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Preface 

In 1977, the Apple II computer was launched on a dealership basis 
across the United States. Prior to that time, Apple was a two-man 
garage operation making single-board computers for the hobbyists on 
an order-by-order basis. This hobby market saw the Apple II as 
cheap, flexible, and somewhat funky. It consisted of a lot of hardware 
like color graphics, built-in 1/0, on-board bus sockets for peripherals 
and so forth; but, there were few software features. 

A manual came with the Apple II. This became known as the red
book and it was as funky as the Apple itself. With startup hints, 
Integer BASIC description, game instructions and assorted listings, 
commands and schematics, it gave the dedicated computer hacker a 
beginning with a wonderful new toy. 

But Apple found money - lots of money. So, like Cinderella, the 
Apple II became beautiful. A disk with an operating system was 
developed. Microsoft BASIC became Applesoft BASIC in a special 
Apple version. The Monitor that works between most software and 
the hardware was modified to start the disk automatically at powerup. 
Called Autostan, this Monitor was fitted to Apples with Applesoft in 
ROM instead of Integer BASIC. The new version, different only in 
this firmware, became the Apple II Plus. 

Meanwhile, the cost of RAM dropped. Many of the early Apples 
were sold with only 4K of RAM; today, few of these remain with less 
than 48K RAM in them. An extension card with an additionall6K of 
RAM became popular and gave the Apples a RAM complement of 
64K. With this additional RAM, users ran other languages like Pascal 
or simply enjoyed the ability to switch from Appleso ft to Integer 
BASIC at will. 

The disk system changed during this period as well. The hardware 
stayed almost the same - shielding on the ribbon cable to reduce 
radio interference was the main modification. The disk firmware and 
software changed to provide sixteen sectors per track instead of the 
original thirteen. This new version called DOS 3.3 gives almost double 
density capacity to the 5 Y. -inch diskettes. 



In 1983, the Apple lie replaced the Apple II Plus. It is compatible 
with the earlier models and adds several of the features found in 
common Apple customizations: full ASCII keyboard, lower-case dis
play, and the ability to switch to an SO-column screen display. The 
Monitor modifications needed to do this were Herculean. It works 
and it works well. The few programs that can't coexist with the lie 
model are being superseded by others - the lie model proved to be a 
success. 

However great the changes to the Apple II itself, the most powerful 
changes came from outside Apple Computer Inc. 

The most powerful feature of the Apple II is the built-in peripheral 
bus. Unlike much of the competition of the day, Apple published 
Monitor source listings and schematics. With the listing and bus pin
outs, hundreds of peripheral boards were designed and built. The 
Apple II became an open system in the truest sense. With an Apple II 
anyone could configure his own custom computer. If a remote 
terminal, a data logger, a word processor, a video game, or a super 
calculator was wanted the answer was the same - get an Apple. This 
is still true today. You can have all the computers you want by adding 
reasonably priced peripheral boards to your Apple. 

This book is for the people who have these Apples. Students, 
hobbyists, accountants, engineers, scientists, and artists who need 
specific information can use it to look up just what they want to 
know. The organization is top down; each topic is treated with specific 
examples presented in increasing order of depth. For instance, the 
Applesoft statements you need to address the screen cursor are given 
before the Assembler statements to do the same thing. All these 
routines have been tried and tested true; many developed over a period 
of Apple II programming of two and three years. 

This book can also be used for self-study by the Apple II user. The 
top down organization allows the development of concepts from 
known to unknown. It will be useful in any related course: computer 
programming, computer science, systems analysis, digital electronics, 
etc. 

Chapter One introduces the Apple II with details not emphasized in 
the manuals. An overview is kept to help you envisage your system in 
terms of your requirements. Programming is restricted to BASIC and 
stresses data management needs. 

The words Apple, Apple II, Apple lie, Apple II Plus, and Applesofl are registered 
trademarks of Apple Computer Inc. 
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Chapter Two is a condensed atlas, emphasizing the maps and lo
cations most often needed by the Assembler programmer. 

Chapter Three can be used alone or with a tutorial text to learn 
Assembler programming. Those with experience will find useful rou
tines and methods they may add to their repertoires. 

Chapter Four to Seven need some Assembler programming ex
perience to understand and use. The BASIC programmer can find 
some command definitions and specific usages, however. 

Chapter Eight is for the hardware freaks. Some hardware back
ground is needed to build the projects given and suggested there. Hints 
and cautions to the novice are included to encourage the beginner. 

Use this book to make your Apple II into the many custom com
puters you want it to be. 

PAUL IRWIN 
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CHAPTER ONE 

Getting It Together 

1.1 REQUIREMENTS 

1.1.1 Hardware 

The Apple II is supplied with a case, a power supply, a keyboard, 
and a motherboard. You add a video monitor or a tv set with an rf 
modulator, a disk drive with a controller card, and possibly a tape re
corder. If you wish, you can get a motherboard separately, without 
the Apple firmware. But, however you acquire your Apple, you will 
probably end up with a disk system operating from version DOS 3.3 
or later. The BASIC language supplied is Applesoft except in the older 
Apples. Before delving too deeply into your Apple's internals, you 
should be able to program with Applesoft BASIC and have a feel for 
some of the computer's abi lities. To begin with, look at the major 
parts of your system first to see what to expect from them. 

First, the motherboard. Fig. 1-1 shows the motherboard and con
nector locations. This is the Apple II proper, a complete micro
computer. You can buy it separately without case, power supply, or 
keyboard for special installations. Apple Computer Inc., supplies the 
real thing, but some equivalent boards offered by several other 
suppliers come without Applesoft or Apple's other firmware. These 
so-called clones give you a motherboard that will run VisicalcTM and 
other software that is independent of the host firmware, but you must 
sti ll acquire Applesoft and a Monitor before you have an equivalent 

9 
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fig. 1-1. Connector locations on Apple II motherboard (except for Model lie). 

computer. Even then, hardware differences may give you differences 
that some Apple programs won't know about. Like missing colors or 
special terminal defaults. At the time of writing this book, several 
motherboards offered in the underground market have poor quality 
with circuit traces that are lifting from the board either during home 
assembly or afterwards in the case of preassembled boards. Caveat 
emptor! 

Clones that are assembled and supplied in cases are the safest. You 
can run them in the dealer's store and see if it handles the features you 
need. And, by asking around at computer club meetings, you can find · 
the dealers with happy customers. With full 64K of RAM, you can 
purchase DOS 3.3 from Apple and have both Applesoft and Integer 
BASICS on disk to load in place of the normal Applesoft/Monitor 
firmware. Or you can program custom systems if you are good at ma
chine language and can make your own PROMs to plug in. Most 
clones provide 2716 or 2732 sockets for this purpose. Be careful of 
BASIC and Monitor PROMs on the black market; selling or buying 
copyright material is illegal without permission from the owners 
(Apple C0mputer Inc., and Microsoft). 

~ 
i 
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The power supply from Apple is a high quality switching type. It 
supplies 5.0 volts at 3 amperes, and this is the minimum size you 
should accept for most systems. There are 5-ampere supplies available 
for applications that you may have with a lot of peripheral cards. Be 
wary of lightweight bargains that won't put out 3 amperes; better pay 
a bit more for the 5-ampere supply if you are unsure of your future 
needs. 

Keyboards also vary in quality. Apple has always supplied good 
keys with a quiet, yet distinct sound and a pleasant feel. They are 
supplied by Cherry and should be the standard by which you compare 
any other keyboard offered. The first Apple lis had a live RESET key 
that was often struck in error because it is close to the RETURN key. 
Later Apples interlock the RESET with the CTRL key so both must be 
pressed to reset the processor. If you have one of the older Apple lis, 
Chapter Eight contains a simple method to interlock the CTRL key. 

For a video display, connect a video monitor to the VIDEO OUT
PUT jack (K 14, see Fig. 1-1 ). If you use a tv set as the monitor, you 
must install an rf modulator inside the Apple II case. Fig. 1-2 shows 
this installation. 

Until the Apple lie model, lowercase was tricky to implement. The 
keyboard itself wouldn't generate lowercase characters and the normal 
Monitor routine that gets character lines from the keyboard com
pounded the problem by converting all characters to uppercase. De
spite these handicaps, several lowercase schemes are available for the 
Apple II, usually with a replacement character display ROM. 

A great deal of elaborate software is available for the Apple II on 
disks. The 5 ~-inch floppy disk is a great improvement over the 
cassette tape and is now almost universally used. The Apple II uses a 
stripped-down version of the Shugart 440 drive with a controller card 
that plugs into a peripheral slot (usually Slot Six). With the controller 
card you need a disk copy of the Disk Operating System, or DOS. 
Version 3.3 is current at the time of this writing; earlier versions used 
different controller card firmware and had less disk storage capacity. 
A controller card will handle two drives so you can add a second drive 
without getting another card. 

WARNING 
To avoid damage to the disk drive see Fig. 1-3 for proper cable 
connections . 
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..-ig. 1-2. Rt" modulalor installalion inside the Apple II case. (Courtesy M & R 
t:nrerprises) 



You can pumanently climaee the disk drive il you attach 
the cable incorretlly. Here is hGW to zlllch it correctly. 

I. The side cable IU¥eS the conoec1or on the 
side 1111J rro111 the card. 

2. lbte sure all pins 10 into lhtir rnatchina holes. 
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Fig. 1-3. Correct method for connecting the disk cable. 

You may also want a tape cassette recorder. Only a few disks are 
usually needed at a time; the rest of your software can be stored on 
tape. A C-60 tape will hold the files from four disks, making tape 
storage quite a bit cheaper. In addition to archival storage, tape can be 
used to back up your working disks. Tape is slow, but it is cheaper. 
See Chapter Eight for more details on using tape. 

To make your Apple do things besides talk to the tv set, you will 
need various peripherals: printer, modem, etc. The hardware and 
firmware needed to make the interface with each peripheral comes on 
a card that you plug into one of the eight sockets or slots on the 
motherboard. So, a printer may use a parallel interface card and a 
modem may use a serial interface card; each card is designed specif
ically for the Apple. Some peripherals are designed especially for the 
Apple and come with their own cards. You must decide which card to 
put into which slot. 

According to Apple, you can use any card from any slot with the ex
ception of Slot Zero, the leftmost slot. The Apple is called slot inde
pendent in its input-output system for this reason. 

The leftmost slot - Slot Zero - is special. Cards must be specifi
cally designed for that slot and usually are memory expansion cards. 
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The 16K-RAM card is common, but ROM cards and even R-G-B 
video display cards have been used there. The Apple lie model does 
not have a Slot Zero. The lie acts like it had a 16K-RAM card instead; 
the actuall6K of RAM is already on the motherboard. If you have an 
Apple other than the lie model, you can put a 16K-RAM card in Slot 
Zero, if it is otherwise unoccupied. Table 1-1 lists the recommended 
card uses for the remaining seven slots. 

Table 1-1. Recommended Slots 
Slot Description 

0 16K RAM card (not on lie) 

I printer 

2 modem/ communications 

3 SO-column terminal (use Aux Slot on lie) 

4 

s second disk controller 

6 disk controller 

7 

The disk controller card usually goes in Slot Six. It will work in any 
slot, but most software assumes Slot Six has the disk card. This slot is 
your choice for the disk card by convention. 

Another convention grew around Slot Three. Earlier users began 
plugging serial cards into Slot Three to connect SO-column terminals 
to RS-232 interface cables. This convention became the standard for 
the Pascal Language System. Later when the lie model came out Slot 
Three had special hardware as well. In the lie model, Slot Three can 
be used like any other slot, just like earlier models. But if you use the 
built-in SO-column display instead of the normal 40-column display, 
then it changes. You can't use Slot Three when using the built-in 
SO-columns because the extended display uses Slot Three from the 
motherboard. A special slot called the Auxiliary Slot accepts the extra 
memory the SO-columns need; the Auxiliary Slot is a second Slot 
Three with special connections. So, use Slot Three for SO-column dis
play cards, or use the Auxiliary slot on the lie, or use Slot Three for 
anything else in 40-column applications. You should choose only one 
of these three cases for your own Apple. 

Slot One is usually used for a printer. If you are connecting a 
printer, a parallel or serial interface card is plugged into Slot One. 
Some software assumes your printer is connected to Slot One. 
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If you plan on doing any hardware work on your Apple, you'll need 
some special tools. You may have most or all that you need already, 
but if you are starting from scratch, the lists in Table 1-2 will help. 

Table 1-2. Hardware Tools 

Start with connections: 

VOM multimeter 
Soldering iron and holder 
Desoldering braid and sucker 
4-inch diagonal pliers 
4-inch long-nosed pliers 
Set of jeweler's screwdrivers 
3/16-inch x 4-inch slot screwdriver 
#1 x 4-inch Phillips screwdriver 
Alligator clips for heat sinks 
Old toothbrush for cleaning 
Small stuff: solder, heatshrink, hookup wire, etc. 
Silicone Seal™ and Epoxy cements 

Add circuit board tools: 

Wire-wrap tool and #30 wire (OK WK-2-B) 
Modified wire stripper (for #30 wire) 
LED logic probe, homemade 
Carbide tip scriber 
X-acto knife 
16-pin IC clip 
Debounced TLL pushbuttons, homemade 
Files, 6-inch bastard: flat, round, triangular 

Enlarge chassis and cabinet ability: 

Shears, to-inch compound aircraft type 
Nibbling tool 
Hacksaw with blades 
Machinists' square with 12-inch rule 
Files, 10-inch bastard: round and half-round 
File, 10-inch flat mill 
File handle for to-inch files 
Electric drill, ~-inch with variable speed 
High-speed twist drills, as required. 
'!.!-inch x 6-inch slot screwdriver 
8-oz ball-peen hammer 
Large vise or Work-MateTM 
Assortment of materials: sheet aluminum, self-tapping screws, 

styrene plastic, wood, machine screws and nuts, PCB stand
offs, etc. 
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First thing you need is the ability to work with cables and con
nectors. You will need a soldering iron, pliers, small screwdrivers, and 
maybe a couple of small files. Get a supply of small-diameter heat
shrink tubing to dress solder connections on terminal pins. To test the 
circuits you should have a multlmeter or a continuity tester. 

If you want to make peripheral cards using the methods given in 
Chapter Eight, then consider wire-wrap. It is easy to use and you can 
make modifications without the problems of desoldering. Wire-wrap 
tools for A WG 30 wire are available from several sources. The OK 
Wire-Wrap kit (WK-2-B) comes with a wrapping tool and an assort
ment of prestripped wire. Wrapping tools are available separately 
from Radio Shack and others. If you do much wrapping, get a better 
wrapping tool that will daisy chain by stripping and wrapping a con
tinuous wire to several posts. Also, the simpler hand wrapping tool 
has a built-in stripper that nicks the wire horribly. Get a pair of wire 
strippers especially for wire-wrap work, file the setting down to make 
a 30-guage stripper, and then cement the setting wheel in place. 

Boards for wire-wrapping are available from Vector, Apple, and 
other manufacturers. They have+ 5.0 volt and ground buses on them; 
just add wire-wrap sockets using small dabs of black Silicone Seal™ 
or a hot glue gun. Then solder 0.1 JJF decoupling capacitors near each 
socket and perhaps a 1.0 JJF tantalum capacitor near the pins across 
the 5 volts. 

You will need some test equipment, even if it is only a multimeter. A 
common LED in series with 220 ohms can be mounted in a discarded 
ballpoint pen case to make a logic state probe. If you work with TTL, 
a couple of debounced pushbuttons and a 16-pin IC clip will make life 
easier. You must check the continuity of all connections before plug
ging in the ICs to avoid possible disasters. Remember that if you can't 
test something, then you can't get it to work. 

Most tests won't require an oscilloscope. For those that do, you may 
not need a large bandwidth. Unless you do a lot of hardware work, 
you probably won't have to purchase one. 

Large hardware projects need chassis and cabinet work. At this 
stage, you can add a drill set, large files, a nibbling tool, and a supply 
of sheet aluminum, screws, plastic, and decals. A vise or Work
Mate™ is a must. 

There are enough goodies on the market so that there is little need to 
roll your own hardware. But if you have the tools on hand you can 
save money over several small projects to pay for the tools. Some large 

,... 
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projects are available in kits so you can save assembly and testing 
costs. Aside from these reasons, tools let you make those rare items 
you may want in specialized applications, such as scientific research. 
All it takes is a few hand tools and a little creative talent to extend 
your Apple's hardware abilities. 

1.1.2 Firmware 

When an Apple II is powered on without a disk operating system to 
bootstrap, a programmed machine routine is used. You can program 
in BASIC because an interpreter program remains in the Apple, even 
during power off. In addition to a BASIC interpreter, the Apple II has 
a special program called the Monitor that allows you and the BASIC 
interpreter to work with the hardware. These special programs that 
reside in ROM (read-only memory) are collectively called the Apple 
Il's firmware. These programs can't be lost even during power off. 

You can work directly with the Apple Il's machine language without 
going through BASIC by interacting directly with the firmware 
Monitor. The Monitor has a set of routines that allows you to access 
the machine language programs, so you can change the contents of 
memory locations, copy data around in RAM, and perform other 
functions that can seem like magic to the uninitiated. From BASIC 
you reach the Monitor with a CALL - 151 command; to go back to 
BASIC you type ctri/C. A summary of the Monitor commands 
appears on the Apple II Reference Card included with this book. 

The Monitor may be one of three versions. The old Standard 
Monitor is the easiest to use. On power up, it displays an asterisk 
- * - as the prompt, unlike the later Autostart and lie Monitors that 
run BASIC at power up. The asterisk is the prompt for the Monitor 
commands which you get whenever you CALL, 151 from BASIC. If a 
disk controller card is in any slot, the Autostart and lie Monitors will 
attempt to bootstrap a disk, requiring you to type a RESET to over
ride that feature if you don't have a disk mounted. When the Auto
start features were added: the old MonitorS (step) and T (trace) com
mands were deleted, the RESET function expanded to force a disk 
bootstrap at power on, and the ESC cursor control keys I, J, K, and M 
were made available. The greatest difference in the three versions is in 
the way each handles RESETs. The Standard Monitor treats them all 
the same; the Autostart lets programs use the keypress RESET and 
handles it differently than a power on RESET. The lie model has a 
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Monitor similar to Autostart, but with more RESET modes, resulting 
in the addition of OPEN-APPLE and CLOSED-APPLE keys, and 
the automatic RAM program destruction on a keypress RESET. 

Practice in using the Monitor makes learning machine-language 
Assembler programming easier. A summary like the Reference Card 
in Appendix B will help. Play with it; just don't leave any disks 
mounted and you won't do any harm. Power off or disconnect any pe
ripherals that may accidentally be activated. You should be able to 
examine any block of memory, move the contents of a block of 
memory to any block of RAM, and to disassemble programs in ma
chine language. The range $1000.1FFF is a nice "safe" RAM destina
tion for practice. The Monitor begins at $F800 and you can dis
assemble there to see how the L (list) command works. Specific activi
ties with the Monitor appear beginning in Chapter Three. 

In addition to commands the Monitor has routines that handle the 
keyboard, the video display, the cassette tape recorder, and the inter
face with other inputs and outputs. These routines are used by BASIC 
and directly by software written in Assembler. You can use them in 
your own programs with PEEKs, POKEs, and CALLs or with 
Assembler routines. 

Just as there are three versions of the Monitor, there are two kinds 
of BASIC for the Apple. Applesoft BASIC is the most common 
today, but older Apples have Integer BASIC as the firmware BASIC. 
Many of these older Apples have Standard Monitors as well, but not 
all. When fitted with Applesoft instead of Integer, the Apple II is 
called an Apple II Plus. From the factory, a special label appears on 
the lid, but with a used machine, you can't go by that. The Apple II 
Plus with Autostart Monitor is the most common Applesoft BASIC 
arrangement before the lie model. The lie acts much like a Plus 
model; it has Applesoft and Autostart Monitor features. 

With regard to the two BASICs, Applesoft is more comprehensive, 
with built-in functions and floating-point math, and has more 
similarities to other Microsoft BASICs. On the other hand, Integer 
BASIC is faster and allows longer variable names. Many functions 
can be found in the Programmer's Aid #1 ROM chip that can be used 
with PEEKs, POKEs, and CALLs. Of importance to machine lan
guage programmers is the miniassembler program that is in the Integer 
BASIC ROM. Early Apple II programs were written in Integer 
BASIC, but most of the later BASIC programs are in Applesoft. This 
book assumes Applesoft as the resident BASIC, but you can find 

,... 
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some Integer usage and examples, especially in Chapter Five. A de
scription of how Applesoft works is in Chapter Four. Programming 
techniques are in Section 1.2 of both chapters. Your normal choice is 
Applesoft. 

Normally, there is only one chunk of memory for the firmware. 
However, it is possible to relocate the resident firmware in the ROMs 
with "soft" firmware from a disk. To do this, an Apple II or an Apple 
II Plus must have a 16K RAM card plugged into Slot Zero. The Apple 
lie already has this extra memory on its motherboard. This memory is 
called the bank-switched memory because the bank of ROMs can be 
replaced by a bank of RAM with a memory address switching circuit. 
By loading a binary file containing the Monitor and an alternate 
BASIC into the RAM, the personality of the Apple changes from an 
Applesoft to an Integer BASIC machine. Or, an old Apple can switch 
from its resident Integer BASIC to a disk-based Applesoft. After the 
second BASIC has been loaded, the DOS commands FP and INT will 
switch from one type of BASIC to the other on command. 

The System Master disk that comes with DOS 3.3 has the binary 
files, INTBASIC and FPBASIC. When the HELLO program runs, 
one or the other BASIC is BLOADed into the bank-switched RAM. 

Other systems can also be loaded into the bank-switched RAM 
instead. The Apple Pascal Language System is an example. A Pascal 
bootstrap loads the P-code interpreter and the kernel of the Pascal 
Operating System into the bank-switched RAM. Alternately, you can 
choose from among languages like Logo, Fortran, Lisp, Forth, and 
Visicalc that are available from Apple or from other vendors. 

Once booted the language is usually write-protected. This provides 
the benefits of firmware while retaining the features of software on 
disks. 

1.1.3 Software 

While much of the software available for the Apple II is specific to a 
single task or application, many programs can be called utilities. A 
utility has no specific application, but it lets you use the Apple in a 
certain way. 

The utility you use often is an editor. The Monitor supports an 
editor to handle Monitor commands and BASIC statements. And you 
can have word/text processors that allow you to write letters, con
tracts, manuals, research papers, articles, books, flyers, or whatever. 
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For programming, you use a type of editor called a line editor. 
The Apple Monitor has a line input that is the heart of the built-in 

programming editors . It lets you enter a line of text before turning it 
over to BASIC or to its own interpreter. You type in what you wish, 
use the forward and backward arrows for corrections, and then press 
RETURN to enter the line. You can quit the line at any time with a 
ctrl/X. As a minimum editor it works well but there are better ways to 
program. 

For instance, when you change previously entered Applesoft lines, 
the extra spaces a t the right of the screen mess up any strings that are 
within quotes. The old trick of typing POKE 33,33 helps, but before 
long a more sophisticated line editor is often needed. 

One solution is an extension to the built-in editor called Program 
Line Editor. It gives you cursor search and edit features one line at a 
time, as well as a listing control for Standard Monitors without ctrl/ S. 
You can add your own commands as well. See Appendix B. 

The best solution is to get a text file editor like the ones that come 
with an Assembler. This way you get an Assembler, with an editor as a 
bonus, that you can use right away, and you don't have to know As
sembler programming to make good use of the editor for BASIC pro
gramming. Then when you get into Assembler, you have a familiar 
editor to use. 

Such a text file line editor will give you the features you need. It wi ll 
let you enter lines and will number them for you . You can search for 
line numbers or for text st rings; then the search lets you replace or list 
what it finds. Separate instructions are included to run the Assembler. 
In this book , all examples of Assembler routines are written for the 
DOS Toolkit Assembler from Apple. 

To load a BASIC program written as a TEXT fi le, you use the 
EXEC command instead of the LOAD command. This reads your 
text in just as if you were typing it at the time. To make corrections to 
the disk copy, however, you will have to go back to your line editor 
a nd make the correction to the TEXT file. 

If you have a program already in a BASIC file, but want to convert 
it to a TEXT file for editing, use the CAPTURE routine. Make one by 
creating a one-liner with your text line editor: 

0 PRINTCHR$(4)''0PENXXXX":PRINTCHR$(4)''WRITEXXXX": 
LIST1,32767:PRINTCHR$(4)"CLOSEXXXX":END 

-
-

-

n 
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Save it as CAPTURE. 

To use CAPTURE, search and replace XXXX to your program's 
text file name. For exampie, your program in BASIC called 
PHASORZAP could have a text file name of PHASORZAP.TEXT. 
Save this version of CAPTURE as, say, CAPTURE.PHASORZAP. 
Quit the editor and load the BASIC program, PHASORZAP. Then 
EXEC CAPTURE.PHASORZAP to add the capture line to the pro
gram in memory. Typing the RUN command will cause the text file 
called PHASORZAP. TEXT to be created on disk. Notice that you 
can't use Line Zero in any of your BASIC programs for any other pur
pose or this trick will wipe it out. 

In addition to editors, several other utilities are useful. You will 
want them to help in program development and maintenance of your 
files. 

You can use various disk zaps. FID is the most common one. The 
COPY program on the System Master disk will back up or copy entire 
disks, not just files like FID. And MUFFIN will copy files from earlier 
DOS disks in thirteen-sector format to the DOS 3.3 sixteen-sector for
mat disks. For advanced use, a disk-zap utility for working with disk 
sectors is given in Chapter Seven. 

Such sector-type disk zaps are quite powerful. They have different 
names; the one in Chapter Seven is just called DISK ZAP. They let 
you read and write from the disk by track and sector numbers and 
examine the bytes of data within each 256-byte sector. You can change 
the bytes and replace the altered sector on disk. You use this utility to 
recover crashed disks, find hidden files, see special characters on disk, 
and learn how DOS works. You can create special disks and customize 
DOS. See Chapter Seven for details. 

If you do a lot of Assembler programming, get a debugger, some
times called DDT. This will give you step and trace capability, let you 
set breakpoints, examine both registers and memory, and other de
bugging routines. It may come with your Assembler, but there are 
separately supplied debuggers available. They can make your program 
debugging much easier. 

COPY programs are available besides the one on the DOS 3.3 
System Master disks. Use it or another COPY utility to keep your 
daily work backed up. Copy program disks when you get them and 
use the copy as the working disk; keep the original archived in case 
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you lose your working copy. A more powerful COPY routine may 
work with an uncopyable disk supplied in a nonstandard disk format. 
Many manufacturers use different schemes to protect their interests 
against software piracy. Unfortunately, this makes it difficult for you 
to have backups. 

One solution is not to buy uncopyable disks. They are fragile and 
often expensive. Another answer might be to find the scheme used to 
alter the DOS and write a special COPY routine. This takes time and 
skill. A third solution is to write your own version of the program you 
want. These programs are not always as complicated as they appear; 
much time and effort in commercial packages goes into the bells and 
whistles to make them look slick. 

If you simply must have the program to use and don't have the time 
to develop an alternative, then buy it. Often you can obtain a replace
ment disk during a warranty period by sending in the original. Some 
suppliers will replace out-of-warranty disks for a fee. 

1.2 PROGRAMMING 

1.2.1 BASICs 

Applesoft has an extensive command set. Of these, a few are 
learned very quickly, some are learned only by a few people, and some 
aren't learned at all. If you have practiced with Applesoft or taken a 
course, you are familiar with the common ones. Specialized com
mands are simple to understand and use because of their specific 
nature. For example, the SPC( function inserts spaces when used with 
a PRINT statement. The few remaining difficult ones are rarely used, 
but are quite useful. See Table 1-3. 

One pair of commands that you should play with is the TRACE and 
NOTRACE. They are BASIC line number tracing features that let you 
see where your program is going as it runs. You can use them easily 
when debugging. 

A little-used command is the WAIT instruction. It does bit testing 
that lets you examine hardware locations and then waits until the 
device being tested does something. Such a device may be the key
board. For example, you WAIT for a keypress, or you could WAIT 
for a pushbutton. Some uses for the WAIT instruction appear in this 
book, but there are others. 

The ONERR GOTO ... statement is used, but not often enough. 
All programs that access disks should use this error-trapping feature 
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Table 1-3. Applesoft Command Set 

Program Flow Input/Output 

& GET ... 
CALL ... IN# ... 
DEF FN ... INPUT ... 
END ... LOAD 
FOR ... = ... TO ... STEP ... POL( 
GOSUB ... PEEK( 
GOTO ... POKE ... 
IF ... GOTO ... PR# ... 
IF ... THEN ... ELSE ... PRINT ... or 

? ... 
NEXT ... RECALL ... 
ONERRGOTO ... SAVE 
POP SHLOAD 
REM ... SPC ( • 
RESUME STORE ... 
RETURN TAB( • 
SPEED ... WAIT( 
STOP 
USR ( •-used only in PRINT 

Screens (text,LORES,HIRES) Variables Control 

FLASH COLOR= ... DRAW ... CLEAR 
HOME GR HCOLOR ... DATA ... 
HTAB ... HLIN ... HGR DIM ... 
INVERSE PLOT ... HGR2 FRE ( 
NORMAL SCRN ( HPLOT ... READ ... 
POS ( VLIN ... ROT= ... RESTORE 
TEXT SCALE= ... 
VTAB .. XDRAW ... 

Math and String Functions Edit and Debug 

ABS ( EXP( MID$ ( SQR ( ctrlC, ctrlX, and reset 
ASC( INT ( RIGHT( STR ( CONT 
ATN( LEFT$( RND( TAN( DEL ... 
COS( LEN( SON( VAL( HIMEM: ... 
CHR$ ( LOG( SIN ( LIST ... 

LOMEN: ... 
NEW 
NOTRACE 
TRACE 
RUN ... 
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Table 1-3 -cont. Applesoft Command Set 

LET () = + -
AND • I 1\ 

OR 
NOT 

Assignment Symbols 

of Applesoft. And don't forget about arithmetic and syntactic errors 
as well; the ONERR grabs those too. 

The DEF FN feature of Applesoft is rarely used, although it is one 
of its most powerful programming tools. It is used to express simple 
functions without having to restate them over and over again. Make 
single-argument functions such as: converting radians to degrees, 
getting address bytes for POKEing, scaling graphics displays, en
coding characters and making special math functions like MOD. 

When writing FOR loops, remember the STEP option. A STEP- I 
makes the loop count backwards. Often you can use a regular variable 
instead of creating a new one for the loop index. For instance, if you 
want a table of temperature conversion, you might write: 

FOR F = 28 TO 36 STEP .1 
PRINT F,(F-32)*5/9 
NEXT 

Keep the keywords TRACE, WAIT, ONERR, DEF FN, and STEP 
in mind as you program with Applesoft. They can make programming 
much easier. 

Instead of Applesoft, you may program with Integer BASIC. See 
Table 1-4. It has a much shorter instruction set, but it parses your 
commands faster. When an Integer line is entered, it parses the state
ment more completely than an Applesoft statement would be parsed. 
This results in a predigested line stored in the program so that it exe
cutes faster. Applesoft must parse most of the statement at execution 
time. So, for fast execution, especially with paddle games, Integer 
BASIC is better. 

For reference, here are the Integer BASIC commands: 

AUTO - gives you an automatic line numbering mode for entering 
programs. AUTO 100, for instance, will start at 100 and give you 
new line numbers incrementing by 10. Other increments are 

-
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Table 1-4. Integer Command Set 

Program Flow Input/Output 

CALL ... IN# ... 
END INPUT ... 
FOR ... = ... TO ... STEP ... LOAD 
GOTO ... POL( 
GOSUB ... PEEK( 
IF ... GOTO ... POKE ... 
IF ... THEN ... ELSE ... PR# ... 
NEXT ... PRINT ... 
POP SAVE 
REM ... 
RETURN 

Screens (text and LORES) Variables Control 

TAB ... COLOR= ... CLR 
TEXT GR DIM ... 
VTAB ... HUN ... 

PLOT ... 
SCRN ( 
VLIN ... 

Math and String Functions Edit and Debug 

ABS( RND ( ctrlC, ctrlX, and reset 
ASC( SGN ( AUTO ... 
LEN ( CON 

DEL. .. 
DSP ... 
HIMEM: ... 
LIST ... 
LOMEM: ... 
MAN 
NEW 
NODSP ... 
NOTRACE 
RUN ... 
TRACE 

Assignment Symbols 

LET{)= + -
AND* I A# 
OR 
NOT 

-
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possible: AUTO 300,4 will start at 300 and increment by 4; AUTO 
500,25 will start at 500 and increment by 25. To exit AUTO mode, · 
use ctr/1 X followed by the MAN command. 

CLR - clears all variables and undimensions all arrays. 
CON - continues program execution after a STOP or ctri/C. All 

variables are normally left intact. 
DSP - turns on a debug display feature that displays a given variable 

each time the executing program references it. For instance, DSP 
COUNT will display the contents of COUNT whenever a statement 
containing COUNT is executed. You use CON or GOTO to run be
cause the RUN command cancels the DSP feature. The DSP is an 
attribute of the variable itself, so you can DSP any number of vari
ables at the same time as you want. 

HIMEM: - sets the highest memory location available to any pro
grams. It will destroy the current program. 

LIST - works just like the Applesoft LIST. 
LOAD - is a tape command. Two beeps and a">" signals the suc

cessful LOAD of an Integer BASIC program. 
LOMEM: - sets the lowest memory location available to any pro

grams. It will destroy current variables, so it must be used before 
any variables are declared. 

MAN - turns off the AUTO line numbering. 
NEW - clears out any current program in memory. 
NO DSP - turns off the display attribute of a variable. For instance, 

a DSP COUNT can be canceled by a NO DSP COUNT statement. 
RUN - works like Applesoft. All variables are cleared, the dimen

sions are removed, DSPs cleared, and program execution is begun 
at the lowest line number. If a line number is given, like RUN 1000, 
execution begins there. 

SAVE - is the tape command to save the current Integer BASIC pro
gram to cassette tape. 

TRACE and NOTRACE - work like their Applesoft counterparts. 
They display line numbers of executing statements. 

For further reference, here are the Integer BASIC statements that 
can be used in programs. Several statements can be included on a sin
gle line, separated by line numbers, just like Applesoft. These state
ments are the programmable commands, then, of Integer BASIC: 

CALL - works like Applesoft's CALL except for the restriction of 
numbers from - 32768 to 32767. The negative addresses are used 

~ 
I 

,... 
I 
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for values above 32767; for example, CALL -936 is the Monitor 
call for HOME. 

COLOR - will set the LORES color. Give a number from zero to fif
teen. 

DIM - dimensions a variable differently from Applesoft. For inte
gers, give one number for the array size; sorry, no higher orders. 
For strings, give the maximum length for one string, from one to 
255. String variables default to single byte characters if not DIMen
sioned. 

DSP - can be used within statements as well. Each statement must 
DSP only one variable. 

END - halts program execution. 
FOR - works like it does in Applesoft. You can use STEP for incre

ments other than + 1. 
GOSUB - works with a line number or an expression to calculate a 

line number. 
GOTO - has the same syntax as GOSUB. 
GR - sets the LORES graphics display mode and blacks the screen. 

You get scrolling text at the bottom of the screen. 
HLIN, VLIN, and PLOT- work in LORES graphics like Applesoft. 
IF •• THEN •• - tests an expression. If true, it executes a statement. 

An ELSE may be used for an alternate statement. In Integer 
BASIC, any statements within the same line after the ELSE state
ment will always be executed, regardless of the IF. This is different 
from Applesoft BASIC where following statements on the same line 
are treated as part of the ELSE condition. Watch this one; it can be 
deadly. 

INPUT - works the same as Applesoft. 
IN# - sets the current input device to the slot number. 
LET - is optional on assignment statements. 
LIST - can be used in statements. Use it to capture Integer BASIC 

programs to TEXT files as described. 
NEXT - must have the variable name of the FOR statement. 
NODSP - turns off the DSP attribute of a variable. 
NOTRACE - turns off the TRACE feature. 
POKE and PEEK, - of course. 
POP - acts like a dummy RETURN. It pops the GOSUB stack by 

one without actually doing a RETURN. 
PRINT - must be typed; you can't use the trick of typing "?" like you 

can with Applesoft. Commas tabulate; semicolons suppress the car-
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riage return at the end o f the statement. 
PR# - sets the current output device to the slot number. 
REMs - are allowed. 
RETURN - returns from GOSUB in subroutines. 
TAB - is Integer's equivalent of HTAB in Applesoft. 
TEXT - acts the same as Applesoft. 
TRACE - displays executing line numbers. 
VT AB - is the same as Applesoft. 
MOD - is unique to Integer BASIC. This function gives you the re

mainder from a division . For example, 23 MOD 7 gives 2, and 36 
MOD 9 gives zero. The quotient comes from the DIY; like 23 DIY 7 
that gives 3 or 36 DIY 9 that gives 4. Other functions appear in the 
summary of Table 1-4. 

More information on Integer BASIC is given in Chapter Five. 

1.2.2 Strings 

Using Applesoft, it's easy to make strings and join them together. 
Just by entering 

A$= A$+ 8$ 

you can join the contents of A$ and B$ with the result as A$. If you 
want to do this in Integer BASIC, it's a little trickier; enter 

A${LEN{A$)+ 1) = 8$ 

instead. In either case it can be done. This joining operation is called 
concatenation. 

You concatenate strings all the time when programming. One 
reason is to make a natural-language display like 

INPUT"HI, WHAT'S YOUR NAME? ";N$ 
PRINT"PLEASED TO MEET YOU, "+ N$ + " ." 

that concatenate a name in N$ with the screen message. Or, you may 
join st rings to write to a disk file. This is done usually by a statement 
like 

PRINT A$,8$,C$,D$ 

,... 
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that concatenate four st rings with three-comma characters to make a 
single record. Another statement to read these four strings from a sin
gle record is 

INPUT A$ ,B$,C$,D$ 

where there a re exactly four variables corresponding to four strings 
separated by commas in the record. 

Each st ring in the list of a PRINT or INPUT statement is called a 
field. A record, therefore, consists of one o r more fields separated by 
special characters called delimiters. The comma is a delimiter of fields 
in Apple records. The statement 

PRINT A$,B$,C$,D$ 

and the statement 

PRINT A$+ " , " + B$ + ", " + C$ + " , " + D$ 

both result in the same record being output. 
The corresponding input statement 

INPUT A$,B$,C$,D$ 

expects one record of fou r fields separated by commas. If there are 
fewer fields, the missing ones will be taken from the next input record; 
that is why keyboard INPUTs reprompt for missing fields. If there are 
too many fields in the reco rd, the last ones are ignored and a message 
to that effect is output - EXTRA IGNORED. 

When using the DOS manual with records and fields, be careful. 
T he manua l is excellent in many respects, but unfortunately it often 
refers to records as fields . To set the record straight, so to speak, 
records are defined as all characters in those file substri ngs te rminated 
by CR characters (negative ASCII code $80). Within each record is 
one or more fields separated by delimiters, usually commas. All fields 
are character strings, and numeric variables are read from st ring fields 
by the I NPUT routine that uses a string to number conversion subrou
tine. Just remember that a fi le consists of records, which in turn con
sists of fields. 

Strings can have any length from zero (the null string) to 255 char
acters each. On screen they are best displayed with scrolling, on disk 
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they a re best managed in sequential TEXT files. Such free-form 
strings are the simplest and easiest to program with and should be 
your first choice. 

Instead of variable-length strings, you sometimes need fixed-length 
strings to do a job. A screen layout with a lot of information that can't 
be allowed to scroll itself off screen is one example. Random access 
for query a nd updating very active files on disk is another. While 
fancy screens and random access have nice features, make sure you 
really need them as fixed-length strings take more programming to get 
working properly than do variable-length strings. 

You can go one of two ways to get a fixed screen layout. One way is 
to simply prompt for each entry at its final display position on the 
screen. You must set the window to the field area each time you 
prompt for the field; otherwise, the user can enter outside the area. 
T hen you have to clear the window, input the user's entry, and re-dis
play the field if justification is needed. The second way to go is to set 
up a prompt line, usually two or three scrolling lines at the bottom of 
the screen. This lets you prompt and give error messages by scrolling 
in the old way. When you get a good field, you display it on the screen 
in its proper position. The second method is easier, but uses more 
screen space. Use the second method unless your screen must be 
especially intense. 

When you use fixed-length strings, you must maintain them by 
truncating any that are too long and filling any that are too short. For 
example, to make a string A$ fit a length, L, write 

A$ = LEFT$(A$ + BL$,L) 

where BL$ is a long string containing all blanks. 
Fixed-length strings are often changed by replacing a substring. You 

may want to handle the fields-within-a-record logic yourself with this 
method, or just change part of a display before PRINTing it. You 
need two different statements to insert a substring. The general one is 

A$= LEFT$(A$,P)+B$+MID$(A$,P+LEN(B$)+1) 

where P is the position of the substring in A$ to be replaced by 8$. 
However, if 8$ must go at the beginning of A$, you need 

A$ = 8$+ MID$(A$,LEN(B$) + 1) 

-
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instead . This is because the LEFT$ function can't use a position, P, of 
zero. 

Extracting substrings is a bit easier than inserting them. You need 
only one statement: 

8$ = MID$(A$,P+ 1,LEN(8$)) 

The position, P, is the same one; its range is 

0, 1, 2, ... , LEN(A$) - 1 

Sometimes you want to position a substring into a variable-length 
string. Placing any length string into the left, center, or right of 
another string is called justification. Report titles, for instance, are 
center justi fied to look proper. Numbers are often right justified to 
line up the columns. Labels can be left justified. Here's how to do 
justification. To left justify: 

A$ = 8$ + M ID$(A$, LEN(A$)- LEN(8$)) 

to right justify: 

A$ = LEFT$(A$,LEN(A$) - LEN(8$)) + 8$ 

to center justify: 

A$ = LEFT$(A$, {LEN(A$)- LEN(8$))/2) + 8$ 
+ RIGHT$(A$,{LEN(A$)- LEN{8$)) /2 

for any pair of strings where LEN(A$) > LEN(B$). 
Extracting variable-length substrings requires a search. A BASIC 

loop wi ll work slowly, so if you want to use it often, you might get an 
Assembler routine to do it for you instead. Here's the Applesoft 
version: 

P=256 
FOR I = 1 TO LEN(A$)- LEN(8$) 
IF MID$(A$,1,LEN(8$))=8$ TH EN P=l - 1 
NEXT I 
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A large value, 256, returned in P signifies a miss . A smaller value is the 
position of B$ in A$ . 

1.2.3 Terminal 

The normal INPUT and PRINT statements input lines from the 
built-in keyboard and output them to the video display. The GET 
inputs single characters. Using PR# and IN# will change these to the 
device of the slot you specify. When you want to work with the built
in keyboard and video displays, there are several tricks and shortcuts 
you can use. 

For instance, the GET. If you don't want the cursor display a nd 
character echo that the GET command features, you can use your own 
Applesoft subroutine instead: 

WAIT - 16384,128 
A$= CHR$(PEEK(-16384}-128) 
POKE - 16368,0 
RETURN 

This subroutine waits for a keypress, fetches the character into A$, 
then clears the keyboard for the next keystroke. 

Another GET routine can just look for a keystroke in response to a 
prompt. In this case you don't care to know which key was pressed; 
you just want to wait un ti l a message has been read before continuing: 

VTAB 23: HTAB 12: PRINT"PRESS-A-KEY"; 
WAIT -16384, 128 
POKE - 16368,0 
VTAB 23: HTAB 12: PRINT" 
RETURN 

And you can use another character GET routine to prompt with a 
special cursor 

PRINT C$; :REM Your special cursor character 
POKE 36,PEEK(36) - 1: REM Backup 
WAIT -16384,128 
A$=CHR$(PEEK(-16384)-128) 
POKE - 16368,0 
PRINT A$; : REM Echo character 
RETURN 

-
-

.... 



... 

-

Getting It Together 33 

This one uses a PRI NT to display your special cursor character inC$. 
A second PRINT character echoes the keyboard character a t the 
cursor position. 

A favorite t rick with programmers is the on-the-fly GET . You use 
this whenever you don't want to wait for a keypress; instead you want 
the keypress to interrupt whatever you are doing. In Applesoft, you 
write your task with a loop that tests the keyboard. If you get the key
press you want, you can cha nge your routine or RET URN , as you 
wish. The trick is in not stopping the routines while you wait for a key
press: 

2000 GOSUB your task 
2010 IF PEEK(-16384) < 128 THEN 2000 
2020 POKE -16368,0 
2040 RETURN 

The task you perform at line 2000 is repeated until any key is pressed . 
At that time, the keyboard is cleared a nd the routine RETU RNS. 

Whenever you use the H OME or CA LL-936 statement to clear the 
video display, only the display window is cleared . This window is the 
area of the screen that scrolls; it is the full screen if the T EXT sta te
ment is used. The HOME positions the cursor to the upper left corner 
o f the window. 

From the home position, the text cursor can be moved by the tab 
statements and by PR INT actions. Yo u can easily lose track of the 
cursor in a program, especia lly if the program structure is weak. O ften 
this doesn't matter much, as in the case o f sim ple scrolli ng. In other 
cases, when you may have a busy form on the screen, it matters a lot. 
Then, you need methods of fi nding the cursor locat ion and forcing the 
cursor to fo llow a specific screen layout. 

- To locate the cursor, you need three cursor parameters: the hori-

n 
n 

zontal cursor, the vertical cursor , and the left window. T he expres
sions to calculate the absolute row a nd column of the current cursor 
are 

row = PEEK(37) + 1 
col PEEK(32) + PEEK(36} + 1 

The row is found from the vertica l cursor. The column is found from 
the left window plus the horizontal cursor . The top window parameter 



34 Appl~ Programmer's Handbook 

is not needed because the vertical cursor counts from the very top of 
the screen. See Chapter Six for details on the window parameters. 

You can a lways find the cursor with the above method. It is useful 
whenever you want to cha nge the cursor in a relative way, or you want 
to test the cursor for a boundary condition . The other need you have 
of cursor control - forcing the cursor to follow a form - requires 
planning if an oversized, hard-to-maintain result is to be avoided. 

The first thing you must do is draw layouts of your screens. You can 
get forms for this purpose with rows and columns numbered along the 
borders. Or you can use that old standby - quad paper. Keep each 
screen simple and for a single task. Use one o f the standard kinds of 
screen whenever possible: a menu, a box form, an open form, or an 
information message. A menu has a list of choices and prompts for a 
si ngle key response. A box form displays a label and shows the size for 
each field to be entered. An open form divides the screen into a dis
play area and a scrolling prompt-and-answer area to dialog with the 
user. An information message screen just displays message text a nd 
waits for a keypress to give the reader time to read it. 

With screen layouts in hand, you are ready to program them into 
BASIC. 

For each screen list the row number, the column number, and the 
string you want to display. P rogram these lists using DATA state
ments . In the initialization subroutine of your program, write loops to 
READ them into DIMensioned variables. Write display routines by 
usi ng loops with HT AB, VT AB, and PRJ NT statements. The actua l 
routine to display a screen is then quite simple; something li ke 

3000 FOR F = 0 TO NF 
3010 HTAB FH(F) : VTAB FV(F) 
3020 PRINT FL$(F) 
3030 NEXT F 

where NF is the number of the last field , FH is a list of rows of the 
fields, FY is a list of columns of the fields, and FL is a list of the label 
strings of each field. If you DIMensioned another set of st rings for the 
contents of the fields as FC$(NF) then 

3100 HTAB FH(F) + LEN(FL$(F)) + 1 
3110 VTAB FV(F) 
3120 PRINT FC$(F) 
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would display the F-th field contents one space after its label on the 
screen. 

You can use the same kind of programming to design and code re
ports to your printer. The best advantage of this approach is the ease 
of changing field information in the program. You just alter a DATA 
statement in most cases without concerning yourself with how the pro
gram actually works. 

You can keep track of the cursor in graphics mode - HIRES or 
LORES - easier than in TEXT mode. The PLOT or HPLOT state
ments use screen coordinates. You can use a function in LORES called 
SCRN that returns the COLOR value at the cursor location you 
specify. If you have several colored objects on a LORES screen, you 
can tell which one, if any, is at the X-Y location you plan to use next 
by testing the location first with a SCRN comparison. So, with 
graphics you always write with an absolute cursor position, a nd in the 
case of LORES, you can always read the color value at any cursor 
position . 

You can use HIRES graphics to draw complex, delineated shapes. 
Unfortunately, it is slower and has fewer colors than LORES. Also, 
HIRES is more difficult to program. Generally, if you want HIRES 
use Applesoft or Assembler; if you want LORES use Integer BASIC. 
The Assembler can give faster execution times than Applesoft, but 
Integer BASIC with LORES graphics is quite fast. 

Here's how to use HIRES with Applesoft. Select HIRES graphics 
mode with the statements 

HGR : HCOLOR = 3 

where 3 is the so-called white / drawing color. Even though you will 
assign another color later set this one first. 

When using Applesoft to draw objects, you can build them from 
simpler objects called primitives. Those primitives you will use most 
often are rectangles, circles, and polygons. They may be filled with a 
color or unfilled as an outline. Unfilled primitives are the easiest to 
program. Then use primitives of different sizes and shapes to draw the 
objects you want. 

The rectangle is easy. You can draw an unfilled rectangle with the 
routine 
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HPLOT X,Y TO X+DX,Y TO X+DX,Y+DY TO 
X,Y + DY TO X,Y 

where X, Y are the coordinates of the starting corner and DX,DY are 
the dimensions - width and height - of the rectangle. A filled rec
tangle with the same parameters is drawn by 

FOR IY = Y TO Y+DY 
HPLOT X, IY TO X+DX, IY 
NEXT 

Filled rectangles are great for backgrounds and making large objects. 
A void fi lled primitives on small objects unless you try it out first. 

Circles are another class of primitives; you use them to get curved 
lines. They can give softness to an object's shape. Each circle has three 
parameters - two center coordinates and a radius. It's a little trickier 
than the rectangle, but you can use Applesoft's trig functions to make 
it easy to write. 

P2 = ATN(1)*8: REM 2pi radians 
DT = ATN(1 .0/R) 
FOR TH = 0 TO P2 STEP DT 
HPLOT R*COS(TH), R*SIN(TH) 
NEXT 

This draws a circle, unfilled. The filled circle must use a loop to draw 
lines from side to side. The routine given here starts at the top and 
works to the bottom: 

HP = ATN(1)*2 : REM half pi 
DT = ATN(1 .0/R) 
FOR TH = - HP TO + HP STEP DT 
HPLOT X- R*COS(TH), Y + R*SIN(TH) TO 

X+ R*COS(TH) , Y + R*SIN(TH) 
NEXT 

Be careful using circles. If you draw beyond the screen area, the figure 
will wrap around to the opposite edge of the screen . You must range 
test your parameters firs t to keep this from happening. 

n 

-
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Polygons are the most powerful primitives. They permit you to 
draw any shape you wish by the join the dots method of children's 
coloring books. Deceptively simple, the TO option of the HPLOT 
routine lets you draw any polygon with an explicit statement. If you 
stuff a ll your polygons in vector tables, you can write a single routine 
to scan a table and draw its polygon. For example, if your polygon 
was in vectors X and Y with the end of the polygon marked by large 
coordinate values, the routine to draw it is 

410 I = 1 
420 HPLOTX(I-1),Y(I-1) TO X(I),Y(I) 
430 I = I + 1 
440 IF X(l) < 280AND Y(l) < 192 THEN 420 
450 HPLOT X(l - 1 ), Y(l - 1) TO X(O), Y(O) 
460 RETURN 

The first point is X(O), Y(O) and the last HPLOT closes the polygon to 
the first point. This gives an outline of the polygon; the filled polygon 
is difficult to program and takes a lot of testing to get debugged. 
Execution of such a routine would take a long time in Applesoft. 

For most drawing, the limited resolution of the Apple II can be ex
ploited quite well with these few primitives. Use fills only on back
grounds and other large areas; use outlines on the detailed objects. 
Keep drawings simple like posters and cartoons. 

1.2.4 Program Design 

~ The first thing a program must do is initialize. This includes such 
tasks as setting program memory usage, loading Assembler routines, 
defining constants, setting initial values, setting up screens, DIMen
sioning vectors, READing lists, and DEFining functions. All of these 
things are only done once in the execution of the entire program, so 
the best place for initialization is at the beginning of its mainline. 

When writing the initialization of an Applesoft program, keep the 
fo llowing statements in the sequence shown: 
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NOTRACE 
POKE 49236,0 :REM set Screen One switch 
TEXT: SPEED= 255 
NORMAL: HOME 
IN#O: PR#O: CALL 1002: REM reset DOS hooks 
MAXFILES 3 
HIMEM: 38400:REM $9600 
CLEAR: RESTORE 

By using all this stuff, you can make sure your program will rerun 
after an error stop or after another program leaves you a dirty system. 
Then, with the system tidied up, you can proceed with initialization 
and load Assembler routines, DIMension vectors, READ and assign 
initial values and constants, and call your main procedures with 
GOSUBs. 

When you declare constants, do so all in the same chunk of line 
numbers in the initialization, before variables are initialized. This lets 
you use constants in your variables setup. Some constants usually 
needed are 

D$ = CHR$(4) : REM ctri/D for DOS 
BL$ = " 

" : REM make a blank string 
PI= 4*ATN(1) : REM pi= 3.14159 ... 
HP = 2*ATN(1) : REM half of pi 
P2 = 8*ATN(1) : REM twice p i 
Z$ = "0000000000000" :REM zeros for formatting 

Allow additional line numbers for adding more constants; you'll need 
them as you write your routines. 

Don't forget your functions. Most programs can be written easier 
with a few extra functions avai lable. Here are a few you may want to 
choose from: 

DEF FN LO(X) = X - 256* 1NT(X/256) 
low-order byte of an address, for POKEing 

DEF FN HI{X) = INT(X/256) 
high-order byte of an address, for POKEing 

DEF FN AD(X) = PEEK(X) + 256*PEEK(X+ 1) 
fetches an address pointer from memory 

-

-
-

-
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DEF FN DE(X) = 180*X/PI converts radians to degrees 
DEF FN RA(X) = PI*X/180 converts degrees to radians 

Do you need others for scaling, rounding, translating, or other repeti
tive use? Create your own. 

While you are writing the mainline of an Applesoft BASIC pro
gram, code the error handler routine. Without using an ONERR 
GOTO . . . statement, the program will stop executing and you get an 
error message displayed. 

Error handling may be simple or complex, depending on your 
needs. Here is a simple error handler that uses various options: 

30900 ER = PEEK(222): EL = FN AD(218) 
30910 POKE 216,0 
30920 PR#O: IN#O: CALL 1002 
30930 TEXT: POKE 49236,0: PRINT CHR$(7) 
30940 PRINT"ERR";ER;" AT LINE ";EL; 
30950 PRINT" RESUME/QUIT? "; 
30960 GET A$ 
30970 IF A$ < > "R" AND A$ < > "Q" THEN 30960 
30980 IF A$ = "Q" THEN 30990 
30982 ONERR GOTO 30900: RESUME 
30990 PRINT D$"CLOSE" 
30992 CALL 62248: GOTO 32767 

Include the ones you need in your error handler. ER is the error 
code. See Table 1-5. EL is the line number at which the error occurred. 
At memory location, the ONERR flag is cleared by the POKE to dis
able further error traps. Then, DOS is reset without any other device. 
The screen is returned to normal at line 30930 and the beep is sounded. 
The error prompt occurs on the bottom line of the screen, thanks to 
the TEXT statement, and a "Q" for quit or an "R" for resume is 
accepted from the user. To RESUME, the ONERR GOTO is restated. 
To quit , an attempt to CLOSE all files is made. If success ful, a polite 
END is made with a GOTO 32767. The program END statement is 
there. The CALL 62248 should be made to clean up the outstanding 
error whenever a RESUME won't be stated. 

After a program has been written and debugged, the most common 
error is a DOS drive error when someone forgets to close the drive 
door. The RESUME should take care of that. 



40 Appl~ Programmer's Handbook 

Table 1-5. The ONERR GOTO Codes 

Code Source Message 

0 Asoft NEXT without FOR 

I DOS LANGUAGE NOT AVAILABLE 

2 DOS RANGE ERROR 

3 DOS RANGE ERROR 

4 DOS WRITE PROTECTED 

5 DOS END OF DATA 

6 DOS FILE NOT FOUND 

7 DOS VOLUME MISMATCH 

8 DOS 110 ERROR or drive error 

9 DOS DISK FULL 

10 DOS FILE LOCKED 

II DOS SYNTAX ERROR 

12 DOS NO BUFFERS AVAILABLE 

13 DOS FILE TYPE MISMATCH 

14 DOS PROGRAM TOO LARGE 

15 DOS NOT DIRECT COMMAND 

16 Asoft SYNTAX ERROR 

22 As oft RETURN without GOSUB 

42 As oft OUT OF DATA 

53 Asoft ILLEGAL QUANTITY 

69 Asoft OVERFLOW 

77 Asoft OUT OF MEMORY 

90 Asoft UNDEFINED STATEMENT 

107 Asoft BAD SUBSCRIPT 

120 As oft REDIMENSIONED ARRAY 

133 As oft DIVISION BY ZERO 

163 Asoft TYPE MISMATCH 

176 As oft STRING TOO LONG 

191 As oft FORMULA TOO COMPLEX 

224 Asoft UNDEFINED FUNCTION 

254 As oft Bad INPUT response 

255 As oft ctrl/C input 

The trickiest problem in programming in BASIC is managing line 
numbers. This is due in part to the use of line numbers as statement 
labels for GOSUBs and GOTOs. The most annoying problem is run
ning out of line numbers. Then, if you want to put your most often 
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used routines at the beginning of the program to speed up GOSUB 
references, you may not have enough line numbers available. 

Many programs are written by starting with a low line number like 
1000 or even 100 and adding lines by increments of 10 or so. An incre
ment of ten is usually enough insurance against running out of lines 
added when debugging a routine, but it won't protect you from 
trouble when you have to write an entire routine at a low line number. 

There are RENUMBER utilities available. Smart ones resolve 
GOTO and GOSUB references and are quite good. In a large program 
already written, it could be the best solution. In general , though, they 
have problems. You have to get used to a new set of routine addresses 
when working on the renumbered program. And, you can create con
flicts if you want to keep a library of subroutines in TEXT files to 
EXEC into new programs. For any new program design, you should 
assign line numbers for the exclusive use of the various parts of the 
program before doing any coding. By blocking line numbers this way, 
conflicts and the need to renumber can be eliminated entirely. 

Here's how you can block line numbers like the professional BASIC 
programmer does. You break up all the line numbers from zero to 
32767 into blocks of numbers. Each block is then assigned to a differ
ent level of the program. Within each level, you block the numbers 
further for all routines at that level. The rule to follow is: the higher 
the program level a routine has, the higher the line number you assign. 

Look at some parts of a program and see how they get their line 
numbers. 

The mainline is not referenced often and it has the highest level. For 
these reasons, the best place for the mainline is at the end of the pro
gram. You can use line numbers from 30000 to 32767 for the mainline. 
These are the highest line numbers for the highest level of the pro
gram. To reach the mainline when a program is RUN, let line number 
10 be the lowest line number of the program and make it: 

10 GOTO 30000 

This leaves lines zero to nine clear for CAPTURE routines and spe
cial tests during debugging. The mainline proper begins at 30000 with 
the initialization statements. 

The block from 31000 to 31999 within the main block is ideal for 
DATA statements. They are accessed usually only once, during ini-
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tialization, so they can have high numbers. The remaining block from 
32000 to 32767 can be used for your program exit routine. By conven
tion, many programmers place the END statement alone at line 32767. 

The mainline routine after initialization should be brief. A few 
GOSUBs, perhaps with an IF statement to detect the end of the pro
gram, are common. So is the computed GOSUB. All the work should 
be done by subroutines; only very simple, high level logic should be 
done by the mainline. The mainline calls the major functions of the 
program. 

Each of the major functions is blocked. Since they are at the next 
lowest level, you can use the line numbers from 20000 to 29999 for 
them. Each one can have its own block there: put one at 20000 to 
20999; put another at 21000 to 21999; put yet another at 22000 to 
22999; and so on, up to ten major functions. Examples of major func
tions include menus, disk file access, a sort, a drawing routine, etc. 
Each one works by performing a major task by calling on minor tasks 
and utility routines in turn. 

Minor tasks are tasks that more than one major task may perform. 
Examples include accessing the disk with READs and WRITEs using 
special formats, setting up screens and table-driven displays, and re
port printing logic. 

Utilities on the other hand are short, fast, and may be called by any 
routine in the program. Your special GET routine, graphics scaling, 
cursor control, formatting, lookups and searches all qualify as utili
ties. By having the lowest line numbers, 100 to 999, they are executed 
as quickly as possible. 

Table 1-6 is an example of a line number blocking scheme. The 
assignment of blocks over the middle levels of a program varies with 
that program's call structure. Remember the principle of high level, 
high line numbers as you design your BASIC program. See Example 
7-1 for an Integer BASIC program that has block structuring. 

1.3 FILE HANDLING 

1.3.1 Sequential Files 

The simplest method of file creation is the sequential file method. 
Sequential files have records of varying lengths, just like character 
strings from the keyboard. Unless you have to make random access to 

~ 
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Table 1-6. Blocking Line Numbers 

Line 
Numbers Description 

0 to 9 Unused: Reserved for capture routine 

10 GOTO 30000 

100 to 999 Fast, common utility routines 

1000 to 9999 Specific service routines 

10000 to 29999 Main routines of primary menu selection 

30000 to 30999 Main line: initia lization and menu. An error handler 
included. 

31000 to 31999 The DATA statements 

32000 to 32767 Termination routines. Line 32767 should contain 
o nly an END statement. 

any record in the file, the sequential file access method is the one to 
use. 

You create sequential files according to how you intend to update 
them. The simple method given in the DOS manual assumes you know 
exactly how many records are in any file at any given time. If this is 
the case, then the file can be read sequentially using the number o f 
records as the last record number. After the last record has been read, 
an error (code = 5) occurs when the next READ attempts to read 
beyond the end of the file. 

If you don't know how many records the file contains when you 
write the file reading routine, you need a better method. The most 
obvious is perhaps one that traps the end-of-file error by testing the 
error code in the ONERR routine: 

30912 IF ER = 5 THEN 30982 

This fo rces a RESUM E at line 30982 if there is an END OF FILE 
error: 

30982 EF = 1 : ONERR GOTO 30900 : RESUME 

The line that contains the INPUT where the end of file was found 
must detect EF, the end-o f-file flag: 

1350 EF = 0 : make FALSE 
1360 IF NOT EF THEN INPUT F1 ,F2,F3 
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where 1360 can be any line that INPUTs from the file . 
Perhaps a more secure method is to use one record of the file itself 

to keep count of the total number of records. Such a header record 
can be created at the same time as the file: 

22000 PRINT D$"0PEN" F$ 
22010 PRINT D$" CLOSE" F$ 
22020 PRINT D$"DELETE " F$ 
22030 PRINT D$"0PEN"F$ 
22040 PRINT D$"WRITE"F$ 
22050 PRINT II 0" 
22060 PRINT D$" CLOSE"F$ 
22070 RETURN 

This creates a new file, deleting any previous version, by using F$ as 
the file name. The file contains exactly one record having the fi xed 
length of five characters - four spaces and a zero. There are no data 
records yet; hence the zero. 

To add records to the file, you must get the header record to update, 
add records starting at the end of the file, and finally change the 
header record to the new number of records. Here's how to open the 
file and set its position to the end of file : 

22100 PRINT D$ 1 '0PEN"F$ 
22110 PRINT D$"READ"F$ 
22120 INPUT NR : REM number of records 
22130 PRINT D$"CLOSE"F$ 
22140 PRINT D$" APPEND"F$ 
22150 RETURN 

Upon RETURN, the record counter is in NR and the file position is at 
the end of the file, ready to append further records. 

After records have been added, you need a special close routine that 
will update the header record with the record counter: 

29000 PRINT D$" CLOSE"F$ 
29010 PRINT D$"0PEN"F$ 
29020 PRINT D$"WRITE"F$ 
29030 PRINT RIGHT$(" II + STR$(NR),5) 
29040 PRINT D$" CLOSE"F$ 
29050 RETURN 

-

-

-
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All you have to do to make sure that the APPEND method works 
properly, then, is to add one to NR each time you output a new 
record: 

- 23000 PRINT D$"WRITE"F$ 

-
-
-

-

n 

23010 PRINT R$ : REM output record 
23020 PRINT D$ : REM cancels WRITE command 
23030 NR = NR + 1 : bump count 
23040 RETURN 

To read a sequential file with a header li ke this, you just make a 
simple OPEN statement followed by a READ: 

21000 PRINT D$"0PEN"F$ 
21010 PRINT D$"READ"F$ 
21030 INPUT NR 
21040 RN = 0 
21050 RETURN 

Set a record counter, RN , to keep track of which record is current. 
The open routine here does that; the current record is zero. By 
comparing RN and NR, you can detect the end of file before an error 
(code 5) occurs. Just increment RN at each record read. 

Besides the APPEND method, you can choose another called the 
sentinel method. It uses simpler routines and is intended for files that 
are made with all their records entered at one run . You cannot add 
more records later on to the same file. However, sentinel files are 
compatible with sorts and merges while header files are not. 

The idea behind sentinel files is to make your own endfile marker. 
Whenever a new file of records is created , you write an extra record 
just before CLOSEing the file. This record must be unique to all files 
so your programs can detect it when READing and know that the file 
is ended. 

Declare a special character, called high value, to use as a sentinel: 
HI$ = CHR$(1 27). 

Create your new file and put data records into it at the same time. 
Then you close the new file with an extra record made with the high 
value: 
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29000 PRINT D$"WRITE"F$ 
29010 PRINT HI$,HI$,HI$,HI$,HI$ 
29020 PRINT D$ " CLOSE" F$ 
29030 RETURN 

This is for a five-field file; you use as many high values as fields in 
your file. 

To summarize, there are four ways to make sequential files. First, 
always use the exact same number of records so that your READ 
routine knows how many records are there, by implication. Second, 
trap the endfile with the ONERR. Third, keep count of the number of 
records in a fixed-length header record as you APPEND new records. 
And fourth, use a high value sentinel on fixed files to be merged and 
sorted. 

Sorting puts records in order. With a printout of unsorted records, 
you have to search through the listing one record at a time to find the 
one you want. But when they have been sorted, you can quickly search 
out the one you want. 

To sort a file, you decide first which field you will use to search. For 
example, a mailing list of friends and relatives could have either the 
last name or the first name chosen. Then, when printing labels, you 
may want to re-sort the mailing list by zip code. Whichever field is 
used to sort and search, it is called the key field. 

You can choose any field of a file as the key field. Once chosen, 
however, it stays as the key field for all searches until sorted again. 
What you do is first sort the file into sequence according to the sort 
key field. Then use the sorted file as input to a report program that 
prints all records on the file. The report will be in sequence so that you 
can look up any record you want. 

One use you can make of a sorted report is to make changes and 
additions to the sequential file. To change a record in a sequential file 
is difficult because the length of the replacement record may be 
greater than the old record. In that case, there won't be enough room 
for the replacement file. So, to replace records in sequential files, you 
have to mark them for deletion and treat the replacement record as an 
addition. The procedure is to make a second file containing all the 
additions, sort this new file on the same key field as the original, then 
merge the two files to create a new file, preferably on another disk. 
This new file won't have deleted records because the merge routine 
won't copy them as it builds the new file. 
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A sort routine and a merge are needed to completely maintain 
sequential files. 

Sorts are usually written in Assembler because BASIC is much 
slower. Several sort routines have been published in magazines. Many 
of the routines can be bought at computer stores. The most successful 
ones are the Shell-Metzner, the Quicksort, and the Bubble Sort. Using 
one of these algorithms, a sort need only sort strings, because all fields 
are in string format. A variation called the Tag Sort will give you the 
sequence of the original keys in a separate numeric array. This lets you 
read in all the keys without storing the entire record, sort the keys, 
then use the tag numbers to give you the record numbers of the 
unsorted file in the sorted sequence. After sorting the keys, you read 
the file in blocks of as many records as will fit easily into memory. 
Then write the block out in sorted sequence, according to the tags. 
The resulting files of sorted blocks are then merged to make the sorted 
file.* 

Remember that you must read the entire file and sort it all at once; 
then you can write out the sorted version. When the file is too big to 
stuff into memory all at once, you can use the Tag Sort method just 
described or break the file into smaller ones for sorting and merging. 
If possible, design your system so that any sequential files are kept 
small until sorted. 

There are two ways to add records to a sorted file. The simplest way 
is to APPEND the new records, then re-sort the entire file. If the file is 
small and records aren't added often, then this is the way to go. 

On the other hand, adding even only a few records to a file on a 
regular basis will make it grow quickly. Very soon, re-sorting will take 
considerable time, making the job of adding new records tedious. As 
an alternative, you can create a new file just for the additional 
records. Then sort the additions file and merge the old master file with 
the additions to make a new master file. The old master file is not re
placed, so you have a backup provided by the procedure. 

The best way to organize your file for merging is to add new records 
to an additions file on the same disk. Then, merge the two files to a 
new file on a second disk. This way you have all the records of the file 
on one disk before merging, so you know that the new file will fit on 
the new disk. For instance, you could update a file on the Drive One 
disk by creating an additions file, then complete the update by mount-

*Irwin, "Tsort and Amperjump," Nibble magazine, V.2. N.6, 1981. 

/ 
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ing a scratch disk in Drive Two and IN ITing the new disk. Sorting the 
additions, then merging them with the master file to make a new 
master on Drive Two, completes the update session . 

A fter merging, the o ld disk in Drive One is your backup; the new 
disk in Drive Two is now your master file disk. 

Here's how to do a merge. First , you must de fin e a high value con
stant: HI$ = C HR$(127). Remember, in the sentinel method, this 
value marks the end of file. The merge routine itself goes li ke this: 

21100 GOSUB 11000 : REM read old master 
21110 GOSUB 12000 : REM read addition 
21120 IF KM$ > =KA$ THEN 21160 
21130 GOSUB 13000 : REM write o ld master 
21140 GOSUB 11000 : REM read old master 
21150 GOTO 21120 
21 160 IF KM$ = KA$ THEN 21200 
21 170 GOSUB 14000 : REM write addition 
21180 GOSUB 12000 : REM read addition 
21190 GOTO 21120 
21200 IF KM$ < > HI$ THEN 21130 
21210 GOSUB 15000 : REM write HI$ at endfile 
21220 RETURN 

This is just the merge logic (see Fig. 1-4). The keys must be read as: 
KM$ for the master key, KA$ for the additions key. For instance , if 
your records had four fields a nd the first fi eld was your sort key, then 
the routine to read the o ld master would look like : 

11000 PRINT D$"READ" FM$ : REM FM$ is master file name 
11100 INPUT KM$,M2$,M3$,M4$ 
11200 PRINT D$ : REM ctrl/D kil ls READ 

-

-

-

11300 RETURN ...,.. 

Similarly, the routine to write the addit ions record would be: 

14000 PRINT D$ " WRITE"NF$ : REM NF$ is new master name 
14100 PRINT KA$,A2$,A3$,A4$ 
14200 PRINT D$ : REM ctr i /D ki l ls WRITE 
14300 RETURN 
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A AMD B ARE MERGED INTO C. WHERE KEYS ARE EQUAL 
B RECORDS FOLLOW A RECORDS IN FILE C. 

Fig. 1-4. The classic merge. 
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You can write other routines yourself. When coding the routine to 
write an old master record - at line 12000 - you can use an IF state
ment to test for your delete flag. This way, you can ignore the record 
to be deleted. 

To start, write a simple merge to handle a simple file. You can re
write it later, expand its features, and adapt it to other files. 

To delete a record from a sequential file, the merge routine needs a 
list of records to be deleted. The list should be in sort sequence and 
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containing the identifier field of the records. The identifier is a field 
that is always different for each record. By keeping a subscript to the 
list, the merge routine that writes master records can test for deletion 
by comparing the identifier with the delete list. If a record is to be 
deleted, increment the delete list subscript instead of writing the 
record. 

Here's how to start a sequential file system using the sentinel 
method. First, write a short program to create a new file on a blank 
disk. INIT three disks with successive volume numbers: 1, 2, and 3, 
say. Use your create program to put a null file - one with just the 
endfile record - on each disk. Label all three disks with the same file 
name. Make three labels for their jackets with their file name and 
generation: SON, FATHER, and GRANDFATHER. The younger 
the generation, the larger the volume number. So, place Volume 1 in 
the GRANDFATHER jacket, Volume 2 in the FATHER jacket, and 
Volume 3 in the SON jacket. 

With a three-disk system like this, you can update, sort, and merge 
without danger of losing your file. Two disk drives are needed; each 
file has a full disk of file capacity. The disks are maintained such that 
anytime the file gets clobbered, it can be re-generated by a previous 
generation disk. 

The procedure for updating a sequential file is diagrammed in Fig. 
1-5. Here are the steps: 

1. Mount SON in Drive One. Use UPDATE program to enter new 
records, creating an ADDITIONS file. 

2. Optionally, you can run a report to check the ADDITIONS file 
for accuracy. 

3. Sort the ADDITIONS file in Drive One. 
4. Mount the GRANDFATHER disk in Drive Two and run the 

MERGE. This generates a new file by using the master and addi
tions files in Drive One. 

5. Remove the old FATHER disk from his jacket and put him in 
the GRANDFATHER jacket. 

6. Remove the old SON disk from Drive One and put him in the 
FATHER jacket. 

7. Remove the new file disk from Drive Two and put it in the SON 
jacket. 

8. If you want an updated listing of the file, run a report using the 
new SON. This completes the file update. 
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Fig. 1-5. Updating a sequential file. 
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An example of a Sequential File Manager Program appears in Fig. 
1-6. Five routines will be needed altogether. 

1.3.2 Random-Access Files 

If you need to access a file and change it often, then it needs to be in 
a random-access organization. Such a file is different from a sequen
tial file only by the lengths of its records. In random-access files, rec
ord lengths are all equal, while in sequential files, they can have vari
ous lengths. Because of the fixed length, DOS can quite easily cal
culate the position of any record in the file in terms of its actual disk 
location. 

Random-access files are much easier to query and update because 
the sort, merge, and report functions aren't needed. A record can be 
replaced simply with a new record of exactly the same size. The trade 
off is in disk capacity, because random records must be filled out to 
the length of the longest record anticipated in the file. This filling 
could give you only half the file capacity of the equivalent sequential 
file. But, for files that must be queried and updated often, random-ac
cess files are your best choice. 

One reason random-access files are easier to use is that you can use 
the record number directly. Each record in the file has its own num
ber, counting from the beginning of the file, that you can specify with 
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Fig. 1-6. Sequential file manager program. 

the R option of the READ and WRITE commands. If you have a sort 
routine, you can also have keyed access by creating an index file to 
look up the record number for a given key value. To do this, you 
should have a Tag Sort routine that sorts the keys and gives you a 
table of their original position numbers. Regardless of the way you 
choose to go, random-access files will be much easier to manage when 
you have changes going on all the time. 

The secret to making a good random-access file is in having a 
header. If the header is short, it may go at the beginning of the file as 
the first record. It is easier to handle if it is in a separate, small sequen
tial file on the same disk. 

You .can put into the header all the information your UPDATE pro
gram will need to access the data. This includes file information like 
the number of records in the file, the number of fields in each record, 

.. 

... 
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and the length of each record. Then you need information for each 
field you have defined for the file; at least its position, length, and 
name. With this information, your OPEN routine can get the header 
first and load up the file parameter variables your program uses to 
access the data. This scheme lets you change your file definition just 
by making a few changes to the header; your access program need 
never know the difference. 

Here's how you might get the header from a separate, sequential 
file. The header file has the same name as the data file except for a 
".HDR" extension : 

21000 PRINT D$"0PEN"F$".HDR" 
21010 PRINT D$"READ"F$".HDR" 
21020 INPUT NR,NF,LR : REM number of records, 

number of fields, and 
length of records. 

21030 FOR I = 1 TO NF 
21040 INPUT FN$(1),FP(I),FL(I) 
21050 NEXT : REM field names, positions, and lengths 
21060 PRINT D$"CLOSE"F$".HDR" 
21070 PRINT D$"0PEN " F$", "L" LR 

With the file open and the header parameters read into their variables, 
you can update by READing and WRITEing any record you wish . 

The length of each field is kept in the header, because of a different 
method of accessing fields when using random-access. The entire 
record is now handled as a single string, preferably using an input any
thing routine (see Chapter Six for detai ls) . Each field is inserted into 
the record string as a substring. The unused characters in the record 
must be made blank ; otherwise, they can end up as nulls on disk. And 
nulls mark the end-of-file for DOS, so a READ will give you an error 
(code 5). Using substring logic for the fields releases one byte per field 
for data; commas are no longer needed. And, you can use the input 
anything routine of Chapter Six to allow commas within fields. So, 
you can READ and WRITE one string for each record, then use the 
string functions to handle fields using the header informat ion. 

Here's how to get fields from a record string. If your fields are to be 
substringed to vector FD$ from record variable R$: 
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200 FOR I = 1 TO NF 
210 FD$(1) = M ID$(R$,FP(I) ,FL(I) 
220 NEXT 
230 FD$(0) = LEFT$(R$, 1) 
240 RETURN 

There is an extra one-byte field at the left because of the inability of 
MID$ to get it. You might use it as the record status flag. 

Here's how to build a record from the field substrings: 

300 R$ = F$(0) 
310 FOR I = 1 TO NF 
320 R$ = R$ + LEFT$(FD$(1) + BL$,FL(I)) 
330 NEXT 
340 RETURN 

You can use the build routine after changing the FD$ strings and be
fore WRITEing the R$ back to disk. 

Design your own random-access fi le. Make a list on paper of all the 
fields and the length of each. Use a length of one for the zeroth field. 
Add up the lengths to get the record length; don't forget to add one for 
the CR character. This total length is your LR. Next, list the name, 
position, and length of each field. Then, write a routine to create the 
header file that the OPEN routine will read. By writing a short routine 
to call your OPEN routine and then CLOSE the data file, you can test 
your CREATE program. 

With the header creation and OPEN routines working correctly, 
add the data file creation routine to the CREATE program. This 
should write blank records into the entire data file. 

Next, write the record addition routine. Each time a new record is 
written, the number of records is used as the record number. Then the 
number of records is incremented by one. Warn the user if this reaches 
the total capacity of the file - the number of blank records provided 
at CREATE time. Don't accept any more additions in that case. When 
a record has been added, you must re-write the header file to update 
the number of records. 

Finally, you can write a query/change routine. The header isn't 
changed by a record change. When the query works, use it to test the 
additions routine. Getting the changes and making them to disk comes 

-

-

-
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=0 

FiR. 1-7. Random-access file manager program. 

last; if all other routines have been tested correctly, this won't be diffi
cult at all. See the mainline in Fig. 1-7. 

If you need more details on the DOS file access commands, see 
Chapter Seven for a description and summary. 
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CHAPTER TWO 

Atlas of the Apple ll 

2.1 MEMORY MAPS 

The memory maps in this chapter show how the Apple II memories 
appear to both the display generator circuits and the processor. 
Several memory configurations are possible, depending on the model 
of the Apple II and its hardware and software options. 

There may be a few Apple lis around with less than 48K of RAM; 
these are not discussed here. These old 32K, 16K, and perhaps 4K 
Apples won't support much of the disk-based software available to
day, so most have been upgraded to 48K by adding the appropriate 
type 4116 RAM chips. If your Apple has a Revision 2 or earlier 
motherboard, the proper RAM jumper blocks must be installed. You 
can get them through an Apple dealer; they have 16K written on them. 

When programming in Assembler, be careful with your Page Zero 
usage. With Applesoft and DOS both using Page Zero, space is at a 
premium. If you need a large chunk, swap it with a block of RAM be
fore and after your routine. This will preserve the current system 
values: 

ZSWAP LOX #SIZE 
ZSWAP1 LOA ZER0-1,X 

PHA 
LOA SAVE-1,X 
STA ZER0-1,X 

57 
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PLA 
STA SAVE-1 ,X 
DEX 
BNE ZSWAP1 
RTS 

You must declare the save area in your program RAM 

SAVE DS SIZE 

and EQUate SIZE as the length of Page Zero you are using and ZERO 
to its first location. 

If you only need a few Page Zero locations, they can be borrowed. 
Find some locations that won't interfere with Applesoft or DOS by 
borrowing. Locations $06.09 seem to be unused by everyone. The 
$50.55 locations are used only for integer calculations and are usually 
safe. 

Refer to the following maps to find the configuration that you have 
and any that you intend to use. Then use the gazetteer in the following 
section to see specific usage of any one block. Fig. 2-l shows the 
methods for accessing the memory for all Apple models. 

2.1.1 Apple II Memory Access Methods (for all models) 

Each microsecond or so, the processor and the video display take 
turns accessing the memory. This gives the Apple a faster speed and 
gives the processor and video displays quite different memory maps. 

SOFT SWIICHES 

r-----------r- - -------------------~ 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I 

F'i~ . 2-I. Memory access methods for all Apple models. 

-
-

-

-
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To let the Apple handle more memory, a bank switcher called a 
Memory Manager controls the processor's memory access so that 
there can be one of several possible memory maps for programming. 
And similarly, the 110 logic that feeds the video display with screen 
data can select from among several chunks of memory. All these selec
tions by the Memory Manager and the I/0 logic depends upon the 
soft switches set by you using the processor. 

2.1.2 The BASIC Memory Map 

Fig. 2-2 shows the BASIC memory map. Of the many possible 
memory maps, this is the one most often used. This is what you get 
upon power up and the bootstrap of a DOS 3.3 program disk. The 
FIRMWARE area consists of the system Monitor and a BASIC -
Applesoft or Integer. The INPUT/OUTPUT has addresses for hard
ware and peripheral firmware. DOS resides in the highest user RAM 

FFFF 

DODO 

cooo 

S&OO 

0800 
0000 

FIRMWARE 

INPUT/OUTPUT 

DISK 
OPERATING 

SYSTtM 

USER 
PROGRAM 

SYSTEM 

SYSTEM USE 

Fig. 2·2. The BASIC memory map. 
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addresses. The system reserves the lowest addresses for its own use in 
running the processor and supporting elementary features like screen 
displaying. 

See the following maps (Figs. 2-3 through 2-10) for a breakdown of 
each area. 

2.1.3 BASIC System Use 

The 6502 processor requires the use of the lowest two pages of 
memory - Page Zero and Page One - in special ways. Page Zero is 
accessed by many instructions as address register locations and Page 
One is maintained as a special data structure called a stack that 
remembers addresses for machine language routines. By convention, 
Page Two is the input buffer, especially for keyboard inputs. Page 
Three is how the Monitor and DOS get along with each other; it con
tains system addresses that either can set. The SCREENl area con
tains all the character codes for each location on the 40 by 24 display. 

SCREEN 1 
mxn 

Fig. 2-3. BASIC system use. 

PAGE 3 
WORKSPACE & VECTORS 

$0300 
PAGE 2 

KEYBOARD BUFFER 
$0200 

PAGE 1 
STACK 

SOlDO 
PAGE ZERO 

soooo REGISTERS 

-
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2.1.4 The BASIC Disk Operating System 

An EXECUTIVE connects with the rest of the system through the 
COMMAND INTERPRETER and gets commands. The COM
MAND INTERPRETER understands DOS commands such as 
CATALOG and BRUN FID and has routines to execute them. The 
FILE MANAGER is normally called upon by the COMMAND 
INTERPRETER to open, close, read, write, etc. The RWTS has all 
the routines to access the disk and can be used by an Assembly pro
grammer. The three DATA BUFFERS are used by the FILE 
MANAGER. Changing MAXFILES to any number but three will 
change the size of this area. 

f'ig. 2-4. The BASIC disk operating 
system. 

cooo 

B&OO 

AACI 

SFCD 

9000 

9600 
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2.1.5 The BASIC Input/Output Map 

There are two types of 1/0 in the Apple - built-in and peripheral. 
Built-in 1/0 is confined to the $COOO.C07F region while the peripheral 
1/0 has the rest of the space to $CFFF. Built-in 1/0 includes such 
things as the games socket, cassette, and speaker. Peripheral 1/0 is 
divided into seven slots, each with hardware address space and firm
ware address space. Each slot owns a chunk of sixteen locations in the 
$C080.COFF area for its hardware and a chunk of 256 locations in the 
$CIOO.C7FF area for its firmware. In addition, each peripheral board 
may have a 2K block of memory in the $C800.CFFF space that it must 
share with its neighbors. 

DOOO 

CillO 

C700 

C600 

csoo 

C400 

C300 

C200 

ClOO 
C080 
cooo 

EXPANSION ROM 
FIRMWARE SWITCHED 
INTO SERVICE BY THE 

CURRENTLY ACTIVE 
PERIPHERAL 

SLOT 11 FIRMWARE 

SLOT 16 FIRMWARE 

SLOT IS FIRMWARE 

SLOT 14 FIRMWARE 

SLOT #3 FIRMWARE 

SLOT 12 FIRMWARE 

SLOT II FIRMWARE 

PERIPHERAL HARDWARE 
BUILT·IN HARDWARE 

Fig. 2-5. The BASIC Input/Output map. 
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HOWE 
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2.1.6 The BASIC Firmware Memory Map 

At power up, the Apple II always has ROM to address at the top of 
memory. The 6502 needs it for the RESET routine that it first runs, 
and the address of the routine which it expects at the top of memory. 
The Monitor may be the old Standard Monitor that comes up with an 
asterisk at power up, the Autostart Monitor that bootstraps disks, or 
the lie Monitor. Below that, BASIC resides. The Apple II came with 
Integer; the II Plus and lie come with Applesoft. 

If you have a RAM card in Slot Zero or 64K of RAM on the 
motherboard (like the lie) then the ROM may be bank switched to 
RAM. The 16K of RAM is broken up into 8K and two 4K banks that 
can be selected to make 12K of RAM. 

FFFF 

(MONITOR) 

F800 ------------
(BASIC) 

811 
RAM 

1211 
ROM 

APPLESOFT 

EOOO 
OR 

INTEGER 
BASIC 

MAY BE RESIDENT 

411 411 
RAM RAM 

0000 

16 II RAM MAY BE 
ON CARD IN SLOT ZERO 

Fig. 2-6. The BASIC firmware memory map. 
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2.1.7 12K Bank Switching Between RAM and ROM 

Bank switching is done by the 1/0 logic with the soft switches. To 
use a soft switch, you simply address a location in the $COOO.C07F 
area. Some switches must be read, some written, some don't care. The 
write enabling switches, $C083 and $C08B, must be read twice for 
each switch to be effective. All the 12K bank switches can be done 
with read operations as shown in Table 2-1. 

Table 2-1A. Switching Between RAM and ROM from Assembler 
(12K Bank) 

Select RAM Write Protect Write Enable 

4K Bank One BIT $C088 BIT $COBB 
BIT $C088 

4K Bank Two BIT $COSO BIT $C083 
BIT $C083 

Select ROM (with RAM write protected) 

BIT $C082 

Tabl~ 2-1B. Switching Between RAM and ROM from Applesoft 
(12K Bank) 

Select RAM Write Protect Write Enable 

4K Bank One X = PEEK(49288) X = PEEK(49291) 
X = PEEK(49291) 

4K Bank Two X = PEEK(49280) X = PEEK(49283) 
X = PEEK(49283) 

Select ROM (with RAM write protected) 

X = PEEK(49282) 

-
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2.1.8 The Video Display and 1/0 Logic Memory Map 

The Input/Output logic sees only a portion of the main memory 
that the processor sees. It accesses one or two areas for video display: 
HIRESI, HIRES2, SCREENI, and SCREEN2. It reads the 
Input/Output area to set the soft switches that tell it and the Memory 
Manager how to access memory. In addition to the main memory, the 
1/0 logic accesses a character set ROM that is not seen by the proces
sor. 

FFFF 

0000 

cooo 

6000 

HIRES 2 

4000 

HIRES I 

Fig. 2-7. The video display and 1/0 logic memory map. 

CHARACTER 
SET 

!ROM) 

=NO ACCESS 



66 App/~ Programmer's Handbook 

2.1.9 The Apple lie Memory Access Methods 

The Apple He has several more soft switches than earlier models. 
This gives it access to more memory and adds more display modes. In 
addition to the 12K ROM and 64K RAM, the lie allows up to 64K 
additional RAM in the auxiliary slot. The SCREENI and HIRESI 
areas of this second RAM are accessed for video display. The char
acter set ROM is increased to provide an Alternate Character Set in 
addition to the original Primary Character Set. 

lZK I ROM CHRSET 
I ROM 

SK ""1 1~· 
.CK 
4K MAIN HIRESZ 

MEMORY RAM HIRES I 
MANAGEMENT 47.5K 164KI 

SCREEN 2 
O.SK SCREEN 1 

110 
LOGIC 

8K 
4K 
4K AUX 

RAM 

47.511 
(64Kl 

HIRES 1 

O.SK SCREEN 1 

u j 
PROCESSOR I I VIDEO 

DISPLAY 

FiR. 2-8. Apple lie memory access methods. 

-

-
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2.1.10 Tbe Apple lie Processor Memory Map 

Fig. 2-9 shows what you can access with a lie that has a 64K set of 
RAM in the Auxiliary slot. There is the normal 12K of ROM, the 
Input/Output area, and 48K of RAM that the lie sets on power up. 
Like the II and the II Plus, you can switch ROM with the 16K RAM at 
the top of the main memory. In addition, you can switch to auxiliary 
memory, replacing the main 63.5K of memory with 63.5K of auxiliary 
memory. The bottommost 512 bytes are switched separately because 
of the processor's special needs for Pages Zero and One. With 
auxiliary RAM switched in, the ROM/RAM bank switches remain the 
same, keeping ROM in service or switching to the corresponding 
configuration of 12K RAM in auxiliary memory. 

FFFF 

cooo 

0200 
0000 

4K 
RAM 

MAIN 
SK 

RAM 12K 
ROll 

1 4K 
RAM 

INPUT/OUTPUT 

MAIN 
47.5K 
RAM 

MAIN O.SK RAM 

Fig. l-9. The Apple lie processor memory map. 
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2.1.11 The Apple lie 1/0 Logic and Video Display Memory Map 

Only a portion of the main and auxiliary RAMs are seen by the I/0 
logic. To have an SO-column display, some of the auxiliary memory 
can be used to cover SCREEN 1 (if you don't need the extra memory 
for other uses). SCREEN2 is not accessible in auxiliary memory. You 
get a choice of SCREEN! in main with SCREENI in auxiliary for 
SO-column work; or SCREENI in main with SCREEN2 in main for 
40-column screen work. The same scheme works with the HIRES 
screen areas. In addition the lie supplies two character sets - primary 
and alternate - to the I/0 logic. 

0000 

cooo 

PRIMARY 
CHARACTER 

SET 

ALTERNATE 
CHARACTER 

SET 

LEGEND 

6000 
~ NOACC£$$ 

4000 

zooo 

coo 
800 
400 

Fig. 2-10. The Apple lie 1/0 logic and video display memory map. 
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2.1.12 Apple lie Processor Access Soft Switches 

The lie processor access soft switches (Fig. 2-11) program the 
Memory Management to set the memory map of the processor. 
Switches requiring a write are shown as ST A instructions. 

The $C054.C055 switch lets you write (but not read) Auxiliary 
Memory as a convenience when programming for an 80-column dis
play. If you want Auxiliary memory just as memory, then you can for
go the 80-column display and use the three read and write switches. 

Always reset the 12K bank switches after switching between Main 
and Alternate. The same switches point into the corresponding areas 
in each. 

Follow the flowchart to get the map you want. 

2.1.13 Apple lie Video Display Access Soft Switches 

The lie video display access soft switches (Fig. 2-12) program the 
1/0 logic to set the memory map of the video display. As with 
Memory Management switches, those requiring writes are shown as 
STA instructions. 

Be careful of the $C054.C055 switch on the lie. It is used by the 
processor access to switch between Main and Alternate memory when 
writing for an 80-column display. Here, the same switch is used to 
select between SCREEN! and SCREEN2 (or HIRES! and HIRES2). 
Its usage is set by the $COOO.C001 switch in Memory Management; 
this means that SCREEN2 and HIRES2 are not available for display 
on the lie in 80-column mode. 

In 40-column mode, $C054.C055 works just as it does in the Apple 
II models. 

~ On the lie, you must set the mode to 40- or 80-columns at 
$COOC.COOD consistent with the setting you made at $COOO.C001. 
Plan carefully. 

2.2. GAZETTEER 

This section lists all memory locations within the BASIC 48K 
Memory Map referenced throughout this book. The most common 
configuration of DOS 3.3 and Applesoft BASIC is also presented in 
this section. The details of Integer BASIC are presented in Chapter 
Five. 
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.... 
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-
Fig. 2-12. Video display access soft switches. 
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Often, two consecutive locations will contain an address pointer, a 
line number, or other integral value. Unless otherwise noted, all such 
two-byte integers are in low-byte/ high-byte order. This is the native 
format of the 6502 address operands, so it is used almost without 
exception throughout the Apple II. 

For each entry, the hex address, the decimal address, and the com
monly used label - if any - are given. For hardware addresses and 
Monitor addresses, negative decimal form is given as well for the con
venience of Integer BASIC programmers. 

This gazetteer is not exhaustive. Don't assume that a location is 
unused in Page Zero, for example, just because there is no entry. 
Applesoft, DOS, and the Monitor all use Page Zero in many loca
tions. 

2.2.1. Pages Zero and One 

These have special meaning to the processor: Page Zero supports in
direct addressing for indexing and Page One is the 6502's stack 
memory. 

$0A.OC (1 0) USR 

Contains a $4C as the JMP op code, followed by the address of the 
Applesoft USR function . 

$16. (22) 

The compare parameter used by the routine at $DF6A in Applesoft's 

-
-

-
-

floating-point package. It must be set to one of the following codes fli'll 

before calling $DF6A: 

CODE FOR COMPARISON 

ARG > FAC 
2 ARG = FAC 
3 ARG < FAC 
4 ARG > = FAC 
5 ARG < > FAC 
6 ARG < = FAC 

$20 (32) WNDLFT 

-
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Left margin of the scroll window. The TEXT command sets it to zero; 
you can set it from zero to $27 (39) for 40-column display. 

$21 (33) WNDWDTH 

M Width of the scroll window. The TEXT command sets it to $27 (39) 
for 40-column display. You can set it to any value from zero to $20 
(contents of WNDLFT) in 40-column mode. A common trick of 
Applesoft programmers is to POKE 33,33 to get listings on screen 
without blanks added within literal quotes. 

-

$22 (34) WNDTOP 

Top of the scroll window. The TEXT command sets it to zero for the 
topmost line. Range is to $17 (23) for the bottommost line. 

$23 (35) WNDBTM 

Bottom of the scroll window. The TEXT command sets it to $17 (23). 
You can change it to any number less than $17 and greater than or 
equal to WNDTOP. 

$24 (36) CH 

Horizontal text cursor ranges from zero to $27 (39) in 40-column 
mode. It locates the cursor from the left window. It is maintained by 
VIDOUT at $FBFD. 

$25 (37) cv 

Vertical text cursor ranges from zero to $17 (23). It is always relative 
to the top of screen, not to WNDTOP. CV is used by VT AB at $FC22 
in calculating the screen address at BAS, $28.29. 

$28.29 (40) BAS 

Base address of the text cursor. It is calculated within the VIDOUT 
routines from WNDLFT at $20 and CV at $25 to give the left-most 
position on the cursor's line. 
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$2( (44) H2 

End of line position. Used by HLINE at $F819 in the LORES graphics 
section of the Monitor. 

$20 (45) V2 

End of line position. Used by VLINE at $F828 in the LORES graphics 
section of the Monitor. 

$2E (46) CHKSUM 

Used as checksum by tape READ at $FEFD and WRITE at $FECD. 
Initialized to zero, then EORed to each byte of the data. It is written 
as the last byte following the data; read and compared to the cal
culated C HKSUM during the READ. 

$30 (48) COLOR 

The current LORES color value, repeated in both nibbles. The sixteen 
values a llowed are set by the COLOR = statement and become one of 
the following: 

$00 black 
$11 magenta 
$22 dark blue 
$33 purple 
$44 dark green 
$55 grey 
$66 medium blue 
$77 light blue 

$32 

$88 brown 
$99 orange 
$AA grey 
$BB pink 
$CC light green 
$00 yellow 
$EE aqua 
$FF white 

(SO) INVFLG 

Mask intended to select inverse, normal, or flash characters display: 
normal is $FF, inverse is $7F, flash is $3F in value. 

$33 (51) PROMPT 

Prompt character code to be displayed by Monitor GETLIN routine 
at $FD6A. Used by both BASICs and the Monitor's command 

.... 

n 
-

-
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interpreter: Applesoft uses $90 for" "; Integer uses $BE for " "; and 
the Monitor uses $AA for"*". 

$34 (52) YSAV 

Used by Monitor command interpreter. 

$35 (53) YSAV1 

Used by Monitor command interpreter. 

$36.37 (54) csw 

System output hook address. Used by calling COUT at $FDED as the 
current output routine . CSW contains the address of the current out
put device; it defaults to COUTI at $FDFO. See Chapter Six for a fu ll 
explanation of the output hook. 

$38.39 (56) KSW 

System input hook address. Used by calling RDKEY at $FDOC as the 
current input routine. KSW contains the address of the current output 
device; it defaults to KEY IN at $FD I B. See Chapter Six for a fu ll ex
planation of the input hook. 

$3A.3B (58) PC 

This is where the Monitor command interpreter keeps the 6502 pro
gram counter for use by the ctrl/ E command. The IRQ interrupt 
handler also stores the interrupted program address here to be read by 
the BREAK handler. See Chapter Three for detai ls. 

$3C.30 (60) A1 

f!!!!l Used extensively by the Monitor commands: subtract, move, verify, 
tape 110, and any other source address. DOS uses this location; the 
RWTS routine points to the DCT from here. - $3E .3F (62) A2 



78 Appl~ Programmer's Handbook -
Used extensively by the Monitor commands: add, subtract, move, 
verify, tape 1/0, and any other second source address. -

$40.41 (64) A3 

Used by Monitor command interpreter. DOS uses this for the File 
Buffer address. 

$42.43 (66) A4 

Used by the Monitor commands: move and verify. Can be the destina-
tion address for any other command defined. DOS uses it as the -
buffer address pointer. 

$44.45 (68) AS 

Used by the Monitor command interpreter. Used as a file buffer 
pointer by DOS, see $A 792. 

$45.49 (69) ACC, XREG, YREG, 
STATUS, SPNT 

Registers storage used by Monitor G command and by the BRK 
routine: 

$45 is ACC 
$46 is XREG 
$47 is YREG 
$48 is STATUS, the P-reg 
$49 is SPNT, the S-reg 

The ctrl!E command reads these and PC at $3A.3B as well. From 
DOS, the RWTS routine uses $48.49 as the address of the lOB. After 
using RWTS, you must zero $48 to avoid any Monitor hang-ups. 

$4A.4B (74) LOMEM 

System pointer to lowest available user program location in Integer 
BASIC; normally $0800. 

-
-

-
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$4C.4D (76) HIM EM 

System pointer to highest available user program location in Integer 
BASIC; normally $9600. The HIMEM: command will be used by 
DOS to set $4C.4D, regardless of the BASIC. 

$4E.4F (78) RND 

Random number generated by the keyboard input routine. You get a 
new random number with each keystroke. 

$50.51 (80) LINNUM 

Integer value converted from FAC by the GETADR routine at $E752) 
in Applesoft. 

$67.68 (1 03) TXTIAB 

Applesoft pointer to start of BASIC program text. It normally points 
to $0801. 

$69.6A (1 05) VARTAB 

Applesoft pointer to start of BASIC program's variables storage, one 
byte beyond the end of program text. 

$68 .6( (1 07) ARYTAB 

Applesoft pointer to the start of BASIC program's array storage; the 
end of program's variables. 

$60.6E (1 09) STREND 

Applesoft pointer to the end of BASIC program storage. The unused 
free space begins here, one byte beyond the last array. 

$6F.70 (11 1) FRETOP 

Applesoft pointer to the first byte of working string storage, one byte 
beyond the last free location. 
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$71 .72 (113) FRESPC 

Applesoft pointer at the string storage area, used when a new string is 
created. See STRINI, at $E3D5. 

$73.74 (114) MEMSIZ 

Applesoft pointer to the first byte past the last byte used for string 
storage. This is the highest RAM address available to Applesoft; it is 
normally set to $9600. 

$75.76 (117) CURLIN 

Applesoft current line number. In direct mode, $FFFF. 

$77.78 (119) OLDLIN 

Applesoft last line executed. 

$79.7A (121) NXTPTR 

Applesoft pointer to next BASIC program statement to be executed. 

$7B.7C (123) DATLIN 

Applesoft line number of current DATA statement. Used by READ. 

$7D.7E (125) DATPTR 

Applesoft pointer to DATA to be READ next. 

$83.84 (131) VARPNT 

Applesoft pointer to variable as fetched by PTRGET at $DFE3. 

$8A.8E (138) TEMP3 

Applesoft temporary FP register, packed format. 

$93 .97 (147) TEMP1 

-

-



-
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Applesoft temporary FP register, packed format. 

$98.9( (152) TEMP2 

Applesoft temporary FP register, packed format. 

$98.9( (155) LOWTR 

Applesoft pointer to the address of an entire array, as fetched by 
GETARYPT at $F709. 

$9D .9F (157) DSCTMP 

Applesoft string descriptor: length, addr-lo, addr-hi. Used by STRINI 
at $E305 when creating new string storage. 

$9D .A2 (157) FAC 

Applesoft floating-point accumulator. Unpacked format as follows: 

$90 exponent in excess-$80 
$9E mantissa, MSByte 
$9F mantissa 
$AO mantissa 
$A 1 mantissa, LSByte 
$A2 sign in Bit 7 

A zero exponent signifies a zero value for the number. 

$A5.AA (165) ARG 

Applesoft argument register. FP number in unpacked format as 
follows: 

$AS exponent, excess-$80 
$A6 mantissa, M SByte 
$A7 mantissa 
$A8 mantissa 
$A9 mantissa, LSByte 
$AA sign in Bit 7 
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A zero exponent signifies a zero value for the number. 

$81 (177) CHRGET 

Applesoft routine to get next BASIC character. Location $B8.B9 -
TXTPTR - is incremented then used to read the character into the 
X-reg. If numeric, $30 to $39, the C-flag is cleared; otherwise, it is set. 
If it is a delimiter separating statements, like $3A (colon) or $00 (end 
of line), the Z- flag is set; otherwise, it is cleared. 

$87 (183) CHRGOT 

Applesoft routine to re-get a character previously fetched by 
CHRGET. Works like CHRGET except that TXTPTR is not 
incremented; instead the current character pointed to by TXTPTR is 
read. Flags returned as per CHRGET. 

$88.89 (184} TXTPTR 

Applesoft pointer to the current character in BASIC program text. 
Used by CHRGET and CHRGOT by being embedded in the routine. 

$D6 (214} 

Normal value is $55. Saved and loaded by the cassette READ and 
WRITE commands as the third address byte of Applesoft BASIC pro
grams. The Applesoft command interpreter traps this value so that 
Applesoft won't work in direct mode if it is greater in value than $7F. 

$D8 (216) ERRFLG 

Set to $80 by Applesoft's ONERR GOTO statement to flag the error 
trap ro the BASIC routine. This ONERR routine must clear it to in
hibit further traps to itself; use a POKE 216,0. 

$DA.D8 (218) ERRLIN 

Line number in BASIC at which an error occurred. This can be useful 
to your ONERR routine. 

$E8.E9 (232) SHAD DR 

.... 



Atlas of the A pple I! 83 

Shape table address; normally set by the SHLOAD statement in 
Applesoft. Otherwise, you must set it prior to using any shape table 
commands. See Chapter Six. 

$0100.0110 (256) FBUFFR 

String buffer for the FOUT at $ED34, which creates a string repre
sentation of the value in FAC ($9D.A2) . 

$0100.0 1FF (256) STACK 

Processor stack address space. The processor builds its stack down
wards in memory; the Monitor initializes the S-reg to $FF so as to 
point to $01FF. 

2.2.2 Pages Two and Three 

These two pages are set up by the Monitor at RESET for system 
functions. See Example 2-1. 

Example 2.1 Dump of Apple II Vectors in Page Three 

* 3D0.3FF 

03DO - 4( BF 9D 4( 84 9D 4( FD 
03D8 - AA 4C 85 87 AD OF 9D AC 
03EO- OE 9D GO AD (2 AA AC (1 

03E8 - AA 60 4C 51 A8 EA [A 4( 
03FO - 59 FA BF 9D 38 4( 58 FF 
03F8 - 4C 65 FF 4( 65 FF 65 FF 

$0200 02FF (512) IN 

- Input line buffer. Used by GETLIN at $FD6A to get input records 
from the current input device. The record is any length , up to 255 
characters, with the last character a CR. 

$0300.03CF (768) 

Small memory block, often used for short machine language routines. 

$03D0.03D2 (976) 
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Jump to DOS warm start routine at $9DBF. This routine does not 
return. 

$0303.0305 (979) 

Jump to DOS cold start routine at $9D84. This routine does not 
return . 

$0306 (982) 

Jump to DOS File Manager at $AAFD. This routine returns to the 
caller. 

$0309 (985) 

Jump to DOS RWTS at $B7B5. This routine returns to the caller. 

$030C (988) 

Routine to fetch File Manager parameter reference from DOS. Ad
dress is returned in Y-reg (low) and A-reg (high). 

$03E3 (995) 

Routine to fetch RWTS parameter reference (lOB) from DOS. Ad
dress is returned in Y -reg (low) and A-reg (high). 

$03EA (1 002) 

Jump to DOS routine at $A851 that reconnects input and output 
hooks. 

$03EF (1 008) BRKV 

Jump to BRK handler. Not available in Standard Monitor; normally 
$FA59 in Autostart Monitor. Also available in Apple lie Monitor. 

$03F2 (1 01 0) SOFTEV 

-



r 
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Address of RESET handler; not available in Standard Monitor. Nor
mally set to $9DBF by DOS 3.3 with Autostart Monitor. Also avail
able in Apple lie. 

$03F4 (1 012) PWREDUP 

Powered-up byte value indicating warm start to the RESET routine in 
Autostart or lie Monitor; it is not available in the Standard Monitor. 
Set by SETPWRC at $F6BF. to the EOR of #$A5 and $03F5. 

$03F5 (1 013) AMPERV 

Jump to user's ampersand call from Applesoft BASIC. 

$03F8 (1 016) USRADR 

Jump to user's ctrl/Y Monitor extension command. RESET to MON 
at $FF65. 

$03FB (1 019) NMI 

Jump to NMI interrupt handler. Rarely used; set to MON at $FF65. 
Vectored directly from $FFFA.FFFB. 

$03FE (1 022) IRQLOC 

Address of IRQ interrupt handler. Control passed from $FA40 
routine after saving A-reg at $45 and ensuring the B-flag is clear. 

2.2.3 Display Screens 

$0400.07FF (1024) SCREEN1 

One K of RAM mapped by the I/0 logic to the video display. Forty 
bytes map to each of twenty-four rows on the screen. Sixty-four bytes 
don't display; they are scratch pad RAM for the peripherals. See 
Tables 2-2 and 2-3 for details. Each display byte may represent either 
two LORES pixels or one character code. 
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Table 2-2. One K Screens 

SCREEN ! SCREEN2 

Address Use Address Use 

$400.427 RowO $800.827 RowO 
$428.44F Row 8 $828.84F Row 8 
$450.477 Row 16 $850.877 Row 16 
$478.47F Peripherals $878.87F Unused 
$480.4A7 Row I $880.8A7 Row I 
$4A8.4CF Row9 $8A8.8CF Row 9 
$4D0.4F7 Row 17 $8D0.8F7 Row 17 
$4F8.4FF Peripherals $8F8.8FF Unused 
$500.527 Row 2 $900.927 Row 2 
$528.54F Row 10 $928.94F Row 10 
$550.517 Row 18 $950.977 Row 18 
$578.57F Peripherals $978.97F Unused 
$580.5A7 Row 3 $980.9A7 Row 3 
$5A8.5CF Row I I $9A8.9CF Row I I 
$5D0.5F7 Row 19 $9D0.9F7 Row 19 
$5F8.5FF Peripherals $9F8.9FF Un used 
$600.627 Row4 $AOO.A27 Row 4 
$628.64F Row 12 $A28.A4F Row 12 
$650.677 Row 20 $A50.A77 Row 20 
$678.67F Peripherals $A78.A7F Unused 
$680.6A7 Row 5 $A80.AA7 Row 5 
$6A8.6CF Row 13 $AA8.ACF Row 13 
$6D0.6F7 Row 21 $ADO.AF7 Row 21 
$6F8.6FF Peripherals $AF8.AFF Unused 
$700.727 Row 6 $800.827 Row 6 
$728.74F Row 14 $828.B4F Row 14 
$750.777 Row 22 $850.8 77 Row 22 
$778.77F Peripherals $878.87F Unused 
$780.7A7 Row 7 $880. 8A7 Row 7 
$7A8.7CF Row 15 $8A8.8CF Row 15 
$7D0.7F7 Row 23 $8D0.8F7 Row 23 
$7F8.7FF Peripherals $8F8.8 FF Unused 

$0800.0BFF (2048) SCREEN2 

One K of RAM mapped by the 1/0 logic to the video display. Works 
like SCREENI except that the sixty-four undisplayed bytes are un
used. See Table 2-2. 

$0800.95FF (2048) 

-

-
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Table 2-3. SCREENl Peripherals Usage 

DOS Slot I Slot 2 Slot 3 Slot 4 Slot 5 Slot6 Slot 7 

$478 $479 $47A $478 $47C $470 $47E $47F 
$4F8 $4F9 $4FA $4F8 $4FC $4FO $4FE $4FF 

$578 $579 $57 A $578 $57C $570 $57E $57F 
$5F8 $5F9 $5FA $5F8 $5FC $5FD $5FE $5FF 

$678 $679 $67A $678 $67C $670 $67E $67F 

$6F8 $6F9 $6FA $6F8 $6FC $6FD $6FE $6FF 

$788 $789 $78A $788 $78C $780 $78E $78F 

$7F8 $7F9 $7FA $7F8 $7FC $7FO $7FE $7FF 

RAM normally avai lable for BASIC program use. Applesoft requires 
$0800 to be zero; the BASIC program text starts at $0801. This block 
ends before $9600, the start of DOS buffers. 

$2000.3FFF (8192) HIRES1 

Eight K of RAM where each one K maps to one line in a ll twenty-four 
rows on screen. Each line is forty bytes in memory; there are eight 
lines per row. The sixty-four bytes not displayed in each K are unused. 
See Tables 2-4 to 2-1 1 for the significance of each location. 

$4000.5FFF (16384) HIRE$2 

i1 Eight K of RAM that maps like HIRES!. To look up the significance 
of a location, subtract $2000 and use Tables 2-4 to 2-11. 

2.2.4 DOS 3.3 

$9600.9CF8 (38400, - 27136) 

File buffers for normal DOS with MAXFILES of three, they break 
down as follows: 

$9600.96FF 
$9700.97FF 
$9800.982( 
$982D.984A 

File 3: Data buffer 
File 3: TSL buffer 
File 3: Status 
File 3: Filename, $00 if free 
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$948.984( File 3: pointer to Status ($9800) 
$984D.984E Fi le 3: pointer to TSL buffer ($9700) 
$984F.9850 File 3: pointer to Data buffer ($9600) 
$9851 .9852 File 3: link next file ($0000, end) 
$9853.9952 File 2: Data buffer 
$9953.9A52 Fi le 2: TSL buffer 
$9A53.9A7F File 2: Status 
$9A80.9A9D File 2: Filename, $00 if free 
$9A9E.9A9F File 2: pointer to Status ($9A53) 
$9AA0.9AA1 File 2: pointer to TSL buffer ($9953) 
$99A2 .99A3 File 2: pointer to Data buffer ($9853) 
$99A4.99A5 File 2: link next file ($982D, File 3) 
$9AA6.98A5 File 1: Data buffer 
$98A6.9CA5 File 1: TSL buffer 
$9CA6.9CD2 File 1: Status 
$9CD3.9CFO File 1: Filename, $00 if free 
$9CF1 .9CF2 File 1: pointer to Status ($9CA6) 
$9CF3.9CF4 File 1: pointer to TSL buffer ($98A6) 
$9CF5.9CF6 File 1: pointer to Data buffer ($9AA6) 
$9CF7.9CF8 File 1: link next file ($9A80, File 2) 

For a breakdown of Status, see $B5Dl. 

$9D00.9DOF (40192, - 25344) 

DOS relocatable pointers; values given here are for 48K system: 

$9D00.9D01 link first file buffer ($9CD3, File 1) 
$9D02.9D03 pointer to DOS input hook routine ($9E81) 
$9D04.9D05 pointer to DOS output hook routine ($9E8D) 
$9D06.9D07 pointer to primary file name buffer ($AA75) 
$9D08.9D09 pointer to secondary file name buffer ($AA93) 
$9DOA.9DOB address of LOAD length parameter ($AA60) 
$9DOC.9DOD address of DOS load ($9DOO) 
$9DOE.9DOF address of File Manager parameters from the 

-

-
-

-
-
-
-

DOS commands ($8588) -

$9D84 (40324, - 25212) 

Cold start routine; vectored from $0303 . Jumps to BASI C cold start 
at $EOOO on exit; does not return to caller. 

n 



r 

-

-

Address 

$2000.2027 
$2028.204F 
$2050.2077 
$Z078.Z07F 
$2080.20A7 
$20A8.20CF 
$20D0.20F7 
$20F8.20FF 
$2 100.21 27 
$2 128.2 14F 
$2 150.2 177 
$2178.217F 
$2180.21A7 
$21A8.21CF 
$21D0.21F7 
$21F8.21 FF 
$2200.2227 
$2228.224F 
$2250.2277 
$2278.227F 
$2280.2ZA7 
$22A8.22CF 
$2200.2207 
$22D8.220F 
$2300.2327 
$2328.234F 
$2350.2377 
$2378.237F 
$2380.23A7 
$23A8.23CF 
$23D0.23F7 
$23F8.23FF 

$9DBF 
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Table 2-4. HIRES l - The First K 
(first lines of eight in each row) 

Row Line 

0 0 
8 64 

16 128 
Unused 

I 8 
9 72 

17 132 
Unused 

2 16 
10 80 
18 144 

Unused 
3 24 

II 88 
19 152 

Unused 
4 32 

12 96 
20 160 

Unused 

5 40 
13 104 
21 168 

Unused 

6 48 
14 112 
22 176 

Unused 
7 56 

15 120 
23 184 

Unused 

{40383, - 25 153) 

Y-coord 

SBF 
$7F 
$3F 

$B7 
$77 
$37 

$AF 
$6F 
$2F 

$A7 
$67 
$27 

$9F 
$SF 
$ IF 

$97 
$57 
$17 

$8F 
$4F 
$OF 

$87 
$47 
$07 

Warm start routine; vectored from $0300. Jumps to BASIC warm 
start at $E003 on exit; does not return to caller. 

$9E42 (40514, - 25022) 

- Patch point to allow Binary HELLO slave disk INITialization . Re
place value with $34 (52). 
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$9E81 (40577' - 24959) 

Keyboard input routine. This is placed in KSW ($38.39) when DOS is 
in effect. It uses ctrl/Ds and CRs to control its state and gets 
characters accordingly. 

$9EBD (40637' - 24899) 

Omput routine. This is placed in CSW ($36.37) when DOS is in effect. 
It outputs characters according to its state. 

$A251 (41553, - 23983) 

MAXFILES command handler. Outstanding EXEC file is turned off, 
all files closed, MAX FILES value set at $AA57, then it uses pointer at 
$9000 to rebuild file buffers with a routine at $A7D4. 

$A764 (42852, - 22684) 

Routine to search for a free file buffer. The free buffer pointer is re
turned in $44.45 with $45 zero if no free buffer was found. Uses 
$40.41 in search. 

$A792 (42898, - 22638) 

Sets $40.41 to address of first file buffer; uses $9D00.9001 as its 
source. 

$A79A (42906, - 22630) 

Given $40.41 pointing to a file buffer, it finds the next file buffer in 
the chain. Upon return, $40.41 points to the next buffer. 

$A7D4 (42964, - 22572) 

Routine to rebuild file buffers. Enter with all files closed, link to first 
new buffer in $9000.9DOI, and the number of buffers in $AA57. 

$A851 (43089, - 22447) 

-

-
-
-
-

-
-
-
-
-
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Routine to connect DOS hooks; vectored from $030A. If CSW at 
$36.37 does not point to the DOS output routine at $9EBD, then the 
current output hook is removed from CSW to $AA55.AA56 and re
placed by $9EBD. Similarly, if KSW at $38.39 does not point to the 
DOS input routine at $9E81, then the current input hook is removed 
from KSW to $AA53.AA54 and replaced by $9E81. This routine re
turns to the caller . 

$AA53.AA54 (43603, -21933) 

Current system output hook as copied from CSW by the routine at 
$A851. When DOS intercepts a PR#O command, it is reset to COUTl; 
see Chapter Six for details. 

$AASS.AA56 (43605, -21931) 

Current system input hook as copied from KSW by the routine at 
$A851. When DOS intercepts an IN#O command, it is reset to KEY IN; 
see Chapter Six for details. 

$AA57 (43607, - 21929) 

~ Value of MAXFILES parameter; usually three. See $A251. 

-

$AA60.AA61 (43616, -21920} 

Length for LOAD and BLOAD command routines. 

$AAC1 .AAC8 (43713, - 21823) 

Table of file manager addresses: 

$AAC1 .AAC2 
$AAC3 .AAC4 
$AACS.AAC6 
$AAC7 AAC8 

$AAFD 

address of lOB ($87E8) 
address of VTOC buffer ($8388) 
;:~ddress of Directory buffer ($8488} 
address o f end-of-005 ($COOO) 

(43773, - 21763) 

File Manager entry; vectored from $03D6. 
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$AE34 (44596, - 20940) 

Patch point to remove pause in display during a long CATALOG. Re
place byte with $60 (96). 

$8388.84BA (46011, - 19525) 

VTOC buffer. Both File Manager and DOS use the VTOC in Track 
17 / Sector 0 continually to maintain the disk. See Table 2-7 for the lay
out of VTOC. 

$B4BB.B5BA (46260, -19276) 

Directory buffer. Both File Manager and DOS use the Directory in 
Track 17 to maintain files on disk. See Table 2-7 for the layout of a 
Directory sector. 

$B5BB.B6BA (46253, -19283) 

Parameters for File Manager as passed from DOS. Referenced by 
$03DF, the parameters are described in Section 7. 

$B5D1 .B5FD (46545, -18991) 

Status of current file of the File Manager. Read from the file's status 

-

-

buffer when File Manager is called, then restored to the file when the -
File Manager command is finished. Normal file status for the three 
DOS buffers are a t $9800, $9AF3 , and $9CA6. 

Byte 

0,1 
2,3 
4 
5,6 
7 
8 
9,A 
B,C 
D,E 
F,10 

Content 

Link (T / S) to TSL beginning 
Link (T / S) to current TS L sector 
Flags: used for check pointing 
Link (TI S) to current data sector 
Link (S) to current Directory sector 
Index to file entry in Directory sector 
Number of sectors content of TSL 
Relative sector number of first sector in TSL 
Relative sector number of last sector in TSL, - 1 
Relative sector number of last sector read 



-

-

-

-

Byte 

11' 12 
13,14 
15,16 
17, 18 
19,1A 
IB,I C 
1D,IE 
1F,24 
25 
26 
27 
28 
29 

$8785 
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Content 

Sector length in bytes 
File position: sector offset 
File position: byte offset 
Record size from OPEN 
Record number 
Byte offset into record 
Number of sectors in file 
Sector allocation area 
File type 
Slot times $10 
Drive number 
Volume number complemented 
Track number 

(47029, - 18507) RWTS 

93 

Read/ Write Track/Sector routine; vectored from $0309. This routine 
disables interrupts. 

87E8.87F8 (47080, - 18456) lOB 

The Input/Output Block parameters for RWTS ($B7B5). Refer
enced from Page Three ($03E3) and used by callers. 

Byte 

00 
01 
02 
03 
04 
05 
06.07 
08.09 
OA 
OB 
oc 

Location 

B7E8 
B7E9 
B7EA 
B7EB 
B7EC 
B7ED 
B7EE.B7EF 
B7FO.B7F1 
B7F2 
B7F3 
B7F4 

Content 

$01, always 
Slot number times 16, usually $60 
Drive number: $01 or $02 
Volume number: $00 matches any 
Track number: $00 ... $22 
Sector number: $00 ... $OF 
Address of OCT: $B7FB 
Address of sector buffer 
Unused 
Bytes/ sector: $00 for 256 
Command code: $00 for Seek, $01 
for Read, $02 for Write, $04 for 
Format 
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Byte 

OD 

Location 

B7F5 

Content 

Error code: $08 for init, $10 for 
write protect, $20 for volume 
mismatch, $40 for drive (1/0) 
error 

OE 
OF 
10 

$B7FB.B7FE 

B7F6 
B7F7 
B7F8 

Volume number found 
Slot (*16) found 
Drive found 

(47099, - 18437) DCT 

Device Control Table as referenced by the lOB at $B7EE. It has disk 
access hardware parameters: 

$B7F8 : d evice type, $00 
$B7FC: f.)h ases per track, $01 
$B7FD : motor ON count, $D8EF 

$8800 (47 104, - 18432 PREN IBBLE 

Routine used by RWTS to convert a data buffer pointed to by $3E.3F 
to six-bit 2l form in the disk buffers at $BBOO.BC55. The algorithm 
shifts from 256 bytes to 342 bytes to get the results described in 
Section 7 .2. 

$882A (47 146, -1 8390) W RITE 

Routine to write a six-bit code to buffers at $BBOO.BC55 to disk. It 

-

writes a data prefix, encodes the six-bit data using the Write Translate ,... 
Table at $BA29.BC55, and writes a data suffix. It calls a 32-cycle rou-
tine at $B8B8 to write each byte. 

$8888 (47288, - 18248) 

Real-time routine to write a byte to disk; 32 cycles. 

$B8C2 (47298, - 18238) POSTN I8 BLE 

Routine used by RWTS to convert a data field in the disk buffers at 
$BBOO.BC55 from six-bit to the data buffer pointed to by $3E.3F. The 

-

n 
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algorithm shifts the 342 bytes into 256 full bytes; it is the inverse of 
- PRENIBBLE at $8800. 

-

$88DC (47324, -18212) READ 

Routine to read a sector of data from disk. It waits for a data field 
prefix, decodes data bytes into six-bit using the Read Translate Table, 
and stores the result in the disk buffer at $BBOO.BC55. Compare to 
WRITE at $882A. 

$8944 (47428, -18108) RDADDR 

Routine that reads an address field from disk. It waits for an address 
field prefix, reads eight bytes, and converts them to four address 
bytes. The four bytes returned in Page Zero are: 

$2C: checksum 
$20: sector number 
$2E : track number 
$2F: volume number 

If error, the C-flag is set on return. 

$BA96.BAFF (47766, - 17770) 

Read Translate Table used by READ at $B8DC. It contains six-bit 
values for encoded bytes in the $96.FF range. To use, an instruction 

,_ like 

LDA $BAOO,X 

where X is in the $96.FF range, will return the decoded six-bit value in 
the range $00.3F. 

$BA29 (47657' - 17879) 

Write Translate Table used by WRITE at $B82A. It contains encoded 
data values for six-bit bytes in the $00.3F range. To use, an instruction 
like 
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LOA $BA29,X 

where X is in the $00.3F range, will return an encoded data value in 
the $96.FF range. 

$BC56 (48214, - 17322) 

Routine to write an address field on disk. It is used by the initialization 
routines. It uses a real-time routine at $BCC4. It writes autosync 
bytes, prefix, header, and suffix bytes. To call, put header data in 
Page Zero: 

$3E: must be $AA 
$3F: sector number 
$41 : volume number 
$44: track number 

Upon return, an error sets the C-flag. 

$BCC4 (48384, - 17152) 

Real-time routine to encode a header byte, writing it as two bytes to 
disk in 32 cycle loops. 

$BBOO.BC55 (47872, -17664) 

Primary and Secondary disk buffers used by RWTS routines. When 
reading the disk, it stores the 342 six-bit data bytes decoded by the 
READ routine at $B82A; while writing, it must be given six-bit data 
for the WRITE routine at $B82A. The Primary buffer at 
$BBOO.BBFF contains Byte 87 to Byte 342. The Secondary buffer at 
$BCOO.BC55 contains Byte 86 to Byte 0 (descending sequence). Byte 
342 at $BBFF is the checksum. 

$BFD3.BFD5 (47107, - 16429) 

Patch point to remove forced BASIC language re-loads in the bank
switched RAM. Replace these three bytes with $EA (324) values. They 
are NOP op codes. 

-

-

.... 
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2.2.5 Input/ Output 

$COOO.COOF (49152, -16384) KBD 

When read, gives the keypress flag in Bit 7 and the character code in 
Bits 6 to 0. The strobe at $CO I 0 must be reset after a keypress is de
tected, before another is anticipated. Be careful of conflict with 
80STORE usage; see below. 

$COOO.C001 (49152, - 16384) 80STORE 

Soft switch; lie only. Selects the second screen access to be the cor
responding Auxiliary memory in SO-column mode: 

$COOO selects 40-column mode 
$C001 select s 80-column mode 
$C018 reads this switch . 

In SO-column mode, the $C055 switch will select Alternate screen 
memory for writing. In 40-column mode, it selects the second main 
screen memory for display. 

$C002 .C003 (49154, - 16382) RAMRD 

Soft switch; lie only. Selects one of two 63.5K memories for processor 
reads: 

$C002 se lects reads from Main memory 
$C003 selects reads from Auxi liary memory 
$C013 reads this switch 

Used in 40-column mode. The processor's Pages Zero and One are not 
switched with the rest of memory. 

$C004.C005 (49 156, - 16380) RAMWRT 

Soft switch; lie only. Selects one of two 63.5K memories for processor 
writes: 
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$C004 selects writes to Main memory 
$COOS selects writes to Aux iliary memory 
$C014 reads this switch 

Used in 40-column mode. The processor's Pages Zero and One are not 
switched with the rest of memory. 

$C008.C009 (49160, - 16376) ALTZP 

Soft switch; lie only. Selects one of two 0.5K memories for processor 
reads and writes: 

$C008 selects Main memory 
$C009 selects Auxiliary memory 
$C016 reads this switch 

Used in 40-column mode. Only the processor's Pages Zero and One 
are switched ; the rest of memory is unaffected . 

$COOC.COOD (49164, - 16372) 80COL 

Soft switch; lie only. Sets 110 logic for video display mode: 

$COOC sets 40-co lumn disp lay mode 
$COOD sets 80-column disp lay mode 
$(01 F reads this switch 

In 80-column mode, the display interleaves bytes from Main and Aux
iliary memory from corresponding addresses . 

$COOE .COOF (49166, - 16370) CHRSET 

Soft switch; lie only. Sets 110 logic to select one of two character sets 
for text display: 

$COOE selects Primary character set 
$COOF selects Alternate character set 
$C01 E reads this switch 

See Chapter Six for details of character sets. 

-

-

-
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$(010 (49168, -16368) KBDSTB 

When read, clears the keyboard strobe on all models . On the lie, it 
doubles as a keypress flag so that one read will both detect a keypress 
and clear the strobe. When written, it clears the strobe as well. 

$C018.C01F (49176, - 16360) 

Reads lie soft swtiches; reads lie vertical blanking. Bit 7 is zero when 
switch is off; one when switch is on. The vertical blanking occurs 
when its switch is off (zero). 

$C018 reads $COOO.C001 80STORE 
$C019 is the vertical blanking level 
$C01A reads $COSO.C051 TEXT 
$C01 8 reads $C052.C053 MIXED 
$C01C reads $C054.C055 PAGE2 
$C01 D reads $C056.C057 HIRES 
$C01 E reads $COOE.COOF CHRSET 
$C01 F reads $COOC.COOD 80COL 

$C020 (49184, - 16352) 

Cassette tape output port. Reading this address toggles the OUT jack 
on the back panel of the Apple between zero and 25 millivolts. Don't 
use a write op code that will toggle the port twice upon each instruc
tion. 

$(030 (49200, - 16336) 

Speaker port. Reading this address toggles the built-in speaker via a 
transistor amplifier on the motherboard. Don't use a write op code 
that will toggle the port twice upon each instruction. 

$C040 (49216, - 16320) 

Strobe output port. Reading this address brings Pin 5 on the games 
socket DIP low for a half cycle. Don't use a write op code that will 
create two pulses instead of one. Pin 5 is normally high. 
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$COSO.C051 (49232, - 16304) 

Soft switch to select character text or graphics display: 

$COSO selects graphics 
$C051 selects text 
$C01A reads this switch, lie only 

$C052.C053 (49234, - 16302) 

Soft switch to select mixed o r full screen graphics : 

$C052 selects full graphics 
$C053 selects mixed graphics and text 
$C01 8 reads this switch , lie only 

$C054.C055 (49236, - 16300) 

TEXT 

MIXED 

PAGE2 

Soft switch usually selects between first and second display screen. If 

-

in HIRES mode, -

$C054 selects HIRES1 for display 
$C055 selects HIRES2 for display 

If in LORES mode, 

$C0 54 selects SCREEN 1 for display 
$C055 selects SCREEN2 for display 

If 80S TORE at $COO I is set on the Ile model, 

$C054 write enables Main memory 
$C055 write enables Auxiliary memory 

On the lie model, $CO IC reads this switch. 

$C056.C057 (49238, - 16298) 

Soft switch to select graphics screen mode: 

$C056 selects LORES display 
$C057 se lects HIRES display 

HIRES 



-

Atlas of the Apple II 101 

$C01 D reads this switch 

$C058.C059 (49240, - 16296) 

Annunciator port on Pin 15 of games DIP socket. Set by soft 
switches: 

$C058 sets Annunciator 0 off (zero) 
$C059 sets Annunciator 0 on (high) 

$COSA.COSB (49242, - 16294) 

Annunciator port on Pin 14 o f games DIP socket. Set by soft 
switches: 

$COSA sets Annunciator 1 off (zero) 
$COSB sets Annunciator 1 on (h igh) 

$COSC.COSD (49244, - 16292) 

Annunciator port on P in 13 of games DIP socket. Set by soft 
switches : 

$COSC sets Annunciator 2 off (zero) 
$COSD sets Annunciator 2 on (high) 

$COSE .COSF (49246, -16290) 

Annunciator port on P in 12 of games DIP socket. Set by soft 
switches: 

$COSE set s Annunciator 3 off (zero) 
$COSF sets Annunciator 3 on (high) 

$C060 (49248, - 16288) 

Cassette tape in put pon. Bit 7 is toggled by a zero-crossing sector, us
ing a 741 operational amplifier, at the IN jack on the back panel. Each 
zero crossing at the IN jack toggles Bit 7 between zero and one. The 
in put circuit is nominally 12k ohms, I volt. The tape READ at 
$FEFD uses EORs to t ime the transition intervals. 

$C061 (49249, - 16287) swo 
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Switched input port at Pin 2 of games DIP socket. Bit 7 gives the state 
of the switch: one is on, zero is off. It is used for the pushbutton on 
game paddles and joysticks. On the lie model, it is a lso wired to the 
OPEN-APPLE key to indicate a forced cold start when RESET. 

$(062 (49250, -16286) SW1 

Switched input port at Pin 2 of the games DIP socket. Bit 7 gives the 
state of the switch: one is on, zero is off. It is used for the pushbutton 
on game paddles and joysticks. On the lie model, it is also wired to the 
CLOSED-APPLE key to indicate a self-test to the RESET routine. 

$(063 (49251, - 16285) SW2 

Switched input port at Pin 3 of the games DIP socket. Bit 7 gives the 
state of the switch: one is on, zero is off. On some o ld keyboards, it is 
connected to the shift key as part of a lower case scheme. 

$C064 (49252, - 16284) POLO 

Analog input port. Bit 7 is set to one by address ing $C070 and starting 
the four timers. At time out of the timer that connects to Pin 15 o f the 
games DIP socket, bit 7 changes from one to zero. Time constant is 
0.022 uF times the resistance at Pin 15. 

$C065 (49253, - 16283) POL 1 

Analog input port. Bit 7 is set to one by addressing $C070 and starting 
the four timers. At time out of the timer that connects to Pin 14 of the 
games DIP socket, bit 7 changes from one to zero. Time constant is 
0.022 uF times the resistance at Pin 14. 

$(066 (49254, - 16282) POL2 

Analog input port. Bit 7 is set to one by addressing $C070 and starting 
the four timers. At time out o f the timer that connects to Pin 13 of the 
games DIP socket, bit 7 changes from o ne to zero. Time constant is 
0 .022 uF times the resistance at Pin 13. 

$C067 (49255, - 16281) POL 1 
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Analog input po rt. Bit 7 is set to one by addressing $C070 and starting 
,... the four timers. At time out of the timer that connects to Pin 12 of the 

games DIP socket , bit 7 changes from one to zero. Time constant is 
0.022 uF times the resistance at Pin 12. 

$(070 (49264, - 16272) PD LSTRB 

Analog timers strobe. A read instruction at this address generates a 
single strobe that starts the four timers, each with its own time con
stant. When started, the timer outputs go high at $C064.C067 until 
each times out. 

$C080.C08F (49288, - 16248) 

Soft switches for bank-switched memory. Use read instructions only. 
The specific instructions to use for each case are given in Table 2-1. 

$C090.COFF (49296 , - 16240) 

Device selects for Slots I to 7. Each of the sixteen addresses selects a 
slot by bringing its DS line, on Pin 41, low during Phase Zero: 

$C090.C09F selects Slot 1 
$COAO.COAF se lects Slot 2 
$COBO.COBF selects Slot 3 
$COCO.COCF se lects Slot 4 
$CODO.CODF selects Slot 5 
$COEO.COEF selects Slot 6 
$COFO.COFF selects Slot 7 

Normally, a peripheral card uses these sixteen addresses for hardware 
devices like interface chip registers. 

$C100.C7FF (49408, - 16128) 

110 selects for Slo ts I to 7. Each of the 256 addresses selects a slot by 
bringing its 110 SELECT line, on Pin I, low during Phase Zero: 

$C100.C1FF se lects Slot 1 
$C200.C2FF se lects Slot 2 
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$C300.C3FF selects Slot 3 
$C400.C4FF selects Slot 4 
$C500.C5FF selects Slot 5 
$C600.C6FF selects Slot 6 
$C700.C7FF selects Slot 7 

Norm ally, a peripheral card uses these 256 addresses for firmware to 
be selected by the PR#s a nd IN#s commands. 

$C800.CFFF (51200, -14336) 

110 strobe on all Slots, P in 20. The line goes low during Phase Zero 
for any address in this 2K space. It is used by many cards for firm 
ware. By convention, address $CFFF is used to disable card memory, 
releasing the space and a llowing more than one card to use it. See 
Section 8.2 for details. 

2.2.6 Applesoft at $DOOO.F7FF 

Applesoft may be in firmware on the motherboard, or BLOADed 
into bank-switched RAM. When installed, DOS is able to bank switch 
between Applesoft and In teger BASICs with the FP and !NT com
mands. 

$0823 (55331, - 1 0205) LAM 

Re-entry po int, used to cont inue BASIC execution . Used in Lam's 
method for CA LLing the Monitor command interpreter. See Section 
3 . I for details o f Lam's method. 

$0995 (55701, - 9835) DATA 

Routine to advance TXTPTR to end of sta tement. Upon return , 
T XTPTR points to ": " or zero. 

$DB3A (56122, - 9414) STROUT 

Routine to print a string pointed to by Y -reg (low) a nd A-reg (high). 
String must end with a quote or a ze:-o ($22 or $00). 

... 

-

r 
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$0067 (56679, - 8857) FRMNUM 

Routine to evaluate a numerical expression at location given by 
TXTPTR. Resul t is in FAC. 

$DEB8 (57016, - 8520) CHKCLS 

Routine to test the current character referenced by TXTPTR as a clos
ing bracket, ")". If so, it retu rns via CH RGET advancing the 
TXTPTR to the next character. If not, it exits to SN ERR at $DEC9. 

$DEBB (57019, -8517} CHKOPN 

Routine to test the current character referenced by TXTPTR as an 
opening bracket, "(" . If so, it returns via CHRGET ad vancing the 
TXTPTR to the next character . If not, it exits to SNERR at $DEC9. 

$DEBE (57022, -85 14) CHKCOM 

Routine to test the current character referenced by TXTPTR as a 
comma. If so, it returns via CHRGET advancing TXTPTR to the next 
character. I f not, it exits to SNERR at $DEC9. 

$DEC9 (57033, - 8503) SNERR 

~ Routine to prin t "SYNTAX ERROR" message, then warm start 
Applesoft at $E003. This routine does not return to the caller. 

, $DF6A (57194, - 8342) 

Routine to compare ARG and FAC, giving logical result in FAC. 
Compare code must be in Page Zero, $ 16: 

Code in $ 16 FAC is TRUE, if 

1 ARG > FAC 
2 ARG = FAC 
3 ARG < FAC 
4 ARG ~ FAC 
5 ARG :( > FAC 
6 ARG < FAC 
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where FAC has a value of one for TRUE, zero for FALSE. 

$DFE3 (57315, -8221) PTRGET 

Routine to get a variable reference at the current TXTPTR position. 
Returns the address of variable contents in A-reg (high) and Y -reg 1""1 
(low), as well as in V ARPNT at $83.84. If a variable does not exist, it 
is created. TXTPTR points to the next character. 

$EOOO (57344, - 8192) CTRLB 

The BASIC cold start address; same for Applesoft or Integer. Ini
tializes Applesoft, ignoring previous BASIC program. The BASIC 
signature byte gives the version in memory: 

$E003 

$20 (32) if Integer BASIC 
$4C (76) if Applesoft BASIC 

(57347, - 8189) 

The BASIC warm start address; same for Applesoft or Integer. Pre
serves the current BASIC program. 

$E07D (57469, - 8067) ISLETC 

Routine tests A-reg for ASCII A to Z. If letter, it returns with C-flag 
set; if not, the C-flag is clear. 

$EOFE.E102 (57598, - 7938) 

Constant value, -32768 . Packed FP format. 

$E2F2 (58098, - 7438) GIVAYF 

Routine to float a signed integer in A-reg (high) and Y -reg (low) to 
FAC. 

$E3D5 (58325, -7211) STRINI 

Routine to get space for a new string between (FRETOP) and 
(MEMSIZ). Call with length required in A-reg. On return, FRESPC 

n 

,.. 

-
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at $7 1.72 points to the new space and a complete descriptor is in 
DSCTMP at $9D.9F. 

$E5E2 (58850, - 6686) MOVSTR 

Routine to move a string. Source address must be in Y -reg (high) and 
X-reg (low) with the length in A-reg. Destination address must be in 
FRESPC at $7 1.72. 

$E6F8 (59128, - 6408) GETBYT 

Routine to reduce an expression in program text to a single byte value. 
Expression must be referenced with TXTPT R and have a va lue in the 
$00.FF range. Returns with TXTPTR advanced to the delimiter and 
the byte value in X-reg. If not within range, the value induces an IL
LEGAL QUANTITY error, stopping the program. 

$E752 (59218, -6318) GETADR 

Routine to correct va lue in FACto an integer in LIN NUM a t $50.51. 
Result also appears in A-reg (high) and Y -reg (low). 

$E7AA (59306, - 6230) FSUBT 

Routine to subtract FP numbers. On entry, A-reg and Z-flag must re
flect FAC exponent, at $90; a JSR MOVFM at $EAF9 will do this. 
On exit, FAC = ARG - FAC. 

$E7C1 (59329, = 6207) FADDT 

Routine to add FP numbers. On entry, A-reg and Z-flag must reflect 
F AC exponent at $9D; a JSR MOVFM at $EAF9 will do this. On exit, 
FAC = ARG + FAC. 

$E92D.E931 (59693, = 5843) 

Constant value, SQ R (0.5). Packed FP format. 

$E913.E917 (59667, = 5869) 

Constant value, 1.0. Packed FP format. 
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$E932.E936 (59698, - 5838) 

Constant value, SQR(2.0). Packed FP format. 

$E937.E93B (59703, - 5833) 

Constant value, - 0.5. Packed FP format. 

$E941 (59713, - 5823) LOG 

Routine to get the natural logarithm. FAC = ln(FAC). 

$E982 (59778, - 5758) FMULTI 

Routine to multiply FP numbers. On entry, A-reg and Z-flag must re
flect F AC exponent at $90; a JSR MOVFM at $EAF9 will do this. On 
exit, FAC = ARG * FAC. 

$E9E3 {59875, -5661) CONUPK 

Routine to unpack FP number. Address of packed number must be in 
A-reg (high) and Y -reg (low) . Result is in ARG at $A5.AA. 

$EA50.EA54 (59984, - 5552) 

Constant value, 10.0. Packed FP format. 

$EA69 (60009, - 5527) 

Routine to divide FP numbers. On entry, A-reg and Z-flag must re
flect F AC exponent at $90; a JSR MOVFM at $EAF9 will do this. On 
exit, FAC = ARG I FAC. Don't forget to test for a zero divisor; a 
BEQ just before the call will do this. 

$EAF9 (60153, - 5383} MOVFM 

Routine to unpack FP number. Address of packed number must be in 
A-reg (high) andY-reg (low) . Result is in FAC at $9D.A2. A-reg and 
Z-flag reflect exponent in $90. 

-

n 
-
n 
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$EB2B (60203, - 5333) MOVMF 

Routine to pack FP number. Address of destination must be in A-reg 
(high) and Y -reg (low). Result is packed from F AC. 

$EB53 (60243, - 5293) MOVFA 

Routine to move FP number from ARG at $A5.AA to FAC at 
$9D.A2. 

$EB63 (60259, - 5277) MOVAF 

Routine to move FP number from FAC a t $9D.A2 to ARG at 
$A5.AA. 

$EB82 (60290, - 5248) 

Routine to test sign of FAC. Result is in A-reg: 

$EB90 

$01 if FAC > 0 
$00 if FAC = 0 
$FF if FAC < 0 

(60304, - 5232) 

Routine to test sign o f FA C. Result is in F AC: 

1.0 if FAC was> 0 
0 if FAC was = 0 

- 1.0 if FAC was< 0 

It uses SIGN at $EB82 and floats the result. 

$EBAF (60335, - 5001) 

SIGN 

SGN 

A BS 

Routine to change an FP number to its absolute value in FAC. Sign is 
forced positive . 

$EBB2 (60338, - 51 98) FCOMP 
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Routine to compare F AC with any packed FP number. The number 
must be referenced in A-reg (high) and Y -reg (low). The result is re
turned in A-reg: 

$EC23 

$01 if value> FAC 
$00 if value = F AC 
$FF if value< FAC 

{50451 J - 5085) INT 

Routine to fix contents of FAC. Result is the next greatest integer: 
34.6 becomes 34; - 34.6 becomes -35. Result is in FAC at $9E.9F. -

$ED34 {60724, - 4812) FOUT 

Routine to convert the FP value in FAC to a string. The resulting 
string is in FBUFFR at $0 I 00.0110. 

$EE64 {61 028, - 4508) 

Constant value, 0.5. Packed FP format. 

$EE8D {61069, -4467) SQR 

Routine to convert the value in F AC to its square root. 

$EE97 {61079, -4457) FPWRT 

Routine to calculate FP exponents. On entry, A-reg and Z-flag must 
reflect FAC exponent at $90. On exit, FAC - ARGFAc. 

$EF09 {61193, -4343) EXP 

Routine to calcula te FP exponent, base e 2. 71828 .. . , of FA C. 
Result is in FAC. 

$EFAE {61358, - 4178) RND 

Replaces FAC with pseudorandom number, mathematically 
generated. 

-

n 
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$EFEA (61418, - 4118) cos 

Routine to calculate the cosine of FAC. Result in FAC. 

$EFF1 (61425, -4111) SIN 

Routine to calculate the sine of FAC. Result in FAC. 

$F03A (61498, - 4038) TAN 

Routine to calculate the trigonometric tangent of FAC. Result in 
FAC. 

$F063.F067 (61539, - 3997) 

Constant value, n/2. Packed FP format. 

$F06B.F06F (61547, -3989) 

Constant value, 2n. Packed FP format. 

$F070.F074 (61552, - 3984) 

Constant value, 0.25. Packed FP format. 

$F09E (61598, - 3938) ATN 

Routine to calculate the a rctangent of the F AC. 

$F364 (62248, - 3288) 

Routine to remove ONERR GOTO stack entries as part of the 
RESUME statement. Can be called instead of a RESUME. 

$F7D9 (63449, - 2087) GETARYPT 

Routine to find an array variable. TXTPTR must point to the first 
character of the name to be found . The address of the a rray, the toea
ton of the array name in storage, is returned in LOWTR at $9B.9C. 
TXTPTR points to the next character past the name in program text. 
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2.2. 7 Monitor at $F800.F8FF 

All Monitors - Standard, Autostart, and lie - can be referenced 
at the fo llowing addresses unless otherwise noted . By keeping to these 
entry points, the possibility of trouble when changing Monitors will be 
reduced. Making calls to other points should be done with care. 

$F800 (63488, - 2048) PLOT 

Routine displays a LORES pixel on Screen! using COLOR at $30. 
Caller puts line number in Y -reg and column number in A-reg; ranges 
of lines to $2F (47) and columns to $27 (39). 

$F819 (63513, - 2023) HLINE 

Routine draws a horizontal line in LORES on Screen! using COLOR 
at $30. Start and end coordinates must be given: 

$F828 

start X-coordi nates in Y -reg 
start Y-coordinates in A-reg 
end X-coordinates in H2 at $2C 
end Y-coordinates in A-reg 

(63528, - 2008) VLINE 

Routine draws a vertical line in HIRES on Screen! using COLOR at 
$30. Start and end coordinates must be given: 

$F832 

start X-coordinates in Y-reg 
start Y-coordinates in A-reg 
end X-coordinates in Y-reg 
end Y-coordinates in V2 at $20 

(63538, - 1998) CLRSCR 

Routine to clear Screen I, row by row, to zeros. In LORES, this gives a 
black screen. 

$F836 (63542, - 1994) CLRTOP 

i1 

-

-

-

-
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Routine to clear the top twenty rows of Screen I (forty HI RES lines) to 
zeros. This blacks the LORES display in mixed mode while the four 
rows of text are let alone. 

$F864 (63588, - 1948) SETCOL 

Routine to set COLOR at $30 to the doubled nibble value in the 
A-reg. A-reg must have code zero to fifteen. 

$F871 (63601, - 1935) SCRN 

Routine to get color code of the current LORES pixel. The coordi
nates of the pixel must be given as: X-coordinates in Y -reg and 
Y -coordinates in A-reg. Upon return, the code will be in the A-reg. 

$F941 (63809, -1727) PRNTAX 

Prints a four digit hex number. Enter with high byte in A-reg a nd low 
""' byte in X-reg. 

$F948 (63816, - 1720) PRBLNK - Prints three spaces. 

$F94A (63818, - 1718) PRBL2 

Prints spaces (blanks). Number of spaces must be in A-reg. 

$FB1E (64286, - 1250) PREAD 

Routine to read one analog input. Requires analog port number (0, I, 
"'"' 2, 3) in X-reg and a resistance across that port - up to 150 K ohms. 

Value from $00 to $FF proportionate to the resistance is returned in 
Y-reg. 

$FB2F (64303, - 1233) I NIT 

Resets soft switches, screen window , and puts cursor at lower left of n screen. Equivalent to a BASIC statement of TEXT. 
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$FB40 (64320, -1216) SETGR 

Routine to set soft switches for LORES graphics in mixed mode. 
Clears the 40 by 40 pixel a rea with CLRTOP at $F836. Equivalent to a 
BASIC sta tement of GR. 

$FBB3 (64435, -1101) 

Monitor signature byte; identifies version: 

$FBDD 

$38 (56) in Standard 
$EA (234) in Autostart 
$06 (6) in lie 

(64477, - 1055) 

Routine to make "beep" sound. Tone o f 1000 Hz. 

$FC22 (64546, - 990) 

BELL1 

VTAB 

Routine to set cursor. Uses CV at $24, CH at $25, and WNDLFT at 
$20 for the Screen 1 text. 

$FC58 (64600, - 936) HOME 

Clears screen within scroll window; places cursor at upper left. 

$FC58 (64680, - 856) WAIT 

Routine delays according to contents of A-reg: 

#cycles = 0.5(26 + 27 A + 5N) 

where one cycle is 0.977778 microseconds. See Section 8.1. 

$FCC9 (64713, - 823) HEADR 

Routine to write a tape header tone and sync bit. Length of tone de
pends on A-reg: $40 is typical, for ten seconds. X-reg should be zero 

-

-
-

and C-flag should be set when called. See Section 8.1 for details. n 
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$FDOC (64780, - 756) RDKEY 

Routine to advance the cursor of the built-in terminal, then input one 
character via the KSW hook at $36.37. See Section 6.1 for details on 
how the hooks work. 

$FD1 8 (64795, - 741) KEY IN 

Routine to get one character from the built-in keyboard . It sets the 
random number at $4E.4F according to the time it waits for the key
stroke. Before returning, it replaces the screen cursor with the pre-

,... vious character. The new character is returned in the A-reg . 

-

$FD6A (64874, - 662) GETLN 

Routine to input a record. It displays the prompt character from 
$0020, then gets characters using the RDKEY routine at $FDOC. Any 
ESC ($1B) characters received initialize the escape sequence for the 
following character. The lie model has more escape sequences in 
GETLN than previous models. Also, the lie permits lower case. Pre
vious models converted any lower case characters from the keyboard 
to upper case. This can be corrected with a patch at $FDE3: change it 
to a $FF value. See Section 6.2 for more on inputting. When a CR is 
received, the routine returns with the record in Page Two. 

$FDDA (64986, - 550) PRBYTE 

.... Prints a two-digit hex number. Enter with value to be printed in A-reg. 

n 
n 

Together with PREAD at $FB IE, this routine is used often in testing 
and debugging machine language algorithms. 

$FDED (65005, - 531) COUT 

System output call. It invokes the routine whose address is in CSW at 
$38.39. By convention , the character to be output must be supplied in 
A-reg. 

$FDFO (65008, - 528) COUT1 
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Routine to display a character using the built-in video. It interprets the 
character given in A-reg: displaying printable characters and invoking 
various control character routines. It uses all the Page Zero cursor and 
window parameters . 

$FE2C (65068, - 468) MOVE 

Routine to move a block of memory according to the Monitor M com
mand . To use directly, set A I at $3C.3D to the source beginning ad
dress, A2 at $3E.3F to the source ending address, and A4 at $42.43 to 
the destination start address. 

$FE89 (65161, - 375) SETKB 

Routine to reset the input hook at $36.37 to the address of KEYIN at 
$FDJ B. This is equivalent to the IN#O command. 

$FE93 (65171 , - 365) SETVID 

Routine to reset the output hook at $38.39 to the address of COUTI at 
$FDFO. This is equivalent to the PR#O command. 

$FECD (65229, - 307) WRITE 

Rout ine to save a block of memory to tape. Set A I at $3C.3D to the 
beginning address and A2 at $3E.3F to the ending address. The 
routine writes a 10 second header followed by the contents of the 
designated block of memory. The checksum of EORing a ll bytes is 
written last. 

$FEFD (65277, - 259) READ 

Routine to read a block of memory from tape. Set A I at $3C.3 D to 
the beginning address and A2 at $3E.3F to the ending address. You 
must know the exact size of the tape file to do this . A running check
sum is made at $2E using incoming bytes EO Red together. If the final 
checksum fails to match the one at the end of file, an ERR message is 
output. Errors can be trapped by detecting a change in CH at $36; see 
Section 8. 1. 

-

-



-

-
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$FF3A (65338, - 198) BELL 

Routine to output a ctrl/G, $87, to the current output device. 

$FF65 (65381 , -155) MON 

Cold start of Monitor command interpreter. I t rings the bell and clears 
the D-flag before making the warm start described below. 

$FF69 (65385, - 151) MONZ 

Warm start o f Monitor command interpreter. It prompts with an 
asterisk - "*" - and interprets the resulting record as typed in by the 
user. The first character is the command mnemonic and may be fol
lowed by parameters. This routine uses several ut ility routines 
throughout the Monitor. To return to BASIC , use ctrl/C or 3DOG. 

$FF70 (65392, -144) 

Entry point to command interpreter. The input bu ffer at $0200 must 
contain the command string. T hi s point is used by Lam's method in 

~ enter ing Monitor commands from BASIC. See Section 3.1 for more 
information. 

-

-

$FFFA.FFFB (65530, - 6) NMl 

Hardware NMI vector. Apple uses $03FB to a llow users to trap NM ls 
in Page Three. 

$FFFC.FFFD (65532, - 4) RESET 

Hardware RESET vector. Apple traps this to its own rout ines which 
vary considerably from model to model. See Section 3.4 fo r a com
plete description. 

$FFFE .FFFF (65534, - 2) IRQ 

Hardware IRQ/ BRK vector. Apple traps this to its own routines 
which vary from model to model. See Section 3.4. 
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Address 

$2400.2427 
$2428.244F 
$2450.2477 
$2478.247F 
$2480.24A7 
$24A8.24CF 
$24D0.24F7 
$24F8.24FF 
$2500.2527 
$2528.254F 
$2550.2577 
$2578.257F 
$2580.25A7 
$25A8.25CF 
$2SD0.25F7 
$25F8.25FF 
$2600.2627 
$2628.264F 
$2650.2677 
$2678.267F 
$2680.26A7 
$26A8.26CF 
$26D0.26F7 
$26F8.26FF 
$2700.2727 
$2728.274F 
$2750.2777 
$2778.277F 
$2780.27A7 
$27A8.27CF 
$27D0.27F7 
$27F8.27FF 

Table 2-5. HIRESl - The Second K 
(second lines of eight in each row) 

Row Line 

0 1 
8 65 

16 129 
Unused 

1 9 
9 73 

17 133 
Unused 

2 17 
10 81 
18 145 

Unused 
3 25 

11 89 
19 153 

Unused 
4 33 

12 97 
20 161 

Unused 
5 41 

13 105 
21 169 

Unused 
6 49 

14 113 
22 177 

Unused 
7 57 

15 121 
23 185 

Unused 

Y-coord 

$BE 
$7E 
$3E 

$B6 
$76 
$36 

$AE 
$6E 
$2E 

$A6 
$66 
$26 

$9E 
$5E 
$IE 

$96 
$56 
$16 

$8E 
$4E 
$0E 

$86 
$46 
$06 

-

filii 
! 



Address 

$2800.2827 
$2828.284F 
$2850.2877 
$2878.287F 
$2880.28A7 
$28A8.28CF 
$28D0.28F7 
$28F8.28FF 
$2900.2927 
$2928.294F 
$2950.2977 
$2978.297F 
$2980.29A7 
$29A8.29CF 
$29D0.29F7 
$29F8.29FF 
$2A00.2A27 
$2A28.2A4F 
$2A50.2A77 
$2A78.2A7F 
$2A80.2AA7 
$2AA8.2ACF 
$2AD0.2AF7 
$2AF8.2AFF 
$2B00.2B27 
$2B28.2B4F 
$2B50.2B77 
$2B78.2B7F 
$2B80.2BA7 
$2BA8.2BCF 
$2BD0.2BF7 
$2BF8.2BFF 
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Table 2-6. HIRESl - The Third K 
(third lines of eight in each row) 

Row Line 

0 2 
8 66 

16 130 
Unused 

1 10 
9 74 

17 134 
Unused 

2 18 
10 82 
18 146 

Unused 
3 26 

11 90 
19 154 

Unused 
4 34 

12 98 
20 162 

Unused 
5 42 

13 106 
21 170 

Unused 
6 50 

14 114 
22 178 

Unused 
7 58 

15 122 
23 186 

Unused 

Y-coord 

$BD 
$7D 
$3D 

$B5 
$75 
$35 

$AD 
$6D 
$2D 

$A5 
$65 
$25 

$9D 
$50 
$1D 

$95 
$55 
$15 

$8D 
$4D 
$0D 

$85 
$45 
$05 
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Table 2-7. HIRES! - The Fourth K 
(fourth lines of eight in each row) 

Address Row Line 

$2C00.2C27 0 3 
$2C28.2C4F 8 67 
$2C50.2C77 16 131 
$2C78.2C7F Unused 
$2C80.2CA7 1 II 
$2CA8.2CCF 9 75 
$2CD0.2CF7 17 135 
$2CF8.2CFF Unused 
$2000.2027 2 19 
$2028.2D4F 10 83 
$2050.2077 18 147 
$2078.2D7F Unused 
$2080.20A7 3 27 
$2DA8.20CF 11 91 
$2DD0.2DF7 19 155 
$2DF8.2DFF Unused 
$2E00.2E27 4 35 
$2E28.2E4F 12 99 
$2E50.2E77 20 163 
$2E78.2E7F Unused 
$2E80.2EA7 5 43 
$2EA8.2ECF 13 107 
$2E00.2EF7 21 171 
$2EF8.2EFF Unused 
$2F00.2F27 6 51 
$2F28.2F4F 14 115 
$2F50.2F77 22 179 
$2F78.2F7F Unused 
$2F80.2FA7 7 59 
$2FA8.2FCF 15 123 
$2FD0.2FF7 23 187 
$2FF8.2FFF Unused 

Y-coord 

$BC 
$7C 
$3C 

$84 
$74 
$34 

$AC 
$6C 
$2C 

$A4 
$64 
$24 

$9C 
$5C 
$1C 

$94 
$54 
$14 

$8C 
$4C 
$0C 

$84 
$44 
$04 



Address 

$3000.3027 
$3028.304F 
$3050.3077 
$3078.307F 
$3080.30A7 
$30A8.30CF 
$30D0.30F7 
$30F8.30FF 
$3100.3127 
$3128.314F 
$3150.3177 
$3178.317F 
$3180.31A7 
$31A8.31CF 
$31D0.31F7 
$3IF8.3IFF 
$3200.3227 
$3228.324F 
$3250.3277 
$3278.327F 
$3280.32A7 
$32A8.32CF 
$32D0.32F7 
$32F8.32FF 
$3300.3327 
$3328.334F 
$3350.3377 
$3378.337F 
$3380.33A7 
$33A8.33CF 
$33D0.33F7 
$33F8.33FF 
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Table 2-8. HIRESl - The Fifth K 
(fifth lines of eight in each row) 

Row Line 

0 4 
8 68 

16 132 
Unused 

1 12 
9 76 

17 136 
Unused 

2 20 
10 84 
18 148 

Unused 
3 28 

11 92 
19 156 

Unused 
4 36 

12 100 
20 164 

Unused 
5 44 

13 108 
21 172 

Unused 
6 52 

14 116 
22 180 

Unused 
7 60 

15 124 
23 188 

Unused 

Y-coord 

$BB 
$7B 
$3B 

$83 
$73 

$33 

$AB 
$6B 
$2B 

$A3 
$63 
$23 

$9B 
$5B 
$1B 

$93 
$53 
$13 

$8B 
$4B 
$0B 

$83 
$43 
$03 
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Address 

$3400.3427 
$3428.344F 
$3450.3477 
$3478.347F 
$3480.34A7 
$34A8.34CF 
$34D0.34F7 
$34F8.34FF 
$3500.3527 
$3528.354F 
$3550.3577 
$3578.357F 
$3580.35A7 
$35A8.35CF 
$35D0.35F7 
$35F8.35FF 
$3600.3627 
$3628.364F 
$3650.3677 
$3678.367F 
$3680.36A7 
$36A8.36CF 
$36D0.36F7 
$36F8.36FF 
$3700.3727 
$3728.374F 
$3750.3777 
$3778.377F 
$3780.37A7 
$37A8.37CF 
$37D0.37F7 
$37F8.37FF 

Table 2-9. HIRESl - The Sixth K 
(sixth lines of eight in each row) 

Row Line 

0 5 
8 69 

16 133 
Unused 

1 13 
9 77 

17 137 
Unused 

2 21 
10 85 
18 149 

Unused 
3 29 

11 93 
19 157 

Unused 
4 37 

12 101 
20 165 

Unused 
5 45 

13 109 
21 173 

Unused 
6 53 

14 117 
22 181 

Unused 
7 61 

15 125 
23 189 

Unused 

Y-coord 

$BA 
$7A 
$3A 

$B2 
$72 
$32 

$AA 
$6A 
$2A 

$A2 
$62 
$22 

$9A 
$SA 
$1A 

$92 
$52 
$12 

$8A 
$4A -$0A 

$82 
$42 
$02 r 

I 

-
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Table 2-10. HIRESl - The Seventh K 
(seventh lines of eight in each row) 

Address Row Line 

$3800.3827 0 6 
$3828.384F 8 70 
$3850.3877 16 134 
$3878.387F Unused 
$3880.38A7 1 14 
$38A8.38CF 9 78 
$3800.38F7 17 138 
$38F7.38FF Unused 
$3900.3927 2 22 
$3928.394F 10 86 
$3950.3977 18 150 
$3978.397F Unused 
$3980.39A7 3 30 
$39A8.39CF 11 94 
$3900.39F7 19 158 
$39F8.39FF Unused 
$3A00.3A27 4 38 
$3A28.3A4F 12 102 
$3A50.3A77 20 166 
$3A78.3A7F Unused 
$3A80.3AA7 5 46 
$3AA8.3ACF 13 110 
$3AD0.3AF7 21 174 
$3AF8.3AFF Unused 
$3B00.3B27 6 54 
$3B28.3B4F 14 118 
$3B50.3B77 22 182 
$3878.3B7F Unused 
$3B80.3BA7 7 62 
$3BA8.3BCF 15 126 
$3800.3BF7 23 190 
$38F8.3BFF Unused 

Y-coord 

$89 
$79 
$39 

$81 
$71 
$31 

$A9 
$69 
$29 

$AI 
$61 
$21 

$99 
$59 
$19 

$91 
$51 
$11 

$89 
$49 
$09 

$81 
$41 
$01 
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Table 2-11. HIRESl - The Eighth K 
(eighth lines of eight in each row) 

Address Row Line 

$3C00.3C27 0 7 
$3C28.3C4F 8 71 
$3C50.3C77 16 135 
$3C78.3C7F Unused 
$3C80.3CA7 1 15 
$3CA8.3CCF 9 79 
$3CD0.3CF7 17 139 
$3CF8.3CFF Unused 
$3000.3027 2 23 
$3028.304F 10 87 
$3050.3077 18 151 
$3078.307F Unused 
$3080.30A7 3 31 
$30A8.30CF 11 95 
$3000.30F7 19 159 
$30F8.30FF Unused 
$3E00.3E27 4 39 
$3E28.3E4F 12 103 
$3E50.3E77 20 167 
$3E78.3E7F Unused 
$3E80.3EA7 5 47 
$3EA8.3ECF 13 Ill 
$3ED0.3EF7 21 175 
$3EF8.3EFF Unused 
$3F00.3F27 6 55 
$3F28.3F4F 14 119 
$3F50.3F77 22 183 
$3F78.3F7F Unused 
$3F80.3FA7 7 63 
$3FA8.3FCF 15 127 
$3F00.3FF7 23 191 
$3FF8.3FFF Unused 

-Y-coord 

$B8 
$78 
$38 

$BO 
$70 
$30 

$AS 
$68 
$28 

$AO 
$60 
$20 

$98 
$58 
$18 

$90 
$51 
$10 

$88 
$48 
$08 

$80 
$40 
$00 
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CHAPTER THREE 

Machine Language 

3.1 THE 6502 PROCESSOR 

3.1.1 Architecture 

To program the Apple directly in machine language requires a 
knowledge of the 6502 processor - its instructions and its architec
ture. Although this knowledge takes time not needed when you 
learned BASIC, it a llows you to write better , faster , a nd simpler pro
grams. By using an Assembler, you can create machine language rou
tines that can be easily maintained through the use of structured pro
gram ming techniques. 

Th is chapter gives you machine la nguage techniques. The remaining 
chapters apply these techniques throughout the Apple I I. 

Before getting into the processor, you should know about the heart 
of the Apple - its clock. 

All computers run with clocks. The clock becomes an input to just 
about everything in the computer so that the complex signals can he 
kept in step - synchronized - with each other. T he processor, 
memories, the memory management circuits, the 1/0 logic, the video 
generator - all the circuits in the computer need the clock to tell them 
exactly when to do something. 

Simply, a clock is just a square-wave oscillator in the computer, 
usually crystal contro lled . T he 6502 processor used in the Apple has a 
clock circui t built- in, but it is not used . Instead, the Apple has an ex-

125 
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ternal clock using a circuit on the motherboard with a 14.318 mega
hertz crystal. The resulting signal is divided down to produce several 
clock frequencies needed throughout the Apple. By having a single os
cillator, these frequencies are kept synchronized to each other. Fig. 
3-1 shows the Apple II clock signals. 

Fig. 3-1. Apple II clock signals. 

The originall4.318 MHz is divided by two so as to make a perfectly 
symmetrical 7.159 MHz square wave. In the Apple, it is called 7M and 
appears at Pin 36 on the peripheral slots. For practical purposes, this 
is the master clock signal; the 14.318 MHz signal is too dirty and in
accessible. 

The 7M clock is used by the video generator, both as a dot generator 
for character display and, when divided to 3.58 MHz, as the color sub
carrier. 

Most important to the processor is a divide-by-seven circuit that 
produces two square waves, in sync, at a frequency of 1.023 MHz. 
One is called Phase Zero and the other is called Phase One. Each 
phase is the complement of the other; that is, when one is high the 
other is low. All data transfer to and from the 6502 processor takes 
place during Phase Zero. The processor changes its address then 
during Phase One so that it has settled by the time Phase Zero comes 
again. This way, the processor reads and writes data at various ad
dresses. 

,.. 
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This scheme lets one oscillator produce all the clock signals needed. 
One drawback is the loss of the 6502's internal clock. The 6502 nor
mally generates a Phase One and a Phase Two complementary pair of 
square waves when connected to a crystal of one megahertz or so. Un
fortunately, Apples have a Phase Zero signal that is not exactly the 
same as the native Phase Two it replaces. So, before any time-critical 
peripherals can be used, you should try them out in your model. The 
earlier models deviated more from proper timing than does the lie 
model. Boards designed for older Apples may not work on the lie. 
Similarly, if you make your own cards, read Section 8.2 carefully. 

One other signal is derived from the master clock for use in memory 
timing. Called Q3, it is multiplied from Phase Zero to be 2.046 MHz 
and it is not symmetric. It is important for video display timing. If 
needed by a peripheral, it is available on Pin 37. 

The Apple clock uses a 14.318 MHz crystal to time its five lines. Fig. 
3-2 shows the timing diagram. The master clock of 7.159 is called 7M 
and is divided to 3.58 MHz for COLOR REF. The 2.046 MHz line 
called Q3 is asymmetrical for display timing. At 1.023 MHz, Phase 
Zero times data transfer for the processor and Phase One times RAM 
refresh and 1/0 access. The processor uses Phase One to change its 
address. 

7M 

<I>O 

<1>1 

Q3 

6502 
ADDRESS 

6502 
DATA 

WRITE 

6502 
DATA 
READ 

VALID 

VALID 

/VALID 

1- PHASE ONE -1- PHASE TWO -1 
490 ns 490 ns 

•·ig. 3-2. Apple II clock timing diagram. 
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On the 6502 processor chip, there are five control pins, three of 
which are connected to the Apple. These three are called interrupts. 

The interrupt lines let the Apple force the processor to execute rou
tines located in memory at specific addresses. They are called IRQ for 
interrupt request, NMI for non-maskable interrupt, and RES for 
reset. All these lines are normally high. Bringing any one low causes 
the processor to stop whatever it is doing and get an interruot address 
to use for further program execution. __ 

The IRQ and NMI interrupt procedures in the pro ~~~ .. ~ 
enough to remember the addresses of the old routine ~161r~ ... 
tinued later. The RES interrupt is used at power up :1 
press, so it doesn't have to remember any previous rc 
three interrupts will force the processor to execute~ 
only the IRQ and NMI routines can then recall the 
routine when they are finished. This feature lets the 
interrupt from a peripheral, do whatever the hard'. 
return from the interrupt by continuing the execution 
gram was running at the time. 

The RES interrupt is the one the Apple uses to start. 
is the most used interrupt. The IRQ may be used b} 
isn't used by any of the built-in 110. The NMI is use 
puters to aid in debugging, but is not used on the AI 
available, however; it is just rarely used. 

There are other control lines on the 6502. Called : 
SYNC, they are used in debugging and for special co1 
essor in special applications. Because they are not c 
original Apple, their use isn't covered in this book. 

The remaining pins on the 6502 are the eight da 
seventeen address lines. They are connected to the 1\ 
ment and I/0 Logic on the Apple with a data bus ant= 

The 6502 works by generating sixteen-bit addres~ 
Phase One, then either reading or writing eight bit 
Phase Two. A read/write control line is determined b 
Phase One to tell whatever is being addressed which d 
are to go. This R/W line on the 6502 is the seventef'J 

The first sixteen lines of address are called AO to , I 
gives the lowest significant bit of the address and A15--' 
significant bit. With all sixteen lines, the process< 
address from binary 0000000000000000 to binary 11 · 
Using hex notation, these are $0000 to $FFFF. The.: 
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gives the direction at the same time in Phase One. The bits are encoded 
by positive logic in which a high level represents a binary one and a 
ground level represents a binary zero. The R/W line goes high for a 
processor read and low for a processor write. 

The data lines on the 6502 are similar to the address lines. They have 
positive logic: a ground for zero, a high TTL level for one. Like the 
address lines, data lines are connected to the Apple by a bus. 

The data lines are, however, quite different in their use. Addresses 
are generated during Phase One and only by the processor. Data are 
generated during Phase Two and may be in either direction. During a 
read, data enters the 6502 from the data bus; during a write it leaves 
the 6502. So, the address bus in the Apple is unidirectional and the 
data bus is bidirectional. On top of all that, the data bus is only eight 
bits and the address bus is seventeen bits. 

On the Apple II, Phase Zero is used as being (almost) the same as 
Phase Two. 

Hardware connected to the busses must gate or enable data trans
fers during Phase Two. And, the hardware must be selected from the 
address bus so that it transfers only after it has been addressed during 
Phase One. If you look at the schematics of peripheral cards, you will 
find Phase One used to enable data transfers. This is because Phase 
One is low during Phase Two, and many devices are enabled by a low 
level. Regardless of the details, all devices have address decoding and 
data transfer enabling during Phase Two. 

This complements the 6502 that generates the addresses during 
Phase One. When they have settled and Phase Two comes along, data 
transfer is made with the addressed device. This is how the 6502 works 
with the Apple II: generating addresses, transferring data between the 
addressable devices in the system. 

Inside the 6502, circuits accept interrupts, generate addresses, and 
transfer data. The 6502 can be instructed to do this in many ways. It 
also has internal storage registers to manipulate both addresses and 
data. See Fig. 3-3 for a block diagram of the 6502's insides. 

In addition to the pinouts, the 6502 has internal data and address 
busses. These allow transfers among the various registers and the 
Arithmetic-Logic Unit (the ALU). This ALU is the workhorse of the 
processor: changing register values by arithmetic and logical opera
tions like addition, AND-ing, decrementing values, and so on. When 
you program the 6502, you can change many register contents and 
then manipulate them with ALU calculations. 



130 Apple® Programmer's Handbook 

~ 
~ 

AO 

AI 
A2 

AJ 
A4 

AS 

A6 
A7 

l:lt AS 
Q 

5i! A9 
AIO 
All 
Al2 

AIJ 
Al4 

AIS 

DO Dl 02 03 04 OS 06 07 

DATA BUS 

f'ig. 3-3. Block diagram of 6502. 
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While the ALU and registers do the work, it is another chunk of 
logic that runs the processor. This boss is the Instruction Decoder. It 
uses an Instruction Register to store a special data byte called an op 
code or instruction. This op code in the IR tells the decoder exactly 
what to do. If an interrupt occurs on one of the three interrupt lines -
IRQ, NMI, RES - then the decoder is forced to service that interrupt. 
In any case, all the decisions about what to do are made in the 6502 by 
the Instruction Decoder. 

The whole works is tied together by buffers, latches, and control 
lines. Of these, three buffers - address-low, address-high, and data 
- are used between the external and internal busses. Each buffer and 
register is eight bits in size. Buffers isolate the internal 6502 from the 
outside world, so it can work by itself during Phase One as well as 
when transferring data during Phase Two. The 1-reg is the instruction 

,. 
I 
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register and selectively reads the data bus, while the data buffer can 
both read and write. The address buffers write only to the address bus. 

Like the buffers, the registers are eight bits each that contain one 
byte at a time. The two PC registers hold sixteen bit addresses, so you 
can think of PC as one long register called the Program Counter. The 
decoder uses the PC to keep the address of its next instruction. The 
current instruction is in the 1-reg. And, the decoder keeps track of its 
status in the P-reg, the Processor Status. Within the P-reg are eight 
bits called flags that turn various features of the processor on and off. 
The decoder sets and tests these flags during instruction execution. 
And, the decoder can invoke the remaining registers and ALU by 
transferring data among them. Knowing the contents of these registers 
at any time is the key to following any machine-language program. 

When programming, you only concern yourself with the six 
registers - A, Y, X, S, PC, and P. These are shown in a programming 
model in Fig. 3-4; they are the ones you work with in your program
ming. 

ACCUMULATOR 

INDEX REGISTER 

INDEX REGISTER 
15 

PCH PCL PROGRAM COUNTER ·pc· 

8 7 

Ill STACK POINTER ·s • 

7 0 

I Nlvl lsiDidzlcl PROCESSOR ST A JUS REG ·p • 

~ 
CARRY I= TRUE 

ZERO 1 = RESULT ZERO 

IRQ DISABLE I =DISABLE 

DECIMAL MODE I =TRUE 

BRII COMMAND 1 = BRK 

OVERFLOW I =TRUE 

NEGATIVE I= NEG 

Fig. 3-4. Programming model. 
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The A-register is often called the Accumulator because of its heavy 
usage in arithmetic operations. This is the register commonly used to 
transfer bytes and modify them with the ALU to add, subtract, AND, 
OR, and Exclusive OR. 

The Y-register and X-register are used often for address manip
ulation. They can be incremented or decremented easily in steps of 
one using special, fast, ALU instructions. 

The S-register is a special kind of address register that remembers 
where the 6502 keeps its own information, in a special RAM area of 
memory. When used, the 6502 always puts $01 out as the address-high 
whenever it puts out the contents of S-reg as address-low. This way, 
the S-reg acts as a pointer to the $0IOO.OIFF chunk of RAM. Another 
name for the S-reg is the stack pointer. 

The PC is sixteen bits, so it can point anywhere in memory. The de
coder puts its contents on the address bus from the buffers whenever it 
wants to fetch another instruction. It can point anywhere in the ad
dress space: from $0000 to $FFFF. 

The P-register or Processor Status contains eight bytes, seven of 
which act as flags. A flag modifies the action of one or more instruc
tions. Each flag is summarized in Fig. 3-4 and described more fully in 
Table 3-1. You can ignore the details of the P-reg on first reading; 
they are for later reference and study. 

What is of importance to the understanding of the processor at this 
stage is exactly how the processor functions in fetching and executing 
a sequence of instructions. 

Table 3-1. Processor Status Flags 

Bit Flag Set = I Clear= 0 

0 c Last ALU instruction had a carry Last ALU instruction had a no-
result. carry result. 

1 z Last result was zero. Last result was nonzero. 

2 I IRQ interrupts are disabled. IRA interrupts are enabled. 

3 D Arithmetic of A-reg set to per- Arithmetic of A-reg set to per-
form in BCD. form in binary. 

4 B Last IRQ caused by BRK. Last IRQ caused by hardware. 

5 Unused Unused 

6 v Arithmetic overnow from bit 6 Arithmetic no-overnow from bit 
of A-reg. Also. see BIT. 6 of A-reg. Also. by BIT instruc-

tion. 

7 N Last result set a bit 7. Last result cleared a bit 7. 
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Here's how the 6502 does an instruction. The instruction begins 
with the address of the next instruction in the program counter. This is 
either the result of the previous cycle, or it was forced there by the 
interrupt logic. 

Regardless of its origin, the decoder puts the contents of the PC 
onto the internal address bus. At the proper time during Phase One of 
the clock, the high and low address buffers are loaded from the in
ternal address bus, thereby putting the PC contents onto the external 
address bus. Simultaneously, the R/W line is brought high to signify a 
read request. 

The addressed memory puts the contents of the requested location 
on the data bus during Phase Two of the same clock cycle. The de
coder grabs the contents of the data bus in the 1-reg. At the end of the 
first clock cycle, the 6502 has requested and read a byte from memory 
into the 1-reg. By this action, it has fetched its instruction op code. 

On the next clock cycle, the decoder executes the new instruction. 
According to the value in the 1-reg, the decoder will perform a 
sequence of tasks, taking up to six clock cycles to complete. It may 
read, modify, and write registers. If the op code directs it to just 
modify a register, it will finish the task in one cycle. Reads and writes 
each take longer, while a read/modify/write instruction takes the 
longest time to complete. 

Implied in the execution of all instructions is the change to the PC. 
It is always modified to point to the following instruction op code in 
memory, either by incrementing it or changing it altogether with a new 
value. In any case, the instruction ends with the address of the next 
instruction in the PC. 

Take an example. Suppose the op code that was fetched was $AD. 
This tells the decoder that it is a three-byte-long instruction that takes 
four clock cycles to complete. On execution, it loads the A-reg from 
memory. To do this, the decoder first reads the two bytes following 
the op code in memory and uses these two bytes together as the 
address of the desired byte. So after execution, the PC will point to the 
third byte following its initial value. 

Continuing the example, the decoder increments the address buffers 
by one after it has the op code. This lets it fetch the low byte of the de
sired address during Phase Two of the second clock cycle. Then the 
decoder fetches the high byte during the third cycle. With both bytes 
in hand, the decoder puts them on the address line and fetches the byte 
it finally wants into the A-reg during the fourth clock cycle. With the 
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A-reg finally replaced by the read value, and with the PC pointing to 
the next byte in the instruction sequence, the instruction cycle is com
pleted. 

3.1.2 Memory Mapping 

The 6502 processor has an address space of 65536. This figure is 
usually referred to as 64K and is the total number of address values the 
processor can generate. This is the number of all possible combina
tions of low and high levels on the sixteen lines of the address bus. 

Look at a few values to see how this works. The lowest address is 
$0000, in hex notation, and is generated when the processor brings all 
address lines low. If the AO line went high while all remaining lines 
were held low, an address of $000I would be generated. If only AI 
were high, $0002 would be the address value. Similarly, only A2 high 
generates $0004, only A3 high generates $0008, only A4 high generates 
$00IO, and so forth. Only AI5 high generates a $8000. After these 
powers of two, combinations of lines generate other values: AO and 
AI generate $0003, for example, if they are the only lines held high. 
All lines held high give the greatest address possible - $FFFF. 

For each of the 65536 different ways of setting the address bus, 
there is one and only one address value generated in the processor's 
address space. This one-to-one mapping is called the memory map of 
the processor. It shows exactly what memory locations, hardware, 
soft switches, and other system features correspond to the addresses. 
By reading the memory map of the Apple, you can get a picture of 
where things are and decide how best to use available memory in your 
programming. 

It is easier to follow memory maps if you break down the 65536 
addresses into 256 pages of 256 addresses each. 

The sixteen address lines connect to two buffers in the processor. 
Each of these buffers is eight bits. One buffer connects to lines AO 
through A7 and the other buffer connects to lines AS through AI5. 
The buffer with the higher lines holds the page number and the one 
with the lower lines holds the address within that page. 

A couple of examples. In hex, address $0023 is in Page Zero ($00) 
with a page address of $23. Address $2040 is in Page $20 with page 
address of $40. Address $FBDB is in Page $FB at page address $DB. 
With hex notation, it's easy. 

~ 

I 

~ 
I 

-



Machine Language 135 

With a given memory map, the system may or may not have 
memory at any given address. An Apple has hardware and possibly 
ROM in the $COOO.CFFF range, for instance. That in fact is one of 
the first things a memory map should tell you: where is RAM? where 
is ROM? where is hardware? Then more detailed maps can break 
down the address space further. 

In the case of memory, each address within its range tells the 
memory chip which location within itself to access. Normally, each 
address has one and only one memory location holding eight bits of 
data. When addressed, the memory chip then transfers to or from the 
given location by accessing the data bus. 

In the case of hardware, the Apple addresses are often duplicated in 
a device. The device can have one of several addresses simply because 
the least significant lines, from AO, aren't connected. Some features 
added to the lie model use these otherwise disconnected lines, so some 
programs may have trouble running on the lie for this reason. The 
point to be made here is that addresses aren't always decoded from the 
address bus on a one-to-one basis. 

The memory map used in this book is that of Fig. 3-5 unless other
wise noted. The so-called soft switches can alter the memory map 
when you want to change it in your programs. Most of the informa
tion on how to do that is given in Chapter Two. 

Regardless of which memory map is in effect, the 6502 demands 
that RAM and ROM be provided at specific addresses. The Apple 
maps always provide RAM for processor work space and ROM for 
interrupt routines. 

The address of the processor consists of 256 pages, from $00 to 
$FF. Of these, Page Zero and Page One must always be RAM. Page 
Zero is used for address pointers and fast instructions. Page One is 
used to remember processor registers. 

At the other end of the address space, Page $FF must have a ROM. 
The highest six locations must contain the three address pointers to the 
three interrupt routines for RES, MNI, and IRQ. When one of these 
interrupts occurs, the address is loaded into the PC from two of these 
locations, forcing the processor to execute the interrupt routine at that 
address. The Apple always has one ROM chip active at the top of 
memory - $F800.FFFF - for this reason. This ROM contains the 
three pointers or interrupt vectors together with their routines. With
out such a ROM, the Apple just could not start itself. 

With RAM always at low memory and ROM always at high 
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memory, a 6502 computer ends up with its hardware decoded some
where in the middle of memory. For the Apple II, this is done in the 
$COOO.CFFF range. 

You can see this division of memory in Fig. 3-5. If you don't learn 
any other memory map of the Apple II, you should learn this one. 
This is the most common map, and the one normally created when the 
Apple II Plus or the Apple lie is started with a DOS. The earlier Apple 
II standard model had Integer BASIC resident in the space now 
occupied by Applesoft; otherwise, it too has the same map. 

The RAM range of $0000.BFFF occupies 48K. If you have an old 
Apple II with only 32K of memory, it resides in the $0000. 7FFF range, 
the $8000.BFFF addresses being unoccupied. An Apple with 16K of 
RAM will have RAM in the $0000.3FFF range, with $4000.BFFF un-

-
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occupied. Unless stated otherwise, this book assumes a 48K Apple 
with a BASIC language, usually Applesoft, installed in the ROM area. 

The ROM area from $0000 to $FFFF contains the language Apple
soft at $DOOO.F7FF and a Monitor at $F800.FFFF. The Monitor may 
be one of three versions: Standard, Autostart, or lie. If Integer 
BASIC is resident instead of Applesoft, the ROMs for $EOOO.F7FF 
will be installed, perhaps with a $D800.DFFF ROM as well. A socket 
for a $DOOO.D7FF is not used by Integer BASIC. If the $08 socket is 
empty, you can get the ROM, called Programmer's Aid #1, from an 
Apple dealer; it comes with a manual. 

The input/output area at $COOO.CFFF is divided into two parts. 
Built-in 1/0 consisting of keyboard, speaker, soft switches, cassette, 
and games socket lives in the $COOO.C07F range. Peripheral 1/0 can 
use the remaining space, over the $C800.CFFF range. Each slot is 
allocated chunks of memory for its own use; see Chapter Two for the 
details. 

Knowing the basic memory map of Fig. 3-5 is essential to getting 
around in the Apple with machine language programs. 

3.1.3 Instructions 

To execute a machine language program that exists somewhere in 
memory, you must somehow get the address of its first instruction 
into the 6502's PC. One way to do this is with the RES interrupt, 
which is how the Apple gets started in the first place. Once started, 
there are other ways to change the contents of the PC; they will be 
covered later. For now, assume you have a machine language routine 
to execute and assume that its address is in the PC. 

Here's how the program execution works. First, it takes one clock 
cycle for the processor to fetch the first byte into the 1-reg. This byte, 
pointed to by the PC, must be an op code value because the processor 
will attempt to decode it as soon as it is fetched to the 1-reg. 

The entire machine language instruction may be one, two, or three 
bytes in size. If only one byte, then it consists entirely of an op code. 
On the other hand, if more than one byte, it has what is called an 
operand as well as an op code. The first byte is always the op code. 
The operand byte or bytes that follow may be data for one of the 
registers or they may be an address. The processor will read these 
operand bytes whenever the op code tells it to. Each op code identifies 
the instruction to the processor by telling it exactly what to do. Often, 
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it tells the processor to fetch certain operand bytes as part of the 
instruction. 

Regardless of the length, the instruction is completed with the PC 
pointing to the next instruction. Usually, this is the one immediately 
following in memory. Other times, the op code tells the processor to 
modify the PC in a nother ma nner, like putting the operand bytes in to 
the PC to make a jump instruction. 

For a ll instructions, the cycle is the same. One clock cycle fetches 
the op code byte and more clock cycles may be needed to execute the 
op code. There may or may not be operand bytes. 

You write machine language programs, then, by putting the se
quence of bytes into memory that make up the instructions you want. 
Each instruction has an op code. Depending on the op code, you com
plete each instruction with any operands that it requires. 

Some instructions that have only the op code byte a re: 

$CA decrement X-reg value by one 
$C8 increment Y-reg value by one 
$18 clear C-flag in P-reg to zero 
$F8 set D-flag in P-reg to one 
$EA no-operation, two clock cycles long 

By putting a sequence of these bytes into memory somewhere, you 
would be loading a program. Each byte would be a complete instruc
tion, consisting of an op code that requires no operand . 

Such one-byte instructions are limited in what they can do for you . 
You want to operate on addresses and data, not just registers. For 
this, instructions with operands are needed. These can be varied for 
different addressing methods, so you will learn them more slowly than 
one-byte instructions. 

First, you can start with a few longer instructions that you could use 
in writing short, simple programs. 

A two-byte instruction you can use is the load immediate to A-reg. 
The op code is $A9 and you fo llow it immediately with a one-byte 
operand. The value of the operand will be put in to the A-reg by the 
processor when it executes the instruction. If you put 

$A9 
$FF 
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into two consecutive memory locations and the address of the first 
byte into the PC, then the processor will execute it. The result would 
be to make the contents of the A-reg $FF in value and increment the 
PC by two. 

If you used a $80 as the operand instead of $FF, then the processor 
would put the $80 into the A-reg. 

Next, here is a three-byte instruction, a jump. It has $4C as its op 
code and two bytes as its operand. The operand is the address of the 
next instruction - a forced address. When it executes, the processor 
puts the two operand bytes into the PC. T his results in the program 
jumping to the address given by the operand. Machine language pro
grams use $4C like BASIC uses the "GOTO" command. For example, 
if the 6502 executes 

$4( 
$00 
$03 

it will replace the address in the PC with $0300. This results in the next 
instruction's op code being fetched from $0300 instead of the follow
ing location. Instead of $0300, you can jump anywhere you like. Just 
put the address - low byte followed by high byte - following the $4C 
as its operand. 

So, to program in machine language, you enter sequences of in
structions to memory. Each instruction must have an op code and be 
followed by as many operand bytes as required. The operand depends 
on its op code for its length and on you for its value. 

Here is an example of a machine language routine. 
To call , you must load the registers with any values that the routine 

requires, then jump to the routine. Specifically, the rout ine at $FDED 
wants the A-reg set to the character code to be output. 

Location 
$0300 
$0301 
$0302 
$0303 
$0304 

A more compact notation would be 

Content 
$A9 
$2C 
$4( 
$ED 
$FD 
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$0300: A9 2C 4C ED FD 

like the way it would be entered to the Monitor. 
To write machine code like this means you have to memorize a ll the 

op codes you may need. Then you have to look up any cha racter codes 
and addresses you need for operands. This is difficult and slow. The 
task o f reading the resulting machine code in hex is even worse. 

Instead, you can use a n assembler notation instead of pure hex 
when you write machine programs. In assembler no tation, the routine 
just g iven looks like 

instead. 

$0300: LDA #$2C 
JMP $FDED 

Simple assembler notation like this uses two tricks to make reading 
a nd writ ing easier. First, the code is a rranged in three col umns: 
address, op code, and operand. Second, the op code is written as a 
mnemonic instead of its hex value. 

The mnemonics are easy to remember. They replace the hex op 
codes as you write routines. After the routine has been written, you 
can easi ly look up the mnemonics to get the op codes they represent. 

One mnemonic can represent several op codes. For instance, there 
are eight d ifferent ways to load the A-reg . The "#" in the example 
signifies the immediate way; there are others. However, the exact op 
code can always be found from the mnemonic and the context. Hav
ing fewer mnemonics than op codes makes memorizing them even 
easier. 

As you learn machine programming, use the Monitor's L command. 
You can disassemble the rout ines listed in Section 2.2. See the hex 
notation on the left; the assembler notation on the right. Compare 
them, and see if you can match the op codes and mnemonics as you 

-

-

-

learn them. Do the op codes always match the mnemonics in their n 
proper context? l f so, it means that you recognized the instruction 
correct ly. 

3.1.4 A Routine to Modify Memory 

Th is is a routine that uses two instructions having LOA and STAas 
mnemonics. There are eight different op codes for each one, so these 
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inst ructions are more closely described as the load A-reg absolute and 
the store A-reg absolute. 

The LOA absolute has $AD as its op code. When executed, it loads 
the A-reg with the contents o f the memory location whose address 
follows the op code. For example, the code 

$0300: AD 34 12 

tells the processor to load the A-reg with the contents o f memory at 
location $ 1234. The address $ 1234 is the operand of the LOA absolu te 
instruction. 

Similarly, a ST A absolute instruction has an op code of $80. 
Executing that one causes the contents of the A-reg to be stored in 
memory at the address given by the operand. So, 

$0303: 80 35 12 

tells the processor to store the A-reg at $ 1235. Just like the LOA ab
solute, the ST A absolute has the address of the memory as its 
operand. 

Here is an example of a short program to move the contents of one 
memory location to another: 

$0300: AD 20 10 LOA $1020 
$0303: 80 30 10 STA $1030 
$0306: 4C 69 FF JMP $FF69 

See the hex code on the left and the assembler notation on the right. 
This is how it might appear when disassembled by the Monitor L com
mand. 

The first instruction loads the contents of $ 1020 into the A-reg. The 
second stores the contents to $1030. The third instruction jumps to the 
Monitor's warm start point. The result is tha t a copy of the contents o f 
$ 1020 exis ts in $ 1030. The copy in the A-reg of the two instructions are 
still there when it jumped to the Monitor. 

Use the same routine, but write it to move the contents of $F800 to 
$ 1000. 

Look at the code you wrote. Assume that it is executing a nd sup
pose that $0300 is in the PC at the beginning of the first instruction 
cycle. Follow the code exactly like the processor does. 
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With a PC of $0300, the 6502 loads the contents of $0300 into the 
1-reg, a value of $AD. Then, the instruction decoder recognizes it as a 
LDA absolute instruction. The next two bytes, $00 and $F8, are 
fetched from $0301 and $0302. These two bytes are put on the address 
bus and a read takes place. The byte read from $F800 is $4A, and it is 
put into the A-reg. At the end of the first instruction, the PC has been 
incremented to $0303 and the A-reg has $4A. 

This marks the beginning of the second instruction. The PC points 
to $0303, so its contents are loaded into the 1-reg to become the new 
instruction op code - $8D. The instruction decoder sees the $8D as 
the ST A absolute, so it fetches the next two bytes for an address to 
use. These bytes in $0304 and $0305 are $00 and $10, respectively. Us
ing them, the decoder addresses $1000 and writes the contents of the 
A-reg. Because the A-reg contains $4A and the address $1000 is a 
RAM location, this results in $1000 having its contents changed to 
$4A. The PC is advanced automatically to $0306. 

This sets the processor for the third instruction and it fetches the 
contents of $0306 as the new op code. This is $4C, and the decoder 
recognizes it as the jump instruction. The next two bytes are therefore 
fetched and stuffed into the PC itself. The result is a $FF69 in the PC; 
the program has jumped to the Monitor routine's instruction at that 
point. 

If you ran this routine and could examine the contents of $1000 
when finished, you should find it containing $4A, which is the same 
value as $F800. 

By walking down a program like this and creating the processor's 
scenario for yourself, you can learn to read any program listing. It is a 
sure way to debug difficult routines and predict their results. 

3.1.5 Hack and Run 

To create your own machine programs, you must do four things: 
code, assemble, load, and test. Once the program tests good, you can 
BSA VE it to disk for future use. Of the several methods of performing 
these four steps, the simplest and easiest one for short routines is the 
hack and run method given here. 

To code a machine program, use quad paper or a special coding 
form like that of Fig. 3-6. This form has four columns on the right for 
assembler notation: LABEL, MNEMONIC, OPERAND, and COM-

-

-
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6502 Pracra111 Codt Date ___ _ P;qe_ ol_ 

: PROGIWI: 

ADDR Bl Bl 13 wn IIICDIOIIIC OPEIAIID COIIIIEIITS 

•·ig. 3-6. Programming form. 

MENTS. The leftmost columns - ADDR, 81, B2, and 83 - are 
ignored during coding and are left blank. 

First of all, because sheets of paper with machine code on them all 
look the same, you will want to identify them properly. Do this at the 
top of the form on each sheet you code. 

Begin writing any routine with a short comment that says what the 
program does. Give the exact call sequence telling the reader how to 
invoke the routine. Any routine that has either the purpose or call 
sequence unknown is useless in future. 

Each instruction goes on a separate line, starting on the first line. 
The mnemonic is the verb of the instruction - it tells the processor 
what to do. If it is a 6502 mnemonic it will be translated into an op 
code during the assembly step. Otherwise, you can write another kind 
of mnemonic called an assembler directive. 

An assembler directive, sometimes called a pseudo-op, is an instruc
tion to the assembler, not to the processor. For instance, ORO tells the 
assembler where to start the program, locating it in memory. Another 
one, DS, defines a storage area of a given number of bytes. The ASC 
directive identifies characters to be translated into their ASCII codes 
at assembly time. And so on. The directives used in this book are 
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summarized in Table 3-2. Directives in other books and listings may 
vary from these. 

Table 3-2. Commonly Used Assembler Directives 

Synlnx Purpose Example 

ASC siring Crcale Siring MESSAG ASC 'HELLO' 

DS expression Define s1orage area BUFFER DS $ 16 +SIZE 

DW expression Define word, address form DW $ 1234 

D FB expression Define byle value DFB 22 

EQU address Declare a label COUT EQU $FDED 

O RG address Locale s1an o f assembly ORG $0300 

Instructions having operands can express them in various ways. If 
the numeric value of the operand is known, you can simply write it 
there. You can express it in a hex form lik e the examples so far. Or, 
you could use the decimal or even the binary form of the number. If 
you don't know which number you want, you can substitute a label for 
it. The expression you choose can be translated into a hex number 
when you assemble the code later. Some label and number references 
that might appear as operands in an assembler program are: 

$FF 
255 
%11111111 
MAXVAL 

byte, expressed in hex 
byte, expressed in decimal 
byte, expressed in binary 
labeled reference 

If a "#" appears in front of the operand, remember tha t it means 
immediate and it is there to provide meaning fo r the mnemonic. 
Sometimes, characters appear like 

LOA #'A ' 

where the op code will be LDA immediate - $A9 - and the operand 
wi ll be the ASCII code fo r 'A' which is $4 1. 

The advantage of the assembler coding is that you don't have to 
know the op codes or the operand hex values when you first write your 
program. You can look them up later. 

Look a t the example of Fig. 3-7. The right side of the coding form 
(comments column) has the assembler progra m. The ORG directive 
tells the assembler where the program wi ll fin ally load into memory. 

-

-

-
-
-
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6502 Procr1111 Code Dale Pzae ___j__ ol ~ 

PROGRAMMER: ~ lg_Wt!:f. PROGRAM: f:./r.u&t~ 2.-7 

ADDR Bl 82 Bl LABEL IIIIEIICNIC OPER£1'10 COMMENTS 

~- ·"'.; .//711, u 
- (/ 

FFbP MONZ Et:J, ~ FFb4 .. r-_ .d;, ... f: 
FfltJtJ N£2£ G.0/1 7-IBLlo .ALH.., ~P.t .... ./..b.~.~ 

'""" 'Til£2£ £.01/ • 1000 ... , ./.h. .... 
OR I'. .$ IJ!JtJO 

nf/nn An tJtJ Frt Mtwr nA HI' I? I' !'.-. &n_b__t:&_ ,/' .-.;..-,..!. 

n~n~ ltfl tJtJ 10 STA J"IIE.2£. /L.J.... 1/llU. 1;,. f'N£2£ Q 

nflnl. Ill! 1.0 IH JAA'D II>. 17 1.1,. ../ Mr. ,J ;. ,.1: n, 4»--.JA.t. 

Fig. 3-7. Coding form example. 

Three labels are listed and used as operands, so they are declared in 
the EQUate statements at the beginning. Two of these labels were in
vented - HERE and THERE. The other label, MONZ, is a given 
label; it was looked up in Section 2.2 at $FF69. The routine itself is 
labeled as MOVE, although it is not referenced here. Make your labels 
meaningful. If you need more labels within a routine, add numbers to 
the first label. For instance, if MOVE had to be labeled at other in
structions than the first, they would be called MOVE I, MOVE2, 
MOVE3, etc. Look at the examples in this book. 

Table 3-3 summarizes the rules for coding assembler. The rules 
emphasize writing simple and clear routines. 

After coding the routine, it can be assembled. You can assemble in 
several ways, but the hand-assembly method is the first one you 
should use. Hand assembly doesn't depend on having any utilities like 
the Miniassembler or a commercial text assembly package. It develops 
understanding in a way no other method can. After hand assembling 
routines successfully, you will be able to test and debug your routines 
from disassemblies and dumps. 

Here's how to hand assemble a routine successfully. On the coding 
sheet containing the routine in assembler form, write the address of 
the first location of the program. You get the address from the ORG 
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Table 3-3. Rules for Coding Assembler 

Rule Procedure 

I. Identify all coding sheets. 

2. Comment with purpose and call sequence. The routine should do only 
one task and be called only one way. 

3. list all external labels your routine references by using EQUate direc-
tives. leave room for those you miss. 

4. Use an ORG directive to tell the assembler where the routine will 
begin. 

5. Code the routine itself. Use operand labels and comments to show 
what the routine does. 

6. The exit point, usually a jump (JMP) or a return (RTS), should be the 
last executable instruction of the routine. 

7. label the entry point at the first location and assign any further labels 
the same name with a number appended. 

8. Use DS, DW, and ASC directives for storage and literal values at the 
end of the routine when required. 

directive and put it in the ADDR column on the line of the first execut
able instruction. See the $0300 in Fig. 3-7 for an example. 

Next, look up the op codes. For each mnemonic, you can infer the 
addressing mode when necessary. The op codes are given in Tables 3-4 
and 3-5. Enter the op codes in the Bl column opposite its mnemonic, 
on the same line. 

Put the addresses in the ADDR column. To get each address after 
the first, add the length of each instruction to its address. The result
ing sum is the address of the following instruction. In the case of Fig. 
3-7, all the lengths are three; so, the addresses are $0300, $0303, and 
$0306. Each instruction then is located in memory for further as
sembly and debugging. 

In the case of directives, the DS, DW, and ASC all declare storage 
space. You must add their lengths to their addresses to get the next ad
dress in each case. The length is given as the operand of the DS. The 
DW is always two bytes in size. For ASC, count the characters 
between the quotes. Otherwise, treat these directives like op code 
mnemonics. 

Once all addresses have been found you can go through the code, 
one line at a time, and get the hex values for all operands. They go into 
columns B2 and B3. You will need tables to convert decimal and 
binary to hex notation. And, you need character conversion tables to 
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Table 3-4. Unique 6502 Instructions 

Mnemonic Op code Addressing •·lags 

Branch 
BCC 90 Relative ------
BCS BO Relative ------
BEQ FO Relative ------
BMI 30 Relative ------
BNE DO Relative ------
BPL 10 Relative ------
BVC 50 Relative ------
BVS 70 Relative ------

P-register bit 
CLC 18 Implied -----C 
CLD 08 Implied --0---
CLI 58 Implied ---1--
CLV 88 Implied -V----
SEC 38 Implied -----C 
SED FS Implied --0---
SEI 7S Implied ---1--

Program flow 
BRK 00 Implied ---1--
JMP 4C Absolute ------
JMP 6C Indirect ------
JSR 20 Absolute ------
NOP EA ------
RTI 40 Implied Stack* 
RTS 60 Implied ------

Transfer 
TAX AA Implied N---Z-
TAY AS Implied N---Z-
TSX BA Implied N---Z-
TXA SA Implied N---Z-
TXS 9A Implied ------
TYA 9S Implied N---Z-

Stack 
PHA 48 Implied ------
PHP OS Implied ------
PLA 6S Implied N---Z-
PLP 28 Implied Stack• 

f-t *Reslored from slack 
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Table 3-5. Accumulator, Memory, and Index Instructions 

~ .. 
$ 
;j 

I ~ ~ 
~ 
" s~ 

i ~ a I 

0 
~ 

70 79 61 NVZC 
..., 

ADC - 69 65 75 60 71 I 
AND - 29 25 35 20 30 39 21 31 N-Z-
ASL OA 06 16 OE N-ZC 
BIT 24 2C 76Z-

liiJIIt 
CMP - C9 cs 05 CD DO 09 Cl 01 N-ZC 
CPX - EO E4 EC N-ZC 
CPY - co C4 cc N-ZC 
DEC - C6 06 CE DE N-Z-
DEX CA* N-Z-

~ -
DEY 88* N-Z-
EOR 49 45 55 40 50 59 41 51 N-Z-
INC - E6 F6 EE FE N-Z-
INX E8* N-Z- fill' 

INY C8* N-Z-
LOA - A9 AS B5 AD BD B9 AI Bl N-Z-
LOX - A2 A6 B6# AE BE N-Z-
LOY - AO A4 B4 AC BC N-Z-
LSR 4A 46 56 4E 5E N-Z-
ORA 09 OS 15 00 ID 19 01 II N-Z-
ROL 2A 26 36 2E 3E N-ZC 
ROR 6A 66 76 6E 7E N-ZC ~ 

SBC - E9 E5 FS ED FD F9 El Fl NVZC 
STA - 85 95 80 90 99 81 91 
STX - 86 9611 8E 
STY - 84 94 8C -

• implied N negative C carry 
# zero page, Y Voverflow 6Vifbit6 

Z zero 7Nifbit7 

~ 

look up characters in ASC directive strings. The best tool for this is 
the Reference Summary card supplied with this book. Labels as oper-
ands should all be found from the LABEL column. If not, something ~ 

is missing from the assembler coding, usually an EQUate directive. 

'~ 
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When finished assembling, your coding sheet should resem ble Fig. 
3-7. 

To recapitulate, assembly is done in two passes through the code. 
On the first pass, addresses are found for all the op codes and as
sembler directives. Th e op codes are identified. Then, on the second 
pass, the operands are resolved by evaluating their expressions and 
looking up the addresses that correspond to the labels . 

Once assembled on paper, you can enter it. Use a CALL - 151 to 
enter the Monitor from BASIC. 

Enter the hex code using the address of the routine. For example, 
the routine of Fig. 3-7 can be entered as 

300:AD 00 F8 80 00 10 4C 69 FF 

Verify the code by disassembling it wi th the L com mand: 

300L 

The code should disassemble properly. If there is an error, correct it 
before proceeding. 

If you have a long routine you don't wan t to re-enter, then BSA VE 
it to disk before testing. 

Now, use the call sequence to give your routine any init ial condi
t ions it wants. Then run it with the G command: 

300G 

The routine should reLUrn to the Monitor when finished, giving you 
an asterisk - "*" - followed by a cursor. If not, you have problems. 
You have to walk through your program as described before. If you 
can get and use a Step/ Trace utility, so much the better. 

If your routine returns normally, you still can't assume it did its job. 
What was it supposed to do? You must have a specific purpose for the 
routine that can be tested. In the case o f Fig. 3-7, for instance, you can 
examine the contents of locations $F800 a nd $1000 to see if it moved 
from one location to the other. If so, they will both have the same 
value. It would be a good idea to force the destination, $1000, to con
tain another value before the routine is run. 

Then, what if it doesn't work properly? Record any results, however 
false. Then with these results in hand go through the code. Why does 
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the routine produce the observed result? Once you know that, you can 
usually find a way to change or rewrite the routine to get the result you 
want. Most errors are caused by mechanically copying or looking up 
an incorrect value. The remainder are caused by a misconception on 
the programmer's part. 

Always retest a routine completely after making any changes, no 
matter how slight those changes are. 

With practice the four steps - coding, assembling, entering, and 
testing - can be done quickly for short routines. In fact, experienced 
programmers can hand assemble quicker than using a disk-based as
sembler package when they want. With many op codes memorized, 
the programmer can often enter in hex without going through the as
sembler stage. This facility with the hack and run method earns such 
programmers the title - hacker. 

One way of approaching the skill of the hacker without invoking a 
large, disk-based assembler is with a utility available with Integer 
BASIC called the Miniassembler. It uses the Monitor's disassembler so 
it has much the same format. It is easy to Jearn and use. 

To use the Miniassembler, activate Integer BASIC; use the INT 
command to DOS. Then CALL - 151 to enter the Monitor. Invoke 
the Miniassembler with 

F666G 

It responds with a"!" prompt. Whenever you want to leave and return 
to the Monitor, type 

$FF69G 

to the Miniassembler. In fact, you can give any Monitor command 
from the Miniassembler if you prefix it with a "$". 

To enter an instruction into memory, type the location's address fol
lowed by a colon. Follow on the same line with the mnemonic and any 
operand required. Values must be in hex; no labels allowed. For fol
lowing instructions, just type a space instead of an address with colon 
followed by the instruction. For instance, our example of Fig. 3-7 
could be entered to the Miniassembler by typing 

!300:LDA F800 
! STA 1000 

-
-

-
-
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! JMP FF69 
!$FF69G 

* 
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where the "!" and "*" are prompts; don't type them. 
The Miniassembler looks up 6502 mnemonics for you, keeps adding 

the instruction lengths to a location counter for following instruc
tions, does relative address calculations (more about that later), and 
reformats each line into the disassembler format as you enter them. 
Any two-byte operands are rearranged for you in address format, low 
byte followed by high byte. 

Use the Miniassembler to hack and run. It lets you experiment 
quickly a nd easily by writing short routines almost as fast as you can 
think them up. 

The disassembler gives twenty lines with each L command. You can 
hack up to twenty lines easily with the Miniassembler. While you can 
write routines longer than twenty lines this way, they won't fit on the 
screen. So, they become awkward to write and debug. T hen , too, you 
can feel the need for labels when you design longer routines or write 
several routines that call each other. As a rough guide, twenty instruc
tions is the practical limit for hack and run routines. 

For longer projects, you need a two-pass text assembler. 
A text assembler from a quality software house should give you the 

features you will need . It will have a good, easy to use editor that lets 
you document extensively and edit your text files in a line-oriented 
fashion . The assembler will recognize the commonly needed directives 
and use standard 6502 mnemonics. Some provide extensive features, 
but they should not interfere with using the common ones; you should 
not have to wade through a series of bells and whistles to set up a 
simple assembly. 

Compared to the Miniassembler, a text editor/ assembler package 
does the job in a fancier way. It has two passes instead of one, so that 
you can use labels. It also interprets assembler directives. You can 
make all the comments you want; unlike BASIC, assembler comments 
don't take up final program space. Most assembler packages provide 
printer output, selectable at assembly time. The disadvantage to an 
editor/ assembler package is the long operating time, even for short 
and simple routines. 

A two-pass assembler works the same as you would if you did a 
hand assembly. First, you write the assembler code on a text file using 
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the editor. This fi le is called the source file of your program. When 
you run the assembler, it reads your source file and creates another fil e 
called an object file. The assembler makes two passes o f the source file 
to do this: one pass to build a table of all your labels and another pass 
to resolve them and create the object fi le. With a good, simple as
sembler, the object file is a binary file that you can BLOAD into 
memory to test or use. Each step of the process is the same as it was 
for hand assembly. 

There are assemblers that will let you use external labels. They 
produce relocatable files that have a small label table with them, left 
over from the first pass. This lets you assemble routines that call each 
other separately, then link thei r relocatable files together later on to 
make the final loading file. To do this, another stage is needed after 
assembly - a stage called linkage editing. So, the package has a link
age editor and perhaps a librarian as well. 

For most work, especially for the beginner, extra features like link
age editing are not necessary. On a small computer like the Apple II, 
simplicity and ease of use are important. 

Often, you will have a short routine in machine language that you 
want to run from a BASIC program. You can do this by using the 
CALL command, but loading the machine code at first can be a bit 
tricky. 

First, you can BLOAD it from a binary disk file. This is simple 
enough, but means your program now has two files, a BASIC one and 
a binary one. Maintenance would be much easier if you could some
how include the machine routine into the BASIC program . Then, you 
would have the entire program contained in one fi le . 

The classical method, one which is still used on other microcom
puters, is to POKE the routine into memory from the BASIC pro
gram's initial routine. The address and contents of each byte must be 
translated from hex to decimal notation before writing the sequence of 
POKE statements. Although it is slow and error-prone to write, this 
method was once popular among Apple programmers needing short 
machine routines. 

The best place for single, short machine routines is at $0300, 768 in 
decimal. If the example of Fig. 3-7 is to be POKEd into place, the 
statements used would be ... 

POKE 768,173 : POKE 769,0 : POKE 770,248 : 
POKE 771 ,141 : POKE 772,0 : POKE 773,16 : -
POKE 774,76 : POKE 775,105 : POKE 776,255 



Machine Language 153 

where 173 is the decimal form of $A D, for instance. When run, the 
routine is entered by the POKEs and the program can invoke it any
time by a CALL 768 statement. 

The POKE method is rarely used on the Apple. Instead, an easier 
one called Lam's method is employed. 

To enter machine code using Lam 's method, you prepare a st ring 
that is exactly like the one you would enter to the Monitor. Then you 
call a BASIC subroutine written to put the command string into the 
keyboard buffer. This subroutine also calls the Monitor so that it 
thinks you gave it a keyboard command line. When the Monitor has 
entered the code into memory for you, it gets a final command that 
sends control to a BASIC routine that continues program execution. 
There are differences between Integer and Applesoft versions, but 
both do the same job. 

From Integer BASIC, you can create a machine routine like this. 
DIMension a string called HEX$ for at least 80 characters . Write the 
following utility subroutine: 

500 FOR H = 1 TO LEN(HEX$(H}) 
510 POKE 511 + H, ASC(HEX$(H}) 
520 NEXT H 
530 POKE 72,0 
540 CALL - 144 
550 RETURN 

Then, each time you want to enter code, make up a string: 

30100 HEX$ = "300:4C DB FD N E88AG" 
30110 GOSUB 500 

J!!!!!l In this example, a JMP $FDDB was created at $300. Type the spaces 
shown; they are important. The N ends the memory entries. The 
E88AG makes Integer continue running your BASIC program. 

For an Applesoft BASIC program, the same algorithm does the 
job. The utility subroutine becomes: 

500 FOR H = 1 TO LEN(HX$) 
510 POKE 511+H, ASC(MID$(HX$,H,1})+128 
520 NEXT 
530 POKE 72,0 

- 540 CALL -144 
550 RETURN 
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The call sequence for this subroutine is 

30100 HX$ = "300:4( 08 FD N D823G" 
30110 GOSUB 500 

The main difference is the address of the continue routine. For 
Integer, it is at $E88A; for Applesoft it is at $D823. 

Whenever you have a short routine, put it in Page Three, from your 
BASIC program, by using Lam's method. It is the best way to include 
machine routines that you wrote with the hack and run method. 

3.2 ADDRESSING 

3.2.1 The Addressing Modes 

There are eleven different addressing modes of the 6502 processor. 
Each is described below. 

IMPLIED - These are one-byte instructions because they don't 
need operands. From the op code, the processor knows which address, 
if any, to use. Many implied instructions, like INX, INY, DEX, DEY, 
TAX, TVA, etc., act on registers only. A few, like PHA, PLP, and 
RTS, use register contents to find their addresses. Some set and clear 
flags in the P-reg: CLI clears the 1-flag, SED sets the D-flag, and so 
forth. All these instructions are only one byte in length; you don't 
have to give an explicit address. 

RELA TJVE - These are branch instructions, two bytes in length. 
These include BMI, BEQ, BCC, and so forth. The operand is a signed 
number that tells the processor to either add or subtract the PC to 
reach the branch address. The branch op code tests a flag. If the test 
fails, nothing more is done and the PC is pointing to the next instruc
tion as per normal. But, if the test is true, then the relative address 
contained in the operand is added to the PC to make it point to the 
branch address instead . 

A relative address may be any value from - 128, represented by 
$80, up to - I, represented by $FF. Positive relative addresses then 
range from zero , $00 to + 127 represented by $7F. To calculate the 
relative address , subtract the address of the next instruction from the 
address of the branch instruction. For instance, consider the follow
ing: 

n 

-
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BEQ THERE 
HERE LDA #1 

THERE LDA #2 

The operand pointing to THERE in the BEQ instruction must be 
assembled as one byte. That byte is calculated as 

THERE minus HERE 

once the absolute addresses of THERE and HERE are known in the 
routine. This gives the instruction a single byte relative address 
operand. 

""" IMMEDIATE - A two-byte instruction wi th a"#" pre fixed to the 

n 

operand in assembler form. It is used to read a literal byte directly 
from the operand. The operand byte is not an address, but is the 
actual data read by the instruction . For example, an LDA #$7F would 
cause a $7F to be loaded into the A-reg during execution . Other 
examples include: LDX #0, LDY #$FF, and ORA #$80. The last one, 
ORA, is a logical OR with the A-reg; it turns on Bit 7 in the A-reg 
using the $80 value. 

ABSOLUTE - A three-byte instruction where the operand gives 
the address of the data to be handled . The address is always in low
byte to high-byte order. For instance, 

LDA $1234 

assembles as $AD, $34, $12 in that order. When executed, it loads the 
contents of location $1234 into the A-reg. 

ZERO PAGE - Sometimes called zero page absolute, because it 
acts like the absolute mode. However, it is a two-byte instruction with 
the operand containing the low order byte of the address. The high 
order byte is implied to be zero; so, this mode addresses Page Zero 
locations only. For example, the instruction 

LDA $50 

assembles as $A5, $50 and is the same as 
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LOA $0050 

which assembles as $AD, $50, $00. The zero page mode does execute 
faster. And it takes up only two bytes of program memory instead of 
three. The zero page mode op code calculates the effective address 
from the single byte. In this example, the effective address is $0050. 

ABSOLUTE INDEXED BY X - A three-byte instruction that 
calculates the effective address as the sum of the operand and the 
X-reg. For example, if the assembler code is 

LOX #$15 
LOA $1234,X 

then the LOA instruction would assemble as $BD, $34, $ 12. Upon 
execution, the $BD op code causes the effective address to be cal
culated as the su m of $1234 and $ 15. This is $1249, so the contents of 
location $ 1249 will be loaded into the A-reg to complete the instruc
tion. The effective address is always taken as being the sum of the 
operand and the contents of the X-reg. 

ZERO PAGE, INDEXED BY X - This is a two-byte instruction 
that calculates an effective address in Page Zero only. It only cal
culates the low-order byte of the effective address; the high-order byte 
is always zero. For example, 

LOX #$23 
LOA $34,X 

will generate $85, $34 from the LOA instruction . Upon execution, the 
$85 calculates the effective address by first adding $34 and the 
operand to $23, which is the contents of the X-reg. The sum o f $57 is 
then used as the low byte to make the effective address of $0057. Then 
the contents of location $0057 is read from memory and put into the 
A-reg. 

Be careful using th is mode. If the sum is greater than $FF, you do 
not address Page One; instead, the effect ive address wraps around to 
point into Page Zero again! For instance, 

LDX #$FE 
LDA $50,X 

.... 
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when executed, will load the contents of $004E into the A-reg, not the 
contents of $014E. If you want the boundary crossed into Page One, 
use the Absolute Indexed by X mode instead. However, the Zero Page 
indexed lets the X-reg function the same as a signed index. The 
example here functions the same as if the address $50 were indexed by 
a value of minus two when the X-reg has $FE in it. 

ABSOLUTE INDEXED BY Y - A three-byte instruction that is 
similar to the Absolute Indexed by X. T he effective address is cal
culated as the sum of the operand and the contents of the Y -reg . So, 

LOY #$45 
LOA $2300,Y 

will assemble the LOA as $89, $00, $23. When run, the 6502 
calculates the effective address as $2345. The A-reg is then loaded with 
the contents of location $2345 . 

INDIRECT- There is only one, thejwnp indirect, and it is three 
bytes in size. It has an op code of $6C. As an example, 

JMP ($0036) 

assem bles as $6C, $36, $00. Upon execution, the processor reads 
$0036 as the effective address's low byte. Then it reads the contents of 
$0037 as the high byte of the effective address. The effective address is 
put into the PC to complete the inst ruction. 

Tak ing the example furt her, you can sec it more explicit ly. If $0036 
contained $00, and $0037 contained $C5, then the effective address 
would be $C500. The jump instruction puts that into the PC so the 
next instruction is executed at $C500. T he result is that the program 
jumps to the routine at $C500. If another address was stored in 
$0036.0037, then that is the address used for the jump. The locations 
$0036.0037 given by the operand point to the rout ine to be jumped 
to, rather than being the routine itself. The indirect mode is shown by 
using brackets. 

INDIRECT INDEXED BY Y- A two-byte inst ruction that uses a 
Page Zero pointer and the Y -reg to calculate its effect ive address. The 
effective address is the sum of the pointer value from Page Zero and 
the contents of the Y -reg. As an example, the assembler code 



158 Appl~ Programmer's Handbook 

LDY #$45 
LDA #0 
STA $50 
LDA #$23 
STA $51 
LDA ($50).Y 

represents part of a routine that uses indirect indexed . The Y -reg has 
$45, and the Page Zero pointer $50 .51 has $2300 when the first fi ve 
instructions have been executed. The sixth instruction, which 
assem bles as $B1, $50, loads the A-reg with the con tents of memory at 
$2345. The effective address, $2345, is calculated by first getting the 
pointer from the Page Zero location given by the operand, $50. This 
pointer is $2300. Then, the contents of the Y -reg, which is $45, is 
added. Compare the way this works with the Indexed by Y mode 
above. Where the Indexed by Y mode uses the absolute value of its 
operand to add to the Y -reg, the Indirect Indexed by Y mode uses its 
operand to point to the value to be added to the Y -reg. 

INDEXED INDIRECT BY X- Another two-byte instruction that 
uses a Page Zero pointer and a register to calculate the effective 
address. This time, the X-register is used . Indirection now takes place 
ajrer the indexing, so this mode is not the same as Indirect Indexed. 
The effective address is taken from a Page Zero pointer which in turn 
is calculated as the sum of the operand and the contents of the X-reg. 

This mode is rarely used. In the few cases where it is used, most of 
the time the X-reg is set to zero to make it a simple indirect instruc
tion. For example, 

LDA #$34 
STA $50 
LDA#$12 
STA $51 
LDX #0 
LDA ($50,X) 

sets up the A-reg with the contents of $1234. The last instruction 
assembles as $A 1, $50. On execution, it gets the operand value, $50, 
and adds the contents of the X-reg. In this case that is zero, so the sum 
is also $50. Then it fetches the effective address from $50 and $5 1 in 
Page Zero. In this example, that gives $1234. Suppose the X-reg were 

-
-
n 
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set to $16 instead. In that case, the effective address would have been 

~ 
fetched from $66.67 in Page Zero because $66 is $50 plus $16. 

3.2.2 Mnemonics 

~ See Tables 3-4 and 3-5 for their op codes. 

ADC Add Memory to A-reg with Carry 
AND Logical AND Memory with A-reg 
ASL Arithmetic Shift Left (memory or A-reg) 
BCC Branch if C-flag is clear 
BCS Branch if C-flag is set 
BEQ Branch Equal Zero; branch if Z-flag set 
BIT Test Bits in Memory with A-reg 
BMI Branch Minus; branch if N-flag set - BNE Branch Not Equal zero; branch if Z-flag clear 
BPL Branch Plus; branch if N-flag clear 
BRK Break to IRQ vector with B-flag set 
BVC Branch if V-flag clear 
BVS Branch if V-flag set 
CLC Clear C-fl ag 
CLD Clear D-flag 
CLI Clear 1-flag 
CLV Clear V-flag 
CMP Compare Memory with A-reg 
CPX Compare Memory with X-reg 
CPY Compare Memory with Y-reg 
DEC Decrement Memory by one 
DEX Decrement X-reg by one 
DEY Decrement Y -reg by one 
EOR Exclusive OR Memory w ith A-reg 
INC Increment Memory by one - INX Increment X-reg by one 
INY Increment Y -reg by one 
JMP Jump to new location 
JSR Jump to Subroutine, saving return address 
LDA Load A-reg with memory 
LDX Load X-reg with memory 
LDY Load Y -reg with memory 
LSR Logical Shift Right Memory or A-reg, one bit 

~ 
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NOP 
ORA 
PHA 
PHP 
PLA 
PLP 
ROL 
ROR 
RTI 
RTS 
SBC 
SEC 
SED 
SEI 
STA 
STX 
STY 
TAX 
TAY 
TSX 
TXS 
TXA 
TYA 

No-Operation 
Logical OR Memory with A-reg 
Push A-reg onto stack 
Push P-reg onto stack 
Pull A-reg from stack 
Pull P-reg from stack 
Rotate Memory or A-reg, one bit left 
Rotate Memory or A-reg, one bit right 
Return from interrupt 
Return from subroutine 
Subtract Memory from A-reg; borrow from C-flag 
Set C-flag 
Set D-flag 
Set 1-flag 
Store A-reg in memory 
Store X-reg in memory 
Store Y-reg in memory 
Transfer A-reg to X-reg 
Transfer A-reg to Y -reg 
Transfer S-reg to X-reg 
Transfer X-reg to S-reg 
Transfer X-reg to A-reg 
Transfer Y-reg to A-reg 

Each instruction is described and explained in the context of pro
gramming in the following sections of this chapter. You can refer back 
to this list o f mnemonics as necessary and many of the simpler o nes 
like DEX and STY won't be explained further; you can understand 
them from their definitions. 

3.3 PROGRAM FLOW 

3.3.1 The CMP Instruction 

Much of the a rt of programming consists in arranging alternate se
quences o f actions and decisions. At the machine language level, ac
tion instructions set flags in the P-reg and decision instructions read 
these flags. The secret to programming effectively with machine 
instructions is in knowing the P-reg flags - how they are set and how 
they are tested. 

n 
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While there are seven active flags in the P-reg, only three of them 
are used often in controlling program flow. These are theN-, Z-, and 
C-flags. 

The N-flag indicates that the last action instruction had a negative 
result. The value of the resulting byte was between $80 and $FF, 
inclusive, if the N-flag is set. If the result was posi tive, $00 to $7F, 
then the N-flag is clear. The N-flag therefore reflects the value of 
either zero or one of the Bit 7 in the last result. 

Many actions change the N-flag. These actions are listed in Tables 
3-4 and 3-5. They are indicated by an "N" in the Flags column. 

The Z-flag also has many actions that can change its value. When
ever the result of an instruction is a zero, the Z-flag is set. Conversely, 
a nonzero result will clear the Z-flag. 

A couple of examples. If the processor executes a LOX #$60 
instruction, it will clear the N-flag and clear the Z-flag. It does so be
cause the result of $60 is positive and nonzero. If a DEY instruction 
acted on $00 in theY -reg, then theN-flag would be set and the Z-flag 
would be cleared. In this case the result is $FF in the Y -reg, which is 
negative and nonzero. Similarly, a LOA #$00 would set the Z-flag and 
clear the N-flag. 

The C-flag is a little different. First, you can see from Table 3-5 it is 
changed by A-reg arithmetic and logic instructions. And, it can be 
changed by the compare instructions: CPX, CPY, and CMP. Arith
metic and logic will be done later; here the compares are important. In 
particular, the CMP is studied because it shows how the C-flag works. 

In the P-reg, the N-flag is Bit 7, the Z-flag is Bit I , and the C-flag is 
Bit 0. Bit 0 is the least significant bit (LSB). 

Here is a routine that uses the N-flag to connect its action and deci
sion . It looks at the keyboard and waits until a key is pressed. Then it 
prints the hex code for the keyboard character and returns to the 
Monitor: 

0303 : AD 00 CO 
0300: 10 FB 
0305 : A210CO 
0308: 20 DA FD 
0308: 4C 69 FF 

LDA $COOO 
BPL $0300 
LDX $C010 
JSR $FDDA 
JMP $FF69 

First, the keyboard is fetched from $COOO. This action is tested by the 
BPL, which branches back to repeat the action at $0300 while the key-
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board was not used. When a key is pressed, it gives a character greater 
than $7F; this sets the N-flag instead of clearing it. So, when a real 
keyboard character is in the A-reg, control simply falls through to the 
next instruction at $0305. 

The LDX instruction resets the keyboard - a job any keyboard in
put routine must perform. The routine at $FDDA prints the hex code 
of the A-reg. It is called with a JSR instruction that does the same job 
for you as a GOSUB would in BASIC. Finally, the routine jumps to 
the Monitor at $FF69. 

Look a little closer at the BPL instructio n at $0303 . The op code is 
$ 10; simple enough. But the operand is $FB. This is an address to give 
the BPL instruction a branch address of $0300 like the assembler form 
on the right says. The next instruction taken when the N-flag is set is 
$0305. So, when the N-flag is clear, the branch address is $0305 plus 
the operand $FB. The addition of this relative address to the PC is 
done with signed arithmetic; so, $FB is taken to mean - 5 to give a 
branch address of $0305 - 5 or $0300. You can enter and run this 
routine to see it work. 

If you use one of the compare instructions - CMP, CPX, CPY -
you can force all three fl ags. This gives you the N-, Z-, and C-fl ags to 
analyze with branch instructions. With the C-flag available, you can 
compare any two va lues and branch accordingly. 

The CMP instruction makes a subtraction 

A minus M 

where A is the A-reg and M is the memory. If the result is zero, the 
Z-flag is set; otherwise, the Z-flag is cleared. If the result is greater 
than or equal to zero, the C-flag is set; otherwise, it is cleared. The 
N-fl ag reflects the result's Bit 7. The result does not replace the origi
nal value of the A-reg; unlike a subtraction instruction, the register be
ing compared remains unchanged. 

Similarly, you can compare the X-reg or the Y-reg with memory. 
The CPX and CPY both force the three flags without changing the 
register value being compared. Whenever you want to compare values 
without destroying the register, or you want to re-examine a register 
after other actions have altered the flags, then you can use a compare 
to do the job. They a re the direct way to set these flags. 

Usually, the other instructions that you use set the flags. Check 
T ables 3-4 and 3-5 and see those flags altered by the vario us instruc
tions. Some o f these are explicit: SEC and CLC in particular. 

-
-
-
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The decision instructions a re the branches. One of these, the BPL, 
gave the example of the keyboard routine earlier. The BPL tests the 
N-flag; the BMI also tests the N-flag, but it branches when the result 
has Bit 7 set. 

T here are two branches for testing the Z- flag. The BEQ will branch 
if the Z-flag is set; that is, a zero result. And, the BNE will branch if 
the Z-flag is clear; when the result was not zero. 

The C-flag is tested with either a BCC or a BCS. By using a BCC, 
the branch occurs when the C-flag is clear. A compare instruction 
where the register is less than the memory will also do this. Similarly, a 
BCS branches when the C-flag is set. Comparing a register with an 
equal or smaller memory will set the C-flag. 

The compare is always unsigned; you are subtracting absolute 
values. So, $84 is greater than $56, for example. To work with signed 
numbers, you need the N-flag. But most compares are done with un
signed numbers using the C-flag. These resul ts are summarized for 
you in Table 3-6. 

Table 3-6. The Results of a CMP 

N-flag C-flag Z-flag 

A<M Either Cleared Cleared 

A = M Cleared Set Set 

A>M Either Set Cleared 

If you are learning a machine language for the first time, the fol
lowing experiments will help you . Enter and run them; they a re well 
worth your time. 

First, assemble the following routine: 

ORG $0300 
TEST: LOX #$FF 

LOA ARG 1 
CM P ARG2 
BEQ TEST1 
LOX #0 

TEST1 : STX RESULT 
JMP $FF69 

ARG1 : OS 
ARG2 : OS 
RESULT: OS 
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The purpose is to test the BEQ instruction with different values of 
ARG 1 and ARG2. The CMP instruction has ARG 1 as its A-reg value 
and ARG2 as its memory value. The X-reg is loaded with $FF at the 
beginning. If the branch is taken, it puts that $FF into RESULT 
memory. If the branch is not taken, it becomes $00 (zero) instead; 
RESULT is zeroed. So, you can see if the branch was taken or not by 
examining RESULT in memory. 

The parameters are: ARG 1 at $0312, ARG2 at $0313, and RESULT 
at $0314. To make a run, use the Monitor to set ARG1 and ARG2 to 
the values of A-reg and to the memory that you want. Then, run the 
routine at $0300 using the G command. And finally, examine the con
tents of RESULT to see whether or not the branch was taken. 

For the BEQ instruction, what will be the result when ARG 1 is 
greater than ARG2? When they are equal? When ARG 1 is greater 
than ARG2? 

Make three more runs, but change the branch instruction first. In
stead of a BEQ, use a BNE. What results do you expect now? 

Again, change the branch instruction for three more runs. Use a 
BCC. Then, change to a BCS for three more runs. 

You can use this routine for any experiments that you may need to 
understand the branches. For now, you should verify the results sum
marized in Tabl_e 3-6. Later, you can always run more routines if you 
want to figure out the actions of other flags. 

By using just the C-flag and the Z-flag, you can make five different 
decisions. In a program, you can branch for one of five conditions: 
greater than; greater than or equal; equal; less than or equal; less than. 
The branches for each condition are in Table 3-7. Use the code for the 
case you want. 

Table 3-7. Branch After Compare 

Condition Branch on Condition 

A-reg < memory BCC CASE I 

A-reg -E;; memory BCC CASE2 
BEQ CASE2 

A-reg = memory BEQ CASE3 

A-reg ~ memory BCS CASE4 

A-reg > memory BEQ NEXT 
BCS CASES 
NEXT: 

,.... 
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3.3.2 The Stack 

In machine code, a JMP instruction does what a GOTO does in 
BASIC. And, a JSR does what a GOSUB does. The difference be
tween JMP and JSR is that the JSR remembers where it jumped from . 
This way, a return instruction called RTS can recall the old address for 
the PC in the processor. 

The JSR and RTS lets you make subroutines easily. And there are 
o ther instructions that save and recall values automatically, with im
plied addressing. You don't have to keep track of their storage in 
RAM because the processor uses the S-reg to do that automatically. 
The RAM used fo r this storage is Page One; it is called the stack. Simi
larly, the S-reg is called the stack pointer. By pointing to the stack, the 
S-reg remembers where the next unused locatio n is available for stor
age. 

One pair of stack instructions is the PHA and PLA. The PHA is 
called push A-reg; it stores the A-reg in Page One. Then, the pull 
A-reg instruction, PLA, loads the A-reg from Page One. Another pair 
is PH P and PLP. They push the P-reg and pull the P-reg from the 
stack. These push and pull instructions do the same thing as store and 
load instructions, but they use and modify the S-reg as well. 

A push is done by storing the byte to Page One, using the S-reg as 
the address-low. After the store , the S-reg is decremented by one to 
point to the next locatio n. 

A pull is done by first incrementing the S-reg by one. Then, the byte 
is read by using the S-reg as address-low and $01 as address-high. 

In use, the push and pull instructions save and recall bytes from the 
A-reg or P-reg. By automatically changing the S-reg by one each time, 
the processor always keeps track of the bytes stored in Page One on a 
last-in, first-out basis. You can think of the bytes being stacked, one 
atop the other, with the last one pushed on the top. This last byte is the 
fi rst o ne available to be pulled from the stack. 

For example, suppose you used the PHA instruction to push three 
bytes onto the stack from the A-reg: 

LDA #$01 
BHA 
LDA #$02 
PHA 
LDA #$03 
PHA 
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The S-reg then points to the next location beyond the one containing 
the $03 value. Pulling a byte at this time will get the $03 from the stack 
and leave the stack pointer (the S-reg) pointing there. Another pull 
increments the S-reg again and loads the $02 from the stack. The third 
pull does the same thing, fetching the $0 I. The S-reg is now pointing 
to the $01 's location as the first free memory available, just as it did 
before the three pushes were made. 

A push stores a byte and decrements the stack pointer; a pull incre
ments the stack pointer and loads a byte. 

Addresses are pushed and pulled by the JSR and RTS instructions. 
They are sixteen bits instead of eight, so the processor has to push 
twice from the PC to do a JSR and pull twice to do an RTS. 

Here are the scenarios of the processor performing a JSR and an 
RTS. 

Assume the processor is executing the JSR at $0300: 

$0300: 
$0303: 

JSR $FDFO 
CLC 

It reads the operand bytes, $FO followed by $FD. Then , the PC is 
pointing to the last byte of the operand, which is the $FD in location 
$0302. The 6502 then pushes the high byte of the PC on the stack, $03 
in this case. Then it pushes the low byte of the PC on the stack, $02 
here. After that, it makes a jump by putting the operand bytes into the 
PC: the $FDFO for this case. The next instruction is then at location 
$FDFO; the JSR is complete. 

The subroutine runs, perhaps calling others, until it reaches an 
RTS. 

Executing the RTS, the processor pulls the old address from the 
stack: first the low byte, then the high byte. They are stuffed into the 
PC to give an address of $0302 in this example. Now, the processor 
again points to the last byte of the JSR instruction. To complete the 
instruction cycle for the RTS, the processor increments the PC by one 
so as to point to the next instruction. In this case, the PC becomes 
$0303 to point to the CLC instruction there. That completes the RTS 
instruction. 

The one point you should watch for if you use the stack pointer 
from within the subroutine is that the JSR has stacked the address of 
its third byte, not the address of the next instruction as a simpler 
description of the JSR might lead you to believe. If you load the PC 

-
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from the stack by using an RTS, remember that the address you load 
must therefore be one less than the address of the instruction to be 
executed next. 

Such trickery is, fortunately, invisible to the normal use of the JSR 
and RTS instructions. 

The other instructions that use the stack are the ones associated with 
interrupts. IRQ and NMI interrupts push return addresses and the 
P-reg onto the stack. The RTI instruction pulls the P-reg and returns 
from the interrupt routine to the one that was interrupted. 

3.3.3 Structures 

The way any routine you write does its job is called the algorithm of 
the routine. The simplest possible routines have simple algorithms that 
cannot be broken down further; these algorithms follow a form called 
a structure. To write any routine, you must design an algorithm that 
uses one or more of these structures. Knowing the structures and what 
each will or will not do is necessary if you want to write uncomplicated 
programs. Otherwise, the routines may have algorithms that can be
come impossible to tes t, debug, use, and maintain . 

With structures, you can put instructions together to do more 
intelligent tasks than they can do by themselves. 

The simplest way a routine can be written is with a sequence of ac
tions, without decisions. For example, you can move the contents of 
one memory location to another: 

MOVE : LDA HERE 
STA THERE 
RTS 

A longer routine could move several bytes of memory: 

MOVES: LDA HERE 
STA THERE 
LDA HERE+ 1 
STA THERE+1 
LDA HERE+ 2 
STA THERE+2 
RTS 
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You can use indirect indexed addressing to generalize this routine. 
Then, it could be used for any three contiguous memory locations, not 
just at HERE and THERE: 

MOVES: LDY #0 
LDA (HEREZ),Y 
STA (THEREZ),Y 
LDY #1 
LDA (HEREZ).Y 
STA (THEREZ),Y 
LDY #2 
LDA (HEREZ),Y 
STA (THEREZ),Y 
RTS 

In this case, you must put the first address of the three source bytes in 
the Page Zero pointer at HEREZ and HEREZ + 1. Then, put the 
address of the first destination byte in the Page Zero Pointer, 
THEREZ and THEREZ + I . 

Such a call seq uence of setting Page Zero pointers before making a 
JSR is quite com mon. Setting them with immediate values, in as
sembler notation where the desired addresses are given by labels, can 
be done like: 

LDA #> SOURCE ;low byte 
STA ZHERE 
LDA #< SOURCE ;high byte 
STA ZHERE + 1 
LDA #> DEST ;low byte 
STA ZTHERE 
LDA #< DEST ;high byte 
STA ZTHERE + 1 
JSR MOVES 

In the notation of the DOS Toolkit Assembler from Apple, the ">" 
selects the low byte of a labeled address and the "<" selects the high 

-
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Similarly, you can write a SWAP routine to exchange the contents 
of three locations with three other locations. It can have the same call 
sequence, using HEREZ and T HEREZ as Page Zero pointers: 

SWAP: LDY #0 
LDA {HEREZ) ,Y 
PHA 
LDA (THEREZ),Y 
STA {HEREZ),Y 
PLA 
STA (THEREZ).Y 
LDY #1 

LDY #2 

RTS 

where the ellipsis ... indicates that the block of code swapping one 
pair of bytes is repeated . Note how the stack is used for temporary 
storage of the byte from one location until the A-reg becomes 
available for it again. 

Other sequential routines you may write include ones to save and re
call all the registers, setting soft switches for a particular screen con
figuration, setting Monitor parameters in Page Zero, and so on. 

Use the sequential routine structure to do simple, low level tasks. lt 
is fast in execution. It won't handle any decisions or a large number of 
repetitions, however. 

To handle large numbers of repetitions, you use a loop. There are 
two kinds of loops: one decides before acting; the other acts before de
ciding. The second type of loop is the easiest to write and it is called a 
DO-UNTIL loop. 

The DO-UNTIL loop is the kind used in BASIC where the decision 
to leave the loop is made at the bottom, in the NEXT statement. Most 
DO-UNTIL loops in machine code look like a BASIC FOR-loop, 
when using a counter. One of the index registers is often used for DO
UNTIL loops. 

As an example, here is the MOVE routine written using a loop: 

MOVE: 
MOVE1 : 

LDX #$1F 
LDA HERE,X 
STA THERE,X 
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DEX 
BPL MOVE1 
RTS 

This rou ti ne copies 32 bytes, starting at HERE, to the 32 bytes starting 
at THERE. The decision at the bottom of the loops is made after the 
DEX instruction, which forces the Z-flag and the N-flag. Since aU 
X-values wanted are positive, having values in the $00.1 F range, the 
BPL will fai l to branch when the count changes from $00 to $FF. 

If the range is beyond $00.7F, you cannot use theN-flag. Instead, 
use the Z-flag, which is also changed by the DEX, DEY, INX, and 
INY instructions: 

MOVE: LDX #$AO 
MOVE1: LDA HERE-1,X 

STA THERE-1,X 
DEX 
BNE MOVE1 
RTS 

Fig. 3-8. The DO-UNTIL slruclurc. 

This copies $AO bytes. The X-reg is initialized with $AO, which is the 
number of bytes to copy, instead of one byte less. And, the operand 
addresses are one less than the lowest address of interest. This is be
cause the X-reg ranges from $AO down to $01 as it copies. When it be-
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comes zero, the loop is finished . This is better because you aren't re
stricted to $7F to satisfy the N-flag. 

You can use a loop counter with Page Zero pointers as well. For an 
index, use the Y -reg; this lets you use the indirect indexed addressing 
mode: 

MOVE: LDY #$AO 
MOVE1 : LDA (HEREZ) ,Y 

STA (THEREZ), Y 
DEY 
BNE MOVE1 
RTS 

Remember, HEREZ and HEREZ + I must be initialized to point to 
one location before the lowest address o f the move. The same is true 
for THEREZ and THEREZ + I . 

Indexes are great when the count is 256 or less. But if the count is 
greater than 256, you will have to use a separate counter, preferably in 
Page Zero. 

The DO-UNTIL structure appears in Fig. 3-8. Use it whenever you 
need a loop that must repeat its action at least once. 

Sometimes, you need a loop that must be able to avoid its own 
action. Suppose you want to set the size of the MOVE in the call se
quence instead of forcing it with an immediate value. If the number of 
bytes to be moved is zero, the DO-UNTIL loop isn't quite smart 
enough to quit before moving the first byte. To handle such a job, you 
use another loop structure called the DO-WHILE. 

As an example of a DO-WHILE loop, here is a MOVE routine that 
copies from HERE to THERE, and expects the number of bytes in the 
X-reg: 

MOVE : CPX #0 
BEQ MOVE1 
LDA HERE-1,X 
STA THERE - 1 ,X 
DEX 
JM P MOVE 

MOVE1 : RTS 
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First, the CPX forces the tlags; especially the Z-flag. The BEQ will 
branch to the RTS exit instruction if the X-reg is zero. So, even if this 
is the fi rst time through the rout ine will exit before taking any action. 
The action consists of the move followed by the decrement of the 
index. After all actions, the JMP forces the loop back to the top to test 
again. 

Even though the DO-WHILE is not used as often as the DO
UNTiL, keep it in mind. With only a little extra programming effort 
the DO-WHILE loo p will make an otherwise bug-prone loop fail-safe. 
The DO-WHILE structure is shown in Fig. 3-9. 

When you don't need a loop, you can make a simple decision by 
us ing an IF- THEN-ELSE structure. This simple structure has a deci
sion for one of two possible actions. More complex decisions can then 
be made by using a series of simple IF-THEN- ELSE structures. 

The CMP experiments described earlier use th is structure. Each 
routine had two possible outcomes: either the result was zero or it was 
255 in value. While that particular one assumed one of the outcomes, 
then replaced it with the other when called upon, you can write 
IF-THEN-ELSE s tructured routines that don't assume any details of 
each action. 

For instance, take the experiment comparing ARGI and ARG2. If 
you wrote it to call one of two possible routines, then each conse
quent ial action could be written as a separate subroutine. You would 
have complete control in making the results anything you wanted for 
the two outcomes. 

TEST: LOA ARG1 
CMP ARG2 
BEQ TEST1 
JSR FAILED 
JMP TEST2 

TEST1: JSR PASSED 
TEST2: RTS 

I f the branch is made, the subroutine PASSED is called and then the 
routine exits. If the branch is not made, the other subroutine, 
FAILED, is called. Upon return from the FAILED subroutine, a 
jump to the exit point is made. So, ARG I and ARG2 are compared; 
one of two subroutines - PASSED or FAI LED - is the con
sequence. 

.... 

-

-
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-

f!!!! Fig. 3-9. The DO-WHILE slruclure. 

-
-

You can make the subroutines anything you want. You can just 

- make 

-

r 

-

and make 

PASSED: LDA 
STA 
RTS 

FAILED : LDA 
STA 
RTS 

#$FF 
RESULT 

#0 
RESULT 

to get the same performance as the original. 
The IF-THEN-ELSE structure is shown in Fig 3-10. You can use it 

to separate out actions and decisions for simpler routines. This 
structure can be compounded into multiple decisions when you need 
complex logic. 

One such complex structure is called the CASE. It extends the 
simple IF-THEN-ELSE structure from two outcomes to several out
comes: three, four, or as many as needed. For example, suppose you 
wanted to examine an input character from the keyboard in a graphics 
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Fig. 3-10. The IF-THE -ELSE structu re. 

program. You want to use the four keys to change the cursor on the 
screen, but ignore all the other keys. Assuming the character is given 
in the A-reg, here's the CASE routine to select one of four cursor 
movement routines: 

CURSOR : CMP #' I' ; if I then UP 
BNE CURS1 
JSR UP 
JMP CU RSX 

CURS1 : CMP #'J ' ;if J then LEFT 
BNE CUR 52 
JSR LEFT 
JMP CURSX 

CUR 52: CMP # 'M' ; if M then DOWN 
BNE CURS3 
JSR DOWN 
JMP CURSX 

CURS3: CMP #'K ' ;if K then RIGHT 
BNE CURSX 
JSR RIGHT 

CURSX RTS 

Each of the four characters is tested against the A-reg. If any one is 
found, its corresponding subroutine is run. If none are found, no sub-

-
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routine is run . After running any subroutine, control is directed to 
CURSX where the routine exits. The caller must give the character in 
the A-reg. 

Such a CASE structure isolates the decision of which routine to run 
from the details of the rout ine itself. You could use this same CASE 
on LORES, HIRES, or even text cursor routines. Just give it the 
a ppropriate subroutines for UP , DOWN, LEFT, and RIGHT in your 
program. The CASE structure itself appears in Fig. 3-11. 

Fig. 3- 11. CURSOR- example of a cuse slruclure. 

Another extension of the IF-THEN-ELSE structure is the range 
test. The IF-TH EN-ELSE uses a branch instruction or two to make a 
simple decision like one from Table 3-7. But, to see if a value fa lls 
within a ra nge, you need two tests. However, there are only two out
comes - FAIL or PASS. So, you can combine the two tests you need 
in one algorithm to simplify the call structure of your program . 

Here is a common range test. It makes sure that a character code in 
the A-reg is a letter, from A to Z. 

ALPHA: CMP #'A' ;range test 
BCC ALPHA2 ;from "A" to "Z" 
CMP #'Z' ;inclusive 
BEQ ALPHA1 
BCS ALPHA2 
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ALPHA 1: JSR 
JMP 

ALPHA2: JSR 
ALPHA3 : 

PASS 
ALPHA3 
FAIL 

The first test branches if the A-reg is less than A to ALPHA2 because 
that is an obvious failure. Then the Z test passes any characters equal 
to Z by the BEQ to ALPHA I. This is foll owed by fai ling any that are 
greater than Z by the BCS to ALPHA2. 

To make any other range test, use Table 3-7 to select the two tests 
you need. The range test is shown in Fig. 3-12. 

Fig. 3-12. ALPHA - example or a ra nge structure. 

When programming, break down the job into the simplest routines n 
you can. If possible, use only one of these six structures for each 
routine. Each routine should have only one entry point, the first exe
cutable statement in the routine. And it should have only one exit 
point, as well. Use jumps and branches to the last instruction in the 
routine, which is usually a n RTS . One of these six structures shou ld be 
right for each of your routines. Use Table 3-8 to help you select the 
o ne you want. 
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Table 3-8. Program Structure Selection 

Structure Primary Use Advantages 

Sequence Low-level High speed 

Do-Until Most common loop Short, easy to write 

Do-While Alternate loop Stronger test 

If-Then-Else Decision Logic Easy to follow 

Case Interpreters Simplifies act ions 

Range Data Editors Simplifies actions 

3.3.4 Methods 

There a re many tricks of the trade and fancy methods used to write 
routines using the structures. Here are a few of the more common 
ones. 

Some routines must have a constant and known execution time. For 
instance, the routines that read and write bytes to the disk in DOS 
must do so at intervals of exactly thirty-two clock cycles. A routine 
that has such a measured execution time is called a real-time routine. 

Real time is the solution for hardware service needs when times are 
too short for interrupts. Or where interrupts aren't available, such as 
when writing a sound generator for the built-in speaker. And, real 
time can be used in utilities like the Monitor's WAIT routine at 
$FC58. 

To calculate the routine's execution time, use the number of clock 
cycles for each instruction given in Table 3-9. Add up the total number 
of cycles for the entire routine and multiply by 0.977778 micro
seconds. 

Here are some short delay routines. 
The shortest routine you can have is one with just an RTS instruc

tion. When called, the JSR takes six cycles, and the RTS takes six 
cycles. So, the entire call takes twelve cycles. 

You can increase the length of the call two cycles at a time, by in
cluding NOP instructions. For example, 

WAIT: NOP 
NOP 
RTS 

takes sixteen clock cycles to call. For longer times, just add more 
NOPs. 
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Instruction Addressing Modes and Related Execution Times 
(Courtesy MOS Technolo__gy, Inc.) 
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< N N < < < = < 
AOC 4 4" 4" s• ~ 

AND 4 4" 4" 6 s• 
ASL 6 
BCC 2•• 
BCS 2"" 
BEQ 2 .. ~ 
BIT 4 
BMJ 2 .. 
BNE 2•• 
BPL 2 .. 
BRK ... 
BVC 2 .. 
BVS 2"" 
CLC 
CLD 
Cll 
CLV 
CMP 4" 4" 6 s• 
CPX 4 
CPY 4 
DEC 6 
DEX 
DEY 
EOR 4 4" 4" 
INC 6 
INX ... 
INY 
JMP 3 
JSR 6 
LOA 4" 4• s• 
LDX 4" ~ LOY 4 4 4" 
LSR 6 6 7 
NOP 
ORA 4 4 4" 4" 6 s• 
PHA 
PHP 
PLA 4 
PLP 4 
ROL 
ROR 
RTI 6 
RTS 
SBC 4" 4• s• 
SEC 
SED 2 
SEI 2 
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Instruction Addressing Modes and Related Execution Times 
(Courtesy MOS Technology, Inc.) 

<; .. ... ... ;.< ... :0 
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< N < < < Cl: < 
STA 6 6 
STX' 
STY" 
TAX 
TAY 
TSX 
TXA 
TXS 
TYA 

• Add one cycle if indexing across page boundary 
''Add ont cycle ir branch is lakcn. Add one additional if branching operation crosses page boundary 

You may need an odd number of cycles, such as for the pair of CLC 
and BCC, which takes five cycles. So, 

takes 17 cycles, and 

WAIT CLC 

WAIT1 

WAIT 

BCC WAIT1 
RTS 

NOP 
NOP 
CLC 
BCC WAIT1 

WAIT1 RTS 

takes 21 clock cycles to call . 
For longer wait times, you can use a loop. The time taken each pass 

through the loop will vary with the path taken, so the calculation of 
the total real time is a bit more involved. In general, the loop 

WAIT: 
body of n cycles 
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DEX 
BNE WAIT 
RTS 

uses n + 5 cycles each branch a nd n + 4 cycles when the branch fails. 
The number of times through the loop is given by the X-reg. T he 
formula is, 

t = (n + 5)X + II 

where, n is number of cycles in body of loop, 
x is contents of X-reg when called, 
t is total number of cycles, including J SR and RTS. 

This calculation gives the relation between the time taken in the loop 
a nd the time taken for the entire routine. Solving for x or n wi ll give 
you the information needed to make a delay for any given time. 

You can delay routines to control the pitch on speaker routines, to 
s low the output to a printer interface, or to slow a video display like 
Applesoft's SPEED = feature. 

In programming, you spend most of your time working with for
mats of various data; very little t ime with a ny clever algorithms need
ing a lo t of math. So, the better organized you r data is the less 
programming time needed to support it. When you combine this with 
the fac t that there are on ly two kinds of data structures, both simple, 
then you can avoid a lot of work by carefully structuring your data to 
fo llow its own fu nction. 

For example, consider the problem of code conversion. If you want 
to use a n Apple computer to communicate with an IBM computer sys
tem, you must cha nge each ASCII character to an EBCDIC equivalent 
before you can output it to your modem. And each character received 
from the line must be changed from EBCDIC to ASCII before your 
Apple routines can make use of it. An algorithm could CMP each 
possible character in a "humongous" CASE structure, but there can be 
as many as 128 characters to compare - a mess to program! Since the 
problem appears to you in the form of a table where each entry 
represents the EBCDIC code of its ordinal (position in the table), it 
makes sense to use the simple code table in memory and use indexed 
addressing to do the lookup. The index address 

n 

-
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LDA EBCDIC,X 

looks up a table called EBCDIC and returns the X-th entry from the 
table in the A-reg. So, if each entry is the EBCDIC equivalent of its 
ASCII ordina l (X-reg) then this single instruction does the job of con-

!'!"!~ verting from ASCII to EBCDIC. 
To continue the example, you can use the same table to convert 

from EBCDIC to ASCII when receiving from the IBM computer. This 
time you have the entries that you want to match, which will give you 
the position in the table. Here you need a loop to do the search. 
Assuming the EBCD IC character is in the A-reg: 

; largest entry 
ASCII : LDX #$7F ; number of entries 
ASCII1 : CMP EBCDIC,X ; WHILE not found 

DO 
BEQ ASCII2 
DEX ; decrement o rdinal 
BNE ASCII1 ; ENDWHILE 

ASCII2 : RTS 

the ASCII code is returned in the X-reg. If the search fails and an 
EBCDIC entry can't be found (X-reg contains zero) then the ASCII 
code NU L is returned, which the Apple usually ignores. 

Such a table is quite simple to use. It has a fixed size and is not 
changed at all by the program using it. Other tables may be variable so 
that entries may be made and deleted during the program execution. 
The simplest example of a variable table is a stack. You saw the 
processor stack function already, where the table is in Page One and 
the pointer to the next avai lable spot is in the S-reg inside the 
processor. But you can make your own stack using the zeroth location 
of the page as the poi nter, that is if the stack only has one page. Other
wise, use a Page Zero pointer. Two simple rout ines maintain the stack 
-STACK and UNSTACK. 

The STACK routine 

STACK: LDX #0 
STA (STAKZ,O) 
INC STAKZ 

;put on stack 
; and push 
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BNE STACK1 
INC STAKZ+ 1 

STACK1: RTS 

places the contents of the A-reg on the stack by writing to the next 
available location given by STAKZ in Page Zero. After that, it incre
ments the Page Zero pointer by one, taking care to increment the high 
byte if necessary, thereby pushing the byte onto the stack. Reading 
from the stack works just the opposite: popping the last byte from the 
stack, then fetching it to the A-reg. 

UNSTACK: LDX #$FF 

DEC STAKZ ; pop stack 
CPX STAKZ 

BNE UNSTACK1 
DEC STAKZ#1 

UNSTACK1: LDX #0 
LDA (STAKZ,O) ; and fetch 
RTS 

Stacks can be used for many kinds of data. One popular use of a data 
stack is to hold parameters during subroutine calls. This keeps them 
safe; in fact the routine may even call itself and keep its parameters 
separate for each call. 

Stacks are great where a LIFO access can be used, but won't do the 
job where entries must be inserted and deleted anywhere in the table. 
In that case, all entries below the insertion point must be pulled down 
to make room for the new entry. Similarly, deletion consists of push
ing all the lower entries back up a notch. If not done too often, it 
could be the way to go. 

Another way you use tables is in computed JSRs. This is a technique 
of calling one of several subroutines like you do with computed 
GOSUBs in BASIC. With this method, you call a dispatching routine 
that selects one of many subroutines according to a simple number in 
the A-reg: 0, 1, 2, 3, . . .. The addresses of the subroutines are kept in 
a table in the usual low-byte/ high-byte order. An assembler will stuff 
the table for you automatically if you just list the labels, making the 
method easy to use and maintain. 

There are two easy ways to write a computed JSR dispatcher. The 
first one uses RAM for temporary storage of the subroutine's address. 

... 
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This RAM may be Page Zero, but is is not necessary; you can use Page 
Three or anywhere you have space. For example, 

SUBR: ow SUBRO ; list of subroutines 
ow SUBR1 
ow SUBR2 
etc. 

CALSUB: ASL ;A-reg * 2 
TAX ; as 0, 2, 4, 6, ... 
LOA SUBR,X 
STA TEMP 
LOA SUBR+1,X 
STA TEMP+ 1 
JMP (TEMP) 

where DW is an assembler directive - pseudocode - to insert the 
address location of the label as two bytes in low/ high order. The ASL 
multiplies the A-reg by two, simply by shifting all bits one position 
left. Some assemblers want this mnemonic to include an A as an oper
and: ASL A. The RTS of each routine called will return you to the 
routine that called CALSUB in the first place. 

The other method eliminated the problem of finding an unused 
chunk of RAM for TEMP. Instead, the call address is put on the stack 
and the routine desired is jumped to by an RTS instruction. This 
works, but in a "sneakier" manner than the indirect jump method 
above. 

The trick to letting an RTS do the jump is to make the addresses in 
the table one less than where the routines actually start. This is be
cause the RTS increments the PC-reg by one at the end of its instruc
tion. This is why the addresses of the Apple Monitor routines that are 
dispatched from the top end of ROM are listed as being one less than 
their start addresses. The CALSUB routine can be rewritten this way 
as 

SUBR : OW SUBR0 - 1 
OW SUBR1 - 1 
OW SUBR2-1 
etc. 
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CALSUB: ASL ;mult by 2 
TAX 
LDA SUBR+1,X ;stack addr - hi 
PHA 
LDA SUBR,X ;stack addr-lo 
PHA 
RTS ;a sneaky JSR! 

The address is pushed on the stack the same way as the JSR instruc
tion: hi-byte, then lo-byte. The address location is one less than the 
next executable instruction as well . If you use this routine be sure to 
document it. 

If you have to keep a loop counter over a range beyond 256, or if 
you need to keep a pointer on a more permanent basis than an index 
will allow, use Page Zero. Anytime you want to reference memory 
with that pointer, use indirect addressing, like: ~ 

LDX #0 
LDA (ZPOINT,X) 

Initialize the pointer by putting the address of the first memory loca
tion you will access into ZPOINT and ZPOINT + I . For instance, to 
point to $4000: 

LDA #$00 
STA ZPOINT 
LDA #$40 
STA ZPOINT + 1 

;low byte 

;high byte 

Remember, if you a re using Apple's Toolkit Assembler, use ">" for 
low byte and "<" for high byte. If the BUFFER was EQUated to 
$4000, you would write 

instead. 

LDA #> BUFFER 
STA ZPOINT 
LDA #< BUFFER 
STA ZPOINT + 1 

To increment a Page Zero pointer by one, use a routine such as: n 
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ZINCR INC ZPOINT 
BNE ZINCR1 
INC ZPOINT + 1 

ZINCR+ 1 RTS 

And, to decrement it, 

ZDECR DEC ZPOINT 
LDA ZPOINT 
CMP #$FF 
BNE ZDECR1 
DEC ZPOINT + 1 

ZDECR1 RTS 

Each routine changes the low byte of the pointer first. Then, each 
routine tests for a page boundary crossing. When incrementing, this is 
when the low byte becomes zero; hence the BNE. When decrementing, 
the page changes when the low byte becomes $FF (from $00). That is 
not detected by a simple branch, so a CMP is used. 

Much of the power of 6502 programming is in managing the Page 
Zero pointers. Page Zero is like registers in larger processors; you can 
do all kinds of things with them using indirect addressing. 

3.4 INTERRUPTS 

3.4.1 How They Work 

Interrupts get the processor's attention . By using them, the outside 
world can tell the processor when a peripheral needs service, when to 
reset with initialization routines, and when to execute single instruc
tions during the debugging process. By choosing the proper interrupt 
for a job and by writing the proper routine, you can control the 6502 
processor. 

The interrupt you would use to service a peripheral is called the IRQ 
- !nterrupt ReQuest. You may, for example, have a slow printer that 
needs the processor to send it characters one at a time . The IRQ can be 
used to ask for these characters while allowing the processor to run 
other programs at the same time. 
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The printer has a line to request that a new character be sent; that 
line can be used to generate IRQs. The IRQ routine can then send the 
character and return to the interrupted program. The entire effect is to 
allow the program to run with interrupts small enough to be un
noticed. To the user, it is as if the printer received the characters with
out getting them from the processor. 

This needs some smart hardware on a peripheral card. It must 
enable or disable IRQs as needed. It must handle all the data and con
trol lines to the device itself. And, it must provide the IRQ routine 
memory fo r you to program. The peripheral l/0 is an entire topic in 
itself, and because of its importance, Section 8.2 is dedicated to it. 

The interrupt that is always used in any computer is the RESET. It 
runs the initialization routines needed to get the 6502 processor going 
and set up the Monitor or operating system. The first thing any 6502 
RESET routine must do at power up is to initialize the stack and clear 
the 0-flag: 

COLD: LOX #$FF 
TXS 
CLD 

The $FF value clears the stack. Remember, push instructions like JSR 
will decrement the S-reg; pull instructions like RTS increment it. If the 
D-flag isn't forced clear, it may be the cause of strange bugs, making 
BCD calculations instead of binary ones. All RESET routines must 
have these three instructions. 

Once these three instructions are done, you can write the RESET 
routine to do whatever your system needs. It must be programmed 
into ROM to be available at power up. 

The third use for interrupts is program debugging. On the 6502, two 
interrupts are avai lable for debug routines - the BRK and the NMI. 
The BRK is a software interrupt and the NMI is a hardware interrupt, 
like IRQ and RESET. 

Some microcomputers use the NMI for debugging. The NM I is 
generated once each instruction by connecting it wi th a switch to a pin 
labeled ROY on the 6502. On interrupt, the NMI routine gives the 
programmer a Monitor to examine registers and memory without 
further interrupts. This feat ure isn't used on the Apple, so NMI could 
be used as a means of gaining control of the machine regardless of the 
actions taken by the current program. 

-

-

-

-
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Instead of using the NMI, the Apple Monitor uses the BRK to sup
port debugging. To use BRK, you insert the op code of a BRK instruc
tion into your routine at the point you want to examine. It is used 
much ·like the STOP statement in BASIC. When the BRK is executed, 
it causes an unmaskable IRQ interrupt and sets the B-flag. The Apple 
Monitors, especially the Standard, recognize the B-flag in the IRQ 
routine and save all the registers before entering the Monitor. A very 
useful feature. 

The interrupts: servicing hardware, handling initialization, and pro
viding debugging breakpoints give you complete control over your 
computer. 

Here's what happens when an interrupt occurs. 
The processor will complete its current instruction before recog

nizing any interrupt. Depending on the interrupt, the processor will 
fetch one of three addresses from memory, see Table 3-10. 

Table 3-10. Hardware Vector Addresses 

Address Vector 

FFFA Vector address low for NMI 

FFFB Vector address high for NMI 

FFFC Vector address low for RESET 

FFFD Vector address high for RESET 

FFFE Vector address low for IRQ and BRK 

FFFF Vector address high for IRQ and BRK 

For an IRQ, the address is fetched from $FFFE.FFFF, if the I-flag 
is clear. Otherwise, the interrupt is ignored until the 1-flag gets cleared 
by the program. A BRK instruction will also cause the address to be 
fetched from $FFFE.FFFF. The BRK is not inhibited by the 1-flag; it 
sets the B-flag. Once fetched, the address is put into the PC after the 
processor saves the old PC and P-reg on the stack. 

Similarly, an NMI allows the current instruction to complete. Then, 
it saves the PC and the P-reg on the stack. Finally, it reads the address 
of the NMI routine from the vector at $FFFA.FFFB into the PC. 
Nothing inhibits an NMI. 

For a RESET, there is no procedure to save a current program. The 
RESET is intended to service power up. The address at $FFFC.FFFD 
must be in ROM as well as the routine it references. This address is 
simply fetched into the PC after several clock cycles in which the 6502 
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gets itself synchronized into the instruction fetch/ execute cycle. 
Here is how to use the BRK instruction. When used for debugging, 

as with the Apple Monitor, replace one of the instructions in your 
routine with a BRK. The BRK op code is $00. Then run the routine 
and you will get the Monitor prompt - "*" - when the break occurs. 
At that point, you can examine memory or register contents . The 
registers at the time the BRK occurred are saved by the BRK routine. 
You use ctrl/ E to examine them. 

When used as a software interrupt in your custom separating sys
tem, you must distinguish the BRK from the IRQ with the B-flag. If 
the B-flag is set, then a BRK instruction is the cause. At the end of 
your routine, you can return to the next instruction after the break . 
Just use the RTI instruction; it restores the P-reg and the PC. 

There is one caution to observe when using the BRK instruction. 
When it occurs, the BRK bumps the PC by two locations, not one. So, 
you should follow the BRK with a NOP in your code. Then, the RTI 
will return you to the next instruction, following the NOP. If you 
don't make this allowance, the results can be disastrous! 

You can trap the BRK from other IRQs with a routine like this: 

IRQS: PHP 
PLA to get the P-reg 
AND #$10 to isolate B-flag 
BNE IRQS1 8-flag set? 
JSR BREAKS yes .. break routine 
JMP IRQSX 

IRQS1 : no ... valid IRQ 
handler here 

IRQSX: RTI meanwhi le, back at the ranch 

where the BREAKS routine deals with the software BRK instruction 
interrupt, and I RQS I deals with IRQs from hardware sources. Both 
kinds o f interrupts are ended with an RTI. 

3.4.2 The Monitor Interrupts 

In the three Monitor versions - Standard, Autosta rt, and Ile -

-
-

-

-

-

interrupts are little used. The exception is the RESET, which varies -
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significantly from model to model. The NMI and IRQ are handled 
essentially the same way in all three. 

The NMI interrupt is exactly the same in all three Monitors. The 
vector at $FFFA.FFFB points to $03FB for any user JMP instruction. 
Usually, the RESET routine sets this as a JMP $FF69 to give you the 
Monitor command interpreter if an NMI should occur without your 
providing any routine of your own. So, to use the NMI, you must put 
a JMP to your own interrupt service routine at $03FB instead. 

The IRQ interrupt is vectored from $FFFE.FFFF to the Monitor's 
IRQ routine. The IRQ routine saves the A-reg at $45 in Page Zero and 
tests the B-flag to see if a BRK has occurred. If not, then it jumps at 
$03FE, the address of your IRQ routine. 

If the B-flag is set, the routine saves all registers at $46.49 and 
$3A.3B in Page Zero. Then it cancels the interrupt by pulling the 
P-reg, and PC from the stack. After that, it runs the break routine. 

The break routine displays the PC and current instruction where the 
BRK occurred. Then it displays the registers from the $46.49 loca
tions. Finally, it jumps to the Monitor command interpreter at $FF65. 
In the Standard Monitor, the break routine must always be run; in 
later Monitors the break routine may be replaced. To use your own 
break routine, replace the $F A59 address of the OLDBRK found at 
$03FO. Remember, the old Standard Monitor does not have this 
replacement feature. 

The IRQ/BRK logic of the Monitor is given in Fig. 3-13 for the 
Autostart version. The Standard version does not have BRKV at 
$03FO; control falls through to OLDBRK at $FA59 in all cases. The 
lie uses the same logic as does Autostart. 

The RESET routine is run whenever the Apple II is powered up or 
when you use the RESET key. On the Standard Monitor, the RESET 
routine simply initialized the built-in terminal. After the terminal was 
initialized, it ran the command interpreter, which gave an audible 
beep and a"*" prompt on the screen. A ctrl/B was used to cold start 
the native BASIC; ctrl/C to warm start. If you wanted to bootstrap a 
disk in Slot Six, you had to type 

6ctrl/P 

Also on the Standard Monitor, RESET always works the same way, 
regardless of whether it comes from a power up or a keypress. 
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X·REG-$46 
Y·REG-$47 
P·REG-$48 
S·REG-S49 
PC-S3A.38 

SET 

Fig. 3-13. IRQ/BRK logic of Autostart Monitor. 

Next came the Autostart Monitor. RESET is more involved in 
Autostart because it functions differently for power up. Also the key
board RESETs provide several features. 

All RESETs are vectored from $FFFC.FFFD. Like the others, 
Autostart clears the 0-flag, initializes the built-in terminal, and de
faults its parameters. Some initialization added to Autostart includes 
setting annunciators on the games socket and clearing the keyboard 
strobe. 

Then, instead of going to the Monitor command interpreter, Auto
start does the following. 

First, it tests the contents of $03F4. This is called PWREDUP and it 
tells the routine if this is a power up or not. If it is a power up, it has a 
random value. If it is a keypress, then the previous RESET will have 
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set it to the EOR of $A5 and the high byte of the BASIC warm start 
address. Since this is $E003, the EOR is $45. 

If it is a keypress, then it tests for the BASIC warm-start vector, 
SOFTEV, at $03F2.03F3. It should be $E003. If not, it sets it to $E003 
and does a cold start to the BASIC at $EOOO. If it is a warm start, it 
uses the SOFTEV as an indirect jump to make the warm start. 

If it is a power up, it prints the APPLE ] [ on the screen, initializes 
the Page Three vectors- BRKV, SOFTEV, and PWREDUP- and 
searches the slots for a disk controller card. It will bootstrap the card 
it finds in the largest slot number. If no card is found, it does a cold 
start of BASIC, using the $EOOO value it put into SOFTEV. 

The three Page Three Locations are new with Autostart. SOFTEV 
at $03F2.03F3 is set to $EOOO to cold start BASIC, and to $E003 to 
warm start it. In either case, the high byte value of $EO is EO Red with 
$A5 to make a $45 for PWREDUP at $03F4. Then, if the earlier test 
of PWREDUP fails, a disk bootstrap or cold start can be chosen. 

One consequence of this logic is that repeated keyboard RESETS 
will force a cold start, ignoring the disk card. It is the only way to stop 
the disk drive from running forever if you don't have a valid bootstrap 
disk mounted. 

Another consequence is the ability of the software to grab the 
warm-start vector, SOFTEV, for itself. DOS does this. When boot
strapped, DOS puts $9DBF into SOFTEV and $38 into PWREDUP, 
replacing the RESET routine's values. Then, if RESET is pressed at 
the keyboard, the test for PWREDUP recognizes a keyboard RESET. 
Then, because SOFTEV does not have the BASIC cold-start address 
of $EOOO, a warm start is done by an indirect jump to SOFTEV. This 
way, DOS warm start at $9DBF is run. 

On the lie version, the logic is much the same as Autostart's RE
SET. The major difference is the addition of a forced cold-start test. 

In Autostart, if Page Three got clobbered, or the warm entry rou
tine went wrong somewhere, the Apple would hang up. The only way 
to recover is to switch the power off; repeated RESETs at the key
board won't reach BASIC or the Monitor. Unfortunately, your pro
gram is erased when RAM is powered off, and the lifetime of the 
rocker power switch is shortened. 

To prevent powering off to recover from a crash, the lie Monitor 
has another test in the RESET routine. Before it tests the PWREDUP 
byte, it examines the OPEN-APPLE key. If you press this key during 
RESET, it alters PWREDUP so it forces a cold start. This overcomes 
the problem nicely. 
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In addition to erasing PWREDUP, the lie RESET routine deliber
ately erases locations in each page of RAM, throughout memory. 

The logic of the Apple lie RESET is given in Fig. 3-14. 

ISOFTEVI ISOFTEVI $Cn00 

Fig. 3-14. Reset logic of Apple lie Monitor. 

3.5 PARAMETERS 

3.5.1 Passing by Value 

In order to get a routine to do something specific, you may have to 
give it values called parameters. Often, the routine will have a result to 
give when it returns; such a result is also called a parameter. Some 
routines have no parameters; they just do a specific job using 
hardware. But, most routines you use have one or more parameters. -
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A simple way to pass parameters to and from a routine is with the 
registers. Often, only one byte is passed in the A-reg this way. The ad
vantage that registers have is that the parameter is where the routine 
can access it quickly. 

One example of passing a value in the A-reg is the output call 
COUT at $FDED. By putting the code of the character to be output 
into the A-reg, you can call COUT using a JSR. It sends the character, 
still in the A-reg, to the routine of the current output device. 

Another example of passing a value in the A-reg is the routine to 
copy a given length of memory from HERE to THERE. In that rou
tine, the X-reg was used as the counter during the copy, but was not 
set by the routine itself. Instead, it required the caller to set the X-reg 
for it, so it will copy the number of bytes that it is told to copy each 
time. The number of bytes is passed to that routine as a parameter -
as a value in the X-reg. 

Other routines you might write and use that use the registers to pass 
parameters include code converters, searchers, soft-switch setups, 
graphics displays, and cursor control routines. 

Instead of putting parameters into registers, you can keep them in 
memory. The routine being called can use the value from the agreed
upon location and return it there as well. Parameters in memory are a 
little more permanent than registers. Remember, registers are used 
heavily, so you can't keep parameters there for several calls. 

The Page Zero locations are ideal for working addresses. Routines 
can share access to them; increment and decrement routines given 
earlier are an example of using Page Zero values as parameters. Arith
metic routines can use Page Zero locations for long registers that can 
contain several bytes each. Special Page Zero addressing modes give 
fast access. 

Often, Page Three is used in the Apple to keep parameters, es
pecially by the system. By storing keystroke characters in Page Two, 
keyboard input routines pass them to other routines that scan them 
for particular usage, like a BASIC parser. The Page Two block used 
as a parameter storage area like this is called a buffer. DOS keeps 
three file buffers at $9600.9CFF for its file management routines. 

Using memory to store parameters is a good way to deal with large 
amounts of data. 

When you want to pass register values without destroying them, you 
need the stack. This might not happen often, but when it does, you 
can make the routine "bulletproor' with this method. 
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Within the routine being called, the first thing you do is push all the 
registers onto the stack: .... 

PHP 
PHA 
TXA 
PHA 
TYA 
PHA 

If it is an interrupt, the PHP is already done; don't include it here. 
Next, you set the X-reg to point into the stack . This lets you pick up 

a ny register value of the caller in your A-reg by choosing the appro
priate Page One Address: 

TSX 

LDA $0101,X to fetch Y-reg 
LDA $0102,X to f etch X-reg 
LDA $0103,X to f etch A-reg 
LDA $01 04,X to fetch P-reg 
LDA $0105,X to fetch (return-1)-low 
LDA $0106,X to f etch (return-1)-high 

You can return to the caller after pulling his registers back from the 
stack: 

PLA 
TAY 
PLA 
TAX 
PLA 
PLP 
RTS 

Instead o f the PLP/ RTS pair, an RTI can be used. Do this to return 
from interrupt calls; elsewhere it confuses the reader. 

An easy way to pass parameter values to a routine is by listing them 
immediately in the program itself. This is a common method because 
of the casualness you have in calling. The routine itself needs to be 
well written in order to set itself up to reach the parameter values, but 

n 

-

-
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this is often worthwhile. For instance, when you want to send a 
!"""' command string to DOS, or a display to the screen. The proper 

routines in machine language can make these tasks easier to program 
than their BASIC equivalents. 

Passing values immediately in the calling program is good for one 
direction, caller to subroutine. Don't use it the other way. You could 
invent a method of returning parameters to the caller, but it's rather 
useless; you could just use a simple mailbox to greater effect and pro
gramming ease. Use this method one-way only. 

Here's how such a call would be made. Suppose you had a routine 
that positioned the screen's text cursor from row and column numbers 

~ passed this way. 

~ 

-

JSR GOTOXY 
DFB 26 
DFB 11 
next instr . 

;sets cursor 
;column 
;row 

The subroutine GOTOXY has only one way of finding its parameters, 
by getting the return address from the stack . To do this, it needs a 
Page Zero pair of locations to store it as the pointer to the caller's 
code. 

GOTOXY: TSX ; look at stack 
LDA $0101,X ;return addr-lo 
STA A1 ;in Page Zero 
LDA $0102,X ;return addr-hi 
STA A1+1 ;in Page Zero 

At this point, the Page Zero pointer, AI, has the location of the call
ing routine at the second address byte of the JSR. The row and 
column numbers are in the following two bytes. These can be accessed 
by incrementing a Y-reg or by incrementing the AI pointer itself. The 
second method turns out to be the best. 

LDX #0 
INC A1 
BNE GOT01 
INC A1+1 

GOT01: LDA (A 1,X) ;column 
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STA CH ;set horiz. cursor 
INC A1 -BNE GOT02 
INC A1+1 

GOT02: LDA (A 1 ,X) ;row 
STA cv ;set vert. cursor 
JSR VTAB ;moves cursor 

Mission accomplished; the cursor has been moved according to the ,.... 
two parameters. Next, the problem is how to return. 

The return address on the stack will cause the RTS instruction to 
continue execution with our parameters. Somehow, it must reach the 
code following the parameters instead of landing into them. If the ad
dress on the stack was replaced with the present contents o f A I , that 
would work because A I points to the last parameter byte. The next 
byte in the caller is the next instruction op code, so moving A I to the -
stack and doing an RTS will work fine. 

Alternately, the A I pointer can be bumped once again to provide a n 
address for an indirect jump. The stack wi ll have to be cleaned up by 
pulling it twice to remove the J SR's retu rn, but that's simple enough. 
The advantage of using the indirect jump method is that it can be 
simple. 

PLA ;get rid of 
PLA ; return address 
INC A1 
BNE GOT03 
INC A1 + 1 

GOT03: JMP (A 1) ; retu rn 

If the parameter list is long, use a subroutine to bump the pointer. 
The trick to using this method of picking up parameter values is to 

pass each one in order of use, preferably accessing each one from the 
list once and only once. A litt le subroutine to bump the pointer and 
fetch the byte is quite ha ndy when working with long or complex 
stri ngs. 

PICKUP: INC A1 
BNE PICKUP1 
INC A1 + 1 

;bump addr-lo 
;new page? 
; yes-bump addr-hi 

.... 
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PICKUP1 : LDX #0 
LDA (A 1 ,X) 
RTS 

Machine Language 

; no-continue 
;pickup new byte 
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T he special techniques for handling strings are not difficu lt; you can 
find them in Chapter Six. 

This powerful method is used in C hapter Six to manage strings, in 
C hapter Seven to generate DOS commands, and it is the way BASIC 
reads your commands and statements. 

3.5.2 Passing by Reference 

After passing parameters directly, by value, the most common 
method used is passing by reference. Instead of the actual value, this 
method gives the routine the address where its para meters may be 
found. 

Passing by reference can be done with the regi sters. The two bytes 
of a n address fit into two registers, then the called routine can store 
them into Page Zero with its first two instructions. This way, it has a 
Page Zero pointer all set to pick up parameters using indi rect address-
ing: 

SUBR: STX A1 address-low 
STA A1+1 address-high 
LDY #0 init . pointer 

SUBR1 : LDA (A 1), Y fetch parameter byte 

Here, up to a page of parameters are passed. T he caller simply puts 
the address o f the parameters into the X-reg (low) and A-reg (high) to 
give them to the subroutine. 

Occasionally, the parameters may be in Page Zero. For example, 
arithmetic routines using several bytes in Page Zero to reduce access 
time . By passing the location within Page Zero in the X-reg, the sub
routine can use Zero-Page-X addressing mode to reach each byte 
rapidly: 

LDA $00,X reads zeroth byte 
LDA $01 ,X reads first byte 
LDA $02,X reads second byte 
etc. 



198 Apple& Programmer's Handbook 

The Zero-Page-X mode is fast and has all the arithmetic and logic 
instructions, making it ideal for fast arithmetic. 

Yet another way of passing by reference in a register is to indicate 
just which byte in a given chunk of memory the parameter of interest 
lives. Suppose that the address of a parameter buffer is being passed in 
the X-reg and the A-reg, like the first example. The exact byte within 
that buffer could also be passed as well , using theY-reg: 

SU BR STX A 1 addr-lo 
STA A 1 + 1 addr-hi 

SUBR1 LDA (A1},Y gettheY-thbyte 

If the Y -reg is used to pass the length, it can be decremented to fetch 
all bytes from the buffer. 

The address only is passed in the registers, so there is enough 
capacity. Parameters can be passed in both directions - caller to sub
routine and subroutine to caller. 

The drawback to the register method is that you can only pass one 
address per call. Alternately, you can pass by reference using memory. 

Page Zero is heavily used, especially by the system in the Monitor, 
BASIC, and DOS, to pass parameters by reference. These Page Zero 
references are called pointers. Each pointer identifies a different 
parameter. Routines use indirect addressing to reach those param
eters, especially indirect indexing with the Y -reg scanning several 
bytes. 

-

Some system pointers are kept in Page Three as well. And DOS, -
BASIC, and the Monitor all have pointers tucked away within their 
own memory areas. These are often copied to Page Zero when calling 
their routines. 

Many applications use the stack to press parameters by reference; 
the addresses are pushed and pulled on the stack. BASICs do this; the 
Pascal system does this extensively. It is a very elegant method, so it is 
suited to well-defined software designs. 

A routine passing, say, two parameters to a subroutine on the stack 
would call it like this: 

LDA #PARM1 high byte 
PHA 
LDA #PARM 1 low byte 
PHA 

-



-
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LDA #PARM2 high byte 
PHA 
LDA #PARM2 low byte 
PHA 
JSR SMART 

The subroutine must pickup the addresses from the stack and put 
them in Page Zero for access: 

SMART TSX get stack pointer 
LDA $0103,X Parm2-low 
STA A2 
LDA $0104,X Parm2-high 
STA A2+1 
LDA $0105,X Parm1 -low 
STA A1 
LDA $0106,X Parm1-high 
STA A1+1 

Then, it must clean up the stack, a llowing for a return: 

LDA $0102,X return-high 
STA $0106,X 
LDA $0101,X return-low 
STA $0105,X 
PLA 
PLA 
PLA 
PLA 

The result is to have the parameters in Page Zero pointers that are 
for the routine's use: A I and A2 used here. The return address has 
been moved and the stack pointer pulled four times - two parameters 
o f two bytes each. This will let you do an RTS normally. 

Sometimes you have long strings or other parameters that you want 
to pass to a routine from several points in your program. Passing im
mediately by value would waste a lot of space, because the string 
would have to be repeated each time. If t he parameter was a choice of 
buffers, it would be difficult to pass other than by reference. Such 
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parameters are passed by stack reference, just described. Or, a n easier 
method for the calling routine can pass by reference, immediately. 

This works much like passing values immediately: 

JSR SUBS 
DW MESSAG 

The DW puts the address in low byte, high byte order. The SUBS 
routine must pickup the parameter as in the value passing method: 

SUBS TSX 
LDA $0101 ,X add r-Io 
STA A1 
LDA $0102,X addr-hi 
STA A1+1 
JSR PICKUP get parm-lo 
STA A2 
JSR PICKUP get parm-hi 
STA A2+1 
JSR PICKUP bump to next instr 

At this point, the para meter address is in A2 a nd the next instruction 
address in A I . To return , get rid o f the stack address a nd jump at the 
AI address instead: 

PLA 
PLA 
JMP (A 1) 

clean up stack 

next instruction 

Remember the P ICKU P routine. It crawls th ro ugh the caller's code, 
using AI, incrementing and fetching bytes. 

You can pass several parameters this way. Here, A2 was used for 
the first; you will need other Page Zero pointers for successive param
eters . 

-

~ 
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3.5.3 Modularity 

Routines have three major parts: an initialization, an algorithm, 
and an exit. The initialization part fetches any parameters, saves 
registers, initializes loop counters, and anything else the algorithm 
needs to do its job for the caller. The algorithm is the function of the 
routine; it uses one or more of the structures developed in Section 3.3. 
And, the exit returns parameters, restores registers, cleans up the 
stack, and anything else needed to make a normal return to the caller. 
By designing the simplest routine with these three parts, you can write 
the easiest one to maintain. 

To keep routines simple and easy to use, arrange them so that the 
initialization is at the beginning of the memory with the first location 
containing the first instruction. Don't jump into the middle of a 
routine; if you must, use a JMP as the first instruction. 

Algorithms are best if they use only one structure. If you must make 
a compound structure, explain it in your comments. Usually, this in
volves nesting one within the other, like having a sequence within a 
DO-UNTIL instead of JSRing to the sequence. Some complex struc
tures used in logic and arithmetic are given later, in Section 3.6. Other
wise, the simple structures will handle most programming needs. 

The exit should be from the last instruction in the routine. Literal 
data and buffer space needed by the routine can follow the exit. 
Where there is a lot of detail in returning, tasks should proceed in the 
inverse order of their corresponding setup. For instance, if the 
initialization part saved all registers on the stack, then loaded a 
parameter from memory, the return part should save the parameter to 
memory before restoring all registers from the stack. The last instruc
tion is usually an RTS; it may be a JMP or an RTI, however. 

When you have several routines to use, the safest way to manage 
them is when they are simply written, each with only one entry point 
and only one exit point. Often, branches and jumps will be needed 
within the routine to meet this condition. Although that means some 
extra programming, the time saved later in using such routines more 
than pays for it. 

Routines with clearly defined initialization, algorithm, and return 
parts like this are called modular. They can be easily used as modules 
with simple call sequences by other routines. 

One special class of modular routines occurs where they must be 
capable of interrupting themselves. An IRQ routine, for instance, may 



202 Appl~ Programmer's Handbook 

service hardware that interrupts often enough that there will be cases 
of interrupts happening before the previous one is finished. If each 
one must be serviced, the interrupt routine must be capable of inter
rupting itself. Such a class of routines is called re-entrant. 

In a re-entrant routine, all registers used within it must be stacked. 
Only then can further interrupts be allowed by clearing the !-flag: 

IRQS PHA 
TXA 
PHA 
TYA 
PHA 
CLI 

Once this is done, the body of the routine may be further interrupted; 
its registers are safe. When the service is complete, return by reversing 
these steps: 

SEI 
PLA 
TAY 
PLA 
TAX 
PLA 
RTI 

If you use a ny Page Zero pointers, they must be constant. You can't 
alter them from within . Same goes for writing to other memory loca
tions. Any memory you want to write must be saved before the CLI 
and restored after the SEI. You will probably be pressed for time, so 
these extra steps will hurl. Keep memory write needs to a minimum; 
you must write for speed. 

Never clear the I-flag in an interrupt routine that is not re-entrant. 
Always set the 1-flag in re-entrant routines before restoring and re
turning. 

-
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3.6 ARITHMETIC 

3.6.1 Number Bases 

The key to understanding arithmetic algorithms is in the way num
bers are stored and represented. This way is called positional notation; 
it underlies the way you handle format, make calculations and convert 
numbers between different bases. You can already do these things on 
paper, so reviewing the concepts will give you the understanding 
needed to do them with your Apple. 

Consider a whole number expressed in base ten - a decimal num
ber. For an example of 39201, you know just what number these five 
symbols represent because each symbol has a different weight: the 1 is 
simply one, the 3 is thirty thousand. So, the number appears to us as a 
sum of five terms: 

3 x 10,000 plus 
9 x 1 ,000 plus 
2 x 100 plus 
0 x 10 plus 
1 X 1 

Each digit, 0 to 9, therefore represents itself times a multiple of ten. 
The multiple is given by the position of the digit in the number; that's 
why it's called positional notation. 

Positional notation acts as a neat way to keep numbers on paper be
cause it's fast and easy to read and write. In computers, it is efficient 
since the position of the digit represents the multiple of ten without 
any extra storage to carry that information. It is even more efficient if 
it represents multiples of two instead of ten. 

By changing the base of the positional notation of numbers from 
ten to two, memory can store larger numbers in the same space. But 
we have to nail down our concepts of positional notation a little 
tighter in order to use it in a base other than our familiar ten. Then 
converting between base ten and base two for a number may be 
needed. Fortunately, base two is easy to understand and program even 
if it is awkward for us humans to read and write. 

A number represented in base two breaks down the same way that it 
would in base ten. There are only two digits possible in each position, 
0 or 1, instead of the ten we had. Each position has a weight of a 
power of two: 
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1 x 64 plus 
0 x 32 plus 
1 x 16 plus 
1 x 8 plus 
0 x 4 plus 
0 x 2 plus 
1 X 1 

This number is 1011001 in binary or base two form. Again, the great
est weight is attached to the leftmost digit; the rightmost digit has a 
weight of one. If you broke the same number down in base ten, you 
would get 

8 x 10 plus 
9 X 1 

as its decimal representation. Positionally, you would write it as 89 -
eighty-nine. The important thing is that 1011001(base 2) equals 
89(base10) because they each represent the same number, eighty-nine. 

Regardless of the base, a number is represented by positional nota
tion using a set of digits: ten digits for decimal, two digits for binary 
or any other base number of digits. Each position contributes a term 
to the number consisting of the digit multiplied by the weight of its 
position. This weight is the base raised to the power of the position. 
So, eighty-nine in base two can be expanded as 

1011001 = 
(I X 26) + (0 X 2S) + (1 X 24) + (1 X 23) + (0 X 22) + (0 X 21) + (1 X 20) 

by writing 64 as 26, 32 as 25 , etc. Note that 2° equals one. 
The rightmost position is called the least significant position. For 

whole numbers like we have here, it is also the units position because 
its position is zero and its weight is always one. The weight of any 
position is given by 

(base )position 

so regardless of the base, 

(base)0 = 1 

... 

.... 

-
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always. 
In the Apple, a byte of eight bits often represents a number iti' 

binary notation. With eight bits, there are eight positions from the 
least significant bit on the right to the most significant bit on the left. 
The least significant bit has position zero while the most significant bit 
has position seven. The entire byte can represent 256 different 
numbers. For example, the number eighty-nine would be represented 
as 01011001. The most significant bit is in position 7 and has a weight 
of 27 or sixty-four. The next bit in position 6 has a weight of 26 or 
thirty-two. Similarly, the next-to-least significant bit in position 1 has 
a weight of 21 or two. The least significant bit has the lowest weight, 2° 
or one. 

Compare this with the way we represent numbers in decimal nota
tion. A number like 39201 is short for 

(3 X 1()4) + (9 X 103) + (2 X 1()2) + (0 X 101) + (1 X 100) 

where the most significant digit is 3 with a weight of 10,000 and the 
least significant digit is 1 with a weight of one. 

This shows how positional notation works: each digit chosen from a 
base number of digits and weighted by that base raised to the power of 
its position. 

Let's look at one more base to be sure of how positional notation 
works. Let's look at base sixteen. 

Base sixteen positional notation is what we use as hex notation. It is 
based on sixteen digits - 0,1 ,2,3,4,5,6, 7 ,8,9,A,B,C,D,E,F. Each 
digit has a successive counting value; we just added six to our familiar 
ten. Now, each position will have a weight of sixteen raised to the 
power of the position. For example, if 79 is a hex number, then 

$79 = (7 X 161) + (9 X 16°) = 112 + 9 = 121 

expands it and allows us to express it in base ten. Or, 

$7F = (7 X 161) + (15 X 16°) = 112 + 15 = 127 

expands the hex number 7F in decimal form. A larger number works 
the same way: 
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$F941 (15 X 163) + (9 X 162) + (4 X 161) + (1 X 160) 
15 X 4096 + 9 X 256 + 4 X 16 + 1 X 1 
61440 + 2304 + 64 + 1 = 63809 

It's just more work to convert to decimal notation. 
The secret to converting from hex to decimal then is just to expand 

the hex number using decimal notation and then use decimal arith
metic to reduce the expression. 

Going the other way - converting decimal to hex - is trickier be
cause you still want to use decimal arithmetic. Take the decimal num
ber and divide it by sixteen. The remainder is the least significant digit 
in base 16. Repeat until the quotient is exhausted, using the remainder 
each time for the next significant digit. As an example, here is the 
number we just saw: 

16V63890 1 
16V3988 4 
16V249 9 
16 V15 F 
0 

Remember to write remainders in hex notation: 10 as A, 11 as B, 12 as 
C, 13 as D, 14 as E, and 15 as F. From the example, 63809 = $F941. 

Binary numbers are usually represented as hex numbers because hex 
is more compact and easier to read. Each hex digit is four bits in size 
and can be converted directly. To convert, partition a hex number into 
digits or a binary number into four-bit nibbles (sometimes spelled 
nybbles) and look up the equivalent: 

HEX BINARY HEX BINARY 

0 0000 8 1000 
1 0001 9 1001 
2 0010 A 1010 
3 0011 B 1011 
4 0100 c 1100 
5 0101 D 1101 
6 0110 E 1110 
7 0111 F 1111 

The 6502 processor in the Apple has a feature that allows you to 
keep numbers in either binary or decimal. Normally, we use binary 

... 

,... 
; 

... 

r-
I 

.... 
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numbers and express them in hex notation, but if you want to do your 
arithmetic with decimal numbers instead, you can . The decimal num
bers are represented in a special way called Binary Coded Decimal or 
BCD. 

Binary Coded Decimal is the way calculators store numbers. The 
way that you read binary numbers using hex notation, by representing 
each nibble as a hex digit, is the same way that you can read BCD 
numbers. Each BCD digit is kept in a separate nibble of fou r bytes: 

DIGIT BCD DIGIT BCD 

0 0000 5 0101 
I 0001 6 OliO 
2 0010 7 0111 
3 0011 8 1000 
4 0100 9 1001 

It looks just like hex, but without any representation for ten to fifteen, 
A through F, in the nibble. When told to work with BCD, the proc
essor uses only these digits. 

Each byte contains eight bits when binary representa tion is used. 
When BCD is used, each byte contains two decimal digits, repre
senting numbers from 0 to 99. When the processor is instructed to add 
it carries after passing 9, instead of counting to $F as in hex before 
carrying. The result is a decimal representat ion that gives each byte a 
capacity of only 99 instead of the 255 ($FF). 

3.6.2 Addition and Subtraction 

To add numbers in the Apple, you use the ADC instruction. This 
instruction has a lot of addressing modes. This allows you to add 
memory with the A-reg together with that in the C-flag and then to 
have your sum waiting in the A-reg at the end of the instruction. The 
C-flag is useful in carrying from one addition step to the next; other
wise you must always do a CLC instruction before adding. For 
example: 

CLC 
LDA #$25 
ADC #$1 3 
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results in $38 as the contents of the A-reg. And 

CLC 
LDA #$27 
ADC #$36 

gives $5D in the A-reg. Addition carries automatically from one bit to 
the next; the C-flag is carried into the addition and it is set or cleared 
depending on the sum. In both the above, the C-flag is cleared, but 1""1 

CLC 
LDA #$73 
ADC #$95 

would give you an A-reg of $08 with the C-flag set. The carry came 
from the most significant bit of the addition. 

$73 = 01110011 
$95 = 10010101 
sum = 00001000 + 1 carry 

For an addition o f two one-by te numbers like this, the carry set tells us 
that we have an ove1jlow from the addition: the result won't fit in its 
space. 

To learn more about single-byte addition, try the following: 

TEST: CLC 
LDA ARG1 
ADC ARG2 
STA RESULT1 
BCC TEST1 
LDA #$FF ;flag carry set 
JMP TEST2 

TEST1 : LDA #0 ;flag carry clear 
TEST2: STA RESULT2 

JMP $FF69 ;monitor 

Try different ARGJ and ARG2 contents. Look at the sums in 
RESULT! and the carrys in RESU L T2. What happens if the SEC (set 
carry) instruction replaces the CLC? Try it and see. 
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You can use the SBC instruction (subtract with carry) like you use 
the ADC, but with one important difference. With the ADC you ini
t ialized with a CLC; with the SBC you must ini tia lize using the SEC. 

Here is an example of subtracting two one-byte numbers: 

SEC 
LOA #$90 
SBC #$89 

The result is $ 14 in the A-reg and the carry flag remaining set. The 
A-reg gives the difference while the C-flag tells you if a borrow took 
place to complete the subtraction. 

Let's see an example of a borrow. Subtracting $80 from $7 F re
quires a borrow because $80 is greater than $7F. So, the routine 

SEC 
LOA #$7F 
SBC #$80 

results in $FF in the A-reg and the C-flag cleared. For a single-byte 
subtraction, this means we had an underflow a nd the result was nega
tive. The byte only holds positive values for us (at least for now), so 
the clearing of the C-flag tells us that the subtraction has no answer. 

When subt racting with only positive numbers, the result can be 
meaningless whenever you try to subtract a larger number from a 
smaller number. If you don't range test the numbers first, the clearing 
o f the C-flag tells you the subtraction underflowed. If it remains set, 
then the answer is correct. 

If you want to add larger numbers together, you use the C-flag to 
include the carry from lower significant bytes to higher significant 
bytes. For instance, add two numbers in address format (lo/ hi) 
together: 

CLC 
LOA AOOR1 
AOC AOOR2 
STA AOOR3 
LOA AOOR1 + 1 
AOC AOOR2+ 1 
STA AOOR3+1 

;add low bytes 

;add high bytes 
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BCS OFLOW 
continue, sum 
is OK 

;trap sum overflow 

The two addresses are picked up from ADDRl and ADDR2 in a mail
box, added to supply ADDR3 in the mailbox as the sum, and the over
flow case trapped by the BCS. Between adding the low-order bytes 
and the high-order bytes, the C-flag is legitimately set or cleared to 
carry from the least significant byte to the most significant byte. 
Whatever it is, it is added together with ADDR2 + I to the contents of 
the A-reg. 

So, in multiple-byte addition, use the CLC instruction once and 
only once, at the beginning of the first addition. 

For longer numbers, you may use indexing. You could move your 
arguments into Page Zero for arithmetic operations and use Zero
page-X addressing. Or, you could set pointers to them and use indirect 
indexed addressing with the Y -reg. If you index, use the CLC just be
fore entering the loop; don't clear it each time from within the loop! 
Note that you can't use the CPX, CPY, and CMP instructions in your 
loop; they force the C-flag and interfere with the carrying. Test your 
loop using the Z-flag or N-flag. 

The address convention we just used has bytes ordered with increas
ing significance: the higher the byte address, the greater its 
significance. Some math packages will use decreasing significance, 
putting the most significant byte at the lowest address. With multiple
byte numbers, you may keep them in either order. Examples given 
here will be in increasing significance so that the ideas and some code 
can be used with address calculatio ns as well. 

If you wanted sixteen-byte precision addition using Page Zero, this 
is what the loop would look like: let ARG I, ARG2, and RESULT 
have their usual meanings with sixteen bytes reserved for each. 

ADD: CLC ;initial C-flag 
LDX #$FO ;minus sixteen 

ADD1 : LDA ARG1 + 16,X ;zero-page-X mode 
ADC ARG2 + 16,X 
STA RESULT+ 16,X 
INX 
BNE ADD1 ;$FF is byte 15 
test for overflow, 
etc. 

-

... 
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The CPX can't be used with X = 0, I, 2, ... , 15 as you'd like to do, 
because it forces the C-flag. So, use X = - 16, - IS , - 14, ... , - I 
to count forward instead and when X = 0 you can leave the loop. The 
$FO acts like - 16 with Zero-Page-X addressing because the high 
address byte is always forced to zero. This trick won't work with other 
indexing modes because the address calculation will carry you into the 
next page. 

There are other ways to do mul tiple-byte addit ion with a loop, but 
this is probably the simplest. 

Subtracting numbers la rger than one byte works just like the addi
tion of large numbers. Set the C-flag before the firs t subtraction , then 
don't force it until the subtraction is finished. When a borrow occurs, 
the C-flag will be zero for the subtraction in the next most significant 
byte, giving a result one less than if the C-flag had been set. This is 
how it completes the borrow. 

The example of subtracting two addresses: 

SEC 
LDA ADDR1 
SBC ADDR2 ;subtract low bytes 
STA ADDR3 
LDA ADDR1 + 1 
SBC ADDR2 + 1 ;subtract high byte 
STA ADDR3+ 1 

BCC to trap under
flow continue, 
difference is correct 

follows that of the addition. Note that ADDR2 is subtracted from 
ADDRI ; keep the addresses in order as subtraction does not 
commute. 

r"' The long loop example will work the same way as well. Replace the 
CLC with an SEC; the ADC with an SBC; and use the BCC to grab 
the underflow wherever BCS grabs the overflow and you have it. 

Arithmetic can be done with BCD notation as easily as with binary. 
At the beginning of the addition or subtraction routine, set the D-flag 
with a SED instruction. At the end of the routine, clear it with a CLD 
instruction. T his causes any ADC or SOC instruction to work in BCD 
arithmetic instead of binary. Apart from setting and clearing the 
D-flag, you don't write the routines any differently. 
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For example, if you have an addition rout ine called ADD that 
works now in binary you can write a short routine to call it: 

ADDBCD: SED 
JSR ADD 
CLD 
RTS 

;set Decimal 
;same routine 
;clear Decimal 

Then, calling ADDBCD will do the same thing as ADD, but in BCD. 
You only change the ADC and SBC actions. This means you do all 

your loop counts in hex, just as before. O nly the data numbers, the 
ones you add and subtract with the carry, are in BCD. 

Make sure you a lways have a CLD to finish off any BCD routine. If 
the D- flag remains set in ordinary routines, the Apple can behave very 
strangely! 

3.6.3 Logic 

To do multiplication and division on a 6502, as well as other tasks 
requiring bit-by-bit access, you need the ability to use the logical 
instructions. These are: ROL, ROR, AND, ORA, ASL, LSR, EOR, 
a nd BIT. There are a few simple ways in which these instructions are 
a lmost always used. These ways examine and manipulate bits, do 
m ultip lication and d ivision of binary numbers, and let you work with 
logical bytes of sizes other tha n eight bits: four bit BCD digi ts, for 
example. 

There are four instructions used for bit picking: AND, ORA, EOR, 
and BIT. They have many addressing modes a lthough only a few will 
be cited here. With them, you can isolate bits from a byte for examina
t ion, set any one, or clear any one. They use Boolean logic to do these 
things. The AND results in each bit in the A-reg being set only if both 
the original bit and the corresponding bit in the memory byte are set; 
otherwise, AND results in a zero bit. The ORA results in each bit in 
the A-reg being cleared only if the original A-reg bit and the memory 
bit were both clear to begin with; otherwise the bit is set. With the 
EOR, the result bit is set only if the original A-reg bit and the memory 
bit are different; otherwise, they are the same - both set or both clear 
- causing the bit to be cleared. 

One common use of the EOR is complementing the A-reg value. 
Complementing sets each byte that was clear and clears each byte that 

-

-
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was set. For instance, the complement of $EF is $10 because the first 
has only bit 4 set while the second has only bit 4 clear. The instruction 

EOR #$FF 

does that. Any bit that was set is the same as the bit in $FF, so it gets 
turned o ff. And , a ny bit that was clear is d ifferent than the same bit in 
$FF, so it gets turned on. 

The BIT instruction is a lot like the CM P, except it does not alter 
the A-reg at all; just the P-reg. More about that la ter. 

To illustrate the actions of these instructio ns, the immedia te mode 
of addressing is shown where possible. Just remember, you can use 
any one you want. 

The ORA instruction turns bits on in the A-reg. To set a ny given 
bit, use a value, ca lled a mask, that has all bits clear except the one to 
be tu rned on . For instance, 

ORA #$80 

sets bit 7 without affecting any other bit in the A-reg. To set other bits , 
see Table 3-11. 

Table 3-11. Setting Bits in A-reg 

Dit Instruction 

0 ORA #$01 

I ORA #$02 

2 ORA #$04 

3 ORA #$08 

4 ORA #SIO 

5 ORA #$20 

6 ORA #$40 

7 ORA #$80 

The AND instruction turns bits off in the A-reg. To clear any given 
bit, use a mask that has a ll bits set except the one to be cleared. To 
clear bit 7, for example, use 

AND #$7F 
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Table 3-12. Clearing Bits in A-reg 

Bit Instruction 

0 AND #$FE 

I AND #$FD 

2 AND #$FB 

3 AN D #SF7 

4 AN D #$EF 

5 AND #$ DF 

6 AND #$ BF 

7 AND #$7 F 

To clear any other bit, see Table 3-12. 
The EOR - Exclusive-OR - flags mismatched bits . Often, it is 

used to make a checksum of a block of data. The A-reg is set to $FF, 
all bits set , before EORing all bytes in the block together. The final 
value is called the checksum and is kept to compare against future 
checksums o f the same data. The altering of just one bit in the entire 
block of da ta will cause the checksum to change, revealing that an 
error exists. Both DOS and Monitor tape routines use such checksum 
calculations and tests. 

The BIT instruction is unique to the 6502. Mainly, it tests a memory 
location's value without altering the A-reg. You can keep a mask to be 
ANDed with various memory locations in the A-reg a nd test each 
location without destroying your mask each time. The AND operation 
performed by the BIT instruction only changes the Z-flag: 

LDA #MASK 
BIT MEMORY1 
BEQ MATCH1 
BIT MEMORY2 
BEQ MATCH2 

Very useful for status fl ags testing in periphera l chips; see Chapter 
Eight. 

Two other flags altered by the BIT instruction are the N-flag and 
the V-flag - bit 7 and bit 6 of the P-reg. T hese bits are simply copied 
from memory. In use, suppose you had a character in the A-reg you 
don't want disturbed. Now, suppose you wanted to look at severa l 

-

-

-
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peripheral chips to see which one is active. The active one has bit 7 set 
in its status register, so you just look at the chips' status registers : 

BIT STAT1 
BMI IRQS1 
BIT STAT2 
BMI IRQ2 

In each test, if the device is on, it sets theN-flag when addressed from 
a BIT instruction. The A-reg remains unaltered. 

A common use of the BIT instruction is in clearing the keyboard 
strobe: 

GET LDA $COOO keyboard character 
BPL GET until keypress 
BIT $C010 clear strobe 
AND $#7F make positive ASCII 
RTS 

When the BIT instruction executes, the keyboard character is in the 
A-reg. The BIT does a read at $CO lO without actually loading any 
register. Apple's keyboard hardware needs the read instruction at that 
address, but you don't need any register changed. The routine ends 
after turning off bit 7 of the character with the AND instruction. 

To test bits 6 and 7 of a byte, use the BIT instruction . Use BPL and 
BMI for bit 7; BVC and BVS for bit 6. To test any bit, use the A-reg 
with AND 

LDA #$04 Mask bit 2 
AND MEMORY 
BNE BITON 
BEQ BITOFF 

To test a pattern of bits, make up that pattern in a mask: 

LDA #$16 Mask bits 1. 2. and 4 
AND MEMORY 
BEQ BITSOFF 
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The BNE here only tells you that at least one of those three bits was 
set. If you need an exact match, use the CMP instruction; a BEQ will 
branch if they match exactly. 

Binary numbers can be multiplied by using 6502 instructions. To 
multiply a single byte by two, only one instruction is needed - the 
ASL (see Fig. 3-15). Called Arithmetic ~hift Left, the ASL increases 
the position of each bit in the byte by one. Bit zero, the least signif
icant bit, is replaced by a zero value. Bit one is replaced by the former 
value of bit zero, bit two is replaced by the former value of bit one, 
and so on. Bit seven is moved into the C-flag. The result is to multiply 
the byte by two, by shifting each bit one position left. 

C FLAG 

MEMORY 

Fig. 3-15. The ASL instruction. 

If the byte was $80 or greater, the high-order bit sets the C-flag, 
indicating an overflow from the multiplication. The resulting byte is 
always even, regardless of its original value. 

The ASL operates on either memory or accumulator. Some as
semblers want you to write ASL A for the accumulator mode; others 
want only ASL as the mnemonic with no explicit operand. Check your 
assembler's manual. In memory, ASL comes in Zero Page, Zero Page 
X, absolute, and indexed-X addressing modes. Aside from multiplica
tion, you can use the ASL to examine bits one at a time from a byte, 
scanning left to right. 

Another instruction will shift right instead of left. This is the LSR 
or ,bogical.S,hift Right (see Fig. 3-16) you can use to divide a byte by 
two or to pick up bits from a byte from right to left. 

The LSR shifts each bit one position to the right. Bit seven is re
placed by zero and the old contents of bit zero moves to the C-flag. Bit 
zero is replaced by bit one, bit one is replaced by bit two, and so on. In 
interpreting the result, if the C-flag is set then the original byte was 
odd, otherwise it was even. The resulting byte is always less than $80 
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C FLAG 

MEMORY 

Fig. 3-16. The LSR instruction. 

because bit 7 becomes zero. For the same reason, theN-flag is always 
zero after an LSR. 

The shifts work with single bytes. LSR divides by two, results in 
zero bit 7 and old bit zero in the C-flag. ASL multiplies by two, results 
in zero bit 0 and old bit 7 in the C-flag. 

If you have a large number to multiply or divide, or you want just to 
shift several bytes at a time to access their bits, you need another pair 
of instructions - the rotates. There are two: ROL for ROtate 1eft 
(Fig. 3-17) and ROR for ROtate Right (Fig. 3-18). They let you use the 
C-flag to carry the bit that you shifted out of a byte into the next byte. 
So, instead of forcing a zero bit into the other end, the C-tlag content 
is used. A couple of examples should make this clear. 

MEMORY 

Fig. 3-17. The ROL instruction. 

Suppose you rotate a byte containing 11000100 with the C-flag con
taining 1. Using the ROR instructions, the result would be 11100010 
with C-tlag = 0. The C-flag became bit 7, all bits were shifted right 
one position, and bit 0 became the C-flag. Another rotate right would 
give you 01110001 with C-flag = 0. 
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MEMORY 

Fig. 3-18. The ROR instruction . 

The rotate left reverses the action of rotating right. If byte was 
00100001 , C-flag of 1, then ROL would give you 01000011 with 0 in 
the C-flag. 

-

-

Here's how you use the rotates in a loop to shift a field of several ~ 
bytes one bit position at a time. The loop for shifting right in descend-
ing order of significance is 

RIGHT: LDX #0 - LENGTH 
RIGHT1 : ROR FIELD+ LENGTH,X 

DEX 
BNE RIGHT1 
RTS 

where the bit to be rotated into FIELD is in the C-flag when called, 
and the bit from the other end is in the C-flag upon return. FIELD is 
the label for the bytes which must be in Page Zero. LENGTH is the 
number of bytes in FIELD. The ROR must be assembled as Zero
Page-X addressing mode. The X-reg points to the bytes because of the 
wrap-around address calculation that this mode makes. See multibyte 
addition above for a description of how this works . 

Rotating the C-flag with a FIELD in the other direction, using 
ROL, is a little simpler. 

LEFT: LDX #LENGTH 
LEFT1 : ROL FIELD - 1,X 

DEX 
BNE LEFT1 
RTS 

-
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The FIELD is shifted left in descending order of significance as well. 
This method of rotation is used in multiplication and division 

algorithms, in handling BCD digits, in binary/decimal conversion 
routines, and in manipulating floating-point numbers. 

3.6.4 Handling Numbers 

Most numbers you deal with in programming are simple binary 
natural numbers. They have fixed positional notation, they are in 
binary, represented usually in hex notation, and they don't have any 
sign (+I-); they are all positive. 

Usually, binary natural numbers are small, taking only one or two 
bytes to contain them. They are used for addresses and indexes in ma
chine programs. For pointer manipulation, you need only to know 
how these numbers work. 

For applications, other numbers are needed. Integers, large and 
small numbers are used. Sometimes, calculations must be made in 
decimal. Three other systems are used for these purposes: integers, 
BCD, and floating-point. 

For binary natural numbers, you can use the increment and 
decrement routines to bump Page Zero pointers. Then, if you need to 
calculate an offset, you can add the addresses together like the addi
tion examples show. Multiplication is needed to create your own table 
lookup methods, so one is given in Example 3-1. By way of compari
son, the divide routine in Example 3-2 works in a similar fashion. Play 
with them first to be sure you know just what they can do for you. 

The binary numbers described so far have all been unsigned; that is, 
they are positive numbers only. If one bit in a number is reserved to 
represent an algebraic sign - set for negative, clear for positive -
then you could use the number as an integer. You can, because the 
6502 arithmetic supports signed number operations. 

Numbers can be signed as base two integers. The sign bit is bit 7 in a 
one-byte number. In a two-byte integer, the sign appears in bit 7 of the 
most significant byte. This leaves fifteen bits for the size of the 
integer. For one-byte integers, the size fits into seven bits. Integers 
have sign and size; unsigned numbers have size only. To do this, 
integers only have one-half the size of an unsigned number in the same 
space. One-byte numbers can represent an unsigned number from 0 to 
255 or it can represent an integer from - 128 to + 127. Similarly, two 
bytes can hold unsigned numbers from 0 to 65,025 or integers from 
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Example 3-1. 

SOURCE FILE: 
0000: 

EXAMPLE 3.1 

0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 

1 ******************************* 
2 * EXAMPLE 3.1 * 
3 * INTEGER MULTIPLY ROUTINE * 
4 * * 
5 * USES $50.55 IN PAGE ZERO * 
6 * LEAVES Y-REG UNCHANGED * 
7 * TO CALL: * 
8 * $50.51 <--- X VALUE * 
9 * $52.53 <--- B CONSTANT * 

10 * $54.55 <--- M MODULUS * 
11 * JSR MULT * 
12 * $$50.53 ---> Y RESULT * 
13 * WHERE * 
14 * Y = H*X + B * 
15 * ALL NUMBERS IN (LO,HI) ORDER* 
16 * AND UNSIGNED. * 
17 ******************************* 
18 * 
19 * 

NEXT OBJECT FILE NAME IS EXAMPLE 3.1.0BJO 

1000: 20 ORG $1000 FOR TEST 
1000: 21 * 
1000: 22 * 
1000:A2 10 23 MULT LDX #16 
1002:18 24 CLC 
1003:26 52 25 ROL $52 
1005:26 53 26 ROL $53 INITIAL! ZE 
CARRY 
1007:66 53 27 MULT1 ROR $53 
1009:66 52 28 ROR $52 SHIFT BX IN 
TO CARRY 
100B:66 51 29 ROR $51 
1000:66 50 30 ROR $50 
100F:90 OD 31 BCC MULT2 
1011: 32 * A BIT FROM X-VALU IS DETECTED. 
1011: 33 * ADD MODULUS AS THE PARTIAL 
1011: 34 * PRODUCT TO B • 
1011:18 35 CLC 
1012:A5 52 36 LDA $52 
1014:65 54 37 ADC $54 
1016:85 52 38 STA $52 
1018:A5 53 39 LDA $53 
101A:65 55 40 ADC $55 
101C:85 53 41 STA $53 
101E: 42 * NEXT BIT SHIFT 
101E:CA 43 MULT2 DEX 
101F:10 E6 44 BPL MULT1 
1021:60 45 RTS 

*** SUCCESSFUL ASSEMBLY: NO ERRORS 

- 32,768 to + 32,767. The two-byte integer is what you find in most 
BASICs like Apple's INTEGER and in Applesoft. 

,... 

~ 

~ 

~ 
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t:xample 3-2. 

SOURCE 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 

FILE: EXAMPLE 3.2 
1 ******************************* 
2 * EXAMPLE 3.2 * 
3 * INTEGER DIVIDE ROUTINE * 
4 * * 
5 * USES $50.55 IN PAGE ZERO * 
6 * LEAVES Y-REG UNCHANGED * 
7 * TO CALL: * 
8 * $50.51 <--- NUMBER * 
9 * $53 <--- DIVISOR * 

10 * JSR DIVID * 
11 * $50.51 <--- QUOTIENT * 
12 * $52 <--- REMAINDER * 
13 * ALL NUMBERS IN (LO,HI) ORDER* 
14 * AND UNSIGNED. * 
15 ******************************* 
16 * 
17 * 

NEXT OBJECT FILE NAME IS EXAMPLE 3.2.0BJO 

1000: 
1000: 
1000: 
1000:A2 10 
1002:A9 00 
1004:85 52 
1006:18 
1007:26 50 
1009:26 51 
100B:26 52 
lOOD:CA 
100E:30 OB 
ED 
1010:A5 52 
1012:38 
1013: E5 53 
ACT 
1015:90 FO 
ws 
1017:85 52 
TRACT OK 
1019:80 EC 
1018:18 
101C:66 52 
EMAINDER 
101E:60 

18 
19 * 
20 * 
21 DIVID 
22 
23 
24 
25 DIVIDl 
26 
27 
28 
29 

30 
31 
32 

33 

34 

35 
36 DIVID2 
37 

38 

ORG $1000 

LDX #16 
LDA #0 
STA $52 
CLC 
ROL $50 
ROL $51 
ROL $52 
DEX 
BMI DIVID2 

LDA $52 
SEC 
SBC $53 

BCC DIVIDl 

STA $52 

BCS DIVIDl 
CLC 
ROR $52 

RTS 

*** SUCCESSFUL ASSEMBLY: NO ERRORS 

FOR TEST 

NUMBER-LO 
NUMBER-HI 
REMAINDER 

WHEN FINISH 

RESIDUE 

TRIAL SUBTR 

IF IT BORRO 

POST IF SUB 

ALWAYS 

NORMALIZE R 
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With integers, the N-flag has meaning. It flags the result of an in
struction as having the sign bit, bit 7, set or cleared. If set, then the 
N-flag is also set and indicates a negative result. If clear, theN-flag is 
cleared to indicate a positive result. The BMI and BPL instructions 
then make sign testing easy. 
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When doing addition or subtraction, either can result in underflow 
or overflow. The single byte or the high-order byte must be tested for 
overflow or underflow as in the unsigned case, but the C-flag won't 
work. The problem with the C-flag is that it detects overflow from bit 
7 only. With signed numbers, overflow occurs from bit 6; it overflows 
into sign bit 7 and destroys the sign. A special flag is provided so you 
can detect overflow from bit 6; it is the V-flag. Test the V-flag with a 
BVS branching to your error handler immediately after adding or sub
tracting signed numbers. You still use CLC before adding, and SEC 
before subtracting, but always test for the V-flag set to trap overflow 
or underflow, regardless of the operation. 

The C-flag works the same with signed numbers as far as carrying 
arithmetic from low-order bytes to high-order bytes. When numbers 
are unsigned, the C-flag tells you if underflow or overflow occurred. 
When numbers are signed, the V-flag tells you; the C-flag does not. 
The branches on error are: BCS for unsigned addition, BCC for un
signed subtraction, and BVS for signed addition or subtraction. 

Unsigned arithmetic can be binary or BCD; signed arithmetic is 
binary only, no BCD. Signed numbers are used in integer arithmetic in 
BASIC, store compactly, and use the V-flag for overflow detection. 
This is summarized for you in Table 3-13. 

Table 3-13. Arithmetic Flags 

Flag Addition Subtraction 

Must be cleared first Must be set first 

Carries from byte to byte Borrows from byte to byte 

c Unsigned overflow flagged by a I Unsigned underflow flagged by a 0 

v Signed overflow flagged by a I Signed underflow flagged by a 0 

There are two areas of application where you will find BCD format 
numbers useful and even preferable to the usual binary format. One is 
digital hardware. Many devices come with BCD outputs that are con
verted to seven-segment displays. By picking up the four lines per digit 
from the gadget, you can interface to the Apple and work with its 
output using BCD software. Another place where you want to use 
BCD is when base 10 precision is needed. Business calculations done 
in BCD don't require adjusting for the errors from conversion back to 
decimal before display. Some numerical methods that mathematicians 
make may be easier and simpler to program in BCD because of the 
ease of display. 
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On the other hand, BCD requires more storage for a given size 
number. In the old days when numbers were kept in "electronic 
brains" where each bit needed a 12AT7 tube to hold it, this was im
portant. Binary saved space and space was money, time, and heat dis
sipation. Clever efficient binary arithmetic was the result we inherited. 
But with cheap, plentiful memory in the Apple, the choice is yours if 
you want BCD instead. 

BCD is formatted as two decimal digits per byte. Each byte is di
vided into two nibbles of four bits each. The lowest nibble is bit 0 to 
bit 3 and contains the least significant digit; the high nibble is bit 4 to 
bit 7 and contains the most significant digit. Several bytes grouped to
gether hold long numbers, usually in descending order of significance. 
A dump of a multibyte BCD number can be read directly. For 
example, 

lFOO: 23 18 40 00 

dumping a BCD number a t $1FOO.IF03 is read as twenty-three 
million, one hundred eighty-four thousand. Simple. 

Calculations in BCD a re as easy as those in binary. Just use SED be
fore any loop or sequence using ADC or SBC instructions that you 
want to work in decimal. Be sure to CLD immediately in the code 
where finished with decimal calculations. 

Formatting is much easier than binary. The trick is to have a couple 
of routines that put the low nibble of the A-reg into a field of BCD 
and fetch a nibble from the field to the A-reg. For example, here is a 
routine to rotate the ent ire field by one nibble, four bits, with the low 
nibble of the A-reg (see Fig. 3-19). A left rotation, the routine puts the 
A-reg into the least significant digi t and fetches the most significant 
digit to the A-reg. 

A REC FIELD 

BEFORE ~ I 3 2 I I 0 I 9 8 I 7 6 I 

A-REC FIELD 

AFTER ~ I 2 
I I 0 

9 I 8 1 I 6 0 I 
FiJl. 3-19. Left shift of fie ld into A-reg. 
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NLEFT: ASL A ;move digit 
ASL A ;from low nibble 
ASL A ;to high nibble 
ASL A ;in A-reg 
LOY #4 

NLEFT1 : ROL A ; rotate A-reg 
JSR LEFT ;rotate FIELD 
DEY 
BNE NLEFT1 ;repeat four times 
ROL A ;last one from C-flag! 
RTS 

The LEFT routine to rotate a field by one byte is used. The corre
sponding RIGHT routine can be used to do the same rotation of a 
nibble. This time, the A-reg adjustment is made a fter the rotation. 

NRIGHT: CLC 
LOY #4 

NRIGHT1 : ROR A ;rotate A-reg 
JSR RIGHT ;rotate FIELD 
DEY 
BNE NRIGHT1 ;repeat four times 
ROR A ;last one! 
LSR A ;move digit 
LSR A ;from high nibble 
LSR A ;to low nibble 
LSR A ;on A-reg 
RTS 

If you write your own NLEFT and NRIG HT routines, you can simply 
imbed the LEFT a nd RIGHT routines and avoid the JSR/ RTS in
structions. 

When you work with BCD, you will find the conversio n to display 
characters simple. See Example 3-3 . 

Working with bo th binary and BCD requires the use of conversion 
from b inary to BCD. Example 3-4 does this. 

Use the two examples just given to write a conversion from BCD to 
binary. Then you have a ll the little utilit ies you need to work with 
BCD. 

-
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Example 3-3. 

SOURCE FILE: EXAMPLE 3.3 
0000: 1 ********************************* 
0000: 2 * EXAMPLE 3.3 * 
0000: 3 * CONVERT BINARY TO DISPLAY * 
0000: 4 * * 
0000: 5 * USES $50.53 OF PAGE ZERO * 
0000: 6 * CALLS DIVID OF EXAMPLE 3.2 * 0000: 7 * TO CALL: * 
0000: 8 * $50.51 <--- BINARY NUMBER * 
0000: 9 * JSR BDISP * 
0000: 10 * STRING.STRING+4 ---> * 
0000: 11 * A STRING OF FIVE CHARS * 
0000: 12 ********************************* 
0000: 13 * 
0000: 14 * 
1000: 15 DIVID EQU $1000 TEST LOCATI 
ON 
0000: 16 * 
0000: 17 * 

NEXT OBJECT FILE NAME IS EXAMPLE 3.3.0BJO 

1040: 18 ORG $1040 FOR TEST 
1040: 19 * 
1040: 20 * 
1040:A9 OA 21 8DISP LDA #10 
1042:85 53 22 STA $53 DIVISOR 
1044:AO 04 23 LDY #4 
1046:20 00 10 24 BDISP1 JSR DIVID DIVIDE BY T 
EN 
1049:A5 52 25 LDA $52 GET REHAIND 
ER 
1048:09 80 26 ORA #$80 TO HAKE DIG 
IT 
1040:99 54 10 27 STA STRING,Y 
1050:88 28 DEY 
1051:10 F3 29 BPL BDISP1 
1053:60 30 RTS 
1054: 31 * 
1054:80 80 80 32 STRING ASC "00000" 
1057:80 BO 

*** SUCCESSFUL ASSEMBLY: NO ERRORS 

The alternative to integers for arithmetic data is floating-point 
representation. Floating-point is good for scientific and engineering 
applications; it provides a wide range of values without the need for a 
large number of bytes to hold it. 

If you work with very large or very small numbers, you appreciate 
floating-point. A large number like 9.4605xl015

, which is the number 
of meters in a light-year, or 6.62620xl0- 34 (Plank's constant, MKS) 
could not be kept in a reasonably-sized chunk of memory. They would 
need too many zeros, zeros that don't tell you anything except where 
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Example 3-4. 

SOURCE 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 

FILE: EXAMPLE 3.4 
1 ******************************* 
2 * EXAMPLE 3.4 * 
3 * CONVERT BCD TO BINARY * 
4 * * 
5 * Y-REG IS LEFT UNCHANGED * 
6 * TO CALL: * 
7 * A-REG <--- BCD 00 TO 99 * 
8 * JSR DECBIN * 
9 * A-REG ---> BINARY $00-$63 * 

10 * * 
11 ******************************* 
12 * 
13 * 

NEXT OBJECT FILE NAME IS EXAMPLE 3.4.0BJO 

1000: 14 ORG $1000 FOR TEST 
1000: 15 * 
1000:A2 00 16 DECBIN LOX 10 TO COUNT 
NS 
1002:C9 10 17 DECB1 CMP #$10 

TE 

1004:90 06 18 BCC DECB2 NO MORE TEN 
s 
1006:38 19 SEC 
1007:E9 10 20 SBC #$10 REMOVE TEN 
1009:E8 21 INX 
100A:DO F6 22 BNE DECB1 ALWAYS 
100C: 23 * 
100C: 24 * NUMBER OF TENS IN X-REG 
100C: 25 * 
100C:CA 26 DECB2 DEX 
1000:30 05 27 BMI DECBJ NO MORE TEN 
s 
100F:18 28 CLC 
1010:69 OA 29 ADC I$0A ADD TEN 
1012: DO FS 30 BNE DECB2 ALWAYS 
1014: 31 * 
1014: 32 * BINARY NUMBER IN A-REG 
1014: 33 * 
1014:60 34 DECB3 RTS 

*** SUCCESSFUL ASSEMBLY: NO ERRORS 

the decimal point is located. The five or six significant figures need to 
be stored, and another number giving the power of ten can fit into one 
byte only. So, the fixed decimal point that uses positional notation to 
give the number's size is replaced by a byte giving the position. This 
byte is separate from the other figures of the number and is called the 
exponent of the number. 

,... 
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In floating-point form, the length of a light-year would be written 
as 

0.94605 E 16 

and Plank's constant as 

0.66262 E - 33 

Each floating-point number has two parts: a mantissa that is always a 
proper fraction, between zero and one, and an exponent that is the 
power of ten that weighs the number. Applesoft displays its floating
point numbers this way when they are large or small. It is close to the 
way they are actually stored in the Apple. 

The mantissa part of the floating-point number is left-justified; that 
is, it has no leading zeros. It is a fraction between zero and one. So, 
the leftmost digit (in base 10) is the tenths, then the hundredths, then 
the thousandths, and so on. Most packages keep the mantissa in 
binary, so the leftmost bit is the half, followed by the quarter, then the 
eighth, the sixteenth, the thirty-secondth, and so on, from left to 
right. Several bytes may be used and one bit or entire byte must be 
designated for the algebraic sign. Often, a left-justified number like a 
floating-point mantissa is called normalized. The routines that do the 
normalization use the rotates, especially the ROL instruction. As long 
as the number of shifts needed is counted, the exponent of the number 
can be adjusted to preserve its value. 

The exponent part is best kept as a signed number in one byte. This 
gives possible values of - 128 to + 127 with the 6502 arithmetic made 
easy. Multiplication and division of exponents are easy - add 
exponents when multiplying and subtract them when dividing. 
Normalizing the mantissa means decrementing the exponent for each 
left shift, incrementing it for each right shift. With the exponent easy 
to maintain, operations on floating-point numbers are almost as fast 
as those on fixed-point numbers. 

Floating-point numbers can be kept in either binary or BCD form. 
If BCD, the exponent is the power of ten and is itself usually in binary. 
the mantissa in BCD is usually lo~g to accommodate many figures, 
sixteen or thirty-two being common. BCD is popular for business to 
avoid roundoffs when converting to and from binary. Typically, 
binary floating-point packages like Applesoft have four bytes used for 
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a mantissa and one byte for an exponent, the entire number occupying 
five bytes. 

Floating-point is mainly used for scientific calculations, and it is the 
main format for Applesoft numbers. It is possible to have BCD float
ing-point as well; the best usage of each format is given in Table 3-14. 

Table 3-14. Number Formats 

Fixed Point Floating Point 

Binary Internal program Most scientific 

BCD Instrumentation Precision scientific 

Accounting 

-

! I 

I 

.... 
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CHAPTER FOUR 

Applesoft BASIC 

4.1 THE LANGUAGE 

Here are the Applesoft statements and functions for your reference. 
These are verb keywords; their objects are called their arguments. The 
kind of argument used in each case varies, so several forms of the 
same verb can be used. Lower case italic is used for stating the argu
ment type; where an example is more appropriate, only upper case is 
used. To locate a verb for a specific job, use Table 4-1. All verbs are 
given in alphabetical order for easy lookup . 

ABS(expr) is a function that returns the absolute, positive value of 
the expression. 

ASC(string) is a function that returns the positive ASCII code 
number of the first character in the string. 

ATN(expr) is a function that returns the arctangent of the 
expression. The arctangent angle is in radians. 

CALL(expr) statement will execute a machine-language routine. 
The address of the routine must be the value of the expression: for ex
ample, CALL - 151. 

CHR$(expr) is a function to get a character code to become a string. 
Argument must be the positive ASCII code and the function returns 
the single character string. This is the inverse function of ASC. 

CLEAR is a statement that clears all variables and the stack. 
COLOR=(expr) is a statement to set the LORES display color. 

Value should be from zero to fifteen. 
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Program Flow Input/Output 

& GET ... 
CALL. .. IN# ... 
DEF FN ... INPUT ... 
END ... LOAD 
FOR ... - ... POL( 
TO ... STEP ... PEEK( 
GOSUB ... POKE ... 
GOTO ... PR# ... 
IF ... GOTO ... PRINT ... 
IF ... THEN ... or? ... 
ELSE ... RECALL ... 
NEXT ... SAVE 
ONERRGOTO .. SH LOAD 
POP SPC(* 
REM ... STORE ... 
RESUME TAB(* 
RETURN WAIT( 
SPEED ... 
STOP 
USR( 

• Used only in PRINT 

1 ) J . "] 1 

Table 4-1. Applesoft Command Sets 

Screens Variable Control Math, String 
Functions 

FLASH CLEAR ABS( 
HOME DTA ... ASC( 
HTAB ... DIM ... ATN( 
INVERSE FRE( COS( 
NORMAL READ ... CHR$( 
POS{ RESTORE EXP( 
TEXT INT( 
VTAB ... LEFT$( 
COLOR= ... LEN( 
GR LOG( 
HLIN ... MID$( 
PLOT ... RIGHT( 
SCRN( RND( 
VLIN ... SON( 
DRAW ... SIN( 
HCOLOR ... SQR( 
HGR STR( 
HGR2 TAN( 
HPLOT ... VAL( 
ROT= ... 
SCALE= ... 
XDRAW ... 

1 1 ·-) I -1 

Assignment 
Symbols 

LET 
AND 
OR 
NOT 
() 

= 
+ 
-
* 
I 
A 

. I - ) 

Edit/Debug 

CtrlC, 
CtrlX and reset 
CONT 
DEL. .. 
HIMEM: ... 
LIST ... 
LOMEM: ... 
NEW 
NOTRACE 
TRACE 
RUN ... 

.. 1 

~ 
c 

~ 
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CONT is a statement used in immediate mode to continue the exe
cution of a program that was STOPped. It works after ctrl/C and 
END have halted the program as well. 

COS(expr) is a function that returns the cosine of the expression. 
The value of the expression must be in radians. 

DATA value, value, value, . . . is a statement used to create a list of 
values for use by the READ statement. One or several values may be 
listed, as needed. They may be any type, but must be matched by ap
propriate variables in the corresponding READ statement. Strings 
containing alphabetics only need not be in quotes, but it is safest to 
quote all strings as a habit. 

DEF FN fpvar(fpvar) = expr is a statement to define a function. 
Examples of useful function definitions like DEF FN AD(X) = 
256*PEEK(X + 1) + PEEK(X) appear in Chapter One. The variable 
called X in this example is a dummy variable, and so X remains avail
able for use; it is not consumed by the function definition. 

DEL line, line is a statement that deletes program lines. Both the be
ginning line named and the ending line named are deleted, 

DIM var size, var size, ... is a statement to create dimensioned 
variables. One or more may be declared. The variable named may be a 
floating-point number, an integer, or a string. The size may have any 
order; each order may have any dimension. For example, DIM 
TH(5,9,3) defines TH as a floating-point array of order three, dimen
sions 6, 10, and 4. Note that the array will be addressed as TH(i,j,k) 
where i is a value from zero (not one) to five, j is a value from zero to 
nine, and k is a value from zero to three. 

ORA W expr AT expr,expr is a statement to draw a shape at a given 
point on the HIRES screen. The AT expr, expr is optional; not using it 
will cause the current plotting position to be used instead. See Chapter 
Six for details. 

END halts program execution. Unlike STOP, it doesn't display any 
message. By convention, one END statement at line 32767 is used for 
normal program termination. 

EXP(expr) is a function that returns the value of e raised to the 
power given. Note e = 2.7182818, as the base of natural logarithms. 
This is the inverse function of LOG. 

FLASH is a statement to make further PRINTed characters flash 
on the screen. Since the flash codes are used differently in lowercase 
displays like the lie SO-column card, this won't always work the way it 

, should. Undo it with NORMAL. 
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FN fpvar(expr) is a program-defined function to evaluate the ex
pression in its own way. See DEF FN. The argument passed as expr 
will replace the dummy variable in the DEF FN statement. 

FOR fpvar = expr TO expr STEP expr is a statement to begin a 
loop. Loop counter fpvar must be floating-point; don't use an integer 
variable. Loop ends whenever fpvar value is outside the range of ex
pressions. The STEP is optional, default is + 1. Each FOR must have 
a NEXT to end the loop. 

FRE(O) is a function that returns the amount of free memory, in 
bytes, remaining to the program. In doing so, it recovers any old 
strings that have been reassigned and makes their space available 
again. This garbage collection should be done in loops that reassign 
strings often. 

GET stringvar is a statement that accepts single-character input 
without a CR character. Often used for single keystroke responses in 
menus, cursor movement routines, etc. 

GOSUB line is a statement to execute a subroutine from within a 
program. 

GOTO line is a statement that causes execution to continue at the 
line given. 

GR is a statement to switch the display to LORES graphics from 
TEXT. Screen is cleared to black and text display remains at bottom 
four lines. See Chapter Six. 

HCOLOR = expr is a statement to set the HIRES plotting color. 
See Chapter Six. 

HGR is a statement to switch the display to HIRES graphics. Screen 
is cleared to black and four lines of text display remain at the bottom. 
See Chapter Six. 

HGR2 works just like HGR, but for HIRES2 instead of HIRESl. 
HIMEM:expr is a statement that sets the highest memory location 

available to the BASIC program. See Section 4.2. 
HLIN exprl,expr2 AT expr3 is a statement to draw a horizontal line 

in LORES graphics. See Chapter Six. 
HOME clears all text within the display window and moves the cur

sor to the upper left of the window. 
HPLOT expr,expr is a statement to plot a single point on the 

HIRES screen. See Chapter Six. May be modified to plot lines by ap
pending: TO expr,expr for the second end point. May be modified by 
more TO extensions to make polygons. 

HT AB expr is a statement to move the text cursor horizontally, to 
any column number, 1 to 40 (or 80). 

.... 
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IFexpr THENstatement is a statement that evaluates an expression. 
If the result is not zero (true) then the given statement is executed. If 
the result is zero (false) then the following statement is executed. If the 
given statement does not say otherwise, the following statement will 
be executed normally after the given statement. If an ELSE is used, 
the same rule applies; ELSE only invokes one statement as well. 
For example, IF A= B THEN A$= "EQUAL" ELSE A$= 
"UNEQUAL":A = 5 will set A to the value 5 regardless of the IF. 

IN#slot sets the current input device to the slot numbered: 1 to 7. 
See Chapter Six. 

INPUT string;var, var, ... is a statement to input variables from 
the current device. For keyboard use especially, the optional string; 
will be used as a prompt message on the screen. If more than one vari
able is to be INPUT, separate with commas as shown. 

INT(expr) is a function that returns the closest integer value less 
than or equal to the expression. For example, INT(- 5.9) gives 6 and 
INT(5.9) gives 5. 

INVERSE is a statement to display further characters on the text 
screen as black-on-white. It won't work with active SO-column dis
plays; to cancel its effect, use NORMAL to get white-on-black display 
to return. 

LEFT$(string,expr) is a function that returns a string consisting of 
the expr leftmost characters of string. 

LEN(string) is a function that returns the number of characters in 
the string argument. 

LET var = exprlstring is a statement to assign a value to a variable. 
It may be either string or numeric. A string variable must be assigned 
with a string; expressions will be converted from floating-point or 
integer to integer or floating-point values, as the numeric variable re
quires. Use the ASC and CHR$ functions if you need them to convert 
between numbers and strings. The LET verb is optional; most assign
ment statements are made without it. 

LIST line, line is a statement to list the current program to the cur
rent output device. Usually, to display on the text screen. When op
tional line numbers are given, only that range is LISTed; you can use a 
(-)instead of a comma(,). A single line may be LISTed; for example, 
LIST 20100. 

LOAD is a statement to read a BASIC program from tape. For 
disk, a filename must be given; then DOS will intercept the statement 
as a disk command. 
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LOG(expr) is a function of the natural logarithm (base e) of the ex
pression. This is the inverse function of EXP. 

LOMEM:expr is a statement to set the lowest address of memory 
available to BASIC for variables storage. 

MID$(string,expr,expr) is a function that returns a string of 
characters beginning with the one in the position given in the first ex
pression; for example, MID$("HELL0",3) returns "LLO." If the 
second expression is given, it sets the length of the returned string. For 
example, MID$("HELL0",3,2) returns LL. 

NEW is a statement that clears the current program from memory. 
Use NEW before writing a new program. 

NEXT fpvar,fpvar, ... is a statement used to mark the bottom of 
one or more FOR loops. With no argument, it ends the last (inner
most) loop. Use more than one argument to end several loops in one 
statement; be careful to list them in order from last (innermost loop 
variable) to first (outermost loop variable). 

NORMAL removes the effects of INVERSE and FLASH state
ments. Future output characters are displayed in normal white-on
black form on the text screen. 

NOTRACE turns off the TRACE feature that displays line 
numbers during execution. 

ON expr GOSUB line, line, line, ... is a statement to select one of 
several subroutines according to the value of an expression. The 
integer value of expr selects the first, second, third, etc., line number 
for the GOSUB. If none are selected, control simply passes to the next 
statement. 

ON expr GOTO line,line,line, ... is a statement like the ON .. 
GOSUB .. in that it selects the line number in exactly the same 
manner. 

ONERR GOTO line is a statement that sets Applesoft's error trap to 
execute at line instead of displaying an error message. See details in 
Chapter One. 

PDL(expr) is a function that returns the position of a games paddle 
or joystick. The argument selects one of four paddles: 0, 1, 2, or 3. A 
joystick normally uses 0 and 1. 

PEEK(expr) is a function that returns the contents of the memory 
location whose address is given as the argument. 

PLOT exprl,expr2 is a statement that plots a single LORES pixel. 
Arguments give the column as exprl and the row as expr2. 

POKE exprl,expr2 is a statement that writes to a memory location 

~ 
I 

-
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given by the address expr 1. The value written is that of expr2 which 
must be from zero to 255. 

POP is a statement that removes the last return address from the 
stack. It acts just like a RETURN statement, except control is not 
transferred to the return point; instead, it falls through to the next 
statement after the POP. 

POS(O) is a function that returns the column number of the cursor. 
The argument is ignored. 

PR#slot is a statement that sets up the peripheral in the named slot, 
1 to 7, as the current output device. 

PRINT list is a statement to write to the current output device. The 
list contains one or more expressions - numeric and string. Comma 
or semicolon delimiters may be used. If no list is given, the PRINT 
generates a CR character anyway. 

READ var, var, var ... is a statement to get values in DATA state
ments assigned to variables. Data type must be compatible, either 
string or numeric. Syntax permits one or several variables to be named 
in a READ. 

RECALL arrayname is a statement that reads data from a tape into 
a named (DIMensioned) array. 

REM is the remark statement. No execution is done. 
RESTORE is a statement that restores the READ pointer back to 

the beginning of the first DATA statement, allowing previously 
READ data to be re-READ. 

RESUME is a statement that ends an error handling routine so con
trol is returned to the statement that caused the error. That statement 
will re-execute. See ONERR GOTO. 

RETURN is a statement that transfers control to the statement fol
lowing the last GOSUB; it ends a subroutine. 

RIGHT$(string,expr) is a function that returns the rightmost 
characters of string. The length of this returned substring is the value 
of expr. 

RND(expr) returns a pseudo-random number, from zero to one. 
The sign of the argument gives different results: positive arguments 
generate new random numbers. Zero argument gives the same random 
number it gave last time. Negative arguments always give a specific re
sult, so a sequence of numbers are seeded. 

SQR(expr) is a function that returns the square root of its argu
ment. 
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STOP is a statement to stop program execution. Used in debugging, 
it prints the line number of the statement. 

STORE arrayname is a statement to save data to tape from the 
named array. See also RECALL. 

STR$(expr) is a function that returns a string representing the value 
of its argument. Same function that is implied in PRINT statements. 

T AB(expr) is a statement modifier for the PRINT statement. It ad
vances the cursor to the column number given by the argument. 

T AN(expr) is a function that returns the trigonometric tangent of 
the argument which must be in radians. 

TEXT is a statement that resets the display to the normal, 
40-column TEXT screen. The window is reset to full size (24 x 40) 
and the cursor positioned at lower ]Pft. 

TRACE is a command that causes each line number to be displayed 
as their statements are executed. Used for debugging; see also 
NOTRACE. 

USR(expr) is a user-defined function that executes the machine lan
guage routine setup by a JMP instruction at $0A.OC in Page Zero. 
The argument is passed in FAC ($9D.A2) and the result returned in 
FAC as well. 

V AL(string) is a function that returns the value of the number given 
as a string. This is the function implied in the INPUT statement. For 
example, VAL("294.5") gives a numeric value of 294.5. 

VLIN expr 1, expr2 AT expr3 is a statement that draws a vertical line 
in LORES graphics. See Chapter Six. 

VT AB expr is a statement to position the text cursor to the row 
number given by expr. Values must be one to 24. 

WAIT expr1,expr2,expr3 is a statement used to wait until some
thing happens at the address given by expr 1. The WAIT is completed 
when any bit in expr2 is also on at the location. However, if the op
tional expr3 is given, it tests for either on or off, according to expr3 
mask bits. See discussion in Chapter One. 

XDRA W expr1 AT expr2,expr3 is a statement to draw a shape. See 
Chapter Six for details. 

4.2 THE STRUCTURE 

4.2.1 Memory Usage 

In both the Apple II Plus and lie models, Applesoft resides in ROM 
at $DOOO.F7FF, between the input/ output addresses and the Monitor. 

-

,.. 
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It is just a collection of routines and constants whose role is the ulti
mate execution of specific statements and functions. It does this by 
using both its own routines and several standard ones in the Monitor. 

When you type a command, it is read from the keyboard input 
buffer at $0200 where it was placed by the GETLN routine at $FD6A. 
Applesoft then uses its own routines to dispose of the line. If the 
command begins with a line number, then it won't execute any state
ments; instead it creates a program line and stores it in RAM. Pro
gram lines are kept in sequence to make up what is called the program 
text in memory. Program text normally begins at location $0801 and 
continues as unbroken memory. This text is not the line you typed in; 
rather, it has been encoded in a short form that Applesoft can read. 
The LIST command causes Applesoft to read the program text and 
output it in decoded form to make it human-readable. 

Whenever you RUN a program, Applesoft stops taking commands 
from the keyboard buffer and takes them from the current program 
- the program text. By using a Page Zero pointer, it moves through 
your program, reading and interpreting the program text. Remember 
that your BASIC program is the data that Applesoft reads. 

Then, while your program is RUNning, it needs space for variables. 
Whenever a variable is used for the first time or an array is DIMen
sioned, Applesoft adds it to the end of the program text together with 
its allocated name. So, as the program runs, Applesoft is building 
variables in RAM following the program text, lengthening the entire 
program upwards in memory. 

This variables storage space always increases during the program 
RUN. It never decreases; Applesoft cannot recover space from old 
variables. You must reuse the same variable in different parts of your 
program if you have to conserve memory. 

One consequence of using a lot of variable space is the encroach
ment of HIRESl at $2000.3FFF during the run. When this happens, 
the variables overwrite screen graphics and you may see it on the 
screen. Then, when graphics are drawn, they clobber the variables! To 
get around this, the LOMEM: statement must be used before any 
variables are referenced in the program. Instead of starting at the next 
location following program text, Applesoft then will start variables 
storage at the LOMEM address. Simply set LOMEM to $4000 
(16384), just past HIRESI. 

Because variable space cannot be recovered and reused, the string 
variables don't hold the strings themselves. Instead, they point to the 
strings kept in other parts of memory: in between quotes in program 
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text, in DATA statements, and in the highest RAM available. When
ever a string is created during execution, the new string is stored by 
Applesoft in memory, below DOS at $9600. This upper limit can be 
changed before any strings are referenced in the program by the 
HIMEM : statement. But, the string variables themselves, pointing to 
the actua l strings, are in variables storage. So, the string space at the 
top of memory can be managed to recover the space occupied by old 
strings no longer referenced by string variables. 

While variable space cannot be recovered once a variable is brought 
into existence, the created strings that the string variables point to may 
be recovered. Each time a new string is created , the string storage en
larges at the top of memory. When it runs out of space, Applesoft 
does a garbage collection to repack the valid strings at the top and 
thereby free up new memory space. By weeding out dead strings regu
larly, you can avoid these strings from encroaching down into HIRES 
screens. Putting the statement 

X = FRE(O) 

in your program will do this for you. Put it in your main loop and any n 
loop that uses strings. It will force garbage collection regularly instead 
of waiting until the strings grow down to the top of the program varia-
bles and arrays. 

To summarize, Applesoft executes your BASIC program by step
ping through program text, usually from $080 I. T his encoded text is 
followed in memory by variables and arrays that Applesoft builds as 
they are encountered. Strings are created from the top of memory 
down, below $9600. In some programs, the HIRES screens in the 
$2000.5FFF area must be protected against variables and strings, 
using LOMEM: and FRE(O) features. 

Applesoft RAM usage in the normal case is shown in Fig. 4-1. 
If you dump the block of Page Zero $67.74 you will see seven 

pointers that Applesoft sets up and uses to maintain your BASIC pro
grams. They point to the boundaries in RAM where your program re
sides, where variables are maintained, and where strings are stored. 
Knowing what these pointers do and how to set them yourself enables 
you to control your program's memory map. You can tell Applesoft 
where to load, where to keep variables, and where to store strings. 
And you can examine these pointers to see what Applesoft is doing; 
see memory contention problems before they occur. See Fig. 4-2. 



Applesoft BASIC 239 
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VARIABLES ArlO 

ARRAYS 

SOSOl 

APPLE SYSTEM RAM 

Fig. 4-1. Applesoft RAM usage. 

MEMSIZI$73741 

CREATED 
STRINGS 

t 
FRETOPIS6F701 

FRETOP INCREASES 
AND DECREASES 

STREND INCREASES 

t STRENOIS6D.6EI 
ARRAYS 

ARYl AB)$6B.6CI 

VARIABLES 

- VARTABIS69.6A) 

PROGRAM TEXT 

TXTTABIS67 681 

Fig. 4-2. Applesoft memory pointers • 
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TXTTAB at $67.68 points to the start of program text. Usually this 
is $801 but you can change it to any other address before loading a 
program. It won't work properly on a program already loaded. The 
low byte in $67 is best left as $01; just change $68 to the page number 
of your new program area. For example, you could POKE 104,96 to 
set it to $6001. Applesoft expects the contents of the byte located 
immediately before the text to be zero, so a POKE 24576,0 would set 
$6000 to zero. A load of an Applesoft program will put program text 
in memory beginning at $6001, above the HIRES pages in this case. 

VARTAB at $69.6A points normally to one or two bytes beyond the 
end of program text. It points to the beginning of variable storage. 
When a program runs, Applesoft builds variables from the location 
that V ART AB points to, and always puts the simple variables ahead 
of array variables. You normally change VART AB indirectly using 
the LOMEM: command in Applesoft. Within a program, use 
LOMEM: to set V ARTAB for you before any variable references 
occur. For example, LOMEM:16384 sets VARTAB to $4000 to pro
tect HIRES I, and LOMEM:24576 sets it to $6000, protecting the en-

. tire HIRES screen area from encroachment by variables. 
ARYTAB at $6B.6C points to a spot within the variable storage 

where the arrays begin. This is convenient for Applesoft, so it can be
gin looking for DIMensioned variables here without having to search 
simple ones first. 

STREND at $6D.6E marks the end of variables storage. It marks 
the beginning of the free space between the end of arrays and the bot
tom of string storage. You can check this location to see if variables 
do indeed contend with a HIRES screen in graphics programs. 

FRETOP at 6F. 70 points to the bottom of string storage. It starts 
out pointing to the top of memory like MEMSIZ below, and points 
below the strings as each is added. It releases space by being reset to a 
higher address during garbage collection. You can read it to see if your 
strings are crowding HIRES screen memory, or read the difference be
tween FRETOP and STREND after a garbage collection in the varia
ble returned by the FRE(O) function. 

FRESPC at $71.72 is a pointer used by the string handling routines 
- there is no need to refer to it. 

MEMSIZ at $73.74 is the pointer to the highest RAM address avail
able to Applesoft, less one. Normally it is set to $9600 with DOS. 
Without DOS it would be set to $COOO. Sometimes machine language 
routines are put just below $9600 and MEMSIZ changed to point to a 

r 
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lower address below the routine. This must be done before any strings 
are assigned in the program, and is best accomplished with the 
HIMEM: command. For instance, HIMEM: 36864 sets MEMSIZ to 
$9000 and leaves the $9000.95FF chunk of memory free for the 
machine language routine, safe from Applesoft. Be careful in this area 
because the MAXFILES command to DOS will change MEMSIZ as 
well. Anything besides MAXFILES 3 will change MEMSIZ to some
thing besides $9600. 

You can change TXTTAB only before loading a program. 
VARTAB is best changed by a LOMEM: command; MEMSIZ by a 
HIMEM: one. The other pointers may be watched for potential 
trouble. 

Here are some common ways of fitting machine-language programs 
into memory with an Applesoft BASIC program. The one you choose 
will depend on the program size, the way it uses variables, and how 
large your machine language program is. When the memory map has 
been chosen, you just adjust the pointers accordingly to realize it; 
some can be done from within the BASIC program itself. 

The most common method is to make room at the top of memory 
using the HIMEM: statement. The result is shown in Fig. 4-3. Before 
any strings are referenced, your program simply states HIMEM:36864 

$9500 

S9000 

CREATED STRINGS 

--FRETOP 

S6000 
HIRES 2 

$4000 
HIRES I 

$2000 

--STRENO 

VARIABLES 

-- VARTAB 
PROGRAM TEXT 

S801 --TXTTAB 

Fig. 4-3. Applesoft and routine, first method. 
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to set MEMSIZ down to $9000. This protects the $9000.95FF chunk 
of memory against Applesoft for you. It works; it's simple. But, it 
won't protect against a MAXFILES command to DOS, and it won't 
solve the memory contention problem when HGR or HGR2 clobbers 
variables or strings. So, use it for programs that don't use HIRES, and 
don't use MAXFILES. 

Suppose you want to use HIRES and you want to have a machine 
language routine as well. Then, you could use a LOMEM: statement 
to set V ART AB to point above the HIRES screen memory. A 
LOMEM:I6384 sets VARTAB to $4000, protecting HIRESI; and, a 
LOMEM:24576 sets VARTAB to $6000, protecting HIRESI and 
HIRES2. You can usually find space between the end of program text 
and $2000 to place your routines. Kep the routines as close to $2000 as 
practicable so as to leave room for additional program text. If both 
program text and routine can fit into $080I.IFFF, this is the simplest 
way to have your HIRES, BASIC program, and machine language 
routine coexisting, as in Fig. 4-4. 

S9600 r------------, -- MEMSIZ 
CREATED STRINGS 

1-----------i -- FRETDP 

1-----------1-- STREND 

VARIABLES 
S6000 1------------1- VARTAB 

HIRES 2 
woo 1------------1 

HIRES I 

PROGRAM TEXT 

SOBOl L....-------~-- TXTTAB 

Fig. 4-4. Applesoft and rouline, second method. 

If the routine won't fit between the end of program text and 
HIRESI, you can find another place for it above the HIRES screen 
memory, as in Fig. 4-5. Make your routine start at $4000 (or $6000 if 
you use both screens) and note the next free location beyond the 
routine. Convert this location to decimal and use it in a LOMEM: 

.... 
! 

.... 
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S9600 -- IAEMSIZ 

CREATED STRINGS 

-- FRETDP 

-- STREND 
VARIABLES 

--VARTAB 

$6000 

HIRES 2 
S4000 

HIRES I 
$2000 

PRDGRAM TEXT 

SOBOl '-----------'-- TXTTAB 

Fig. 4-5. Applesoft and routine, third method. 

statement. This will set V ART AB to protect all memory from pro
gram text to the last address of your routine. Provided the routine is 
not very long, you can usually spare the room. 

If you are faced with the other extreme of having a long machine 
language routine and a short BASIC program, you must then reverse 
their storage. Put your routine between $0800 and $2000; then put the 
program text above the HIRES screen(s). For instance, to create the 
arrangement shown in Fig. 4-6 use a POKE 104,64 and POKE 24576,0 
before the BASIC program is loaded. Alternatively, POKE 104,96 
and POKE 24576,0 produces the map in Fig. 4-7 where TXTT AB is 
set to $6001 (from $0801) instead of $4001. The location before the 
start of program text is always set to zero: $800 is normally zero, so 
$4000 or $6000 is set to zero as well. 

The drawback to this method is that the program itself cannot do it. 
A separate program in machine language can do it, or use an EXEC 
file to do the POKEs and the RUN statements. For large graphics 
routines that use graphics and provide for user BASIC drivers, this is 
the way to go. 

There are other ways. The method of writing machine language 
loaders to setup the maps as the routines are first loaded is given in 
Chapter Seven. 
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$9600 -MEMSIZ 

CREATED STRINGS 

--FRETOP 

--STREND 

VARIABLES 
-VARTAB 

PROGRAM TEXT 

$4001 --TXTTAB 

lURES 1 
$2000 

SOBOl 

Fig. 4-6. Applesoft and routine, fourth method. 

S9600 

$6001 

S4000 

S2000 

SOIOD 

r-----------, --- MEMSIZ 

CREATED STRINGS 

~---------t- FRETOP 

1---~=~----i --- STREND 
1---_....;.;.,;;.;;;.;;~----i-VARTAB 

PROGRAM TEXT 
1----------i ---TXTIAB 

HIRES 2 

HIRES I 

Fig. 4-7. Applesoft and routine, fiflh melhod. 

4.2.2 llata Storage 

Data are stored in variables and arrays as one of the three types: 
floating-point, integer, and string. The user defined functions have 
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their names stored in the same manner as variables. First, here is how 
each variable type is kept in memory. 

Floating-point numbers are stored as simple variables by Applesoft 
during the execution of your BASIC program. By dumping the 
memory between the addresses pointed to by V ARTAB and ARYT AB 
you can examine them directly. 

Each number is stored in seven bytes. The first two bytes contain 
the variable name in ASCII code. Each ASCII name byte has bit 7 
clear. Floating-point (FP) variable names are the only ones like this: 
other variables have at least one of the bit 7s set in their names. Apple
soft uses this scheme to tell the variable types apart. See Table 4-2. 

Table 4-2. Type-Encoded Applesoft Variable Names 

Variable Type First Byte Second Byte Example Name 

FP Positive Positive Al as 41,31 

Integer Negative Negative Al OJo as Cl,Bl 

String Positive Negative Al$ as 4l,Bl 

Function Negative Positive FN Al as Cl,31 

The remaining five bytes of the variable after its name are its con
tents. For floating-point numbers, the contents consist of a one-byte 
exponent followed by a four-byte mantissa. 

The exponent is in what is called excess-$80 form. In this scheme, 
$80 is the code for a zero exponent; $81, $82, $83, etc., are positive 
exponents of 1, 2, 3, etc., respectively. An exponent of minus one 
would be encoded as $7F. Minus two as $7E. The exponent has $80 
added to it when it is converted to excess-$80 form. 

The mantissa has been normalized and appears in decreasing order 
of significance. Fig. 4-8 shows the format of Applesoft variables. Its 
four bytes are called HO, MOH, MO, LO in left-to-right order. The 
binary point is to the immediate left of HO. Because of normalization, 
the leftmost bit, bit 7 of HO, is always one. So, it doesn't carry any 
information. In variable storage, this bit is replaced by the mantissa's 
sign, which is zero for plus and one for minus. This replacement to in
crease the information content is called packing. 

To summarize the FP variable, it consists of two bytes of name and 
five bytes of number. The name has both bytes with their bit 7s clear. 
The number consists of one byte of excess-$80 exponent followed by 
four bytes of packed mantissa. As a simple variable, its total size is 
seven bytes. 
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I POS I POS I EXP I HO I MOH MO 

NAME-----' l 
EXCESS-S80 EXPONENT ----' 
PACKED MANTISSA ---------' 

(A) Floating point number. 

I NEG I NEG I HI LD I 0 0 I 
NAME-----' 

SIGNED VALUE -------' 

(8) Integer number. 

I POS I NEG I LEN I LO HI I 0 0 I 
NAME _j 
DESCRIPTOR !LENGTH & AODRESSI 

(C) String. 

I NEG I POS I LO HI I LO HI I 8 I 
NAME----' 

DEFN ADDRESS ------' 
OUMMYARG. ADDRESS --------' 
FIRST BYTE OF OEFN ------------' 

(D) User defined function. 

Fig. 4-8. Format of Applesoft variables. 

Integers also appear in simple variables as seven bytes. The name in 
the first two bytes has both bit 7s set to distinguish it as an integer. The 
contents of the integer consist of a two-byte signed number followed 
by three zeros. 

An example shows how the name works. Suppose that the variable 
name TA were encountered by Applesoft as it executed your program. 
It would create a new FP variable as a floating-point number and the 
name code would be $54 followed by $41, the codes for T and A. But 
suppose the variable were named TA% instead. Applesoft then 
creates a new integer variable and gives it the name code $B4 and $A 1 
instead. The difference in names is that the bit 7s are both set for in
teger name but both clear for FP name. 
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The contents are the integer itself in the two bytes following the 
name. These two bytes are in decreasing order of significance: high
o rder byte followed by low-order byte. This is j ust opposi te the format 
of addresses, so don't confuse the two. Integers are signed numbers 
with bit 7 of the high-order byte giving the sign: zero for plus, one for 
minus. This gives integers a domain of - 32768 to + 32767 in value. 

The three remaining bytes of an integer variable are unused and 
Applesoft sets them to zero. 

Strings are also built as simple variables by Applesoft executing 
BASIC program text. As a simple variable, a string variable consists 
of a name in two bytes followed by five bytes of content. The dif
ference with strings, however, is that the content is not the string itself 
but a pointer to the string. The name, on the other hand, behaves like 
other variable names. 

If a simple variable is a string, its name has the first byte wi th bit 7 
clear and the second byte with bit 7 set. So, a string name like T A$ 
would be encoded as $54 followed by $A 1. 

The content of a string variable is a three-byte descriptor followed 
by two unused bytes set to zero. The descriptor gives the length of the 
string followed by its address - low byte then high byte. By copying 
the descriptor into Page Zero, Applesoft can access the string using 
indirect indexed addressing. With the length included, the descripto r 
gives all the information needed to handle the string it describes. 

The string itself can be anywhere in memory. If assigned as a literal 
in the listing like 

A$ = "LITERAL STRING" 

it will be pointed to in the listing itself by the new descriptor. 
Similarly, a READ of a DATA stat ement causes the descriptor of the 
variable to point to the string within the DATA statement. If Apple
soft creates a new string as with a concatena tion like 

A$ = A$ + "SUFFIX" 

the new string is built in "free space" at the top of memory using 
FRESPC. Then the descriptor in the A$ variable is given its length and 
address. Regardless of where the string itself resides, it is assigned to 
its variable by putting its length, address-low, and address-high as the 
descriptor of that variable. 
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Functions are kept as simple variables by Applesoft as well. The 
two-byte name has the first byte with bit 7 set and the second byte with 
bit 7 clear. So, a name like FN T A encodes as $B4 then $41. This nam
ing scheme completes the pattern used for FP numbers, integers a nd 
strings. The contents o f a function variable is again different from 
other variable contents. 

The function variable points to the function definition in BASIC 
program text where you made your DEF FN statement. It also points 
to the FP number within the variable being used as its dummy argu
ment. For example, suppose you defined 

DEF FN LO(Z) = Z - 256*1NT(Z/256) 

in your program. Applesoft encodes it in program text and when run 
creates the functio n variable LO. The contents of the variable consists 
of two bytes as the address of the first byte of the definition in 
program text. Then two bytes point to a second variable created at this 
time - the dummy variable FP number. The function points to this 
dummy variable content, not its name, which is undefined. The last 
byte in the contents of the fu nction variable contains the first byte of 
the FN definition. So, the five bytes of a function variable are: address 
of first byte of the function definition, address of first byte of the 
dummy argument a nd the first byte itself of the function definition. 

Arrays are built and maintained in memory above the simple vari
a bles, from ARYTAB to STREND. After a program runs, you can 
find the start address for the first array in ARYT AB. 

Each array consists of a header followed by a ll its elements. The 
header is 2N + 5 bytes in length where N is the number of subscripts 
declared in the DIM statement. The contents of the header are listed in 
Table 4-3. Notice that you can have the same names for arrays as you 

Table 4-3. Array Header 

Number of Bytes Contents 

2 Array name: type-encoded 

FP (pos) (pos) 
Integer (neg) (neg) 
String (pos) (neg) 

2 Array length , including entire header 

I N = number o f subscripts, the order 

2N List of dimensions, last 10 first 

-
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do for simple variables because they are type-encoded the same way. 
The length of the entire array is the total number of bytes of both the 
header and all its entries. The number of subscripts is a lso known as 
the order of the array. T he dimensions themselves are numbers one 
larger than the values given in the DIM statement in order to count the 

M zeroth elements. And, these dimensions appear in the header in 
reverse order. 

r 

-

-

-
-

An example should make this clear. If you had an array of FP num
bers called BX that you DIMensioned as 

DIM BX(3, 1 ,2) 

it would be created in memory as shown in Table 4-4. 

Table 4-4. Example Array Created by DIM BX(3,1,2) 

Location Contents Description 

00.01 42 58 Array name, BX 
02.03 83 00 Array length = $83 = 131 
04 3 Order of array 
05.06 03 00 3rd dimension = 3 
07.08 02 00 2nd dimension - 2 
09.0A 0400 1st dimension = 4 
OB.OF Zeros Element BX(O,O,O) 
10.14 Zeros Element BX( 1,0,0) 
15.19 Zeros Element BX(2,0,0) 
lA. lE Zeros Element BX(3 ,0,0) 
IF.23 Zeros Element BX(O, l,O) 
24.28 Zeros Element BX( 1,1,0) 
29.20 Zeros Element BX(2,1 ,0) 
2E.32 Zeros Element BX(3,1 ,0) 
33.37 Zeros Element BX(O,O,I) 
38.3C Zeros Element BX( I ,0, I) 
30.41 Zeros Element BX(2,0, I) 
42.46 Zeros Element BX(3,0,1) 
47.413 Zeros Element BX(O, I, I) 
4C .50 Zeros Element BX(I, l ,l) 
51.55 Zeros Element BX(2,1, I) 
56.5A Zeros Element BX(3, 1,1) 
5B.5F Zeros Element BX(0,0,2) 
60.64 Zeros Element BX(I,0.2) 
65.69 Zeros Element BX(2,0,2) 
6A.6E Zeros Element Bx(3,0,2) 
6F.73 Zeros Element BX(O, 1,2) 
74.78 Zeros Element BX(I,I,2) 
79.70 Zeros Element BX(2, 1,2) 
7E.82 Zeros Element Bx(3, 1,2) 
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The name BX is encoded as the two positive ASCII codes, 42 and 
58, because the type is FP. The length is 131 bytes. The order is three 
because there are three subscripts given in the DIM statement. These 
dimensions are listed as three, two, and four. The three is the third, or 
last, dimension given as "2" in the DIM statement. The two is the 
second dimension given as a "1" in the DIM statement. And, the four 
is the first dimension given as "3" in the DIM statement. The total 
number of elements in the array is the product of its dimensions: here, 
4 X 2 X 3 = 24. 

The 24 elements follow the header, beginning with the twelfth byte 
at location $0B. The DIM statement sets them all to zeros. There are 
five bytes each for FP numbers. Notice in particular that the inner
most dimension varies the fastest and the outermost dimension varies 
the slowest. This is important when writing BASIC programs that you 
want to step quickly through arrays. 

Unlike simple variables, array elements have lengths that depend on 
their type. Simple variables take five bytes regardless of type. Array 
elements take five bytes for FP type only. Integer type elements take 
only two bytes each; string type elements take only three. 

4.2.3 Program Text 

Program text is kept in memory starting at the target of TXIT AB, 
usually $0801. Each new line is entered in sequence. Together, all the 
lines of the text make up a linked list data structure. 

Each record in the linked list contains a two-byte pointer to the next 
record in the list. The remainder of the record is the line and may be 
any length. The last byte of each line is always zero, however, so the 
end of the line can be recognized easily by routines that read it. These 
variable length records follow one another, in line number sequence in 
program text. 

The pointer beginning each record is in low-byte/high-byte order. It 
contains the address of the first byte of the next record, which is its 
low-byte pointer. At the end of the Program text file is a null record. 
This record has two zero bytes instead of a pointer and tells the 
searcher that there are no more records - no more program lines. 

Within each record, the pointer is followed by the line number in 
two bytes. The remaining bytes are the text of the line in ASCII code. 
Note that the seven-bit is used. If there is more than one statement in 
the line, they are separated by colons, ASCII code $3A. The last state-
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ment of any line is terminated by a zero byte. You can see that some 
bytes are greater than $7F. These bytes are called tokens. Instead of 
storing the ASCII code for commands as they are typed, the com
mands a re kept with tokens of only one byte each. For instance, $84 is 
the code for INPUT and $0A for SQR. This scheme saves some 
space. 

Use the Applesoft Token Table to read tokens from BASIC pro
gram dumps. 

Look at this BASIC program and its dump. 

10 TEXT:HOME:VTAB 20 
20 PRINT"HELLO, WORLD" 
30 DIM SE$(4,2) 
40 SE$(1,1) = "LITERAL II 
50 END 

801 : OD 08 OA 00 89 3A 97 3a A2 32 30 00 
BOD : 20 08 14 00 BA 22 48 45 4C 4C 4F 20 57 4F 52 

4C 44 22 00 
820: 2E 08 1E 00 86 53 45 24 28 34 2C 32 29 00 
82E: 46 08 28 00 53 45 24 28 31 2C 31 29 3D 22 4C 

49 54 45 52 41 4( 22 00 
846: 4C 08 32 00 80 00 
84C: 00 00 

The first record at $801 begins with a pointer to the next record at 
$800; this takes the first two bytes. Then the line follows: line ten is 
indicated in the following two bytes. The three statements o f the line 
have their commands tokenized as 89 for TEXT, 97 for HOME and 
A2 for VTAB. They are separated by colons, ASCII code $3A. The 
"20" in the thi rd statement comes out as $32 and $30. Finally, a zero 
byte terminates the line. 

The second record begins at $800 and is pointed to by the pointer at 
the beginning of the first record. It in turn points to the third record at 
$820. The line begins with the line number twenty, $14 and $00, and 
ends with a zero. 

The remaining records work the same way . The last record at $84C 
is pointed to by the record of the last line at $846. The zero value of its 
pointer marks the end of the program text file. 

There are three commands that can clobber you r BASIC program 
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- FP, NEW, and CLEAR. The CLEAR command removes all varia
bles created during program execution, while the FP and NEW com
mands remove the program text itself in addition to any variables. The 
FP command is executed by DOS and resets Applesoft's pointers com
pletely, including MEMSIZ and TXTTAB. The NEW command does 
not reset MEMSIZ and TXTT AB but it resets the others so as to re
move your program. 

After an FP command, you must restate any HIMEM: or LOMEM: 
commands and adjust TXTT AB if you want any memory map besides 
the default. A NEW command leaves your memory map intact, but 
you cannot LIST any program that was current before the NEW. For 
instance, if NEW was given with the above program in memory, a 
dump of memory after the NEW command would reveal 

800: 00 00 00 OA 00 89 3A 97 
808: 3A A2 32 30 00 20 08 14 
810: 00 BA 22 48 45 4C 4C 4F 

etc. 

The program is still there. All that the NEW command did to the pro
gram text was to replace the link in the first record with zeros. All you 
have to do to recover it is find the address of the second record and re
store the first link. 

The end of line token (zero) for the first line is at $80C. The follow
ing two bytes link to $820, a reasonable address. So, the next instruc
tion starts there, at $80D. This is the first link that NEW clobbered: 

801 : OD 08 

By replacing the link at 801, you can recover any program that was 
accidentally wiped out with the NEW command. 

4.3 INTERFACING TO ML ROUTINES 

4.3.1 Three Methods 

Applesoft provides you with three different methods of invoking 
machine language routines from your BASIC programs. The one you 
choose in any situation depends on how complicated your call has to 
be. 

... 

,.. 

-

-
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If you have a short routine to call, and if you don't have any param
eters to pass between your BASIC and ML, then the CALL statement 
is the way to go. If the routine is short enough, it may fit at 
$0300.03CF so you won't have to use the HIMEM: or LOMEM: 
statements. A simple CALL 768 is all that is required. It is possible to 
follow the CALL with parameters, but this is rarely done. The CALL 
is used for simple, short routines, usua lly one per BASIC program. 

The problem with the CALL method is its use of a fixed address . If 
you have a rather large routine, especially one with parameters, you 
cannot relocate it easily. Instead, you must locate all the CALL state
ments and change their addresses. In a collection of BASIC programs 
where each has several CALLs to various routines, this task becomes 
quite difficult , if not impossible. So, Applesoft has two other 
methods, each of which makes maintenance easier. 

One method is the USR function , which is invoked by 

result = USR(expression) 

where result is the returned FP value and expression is the argument of 
your function. 

You can create your own single-argument function with the USR. 
Put the jump instruction ($4C, addr-lo, addr-hi) in memory at 
$000A.OOOC by POKEs at the initialization of your BASIC program. 
Then, whenever USR is encountered, Applesoft will jump to $000A 
and find your routine address to execute. T he expression you pass in 
the argument will be waiting for your ML routine in the FP accumula
tor in Page Zero, FAC. Then your routine can process the argument 
using the floating-point routines directly and leave the result you want 
in FAC. An RTS wi ll return to Applesofl and deliver your result as 
your BASIC program continues its execution. 

With only one address reference in the entire BASIC program, you 
can easily change it if you relocate your ML routine elsewhere in 
memory. And, USR gives you a simple parameter passing mechanism, 
at least for one FP parameter. 

Then there is the ampersand method. Like USR, it provides an 
address where you put a jump instruction to your ML routine. But it 
doesn't pass any parameters for you; you have to build the pass logic 
yourself. However, this turns out to be easy with Applesoft's routines. 

Using the ampersand, you put $4C, addr-lo, addr-hi at locations 
$03F5.03F7. Then you use"&" as the command in your BASIC pro-
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gram whenever you want to invoke your routine. The ampersand gives 
you the jump vector flexibility to locate your routine that you have 
with the USR method, but without being tied down to one parameter. 
It is the most flexible method, both in terms of locating the routine 
and passing parameters. 

4.3.2 The Ampersand Method 

To pass parameters successfully, you must use the Applesoft inter
preter directly in your ML routine. In particular, you need the little 
routine in Appleso ft that actually points to and reads the character 
stream from your BASIC program. By knowing this routine and call
ing it directly yourself, you can work with your parameter list directly 
from your ML routines. See Table 4-5. 

The routine that fetches characters from the BASIC Program text is 
called CHRGET. Applesoft puts this routine in Page Zero and always 
calls it there at $00BI. You can disassemble it there and have a look . 

The pointer to the current character in Program text is at $B8.B9 in 
Page Zero and is called TXTPTR. It is imbedded in CHRGET as the 
absolute address of a LDA instruction: 

$0087: AD lo hi 

CHRGET increments TXTPTR by one before the LDA instruction so 
that it keeps advancing TXTPTR as it is called. You can call the 
routine at $00B7 to get the current character again without advancing 
TXTPTR. This is often done, and $00B7 is called CHRGOT. 

Once the character is fetched, the routine tests it to see if it is a 
numeral character, 0 to 9, and to see if it is the end of a statement - : 
or zero. On return , a numeral sets the C-flag and an end of statement 
sets the Z-flag. 

Applesoft sets TXTPTR to TXTT AB when it does a RUN com
mand to begin looking at the Program text. In command mode, 
TXTPTR looks at the input buffer at $0200 where your direct com
mands are entered. That's why you see a P age Two address in 
TXTPTR when you disassemble CHRGET. 

When Applesoft jumps to your routine, TXTPTR points to the next 
character following the jump command. This is because Applesoft 
routines normally finish their tasks by jumping to CHRGET and find
ing the delimiting character of their task. With that delimiter still in 

-

-
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Table 4-5. Applesoft Parameter Passing Routines 

Program Text Syntax: 

CHRGET SOOBI advance TXTPTR, get character INTO A-reg 
CHRGOT $00B7 re-get character 
DATA $D995 advance TXTPTR to end of statement 
SNERR $DEC9 bomb program with "SYNTAX ERROR" 
ISLETC $E07D edit A-reg "A" to "Z" 
CHKCOM $DEBE gobble comma 
CHKO PN $DEBB gobble"(" 
CHKCLS $DEBS gobble")" 

Passing by Value: 

GETBYT $E6F8 get expression to X-rcg 
FRMNUM $DD67 get expression to F AC 
GET ADR $E752 fix FAC to LI NNUM 

Passing by Reference: 

PTRGET $DFE3 find named variable, addr VARPNT 
GETARYPT $F7D9 find array, address name LOWTR 
MOYFM $EAF9 unpack (Y ,A) to F AC 
MOYMF $EB2B pack FACto (Y,A) - CONUPK $E9E3 unpack (Y,A) to ARG 
MOYAF $EB63 move F AC to ARG 
MOYFA $EB53 move ARG to FAC 
STRINI $E3D5 create new string space 
MOYSTR $E5E2 move string into new space 

Page Zero Data and Pointers: 

LINNUM $50.5 1 unsigned integer, lo-hi format 
FAC $9D.A2 FP accumulator 
ARG $A5.AA FP argument 
YARPNT $83.84 pointer to variable value 
LOWTR $9B.9C pointer to array variable (name) - DSCTMP $9D.9F string descriptor: length , lo, hi 
TXTPTR $B8.B9 interpreter pointer, in C HRGET/ GOT 

the A-reg, it turns to its next task. If your routine is that next task, 
~ then you have that next character in the A-reg waiting for you when 

you get control. 
To read your parameter(s) from BASIC, you fetch the characters 

""" immediately following the calling command and interpret them, per
haps using Applesoft's routines to help you. Such a call might look 
like 

&{A$, 4-S*DR, T) 

-
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When control passes to you r routine pointed to by the JMP at $3F5, 
the "(" is in the A-reg. By JSR CHRGET you advance TXTPTR by 
one to the A, fetching it to the A-reg. And so on . If you want to ignore 
the remaining parameters and skip to the end of statement, then a 
routine called DATA will do that. Just JMP DATA and you wi ll re
turn control back to normal Applesoft execution with TXTPTR at the 
end of your call statement. It's good practice to end your routines with 
a JMP OAT A in all cases that continue BASIC execution. 

One task you must perform when reading a parameter list, whether 
with C HRGET or routines that use CHRGET, is syntax checking. 
Parameter lists are usually enclosed in brackets and with the param
eters themselves separated by commas. You must test to see that the 
right parameters are in the right place, and that brackets and commas 
are where they are expected. Yo u may include a command word as a 
parameter, and interpret it in your routine, rejecting it if it is meaning
less to you . Whenever you have to reject the parameter list, you can 
JMP SNERR to exit your routine. This will halt execution of the 
BASIC program and print 

SYNTAX ERROR 

to the screen. 
So, you have two possible exits for ML routines run under Apple

soft - JMP DATA and JMP SNERR. Use DATA for normal con
tinuation of the BASIC program; SNERR to exit the program . Do all 
your parameter reading and syntax checking in the ML mainline and 
end it with a single JMP DATA instruction. Use JMP SNERR to trap 
errors in the mainline. This way, all your JSRed routines have clean 
parameters and no Appleso ft text to deal with. 

To do the syntax checking for brackets and commas, use 

CHKCOM at $DEBE for commas 
CHKOPN at $DEBB for "(" 
CHKCLS At $DEBS for ")" 

When called, each will test the current character by using CHRGOT. 
If it doesn't ma tch, then it bombs your program by jumping to 
SNERR. lf the character is all right, it exits by doing a C HRGET. 
This leaves TXTPTR pointing to the fi rst character of the next param
eter o r to the end of statement. Just right for the parameter routines. 
So, a typical ML mainline would be 

-
-
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AM PER: JSR CHKOPN ; gobble "(" 
JSR GETBYT : get expression to X-reg 
JSR FIRST ; Parm 1 in X-reg 
JSR CHKCOM ; gobble comma 
JSR GETBYT ; get expression to X-reg 
JSR SECOND : Parm 2 in X-reg 
JSR CHKCLS ; gobble ")" 
JMP DATA ; continue BASIC 

where GETBYT is typical of Applesoft parameter routines and your 
routines FIRST and SECOND are called with each of the two param
eters in the X-reg. The SNERR calls are all within the syntax and 
parameter routines, making a simple, sequential mainline. The call se
quence is 

&( parm 1, parm2 ) 

where parmi and parm2 are expressions of values from 0 to 255. 
Let's look at another example. This one has only one parameter, a 

single letter - "A" to "Z". 

AMPER: JSR CHKOPN ; gobble "(" 
JSR isletc ; edit "A" to "Z" 
BCS AMPER1 ; letter? 
JMP SNERR : no ... bomb BASIC 

AMPER1 : JSR GOTCHA ; yes ... interpret it 
JSR CHKCLS ; gobble ")" 
JMP DATA ; that's all, folks! 

The ISLETC range tests the A-reg and sets the C-flag if it is A to Z. 
The GOTCHA routine then has the character in the A-reg as its 
parameter. 

The mainline of your ML routine then has the job of dealing with 
parameters. It begins with the first character in the A-reg with 
TXTPTR pointing to its location in the BASIC program. Using syn
tax-checking routines, parameter routines, and your application 
routines, it reads and assigns each parameter in turn. At the end, it 
normally exits with a JMP DATA; abnormal exits are through the 
SNERR routine. Using this strategy, you must design your ML 
routine to assign each parameter passed to them in the same order as 
in the parameter list. If any parameters are returned to BASIC, they 
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must be at the end of the list in order of availability for return . 
Normally, the mainline passes through the list, fetching each param
eter once and only once. By careful design, perhaps using temporary 
storage, this will be enough. 

There are two ways of passing parameters using Applesoft's 
routines - by value or by reference. The simplest and easiest of these 
is passing by value. 

A string can be passed by value by putting the string in the 
parameter list, literally. For example, 

&("THIS IS A STRING VALUE") 

passes the string between the quotes to the ampersand routine. The 
quotes must be used to prevent Applesoft tokenizing it. Applesoft 
ignores text between quotes but replaces any substring it recognizes as 
a BASIC command with a token. Use quotes. In fact, for a single 
parameter like this, 

&"THIS IS A STRING VALUE" 

the parameter can be used without delimiters like brackets. The ML 
mainline is 

AM PER: JSR CHRGET ;next character 
JSR ISLETC ; letter "A" to 'Z" 
BCC AMPER1 ; letter? 
JSR GOTCH A ; yes .. process it 
JMP AMPER then get another 

AMPER1 : JMP DATA ; no .. . exit, all done 

Such a routine might, for instance, interpret English-like commands. 
Of course, you can use your own edit instead of ISLETC. 

To pass numbers by value, Applesoft has a couple of very useful 
routines to read expressions. You must pass legal Applesoft expres
sions, and each o f these special routines will leave you with the cal
culated value at a known memory location . 

One of these expression reducers is GETBYT, shown earlier. It 
must have TXTPTR pointing to the first character of the expression, 
and it returns the expression to you in the X-reg with TXTPTR 
pointing to the first character following the expression. If the expres-
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sion doesn't make sense, then SNERR is invoked. If the result is not 
within zero to 255, it can't fit into the X-reg and an ILLEGAL 
QUANTITY error results. As far as your ML routine is concerned, 
the value is in the X-reg following the JSR GETBYT and TXTPTR is 
properly positioned at the expected delimiter - comma or ")". 

Larger numeric values can be calculated from parameter expres
sions by the FRMNUM routine. It works just like GETBYT except it 
leaves the number in F AC - the noating-point accumulater in Page 
Zero. You can use the Applesoft floating-point package to work with 
the value at this point, or you can reduce the FP number to an integer 
if you wish. A routine called GETADRfixes the contents of FAC by 
changing it to an integer value in address format at a Page Zero loca
tion called LINNUM. So, the sequence 

JSR FRMNUM 
JSR GETADR 

results in a parameter expression evaluated into an integer at 
LINNUM ($50.51) in address form, low byte, high byte. Just a JSR 
FRMNUM will reduce the expression to the FAC only. The 
FRMNUM routine is the general way to get a numeric value, but you'll 
find GETBYT and GET ADR very useful. 

If you want to return a parameter from your ML routines to 
BASIC, then you must pass it by reference; you cannot return a 
parameter by value without inviting trouble. Passing by reference can 
be done either way: from ML to BASIC or from BASIC to ML. In the 
BASIC parameter list, you state the variable name and that declares it 
as a parameter. 

By reference, you can't give an expression to pass to the ML 
routine; only a variable name. Your ML routine must first find the 
variable in memory by reading the name from the parameter list then 
searching for it. Then, with the address of the variable in Page Zero, it 
can read or write to the variable, as you wish. Since this is exactly what 
Applesoft itself does to reference variables, you can just use its 
PTRGET routine to lookup your referenced parameters. 

A referenced parameter is a variable and PTRGET reads the vari
able name pointed to by TXTPTR. It then looks it up in the variable 
storage area and returns its address. If it can't find it, then it creates a 
new variable with that name; in either case it returns with the address. 
TXTPTR is returned, pointing to the next character following the 
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variable name in program text, as expected. The address of the vari-
able itself is in Page Zero at VARPNT ($83 .84) and in the registers: ~ 
high byte in Y -reg, low byte in A-reg. Almost all referenced 
parameters are found using PTRGET. 

If you wanted to reference an entire array of variables and not just a 
single entry, then another routine called GETARYPT will do that. It 
fetches the address of the beginning of the array, where its name is en
coded, in the array storage area. The address is in LOWTR ($9B.9C) 
when it returns to you, and you'll have to calculate your own way 
through the entries. GETARYPT is for entire arrays only, such as you 
would access if you wrote sorts or matrix arithmetic. 

Once you have your variable pointer in Page Zero, the way you 
fetch and replace the variable depends on whether you are working 
with a number or with a string. The key is the pointer in V ARPNT and 
that was found by PTRGET. 

Immediately after a JSR PTRGET, the address of the pointer is in 
the Y-reg and the A-reg. If you then JSR MOVMF, the FP variable 
will be moved to the FAC in Page Zero. This is how you fetch an FP 
variable: ,-q 

JSR PTRGET ; reference pointer 
JSR MOVFM ; variable to FAC 

If you are using the floating-point package (see Table 4-6) and want a 
second variable in ARG then the caB is 

JSR PTRGET ; reference pointer 
JSR CONUPK ; variable to ARG 

An FP number can be returned the same way. Fetch the pointer and 
use a move routine: 

JSR PTRGET ; reference pointer 
JSR MOVMF ; FACto variable 

All three of these routines - MOVFM, CONUPK, MOVMF -
expect the memory address in the Y- and A-registers where PTRGET 
puts it. And the routines do the packing and u!lpacking as necessary. 

With the routines to work between the FP registers and the variables !"'"I 
in memory, you have a ll you need to pass FP numbers. Integers areal-
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Table 4-6. Applesoft Floating-Point Math 

Registers: 

FAC $9D.A2 ;FP accumulator, unpacked 
ARG $AS.AA ;FP argument for binary function 
TEMPI $93.97 ;Packed format 
TEMP2 $98.9C ;Packed format 
TEMP3 $8A.8E ;Packed format 
RND $C9.CD ;Packed format, random number 

Other Applesoft routines use this Page Zero space differently when not doing 
floating-point math. See memory map in Chapter Two. 

Moves: 

MOVFM $EAF9 ;Unpacks (Y,A) to FAC 
CONUPK $E9E3 ;Unpacks (Y,A) to ARG 
MOVMF $EB2B ;Packs FACto (Y,A) 
MOVAF $EB63 ;Copy FAC to ARG 
MOVFA $EB53 ;Copy ARG to FAC 
GETADR $E752 ;Fix FACto LINNUM (unsigned) 
GIVAYF $E2F2 ;Float (signed) A, Y to F AC 
FOUT $ED34 ;String F AC to FBUFFR (STR$ function) 
STROUT $DB3A ;Print string at (Y ,A) 

Unary Functions: 

SGN $EB90 ;Sign(l,O, -1) of FAC 
ABS $EBAF ;Absolute value of FAC 
INT $EC23 ;Next largest integer 
SQR $EE8D ;Square root of F AC 
LOG $E941 ;Naturallogarithm(base e) of FAC 
EXP $EF09 ;Exponent (base e) of F AC 
RND $EFAE ;Random number to FAC 
cos $EFEA ;Cosine (FAC in radians) to FAC 
SIN $EFF1 ;Sine (FAC in radians) to FAC 
TAN $F03A ;Tangent (F AC in radians) to F AC 
ATN $F09E ;Arctan (FAC in radians) to FAC 

Binary Functions: 

FMULTT $E982 ;ARG *FACto FAC 
FDIVT $EA69 ;ARG I FACto FAC 
FADDT $E7Cl ;ARG + FACto FAC 
FSUBT $E7AA ;ARG- FACto FAC 
FPWRT $EE97 ;ARG exp FACto FAC (ARG to the FAC 

power) 

You should do the JSR MOVFM just before a binary function JSR. Otherwise, 
do a LDA FAC before the JSR. 
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Constants: 

RND $00C9 ;Random number 
'.4 $F070 
Y2 $EE64 
-Yl $E937 
1 E913 
10 $EA50 
SQR(Y2) $E92D 
SQR(2) $E932 
LOG(2) $E93C ;Base ten 
LOG(2) $EEDB ;Base e 
Pl/2 $F063 
2*PI $F06B 
-32768 $EOFe 

Use addr-hi in Y -reg and addr-lo in A-reg to fetch a constant with MOVFM or 
CONUPK. 

FCOMP $EBB2 

SIGN $EB82 

COMPARE $DF6A 

Compares: 

;Compare FAC with (Y ,A) 
;Result in A = reg: 

1 if (Y,A) > FAC 
0 if (Y,A) = FAC 

$FF if (Y,A) < FAC 

;Sets A-reg according to FACSGN 

1 ifFAC > 0 
0 ifFAC = 0 

$FFifFAC<O 

;Compare ARG with F AC according 
;to the code at $0016. FAC is 
;set to TRUE (1) or FALSE (0) on 
;return: 

Set $0016 
1 
2 
3 
4 
5 
6 

FAC is TRUE if 
ARG > FAC 
ARG = FAC 
ARG< FAC 
ARG ~ FAC 
ARG + FAC 
ARG ~ FAC 

most never passed by reference. Strings have several routines to 
manage them from variables, and the ones most often used are 
STRINI and MOVSTR. 

If you want to read a referenced string, you must first fetch its 
descriptor from the string variable to Page Zero. The descriptor then 

... 
,... 

~ 

~ 

filii! 

.., 
I 
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points to the string itself and you can read using indirect indexed 
addressing. 

JSR PTRGET ; reference pointer 
LDY #0 
LDA (VARPNn,Y ;string length 
STA DSCTMP ; descriptor 
INY 
LDA (VARPNn,Y ; string addr-lo 
STA DSCTMP+1 
INY 
LDA (VARPNn,Y ; string addr-hi 
STA DSCTMP+2 

The string can be read by LOA (DSCTMP+ l),Y where Y varies from 
zero to one less than the length in DSCTMP. The three bytes at 
DSCTMP are in Page Zero. 

If you want to write a referenced string, it gets trickier. The way 
Applesoft does it is to create new string storage with the FRETOP and 
FRESPC pointers. Then the new string is put into the location pointed 
to by FRESPC and its new descriptor replaces its old one in the vari
able's descriptor. Wow! Let's take that step-by-step. 

The routine that creates the new space is called STRINI. Just give it 
the length you need in the A-reg and it works with the pointers and re
turns you the new descriptor in DSCTMP. Then you copy the 
DSCTMP descriptor to the variable pointed to by VARPNT. Finally, 
use the DSCTMP descriptor as the length and destination address to 
copy your result string. It goes like this. 

JSR PTRGET ; reference pointer 
LDA #LENGTH ; of your new string 
JSR STRINI ; make room up t here 
LDY #0 
LDA DSCTMP ; copy new descriptor 
STA (VARPNT),Y ; to variable 
INY 
LDA DSCTMP+ 1 
STA (VARPNT),Y 
INY 
LDA DSCTMP+2 
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STA (VARPND,Y 
LDA #LENGTH 
LDY #STRING 
LDX #STRING 
JSR MOVSTR 

; length of new string 
; string addr-hi 
; string addr-lo 
; copy string to (FRESPC) 

The STRINI routine prepared your way for the copy by leaving 
FRESPC pointing to the new space in string storage. There a re short
cuts you can make, especially with fixed length strings, but you need 
experience to get away with them. This procedure will work safely and 
satisfy most of your needs. Usually, STRING will be a work buffer 
you set up; use Page Two if you aren't doing any conflicting inputting 
at the same time. 

When passing by reference, the key routine is PTRGET and the 
variable pointer is VARPNT. From there, you can work with numbers 
or strings according to the parameter. Passing by reference finds its 
greatest use in returning parameters from ML to BASIC. 

-
-

-

-

-

-



CHAPTER FIVE 

Integer BASIC 

5.1 THE LANGUAGE 

A summary o f Integer BASIC statements is in Section 1.2 as well as 
this section. The commands and statements on pages 266 through 275 
a re the descriptions that appeared in the original Apple II Reference 
Manual (1978). T hanks to Apple Computer Inc., for permission to re
produce them. 

Like Applesoft, Integer BASIC resides in the ROM memory area 
$0000.F7FF, between the hardware and the Monitor. The BASIC it
self requires only 5K and begins at $EOOO. The three ROM chips in 
$EO, $E8, and $FO sockets contain several utilities in addition to 
Integer BASIC - the Miniassembler and Floating-Point Utility 
Routines are useful to the Integer programmer. The $08 socket is 
filled by the Programmer's Aid # I , which is a package of utilities in
cluding HIRES graphics . Some of the early Apple lis may not have 
this chip retrofitted, but an Apple dealer can supply the chip along 
with a manual. 

The x memory available to an Integer BASIC program is delimited 
by the HIMEM and LOMEM pointers in Page Zero (see Fig. 5- 1). In a 
48K system with DOS, this gives the range $800.95FF by LOM EM 
pointing to $800 and HI MEM pointing to $9600. When you type in a 
program by numbering statement lines, it is kept tokenized as pro
gram text below the HIM EM address. T he program is in ascending 
sequence and a pointer called PP (point to program) gives the address 

265 
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BAS I C COMMANDS 

Co11111ands are executed i11111ediately; they do not require 1 ine numbers.Most Statenents 
(see Basic Statements Section) may also be used as co11111ands. Remember to press 
Return key after each co11111and so that Apple knows that you have finished that 
line. Multiple corrmands (as opposed to statements) on same 1 ine separated by 
a " : " are NOT allowed. 

COMMAND NAME 

AUTO nwn 

AUTO num1, num2 

CLR 

CON 

DEL num1 

Q£b. num1, num2 

OSP var 

GOTO exp1' 

GR 

LIST 

LIST num1 

LIST nwnl, num2 

Sets automatic line numbering mode. Starts at 1 ine 
number num and increments line numbers by 10. To 
exit AUTO mode, type a control X*, then type the 
1 etters "MAN" and press the return key. 

Same as above execpt increments 1 ine numbers by 
number num2. 

Clears current BASIC variables; undimensions arrays. 
Program is unchanged. 

Continues program execution after a stop from a 
control C*. Does not change variables. 

De 1 etes 1 i ne number num 1. 

De 1 etes program from 1 i ne number numl through 1 i ne 
number num2. 

Sets debug mode that will display variable var every
time that 1 t is changed along with the 1 ine number 
that caused the change. (NOTE: RUN connand clears 
OSP mode so that DSP corrrr.and is effective only if 
program is continued by a CON or GOTO co11111and. ) 

Sets highest memory location for use by BASIC at 
location specified by expression eX)l"in decil'lal. 
HIMEM: may not be increased without destroy1ng program. 
HIMEM: is automatically set at maximum RAM memory when 
BASIC is entered by a control B*. 

Causes ifllllediate jump to line number specified by 
expression expr>. 

Sets mixed color graphics display mode. Clears screen 
to black. Resets scrolling window. Displays 4tlx40 
squares in 15 colors on top of screen and 4 1 ines of text 
at bottom. 

Lists entire program on screen. 

Lists program line number num1. 

Lists program line numbernum1 through line number 
num2. 



,_ 

LOAD ezpr>. ,.. 

LOME~!: e:rpr 

~ 

MAN ,.. 
NEW 

NO OSP Val' 

NO TRACE ,.. 
RUN 

~ 
RUN e:r:pr> 

SAVE 

~ 
TEXT 

TRACE. 
~ 
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Reads (Loads) a BASIC program from cassette tape. 
Start tape recorder before hitting return key. Two 
beeps and a ">" indicate a good load. "ERR" or "~1EM" 
FULl ERR" message indicates a bad tape or poor recorder 
performance. 

Similar to HI~IEM: except sets lowest memory location 
available to BASIC. Automatically set at 2048 when 
BASIC is entered with a control B*. Moving lOMEM: 
destroys current variable values. 

Clears AUTO line numbering mode to all manual 1 ine 
numbering after a control C* or control X*. 

Clears (Scratches} current BASIC program. 

Clears OSP mode for variable var>. 

Clears TRACE mode. 

Clears variables to zero, undimensions all arrays and 
executes program starting at lowest statement 1 ine 
number. 

Clears variables and executes program starting at line 
number specified by expression e:rp1'. 

Stores (saves} a BASIC program on a cassette tape. 
Start tape recorder in record mode prior to hitting 
return key. 

Sets all text mode. Screen is formated to display 
a 1 pha-numeri c characters on 24 1 i nes of 41) characters 
each. TEXT resets scrolling windo\"t to maximum. 

Sets debug mode that displays line nu::~ber of each 
statement as it is executed. 

* Control characters such as control X or control C are 
typed by holding down the CTRl key while typing the 
specified letter. This is similiar to how one holds 
down the shift key to type capital letters. Control 
characters are NOT displayed on the screen but are 
accepted by the computer. For example, type several 
control G's. We will also use a superscript C to indicate 
a control character as in xc. 
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BASIC Operators 

Sample Statement 

Prefix Operators 

() 

+ 

NOT 

HJ X:: 4*(5 + X) 

2\) X:: 1+4*5 

3\) ALPHA "' 
-(BETA +2) 

40 IF A NOT B THEN 
2~~ 

Arithmetic Operators 

t 

* 

I 

MOD 

+ 

6t) Y "' Xt3 

71J LET OOT~::A*B*N2 

8.0 PRINT GAMMA/S 

9fJ 't "' 12 MOO 7 
1~\) X = X MOO(Y+2) 

11\) P = L + G 

120 XY4 = H-0 

130 HEIGHT::15 
140 LET SIZE=7*5 
150 A(S) = 2 
155 ALPHA$ = "PLEASE" 

Explanation 

Expressions within parenthesis ( ) 
are always evaluated first. 

Optional; +1 times following expression. 

Negation of following expression. 

Logical Negation of following expression; 
0 if expression is true (non-zero), 1 
if expression is false (zero). 

Exponentiate as in x3. NOTE: + is 
shifted letter N. 

Multiplication. NOTE: Implied multi
plication such as (2 + 3)(4) is not 
allowed thus N2 in example is a variable 
not N * 2. 

Divide 

Modulo: Remainder after division of 
first expression by second expression. 

Add 

Subs tract 

Assignment operator; assigns a value to 
a variable. LET is optional 
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Relational and logical oeerators ,.. The numeric values used in logical evaluation are "true" if non-zero, 
"false" if zero. 

~ 
Symbol Sample Statement Exelanation 

16(} IF D " E Expression "equals" expression. 
THEN SUU 

17(} IF A$(1,1}= String variable "equal~' string variable. 
"Y" THEN sg(J 

# or < > 1811 IF AlPHA #X*Y Expression "does not equal" expression. - THEN S0tl 

# 19U IF A$ # "NO" String variable "does not equal" string 
THEN S(J(J variable. NOTE: If strings are not 

the same 1 ength, they are considered 
un-equal. < > not allowed with strings. 

2fJ(J IF A>B 
• THEN GO TO SU 

Expression "is greater than" expression. 

< 2111 IF A+l<B-S Expression "is less than" expression. 
THEN l(J(.J 

>= 220 IF A>=B Expression "is greater than or equal to" 
THEN li.J(.J expression. 

<= 23(1 IF A+l<:::B-6 Expression "is less than or equal to" 
THEN 2110 expression. - AND 240 IF A>B AND Expression 1 "and" expression 2 must 
C<D THEN 2~11 both be "true" for statements to be true. 

OR 2S0 IF ALPHA OR If either expression 1 or expression 2 .., BETA+ 1 THEN 2«11 is "true", statement is "true" . 
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BAS I C FUNCTIONS 

Functions return a numeric result. They may be used as expressions or as part 
of expressions. PRINT i_s used for examples only, other statements may 
be used. Expressions followina function name must be enclosed between two 
parenthesis s i qns. 
FUNCTION NAME 

ABS fe:rproJ 

ASC fstro$J 

LEN (stro$J 

31110 PRINT ABS(X) Gives absolute value of the expression erpro. 

310' PRINT ASC("BACK") Gives decimal ASCII value of designated 
32tl PRINT ASC(BS) string variable> stro$. If more than one 
33fl PRINT ASC(BS(4,4)) character is in designated string or 
335 PRINT ASC(BS(Y)) sub-string, it gives decimal ASCII 

value of first character. 

34fl PRWT LEN(BS) Gives current length of designated 
string variable stre$; 1 .e .• number of 
characters. 

POL (e:rproJ 350 PRINT POL(X) Gives number between ~ and 255 corres
ponding to paddle position on game paddle 
numbPr designated by expression e:rpr and must 
be legal paddle (0.1,2,or 3) or else 255 is 
returned. 

PEEK fe:rproJ 360 PRINT PEEK(X) Gives the decimal value of number stored 
of decimal memory location specified by 
expression e:rpre. For MEMORY locations 
above 32676, use negative number; i.e., 
HEX location FFFI.f is -16 

RNO (e:rproJ 

SCRN (e:rpro z. 
e::pre2) 

SGN fe:rproJ 

37f6 PRINT RNO(X) Gives random number between tJ and 
(expression e:cpro -1) if expression e:cpro 
is positive; if minus, it gives rand0111 
number between ~ and (expression e:cpro + 1). 

380 PRINT SCRN (X1,Yl) Gives color (number between l.f and 15) of 
screen at horizontal location designated 

39p PRINT SGN(X) 

by expression e:rpro1 and vertical 
location designated by expression e:cpro2 
Range of expression e:cpro1 is 0 to 39. Range 
of expression erpro2 is 0 to 39 if in standard 
mixed colorgraphics display mode as set by 
GR colll!land or fJ to 47 if in all color mode 
set by POKE -163,1)4 ,p: POKE - 163Q2,Q. 

Gives siqn (not sine) of expression e:rpro 
i.e., -1 if expressione:cpro is negative, zero if 
zero and +1 ife:rp:r is positive. 
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BASIC STATEMENTS 

Each BASIC statement must have a line number between ~ and 32767. Variable 
names must start with an alpha character and may be any number of alpha-
numeric characters up to ~~~· Variable names may not contain buried any 
of the following words: AND, AT, MOO, OR, STEP, or THEN. Variable names may 
not begin with the letters END, LET, or REM. String variables names must end 
with a $ (dollar sign). Multiple statements may appear under the same 1 ine number 
if !:cpa rated by a : (co 1 on) as 1 ong as the tota 1 number of characters in the 1 i ne 
(including spaces) is less than approximately 150 characters 
Most statements may also be used as corrmands. BASIC statements are executed 
by RUN or GOTO comnands. 

NAME 

CALL expr> 

COLOR=expr> 

OHI Vll!'l (e:r:;rl J 
st!'$ (e:rpr2J 
Va1'2 ( expr3 J 

10 CALL-936 

30 COLQR::12 

50 DIM A(20) .B(l0) 
60 DIM B$(3.0} 
7.0 01~1 c (2) 

Illeqal: 
80 DIM A(30) 

Leqal: 
85 DIM C( 1000) 

leqa]: 
90 IJSP AX: OSP L 

Illeqal: 
100 OSP AX,B 
102 OSP ABS 
104 OSP A(5) 

Legal: 
Ul5 A=A(S): OSP A 

Causes execution of a machine level 
language subroutine at decimal memory 
location specified by expre$5Ton exp1' 
locations above 32767 are specified using 
negative numbers; i.e., location in 
example Hl is hexidecimal number $FC53 

In standard resolution color (GR) 
graphics mode, this corrrnand sets screen 
TV color to value in expression exp1' 
in the range fl to 15 as described in 
Table A. Actually expressionexpr> may be 
in the range fl to 255 without error message 
since it is implemented as if it were 
expressionexpl"' MOD 16. 

The DIM statement causes APPLE II to 
reserve memory for the specified variables. 
For number arrays APPLE reserves 
approximately 2 times exp1'bytes of memory 
limited by available memor.v. For string 
arrays - st1'$- r e:z:pl') must be in the ram1e of 
1 to 255. Last defined variable may be 
redimensioned at any time; thus, example 
in 1 i ne i s i 11 ega 1 but 85 i s a 11 owed. 

Sets debug mode that OSP variable var each 
time it changes and the 1 ine number where the 
change occured. 
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NAME EXAMPLE DESCRIPTION 

110 ~NO Stops program execution. Sends carriage 
return and "> " BAS I C prompt) to screen. 

FOR VCZJ": 110 FOR L"0 to 39 
~.11 TOexpl'2 120 FOR X,.Yl TO Y3 

Begins FOR ... NEXT loop, initializes 
variable VCU' to value of expression expl'l 
then increments it by amount in expression 
expl' 3 each time the corresponding "NEXT" 
statement is encountered, until value of 
expression expl'2is reached. If STEP e.rpl'J 

STEPe.rpl'J 130 FOR I .. 39 TO 1 

GOSU2 erpr 

HLIN erprl, 
e:rpro2AT .;xpl'3 

Note: 

150 GOSUB 1~0 *J2 

140 GOSUB 500 

160 GOTO 200 
170 GOTO ALPHA+lfJ0 

180 GR 
190 GR: POKE -16302,0 

200 HUN 1!1,39 AT 20 
21ft HUN Z,Z+6 AT I 

is omitted, a STEP of +1 is assumed. Negative 
numbers are a 11 owed. 

Causes branch to BASIC subroutine starting 
at legal line number specified by expression 
expl' Subroutines may be nested up to 
16 levels. 

Causes i11111ediate jump to legal 1 ine 
number specified by expression expr. 

Sets mixed standard resolution color 
graphics mode. Initializes COLOR = 0 
(Black) for top 40x40 of screen and sets 
scro 11 i ng window to lines 21 through 24 
by 40 characters for four 1 ines of text 
at bottom of screen. Example 190 sets 
all color mode (40x48 field) with no text 
at bottom of screen. 

In standard resolution color graphics mode, 
this comnand draws a horizontal line of a 
predefined color (set by COLOR=) starting 
at horizontal position defined by expression 
exprl and ending at position expr2 at 
vertical position defined by expression 
expr3 • e.rprl andexpr2 must be in the ranqe 
of 0 to 39 and exprJ < = exp1'2 • e.rpl'3 
be in the range of 0 to 39 (or 0 to 47 if not 
in mixed mode). 

HUN 1!1, 19 AT 0 is a horizontal line at the top of the screen 
extending from left corner to center of screen and HUN 20,39 AT 
3g is a horizontal line at the bottom of the screen extending from 
center to right corner. 



If. erpzoession 220 IF A > B THEN 
~statement PRINT A 

INPUT VCD"l, 
var2, str$ 

.!M.erpr 

LET 

230 IF X=0 THEN C=l 
240 IF A#l0 THEN 

GOSUB 200 
250 IF A$(1,1)# "Y" 

THEN 100 
Illegal: 

260 IF L > 5 THEN 50: 
ELSE 60 

Legal: 
279) IF L > 5 THEN 50 

GO TO 60 

280 INPUT X, Y, Z ( 3) 
290 INPUT "AMT", 

OLLR 
300 INPUT "Y or N?", ~.$ 

310 IN# 6 
320 IN# Y+2 
330 IN# 0 

340 LET X=S 

LIST numl, 350 IF X> 6 THEN 
-r.um2 LIST 50 

NEXT VCD"l, 360 NEXT I 
var2 370 NEXT J, K 

NO OSP VCD" 380 NO OSP I 

390 NO TRACE 
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If erpression is true (non-zero) then 
execute statement; if false do not 
execute statement. If statement 
is an expression, then a GOTO erpr 
type of statement is assumed to be implied. 
The "ELSE" in example 260 is illegal but 
may be implemented as shown in example 270. 

Enters data into memory from 1/0 
device. If number input is expected, 
APPLE wil output "?"; if string inout is 
expected no "?" will be outputed. 1'-\Jltiple 
numeric inputs to same statement may be 
separated by a conma or a carriage return. 
String inputs must be separated by a 
carriage return only. One pair of " " may 
be used inmediately after INPUT to output 
prompting text enclosed within the quotatior. 
marks to the screen • 

Transfers source of data for subsequent 
INPUT statements to peripheral 1/0 slot 
(1-7) as specified as by expression erpr. 
Slot 0 is not addressable from BASIC. 
IN#0 (Example 330) is used to return data 
source from peripherial 1/0 to keyboard 
connector. 

Assignment operator. "LET" is optional 

Causes program from 1 ine number nwnl 
through line number num2 to be displayed 
on screen. 

Increments corresponding "FOR" variable 
and loops back to statement following 
"FOR" until variable exceeds 1 imit. 

Turns-off DSP debug mode for variable 

Turns-off TRACE debug mode 
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PLOT. exprol, expro2 

POKE exprol, expro2 

PRINT vaztl, Val', stro$ 

400 PLOT 15. 25 
400 PL T XV, VV 

420 POKE 20, 40 
430 POKE 7*256, 

XMOD25~ 

440 POP 

450 PRINT Ll 
460 PRINT Ll, X2 
470 PRINT "AMT=" ;OX 
480 PRINT A$;8$; 
490 PRINT 
492 PRINT "HELLO" 
494 PRINT 2+3 

500 PR# 7 

510 REM REMARK 

520 RETURN 
530 IFX= 5 THEN 

RETURN 

In standard resolution color 
graphics, this c011111and plots a small 
square of a predefined color (set 
by COLOR=) at horizontal location 
specified by expression e:rprl in 
range 0 to 39 and verticaf location 
specified by expressionexpr2 in range 
0 to 39 (or 0 to 47 H in all graphics 
mode) NOTE: PLOT 0 0 is upper 1 eft 
and PLOT 39, 39 (or PLOT 39, 47) is 
lower right corner. 

Stores decimal number defined by 
expression expro2 in range of 0 
255 at decimal memory locat1on 
specifi~xpression e:rprl 
Locations above 32767 are specified 
by negative numbers. 

"POPS" nested GOSUB return stack 
address by one. 

Outputs data specified by variable 
var or string variable str$ starting 
at current cursor location. If there 
is not trailing"," or";" (Ex 450) 
a carriaqe return will be generated. 
C011111as (Ex. 460) outputs data in 5 
left justified columns. Semi-colon 
(Ex. 470) inhibits ~rint of any spaces. 
Text imbedded in " " wi 11 he orin ted 
and may appear :nultiple times·. 

Like IN#, transfers output to 1/0 
slot defined by expression expr PR# 
0 is video output not 1/0 slot f). 

No action. All characters after REM 
are treated as a remark until terminated 
by a carriage return. 

Causes branch to statement following 
last GOSUB; i.e., RETURN ends a 
subroutine. Do not confuse "RETURN" 
statement with Return ~on keyboard. 

r-
! 



VLIN e:t:pl'1, e:t:pl'2 
-- AT exp1'3 

VTAB e:t:pl' 

530 TAB 24 
5411.1 TAB I+24 
5511.1 IF AIIB THEN 

TAB 211.1 

550 TEXT 
56~ TEXT: CALL-936 

570 TRACE 
580 I FN > 32000 

THEN TRACE 

Integer BASIC 

Moves cursor to absolute horizontal 
position specified by expression 

275 

e:t:p:l' in the range of 1 to 40. Position 
is left to right 

Sets a 11 text mode. Resets 
scrolling window to 24 lines by 40 
characters. Example 560 also clears 
screen and homes cursor to upper 1 eft 
corner 

Sets debug mode that displays each 
line number as it is executed. 

5911.1 VLIN 0. 39AT15 Similar to HUN except draws vertical 
6011.1 VLIN Z,Z+6ATY line starting at e:pro1 and ending at 

expl'2 at horizontal position expl'3. 

610 VTAB 18 
620 VTAB Z+2 

Similar to TAB. Moves cursor to 
absolute vertical position specified 
by expression e:t:pro in the range 1 to 
24. VTAB 1 is top line on screen; 
VTAB24 is bottom. 
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t-----------i-- HIMEM AT S4C40 

PROGRAM 
TEXT 

t-----------1-- PP AT SCA.CB 

t--------------i-- PV AT SCC.CD 

VARIABlES 
STORAGE 

t-----------t--LOMEM AT $4A4B 

Fig. S-t. Map of Integer BASIC program. 

of the first instruction. So, program text resides between the addresses ,._ 
given by PP and HIM EM at the top end of user RAM. 

When you RUN an Integer BASIC program, it builds its variables 
starting from the LOMEM address. A pointer called PV (point to 
variables) marks the end of the variable storage area. If adding a vari
able should ask PV to become bigger than PP you will get an 
"***MEM FULL ERROR." The variables include both numbers and 
strings between the addresses given by LOMEM and PV at the bottom 
end of user RAM. 

Compare the memory maps of Integer and Applesoft. Both are resi
dent in firmware in the $DOOO.F7FF region with the cold entry at 
$EOOO and the warm entry at $E003. Both delimit RAM for BASIC 
use with a pointer pair: Applesoft with TXTT AB and FRETOP; 
Integer with LOMEM and HIMEM. Both tokenize their commands 
when building program text to save space and execution time. Both 
build variables during BASIC execution. And in both, the LOMEM: 
command changes the beginning of variable storage so that you can 
protect the HIRES screen(s) from encroachment. However, the maps 
are different and you use them differently to achieve coexistence with 
graphics and ML routines. 

The big difference is where program text resides. Integer puts it at 
the top of memory, right where Applesoft kept its working strings. 
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Table 5-l. Integer BASIC Error Messages 

Message Description 

••• SYNTAX ERR Results from a syntactic or typing error. 

••• >32767 ERR A value entered or calculated was less than - 32767 or 
greater than 32767. 

••• > 255 ERR A value restricted to the range 0 to 255 was outside that 
range. 

••• BAD BRANCH ERR Results from an attempt to branch to a nonexistent line. 
number. 

••• BAD RETURN ERR Results from an attempt to execute more RETURNs 
than previously executed GOSUBs. 

••• BAD NEXT ERR Results from an attempt to execute a NEXT statement 
for which there was not a corresponding FOR state-
ment. 

••• 16 GOSUBS ERR Results from more than 16 nested GOSUBs. 

••• 16 FORS ERR Results from more than 16 nested FOR loops. 

***NO END ERR The last statement executed was not an END. 

••• MEM FULL ERR The memory needed for the program has exceeded the 
memory size allotted. 

••• TOO LONG ERR Results from more than 12 nested parentheses or more 
than 128 characters in input line. 

••• DIM ERR Results from an attempt to DIMension a string array 
which has been previously dimensioned. 

••• RANGE ERR An array was larger than the DIMensioned value or 
smaller than I or HLIN, VLIN, PLOT, TAB, or VTAB 
arguments are out of range. 

*** STR OVFL ERR The number of characters assigned to a string exceeded 
the DIMensioned value for that string. 

*** STRING ERR Results from an attempt to execute an illegal string 
operation. 

RETYPE LINE Results from illegal data being typed in response to an 
INPUT statement. This message also requests that the 
illegal item be retyped. 

But that is all right because Integer doesn't keep strings dynamically; 
they are kept within the variables themselves. So, unlike Applesoft 
programs that always load at the bottom, Integer programs load at the 
top of memory so as to end just before the HIMEM address. 

In Applesoft, variable storage begins at the address in V ARPNT, 
normally set to the end of program text and changed by the HIMEM: 
command. In Integer, variable storage begins at the address in the 
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LOMEM pointer that is changed from $800 by the LOMEM: 
command. The only problem is that LOMEM: is illegal in a program 
- it must be given in command mode. So, a program must use 
POKEs instead to set LOMEM and PV to the variable start address 
before any variables are referenced in the program. For example, pro
tecting HIRESl by setting LOMEM and CV to $4000 is done by 

30000 POKE 75,64 :REM set LOMEM-hi to $40 
30010 POKE205,64 :REM set PV-hi to $40 

at the beginning of the program mainline. Only the high bytes need be 
set because LOMEM-Io is normally zero and CV is set to LOMEM at 
RUN time. 

Like Applesoft memory mapping, Integer memory usage can be 
optimized if you work from the normal memory map and sketch out 
what you want first. Integer is a little easier because it has fewer parts: 
only program text and variables. So, by knowing where things are you 
can use the same techniques. 

5.2.2 Variables 

Variables that are kept between the LOMEM and PV addresses dur
ing a BASIC program run are random-length records. Each variable 
has a name and that name can be any length up to 100 characters. 
Integer is not restricted to two-character names as is Applesoft. Each 
name identifies its variable, so each variable record may have a dif
ferent length . Integer BASIC manages this by linking each variable to 
the next, using a link pointer. Remember, that was the way program 
text was kept; in Integer BASIC, variables are kept the same way. 

There are four kinds of variables: simple numbers, characters, 
DIMensioned numbers and DIMensioned strings. If a reference to a 
new variable is made in your program without a DIMension declara
tion, then it is created as a simple variable of a number or a single 
character string. 

All variables are composed of a record having four fields : variable 
name, display a/tribute, link, and data. The length of the record 
depends upon the length of the name. 

The variable name, abbreviated VN, contains the name you give it 
in negative ASCII. Unlike normal seven-bit ASCII , these characters 
all have their bit 7s equal to one so that the characters in Integer are 

-
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Table S-2. Integer Variable Names and Tokens 

Integer Description 

Variable name In 8-bit ASCII , $80 to $FF. First character "A" to "Z", 
$Cl to $DA String name"$" tokened as $40 

Tokens All $00 to $7F. See Table 5-3. 

Integer constant 3 bytes: f!ag($80 to $89), low, high 

String constant Lert quote ($28), 8-bit ASCII string, right quote ($29) 
REM statement Begins with REM token $50, ends with $01. 

between $80 and $FF instead of $00 to $7F. In this scheme, "A" is 
$Cl , "B" is $Cl, and so on. So, a variable name consists of a string of 
negative ASCII characters. If the name is that of a string, the name 
has an extra byte, $40, at the end. The $40 is Integer's token code for 
"$" and appears in its place in string names. 

The end of the variable name is marked by the display attribute 
byte, $00 or $01. Being positive and therefore not a negative ASCII 
character, and having only one of two values, it is easily spotted . 
What it does is tell the run-time interpreter to display any variable that 
has it set to one. This is how the DSP command works when it sets the 
display attribute in the variable. Then, NODSP clears it to zero. Nor
mally, all variables have their display attributes zeroed to suppress 
automatic display by the run-time interpreter as your BASIC program 
executes. 

Following the DSP byte in the variable is the link field called NV A, 
Next Variable Address. This contains the absolute address of the next 
variable. This way all variables are linked in a list for searching. 

For simple variables, the data field is two bytes long. A number 
appears in the address format of low byte followed by high byte. A 
string consists of one negative ASCII character followed by a sentinel 
byte in the $00. 7F range, usually $1 E . If it is a null, the sentinel 
appears first followed by a zero, $ IE $00. 

(l Suppose you had a program like: 

10 NUM = 128 
20 CHAR$ = " 8 " 
30 END 

After running and entering the monitor (CALL-151 ), you could dump 
the variables to get 
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0800: CE 05 CD 00 08 08 80 00 
0808: C3 C8 C1 02 40 00 12 08 C2 1e 

where LOMEM points to $0800. Reading, the CE 05 CD are negative 
ASCII for the name of the first variable, NUM. Next, the zero ends 
the name by flagging the DSP off. The link is to the next variable ad
dress at $0808. And finally, the data of the first variable is the number 
$0080, which is 128. The next variable at the address $0808 is a string, 
because the four negative ASCII characters C3, C8, C l , and D2 are 
followed by a $40 to give "CHARS" as the variable name. Then the 
display byte is off (zero). Next variable address is $0812 in the follow
ing two bytes. And finally the variable's data - the character "B" as 
$C2 and suitably terminated with a $1 E. 

DIMensioned variables work much the same way (see Fig. 5-2). 
Only the DATA field is longer. What the DIM does is reserve one byte 

G/----11---,-DsP...._I N-:--vA -'---:-DATA--It=J 

••~ •w• J r I I L : .... ., "" 
INTEGERS 

DISPLAY: I = ON 
0 • Off 

NEXT VARIABLE ADDRESS 

Fig. 5-2. Integer number variable. 

for each character if it is a string or two bytes for each additional num
ber if it is numeric. So, a string must be dimensioned with the largest 
number of characters expected to be contained by the variable in the 
li fe of the program, up to 255 (see Fig. 5-3). When not full, the $IE 

diDsP I HvA I 

VARIABLE NAME _jj ~" I 

DISPLAY I a ON ___j 
2 =OFF 

NEXT VARIABLE AOORESS 

Fig. 5-3. Integer string variable . 

DATA t8 
I lSTRIHG TERMINATOR 

IPOSITIVEI 
TYPICALLY l iE 

NEGATIVE ASCII 
STRING 

marks the end o f the current string; you can find it by using the LEN 
function. Any element within a string can be found as a substring by 
referencing the string with two subscripts, like 

-
..... 

-

.... 
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A$ = B$(4,7) 

which assigns the fourth through seventh characters in A$ to B$. Con
catenation is done by assigning to the last-plus-one position in a 
string, like: 

L = LEN(BIG$) 
BIG$(L+ 1) = SUFFIX$ 

which copies the string from SUFFIX$ beginning at one byte beyond 
the last character in BIG$. This leaves BIG$ longer by the length of 
SUFFIX$. 

1"""1 The fact tha t you can only DIMension once restricts your expres-

-

sions to single dimension arrays. But, suppose you wanted a 10 by 12 
array. You can reserve enough space to work with in the variable by 

DIM ARRAY( 9*11 ) 

where the subscripts you use begin at zero. If you had subscripts X 
and Y, where X ranged from zero to nine and Y ranged from zero to 
eleven, you could then address any element in ARRAY as: 

element = ARRAY( X + 12*Y ) 

As far as BASIC is concerned, you are subscripting with only one ex
pression, but to you it is like having two subscripts operating, X and 
Y. 

By using tricks like this, you can overcome many of the restrictions 
of Integer BASIC. 

5.2.3 Program Text 

Program text is kept in the highest chun k of memory that the 
HIMEM pointer allows. Each line is stored as a single record and may 
contain several statements, separated within the line by ":" -
colons. T he records are stored in line number order, in ascending 
sequence. The CC pointer gives the address of the first line, and 
HIMEM points to one locatio n beyond the end of the last line. The 
program text consists of records of one line each in memory pointed 
from CC to HIM EM. 
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The lines are in linked records, so they are read as a linked list. The 
link field for Integer BASIC text is not absolute, however, but rela- .... 
tive. The first byte in each record gives the length of the record (see 
Fig. 5-4). By adding that length to the address of the current record, 

1------ LENGTH ------1 

I I ![ 

DATA STATEMENTlSI --------' 

ENO·OF·LINE TOKEN= SOl ------------' 

Fig. 5-4. Integer BASIC program line. 

you get the address of the next record. In this way, the length acts as a 
link field in the record to connect each following line to its predeces
sor. 

Next in the record is the line number in low-byte/high-byte format. 
The line number is always a two-byte field. 

The contents of the line follows the line number beginning at the 
third byte of the record. Statements are separated by colons tokenized 
as $03 in lines with multiple statements. The ends of all lines are 
marked by a $01 sentinel token. Then within each statement appears 
a mixture of negative ASCII characters and positive-valued tokens. 
The tokens are usually commands (verbs) and the characters, labels 
(nouns). Of these, constants and REM statements will take a little 
study before you can read a dump of program text easily. 

REM statements have $50 which is the REM token followed by a 
bunch of negative ASCII characters. Together with their line num
bers, they make good reference points when you are scanning through 
a dump. Use them to find the neighborhood of your target lines when 
searching program text. 

String constants appear as a string of negative bytes with $28 at the 
start and $29 at the end. These are the tokens for opening and closing 
quotes that Integer encodes differently. Look for the $28 ... $29 pat
tern. 

Integer constants are three bytes long; first byte is usually $BO. This 
flag is negative and may be any byte from $BO to $B9. Look for this 
flag followed by the value in low-byte/high-byte order in hex. 
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Otherwise, you should be able to cruise through a dump of program 
,., text armed with a listing, the Integer Token Table 5-3 and the Negative 

ASCII Table 5-4. 

Table 5-3. Integer BASIC Text Tokens 

Hex Hex Hex 

00 start line 30 SGN 60 IF 
01 end line 31 ABS 61 PRINT 
02 internal use 32 POL 62 PRINT 
03 : 33 63 PRINT 
04 LOAD 34 ( 64 POKE 
OS SAVE 35 + 65 

' 06 CON 36 - 66 COLOR= 
07 RUN 37 NOT 67 PLOT 
08 RUN 38 ( 68 

' 09 DEL 39 = 69 HLIN 
OA , 3A # 6A , 
OB NEW 3B LEN( 6B AT 
OC CLR 3C ASC( 6C VLIN 
OD AUTO 3D SCRN( 60 ' 
OE , 3E , 6E AT 
OF MAN 3F ( 6F VTAB 
10 HIMEM: 40 $ 70 = string 
11 LOMEM: 41 71 =number 
12 + 42 ( 72 ) 
13 - 43 

' 
73 

14 • 44 74 LIST ' 
15 I 45 ; 75 

' 16 = 46 ; 76 LIST 
17 # 47 ; 77 POP 
18 >= 48 

' 
78 NODSP 

19 > 49 
' 

79 NODSP 
lA <= 4A , 7A NOTRACE 
IB <> 4B TEXT 7B DSP 
IC < 4C OR 7C DSP 
ID AND 40 CALL 70 TRACE 
IE OR 4E DIM 7E PR# 
IF MOD 4F DIM 7F IN# 
20 A 50 TAB 
21 51 END 
22 ( 52 INPUT 
23 ' 53 INPUT 
24 THEN 54 INPUT 
25 THEN 55 FOR 
26 

' 
56 = 

27 ' 57 TO 
28 "begin 58 STEP 
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29 ''end 59 NEXT 
2A ( SA , 
28 58 RETURN 
2C sc GOSUB 
2D ( SD REM 
2E PEEK SE LET 
2F RND SF GOTO 

.... 

Table S-4. The 8-bit ASCII Character Set (negative-ASCII) 

DEC HEX DEC HEX DEC HEX DEC HEX 
~ 
I 

128 80 NUL 160 AO SP 192 CO@ 224 EO 
129 81 SOH 161 AI! 193 C1 A 225 E1 a 
130 82 STX 162 A2 '' 194 C2 B 226 E2 b 
131 83 ETX 163 A3 # 195 C3 C 227 E3 c 
132 84 EOT 164 A4 $ 196 C4 D 228 E4d 
133 85 ENQ 165 AS O!o 197 CS E 229 ES e 
134 86 ACK 166 A6 & 198 C6 F 230 E6 f .... 
135 87 BEL 167 A7' 199 C7 G 231 E7 g I 

136 88 BS 168 A8 ( 200 C8 H 232 E8 h 
137 89 HT 169 A9) 201 C9 I 233 E9 i 
138 8A LF 170 AA* 202 CAJ 234 EAj 
139 88 VT 171 AB + 203 CB K 235 EB k 
140 8C FF 172 AC, 204 CCL 236 ECI 
141 8DCR 173 AD- 205 DCM 237 EDm 
142 8E SO 174 AE. 206 CE N 238 EE n 
143 8F SI 175 AF I 207 CF 0 239 EF o 
144 90 DLE 176 80 0 208 Dp p 240 FO p 
145 91 DC1 177 81 I 209 D1 Q 241 Fl q 
146 92 DC2 178 82 2 210 D2 R 242 F2 r 
147 93 DC3 179 83 3 211 D3 s 243 F3 s 
148 94 DC4 180 84 4 212 04 T 244 F4 t 
149 95 NAK 181 85 s 213 D5 U 245 FS u 
ISO 96 SYN 182 86 6 214 06 v 246 F6 v 
151 97 ETB 183 87 7 215 D7 W 247 F7w 
152 98 CAN 184 88 8 216 D8 X 248 F8 X 

153 99 EM 185 89 9 217 D9Y 249 F9 y 
154 9ASUB 186 BA: 218 DAZ 250 FA z 
ISS 98 ESC 187 88; 219 D8c 251 FB{ 
156 9C FS 188 BC < 220 DC\ 252 FC I 
157 9DGS 189 80 = 221 DO :::::I 253 FD} 
158 9E RS 190 BE> 222 DE t 254 FE "" 
159 9F US 191 BF? 223 DF_ 255 FF DEL 
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DEL delete VT vertical tab 
NUL null character DCI device control 
SOH start of header DC2 device control 
STX start of text DC3 device control 
ETX end of text DC4 device control 
EOT end of transmission NAK negative acknowledge 
ENQ enquiry SYN synchronous idle 
ACK acknowledge ETB end transmission block 
BEL bell CAN cancel 
BS back space EM end of medium 
HT horizontal tab SUB substitute 
LF line feed ESC escape 
FF form feed FS file separator 
CR carriage return GS group separator 
so shi ft out RS record separator 
Sl shift in us unit separator 
DLE data link escape SP space 

5.2.4 Tricks 

To get around some of Integer BASIC's shortcomings, pro
grammers have long used a few standard tricks. These include making 
VAL and CHR$ functions, making illegal LOMEM: statements, and 
combining BASIC and ML using a method called pack and load. 

Two function s from Applesoft that would be very use ful in Integer 
BASIC programming are the CHR$ and VAL functions. CH R$ re
turns a string variable of one character having the ASCII value of the 
argument of the function. VAL is the inverse: the ASCII value is re
turned when a single character is given as its string argument. If a 
number, N, has a value from zero to 128, then 

N = VAL(CHR$(N)) 

r"'1 because VAL and CHR$ are inverses. Sim ilarly, 

A$ = CHR$(VAL(A$)) 

for the same reason. 
You can have CHR$ and VAL functions in Integer by using a little 

trick. Make the very first variable you declare in your program a single 
character string: 
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30100 CHR$ = "A" 

When the program RUNs, it creates CHR$ in variable storage at 
LOMEM. If LOMEM is $800, then it will look like 

0800: C3 D8 D2 40 00 09 08 C1 1 E 

in memory. The "A" you assigned is at $807 as hex C1. So in your pro
gram you can change CHR$ anytime with a number by 

POKE 2055,VAL 

where VAL is any byte value between 128 and 255. This gives you the 
character having that value in CHR$. 

If you want the number from the CHR$ character, just 

VAL = PEEK(2055) 

It is that simple. 
There are two restrictions to that trick. First, LOMEM must be 

$800 for the 2055 address to work. And second, the value you POKE 
must always be between 128 and 255 so Integer knows that it is a 
character. If you don't like these hangups, then use two other smart 
statements that avoid them: 

POKE 7 + PEEK(74) + 256*PEEK(75}, VAL+ 128* (VAL< 128) 

for the CHR$ function, and 

VAL = PEEK( 7 + PEEK(74) + 256*PEEK(75)) - 128 

for the VAL. This way, LOMEM is used to find the location of the 
CHR$ character in variable storage and the ASCII value of the 
character is kept in VAL. 

One of the differences between Integer and Applesoft BASICs is 

-

that Integer parses your statements much more rigorously in order to ,., 
tokenize them at the time you type them in. With much of the parsing 
in the tokens, Integer BASIC text then executes much faster than does 
Applesoft. But many commands are not allowed by Integer because 
Integer won't parse them into deferred statemenrs like Applesoft will. 
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So, HIMEM:, LOMEM, LIST, RUN, and other commands are illegal 
in Integer BASIC. 

Sometimes you need an illegal command in your program. Like a 
LIST to capture it to a text file, for instance. The trick to making il
legal statements is simple enough. As an example, suppose you wanted 
to 

100 LOMEM : 4096 

in your program instead of the usual POKEs. Since the statement is il
legal, write a similar statement; any one that has a command followed 
by a number like LOMEM: but one that's legal. Suppose you choose 

100 PRINT 4096 

which is legal. Enter the monitor and find line 100 as hex 64 00 
(low/ high hex format): 

07 64 00 62 80 00 10 01 

The PRINT token is the hex 62. Now, replace it with the LOMEM: 
token which is hex II. Your line will look like 

07 64 00 11 80 00 10 01 

now, in memory. Return to BASIC and list it. You should see 

100 LOMEM: 4096 

which will execute properly at run time. 
Since the days of tape, programmers have been putting their ML 

fil es inside Integer BASIC programs to make one file to copy and 
load. You can tell when this trick is used, when the program you load 
cannot be LISTed: and it gives garbage instead. To understand what's 
happening in such programs or to pack your own single file programs, 
here's how it is done. The method is called pack and load. See Fig. 5-5 . 

STEP ONE: Start with a good, working program in two fi les, one 
BASIC and one binary. The binary file BLOADs at $800 and 
LOMEM protects it because of two instructions: 
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BASIC 
TEXT 

ML 
BIN~RY 

ORIGINAL 

WilEN BASIC IS WRITTEN 
POINTER CC TELLS 
WHERE II STARTS 
WHEN RUN LOWEll IS 
RAISED TO PROTECT ML 

WHEN RUN POINTER 
CC IS RESTORED TO 
BASIC ONLY LEAVING ML 

-IIIMEM 9600 

- cc ccz 

CCI 

LOMEM 

800 

BASIC 
TEXT 

loll 
BINARY 

Ml LOADED AND 
POINTER CC CHANCED 
TO INCLUDE THE 
loll IN THE BASIC 
LOAD AND SAVES. 

TO PROTECT Ill FROM 
ENCROACHMENT COPY 
II DOWN TO S800 AND 
CHANCE LOMEM AND CV. 

FiJl. S-5. lnleger BASIC puck and load . 

30200 
30250 
30260 

PRINT"BLOAD PROGNAME.BIN" 
POKE 75,high :REM sets LOMEM 
POKE205,high :REM sets PV 

HIMEM 

- cc 

cv 
LOMEM 

where the cntrl/ 0 is hidden at the beginning of the quote. The 
byte value high is the next page number following your ML rou
tines, as usual. 

-

-
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STEP TWO: Replace the BLOAD statement line with 

30200 POKE 60,low: POKE 61 ,high : REM PP1 
30210 POKE 62,1ow: POKE 63,high: REM PP2 
30220 POKE 64,00 : POKE 65,08 : REM $800 
30230 CALL -468: REM MOVE PP1 .PP2 to $0800 

Just use zero byte values for the high and low values of the PPl and 
PP2 values. 

STEP THREE: Enter the Monitor, CALL - 151. Find the pointer 
value in PP ($CA.CB) and note it as PP2. Then subtract the 
length of your ML file from this PP2 value to get the value of P P I . 
Then, 3DOG to BASIC again. 

STEP FOUR: Change the POKEs you entered in STEP TWO by 
giving them the address bytes of PPI and PP2. 

STEP FI VE: Load the ML file that normally resides at $800 but 
force the load to the PPI address. Example: 

BLOAD PROGNAME.BIN,A$7423 

where $7423 is the value of PP l in this mythical example. 

STEP SIX: Enter the Monitor, CALL - 151. Change PP at $CA.CB 
from PP2 to PPI. Return to BASIC, 3DOG. 

STEP SEVEN: Add one line to the program, line zero. 

0 POKE 202,1ow; POKE 203,high : GOTO 10 

where 10 is the firs t line of your program. The address you POKE 
as low and high is PP2. This line restores PP2 when the program is 
RUN. 

STEP EIGHT: Now, SAVE it to disk. Don't use the same name as 
your Integer or iginal; you need it as your source for any further 
changes . The file you SAVE is a pack and load file for RUNning 
only. 
If you want to make any changes, do so in the two original fi les. 

Then rebuild the pack and load fi le using these steps again . 
For reference, see Integer BASIC locations in Table 5-5. 
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Table 5-5. Some Useful Integer BASIC Locations 

Label Hex Dec Description 

LOMEM 4A.4B 74.75 lowest RAM, start of variables 
HIM EM 4C.4D 76.77 highest RAM, end of program text 
GOTOA C6.C7 198.199 address of line for GOTO 
pp CA.CB 202.203 pointer to program text start 
PV CC.CD 204.205 pointer to variables end 
VAL CE.CF 206.207 next line number 
RUNMODE 09 217 ( + )ve is immediate; ( - )ve is run 
PR DC.DD 220.221 current line number 
LNA E4.E5 228.229 line number address 
CNTLB EOOO - 8192 cold entry point 
CNTLC E003 - 8189 warm entry point 

E3E3 - 6997 displays current line number, PR 
HEX DEC E51B - 6885 displays A-reg/ X-reg in decimal 
LINADR E56D - 6803 at (LNA}, finds line number, VAL 
GOYAL ESSE GOTO line number, VAL 
GOLNA E867 - 6041 GOTO line at address, GOTOA 
LAM E88A return from Monitor command CALL 

5.3 UTILITIES 

5.3.1 CALL Extensions 

With the Programmer's Aid # 1 chip, you can CALL several useful 
routines. 

You can renumber an Integer BASIC program in whole or in part. 
To renumber the complete program, type 

CLR 
START = 1000 
STEP= 10 
CALL - 10531 

if you want the new numbers to be 1000, 1010, 1020, etc. Any 
references in GOSUBs and GOTOs will be changed if they are simple 
numbers. For instance, 

GOSUB 215 

will be changed to the new line number, but 

GOTO 35+ 100 
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and 

GOSUB 1000* N 

won't be. So for complex expressions you'll have to go through your 
renumbered program and correct them yourself. 

To renumber only a portion of your program, type 

CLR 
START = 3000 
STEP= 5 
FROM = 360 
T0=480 
CALL - 10521 

where START and STEP again refer to the new line numbers. The 
FROM and TO tell the renumbering routine exactly which part of 
your program you want renumbered . You can't renumber with num
bers within the FROM/ TO range as the routine will quit with an error 
message. Keep your old line numbers (FROM/ TO) disjoint from your 
new line numbers (START / STEP). 

When using tape to store Integer BASIC programs, you can append 
one program to another. This will give you a new program with all the 
lines of each of the two original programs in it. This appending 
routine is great for using tape libraries of subroutines. With various 
subroutines on tape files, a program can append those needed to itself 
without having to type them in each time. For this to work, your 
Integer programs must all have high line numbers and each subroutine 
must have its own block of line numbers below those of the program. 

Here's how it works. Suppose you had a tape of ten subroutines 
from lines I 00 to 199, 200 to 299, 300 to 399, etc. And suppose your 
program was written between lines 30000 and 32767. Such a system 
could use the append feature to include any or all of the subroutines in 
the program. With the program in memory and the tape positioned at 
the highest-numbered of the wanted subroutines, type 

CALL= 11076 

to load the subroutine. Then position the tape to the subroutine with 
the next lowest line numbers and repeat the load procedure. As long as 
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the routine on tape has lower line numbers than the lowest in your 
program, the CALL= 11076 will load and append the subroutine to -
the beginning of your program. Of course, you will wait until adding 
the 

10 GOTO 30000 

line to your final program. 
Whenever you save an Integer program or subroutine to tape, you 

probably reload it to make sure that it is intact. For short routines this 
is the best way, but for long programs checking out the entire listing 
for possible errors becomes impractical. Fortunately you have an 
Integer BASIC tape veri fy routine that can do the job for you . 

To do a tape verify of an Integer program, use 

CALL= 10955 

instead of the LOAD command to reload the program from tape. Do 
this immediately a fter you SAVEd it, while the copy is still in memory. 
The verify routine will load and verify the program on tape with the 
copy in memory. Two audible beeps tell you that the verify went all 
right; one beep and the ERR message indicates that the verify did not 
work. Resave the program and try again. 

You can make sounds easily from Integer BASIC. Your programs 
can even play musical tunes. Here is the call sequence to put in your 
program initialization: 

TIMBRE= 765 :TIME = 766:PITCH = 767 
MUSIC= -10473 

To sound a note, POKE values into TIMBRE, T IME, and PITCH, 
then CALL MUSIC. Normal notes have a timbre of 32. The scale is 
closely chromatic so that PITCH can be POKEd as follows: 

POKE PITCH , 1 
POKE PITCH, 13 
POKE PITCH, 25 
POKE PITCH, 37 
POKE PITCH, 49 

for the lowest note 
for same note, 2nd octave 
for same note, 3rc octave 
for same note, 4th octave 
for same note, 5th octave 

-

-

-
-
-
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So, to play a middle note you would use: 

POKE TIM BRE, 32 
POKE TIME, 100 
POKE PITCH, 25 
CALL MUSIC 

If you just want game sounds, play around, especially with the t imbre. 
If you want tunes, try different notes to get the flavor o f your tune in 
one tonic note. Then use the intervals fro m the tonic to count up and 
down the tempered scale. If this sounds obscure, get a music student 
to help you translate notes to chromatic scale intervals. 

To use H IRES gra phics in Integer BASIC, you have to set the very 
first variables in your program as follows: 

CLR:XO =YO= COLR 

If you use shape tables, you must follow immediately with 

SHAPE= ROT= SCALE 

The HIRES routines expect these variables to be declared exactly like 
this and first in the variable storage area, at the memory pointed to by 
LOMEM. After declaring these variables, your program can continue 
wi th any other varia bles it needs. In particular, you will want some or 
all of the following: 

INIT = - 12288 
C LEAR=- 12274 
BKGND = - 11471 
POSN = - 11527 
PLOT=- 11506 
LINE=- 11500 
DRAW = - 11465 
DRAW I = - 11462 
SHLOAD = - 11355 

works li ke Applesoft's G R 
sets screen to black 
sets screen to a color 
moves HIRES cursor 
moves cursor , plots point 
draws while moving cursor 
draws a shape 
draws a shape at cursor 
loads shape table 

You will POKE parameters for COLR, XO, and YO to set the cursor 
and current drawing color. These COLR values may be given names 
by typing 
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BLACK=O: LET GREEN=42: VIOLET=85: WHITE= 127 
BLACK2 = 128: ORANGE= 170: BLUE = 213: WHITE2 = 255 

Note you must use LET for GREEN to keep Integer BASIC from 
interpreting the GR as a command. XO must be set to a value in the 
0 .. . 279 range while YO must be set to a value in the 0 ... 191 range. 

The HIRES routines normally plot on HIRES! screen. If you want 
HIRES2 plots, then: 

POKE 806,64 
POKE-16299,0 
POKE- 16302,0 

for HIRES 2 plotting 
for HIRES 2 display 
for full -screen display 

To return again to HIRES! you must 

POKE 806,32 
POKE -16300,0 

for HIRES 1 plotting 
for HIRES 1 display 

And, to reset the screen to four lines of text at the bottom 

POKE - 16301,0 for mixed graphics/text 

While HIRES graphics techniques are covered in Chapter Six, they 
are intended for the Applesoft user. If you are using Integer BASIC, 
Chapter Six is still useful, but you will use the Integer routines defined 
above instead of the built-in commands of Applesoft. They do the 
same thing. For clarity, here are the Integer BASIC HIRES routines 
call sequences. 

To invoke the HIRES package and initialize its parameters, use the 
instruction: 

CALL INIT 

To re-clear the screen to black at any future time, use 

CALL CLEAR 

instead. If you want the screen to be cleared to a background color 
other than black, you must first set COLR, for example, 

-
-

-

-
-
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will set your screen to violet. 
To plot single points, you must set the cursor and the drawing color. 

For example, 

COLR= WHITE:XO= 140:Y0= 95 
CALL PLOT 

puts a single white dot in the middle of the screen . To plot a line, first 
you must be sure that the cursor is at the beginning point. Then set the 
cursor to the end point and use LINE to plot the line: 

XO=O:YO=O:CALL POSN 
XO= 279:Y0= 191 :CALL LINE 

draws a diagonal line from upper le ft to lower right in the current 
drawing color. The cursor remains at the end position, so you could 
continue without CA LLing POSN again if you were drawing a poly
gon. 

The remaining rout ines are used with shape tables. To load a shape 
table, 

CALL SHLOAD 

and run your tape player at the same time. The shape table loads at 
$0800 and locations $0328.0329 contain the pointer. If you do a 
binary load from disk, set $0328 and $0329 to the low byte and high 
byte of your shape table's starting address and don't use SHLOAD. If 
you load to $0800, you can set 

LOMEM :16384 protect shapes and HIRES 1 

or 

LOMEM:24576 protect shapes, HIRES 1 & 2 

to protect the $800.1 FFF area for your shape tables. 
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To draw a shape, set the cursor, the color, and the shape parameters 
- SHAPE, ROT, and SCALE. 

SHAPE= 1: ROT= 0 : SCALE= 1 
CALL DRAW 

This example draws the first shape in the table whose address is in 
$328.329. The shape is not rotated (zero) and its size is not increased 
(scale of o ne). XO, YO, and COLR were used and XO, YO remain un
changed. If you want to draw another shape but at the cursor instead 
of the XO, YO point, then CALL DRAWl instead . 

Remember when using shapes that you cannot use too large a 
SCALE because the shape routines don't do clipping. Make sure your 
shape won't try to be drawn off the screen. A scale of 2 is twice normal 
size, 4 is four times normal size, and so on. Rotation can be from 0 to 
63. The shape is rotated clockwise, so that ROT = 16 gives you 90 de
grees, ROT= 32 gives you 180 degrees, ROT = 48 gives you 270 de
grees , and ROT = 0 gives you zero degrees or no rotation. ROT = 64 is 
the same as ROT= 0, so just use the range 0 .. . 63 for ROT to avoid 
confusion. 

5.3.2 Monitor Extensions 

Like the extra CALLs, the Programmer's Aid #I gives you some 
very useful routi nes that you access from the Monitor. 

Just as there is a utility that verifies an Integer BASIC program, 
there is a utility that verifies a binary fi le saved to a tape. T o use it 
a fter a W command, just rewind the tape and position it as if you were 
going to use the R command to read it. Then type 

addr1 .addr2 
D52EG 

to set the ctrl/ Y hook. Then type 

addr1 .addr2(ctrl/Y)(return) 

for the same address range that you saved . P lay the tape and it wi ll be 

-

-
n 

verified. !""' 
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If the verify routine finds a discrepancy, it wi ll give an audible beep 
and give you an ERR message. Otherwise the program will finish 
normally. 

Here's how to test the RAM of a 48K Apple from Integer BASIC. 
Enter the Monitor with a CALL - 151. Engage the RAM test routines 
by 

DSBCG 

which sets the ctrl/ Y feature. 
To test the first block of 16K of memory, type 

400 .4(ctri/Y)(retu rn) 
800. 8(ctrl/Y)(return) 
1000.1 O(ctri/Y)(return) 
2000 .20(ctri!Y)(retu rn) 

Each line tests a chunk of memory a nd results in an error message in 
case of RAM fai lure. It may take time, and the Monitor's asterisk will 
return when the test is finished. 

To test the second block of 16K of RAM, type 

4000 .40(ctri/Y)(retu rn) 

And for the third block, the comm and is 

8000.40(ctrl/Y)(return) 

If you want to test the boundaries between each block, the com
mands are 

3000.20(ctrl /Y)(return) 
7000. 20(ctri/Y}(retu rn) 

A good test to make of a 48K system is this one-liner: 

N 400.4(ctri/Y)800.8(ctri/Y) 1000.1 O(ctri/Y}2000.20(ctri/Y) 
3000.20(ctrl!Y)4000.40(ctrl /Y}7000.20(ctrl/Y}8000.40 
(ctri/Y)34:0(retu rn) 
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Note that there is only one space in the command string, between the 
N and the 400 at the beginning. What this one does is to run all the 
48K memory tests, then repeat them indefinitely. If you run this test 
overnight with the Apple's cover in place, the RAM chips will be well 
tested for intermittent failure at normal operating temperatures. 

You may want to test other RAM, such as on peripheral cards. Use 
the same format for any one test: 

(start) . (length)(ctrl /Y) 

where start address and length number of pages tell the routine which 
RAM addresses to test. And you can combine several tests if you wish. 
Once the command string is known, you can run the test overnight by 

N (command string)34:0(return) 

just like the 48K example above. 
A program written to run at one memory location in the Apple, or 

any 6502 machine, can be modified to run in the Apple at any free 
location. The modification you must make to the original program is 
called relocation. From Integer BASIC, you can use a relocating 
utility to help you in this task. 

Normally, you relocate programs by reassembling them with a new 
ORG directive. If it is just a short routine that you wrote with the 
Miniassembler, then you can probably just change any JSR and JMP 
addresses by hand to conform to the addresses at the new program 
location . However, if you want to modify a ROM routine or move a 
utility that you didn't write yourself, then you'll have to relocate with
out the source code. For any sizeable program that you have to move 
this way, the relocator in the Integer BASIC utilities wi ll save you a lot 
of time. 

Load the program to be relocated if it isn't in the Apple a lready. If it 
is in the Applesoft ROM area ($DOOO.F7FF), then copy it down into 
the RAM area. Switch to INT if necessary and CALL-151. From the 
Monitor, you can access both the Miniassembler and the Relocator 
packages. You need access to both. 

There are four steps to performing a relocation. First you must 
make an accurate memory map of the old program and use it to make 
a new memory map. Then you can use the utility to relocate code and 
move data to achieve the new memory map. The utility may not relo-

-
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cate perfectly, so your third step will be to search for and make correc
tions to these exceptions. And finally you may use the relocator again 
to change the range of Page Zero usage if the program originated in 
another computer. Follow each step carefully. 

STEP ONE: Use the Monitor's disassembler to examine the program. 
You must identify the code and data segments of the program, 
accounting for every byte. Sketch a memory map that shows all 
program segments and all data segments. The same map should also 
be labeled with the actual running addresses as well, if they are dif
ferent from the locations where you are storing it. 

With a memory map of the old program, you can sketch out the 
map of the new program. Label both data and program segments by 
giving the addresses of each block in the final running program. 
You may not wish to relocate to the running location right away, 
especially if it is going into PROM. In such cases, you can designate 
an unused segment of RAM to build the new program. The new 
program should be built in an area that is not otherwise being used, 
especially by the copy of the old program. 

At this point you should have two memory maps . The first map 
should show the program and data segments as they are in memory. 
The same map should show the old locations where the program 
came from - the blocks of memory in which it ran . These blocks of 
memory may or may not be the same as the segments of memory 
where you are presently storing it for relocation. The lengths and 
relative positions are the same and that's all that matters. The 
running locations are called blocks and the relocation storage loca
tions are called segments. Look at the example and compare it to 
your map . 

The second map you have should show the program you want 
after relocation. The locations of each program and data block 
should show the final, running addresses. For relocation, you 
should also show the relocated storage positions as segments of the 
same lengths and relative positions. Again, look at the example. 

Be sure there is no overlapping of the old and new segments . If 
everything is all right, then proceed to the next step. 

STEP TWO: Engage the relocation utility to give you ctrl/Y com
mands for relocation with the command 

D4DSG 
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to the monitor. Start by telling the relocator your old and new 
program addresses (their blocks) as follows: -

new1 < old1.old2(ctri/Y)*(return) 

using the syntax of the Monitor's M command for the addresses. -
The asterisk tells it that you are specifying blocks of running 
addresses rather than segments of working storage locations. Then 
relocate each program segment and move each data segment in 
ascending sequence: 

new< old 1 .old2(ctri/Y)(return) relocates 
new< o ld1 .old2M(return) moves 

until a ll segments have been relocated or moved. 

S TEP THREE: After moving and relocating, you must go through the 
new code with the disassembler and look for any exceptions -
address references not found by the relocator. One o f these is 
immediate addresses. Code like 

LOA #$36 
STA $80 
LOA #$45 
STA $81 

obviously sets a pointer to an immediate value, $4536. If that 
address is part of the relocation, then you'll have to change the 
immediate values to agree with your new program. Another excep
tion to watch for is references to addresses outside the relocation 
addresses. This is rare. The third exception is a change to relative 
branches when your relocation adds new code or removes old code. 
If you relocate for either reason, check any branches in the region. 
Usually, the only exceptions you will have to correct are immediate 
addresses. 

STEP FOUR: If your old program came from another computer like 
Commodore or Atari, you will probably have to change Page Zero 
references at this point. For instance, if the old program uses Mon i
tor addresses like $40.5F, say, then you would change the new 
program so that it uses addresses in the $80.9F range instead. 
Continuing this example, you would type: 

-

-
-

-
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80< 40. SF)ctr 1/Y)* (return) 
1 000< .1 093(ctri/Y)(return) 
. 1 A 34M (return) 
.1 FD2(ctri/Y){return) 

The first line sets the Page Zero ranges to be relocated. Then a 
program segment ($ 1000.1 093) is relocated, a data segment 
($1094.1A34) is moved, and a second program segment 
($1A35 .1FD2) is relocated. The syntax has a short form because the 
result is left in place, which is in the same location as the original. 

When the relocation is complete, the new program should be 
saved to disk before you attempt to RUN it. 

For example, the memory maps to relocate SWEETI6 are given in 
Fig. 5-6. The new program is to run at $948C, but the example uses the 

BLOCK 

F689 

F6E3 

F703 

FifO 

(A) Old. 

PROGRAM 
LENGTH = SA 

DATA 
LENGTH= 10 

PROGRAM 
LENGTH= FA 

SEGMENT 

F689 

F6EJ 

F703 

F1FO 

BLOCK 

948C 

94E6 

9506 

9600 

(8) New. 

Fig. 5-6. Memory maps to relocate SWEETJ6. 

PROGRAM 
LENGTII = SA 

OAIA 
LENGTH = 10 

PROGRAM 
LENGTH = FA 

SEGMENT 

4000 

405A 

40/A 

4174 

segment a t $4000.4173 to build it. To reloca te according to those 
maps, then, you would type the commands: 

948C F689.F7FC(ctri!Y)*(return) 
4000 F689.F6E2(ctri/Y}(return) 
405A F6E3 . F702M (return) 
407A F703 .F7EC(ctri/Y)(return) 

The first one tells the relocator to change any references in the 
$F689 .F7FC range to ones in the $948C.95FF range. The second com-
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mand relocates actual program segment $F689.F6E3 to $4000.405A in 
RAM. The references are changed to the $948C.95FF range, where 
applicable. Next, the M command moves the data segment. Finally, 
the second program segment is relocated. The resulting new program 
is at $4000.4173 in RAM, but when it is moved or loaded to 
$948C.95FF it will execute properly. The example used $4000.4173 to 
illustrate the difference between blocks and segments; in the case of 
SWEET16 it wasn't really necessary. 

5.3.3 Floating-Point Utility Package 

It is possible to have floating-point arithmetic with Integer BASIC. 
Although not used by the BASIC interpreter itself, a set of floating
point utility routines live at $F425.F65D in the Integer ROMs. And 
you can use them from machine language yourself to make floating
point calculations. Special FIX and FLOAT calls will let you put 
integers into the FP registers and then convert the FP results back to 
Integer number format. To use this package of utilities, you must 
know the format and Page Zero locations of the FP registers and then 
know the right calls to make for each operation. 

Fig. 5-7 shows the format of the FP numbers which is much like the 
one you saw in Applesoft. One byte of exponent is followed 

~EXPONENT -II-- 23-BIT MANTISSA --1 
I. I. 

SIGN OF EXPONEN:J_j \ 
1 IS + ve IMPLIED BINARY POINT 
0 IS - ve BETWEEN BITS 6 AND 7 

SIGN OF NUMBER 
liS- ve 
0 IS+ ve 

Fig. S-7. Format of FP number. 

immediately by three bytes of mantissa. The exponent is in the usual 
excess-$80 form, so that $80 represents an exponent of zero, $7F of 
minus one, $81 of plus one, and so on. The mantissa is always signed; 
never unpacked like Applesoft. So, the binary fraction begins at bit six 
of the FP number's second byte. The remainder of the mantissa is in 
the following two bytes - the third and fourth - in the usual decreas
ing order of significance. You can read one of these FP numbers just 

r 
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as you would read an Applesoft FP number in storage: an exponent 
between $81 and $FF being positive to give a number greater than one, 
an exponent between $FE and $FF being negative to give a number 
less than one, an exponent of $80 being zero for a large, but proper, 
fraction. When the first byte of the mantissa is negative, the number is 
negative; when positive, positive. 

In memory, there are two FP registers we call FP1 (from $F8 to FB) 
and FP2 (from $F4 to $F7) (see Fig. S-8). In the usual binary opera-

LOCATION FORMAT USAGE 

SF3 CJ PRODUCT/QUOTIENT SIGN 

SF4 X2 M2H M2M M2L FP2 REGISTER 

SF8 XI MIH MIM MIL FPl REGISTER 

SFC WORKSPACE 

l'ig. S-8. Page zero registers for FP utility package . 

tions like addition and subtraction, the operands must be put into FP 
format and located in FP1 and FP2. Then the call to the operation is 
made. When it returns, the operation leaves your result in FP 1. If you 
are chaining operations - performing one after the other, using 
previous results - you should arrange to replace FP2 each time. If 
you juggle the registers to commute, remember that FP2 may be 
destroyed during an operation. Always replace FP2 before each 
operation, regardless. 

Here are the binary operations. 

FADD 

FSUB 

$F425 - Adds the contents of FP2 and FP 1, putting the 
result in FP 1. Remember that it must align the binary 
points before adding, so a small number may lose some 
significant bits to a larger number. 
$F468 - Subtracts the contents of FP1 from FP2 and 
leaves the result in FP 1. Like addition, the binary point 
adjustment may drop significant bits. 
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FMUL $F48C - Multiplies FP2 by FPl, result in FPl. May be 
a danger of overflow from the addition of exponents. ,... 

FDIV $F4B2 - Divides FP2 by FP 1, result in FP 1. May cause 
underflow from the subtraction of exponents, but that 
merely zeros the result. The greatest danger is from a ,... 
small divisor causing an overflow and from division by 
zero (extreme case). Overflow and underflow are each 
handled differently. In the case of an underflow result, 
you get a zero value returned, which is a nonfatal error. 

111111 

However, for overflow, you must have a JMP instruc-
tion at $3F5, called OVLOC, that vectors to your over-
flow handling routine. Overflow is a fatal error other- r wise. Any result that gives an exponent greater than $80 
will most likely cause overflow. 

The unary functions let you get FP numbers con- ,... 
verted to and from Integer format. Integers are in low-
byte/high-byte order, opposite to that of FP mantissas. 
With that in mind, using the conversion routines is 
straightforward. .... 

FCOMPL $F4A4- Complements the FP number in FPl. That is, I 

it changes its sign: FPl becomes - (FPl). 
FLOAT $F451 - Converts a two-byte integer to FP by nor- r malizing the mantissa of FP 1. Put the high byte in 

MlH, the low byte in MlM, and zero MIL. If you do 
have a fractional part, it can go into M 1 L instead of 
zero. Since an integer has its sign in the high byte, all ~ 

you have to do now is CALL FLOAT and the conver-
sion is done. 

FIX $F460 - This undoes the action of FLOAT; it results in r 
an integer-low in MlM and an integer-high in MIH. Re-
maining significant figures are in MIL which you can 
pick up as the binary fraction if you need it. Use MIL to .... 
round off your integer result if need be, by carrying the 
sign bit. Again it all happens in FPl. 

FIX I $F68D - There is a bug in FIX: it won't work properly 
with negative numbers. If you test MlH, you can JSR .... 
FIXl instead whenever FPl is negative. FIXl works all 
right for them. 
Use FIX for positive numbers, FIXI for negative ones . .... 
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You can write routines to copy in and out of FP I and FP2 to make 
the package useful. For example, 

GETFP: LOY #0 
STY FP1 + 3 ;zero M I L 
LOA (ZNUM), Y ;ZNUM points to integer 
ST A FPI + 2 ;lo w byte to MIM 
LOA (Z NUM), Y 

INY 
LOA (Z NUM ), Y :high byte to M I H 
ST A F PI + I 
JMP FLOAT 

will fetch the integer whose address you have in ZNUM and convert it 
to FP format in FP I. To copy an integer back into storage: 

PUTFP: BIT FP1 + 1 
BPL PUTFP1 
JSR FIX1 
CLC 
BCC PUTFP2 

PUTFP1: JSR FIX 
PUTFP2: LOY #0 

LOA FP1 +2 
STA (ZNUM),Y 
INY 

;test sign of manti ssa 

;case: Positive 

;a lways 
;case: Negative 
;continue 
;low byte of integer 

LOA FP1 + 1 ;high byte of intege r 
STA (ZNUM),Y 
RTS 

Depending on how elaborate your needs a re, you can add more 
routines to swap F l with F2, copy the entire FP number to and from 
tempora ry storage, stack and unstack them, etc. 

5.3.4 SWEET16 Pseudo-Processor 

The 6502 p rocessor is fast and powerful when it comes to wor king 
with eight-bit data. However, fancy so ftware needs the ability to work 
with sixteen-bit addresses as d a ta, something the 6502 won't handle 
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easily. Sure, we have the indirect indexed form of addressing, but that 
only reaches one page of memory at a time. What we need are some of 
the features that sixteen-bit processors like the PDP-II and the 6809 
have for addressing. 

If you can tolerate the loss in speed, the Apple II can run a sixteen
bit emulator that will give you sixteen-bit addressing instructions, 
without having to plug in a processor board. This emulator is called 
SWEETI6 and it was one of the first programs written for the Apple 
II. It is easier to use and it's also faster than BASIC. 

With SWEETI6 you can write editors, languages, parsers, memory 
moves, or anything that needs simple address manipulation instruc
tions. If 6502 is your first machine language, then working with 
SWEETI6 is one way of bridging the gap in learning the larger proces
sors like the 6809. 

What SWEETI6 does is pretend to be a sixteen-bit processor and 
interprets its own set of op codes to execute little routines that it re
gards as instructions. You just JSR SW 16 where you want to switch to 
SWEETI6 instructions in your program. Following the JSR, you put 
SWEETI6 code. The end of SWEETI6 is a zero byte that SWEET16 
regards as an RTN (return) op code. Following the RTN, you continue 
normally with your next 6502 instruction. Of course, since SWEET16 
is a subroutine, you are merely passing parameter string by immediate 
value, but the effect is to switch from 6502 processor instructions at 
the JSR SW16 to SWEET16 processor instructions. Then, a second 
change from SWEET16 instructions at the RTN switches you back to 
the 6502. So, the subroutine called SW16 emulates another processor. 

To emulate a processor, SWEET16 needs a set of registers and 
refers to them during execution of the instruction set. Let's look at 
these registers and then at the instructions that modify them. See 
Table 5-6. 

There are sixteen registers; each register must have a sixteen-bit 
capacity. This means two bytes of 6502 memory for each register or 32 
bytes total. SWEET16 uses the first 32 locations in Page Zero for 
registers, $00.IF. The first register is RO that resides at $00.0I in con
ventional low-byte/high-byte order. The next register is RI at $02.03 
and so on up to RI5 which is the last register occupying $IE. IF. Of 
these sixteen registers some are dedicated by SWEET16 while others 
are free for user definition. 

The registers Rl to Rll inclusive are yours to define any way you 
want. These are user-defined registers and you keep your memory 

r 

-
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Table 5-6. SWEET16 Op-code Summary 

Register Ops Nonregister Ops 

()() RTN return to 6502 mode 

In SET Rn load 2 bytes immediate 01 BR ra branch always 

2n LD Rn load ACC from Rn 02 BNCra branch if no carry 

3n ST Rn store ACC toRn 03 BC ra branch if carry 

4n LD @Rn load ACC-Io, indirect: (Rn +) 04 BP ra branch if plus result 

Sn ST @ Rn store ACC-lo, indirect: (Rn +) OS BM ra branch if minus result 

6n LDD @Rn load ACC, indirect: (Rn + +) 06 BZ ra branch if zero result 
7n STD @ Rn store ACC, indirect: (Rn + +) 07 BNZra branch if nonzero result 

Sn POP @ Rn (- Rn):load ACC, indirect 08 BMI ra branch if minus-one result 

9n STP @ Rn (- Rn):store ACC, indirect 09 BNMI ra branch if not minus-one result 

An ADD Rn add Rn to ACC OA BK ra causes 6502 BRK event 
Bn SUB Rn subtract Rn from ACC OB RS return from SW16 subroutine 

Cn POPD@ Rn (- - Rn):load ACC, indirect oc BS ra branch to SW 16 subroutine 

Dn CPR Rn compare (ACC - Rn to R13) OD unassigned 

En INR Rn (Rn + ), i.e. increment by I OE unassigned 

Fn DCR Rn (- Rn), i.e. decrement by 1 OF unassigned 

Registers Usage Notes 

RO = ACC, the accumulator n is the register number 
R1 ... Rll are User-Defined ra is the relative address, ± 127 
Rl2 = SP, the stack pointer SET is 3 bytes, branches are 2 bytes, and all others 
R 13 is the result of last compare are 1 byte long. 
Rl4 is the status register To call: JSR SW16 (at $F689 in Integer) (list SWEET16 code) 
R15 = PC, the program counter exit with RTN($00), last byte 
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pointers, counters, and perhaps an important constant or two in them. 
Much the same way that you would normally use Page Zero with the 
6502. 

The first register, RO, is special. You use it directly as the ac
cumulator and we call it ACC instead of RO most of the time. It's the 
busiest of all registers. 

The registers R 12 to R 15 are used by SWEET 16 as special registers. 
Rl2 is the stack pointer and may be referred to as SP. Rl3 holds the 
result of the last compare and is used by the branch instructions. R 14 
is the status register and keeps the pointer to the current register as 
well as the carry flag. R 15 is the program counter that SWEET 16 uses 
to point to the instruction list currently being read. You can address 
any register including these special ones with SWEET16 op codes, but 
be careful. Unless you understand fully what you are doing, leave 
Rl2, Rl3, Rl4, and Rl 5 alone. 

There are two groups of instructions in SWEETI6: register OPs 
that address and modify explicit registers, and nonregister OPs that 
implicitly alter the special registers. For example, a branch instruction 
wi ll test Rl3 then perhaps modify the program counter in Rl5 to ef
fect a branch. That is a nonregister OP because no register is actually 
specified in the instruction. A SET RO, $0000 instruction is a register 
OP because it explicit ly names RO, wh ich is the ACC, to be set to zero. 
All the register OPs give a result in RJ3 for use by the branch non
register OPs. This follows the pattern of actions and decisions we need 
to build structures when we program: register OPs are your actions 
and nonregister OP branches are your decisions. 

You can get 6502 Assemblers that support SWEET16 instructions 
such as BIGMAC from Apple, Pugetsound. Or you can hand as
semble the routine yourself quite easily. The instruction set is logical 
and you only need the SWEET16 op code summary of Table 5-6 to 
code. 

It is easy to assemble a register OP. They are only one byte each, 
except for the SET instruction. You just lookup the code- I to $F as 
the first digit of a two-digit hex number. The second digit is the 
register number, $0 to $f. The SET has a two-byte operand as well , so 
you assemble that in low-byte/ high-byte order. For example, 

1A 00 03 SET R10, $300 

for the SET and 

-
-

.... 
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35 ST R5 

for the others. 
Nonregister OPs may have one or two bytes, usually two. The first 

byte has zero as its first hex digit and then zero to $c as its second 
digit. Branches have a second byte for the relative address, exactly the 
same as 6502 branches do. You calculate the offset the same way: 

1400:01 OA 
140(: . . . 

BR BELOW 
BELOW: . . . 

The re lative address of $0A here is the difference between the branch 
address and the address of the next instruction (the current PC). There 
minus here. Just like 6502. 

If you look at any of the SWEET16 examples you will see the call 
sequence. The JSR SW16 starts the emulator. The instructions fo r 
SWEETI6 follow with the last instruction being physically in the last 
byte of the call. It is zero; its mnemonic is RTN for return to 6502. 
You must always return at the very end of a chunk of SWEET I 6 code 
so that a normal 6502 instruction can immediately follow the RTN 
(zero). 

Whenever you use SWEETI6, she saves all your 6502 registers 
before doing anything. Then she restores them just before setting the 
PC-reg of the 6502 to your next instruction following the RTN. So, 
your registers are unchanged by a SW 16 call. 

If you are just learning SWEET16, write a short routine to make 
sure that you call the program properly. The fo llowing will do: 

0300: 20 89 F6 JSR SW16 ;enter SWEET16 
0303 : 10 80 02 SET RO , $280 
0306: 11 10 01 SET R1 , $110 
0309: 12 40 01 SET R2, $140 
030C: A 1 ADD R1 
030D: 53 ST R3 
030E : B2 SUB R2 
030F : 54 ST R4 
0310: 00 RTN ;enter 6502 again 
0311 : 4C 69 FF JMP MONZ ;back to Monitor 

Use the SWEET16 op code summary in Table 5-6 to check that you 
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have followed the code and its assembly. Then enter the routine and 
run by 3000. What wi ll be the contents of the five registers - RO, RI, II"'!! 

R2, R3, and R4? Dump them ($00.09) and see: 

0000: so 02 10 01 40 01 90 03 
0008: so 02 

which is: 

RO = $02SO , the ACC after calculations 
R1 = $0110 
R2 = $0140 
R3 = $0390 or $280 + $110 
R4 = $02SO or $280 + $110 - $140 

Now, write a couple of routines of your own design to see what you 
can do. Use the SET, INR, and DCR instructions on any one register, 
RO (ACC) to Rll . And you can modify the ACC with LD, ADD, and 
SUB. The ST copies from ACC to any register. These seven OPs are 
the simplest to use; use them to get familiar with SWEET16. When 
you can use the register OPs listed in Table 5-7 easily, you can then 
learn the ones that use indirect addressing. 

Table 5-7. Beginners' Register Ops 

One rcgisler ACC and anolher regisler 

SET Rn, const LD Rn 
INR Rn ST Rn 
OCR Rn ADD Rn 

SUB Rn 

While the beginners' OPs let you play wi th the registers, you need 
indirect addressing OPs to reach other memory in the Apple. This is 

... 

where SWEET16 becomes useful. For instance, -

0300: 20 89 F6 MOVE : JSR SW16 ;to SWEET16 mode 
0303: 11 00 20 SET R1 , $2000 ;from 
0306: 12 00 40 SET R2, $4000 ;to 
0309 : 13 00 20 SET R3, $2000 ;length 
030(: 41 MOVE1 : LD 0 R1 ;get byte 
0300: 52 ST @R2 ;put byte 



-

-

-

030E : F3 
030F: 07 FB 
0311 : 00 
0312: 60 

DCR R3 
BNZ MOVE1 
RTN 
RTS 
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;count length 
;next byte 
;to 6502 mode 

uses a SWEET16 call to copy HIRES! screen to HIRES2. The Rl 
register points to the address copied from and the R2 register points to 
the address copied to. The R3 register handles the length in bytes of 
the copy. Compare this to the code needed to do the same job with the 
6502. 

Look at the MOVE example in detail. The length in R3 is a loop 
counter only; it plays no part in the memory addressing. The BNZ de
tects the end of the loop when it has counted down 8,192 times. So, 
without considering the actions of LD @ and ST @, the code is 
straightforward. 

First, look at the LD indirect. With $2000 in Rl it fetches the con
tents of location $2000 to the ACC. Only the low byte of ACC is 
loaded from memory; the high byte is simply zerod. That done, the Rl 
register itself is automatically incremented. So, at the end of the in
struction, Rl points to $2001. Second, look at the ST indirect. It 
stores the contents of ACC-low to memory location $4000. Then it 
increments R2 to $4001 from $4000. After executing the copy from 
$2000 to $4000, Rl points to $2001 and R2 points to $4001. 

The auto-increment feature of the indirect instructions makes 
routines like MOVE easy to write. Start at the lowest addresses of in
terest, set up any counters, then use the auto-increment to pass 
through the memory blocks one location at a time, in increasing 
sequence. 

If you look at Table 5-6, you can see other instructions with the "@" 
of indirection. These work the same way as the LD @and ST@ by 
loading or storing the ACC from or to memory. The difference is in 
the number of bytes, one or two, and in the direction of stepping 
through memory. The auto-increments are noted as (Rn + ) and 
(RN + + ) for one or two locations at a time; the auto-decrements are 
noted as ( - Rn) and ( - - Rn) for one or two locations at a time. They 
each have special uses that go beyond the simple MOVE example and 
they make SWEET16 a powerful tool. 
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ACCHI 
ACCLO 

(A) Before. (8) After. 

Fig. S-9. The LD@ instruclion. 

(A) Before. (8) After. 

Fig. 5-10. The ST@ instruclion. 
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(A) After. (8) Before. 

Fig. 5-11. The LDD@ instruction • 

... 

(A) After. (8) Before. 

Fig. 5-12. The STD@ instruction. 

-
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ACC LO 

(A) After. (B) Before. 

Fig. 5-13. Pushing one byte on a stack using ST@ instruction. 

(A) After. (B) Before. 

Fig. 5-14. Pulling one byte from a stack using POP@ instruction. 
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ACC LO 

(A) After. (B) Before. 

Fig. 5-15. Pushing two bytes on a stack using STD@ instruction. 

-

(A) After. (B) Before. 

Fig. 5-16. Pulling two bytes from a stack using POP@ instruction. 
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CHAPTER SIX 

Text and Graphics 

6.1 THE MONITOR TERMINAL 

All the hardware and software that is needed for the Apple to func
tion as its own terminal is built-in . All that you need to add is a tele
vision or video monitor. For an 80-column display, add a video board 
in Slot Three (or in the Auxiliary Slot in the lie model). The built-in 
software can be switched to use its own 40-column routines or the ones 
on the card . The switches for the keyboard and video display allow 
different types of input and output to be made in place of the built-in 
monitor; these switches a re called hooks. 

6.1.1 Monitor Hooks 

The Apple works with inputs and outputs similar to modern sound 
systems . In such a system you can select one of the several inputs: a 
record player, a tuner, a tape player, or a microphone. Similarly, you 
could switch one of several outputs: main speakers, remote speakers , 
headphones, or tape recorder. So to operate your sound system you 
would set the input switch to your choice o f device and then set the 
output switch to your choice of reproduction device. You can use your 
Apple with inputs and outputs in much the same way. 

The Apple has a keyboard built-in as an input device. Input can also 
be from peripherals you can plug in : disk controller, serial communi
cations devices, or other devices with compatible interfaces . And you 

317 
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can use a built-in video display or a peripheral such as disk, serial 
communications, or an SO-column video. Your Apple has two 
"switches" to do this job - an input switch and an output switch. You 
can set these switches yourself or use one of the built-in routines to set 
them for you. In either case, you control the input and the output that 
the Apple sees. 

The input "switch" is called the input hook or link. It is simple 
enough, just two Page Zero locations at $0038.0039. Location $0038 
is called KSW and contains the address of the current input device's 
routine. Whenever the Apple wants an input, it calls the routine whose 
address is in KSW. Similarly, there is an output hook or line at 
$0037.0038 called CSW. So, the Apple can send a character to the cur
rent output device by calling the routine whose address is in CSW. It is 
by setting the input hook KSW and the output hook CSW that you 
control the information flowing in and out of your Apple. 

Perhaps the simplest arrangement of the hooks is made by the 
RESET routine. It sets the input hook KSW to the built-in keyboard 
and sets the output hook CSW to the built-in video display. Unless 
you bootstrap using a disk, you get the use of the keyboard and video 
display, by default. 

The RESET routine sets the input hook to the built-in keyboard 
routine at $FD 1 B called KEY IN. Then whenever input is wanted, 
KEYIN supplies it one character at a time. A call to KEYIN results in 
a wait until you press a key. While it waits, it runs a counter to gener
ate a random number. When you press a key, the counter stops and 
the random number is available to you at $4E.4F in Page Zero in low
byte/high-byte order. And the character you typed from the keyboard 
is returned in the A-register. There are important differences in the 
way KEYIN is used between the Apple II Plus and the Apple lie, in 
the location and extent of other keyboard functions such as escape 
handling and cursor display. In both models, however, KEY IN gener
ates a random number in RND ($004E), gets a character which it re
turns in the A-reg, and removes the displayed cursor by replacing it 
with the original character on the screen. 

The built-in video display address is $FDFO and is called COUTl. 
The RESET routine puts it into the CSW output hook at power up so 
that all Apple output will go to the CO UTI routine. There, the charac
ter in the A-reg is interpreted so that display characters will appear on 
the screen and control characters invoke changes to the display param
eters. For instance, a ctrl/G sounds the beep. Whenever a printable 
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character is displayed, the cursor is advanced. Most of the control 
characters are cursor-related: ctri!H is the backspace, ctri!M is the 
carriage return, ctri/L is the form feed (homes cursor and clears 
screen), and so forth. COUTl also masks its display characters to get 
various character sets : normal, inverse, flashing, in either upper or 
lower case. The display is restricted to an area of the screen called the 
window. Normally, the window is the full screen, but may be changed 
at Page Zero locations $20.23. So, COUTI either interprets a control 
character or displays a printable character within the text window 
from one of several possible character sets . 

With COUTI or some other output routine address is CS\Y and 
RDKEY or some other input routine address in KSW , the Apple pro
grams can put characters out or get characters in. The way to do it is 
to call an indirect JMP that jumps at the required hook . To get an 
input character, 

JMP (KSW) 

is needed, and to put a character to the current output use: 

JMP (CSW) 

It isn't necessary to code these jumps if you want to reach the 
current input and output routines. They are in the Monitor and are 
called RDKEY and COUT. To get a character from the current input 
routine whose address is at KSW ($38.39) you just 

JSR RDKEY 

where RDKEY is $FDOC. Similarly, to put a character to the current 
output routine whose address is at CSW, you write 

JSR COUT 

where COUT is $FDED. It is only the routines that initialize and 
maintain peripherals that access CSW and KSW directly to set them 
up; all other routines in the Apple can just call to RDKEY for input 
and to COUT for output. Hook addresses are summarized in Table 
6-l. 



320 Appf£fPJ Programmer 's H andbook 

Table 6-1. Input-Output Hook Addresses 

Decimal Hex Label Contents 

54 38.39 KSW Input hook address 
56 36.37 csw Output hook address 
1002 3EA MVSW DOS routine reconnects hooks 
40577 9E81 DOS input hook routine 
40637 9EBD DOS out put hook routine 
43603 AA53 Current DOS hook for CSW 
46305 AA55 C urrent DOS hook for KSW 
64780 FDOC RDKEV Advance cursor then input at KSW 
64792 FD18 Input at KSW 
64795 FDI B KEVIN Keyboard input routine 
65005 FDED COUT Output at CSW 
65008 FDFO CO UTI Video output routine 
65161 FE89 SETKB Resets KSW to KEVIN 
65171 FE93 SETVID Resets CSW to COUTI 

Here's how you use the hooks without DOS active in your Apple. 
From BASIC, you can use the commands 

PR#s 
IN#s 

where s is the slot number o f the peripheral you are selecting. If s is 
zero, the commands will set the hooks to the built-in terminal, just like 
RESET. The PR#s command sets the output hook CSW to the address 
of slot s. The IN#s command sets the input hook KSW to the address 
o f slots. The slot s can be any number from one to seven . You can 
choose any slot as the current input and any slot as the current output. 
Then you can remove the current input with a IN#O and the current 
output with a PR#O. 

This is what happens when you give a PR#O: BASIC puts the ad
dress of COUTI ($FDFO) into CSW at $38 .39. And when you give an 
IN#O command , it puts the address of KEYIN ($FD IB) into KSW at 
$36.37. The result is to make the built-in video and keyboard terminal 
routines the current output and input devices, replacing any others 
that may have been in CSW and KSW. But, if you commanded PR#I , 
then CSW would be set to the address of Slot One ROM which is 
$C IOO. Or, if you gave a PR#2 command, CSW would be set to $C200 
which is the Slot Two ROM address. Whichever slot you choose as the 
output device, BASIC will set CSW to $Cs00 (where s is the slot 
number). You select the input device the same way: IN#O sets KSW to 

-
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the KEYIN ($FD1B) routine, IN#l sets KSW to Slot One ROM at 
$CIOO, IN#2 sets KSW to Slot Two ROM at $C200, and so forth . 

By using only one input device and one output device at any one 
time, the Apple input/output system is simply a matter of selecting 
each device as needed. You just use the IN# and PR# command to 
make the selection . What can complicate matters is when you have to 
keep DOS active at the same time. 

The Disk Operating System was added to the Apple later, after 
BASIC was used for some time. So, it had to fit into the Apple's 
simple l/0 system as best it could. For the most part it does so, but the 
odd glitch here and there can trap the unwary. The problem is that 
DOS must occupy KSW and CSW itself in order to trap commands to 
itself, get output from BASIC PRINT commands, and supply input to 
INPUT and GET commands in BASIC statements. It must also allow 
one other input device and one other output device in addition to itself 
so that you can use a printer or a serial communications device with 
the DOS active. The result is a DOS that occupies the hooks and main
tains a pair of 1/0 hooks for these other devices. 

Here's how you use the hooks with DOS. Again, you use the 
commands 

PR#s 
IN#s · 

where s is the slot number. Under DOS these commands are trapped 
and BASIC never gets to see them. DOS uses them to set its own pair 
of hooks. As before, the PR#O removes the current output device and 
IN#O removes the current input device. Watch out for the glitches 
when using PR# and IN# commands with DOS active. You can use 
them immediately as keyboard commands, o r you can use them in 
BASIC statements by prefixing with ctrl!D just like any other DOS 
command. But if you use them directly in a BASIC statement without 
the ctrl/D you wi ll disconnect DOS. If you didn't intend to do so, this 
can be a hard-to-find bug in your BASIC program. 

If DOS becomes unhooked, you can reconnect DOS by a 

CALL 1002 

which is a DOS routine vector at $3EA. You can make this call di
rectly or from within a BASIC statement. The call causes DOS to re
connect CSW and KSW while saving the contents of the hooks as its 
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own hooks. So, whatever the input and output devices were before the 
call, they will still be current, but DOS will occupy the system hooks. 

You can deliberately unhook DOS by using PR#O and IN#O from 
BASIC or 

JSR SETVID 
JSR SETKBD 

from Assembly (SETVID is $FE93, SETKBD is $FE89). Or, use any 
other PR#s and IN#s you wish. From Assembly, you just set CSW and 
KSW to the device address, $Cs00. Then you can always rehook DOS 
back into CSW and KSW with a CALL 1002 (or JSR $03EA) when
ever you wish. 

Most of the time, however, you will simply use the IN# and PR# 
commands normally with a ctrl/D prefix. 

In addition to using the hooks for input and output from peripheral 
devices, you can use them with your own device drivers. For instance, 
you can have lowercase input from the old keyboard even though it 
won't generate any lowercase letters by itself. Here's how. 

Your keyboard routine will use the ESC key to shift from lower- to 
upper-case, and to lock into uppercase. This routine replaces KEYIN 
by substituting its own address for that of KEYIN's. Then it will 
display the cursor of your choice, get a character, handle any upper
case to lowercase conversion, and finally replace the cursor with the 
old character before returning with the new character in the A-reg. 
The routine must have the cursor screen position in BAS (in Page 
Zero) and the Y -reg, and the old character from the screen in the 
A-reg when it is called via KSW. A routine in the Apple Monitor does 
that; it's called RDKEY and it resides at $FDOC. 

To enable the routine, you can call these instructions 

HOOKUP LDA #GETCH 
STA KSW 
LDA #GETCH 
STA KSW+1 
JSR MVSW to set DOS 
RTS 

and to remove it, the code is: 
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UNHOO K JSR SETK BO 
JSR MVSW 
RTS 

You call HOOKUP and UNHOOK whenever you use the IN#3 and 
IN#O commands to setup and remove a device. 

You can write and use a routine to replace the CRT output routine 
COUTI in the same manner. The address of the routine must be put 
into CSW and a call to MVSW made to get DOS hookup. This can be 
used for a HIRES character generator and display routine. Such 
routines are available or you can write them yourself. A good one will 
support scrolling and windowing, but a simple one is quite satis factory 
for labeling graphs. Then you can alter the font if you wish, and you 
will get lowercase letters that you don't get with the older Apples. 

A simple alternative to HIRES character generation is the use of in
verse video for uppercase letters. On old Apples, the lowercase will 
come out as normal uppercase, so it is only necessary to mask upper
case letters for them to show as such . You just use a routine to edit 
each character and then send the edited character along to COUTl. 
Instead of replacing the COUTI CRT output routine, like a HIRES 
routine would, you cascade your routine with COUTl to make a 
smarter routine with less work. Here it is. 

LCOUT PHA 

CM P #$CO t est fo r uppercase 

BCC LCOUT1 ra nge $CO . OF 

CM P #$EO 

BCS LCO UT1 

LOA #$3F mask for INVERSE 

BNE LCOUT2 

LCOUT1 LOA #$FF mask for NORMAL 

LCO UT2 STA INVFLG 

PLA 

JMP COUT1 

If you are using LCOUT together with GETCH for your terminal, 
you can use single routines to hook and unhook both: 
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HOOK LDA 
STA 
LDA 
STA 
LDA 
STA 
LDA 
STA 
JSR 
RTS 

UNHOOK JSR 
JSR 
JSR 
RTS 

# GETCH 
KSW 
# GETCH 
KSW+1 
# LCOUT 
csw 
# LCOUT 
CSW+1 
MVSW 

SETKBD 
SETVID 
MVSW 

hook keyboard 

remove keyboard GETCH 
remove display LCOUT 
reset DOS hooks 

Whether you replace or cascade the Monitor terminal routines, the 
procedure is the same. An output or an input routine that replaces the 
Monitor won't reference COUTI or KEYIN. An output routine that 
cascades with COUTl does so by a JMP to COUTI at the end . An 
input routine that cascades with KEYIN does so by a JSR to KEYIN 
at the beginning. 

6.1.2 The Keyboard 

Your first choice of a keybaord input routine is the Applesoft 
INPUT command. When used as an instruction, it returns one or a list 
of variables with the data entered from the keyboard. It requires no 
programming to make it work, it can include a prompt string of your 
choice, and it will work on all models of Apple II. Use it in one of 
three ways: 

INPUT "your p rompt";var/ist 
INPUT " ";varlist 
INPUT varlist 

The first form uses your prompt string, the second form has a null 
prompt so that none will appear, and the third form gives the default 
prompt, "?". The varlist can be any list of variables, separated by 
commas. Often only one variable is INPUT. Any numeric variables 
will induce a VAL function to convert the entered string to a number. 
All in all, a versatile and easy-to-use keyboard entry tool. 

-
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The INPUT command will also fetch records from disk if the DOS 
command READ is in effect. A record is a string terminated by a CR 
character, just like INPUT wants from the keyboard. The fields of a 
DOS record separated by commas will be applied to your variable list 
in exactly the same way. A DOS INPUT is the same as a keyboard 
INPUT except for the source of characters. 

But if you input strings that conta in delimiters, commas, colons, 
and so forth , then INPUT won't work. For instance, you may INPUT 
from the keyboard for a natural string from the user who doesn't 
know or care about Appleso ft or its hangups. Or you may be reading 
an unknown DOS record and want to scan the record to determine the 
fields yourself. You can't specify a field list if you don't know what the 
fields will be. So input an entire record as a single string, regardless of 
any delimiters in that string. You need what is called an Input Any
thing routine. 

Here it is. You must find a place for the routine in memory and 
either CALL it there or, preferably, use the ampersand feature. 

Here is an Input Anything routine: 

INPUT JSR PTRGET get string variable 
JSR IN LIN input the str ing to $200 
LOX #$FF find string length 

INPUT1 INX 
LOA INBUF,X buffer at $200 
BN E INPUT1 NUL is end-of-string 
TXA 
LOY #0 put length into string 
STA (VARPNT) ,Y descriptor of variable 
LOY #1 
LOA #> INBUF put addr-lo into descriptor 
STA (VARPNT),Y 
LOY #2 
LOA #< INBUF put addr-hi into descriptor 
STA (VARPNT),Y 
JMP DATA 

To call the routine and input a string from Applesoft, you use the line 

&A$:A$=M ID$(A$, 1) 



326 Applf!F' Programmer's Handbook 

after the ampersand vector that has been set up at $3F5. The A$ can 
be any string variable. The MID$ must be used immediately to re
assign the string from $200, or else the next INPUT will clobber it. 
INLIN is at $D52C. 

If you need lower level access to the keyboard than Applesoft 
provides, then consider the Monitor routines. By using one of these 
routines instead of writing your own, you save the work of 
programming and the hassle of maintaining and loading a separate 
ML file that merely duplicates what's in the Monitor already. You can 
use the Monitor to get complete lines, get characters one at a time, or 
get characters without going through KSW while another device is 
occupying the input hook . Use the one best suited to your needs. 

The routine to get complete lines is called GETLN and it resides at 
$FD6A. The Monitor's command parser, Applesoft, Integer BASIC, 
and the Miniassembler all use the GETLN routine. Just put your 
prompt character into PROMPT ($33 in Page Zero) and JSR. The 
length of the line is given to you in the X-register and the string itself 
begins at $0200, INBUF. For instance, 

Applesoft ca lls w ith " ]" in PROMPT 
lNTEGER calls with ">" in PROMPT 
Miniassembler calls," !" in PROMPT 
Monitor calls with " *" in PROMPT 

so you will have another choice for your routine - "#" perhaps, or 
"@". The prompt character you choose identifies your routine to the 
user. 

The GETLN routine converts lowercase letters to uppercase. This is 
why you can't get lowercase letters on Apples, even if a lowercase key
board is used. The one exception - at time of this writing - is the 
Apple lie monitor. The lie will not change the lowercase letters to 
uppercase. So, if you need lowercase letters then GETLN can't be used 
if your program is used in one of the older Apples. For RAM copies of 
Autostart such as those found in FPBASIC and INTBASIC, changing 
the contents of $FD83 from $DF to $FF will allow lowercase in 
GETLN. 

Otherwise, if you want input without any of the drawbacks that are 
in GETLN, then use RDCHAR or RDKEY to get one character at a 
time. RDCHAR gets characters and handles any ESCape sequences 
while RDKEY just gets characters. The character on the screen at the 
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current cursor position is set to flash and is kept in its original form in 
the A-reg as it calls KEY IN via KSW. The KEY IN routine gets the 
character from the keyboard and replaces the old screen character at 
the cursor position. On the lie, the flashing character is not used when 
lowercase is in effect, because lowercase and flash aren't available in 
the same character set. Instead, the lie terminal uses its own cursor 
but supports the KSW terminal interface call sequence just like the 
Autostart Monitor. So, use RDCHAR to get characters with full ESC 
support and use RDKEY for simple character input without ESC 
sequences being trapped . 

Finally, you can get characters from the keyboard without going 
through the KSW input hook. This is handy because you don't have to 
unhook and then re-hook an existing input device just to get one char
acter from the keyboard. There are two cases of such low level key
board gets. One is when you want the character and must wait until a 
key is pressed. Another is when you want to get the character only if a 
key was pressed. In the second case you just want to look for a key
press, then keep on with your program regardless of whether the key 
was pressed. You can write simple routines to do both. 

To get a keystroke by actually waiting until a key is pressed, either 
call KEYIN or code the following: 

GET LDA $COOO 
BPL GET 
BIT $C010 
AND #$7F for positive ASCII 
RTS 

Or, to test for a keypress: 

KTEST BIT $COOO 
BPL KTEST1 
LDA $COOO 
AND #$7F for positive ASCI I 
STA $C010 
BNE KTEST2 

KTEST1 LDA #0 NUL if no keystroke 
KTEST2 RTS Z-flag = 0 if keystroke 

The KTEST returns a zero (ASCII NUL) in the A-reg if no key was 
pressed and will return the character entered if a key was pressed. 
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There isn't any corresponding routine in the Monitor that tests the 
keyboard on the fly like KTEST. 

6.1.3 The Video Display 

The built-in terminal has Monitor routines to display and scroll text 
(see Fig. 6-1). To do this, the routine uses six Page Zero parameters. 
By controlling these parameters yourself, you can change the display 
for your custom screen routines. 

0 HORIZONTAL 
0 r------------------.-----------.-----------.~--~ 

WHOTOP 

I tV 

- tH-r-
---- WNOLFT - - 1---------WNO'IIOTH --------

VERTICAL 

CuiSor IS CHand CV. A JSR to Y'fAB sets the cursor iddreu Note thatCH and 
WNOWDIH .,. •rlh respeclto WNOLfT •h,l< tV ond WNOB IM .,. wrth resoect 
to ZffO the top ol screen For scrolhnc. you must set CH ~nd CV v.1th1n the wm
dowaru 

Fig. 6-1. How lhe scroll window works. 

WNOBTM 

The cursor is kept as two parameters: CH and CV keep the 
horizontal and vertical cursor values. Scrolling is controlled by a scroll 

-

window defined by four parameters: WNDTOP, WNDBTM, ~ 

WNDLFT, and WNDWDTH. You can set the parameters to any set 
of values you want. 

To set CH and CV, use numbers that count from zero if you are in 
Assembly or from one if you are in BASIC. For instance, 

LDA #0 
STA CH 
STA CV 



-

-

Text and Graphics 329 

sets the cursor to the upper left corner of the screen from the 
Assembly, but 

HTAB 1 : VTAB 1 

would do it from BASIC. Similarly, 

LDA #$27 
STA CH 
LDA #$17 
STA CV 

puts the cursor at the lower right of the 40-column screen, just like 

HTAB 40 : VTAB 24 

would from BASIC. On the lie you can use forty more positions hori
zontally. 

To set the four window parameters, use the TEXT command from 
BASIC. This sets the 40-column screen to a full screen window with 
parameter values of zero in WNDTOP, 24 ($18) in WNDBTM, zero in 
WNDLIT, and 40 ($28) in WNDWDTH. For the Ile you could 
change WNDWDTH to any value up to 80($50) when you're in the 
80-column mode. 

What the scroll window parameters let you do is reduce the window 
to a small prompt area somewhere on the screen. If you use the screen 
to display information and don't want everything scrolled off the 
screen by INPUTs, then you can set the window to cover just enough 
area for prompt-and-accept dialogue with the user. The dialog can 
continue for an indefinite number of prompts and retries wi thout 
destroying your displays elsewhere on the screen. For example, you 
might use the bottommost row for error messages and prompts onl y. 
So when your program detects an error, the error handling subroutine 
has the last row all to itself: 

TEXT 

POKE 34,23 
HOME 
. .. error dialog . .. 

puts the cursor at lower right and resets 
window parameters . 
sets WNDTOP 
clears window, 24th row only 
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HOME 
TEXT 
RETURN 

clears 24th row 
reset parameters 

For entering data at any screen location, you will need a more gen
eral procedure. The WNDTOP and WNDLFT parameters set the 
upper left corner of the scroll window, while WNDBTM and 
WNDWDTH set the lower right corner but each in a different way. 
WNDWDTH sets the width - the distance from WNDLFT to the 
right edge of the window. WNDBTM sets the absolute value of the 
bottom edge regardless of the value of WNDTOP. See Fig. 6-1. You 
must position the cursor within the scroll window for it to work 
properly. When all this is done, a JSR to CROUT or a plain PRINT 
will send a carriage return forcing the scroll to take place. The window 
parameters ranges: WNDBTM must be 24 or less and greater than 
WNDTOP; WNDLFT and WNDWDTH must be 40 or less (80 or less 
for the lie in 80-column mode). Here is a window setting routine that 
sets the scroll window to any location (X, Y) on the screen with a size 
of DX by DY. The window is cleared and the cursor is placed at the 
upper left position within the window. 

SETWND JSR GETBYT window left = X 
STX WNDLFT 
LDA #0 
STA CH 

JSR CHKCOM 
JSR GETBYT window top = Y 
STX WNDTOP 
STX cv 
JSR CHKCOM 
JSR GETBYT window width = dX 
STX WNDWDTH 
JSR CHKCOM 
JSR GETBYT window height = dY 
CLC 
TXA 

ADC WNDTOP bottom = Y + dY 
STA WNDBTM 
JSR VTAB real ize cu rsor 
JSR CROUT carriage ret urn 

-



JSR HOME 

JMP DATA 
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clear screen window, home 
cursor 
... meanwhile, back in Apple
soft 

- To use, set the ampersand vector at $3F5 to jump to SETWND, then 
you can call it by 

-
-

& X,Y,DX, DY 

where X and Y are the cursor locations for the upper left of the scroll 
window, DX is the width, and DY is the height of the window. For 
instance, 

& 0,5,20 ,3 

sets up a scroll window consisting of the leftmost twenty columns in 
the sixth through eighth rows. The zero sets the window to the first 
column and the five sets it to the sixth row. The width becomes 20 and 
the height is three. 

There are two display character sets defined for the Apple; they are 
called Primary and Alternate. Of the two, the earlier Apples have only 
the Primary set available and the lie model supports both sets. If your 
machine has the Alternate set, then you can display lowercase letters; 
otherwise you are restricted to the Primary set only. The Alternate set 
in the lie is selected when you give 

STA $COOF 

from Assembler, or 

POKE 49167,0 

from Applesoft. All machines have the Primary set in order to be 
compatible, but on some Apples fitted with lower-case adaptors, you 
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may have lowercase in an alternate set. With the Apple lie and most 
terminal arrangements, you use a CAPS LOCK key to switch between 
the lowercase and uppercase as described in Chapter Eight. Only the 
lie has the soft switch at $COOF to select alternate characters. The 
Assembly instruction 

STA $COOE 

or the Applesoft 

POKE 49116,0 

will then change the character set from Alternate back to Primary. 
Regardless of the set chosen, COUT should handle the display for 

you properly. If you choose the Primary set, you can display in 
normal, inverse, or fl ashing mode. Otherwise if you choose the Alter
nate set, you must display in normal or inverse mode only. Use the 
Applesoft command or set the INVFLG value at $32 in Page One: 

to $FF for normal white-on-black 
to $3F for inverse black-on-white 
to $7F for flashing, Primary Set only 

Then send the negative-ASCII characters to the video display routines 
at COUTl , either directly (Primary only) or via COUT (both Primary 
and Alternate). 

If you want to write your own display routines, then you need to 
know the character display scheme. See Table 6-2. 

The character display hardware decodes the character byte in two 
chunks - format and character code. The most significant bit selects 
normal if it is on and inverse if it is off. The next bit, bit 6, depends on 
the setting of $COOE/ COOF soft switch (model lie only). In the 
Primary set, if the bit is on it will cause the character to flash. In the 
Alternate set, if the bit is on it selects another set of characters to be 
used by the remaining six bits. 

The six least significant bits of your character lookup the display 
pattern in the character set ROM. Each character ROM has 64 entries 
from $00 to $3F. The one that is selected by your character code is dis
played on the screen. Older Apples have only one ROM which is the 
primary characters, while the lie model has two ROMs, which are the 
primary and secondary. These codes are summarized in Table 6-2. 
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Table 6-2. Display Routines 

Primary Secondary Alternate 

SIX BIT 

OO.OF @A B C D E F G H I J K L M N 0 @A B C D E F G H I J K L M N 0 
lO.lF PQRSTUVWXYZ- PQRSTUVWXYZ-
20.2F !"#$07o&'()• +,-.I abcdefghijklmno 
30.3F 0123456789:; =? pqrstuvwxyz 

TWO BIT 
I 

00 Inverse Inverse (Pri) 
01 Flash Inverse (Sec) 
10 Normal Normal (Pri) 
11 Normal Normal (Sec) 

BYTE 

00.3F Inverse Primary Inverse Primary 
40.7F Flash Primary Inverse Secondary 
80.BF Normal Primary Normal Primary 

I 

CO.FF Normal Primary Normal Secondary _j 

NOTE: The traditional Apple display supported in COUTI uses the INVFLG to mask the character byte for the Primary Set. On the newer model lie, the two bits can be used for the 
Alternate Set to get lower case letters instead of flashing. 

I 
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If you want to display on Screen Two in text, then you must supply 
your own display routine; the Monitor won't work with Screen Two. 
First, ensure that Applesoft won't load and run at $801 as it usually 
does. Instead, force it to begin RAM access at $COO by a 

LDA #$0C 
STA TXITAB + 1 
LDA #$01 
STA TXITAB 

set lowest RAM pointer 

LDA #0 zero first location 
STA $0COO 

preferably in a BRUN setup program before your Applesoft program 
is run. The HELLO program could do this, with an altered DOS to 
allow binary HELLO programs; see Chapter Seven on how to do this. 

In your Applesoft program, you can 

POKE 49237,0 

to switch the display from Screen One to Screen Two. You may wish 
to clear Screen Two ($0800.0BFF) with blanks ($AO) or copy a screen 
layout to it from Screen One ($0400.07FF) before using it. Then, you 
can switch back to normal Screen One display whenever you wish by: 

POKE 49236,0 

This scheme will let you fill in a form on one screen while using the 
entire second screen for prompt menus. Or you may just want 
separate screens for a two-player game like Battleship where the 
players can take turns at the Apple without seeing each other's screen . 
All you need to start exploring Screen Two usage is a simple display 
routine like 

DI SPL JSR GETBYT 
TXA 
ASL A 
TAX 
LDA SCREE N2,X 
STA A1 
LDA SCREE N2 + 1,X 

row num ber 0 ... 23 

ti mes 2 for mdex 



-
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STA A1+1 
JSR CHKCOM 
JSR GETBYT 
STX A2 
JSR CHKCOM 
JSR CHRGET 
LDY A2 
CMP #$22 
BEQ DISPL 1 
JMP SNERR 

DISPL 1 JSR CHRGET 
CMP #$22 
BEQ DISPL2 
ORA #$80 
STA (A 1), Y 
INY 
BNE DISPL 1 

DISPL2 JMP DATA 

SCREEN2 DW $0800 
DW $0880 
DW $0900 

DW $0BDO 

Tex t and Graphics 

column number 0 ... 39 

open quote 

while not close quote 
get literals and 
d isp lay on Screen Two 

endwhile 

Row 0 (first row) 
Row 1 (second row) 
Row 2 (third row) 

Row 23 (24th row) 

335 

vectored from the ampersand at $3F5. The call sequence is just & row
value, columnvalue, "litera/string" from Applesoft. For example, 

& 0, 16, "SELECTION" 

would display the string in the top row beginning with the seventeenth 
column (column 16). The quotes are needed to pass literal values to 
keep Applesoft from parsing inside the string. 

When you get this one going, you can write more Screen Two 
routines for yourself. A spare screen is very handy when programming 
for heavy user interaction. See Table 6-3 . 

Sometimes, when you are using a modem, you'll want to save a text 
screen to disk. A better idea would be to buffer the incoming text and 
save it in that more compact form, but in a pinch you can just save the 
screen by 
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Table 6-3. Text Row Addresses 

VTAB Screen One Screen Two 

Row Dec Hex Dec Hex 

I 1024 0400 2048 0800 
2 1152 0480 2176 0880 

3 1280 0500 2304 0900 

4 1408 0580 2072 0980 
5 1536 0600 2560 OAOO 

6 1664 0680 2688 OA80 
7 1792 0700 2816 OBOO 

8 1920 0780 2944 OB80 

9 1064 0428 2088 0828 
10 1192 04A8 2216 08A8 
II 1320 0528 2344 0928 
12 1448 05A8 2472 09A8 
13 1576 0628 2600 OA28 
14 1704 06A8 2728 OAA8 

15 1832 07A8 2856 OB28 

16 1960 07A8 2984 OBA8 

17 1104 0450 2128 0850 

18 1232 0400 2256 0800 
19 1360 0550 2384 0950 
20 1488 0500 2512 09DO 
21 1616 0650 2640 OA50 
22 1744 0600 2768 OADO 
23 1872 0750 2896 OB50 
24 2000 0700 3024 OBDO 

BSAVE SCREEN, A$400,L$400 

without any problem. However, you must be careful about how you 
read it back into memory later on. 

The problem with BLOADing screens into the Screen One area, 
$400.7FF, is that the area is shared by peripheral devices. All bytes 
aren't screen display, and if you check in Chapter Two, you'll find 
some locations designated as peripheral scratchpad. So, if you over
write $400. 7FF with old data from disk, the current peripheral RAM 
data wih be destroyed. Don't do it. 
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The solution is to use Screen Two. With Screen Two memory pro
tected with the TXTT AB alteration given earlier, you can recall your 
saved screen from disk by 

BLOAD SCREEN, A$800 
PO KE 49237,0 

and view it until you type 

POKE 49236,0 

to redisplay Screen One. It's a little more trouble, but it is safer; you 
won't hang up by clobbering the peripherals. 

6.2 GRAPHICS 

6.2.1 Lo-Res Graphics 

The LORES graphics uses the same memory as does the text dis
play. Most LORES is confined to Screen One where Applesoft and 
Monitor routines are available to manage it. Chiefly, LORES finds its 
greatest application in arcade type games using the game paddles. But 
it also works well in Kaleidoscopes, plotting bar graphs, and shape 
creation programs. 

If you write a LORES program, you should first try it in Applesoft. 
Where Applesoft is too slow, you can re-write it in Integer or write 
utilities in Assembly. The commands for Integer are the same as those 
for Applesoft, so just refer to Chapter Five for Integer BASIC detai ls 
as you write. Here's how to use the commands with Applesoft. See 
Table 6-4. 

GR 

COLOR= N 

PLOT X,Y 

HUN X I , X2 AT Y 

VLIN Yl, Y2 AT X 

N = SCRN (X, Y) 

TEXT: HOME 

Table 6-4. Applesoft LORES 

Set and clear to graphics 

Set current plotting color 

Plot a pixel 

Plot a horizontal line 

Plot a vertical line 

Identi fy screen color at pixel 

Set and clear to text 
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To initialize LORES for a full screen display, write: 

TEXT 
GR 
POKE 49234,0 
CALL 63538 

The TEXT command makes sure any parameters and switches are 
reset: GR initializes the HIRES display; the POKE switches from 
mixed to full-screen graphics; and the CALL clears the full LORES 
screen to black . 

To initialize the LORES screen for a mixed screen with the bottom
most four text lines intact, write: 

TEXT 
GR 
POKE 34,20 

Here, you use the mixed display with 40 lines of LORES followed by 
four rows of text. The POKE sets the scroll window to protect the 
graphics area of the screen. 

You can remove LORES at any time, returning to text display with 
the TEXT command. 

Here are the LORES drawing commands. The variables used here 
are: X and Y for the current position, Xl and Yl for a beginning 
point, X2 and Y2 for an ending point, M is the slope of a line, DX and 
DY are the increments of cursor movement. 

Always set the color before drawing, using the COLOR = com
mand. Use one of the values in Table 6-5, zero to fifteen only. 

• A vertical line is VLIN Xl,X2 AT Y 
• A horizontal line is HUN Yl, Y2 AT X 
• A single point is PLOT X, Y. 

If you are PLOTting a cursor, then use a subroutine like 

COLOR=BK 
PLOT X,Y 
X = X+DX : Y=Y+DY 
BK = SCRN (X, Y ) 

n 

n 

n 



-

COLR = CU 
PLOT X,Y 
RETURN 
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that uses variable BK to remember the background color at the cursor 
position. You call it with the current cursor position (X, Y) and the 
increment (DX,DY). You initially set CU to the cursor color and BK 
to the background color. 

If you want to draw sloping lines, you will need a straight line 
equation. 

M = (Y2-Y1)/(X2-X1) 
FOR X = X l to X2 
Y = M*(X- X1)+ Y1 
NEXT 

This equation is crude but workable; don't use it on vertical lines. 
LORES from Assembly is basically just another display character 

set for the text screens. Only instead of selecting one of sixty-four 
character patterns, LORES hardware displays two pixels for each 

Table 6-5. LORES Colors 

Dec Hex Color 

()() ()() Black 

01 01 Magenta 

02 02 Dark blue 

03 03 Purple 

04 04 Dark green 

05 05 Grey I 

06 06 Medium blue 

07 07 Light blue 

08 08 Brown 

09 09 Orange 

10 OA Grey 2 

II OB Pink 

12 oc Light green 

13 OD Yellow 

14 OE Aquamarine 

15 OF White 
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character position. Each pixel is a small square of color on the screen . 
In the character position, the upper square comes from the four least 
significant bits while the lower square comes from the most significant 
bits. For example, if you type POKE 49232,0:POKE 49238,0 to 
Applesoft you will see the screen in LORES. Blanks, which have the 
negative-ASCII code of $AO, appear as grey over black: grey is color 
$A, black is color $0. Type POKE 49233,0 to switch back to text 
characters. 

Like text characters, HIRES pixels appear 40 in each row. But be
cause there are two pixels in each character, there are 48 pixels verti
cally in the 24 rows. In mixed mode the four bottom rows are text 
characters together with the top twenty rows of 40 pixels. This results 
in a 40-by-40-pixel display atop four text lines for the mixed mode and 
a 40-by-48-pixel display for the unmixed mode. You can switch to un
mixed mode by 

BIT $C052 unmixed graphics 

or to mixed graphics and text by 

BIT $(053 mixed graphics 

anytime in an Assembly routine. 
With this in mind you can write LORES graphics utilities for your

self. Just use the Monitor LORES Address in Table 6-6 to lookup the 
routine that you need. These are the same Monitor routines that the 
Applesoft commands use to execute LORES instructions, so you can 
use them yourself in Assembly to speed things up. Direct screen access 
to the $400.7FF area is possible but rarely necessary as the Monitor 
routines draw quite quickly. 

6.2.2 Hi-Res Graphics 

To initialize HIRES graphics use the HGR or the HGR2 commands 
in Applesoft , then the TEXT command to switch back to the Text 
screen. Because the text is in a different part of the memory than the 
graphics, you also switch back and forth between text and graphics 
with the soft switches so as not to clear the screen with the Applesoft 
commands. So , it's useful to have a complete set of initialization rou
tines for each screen configuration at hand. Especially in Assembly 
programming, you can just JSR for each screen configuration as you 
need it. 
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Table 6-6. Monitor LORES Addresses 

Hex Label Description 

F800 PLOT P lot pixel at (Y -reg, A-reg) 

F819 HLINE Plot horizonta l, Y-reg to H2 at A-reg 

F828 VLINE P lot vertical, A-reg to V2 at Y -reg 

F832 CLRSCR Clear entire 48 by 40 pixel screen to black 

F836 CLRTOP Clear topmost 40 by 40 pixels to black 

F864 SETCOL Set COLOR according to A-reg 

F87 1 SCRN Get color o f pixel at (Y -reg, A-reg) to A-reg 

FB2F !NIT Set TEXT modes 

FB40 SETGR Set GR modes 

Soft Switches for LORES 

coso GR Set graphics d isplay 

COS I TEXT Set text display 

C0 52 UN MIX Set for 40 by 48 pixels, no text 

C0 53 MIX Set for 40 by 40 pixels above four rows of text 

C0 56 LORES Set to ensure LORES display instead of HIRES 

C0 54 SCREEN! Set to ensure SCREEN I display instead of 
SCREEN2 

C055 SCREEN2 Set to ensure SCREEN2 display instead (rare) 

To switch to the HIRES! screen with mixed graphics and text, you 
can: 

MIX1 STA $COSO 
STA $COS3 
STA $COS4 
STA $COS7 
RTS 

Then, to switch to full graphics on HIRES!, you would write: 

FULL 1 STA 
STA 
STA 
STA 
RTS 

$COSO 
$COS2 
$COS4 
$COS7 
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Similarly, you would invoke full graphics on HIRES2 by: 

FULL2 STA $COSO 
SfA $COS2 
STA $COSS 
STA $COS7 
RTS 

The mixed display for HIRES2 is rarely used because of the need for 
text in Screen Two ($800.BFF), but here it is: 

MIX2 STA $COSO 
STA $C053 
STA $COS5 
STA $COS7 
RTS 

Finally, to switch back to the text only on Screen One, you use this set 
of switches: 

TEXT1 STA $COS1 
STA $C053 
STA SC054 
STA SC056 
RTS 

By having these routines in your Assembly HIRES routines, you can 
JSR simply to ensure that the soft switches are all set properly each 
time you want to change displays. 

You can have a separate routine to clear the HIRES screen to black 
or any other color for that matter. The simplest routine is just a call 
sequence to the Monitor's MOVE routine at $FE2C: 

CLEAR1 LDA #0 for blac.k 1 
STA $4000 cleanng HIRES 1 
STA A4 
LDA #1 
STA A1 
LDA #$40 
STA A1+1 

n 

-

n 
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STA A4+1 
LDA #$FE 
STA A2 
LDA #$7F 
STA A2+ 1 
JMP MOVE 

Write a call sequence to CLEAR2 that will clear HIRES2. 
One of the things you can do in HIRES is to make your own charac

ter set. Usually, you must use the mixed mode and confine your labels 
to the bottom of the screen. With your own HIRES character set, you 
can use the full HIRES screen and put labels wherever you wish. See 
Example 6-1. 

The HIRES display addresses are grouped into rows and columns 
just like the text addresses. There are twenty-four rows by forty 
columns. Each character position, however, has eight bytes of 
memory in HIRES as compared to one byte in text. These eight bytes 
can display any character you want, explicitly . Each byte displays to a 
different line on the screen, so the eight bytes display eight lines, one 
below the other, to makeup the character. Look at Table 6-7 which 
lists the HIRES row addresses. Each address given is for the top line 
of the leftmost character position of each row. Then look at Table 6-8 
which lists the HIRES line offsets. These line offsets are the values to 
add to the top line address to address the remaining seven lines in each 
row. Also , the column number must be added if you want to reach any 
character position on the screen. By working through the additions of 
row address, line offset, and column number, you can access the 
HIRES screen by character position. In fact, the sum can be shown as 
a formula 

byte address = row address + line offset + column number 

for use in writing character access routines. 
Each character to be displayed on a HIRES screen must be kept in 

eight corresponding bytes. Each byte will be used to display on one 
line of the row within the desired character position. In HIRES dis
play, a byte will map to seven points on the screen. Each of these seven 
points can be turned on (white) or off (black) by setting the corre
sponding bit in the byte. Display points that can be independently con-
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Example 6-1. 

SOURCE FILE: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0050: 
ss 
0052: 

ADDRESS 
0000: 
1800: 
ABLE 
0000: 
0000: 
0000: 
0000: 

EXAMPLE 6.1 
1 *********************************** 
2 * EXAMPLE 6.1 * 
3 * * 
4 * HIRES CHARACTER DISPLAY * 
5 * * 
6 *DISPLAY A CHARACTER AT (X,Y) * 
7 * FROM CHAR. TABLE 8 BYTES EACH. * 
8 *A-REG CHAR. CODE 0 ••• 255 * 
9 * Y-REG a ROW NUMBER 0 ••• 23 * 

10 *X-REG a COLUMN NUMBER 0 •.• 39 * 
11 * * 
12 *RESULT IS DISPLAYED ON HIRES!. * 
13 *********************************** 
14 * 
15 * 
16 * 
17 * 

E Q U A T E S 

18 ZSCREEN EQU $50 

19 ZCHAR 

20 * 
21 CHAR 

22 * 
23 * 
24 * 
25 * 

EQU $52 

EQU $1800 

R 0 U T I N E S 

HIRES ADORE 

CHAR. TABLE 

CHARACTER T 

NEXT OBJECT FILE NAME IS EXAMPLE 6.1.0BJO 

8000: 
8000: 
8000: 
8000: 
8000:48 
8001:98 
8002:0A 
OR INDEX 
8003:A8 
8004:B9 52 80 
R-LO 
8007:85 50 
8009:B9 53 80 
R-HI 
sooc 85 51 
800E 
800E 

26 ORG $8000 
27 * 
28 * WITH Y-REG, LOOKUP ROW ADDRESS. 
29 * 
30 HCHAR PHA 
31 TYA 
32 ASL A MULT BY 2 F 

33 
34 

35 
36 

TAY 
LDA ROW,Y 

STA ZSCREEN 
LDA ROW+1,Y 

37 STA ZSCREEN+l 
38 * 

GET THE ADD 

GET THE ADD 

39 * WITH X-REG, OFFSET ROW ADDRESS 

,... 
I 
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Example 6-1 Cont. 

800E: 40 * BY THE COLUMN NUMBER. 
800E: 41 * 
800E:8A 42 TXA 
800F:18 43 CLC 
8010:65 50 44 ADC ZSCREEN ADDS L.S.BY 
TE 
8012:85 50 45 STA ZSCREEN 
8014:A9 00 46 LDA #0 
8016:65 51 47 ADC ZSCREEN+l ADDS M.S.BY 
TE 
8018:85 51 48 STA ZSCREEN+1 
801A: 49 * 
SOlA: 50 * WITH A-REG, LOOKUP THE CHARACTER c 
ODE AS 
SOlA: 51 * (ZCHAR) = 8*(A-REG) + CHAR 
SOlA: 52 * 
801A:68 53 PLA 
8018:85 52 54 STA ZCHAR LOW BYTE 
801D:A9 00 55 LOA 10 
801F:85 53 56 STA ZCHAR+l HIGH BYTE 
8021:06 52 57 ASL ZCHAR MULTIPLY BY 

8 
8023:26 53 58 ROL ZCHAR+l 
8025:06 52 59 ASL ZCHAR 
8027:26 53 60 ROL ZCHAR+1 
8029:06 52 61 ASL ZCHAR 
802B:26 53 62 ROL ZCHAR+1 
8020:18 63 CLC 
802E:A5 52 64 LOA ZCHAR THEN ADD TH ,.. E ADDRESS 
8030:69 00 65 ADC #>CHAR OF CHARACTE 
R TABLE 
8032:85 52 66 STA ZCHAR 
8034:A5 53 67 LOA ZCHAR+l TO GET ENTR 
Y ADDRESS. 
8036 69 18 68 ADC #<CHAR 
8038 85 53 69 STA ZCHAR+1 
SOJA 70 * 
803A 71 * DISPLAY THE CHARACTER IN 8 LINES 
SOJA 72 * AT THE ZSCREEN POSITION. 
SOJA 73 * 
SOJA AO 00 74 LOY #0 
803C A2 00 75 LOX #0 
803E B1 52 76 HCHAR1 LOA (ZCHAR),Y FROM TABLE 
8040 81 50 77 STA (ZSCREEN,X) TO HIRES!. 
8042 C8 78 INY 
8043 co 08 79 CPY #8 DO 8 TIMES. 



346 Apple® Programmer~ Handbook 

Example 6-1 Cont. 

8045:FO OA 
8047:18 
8048:A5 51 
DORESS OF 
804A:69 04 
N THE ROW. 
804C:85 51 
804E:4C 3E 80 
8051:60 
8052: 
8052: 
8052: 
8052: 

80 
81 
82 

83 

BEQ HCHAR2 
CLC 
LOA ZSCREEN+1 

AOC #4 

84 STA ZSCREEN+1 
85 JHP HCHARl 
86 HCHAR2 RTS 
87 * 
88 * 
89 * 
90 * 

L I T E R A L S 

CALCULATE A 

NEXT LINE I 

8052: 91 * HIRES1 CHARACTER ROW TABLE. 
8052: 
8052:00 20 
8054:80 20 
8056:00 21 
8058:80 21 
805A:OO 22 
805C:80 22 
805E:OO 23 
8060:80 23 
8062:28 20 
8064:A8 20 
8066:28 21 
8068:A8 21 
806A:28 22 
806C:A8 22 
806E:28 23 
8070:A8 23 
8072:50 20 
8074:00 20 
8076:50 21 
8078:00 21 
807A:50 22 
807C:OO 22 
807E:50 23 
8080:00 23 
8082: 
8082:00 

92 * 
93 ROW 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 * 
118 

OW 
OW 
OW 
OW 
OW 
DW 
OW 
OW 
OW 
OW 
OW 
OW 
OW 
OW 
OW 
OW 
OW 
OW 
DW 
OW 
DW 
OW 
DW 
OW 

BRK 

$2000 
$2080 
$2100 
$2180 
$2200 
$2280 
$2300 
$2380 
$2028 
$20A8 
$2128 
$21A8 
$2228 
$22A8 
$2328 
$23A8 
$2050 
$2000 
$2150 
$2100 
$2250 
$2200 
$2350 
$23DO 

*** SUCCESSFUL ASSEMBLY: NO ERRORS 

ROW 0 
ROW 1 
ROW 2 
ROW 3 
ROW 4 
ROW 5 
ROW 6 
ROW 7 
ROW 8 
ROW 9 
ROW 10 
ROW 11 
ROW 12 
ROW 13 
ROW 14 
ROW 15 
ROW 16 
ROW 17 
ROW 18 
ROW 19 
ROW 20 
ROW 21 
ROW 22 
ROW 23 

trolled like this are called pixels. The least significant bit controls the 
leftmost pixel: a one for white and a zero for black. The other bits are 
mapped left to right in sequence on the screen, so that bit 6 controls 
the seventh pixel which is the rightmost. Usually, bit 7 is kept off. If 
you turn it on, all the pixels will shift position by half a point. Because 
you usually clear a screen with zeros, it is best to always leave bit 7 off 
in all bytes that keep black-and-white pixels. Color is different; bit 7 



Text and Graphics 347 

Table 6-7. HIRES Row Addresses 

HIRES I HIRESl 

Row Dec Hex Dec Hex 

0 8192 2000 16384 4000 
1 8320 2080 16512 4080 
2 8448 2100 16640 4100 
3 8576 2180 16768 4180 
4 8704 2200 16896 4200 
5 8832 2280 17024 4280 
6 8960 2300 17152 4300 
7 9088 2380 17280 4380 
8 8232 2028 16424 4028 
9 8360 20A8 16552 40A8 

10 8488 2128 16680 4128 
11 8616 21A8 16808 41A8 
12 8744 2228 16936 4228 
13 8872 22A8 17064 42A8 
14 9000 2328 17192 4328 
IS 9128 23A8 17320 43A8 
16 8272 20FO 16464 40FO 
17 8400 2000 16592 4000 
18 8528 2150 16720 4150 
19 8656 2100 16848 4100 
20 8784 2250 16976 4250 
21 8912 2200 17104 4200 
22 9040 2350 17232 4350 
23 9168 2300 17360 4300 

Table 6-8. HIRES Line Offsets 

Line Dec Hex 

0 0 0 
1 1024 0400 
2 2048 0800 
3 3072 ocoo 
4 4096 1000 
s 5120 1400 
6 6144 1800 
7 7168 1COO 

used for color is often called the color bit. But for characters, always 
turn it off. 

Eight bytes contain one character, seven pixels across by eight high. 
To have all byte values, a table of 256 characters needs two K of 



348 Apple® Programmer's Handbook 

memory; $1800.1FFF. To fetch any character, a lookup formula for 
eight bytes per entry will do the trick ~ 

entry address = 8 * char. code + table address 

in getting the address of the top byte. 
The routine listed here is HCHAR and it displays a character from 

your table. You must have the table in memory (EQUated to $1800 
here), and pass the row number in the X-reg, the column number in 
the Y -reg, and the character code in the A-reg. This character code is 
the entry number for your character table. HCHAR displays your 
character at the row and column you gave and then returns with the 
registers clobbered. 

All you have to do to get HCHAR working for you, aside from 
keying it in, is to create your characters. Here's how. 

The secret to getting character layouts is to keep in mind that the 
bits run from left to right on the screen although they are represented 
in binary from right to left (see Fig. 6-2). The critical step is trans
lating the pattern of squares to binary (see Fig. 6-3). Start with bit 7 
on the right of the layout. Translate into a bit (0 or I). Then do bit 6 to 
the left of bit 7 on the layout but to the right of bit 7 in the binary 
number. Study the three examples, especially Fig. 6-3B which is non
symmetrical. 

(A) The HIRES character. 

Fig. 6-2. Character layouts. 

(8) Text character area. 

When laying out, keep text characters within the five by seven area 
shown to avoid the characters bleeding together on the screen. You 
may want some special characters to join together, but text should 
not. The one exception that you may have to make is for the de-

,., 
I 

scenders on lowercase letters. For example, see the "j" layout in Fig. ~ 

6-3. 
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(A) Character A. 

(8) Number 3. 

(C) Character J. 

BYTE 3 

BYTE 

4 

5 
5 

Fig. 6-3. Creating characters. 
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BINARY HEll 

0001000 08 
0010100 14 
0100010 22 
0 I 1 1 I I 0 
0100010 

0100010 
0100010 

3 E 
2 2 
2 2 
2 2 

0000000 00 

BINARY HEll 

0011100 IC 
0100010 22 
0100000 20 
0111000 38 
0100000 20 
0100010 22 
0011100 1C 
0000000 00 

BINARY HEll 

0000000 00 
0010000 10 
0000000 00 
0010000 I 0 
0010000 10 
0010000 10 
0010100 14 

0001000 08 

You can write HIRES graphics routines that execute much faster 
than the same routines in Applesoft. Avoiding the time taken to parse 
instructions and setup parameters is only a part of the savings in time. 
The big payoff is in speed when you bypass the lengthy calculations 
that Applesoft and the Applesoft programs must make to get useful 
graphics. 

The problem with HIRES graphics is its coordinate system. Because 
it has its origin at the upper left, the horizontal values from zero to 279 
and the vertical values from zero to 191 present several problems. 
First, the horizontal value requires two bytes of storage for just a little 
over one byte of data, not too efficient in an eight bit machine. Then 
the integral values are rather arbitrary and always require scaling after 
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calculations, especially trigonometric functions. Then you may have 
to reflect the vertical value because the plotting takes place in the 
fourth quadrant instead of the usual first. These coordinates simply 
follow the text screen convention of row numbering and use the num
ber of points vertically and horizontally for the convenience of the 
original HIRES programming. But you don't have to follow that ar
rangement; there are better ways. 

The simplest coordinate system you can use for HIRES work is one 
which uses one byte for the X-coordinate and one byte for the Y -coor
dinate (see Fig. 6-4A). The origin you take to be at the lower left 
corner of the full screen. Each coordinate represents a binary fraction 
- in X from zero to one, in Y from zero to three-fourths. This is 
called the system of normalized coordinates (see Fig. 6-4B). 

0 280 X 
0~----------------------~~~ 

280 X 192 
OR 

280 X 160 
PIXELS 

160- ------------------------------------- -

192-1-----------------+ 

(A) Applesoft HIRES coordinates. 

075+--------------------+-

(8) Normalized HIRES coordinates. 
Fig. 6-4. Coordinate system. 

256 X 192 
PIXELS 

1.0 X 

~ 
I 

I 
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With normalized coordinates, you can plot any one of 256 hori
zontal positions and any one of 192 vertical positions. The 24 
remaining horizontal positions are lost as they are used to provide the 
single byte X-coordinate. Normalized coordinates with a three-fourths 
vertical size are compatible with graphics communications standards 
like Videotex and Teletext. They get along with the input data require
ments of many commercially available graphics packages. And, they 
can be used with Applesoft's floating-point routines with a minimum 
of scaling required. If you want HIRES routines in Assembly for 
speed and simplicity, then adopt normalized coordinates right away 
and don't use the built-in coordinate system. 

Here's how normalized coordinates work. Keep your current coor
dinates in the X and Y registers. To plot a point, test the coordinate by 

CPY #$CO 
BCS CLIP 

rangetest Y 

where CLIP is a return location that does not plot the point. If the 
Y -coordinate is less than three-fourths ($CO in hex) then it passes the 
test and you can plot it. This test is called clipping, and is the only 
clipping you need to do. In Applesoft, you would have to make jour 
clipping tests. Clipping makes sure that you don't plot outside the 
screen area and any intelligent graphics plotter must do it. With nor
malized coordinates, it's simple. 

To plot any point on the HIRES! screen using normalized coordi
nates, you need your own routines. Such routines are simple to write, 
especially using table lookup for screen addressing and other func
tions . See Table 6-9. A complete table lookup routine to plot a pixel in 
black or white wiJJ use about one K of memory. You can use Example 
6-2 (located at the end of this chapter) which wiJJ keep the coordinates 
in the X-reg and Y -reg, and the A-reg will keep the pixel value - say, 
zero for black and nonzero for white. Such a routine would look like 
this: 

* HIRES PIXEL - PLOT A_ REG PIXEL AT (X_ REG,Y _ REG) 
HPIX PHP 

CPY #$CO clip Y-coordinate 
BCS HPIX2 
CMP #0 If pixel va lue = zero . 
BNE HIPIX1 
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JSR BLACK 
BEQ HPIX2 

HPIX1 JSR WHITE 
HPIX2 PLP 

RTS 

then plot black pixel 

else plot white pixel. 

In this routine, all registers a re preserved so you can use the routine in 
a loop. Then you can vary the X-reg, Y -reg, and the A-reg as you want 
and branch after any JSR with impunity. Each o f the BLACK and 
WHITE routines a lso preserves registers to support your calling rou
tine this way. 

To understand how these BLACK and WHITE routines work, you 
must study the tables in the LITERAL section. By comparing 
LOLINE and HILI NE with Table 6-9, HIRES! Screen Lines, you can 
see that they are each one byte tables of the low bytes and high bytes 
of the screen addresses . In each, the first entry is for the bottom left 
screen address; the last entry is for the top left screen address. Using 
theY-reg as index, the routines get the line address for the pixel from 
HILINE and LOLINE to the Page Zero pointer, SCREEN. This 
leaves only the X-coordinate to interpret. Now the X-reg is used to 
index two tables called DIV7 and BWPIX. First, DIV7 does a division 
by seven by table lookup instead of by algorithm, which is much 
faster. Second, BWPIX gives the mask byte to select the desired pixel 
bit from within the screen byte. With these four tables - LOLINE, 
HILINE, DIV7, and BWPIX - the routines can lookup their func
tions quickly. 

After saving the registers, the routine gets the address of the line 
from LOLINE and HILINE to SCREEN. Then it finds the byte con
taining the X-th pixel on the line by DIV7 and puts this quotient into 
theY-reg as the byte index. Finally, the mask for the bit within that 
byte is looked up in BWPIX with the X-reg; used to mask the screen; 
and that's it. BLACK masks the screen in a different way than does 
WHITE since BLACK must turn the pixel's bit OFF, and WHITE 
must turn it ON. Otherwise, the two routines work the same way. 

The ability to access each pixel on the screen with separate bits is 
unique to HIRES black or white plotting. With color, you cannot 
reach pixels uniquely with separate bits like this, so you'll probably 
only use these routi nes satisfactorily with a black and white video 
display. 

n 
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Table 6-9. HIRES! Screen Lines 
Uae Addr. Line Addr. Uae Addr. Line Addr. Line Addr. 

00 3FDO 28 3050 so 3EA8 78 3C28 AO 3080 
01 3800 29 3950 51 3AA8 79 3828 AI 3980 
02 3700 2A 3550 52 36A8 7A 3428 A2 3580 
03 3300 28 3150 53 3228 78 3028 A3 3180 
04 2FDO 2C 2050 54 2EA8 7C 2C28 A4 2080 
OS 2800 20 2950 55 2AA8 70 2828 AS 2980 
06 2700 2E 2550 56 26A8 7E 2428 A6 2580 
07 2300 2F 2150 57 22A8 7F 2028 A7 2180 
08 3FSO 30 3CDO 58 3E28 80 3F80 AS 3000 
09 3850 31 3800 59 3A28 81 3880 A9 3900 
OA 3750 32 3400 SA 3628 82 3780 AA 3500 
08 3350 33 3000 58 3228 83 3380 AB 3100 
oc 2FSO 34 2CDO sc 2E28 84 2F80 AC 2000 
00 2850 35 2800 50 2A28 85 2880 AD 2900 
OE 2750 36 2400 SE 2628 86 2780 AE 2500 
OF 2350 37 2000 SF 2228 87 2380 AF 2100 
10 3EDO 38 3CSO 60 3DA8 88 3FOO 80 3C80 
II 3ADO 39 3850 61 39A8 89 3800 81 3880 
12 3600 3A 3450 62 3SA8 SA 3700 82 3480 
13 3200 38 3050 63 31A8 88 3300 83 3080 
14 2EDO 3C 2C50 64 2DA8 8C 2FOO B4 2C80 
IS 2ADO 30 2850 65 29A8 80 2800 85 2880 
16 2600 3E 2450 66 25A8 SE 2700 86 2480 
17 2200 3F 2050 67 21A8 SF 2300 87 2080 
18 3E50 40 3FA8 68 3028 90 3E80 88 3COO 
19 3A50 41 38A8 69 3928 91 3A80 89 3800 
lA 3650 42 37A8 6A 3528 92 3680 8A 3400 
18 3250 43 33A8 68 3128 93 3280 88 3000 
IC 2E50 44 2FA8 6C 2028 94 2E80 8C 2COO 
10 2A50 45 2BA8 60 2928 95 2A80 80 2800 
IE 2650 46 27A8 6E 2528 96 2680 BE 2400 
IF 2250 47 23A8 6F 2128 97 2280 8F 2000 
20 3000 48 3F28 70 3CA8 98 3EOO 
21 3900 49 3828 71 38A8 99 3AOO 
22 3500 4A 3728 72 34A8 9A 3600 
23 3100 48 3328 73 30A8 98 3200 
24 2000 4C 2F28 74 2CA8 9C 2EOO 
25 2900 40 2828 75 28A8 90 2AOO 
26 2500 4E 2728 76 24A8 9E 2600 
27 2100 4F 2328 77 20A8 9F 2200 

NOTE: Each address is leftmost byte. Line Zero is at bottom. 

6.2.3 Mid-Res Graphics 

The Apple II can plot six different colors on the HIRES screens. Or, 
it can plot 280-by-192 independent pixels. But it cannot do both at the 
same time. 

When you want to draw in color, you would expect to do so in the 
same way you drew in black and white. You set the HCOLOR to your 
choice and start drawing, but it doesn't work like it should. Some 
vertical lines may disappear; diagonals look jagged, and some color 
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combinations won't work side-by-side on the screen. Something is 
wrong, but it is not apparent exactly what. You certainly cannot plot 
colors the same way you plotted black and white; it just won't work. 

Plotting colors by pixel, like plotting in black and white, is called 
the six-color problem. There is a solution if you want color pixels in 
HIRES. First, see how the HIRES colors work. 

There are two sets of HIRES colors. One set has the colors black I, 
violet, green, and whitel. The other set has the colors black2~ blue, 
orange, and white2. The difference between the two is the high order 
bit in the bytes: the violet-green set has bit 7 clear; the blue-orange set 
has bit 7 set. Otherwise, they are exactly the same. In both sets, the 
colors are produced by alternately arranging the display bits, from bit 
0 to bit 6, in an on-off or off-on pattern. Such a pattern takes two 
bytes to complete; for instance, violet is produced by the pattern 

and off-on-off-on-off-on-off 

appearing in successive bytes on the line. See Fig. 6-5 for details of the 
violet-green pattern and the blue-orange pattern. 

To draw a HIRES color, select a bit pattern from Table 6-10 and 
use it to fill in an area on the screen. For instance, the pattern for 
violet will be in byte pairs of $55 (left) and $2A (right). This gives us 
our colors in an area of fourteen points across each. Notice that turn
ing all bits on gives white and turning all bits off gives black. For black 
and white, the color bit, bit 7, doesn't matter. This gives us the six 
colors, but with a very low horizontal resolution of fourteen dots out 
of 280. These bit patterns are used by Applesoft for the HCOLOR you 

Table 6-10. Color Codes 

Left Right 
Byte Color Value Value 

Violet-green Black I $()() $00 

Violet $55 $2A 

Green $2A $55 

White I $7F $7F 

Blue-orange Black2 $80 $80 

Blue $05 $AA 

Orange $AA $05 

White2 $FF $FF 

~ 

I 

,... 
I 

~ 
I 
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BIT 0 I 2 3 4 5 6 0 I 2 3 4 5 6 

I vi cl vi cl vlcwcl vlcl vi G I vw 
BIT 7 = 0 BIT 7 = 0 

I LEFT --I--RIGHT __ , j-avTE BYTE 

(A) Violet/green pattern. 

BIT 0 1 2 3 4 5 6 0 I 2 3 4 5 6 

I sl olaf ol alo[f)ol alol al of Bw 
BIT 7 = I BIT 7 = I 

I LEFT I_RIGHT_I 
j-am--~ BYTE-, 

(8) Blue/orange pattern. 

Fig. 6-S. HIRES color sets. 

select. By keeping to the boundaries of fourteen points across, you can 
avoid having colors interfering with each other. 

Look at HIRES color generation a little closer and you will see that 
colors used in pixels are much finer than colors in byte pairs of four
teen points. 

When you plot dots alternately on and off, you create a 3.58-MHz 
square wave (see Fig. 6-6). This is the exact frequency of the video 
color subcarrier that the Apple generates, because the dot generator 
and the color burst generator both run from the same clock. Any 
3.58-MHz signal in the video will be used by your tv set to generate 
color. The hue produced depends on the phase between the color burst 
and the video. Your video is the bit stream from the dot generator. If 
they are in phase, an orange line appears across the screen. If the dif
ference is 180 degrees, a blue line appears. Changing the phase by 90 
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SIGNAL WAVEFORM PHASE 

3.58 MHz REFERENCE o· 

VIOLET LINE 

BLUE LINE ISO• 

GREEN LINE 270" 

ORANGE LINE o· 

Fig. 6-6. HIRES color signals. 

degrees gives green or violet. You can't do this directly, but bit 7 will 
do it for you for all seven display bits in its byte. With bit 7 off, the 
phases available make green and violet; with bit 7 on, they make blue 
and orange. You can see these four hues in the HIRES hues of Fig. 
6-7. 

ORANGE 

VIOLET 

BLUE 

Fig. 6-7. The four HIRES hues. 

r 
... 
I 

..., 
I 

~ 
I 

~ 



Text and Graphics 357 

The hangup is that any given byte must be switched to one of the 
two patterns: orange-blue or violet-green. You cannot mix between 
them in the same byte. And, considering that the bit pattern for any 
one color is different for left and right bytes (so that two bytes are 
needed to complete a color), you have no choice but to force all color 
bits to be either on or off. Any other way will cause trouble. 

With this restriction, you can plot four colors by allotting two bits 
for each pixel. Each pixel will then be independent of the other. The 
trade off with black and white is the halving of horizontal resolution, 
from 280 to 140, and the gain is two colors. By staying within a four 
color set, you avoid colors at 90 degrees from each other contending 
for the color bit in the same byte. 

You can have a color pixel scheme with any number of colors if you 
are willing to trade off the resolution. Since you have only half the 
horizontal resolution of the vertical resolution, the next logical trade
off is to halve the vertical resolution as well. This gives 140 by 96, 
coarser than HIRES (black and white) but still finer than LORES at 
40 by 48. Call this scheme MIDRES, since it falls between the two. 

The trick to getting more colors is to allow the color bit to vary from 
line to line. The restriction was that you couldn't use different color 
bits on the same line. So, set the color bit on alternate lines and see 
what happens. 

For each pair of lines, set the color bit on the top and clear it on the 
bottom line as shown in Fig. 6-8. Then look at what happens when 

... BOBOBOBOBOBOBOBO .. . 
... VGVGVGVGVGVGVGVG .. . 
... BOBOBOBOBOBOBOBO .. . 

... VGVGVGVGVGVGVGVG .. . 
. . . B 0 B 0 B 0/8078 0 B 0 B 0 B 0 .. . 

. . . V G V G V GI.J...Jl/V G V G V G V G .. . 
... BOBOBOBOBOBOBOBO .. . 

... VGVGVGVGVGVGVGVG .. . 
... BOBOBOBOBOBOBOBO .. . 

. . . . V G V G V G V G V G V G V G V G .. . 

B"" blue. 
v =violet. 

0 = aranee 
G=veen 

Mosaic of lour colors on the HIRES· screen. By al1erna!ing blue oran&e will! violet &reen on odd and 
even lines. contention lor the color bit is avoided. Four bits in two or four bytes then control lour dots to 
make a one-of-sixteen valued pixel -· two by two each. Typical pixel is autlined here as a parallelo&ram. 

Fig. 6-8. Varying the color bit from line to line. 
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you plot the four colors from each set on each line. There are sixteen 
possible combinations and each one gives a different color. (There are 
two greys.) For instance, orange on the top line with violet on the bot
tom line will blend to a brilliant pink color when viewed from a short 
distance. A blue and a green pair of lines will look aqua. Brown can be 
seen with orange and green. When white is used, you get a light color; 
when black is used, you get a dark color. The dark colors and greys 
show their lines clearly while the brilliant colors like pink and true blue 
have a somewhat textured look. All colors come from the field of lines 
having bit 7 set in all odd-line bytes and clear in all even-line bytes. 
These are summarized in Table 6-11. 

The MIDRES colors use all four HIRES hues, so they have four 
additional hues where they combine. This gives you eight hues: 
orange, pink, violet, true blue, blue, aqua, green, and brown. You can 
see them as phase angles each 45 degrees apart in Fig. 6-9. Of these 

Table 6-11. Creating Mid-res Colors 

Black2 Orange 

Black I Black Dark 
orange 

Violet Dark Pink 
violet 

Green Dark Brown 
green 

White I Grey- I Light 
orange 

ORANGE 

BROWN 

AQUA 

BLUE 

Fig. 6-9. The eight MIDRES hues. 

Blue 

Dark 
blue 
True 
blue 
Aqua 

Light 
blue 

PIN II 

TRUE 
BLUE 

Whitel 

Grey-2 

Light 
violet 
Light 
green 
White 

.., 
I 

~ 
I 
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eight hues, the four HIRES ones will display either light (when com
bined with a white) or dark (when combined with a black). Combining 
black with white can be done two ways as there are two greys. 

Each of the sixteen colors has its own bit pattern as shown in Table 
6-12. They need four bytes to keep them: two bytes of top line and two 
bytes of bottom line. Into each byte pair goes each combination of 
HIRES colors allowed on the line. Not shown in the patterns are the 

Table 6-12. The Sixteen Mid-res Colors 

Bit Pattern 
Pixel 0123456 0123456 Color 

0 0000000 ()()()()()()() Black 
()()()()()()() 0000000 

1 ()()()()()()() ()()()()()()() Dark violet 
1010101 0101010 

2 1010101 0101010 Dark blue 
0000000 0000000 

3 1010101 0101010 True blue 
1010101 0101010 

4 0000000 0000000 Dark green 
0101010 1010101 

s 0000000 0000000 Grey- I 
1111111 1111111 

6 1010101 0101010 Aqua 
0101010 1010101 

7 1010101 0101010 Light blue 
1111111 1111111 

8 0101010 1010101 Dark orange 
0000000 0000000 

9 0101010 1010101 Pink 
1010101 0101010 

10 1111111 II IIIII Grey-2 
()()()()()()() 0000000 

II 1111111 1111111 Light violet 
1010101 0101010 

12 0101010 1010101 Brown 
0101010 1010101 

13 0101010 1010101 Light orange 
1111111 1111111 

14 1111111 1111111 Light green 
0101010 1010101 

15 1111111 1111111 White 
1111111 1111111 

I 
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color bits: top lines are always on, bottom lines always off. A numeric 
pixel value appears with each color whose four bits have the four 
HIRES colors encoded. 

· bit 0 is violet 
bit I is blue 
bit 2 is green 
bit 3 is orange 

With this scheme, I is dark violet, 2 is dark blue, 4 is dark green, and 8 
is dark orange. Combinations like aqua are built from bits - aqua is 
bit 1 and bit 2 which is six. Such a scheme makes it easier for a routine 
to decode. The bit patterns then can be calculated or looked up using 
the HIRES bytes. Each set of four bytes has a color pixel value to 
identify it. All sixteen colors are listed in Table 6-12. 

In the MID RES pixels routine of Example 6-3, you can see how this 
scheme can be implemented. Call with normalized coordinates, the 
same way you do for black and white pixel plotting, but with the 
MIDRES color code in the A-reg. Notice that the routine clips the 
Y -coordinate for you. 

Like the BLACK and WHITE routines of Example 6-2, this routine 
uses tables to reduce execution time to a minimum. It makes four 
plots, one for each byte, because the byte pattern repeats only every 
second byte in each line and there are two lines through each pixel. 
The CPLOT routine must do some fancy masking to plot only one 
pixel's bits within these bytes - it uses masks to do this. 

While an analysis of how Example 6-3 works would take quite some 
time to work out, you can use it simply. Pass the X-coordinate in the 
X-reg, the Y -coordinate in the Y -reg, and the MID RES color in the 
A-reg. The coordinates are normal, with the origin at the lower left of 
the full screen. The color is given in Table 6-12 and in COLOR at the 
end of the listing. 

6.2.4 Shape Tables 

One class of objects that you draw frequently on the HIRES 
graphics screens is shapes. Shapes include such sets of objects as 
characters, tokens, cursors, and missiles. What characterizes all these 
shapes is that they are defined without having any position. Ordinary 
drawings are plotted using the Applesoft PLOT command at specific 

t-1 
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Example 6-2. 

SOURCE 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
003C: 
0000: 

FILE: EXAMPLE 6.2 
1 ****************************** 
2 * EXAMPLE 6.2 * 
3 * * 
4 * H I R E S P I X E L S * 
5 * * 
6 * CALL BLACK OR WHITE WITH * 
7 * CO-ORDS IN X-REG, Y-REG * 
8 * NORMAL ORIGIN LOWER LEFT * 
9 ****************************** 

10 * 
11 * 
12 * 
13 * 

E Q U A T E S 

14 SCREEN EQU $3C 
15 * 

POINTER TO HIRES1 

NEXT OBJECT FILE NAME IS EXAMPLE 6.2.0BJO 
8000: 
8000: 
8000: 
8000: 
8000: 
8000: 
8000: 
8000:08 
8001:48 
8002:98 
8003:48 
8004:89 FE 80 
8007:85 3C 
8009:89 3E 80 
800C:85 3D 
SOOE:BD BE 81 
8011:A8 
8012:BD 
8015:11 
8017:91 
8019:68 
801A:A8 
8018:68 
801C:28 
801D:60 
801E: 
801E: 
SOlE: 
801E: 
801E: 
801E:08 
801F: 48 
8020:98 
8021:48 
8022:89 

Cl 82 
3C 
3C 

FE 80 

16 ORG $8000 
17 * 
18 * 
19 * 

R 0 U T I N E S 

20 * PLOT A WHITE HIRES PIXEL 
21 * AT (X-REG,Y-REG) 
22 * 
23 WHITE 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 * 
42 * 

PHP 
PHA 
TYA 
PHA 
LDA 
STA 
LDA 
STA 
LDA 
TAY 
LDA 
ORA 
STA 
PLA 
TAY 
PLA 
PLP 
RTS 

LOLINE,Y 
SCREEN 
HILINE,Y 
SCREEN+1 
DIV7,X 

BWPIX,X 
(SCREEN), Y 
(SCREEN),Y 

SAVE REGISTERS 

USE Y-REG TO 
THE ADDRESS OF THE 
SCREEN LINE. 

USE X-REG TO FIND 
THE PIXEL 1 S BYTE. 
USE X-REG AGAIN TO 
FIND THE BIT MASK. 
TURN BIT ON! 

RESTORE REGISTERS 

43 * PLOT A HIRES PIXEL AS BLACK 
44 * AT (X-REG,Y-REG) 
45 * 
46 BLACK 
47 
48 
49 
50 

PHP 
PHA 
TYA 
PHA 
LDA LOLINE,Y 

SAVE REGISTERS 

USE Y-REG TO 
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,.. 
8025:85 3C 51 STA SCREEN FIND THE ADDRESS OF 
8027:B9 3E 80 52 LDA HILINE,Y THE SCREEN LINE. 
802A:85 3D 53 STA SCREEN+l 
802C:BD BE 81 54 LDA DIV7,X USE X-REG TO FIND 1-a 
802F:A8 55 TAY THE BYTE ON THE LINE. i 

8030:BD Cl 82 56 LDA BWPIX,X USE X-REG TO FIND 
8033:49 FF 57 EOR #$FF THE BIT MASK. 
8035:31 3C 58 AND (SCREEN),Y TURN BIT OFF! ~ 
8037:91 3C 59 STA (SCREEN),Y 

I 

8039:68 60 PLA 
803A:A8 61 TAY 
8038:68 62 PLA 
803C:28 63 PLP RESTORE REGISTERS r-1 803D:60 64 RTS I 
803E: 65 * I 

803E: 66 * 803E: 67 * L I T E R A L S 
803E: 68 * ,.. 
803E: 69 * 
803E: 70 * HIRES! LINE ADDRESSES - HIGH 
803E: 71 * 803E:3F 38 37 72 HILINE DFB $3F,$3B,$37,$33,$2F,$2B,$27,$23 
8041:33 2F 2B 

~ 8044:27 23 
8046:3F 3B 37 73 DFB $3F,$3B,$37,$33,$2F,$2B,$27,$23 
8049:33 2F 2B 
804C:27 23 
804E:3E 3A 36 74 DFB $3E,$3A,$36,$32,$2E,$2A,$26,$22 

~ 8051:32 2E 2A J 
8054:26 22 
8056:3E 3A 36 75 DFB $3E,$3A,$36,$32,$2E,$2A,$26,$22 
8059:32 2E 2A 
805C:26 22 

~ 805E:3D 39 35 76 DFB $3D,$39,$35,$31,$2D,$29,$25,$21 
8061:31 2D 29 
8064:25 21 
8066:3D 39 35 77 DFB $3D,$39,$35,$31,$2D,$29,$25,$21 
8069:31 2D 29 

~ 806C:25 21 
806E:3C 38 34 78 DFB $3C,$38,$34,$30,$2C,$28,$24,$20 
8071:30 2C 28 
8074:24 20 
8076:3C 38 34 79 DFB $3C,$38,$34,$30,$2C,$28,$24,$20 r 8079:30 2C 28 
807C:24 20 
807E:3F 3B 37 80 DFB $3F,$3B,$37,$33,$2F,$2B,$27,$23 
8081 33 2F 28 
8084 27 23 ... 
8086 3F 3B 37 81 DFB $3F,$3B,$37,$33,$2F,$2B,$27,$23 
8089 33 2F 2B 
808C 27 23 

r 
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... 
808E:3E 3A 36 82 DF8 $3E,$3A,$36,$32,$2E,$2A,$26,$22 
8091:32 2E 2A 
8094:26 22 - 8096:3E 3A 36 83 DF8 $3E,$3A,$36,$32,$2E,$2A,$26,$22 
8099:32 2E 2A 
809C:26 22 
809E:3D 39 35 84 DF8 $3D,$39,$35,$31,$2D,$29,$25,$21 
80A1:31 2D 29 

1-t 
80A4:25 21 
80A6:3D 39 35 85 DF8 $3D,$39,$35,$31 1 $2D,$29,$25,$21 
80A9: 31 2D 29 
80AC:25 21 
80AE:3C 38 34 86 DF8 $3C,$38,$34 1 $30,$2C,$28,$24,$20 
8081:30 2C 28 ,., 
8084:24 20 
8086:3C 38 34 87 DF8 $3C,$38,$34,$30,$2C,$28,$24,$20 
8089:30 2C 28 
80BC:24 20 
80BE:3F 3B 37 88 DFB $3F,$3B,$37,$33 1 $2F,$2B,$27,$23 .... 80C1:33 2F 28 
80C4:27 23 
80C6:3F 38 37 89 DF8 $3F,$3B,$37,$33,$2F,$28,$27,$23 
80C9:33 2F 2B 
80CC:27 23 - 80CE:3E 3A 36 90 DF8 $3E,$3A,$36,$32,$2E,$2A,$26,$22 
80D1:32 2E 2A 
80D4:26 22 
80D6:3E 3A 36 91 DF8 $3E,$3A,$36,$32,$2E,$2A,$26,$22 
80D9:32 2E 2A ., 80DC:26 22 
80DE:3D 39 35 92 DF8 $3D,$39,$35,$31,$2D,$29,$25,$21 
80E1: 31 2D 29 
80E4:25 21 
80E6:3D 39 35 93 DF8 $3D,$39,$35,$31,$2D,$29,$25,$21 .. 80E9:31 2D 29 
80EC:25 21 
80EE:3C 38 34 94 DFB $3C,$38,$34,$30,$2C,$28,$24,$20 
80F1:30 2C 28 
80F4:24 20 

~ 80F6:3C 38 34 95 DF8 $3C,$38,$34 1 $30,$2C,$28,$24,$20 
80F9:30 2C 28 
80FC:24 20 
80FE: 96 * 80FE: 97 * HIRES LINE ADDRESSES - LOW ,... 80FE: 98 * 80FE:DO DO DO 99 LOLINE DF8 $DO,$DO,$DO,$D0 1 $DO,$DO,$DO,$DO 
8101 DO DO DO 
8104 DO DO 
8106 50 50 50 100 DFB $50,$50,$50,$50,$50,$50,$50,$50 ,... 8109 50 50 50 
810C 50 50 
810E DO DO DO 101 DFB $DO,$DO,$DO,$DO,$DO,$DO,$DO,$DO 

,.. 
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8111: DO DO DO 
8114:DO DO 
S116:50 50 50 102 DFB $50,$50,$50,$50,$50,$50,$50,$50 
S119:50 50 50 
811C:50 50 
811E:DO DO DO 103 DFB $DO,$DO,$DO,$DO,$DO,$DO,$DO,$DO 
S121: DO DO DO 
S124:DO DO 
S126:50 50 50 104 DFB $50,$50,$50,$50,$50,$50,$50,$50 
S129:50 50 50 
S12C:50 50 
812E:DO DO DO 105 DFB $DO,$DO,$DO,$DO,$DO,$DO,$DO,$DO 
S131:DO DO DO 
S134:DO DO 
S136:50 50 50 106 DFB $50,$50,$50,$50,$50,$50,$50,$50 
S139:50 50 50 
S13C:50 50 
S13E :AS AS AS 107 DFB $AS,$AS,$AS,$A8,$AS,$AS,$AS,$AS 
S141:AS AS AS 
S144:AS AS 
8146:2S 2S 2S 108 DFB $2S,$2S,$2S,$2S,$2S,$2S,$2S,$2S 
S149:2S 28 28 
814C:28 28 
S14E:AS AS AS 109 DFB $A8,$AS,$AS,$A8,$AS,$AS,$AS,$AS 
S151:AS AS AS 
S154:AS AS 
S156:2S 2S 2S 110 DFB $2S,$2S,$2S,$2S,$2S,$2S,$2S,$2S 
S159:2S 2S 2S 
S15C:2S 2S 
S15E:AS AS AS 111 DFB $AS,$A8,$AS,$AS,$AS,$AS,$AS,$A8 
S161:AS AS AS 
S164:AS AS 
S166:2S 28 2S 112 DFB $2S,$2S,$2S,$2S,$2S,$2S,$2S,$2S 
8169:2S 2S 2S 
S16C:28 2S 
S16E:AS AS AS 113 DFB $AS,$A8,$AS,$AS,$AS,$A8,$A8,$A8 
S171:A8 AS AS 
S174:AS AS 
S176:2S 2S 2S 114 DFB $2S,$2S,$2S,$28,$2S,$2S,$2S,$2S 
S179:2S 2S 2S 
S17C:2S 2S 
S17E:80 80 so 115 DFB $SO,$SO,$SO,$SO,$SO,$S0,$80,$SO 
8181:SO so so 
8184 80 so 
S1S6 00 00 00 116 DFB $00,$00,$00,$00,$00,$00,$00,$00 
S1S9 00 00 00 
S1SC 00 00 
818E 80 so so 117 DFB $80,$80,$80,$80,$80,$S0,$80,$SO 
S191 so so so 
S194 so so 
S196 00 00 00 11S DFB $00,$00,$00,$00,$00,$00,$00,$00 
S199 00 00 00 

,.... 

~ 
I 

fill' 
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M! 

819C:OO 00 
819E:80 80 80 119 DFB $80,$80,$80,$80,$80,$80,$80,$80 
81A1:80 80 80 

5Mf 81A4:80 80 
81A6:00 00 00 120 DFB $00,$00,$00,$00,$00,$00,$00,$00 
81A9:00 00 00 
81AC:OO 00 
81AE:80 80 80 121 DFB $80,$80,$80,$80,$80,$80,$80,$80 ,.. 8181:80 80 80 
81B4: 80 80 
81B6:00 00 00 122 DFB $00,$00,$00,$00,$00,$00,$00,$00 
8189:00 00 00 
81BC:OO 00 

~ 
81BE: 123 * 81BE: 124 * DIVISION TABLE FOR 2 HOD 
81BE: 125 * 81BE:02 02 02 126 DIV7 DFB 2,2,2,2,2,2,2 
81C1:02 02 02 ,.., 81C4:02 
81C5:03 03 03 127 DFB 3,3,3,3,3,3,3 
81C8:03 03 03 
81CB:03 
81CC:04 04 04 128 OFB 4,4,4,4,4,4,4 

~ 
81CF:04 04 04 
8102:04 
8103:05 05 05 129 DFB 5,5,5,5,5,5,5 
8106:05 05 05 
8109:05 
81DA:06 06 06 130 DFB 6,6,6,6,6,6,6 - 81DD:06 06 06 
81E0:06 
81E1:07 07 07 131 DFB 7,7,7,7,7,7,7 
81!4:07 07 07 
81!7:07 

~ 81E8:08 08 08 132 OFB 8,8,8,8,8,8,8 
81EB:08 08 08 
81EE:08 
81EF:09 09 09 133 OFB 9,9,9,9,9,9,9 
81F2:09 09 09 

~ 81F5:09 
81F6:0A OA OA 134 DFB 10,10,10,10,10,10,10 
81F9:0A OA OA 
81FC:OA 
81FD:OB OB OB 135 OFB 11,11,11,11,11,11,11 ... 8200:08 OB OB 
8203:08 
8204:0C oc oc 136 OFB 12,12,12,12,12,12,12 
8207:0C oc oc 
820A:OC - 8208:00 OD OD 137 DFB 13,13,13,13,13,13,13 
820E:OD OD OD 
8211: OD 

-
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8212:0E OE OE 138 DF8 14,14,14,14,14,14,14 
8215: OE OE OE 
8218 :OE 
8219:0F OF OF 139 DF8 15,15,15,15,15,15,15 ,.. 
821C: OF OF OF 
821F :OF 
8220:10 10 10 140 DFB 16,16,16,16,16,16,16 
8223:10 10 10 
8226:10 .. 
8227:11 11 11 141 DFB 17,17,17,17,17,17,17 
822A:11 11 11 
8220:11 
822E:12 12 12 142 DFB 18,18,18,18,18,18,18 
8231:12 12 12 r-1 
8234:12 I 
8235:13 13 13 143 DFB 19,19,19,19,19,19,19 
8238:13 13 13 
8238:13 
823C:14 14 14 144 DFB 20,20,20,20,20,20,20 ~ 
8231h 14 14 14 
8242:14 
8243:15 15 15 145 DFB 21,21,21,21,21,21,21 
8246:15 15 15 
8249:15 ~ 824A:16 16 16 146 DFB 22,22,22,22,22,22,22 
824D:16 16 16 
8250:16 
8251:17 17 17 147 DFB 23,23,23,23,23,23,23 
8254:17 17 17 ,r-t 8257:17 
8258:18 18 18 148 DFB 24,24,24,24,24,24,24 
8258:18 18 18 
825E:18 
825F:19 19 19 149 DFB 25,25,25,25,25,25,25 ,... 
8262:19 19 19 I 

8265:19 
8266:1A 1A 1A 150 DFB 26,26,26,26,26,26,26 
8269:1A 1A 1A 
826C: 1A ... 8260:18 1B 18 151 DF8 27,27,27,27,27,27,27 
8270:18 18 18 
8273:18 
8274:1C 1C 1C 152 DFB 28,28,28,28,28,28,28 
8277:1C 1C 1C 
827A:1C 
827B:1D 1D 10 153 DFB 29,29,29,29,29,29,29 
827E:1D 10 10 
8281:10 
8282:1E 1E 1E 154 OF8 30,30,30,30,30,30,30 r 8285:1E 1E 1E 
8288:1E 
8289:1F 1F 1F 155 DF8 31,31,31,31,31,31,31 

.... 
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828C:1F 1F 1F 
828F:1F 
8290:20 20 20 156 OFB 32,32,32,32,32,32,32 - 8293:20 20 20 
8296:20 
8297:21 21 21 157 OFB 33,33,33,33,33,33,33 
829A:21 21 21 
8290:21 ,.. 
829E:22 22 22 158 OFB 34,34,34,34,34,34,34 
82A1:22 22 22 
82A4:22 
82A5:23 23 23 159 OFB 35,35,35,35,35,35,35 
82A8:23 23 23 

filii 82A8:23 
82AC:24 24 24 160 OF8 36,36,36,36,36,36,36 
82A'h 24 24 24 
8282:24 
8283:25 25 25 161 OFB 37,37,37,37,37,37,37 ,... 8286:25 25 25 
8289:25 
82BA:26 26 26 162 DFB 38,38,38,38,38,38,38 
8280:26 26 26 
82C0:26 

IIIII 82C1: 163 * 82C1: 164 * BIT MASKS FOR B/W PIXELS 
82C1: 165 * 82C1:01 02 04 166 BWPIX OFB 1,2,4,8,16,32,64 
82C4:08 10 20 ... 82C7:40 
82C8:01 02 04 167 OFB 1,2,4,8,16,32,64 
82CB:08 10 20 
82CE:40 
82CF:01 02 04 168 OFB 1,2,4,8,16,32,64 .... 8202:08 10 20 
8205:40 
8206:01 02 04 169 DFB 1,2,4,8,16,32,64 
8209:08 10 20 
820C:40 - 8200:01 02 04 170 OFB 1,2,4,8,16,32,64 
82E0:08 10 20 
82E3:40 
82E4:01 02 04 171 OFB 1,2,4,8,16,32,64 
82E7:08 10 20 .... 82EA:40 
82EB:01 02 04 172 DFB 1,2,4,8,16,32,64 
82EE:08 10 20 
82F1:40 
82F2:01 02 04 173 OFB 1,2,4,8,16,32,64 ... 82F5 08 10 20 
82F8 40 
82F9 01 02 04 174 OFB 1,2,4,8,16,32,64 
82FC 08 10 20 

... 

-
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82FF:40 
8300:01 02 04 175 DFB 1,2,4,8,16,32,64 
8303:08 10 20 
8306:40 
8307:01 02 04 176 OFB 1,2,4,8,16,32,64 
830A:08 10 20 
8300:40 
830E:01 02 04 177 OFB 1,2,4,8,16,32,64 
8311:08 10 20 
8314:40 
8315:01 02 04 178 OFB 1,2,4,8,16,32,64 
8318:08 10 20 
8318:40 
831C:01 02 04 179 OFB 1,2,4,8,16,32,64 
831F:08 10 20 
8322:40 
8323:01 02 04 180 OFB 1,2,4,8,16,32,64 
8326:08 10 20 
8329:40 
832A:01 02 04 181 OFB 1,2,4,8,16,32,64 
8320:08 10 20 
8330:40 
8331:01 02 04 182 OFB 1,2,4,8,16,32,64 
8334:08 10 20 
8337:40 
8338:01 02 04 183 OF8 1,2,4,8,16,32,64 
8338:08 10 20 
833E:40 
833F:01 02 04 184 DFB 1,2,4,8,16,32,64 
8342:08 10 20 
8345:40 
8346:01 02 04 185 OF8 1,2,4,8,16,32,64 
8349:08 10 20 
834C:40 
8340:01 02 04 186 DFB 1,2,4,8,16,32,64 
8350:08 10 20 
8353:40 
8354:01 02 04 187 OF8 1,2,4,8,16,32,64 
8357:08 10 20 
835A:40 
8358:01 02 04 188 OFB 1,2,4,8,16,32,64 
835E:08 10 20 
8361:40 
8362:01 02 04 189 OFB 1,2,4,8,16,32,64 
8365:08 10 20 
8368:40 
8369:01 02 04 190 OF8 1,2,4,8,16,32,64 
836C:08 10 20 
836F:40 
8370:01 02 04 191 OFB 1,2,4,8,16,32,64 
8373:08 10 20 
8376:40 
8377:01 02 04 192 OF8 1,2,4,8,16,32,64 

~ 
.I 

,... 

~ 

~ 
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- 837A : 08 10 20 
8370:40 
837E: 01 02 04 193 DFB 1,2,4,8,16,32,64 
8381:08 10 20 
8384 : 40 
8385:01 02 04 194 DFB 1,2,4,8,16,32,64 
8388:08 10 20 
838B:40 
838C:01 02 04 1 95 DFB 1. 2. 4. 8. 16.3 2. 64 
838F:08 10 20 - 8392:40 
8393:01 02 04 196 DFB 1. 2. 4. 8 ,16. 3 2. 64 
8396:08 10 20 
8399:40 
839A:01 02 04 197 DFB 1. 2. 4. 8. 16 . 3 2 . 64 - 8390 :08 
83A0 :40 

10 20 

83A1:01 02 04 198 DFB 1 ,2 ,4, 8 , 16,32,64 
83A4:08 10 20 
83A7 :40 

~ 
83A8:01 02 04 199 DFB 1,2,4,8,16,32,64 
83AB:08 10 20 
83AE : 40 
83AF :01 02 04 200 DFB 1,2,4,8,16,32,64 
83B2:08 10 20 
83B5:40 r 83B6 :01 02 04 201 DFB 1,2,4,8,16,32,64 
83B9 :08 10 20 
83BC :40 
83BD:01 02 04 202 DFB 1,2, 4,8,16 ,32 ,64 
83C0 :0 8 10 20 - 83C3 : 40 
83C4:00 203 BRK 

*** SUCCESSFUL ASSEMBLY: NO ERRORS 

r"'1 
locations on the screen at the time they are defined. Shapes, on the 
other hand, are defined and kept in fi les to be loaded and drawn on 

~ 
the screen wherever the drawing program commands. Shapes don't 
have positions. 

In order to use a shape table, you must know the number of shapes 
in the table. Also you need to know the largest size - in X and in Y -- it contains, and the start position of each shape. For example, a char-
acter set may have 64 shapes, be 5 by 7 each in size, with the start of 
each shape at the lower left of the 5 by 7 area. With this information, 

""" 
you can draw shapes on the screen without the danger of any shape 
spreading itself off-screen and wrapping around the screen. If a shape 
table is unknown to you but you want to use it , then get the number of 
shapes by: - NS = PEEK(FN AD(232)) 

-
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SOURCE 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0030: 
0031: 
0045: 
0046: 
0047: 
0050: 
0000: 

FILE: EXAMPLE 6.3 
1 ******************************** 
2 * EXAMPLE 6.3 * 
3 * * 
4 * M I D R E S P I X E L S * 
5 * * 
6 * CALL SEQUENCE: * 
7 * A-REG<--- COLOR 0 ••• 15 * 
8 * X-REG <--- X-COORD * 
9 * Y-REG <--- Y-COORD * 

10 * ORIGIN IS LOWER LEFT * 
11 ******************************** 
12 * 
13 * 
14 * 
15 * 

E Q U A T E S 

16 PMASK 
17 COLMX 
18 AREG 
19 XREG 
20 YREG 
21 SCREEN 
22 * 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

$30 
$31 
$45 
$46 
$47 
$50 

POSITION MASK 
COLOR MASK INDEX 
PASSED PIXEL VALUE 
PASSED X-COORD. 
PASSED Y-COORD. 
POINTER TO HIRESl 

NEXT OBJECT FILE NAME IS EXAMPLE 6.3.0BJO 
8000: 
8000: 
8000: 
8000: 
8000:08 
8001:85 45 
8003:86 46 
8005:84 47 
8007:CO CO 
8009:BO 6A 
800B: 
BOOB: 
8008: 
8008:98 
800C:09 01 
800E:A8 
800F:B9 
8012:85 
8014:89 
8017:85 
8019:8A 
801A:29 FE 
801C:AA 
801D:BD 
8020:A8 
8021: BD 
8024:85 

51 81 
50 
91 80 
51 

11 82 

14 83 
30 

23 ORG $8000 
24 * 
25 * 
26 * 
27 MPIX 
28 
29 
30 
31 
32 
33 * 

R 0 U T I N E S 

PHP 
STA 
STX 
STY 
CPY 
BCS 

AREG 
XREG 
YREG 
#$CO 
MPIX1 

KEEP REGISTERS 

CLIP Y-COORD. 

34 * PLOT IN UPPER LEFT BYTE. 
35 * 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

TYA 
ORA 
TAY 
LDA 
STA 
LDA 
STA 
TXA 
AND 
TAX 
LDA 
TAY 
LDA 
STA 

#1 

LOLINE,Y 
SCREEN 
HILINE,Y 
SCREEN+l 

#$FE 

DIV7,X 

LEFT,X 
PMASK 

FORCE UPPER LINE. 

FORCE LEFTMOST BYTE. 

r-' 
I 

~ 
I I 
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- 8026:A5 45 50 LDA AREG 
8028:0A 51 ASL A 
8029:0A 52 ASL A LOOKUP PIXEL IN COLOR 

,... TABLE 
802A:85 31 53 STA COLMX 
802C:20 7D 80 54 JSR CPLOT PLOTS UPPER LEFT. 
802F: 55 * 802F: 56 * PLOT IN UPPER RIGHT BYTE. ... 802'~: 57 * 
802F:E6 31 58 INC COLMX NEXT COLOR MASK 
8031:A5 46 59 LDA XREG 
8033:09 01 60 ORA #1 FORCE RIGHTMOST BYTE. 

~ 8035:AA 61 TAX 
8036:BD 11 82 62 LDA DIV7,X 
8039:A8 63 TAY 
803A:BD 14 84 64 LDA RIGHT,X 
803D:85 30 65 STA PMASK .... 803F: 20 7D 80 66 JSR CPLOT PLOTS UPPER RIGHT. 
8042: 67 * 
8042: 68 * PLOT IN LOVER LEFT BYTE. 
8042: 69 * 
8042:E6 31 70 INC COLHX NEXT COLOR MASK - 8044:A5 47 71 LDA YREG 
8046:29 FE 72 AND #$FE FORCE LOVER LINE. 
8048:A8 73 TAY 
8049:89 51 81 74 LDA LOLINE,Y 
804C:85 50 75 STA SCREEN ... 804E:B9 91 80 76 LDA HILINE,Y 
8051:85 51 77 STA SCREEN+1 
8053:A5 46 78 LDA XREG 
8055:29 FE 79 AND #$FE FORCE LEFTMOST BYTE. 
8057:AA 80 TAX ,... 8058:BD 11 82 81 LDA DIV7,X 
805B:A8 82 TAY 
805C:BD 14 83 83 LDA LEFT,X 
805F:85 30 84 STA PHASK 
8061:20 7D 80 85 JSR CPLOT 

~ 8064: 86 * 8064: 87 * PLOT IN LOVER RIGHT BYTE 
8064: 88 * 
8064:A5 46 89 LDA XREG 
8066:09 01 90 ORA #$01 FORCE RIGHTMOST BYTE ... 8068:AA 91 TAX 
8069 BD 11 82 92 LDA DIV7,X 
806C AS 93 TAY 
806D BD 14 84 94 LDA RIGHT,X 
8070 85 30 95 STA PKASK 

-- 8072 20 7D 80 96 JSR CPLOT 
8075 97 * 

-
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8075: 98 * ALL FOUR DONE. RETURN. 
8075: 99 * 
8075:A6 46 100 MPIXl LDX XREG 
8077:A4 47 101 LDY YREG 
8079:A5 45 102 LDA AREG 
8078:28 103 PLP 
807C:60 104 RTS 
807D: 105 * 
807D: 106 * COLOR PLOT OF ONE BYTE. 
807D: 107 * 
807D:A6 31 108 CPLOT LDX COLMX 
807F:A5 30 109 LDA PM ASK 
8081:49 FF 110 EOR '#$FF COMPLIMENT P 
8083:31 50 111 AND (SCREEN), Y 
8085:91 50 112 STA (SCREEN), Y TEMPORARILY 
8087:A5 30 113 LDA PMASK 
8089:3D 14 85 114 AND COLOR,X 
808C:11 50 115 ORA (SCREEN), Y 
808E:91 50 116 STA (SCREEN),Y 
8090:60 117 RTS 
8091: 118 * 
8091: 119 * 
8091: 120 * 
8091: 121* L I T E R A L S 
8091: 122 * 
8091: 123 * 
8091: 124 * HIRES! LINE ADDRESSES - HIGH 
8091: 125 * 
8091:3F 3B 37 126 HILINE DFB $3F,$3B,$37,$33,$2F,$2B,$27,$23 
8094:33 2F 28 
8097:27 23 
8099:3F 3B 37 127 DFB $3F,$38,$37,$33,$2F,$28,$27,$23 
809C:33 2F 28 
809F:27 23 
80A1:3E 3A 36 128 DF8 $3E,$3A,$36,$32,$2E,$2A,$26,$22 
80A4:32 2E 2A 
80A7:26 22 
80A9:3E 3A 36 129 DF8 $3E,$3A,$36,$32,$2E,$2A,$26,$22 
80AC:32 2E 2A 
80AF:26 22 
8081:3D 39 35 130 DF8 $3D,$39,$35,$31,$2D,$29,$25,$21 

8084 31 2D 29 
8087 25 21 
8089 3D 39 35 131 DF8 $3D,$39,$35,$31,$2D,$29,$25,$21 
808C 31 2D 29 
808F 25 21 
80C1 3C 38 34 132 DF8 $3C,$38,$34,$30,$2C,$28,$24,$20 
80C4 30 2C 28 
80C7 24 20 
80C9 3C 38 34 133 DFB $3C,$38,$34,$30,$2C,$28,$24,$20 

~ 

fllllll 
I 

~ 

r-t 

~ 

1-t 

i' 

""' 
.. 
~ 

r 

~ 

..., 

~ . 
I 
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!.a 

80CC:30 2C 28 
80CF:24 20 
80D1:3F 3B 37 134 DFB $3F,$3B,$37,$33,$2F,$2B,$27,$23 .. 80D4:33 2F ?B 
80D7:27 23 
80D9:3F 3B 37 135 DFB $3F,$3B,$37,$33,$2F,$2B,$27,$23 
80DC:33 2F 2B 
80DF:27 23 .... 80E1:3E 3A. 36 136 DFB $3E,$3A,$36,$32,$2E,$2A,$26,$22 
80E4:32 2E 2A 
80E7:26 22 
80E9:3E 3A 36 137 DFB $3E,$3A,$36,$32,$2E,$2A,$26,$22 
80EC:32 2E 2A 

~ 80EF:26 22 
80F1:3D 39 35 138 DFB $3D,$39,$35,$31,$2D,$29,$25,$21 
80F4:31 2D 29 
80F7:25 21 
80F9:3D 39 35 139 DFB $3D,$39,$35,$31,$2D,$29,$25,$21 .... 80FC:31 2D 29 
80FF:25 21 
8101:3C 38 34 140 DFB $3C,$38,$34,$30,$2C,$28,$24,$20 
8104:30 2C 28 
8107:24 20 

~ 
8109:3C 38 34 141 DFB $3C,$38,$34,$30,$2C,$28,$24,$20 
810C:30 2C 28 
810F:24 20 
8111: 3F 3B 37 142 DFB $3F,$3B,$37,$33,$2F,$2B,$27,$23 
8114:33 2F 2B 

~ 
8117:27 23 
8119:3F 38 37 143 DFB $3F,$3B,$37,$33,$2F,$2B,$27,$23 
811C:33 2F 2B 
811F:27 23 
8121:3E 3A 36 144 DFB $3E,$3A,$36,$32,$2E,$2A,$26,$22 
8124:32 2E 2A 

~ 8127:26 22 
8129:3E 3A 36 145 DFB $3E,$3A,$36,$32,$2E,$2A,$26,$22 
812C:32 2E 2A 
812F:26 22 
8131:3D 39 35 146 DFB $3D,$39,$35,$31,$2D,$29,$25,$21 ,... 
8134:31 2D 29 
8137:25 21 
8139:3D 39 35 147 DFB $3D,$39,$35,$31,$2D,$29,$25,$21 
813C:31 2D 29 
813F:25 21 

~ 8141:3C 38 34 148 DFB $3C,$38,$34,$30,$2C,$28,$24,$20 
8144 30 2C 28 
8147 24 20 
8149 3C 38 34 149 DFB $3C,$38,$34,$30,$2C,$28,$24,$20 .. 814C 30 2C 28 
814F 24 20 
8151 150 * 
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8151: 151 * HIRES LINE ADDRESSES - LOW 
8151: 152 * 8151:DO DO DO 153 LOLINE DFB $DO,$DO,$DO,$DO,$DO,$DO,$DO,$DO 
8154:DO DO DO 

~ 8157:DO DO 
8159:50 50 50 154 DFB $50,$50,$50,$50,$50,$50,$50,$50 i ' 
815C:50 50 50 
815F:50 50 
8161:DO DO DO 155 DFB $DO,$DO,$DO,$DO,$DO,$DO,$DO,$DO 

~ 8164:DO DO DO 
8167:DO DO 
8169:50 50 50 156 DFB $50,$50,$50,$50,$50,$50,$50,$50 
816C:50 50 50 
816F:50 50 

~ 8171:DO DO DO 157 DFB $DO,$DO,$DO,$DO,$DO,$DO,$DO,$DO 
8174:DO DO DO l 
8177:DO DO I 

8179:50 50 50 158 DFB $50,$50,$50,$50,$50,$50,$50,$50 
817C:50 50 50 
S17F:50 50 ~ 
8181:DO DO DO 159 DFB $DO,$DO,$DO,$DO,$DO,$DO,$DO,$DO 

I 

S1S4:DO DO DO 
8187:DO DO 
8189:50 so 50 160 DFB $50,$50,$50,$50,$50,$50,$50,$50 
818C:50 50 50 ,., 
818F:50 50 
8191:A8 A8 A8 161 DFB $A8,$AS,$AS,$AS,$A8,$A8,$A8,$A8 
8194:A8 A8 A8 
8197:A8 A8 
8199:28 28 28 162 DFB $28,$28,$2S,$2S,$28,$2S,$2S,$28 ,.. 
819C:28 28 28 I 

819F:28 28 
81A1:A8 A8 AS 163 DFB $A8,$AS,$AS,$AS,$AS,$AS,$A8,$AS 
81A4:A8 A8 A8 
81A7:A8 A8 IIIII 
81A9:28 28 28 164 DFB $28,$28,$28,$28,$28,$28,$28,$28 
81AC:28 28 28 
S1AF:28 28 
81B1:A8 A8 A8 165 DFB $A8,$A8,$A8,$AS,$A8,$A8,$A8,$A8 
8184:A8 A8 A8 ~ 
81B7:A8 AS 
8189:28 28 28 166 DFB $28,$28,$28,$28,$28,$28,$28,$28 
81BC: 28 28 28 
81BF:28 28 
81C1:A8 A8 A8 167 DFB $AS,$A8,$A8,$A8,$A8,$A8,$A8,$A8 ,... 
81C4:A8 A8 AS 
81C7:A8 A8 
81C9 28 28 28 168 DFB $28,$28,$28,$28,$28,$28,$28,$28 
81CC 28 28 28 
81CF 28 28 ... 
81D1 80 80 80 169 DFB $80,$80,$80,$80,$80,$80,$80,$80 

~ 



IIIII Text and Graphics 375 

Example 6-3 Cont. 

~ 

81D4:80 80 80 
81D7:80 80 
81D9:00 00 00 170 DFB $00,$00,$00,$00,$00,$00,$00,$00 .. 81DC:OO 00 00 
81DF:OO 00 
81E1:80 80 80 171 DFB $80,$80,$80,$80,$80,$80,$80,$80 
81E4:80 80 80 
81E7:80 80 

,..q 81E9:00 00 00 172 DFB $00,$00,$00,$00,$00,$00,$00,$00 
81EC:OO 00 00 
81EF:OO 00 
81F1:80 80 80 173 DFB $80,$80,$80,$80,$80,$80,$80,$80 
81F4:80 80 80 - 81F7:80 80 
81F9:00 00 00 174 DFB $00,$00,$00,$00,$00,$00,$00,$00 
81FC:OO 00 00 
81FF:OO 00 
8201:80 80 80 175 DFB $80,$80,$80,$80,$80,$80,$80,$80 .. 8204:80 80 80 
8207:80 80 
8209:00 00 00 176 DFB $00,$00,$00,$00,$00,$00,$00,$00 
820C:OO 00 00 
820F:OO 00 

~ 
8211: 177 * 
8211: 178 * DIVISION TABLE FOR 2 MOD 
8211: 179 * 8211:02 02 02 180 DIV7 DFB 2,2,2,2,2,2,2 
8214:02 02 02 ,.. 8217:02 
8218:03 03 03 181 DFB 3,3,3,3,3,3,3 
8218:03 03 03 
821E: 03 
821F:04 04 04 182 DFB 4,4,4,4,4,4,4 

.... 8222:04 04 04 
8225:04 
8226:05 05 05 183 DFB 5,5,5,5,5,5,5 
8229:05 05 05 
822C:05 
8220:06 06 06 184 DFB 6,6,6,6,6,6,6 ... 8230:06 06 06 
8233:06 
8234:07 07 07 185 DFB 7,7,7,7,7,7,7 
8237:07 07 07 
823A:07 .... 8238:08 08 08 186 DFB 8,8,8,8,8,8,8 
823E:08 08 08 
8241:08 
8242:09 09 09 187 DFB 9,9,9,9,9,9,9 
8245 09 09 09 ... 8248 09 
8249 OA OA OA 188 DFB 10,10,10,10,10,10,10 

-
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824C:OA OA OA 
824F:OA 
8250:08 08 OB 189 OF8 11,11,11,11,11,11,11 
8253:08 08 OB ,._ 
8256:08 
8257:0C oc oc 190 OFB 12,12,12,12,12,12,12 
825A:OC oc oc 
825D:OC 
825E:OD OD 00 191 OF8 13,13,13,13,13,13,13 ,... 
8261:00 OD OD 
8264:0D 

: 8265:0E OE OE 192 OF8 14,14,14,14,14,14,14 
8268:0E OE OE 
8268:0E 
826C:OF OF OF 193 OF8 15,15,15,15,15,15,15 ~ 
826F:OF OF OF' i 

8272:0F 
8273:10 10 10 194 OF8 16,16,16,16,16,16,16 
8276:10 10 10 
8279:10 ~ 

827A:11 11 11 195 OF8 17,17,17,17,17,17,17 
827D:11 11 11 
8280:11 
8281:12 12 12 196 DF8 18,18,18,18,18,18,18 
8284:12 12 12 ,.., 
8287:12 
8288:13 13 13 197 OF8 19,19,19,19,19,19,19 
8288:13 13 13 
828E:13 
828P:14 14 14 198 OFB 20,20,20,20,20,20,20 ~ 
8292:14 14 14 
8295:14 
8296:15 15 15 199 OF8 21,21,21,21,21,21,21 
8299:15 15 15 
829C:15 ~ 

8290:16 16 16 200 DF8 22,22,22,22,22,22,22 
82A0:16 16 16 
82A3:16 
82A4:17 17 17 201 OF8 23,23,23,23,23,23,23 
82A7:17 17 17 ...,. 
82AA:17 
82A8:18 18 18 202 OF8 24,24,24,24,24,24,24 
82AE:18 18 18 
8281:18 
8282:19 19 19 203 OF8 25,25,25,25,25,25,25 r-" 
8285:19 19 19 
8288:19 
8289: 1A 1A 1A 204 OP8 26,26,26,26,26,26,26 
828C:1A lA 1A 
828F: 1A 
82C0:18 18 18 205 DF8 27,27,27,27,27,27,27 

tlllll 

r 
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.., 
82C3:18 18 18 
82C6:1B 
82C7:1C 1C 1C 206 OFB 28,28,28,28,28,28,28 
82CA:1C 1C 1C 

jllllt 82C0:1C 
82CE:10 10 10 207 OFB 29,29,29,29,29,29,29 
8201:10 10 10 
8204:10 
8205:1E 1E 1E 208 OFB 30,30,30,30,30,30,30 

IJIIIII 8208:1E 1E 1E 
8208:1E 
820C:1F 1F 1F 209 OFB 31,31,31,31,31,31,31 
820F:1F 1F 1F 
82E2:1F 

~ 82E3:20 20 20 210 OFB 32,32,32,32,32,32,32 
82E6:20 20 20 
82E9:20 
82EA:21 21 21 211 OFB 33,33,33,33,33,33,33 
82E0:21 21 21 

~ 82F0:21 
82F1:22 22 22 212 OFB 34,34,34,34,34,34,34 
82F4:22 22 22 
82F7:22 
82F8:23 23 23 213 OFB 35,35,35,35,35,35,35 

!IIIII 82FB:23 23 23 
82FE:23 
82FF:24 24 24 214 OFB 36,36,36,36,36,36,36 
8302:24 24 24 
8305:24 

~ 8306:25 25 25 215 OFB 37,37,37,37,37,37,37 
8309:25 25 25 
830C:25 
8300:26 26 26 216 OFB 38,38,38,38,38,38,38 
8310:26 26 26 ,_, 8313:26 
8314: 217 * 
8314: 218 * POSITION HASKS FOR HIORES BITS 
8314: 219 * 8314:83 83 8C 220 LEFT OFB $83,$83,$8C,$8C,$BO,$BO,$CO 

~ 8317:8C 80 80 
831A:CO 
8318:CO 80 80 221 OFB $C0,$80,$80,$80,$80,$80,$80 
831E:80 80 80 
8321:80 

llillll 8322:83 83 8C 222 OFB $83,$83,$8C,$8C,$BO,$BO,$CO 
8325:8C BO 80 
8328:CO 
8329:CO 80 80 223 OFB $C0,$80,$80,$80,$80,$80,$80 
832C:80 80 80 

lllllt 832F:80 
8330:83 83 8C 224 OFB $83,$83,$8C,$8C,$BO,$BO,$CO 

-



378 Apple® Programmer's Handbook .... 
Example 6-3 Cont. 

.... 
8333:8C BO BO 
8336:CO 
8337:CO 80 80 225 DFB $C0,$80,$80,$80,$80,$80,$80 
833A:80 80 80 ,.. 
833D:80 
833E:83 83 8C 226 DFB $83,$83,$8C,$8C,$BO,$BO,$CO 
8341:8C BO BO 
8344:CO 
8345:CO 80 80 227 DFB $C0,$80,$80,$80,$80,$80,$80 
8348:80 80 80 
8348:80 
834C:83 83 8C 228 DFB $83,$83,$8C,$8C,$BO,$BO,$CO 
834F:8C BO BO 
8352:CO ~ 
8353:CO 80 80 229 DFB $C0,$80,$80,$80,$80,$80,$80 I 

8356:80 80 80 
8359:80 
835A:83 83 8C 230 DFB $83,$83,$8C,$8C,$BO,$BO,$CO 
835D:8C BO BO 
8360:CO 
8361:CO 80 80 231 DFB $C0,$80,$80,$80,$80,$80,$80 
8364:80 80 80 
8367:80 
8368:83 83 8C 232 DFB $83,$83,$8C,$8C,$BO,$BO,$CO 
836B:8C 80 BO 
836E:CO 
836F:CO 80 80 233 DFB $C0,$80,$80,$80,$80,$80,$80 
8372:80 80 80 
8375:80 ,... 
8376:83 83 8C 234 DFB $83,$83,$8C,$8C,$BO,$BO,$CO 
8379:8C BO BO 
837C:CO 
837D:CO 80 80 235 DFB $C0,$80,$80,$80,$80,$80,$80 
8380:80 80 80 .. 
8383:80 
8384:83 83 8C 236 DFB $83,$83,$8C,$8C,$BO,$BO,$CO 
8387 8C BO BO 
838A CO 
8388 co 80 80 237 DFB $C0,$80,$80,$80,$80,$80,$80 
838E 80 80 80 
8391 80 
8392 83 83 8C 238 DFB $83,$83,$8C,$8C,$BO,$BO,$CO 
8395 8c BO BO 
8398 co 
8399 co 80 80 239 DFB $C0,$80,$80,$80,$80,$80,$80 
839C 80 80 80 
839F 80 
83AO 83 83 8C 240 DFB $83,$83,$8C,$8C,$BO,$BO,$CO 
83A3 BC BO BO 

~ 83A6 CO 

,-. 
I I 

r" 
I 
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83A7:CO 80 80 241 DFB $C0,$80,$80,$80,$80,$80,$80 
83AA:80 80 80 
83AD:80 

~ 83AE:83 83 8C 242 DFB $83,$83,$8C,$8C,$80,$80,$CO 
8381:8C 80 80 
83B4:CO 
8385:CO 80 80 243 DFB $C0,$80,$80,$80,$80,$80,$80 
8388:80 80 80 .., 8388:80 
83BC:83 83 sc 244 DF8 $83,$83,$8C,$8C,$BO,$BO,$CO 
83BF:8C BO 80 
83C2:CO 
83C3:CO so· 80 245 DFB $C0,$80,$80,$80,$80,$80,$80 

IIIII 83C6:80 80 80 
83C9:80 
83CA:83 83 8C 246 DF8 $83,$83,$8C,$8C,$80,$BO,$CO 
83CD:8C BO BO 
83DO:CO 

~ 83Dl:CO 80 80 247 DFB $C0,$80,$80,$80,$80,$80,$80 
83D4:80 80 80 
83D7:80 
83D8:83 83 8C 248 DFB $83,$83,$8C,$8C,$BO,$BO,$CO 
83D8:8C BO 80 - 83DE:CO 
83DF:CO 80 80 249 DFB $C0,$80,$80,$80,$80,$80,$80 
83!2:80 80 80 
83!5:80 
83!6:83 83 8C 250 DFB $83,$83,$8C,$8C,$BO,$BO,$CO 

~ 
83E9:8C 
83EC:CO 

BO BO 

83ED:CO 80 80 251 DF8 $C0,$80,$80~$80,$80,$80,$80 
83F0:80 80 80 
83F3:80 

,_. 83F4:83 83 8C 252 DFB $83,$83,$8C,$8C,$80,$BO,$CO 
83F7:8C BO BO 
83FA:CO 
83F8:CO 80 80 253 DFB $C0,$80,$80,$80,$80,$80,$80 
83FE:80 80 80 

~ 
8401:80 
8402:83 83 8C 254 DF8 $83,$83,$8C,$8C,$B0,$80,$CO 
8405:8C 80 80 
8408:CO 
8409:CO 80 80 255 DF8 $C0,$80,$80,$80,$80,$80,$80 

,._ 840C:80 80 80 
840F:80 
8410:83 83 8C 256 DFB $83,$83,$8C,$8C 
8413:8C 
8414: 257 * 8414:80 80 80 258 RIGHT DFB $80,$80,$80,$80,$80,$80,$81 

~ 8417:80 80 80 

-
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841A:81 
8418:81 86 86 259 DFB $81,$86,$86,$98,$98,$EO,$EO 
841E:98 98 EO 
8421:EO 
8422:80 80 80 260 DFB $80,$80,$80,$80,$80,$80,$81 
8425:80 80 80 
8428:81 
8429:81 86 86 261 DFB $81,$86,$86,$98,$98,$EO,$EO 
842C:98 98 EO 
842F:EO 
8430:80 80 80 262 DFB $80,$80,$80,$80,$80,$80,$81 
8433:80 80 80 
8436:81 
8437:81 86 86 263 DFB $81,$86,$86,$98,$98,$EO,$EO 
843A:98 98 EO 
843D:EO 
843E:80 80 80 264 DFB $80,$80,$80,$80,$80,$80,$81 
8441:80 80 80 
8444:81 
8445:81 86 86 265 DFB $81,$86,$86,$98,$98,$EO,$EO 
8448:98 98 EO 
844B:EO 
844C:80 80 80 266 DFB $80,$80,$80,$80,$80,$80,$81 
844F:80 80 80 
8452:81 
8453:81 86 86 267 DFB $81,$86,$86,$98,$98,$EO,$EO 
8456:98 98 EO 
8459:£0 
845A:80 80 80 268 DFB $80,$80,$80,$80,$80,$80,$81 
845D:80 80 80 
8460:81 
8461:81 86 86 269 DFB $81,$86,$86,$98,$98,$EO,$EO 
8464:98 98 EO 
8467:£0 
8468:80 80 80 270 DFB $80,$80,$80,$80,$80,$80,$81 
846B:80 80 80 
846E:81 
846F:81 86 86 271 DFB $81,$86,$86,$98,$98,$EO,$EO 
8472:98 98 EO 
8475:EO 
8476:80 80 80 272 DFB $80,$80,$80,$80,$80,$80,$81 
8479:80 80 80 
847C:81 
847D:81 86 86 273 DFB $81,$86,$86,$98,$98,$EO,$EO 
8480:98 98 EO 
8483:EO 
8484:80 80 80 274 DFB $80,$80,$80,$80,$80,$80,$81 
8487:80 80 80 
848A:81 
8488:81 86 86 275 DFB $81,$86,$86,$98,$98,$EO,$EO 
848E:98 98 EO 
8491:!0 

~ 

,.._ 

~ 

,... 

,..,. 
1 
I 

..., 

r" 

.... 

.... 
I 
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8492:80 80 80 276 DFB $80,$80,$80,$80,$80,$80,$81 
8495:80 80 80 
8498:81 

~ 8499:81 86 86 277 DFB $81,$86,$86,$98,$98,$EO,$EO 
849C:98 98 EO 
849F:EO 
84A0:80 80 80 278 DFB $80,$80,$80,$80,$80,$80,$81 
84A3:80 80 80 

~ 84A6:81 
84A7:81 86 86 279 DF8 $81,$86,$86,$98,$98,$EO,$EO 
84AA:98 98 EO 
84AD:EO 
84AE:80 80 80 280 DF8 $80,$80,$80,$80,$80,$80,$81 .... 8481:80 80 80 
8484:81 
8485:81 86 86 281 DFB $81,$86,$86,$98,$98,$EO,$EO 
8488:98 98 EO 
84BB:EO 

~ 
84BC:80 80 80 282 DFB $80,$80,$80,$80,$80,$80,$81 
848F:80 80 80 
84C2:81 
84C3:81 86 86 283 DF8 $81,$86,$86,$98,$98,$EO,$EO 
84C6:98 98 EO 

~ 
84C9:EO 
84CA:80 80 80 284 DFB $80,$80,$80,$80,$80,$80,$81 
84CD:80 80 80 
84D0:81 
84D1:81 86 86 285 DFB $81,$86,$86,$98,$98,$EO,$EO 
84D4:98 98 EO .. 84D7:EO 
84D8:80 80 80 286 DFB $80,$80,$80,$80,$80,$80,$81 
84DB:80 80 80 
84DE:81 
84DF:81 86 86 287 DFB $81,$86,$86,$98,$98,$EO,$EO 

~ 84E2:98 98 EO 
84E5:EO 
84E6:80 80 80 288 DFB $80,$80,$80,$80,$80,$80,$81 
84E9:80 80 80 
84EC:81 .. 84ED:81 86 86 289 DFB $81,$86,$86,$98,$98,$EO,$EO 
84F0:98 98 EO 
84F3:EO 
84F4:80 80 80 290 DFB $80,$80,$80,$80,$80,$80,$81 
84F7:80 80 80 .... 84FA:81 
84FB:81 86 86 29-1 DFB $81,$86,$86,$98,$98,$EO,$EO 
84FE:98 98 EO 
8501:EO 
8502:80 80 80 292 DFB $80,$80,$80,$80,$80,$80,$81 

1111111 8505:80 80 80 
8508:81 
8509:81 86 86 293 DFB $81,$86,$86,$98,$98,$EO,$EO 

,.... 
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850C:98 98 EO 
850F:EO 
8510:80 80 80 294 OFB $80,$80,$80,$80 
8513:80 
8514: 295 * .... 
8514: 296 * MASKS FOR HIORES COLORS 
8514: 297 * 
8514:80 80 298 COLOR OFB $80,$80 O ••• BLACK 
8516:00 00 299 OFB $00,$00 

fllllt 8518: 300 * 
8518:80 80 301 OFB $80,$80 1. •• OK. VIOLET 
851A:55 2A 302 OFB $55,$2A 
851C: 303 * 
851C:05 AA 304 OFB $05,$AA 2 ••• OK.BLUE ,.., 
851E:OO 00 305 OFB $00,$00 
8520: 306 * 

I 8520:05 AA 307 OFB $D5,$AA 3 ••• TRUE BLUE 
8522:55 2A 308 OFB $55,$2A 
8524: 309 * 
8524:80 80 310 DFB $80,$80 4 ••• 0K.GREEN 

,.... 
8526:2A 55 311 OFB $2A,$55 
8528: 312 * 
8528:80 80 313 OFB $80,$80 5 ••• GREY-1 
852A:7F 7F 314 OFB $7F,$7F 
852C: 315 * ,.. 
852C:D5 AA 316 OFB $05,$AA 6 ••• AQUA i 
852E:2A 55 317 OFB $2A,$55 
8530: 318 * 
8530:05 AA 319 OFB $D5,$AA 7 ••• LT.BLUE 
8532:7F 7F 320 DFB $7F,$7F .... 
8534: 321 * 
8534:AA 05 322 DFB $AA, $05 8 ••• 0K.ORANGE 
8536:00 00 323 DFB $00,$00 
8538: 324 * 
8538:AA 05 325 DFB $AA,$05 9 ••• PINK ~ 

853A:55 2A 326 OFB $55,$2A 
853C: 327 * 
853C:FF FF 328 DFB $FF,$FF 10 •• GREY-2 
853E:OO 00 329 OFB $00,$00 
8540: 330 * 
8540:FF FF 331 DFB $FF,$FF 11 •• LT. VIOLET 
8542:55 2A 332 DFB $55,$2A 
8544: 333 * 
8544:AA 05 334 DFB $AA,$05 12 •• BROWN 
8546:2A 55 335 DFB $2A,$55 
8548: 336 * 
8548:AA D5 337 DFB $AA,$05 13 •• LT.ORANGE 
854A:7F 7F 338 DFB $7F,$7F 
854C: 339 * 
854C:FF FF 340 DFB $FF,$FF 14 •• LT.GREEN 
854E:2A 55 341 DFB $2A,$55 
8550: 342 * 
8550:FF FF 343 OFB $FF,$FF 15 •• WHITE 

~ 



-
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8552:7F 7F 
8554: 
8554 : 00 

344 
345 * 
34 6 
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DFB $7F,$7F 

BRK 

*** SUCCESSFUL ASSEMBLY: NO ERRORS 

Then set the Applesoft shape parameters 

HCOLOR =3 : SCALE = 1 : ROT=O 

before drawing them one by one at the center of the screen with 

DRAW 1 AT 140, 80 

to see what you have. Remember, you must know these things in order 
to write a program that uses a shape table. 

When you program to draw shapes, you use five Applesoft com
mands- HCOLOR, SCALE=, ROT = , DRAW, and XDRAW. 

The ORA W and XDRA W commands put the shape on the screen. 
The ORA W uses the current HCOLOR = value while the XDRA W 
uses the complement of the color on the screen. Use XDRA W for 
cursors because when used at an existing cursor, it will remove it, re
storing any underlying shape. You can use DRAW best on back
ground shapes and characters; XDRA W on foreground (moving) 
shapes and cursors. Syntax required is just the shape number, but you 
can give the position with an AT like the example given above. 
HCOLOR = , SCALE= , and ROT= must be set first. 

The HCOLOR = sets the drawing color as described earlier. Shapes 
work best in black and white: zero for black, three for white. 

The SCALE= command lets you magnify the shape about its start 
position on the screen. Use SCALE= 1 normally. If you increase the 
scale, you must be sure that there is enough room. SCALE= 2 doubles 
the size, SCALE= 3 triples the size, and so on. 

The ROT = command Jets you rotate the shape defined to another 
orientation. ROT = 0 is normal. ROT= 16 rotates by goo clockwise; 
ROT = 32 rotates 180°; ROT = 48 rotates by 270° clockwise, goo 
counterclockwise. Rotations above 63 aren't defined. These four - 0, 
16, 32, 48 - are the most useful. 

Loading a shape table is simple, and can be done by any program 
that uses it. Although Applesoft has a SHLOAD command for tape 
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shape table loads, you probably will want to keep shape tables on disk 
and load them from there. So, the disk loads are described fi rst. 

From disk, shape tables can be BLOADed just like any other binary 
fi le. Then you must adjust the memory map pointers to protect it from 
the running program. And finally, you have to put the address of the 
shape table into a Page Zero pointer so that Applesoft will know 
where to find it. Here's how you might do it: 

LOMEM:16384: CLEAR 
BLOAD SHAPET ABLE,A$1800 
POKE 232,0 : POKE 233,24 

:REM $4000 

:REM $1800 

The Page Zero pointer is at $E8 and $E9; hence the POKEs to 232 and 
233. Another way might be: 

HlMEM :32768 : CLEAR 
BLOAD SHAPET ABLE, A$8000 
POKE 232,0 : POKE 233,128 

:REM $8000 

:REM $8000 

It's up to you. The shape table can reside anywhere as long as its start 
address is stuffed into $E8.E9. 

The SHLOAD command will load from tape, put the table to fit 
below the current HIMEM, then change HIMEM to the beginning of 
the table, protecting it. It also sets $E7 .E8 to the beginning of the 
table. So, just be sure no strings were referenced before the SHLOAD 
and it will set all the pointers for you, automatically. """ 

A shape table has three parts, each following the other in memory. 
First there is one byte containing the number of entries. You read this 
number when you use the 

NS = PEEK(FN AD(232) ) 

statement that reads the first byte of the shape table as referenced by 
$E8.E9 in Page Zero. The second byte of a shape table is unused and 
can be ignored. 

The second part of a shape table is the index to the shapes. This 
index has two bytes for each shape in the table, so it is 2*NS in size, 
where NS is the number of shapes kept in the first part. Each of the 
indexes has two bytes and is a relative address in low-byte/ high-byte 
order. The relative address is from the beginning of the shape table to n 
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the first byte in the shape being indexed. So, the first index contains 
the relative address of the first shape, the second index contains the 
relative address of the second shape, and so on. There can be any 
number of shapes, from one to 255; however, it may be wise to limit 
this number to 127 if you make the shape tables for yourself. Then the 
indexes will be easier to access, since they contain two bytes each. See 
Figs. 6-10 and 6-11. 

The third part of a shape table is the set of shapes themselves. Each 
shape contains one or more bytes, the last one being zero. This is im
portant, because the zero byte tells the Applesoft drawing routines 
where the shape ends. All the nonzero bytes then contain the shape 
and will be used by the DRAW or XDRA W routines, one after the 
other, until the zero byte is reached. 

Shapes are drawn by plotting single points and moving the current 
drawing location to an adjacent pixel and there plotting the next 
point. This is repeated until the shape is complete. After plotting, each 
move can be in one of four directions - up, down, left, or right - to 
reach the next pixel. Each plot-then-move appears in the shape table 
as a small instruction to the DRAW routine called a vector. The shape 
is defined as a sequence of plot-then-move vectors that instructs the 
ORA W routine in Applesoft. 

There are four different plot-then-move vectors: up, right, down, 
and left. In addition, the PLOT routine will handle vectors that don't 
plot but just move. There are four of these: up, right, down, and left. 
So, there are eight vectors you can use to make shapes; here are their 
codes: 

Binary Hex Symbol Vector Description 

000 0 A move up 
001 1 o- move right 
010 2 ? move down 
011 3 4-() move left 
100 4 • plot-then-move up 
101 5 ... plot-then-move right 
110 6 T plot-then-move down 
111 7 ... plot-then-move left 

All vectors move the drawing position by exactly one pixel. You use 
them to draw the shape that you want. 
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RELATIVE 
ADDRESS 

00 

01 

02 

04 

Fig. 6-10. A shape table with one entry. 

RELATIVE 
ADDRESS 

INDEX TO 1ST SHAPE 

FIRST SHAPE 

GO NUMBER OF SHAPES 

01 UNUSED 

02 0 7 0 0 INDEX TO 1ST SHAPE 

04 G D 0 0 INDEX TO 2ND SHAPE 

06 I 4 0 0 INDEX TO 3RD SHAPE 

07 

FIRST SHAPE 

OD 

SECOND SHAPE 

14 I ffiiRDSH~E 
Fig. 6-11. A shape table with three entries. 

r" 
I 
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The vectors are kept in the bytes of the entries in the shape table. 
However, since each vector only requires three bits for storage, the 
vectors are packed by stuffing two or three of them into each byte. To 
follow the packing, see Fig. 6-12. You can see it is partitioned into 
three chunks called Vector One, Vector Two, and Vector Three. Each 
of the first two are three bits in size while Vector Three is only two 
bits. This means that Vector Three can hold simple move vectors only; 
the larger plot-then-move vector codes are just too big. 

The solution to the Vector Three size limitation is to defer the plot
then-move vectors to Vector One of the next byte. The rule for 
packing vectors into bytes is to start with Vector One. The next vector 
goes into Vector Two. After that, if the third vector is less than four in 
size, then it goes into Vector Three. Otherwise, the byte is full and the 
third vector goes into Vector One of the following byte. Continue like 
that until the end of the shape, at which time an extra zero byte is 
appended to complete the entry. 

To create shape tables, the procedure is to pack the vectors into 
bytes to create each shape entry. Then, a table is built with the number 
of entries (shapes) in the first byte, an index table of relative addresses 
starting at the third byte, and the index table followed by the shape 
entries, with each entry ending in a zero byte. The routines needed to 
do these things are not difficult to write and some examples are given 
later on. However, the procedure for packing vectors into bytes 
becomes complicated because of an anomaly in the original design. 

The vector code for move up is zero. This code conflicts with the 
end-of-shape marker which is also zero. One result of this conflict is 
that three move ups in a single byte gives a zero byte terminating the 
entire shape. Any further shape vectors are ignored, so you get only 
that part of the shape drawn before the three move ups. 

Another consequence of the clashing codes is ignored move ups. If 
Vector Three is zero, it is presumed to be empty and ignored. So, you 

I I 

""" THREE I I 
VECTOR TWO~ 
VECTOR ONE 

Fig. 6-12. A shape byte. 
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can't put a move up in Vector Three, but it can be deferred to the next 
byte. But if both Vector Three and Vector Two are zero, then the 
Vector Two that you think must be a move up, isn't. It is ignored as 
well. A zero in Vector One is all right as long as there is a nonzero Vec
tor Two or Vector Three, but you can't encode move ups in Vector 
Two unless Vector Three turns out to be a nonzero entry. 

At first it appears that you can't use the simple move-up vector. By 
avoiding its use entirely, you can build shape tables without any 
hassles. If you try to use them, you get unexpected results. Shapes are 
distorted from any missed move ups. Some shapes are only partially 
drawn because of several move ups in sequence. But some move ups 
do work properly, so unless you know about the move-up anomaly, 
you will become confused and frustrated with your results. 

Therefore, one solution to the anomaly is to avoid using the move 
up in any shape creation programs. 

Another solution is to write a more complicated packing routine 
that handles move ups. An example of such a packing routine is given 
here. 

Here's how vectors are packed into a shape table entry while 
avoiding the move-up anomaly. The routine is called VP ACK; you 
can see it in the listing of Example 6-4. 

The current byte being packed is pointed to by ZEND in Page Zero. 
The number of the vector within that byte is I, 2, or 3 in VECNUM. 
The vector to be packed is in the A-reg when VPACK is called. 

VP ACK interprets the vector number of VECNUM and branches 
accordingly to VPACKI, VPACK2, or VPACK3. 

For Vector One, the VPACKI block just writes the A-reg to the cur
rent byte. Since the vector code is between zero and seven, it is already 
positioned in the three least significant bits, so it becomes the byte 
with Vector One. 

For Vector Two, the vector in the A-reg must be shifted left by three 
bits to be in the Vector Two position. Then it must be put into the cur
rent byte without altering the Vector One already resident there. The 
ORA instruction in the VPACK2 block accomplishes this. 

Vector Three is the tricky one. The first thing done at VP ACK3 is to 
check if the vector is zero or a plot-then-move type. If so, then the 
packing must be deferred to the next byte. Otherwise, the vector is 1, 
2, or 3 in value and may be packed into the current byte - shifted left 
six bits and an ORA. After packing Vector Three, the pointer ZEND 
must be advanced to access the next byte; the block that advances 
ZEND is called NEXT. 

r-1 
I 

~ 
I 

I 

r 
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Example 6-4. 

SOURCE 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0001: 
0002: 
0003: 
0058: 
0000: 
0000: 
0000: 
0000: 

FILE: EXAMPLE 6.4 

OOE7: 
0050: 
0052: 
0053: 
0094: 
0096: 
009B: 
0000: 
0000: 
1800: 
0000: 
0000: 
0000: 
0000: 
D393: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 

1 ******************************** 
2 * EXAMPLE 6.4 * 
3 * * 
4 * SHAPE TABLE WRITER * 
5 * * 
6 * FOR DETAILS ON HOW TO USE * 
7 * THESE ROUTINES, SEF. TEXT. * 
8 * * 
9 ******************************** 

10 * 
11 * 
12 * 

E Q A T E S 

13 * CONSTANTS 
14 * 
15 KUP 
16 KRIGHT 
17 KDOWN 
18 KLEFT 
19 KLANDR 
20 * 
21 * 

EQU 
EQU· 
EQU 
EQU 
EQU 

22 * PAGE ZERO 
23 * 
24 ZEND 
25 VECNUH 
26 PEN 
27 PENX 
28 HIGHDS 
29 HIGHTR 
30 LOWTR 
31 * 
32 * 
33 TABLE 
34 * 
35 * 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

EQU 

$00 
$01 
$02 
$03 
$58 

$E7 
$50 
$52 
$53 
$94 
$96 
$9B 

$1800 

36 * APPLESOFT & MONITOR 
37 * 
38 BLTU 
39 * 
40 * 
41 * 
42 * 
43 * 
44 * 
45 * 

EQU $D393 

R 0 U T I N E S 

FOR UPCURSOR 
FOR RIGHTCURSOR 
FOR DOWNCURSOR 
FOR LEFTCURSOR 
LEFT AND RIGHT 

TABLE POINTER 

PEN MASK 
ALTERNATE PEN MASK 
USED BY BLTU 
USED BY BLTU 
USED BY BLTU 

START SHAPE TABLE 

BLOCK TRANSFER UP 

NEXT OBJECT FILE NAME IS EXAMPLE 6.4.0BJO 
8000: 
8000: 
8000: 
8000: 
8000: 
8000:20 
8003:20 
8006:20 
8009:4C 

60 80 
95 80 
oc 80 
69 FF 

46 ORG $8000 
47 * 
48 * 
49 * TEST HAINLINE ***** 
50 * 
51 
52 
53 
54 

JSR 
JSR 
JSR 
JHP 

SETUP 
KEY 
ACCEPT 
$FF69 MONITOR 
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Example 6-4 Cont. 

800C: 55 * 
BOOC: 56 * 800C: 57 * ACCEPTED SHAPE TABLE - INSERT 
800C: 58 *WITH NEW INDEX, THEN SETUP. ~ 
BOOC: 59 * 
800C:AD 00 18 60 ACCEPT LDA TABLE IF ONLY NULL 
800F:C9 01 61 CHP #1 THEN DON'T BLTU. 
8011: FO 07 62 BEQ ACC1 
8013:A4 94 63 LOY HIGHDS 
8015:A5 95 64 LOA HIGHDS+1 
8017:20 93 D3 65 JSR BLTU HOVE OLD SHAPES BY 2. 
801A: 66 * BOlA: AO 01 67 ACC1 LDY 11 
801C:A9 00 68 LDA to HAKE NEW NULL SHAPE. ~ 801E:91 E7 69 STA (ZEND),Y 

I 8020:C8 70 INY 
8021:91 E7 71 STA (ZEND),Y 
8023: 72 * 
8023:EE 00 18 73 INC TABLE BUMP NUMBER ENTRIES r--8026: 74 * 
8026:18 75 CLC 
8027:A5 E7 76 LDA ZEND CALCULATE ADDRESS OF 
8029:69 02 77 ADC 12 NEW NULL RECORD 
8028:85 E7 78 STA ZEND r 802D:A5 E8 79 LOA ZEND+1 
802F: 69 00 80 ADC to 
8031:85 E8 81 STA ZEND+1 
8033: 82 * 
8033:AD 00 18 83 LDA TABLE FIND INDEX TO NEW r 8036:0A 84 ASL A NULL. 
8037:AA 85 TAX 
8038: 86 * 
8038:38 87 SEC 
8039:A5 E7 88 LDA ZEND ,... 
803B:E9 00 89 SBC #>TABLE CALCULATE INXEX 
803D:9D 00 18 90 STA TABLE,X FOR NEW NULL. 
8040:A5 E8 91 LDA ZEND+1 
8042:E9 18 92 SBC #<TABLE 
8044:9D 01 18 93 STA TABLE+1,X 

~ 8047: 94 * 8047:CA 95 ACC2 DEX 
8048:CA 96 DEX 
8049:FO 14 97 BEQ ACC3 WHILE INDEX, DO 
804B:18 98 CLC 

.r-' 804C:BD 00 18 99 LOA TABLE,X 
804F:69 02 100 ADC #2 
8051:9D 00 18 101 STA TABLE,X 
8054:BD 01 18 102 LDA TABLE+1,X 
8057:69 00 103 ADC 10 
8059:9D 01 18 104 STA TABLE+1,X BUMP INDEX BY 2 --805C:4C 47 80 105 JHP ACC2 
805F: 106 * 805F:60 107 ACC3 RTS 
8060: 108 * 
8060: 109 * 1-1 
8060: 110 * 

~ 
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8060: 111 * SET THE POINTERS FOR THE 
8060: 112 * SHAPE TABLE. 
8060: 113* 
8060:AD 02 18 114 SETUP LDA TABLE+2 FIRST INDEX 
8063:18 115 CLC 
8064:69 00 116 ADC #>TABLE OFFSET INDEX 
8066:85 9B 117 STA LOWTR TO GET ADDRESS OF 
8068:AD 03 18 118 LDA TABLE+3 FIRST SHAPE. 
806B:69 18 119 ADC #<TABLE 
806D:85 9C 120 STA LOWTR+l 
806F: 121 * 
806F:AD 00 18 122 LDA TABLE NUMBER OF SHAPES 
8072:0A 123 ASL A 
8073:AA 124 TAX 
8074:BD 00 18 125 LDA TABLE,X LAST INDEX 
8077:18 126 CLC 
8078:69 00 127 ADC #>TABLE 
807A:85 96 128 STA HIGHTR OFFSET INDEX TO GET 
807C:BD 01 18 129 LDA TABLE+1,X ADDRESS OF NULL 
807F:69 18 130 ADC #<TABLE SHAPE. 
8081:85 97 131 STA HIGHTR+1 
8083: 132 * 
8083:18 133 CLC .... 8084:A5 96 134 LDA HIGHTR 
8086:69 02 135 ADC #2 
8088:85 94 136 STA HIGHDS BEYOND NULL SHAPE 
808A:85 E7 137 STA ZEND END OF TABLE. 
808C:A5 97 138 LDA HIGHTR+1 - 808E:69 00 139 ADC 10 
8090:85 95 140 STA HIGHDS+l 
8092:85 E8 141 STA ZEND+l 
8094:60 142 RTS 
8095: 143 * 8095: 144 * 8095: 145 * KEYBOARD COMMAND INTERPETER 
8095: 146 * FOR THE CURSOR KEYS: IJKM AND 
8095: 147 * <SP> FOR THE PEN. EXITS WITH 
8095: 148 * I A I FOR ACCEPT OR I R I FOR 
8095: 149 * REJECT IN THE A-REG. 
8095: 150 * 8095:A9 00 151 KEY LDA 10 INIT PEN UP 
8097:85 52 152 STA PEN 
8099:A9 01 153 LOA {#1 - 809B:85 50 154 STA VECNUM !NIT VECTOR 1 
809D:A9 04 155 LOA #4 MASK FOR PEN DOWN 
809F:85 53 156 STA PENX 
80Al:A2 00 157 LOX #0 FOR INDEXED INDIRECT! 
80A3: 158 * .... 80A3:AO 00 co 159 KEYO LOA $COOO KEYBOARD 
80A6:10 FB 160 BPL KEYO 
80A8:2C 10 co 161 BIT $COlO CLEAR STROBE 
80AB: 162 * 
80AB:C9 D2 163 CMP # 1 R 1 REJECT SHAPE? ,... 80AO:OO 01 164 BNE KEY1 
80AF:60 165 RTS 
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8080: 166 * 
8080:C9 C1 167 KEY1 CHP #I A I ACCEPT SHAPE? 
8082:DO 01 168 8NE KEY2 
8084:60 169 RTS 
8085: 170 * 
8085:C9 AO 171 KEY2 CHP I' I CHANGE PEN? 
8087:DO OD 172 8NE KEY3 
8089:A5 52 173 LDA PEN 
8088:48 174 PHA ~ 
808C:A5 53 175 LDA PENX SWAP PEN AND PENX 
808E:85 52 176 STA PEN 
80C0:68 177 PLA 
80C1:85 53 178 STA PENX 
80C3:4C A3 80 179 JHP KEYO ~ 
80C6: 180 * 
80C6:C9 C9 181 KEY3 CHP #'I' UP? 
80C8:DO OA 182 8NE KEY4 
80CA:A9 00 183 LDA #KUP 
80CC:05 52 184 ORA PEN 
80CE:20 01 81 185 JSR VPACK INSERT UPVECTOR 
80D1:4C A3 80 186 JHP KEYO 
80D4: 187 * 
80D4:C9 CB 188 KEY4 CHP I 'K I RIGHT? 
80D6:DO OA 189 BNE KEY5 ,.. 
80D8:A9 01 190 LDA #KRIGHT 
80DA:05 52 191 ORA PEN 
80DC:20 01 81 192 JSR VPACK INSERT RIGHTVECTOR 
80DF:4C A3 80 193 JHP KEYO 
80E2: 194 * ,... 
80E2:C9 CD 195 KEY5 CHP (#I M' DOWN? 
80E4:DO OA 196 BNE KEY6 
80E6 A9 02 197 LDA IKDOWN 
80E8 05 52 198 ORA PEN 
80EA 20 01 81 199 JSR VPACK INSERT DOWNVECTOR 
80ED 4C A3 80 200 JHP KEYO 
80FO 201 * 80FO C9 CA 202 KEY6 CHP I I J I LEFT? 
80F2 DO OA 203 BNE KEY7 
80F4 A9 03 204 LOA #KLEFT 
80F6 05 52 205 ORA PEN 
80F8 20 01 81 206 JSR VPACK INSERT LEFTVECTOR 
80FB 4C A3 80 207 JHP KEYO 
80FE 208 * 80FE 4C A3 80 209 KEY7 JHP KEYO JUST KIDDING! 

!'-' 8101 210 * 
8101 211 * 8101 212 * 8101 213 * VECTOR PACK ROUTINE TO PUT 
8101 214 * THE A-REG VECTOR INTO THE NEW 
8101 215 * SHAPE. X-REG MUST BE ZERO. .... 

I 

8101 216 * A-REG MUST BE VECTOR (0 •• 7). 
8101 217 * Y-REG AND A-REG CLOBBERED. 
8101 218 * 8101 A4 50 219 VPACK LOY VECNUH 
8103 co 01 220 CPY 11 .... 

r 
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filii 

8105:00 05 221 BNE VPACK2 
8107: 222 * 
8107:81 E7 223 VPACK1 STA (ZEND,X) VECTOR 1 .... 8109:E6 50 224 INC VECNUM 
810B:60 225 RTS 
810C: 226 * 
810C:CO 02 227 VPACK2 CPY #2 
810E:DO OA 228 BNE VPACK3 ,.. 8110:0A 229 ASL A VECTOR 2 
8111:0A 230 ASL A 
8112:0A 231 ASL A 
8113:01 E7 232 ORA (ZEND,X) 
8115:81 E7 233 STA (ZEND,X) 

lllllt 8117:E6 50 234 INC VECNUM 
8119:60 235 RTS 
811A: 236 * 
811A:C9 00 237 VPACK3 CMP #0 VECTOR 3 
811C: FO 19 238 BEQ DEFER IF VECTOR ISN'T 

~ 
811E:C9 04 239 CMP #4 1, 2, OR 3 THEN DEFER 
8120:BO 15 240 BCS DEFER TO NEXT BYTE. 
8122:0A 241 ASL A 
8123:0A 242 ASL A 
8124:0A 243 ASL A 

.... 8125:0A 244 ASL A 
8126:0A 245 ASL A 
8127:0A 246 ASL A 
8128:01 E7 247 ORA (ZEND,X) PUT IN HIGHEST 
812A:81 E7 248 STA (ZEND,X) TWO BITS. 
812C: 249 * ,.. 
812C:A9 01 250 NEXT LOA #1 POINT TO THE 
812E:85 50 251 STA VECNUH FIRST VECTOR OF 
8130:E6 E7 252 INC ZEND THE NEXT BYTE. 
8132:00 02 253 BNE *+4 
8134:E6 E8 254 INC ZEND+1 .. 8136:60 255 RTS 
8137: 256 * 
8137:48 257 DEFER PHA 
8138:A1 E7 258 LOA (ZEND,X) IF BYTE < 8 
813A:C9 08 259 CHP 18 THEN V2 IS AN ILLEGAL 

~ 813C:BO 10 260 BCS DEFER1 MOVE-UP CODE. 
813E:09 58 261 ORA #KLANDR 
8140:81 E7 262 STA (ZEND,X) so, REPLACE WITH A 
8142:20 2C 81 263 JSR NEXT LEFT-AND-RIGHT, THEN 
8145:A9 00 264 LOA #0 A MOVEUP IN NEXT V1 • .. 8147:20 01 81 265 JSR VPACK 
814A:68 266 PLA 
814B:4C 01 81 267 JHP VPACK FINALLY, INTO V2 OF NEX 
T! 
814E: 268 * ,.. 
814E:20 2C 81 269 DEFER1 JSR NEXT JUST TOO BIG FOR V3 
8151:68 270 PLA 
8152:4C 01 81 271 JHP VPACK SO PUT IT IN V1 OF NEXT 

8155: 272 * 
~ 

*** SUCCESSFUL ASSEMBLY: NO ERRORS 

-
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Now it is left with the deferred vector to pack. The DEFER block 
calls NEXT to advance the pointers, then calls the VPACK routine in 
the confidence that it will pack into Vector One of the next byte. A 
special case where both Vector Two and Vector Three are zero is 
treated slightly different. The zero in Vector Two must be a previous 
move up. To render it valid, it too must be moved to the next byte. A 
special mask called KLANDR (for left-and-right) ORAd into the byte 
makes Vector Two a move left and Vector Three a move right. These 
vectors cancel each other, so they act like a nonzero no operation. 
Then the move up is put into the next byte's Vector One, followed by 
the vector of the current call into Vector Two. The two JSR VPACK 
instructions after the JSR NEXT accomplish this. 

Except for the tricks in packing for Vector Three, the VPACK rou
tine is simple enough. To use it yourself, set ZEND and VECNUM ini
tially to the first byte of your shape's memory area, and to Vector One 
with the value one. Each vector you add to the shape as you build 
must be in the A-reg when you call VPACK. Make sure the X-reg is 
zero. When finished, VPACK will point to the last byte. 

Once you have a shape, you must somehow put it into a shape table, 
with or without any previous entries, and correct the indexes to point 
properly to your new entry and any previous entries. There are two 
ways to do this: either use a previously extended table with fixed 
blocks for the anticipated number of entries, or start with a null table 
and use an indexed sequential append routine. The first is easier to 
write from scratch, but the second is easy to use and more efficient in 
memory management. 

The listing has routines for appending to a shape table. Here's how 
they work. 

The routines assume a shape table already resides at $1800. See Fig. 
6-13. To begin, you must put a table at $1800. Such an initial table 
without any shapes is called a null table and you can enter it easily 
from the Monitor by 

1800: 01 00 04 00 00 

where the first byte is the number of entries, the third and fourth bytes 
point to the fifth byte (as $0004), which is a zero. This single entry of 
zero is called the null entry or null shape. Using this method of 
indexed sequential management, all shape tables will have a null as the 
last entry. 

n 

-
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(A) Null shape table. 

1800 

1801 

1802 

18(14 

1805 

18(16 

1807 

1808 

1809 

(8) Before insertion. 

1800 

1801 

1802 

1804 

NUMBER OF SHAPES 

INDEX TO NULL 

NULL 

NEW SHAPE 
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NUMBER OF SHAPES 

INDEX TO NULL 

HULL 

1800 

1801 

1802 

1804 

1806 

1807 

1808 

1809 

I BOA 

IS!lB 

(C) After insertion. 

NUMBER OF SHAPES 

INDEX TO FIRST SHAPE 

INDEX TO NULL 

FIRST SHAPE ENTRY 

NULL 

Fig. 6-13. Inserting the first entry into a shape table. 

To add a new shape to the table at $1800, you use a routine that sets 
up Page Zero pointers, SETUP. One result of SETUP is the initiali
zation of ZEND to the second byte after the end of the shape table 
(after the null entry). After the shape has been created by a routine 
that uses VP ACK, the pointed ZEND will give the last byte of the new 
shape. The shape table at this time has not been altered in any way, so 
you can accept or reject the new entry. If rejected, you merely use 
SETUP to reset ZEND for another shape. If accepted, then the 
ACCEPT routine will append the new shape and you can call SETUP 
after to reset the pointers for the new, longer shape table. 

As an example, consider your creation of the first entry. First, you 
make a null shape table at $1800.1804 as described above. Then you 
make up your new shape starting at $1806, two bytes beyond the end 
of the table. Let's say it has four bytes: $1806.1809. By a JSR to 
ACCEPT, it is inserted by putting its index at $1802.1803 where the 
index to the null was before. The index to the new null then goes into 
$1804.1805 where it has just enough room. At $180A a zero is added 
to the new shape to give it its terminator. The second zero following is 
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the new null: you can see its address $180B is reflected in the index 
$000B at $1804. The first entry was inserted by ACCEPT so simply 
because you created it just two bytes after the old table. 

Inserting any other entry works the same way except that all the pre
vious entries must be moved forward in memory by two bytes to make 
room for the new index. An Applesoft routine called BL TU handles 
this easily as long as it has its pointers set up for it by the SETUP rou
tine. 

Like the first entry, a~y other entry uses the shape you created two 
bytes past the end of the old table. (See Fig. 6-14) With old entries, 

LOWTR 

HIGHTR 

HIGHDS 
ZEKD 

(A) Before insertion. (8) After insertion. 
t'ig. 6-14. Inserting the n-th entry into a shape table. 

PREVIOUS 
SHAPES 

MEW 
SHAPE 

MULL SHAPE 

r 

-

r 
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these are moved ahead two bytes and the new index inserted by over
writing the old null. The new null index then follows in the two freed 
bytes. All the indexes of the previous entries must be advanced by two 
- a DO-WHILE handles this in ACCEPT. Again, the new entry in
cludes a zero byte and a further zero byte becomes the new null. 

You can follow the action easily by using the KEY routine together 
with SETUP and ACCEPT to enter shapes to a null table and dump 
$1800.183F, say, to watch the table grow. 

The KEY routine is a keyboard entry to create the vectors to pass to 
VP ACK. It begins by allowing move only vectors - hitting the space
bar switches PEN and PENX to allow plot-then-move vectors. Hitting 
the spacebar again will switch back to plot only vectors again. After 
you have used it, you may want to expand the KEY routine to include 
a LORES display with different colors for the pen-up, pen-down, and 
plotted points. Make your own custom Shape Table Editor. 
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CHAPTER SEVEN 

Disk Opernting System 

7.1 STRUCTURES 

The purpose of DOS is to create, maintain, and use data structures 
on 5V4-inch floppy disks. In the first section of this chapter, you can 
find all the details of these structures. Later, in the second section, you 
can find the protocols to use DOS in maintaining any structure at the 
level needed. 

7.1.1 DOS on Disk 

Disks created and used by DOS 3.3 are formatted into 35 tracks of 
sixteen sectors each. Each track is circular in shape and is on the top 
surface of the disk, concentric with the others. Track Zero is the out
side track and is the longest. Track 34 is the shortest, being the inner
most track. Although the longer outside tracks can hold more data 
than the shorter inside tracks, all tracks on the disk have the same 
storage capacity 0f sixteen sectors of 256 bytes each. 

It is easier to picture the disk as a rectangular map rather than to 
draw the circular tracks. This map has a grid of 35 tracks by sixteen 
sectors and is partitioned into the sections DOS creates with the IN IT 
command. 

Tracks Zero, One, and Two are dedicated to DOS. Whenever a disk 
is INITed (initialized), it formats the entire disk by writing markers 
that create tracks and sectors. Then it copies itself into the first three 

399 
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tracks with its bootstrap routines in Track Zero. This gives you a slave 
disk that will bootstrap into the original DOS's memory area, below 
$COOO. 

The middle track, Track 17, contains a Catalog and a special sector 
called the Volume Table of Contents or VTOC. From here, DOS has 
a maximum arm motion of sixteen to reach any one of the other 34 
tracks. Since it must always reference the VTOC and Catalog, this is 
ideal. 

After using the space for itself and the Catalog, 496 of the original 
560 sectors remain for storing the files. One file called the greeting 
program and usually named "HELLO" will be loaded and run when
ever the disk is booted. DOS will use and release space in the files 
storage areas as needed. 

Two utilities you may need to work with DOS disks are a DISK 
MAP that usually draws the disk map using LORES graphics to show 
the allocation of sectors, and a DISK ZAP that lets you read, 
examine, change, and write to any designated sector on the disk. For 
debugging and file recovery you should at least have a DISK ZAP, 
such as Example 7-1. 

Assuming a 48K Apple with the disk controller card in Slot Six, here 
is what happens when a DOS disk bootstraps. 

Typing PR#6 or otherwise running the firmware at $C600 starts the 
Stage Zero bootstrap routine. A chunk of Page Three is written with a 
table to translate disk codes, wiping out any vectors or routines there. 
Then it loads in the Track Zero, Sector Zero page at $800. Finally, it 
jumps to $801 which is the Stage One bootstrap just loaded. 

The Stage One bootstrap routine loads the remainder of Track Zero 
to memory starting at $B700 (SLAVE) or $3700 (MASTER). The 
SLAVE is the simplest procedure, since the MASTER will have to 
relocate itself later on. Assuming a SLAVE, the Stage One bootstrap 
routine finishes by jumping to $B700. See Table 7-1. 

Finally, the Stage Two bootstrap routine completes the load from 
Tracks One and Two. The Boot One stage in $800.8FF is moved to 
$B600 where it remains. It forces a subsequent load of the bank 
switched RAM by writing a $00 to a location there. If a BASIC was 
loaded by a previous bootstrap routine, this will cancel it, forcing it to 
be re-loaded. 

You can remove this feature by canceling the instruction to zero the 
RAM. From the monitor, type 

BFD3: EA EA EA 

... 
( 

.... 
! 
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Example 7-1. 

>LIST 
1 REM EXAMPLE 7.1 
2 REM 
3 REM D I S K Z A P 
4 REM 
5 REM IN INTEGER BASIC 
6 REM 

10 GOTO 30000 
100 REM 

Disk Operating System 

101 REM CHR$ FUNCTION (TOGNAZINNI) 
102 REM 
110 CHS=CHR+128*(CHR<128) 
120 LC1= PEEK (224):LC2~ PEEK (225)-(LC1>243) 

: POKE 79+LC1-256*(LC2>127)+(LC2-255*(LC2 
>127))*256,CHS:CHR$=".": RETURN 

500 REM 
501 REM MONITOR COMMAND CALL 
502 REM 
510 FOR H=l TO LEN(HEX$): POKE 511+H, ASC(HEX 

$(H)): NEXT H: POKE 72,0 
520 CALL -144 
530 RETURN 
600 REM 
601 REM CALL THE DISK 
602 REM 
610 CALL RWTS 
612 POKE IOBVOL,255: REM RESET DOS 
620 ERR=O: IF PEEK (O)fO THEN ERR= PEEK (IOBC 

ODE) 
630 IF ERRIO THEN RETURN 
640 VTAB 2: TAB 4 
650 PRINT "CURRENT TRACK a ";TRK;", SECTOR a 

";SEC;". 
660 RETURN 

1200 REM 
1201 REM PARSE TRACK & SECTOR 
1202 REM 
1210 ERR=1:P=2 
1212 IF P> LEN(A$) THEN RETURN 
1220 TRK= ASC(A$(P,P))-176: IF TRK<O OR TRK>9 THEN 

RETURN 
1230 P=P+1: IF P> LEN(A$) THEN RETURN 
1240 TRK1= ASC(A$(P,P))-176: IF TRK1<0 OR TRK1 

>9 THEN 1270 
1250 TRK=TRK1+10*TRK: IF TRK<O OR TRK>34 THEN 

RETURN 
1260 P=P+1: IF P> LEN(A$) THEN RETURN 
1270 IF A$(P,P)#"," THEN RETURN 
1272 PmP+1: IF P> LEN(A$) THEN RETURN 
1280 SEC= ASC(A$(P,P))-176: IF SEC<O OR SEC>9 THEN 

RETURN 
1290 ERR=O:P~P+1: IF P> LEN(A$) THEN RETURN 
1300 ERR=1:SEC1= ASC(A$(P,P))-176: IF SEC1<0 OR 

SEC>9 THEN RETURN 

401 



402 Appl~ Programmer's Handbook 

Example 7-1 Cont. 

1310 SEC=SEC1+10*SEC: IF SEC<O OR SEC>NSEC-1 THEN 
RETURN 

1320 IF P< LEN(A$) THEN RETURN 
1330 ERR;Q: RETURN 

12000 REM 
12001 REM READ COMMAND 
12002 REM 
12010 ERR;O 
12020 P=2: GOSUB 1200: REM PARSE T,S 
12040 IF ERR~O THEN 12080 
12060 ERR=O: PRINT " \\\ ???SYNTAX???": RETURN 

12080 POKE IOBVOL,O 
12100 POKE IOBTRK,TRK 
12120 POKE IOBSEC,SEC 
12140 POKE IOBBUF,O: REM $2000 
12160 POKE IOBBUF+1,32 
12180 POKE IOBCHD,1: REM READ 
12200 GOSUB 600: REM RWTS 
12220 IF ERR=O THEN 12260 
12240 POKE 34,3: POKE 35,19: CALL -936: GOTO 12280 

12260 A$="L":L=1: GOSUB 14000 
12280 RETURN 
13000 REH 
13001 REM WRITE COMMAND 
13002 REH 
13010 ERR"'O 
13020 Pa2: GOSUB 1200: REH PARSE T,S 
13040 IF ERRaO THEN 13080 
13060 ERR=O: PRINT" '~\ ???SYNTAX???": RETURN 

13080 POKE IOBVOL,O 
13100 POKE IOBTRK,TRK 
13120 POKE IOBSEC,SEC 
13140 POKE IOBBUF,O: REH $2000 
13160 POKE IOBBUF+1,32 
13180 POKE IOBCHD,2: REH WRITE 
13200 GOSUB 600: REM RWTS 
13220 RETURN 
14000 REM 
14001 REH LIST OTHER HALF BUFFER 
14002 REH 
14010 ERR=255 
14090 IF LEN(A$)>1 THEN PRINT " \ ???EXTRA I 

GNORED???" 
14100 POKE 34,2: POKE 35,19: CALL -936 
14120 IF (L<1) OR (L>2) THEN 14160 
14140 GOSUB 14100+L*200 
14160 RETURN 
14300 REM FIRST HALF OF BUFFER 
14310 POKE 2,BUF1 HOD 256: POKE 3,BUF1/256 
14320 FOR LINEaO TO 15: POKE 2,(BUF1+LINE*8) HOD 

256 
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14330 VTAB LINE+4: TAB 1 
14340 CALL 8448: REM DUMP 
14350 NEXT LINE 
14360 ERRaO:La2: RETURN 
14500 REM SECOND HALF OF BUFFER 

Disk Operating System 

14510 POKE 2,BUF2 HOD 256: POKE 3,BUF2/256 
14520 FOR LINEgQ TO 15: POKE 2,(BUF2+LINE*8) HOD 

256 
14530 VTAB LINE+4: TAB 1 
14540 CALL 8448: REM DUMP 
14550 NEXT LINE 
14560 ERR=O:L=1: RETURN 
15000 REM 
15001 REM CHANGE COMMAND 
15002 REM 
15010 ERR=O 
15020 IF LEN(A$)>4 THEN 15060 
15040 PRINT " k ???NOT ENOUGH???": RETURN 
15060 HEX$•"20":HEX$(3)=A$(2) 
15080 HEX$( LEN(HEX$)+1)=" N E88AG" 
15100 GOSUB 500: REM MONITOR 
15120 RETURN 
28000 REM 
28001 REM GET AN INSTRUCTION 
28002 REM 
28020 POKE 34,20: POKE 35,23 
28030 VTAB 23: TAB 1 
28060 PRINT".";: INPUT A$: IF LEN(A$)<1 THEN 28060 

28080 FOR INSTal TO CMDSIZ 
28100 IF A$(1,1)=CMD$(INST,INST) THEN RETURN 
28120 NEXT INST 
28140 PRINT " k ???INVALID COHMAND(";CMD$;" 

)???" 
28180 GOTO 28060 
29000 REM 
29001 REM INITIAL MENU 
29002 REM 
29020 TEXT CALL -936: POKE 50,63: TAB 16: PRINT 

"DISK ZAP": POKE 50,255 
29040 PRINT : PRINT "THIS PROGRAM WILL READ, WR 

ITE, AND" 
29060 PRINT "EXAMINE ANY SECTOR ON THE DISK IN" 

,_ 29080 PRINT "THE CURRENT DRIVE. THE CONTENTS 0 

-

F" 
29100 PRINT "THE CURRENT SECTOR (LAST READ) HAY 

BE" 
29120 PRINT "CHANGED. BACKUP ANY WORK BEFORE Y 

OU" 
29140 PRINT "USE THIS PROGRAM!!!" 
29160 PRINT : PRINT "THE COMMANDS ARE:" 
29180 TAB 5: PRINT "R<T>,<S> ••• READ TRACK, SE 

CTOR" 

403 
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29200 TAB 5: PRINT "W<T>,<S> ••• WRITE TRACK, S 
ECTOR" 

29220 TAB 12: PRINT "L ••• LIST HALF BUFFER" 
29260 TAB 5: PRINT "CNN: ETC ••• CHANGE AT $NN" 

29300 TAB 12: PRINT "Q ••• QUIT THIS PROGRAM" 
29320 REM 
29340 REM 
29380 REM 
29400 RETURN 
30000 REM 
30001 REM MAIN LINE 
30002 REM 
30010 TEXT : CALL -936: TAB 16: PRINT "DISK ZAP 

30012 VTAB 11: TAB 10: PRINT" ••• INITIALIZING 

30020 DIM HEX${150): DIM A$(128) 
30030 CMDSIZ~5: DIM CMD$(CMDSIZ) 
30032 CMD$c"QR\ILC" 
30034 BUF1=8192: REM $2000 
30036 BUF2~BUF1+128 
30040 D$="": REM CTRL/D 
30060 NSEC=16: REM DOS 3.3 
30062 HEX$="2100:AO 00 A5 02 20 DA FD A9 AD 20 

FO FD A9 AO 20 FO N E88AG" 
30064 GOSUB 500 
30066 HEX$="2110:FD AO 00 B1 02 20 DA FD A9 AO 

20 FO FD C8 CO 08 N E88AG" 
30068 GOSUB 500 
30070 HEX$="2120:DO F1 A9 1D 18 65 28 85 28 A9 

00 65 29 85 29 AO N E88AG" 
30072 GOSUB 500 
30074 HEX$="2130:07 81 02 91 28 88 10 F9 60 N E 

88AG" 
30076 GOSUB 500 
30080 HEX$="300:A9 B7 AO E8 20 D9 03 A9 FF BO 0 

2 A9 00 85 00 60 N E88AG" 
30100 GOSUB 500: REM MONITOR COMMAND 
30140 IOB=-18456: REM $B7E8 
30160 RWTS=768: REM $300 
30180 IOBDRVNaiOB+2 
30200 IOBVOLai0B+3 
30220 IOBTRKaiOB+4 
30240 IOBSECciOB+5 
30260 IOBBUF=IOB+8 
30280 IOBCMD=I08+12 
30300 IOBCODEaiOB+13 
30320 IOBOLDVaiOB+15 
31000 GOSUB 29000: REM MENU 
31020 GOSUB 28000: REM GET INSTRUCTION 
31040 IF INST=1 THEN 32000: REM Q~QUIT 

31060 GOSUB 10000+(1000*INST}: REM INTERPET 
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31080 IF ERR#O THEN 31500 
31100 GOTO 31020 
31120 REM 
31500 REM 
31501 REM ERROR ROUTINE 
31502 REM 
31520 POKE 34,20: POKE 35,23: VTAB 23 
31530 TAB 1 
31540 A$::"DISK": IF ERR=128 THEN A$=="READ" 
31542 IF ERR::16 THEN A$~"PROTECT" 
31544 IF ERR=32 THEN A$="VOLUME" 
31560 TAB 8: PRINT "???";A$;" ERROR???" 
31640 GOTO 31020 
31650 REM 

32000 TEXT : CALL -936 
32010 PRINT "BYE!": PRINT 
32767 END 

Table 7-1. DOS Locations After Bootstrap 

Track 

Sector 0 1 1 

0 B6 AI Bl 
I B7 A2 B2 
2 B8 A3 B3 
3 B9 A4 B4 

4 BA AS B5 
5 BB A6 
6 BC A7 
7 BD AS 
8 BE A9 
9 BF AA 

A AB 
B AC 
c 90 AD 
D 9E AE 

E 9F AF 
F AO BO 

before INITing any disk you don't want to force reloads. 

405 

Finally, the Stage Two bootstrap finishes by forcing a DOS cold 
start at $9084. 
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The DOS cold start routine sets up buffers and HIMEM, creates 
vectors, especially in Page Three, and grabs the CSW and KSW ~ 

hooks, and finally runs the HELLO program. You can cold start DOS 
again if you want it to initialize itself from scratch by using the Page 
Three vector: 

$303 jumps to cold start 

A less drastic choice is the warm start that simply recognizes the cur
rent BASIC again and jumps to the BASIC warm start at $E003. 
Again, use the Page Three vector: 

$3DO jumps to warm start 

A warm start won't clobber the current BASIC program, so it is a 
good choice when you want to re-enter BASIC after working with the 
Monitor by typing 3DOG. 

The greeting program is run automatically at the end of a DOS 
bootstrap. If the program is in Applesoft and Integer is resident in
stead, the DOS looks for a program called APPLESOFT on disk to 
load into RAM. This is an earlier version of Applesoft, and not 
described in this book. System disks usually have an alternate greeting 
Integer program called APPLESOFT that loads FPBASIC into the 
16K RAM area instead. 

For situations where your HELLO program won't know what 
BASIC, if any, is available, or must setup a new memory map, you 
will want a binary HELLO. Ordinarily, DOS won't BRUNa greeting 
program; it wants to use the RUN command instead. You can change 
this by typing 

9E42: 34 

from the Monitor into a 48K DOS 3.3, then INITing your new slave 
disk. After, delete the HELLO file and BSAVE your new binary 
HELLO in its place. 

When any HELLO program loads and runs, it must be below 
$9600, to avoid overwriting DOS or its buffers. After it is loaded, you 
can change the map and relocate a binary program to fit between DOS 
and its buffers. This protects it from changes in MAXFILES and 
makes it quite invisible to BASIC. Here's how. 

,., 
I 

.... 
! 

,.. 
I 
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First, load the binary program into low RAM, $801. If you 
BSA VEd it from there, the bootstrap routine will do this. Then move 
the program upmemory to its resting place below $9DOO, overwriting 
the buffers. Then, change the value of the pointer at $9000: it pointed 
to the first buffer below itself; now you point it to a location at least 
38 bytes below your program. And finally you do a JSR $A251 to 
rebuild the buffers below your program. This leaves your program 
between the buffers and the start of DOS proper at $9DOO. The 
HIMEM will be at the beginning of the new buffer's area, with your 
program hiding in DOS. See Fig. 7-1 and. Table 7-2. 

Once it is established - between DOS and buffers or elsewhere -
you may have to explore the Apple to see what version it is. Then you 
can set soft switches and put out messages if you don't have the fea
tures in the machine you need. The Monitor version can be found by 
looking at $FBB3: a $38 is in Standards, a $EA is in Autostarts, and a 
$06 is in lie Monitors. The BASIC can be identified at $EOOO: $4C for 
Applesoft, $20 for Integer. If you need certain peripheral cards, this 
would be the time to check for them, too. Disassemble them at $Cn00 
- where n is the slot - to see what unique values you can identify 
them with. Don't use the $C800.C8FF ROM area; it's not unique to 
any one slot. 

You can allow more space on data disks than on program disks. 
Program disks need DOS on Tracks Zero, One, and Two. Data disks 
can be made without DOS on Tracks One or Two, freeing 32 sectors 
for additional file storage. Here's how. 

Make a new slave disk the usual way, INITing a HELLO program. 
Delete the HELLO file. Then, use a Disk Zap utility to alter Track 
Zero/Sector Zero as follows: 

FE: OA 01 

Then, change Track Zero/Sector One: 

00: 20 93 FE 20 89 FE 20 58 
08: FC A6 28 90 88 CO 20 31 
10: F8 BA CA 9A 68 85 30 A9 
18: 2A 85 3C AO 00 81 3C FO 
20: 06 20 ED FO C8 DO F6 4C 
28: 00 EO C4 C1 D4 C1 AO CF 
30: CE CC D9 AO AD AO CE CF 
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38: AO C4 CF 03 AO CF CE AO 
40: C4 C9 03 CB 87 00 

where the chunk $2A.44 is a screen message and the zero at $45 ends 
that message. On Track 17/Sector Zero, the VTOC, you can release 
the Tracks One and Two by 

:I .., ... 
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Fig. 7-t. Hiding a binary program in DOS. 
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Table 7-2. Hiding a Binary Program 

STEP 1: DOS uses its buffers to BLOAD the program to low RAM at 
$800. 

STEP 2: When run, the program first copies itself to high RAM, just 
below $9000, and overwrites lhe buffers. 

STEP 3: After setting $9D00.9D01 to point 38 locations below the 
program copy, the program calls DOS at $A251 that rebuilds 
the buffers below the copy. 

STEP 4: Afterwards, the program is abandoned, leaving it in copy 
between DOS and its buffers. 

3C: FF FF 00 00 FF FF 

when so changed. The catalog remains intact and can be used by DOS, 
but the disk won't bootstrap; it gives an error message instead. 

Slave disk patches are summarized in Table 7-3. 

Table 7-3. Summary of Slave Disk Patches 

9FA2:34 Allows binary HELLO 

AE34: 60 Removes CATALOG pauses 

BFD3: EA EA EA Removes forced re-loads of BASIC 
NOTE: Use the Monitor to make modifications to DOS before INITing a new, modified slave disk. 

7 .1.2 Disk Files 

Files on disk are managed by accessing disk sectors for reading, up
dating, and writing. On each disk, access is controlled beginning with 
one sector, the VTOC (see Fig. 7-2). 

The VTOC or Volume Table of Contents resides at the same loca
tion on all disks - Sector Zero of Track 17. From there, the DOS File 
Manager can find all other sectors it wants. This is because of two 
parts of the VTOC, the Track Bit Map and the First Directory Link. 
The Track Bit Map shows all 560 sectors on the disk as being either in 
use or free. Then, the Link to the first directory sector tells DOS where 
the directory of files begins. From there, each entry points to the files 
themselves; files that are managed with indexes are called Track-Sec
tor-Lists or TSLs. Each sector in the chain from VTOC to data can be 
traced by links. 
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01 

VTOC 

I 1ST I 1ST 

ri 
DATA 

2ND- SECTOR 

•~r 1 RECTORY 
SECTOR TO TSL 

2ND I OF FILE 
1ST FILE DATA 

2ND FILE 
SECTOR 

3RD FILE 
4TH FILE 
5TH FILE 

6TH FILE 
7TH FILE I 122ND I 122NO DATA 

HUT 1 I SECTOR 
!RECTORY NEXT SECTOR TSL 

1ST FILE SECTOR 

2ND FILE 
3RD FILE 1ST I I 

123RO 
4TH FILE 2ND-~ DATA 

5TH FILE 
SECTOR 

6TH FILE 

7TH FILE I 24TH I 1 
DATA 

SECTOR 

00 IS "LAST SECTOR· 

! 
00 IS "lAST SECTOR· 

•·lg. 7-2. File management sector linkage. 

Each link consists of two bytes, track number and sector number. 
Like a memory address pointer inside the Apple, a link points from 
sector to sector on the disk. The first link in the chain is in Bytes One 
and Two of the VTOC; it points to the sector containing the first seven 
directory entries. This link is usually $11 and $OF, pointing to Track 
17, Sector 15. 

Within each directory entry is the CATALOG information for one 
file and another link. This file link points to the TSL of the file where 
an entire index of links resides, pointing sequentially to all the data 
sectors of the file. 

Each sector containing a set of directory entries or indexes may not 
be large enough. For instance, a directory of ten entries won't fit into 
one sector; there is only enough room for seven. The remaining three 

,... 
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must go elsewhere. So, the directory sector has a link to point to the 
next directory sector. This way, a list of directory sectors can be 
chained together with the last one having zeros in its link. Similarly, 
the TSL can hold more than the 122 data links if the data file should 
exceed 122 sectors. Like the directory sector list, the TSL can build a 
list to extend itself by using a link to the next TSL sector. This way, 
there is no logical limit to the lengths of the directory and its files. 

The entire structure of link lists on the disk begins in the VTOC with 
the link to the first directory sector. 

The VTOC also keeps track of which sectors have been allocated. 
Each sector is represented by one bit in the Track Bit Map: one track 
of sixteen sectors in two bytes. For each byte pair, the first byte keeps 
Sectors 15 to 8 and the second byte keeps Sectors 7 to 0. A bit that is 
on (I) flags the sector as free; a bit that is off (0) flags the sector as in 
use. Each track actually has four bytes, but the last two are unused 
and zeroed. With 35 tracks on disk, the Track Bit Map occupies 4 x 35 
or 140 bytes in the VTOC. See Table 7-4. 

With the Track Bit Map and the link lists, the disk management is 
maintained, starting at the VTOC. 

Table 7-4. Volume Table of Contents (VTOC) 

Track 17 /Sector 0 

00 Unused 
01.02 Link to first directory sector 
03 DOS release number 
04.05 Unused 
06 Volume number of this disk 
07.26 Unused 
27 Number of indexes per TSL sector ( = 122) 
28.2F Unused 
30 Last allocation: track number 
31 Last allocation: direction 
32.33 Unused 
34 Number of tracks/disk ( = 35) 
35 Number of sectors/track ( = 16) 
36.37 Number of bytes/sector ( = 256) 
38.C3 Track Bit Map: Tracks 0 ... 34; four bytes each 
C4.FF Unused space for further entries 

Detail of Track Bit Map Entry 

00 Bits 7 ... 0 on for Sectors 15 ... 8 free 
01 Bits 7. . . 0 on for Sectors 7 . . . 0 free 
02.03 Unused (==0) 



412 Appl~ Programmer,s Handbook 

The directory usually starts in Track 17 /Sector 15. Aside from the 

,... 
I 

link to the next directory sector, it just consists of seven entries of 35 ~ 
bytes each. See Table 7-5. 

00 
01.02 
03.0A 
OB.2D 
2E.50 
51.73 
74.96 
97.89 
BA.DC 
DD.FF 

00.01 
02 
03.20 
21.22 

Table 7-Sa. Directory Sectors (Starts at 17 /15) 

Unused 
Link to next Directory sector (00 =none) 
Unused 
Directory entry. 1st 
Directory entry. 2nd 
Directory entry, 3rd 
Directory entry, 4th 
Directory entry, 5th 
Directory entry, 6th 
Directory entry, 7th 

Table 7-Sb. Detail of a Directory Entry 

Link to file storage (TSL) 
File type 
File name 
File length in sectors 

NOTE: A zero track number in the link flags entry as unused. 

Table 7-Sc. File Type Codes 

00 Text 80 locked Text 
01 Integer 81 locked Integer 
02 Applesoft 82 locked Applesoft 
04 Binary 84 locked Binary 
08 S-type 88 locked S-type 
10 Relocatable 90 locked Relocatable 
20 A-type AO locked A-type 
40 B-type co locked B-type 

NOTE: Relocatable files are defined in Apple's DOS Toolkit Assembler - sec manual. Types S, A, and B not de
fined at time of this writing. 

Each entry has the link to its file as the first two bytes. A zero track 
number in the link flags the entry as unused, so that Track Zero can
not be reached from the directory. This is why any of Track Zero can
not be released for files storage when data disks are made. When a file 
is DELETEd, a zero is written to the first byte of the entry to flag it as 
unused, the original track number is copied to the last byte of the file
name, Byte $20 of the entry, and all the file sectors are freed in the 
Track Bit Map in the VTOC. Until these sectors are reused by 

~ 
I 

r 
I 
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another file, all of the DELETEd file information is still available. 
This is the basis of DELETE recovery schemes found in some disk 
utility packages. 

The CATALOG command displays most of the directory entry. 
The file length is kept in two bytes (lo/hi) and can be greater than 255; 
however, the CATALOG only shows the low byte value. If you have a 
file of 255 sectors, that will show in the catalog, but if you increase the 
file size to 256 the CATALOG shows zero. The information is kept in 
the directory, however. 

Occasionally un unprintable character gets itself hidden in a file 
name. A dump of the directory shows it quite clearly but the CAT A
LOG won't. This is annoying because you will try to reference the file 
without any success because you don't really know its directory name. 
For instance, if a file called DOODLE has a ctrl/0 hidden between the 
two printable "O"s, then when you type 

LOAD DOODLE 

you just get FILE NOT FOUND error. Whenever this happens, check 
the file name in the directory by dumping it with a Disk Zap or an im
proved CATALOG utility. You probably will find one or more hidden 
control characters. 

Where seven directory entries have been made, the eighth entry 
must go into another sector. This is usually Track 17/Sector 14. You 
can confirm this by looking at the link in Track 17/Sector 15: second 
and third bytes. If any directory sector has a zero directory link there, 
it means that there are no more sectors of the directory. There may be 
as many as fifteen directory sectors in Track 17; these will hold 15 x 7 
or 105 directory entries, maximum. 

Tracks 3 to 16 and Tracks 18 to 34 are used for data storage for a 
total of 496 sectors. If you make a data disk without DOS, then releas
ing Tracks One and Two increases your files storage area to 528 sec
tors. For each file you create, at least two sectors are used for file stor
age. A small file whose data fits into one sector of less than 256 bytes 
uses one sector for data and one sector for an index. These data 
sectors are called the TSL - track sector list. Then as more sectors of 
data are added later, they may be linked to the file in its TSL. So, the 
file storage is always at least one sector larger than the size of its data. 
See Table 7-6. 
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Table 7-6. Layouts of File Sectors 

Track-Sector-List (TSL) Sectors 

00 Unused 
01.02 Link to next TSL sector (0 = end) 
03.08 Unused 
OC.FF Indexes to file sectors: 122 links of two bytes each 

Text File Format 

00 ... (negative-ASCII record) 80 
(negative-ASCII record) 80 
... 
(negative-ASCII record) 80 
... 
00 

Records delimited by CR characters; file terminated by a zero byte. 

Integer File Format 

00.01 Program length in bytes 
02 ... Tokenized program 

Applesoft File Format 

00.01 Program length in bytes 
02 ... Tokenized program 

Binary File Format 

00.01 Address of memory image 
02.03 Length in bytes 
04 ... Binary image of memory 

Each file has one, perhaps more, TSL sectors. The first TSL sector 
is linked from the directory entry and indexes the sequence of data sec
tors of the file. It consists of 122links: each link pointing to a data sec
tor. The first link points to the first data sector, the second link points 
to the second data sector, and so on. If a file has more than 122 data 
sectors, a second TSL sector is linked from the first by the second and 
third bytes of the TSL. For most files, this link will be zero, indicating 
no further TSL sectors. As data and TSL sectors are allocated to the 
file, links are written and the Track Bit Map updated in the VTOC to 
show them in use. Similarly, when a file is DELETEd, the Directory 
link is zeroed and the sectors released in the Track Bit Map. The entire 
file, including TSL sectors and data sectors, is maintained this way. 
When a file is found from the link in its directory entry, it can be 
scanned sequentially by simply going through the TSL from top to 
bottom until the end of file is reached. From each TSL link, the data 
sector can be accessed. 

r-' 
I 
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Within each file, the data varies. For each file type, the end of file is 
recognized in a different way. For instance data in text files consists of 
negative-ASCII code only with a zero byte marking the end of file. 
This is the simplest method. When read, text files are accessed through 
the DOS File Manager one record at a time; each record recognized by 
a carriage return character at its end. This scheme is different than 
that used by the other file types. 

Program files of Applesoft and Integer have many different codes. 
They have ASCII and keyword tokens so the end of file is given by the 
first two bytes of the data instead. For the first sector of the data only, 
the first two bytes contain the length in bytes (lo/hi) of the memory 
image of the program. Then DOS uses this number in its LOAD com
mand to know when the end of file has been reached. 

Binary files use a similar scheme. In the first sector of data, they 
keep both the starting address and the length of their binary image. 
This scheme occupies the first four bytes of data with the memory im
age to be loaded following. All file types, however, keep the end of file 
information one way or another with the data and not in the TSL. 

7.1.3 Disk Format 

The physical sequence of sectors on each track is not the one you 
normally use. For a given track, Sector One follows Sector Zero with 
six other sectors between them. Sector One is actually in the physical 
sector number seven. See Table 7-7. 

To compare the logical addressed sectors with the physical posi
tional sectors, look at the Sector Interleaving table. What this scheme 
of addressing does is to allow a large gap between logical sectors to 
give the routines time between sector accesses. The time it takes to ac
cess a sector is then available sixfold before the next sequential sector 
need be accessed. No space on disk is lost: all logical sectors are there 
in the sixteen physical spaces. 

This scheme was first adopted in DOS 3.3. Before that, thirteen sec
tor disks under DOS 3.1, 3.2, and 3.2.1 all used a different scheme 
that is now obsolete. The newer sixteen sector disk system introduced 
with the Pascal Language system uses a simple sector interleaving sys
tem just described. The DOS 3.3 scheme is compatible with the Pascal 
Language system, but not equivalent. That is to say, DOS 3.3 can be 
used to read and write disks formatted by the Pascal Language sys
tem, but the sectors have different meanings . 
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Table 7-7. Sector Interleaving 

Physical Logical 

0 0 

I D 

2 B 

3 9 

4 7 

s s 
6 3 

7 I 

8 E 

9 c 
A A 

B 8 

c 6 

D 4 

E 2 

F F 

,., 
I 

,., 
I 

In Pascal, the disk is formatted like a DOS disk, but the FILER 
considers the disk to have 280 blocks of a data capacity of 512 bytes 
each. So, each track contains eight blocks. The Pascal block numbers, r 
Table 7-8, allow you to convert between the two systems if you 
want to access one system from the other's disks. From Pascal, you 
will use the BLOCKREAD and BLOCKWRITE; from DOS you will ~ 
use the RWTS described in this chapter. 

Table 7-8. Pascal Block Numbers 

Pascal Block 
(mod 8) DOS sectors Physical sectors 

0 O,E 0,8 

I D,C 1,9 

2 B,A 2,A 

3 9,8 3,8 
4 7,6 4,C 

s 5,4 5,0 

6 3,2 6,E 

7 l,F 7,F 

NOTE: Track number = Block DIV 8. 

t-1 
I 
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Whenever you INIT a new disk, the first thing that DOS does is to 
completely format the disk by writing to each and every possible loca
tion. This completely destroys any previous contents of the disk. Also, 
it creates the tracks and sectors by the method known as soft sector
ing. 

If you look at a disk, you will see perhaps a small hole near the big, 
central hole. On some disks that are labeled hard sectored, you will see 
a ring of these holes around the hub hole. On hard-sectored systems, 
these holes tell the hardware where the sectors are by chopping the 
light from a small lamp into sync pulses. Each sync pulse tells the disk 
controller that a new sector is coming under the read/write head. But, 
the Apple uses soft-sectoring instead. On soft-sectored systems, the 
disk is formatted so that each track has a long burst of special bytes 
between each pair of sectors. Then the track is simply read and these 
special bytes are recognized by the DOS in the data stream. So, while 
the hard-sectored disks have sync pulses, soft-sectored disks like the 
Apple uses must be read to detect sync bytes that were formatted on 
the disk earlier. 

There are sixteen sectors on each track. When formatted, they are 
made with sync bytes that have 10 bits each instead of the usual 8. The 
format is 8 bits on, 2 bits off. These sync bytes partition the track into 
sectors of two fields each as shown in Fig. 7-3. 

Each sector contains an address field and a data field. The address 
field has the volume, track, and sector numbers. The data field has the 
256 bytes you know as its contents encoded into it. There are a few 
sync bytes between the two. 

Each track begins with a burst of sync bytes. Then the first sector is 
formatted with an address field, a few more sync bytes and a data 

14 
BYTES 

1 
.ADDRO~ 
, l l 

40 TO 95 5 TO 10 
TYPICAL TYPICAL 

GAP GAP 

349 
BYTES 

1 
DATA 0 

GAPS ARE 10-BIT SYNC BYTES 
FIELDS ARE 8·BIT ENCODED BYTES 

Fig. 7-3. Formatted disk track gaps and fields. 

14 349 
BYTES BYTES 

1 I , 
• ADDRI ~DATAl> 

I I 7 

I 0 TO 24 5 TO 10 
TYPICAL TYPICAL 

GAP GAP 
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field. A burst of sync bytes follow before the second physical sector is 
made. When the last sector is formatted, its data field overwrites the 
first few sync bytes of the track. This way, the sync bytes take care of 
small variations in speed. 

Formatting is done for the entire disk, from Track Zero to Track 
35. Each track is made with the given volume number, the track num
ber, and the logical sector numbers in the address fields of each sector. 
All gaps between sectors and fields are filled with 10-bit sync bytes; 
the fields themselves are made with 8-bit bytes. 

Address fields are fourteen bytes each. They start and end with 
special values that make sure the READ routine knows where it is at. 
The prefix bytes are $D5, $AA, and $96; the suffix bytes are $DE, 
$AA, and $EB. This leaves eight bytes between them for address 
information: volume, track, sector, and checksum. Each number is 
one byte in value and is put into two bytes each, see Fig. 7-4. 

l 
PREFIX 

J 

FOURBIT 
ENCODED 

t 
SUFFIX 

1 

Fig. 7-4. Sector address fields. 

~ 
I 
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Each byte of header data is encoded as two bytes on the disk in the 
address field. This is done because of restrictions in reading bytes in 
synchronization. What happens is that the hardware can't read any 
byte value; they must have their bit 7s on and they can't have two zero 
bits contiguously. Of the many ways data can be encoded to meet 
these requirements, address fields use a four-bit encoding scheme that 
works as follows. 

Consider any byte o f eight bits you wish to encode as 

, For example, encode $3B which is 00111 01 1 in binary. The byte is 
mapped to two bytes having their odd bits always on as 

n 
-

-

so that the $3B becomes 

10111111 and 10111011 

when encoded. The $3B has been mapped to $87 and $BB. 
You can decode two bytes from an address field to its value in o ne 

byte by reversing the steps. See the hardware protocols in Section 
7.2.5. 

If four-bit encoding was used for data fields as well, the track wou ld 
only hold ten sectors because each chunk of 256 bytes would have to 
be encoded to 512 bytes. So, the data fields use another encoding 
scheme called six bit that maps 256 bytes to 342 bytes instead. A litt le 
more complicated, the six-bit scheme gives 16 tracks per sector. 

Like the address fi eld, the data field has a prefix of three bytes, 
encoded contents, and a suffix of three bytes. The prefix for data 
fields is $D5, $AA, and $AD; the suffix is the same: $DE, $AA, and 
$EB. The contents are encoded as six bits of data and a checksum. See 
Fig. 7-5. 

Here's how the sixbit encoding scheme works. The 256 bytes are 
converted to 342 bytes that have bits 7 and 6 in each byte as zero. 
These six-bit values are in the range from $00 to $3F. A table called 
the Write Translate Table (see Table 7-9) looks up a unique legal byte 
for each six-bit value. Consider the following example. 
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SIXBII 
EHCOOEO 

I 
SUffiX 

I 

Fig. 7-5. Sector dal:1 fields. 

The negative-ASCII string "HELLO" has the six values: $C8, $C5, 
$CC, $CC, $CF, $AO. Write in binary and regroup the bits in chunks 
of six each: 

$(8 110010 00 
$(5 11000101 
$(( 11 001 100 
$CC 110011 00 
$CF 11 00 1111 
$AO 1 0 1 00000 

Write each group of six bits as a byte of two zero bits and six data bits: 

00110010 = $32 
00001100 = $0( 
00010111 = $17 
00001100 = $0( 

-

-
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Table 7-9. Write Translate Table 

Six bit Code Six bit 

00 96 10 
01 97 II 
02 9A 12 
03 9B 13 
04 90 14 
05 9E 15 
06 9F 16 
07 A6 17 

08 A7 18 
09 AB 19 
OA AC lA 
OB AD IB 
oc AE IC 
OD AF lD 

OE B2 IE 
OF 83 IF 
20 06 30 
21 07 31 
22 09 32 
23 DA 33 
24 DB 34 
25 DC 35 
26 DO 36 
27 DE 37 
28 OF 38 
29 E5 39 
2A E6 3A 
2B E7 3B 
2C E9 3C 
20 EA 3D 

2E EB 3E 
2F EC 3F 

NOTE: AA and 05 are reserved codes . 

00110011 $33 
00001100 = $0( 
00111110 = $3E 
00100000 = $20 

Code 

B4 
B5 
B6 
B7 
B9 
BA 
BB 
BC 
BD 
BE 
BF 
CB 
CD 
CE 
CF 
03 
ED 
EE 
EF 
F2 

F3 
F4 
F5 
F6 
F7 

F9 
FA 
FB 
FC 
FD 
FE 
FF 
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The six values are now mapped to eight six-bit values having the same 
bit sequence. To get byte values that can be put on disk, use a table in 
RWTS called a Write Translate Table and lookup each byte to get: 
$EF, $AE, $BC, $AE, $F2, $AE, $FE, and $06. These are the six bit 
encoded values of the ASCII string "HELLO". 

To transform raw data back to original values, the process is 
reversed. First, use a table called the Read Translate Table in R WTS 
to lookup the six-bit value for each encoded byte. Then regroup the six 
least significant bits from each six-bit value together to form eight-bit 
bytes. From 242 bytes of sixbit you will get 256 bytes of eight-bit data 
bytes. 

Each bit is read or written to the disk in four microseconds. With 
the disk rotating at 300 revolutions per minute, this provides a 
capacity of about 50,000 bits per track. Each eight-bit byte can be 
accessed in 32 microseconds in this system. Although the bytes are 
used in the Apple with a crystal-controlled clock, remember that the 
bits on disk are clocked from the recorded pulses on the disk. For this 
reason, constant synchronization must be made. 

The first method to ensure synchronization is to provide clock 
pulses interleaved with the data bits on the disk. Each bit is recorded 
as a cell consisting of one clock pulse followed by the data bit. A one 
bit will be represented by two pulses, clock and data. A zero bit will be 
represented by one pulse, clock only. Each of these bit cells is four 
microseconds: two microseconds for the clock pulse and two micro
seconds during which a bit of data is defined as pulse/no pulse. The 
data stream then is interleaved with clock pulses that the hardware 
must separate in order to read. 

To separate clock and data, the hardware needs two conditions met. 
First, there can be no more than two zero bits consecutive. Second, all 
bytes must start with a one bit as bit 7. 

When it starts reading a track, there is no way of knowing where it 
is. The first bits are arbitrarily shifted into a byte latch even though 
the odds are one in eight of being the start of a byte. However, if it 
looks for sync bytes, then it checks to see that all bits are on. If any bit 
is off, then it tries again with the next bit. After several tries, this 
synchronizes the byte reading to give true bytes. 

The situation is similar when writing. A byte must be supplied each 
32 clock cycles. If a longer time is taken, then zero bits are written. 
The one case where this is done deliberately is in the routine that 
creates the sync bytes. It writes an $FF, then wastes enough time for 

r" 
I 
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two zero bits to get written before writing the next $FF. But normal 
reading and writing of bytes is done in 32-cycle loops. See Fig. 7-6. 

Within the bytes, the hardware can stay synchronized with clock 
pulses interleaved with data bits. For longer times, the sync bytes must 
align the hardware to read and write bytes that agree with the sector 
fields. 

- 4ps-~ 4ps-l-4ps-r-4ps-r 4ps-l-4ps-l-4ps-l-4ps-
1-------------------32~--------------------l 

Fig. 7-6. Example of disk data byte (value $87). 

7.2 PROTOCOLS 

7 .2.1 Command 

The protocol you already know is the highest level you can use. You 
use these DOS commands in one of three ways. First, you can handle 
entire files at a time using BLOAD, BRUN, BSAVE, CHAIN, 
DELETE, EXEC, LOAD, LOCK, RENAME, RUN, SAVE, UN
LOCK, and VERIFY. Second, you can manipulate files in detail by 
working within their structures, their records and fields. The com
mands you use to manipulate text files this way are: APPEND, 
CLOSE, OPEN, POSITION, READ, and WRITE. And third, you 
have some universal housekeeping commands: CATALOG, FP, IN#, 
INIT, INT, MAXFILES, MON, NOMON, and PR#. All three types 
of commands are summarized in Table 7-10 which also lists their 
syntax. 

Each command is more or less independent of the others in the 
sense that you can use them in turn without much more than a rough 
idea of what they do. The exception is the second group which is the 
file structure commands. 

In this section, you can find each command described in alphabetic 
order; the file manipulation commands are described at the end in a 
separate group. 

BLOAD f {,Aa} {,Ss} {,Dd} {, Vv} 
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Table 7-10. DOS Command Syntax 

Command Syntax 

APPEND f, Ss, Dd, Vv, Lj 

BLOAD f, Aa, Ss, Dd, Vv 

BRUN f, Aa, Ss, Dd, Vv 

BSAVE f, Aa, Lj, Ss, Dd, Vv 

CATALOG Ss, Dd 

CHAIN f, Ss, Dd, Vv 

CLOSE f 
DELETE f, Ss, Dd, Vv 

EXEC f, Rr, Ss, Dd, Vv 

FP Ss, Dd, Vv 

IN# s 

INIT f, Ss, Dd, Vv 

INT 

LOAD f, Ss, Dd, Vv 

LOCK f, Ss, Dd, Vv 

MAXFILES n 

MON C, I, 0 ~ 
I 

NOMON C, I, 0 

OPEN f, Lj, Ss, Dd, Vv 

POSITION f, Rr 

PR# s 

READ f, Rr, Bb 

RENAME f, g, Ss, Dd, Vv 

RUN f, Ss, Dd, Vv 

SAVE f, Ss, Dd, Vv 

UNLOCK f, Ss, Dd, Vv 

VERIFY f, Ss, Dd, Vv 

WRITE f, Rr, Bb 

f, g == file names 
s == slot: 1 to 7 -d == drive: 1 or 2 
v = volume: 0 to 254 
r = record: 0 to 32767 
j = record size: 1 to 32767 
b = byte number: 0 to j 
a = stan/load address (note: hex number prefixed $) 

i 
: 
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Loads a binary file. You can override the start address of the file 
with the A option; for example, 

BLOAD CHARACTERS,A$4000 

loads the file at $4000 regardless of the file's own start address 
parameter. You can't a lter the length, however. 

What you can do is find the start address and length of the 
BLOADed file. Call this routine immediately a fter the BLOAD, be
fore any other DOS command is used: 

JSR $03DF get File Manager parameters 
STY $40 
STA $41 
JSR CROUT output a CR 
LDY #$08 point to address parameter 
JSR HEX OUT and output it. 
JSR PRBLNK three spaces out 
LDA #$06 point to length parameter 
JSR HEXOUT and output it . 
JMP CROUT output a CR and return 

HEX OUT LDA ($40}, y low byte 
TAX 
INY 
LDA ($40). y high byte 
JMP PRNTAX print them and return 

The routine uses Monitor routines from C hapter Two. 

BRUN f {,Aa} {,Ss} { ,Dd} {, Vv} 

Loads a binary fi le, just like the BLOAD command. When finished 
with the load, it transfers control to the new loaded file instead of re
turning. The file must have program code at its start address even if it 
is only the three bytes of a JMP instruction. The load address is 
optional, just like the BLOAD command. 
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BSA VE f,Aa,Ll { ,Ss} { ,Dd} {, Vv} 

Saves a binary file. If the file is new, a directory entry is created. 
The file name, start address, and length are mandatory; the slot, 
drive, and volume are optional. The start address you give must be the 
first location of the binary image in memory and becomes the default 
load address. Remember, if you are making a binary HELLO file, you 
must alter the DOS as described earlier; the patch is 

9E42: 34 

made to DOS before the INIT command. 

CATALOG {,Ss} {,Dd} 

Displays most of each directory entry. As mentioned earlier, beware 
of hidden characters, or the CATALOG won't reveal the file names. 
Also, files using more than 256 sectors will show only the low byte of 
the file size: a number from 000 to 255 even though the directory size r' 
is larger. 

CHAIN f {,Ss} {,Dd} {,Vv} 

This works like a program RUN command but without clearing the 
variables of the current program. The idea is to link program segments 
together with common data when a program can't fit into memory. 
The program is broken up into smaller programs, or segments, as they 
are often called, and each one can (theoretically) CHAIN to any of the 
others without destroying the current variables' data. 

In practice, it works with Integer BASIC which keeps its strings in 
the variables and the variables in a separate memory area. With 
Applesoft BASIC, chaining has bugs due to the keeping of variables in 
the same area as the program. Apple lie has an improved CHAIN 
routine on their System Disks that can be run as a binary routine to do 
CHAINing. 

r 
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A more satisfactory solution would be to BSA VE your data 
between programs. Use the information in Chapter Four. Or, you can 
write the data out to a data file to be read by the other programs in 
your system. Unfortunately, these solutions require program planning 
which is usually lacking in situations where CHAINing is asked for. 
Try and rewrite the mess as a designed, disk-based system instead. 

DELETE f {, Ss } {, Dd } {, Vv } 

Removes the file from disk by zeroing the track number of the link 
in its directory entry. The old track number is put into the last byte of 
the file name. The sectors used by the file are freed by turning on the 
bits in the Track Bit Map in the VTOC. Immediately after a DELETE, 
the information is not lost even though the directory and storage 
spaces have been released. 

To un-delete a file, you must get to it in time with either an UNDE
LETE or a DISK ZAP utility, otherwise the space will be reused, 
wiping out the old file data. Find the file name by searching the direc
tory in 17/15, 17/14, etc. When found, restore the track number from 
the last byte of the file name. Blank ($AO) that last byte. Then, write 
down the location of the TSL. Replace the directory sector and read 
the TSL. Copy down all the TSL entries. Read in the VTOC from 
17/0 and turn off the bits in the Track Bit Map corresponding to your 
list. Save the rebuilt VTOC. The file should be intact if you were care
ful, but try and copy it to a new disk just in case. In fact, you should 
be able to rebuild the disk on a copy with FlO for backup. 

EXEC f {,Rr} {,Ss} {,Dd} {,Vv} 

Generates keyboard commands by reading a data file. You can keep 
common command sequences in a text file, then EXEC that file in
stead of re-typing the sequence each time. Use a text file line editor 
like the one in Apple's Toolkit. Or use the commands to OPEN, 
WRITE, and CLOSE to create it from a program. The editor method 
is easiest to write and maintain. 

An easy way to edit BASIC program files is by capturing them to a 
text file and using the features of a text line editor to maintain it. The 
Capture Algorithm 
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0 PRINTCHR$(4)"0PEN CFILE" :PRINTCHR$(4) " WRITE CFILE" : 
LIST 10,32767:PRINT CHR$(4)"CLOSE " :END 

in a file called CAPTURE can be EXECuted by 

EXEC CAPTURE 
RUN 

with the program in memory. The text file called CFlLE is created 
which you can edit. Then, EXEC CFILE to get it back as a program in 
BASIC. 

FP {,Ss} {,Dd} {,Vv} 

If Applesoft is not currently in memory, then it will be bank
switched in an attempt to find it. If unsuccess ful, DOS then tries to 
load and run a program in Integer called APPLESOFT from the cur
rent disk. If this fails you get a FILE NOT FOUND error. 

This FP command may be implied at boot time. If the HELLO pro
gram is in Applesoft and the Apple has only Integer BASIC resident, 
then a n FP implied command is executed. For this reason, Apple DOS 
Master System disks have an Integer program called APPLESOFT 
that loads FPBASIC into memory. When APPLESOFT is ENDed, 
the HELLO program is run, completing the boot. 

Regardless of how it is called, the FP command fini shes by cold 
starting Applesoft. 

IN# s 

This command preempts the Monitor command keyword in BASIC 
of the same name. It sets the input hook within DOS according to the 
slot number , s, as $Cn00. If s is zero, then the keyboard input is used. 
See Chapter Six for details on the way the hooks work. 

INIT f {,Ss} {,Dd} {, Vv} 

-

-
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Creates slave DOS disks. You must have your greeting program in 
memory at the time (t) and name it, preferably as HELLO. Just 
before calling, you can make the patches described earlier for: 

9E42: 34 for Binary HELLO 
AE34: 60 to remove CATALOG pauses 
BFD3: EA EA EA prevent forced BASIC loads 

You get a slave disk with DOS, a VTOC, a Directory, and your 
HELLO program. See the layout part of the Disk Map section in this 
chapter for more details. 

You have to BRUN MASTER CREATE to convert slave disks 
made with INIT to master disks. A master disk will bootstrap in old 
Apples that have only 16K or 32K of RAM. 

INT 

See a lso the FP command. The INT command causes DOS to 
switch languages to Integer BASIC if it is not already current. If 
Integer BASIC can't be found then you get a LANGUAGE NOT 
AVAILABLE error. 

Once Integer BASIC is found, it is cold started, and any previous 
program is lost. 

LOAD f {,Ss} {,Dd} {, Vv} 

You use th is to load a BASIC program. If the BASIC of the 
program isn't in current memory, then memory is switched to try and 
find it. If Applesoft is not found, DOS will try to run APPLESOFT in 
Integer BASIC from disk first. 

When loaded, a ll pointers are reset for the language used. HIMEM 
and LOMEM in the case of Integer and TXTT AB and MEMSIZ in the 
case of Applesoft are unchanged and used to determine the load ad
dress. The length comes from the first two bytes of the program file as 
described in the Disk Map section. 

r'l LOCK f {,Ss} {,Dd} {, Vv} 
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Using this one flags the file type (bit 7) in the directory entry as pro
tected. You see it as an asterisk - "*" - in the CATALOG display. 
When LOCKed, a file cannot be altered by a file managing command, 
either from DOS or from the File Manager directly. It won't protect 
the file against INIT, which will wipe out the entire disk; only a write 
protect tab over the notch on the side of the disk will protect it from 
INIT. Same goes for the RWTS writes: they can change any sector on 
disk regardless of what may be in one of the directory sectors. 

Your best use of LOCK is in file management. For example, 
LOCKing a transaction file like a Cash Journal is a great way to show 
that the file has been posted to an accounts file(s). 

MAXFILES n 

A very tricky command. You can change the number of file buffers 
from three to another number with this one. It is known more for its 
restrictions which you must observe religiously: 

Thou Shalt Not . . . set MAXFILES 0. Ordinary-looking com
mands like LOAD need a file buffer. 

Thou Shalt Not . . . use MAXFILES in an EXEC file. The 
MAXFILES command clears all file buffers, in
cluding your EXEC buffer. 

Thou Shalt Not . . . use from within Applesoft after you assign 
strings; they will be clobbered by an increase in the 
buffers space. 

Thou Shalt Not ... use from within Integer for verily thy program 
will be clobbered! 

There is an Assembler call you can make to MAXFILES to avoid con
tentions with BASICs, $A251, for you to set things up from a binary 
HELLO program first. 

MON C ,I ,0 

Controls the DOS echo to the video display. As commands, inputs, 
and outputs are recognized at the DOS hook routine, each may be 
echoed to the video display at COUTI. This command lets you turn 

~ 
I 
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the echoes ON, individually. The default for DOS 3.3 is for all echoes 
to be OFF. Using MON C, for instance, lets you see all commands 
that a program issues with a ctrl/D prefix. The MON I lets you see 
inputs to DOS from any device currently in its input hook. The MON 
0 lets you see any outputs to DOS from your program as DOS writes 
them. 

Use MON and NOMON when debugging DOS commands, reads, 
and writes to see what is getting through. 

NOMOM C ,I ,0 

Similar to MON, but turns OFF one or more of the three echoes. 
NOMON C,I,O is the normal state for DOS 3.3. 

PR# s 

This command preempts the Monitor command keyword in BASIC of 
the same name. It sets the output hook within DOS according to the 
slot number, s, as $Cs00. If sis zero, then the video output is used. See 
Chapter Six for details on the way the hooks work. 

RENAME f,g {,Ss} {,Dd} {,Vv} 

Renames a file in its directory entry. Looks up the old file name, f, 
in the directory, then replaces it with the new file name, g. 

RUN {f} {,Ss} {,Dd} {,Vv} 

If a file name is given, does a LOAD of that program file, then a 
BASIC RUN command. If no file name is given, then just a BASIC 
RUN for the program currently in memory is done. See the LOAD 
command for more details. 

SAVE f { ,Ss } {, Dd } {, V v } 
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If program file of the type of BASIC currently active is not on file, a 
new directory entry is created. The BASIC program text is written to ..... 
the file. If the file exists as another type, a FILE MISMATCH error 
results. 

UNLOCK f {,Ss} {,Dd} {,Vv} 

Using this one flags the file type by clearing bit 7 in the directory ..._ 
entry. When the file is UNLOCKed, you can write to it with any of the 
commands: DELETE, WRITE, and SAVE. See the LOCK command. 

VERIFY f {,Ss} {,Dd} {,Vv} 

This does a load of all the sectors of the file to verify that the file is ~ 
readable. You can VERIFY any type of file. 

APPEND f {,Ss} {,Dd} {,Vv} 
OPEN f {,Ss} {,Dd} {,Vv} 
CLOSE {f} 
POSITION f { ,Rr} 
READ f {,Bb} 
WRITE f {,Bb} 

This is the syntax for sequential files access. Each record ends with a 
CR character ($80) and has any length. The OPEN puts the position 
pointer at the beginning of the file while the APPEND opens the file 
and points to the end of the file instead. The CLOSE will close all files 
if no file name is given. 

The POSITION works two ways. If you give it a record number, it 
searches forward that many records to a new file position. So, R is the 
key for a relative record number, not an absolute one. For instance, if 
you were at Record 34 and you gave DOS 

POSITION FILEX, R4 

.... 
i 
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the pointer in the file manager would advance to Record 38. If you 
- don't use the R option, the pointer is reset to the beginning of the en

tire file. You do this when you want another pass through the file. 

-

.... 

-

After an OPEN or a POSITION to set the pointer to zero, you can 
read and write the current record. Each READ or WRITE enables the 
DOS to trap input or output at the hooks. The B option lets you point 
absolutely anywhere in the file. For example, 

1000 R$= " " : REM GET A RECORD 
1010 PRINT D$ " READ"F$",B"STR$(BN) 
1020 GET A$ :1F A$ = CHR$(13) THEN 1050 
1030 R$ =R$+A$: BN = BN + 1 
1040 GOTO 1010 
1050 BN=BN + 1: RETURN 

where R$ is returned as the record, D$ is CHR$(4), F$ is the fi le name, 
and BN is the byte number: zero for start of fi le. While BN is in
cremented sequentially here, you can randomly access a sequential 
file, one byte at a time, by setting BN anywhere in the file you wish. 

OPEN f, Lj {,Ss} {,Dd} {, Vv} 
CLOSE {f} 
POSITION f {,Rr} 
WRITE f {,Rr} {,Bb} 
READ f {,Rr} {,Bb} 

This is the syntax for random access. Like sequential records, each 
ends with a CR character, but unlike them, a ll records must have the 
same length. Otherwise, the files are the same. To open, you must 
declare the record size as j. The record size includes all delimiters, 
especially the CR. 

The POSITION works the same way as in the sequential access 
case; it is rarely used in random access. 

Normally, READs and WRITEs use the R option without the B. 
This selects the record number, Record Zero being the first one. The B 
option points to the byte relative to the record. For instance, 

PRINT D$ " READ" F$"RO,BO" 
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or 

PRINT O$"REA O"F$"RO" 

are equivalent and point to the beginning of the file. Similarly, 

PRINT O$" REAO"F$"R5,81" 

points to the second byte of the sixth record. This is the result of the 
calculation: 

pointer = b + j*r 

7 .2.2 File Manager 

Normally you use the File Manager with calls from DOS: com
mands like OPEN or READ. You can only OPEN and handle records 
in text files but by calling the File Manager directly, you can work with 
other file types as well. Not only will File Manager calls let you write 
manipulation programs like FID but you can develop your own access 
methods for easier file handling. The call to File Manager is provided 
in Page Three; you can make a simple JSR there. 

The heart of your calls to the File Manager involves passing it your 
parameters by reference in the registers: 

LOA 
LOY 
JSR 
BCS 

#< PARMS 
#> PARMS 
$306 
ERROR 

address high 
address low 
Fi le Manager 

In case of errors, the error code is in the eleventh byte (Byte $0A) of 
the parameter block, PARMS. If you kept a Page Zero pointer to the 
parameters, you could use the call: 

LOA ZPARM + -
1 address high 

LOY ZPARM address low 
JSR $306 File Manager 
BCS ERROR 

-

-

-
-
-
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Before each call, you must be sure all parameters needed are in the 
,. block you reference. Use Tables 7-11, 7-12, 7-13, and 7-14. 

Table 7-lla. File Manager Syntax 
Byte 

Operation 00 01 02 03 04 OS 06 07 08 09 OA OR OC OD OE 

OPEN 01 - j j v d s f n n e - b 

CLOSE 02 - - - - - - - - - e - b 

READ 03 m r r y y I 1 k k e - b 

WRITE 04 m r r y y I 1 k k e - b 

DELETE OS - - - v d s - n n e - b 

CATALOG 06 - - - - d s - - - e - b 

LOCK 07 - - - v d s - n n e - b 

UNLOCK 08 - - - v d s - n n e - b 

RENAME 09 - g g v d s - n n e - b 

POSITION OA - r r y y - - - - e - b 

I NIT 08 p - - v d s - - - e - b 

VERIFY oc - - - v d s - n n e - b 

Table 7-llb. File Manager Syntax 

aa = Address of file data buffer 

bb = Address of file status buffer 

d = Drive number 

e = Error return code 

f = File type code 

gg = Address of new file name 

jj = Record size(random) or $0000(sequential) 

kk = Data transfer value(SINGLE) or address(RANGE) 

11 = Data transfer length(RANGE) 

m = Mode: SINGLE, RANGE, POSITION/SINGLE, 
POSITION/RANGE 

nn = Address of file name 
p = Page of DOS start, usually $9D 

rr = Record number(random) or $0000(sequential) 

s = Slot number 

tt = Address of file TSL buffer 

v = Volume number 
yy = $0000(random) or byte offset(sequential) 

b I 

b I 

b t 

b I 

b I 

b -
b t 

b I 

b t 

b -
b -
b t 

OF 

I 

t 

t 

t 

t 

-
t 

t 

t 

-
-
I 

10 II 

a a 

a a 

a a 

a a 

- -
- -
- -
- -
- -
- -
- -
a a 
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Table 7-12. Read/Write Modes 

Byte $01: 01 is SINGLE. One byte of data is read/written as the value in 
Byte $08. 

Byte $01: 02 is RANGE. A range of bytes is read/written so its address is 
in Bytes $08.09 and its length is in Bytes $06.07. 

Byte $01: 03 is POSITION/SINGLE. The current position is set to the 
record number in Bytes $02.03 offset by Bytes $04.05. Then one 
byte is read/written as the value in Byte $08. 

Byte $01: 04 is POSITION/RANGE. The current position is set to the 
record number in Bytes $02.03 offset by Bytes $04.05. Then a 
range of bytes is read/written so its address is in Bytes $08.09 
and its length is in Bytes $06.07. 

Table 7-13. Error Return Codes .., 
00 No error, C-flag clear 

01 Unused 

02 Illegal op code, Byte $00 

03 Illegal mode, Byte $01 ~ 

04 Write protect error 

05 End of file 

06 File not found ~ 

07 Volume mismatch 

08 Disk 110 error 

09 Disk full -OA File locked 

Table 7-14. File Type Codes 

Code File 

00 Text 

01 Integer 

02 Applesoft 

04 Binary 

08 S-type 

10 Relocatable 

20 A-type 

40 B-type 

r 
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The main difference between using the File Manager through DOS's 
command interpreter and using it directly is in the managing of file 
buffers. Each file you want to access must have four buffers of 
various sizes for the File Manager to use. Two of these buffers are 256 
bytes each: one page for a data sector and one page for a TSL sector. 
Then a 30-byte buffer must hold the file name and a 45-byte buffer be 
given to the File Manager to keep the status of the file. When it is off 
working with other files, this file must be remembered so that the next 
time you reference it, File Manager can recall its status (see Fig. 7-7). 
It sets up the status when you OPEN the file. So, to provide these buf
fers, one way is to reserve space in your program: 

DATAl 
TSLl 
STATl 
NAME I 

DS 256 
DS 256 
DS 45 
DS 30 

file 1 data 
filet TSL 
file 1 status 
file 1 name 

And, similar declarations for any other files. 

FIL£ 
BUFF£R 

DATA 

TSL 

MISC INFO 

r--------------------------------------, 
I 
I 

: 
I 
I 
I 

I 

L-------------------------------------
Nate: See explanation ol Fi&- H 

below. 

~ Fig. 7-7. How lhe file manager works. 
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HOW THE FILE MANAGER WORKS 

Any one of your routines, or the DOS command interpreter, 
can call the FILE MANAGER at its Page Three JMP location at 
$3D6. A list of parameters must be given with its address in the 
Y -reg(lo) and A-reg(hi) at the time of call. This PARMS list tells 
FILE MANAGER what to do and gives it the pointers to the file 
buffer: to the DATA buffer, to the TSL buffer, and to the status 
location in the MISCINFO. 

The FILE MANAGER reads the parameters to find out what 
to do. The parameters tell it where the DATA buffer, the TSL 
buffer, and the STATUS buffer are to be found. It uses the 
STATUS buffer to store its file status between calls. It accesses 
the disk and keeps buffers for the VTOC, the DIRECTORY, the 
TSL, the DATA, and for each file. 

The FILE MANAGER reads and writes to the disks, one sec
tor at a time. Interpreting its op code, it searches the disk for in
formation, changes it, and returns the updated sectors to disk. It 
uses the VTOC and DIRECTORY to manage the files that it 
manipulates with its buffers. Each disk access is made using a 
Read/ Write Track/ Sector (RWTS) routine, described later on in 
this chapter. 

Here's how to OPEN a file directly. With the space declared for 
buffers and another block of 17 bytes for your parameters, set each 
parameter byte: 

Byte 
Bytes 
Byte 
Byte 
Byte 
Byte 
Bytes 
Bytes 
Bytes 
Bytes 

$00 
$02.03 
$04 
$05 
$06 
$07 
$08.09 
$0C.OD 

$0E .OF 
$10.11 

$01, the op code for OPEN 
length of fixed record; zero otherwise 
volume, zero for any vo lume 
drive : $01 or $02 
slot: usually $06 
fi le type , use Table 7. 
address of fi lename :buffer 
address of status buffer 
address of TSL sector buffer 
address of data sector buffer 

If you are opening a new fi le, then byte $07 must be set to your file 
type. Before calling the File Manager, set the X-reg to zero: this wi ll 

-

-
-

-
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tell it to allocate a new directory entry for you. And, you must have a 
file name in the file-name buffer for any kind of OPEN. If you are re
OPENing an existing file, then byte $07 need not be set. You should 
set the X-reg to a nonzero value to inhibit the creation of a directory 
entry, just in case the file isn't found . 

After calling the File Manager to OPEN your file, you can get the 
type of the previously created file you are re-OPENing from byte $07: 
File Manager returns it to you. If you have an error, interpret Byte 
$0A, the error code . 

Once the file is OPENed, you should immediately do a POSITION 
call to point File Manager to the first byte. Use the same parameters as 
OPEN except for: 

Byte $00 $0A, OP code for POSITION 
Bytes $02.05 all zeros 

Such a call is called a REWIND by analogy to the rewinding of a tape 
to the beginning of a file. 

Similarly, you can CLOSE the file when you are finished with it. All 
files that were OPENed must be CLOSEd: 

Byte 
Bytes 
Bytes 
Bytes 

$00 
$0C.OD 
$0E .OF 
$10.11 

$02, the CLOSE OP code 
address of status buffer 
address of TSL buffer 
address of data sector buffer 

Throughout the time a file is OPEN, you must maintain its buffer ad
dresses for future calls, up to and including the CLOSE. 

When DOS uses the File Manager, it assigns its buffers from the 
three at $9600.9CF8 - see the DOS memory map in Chapter Two. 
You can get a closer look at these three buffers in Fig. 7-8. 

Each buffer is 595 ($253) bytes in size. There are two full page buf
fers in each for the data sector and the TSL sector of its file. The re
maining 83 ($53) bytes are called MISCINFO for miscellaneous infor
mation and contain the file name and status buffers. And, 
MISCINFO has some pointers. 

Looking at the one DOS buffer a little closer (Fig. 7-9) you can see 
what the MISCINFO is all about. The two small buffers for the file 
status (45 bytes) and the fi le name (30 bytes) complete the File Mana-
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DOS 

S9CF8 
MISC INFO 1 

TIS LIST 1 

$253 

DATA 1 

S9AA6 
MISC INFO 2 

T/S LIST 2 

$253 

DATA 2 

S9853 
r.IISC INFO 3 

T/S LIST 3 

S253 

DATA 3 

S9600 

USER 
PROGRAM 

Fig. 7-8. Three DOS buffers. 

ger's needs for a single file's buffers. Then there are the four pointers 
at the highest addresses of MISCINFO. Three of these point to the 
status, TSL, and data buffers for this file. The fourth pointer is a link 
to the next buffer - it points to the file name of the next file buffer. 

The buffers are all linked together in a chain. The first buffer is 
pointed to from $9000.9001 which is the beginning of DOS. It in turn 
points to the file name buffer in the next file buffer. This second buf
fer points in turn to the third. The third one is usually last, so it has 
zeros in its link pointer. 

The number of buffers and the pointers in each are setup by the 
MAXFILES command. From assembly language you set the number 
of buffers at $AA57, the first pointer value at $9000.9001, then JSR 
the MAXFILES command at $A251. The first pointer must be at least 
38 bytes below the highest location occupied by the buffers. It points 

,... 
I 



-

-

RELATIVE 
ADDRESS 

000 

100 

100 

1
11D 

14B 
24D 
14C 
151 

-
---

FROM PREVIOUS BUfFER 
OR 59000 

FILE DAIA 
BUFFER 

156 BYlES 

IRACII/SECTOR LIST 
BUFfER 

156 BYTES 

FILE STATUS 
45 BYTES 

FILE NAME I 30 BYTES 

Fig. 7-9. One DOS buffer. 

I 
I 
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TO NEXT 
BUFFER 

MISC 
INFORMATION 

to the fi le name which occupies 30 bytes and is fo llowed by four 
pointers in eight more bytes. To have three buffers that begin on a 
page boundary at $9600, the pointer in $9D00.9DO I is set to $9C 

Regardless of whether you alter MAXFILES, DOS wi ll search 
through the buffers beginning with the pointer at $9DOO and ending 

...,. when the next file pointer is zero. 

-
-

Instead o f making your own file buffers, you can use the regular 
DOS buffers. Here's how. 

There are two routines that will search the buffers. One is at $A 764; 
it returns the address of the buffer in Page Zero at $44.45 (with $45 
zero if none a re free). Another uses two calls th at you can make in 
your own search routine: 

GETBUF JSR $A792 point to first 
GETB1 LOY #0 

LOA ($42),Y zero filename? 
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BEQ 
JSR 
BEQ 
BNE 

FOUND 
$A79A 
NONE 
GETB1 

yes ... buffer free 
no ... point to next 
end of chain? 
no ... loop 

The second BEQ tests for the end of the chain of buffers: the pointer 
in $42.43 is zero then. Of the two exits to this routine, FOUND has the 
address of the free buffer in $42.43. This address is for the file name, 
so you can load it with yours to claim the buffer for yourself. 

With the pointer in $42.43, copy your 32 byte file name into the buf
fer. This name should have blanks to fill up the entire 32 bytes; don't 
leave garbage in with your file name. 

Now you can start building the parameter list for your file. Put its 
address in $40.41 and you can call $AF08 to set the addresses of the 
buffers in it. Then set your parameters in bytes $00.07 as before. The 
rest of the call sequence is just like the case of using your own buffers. 

When you close the file, you must release the buffer back to DOS. 
This is easy: just zero the first byte of the file name. When the file is 
OPENed, you should save the file name pointer from $42.43 because 
the copy in the parameter list won't remain. At CLOSE then, you can 
recall it: 

LDA FILB1 + 1 
STA $43 
LDA FILB1 
STA $42 
LDA #0 
TAY 
STA ($42),Y 

get file buffer 
pointer and put 
into $42.43 

zero first byte 
of file buffer 
filename 

immediately after you CLOSEd the file. 
To summarize, here is what you need to open, close, and rewind 

files . To open a file, attach a buffer with a GETBUF type routine, 
copy the file name into the buffer, save the buffer pointer, copy the 
buffer pointers into your parameter list, and call the File Manager to 
OPEN the file on disk. Normal OPENs should be followed with aRE
WIND call that zeros the bytes $02.05 of the file's parameter list. 
Then, call File Man ager to POSITION its pointer. When you close a 
file, call File Manager with its parameters. Include a buffer release in 
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your CLOSE routine, immediately after the CLOSE call to zero the 
first byte of the file name buffer. 

You can access OPENed files with the READ and WRITE op 
codes. When you used DOS commands to do this, with text fi les, you 
could choose either random or sequential file access. To do the same 
thing with the File Manager yourself, you need to know about the 
read/ write mode - a File Manager parameter - in Byte $01. By se
lecting the value of the mode, you can access your file either randomly 
or sequentially . 

To read a Data file sequentially, set 

Byte 
Byte 
Bytes 
Bytes 
Bytes 

$00: 
$01 : 
$02 .03: 
$04.05: 
$0C.11 : 

$03, the READ opcode 
$01 , the SINGLE mode 
reco rd number, reset zero by REWIND 
byte offset, reset zero by REWIND 
addresses as set by OPEN sequence 

The single byte is returned to you in Byte $08. If the end of file was 
found, the return code in Byte $0A will be $05; you must test each of 
your READs for this. The byte offset in $04.05 will be bumped by one 
count for each READ or WRITE that you make. You can buffer your 
reads into records by testing the text character for $8D which is the 
carriage return character that separates records. 

To write a sequential data file, you can first search the file for the 
end-of-file return code in $0A with the sequential read procedure. 
This will APPEND your writes to the end of the current file. Assum
ing you have an entire record to write from the input buffer at Page 
Two, set 

Byte 
Byte 
Bytes 
Bytes 
Bytes 
Bytes 

$00: 
$01 : 
$02.05: 
$06.07: 
$08.09: 
$0C.1 1: 

$04, the WRITE op code 
$02, the RANGE mode 
pointers, reset by REWIND routine 
number of bytes t o write, less 1 
address of bytes t o write 
addresses as set by OPEN sequence 

Using the RANGE mode avoids having to write a loop when you want 
to read an entire buffer. Be careful of the number of bytes in bytes 
$06.07, however. You must set it to the number of bytes for READ op 
codes but to the number of bytes less one for the WRITE op codes. 
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The number of bytes includes the carriage return character $80, so 
you must be sure that it is there. For writing sequential records, set the 
number of bytes in bytes $06.07 to the record length that you have 
without a carriage return; make sure the carriage return is appended to 
the record as it will be written. For example, a record of fifty bytes 
must be written with fifty-one bytes, fifty characters a nd a $80. A 
fifty ($0032) must be put in bytes $06.07. The $80 is in $0232, the 
fifty-first cha racter o f the record. 

Random access by calling the File Manager is just as easy. When n 
OPENed, you will have declared the number of bytes in each record, 
including th.e return character $80, in bytes $02.03. So, you can access 
the file to read a record by: 

Byte 
Byte 
Bytes 
Bytes 
Bytes 
Bytes 
Bytes 

$00: 
$01 : 
$02.03: 
$04.05: 
$06.07 
$08.09 
$0C.11 

$03, the READ op code 
$04, the POSITION/RANGE mode 
Record Number: 0 . .. $7FFF 
$0000, the byte offset 
record length 
record buffer address, e.g ., $0200 
addresses as set by OPEN sequence 

The POSITION/ RANGE mode implies a POSITION followed by a 
READ. This way, you only need one File Manager call to point to the 
record given in bytes $02.03. Since you have fixed length records, the 
posi tion is easily calculated a nd the record is read to your given 
buffer. The length in bytes $06.07 is used to set the size o f the record 
read while the position is calculated from the record length you 
specified back in the file's OPEN sequence. T he two should be the 
same in most applications, but remember that F ile Manager uses them 
for these two different purposes. 

Wri ting random is much the same. You use the same POSI
TION/ RANGE mode but with the WRITE op code this time: 

Byte 
Byte 
Bytes 
Bytes 
Bytes 
Bytes 
Bytes 

$00: 
$01 : 
$02 .03: 
$04.05: 
$06.07: 
$08.09 
$0C.11 

$04, the WRITE op code 
$04, the POSITION/RANGE mode 
Record Number 
$0000, the byte offset 
record length less one 
record buffer address, e.g. , $0200 
addresses as set by the OPEN sequence 

-
n 
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Notice that the value you use in bytes $06.07 is one less than the true 
number of bytes written. This is the case for all WRITEs, as explained 
before with sequential writes. 

With either READ or WRITE, whenever you want random access 
to a record, put the record number in bytes $02.03 and always zero 
bytes $04.05 before each call. After the call, the byte offset is 
advanced by the File Manager to point to the next byte. Occasionally 
this feature may be used, but for most calls, you'll want to zero it with 
each call. 

With the various op codes and modes directly available you can 
access files any way you want. In addition to the text file type, you can 
access files of other types using these File Manager calls. You can 
OPEN, READ, WRITE, and CLOSE program files or binary files in 
just the same way. Just keep the format of the file in mind and read 
the parameters when you OPEN the file. 

In the case of program files - A and I types - you must first read 
in the beginning two bytes and store them in RAM as the length. Then 
you can load the file either at its normal BASIC load point or any
where else you want using the length you have as the bytes $06.07 for 
the READ call. You don't have return characters, $8D, to separate 
records in program files; refer to the description of the BASIC text in 
either Chapter Four or Five. 

For binary file types, you can first read the address and length as the 
first four bytes of the file. You then can read the entire file as one 
range using the address and length parameters. Again, you can read it 
in anywhere in RAM you wish; in part or in whole. 

Programs you write to read other programs into memory this way 
are called loaders. With File Manager, you can make your own cus
tom loader, perhaps as a binary HELLO program. For some applica
tions, you may want to create program or bi~ary files. You must write 
two bytes as the length of your program file at the beginning. And, 
write the start address and length of a binary file you create as its first 
four bytes just like DOS does. 

The File Manager has all the file handling operations in addition to 
the OPEN, CLOSE, READ, and WRITE. See the syntax in Fig. 7-7 
for the parameters that each requires. Most of these parameters are 
the same ones you use when giving DOS the corresponding com
mands. Buffers are needed. You always get the carry flag to warn of 
error return code, and you get the code in byte $0A, just like the ones 
already described. 
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7.2.3 Read/ Write Track/ Sector 

The Read/ Write Track/ Sector routines let you access the disks di
rectly. You can read and write to individual sectors anywhere on a 
disk, you can format disks, and you can position the read/ write head 
to any track for special access methods. Most usage of RWTS routines 
are handled for you from Page Three call sequences, so you can write 
programs that are independent of the DOS memory locations. 

Like the File Manager, RWTS has two Page Three call sequences. 
One fetches the address of the parameters; the other calls the RWTS 
routine itself. When you write 

JSR $03E3 
STY $48 
STA $49 

get lOB 

you get the address of the parameter list called the Input-Output Block 
or lOB. Here it is put into $48.49 which is the same location in Page 
Zero that R WTS uses itsel f. By varying the Y -register from $00 to $10, 
you can set the parameters as you need for your call. Then, 

JSR $03E3 
JSR $0309 
BCS ERROR 

get lOB 
call RWTS 

performs the operation you specified: READ, WRITE, POSITION, 
o r FORMAT. Like File Manager, the RWTS returns the carry flag set 
if it found an error. See Table 7- I 5 for a full summary of the lOB 
parameters. 

When you finish using R WTS and before you return or use the 
Monitor again, you must zero location $48 in Page Zero. There is a 
conflicting usage, and the Monitor thinks a nonzero value there is a 
saved P-reg. You can't avoid the conflict because RWTS itself uses 
$48.49 as the lOB pointer. 

You can of course use your own lOB instead of the one in DOS. If 
you do, then you must set the Y -reg to the low byte of its address and 
the A-reg to the high byte immediately before the call to RWTS: 

-

-

-

-
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Byte 

00 

01 

02 

03 

04 

05 

06.07 

08.09 

OA 

OB 

oc 

OD 

OE 

OF 

10 
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Table 7-15. Input/Output Block 

Contents 

$01, always 

Slot• J6. Example $60 

Drive: $01 or $02 

Volume: $0 1 to $FE. $00 is wild. 

Track: $00 to $22 

Sector: $00 to $OF 

Address o f Device Characteristic Table 

Address o f Data Buffer 

Unused 

Bytes, partial sector. Full sector $00 

Command: 00 Positio n 

01 Read 

02 Write 

04 Format 

Return: 08 Initialization 

10 Write protect 

20 Volume mismatch 

40 Drive 1/0 error 

Volume of previo us access 

S lo t of previous access • 16 

Drive o f previous access 

LOA 
LOY 
JSR 
BCS 

#< MYIOB 
#> MYIOB 
$0309 
ERROR 

get lOB 

call RWTS 

447 

This is probably what you did if you used File Manager with several 
files, but most calls to RWTS can be handled easier if you only use the 
built-in lOB. This custom lOB call is only for unusual situations; use 
the JSR $03E3 method instead . 

The thing you change for different RWTS calls is the Data Buffer 
address at bytes $08.09. You can keep various kinds of data in differ
ent buffers by changing this parameter. File Manager, for instance, 
varies this address to have separate buffers for its current VTOC , Di
rectory sector, and up to three sets of data and TSL buffers. They all 
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use the same lOB; only the buffer pointer need be changed to redirect 
the reads and writes. 

Here's how to read a sector from the disk. First, get the lOB address 
into $48.49 as described above. Then set the parameters as follows: 

Byte $01 : 
Byte $02: 
Byte $03 : 
Byte $04: 
Byte $05 : 
Byte $08.09: 

Byte $0B: 

Byte $0C: 

slot number t imes 16, normally $60 
drive number, $01 or $02 
volume, $00 to read any volume 
track $00 . . . 22 
sector $00 .. . OF 
Buffer address. This is where your read sector 
wil l be placed . 
Normally $00, you can set byte count for a par
tial sector instead. 
command code, $01 for READ 

If you are using your own lOB instead of the system's, you must also 
set: 

Byte 
Byte 

Byte 
Byte 
Byte 

$00: 
$06.07 : 

$0E : 
$OF : 
$10: 

to $01 
address of DCT, a Device Contro l Tab le of 
four bytes: 00 01 D8 EF for Disk II. 
volume number last accessed 
slot number times 16 last accessed 
drive number last accessed 

Upon return from RWTS, you test for error with the C-flag. If set, 
you can find the error in byte $0D according to Table 7-15. 

Here's how to write a sector to the disk. First, get the lOB address 
into $48.49 as described above. Then set the parameters as follows: 

Byte $01 : 
Byte $02: 
Byte $03 : 
Byte $04: 
Byte $05 : 
Byte $08.09: 
Byte $0B: 

Byte $0C: 

slot number t imes 16, normally $60 
drive number, $01 or $02 
volume number, $00 to writ e any volume 
track $00 . . . 22 
sector $00 ... OF 
Buffer address. This is the data to be written . 
normally $00, you can set the byte count for a 
partial sector instead. 
command code, $02 for WRITE 

,... 

-
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If you are using your own lOB instead, you must also set: 

Byte $00: 
Byte $06.07: 
Byte $0E: 
Byte $OF: 
Byte $10: 

to $01 
address of DCT 
volume number last accessed 
slot number times 16 last accessed 
drive number last accessed 

449 

Upon return from RWTS, you test for error with the C-flag. If set, 
you can find the error in byte $00 according to Table 7-15. 

Here's how to format a disk. You get a data disk with no DOS, no 
YTOC, and no Directory. Just 35 formatted tracks of 16 sectors each, 
wi th the sync bytes and fields written to allow RWTS to access it di
rectly. Use this command call to make data disks for your own direct 
access method. 

First, get the lOB address into $48.49 as described. Then set the fol
lowing parameters: 

Byte $01 : 
Byte $02: 
Byte $03: 
Byte $0C: 

slot number times 16, normally $60 
drive number, $01 or $02 
volume number to create : $00 ... FE 
command code, $04 for FORMAT 

If you are using your own lOB, you must set: 

Byte $00: to $01 
Byte $06.07: address of DCT 
Byte $0E: volume number last accessed 
Byte $OF: slot number times 16 last accessed 
Byte $10: drive number last accessed 

Upon return from RWTS, you test for error with the C-flag . If set, 
you can find the error in byte $0D according to Table 7- 15. 

Here's how to position the read/ write head . When you want to 
select a given track ahead of time to speed things up or to select the 
track for the hardware-level reads and writes, you can positio n the 
head to th at t rack without RWTS doing a read or write on its own. 
First, get the lOB address into $48 .49 as described. Then set the pa
rameters as follows: 
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Byte $01 : slot number times 16, normally $60 
Byte $02: drive number, $01 or $02 
Byte $04: track number to position $00 . . . 22 
Byte $0C: command code: $00 for POSITION 

If you are using your own lOB instead of the system's, you must a lso 
set: 

Byte 00: 
Byte $06.07: 
Byte $OF: 
Byte $10: 

to $01 
address of OCT 
slot number times 16 last accessed 
drive number last accessed 

Upon return from RWTS, you test for error with the C-flag. If set you 
can fi nd the error in byte $00 according to Table 7-15. 

Example 7-1 (listed earlier in the chapter) is a Disk Zap program in 
Integer BASIC. The routine to call RWTS is put into Page Three using 
Lam's method in the mainline. Another routine at $2100 displays the 
contents of a buffer at $2000 a half page at a time when called by the 
routine at line 14000. These three machine language calls, $E88A, 
$0300, and $2 100, are represented at the bottom of the Structure 
Diagram in Fig. 7-10. 

When run, it gives you an "INITIALIZING" message while Lam's 
method sets up the machine language routines at $300 and $2100. 
Then a routine at line 29000 displays the commands: Read , Write, List 
half the data buffer, Change contents of data buffer, and Quit the 
program. Each command has its own routine in the 10000 ... I 99999 
line number range. A routine at 1200 parses the track and sector 
numbers in the Read and Write commands. The List shows the other 
half of the buffer, so you can see the entire buffer by repeated L com
mands to view alternately the $00. 7F and $80.FF halves. The Change 
command has Monitor syntax; for instance, 

C25:00 01 02 

put $00 in byte $25 of the buffer, $01 in byte $26, $02 in byte $27. 
It is simple to use as it stands, but you may change it for yourself. In 

particular, you can rewrite it in Applesoft BASIC when you key it in if 
you don't have Integer BASIC. This lets you simplify some expres
sions and eliminate the CHR$ routine at line 100. 

n 
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Fig. 7-10. Disk zap call slruclure. 

7 .2.4 Nibble 
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The RWTS section contains all the routines to access the disk. The 
way it works is by having all disks formatted with their address fields. 
Then, any sector is read or written by searching for its address field 
and following it by accessing its data field. So, each newly formatted 
disk has 35 tracks formatted with sync bytes and 16 address fields. The 
R WTS write routines write the data fields one sector at a time onto the 
disk from your buffer. Similarly, read routines get the data field from 
the disk for the sector you requested and deliver it decoded to your 
buffer. You can see how each of the RWTS routines work to do these 
accesses. 

The routine that writes an address field is at $BC56. You can look at 
it there and see how it does the write. It uses the Y -reg as the number 
of sync bytes to write first. Then it writes the prefix bytes $05, $AA, 
$96. Next the volume, track, sector, and checksum are written, fol-
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lowed by the suffix bytes $DE, $AA, $EB. The format routine in 
RWTS calls this one 16 times for each track. 

When address bytes are written, they are packed in four bit nibbles 
(sometimes spelled nybbles) as described earlier in Section 7 .1.3. The 
routine that does this packing is at $BCC4. 

When the data field is written, it's a bit more complicated. Not only 
must the track be SEEKed, the sector must be found by reading back 
the address fields until the one you want is found. Then the buffer you 
gave to RWTS must be written in the data field in a special format. 
The address field is read at RDADR ($B944) and the data are trans
formed to disk format in two stages, see Fig. 7-11. 

$9800 
SB82A 

SBA29 

f'ig. 7-JJ. Writing a data field. 

First, the 256 bytes in your buffer are converted to 342 six-bit 
nybbles by the PRENYBBLE routine. Then, the sector is found, and 
the WRITE routine converts the nybbles to disk format by using the 
write translate table to look up the code for each of the 342 nybbles in 
PRJ and SEC. The WRITE routine also prefixes the data field with 
five sync bytes, then $D5, $AA, $AD. When written, the data field 
gets its suffix of $DD, $AA, $EB. The result is your 256-byte buffer 
encoded to the data field of the specified sector. 

Similarly, RWTS reads a given sector. First, the track is SEEKed 
and the sector address field found by using RDADR. Then the data 
field is read into the PRI and SEC nybble buffers by looking up the 
nybble six-bit values from the coded bytes using the read translate 
table at $BA96. See Fig. 7-12. After the READ routine at $B8DC is 
finished, the POSTNYBBLE routine at $B8C2 packs the 342 six-bit 
nybbles from PRJ and SEC to your 256-byte data buffer. 

All these routines are called by the RWTS main routines who see to 
it that registers, Page Zero pointers, and the scratchpad RAM in 

~ 

~ 

~ 

r 
,, 
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SBBOO 

SBA96 

Fig. 7-12. Reading a data field. 

TEXT1 are given the parameters appropriate to each. RWTS gets 
these parameters from the lOB you gave it. You don't have to know 
anything about these routines to use RWTS from the lOB level, but 
studying how they do each separate task in converting data and 
accessing the disk is necessary if you want to work with raw disk 
dumps. You can, with practice, learn to get raw disk bytes and 
interpret them to recover lost data or explore disk protection schemes. 

7 .2.5 Hardware 

By addressing the hardware you can read and write directly to the 
disk. Bypassing RWTS you can access the sync bytes, address fields, 
and data fields in each track without the automatic decoding and en
coding. Here's how. 

The hardware is in the DEVICE SELECT address space. For Slot 
Six, this is the range $COEO.COEF. You can address the general range 
$C080.C08F indexing it with 16 times the slot number instead. This 
lets you write slot independent routines, although the examples given 
here are for Slot Six only. See Table 7-16. 

The addresses $COEO.COE7 control the stepper motor. By turning 
on each phase for a certain length of time in proper sequence, the 
read/write head can be moved radially over the disk to any desired 
track. The routines to do this are a bit complex, so the best way to do 
it is to use the SEEK command in R WTS. If you are experimenting 
with unusual track arrangements, you can try varying the parameters 
in the Device Control Table at $B7FB. See Section 7 .2.3 for the call 
sequence. 
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Table 7-16. DISK II Device Addresses 

Label Address Description 

PHASOFF $COEO Stepper motor Phase 0: OFF 

PHASOON $COEI Stepper motor Phase 0: ON 

PHASIOFF $COE2 Stepper motor Phase I: OFF 

PHASION $COE3 Stepper motor Phase I : ON 

PHAS20FF $COE4 Stepper motor Phase 2: OFF 

PHAS20N $COE5 Stepper motor Phase 2: ON 

PHAS30FF $COE6 Stepper motor Phase 3: OFF 

PHAS30N $COE7 Stepper motor Phase 3: ON 

MOTOROFF $COE8 Drive motor: OFF 

MOTOR ON $COE9 Drive motor: ON 

DRIVEl $COEA Select Drive One 

DRIVE2 $COEB Select Drive Two 

Q6L $COEC Strobe data latch 

Q6H $COED Load data latch 

Q7L $COEE Prepare data latch to read 

Q7H $COEF Prepare data latch to write 

NOTE: For controller card in Slot Six 

You can turn the drive motor on and off easily. After a SEEK, you 
must turn it on to keep the disk spinning. Then it is your responsibi lity 
to turn it off when finished. The instructions are: 

BIT $COE9 
BIT $COE8 

drive motor ON 
drive motor OFF 

You can only access one drive at a time. A pair of addresses switch 
between the two, so you can select the drive directly by: 

BIT $COEA 
BIT $COEB 

engage Drive One 
engage Drive Two 

The write-protect tab on the disk is detected by a microswitch 
mounted inside the drive. You can read this switch indirectly with this 
sequence, 

BIT $COED 
BIT $COEE 
BMI PROTECT 
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where PROTECT is the address you want to execute if the write
protect tab was found on the disk. This sequence switches two 
transistors: Q6 high and Q7 low to read the protect switch to the high
order bit of the data latch . If the high bit is set, then the disk is being 
protected. You must detect this and avoid writing to the disk because 
the hardware won't protect the disk. 

Other combinations of Q6 and Q7 let you do reads and writes with 
the hardware data latch. To read a byte: 

VALID 
BIT $COEE 
LDA $COEC 
BPL VALID 

input mode 
strobe data latch 

To be val id, the high-order bit must be on, hence the BPL. The 
resulting byte in the A-reg can be tested for $FF with a CMP instruc
tion if you are looking for sync bytes. 

To write , you must observe a few precautions. First, you have to 
check for a write-protect tab as described above. Then, 

BIT $COEF output mode 

given to prepare for output. After that , you need a I 00 microsecond 
delay before the first write can take place. Writing data must be done 
in a 32-cycle loop so that all bytes are written 32 cycles apart. The 
A-reg is written by, 

STA $COED 
ORA $COEC 

to data latch 
strobe data latch 

within the loop. Study the examples that RWTS uses for itself. 
There is little need to write directly, however. The direct read may 

be necessary to get data from an unreadable format where RWTS re
turns drive errors. Once captured, the data may be extracted by 
recognizing the data fields and usi ng the read translate table, 
POSTNIBBLE routine, and modifications to decode them. This is 
heavy stuff; be prepared to spend some time. 

- The Track Dump program of Example 7-2 lets you examine the raw 
bytes from any of the 35 tracks on disk. After loading, type 
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Example 7-2. 

SOURCE FILE: EXAMPLE 7. 2 
0000: 1 ****************************** 
0000: 2 * EXAMPLE 7. 2 * 
0000: 3 * * 
0000: 4 * T R A C K D U M P * .. 
0000: 5 * * 
0000: 6 * USE FROM MONITOR WITH THE * 
0000: 7 * CTRL/Y COMMAND: * 
0000: 8 * (TRACK) < (START) .(END) * 
0000: 9 * * 
0000: 10 ****************************** 
0000: 11 * 0000: 12 * 0000: 13 TRACK EQU $00 
0002: 14 START EQU $02 
0004: 15 END EQU $04 
003C: 16 Al EQU $3C MONITOR PAR 
MS 
003E: 17 A2 EQU $3E 
0042: 18 A4 EQU $42 
0048: 19 lOB EQU $48 
0000: 20 * 0000: 21 * MONITOR CALLS 
0000: 22 * 
FBDD: 23 BELL! EQU $FBDD 

~ FF69: 24 MONZ EQU $FF69 
0000: 25 * 
0000: 26 * 

NEXT OBJECT FILE NAME IS EXAMPLE 7.2.0BJO 

0300: 27 ORG $0300 
0300: 28 * 
0300:A9 4C 29 LOA I$4C THE JMP OPC 
ODE 
0302:80 F8 03 30 STA $03F8 CTRL/Y VECT 
OR ..... 
0305:A9 12 31 LOA #>DUMP 
0307:80 F9 03 32 STA $03F9 
030A:A9 03 33 LOA #<DUMP 
030C:8D FA 03 34 STA $03FA 
030F:4C 69 FF 35 JMP MONZ ~ 

0312: 36 * 
0312: 37 * FIRST GET PARAMETERS FROM 
0312: 38 * THE CALLER AND lOB POINTER 
0312: 39 * FROM DOS. 
0312: 40 * 
0312:A5 42 41 DUMP LOA A4 GET TRACK p 

ARM 
0314:85 00 42 STA TRACK 
0316:A5 3C 43 LOA Al GET START A 
DDRESS 
0318:85 02 44 STA START 
031A:A5 3D 45 LOA Al+l 
031C: 85 03 46 STA START+l 
031E:A5 3E 47 LOA A2 GET END ADD 
RESS ... 
0320:85 04 48 STA END 
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Example 7-2 Cont. 

0322:A5 3F 49 LOA A2+1 
0324:85 05 50 STA END+l 
0326:20 E3 03 51 JSR $03E3 GET lOB POI 
NTER 
0329:84 48 52 STY lOB 
032B:85 49 53 STA IOB+l 
032D: 54 * 
0320: 55 * SECOND SET lOB AND CALL 
032D: 56 * RWTS TO SEEK THE TRACK. 
032D: 57 * 032D:AO 04 58 LDY 1#$04 
032F:A5 00 59 LOA TRACK 
0331:91 48 60 STA (lOB), Y SET TRACK N 
UH 
0333:A4 oc 61 LDY $0C 
0335:A5 00 62 LDA $00 SEEK COHHAN 
D 
0337:91 48 63 STA (IOB),Y SET ... 0339:20 E3 03 64 JSR $03E3 GET lOB ADD 
RESS 
033C:20 D9 03 65 JSR $03D9 CALL RWTS T 
0 SEEK 
033F:A9 00 66 LOA #10 ,... 0341:85 48 67 STA $48 MONITOR FIX 

0343:90 03 68 BCC DUHPl 
0345:4C DD FB 69 JHP BELLl ERROR EXIT 
BEEPS ... 0348:2C E9 co 70 DUHPl BIT $COE9 KEEP MOTOR 
ON 
0348: 71 * 034B: 72 * THIRD SEARCH FOR BEGINNING 
034B: 73 * OF A FIELD ON THE DISK. 

~ 
034B: 74 * 
034B:A2 00 75 LDX 10 
034D:2C EE co 76 BIT $COEE SET LATCH T 
0 READ 
0350:AD EC co 77 DUHP2 LOA $COEC STROBE LATC 
H ,.., 
0353:10 FB 78 BPL DUHP2 UNTIL BYTE 
IS VALID 
0355:C9 FF 79 CHP #$FF SYNC BYTE? 
0357:DO F7 80 BNE DUHP2 NO •• TRY AGA 
IN ,.. 
0359:AD EC co 81 DUHP3 LDA $COEC LOOK FOR SE 
COND 
035C:10 FB 82 BPL DUMP3 SYNC BYTE 
035E:C9 FF 83 CHP #$FF 
0360:DO EE 84 BNE DUMP2 ,... 
0362:AD EC co 85 DUMP4 LDA $COEC WE HAVE TWO 

0365:10 FB 86 BPL DUMP4 SYNC BYTES! 
IGNORE 

0367:C9 FF 87 CMP I$FF ANY FURTHER .... ONES. 
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Exnmple 7-2 Cont. 

0369 : FO F7 88 BEQ DUMP4 
036B : 89 * 036B : 90 * READ DISK TO MEMORY RANGE 
0368 : 91 * GIVEN BY THE CALLER . 
036B : 92 * 036B : DO 05 93 BNE DU MP 6 (ALIIAYS) 
036D :A D EC co 94 DUMP 5 LOA $COEC READ A BYT E 

0370 :1 0 FB 95 BPL DU MP S 
0372 : 81 02 96 DUMP6 STA (START,X) PUT BYTE 
0374 : E6 02 97 INC START 
0376 : 00 FS 98 BNE DU MP S BUMP PIONTE 
R 
0378 : E6 03 99 INC START+ 1 UNTIL LA ST 
PAGE 
037A : A5 03 100 LOA START+1 
037C : C5 05 101 CM P END+1 
037E : DO ED 102 BN E DUMPS 
0380 : 103 * 0380 : 104 * ALL DONE : CLEAN UP . 
0380 : 105 * 0380 : 2C E8 co 106 BIT $CO E8 MOTOR OFF 
0383 : 4C 69 FF 107 JMP MONZ BACK TO MON 
!TOR 

*** SUCCESSFU L ASSEMBLY : NO ERRORS 

300G 

to the monitor, to set the ctrl/ Y j ump. 
To get any track, you type a monitor comma nd with the ctrl/Y. For 

instance, if you want T rack 17, choose a chunk o f memory to contain 
it - say, $1000.3FFF. This command is 

11 < 1000.4000(ctrl/Y}(CR) 

where $ 11 is the track number. In general, 

{track} < {start}.{finish}(ctrl/Y) 

Another one is given in Example 7-3 . This command fetched Track 17 
($ 11 ) to memory $4000.5FFF. Here is what it shows. 

The first th ree bytes, $05, $AA and $96, are the prefix to a n 
address field. The next eight bytes then contain the volume, track, sec
tor, and checksum. Then at $4008 you can see the suffix bytes of 
$DE, $AA, and $EA. This last byte., $EA, is nominally $EB but is not 
veri fied so it can vary somewhat in actual value. 

-
-

n 
-

-
-
.... 
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Example 7-3. 

)1(11 <'1000 .60 00 

lK'IOOO.'I3FF 

'1000- 1)5 AA 96 EE EA AA BE: AB 
'1008- AA EF FE: DE AA EA D2 FF 
'I Ill II ·· F3 FC FF F F FF FF D5 AA 
'1 018- AD A6 AF 9D AE E:3 AF A7 
'1020 - AE AE 9D AE AD E:3 9D 9E: 
'10 28·· D7 D9 D9 F2 E:5 D6 D9 97 
'1113 11 - D6 F Z FZ D6 9E: DO F5 D6 
'1038- F 7 A7 96 A7 AE AE 9D AE 
'10'10 - 96 A7 A7 A7 A7 AE AE 97 
'10'18- D7 06 9E: 9E: 9A 9A EF 9A 
'1050 - E:7 EF E:7 EF E:6 E:7 B5 D6 
·10513·· '76 96 AE '7D A7 A7 96 A7 
'106 0- 9D AE 'ID AE 96 A7 A7 A7 
'1068- AC E:Z 82 D7 DA ED 86 CE 
'1070 .. FE: A6 A6 A6 9E: 96 96 9b 
'1078 - 96 96 9F 9D DA E:A 97 97 
·1 080 - 9E 9F.: CD BE 9E: 9F 9F BF 
'10 88- BD 9B A6 9 A CF 96 96 96 
'109 0 - 96 96 9b 96 96 9b 96 96 
'1098- 96 96 96 FC E:9 9E A6 9A 
'IOAO - F3 9F 9A 9D 9E BE CE 97 
'IOAB·· 9F A6 90 9E CD 96 96 96 
' lO BO - 96 96 96 96 96 96 96 96 
'IOE:B- 96 96 96 96 96 96 E9 9 0 
'lOCO- 9E 90 97 EF 96 9F 9E 9E 
'IOC8 - CD BD 9A 9A 9D 90 96 9E 

i1 
'1000 -· 90 9E CD 96 96 96 96 96 
'1008- 96 96 96 96 96 9 6 96 96 
'IOEO - 96 E6 9A 9E 9F 9E: EF 96 
'IO EI3 - 9F 9E 9E CD CD 9 F 90 A6 
'IO FO · 9A A6 CD 96 96 96 96 96 
'IOF8 - 96 96 96 96 96 96 96 96 

~ '11 00 ·· 96 96 96 96 EA 9E 90 9 F 
'1 108·· 9A FZ 97 9E: 9E 9E n :: CD 
'111 0- CD 9F 9D A6 9A A6 CD 96 
'1118- 96 96 96 96 96 9 6 96 96 
'1120 - 96 96 96 96 96 96 96 D6 
'11 28- A7 90 9F 9A EF 97 A6 97 
'113 0- 96 CE e:D 9B 9E. 9E: A6 96 
'1138- 97 9 A E:E 96 96 96 96 96 
'11'10 - 96 96 96 96 96 9 6 96 96 
'11'18 - 96 '76 E5 97 9D 9E 97 FZ 
'1150- 96 9F 9D 9E CD E:D 96 90 
'1158- 9E BE 96 96 96 96 96 96 
'1160 - 96 96 96 96 96 96 96 9 6 
'1 168- 9 6 '76 '76 96 '16 E6 9A 96 

~ 

Look at the contents of the address field . Each two bytes encode 
one byte of information as follows: - 1 b 71 bs 1 b 3 1 b 1 1 b6 1 b41 b21 b0 
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The algorithm to decode is to shift left the first byte then AND the two 
together. Doing it by hand, you pick o ut the bits in order of signifi
cance and write them: 

For instance, ta ke the volume encoded as $EE, $EA. Expanding in 
. binary 

1110111011101010 

then pick out the informative bits, 

- 1-0 - 1-0 -1-0 - 0 - 0 

then rearrange in order of significance, 

11001000 

which is $C8, decimal 200. The volume number is 200. You know the 
track number is 17 ($ 11), so you can decode the next two bytes, $AA 
and $88, yourself and check your result. 

After the address field, you can see some "garbage" and $FF sync 
bytes before the data field at $4016. The three bytes, $D5, $AA, and 
$AD, prefix the data. The data is encoded sixbit, so you must use a 
translate table in DOS to convert the codes to sixbit. For instance, you 
will notice a lot of $96 codes in the data. The $96 is the code for $00. 

The data field ends with the three bytes, $DE, $AA, and $EB, at 
$41 70. The next sector follows at $4187 with the prefix to its address 
field . And on it goes. 

If you decode the sector numbers in these two address fields, you 
wi ll find that the first sector is $02 and the second is $03. There is no 
way of knowing which sector the command will read first from the 
track; you can consider it as a roulette game. In this case it started 
with Sector $08 , followed by Sector $09. See the Sector Interleaving in 
Table 7-7; Sector $08 is physical sector number $02. 

-

-
-

-

-
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CHAPTER EIGHT 

Input/Output 

8.1 BUILT-IN 1/0 

You can use the built-in 1/0 alone in the case of the speaker, or key
board. For video display, you need a monitor connected from outside. 
Similarly for the cassette recorder and various devices that connect to 
the games socket: joysticks, relays, pushbuttons, etc. The advantage 
to using built-in 1/0 is in not having to use a peripheral card. 

8.1.1 Cassette Tape 

You can store up to four disks' worth of files on one C-60 cassette 
tape. Considering the difference in cost between the two media , tape is 
the best choice for archival storage. Use good quality tapes to reduce 
the chance of dropout in your recordings. Dropout is missing bits on 
the tape due to uneven magnetic oxide coating; it won't be noticed in 
listening but it causes errors in digital reads. Choose a standard bias, 
low noise, C-30 or C-60 tape like the Maxell UD-30 or UD-60. 

As far as a tape recorder is concerned, you can use any one you 
happen to own as long as you can get it to work after adjusting the 
volume and tone. If you are buying a new one speci fically for the 
Apple, then choose a plain mono type with a counter. Since the Apple 
was first used, two of the most trouble-free models have been the 
Panasonic RQ-2309 and the Sony TCM-737. People have used other 
brands as well, but try any new recorder out first. Some machines 
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won't work; they can't be adjusted to the Apple's volume and tone re
quirements. Recording and playing back an Apple file is the only way 
to be sure. 

Accessories you need to complete the cassette recorder include two 
miniature phone plug cables, Radio Shack 42-2420. Also, you should 
have cotton swabs and isopropyl alcohol to clean the heads and cap
stan. A head demagnetizer should be used at least every couple of 
months or so. If you depend on the machine, have it cleaned and ad
justed by a technician once a year to maintain reliability. 

To use, you must find the volume and tone control settings. On a 
compatible recorder, this will be about a third volume and near full 
tone. Listen to a pre-recorded tape and adjust to get a clear tone at the 
beginning of each recording. This is the header record and is a con
stant tone tasting about ten seconds. 

Connect the IN jack to the recorder's MON output jack using one 
of the cables. Connect the OUT jack to the recorder's MIKE input 
jack. Now you can attempt to record and play back a file to confirm 
the volume and tone settings. 

To record, mount a new tape. Rewind. Without changing the con
trols from the settings you made by ear, enter the following command 
to the Apple Monitor: 

DOOO.FFFFW 

without a RETURN. Then put the recorder in RECORD mode. With 
the tape running, press RETURN to enter the tape write command. 
When finished, the Monitor's asterisk (*) returns. Stop the recorder. 

To p lay back, rewind. Enter the command 

1000.3FFFR 

to the Monitor, again without a RETURN. Put the recorder in PLAY 
mode, then press RETURN with the tape running. l fall is well, the 
Monitor wi tt return with an asterisk when the playback is finished. If 
it cannot READ anything, it witt just do nothing - looking for there
cording forever. If it reads but finds errors, you get an ERR message 
on the screen . 

If the playback was read successfully, compare the copy at 
$ l 000.3FFF with the original at $DOOO.FFFF using the verify com
mand in the Monitor. They should match exactly. 

-

-
-

-
-

-
-
-
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If you cannot record and playback successfully, try another setting. 
Repeat the procedure until successful. Then mark the volume and tone 
settings on the recorder using a dab of nail polish or typewriter cor
rection fluid. 

If you want to hear the playback, unplug the MON jack tem
porarily. To make sure it is getting through to the Apple, leave it 
plugged in and play back using the following routine 

0300: JSR $FCFD 
LOA $C030 
JMP $0300 

read a bit 
toggle speaker 

instead of the READ command. This will sound the speaker with the 
incoming bit st ream so you can hear it. 

You can read and write BASIC programs to and from tape easily. 
To save a BASIC program, type 

WRITE 

then start the recorder. With the tape running, press RETURN. When 
finished you will see the BASIC prompt, a ] or>. Similarly, use the 

READ 

command to load a BASIC program from tape. If it cannot read, it 
will wai t forever or give you an ERR message. 

Remember not to use a file name like you do with DOS commands. 
A READ or WRITE command without a file name will be accepted as 
a tape command. 

To save and load binary files, enter the Monitor first. Then use the 
R and W monitor commands with start and end addresses. The 
procedure in giving commands and starting the recorder is the same 
regardless of file type. One point you should keep in mind when 
working with tape is that you must provide start and end addresses for 
reads as well as writes. With disk, you can BLOAD the fi le into the 
same memory that it was BSA VEd from; with tape this is not auto
matic. You have to remember where the fi le resides in memory. 

An exception to this is the SHLOAD command in Applesoft. The 
binary file is read by this command, but Applesoft gives the start 
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address for you . When the tape is read, the binary fi le is put below the 
MEMSIZ address a nd the start address of the file is given to you at 
$E8.E9 in Page Zero . Applesoft uses this address for all its shape table 
commands; see Chapter Six for more information on shape tables. 

T o read and write binary files fro m an assembler program, you set 
the start address in location $3C .3D and the end address in $3E.3F. 
Then use a JSR to the READ routine at $FEFD or to the W RITE rou
tine at $FECD. With the READ routine, you will need a method to 
detect errors. One way is to save CH ($36) in Page Zero before making 
the READ. This is the horizonta l screen cursor and will change during 
the read if an error occurs. This is because the READ routine will 
print an E RR message to the screen, advancing the cursor as it does 
so. Upon return from the READ, you can compare C H to its previous 
value. If it has changed , then you know an er ror has occurred . Such 
an error detector might look like 

LOA CH get cursor 
STA OLDCH 
JSR READ read tape to (A 1.A2) 
LOA CH new cursor 
CMP OLDCH same? 
BNE ERROR no . . . ERR in READ 

yes .. no error in READ 

where O LDCH is any RAM location. 
A binary file has a format on tape like tha t o f Fig. 8-1. For BASIC 

DATA 

SYNC _j CHECKSUM _j 
Fig. 8- J. Taped binary file. 

files, a more complicated format is used ; see Fig. 8-2. T he READ and 
WRITE routines handle these formats for us so we don't normally get 

PROGRAM C ~~ 

Fig. 8-2. Taped BASIC fi le. 

-
-
-

n 

-
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involved in the formats. Knowing the details is needed if you want to 
write special tape routines, like an Apple tape loader for another 
computer. 

Here's how the Apple II reads and writes tapes. There are two kinds 
of files built-in to the tape routines, BASIC and binary. Binary files 
are the simplest. To locate any file on a tape, you must listen for it or 
use the tape counter. Some people use the recorder's microphone to 
record voice cues between files. Once located, a steady tone lasting 
about ten seconds marks the beginning of the file. 

This tone is called the header. It consists of a 770-Hz square wave, 
1300 microseconds each cycle. At the end of the header is a special 
sync bit lasting 450 microseconds. The sync bit is followed by the data 
itself at 1500 baud (bits per second). One last byte contains the check
sum. The header, sync bit, data, and checksum byte make one binary 
file. 

BASIC files are kept as two binary files, one immediately following 
the other. That is why you hear two beeps for BASIC files and only 
one beep for binary files. The first binary file is fiXed. It contains two 
bytes (Integer) or three bytes (Applesoft) and tells the BASIC the 
length of the program to load. The second binary file contains the pro
gram itself as data. It can be any length, and the BASIC loader knows 
that length from the first file. 

Two bytes are always needed in the length file. Integer BASIC files 
have two bytes, but Applesoft has three. The third byte is read into 
Page Zero at $06. The value normally written is $55. If a value greater 
than $7F was written, then the Applesoft will RUN the program after 
the READ is finished and disable immediate execution. Unless you 
can get into the Monitor and change location $06 back to $55, you 
cannot use Applesoft to LIST the program or do anything else. This 
"feature" is not used by the normal WRITE command but some com
mercially distributed tapes might. A Standard Apple Monitor will 
RESET to the Monitor command interpreter where you can change lo
cation $06 to its safe value of $55 if you experience this problem. 

Bits are created by toggling the OUT jack during the recording 
session. For instance, the HEADR routine creates a square wave by 
toggling each 650 microseconds to give a period of 1300 microseconds. 
At the end of its count, it toggles after 200 microseconds and again 
after 250 microseconds to create the sync bit. The sync bit therefore 
lasts 450 microseconds but is not symmetric. When writing data, each 
bit is symmetric but has one of two different periods. A one bit is en-
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coded as a 1000 microsecond-cycle and a zero bit as a 500-micro
second cycle. This gives a frequency of 1000Hz for ones and 2000Hz 
for zero. Such encoding schemes are often called frequency shift 
keying or FSK for short. With FSK of 1000 Hz and 2000 Hz the 
average gives the transmission rate for recording and reproducing the 
data - 1500 Hz as 1500 baud. 

Bits are read and written by two monitor routines called WRBIT 
($FCD6) and RDBIT ($FCFD). They address the IN and OUT hard
ware addresses at $C060 and $C020. 

Table 8-1 summarizes the addresses used by tape routines; see 
Chapter Two for further notes on each location. 

Table 8-1. Summary of Tape Addresses 

Label Address Contents 

CHKSUM $002E Checksum EORed during READ and WRITE 

CH $0036 Cursor changed by READ if ERR 

AI $003C Start address for READ and WRITE 

A2 $003E End address for READ and WRITE 

$0006 Inhibits Applesoft when > $7F 

SHAD DR $00E8 Shape table start address 

$C020 Cassette "OUT'' port 

$C060 Cassette "IN" port 

HEADR $FCC9 Writes header tone and sync bit 

WRBIT $FCD6 Writes one bit 

RDBIT $FCFD Reads one bit 

WRITE $FECD Writes binary file from (AI) to (A2) 

READ $FEFD Reads binary file into (AI) from (A2) 

8.1.2 Games Socket 

Many of the built-in I/0 features of the Apple II are collected in the 
"games" socket on the motherboard. This is a 16-pin DIP socket in the 
right rear area, designated as J-6 on the Apple II. This is where the 
game paddles plug in with a 16-pin DIP header plug. In addition to 
paddles, you can plug in other devices using the various pinouts 
provided. 

Most device hookups require the 5 volts on pin 1 and ground lines 
on pin 8. Up to 4 game paddles (or 2 joysticks), 3 switches, and 4 TTL 
outputs called annunciators are available. In addition, one line called 
a strobe can be brought low during Phase Zero for a cycle by address-

-
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ing $C040 with a read instruction. Although seldom used, this line can 
be useful in enabling or gating special TTL circuits you may build. 

On the lie model, an adaptor cable from the games socket provides 
the switches, paddles, and power lines to a DB-9 connector on the 
back of the case. This is a good idea, and if you have another Apple II 
model, you may want to add this cable yourself to upgrade your 
Apple. The game paddles and switches are the most often used lines 
on devices plugged in there. The 16-pin DIP socket is fragile unless 
you are used to handling hardware and don't plug and unplug the 
cable often. When the connection is on the DB-9 at the back, you can 
plug and unplug your joystick/ game paddles much easier and reliably. 
The connections are shown in Table 8-2. 

Table 8-2. Games Socket Pinouts 

16-pin DB-9 
DIP Name Address Description connector 

1 5 VOLTS Maximum 300 rnA 2 

2 swo C061 Switch ON if> 127 7 

3 SWl C062 Switch ON if > 127 1 

4 SW2 C063 Switch ON if > 127 6 

5 STB C040 Strobes when addressed 

6 POLO C064 Game paddle resistance 5 

7 PDL2 C066 Game paddle resistance 8 

8 GND Signal ground 3 

9 N.C. No connection 

10 POLl C065 Game paddle resistance 4 

11 PDL3 C067 Game paddle resistance 9 

12 AN3 C05E.C05F Clear/set annunciator 

13 AN2 COSC.COSD Clear/set annunciator 

14 ANI COSA.COSB Clear/set annunciator 

15 ANO C058.C059 Clear/set annunciator 

16 N.C. No connection 

The switches are used extensively. On game paddles and joysticks, 
SWO and SWI are connected to the pushbuttons where you can use 
them for graphics control such as scaling and pen up/down functions. 
On the lie model, they are read by the RESET routine to determine 
which of the many RESET routines that the model lie has will be 
executed. In particular, SWO is connected to the OPEN-APPLE key 
just left of the spacebar and SWI is connected to the SOLID-APPLE 
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key just right of the spacebar. On earlier Apples, you may connect the 
SW2 to the SHIFT key on the keyboard for use by a lowercase 
routine. This modification is described later in this chapter, in Section 
8.1.4. 

When designing custom interfaces, remember that the switches are 
simple LS inputs and the annunciators are LS outputs with little fan
out; use buffers. 

If you plan to use the annunciators at all, it's a good idea to make a 
state tester first. Take a 16-pin DIP header and connect four LEOs to 
it with series resistors to pins 12, 13, 14, and 15. Return the cathodes 
to ground at pin 8. Then, you can see the LEOs toggle when you 
address them in the $C058.C05F range. 

Use the annunciators to drive relays like the Clare 1896. See Fig. 
8-3. A 2N2222 makes a low cost current amplifier to drive the winding 

~ 
II CLARE ~~~ 

1 

1896 PHONE 
PLUG 

ANO 
12 

1K 

16 PIN 
DIP 

!OK 

HEADER 

8 
GND 

sv 

Fig. 8-3. Annunciator output relay circuits. 

from the TTL output. Always protect relay input circuits with a diode 
like the 1 N914 across the winding; the back EMF can clobber solid
state quite easily. For simple secondary circuits like a cassette recorder 
motor switch, a small resistor value in series wiht a 0.01 JJF capacitor is 
usually sufficient. You can control a tape recorder by switching the 
recorder off when not writing to tape so that you don't create long 
dead sections. Be sure to delay after switching the motor on and be
fore recording again, to allow the tape to reach operating speed. 

Other output circuits are possible; relays, SCRs, and triacs may be 
used. The 2N2222 buffer is a simple buffer that you may have to 
adapt. Don't try to use current devices without amplification; the LS 
output just won't have the source current to make most of them work. 

You can use game paddles or a joystick on each pair of analog in
puts. Most connect to POLO and POLl. To use the built-in routines, 
you should use paddles or joysticks having a full resistance of 140 

-
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kilohms each. Whenever a paddle is read, this resistance gives a value 
of zero to 255 depending upon the setting of the knob. 

To read the value and therefore the position of the knob, use the 
PDL(n) function in BASIC where n is the paddle number, 0, 1, 2, or 3. 
Normally, PDL(O) and PDL(l). If you are assembling, the routine is 
in the Monitor at $FB1E, returning the value in theY-reg, $00 to $FF. 
In either case, you need a resistance of zero to 140 kilohms to get 
values from zero to 255. 

Once you have read one paddle resistance this way, you must delay 
before reading the paddle again, or even reading any other paddle. 
What happens is that reading the paddle discharges four capacitors 
through the four resistances of the paddles (as connected to the games 
socket). Then the routine counts until your paddle has discharged the 
capacitor and clears bit 7 at its address. Once this is finished, the 
capacitor is recharged for the next call. If you call too soon, the 
capacitors don't have enough time to recharge and you get a too-low 
reading. This interference between successive readings is simply a 
function of time; use a delay loop if your routine has nothing else it 
can do. 

If you look at the PREAD routine at $FB1E in the Monitor, you 
can see how it works. First, the $C070 address is referenced to fire a 
special timer chip (acts like four 555's). This chip discharges four 
0.022 ,.,F capacitors through any conducting paths connected to the 
games socket pins PDLO, PDLl, PDL2, and PDL3 to" the + 5-volt 
line. The higher the resistance of each path, the longer the discharge 
will take. By testing location $C064,X where X is 0, 1, 2, or 3, the 
routine detects one of these time-outs. By counting with the Y -register 
once each twelve cycles, the routine has its return value when the time
out occurs. To count all the way to 255 the resistance must be at least 
150 kilohms; if you use smaller resistance values, the range of return 
values will be correspondingly less. You call PREAD with the paddle 
number in the X-reg, and pickup the returned value from the Y -reg. 

If you write your own paddle routine, you would do much the same 
thing. First, use a read instruction with $C070 to start the four timers. 
Then loop, counting and testing for a time-out on one or more 
paddles. Finally, return with all counts as the paddle values reflecting 
the knob position(s). Remember, you are working in real time: use the 
times given in Table 8-3 to design your loops. 

The addresses of the paddles and their routine are summarized in 
Table 8-4. 
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Table 8-3. Joystick/Paddle Times 

Resistance Time 

500kQ 11,000 J.lS 

200kQ 4400 J.lS 

150kQ 3300 J.lS 

IOOkQ 2200 J.lS 

50kQ 1100 J.lS 

20kQ 4401-lS 

IOkQ 220 J.lS 

SkQ 110 tJS 

2kQ 44J.lS 
lkQ 22 J.lS 

NOTE: Time cons1an1s for discharging 0.022 ,..F capacilor lhrough given resislances. 

Table 8-4. Joystick/Paddle Addresses 

Label Address Contents 

POLO $C064 Game paddle time-out 

POLl $C065 Game paddle time-out 

PDL2 $C066 Game paddle time-out 

POL3 $C067 Game paddle time-out 

PTRIG $C070 Game paddle trigger 

PREAO $FB1E Game paddle read routine 

There are several reasons for writing your own joystick routine. A 
joystick hs two paddle resistances, and both can be read at the same 
time even though the PREAD routine calls will interfere with each 
other without an intervening delay. Joysticks can be easily found at 
good prices with resistance values other than 150 kilohms. The 
PREAD routine needs a resolution of 256; you must be able to make 
one of 256 different settings to use each control. Because of aging, 
noise, and the small angle you have in joysticks, this is almost 
impossible to maintain. Your own routines can deal with the resolu
tion problem by reducing it and scaling. You can handle resistances 
other than 150 kilohms. And once started, your timers can be counted 
simultaneously to return both X and Y direction values from only one 
call. 

As an example, look at the joystick schematic in Fig. 8-4. This one 
uses a 100-kilohm joystick from Radio Shack (271-1705) with a pair of 
pushbuttons (275-8077) mounted in a case (270-231). A 75-cm 
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Fig. 8-4. Joystick schematic. 

(30-inch) length of ribbon cable with a 16-pin DIP header plug 
provides the Apple interface. The four resistors are l4 -watt each and 
limit the current to each device. The joystick resistance is chosen 
largely on availability and price. Such a choice reduces the range of 
values from PREAD or the PDL(n) function by about a third. See the 
table of Joystick/Paddle Times in Table 8-3. 

Table 8-3 is just a list of selected values for the times taken to dis
charge a 0.022 11F capacitor through various resistances. For the 
design value of 150 kilohms, this is 3.3 milliseconds, while for the 100 
kilohms of the Radio Shack joystick this is 2.2 milliseconds or about 
two-thirds of the design value. The general formula for capacitor dis
charge time is 

t = RC 
where t is in milliseconds, R is in kilohms, and C is in microfarads 
(#-'F). The discharge time is the time the paddle circuit takes from the 
$C070 reference until the bit 7 changes at the paddle address from on 
to off. 

The JOYSTICK routine of Example 8-1 works with the 100-kilohm 
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Example 8-1. 

SOURCE FILE: 
0000: 

EXAMPLE 8.1 

0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
C064: 
EOUT 
C065: 
EOUT 
C070: 
GGER 
0000: 
0000: 

1 ****************************** 
2 * EXAMPLE 8.1 * 
J * * 
4 * J 0 Y S T C K * 
5 * * 
6 * READS JOYSTICK IN GAMES * 
7 * SOCKET. BOTH RESISTANCES * 
8 *READ SIMULTANEOUSLY, BUT * 
9 *WITHOUT 256 RESOLUTION. * 

10 * * 
11 * RETURNS VALUES IN X-REG AND* 
12 * Y-REG. A-REG CLOBBERED. * 
1J ****************************** 
14 * 
15 * 
16 XTOUT EQU $C064 X-VALUE TIM 

17 YTOUT 

18 PTRIG 

19 * 
20 * 

EQU $C065 

EQU $C070 

Y-VALUE TIM 

PADDLES TRI 

NEXT OBJECT FILE NAME IS EXAMPLE 8.1.0BJO 

OJOO: 21 ORG $0300 
0300: 22 * 
0300: 23 * A TEST CALL SEQUENCE. 
0300: 24 * 
0300:20 08 OJ 25 JSR JOY 
030J:86 00 26 STX $00 
0305:84 01 27 STY $01 
0307:60 28 RTS 
0308: 29 * 
0308: 30 * 
0308: J1 * 
0308:A2 00 32 JOY LOX 1#0 
030A:AO 00 JJ LOY 10 
OJOC:A9 80 34 LOA 1$80 RESOLUTION 
030E:38 35 SEC 
030F:2C 70 co J6 BIT PTRIG 
0312:2C 64 co 37 JOY1 BIT X TOUT 
0315:10 03 J8 BPL JOY2 
0317:E8 J9 INX 
0318:00 02 40 BNE JOYJ 
031A:EA 41 JOY2 NOP 
031B:EA 42 NOP 
031C:2C 65 co 43 JOY3 BIT YTOUT 
031F:10 OJ 44 BPL JOY4 
0321:C8 45 INY 
0322:00 02 46 BNE JOYS 
0324:EA 47 JOY4 NOP 
0325:EA 48 NOP 
OJ26:E9 01 49 JOYS SBC 11 
0328:BO E8 50 BCS JOY1 
032A:60 51 RTS 

*** SUCCESSFUL ASSEMBLY: NO ERRORS 

-

.. 
-
~ 
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joystick. Two paddles are counted using the X-reg and the Y -reg for 
each of POLO and POLl ($C064 and $C065). The A-reg counts for 
the entire loop, guaranteeing a fixed number of tests of both time-out 
addresses. For the 100-kilohm case, a value of $80 is quite sufficient. 
Each of the resulting 128 times through the loop results in a test of 
each time-out by using the BIT instruction. The BIT won't change any 
register value and is needed because all three registers are used as 
counters. Each of the two tests within the loop is an IF-THEN-ELSE 
having either a count or a short delay as an action. The delay, done 
with NOP instructions, ensures that both paths take the same time -
eleven cycles each, including the BIT. So, the two tests take 22 cycles 
within the loop. Adding the loop overhead gives 27 cycles for each 
loop with a possible count in the X-reg, Y -reg, or both on each. 

The longest time for a time-out with the 100-kilohm joystick is 
about 2200 microseconds. With 27 microseconds for each count, this 
gives 2200 + 27 or about 70 as the largest count value. So, the routine 
will return a value of zero to 70 in each of the X- and Y -registers as its 
result. 

With a low resolution scheme like this, you avoid several hassles as 
mentioned earlier, but you have to program a bit more in exchange. 
For instance, if you want to move a cursor around a screen with the X
and Y- values from the JOYSTICK routine, you have to do some 
scaling. 

For LORES coordinates, you can convert the joystick readings to 
screen positions by 

XP = INT(0.5714*XJ) 
YP = INT(0.5714*YJ) 

where XJ and Y J are the joystick values and 

40/70 = 0.5714 (approx) 

The idea here is that you want a value of zero to 39 for each position 
given joystick values from zero to 69. Joysticks vary, so you will have 
to adjust the 0.5714 factor by experiment. 

For HIRES coordinates, you need two scales. One scale for fine 
positioning, perhaps 0.5 or 0.25 depending on the feel you prefer in 
the application. The other scale for coarse positioning lets you reach 
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any area on the screen using the joystick before switching scales for 
fine setting. Given the noise susceptibility of low cost joysticks, this ..... 
approach is better than the unit factor normally used. To change from 
zero to 69 to the range of zero to 255, the factor is 

255 + 70 = 3.642857 

giving scale equations of 

XP = INT(3.6429*XJ) 
YP = INT(3.6429*YJ) 

for coarse positioning. You can use one of the push buttons for scaling 
to make the cursor positioning easier to handle. 

If you have a joystick that has a spring return to center position, 
you should remove the springs to do position encoding as just 
described. Alternately, you can use this feature to do velocity 
encoding instead. 

Velocity encoding lets you use low resolution without switching 
scales. Rather than using the joystick values as positions, you use 
them to change the current position to a new value. Releasing the joy
stick knob so that it returns to center stops cursor motion at the cur
rent position. It is simple to use and only a little tricky to program. 

You call JOYSTICK at the beginning of your program to determine 
the center position values in X and Y. The user must allow the joystick 
handle to rest in its center position while this reading is made. You 
then use these values to calculate several parameters: 

DL = 0.85 * CJ 
DH = 1.15 * CJ 
SL = 0.40 * CJ 
SH = 1.60 * CJ 

called dead low 
called dead high 
called speed low 
called speed high 

where CJ is the reading at the center of the joystick. They should be 
close for both X and Y. 

In the cursor move loop of your program, you get the joystick read
ings and then range test them with DL, DH, SL, and SH. If between 
DL and DH, don't do anything; this is called the dead band. If be
tween DL and SL, decrease the position coordinate slightly. If less 
than SL, decrease the position coordinate considerably more. 

,... 

-
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Similarly, increase the position coordinate slightly if the joystick value 
1!!!!1 is between DH and SH and increase it a lot if greater than SH. For 

example, here's how it might be done for the X-coordinate in HIRES: 

1000 REM Velocity encode X-coord of cursor 
1010 IF XJ > DL AND XJ < DH THEN RETURN 
1020 IF XJ > CJ THEN 1040 
1022 IF XJ < SL THEN 1026 
1024 XC = XC - 1 : GOTO 1028 
1026 XC = XC - 8 : 
1028 IF XC < 0 THEN XC = 0 : 
1030 RETURN 
1040 IF XJ > SH THEN 1044 
1042 XC = XC + 1 : GOTO 1046 
1044 XC = SC + 8 : 
1046 IF XC > 279 THEN XC = 279 
1048 RETURN 

Similarly, a routine using Y J can velocity encode the Y -coordinate of 
the cursor position, YC. 

The relationship between the velocity of the cursor and the position 
of the joystick is given in Fig. 8-5. See the dead band in the center, 
where the cursor doesn't move. See the two speeds in each of the two 
directions to give it a nice feel to the operator. 
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8.1.3 Speaker 

The simplest and most common way to use the built-in speaker in 
the Apple is with the monitor routine. This is easily done by typing a 
ctrl/G on the keyboard followed by a RETURN. This results in a beep 
sound called the bell. From an Applesoft program, you can PRINT a 
CHR$(7) to do the same thing: the ASCII code 7 is called BEL for this 
purpose. 

When writing in machine language you can use the output hook to 
do the same ctrl/G beep. Load the A-reg with $87 - the negative
ASCII code for BEL- and JSR COUT. Whatever device is acting as 
video terminal will get the ctrl/G code. Normally, this will be the 
built-in Apple video at COUTJ; in fact by JSR CO UTI instead of 
COUT you can be sure that the Apple built-in speaker routine will get 
the ctrl/G if you have a special setup in the output hook you don't 
want disturbed. There are two other Monitor calls that you can use as 
well. BELL will load the ctrl/G for you and jump to COUT. The 
actual routine in the video routines of the Monitor that makes the 
sound is called BELLI and you can use it directly. BELL for terminal 
use; and BELLI for always ensuring an Apple beep, are usually the 
best choices of beep routines to call. 

The speaker itself is driven by a transistor circuit because the LS 
TTL just can't supply the kind of power and low impedance a com
mon eight-ohm speaker needs. The transistor circuit is driven from a 
TTL address decoder so that a read command from the processor at 
$C030 will toggle the speaker. Two reads will produce one cycle if they 
are far enough apart. Don't use write instructions because you will get 
two toggles very close to each other. The speaker and its circuit can 
only respond to audio frequencies; closely-timed toggles won't be 
realized, much less heard. 

There are many sounds you can make with simple control of the 
interval between successive toggles. Among these often wanted are 
ticks, tones, staccato, and trills. Each requires you to toggle the 
speaker in various kinds of real-time loops. For sounds, frequencies 
between 100Hz and 2000Hz are best. Now, 100Hz has a period of 10 
milliseconds and 2000Hz one of 0.5 millisecond. Toggling twice each 
period means that a I 00 Hz tone must delay between each toggle so 
that the time from one toggle to the next is only 5 milliseconds. For the 
2000 Hz tone, the time between toggles is 0.25 millisecond or 250 
microseconds. These times are easy to get with a fast 1.023 MHz clock 
(0.9778 microsecond). 
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An easy way in fact is the WAIT routine at $FCA8. By loading the 
A-register before the JSR, you can control the delay time this routine 
takes to return to you; it does nothing except decrement the A-reg to 
zero. Fig. 8-6 plots the equation 

t = 0.4889(26 + 27a + 5a2) 

where t is the delay time in microseconds and a is the value of the 
A-register passed to WAIT. Some delay times are shown in Table 8-5 
as a result of this equation. 
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0 I 
0 32 64 96 128 160 192 114 255 
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Fig. 8-6. Execution of a WAIT routin~. 

To make the speaker tick, you toggle it twice with a delay between. 
f!!!ll Delays between 0.25 millisecond and 5 milliseconds work OK; just try 

them and choose the one that sounds right for what you want. For 
instance, a click made with a 1.0 ms interva l can be heard by running 

BIT $C030 toggle speaker 
LDA #$12 for 1 .0 ms(approx) 



478 Appl~ Programmer's Handbook 

Table 8-5 . WAIT Routine Intervals 

A-reg Time ( ms) 

I 0.028 
2 0.049 
5 0.140 

10 0.389 
20 1.255 
50 6.79 

100 25.8 
200 99. 1 
255 162.0 

JSR WAIT 
BIT $C030 togg le speaker again 
RTS 

Now, vary the delay parameter from $12 to get the click to sound the 
way you want. 

Steady tones are done with loops . For each time through the loop, 
you toggle the speaker at half the period as just explained above. A 1.0 
kHz tone is toggled each 0.5 ms to work: 

TONE 
TONE1 

LOX #SFF 
LOA #$0C 
JSR WAIT 
OEX 
BNE TONE1 

duration of tone 
for 0.5 ms(approx) 

The duration is controlled by setting the number o f half-cycles in the 
X-reg. Notice that the length of time depends on both the duration 
(X-reg) and hal f-period (A-reg) defined for the loop. To have the 
period and duration of the tone independent of each other as param
eters is tricky but there is a short routine called Lutas' algorithm that 
will do just that. With Example 8-2 set $0300 to the period and S0301 
to the duration. You can even play musical tunes; see Table 8-6 for the 
notes. 

Staccato sounds use loops. Each staccato has a simple uni t, usua lly 
a tick or click sound, but a tone can be used for special effect. Simply 
repeat the unit sound in the loop. 

Trills are performed by alternately sounding two tones usually close 

-

-

-
-
-
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Example 8-2. 

SOURCE FILE: EXAMPLE 8.2 
0000: 1 ****************************** 
0000: 2 * EXAMPLE 8.2 * 
0000: 3 * * 
0000: 4 * LUTAS' ALGORITHM FOR * 
0000: 5 * MAKING SPEAKER TONES. * 
0000: 6 * * 
0000: 7 * FROM BASIC: * 
0000: 8 * POKE 768, PERIOD * 
0000: 9 * POKE 769, DURATION * 
0000: 10 * CALL 770 * 
0000: 11 * * 
0000: 12 ****************************** 
0000: 13 * 
0000: 14 * 
0000: 15 * 

NEXT OBJECT FILE NAME IS EXAMPLE 8.2.0BJO 

0300: 16 ORG $0300 FOR 768 
0300: 17 * 
0300: 18 * 
0300: 19 PERIOD OS 1 
0301: 20 DURA TN OS 1 
0302: 21 * 
0302: 22 * 
0302:AD 30 co 23 TONE LDA $C030 TOGGLE SPEA 
KER 
0305:88 24 TONE! DEY 
0306:00 05 25 BNE TONE2 
0308:CE 01 03 26 DEC DURA TN 
030B:FO 09 27 BEQ TONE3 FINISHED 
030D:CA 28 TONE2 DEX 
030E:DO F5 29 BNE TONE! 
0310:AE 00 03 30 LDX PERIOD 
0313:4C 02 03 31 JMP TONE 
0316:60 32 TONE3 RTS 

*** SUCCESSFUL ASSEMBLY: NO ERRORS 

to each other in pitch. Each tone must have a short, often equal, 
duration. A value of $10 or so makes a good starting point when 
trilling with Lutas' alogrithm. If you want to have a continuous sound 
without the break in pitch, you can write a gliding tone. Like the trill, 
it works between two pitches (frequencies), but sounds all the pitches 
between. The so-called phasor zap sound is a glide. 

8.1.4 Built-In Terminal 

In the simplest case of built-in terminal usage, you just connect a 
cable from the video output jack to a video monitor. Alternately, an 
R.F. modulator is connected between the video output and a television 
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Table 8-6. Notes for the Tone Routine 

Octave 1 Octave 2 Octave 3 
Note DEC HEX DEC HEX DEC HEX 

c 225 E1 113 71 056 38 
C# 213 DS 106 6A 053 35 
0 201 C9 100 64 050 32 
0# 189 BD 095 SF 047 2F 
E 179 B3 089 20 045 20 
F 169 A9 084 54 042 2A 
F# 159 9F 080 50 040 28 
G 150 96 075 4B 038 26 
G# 142 8E 071 47 035 23 
A 134 86 067 43 033 21 
A# 126 7E 063 3F 032 20 
B 119 77 060 3C 030 IE 
c 113 71 056 38 028 IC 

Usc the first two octaves, and only the third octave when really needed. Here arc the 
durations to u~. 

Length Duration 

Half 255 FF 
Quarter dot 192 co 
Quarter 128 80 
Eighth dot 096 60 
Eighth 064 40 
Sixteenth dot 048 30 
Sixteenth 032 20 

set. If an SO-column display is needed, you should use a good-quality 
cable like those sold for video recorders; otherwise, you could lose 
information and be unable to read the characters on the screen. In 
such a case, you will use a monitor with at least S-MhZ bandwidth 
because a tv just doesn't have the ability to handle SO columns of text. 

The Apple lie model provides an auxiliary socket where you can 
plug in an SO-column text card. This converts the built-in display to 
SO-columns from 40-columns by using soft switches; see Chapter Two. 
In the lie monitor, many routines are provided to allow the SO-column 
extension to be a true extension of the original 40-column display. If 
you don't have a lie, then you can plug a regular peripheral card 
into Slot Three. 

In models previous to the lie, the way to get SO-columns is to use a 
card like the Videx. In addition to an SO-column display, this card 
gives you lowercase and keyboard goodies. In particular, you can use 

-

-
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ctrl/ A as a shift key. By using the input and output hooks described in 
Chapter Six, this card replaces the Monitor's routines completely to 
give you a complete terminal using the built-in keyboard and external 
video monitor. It is the easiest way to go when you need lowercase and 
an 80-column display. 

If you just need lowercase but don't want to use an 80-column card, 
then there are a few schemes to do this. 

The simplest and cheapest way to get lowercase is to use a cascade in 
the output, as described in Section 6.1. The LCOUT routine given 
there converts uppercase to inverse and lowercase displays normally. 
Apple Computer Inc., markets a text editor called Applewriter that 
uses this scheme. It is an inexpensive and effective method to have 
lowercase. 

Another way is to buy a lowercase adaptor. You install it yourself 
or the dealer will do it for you. For Apples of Revision 7 or greater, it 
is inexpensive and simple. A more complicated adaptor is needed for 
the earlier (than Revision #7) models, so make sure you get the right 
one for you. Revision 7 and later models have a slide switch added to 
interlock the RESET key to the CTRL key, located just under the 
front opening when the cover is removed. The adaptor may have a 
cable to the games socket; this lets the SHIFT key switch SW2 for 
software detection. 

Finally, you can do it yourself. The hardware you need is simple, 
but you need a character set in ROM. One scheme described by Don 
Lanacaster in Son of Cheap Video uses a Motorola 6674 character 
generator and modifies the Apple. Another scheme replaces the 2513 
ROM with a 2716 EPROM that you must program. See Apple 
Orchard, Vol. I, No.I (Mar/ Apr. 1980) for hardware details and firm
ware listing. 

If you have an old Apple, earlier than Revision 7, then you may 
have a live RESET key. Unless modified, this key will work by itself. 
Modify it so that anyone wanting to do a RESET must also press the 
CTRL key. Otherwise, you will cause a RESET sometime when you 
only mean to press the nearby RETURN key. 

Here's how. Remove the cabinet from the steel base plate and un
plug the keyboard. Remove the keyboard. Look at the CTRL key; you 
will see two unused pins. Connect them to a pair of wires; A WG30 
wire-wrap wire will do fine. With this pair, connect the RESET key in 
series with the CTRL key. Keep leads dressed so as not to catch on 
anything during reassembly. Replace keyboard and plug back into the 
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motherboard. Replace cabinet. RESET should not work now unless 
CTRL is also held down. 

So, if you want more than the built-in terminal offers, install a card 
or make the keyboard modifications you need. Lowercase adaptor 
schemes are available alone or on 80-column cards. The alternative to 
80-column cards is a serial card in Slot Three to use an external, stand
alone terminal. This scheme is sometimes used for full screen graphics 
from the Apple video output with the text being exchanged with the 
user on the external terminal. 

8.2 PERIPHERAL 1/0 

8.2.1 The Apple Bus 

In Chapter One, the use of peripheral cards was discussed and Fig. 
1-1 gave the locations of the slots where they are plugged in. Here, the 
card itself is discussed. In particular, this section deals with how to use 
the Apple bus to design and build your own cards. Even for a begin
ner, this is not too difficult, provided the interface needed is simple. 

The Apple bus is defined as the pinout on the seven slots that accept 
peripheral cards. Each pin is labeled by number and name as shown in 
Fig. 8-7. To make your own peripheral interface, you use a 
Hobby/Prototyping Board like that of Fig. 8-8 and make connections 
by soldering, wire-wrapping, or both. Wire wrap is probably the easi
est; you can modify your work until you are satisfied with its per
formance. 

The first thing you can get from the bus onto your card is power. 
The + 5 volt and ground lines on Pins 25 and 26 are connected to the 
buses on your card. You just install decoupling capacitors between 
ICs and then connect these lines to feed those ICs. If you need other 
voltages, they are on Pins 33, 34, and 50. Current limits per card are 
determined by the connecting paths. For the entire set of peripheral 
cards, the maximum current for + 5 Vis 500 rna, for -5 Vis 200 rna, 
for -12 Vis 200 rna, and for+ 12 Vis 250 rna. These figures are given 
for the lie model; others, especially clones, may be different. The 
total power dissipation for any card should not exceed 1.5 watts, 
regardless. 

On the bottom pins, towards the front, lies the data bus from Pin 42 
(00) to Pin 49 (07). You can connect to a MOS memory or something 
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Fig. 8-8. Hobby/ Phototyping board A2BOOOIX. (Courtesy Apple Computer, Inc.) 

else that presents a light load. If you need more than one LS load, then 
use a buffer like the LS245, which is tri-state and bi-directional. 
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The address bus is on the top pins, towards the front. The entire bus 
can be accessed from Pin 2 (A0) to Pin 17 (A15) and Pin 18 (R/W). 
Only memory and processor cards usually need the entire address bus. 
Common peripheral interfaces use Pin 41 (OS) to select hardware and 
peripheral chip registers and Pin 1 (1/0 select) to select on-board 
memory. A separate select line on Pin 20 (I/O strobe) can enable addi
tional on-board memory in the $C800.CFFF range. The use of these 
selects is shown in the following sections. 

Many peripheral chips are designed to use interrupts. In addition, 
you may use them directly to get a special job done like step and trace 
debugging, taking memory snapshots, forcing RESETs, and so on. 
Each interrupt line - IRQ, NMI and RES - is available on Pins 30, 
29, and 31. In addition, the bus gives you a special feature called 
daisy-chain interrupts. 

This scheme is designed to handle interrupt contention among 
several cards. The line enters from the next highest slot on Pin 28 and 
must leave for the next lowest slot on Pin 23. If not used, connect Pin 
28 to Pin 23. If used, Pin 28 signals allowed interrupts and Pin 23 
allows interrupts by lower cards. Connect Pin 28 to enable your inter
rupts; connect Pin 23 to disable further interrupts whenever you 
generate an IRQ (or NMI). 

Daisy-chain interrupts are seldom used. To allow for their use by 
other cards in your system, connect Pins 23 and 28 together. 

Timing is available on Pins 35, 36, 37, 38, and 40. Of these, Phase 
Zero on Pin 40 is most often used because it goes low at the right time 
to enable data transfers. You simply connect it to the enables on your 
buffers, peripheral chips, or whatever needs a ground-enabled input 
to transfer data with the data bus. The exact phase of this line varies 
between the old Apple lis and the Apple lie so production boards 
must be tested in both. The old Apple II bus gives a slightly later 
falling edge. The other clock lines provide for special timing. 

In addition to several clock lines, there are other special features on 
the Apple bus. A daisy chain from Slot 7 down to Slot 1 called DMA 
for direct memory access will inhibit the 6502 from accessing the 
memory by signaling the cards of lower priority, just like the interrupt 
daisy chain. The DMA line at Pin 22 is used when this occurs. To ig
nore this feature, you should connect Pin 27 (DMA in) to Pin 28 
(DMA out). Don't connect anything to Pin 22 (DMA). 

The RDY line from the 6502 appears at Pin 21. It will halt the proc
essor during Phase One when pulled low. Rarely used. The inhibit line 
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on Pin 32 (INH) disables motherboard memory access. Also rarely 
used. These two lines are used by fancy cards having on-board proces
sors and memory. 

Pin 39 is interesting. On Apples before the lie, it is called USER 1 
and connects to the LS138 that performs the 1/0 select of slot-de
pendent memory. Rarely used, it would disable the memory selection 
when pulled low. A jumper called USERI on the motherboard can 
connect or disconnect the line between the LS138 and the peripheral 
bus. Rarely used, it appears to serve little purpose. 

On the Apple lie, the Pin 39 line carries S.O. from the processor. 
Known as sync output, S.O. goes high whenever the 6502 does an 
operand fetch. It can be used to generate an interrupt, preferably an 
NMI, each instruction to provide a "bullet-proof' single-step debug
ger. You need some switching on your card to do this; the Sym-l uses 
this method very nicely. On the old Apple, S.O. is hardwired to 
ground and is just not available. 

Finally, Pin 19, which is not connected on Slots l to 6, carries the 
video sync signal to Slot 7. It has a fan out of two LS loads. The fan 
outs and fan ins of the bus are given for all other pins in Table 8-7. 

8.2.2 Simple 1/0 Ports 

One of the simplest 1/0 port systems you can make on a peripheral 
card is shown in Fig. 8-9. Eight output ports are connected to LEOs 
and eight input ports are connected to switches. By throwing the 
switches and observing the LEOs, you can see the ports work with 
simple software routines. When you get everything working okay, you 
can then replace the switches and LEDs with other 1/0 devices as you 
wish. 

To build it, use the parts list of Table 8-8. Wire wrap is the easiest 
method to use. Some soldering will be needed as well. 

Mount the sockets on the board with Silicone Seal™ or hot glue. In
stall the 0.05 IJF capacitors between the ICs and across the power bus 
for decoupling. One of these should be as close to the plug pins as 
possible. Using wire wrap, connect the ground and five-volt lines to 
the pins on the IC sockets as given in Table 8-9. Jumper the Apple bus 
daisy chains: connect Pin 24 and Pin 27 together; connect Pin 23 and 
Pin 26 together. 

The remainder of the wiring appears on the schematic of Fig. 8-9. 
Use it to complete the wiring. You may have to test your LEOs for 
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Table 8-7. Peripheral Loading and Driving Rules 
(Courtesy Apple Computer, Inc.) 

Maximum 
Pin Number Name Required Drive I.STIL Load 

I 1/0 SELECT N/A 10 
2-17 ~~s Tri-State Buffer 5 

18 Tri-State Buffer 10 
19 N/C N/A N/A 
20 I/0 STROBE N/A 2 
21 ROY Open Collector N/A 
22 DMA Open Collector N/A 
23 INTOUT 4 LSTTL N/A 
24 DMAOUT 4 LSTTL N/A 
25 +5V N/A N/A 
26 GND N/A N/A 
27 DMAIN N/A 4 
28 INT IN N/A 4 
29 NMI Open Collector N/A 
30 IRQ Open Collector N/A 
31 RES N/A 2 
32 iNH Open Collector N/A 
33 -12V N/A N/A 
34 -5V N/A N/A 
35 N/C N/A N/A 
36 7M N/A 2 
37 Q3 N/A 2 
38 IZJJ N/A 2 
39 USER I N/A N/A 
40 IZJO N/A 2 
41 DEVICE SELECT N/A 10 

42-49 Do-D, Tri-State Buffer 1 
50 +12V N/A N/A 

polarity before wiring them in if you don't know them already. Other
wise, wiring is straightforward. 

Here's how it works. 
The data from the Apple bus is buffered by the bi-directional tri

state buffer, 74LS245. The direction is controlled from the R/W line 
and it is enabled by the DS line. This means that the bus is connected 
only when an address of $C0nx is given, where n is the slot number 
plus eight and xis any number, $0 to $F. Given such an address, if the 
R/W line is low then the direction of the 74LS245 is right to left; if it is 
high, the direction is left to right. This chip isolates the Apple data bus 
from the board's data bus that connects to the 74LS75s and 74LS244. 
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Fig. 8-9. Simple 1/0 port schematic. 
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Quantity 

1 

1 

2 

1 

I 

2 

5 

I 

1 

I 

8 

8 

8 

6 

1 

NOTE: Sec Fig. 8·9. 

Table 8-8. Parts List for Simple 1/0 Ports 

Description 

74LS245 quad bus transceiver 

73LS138 decoder: 3 to 8 

74LS75 quad latch 

74LS244 octal tri-state bus driver 

74LS04 hex inverter 

20-pin DIP wire-wrap sockets 

16-pin DIP wire-wrap sockets 

14-pin DIP wire-wrap socket 

16-pin DIP header 

8xSPST DIP switch 

Standard red LEOs 

220 ohm resistors 

2200 ohm resistors 

10.05 #JF disk capacitors 

Apple hobby/prototyping board 

Table 8-9. TTL Power Pinouts on 
the Simple 1/0 Ports 

Type Ground +5 volt 
74LS pin pin 

04 7 14 

75 12 5 

138 8 16 

244 10 20 

245 10 20 

This internal data bus won,t load the Apple bus. You can connect 
several loads to it in LS type chips if you wish. Here, we have a set of 
eight inputs and a set of eight outputs connected. The inputs come 
from a 74LS244 that is a unidirectional buffer. Here, it works from 
right to left. The inputs are switches but could be any other device that 
is capable of driving LS logic. The switch level is gated through to the 
internal data bus whenever Pins 1 and 19 on the 74LS244 go low. 

The internal bus also carries output data to the D-latches in the two 
74LS75s. Whenever Pins 4 and 13 go high, the inputs to the latches are 
used to set or clear the outputs. By using latches, the output appears 
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constant even after the data from the bus disappears. A LED is lighted 
whenever an output goes low; dark whenever it goes high. 

Address decoding is done with 74LS138 chips. On the motherboard, 
one of these feeds the peripheral 1/0 slots by decoding the address bus 
to one of seven lines. Each line is a separate DS for each slot. This 
way, each slot can use DS to enable its own hardware with very little 
further decoding to be done. 

On this card, the 74LS138 completes the address decoding. It is 
enabled whenever DS goes low. Another enable is connected from an 
inverter on clock Phase One to provide timing. The three lines on Pins 
1, 2, and 3 of the 74LS138 provide a three bit address to bring one of 
eight output lines low. To get the address, the R/W line and address 
lines A0 and A1 are used here. This generates different outputs for 
reads and writes for the various combinations of A0 and A 1• Only two 
of these eight combinations are used; one of these selects the output 
port and one selects the input port. The actual addresses that must be 
used to reach the ports are summarized in Table 8-10. 

Table 8-10. Simple Port Device Selection 

Instruction Al AO R/W Yn Pin 

LOA $C080,X H H H 0 15 

STA $C080,X H H L 1 14 

LOA $C081,X H L H 2 13 

STA $C081,X H L L 3 12 

LOA $C082,X L H H 4 11 
STA $C082,X L H L 5 10 

LOA $C083,X L L H 6 9 

STA $C083,X L L L 7 7 

There are eight possible combinations of R/W, A0 , and A1 lines. 
Each combination brings a different 74LS138line low; if a routine has 
sixteen times the slot number in the X-reg, $sO, then the instructions 
given will address the board. Each address selects a different Yn, 0 to 
7, as the enable output from the 74LS138. YO appears on Pin 15 and 
selects the output port in the schematic. Y1 appears on Pin 14 and 
selects the input port. Y2 to Y7 are unused here, so $C081.C083 will 
have no effect. 

Look at a couple of test examples. Suppose you put the board in 
Slot Five. The addresses $CODO.CODF belong to that slot since $CODO 
is $C080 + $50. If you write to the board with a Monitor command 
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CODO:AA 

you should see the LEDs make a pattern with every second one 
lighted. $AA is 10101010 in binary. Write other patterns to test the 
output port. 

Similarly, test the input port by reading from the Monitor with: n 
CODO 

The byte read from that location should match the bit pattern of the 
eight switches on the board. Convert the hex number to binary and 
match up the pattern . Make different patterns and test until you are 
sure the input port reads exactly what you expect. 

Instead of switches and lights, you can connect other devices to 
your l/0 port. Make sure that it works okay with the switches and 
lights first. Then, you can either replace them with lines from the de
vice or you can use the remaining enables from the 74LS138. 

Replacement is the simplest. If you have an input device like an ana
log-to-digital converter, simply unhook the switch lines from the 
74LS244 and wire up your new lines. For output disconnect the LEDs 
from the 74LS75s and connect any output lines you want latched . If 
you don't want latching on output, use the internal board data bus -
Pins 2 to 8 on the 74LS245. Without latching, be sure to use the enable 
from Pin 15 o f the 74LS 138 to strobe it a t the enable-low pin of your 
device. To enable high, use Pin 4 of the 74LS04 inverter. 

For cases where a strobe is required to enable the external device, 
use one o f the other lines on the 74LS138 as indicated in Table 8-10. 
This way you can leave the LEDs and switches at $C080,X alone and 
assign one of the remaining three addresses . Simply use the internal 
da ta bus from the 74LS245 Pins 2 to 9 for data. 

8.2.3 Peripheral Interface Adaptor 

Another way of making a simple l/0 port is to use a peripheral 
interface adaptor chip, PIA for short. The most common o f these is 
the Motorola 6821. Equivalent types you may see in the literature are 
the 6820 and the 6520. What this chip does is provide two ports of 
eight data bits and two control bits each. It has logic you can control 
by addressing. It provides processor bus interfacing with eight bits of 
data and two IRQ lines. In addition, it has several enables, allowing it 

.... 

n 

-
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to be selected by several addressing schemes. By coming in a single, 
inexpensive package, it is often the way to go when making up simple 
interface cards for peripheral devices. 

Hookup of the 6821 PIA to the Apple bus is quite simple. Fig. 8-10 
shows the connections. If you have only the one IC to connect to the 
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Fig. 8-10. The 6821 to Apple II Interface. 

data bus on the card then you don't need an internal data bus; simply 
connect the data lines directly as indicated by the dashed lines. How
ever, if you plan to add other data bus devices later, such as memory, 
then you should buffer with a 74LS245 to provide an internal data 
bus, just like the simple 1/0 port of Fig. 8-9 shown earlier. Use R/W 
on the direction pin and enable it to ground. 

The rest of the pinout is straightforward. There are two IRQs from 
the 6821, IRQA and IRQB, each from its corresponding port. Sim
plest thing to do is connect both to the Apple II IRQ line to make them 
available for future programming. The reset line (RES) must be con
nected since it clears the registers in the PIA at power up. Without re
setting, the PIA may generate unintentional interrupts! 



492 Apple® Programmer's Handbook 

Addressing is used to select one of four register locations at Pins 35 
and 36 on the 6821. The device select (DS) line connected to the chip 
select (CS3) addresses these registers at the four locations given in 
Table 8-11. Each of the two ports has two locations, data and control. 

Table 8-11. PIA Register Select Addresses 

Address Register 

$C080,X Data register A 

$C08l,X Control register A 

$C082,X Data register B 

$C083,X Control register B 

NOTE: Where X-reg contains 16 times slot number. 

By reading and writing to these locations from the Apple, you can 
send and receive data from the ports, and control such things as inter
rupts and control lines handshaking protocol. 

Like the simple 1/0 port, you can connect devices. Use either Port 
A or Port B data lines for most simple applications. Each line on each 
port can be set independently for input or output. However, if you 
plan to use the control lines in future for handshaking, use Port A for 
input and Port B for output. While the two ports are identical in their 
data handling logic, they differ in their control logics. See the refer
ences for details on use of control lines, interrupts, and handshaking. 

Here, you can see how to control the transfer of data with a PIA. 
Each of the two data locations belongs to one port. And, each of 

the two control locations contains the control register for each port. 
See Fig. 8-11 for PIA data and control registers for Port A. There are 

ORA 

PA7 PAS PAS PA4 PAl PA2 PAl PAO 

DORA 

DA7 DA6 DAS DA4 DA3 DA2 DAI DAO 

CRA 

IRQ I IRQ2 OUT NEG IRQE DDR NEG IRQE 

CA2 CAl 

l'"ig. 8-11. PIA datu and control registers for port A. 

-
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two registers for data, ORA and DORA. Data are transferred in ORA 
and in the direction specified by DORA. ORA is called the output reg
ister of Port A while DORA is called the data direction register of Port 
A. Both ORA and DDRA reside at the same location, but more about 
that a little later. 

Upon reset, the data location contains ORA. All lines of data, PAO 
to PA 7, are connected to ORA as inputs. By reading at the data loca
t ion - $C800,X - you get the eight bits representing the eight data 
input lines at the time of the read. Input is not latched; it follows the 
data lines as they change from cycle to cycle. 

The reason all bits of ORA are inputs is because the other data reg
ister, DDRA, was cleared to zero by the reset. If any bit in DDRA is 
changed to a one, then the corresponding bit in ORA becomes an out
put. For example, if you changed bit 3, DA3, in DORA to a one, then 
bit 3, P A3, in ORA would become an output bit. The line PA3 would 
be an output line. The remaining lines would not be affected; they 
would remain as inputs. 

To change bits in the data direction register, you have to switch the 
data location from ORA to DORA. Then, you can change the DORA 
contents. Immediately afterwards, you would want to switch the data 
locat ion back from DORA to ORA to access the port. This switching 
is done in the control register. You use bit 2, called DDR, in CRA. 
Here is the code: 

LOA $C081 ,X get CRA 
ORA #$04 turn on Bit 2 (DDR) 
STA $C081 ,X rep lace CRA 
LDA $C080,X get DORA 
ORA #$08 turn on Bit 3 (output) 
STA $C080,X replace DORA 
LOA $C081 ,X get CRA 
AND #$FB turn off Bit 2 (DDR) 
STA $C081 ,X replace CRA 

Remember, the X-reg contains sixteen times the slot number. 
When a line is set to output, it is latched by ORA, the output reg

ister. So, after you write to the data register, the output appears on 
any o utput lines and remains there until you change it again. 

To summarize, inputs are zero in the DDR and unlatched in the out
put register. Outputs are the ones in the DDR and latched in the out
put register. 
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To use Port B, the rules are the same. Use $C082,X for 
ORB/DDRB and $C083 for CRB. The layout is given in Fig. 8-12; 

ORB 

P87 P86 PBS P84 PBl P81 PSI PBO 

OORB 

087 086 DBS 084 083 DB1 OBI 080 

CRB 

I IRQ I IRQ1 our NEG IRQE DDR NEG IRQE 

CB1 CBI 

Flj:. 8·12. PIA dala and con lrol regislcrs for pori B. 

compare to Fig. 8-11. As an example, here is how to set all eight data 
lines of Port B for output: 

LDA $C083,X get CRB 
ORA #$04 turn on Bit 2 (DDR) 
STA $C083,X replace 
LDA #$FF turn on all bits 
STA $C082,X in DDRB 
LDA $C083,X get ORB again 
AND #$FB turn off Bit 2 
STA $C083,X replace 

To use the ports, then, you could read from Port A by 

LDA $C080,X 

and write to Port B by 

STA $C082,X 

assuming you initialized Port B for output as just shown. Always set 
the X-reg to sixteen times the slot number before using any of these 
statements. 

-

-

i1 
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8.2.4 Peripheral Memory 

While you can get peripherals working from routines in main mem
ory, there are cases where you need memory right on the same card as 
the interface circuitry itself. The most obvious is the need to determine 
the slot number of the device. An on-card routine can do this easily. 
Another is the need to use Apple's input/output protocol, the hooks. 
You can send and receive byte streams easily from BASIC or many 
software packages if the routine is at $C§OO, where ~ is the slot num
ber. Review Section 6.1 for how the hooks work. 

If you decide to add memory to your peripheral card, the question 
is, RAM or ROM? Traditionally, ROM is used on cards so that the 
routine is permanent. No initial loading is needed and any system can 
pass bytes with no need to have the routine on a special disk. Choose 
an EPROM like the 2316. You will need a PROM programmer; use an 
Apple card. Several are available from manufacturers. You can save a 
bit by making your own eraser. 

To make a PROM eraser, get an 18-inch fluorescent lamp that pro
duces short ultraviolet. They are sold by lamp suppliers as germicidal 
lamps. Don't use so-called "black light" tubes. They are cheaper, but 
put out long wavelength ultraviolet, not the short wavelength the 
EPROM needs to erase. The lamp should be labeled as producing 
253.7 nanometers, a mercury line in the short ultraviolet. Fig. 8-13 
gives the circuit. 

..&.. 
r-------------~ ~----------~ 

START 

Fig. 8-13. EPROM eraser circuit. 

If you are modifying an existing fixture, you have to do two things. 
First, put the fixture in a "bottomless" box that rests on a table or 
floor so as to cover and illuminate the EPROMs. Locate the start 
switch outside the box so that you can start it without looking at the 
light itself. The short ultraviolet is dangerous to eyesi~ht. Next, use a 
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normally open pushbutton to turn the lamp off whenever the box is 
lifted from its resting surface. This is your safety switch to prevent ac
cidental eye exposure to the lamp. 

Such a homemade eraser lamp is safer and cheaper than most com
mercially available lamps. 

Alternately, you can use RAM on a card. The advantages include 
speed and ease of programming and no initial costs for PROM pro
gramming eq uipment. You have to load the card before using it, but 
you can also modify your routines when necessary. 

The easiest RAM to use is a static RAM . A low-cost static RAM is 
the type 2114. A circuit that adapts two of these chips to the Apple bus 
is shown in Fig. 8-14. The buffer used to isolate the internal data bus is 
not shown, but is the same as described. The 74LS245 buffer can be 
enabled permanently by grounding Pin 19 so that it will work for both 
device addresses and 1/0 (memory) addresses. Connect the direct ion 
switch at Pin I to Apple R/ W line. 

Regardless of RAM or ROM, you will write the routine starting at 
$C~OO to either input or output one byte. You have 256 bytes of pro
gram space there to do that. For simple devices, that is usually suffi
cient. 

If you want RAM storage for information between calls, use the 
scratch pad memory in SCREEN 1 ($0400.07FF) as assigned to your 
slot. See Chapter Two for a breakdown. This is where you keep setup 
parameters the first t ime they a re called, and use them on subsequent 
calls. If the slot number is kept in the Y -reg, then you address this 
scratchpad as $0478,Y and $04F8,Y and so on. See Table 2-3 for the 
others. 

Remember, you need sixteen times the slot number in the X-reg to 
address the device hardware as described in Sections 8.2.2 and 8.2.3 . 

Here is how to get the slot number of a routine running in 
$C~OO .C~FF: 

JSR $FF58 a known RTS 
TSX 
LDA $0100,X gets our PC-high 
AND #$OF isolates ~ 
TAY slot number in Y-reg 
ASL A 
ASL A 

-

-

-
-
-
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ASL A 
ASL A 
TAX $10*slot in X-reg 

Do this after pushing the registers onto the stack at the beginning of 
the routine. The slot number in theY -reg can reach the proper scratch
pad RAM and the X-reg can reach the proper device by $C08n,X ad
dressing. 

By making your own special-purpose peripherals and by program
ming their routines on-board, you can transform your Apple into any 
number of different "custom-built" computers. Where does your 
imagination lead you at this point? Make it on your Apple! 

-

-
-
-
-
-
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APPENDIX A 

Bibliography and Notes 

In addition to the material in this book, you may wish to consult the 
following on particular points. They can give you more detail on 
specific topics whenever you must dig a little deeper on any project. 

Apple Computer, Inc., publish definitive reference material on the 
Apple II. In particular, you may wish to consult one of the following: 

Apple II Reference Manual (1978 ed.). A collection of engineering 
notes including the Standard Monitor and Sweet16 source listings, 
very clear schematics and the instruction set for Integer BASIC as it 
appears in Chapter Five of this book. Out of print now. 

Apple II Reference Manual (1979 ed.). A real reference manual, 
this is the standard reference for Apple II before the lie model -
Standard and Autostart Monitors listed . 

Apple lie Reference Manual (1982 ed.). Two volumes, the second 
containing the listings of the lie Monitor and SO-column firmware. 
Very thorough. 

Applesoft BASIC Programmer's Reference Manual (1982 ed.). 2 
volumes, for Jle only. An expanded version of the earlier, excellent 
Applesoft manual, this one emphasizes lie features. With care, it 
can be used on the older Apple II models - try out any feature 
first. 
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Apple II Product Specification - Hobby/Prototyping Board 
(Product Code A2BOOOIX). This useful collection of bus inter
facing information comes with to bare board from Apple. Nice to 
have if you design peripheral cards. 

Dougherty, The Apple II Monitors Peeled (latest ed.) is a complete 
description of the Standard and Autostart Monitors. Very 
exhaustive. 

Programmer's Aid #1 Installation and Operating Manual expands 
on the features you can use with Integer BASIC configurations. 
Main features are highlighted in Chapter Five in this book. 

Apple Software Bank - Contributed Programs Volumes 3-5 is a 
collection of freebee software documentation. Includes File 
Cabinet, a LIS Per, and other goodies that were distributed by 
Apple. Try your local Apple user group; they may have the 
software in their library. 

Disk Operating System Instructional and Reference Manual (latest 
version 3.3). Highlighted in Chapter Seven, but contains more use
ful material, especially at the command level. 

You can get Apple publications through local dealers. The address of 
the orchard head office is 

Apple Computer, Inc., 
20525 Mariani A venue 
Cupertino, CA 95014 

Apple Pugetsound Program Library Exchange is a user group with a 
large mail-in membership. Their magazine, which is called 
A.P.P.L.E., is distributed to members. They distribute software and 
documentation; in particular: 

The Wozpak II and Other Assorted Goodies. Supplied from Apple, 
it contains original Wozinak material on the Apple II and Integer 
BASIC goodies developed in the early years of the Apple. A must 
for Integer BASIC freaks, it comes with software. 

Program Line Editor written by Neil Konzen. This manual and 
software is a must for anyone doing extensive BASIC program
ming. Integer and Applesoft versions come on disk. 

.... 



Bibliography and Notes 501 

Write them for current membership information. There are many 
more useful uti1ities you can get from them: 

Apple Pugetsound Program Library Exchange 
6708 39th Avenue SW, 
Seattle, WA 98136 

Crossley, John, "Applesoft Internal Entry Points," Apple Orchard, 
pp 12-14, published by International Apple Core, P.O. Box 976, 
Daly City, CA 94017. Vol. 1, no. 1 (Mar., Apr., 1980). A collection 
of Applesoft locations and call descriptions. The first large collec
tion published, this is the one Applesoft books are largely based 
upon. 

Coan, James A., Basic APPLE BASIC, Hayden Book Company, 
Inc., Rochelle Park, New Jersey. For anyone who has little or no 
Applesoft programming experience, this book takes you through 
BASIC from the beginning. May be used for both Applesoft and 
Integer BASIC instruction. 

Gayler, Winston D., The Apple II Circuit Description, Howard W. 
Sams & Co., Inc. (1983). Very effective reference if you expect to do 
much work with Apple II hardware. Also great for troubleshooting 
clones. 

Intel Component Data Catalog (latest edition), good source for 
PROM data. Literature Department, Intel Corporation, 3065 
Bowers Avenue, Santa Clara, CA 95051. 

Irwin, Paul, "Amper Jump & TSort," Nibble, vol. 2, no. 6 (1981). A 
simple method for u~ing several routines with ampersand calls is 
given. Also, a tag sort for strings is given and described in detail. 

Ibid, "Amp-L-Soft", Nibble, vol. 3, no. 7 (1982). More ampersand 
call goodies with notes on loading ampersand routines to run with 
Applesoft. Tones, an INPUT anything, and a fast substring search 
are included. 

Lancaster, Don, TTL Cookbook, Howard W. Sams & Co., Inc. 
(1974). Excellent introduction to TTL chips for would-be hardware 
hackers. 
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Ibid, Son of Cheap Video, Howard W. Sams & Co., Inc. (1980). The 
last two chapters describe a lower-case video and keyboard scheme. 

Leventhal, Lance, 6502 Assembly Language Programming, 
Osbourne/McGraw-Hill, Inc. (1979). Although the unexplained 
Assembler directives will discourage the beginning programmer, 
this is quite a thorough reference for anything you may care to look 
up in the way of 6502 features and routines. 

Luebbert, William F., What's Where in the Apple? (latest edn.) from 
Micro Ink, Inc., 34 Chelmsford Street, P.O. Box 6502, 
Chelmsford, Mass. 01824, the people who publish Micro magazine. 
This is a large gazetteer of the Apple II that covers both Applesoft 
and Integer configurations. 

MC6500 Microcomputing Family Programming Manual, Jan. 1976. 
Published jointly by MOS Technology, Inc., 950 Rittenhouse Road, 
Norristown, PA 19401 and by Synertek, P.O. Box 552, MS/34, 
Santa Clara, CA 95052. When it comes to programming the 6502, 
this is the definitive work by the designers themselves. 

MC6500 Microcomputing Family Hardware Manual, 1976. Also 
published jointly by MOS and Synertek, this describes and explains 
how to design with 6500 series hardware: 6502 and 6520 chips in 
particular. Remembr, the 6520 can be had in a later product called 
the 6821. 

Motorola Microprocessors Data Manual, latest edition, from 
Literature Distribution Center, Motorola Semiconductor Products 
Inc., P .0. Box 20924, Phoenix, AZ 85036. This gives the 6800 fami
ly of processors and peripherals. These peripheral chips work on the 
Apple II bus. 

Pump, Mark, "DOS Internals: An Overview," Call - A.P.P.L.E., 
(Feb. 1981). One of the best dissections of DOS ever written, it 
covers versions 3.1, 3.2, and 3.3. 

Radio Shack, Semiconductor Reference Guide (current ed.). A 
collection of data on the products carried by Radio Shack. Many 
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popular items - memory, transducers, transistors, TTL, and so 
forth. Radio Shack Cat. #276-4006. 

Synertek (current year) Data Catalog, Synertek, P.O. Box 552 MS/34, 
Santa Clara, CA 95052. Lots of 6500 series data, memories, 
especially the type 2114 static RAM. 

The TTL Data Book for Design Engineers, latest edition, from Semi
conductor Group, Texas Instruments, Inc., P.O. Box 225012, 
Dallas, TX 75265. This is the bible of the industry - look up any of 
the TTL chips you may likely use here. If you don't know TTL, get 
Lancaster's book as well. 

Lechner, Pieter, Worth, Don, Beneath Apple DOS, (1981), from 
Quality Software, 6660 Resenda Blvd., Resenda, CA 91335. Just 
about everything you wanted to know about DOS. 
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Apple II Programmers' 
Reference Card 

Examine Memory 
addr 
addrl.addr2 

MONITOR COMMANDS SUMMARY 

Displays single location. 
Displays a block of memory. 
Displays next 8 locations. (return) 

addrl<addr2.addr3V Verifies that block (addr2.addr3) equals the block 
beginning at (addrl). 

addrL 
L 

Change Memory 

List (disassemble) locations from (addr). 
List beginning at next location. 

addr:byte by1e Change contents starting at (addr). 
:byte byte byte Change contents starting at next location. 
addrl<addr2.addr3M Move block from (addr2.addr3) to (addrl). 
NOTE: To set a block to a ll single byte value (e.g. , all zeros), use two commands as 
fo llows. addrl :by1e 

Cassette Tape 
addrl.addr2W 
addrl.addr2R 

Apple Video Display 
N 

Calculate Hexadecimal 
byte/ + byte2 
by1ef - by1e2 

(addrl + l)<addrl .(addr2-l)M 

Write block of memory to tape. 
Read block from tape into memory. 

Set to normal white-on-black. 
Set to inverse black-on-white. 

Add hex numbers. 
Subtract hex numbers. 
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5D 
SE 
SF 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
6A 

93 
94 
9S 
% 
97 
98 
99 
100 
101 
102 
103 
104 
lOS 
106 

23808 
24064 
24320 
24576 
24832 
25088 
2S344 
25600 
25856 
26112 
26368 
26624 
26880 
27136 

68 107 27392 
6C 108 27648 
60 109 27904 
6E 110 28160 
6F I II 28416 
70 112 28612 
71 113 28928 
72 114 29184 
73 liS 29440 
74 116 296% 
75 117 29952 
76 118 30208 
77 119 30270 
78 120 30464 
79 121 30976 
7A 122 31232 
78 123 31488 
7C 124 31744 
70 125 32000 
7E 126 32256 
7G 127 32512 

HEX HEX HIGH 

80 128 32768 
81 129 33024 
82 130 33280 
83 131 33536 
84 132 33792 
8S 133 3404S 
S6 134 34304 
87 135 34560 
88 136 34816 
89 137 3S072 
SA 138 3532S 
SB 139 355S4 
sc 140 35840 
80 141 36096 
BE 142 36S32 
SF 
90 
91 
92 
93 
94 

143 
144 
145 
146 
147 
148 

36608 
36864 
37120 
37376 
37632 
37888 

m 

REM 
LET 
GOTO 
IF 
PRINT 
PRINT 
PRINT 
POKE 

COLOR= 
PLOT 

HUN 

AT 
VLIN 

AT 
o VTAB 
p 

q 

LIST 

LIST 
w POP 

NODSP 
NODSP 
NOTRACE 
DSP 
DSP 
TRACE 
PRII 

DEL INII 

Applesofl ASCII 

END NUL 
FOR SOH 
NEXT STX 
DATA ETX 
INPUT EOT 
DEL ENQ 
DIM ACK 
READ BEL 
GR BS 
TEXT HT 
PRit LF 
INti VT 
CAll FF 
PLOT CR 
HUN SO 
VLIN 
HGR2 
HGR 
HCOLOR= 
HPLOT 
DRAW 

Sl 
OLE 
DCI 
DC2 
DC3 
DC4 

EOR m,X 
LSR m,X 

RTS 
ADC (z,X) 

ADCz 
ROR z 

PLA 
ADCtlv 
RORA 

-V-BDI-C 
-V-BDIZ-
-V-BDIZC 
-VI-···· 
-VI----C 
-VI---Z· 
-VI---ZC 
-VI--I·· 
-VI--1-C 
-VI--IZ-
·VI--IZC 
-VI-()..
• VI-D--C 
-VI-D·Z· 
-VI-0-ZC 

JMP (m) -VI-Ol·· 
ADC m -VI-01-C 
ROR m -VI-OIZ-

·VI-DIZC 
BVS -VIB···· 
ADC (z),Y -VIB---C 

-VIB--Z· 
-VIB--ZC 
-VIB-1--

ADC z,X -VIB-1-C 
ROR z,X -VIB-IZ-

·VIB-IZC 
SEI -VIBD---
ADC m,V -VIBD--C 

-VIB()..Z-
-VIB()..ZC 
-VIBDI-

ADC M,X -VIBDI-C 
ROR m,X -VIBDIZ-

·VIBDJZC 

OP CODE FLAGS 

ST A (z,X) N-······ 
N--····C 
N-----Z

N·····ZC 
STY z N--·-1·-
STA z N----1-C 
STX z N----IZ-

N·--IZC 
DEY N---D··· 

N---0--C 
TXA N---0-Z-

N---()..ZC 
STY m N---01--
ST A m N---01-C 
STX m N---DIZ· 

BCC 
STA (z),Y 

STY z,X 

N---DIZC 
N--B··
N--8--C 
N--8--Z
N--B--ZC 
N--B-1·-

50 
SE 
SF 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 

6A 
68 
6C 
60 
6E 
6F 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 

7A 
78 
7C 
70 
7E 
7F 

HEX 

80 
81 
82 
83 
84 
S5 
86 
87 
88 
S9 
SA 
SB 
sc 
so 
SE 
SF 
90 
91 
92 
93 
94 



9S 
96 
97 
98 
99 
9A 
9B 
9C 
90 
9E 
9F 
AO 
AI 
A2 
A3 
A4 
AS 
A6 
A7 
AS 
A9 
AA 
AB 
AC 
AD 
AE 
AF 
BO 
Bl 
B2 
B3 
B4 
BS 
B6 
B7 
BS 
B9 
BA 
BB 
BC 
BD 
BE 
BF 
co 
Cl 
C2 
C3 
C4 
cs 
C6 
C7 
CS 
C9 
CA 
CB 
cc 
CD 
CE 
CF 
DO 

149 
ISO 
lSI 
152 
IS3 
154 
ISS 
IS6 
IS7 
15S 
IS9 
160 
161 
162 
163 
164 
16S 
166 
167 
16S 
169 
170 
171 
172 
173 
174 
17S 
176 
177 
17S 
179 
ISO 
181 
IS2 
183 
184 
ISS 
186 
187 
188 
IS9 
190 
191 
192 
193 
194 
19S 
196 
197 
19S 
199 
200 
201 
202 
203 
204 
20S 
206 
207 
208 

3SI44 
38400 
38656 
38912 
39168 
39424 
39680 
39936 
40192 
4044S 
40704 
40960 
41216 
41472 
41728 
41984 
42240 
42496 
427S2 
43008 
43264 
43S20 
43776 
44032 
44288 
44544 
44800 
4SOS6 
4S312 
4SS68 
4SS24 
46080 
46336 
46S92 
46848 
47104 
47360 
47616 
47872 
48128 
48384 
48640 
48896 
491S2 
49408 
49664 

49920 
S0176 
S0432 
50688 
50944 
Sl200 
SI4S6 
Sl712 
Sl968 
S2224 
S2480 
S2736 
S2992 
53248 
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XDRAW 
HTAB 
HOME 
ROT= 
SCALE= 
SHLOAD 
TRACE 
NO TRACE 
NORMAL 
INVERSE 
FLASH 
COLOR: 
POP 
VTAB 
HIMEM: 
LOMEM: 
ON ERR 
RESUME 
RECALL 
STORE 
SPEED= 
LET 
GOTO 
RUN 
IF 
RESTORE 
& 
GOSUB 
RETURN 
REM 
STOP 
ON 
WAIT 
LOAD 
SAVE 
DEFFN 
POKE 
PRINT 
CONT 
LIST 
CLEAR 
GET 
NEW 
TAB 
TO 
FN 
SPC( 
THEN 
AT 
NOT 
STEP 
+ 

AND 
OR 
> 

NAK 
SYN 
ETB 
CAN 
EM 
SUB 
ESC 
FS 
GS 
RS 
us 
SP 

Olo 
& 

+ 

0 
I 

7 

s 
9 

< 

> 

@ 

A 
B 
c 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 
p 

STA z,X 
STX z,Y 

TXA 
STA m,Y 
TXS 

STA m,X 

LOY llv 
LOA (z,X) 
LCX/#v 

LOY z 
LDAz 
LOX z 

TAY 
LDA/#v 
TAX 

LOY m 
LOAm 
LDXm 

BCS 
LDA(z),Y 

LOY z,X 
LOA z,X 
LOX z,Y 

CLV 
LOA m,Y 
TSX 

LOY m,X 
LOA m,X 
LOX m,Y 

CPY /#v 
CMP {z,X) 

CPY z 
CMPz 
DECz 

INY 
CMP/#v 
DEX 

CPY m 
CMPm 
DECm 

BNE 

N--B-1-C 
N--B-IZ
N--B·IZC 
N-·BD··· 
N--BD--C 
N--80-Z
N--BD-ZC 
N--BDI·· 
N--BDJ-C 
N--BDIZ
N--BDZIC 
N-1·-··· 
N-1----C 
N-1---z
N-1--zc 
N-1--1·· 
N-1--1-C 
N-1--JZ
N-1--IZC 
N-1-D--
N-1-D--C 
N-1-D-Z
N-1-D-ZC 
N-1-DI-
N-1-DI-C 

95 
96 
97 
98 
99 
9A 
9B 
9C 
90 
9E 
9F 
AO 
AI 
A2 
A3 
A4 
AS 
A6 
A7 
AS 
A9 
AA 
AB 
AC 
AD 

N-1-DIZ- AE 
N-1-DIZC AF 
N-IB···· BO 
N-18---C 81 
N-IB--Z· 82 
N-IB--ZC 83 
N-IB-1-- B4 
N-18-1-C 85 
N-IB-IZ· B6 
N-18-IZC B7 
N-180-- 88 
N-IBD--C 89 
N-IBD-Z- BA 
N-IBD-ZC 88 
N-1801-- DC 
N-IBDI-C BD 
N-IBDIZ- BE 
N-IBDIZC BF 
NV-·-··- CO 
NV-----C Cl 
NV····Z· C2 
NV····ZC C3 
NV·-·1·· C4 
NV···I·C C5 
NV···IZ- C6 
NV···IZC C7 
NV--0-- C8 
NV--D--C C9 
NV-·D·Z· CA 
NV--0-ZC CB 
NV--01-· CC 
NV--01--C CD 
NV-DIZ· CE 
NV--DIZC CF 
NV-B---· DO 
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Test and Debug 
addrG Go, executes routine at (addr). ~ 

ctrl/Y User, executes routine at $03sF8. 
ctrl/E Examine registers. Change them with a colon on the 

next command - : (A) (X) (Y) (P) (S) - for as 
many registers as wanted ,... 

addrT• Trace routine at (addr) until BRK (op code $00) is 
executed. 

addrS* Single step by executing one instruction only at 
(addr). Step following instructions by "S'' only for 

flllll 
each. 

*NOTE: Trace and step are available in Old Monitor only. 
Mini-Assembler 

CALL -151 Enter Monitor from Integer BASIC only. 
F666G Enter Miniassembler from Monitor. 

..._ 
addr:instruction Assembles instruction with mnemonic at (addr). 
(space)instruct ion Assembles instruction at next location. 
$command Executes any Monitor command. 
$FF69G Return from Miniassembler to Monitor. 

HEX I. OW HIGH ASCII INUGER BASIC OPCODE RAGS HEX 

00 0 0 NUL s1ar1 line BRK 00 
OJ 256 SOH end line ORA(z,X) -------C 01 
02 Sl2 STX ------Z- 02 
03 768 ETX ------ZC 03 
04 1024 EOT LOAD -----1-- 04 
OS 1280 ENQ SAVE ORAz -----1-C OS 
06 1536 ACK CON ASL z -----IZ- 06 
07 1792 BEl RUN -----IZC 07 
08 2~8 BS RUN PHP ----0--- 08 
09 2034 HT DEL ORA II\' ----0--C 09 
OA 10 2560 LF ASLA ----D-Z- OA ~ 
08 II 2816 VT NEW ----D-ZC OB 
oc 12 3072 FF CLR ----01-- oc 
OD 13 3378 CR AUTO ORAm ----01-C OD 
OE 14 3S84 so ASL m ----DIZ- OE 
OF IS 3840 Sl MAN ----DIZC OF ~ 
10 16 4096 OLE HIMEM: BPL ---8---- 10 
II 17 43S2 DCI LOMEM: ORA (z),Y ---8---C II 
12 18 4608 DC2 + ---8--Z- 12 
13 19 4864 DC3 ---8--ZC 13 
14 20 Sl20 DC4 ---B-1-- 14 
IS 21 S376 NAK ORA z,X ---B-1-C IS 
16 22 S632 SYN ASI. z,X ---B-IZ· 16 
17 23 5888 ETB ---8-IZC 17 
18 24 6144 CAN >= CLC ---80--- 18 
19 2S 6400 EM > ORA m,Y ---80-C 19 
lA 26 6656 SUB <= ---80-Z- lA 
18 27 6912 ESC <> ---BD-ZC 18 
IC 28 7168 FS < ---BDI- IC 
ID 29 7424 GS AND ORA m,X ---801-C ID 
IE 30 7680 RS OR ASL.m,X ---8DIZ- IE p-1 
IF 31 7936 us MOD ---BDIZC IF 
20 32 8192 SP A JSR m --1---- 20 



21 
22 
23 
24 
25 
26 
27 
28 
29 
2A 
2B 
2C 
2D 
2E 
2F 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
3A 
3B 
3C 

3D 
3E 
3F 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
4A 
4B 
4C 

4D 
4E 
4F 
so 
51 
52 
53 
54 
ss 
56 
51 

58 
59 
SA 
58 
sc 

33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
so 
51 
52 
53 
54 
ss 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
15 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 

91 
92 

8448 
8704 
8960 
9216 
9472 
9728 
9984 
10240 
10496 
10752 
11008 
11264 
11520 
117i6 
12032 
12288 
12544 
12800 
13056 
13312 
13568 
13824 
14080 
14336 
14592 
14848 
15104 
15360 
15616 
15872 
16128 
16384 
16640 
16896 
17152 
17408 
17664 
17920 
18176 
18432 
18688 
18944 
19200 
19456 
19712 
19968 
20224 
20480 
20736 
20992 
21248 
21504 
21760 
22016 
22272 
22528 
22784 
23040 
23296 
23552 

"To 
& 

I 
0 

4 

s 
6 

9 

< 

> 

@ 

A 
8 
c 
D 
E 
F 
G 
H 

K 
L 
M 
N 
0 
p 

Q 
R 
s 
T 
u 
v 
w 
X 
v 
z 
r 
\ 
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THEN 
THEN 

( 

PEEK 
RND 
SGN 

ABS 
POL 

+ 

NOT 
( 

# 
LEN( 
ASC( 

SCRN( 

TEXT 
GR 
CALL 
DIM 
DIM 
TAB 
END 
INPUT 
INPUT 
INPUT 
FOR 

TO 
STEP 
NEXT 

RETURN 
GOSUB 

AND(z,X) 

BIT z 
ANDz 
ROL z 

PLP 
AND#v 
ROLA 

BJTm 
ANDm 
ROLm 

BMI 
AND (l),Y 

AND z,X 
ROL z,X 

SEC 
ANDm,Y 

ANDm,X 
ROL m,X 

RTI 
EOR (z,X) 

EOR z 
LSR z 

PHA 
EOR #v 
LSR A 

JMPm 
EORm 
LSRm 

BVC 
EOR (z),Y 

EOR z,X 
LSR z,X 

CLI 
EOR m,Y 

--1----C 
--1---Z-
·-1--ZC 
--1--1--
·-1--1-C 
-1-IZ-
--1--IZC 
--1-D---
--1-0--C 
--1-D-Z-
--1-D-ZC 
--1-01--
·-1-01-C 
--1-0IZ
·-1-0IZC 
--18----
·-IB---C 
--18--Z
·-18--ZC 
--18-1--
--18-1-C 
--18-IZ-
--18-IZC 
--I8D---
--I8D--C 
--180-Z-
·-IBD-ZC 
--1801--
--IBDI-C 
--IBDIZ-
--18DIZC 
-V------
-V-----C 
-V----Z-
-V---ZC 
-V---1--
-V---1-C 
-V--IZ-
-V---IZC 
-V--0---
-V--0--C 
-V-D-Z-
-V--0-ZC 
-V--01--
-V--01-C 
-V--OIZ-
-V--OIZC 
-V-8---
-V-8---C 
-V-B--Z-
-V-8--ZC 
-V-8-1--
-V-8-1-C 
-V-8-IZ-
-V-8-IZC 
-V-80---
-V-80-C 
-V-80-Z-
-V-BD-ZC 
-V-801--

21 
22 
23 
24 
25 
26 
27 
28 
29 

2A 
28 
2C 
2D 
lE 
2F 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

3A 
3B 
3C 
3D 
3E 
3F 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

4A 
48 
4C 
4D 
4E 

4F 

so 
51 
52 
53 
54 
ss 
56 
57 
58 
59 
SA 
sa 
sc 
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Dl 209 53504 < Q CMP(z),Y NV-8---C OJ 
02 210 53760 SGN R NV-8-Z- 02 
03 211 54016 INT s NV-8--ZC 03 
04 212 54272 ABS T NV-8-1-- 04 
05 213 54528 USR u CMP z,X NV-8-1-C 05 
06 214 54784 FRE v DEC z,X NV-B-IZ- D6 
07 215 55040 SCRN( w NV-8-IZC 07 
08 216 55296 POL X CLD NV-80--- 08 
09 217 55552 POS y CMP m,Y NV-80--C 09 
DA 218 55808 SQR z NV-80-Z- DA 
DB 219 56064 RND c: NV-80-ZC DB 
DC 220 56320 LOG NV-801-- DC 
DO 221 56576 EXP ::I CMPm,X NV-801-C DO 
DE 222 56832 cos DECm,X NV-8DIZ- DE 
OF 223 57088 SIN NV-8DIZC OF 
EO 224 57344 TAN CPX #v NV1----- EO 

• El 225 57600 ATN a SBC{z,X) NV1----C El 
E2 226 57856 PEEK b NVI--Z- E2 
E3 227 58112 LEN NV1---ZC E3 
E4 228 58368 STR$ CPX z NVI--1-- E4 
E5 229 58624 VAL SBCz NV1--1-C E5 
E6 230 58880 ASC INCz NVI--IZ- E6 
E7 231 59136 CHR$ 8 NVI--IZC E7 .... 
EB 232 59392 LEFTS h INX NVI-0--- E8 
E9 233 59648 RIGHTS SBC#v NV1-D--C E9 
EA 234 59904 MID$ j NOP NV1-D-Z- EA 
EB 235 60160 

T 
k NVI-D-ZC EB 

EC 236 60416 CPXm NVI-01-- EC 
ED 237 60672 m SBCm NV1-D1-C ED 
EE 238 60928 INCm NV1-DIZ- EE 
EF 239 61184 0 NVI-DIZC EF 
FO 240 61440 p BEQ NV18---- FO 
F1 241 61696 q SBC(z),Y NVIB---C Fl 
F2 242 61952 NVIB--Z- F2 
F3 243 62208 error NV1B--ZC F3 
F4 244 62464 messages NVIB-1-- F4 
F5 245 62720 SBC z,X NV18-1-C FS 
F6 246 62976 INCz,X NV18-IZ- F6 
F7 247 63232 w NV18-IZC F7 ~ 
F8 248 63488 SED NV1BD--- F8 
F9 249 63744 SBCm,Y NVJ8D--C F9 
FA 250 64000 NVIBD-Z- FA 
FB 251 64256 NVIBD-ZC FB 
FC 252 64512 NVIBDI-- FC r FD 253 64768 SBC m,X NVIBDI-C FD 
FE 254 65024 "\, INCm,X NV1BDIZ- FE 
FF 255 65280 DEL NVIBD1ZC FF 

~ 
I I 
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UNIQUE 6502 INSTRUCTIONS 

MNEMONIC OPCODE ADDRESSING FLAGS 

branch 
BCC 90 relative 
BCS BO relative 
BEQ FO relative 
BMI 30 relative 
BNE DO relative 
BPL 10 relative 
BVC 50 relative 
BVS 70 relative 

p-register bit 
CLC 18 implied -----C 
CLD 08 implied --0---
CLI 58 implied ---1--
CLV B8 implied -V---
SEC 38 implied -----C 
SED F8 implied --0--
SEI 78 implied ---1--

program flow 
BRK ()() implied --1-
JMP 4C absolute 
JMP 6C indirect 
JSR 20 absolute 
NOP EA 
RTI 40 implied stack* 
RTS 60 implied 

transfer 
TAX AA implied N---Z-
TAY AS implied N---Z-
TSX BA implied N--Z-
TXA SA implied N---Z-
TXS 9A implied 
TYA 98 implied N---Z-

stack 
PHA 48 implied 
PHP 08 implied 
PLA 68 implied N---Z-
PLP 28 implied stack* 

•restored from stack 

... 
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ACCUMULATOR,MEMORY,ANDINDEXINSTRUCTIONS ... 
... 

$ 
~ 

$ ~ 

~-..; 
~ ~ ~ ~ ~ ~ 

N"':' ~ & st 

" $' ~I' $'~ ti &' i ~"#;' q."':' 4."1;' s .... 
01 01 s ~ ~ {; ;;) S} 0 R ~ ~ ~ 8 I ~ ~ ~ J 

"" ~ IV ~ "" "#;' ~ ~ ~ -'t; 

,... 
I 

ADC - 69 65 75 60 70 79 61 71 NVZC 
AND - 29 25 35 20 30 39 21 31 N-Z-
ASL OA 06 16 OE N-ZC 
BIT 24 2C 76Z-
CMP C9 cs DS CD DD 09 Cl Dl N-ZC 
CPX - EO E4 EC N-ZC 
CPY - co C4 cc N-ZC 
DEC - C6 06 CE DE N-Z- ~ 

DEX CA* N-Z-
DEY 88* N-Z-
EOR 49 45 55 40 50 59 41 51 N-Z-
INC - E6 F6 EE FE N-Z- t-Il 

INX E8* N-Z-
INY C8* N-Z-
LOA - A9 AS B5 AD BD B9 AI Bl N-Z-
LOX - A2 A6 B6# AE BE N-Z-
LOY AO A4 84 AC BC N-Z-
LSR 4A 46 56 4E 5E N-Z-
ORA 09 05 15 00 ID 19 01 11 N-Z-
ROL 2A 26 36 2E 3E N-ZC ~ 

ROR 6A 66 76 6E 7E N-ZC 
SBC - E9 E5 FS ED FD F9 E1 Fl NVZC 
STA 85 95 80 90 99 81 91 
STX - 86 96# 8E ..., 
STY - 84 94 8C 

•implied N negative Ccarry 
llzero page, Y Vovernow 6 v ifbit6 

Z zero 7 N ifbit7 ~ 
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Index 

A 

Access file, 444 
Accumulator , 132, 308 
Addition a nd subtraction, 207 

ADC instruction, 207 
C LC instruction, 207 
SBC instruction, 209 
SEC instruction, 209 

Addition, mul tiple byte, 211 
Address 

high, 130 
low, 130 

Address bus, 129 
Unidirect ional, 129 

Address pointer, 74 
Addressing, 154 
Algorithm, 167, 201 
Alterna te , 33 1, 332 

character set, 66, 68 
Ampersand vector, 326 
Analog input, 102 
Annunciator, 466, 468 

port , 10 1 
Apple li e 

processor access soft switches, 69, 72 
video display access soft switches, 69, 

73 
Applesoft, 79-82 

at $DOOO.F7FF, 104-1 11 
BASIC, 9, 69 

command set, 23 
special, 22 

Architecture, 125 
A-register, 132-134, 138- 142, 164, 169, 

193 
Arithmetic, 203-228 

algorithms, 203 
base ten, 203 
base two, 203 
nags, 222 
shift left, 2 16 

Arithmetric-logic unit, 129, 130 
Array, 237, 238, 244, 248, 260, 28 1 

ASL instruction, 2 16 
Assembler, 125 

directive, 143, 144, 183 
notat ion, 140, 14 1, 168 
programming, 18 
pseduo-op, 143 

Auto-increment, 3 11 
Auxiliary 

memory, 67, 69 
slot , 14, 3 17 

B 

Bank switch, 59, 63, 64, 69, 104 
Bank-switched memory, 19 

ROM to RAM, 19 
Base sixteen, 205 

hex notation, 205 
BASIC system use, 60, 67 
Beep, 318 
Binary 

coded decimal, 207 
notation, 205 

BIT instruction , 2 14, 215 
Black rout ine, 352 
Blocks, 299, 300 
Blue/ora nge pattern, 355 
Boolean logic, 212 
Borrow, 209 
Break routine, 188, 189 
Breakpoints, 187 
Buffer , 130, 134 

space, 201 
Bui lt-in 110, 137, 461 

cassette recorder, 461 
keyboard, 461 
speaker, 46 1 
video display, 461 

Built- in terminal, 479 
cable, 480 
li ve reset, 48 1 
monitor, 480 
R.F. modulator, 479 
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c 
Call 

extensions, 290-293 
sequence, 149, 154 

CALSUB routine, 183, 184 
CASE 

routine, 173-175 
structure, 175 

Cassette re~order, 461, 462, 463 
Cassette tape, II, 18, 461, 465, 466 

back up, 13 
Catalog, 400, 409, 410, 413 
C-flag, 207-211, 450 
Chaining operations, 303 
Character code, 139 
Character sets 

alternate, 331 
primary, 331 

Character string, 285 
Checksum, 76, 214, 418 
Chopping, 417 
Circle, routine for, 36 
Clipping, 35 1 
Clock, 125 

master signal, 126 
Close files, 442 
Code 

conversion, 180 
converter, 193 

Coding 
assembler, 146 
form, 145 

Cold start, 88, 106, 189, 191, 405, 406 
Color burst generator, 355 
Columnvalue, 335 
Command, 423 

illegal, 287 
set, 320 

Compare instruction, 162 
Compound structure, 201 
Constants 

declaring of, 38 
integer, 282 
string, 282 

Control characters, 319 
Controller card, 11 
Control lines, 130 
Copy routine, 193 
Cursor 

control of, 193 
locate, 33 
parameters, 33 

D 

Data bus, 129 
Data storage, 244 
Dead band, 474, 475 
Debugging, 128 
Decimal notation, 205 
Decision instruction, 163 
Decoder instruction, 130, 131, 133 
Default prompt, 324 
Delimiters, 29 
Descriptor, 247, 262, 263 
Device control table, 453 
D-flag, 186, 211 
DIMensioned variables, 280 
Directives, 146, 148 
Directory sector, 409 
Disk 

files, :409 
format, 415 
management, 411 
map, 400 
operating system, 11 
zap, 400, 407 

Dispatching routine, 182 
Display 

attribute, 278, 279 
byte, 279 
1/0 logic, 85 
timing, 127 
video, 85, 86 

D-latches, 488 
DOS 3.3, 87-96 
DOS, 399 
DOS on disk, 399-409 
Dot generator, 355 
Drive error, 39 

motor, 454 

E 

Echo,430 
Effective address, 156 
Emulator, 306, 309 
End of file, 415, 443 
End of line position, 76 
Entry point, 176, 201 
Error 

arithmetic, 24 
codes, 40 
detector, 464 
handler routine, 39 
messages, 277 
syntactic, 24 
trapping, 23, 82 

,.... 

~ 
I 
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Exit, 210 
point, 176, 201 

1-flag, 202 ,... Exponent, 226, 227, 302, 303 
Index register, 169 

F 
Indirect 

addressing, 184, 185, 197, 198 
Fail safe, 172 indexing, 198 .... Fetch, 132, 138 jump, 196 
Field, 29 mode, 157 
File Initialization, 210 

buffer, 78, 437 constants, 38 

.... commands, tasks, 38 
open, 434, 438 variables, 38 
read, 434 writing of, 37 

handling, 42-55 Input anything routine, 325 
manager, 61 Input buffer, 60 .... parameters, 434, 438 INPUT command, 324, 325 
random access, S0-55 Input hooks, 77, 318 
sequential, 42-50 Input/Output, 97-104 

Filename, 439 block, 446 

~ 
Firmware, 9-18 switch, 318 
Floating point, 225-228, 302, 305 Integer BASIC, 9, 69, ISO, 265 
Forced address, 139 map, 276 
Format disk, 449 tokens, 279, 283 
Four byte mantissa, 245 Integer ,... Free space, 240 constants, 282 
Frequency shift keying, 466 value, 74, 79 

G 
variable, 246, 247 

Interface, 13, 14, 252-263 
,... Games socket, 466-468 Interpreter, 61 

Gate, 129 Interrupt, 128, 130, 185-191 

Gazetteer, 58, 69 Invoke, 143 

GETLN routine, 326 110 logic, 128 

Graphics, 35-37, 337 1-register, 130, 140 ,... 
displays, 193 Instruction register, 130 

Greeting program, 400, 401 
J 

H Joystick, 466-474 ,... 
Hack and run, 142, 150 Jump 
Hand assembly, 145 indirect, 157 
Handling numbers, 219 instruction, 138, 139 
Hard sectored, 417 

1-t Hardware, 9-16, 453 K 
interrupt, 186 

Header record, 44 Keyboards, 11 
High byte order, 155, 156 live reset, 11 

.... Highest significant bit, 128 problems with 
HIRES lowercase, II 

graphics, 293 uppercase, II 
routines, 293-295 

Hi-res graphics, 340-353 L ,... Hook address, 319, 320 
Hue, 355, 356, 358 Label, 144, 145, 148 
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Lam's method, 153, 154, 450 
Latches, 130 
Least significant bit, 340 
Line numbers, 39-42, 43 
Link pointer, 278 
Linkage editing, 152 
Linked records, 282 
Literal data, 20 I 
Literalstring, 335 
Live reset, 481 
Location counter, 151 
Logic 

instruction, 212 
shift right, 216 

Loop, 169-171, 178, 179, 201 
Lo-res graphics, 337-340 
Low byte order, 155, 156 
Lowercase routine, 322 
Lowest significant bit, 128 
LSR instruction, 217 

M 

M command, 300, 302 
Machine code, identify, 143 
Mailbox, 195, 210 
Mainline, 39 
Mantissa, 227, 302, 303 
Markers, 399 
Mask, 76, 213-215, 352 
Master clock, 127 
Memory, 57, 58, 59, 236 
Merge, 45, 47, 48, 50 
Methods, 177-184 
Mid-res graphics, 353-360 
Miniassembler, 150, 151, 265, 298 
Mismatched bits, 214 
Mixed graphics, 340, 341, 342 
ML 

files, 287, 289 
routine, 254 

Mnemonics, 140, 141, 143, 146 
Modularity, 201 
Modulator rf, 9, II 
Monitor, 141-150, 153, 161 

autostart, 17 
command interpreter, 77 
hooks, 317 
rf modulator, 9, 11 
test, 298 
tv set, 9, 11 
verify files, 296 

Monitor at $F800.F8FF, 112-117 
routines, 112-117 

Most significant bit, 340 
Motherboard, 9 

underground market, 10 

N 

Natural numbers, 219 
Nesting, 201 
NEW command, 252 
N-flag, 161-163, 170, 171 
Nibble, 206, 207, 223, 451-453 
Non-register OPs, 308, 309 
Normalized coordinates, 350, 351 
Null, 29, 50, 250-252, 324, 394 

0 

Object file, 152 
Op code, 138-141, 144-148, 187, 306 

summary, 307 
Open files, 442 
Operand, 137-139, 144 
Output, 94-96 

switch, 318 
Overflow, 208-210 
Overwrite, 237 

p 

Pack-and-load, 285, 289 
Packing, 260 
Paddle, 466-471 
Pages two and three, 83, 84 
Pages zero and one, 74 
Page vectors, 191 
Page zero, 57-60, 155, 158, 185, 300, 

301 
Parameter buffer, 198 
Parameters, 192, 195, 198 
Parses, 24, 286 
Pascal, 14, 18, 415, 416 
Pasor zap, 479 
Pass routines, 193-195 
PC-register, 132 
Peripheral 

cards, 13 
interface adapter, 490 
110, 137. 482 
memory, 495 
PROM eraser, 495 
scratchpad, 336 
slot, 126 
slot zero, 13 
special, 13 

,... 

~ 
I 

jlllll 
I 

t-. 
' I 

I 

r 
I 
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Phase 
one, 126, 127 
two, 133 
zero, 126, 127 

Pixels, 339, 340, 346, 347, 352, 354, 385 
color, 354-360 

Plank's constant, 225, 227 
POKE method, I 53 
Polygon, routine for, 37 
Positional notation, 203, 204 
Positive logic, 129 
Power supply, 11 
P-reg, 160, 167 

C-flag, 161-163 
N-flag, 161-163 
Z-flag, 161-163 

PRENYBBLE routine, 452 
Primary, 331, 332 

character set, 66, 68 
Processor 

flags, 132 
stack, 83 

Program 
counter, 131 
debugging, 186 
design, 37-42 
flow, 160 
initialize, 37 
location, 276 
major function, 42 
text, 237, 250 

Programmer's aid #1, 137, 265, 290, 296 
Programming, 22-31 

Assembler, 18 
BASICs, 22 

Prompt character code, 76 
Protocols, 399, 423 
Pseudocode, 183 
Pseudo-op, 143 
Pull instruction, 165 
Push instruction, 165 

R 

Random access files, 51-55, 433, 444 
Random number, 79 
Range test, 175, 176 
Read/write 

head, 453 
mode, 443 

Read/write track/sector, 446 
Real-time routine, 177 
Rectangle, routine for, 36 

Re-entrant, 202 
Registers, 192 

OPs, 308 
storage, 78 

Relative 
address, 154 
record, 432 

Index 517 

Relocate program, 298-300 
Repack, 238 
Repacking, 245 
RESET routine, 318 
Return instruction, 165 
Rewind files, 442 
ROL instruction, 217 
ROR instruction, 218 
Rotates, 217, 219 

s 

Scratch pad, 85 
Screen, 34-35, 334, 337 
Scrolling, 27, 34, 323 

parameters, 328 
window, 75 

Search routine, 441 
Searchers, 193 
Sector interleaving table, 415 
Sectors, 399 
Segments, 299 
Sentinel, 45 

byte, 279 
Sequential files, 42-50, 51, 52 
Shape tables, 360-397 
Simple l/0 ports, 485 
Six-color problem, 354 
Slave disk, 407, 409, 429 
Sloping lines, 339 
Slot zero, 63 
Soft 

sectoring, 417 
switches, 59, 64, 66, 69, 97, 100, 103, 

113 
Soft-switch setup, 193 
Sort, 45, 46, 47 
Source 

address, 77, 78 
file, 152 

Speaker, 476 
phasor zap, 479 
staccato, 478 
trills, 478 

S-register, 132, 166, 167 
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Stack, 181, 182, 308 
clean up, 199 
pointer, 132, 165 

Status register, 215 
Stepper motor, 453 
Step/Trace utility, 149 
Store A-reg absolute, 141 
Strings, 28, 30, 31 
Strobe, 466, 490 

port, 99 
Structures, 167, 399 
Subtracting routine, 211 
Swap routine, 168 
SWEET16 pseudo-processor, 305, 

306-308, 309 
Sync bytes, 417, 418, 422 
Syntax, 301, 423, 424, 445 

checking, 256 
System pointer, 78, 79 

T 

Terminal, 32, 33 
GET routine, 22, 23 

Test, keypress for, 327 
Text 

assembler, 151 
editor, 151 

Timbre, 293 
Timing diagram, 127 
Tools, 15-17 
Track 

bit map, 409, 411 
dump, 455 
sector list, 413 

Tricks, 285 
Trigonometric functions, 350 
Tri-state buffer, 486 

u 
Unary functions, 304 
Un-delete, 427 
Underflow, 209-211 
Unhooked,321, 322 
Unmixed graphics, 340 

Unpacking, 260 
Unprintable characters, 413 
Unstack, 181 
User defined registers, 306 
USR function, 253, 254 
Utilities, 19, 21, 290-316 

line editor, 20 
uncopyable disks, 22 

v 
Variables, 278 

storage, 237-240, 245, 276, 286 
Vector, 387, 388, 394 
Velocity encoding, 474 
Verb list, 231-235 
Vertical cursor, 75 
V-flag, 214, 222 
Video display, 11, 18 
Violet pattern, 354 
Volume table of contents, 400, 409-412 

w 
Warm start, 89, 106, 117, 189, 191, 405 
White routine, 352 
Wire wrap, 15 
Wrap around, 156, 218 
Write 

protect, 454 
sector, 448 
translate table, 419, 422 

X 

X-register, 132, 157, 158, 162, 180, 181 

y 

Y-register, 132, 157, 158, 161, 162 

z 
Zero-page-x, 197, 198 
Z-flag, 161-164, 170-172 
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Zabinski and Frank Mazzola. 160 pages, 8'/z x 11, softbound. ISBN 0·672·22297-3. < 1984. 
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ENHANCING YOUR APPLE® II, Volume 1 (2nd Edition) 
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New material quickly introduces you to Applesoft syntax and programming, Including advanced programming tech· 
nlques, graphics, color commands, sorts, searches, and more. By Blackwood and Blackwood. 288 pages, 6 x 9, comb· 
bound. ISBN 0-672·22073-3. @ 1983. 
No. 22073 ............................................................. $13.95 

MOSTLY BASIC: APPLICATIONS FOR YOUR APPLE® II, Book 1 
Twenty-eight Applesoft programs, including a telephone dialer, digital stopwatch, a spelling test, house-buying 
guide, gas mileage calculator, and many more. By Howard Berenbon. 160 pages, 8'12 x 11, comb-bound. ISBN 
0-672·21789·9. © 1980. 
No. 21789 ............................................................. $13.95 

MOSTLY BASIC: APPLICATIONS FOR YOUR APPLE® II, Book 2 
More fascinating BASIC programs, including three dungeons, eleven household programs, seven on money or Invest· 
ment, two that test your level of ESP, and more- 32 in all! By Howard Berenbon. 224 pages, 8'/z x 11, comb-bound. 
ISBN 0-672·21864-X. © 1981. 

Ask for No. 21864 ....................................................... $12.95 

INTERMEDIATE LEVEL APPLE® II HANDBOOK 
Hard·to-find, practical info that uses ROM-based Integer BASIC to lead you into Apple 6502 machine and assembly 
language programming. By David L. Heiserman. 328 pages, 6 x 9, comb·bound. ISBN 0.672·21889-5. © 1983. 
No. 21889 ............................................................. $16.95 

INTIMATE INSTRUCTIONS IN INTEGER BASIC 
Includes much to help you build Integer programs that run smoothly and take full advantage of that dialect's rapid· 
running characteristics. By Blackwood and Blackwood. 160 pages, 5'/z x 8'/z, soft. ISBN 0-672·21812·7. © 1981. 
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Apple 
Programmer's 
Handbook 
The Apple computer has emerged as a true " Open System." The built-in 
peripheral bus, along with Apple published Monitor source listings and 
schematics, allows anyone to configure his own Apple into a custom 
computer: From word processing to video games, the Apple can be any 
computer you want by adding reasonably priced peripheral boards. 

This book is for the people who have these customized Apples. If you 
need specific information on these custom features you can find just 
what you want to know quickly and easily in this book. Each topic is 
treated with specific examples. The Apple Programmer's Handbook: 

• Tells you what peripherals you need to make your Apple II into any 
custom computer system 

• Explains Assembler programming 

• Provides mops and locations most often needed by the Assembler 
programmer 

• Gives information on Integer and Applesoft BASIC 

• Shows you hardware projects you con bui ld 

• Lists newly developed state-of-the art applications for your Apple 

• Presents information so clearly written the book con be used for self 
study by the Apple II user 

Howa rd W. Sams & Co., Inc. 
4300 West 62nd Street, Indianapolis, Indiana 46268 U.S.A. 

$22.95/22175 ISBN : 0-672-22175-6 





SArd----------------·~-

Apple 
Programmer's 
Handbook 
The Apple computer has emerged as a true "Open System." The built-in 
peripheral bus, along with Apple published Monitor source listings and 
schematics, allows anyone to configure his own Apple into a custom 
computer. From word processing to video games, the Apple can be any 
computer you want by adding reasonably priced peripheral boards. 

This book is for the people who have these customized Apples. If you 
need specific information on these custom features you can find just 
what you want to know quickly and easily in this book. Each topic is 
treated with specific examples. The Apple Programmer's Handbook: 

• Tells you what peripherals you need to make your Apple II into any 
custom computer system 
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