of the screen facing right, the pen color
is set to NONE (more about this later too) and the viewport is set to
full screen (read on).

90 APPLE PASCAL LANGUAGE

THE GRAFMODE PROCEDURE
This procedure has no parameters. It switches the monitor or TV to show
the graphics screen, without the other initialization that INITTURTLE
does. It is usually used to show graphics in a program that switches
between graphics and text display.

THE TEXTMODE PROCEDURE
This procedure has no parameters. It switches from graphics mode
(obtained by INITTURTLE or GRAF}IDDE) to showing text. When you switch
to text mode, the image that you saw in GRAFMODE is not lost, but will
still be there when you use GRAFMODE to go into graphics mode again
(unless you deliberately changed it.) Upon termination of any program
that uses graphics, the system automatically goes back into text mode.

THE VIEWPORT PROCEDURE
This procedure has the form

VIEWPORT (LEFT, RIGHT, BOTTOM, TOP)

where the four parameters give the boundaries you want the VIEWPORT to
have. If you don't use this procedure, Apple Pascal assumes that you
want to use the whole screen for your graphics.

There are occasions when it is handy to use only part of the screen,
while safeguarding the rest from accidental use. For example, a small
square near the middle of the screen might be selected as a viewport by
the statement:

VIEWPORT (130, 150, 86, 106)

This example would allow the screen-plotting ~f all points whose
X-coordinates are from 130 through 150 and whose Y-coordinates are from
86 through 106.

When a line is drawn using any of the graphic commands, it is
automatically clipped so that only the portion which lies within the
current viewport is displayed. Points whose coordinates are not in the
current viewport, even those points that would not be on the screen at
all, are legal but are ignored.

SPECIAL UNITS 91

This allows some dramatic effects. It also allows you to plot off­
screen all day, and never see a thing or get an error message. Clipping
cannot be disabled.

USING COLOR: PENCOLOR
The PENCOLOR procedure sets the pen color. It has the form

PENCOLOR (COLOR)

The simplest colors are

WHITE

WHITE! (two dots wide, for use with green and violet)

WHITE2 (two dots wide, for use with orange and blue)

BLACK

BLACK! (two dots wide, for use with green and violet)

BLACK2 (two dots wide, for use with orange and blue)

GREEN

VIOLET

ORANGE

BLUE

If you'd like the drawing to be in GREEN, use the statement:

PENCOLOR (GREEN)

It may seem strange that aside from WHITE, BLACK, GREEN, VIOLET, ORANGE,
and BLUE, there are two additional flavors of WHITE and BLACK. These
are due to the intricate (not to say bizarre) way that color televisions
produce their color, interacting With the technique that Apple uses to
get a lot of color very economically. Rather than explaining how this
all works, suffice it to say here that WHITE and BLACK give the finest
lines possible, and the colors give a wider line in order to make the
colors show. If you wish to make a white or black line that corresponds
exactly in position and Width with a green or violet line then you
should use WHITE! or BLACK!. If you Wish to make a white or black line
that corresponds exactly in position and width with an orange or blue
line, then you should use WHITE2 or BLACK2.

On a black-and-white monitor or TV set, just use WHITE and BLACK.

92 APPLE PASCAL LANGUAGE

The remaining colors are not really colors at all but are equally
useful:

- NONE: Drawing with this "color" produces no change on the
screen. It is useful for moving the turtle without drawing a
line.

- REVERSE: Drawing with REVERSE changes BLACK to WHITE and WHITE
to BLACK. It also changes WHITE! to BLACK!, WHITE2 to BLACK2,
GREEN to VIOLET and ORANGE to BLUE and vice versa. It is
rather a magical "color". It allows you to draw, say, a line
across a complex background and have it still show up.

- RADAR: This "color" has been left unused for future
applications.

MORE COLOR: FILLSCREEN
The FILLSCREEN procedure has the form

FILLSCREEN (COLOR)

FILLSCREEN fills the entire viewport with the specified color. For
example

FILLSCREEN (BLACK)

clears the viewport. The statement

FILLSCREEN (REVERSE)

makes a "negative" of the contents of the viewport.

When you invoke TURTLEGRAPHICS, a new variable type called SCREENCOLOR
is automatically created. It is defined as follows:

SCREEN COLOR (NONE, t.ffiiTE, BLACK, REVERSE, RADAR, BLACK!, GREEN,
VIOLET, WHITE!, BLACK2, ORANGE, BLUE, WHITE2);

SCREENCOLOR has all the usual characteristics of a Pascal type. It is
useful when you declare a variable that will he used to store a color.

SPECIAL UNITS 93

TURTLE GRAPHIC PROCEDURES:
TURNTO, TURN, AND MOVE

At last we're back to the imaginary turtle. Initially, the turtle sits
at the center of the screen, facing right. The turtle can only do two
things: it can turn or it can walk in the direction it is facing. As it
walks, it leaves behind a trail of ink (!) in the current pen color.

The TURNTO procedure has the form

TURNTO (DEGREES)

where DEGREES is an integer which is treated modulo 36~; thus its
effective value is in the range -359 through 359. When invoked, this
procedure causes the turtle to turn from its present angle to the
indicated angle. ~ is exactly to the right, and counterclockwise
rotation represents increasing angles. This command never causes any
change to the image on the screen.

The TURN procedure has the form

TURN (DEGREES)

where DEGREES is again an integer which is treated modulo 36~; thus its
effective value is in the range -359 through 359. This procedure causes
the turtle to rotate counterclockwise from its current direction through
the specified angle. It causes no change to the image on the screen.

The MOVE procedure has the form

MOVE (DISTANCE)

where DISTANCE is an integer. This procedure makes the turtle move IN
THE DIRECTION IN WHICH IT IS POINTING a distance given by the integer
DISTANCE. It leaves a trail in the current pen color. The sequence of
statements:

PENCOLOR (WHITE);
MOVE (5~);

TURN (12~);

HOVE (5~);
TURN (12~);
MOVE (5~)

draws an equilateral triangle, for instance.

94 APPLE PASCAL LANGUAGE

TURTLE GRAPHIC FUNCTIONS:
TURTLEX, TURTLE'{, TURTLEANG, AND SCREENBIT

These functions allow you to interrogate the computer about the current
state of the turtle and the screen.

The TURTLEX and TURTLEY functions (no parameters) return integers giving
the current X and Y coordinates of the turtle.

The TURTLEANG function (no parameters) returns an integer giving the
current turtle angle as a positive number of degrees. Note that if you
use TURNTO and then TURTLEANG, the value returned by TURTLEANG may not
be the same value you gave with TURNTO. For example, after

TURNT0(-9~)

TURTLEANG will return 27~, not -9~.

The SCREENBIT function has the form

SCREENBIT (X,Y)

where X and Y are screen coordinates. This function returns the BOOLEAN
value TRUE if the specified location on the screen is not black, and
FALSE if it is black. It doesn't tell you what color is at that point,
but only whether there is something non-black there or not.

CARTESIAN GRAPHICS: THE MOVETO PROCEDURE
Earlier we said that in turtle graphics, the turtle can only walk in the
direction it is facing. But in Cartesian graphics, the turtle can move
to a specified point on the screen without turning. The MOVETO
procedure has the form

1-iOVETO (X, Y)

where X and Y are screen coordinates. MOVETO moves the turtle to the
point (X,Y). This creates a line in the current pen color from the
turtle's last position to the point (X,Y).

The direction of the turtle is not changed by MOVETO.

SPECIAL UNITS 95

GRAPHIC ARRAYS: THE DRAWBLOCK PROCEDURE
The DRAWBLOCK procedure has the form

DRAWBLOCK {SOURCE, ROWSIZE, XSKIP, YSKIP, WIDTH, HEIGHT,
XSCREEN, YSCREEN, MODE)

where the SOURCE parameter is the name (without subscripts) of a
variable which should be a two-dimensional PACKED ARRAY OF BOOLEAN (see
note below). All the other parameters are integers.

DRAWBLOCK treats each BOOLEAN element of SOURCE as a "dot" -- true for
white or false for black. It copies the array of "dots" (or a portion
of it) from memory onto the screen to form a screen image. The first
dimension of the array is the number of rows in the array; the second
dimension is the number of elements in each row.

You may choose to copy the entire SOURCE array, or you may choose to
copy any specified ''window" from the array, using only those dots in the
array from XSKIP to XSKIP+WIDTH and from YSKIP to YSKIP+HEIGHT.
Furthermore, you can specify the starting screen position for the copy,
at (XSCREEN, YSCREEN).

- SOURCE is the name of the two-dimensional PACKED ARRAY OF
BOOLEAN to be copied (see note below).

- SIZE is the number of bytes (not dots) per row in the array.
You can calculate this from the formula

2*((X+lS) DIV 16)

where X is the number of dots in each row.

- XSKIP tells how many horizontal dots in the array to skip over
before the copying process is started.

- YSKIP tells how many vertical dots in the array to skip over
before beginning the copying process. Note that copies are
made starting from the bottom up i.e. the first row copied
from the array is the bottom row of the screen copy.

- WIDTH tells how many dots' width of the array, starting at
XSKIP, will be used.

- HEIGHT tells how many dots' height of the array, starting at
YSKIP, will be used.

- XSCREEN and YSCREEN are the coordinates of the lower left
corner of the area to be copied into. The WIDTH and HEIGHT
determine the size of the rectangle.

96 APPLE PASCAL LANGUAGE

- MODE ranges from ~ through 15. The MODE determines what
appears on the portion of the screen specified by the other
parameters. It is quite a powerful option, which can simply
send white or black to the screen, irrespective of what is in
the array, copy the array literally, or combine the contents
of the array and the screen and send the result to the
screen. The following table specifies what operation is
performed on the data in the array and on the screen, and thus
what appears on the screen. (The logical notation uses A for
the array, and S for the screen. The symbol~ means NOT.)

MODE
~

Effect
Fills area on screen with black.
NOR of array with screen. (A NOR S) 1

2
3
4
5
6
7
8
9
1~
11
12
13
14
15

AND of array with complement of screen. (A AND ~s)

Complements area on screen. (~S)

AND of complement of array with screen. (~A AND S)
Complements the array. (~A)

XOR of array with screen. (A XOR S)
NAND of array with screen. (A NAND S)
AND of array with screen. (A AND S)
EQUIVALENCE of array with screen. (A c S)
Copies array to screen. (A)
OR of array with complement of screen. (A OR ~S)
Screen replaces screen. (S)
OR of complement of array with screen. (~A OR S)
OR of array with screen. (A OR S)
Fills area on screen with white.

The demonstration program GRAFDEMO.TEXT, on APPLE3:, contains many
examples of how to use the turtlegraphics routines. In particular,
procedures BUTTER1, etc., give strings to procedure STUFF, which
converts them to a PACKED ARRAY OF BOOLEAN named BUTTER; and procedure
FLUTTER uses the DRAWBLOCK routine to display the array BUTTER on the
screen.

Actually, the SOURCE parameter can be of any type except a FILE type;
DRAWBLOCK really deals with an array of bits in memory which begins at
the address of SOURCE and whose size and organization depend on the
other parameters. For example, the following procedure uses a single
BOOLEAN variable instead of an array. The procedure plots a single dot
on the screen at specified coordinates (X,Y):

PROCEDURE PLOTDOT(X, Y: INTEGER);
VAR DOT:BOOLEAN;
BEGIN

DRAWBLOCK(DOT,1,~,~,1,1,X,Y,3)
END;

SPECIAL UNITS 97

However, for most programs the most convenient way to handle the array
is to use a two-dimensional PACKED ARRAY OF BOOLEAN as described
previously.

TEXT AS GRAPHICS:
WCHAR, WSTRING, AND CHARTYPE
Three procedures allow you to put characters on the graphics screen. If
the turtle is at (X,Y) you can use these procedures to put a character
or string on the screen With its lower left corner at (X,Y). Each
character occupies a rectangular area 7 dots Wide and 8 dots high on the
screen.

These procedures use an array stored in the file SYSTEM.CHARSET on
diskette APPLE!:. This array contains all the characters used, and is
read in by the initialization routine when your program USES
TURTLEGRAPHICS. If you make up an array containing your own character
set, you should rename the old SYSTEM.CHARSET and then name your new
array SYSTEM.CHARSET (see note at the end of this chapter).

WSTRING and WCHAR use the procedure DRAWBLOCK to copy each character
from the array onto the screen. The MODE parameter that they use is set
by the CHARTYPE procedure.

The WCHAR procedure has the form

WCHAR (CH)

where CH is a an expression of type CHAR. This procedure places the
character on the screen With its lower left corner at the current
location of the turtle. When this procedure is used, the turtle is
shifted to the right 7 dots from its old position. For example, this
puts an X in the center of the screen:

PENCOLOR (NONE);
MOVETO (137,9~);
WCHAR ('X')

In this example, note that it was not necessary to specify a new pen
color before calling WCHAR. The character is not plotted with the
current pen color; rather it depends on the current MODE, just as
DRAWBLOCK does. For details, see CHARTYPE below.

The CHAR value passed to WCHAR is restricted to the first 128 characters
of the ASCII set as shown in Table 7 of Appendix B.

98 APPLE PASCAL LANGUAGE

The WSTRING procedure has the form

WSTRING (S)

where S is an expression of type STRING. An entire string of characters
is placed on the screen with the lower left corner of the first
character at the current turtle position. The turtle is shifted 7 dots
to the right for each character in the string. This procedure calls
WCHAR for each character in the string.

The characters in the STRING value passed to WSTRING are restricted to
the first 128 characters of the ASCII set as shown in Table 7 of
Appendix B.

The CHARTYPE procedure has the form

CHARTYPE (MODE)

where MODE is an integer selecting one of the 16 MODEs described above
for DRAWBLOCK. MODE defines the way characters get written on the
screen; it works for WCHAR and WSTRING just as it works for DRAWBLOCK.

The default MODE is l(J, which places each character ·on the screen in
white, surrounded by a black rectangle. MODE 5 is the inverse of MODE
l(J: each character is in black surrounded by a white rectangle.

One of the most useful other'MODEs is 6, which does an exclusive OR of
the character with the current contents of the screen. If you use MODE
6 to draw a character or string and then redraw it at the same location
with MODE 6, the effect is to erase the character or string, leaving the
original image unaffected. This is especially useful for user messages
in a graphics-oriented program.

If you wish to create your own character set file for use with WCHAR and
WSTRING, it must be structured as follows:

- The file consists of 1(124 bytes.

- Starting with the first byte in the file, each character in
the character set is represented by 8 contiguous bytes.

- Each byte represents one row of 8 dots in the character
image. The first byte of each character representation is the
bottom row of the image.

SPECIAL UNITS 99

- The least significant bit of each byte is the leftmost dot in
the row.

- The most significant bit of each byte is ignored; the rmo~s are
only seven dots each.

Such a file can be created either in assembly language or in Pascal. In
Pascal, you can build the character representations in memory as packed
arrays of the type ~ •• 255 since each element of such an array is in
effect a byte. For example, you might use the declarations

TYPE CHARIMAGE=PACKED ARRAY[~ •• 7] OF ~ •• 255;
CHARSET=PACKED ARRAY[~ •• 127] OF CHARIMAGE;
CHARFILE=FILE OF CHARSET;

VAR CHARACTERS:CHARSET;
OUTFILE:CHARFILE;

100 APPLE PASCAL LANGUAGE

OTHER SPECIAL APPLE FEATURES:
THE APPLESTUFF UNIT
This section tells you how to generate random numbers, how to use the
game paddle and button inputs, how to read the cassette audio input, how
to switch the game-control's TTL outputs and how to generate sounds on
the Apple's speaker. To use these special Apple features from Pascal,
you first have to place the declaration

USES APPLESTUFF;

immediately after the program heading. If you wish to use both turtle
graphics and the Apple features you would say

USES TURTLEGRAPHICS, APPLESTUFF;

since there can only be one USES in a program.

THE RANDOM FUNCTION
RANDOM is an integer function with no parameters. It returns a value
from ~ through 32767. If RANDOM is called repeatedly, the result is a
psuedo-random sequence of integers. The statement

WRITELN (RANDOM)

w~ll display an integer between the indicated limits.

A typical application of this function is to get a pseudo-random number,
say, between LOW and HIGH inclusive. The expression

LOW+ RANDOM MOD (HIGH-LOW+l)

is sometimes used where results are not critical, but the values formed
by this expression are nQl evenly distributed over the range LOW

SPECIAL UNITS 101

through HIGH. If you want pseudo-random integers evenly distributed
over a range, you can use the following function:

FUNCTION RAND (LOW, HIGH:INTEGER; VAR ERROR:BOOLEAN):INTEGER;
VAR ~~, C, D: INTEGER;
BEGIN

RAND := ~;
ERROR := TRUE;
IF LOW > HIGH THEN EXIT(RAND); (*error exit*)
IF LOW <= ~ THEN

IF HIGH> MAXINT +LOW THEN EXIT(RAND); (*error exit*)

ERROR := FALSE; (*no errors*)
IF LOW = HIGH THEN RAND := LOW

END;

ELSE BEGIN
C : = HIGH - LOW + 1;
~lX := (MAXINT - HIGH + LOW) DIV C + 1;
MX := 1-~ * (HIGH - LOW) + (MX - 1);
REPEAT D := RANDOH UNTIL D <= 1-IX;
RAND := LOW + D MOD C

END

If HIGH is not greater than LOW, or the difference between HIGH and LOW
would exceed MAXINT, RAND returns ~ and sets the ERROR parameter to
true. Otherwise, RAND returns evenly distributed pseudo-random integer
values between LOW and HIGH (inclusive).

THE RANDOMIZE PROCEDURE
RANDOHIZE is a procedure with no parameters. Each time you run a given
program using RANDOM, you will get the same random sequence unless you
use RANDOHIZE.

RANDOHIZE uses a time-dependent location to generate a starting point
for the random number generator. The starting point changes each time
you do any input or output operation in your program. If you use no
1/0, the starting point for the random sequence does not change.

THE KEYPRESS FUNCTION
This function, which has no parameters, returns true if a key has been
pressed on the keyboard since the program started or since the last time
the keyboard was read (whichever is most recent). KEYPRESS does not

102 APPLE PASCAL LANGUAGE

read the character from CONSOLE or KEYBOARD or have any other effect on
I/O. The statement

IF KEYPRESS THEN READ(KEYBOARD, CH)

(where CH is a CHAR variable) has the effect of reading the last
character typed on the keyboard. This could be used to retrieve a
character typed while the program was doing something else -- for
instance, displaying graphics.

Once KEYPRESS becomes true it remains true until a GET, READ, or READLN
accesses either the INPUT file or the KEYBOARD file, or until a UNITREAD
accesses the keyboard device.

KEYPRESS does not work with an external terminal connected via a serial
interface card. It will always return FALSE with such a terminal.

PADDLE, BUTTON, AND TTLOUT
The PADDLE function has the form

PADDLE (SELECT)

where SELECT is an integer treated modulo 4 to select one of the four
paddle inputs numbered 0, 1, 2, and 3. PADDLE returns an integer in the
range 0 to 255 which represents the position of the selected paddle. A
150K variable resistance can be connected in place of any of the four
paddles.

If you try to read two paddles too quickly in succession, e.g.

WRITELN (PADDLE (~));

WRITELN (PADDLE (1))

the hardware will not be able to keep up. A suitable delay is given by
the loop

FOR I := 0 TO 3 DO;

The BUTTON function has the form

BUTTON (SELECT)

where SELECT is an integer treated modulo 4 to select one of the three
button inputs numbered 0, 1, and 2, or the audio cassette input numbered
3. The BUTTON function returns a BOOLEAN value of TRUE if the selected
game-control button is pressed, and FALSE otherwise.

SPECIAL UNITS 103

When BUTTON(3) is used to read the audio cassette input, it samples the
cassette input which changes from TRUE to FALSE and vice versa at each
zero crossing of the input signal.

There are four TTL level outputs available on the game connector along
with the button and paddle inputs. The TTLOUT procedure is used to turn
these outputs on or off. TTLOUT has the form

TTLOUT (SELECT, DATA)

where SELECT is an integer treated modulo 4 to select one of the four
TTL outputs numbered 0, 1, 2, and 3. DATA is a BOOLEAN expression.

If DATA is TRUE, then the selected output is turned on. It remains on
until TTLOUT is invoked with the DATA set to FALSE.

MAKING MUSIC: THE NOTE PROCEDURE
The NOTE procedure has the form

NOTE (PITCH, DURATION)

where PITCH is an integer from 0 through 50 and DURATION is an integer
from 0 through 255.

A PITCH of 0 is used for a rest, and 2 through 48 yield a tempered
(approximately) chromatic scale. DURATION is in arbitrary units of
time.

NOTE (1,1) gives a click.

A chromatic scale is played by the following program:

PROGRAM SCALE;

USES APPLESTUFF;
VAR PITCH, DURATION: INTEGER;

BEGIN

DURATION := 100;
FOR PITCH :; 12 TO 24 DO

NOTE (PITCH, DURATION)

END.

104 APPLE PASCAL LANGUAGE

TRANSCENDENTAL FUNCTIONS:
THE TRANSCEND UNIT
In Apple Pascal, the transcendental functions are not built into the
language. To use this set of functions you must place the declaration

USES TRANSCEND;

immediately after the PROGRAM heading. If you wish to use, say,
APPLESTUFF with the transcendental functions, you would write

USES TRANSCEND, APPLESTUFF;

All ANGLE and NUMBER arguments are real, and the ANGLE arguments are in
radians. All of these functions return real values, and values returned
by the ATAN function are in radians. The following functions are
provided:

SIN (ANGLE)

COS (ANGLE)

EXP (NUMBER)

ATAN (NID-ffiER)

LN (NUMBER)

LOG (NUMBER)

SQRT (NUMBER)

(Note: this is the same function
as Standard Pascal's ARCTAN)

SPECIAL UNITS 105

108 Introduction
108 A Fully Annotated Graphics Program
120 Other Demonstration Progra~s
120 Diskette Files Needed
121 The "TREE" Pro~ram
123 The "BALANCED" Program
124 The "CROSSREF" Program
125 The "SPIRODEMO" Program
126 The "HILBERT" Pro~ram
126 The "GRAFDENO" Program
127 The "GRAFCHARS" Program
128 The "DISKIO" Program

DEMONSTRATION PROGRAMS 107

INTRODUCTION
This appendix presents a graphics program which is fully annotated, both
by a narrative explanation and by copious comments in the source text.
This program is followed by commentaries on the demonstration programs
supplied with Apple Pascal.

A word of caution is in order regarding all of these programs. They are
presented so as to give you examples that you can run without any
modification, and also study the source text to see how it works. They
are not intended to be models of the best possible programming
technique; that would be entirely beyond the scope of this manual. They
do work, and they do demonstrate ways of doing certain useful things in
Apple Pascal. With this caution in mind, use the programs as learning
tools. One of the best ways to learn might be to try introducing
modifications into one of them.

A FULLY ANNOTATED GRAPHICS PROGRAM

The following demonstration program, PATTERNS, is intended to illustrate
some helpful points about Apple Pascal. The program creates pleasant
graphics by drawing a triangle on the screen and then repeatedly
rotating it by a few degrees and redrawing it. The points of the
triangle are always on the edge of an invisible circle of radius 95
(which fills the height of the screen) but apart from that it is a
random triangle. The angle by which it is rotated each time it is drawn
is also random, though it is always between 3 and 15 degrees.

The color used to draw the triangle is REVERSE, which has intriguing
effects when one image is drawn over another and the lines intersect at
small angles. Also, as the triangle is repeatedly rotated and redrawn a
circular pattern is built up; but eventually the triangle gets rotated
back to its original position. When this happens, each new image is
exactly superimposed on an old one. Because of the REVERSE color, this
erases the old image! When all the old images have been erased, the
program clears the screen, generates a new triangle with a different
shape, and starts all over.

This repetition continues until the user signals it to halt by pressing
any key. The KEYPRESS function, in the APPLESTUFF unit, can be used to
find out whether the user has pressed a key. (KEYPRESS is described in
Chapter 7.)

The program is given in full, with comments, at the end of this
appendix. What follows is a description of how a program like this can
be developed. Of course, in real life there are mistakes and false
starts. Here, for the sake of learning some principles, we pretend that
the development of the program proceeds without a hitch.

108 APPLE PASCAL LANGUAGE

This is a fairly complicated program, so we will develop it in
sections. First we can write a sketchy outline of the program:

BEGIN
REPEAT

(*Create a random triangular pattern*);
THETA:=(*random number from 3 to 15*)
REPEAT

(*Rotate the triangle, using the angle THETA*);
(*Draw the rotated triangle on the screen*)

UNTIL (*Complete pattern has been erased*)
UNTIL KEYPRESS

END.

To fill in this outline, we begin with a program heading, a USES
declaration, some useful constants, two variable declarations, and a
skeleton of the inner REPEAT statement:

PROGRAM PATTERNS;
USES TURTLEGRAPHICS,APPLESTUFF;

CONST MAXX=280; ~UlKY=191; (*Maximum X and Y coordinates*)
RADIUS=95; (*Radius of pattern*)

VAR CYCLES:0 •• 2;
THETA:3 •• 15;

BEGIN
REPEAT

(*Create a random triangular pattern*);
THETA:=(*random number from 3 to 15*);
CYCLES::::0
REPEAT

(*Rotate the triangle, using the angle THETA*);
PENCOLOR(REVERSE);
(*Draw the rotated triangle on the screen*);
IF (*the rotated triangle matches the original triangle*)

THEN CYCLES:=CYCLES+l
UNTIL CYCLES=2

UNTIL KEYPRESS
END.

The variable CYCLES is a counter for the number of times the triangle
has been rotated back to its original position. When CYCLES=!, the
circular pattern begins to be erased because each new triangle is drawn
in the REVERSE color on top of a previous triangle. When CYCLES=2, the
entire pattern has been erased.

We can now begin replacing comments with actual statements. For
example, we already have a variable, THETA, which is the number of
degrees to rotate the pattern. So it is natural to replace the first
comment in the inner REPEAT with a call to a procedure named ROTATE
which takes an INTEGER parameter. The value used for the parameter

DEMONSTRATION PROGRAMS 109

will be the variable THETA. ROTATE will need to be declared; now we
have

PROCEDURE ROTATE(ANGLE:INTEGER);
(*To be completed ••• *)

BEGIN
REPEAT

(*Create a random triangular pattern*);
THETA:=(*random number from 3 to 15*);
CYCLES:""'0
REPEAT

ROTATE (THETA) ;

To draw the triangle on the screen, we must first consider how the
triangle is represented in memory. We can think of the triangle as
three points; how shall we represent a point? A point can be represented
by two numbers -- an X and a Y coordinate. Therefore we can define a
type POINT, as shown below. Then we can represent the triangle as an
array named TRGL, of type POINT. We will also declare a variable C to
use as an index for the array TRGL.

TYPE POINT=RECORD X:0 •• MAXX;
Y:0 •• MAXY

END;

VAR CYCLES:0 •• 2;
THETA:3 •• 15;
TRGL:ARRAY[l •• 3] OF POINT;
C:l •• 3;

Assuming that the ROTATE procedure leaves the rotated coordinates in the
array TRGL and that it leaves the turtle at the third corner of the
triangle, we can use Cartesian graphics to draw the new triangle:

PENCOLOR(REVERSE);
FOR C:=l TO 3 DO MOVETO(TRGL[C].X, TRGL[C].Y);

The remaining comment in the inner REPEAT statement calls for testing
whether the rotated triangle matches the original one. To achieve this,
assume that when the triangle is first created the coordinates

110 APPLE PASCAL LANGUAGE

of the third corner are saved in a variable named CORNER. Now we need
only test as follows:

IF TRGL[3]=CORNER THEN CYCLES:=CYCLES+l

At this point, the program is as follows:

PROGRAM PATTERNS;
USES TURTLEGRAPHICS,APPLESTUFF;

CONST MAXX=280; 11aXY=l91; (*Maximum X and Y coordinates*)
RADIUS=95; (*Radius of pattern*)

TYPE POINT=RECORD X:0 •• MAXX;
Y:0 •• MAXY

END;

VAR CYCLES:0 •• 2;
THETA:3 •• 15;
TRGL:ARRAY[l •• 3] OF POINT;
C:l •• 3;
CORNER: POINT;

PROCEDURE ROTATE(ANGLE:INTEGER);
(*To be completed; must leave new corner coordinates

in TRGL and leave turtle at third corner.*)

BEGIN
REPEAT

(*Create a random triangular pattern*);
THETA:={*random number from 3 to 15*);
CYCLES:=0
REPEAT

ROTATE (THETA) ;
PENCOLOR(REVERSE);
FOR C:=l TO 3 DO MOVETO(TRGL[C].X, TRGL[C].Y);
IF TRGL[3]=CORNER THEN CYCLES:=CYCLES+l

UNTIL CYCLES=2
UNTIL KEYPRESS

END.

The inner REPEAT statement will repeatedly rotate the triangle and draw
it, using the REVERSE color, building up a circular pattern on the
screen and then erasing it by drawing over it. When the pattern has
been erased, the inner REPEAT terminates.

DEMONSTRATION PROGRAMS 111

Now we can begin filling in the outer REPEAT. The statements added to
the outer REPEAT require another procedure, MAKETRGL, and a function,
ARBITRARY.

FUNCTION ARBITRARY(LOW, HIGH:INTEGER):INTEGER;
(*To be completed; must return an integer value in the

range LOW •• HIGH.*)

PROCEDURE l1AKETRGL;
(*To be completed; must leave corner coordinates in TRGL

and also initialize CORNER with coordinates of third
corner.*)

BEGIN
REPEAT

MAKETRGL; (*Make triangular pattern*)
THETA:=ARBITRARY(3, 15); (*Choose angle for rotating triangle*)
CYCLES:=0; (*Clear the cycle counter*)
REPEAT

ROTATE(THETA);
PENCOLOR(REVERSE);
FOR C:=l TO 3 DO MOVETO(TRGL[C].X, TRGL[C].Y);
IF TRGL[3]=CORNER THEN CYCLES:aCYCLES+l

UNTIL CYCLES=2
UNTIL KEYPRESS

END.

The outer REPEAT first calls MAKETRGL. This procedure, still to be
defined, chooses three random points on a circle of radius 95 and stores
their coordinates in the array TRGL. It also stores the coordinates of
the third corner in the variable CORNER.

Next, the function ARBITRARY is used to assign a random value to THETA,
the number of degrees to rotate the triangle.

112 APPLE PASCAL LANGUAGE

The main program is nearly complete. It remains only to add one new
variable named CENTER (of type POINT), and a few initializing statements
before the outer REPEAT:

VAR CYCLES:0 •• 2;
THETA:3 •• 15;
TRGL:ARRAY[1 •• 3] OF POINT;
C:l •• 3;
CORNER:POINT;
CENTER: POINT;

BEGIN
RANDONIZE;

INIT'IURTLE;
CENTER.X:=TURTLEX;
CENTER.Y:=TURTLEY;

REPEAT

REPEAT

UNTIL CYCLES=2
UNTIL KEYPRESS

END.

(*To get a different sequence each time
program is executed*)

(*Always do this to use TURTLEGRAPHICS*)
(*The turtle is at the center because

INIT'IURTLE leaves it there. Save
its coordinates in CENTER.*)

The main program is complete, and now we must define the two procedures
MAKETRGL and ROTATE and the function ARBITRARY.

The ARBITRARY function is shown in the complete program at the end of
this appendix. It is a simplified version of the RAND function given in
Chapter 7, in the discussion of the built-in function RANDOM.

RAND handles unacceptable parameters by setting a VAR parameter of type
BOOLEAN. ARBITRARY does not need this error-handling capability since
it will always be called with constants as parameters. Similarly, RAND
has a special provision for the case where the HIGH and LOW parameters
are equal; ARBITRARY does not have this ~revision, and HIGH must be
strictly greater than LOW.

In other respects, ARBITRARY is the same as RAND. Incidentally, the
cocplexity of the calculation in both versions is due to the fact that
two numbers cannot be added or subtracted if the result would exceed the
value MAXINT (32767). The function has to get around this limitation by
using the intermediate value }~.

DEMONSTRATION PROGRAMS 113

The MAKETRGL procedure must choose three random points on a circle of
radius 95, with its center at CENTER. To select three random points,
the following method is used:

VAR 1:1 •• 3;

FOR I:=l TO 3 DO BEGIN
(*Move the turtle to the CENTER point:*)

MOVETO(CENTER.X, CENTER.Y);

(*Select a random direction to move the turtle away from CENTER,
and store this angle in an array named DIRECTION; this array will
need to be declared:*)
DIRECTION[I]:=ARBITRARY(0,359);

(*Turn the turtle in the selected direction:*)
TURNTO(DIRECT10N[I]);

(*Move out to the edge of the circle:*)
MOVE(RADIUS);

(*Store the turtle's coordinates in the TRGL array:*)
TRGL[I].X:=TURTLEX;
TRGL[1].Y:=TURTLEY

END

The DIRECTION array will be used by the ROTATE procedure, so it will
need to be declared at the beginning of the program -- not within the
MAKETRGL procedure.

Since we don't want to draw anything at this point, we set the color to
NONE before starting the FOR statement. After three times through the
FOR statement, the turtle is at the third corner of the triangle, so we
save its position in the CORNER variable for use in the main program.
The complete procedure is

PROCEDURE MAKETRGL;
VAR 1:1 •• 3;
BEGIN

PENCOLOR(NONE);
FOR I:=l TO 3 DO BEGIN

MOVETO(CENTER. , CENTER.Y);
DIRECTION[I]:=ARBITRARY(0, 359);
TURNTO(DIRECTION[I];
MOVE (RADIUS) ;
TRGL[I].X:=TURTLEX;
TRGL[I].Y:=TURTLEY

END;
CORNER.X:=TURTLEX;
CORNER.Y:=TURTLEY

END;

114 APPLE PASCAL LANGUAGE

The ROTATE procedure works very much like the MAKETRGL procedure, but
instead of using random angles it uses the angles found in the DIRECTION
array -- after adding ANGLE to each of them and taking the result MOD
360. It stores the resulting points in the TRGL array, but does not
change CORNER. The effect is to replace each point in TRGL with a new
point created by rotation through ANGLE degrees. The complete ROTATE
procedure is

PROCEDURE ROTATE(ANGLE:INTEGER);
VAR I:l •• 3;
BEGIN

PENCOLOR(NONE);
FOR I:=l TO 3 DO BEGIN

MOVETO(CENTER.X, CENTER.Y);
DIRECTION[I]:~(DIRECTION[I]+ANGLE) MOD 360;
TURNTO (DIRECTION(!]);
MOVE(RADIUS);
TRGL[I].X:~TURTLEX;
TRGL(I].Y:aTURTLEY

END
END;

Note that the MOD 360 operation is necessary because if the program ran
for a long time, the result of DIRECTION[I]+ANGLE could eventually
exceed MAXINT and cause a run-time error.

All that remains is to declare the array DIRECTION:

DIRECTION:ARRAY[1 •• 3] OF INTEGER;

The complete program begins on the following page.

DEMONSTRATION PROGRAMS 115

PROGRAM PATTERNS;
USES TURTLEGRAPHICS,APPLESTUFF;

(**)
CONST
(*Maximum X and Y coordinates*)

MAXX=280; MAXY~191;
(*Radius of pattern*)

RADIUS""95;

(**)
TYPE
(*This type stores one set of screen coordinates*)

POINT""RECORD X:0 •• MAXX;
Y:0 •• MAXY

END;

(**)
VAR
(*Counter for how many times triangle has been rotated back to its
initial position*)

CYCLES:0 •• 2;
(*Angle for rotating triangle*)

THETA:3 •• 15;
(*Array to store coordinates of corners of triangle*)

TRGL:ARRAY[1 •• 3] OF POINT;
(*Index for corners of triangle*)

C:1 •• 3;
(*Point to store coordinates of one corner of triangle, before any

rotations*)
CORNER: POINT;

(*Point to store coordinates of center of screen*)
CENTER:POINT;

(*Array to store direction angles used to generate triangle*)
DIRECTION:ARRAY[1 •• 3] OF INTEGER;

(**)
FUNCTION ARBITRARY (LOW, HIGH:INTEGER):INTEGER;

(*Returns a pseudo-random integer in the range LOW through HIGH. This
function should only be called with constants as parameters. HIGH must
be strictly greater than LOW; it must not be equal to LOW. Also the
difference between HIGH and LOW must not exceed ~~INT.*)

VAR MX, Z, D: INTEGER;
BEGIN

Z: =HIGH-LOW+ 1;
MX:~(MAXINT-HIGH+LOW) DIV Z+1;
MX: ... !-IX*(HIGH-LOW)+(MX-1);
REPEAT D: ... RANDOM UNTIL D <= !-tx;
ARBITRARY:""LOW+D MOD Z

END;

116 APPLE PASCAL LANGUAGE

(**)
PROCEDURE f.fAKETRGL;

(*Make a triangle, defined by three randomly chosen points at a distance
RADIUS from the point CENTER. Choose each point by starting at CENTER,
turning to a random angle, and moving the distance RADIUS. Store the
angles in DIRECTION, the point coordinates in TRGL, and the third point
(for future reference) in CORNER. Notice how conveniently this is done
by moving the turtle around with the color NONE.*)

VAR 1:1 •• 3;
BEGIN

PENCOLOR(NONE);
FOR 1:=1 TO 3 DO BEGIN

MOVETO(CENTER.X, CENTER.Y);
DIRECTION(I]:=ARBITRARY(0, 359);
TURNTO(DIRECTION(I]);
NOVE(RADIUS);
TRGL(I].X:=TURTLEX;
TRGL(I].Y:=TURTLEY

END;
CORNER.X:=TURTLEX;
CORNER.Y:=TURTLEY

END;

(**)
PROCEUURE ROTATE(ANGLE:INTEGER);

(*Rotate the triangle defined by point coordinates in TRGL and angles in
DIRECTION, by adding ANGLE to the angles in DIRECTION, taking the
result MOD 360, and using these angles to determine the new corner
coordinates. Again the turtle is moved around using the color NONE.*)

VAR 1:1 •• 3;
BEGIN

PENCOLOR(NONE);
FOR 1:=1 TO 3 DO BEGIN

MOVETO(CENTER.X, CENTER.Y);
DIRECTION(!] :=(DIRECTION(I]+ANGLE) f.10D 360;
TURNTO(DIRECTION(I]);
MOVE(RADIUS);
TRGL(I].X:=TURTLEX;
TRGL[I].Y:=TURTLEY

END
END;

DEMONSTRATION PROGRAMS 117

(**)

(*Main Program*)

BEGIN

(*Do initializations that will not need to be repeated*)

RANDOMIZE;

INITTURTLE;
CENT~R.X:=TURTLEX;

CENTER.Y:=TURTLEY;

(*To get a different sequence each time
program is executed*)

(*Always do this to use TURTLEGRAPHICS*)
(*The turtle is at the center because

INITTURTLE leaves it there. Save its
coordinates in CENTER.*)

(*The following (outer) REPEAT statement creates a new triangular
pattern each time through.*)

REPEAT
MAKETRGL; (*Make triangular pattern*)
THETA:=ARBITRARY(3, 15); (*Choose angle for rotating triangle*)
CYCLES:=0; (*Clear the cycle counter*)

118 APPLE PASCAL LANGUAGE

(*The following (inner) REPEAT statement draws the triangle in a new
rotated position each time through.*)

REPEAT

(*Rotate the triangle.*)

ROTATE(THETA);

(*Draw the triangle. This is conveniently done with Cartesian
graphics, since the coordinates are all set up.*)

PENCOLOR(REVERSE);
FOR C:=l TO 3 DO MOVETO(TRGL[C].X, TRGL[C].Y);

(*Now, if the third corner of the triangle matches the CORNER value
saved earlier (by MAKETRGL), then the triangle has been rotated back to
its original position.*)

IF TRGL[3]=CORNER THEN CYCLES:=CYCLES+l

(*End the repetition if the triangle has returned to its original
position twice. When this is the case, the pattern has been erased by
being drawn over with the REVERSE color.*)

UNTIL CYCLES=2

(*End the outer REPEAT statement when a key is pressed.*)

UNTIL KEYPRESS

END.

DEMONSTRATION PROGRAMS 119

OTHER DEMONSTRATION PROGRAMS
A set of demonstration programs is supplied with the Pascal System.
Although these programs are not fully annotated, they are worth careful
study by any student of Pascal. The following are brief descriptions of
the programs.

The .TEXT version of each program has been included on diskette APPLE3:
so that you can read the program's text into the Editor, to see how the
program was written and to try modifications of your own.

DISKETTE FILES NEEDED
The following diskette files allow you to execute the various
demonstration programs. The notation xxxxxx stands for the name of a
particular demonstraion program.

xxxxxx.CODE
SYSTEM. LIBRARY
SYSTEM.CHARSET

(any diskette, any drive)
(boot diskette, boot drive)
(any diskette, any drive; required

if WCHAR or WSTRING used)

One-drive note: Use the Filer to T(ransfer the desired demonstration
program's .CODE file to your boot diskette, APPLE~: or APPLEl:. Then
you can X(ecute the program with the boot diskette in the disk drive.

Multi-drive note: You should place your boot diskette, APPLE~: or
APPLEl: , in the boot drive. The demonstration programs are all
normally found on diskette APPLE3:. With APPLE3: in any available disk
drive, you are ready to X(ecute the demonstration programs.

If you just wish to examine the text version of a demonstration program,
there are two ways to proceed:

- For a quick look, put diskette APPLE3: in any available drive,
and then use the Filer to T(ransfer the desired program's
.TEXT file from APPLE3: to CONSOLE:. To stop the program's
listing on the screen, press CTRL-S. Press CTRL-S again to
continue.

- To examine the text in more detail, you can E(dit the
program's .TEXT file. On one-drive systems, first use the
Filer to T(ransfer the program's .TEXT file from APPLE3: to
your boot diskette, APPLE0: or APPLEl:. Then E(dit the file.

120 APPLE PASCAL LANGUAGE

If you wish to modify, compile, and execute a new version of a
demonstration program, the following diskfiles will be needed:

xxxxxx.TEXT

SYSTEM. EDITOR
SYSTEM. COMPILER
SYSTEH.SYNTAX

SYSTEM. PASCAL
SYSTEM. LIBRARY
SYSTEM.CHARSET

(any diskette, any drive;
required only until read into Editor)

(any diskette, any drive)
(any diskette, any drive)
(boot diskette, any drive; optional

Compiler error messages)
(boot diskette, boot drive)
(boot diskette, boot drive)
(any diskette, any drive; required

if WCHAR or WSTRING used)

One-drive note: Diskette APPLE0: normally contains all the needed files
except the demonstration program's .TEXT file. You should use diskette
APPLE0: as your boot diskette, and T(ransfer the desired demonstration
program's .TEXT file to APPLE0:. Then, with APPLE0: in the disk drive,
you are ready to E(dit and R(un the program.

Two-drive note: Using diskette APPLE0: as your boot diskette, put
APPLE0: in the boot drive and put APPLE3: in the other drive. You are
then ready to E(dit and R(un any program's .TEXT file on APPLE3:.

THE "TREE" PROGRAM
TREE shows the creation of an unbalanced binary tree to sort and
retrieve data elements (words, in this case). It lets you specify each
new word to be stored in the tree, and then shows you graphically just
where the new word was placed in the tree.

When you X(ecute TREE.CODE, you are prompted to

ENTER WORD:

To quit the program at any time, you can just press the RETURN key in
response to this message. To continue, you should type the first word
to be sorted (only the first six characters are used). For example, you
might type:

FLIPPY

The program then lists the words entered so far, in alphabetic order.

THE WORDS IN ORDER ARE:
FLIPPY

DEMONSTRATION PROGRAMS 121

No prompting message appears, but you must now press the RETURN key to
proceed. When you do, a high-resolution picture is displayed, showing
the binary tree as it now exists.

BINARY TREE:

1--------1
I FLIPPY I
1--------1

I
I

\
\

The box represents the binary tree's first "node", or sorting element.
The node has two "links" which can point the way to further nodes: the
upper link in the display can point to nodes which precede this node
alphabetically, while the lower link can point to nodes which follow
this node alphabetically.

To continue, press the RETURN key again. Again you are prompted to

ENTER WORD:

Suppose you now type

APPLE

The program responds

THE WORDS IN ORDER ARE:
APPLE
FLIPPY

and when you press the RETURN key, another picture of the tree is
displayed.

BINARY TREE:
I

I
1-------1

/I APPLE I
I 1--------1

1--------1 \
I FLIPPY I \
1-------1

\
\

This is how the word APPLE is placed in the binary tree. The word APPLE
is compared to the word in the first node, FLIPPY. Since APPLE precedes
FLIPPY, alphabetically, the search continues by following the first
node's upper link. If another node is found at the end of that link,
APPLE is compared to the word in that node, and the search continues by

122 APPLE PASCAL LANGUAGE

following that node's appropriate link. The search continues until, on
following an appropriate link, no node is found with which to compare
APPLE. At that point on the tree, a new node is created, containing
APPLE.

Retrieving the words to list them in alphabetic order is harder to
describe, although the algorithm is fairly simple.

1. Starting at the root node, FLIPPY, follow the tree taking only the
upper link from each node, until a node is found whose upper link
does not connect to a further node. The word in this node is the
first word, alphabetically, so print it.

2. Now follow this node's lower link.

a. If a node is connected to the link, follow the tree taking only
the upper link from each node, until a node is found whose upper
link does not connect to a further node. Print that node's word
as the next one in alphabetic order, and repeat step 2.

b. If no further node is connected to the link, go back down the tree
to the node whose upper link led to this node. Print that node's
word as the next one in alphabetic order, and repeat step 2. (If
no link or a lower link led to this node, the list is complete.)

Remember, to quit this program just press the RETURN key in response to
the message

ENTER WORD:

Caution: You must press the RETURN key two times between each word entry
(whether or not you wish to see the tree diagrammed). But if you
accidentally press RETURN three times, the program is terminated and
your list is lost forever.

Program TREE contains examples of the following:

1. Inserting elements into an unbalanced binary tree (INSERTIT)

2. Retrieving elements in order from such a tree (PRINTTREE)

THE "BALANCED" PROGRAM
BALANCED is identical to TREE, except that it stores words by creating a
balanced binary tree. It is taken from an example shown on page 215 of
the book "Algorithms +Data Structures = Programs", by Nicklaus Wirth
(Prentice-Hall, 1976). An AVL-BALANCED BINARY TREE is rearranged after
each element insertion to ensure that, of the two branches at any node,
one branch is at most one node longer than the other branch. This
method of element insertion is slower than for an unbalanced tree, but
subsequent retrieval of elements is faster.

DEMONSTRATION PROGRAMS 123

Read the description of the TREE demonstration program for details about
using this program. New words are added to the BALANCED tree in the
same way described for the unbalanced TREE, but the rearrangement of the
BALANCED tree following an insertion is more complex. The words are
retrieved in alphabetic order identically in the two programs.

THE "CROSSREF" PROGRAM
CROSSREF is an example of a textual cross-reference generator using an
unbalanced binary tree to store and sort words. It is taken from an
example shown on page 2~6 of the book "Algorithms + Data Structures ""
Programs", by Nicklaus Wirth (Prentice-Hall, 1976).

When you X(ecute CROSSREF.CODE, you are prompted for the name of an

INPUT FILE?

Respond by typing the filename of a text file that you wish cross­
referenced, on any available diskette. It is not necessary to specify
the filename's .TEXT suffix. For example, you might type

APPLE0:MYSTUFF

The program then prompts you to specify a

DESTINATION FILE?

for the resulting cross-referenced list. You should respond by typing

CONSOLE:

if you want the list to appear on the screen, or

PRINTER:

if you want the list to be printed on your printer (which must be
connected and turned on).

First, the INPUT text file is displayed on the screen or printed, with
each line of text numbered. The words of the text are then stored in
alphabetic order in a binary tree, one word to each node. A word is
defined as beginning with an alphabetic character and containing all
subsequent characters until the next non-alphanumeric character.
Finally, the text's words are displayed or printed in alphabetic order,
each word followed by the text line numbers where that word appears.

Program CROSSREF contains examples of the following:

1. Set membership (TYPE defines items of the tree structure)

2. Sorting into a binary tree

124 APPLE PASCAL LANGUAGE

3. Listing from a binary tree (PRINTTREE, also shows recursion)

For more information about tree-sorting, see the demonstration programs
TREE and BALANCED.

THE "SPIRODEMO'' PROGRAM
SPIRODEMO demonstrates the basic TURTLEGRAPHICS maneuver: move the pen
in a straight line, turn, move again in a straight line, turn again, and
so on.

The program lets you specify an ANGLE and a CHANGE, and then draws a
pattern on the screen. To make the pattern, SPIRODEMO moves the pen one
unit, turns through ANGLE, moves l+CHANGE, turns ANGLE, moves
l+CHANGE+CHANGE, turns ANGLE, etc.

When you X(ecute SPIRODEHO.CODE, this message appears:

WELCOME TO WHILEPLOT
ENTER ANGLE ~ TO QUIT.

ANGLE:

If you wish to leave the program at any time, just wait until this
prompting message is displayed, and then respond by typing a zero and
pressing the RETURN key. If you want to continue, type any positive or
negative integer to specify the angle (in degrees) through which you
wish the TURTLEGRAPHICS pen to turn between each move. For example, you
might respond by typing

89

This tells the pen to turn clockwise, slightly less than a right angle
between each move. Now you are asked to specify a

CHANGE:

Starting with a straight-line pen move of one unit, each subsequent move
will increase in length by an amount specified by CHANGE. You must
respond by typing a positive integer greater than zero. For example, to
make each line one unit longer than the previous line, you would type

When you press the RETURN key, program SPIRODEMO (alias WHILEPLOT)
begins to draw its design on the screen, using the parameters that you
specified.

On completion of the design, the program continues to display the design
until you press any key on the Apple's keyboard. Just press the Apple's
spacebar, and the original prompt message will replace the design on the
screen. You are then ready to specify a new CHANGE and DISTANCE for

DEMONSTRATION PROGRAMS 125

another design (or specify an ANGLE of zero to quit the program).

Caution: This program dies if the first character of an ANGLE or CHANGE
response is not a plus sign, a minus sign, or a numeric digit.

Program SPIRODEMO contains examples of the following:

1. Using the TURTLEGRAPHICS unit, including the KEYPRESS function

2. Reading the keyboard buffer without echoing on the screen

THE "HILBERT" PROGRAM
HILBERT shows an historically famous example of recursion, using a
space-filling design to create an attractive display on the screen.

You can determine the density of the space-filling design by specifying
an integer ORDER from 1 through 7.

When you X(ecute HILBERT.CODE, this message appears:

ENTER ORDER ~ TO QUIT.

ORDER:

If you wish to quit the program at any time, wait until this message
appears, and then type a zero. If you wish to continue, you must type
an integer from 1 through 7. An ORDER of 1 fills the space most
"loosely", taking barely one repetition of the design to fill the
screen. Each higher order fills the screen more and more densely, by
repeating the basic design on a smaller and smaller scale. Order 7
fills the screen to solid white, and takes quite a long time doing it.
There is no way to stop a display while it is being created, except to
press the RESET key. To get the idea, respond by typing

4

On completion of the design, the program continues to display the design
until you press any key on the Apple's keyboard. Just press the Apple's
spacebar, and the original prompt message will replace the design on the
screen. You are then ready to specify a new ORDER for another design
(or specify an ORDER of zero to quit the program).

Caution: This program is terminated if the ORDER response is not a
numeric digit from 1 through 7.

THE "GRAFDEMO" PROGRAM
GRAFDEHO is a collection of interesting graphical displays generated by
a number of very useful procedures.

126 APPLE PASCAL LANGUAGE

The program runs without any interaction; just watch the pretty pictures
and then study GRAFDEMO.TEXT to see examples of how these things can be
done using TURTLEGRAPHICS. You may even find it handy to use some of
GRAFDEMO's procedures directly, in your own programs.

When you X(ecute GRAFDEMO.CODE, this unusual message appears:

PRESS ANY KEY TO QUIT.
PLEASE WAIT WHILE CREATING BUTTERFLY

Just wait; soon you will see butterflies and many other graphical
marvels. Pressing any key on the Apple keyboard will terminate this
program on completion of whichever display is currently being created.

Program GRAFDEHO contains examples of the following:

1. Using TURTLEGRAPHICS to draw frames, crosshatching, etc.

2. Creation of an array (BUTTER) for use by procedure DRAWBLOCK

3. Handling of a procedure that is too long, by breaking it into smaller
parts (BUTTER) and calling those parts from another procedure
(INITBUTTER)

THE "GRAFCHARS" PROGRAM
GRAFCHARS shows the characters found in the file SYSTEM.CHARSET, and
their use from TURTLEGRAPHICS. The program runs without interaction.

When you X(ecute GRAFCHARS.CODE, this message appears:

PRESS RETURN FOR MORE •••

From here on, each time you press the Apple's RETURN key another display
is placed on the screen. The first display shows all the characters
available in SYSTEM.CHARSET • When you have examined any display to
your satisfaction, just press the RETURN key again to go on to the next
display.

Program GRAFCHARS contains examples of the following:

1. All the upper-case, lower-case, and special characters available
through TURTLEGRAPHICS

2. Use of TURTLEGRAPHICS' WCHAR and WSTRING functions

3. How to put a border around a string (BOXSTRING)

4. Use of CHARMODE to keep the characters' boundaries from interfering
with the background

DEMONSTRATION PROGRAMS 127

THE "DISKIO" PROGRAM
DISKIU shows a sample use of random-access disk files, with terminal­
independent output.

Note: This program is NOT a real application, and it is definitely NOT a
data-base manager. Its only purpose is to demonstrate some of the
principles that would be involved in writing a real file-handling
program.

When you X(ecute DISKIO.CODE, you are asked to specify a

FILE NAHE:

You should type a valid disk-file identifier. For example, you might
respond by typing

APPLE0:MYFILE.TEXT

The program looks on the specified diskette (or the default diskette)
for a file with the specified filename. If an existing file by that
name is found, it is opened and the main program command prompt line is
displayed. If no file by that name is found, the program asks if it
should

START A NEW FILE?

If you type N for No, you will again be asked to type a FILE NAME.
There is no exit from the program at this point except by successfully
opening a file or by pressing the RESET key. If you type Y for Yes, the
program asks

RESERVE HOW MANY RECORDS?

Respond by typing an integer that specifies the number of records your
new file will initially contain. For example, if you type

6

your new file will start out containing seven records, numbered ~
through 6.

Now the program's main command prompt line appears on the screen:

V(IEW C(HANGE N(EXT F(ILE Q(UIT

Typing a V for V(iew causes this message to appear:

VIEW WHICH RECORD?

128 APPLE PASCAL LANGUAGE

You should respond by typing a number from zero through the maximum
record number in your file. For instance, typing

5

lets you view the contents of record number 5.

If you then wish to view the contents of the next record, type N for
N(ext. In this way, you can look at as many records as you wish.

Typing a C for C(hange causes this message to appear:

CHANGE WHICH RECORD?

Again, you should respond by typing a number from zero through the
maximum record number in your file. For instance, typing

5

lets you change the contents of record number 5. To change an entry,
just start typing. To leave an entry as it is, and go on to the next
entry, just press the RETURN key.

If you then wish to change the contents of the next record, type N for
N(ext. In this way, you can change as many records as you wish.

If the N(ext command takes you beyond the last record specified for your
file, the program will attempt to extend the file by appending
additional records. This is possible if

1. there is room for the record in the current last block of the file,
or

2. the next contiguous block on the diskette is available for use by
this file.

If it is not possible to extend your file, a message appears to inform
you of the problem. You can then type Q to Q(uit this program, enter
the Filer, and move files on the diskette until your file has a few free
blocks immediately following it. (Use the Filer's E(xtended List
command to see the locations of free blocks.) Then you are ready to
X(ecute DISKIO again, and extend your file with additional records.

Typing F for F(ile, in response to the main command prompt line, lets
you start a new file or reopen another old file. As at the beginning,
you are asked for a

FILE NAME:

Again, there is no exit from this part of the program except to give a
successful filename or to press the RESET key.

DEMONSTRATION PROGRAMS 129

Program DISKIO contains examples of the following:

1. Terminal-independent output, by reading the file SYSTEM.MISCINFO and
using the terminal setup parameters found there (GETCRTINFO)

2. Bullet-proof character input (GETCHAR)

3. Bullet-proof string input, with defaults

4. Use of random-access disk files and system procedure SEEK

5. How to extend a diskette file in place.

130 APPLE PASCAL LANGUAGE

132 Table 1: Execution Errors
133 Table 2: I/0 Errors (IORESULT Values)
134 Table 3: Reserved Words
135 Table 4: Predefined Identifiers
136 Table 5: Identifiers Declared in Supplied UNITs
137 Table 6 : Compiler Error Messages
141 Table 7: ASCII Character Codes

TABLES 131

TABLE 1:
EXECUTION ERRORS

System error FATAL

Invalid index, value out of range (XINVNDX)

2 No segment, bad code file (XNOPROC)

3 Procedure not present at exit time (XNOEXIT)

4 Stack overflow (XSTKOVR)

5 Integer overflow (XINTOVR)

6 Divide by zero (XDIVZER)

7 Invalid memory reference <bus timed out> (XBAD~ffiM)

8 User break (XUBREAK)

9 System I/0 error (XSYIOER) FATAL

10 User I/O error (XUIOERR)

11 Unimplemented instruction (XNOTIMP)

12 Floating point math error (XFPIERR)

13 String too long (XS2LONG)

14 Halt, Breakpoint (without debugger in core) (XHLTBPT)

15 Bad Block

All FATAL errors require that the system be rebooted. In some cases the
system will reboot automatically, and in other cases you will have to
reboot it. All other errors cause the system to re-initialize itself.

132 APPLE PASCAL LANGUAGE

TABLE 2:
1/0 ERRORS (IORESULT VALUES)

0 No error
1 Diskette has bad Block: parity error (CRC).

(Not used on the Apple.)
2 Bad device (volume) Number
3 Bad Mode: illegal operation. (For example, an

attempt to read from PRINTER:.)
4 Undefined hardware error. (Not used on the Apple.)
5 Lost device: device is no longer on-line, after

successfully starting an operation using that
device.

6 Lost file: file is no longer in the diskette
directory, after successfully startng an
operation using that file.

7 Bad title: illegal file name. (For example,
filename is more than 15 characters long.)

8 No room: insufficient space on the specified
diskette. (Files must be stored in contiguous
diskette blocks.)

9 No device: the specified volume is not on line
10 No file: The specified file is not in the

directory of the specified volume.
11 Duplicate file: attempt to rewrite a file when

a file of that name already exists.
12 Not closed: attempt to open an open file.
13 Not open, attempt to access a closed file.
14 Bad format, error in reading real or integer.

(For example, your program expects an integer
input but you typed a letter.)

15 Ring buffer overflow: characters are arriving at
the Apple faster than the input buffer can
accept them.

16 Write-protect error: the specified diskette is
write-protected.

64 Device error: failed to complete a read or write
correctly (bad address or data field on diskette).

See Chapter 3 for description of the built-in function IORESULT.

TABLES 133

TABLE 3:
RESERVED WORDS

These are words that have fixed meanings in Pascal. You can never use
them as identifiers without causing a compiler error. The next two
tables list some more words you should not use as identifiers.

STANDARD PASCAL
RESERVED WORDS

AND
ARRAY
BEGIN
CASE
CONST
DIV
DO
DOWNTO
ELSE
END
FILE
FOR
FORWARD
FUNCTION
GOTO
IF
IN
LABEL

ADDITIONAL APPLE PASCAL
RESERVED WORDS

EXTERNAL
IMPLEMENTATION
INTERFACE
SEGMENT
UNIT
USES

134 APPLE PASCAL LANGUAGE

MOD
NIL
NOT
OF
OR
PACKED
PROCEDURE
PROGRAM
RECORD
REPEAT
SET
THEN
TO
TYPE
UNTIL
VAR
WHILE
WITH

TABLE 4:
PREDEFINED IDENTIFIERS

These are the identifiers of the built-in procedures and functions and
the predefined types and variables of Apple Pascal. The list does not
include those identifiers that are declared or defined in the special
UNITs supplied for the Apple (see next table). If you declare or define
one of these identifiers in your program, no error will result but you
will lose the capability of the corresponding built-in or predefined
entity.

With each identifier, a code is shown in {brackets} to indicate what
kind of object the identifier represents. The codes are

{p} PROCEDURE
{ b} BOOLEAN FUNCTION
{t} TYPE
{k} CONSTANT
{s} STRING FUNCTION

ABS {r}
BLOCKREAD { i}
BLOCKWRITE {i}
BOOLEAN {t}
CHAR {t}
CHR {c}
CLOSE {p}
CONCAT {s}
COPY {s}
DELETE {p}
EOF {b}
EOLN {b}
EXIT {p}
FALSE {k}
FILLCHAR {p}
GET {p}
GOTOXY {p}
HALT {p}
INPUT {£}
INSERT {p}
INTEGER {t}
INTERACTIVE {t}

{i} INTEGER FUNCTION
{r} REAL FUNCTION
{c} CHAR FUNCTION
{£} FILE
{-} OTHER

IORESULT { i}
KEYBOARD { f}
LENGTH {i}
MARK {p}
MAXINT {k}
MEMAVAIL {i}
MOVELEFT {p}
MOVERIGHT { p}
NEW {p}
ODD {b}
ORD {i}
OUTPUT {£}
PAGE {p}
POS {i}
PRED {-}
PUT {p}
PWROFTEN {r}
READ {p}
READLN {p}
REAL {t}
RELEASE {p}
RESET {p}

REWRITE {p}
ROUND {i}
SCAN {i}
SEEK {p}
SIZEOF {i}
SQR {r}
STR {s}
STRING {t}
succ {-}
TEXT {t}
TREESEARCH {i}
TRUE {k}
TRUNC {i}
UNITBUSY {b}
UNITCLEAR {p}
UNITREAD {p}
UNITWAIT {p}
UNITWRITE {p}
WRITE {p}
WRITELN {p}

TABLES 135

TABLE 5:
IDENTIFIERS DECLARED
IN SUPPLIED UNITS

These identifiers are effectively declared or defined only if your
program USES their respective UNITs. If your program USES a UNIT and
you attempt to declare or define one of the identifiers belonging to
that UNIT, you will get a compiler error message HH: "Identifier
declared twice." However if your program doesn't USE a particular UNIT
you can make free use of the identifiers of that UNIT.

With each identifier, a code is shown in {brackets} to indicate what
kind of object the identifier represents. The codes are

{p} PROCEDURE
{b} BOOLEAN FUNCTION
{t} TYPE

TURTLEGRAPHICS UNIT
CHARTYPE {p}
DRAWBLOCK {p}
FILLSCREEN {p}
GRAFMODE {p}
INITTURTLE {p}
~.>lOVE {p}
MOVETO {p}

APPLESTUFF UNIT
BUTTON {i}
KEYPRESS {b}
NOTE {p}
PADDLE {i}

TRANSCEND UNIT
ATAN {r}

COS {r}
EXP {r}
LN {r}

136 APPLE PASCAL LANGUAGE

{i} INTEGER FUNCTION
{r} REAL FUNCTION

PENCOLOR {p}
SCREENBIT {b}
SCREENCOLOR {t}
TEXTMODE {p}
TURN {p}
TURNTO {p}
TURTLEANG {i}

RANDOM {i}
RANDOMIZE {p}
TTLOUT {p}

LOG {r}

SIN {r}
SQRT {r}

TURTLEX {i}
TURTLEY {i}
VIEWPORT { p}
WCHAR {p}
WSTRING {p}

TABLE 6:
COMPILER ERROR MESSAGES

When the Pascal Compiler discovers an error in your program, it reports
that error immediately, by error number. If you then enter the Editor
to fix that error, a more complete error message is given, taken from
the boot diskette file SYSTEM.SYNTAX • If you remove the file
SYSTEM.SYNTAX from the boot diskette, errors will be reported by number,
only.

The Pascal Compiler error message corresponding to each error number is
given in the table below. Some people will prefer to gain some
additional space on their boot diskette, by removing SYSTEM.SYNTAX and
using this table instead. You can also print your own copy of this
table by T(ransferring the file SYSTEM.SYNTAX to a printer.

1: Error in simple type
2: Identifier expected
3: 'PROGRAM' expected
4: ')' expected
5: ': ' expected
6: Illegal symbol (possibly missing ';' on line above)
7: Error in parameter list
8: 'OF' expected
9: '(' expected

10: ~r;or in type
11: [expected
12: ']'expected
13: 'END' expected
14: ';' expected (possibly on line above)
15: ~n~eger expected
16: = expected
17: 'BEGIN' expected
18: Error in declaration part
19: Error in <field-list>
20: '.'expected
21: '*' expected
22: 'Interface' expected
23: 'Implementation' expected
24: 'Unit' expected

50: Error in constant
51: ': =' expected
52: 'THEN' expected
53: 'UNTIL' expected
54: 'DO' expected
55: 'TO' or 'DOWNTO' expected in for statement
56: 'IF' expected
57: 'FILE' expected
58: Error in <factor> (bad expression)
59: Error in variable

101: Identifier declared twice

TABLES 137

102: Low bound exceeds high bound
1~3: Identifier is not of the appropriate class
104: Undeclared identifier
105: Sign not allowed
106: Number expected
107: Incompatible subrange types
108: File not allowed here
109: Type must not be real
110: <tagfield> type must be scalar or subrange
111: Incompatible with <tagfield> part
112: Index type must not be real
113: Index type must be a scalar or a subrange
114: Base type must not be real
115: Base type must be a scalar or a subrange
116: Error in type of standard procedure parameter
117: Unsatisfied forward reference
118: Forward reference type identifier in variable declaration
119: Re-specified parameters not OK for a forward declared procedure
120: Function result type must be scalar, subrange or pointer
121: File value parameter not allowed
122: A forward declared function's result type can't be re-specified
123: Missing result type in function declaration
124: F-format for reals only
125: Error in type of standard procedure parameter
126: Number of parameters does not agree with declaration
127: Illegal parameter substitution
128: Result type does not agree with declaration
129: Type conflict of operands
130: Expression is not of set type
131: Tests on equality allowed only
132: Strict inclusion not allowed
133: File comparison not allowed
134: Illegal type of operand(s)
135: Type of operand must be boolean
136: Set element type must be scalar or subrange
137: Set element types must be compatible
138: Type of variable is not array
139: Index type is not compatible with the declaration
140: Type of variable is not record
141: Type of variable must be file or pointer
142: Illegal parameter solution
143: Illegal type of loop control variable
144: Illegal type of expression
145: Type conflict
146: Assignment of files not allowed
147: Label type incompatible with selecting expression
148: Subrange bounds must be scalar
149: Index type must be integer
150: Assignment to standard function is not allowed
151: Assignment to formal function is not allowed
152: No such field in this record
153: Type error in read
154: Actual parameter must be a variable
155: Control variable cannot be formal or non-local

138 APPLE PASCAL LANGUAGE

156: Multidefined case label
157: Too many cases in case statement
158: No such variant in this record
159: Real or string tagfields not allowed
16~: Previous declaration was not forward
161: Again forward declared
162: Parameter size must be constant
163: Missing variant in declaration
164: Substitution of standard proc/func not allowed
165: Multidefined label
166: Multideclared label
167: Undeclared label
168: Undefined label
169: Error in base set
17~: Value parameter expected
171: Standard file was re-declared
172: Undeclared external file
174: Pascal function or procedure expected

182: Nested units not allowed
183: External declaration not allowed at this nesting level
184: External declaration not allowed in interface section
185: Segment declaration not allowed in unit
186: Labels not allowed in interface section
187: Attempt to open library unsuccessful
188: Unit not declared in previous 'Uses' declaration
189: 'Uses' not allowed at this nesting level
19~: Unit not in library
191: No private files
192: 'Uses' must be in interface section
193: Not enough room for this operation
194: Comment must appear at top of program
195: Unit not importable

2~1: Error in real numbe.r - digit expected
2~2: String constant must not exceed source line
2~3: Integer constant exceeds range
2~4: 8 or 9 in octal number

25~: Too many scopes of nested identifiers
251: Too many nested procedures or functions
252: Too many forward references of procedure entries
253: Procedure too long
254: Too many long constants in this procedure
256: Too many external references
257: Too many externals
258: Too many local files
259: Expression too complicated

3~~: Division by zero
3~1: No case provided for this value
3~2: Index expression out of bounds
3~3: Value to be assigned is out of bounds
3~4: Element expression out of range

TABLES 139

350: No data segment allocated
351: Segment used twice
352: No code segment allocated
353: Non-intrinsic unit called from intrinsic unit
354: Too many segments for the segment dictionary

398: Implementation restriction
399: Implementation restriction
400: Illegal character in text
401: Unexpected end of input
402: Error in writing code file, not enough room
403: Error in reading include file
404: Error in writing list file, not enough room
405: Call not allowed in separate procedure
406: Include file not legal
407: Too many libraries

140 APPLE PASCAL LANGUAGE

TABLE 7:
ASCII CHARACTER CODES

Code Char Code Char Code Char Code Char

Dec Hex Dec Hex Dec Hex Dec Hex
0 00 NUL 32 20 SP 64 40 @ 96 60 '
1 01 SOH 33 21 ! 65 41 A 97 61 a
2 02 STX 34 22 II 66 42 B 98 62 b
3 03 ETX 35 23 II 67 43 c 99 63 c
4 04 EOT 36 24 $ 68 44 D 100 64 d
5 05 ENQ 37 25 % 69 45 E 101 65 e
6 06 ACK 38 26 & 70 46 F 102 66 f
7 07 BEL 39 27 ,

71 47 G 103 67 g
8 08 BS 40 28 (72 48 H 104 68 h
9 09 HT 41 29) 73 49 I 105 69 i

10 f/JA LF 42 2A * 74 4A J 106 6A j
11 0B VT 43 2B + 75 4B K 107 6B k
12 0C FF 44 2C

'
76 4C L 108 6C 1

13 f/JD CR 45 2D - 77 4D M 109 6D m
14 0E so 46 2E . 78 4E N 110 6E n
15 0F SI 47 2F I 89 4F 0 111 6F 0

16 10 DLE 48 30 0 80 50 p 112 7'/J p
17 11 DC1 49 31 1 81 51 Q 113 71 q
18 12 DC2 50 32 2 82 52 R 114 72 r
19 13 DC3 51 33 3 83 53 s 115 73 s
20 14 DC4 52 34 4 84 54 T 116 74 t
21 15 NAK 53 35 5 85 55 u 117 75 u
22 16 SYN 54 36 6 86 56 v 118 76 v
23 17 ETB 55 37 7 87 57 w 119 77 w
24 18 CAN 56 38 8 88 58 X 12'/J 78 X

25 19 EM 57 39 9 89 59 y 121 79 y
26 1A SUB 58 3A 90 SA z 122 7A z
27 lB ESC 59 3B 91 5B [123 7B {

28 1C FS 60 3C < 92 sc \ 124 7C I
29 1D GS 61 3D 93 SD] 125 7D }
30 1E RS 62 3E > 94 SE ... 126 7E -
31 lF us 63 3F ? 95 SF 127 7F DEL

TABLES 141

Here are some facts about READ and READLN that you need to know if you
do not follow the suggestions in the 11Introduction to Text I/011 section
of Chapter 3. In particular, these facts are important if you mix
reading and writing operations on the same diskette textfile. You may
also need to know exactly when EOLN and EOF become true with READLN and
with numeric variables.

Note that for mixed reading and writing, the rules given below are more
straightforward for INTERACTIVE file than for TEXT files.

After READ with a CHAR variable and an INTERACTIVE file:

- The file buffer variable contains the character that was READ,
unless EOLN or EOF is true.

- If the next I/O operation is a PUT, WRITE, or WRITELN, it
affects the character after the one that was READ.

- EOF is true if the character READ was the end-of-file
character. In this case the value of the file buffer variable
is undefined.

- EOLN is true if the character READ was the end-of-line
character. In this case the file buffer variable contains a
space.

- EOLN is also true if EOF is true.

After READ with a CHAR variable and a TEXT file:

- The file buffer variable contains the character after the
character that was READ, unless EOLN or EOF is true.

- If the next I/O operation is a PUT, l-lR.ITE, or WRITELN, it
affects the second character after the one that was READ.

- EOF is true if the character READ was the last character in
the file (not counting the end-of-file character). In this
case the value of the file buffer variable is undefined.

- EOLN is true if the character READ was the last character on
the line (not counting the end-of-line character). In this
case the file buffer variable contains a space.

- EOLN is also true if EOF is true.

After READ with a numeric variable and a TEXT or INTERACTIVE file:

- The file buffer variable contains the character after the last
character of the numeric string that was READ, unless EOLN or
EOF is true.

144 APPLE PASCAL LANGUAGE

- If the next I/O operation is a PUT, WRITE, or WRITELN, it
affects the second character after the last character of the
numeric string.

- EOF is true if the last character of the numeric string was
the last character in the file (not counting the end-of-file
character). In this case the value of the file buffer
variable is undefined.

- EOLN is true if the last character of the numeric string was
the last character on the line (not counting the end-of-line
character). In this case the file buffer variable contains a
space.

- EOLN is also true if EOF is true.

After READ with a STRING variable and a TEXT or INTERACTIVE file:

- The file buffer variable contains a space which represents the
end-of-line character at the end of the line, unless EOF is
true.

- If the next I/0 operation is a PUT, WRITE, or WRITELN, it
affects the first character on the next line.

- EOF is true if the line READ was the last line in the file.
In this case the value of the file buffer variable is
undefined.

- EOLN is always true.

After READLN with any variable and an INTERACTIVE file

- The file buffer variable contains a space which represents the
end-of-line character at the end of the line, unless EOF is
true.

- If the next I/0 operation is a PUT, WRITE, or WRITELN, it
affects the first character on the next line.

- EOF is true if the line READ was the last line in the file.
In this case the value of the file buffer variable is
undefined.

- EOLN is never true.

After READLN with any variable and a TEXT file

- The file buffer variable contains the first character on the
next line, unless EOLN or EOF is true.

- If the next I/0 operation is a PUT, WRITE, or WRITELN, it
affects the second character on the next line.

ADDITIONAL 1/0 DETAILS 145

- EOF is true if the line READ was the last line in the file.
In this case the value of the file buffer variable is
undefined.

- EOLN is true only when EOF is true.

146 APPLE PASCAL LANGUAGE

148 Equipment You Will Need
148 The Two-Step Startup
148 Step One of Startup
149 Step Two of Startup
150 Changing the Date
151 Making Backup Diskette Copies
151 Why We Make Backups
152 How We Hake Backups
152 Getting the Big Picture
153 Formatting New Diskettes
155 Making the Actual Copies
158 Do It Again, Sam
158 Using the System
158 A Demonstration
160 Do It Yourself
164 What To Leave In the Drive
165 One-Drive Summary

STARTING (ONE DRIVE) 147

This appendix is a tutorial session to get you started using the
Language System with Pascal, on an Apple II with one diskette drive. If
your system has two or more diskette drives, please skip this appendix
and read Appendix E instead.

EQUIPMENT YOU WILL NEED
You should have the following:

1. Your 48K Apple computer, with a Language Card installed, and one
disk drive attached to the connector marked "DRIVE 111 on the disk
controller card. The disk controller card must have the new PROMs, PSA
and P6A (which came with the Language System), and must be installed in
the Apple's peripheral device slot 6.

2. A TV set or video monitor properly connected to your Apple.

3. The following Language System diskettes:

a. APPLE0:
b. APPLE!:
c. APPLE2:
d. APPLE3:
e. A blank diskette
f. Another blank diskette

The diskettes marked "APPLE!:" and 11APPLE0:" are needed to start the
system. The diskette marked "APPLE2: 11 adds some extra features to the
system (the Assembler and the Linker). You will not need the diskette
marked "APPLE2: 11 until later (many users of single-drive systems will
never need it). The diskette marked "APPLE3: 11 contains a number of
useful utility programs, and some interesting demonstrations; Appendix A
of this manual explains these demonstrations.

Your Apple and its TV or monitor should be plugged in. Turn on the TV
now, so that it can warm up; but leave the Apple turned off.

THE TWO-STEP STARTUP
There are two steps to starting Apple Pascal running on your system.

STEP ONE OF STARTUP
First insert the diskette marked APPLE!: in the disk drive. If you are
not familiar with handling diskettes, see the manuals that came with
your disk drives. Diskettes must be treated correctly if they are to
last.

148 APPLE PASCAL LANGUAGE

Close the door to the disk drive, and turn on the Apple. The rest of
Step One is automatic. First, the message

APPLE II

appears at the top of your TV or monitor screen, and the disk drive's
"IN USE" light comes on. The disk drive emits a whirring, zickking
sound that is as pleasant as a eat's purring, since it lets you know
that everything is working. The screen lights up for an instant with a
display of black at-signs (@) on a white background, then goes black
again. Next, the disk drive stops entirely for a moment; then it whirrs
some more. Finally, the message

WELCOME APPLEl, TO
U.c.s.D. PASCAL SYST~l II.l
CURRENT DATE IS 26-JUL-79

appears (the date will be different), followed in a second or so by a
line at the top of the screen:

COMMAND: E(DIT, R(UN, F(ILE, C(OMP, L(IN

This line at the top of the screen is called a "prompt line". When you
see this prompt line, you know that your Apple computer is running the
Apple Pascal system.

If you just wish to edit text and programs, or if you wish to run
previously compiled programs, you may stop now. At this point, your
system can do most of the things you will normally want to do in Apple
Pascal, except for compiling new programs that you write.

However, if you also wish to compile programs that you write, in order
to run them, you should proceed to Step Two of the startup procedure.

STEP TWO OF STARTUP
Remove the diskette marked APPLE!: from the disk drive, and insert the
one marked APPLE~: • Close the door to the drive and press the key
marked RESET , in the upper right corner of the Apple's keyboard.

The at-signs come back for an instant, and the disk drive whirrs and
completely stops for a second, then whirrs some more. The whole process
takes about 16 seconds. Finally, the message

WELCOME APPLEQ), TO
U.C.S.D. PASCAL SYSTEl-1 II.l
CURRENT DATE IS 26-JUL-79

appears (the date will be different), followed in a second or so by the
prompt line at the top of the screen

COMMAND: E(DIT, R(UN, F(ILE, C(Ol-~, L(IN

STARTING (ONE DRIVE) 149

Again, this prompt line lets you know that your Apple computer is
running the Apple Pascal System.

After completing Step Two of the startup procedure, your system can do
all the things you will normally want to do in Apple Pascal: filing,
editing, running •••• and compiling. However, diskette APPLE0: is missing
one file that is needed for the initial startup when you first turn the
Apple's power on. That is why you must go through Step One of the
startup procedure before going on to Step Two.

CHANGING THE DATE
The date that comes on the diskette will not be correct. It is a good
habit to reset the date the first time you use the Apple Pascal System
on any given day. It only takes a few seconds. Press F on the keyboard
(without pressing the RETURN key or any other keys). The screen goes
blank, and then this line appears at the top:

FILER: G, S, N, L, R, C, T, D, Q

This is a new prompt line. Prompt lines are named after their first
word. The prompt line you first saw was the "COMMAND" prompt line.
This one is the "FILER" prompt line. Sometimes we say that you are "in
the Filer" when this line is at the top of the screen. Each of the
letters on the prompt line represents a task that you can ask the system
to do. For example, to change the date, press D (again, just type the
single key, without pressing RETURN or any other key).

When you do, another message is put on the screen. It says:

DATE SET: <1 •• 31>-<JAN •• DEC>-<00 •• 99>
TODAY IS 26-JUL-79
NEW DATE ?

It doesn't really mean that today is 26-JUL-79 (or whatever date your
screen shows), but that the Apple THINKS that is today's date. Since it
isn't, you can change the date to be correct. The correct form for
typing the date is shown on the second line of the message: one or two
digits giving the day of the month, followed by a minus sign, followed
by the first three letters of the name of the month, followed by another
minus sign, followed by the last two digits of the current year. Then
press the key marked RETURN •

If the month and year are correct (as they will often be, when you
change the date) all you have to do is type the correct day of the
month, and press the RETURN key. The system will assume that you mean
to keep the same month and year displayed by the message. If you _type a
day and a month, the system will assume you mean to keep only the year
the same.

Go ahead and make the date correct. This is your first interaction with
the system, and is typical of how the system is used. In general, at

150 APPLE PASCAL LANGUAGE

the top of the screen there will usually be a prompt line which
represents several choices of action. When you type the first letter of
one of the choices, either you will be shown a new prompt line giving a
further list of choices, or else the system will carry out the desired
action directly. If you type a letter that does not correspond to one
of the choices, the prompt line blinks but otherwise nothing happens.
Remember to type only a single letter to indicate your choice; it is not
necessary to press the RETURN key afterward.

Sometimes, as when setting the date, you are asked to type a response of
several characters. You tell the system that your response is complete
by pressing the RETURN key. If you make a typing error before pressing
the RETURN key, you can back up and correct the error by pressing the
left-arrow key. You should experiment by making deliberate errors in
entering a date, and then erasing the errors with the left-arrow key.

One further note. Normally, your new date is saved on the diskette, so
the system "remembers" this date the next time you tum the Apple on.
However, since you are using the write-protected diskettes that came
with your Language System, your new date was not permanently saved. The
next time you turn the Apple off, the new date will be "forgotten". By
the end of this session, you will have made backup copies of the
Language System diskettes. From then on, you will use these copies,
which are not write-protected, and your date changes will be saved
correctly.

MAKING BACKUP DISKEnE COPIES

WHY WE MAKE BACKUPS
Ask yourself this question: What would happen to your system if you were
to lose or damage one of the system diskettes (APPLE0:, APPLEl:,
APPLE2:, or APPLE3:)? It would be as bad as losing your Apple, as far
as your being able to use Pascal.

These diskettes are quite precious. The first thing you should do,
therefore, is to make backup copies of them. Afterward, you should
never use the originals, but put them someplace where the temperature is
moderate, where there is no danger-of them getting wet, and where such
diskette destroyers as dogs, dirt, children, and magnetic fields cannot
get at them.

A truly cautious person will keep on hand two backup copies of each
original. That way, you will need to use an original only in the ve~y
rare case when both of its backup copies are lost (when one copy is lost
or damaged, another backup copy is made from the surviving backup
copy). If your backups were damaged or erased while in use, find out
why they were destroyed before inserting your only surviving copy.
Using diskettes for which you have backups, repeat the procedure that
destroyed the first diskettes; if you can't figure out what the problem

STARTING (ONE DRIVE) 151

is, take your system to the dealer to make sure it is working
correctly.

HOW WE MAKE BACKUPS
The Apple Pascal system can copy all the information from one diskette
(or any portion of the information) onto another diskette. But the
system cannot store information on a new diskette, just as that diskette
comes from the computer store. Therefore, the system is supplied with a
program that allows you to take any 5-inch floppy diskette and "format"
it so that it will work with the Apple Pascal system.

Incidentally, this is one of the nice little things about the Apple
system: ANY high-quality 5-inch floppy diskette (Apple recommends
diskettes made by Dysan Corporation) will work on it. Some systems
require you to have "10 sector" or "15 sector"or "soft sectored"
diskettes. The Apple doesn't care, it takes any of these kinds of
diskettes, and (through the FORMATTER program) makes them into the kind
of diskette it needs.

If you have been following this discussion by carrying out the
instructions on your Apple, the FILER prompt line should be showing at
the top of the screen:

FILER: G, S, N, L, R, C, T, D, Q

Type Q on the keyboard to Quit the Filer.

GETTING THE BIG PICTURE
When you Quit the Filer, the disk whirrs, and you see the COMMAND prompt
line again:

COMMAND: E(DIT, R(UN, F(ILE, C(OMP, L(IN

There is actually more of this prompt line, off to the right of your TV
or monitor. To see the rest of the screen, hold down the key marked
CTRL and, while holding it down, press the A key right alongside it.
(Or, to be brief, we say: "press CTRL-A".)

You now see

K, X(ECUTE, A(SSEM, D(EBUG,?

This is simply the rest of the line that began "COMMAND:". All
together, the full prompt line would look like this:

COMMAND: E(DIT, R(UN, F(ILE, C(OMP, L(INK, X(ECUTE, A(SSEH, D(EBUG,?

152 APPLE PASCAL LANGUAGE

The Apple Pascal system displays information on a "screen" that is 80
characters wide, but your TV or monitor shows only the leftmost 4~
characters or the rightmost 40 characters at any one time. You use the
CTRL-A trick whenever you wish to see if there is more stuff on the
other "half" of the screen. Repeated pressing of CTRL-A flips back and
forth between the left half of the screen and the right half. Also,
sometimes the TV display will seem to be blank. This might mean that
you are just staring at the empty right half of the screen. Before you
come to the conclusion that something is wrong, always try CTRL-A. You
get back to the left side of the screen by typing CTRL-A again, and you
might find that everything is OK after all.

Summary of this digression: The screen is really twice as wide as it
looks. To flip from the left side to the right side or back again, you
type CTRL-A.

FORMATTING NEW DISKETTES
When the COMMAND prompt line is showing at the top of the screen, remove
your system diskette (APPLE!: or APPLE0:) from the disk drive and
place the diskette APPLE3: in the drive. This has to be done because
the FORMATTER program is on APPLE3: • Now, type

X

and the screen responds:

EXECUTE WHAT FILE?

You type

APPLE3: FORMATTER

and press the RETURN key. The disk whirrs a bit and the screen says:

APPLE DISK FORMATTER PROGRAM
FORMAT WHICH DISK (4, S, 9 •• 12) ?

Now comes a grand session. Take all the new, blank diskettes that you
are going to use with the Apple Pascal System (but not, of course, any
diskettes that have precious information on them, such as the diskettes
that came with the Apple Pascal System) and place them in a pile. Their
labels should be blank. Make sure that you don't have any diskettes
with data in a non-Pascal format, such as BASIC diskettes: the Apple
Pascal system will be unable to read them, and will regard them as
blank, erasing any old information in the formatting process.

STARTING (ONE DRIVE) 153

Remove the diskette APPLE3: from the disk drive, and place one of the
blank diskettes into the drive. Type

4

and press the RETURN key.

If the diskette in the drive has already been formatted, you will
receive a warning. For example, if you have left APPLE3: in the drive
you will be warned with the message

DESTROY DIRECTORY OF APPLE3 ?

At this point you can type

N

(which stands for ''No 11
) without pressing the RETURN key, and your

diskette will not be destroyed.

Let's assume that you have placed a new, unformatted diskette in the
disk drive. Then you will not get any warning, but the Apple will place
this message on the screen:

NOW FORMATTING DISKETTE IN DRIVE 4

The drive will make some clickings and buzzings and begin to whirr and
zick. The process takes about 32 seconds. When formatting is complete,
the screen again shows the message

FORMAT WHICH DISK (4, 5, 9 •• 12) ?

Now you have a formatted diskette. We suggest that you write the word
"Pascal11 in small letters at the top of the diskette's label, using a
marking pen. Do not use a pencil or ballpoint pen, as the pressure may
damage the diskette. The label will let you know that the diskette is
formatted for use with the Apple Pascal system, and you can distinguish
it from unformatted diskettes, BASIC diskettes, or diskettes for use
with other systems.

While you are at it, repeat this formatting process on all the new
diskettes that you want to use with the Apple Pascal System. With each
new diskette, place it in the disk drive, type 4 and press the RETURN
key.

You may wonder why your one-and-only disk drive is called "4". There's
no good reason for this, it's just that the disk drive was assigned the
number 4. Why, in Spanish, is the word for window "ventana"? It just
happened that way.

154 APPLE PASCAL LANGUAGE

When you have finished formatting all your new diskettes, and have
written the word "Pascal" on each of them, answer the question

FORMAT WHICH DISK (4, S, 9 •• 12) ?

with a simple press of the key marked RETURN • You get the message

PUT SYSTEM DISK IN 1/4 AND PRESS RETURN

By "SYSTEM DISK" the Apple means "APPLE~:" (unless you stopped after
Step One of the startup procedure, and continued to use APPLE!: as your
system disk). By "114" the Apple means the disk drive. Sometimes your
disk drive is called "DRIVE 4" and sometimes "114:", but it's all the
same thing.

Do as it says, place the diskette marked APPLE~: in the disk drive (or,
as we say in Apple Pascal jargon, "Put APPLE~: in fl4: 11

) and press the
RETURN key.

The Apple says:

THAT'S ALL FOLKS •••

And if you watch the top of the screen, the line:

COMMAND: E(DIT, R(UN, F(ILE, C(OMP, L(INK, X(ECUTE, A(SSEM, D(EBUG,?

appears (of course, it doesn't all appear; but you know it's there, and
can check with CTRL-A).

MAKING THE ACTUAL COPIES
As you have seen, you can get into the Filer by typing F when you have
the COMMAND prompt line on the screen. You must have diskette APPLE!:
or diskette APPLE0: in the disk drive when you type F for the Filer, or
(if APPLE0: is your system diskette) you will get the message

NO FILE APPLE0:SYSTEM.FILER

If this happens, just put APPLE0: in the disk drive and type F again.

The Filer is that portion of the system that allows you to manipulate
information on diskettes. One of the Filer's abilities is to transfer
information from one diskette to another. To invoke this facility, once
you have the FILER prompt line on the screen, type T for T(ransfer.

STARTING (ONE DRIVE) 155

This is what you see:

TRANSFER ?

Place diskette APPLE3: into the disk drive and answer the question as
follows:

APPLE3:

which means that you want to transfer the entire contents of the source
diskette called APPLE3: • After you have specified which diskette's
information you want transferred (and pressed the key marked RETURN),
the computer checks to make sure the correct diskette is in the disk
drive. If you have forgotten to put diskette APPLE3: in the drive,
then you will see the message

APPLE3:
NO SUCH VOL ON-LINE <SOURCE>

In that case you must type T for Transfer again, and repeat the
process. With the correct source diskette in the drive, the Transfer
process continues and the computer asks the next obvious question: If
you are going to transfer something, then

TO WHERE ?

Answer this question by typing

BLANK:

This is the name of the destination diskette, onto which you want
APPLE3:'s information transferred. "BLANK:" is any of the diskettes
that you just formatted. When a diskette is formatted it is
automatically given the name BLANK: • Incidentally, those colons (:)
are very important. You use them to indicate that you are referring to
an entire diskette, and not just a part of one.

After you have told the computer where you want APPLE3:'s information
transferred (and pressed the key marked RETURN), it says:

TRANSFER 280 BLOCKS ? (Y/N)

This message is mainly there to give you a chance to abandon the
transfer if you made a typing error in the names of the source or the
destination diskettes. The phrase "280 BLOCKS" means merely "THE toJHOLE
DISKETTE". In any case, you type

y

The disk whirrs and zicks a few times, and you see the message:

PUT IN BLANK:
TYPE <SPACE> TO CONTINUE

156 APPLE PASCAL LANGUAGE

Do as it says. By the colon, you know that it means to put the diskette
called BLANK: into the disk drive. The second line tells you to press
the space bar when the diskette is in place (and the door closed, of
course).

All the information which is on diskette APPLE3:, including the
diskette's name, will be copied onto diskette BLANK:, completely
overwriting BLANK:. Therefore, the computer warns you that you are
about to lose any information that might be stored on BLANK:. It says

DESTROY BLANK: ?

Since you want to turn BLANK: into a perfect copy of APPLE3:, the answer
is

y

The process is under way. The computer will tell you to first put in
one diskette and then the other. Follow the instructions. Your screen
will look like this after a while:

PUT APPLE3: IN UNIT 04
TYPE <SPACE> TO CONTINUE
PUT BLANK: IN UNIT /14
TYPE <SPACE> TO CONTINUE
PUT APPLE3: IN UNIT /14
TYPE <SPACE> TO CONTINUE
PUT BLANK: IN UNIT /14
TYPE <SPACE> TO CONTINUE
PUT APPLE3: IN UNIT #4
TYPE <SPACE> TO CONTINUE
PUT BLANK: IN UNIT /14
TYPE <SPACE> TO CONTINUE
PUT APPLE3: IN UNIT #4
TYPE <SPACE> TO CONTINUE
PUT BLANK: IN UNIT /14
TYPE <SPACE> TO CONTINUE

and so on. You will have to insert the two diskettes a total of 20
times, and press the spacebar 20 times, to copy the entire diskette.
When copying is done, the screen celebrates by saying

APPLE3: -> BLANK:

~y this cryptic remark, the computer is telling you that the contents of
APPLE3: , including the diskette's name, have been copied onto the
diskette that used to be called BLANK: • This is just what you wanted.
Now, writing lightly with a marking pen (do not use a pencil or a
ballpoint pen), write "APPLE3:" on the new diskette's label. It is very
important to label diskettes immediately, so you know what information
they contain.

STARTING (ONE DRIVE) 157

DO IT AGAIN, SAM
You should, at this time, make sure that you have at least one backup
copy of each of the Pascal system diskettes: APPLE0:, APPLE!:, APPLE2:,
and APPLE3: • Then you should store the original diskettes away in a
safe place.

When you are through making backup copies, be sure to put APPLE0: (or
APPLE!: if you are using that as your system diskette) back into the
disk drive, BEFORE typing Q to Quit the Filer. If you forget to do
this, the system will stop responding to the keyboard after you type Q
you will have to turn the Apple off and repeat the entire startup
procedure.

USING THE SYSTEM

A DEMONSTRATION
At last, the reward for all your work to this point: you are finally
ready to use the Apple Pascal system to run a program. Diskette APPLE3:
contains several small "demonstration" programs. To see a list of those
programs, put APPLE0: in the disk drive and enter the Filer (by typing F
in response to the COMMAND prompt line, remember?). When the FILER
prompt line appears on the screen, put APPLE3: in the drive and type L
to List the diskette's directory. The Filer says:

DIR LISTING OF ?

In response, type the name of the diskette whose directory you wish to
see:

APPLE3:

When you press the RETURN key, a long list of program files appears on
the screen, many of them both in their .TEXT versions (the form in which
they are written and edited) and also in their compiled .CODE versions
(the form in which they can be executed). When the screen is full, the
display stops and the message

TYPE <SPACE> TO CONTINUE

appears at the top of the screen. Press the Apple's spacebar to see the
remaining files. For now, we are interested in the file named
GRAFDEMO.CODE • But before executing this program, you must Transfer it
to your system diskette, APPLE0: (most graphics programs must use
routines from the "system library", a file on APPLE0: and also on
APPLE!:). In response to the FILER prompt line, type

T

158 APPLE PASCAL LANGUAGE

The Filer says

TRANSFER 1

Answer the question as follows:

APPLE3:GRAFDEMO.CODE

which means you want to transfer only the file named GRAFDEMO.CODE from
the source diskette named APPLE3: • The Filer checks to see that
APPLE3: is in the disk drive, and that it contains a file named
GRAFDEMO.CODE, and then asks

TO WHERE ?

You know that you want a copy of the file GRAFDEMO.CODE transferred to
the destination diskette APPLE0: • To avoid confusion, let's give this
copied file the same name when it is transferred to APPLE0: • To do
this, answer the question by typing

APPLE0:GRAFDEMO.CODE

Note: you MUST specify a name for the file on the destination diskette.
If you forget to type a file name, the Filer thinks you are referring to
the entire diskette, and asks

DESTROY APPLE0: ?

Since you do not wish to destroy APPLE0: , type

N

Now, if you have typed all of your responses correctly, a new display
appears:

PUT IN APPLE0:
TYPE <SPACE> TO CONTINUE

Follow the directions, putting APPLE0: in the disk drive and pressing
the Apple's spacebar. You are soon rewarded with the message

APPLE3:GRAFDEMO.CODE
--> APPLE0:GRAFDEMO.CODE

This tells you that a copy of the file GRAFDEMO.CODE on diskette APPLE3:
has been successfully transferred to a file named GRAFDEMO.CODE on
diskette APPLE0: • Since the system diskette APPLE0: is already in the
disk drive, you may now safely type Q to Quit the Filer. When the
COMMAND prompt line appears, type X for X(ecute. The Apple says

EXECUTE WHAT FILE?

STARTING (ONE DRIVE) 159

Answer by typing the name of the file you just transferred to APPLE~:

APPLE0: GRAFDEZ.iO

Note: DO NOT type the suffix .CODE ; the system knows you can execute
only a code file, so it automatically supplies the suffix .CODE for you,
in addition to any name that you type.

l~hen this message appears:

PRESS ANY KEY TO QUIT.
PLEASE WAIT WHILE CREATING BUTTERFLY

the program is running. After a short pause, the display begins. Just
sit back and enjoy it: soon you'll be writing your own programs
yourself. When you are tired of watching, press the spacebar on the
Apple's keyboard to return to the COMMAND prompt line. You can use this
same procedure to run any of the programs on APPLE3: • These programs
and their purposes are described in the Appendix A.

DO IT YOURSELF
Now, for some more experience at using the Apple Pascal system, let's
try writing a little program. This discussion will assume that you are
using your new copy of APPLE0: as your system diskette (or '~oct
diskette" as it is often called). This copy is not write-protected and
you have never used the Editor to create any new files on it before
(it's all right if you have added the file GRAFDEMO.CODE to it).

With the COMMAND prompt line showing, and with APPLE0: in the disk
drive, type E to select the E(dit option. Soon, this message appears:

>EDIT:
NO WORKFILE IS PRESENT. FILE? (<RET> FOR NO FILE <ESC-RET> TO EXIT)

As usual, you must use CTRL-A to see the right half of the message.
This message gives you some information and some choices. The first
word, >EDIT: , tells you that you are now in the Editor. The next
sentence, NO WORKFILE IS PRESENT , tells you that you have not yet used
the Editor to create a ''workfi le", which is a "scratchpad" diskette copy
of a program you are working on. If there had been a workfile on
APPLE0: , that file would have been read into the Editor automatically.

Since there was no workfile to read in, the Editor asks you, FILE? If
you now typed the name of a .TEXT file stored on APPLE~:, that textfile
would be read into the Editor. However, there are no .TEXT files on
APPLE0: yet, and besides, you want to write a new program. In
parentheses, you are shown how to say that you don't want to read in an
old file: <RET> FOR NO FILE • This means that, if you press the Apple's
RETURN key, no file will be read in and you can start a new file of your
own. That's just what you want to do, so press the Apple's RETURN key

160 APPLE PASCAL LANGUAGE

(the rest of the message says if you first press the ESC key and THEN
press the RETURN key, you'll be sent back to the COMMAND prompt line).
When you have pressed only the RETURN key, the full EDIT prompt line
appears:

>EDIT: A(DJST C(PY D(LETE F(IND I(NSRT J(MP R(PLACE Q(UIT X(CHNG Z(AP

The chapter called THE EDITOR in the Apple Pascal Operating System
Manual explains all of these command options in detail; for now you will
only need a few of them. The first one you will use is I(NSRT , which
selects the Editor's mode for inserting new text. Type I to select
Insert mode, and this prompt line appears:

>INSERT: TEXT [<BS> A CHAR, A LINE] [<ETX> ACCEPTS,<ESC> ESCAPES]

As long as this line is showing at the top of the screen, anything you
type will be placed on the screen, just to the left of the white square
"cursor". If the cursor is in the middle of a line, the rest of the
line is pushed over to make room for the new text. If you make a
mistake, just use the left-arrow key to backspace over the error, and
then retype. At any time during an insertion, if you press the Apple's
ESC key your insertion will be erased. At any time during an insertion,
if you press CTRL-C the insertion will be made a permanent part of your
file, safe from being erased by ESC or by the left-arrow key. You can
then type I to reenter Insert mode and type more text.

Now for our program. With the INSERT prompt line showing, press the
RETURN key a couple of times, to move the cursor down, and then type

PRORAFM DE~10;

You can use any name for your program, but in this discussion it will be
called DE140 • Now press CTRL-C (type C while holding down the CTRL
key). Your insertion so far is made "permanent", and the EDIT prompt
line reappears. But, horrors! You made several typing errors when
typing the word PROGRAM • Since you have already pressed CTRL-C , it is
too late to backspace over your errors and retype them.

Fortunately, there are other ways. First, let's correct the missing G
in PROGRAM • Using the left arrow key, move the cursor left until it is
sitting directly on the R • Then type I to reenter Insert mode. Ignore
the fact that the remainder of the line seems to have suddenly
disappeared, and type the missing letter G • When you press CTRL-C to
make this insertion permanent, the rest of the line returns:

PROGRAFM DEMO;

The letter F is certainly not needed, so move the cursor right (using
the right-arrow key) until it is sitting directly on the F • Now type D
to select the Editor's D(LETE option. When the DELETE prompt line
appears, press the right-arrow key once. The offending F instantly
disappears. What happens next is similar to Insert mode: if you press
the ESC key, the deletion is forgotten, as if it had never happened. If
you press CTRL-C , the deletion is made a permanent part of your

STARTING (ONE DRIVE) 161

file. To remove that F permanently, press CTRL-C • The line closes in
to fill the deleted letter's place:

PROGRAM DEMO;

Now you know how to use the Editor's Insert and Delete modes to write
text and to correct your errors. Try typing the rest of program DEMO
into your file. Be sure to "accept" your insertions, from time to time,
by pressing CTRL-C • That way, you minimize your loss if you
accidentally press the ESC key. Here is the complete program:

PROGRAM DEMO;

USES TURTLEGRAPHICS, APPLESTUFF;
VAR ANGLE, DISTANCE : INTEGER;

PROCEDURE CRAWL;
BEGIN

MOVE (2 *DISTANCE);
TURN (ANGLE)

END;

BEGIN
ANGLE := (J;
REPEAT

INITTURTLE;
PENCOLOR (WHITE);
FOR DISTANCE := 1 TO 99 DO CRAWL;
ANGLE : = ANGLE + 5

UNTIL KEYPRESS;
TEXT}fODE

END.

When you are typing this program, the punctuation and spelling must be
exactly as shown. The indentation of the lines is not important, but it
easier to read as shown. You will notice that, once you have started a
new indentation, the Editor maintains that indentation for you. To move
back to the left, just press the left-arrow key before you type anything
on the new line.

Program DEMO makes use of graphics routines in the Unit TURTLEGRAPHICS,
and uses the keypress function from the Unit APPLESTUFF (see Chapter 7
for more details). The third line of the program declares two integer
variables, DISTANCE and ANGLE. Next, a Pascal procedure named CRAWL is
defined, between the first BEGIN and END; • From here on, each time
this new Pascal statement CRAWL is used, a graphics "turtle" will trace
a line on the screen, of length 2*DISTANCE moving in the current
direction, and will then change the direction by an amount ANGLE.

The next BEGIN and the last END. outline the main program. The portion
of the program from REPEAT to UNTIL KEYPRESS is repeated over and over
again, until any key on the Apple's keyboard is pressed.

162 APPLE PASCAL LANGUAGE

In each repetition, the screen is cleared and the tracing color is set
to WHITE. Then the procedure CRAWL is performed, first with the value
of DISTANCE set to one, then with DISTANCE set to the value two, and so
on, until DISTANCE is set to 99 • The "turtle11 moves, then turns, then
moves some more, then turns again, and so on, for 99 steps. That
completes one design on the screen. In the next repetition, if no key
has been pressed, the ANGLE has increased by 5 degrees, the screen is
cleared by INITTURTLE, and the whole process starts again.

Now you should save this program.
type Q to select the Q(UIT option.

With the EDIT prompt line showing,
The following message appears:

>QUIT:
U(PDATE THE WORKFILE AND LEAVE
E(XIT WITHOUT UPDATING
R(ETURN TO THE EDITOR WITHOUT UPDATING
W(RITE TO A FILE NAME AND RETURN

Type U to create a "workfile 11 diskette copy of your program (future
versions of this file will be "Updates 11

). This workfile is a file on
your boot diskette called SYSTEM.WRK.TEXT • The Apple says

WRITING •••
YOUR FILE IS 33~ BYTES LONG.

(the number of bytes may be a little different) and then the COMMAND
prompt line reappears. Now type R to select the R(UN option. This
automatically calls the Compiler for you, since the workfile contains
text. If you have typed the program perfectly, the following messages
(again, perhaps with slightly different numbers) appear, one by one:

COMPILING •••

PASCAL COMPILER II.l [B2B]
< ~> ••••
TURTLEGR [2483 WORDS]
< 5> •••••••••••••••••••••••••
APPLESTU [1~78 WORDS]
< 30> ••••••••••••••••••
CRAWL [1~98 WORDS]
< 46> •••••
DEMO [11~9 WORDS]
< 51> ••••••••
59 LINES
SMALLEST AVAILABLE SPACE ~ 1~98 WORDS

If the Compiler discovers mistakes, it will give you a message such as

PROFRAM <<<<
LINE 2, ERROR 18: <SP>(CONTINUE), <ESC>(TERMINATE), E(DIT

Don't despair; just type E for E(DIT • Your workfile will be
automatically read back into the Editor for repairs. Read the error

STARTING (ONE DRIVE) 163

message at the top of the screen, press the spacebar, and make any
necessary changes using I(nsert and D(elete. Then Q(uit, U(pdate the
workfile, and R(un your program again, by typing Q U R (the Apple will
store up several commands in advance).

When your program has been successfully Compiled, it is automatically
executed. You will see the message

RUNNING •••

and then a horizontal line appears on the screen. That is the first
design your program draws: the white "turtle" moves out a distance 2*1 ,
turns an angle ~ ; moves 2*2 , turns ~ ; moves 2*3 , turns g ; etc.
Keep watching as successive designs turn through larger and larger
angles between moves. When you want to interrupt the program, press any
key on the keyboard.

Try making changes to the program, by setting a different starting
ANGLE, or a different increment to the ANGLE, or a different distance to
MOVE. To do this, type E for E(DIT, use I(NSRT and D(LETE to make
changes, and then Q(uit, U(pdate the workfile, and R(un again by typing
Q U R • This cycle of Edit-Run-Edit-Run is the basis of all program
development in the Apple Pascal system.

The workfile on APPLE0: now contains the text version of your program in
a file named SYSTEM.WRK.TEXT , and the compiled P-code version of your
program in another file named SYSTEM.WRK.CODE • When your program is
running as you want it to, you should save the text and code workfile
under other filenames. With the COMMAND prompt line showing, type F to
enter the Filer. When the FILER prompt line appears, type S for S(ave.
You will be asked

SAVE AS ?

and you should respond by typing any filename with fewer than 1~
characters. For example, you might type

DEMO

This changes the names of the workfile from SYSTEM.WRK.TEXT to DEMO.TEXT
, and from SYSTEM.WRK.CODE to DEMO.CODE • If you want to keep a
permanent copy of your program on another diskette, you should now use
the T(ransfer command to transfer DEMO.TEXT and DEMO.CODE, one at a
time, to the other diskette. Remember to wait for the prompt message
before removing the source diskette from the drive and putting in the
destination diskette.

WHAT TO LEAVE IN THE DRIVE
When you turn the Apple off, it is a good idea to leave the diskette
called APPLE!: in the disk drive. If some other diskette or no diskette
is in the drive when the Apple is turned on, the drive will spin

164 APPLE PASCAL LANGUAGE

indefinitely. If this continues for hours and hours, some wear will
take place on the drive and any diskette in it. So, it is a good idea
to make a habit of leaving a copy of APPLE!: (now that you have copies)
in the disk drive when you turn the system off. (APPLE0: will not do,
as it is missing a file that is needed for the first stage of system
startup.)

Of course, if you turn on the system and APPLEl: is not in the drive,
just press the key marked RESET • Place APPLE!: in the drive and turn
the system off and then on again. No damage results from turning on the
Apple with the wrong diskette (or no diskette) in the drive. Gradual,
unnecessary wear results from leaving the disk drive running for a long
period of time with the incorrect diskette (or no diskette) in the
drive.

ONE-DRIVE SUMMARY

STARTING UP THE SYSTEM
To start the system, place diskette APPLEl: in the disk drive; then turn
on the Apple's power. When the "WELCOME" message appears, Pascal is
running. Using APPLEl: as the system diskette, you can file, edit, and
execute previously compiled programs; but you cannot compile new
programs. To change system diskettes, place APPLE0: in the drive; then
press the Apple's RESET key. Again, when the "WELCOME" message appears,
Pascal is running. Using APPLE0: as the system diskette, you can file,
edit, compile, and execute programs; but you cannot start up the system
from power-on.

FORMATTING NEW DISKETTES
To format a diskette, have Pascal's COMMAND prompt line showing.
Place diskette APPLE3: in the disk drive, and type

X
In response to the query:

EXECUTE WHAT FILE?
type

APPLE3:FORMATTER
When the question:

FOR}~T WHICH DISK ?
appears, place the new diskette in the disk drive, then type

4
and press the RETURN key. The diskette will be formatted. To leave
the formatting program, press the RETURN key in response to the WHICH
DISK question. A newly formatted diskette has the name BLANK:

STARTING (ONE DRIVE) 165

COPYING DISKETTES
To copy a diskette, have the CO~~ prompt line showing, and put
diskette APPLE0: or APPLE!: in the disk drive. Get into the Filer
by typing

F
When the FILER prompt line appears, put into the disk drive the source
diskette to be copied. Then type

T
To the question:

TRANSFER ?
reply by typing the name of the source diskette to be copied, and then
press the RETURN key. For example:

APPLE3:
To the next question:

TO WHERE ?
reply with the name of the destination diskette that is to become the
backup copy. For example:

BLANK:
Then follow the instructions displayed on the screen, switching the
diskettes back and forth until the copy is complete. Before you Quit
the Filer, be sure to put your system diskette (usually APPLE0:) back
in the drive.

Note: you cannot make a copy onto a destination diskette that has the
same name as the source diskette. Use the Filer to C(hange the name
of either diskette, at least while making the copy.

EXECUTING A PROGRAM
To execute a previously compiled program, put your system diskette
(APPLE0: or APPLE!:) into the disk drive. With the COMMAND prompt
line showing, enter the Filer by typing

F
When the FILER prompt line appears, put into the disk drive the
diskette containing the program codefile that you wish to execute.
Then type

T
for T(ransfer. To the question

TRANSFER ?
reply by typing the name of the program's diskette and codefile. For
example,

APPLE3:GRAFDEMO.CODE
To the next question

TO WHERE ?
reply with the name of your system diskette, and the same filename (or
another name, if you wish). For example,

APPLE0:GRAFDEMO.CODE
When you are prompted

PUT IN APPLE0:
follow the instructions, and press the spacebar. The program is then
transferred onto your system diskette, which is where it must be in

166 APPLE PASCAL LANGUAGE

order to execute it. Now type Q to Q(uit the Filer, and when the
COMMAND prompt appears, type X for X(ecute. When the Apple prompts

EXECUTE WHAT FILE?
and the newly answer by typing the name of your system diskette

transferred codefile you wish to have executed.
suffix. In this example, you would type

DO NOT type the .CODE

APPLE0:GRAFDEMO
The program should now run.

WRITING A PROGRAM
To start a new file in the Editor, put your system diskette (which
must be APPLE0: if you want to R(un your program) into the disk
drive. With the COMMAND prompt line showing, type F to enter the
Filer. Then type N for N(ew. If you are asked

THROW AWAY CURRENT WORKFILE ?
type Y for Y(es. When you see the message

WORKFILE CLEARED
type Q to Q(uit the Filer, and then type E to enter the Editor.
This message appears:

>EDIT:
NO WORKFILE IS PRESENT. FILE? (<RET> FOR NO FILE <ESC-RET> TO EXIT

Press the RETURN key, and the full EDIT: prompt line appears. You can
now insert text at the cursor position by typing I for I(nsert and
then typing your program. Conclude each insertion by pressing CTRL-C.
Delete text at the cursor position by typing D for D(elete and then
moving the cursor to erase text. Conclude each deletion by pressing
CTRL-C • When you have written a version of your program, type Q to
Q(uit the Editor, and then type U to U(pdate the workfile to contain
your latest program version.

With the COMMAND prompt line showing, you can then type R to R(un
your program. This automatically compiles the text workfile (using
the Compiler program on APPLE0:), stores the compiled code workfile,
and executes it. To reenter the Editor, type E in response to the
COMMAND prompt. The text workfile is automatically read back into the
computer.

When a version of your program is complete, you can U(pdate the
workfile to contain that latest version and R(un the program to
a code workfile of that version. To save the workfile versions
your program on another diskette for later use, first save the
workfile under another name on your system diskette (APPLE~:).
F in response to the COMMAND prompt to enter the Filer. Then
for S(ave. When you see the prompt

SAVE AS ?

text
create
of

Type
type s

type the name of your system diskette and the filename under which you
want your program saved. Do not type any .TEXT or .CODE suffix. For
example, if you want your program saved under the filename DEMO , you
might type

APPLE0:DEMO
The text workfile SYSTEM.WRK.TEXT is saved as DEMO.TEXT on APPLE~:,

STARTING (ONE DRIVE) 167

and the code workfile SYSTEM.WRK.CODE is saved as DEMO.CODE •

Now you can T(ransfer those files to any other diskette, for safe
keeping. Type

T
and when the Filer asks

TRANSFER ?
give the name of one of the S(aved files on your system diskette. In
the previous example, you could type APPLE0:DEMO.TEXT To the next
question TO WHERE ? reply by typing the name of the diskette and file
where you wish your program file to be stored. For example, you
might type MYDISK:DEMO.TEXT The Apple will prompt you when it is time
to put the destination diskette in the drive. When the text version
of your program has been transferred onto the destination diskette,
put your system diskette back in the drive. Now, type T for
T(ransfer again, and transfer the code version of your program to the
destination diskette in the same way you transferred the text
version.

Remember to put APPLE0: back in the disk drive before Q(uitting the
Filer.

168 APPLE PASCAL LANGUAGE

170 Equipment You Will Need
170 More Than Two Disk Drives
171 Numbering the Disk Drives
171 Pascal In Seconds
172 Changing the Dace
173 Making Backup Diskette Copies
173 Why We Make Backups
174 How We Hake Backups
174 Getting the Big Picture
175 Formatting New Diskettes
177 Making the Actual Copies
179 Do It Again , Sam
180 Using the System
180 A Demonstration
181 Do It Yourself
186 What To Leave In the Drives
186 Using Nore Than Two Drives
187 Hultiple-Drive Summary

STARTING (TWO OR MORE DRIVES) 169

This appendix is a tutorial session to get you started using the
Language System with Pascal, on an Apple II with two or more diskette
drives. If your system has only one diskette drive, please go back and
read Appendix D instead.

EQUIPMENT YOU WILL NEED

You should have the following:

1. Your 48K Apple computer, with a Language Card installed, and at
least two disk drives. The first two should be attached to a disk
controller card in slot 6. All your disk controller cards should have
the new PROMs, PSA and P6A, that came with the Language System.

2. A TV set or video monitor, connected to your Apple.

3. The following Language System diskettes:

a. APPLE!:
b. APPLE2:
c. APPLE3:
d. A blank diskette
e. A second blank diskette

The diskette marked "APPLE!:" is needed to start the system. The
diskette marked "APPLE2:" adds certain extra features to the system (the
Compiler, the Assembler, and the Linker). You will not need the
diskette marked "APPLE2:" until later. The diskette marked "APPLE3:"
contains a number of useful utility programs. A diskette marked
"APPLE~:" is also included with the Language System. This diskette is
normally used with single-drive systems.

The Apple and the TV or monitor should be plugged in. Turn on the TV
now, so that it can warm up; but leave the Apple turned off.

MORE THAN TWO DISK DRIVES
If your system has more than two disk drives, the third drive gets
connected to the "DRIVE 1" pins on the second controller, which goes in
slot 5. A fourth drive is connected to the "DRIVE 211 pins on the second
controller, in slot 5. A fifth and even a sixth drive can be connected
to a controller in slot 4, using the ''DRIVE 1" and "DRIVE 2" pins,
respectively.

170 APPLE PASCAL LANGUAGE

NUMBERING THE DISK DRIVES
Pascal assigns a "volume" number to each of the disk drives. It is not
a bad idea to place tags with these numbers on your disk drives. Here's
how the volume numbers are assigned to the various disk drives:

APPLE PASCAL
DISK DRIVE VOLUME

Slot 6, Drive 1 114:
Slot 6, Drive 2 115:

Slot 5, Drive 1 1111:
Slot 5, Drive 2 1112:

Slot 4, Drive 1 119:
Slot 4, Drive 2 (110:

You will find that you can refer to any diskette by either the name of
the diskette (e.g., APPLE3:) or by the volume number of the drive in
which it sits (e.g., U11:)

PASCAL IN SECONDS

Place the diskette marked "APPLE!:" in disk drive /14: (slot 6, drive
1). If you are not familiar with handling diskettes, see the manuals
that came with your disk drives. Diskettes must be treated correctly if
they are to last.

Close the door to disk drive #4: , and turn on the Apple. The rest is
automatic. First, the message

APPLE II

appears at the top of your TV or monitor screen, and disk drive #4:'s
"IN USE" light comes on. The disk drive emits a whirring, zickking
sound that is as pleasant as a eat's purring, since it lets you know
that everything is working. The screen lights up for an instant with a
display of black at-signs (@) on a white background, then goes black
again. Next the other disk drives are turned on, one at a time, as
Apple Pascal finds out what is in each drive. A drive with no diskette
in it may buzz and clatter a bit. When Apple Pascal cannot read
anything from a disk drive, it recalibrates the drive's read-head

STARTING (lWO OR MORE DRIVES) 171

position (buzz, clatter) and then tries again. Now disk drive 04: stops
entirely for a moment; then it whirrs some more. Finally, the message

WELCO!-IE APPLE 1 , TO
u.c.s.D. PASCAL SYSTEM II.l
CURRENT DATE IS 26-JUL-79

appears (the date will be different), followed in a second or so by a
line at the top of the screen:

COMMAND: E(DIT, R(UN, F{ILE, C(OMP, L(IN

This line at the top of the screen is called a "prompt line". When you
see this prompt line, you know that your Apple computer is running the
Apple Pascal system.

Starting the system depends only on having APPLE!: in disk drive #4:.
This time, you left the other drives empty; but you will soon discover
that the system starts more quickly and quietly if the other drives have
Pascal diskettes in them. For now, you could put diskettes APPLE2: and
APPLE3: in any empty disk drives. Later, you will have other diskettes
to put in them. In any case, make sure you never put two diskettes with
the same name into the system at the same time. This may cause the
directories of those diskettes to get scrambled •

. CHANGING THE DATE
The date that comes on the diskette will not be correct. It is a good
habit to reset the date the first time you use the Pascal System on any
given day. It only takes a few seconds. Press F on the keyboard
(without pressing the RETURN key or any other keys). The screen goes
blank, and then this line appears at the top:

FILER: G, S, N, L, R, C, T, D, Q

This is a new prompt line. Prompt lines are named after their first
word. The prompt line you first saw was the "COMMAND" prompt line.
This one is the "FILER" prompt line. Sometimes we say that you are "in
the Filer" when this line is at the top of the screen. Each of the
letters on the prompt line represents a task that you can ask the Apple
to do. For example, to change the date, press D (again, just type the
single key, without pressing RETURN or any other keys).

When you do, another message is put on the screen. It says:

DATE SET: <1 •• 31>-<JAN •• DEC>-<~0 •• 99>
TODAY IS 26-JUL-79
NEW DATE ?

It doesn't really mean that today is 26-JUL-79 (or whatever date your
screen shows), but that the Apple THINKS that is today's date. Since it
isn't, you can change the date to be correct. The correct form for

172 APPLE PASCAL LANGUAGE

typing the date is shown on the second line of the message: one or two
digits giving the day of the month, followed by a mdnus sign, followed
by the first three letters of the name of the month, followed by another
minus sign, followed by the last two digits of the current year. Then
press the key marked RETURN •

If the month and year are correct (as they will often be, when you
change the date) all you have to do is type the correct day of the
month, and press the RETURN key. The system will assume that you mean
to keep the same month and year displayed by the message. If you type a
day and a month, the system will assume you mean to keep only the year
the same.

Go ahead and make the date correct. This is your first interaction with
the system, and is typical of how the system is used. In general, at
the top of the screen there will usually be a prompt line which
represents several choices of action. When you type the first letter of
one of the choices, either you will be shown a new prompt line giving a
further list of choices, or else the system will carry out the desired
action directly. If you type a letter that does not correspond to one
of the choices, the prompt line blinks but otherwise nothing happens.
Remember to type only a single letter to indicate your choice; it is not
necessary to press the RETURN key afterward.

Sometimes, as when setting the date, you are asked to type a response of
several characters. You tell the system that your response is complete
by pressing the RETURN key. If you make a typing error before pressing
the RETURN key, you can back up and correct the error by pressing the ·
left-arrow key. You should experiment by making deliberate errors in
entering a date, and then erasing the errors with the left-arrow key.

One further note. Normally, your new date is saved on diskette APPLE!:,
so the system "remembers" this date the next time you turn the Apple
on. However, since you are using the write-protected diskettes that
came with your Language System, your new date was not permanently
saved. The next time you turn the Apple off, the new date will be
"forgotten". By the end of this session, you will have made backup
copies of the Language System diskettes. From then on, you will use
these copies, which are not write-protected, and your date changes will
be saved.

MAKING BACKUP DISKEnE COPIES

WHY WE MAKE BACKUPS
Ask yourself this question: What would happen to your system if you were
to lose or damage one of the system diskettes (APPLEl:, APPLE2:, or
APPLE3:)? It would be as bad as losing your Apple itself, as far as
your being able to use Apple Pascal.

STARTING (lWO OR MORE DRIVES) 173

These diskettes are quite precious. The first thing you should do,
therefore, is to make backup copies of them. Afterward, you should
never use the originals, but put them someplace where the temperature is
moderate, where there is no danger of them getting wet, and where such
diskette destroyers as dogs, dirt, children, and magnetic fields cannot
get at them.

A truly cautious person will keep on hand two backup copies of each
original. That way, you will need to use an original only in the very
rare case when both of its backup copies are lost (when one copy is lost
or damaged, another backup copy is made from the surviving backup
copy). If your backups were damaged or erased while in use, find out
why they were destroyed before inserting your only surviving copy.
Using diskettes for which you have backups, repeat the procedure that
destroyed the first diskettes, and if you can't figure out what the
problem is, bring your system to the dealer to make sure it is working
correctly.

HOW WE MAKE BACKUPS
The Pascal system can copy all the information from one diskette (or any
portion of the information) onto another diskette. But the system
cannot store information on a new diskette, just as that diskette comes
from the computer store. Therefore, the system is supplied with a
program that allows you to take any 5-inch floppy diskette and "format"
it so that it will work with the Apple Pascal system.

Incidentally, this is one of the nice little things about the Apple
system: ANY high-quality 5-inch floppy diskette {Apple recommends
diskettes made by Dysan Corporation) will work on it. Some systems
require you to have 1110 sector 11 or "15 sector11 or "soft sectored"
diskettes. The Apple doesn't care, it takes any of these kinds of
diskettes, and (through the FORMATTER program) makes them into the kind
of diskette it needs.

If you have been following this session by carrying out the instructions
on your Apple, the FILER prompt line should be showing at the top of the
screen:

FILER: G, S, N, L, R, C, T, D, Q

Type Q on the keyboard to Quit the Filer.

GETTING THE BIG PICTURE
When you Quit the Filer, disk drive #4: whirrs, and you see the COMMAND
prompt line again:

COMMAND: E(DIT, R(UN, F(ILE, C(OMP, L(IN

174 APPLE PASCAL LANGUAGE

There is actually more of this prompt line, off to the right of your TV
or monitor. To see the rest of the screen, hold down the key marked
CTRL and, while holding it, press the "A" right alongside it. (Or, to
be brief, we say: 11press CTRL-A11

.)

You now see

K, X(ECUTE, A(SSEM, D(EBUG,?

This is simply the rest of the line that began "COMMAND: 11
• All

together, the full prompt line would look like this:

COMMAND: E(DIT, R(UN, F(ILE, C(OMP, L(INK, X(ECUTE, A(SSEM, D(EBUG,?

The Apple Pascal system displays information on a 11screen" that is 80
characters wide, but your TV or monitor shows only the leftmost 40
characters or the rightmost 40 characters at any one time. You use the
CTRL-A trick whenever you wish to see if there is more stuff on the
other ''half11 of the screen. Repeated pressing of CTRL-A flips back and
forth between the left half of the screen and the right half.

Also, sometimes the TV display will seem to be blank. This might mean
that you are just staring at the empty right half of the screen. Before
you come to the conclusion that something is wrong, always try CTRL-A.
You get back to the left side of the screen by typing CTRL-A again, and
you might find that everything is OK after all.

Summary of this diversion: The screen is really twice as wide as it
looks. To flip from the left side to the right side or back again, you
type CTRL-A.

FORMATTING NEW DISKETTES
Place diskette APPLE3: in any available disk drive except drive 04: •
This has to be done because the FORMATTER program is on APPLE3:. Now,
with the COMMAND prompt line at the top of the screen, type

X

and the screen responds:

EXECUTE WHAT FILE?

You type

APPLE3:FORMATTER

and press the key marked RETURN •

STARTING (lWO OR MORE DRIVES) 175

The disk drive containing APPLE3: whirrs a bit and the screen says:

APPLE DISK FORMATTER PROGRAM
FORMAT WHICH DISK (4, S, 9 •• 12) ?

Take all the new, blank diskettes that you are going to use with the
Pascal System (but not, of course, any diskettes that have precious
information on them, such as the diskettes that came with the Pascal
System) and place them in a pile. Their labels should be blank. Make
sure that you don't have any diskettes with data in a non-Pascal format,
such as BASIC diskettes: the Pascal system will be unable to read them,
and will regard them as blank, erasing any old information in the
formatting process.

Remove the diskette in disk drive US: (if yours is a two-drive system,
you will be removing diskette APPLE3:) and put one of the new, blank
diskettes into that drive. Then type

s

and press the key marked RETURN •

If the diskette in drive US: has already been formatted, you will
receive a warning. For example, if you have left APPLE3: in that drive
you will be warned with the message

DESTROY DIRECTORY OF APPLE3 ?

At this point you can type

N

(which stands for "No") without pressing the RETURN key, and your
diskette will not be destroyed. Let's assume that you have a new,
unformatted diskette. Then you will not get any warning, but the Apple
will place this message on the screen:

NOW FOR}~TTING DISKETTE IN DRIVE S

Disk drive #S: will make some clickings and buzzings and begin to whirr
and zick. The process takes about 32 seconds. When formatting is
complete, the screen again shows the message

FORMAT WHICH DISK (4, 5, 9 •• 12) ?

Now you have a formatted diskette. We suggest that you write "Pascal"
in small letters at the top of the diskette's label, using a marking
pen. Do not use a pencil or ballpoint pen, as the pressure of writing
may damage the diskette. The label will let you know that the diskette
is formatted for use with the Apple Pascal system, and you can
distinguish it from unformatted diskettes, BASIC diskettes, or diskette1
for use with other systems.

176 APPLE PASCAL LANGUAGE

While you are at it, repeat this formatting process on all the new
diskettes that you want to use with the Apple Pascal System. With each
new diskette, place it in drive #5: , type 5 and press the RETURN
key.

Note: If you have more than two drives, you can simplify the procedure
by putting the next diskette to be formatted into any unoccupied drive.
Then, when the system asks

FORMAT l.ffiiCH DISK (4, 5, 9 •• 12) ?

just type the correct volume number of the drive containing your new,
blank diskette, and then press the RETURN key. This will save you some
diskette-swapping.

When you have finished formatting all your new diskettes, and have
written the word "Pascal" on each of them, answer the question

FORMAT WHICH DISK (4, 5, 9 •• 12) ?

with a simple press of the key marked RETURN • You get the message

THAT'S ALL FOLKS •••

And if you watch the top of the screen, the line

COMMAND: E(DIT, R(UN, F(ILE, C(OMP, L(INK, X(ECUTE, A(SSEM, D(EBUG,?

appears (of course, it doesn't all appear; but you know it's there, and
can check with CTRL-A).

MAKING THE ACTUAL COPIES
As you have seen, you can get into the
the COMMAND prompt line on the screen.
or diskette APPLE0: in one of the disk
the Filer. If you forget (and APPLE!:
will get the message

NO FILE APPLEl:SYSTEM.FILER

Filer by typing F when you have
You must have diskette APPLE!:

drives when you type F to enter
is your system diskette), you

If this happens, just put APPLE!: in any drive and type F again.

The Filer is that portion of the system which allows you to manipulate
information on diskettes. One of the Filer's abilities is to transfer
information from one diskette to another. To invoke this facility, once
you have the FILER prompt line on the screen, type T for T(ransfer.

This is what you see:

TRANSFER ?

STARTING (TWO OR MORE DRIVES) 177

Let's say that you want to make a backup copy of diskette APPLE3: , by
copying APPLE3: onto one of your newly formatted diskettes. Put
APPLE3: into any available disk drive, and put a newly formatted
diskette into any other drive. If your system has only two drives, you
will have to remove diskette APPLE!: from drive #4: • Once the FILER
prompt line is showing, APPLE!: is no longer needed until you wish to
Quit the Filer and return to the COMMAND prompt line. Now, answer the
question by typing the name of the source diskette to be copied:

APPLE3:

When you press the RETURN key, the computer checks to see that diskette
APPLE3: is in one of the disk drives. If it is not, you will see the
message

APPLE3:
NO SUCH VOL ON-LINE <SOURCE>

In that case, just put APPLE3: in a disk drive and type T for Transfer
again. If the computer succeeds in finding APPLE3:, it asks you the
next obvious question: If you are going to transfer something, then

TO WHERE ?

Answer this question by typing the name of the diskette that is to
become an exact backup copy of APPLE3:

BLANK:

Remember that BLANK: is the name given to all newly formatted diskettes
by the FORMATTER program. The colons (:) that appear after the
diskette names are quite significant: they indicate that the entire
diskette is being referred to.

After you have told the computer where you want APPLE3:'s information
transferred (and pressed the key marked "RETURN"), it checks to see that
BLANK: is also in one of the disk drives. If it is not, you will see
the message

PUT IN BLANK:
TYPE <SPACE> TO CONTINUE

In that case, put BLANK: into any disk drive except the one containing
APPLE3:, and press the Apple's spacebar. When the computer succeeds in
finding both the source and the destination diskettes, it says

TRANSFER 280 BLOCKS ? (Y/N)

This message is mainly there to give you a chance to abandon the
transfer if you made a typing error in the names of the source or the
destination diskettes. The pnrase "280 BLOCKS" means merely "THE WHOLE
DISKETTE". In any case, you type

y

178 APPLE PASCAL LANGUAGE

All the information on diskette APPLE3:, including the diskette's name,
will be copied onto diskette BLANK:, completely overwriting BLANK:.
Therefore, the computer warns you that you are about to lose any
information that might be stored on BLANK:. It says

DESTROY BLANK: ?

Since you want to turn BLANK: into a perfect copy of APPLE3:, the
answer is

y

The process is under way. It takes about two minutes to copy and check
the entire diskette. When copying is done the screen celebrates by
saying:

APPLE3: --> BLANK:

by which cryptic remark the computer is telling you that the contents of
APPLE3:, including the diskette's name, have been copied onto the
diskette that used to be called BLANK:. This is just what you wanted.

There are now two diskettes with the same name, both in the system at
once. This is a risky situation, confusing both to you and to the
computer, so be sure to remove the new copy right away. Now, using a
marking pen, write "APPLE3:" on the new diskette's label. Do not use a
pencil or a ballpoint pen, as the pressure of writing may damage the
diskette. It is very important to label diskettes immediately, so you
know what information is stored on them.

DO IT AGAIN. SAM
You should, at this time, make sure that you have at least one backup
copy of each of your system diskettes: APPLEl:, APPLE2:, and APPLE3:.
In each case, just place the source diskette to be copied from in one
drive, the blank destination diskette to be copied onto in another
drive, and then type T to begin the Transfer. While you are at it, make
a backup copy of APPLE0: , too. It may come in handy, later on.

BEFORE you type Q to Quit the Filer and return to the CO~~ prompt
line, be sure to put diskette APPLEl: back into drive #4: If you forget
to do this, the computer will stop responding to its keyboard after you
type Q ; even the RESET key will have no effect. You will have to turn
the computer off, put APPLEl: in drive #4:, and turn the computer on
again.

Finally, you should store the original diskettes (and one extra copy, if
you like to be really safe) away, in a safe place.

STARTING (TWO OR MORE DRIVES) 179

USING THE SYSTEM

A DEMONSTRATION
At last, a reward for all your work to this point: you are finally ready
to use the Apple Pascal system to run a program. Diskette APPLE3:
contains several "demonstration" programs. To see a list of those
programs, put APPLE3: in any disk drive except U4: (APPLE!: must be in
drive #4:). Now, enter the Filer by typing F in response to the
COMMAND prompt line. When the FILER prompt line appears on the screen,
type L to List a diskette's directory. The Filer says:

DIR LISTING OF ?

In response, type the name of the diskette whose directory you wish to
see:

APPLE3:

A long list of program files now appears on the screen, many of them
both in their .TEXT versions (the form in which they are written and
edited) and also in their compiled .CODE versions (the form in which
they can be executed). When the screen is full, the display stops and
the message

TYPE <SPACE> TO CONTINUE

appears at the top of the screen. Press the Apple's spacebar to see the
remaining files. For now, we are interested in the file named
GRAFDEMO.CODE •

Since the system diskette APPLE!: is already in disk drive #4: , you may
now type Q to Quit the Filer. When the COMMAND prompt line appears,
type X for X(ecute. The computer says

EXECUTE WHAT FILE?

Answer by typing the name of the diskette and file you wish to have
executed:

APPLE3:GRAFDEMO

Note: DO NOT type the suffix .CODE ; the system knows you can execute
only a code file, so it automatically supplies the suffix .CODE for you,
in addition to any name that you type.

180 APPLE PASCAL LANGUAGE

When this message appears

PRESS ANY KEY TO QUIT.
PLEASE WAIT WHILE CREATING BUTTERFLY

the program is running. After a short pause, the display begins. Just
sit back and enjoy it: soon you'll be writing your own programs using
these and other features of Apple Pascal. When you are tired of
watching, press the spacebar on the Apple's keyboard to return to the
COMMAND prompt line. You can use this same procedure to run any of the
programs on APPLE3: • These programs are discussed in Appendix A.

DO IT YOURSELF
Now, for some more experience at using the Apple Pascal system, let's
try writing a short program. This discussion will assume· that you are
using your new copies of the Pascal diskettes. You should be using a new
copy of APPLE!: as your system diskette (or "boot diskette" as it is
often called). This copy is not write-protected, and you have never
used the Editor to create any new files on it before. Put the new copy
of APPLE!: in the boot drive, volume #4: • You should also put a copy of
APPLE2: in any other drive (APPLE2: contains the Compiler program).

With the COMMAND prompt line showing, type E to select the E(dit
option. Soon, this message appears:

>EDIT:
NO WORKFILE IS PRESENT. FILE?(<RET> FOR NO FILE <ESC-RET> TO EXIT)

As usual, you must use CTRL-A to see the right half of the message.
This message gives you some information and some choices. The first
word, >EDIT: , tells you that you are now in the Editor. The next
sentence, NO WORKFILE IS PRESENT , tells you that you have not yet used
the Editor to create a ''workfile", which is a "scratchpad" diskette copy
of a program you are working on. If there had been a workfile on
APPLE!: , that file would have been read into the Editor automatically.

Since there was no workfile to read in, the Editor asks you, FILE? If
you now typed the name (including the drive's volume number or the
diskette's name) of a .TEXT file stored on APPLE!: or on APPLE2:, that
textfile would be read into the Editor. However, there are no .TEXT
files on APPLE!: or APPLE2: yet, and besides, you want to write a new
program. In parentheses, you are shown how to say that you don't want
to read in an old file: <RET> FOR NO FILE • This means that, if you
press the Apple's RETURN key, no file will be read in and you can start
a new file of your own. That's just what you want to do, so press the
Apple's RETURN key (the rest of the message says if you first press the
ESC key and THEN press the RETURN key, you'll be sent back to the

STARTING (TWO OR MORE DRIVES) 181

COMMAND prompt line). When you have pressed the RETURN key, the full
EDIT prompt line appears:

>EDIT: A(DJST C(PY D(LETE F(IND I(NSRT

The chapter called THE EDITOR in the Apple Pascal Operating System
Reference Manual explains all of these command options in detail; for
now you will only need a few of them. The first one you will use is
I(NSRT , which selects the Editor's mode for inserting new text. Type I
to select Insert mode, and yet another prompt line appears:

>INSERT: TEXT [<BS> A CHAR, A LINE] (<ETX>ACCEPTS, <ESC>ESCAPES]

As long as this line is showing at the top of the screen anything you
type will be placed on the screen, just to the left of the white square
"cursor". If the cursor is in the middle of a line, the rest of the
line is pushed over to make room for the new text. If you make a
mistake, just use the left-arrow key to backspace over the error, and
then retype. At any time during an insertion, if you press the Apple's
ESC key your insertion will be erased. At any time during an insertion,
if you press CTRL-C the insertion will be made a permanent part of your
file, safe from being erased by ESC or by the left-arrow key. You can
then type I to reenter Insert mode and type more text.

Now for our program. With the INSERT prompt line showing, press the
RETURN key a couple of times, to move the cursor down, and then type

PRORAFM DEMO;

You can use any name for your program, but in this discussion it will be
called DEMO • Now press CTRL-C (type C while holding down the CTRL
key). Your insertion so far is made "permanent", and the EDIT prompt
line reappears. But, horrors! You made several typing errors when
typing the word PROGRAM • Since you have already pressed CTRL-C , it is
too late to backspace over your errors and retype them.

Fortunately, there are other ways. First, let's correct the missing G
in PROGRAM • Using the left-arrow key, move the cursor left until it is
sitting directly on the R • Then type I to reenter Insert mode. Ignore
the fact that the remainder of the line seems to have suddenly
disappeared, and type the missing letter G • When you press CTRL-C to
make this insertion permanent, the rest of the line returns:

PROGRAFM DEMO;

The letter F is certainly not needed, so move the cursor right (using
the right-arrow key) until it is sitting directly on the F • Now type D
to select the Editor's D(LETE option. When the DELETE prompt line
appears,

>DELETE: < > <MOVING COMMANDS> [<ETX> TO DELETE, <ESC> TO ABORT]

press the right-arrow key once. The offending F instantly disappears.
In Delete mode, moving the cursor in any direction deletes text. If you

182 APPLE PASCAL LANGUAGE

move the cursor back again, the deleted text reappears. What happens
next is similar to Insert mode: if you press the ESC key, the deletion
is forgotten, as if it had never happened. If you press CTRL-C, the
deletion is made a permanent part of your file. To remove that F
permanently, press CTRL-C. The line closes in to fill the deleted
letter's place:

PROGRAM DEMO;

Now you know how to use the Editor's Insert and Delete modes to write
text and to correct your errors. Try typing the rest of program DEMO
into your file. Be sure to "accept" your insertions, from time to time,
by pressing CTRL-C • That way, you minimize your loss if you
accidentally press the ESC key. Here is the complete program:

PROGRAM DEMO;

USES TURTLEGRAPHICS, APPLESTUFF;
VAR ANGLE, DISTANCE : INTEGER;

PROCEDURE CRAWL;
BEGIN

MOVE (2 *DISTANCE);
TURN (ANGLE)

END;

BEGIN
ANGLE :.., Q;
REPEAT

INITTURTLE;
PENCOLOR (WHITE);
FOR DISTANCE :.., 1 TO 99 DO CRAWL;
ANGLE ::::: ANGLE + 5

UNTIL KEYPRESS;
TEXTMODE

END.

When you are typing this program, the punctuation and spelling must be
exactly as shown. The indentation of the lines is not important, but it
easier to read as shown. You will notice that, once you have started a
new indentation, the Editor maintains that indentation for you. To move
back to the left, just press the left-arrow key before you type anything
on the new line.

Program DEMO makes use of graphics routines in the Unit TURTLEGRAPHICS,
and uses the keypress function from the Unit APPLESTUFF (see Chapter 7
for details). The third line of the program declares two integer
variables, DISTANCE and ANGLE. Next, a Pascal procedure named CRAWL is
defined, between the first BEGIN and END; • From here on, each time
this new Pascal statement CRAWL is used, a graphics "turtle" will trace
a line on the screen, of length 2*DISTANCE moving in the current
direction, and will then change the direction by an amount ANGLE.

STARTING (TWO OR MORE DRIVES) 183

The next BEGIN and the last END. outline the main program. The portion
of the program from REPEAT to UNTIL KEYPRESS is repeated over and over
again, until any key on the Apple's keyboard is pressed.

In each repetition, the screen is cleared and the tracing color is set
to WHITE. Then the procedure CRAWL is performed, first with the value
of DISTANCE set to one, then with DISTANCE set to the value two, and so
on, until DISTANCE is set to 99 • The "turtle" moves, then turns, then
moves some more, then turns again, and so on, for 99 steps. That
completes one design on the screen. In the next repetition, if no key
has been pressed, the ANGLE has increased by 5 degrees, the screen is
cleared by INITTURTLE, and the whole process starts again.

Now you should save this program. With the EDIT prompt line showing,
type Q to select the Q(UIT option. The following message appears:

>QUIT:
U(PDATE THE WORKFILE AND LEAVE
E(XIT WITHOUT UPDATING
R(ETURN TO THE EDITOR WITHOUT UPDATING
W(RITE TO A FILE NAME AND RETURN

Type U to create a "workfile" diskette copy of your program (future
versions of this file will be "Updates)". This workfile is a file on
your boot diskette (APPLE!:) called SYSTEM.WRK.TEXT • The computer saye

WRITING ••
YOUR FILE IS 330 BYTES LONG.

(the number of bytes may be a little different) and then the COMMAND
prompt line reappears. Now type R to select the R(UN option. This
automatically calls the Compiler for you, since the workfile contains
text. The disk drive containing APPLE2: whirrs and, if you have typed
the program perfectly, the following messages (again, perhaps with
slightly different numbers) appear, one by one:

C0~1PILING •••

PASCAL CmiPILER II .1 [B2B]
< ~> ••••
TURTLEGR [2483 WORDS]
< 5> •••••••••••••••••••••••••
APPLESTU [1078 WORDS]
< 30> ••••••••••••••••••
CRAWL [1098 WORDS]
< 46> •••••
DEMO [1109 WORDS]
< 51> ••••••••
59 LINES
SMALLEST AVAILABLE SPACE 1098 WORDS

184 APPLE PASCAL LANGUAGE

If the Compiler discovers mistakes, it will give you a message such as

PROFRAM <<<<
LINE 2, ERROR 18: <SP>(CONTINUE), <ESC>(TERMINATE), E(DIT

Don't despair; just type E for E(DIT • Your workfile will be
automatically read back into the Editor for repairs. Read the error
message at the top of the screen, press the spacebar, and make any
necessary changes using I(nsert and D(elete. Then Q(uit, U(pdate the
workfile, and R(un your program again, by typing Q U R (the Apple will
store up several commands in advance).

When your program has been successfully Compiled, it is automatically
executed. You will see the message

RUNNING •••

and then a horizontal line appears on the screen. That is the first
design your program draws: the white "turtle" moves out a distance 2*1 ,
turns an angle a ; moves 2*2 ' turns a ; moves 2*3 ' turns a ; etc.
Keep watching as successive designs turn through larger and larger
angles between moves. When you want to interrupt the program, press any
key on the keyboard. You can R(un the program again at any time, by
typing R • Since the latest version of your program has already been
compiled, it will be executed immediately, this time.

Try making changes to the program, by setting a different starting
ANGLE, or a different increment to the ANGLE, or a different distance to
MOVE. To do this, type E for E(DIT, use I(nsert and D(elete to make
changes, and then Q(uit, U(pdate the workfile, and R(un again by typing
Q U R • This cycle of Edit-Run-Edit-Run is the basis of all program
development in the Apple Pascal system.

The workfile on APPLEl: now contains the text version of your program in
a file named SYSTEM.WRK.TEXT , and the compiled P-code version of your
program in another file named SYSTEM.WRK.CODE • When your program is
running as you want it to, you should save the text and code workfile
under other filenames. With the COMMAND prompt line showing, type F to
enter the Filer. When the FILER prompt line appears, place in any
available drive the diskette on which you want your program stored.
Then type S for S(ave. You will be asked

SAVE AS ?

and you should respond by typing the name of the destination diskette,
followed by a colon, followed by any filename with ten or fewer
characters. For example, you might type

MYDISK:DEMO

When you press the RETURN key, the boot diskette's workfile,
SYSTEM.WRK.TEXT and SYSTEM.WRK.CODE, is saved on MYDISK: under the

STARTING (lWO OR MORE DRIVES) 185

filenames DEMO.TEXT and DEMO.CODE • These messages will tell you what
has happened:

APPLEl:SYSTEM.WRK.TEXT
--> MYDISK:DEMO.TEXT

APPLEl:SYSTEM.WRK.CODE
--> MYDISK:DEMO.CODE

WHAT TO LEAVE IN THE DRIVES
When you turn the Apple off, it is a good idea to leave the diskette
called APPLE!: in disk drive 04: • If there is no diskette or some
other diskette in #4: when the Apple is accidentally turned on, the
drive will spin the disk indefinitely. If this continues for hours and
hours, some wear will take place on the diskette and the drive. So, it
is a good idea to make a habit of leaving a copy of APPLE!: (now that
you have copies) in #4: when you turn the system off.

Of course, if you turn on the system and APPLE!: is not in #4:, just
press the key marked RESET • Place APPLE!: in U4: and turn the system
off and then on again. No damage results from turning on the computer
with the wrong diskette (or no diskette) in the drive. Gradual,
unnecessary wear results from leaving the disk drive running for a long
period of time with the incorrect diskette (or no diskette) in the
drive.

USING MORE THAN TWO DRIVES
The primary difference between using a two-drive system and using larget
systems is that you rarely need to remove APPLE!: from its usual
location in drive U4: , and can do all copying and transfering between
files in the other drives.

For example, with four drives, you can have APPLE!: in #4:, APPLE2: in
#5:, and APPLE3: in #11:; then you can format diskettes by placing them
in #12:, without having to remove any of the system diskettes.

A one-drive system is a useful tool for learning Pascal and running
programs written on other systems. A one-drive system can, in fact, do
anything that the larger systems can do, up to the limits of the actual
storage space available. For software development of any magnitude,
however, two drives are recommended. Again, more drives make life
easier. Word processing, using the text editor, is most pleasant with ~
three-drive system. Some business applications, which can benefit from
having over half a megabyte on line, might use six drives.

No specific instructions will be given here on using multiple-drive
systems. Acquaintance with a two-drive system should be sufficient
introduction.

186 APPLE PASCAL LANGUAGE

MULTIPLE-DRIVE SUMMARY

STARTING UP THE SYSTEM
To start the system, place diskette APPLE!: in disk drive #4: (slot 6,
drive 1); then turn on the Apple's power. When the ''WELCOME" message
appears, Pascal is running.

FORMATTING NEW DISKETTES
To format a new diskette, have Pascal's COMMAND prompt line showing.
Place diskette APPLE3: in any drive except #4: , and type

X
Now, in response to the query

EXECUTE WHAT FILE?
type

APPLE3:FORMATTER
When the question:

FORMAT WHICH DISK ?
appears, place the new diskette in any drive except #4: , and then type
the number of that drive. For example, if you put the new diskette in
drive US: , type

5
When you press the RETURN key, the diskette will be formatted. To leave
the formatting program, press the RETURN key in response to the question
WHICH DISK ? A newly formatted diskette has the name BLANK:

COPYING DISKETTES
To copy a diskette, have the COMMAND prompt line showing, and put
APPLE!: in drive #4: • Get into the Filer by typing

F
Once the FILER prompt line is showing, you may remove APPLE!: from
its drive if you need to. Put the source diskette you wish to copy
into one drive, and the destination diskette you want to copy onto
into another drive, then type

T
Now, when this question appears:

TRANSFER ?
reply by typing the name of the source diskette to be copied, and then
press the RETURN key. For example, you might type

APPLE3:
Now, when the next question appears:

TO WHERE ?
reply with the name of the destination diskette that is to become the
backup copy. For example, you might type

BLANK:

STARTING (lWO OR MORE DRIVES) 187

Lastly, you will be asked
TRANSFER 280 BLOCKS ?

and
DESTROY BLANK: ?

Reply
y

to both, and BLANK: will be turned into a perfect copy of APPLE3: •
Be sure to put diskette APPLE!: back into drive 04: before Q(uitting
the Filer.

EXECUTING A PROGRAM
To execute a previously compiled program, put APPLE!: in drive #4: and
put the diskette containing the program file into any other drive.
With the COMMAND prompt line showing, type X for X(ecute. When the
computer prompts

EXECUTE WHAT FILE?
answer by typing the name of the diskette and codefile you wish to
have executed. DO NOT type the .CODE suffix. For example, to execute
the program GRAFDEMO.CODE on diskette APPLE3: , you would type

APPLE3:GRAFDEMO
The program should now run.

WRITING A PROGRAM
To start a new file in the Editor, put APPLE!: in drive #4: and put
APPLE2: in drive #5: • With the COMMAND prompt line showing, type F
to enter the Filer. Then type N for N(ew. If you are asked

THROW AWAY CURRENT WORKFILE ?
type Y for Y(es. When you see the message

WORKFILE CLEARED
type Q to Q(uit the Filer, and then type E to enter the Editor.
This message appears:

>EDIT:
NO WORKFILE IS PRESENT. FILE? (<RET> FOR NO FILE <ESC-RET> TO EXIT

Press the RETURN key, and the full EDIT: prompt line appears. You can
now insert text at the cursor position by typing I for I(nsert and
then typing your program. Conclude each insertion by pressing CTRL-C.
Delete text at the cursor position by typing D for D(elete and then
moving the cursor to erase text. Conclude each deletion by pressing
CTRL-C • When you have written a version of your program, type Q to
Q(uit the Editor, and then type U to U(pdate the workfile to contain
your latest program version.

With the COMMAND prompt line showing, you can then type R to R(un
your program. This automatically compiles the text workfile (using
the Compiler program on APPLE2:), stores the compiled code workfile,
and executes it. To reenter the Editor, type E in response to the
COMMAND prompt. The text workfile is automatically read back into the
computer.

188 APPLE PASCAL LANGUAGE

When a version of your program is complete, you can U(pdate the text
workfile to contain that latest version and R(un the program to create
a code workfile of that version. To save the workfile versions of
your program on another diskette for later use, place that diskette
in drive 05: and type F in response to the COMMAND prompt to enter
the Filer. Then type S for S(ave. When you see the prompt

SAVE AS ?
type the name of the diskette and file where you want your program
saved. Do not type any .TEXT or .CODE suffix. For example, if you
want your program saved under the filename DEMO on the diskette
MYDISK: , you might type

MYDISK:DEMO
The text workfile SYSTEM.WRK.TEXT on APPLE!: is saved as DEMO.TEXT on
MYDISK:, and the code workfile SYSTEM.WRK.CODE is saved as DEMO.CODE
on MYDISK: •

STARTING (TWO OR MORE DRIVES) 189

192 identifier
193 unsigned integer
193 unsigned number
193 unsigned constant
194 constant
194 simple type
194 type
195 field list
195 expression
195 simple expression
196 term
196 factor
197 variable
198 statement
199 parameter list
199 function declara tion
199 procedure declaration
200 block
201 unit
201 interface part
202 implementation part
202 program
203 compilation

APPLE PASCAL SYNTAX 191

These diagrams represent all of the syntax of Apple Pascal. However,
they do not show the semantic rules. To understand the distinction
between syntax and semantics, consider the sentence "John Smith is a
citizen of the three of clubs." This sentence is correct syntactically
(i.e., grammatically) but wrong semantically-- the three of clubs is
not something one can be a citizen of.

Similarly, the diagram for a statement shows that one kind of statement
is an identifier optionally followed by one or more expressions in
parentheses. The diagram does not show the semantic restriction, which
is that the identifier must be the identifier of a procedure. Some of
the important semantic restrictions are given in the notes accompanying
the diagrams.

With this limitation in mind, you will find that the diagrams are useful
as reference material. To read one of these diagrams, start at the left
and follow arrows until you come out at the right. Whenever the arrows
branch, you can go either way. Any path that goes through from the left
to the right defines a syntactically correct Apple Pascal construction.

Circles and ovals are used to enclose characters and words that are to
be typed exactly as shown; for example, the word NIL in the diagram for
an unsigned constant. Boxes with square corners enclose words and
phrases that stand for something else; for example, the word "letter" in
the diagram for an identifier stands for any letter.

The vertical arrow symbol used in these diagrams corresponds to the
character in the text of this document and on the Apple keyboard.

A word or phrase that you find in a square-cornered box is the title of
another diagram; the diagram shows what the word or phrase can stand for
when it appears in other diagrams. (Exceptions: there are no diagrams
for "letter," "digit," and "underscore.")

identifier

1. The letters are a •• z and A •• z .

2. The digits are ~ •• 9 •

3. The underscore character, _ , is not available on the Apple
keyboard. However some external terminals provide it.

192 APPLE PASCAL LANGUAGE

unsigned integer

unsigned number

unsigned constant

1. The identifier in this diagram must be the identifier of a constant.

2. The bottom line of the diagram represents a string constant. A
single apostrophe cannot appear as a character in the string constant,
since this would end the constant. However, you can place two
consecutive apostrophes in the string constant, and the result will be a
single apostrophe in the value of the string. For example:

WRITELN('DON''T FORGET TO BOOGIE!')

will cause the following output:

DON'T FORGET TO BOOGIE!

APPLE PASCAL SYNTAX 193

constant

The identifier in this diagram must be the identifier of a constant.

simple type

1. The identifier in the top line of this diagram must be the identifier
of a type.

2. The identifier(s) in the second line define a scalar type. They are
being declared, so they must be identifiers that are not yet declared or
predefined.

type

The identifier in this diagram must be the identifier of a type.

194 APPLE PASCAL LANGUAGE

field list

1. The identifier(s) in the top line are being declared, so they must be
identifiers that are not yet declared or predefined.

2. The identifier between the word CASE and the colon is the tag field.
It is being declared, so it must be an identifier that is not yet
declared or predefined.

3. The identifier between the colon and the word OF must be the
identifier of a type.

simple expression

APPLE PASCAL SYNTAX 195

term

factor

factor

1. The identifier in this diagram must be the identifier of a function.

2. The bottom portion of the diagram (square brackets and expressions)
indicates the formation of a set. The values of the expressions must be
of the same underlying type.

196 APPLE PASCAL LANGUAGE

variable

1. If the identifier at the top of the diagram is that of an array, the
expression(s) in square brackets may be used to subscript it. The
values of the expressions(s) must be compatible with subscript types
declared for the array.

2· If the identifier at the top of the diagram is that of a record, it
may be followed by a period and a second identifier. The second
identifier must be the identifier of one of the fields of the record.

3. If the identifier at the top of the diagram is that of a pointer, it
may be followed by the up-arrow character.

APPLE PASCAL SYNTAX 197

statement

1. Note that there is a "null" path through this diagram, across the top
and down the right-hand side without including anything. This
represents what happens when a superfluous semicolon occurs in a
program.

2. The unsigned integer at the top of the diagram is a label, and must
have been declared in a LABEL declaration.

198 APPLE PASCAL LANGUAGE

'
3. The identifier in the third line of the diagram (above BEGIN) must be
the identifier of a procedure.

4. The expression in an IF, REPEAT, or WHILE statement must have a
BOOLEAN value.

parameter list

function declaration

This diagram shows all of the forms a function declaration can take:

- The normal form includes a parameter list (which may be null)
and the colon followed by an identifier (which must be that of
a type). The declaration ends with a block.

- The FORWARD declaration is like the normal form except that
the word FORWARD is used instead of a block.

- Following a FORWARD declaration, the function declaration has
no parameter list or type identifier and ends with a block.

procedure declaration

This diagram shows all of the forms a procedure declaration can take:

- The normal form includes a parameter list (which may be
null). The declaration ends with a block.

APPLE PASCAL SYNTAX 199

block

The FORWARD declaration is like the normal form except that
the word FORWARD is used instead of a block.

Following a FORWARD declaration, the procedure declaration has
no parameter list and ends with a block.

This is one of the fundamental structural units: it contains all the
local data declarations (except parameters) and all the statements for
one program, procedure, or function.

200 APPLE PASCAL LANGUAGE

unit

1. In an intrinsic unit, the constants following CODE and DATA must be
integers and should be carefully chosen.

2. The words BEGIN and END with the statements between them are the
"initialization" of the unit.

interface part

APPLE PASCAL SYNTAX 201

implementation part

prograa~

1. The program heading may contain identifiers in parentheses in
accordance with Standard Pascal syntax. However the identifiers are
ignored.

202 APPLE PASCAL LANGUAGE

2. Note that any units defined in the program must immediately follow
the program heading. This would normally be done only for test
purposes.

compilation

A compilation is simply something that the compiler can compile. This
may be a program (which may contain units), or one or more units
separated with semicolons and ending with a period.

APPLE PASCAL SYNTAX 203

INDEX
A
ABS function 135
AND operator 134
Apple screen 90
APPLES'IUFF UNIT 101-104
ARRAY types 15-18, 37, 85-86
ASCII codes 141
assembly language 82
ATAN function 45, 105

B
backup copies of diskettes 151-160,

173-179
BALANCED demonstration program

123-124
BEGIN 134
BLOCKREAD function 13, 43-44
BLOCKWRITE function 13, 43-44
BOOLEAN type 86-87
buffer variable 11, 26, 30-31, 33,

144-146
built-in procedures & functions

22-56
BUTTON function 103-104
byte-oriented built-ins 51-53

c

COPY function 24
copying diskettes 151-160, 173-179
COS function 105
CROSSREF demonstration program

124-125

D
DELETE procedure 24
demonstration programs 108-130
DISKIO demonstration program

128-130
DIV operator 134
DLE character in textfiles 12-13,

41-42
DO 134
DOl·lNTO 134
DRAWBLOCK procedure 96-98

E

ELSE 134
END 134
end-of-file character 13, 29, 34,

144-146
end-of-line character 13, 30,

34-35, 144-146
EOF function 26, 29, 34-35, 39,

144-146
EOLN function 26, 30, 33-35,

144-146
executing a program 158-164,

166-167, 180-185, 188
execution errors 66

CASE statements
changing a UNIT

84 EXIT procedure 48
or its host program EXP function 105

extended comparisons 85-86
EXTERNAL procedures & functions 82

81
CHAR type 10
CHARTYPE procedure 98-99
CHR function 135
CLOSE procedure 28-29
comments 84
compiler 32, 58-70, 72, 74-75, 77,
84-85, 137-140

compiler error messages 137-140
compiler option summary 70
compiler option syntax 61-62
compiler options 61-70
CONCAT function 23
CONST declaration 10, 19

F

FALSE 135
file buffer variable

33, 144-146
file pointer 11, 26,

144-146
file record 11, 26,
FILE types 11-13

11 t 26 t 30-31 t

28 t 3(1), 39-40,

28, 30, 39-40

INDEX 205

FILLCHAR procedure 53
FILLSCREEN procedure 93
FOR 134
formatting new diskettes 153-155,

175-177
FORWARD 134
FUNCTION 134

G
GET procedure 11, 26, 28-30, 39
GOTO statements 63, 85

I/O built-ins 26-44
I/O errors (IORESULT values) 32, 1:

J

K
KEYBOARD file 12, 26
KEYPRESS function 102-103

GOTO statements option 63, 85
GOTOXY procedure 49
GRAFCHARS demonstration program
GRAFDEMO demonstration program

121 L
126-127

GRAFMODE procedure 91

H

HALT procedure 48
HILBERT demonstration program 126
host program 72-73, 75-76, 79-81

identifiers 84
identifiers in supplied UNITs 136
IF 134
IMPLEMENTATION part of a UNIT 7 5,

78
IN 134
include file option 63-64
initialization part of a UNIT 75,

78
INITTURTLE procedure 90
input and output built-ins 26-44
INPUT file 12, 34
INSERT procedure 25
INTEGER type 19-20
INTERACTIVE type 11, 26, 28, 32-37,
39, 144-146

INTERFACE part of a UNIT 75, 77
intrinsic UNITs 72, 76-77, 81
IO check option 32, 38, 40, 63
IORESULT function 32, 38, 40, 133

206 APPLE PASCAL LANGUAGE

LABEL 134
leading spaces in texfiles 12-13,

41-42
LENGTH function 22
libraries 69, 72, 75-77, 80-81
libraries supplied for the Apple

90-105
listing option 64-66
LN function Hl5
LOG function 105
LONG INTEGER type 19-20

M
MARK procedure 46-47
~fAXINT 135
~mMAVAIL function 48
MOD operator 19
MOVE procedure 94
MOVELEFT procedure 52-53
MOVERIGHT procedure 52-53
MOVETO procedure 95

N
nesting UNITs 80
NEW procedure 46-47
NIL 134
noload option 66, 72
NOT 134
NOTE procedure 104

0
ODD 135
OF 134
OR 134
ORD function 86-87
OUTPUT file 12, 37

p

PACK procedure 15
PACKED arrays 15-18
PACKED files 15
PACKED records 17-18
PACKED variables 15-18
PACKED variables as parameters 18
PADDLE function 103
page option 66
PAGE procedure 39
pages of textfile 12-13
PENCOLOR procedure 92-93
POS function 23
PRED 135
predefined files 12
predefined identifiers 135
predefined types 8-20
PROCEDURE 134
procedure and function parameters

18, 22-56, 77-78, 82, 85-86
PROGRAM 134
program headings 85
PUT procedure 26, 30-31, 39, 144-145
PWROFTEN function 45

Q

quiet compile option 66-67

R
RANDOM function 101-102
RANDOMIZE procedure 102
range check option 67
READ procedure 26, 33-36, 144-145
READ with a CHAR variable 34, 144
READ with a numeric variable 34-35,

144-145
READLN procedure 26, 35-36, 145-146

REAL 135
RECORD types 17-18, 85-86
regular UNITs 72, 76, 81, 85
RELEASE procedure 46-47
REPEAT 134
reserved words 134
RESET procedure 11, 27-28
resident option 67-68, 72, 74
REWRITE procedure 27
ROUND 135

s
SCAN function 51-52
SCREENBIT function 95
SCREENCOLOR type 93
SEEK procedure 39-40
SEGMENT procedures & functions

67-68, 72, 74
SET types 14
SIN function 105
size limits 85
SIZEOF function 51
SPIRODEMO demonstration program

125-126
SQR 135
SQRT function 105
startup 148-189
STR procedure 25
string built-ins 22-25
STRING type 8-10, 22-25
succ 135
swapping option 68, 77
syntax diagrams 199ff

T
text I/O 26, 32-39, 144-146
TEXT type 11, 26, 32-36, 39,

144-146
textfiles 12-13, 41-42
TEXTMODE procedure 91
THEN 134
TO 134
TRANSCEND UNIT 105
TREE demonstration program 121-123
TREESEARCH function 49-50
TRUE 135
TRUNC function 19, 45
TTI.OUT procedure 104

INDEX 207

TURN procedure 94
TURNTO procedure 94
TURTLEANG function 95
TURTLEGRAPHICS UNIT 90-100
TURTLEX function 95
TURTLEY function 95
TYPE 134

u
UNIT 66-69, 72, 75-81
UNITBUSY function 42
UNITCLEAR procedure 43
UNITREAD procedure 41
UNITWAIT procedure 42
UNITWRITE procedure 41-42
UNPACK procedure 15
UNTIL 134
untyped files 12, 26, 43-44
use library option 69, 75, 80
USES declaration 72, 80, 90, 101,
1~5

v
VAR 134
VIEWPORT procedure 91-92

w
WCHAR procedure 98-1~0
WHILE 134
window 11
WITH 134
WRITE procedure 26, 36-37, 144-145
WRITELN procedure 26, 37, 144-145
WSTRING procedure 99-100

208 APPLE PASCAL LANGUAGE

X

y

z

10260 Band ley Drive
Cupertino, Californ ia 95014

(408) 996-1010

030·0 1 0 1· 00

