

n

-

Apple® Programmer's Handbook

-

-
-

-

Paul Irwin is a computeris t who writes, teaches,
a nd consults in Ouawa, Canada. His computer
experience ranges from large ma inframes used in
governmem administration to small
microcomputers used in scientific research. He
holds a B.Sc. in Mathematics and Physics fro m
Laurentian Universit y of Sudbury and a certificate
in Computer Programming from Algonquin
College (Ouawa). For recreation, Mr. Irwin enjoys
skiing, swimming, and sailing.

n

AppJe® Programmer's
Handbook

by
Paul Irwin

Howard W. Sams & Co., Inc.
4300 WEST 62ND ST. INDIANAPOLIS. INDIANA 46268 USA

Copyright «:> 1984 by Paul Irwin

FfRST EDITION
FIRST PRINTING-1984

All rights reserved. No part of this book shall be
reproduced. stored in a retrieval system. or transmitted
by any means. electronic. mechanical. photocopying.
recording. or otherwise. without written permission from
the publisher. No patent liability is assumed with respect
to the use of the information contained herein. While
every precaution has been taken in the preparation of this
book. the publisher assumes no responsibility for errors
or omissions. Neither is any liability assumed for
damages resulting from the use of the information
contained herein.

International Standard Book Number: 0-672-22175-6
Library of Congress Catalog Card Number: 84-50062

Edited by Don Silengo
Illustrated by Jill E. Martin

Printed in the United States of America.

-
-
....

-
-

-
-
-
-
....

-

Preface

In 1977, the Apple II computer was launched on a dealership basis
across the United States. Prior to that time, Apple was a two-man
garage operation making single-board computers for the hobbyists on
an order-by-order basis. This hobby market saw the Apple II as
cheap, flexible, and somewhat funky. It consisted of a lot of hardware
like color graphics, built-in 1/0, on-board bus sockets for peripherals
and so forth; but, there were few software features.

A manual came with the Apple II. This became known as the red
book and it was as funky as the Apple itself. With startup hints,
Integer BASIC description, game instructions and assorted listings,
commands and schematics, it gave the dedicated computer hacker a
beginning with a wonderful new toy.

But Apple found money - lots of money. So, like Cinderella, the
Apple II became beautiful. A disk with an operating system was
developed. Microsoft BASIC became Applesoft BASIC in a special
Apple version. The Monitor that works between most software and
the hardware was modified to start the disk automatically at powerup.
Called Autostan, this Monitor was fitted to Apples with Applesoft in
ROM instead of Integer BASIC. The new version, different only in
this firmware, became the Apple II Plus.

Meanwhile, the cost of RAM dropped. Many of the early Apples
were sold with only 4K of RAM; today, few of these remain with less
than 48K RAM in them. An extension card with an additionall6K of
RAM became popular and gave the Apples a RAM complement of
64K. With this additional RAM, users ran other languages like Pascal
or simply enjoyed the ability to switch from Appleso ft to Integer
BASIC at will.

The disk system changed during this period as well. The hardware
stayed almost the same - shielding on the ribbon cable to reduce
radio interference was the main modification. The disk firmware and
software changed to provide sixteen sectors per track instead of the
original thirteen. This new version called DOS 3.3 gives almost double
density capacity to the 5 Y. -inch diskettes.

In 1983, the Apple lie replaced the Apple II Plus. It is compatible
with the earlier models and adds several of the features found in
common Apple customizations: full ASCII keyboard, lower-case dis
play, and the ability to switch to an SO-column screen display. The
Monitor modifications needed to do this were Herculean. It works
and it works well. The few programs that can't coexist with the lie
model are being superseded by others - the lie model proved to be a
success.

However great the changes to the Apple II itself, the most powerful
changes came from outside Apple Computer Inc.

The most powerful feature of the Apple II is the built-in peripheral
bus. Unlike much of the competition of the day, Apple published
Monitor source listings and schematics. With the listing and bus pin
outs, hundreds of peripheral boards were designed and built. The
Apple II became an open system in the truest sense. With an Apple II
anyone could configure his own custom computer. If a remote
terminal, a data logger, a word processor, a video game, or a super
calculator was wanted the answer was the same - get an Apple. This
is still true today. You can have all the computers you want by adding
reasonably priced peripheral boards to your Apple.

This book is for the people who have these Apples. Students,
hobbyists, accountants, engineers, scientists, and artists who need
specific information can use it to look up just what they want to
know. The organization is top down; each topic is treated with specific
examples presented in increasing order of depth. For instance, the
Applesoft statements you need to address the screen cursor are given
before the Assembler statements to do the same thing. All these
routines have been tried and tested true; many developed over a period
of Apple II programming of two and three years.

This book can also be used for self-study by the Apple II user. The
top down organization allows the development of concepts from
known to unknown. It will be useful in any related course: computer
programming, computer science, systems analysis, digital electronics,
etc.

Chapter One introduces the Apple II with details not emphasized in
the manuals. An overview is kept to help you envisage your system in
terms of your requirements. Programming is restricted to BASIC and
stresses data management needs.

The words Apple, Apple II, Apple lie, Apple II Plus, and Applesofl are registered
trademarks of Apple Computer Inc.

~
I

~
I

Chapter Two is a condensed atlas, emphasizing the maps and lo
cations most often needed by the Assembler programmer.

Chapter Three can be used alone or with a tutorial text to learn
Assembler programming. Those with experience will find useful rou
tines and methods they may add to their repertoires.

Chapter Four to Seven need some Assembler programming ex
perience to understand and use. The BASIC programmer can find
some command definitions and specific usages, however.

Chapter Eight is for the hardware freaks. Some hardware back
ground is needed to build the projects given and suggested there. Hints
and cautions to the novice are included to encourage the beginner.

Use this book to make your Apple II into the many custom com
puters you want it to be.

PAUL IRWIN

Acknowledgments

To all those who gave so freely of their time and talent to make the
.-. first Apples, especiaHy to Stephen Wozinak, this book is dedicated.

Thanks, Woz.

Contents
CHAPTER ONE

GETIJNG IT TOGETHER 9
1.1 Requirements- 1.2 Programming- 1.3 File Handling

CHAPTER TWO
A TLAS OF THE APPLE II. 57

2. 1 Memory Maps-2.2 Gazetteer

CHAPTER THREE
MACHINE L ANGUAGE 125

3.1 The 6502 Processor-3.2 Addressing-3.3 Program Flow-3.4 lntcr
rupts-3.5 Parametcrs-3.6 Arithmetic

CHAPTER FOUR
APPLESOFT BASIC 229

4. 1 The Languagc-4.2 The St ructurc-4.3 Interfacing to ML Routines

CHAPTER FIVE
INTEGER BASIC .. 265

5.1 The Language-5.2 Structures- 5.3 Ut ilities

CHAPTER SIX
TEXT AND G RAPHICS 3 17

6. 1 The Monitor Tcrminal-6.2 Graphics

CHAPTER SEVEN
DISK 0 PERA Tl NG SYSTEM 3 99

7 . I Structures- 7.2 Protocols

CHAPTER EIGHT
INPUT / O UTPUT ... 461

8.1 Built-in 1/ 0-8.2 Peripheral 110

APPENDIX A
BIBLIOGRAPHY AND NOTES 499

APPENDIX 8
APPLE II PROGRAMMERS' REFERENCE CARD 505
INDEX 5 13

n
-
-

CHAPTER ONE

Getting It Together

1.1 REQUIREMENTS

1.1.1 Hardware

The Apple II is supplied with a case, a power supply, a keyboard,
and a motherboard. You add a video monitor or a tv set with an rf
modulator, a disk drive with a controller card, and possibly a tape re
corder. If you wish, you can get a motherboard separately, without
the Apple firmware. But, however you acquire your Apple, you will
probably end up with a disk system operating from version DOS 3.3
or later. The BASIC language supplied is Applesoft except in the older
Apples. Before delving too deeply into your Apple's internals, you
should be able to program with Applesoft BASIC and have a feel for
some of the computer's abi lities. To begin with, look at the major
parts of your system first to see what to expect from them.

First, the motherboard. Fig. 1-1 shows the motherboard and con
nector locations. This is the Apple II proper, a complete micro
computer. You can buy it separately without case, power supply, or
keyboard for special installations. Apple Computer Inc., supplies the
real thing, but some equivalent boards offered by several other
suppliers come without Applesoft or Apple's other firmware. These
so-called clones give you a motherboard that will run VisicalcTM and
other software that is independent of the host firmware, but you must
sti ll acquire Applesoft and a Monitor before you have an equivalent

9

/0 Appl~ Programmer,s Handbook

POWER
CONNECTOR

TOP VIEW

PERIPHERALS

! l! l!!!

J2 J4 J5

3 4

FRONT OF PC BOARD

JS J8 J9

A7

D KEYBOARD
CONNECTOR

7 8 9 10

Jll J12
J14

11 12 13 14

I

AUXILIARY
VIDEO OUTPUT

CONNECTOR

GAME 1/0
CONNECTOR

r SPEAIIER
~ CONNECTOR

B14A

fig. 1-1. Connector locations on Apple II motherboard (except for Model lie).

computer. Even then, hardware differences may give you differences
that some Apple programs won't know about. Like missing colors or
special terminal defaults. At the time of writing this book, several
motherboards offered in the underground market have poor quality
with circuit traces that are lifting from the board either during home
assembly or afterwards in the case of preassembled boards. Caveat
emptor!

Clones that are assembled and supplied in cases are the safest. You
can run them in the dealer's store and see if it handles the features you
need. And, by asking around at computer club meetings, you can find ·
the dealers with happy customers. With full 64K of RAM, you can
purchase DOS 3.3 from Apple and have both Applesoft and Integer
BASICS on disk to load in place of the normal Applesoft/Monitor
firmware. Or you can program custom systems if you are good at ma
chine language and can make your own PROMs to plug in. Most
clones provide 2716 or 2732 sockets for this purpose. Be careful of
BASIC and Monitor PROMs on the black market; selling or buying
copyright material is illegal without permission from the owners
(Apple C0mputer Inc., and Microsoft).

~
i

. ,..,

Getting It Together I I

The power supply from Apple is a high quality switching type. It
supplies 5.0 volts at 3 amperes, and this is the minimum size you
should accept for most systems. There are 5-ampere supplies available
for applications that you may have with a lot of peripheral cards. Be
wary of lightweight bargains that won't put out 3 amperes; better pay
a bit more for the 5-ampere supply if you are unsure of your future
needs.

Keyboards also vary in quality. Apple has always supplied good
keys with a quiet, yet distinct sound and a pleasant feel. They are
supplied by Cherry and should be the standard by which you compare
any other keyboard offered. The first Apple lis had a live RESET key
that was often struck in error because it is close to the RETURN key.
Later Apples interlock the RESET with the CTRL key so both must be
pressed to reset the processor. If you have one of the older Apple lis,
Chapter Eight contains a simple method to interlock the CTRL key.

For a video display, connect a video monitor to the VIDEO OUT
PUT jack (K 14, see Fig. 1-1). If you use a tv set as the monitor, you
must install an rf modulator inside the Apple II case. Fig. 1-2 shows
this installation.

Until the Apple lie model, lowercase was tricky to implement. The
keyboard itself wouldn't generate lowercase characters and the normal
Monitor routine that gets character lines from the keyboard com
pounded the problem by converting all characters to uppercase. De
spite these handicaps, several lowercase schemes are available for the
Apple II, usually with a replacement character display ROM.

A great deal of elaborate software is available for the Apple II on
disks. The 5 ~-inch floppy disk is a great improvement over the
cassette tape and is now almost universally used. The Apple II uses a
stripped-down version of the Shugart 440 drive with a controller card
that plugs into a peripheral slot (usually Slot Six). With the controller
card you need a disk copy of the Disk Operating System, or DOS.
Version 3.3 is current at the time of this writing; earlier versions used
different controller card firmware and had less disk storage capacity.
A controller card will handle two drives so you can add a second drive
without getting another card.

WARNING
To avoid damage to the disk drive see Fig. 1-3 for proper cable
connections .

12 Apple® Programmer's Handbook

..-ig. 1-2. Rt" modulalor installalion inside the Apple II case. (Courtesy M & R
t:nrerprises)

You can pumanently climaee the disk drive il you attach
the cable incorretlly. Here is hGW to zlllch it correctly.

I. The side cable IU¥eS the conoec1or on the
side 1111J rro111 the card.

2. lbte sure all pins 10 into lhtir rnatchina holes.

Getting It Together 13

Fig. 1-3. Correct method for connecting the disk cable.

You may also want a tape cassette recorder. Only a few disks are
usually needed at a time; the rest of your software can be stored on
tape. A C-60 tape will hold the files from four disks, making tape
storage quite a bit cheaper. In addition to archival storage, tape can be
used to back up your working disks. Tape is slow, but it is cheaper.
See Chapter Eight for more details on using tape.

To make your Apple do things besides talk to the tv set, you will
need various peripherals: printer, modem, etc. The hardware and
firmware needed to make the interface with each peripheral comes on
a card that you plug into one of the eight sockets or slots on the
motherboard. So, a printer may use a parallel interface card and a
modem may use a serial interface card; each card is designed specif
ically for the Apple. Some peripherals are designed especially for the
Apple and come with their own cards. You must decide which card to
put into which slot.

According to Apple, you can use any card from any slot with the ex
ception of Slot Zero, the leftmost slot. The Apple is called slot inde
pendent in its input-output system for this reason.

The leftmost slot - Slot Zero - is special. Cards must be specifi
cally designed for that slot and usually are memory expansion cards.

14 Appl~ Programmer's Handbook

The 16K-RAM card is common, but ROM cards and even R-G-B
video display cards have been used there. The Apple lie model does
not have a Slot Zero. The lie acts like it had a 16K-RAM card instead;
the actuall6K of RAM is already on the motherboard. If you have an
Apple other than the lie model, you can put a 16K-RAM card in Slot
Zero, if it is otherwise unoccupied. Table 1-1 lists the recommended
card uses for the remaining seven slots.

Table 1-1. Recommended Slots
Slot Description

0 16K RAM card (not on lie)

I printer

2 modem/ communications

3 SO-column terminal (use Aux Slot on lie)

4

s second disk controller

6 disk controller

7

The disk controller card usually goes in Slot Six. It will work in any
slot, but most software assumes Slot Six has the disk card. This slot is
your choice for the disk card by convention.

Another convention grew around Slot Three. Earlier users began
plugging serial cards into Slot Three to connect SO-column terminals
to RS-232 interface cables. This convention became the standard for
the Pascal Language System. Later when the lie model came out Slot
Three had special hardware as well. In the lie model, Slot Three can
be used like any other slot, just like earlier models. But if you use the
built-in SO-column display instead of the normal 40-column display,
then it changes. You can't use Slot Three when using the built-in
SO-columns because the extended display uses Slot Three from the
motherboard. A special slot called the Auxiliary Slot accepts the extra
memory the SO-columns need; the Auxiliary Slot is a second Slot
Three with special connections. So, use Slot Three for SO-column dis
play cards, or use the Auxiliary slot on the lie, or use Slot Three for
anything else in 40-column applications. You should choose only one
of these three cases for your own Apple.

Slot One is usually used for a printer. If you are connecting a
printer, a parallel or serial interface card is plugged into Slot One.
Some software assumes your printer is connected to Slot One.

Getting It Together 15

If you plan on doing any hardware work on your Apple, you'll need
some special tools. You may have most or all that you need already,
but if you are starting from scratch, the lists in Table 1-2 will help.

Table 1-2. Hardware Tools

Start with connections:

VOM multimeter
Soldering iron and holder
Desoldering braid and sucker
4-inch diagonal pliers
4-inch long-nosed pliers
Set of jeweler's screwdrivers
3/16-inch x 4-inch slot screwdriver
#1 x 4-inch Phillips screwdriver
Alligator clips for heat sinks
Old toothbrush for cleaning
Small stuff: solder, heatshrink, hookup wire, etc.
Silicone Seal™ and Epoxy cements

Add circuit board tools:

Wire-wrap tool and #30 wire (OK WK-2-B)
Modified wire stripper (for #30 wire)
LED logic probe, homemade
Carbide tip scriber
X-acto knife
16-pin IC clip
Debounced TLL pushbuttons, homemade
Files, 6-inch bastard: flat, round, triangular

Enlarge chassis and cabinet ability:

Shears, to-inch compound aircraft type
Nibbling tool
Hacksaw with blades
Machinists' square with 12-inch rule
Files, 10-inch bastard: round and half-round
File, 10-inch flat mill
File handle for to-inch files
Electric drill, ~-inch with variable speed
High-speed twist drills, as required.
'!.!-inch x 6-inch slot screwdriver
8-oz ball-peen hammer
Large vise or Work-MateTM
Assortment of materials: sheet aluminum, self-tapping screws,

styrene plastic, wood, machine screws and nuts, PCB stand
offs, etc.

I 6 App/~ Programmer's Handbook

First thing you need is the ability to work with cables and con
nectors. You will need a soldering iron, pliers, small screwdrivers, and
maybe a couple of small files. Get a supply of small-diameter heat
shrink tubing to dress solder connections on terminal pins. To test the
circuits you should have a multlmeter or a continuity tester.

If you want to make peripheral cards using the methods given in
Chapter Eight, then consider wire-wrap. It is easy to use and you can
make modifications without the problems of desoldering. Wire-wrap
tools for A WG 30 wire are available from several sources. The OK
Wire-Wrap kit (WK-2-B) comes with a wrapping tool and an assort
ment of prestripped wire. Wrapping tools are available separately
from Radio Shack and others. If you do much wrapping, get a better
wrapping tool that will daisy chain by stripping and wrapping a con
tinuous wire to several posts. Also, the simpler hand wrapping tool
has a built-in stripper that nicks the wire horribly. Get a pair of wire
strippers especially for wire-wrap work, file the setting down to make
a 30-guage stripper, and then cement the setting wheel in place.

Boards for wire-wrapping are available from Vector, Apple, and
other manufacturers. They have+ 5.0 volt and ground buses on them;
just add wire-wrap sockets using small dabs of black Silicone Seal™
or a hot glue gun. Then solder 0.1 JJF decoupling capacitors near each
socket and perhaps a 1.0 JJF tantalum capacitor near the pins across
the 5 volts.

You will need some test equipment, even if it is only a multimeter. A
common LED in series with 220 ohms can be mounted in a discarded
ballpoint pen case to make a logic state probe. If you work with TTL,
a couple of debounced pushbuttons and a 16-pin IC clip will make life
easier. You must check the continuity of all connections before plug
ging in the ICs to avoid possible disasters. Remember that if you can't
test something, then you can't get it to work.

Most tests won't require an oscilloscope. For those that do, you may
not need a large bandwidth. Unless you do a lot of hardware work,
you probably won't have to purchase one.

Large hardware projects need chassis and cabinet work. At this
stage, you can add a drill set, large files, a nibbling tool, and a supply
of sheet aluminum, screws, plastic, and decals. A vise or Work
Mate™ is a must.

There are enough goodies on the market so that there is little need to
roll your own hardware. But if you have the tools on hand you can
save money over several small projects to pay for the tools. Some large

,...
I

Getting It Together 17

projects are available in kits so you can save assembly and testing
costs. Aside from these reasons, tools let you make those rare items
you may want in specialized applications, such as scientific research.
All it takes is a few hand tools and a little creative talent to extend
your Apple's hardware abilities.

1.1.2 Firmware

When an Apple II is powered on without a disk operating system to
bootstrap, a programmed machine routine is used. You can program
in BASIC because an interpreter program remains in the Apple, even
during power off. In addition to a BASIC interpreter, the Apple II has
a special program called the Monitor that allows you and the BASIC
interpreter to work with the hardware. These special programs that
reside in ROM (read-only memory) are collectively called the Apple
Il's firmware. These programs can't be lost even during power off.

You can work directly with the Apple Il's machine language without
going through BASIC by interacting directly with the firmware
Monitor. The Monitor has a set of routines that allows you to access
the machine language programs, so you can change the contents of
memory locations, copy data around in RAM, and perform other
functions that can seem like magic to the uninitiated. From BASIC
you reach the Monitor with a CALL - 151 command; to go back to
BASIC you type ctri/C. A summary of the Monitor commands
appears on the Apple II Reference Card included with this book.

The Monitor may be one of three versions. The old Standard
Monitor is the easiest to use. On power up, it displays an asterisk
- * - as the prompt, unlike the later Autostart and lie Monitors that
run BASIC at power up. The asterisk is the prompt for the Monitor
commands which you get whenever you CALL, 151 from BASIC. If a
disk controller card is in any slot, the Autostart and lie Monitors will
attempt to bootstrap a disk, requiring you to type a RESET to over
ride that feature if you don't have a disk mounted. When the Auto
start features were added: the old MonitorS (step) and T (trace) com
mands were deleted, the RESET function expanded to force a disk
bootstrap at power on, and the ESC cursor control keys I, J, K, and M
were made available. The greatest difference in the three versions is in
the way each handles RESETs. The Standard Monitor treats them all
the same; the Autostart lets programs use the keypress RESET and
handles it differently than a power on RESET. The lie model has a

/8 Apple® Programmer's Handbook

Monitor similar to Autostart, but with more RESET modes, resulting
in the addition of OPEN-APPLE and CLOSED-APPLE keys, and
the automatic RAM program destruction on a keypress RESET.

Practice in using the Monitor makes learning machine-language
Assembler programming easier. A summary like the Reference Card
in Appendix B will help. Play with it; just don't leave any disks
mounted and you won't do any harm. Power off or disconnect any pe
ripherals that may accidentally be activated. You should be able to
examine any block of memory, move the contents of a block of
memory to any block of RAM, and to disassemble programs in ma
chine language. The range $1000.1FFF is a nice "safe" RAM destina
tion for practice. The Monitor begins at $F800 and you can dis
assemble there to see how the L (list) command works. Specific activi
ties with the Monitor appear beginning in Chapter Three.

In addition to commands the Monitor has routines that handle the
keyboard, the video display, the cassette tape recorder, and the inter
face with other inputs and outputs. These routines are used by BASIC
and directly by software written in Assembler. You can use them in
your own programs with PEEKs, POKEs, and CALLs or with
Assembler routines.

Just as there are three versions of the Monitor, there are two kinds
of BASIC for the Apple. Applesoft BASIC is the most common
today, but older Apples have Integer BASIC as the firmware BASIC.
Many of these older Apples have Standard Monitors as well, but not
all. When fitted with Applesoft instead of Integer, the Apple II is
called an Apple II Plus. From the factory, a special label appears on
the lid, but with a used machine, you can't go by that. The Apple II
Plus with Autostart Monitor is the most common Applesoft BASIC
arrangement before the lie model. The lie acts much like a Plus
model; it has Applesoft and Autostart Monitor features.

With regard to the two BASICs, Applesoft is more comprehensive,
with built-in functions and floating-point math, and has more
similarities to other Microsoft BASICs. On the other hand, Integer
BASIC is faster and allows longer variable names. Many functions
can be found in the Programmer's Aid #1 ROM chip that can be used
with PEEKs, POKEs, and CALLs. Of importance to machine lan
guage programmers is the miniassembler program that is in the Integer
BASIC ROM. Early Apple II programs were written in Integer
BASIC, but most of the later BASIC programs are in Applesoft. This
book assumes Applesoft as the resident BASIC, but you can find

,...
I

Getting It Together 19

some Integer usage and examples, especially in Chapter Five. A de
scription of how Applesoft works is in Chapter Four. Programming
techniques are in Section 1.2 of both chapters. Your normal choice is
Applesoft.

Normally, there is only one chunk of memory for the firmware.
However, it is possible to relocate the resident firmware in the ROMs
with "soft" firmware from a disk. To do this, an Apple II or an Apple
II Plus must have a 16K RAM card plugged into Slot Zero. The Apple
lie already has this extra memory on its motherboard. This memory is
called the bank-switched memory because the bank of ROMs can be
replaced by a bank of RAM with a memory address switching circuit.
By loading a binary file containing the Monitor and an alternate
BASIC into the RAM, the personality of the Apple changes from an
Applesoft to an Integer BASIC machine. Or, an old Apple can switch
from its resident Integer BASIC to a disk-based Applesoft. After the
second BASIC has been loaded, the DOS commands FP and INT will
switch from one type of BASIC to the other on command.

The System Master disk that comes with DOS 3.3 has the binary
files, INTBASIC and FPBASIC. When the HELLO program runs,
one or the other BASIC is BLOADed into the bank-switched RAM.

Other systems can also be loaded into the bank-switched RAM
instead. The Apple Pascal Language System is an example. A Pascal
bootstrap loads the P-code interpreter and the kernel of the Pascal
Operating System into the bank-switched RAM. Alternately, you can
choose from among languages like Logo, Fortran, Lisp, Forth, and
Visicalc that are available from Apple or from other vendors.

Once booted the language is usually write-protected. This provides
the benefits of firmware while retaining the features of software on
disks.

1.1.3 Software

While much of the software available for the Apple II is specific to a
single task or application, many programs can be called utilities. A
utility has no specific application, but it lets you use the Apple in a
certain way.

The utility you use often is an editor. The Monitor supports an
editor to handle Monitor commands and BASIC statements. And you
can have word/text processors that allow you to write letters, con
tracts, manuals, research papers, articles, books, flyers, or whatever.

20 Appl~ Programmer's Handbook

For programming, you use a type of editor called a line editor.
The Apple Monitor has a line input that is the heart of the built-in

programming editors . It lets you enter a line of text before turning it
over to BASIC or to its own interpreter. You type in what you wish,
use the forward and backward arrows for corrections, and then press
RETURN to enter the line. You can quit the line at any time with a
ctrl/X. As a minimum editor it works well but there are better ways to
program.

For instance, when you change previously entered Applesoft lines,
the extra spaces a t the right of the screen mess up any strings that are
within quotes. The old trick of typing POKE 33,33 helps, but before
long a more sophisticated line editor is often needed.

One solution is an extension to the built-in editor called Program
Line Editor. It gives you cursor search and edit features one line at a
time, as well as a listing control for Standard Monitors without ctrl/ S.
You can add your own commands as well. See Appendix B.

The best solution is to get a text file editor like the ones that come
with an Assembler. This way you get an Assembler, with an editor as a
bonus, that you can use right away, and you don't have to know As
sembler programming to make good use of the editor for BASIC pro
gramming. Then when you get into Assembler, you have a familiar
editor to use.

Such a text file line editor will give you the features you need. It wi ll
let you enter lines and will number them for you . You can search for
line numbers or for text st rings; then the search lets you replace or list
what it finds. Separate instructions are included to run the Assembler.
In this book , all examples of Assembler routines are written for the
DOS Toolkit Assembler from Apple.

To load a BASIC program written as a TEXT fi le, you use the
EXEC command instead of the LOAD command. This reads your
text in just as if you were typing it at the time. To make corrections to
the disk copy, however, you will have to go back to your line editor
a nd make the correction to the TEXT file.

If you have a program already in a BASIC file, but want to convert
it to a TEXT file for editing, use the CAPTURE routine. Make one by
creating a one-liner with your text line editor:

0 PRINTCHR$(4)''0PENXXXX":PRINTCHR$(4)''WRITEXXXX":
LIST1,32767:PRINTCHR$(4)"CLOSEXXXX":END

-
-

-

n

Getting It Together 21

Save it as CAPTURE.

To use CAPTURE, search and replace XXXX to your program's
text file name. For exampie, your program in BASIC called
PHASORZAP could have a text file name of PHASORZAP.TEXT.
Save this version of CAPTURE as, say, CAPTURE.PHASORZAP.
Quit the editor and load the BASIC program, PHASORZAP. Then
EXEC CAPTURE.PHASORZAP to add the capture line to the pro
gram in memory. Typing the RUN command will cause the text file
called PHASORZAP. TEXT to be created on disk. Notice that you
can't use Line Zero in any of your BASIC programs for any other pur
pose or this trick will wipe it out.

In addition to editors, several other utilities are useful. You will
want them to help in program development and maintenance of your
files.

You can use various disk zaps. FID is the most common one. The
COPY program on the System Master disk will back up or copy entire
disks, not just files like FID. And MUFFIN will copy files from earlier
DOS disks in thirteen-sector format to the DOS 3.3 sixteen-sector for
mat disks. For advanced use, a disk-zap utility for working with disk
sectors is given in Chapter Seven.

Such sector-type disk zaps are quite powerful. They have different
names; the one in Chapter Seven is just called DISK ZAP. They let
you read and write from the disk by track and sector numbers and
examine the bytes of data within each 256-byte sector. You can change
the bytes and replace the altered sector on disk. You use this utility to
recover crashed disks, find hidden files, see special characters on disk,
and learn how DOS works. You can create special disks and customize
DOS. See Chapter Seven for details.

If you do a lot of Assembler programming, get a debugger, some
times called DDT. This will give you step and trace capability, let you
set breakpoints, examine both registers and memory, and other de
bugging routines. It may come with your Assembler, but there are
separately supplied debuggers available. They can make your program
debugging much easier.

COPY programs are available besides the one on the DOS 3.3
System Master disks. Use it or another COPY utility to keep your
daily work backed up. Copy program disks when you get them and
use the copy as the working disk; keep the original archived in case

22 Apple® Programmer's Handbook

you lose your working copy. A more powerful COPY routine may
work with an uncopyable disk supplied in a nonstandard disk format.
Many manufacturers use different schemes to protect their interests
against software piracy. Unfortunately, this makes it difficult for you
to have backups.

One solution is not to buy uncopyable disks. They are fragile and
often expensive. Another answer might be to find the scheme used to
alter the DOS and write a special COPY routine. This takes time and
skill. A third solution is to write your own version of the program you
want. These programs are not always as complicated as they appear;
much time and effort in commercial packages goes into the bells and
whistles to make them look slick.

If you simply must have the program to use and don't have the time
to develop an alternative, then buy it. Often you can obtain a replace
ment disk during a warranty period by sending in the original. Some
suppliers will replace out-of-warranty disks for a fee.

1.2 PROGRAMMING

1.2.1 BASICs

Applesoft has an extensive command set. Of these, a few are
learned very quickly, some are learned only by a few people, and some
aren't learned at all. If you have practiced with Applesoft or taken a
course, you are familiar with the common ones. Specialized com
mands are simple to understand and use because of their specific
nature. For example, the SPC(function inserts spaces when used with
a PRINT statement. The few remaining difficult ones are rarely used,
but are quite useful. See Table 1-3.

One pair of commands that you should play with is the TRACE and
NOTRACE. They are BASIC line number tracing features that let you
see where your program is going as it runs. You can use them easily
when debugging.

A little-used command is the WAIT instruction. It does bit testing
that lets you examine hardware locations and then waits until the
device being tested does something. Such a device may be the key
board. For example, you WAIT for a keypress, or you could WAIT
for a pushbutton. Some uses for the WAIT instruction appear in this
book, but there are others.

The ONERR GOTO ... statement is used, but not often enough.
All programs that access disks should use this error-trapping feature

Getting It Together 23

Table 1-3. Applesoft Command Set

Program Flow Input/Output

& GET ...
CALL ... IN# ...
DEF FN ... INPUT ...
END ... LOAD
FOR ... = ... TO ... STEP ... POL(
GOSUB ... PEEK(
GOTO ... POKE ...
IF ... GOTO ... PR# ...
IF ... THEN ... ELSE ... PRINT ... or

? ...
NEXT ... RECALL ...
ONERRGOTO ... SAVE
POP SHLOAD
REM ... SPC (•
RESUME STORE ...
RETURN TAB(•
SPEED ... WAIT(
STOP
USR (•-used only in PRINT

Screens (text,LORES,HIRES) Variables Control

FLASH COLOR= ... DRAW ... CLEAR
HOME GR HCOLOR ... DATA ...
HTAB ... HLIN ... HGR DIM ...
INVERSE PLOT ... HGR2 FRE (
NORMAL SCRN (HPLOT ... READ ...
POS (VLIN ... ROT= ... RESTORE
TEXT SCALE= ...
VTAB .. XDRAW ...

Math and String Functions Edit and Debug

ABS (EXP(MID$ (SQR (ctrlC, ctrlX, and reset
ASC(INT (RIGHT(STR (CONT
ATN(LEFT$(RND(TAN(DEL ...
COS(LEN(SON(VAL(HIMEM: ...
CHR$ (LOG(SIN (LIST ...

LOMEN: ...
NEW
NOTRACE
TRACE
RUN ...

24 Appl~ Programmer's Handbook

Table 1-3 -cont. Applesoft Command Set

LET () = + -
AND • I 1\

OR
NOT

Assignment Symbols

of Applesoft. And don't forget about arithmetic and syntactic errors
as well; the ONERR grabs those too.

The DEF FN feature of Applesoft is rarely used, although it is one
of its most powerful programming tools. It is used to express simple
functions without having to restate them over and over again. Make
single-argument functions such as: converting radians to degrees,
getting address bytes for POKEing, scaling graphics displays, en
coding characters and making special math functions like MOD.

When writing FOR loops, remember the STEP option. A STEP- I
makes the loop count backwards. Often you can use a regular variable
instead of creating a new one for the loop index. For instance, if you
want a table of temperature conversion, you might write:

FOR F = 28 TO 36 STEP .1
PRINT F,(F-32)*5/9
NEXT

Keep the keywords TRACE, WAIT, ONERR, DEF FN, and STEP
in mind as you program with Applesoft. They can make programming
much easier.

Instead of Applesoft, you may program with Integer BASIC. See
Table 1-4. It has a much shorter instruction set, but it parses your
commands faster. When an Integer line is entered, it parses the state
ment more completely than an Applesoft statement would be parsed.
This results in a predigested line stored in the program so that it exe
cutes faster. Applesoft must parse most of the statement at execution
time. So, for fast execution, especially with paddle games, Integer
BASIC is better.

For reference, here are the Integer BASIC commands:

AUTO - gives you an automatic line numbering mode for entering
programs. AUTO 100, for instance, will start at 100 and give you
new line numbers incrementing by 10. Other increments are

-

Getting It Together 25

Table 1-4. Integer Command Set

Program Flow Input/Output

CALL ... IN# ...
END INPUT ...
FOR ... = ... TO ... STEP ... LOAD
GOTO ... POL(
GOSUB ... PEEK(
IF ... GOTO ... POKE ...
IF ... THEN ... ELSE ... PR# ...
NEXT ... PRINT ...
POP SAVE
REM ...
RETURN

Screens (text and LORES) Variables Control

TAB ... COLOR= ... CLR
TEXT GR DIM ...
VTAB ... HUN ...

PLOT ...
SCRN (
VLIN ...

Math and String Functions Edit and Debug

ABS(RND (ctrlC, ctrlX, and reset
ASC(SGN (AUTO ...
LEN (CON

DEL. ..
DSP ...
HIMEM: ...
LIST ...
LOMEM: ...
MAN
NEW
NODSP ...
NOTRACE
RUN ...
TRACE

Assignment Symbols

LET{)= + -
AND* I A#
OR
NOT

-

26 App/~ Programmer,s Handbook

possible: AUTO 300,4 will start at 300 and increment by 4; AUTO
500,25 will start at 500 and increment by 25. To exit AUTO mode, ·
use ctr/1 X followed by the MAN command.

CLR - clears all variables and undimensions all arrays.
CON - continues program execution after a STOP or ctri/C. All

variables are normally left intact.
DSP - turns on a debug display feature that displays a given variable

each time the executing program references it. For instance, DSP
COUNT will display the contents of COUNT whenever a statement
containing COUNT is executed. You use CON or GOTO to run be
cause the RUN command cancels the DSP feature. The DSP is an
attribute of the variable itself, so you can DSP any number of vari
ables at the same time as you want.

HIMEM: - sets the highest memory location available to any pro
grams. It will destroy the current program.

LIST - works just like the Applesoft LIST.
LOAD - is a tape command. Two beeps and a">" signals the suc

cessful LOAD of an Integer BASIC program.
LOMEM: - sets the lowest memory location available to any pro

grams. It will destroy current variables, so it must be used before
any variables are declared.

MAN - turns off the AUTO line numbering.
NEW - clears out any current program in memory.
NO DSP - turns off the display attribute of a variable. For instance,

a DSP COUNT can be canceled by a NO DSP COUNT statement.
RUN - works like Applesoft. All variables are cleared, the dimen

sions are removed, DSPs cleared, and program execution is begun
at the lowest line number. If a line number is given, like RUN 1000,
execution begins there.

SAVE - is the tape command to save the current Integer BASIC pro
gram to cassette tape.

TRACE and NOTRACE - work like their Applesoft counterparts.
They display line numbers of executing statements.

For further reference, here are the Integer BASIC statements that
can be used in programs. Several statements can be included on a sin
gle line, separated by line numbers, just like Applesoft. These state
ments are the programmable commands, then, of Integer BASIC:

CALL - works like Applesoft's CALL except for the restriction of
numbers from - 32768 to 32767. The negative addresses are used

~
I

,...
I

Getting It Together 27

for values above 32767; for example, CALL -936 is the Monitor
call for HOME.

COLOR - will set the LORES color. Give a number from zero to fif
teen.

DIM - dimensions a variable differently from Applesoft. For inte
gers, give one number for the array size; sorry, no higher orders.
For strings, give the maximum length for one string, from one to
255. String variables default to single byte characters if not DIMen
sioned.

DSP - can be used within statements as well. Each statement must
DSP only one variable.

END - halts program execution.
FOR - works like it does in Applesoft. You can use STEP for incre

ments other than + 1.
GOSUB - works with a line number or an expression to calculate a

line number.
GOTO - has the same syntax as GOSUB.
GR - sets the LORES graphics display mode and blacks the screen.

You get scrolling text at the bottom of the screen.
HLIN, VLIN, and PLOT- work in LORES graphics like Applesoft.
IF •• THEN •• - tests an expression. If true, it executes a statement.

An ELSE may be used for an alternate statement. In Integer
BASIC, any statements within the same line after the ELSE state
ment will always be executed, regardless of the IF. This is different
from Applesoft BASIC where following statements on the same line
are treated as part of the ELSE condition. Watch this one; it can be
deadly.

INPUT - works the same as Applesoft.
IN# - sets the current input device to the slot number.
LET - is optional on assignment statements.
LIST - can be used in statements. Use it to capture Integer BASIC

programs to TEXT files as described.
NEXT - must have the variable name of the FOR statement.
NODSP - turns off the DSP attribute of a variable.
NOTRACE - turns off the TRACE feature.
POKE and PEEK, - of course.
POP - acts like a dummy RETURN. It pops the GOSUB stack by

one without actually doing a RETURN.
PRINT - must be typed; you can't use the trick of typing "?" like you

can with Applesoft. Commas tabulate; semicolons suppress the car-

28 Apple® Programmer's Handbook

riage return at the end o f the statement.
PR# - sets the current output device to the slot number.
REMs - are allowed.
RETURN - returns from GOSUB in subroutines.
TAB - is Integer's equivalent of HTAB in Applesoft.
TEXT - acts the same as Applesoft.
TRACE - displays executing line numbers.
VT AB - is the same as Applesoft.
MOD - is unique to Integer BASIC. This function gives you the re

mainder from a division . For example, 23 MOD 7 gives 2, and 36
MOD 9 gives zero. The quotient comes from the DIY; like 23 DIY 7
that gives 3 or 36 DIY 9 that gives 4. Other functions appear in the
summary of Table 1-4.

More information on Integer BASIC is given in Chapter Five.

1.2.2 Strings

Using Applesoft, it's easy to make strings and join them together.
Just by entering

A$= A$+ 8$

you can join the contents of A$ and B$ with the result as A$. If you
want to do this in Integer BASIC, it's a little trickier; enter

A${LEN{A$)+ 1) = 8$

instead. In either case it can be done. This joining operation is called
concatenation.

You concatenate strings all the time when programming. One
reason is to make a natural-language display like

INPUT"HI, WHAT'S YOUR NAME? ";N$
PRINT"PLEASED TO MEET YOU, "+ N$ + " ."

that concatenate a name in N$ with the screen message. Or, you may
join st rings to write to a disk file. This is done usually by a statement
like

PRINT A$,8$,C$,D$

,...

-

-

Gelling It Together 29

that concatenate four st rings with three-comma characters to make a
single record. Another statement to read these four strings from a sin
gle record is

INPUT A$,B$,C$,D$

where there a re exactly four variables corresponding to four strings
separated by commas in the record.

Each st ring in the list of a PRINT or INPUT statement is called a
field. A record, therefore, consists of one o r more fields separated by
special characters called delimiters. The comma is a delimiter of fields
in Apple records. The statement

PRINT A$,B$,C$,D$

and the statement

PRINT A$+ " , " + B$ + ", " + C$ + " , " + D$

both result in the same record being output.
The corresponding input statement

INPUT A$,B$,C$,D$

expects one record of fou r fields separated by commas. If there are
fewer fields, the missing ones will be taken from the next input record;
that is why keyboard INPUTs reprompt for missing fields. If there are
too many fields in the reco rd, the last ones are ignored and a message
to that effect is output - EXTRA IGNORED.

When using the DOS manual with records and fields, be careful.
T he manua l is excellent in many respects, but unfortunately it often
refers to records as fields . To set the record straight, so to speak,
records are defined as all characters in those file substri ngs te rminated
by CR characters (negative ASCII code $80). Within each record is
one or more fields separated by delimiters, usually commas. All fields
are character strings, and numeric variables are read from st ring fields
by the I NPUT routine that uses a string to number conversion subrou
tine. Just remember that a fi le consists of records, which in turn con
sists of fields.

Strings can have any length from zero (the null string) to 255 char
acters each. On screen they are best displayed with scrolling, on disk

30 Appl~ Programmer's Handbook

they a re best managed in sequential TEXT files. Such free-form
strings are the simplest and easiest to program with and should be
your first choice.

Instead of variable-length strings, you sometimes need fixed-length
strings to do a job. A screen layout with a lot of information that can't
be allowed to scroll itself off screen is one example. Random access
for query a nd updating very active files on disk is another. While
fancy screens and random access have nice features, make sure you
really need them as fixed-length strings take more programming to get
working properly than do variable-length strings.

You can go one of two ways to get a fixed screen layout. One way is
to simply prompt for each entry at its final display position on the
screen. You must set the window to the field area each time you
prompt for the field; otherwise, the user can enter outside the area.
T hen you have to clear the window, input the user's entry, and re-dis
play the field if justification is needed. The second way to go is to set
up a prompt line, usually two or three scrolling lines at the bottom of
the screen. This lets you prompt and give error messages by scrolling
in the old way. When you get a good field, you display it on the screen
in its proper position. The second method is easier, but uses more
screen space. Use the second method unless your screen must be
especially intense.

When you use fixed-length strings, you must maintain them by
truncating any that are too long and filling any that are too short. For
example, to make a string A$ fit a length, L, write

A$ = LEFT$(A$ + BL$,L)

where BL$ is a long string containing all blanks.
Fixed-length strings are often changed by replacing a substring. You

may want to handle the fields-within-a-record logic yourself with this
method, or just change part of a display before PRINTing it. You
need two different statements to insert a substring. The general one is

A$= LEFT$(A$,P)+B$+MID$(A$,P+LEN(B$)+1)

where P is the position of the substring in A$ to be replaced by 8$.
However, if 8$ must go at the beginning of A$, you need

A$ = 8$+ MID$(A$,LEN(B$) + 1)

-

1

Getting It Together 31

instead . This is because the LEFT$ function can't use a position, P, of
zero.

Extracting substrings is a bit easier than inserting them. You need
only one statement:

8$ = MID$(A$,P+ 1,LEN(8$))

The position, P, is the same one; its range is

0, 1, 2, ... , LEN(A$) - 1

Sometimes you want to position a substring into a variable-length
string. Placing any length string into the left, center, or right of
another string is called justification. Report titles, for instance, are
center justi fied to look proper. Numbers are often right justified to
line up the columns. Labels can be left justified. Here's how to do
justification. To left justify:

A$ = 8$ + M ID$(A$, LEN(A$)- LEN(8$))

to right justify:

A$ = LEFT$(A$,LEN(A$) - LEN(8$)) + 8$

to center justify:

A$ = LEFT$(A$, {LEN(A$)- LEN(8$))/2) + 8$
+ RIGHT$(A$,{LEN(A$)- LEN{8$)) /2

for any pair of strings where LEN(A$) > LEN(B$).
Extracting variable-length substrings requires a search. A BASIC

loop wi ll work slowly, so if you want to use it often, you might get an
Assembler routine to do it for you instead. Here's the Applesoft
version:

P=256
FOR I = 1 TO LEN(A$)- LEN(8$)
IF MID$(A$,1,LEN(8$))=8$ TH EN P=l - 1
NEXT I

32 App/~ Programmer's Handbook

A large value, 256, returned in P signifies a miss . A smaller value is the
position of B$ in A$.

1.2.3 Terminal

The normal INPUT and PRINT statements input lines from the
built-in keyboard and output them to the video display. The GET
inputs single characters. Using PR# and IN# will change these to the
device of the slot you specify. When you want to work with the built
in keyboard and video displays, there are several tricks and shortcuts
you can use.

For instance, the GET. If you don't want the cursor display a nd
character echo that the GET command features, you can use your own
Applesoft subroutine instead:

WAIT - 16384,128
A$= CHR$(PEEK(-16384}-128)
POKE - 16368,0
RETURN

This subroutine waits for a keypress, fetches the character into A$,
then clears the keyboard for the next keystroke.

Another GET routine can just look for a keystroke in response to a
prompt. In this case you don't care to know which key was pressed;
you just want to wait un ti l a message has been read before continuing:

VTAB 23: HTAB 12: PRINT"PRESS-A-KEY";
WAIT -16384, 128
POKE - 16368,0
VTAB 23: HTAB 12: PRINT"
RETURN

And you can use another character GET routine to prompt with a
special cursor

PRINT C$; :REM Your special cursor character
POKE 36,PEEK(36) - 1: REM Backup
WAIT -16384,128
A$=CHR$(PEEK(-16384)-128)
POKE - 16368,0
PRINT A$; : REM Echo character
RETURN

-
-

....

...

-

Getting It Together 33

This one uses a PRI NT to display your special cursor character inC$.
A second PRINT character echoes the keyboard character a t the
cursor position.

A favorite t rick with programmers is the on-the-fly GET . You use
this whenever you don't want to wait for a keypress; instead you want
the keypress to interrupt whatever you are doing. In Applesoft, you
write your task with a loop that tests the keyboard. If you get the key
press you want, you can cha nge your routine or RET URN , as you
wish. The trick is in not stopping the routines while you wait for a key
press:

2000 GOSUB your task
2010 IF PEEK(-16384) < 128 THEN 2000
2020 POKE -16368,0
2040 RETURN

The task you perform at line 2000 is repeated until any key is pressed .
At that time, the keyboard is cleared a nd the routine RETU RNS.

Whenever you use the H OME or CA LL-936 statement to clear the
video display, only the display window is cleared . This window is the
area of the screen that scrolls; it is the full screen if the T EXT sta te
ment is used. The HOME positions the cursor to the upper left corner
o f the window.

From the home position, the text cursor can be moved by the tab
statements and by PR INT actions. Yo u can easily lose track of the
cursor in a program, especia lly if the program structure is weak. O ften
this doesn't matter much, as in the case o f sim ple scrolli ng. In other
cases, when you may have a busy form on the screen, it matters a lot.
Then, you need methods of fi nding the cursor locat ion and forcing the
cursor to fo llow a specific screen layout.

- To locate the cursor, you need three cursor parameters: the hori-

n
n

zontal cursor, the vertical cursor , and the left window. T he expres
sions to calculate the absolute row a nd column of the current cursor
are

row = PEEK(37) + 1
col PEEK(32) + PEEK(36} + 1

The row is found from the vertica l cursor. The column is found from
the left window plus the horizontal cursor . The top window parameter

34 Appl~ Programmer's Handbook

is not needed because the vertical cursor counts from the very top of
the screen. See Chapter Six for details on the window parameters.

You can a lways find the cursor with the above method. It is useful
whenever you want to cha nge the cursor in a relative way, or you want
to test the cursor for a boundary condition . The other need you have
of cursor control - forcing the cursor to follow a form - requires
planning if an oversized, hard-to-maintain result is to be avoided.

The first thing you must do is draw layouts of your screens. You can
get forms for this purpose with rows and columns numbered along the
borders. Or you can use that old standby - quad paper. Keep each
screen simple and for a single task. Use one o f the standard kinds of
screen whenever possible: a menu, a box form, an open form, or an
information message. A menu has a list of choices and prompts for a
si ngle key response. A box form displays a label and shows the size for
each field to be entered. An open form divides the screen into a dis
play area and a scrolling prompt-and-answer area to dialog with the
user. An information message screen just displays message text a nd
waits for a keypress to give the reader time to read it.

With screen layouts in hand, you are ready to program them into
BASIC.

For each screen list the row number, the column number, and the
string you want to display. P rogram these lists using DATA state
ments . In the initialization subroutine of your program, write loops to
READ them into DIMensioned variables. Write display routines by
usi ng loops with HT AB, VT AB, and PRJ NT statements. The actua l
routine to display a screen is then quite simple; something li ke

3000 FOR F = 0 TO NF
3010 HTAB FH(F) : VTAB FV(F)
3020 PRINT FL$(F)
3030 NEXT F

where NF is the number of the last field , FH is a list of rows of the
fields, FY is a list of columns of the fields, and FL is a list of the label
strings of each field. If you DIMensioned another set of st rings for the
contents of the fields as FC$(NF) then

3100 HTAB FH(F) + LEN(FL$(F)) + 1
3110 VTAB FV(F)
3120 PRINT FC$(F)

-

-

Getting It Together 35

would display the F-th field contents one space after its label on the
screen.

You can use the same kind of programming to design and code re
ports to your printer. The best advantage of this approach is the ease
of changing field information in the program. You just alter a DATA
statement in most cases without concerning yourself with how the pro
gram actually works.

You can keep track of the cursor in graphics mode - HIRES or
LORES - easier than in TEXT mode. The PLOT or HPLOT state
ments use screen coordinates. You can use a function in LORES called
SCRN that returns the COLOR value at the cursor location you
specify. If you have several colored objects on a LORES screen, you
can tell which one, if any, is at the X-Y location you plan to use next
by testing the location first with a SCRN comparison. So, with
graphics you always write with an absolute cursor position, a nd in the
case of LORES, you can always read the color value at any cursor
position .

You can use HIRES graphics to draw complex, delineated shapes.
Unfortunately, it is slower and has fewer colors than LORES. Also,
HIRES is more difficult to program. Generally, if you want HIRES
use Applesoft or Assembler; if you want LORES use Integer BASIC.
The Assembler can give faster execution times than Applesoft, but
Integer BASIC with LORES graphics is quite fast.

Here's how to use HIRES with Applesoft. Select HIRES graphics
mode with the statements

HGR : HCOLOR = 3

where 3 is the so-called white / drawing color. Even though you will
assign another color later set this one first.

When using Applesoft to draw objects, you can build them from
simpler objects called primitives. Those primitives you will use most
often are rectangles, circles, and polygons. They may be filled with a
color or unfilled as an outline. Unfilled primitives are the easiest to
program. Then use primitives of different sizes and shapes to draw the
objects you want.

The rectangle is easy. You can draw an unfilled rectangle with the
routine

36 Appf(j!'J Programmer's Handbook

HPLOT X,Y TO X+DX,Y TO X+DX,Y+DY TO
X,Y + DY TO X,Y

where X, Y are the coordinates of the starting corner and DX,DY are
the dimensions - width and height - of the rectangle. A filled rec
tangle with the same parameters is drawn by

FOR IY = Y TO Y+DY
HPLOT X, IY TO X+DX, IY
NEXT

Filled rectangles are great for backgrounds and making large objects.
A void fi lled primitives on small objects unless you try it out first.

Circles are another class of primitives; you use them to get curved
lines. They can give softness to an object's shape. Each circle has three
parameters - two center coordinates and a radius. It's a little trickier
than the rectangle, but you can use Applesoft's trig functions to make
it easy to write.

P2 = ATN(1)*8: REM 2pi radians
DT = ATN(1 .0/R)
FOR TH = 0 TO P2 STEP DT
HPLOT R*COS(TH), R*SIN(TH)
NEXT

This draws a circle, unfilled. The filled circle must use a loop to draw
lines from side to side. The routine given here starts at the top and
works to the bottom:

HP = ATN(1)*2 : REM half pi
DT = ATN(1 .0/R)
FOR TH = - HP TO + HP STEP DT
HPLOT X- R*COS(TH), Y + R*SIN(TH) TO

X+ R*COS(TH) , Y + R*SIN(TH)
NEXT

Be careful using circles. If you draw beyond the screen area, the figure
will wrap around to the opposite edge of the screen . You must range
test your parameters firs t to keep this from happening.

n

-

Gelling It Together 37

Polygons are the most powerful primitives. They permit you to
draw any shape you wish by the join the dots method of children's
coloring books. Deceptively simple, the TO option of the HPLOT
routine lets you draw any polygon with an explicit statement. If you
stuff a ll your polygons in vector tables, you can write a single routine
to scan a table and draw its polygon. For example, if your polygon
was in vectors X and Y with the end of the polygon marked by large
coordinate values, the routine to draw it is

410 I = 1
420 HPLOTX(I-1),Y(I-1) TO X(I),Y(I)
430 I = I + 1
440 IF X(l) < 280AND Y(l) < 192 THEN 420
450 HPLOT X(l - 1), Y(l - 1) TO X(O), Y(O)
460 RETURN

The first point is X(O), Y(O) and the last HPLOT closes the polygon to
the first point. This gives an outline of the polygon; the filled polygon
is difficult to program and takes a lot of testing to get debugged.
Execution of such a routine would take a long time in Applesoft.

For most drawing, the limited resolution of the Apple II can be ex
ploited quite well with these few primitives. Use fills only on back
grounds and other large areas; use outlines on the detailed objects.
Keep drawings simple like posters and cartoons.

1.2.4 Program Design

~ The first thing a program must do is initialize. This includes such
tasks as setting program memory usage, loading Assembler routines,
defining constants, setting initial values, setting up screens, DIMen
sioning vectors, READing lists, and DEFining functions. All of these
things are only done once in the execution of the entire program, so
the best place for initialization is at the beginning of its mainline.

When writing the initialization of an Applesoft program, keep the
fo llowing statements in the sequence shown:

38 Applr!l> Programmer's Handbook

NOTRACE
POKE 49236,0 :REM set Screen One switch
TEXT: SPEED= 255
NORMAL: HOME
IN#O: PR#O: CALL 1002: REM reset DOS hooks
MAXFILES 3
HIMEM: 38400:REM $9600
CLEAR: RESTORE

By using all this stuff, you can make sure your program will rerun
after an error stop or after another program leaves you a dirty system.
Then, with the system tidied up, you can proceed with initialization
and load Assembler routines, DIMension vectors, READ and assign
initial values and constants, and call your main procedures with
GOSUBs.

When you declare constants, do so all in the same chunk of line
numbers in the initialization, before variables are initialized. This lets
you use constants in your variables setup. Some constants usually
needed are

D$ = CHR$(4) : REM ctri/D for DOS
BL$ = "

" : REM make a blank string
PI= 4*ATN(1) : REM pi= 3.14159 ...
HP = 2*ATN(1) : REM half of pi
P2 = 8*ATN(1) : REM twice p i
Z$ = "0000000000000" :REM zeros for formatting

Allow additional line numbers for adding more constants; you'll need
them as you write your routines.

Don't forget your functions. Most programs can be written easier
with a few extra functions avai lable. Here are a few you may want to
choose from:

DEF FN LO(X) = X - 256* 1NT(X/256)
low-order byte of an address, for POKEing

DEF FN HI{X) = INT(X/256)
high-order byte of an address, for POKEing

DEF FN AD(X) = PEEK(X) + 256*PEEK(X+ 1)
fetches an address pointer from memory

-

-
-

-

-

-
-
-

-

Getting It Together 39

DEF FN DE(X) = 180*X/PI converts radians to degrees
DEF FN RA(X) = PI*X/180 converts degrees to radians

Do you need others for scaling, rounding, translating, or other repeti
tive use? Create your own.

While you are writing the mainline of an Applesoft BASIC pro
gram, code the error handler routine. Without using an ONERR
GOTO . . . statement, the program will stop executing and you get an
error message displayed.

Error handling may be simple or complex, depending on your
needs. Here is a simple error handler that uses various options:

30900 ER = PEEK(222): EL = FN AD(218)
30910 POKE 216,0
30920 PR#O: IN#O: CALL 1002
30930 TEXT: POKE 49236,0: PRINT CHR$(7)
30940 PRINT"ERR";ER;" AT LINE ";EL;
30950 PRINT" RESUME/QUIT? ";
30960 GET A$
30970 IF A$ < > "R" AND A$ < > "Q" THEN 30960
30980 IF A$ = "Q" THEN 30990
30982 ONERR GOTO 30900: RESUME
30990 PRINT D$"CLOSE"
30992 CALL 62248: GOTO 32767

Include the ones you need in your error handler. ER is the error
code. See Table 1-5. EL is the line number at which the error occurred.
At memory location, the ONERR flag is cleared by the POKE to dis
able further error traps. Then, DOS is reset without any other device.
The screen is returned to normal at line 30930 and the beep is sounded.
The error prompt occurs on the bottom line of the screen, thanks to
the TEXT statement, and a "Q" for quit or an "R" for resume is
accepted from the user. To RESUME, the ONERR GOTO is restated.
To quit , an attempt to CLOSE all files is made. If success ful, a polite
END is made with a GOTO 32767. The program END statement is
there. The CALL 62248 should be made to clean up the outstanding
error whenever a RESUME won't be stated.

After a program has been written and debugged, the most common
error is a DOS drive error when someone forgets to close the drive
door. The RESUME should take care of that.

40 Appl~ Programmer's Handbook

Table 1-5. The ONERR GOTO Codes

Code Source Message

0 Asoft NEXT without FOR

I DOS LANGUAGE NOT AVAILABLE

2 DOS RANGE ERROR

3 DOS RANGE ERROR

4 DOS WRITE PROTECTED

5 DOS END OF DATA

6 DOS FILE NOT FOUND

7 DOS VOLUME MISMATCH

8 DOS 110 ERROR or drive error

9 DOS DISK FULL

10 DOS FILE LOCKED

II DOS SYNTAX ERROR

12 DOS NO BUFFERS AVAILABLE

13 DOS FILE TYPE MISMATCH

14 DOS PROGRAM TOO LARGE

15 DOS NOT DIRECT COMMAND

16 Asoft SYNTAX ERROR

22 As oft RETURN without GOSUB

42 As oft OUT OF DATA

53 Asoft ILLEGAL QUANTITY

69 Asoft OVERFLOW

77 Asoft OUT OF MEMORY

90 Asoft UNDEFINED STATEMENT

107 Asoft BAD SUBSCRIPT

120 As oft REDIMENSIONED ARRAY

133 As oft DIVISION BY ZERO

163 Asoft TYPE MISMATCH

176 As oft STRING TOO LONG

191 As oft FORMULA TOO COMPLEX

224 Asoft UNDEFINED FUNCTION

254 As oft Bad INPUT response

255 As oft ctrl/C input

The trickiest problem in programming in BASIC is managing line
numbers. This is due in part to the use of line numbers as statement
labels for GOSUBs and GOTOs. The most annoying problem is run
ning out of line numbers. Then, if you want to put your most often

111111
'

r

-

-

n

Gelling It Together 41

used routines at the beginning of the program to speed up GOSUB
references, you may not have enough line numbers available.

Many programs are written by starting with a low line number like
1000 or even 100 and adding lines by increments of 10 or so. An incre
ment of ten is usually enough insurance against running out of lines
added when debugging a routine, but it won't protect you from
trouble when you have to write an entire routine at a low line number.

There are RENUMBER utilities available. Smart ones resolve
GOTO and GOSUB references and are quite good. In a large program
already written, it could be the best solution. In general , though, they
have problems. You have to get used to a new set of routine addresses
when working on the renumbered program. And, you can create con
flicts if you want to keep a library of subroutines in TEXT files to
EXEC into new programs. For any new program design, you should
assign line numbers for the exclusive use of the various parts of the
program before doing any coding. By blocking line numbers this way,
conflicts and the need to renumber can be eliminated entirely.

Here's how you can block line numbers like the professional BASIC
programmer does. You break up all the line numbers from zero to
32767 into blocks of numbers. Each block is then assigned to a differ
ent level of the program. Within each level, you block the numbers
further for all routines at that level. The rule to follow is: the higher
the program level a routine has, the higher the line number you assign.

Look at some parts of a program and see how they get their line
numbers.

The mainline is not referenced often and it has the highest level. For
these reasons, the best place for the mainline is at the end of the pro
gram. You can use line numbers from 30000 to 32767 for the mainline.
These are the highest line numbers for the highest level of the pro
gram. To reach the mainline when a program is RUN, let line number
10 be the lowest line number of the program and make it:

10 GOTO 30000

This leaves lines zero to nine clear for CAPTURE routines and spe
cial tests during debugging. The mainline proper begins at 30000 with
the initialization statements.

The block from 31000 to 31999 within the main block is ideal for
DATA statements. They are accessed usually only once, during ini-

42 Apple® Programmer's Handbook

tialization, so they can have high numbers. The remaining block from
32000 to 32767 can be used for your program exit routine. By conven
tion, many programmers place the END statement alone at line 32767.

The mainline routine after initialization should be brief. A few
GOSUBs, perhaps with an IF statement to detect the end of the pro
gram, are common. So is the computed GOSUB. All the work should
be done by subroutines; only very simple, high level logic should be
done by the mainline. The mainline calls the major functions of the
program.

Each of the major functions is blocked. Since they are at the next
lowest level, you can use the line numbers from 20000 to 29999 for
them. Each one can have its own block there: put one at 20000 to
20999; put another at 21000 to 21999; put yet another at 22000 to
22999; and so on, up to ten major functions. Examples of major func
tions include menus, disk file access, a sort, a drawing routine, etc.
Each one works by performing a major task by calling on minor tasks
and utility routines in turn.

Minor tasks are tasks that more than one major task may perform.
Examples include accessing the disk with READs and WRITEs using
special formats, setting up screens and table-driven displays, and re
port printing logic.

Utilities on the other hand are short, fast, and may be called by any
routine in the program. Your special GET routine, graphics scaling,
cursor control, formatting, lookups and searches all qualify as utili
ties. By having the lowest line numbers, 100 to 999, they are executed
as quickly as possible.

Table 1-6 is an example of a line number blocking scheme. The
assignment of blocks over the middle levels of a program varies with
that program's call structure. Remember the principle of high level,
high line numbers as you design your BASIC program. See Example
7-1 for an Integer BASIC program that has block structuring.

1.3 FILE HANDLING

1.3.1 Sequential Files

The simplest method of file creation is the sequential file method.
Sequential files have records of varying lengths, just like character
strings from the keyboard. Unless you have to make random access to

~
I

-

-

-

Getting It Together 43

Table 1-6. Blocking Line Numbers

Line
Numbers Description

0 to 9 Unused: Reserved for capture routine

10 GOTO 30000

100 to 999 Fast, common utility routines

1000 to 9999 Specific service routines

10000 to 29999 Main routines of primary menu selection

30000 to 30999 Main line: initia lization and menu. An error handler
included.

31000 to 31999 The DATA statements

32000 to 32767 Termination routines. Line 32767 should contain
o nly an END statement.

any record in the file, the sequential file access method is the one to
use.

You create sequential files according to how you intend to update
them. The simple method given in the DOS manual assumes you know
exactly how many records are in any file at any given time. If this is
the case, then the file can be read sequentially using the number o f
records as the last record number. After the last record has been read,
an error (code = 5) occurs when the next READ attempts to read
beyond the end of the file.

If you don't know how many records the file contains when you
write the file reading routine, you need a better method. The most
obvious is perhaps one that traps the end-of-file error by testing the
error code in the ONERR routine:

30912 IF ER = 5 THEN 30982

This fo rces a RESUM E at line 30982 if there is an END OF FILE
error:

30982 EF = 1 : ONERR GOTO 30900 : RESUME

The line that contains the INPUT where the end of file was found
must detect EF, the end-o f-file flag:

1350 EF = 0 : make FALSE
1360 IF NOT EF THEN INPUT F1 ,F2,F3

44 Appl~ Programmer's Handbook

where 1360 can be any line that INPUTs from the file .
Perhaps a more secure method is to use one record of the file itself

to keep count of the total number of records. Such a header record
can be created at the same time as the file:

22000 PRINT D$"0PEN" F$
22010 PRINT D$" CLOSE" F$
22020 PRINT D$"DELETE " F$
22030 PRINT D$"0PEN"F$
22040 PRINT D$"WRITE"F$
22050 PRINT II 0"
22060 PRINT D$" CLOSE"F$
22070 RETURN

This creates a new file, deleting any previous version, by using F$ as
the file name. The file contains exactly one record having the fi xed
length of five characters - four spaces and a zero. There are no data
records yet; hence the zero.

To add records to the file, you must get the header record to update,
add records starting at the end of the file, and finally change the
header record to the new number of records. Here's how to open the
file and set its position to the end of file :

22100 PRINT D$ 1 '0PEN"F$
22110 PRINT D$"READ"F$
22120 INPUT NR : REM number of records
22130 PRINT D$"CLOSE"F$
22140 PRINT D$" APPEND"F$
22150 RETURN

Upon RETURN, the record counter is in NR and the file position is at
the end of the file, ready to append further records.

After records have been added, you need a special close routine that
will update the header record with the record counter:

29000 PRINT D$" CLOSE"F$
29010 PRINT D$"0PEN"F$
29020 PRINT D$"WRITE"F$
29030 PRINT RIGHT$(" II + STR$(NR),5)
29040 PRINT D$" CLOSE"F$
29050 RETURN

-

-

-

Gelling It Together 45

All you have to do to make sure that the APPEND method works
properly, then, is to add one to NR each time you output a new
record:

- 23000 PRINT D$"WRITE"F$

-
-
-

-

n

23010 PRINT R$: REM output record
23020 PRINT D$: REM cancels WRITE command
23030 NR = NR + 1 : bump count
23040 RETURN

To read a sequential file with a header li ke this, you just make a
simple OPEN statement followed by a READ:

21000 PRINT D$"0PEN"F$
21010 PRINT D$"READ"F$
21030 INPUT NR
21040 RN = 0
21050 RETURN

Set a record counter, RN , to keep track of which record is current.
The open routine here does that; the current record is zero. By
comparing RN and NR, you can detect the end of file before an error
(code 5) occurs. Just increment RN at each record read.

Besides the APPEND method, you can choose another called the
sentinel method. It uses simpler routines and is intended for files that
are made with all their records entered at one run . You cannot add
more records later on to the same file. However, sentinel files are
compatible with sorts and merges while header files are not.

The idea behind sentinel files is to make your own endfile marker.
Whenever a new file of records is created , you write an extra record
just before CLOSEing the file. This record must be unique to all files
so your programs can detect it when READing and know that the file
is ended.

Declare a special character, called high value, to use as a sentinel:
HI$ = CHR$(1 27).

Create your new file and put data records into it at the same time.
Then you close the new file with an extra record made with the high
value:

46 App/~ Programmer's Handbook

29000 PRINT D$"WRITE"F$
29010 PRINT HI$,HI$,HI$,HI$,HI$
29020 PRINT D$ " CLOSE" F$
29030 RETURN

This is for a five-field file; you use as many high values as fields in
your file.

To summarize, there are four ways to make sequential files. First,
always use the exact same number of records so that your READ
routine knows how many records are there, by implication. Second,
trap the endfile with the ONERR. Third, keep count of the number of
records in a fixed-length header record as you APPEND new records.
And fourth, use a high value sentinel on fixed files to be merged and
sorted.

Sorting puts records in order. With a printout of unsorted records,
you have to search through the listing one record at a time to find the
one you want. But when they have been sorted, you can quickly search
out the one you want.

To sort a file, you decide first which field you will use to search. For
example, a mailing list of friends and relatives could have either the
last name or the first name chosen. Then, when printing labels, you
may want to re-sort the mailing list by zip code. Whichever field is
used to sort and search, it is called the key field.

You can choose any field of a file as the key field. Once chosen,
however, it stays as the key field for all searches until sorted again.
What you do is first sort the file into sequence according to the sort
key field. Then use the sorted file as input to a report program that
prints all records on the file. The report will be in sequence so that you
can look up any record you want.

One use you can make of a sorted report is to make changes and
additions to the sequential file. To change a record in a sequential file
is difficult because the length of the replacement record may be
greater than the old record. In that case, there won't be enough room
for the replacement file. So, to replace records in sequential files, you
have to mark them for deletion and treat the replacement record as an
addition. The procedure is to make a second file containing all the
additions, sort this new file on the same key field as the original, then
merge the two files to create a new file, preferably on another disk.
This new file won't have deleted records because the merge routine
won't copy them as it builds the new file.

Getting It Together 47

A sort routine and a merge are needed to completely maintain
sequential files.

Sorts are usually written in Assembler because BASIC is much
slower. Several sort routines have been published in magazines. Many
of the routines can be bought at computer stores. The most successful
ones are the Shell-Metzner, the Quicksort, and the Bubble Sort. Using
one of these algorithms, a sort need only sort strings, because all fields
are in string format. A variation called the Tag Sort will give you the
sequence of the original keys in a separate numeric array. This lets you
read in all the keys without storing the entire record, sort the keys,
then use the tag numbers to give you the record numbers of the
unsorted file in the sorted sequence. After sorting the keys, you read
the file in blocks of as many records as will fit easily into memory.
Then write the block out in sorted sequence, according to the tags.
The resulting files of sorted blocks are then merged to make the sorted
file.*

Remember that you must read the entire file and sort it all at once;
then you can write out the sorted version. When the file is too big to
stuff into memory all at once, you can use the Tag Sort method just
described or break the file into smaller ones for sorting and merging.
If possible, design your system so that any sequential files are kept
small until sorted.

There are two ways to add records to a sorted file. The simplest way
is to APPEND the new records, then re-sort the entire file. If the file is
small and records aren't added often, then this is the way to go.

On the other hand, adding even only a few records to a file on a
regular basis will make it grow quickly. Very soon, re-sorting will take
considerable time, making the job of adding new records tedious. As
an alternative, you can create a new file just for the additional
records. Then sort the additions file and merge the old master file with
the additions to make a new master file. The old master file is not re
placed, so you have a backup provided by the procedure.

The best way to organize your file for merging is to add new records
to an additions file on the same disk. Then, merge the two files to a
new file on a second disk. This way you have all the records of the file
on one disk before merging, so you know that the new file will fit on
the new disk. For instance, you could update a file on the Drive One
disk by creating an additions file, then complete the update by mount-

*Irwin, "Tsort and Amperjump," Nibble magazine, V.2. N.6, 1981.

/

48 App/~ Programmer's Handbook

ing a scratch disk in Drive Two and IN ITing the new disk. Sorting the
additions, then merging them with the master file to make a new
master on Drive Two, completes the update session .

A fter merging, the o ld disk in Drive One is your backup; the new
disk in Drive Two is now your master file disk.

Here's how to do a merge. First , you must de fin e a high value con
stant: HI$ = C HR$(127). Remember, in the sentinel method, this
value marks the end of file. The merge routine itself goes li ke this:

21100 GOSUB 11000 : REM read old master
21110 GOSUB 12000 : REM read addition
21120 IF KM$ > =KA$ THEN 21160
21130 GOSUB 13000 : REM write o ld master
21140 GOSUB 11000 : REM read old master
21150 GOTO 21120
21 160 IF KM$ = KA$ THEN 21200
21 170 GOSUB 14000 : REM write addition
21180 GOSUB 12000 : REM read addition
21190 GOTO 21120
21200 IF KM$ < > HI$ THEN 21130
21210 GOSUB 15000 : REM write HI$ at endfile
21220 RETURN

This is just the merge logic (see Fig. 1-4). The keys must be read as:
KM$ for the master key, KA$ for the additions key. For instance , if
your records had four fields a nd the first fi eld was your sort key, then
the routine to read the o ld master would look like :

11000 PRINT D$"READ" FM$: REM FM$ is master file name
11100 INPUT KM$,M2$,M3$,M4$
11200 PRINT D$: REM ctrl/D kil ls READ

-

-

-

11300 RETURN ...,..

Similarly, the routine to write the addit ions record would be:

14000 PRINT D$ " WRITE"NF$: REM NF$ is new master name
14100 PRINT KA$,A2$,A3$,A4$
14200 PRINT D$: REM ctr i /D ki l ls WRITE
14300 RETURN

Getting It Together

< >

A AMD B ARE MERGED INTO C. WHERE KEYS ARE EQUAL
B RECORDS FOLLOW A RECORDS IN FILE C.

Fig. 1-4. The classic merge.

49

You can write other routines yourself. When coding the routine to
write an old master record - at line 12000 - you can use an IF state
ment to test for your delete flag. This way, you can ignore the record
to be deleted.

To start, write a simple merge to handle a simple file. You can re
write it later, expand its features, and adapt it to other files.

To delete a record from a sequential file, the merge routine needs a
list of records to be deleted. The list should be in sort sequence and

50 App/~ Programmer,s Handbook

containing the identifier field of the records. The identifier is a field
that is always different for each record. By keeping a subscript to the
list, the merge routine that writes master records can test for deletion
by comparing the identifier with the delete list. If a record is to be
deleted, increment the delete list subscript instead of writing the
record.

Here's how to start a sequential file system using the sentinel
method. First, write a short program to create a new file on a blank
disk. INIT three disks with successive volume numbers: 1, 2, and 3,
say. Use your create program to put a null file - one with just the
endfile record - on each disk. Label all three disks with the same file
name. Make three labels for their jackets with their file name and
generation: SON, FATHER, and GRANDFATHER. The younger
the generation, the larger the volume number. So, place Volume 1 in
the GRANDFATHER jacket, Volume 2 in the FATHER jacket, and
Volume 3 in the SON jacket.

With a three-disk system like this, you can update, sort, and merge
without danger of losing your file. Two disk drives are needed; each
file has a full disk of file capacity. The disks are maintained such that
anytime the file gets clobbered, it can be re-generated by a previous
generation disk.

The procedure for updating a sequential file is diagrammed in Fig.
1-5. Here are the steps:

1. Mount SON in Drive One. Use UPDATE program to enter new
records, creating an ADDITIONS file.

2. Optionally, you can run a report to check the ADDITIONS file
for accuracy.

3. Sort the ADDITIONS file in Drive One.
4. Mount the GRANDFATHER disk in Drive Two and run the

MERGE. This generates a new file by using the master and addi
tions files in Drive One.

5. Remove the old FATHER disk from his jacket and put him in
the GRANDFATHER jacket.

6. Remove the old SON disk from Drive One and put him in the
FATHER jacket.

7. Remove the new file disk from Drive Two and put it in the SON
jacket.

8. If you want an updated listing of the file, run a report using the
new SON. This completes the file update.

I
I _____________________ J

Fig. 1-5. Updating a sequential file.

Geffing It Together 51

An example of a Sequential File Manager Program appears in Fig.
1-6. Five routines will be needed altogether.

1.3.2 Random-Access Files

If you need to access a file and change it often, then it needs to be in
a random-access organization. Such a file is different from a sequen
tial file only by the lengths of its records. In random-access files, rec
ord lengths are all equal, while in sequential files, they can have vari
ous lengths. Because of the fixed length, DOS can quite easily cal
culate the position of any record in the file in terms of its actual disk
location.

Random-access files are much easier to query and update because
the sort, merge, and report functions aren't needed. A record can be
replaced simply with a new record of exactly the same size. The trade
off is in disk capacity, because random records must be filled out to
the length of the longest record anticipated in the file. This filling
could give you only half the file capacity of the equivalent sequential
file. But, for files that must be queried and updated often, random-ac
cess files are your best choice.

One reason random-access files are easier to use is that you can use
the record number directly. Each record in the file has its own num
ber, counting from the beginning of the file, that you can specify with

52 Appl~ Programmer's Handbook

Fig. 1-6. Sequential file manager program.

the R option of the READ and WRITE commands. If you have a sort
routine, you can also have keyed access by creating an index file to
look up the record number for a given key value. To do this, you
should have a Tag Sort routine that sorts the keys and gives you a
table of their original position numbers. Regardless of the way you
choose to go, random-access files will be much easier to manage when
you have changes going on all the time.

The secret to making a good random-access file is in having a
header. If the header is short, it may go at the beginning of the file as
the first record. It is easier to handle if it is in a separate, small sequen
tial file on the same disk.

You .can put into the header all the information your UPDATE pro
gram will need to access the data. This includes file information like
the number of records in the file, the number of fields in each record,

..

...

-

Gelling It Together 53

and the length of each record. Then you need information for each
field you have defined for the file; at least its position, length, and
name. With this information, your OPEN routine can get the header
first and load up the file parameter variables your program uses to
access the data. This scheme lets you change your file definition just
by making a few changes to the header; your access program need
never know the difference.

Here's how you might get the header from a separate, sequential
file. The header file has the same name as the data file except for a
".HDR" extension :

21000 PRINT D$"0PEN"F$".HDR"
21010 PRINT D$"READ"F$".HDR"
21020 INPUT NR,NF,LR : REM number of records,

number of fields, and
length of records.

21030 FOR I = 1 TO NF
21040 INPUT FN$(1),FP(I),FL(I)
21050 NEXT : REM field names, positions, and lengths
21060 PRINT D$"CLOSE"F$".HDR"
21070 PRINT D$"0PEN " F$", "L" LR

With the file open and the header parameters read into their variables,
you can update by READing and WRITEing any record you wish .

The length of each field is kept in the header, because of a different
method of accessing fields when using random-access. The entire
record is now handled as a single string, preferably using an input any
thing routine (see Chapter Six for detai ls) . Each field is inserted into
the record string as a substring. The unused characters in the record
must be made blank ; otherwise, they can end up as nulls on disk. And
nulls mark the end-of-file for DOS, so a READ will give you an error
(code 5). Using substring logic for the fields releases one byte per field
for data; commas are no longer needed. And, you can use the input
anything routine of Chapter Six to allow commas within fields. So,
you can READ and WRITE one string for each record, then use the
string functions to handle fields using the header informat ion.

Here's how to get fields from a record string. If your fields are to be
substringed to vector FD$ from record variable R$:

54 Appl~ Programmer's Handbook

200 FOR I = 1 TO NF
210 FD$(1) = M ID$(R$,FP(I) ,FL(I)
220 NEXT
230 FD$(0) = LEFT$(R$, 1)
240 RETURN

There is an extra one-byte field at the left because of the inability of
MID$ to get it. You might use it as the record status flag.

Here's how to build a record from the field substrings:

300 R$ = F$(0)
310 FOR I = 1 TO NF
320 R$ = R$ + LEFT$(FD$(1) + BL$,FL(I))
330 NEXT
340 RETURN

You can use the build routine after changing the FD$ strings and be
fore WRITEing the R$ back to disk.

Design your own random-access fi le. Make a list on paper of all the
fields and the length of each. Use a length of one for the zeroth field.
Add up the lengths to get the record length; don't forget to add one for
the CR character. This total length is your LR. Next, list the name,
position, and length of each field. Then, write a routine to create the
header file that the OPEN routine will read. By writing a short routine
to call your OPEN routine and then CLOSE the data file, you can test
your CREATE program.

With the header creation and OPEN routines working correctly,
add the data file creation routine to the CREATE program. This
should write blank records into the entire data file.

Next, write the record addition routine. Each time a new record is
written, the number of records is used as the record number. Then the
number of records is incremented by one. Warn the user if this reaches
the total capacity of the file - the number of blank records provided
at CREATE time. Don't accept any more additions in that case. When
a record has been added, you must re-write the header file to update
the number of records.

Finally, you can write a query/change routine. The header isn't
changed by a record change. When the query works, use it to test the
additions routine. Getting the changes and making them to disk comes

-

-

-

Getting It Together 55

=0

FiR. 1-7. Random-access file manager program.

last; if all other routines have been tested correctly, this won't be diffi
cult at all. See the mainline in Fig. 1-7.

If you need more details on the DOS file access commands, see
Chapter Seven for a description and summary.

n
n
n
n I .

n
n
!j
I .

n
n
n
n
n
n
n
n

r
n

CHAPTER TWO

Atlas of the Apple ll

2.1 MEMORY MAPS

The memory maps in this chapter show how the Apple II memories
appear to both the display generator circuits and the processor.
Several memory configurations are possible, depending on the model
of the Apple II and its hardware and software options.

There may be a few Apple lis around with less than 48K of RAM;
these are not discussed here. These old 32K, 16K, and perhaps 4K
Apples won't support much of the disk-based software available to
day, so most have been upgraded to 48K by adding the appropriate
type 4116 RAM chips. If your Apple has a Revision 2 or earlier
motherboard, the proper RAM jumper blocks must be installed. You
can get them through an Apple dealer; they have 16K written on them.

When programming in Assembler, be careful with your Page Zero
usage. With Applesoft and DOS both using Page Zero, space is at a
premium. If you need a large chunk, swap it with a block of RAM be
fore and after your routine. This will preserve the current system
values:

ZSWAP LOX #SIZE
ZSWAP1 LOA ZER0-1,X

PHA
LOA SAVE-1,X
STA ZER0-1,X

57

58 Appl~ Programmer's Handbook

PLA
STA SAVE-1 ,X
DEX
BNE ZSWAP1
RTS

You must declare the save area in your program RAM

SAVE DS SIZE

and EQUate SIZE as the length of Page Zero you are using and ZERO
to its first location.

If you only need a few Page Zero locations, they can be borrowed.
Find some locations that won't interfere with Applesoft or DOS by
borrowing. Locations $06.09 seem to be unused by everyone. The
$50.55 locations are used only for integer calculations and are usually
safe.

Refer to the following maps to find the configuration that you have
and any that you intend to use. Then use the gazetteer in the following
section to see specific usage of any one block. Fig. 2-l shows the
methods for accessing the memory for all Apple models.

2.1.1 Apple II Memory Access Methods (for all models)

Each microsecond or so, the processor and the video display take
turns accessing the memory. This gives the Apple a faster speed and
gives the processor and video displays quite different memory maps.

SOFT SWIICHES

r-----------r- - -------------------~
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I

F'i~ . 2-I. Memory access methods for all Apple models.

-
-

-

-

Atlas of the Apple II 59

To let the Apple handle more memory, a bank switcher called a
Memory Manager controls the processor's memory access so that
there can be one of several possible memory maps for programming.
And similarly, the 110 logic that feeds the video display with screen
data can select from among several chunks of memory. All these selec
tions by the Memory Manager and the I/0 logic depends upon the
soft switches set by you using the processor.

2.1.2 The BASIC Memory Map

Fig. 2-2 shows the BASIC memory map. Of the many possible
memory maps, this is the one most often used. This is what you get
upon power up and the bootstrap of a DOS 3.3 program disk. The
FIRMWARE area consists of the system Monitor and a BASIC -
Applesoft or Integer. The INPUT/OUTPUT has addresses for hard
ware and peripheral firmware. DOS resides in the highest user RAM

FFFF

DODO

cooo

S&OO

0800
0000

FIRMWARE

INPUT/OUTPUT

DISK
OPERATING

SYSTtM

USER
PROGRAM

SYSTEM

SYSTEM USE

Fig. 2·2. The BASIC memory map.

f
12K
ROM

_L
411

HARDWARE

4811
RAM

60 App/~ Programmer's Handbook

addresses. The system reserves the lowest addresses for its own use in
running the processor and supporting elementary features like screen
displaying.

See the following maps (Figs. 2-3 through 2-10) for a breakdown of
each area.

2.1.3 BASIC System Use

The 6502 processor requires the use of the lowest two pages of
memory - Page Zero and Page One - in special ways. Page Zero is
accessed by many instructions as address register locations and Page
One is maintained as a special data structure called a stack that
remembers addresses for machine language routines. By convention,
Page Two is the input buffer, especially for keyboard inputs. Page
Three is how the Monitor and DOS get along with each other; it con
tains system addresses that either can set. The SCREENl area con
tains all the character codes for each location on the 40 by 24 display.

SCREEN 1
mxn

Fig. 2-3. BASIC system use.

PAGE 3
WORKSPACE & VECTORS

$0300
PAGE 2

KEYBOARD BUFFER
$0200

PAGE 1
STACK

SOlDO
PAGE ZERO

soooo REGISTERS

-

Atlas of the Apple II 61

2.1.4 The BASIC Disk Operating System

An EXECUTIVE connects with the rest of the system through the
COMMAND INTERPRETER and gets commands. The COM
MAND INTERPRETER understands DOS commands such as
CATALOG and BRUN FID and has routines to execute them. The
FILE MANAGER is normally called upon by the COMMAND
INTERPRETER to open, close, read, write, etc. The RWTS has all
the routines to access the disk and can be used by an Assembly pro
grammer. The three DATA BUFFERS are used by the FILE
MANAGER. Changing MAXFILES to any number but three will
change the size of this area.

f'ig. 2-4. The BASIC disk operating
system.

cooo

B&OO

AACI

SFCD

9000

9600

RWTS

FILE MANAGER

COMMAND INTERPRETER

EXECUTIVE

THREE
DATA BUFFERS

62 App/~ Programmer,s Handbook

2.1.5 The BASIC Input/Output Map

There are two types of 1/0 in the Apple - built-in and peripheral.
Built-in 1/0 is confined to the $COOO.C07F region while the peripheral
1/0 has the rest of the space to $CFFF. Built-in 1/0 includes such
things as the games socket, cassette, and speaker. Peripheral 1/0 is
divided into seven slots, each with hardware address space and firm
ware address space. Each slot owns a chunk of sixteen locations in the
$C080.COFF area for its hardware and a chunk of 256 locations in the
$CIOO.C7FF area for its firmware. In addition, each peripheral board
may have a 2K block of memory in the $C800.CFFF space that it must
share with its neighbors.

DOOO

CillO

C700

C600

csoo

C400

C300

C200

ClOO
C080
cooo

EXPANSION ROM
FIRMWARE SWITCHED
INTO SERVICE BY THE

CURRENTLY ACTIVE
PERIPHERAL

SLOT 11 FIRMWARE

SLOT 16 FIRMWARE

SLOT IS FIRMWARE

SLOT 14 FIRMWARE

SLOT #3 FIRMWARE

SLOT 12 FIRMWARE

SLOT II FIRMWARE

PERIPHERAL HARDWARE
BUILT·IN HARDWARE

Fig. 2-5. The BASIC Input/Output map.

ROM

HOWE

Atlas of the Apple II 63

2.1.6 The BASIC Firmware Memory Map

At power up, the Apple II always has ROM to address at the top of
memory. The 6502 needs it for the RESET routine that it first runs,
and the address of the routine which it expects at the top of memory.
The Monitor may be the old Standard Monitor that comes up with an
asterisk at power up, the Autostart Monitor that bootstraps disks, or
the lie Monitor. Below that, BASIC resides. The Apple II came with
Integer; the II Plus and lie come with Applesoft.

If you have a RAM card in Slot Zero or 64K of RAM on the
motherboard (like the lie) then the ROM may be bank switched to
RAM. The 16K of RAM is broken up into 8K and two 4K banks that
can be selected to make 12K of RAM.

FFFF

(MONITOR)

F800 ------------
(BASIC)

811
RAM

1211
ROM

APPLESOFT

EOOO
OR

INTEGER
BASIC

MAY BE RESIDENT

411 411
RAM RAM

0000

16 II RAM MAY BE
ON CARD IN SLOT ZERO

Fig. 2-6. The BASIC firmware memory map.

64 App/~ Programmer's Handbook

2.1.7 12K Bank Switching Between RAM and ROM

Bank switching is done by the 1/0 logic with the soft switches. To
use a soft switch, you simply address a location in the $COOO.C07F
area. Some switches must be read, some written, some don't care. The
write enabling switches, $C083 and $C08B, must be read twice for
each switch to be effective. All the 12K bank switches can be done
with read operations as shown in Table 2-1.

Table 2-1A. Switching Between RAM and ROM from Assembler
(12K Bank)

Select RAM Write Protect Write Enable

4K Bank One BIT $C088 BIT $COBB
BIT $C088

4K Bank Two BIT $COSO BIT $C083
BIT $C083

Select ROM (with RAM write protected)

BIT $C082

Tabl~ 2-1B. Switching Between RAM and ROM from Applesoft
(12K Bank)

Select RAM Write Protect Write Enable

4K Bank One X = PEEK(49288) X = PEEK(49291)
X = PEEK(49291)

4K Bank Two X = PEEK(49280) X = PEEK(49283)
X = PEEK(49283)

Select ROM (with RAM write protected)

X = PEEK(49282)

-

Atlas of the Apple II 65

2.1.8 The Video Display and 1/0 Logic Memory Map

The Input/Output logic sees only a portion of the main memory
that the processor sees. It accesses one or two areas for video display:
HIRESI, HIRES2, SCREENI, and SCREEN2. It reads the
Input/Output area to set the soft switches that tell it and the Memory
Manager how to access memory. In addition to the main memory, the
1/0 logic accesses a character set ROM that is not seen by the proces
sor.

FFFF

0000

cooo

6000

HIRES 2

4000

HIRES I

Fig. 2-7. The video display and 1/0 logic memory map.

CHARACTER
SET

!ROM)

=NO ACCESS

66 App/~ Programmer's Handbook

2.1.9 The Apple lie Memory Access Methods

The Apple He has several more soft switches than earlier models.
This gives it access to more memory and adds more display modes. In
addition to the 12K ROM and 64K RAM, the lie allows up to 64K
additional RAM in the auxiliary slot. The SCREENI and HIRESI
areas of this second RAM are accessed for video display. The char
acter set ROM is increased to provide an Alternate Character Set in
addition to the original Primary Character Set.

lZK I ROM CHRSET
I ROM

SK ""1 1~·
.CK
4K MAIN HIRESZ

MEMORY RAM HIRES I
MANAGEMENT 47.5K 164KI

SCREEN 2
O.SK SCREEN 1

110
LOGIC

8K
4K
4K AUX

RAM

47.511
(64Kl

HIRES 1

O.SK SCREEN 1

u j
PROCESSOR I I VIDEO

DISPLAY

FiR. 2-8. Apple lie memory access methods.

-

-

....

Atlas of the Apple II 67

2.1.10 Tbe Apple lie Processor Memory Map

Fig. 2-9 shows what you can access with a lie that has a 64K set of
RAM in the Auxiliary slot. There is the normal 12K of ROM, the
Input/Output area, and 48K of RAM that the lie sets on power up.
Like the II and the II Plus, you can switch ROM with the 16K RAM at
the top of the main memory. In addition, you can switch to auxiliary
memory, replacing the main 63.5K of memory with 63.5K of auxiliary
memory. The bottommost 512 bytes are switched separately because
of the processor's special needs for Pages Zero and One. With
auxiliary RAM switched in, the ROM/RAM bank switches remain the
same, keeping ROM in service or switching to the corresponding
configuration of 12K RAM in auxiliary memory.

FFFF

cooo

0200
0000

4K
RAM

MAIN
SK

RAM 12K
ROll

1 4K
RAM

INPUT/OUTPUT

MAIN
47.5K
RAM

MAIN O.SK RAM

Fig. l-9. The Apple lie processor memory map.

AUXILIARY
IK

RAM

4K l 4K
RAil RAM

AUXILIARY
47.5K
RAM

AUX O.SK RAil

68 Apple® Programmer,s Handbook

2.1.11 The Apple lie 1/0 Logic and Video Display Memory Map

Only a portion of the main and auxiliary RAMs are seen by the I/0
logic. To have an SO-column display, some of the auxiliary memory
can be used to cover SCREEN 1 (if you don't need the extra memory
for other uses). SCREEN2 is not accessible in auxiliary memory. You
get a choice of SCREEN! in main with SCREENI in auxiliary for
SO-column work; or SCREENI in main with SCREEN2 in main for
40-column screen work. The same scheme works with the HIRES
screen areas. In addition the lie supplies two character sets - primary
and alternate - to the I/0 logic.

0000

cooo

PRIMARY
CHARACTER

SET

ALTERNATE
CHARACTER

SET

LEGEND

6000
~ NOACC£$$

4000

zooo

coo
800
400

Fig. 2-10. The Apple lie 1/0 logic and video display memory map.

...

' '

Atlas of the Apple II 69

2.1.12 Apple lie Processor Access Soft Switches

The lie processor access soft switches (Fig. 2-11) program the
Memory Management to set the memory map of the processor.
Switches requiring a write are shown as ST A instructions.

The $C054.C055 switch lets you write (but not read) Auxiliary
Memory as a convenience when programming for an 80-column dis
play. If you want Auxiliary memory just as memory, then you can for
go the 80-column display and use the three read and write switches.

Always reset the 12K bank switches after switching between Main
and Alternate. The same switches point into the corresponding areas
in each.

Follow the flowchart to get the map you want.

2.1.13 Apple lie Video Display Access Soft Switches

The lie video display access soft switches (Fig. 2-12) program the
1/0 logic to set the memory map of the video display. As with
Memory Management switches, those requiring writes are shown as
STA instructions.

Be careful of the $C054.C055 switch on the lie. It is used by the
processor access to switch between Main and Alternate memory when
writing for an 80-column display. Here, the same switch is used to
select between SCREEN! and SCREEN2 (or HIRES! and HIRES2).
Its usage is set by the $COOO.C001 switch in Memory Management;
this means that SCREEN2 and HIRES2 are not available for display
on the lie in 80-column mode.

In 40-column mode, $C054.C055 works just as it does in the Apple
II models.

~ On the lie, you must set the mode to 40- or 80-columns at
$COOC.COOD consistent with the setting you made at $COOO.C001.
Plan carefully.

2.2. GAZETTEER

This section lists all memory locations within the BASIC 48K
Memory Map referenced throughout this book. The most common
configuration of DOS 3.3 and Applesoft BASIC is also presented in
this section. The details of Integer BASIC are presented in Chapter
Five.

..,
I~ ~·

:::: -
>

~
"CJ ~ "CJ
fD ~ --~ ~ "CJ
a ~
a ~
e :! ..
sa :! , , ~
~
II> c.,'"
II>
II> ~ e
~ ::3
II>
~ ~
~·
:r

c
r: c

........... ~

J I -)] -] -) 1 1 I) ~ _) 1 _) -I I

j 1) J .-] j j J J]] J 1) J

~
~

~
1 n
= ~
> '0
'S!.
ftl

= ftl .,
a
~ ..
• n n
ftl
~

!l
~
Ill
~

~ I A PROTECT I I ·I I~ =- TWO
!l • WRITE • BIT COS~

~
So
~

~
'\5
~
:::::

~

72 Appl~ Programmer's Handbook

....

...

-
Fig. 2-12. Video display access soft switches.

j J]] -j J) .]]] J J 1 j]

.,
cF
~
N

I
s
~
~

f
Q,

I
I
!
~

! I I I , 'HI I I , 'MIX I _ .. I I I All

;;

J GRAPHICS I I I I jA -iS'
Cl5

~ -~
~

A
~
~

:::::

~

74 Appl~ Programmer's Handbook

Often, two consecutive locations will contain an address pointer, a
line number, or other integral value. Unless otherwise noted, all such
two-byte integers are in low-byte/ high-byte order. This is the native
format of the 6502 address operands, so it is used almost without
exception throughout the Apple II.

For each entry, the hex address, the decimal address, and the com
monly used label - if any - are given. For hardware addresses and
Monitor addresses, negative decimal form is given as well for the con
venience of Integer BASIC programmers.

This gazetteer is not exhaustive. Don't assume that a location is
unused in Page Zero, for example, just because there is no entry.
Applesoft, DOS, and the Monitor all use Page Zero in many loca
tions.

2.2.1. Pages Zero and One

These have special meaning to the processor: Page Zero supports in
direct addressing for indexing and Page One is the 6502's stack
memory.

$0A.OC (1 0) USR

Contains a $4C as the JMP op code, followed by the address of the
Applesoft USR function .

$16. (22)

The compare parameter used by the routine at $DF6A in Applesoft's

-
-

-
-

floating-point package. It must be set to one of the following codes fli'll

before calling $DF6A:

CODE FOR COMPARISON

ARG > FAC
2 ARG = FAC
3 ARG < FAC
4 ARG > = FAC
5 ARG < > FAC
6 ARG < = FAC

$20 (32) WNDLFT

-

-
Atlas of the Apple II 75

Left margin of the scroll window. The TEXT command sets it to zero;
you can set it from zero to $27 (39) for 40-column display.

$21 (33) WNDWDTH

M Width of the scroll window. The TEXT command sets it to $27 (39)
for 40-column display. You can set it to any value from zero to $20
(contents of WNDLFT) in 40-column mode. A common trick of
Applesoft programmers is to POKE 33,33 to get listings on screen
without blanks added within literal quotes.

-

$22 (34) WNDTOP

Top of the scroll window. The TEXT command sets it to zero for the
topmost line. Range is to $17 (23) for the bottommost line.

$23 (35) WNDBTM

Bottom of the scroll window. The TEXT command sets it to $17 (23).
You can change it to any number less than $17 and greater than or
equal to WNDTOP.

$24 (36) CH

Horizontal text cursor ranges from zero to $27 (39) in 40-column
mode. It locates the cursor from the left window. It is maintained by
VIDOUT at $FBFD.

$25 (37) cv

Vertical text cursor ranges from zero to $17 (23). It is always relative
to the top of screen, not to WNDTOP. CV is used by VT AB at $FC22
in calculating the screen address at BAS, $28.29.

$28.29 (40) BAS

Base address of the text cursor. It is calculated within the VIDOUT
routines from WNDLFT at $20 and CV at $25 to give the left-most
position on the cursor's line.

76 Appl~ Programmer's Handbook

$2((44) H2

End of line position. Used by HLINE at $F819 in the LORES graphics
section of the Monitor.

$20 (45) V2

End of line position. Used by VLINE at $F828 in the LORES graphics
section of the Monitor.

$2E (46) CHKSUM

Used as checksum by tape READ at $FEFD and WRITE at $FECD.
Initialized to zero, then EORed to each byte of the data. It is written
as the last byte following the data; read and compared to the cal
culated C HKSUM during the READ.

$30 (48) COLOR

The current LORES color value, repeated in both nibbles. The sixteen
values a llowed are set by the COLOR = statement and become one of
the following:

$00 black
$11 magenta
$22 dark blue
$33 purple
$44 dark green
$55 grey
$66 medium blue
$77 light blue

$32

$88 brown
$99 orange
$AA grey
$BB pink
$CC light green
$00 yellow
$EE aqua
$FF white

(SO) INVFLG

Mask intended to select inverse, normal, or flash characters display:
normal is $FF, inverse is $7F, flash is $3F in value.

$33 (51) PROMPT

Prompt character code to be displayed by Monitor GETLIN routine
at $FD6A. Used by both BASICs and the Monitor's command

....

n
-

-

-

Arias of the Apple II 77

interpreter: Applesoft uses $90 for" "; Integer uses $BE for " "; and
the Monitor uses $AA for"*".

$34 (52) YSAV

Used by Monitor command interpreter.

$35 (53) YSAV1

Used by Monitor command interpreter.

$36.37 (54) csw

System output hook address. Used by calling COUT at $FDED as the
current output routine . CSW contains the address of the current out
put device; it defaults to COUTI at $FDFO. See Chapter Six for a fu ll
explanation of the output hook.

$38.39 (56) KSW

System input hook address. Used by calling RDKEY at $FDOC as the
current input routine. KSW contains the address of the current output
device; it defaults to KEY IN at $FD I B. See Chapter Six for a fu ll ex
planation of the input hook.

$3A.3B (58) PC

This is where the Monitor command interpreter keeps the 6502 pro
gram counter for use by the ctrl/ E command. The IRQ interrupt
handler also stores the interrupted program address here to be read by
the BREAK handler. See Chapter Three for detai ls.

$3C.30 (60) A1

f!!!!l Used extensively by the Monitor commands: subtract, move, verify,
tape 110, and any other source address. DOS uses this location; the
RWTS routine points to the DCT from here. - $3E .3F (62) A2

78 Appl~ Programmer's Handbook -
Used extensively by the Monitor commands: add, subtract, move,
verify, tape 1/0, and any other second source address. -

$40.41 (64) A3

Used by Monitor command interpreter. DOS uses this for the File
Buffer address.

$42.43 (66) A4

Used by the Monitor commands: move and verify. Can be the destina-
tion address for any other command defined. DOS uses it as the -
buffer address pointer.

$44.45 (68) AS

Used by the Monitor command interpreter. Used as a file buffer
pointer by DOS, see $A 792.

$45.49 (69) ACC, XREG, YREG,
STATUS, SPNT

Registers storage used by Monitor G command and by the BRK
routine:

$45 is ACC
$46 is XREG
$47 is YREG
$48 is STATUS, the P-reg
$49 is SPNT, the S-reg

The ctrl!E command reads these and PC at $3A.3B as well. From
DOS, the RWTS routine uses $48.49 as the address of the lOB. After
using RWTS, you must zero $48 to avoid any Monitor hang-ups.

$4A.4B (74) LOMEM

System pointer to lowest available user program location in Integer
BASIC; normally $0800.

-
-

-

,...

-

-

Atlas of the Apple II 79

$4C.4D (76) HIM EM

System pointer to highest available user program location in Integer
BASIC; normally $9600. The HIMEM: command will be used by
DOS to set $4C.4D, regardless of the BASIC.

$4E.4F (78) RND

Random number generated by the keyboard input routine. You get a
new random number with each keystroke.

$50.51 (80) LINNUM

Integer value converted from FAC by the GETADR routine at $E752)
in Applesoft.

$67.68 (1 03) TXTIAB

Applesoft pointer to start of BASIC program text. It normally points
to $0801.

$69.6A (1 05) VARTAB

Applesoft pointer to start of BASIC program's variables storage, one
byte beyond the end of program text.

$68 .6((1 07) ARYTAB

Applesoft pointer to the start of BASIC program's array storage; the
end of program's variables.

$60.6E (1 09) STREND

Applesoft pointer to the end of BASIC program storage. The unused
free space begins here, one byte beyond the last array.

$6F.70 (11 1) FRETOP

Applesoft pointer to the first byte of working string storage, one byte
beyond the last free location.

80 App/lf'J Programmer's Handbook

$71 .72 (113) FRESPC

Applesoft pointer at the string storage area, used when a new string is
created. See STRINI, at $E3D5.

$73.74 (114) MEMSIZ

Applesoft pointer to the first byte past the last byte used for string
storage. This is the highest RAM address available to Applesoft; it is
normally set to $9600.

$75.76 (117) CURLIN

Applesoft current line number. In direct mode, $FFFF.

$77.78 (119) OLDLIN

Applesoft last line executed.

$79.7A (121) NXTPTR

Applesoft pointer to next BASIC program statement to be executed.

$7B.7C (123) DATLIN

Applesoft line number of current DATA statement. Used by READ.

$7D.7E (125) DATPTR

Applesoft pointer to DATA to be READ next.

$83.84 (131) VARPNT

Applesoft pointer to variable as fetched by PTRGET at $DFE3.

$8A.8E (138) TEMP3

Applesoft temporary FP register, packed format.

$93 .97 (147) TEMP1

-

-

-

Atlas of the Apple II 81

Applesoft temporary FP register, packed format.

$98.9((152) TEMP2

Applesoft temporary FP register, packed format.

$98.9((155) LOWTR

Applesoft pointer to the address of an entire array, as fetched by
GETARYPT at $F709.

$9D .9F (157) DSCTMP

Applesoft string descriptor: length, addr-lo, addr-hi. Used by STRINI
at $E305 when creating new string storage.

$9D .A2 (157) FAC

Applesoft floating-point accumulator. Unpacked format as follows:

$90 exponent in excess-$80
$9E mantissa, MSByte
$9F mantissa
$AO mantissa
$A 1 mantissa, LSByte
$A2 sign in Bit 7

A zero exponent signifies a zero value for the number.

$A5.AA (165) ARG

Applesoft argument register. FP number in unpacked format as
follows:

$AS exponent, excess-$80
$A6 mantissa, M SByte
$A7 mantissa
$A8 mantissa
$A9 mantissa, LSByte
$AA sign in Bit 7

82 App/~ Programmer's Handbook

A zero exponent signifies a zero value for the number.

$81 (177) CHRGET

Applesoft routine to get next BASIC character. Location $B8.B9 -
TXTPTR - is incremented then used to read the character into the
X-reg. If numeric, $30 to $39, the C-flag is cleared; otherwise, it is set.
If it is a delimiter separating statements, like $3A (colon) or $00 (end
of line), the Z- flag is set; otherwise, it is cleared.

$87 (183) CHRGOT

Applesoft routine to re-get a character previously fetched by
CHRGET. Works like CHRGET except that TXTPTR is not
incremented; instead the current character pointed to by TXTPTR is
read. Flags returned as per CHRGET.

$88.89 (184} TXTPTR

Applesoft pointer to the current character in BASIC program text.
Used by CHRGET and CHRGOT by being embedded in the routine.

$D6 (214}

Normal value is $55. Saved and loaded by the cassette READ and
WRITE commands as the third address byte of Applesoft BASIC pro
grams. The Applesoft command interpreter traps this value so that
Applesoft won't work in direct mode if it is greater in value than $7F.

$D8 (216) ERRFLG

Set to $80 by Applesoft's ONERR GOTO statement to flag the error
trap ro the BASIC routine. This ONERR routine must clear it to in
hibit further traps to itself; use a POKE 216,0.

$DA.D8 (218) ERRLIN

Line number in BASIC at which an error occurred. This can be useful
to your ONERR routine.

$E8.E9 (232) SHAD DR

....

Atlas of the A pple I! 83

Shape table address; normally set by the SHLOAD statement in
Applesoft. Otherwise, you must set it prior to using any shape table
commands. See Chapter Six.

$0100.0110 (256) FBUFFR

String buffer for the FOUT at $ED34, which creates a string repre
sentation of the value in FAC ($9D.A2) .

$0100.0 1FF (256) STACK

Processor stack address space. The processor builds its stack down
wards in memory; the Monitor initializes the S-reg to $FF so as to
point to $01FF.

2.2.2 Pages Two and Three

These two pages are set up by the Monitor at RESET for system
functions. See Example 2-1.

Example 2.1 Dump of Apple II Vectors in Page Three

* 3D0.3FF

03DO - 4(BF 9D 4(84 9D 4(FD
03D8 - AA 4C 85 87 AD OF 9D AC
03EO- OE 9D GO AD (2 AA AC (1

03E8 - AA 60 4C 51 A8 EA [A 4(
03FO - 59 FA BF 9D 38 4(58 FF
03F8 - 4C 65 FF 4(65 FF 65 FF

$0200 02FF (512) IN

- Input line buffer. Used by GETLIN at $FD6A to get input records
from the current input device. The record is any length , up to 255
characters, with the last character a CR.

$0300.03CF (768)

Small memory block, often used for short machine language routines.

$03D0.03D2 (976)

84 Appl~ Programmer's Handbook

Jump to DOS warm start routine at $9DBF. This routine does not
return.

$0303.0305 (979)

Jump to DOS cold start routine at $9D84. This routine does not
return .

$0306 (982)

Jump to DOS File Manager at $AAFD. This routine returns to the
caller.

$0309 (985)

Jump to DOS RWTS at $B7B5. This routine returns to the caller.

$030C (988)

Routine to fetch File Manager parameter reference from DOS. Ad
dress is returned in Y-reg (low) and A-reg (high).

$03E3 (995)

Routine to fetch RWTS parameter reference (lOB) from DOS. Ad
dress is returned in Y -reg (low) and A-reg (high).

$03EA (1 002)

Jump to DOS routine at $A851 that reconnects input and output
hooks.

$03EF (1 008) BRKV

Jump to BRK handler. Not available in Standard Monitor; normally
$FA59 in Autostart Monitor. Also available in Apple lie Monitor.

$03F2 (1 01 0) SOFTEV

-

r

-

Atlas of the Apple II 85

Address of RESET handler; not available in Standard Monitor. Nor
mally set to $9DBF by DOS 3.3 with Autostart Monitor. Also avail
able in Apple lie.

$03F4 (1 012) PWREDUP

Powered-up byte value indicating warm start to the RESET routine in
Autostart or lie Monitor; it is not available in the Standard Monitor.
Set by SETPWRC at $F6BF. to the EOR of #$A5 and $03F5.

$03F5 (1 013) AMPERV

Jump to user's ampersand call from Applesoft BASIC.

$03F8 (1 016) USRADR

Jump to user's ctrl/Y Monitor extension command. RESET to MON
at $FF65.

$03FB (1 019) NMI

Jump to NMI interrupt handler. Rarely used; set to MON at $FF65.
Vectored directly from $FFFA.FFFB.

$03FE (1 022) IRQLOC

Address of IRQ interrupt handler. Control passed from $FA40
routine after saving A-reg at $45 and ensuring the B-flag is clear.

2.2.3 Display Screens

$0400.07FF (1024) SCREEN1

One K of RAM mapped by the I/0 logic to the video display. Forty
bytes map to each of twenty-four rows on the screen. Sixty-four bytes
don't display; they are scratch pad RAM for the peripherals. See
Tables 2-2 and 2-3 for details. Each display byte may represent either
two LORES pixels or one character code.

86 App/~ Programmer's Handbook

Table 2-2. One K Screens

SCREEN ! SCREEN2

Address Use Address Use

$400.427 RowO $800.827 RowO
$428.44F Row 8 $828.84F Row 8
$450.477 Row 16 $850.877 Row 16
$478.47F Peripherals $878.87F Unused
$480.4A7 Row I $880.8A7 Row I
$4A8.4CF Row9 $8A8.8CF Row 9
$4D0.4F7 Row 17 $8D0.8F7 Row 17
$4F8.4FF Peripherals $8F8.8FF Unused
$500.527 Row 2 $900.927 Row 2
$528.54F Row 10 $928.94F Row 10
$550.517 Row 18 $950.977 Row 18
$578.57F Peripherals $978.97F Unused
$580.5A7 Row 3 $980.9A7 Row 3
$5A8.5CF Row I I $9A8.9CF Row I I
$5D0.5F7 Row 19 $9D0.9F7 Row 19
$5F8.5FF Peripherals $9F8.9FF Un used
$600.627 Row4 $AOO.A27 Row 4
$628.64F Row 12 $A28.A4F Row 12
$650.677 Row 20 $A50.A77 Row 20
$678.67F Peripherals $A78.A7F Unused
$680.6A7 Row 5 $A80.AA7 Row 5
$6A8.6CF Row 13 $AA8.ACF Row 13
$6D0.6F7 Row 21 $ADO.AF7 Row 21
$6F8.6FF Peripherals $AF8.AFF Unused
$700.727 Row 6 $800.827 Row 6
$728.74F Row 14 $828.B4F Row 14
$750.777 Row 22 $850.8 77 Row 22
$778.77F Peripherals $878.87F Unused
$780.7A7 Row 7 $880. 8A7 Row 7
$7A8.7CF Row 15 $8A8.8CF Row 15
$7D0.7F7 Row 23 $8D0.8F7 Row 23
$7F8.7FF Peripherals $8F8.8 FF Unused

$0800.0BFF (2048) SCREEN2

One K of RAM mapped by the 1/0 logic to the video display. Works
like SCREENI except that the sixty-four undisplayed bytes are un
used. See Table 2-2.

$0800.95FF (2048)

-

-

Atlas of the Apple II 87

Table 2-3. SCREENl Peripherals Usage

DOS Slot I Slot 2 Slot 3 Slot 4 Slot 5 Slot6 Slot 7

$478 $479 $47A $478 $47C $470 $47E $47F
$4F8 $4F9 $4FA $4F8 $4FC $4FO $4FE $4FF

$578 $579 $57 A $578 $57C $570 $57E $57F
$5F8 $5F9 $5FA $5F8 $5FC $5FD $5FE $5FF

$678 $679 $67A $678 $67C $670 $67E $67F

$6F8 $6F9 $6FA $6F8 $6FC $6FD $6FE $6FF

$788 $789 $78A $788 $78C $780 $78E $78F

$7F8 $7F9 $7FA $7F8 $7FC $7FO $7FE $7FF

RAM normally avai lable for BASIC program use. Applesoft requires
$0800 to be zero; the BASIC program text starts at $0801. This block
ends before $9600, the start of DOS buffers.

$2000.3FFF (8192) HIRES1

Eight K of RAM where each one K maps to one line in a ll twenty-four
rows on screen. Each line is forty bytes in memory; there are eight
lines per row. The sixty-four bytes not displayed in each K are unused.
See Tables 2-4 to 2-1 1 for the significance of each location.

$4000.5FFF (16384) HIRE$2

i1 Eight K of RAM that maps like HIRES!. To look up the significance
of a location, subtract $2000 and use Tables 2-4 to 2-11.

2.2.4 DOS 3.3

$9600.9CF8 (38400, - 27136)

File buffers for normal DOS with MAXFILES of three, they break
down as follows:

$9600.96FF
$9700.97FF
$9800.982(
$982D.984A

File 3: Data buffer
File 3: TSL buffer
File 3: Status
File 3: Filename, $00 if free

88 Applf!1J Programmer's Handbook

$948.984(File 3: pointer to Status ($9800)
$984D.984E Fi le 3: pointer to TSL buffer ($9700)
$984F.9850 File 3: pointer to Data buffer ($9600)
$9851 .9852 File 3: link next file ($0000, end)
$9853.9952 File 2: Data buffer
$9953.9A52 Fi le 2: TSL buffer
$9A53.9A7F File 2: Status
$9A80.9A9D File 2: Filename, $00 if free
$9A9E.9A9F File 2: pointer to Status ($9A53)
$9AA0.9AA1 File 2: pointer to TSL buffer ($9953)
$99A2 .99A3 File 2: pointer to Data buffer ($9853)
$99A4.99A5 File 2: link next file ($982D, File 3)
$9AA6.98A5 File 1: Data buffer
$98A6.9CA5 File 1: TSL buffer
$9CA6.9CD2 File 1: Status
$9CD3.9CFO File 1: Filename, $00 if free
$9CF1 .9CF2 File 1: pointer to Status ($9CA6)
$9CF3.9CF4 File 1: pointer to TSL buffer ($98A6)
$9CF5.9CF6 File 1: pointer to Data buffer ($9AA6)
$9CF7.9CF8 File 1: link next file ($9A80, File 2)

For a breakdown of Status, see $B5Dl.

$9D00.9DOF (40192, - 25344)

DOS relocatable pointers; values given here are for 48K system:

$9D00.9D01 link first file buffer ($9CD3, File 1)
$9D02.9D03 pointer to DOS input hook routine ($9E81)
$9D04.9D05 pointer to DOS output hook routine ($9E8D)
$9D06.9D07 pointer to primary file name buffer ($AA75)
$9D08.9D09 pointer to secondary file name buffer ($AA93)
$9DOA.9DOB address of LOAD length parameter ($AA60)
$9DOC.9DOD address of DOS load ($9DOO)
$9DOE.9DOF address of File Manager parameters from the

-

-
-

-
-
-
-

DOS commands ($8588) -

$9D84 (40324, - 25212)

Cold start routine; vectored from $0303 . Jumps to BASI C cold start
at $EOOO on exit; does not return to caller.

n

r

-

-

Address

$2000.2027
$2028.204F
$2050.2077
$Z078.Z07F
$2080.20A7
$20A8.20CF
$20D0.20F7
$20F8.20FF
$2 100.21 27
$2 128.2 14F
$2 150.2 177
$2178.217F
$2180.21A7
$21A8.21CF
$21D0.21F7
$21F8.21 FF
$2200.2227
$2228.224F
$2250.2277
$2278.227F
$2280.2ZA7
$22A8.22CF
$2200.2207
$22D8.220F
$2300.2327
$2328.234F
$2350.2377
$2378.237F
$2380.23A7
$23A8.23CF
$23D0.23F7
$23F8.23FF

$9DBF

A l ias of the Apple II 89

Table 2-4. HIRES l - The First K
(first lines of eight in each row)

Row Line

0 0
8 64

16 128
Unused

I 8
9 72

17 132
Unused

2 16
10 80
18 144

Unused
3 24

II 88
19 152

Unused
4 32

12 96
20 160

Unused

5 40
13 104
21 168

Unused

6 48
14 112
22 176

Unused
7 56

15 120
23 184

Unused

{40383, - 25 153)

Y-coord

SBF
$7F
$3F

$B7
$77
$37

$AF
$6F
$2F

$A7
$67
$27

$9F
$SF
$ IF

$97
$57
$17

$8F
$4F
$OF

$87
$47
$07

Warm start routine; vectored from $0300. Jumps to BASIC warm
start at $E003 on exit; does not return to caller.

$9E42 (40514, - 25022)

- Patch point to allow Binary HELLO slave disk INITialization . Re
place value with $34 (52).

90 Appl~ Programmer's Handbook

$9E81 (40577' - 24959)

Keyboard input routine. This is placed in KSW ($38.39) when DOS is
in effect. It uses ctrl/Ds and CRs to control its state and gets
characters accordingly.

$9EBD (40637' - 24899)

Omput routine. This is placed in CSW ($36.37) when DOS is in effect.
It outputs characters according to its state.

$A251 (41553, - 23983)

MAXFILES command handler. Outstanding EXEC file is turned off,
all files closed, MAX FILES value set at $AA57, then it uses pointer at
$9000 to rebuild file buffers with a routine at $A7D4.

$A764 (42852, - 22684)

Routine to search for a free file buffer. The free buffer pointer is re
turned in $44.45 with $45 zero if no free buffer was found. Uses
$40.41 in search.

$A792 (42898, - 22638)

Sets $40.41 to address of first file buffer; uses $9D00.9001 as its
source.

$A79A (42906, - 22630)

Given $40.41 pointing to a file buffer, it finds the next file buffer in
the chain. Upon return, $40.41 points to the next buffer.

$A7D4 (42964, - 22572)

Routine to rebuild file buffers. Enter with all files closed, link to first
new buffer in $9000.9DOI, and the number of buffers in $AA57.

$A851 (43089, - 22447)

-

-
-
-
-

-
-
-
-
-

Atlas of the Apple II 91

Routine to connect DOS hooks; vectored from $030A. If CSW at
$36.37 does not point to the DOS output routine at $9EBD, then the
current output hook is removed from CSW to $AA55.AA56 and re
placed by $9EBD. Similarly, if KSW at $38.39 does not point to the
DOS input routine at $9E81, then the current input hook is removed
from KSW to $AA53.AA54 and replaced by $9E81. This routine re
turns to the caller .

$AA53.AA54 (43603, -21933)

Current system output hook as copied from CSW by the routine at
$A851. When DOS intercepts a PR#O command, it is reset to COUTl;
see Chapter Six for details.

$AASS.AA56 (43605, -21931)

Current system input hook as copied from KSW by the routine at
$A851. When DOS intercepts an IN#O command, it is reset to KEY IN;
see Chapter Six for details.

$AA57 (43607, - 21929)

~ Value of MAXFILES parameter; usually three. See $A251.

-

$AA60.AA61 (43616, -21920}

Length for LOAD and BLOAD command routines.

$AAC1 .AAC8 (43713, - 21823)

Table of file manager addresses:

$AAC1 .AAC2
$AAC3 .AAC4
$AACS.AAC6
$AAC7 AAC8

$AAFD

address of lOB ($87E8)
address of VTOC buffer ($8388)
;:~ddress of Directory buffer ($8488}
address o f end-of-005 ($COOO)

(43773, - 21763)

File Manager entry; vectored from $03D6.

92 Appl~ Programmer's Handbook

$AE34 (44596, - 20940)

Patch point to remove pause in display during a long CATALOG. Re
place byte with $60 (96).

$8388.84BA (46011, - 19525)

VTOC buffer. Both File Manager and DOS use the VTOC in Track
17 / Sector 0 continually to maintain the disk. See Table 2-7 for the lay
out of VTOC.

$B4BB.B5BA (46260, -19276)

Directory buffer. Both File Manager and DOS use the Directory in
Track 17 to maintain files on disk. See Table 2-7 for the layout of a
Directory sector.

$B5BB.B6BA (46253, -19283)

Parameters for File Manager as passed from DOS. Referenced by
$03DF, the parameters are described in Section 7.

$B5D1 .B5FD (46545, -18991)

Status of current file of the File Manager. Read from the file's status

-

-

buffer when File Manager is called, then restored to the file when the -
File Manager command is finished. Normal file status for the three
DOS buffers are a t $9800, $9AF3 , and $9CA6.

Byte

0,1
2,3
4
5,6
7
8
9,A
B,C
D,E
F,10

Content

Link (T / S) to TSL beginning
Link (T / S) to current TS L sector
Flags: used for check pointing
Link (TI S) to current data sector
Link (S) to current Directory sector
Index to file entry in Directory sector
Number of sectors content of TSL
Relative sector number of first sector in TSL
Relative sector number of last sector in TSL, - 1
Relative sector number of last sector read

-

-

-

-

Byte

11' 12
13,14
15,16
17, 18
19,1A
IB,I C
1D,IE
1F,24
25
26
27
28
29

$8785

Atlas of the Apple II

Content

Sector length in bytes
File position: sector offset
File position: byte offset
Record size from OPEN
Record number
Byte offset into record
Number of sectors in file
Sector allocation area
File type
Slot times $10
Drive number
Volume number complemented
Track number

(47029, - 18507) RWTS

93

Read/ Write Track/Sector routine; vectored from $0309. This routine
disables interrupts.

87E8.87F8 (47080, - 18456) lOB

The Input/Output Block parameters for RWTS ($B7B5). Refer
enced from Page Three ($03E3) and used by callers.

Byte

00
01
02
03
04
05
06.07
08.09
OA
OB
oc

Location

B7E8
B7E9
B7EA
B7EB
B7EC
B7ED
B7EE.B7EF
B7FO.B7F1
B7F2
B7F3
B7F4

Content

$01, always
Slot number times 16, usually $60
Drive number: $01 or $02
Volume number: $00 matches any
Track number: $00 ... $22
Sector number: $00 ... $OF
Address of OCT: $B7FB
Address of sector buffer
Unused
Bytes/ sector: $00 for 256
Command code: $00 for Seek, $01
for Read, $02 for Write, $04 for
Format

94 Apple& Programmer's Handbook

Byte

OD

Location

B7F5

Content

Error code: $08 for init, $10 for
write protect, $20 for volume
mismatch, $40 for drive (1/0)
error

OE
OF
10

$B7FB.B7FE

B7F6
B7F7
B7F8

Volume number found
Slot (*16) found
Drive found

(47099, - 18437) DCT

Device Control Table as referenced by the lOB at $B7EE. It has disk
access hardware parameters:

$B7F8 : d evice type, $00
$B7FC: f.)h ases per track, $01
$B7FD : motor ON count, $D8EF

$8800 (47 104, - 18432 PREN IBBLE

Routine used by RWTS to convert a data buffer pointed to by $3E.3F
to six-bit 2l form in the disk buffers at $BBOO.BC55. The algorithm
shifts from 256 bytes to 342 bytes to get the results described in
Section 7 .2.

$882A (47 146, -1 8390) W RITE

Routine to write a six-bit code to buffers at $BBOO.BC55 to disk. It

-

writes a data prefix, encodes the six-bit data using the Write Translate ,...
Table at $BA29.BC55, and writes a data suffix. It calls a 32-cycle rou-
tine at $B8B8 to write each byte.

$8888 (47288, - 18248)

Real-time routine to write a byte to disk; 32 cycles.

$B8C2 (47298, - 18238) POSTN I8 BLE

Routine used by RWTS to convert a data field in the disk buffers at
$BBOO.BC55 from six-bit to the data buffer pointed to by $3E.3F. The

-

n

Atlas of the Apple II 95

algorithm shifts the 342 bytes into 256 full bytes; it is the inverse of
- PRENIBBLE at $8800.

-

$88DC (47324, -18212) READ

Routine to read a sector of data from disk. It waits for a data field
prefix, decodes data bytes into six-bit using the Read Translate Table,
and stores the result in the disk buffer at $BBOO.BC55. Compare to
WRITE at $882A.

$8944 (47428, -18108) RDADDR

Routine that reads an address field from disk. It waits for an address
field prefix, reads eight bytes, and converts them to four address
bytes. The four bytes returned in Page Zero are:

$2C: checksum
$20: sector number
$2E : track number
$2F: volume number

If error, the C-flag is set on return.

$BA96.BAFF (47766, - 17770)

Read Translate Table used by READ at $B8DC. It contains six-bit
values for encoded bytes in the $96.FF range. To use, an instruction

,_ like

LDA $BAOO,X

where X is in the $96.FF range, will return the decoded six-bit value in
the range $00.3F.

$BA29 (47657' - 17879)

Write Translate Table used by WRITE at $B82A. It contains encoded
data values for six-bit bytes in the $00.3F range. To use, an instruction
like

96 Appl~ Programmer's Handbook

LOA $BA29,X

where X is in the $00.3F range, will return an encoded data value in
the $96.FF range.

$BC56 (48214, - 17322)

Routine to write an address field on disk. It is used by the initialization
routines. It uses a real-time routine at $BCC4. It writes autosync
bytes, prefix, header, and suffix bytes. To call, put header data in
Page Zero:

$3E: must be $AA
$3F: sector number
$41 : volume number
$44: track number

Upon return, an error sets the C-flag.

$BCC4 (48384, - 17152)

Real-time routine to encode a header byte, writing it as two bytes to
disk in 32 cycle loops.

$BBOO.BC55 (47872, -17664)

Primary and Secondary disk buffers used by RWTS routines. When
reading the disk, it stores the 342 six-bit data bytes decoded by the
READ routine at $B82A; while writing, it must be given six-bit data
for the WRITE routine at $B82A. The Primary buffer at
$BBOO.BBFF contains Byte 87 to Byte 342. The Secondary buffer at
$BCOO.BC55 contains Byte 86 to Byte 0 (descending sequence). Byte
342 at $BBFF is the checksum.

$BFD3.BFD5 (47107, - 16429)

Patch point to remove forced BASIC language re-loads in the bank
switched RAM. Replace these three bytes with $EA (324) values. They
are NOP op codes.

-

-

....

n

n

Atlas of the Apple II 97

2.2.5 Input/ Output

$COOO.COOF (49152, -16384) KBD

When read, gives the keypress flag in Bit 7 and the character code in
Bits 6 to 0. The strobe at $CO I 0 must be reset after a keypress is de
tected, before another is anticipated. Be careful of conflict with
80STORE usage; see below.

$COOO.C001 (49152, - 16384) 80STORE

Soft switch; lie only. Selects the second screen access to be the cor
responding Auxiliary memory in SO-column mode:

$COOO selects 40-column mode
$C001 select s 80-column mode
$C018 reads this switch .

In SO-column mode, the $C055 switch will select Alternate screen
memory for writing. In 40-column mode, it selects the second main
screen memory for display.

$C002 .C003 (49154, - 16382) RAMRD

Soft switch; lie only. Selects one of two 63.5K memories for processor
reads:

$C002 se lects reads from Main memory
$C003 selects reads from Auxi liary memory
$C013 reads this switch

Used in 40-column mode. The processor's Pages Zero and One are not
switched with the rest of memory.

$C004.C005 (49 156, - 16380) RAMWRT

Soft switch; lie only. Selects one of two 63.5K memories for processor
writes:

98 Apple® Programmer's Handbook

$C004 selects writes to Main memory
$COOS selects writes to Aux iliary memory
$C014 reads this switch

Used in 40-column mode. The processor's Pages Zero and One are not
switched with the rest of memory.

$C008.C009 (49160, - 16376) ALTZP

Soft switch; lie only. Selects one of two 0.5K memories for processor
reads and writes:

$C008 selects Main memory
$C009 selects Auxiliary memory
$C016 reads this switch

Used in 40-column mode. Only the processor's Pages Zero and One
are switched ; the rest of memory is unaffected .

$COOC.COOD (49164, - 16372) 80COL

Soft switch; lie only. Sets 110 logic for video display mode:

$COOC sets 40-co lumn disp lay mode
$COOD sets 80-column disp lay mode
$(01 F reads this switch

In 80-column mode, the display interleaves bytes from Main and Aux
iliary memory from corresponding addresses .

$COOE .COOF (49166, - 16370) CHRSET

Soft switch; lie only. Sets 110 logic to select one of two character sets
for text display:

$COOE selects Primary character set
$COOF selects Alternate character set
$C01 E reads this switch

See Chapter Six for details of character sets.

-

-

-

n

-

Atlas of the Apple ll 99

$(010 (49168, -16368) KBDSTB

When read, clears the keyboard strobe on all models . On the lie, it
doubles as a keypress flag so that one read will both detect a keypress
and clear the strobe. When written, it clears the strobe as well.

$C018.C01F (49176, - 16360)

Reads lie soft swtiches; reads lie vertical blanking. Bit 7 is zero when
switch is off; one when switch is on. The vertical blanking occurs
when its switch is off (zero).

$C018 reads $COOO.C001 80STORE
$C019 is the vertical blanking level
$C01A reads $COSO.C051 TEXT
$C01 8 reads $C052.C053 MIXED
$C01C reads $C054.C055 PAGE2
$C01 D reads $C056.C057 HIRES
$C01 E reads $COOE.COOF CHRSET
$C01 F reads $COOC.COOD 80COL

$C020 (49184, - 16352)

Cassette tape output port. Reading this address toggles the OUT jack
on the back panel of the Apple between zero and 25 millivolts. Don't
use a write op code that will toggle the port twice upon each instruc
tion.

$(030 (49200, - 16336)

Speaker port. Reading this address toggles the built-in speaker via a
transistor amplifier on the motherboard. Don't use a write op code
that will toggle the port twice upon each instruction.

$C040 (49216, - 16320)

Strobe output port. Reading this address brings Pin 5 on the games
socket DIP low for a half cycle. Don't use a write op code that will
create two pulses instead of one. Pin 5 is normally high.

100 Apple® Programmer's Handbook

$COSO.C051 (49232, - 16304)

Soft switch to select character text or graphics display:

$COSO selects graphics
$C051 selects text
$C01A reads this switch, lie only

$C052.C053 (49234, - 16302)

Soft switch to select mixed o r full screen graphics :

$C052 selects full graphics
$C053 selects mixed graphics and text
$C01 8 reads this switch , lie only

$C054.C055 (49236, - 16300)

TEXT

MIXED

PAGE2

Soft switch usually selects between first and second display screen. If

-

in HIRES mode, -

$C054 selects HIRES1 for display
$C055 selects HIRES2 for display

If in LORES mode,

$C0 54 selects SCREEN 1 for display
$C055 selects SCREEN2 for display

If 80S TORE at $COO I is set on the Ile model,

$C054 write enables Main memory
$C055 write enables Auxiliary memory

On the lie model, $CO IC reads this switch.

$C056.C057 (49238, - 16298)

Soft switch to select graphics screen mode:

$C056 selects LORES display
$C057 se lects HIRES display

HIRES

-

Atlas of the Apple II 101

$C01 D reads this switch

$C058.C059 (49240, - 16296)

Annunciator port on Pin 15 of games DIP socket. Set by soft
switches:

$C058 sets Annunciator 0 off (zero)
$C059 sets Annunciator 0 on (high)

$COSA.COSB (49242, - 16294)

Annunciator port on Pin 14 o f games DIP socket. Set by soft
switches:

$COSA sets Annunciator 1 off (zero)
$COSB sets Annunciator 1 on (h igh)

$COSC.COSD (49244, - 16292)

Annunciator port on P in 13 of games DIP socket. Set by soft
switches :

$COSC sets Annunciator 2 off (zero)
$COSD sets Annunciator 2 on (high)

$COSE .COSF (49246, -16290)

Annunciator port on P in 12 of games DIP socket. Set by soft
switches:

$COSE set s Annunciator 3 off (zero)
$COSF sets Annunciator 3 on (high)

$C060 (49248, - 16288)

Cassette tape in put pon. Bit 7 is toggled by a zero-crossing sector, us
ing a 741 operational amplifier, at the IN jack on the back panel. Each
zero crossing at the IN jack toggles Bit 7 between zero and one. The
in put circuit is nominally 12k ohms, I volt. The tape READ at
$FEFD uses EORs to t ime the transition intervals.

$C061 (49249, - 16287) swo

102 Appl~ Programmer's Handbook

Switched input port at Pin 2 of games DIP socket. Bit 7 gives the state
of the switch: one is on, zero is off. It is used for the pushbutton on
game paddles and joysticks. On the lie model, it is a lso wired to the
OPEN-APPLE key to indicate a forced cold start when RESET.

$(062 (49250, -16286) SW1

Switched input port at Pin 2 of the games DIP socket. Bit 7 gives the
state of the switch: one is on, zero is off. It is used for the pushbutton
on game paddles and joysticks. On the lie model, it is also wired to the
CLOSED-APPLE key to indicate a self-test to the RESET routine.

$(063 (49251, - 16285) SW2

Switched input port at Pin 3 of the games DIP socket. Bit 7 gives the
state of the switch: one is on, zero is off. On some o ld keyboards, it is
connected to the shift key as part of a lower case scheme.

$C064 (49252, - 16284) POLO

Analog input port. Bit 7 is set to one by address ing $C070 and starting
the four timers. At time out of the timer that connects to Pin 15 o f the
games DIP socket, bit 7 changes from one to zero. Time constant is
0.022 uF times the resistance at Pin 15.

$C065 (49253, - 16283) POL 1

Analog input port. Bit 7 is set to one by addressing $C070 and starting
the four timers. At time out of the timer that connects to Pin 14 of the
games DIP socket, bit 7 changes from one to zero. Time constant is
0.022 uF times the resistance at Pin 14.

$(066 (49254, - 16282) POL2

Analog input port. Bit 7 is set to one by addressing $C070 and starting
the four timers. At time out o f the timer that connects to Pin 13 of the
games DIP socket, bit 7 changes from o ne to zero. Time constant is
0 .022 uF times the resistance at Pin 13.

$C067 (49255, - 16281) POL 1

n
Atlas of the Apple If 103

Analog input po rt. Bit 7 is set to one by addressing $C070 and starting
,... the four timers. At time out of the timer that connects to Pin 12 of the

games DIP socket , bit 7 changes from one to zero. Time constant is
0.022 uF times the resistance at Pin 12.

$(070 (49264, - 16272) PD LSTRB

Analog timers strobe. A read instruction at this address generates a
single strobe that starts the four timers, each with its own time con
stant. When started, the timer outputs go high at $C064.C067 until
each times out.

$C080.C08F (49288, - 16248)

Soft switches for bank-switched memory. Use read instructions only.
The specific instructions to use for each case are given in Table 2-1.

$C090.COFF (49296 , - 16240)

Device selects for Slots I to 7. Each of the sixteen addresses selects a
slot by bringing its DS line, on Pin 41, low during Phase Zero:

$C090.C09F selects Slot 1
$COAO.COAF se lects Slot 2
$COBO.COBF selects Slot 3
$COCO.COCF se lects Slot 4
$CODO.CODF selects Slot 5
$COEO.COEF selects Slot 6
$COFO.COFF selects Slot 7

Normally, a peripheral card uses these sixteen addresses for hardware
devices like interface chip registers.

$C100.C7FF (49408, - 16128)

110 selects for Slo ts I to 7. Each of the 256 addresses selects a slot by
bringing its 110 SELECT line, on Pin I, low during Phase Zero:

$C100.C1FF se lects Slot 1
$C200.C2FF se lects Slot 2

104 Appl~ Programmer's Handbook

$C300.C3FF selects Slot 3
$C400.C4FF selects Slot 4
$C500.C5FF selects Slot 5
$C600.C6FF selects Slot 6
$C700.C7FF selects Slot 7

Norm ally, a peripheral card uses these 256 addresses for firmware to
be selected by the PR#s a nd IN#s commands.

$C800.CFFF (51200, -14336)

110 strobe on all Slots, P in 20. The line goes low during Phase Zero
for any address in this 2K space. It is used by many cards for firm
ware. By convention, address $CFFF is used to disable card memory,
releasing the space and a llowing more than one card to use it. See
Section 8.2 for details.

2.2.6 Applesoft at $DOOO.F7FF

Applesoft may be in firmware on the motherboard, or BLOADed
into bank-switched RAM. When installed, DOS is able to bank switch
between Applesoft and In teger BASICs with the FP and !NT com
mands.

$0823 (55331, - 1 0205) LAM

Re-entry po int, used to cont inue BASIC execution . Used in Lam's
method for CA LLing the Monitor command interpreter. See Section
3 . I for details o f Lam's method.

$0995 (55701, - 9835) DATA

Routine to advance TXTPTR to end of sta tement. Upon return ,
T XTPTR points to ": " or zero.

$DB3A (56122, - 9414) STROUT

Routine to print a string pointed to by Y -reg (low) a nd A-reg (high).
String must end with a quote or a ze:-o ($22 or $00).

...

-

r

Atlas of the Apple II / 05

$0067 (56679, - 8857) FRMNUM

Routine to evaluate a numerical expression at location given by
TXTPTR. Resul t is in FAC.

$DEB8 (57016, - 8520) CHKCLS

Routine to test the current character referenced by TXTPTR as a clos
ing bracket, ")". If so, it retu rns via CH RGET advancing the
TXTPTR to the next character. If not, it exits to SN ERR at $DEC9.

$DEBB (57019, -8517} CHKOPN

Routine to test the current character referenced by TXTPTR as an
opening bracket, "(" . If so, it returns via CHRGET ad vancing the
TXTPTR to the next character . If not, it exits to SNERR at $DEC9.

$DEBE (57022, -85 14) CHKCOM

Routine to test the current character referenced by TXTPTR as a
comma. If so, it returns via CHRGET advancing TXTPTR to the next
character. I f not, it exits to SNERR at $DEC9.

$DEC9 (57033, - 8503) SNERR

~ Routine to prin t "SYNTAX ERROR" message, then warm start
Applesoft at $E003. This routine does not return to the caller.

, $DF6A (57194, - 8342)

Routine to compare ARG and FAC, giving logical result in FAC.
Compare code must be in Page Zero, $ 16:

Code in $ 16 FAC is TRUE, if

1 ARG > FAC
2 ARG = FAC
3 ARG < FAC
4 ARG ~ FAC
5 ARG :(> FAC
6 ARG < FAC

106 Appl~ Programmer's Handbook -
where FAC has a value of one for TRUE, zero for FALSE.

$DFE3 (57315, -8221) PTRGET

Routine to get a variable reference at the current TXTPTR position.
Returns the address of variable contents in A-reg (high) and Y -reg 1""1
(low), as well as in V ARPNT at $83.84. If a variable does not exist, it
is created. TXTPTR points to the next character.

$EOOO (57344, - 8192) CTRLB

The BASIC cold start address; same for Applesoft or Integer. Ini
tializes Applesoft, ignoring previous BASIC program. The BASIC
signature byte gives the version in memory:

$E003

$20 (32) if Integer BASIC
$4C (76) if Applesoft BASIC

(57347, - 8189)

The BASIC warm start address; same for Applesoft or Integer. Pre
serves the current BASIC program.

$E07D (57469, - 8067) ISLETC

Routine tests A-reg for ASCII A to Z. If letter, it returns with C-flag
set; if not, the C-flag is clear.

$EOFE.E102 (57598, - 7938)

Constant value, -32768 . Packed FP format.

$E2F2 (58098, - 7438) GIVAYF

Routine to float a signed integer in A-reg (high) and Y -reg (low) to
FAC.

$E3D5 (58325, -7211) STRINI

Routine to get space for a new string between (FRETOP) and
(MEMSIZ). Call with length required in A-reg. On return, FRESPC

n

,..

-

n

Atlas of the Apple II 107

at $7 1.72 points to the new space and a complete descriptor is in
DSCTMP at $9D.9F.

$E5E2 (58850, - 6686) MOVSTR

Routine to move a string. Source address must be in Y -reg (high) and
X-reg (low) with the length in A-reg. Destination address must be in
FRESPC at $7 1.72.

$E6F8 (59128, - 6408) GETBYT

Routine to reduce an expression in program text to a single byte value.
Expression must be referenced with TXTPT R and have a va lue in the
$00.FF range. Returns with TXTPTR advanced to the delimiter and
the byte value in X-reg. If not within range, the value induces an IL
LEGAL QUANTITY error, stopping the program.

$E752 (59218, -6318) GETADR

Routine to correct va lue in FACto an integer in LIN NUM a t $50.51.
Result also appears in A-reg (high) and Y -reg (low).

$E7AA (59306, - 6230) FSUBT

Routine to subtract FP numbers. On entry, A-reg and Z-flag must re
flect FAC exponent, at $90; a JSR MOVFM at $EAF9 will do this.
On exit, FAC = ARG - FAC.

$E7C1 (59329, = 6207) FADDT

Routine to add FP numbers. On entry, A-reg and Z-flag must reflect
F AC exponent at $9D; a JSR MOVFM at $EAF9 will do this. On exit,
FAC = ARG + FAC.

$E92D.E931 (59693, = 5843)

Constant value, SQ R (0.5). Packed FP format.

$E913.E917 (59667, = 5869)

Constant value, 1.0. Packed FP format.

108 Appl~ Programmer 's Handbook

$E932.E936 (59698, - 5838)

Constant value, SQR(2.0). Packed FP format.

$E937.E93B (59703, - 5833)

Constant value, - 0.5. Packed FP format.

$E941 (59713, - 5823) LOG

Routine to get the natural logarithm. FAC = ln(FAC).

$E982 (59778, - 5758) FMULTI

Routine to multiply FP numbers. On entry, A-reg and Z-flag must re
flect F AC exponent at $90; a JSR MOVFM at $EAF9 will do this. On
exit, FAC = ARG * FAC.

$E9E3 {59875, -5661) CONUPK

Routine to unpack FP number. Address of packed number must be in
A-reg (high) and Y -reg (low) . Result is in ARG at $A5.AA.

$EA50.EA54 (59984, - 5552)

Constant value, 10.0. Packed FP format.

$EA69 (60009, - 5527)

Routine to divide FP numbers. On entry, A-reg and Z-flag must re
flect F AC exponent at $90; a JSR MOVFM at $EAF9 will do this. On
exit, FAC = ARG I FAC. Don't forget to test for a zero divisor; a
BEQ just before the call will do this.

$EAF9 (60153, - 5383} MOVFM

Routine to unpack FP number. Address of packed number must be in
A-reg (high) andY-reg (low) . Result is in FAC at $9D.A2. A-reg and
Z-flag reflect exponent in $90.

-

n
-
n

-
Atlas of the Apple !I 109

$EB2B (60203, - 5333) MOVMF

Routine to pack FP number. Address of destination must be in A-reg
(high) and Y -reg (low). Result is packed from F AC.

$EB53 (60243, - 5293) MOVFA

Routine to move FP number from ARG at $A5.AA to FAC at
$9D.A2.

$EB63 (60259, - 5277) MOVAF

Routine to move FP number from FAC a t $9D.A2 to ARG at
$A5.AA.

$EB82 (60290, - 5248)

Routine to test sign of FAC. Result is in A-reg:

$EB90

$01 if FAC > 0
$00 if FAC = 0
$FF if FAC < 0

(60304, - 5232)

Routine to test sign o f FA C. Result is in F AC:

1.0 if FAC was> 0
0 if FAC was = 0

- 1.0 if FAC was< 0

It uses SIGN at $EB82 and floats the result.

$EBAF (60335, - 5001)

SIGN

SGN

A BS

Routine to change an FP number to its absolute value in FAC. Sign is
forced positive .

$EBB2 (60338, - 51 98) FCOMP

110 Apple" Programmer's Handbook

Routine to compare F AC with any packed FP number. The number
must be referenced in A-reg (high) and Y -reg (low). The result is re
turned in A-reg:

$EC23

$01 if value> FAC
$00 if value = F AC
$FF if value< FAC

{50451 J - 5085) INT

Routine to fix contents of FAC. Result is the next greatest integer:
34.6 becomes 34; - 34.6 becomes -35. Result is in FAC at $9E.9F. -

$ED34 {60724, - 4812) FOUT

Routine to convert the FP value in FAC to a string. The resulting
string is in FBUFFR at $0 I 00.0110.

$EE64 {61 028, - 4508)

Constant value, 0.5. Packed FP format.

$EE8D {61069, -4467) SQR

Routine to convert the value in F AC to its square root.

$EE97 {61079, -4457) FPWRT

Routine to calculate FP exponents. On entry, A-reg and Z-flag must
reflect FAC exponent at $90. On exit, FAC - ARGFAc.

$EF09 {61193, -4343) EXP

Routine to calcula te FP exponent, base e 2. 71828 .. . , of FA C.
Result is in FAC.

$EFAE {61358, - 4178) RND

Replaces FAC with pseudorandom number, mathematically
generated.

-

n

r
-

Atlas of the Apple II 111

$EFEA (61418, - 4118) cos

Routine to calculate the cosine of FAC. Result in FAC.

$EFF1 (61425, -4111) SIN

Routine to calculate the sine of FAC. Result in FAC.

$F03A (61498, - 4038) TAN

Routine to calculate the trigonometric tangent of FAC. Result in
FAC.

$F063.F067 (61539, - 3997)

Constant value, n/2. Packed FP format.

$F06B.F06F (61547, -3989)

Constant value, 2n. Packed FP format.

$F070.F074 (61552, - 3984)

Constant value, 0.25. Packed FP format.

$F09E (61598, - 3938) ATN

Routine to calculate the a rctangent of the F AC.

$F364 (62248, - 3288)

Routine to remove ONERR GOTO stack entries as part of the
RESUME statement. Can be called instead of a RESUME.

$F7D9 (63449, - 2087) GETARYPT

Routine to find an array variable. TXTPTR must point to the first
character of the name to be found . The address of the a rray, the toea
ton of the array name in storage, is returned in LOWTR at $9B.9C.
TXTPTR points to the next character past the name in program text.

112 App/~ Programmer's Handbook

2.2. 7 Monitor at $F800.F8FF

All Monitors - Standard, Autostart, and lie - can be referenced
at the fo llowing addresses unless otherwise noted . By keeping to these
entry points, the possibility of trouble when changing Monitors will be
reduced. Making calls to other points should be done with care.

$F800 (63488, - 2048) PLOT

Routine displays a LORES pixel on Screen! using COLOR at $30.
Caller puts line number in Y -reg and column number in A-reg; ranges
of lines to $2F (47) and columns to $27 (39).

$F819 (63513, - 2023) HLINE

Routine draws a horizontal line in LORES on Screen! using COLOR
at $30. Start and end coordinates must be given:

$F828

start X-coordi nates in Y -reg
start Y-coordinates in A-reg
end X-coordinates in H2 at $2C
end Y-coordinates in A-reg

(63528, - 2008) VLINE

Routine draws a vertical line in HIRES on Screen! using COLOR at
$30. Start and end coordinates must be given:

$F832

start X-coordinates in Y-reg
start Y-coordinates in A-reg
end X-coordinates in Y-reg
end Y-coordinates in V2 at $20

(63538, - 1998) CLRSCR

Routine to clear Screen I, row by row, to zeros. In LORES, this gives a
black screen.

$F836 (63542, - 1994) CLRTOP

i1

-

-

-

-

r

Atlas of the Apple II 113

Routine to clear the top twenty rows of Screen I (forty HI RES lines) to
zeros. This blacks the LORES display in mixed mode while the four
rows of text are let alone.

$F864 (63588, - 1948) SETCOL

Routine to set COLOR at $30 to the doubled nibble value in the
A-reg. A-reg must have code zero to fifteen.

$F871 (63601, - 1935) SCRN

Routine to get color code of the current LORES pixel. The coordi
nates of the pixel must be given as: X-coordinates in Y -reg and
Y -coordinates in A-reg. Upon return, the code will be in the A-reg.

$F941 (63809, -1727) PRNTAX

Prints a four digit hex number. Enter with high byte in A-reg a nd low
""' byte in X-reg.

$F948 (63816, - 1720) PRBLNK - Prints three spaces.

$F94A (63818, - 1718) PRBL2

Prints spaces (blanks). Number of spaces must be in A-reg.

$FB1E (64286, - 1250) PREAD

Routine to read one analog input. Requires analog port number (0, I,
"'"' 2, 3) in X-reg and a resistance across that port - up to 150 K ohms.

Value from $00 to $FF proportionate to the resistance is returned in
Y-reg.

$FB2F (64303, - 1233) I NIT

Resets soft switches, screen window , and puts cursor at lower left of n screen. Equivalent to a BASIC statement of TEXT.

114 Appl~ Programmer's Handbook

$FB40 (64320, -1216) SETGR

Routine to set soft switches for LORES graphics in mixed mode.
Clears the 40 by 40 pixel a rea with CLRTOP at $F836. Equivalent to a
BASIC sta tement of GR.

$FBB3 (64435, -1101)

Monitor signature byte; identifies version:

$FBDD

$38 (56) in Standard
$EA (234) in Autostart
$06 (6) in lie

(64477, - 1055)

Routine to make "beep" sound. Tone o f 1000 Hz.

$FC22 (64546, - 990)

BELL1

VTAB

Routine to set cursor. Uses CV at $24, CH at $25, and WNDLFT at
$20 for the Screen 1 text.

$FC58 (64600, - 936) HOME

Clears screen within scroll window; places cursor at upper left.

$FC58 (64680, - 856) WAIT

Routine delays according to contents of A-reg:

#cycles = 0.5(26 + 27 A + 5N)

where one cycle is 0.977778 microseconds. See Section 8.1.

$FCC9 (64713, - 823) HEADR

Routine to write a tape header tone and sync bit. Length of tone de
pends on A-reg: $40 is typical, for ten seconds. X-reg should be zero

-

-
-

and C-flag should be set when called. See Section 8.1 for details. n

Atlas of the A pple II 1/5

$FDOC (64780, - 756) RDKEY

Routine to advance the cursor of the built-in terminal, then input one
character via the KSW hook at $36.37. See Section 6.1 for details on
how the hooks work.

$FD1 8 (64795, - 741) KEY IN

Routine to get one character from the built-in keyboard . It sets the
random number at $4E.4F according to the time it waits for the key
stroke. Before returning, it replaces the screen cursor with the pre-

,... vious character. The new character is returned in the A-reg .

-

$FD6A (64874, - 662) GETLN

Routine to input a record. It displays the prompt character from
$0020, then gets characters using the RDKEY routine at $FDOC. Any
ESC ($1B) characters received initialize the escape sequence for the
following character. The lie model has more escape sequences in
GETLN than previous models. Also, the lie permits lower case. Pre
vious models converted any lower case characters from the keyboard
to upper case. This can be corrected with a patch at $FDE3: change it
to a $FF value. See Section 6.2 for more on inputting. When a CR is
received, the routine returns with the record in Page Two.

$FDDA (64986, - 550) PRBYTE

.... Prints a two-digit hex number. Enter with value to be printed in A-reg.

n
n

Together with PREAD at $FB IE, this routine is used often in testing
and debugging machine language algorithms.

$FDED (65005, - 531) COUT

System output call. It invokes the routine whose address is in CSW at
$38.39. By convention , the character to be output must be supplied in
A-reg.

$FDFO (65008, - 528) COUT1

116 App/~ Programmer's Handbook

Routine to display a character using the built-in video. It interprets the
character given in A-reg: displaying printable characters and invoking
various control character routines. It uses all the Page Zero cursor and
window parameters .

$FE2C (65068, - 468) MOVE

Routine to move a block of memory according to the Monitor M com
mand . To use directly, set A I at $3C.3D to the source beginning ad
dress, A2 at $3E.3F to the source ending address, and A4 at $42.43 to
the destination start address.

$FE89 (65161, - 375) SETKB

Routine to reset the input hook at $36.37 to the address of KEYIN at
$FDJ B. This is equivalent to the IN#O command.

$FE93 (65171 , - 365) SETVID

Routine to reset the output hook at $38.39 to the address of COUTI at
$FDFO. This is equivalent to the PR#O command.

$FECD (65229, - 307) WRITE

Rout ine to save a block of memory to tape. Set A I at $3C.3D to the
beginning address and A2 at $3E.3F to the ending address. The
routine writes a 10 second header followed by the contents of the
designated block of memory. The checksum of EORing a ll bytes is
written last.

$FEFD (65277, - 259) READ

Routine to read a block of memory from tape. Set A I at $3C.3 D to
the beginning address and A2 at $3E.3F to the ending address. You
must know the exact size of the tape file to do this . A running check
sum is made at $2E using incoming bytes EO Red together. If the final
checksum fails to match the one at the end of file, an ERR message is
output. Errors can be trapped by detecting a change in CH at $36; see
Section 8. 1.

-

-

-

-

A tlas of the Apple Il 117

$FF3A (65338, - 198) BELL

Routine to output a ctrl/G, $87, to the current output device.

$FF65 (65381 , -155) MON

Cold start of Monitor command interpreter. I t rings the bell and clears
the D-flag before making the warm start described below.

$FF69 (65385, - 151) MONZ

Warm start o f Monitor command interpreter. It prompts with an
asterisk - "*" - and interprets the resulting record as typed in by the
user. The first character is the command mnemonic and may be fol
lowed by parameters. This routine uses several ut ility routines
throughout the Monitor. To return to BASIC , use ctrl/C or 3DOG.

$FF70 (65392, -144)

Entry point to command interpreter. The input bu ffer at $0200 must
contain the command string. T hi s point is used by Lam's method in

~ enter ing Monitor commands from BASIC. See Section 3.1 for more
information.

-

-

$FFFA.FFFB (65530, - 6) NMl

Hardware NMI vector. Apple uses $03FB to a llow users to trap NM ls
in Page Three.

$FFFC.FFFD (65532, - 4) RESET

Hardware RESET vector. Apple traps this to its own rout ines which
vary considerably from model to model. See Section 3.4 fo r a com
plete description.

$FFFE .FFFF (65534, - 2) IRQ

Hardware IRQ/ BRK vector. Apple traps this to its own routines
which vary from model to model. See Section 3.4.

118 Apple® Programmer's Handbook

Address

$2400.2427
$2428.244F
$2450.2477
$2478.247F
$2480.24A7
$24A8.24CF
$24D0.24F7
$24F8.24FF
$2500.2527
$2528.254F
$2550.2577
$2578.257F
$2580.25A7
$25A8.25CF
$2SD0.25F7
$25F8.25FF
$2600.2627
$2628.264F
$2650.2677
$2678.267F
$2680.26A7
$26A8.26CF
$26D0.26F7
$26F8.26FF
$2700.2727
$2728.274F
$2750.2777
$2778.277F
$2780.27A7
$27A8.27CF
$27D0.27F7
$27F8.27FF

Table 2-5. HIRESl - The Second K
(second lines of eight in each row)

Row Line

0 1
8 65

16 129
Unused

1 9
9 73

17 133
Unused

2 17
10 81
18 145

Unused
3 25

11 89
19 153

Unused
4 33

12 97
20 161

Unused
5 41

13 105
21 169

Unused
6 49

14 113
22 177

Unused
7 57

15 121
23 185

Unused

Y-coord

$BE
$7E
$3E

$B6
$76
$36

$AE
$6E
$2E

$A6
$66
$26

$9E
$5E
$IE

$96
$56
$16

$8E
$4E
$0E

$86
$46
$06

-

filii
!

Address

$2800.2827
$2828.284F
$2850.2877
$2878.287F
$2880.28A7
$28A8.28CF
$28D0.28F7
$28F8.28FF
$2900.2927
$2928.294F
$2950.2977
$2978.297F
$2980.29A7
$29A8.29CF
$29D0.29F7
$29F8.29FF
$2A00.2A27
$2A28.2A4F
$2A50.2A77
$2A78.2A7F
$2A80.2AA7
$2AA8.2ACF
$2AD0.2AF7
$2AF8.2AFF
$2B00.2B27
$2B28.2B4F
$2B50.2B77
$2B78.2B7F
$2B80.2BA7
$2BA8.2BCF
$2BD0.2BF7
$2BF8.2BFF

Atlas of the Apple II 119

Table 2-6. HIRESl - The Third K
(third lines of eight in each row)

Row Line

0 2
8 66

16 130
Unused

1 10
9 74

17 134
Unused

2 18
10 82
18 146

Unused
3 26

11 90
19 154

Unused
4 34

12 98
20 162

Unused
5 42

13 106
21 170

Unused
6 50

14 114
22 178

Unused
7 58

15 122
23 186

Unused

Y-coord

$BD
$7D
$3D

$B5
$75
$35

$AD
$6D
$2D

$A5
$65
$25

$9D
$50
$1D

$95
$55
$15

$8D
$4D
$0D

$85
$45
$05

120 App/~ Programmer,s Handbook

Table 2-7. HIRES! - The Fourth K
(fourth lines of eight in each row)

Address Row Line

$2C00.2C27 0 3
$2C28.2C4F 8 67
$2C50.2C77 16 131
$2C78.2C7F Unused
$2C80.2CA7 1 II
$2CA8.2CCF 9 75
$2CD0.2CF7 17 135
$2CF8.2CFF Unused
$2000.2027 2 19
$2028.2D4F 10 83
$2050.2077 18 147
$2078.2D7F Unused
$2080.20A7 3 27
$2DA8.20CF 11 91
$2DD0.2DF7 19 155
$2DF8.2DFF Unused
$2E00.2E27 4 35
$2E28.2E4F 12 99
$2E50.2E77 20 163
$2E78.2E7F Unused
$2E80.2EA7 5 43
$2EA8.2ECF 13 107
$2E00.2EF7 21 171
$2EF8.2EFF Unused
$2F00.2F27 6 51
$2F28.2F4F 14 115
$2F50.2F77 22 179
$2F78.2F7F Unused
$2F80.2FA7 7 59
$2FA8.2FCF 15 123
$2FD0.2FF7 23 187
$2FF8.2FFF Unused

Y-coord

$BC
$7C
$3C

$84
$74
$34

$AC
$6C
$2C

$A4
$64
$24

$9C
$5C
$1C

$94
$54
$14

$8C
$4C
$0C

$84
$44
$04

Address

$3000.3027
$3028.304F
$3050.3077
$3078.307F
$3080.30A7
$30A8.30CF
$30D0.30F7
$30F8.30FF
$3100.3127
$3128.314F
$3150.3177
$3178.317F
$3180.31A7
$31A8.31CF
$31D0.31F7
$3IF8.3IFF
$3200.3227
$3228.324F
$3250.3277
$3278.327F
$3280.32A7
$32A8.32CF
$32D0.32F7
$32F8.32FF
$3300.3327
$3328.334F
$3350.3377
$3378.337F
$3380.33A7
$33A8.33CF
$33D0.33F7
$33F8.33FF

Atlas of the Apple II 121

Table 2-8. HIRESl - The Fifth K
(fifth lines of eight in each row)

Row Line

0 4
8 68

16 132
Unused

1 12
9 76

17 136
Unused

2 20
10 84
18 148

Unused
3 28

11 92
19 156

Unused
4 36

12 100
20 164

Unused
5 44

13 108
21 172

Unused
6 52

14 116
22 180

Unused
7 60

15 124
23 188

Unused

Y-coord

$BB
$7B
$3B

$83
$73

$33

$AB
$6B
$2B

$A3
$63
$23

$9B
$5B
$1B

$93
$53
$13

$8B
$4B
$0B

$83
$43
$03

122 App/~ Programmer's Handbook

Address

$3400.3427
$3428.344F
$3450.3477
$3478.347F
$3480.34A7
$34A8.34CF
$34D0.34F7
$34F8.34FF
$3500.3527
$3528.354F
$3550.3577
$3578.357F
$3580.35A7
$35A8.35CF
$35D0.35F7
$35F8.35FF
$3600.3627
$3628.364F
$3650.3677
$3678.367F
$3680.36A7
$36A8.36CF
$36D0.36F7
$36F8.36FF
$3700.3727
$3728.374F
$3750.3777
$3778.377F
$3780.37A7
$37A8.37CF
$37D0.37F7
$37F8.37FF

Table 2-9. HIRESl - The Sixth K
(sixth lines of eight in each row)

Row Line

0 5
8 69

16 133
Unused

1 13
9 77

17 137
Unused

2 21
10 85
18 149

Unused
3 29

11 93
19 157

Unused
4 37

12 101
20 165

Unused
5 45

13 109
21 173

Unused
6 53

14 117
22 181

Unused
7 61

15 125
23 189

Unused

Y-coord

$BA
$7A
$3A

$B2
$72
$32

$AA
$6A
$2A

$A2
$62
$22

$9A
$SA
$1A

$92
$52
$12

$8A
$4A -$0A

$82
$42
$02 r

I

-

Atlas of the Apple II 123

Table 2-10. HIRESl - The Seventh K
(seventh lines of eight in each row)

Address Row Line

$3800.3827 0 6
$3828.384F 8 70
$3850.3877 16 134
$3878.387F Unused
$3880.38A7 1 14
$38A8.38CF 9 78
$3800.38F7 17 138
$38F7.38FF Unused
$3900.3927 2 22
$3928.394F 10 86
$3950.3977 18 150
$3978.397F Unused
$3980.39A7 3 30
$39A8.39CF 11 94
$3900.39F7 19 158
$39F8.39FF Unused
$3A00.3A27 4 38
$3A28.3A4F 12 102
$3A50.3A77 20 166
$3A78.3A7F Unused
$3A80.3AA7 5 46
$3AA8.3ACF 13 110
$3AD0.3AF7 21 174
$3AF8.3AFF Unused
$3B00.3B27 6 54
$3B28.3B4F 14 118
$3B50.3B77 22 182
$3878.3B7F Unused
$3B80.3BA7 7 62
$3BA8.3BCF 15 126
$3800.3BF7 23 190
$38F8.3BFF Unused

Y-coord

$89
$79
$39

$81
$71
$31

$A9
$69
$29

$AI
$61
$21

$99
$59
$19

$91
$51
$11

$89
$49
$09

$81
$41
$01

124 Appl~ Programmer's Handbook

Table 2-11. HIRESl - The Eighth K
(eighth lines of eight in each row)

Address Row Line

$3C00.3C27 0 7
$3C28.3C4F 8 71
$3C50.3C77 16 135
$3C78.3C7F Unused
$3C80.3CA7 1 15
$3CA8.3CCF 9 79
$3CD0.3CF7 17 139
$3CF8.3CFF Unused
$3000.3027 2 23
$3028.304F 10 87
$3050.3077 18 151
$3078.307F Unused
$3080.30A7 3 31
$30A8.30CF 11 95
$3000.30F7 19 159
$30F8.30FF Unused
$3E00.3E27 4 39
$3E28.3E4F 12 103
$3E50.3E77 20 167
$3E78.3E7F Unused
$3E80.3EA7 5 47
$3EA8.3ECF 13 Ill
$3ED0.3EF7 21 175
$3EF8.3EFF Unused
$3F00.3F27 6 55
$3F28.3F4F 14 119
$3F50.3F77 22 183
$3F78.3F7F Unused
$3F80.3FA7 7 63
$3FA8.3FCF 15 127
$3F00.3FF7 23 191
$3FF8.3FFF Unused

-Y-coord

$B8
$78
$38

$BO
$70
$30

$AS
$68
$28

$AO
$60
$20

$98
$58
$18

$90
$51
$10

$88
$48
$08

$80
$40
$00

n

n

CHAPTER THREE

Machine Language

3.1 THE 6502 PROCESSOR

3.1.1 Architecture

To program the Apple directly in machine language requires a
knowledge of the 6502 processor - its instructions and its architec
ture. Although this knowledge takes time not needed when you
learned BASIC, it a llows you to write better , faster , a nd simpler pro
grams. By using an Assembler, you can create machine language rou
tines that can be easily maintained through the use of structured pro
gram ming techniques.

Th is chapter gives you machine la nguage techniques. The remaining
chapters apply these techniques throughout the Apple I I.

Before getting into the processor, you should know about the heart
of the Apple - its clock.

All computers run with clocks. The clock becomes an input to just
about everything in the computer so that the complex signals can he
kept in step - synchronized - with each other. T he processor,
memories, the memory management circuits, the 1/0 logic, the video
generator - all the circuits in the computer need the clock to tell them
exactly when to do something.

Simply, a clock is just a square-wave oscillator in the computer,
usually crystal contro lled . T he 6502 processor used in the Apple has a
clock circui t built- in, but it is not used . Instead, the Apple has an ex-

125

126 Appl~ Programmer's Handbook

ternal clock using a circuit on the motherboard with a 14.318 mega
hertz crystal. The resulting signal is divided down to produce several
clock frequencies needed throughout the Apple. By having a single os
cillator, these frequencies are kept synchronized to each other. Fig.
3-1 shows the Apple II clock signals.

Fig. 3-1. Apple II clock signals.

The originall4.318 MHz is divided by two so as to make a perfectly
symmetrical 7.159 MHz square wave. In the Apple, it is called 7M and
appears at Pin 36 on the peripheral slots. For practical purposes, this
is the master clock signal; the 14.318 MHz signal is too dirty and in
accessible.

The 7M clock is used by the video generator, both as a dot generator
for character display and, when divided to 3.58 MHz, as the color sub
carrier.

Most important to the processor is a divide-by-seven circuit that
produces two square waves, in sync, at a frequency of 1.023 MHz.
One is called Phase Zero and the other is called Phase One. Each
phase is the complement of the other; that is, when one is high the
other is low. All data transfer to and from the 6502 processor takes
place during Phase Zero. The processor changes its address then
during Phase One so that it has settled by the time Phase Zero comes
again. This way, the processor reads and writes data at various ad
dresses.

,..

Machine Language 127

This scheme lets one oscillator produce all the clock signals needed.
One drawback is the loss of the 6502's internal clock. The 6502 nor
mally generates a Phase One and a Phase Two complementary pair of
square waves when connected to a crystal of one megahertz or so. Un
fortunately, Apples have a Phase Zero signal that is not exactly the
same as the native Phase Two it replaces. So, before any time-critical
peripherals can be used, you should try them out in your model. The
earlier models deviated more from proper timing than does the lie
model. Boards designed for older Apples may not work on the lie.
Similarly, if you make your own cards, read Section 8.2 carefully.

One other signal is derived from the master clock for use in memory
timing. Called Q3, it is multiplied from Phase Zero to be 2.046 MHz
and it is not symmetric. It is important for video display timing. If
needed by a peripheral, it is available on Pin 37.

The Apple clock uses a 14.318 MHz crystal to time its five lines. Fig.
3-2 shows the timing diagram. The master clock of 7.159 is called 7M
and is divided to 3.58 MHz for COLOR REF. The 2.046 MHz line
called Q3 is asymmetrical for display timing. At 1.023 MHz, Phase
Zero times data transfer for the processor and Phase One times RAM
refresh and 1/0 access. The processor uses Phase One to change its
address.

7M

<I>O

<1>1

Q3

6502
ADDRESS

6502
DATA

WRITE

6502
DATA
READ

VALID

VALID

/VALID

1- PHASE ONE -1- PHASE TWO -1
490 ns 490 ns

•·ig. 3-2. Apple II clock timing diagram.

128 Appl~ Programmer's Handbook

On the 6502 processor chip, there are five control pins, three of
which are connected to the Apple. These three are called interrupts.

The interrupt lines let the Apple force the processor to execute rou
tines located in memory at specific addresses. They are called IRQ for
interrupt request, NMI for non-maskable interrupt, and RES for
reset. All these lines are normally high. Bringing any one low causes
the processor to stop whatever it is doing and get an interruot address
to use for further program execution. __

The IRQ and NMI interrupt procedures in the pro ~~~ .. ~
enough to remember the addresses of the old routine ~161r~ ...
tinued later. The RES interrupt is used at power up :1
press, so it doesn't have to remember any previous rc
three interrupts will force the processor to execute~
only the IRQ and NMI routines can then recall the
routine when they are finished. This feature lets the
interrupt from a peripheral, do whatever the hard'.
return from the interrupt by continuing the execution
gram was running at the time.

The RES interrupt is the one the Apple uses to start.
is the most used interrupt. The IRQ may be used b}
isn't used by any of the built-in 110. The NMI is use
puters to aid in debugging, but is not used on the AI
available, however; it is just rarely used.

There are other control lines on the 6502. Called :
SYNC, they are used in debugging and for special co1
essor in special applications. Because they are not c
original Apple, their use isn't covered in this book.

The remaining pins on the 6502 are the eight da
seventeen address lines. They are connected to the 1\
ment and I/0 Logic on the Apple with a data bus ant=

The 6502 works by generating sixteen-bit addres~
Phase One, then either reading or writing eight bit
Phase Two. A read/write control line is determined b
Phase One to tell whatever is being addressed which d
are to go. This R/W line on the 6502 is the seventef'J

The first sixteen lines of address are called AO to , I
gives the lowest significant bit of the address and A15--'
significant bit. With all sixteen lines, the process<
address from binary 0000000000000000 to binary 11 ·
Using hex notation, these are $0000 to $FFFF. The.:

<

Machine Language 129

gives the direction at the same time in Phase One. The bits are encoded
by positive logic in which a high level represents a binary one and a
ground level represents a binary zero. The R/W line goes high for a
processor read and low for a processor write.

The data lines on the 6502 are similar to the address lines. They have
positive logic: a ground for zero, a high TTL level for one. Like the
address lines, data lines are connected to the Apple by a bus.

The data lines are, however, quite different in their use. Addresses
are generated during Phase One and only by the processor. Data are
generated during Phase Two and may be in either direction. During a
read, data enters the 6502 from the data bus; during a write it leaves
the 6502. So, the address bus in the Apple is unidirectional and the
data bus is bidirectional. On top of all that, the data bus is only eight
bits and the address bus is seventeen bits.

On the Apple II, Phase Zero is used as being (almost) the same as
Phase Two.

Hardware connected to the busses must gate or enable data trans
fers during Phase Two. And, the hardware must be selected from the
address bus so that it transfers only after it has been addressed during
Phase One. If you look at the schematics of peripheral cards, you will
find Phase One used to enable data transfers. This is because Phase
One is low during Phase Two, and many devices are enabled by a low
level. Regardless of the details, all devices have address decoding and
data transfer enabling during Phase Two.

This complements the 6502 that generates the addresses during
Phase One. When they have settled and Phase Two comes along, data
transfer is made with the addressed device. This is how the 6502 works
with the Apple II: generating addresses, transferring data between the
addressable devices in the system.

Inside the 6502, circuits accept interrupts, generate addresses, and
transfer data. The 6502 can be instructed to do this in many ways. It
also has internal storage registers to manipulate both addresses and
data. See Fig. 3-3 for a block diagram of the 6502's insides.

In addition to the pinouts, the 6502 has internal data and address
busses. These allow transfers among the various registers and the
Arithmetic-Logic Unit (the ALU). This ALU is the workhorse of the
processor: changing register values by arithmetic and logical opera
tions like addition, AND-ing, decrementing values, and so on. When
you program the 6502, you can change many register contents and
then manipulate them with ALU calculations.

130 Apple® Programmer's Handbook

~
~

AO

AI
A2

AJ
A4

AS

A6
A7

l:lt AS
Q

5i! A9
AIO
All
Al2

AIJ
Al4

AIS

DO Dl 02 03 04 OS 06 07

DATA BUS

f'ig. 3-3. Block diagram of 6502.

INTIRRUPTS
RES IRQ NMI

INSTRUCTION
DECODER

While the ALU and registers do the work, it is another chunk of
logic that runs the processor. This boss is the Instruction Decoder. It
uses an Instruction Register to store a special data byte called an op
code or instruction. This op code in the IR tells the decoder exactly
what to do. If an interrupt occurs on one of the three interrupt lines -
IRQ, NMI, RES - then the decoder is forced to service that interrupt.
In any case, all the decisions about what to do are made in the 6502 by
the Instruction Decoder.

The whole works is tied together by buffers, latches, and control
lines. Of these, three buffers - address-low, address-high, and data
- are used between the external and internal busses. Each buffer and
register is eight bits in size. Buffers isolate the internal 6502 from the
outside world, so it can work by itself during Phase One as well as
when transferring data during Phase Two. The 1-reg is the instruction

,.
I

Machine Language 131

register and selectively reads the data bus, while the data buffer can
both read and write. The address buffers write only to the address bus.

Like the buffers, the registers are eight bits each that contain one
byte at a time. The two PC registers hold sixteen bit addresses, so you
can think of PC as one long register called the Program Counter. The
decoder uses the PC to keep the address of its next instruction. The
current instruction is in the 1-reg. And, the decoder keeps track of its
status in the P-reg, the Processor Status. Within the P-reg are eight
bits called flags that turn various features of the processor on and off.
The decoder sets and tests these flags during instruction execution.
And, the decoder can invoke the remaining registers and ALU by
transferring data among them. Knowing the contents of these registers
at any time is the key to following any machine-language program.

When programming, you only concern yourself with the six
registers - A, Y, X, S, PC, and P. These are shown in a programming
model in Fig. 3-4; they are the ones you work with in your program
ming.

ACCUMULATOR

INDEX REGISTER

INDEX REGISTER
15

PCH PCL PROGRAM COUNTER ·pc·

8 7

Ill STACK POINTER ·s •

7 0

I Nlvl lsiDidzlcl PROCESSOR ST A JUS REG ·p •

~
CARRY I= TRUE

ZERO 1 = RESULT ZERO

IRQ DISABLE I =DISABLE

DECIMAL MODE I =TRUE

BRII COMMAND 1 = BRK

OVERFLOW I =TRUE

NEGATIVE I= NEG

Fig. 3-4. Programming model.

132 Apple® Programmer's Handbook

The A-register is often called the Accumulator because of its heavy
usage in arithmetic operations. This is the register commonly used to
transfer bytes and modify them with the ALU to add, subtract, AND,
OR, and Exclusive OR.

The Y-register and X-register are used often for address manip
ulation. They can be incremented or decremented easily in steps of
one using special, fast, ALU instructions.

The S-register is a special kind of address register that remembers
where the 6502 keeps its own information, in a special RAM area of
memory. When used, the 6502 always puts $01 out as the address-high
whenever it puts out the contents of S-reg as address-low. This way,
the S-reg acts as a pointer to the $0IOO.OIFF chunk of RAM. Another
name for the S-reg is the stack pointer.

The PC is sixteen bits, so it can point anywhere in memory. The de
coder puts its contents on the address bus from the buffers whenever it
wants to fetch another instruction. It can point anywhere in the ad
dress space: from $0000 to $FFFF.

The P-register or Processor Status contains eight bytes, seven of
which act as flags. A flag modifies the action of one or more instruc
tions. Each flag is summarized in Fig. 3-4 and described more fully in
Table 3-1. You can ignore the details of the P-reg on first reading;
they are for later reference and study.

What is of importance to the understanding of the processor at this
stage is exactly how the processor functions in fetching and executing
a sequence of instructions.

Table 3-1. Processor Status Flags

Bit Flag Set = I Clear= 0

0 c Last ALU instruction had a carry Last ALU instruction had a no-
result. carry result.

1 z Last result was zero. Last result was nonzero.

2 I IRQ interrupts are disabled. IRA interrupts are enabled.

3 D Arithmetic of A-reg set to per- Arithmetic of A-reg set to per-
form in BCD. form in binary.

4 B Last IRQ caused by BRK. Last IRQ caused by hardware.

5 Unused Unused

6 v Arithmetic overnow from bit 6 Arithmetic no-overnow from bit
of A-reg. Also. see BIT. 6 of A-reg. Also. by BIT instruc-

tion.

7 N Last result set a bit 7. Last result cleared a bit 7.

Machine Language 133

Here's how the 6502 does an instruction. The instruction begins
with the address of the next instruction in the program counter. This is
either the result of the previous cycle, or it was forced there by the
interrupt logic.

Regardless of its origin, the decoder puts the contents of the PC
onto the internal address bus. At the proper time during Phase One of
the clock, the high and low address buffers are loaded from the in
ternal address bus, thereby putting the PC contents onto the external
address bus. Simultaneously, the R/W line is brought high to signify a
read request.

The addressed memory puts the contents of the requested location
on the data bus during Phase Two of the same clock cycle. The de
coder grabs the contents of the data bus in the 1-reg. At the end of the
first clock cycle, the 6502 has requested and read a byte from memory
into the 1-reg. By this action, it has fetched its instruction op code.

On the next clock cycle, the decoder executes the new instruction.
According to the value in the 1-reg, the decoder will perform a
sequence of tasks, taking up to six clock cycles to complete. It may
read, modify, and write registers. If the op code directs it to just
modify a register, it will finish the task in one cycle. Reads and writes
each take longer, while a read/modify/write instruction takes the
longest time to complete.

Implied in the execution of all instructions is the change to the PC.
It is always modified to point to the following instruction op code in
memory, either by incrementing it or changing it altogether with a new
value. In any case, the instruction ends with the address of the next
instruction in the PC.

Take an example. Suppose the op code that was fetched was $AD.
This tells the decoder that it is a three-byte-long instruction that takes
four clock cycles to complete. On execution, it loads the A-reg from
memory. To do this, the decoder first reads the two bytes following
the op code in memory and uses these two bytes together as the
address of the desired byte. So after execution, the PC will point to the
third byte following its initial value.

Continuing the example, the decoder increments the address buffers
by one after it has the op code. This lets it fetch the low byte of the de
sired address during Phase Two of the second clock cycle. Then the
decoder fetches the high byte during the third cycle. With both bytes
in hand, the decoder puts them on the address line and fetches the byte
it finally wants into the A-reg during the fourth clock cycle. With the

134 Appltf~J Programmer's Handbook

A-reg finally replaced by the read value, and with the PC pointing to
the next byte in the instruction sequence, the instruction cycle is com
pleted.

3.1.2 Memory Mapping

The 6502 processor has an address space of 65536. This figure is
usually referred to as 64K and is the total number of address values the
processor can generate. This is the number of all possible combina
tions of low and high levels on the sixteen lines of the address bus.

Look at a few values to see how this works. The lowest address is
$0000, in hex notation, and is generated when the processor brings all
address lines low. If the AO line went high while all remaining lines
were held low, an address of $000I would be generated. If only AI
were high, $0002 would be the address value. Similarly, only A2 high
generates $0004, only A3 high generates $0008, only A4 high generates
$00IO, and so forth. Only AI5 high generates a $8000. After these
powers of two, combinations of lines generate other values: AO and
AI generate $0003, for example, if they are the only lines held high.
All lines held high give the greatest address possible - $FFFF.

For each of the 65536 different ways of setting the address bus,
there is one and only one address value generated in the processor's
address space. This one-to-one mapping is called the memory map of
the processor. It shows exactly what memory locations, hardware,
soft switches, and other system features correspond to the addresses.
By reading the memory map of the Apple, you can get a picture of
where things are and decide how best to use available memory in your
programming.

It is easier to follow memory maps if you break down the 65536
addresses into 256 pages of 256 addresses each.

The sixteen address lines connect to two buffers in the processor.
Each of these buffers is eight bits. One buffer connects to lines AO
through A7 and the other buffer connects to lines AS through AI5.
The buffer with the higher lines holds the page number and the one
with the lower lines holds the address within that page.

A couple of examples. In hex, address $0023 is in Page Zero ($00)
with a page address of $23. Address $2040 is in Page $20 with page
address of $40. Address $FBDB is in Page $FB at page address $DB.
With hex notation, it's easy.

~

I

~
I

-

Machine Language 135

With a given memory map, the system may or may not have
memory at any given address. An Apple has hardware and possibly
ROM in the $COOO.CFFF range, for instance. That in fact is one of
the first things a memory map should tell you: where is RAM? where
is ROM? where is hardware? Then more detailed maps can break
down the address space further.

In the case of memory, each address within its range tells the
memory chip which location within itself to access. Normally, each
address has one and only one memory location holding eight bits of
data. When addressed, the memory chip then transfers to or from the
given location by accessing the data bus.

In the case of hardware, the Apple addresses are often duplicated in
a device. The device can have one of several addresses simply because
the least significant lines, from AO, aren't connected. Some features
added to the lie model use these otherwise disconnected lines, so some
programs may have trouble running on the lie for this reason. The
point to be made here is that addresses aren't always decoded from the
address bus on a one-to-one basis.

The memory map used in this book is that of Fig. 3-5 unless other
wise noted. The so-called soft switches can alter the memory map
when you want to change it in your programs. Most of the informa
tion on how to do that is given in Chapter Two.

Regardless of which memory map is in effect, the 6502 demands
that RAM and ROM be provided at specific addresses. The Apple
maps always provide RAM for processor work space and ROM for
interrupt routines.

The address of the processor consists of 256 pages, from $00 to
$FF. Of these, Page Zero and Page One must always be RAM. Page
Zero is used for address pointers and fast instructions. Page One is
used to remember processor registers.

At the other end of the address space, Page $FF must have a ROM.
The highest six locations must contain the three address pointers to the
three interrupt routines for RES, MNI, and IRQ. When one of these
interrupts occurs, the address is loaded into the PC from two of these
locations, forcing the processor to execute the interrupt routine at that
address. The Apple always has one ROM chip active at the top of
memory - $F800.FFFF - for this reason. This ROM contains the
three pointers or interrupt vectors together with their routines. With
out such a ROM, the Apple just could not start itself.

With RAM always at low memory and ROM always at high

136 Apple® Programmer's Handbook

PAGE

FF

F8

DO

co

96

60

40

20

08
00

T
HGR2

J

T
HGR

_l

MONITOR

APPLESOFT

HARDWARE

DOS

USER

SYSTEM

Fig. 3-5. Apple II plus memory map.

T
ROM

1

RAM

memory, a 6502 computer ends up with its hardware decoded some
where in the middle of memory. For the Apple II, this is done in the
$COOO.CFFF range.

You can see this division of memory in Fig. 3-5. If you don't learn
any other memory map of the Apple II, you should learn this one.
This is the most common map, and the one normally created when the
Apple II Plus or the Apple lie is started with a DOS. The earlier Apple
II standard model had Integer BASIC resident in the space now
occupied by Applesoft; otherwise, it too has the same map.

The RAM range of $0000.BFFF occupies 48K. If you have an old
Apple II with only 32K of memory, it resides in the $0000. 7FFF range,
the $8000.BFFF addresses being unoccupied. An Apple with 16K of
RAM will have RAM in the $0000.3FFF range, with $4000.BFFF un-

-

-

-

Machine Language 137

occupied. Unless stated otherwise, this book assumes a 48K Apple
with a BASIC language, usually Applesoft, installed in the ROM area.

The ROM area from $0000 to $FFFF contains the language Apple
soft at $DOOO.F7FF and a Monitor at $F800.FFFF. The Monitor may
be one of three versions: Standard, Autostart, or lie. If Integer
BASIC is resident instead of Applesoft, the ROMs for $EOOO.F7FF
will be installed, perhaps with a $D800.DFFF ROM as well. A socket
for a $DOOO.D7FF is not used by Integer BASIC. If the $08 socket is
empty, you can get the ROM, called Programmer's Aid #1, from an
Apple dealer; it comes with a manual.

The input/output area at $COOO.CFFF is divided into two parts.
Built-in 1/0 consisting of keyboard, speaker, soft switches, cassette,
and games socket lives in the $COOO.C07F range. Peripheral 1/0 can
use the remaining space, over the $C800.CFFF range. Each slot is
allocated chunks of memory for its own use; see Chapter Two for the
details.

Knowing the basic memory map of Fig. 3-5 is essential to getting
around in the Apple with machine language programs.

3.1.3 Instructions

To execute a machine language program that exists somewhere in
memory, you must somehow get the address of its first instruction
into the 6502's PC. One way to do this is with the RES interrupt,
which is how the Apple gets started in the first place. Once started,
there are other ways to change the contents of the PC; they will be
covered later. For now, assume you have a machine language routine
to execute and assume that its address is in the PC.

Here's how the program execution works. First, it takes one clock
cycle for the processor to fetch the first byte into the 1-reg. This byte,
pointed to by the PC, must be an op code value because the processor
will attempt to decode it as soon as it is fetched to the 1-reg.

The entire machine language instruction may be one, two, or three
bytes in size. If only one byte, then it consists entirely of an op code.
On the other hand, if more than one byte, it has what is called an
operand as well as an op code. The first byte is always the op code.
The operand byte or bytes that follow may be data for one of the
registers or they may be an address. The processor will read these
operand bytes whenever the op code tells it to. Each op code identifies
the instruction to the processor by telling it exactly what to do. Often,

138 Applf!!Y Programmer's Handbook

it tells the processor to fetch certain operand bytes as part of the
instruction.

Regardless of the length, the instruction is completed with the PC
pointing to the next instruction. Usually, this is the one immediately
following in memory. Other times, the op code tells the processor to
modify the PC in a nother ma nner, like putting the operand bytes in to
the PC to make a jump instruction.

For a ll instructions, the cycle is the same. One clock cycle fetches
the op code byte and more clock cycles may be needed to execute the
op code. There may or may not be operand bytes.

You write machine language programs, then, by putting the se
quence of bytes into memory that make up the instructions you want.
Each instruction has an op code. Depending on the op code, you com
plete each instruction with any operands that it requires.

Some instructions that have only the op code byte a re:

$CA decrement X-reg value by one
$C8 increment Y-reg value by one
$18 clear C-flag in P-reg to zero
$F8 set D-flag in P-reg to one
$EA no-operation, two clock cycles long

By putting a sequence of these bytes into memory somewhere, you
would be loading a program. Each byte would be a complete instruc
tion, consisting of an op code that requires no operand .

Such one-byte instructions are limited in what they can do for you .
You want to operate on addresses and data, not just registers. For
this, instructions with operands are needed. These can be varied for
different addressing methods, so you will learn them more slowly than
one-byte instructions.

First, you can start with a few longer instructions that you could use
in writing short, simple programs.

A two-byte instruction you can use is the load immediate to A-reg.
The op code is $A9 and you fo llow it immediately with a one-byte
operand. The value of the operand will be put in to the A-reg by the
processor when it executes the instruction. If you put

$A9
$FF

-

-

-

-

Machine Language 139

into two consecutive memory locations and the address of the first
byte into the PC, then the processor will execute it. The result would
be to make the contents of the A-reg $FF in value and increment the
PC by two.

If you used a $80 as the operand instead of $FF, then the processor
would put the $80 into the A-reg.

Next, here is a three-byte instruction, a jump. It has $4C as its op
code and two bytes as its operand. The operand is the address of the
next instruction - a forced address. When it executes, the processor
puts the two operand bytes into the PC. T his results in the program
jumping to the address given by the operand. Machine language pro
grams use $4C like BASIC uses the "GOTO" command. For example,
if the 6502 executes

$4(
$00
$03

it will replace the address in the PC with $0300. This results in the next
instruction's op code being fetched from $0300 instead of the follow
ing location. Instead of $0300, you can jump anywhere you like. Just
put the address - low byte followed by high byte - following the $4C
as its operand.

So, to program in machine language, you enter sequences of in
structions to memory. Each instruction must have an op code and be
followed by as many operand bytes as required. The operand depends
on its op code for its length and on you for its value.

Here is an example of a machine language routine.
To call , you must load the registers with any values that the routine

requires, then jump to the routine. Specifically, the rout ine at $FDED
wants the A-reg set to the character code to be output.

Location
$0300
$0301
$0302
$0303
$0304

A more compact notation would be

Content
$A9
$2C
$4(
$ED
$FD

140 Applrf!J Programmer's H andbook

$0300: A9 2C 4C ED FD

like the way it would be entered to the Monitor.
To write machine code like this means you have to memorize a ll the

op codes you may need. Then you have to look up any cha racter codes
and addresses you need for operands. This is difficult and slow. The
task o f reading the resulting machine code in hex is even worse.

Instead, you can use a n assembler notation instead of pure hex
when you write machine programs. In assembler no tation, the routine
just g iven looks like

instead.

$0300: LDA #$2C
JMP $FDED

Simple assembler notation like this uses two tricks to make reading
a nd writ ing easier. First, the code is a rranged in three col umns:
address, op code, and operand. Second, the op code is written as a
mnemonic instead of its hex value.

The mnemonics are easy to remember. They replace the hex op
codes as you write routines. After the routine has been written, you
can easi ly look up the mnemonics to get the op codes they represent.

One mnemonic can represent several op codes. For instance, there
are eight d ifferent ways to load the A-reg . The "#" in the example
signifies the immediate way; there are others. However, the exact op
code can always be found from the mnemonic and the context. Hav
ing fewer mnemonics than op codes makes memorizing them even
easier.

As you learn machine programming, use the Monitor's L command.
You can disassemble the rout ines listed in Section 2.2. See the hex
notation on the left; the assembler notation on the right. Compare
them, and see if you can match the op codes and mnemonics as you

-

-

-

learn them. Do the op codes always match the mnemonics in their n
proper context? l f so, it means that you recognized the instruction
correct ly.

3.1.4 A Routine to Modify Memory

Th is is a routine that uses two instructions having LOA and STAas
mnemonics. There are eight different op codes for each one, so these

-

-

-

Machine Language 141

inst ructions are more closely described as the load A-reg absolute and
the store A-reg absolute.

The LOA absolute has $AD as its op code. When executed, it loads
the A-reg with the contents o f the memory location whose address
follows the op code. For example, the code

$0300: AD 34 12

tells the processor to load the A-reg with the contents o f memory at
location $ 1234. The address $ 1234 is the operand of the LOA absolu te
instruction.

Similarly, a ST A absolute instruction has an op code of $80.
Executing that one causes the contents of the A-reg to be stored in
memory at the address given by the operand. So,

$0303: 80 35 12

tells the processor to store the A-reg at $ 1235. Just like the LOA ab
solute, the ST A absolute has the address of the memory as its
operand.

Here is an example of a short program to move the contents of one
memory location to another:

$0300: AD 20 10 LOA $1020
$0303: 80 30 10 STA $1030
$0306: 4C 69 FF JMP $FF69

See the hex code on the left and the assembler notation on the right.
This is how it might appear when disassembled by the Monitor L com
mand.

The first instruction loads the contents of $ 1020 into the A-reg. The
second stores the contents to $1030. The third instruction jumps to the
Monitor's warm start point. The result is tha t a copy of the contents o f
$ 1020 exis ts in $ 1030. The copy in the A-reg of the two instructions are
still there when it jumped to the Monitor.

Use the same routine, but write it to move the contents of $F800 to
$ 1000.

Look at the code you wrote. Assume that it is executing a nd sup
pose that $0300 is in the PC at the beginning of the first instruction
cycle. Follow the code exactly like the processor does.

142 Appl~ Programmer's Handbook

With a PC of $0300, the 6502 loads the contents of $0300 into the
1-reg, a value of $AD. Then, the instruction decoder recognizes it as a
LDA absolute instruction. The next two bytes, $00 and $F8, are
fetched from $0301 and $0302. These two bytes are put on the address
bus and a read takes place. The byte read from $F800 is $4A, and it is
put into the A-reg. At the end of the first instruction, the PC has been
incremented to $0303 and the A-reg has $4A.

This marks the beginning of the second instruction. The PC points
to $0303, so its contents are loaded into the 1-reg to become the new
instruction op code - $8D. The instruction decoder sees the $8D as
the ST A absolute, so it fetches the next two bytes for an address to
use. These bytes in $0304 and $0305 are $00 and $10, respectively. Us
ing them, the decoder addresses $1000 and writes the contents of the
A-reg. Because the A-reg contains $4A and the address $1000 is a
RAM location, this results in $1000 having its contents changed to
$4A. The PC is advanced automatically to $0306.

This sets the processor for the third instruction and it fetches the
contents of $0306 as the new op code. This is $4C, and the decoder
recognizes it as the jump instruction. The next two bytes are therefore
fetched and stuffed into the PC itself. The result is a $FF69 in the PC;
the program has jumped to the Monitor routine's instruction at that
point.

If you ran this routine and could examine the contents of $1000
when finished, you should find it containing $4A, which is the same
value as $F800.

By walking down a program like this and creating the processor's
scenario for yourself, you can learn to read any program listing. It is a
sure way to debug difficult routines and predict their results.

3.1.5 Hack and Run

To create your own machine programs, you must do four things:
code, assemble, load, and test. Once the program tests good, you can
BSA VE it to disk for future use. Of the several methods of performing
these four steps, the simplest and easiest one for short routines is the
hack and run method given here.

To code a machine program, use quad paper or a special coding
form like that of Fig. 3-6. This form has four columns on the right for
assembler notation: LABEL, MNEMONIC, OPERAND, and COM-

-

-

Machine Language 143

6502 Pracra111 Codt Date ___ _ P;qe_ ol_

: PROGIWI:

ADDR Bl Bl 13 wn IIICDIOIIIC OPEIAIID COIIIIEIITS

•·ig. 3-6. Programming form.

MENTS. The leftmost columns - ADDR, 81, B2, and 83 - are
ignored during coding and are left blank.

First of all, because sheets of paper with machine code on them all
look the same, you will want to identify them properly. Do this at the
top of the form on each sheet you code.

Begin writing any routine with a short comment that says what the
program does. Give the exact call sequence telling the reader how to
invoke the routine. Any routine that has either the purpose or call
sequence unknown is useless in future.

Each instruction goes on a separate line, starting on the first line.
The mnemonic is the verb of the instruction - it tells the processor
what to do. If it is a 6502 mnemonic it will be translated into an op
code during the assembly step. Otherwise, you can write another kind
of mnemonic called an assembler directive.

An assembler directive, sometimes called a pseudo-op, is an instruc
tion to the assembler, not to the processor. For instance, ORO tells the
assembler where to start the program, locating it in memory. Another
one, DS, defines a storage area of a given number of bytes. The ASC
directive identifies characters to be translated into their ASCII codes
at assembly time. And so on. The directives used in this book are

144 App/~ Programmer's Handbook

summarized in Table 3-2. Directives in other books and listings may
vary from these.

Table 3-2. Commonly Used Assembler Directives

Synlnx Purpose Example

ASC siring Crcale Siring MESSAG ASC 'HELLO'

DS expression Define s1orage area BUFFER DS $ 16 +SIZE

DW expression Define word, address form DW $ 1234

D FB expression Define byle value DFB 22

EQU address Declare a label COUT EQU $FDED

O RG address Locale s1an o f assembly ORG $0300

Instructions having operands can express them in various ways. If
the numeric value of the operand is known, you can simply write it
there. You can express it in a hex form lik e the examples so far. Or,
you could use the decimal or even the binary form of the number. If
you don't know which number you want, you can substitute a label for
it. The expression you choose can be translated into a hex number
when you assemble the code later. Some label and number references
that might appear as operands in an assembler program are:

$FF
255
%11111111
MAXVAL

byte, expressed in hex
byte, expressed in decimal
byte, expressed in binary
labeled reference

If a "#" appears in front of the operand, remember tha t it means
immediate and it is there to provide meaning fo r the mnemonic.
Sometimes, characters appear like

LOA #'A '

where the op code will be LDA immediate - $A9 - and the operand
wi ll be the ASCII code fo r 'A' which is $4 1.

The advantage of the assembler coding is that you don't have to
know the op codes or the operand hex values when you first write your
program. You can look them up later.

Look a t the example of Fig. 3-7. The right side of the coding form
(comments column) has the assembler progra m. The ORG directive
tells the assembler where the program wi ll fin ally load into memory.

-

-

-
-
-

Machine Language 145

6502 Procr1111 Code Dale Pzae ___j__ ol ~

PROGRAMMER: ~ lg_Wt!:f. PROGRAM: f:./r.u&t~ 2.-7

ADDR Bl 82 Bl LABEL IIIIEIICNIC OPER£1'10 COMMENTS

~- ·"'.; .//711, u
- (/

FFbP MONZ Et:J, ~ FFb4 .. r-_ .d;, ... f:
FfltJtJ N£2£ G.0/1 7-IBLlo .ALH.., ~P.t/..b.~.~

'""" 'Til£2£ £.01/ • 1000 ... , ./.h.
OR I'. .$ IJ!JtJO

nf/nn An tJtJ Frt Mtwr nA HI' I? I' !'.-. &n_b__t:&_ ,/' .-.;..-,..!.

n~n~ ltfl tJtJ 10 STA J"IIE.2£. /L.J.... 1/llU. 1;,. f'N£2£ Q

nflnl. Ill! 1.0 IH JAA'D II>. 17 1.1,. ../ Mr. ,J ;. ,.1: n, 4»--.JA.t.

Fig. 3-7. Coding form example.

Three labels are listed and used as operands, so they are declared in
the EQUate statements at the beginning. Two of these labels were in
vented - HERE and THERE. The other label, MONZ, is a given
label; it was looked up in Section 2.2 at $FF69. The routine itself is
labeled as MOVE, although it is not referenced here. Make your labels
meaningful. If you need more labels within a routine, add numbers to
the first label. For instance, if MOVE had to be labeled at other in
structions than the first, they would be called MOVE I, MOVE2,
MOVE3, etc. Look at the examples in this book.

Table 3-3 summarizes the rules for coding assembler. The rules
emphasize writing simple and clear routines.

After coding the routine, it can be assembled. You can assemble in
several ways, but the hand-assembly method is the first one you
should use. Hand assembly doesn't depend on having any utilities like
the Miniassembler or a commercial text assembly package. It develops
understanding in a way no other method can. After hand assembling
routines successfully, you will be able to test and debug your routines
from disassemblies and dumps.

Here's how to hand assemble a routine successfully. On the coding
sheet containing the routine in assembler form, write the address of
the first location of the program. You get the address from the ORG

146 Apple® Programmer's Handbook

Table 3-3. Rules for Coding Assembler

Rule Procedure

I. Identify all coding sheets.

2. Comment with purpose and call sequence. The routine should do only
one task and be called only one way.

3. list all external labels your routine references by using EQUate direc-
tives. leave room for those you miss.

4. Use an ORG directive to tell the assembler where the routine will
begin.

5. Code the routine itself. Use operand labels and comments to show
what the routine does.

6. The exit point, usually a jump (JMP) or a return (RTS), should be the
last executable instruction of the routine.

7. label the entry point at the first location and assign any further labels
the same name with a number appended.

8. Use DS, DW, and ASC directives for storage and literal values at the
end of the routine when required.

directive and put it in the ADDR column on the line of the first execut
able instruction. See the $0300 in Fig. 3-7 for an example.

Next, look up the op codes. For each mnemonic, you can infer the
addressing mode when necessary. The op codes are given in Tables 3-4
and 3-5. Enter the op codes in the Bl column opposite its mnemonic,
on the same line.

Put the addresses in the ADDR column. To get each address after
the first, add the length of each instruction to its address. The result
ing sum is the address of the following instruction. In the case of Fig.
3-7, all the lengths are three; so, the addresses are $0300, $0303, and
$0306. Each instruction then is located in memory for further as
sembly and debugging.

In the case of directives, the DS, DW, and ASC all declare storage
space. You must add their lengths to their addresses to get the next ad
dress in each case. The length is given as the operand of the DS. The
DW is always two bytes in size. For ASC, count the characters
between the quotes. Otherwise, treat these directives like op code
mnemonics.

Once all addresses have been found you can go through the code,
one line at a time, and get the hex values for all operands. They go into
columns B2 and B3. You will need tables to convert decimal and
binary to hex notation. And, you need character conversion tables to

Machine Language 147

Table 3-4. Unique 6502 Instructions

Mnemonic Op code Addressing •·lags

Branch
BCC 90 Relative ------
BCS BO Relative ------
BEQ FO Relative ------
BMI 30 Relative ------
BNE DO Relative ------
BPL 10 Relative ------
BVC 50 Relative ------
BVS 70 Relative ------

P-register bit
CLC 18 Implied -----C
CLD 08 Implied --0---
CLI 58 Implied ---1--
CLV 88 Implied -V----
SEC 38 Implied -----C
SED FS Implied --0---
SEI 7S Implied ---1--

Program flow
BRK 00 Implied ---1--
JMP 4C Absolute ------
JMP 6C Indirect ------
JSR 20 Absolute ------
NOP EA ------
RTI 40 Implied Stack*
RTS 60 Implied ------

Transfer
TAX AA Implied N---Z-
TAY AS Implied N---Z-
TSX BA Implied N---Z-
TXA SA Implied N---Z-
TXS 9A Implied ------
TYA 9S Implied N---Z-

Stack
PHA 48 Implied ------
PHP OS Implied ------
PLA 6S Implied N---Z-
PLP 28 Implied Stack•

f-t *Reslored from slack

148 App/~ Programmer,s Handbook ..
Table 3-5. Accumulator, Memory, and Index Instructions

~ ..
$
;j

I ~ ~
~
" s~

i ~ a I

0
~

70 79 61 NVZC
...,

ADC - 69 65 75 60 71 I
AND - 29 25 35 20 30 39 21 31 N-Z-
ASL OA 06 16 OE N-ZC
BIT 24 2C 76Z-

liiJIIt
CMP - C9 cs 05 CD DO 09 Cl 01 N-ZC
CPX - EO E4 EC N-ZC
CPY - co C4 cc N-ZC
DEC - C6 06 CE DE N-Z-
DEX CA* N-Z-

~ -
DEY 88* N-Z-
EOR 49 45 55 40 50 59 41 51 N-Z-
INC - E6 F6 EE FE N-Z-
INX E8* N-Z- fill'

INY C8* N-Z-
LOA - A9 AS B5 AD BD B9 AI Bl N-Z-
LOX - A2 A6 B6# AE BE N-Z-
LOY - AO A4 B4 AC BC N-Z-
LSR 4A 46 56 4E 5E N-Z-
ORA 09 OS 15 00 ID 19 01 II N-Z-
ROL 2A 26 36 2E 3E N-ZC
ROR 6A 66 76 6E 7E N-ZC ~

SBC - E9 E5 FS ED FD F9 El Fl NVZC
STA - 85 95 80 90 99 81 91
STX - 86 9611 8E
STY - 84 94 8C -

• implied N negative C carry
zero page, Y Voverflow 6Vifbit6

Z zero 7Nifbit7

~

look up characters in ASC directive strings. The best tool for this is
the Reference Summary card supplied with this book. Labels as oper-
ands should all be found from the LABEL column. If not, something ~

is missing from the assembler coding, usually an EQUate directive.

'~

n

-

-

-

-
-

Machine Language 149

When finished assembling, your coding sheet should resem ble Fig.
3-7.

To recapitulate, assembly is done in two passes through the code.
On the first pass, addresses are found for all the op codes and as
sembler directives. Th e op codes are identified. Then, on the second
pass, the operands are resolved by evaluating their expressions and
looking up the addresses that correspond to the labels .

Once assembled on paper, you can enter it. Use a CALL - 151 to
enter the Monitor from BASIC.

Enter the hex code using the address of the routine. For example,
the routine of Fig. 3-7 can be entered as

300:AD 00 F8 80 00 10 4C 69 FF

Verify the code by disassembling it wi th the L com mand:

300L

The code should disassemble properly. If there is an error, correct it
before proceeding.

If you have a long routine you don't wan t to re-enter, then BSA VE
it to disk before testing.

Now, use the call sequence to give your routine any init ial condi
t ions it wants. Then run it with the G command:

300G

The routine should reLUrn to the Monitor when finished, giving you
an asterisk - "*" - followed by a cursor. If not, you have problems.
You have to walk through your program as described before. If you
can get and use a Step/ Trace utility, so much the better.

If your routine returns normally, you still can't assume it did its job.
What was it supposed to do? You must have a specific purpose for the
routine that can be tested. In the case o f Fig. 3-7, for instance, you can
examine the contents of locations $F800 a nd $1000 to see if it moved
from one location to the other. If so, they will both have the same
value. It would be a good idea to force the destination, $1000, to con
tain another value before the routine is run.

Then, what if it doesn't work properly? Record any results, however
false. Then with these results in hand go through the code. Why does

/50 Applrf'i Programmer's Handbook

the routine produce the observed result? Once you know that, you can
usually find a way to change or rewrite the routine to get the result you
want. Most errors are caused by mechanically copying or looking up
an incorrect value. The remainder are caused by a misconception on
the programmer's part.

Always retest a routine completely after making any changes, no
matter how slight those changes are.

With practice the four steps - coding, assembling, entering, and
testing - can be done quickly for short routines. In fact, experienced
programmers can hand assemble quicker than using a disk-based as
sembler package when they want. With many op codes memorized,
the programmer can often enter in hex without going through the as
sembler stage. This facility with the hack and run method earns such
programmers the title - hacker.

One way of approaching the skill of the hacker without invoking a
large, disk-based assembler is with a utility available with Integer
BASIC called the Miniassembler. It uses the Monitor's disassembler so
it has much the same format. It is easy to Jearn and use.

To use the Miniassembler, activate Integer BASIC; use the INT
command to DOS. Then CALL - 151 to enter the Monitor. Invoke
the Miniassembler with

F666G

It responds with a"!" prompt. Whenever you want to leave and return
to the Monitor, type

$FF69G

to the Miniassembler. In fact, you can give any Monitor command
from the Miniassembler if you prefix it with a "$".

To enter an instruction into memory, type the location's address fol
lowed by a colon. Follow on the same line with the mnemonic and any
operand required. Values must be in hex; no labels allowed. For fol
lowing instructions, just type a space instead of an address with colon
followed by the instruction. For instance, our example of Fig. 3-7
could be entered to the Miniassembler by typing

!300:LDA F800
! STA 1000

-
-

-
-

-

! JMP FF69
!$FF69G

*

Machine Language 151

where the "!" and "*" are prompts; don't type them.
The Miniassembler looks up 6502 mnemonics for you, keeps adding

the instruction lengths to a location counter for following instruc
tions, does relative address calculations (more about that later), and
reformats each line into the disassembler format as you enter them.
Any two-byte operands are rearranged for you in address format, low
byte followed by high byte.

Use the Miniassembler to hack and run. It lets you experiment
quickly a nd easily by writing short routines almost as fast as you can
think them up.

The disassembler gives twenty lines with each L command. You can
hack up to twenty lines easily with the Miniassembler. While you can
write routines longer than twenty lines this way, they won't fit on the
screen. So, they become awkward to write and debug. T hen , too, you
can feel the need for labels when you design longer routines or write
several routines that call each other. As a rough guide, twenty instruc
tions is the practical limit for hack and run routines.

For longer projects, you need a two-pass text assembler.
A text assembler from a quality software house should give you the

features you will need . It will have a good, easy to use editor that lets
you document extensively and edit your text files in a line-oriented
fashion . The assembler will recognize the commonly needed directives
and use standard 6502 mnemonics. Some provide extensive features,
but they should not interfere with using the common ones; you should
not have to wade through a series of bells and whistles to set up a
simple assembly.

Compared to the Miniassembler, a text editor/ assembler package
does the job in a fancier way. It has two passes instead of one, so that
you can use labels. It also interprets assembler directives. You can
make all the comments you want; unlike BASIC, assembler comments
don't take up final program space. Most assembler packages provide
printer output, selectable at assembly time. The disadvantage to an
editor/ assembler package is the long operating time, even for short
and simple routines.

A two-pass assembler works the same as you would if you did a
hand assembly. First, you write the assembler code on a text file using

152 Applr!F' Programmer's Handbook

the editor. This fi le is called the source file of your program. When
you run the assembler, it reads your source file and creates another fil e
called an object file. The assembler makes two passes o f the source file
to do this: one pass to build a table of all your labels and another pass
to resolve them and create the object fi le. With a good, simple as
sembler, the object file is a binary file that you can BLOAD into
memory to test or use. Each step of the process is the same as it was
for hand assembly.

There are assemblers that will let you use external labels. They
produce relocatable files that have a small label table with them, left
over from the first pass. This lets you assemble routines that call each
other separately, then link thei r relocatable files together later on to
make the final loading file. To do this, another stage is needed after
assembly - a stage called linkage editing. So, the package has a link
age editor and perhaps a librarian as well.

For most work, especially for the beginner, extra features like link
age editing are not necessary. On a small computer like the Apple II,
simplicity and ease of use are important.

Often, you will have a short routine in machine language that you
want to run from a BASIC program. You can do this by using the
CALL command, but loading the machine code at first can be a bit
tricky.

First, you can BLOAD it from a binary disk file. This is simple
enough, but means your program now has two files, a BASIC one and
a binary one. Maintenance would be much easier if you could some
how include the machine routine into the BASIC program . Then, you
would have the entire program contained in one fi le .

The classical method, one which is still used on other microcom
puters, is to POKE the routine into memory from the BASIC pro
gram's initial routine. The address and contents of each byte must be
translated from hex to decimal notation before writing the sequence of
POKE statements. Although it is slow and error-prone to write, this
method was once popular among Apple programmers needing short
machine routines.

The best place for single, short machine routines is at $0300, 768 in
decimal. If the example of Fig. 3-7 is to be POKEd into place, the
statements used would be ...

POKE 768,173 : POKE 769,0 : POKE 770,248 :
POKE 771 ,141 : POKE 772,0 : POKE 773,16 : -
POKE 774,76 : POKE 775,105 : POKE 776,255

Machine Language 153

where 173 is the decimal form of $A D, for instance. When run, the
routine is entered by the POKEs and the program can invoke it any
time by a CALL 768 statement.

The POKE method is rarely used on the Apple. Instead, an easier
one called Lam's method is employed.

To enter machine code using Lam 's method, you prepare a st ring
that is exactly like the one you would enter to the Monitor. Then you
call a BASIC subroutine written to put the command string into the
keyboard buffer. This subroutine also calls the Monitor so that it
thinks you gave it a keyboard command line. When the Monitor has
entered the code into memory for you, it gets a final command that
sends control to a BASIC routine that continues program execution.
There are differences between Integer and Applesoft versions, but
both do the same job.

From Integer BASIC, you can create a machine routine like this.
DIMension a string called HEX$ for at least 80 characters . Write the
following utility subroutine:

500 FOR H = 1 TO LEN(HEX$(H})
510 POKE 511 + H, ASC(HEX$(H})
520 NEXT H
530 POKE 72,0
540 CALL - 144
550 RETURN

Then, each time you want to enter code, make up a string:

30100 HEX$ = "300:4C DB FD N E88AG"
30110 GOSUB 500

J!!!!!l In this example, a JMP $FDDB was created at $300. Type the spaces
shown; they are important. The N ends the memory entries. The
E88AG makes Integer continue running your BASIC program.

For an Applesoft BASIC program, the same algorithm does the
job. The utility subroutine becomes:

500 FOR H = 1 TO LEN(HX$)
510 POKE 511+H, ASC(MID$(HX$,H,1})+128
520 NEXT
530 POKE 72,0

- 540 CALL -144
550 RETURN

154 Apple® Programmer's Handbook

The call sequence for this subroutine is

30100 HX$ = "300:4(08 FD N D823G"
30110 GOSUB 500

The main difference is the address of the continue routine. For
Integer, it is at $E88A; for Applesoft it is at $D823.

Whenever you have a short routine, put it in Page Three, from your
BASIC program, by using Lam's method. It is the best way to include
machine routines that you wrote with the hack and run method.

3.2 ADDRESSING

3.2.1 The Addressing Modes

There are eleven different addressing modes of the 6502 processor.
Each is described below.

IMPLIED - These are one-byte instructions because they don't
need operands. From the op code, the processor knows which address,
if any, to use. Many implied instructions, like INX, INY, DEX, DEY,
TAX, TVA, etc., act on registers only. A few, like PHA, PLP, and
RTS, use register contents to find their addresses. Some set and clear
flags in the P-reg: CLI clears the 1-flag, SED sets the D-flag, and so
forth. All these instructions are only one byte in length; you don't
have to give an explicit address.

RELA TJVE - These are branch instructions, two bytes in length.
These include BMI, BEQ, BCC, and so forth. The operand is a signed
number that tells the processor to either add or subtract the PC to
reach the branch address. The branch op code tests a flag. If the test
fails, nothing more is done and the PC is pointing to the next instruc
tion as per normal. But, if the test is true, then the relative address
contained in the operand is added to the PC to make it point to the
branch address instead .

A relative address may be any value from - 128, represented by
$80, up to - I, represented by $FF. Positive relative addresses then
range from zero , $00 to + 127 represented by $7F. To calculate the
relative address , subtract the address of the next instruction from the
address of the branch instruction. For instance, consider the follow
ing:

n

-

Machine Language 155

BEQ THERE
HERE LDA #1

THERE LDA #2

The operand pointing to THERE in the BEQ instruction must be
assembled as one byte. That byte is calculated as

THERE minus HERE

once the absolute addresses of THERE and HERE are known in the
routine. This gives the instruction a single byte relative address
operand.

""" IMMEDIATE - A two-byte instruction wi th a"#" pre fixed to the

n

operand in assembler form. It is used to read a literal byte directly
from the operand. The operand byte is not an address, but is the
actual data read by the instruction . For example, an LDA #$7F would
cause a $7F to be loaded into the A-reg during execution . Other
examples include: LDX #0, LDY #$FF, and ORA #$80. The last one,
ORA, is a logical OR with the A-reg; it turns on Bit 7 in the A-reg
using the $80 value.

ABSOLUTE - A three-byte instruction where the operand gives
the address of the data to be handled . The address is always in low
byte to high-byte order. For instance,

LDA $1234

assembles as $AD, $34, $12 in that order. When executed, it loads the
contents of location $1234 into the A-reg.

ZERO PAGE - Sometimes called zero page absolute, because it
acts like the absolute mode. However, it is a two-byte instruction with
the operand containing the low order byte of the address. The high
order byte is implied to be zero; so, this mode addresses Page Zero
locations only. For example, the instruction

LDA $50

assembles as $A5, $50 and is the same as

156 Apple® Programmer's Handbook

LOA $0050

which assembles as $AD, $50, $00. The zero page mode does execute
faster. And it takes up only two bytes of program memory instead of
three. The zero page mode op code calculates the effective address
from the single byte. In this example, the effective address is $0050.

ABSOLUTE INDEXED BY X - A three-byte instruction that
calculates the effective address as the sum of the operand and the
X-reg. For example, if the assembler code is

LOX #$15
LOA $1234,X

then the LOA instruction would assemble as $BD, $34, $ 12. Upon
execution, the $BD op code causes the effective address to be cal
culated as the su m of $1234 and $ 15. This is $1249, so the contents of
location $ 1249 will be loaded into the A-reg to complete the instruc
tion. The effective address is always taken as being the sum of the
operand and the contents of the X-reg.

ZERO PAGE, INDEXED BY X - This is a two-byte instruction
that calculates an effective address in Page Zero only. It only cal
culates the low-order byte of the effective address; the high-order byte
is always zero. For example,

LOX #$23
LOA $34,X

will generate $85, $34 from the LOA instruction . Upon execution, the
$85 calculates the effective address by first adding $34 and the
operand to $23, which is the contents of the X-reg. The sum o f $57 is
then used as the low byte to make the effective address of $0057. Then
the contents of location $0057 is read from memory and put into the
A-reg.

Be careful using th is mode. If the sum is greater than $FF, you do
not address Page One; instead, the effect ive address wraps around to
point into Page Zero again! For instance,

LDX #$FE
LDA $50,X

....

n

Machine Language 157

when executed, will load the contents of $004E into the A-reg, not the
contents of $014E. If you want the boundary crossed into Page One,
use the Absolute Indexed by X mode instead. However, the Zero Page
indexed lets the X-reg function the same as a signed index. The
example here functions the same as if the address $50 were indexed by
a value of minus two when the X-reg has $FE in it.

ABSOLUTE INDEXED BY Y - A three-byte instruction that is
similar to the Absolute Indexed by X. T he effective address is cal
culated as the sum of the operand and the contents of the Y -reg . So,

LOY #$45
LOA $2300,Y

will assemble the LOA as $89, $00, $23. When run, the 6502
calculates the effective address as $2345. The A-reg is then loaded with
the contents of location $2345 .

INDIRECT- There is only one, thejwnp indirect, and it is three
bytes in size. It has an op code of $6C. As an example,

JMP ($0036)

assem bles as $6C, $36, $00. Upon execution, the processor reads
$0036 as the effective address's low byte. Then it reads the contents of
$0037 as the high byte of the effective address. The effective address is
put into the PC to complete the inst ruction.

Tak ing the example furt her, you can sec it more explicit ly. If $0036
contained $00, and $0037 contained $C5, then the effective address
would be $C500. The jump instruction puts that into the PC so the
next instruction is executed at $C500. T he result is that the program
jumps to the routine at $C500. If another address was stored in
$0036.0037, then that is the address used for the jump. The locations
$0036.0037 given by the operand point to the rout ine to be jumped
to, rather than being the routine itself. The indirect mode is shown by
using brackets.

INDIRECT INDEXED BY Y- A two-byte inst ruction that uses a
Page Zero pointer and the Y -reg to calculate its effect ive address. The
effective address is the sum of the pointer value from Page Zero and
the contents of the Y -reg. As an example, the assembler code

158 Appl~ Programmer's Handbook

LDY #$45
LDA #0
STA $50
LDA #$23
STA $51
LDA ($50).Y

represents part of a routine that uses indirect indexed . The Y -reg has
$45, and the Page Zero pointer $50 .51 has $2300 when the first fi ve
instructions have been executed. The sixth instruction, which
assem bles as $B1, $50, loads the A-reg with the con tents of memory at
$2345. The effective address, $2345, is calculated by first getting the
pointer from the Page Zero location given by the operand, $50. This
pointer is $2300. Then, the contents of the Y -reg, which is $45, is
added. Compare the way this works with the Indexed by Y mode
above. Where the Indexed by Y mode uses the absolute value of its
operand to add to the Y -reg, the Indirect Indexed by Y mode uses its
operand to point to the value to be added to the Y -reg.

INDEXED INDIRECT BY X- Another two-byte instruction that
uses a Page Zero pointer and a register to calculate the effective
address. This time, the X-register is used . Indirection now takes place
ajrer the indexing, so this mode is not the same as Indirect Indexed.
The effective address is taken from a Page Zero pointer which in turn
is calculated as the sum of the operand and the contents of the X-reg.

This mode is rarely used. In the few cases where it is used, most of
the time the X-reg is set to zero to make it a simple indirect instruc
tion. For example,

LDA #$34
STA $50
LDA#$12
STA $51
LDX #0
LDA ($50,X)

sets up the A-reg with the contents of $1234. The last instruction
assembles as $A 1, $50. On execution, it gets the operand value, $50,
and adds the contents of the X-reg. In this case that is zero, so the sum
is also $50. Then it fetches the effective address from $50 and $5 1 in
Page Zero. In this example, that gives $1234. Suppose the X-reg were

-
-
n

-
Machine Language 159

set to $16 instead. In that case, the effective address would have been

~
fetched from $66.67 in Page Zero because $66 is $50 plus $16.

3.2.2 Mnemonics

~ See Tables 3-4 and 3-5 for their op codes.

ADC Add Memory to A-reg with Carry
AND Logical AND Memory with A-reg
ASL Arithmetic Shift Left (memory or A-reg)
BCC Branch if C-flag is clear
BCS Branch if C-flag is set
BEQ Branch Equal Zero; branch if Z-flag set
BIT Test Bits in Memory with A-reg
BMI Branch Minus; branch if N-flag set - BNE Branch Not Equal zero; branch if Z-flag clear
BPL Branch Plus; branch if N-flag clear
BRK Break to IRQ vector with B-flag set
BVC Branch if V-flag clear
BVS Branch if V-flag set
CLC Clear C-fl ag
CLD Clear D-flag
CLI Clear 1-flag
CLV Clear V-flag
CMP Compare Memory with A-reg
CPX Compare Memory with X-reg
CPY Compare Memory with Y-reg
DEC Decrement Memory by one
DEX Decrement X-reg by one
DEY Decrement Y -reg by one
EOR Exclusive OR Memory w ith A-reg
INC Increment Memory by one - INX Increment X-reg by one
INY Increment Y -reg by one
JMP Jump to new location
JSR Jump to Subroutine, saving return address
LDA Load A-reg with memory
LDX Load X-reg with memory
LDY Load Y -reg with memory
LSR Logical Shift Right Memory or A-reg, one bit

~

-
160 Appl~ Programmer's Handbook

NOP
ORA
PHA
PHP
PLA
PLP
ROL
ROR
RTI
RTS
SBC
SEC
SED
SEI
STA
STX
STY
TAX
TAY
TSX
TXS
TXA
TYA

No-Operation
Logical OR Memory with A-reg
Push A-reg onto stack
Push P-reg onto stack
Pull A-reg from stack
Pull P-reg from stack
Rotate Memory or A-reg, one bit left
Rotate Memory or A-reg, one bit right
Return from interrupt
Return from subroutine
Subtract Memory from A-reg; borrow from C-flag
Set C-flag
Set D-flag
Set 1-flag
Store A-reg in memory
Store X-reg in memory
Store Y-reg in memory
Transfer A-reg to X-reg
Transfer A-reg to Y -reg
Transfer S-reg to X-reg
Transfer X-reg to S-reg
Transfer X-reg to A-reg
Transfer Y-reg to A-reg

Each instruction is described and explained in the context of pro
gramming in the following sections of this chapter. You can refer back
to this list o f mnemonics as necessary and many of the simpler o nes
like DEX and STY won't be explained further; you can understand
them from their definitions.

3.3 PROGRAM FLOW

3.3.1 The CMP Instruction

Much of the a rt of programming consists in arranging alternate se
quences o f actions and decisions. At the machine language level, ac
tion instructions set flags in the P-reg and decision instructions read
these flags. The secret to programming effectively with machine
instructions is in knowing the P-reg flags - how they are set and how
they are tested.

n

-
- Machine Language 161

While there are seven active flags in the P-reg, only three of them
are used often in controlling program flow. These are theN-, Z-, and
C-flags.

The N-flag indicates that the last action instruction had a negative
result. The value of the resulting byte was between $80 and $FF,
inclusive, if the N-flag is set. If the result was posi tive, $00 to $7F,
then the N-flag is clear. The N-flag therefore reflects the value of
either zero or one of the Bit 7 in the last result.

Many actions change the N-flag. These actions are listed in Tables
3-4 and 3-5. They are indicated by an "N" in the Flags column.

The Z-flag also has many actions that can change its value. When
ever the result of an instruction is a zero, the Z-flag is set. Conversely,
a nonzero result will clear the Z-flag.

A couple of examples. If the processor executes a LOX #$60
instruction, it will clear the N-flag and clear the Z-flag. It does so be
cause the result of $60 is positive and nonzero. If a DEY instruction
acted on $00 in theY -reg, then theN-flag would be set and the Z-flag
would be cleared. In this case the result is $FF in the Y -reg, which is
negative and nonzero. Similarly, a LOA #$00 would set the Z-flag and
clear the N-flag.

The C-flag is a little different. First, you can see from Table 3-5 it is
changed by A-reg arithmetic and logic instructions. And, it can be
changed by the compare instructions: CPX, CPY, and CMP. Arith
metic and logic will be done later; here the compares are important. In
particular, the CMP is studied because it shows how the C-flag works.

In the P-reg, the N-flag is Bit 7, the Z-flag is Bit I , and the C-flag is
Bit 0. Bit 0 is the least significant bit (LSB).

Here is a routine that uses the N-flag to connect its action and deci
sion . It looks at the keyboard and waits until a key is pressed. Then it
prints the hex code for the keyboard character and returns to the
Monitor:

0303 : AD 00 CO
0300: 10 FB
0305 : A210CO
0308: 20 DA FD
0308: 4C 69 FF

LDA $COOO
BPL $0300
LDX $C010
JSR $FDDA
JMP $FF69

First, the keyboard is fetched from $COOO. This action is tested by the
BPL, which branches back to repeat the action at $0300 while the key-

162 Appl~ Programmer's Handbook

board was not used. When a key is pressed, it gives a character greater
than $7F; this sets the N-flag instead of clearing it. So, when a real
keyboard character is in the A-reg, control simply falls through to the
next instruction at $0305.

The LDX instruction resets the keyboard - a job any keyboard in
put routine must perform. The routine at $FDDA prints the hex code
of the A-reg. It is called with a JSR instruction that does the same job
for you as a GOSUB would in BASIC. Finally, the routine jumps to
the Monitor at $FF69.

Look a little closer at the BPL instructio n at $0303 . The op code is
$ 10; simple enough. But the operand is $FB. This is an address to give
the BPL instruction a branch address of $0300 like the assembler form
on the right says. The next instruction taken when the N-flag is set is
$0305. So, when the N-flag is clear, the branch address is $0305 plus
the operand $FB. The addition of this relative address to the PC is
done with signed arithmetic; so, $FB is taken to mean - 5 to give a
branch address of $0305 - 5 or $0300. You can enter and run this
routine to see it work.

If you use one of the compare instructions - CMP, CPX, CPY -
you can force all three fl ags. This gives you the N-, Z-, and C-fl ags to
analyze with branch instructions. With the C-flag available, you can
compare any two va lues and branch accordingly.

The CMP instruction makes a subtraction

A minus M

where A is the A-reg and M is the memory. If the result is zero, the
Z-flag is set; otherwise, the Z-flag is cleared. If the result is greater
than or equal to zero, the C-flag is set; otherwise, it is cleared. The
N-fl ag reflects the result's Bit 7. The result does not replace the origi
nal value of the A-reg; unlike a subtraction instruction, the register be
ing compared remains unchanged.

Similarly, you can compare the X-reg or the Y-reg with memory.
The CPX and CPY both force the three flags without changing the
register value being compared. Whenever you want to compare values
without destroying the register, or you want to re-examine a register
after other actions have altered the flags, then you can use a compare
to do the job. They a re the direct way to set these flags.

Usually, the other instructions that you use set the flags. Check
T ables 3-4 and 3-5 and see those flags altered by the vario us instruc
tions. Some o f these are explicit: SEC and CLC in particular.

-
-
-

-
-

-

Machine Language 163

The decision instructions a re the branches. One of these, the BPL,
gave the example of the keyboard routine earlier. The BPL tests the
N-flag; the BMI also tests the N-flag, but it branches when the result
has Bit 7 set.

T here are two branches for testing the Z- flag. The BEQ will branch
if the Z-flag is set; that is, a zero result. And, the BNE will branch if
the Z-flag is clear; when the result was not zero.

The C-flag is tested with either a BCC or a BCS. By using a BCC,
the branch occurs when the C-flag is clear. A compare instruction
where the register is less than the memory will also do this. Similarly, a
BCS branches when the C-flag is set. Comparing a register with an
equal or smaller memory will set the C-flag.

The compare is always unsigned; you are subtracting absolute
values. So, $84 is greater than $56, for example. To work with signed
numbers, you need the N-flag. But most compares are done with un
signed numbers using the C-flag. These resul ts are summarized for
you in Table 3-6.

Table 3-6. The Results of a CMP

N-flag C-flag Z-flag

A<M Either Cleared Cleared

A = M Cleared Set Set

A>M Either Set Cleared

If you are learning a machine language for the first time, the fol
lowing experiments will help you . Enter and run them; they a re well
worth your time.

First, assemble the following routine:

ORG $0300
TEST: LOX #$FF

LOA ARG 1
CM P ARG2
BEQ TEST1
LOX #0

TEST1 : STX RESULT
JMP $FF69

ARG1 : OS
ARG2 : OS
RESULT: OS

164 App/rf!J Programmer's Handbook

The purpose is to test the BEQ instruction with different values of
ARG 1 and ARG2. The CMP instruction has ARG 1 as its A-reg value
and ARG2 as its memory value. The X-reg is loaded with $FF at the
beginning. If the branch is taken, it puts that $FF into RESULT
memory. If the branch is not taken, it becomes $00 (zero) instead;
RESULT is zeroed. So, you can see if the branch was taken or not by
examining RESULT in memory.

The parameters are: ARG 1 at $0312, ARG2 at $0313, and RESULT
at $0314. To make a run, use the Monitor to set ARG1 and ARG2 to
the values of A-reg and to the memory that you want. Then, run the
routine at $0300 using the G command. And finally, examine the con
tents of RESULT to see whether or not the branch was taken.

For the BEQ instruction, what will be the result when ARG 1 is
greater than ARG2? When they are equal? When ARG 1 is greater
than ARG2?

Make three more runs, but change the branch instruction first. In
stead of a BEQ, use a BNE. What results do you expect now?

Again, change the branch instruction for three more runs. Use a
BCC. Then, change to a BCS for three more runs.

You can use this routine for any experiments that you may need to
understand the branches. For now, you should verify the results sum
marized in Tabl_e 3-6. Later, you can always run more routines if you
want to figure out the actions of other flags.

By using just the C-flag and the Z-flag, you can make five different
decisions. In a program, you can branch for one of five conditions:
greater than; greater than or equal; equal; less than or equal; less than.
The branches for each condition are in Table 3-7. Use the code for the
case you want.

Table 3-7. Branch After Compare

Condition Branch on Condition

A-reg < memory BCC CASE I

A-reg -E;; memory BCC CASE2
BEQ CASE2

A-reg = memory BEQ CASE3

A-reg ~ memory BCS CASE4

A-reg > memory BEQ NEXT
BCS CASES
NEXT:

,....

-

-
-

-

Machine Language 165

3.3.2 The Stack

In machine code, a JMP instruction does what a GOTO does in
BASIC. And, a JSR does what a GOSUB does. The difference be
tween JMP and JSR is that the JSR remembers where it jumped from .
This way, a return instruction called RTS can recall the old address for
the PC in the processor.

The JSR and RTS lets you make subroutines easily. And there are
o ther instructions that save and recall values automatically, with im
plied addressing. You don't have to keep track of their storage in
RAM because the processor uses the S-reg to do that automatically.
The RAM used fo r this storage is Page One; it is called the stack. Simi
larly, the S-reg is called the stack pointer. By pointing to the stack, the
S-reg remembers where the next unused locatio n is available for stor
age.

One pair of stack instructions is the PHA and PLA. The PHA is
called push A-reg; it stores the A-reg in Page One. Then, the pull
A-reg instruction, PLA, loads the A-reg from Page One. Another pair
is PH P and PLP. They push the P-reg and pull the P-reg from the
stack. These push and pull instructions do the same thing as store and
load instructions, but they use and modify the S-reg as well.

A push is done by storing the byte to Page One, using the S-reg as
the address-low. After the store , the S-reg is decremented by one to
point to the next locatio n.

A pull is done by first incrementing the S-reg by one. Then, the byte
is read by using the S-reg as address-low and $01 as address-high.

In use, the push and pull instructions save and recall bytes from the
A-reg or P-reg. By automatically changing the S-reg by one each time,
the processor always keeps track of the bytes stored in Page One on a
last-in, first-out basis. You can think of the bytes being stacked, one
atop the other, with the last one pushed on the top. This last byte is the
fi rst o ne available to be pulled from the stack.

For example, suppose you used the PHA instruction to push three
bytes onto the stack from the A-reg:

LDA #$01
BHA
LDA #$02
PHA
LDA #$03
PHA

166 Appl~ Programmer's Handbook

The S-reg then points to the next location beyond the one containing
the $03 value. Pulling a byte at this time will get the $03 from the stack
and leave the stack pointer (the S-reg) pointing there. Another pull
increments the S-reg again and loads the $02 from the stack. The third
pull does the same thing, fetching the $0 I. The S-reg is now pointing
to the $01 's location as the first free memory available, just as it did
before the three pushes were made.

A push stores a byte and decrements the stack pointer; a pull incre
ments the stack pointer and loads a byte.

Addresses are pushed and pulled by the JSR and RTS instructions.
They are sixteen bits instead of eight, so the processor has to push
twice from the PC to do a JSR and pull twice to do an RTS.

Here are the scenarios of the processor performing a JSR and an
RTS.

Assume the processor is executing the JSR at $0300:

$0300:
$0303:

JSR $FDFO
CLC

It reads the operand bytes, $FO followed by $FD. Then , the PC is
pointing to the last byte of the operand, which is the $FD in location
$0302. The 6502 then pushes the high byte of the PC on the stack, $03
in this case. Then it pushes the low byte of the PC on the stack, $02
here. After that, it makes a jump by putting the operand bytes into the
PC: the $FDFO for this case. The next instruction is then at location
$FDFO; the JSR is complete.

The subroutine runs, perhaps calling others, until it reaches an
RTS.

Executing the RTS, the processor pulls the old address from the
stack: first the low byte, then the high byte. They are stuffed into the
PC to give an address of $0302 in this example. Now, the processor
again points to the last byte of the JSR instruction. To complete the
instruction cycle for the RTS, the processor increments the PC by one
so as to point to the next instruction. In this case, the PC becomes
$0303 to point to the CLC instruction there. That completes the RTS
instruction.

The one point you should watch for if you use the stack pointer
from within the subroutine is that the JSR has stacked the address of
its third byte, not the address of the next instruction as a simpler
description of the JSR might lead you to believe. If you load the PC

-

-

-
-

-

-

-
-

-

Machine Language 167

from the stack by using an RTS, remember that the address you load
must therefore be one less than the address of the instruction to be
executed next.

Such trickery is, fortunately, invisible to the normal use of the JSR
and RTS instructions.

The other instructions that use the stack are the ones associated with
interrupts. IRQ and NMI interrupts push return addresses and the
P-reg onto the stack. The RTI instruction pulls the P-reg and returns
from the interrupt routine to the one that was interrupted.

3.3.3 Structures

The way any routine you write does its job is called the algorithm of
the routine. The simplest possible routines have simple algorithms that
cannot be broken down further; these algorithms follow a form called
a structure. To write any routine, you must design an algorithm that
uses one or more of these structures. Knowing the structures and what
each will or will not do is necessary if you want to write uncomplicated
programs. Otherwise, the routines may have algorithms that can be
come impossible to tes t, debug, use, and maintain .

With structures, you can put instructions together to do more
intelligent tasks than they can do by themselves.

The simplest way a routine can be written is with a sequence of ac
tions, without decisions. For example, you can move the contents of
one memory location to another:

MOVE : LDA HERE
STA THERE
RTS

A longer routine could move several bytes of memory:

MOVES: LDA HERE
STA THERE
LDA HERE+ 1
STA THERE+1
LDA HERE+ 2
STA THERE+2
RTS

168 Applrf1J Programmer's Handbook

You can use indirect indexed addressing to generalize this routine.
Then, it could be used for any three contiguous memory locations, not
just at HERE and THERE:

MOVES: LDY #0
LDA (HEREZ),Y
STA (THEREZ),Y
LDY #1
LDA (HEREZ).Y
STA (THEREZ),Y
LDY #2
LDA (HEREZ),Y
STA (THEREZ),Y
RTS

In this case, you must put the first address of the three source bytes in
the Page Zero pointer at HEREZ and HEREZ + 1. Then, put the
address of the first destination byte in the Page Zero Pointer,
THEREZ and THEREZ + I .

Such a call seq uence of setting Page Zero pointers before making a
JSR is quite com mon. Setting them with immediate values, in as
sembler notation where the desired addresses are given by labels, can
be done like:

LDA #> SOURCE ;low byte
STA ZHERE
LDA #< SOURCE ;high byte
STA ZHERE + 1
LDA #> DEST ;low byte
STA ZTHERE
LDA #< DEST ;high byte
STA ZTHERE + 1
JSR MOVES

In the notation of the DOS Toolkit Assembler from Apple, the ">"
selects the low byte of a labeled address and the "<" selects the high

-
-
-
-
-

-
-

-
byte. n

-
-

-

-

Machine Language /69

Similarly, you can write a SWAP routine to exchange the contents
of three locations with three other locations. It can have the same call
sequence, using HEREZ and T HEREZ as Page Zero pointers:

SWAP: LDY #0
LDA {HEREZ) ,Y
PHA
LDA (THEREZ),Y
STA {HEREZ),Y
PLA
STA (THEREZ).Y
LDY #1

LDY #2

RTS

where the ellipsis ... indicates that the block of code swapping one
pair of bytes is repeated . Note how the stack is used for temporary
storage of the byte from one location until the A-reg becomes
available for it again.

Other sequential routines you may write include ones to save and re
call all the registers, setting soft switches for a particular screen con
figuration, setting Monitor parameters in Page Zero, and so on.

Use the sequential routine structure to do simple, low level tasks. lt
is fast in execution. It won't handle any decisions or a large number of
repetitions, however.

To handle large numbers of repetitions, you use a loop. There are
two kinds of loops: one decides before acting; the other acts before de
ciding. The second type of loop is the easiest to write and it is called a
DO-UNTIL loop.

The DO-UNTIL loop is the kind used in BASIC where the decision
to leave the loop is made at the bottom, in the NEXT statement. Most
DO-UNTIL loops in machine code look like a BASIC FOR-loop,
when using a counter. One of the index registers is often used for DO
UNTIL loops.

As an example, here is the MOVE routine written using a loop:

MOVE:
MOVE1 :

LDX #$1F
LDA HERE,X
STA THERE,X

170 Appl~ Programmer's Handbook

DEX
BPL MOVE1
RTS

This rou ti ne copies 32 bytes, starting at HERE, to the 32 bytes starting
at THERE. The decision at the bottom of the loops is made after the
DEX instruction, which forces the Z-flag and the N-flag. Since aU
X-values wanted are positive, having values in the $00.1 F range, the
BPL will fai l to branch when the count changes from $00 to $FF.

If the range is beyond $00.7F, you cannot use theN-flag. Instead,
use the Z-flag, which is also changed by the DEX, DEY, INX, and
INY instructions:

MOVE: LDX #$AO
MOVE1: LDA HERE-1,X

STA THERE-1,X
DEX
BNE MOVE1
RTS

Fig. 3-8. The DO-UNTIL slruclurc.

This copies $AO bytes. The X-reg is initialized with $AO, which is the
number of bytes to copy, instead of one byte less. And, the operand
addresses are one less than the lowest address of interest. This is be
cause the X-reg ranges from $AO down to $01 as it copies. When it be-

-

n

-

-
-

-
-
-

-

Machine Language 171

comes zero, the loop is finished . This is better because you aren't re
stricted to $7F to satisfy the N-flag.

You can use a loop counter with Page Zero pointers as well. For an
index, use the Y -reg; this lets you use the indirect indexed addressing
mode:

MOVE: LDY #$AO
MOVE1 : LDA (HEREZ) ,Y

STA (THEREZ), Y
DEY
BNE MOVE1
RTS

Remember, HEREZ and HEREZ + I must be initialized to point to
one location before the lowest address o f the move. The same is true
for THEREZ and THEREZ + I .

Indexes are great when the count is 256 or less. But if the count is
greater than 256, you will have to use a separate counter, preferably in
Page Zero.

The DO-UNTIL structure appears in Fig. 3-8. Use it whenever you
need a loop that must repeat its action at least once.

Sometimes, you need a loop that must be able to avoid its own
action. Suppose you want to set the size of the MOVE in the call se
quence instead of forcing it with an immediate value. If the number of
bytes to be moved is zero, the DO-UNTIL loop isn't quite smart
enough to quit before moving the first byte. To handle such a job, you
use another loop structure called the DO-WHILE.

As an example of a DO-WHILE loop, here is a MOVE routine that
copies from HERE to THERE, and expects the number of bytes in the
X-reg:

MOVE : CPX #0
BEQ MOVE1
LDA HERE-1,X
STA THERE - 1 ,X
DEX
JM P MOVE

MOVE1 : RTS

172 Applei1J Programmer's Handbook

First, the CPX forces the tlags; especially the Z-flag. The BEQ will
branch to the RTS exit instruction if the X-reg is zero. So, even if this
is the fi rst time through the rout ine will exit before taking any action.
The action consists of the move followed by the decrement of the
index. After all actions, the JMP forces the loop back to the top to test
again.

Even though the DO-WHILE is not used as often as the DO
UNTiL, keep it in mind. With only a little extra programming effort
the DO-WHILE loo p will make an otherwise bug-prone loop fail-safe.
The DO-WHILE structure is shown in Fig. 3-9.

When you don't need a loop, you can make a simple decision by
us ing an IF- THEN-ELSE structure. This simple structure has a deci
sion for one of two possible actions. More complex decisions can then
be made by using a series of simple IF-THEN- ELSE structures.

The CMP experiments described earlier use th is structure. Each
routine had two possible outcomes: either the result was zero or it was
255 in value. While that particular one assumed one of the outcomes,
then replaced it with the other when called upon, you can write
IF-THEN-ELSE s tructured routines that don't assume any details of
each action.

For instance, take the experiment comparing ARGI and ARG2. If
you wrote it to call one of two possible routines, then each conse
quent ial action could be written as a separate subroutine. You would
have complete control in making the results anything you wanted for
the two outcomes.

TEST: LOA ARG1
CMP ARG2
BEQ TEST1
JSR FAILED
JMP TEST2

TEST1: JSR PASSED
TEST2: RTS

I f the branch is made, the subroutine PASSED is called and then the
routine exits. If the branch is not made, the other subroutine,
FAILED, is called. Upon return from the FAILED subroutine, a
jump to the exit point is made. So, ARG I and ARG2 are compared;
one of two subroutines - PASSED or FAI LED - is the con
sequence.

....

-

-

- Machine Language 173

-

f!!!! Fig. 3-9. The DO-WHILE slruclure.

-
-

You can make the subroutines anything you want. You can just

- make

-

r

-

and make

PASSED: LDA
STA
RTS

FAILED : LDA
STA
RTS

#$FF
RESULT

#0
RESULT

to get the same performance as the original.
The IF-THEN-ELSE structure is shown in Fig 3-10. You can use it

to separate out actions and decisions for simpler routines. This
structure can be compounded into multiple decisions when you need
complex logic.

One such complex structure is called the CASE. It extends the
simple IF-THEN-ELSE structure from two outcomes to several out
comes: three, four, or as many as needed. For example, suppose you
wanted to examine an input character from the keyboard in a graphics

174 Appl~ Programmer's Handbook

Fig. 3-10. The IF-THE -ELSE structu re.

program. You want to use the four keys to change the cursor on the
screen, but ignore all the other keys. Assuming the character is given
in the A-reg, here's the CASE routine to select one of four cursor
movement routines:

CURSOR : CMP #' I' ; if I then UP
BNE CURS1
JSR UP
JMP CU RSX

CURS1 : CMP #'J ' ;if J then LEFT
BNE CUR 52
JSR LEFT
JMP CURSX

CUR 52: CMP # 'M' ; if M then DOWN
BNE CURS3
JSR DOWN
JMP CURSX

CURS3: CMP #'K ' ;if K then RIGHT
BNE CURSX
JSR RIGHT

CURSX RTS

Each of the four characters is tested against the A-reg. If any one is
found, its corresponding subroutine is run. If none are found, no sub-

-
-

-

n
""""

-
-

-

Machine Language 175

routine is run . After running any subroutine, control is directed to
CURSX where the routine exits. The caller must give the character in
the A-reg.

Such a CASE structure isolates the decision of which routine to run
from the details of the rout ine itself. You could use this same CASE
on LORES, HIRES, or even text cursor routines. Just give it the
a ppropriate subroutines for UP , DOWN, LEFT, and RIGHT in your
program. The CASE structure itself appears in Fig. 3-11.

Fig. 3- 11. CURSOR- example of a cuse slruclure.

Another extension of the IF-THEN-ELSE structure is the range
test. The IF-TH EN-ELSE uses a branch instruction or two to make a
simple decision like one from Table 3-7. But, to see if a value fa lls
within a ra nge, you need two tests. However, there are only two out
comes - FAIL or PASS. So, you can combine the two tests you need
in one algorithm to simplify the call structure of your program .

Here is a common range test. It makes sure that a character code in
the A-reg is a letter, from A to Z.

ALPHA: CMP #'A' ;range test
BCC ALPHA2 ;from "A" to "Z"
CMP #'Z' ;inclusive
BEQ ALPHA1
BCS ALPHA2

176 Appl~ Programmer's Handbook

ALPHA 1: JSR
JMP

ALPHA2: JSR
ALPHA3 :

PASS
ALPHA3
FAIL

The first test branches if the A-reg is less than A to ALPHA2 because
that is an obvious failure. Then the Z test passes any characters equal
to Z by the BEQ to ALPHA I. This is foll owed by fai ling any that are
greater than Z by the BCS to ALPHA2.

To make any other range test, use Table 3-7 to select the two tests
you need. The range test is shown in Fig. 3-12.

Fig. 3-12. ALPHA - example or a ra nge structure.

When programming, break down the job into the simplest routines n
you can. If possible, use only one of these six structures for each
routine. Each routine should have only one entry point, the first exe
cutable statement in the routine. And it should have only one exit
point, as well. Use jumps and branches to the last instruction in the
routine, which is usually a n RTS . One of these six structures shou ld be
right for each of your routines. Use Table 3-8 to help you select the
o ne you want.

-

-

-

Machine Language 177

Table 3-8. Program Structure Selection

Structure Primary Use Advantages

Sequence Low-level High speed

Do-Until Most common loop Short, easy to write

Do-While Alternate loop Stronger test

If-Then-Else Decision Logic Easy to follow

Case Interpreters Simplifies act ions

Range Data Editors Simplifies actions

3.3.4 Methods

There a re many tricks of the trade and fancy methods used to write
routines using the structures. Here are a few of the more common
ones.

Some routines must have a constant and known execution time. For
instance, the routines that read and write bytes to the disk in DOS
must do so at intervals of exactly thirty-two clock cycles. A routine
that has such a measured execution time is called a real-time routine.

Real time is the solution for hardware service needs when times are
too short for interrupts. Or where interrupts aren't available, such as
when writing a sound generator for the built-in speaker. And, real
time can be used in utilities like the Monitor's WAIT routine at
$FC58.

To calculate the routine's execution time, use the number of clock
cycles for each instruction given in Table 3-9. Add up the total number
of cycles for the entire routine and multiply by 0.977778 micro
seconds.

Here are some short delay routines.
The shortest routine you can have is one with just an RTS instruc

tion. When called, the JSR takes six cycles, and the RTS takes six
cycles. So, the entire call takes twelve cycles.

You can increase the length of the call two cycles at a time, by in
cluding NOP instructions. For example,

WAIT: NOP
NOP
RTS

takes sixteen clock cycles to call. For longer times, just add more
NOPs.

178 App/~ Programmer's Handbook !-a

Instruction Addressing Modes and Related Execution Times
(Courtesy MOS Technolo__gy, Inc.)

lj
e

a. :1< > :1< > :a e
0: 0: ~ ~ .s c; Ill Ill

:; c; 01) 01) cc Ill 0: 0: Ill
...,

Gl Gl Gl :; :; = '1::1 Ill lj lj

= E i Q., ~ ~

= "S i .!! .::: e e = = e e e 'S. c; :a :a u E a. a. II) II) II)

u ! Ill Ill ~
.1:1 .1:1 .1:1 ! Q; g g .1:1

< N N < < < = <
AOC 4 4" 4" s• ~

AND 4 4" 4" 6 s•
ASL 6
BCC 2••
BCS 2""
BEQ 2 .. ~
BIT 4
BMJ 2 ..
BNE 2••
BPL 2 ..
BRK ...
BVC 2 ..
BVS 2""
CLC
CLD
Cll
CLV
CMP 4" 4" 6 s•
CPX 4
CPY 4
DEC 6
DEX
DEY
EOR 4 4" 4"
INC 6
INX ...
INY
JMP 3
JSR 6
LOA 4" 4• s•
LDX 4" ~ LOY 4 4 4"
LSR 6 6 7
NOP
ORA 4 4 4" 4" 6 s•
PHA
PHP
PLA 4
PLP 4
ROL
ROR
RTI 6
RTS
SBC 4" 4• s•
SEC
SED 2
SEI 2

n

Machine Language 179

Instruction Addressing Modes and Related Execution Times
(Courtesy MOS Technology, Inc.)

<; ;.< ... :0
0 .; .; ;.< ...

~ ~ .: Oi
= Oi 01) 01) 01) .. .; .; <; ..

:0 01 .. 01

= = = '1:1
.. <.J = e Cl. Cl. Cl. .~ ~ ~ ..

~ 0 0 .!! 0 = e 0 0 0 Q. Oi :0 :0 <.J "' "' 'il "' <.J .5 N .. N .&> .&> .&> .5 ~ ~
.&>

< N < < < Cl: <
STA 6 6
STX'
STY"
TAX
TAY
TSX
TXA
TXS
TYA

• Add one cycle if indexing across page boundary
''Add ont cycle ir branch is lakcn. Add one additional if branching operation crosses page boundary

You may need an odd number of cycles, such as for the pair of CLC
and BCC, which takes five cycles. So,

takes 17 cycles, and

WAIT CLC

WAIT1

WAIT

BCC WAIT1
RTS

NOP
NOP
CLC
BCC WAIT1

WAIT1 RTS

takes 21 clock cycles to call .
For longer wait times, you can use a loop. The time taken each pass

through the loop will vary with the path taken, so the calculation of
the total real time is a bit more involved. In general, the loop

WAIT:
body of n cycles

180 Appl~ Programmer's Handbook

DEX
BNE WAIT
RTS

uses n + 5 cycles each branch a nd n + 4 cycles when the branch fails.
The number of times through the loop is given by the X-reg. T he
formula is,

t = (n + 5)X + II

where, n is number of cycles in body of loop,
x is contents of X-reg when called,
t is total number of cycles, including J SR and RTS.

This calculation gives the relation between the time taken in the loop
a nd the time taken for the entire routine. Solving for x or n wi ll give
you the information needed to make a delay for any given time.

You can delay routines to control the pitch on speaker routines, to
s low the output to a printer interface, or to slow a video display like
Applesoft's SPEED = feature.

In programming, you spend most of your time working with for
mats of various data; very little t ime with a ny clever algorithms need
ing a lo t of math. So, the better organized you r data is the less
programming time needed to support it. When you combine this with
the fac t that there are on ly two kinds of data structures, both simple,
then you can avoid a lot of work by carefully structuring your data to
fo llow its own fu nction.

For example, consider the problem of code conversion. If you want
to use a n Apple computer to communicate with an IBM computer sys
tem, you must cha nge each ASCII character to an EBCDIC equivalent
before you can output it to your modem. And each character received
from the line must be changed from EBCDIC to ASCII before your
Apple routines can make use of it. An algorithm could CMP each
possible character in a "humongous" CASE structure, but there can be
as many as 128 characters to compare - a mess to program! Since the
problem appears to you in the form of a table where each entry
represents the EBCDIC code of its ordinal (position in the table), it
makes sense to use the simple code table in memory and use indexed
addressing to do the lookup. The index address

n

-

Machine Language 181

LDA EBCDIC,X

looks up a table called EBCDIC and returns the X-th entry from the
table in the A-reg. So, if each entry is the EBCDIC equivalent of its
ASCII ordina l (X-reg) then this single instruction does the job of con-

!'!"!~ verting from ASCII to EBCDIC.
To continue the example, you can use the same table to convert

from EBCDIC to ASCII when receiving from the IBM computer. This
time you have the entries that you want to match, which will give you
the position in the table. Here you need a loop to do the search.
Assuming the EBCD IC character is in the A-reg:

; largest entry
ASCII : LDX #$7F ; number of entries
ASCII1 : CMP EBCDIC,X ; WHILE not found

DO
BEQ ASCII2
DEX ; decrement o rdinal
BNE ASCII1 ; ENDWHILE

ASCII2 : RTS

the ASCII code is returned in the X-reg. If the search fails and an
EBCDIC entry can't be found (X-reg contains zero) then the ASCII
code NU L is returned, which the Apple usually ignores.

Such a table is quite simple to use. It has a fixed size and is not
changed at all by the program using it. Other tables may be variable so
that entries may be made and deleted during the program execution.
The simplest example of a variable table is a stack. You saw the
processor stack function already, where the table is in Page One and
the pointer to the next avai lable spot is in the S-reg inside the
processor. But you can make your own stack using the zeroth location
of the page as the poi nter, that is if the stack only has one page. Other
wise, use a Page Zero pointer. Two simple rout ines maintain the stack
-STACK and UNSTACK.

The STACK routine

STACK: LDX #0
STA (STAKZ,O)
INC STAKZ

;put on stack
; and push

182 Appl~ Programmer's Handbook

BNE STACK1
INC STAKZ+ 1

STACK1: RTS

places the contents of the A-reg on the stack by writing to the next
available location given by STAKZ in Page Zero. After that, it incre
ments the Page Zero pointer by one, taking care to increment the high
byte if necessary, thereby pushing the byte onto the stack. Reading
from the stack works just the opposite: popping the last byte from the
stack, then fetching it to the A-reg.

UNSTACK: LDX #$FF

DEC STAKZ ; pop stack
CPX STAKZ

BNE UNSTACK1
DEC STAKZ#1

UNSTACK1: LDX #0
LDA (STAKZ,O) ; and fetch
RTS

Stacks can be used for many kinds of data. One popular use of a data
stack is to hold parameters during subroutine calls. This keeps them
safe; in fact the routine may even call itself and keep its parameters
separate for each call.

Stacks are great where a LIFO access can be used, but won't do the
job where entries must be inserted and deleted anywhere in the table.
In that case, all entries below the insertion point must be pulled down
to make room for the new entry. Similarly, deletion consists of push
ing all the lower entries back up a notch. If not done too often, it
could be the way to go.

Another way you use tables is in computed JSRs. This is a technique
of calling one of several subroutines like you do with computed
GOSUBs in BASIC. With this method, you call a dispatching routine
that selects one of many subroutines according to a simple number in
the A-reg: 0, 1, 2, 3, The addresses of the subroutines are kept in
a table in the usual low-byte/ high-byte order. An assembler will stuff
the table for you automatically if you just list the labels, making the
method easy to use and maintain.

There are two easy ways to write a computed JSR dispatcher. The
first one uses RAM for temporary storage of the subroutine's address.

...

n

Machine Language 183

This RAM may be Page Zero, but is is not necessary; you can use Page
Three or anywhere you have space. For example,

SUBR: ow SUBRO ; list of subroutines
ow SUBR1
ow SUBR2
etc.

CALSUB: ASL ;A-reg * 2
TAX ; as 0, 2, 4, 6, ...
LOA SUBR,X
STA TEMP
LOA SUBR+1,X
STA TEMP+ 1
JMP (TEMP)

where DW is an assembler directive - pseudocode - to insert the
address location of the label as two bytes in low/ high order. The ASL
multiplies the A-reg by two, simply by shifting all bits one position
left. Some assemblers want this mnemonic to include an A as an oper
and: ASL A. The RTS of each routine called will return you to the
routine that called CALSUB in the first place.

The other method eliminated the problem of finding an unused
chunk of RAM for TEMP. Instead, the call address is put on the stack
and the routine desired is jumped to by an RTS instruction. This
works, but in a "sneakier" manner than the indirect jump method
above.

The trick to letting an RTS do the jump is to make the addresses in
the table one less than where the routines actually start. This is be
cause the RTS increments the PC-reg by one at the end of its instruc
tion. This is why the addresses of the Apple Monitor routines that are
dispatched from the top end of ROM are listed as being one less than
their start addresses. The CALSUB routine can be rewritten this way
as

SUBR : OW SUBR0 - 1
OW SUBR1 - 1
OW SUBR2-1
etc.

184 Apple& Programmer's Handbook

CALSUB: ASL ;mult by 2
TAX
LDA SUBR+1,X ;stack addr - hi
PHA
LDA SUBR,X ;stack addr-lo
PHA
RTS ;a sneaky JSR!

The address is pushed on the stack the same way as the JSR instruc
tion: hi-byte, then lo-byte. The address location is one less than the
next executable instruction as well . If you use this routine be sure to
document it.

If you have to keep a loop counter over a range beyond 256, or if
you need to keep a pointer on a more permanent basis than an index
will allow, use Page Zero. Anytime you want to reference memory
with that pointer, use indirect addressing, like: ~

LDX #0
LDA (ZPOINT,X)

Initialize the pointer by putting the address of the first memory loca
tion you will access into ZPOINT and ZPOINT + I . For instance, to
point to $4000:

LDA #$00
STA ZPOINT
LDA #$40
STA ZPOINT + 1

;low byte

;high byte

Remember, if you a re using Apple's Toolkit Assembler, use ">" for
low byte and "<" for high byte. If the BUFFER was EQUated to
$4000, you would write

instead.

LDA #> BUFFER
STA ZPOINT
LDA #< BUFFER
STA ZPOINT + 1

To increment a Page Zero pointer by one, use a routine such as: n

-
-

Machine Language 185

ZINCR INC ZPOINT
BNE ZINCR1
INC ZPOINT + 1

ZINCR+ 1 RTS

And, to decrement it,

ZDECR DEC ZPOINT
LDA ZPOINT
CMP #$FF
BNE ZDECR1
DEC ZPOINT + 1

ZDECR1 RTS

Each routine changes the low byte of the pointer first. Then, each
routine tests for a page boundary crossing. When incrementing, this is
when the low byte becomes zero; hence the BNE. When decrementing,
the page changes when the low byte becomes $FF (from $00). That is
not detected by a simple branch, so a CMP is used.

Much of the power of 6502 programming is in managing the Page
Zero pointers. Page Zero is like registers in larger processors; you can
do all kinds of things with them using indirect addressing.

3.4 INTERRUPTS

3.4.1 How They Work

Interrupts get the processor's attention . By using them, the outside
world can tell the processor when a peripheral needs service, when to
reset with initialization routines, and when to execute single instruc
tions during the debugging process. By choosing the proper interrupt
for a job and by writing the proper routine, you can control the 6502
processor.

The interrupt you would use to service a peripheral is called the IRQ
- !nterrupt ReQuest. You may, for example, have a slow printer that
needs the processor to send it characters one at a time . The IRQ can be
used to ask for these characters while allowing the processor to run
other programs at the same time.

186 Apple& Programmer's Handbook

The printer has a line to request that a new character be sent; that
line can be used to generate IRQs. The IRQ routine can then send the
character and return to the interrupted program. The entire effect is to
allow the program to run with interrupts small enough to be un
noticed. To the user, it is as if the printer received the characters with
out getting them from the processor.

This needs some smart hardware on a peripheral card. It must
enable or disable IRQs as needed. It must handle all the data and con
trol lines to the device itself. And, it must provide the IRQ routine
memory fo r you to program. The peripheral l/0 is an entire topic in
itself, and because of its importance, Section 8.2 is dedicated to it.

The interrupt that is always used in any computer is the RESET. It
runs the initialization routines needed to get the 6502 processor going
and set up the Monitor or operating system. The first thing any 6502
RESET routine must do at power up is to initialize the stack and clear
the 0-flag:

COLD: LOX #$FF
TXS
CLD

The $FF value clears the stack. Remember, push instructions like JSR
will decrement the S-reg; pull instructions like RTS increment it. If the
D-flag isn't forced clear, it may be the cause of strange bugs, making
BCD calculations instead of binary ones. All RESET routines must
have these three instructions.

Once these three instructions are done, you can write the RESET
routine to do whatever your system needs. It must be programmed
into ROM to be available at power up.

The third use for interrupts is program debugging. On the 6502, two
interrupts are avai lable for debug routines - the BRK and the NMI.
The BRK is a software interrupt and the NMI is a hardware interrupt,
like IRQ and RESET.

Some microcomputers use the NMI for debugging. The NM I is
generated once each instruction by connecting it wi th a switch to a pin
labeled ROY on the 6502. On interrupt, the NMI routine gives the
programmer a Monitor to examine registers and memory without
further interrupts. This feat ure isn't used on the Apple, so NMI could
be used as a means of gaining control of the machine regardless of the
actions taken by the current program.

-

-

-

-

Machine Language 187

Instead of using the NMI, the Apple Monitor uses the BRK to sup
port debugging. To use BRK, you insert the op code of a BRK instruc
tion into your routine at the point you want to examine. It is used
much ·like the STOP statement in BASIC. When the BRK is executed,
it causes an unmaskable IRQ interrupt and sets the B-flag. The Apple
Monitors, especially the Standard, recognize the B-flag in the IRQ
routine and save all the registers before entering the Monitor. A very
useful feature.

The interrupts: servicing hardware, handling initialization, and pro
viding debugging breakpoints give you complete control over your
computer.

Here's what happens when an interrupt occurs.
The processor will complete its current instruction before recog

nizing any interrupt. Depending on the interrupt, the processor will
fetch one of three addresses from memory, see Table 3-10.

Table 3-10. Hardware Vector Addresses

Address Vector

FFFA Vector address low for NMI

FFFB Vector address high for NMI

FFFC Vector address low for RESET

FFFD Vector address high for RESET

FFFE Vector address low for IRQ and BRK

FFFF Vector address high for IRQ and BRK

For an IRQ, the address is fetched from $FFFE.FFFF, if the I-flag
is clear. Otherwise, the interrupt is ignored until the 1-flag gets cleared
by the program. A BRK instruction will also cause the address to be
fetched from $FFFE.FFFF. The BRK is not inhibited by the 1-flag; it
sets the B-flag. Once fetched, the address is put into the PC after the
processor saves the old PC and P-reg on the stack.

Similarly, an NMI allows the current instruction to complete. Then,
it saves the PC and the P-reg on the stack. Finally, it reads the address
of the NMI routine from the vector at $FFFA.FFFB into the PC.
Nothing inhibits an NMI.

For a RESET, there is no procedure to save a current program. The
RESET is intended to service power up. The address at $FFFC.FFFD
must be in ROM as well as the routine it references. This address is
simply fetched into the PC after several clock cycles in which the 6502

188 Appl~ Programmer's Handbook

gets itself synchronized into the instruction fetch/ execute cycle.
Here is how to use the BRK instruction. When used for debugging,

as with the Apple Monitor, replace one of the instructions in your
routine with a BRK. The BRK op code is $00. Then run the routine
and you will get the Monitor prompt - "*" - when the break occurs.
At that point, you can examine memory or register contents . The
registers at the time the BRK occurred are saved by the BRK routine.
You use ctrl/ E to examine them.

When used as a software interrupt in your custom separating sys
tem, you must distinguish the BRK from the IRQ with the B-flag. If
the B-flag is set, then a BRK instruction is the cause. At the end of
your routine, you can return to the next instruction after the break .
Just use the RTI instruction; it restores the P-reg and the PC.

There is one caution to observe when using the BRK instruction.
When it occurs, the BRK bumps the PC by two locations, not one. So,
you should follow the BRK with a NOP in your code. Then, the RTI
will return you to the next instruction, following the NOP. If you
don't make this allowance, the results can be disastrous!

You can trap the BRK from other IRQs with a routine like this:

IRQS: PHP
PLA to get the P-reg
AND #$10 to isolate B-flag
BNE IRQS1 8-flag set?
JSR BREAKS yes .. break routine
JMP IRQSX

IRQS1 : no ... valid IRQ
handler here

IRQSX: RTI meanwhi le, back at the ranch

where the BREAKS routine deals with the software BRK instruction
interrupt, and I RQS I deals with IRQs from hardware sources. Both
kinds o f interrupts are ended with an RTI.

3.4.2 The Monitor Interrupts

In the three Monitor versions - Standard, Autosta rt, and Ile -

-
-

-

-

-

interrupts are little used. The exception is the RESET, which varies -

-
Machine Language 189

significantly from model to model. The NMI and IRQ are handled
essentially the same way in all three.

The NMI interrupt is exactly the same in all three Monitors. The
vector at $FFFA.FFFB points to $03FB for any user JMP instruction.
Usually, the RESET routine sets this as a JMP $FF69 to give you the
Monitor command interpreter if an NMI should occur without your
providing any routine of your own. So, to use the NMI, you must put
a JMP to your own interrupt service routine at $03FB instead.

The IRQ interrupt is vectored from $FFFE.FFFF to the Monitor's
IRQ routine. The IRQ routine saves the A-reg at $45 in Page Zero and
tests the B-flag to see if a BRK has occurred. If not, then it jumps at
$03FE, the address of your IRQ routine.

If the B-flag is set, the routine saves all registers at $46.49 and
$3A.3B in Page Zero. Then it cancels the interrupt by pulling the
P-reg, and PC from the stack. After that, it runs the break routine.

The break routine displays the PC and current instruction where the
BRK occurred. Then it displays the registers from the $46.49 loca
tions. Finally, it jumps to the Monitor command interpreter at $FF65.
In the Standard Monitor, the break routine must always be run; in
later Monitors the break routine may be replaced. To use your own
break routine, replace the $F A59 address of the OLDBRK found at
$03FO. Remember, the old Standard Monitor does not have this
replacement feature.

The IRQ/BRK logic of the Monitor is given in Fig. 3-13 for the
Autostart version. The Standard version does not have BRKV at
$03FO; control falls through to OLDBRK at $FA59 in all cases. The
lie uses the same logic as does Autostart.

The RESET routine is run whenever the Apple II is powered up or
when you use the RESET key. On the Standard Monitor, the RESET
routine simply initialized the built-in terminal. After the terminal was
initialized, it ran the command interpreter, which gave an audible
beep and a"*" prompt on the screen. A ctrl/B was used to cold start
the native BASIC; ctrl/C to warm start. If you wanted to bootstrap a
disk in Slot Six, you had to type

6ctrl/P

Also on the Standard Monitor, RESET always works the same way,
regardless of whether it comes from a power up or a keypress.

190 Apple& Programmer,s Handbook

X·REG-$46
Y·REG-$47
P·REG-$48
S·REG-S49
PC-S3A.38

SET

Fig. 3-13. IRQ/BRK logic of Autostart Monitor.

Next came the Autostart Monitor. RESET is more involved in
Autostart because it functions differently for power up. Also the key
board RESETs provide several features.

All RESETs are vectored from $FFFC.FFFD. Like the others,
Autostart clears the 0-flag, initializes the built-in terminal, and de
faults its parameters. Some initialization added to Autostart includes
setting annunciators on the games socket and clearing the keyboard
strobe.

Then, instead of going to the Monitor command interpreter, Auto
start does the following.

First, it tests the contents of $03F4. This is called PWREDUP and it
tells the routine if this is a power up or not. If it is a power up, it has a
random value. If it is a keypress, then the previous RESET will have

-

Machine Language 191

set it to the EOR of $A5 and the high byte of the BASIC warm start
address. Since this is $E003, the EOR is $45.

If it is a keypress, then it tests for the BASIC warm-start vector,
SOFTEV, at $03F2.03F3. It should be $E003. If not, it sets it to $E003
and does a cold start to the BASIC at $EOOO. If it is a warm start, it
uses the SOFTEV as an indirect jump to make the warm start.

If it is a power up, it prints the APPLE] [on the screen, initializes
the Page Three vectors- BRKV, SOFTEV, and PWREDUP- and
searches the slots for a disk controller card. It will bootstrap the card
it finds in the largest slot number. If no card is found, it does a cold
start of BASIC, using the $EOOO value it put into SOFTEV.

The three Page Three Locations are new with Autostart. SOFTEV
at $03F2.03F3 is set to $EOOO to cold start BASIC, and to $E003 to
warm start it. In either case, the high byte value of $EO is EO Red with
$A5 to make a $45 for PWREDUP at $03F4. Then, if the earlier test
of PWREDUP fails, a disk bootstrap or cold start can be chosen.

One consequence of this logic is that repeated keyboard RESETS
will force a cold start, ignoring the disk card. It is the only way to stop
the disk drive from running forever if you don't have a valid bootstrap
disk mounted.

Another consequence is the ability of the software to grab the
warm-start vector, SOFTEV, for itself. DOS does this. When boot
strapped, DOS puts $9DBF into SOFTEV and $38 into PWREDUP,
replacing the RESET routine's values. Then, if RESET is pressed at
the keyboard, the test for PWREDUP recognizes a keyboard RESET.
Then, because SOFTEV does not have the BASIC cold-start address
of $EOOO, a warm start is done by an indirect jump to SOFTEV. This
way, DOS warm start at $9DBF is run.

On the lie version, the logic is much the same as Autostart's RE
SET. The major difference is the addition of a forced cold-start test.

In Autostart, if Page Three got clobbered, or the warm entry rou
tine went wrong somewhere, the Apple would hang up. The only way
to recover is to switch the power off; repeated RESETs at the key
board won't reach BASIC or the Monitor. Unfortunately, your pro
gram is erased when RAM is powered off, and the lifetime of the
rocker power switch is shortened.

To prevent powering off to recover from a crash, the lie Monitor
has another test in the RESET routine. Before it tests the PWREDUP
byte, it examines the OPEN-APPLE key. If you press this key during
RESET, it alters PWREDUP so it forces a cold start. This overcomes
the problem nicely.

192 App/f!I!J Programmer's Handbook

In addition to erasing PWREDUP, the lie RESET routine deliber
ately erases locations in each page of RAM, throughout memory.

The logic of the Apple lie RESET is given in Fig. 3-14.

ISOFTEVI ISOFTEVI $Cn00

Fig. 3-14. Reset logic of Apple lie Monitor.

3.5 PARAMETERS

3.5.1 Passing by Value

In order to get a routine to do something specific, you may have to
give it values called parameters. Often, the routine will have a result to
give when it returns; such a result is also called a parameter. Some
routines have no parameters; they just do a specific job using
hardware. But, most routines you use have one or more parameters. -

Machine Language 193

A simple way to pass parameters to and from a routine is with the
registers. Often, only one byte is passed in the A-reg this way. The ad
vantage that registers have is that the parameter is where the routine
can access it quickly.

One example of passing a value in the A-reg is the output call
COUT at $FDED. By putting the code of the character to be output
into the A-reg, you can call COUT using a JSR. It sends the character,
still in the A-reg, to the routine of the current output device.

Another example of passing a value in the A-reg is the routine to
copy a given length of memory from HERE to THERE. In that rou
tine, the X-reg was used as the counter during the copy, but was not
set by the routine itself. Instead, it required the caller to set the X-reg
for it, so it will copy the number of bytes that it is told to copy each
time. The number of bytes is passed to that routine as a parameter -
as a value in the X-reg.

Other routines you might write and use that use the registers to pass
parameters include code converters, searchers, soft-switch setups,
graphics displays, and cursor control routines.

Instead of putting parameters into registers, you can keep them in
memory. The routine being called can use the value from the agreed
upon location and return it there as well. Parameters in memory are a
little more permanent than registers. Remember, registers are used
heavily, so you can't keep parameters there for several calls.

The Page Zero locations are ideal for working addresses. Routines
can share access to them; increment and decrement routines given
earlier are an example of using Page Zero values as parameters. Arith
metic routines can use Page Zero locations for long registers that can
contain several bytes each. Special Page Zero addressing modes give
fast access.

Often, Page Three is used in the Apple to keep parameters, es
pecially by the system. By storing keystroke characters in Page Two,
keyboard input routines pass them to other routines that scan them
for particular usage, like a BASIC parser. The Page Two block used
as a parameter storage area like this is called a buffer. DOS keeps
three file buffers at $9600.9CFF for its file management routines.

Using memory to store parameters is a good way to deal with large
amounts of data.

When you want to pass register values without destroying them, you
need the stack. This might not happen often, but when it does, you
can make the routine "bulletproor' with this method.

/94 Appl~ Programmer's Handbook

Within the routine being called, the first thing you do is push all the
registers onto the stack:

PHP
PHA
TXA
PHA
TYA
PHA

If it is an interrupt, the PHP is already done; don't include it here.
Next, you set the X-reg to point into the stack . This lets you pick up

a ny register value of the caller in your A-reg by choosing the appro
priate Page One Address:

TSX

LDA $0101,X to fetch Y-reg
LDA $0102,X to f etch X-reg
LDA $0103,X to f etch A-reg
LDA $01 04,X to fetch P-reg
LDA $0105,X to fetch (return-1)-low
LDA $0106,X to f etch (return-1)-high

You can return to the caller after pulling his registers back from the
stack:

PLA
TAY
PLA
TAX
PLA
PLP
RTS

Instead o f the PLP/ RTS pair, an RTI can be used. Do this to return
from interrupt calls; elsewhere it confuses the reader.

An easy way to pass parameter values to a routine is by listing them
immediately in the program itself. This is a common method because
of the casualness you have in calling. The routine itself needs to be
well written in order to set itself up to reach the parameter values, but

n

-

-

- Machine Language 195

this is often worthwhile. For instance, when you want to send a
!"""' command string to DOS, or a display to the screen. The proper

routines in machine language can make these tasks easier to program
than their BASIC equivalents.

Passing values immediately in the calling program is good for one
direction, caller to subroutine. Don't use it the other way. You could
invent a method of returning parameters to the caller, but it's rather
useless; you could just use a simple mailbox to greater effect and pro
gramming ease. Use this method one-way only.

Here's how such a call would be made. Suppose you had a routine
that positioned the screen's text cursor from row and column numbers

~ passed this way.

~

-

JSR GOTOXY
DFB 26
DFB 11
next instr .

;sets cursor
;column
;row

The subroutine GOTOXY has only one way of finding its parameters,
by getting the return address from the stack . To do this, it needs a
Page Zero pair of locations to store it as the pointer to the caller's
code.

GOTOXY: TSX ; look at stack
LDA $0101,X ;return addr-lo
STA A1 ;in Page Zero
LDA $0102,X ;return addr-hi
STA A1+1 ;in Page Zero

At this point, the Page Zero pointer, AI, has the location of the call
ing routine at the second address byte of the JSR. The row and
column numbers are in the following two bytes. These can be accessed
by incrementing a Y-reg or by incrementing the AI pointer itself. The
second method turns out to be the best.

LDX #0
INC A1
BNE GOT01
INC A1+1

GOT01: LDA (A 1,X) ;column

-
196 Appl~ Programmer's Handbook

STA CH ;set horiz. cursor
INC A1 -BNE GOT02
INC A1+1

GOT02: LDA (A 1 ,X) ;row
STA cv ;set vert. cursor
JSR VTAB ;moves cursor

Mission accomplished; the cursor has been moved according to the ,....
two parameters. Next, the problem is how to return.

The return address on the stack will cause the RTS instruction to
continue execution with our parameters. Somehow, it must reach the
code following the parameters instead of landing into them. If the ad
dress on the stack was replaced with the present contents o f A I , that
would work because A I points to the last parameter byte. The next
byte in the caller is the next instruction op code, so moving A I to the -
stack and doing an RTS will work fine.

Alternately, the A I pointer can be bumped once again to provide a n
address for an indirect jump. The stack wi ll have to be cleaned up by
pulling it twice to remove the J SR's retu rn, but that's simple enough.
The advantage of using the indirect jump method is that it can be
simple.

PLA ;get rid of
PLA ; return address
INC A1
BNE GOT03
INC A1 + 1

GOT03: JMP (A 1) ; retu rn

If the parameter list is long, use a subroutine to bump the pointer.
The trick to using this method of picking up parameter values is to

pass each one in order of use, preferably accessing each one from the
list once and only once. A litt le subroutine to bump the pointer and
fetch the byte is quite ha ndy when working with long or complex
stri ngs.

PICKUP: INC A1
BNE PICKUP1
INC A1 + 1

;bump addr-lo
;new page?
; yes-bump addr-hi

....

-

PICKUP1 : LDX #0
LDA (A 1 ,X)
RTS

Machine Language

; no-continue
;pickup new byte

197

T he special techniques for handling strings are not difficu lt; you can
find them in Chapter Six.

This powerful method is used in C hapter Six to manage strings, in
C hapter Seven to generate DOS commands, and it is the way BASIC
reads your commands and statements.

3.5.2 Passing by Reference

After passing parameters directly, by value, the most common
method used is passing by reference. Instead of the actual value, this
method gives the routine the address where its para meters may be
found.

Passing by reference can be done with the regi sters. The two bytes
of a n address fit into two registers, then the called routine can store
them into Page Zero with its first two instructions. This way, it has a
Page Zero pointer all set to pick up parameters using indi rect address-
ing:

SUBR: STX A1 address-low
STA A1+1 address-high
LDY #0 init . pointer

SUBR1 : LDA (A 1), Y fetch parameter byte

Here, up to a page of parameters are passed. T he caller simply puts
the address o f the parameters into the X-reg (low) and A-reg (high) to
give them to the subroutine.

Occasionally, the parameters may be in Page Zero. For example,
arithmetic routines using several bytes in Page Zero to reduce access
time . By passing the location within Page Zero in the X-reg, the sub
routine can use Zero-Page-X addressing mode to reach each byte
rapidly:

LDA $00,X reads zeroth byte
LDA $01 ,X reads first byte
LDA $02,X reads second byte
etc.

198 Apple& Programmer's Handbook

The Zero-Page-X mode is fast and has all the arithmetic and logic
instructions, making it ideal for fast arithmetic.

Yet another way of passing by reference in a register is to indicate
just which byte in a given chunk of memory the parameter of interest
lives. Suppose that the address of a parameter buffer is being passed in
the X-reg and the A-reg, like the first example. The exact byte within
that buffer could also be passed as well , using theY-reg:

SU BR STX A 1 addr-lo
STA A 1 + 1 addr-hi

SUBR1 LDA (A1},Y gettheY-thbyte

If the Y -reg is used to pass the length, it can be decremented to fetch
all bytes from the buffer.

The address only is passed in the registers, so there is enough
capacity. Parameters can be passed in both directions - caller to sub
routine and subroutine to caller.

The drawback to the register method is that you can only pass one
address per call. Alternately, you can pass by reference using memory.

Page Zero is heavily used, especially by the system in the Monitor,
BASIC, and DOS, to pass parameters by reference. These Page Zero
references are called pointers. Each pointer identifies a different
parameter. Routines use indirect addressing to reach those param
eters, especially indirect indexing with the Y -reg scanning several
bytes.

-

Some system pointers are kept in Page Three as well. And DOS, -
BASIC, and the Monitor all have pointers tucked away within their
own memory areas. These are often copied to Page Zero when calling
their routines.

Many applications use the stack to press parameters by reference;
the addresses are pushed and pulled on the stack. BASICs do this; the
Pascal system does this extensively. It is a very elegant method, so it is
suited to well-defined software designs.

A routine passing, say, two parameters to a subroutine on the stack
would call it like this:

LDA #PARM1 high byte
PHA
LDA #PARM 1 low byte
PHA

-

-
-
-
....

-

-

Machine Language 199

LDA #PARM2 high byte
PHA
LDA #PARM2 low byte
PHA
JSR SMART

The subroutine must pickup the addresses from the stack and put
them in Page Zero for access:

SMART TSX get stack pointer
LDA $0103,X Parm2-low
STA A2
LDA $0104,X Parm2-high
STA A2+1
LDA $0105,X Parm1 -low
STA A1
LDA $0106,X Parm1-high
STA A1+1

Then, it must clean up the stack, a llowing for a return:

LDA $0102,X return-high
STA $0106,X
LDA $0101,X return-low
STA $0105,X
PLA
PLA
PLA
PLA

The result is to have the parameters in Page Zero pointers that are
for the routine's use: A I and A2 used here. The return address has
been moved and the stack pointer pulled four times - two parameters
o f two bytes each. This will let you do an RTS normally.

Sometimes you have long strings or other parameters that you want
to pass to a routine from several points in your program. Passing im
mediately by value would waste a lot of space, because the string
would have to be repeated each time. If t he parameter was a choice of
buffers, it would be difficult to pass other than by reference. Such

200 AppfrjP} Programmer's H andbook

parameters are passed by stack reference, just described. Or, a n easier
method for the calling routine can pass by reference, immediately.

This works much like passing values immediately:

JSR SUBS
DW MESSAG

The DW puts the address in low byte, high byte order. The SUBS
routine must pickup the parameter as in the value passing method:

SUBS TSX
LDA $0101 ,X add r-Io
STA A1
LDA $0102,X addr-hi
STA A1+1
JSR PICKUP get parm-lo
STA A2
JSR PICKUP get parm-hi
STA A2+1
JSR PICKUP bump to next instr

At this point, the para meter address is in A2 a nd the next instruction
address in A I . To return , get rid o f the stack address a nd jump at the
AI address instead:

PLA
PLA
JMP (A 1)

clean up stack

next instruction

Remember the P ICKU P routine. It crawls th ro ugh the caller's code,
using AI, incrementing and fetching bytes.

You can pass several parameters this way. Here, A2 was used for
the first; you will need other Page Zero pointers for successive param
eters .

-

~

Machine Language 201

3.5.3 Modularity

Routines have three major parts: an initialization, an algorithm,
and an exit. The initialization part fetches any parameters, saves
registers, initializes loop counters, and anything else the algorithm
needs to do its job for the caller. The algorithm is the function of the
routine; it uses one or more of the structures developed in Section 3.3.
And, the exit returns parameters, restores registers, cleans up the
stack, and anything else needed to make a normal return to the caller.
By designing the simplest routine with these three parts, you can write
the easiest one to maintain.

To keep routines simple and easy to use, arrange them so that the
initialization is at the beginning of the memory with the first location
containing the first instruction. Don't jump into the middle of a
routine; if you must, use a JMP as the first instruction.

Algorithms are best if they use only one structure. If you must make
a compound structure, explain it in your comments. Usually, this in
volves nesting one within the other, like having a sequence within a
DO-UNTIL instead of JSRing to the sequence. Some complex struc
tures used in logic and arithmetic are given later, in Section 3.6. Other
wise, the simple structures will handle most programming needs.

The exit should be from the last instruction in the routine. Literal
data and buffer space needed by the routine can follow the exit.
Where there is a lot of detail in returning, tasks should proceed in the
inverse order of their corresponding setup. For instance, if the
initialization part saved all registers on the stack, then loaded a
parameter from memory, the return part should save the parameter to
memory before restoring all registers from the stack. The last instruc
tion is usually an RTS; it may be a JMP or an RTI, however.

When you have several routines to use, the safest way to manage
them is when they are simply written, each with only one entry point
and only one exit point. Often, branches and jumps will be needed
within the routine to meet this condition. Although that means some
extra programming, the time saved later in using such routines more
than pays for it.

Routines with clearly defined initialization, algorithm, and return
parts like this are called modular. They can be easily used as modules
with simple call sequences by other routines.

One special class of modular routines occurs where they must be
capable of interrupting themselves. An IRQ routine, for instance, may

202 Appl~ Programmer's Handbook

service hardware that interrupts often enough that there will be cases
of interrupts happening before the previous one is finished. If each
one must be serviced, the interrupt routine must be capable of inter
rupting itself. Such a class of routines is called re-entrant.

In a re-entrant routine, all registers used within it must be stacked.
Only then can further interrupts be allowed by clearing the !-flag:

IRQS PHA
TXA
PHA
TYA
PHA
CLI

Once this is done, the body of the routine may be further interrupted;
its registers are safe. When the service is complete, return by reversing
these steps:

SEI
PLA
TAY
PLA
TAX
PLA
RTI

If you use a ny Page Zero pointers, they must be constant. You can't
alter them from within . Same goes for writing to other memory loca
tions. Any memory you want to write must be saved before the CLI
and restored after the SEI. You will probably be pressed for time, so
these extra steps will hurl. Keep memory write needs to a minimum;
you must write for speed.

Never clear the I-flag in an interrupt routine that is not re-entrant.
Always set the 1-flag in re-entrant routines before restoring and re
turning.

-

Machine Language 203

3.6 ARITHMETIC

3.6.1 Number Bases

The key to understanding arithmetic algorithms is in the way num
bers are stored and represented. This way is called positional notation;
it underlies the way you handle format, make calculations and convert
numbers between different bases. You can already do these things on
paper, so reviewing the concepts will give you the understanding
needed to do them with your Apple.

Consider a whole number expressed in base ten - a decimal num
ber. For an example of 39201, you know just what number these five
symbols represent because each symbol has a different weight: the 1 is
simply one, the 3 is thirty thousand. So, the number appears to us as a
sum of five terms:

3 x 10,000 plus
9 x 1 ,000 plus
2 x 100 plus
0 x 10 plus
1 X 1

Each digit, 0 to 9, therefore represents itself times a multiple of ten.
The multiple is given by the position of the digit in the number; that's
why it's called positional notation.

Positional notation acts as a neat way to keep numbers on paper be
cause it's fast and easy to read and write. In computers, it is efficient
since the position of the digit represents the multiple of ten without
any extra storage to carry that information. It is even more efficient if
it represents multiples of two instead of ten.

By changing the base of the positional notation of numbers from
ten to two, memory can store larger numbers in the same space. But
we have to nail down our concepts of positional notation a little
tighter in order to use it in a base other than our familiar ten. Then
converting between base ten and base two for a number may be
needed. Fortunately, base two is easy to understand and program even
if it is awkward for us humans to read and write.

A number represented in base two breaks down the same way that it
would in base ten. There are only two digits possible in each position,
0 or 1, instead of the ten we had. Each position has a weight of a
power of two:

204 Appl~ Programmer's Handbook

1 x 64 plus
0 x 32 plus
1 x 16 plus
1 x 8 plus
0 x 4 plus
0 x 2 plus
1 X 1

This number is 1011001 in binary or base two form. Again, the great
est weight is attached to the leftmost digit; the rightmost digit has a
weight of one. If you broke the same number down in base ten, you
would get

8 x 10 plus
9 X 1

as its decimal representation. Positionally, you would write it as 89 -
eighty-nine. The important thing is that 1011001(base 2) equals
89(base10) because they each represent the same number, eighty-nine.

Regardless of the base, a number is represented by positional nota
tion using a set of digits: ten digits for decimal, two digits for binary
or any other base number of digits. Each position contributes a term
to the number consisting of the digit multiplied by the weight of its
position. This weight is the base raised to the power of the position.
So, eighty-nine in base two can be expanded as

1011001 =
(I X 26) + (0 X 2S) + (1 X 24) + (1 X 23) + (0 X 22) + (0 X 21) + (1 X 20)

by writing 64 as 26, 32 as 25 , etc. Note that 2° equals one.
The rightmost position is called the least significant position. For

whole numbers like we have here, it is also the units position because
its position is zero and its weight is always one. The weight of any
position is given by

(base)position

so regardless of the base,

(base)0 = 1

...

....

-

Machine Language 205

always.
In the Apple, a byte of eight bits often represents a number iti'

binary notation. With eight bits, there are eight positions from the
least significant bit on the right to the most significant bit on the left.
The least significant bit has position zero while the most significant bit
has position seven. The entire byte can represent 256 different
numbers. For example, the number eighty-nine would be represented
as 01011001. The most significant bit is in position 7 and has a weight
of 27 or sixty-four. The next bit in position 6 has a weight of 26 or
thirty-two. Similarly, the next-to-least significant bit in position 1 has
a weight of 21 or two. The least significant bit has the lowest weight, 2°
or one.

Compare this with the way we represent numbers in decimal nota
tion. A number like 39201 is short for

(3 X 1()4) + (9 X 103) + (2 X 1()2) + (0 X 101) + (1 X 100)

where the most significant digit is 3 with a weight of 10,000 and the
least significant digit is 1 with a weight of one.

This shows how positional notation works: each digit chosen from a
base number of digits and weighted by that base raised to the power of
its position.

Let's look at one more base to be sure of how positional notation
works. Let's look at base sixteen.

Base sixteen positional notation is what we use as hex notation. It is
based on sixteen digits - 0,1 ,2,3,4,5,6, 7 ,8,9,A,B,C,D,E,F. Each
digit has a successive counting value; we just added six to our familiar
ten. Now, each position will have a weight of sixteen raised to the
power of the position. For example, if 79 is a hex number, then

$79 = (7 X 161) + (9 X 16°) = 112 + 9 = 121

expands it and allows us to express it in base ten. Or,

$7F = (7 X 161) + (15 X 16°) = 112 + 15 = 127

expands the hex number 7F in decimal form. A larger number works
the same way:

206 Apple& Programmer's Handbook

$F941 (15 X 163) + (9 X 162) + (4 X 161) + (1 X 160)
15 X 4096 + 9 X 256 + 4 X 16 + 1 X 1
61440 + 2304 + 64 + 1 = 63809

It's just more work to convert to decimal notation.
The secret to converting from hex to decimal then is just to expand

the hex number using decimal notation and then use decimal arith
metic to reduce the expression.

Going the other way - converting decimal to hex - is trickier be
cause you still want to use decimal arithmetic. Take the decimal num
ber and divide it by sixteen. The remainder is the least significant digit
in base 16. Repeat until the quotient is exhausted, using the remainder
each time for the next significant digit. As an example, here is the
number we just saw:

16V63890 1
16V3988 4
16V249 9
16 V15 F
0

Remember to write remainders in hex notation: 10 as A, 11 as B, 12 as
C, 13 as D, 14 as E, and 15 as F. From the example, 63809 = $F941.

Binary numbers are usually represented as hex numbers because hex
is more compact and easier to read. Each hex digit is four bits in size
and can be converted directly. To convert, partition a hex number into
digits or a binary number into four-bit nibbles (sometimes spelled
nybbles) and look up the equivalent:

HEX BINARY HEX BINARY

0 0000 8 1000
1 0001 9 1001
2 0010 A 1010
3 0011 B 1011
4 0100 c 1100
5 0101 D 1101
6 0110 E 1110
7 0111 F 1111

The 6502 processor in the Apple has a feature that allows you to
keep numbers in either binary or decimal. Normally, we use binary

...

,...
;

...

r-
I

....

Machine Language 207

numbers and express them in hex notation, but if you want to do your
arithmetic with decimal numbers instead, you can . The decimal num
bers are represented in a special way called Binary Coded Decimal or
BCD.

Binary Coded Decimal is the way calculators store numbers. The
way that you read binary numbers using hex notation, by representing
each nibble as a hex digit, is the same way that you can read BCD
numbers. Each BCD digit is kept in a separate nibble of fou r bytes:

DIGIT BCD DIGIT BCD

0 0000 5 0101
I 0001 6 OliO
2 0010 7 0111
3 0011 8 1000
4 0100 9 1001

It looks just like hex, but without any representation for ten to fifteen,
A through F, in the nibble. When told to work with BCD, the proc
essor uses only these digits.

Each byte contains eight bits when binary representa tion is used.
When BCD is used, each byte contains two decimal digits, repre
senting numbers from 0 to 99. When the processor is instructed to add
it carries after passing 9, instead of counting to $F as in hex before
carrying. The result is a decimal representat ion that gives each byte a
capacity of only 99 instead of the 255 ($FF).

3.6.2 Addition and Subtraction

To add numbers in the Apple, you use the ADC instruction. This
instruction has a lot of addressing modes. This allows you to add
memory with the A-reg together with that in the C-flag and then to
have your sum waiting in the A-reg at the end of the instruction. The
C-flag is useful in carrying from one addition step to the next; other
wise you must always do a CLC instruction before adding. For
example:

CLC
LDA #$25
ADC #$1 3

208 App/(/!J Programmer's Handbook

results in $38 as the contents of the A-reg. And

CLC
LDA #$27
ADC #$36

gives $5D in the A-reg. Addition carries automatically from one bit to
the next; the C-flag is carried into the addition and it is set or cleared
depending on the sum. In both the above, the C-flag is cleared, but 1""1

CLC
LDA #$73
ADC #$95

would give you an A-reg of $08 with the C-flag set. The carry came
from the most significant bit of the addition.

$73 = 01110011
$95 = 10010101
sum = 00001000 + 1 carry

For an addition o f two one-by te numbers like this, the carry set tells us
that we have an ove1jlow from the addition: the result won't fit in its
space.

To learn more about single-byte addition, try the following:

TEST: CLC
LDA ARG1
ADC ARG2
STA RESULT1
BCC TEST1
LDA #$FF ;flag carry set
JMP TEST2

TEST1 : LDA #0 ;flag carry clear
TEST2: STA RESULT2

JMP $FF69 ;monitor

Try different ARGJ and ARG2 contents. Look at the sums in
RESULT! and the carrys in RESU L T2. What happens if the SEC (set
carry) instruction replaces the CLC? Try it and see.

n

-
-

Machine Language 209

You can use the SBC instruction (subtract with carry) like you use
the ADC, but with one important difference. With the ADC you ini
t ialized with a CLC; with the SBC you must ini tia lize using the SEC.

Here is an example of subtracting two one-byte numbers:

SEC
LOA #$90
SBC #$89

The result is $ 14 in the A-reg and the carry flag remaining set. The
A-reg gives the difference while the C-flag tells you if a borrow took
place to complete the subtraction.

Let's see an example of a borrow. Subtracting $80 from $7 F re
quires a borrow because $80 is greater than $7F. So, the routine

SEC
LOA #$7F
SBC #$80

results in $FF in the A-reg and the C-flag cleared. For a single-byte
subtraction, this means we had an underflow a nd the result was nega
tive. The byte only holds positive values for us (at least for now), so
the clearing of the C-flag tells us that the subtraction has no answer.

When subt racting with only positive numbers, the result can be
meaningless whenever you try to subtract a larger number from a
smaller number. If you don't range test the numbers first, the clearing
o f the C-flag tells you the subtraction underflowed. If it remains set,
then the answer is correct.

If you want to add larger numbers together, you use the C-flag to
include the carry from lower significant bytes to higher significant
bytes. For instance, add two numbers in address format (lo/ hi)
together:

CLC
LOA AOOR1
AOC AOOR2
STA AOOR3
LOA AOOR1 + 1
AOC AOOR2+ 1
STA AOOR3+1

;add low bytes

;add high bytes

210 Apple® Programmer's Handbook

BCS OFLOW
continue, sum
is OK

;trap sum overflow

The two addresses are picked up from ADDRl and ADDR2 in a mail
box, added to supply ADDR3 in the mailbox as the sum, and the over
flow case trapped by the BCS. Between adding the low-order bytes
and the high-order bytes, the C-flag is legitimately set or cleared to
carry from the least significant byte to the most significant byte.
Whatever it is, it is added together with ADDR2 + I to the contents of
the A-reg.

So, in multiple-byte addition, use the CLC instruction once and
only once, at the beginning of the first addition.

For longer numbers, you may use indexing. You could move your
arguments into Page Zero for arithmetic operations and use Zero
page-X addressing. Or, you could set pointers to them and use indirect
indexed addressing with the Y -reg. If you index, use the CLC just be
fore entering the loop; don't clear it each time from within the loop!
Note that you can't use the CPX, CPY, and CMP instructions in your
loop; they force the C-flag and interfere with the carrying. Test your
loop using the Z-flag or N-flag.

The address convention we just used has bytes ordered with increas
ing significance: the higher the byte address, the greater its
significance. Some math packages will use decreasing significance,
putting the most significant byte at the lowest address. With multiple
byte numbers, you may keep them in either order. Examples given
here will be in increasing significance so that the ideas and some code
can be used with address calculatio ns as well.

If you wanted sixteen-byte precision addition using Page Zero, this
is what the loop would look like: let ARG I, ARG2, and RESULT
have their usual meanings with sixteen bytes reserved for each.

ADD: CLC ;initial C-flag
LDX #$FO ;minus sixteen

ADD1 : LDA ARG1 + 16,X ;zero-page-X mode
ADC ARG2 + 16,X
STA RESULT+ 16,X
INX
BNE ADD1 ;$FF is byte 15
test for overflow,
etc.

-

...

-

Machine Language 211

The CPX can't be used with X = 0, I, 2, ... , 15 as you'd like to do,
because it forces the C-flag. So, use X = - 16, - IS , - 14, ... , - I
to count forward instead and when X = 0 you can leave the loop. The
$FO acts like - 16 with Zero-Page-X addressing because the high
address byte is always forced to zero. This trick won't work with other
indexing modes because the address calculation will carry you into the
next page.

There are other ways to do mul tiple-byte addit ion with a loop, but
this is probably the simplest.

Subtracting numbers la rger than one byte works just like the addi
tion of large numbers. Set the C-flag before the firs t subtraction , then
don't force it until the subtraction is finished. When a borrow occurs,
the C-flag will be zero for the subtraction in the next most significant
byte, giving a result one less than if the C-flag had been set. This is
how it completes the borrow.

The example of subtracting two addresses:

SEC
LDA ADDR1
SBC ADDR2 ;subtract low bytes
STA ADDR3
LDA ADDR1 + 1
SBC ADDR2 + 1 ;subtract high byte
STA ADDR3+ 1

BCC to trap under
flow continue,
difference is correct

follows that of the addition. Note that ADDR2 is subtracted from
ADDRI ; keep the addresses in order as subtraction does not
commute.

r"' The long loop example will work the same way as well. Replace the
CLC with an SEC; the ADC with an SBC; and use the BCC to grab
the underflow wherever BCS grabs the overflow and you have it.

Arithmetic can be done with BCD notation as easily as with binary.
At the beginning of the addition or subtraction routine, set the D-flag
with a SED instruction. At the end of the routine, clear it with a CLD
instruction. T his causes any ADC or SOC instruction to work in BCD
arithmetic instead of binary. Apart from setting and clearing the
D-flag, you don't write the routines any differently.

212 AppfrjP} Programmer's Handbook

For example, if you have an addition rout ine called ADD that
works now in binary you can write a short routine to call it:

ADDBCD: SED
JSR ADD
CLD
RTS

;set Decimal
;same routine
;clear Decimal

Then, calling ADDBCD will do the same thing as ADD, but in BCD.
You only change the ADC and SBC actions. This means you do all

your loop counts in hex, just as before. O nly the data numbers, the
ones you add and subtract with the carry, are in BCD.

Make sure you a lways have a CLD to finish off any BCD routine. If
the D- flag remains set in ordinary routines, the Apple can behave very
strangely!

3.6.3 Logic

To do multiplication and division on a 6502, as well as other tasks
requiring bit-by-bit access, you need the ability to use the logical
instructions. These are: ROL, ROR, AND, ORA, ASL, LSR, EOR,
a nd BIT. There are a few simple ways in which these instructions are
a lmost always used. These ways examine and manipulate bits, do
m ultip lication and d ivision of binary numbers, and let you work with
logical bytes of sizes other tha n eight bits: four bit BCD digi ts, for
example.

There are four instructions used for bit picking: AND, ORA, EOR,
and BIT. They have many addressing modes a lthough only a few will
be cited here. With them, you can isolate bits from a byte for examina
t ion, set any one, or clear any one. They use Boolean logic to do these
things. The AND results in each bit in the A-reg being set only if both
the original bit and the corresponding bit in the memory byte are set;
otherwise, AND results in a zero bit. The ORA results in each bit in
the A-reg being cleared only if the original A-reg bit and the memory
bit were both clear to begin with; otherwise the bit is set. With the
EOR, the result bit is set only if the original A-reg bit and the memory
bit are different; otherwise, they are the same - both set or both clear
- causing the bit to be cleared.

One common use of the EOR is complementing the A-reg value.
Complementing sets each byte that was clear and clears each byte that

-

-

"""

Machine Language 213

was set. For instance, the complement of $EF is $10 because the first
has only bit 4 set while the second has only bit 4 clear. The instruction

EOR #$FF

does that. Any bit that was set is the same as the bit in $FF, so it gets
turned o ff. And , a ny bit that was clear is d ifferent than the same bit in
$FF, so it gets turned on.

The BIT instruction is a lot like the CM P, except it does not alter
the A-reg at all; just the P-reg. More about that la ter.

To illustrate the actions of these instructio ns, the immedia te mode
of addressing is shown where possible. Just remember, you can use
any one you want.

The ORA instruction turns bits on in the A-reg. To set a ny given
bit, use a value, ca lled a mask, that has all bits clear except the one to
be tu rned on . For instance,

ORA #$80

sets bit 7 without affecting any other bit in the A-reg. To set other bits ,
see Table 3-11.

Table 3-11. Setting Bits in A-reg

Dit Instruction

0 ORA #$01

I ORA #$02

2 ORA #$04

3 ORA #$08

4 ORA #SIO

5 ORA #$20

6 ORA #$40

7 ORA #$80

The AND instruction turns bits off in the A-reg. To clear any given
bit, use a mask that has a ll bits set except the one to be cleared. To
clear bit 7, for example, use

AND #$7F

214 Apple® Programmer's Handbook

Table 3-12. Clearing Bits in A-reg

Bit Instruction

0 AND #$FE

I AND #$FD

2 AND #$FB

3 AN D #SF7

4 AN D #$EF

5 AND #$ DF

6 AND #$ BF

7 AND #$7 F

To clear any other bit, see Table 3-12.
The EOR - Exclusive-OR - flags mismatched bits . Often, it is

used to make a checksum of a block of data. The A-reg is set to $FF,
all bits set , before EORing all bytes in the block together. The final
value is called the checksum and is kept to compare against future
checksums o f the same data. The altering of just one bit in the entire
block of da ta will cause the checksum to change, revealing that an
error exists. Both DOS and Monitor tape routines use such checksum
calculations and tests.

The BIT instruction is unique to the 6502. Mainly, it tests a memory
location's value without altering the A-reg. You can keep a mask to be
ANDed with various memory locations in the A-reg a nd test each
location without destroying your mask each time. The AND operation
performed by the BIT instruction only changes the Z-flag:

LDA #MASK
BIT MEMORY1
BEQ MATCH1
BIT MEMORY2
BEQ MATCH2

Very useful for status fl ags testing in periphera l chips; see Chapter
Eight.

Two other flags altered by the BIT instruction are the N-flag and
the V-flag - bit 7 and bit 6 of the P-reg. T hese bits are simply copied
from memory. In use, suppose you had a character in the A-reg you
don't want disturbed. Now, suppose you wanted to look at severa l

-

-

-

-

""'

n

Machine Language 215

peripheral chips to see which one is active. The active one has bit 7 set
in its status register, so you just look at the chips' status registers :

BIT STAT1
BMI IRQS1
BIT STAT2
BMI IRQ2

In each test, if the device is on, it sets theN-flag when addressed from
a BIT instruction. The A-reg remains unaltered.

A common use of the BIT instruction is in clearing the keyboard
strobe:

GET LDA $COOO keyboard character
BPL GET until keypress
BIT $C010 clear strobe
AND $#7F make positive ASCII
RTS

When the BIT instruction executes, the keyboard character is in the
A-reg. The BIT does a read at $CO lO without actually loading any
register. Apple's keyboard hardware needs the read instruction at that
address, but you don't need any register changed. The routine ends
after turning off bit 7 of the character with the AND instruction.

To test bits 6 and 7 of a byte, use the BIT instruction . Use BPL and
BMI for bit 7; BVC and BVS for bit 6. To test any bit, use the A-reg
with AND

LDA #$04 Mask bit 2
AND MEMORY
BNE BITON
BEQ BITOFF

To test a pattern of bits, make up that pattern in a mask:

LDA #$16 Mask bits 1. 2. and 4
AND MEMORY
BEQ BITSOFF

216 Apple® Programmer's Handbook

The BNE here only tells you that at least one of those three bits was
set. If you need an exact match, use the CMP instruction; a BEQ will
branch if they match exactly.

Binary numbers can be multiplied by using 6502 instructions. To
multiply a single byte by two, only one instruction is needed - the
ASL (see Fig. 3-15). Called Arithmetic ~hift Left, the ASL increases
the position of each bit in the byte by one. Bit zero, the least signif
icant bit, is replaced by a zero value. Bit one is replaced by the former
value of bit zero, bit two is replaced by the former value of bit one,
and so on. Bit seven is moved into the C-flag. The result is to multiply
the byte by two, by shifting each bit one position left.

C FLAG

MEMORY

Fig. 3-15. The ASL instruction.

If the byte was $80 or greater, the high-order bit sets the C-flag,
indicating an overflow from the multiplication. The resulting byte is
always even, regardless of its original value.

The ASL operates on either memory or accumulator. Some as
semblers want you to write ASL A for the accumulator mode; others
want only ASL as the mnemonic with no explicit operand. Check your
assembler's manual. In memory, ASL comes in Zero Page, Zero Page
X, absolute, and indexed-X addressing modes. Aside from multiplica
tion, you can use the ASL to examine bits one at a time from a byte,
scanning left to right.

Another instruction will shift right instead of left. This is the LSR
or ,bogical.S,hift Right (see Fig. 3-16) you can use to divide a byte by
two or to pick up bits from a byte from right to left.

The LSR shifts each bit one position to the right. Bit seven is re
placed by zero and the old contents of bit zero moves to the C-flag. Bit
zero is replaced by bit one, bit one is replaced by bit two, and so on. In
interpreting the result, if the C-flag is set then the original byte was
odd, otherwise it was even. The resulting byte is always less than $80

Machine Language 217

C FLAG

MEMORY

Fig. 3-16. The LSR instruction.

because bit 7 becomes zero. For the same reason, theN-flag is always
zero after an LSR.

The shifts work with single bytes. LSR divides by two, results in
zero bit 7 and old bit zero in the C-flag. ASL multiplies by two, results
in zero bit 0 and old bit 7 in the C-flag.

If you have a large number to multiply or divide, or you want just to
shift several bytes at a time to access their bits, you need another pair
of instructions - the rotates. There are two: ROL for ROtate 1eft
(Fig. 3-17) and ROR for ROtate Right (Fig. 3-18). They let you use the
C-flag to carry the bit that you shifted out of a byte into the next byte.
So, instead of forcing a zero bit into the other end, the C-tlag content
is used. A couple of examples should make this clear.

MEMORY

Fig. 3-17. The ROL instruction.

Suppose you rotate a byte containing 11000100 with the C-flag con
taining 1. Using the ROR instructions, the result would be 11100010
with C-tlag = 0. The C-flag became bit 7, all bits were shifted right
one position, and bit 0 became the C-flag. Another rotate right would
give you 01110001 with C-flag = 0.

218 Appl~ Programmer's Handbook

MEMORY

Fig. 3-18. The ROR instruction .

The rotate left reverses the action of rotating right. If byte was
00100001 , C-flag of 1, then ROL would give you 01000011 with 0 in
the C-flag.

-

-

Here's how you use the rotates in a loop to shift a field of several ~
bytes one bit position at a time. The loop for shifting right in descend-
ing order of significance is

RIGHT: LDX #0 - LENGTH
RIGHT1 : ROR FIELD+ LENGTH,X

DEX
BNE RIGHT1
RTS

where the bit to be rotated into FIELD is in the C-flag when called,
and the bit from the other end is in the C-flag upon return. FIELD is
the label for the bytes which must be in Page Zero. LENGTH is the
number of bytes in FIELD. The ROR must be assembled as Zero
Page-X addressing mode. The X-reg points to the bytes because of the
wrap-around address calculation that this mode makes. See multibyte
addition above for a description of how this works .

Rotating the C-flag with a FIELD in the other direction, using
ROL, is a little simpler.

LEFT: LDX #LENGTH
LEFT1 : ROL FIELD - 1,X

DEX
BNE LEFT1
RTS

-

Machine Language 219

The FIELD is shifted left in descending order of significance as well.
This method of rotation is used in multiplication and division

algorithms, in handling BCD digits, in binary/decimal conversion
routines, and in manipulating floating-point numbers.

3.6.4 Handling Numbers

Most numbers you deal with in programming are simple binary
natural numbers. They have fixed positional notation, they are in
binary, represented usually in hex notation, and they don't have any
sign (+I-); they are all positive.

Usually, binary natural numbers are small, taking only one or two
bytes to contain them. They are used for addresses and indexes in ma
chine programs. For pointer manipulation, you need only to know
how these numbers work.

For applications, other numbers are needed. Integers, large and
small numbers are used. Sometimes, calculations must be made in
decimal. Three other systems are used for these purposes: integers,
BCD, and floating-point.

For binary natural numbers, you can use the increment and
decrement routines to bump Page Zero pointers. Then, if you need to
calculate an offset, you can add the addresses together like the addi
tion examples show. Multiplication is needed to create your own table
lookup methods, so one is given in Example 3-1. By way of compari
son, the divide routine in Example 3-2 works in a similar fashion. Play
with them first to be sure you know just what they can do for you.

The binary numbers described so far have all been unsigned; that is,
they are positive numbers only. If one bit in a number is reserved to
represent an algebraic sign - set for negative, clear for positive -
then you could use the number as an integer. You can, because the
6502 arithmetic supports signed number operations.

Numbers can be signed as base two integers. The sign bit is bit 7 in a
one-byte number. In a two-byte integer, the sign appears in bit 7 of the
most significant byte. This leaves fifteen bits for the size of the
integer. For one-byte integers, the size fits into seven bits. Integers
have sign and size; unsigned numbers have size only. To do this,
integers only have one-half the size of an unsigned number in the same
space. One-byte numbers can represent an unsigned number from 0 to
255 or it can represent an integer from - 128 to + 127. Similarly, two
bytes can hold unsigned numbers from 0 to 65,025 or integers from

220 Apple® Programmer's Handbook

Example 3-1.

SOURCE FILE:
0000:

EXAMPLE 3.1

0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:

1 *******************************
2 * EXAMPLE 3.1 *
3 * INTEGER MULTIPLY ROUTINE *
4 * *
5 * USES $50.55 IN PAGE ZERO *
6 * LEAVES Y-REG UNCHANGED *
7 * TO CALL: *
8 * $50.51 <--- X VALUE *
9 * $52.53 <--- B CONSTANT *

10 * $54.55 <--- M MODULUS *
11 * JSR MULT *
12 * $$50.53 ---> Y RESULT *
13 * WHERE *
14 * Y = H*X + B *
15 * ALL NUMBERS IN (LO,HI) ORDER*
16 * AND UNSIGNED. *
17 *******************************
18 *
19 *

NEXT OBJECT FILE NAME IS EXAMPLE 3.1.0BJO

1000: 20 ORG $1000 FOR TEST
1000: 21 *
1000: 22 *
1000:A2 10 23 MULT LDX #16
1002:18 24 CLC
1003:26 52 25 ROL $52
1005:26 53 26 ROL $53 INITIAL! ZE
CARRY
1007:66 53 27 MULT1 ROR $53
1009:66 52 28 ROR $52 SHIFT BX IN
TO CARRY
100B:66 51 29 ROR $51
1000:66 50 30 ROR $50
100F:90 OD 31 BCC MULT2
1011: 32 * A BIT FROM X-VALU IS DETECTED.
1011: 33 * ADD MODULUS AS THE PARTIAL
1011: 34 * PRODUCT TO B •
1011:18 35 CLC
1012:A5 52 36 LDA $52
1014:65 54 37 ADC $54
1016:85 52 38 STA $52
1018:A5 53 39 LDA $53
101A:65 55 40 ADC $55
101C:85 53 41 STA $53
101E: 42 * NEXT BIT SHIFT
101E:CA 43 MULT2 DEX
101F:10 E6 44 BPL MULT1
1021:60 45 RTS

*** SUCCESSFUL ASSEMBLY: NO ERRORS

- 32,768 to + 32,767. The two-byte integer is what you find in most
BASICs like Apple's INTEGER and in Applesoft.

,...

~

~

~

Machine Language

t:xample 3-2.

SOURCE
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:

FILE: EXAMPLE 3.2
1 *******************************
2 * EXAMPLE 3.2 *
3 * INTEGER DIVIDE ROUTINE *
4 * *
5 * USES $50.55 IN PAGE ZERO *
6 * LEAVES Y-REG UNCHANGED *
7 * TO CALL: *
8 * $50.51 <--- NUMBER *
9 * $53 <--- DIVISOR *

10 * JSR DIVID *
11 * $50.51 <--- QUOTIENT *
12 * $52 <--- REMAINDER *
13 * ALL NUMBERS IN (LO,HI) ORDER*
14 * AND UNSIGNED. *
15 *******************************
16 *
17 *

NEXT OBJECT FILE NAME IS EXAMPLE 3.2.0BJO

1000:
1000:
1000:
1000:A2 10
1002:A9 00
1004:85 52
1006:18
1007:26 50
1009:26 51
100B:26 52
lOOD:CA
100E:30 OB
ED
1010:A5 52
1012:38
1013: E5 53
ACT
1015:90 FO
ws
1017:85 52
TRACT OK
1019:80 EC
1018:18
101C:66 52
EMAINDER
101E:60

18
19 *
20 *
21 DIVID
22
23
24
25 DIVIDl
26
27
28
29

30
31
32

33

34

35
36 DIVID2
37

38

ORG $1000

LDX #16
LDA #0
STA $52
CLC
ROL $50
ROL $51
ROL $52
DEX
BMI DIVID2

LDA $52
SEC
SBC $53

BCC DIVIDl

STA $52

BCS DIVIDl
CLC
ROR $52

RTS

*** SUCCESSFUL ASSEMBLY: NO ERRORS

FOR TEST

NUMBER-LO
NUMBER-HI
REMAINDER

WHEN FINISH

RESIDUE

TRIAL SUBTR

IF IT BORRO

POST IF SUB

ALWAYS

NORMALIZE R

221

With integers, the N-flag has meaning. It flags the result of an in
struction as having the sign bit, bit 7, set or cleared. If set, then the
N-flag is also set and indicates a negative result. If clear, theN-flag is
cleared to indicate a positive result. The BMI and BPL instructions
then make sign testing easy.

222 Appl~ Programmer's Handbook

When doing addition or subtraction, either can result in underflow
or overflow. The single byte or the high-order byte must be tested for
overflow or underflow as in the unsigned case, but the C-flag won't
work. The problem with the C-flag is that it detects overflow from bit
7 only. With signed numbers, overflow occurs from bit 6; it overflows
into sign bit 7 and destroys the sign. A special flag is provided so you
can detect overflow from bit 6; it is the V-flag. Test the V-flag with a
BVS branching to your error handler immediately after adding or sub
tracting signed numbers. You still use CLC before adding, and SEC
before subtracting, but always test for the V-flag set to trap overflow
or underflow, regardless of the operation.

The C-flag works the same with signed numbers as far as carrying
arithmetic from low-order bytes to high-order bytes. When numbers
are unsigned, the C-flag tells you if underflow or overflow occurred.
When numbers are signed, the V-flag tells you; the C-flag does not.
The branches on error are: BCS for unsigned addition, BCC for un
signed subtraction, and BVS for signed addition or subtraction.

Unsigned arithmetic can be binary or BCD; signed arithmetic is
binary only, no BCD. Signed numbers are used in integer arithmetic in
BASIC, store compactly, and use the V-flag for overflow detection.
This is summarized for you in Table 3-13.

Table 3-13. Arithmetic Flags

Flag Addition Subtraction

Must be cleared first Must be set first

Carries from byte to byte Borrows from byte to byte

c Unsigned overflow flagged by a I Unsigned underflow flagged by a 0

v Signed overflow flagged by a I Signed underflow flagged by a 0

There are two areas of application where you will find BCD format
numbers useful and even preferable to the usual binary format. One is
digital hardware. Many devices come with BCD outputs that are con
verted to seven-segment displays. By picking up the four lines per digit
from the gadget, you can interface to the Apple and work with its
output using BCD software. Another place where you want to use
BCD is when base 10 precision is needed. Business calculations done
in BCD don't require adjusting for the errors from conversion back to
decimal before display. Some numerical methods that mathematicians
make may be easier and simpler to program in BCD because of the
ease of display.

-
-
-

n

Machine Language 223

On the other hand, BCD requires more storage for a given size
number. In the old days when numbers were kept in "electronic
brains" where each bit needed a 12AT7 tube to hold it, this was im
portant. Binary saved space and space was money, time, and heat dis
sipation. Clever efficient binary arithmetic was the result we inherited.
But with cheap, plentiful memory in the Apple, the choice is yours if
you want BCD instead.

BCD is formatted as two decimal digits per byte. Each byte is di
vided into two nibbles of four bits each. The lowest nibble is bit 0 to
bit 3 and contains the least significant digit; the high nibble is bit 4 to
bit 7 and contains the most significant digit. Several bytes grouped to
gether hold long numbers, usually in descending order of significance.
A dump of a multibyte BCD number can be read directly. For
example,

lFOO: 23 18 40 00

dumping a BCD number a t $1FOO.IF03 is read as twenty-three
million, one hundred eighty-four thousand. Simple.

Calculations in BCD a re as easy as those in binary. Just use SED be
fore any loop or sequence using ADC or SBC instructions that you
want to work in decimal. Be sure to CLD immediately in the code
where finished with decimal calculations.

Formatting is much easier than binary. The trick is to have a couple
of routines that put the low nibble of the A-reg into a field of BCD
and fetch a nibble from the field to the A-reg. For example, here is a
routine to rotate the ent ire field by one nibble, four bits, with the low
nibble of the A-reg (see Fig. 3-19). A left rotation, the routine puts the
A-reg into the least significant digi t and fetches the most significant
digit to the A-reg.

A REC FIELD

BEFORE ~ I 3 2 I I 0 I 9 8 I 7 6 I

A-REC FIELD

AFTER ~ I 2
I I 0

9 I 8 1 I 6 0 I
FiJl. 3-19. Left shift of fie ld into A-reg.

224 App/r/8 Programmer's H andbook

NLEFT: ASL A ;move digit
ASL A ;from low nibble
ASL A ;to high nibble
ASL A ;in A-reg
LOY #4

NLEFT1 : ROL A ; rotate A-reg
JSR LEFT ;rotate FIELD
DEY
BNE NLEFT1 ;repeat four times
ROL A ;last one from C-flag!
RTS

The LEFT routine to rotate a field by one byte is used. The corre
sponding RIGHT routine can be used to do the same rotation of a
nibble. This time, the A-reg adjustment is made a fter the rotation.

NRIGHT: CLC
LOY #4

NRIGHT1 : ROR A ;rotate A-reg
JSR RIGHT ;rotate FIELD
DEY
BNE NRIGHT1 ;repeat four times
ROR A ;last one!
LSR A ;move digit
LSR A ;from high nibble
LSR A ;to low nibble
LSR A ;on A-reg
RTS

If you write your own NLEFT and NRIG HT routines, you can simply
imbed the LEFT a nd RIGHT routines and avoid the JSR/ RTS in
structions.

When you work with BCD, you will find the conversio n to display
characters simple. See Example 3-3 .

Working with bo th binary and BCD requires the use of conversion
from b inary to BCD. Example 3-4 does this.

Use the two examples just given to write a conversion from BCD to
binary. Then you have a ll the little utilit ies you need to work with
BCD.

-

,...

-

-

~

,.,

~

,__

~

,..

~

,..

f-t

~

Machine Language 225

Example 3-3.

SOURCE FILE: EXAMPLE 3.3
0000: 1 *********************************
0000: 2 * EXAMPLE 3.3 *
0000: 3 * CONVERT BINARY TO DISPLAY *
0000: 4 * *
0000: 5 * USES $50.53 OF PAGE ZERO *
0000: 6 * CALLS DIVID OF EXAMPLE 3.2 * 0000: 7 * TO CALL: *
0000: 8 * $50.51 <--- BINARY NUMBER *
0000: 9 * JSR BDISP *
0000: 10 * STRING.STRING+4 ---> *
0000: 11 * A STRING OF FIVE CHARS *
0000: 12 *********************************
0000: 13 *
0000: 14 *
1000: 15 DIVID EQU $1000 TEST LOCATI
ON
0000: 16 *
0000: 17 *

NEXT OBJECT FILE NAME IS EXAMPLE 3.3.0BJO

1040: 18 ORG $1040 FOR TEST
1040: 19 *
1040: 20 *
1040:A9 OA 21 8DISP LDA #10
1042:85 53 22 STA $53 DIVISOR
1044:AO 04 23 LDY #4
1046:20 00 10 24 BDISP1 JSR DIVID DIVIDE BY T
EN
1049:A5 52 25 LDA $52 GET REHAIND
ER
1048:09 80 26 ORA #$80 TO HAKE DIG
IT
1040:99 54 10 27 STA STRING,Y
1050:88 28 DEY
1051:10 F3 29 BPL BDISP1
1053:60 30 RTS
1054: 31 *
1054:80 80 80 32 STRING ASC "00000"
1057:80 BO

*** SUCCESSFUL ASSEMBLY: NO ERRORS

The alternative to integers for arithmetic data is floating-point
representation. Floating-point is good for scientific and engineering
applications; it provides a wide range of values without the need for a
large number of bytes to hold it.

If you work with very large or very small numbers, you appreciate
floating-point. A large number like 9.4605xl015

, which is the number
of meters in a light-year, or 6.62620xl0- 34 (Plank's constant, MKS)
could not be kept in a reasonably-sized chunk of memory. They would
need too many zeros, zeros that don't tell you anything except where

226 Apple® Programmer's Handbook

Example 3-4.

SOURCE
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:

FILE: EXAMPLE 3.4
1 *******************************
2 * EXAMPLE 3.4 *
3 * CONVERT BCD TO BINARY *
4 * *
5 * Y-REG IS LEFT UNCHANGED *
6 * TO CALL: *
7 * A-REG <--- BCD 00 TO 99 *
8 * JSR DECBIN *
9 * A-REG ---> BINARY $00-$63 *

10 * *
11 *******************************
12 *
13 *

NEXT OBJECT FILE NAME IS EXAMPLE 3.4.0BJO

1000: 14 ORG $1000 FOR TEST
1000: 15 *
1000:A2 00 16 DECBIN LOX 10 TO COUNT
NS
1002:C9 10 17 DECB1 CMP #$10

TE

1004:90 06 18 BCC DECB2 NO MORE TEN
s
1006:38 19 SEC
1007:E9 10 20 SBC #$10 REMOVE TEN
1009:E8 21 INX
100A:DO F6 22 BNE DECB1 ALWAYS
100C: 23 *
100C: 24 * NUMBER OF TENS IN X-REG
100C: 25 *
100C:CA 26 DECB2 DEX
1000:30 05 27 BMI DECBJ NO MORE TEN
s
100F:18 28 CLC
1010:69 OA 29 ADC I$0A ADD TEN
1012: DO FS 30 BNE DECB2 ALWAYS
1014: 31 *
1014: 32 * BINARY NUMBER IN A-REG
1014: 33 *
1014:60 34 DECB3 RTS

*** SUCCESSFUL ASSEMBLY: NO ERRORS

the decimal point is located. The five or six significant figures need to
be stored, and another number giving the power of ten can fit into one
byte only. So, the fixed decimal point that uses positional notation to
give the number's size is replaced by a byte giving the position. This
byte is separate from the other figures of the number and is called the
exponent of the number.

,...

~
I

""'
,...

~
l '
j

~

,....
I

Machine Language 227

In floating-point form, the length of a light-year would be written
as

0.94605 E 16

and Plank's constant as

0.66262 E - 33

Each floating-point number has two parts: a mantissa that is always a
proper fraction, between zero and one, and an exponent that is the
power of ten that weighs the number. Applesoft displays its floating
point numbers this way when they are large or small. It is close to the
way they are actually stored in the Apple.

The mantissa part of the floating-point number is left-justified; that
is, it has no leading zeros. It is a fraction between zero and one. So,
the leftmost digit (in base 10) is the tenths, then the hundredths, then
the thousandths, and so on. Most packages keep the mantissa in
binary, so the leftmost bit is the half, followed by the quarter, then the
eighth, the sixteenth, the thirty-secondth, and so on, from left to
right. Several bytes may be used and one bit or entire byte must be
designated for the algebraic sign. Often, a left-justified number like a
floating-point mantissa is called normalized. The routines that do the
normalization use the rotates, especially the ROL instruction. As long
as the number of shifts needed is counted, the exponent of the number
can be adjusted to preserve its value.

The exponent part is best kept as a signed number in one byte. This
gives possible values of - 128 to + 127 with the 6502 arithmetic made
easy. Multiplication and division of exponents are easy - add
exponents when multiplying and subtract them when dividing.
Normalizing the mantissa means decrementing the exponent for each
left shift, incrementing it for each right shift. With the exponent easy
to maintain, operations on floating-point numbers are almost as fast
as those on fixed-point numbers.

Floating-point numbers can be kept in either binary or BCD form.
If BCD, the exponent is the power of ten and is itself usually in binary.
the mantissa in BCD is usually lo~g to accommodate many figures,
sixteen or thirty-two being common. BCD is popular for business to
avoid roundoffs when converting to and from binary. Typically,
binary floating-point packages like Applesoft have four bytes used for

228 App/~ Programmer's Handbook

a mantissa and one byte for an exponent, the entire number occupying
five bytes.

Floating-point is mainly used for scientific calculations, and it is the
main format for Applesoft numbers. It is possible to have BCD float
ing-point as well; the best usage of each format is given in Table 3-14.

Table 3-14. Number Formats

Fixed Point Floating Point

Binary Internal program Most scientific

BCD Instrumentation Precision scientific

Accounting

-

! I

I

....

-
-

CHAPTER FOUR

Applesoft BASIC

4.1 THE LANGUAGE

Here are the Applesoft statements and functions for your reference.
These are verb keywords; their objects are called their arguments. The
kind of argument used in each case varies, so several forms of the
same verb can be used. Lower case italic is used for stating the argu
ment type; where an example is more appropriate, only upper case is
used. To locate a verb for a specific job, use Table 4-1. All verbs are
given in alphabetical order for easy lookup .

ABS(expr) is a function that returns the absolute, positive value of
the expression.

ASC(string) is a function that returns the positive ASCII code
number of the first character in the string.

ATN(expr) is a function that returns the arctangent of the
expression. The arctangent angle is in radians.

CALL(expr) statement will execute a machine-language routine.
The address of the routine must be the value of the expression: for ex
ample, CALL - 151.

CHR$(expr) is a function to get a character code to become a string.
Argument must be the positive ASCII code and the function returns
the single character string. This is the inverse function of ASC.

CLEAR is a statement that clears all variables and the stack.
COLOR=(expr) is a statement to set the LORES display color.

Value should be from zero to fifteen.

229

Program Flow Input/Output

& GET ...
CALL. .. IN# ...
DEF FN ... INPUT ...
END ... LOAD
FOR ... - ... POL(
TO ... STEP ... PEEK(
GOSUB ... POKE ...
GOTO ... PR# ...
IF ... GOTO ... PRINT ...
IF ... THEN ... or? ...
ELSE ... RECALL ...
NEXT ... SAVE
ONERRGOTO .. SH LOAD
POP SPC(*
REM ... STORE ...
RESUME TAB(*
RETURN WAIT(
SPEED ...
STOP
USR(

• Used only in PRINT

1) J . "] 1

Table 4-1. Applesoft Command Sets

Screens Variable Control Math, String
Functions

FLASH CLEAR ABS(
HOME DTA ... ASC(
HTAB ... DIM ... ATN(
INVERSE FRE(COS(
NORMAL READ ... CHR$(
POS{ RESTORE EXP(
TEXT INT(
VTAB ... LEFT$(
COLOR= ... LEN(
GR LOG(
HLIN ... MID$(
PLOT ... RIGHT(
SCRN(RND(
VLIN ... SON(
DRAW ... SIN(
HCOLOR ... SQR(
HGR STR(
HGR2 TAN(
HPLOT ... VAL(
ROT= ...
SCALE= ...
XDRAW ...

1 1 ·-) I -1

Assignment
Symbols

LET
AND
OR
NOT
()

=
+
-
*
I
A

. I -)

Edit/Debug

CtrlC,
CtrlX and reset
CONT
DEL. ..
HIMEM: ...
LIST ...
LOMEM: ...
NEW
NOTRACE
TRACE
RUN ...

.. 1

~
c

~

~
~
4'
~ a
~
~
~
c.,'"

~
:::s
§:
c c
~

] - 1

Applesoft BASIC 231

CONT is a statement used in immediate mode to continue the exe
cution of a program that was STOPped. It works after ctrl/C and
END have halted the program as well.

COS(expr) is a function that returns the cosine of the expression.
The value of the expression must be in radians.

DATA value, value, value, . . . is a statement used to create a list of
values for use by the READ statement. One or several values may be
listed, as needed. They may be any type, but must be matched by ap
propriate variables in the corresponding READ statement. Strings
containing alphabetics only need not be in quotes, but it is safest to
quote all strings as a habit.

DEF FN fpvar(fpvar) = expr is a statement to define a function.
Examples of useful function definitions like DEF FN AD(X) =
256*PEEK(X + 1) + PEEK(X) appear in Chapter One. The variable
called X in this example is a dummy variable, and so X remains avail
able for use; it is not consumed by the function definition.

DEL line, line is a statement that deletes program lines. Both the be
ginning line named and the ending line named are deleted,

DIM var size, var size, ... is a statement to create dimensioned
variables. One or more may be declared. The variable named may be a
floating-point number, an integer, or a string. The size may have any
order; each order may have any dimension. For example, DIM
TH(5,9,3) defines TH as a floating-point array of order three, dimen
sions 6, 10, and 4. Note that the array will be addressed as TH(i,j,k)
where i is a value from zero (not one) to five, j is a value from zero to
nine, and k is a value from zero to three.

ORA W expr AT expr,expr is a statement to draw a shape at a given
point on the HIRES screen. The AT expr, expr is optional; not using it
will cause the current plotting position to be used instead. See Chapter
Six for details.

END halts program execution. Unlike STOP, it doesn't display any
message. By convention, one END statement at line 32767 is used for
normal program termination.

EXP(expr) is a function that returns the value of e raised to the
power given. Note e = 2.7182818, as the base of natural logarithms.
This is the inverse function of LOG.

FLASH is a statement to make further PRINTed characters flash
on the screen. Since the flash codes are used differently in lowercase
displays like the lie SO-column card, this won't always work the way it

, should. Undo it with NORMAL.

232 Appl~ Programmer,s Handbook

FN fpvar(expr) is a program-defined function to evaluate the ex
pression in its own way. See DEF FN. The argument passed as expr
will replace the dummy variable in the DEF FN statement.

FOR fpvar = expr TO expr STEP expr is a statement to begin a
loop. Loop counter fpvar must be floating-point; don't use an integer
variable. Loop ends whenever fpvar value is outside the range of ex
pressions. The STEP is optional, default is + 1. Each FOR must have
a NEXT to end the loop.

FRE(O) is a function that returns the amount of free memory, in
bytes, remaining to the program. In doing so, it recovers any old
strings that have been reassigned and makes their space available
again. This garbage collection should be done in loops that reassign
strings often.

GET stringvar is a statement that accepts single-character input
without a CR character. Often used for single keystroke responses in
menus, cursor movement routines, etc.

GOSUB line is a statement to execute a subroutine from within a
program.

GOTO line is a statement that causes execution to continue at the
line given.

GR is a statement to switch the display to LORES graphics from
TEXT. Screen is cleared to black and text display remains at bottom
four lines. See Chapter Six.

HCOLOR = expr is a statement to set the HIRES plotting color.
See Chapter Six.

HGR is a statement to switch the display to HIRES graphics. Screen
is cleared to black and four lines of text display remain at the bottom.
See Chapter Six.

HGR2 works just like HGR, but for HIRES2 instead of HIRESl.
HIMEM:expr is a statement that sets the highest memory location

available to the BASIC program. See Section 4.2.
HLIN exprl,expr2 AT expr3 is a statement to draw a horizontal line

in LORES graphics. See Chapter Six.
HOME clears all text within the display window and moves the cur

sor to the upper left of the window.
HPLOT expr,expr is a statement to plot a single point on the

HIRES screen. See Chapter Six. May be modified to plot lines by ap
pending: TO expr,expr for the second end point. May be modified by
more TO extensions to make polygons.

HT AB expr is a statement to move the text cursor horizontally, to
any column number, 1 to 40 (or 80).

....

Applesoft BASIC 233

IFexpr THENstatement is a statement that evaluates an expression.
If the result is not zero (true) then the given statement is executed. If
the result is zero (false) then the following statement is executed. If the
given statement does not say otherwise, the following statement will
be executed normally after the given statement. If an ELSE is used,
the same rule applies; ELSE only invokes one statement as well.
For example, IF A= B THEN A$= "EQUAL" ELSE A$=
"UNEQUAL":A = 5 will set A to the value 5 regardless of the IF.

IN#slot sets the current input device to the slot numbered: 1 to 7.
See Chapter Six.

INPUT string;var, var, ... is a statement to input variables from
the current device. For keyboard use especially, the optional string;
will be used as a prompt message on the screen. If more than one vari
able is to be INPUT, separate with commas as shown.

INT(expr) is a function that returns the closest integer value less
than or equal to the expression. For example, INT(- 5.9) gives 6 and
INT(5.9) gives 5.

INVERSE is a statement to display further characters on the text
screen as black-on-white. It won't work with active SO-column dis
plays; to cancel its effect, use NORMAL to get white-on-black display
to return.

LEFT$(string,expr) is a function that returns a string consisting of
the expr leftmost characters of string.

LEN(string) is a function that returns the number of characters in
the string argument.

LET var = exprlstring is a statement to assign a value to a variable.
It may be either string or numeric. A string variable must be assigned
with a string; expressions will be converted from floating-point or
integer to integer or floating-point values, as the numeric variable re
quires. Use the ASC and CHR$ functions if you need them to convert
between numbers and strings. The LET verb is optional; most assign
ment statements are made without it.

LIST line, line is a statement to list the current program to the cur
rent output device. Usually, to display on the text screen. When op
tional line numbers are given, only that range is LISTed; you can use a
(-)instead of a comma(,). A single line may be LISTed; for example,
LIST 20100.

LOAD is a statement to read a BASIC program from tape. For
disk, a filename must be given; then DOS will intercept the statement
as a disk command.

234 Appl£!9 Programmer's Handbook

LOG(expr) is a function of the natural logarithm (base e) of the ex
pression. This is the inverse function of EXP.

LOMEM:expr is a statement to set the lowest address of memory
available to BASIC for variables storage.

MID$(string,expr,expr) is a function that returns a string of
characters beginning with the one in the position given in the first ex
pression; for example, MID$("HELL0",3) returns "LLO." If the
second expression is given, it sets the length of the returned string. For
example, MID$("HELL0",3,2) returns LL.

NEW is a statement that clears the current program from memory.
Use NEW before writing a new program.

NEXT fpvar,fpvar, ... is a statement used to mark the bottom of
one or more FOR loops. With no argument, it ends the last (inner
most) loop. Use more than one argument to end several loops in one
statement; be careful to list them in order from last (innermost loop
variable) to first (outermost loop variable).

NORMAL removes the effects of INVERSE and FLASH state
ments. Future output characters are displayed in normal white-on
black form on the text screen.

NOTRACE turns off the TRACE feature that displays line
numbers during execution.

ON expr GOSUB line, line, line, ... is a statement to select one of
several subroutines according to the value of an expression. The
integer value of expr selects the first, second, third, etc., line number
for the GOSUB. If none are selected, control simply passes to the next
statement.

ON expr GOTO line,line,line, ... is a statement like the ON ..
GOSUB .. in that it selects the line number in exactly the same
manner.

ONERR GOTO line is a statement that sets Applesoft's error trap to
execute at line instead of displaying an error message. See details in
Chapter One.

PDL(expr) is a function that returns the position of a games paddle
or joystick. The argument selects one of four paddles: 0, 1, 2, or 3. A
joystick normally uses 0 and 1.

PEEK(expr) is a function that returns the contents of the memory
location whose address is given as the argument.

PLOT exprl,expr2 is a statement that plots a single LORES pixel.
Arguments give the column as exprl and the row as expr2.

POKE exprl,expr2 is a statement that writes to a memory location

~
I

-

App/esoft BASIC 235

given by the address expr 1. The value written is that of expr2 which
must be from zero to 255.

POP is a statement that removes the last return address from the
stack. It acts just like a RETURN statement, except control is not
transferred to the return point; instead, it falls through to the next
statement after the POP.

POS(O) is a function that returns the column number of the cursor.
The argument is ignored.

PR#slot is a statement that sets up the peripheral in the named slot,
1 to 7, as the current output device.

PRINT list is a statement to write to the current output device. The
list contains one or more expressions - numeric and string. Comma
or semicolon delimiters may be used. If no list is given, the PRINT
generates a CR character anyway.

READ var, var, var ... is a statement to get values in DATA state
ments assigned to variables. Data type must be compatible, either
string or numeric. Syntax permits one or several variables to be named
in a READ.

RECALL arrayname is a statement that reads data from a tape into
a named (DIMensioned) array.

REM is the remark statement. No execution is done.
RESTORE is a statement that restores the READ pointer back to

the beginning of the first DATA statement, allowing previously
READ data to be re-READ.

RESUME is a statement that ends an error handling routine so con
trol is returned to the statement that caused the error. That statement
will re-execute. See ONERR GOTO.

RETURN is a statement that transfers control to the statement fol
lowing the last GOSUB; it ends a subroutine.

RIGHT$(string,expr) is a function that returns the rightmost
characters of string. The length of this returned substring is the value
of expr.

RND(expr) returns a pseudo-random number, from zero to one.
The sign of the argument gives different results: positive arguments
generate new random numbers. Zero argument gives the same random
number it gave last time. Negative arguments always give a specific re
sult, so a sequence of numbers are seeded.

SQR(expr) is a function that returns the square root of its argu
ment.

236 Apple® Programmer,s Handbook

STOP is a statement to stop program execution. Used in debugging,
it prints the line number of the statement.

STORE arrayname is a statement to save data to tape from the
named array. See also RECALL.

STR$(expr) is a function that returns a string representing the value
of its argument. Same function that is implied in PRINT statements.

T AB(expr) is a statement modifier for the PRINT statement. It ad
vances the cursor to the column number given by the argument.

T AN(expr) is a function that returns the trigonometric tangent of
the argument which must be in radians.

TEXT is a statement that resets the display to the normal,
40-column TEXT screen. The window is reset to full size (24 x 40)
and the cursor positioned at lower]Pft.

TRACE is a command that causes each line number to be displayed
as their statements are executed. Used for debugging; see also
NOTRACE.

USR(expr) is a user-defined function that executes the machine lan
guage routine setup by a JMP instruction at $0A.OC in Page Zero.
The argument is passed in FAC ($9D.A2) and the result returned in
FAC as well.

V AL(string) is a function that returns the value of the number given
as a string. This is the function implied in the INPUT statement. For
example, VAL("294.5") gives a numeric value of 294.5.

VLIN expr 1, expr2 AT expr3 is a statement that draws a vertical line
in LORES graphics. See Chapter Six.

VT AB expr is a statement to position the text cursor to the row
number given by expr. Values must be one to 24.

WAIT expr1,expr2,expr3 is a statement used to wait until some
thing happens at the address given by expr 1. The WAIT is completed
when any bit in expr2 is also on at the location. However, if the op
tional expr3 is given, it tests for either on or off, according to expr3
mask bits. See discussion in Chapter One.

XDRA W expr1 AT expr2,expr3 is a statement to draw a shape. See
Chapter Six for details.

4.2 THE STRUCTURE

4.2.1 Memory Usage

In both the Apple II Plus and lie models, Applesoft resides in ROM
at $DOOO.F7FF, between the input/ output addresses and the Monitor.

-

,..

Applesoft BASIC 237

It is just a collection of routines and constants whose role is the ulti
mate execution of specific statements and functions. It does this by
using both its own routines and several standard ones in the Monitor.

When you type a command, it is read from the keyboard input
buffer at $0200 where it was placed by the GETLN routine at $FD6A.
Applesoft then uses its own routines to dispose of the line. If the
command begins with a line number, then it won't execute any state
ments; instead it creates a program line and stores it in RAM. Pro
gram lines are kept in sequence to make up what is called the program
text in memory. Program text normally begins at location $0801 and
continues as unbroken memory. This text is not the line you typed in;
rather, it has been encoded in a short form that Applesoft can read.
The LIST command causes Applesoft to read the program text and
output it in decoded form to make it human-readable.

Whenever you RUN a program, Applesoft stops taking commands
from the keyboard buffer and takes them from the current program
- the program text. By using a Page Zero pointer, it moves through
your program, reading and interpreting the program text. Remember
that your BASIC program is the data that Applesoft reads.

Then, while your program is RUNning, it needs space for variables.
Whenever a variable is used for the first time or an array is DIMen
sioned, Applesoft adds it to the end of the program text together with
its allocated name. So, as the program runs, Applesoft is building
variables in RAM following the program text, lengthening the entire
program upwards in memory.

This variables storage space always increases during the program
RUN. It never decreases; Applesoft cannot recover space from old
variables. You must reuse the same variable in different parts of your
program if you have to conserve memory.

One consequence of using a lot of variable space is the encroach
ment of HIRESl at $2000.3FFF during the run. When this happens,
the variables overwrite screen graphics and you may see it on the
screen. Then, when graphics are drawn, they clobber the variables! To
get around this, the LOMEM: statement must be used before any
variables are referenced in the program. Instead of starting at the next
location following program text, Applesoft then will start variables
storage at the LOMEM address. Simply set LOMEM to $4000
(16384), just past HIRESI.

Because variable space cannot be recovered and reused, the string
variables don't hold the strings themselves. Instead, they point to the
strings kept in other parts of memory: in between quotes in program

238 Apple® Programmer's Handbook

text, in DATA statements, and in the highest RAM available. When
ever a string is created during execution, the new string is stored by
Applesoft in memory, below DOS at $9600. This upper limit can be
changed before any strings are referenced in the program by the
HIMEM : statement. But, the string variables themselves, pointing to
the actua l strings, are in variables storage. So, the string space at the
top of memory can be managed to recover the space occupied by old
strings no longer referenced by string variables.

While variable space cannot be recovered once a variable is brought
into existence, the created strings that the string variables point to may
be recovered. Each time a new string is created , the string storage en
larges at the top of memory. When it runs out of space, Applesoft
does a garbage collection to repack the valid strings at the top and
thereby free up new memory space. By weeding out dead strings regu
larly, you can avoid these strings from encroaching down into HIRES
screens. Putting the statement

X = FRE(O)

in your program will do this for you. Put it in your main loop and any n
loop that uses strings. It will force garbage collection regularly instead
of waiting until the strings grow down to the top of the program varia-
bles and arrays.

To summarize, Applesoft executes your BASIC program by step
ping through program text, usually from $080 I. T his encoded text is
followed in memory by variables and arrays that Applesoft builds as
they are encountered. Strings are created from the top of memory
down, below $9600. In some programs, the HIRES screens in the
$2000.5FFF area must be protected against variables and strings,
using LOMEM: and FRE(O) features.

Applesoft RAM usage in the normal case is shown in Fig. 4-1.
If you dump the block of Page Zero $67.74 you will see seven

pointers that Applesoft sets up and uses to maintain your BASIC pro
grams. They point to the boundaries in RAM where your program re
sides, where variables are maintained, and where strings are stored.
Knowing what these pointers do and how to set them yourself enables
you to control your program's memory map. You can tell Applesoft
where to load, where to keep variables, and where to store strings.
And you can examine these pointers to see what Applesoft is doing;
see memory contention problems before they occur. See Fig. 4-2.

Applesoft BASIC 239

scooo

DOS

$9600
CREATED STRINGS

~ FREE
SPACE

scooo
HIRES 2

$4000
HIRES I

S2000
FREE

~
SPACE

PROGRAM TEXT.
VARIABLES ArlO

ARRAYS

SOSOl

APPLE SYSTEM RAM

Fig. 4-1. Applesoft RAM usage.

MEMSIZI$73741

CREATED
STRINGS

t
FRETOPIS6F701

FRETOP INCREASES
AND DECREASES

STREND INCREASES

t STRENOIS6D.6EI
ARRAYS

ARYl AB)$6B.6CI

VARIABLES

- VARTABIS69.6A)

PROGRAM TEXT

TXTTABIS67 681

Fig. 4-2. Applesoft memory pointers •

. .-t

240 Appl~ Programmer,s Handbook

TXTTAB at $67.68 points to the start of program text. Usually this
is $801 but you can change it to any other address before loading a
program. It won't work properly on a program already loaded. The
low byte in $67 is best left as $01; just change $68 to the page number
of your new program area. For example, you could POKE 104,96 to
set it to $6001. Applesoft expects the contents of the byte located
immediately before the text to be zero, so a POKE 24576,0 would set
$6000 to zero. A load of an Applesoft program will put program text
in memory beginning at $6001, above the HIRES pages in this case.

VARTAB at $69.6A points normally to one or two bytes beyond the
end of program text. It points to the beginning of variable storage.
When a program runs, Applesoft builds variables from the location
that V ART AB points to, and always puts the simple variables ahead
of array variables. You normally change VART AB indirectly using
the LOMEM: command in Applesoft. Within a program, use
LOMEM: to set V ARTAB for you before any variable references
occur. For example, LOMEM:16384 sets VARTAB to $4000 to pro
tect HIRES I, and LOMEM:24576 sets it to $6000, protecting the en-

. tire HIRES screen area from encroachment by variables.
ARYTAB at $6B.6C points to a spot within the variable storage

where the arrays begin. This is convenient for Applesoft, so it can be
gin looking for DIMensioned variables here without having to search
simple ones first.

STREND at $6D.6E marks the end of variables storage. It marks
the beginning of the free space between the end of arrays and the bot
tom of string storage. You can check this location to see if variables
do indeed contend with a HIRES screen in graphics programs.

FRETOP at 6F. 70 points to the bottom of string storage. It starts
out pointing to the top of memory like MEMSIZ below, and points
below the strings as each is added. It releases space by being reset to a
higher address during garbage collection. You can read it to see if your
strings are crowding HIRES screen memory, or read the difference be
tween FRETOP and STREND after a garbage collection in the varia
ble returned by the FRE(O) function.

FRESPC at $71.72 is a pointer used by the string handling routines
- there is no need to refer to it.

MEMSIZ at $73.74 is the pointer to the highest RAM address avail
able to Applesoft, less one. Normally it is set to $9600 with DOS.
Without DOS it would be set to $COOO. Sometimes machine language
routines are put just below $9600 and MEMSIZ changed to point to a

r

,.,

~

Applesoft BASIC 241

lower address below the routine. This must be done before any strings
are assigned in the program, and is best accomplished with the
HIMEM: command. For instance, HIMEM: 36864 sets MEMSIZ to
$9000 and leaves the $9000.95FF chunk of memory free for the
machine language routine, safe from Applesoft. Be careful in this area
because the MAXFILES command to DOS will change MEMSIZ as
well. Anything besides MAXFILES 3 will change MEMSIZ to some
thing besides $9600.

You can change TXTTAB only before loading a program.
VARTAB is best changed by a LOMEM: command; MEMSIZ by a
HIMEM: one. The other pointers may be watched for potential
trouble.

Here are some common ways of fitting machine-language programs
into memory with an Applesoft BASIC program. The one you choose
will depend on the program size, the way it uses variables, and how
large your machine language program is. When the memory map has
been chosen, you just adjust the pointers accordingly to realize it;
some can be done from within the BASIC program itself.

The most common method is to make room at the top of memory
using the HIMEM: statement. The result is shown in Fig. 4-3. Before
any strings are referenced, your program simply states HIMEM:36864

$9500

S9000

CREATED STRINGS

--FRETOP

S6000
HIRES 2

$4000
HIRES I

$2000

--STRENO

VARIABLES

-- VARTAB
PROGRAM TEXT

S801 --TXTTAB

Fig. 4-3. Applesoft and routine, first method.

242 Apple® Programmer's Handbook

to set MEMSIZ down to $9000. This protects the $9000.95FF chunk
of memory against Applesoft for you. It works; it's simple. But, it
won't protect against a MAXFILES command to DOS, and it won't
solve the memory contention problem when HGR or HGR2 clobbers
variables or strings. So, use it for programs that don't use HIRES, and
don't use MAXFILES.

Suppose you want to use HIRES and you want to have a machine
language routine as well. Then, you could use a LOMEM: statement
to set V ART AB to point above the HIRES screen memory. A
LOMEM:I6384 sets VARTAB to $4000, protecting HIRESI; and, a
LOMEM:24576 sets VARTAB to $6000, protecting HIRESI and
HIRES2. You can usually find space between the end of program text
and $2000 to place your routines. Kep the routines as close to $2000 as
practicable so as to leave room for additional program text. If both
program text and routine can fit into $080I.IFFF, this is the simplest
way to have your HIRES, BASIC program, and machine language
routine coexisting, as in Fig. 4-4.

S9600 r------------, -- MEMSIZ
CREATED STRINGS

1-----------i -- FRETDP

1-----------1-- STREND

VARIABLES
S6000 1------------1- VARTAB

HIRES 2
woo 1------------1

HIRES I

PROGRAM TEXT

SOBOl L....-------~-- TXTTAB

Fig. 4-4. Applesoft and rouline, second method.

If the routine won't fit between the end of program text and
HIRESI, you can find another place for it above the HIRES screen
memory, as in Fig. 4-5. Make your routine start at $4000 (or $6000 if
you use both screens) and note the next free location beyond the
routine. Convert this location to decimal and use it in a LOMEM:

....
!

....

1-'1

Applesoft BASIC 243

S9600 -- IAEMSIZ

CREATED STRINGS

-- FRETDP

-- STREND
VARIABLES

--VARTAB

$6000

HIRES 2
S4000

HIRES I
$2000

PRDGRAM TEXT

SOBOl '-----------'-- TXTTAB

Fig. 4-5. Applesoft and routine, third method.

statement. This will set V ART AB to protect all memory from pro
gram text to the last address of your routine. Provided the routine is
not very long, you can usually spare the room.

If you are faced with the other extreme of having a long machine
language routine and a short BASIC program, you must then reverse
their storage. Put your routine between $0800 and $2000; then put the
program text above the HIRES screen(s). For instance, to create the
arrangement shown in Fig. 4-6 use a POKE 104,64 and POKE 24576,0
before the BASIC program is loaded. Alternatively, POKE 104,96
and POKE 24576,0 produces the map in Fig. 4-7 where TXTT AB is
set to $6001 (from $0801) instead of $4001. The location before the
start of program text is always set to zero: $800 is normally zero, so
$4000 or $6000 is set to zero as well.

The drawback to this method is that the program itself cannot do it.
A separate program in machine language can do it, or use an EXEC
file to do the POKEs and the RUN statements. For large graphics
routines that use graphics and provide for user BASIC drivers, this is
the way to go.

There are other ways. The method of writing machine language
loaders to setup the maps as the routines are first loaded is given in
Chapter Seven.

244 Appl~ Programmer's Handbook

$9600 -MEMSIZ

CREATED STRINGS

--FRETOP

--STREND

VARIABLES
-VARTAB

PROGRAM TEXT

$4001 --TXTTAB

lURES 1
$2000

SOBOl

Fig. 4-6. Applesoft and routine, fourth method.

S9600

$6001

S4000

S2000

SOIOD

r-----------, --- MEMSIZ

CREATED STRINGS

~---------t- FRETOP

1---~=~----i --- STREND
1---_....;.;.,;;.;;;.;;~----i-VARTAB

PROGRAM TEXT
1----------i ---TXTIAB

HIRES 2

HIRES I

Fig. 4-7. Applesoft and routine, fiflh melhod.

4.2.2 llata Storage

Data are stored in variables and arrays as one of the three types:
floating-point, integer, and string. The user defined functions have

Applesoft BASIC 245

their names stored in the same manner as variables. First, here is how
each variable type is kept in memory.

Floating-point numbers are stored as simple variables by Applesoft
during the execution of your BASIC program. By dumping the
memory between the addresses pointed to by V ARTAB and ARYT AB
you can examine them directly.

Each number is stored in seven bytes. The first two bytes contain
the variable name in ASCII code. Each ASCII name byte has bit 7
clear. Floating-point (FP) variable names are the only ones like this:
other variables have at least one of the bit 7s set in their names. Apple
soft uses this scheme to tell the variable types apart. See Table 4-2.

Table 4-2. Type-Encoded Applesoft Variable Names

Variable Type First Byte Second Byte Example Name

FP Positive Positive Al as 41,31

Integer Negative Negative Al OJo as Cl,Bl

String Positive Negative Al$ as 4l,Bl

Function Negative Positive FN Al as Cl,31

The remaining five bytes of the variable after its name are its con
tents. For floating-point numbers, the contents consist of a one-byte
exponent followed by a four-byte mantissa.

The exponent is in what is called excess-$80 form. In this scheme,
$80 is the code for a zero exponent; $81, $82, $83, etc., are positive
exponents of 1, 2, 3, etc., respectively. An exponent of minus one
would be encoded as $7F. Minus two as $7E. The exponent has $80
added to it when it is converted to excess-$80 form.

The mantissa has been normalized and appears in decreasing order
of significance. Fig. 4-8 shows the format of Applesoft variables. Its
four bytes are called HO, MOH, MO, LO in left-to-right order. The
binary point is to the immediate left of HO. Because of normalization,
the leftmost bit, bit 7 of HO, is always one. So, it doesn't carry any
information. In variable storage, this bit is replaced by the mantissa's
sign, which is zero for plus and one for minus. This replacement to in
crease the information content is called packing.

To summarize the FP variable, it consists of two bytes of name and
five bytes of number. The name has both bytes with their bit 7s clear.
The number consists of one byte of excess-$80 exponent followed by
four bytes of packed mantissa. As a simple variable, its total size is
seven bytes.

246 Apple® Programmer,s Handbook

I POS I POS I EXP I HO I MOH MO

NAME-----' l
EXCESS-S80 EXPONENT ----'
PACKED MANTISSA ---------'

(A) Floating point number.

I NEG I NEG I HI LD I 0 0 I
NAME-----'

SIGNED VALUE -------'

(8) Integer number.

I POS I NEG I LEN I LO HI I 0 0 I
NAME _j
DESCRIPTOR !LENGTH & AODRESSI

(C) String.

I NEG I POS I LO HI I LO HI I 8 I
NAME----'

DEFN ADDRESS ------'
OUMMYARG. ADDRESS --------'
FIRST BYTE OF OEFN ------------'

(D) User defined function.

Fig. 4-8. Format of Applesoft variables.

Integers also appear in simple variables as seven bytes. The name in
the first two bytes has both bit 7s set to distinguish it as an integer. The
contents of the integer consist of a two-byte signed number followed
by three zeros.

An example shows how the name works. Suppose that the variable
name TA were encountered by Applesoft as it executed your program.
It would create a new FP variable as a floating-point number and the
name code would be $54 followed by $41, the codes for T and A. But
suppose the variable were named TA% instead. Applesoft then
creates a new integer variable and gives it the name code $B4 and $A 1
instead. The difference in names is that the bit 7s are both set for in
teger name but both clear for FP name.

-
-

App/esoft BASIC 247

The contents are the integer itself in the two bytes following the
name. These two bytes are in decreasing order of significance: high
o rder byte followed by low-order byte. This is j ust opposi te the format
of addresses, so don't confuse the two. Integers are signed numbers
with bit 7 of the high-order byte giving the sign: zero for plus, one for
minus. This gives integers a domain of - 32768 to + 32767 in value.

The three remaining bytes of an integer variable are unused and
Applesoft sets them to zero.

Strings are also built as simple variables by Applesoft executing
BASIC program text. As a simple variable, a string variable consists
of a name in two bytes followed by five bytes of content. The dif
ference with strings, however, is that the content is not the string itself
but a pointer to the string. The name, on the other hand, behaves like
other variable names.

If a simple variable is a string, its name has the first byte wi th bit 7
clear and the second byte with bit 7 set. So, a string name like T A$
would be encoded as $54 followed by $A 1.

The content of a string variable is a three-byte descriptor followed
by two unused bytes set to zero. The descriptor gives the length of the
string followed by its address - low byte then high byte. By copying
the descriptor into Page Zero, Applesoft can access the string using
indirect indexed addressing. With the length included, the descripto r
gives all the information needed to handle the string it describes.

The string itself can be anywhere in memory. If assigned as a literal
in the listing like

A$ = "LITERAL STRING"

it will be pointed to in the listing itself by the new descriptor.
Similarly, a READ of a DATA stat ement causes the descriptor of the
variable to point to the string within the DATA statement. If Apple
soft creates a new string as with a concatena tion like

A$ = A$ + "SUFFIX"

the new string is built in "free space" at the top of memory using
FRESPC. Then the descriptor in the A$ variable is given its length and
address. Regardless of where the string itself resides, it is assigned to
its variable by putting its length, address-low, and address-high as the
descriptor of that variable.

248 Appl~ Programmer's Handbook

Functions are kept as simple variables by Applesoft as well. The
two-byte name has the first byte with bit 7 set and the second byte with
bit 7 clear. So, a name like FN T A encodes as $B4 then $41. This nam
ing scheme completes the pattern used for FP numbers, integers a nd
strings. The contents o f a function variable is again different from
other variable contents.

The function variable points to the function definition in BASIC
program text where you made your DEF FN statement. It also points
to the FP number within the variable being used as its dummy argu
ment. For example, suppose you defined

DEF FN LO(Z) = Z - 256*1NT(Z/256)

in your program. Applesoft encodes it in program text and when run
creates the functio n variable LO. The contents of the variable consists
of two bytes as the address of the first byte of the definition in
program text. Then two bytes point to a second variable created at this
time - the dummy variable FP number. The function points to this
dummy variable content, not its name, which is undefined. The last
byte in the contents of the fu nction variable contains the first byte of
the FN definition. So, the five bytes of a function variable are: address
of first byte of the function definition, address of first byte of the
dummy argument a nd the first byte itself of the function definition.

Arrays are built and maintained in memory above the simple vari
a bles, from ARYTAB to STREND. After a program runs, you can
find the start address for the first array in ARYT AB.

Each array consists of a header followed by a ll its elements. The
header is 2N + 5 bytes in length where N is the number of subscripts
declared in the DIM statement. The contents of the header are listed in
Table 4-3. Notice that you can have the same names for arrays as you

Table 4-3. Array Header

Number of Bytes Contents

2 Array name: type-encoded

FP (pos) (pos)
Integer (neg) (neg)
String (pos) (neg)

2 Array length , including entire header

I N = number o f subscripts, the order

2N List of dimensions, last 10 first

-

Applesoft BASIC 249

do for simple variables because they are type-encoded the same way.
The length of the entire array is the total number of bytes of both the
header and all its entries. The number of subscripts is a lso known as
the order of the array. T he dimensions themselves are numbers one
larger than the values given in the DIM statement in order to count the

M zeroth elements. And, these dimensions appear in the header in
reverse order.

r

-

-

-
-

An example should make this clear. If you had an array of FP num
bers called BX that you DIMensioned as

DIM BX(3, 1 ,2)

it would be created in memory as shown in Table 4-4.

Table 4-4. Example Array Created by DIM BX(3,1,2)

Location Contents Description

00.01 42 58 Array name, BX
02.03 83 00 Array length = $83 = 131
04 3 Order of array
05.06 03 00 3rd dimension = 3
07.08 02 00 2nd dimension - 2
09.0A 0400 1st dimension = 4
OB.OF Zeros Element BX(O,O,O)
10.14 Zeros Element BX(1,0,0)
15.19 Zeros Element BX(2,0,0)
lA. lE Zeros Element BX(3 ,0,0)
IF.23 Zeros Element BX(O, l,O)
24.28 Zeros Element BX(1,1,0)
29.20 Zeros Element BX(2,1 ,0)
2E.32 Zeros Element BX(3,1 ,0)
33.37 Zeros Element BX(O,O,I)
38.3C Zeros Element BX(I ,0, I)
30.41 Zeros Element BX(2,0, I)
42.46 Zeros Element BX(3,0,1)
47.413 Zeros Element BX(O, I, I)
4C .50 Zeros Element BX(I, l ,l)
51.55 Zeros Element BX(2,1, I)
56.5A Zeros Element BX(3, 1,1)
5B.5F Zeros Element BX(0,0,2)
60.64 Zeros Element BX(I,0.2)
65.69 Zeros Element BX(2,0,2)
6A.6E Zeros Element Bx(3,0,2)
6F.73 Zeros Element BX(O, 1,2)
74.78 Zeros Element BX(I,I,2)
79.70 Zeros Element BX(2, 1,2)
7E.82 Zeros Element Bx(3, 1,2)

250 Apple® Programmer,s Handbook

The name BX is encoded as the two positive ASCII codes, 42 and
58, because the type is FP. The length is 131 bytes. The order is three
because there are three subscripts given in the DIM statement. These
dimensions are listed as three, two, and four. The three is the third, or
last, dimension given as "2" in the DIM statement. The two is the
second dimension given as a "1" in the DIM statement. And, the four
is the first dimension given as "3" in the DIM statement. The total
number of elements in the array is the product of its dimensions: here,
4 X 2 X 3 = 24.

The 24 elements follow the header, beginning with the twelfth byte
at location $0B. The DIM statement sets them all to zeros. There are
five bytes each for FP numbers. Notice in particular that the inner
most dimension varies the fastest and the outermost dimension varies
the slowest. This is important when writing BASIC programs that you
want to step quickly through arrays.

Unlike simple variables, array elements have lengths that depend on
their type. Simple variables take five bytes regardless of type. Array
elements take five bytes for FP type only. Integer type elements take
only two bytes each; string type elements take only three.

4.2.3 Program Text

Program text is kept in memory starting at the target of TXIT AB,
usually $0801. Each new line is entered in sequence. Together, all the
lines of the text make up a linked list data structure.

Each record in the linked list contains a two-byte pointer to the next
record in the list. The remainder of the record is the line and may be
any length. The last byte of each line is always zero, however, so the
end of the line can be recognized easily by routines that read it. These
variable length records follow one another, in line number sequence in
program text.

The pointer beginning each record is in low-byte/high-byte order. It
contains the address of the first byte of the next record, which is its
low-byte pointer. At the end of the Program text file is a null record.
This record has two zero bytes instead of a pointer and tells the
searcher that there are no more records - no more program lines.

Within each record, the pointer is followed by the line number in
two bytes. The remaining bytes are the text of the line in ASCII code.
Note that the seven-bit is used. If there is more than one statement in
the line, they are separated by colons, ASCII code $3A. The last state-

n

-

-
n

Applesojt BASIC 251

ment of any line is terminated by a zero byte. You can see that some
bytes are greater than $7F. These bytes are called tokens. Instead of
storing the ASCII code for commands as they are typed, the com
mands a re kept with tokens of only one byte each. For instance, $84 is
the code for INPUT and $0A for SQR. This scheme saves some
space.

Use the Applesoft Token Table to read tokens from BASIC pro
gram dumps.

Look at this BASIC program and its dump.

10 TEXT:HOME:VTAB 20
20 PRINT"HELLO, WORLD"
30 DIM SE$(4,2)
40 SE$(1,1) = "LITERAL II
50 END

801 : OD 08 OA 00 89 3A 97 3a A2 32 30 00
BOD : 20 08 14 00 BA 22 48 45 4C 4C 4F 20 57 4F 52

4C 44 22 00
820: 2E 08 1E 00 86 53 45 24 28 34 2C 32 29 00
82E: 46 08 28 00 53 45 24 28 31 2C 31 29 3D 22 4C

49 54 45 52 41 4(22 00
846: 4C 08 32 00 80 00
84C: 00 00

The first record at $801 begins with a pointer to the next record at
$800; this takes the first two bytes. Then the line follows: line ten is
indicated in the following two bytes. The three statements o f the line
have their commands tokenized as 89 for TEXT, 97 for HOME and
A2 for VTAB. They are separated by colons, ASCII code $3A. The
"20" in the thi rd statement comes out as $32 and $30. Finally, a zero
byte terminates the line.

The second record begins at $800 and is pointed to by the pointer at
the beginning of the first record. It in turn points to the third record at
$820. The line begins with the line number twenty, $14 and $00, and
ends with a zero.

The remaining records work the same way . The last record at $84C
is pointed to by the record of the last line at $846. The zero value of its
pointer marks the end of the program text file.

There are three commands that can clobber you r BASIC program

252 App/~ Programmer's Handbook

- FP, NEW, and CLEAR. The CLEAR command removes all varia
bles created during program execution, while the FP and NEW com
mands remove the program text itself in addition to any variables. The
FP command is executed by DOS and resets Applesoft's pointers com
pletely, including MEMSIZ and TXTTAB. The NEW command does
not reset MEMSIZ and TXTT AB but it resets the others so as to re
move your program.

After an FP command, you must restate any HIMEM: or LOMEM:
commands and adjust TXTT AB if you want any memory map besides
the default. A NEW command leaves your memory map intact, but
you cannot LIST any program that was current before the NEW. For
instance, if NEW was given with the above program in memory, a
dump of memory after the NEW command would reveal

800: 00 00 00 OA 00 89 3A 97
808: 3A A2 32 30 00 20 08 14
810: 00 BA 22 48 45 4C 4C 4F

etc.

The program is still there. All that the NEW command did to the pro
gram text was to replace the link in the first record with zeros. All you
have to do to recover it is find the address of the second record and re
store the first link.

The end of line token (zero) for the first line is at $80C. The follow
ing two bytes link to $820, a reasonable address. So, the next instruc
tion starts there, at $80D. This is the first link that NEW clobbered:

801 : OD 08

By replacing the link at 801, you can recover any program that was
accidentally wiped out with the NEW command.

4.3 INTERFACING TO ML ROUTINES

4.3.1 Three Methods

Applesoft provides you with three different methods of invoking
machine language routines from your BASIC programs. The one you
choose in any situation depends on how complicated your call has to
be.

...

,..

-

-

-

-

-

Applesoft BASIC 253

If you have a short routine to call, and if you don't have any param
eters to pass between your BASIC and ML, then the CALL statement
is the way to go. If the routine is short enough, it may fit at
$0300.03CF so you won't have to use the HIMEM: or LOMEM:
statements. A simple CALL 768 is all that is required. It is possible to
follow the CALL with parameters, but this is rarely done. The CALL
is used for simple, short routines, usua lly one per BASIC program.

The problem with the CALL method is its use of a fixed address . If
you have a rather large routine, especially one with parameters, you
cannot relocate it easily. Instead, you must locate all the CALL state
ments and change their addresses. In a collection of BASIC programs
where each has several CALLs to various routines, this task becomes
quite difficult , if not impossible. So, Applesoft has two other
methods, each of which makes maintenance easier.

One method is the USR function , which is invoked by

result = USR(expression)

where result is the returned FP value and expression is the argument of
your function.

You can create your own single-argument function with the USR.
Put the jump instruction ($4C, addr-lo, addr-hi) in memory at
$000A.OOOC by POKEs at the initialization of your BASIC program.
Then, whenever USR is encountered, Applesoft will jump to $000A
and find your routine address to execute. T he expression you pass in
the argument will be waiting for your ML routine in the FP accumula
tor in Page Zero, FAC. Then your routine can process the argument
using the floating-point routines directly and leave the result you want
in FAC. An RTS wi ll return to Applesofl and deliver your result as
your BASIC program continues its execution.

With only one address reference in the entire BASIC program, you
can easily change it if you relocate your ML routine elsewhere in
memory. And, USR gives you a simple parameter passing mechanism,
at least for one FP parameter.

Then there is the ampersand method. Like USR, it provides an
address where you put a jump instruction to your ML routine. But it
doesn't pass any parameters for you; you have to build the pass logic
yourself. However, this turns out to be easy with Applesoft's routines.

Using the ampersand, you put $4C, addr-lo, addr-hi at locations
$03F5.03F7. Then you use"&" as the command in your BASIC pro-

254 Appl~ Programmer's Handbook

gram whenever you want to invoke your routine. The ampersand gives
you the jump vector flexibility to locate your routine that you have
with the USR method, but without being tied down to one parameter.
It is the most flexible method, both in terms of locating the routine
and passing parameters.

4.3.2 The Ampersand Method

To pass parameters successfully, you must use the Applesoft inter
preter directly in your ML routine. In particular, you need the little
routine in Appleso ft that actually points to and reads the character
stream from your BASIC program. By knowing this routine and call
ing it directly yourself, you can work with your parameter list directly
from your ML routines. See Table 4-5.

The routine that fetches characters from the BASIC Program text is
called CHRGET. Applesoft puts this routine in Page Zero and always
calls it there at $00BI. You can disassemble it there and have a look .

The pointer to the current character in Program text is at $B8.B9 in
Page Zero and is called TXTPTR. It is imbedded in CHRGET as the
absolute address of a LDA instruction:

$0087: AD lo hi

CHRGET increments TXTPTR by one before the LDA instruction so
that it keeps advancing TXTPTR as it is called. You can call the
routine at $00B7 to get the current character again without advancing
TXTPTR. This is often done, and $00B7 is called CHRGOT.

Once the character is fetched, the routine tests it to see if it is a
numeral character, 0 to 9, and to see if it is the end of a statement - :
or zero. On return , a numeral sets the C-flag and an end of statement
sets the Z-flag.

Applesoft sets TXTPTR to TXTT AB when it does a RUN com
mand to begin looking at the Program text. In command mode,
TXTPTR looks at the input buffer at $0200 where your direct com
mands are entered. That's why you see a P age Two address in
TXTPTR when you disassemble CHRGET.

When Applesoft jumps to your routine, TXTPTR points to the next
character following the jump command. This is because Applesoft
routines normally finish their tasks by jumping to CHRGET and find
ing the delimiting character of their task. With that delimiter still in

-

-

Applesoft BASIC 255

Table 4-5. Applesoft Parameter Passing Routines

Program Text Syntax:

CHRGET SOOBI advance TXTPTR, get character INTO A-reg
CHRGOT $00B7 re-get character
DATA $D995 advance TXTPTR to end of statement
SNERR $DEC9 bomb program with "SYNTAX ERROR"
ISLETC $E07D edit A-reg "A" to "Z"
CHKCOM $DEBE gobble comma
CHKO PN $DEBB gobble"("
CHKCLS $DEBS gobble")"

Passing by Value:

GETBYT $E6F8 get expression to X-rcg
FRMNUM $DD67 get expression to F AC
GET ADR $E752 fix FAC to LI NNUM

Passing by Reference:

PTRGET $DFE3 find named variable, addr VARPNT
GETARYPT $F7D9 find array, address name LOWTR
MOYFM $EAF9 unpack (Y ,A) to F AC
MOYMF $EB2B pack FACto (Y,A) - CONUPK $E9E3 unpack (Y,A) to ARG
MOYAF $EB63 move F AC to ARG
MOYFA $EB53 move ARG to FAC
STRINI $E3D5 create new string space
MOYSTR $E5E2 move string into new space

Page Zero Data and Pointers:

LINNUM $50.5 1 unsigned integer, lo-hi format
FAC $9D.A2 FP accumulator
ARG $A5.AA FP argument
YARPNT $83.84 pointer to variable value
LOWTR $9B.9C pointer to array variable (name) - DSCTMP $9D.9F string descriptor: length , lo, hi
TXTPTR $B8.B9 interpreter pointer, in C HRGET/ GOT

the A-reg, it turns to its next task. If your routine is that next task,
~ then you have that next character in the A-reg waiting for you when

you get control.
To read your parameter(s) from BASIC, you fetch the characters

""" immediately following the calling command and interpret them, per
haps using Applesoft's routines to help you. Such a call might look
like

&{A$, 4-S*DR, T)

-

256 Apple® Programmer's Handbook

When control passes to you r routine pointed to by the JMP at $3F5,
the "(" is in the A-reg. By JSR CHRGET you advance TXTPTR by
one to the A, fetching it to the A-reg. And so on . If you want to ignore
the remaining parameters and skip to the end of statement, then a
routine called DATA will do that. Just JMP DATA and you wi ll re
turn control back to normal Applesoft execution with TXTPTR at the
end of your call statement. It's good practice to end your routines with
a JMP OAT A in all cases that continue BASIC execution.

One task you must perform when reading a parameter list, whether
with C HRGET or routines that use CHRGET, is syntax checking.
Parameter lists are usually enclosed in brackets and with the param
eters themselves separated by commas. You must test to see that the
right parameters are in the right place, and that brackets and commas
are where they are expected. Yo u may include a command word as a
parameter, and interpret it in your routine, rejecting it if it is meaning
less to you . Whenever you have to reject the parameter list, you can
JMP SNERR to exit your routine. This will halt execution of the
BASIC program and print

SYNTAX ERROR

to the screen.
So, you have two possible exits for ML routines run under Apple

soft - JMP DATA and JMP SNERR. Use DATA for normal con
tinuation of the BASIC program; SNERR to exit the program . Do all
your parameter reading and syntax checking in the ML mainline and
end it with a single JMP DATA instruction. Use JMP SNERR to trap
errors in the mainline. This way, all your JSRed routines have clean
parameters and no Appleso ft text to deal with.

To do the syntax checking for brackets and commas, use

CHKCOM at $DEBE for commas
CHKOPN at $DEBB for "("
CHKCLS At $DEBS for ")"

When called, each will test the current character by using CHRGOT.
If it doesn't ma tch, then it bombs your program by jumping to
SNERR. lf the character is all right, it exits by doing a C HRGET.
This leaves TXTPTR pointing to the fi rst character of the next param
eter o r to the end of statement. Just right for the parameter routines.
So, a typical ML mainline would be

-
-

-

-
n
-

-

Applesoft BASIC 257

AM PER: JSR CHKOPN ; gobble "("
JSR GETBYT : get expression to X-reg
JSR FIRST ; Parm 1 in X-reg
JSR CHKCOM ; gobble comma
JSR GETBYT ; get expression to X-reg
JSR SECOND : Parm 2 in X-reg
JSR CHKCLS ; gobble ")"
JMP DATA ; continue BASIC

where GETBYT is typical of Applesoft parameter routines and your
routines FIRST and SECOND are called with each of the two param
eters in the X-reg. The SNERR calls are all within the syntax and
parameter routines, making a simple, sequential mainline. The call se
quence is

&(parm 1, parm2)

where parmi and parm2 are expressions of values from 0 to 255.
Let's look at another example. This one has only one parameter, a

single letter - "A" to "Z".

AMPER: JSR CHKOPN ; gobble "("
JSR isletc ; edit "A" to "Z"
BCS AMPER1 ; letter?
JMP SNERR : no ... bomb BASIC

AMPER1 : JSR GOTCHA ; yes ... interpret it
JSR CHKCLS ; gobble ")"
JMP DATA ; that's all, folks!

The ISLETC range tests the A-reg and sets the C-flag if it is A to Z.
The GOTCHA routine then has the character in the A-reg as its
parameter.

The mainline of your ML routine then has the job of dealing with
parameters. It begins with the first character in the A-reg with
TXTPTR pointing to its location in the BASIC program. Using syn
tax-checking routines, parameter routines, and your application
routines, it reads and assigns each parameter in turn. At the end, it
normally exits with a JMP DATA; abnormal exits are through the
SNERR routine. Using this strategy, you must design your ML
routine to assign each parameter passed to them in the same order as
in the parameter list. If any parameters are returned to BASIC, they

258 Apple® Programmer's Handbook

must be at the end of the list in order of availability for return .
Normally, the mainline passes through the list, fetching each param
eter once and only once. By careful design, perhaps using temporary
storage, this will be enough.

There are two ways of passing parameters using Applesoft's
routines - by value or by reference. The simplest and easiest of these
is passing by value.

A string can be passed by value by putting the string in the
parameter list, literally. For example,

&("THIS IS A STRING VALUE")

passes the string between the quotes to the ampersand routine. The
quotes must be used to prevent Applesoft tokenizing it. Applesoft
ignores text between quotes but replaces any substring it recognizes as
a BASIC command with a token. Use quotes. In fact, for a single
parameter like this,

&"THIS IS A STRING VALUE"

the parameter can be used without delimiters like brackets. The ML
mainline is

AM PER: JSR CHRGET ;next character
JSR ISLETC ; letter "A" to 'Z"
BCC AMPER1 ; letter?
JSR GOTCH A ; yes .. process it
JMP AMPER then get another

AMPER1 : JMP DATA ; no .. . exit, all done

Such a routine might, for instance, interpret English-like commands.
Of course, you can use your own edit instead of ISLETC.

To pass numbers by value, Applesoft has a couple of very useful
routines to read expressions. You must pass legal Applesoft expres
sions, and each o f these special routines will leave you with the cal
culated value at a known memory location .

One of these expression reducers is GETBYT, shown earlier. It
must have TXTPTR pointing to the first character of the expression,
and it returns the expression to you in the X-reg with TXTPTR
pointing to the first character following the expression. If the expres-

-

-

....

App/esoft BASIC 259

sion doesn't make sense, then SNERR is invoked. If the result is not
within zero to 255, it can't fit into the X-reg and an ILLEGAL
QUANTITY error results. As far as your ML routine is concerned,
the value is in the X-reg following the JSR GETBYT and TXTPTR is
properly positioned at the expected delimiter - comma or ")".

Larger numeric values can be calculated from parameter expres
sions by the FRMNUM routine. It works just like GETBYT except it
leaves the number in F AC - the noating-point accumulater in Page
Zero. You can use the Applesoft floating-point package to work with
the value at this point, or you can reduce the FP number to an integer
if you wish. A routine called GETADRfixes the contents of FAC by
changing it to an integer value in address format at a Page Zero loca
tion called LINNUM. So, the sequence

JSR FRMNUM
JSR GETADR

results in a parameter expression evaluated into an integer at
LINNUM ($50.51) in address form, low byte, high byte. Just a JSR
FRMNUM will reduce the expression to the FAC only. The
FRMNUM routine is the general way to get a numeric value, but you'll
find GETBYT and GET ADR very useful.

If you want to return a parameter from your ML routines to
BASIC, then you must pass it by reference; you cannot return a
parameter by value without inviting trouble. Passing by reference can
be done either way: from ML to BASIC or from BASIC to ML. In the
BASIC parameter list, you state the variable name and that declares it
as a parameter.

By reference, you can't give an expression to pass to the ML
routine; only a variable name. Your ML routine must first find the
variable in memory by reading the name from the parameter list then
searching for it. Then, with the address of the variable in Page Zero, it
can read or write to the variable, as you wish. Since this is exactly what
Applesoft itself does to reference variables, you can just use its
PTRGET routine to lookup your referenced parameters.

A referenced parameter is a variable and PTRGET reads the vari
able name pointed to by TXTPTR. It then looks it up in the variable
storage area and returns its address. If it can't find it, then it creates a
new variable with that name; in either case it returns with the address.
TXTPTR is returned, pointing to the next character following the

260 Applf!lJ Programmer's Handbook

variable name in program text, as expected. The address of the vari-
able itself is in Page Zero at VARPNT ($83 .84) and in the registers: ~
high byte in Y -reg, low byte in A-reg. Almost all referenced
parameters are found using PTRGET.

If you wanted to reference an entire array of variables and not just a
single entry, then another routine called GETARYPT will do that. It
fetches the address of the beginning of the array, where its name is en
coded, in the array storage area. The address is in LOWTR ($9B.9C)
when it returns to you, and you'll have to calculate your own way
through the entries. GETARYPT is for entire arrays only, such as you
would access if you wrote sorts or matrix arithmetic.

Once you have your variable pointer in Page Zero, the way you
fetch and replace the variable depends on whether you are working
with a number or with a string. The key is the pointer in V ARPNT and
that was found by PTRGET.

Immediately after a JSR PTRGET, the address of the pointer is in
the Y-reg and the A-reg. If you then JSR MOVMF, the FP variable
will be moved to the FAC in Page Zero. This is how you fetch an FP
variable: ,-q

JSR PTRGET ; reference pointer
JSR MOVFM ; variable to FAC

If you are using the floating-point package (see Table 4-6) and want a
second variable in ARG then the caB is

JSR PTRGET ; reference pointer
JSR CONUPK ; variable to ARG

An FP number can be returned the same way. Fetch the pointer and
use a move routine:

JSR PTRGET ; reference pointer
JSR MOVMF ; FACto variable

All three of these routines - MOVFM, CONUPK, MOVMF -
expect the memory address in the Y- and A-registers where PTRGET
puts it. And the routines do the packing and u!lpacking as necessary.

With the routines to work between the FP registers and the variables !"'"I
in memory, you have a ll you need to pass FP numbers. Integers areal-

App/esoft BASIC 261

Table 4-6. Applesoft Floating-Point Math

Registers:

FAC $9D.A2 ;FP accumulator, unpacked
ARG $AS.AA ;FP argument for binary function
TEMPI $93.97 ;Packed format
TEMP2 $98.9C ;Packed format
TEMP3 $8A.8E ;Packed format
RND $C9.CD ;Packed format, random number

Other Applesoft routines use this Page Zero space differently when not doing
floating-point math. See memory map in Chapter Two.

Moves:

MOVFM $EAF9 ;Unpacks (Y,A) to FAC
CONUPK $E9E3 ;Unpacks (Y,A) to ARG
MOVMF $EB2B ;Packs FACto (Y,A)
MOVAF $EB63 ;Copy FAC to ARG
MOVFA $EB53 ;Copy ARG to FAC
GETADR $E752 ;Fix FACto LINNUM (unsigned)
GIVAYF $E2F2 ;Float (signed) A, Y to F AC
FOUT $ED34 ;String F AC to FBUFFR (STR$ function)
STROUT $DB3A ;Print string at (Y ,A)

Unary Functions:

SGN $EB90 ;Sign(l,O, -1) of FAC
ABS $EBAF ;Absolute value of FAC
INT $EC23 ;Next largest integer
SQR $EE8D ;Square root of F AC
LOG $E941 ;Naturallogarithm(base e) of FAC
EXP $EF09 ;Exponent (base e) of F AC
RND $EFAE ;Random number to FAC
cos $EFEA ;Cosine (FAC in radians) to FAC
SIN $EFF1 ;Sine (FAC in radians) to FAC
TAN $F03A ;Tangent (F AC in radians) to F AC
ATN $F09E ;Arctan (FAC in radians) to FAC

Binary Functions:

FMULTT $E982 ;ARG *FACto FAC
FDIVT $EA69 ;ARG I FACto FAC
FADDT $E7Cl ;ARG + FACto FAC
FSUBT $E7AA ;ARG- FACto FAC
FPWRT $EE97 ;ARG exp FACto FAC (ARG to the FAC

power)

You should do the JSR MOVFM just before a binary function JSR. Otherwise,
do a LDA FAC before the JSR.

262 Apple® Programmer's Handbook

Constants:

RND $00C9 ;Random number
'.4 $F070
Y2 $EE64
-Yl $E937
1 E913
10 $EA50
SQR(Y2) $E92D
SQR(2) $E932
LOG(2) $E93C ;Base ten
LOG(2) $EEDB ;Base e
Pl/2 $F063
2*PI $F06B
-32768 $EOFe

Use addr-hi in Y -reg and addr-lo in A-reg to fetch a constant with MOVFM or
CONUPK.

FCOMP $EBB2

SIGN $EB82

COMPARE $DF6A

Compares:

;Compare FAC with (Y ,A)
;Result in A = reg:

1 if (Y,A) > FAC
0 if (Y,A) = FAC

$FF if (Y,A) < FAC

;Sets A-reg according to FACSGN

1 ifFAC > 0
0 ifFAC = 0

$FFifFAC<O

;Compare ARG with F AC according
;to the code at $0016. FAC is
;set to TRUE (1) or FALSE (0) on
;return:

Set $0016
1
2
3
4
5
6

FAC is TRUE if
ARG > FAC
ARG = FAC
ARG< FAC
ARG ~ FAC
ARG + FAC
ARG ~ FAC

most never passed by reference. Strings have several routines to
manage them from variables, and the ones most often used are
STRINI and MOVSTR.

If you want to read a referenced string, you must first fetch its
descriptor from the string variable to Page Zero. The descriptor then

...
,...

~

~

filii!

..,
I

-

-

-

Applesoft BASIC 263

points to the string itself and you can read using indirect indexed
addressing.

JSR PTRGET ; reference pointer
LDY #0
LDA (VARPNn,Y ;string length
STA DSCTMP ; descriptor
INY
LDA (VARPNn,Y ; string addr-lo
STA DSCTMP+1
INY
LDA (VARPNn,Y ; string addr-hi
STA DSCTMP+2

The string can be read by LOA (DSCTMP+ l),Y where Y varies from
zero to one less than the length in DSCTMP. The three bytes at
DSCTMP are in Page Zero.

If you want to write a referenced string, it gets trickier. The way
Applesoft does it is to create new string storage with the FRETOP and
FRESPC pointers. Then the new string is put into the location pointed
to by FRESPC and its new descriptor replaces its old one in the vari
able's descriptor. Wow! Let's take that step-by-step.

The routine that creates the new space is called STRINI. Just give it
the length you need in the A-reg and it works with the pointers and re
turns you the new descriptor in DSCTMP. Then you copy the
DSCTMP descriptor to the variable pointed to by VARPNT. Finally,
use the DSCTMP descriptor as the length and destination address to
copy your result string. It goes like this.

JSR PTRGET ; reference pointer
LDA #LENGTH ; of your new string
JSR STRINI ; make room up t here
LDY #0
LDA DSCTMP ; copy new descriptor
STA (VARPNT),Y ; to variable
INY
LDA DSCTMP+ 1
STA (VARPNT),Y
INY
LDA DSCTMP+2

264 Appl~ Programmer's Handbook

STA (VARPND,Y
LDA #LENGTH
LDY #STRING
LDX #STRING
JSR MOVSTR

; length of new string
; string addr-hi
; string addr-lo
; copy string to (FRESPC)

The STRINI routine prepared your way for the copy by leaving
FRESPC pointing to the new space in string storage. There a re short
cuts you can make, especially with fixed length strings, but you need
experience to get away with them. This procedure will work safely and
satisfy most of your needs. Usually, STRING will be a work buffer
you set up; use Page Two if you aren't doing any conflicting inputting
at the same time.

When passing by reference, the key routine is PTRGET and the
variable pointer is VARPNT. From there, you can work with numbers
or strings according to the parameter. Passing by reference finds its
greatest use in returning parameters from ML to BASIC.

-
-

-

-

-

-

CHAPTER FIVE

Integer BASIC

5.1 THE LANGUAGE

A summary o f Integer BASIC statements is in Section 1.2 as well as
this section. The commands and statements on pages 266 through 275
a re the descriptions that appeared in the original Apple II Reference
Manual (1978). T hanks to Apple Computer Inc., for permission to re
produce them.

Like Applesoft, Integer BASIC resides in the ROM memory area
$0000.F7FF, between the hardware and the Monitor. The BASIC it
self requires only 5K and begins at $EOOO. The three ROM chips in
$EO, $E8, and $FO sockets contain several utilities in addition to
Integer BASIC - the Miniassembler and Floating-Point Utility
Routines are useful to the Integer programmer. The $08 socket is
filled by the Programmer's Aid # I , which is a package of utilities in
cluding HIRES graphics . Some of the early Apple lis may not have
this chip retrofitted, but an Apple dealer can supply the chip along
with a manual.

The x memory available to an Integer BASIC program is delimited
by the HIMEM and LOMEM pointers in Page Zero (see Fig. 5- 1). In a
48K system with DOS, this gives the range $800.95FF by LOM EM
pointing to $800 and HI MEM pointing to $9600. When you type in a
program by numbering statement lines, it is kept tokenized as pro
gram text below the HIM EM address. T he program is in ascending
sequence and a pointer called PP (point to program) gives the address

265

266 Appl~ Programmer,s Handbook

BAS I C COMMANDS

Co11111ands are executed i11111ediately; they do not require 1 ine numbers.Most Statenents
(see Basic Statements Section) may also be used as co11111ands. Remember to press
Return key after each co11111and so that Apple knows that you have finished that
line. Multiple corrmands (as opposed to statements) on same 1 ine separated by
a " : " are NOT allowed.

COMMAND NAME

AUTO nwn

AUTO num1, num2

CLR

CON

DEL num1

Q£b. num1, num2

OSP var

GOTO exp1'

GR

LIST

LIST num1

LIST nwnl, num2

Sets automatic line numbering mode. Starts at 1 ine
number num and increments line numbers by 10. To
exit AUTO mode, type a control X*, then type the
1 etters "MAN" and press the return key.

Same as above execpt increments 1 ine numbers by
number num2.

Clears current BASIC variables; undimensions arrays.
Program is unchanged.

Continues program execution after a stop from a
control C*. Does not change variables.

De 1 etes 1 i ne number num 1.

De 1 etes program from 1 i ne number numl through 1 i ne
number num2.

Sets debug mode that will display variable var every
time that 1 t is changed along with the 1 ine number
that caused the change. (NOTE: RUN connand clears
OSP mode so that DSP corrrr.and is effective only if
program is continued by a CON or GOTO co11111and.)

Sets highest memory location for use by BASIC at
location specified by expression eX)l"in decil'lal.
HIMEM: may not be increased without destroy1ng program.
HIMEM: is automatically set at maximum RAM memory when
BASIC is entered by a control B*.

Causes ifllllediate jump to line number specified by
expression expr>.

Sets mixed color graphics display mode. Clears screen
to black. Resets scrolling window. Displays 4tlx40
squares in 15 colors on top of screen and 4 1 ines of text
at bottom.

Lists entire program on screen.

Lists program line number num1.

Lists program line numbernum1 through line number
num2.

,_

LOAD ezpr>. ,..

LOME~!: e:rpr

~

MAN ,..
NEW

NO OSP Val'

NO TRACE ,..
RUN

~
RUN e:r:pr>

SAVE

~
TEXT

TRACE.
~

Integer BASIC 267

Reads (Loads) a BASIC program from cassette tape.
Start tape recorder before hitting return key. Two
beeps and a ">" indicate a good load. "ERR" or "~1EM"
FULl ERR" message indicates a bad tape or poor recorder
performance.

Similar to HI~IEM: except sets lowest memory location
available to BASIC. Automatically set at 2048 when
BASIC is entered with a control B*. Moving lOMEM:
destroys current variable values.

Clears AUTO line numbering mode to all manual 1 ine
numbering after a control C* or control X*.

Clears (Scratches} current BASIC program.

Clears OSP mode for variable var>.

Clears TRACE mode.

Clears variables to zero, undimensions all arrays and
executes program starting at lowest statement 1 ine
number.

Clears variables and executes program starting at line
number specified by expression e:rp1'.

Stores (saves} a BASIC program on a cassette tape.
Start tape recorder in record mode prior to hitting
return key.

Sets all text mode. Screen is formated to display
a 1 pha-numeri c characters on 24 1 i nes of 41) characters
each. TEXT resets scrolling windo\"t to maximum.

Sets debug mode that displays line nu::~ber of each
statement as it is executed.

* Control characters such as control X or control C are
typed by holding down the CTRl key while typing the
specified letter. This is similiar to how one holds
down the shift key to type capital letters. Control
characters are NOT displayed on the screen but are
accepted by the computer. For example, type several
control G's. We will also use a superscript C to indicate
a control character as in xc.

268 App/~ Programmer's Handbook

BASIC Operators

Sample Statement

Prefix Operators

()

+

NOT

HJ X:: 4*(5 + X)

2\) X:: 1+4*5

3\) ALPHA "'
-(BETA +2)

40 IF A NOT B THEN
2~~

Arithmetic Operators

t

*

I

MOD

+

6t) Y "' Xt3

71J LET OOT~::A*B*N2

8.0 PRINT GAMMA/S

9fJ 't "' 12 MOO 7
1~\) X = X MOO(Y+2)

11\) P = L + G

120 XY4 = H-0

130 HEIGHT::15
140 LET SIZE=7*5
150 A(S) = 2
155 ALPHA$ = "PLEASE"

Explanation

Expressions within parenthesis ()
are always evaluated first.

Optional; +1 times following expression.

Negation of following expression.

Logical Negation of following expression;
0 if expression is true (non-zero), 1
if expression is false (zero).

Exponentiate as in x3. NOTE: + is
shifted letter N.

Multiplication. NOTE: Implied multi
plication such as (2 + 3)(4) is not
allowed thus N2 in example is a variable
not N * 2.

Divide

Modulo: Remainder after division of
first expression by second expression.

Add

Subs tract

Assignment operator; assigns a value to
a variable. LET is optional

Integer BASIC 269

Relational and logical oeerators ,.. The numeric values used in logical evaluation are "true" if non-zero,
"false" if zero.

~
Symbol Sample Statement Exelanation

16(} IF D " E Expression "equals" expression.
THEN SUU

17(} IF A$(1,1}= String variable "equal~' string variable.
"Y" THEN sg(J

or < > 1811 IF AlPHA #X*Y Expression "does not equal" expression. - THEN S0tl

19U IF A$ # "NO" String variable "does not equal" string
THEN S(J(J variable. NOTE: If strings are not

the same 1 ength, they are considered
un-equal. < > not allowed with strings.

2fJ(J IF A>B
• THEN GO TO SU

Expression "is greater than" expression.

< 2111 IF A+l<B-S Expression "is less than" expression.
THEN l(J(.J

>= 220 IF A>=B Expression "is greater than or equal to"
THEN li.J(.J expression.

<= 23(1 IF A+l<:::B-6 Expression "is less than or equal to"
THEN 2110 expression. - AND 240 IF A>B AND Expression 1 "and" expression 2 must
C<D THEN 2~11 both be "true" for statements to be true.

OR 2S0 IF ALPHA OR If either expression 1 or expression 2 .., BETA+ 1 THEN 2«11 is "true", statement is "true" .

270 Applf!® Programmer,s Handbook

BAS I C FUNCTIONS

Functions return a numeric result. They may be used as expressions or as part
of expressions. PRINT i_s used for examples only, other statements may
be used. Expressions followina function name must be enclosed between two
parenthesis s i qns.
FUNCTION NAME

ABS fe:rproJ

ASC fstro$J

LEN (stro$J

31110 PRINT ABS(X) Gives absolute value of the expression erpro.

310' PRINT ASC("BACK") Gives decimal ASCII value of designated
32tl PRINT ASC(BS) string variable> stro$. If more than one
33fl PRINT ASC(BS(4,4)) character is in designated string or
335 PRINT ASC(BS(Y)) sub-string, it gives decimal ASCII

value of first character.

34fl PRWT LEN(BS) Gives current length of designated
string variable stre$; 1 .e .• number of
characters.

POL (e:rproJ 350 PRINT POL(X) Gives number between ~ and 255 corres
ponding to paddle position on game paddle
numbPr designated by expression e:rpr and must
be legal paddle (0.1,2,or 3) or else 255 is
returned.

PEEK fe:rproJ 360 PRINT PEEK(X) Gives the decimal value of number stored
of decimal memory location specified by
expression e:rpre. For MEMORY locations
above 32676, use negative number; i.e.,
HEX location FFFI.f is -16

RNO (e:rproJ

SCRN (e:rpro z.
e::pre2)

SGN fe:rproJ

37f6 PRINT RNO(X) Gives random number between tJ and
(expression e:cpro -1) if expression e:cpro
is positive; if minus, it gives rand0111
number between ~ and (expression e:cpro + 1).

380 PRINT SCRN (X1,Yl) Gives color (number between l.f and 15) of
screen at horizontal location designated

39p PRINT SGN(X)

by expression e:rpro1 and vertical
location designated by expression e:cpro2
Range of expression e:cpro1 is 0 to 39. Range
of expression erpro2 is 0 to 39 if in standard
mixed colorgraphics display mode as set by
GR colll!land or fJ to 47 if in all color mode
set by POKE -163,1)4 ,p: POKE - 163Q2,Q.

Gives siqn (not sine) of expression e:rpro
i.e., -1 if expressione:cpro is negative, zero if
zero and +1 ife:rp:r is positive.

,...

~

~

Integer BASIC 271

BASIC STATEMENTS

Each BASIC statement must have a line number between ~ and 32767. Variable
names must start with an alpha character and may be any number of alpha-
numeric characters up to ~~~· Variable names may not contain buried any
of the following words: AND, AT, MOO, OR, STEP, or THEN. Variable names may
not begin with the letters END, LET, or REM. String variables names must end
with a $ (dollar sign). Multiple statements may appear under the same 1 ine number
if !:cpa rated by a : (co 1 on) as 1 ong as the tota 1 number of characters in the 1 i ne
(including spaces) is less than approximately 150 characters
Most statements may also be used as corrmands. BASIC statements are executed
by RUN or GOTO comnands.

NAME

CALL expr>

COLOR=expr>

OHI Vll!'l (e:r:;rl J
st!'$ (e:rpr2J
Va1'2 (expr3 J

10 CALL-936

30 COLQR::12

50 DIM A(20) .B(l0)
60 DIM B$(3.0}
7.0 01~1 c (2)

Illeqal:
80 DIM A(30)

Leqal:
85 DIM C(1000)

leqa]:
90 IJSP AX: OSP L

Illeqal:
100 OSP AX,B
102 OSP ABS
104 OSP A(5)

Legal:
Ul5 A=A(S): OSP A

Causes execution of a machine level
language subroutine at decimal memory
location specified by expre$5Ton exp1'
locations above 32767 are specified using
negative numbers; i.e., location in
example Hl is hexidecimal number $FC53

In standard resolution color (GR)
graphics mode, this corrrnand sets screen
TV color to value in expression exp1'
in the range fl to 15 as described in
Table A. Actually expressionexpr> may be
in the range fl to 255 without error message
since it is implemented as if it were
expressionexpl"' MOD 16.

The DIM statement causes APPLE II to
reserve memory for the specified variables.
For number arrays APPLE reserves
approximately 2 times exp1'bytes of memory
limited by available memor.v. For string
arrays - st1'$- r e:z:pl') must be in the ram1e of
1 to 255. Last defined variable may be
redimensioned at any time; thus, example
in 1 i ne i s i 11 ega 1 but 85 i s a 11 owed.

Sets debug mode that OSP variable var each
time it changes and the 1 ine number where the
change occured.

272 Apple® Programmer,s Handbook ,..

NAME EXAMPLE DESCRIPTION

110 ~NO Stops program execution. Sends carriage
return and "> " BAS I C prompt) to screen.

FOR VCZJ": 110 FOR L"0 to 39
~.11 TOexpl'2 120 FOR X,.Yl TO Y3

Begins FOR ... NEXT loop, initializes
variable VCU' to value of expression expl'l
then increments it by amount in expression
expl' 3 each time the corresponding "NEXT"
statement is encountered, until value of
expression expl'2is reached. If STEP e.rpl'J

STEPe.rpl'J 130 FOR I .. 39 TO 1

GOSU2 erpr

HLIN erprl,
e:rpro2AT .;xpl'3

Note:

150 GOSUB 1~0 *J2

140 GOSUB 500

160 GOTO 200
170 GOTO ALPHA+lfJ0

180 GR
190 GR: POKE -16302,0

200 HUN 1!1,39 AT 20
21ft HUN Z,Z+6 AT I

is omitted, a STEP of +1 is assumed. Negative
numbers are a 11 owed.

Causes branch to BASIC subroutine starting
at legal line number specified by expression
expl' Subroutines may be nested up to
16 levels.

Causes i11111ediate jump to legal 1 ine
number specified by expression expr.

Sets mixed standard resolution color
graphics mode. Initializes COLOR = 0
(Black) for top 40x40 of screen and sets
scro 11 i ng window to lines 21 through 24
by 40 characters for four 1 ines of text
at bottom of screen. Example 190 sets
all color mode (40x48 field) with no text
at bottom of screen.

In standard resolution color graphics mode,
this comnand draws a horizontal line of a
predefined color (set by COLOR=) starting
at horizontal position defined by expression
exprl and ending at position expr2 at
vertical position defined by expression
expr3 • e.rprl andexpr2 must be in the ranqe
of 0 to 39 and exprJ < = exp1'2 • e.rpl'3
be in the range of 0 to 39 (or 0 to 47 if not
in mixed mode).

HUN 1!1, 19 AT 0 is a horizontal line at the top of the screen
extending from left corner to center of screen and HUN 20,39 AT
3g is a horizontal line at the bottom of the screen extending from
center to right corner.

If. erpzoession 220 IF A > B THEN
~statement PRINT A

INPUT VCD"l,
var2, str$

.!M.erpr

LET

230 IF X=0 THEN C=l
240 IF A#l0 THEN

GOSUB 200
250 IF A$(1,1)# "Y"

THEN 100
Illegal:

260 IF L > 5 THEN 50:
ELSE 60

Legal:
279) IF L > 5 THEN 50

GO TO 60

280 INPUT X, Y, Z (3)
290 INPUT "AMT",

OLLR
300 INPUT "Y or N?", ~.$

310 IN# 6
320 IN# Y+2
330 IN# 0

340 LET X=S

LIST numl, 350 IF X> 6 THEN
-r.um2 LIST 50

NEXT VCD"l, 360 NEXT I
var2 370 NEXT J, K

NO OSP VCD" 380 NO OSP I

390 NO TRACE

Integer BASIC 273

If erpression is true (non-zero) then
execute statement; if false do not
execute statement. If statement
is an expression, then a GOTO erpr
type of statement is assumed to be implied.
The "ELSE" in example 260 is illegal but
may be implemented as shown in example 270.

Enters data into memory from 1/0
device. If number input is expected,
APPLE wil output "?"; if string inout is
expected no "?" will be outputed. 1'-\Jltiple
numeric inputs to same statement may be
separated by a conma or a carriage return.
String inputs must be separated by a
carriage return only. One pair of " " may
be used inmediately after INPUT to output
prompting text enclosed within the quotatior.
marks to the screen •

Transfers source of data for subsequent
INPUT statements to peripheral 1/0 slot
(1-7) as specified as by expression erpr.
Slot 0 is not addressable from BASIC.
IN#0 (Example 330) is used to return data
source from peripherial 1/0 to keyboard
connector.

Assignment operator. "LET" is optional

Causes program from 1 ine number nwnl
through line number num2 to be displayed
on screen.

Increments corresponding "FOR" variable
and loops back to statement following
"FOR" until variable exceeds 1 imit.

Turns-off DSP debug mode for variable

Turns-off TRACE debug mode

274 Apple® Programmer's Handbook

PLOT. exprol, expro2

POKE exprol, expro2

PRINT vaztl, Val', stro$

400 PLOT 15. 25
400 PL T XV, VV

420 POKE 20, 40
430 POKE 7*256,

XMOD25~

440 POP

450 PRINT Ll
460 PRINT Ll, X2
470 PRINT "AMT=" ;OX
480 PRINT A$;8$;
490 PRINT
492 PRINT "HELLO"
494 PRINT 2+3

500 PR# 7

510 REM REMARK

520 RETURN
530 IFX= 5 THEN

RETURN

In standard resolution color
graphics, this c011111and plots a small
square of a predefined color (set
by COLOR=) at horizontal location
specified by expression e:rprl in
range 0 to 39 and verticaf location
specified by expressionexpr2 in range
0 to 39 (or 0 to 47 H in all graphics
mode) NOTE: PLOT 0 0 is upper 1 eft
and PLOT 39, 39 (or PLOT 39, 47) is
lower right corner.

Stores decimal number defined by
expression expro2 in range of 0
255 at decimal memory locat1on
specifi~xpression e:rprl
Locations above 32767 are specified
by negative numbers.

"POPS" nested GOSUB return stack
address by one.

Outputs data specified by variable
var or string variable str$ starting
at current cursor location. If there
is not trailing"," or";" (Ex 450)
a carriaqe return will be generated.
C011111as (Ex. 460) outputs data in 5
left justified columns. Semi-colon
(Ex. 470) inhibits ~rint of any spaces.
Text imbedded in " " wi 11 he orin ted
and may appear :nultiple times·.

Like IN#, transfers output to 1/0
slot defined by expression expr PR#
0 is video output not 1/0 slot f).

No action. All characters after REM
are treated as a remark until terminated
by a carriage return.

Causes branch to statement following
last GOSUB; i.e., RETURN ends a
subroutine. Do not confuse "RETURN"
statement with Return ~on keyboard.

r-
!

VLIN e:t:pl'1, e:t:pl'2
-- AT exp1'3

VTAB e:t:pl'

530 TAB 24
5411.1 TAB I+24
5511.1 IF AIIB THEN

TAB 211.1

550 TEXT
56~ TEXT: CALL-936

570 TRACE
580 I FN > 32000

THEN TRACE

Integer BASIC

Moves cursor to absolute horizontal
position specified by expression

275

e:t:p:l' in the range of 1 to 40. Position
is left to right

Sets a 11 text mode. Resets
scrolling window to 24 lines by 40
characters. Example 560 also clears
screen and homes cursor to upper 1 eft
corner

Sets debug mode that displays each
line number as it is executed.

5911.1 VLIN 0. 39AT15 Similar to HUN except draws vertical
6011.1 VLIN Z,Z+6ATY line starting at e:pro1 and ending at

expl'2 at horizontal position expl'3.

610 VTAB 18
620 VTAB Z+2

Similar to TAB. Moves cursor to
absolute vertical position specified
by expression e:t:pro in the range 1 to
24. VTAB 1 is top line on screen;
VTAB24 is bottom.

276 Apple® Programmer,s Handbook

t-----------i-- HIMEM AT S4C40

PROGRAM
TEXT

t-----------1-- PP AT SCA.CB

t--------------i-- PV AT SCC.CD

VARIABlES
STORAGE

t-----------t--LOMEM AT $4A4B

Fig. S-t. Map of Integer BASIC program.

of the first instruction. So, program text resides between the addresses ,._
given by PP and HIM EM at the top end of user RAM.

When you RUN an Integer BASIC program, it builds its variables
starting from the LOMEM address. A pointer called PV (point to
variables) marks the end of the variable storage area. If adding a vari
able should ask PV to become bigger than PP you will get an
"***MEM FULL ERROR." The variables include both numbers and
strings between the addresses given by LOMEM and PV at the bottom
end of user RAM.

Compare the memory maps of Integer and Applesoft. Both are resi
dent in firmware in the $DOOO.F7FF region with the cold entry at
$EOOO and the warm entry at $E003. Both delimit RAM for BASIC
use with a pointer pair: Applesoft with TXTT AB and FRETOP;
Integer with LOMEM and HIMEM. Both tokenize their commands
when building program text to save space and execution time. Both
build variables during BASIC execution. And in both, the LOMEM:
command changes the beginning of variable storage so that you can
protect the HIRES screen(s) from encroachment. However, the maps
are different and you use them differently to achieve coexistence with
graphics and ML routines.

The big difference is where program text resides. Integer puts it at
the top of memory, right where Applesoft kept its working strings.

Integer BASIC 277

Table 5-l. Integer BASIC Error Messages

Message Description

••• SYNTAX ERR Results from a syntactic or typing error.

••• >32767 ERR A value entered or calculated was less than - 32767 or
greater than 32767.

••• > 255 ERR A value restricted to the range 0 to 255 was outside that
range.

••• BAD BRANCH ERR Results from an attempt to branch to a nonexistent line.
number.

••• BAD RETURN ERR Results from an attempt to execute more RETURNs
than previously executed GOSUBs.

••• BAD NEXT ERR Results from an attempt to execute a NEXT statement
for which there was not a corresponding FOR state-
ment.

••• 16 GOSUBS ERR Results from more than 16 nested GOSUBs.

••• 16 FORS ERR Results from more than 16 nested FOR loops.

***NO END ERR The last statement executed was not an END.

••• MEM FULL ERR The memory needed for the program has exceeded the
memory size allotted.

••• TOO LONG ERR Results from more than 12 nested parentheses or more
than 128 characters in input line.

••• DIM ERR Results from an attempt to DIMension a string array
which has been previously dimensioned.

••• RANGE ERR An array was larger than the DIMensioned value or
smaller than I or HLIN, VLIN, PLOT, TAB, or VTAB
arguments are out of range.

*** STR OVFL ERR The number of characters assigned to a string exceeded
the DIMensioned value for that string.

*** STRING ERR Results from an attempt to execute an illegal string
operation.

RETYPE LINE Results from illegal data being typed in response to an
INPUT statement. This message also requests that the
illegal item be retyped.

But that is all right because Integer doesn't keep strings dynamically;
they are kept within the variables themselves. So, unlike Applesoft
programs that always load at the bottom, Integer programs load at the
top of memory so as to end just before the HIMEM address.

In Applesoft, variable storage begins at the address in V ARPNT,
normally set to the end of program text and changed by the HIMEM:
command. In Integer, variable storage begins at the address in the

278 Appl~ Programmer's Handbook

LOMEM pointer that is changed from $800 by the LOMEM:
command. The only problem is that LOMEM: is illegal in a program
- it must be given in command mode. So, a program must use
POKEs instead to set LOMEM and PV to the variable start address
before any variables are referenced in the program. For example, pro
tecting HIRESl by setting LOMEM and CV to $4000 is done by

30000 POKE 75,64 :REM set LOMEM-hi to $40
30010 POKE205,64 :REM set PV-hi to $40

at the beginning of the program mainline. Only the high bytes need be
set because LOMEM-Io is normally zero and CV is set to LOMEM at
RUN time.

Like Applesoft memory mapping, Integer memory usage can be
optimized if you work from the normal memory map and sketch out
what you want first. Integer is a little easier because it has fewer parts:
only program text and variables. So, by knowing where things are you
can use the same techniques.

5.2.2 Variables

Variables that are kept between the LOMEM and PV addresses dur
ing a BASIC program run are random-length records. Each variable
has a name and that name can be any length up to 100 characters.
Integer is not restricted to two-character names as is Applesoft. Each
name identifies its variable, so each variable record may have a dif
ferent length . Integer BASIC manages this by linking each variable to
the next, using a link pointer. Remember, that was the way program
text was kept; in Integer BASIC, variables are kept the same way.

There are four kinds of variables: simple numbers, characters,
DIMensioned numbers and DIMensioned strings. If a reference to a
new variable is made in your program without a DIMension declara
tion, then it is created as a simple variable of a number or a single
character string.

All variables are composed of a record having four fields : variable
name, display a/tribute, link, and data. The length of the record
depends upon the length of the name.

The variable name, abbreviated VN, contains the name you give it
in negative ASCII. Unlike normal seven-bit ASCII , these characters
all have their bit 7s equal to one so that the characters in Integer are

-

Integer BASIC 279

Table S-2. Integer Variable Names and Tokens

Integer Description

Variable name In 8-bit ASCII , $80 to $FF. First character "A" to "Z",
$Cl to $DA String name"$" tokened as $40

Tokens All $00 to $7F. See Table 5-3.

Integer constant 3 bytes: f!ag($80 to $89), low, high

String constant Lert quote ($28), 8-bit ASCII string, right quote ($29)
REM statement Begins with REM token $50, ends with $01.

between $80 and $FF instead of $00 to $7F. In this scheme, "A" is
$Cl , "B" is $Cl, and so on. So, a variable name consists of a string of
negative ASCII characters. If the name is that of a string, the name
has an extra byte, $40, at the end. The $40 is Integer's token code for
"$" and appears in its place in string names.

The end of the variable name is marked by the display attribute
byte, $00 or $01. Being positive and therefore not a negative ASCII
character, and having only one of two values, it is easily spotted .
What it does is tell the run-time interpreter to display any variable that
has it set to one. This is how the DSP command works when it sets the
display attribute in the variable. Then, NODSP clears it to zero. Nor
mally, all variables have their display attributes zeroed to suppress
automatic display by the run-time interpreter as your BASIC program
executes.

Following the DSP byte in the variable is the link field called NV A,
Next Variable Address. This contains the absolute address of the next
variable. This way all variables are linked in a list for searching.

For simple variables, the data field is two bytes long. A number
appears in the address format of low byte followed by high byte. A
string consists of one negative ASCII character followed by a sentinel
byte in the $00. 7F range, usually $1 E . If it is a null, the sentinel
appears first followed by a zero, $ IE $00.

(l Suppose you had a program like:

10 NUM = 128
20 CHAR$ = " 8 "
30 END

After running and entering the monitor (CALL-151), you could dump
the variables to get

280 Appl~ Programmer's Handbook

0800: CE 05 CD 00 08 08 80 00
0808: C3 C8 C1 02 40 00 12 08 C2 1e

where LOMEM points to $0800. Reading, the CE 05 CD are negative
ASCII for the name of the first variable, NUM. Next, the zero ends
the name by flagging the DSP off. The link is to the next variable ad
dress at $0808. And finally, the data of the first variable is the number
$0080, which is 128. The next variable at the address $0808 is a string,
because the four negative ASCII characters C3, C8, C l , and D2 are
followed by a $40 to give "CHARS" as the variable name. Then the
display byte is off (zero). Next variable address is $0812 in the follow
ing two bytes. And finally the variable's data - the character "B" as
$C2 and suitably terminated with a $1 E.

DIMensioned variables work much the same way (see Fig. 5-2).
Only the DATA field is longer. What the DIM does is reserve one byte

G/----11---,-DsP...._I N-:--vA -'---:-DATA--It=J

••~ •w• J r I I L :, ""
INTEGERS

DISPLAY: I = ON
0 • Off

NEXT VARIABLE ADDRESS

Fig. 5-2. Integer number variable.

for each character if it is a string or two bytes for each additional num
ber if it is numeric. So, a string must be dimensioned with the largest
number of characters expected to be contained by the variable in the
li fe of the program, up to 255 (see Fig. 5-3). When not full, the $IE

diDsP I HvA I

VARIABLE NAME _jj ~" I

DISPLAY I a ON ___j
2 =OFF

NEXT VARIABLE AOORESS

Fig. 5-3. Integer string variable .

DATA t8
I lSTRIHG TERMINATOR

IPOSITIVEI
TYPICALLY l iE

NEGATIVE ASCII
STRING

marks the end o f the current string; you can find it by using the LEN
function. Any element within a string can be found as a substring by
referencing the string with two subscripts, like

-
.....

-

....

Integer BASIC 281

A$ = B$(4,7)

which assigns the fourth through seventh characters in A$ to B$. Con
catenation is done by assigning to the last-plus-one position in a
string, like:

L = LEN(BIG$)
BIG$(L+ 1) = SUFFIX$

which copies the string from SUFFIX$ beginning at one byte beyond
the last character in BIG$. This leaves BIG$ longer by the length of
SUFFIX$.

1"""1 The fact tha t you can only DIMension once restricts your expres-

-

sions to single dimension arrays. But, suppose you wanted a 10 by 12
array. You can reserve enough space to work with in the variable by

DIM ARRAY(9*11)

where the subscripts you use begin at zero. If you had subscripts X
and Y, where X ranged from zero to nine and Y ranged from zero to
eleven, you could then address any element in ARRAY as:

element = ARRAY(X + 12*Y)

As far as BASIC is concerned, you are subscripting with only one ex
pression, but to you it is like having two subscripts operating, X and
Y.

By using tricks like this, you can overcome many of the restrictions
of Integer BASIC.

5.2.3 Program Text

Program text is kept in the highest chun k of memory that the
HIMEM pointer allows. Each line is stored as a single record and may
contain several statements, separated within the line by ":" -
colons. T he records are stored in line number order, in ascending
sequence. The CC pointer gives the address of the first line, and
HIMEM points to one locatio n beyond the end of the last line. The
program text consists of records of one line each in memory pointed
from CC to HIM EM.

282 Apple® Programmer,s Handbook

The lines are in linked records, so they are read as a linked list. The
link field for Integer BASIC text is not absolute, however, but rela-
tive. The first byte in each record gives the length of the record (see
Fig. 5-4). By adding that length to the address of the current record,

1------ LENGTH ------1

I I ![

DATA STATEMENTlSI --------'

ENO·OF·LINE TOKEN= SOl ------------'

Fig. 5-4. Integer BASIC program line.

you get the address of the next record. In this way, the length acts as a
link field in the record to connect each following line to its predeces
sor.

Next in the record is the line number in low-byte/high-byte format.
The line number is always a two-byte field.

The contents of the line follows the line number beginning at the
third byte of the record. Statements are separated by colons tokenized
as $03 in lines with multiple statements. The ends of all lines are
marked by a $01 sentinel token. Then within each statement appears
a mixture of negative ASCII characters and positive-valued tokens.
The tokens are usually commands (verbs) and the characters, labels
(nouns). Of these, constants and REM statements will take a little
study before you can read a dump of program text easily.

REM statements have $50 which is the REM token followed by a
bunch of negative ASCII characters. Together with their line num
bers, they make good reference points when you are scanning through
a dump. Use them to find the neighborhood of your target lines when
searching program text.

String constants appear as a string of negative bytes with $28 at the
start and $29 at the end. These are the tokens for opening and closing
quotes that Integer encodes differently. Look for the $28 ... $29 pat
tern.

Integer constants are three bytes long; first byte is usually $BO. This
flag is negative and may be any byte from $BO to $B9. Look for this
flag followed by the value in low-byte/high-byte order in hex.

Integer BASIC 283

Otherwise, you should be able to cruise through a dump of program
,., text armed with a listing, the Integer Token Table 5-3 and the Negative

ASCII Table 5-4.

Table 5-3. Integer BASIC Text Tokens

Hex Hex Hex

00 start line 30 SGN 60 IF
01 end line 31 ABS 61 PRINT
02 internal use 32 POL 62 PRINT
03 : 33 63 PRINT
04 LOAD 34 (64 POKE
OS SAVE 35 + 65

' 06 CON 36 - 66 COLOR=
07 RUN 37 NOT 67 PLOT
08 RUN 38 (68

' 09 DEL 39 = 69 HLIN
OA , 3A # 6A ,
OB NEW 3B LEN(6B AT
OC CLR 3C ASC(6C VLIN
OD AUTO 3D SCRN(60 '
OE , 3E , 6E AT
OF MAN 3F (6F VTAB
10 HIMEM: 40 $ 70 = string
11 LOMEM: 41 71 =number
12 + 42 (72)
13 - 43

'
73

14 • 44 74 LIST '
15 I 45 ; 75

' 16 = 46 ; 76 LIST
17 # 47 ; 77 POP
18 >= 48

'
78 NODSP

19 > 49
'

79 NODSP
lA <= 4A , 7A NOTRACE
IB <> 4B TEXT 7B DSP
IC < 4C OR 7C DSP
ID AND 40 CALL 70 TRACE
IE OR 4E DIM 7E PR#
IF MOD 4F DIM 7F IN#
20 A 50 TAB
21 51 END
22 (52 INPUT
23 ' 53 INPUT
24 THEN 54 INPUT
25 THEN 55 FOR
26

'
56 =

27 ' 57 TO
28 "begin 58 STEP

284 App/~ Programmer's Handbook

29 ''end 59 NEXT
2A (SA ,
28 58 RETURN
2C sc GOSUB
2D (SD REM
2E PEEK SE LET
2F RND SF GOTO

....

Table S-4. The 8-bit ASCII Character Set (negative-ASCII)

DEC HEX DEC HEX DEC HEX DEC HEX
~
I

128 80 NUL 160 AO SP 192 CO@ 224 EO
129 81 SOH 161 AI! 193 C1 A 225 E1 a
130 82 STX 162 A2 '' 194 C2 B 226 E2 b
131 83 ETX 163 A3 # 195 C3 C 227 E3 c
132 84 EOT 164 A4 $ 196 C4 D 228 E4d
133 85 ENQ 165 AS O!o 197 CS E 229 ES e
134 86 ACK 166 A6 & 198 C6 F 230 E6 f
135 87 BEL 167 A7' 199 C7 G 231 E7 g I

136 88 BS 168 A8 (200 C8 H 232 E8 h
137 89 HT 169 A9) 201 C9 I 233 E9 i
138 8A LF 170 AA* 202 CAJ 234 EAj
139 88 VT 171 AB + 203 CB K 235 EB k
140 8C FF 172 AC, 204 CCL 236 ECI
141 8DCR 173 AD- 205 DCM 237 EDm
142 8E SO 174 AE. 206 CE N 238 EE n
143 8F SI 175 AF I 207 CF 0 239 EF o
144 90 DLE 176 80 0 208 Dp p 240 FO p
145 91 DC1 177 81 I 209 D1 Q 241 Fl q
146 92 DC2 178 82 2 210 D2 R 242 F2 r
147 93 DC3 179 83 3 211 D3 s 243 F3 s
148 94 DC4 180 84 4 212 04 T 244 F4 t
149 95 NAK 181 85 s 213 D5 U 245 FS u
ISO 96 SYN 182 86 6 214 06 v 246 F6 v
151 97 ETB 183 87 7 215 D7 W 247 F7w
152 98 CAN 184 88 8 216 D8 X 248 F8 X

153 99 EM 185 89 9 217 D9Y 249 F9 y
154 9ASUB 186 BA: 218 DAZ 250 FA z
ISS 98 ESC 187 88; 219 D8c 251 FB{
156 9C FS 188 BC < 220 DC\ 252 FC I
157 9DGS 189 80 = 221 DO :::::I 253 FD}
158 9E RS 190 BE> 222 DE t 254 FE ""
159 9F US 191 BF? 223 DF_ 255 FF DEL

-

-

-

-

Integer BASIC 285

DEL delete VT vertical tab
NUL null character DCI device control
SOH start of header DC2 device control
STX start of text DC3 device control
ETX end of text DC4 device control
EOT end of transmission NAK negative acknowledge
ENQ enquiry SYN synchronous idle
ACK acknowledge ETB end transmission block
BEL bell CAN cancel
BS back space EM end of medium
HT horizontal tab SUB substitute
LF line feed ESC escape
FF form feed FS file separator
CR carriage return GS group separator
so shi ft out RS record separator
Sl shift in us unit separator
DLE data link escape SP space

5.2.4 Tricks

To get around some of Integer BASIC's shortcomings, pro
grammers have long used a few standard tricks. These include making
VAL and CHR$ functions, making illegal LOMEM: statements, and
combining BASIC and ML using a method called pack and load.

Two function s from Applesoft that would be very use ful in Integer
BASIC programming are the CHR$ and VAL functions. CH R$ re
turns a string variable of one character having the ASCII value of the
argument of the function. VAL is the inverse: the ASCII value is re
turned when a single character is given as its string argument. If a
number, N, has a value from zero to 128, then

N = VAL(CHR$(N))

r"'1 because VAL and CHR$ are inverses. Sim ilarly,

A$ = CHR$(VAL(A$))

for the same reason.
You can have CHR$ and VAL functions in Integer by using a little

trick. Make the very first variable you declare in your program a single
character string:

286 Appl~ Programmer's Handbook

30100 CHR$ = "A"

When the program RUNs, it creates CHR$ in variable storage at
LOMEM. If LOMEM is $800, then it will look like

0800: C3 D8 D2 40 00 09 08 C1 1 E

in memory. The "A" you assigned is at $807 as hex C1. So in your pro
gram you can change CHR$ anytime with a number by

POKE 2055,VAL

where VAL is any byte value between 128 and 255. This gives you the
character having that value in CHR$.

If you want the number from the CHR$ character, just

VAL = PEEK(2055)

It is that simple.
There are two restrictions to that trick. First, LOMEM must be

$800 for the 2055 address to work. And second, the value you POKE
must always be between 128 and 255 so Integer knows that it is a
character. If you don't like these hangups, then use two other smart
statements that avoid them:

POKE 7 + PEEK(74) + 256*PEEK(75}, VAL+ 128* (VAL< 128)

for the CHR$ function, and

VAL = PEEK(7 + PEEK(74) + 256*PEEK(75)) - 128

for the VAL. This way, LOMEM is used to find the location of the
CHR$ character in variable storage and the ASCII value of the
character is kept in VAL.

One of the differences between Integer and Applesoft BASICs is

-

that Integer parses your statements much more rigorously in order to ,.,
tokenize them at the time you type them in. With much of the parsing
in the tokens, Integer BASIC text then executes much faster than does
Applesoft. But many commands are not allowed by Integer because
Integer won't parse them into deferred statemenrs like Applesoft will.

....

....

-

-

Integer BASIC 287

So, HIMEM:, LOMEM, LIST, RUN, and other commands are illegal
in Integer BASIC.

Sometimes you need an illegal command in your program. Like a
LIST to capture it to a text file, for instance. The trick to making il
legal statements is simple enough. As an example, suppose you wanted
to

100 LOMEM : 4096

in your program instead of the usual POKEs. Since the statement is il
legal, write a similar statement; any one that has a command followed
by a number like LOMEM: but one that's legal. Suppose you choose

100 PRINT 4096

which is legal. Enter the monitor and find line 100 as hex 64 00
(low/ high hex format):

07 64 00 62 80 00 10 01

The PRINT token is the hex 62. Now, replace it with the LOMEM:
token which is hex II. Your line will look like

07 64 00 11 80 00 10 01

now, in memory. Return to BASIC and list it. You should see

100 LOMEM: 4096

which will execute properly at run time.
Since the days of tape, programmers have been putting their ML

fil es inside Integer BASIC programs to make one file to copy and
load. You can tell when this trick is used, when the program you load
cannot be LISTed: and it gives garbage instead. To understand what's
happening in such programs or to pack your own single file programs,
here's how it is done. The method is called pack and load. See Fig. 5-5 .

STEP ONE: Start with a good, working program in two fi les, one
BASIC and one binary. The binary file BLOADs at $800 and
LOMEM protects it because of two instructions:

288

9600

ccz

800

Appl~ Programmer's Handbook

BASIC
TEXT

ML
BIN~RY

ORIGINAL

WilEN BASIC IS WRITTEN
POINTER CC TELLS
WHERE II STARTS
WHEN RUN LOWEll IS
RAISED TO PROTECT ML

WHEN RUN POINTER
CC IS RESTORED TO
BASIC ONLY LEAVING ML

-IIIMEM 9600

- cc ccz

CCI

LOMEM

800

BASIC
TEXT

loll
BINARY

Ml LOADED AND
POINTER CC CHANCED
TO INCLUDE THE
loll IN THE BASIC
LOAD AND SAVES.

TO PROTECT Ill FROM
ENCROACHMENT COPY
II DOWN TO S800 AND
CHANCE LOMEM AND CV.

FiJl. S-5. lnleger BASIC puck and load .

30200
30250
30260

PRINT"BLOAD PROGNAME.BIN"
POKE 75,high :REM sets LOMEM
POKE205,high :REM sets PV

HIMEM

- cc

cv
LOMEM

where the cntrl/ 0 is hidden at the beginning of the quote. The
byte value high is the next page number following your ML rou
tines, as usual.

-

-

....

n

-

-

n

-

Inreger BASIC 289

STEP TWO: Replace the BLOAD statement line with

30200 POKE 60,low: POKE 61 ,high : REM PP1
30210 POKE 62,1ow: POKE 63,high: REM PP2
30220 POKE 64,00 : POKE 65,08 : REM $800
30230 CALL -468: REM MOVE PP1 .PP2 to $0800

Just use zero byte values for the high and low values of the PPl and
PP2 values.

STEP THREE: Enter the Monitor, CALL - 151. Find the pointer
value in PP ($CA.CB) and note it as PP2. Then subtract the
length of your ML file from this PP2 value to get the value of P P I .
Then, 3DOG to BASIC again.

STEP FOUR: Change the POKEs you entered in STEP TWO by
giving them the address bytes of PPI and PP2.

STEP FI VE: Load the ML file that normally resides at $800 but
force the load to the PPI address. Example:

BLOAD PROGNAME.BIN,A$7423

where $7423 is the value of PP l in this mythical example.

STEP SIX: Enter the Monitor, CALL - 151. Change PP at $CA.CB
from PP2 to PPI. Return to BASIC, 3DOG.

STEP SEVEN: Add one line to the program, line zero.

0 POKE 202,1ow; POKE 203,high : GOTO 10

where 10 is the firs t line of your program. The address you POKE
as low and high is PP2. This line restores PP2 when the program is
RUN.

STEP EIGHT: Now, SAVE it to disk. Don't use the same name as
your Integer or iginal; you need it as your source for any further
changes . The file you SAVE is a pack and load file for RUNning
only.
If you want to make any changes, do so in the two original fi les.

Then rebuild the pack and load fi le using these steps again .
For reference, see Integer BASIC locations in Table 5-5.

290 Apple® Programmer's Handbook

Table 5-5. Some Useful Integer BASIC Locations

Label Hex Dec Description

LOMEM 4A.4B 74.75 lowest RAM, start of variables
HIM EM 4C.4D 76.77 highest RAM, end of program text
GOTOA C6.C7 198.199 address of line for GOTO
pp CA.CB 202.203 pointer to program text start
PV CC.CD 204.205 pointer to variables end
VAL CE.CF 206.207 next line number
RUNMODE 09 217 (+)ve is immediate; (-)ve is run
PR DC.DD 220.221 current line number
LNA E4.E5 228.229 line number address
CNTLB EOOO - 8192 cold entry point
CNTLC E003 - 8189 warm entry point

E3E3 - 6997 displays current line number, PR
HEX DEC E51B - 6885 displays A-reg/ X-reg in decimal
LINADR E56D - 6803 at (LNA}, finds line number, VAL
GOYAL ESSE GOTO line number, VAL
GOLNA E867 - 6041 GOTO line at address, GOTOA
LAM E88A return from Monitor command CALL

5.3 UTILITIES

5.3.1 CALL Extensions

With the Programmer's Aid # 1 chip, you can CALL several useful
routines.

You can renumber an Integer BASIC program in whole or in part.
To renumber the complete program, type

CLR
START = 1000
STEP= 10
CALL - 10531

if you want the new numbers to be 1000, 1010, 1020, etc. Any
references in GOSUBs and GOTOs will be changed if they are simple
numbers. For instance,

GOSUB 215

will be changed to the new line number, but

GOTO 35+ 100

n

-

-

Integer BASIC 291

and

GOSUB 1000* N

won't be. So for complex expressions you'll have to go through your
renumbered program and correct them yourself.

To renumber only a portion of your program, type

CLR
START = 3000
STEP= 5
FROM = 360
T0=480
CALL - 10521

where START and STEP again refer to the new line numbers. The
FROM and TO tell the renumbering routine exactly which part of
your program you want renumbered . You can't renumber with num
bers within the FROM/ TO range as the routine will quit with an error
message. Keep your old line numbers (FROM/ TO) disjoint from your
new line numbers (START / STEP).

When using tape to store Integer BASIC programs, you can append
one program to another. This will give you a new program with all the
lines of each of the two original programs in it. This appending
routine is great for using tape libraries of subroutines. With various
subroutines on tape files, a program can append those needed to itself
without having to type them in each time. For this to work, your
Integer programs must all have high line numbers and each subroutine
must have its own block of line numbers below those of the program.

Here's how it works. Suppose you had a tape of ten subroutines
from lines I 00 to 199, 200 to 299, 300 to 399, etc. And suppose your
program was written between lines 30000 and 32767. Such a system
could use the append feature to include any or all of the subroutines in
the program. With the program in memory and the tape positioned at
the highest-numbered of the wanted subroutines, type

CALL= 11076

to load the subroutine. Then position the tape to the subroutine with
the next lowest line numbers and repeat the load procedure. As long as

292 App/~ Programmer's Handbook -
the routine on tape has lower line numbers than the lowest in your
program, the CALL= 11076 will load and append the subroutine to -
the beginning of your program. Of course, you will wait until adding
the

10 GOTO 30000

line to your final program.
Whenever you save an Integer program or subroutine to tape, you

probably reload it to make sure that it is intact. For short routines this
is the best way, but for long programs checking out the entire listing
for possible errors becomes impractical. Fortunately you have an
Integer BASIC tape veri fy routine that can do the job for you .

To do a tape verify of an Integer program, use

CALL= 10955

instead of the LOAD command to reload the program from tape. Do
this immediately a fter you SAVEd it, while the copy is still in memory.
The verify routine will load and verify the program on tape with the
copy in memory. Two audible beeps tell you that the verify went all
right; one beep and the ERR message indicates that the verify did not
work. Resave the program and try again.

You can make sounds easily from Integer BASIC. Your programs
can even play musical tunes. Here is the call sequence to put in your
program initialization:

TIMBRE= 765 :TIME = 766:PITCH = 767
MUSIC= -10473

To sound a note, POKE values into TIMBRE, T IME, and PITCH,
then CALL MUSIC. Normal notes have a timbre of 32. The scale is
closely chromatic so that PITCH can be POKEd as follows:

POKE PITCH , 1
POKE PITCH, 13
POKE PITCH, 25
POKE PITCH, 37
POKE PITCH, 49

for the lowest note
for same note, 2nd octave
for same note, 3rc octave
for same note, 4th octave
for same note, 5th octave

-

-

-
-
-

-
-

-

-
-

-

In1eger BA SIC 293

So, to play a middle note you would use:

POKE TIM BRE, 32
POKE TIME, 100
POKE PITCH, 25
CALL MUSIC

If you just want game sounds, play around, especially with the t imbre.
If you want tunes, try different notes to get the flavor o f your tune in
one tonic note. Then use the intervals fro m the tonic to count up and
down the tempered scale. If this sounds obscure, get a music student
to help you translate notes to chromatic scale intervals.

To use H IRES gra phics in Integer BASIC, you have to set the very
first variables in your program as follows:

CLR:XO =YO= COLR

If you use shape tables, you must follow immediately with

SHAPE= ROT= SCALE

The HIRES routines expect these variables to be declared exactly like
this and first in the variable storage area, at the memory pointed to by
LOMEM. After declaring these variables, your program can continue
wi th any other varia bles it needs. In particular, you will want some or
all of the following:

INIT = - 12288
C LEAR=- 12274
BKGND = - 11471
POSN = - 11527
PLOT=- 11506
LINE=- 11500
DRAW = - 11465
DRAW I = - 11462
SHLOAD = - 11355

works li ke Applesoft's G R
sets screen to black
sets screen to a color
moves HIRES cursor
moves cursor , plots point
draws while moving cursor
draws a shape
draws a shape at cursor
loads shape table

You will POKE parameters for COLR, XO, and YO to set the cursor
and current drawing color. These COLR values may be given names
by typing

294 Appl~ Programmer's Handbook

BLACK=O: LET GREEN=42: VIOLET=85: WHITE= 127
BLACK2 = 128: ORANGE= 170: BLUE = 213: WHITE2 = 255

Note you must use LET for GREEN to keep Integer BASIC from
interpreting the GR as a command. XO must be set to a value in the
0 .. . 279 range while YO must be set to a value in the 0 ... 191 range.

The HIRES routines normally plot on HIRES! screen. If you want
HIRES2 plots, then:

POKE 806,64
POKE-16299,0
POKE- 16302,0

for HIRES 2 plotting
for HIRES 2 display
for full -screen display

To return again to HIRES! you must

POKE 806,32
POKE -16300,0

for HIRES 1 plotting
for HIRES 1 display

And, to reset the screen to four lines of text at the bottom

POKE - 16301,0 for mixed graphics/text

While HIRES graphics techniques are covered in Chapter Six, they
are intended for the Applesoft user. If you are using Integer BASIC,
Chapter Six is still useful, but you will use the Integer routines defined
above instead of the built-in commands of Applesoft. They do the
same thing. For clarity, here are the Integer BASIC HIRES routines
call sequences.

To invoke the HIRES package and initialize its parameters, use the
instruction:

CALL INIT

To re-clear the screen to black at any future time, use

CALL CLEAR

instead. If you want the screen to be cleared to a background color
other than black, you must first set COLR, for example,

-
-

-

-
-

-

-

-
-

COLR =VIOLET
CALL BKGND

Integer BASIC 295

will set your screen to violet.
To plot single points, you must set the cursor and the drawing color.

For example,

COLR= WHITE:XO= 140:Y0= 95
CALL PLOT

puts a single white dot in the middle of the screen . To plot a line, first
you must be sure that the cursor is at the beginning point. Then set the
cursor to the end point and use LINE to plot the line:

XO=O:YO=O:CALL POSN
XO= 279:Y0= 191 :CALL LINE

draws a diagonal line from upper le ft to lower right in the current
drawing color. The cursor remains at the end position, so you could
continue without CA LLing POSN again if you were drawing a poly
gon.

The remaining rout ines are used with shape tables. To load a shape
table,

CALL SHLOAD

and run your tape player at the same time. The shape table loads at
$0800 and locations $0328.0329 contain the pointer. If you do a
binary load from disk, set $0328 and $0329 to the low byte and high
byte of your shape table's starting address and don't use SHLOAD. If
you load to $0800, you can set

LOMEM :16384 protect shapes and HIRES 1

or

LOMEM:24576 protect shapes, HIRES 1 & 2

to protect the $800.1 FFF area for your shape tables.

296 Apple® Programmer's Handbook

To draw a shape, set the cursor, the color, and the shape parameters
- SHAPE, ROT, and SCALE.

SHAPE= 1: ROT= 0 : SCALE= 1
CALL DRAW

This example draws the first shape in the table whose address is in
$328.329. The shape is not rotated (zero) and its size is not increased
(scale of o ne). XO, YO, and COLR were used and XO, YO remain un
changed. If you want to draw another shape but at the cursor instead
of the XO, YO point, then CALL DRAWl instead .

Remember when using shapes that you cannot use too large a
SCALE because the shape routines don't do clipping. Make sure your
shape won't try to be drawn off the screen. A scale of 2 is twice normal
size, 4 is four times normal size, and so on. Rotation can be from 0 to
63. The shape is rotated clockwise, so that ROT = 16 gives you 90 de
grees, ROT= 32 gives you 180 degrees, ROT = 48 gives you 270 de
grees , and ROT = 0 gives you zero degrees or no rotation. ROT = 64 is
the same as ROT= 0, so just use the range 0 .. . 63 for ROT to avoid
confusion.

5.3.2 Monitor Extensions

Like the extra CALLs, the Programmer's Aid #I gives you some
very useful routi nes that you access from the Monitor.

Just as there is a utility that verifies an Integer BASIC program,
there is a utility that verifies a binary fi le saved to a tape. T o use it
a fter a W command, just rewind the tape and position it as if you were
going to use the R command to read it. Then type

addr1 .addr2
D52EG

to set the ctrl/ Y hook. Then type

addr1 .addr2(ctrl/Y)(return)

for the same address range that you saved . P lay the tape and it wi ll be

-

-
n

verified. !""'

-

n

-

-

-

In teger BASIC 297

If the verify routine finds a discrepancy, it wi ll give an audible beep
and give you an ERR message. Otherwise the program will finish
normally.

Here's how to test the RAM of a 48K Apple from Integer BASIC.
Enter the Monitor with a CALL - 151. Engage the RAM test routines
by

DSBCG

which sets the ctrl/ Y feature.
To test the first block of 16K of memory, type

400 .4(ctri/Y)(retu rn)
800. 8(ctrl/Y)(return)
1000.1 O(ctri/Y)(return)
2000 .20(ctri!Y)(retu rn)

Each line tests a chunk of memory a nd results in an error message in
case of RAM fai lure. It may take time, and the Monitor's asterisk will
return when the test is finished.

To test the second block of 16K of RAM, type

4000 .40(ctri/Y)(retu rn)

And for the third block, the comm and is

8000.40(ctrl/Y)(return)

If you want to test the boundaries between each block, the com
mands are

3000.20(ctrl /Y)(return)
7000. 20(ctri/Y}(retu rn)

A good test to make of a 48K system is this one-liner:

N 400.4(ctri/Y)800.8(ctri/Y) 1000.1 O(ctri/Y}2000.20(ctri/Y)
3000.20(ctrl!Y)4000.40(ctrl /Y}7000.20(ctrl/Y}8000.40
(ctri/Y)34:0(retu rn)

298 Apple'> Programmer's Handbook

Note that there is only one space in the command string, between the
N and the 400 at the beginning. What this one does is to run all the
48K memory tests, then repeat them indefinitely. If you run this test
overnight with the Apple's cover in place, the RAM chips will be well
tested for intermittent failure at normal operating temperatures.

You may want to test other RAM, such as on peripheral cards. Use
the same format for any one test:

(start) . (length)(ctrl /Y)

where start address and length number of pages tell the routine which
RAM addresses to test. And you can combine several tests if you wish.
Once the command string is known, you can run the test overnight by

N (command string)34:0(return)

just like the 48K example above.
A program written to run at one memory location in the Apple, or

any 6502 machine, can be modified to run in the Apple at any free
location. The modification you must make to the original program is
called relocation. From Integer BASIC, you can use a relocating
utility to help you in this task.

Normally, you relocate programs by reassembling them with a new
ORG directive. If it is just a short routine that you wrote with the
Miniassembler, then you can probably just change any JSR and JMP
addresses by hand to conform to the addresses at the new program
location . However, if you want to modify a ROM routine or move a
utility that you didn't write yourself, then you'll have to relocate with
out the source code. For any sizeable program that you have to move
this way, the relocator in the Integer BASIC utilities wi ll save you a lot
of time.

Load the program to be relocated if it isn't in the Apple a lready. If it
is in the Applesoft ROM area ($DOOO.F7FF), then copy it down into
the RAM area. Switch to INT if necessary and CALL-151. From the
Monitor, you can access both the Miniassembler and the Relocator
packages. You need access to both.

There are four steps to performing a relocation. First you must
make an accurate memory map of the old program and use it to make
a new memory map. Then you can use the utility to relocate code and
move data to achieve the new memory map. The utility may not relo-

-
-

n

-

-
-

-

-

-

Integer BASIC 299

cate perfectly, so your third step will be to search for and make correc
tions to these exceptions. And finally you may use the relocator again
to change the range of Page Zero usage if the program originated in
another computer. Follow each step carefully.

STEP ONE: Use the Monitor's disassembler to examine the program.
You must identify the code and data segments of the program,
accounting for every byte. Sketch a memory map that shows all
program segments and all data segments. The same map should also
be labeled with the actual running addresses as well, if they are dif
ferent from the locations where you are storing it.

With a memory map of the old program, you can sketch out the
map of the new program. Label both data and program segments by
giving the addresses of each block in the final running program.
You may not wish to relocate to the running location right away,
especially if it is going into PROM. In such cases, you can designate
an unused segment of RAM to build the new program. The new
program should be built in an area that is not otherwise being used,
especially by the copy of the old program.

At this point you should have two memory maps . The first map
should show the program and data segments as they are in memory.
The same map should show the old locations where the program
came from - the blocks of memory in which it ran . These blocks of
memory may or may not be the same as the segments of memory
where you are presently storing it for relocation. The lengths and
relative positions are the same and that's all that matters. The
running locations are called blocks and the relocation storage loca
tions are called segments. Look at the example and compare it to
your map .

The second map you have should show the program you want
after relocation. The locations of each program and data block
should show the final, running addresses. For relocation, you
should also show the relocated storage positions as segments of the
same lengths and relative positions. Again, look at the example.

Be sure there is no overlapping of the old and new segments . If
everything is all right, then proceed to the next step.

STEP TWO: Engage the relocation utility to give you ctrl/Y com
mands for relocation with the command

D4DSG

300 Apple® Programmer's Handbook

to the monitor. Start by telling the relocator your old and new
program addresses (their blocks) as follows: -

new1 < old1.old2(ctri/Y)*(return)

using the syntax of the Monitor's M command for the addresses. -
The asterisk tells it that you are specifying blocks of running
addresses rather than segments of working storage locations. Then
relocate each program segment and move each data segment in
ascending sequence:

new< old 1 .old2(ctri/Y)(return) relocates
new< o ld1 .old2M(return) moves

until a ll segments have been relocated or moved.

S TEP THREE: After moving and relocating, you must go through the
new code with the disassembler and look for any exceptions -
address references not found by the relocator. One o f these is
immediate addresses. Code like

LOA #$36
STA $80
LOA #$45
STA $81

obviously sets a pointer to an immediate value, $4536. If that
address is part of the relocation, then you'll have to change the
immediate values to agree with your new program. Another excep
tion to watch for is references to addresses outside the relocation
addresses. This is rare. The third exception is a change to relative
branches when your relocation adds new code or removes old code.
If you relocate for either reason, check any branches in the region.
Usually, the only exceptions you will have to correct are immediate
addresses.

STEP FOUR: If your old program came from another computer like
Commodore or Atari, you will probably have to change Page Zero
references at this point. For instance, if the old program uses Mon i
tor addresses like $40.5F, say, then you would change the new
program so that it uses addresses in the $80.9F range instead.
Continuing this example, you would type:

-

-
-

-

n

n

Integer BASIC 301

80< 40. SF)ctr 1/Y)* (return)
1 000< .1 093(ctri/Y)(return)
. 1 A 34M (return)
.1 FD2(ctri/Y){return)

The first line sets the Page Zero ranges to be relocated. Then a
program segment ($ 1000.1 093) is relocated, a data segment
($1094.1A34) is moved, and a second program segment
($1A35 .1FD2) is relocated. The syntax has a short form because the
result is left in place, which is in the same location as the original.

When the relocation is complete, the new program should be
saved to disk before you attempt to RUN it.

For example, the memory maps to relocate SWEETI6 are given in
Fig. 5-6. The new program is to run at $948C, but the example uses the

BLOCK

F689

F6E3

F703

FifO

(A) Old.

PROGRAM
LENGTH = SA

DATA
LENGTH= 10

PROGRAM
LENGTH= FA

SEGMENT

F689

F6EJ

F703

F1FO

BLOCK

948C

94E6

9506

9600

(8) New.

Fig. 5-6. Memory maps to relocate SWEETJ6.

PROGRAM
LENGTII = SA

OAIA
LENGTH = 10

PROGRAM
LENGTH = FA

SEGMENT

4000

405A

40/A

4174

segment a t $4000.4173 to build it. To reloca te according to those
maps, then, you would type the commands:

948C F689.F7FC(ctri!Y)*(return)
4000 F689.F6E2(ctri/Y}(return)
405A F6E3 . F702M (return)
407A F703 .F7EC(ctri/Y)(return)

The first one tells the relocator to change any references in the
$F689 .F7FC range to ones in the $948C.95FF range. The second com-

302 Apple® Programmer's Handbook

mand relocates actual program segment $F689.F6E3 to $4000.405A in
RAM. The references are changed to the $948C.95FF range, where
applicable. Next, the M command moves the data segment. Finally,
the second program segment is relocated. The resulting new program
is at $4000.4173 in RAM, but when it is moved or loaded to
$948C.95FF it will execute properly. The example used $4000.4173 to
illustrate the difference between blocks and segments; in the case of
SWEET16 it wasn't really necessary.

5.3.3 Floating-Point Utility Package

It is possible to have floating-point arithmetic with Integer BASIC.
Although not used by the BASIC interpreter itself, a set of floating
point utility routines live at $F425.F65D in the Integer ROMs. And
you can use them from machine language yourself to make floating
point calculations. Special FIX and FLOAT calls will let you put
integers into the FP registers and then convert the FP results back to
Integer number format. To use this package of utilities, you must
know the format and Page Zero locations of the FP registers and then
know the right calls to make for each operation.

Fig. 5-7 shows the format of the FP numbers which is much like the
one you saw in Applesoft. One byte of exponent is followed

~EXPONENT -II-- 23-BIT MANTISSA --1
I. I.

SIGN OF EXPONEN:J_j \
1 IS + ve IMPLIED BINARY POINT
0 IS - ve BETWEEN BITS 6 AND 7

SIGN OF NUMBER
liS- ve
0 IS+ ve

Fig. S-7. Format of FP number.

immediately by three bytes of mantissa. The exponent is in the usual
excess-$80 form, so that $80 represents an exponent of zero, $7F of
minus one, $81 of plus one, and so on. The mantissa is always signed;
never unpacked like Applesoft. So, the binary fraction begins at bit six
of the FP number's second byte. The remainder of the mantissa is in
the following two bytes - the third and fourth - in the usual decreas
ing order of significance. You can read one of these FP numbers just

r

,...

,...

....

Integer BASIC 303

as you would read an Applesoft FP number in storage: an exponent
between $81 and $FF being positive to give a number greater than one,
an exponent between $FE and $FF being negative to give a number
less than one, an exponent of $80 being zero for a large, but proper,
fraction. When the first byte of the mantissa is negative, the number is
negative; when positive, positive.

In memory, there are two FP registers we call FP1 (from $F8 to FB)
and FP2 (from $F4 to $F7) (see Fig. S-8). In the usual binary opera-

LOCATION FORMAT USAGE

SF3 CJ PRODUCT/QUOTIENT SIGN

SF4 X2 M2H M2M M2L FP2 REGISTER

SF8 XI MIH MIM MIL FPl REGISTER

SFC WORKSPACE

l'ig. S-8. Page zero registers for FP utility package .

tions like addition and subtraction, the operands must be put into FP
format and located in FP1 and FP2. Then the call to the operation is
made. When it returns, the operation leaves your result in FP 1. If you
are chaining operations - performing one after the other, using
previous results - you should arrange to replace FP2 each time. If
you juggle the registers to commute, remember that FP2 may be
destroyed during an operation. Always replace FP2 before each
operation, regardless.

Here are the binary operations.

FADD

FSUB

$F425 - Adds the contents of FP2 and FP 1, putting the
result in FP 1. Remember that it must align the binary
points before adding, so a small number may lose some
significant bits to a larger number.
$F468 - Subtracts the contents of FP1 from FP2 and
leaves the result in FP 1. Like addition, the binary point
adjustment may drop significant bits.

304 Apple® Programmer's Handbook

FMUL $F48C - Multiplies FP2 by FPl, result in FPl. May be
a danger of overflow from the addition of exponents. ,...

FDIV $F4B2 - Divides FP2 by FP 1, result in FP 1. May cause
underflow from the subtraction of exponents, but that
merely zeros the result. The greatest danger is from a ,...
small divisor causing an overflow and from division by
zero (extreme case). Overflow and underflow are each
handled differently. In the case of an underflow result,
you get a zero value returned, which is a nonfatal error.

111111

However, for overflow, you must have a JMP instruc-
tion at $3F5, called OVLOC, that vectors to your over-
flow handling routine. Overflow is a fatal error other- r wise. Any result that gives an exponent greater than $80
will most likely cause overflow.

The unary functions let you get FP numbers con- ,...
verted to and from Integer format. Integers are in low-
byte/high-byte order, opposite to that of FP mantissas.
With that in mind, using the conversion routines is
straightforward.

FCOMPL $F4A4- Complements the FP number in FPl. That is, I

it changes its sign: FPl becomes - (FPl).
FLOAT $F451 - Converts a two-byte integer to FP by nor- r malizing the mantissa of FP 1. Put the high byte in

MlH, the low byte in MlM, and zero MIL. If you do
have a fractional part, it can go into M 1 L instead of
zero. Since an integer has its sign in the high byte, all ~

you have to do now is CALL FLOAT and the conver-
sion is done.

FIX $F460 - This undoes the action of FLOAT; it results in r
an integer-low in MlM and an integer-high in MIH. Re-
maining significant figures are in MIL which you can
pick up as the binary fraction if you need it. Use MIL to
round off your integer result if need be, by carrying the
sign bit. Again it all happens in FPl.

FIX I $F68D - There is a bug in FIX: it won't work properly
with negative numbers. If you test MlH, you can JSR
FIXl instead whenever FPl is negative. FIXl works all
right for them.
Use FIX for positive numbers, FIXI for negative ones

n

-

-

Integer BASIC 305

You can write routines to copy in and out of FP I and FP2 to make
the package useful. For example,

GETFP: LOY #0
STY FP1 + 3 ;zero M I L
LOA (ZNUM), Y ;ZNUM points to integer
ST A FPI + 2 ;lo w byte to MIM
LOA (Z NUM), Y

INY
LOA (Z NUM), Y :high byte to M I H
ST A F PI + I
JMP FLOAT

will fetch the integer whose address you have in ZNUM and convert it
to FP format in FP I. To copy an integer back into storage:

PUTFP: BIT FP1 + 1
BPL PUTFP1
JSR FIX1
CLC
BCC PUTFP2

PUTFP1: JSR FIX
PUTFP2: LOY #0

LOA FP1 +2
STA (ZNUM),Y
INY

;test sign of manti ssa

;case: Positive

;a lways
;case: Negative
;continue
;low byte of integer

LOA FP1 + 1 ;high byte of intege r
STA (ZNUM),Y
RTS

Depending on how elaborate your needs a re, you can add more
routines to swap F l with F2, copy the entire FP number to and from
tempora ry storage, stack and unstack them, etc.

5.3.4 SWEET16 Pseudo-Processor

The 6502 p rocessor is fast and powerful when it comes to wor king
with eight-bit data. However, fancy so ftware needs the ability to work
with sixteen-bit addresses as d a ta, something the 6502 won't handle

306 Apple® Programmer's Handbook

easily. Sure, we have the indirect indexed form of addressing, but that
only reaches one page of memory at a time. What we need are some of
the features that sixteen-bit processors like the PDP-II and the 6809
have for addressing.

If you can tolerate the loss in speed, the Apple II can run a sixteen
bit emulator that will give you sixteen-bit addressing instructions,
without having to plug in a processor board. This emulator is called
SWEETI6 and it was one of the first programs written for the Apple
II. It is easier to use and it's also faster than BASIC.

With SWEETI6 you can write editors, languages, parsers, memory
moves, or anything that needs simple address manipulation instruc
tions. If 6502 is your first machine language, then working with
SWEETI6 is one way of bridging the gap in learning the larger proces
sors like the 6809.

What SWEETI6 does is pretend to be a sixteen-bit processor and
interprets its own set of op codes to execute little routines that it re
gards as instructions. You just JSR SW 16 where you want to switch to
SWEETI6 instructions in your program. Following the JSR, you put
SWEETI6 code. The end of SWEETI6 is a zero byte that SWEET16
regards as an RTN (return) op code. Following the RTN, you continue
normally with your next 6502 instruction. Of course, since SWEET16
is a subroutine, you are merely passing parameter string by immediate
value, but the effect is to switch from 6502 processor instructions at
the JSR SW16 to SWEET16 processor instructions. Then, a second
change from SWEET16 instructions at the RTN switches you back to
the 6502. So, the subroutine called SW16 emulates another processor.

To emulate a processor, SWEET16 needs a set of registers and
refers to them during execution of the instruction set. Let's look at
these registers and then at the instructions that modify them. See
Table 5-6.

There are sixteen registers; each register must have a sixteen-bit
capacity. This means two bytes of 6502 memory for each register or 32
bytes total. SWEET16 uses the first 32 locations in Page Zero for
registers, $00.IF. The first register is RO that resides at $00.0I in con
ventional low-byte/high-byte order. The next register is RI at $02.03
and so on up to RI5 which is the last register occupying $IE. IF. Of
these sixteen registers some are dedicated by SWEET16 while others
are free for user definition.

The registers Rl to Rll inclusive are yours to define any way you
want. These are user-defined registers and you keep your memory

r

-

J I 1 J I] I] 1 I J)]

Table 5-6. SWEET16 Op-code Summary

Register Ops Nonregister Ops

()() RTN return to 6502 mode

In SET Rn load 2 bytes immediate 01 BR ra branch always

2n LD Rn load ACC from Rn 02 BNCra branch if no carry

3n ST Rn store ACC toRn 03 BC ra branch if carry

4n LD @Rn load ACC-Io, indirect: (Rn +) 04 BP ra branch if plus result

Sn ST @ Rn store ACC-lo, indirect: (Rn +) OS BM ra branch if minus result

6n LDD @Rn load ACC, indirect: (Rn + +) 06 BZ ra branch if zero result
7n STD @ Rn store ACC, indirect: (Rn + +) 07 BNZra branch if nonzero result

Sn POP @ Rn (- Rn):load ACC, indirect 08 BMI ra branch if minus-one result

9n STP @ Rn (- Rn):store ACC, indirect 09 BNMI ra branch if not minus-one result

An ADD Rn add Rn to ACC OA BK ra causes 6502 BRK event
Bn SUB Rn subtract Rn from ACC OB RS return from SW16 subroutine

Cn POPD@ Rn (- - Rn):load ACC, indirect oc BS ra branch to SW 16 subroutine

Dn CPR Rn compare (ACC - Rn to R13) OD unassigned

En INR Rn (Rn +), i.e. increment by I OE unassigned

Fn DCR Rn (- Rn), i.e. decrement by 1 OF unassigned

Registers Usage Notes

RO = ACC, the accumulator n is the register number
R1 ... Rll are User-Defined ra is the relative address, ± 127
Rl2 = SP, the stack pointer SET is 3 bytes, branches are 2 bytes, and all others
R 13 is the result of last compare are 1 byte long.
Rl4 is the status register To call: JSR SW16 (at $F689 in Integer) (list SWEET16 code)
R15 = PC, the program counter exit with RTN($00), last byte

I

I

I

I

I

I

i

1

:;-
~
~

~
Cl)

(:)

~
c;::,
~

]

308 Appl~ Programmer's Handbook

pointers, counters, and perhaps an important constant or two in them.
Much the same way that you would normally use Page Zero with the
6502.

The first register, RO, is special. You use it directly as the ac
cumulator and we call it ACC instead of RO most of the time. It's the
busiest of all registers.

The registers R 12 to R 15 are used by SWEET 16 as special registers.
Rl2 is the stack pointer and may be referred to as SP. Rl3 holds the
result of the last compare and is used by the branch instructions. R 14
is the status register and keeps the pointer to the current register as
well as the carry flag. R 15 is the program counter that SWEET 16 uses
to point to the instruction list currently being read. You can address
any register including these special ones with SWEET16 op codes, but
be careful. Unless you understand fully what you are doing, leave
Rl2, Rl3, Rl4, and Rl 5 alone.

There are two groups of instructions in SWEETI6: register OPs
that address and modify explicit registers, and nonregister OPs that
implicitly alter the special registers. For example, a branch instruction
wi ll test Rl3 then perhaps modify the program counter in Rl5 to ef
fect a branch. That is a nonregister OP because no register is actually
specified in the instruction. A SET RO, $0000 instruction is a register
OP because it explicit ly names RO, wh ich is the ACC, to be set to zero.
All the register OPs give a result in RJ3 for use by the branch non
register OPs. This follows the pattern of actions and decisions we need
to build structures when we program: register OPs are your actions
and nonregister OP branches are your decisions.

You can get 6502 Assemblers that support SWEET16 instructions
such as BIGMAC from Apple, Pugetsound. Or you can hand as
semble the routine yourself quite easily. The instruction set is logical
and you only need the SWEET16 op code summary of Table 5-6 to
code.

It is easy to assemble a register OP. They are only one byte each,
except for the SET instruction. You just lookup the code- I to $F as
the first digit of a two-digit hex number. The second digit is the
register number, $0 to $f. The SET has a two-byte operand as well , so
you assemble that in low-byte/ high-byte order. For example,

1A 00 03 SET R10, $300

for the SET and

-
-

....

-
-

Integer BASIC 309

35 ST R5

for the others.
Nonregister OPs may have one or two bytes, usually two. The first

byte has zero as its first hex digit and then zero to $c as its second
digit. Branches have a second byte for the relative address, exactly the
same as 6502 branches do. You calculate the offset the same way:

1400:01 OA
140(: . . .

BR BELOW
BELOW: . . .

The re lative address of $0A here is the difference between the branch
address and the address of the next instruction (the current PC). There
minus here. Just like 6502.

If you look at any of the SWEET16 examples you will see the call
sequence. The JSR SW16 starts the emulator. The instructions fo r
SWEETI6 follow with the last instruction being physically in the last
byte of the call. It is zero; its mnemonic is RTN for return to 6502.
You must always return at the very end of a chunk of SWEET I 6 code
so that a normal 6502 instruction can immediately follow the RTN
(zero).

Whenever you use SWEETI6, she saves all your 6502 registers
before doing anything. Then she restores them just before setting the
PC-reg of the 6502 to your next instruction following the RTN. So,
your registers are unchanged by a SW 16 call.

If you are just learning SWEET16, write a short routine to make
sure that you call the program properly. The fo llowing will do:

0300: 20 89 F6 JSR SW16 ;enter SWEET16
0303 : 10 80 02 SET RO , $280
0306: 11 10 01 SET R1 , $110
0309: 12 40 01 SET R2, $140
030C: A 1 ADD R1
030D: 53 ST R3
030E : B2 SUB R2
030F : 54 ST R4
0310: 00 RTN ;enter 6502 again
0311 : 4C 69 FF JMP MONZ ;back to Monitor

Use the SWEET16 op code summary in Table 5-6 to check that you

310 Appl£:!11 Programmer's Handbook

have followed the code and its assembly. Then enter the routine and
run by 3000. What wi ll be the contents of the five registers - RO, RI, II"'!!

R2, R3, and R4? Dump them ($00.09) and see:

0000: so 02 10 01 40 01 90 03
0008: so 02

which is:

RO = $02SO , the ACC after calculations
R1 = $0110
R2 = $0140
R3 = $0390 or $280 + $110
R4 = $02SO or $280 + $110 - $140

Now, write a couple of routines of your own design to see what you
can do. Use the SET, INR, and DCR instructions on any one register,
RO (ACC) to Rll . And you can modify the ACC with LD, ADD, and
SUB. The ST copies from ACC to any register. These seven OPs are
the simplest to use; use them to get familiar with SWEET16. When
you can use the register OPs listed in Table 5-7 easily, you can then
learn the ones that use indirect addressing.

Table 5-7. Beginners' Register Ops

One rcgisler ACC and anolher regisler

SET Rn, const LD Rn
INR Rn ST Rn
OCR Rn ADD Rn

SUB Rn

While the beginners' OPs let you play wi th the registers, you need
indirect addressing OPs to reach other memory in the Apple. This is

...

where SWEET16 becomes useful. For instance, -

0300: 20 89 F6 MOVE : JSR SW16 ;to SWEET16 mode
0303: 11 00 20 SET R1 , $2000 ;from
0306: 12 00 40 SET R2, $4000 ;to
0309 : 13 00 20 SET R3, $2000 ;length
030(: 41 MOVE1 : LD 0 R1 ;get byte
0300: 52 ST @R2 ;put byte

-

-

-

030E : F3
030F: 07 FB
0311 : 00
0312: 60

DCR R3
BNZ MOVE1
RTN
RTS

Integer BASIC 311

;count length
;next byte
;to 6502 mode

uses a SWEET16 call to copy HIRES! screen to HIRES2. The Rl
register points to the address copied from and the R2 register points to
the address copied to. The R3 register handles the length in bytes of
the copy. Compare this to the code needed to do the same job with the
6502.

Look at the MOVE example in detail. The length in R3 is a loop
counter only; it plays no part in the memory addressing. The BNZ de
tects the end of the loop when it has counted down 8,192 times. So,
without considering the actions of LD @ and ST @, the code is
straightforward.

First, look at the LD indirect. With $2000 in Rl it fetches the con
tents of location $2000 to the ACC. Only the low byte of ACC is
loaded from memory; the high byte is simply zerod. That done, the Rl
register itself is automatically incremented. So, at the end of the in
struction, Rl points to $2001. Second, look at the ST indirect. It
stores the contents of ACC-low to memory location $4000. Then it
increments R2 to $4001 from $4000. After executing the copy from
$2000 to $4000, Rl points to $2001 and R2 points to $4001.

The auto-increment feature of the indirect instructions makes
routines like MOVE easy to write. Start at the lowest addresses of in
terest, set up any counters, then use the auto-increment to pass
through the memory blocks one location at a time, in increasing
sequence.

If you look at Table 5-6, you can see other instructions with the "@"
of indirection. These work the same way as the LD @and ST@ by
loading or storing the ACC from or to memory. The difference is in
the number of bytes, one or two, and in the direction of stepping
through memory. The auto-increments are noted as (Rn +) and
(RN + +) for one or two locations at a time; the auto-decrements are
noted as (- Rn) and (- - Rn) for one or two locations at a time. They
each have special uses that go beyond the simple MOVE example and
they make SWEET16 a powerful tool.

312 Appl~ Programmer's Handbook

-
r

ACCHI
ACCLO

(A) Before. (8) After.

Fig. S-9. The LD@ instruclion.

(A) Before. (8) After.

Fig. 5-10. The ST@ instruclion.

-
Integer BASIC 313

(A) After. (8) Before.

Fig. 5-11. The LDD@ instruction •

...

(A) After. (8) Before.

Fig. 5-12. The STD@ instruction.

-

314 App/~ Programmer's Handbook

ACC LO

(A) After. (B) Before.

Fig. 5-13. Pushing one byte on a stack using ST@ instruction.

(A) After. (B) Before.

Fig. 5-14. Pulling one byte from a stack using POP@ instruction.

Integer BASIC 315

ACC LO

(A) After. (B) Before.

Fig. 5-15. Pushing two bytes on a stack using STD@ instruction.

-

(A) After. (B) Before.

Fig. 5-16. Pulling two bytes from a stack using POP@ instruction.

n
n
n
n
n
n
n
n
n

n
n
n

-
-

-
-

CHAPTER SIX

Text and Graphics

6.1 THE MONITOR TERMINAL

All the hardware and software that is needed for the Apple to func
tion as its own terminal is built-in . All that you need to add is a tele
vision or video monitor. For an 80-column display, add a video board
in Slot Three (or in the Auxiliary Slot in the lie model). The built-in
software can be switched to use its own 40-column routines or the ones
on the card . The switches for the keyboard and video display allow
different types of input and output to be made in place of the built-in
monitor; these switches a re called hooks.

6.1.1 Monitor Hooks

The Apple works with inputs and outputs similar to modern sound
systems . In such a system you can select one of the several inputs: a
record player, a tuner, a tape player, or a microphone. Similarly, you
could switch one of several outputs: main speakers, remote speakers ,
headphones, or tape recorder. So to operate your sound system you
would set the input switch to your choice o f device and then set the
output switch to your choice of reproduction device. You can use your
Apple with inputs and outputs in much the same way.

The Apple has a keyboard built-in as an input device. Input can also
be from peripherals you can plug in : disk controller, serial communi
cations devices, or other devices with compatible interfaces . And you

317

318 Apple® Programmer,s Handbook

can use a built-in video display or a peripheral such as disk, serial
communications, or an SO-column video. Your Apple has two
"switches" to do this job - an input switch and an output switch. You
can set these switches yourself or use one of the built-in routines to set
them for you. In either case, you control the input and the output that
the Apple sees.

The input "switch" is called the input hook or link. It is simple
enough, just two Page Zero locations at $0038.0039. Location $0038
is called KSW and contains the address of the current input device's
routine. Whenever the Apple wants an input, it calls the routine whose
address is in KSW. Similarly, there is an output hook or line at
$0037.0038 called CSW. So, the Apple can send a character to the cur
rent output device by calling the routine whose address is in CSW. It is
by setting the input hook KSW and the output hook CSW that you
control the information flowing in and out of your Apple.

Perhaps the simplest arrangement of the hooks is made by the
RESET routine. It sets the input hook KSW to the built-in keyboard
and sets the output hook CSW to the built-in video display. Unless
you bootstrap using a disk, you get the use of the keyboard and video
display, by default.

The RESET routine sets the input hook to the built-in keyboard
routine at $FD 1 B called KEY IN. Then whenever input is wanted,
KEYIN supplies it one character at a time. A call to KEYIN results in
a wait until you press a key. While it waits, it runs a counter to gener
ate a random number. When you press a key, the counter stops and
the random number is available to you at $4E.4F in Page Zero in low
byte/high-byte order. And the character you typed from the keyboard
is returned in the A-register. There are important differences in the
way KEYIN is used between the Apple II Plus and the Apple lie, in
the location and extent of other keyboard functions such as escape
handling and cursor display. In both models, however, KEY IN gener
ates a random number in RND ($004E), gets a character which it re
turns in the A-reg, and removes the displayed cursor by replacing it
with the original character on the screen.

The built-in video display address is $FDFO and is called COUTl.
The RESET routine puts it into the CSW output hook at power up so
that all Apple output will go to the CO UTI routine. There, the charac
ter in the A-reg is interpreted so that display characters will appear on
the screen and control characters invoke changes to the display param
eters. For instance, a ctrl/G sounds the beep. Whenever a printable

-

,...
I

~'

-

-

-

"""

-

Text and Graphics 319

character is displayed, the cursor is advanced. Most of the control
characters are cursor-related: ctri!H is the backspace, ctri!M is the
carriage return, ctri/L is the form feed (homes cursor and clears
screen), and so forth. COUTl also masks its display characters to get
various character sets : normal, inverse, flashing, in either upper or
lower case. The display is restricted to an area of the screen called the
window. Normally, the window is the full screen, but may be changed
at Page Zero locations $20.23. So, COUTI either interprets a control
character or displays a printable character within the text window
from one of several possible character sets .

With COUTI or some other output routine address is CS\Y and
RDKEY or some other input routine address in KSW , the Apple pro
grams can put characters out or get characters in. The way to do it is
to call an indirect JMP that jumps at the required hook . To get an
input character,

JMP (KSW)

is needed, and to put a character to the current output use:

JMP (CSW)

It isn't necessary to code these jumps if you want to reach the
current input and output routines. They are in the Monitor and are
called RDKEY and COUT. To get a character from the current input
routine whose address is at KSW ($38.39) you just

JSR RDKEY

where RDKEY is $FDOC. Similarly, to put a character to the current
output routine whose address is at CSW, you write

JSR COUT

where COUT is $FDED. It is only the routines that initialize and
maintain peripherals that access CSW and KSW directly to set them
up; all other routines in the Apple can just call to RDKEY for input
and to COUT for output. Hook addresses are summarized in Table
6-l.

320 Appf£fPJ Programmer 's H andbook

Table 6-1. Input-Output Hook Addresses

Decimal Hex Label Contents

54 38.39 KSW Input hook address
56 36.37 csw Output hook address
1002 3EA MVSW DOS routine reconnects hooks
40577 9E81 DOS input hook routine
40637 9EBD DOS out put hook routine
43603 AA53 Current DOS hook for CSW
46305 AA55 C urrent DOS hook for KSW
64780 FDOC RDKEV Advance cursor then input at KSW
64792 FD18 Input at KSW
64795 FDI B KEVIN Keyboard input routine
65005 FDED COUT Output at CSW
65008 FDFO CO UTI Video output routine
65161 FE89 SETKB Resets KSW to KEVIN
65171 FE93 SETVID Resets CSW to COUTI

Here's how you use the hooks without DOS active in your Apple.
From BASIC, you can use the commands

PR#s
IN#s

where s is the slot number o f the peripheral you are selecting. If s is
zero, the commands will set the hooks to the built-in terminal, just like
RESET. The PR#s command sets the output hook CSW to the address
of slot s. The IN#s command sets the input hook KSW to the address
o f slots. The slot s can be any number from one to seven . You can
choose any slot as the current input and any slot as the current output.
Then you can remove the current input with a IN#O and the current
output with a PR#O.

This is what happens when you give a PR#O: BASIC puts the ad
dress of COUTI ($FDFO) into CSW at $38 .39. And when you give an
IN#O command , it puts the address of KEYIN ($FD IB) into KSW at
$36.37. The result is to make the built-in video and keyboard terminal
routines the current output and input devices, replacing any others
that may have been in CSW and KSW. But, if you commanded PR#I ,
then CSW would be set to the address of Slot One ROM which is
$C IOO. Or, if you gave a PR#2 command, CSW would be set to $C200
which is the Slot Two ROM address. Whichever slot you choose as the
output device, BASIC will set CSW to $Cs00 (where s is the slot
number). You select the input device the same way: IN#O sets KSW to

-
-
-

-

.....

-
-
-

Text and Graphics 321

the KEYIN ($FD1B) routine, IN#l sets KSW to Slot One ROM at
$CIOO, IN#2 sets KSW to Slot Two ROM at $C200, and so forth .

By using only one input device and one output device at any one
time, the Apple input/output system is simply a matter of selecting
each device as needed. You just use the IN# and PR# command to
make the selection . What can complicate matters is when you have to
keep DOS active at the same time.

The Disk Operating System was added to the Apple later, after
BASIC was used for some time. So, it had to fit into the Apple's
simple l/0 system as best it could. For the most part it does so, but the
odd glitch here and there can trap the unwary. The problem is that
DOS must occupy KSW and CSW itself in order to trap commands to
itself, get output from BASIC PRINT commands, and supply input to
INPUT and GET commands in BASIC statements. It must also allow
one other input device and one other output device in addition to itself
so that you can use a printer or a serial communications device with
the DOS active. The result is a DOS that occupies the hooks and main
tains a pair of 1/0 hooks for these other devices.

Here's how you use the hooks with DOS. Again, you use the
commands

PR#s
IN#s ·

where s is the slot number. Under DOS these commands are trapped
and BASIC never gets to see them. DOS uses them to set its own pair
of hooks. As before, the PR#O removes the current output device and
IN#O removes the current input device. Watch out for the glitches
when using PR# and IN# commands with DOS active. You can use
them immediately as keyboard commands, o r you can use them in
BASIC statements by prefixing with ctrl!D just like any other DOS
command. But if you use them directly in a BASIC statement without
the ctrl/D you wi ll disconnect DOS. If you didn't intend to do so, this
can be a hard-to-find bug in your BASIC program.

If DOS becomes unhooked, you can reconnect DOS by a

CALL 1002

which is a DOS routine vector at $3EA. You can make this call di
rectly or from within a BASIC statement. The call causes DOS to re
connect CSW and KSW while saving the contents of the hooks as its

322 Applf!'J Programmer's Handbook

own hooks. So, whatever the input and output devices were before the
call, they will still be current, but DOS will occupy the system hooks.

You can deliberately unhook DOS by using PR#O and IN#O from
BASIC or

JSR SETVID
JSR SETKBD

from Assembly (SETVID is $FE93, SETKBD is $FE89). Or, use any
other PR#s and IN#s you wish. From Assembly, you just set CSW and
KSW to the device address, $Cs00. Then you can always rehook DOS
back into CSW and KSW with a CALL 1002 (or JSR $03EA) when
ever you wish.

Most of the time, however, you will simply use the IN# and PR#
commands normally with a ctrl/D prefix.

In addition to using the hooks for input and output from peripheral
devices, you can use them with your own device drivers. For instance,
you can have lowercase input from the old keyboard even though it
won't generate any lowercase letters by itself. Here's how.

Your keyboard routine will use the ESC key to shift from lower- to
upper-case, and to lock into uppercase. This routine replaces KEYIN
by substituting its own address for that of KEYIN's. Then it will
display the cursor of your choice, get a character, handle any upper
case to lowercase conversion, and finally replace the cursor with the
old character before returning with the new character in the A-reg.
The routine must have the cursor screen position in BAS (in Page
Zero) and the Y -reg, and the old character from the screen in the
A-reg when it is called via KSW. A routine in the Apple Monitor does
that; it's called RDKEY and it resides at $FDOC.

To enable the routine, you can call these instructions

HOOKUP LDA #GETCH
STA KSW
LDA #GETCH
STA KSW+1
JSR MVSW to set DOS
RTS

and to remove it, the code is:

-

-
-
-

-

-

Text and Graphics 323

UNHOO K JSR SETK BO
JSR MVSW
RTS

You call HOOKUP and UNHOOK whenever you use the IN#3 and
IN#O commands to setup and remove a device.

You can write and use a routine to replace the CRT output routine
COUTI in the same manner. The address of the routine must be put
into CSW and a call to MVSW made to get DOS hookup. This can be
used for a HIRES character generator and display routine. Such
routines are available or you can write them yourself. A good one will
support scrolling and windowing, but a simple one is quite satis factory
for labeling graphs. Then you can alter the font if you wish, and you
will get lowercase letters that you don't get with the older Apples.

A simple alternative to HIRES character generation is the use of in
verse video for uppercase letters. On old Apples, the lowercase will
come out as normal uppercase, so it is only necessary to mask upper
case letters for them to show as such . You just use a routine to edit
each character and then send the edited character along to COUTl.
Instead of replacing the COUTI CRT output routine, like a HIRES
routine would, you cascade your routine with COUTl to make a
smarter routine with less work. Here it is.

LCOUT PHA

CM P #$CO t est fo r uppercase

BCC LCOUT1 ra nge $CO . OF

CM P #$EO

BCS LCO UT1

LOA #$3F mask for INVERSE

BNE LCOUT2

LCOUT1 LOA #$FF mask for NORMAL

LCO UT2 STA INVFLG

PLA

JMP COUT1

If you are using LCOUT together with GETCH for your terminal,
you can use single routines to hook and unhook both:

324 App/~ Programmer's Handbook

HOOK LDA
STA
LDA
STA
LDA
STA
LDA
STA
JSR
RTS

UNHOOK JSR
JSR
JSR
RTS

GETCH
KSW
GETCH
KSW+1
LCOUT
csw
LCOUT
CSW+1
MVSW

SETKBD
SETVID
MVSW

hook keyboard

remove keyboard GETCH
remove display LCOUT
reset DOS hooks

Whether you replace or cascade the Monitor terminal routines, the
procedure is the same. An output or an input routine that replaces the
Monitor won't reference COUTI or KEYIN. An output routine that
cascades with COUTl does so by a JMP to COUTI at the end . An
input routine that cascades with KEYIN does so by a JSR to KEYIN
at the beginning.

6.1.2 The Keyboard

Your first choice of a keybaord input routine is the Applesoft
INPUT command. When used as an instruction, it returns one or a list
of variables with the data entered from the keyboard. It requires no
programming to make it work, it can include a prompt string of your
choice, and it will work on all models of Apple II. Use it in one of
three ways:

INPUT "your p rompt";var/ist
INPUT " ";varlist
INPUT varlist

The first form uses your prompt string, the second form has a null
prompt so that none will appear, and the third form gives the default
prompt, "?". The varlist can be any list of variables, separated by
commas. Often only one variable is INPUT. Any numeric variables
will induce a VAL function to convert the entered string to a number.
All in all, a versatile and easy-to-use keyboard entry tool.

-

-

-
n
-

-

-

n
-

Text and Graphics 325

The INPUT command will also fetch records from disk if the DOS
command READ is in effect. A record is a string terminated by a CR
character, just like INPUT wants from the keyboard. The fields of a
DOS record separated by commas will be applied to your variable list
in exactly the same way. A DOS INPUT is the same as a keyboard
INPUT except for the source of characters.

But if you input strings that conta in delimiters, commas, colons,
and so forth , then INPUT won't work. For instance, you may INPUT
from the keyboard for a natural string from the user who doesn't
know or care about Appleso ft or its hangups. Or you may be reading
an unknown DOS record and want to scan the record to determine the
fields yourself. You can't specify a field list if you don't know what the
fields will be. So input an entire record as a single string, regardless of
any delimiters in that string. You need what is called an Input Any
thing routine.

Here it is. You must find a place for the routine in memory and
either CALL it there or, preferably, use the ampersand feature.

Here is an Input Anything routine:

INPUT JSR PTRGET get string variable
JSR IN LIN input the str ing to $200
LOX #$FF find string length

INPUT1 INX
LOA INBUF,X buffer at $200
BN E INPUT1 NUL is end-of-string
TXA
LOY #0 put length into string
STA (VARPNT) ,Y descriptor of variable
LOY #1
LOA #> INBUF put addr-lo into descriptor
STA (VARPNT),Y
LOY #2
LOA #< INBUF put addr-hi into descriptor
STA (VARPNT),Y
JMP DATA

To call the routine and input a string from Applesoft, you use the line

&A$:A$=M ID$(A$, 1)

326 Applf!F' Programmer's Handbook

after the ampersand vector that has been set up at $3F5. The A$ can
be any string variable. The MID$ must be used immediately to re
assign the string from $200, or else the next INPUT will clobber it.
INLIN is at $D52C.

If you need lower level access to the keyboard than Applesoft
provides, then consider the Monitor routines. By using one of these
routines instead of writing your own, you save the work of
programming and the hassle of maintaining and loading a separate
ML file that merely duplicates what's in the Monitor already. You can
use the Monitor to get complete lines, get characters one at a time, or
get characters without going through KSW while another device is
occupying the input hook . Use the one best suited to your needs.

The routine to get complete lines is called GETLN and it resides at
$FD6A. The Monitor's command parser, Applesoft, Integer BASIC,
and the Miniassembler all use the GETLN routine. Just put your
prompt character into PROMPT ($33 in Page Zero) and JSR. The
length of the line is given to you in the X-register and the string itself
begins at $0200, INBUF. For instance,

Applesoft ca lls w ith "]" in PROMPT
lNTEGER calls with ">" in PROMPT
Miniassembler calls," !" in PROMPT
Monitor calls with " *" in PROMPT

so you will have another choice for your routine - "#" perhaps, or
"@". The prompt character you choose identifies your routine to the
user.

The GETLN routine converts lowercase letters to uppercase. This is
why you can't get lowercase letters on Apples, even if a lowercase key
board is used. The one exception - at time of this writing - is the
Apple lie monitor. The lie will not change the lowercase letters to
uppercase. So, if you need lowercase letters then GETLN can't be used
if your program is used in one of the older Apples. For RAM copies of
Autostart such as those found in FPBASIC and INTBASIC, changing
the contents of $FD83 from $DF to $FF will allow lowercase in
GETLN.

Otherwise, if you want input without any of the drawbacks that are
in GETLN, then use RDCHAR or RDKEY to get one character at a
time. RDCHAR gets characters and handles any ESCape sequences
while RDKEY just gets characters. The character on the screen at the

-

-

-
-

-

-
-
~"'-!

!""!

Text and Graphics 327

current cursor position is set to flash and is kept in its original form in
the A-reg as it calls KEY IN via KSW. The KEY IN routine gets the
character from the keyboard and replaces the old screen character at
the cursor position. On the lie, the flashing character is not used when
lowercase is in effect, because lowercase and flash aren't available in
the same character set. Instead, the lie terminal uses its own cursor
but supports the KSW terminal interface call sequence just like the
Autostart Monitor. So, use RDCHAR to get characters with full ESC
support and use RDKEY for simple character input without ESC
sequences being trapped .

Finally, you can get characters from the keyboard without going
through the KSW input hook. This is handy because you don't have to
unhook and then re-hook an existing input device just to get one char
acter from the keyboard. There are two cases of such low level key
board gets. One is when you want the character and must wait until a
key is pressed. Another is when you want to get the character only if a
key was pressed. In the second case you just want to look for a key
press, then keep on with your program regardless of whether the key
was pressed. You can write simple routines to do both.

To get a keystroke by actually waiting until a key is pressed, either
call KEYIN or code the following:

GET LDA $COOO
BPL GET
BIT $C010
AND #$7F for positive ASCII
RTS

Or, to test for a keypress:

KTEST BIT $COOO
BPL KTEST1
LDA $COOO
AND #$7F for positive ASCI I
STA $C010
BNE KTEST2

KTEST1 LDA #0 NUL if no keystroke
KTEST2 RTS Z-flag = 0 if keystroke

The KTEST returns a zero (ASCII NUL) in the A-reg if no key was
pressed and will return the character entered if a key was pressed.

328 Appl~ Programmer's Handbook

There isn't any corresponding routine in the Monitor that tests the
keyboard on the fly like KTEST.

6.1.3 The Video Display

The built-in terminal has Monitor routines to display and scroll text
(see Fig. 6-1). To do this, the routine uses six Page Zero parameters.
By controlling these parameters yourself, you can change the display
for your custom screen routines.

0 HORIZONTAL
0 r------------------.-----------.-----------.~--~

WHOTOP

I tV

- tH-r-
---- WNOLFT - - 1---------WNO'IIOTH --------

VERTICAL

CuiSor IS CHand CV. A JSR to Y'fAB sets the cursor iddreu Note thatCH and
WNOWDIH .,. •rlh respeclto WNOLfT •h,l< tV ond WNOB IM .,. wrth resoect
to ZffO the top ol screen For scrolhnc. you must set CH ~nd CV v.1th1n the wm
dowaru

Fig. 6-1. How lhe scroll window works.

WNOBTM

The cursor is kept as two parameters: CH and CV keep the
horizontal and vertical cursor values. Scrolling is controlled by a scroll

-

window defined by four parameters: WNDTOP, WNDBTM, ~

WNDLFT, and WNDWDTH. You can set the parameters to any set
of values you want.

To set CH and CV, use numbers that count from zero if you are in
Assembly or from one if you are in BASIC. For instance,

LDA #0
STA CH
STA CV

-

-

Text and Graphics 329

sets the cursor to the upper left corner of the screen from the
Assembly, but

HTAB 1 : VTAB 1

would do it from BASIC. Similarly,

LDA #$27
STA CH
LDA #$17
STA CV

puts the cursor at the lower right of the 40-column screen, just like

HTAB 40 : VTAB 24

would from BASIC. On the lie you can use forty more positions hori
zontally.

To set the four window parameters, use the TEXT command from
BASIC. This sets the 40-column screen to a full screen window with
parameter values of zero in WNDTOP, 24 ($18) in WNDBTM, zero in
WNDLIT, and 40 ($28) in WNDWDTH. For the Ile you could
change WNDWDTH to any value up to 80($50) when you're in the
80-column mode.

What the scroll window parameters let you do is reduce the window
to a small prompt area somewhere on the screen. If you use the screen
to display information and don't want everything scrolled off the
screen by INPUTs, then you can set the window to cover just enough
area for prompt-and-accept dialogue with the user. The dialog can
continue for an indefinite number of prompts and retries wi thout
destroying your displays elsewhere on the screen. For example, you
might use the bottommost row for error messages and prompts onl y.
So when your program detects an error, the error handling subroutine
has the last row all to itself:

TEXT

POKE 34,23
HOME
. .. error dialog . ..

puts the cursor at lower right and resets
window parameters .
sets WNDTOP
clears window, 24th row only

330 AppfrjY) Programmer's Handbook

HOME
TEXT
RETURN

clears 24th row
reset parameters

For entering data at any screen location, you will need a more gen
eral procedure. The WNDTOP and WNDLFT parameters set the
upper left corner of the scroll window, while WNDBTM and
WNDWDTH set the lower right corner but each in a different way.
WNDWDTH sets the width - the distance from WNDLFT to the
right edge of the window. WNDBTM sets the absolute value of the
bottom edge regardless of the value of WNDTOP. See Fig. 6-1. You
must position the cursor within the scroll window for it to work
properly. When all this is done, a JSR to CROUT or a plain PRINT
will send a carriage return forcing the scroll to take place. The window
parameters ranges: WNDBTM must be 24 or less and greater than
WNDTOP; WNDLFT and WNDWDTH must be 40 or less (80 or less
for the lie in 80-column mode). Here is a window setting routine that
sets the scroll window to any location (X, Y) on the screen with a size
of DX by DY. The window is cleared and the cursor is placed at the
upper left position within the window.

SETWND JSR GETBYT window left = X
STX WNDLFT
LDA #0
STA CH

JSR CHKCOM
JSR GETBYT window top = Y
STX WNDTOP
STX cv
JSR CHKCOM
JSR GETBYT window width = dX
STX WNDWDTH
JSR CHKCOM
JSR GETBYT window height = dY
CLC
TXA

ADC WNDTOP bottom = Y + dY
STA WNDBTM
JSR VTAB real ize cu rsor
JSR CROUT carriage ret urn

-

JSR HOME

JMP DATA

Text and Graphics 331

clear screen window, home
cursor
... meanwhile, back in Apple
soft

- To use, set the ampersand vector at $3F5 to jump to SETWND, then
you can call it by

-
-

& X,Y,DX, DY

where X and Y are the cursor locations for the upper left of the scroll
window, DX is the width, and DY is the height of the window. For
instance,

& 0,5,20 ,3

sets up a scroll window consisting of the leftmost twenty columns in
the sixth through eighth rows. The zero sets the window to the first
column and the five sets it to the sixth row. The width becomes 20 and
the height is three.

There are two display character sets defined for the Apple; they are
called Primary and Alternate. Of the two, the earlier Apples have only
the Primary set available and the lie model supports both sets. If your
machine has the Alternate set, then you can display lowercase letters;
otherwise you are restricted to the Primary set only. The Alternate set
in the lie is selected when you give

STA $COOF

from Assembler, or

POKE 49167,0

from Applesoft. All machines have the Primary set in order to be
compatible, but on some Apples fitted with lower-case adaptors, you

332 App/~ Programmer's Handbook

may have lowercase in an alternate set. With the Apple lie and most
terminal arrangements, you use a CAPS LOCK key to switch between
the lowercase and uppercase as described in Chapter Eight. Only the
lie has the soft switch at $COOF to select alternate characters. The
Assembly instruction

STA $COOE

or the Applesoft

POKE 49116,0

will then change the character set from Alternate back to Primary.
Regardless of the set chosen, COUT should handle the display for

you properly. If you choose the Primary set, you can display in
normal, inverse, or fl ashing mode. Otherwise if you choose the Alter
nate set, you must display in normal or inverse mode only. Use the
Applesoft command or set the INVFLG value at $32 in Page One:

to $FF for normal white-on-black
to $3F for inverse black-on-white
to $7F for flashing, Primary Set only

Then send the negative-ASCII characters to the video display routines
at COUTl , either directly (Primary only) or via COUT (both Primary
and Alternate).

If you want to write your own display routines, then you need to
know the character display scheme. See Table 6-2.

The character display hardware decodes the character byte in two
chunks - format and character code. The most significant bit selects
normal if it is on and inverse if it is off. The next bit, bit 6, depends on
the setting of $COOE/ COOF soft switch (model lie only). In the
Primary set, if the bit is on it will cause the character to flash. In the
Alternate set, if the bit is on it selects another set of characters to be
used by the remaining six bits.

The six least significant bits of your character lookup the display
pattern in the character set ROM. Each character ROM has 64 entries
from $00 to $3F. The one that is selected by your character code is dis
played on the screen. Older Apples have only one ROM which is the
primary characters, while the lie model has two ROMs, which are the
primary and secondary. These codes are summarized in Table 6-2.

]]]) J 1 I) j]] J]

Table 6-2. Display Routines

Primary Secondary Alternate

SIX BIT

OO.OF @A B C D E F G H I J K L M N 0 @A B C D E F G H I J K L M N 0
lO.lF PQRSTUVWXYZ- PQRSTUVWXYZ-
20.2F !"#$07o&'()• +,-.I abcdefghijklmno
30.3F 0123456789:; =? pqrstuvwxyz

TWO BIT
I

00 Inverse Inverse (Pri)
01 Flash Inverse (Sec)
10 Normal Normal (Pri)
11 Normal Normal (Sec)

BYTE

00.3F Inverse Primary Inverse Primary
40.7F Flash Primary Inverse Secondary
80.BF Normal Primary Normal Primary

I

CO.FF Normal Primary Normal Secondary _j

NOTE: The traditional Apple display supported in COUTI uses the INVFLG to mask the character byte for the Primary Set. On the newer model lie, the two bits can be used for the
Alternate Set to get lower case letters instead of flashing.

I

~
~

~
c
~
~
Er

~

]

334 Appl~ Programmer's Handbook

If you want to display on Screen Two in text, then you must supply
your own display routine; the Monitor won't work with Screen Two.
First, ensure that Applesoft won't load and run at $801 as it usually
does. Instead, force it to begin RAM access at $COO by a

LDA #$0C
STA TXITAB + 1
LDA #$01
STA TXITAB

set lowest RAM pointer

LDA #0 zero first location
STA $0COO

preferably in a BRUN setup program before your Applesoft program
is run. The HELLO program could do this, with an altered DOS to
allow binary HELLO programs; see Chapter Seven on how to do this.

In your Applesoft program, you can

POKE 49237,0

to switch the display from Screen One to Screen Two. You may wish
to clear Screen Two ($0800.0BFF) with blanks ($AO) or copy a screen
layout to it from Screen One ($0400.07FF) before using it. Then, you
can switch back to normal Screen One display whenever you wish by:

POKE 49236,0

This scheme will let you fill in a form on one screen while using the
entire second screen for prompt menus. Or you may just want
separate screens for a two-player game like Battleship where the
players can take turns at the Apple without seeing each other's screen .
All you need to start exploring Screen Two usage is a simple display
routine like

DI SPL JSR GETBYT
TXA
ASL A
TAX
LDA SCREE N2,X
STA A1
LDA SCREE N2 + 1,X

row num ber 0 ... 23

ti mes 2 for mdex

-

-
-

-

STA A1+1
JSR CHKCOM
JSR GETBYT
STX A2
JSR CHKCOM
JSR CHRGET
LDY A2
CMP #$22
BEQ DISPL 1
JMP SNERR

DISPL 1 JSR CHRGET
CMP #$22
BEQ DISPL2
ORA #$80
STA (A 1), Y
INY
BNE DISPL 1

DISPL2 JMP DATA

SCREEN2 DW $0800
DW $0880
DW $0900

DW $0BDO

Tex t and Graphics

column number 0 ... 39

open quote

while not close quote
get literals and
d isp lay on Screen Two

endwhile

Row 0 (first row)
Row 1 (second row)
Row 2 (third row)

Row 23 (24th row)

335

vectored from the ampersand at $3F5. The call sequence is just & row
value, columnvalue, "litera/string" from Applesoft. For example,

& 0, 16, "SELECTION"

would display the string in the top row beginning with the seventeenth
column (column 16). The quotes are needed to pass literal values to
keep Applesoft from parsing inside the string.

When you get this one going, you can write more Screen Two
routines for yourself. A spare screen is very handy when programming
for heavy user interaction. See Table 6-3 .

Sometimes, when you are using a modem, you'll want to save a text
screen to disk. A better idea would be to buffer the incoming text and
save it in that more compact form, but in a pinch you can just save the
screen by

336 App/(/1} Programmer's Handbook

Table 6-3. Text Row Addresses

VTAB Screen One Screen Two

Row Dec Hex Dec Hex

I 1024 0400 2048 0800
2 1152 0480 2176 0880

3 1280 0500 2304 0900

4 1408 0580 2072 0980
5 1536 0600 2560 OAOO

6 1664 0680 2688 OA80
7 1792 0700 2816 OBOO

8 1920 0780 2944 OB80

9 1064 0428 2088 0828
10 1192 04A8 2216 08A8
II 1320 0528 2344 0928
12 1448 05A8 2472 09A8
13 1576 0628 2600 OA28
14 1704 06A8 2728 OAA8

15 1832 07A8 2856 OB28

16 1960 07A8 2984 OBA8

17 1104 0450 2128 0850

18 1232 0400 2256 0800
19 1360 0550 2384 0950
20 1488 0500 2512 09DO
21 1616 0650 2640 OA50
22 1744 0600 2768 OADO
23 1872 0750 2896 OB50
24 2000 0700 3024 OBDO

BSAVE SCREEN, A$400,L$400

without any problem. However, you must be careful about how you
read it back into memory later on.

The problem with BLOADing screens into the Screen One area,
$400.7FF, is that the area is shared by peripheral devices. All bytes
aren't screen display, and if you check in Chapter Two, you'll find
some locations designated as peripheral scratchpad. So, if you over
write $400. 7FF with old data from disk, the current peripheral RAM
data wih be destroyed. Don't do it.

-
-

-

-

-

Tex1 and Graphics 337

The solution is to use Screen Two. With Screen Two memory pro
tected with the TXTT AB alteration given earlier, you can recall your
saved screen from disk by

BLOAD SCREEN, A$800
PO KE 49237,0

and view it until you type

POKE 49236,0

to redisplay Screen One. It's a little more trouble, but it is safer; you
won't hang up by clobbering the peripherals.

6.2 GRAPHICS

6.2.1 Lo-Res Graphics

The LORES graphics uses the same memory as does the text dis
play. Most LORES is confined to Screen One where Applesoft and
Monitor routines are available to manage it. Chiefly, LORES finds its
greatest application in arcade type games using the game paddles. But
it also works well in Kaleidoscopes, plotting bar graphs, and shape
creation programs.

If you write a LORES program, you should first try it in Applesoft.
Where Applesoft is too slow, you can re-write it in Integer or write
utilities in Assembly. The commands for Integer are the same as those
for Applesoft, so just refer to Chapter Five for Integer BASIC detai ls
as you write. Here's how to use the commands with Applesoft. See
Table 6-4.

GR

COLOR= N

PLOT X,Y

HUN X I , X2 AT Y

VLIN Yl, Y2 AT X

N = SCRN (X, Y)

TEXT: HOME

Table 6-4. Applesoft LORES

Set and clear to graphics

Set current plotting color

Plot a pixel

Plot a horizontal line

Plot a vertical line

Identi fy screen color at pixel

Set and clear to text

338 Appl~ Programmer's Handbook

To initialize LORES for a full screen display, write:

TEXT
GR
POKE 49234,0
CALL 63538

The TEXT command makes sure any parameters and switches are
reset: GR initializes the HIRES display; the POKE switches from
mixed to full-screen graphics; and the CALL clears the full LORES
screen to black .

To initialize the LORES screen for a mixed screen with the bottom
most four text lines intact, write:

TEXT
GR
POKE 34,20

Here, you use the mixed display with 40 lines of LORES followed by
four rows of text. The POKE sets the scroll window to protect the
graphics area of the screen.

You can remove LORES at any time, returning to text display with
the TEXT command.

Here are the LORES drawing commands. The variables used here
are: X and Y for the current position, Xl and Yl for a beginning
point, X2 and Y2 for an ending point, M is the slope of a line, DX and
DY are the increments of cursor movement.

Always set the color before drawing, using the COLOR = com
mand. Use one of the values in Table 6-5, zero to fifteen only.

• A vertical line is VLIN Xl,X2 AT Y
• A horizontal line is HUN Yl, Y2 AT X
• A single point is PLOT X, Y.

If you are PLOTting a cursor, then use a subroutine like

COLOR=BK
PLOT X,Y
X = X+DX : Y=Y+DY
BK = SCRN (X, Y)

n

n

n

-

COLR = CU
PLOT X,Y
RETURN

Text and Graphics 339

that uses variable BK to remember the background color at the cursor
position. You call it with the current cursor position (X, Y) and the
increment (DX,DY). You initially set CU to the cursor color and BK
to the background color.

If you want to draw sloping lines, you will need a straight line
equation.

M = (Y2-Y1)/(X2-X1)
FOR X = X l to X2
Y = M*(X- X1)+ Y1
NEXT

This equation is crude but workable; don't use it on vertical lines.
LORES from Assembly is basically just another display character

set for the text screens. Only instead of selecting one of sixty-four
character patterns, LORES hardware displays two pixels for each

Table 6-5. LORES Colors

Dec Hex Color

()() ()() Black

01 01 Magenta

02 02 Dark blue

03 03 Purple

04 04 Dark green

05 05 Grey I

06 06 Medium blue

07 07 Light blue

08 08 Brown

09 09 Orange

10 OA Grey 2

II OB Pink

12 oc Light green

13 OD Yellow

14 OE Aquamarine

15 OF White

340 Applr!" Programmer's Handbook

character position. Each pixel is a small square of color on the screen .
In the character position, the upper square comes from the four least
significant bits while the lower square comes from the most significant
bits. For example, if you type POKE 49232,0:POKE 49238,0 to
Applesoft you will see the screen in LORES. Blanks, which have the
negative-ASCII code of $AO, appear as grey over black: grey is color
$A, black is color $0. Type POKE 49233,0 to switch back to text
characters.

Like text characters, HIRES pixels appear 40 in each row. But be
cause there are two pixels in each character, there are 48 pixels verti
cally in the 24 rows. In mixed mode the four bottom rows are text
characters together with the top twenty rows of 40 pixels. This results
in a 40-by-40-pixel display atop four text lines for the mixed mode and
a 40-by-48-pixel display for the unmixed mode. You can switch to un
mixed mode by

BIT $C052 unmixed graphics

or to mixed graphics and text by

BIT $(053 mixed graphics

anytime in an Assembly routine.
With this in mind you can write LORES graphics utilities for your

self. Just use the Monitor LORES Address in Table 6-6 to lookup the
routine that you need. These are the same Monitor routines that the
Applesoft commands use to execute LORES instructions, so you can
use them yourself in Assembly to speed things up. Direct screen access
to the $400.7FF area is possible but rarely necessary as the Monitor
routines draw quite quickly.

6.2.2 Hi-Res Graphics

To initialize HIRES graphics use the HGR or the HGR2 commands
in Applesoft , then the TEXT command to switch back to the Text
screen. Because the text is in a different part of the memory than the
graphics, you also switch back and forth between text and graphics
with the soft switches so as not to clear the screen with the Applesoft
commands. So , it's useful to have a complete set of initialization rou
tines for each screen configuration at hand. Especially in Assembly
programming, you can just JSR for each screen configuration as you
need it.

-

.....

-

-
-

Text and Graphics 341

Table 6-6. Monitor LORES Addresses

Hex Label Description

F800 PLOT P lot pixel at (Y -reg, A-reg)

F819 HLINE Plot horizonta l, Y-reg to H2 at A-reg

F828 VLINE P lot vertical, A-reg to V2 at Y -reg

F832 CLRSCR Clear entire 48 by 40 pixel screen to black

F836 CLRTOP Clear topmost 40 by 40 pixels to black

F864 SETCOL Set COLOR according to A-reg

F87 1 SCRN Get color o f pixel at (Y -reg, A-reg) to A-reg

FB2F !NIT Set TEXT modes

FB40 SETGR Set GR modes

Soft Switches for LORES

coso GR Set graphics d isplay

COS I TEXT Set text display

C0 52 UN MIX Set for 40 by 48 pixels, no text

C0 53 MIX Set for 40 by 40 pixels above four rows of text

C0 56 LORES Set to ensure LORES display instead of HIRES

C0 54 SCREEN! Set to ensure SCREEN I display instead of
SCREEN2

C055 SCREEN2 Set to ensure SCREEN2 display instead (rare)

To switch to the HIRES! screen with mixed graphics and text, you
can:

MIX1 STA $COSO
STA $COS3
STA $COS4
STA $COS7
RTS

Then, to switch to full graphics on HIRES!, you would write:

FULL 1 STA
STA
STA
STA
RTS

$COSO
$COS2
$COS4
$COS7

342 Apple& Programmer's Handbook

Similarly, you would invoke full graphics on HIRES2 by:

FULL2 STA $COSO
SfA $COS2
STA $COSS
STA $COS7
RTS

The mixed display for HIRES2 is rarely used because of the need for
text in Screen Two ($800.BFF), but here it is:

MIX2 STA $COSO
STA $C053
STA $COS5
STA $COS7
RTS

Finally, to switch back to the text only on Screen One, you use this set
of switches:

TEXT1 STA $COS1
STA $C053
STA SC054
STA SC056
RTS

By having these routines in your Assembly HIRES routines, you can
JSR simply to ensure that the soft switches are all set properly each
time you want to change displays.

You can have a separate routine to clear the HIRES screen to black
or any other color for that matter. The simplest routine is just a call
sequence to the Monitor's MOVE routine at $FE2C:

CLEAR1 LDA #0 for blac.k 1
STA $4000 cleanng HIRES 1
STA A4
LDA #1
STA A1
LDA #$40
STA A1+1

n

-

n

-

-
-

-
.....

-

-

Text and Graphics 343

STA A4+1
LDA #$FE
STA A2
LDA #$7F
STA A2+ 1
JMP MOVE

Write a call sequence to CLEAR2 that will clear HIRES2.
One of the things you can do in HIRES is to make your own charac

ter set. Usually, you must use the mixed mode and confine your labels
to the bottom of the screen. With your own HIRES character set, you
can use the full HIRES screen and put labels wherever you wish. See
Example 6-1.

The HIRES display addresses are grouped into rows and columns
just like the text addresses. There are twenty-four rows by forty
columns. Each character position, however, has eight bytes of
memory in HIRES as compared to one byte in text. These eight bytes
can display any character you want, explicitly . Each byte displays to a
different line on the screen, so the eight bytes display eight lines, one
below the other, to makeup the character. Look at Table 6-7 which
lists the HIRES row addresses. Each address given is for the top line
of the leftmost character position of each row. Then look at Table 6-8
which lists the HIRES line offsets. These line offsets are the values to
add to the top line address to address the remaining seven lines in each
row. Also , the column number must be added if you want to reach any
character position on the screen. By working through the additions of
row address, line offset, and column number, you can access the
HIRES screen by character position. In fact, the sum can be shown as
a formula

byte address = row address + line offset + column number

for use in writing character access routines.
Each character to be displayed on a HIRES screen must be kept in

eight corresponding bytes. Each byte will be used to display on one
line of the row within the desired character position. In HIRES dis
play, a byte will map to seven points on the screen. Each of these seven
points can be turned on (white) or off (black) by setting the corre
sponding bit in the byte. Display points that can be independently con-

344 Appl~ Programmer's Handbook

Example 6-1.

SOURCE FILE:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0050:
ss
0052:

ADDRESS
0000:
1800:
ABLE
0000:
0000:
0000:
0000:

EXAMPLE 6.1
1 ***********************************
2 * EXAMPLE 6.1 *
3 * *
4 * HIRES CHARACTER DISPLAY *
5 * *
6 *DISPLAY A CHARACTER AT (X,Y) *
7 * FROM CHAR. TABLE 8 BYTES EACH. *
8 *A-REG CHAR. CODE 0 ••• 255 *
9 * Y-REG a ROW NUMBER 0 ••• 23 *

10 *X-REG a COLUMN NUMBER 0 •.• 39 *
11 * *
12 *RESULT IS DISPLAYED ON HIRES!. *
13 ***********************************
14 *
15 *
16 *
17 *

E Q U A T E S

18 ZSCREEN EQU $50

19 ZCHAR

20 *
21 CHAR

22 *
23 *
24 *
25 *

EQU $52

EQU $1800

R 0 U T I N E S

HIRES ADORE

CHAR. TABLE

CHARACTER T

NEXT OBJECT FILE NAME IS EXAMPLE 6.1.0BJO

8000:
8000:
8000:
8000:
8000:48
8001:98
8002:0A
OR INDEX
8003:A8
8004:B9 52 80
R-LO
8007:85 50
8009:B9 53 80
R-HI
sooc 85 51
800E
800E

26 ORG $8000
27 *
28 * WITH Y-REG, LOOKUP ROW ADDRESS.
29 *
30 HCHAR PHA
31 TYA
32 ASL A MULT BY 2 F

33
34

35
36

TAY
LDA ROW,Y

STA ZSCREEN
LDA ROW+1,Y

37 STA ZSCREEN+l
38 *

GET THE ADD

GET THE ADD

39 * WITH X-REG, OFFSET ROW ADDRESS

,...
I

Text and Graphics 345

Example 6-1 Cont.

800E: 40 * BY THE COLUMN NUMBER.
800E: 41 *
800E:8A 42 TXA
800F:18 43 CLC
8010:65 50 44 ADC ZSCREEN ADDS L.S.BY
TE
8012:85 50 45 STA ZSCREEN
8014:A9 00 46 LDA #0
8016:65 51 47 ADC ZSCREEN+l ADDS M.S.BY
TE
8018:85 51 48 STA ZSCREEN+1
801A: 49 *
SOlA: 50 * WITH A-REG, LOOKUP THE CHARACTER c
ODE AS
SOlA: 51 * (ZCHAR) = 8*(A-REG) + CHAR
SOlA: 52 *
801A:68 53 PLA
8018:85 52 54 STA ZCHAR LOW BYTE
801D:A9 00 55 LOA 10
801F:85 53 56 STA ZCHAR+l HIGH BYTE
8021:06 52 57 ASL ZCHAR MULTIPLY BY

8
8023:26 53 58 ROL ZCHAR+l
8025:06 52 59 ASL ZCHAR
8027:26 53 60 ROL ZCHAR+1
8029:06 52 61 ASL ZCHAR
802B:26 53 62 ROL ZCHAR+1
8020:18 63 CLC
802E:A5 52 64 LOA ZCHAR THEN ADD TH ,.. E ADDRESS
8030:69 00 65 ADC #>CHAR OF CHARACTE
R TABLE
8032:85 52 66 STA ZCHAR
8034:A5 53 67 LOA ZCHAR+l TO GET ENTR
Y ADDRESS.
8036 69 18 68 ADC #<CHAR
8038 85 53 69 STA ZCHAR+1
SOJA 70 *
803A 71 * DISPLAY THE CHARACTER IN 8 LINES
SOJA 72 * AT THE ZSCREEN POSITION.
SOJA 73 *
SOJA AO 00 74 LOY #0
803C A2 00 75 LOX #0
803E B1 52 76 HCHAR1 LOA (ZCHAR),Y FROM TABLE
8040 81 50 77 STA (ZSCREEN,X) TO HIRES!.
8042 C8 78 INY
8043 co 08 79 CPY #8 DO 8 TIMES.

346 Apple® Programmer~ Handbook

Example 6-1 Cont.

8045:FO OA
8047:18
8048:A5 51
DORESS OF
804A:69 04
N THE ROW.
804C:85 51
804E:4C 3E 80
8051:60
8052:
8052:
8052:
8052:

80
81
82

83

BEQ HCHAR2
CLC
LOA ZSCREEN+1

AOC #4

84 STA ZSCREEN+1
85 JHP HCHARl
86 HCHAR2 RTS
87 *
88 *
89 *
90 *

L I T E R A L S

CALCULATE A

NEXT LINE I

8052: 91 * HIRES1 CHARACTER ROW TABLE.
8052:
8052:00 20
8054:80 20
8056:00 21
8058:80 21
805A:OO 22
805C:80 22
805E:OO 23
8060:80 23
8062:28 20
8064:A8 20
8066:28 21
8068:A8 21
806A:28 22
806C:A8 22
806E:28 23
8070:A8 23
8072:50 20
8074:00 20
8076:50 21
8078:00 21
807A:50 22
807C:OO 22
807E:50 23
8080:00 23
8082:
8082:00

92 *
93 ROW
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117 *
118

OW
OW
OW
OW
OW
DW
OW
OW
OW
OW
OW
OW
OW
OW
OW
OW
OW
OW
DW
OW
DW
OW
DW
OW

BRK

$2000
$2080
$2100
$2180
$2200
$2280
$2300
$2380
$2028
$20A8
$2128
$21A8
$2228
$22A8
$2328
$23A8
$2050
$2000
$2150
$2100
$2250
$2200
$2350
$23DO

*** SUCCESSFUL ASSEMBLY: NO ERRORS

ROW 0
ROW 1
ROW 2
ROW 3
ROW 4
ROW 5
ROW 6
ROW 7
ROW 8
ROW 9
ROW 10
ROW 11
ROW 12
ROW 13
ROW 14
ROW 15
ROW 16
ROW 17
ROW 18
ROW 19
ROW 20
ROW 21
ROW 22
ROW 23

trolled like this are called pixels. The least significant bit controls the
leftmost pixel: a one for white and a zero for black. The other bits are
mapped left to right in sequence on the screen, so that bit 6 controls
the seventh pixel which is the rightmost. Usually, bit 7 is kept off. If
you turn it on, all the pixels will shift position by half a point. Because
you usually clear a screen with zeros, it is best to always leave bit 7 off
in all bytes that keep black-and-white pixels. Color is different; bit 7

Text and Graphics 347

Table 6-7. HIRES Row Addresses

HIRES I HIRESl

Row Dec Hex Dec Hex

0 8192 2000 16384 4000
1 8320 2080 16512 4080
2 8448 2100 16640 4100
3 8576 2180 16768 4180
4 8704 2200 16896 4200
5 8832 2280 17024 4280
6 8960 2300 17152 4300
7 9088 2380 17280 4380
8 8232 2028 16424 4028
9 8360 20A8 16552 40A8

10 8488 2128 16680 4128
11 8616 21A8 16808 41A8
12 8744 2228 16936 4228
13 8872 22A8 17064 42A8
14 9000 2328 17192 4328
IS 9128 23A8 17320 43A8
16 8272 20FO 16464 40FO
17 8400 2000 16592 4000
18 8528 2150 16720 4150
19 8656 2100 16848 4100
20 8784 2250 16976 4250
21 8912 2200 17104 4200
22 9040 2350 17232 4350
23 9168 2300 17360 4300

Table 6-8. HIRES Line Offsets

Line Dec Hex

0 0 0
1 1024 0400
2 2048 0800
3 3072 ocoo
4 4096 1000
s 5120 1400
6 6144 1800
7 7168 1COO

used for color is often called the color bit. But for characters, always
turn it off.

Eight bytes contain one character, seven pixels across by eight high.
To have all byte values, a table of 256 characters needs two K of

348 Apple® Programmer's Handbook

memory; $1800.1FFF. To fetch any character, a lookup formula for
eight bytes per entry will do the trick ~

entry address = 8 * char. code + table address

in getting the address of the top byte.
The routine listed here is HCHAR and it displays a character from

your table. You must have the table in memory (EQUated to $1800
here), and pass the row number in the X-reg, the column number in
the Y -reg, and the character code in the A-reg. This character code is
the entry number for your character table. HCHAR displays your
character at the row and column you gave and then returns with the
registers clobbered.

All you have to do to get HCHAR working for you, aside from
keying it in, is to create your characters. Here's how.

The secret to getting character layouts is to keep in mind that the
bits run from left to right on the screen although they are represented
in binary from right to left (see Fig. 6-2). The critical step is trans
lating the pattern of squares to binary (see Fig. 6-3). Start with bit 7
on the right of the layout. Translate into a bit (0 or I). Then do bit 6 to
the left of bit 7 on the layout but to the right of bit 7 in the binary
number. Study the three examples, especially Fig. 6-3B which is non
symmetrical.

(A) The HIRES character.

Fig. 6-2. Character layouts.

(8) Text character area.

When laying out, keep text characters within the five by seven area
shown to avoid the characters bleeding together on the screen. You
may want some special characters to join together, but text should
not. The one exception that you may have to make is for the de-

,.,
I

scenders on lowercase letters. For example, see the "j" layout in Fig. ~

6-3.

-

-

...

(A) Character A.

(8) Number 3.

(C) Character J.

BYTE 3

BYTE

4

5
5

Fig. 6-3. Creating characters.

Text and Graphics 349

BINARY HEll

0001000 08
0010100 14
0100010 22
0 I 1 1 I I 0
0100010

0100010
0100010

3 E
2 2
2 2
2 2

0000000 00

BINARY HEll

0011100 IC
0100010 22
0100000 20
0111000 38
0100000 20
0100010 22
0011100 1C
0000000 00

BINARY HEll

0000000 00
0010000 10
0000000 00
0010000 I 0
0010000 10
0010000 10
0010100 14

0001000 08

You can write HIRES graphics routines that execute much faster
than the same routines in Applesoft. Avoiding the time taken to parse
instructions and setup parameters is only a part of the savings in time.
The big payoff is in speed when you bypass the lengthy calculations
that Applesoft and the Applesoft programs must make to get useful
graphics.

The problem with HIRES graphics is its coordinate system. Because
it has its origin at the upper left, the horizontal values from zero to 279
and the vertical values from zero to 191 present several problems.
First, the horizontal value requires two bytes of storage for just a little
over one byte of data, not too efficient in an eight bit machine. Then
the integral values are rather arbitrary and always require scaling after

350 App/er'J Programmer's Handbook

calculations, especially trigonometric functions. Then you may have
to reflect the vertical value because the plotting takes place in the
fourth quadrant instead of the usual first. These coordinates simply
follow the text screen convention of row numbering and use the num
ber of points vertically and horizontally for the convenience of the
original HIRES programming. But you don't have to follow that ar
rangement; there are better ways.

The simplest coordinate system you can use for HIRES work is one
which uses one byte for the X-coordinate and one byte for the Y -coor
dinate (see Fig. 6-4A). The origin you take to be at the lower left
corner of the full screen. Each coordinate represents a binary fraction
- in X from zero to one, in Y from zero to three-fourths. This is
called the system of normalized coordinates (see Fig. 6-4B).

0 280 X
0~----------------------~~~

280 X 192
OR

280 X 160
PIXELS

160- ------------------------------------- -

192-1-----------------+

(A) Applesoft HIRES coordinates.

075+--------------------+-

(8) Normalized HIRES coordinates.
Fig. 6-4. Coordinate system.

256 X 192
PIXELS

1.0 X

~
I

I

-
-

n
-
-
-
-

-

-
-

Text and Graphics 351

With normalized coordinates, you can plot any one of 256 hori
zontal positions and any one of 192 vertical positions. The 24
remaining horizontal positions are lost as they are used to provide the
single byte X-coordinate. Normalized coordinates with a three-fourths
vertical size are compatible with graphics communications standards
like Videotex and Teletext. They get along with the input data require
ments of many commercially available graphics packages. And, they
can be used with Applesoft's floating-point routines with a minimum
of scaling required. If you want HIRES routines in Assembly for
speed and simplicity, then adopt normalized coordinates right away
and don't use the built-in coordinate system.

Here's how normalized coordinates work. Keep your current coor
dinates in the X and Y registers. To plot a point, test the coordinate by

CPY #$CO
BCS CLIP

rangetest Y

where CLIP is a return location that does not plot the point. If the
Y -coordinate is less than three-fourths ($CO in hex) then it passes the
test and you can plot it. This test is called clipping, and is the only
clipping you need to do. In Applesoft, you would have to make jour
clipping tests. Clipping makes sure that you don't plot outside the
screen area and any intelligent graphics plotter must do it. With nor
malized coordinates, it's simple.

To plot any point on the HIRES! screen using normalized coordi
nates, you need your own routines. Such routines are simple to write,
especially using table lookup for screen addressing and other func
tions . See Table 6-9. A complete table lookup routine to plot a pixel in
black or white wiJJ use about one K of memory. You can use Example
6-2 (located at the end of this chapter) which wiJJ keep the coordinates
in the X-reg and Y -reg, and the A-reg will keep the pixel value - say,
zero for black and nonzero for white. Such a routine would look like
this:

* HIRES PIXEL - PLOT A_ REG PIXEL AT (X_ REG,Y _ REG)
HPIX PHP

CPY #$CO clip Y-coordinate
BCS HPIX2
CMP #0 If pixel va lue = zero .
BNE HIPIX1

352 App/f!TJ Programmer 's Handbook

JSR BLACK
BEQ HPIX2

HPIX1 JSR WHITE
HPIX2 PLP

RTS

then plot black pixel

else plot white pixel.

In this routine, all registers a re preserved so you can use the routine in
a loop. Then you can vary the X-reg, Y -reg, and the A-reg as you want
and branch after any JSR with impunity. Each o f the BLACK and
WHITE routines a lso preserves registers to support your calling rou
tine this way.

To understand how these BLACK and WHITE routines work, you
must study the tables in the LITERAL section. By comparing
LOLINE and HILI NE with Table 6-9, HIRES! Screen Lines, you can
see that they are each one byte tables of the low bytes and high bytes
of the screen addresses . In each, the first entry is for the bottom left
screen address; the last entry is for the top left screen address. Using
theY-reg as index, the routines get the line address for the pixel from
HILINE and LOLINE to the Page Zero pointer, SCREEN. This
leaves only the X-coordinate to interpret. Now the X-reg is used to
index two tables called DIV7 and BWPIX. First, DIV7 does a division
by seven by table lookup instead of by algorithm, which is much
faster. Second, BWPIX gives the mask byte to select the desired pixel
bit from within the screen byte. With these four tables - LOLINE,
HILINE, DIV7, and BWPIX - the routines can lookup their func
tions quickly.

After saving the registers, the routine gets the address of the line
from LOLINE and HILINE to SCREEN. Then it finds the byte con
taining the X-th pixel on the line by DIV7 and puts this quotient into
theY-reg as the byte index. Finally, the mask for the bit within that
byte is looked up in BWPIX with the X-reg; used to mask the screen;
and that's it. BLACK masks the screen in a different way than does
WHITE since BLACK must turn the pixel's bit OFF, and WHITE
must turn it ON. Otherwise, the two routines work the same way.

The ability to access each pixel on the screen with separate bits is
unique to HIRES black or white plotting. With color, you cannot
reach pixels uniquely with separate bits like this, so you'll probably
only use these routi nes satisfactorily with a black and white video
display.

n

-

Text and Graphics 353

Table 6-9. HIRES! Screen Lines
Uae Addr. Line Addr. Uae Addr. Line Addr. Line Addr.

00 3FDO 28 3050 so 3EA8 78 3C28 AO 3080
01 3800 29 3950 51 3AA8 79 3828 AI 3980
02 3700 2A 3550 52 36A8 7A 3428 A2 3580
03 3300 28 3150 53 3228 78 3028 A3 3180
04 2FDO 2C 2050 54 2EA8 7C 2C28 A4 2080
OS 2800 20 2950 55 2AA8 70 2828 AS 2980
06 2700 2E 2550 56 26A8 7E 2428 A6 2580
07 2300 2F 2150 57 22A8 7F 2028 A7 2180
08 3FSO 30 3CDO 58 3E28 80 3F80 AS 3000
09 3850 31 3800 59 3A28 81 3880 A9 3900
OA 3750 32 3400 SA 3628 82 3780 AA 3500
08 3350 33 3000 58 3228 83 3380 AB 3100
oc 2FSO 34 2CDO sc 2E28 84 2F80 AC 2000
00 2850 35 2800 50 2A28 85 2880 AD 2900
OE 2750 36 2400 SE 2628 86 2780 AE 2500
OF 2350 37 2000 SF 2228 87 2380 AF 2100
10 3EDO 38 3CSO 60 3DA8 88 3FOO 80 3C80
II 3ADO 39 3850 61 39A8 89 3800 81 3880
12 3600 3A 3450 62 3SA8 SA 3700 82 3480
13 3200 38 3050 63 31A8 88 3300 83 3080
14 2EDO 3C 2C50 64 2DA8 8C 2FOO B4 2C80
IS 2ADO 30 2850 65 29A8 80 2800 85 2880
16 2600 3E 2450 66 25A8 SE 2700 86 2480
17 2200 3F 2050 67 21A8 SF 2300 87 2080
18 3E50 40 3FA8 68 3028 90 3E80 88 3COO
19 3A50 41 38A8 69 3928 91 3A80 89 3800
lA 3650 42 37A8 6A 3528 92 3680 8A 3400
18 3250 43 33A8 68 3128 93 3280 88 3000
IC 2E50 44 2FA8 6C 2028 94 2E80 8C 2COO
10 2A50 45 2BA8 60 2928 95 2A80 80 2800
IE 2650 46 27A8 6E 2528 96 2680 BE 2400
IF 2250 47 23A8 6F 2128 97 2280 8F 2000
20 3000 48 3F28 70 3CA8 98 3EOO
21 3900 49 3828 71 38A8 99 3AOO
22 3500 4A 3728 72 34A8 9A 3600
23 3100 48 3328 73 30A8 98 3200
24 2000 4C 2F28 74 2CA8 9C 2EOO
25 2900 40 2828 75 28A8 90 2AOO
26 2500 4E 2728 76 24A8 9E 2600
27 2100 4F 2328 77 20A8 9F 2200

NOTE: Each address is leftmost byte. Line Zero is at bottom.

6.2.3 Mid-Res Graphics

The Apple II can plot six different colors on the HIRES screens. Or,
it can plot 280-by-192 independent pixels. But it cannot do both at the
same time.

When you want to draw in color, you would expect to do so in the
same way you drew in black and white. You set the HCOLOR to your
choice and start drawing, but it doesn't work like it should. Some
vertical lines may disappear; diagonals look jagged, and some color

354 Applif'J Programmer,s Handbook

combinations won't work side-by-side on the screen. Something is
wrong, but it is not apparent exactly what. You certainly cannot plot
colors the same way you plotted black and white; it just won't work.

Plotting colors by pixel, like plotting in black and white, is called
the six-color problem. There is a solution if you want color pixels in
HIRES. First, see how the HIRES colors work.

There are two sets of HIRES colors. One set has the colors black I,
violet, green, and whitel. The other set has the colors black2~ blue,
orange, and white2. The difference between the two is the high order
bit in the bytes: the violet-green set has bit 7 clear; the blue-orange set
has bit 7 set. Otherwise, they are exactly the same. In both sets, the
colors are produced by alternately arranging the display bits, from bit
0 to bit 6, in an on-off or off-on pattern. Such a pattern takes two
bytes to complete; for instance, violet is produced by the pattern

and off-on-off-on-off-on-off

appearing in successive bytes on the line. See Fig. 6-5 for details of the
violet-green pattern and the blue-orange pattern.

To draw a HIRES color, select a bit pattern from Table 6-10 and
use it to fill in an area on the screen. For instance, the pattern for
violet will be in byte pairs of $55 (left) and $2A (right). This gives us
our colors in an area of fourteen points across each. Notice that turn
ing all bits on gives white and turning all bits off gives black. For black
and white, the color bit, bit 7, doesn't matter. This gives us the six
colors, but with a very low horizontal resolution of fourteen dots out
of 280. These bit patterns are used by Applesoft for the HCOLOR you

Table 6-10. Color Codes

Left Right
Byte Color Value Value

Violet-green Black I $()() $00

Violet $55 $2A

Green $2A $55

White I $7F $7F

Blue-orange Black2 $80 $80

Blue $05 $AA

Orange $AA $05

White2 $FF $FF

~

I

,...
I

~
I

-

-

-

Text and Graphics 355

BIT 0 I 2 3 4 5 6 0 I 2 3 4 5 6

I vi cl vi cl vlcwcl vlcl vi G I vw
BIT 7 = 0 BIT 7 = 0

I LEFT --I--RIGHT __ , j-avTE BYTE

(A) Violet/green pattern.

BIT 0 1 2 3 4 5 6 0 I 2 3 4 5 6

I sl olaf ol alo[f)ol alol al of Bw
BIT 7 = I BIT 7 = I

I LEFT I_RIGHT_I
j-am--~ BYTE-,

(8) Blue/orange pattern.

Fig. 6-S. HIRES color sets.

select. By keeping to the boundaries of fourteen points across, you can
avoid having colors interfering with each other.

Look at HIRES color generation a little closer and you will see that
colors used in pixels are much finer than colors in byte pairs of four
teen points.

When you plot dots alternately on and off, you create a 3.58-MHz
square wave (see Fig. 6-6). This is the exact frequency of the video
color subcarrier that the Apple generates, because the dot generator
and the color burst generator both run from the same clock. Any
3.58-MHz signal in the video will be used by your tv set to generate
color. The hue produced depends on the phase between the color burst
and the video. Your video is the bit stream from the dot generator. If
they are in phase, an orange line appears across the screen. If the dif
ference is 180 degrees, a blue line appears. Changing the phase by 90

356 Apple® Programmer's Handbook

SIGNAL WAVEFORM PHASE

3.58 MHz REFERENCE o·

VIOLET LINE

BLUE LINE ISO•

GREEN LINE 270"

ORANGE LINE o·

Fig. 6-6. HIRES color signals.

degrees gives green or violet. You can't do this directly, but bit 7 will
do it for you for all seven display bits in its byte. With bit 7 off, the
phases available make green and violet; with bit 7 on, they make blue
and orange. You can see these four hues in the HIRES hues of Fig.
6-7.

ORANGE

VIOLET

BLUE

Fig. 6-7. The four HIRES hues.

r
...
I

...,
I

~
I

~

Text and Graphics 357

The hangup is that any given byte must be switched to one of the
two patterns: orange-blue or violet-green. You cannot mix between
them in the same byte. And, considering that the bit pattern for any
one color is different for left and right bytes (so that two bytes are
needed to complete a color), you have no choice but to force all color
bits to be either on or off. Any other way will cause trouble.

With this restriction, you can plot four colors by allotting two bits
for each pixel. Each pixel will then be independent of the other. The
trade off with black and white is the halving of horizontal resolution,
from 280 to 140, and the gain is two colors. By staying within a four
color set, you avoid colors at 90 degrees from each other contending
for the color bit in the same byte.

You can have a color pixel scheme with any number of colors if you
are willing to trade off the resolution. Since you have only half the
horizontal resolution of the vertical resolution, the next logical trade
off is to halve the vertical resolution as well. This gives 140 by 96,
coarser than HIRES (black and white) but still finer than LORES at
40 by 48. Call this scheme MIDRES, since it falls between the two.

The trick to getting more colors is to allow the color bit to vary from
line to line. The restriction was that you couldn't use different color
bits on the same line. So, set the color bit on alternate lines and see
what happens.

For each pair of lines, set the color bit on the top and clear it on the
bottom line as shown in Fig. 6-8. Then look at what happens when

... BOBOBOBOBOBOBOBO .. .
... VGVGVGVGVGVGVGVG .. .
... BOBOBOBOBOBOBOBO .. .

... VGVGVGVGVGVGVGVG .. .
. . . B 0 B 0 B 0/8078 0 B 0 B 0 B 0 .. .

. . . V G V G V GI.J...Jl/V G V G V G V G .. .
... BOBOBOBOBOBOBOBO .. .

... VGVGVGVGVGVGVGVG .. .
... BOBOBOBOBOBOBOBO .. .

. . . . V G V G V G V G V G V G V G V G .. .

B"" blue.
v =violet.

0 = aranee
G=veen

Mosaic of lour colors on the HIRES· screen. By al1erna!ing blue oran&e will! violet &reen on odd and
even lines. contention lor the color bit is avoided. Four bits in two or four bytes then control lour dots to
make a one-of-sixteen valued pixel -· two by two each. Typical pixel is autlined here as a parallelo&ram.

Fig. 6-8. Varying the color bit from line to line.

358 App/~ Programmer's Handbook

you plot the four colors from each set on each line. There are sixteen
possible combinations and each one gives a different color. (There are
two greys.) For instance, orange on the top line with violet on the bot
tom line will blend to a brilliant pink color when viewed from a short
distance. A blue and a green pair of lines will look aqua. Brown can be
seen with orange and green. When white is used, you get a light color;
when black is used, you get a dark color. The dark colors and greys
show their lines clearly while the brilliant colors like pink and true blue
have a somewhat textured look. All colors come from the field of lines
having bit 7 set in all odd-line bytes and clear in all even-line bytes.
These are summarized in Table 6-11.

The MIDRES colors use all four HIRES hues, so they have four
additional hues where they combine. This gives you eight hues:
orange, pink, violet, true blue, blue, aqua, green, and brown. You can
see them as phase angles each 45 degrees apart in Fig. 6-9. Of these

Table 6-11. Creating Mid-res Colors

Black2 Orange

Black I Black Dark
orange

Violet Dark Pink
violet

Green Dark Brown
green

White I Grey- I Light
orange

ORANGE

BROWN

AQUA

BLUE

Fig. 6-9. The eight MIDRES hues.

Blue

Dark
blue
True
blue
Aqua

Light
blue

PIN II

TRUE
BLUE

Whitel

Grey-2

Light
violet
Light
green
White

..,
I

~
I

Text and Graphics 359

eight hues, the four HIRES ones will display either light (when com
bined with a white) or dark (when combined with a black). Combining
black with white can be done two ways as there are two greys.

Each of the sixteen colors has its own bit pattern as shown in Table
6-12. They need four bytes to keep them: two bytes of top line and two
bytes of bottom line. Into each byte pair goes each combination of
HIRES colors allowed on the line. Not shown in the patterns are the

Table 6-12. The Sixteen Mid-res Colors

Bit Pattern
Pixel 0123456 0123456 Color

0 0000000 ()()()()()()() Black
()()()()()()() 0000000

1 ()()()()()()() ()()()()()()() Dark violet
1010101 0101010

2 1010101 0101010 Dark blue
0000000 0000000

3 1010101 0101010 True blue
1010101 0101010

4 0000000 0000000 Dark green
0101010 1010101

s 0000000 0000000 Grey- I
1111111 1111111

6 1010101 0101010 Aqua
0101010 1010101

7 1010101 0101010 Light blue
1111111 1111111

8 0101010 1010101 Dark orange
0000000 0000000

9 0101010 1010101 Pink
1010101 0101010

10 1111111 II IIIII Grey-2
()()()()()()() 0000000

II 1111111 1111111 Light violet
1010101 0101010

12 0101010 1010101 Brown
0101010 1010101

13 0101010 1010101 Light orange
1111111 1111111

14 1111111 1111111 Light green
0101010 1010101

15 1111111 1111111 White
1111111 1111111

I

360 Applf!!> Programmer,s Handbook

color bits: top lines are always on, bottom lines always off. A numeric
pixel value appears with each color whose four bits have the four
HIRES colors encoded.

· bit 0 is violet
bit I is blue
bit 2 is green
bit 3 is orange

With this scheme, I is dark violet, 2 is dark blue, 4 is dark green, and 8
is dark orange. Combinations like aqua are built from bits - aqua is
bit 1 and bit 2 which is six. Such a scheme makes it easier for a routine
to decode. The bit patterns then can be calculated or looked up using
the HIRES bytes. Each set of four bytes has a color pixel value to
identify it. All sixteen colors are listed in Table 6-12.

In the MID RES pixels routine of Example 6-3, you can see how this
scheme can be implemented. Call with normalized coordinates, the
same way you do for black and white pixel plotting, but with the
MIDRES color code in the A-reg. Notice that the routine clips the
Y -coordinate for you.

Like the BLACK and WHITE routines of Example 6-2, this routine
uses tables to reduce execution time to a minimum. It makes four
plots, one for each byte, because the byte pattern repeats only every
second byte in each line and there are two lines through each pixel.
The CPLOT routine must do some fancy masking to plot only one
pixel's bits within these bytes - it uses masks to do this.

While an analysis of how Example 6-3 works would take quite some
time to work out, you can use it simply. Pass the X-coordinate in the
X-reg, the Y -coordinate in the Y -reg, and the MID RES color in the
A-reg. The coordinates are normal, with the origin at the lower left of
the full screen. The color is given in Table 6-12 and in COLOR at the
end of the listing.

6.2.4 Shape Tables

One class of objects that you draw frequently on the HIRES
graphics screens is shapes. Shapes include such sets of objects as
characters, tokens, cursors, and missiles. What characterizes all these
shapes is that they are defined without having any position. Ordinary
drawings are plotted using the Applesoft PLOT command at specific

t-1

I

r
!'-~
I ,

r

i .

r

r

-
- Text and Graphics 361

Example 6-2.

SOURCE
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
003C:
0000:

FILE: EXAMPLE 6.2
1 ******************************
2 * EXAMPLE 6.2 *
3 * *
4 * H I R E S P I X E L S *
5 * *
6 * CALL BLACK OR WHITE WITH *
7 * CO-ORDS IN X-REG, Y-REG *
8 * NORMAL ORIGIN LOWER LEFT *
9 ******************************

10 *
11 *
12 *
13 *

E Q U A T E S

14 SCREEN EQU $3C
15 *

POINTER TO HIRES1

NEXT OBJECT FILE NAME IS EXAMPLE 6.2.0BJO
8000:
8000:
8000:
8000:
8000:
8000:
8000:
8000:08
8001:48
8002:98
8003:48
8004:89 FE 80
8007:85 3C
8009:89 3E 80
800C:85 3D
SOOE:BD BE 81
8011:A8
8012:BD
8015:11
8017:91
8019:68
801A:A8
8018:68
801C:28
801D:60
801E:
801E:
SOlE:
801E:
801E:
801E:08
801F: 48
8020:98
8021:48
8022:89

Cl 82
3C
3C

FE 80

16 ORG $8000
17 *
18 *
19 *

R 0 U T I N E S

20 * PLOT A WHITE HIRES PIXEL
21 * AT (X-REG,Y-REG)
22 *
23 WHITE
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41 *
42 *

PHP
PHA
TYA
PHA
LDA
STA
LDA
STA
LDA
TAY
LDA
ORA
STA
PLA
TAY
PLA
PLP
RTS

LOLINE,Y
SCREEN
HILINE,Y
SCREEN+1
DIV7,X

BWPIX,X
(SCREEN), Y
(SCREEN),Y

SAVE REGISTERS

USE Y-REG TO
THE ADDRESS OF THE
SCREEN LINE.

USE X-REG TO FIND
THE PIXEL 1 S BYTE.
USE X-REG AGAIN TO
FIND THE BIT MASK.
TURN BIT ON!

RESTORE REGISTERS

43 * PLOT A HIRES PIXEL AS BLACK
44 * AT (X-REG,Y-REG)
45 *
46 BLACK
47
48
49
50

PHP
PHA
TYA
PHA
LDA LOLINE,Y

SAVE REGISTERS

USE Y-REG TO

,..
I

362 Appl~ Programmer's Handbook ~

Example 6-2 Cont.

,..
8025:85 3C 51 STA SCREEN FIND THE ADDRESS OF
8027:B9 3E 80 52 LDA HILINE,Y THE SCREEN LINE.
802A:85 3D 53 STA SCREEN+l
802C:BD BE 81 54 LDA DIV7,X USE X-REG TO FIND 1-a
802F:A8 55 TAY THE BYTE ON THE LINE. i

8030:BD Cl 82 56 LDA BWPIX,X USE X-REG TO FIND
8033:49 FF 57 EOR #$FF THE BIT MASK.
8035:31 3C 58 AND (SCREEN),Y TURN BIT OFF! ~
8037:91 3C 59 STA (SCREEN),Y

I

8039:68 60 PLA
803A:A8 61 TAY
8038:68 62 PLA
803C:28 63 PLP RESTORE REGISTERS r-1 803D:60 64 RTS I
803E: 65 * I

803E: 66 * 803E: 67 * L I T E R A L S
803E: 68 * ,..
803E: 69 *
803E: 70 * HIRES! LINE ADDRESSES - HIGH
803E: 71 * 803E:3F 38 37 72 HILINE DFB $3F,$3B,$37,$33,$2F,$2B,$27,$23
8041:33 2F 2B

~ 8044:27 23
8046:3F 3B 37 73 DFB $3F,$3B,$37,$33,$2F,$2B,$27,$23
8049:33 2F 2B
804C:27 23
804E:3E 3A 36 74 DFB $3E,$3A,$36,$32,$2E,$2A,$26,$22

~ 8051:32 2E 2A J
8054:26 22
8056:3E 3A 36 75 DFB $3E,$3A,$36,$32,$2E,$2A,$26,$22
8059:32 2E 2A
805C:26 22

~ 805E:3D 39 35 76 DFB $3D,$39,$35,$31,$2D,$29,$25,$21
8061:31 2D 29
8064:25 21
8066:3D 39 35 77 DFB $3D,$39,$35,$31,$2D,$29,$25,$21
8069:31 2D 29

~ 806C:25 21
806E:3C 38 34 78 DFB $3C,$38,$34,$30,$2C,$28,$24,$20
8071:30 2C 28
8074:24 20
8076:3C 38 34 79 DFB $3C,$38,$34,$30,$2C,$28,$24,$20 r 8079:30 2C 28
807C:24 20
807E:3F 3B 37 80 DFB $3F,$3B,$37,$33,$2F,$2B,$27,$23
8081 33 2F 28
8084 27 23 ...
8086 3F 3B 37 81 DFB $3F,$3B,$37,$33,$2F,$2B,$27,$23
8089 33 2F 2B
808C 27 23

r

Text and Graphics 363

Example 6-l Cont •

...
808E:3E 3A 36 82 DF8 $3E,$3A,$36,$32,$2E,$2A,$26,$22
8091:32 2E 2A
8094:26 22 - 8096:3E 3A 36 83 DF8 $3E,$3A,$36,$32,$2E,$2A,$26,$22
8099:32 2E 2A
809C:26 22
809E:3D 39 35 84 DF8 $3D,$39,$35,$31,$2D,$29,$25,$21
80A1:31 2D 29

1-t
80A4:25 21
80A6:3D 39 35 85 DF8 $3D,$39,$35,$31 1 $2D,$29,$25,$21
80A9: 31 2D 29
80AC:25 21
80AE:3C 38 34 86 DF8 $3C,$38,$34 1 $30,$2C,$28,$24,$20
8081:30 2C 28 ,.,
8084:24 20
8086:3C 38 34 87 DF8 $3C,$38,$34,$30,$2C,$28,$24,$20
8089:30 2C 28
80BC:24 20
80BE:3F 3B 37 88 DFB $3F,$3B,$37,$33 1 $2F,$2B,$27,$23 80C1:33 2F 28
80C4:27 23
80C6:3F 38 37 89 DF8 $3F,$3B,$37,$33,$2F,$28,$27,$23
80C9:33 2F 2B
80CC:27 23 - 80CE:3E 3A 36 90 DF8 $3E,$3A,$36,$32,$2E,$2A,$26,$22
80D1:32 2E 2A
80D4:26 22
80D6:3E 3A 36 91 DF8 $3E,$3A,$36,$32,$2E,$2A,$26,$22
80D9:32 2E 2A ., 80DC:26 22
80DE:3D 39 35 92 DF8 $3D,$39,$35,$31,$2D,$29,$25,$21
80E1: 31 2D 29
80E4:25 21
80E6:3D 39 35 93 DF8 $3D,$39,$35,$31,$2D,$29,$25,$21 .. 80E9:31 2D 29
80EC:25 21
80EE:3C 38 34 94 DFB $3C,$38,$34,$30,$2C,$28,$24,$20
80F1:30 2C 28
80F4:24 20

~ 80F6:3C 38 34 95 DF8 $3C,$38,$34 1 $30,$2C,$28,$24,$20
80F9:30 2C 28
80FC:24 20
80FE: 96 * 80FE: 97 * HIRES LINE ADDRESSES - LOW ,... 80FE: 98 * 80FE:DO DO DO 99 LOLINE DF8 $DO,$DO,$DO,$D0 1 $DO,$DO,$DO,$DO
8101 DO DO DO
8104 DO DO
8106 50 50 50 100 DFB $50,$50,$50,$50,$50,$50,$50,$50 ,... 8109 50 50 50
810C 50 50
810E DO DO DO 101 DFB $DO,$DO,$DO,$DO,$DO,$DO,$DO,$DO

,..

364 Appl~ Programmer's Handbook

Example 6-2 Cont.

8111: DO DO DO
8114:DO DO
S116:50 50 50 102 DFB $50,$50,$50,$50,$50,$50,$50,$50
S119:50 50 50
811C:50 50
811E:DO DO DO 103 DFB $DO,$DO,$DO,$DO,$DO,$DO,$DO,$DO
S121: DO DO DO
S124:DO DO
S126:50 50 50 104 DFB $50,$50,$50,$50,$50,$50,$50,$50
S129:50 50 50
S12C:50 50
812E:DO DO DO 105 DFB $DO,$DO,$DO,$DO,$DO,$DO,$DO,$DO
S131:DO DO DO
S134:DO DO
S136:50 50 50 106 DFB $50,$50,$50,$50,$50,$50,$50,$50
S139:50 50 50
S13C:50 50
S13E :AS AS AS 107 DFB $AS,$AS,$AS,$A8,$AS,$AS,$AS,$AS
S141:AS AS AS
S144:AS AS
8146:2S 2S 2S 108 DFB $2S,$2S,$2S,$2S,$2S,$2S,$2S,$2S
S149:2S 28 28
814C:28 28
S14E:AS AS AS 109 DFB $A8,$AS,$AS,$A8,$AS,$AS,$AS,$AS
S151:AS AS AS
S154:AS AS
S156:2S 2S 2S 110 DFB $2S,$2S,$2S,$2S,$2S,$2S,$2S,$2S
S159:2S 2S 2S
S15C:2S 2S
S15E:AS AS AS 111 DFB $AS,$A8,$AS,$AS,$AS,$AS,$AS,$A8
S161:AS AS AS
S164:AS AS
S166:2S 28 2S 112 DFB $2S,$2S,$2S,$2S,$2S,$2S,$2S,$2S
8169:2S 2S 2S
S16C:28 2S
S16E:AS AS AS 113 DFB $AS,$A8,$AS,$AS,$AS,$A8,$A8,$A8
S171:A8 AS AS
S174:AS AS
S176:2S 2S 2S 114 DFB $2S,$2S,$2S,$28,$2S,$2S,$2S,$2S
S179:2S 2S 2S
S17C:2S 2S
S17E:80 80 so 115 DFB $SO,$SO,$SO,$SO,$SO,$S0,$80,$SO
8181:SO so so
8184 80 so
S1S6 00 00 00 116 DFB $00,$00,$00,$00,$00,$00,$00,$00
S1S9 00 00 00
S1SC 00 00
818E 80 so so 117 DFB $80,$80,$80,$80,$80,$S0,$80,$SO
S191 so so so
S194 so so
S196 00 00 00 11S DFB $00,$00,$00,$00,$00,$00,$00,$00
S199 00 00 00

,....

~
I

fill'

,.
I

~

,__

,...

,...

..
!"

~
I

...

~
I

- Text and Graphics 365

Example 6-2 Cont.

M!

819C:OO 00
819E:80 80 80 119 DFB $80,$80,$80,$80,$80,$80,$80,$80
81A1:80 80 80

5Mf 81A4:80 80
81A6:00 00 00 120 DFB $00,$00,$00,$00,$00,$00,$00,$00
81A9:00 00 00
81AC:OO 00
81AE:80 80 80 121 DFB $80,$80,$80,$80,$80,$80,$80,$80 ,.. 8181:80 80 80
81B4: 80 80
81B6:00 00 00 122 DFB $00,$00,$00,$00,$00,$00,$00,$00
8189:00 00 00
81BC:OO 00

~
81BE: 123 * 81BE: 124 * DIVISION TABLE FOR 2 HOD
81BE: 125 * 81BE:02 02 02 126 DIV7 DFB 2,2,2,2,2,2,2
81C1:02 02 02 ,.., 81C4:02
81C5:03 03 03 127 DFB 3,3,3,3,3,3,3
81C8:03 03 03
81CB:03
81CC:04 04 04 128 OFB 4,4,4,4,4,4,4

~
81CF:04 04 04
8102:04
8103:05 05 05 129 DFB 5,5,5,5,5,5,5
8106:05 05 05
8109:05
81DA:06 06 06 130 DFB 6,6,6,6,6,6,6 - 81DD:06 06 06
81E0:06
81E1:07 07 07 131 DFB 7,7,7,7,7,7,7
81!4:07 07 07
81!7:07

~ 81E8:08 08 08 132 OFB 8,8,8,8,8,8,8
81EB:08 08 08
81EE:08
81EF:09 09 09 133 OFB 9,9,9,9,9,9,9
81F2:09 09 09

~ 81F5:09
81F6:0A OA OA 134 DFB 10,10,10,10,10,10,10
81F9:0A OA OA
81FC:OA
81FD:OB OB OB 135 OFB 11,11,11,11,11,11,11 ... 8200:08 OB OB
8203:08
8204:0C oc oc 136 OFB 12,12,12,12,12,12,12
8207:0C oc oc
820A:OC - 8208:00 OD OD 137 DFB 13,13,13,13,13,13,13
820E:OD OD OD
8211: OD

-

366 App/tf'J Programmer's Handbook ~

Example 6-2 Cont.

~

8212:0E OE OE 138 DF8 14,14,14,14,14,14,14
8215: OE OE OE
8218 :OE
8219:0F OF OF 139 DF8 15,15,15,15,15,15,15 ,..
821C: OF OF OF
821F :OF
8220:10 10 10 140 DFB 16,16,16,16,16,16,16
8223:10 10 10
8226:10 ..
8227:11 11 11 141 DFB 17,17,17,17,17,17,17
822A:11 11 11
8220:11
822E:12 12 12 142 DFB 18,18,18,18,18,18,18
8231:12 12 12 r-1
8234:12 I
8235:13 13 13 143 DFB 19,19,19,19,19,19,19
8238:13 13 13
8238:13
823C:14 14 14 144 DFB 20,20,20,20,20,20,20 ~
8231h 14 14 14
8242:14
8243:15 15 15 145 DFB 21,21,21,21,21,21,21
8246:15 15 15
8249:15 ~ 824A:16 16 16 146 DFB 22,22,22,22,22,22,22
824D:16 16 16
8250:16
8251:17 17 17 147 DFB 23,23,23,23,23,23,23
8254:17 17 17 ,r-t 8257:17
8258:18 18 18 148 DFB 24,24,24,24,24,24,24
8258:18 18 18
825E:18
825F:19 19 19 149 DFB 25,25,25,25,25,25,25 ,...
8262:19 19 19 I

8265:19
8266:1A 1A 1A 150 DFB 26,26,26,26,26,26,26
8269:1A 1A 1A
826C: 1A ... 8260:18 1B 18 151 DF8 27,27,27,27,27,27,27
8270:18 18 18
8273:18
8274:1C 1C 1C 152 DFB 28,28,28,28,28,28,28
8277:1C 1C 1C
827A:1C
827B:1D 1D 10 153 DFB 29,29,29,29,29,29,29
827E:1D 10 10
8281:10
8282:1E 1E 1E 154 OF8 30,30,30,30,30,30,30 r 8285:1E 1E 1E
8288:1E
8289:1F 1F 1F 155 DF8 31,31,31,31,31,31,31

....

.. Text and Graphics 367

Example 6-2 Cont •
....

828C:1F 1F 1F
828F:1F
8290:20 20 20 156 OFB 32,32,32,32,32,32,32 - 8293:20 20 20
8296:20
8297:21 21 21 157 OFB 33,33,33,33,33,33,33
829A:21 21 21
8290:21 ,..
829E:22 22 22 158 OFB 34,34,34,34,34,34,34
82A1:22 22 22
82A4:22
82A5:23 23 23 159 OFB 35,35,35,35,35,35,35
82A8:23 23 23

filii 82A8:23
82AC:24 24 24 160 OF8 36,36,36,36,36,36,36
82A'h 24 24 24
8282:24
8283:25 25 25 161 OFB 37,37,37,37,37,37,37 ,... 8286:25 25 25
8289:25
82BA:26 26 26 162 DFB 38,38,38,38,38,38,38
8280:26 26 26
82C0:26

IIIII 82C1: 163 * 82C1: 164 * BIT MASKS FOR B/W PIXELS
82C1: 165 * 82C1:01 02 04 166 BWPIX OFB 1,2,4,8,16,32,64
82C4:08 10 20 ... 82C7:40
82C8:01 02 04 167 OFB 1,2,4,8,16,32,64
82CB:08 10 20
82CE:40
82CF:01 02 04 168 OFB 1,2,4,8,16,32,64 8202:08 10 20
8205:40
8206:01 02 04 169 DFB 1,2,4,8,16,32,64
8209:08 10 20
820C:40 - 8200:01 02 04 170 OFB 1,2,4,8,16,32,64
82E0:08 10 20
82E3:40
82E4:01 02 04 171 OFB 1,2,4,8,16,32,64
82E7:08 10 20 82EA:40
82EB:01 02 04 172 DFB 1,2,4,8,16,32,64
82EE:08 10 20
82F1:40
82F2:01 02 04 173 OFB 1,2,4,8,16,32,64 ... 82F5 08 10 20
82F8 40
82F9 01 02 04 174 OFB 1,2,4,8,16,32,64
82FC 08 10 20

...

-

368 Applfi® Programmer's Handbook

Example 6-2 Cont.

82FF:40
8300:01 02 04 175 DFB 1,2,4,8,16,32,64
8303:08 10 20
8306:40
8307:01 02 04 176 OFB 1,2,4,8,16,32,64
830A:08 10 20
8300:40
830E:01 02 04 177 OFB 1,2,4,8,16,32,64
8311:08 10 20
8314:40
8315:01 02 04 178 OFB 1,2,4,8,16,32,64
8318:08 10 20
8318:40
831C:01 02 04 179 OFB 1,2,4,8,16,32,64
831F:08 10 20
8322:40
8323:01 02 04 180 OFB 1,2,4,8,16,32,64
8326:08 10 20
8329:40
832A:01 02 04 181 OFB 1,2,4,8,16,32,64
8320:08 10 20
8330:40
8331:01 02 04 182 OFB 1,2,4,8,16,32,64
8334:08 10 20
8337:40
8338:01 02 04 183 OF8 1,2,4,8,16,32,64
8338:08 10 20
833E:40
833F:01 02 04 184 DFB 1,2,4,8,16,32,64
8342:08 10 20
8345:40
8346:01 02 04 185 OF8 1,2,4,8,16,32,64
8349:08 10 20
834C:40
8340:01 02 04 186 DFB 1,2,4,8,16,32,64
8350:08 10 20
8353:40
8354:01 02 04 187 OF8 1,2,4,8,16,32,64
8357:08 10 20
835A:40
8358:01 02 04 188 OFB 1,2,4,8,16,32,64
835E:08 10 20
8361:40
8362:01 02 04 189 OFB 1,2,4,8,16,32,64
8365:08 10 20
8368:40
8369:01 02 04 190 OF8 1,2,4,8,16,32,64
836C:08 10 20
836F:40
8370:01 02 04 191 OFB 1,2,4,8,16,32,64
8373:08 10 20
8376:40
8377:01 02 04 192 OF8 1,2,4,8,16,32,64

~
.I

,...

~

~

~
I

~
1

~

....

,..

...
I

~

~
!

n Text and Graphics 369

Example 6-2 Cont.

- 837A : 08 10 20
8370:40
837E: 01 02 04 193 DFB 1,2,4,8,16,32,64
8381:08 10 20
8384 : 40
8385:01 02 04 194 DFB 1,2,4,8,16,32,64
8388:08 10 20
838B:40
838C:01 02 04 1 95 DFB 1. 2. 4. 8. 16.3 2. 64
838F:08 10 20 - 8392:40
8393:01 02 04 196 DFB 1. 2. 4. 8 ,16. 3 2. 64
8396:08 10 20
8399:40
839A:01 02 04 197 DFB 1. 2. 4. 8. 16 . 3 2 . 64 - 8390 :08
83A0 :40

10 20

83A1:01 02 04 198 DFB 1 ,2 ,4, 8 , 16,32,64
83A4:08 10 20
83A7 :40

~
83A8:01 02 04 199 DFB 1,2,4,8,16,32,64
83AB:08 10 20
83AE : 40
83AF :01 02 04 200 DFB 1,2,4,8,16,32,64
83B2:08 10 20
83B5:40 r 83B6 :01 02 04 201 DFB 1,2,4,8,16,32,64
83B9 :08 10 20
83BC :40
83BD:01 02 04 202 DFB 1,2, 4,8,16 ,32 ,64
83C0 :0 8 10 20 - 83C3 : 40
83C4:00 203 BRK

*** SUCCESSFUL ASSEMBLY: NO ERRORS

r"'1
locations on the screen at the time they are defined. Shapes, on the
other hand, are defined and kept in fi les to be loaded and drawn on

~
the screen wherever the drawing program commands. Shapes don't
have positions.

In order to use a shape table, you must know the number of shapes
in the table. Also you need to know the largest size - in X and in Y -- it contains, and the start position of each shape. For example, a char-
acter set may have 64 shapes, be 5 by 7 each in size, with the start of
each shape at the lower left of the 5 by 7 area. With this information,

"""
you can draw shapes on the screen without the danger of any shape
spreading itself off-screen and wrapping around the screen. If a shape
table is unknown to you but you want to use it , then get the number of
shapes by: - NS = PEEK(FN AD(232))

-

370 Apple® Programmer's Handbook

t:xample 6-3.

SOURCE
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0030:
0031:
0045:
0046:
0047:
0050:
0000:

FILE: EXAMPLE 6.3
1 ********************************
2 * EXAMPLE 6.3 *
3 * *
4 * M I D R E S P I X E L S *
5 * *
6 * CALL SEQUENCE: *
7 * A-REG<--- COLOR 0 ••• 15 *
8 * X-REG <--- X-COORD *
9 * Y-REG <--- Y-COORD *

10 * ORIGIN IS LOWER LEFT *
11 ********************************
12 *
13 *
14 *
15 *

E Q U A T E S

16 PMASK
17 COLMX
18 AREG
19 XREG
20 YREG
21 SCREEN
22 *

EQU
EQU
EQU
EQU
EQU
EQU

$30
$31
$45
$46
$47
$50

POSITION MASK
COLOR MASK INDEX
PASSED PIXEL VALUE
PASSED X-COORD.
PASSED Y-COORD.
POINTER TO HIRESl

NEXT OBJECT FILE NAME IS EXAMPLE 6.3.0BJO
8000:
8000:
8000:
8000:
8000:08
8001:85 45
8003:86 46
8005:84 47
8007:CO CO
8009:BO 6A
800B:
BOOB:
8008:
8008:98
800C:09 01
800E:A8
800F:B9
8012:85
8014:89
8017:85
8019:8A
801A:29 FE
801C:AA
801D:BD
8020:A8
8021: BD
8024:85

51 81
50
91 80
51

11 82

14 83
30

23 ORG $8000
24 *
25 *
26 *
27 MPIX
28
29
30
31
32
33 *

R 0 U T I N E S

PHP
STA
STX
STY
CPY
BCS

AREG
XREG
YREG
#$CO
MPIX1

KEEP REGISTERS

CLIP Y-COORD.

34 * PLOT IN UPPER LEFT BYTE.
35 *
36
37
38
39
40
41
42
43
44
45
46
47
48
49

TYA
ORA
TAY
LDA
STA
LDA
STA
TXA
AND
TAX
LDA
TAY
LDA
STA

#1

LOLINE,Y
SCREEN
HILINE,Y
SCREEN+l

#$FE

DIV7,X

LEFT,X
PMASK

FORCE UPPER LINE.

FORCE LEFTMOST BYTE.

r-'
I

~
I I

~ Text and Graphics 371

Example 6-3 Cont.

- 8026:A5 45 50 LDA AREG
8028:0A 51 ASL A
8029:0A 52 ASL A LOOKUP PIXEL IN COLOR

,... TABLE
802A:85 31 53 STA COLMX
802C:20 7D 80 54 JSR CPLOT PLOTS UPPER LEFT.
802F: 55 * 802F: 56 * PLOT IN UPPER RIGHT BYTE. ... 802'~: 57 *
802F:E6 31 58 INC COLMX NEXT COLOR MASK
8031:A5 46 59 LDA XREG
8033:09 01 60 ORA #1 FORCE RIGHTMOST BYTE.

~ 8035:AA 61 TAX
8036:BD 11 82 62 LDA DIV7,X
8039:A8 63 TAY
803A:BD 14 84 64 LDA RIGHT,X
803D:85 30 65 STA PMASK 803F: 20 7D 80 66 JSR CPLOT PLOTS UPPER RIGHT.
8042: 67 *
8042: 68 * PLOT IN LOVER LEFT BYTE.
8042: 69 *
8042:E6 31 70 INC COLHX NEXT COLOR MASK - 8044:A5 47 71 LDA YREG
8046:29 FE 72 AND #$FE FORCE LOVER LINE.
8048:A8 73 TAY
8049:89 51 81 74 LDA LOLINE,Y
804C:85 50 75 STA SCREEN ... 804E:B9 91 80 76 LDA HILINE,Y
8051:85 51 77 STA SCREEN+1
8053:A5 46 78 LDA XREG
8055:29 FE 79 AND #$FE FORCE LEFTMOST BYTE.
8057:AA 80 TAX ,... 8058:BD 11 82 81 LDA DIV7,X
805B:A8 82 TAY
805C:BD 14 83 83 LDA LEFT,X
805F:85 30 84 STA PHASK
8061:20 7D 80 85 JSR CPLOT

~ 8064: 86 * 8064: 87 * PLOT IN LOVER RIGHT BYTE
8064: 88 *
8064:A5 46 89 LDA XREG
8066:09 01 90 ORA #$01 FORCE RIGHTMOST BYTE ... 8068:AA 91 TAX
8069 BD 11 82 92 LDA DIV7,X
806C AS 93 TAY
806D BD 14 84 94 LDA RIGHT,X
8070 85 30 95 STA PKASK

-- 8072 20 7D 80 96 JSR CPLOT
8075 97 *

-

372 App/~ Programmer's Handbook

Example 6-3 Cont.

8075: 98 * ALL FOUR DONE. RETURN.
8075: 99 *
8075:A6 46 100 MPIXl LDX XREG
8077:A4 47 101 LDY YREG
8079:A5 45 102 LDA AREG
8078:28 103 PLP
807C:60 104 RTS
807D: 105 *
807D: 106 * COLOR PLOT OF ONE BYTE.
807D: 107 *
807D:A6 31 108 CPLOT LDX COLMX
807F:A5 30 109 LDA PM ASK
8081:49 FF 110 EOR '#$FF COMPLIMENT P
8083:31 50 111 AND (SCREEN), Y
8085:91 50 112 STA (SCREEN), Y TEMPORARILY
8087:A5 30 113 LDA PMASK
8089:3D 14 85 114 AND COLOR,X
808C:11 50 115 ORA (SCREEN), Y
808E:91 50 116 STA (SCREEN),Y
8090:60 117 RTS
8091: 118 *
8091: 119 *
8091: 120 *
8091: 121* L I T E R A L S
8091: 122 *
8091: 123 *
8091: 124 * HIRES! LINE ADDRESSES - HIGH
8091: 125 *
8091:3F 3B 37 126 HILINE DFB $3F,$3B,$37,$33,$2F,$2B,$27,$23
8094:33 2F 28
8097:27 23
8099:3F 3B 37 127 DFB $3F,$38,$37,$33,$2F,$28,$27,$23
809C:33 2F 28
809F:27 23
80A1:3E 3A 36 128 DF8 $3E,$3A,$36,$32,$2E,$2A,$26,$22
80A4:32 2E 2A
80A7:26 22
80A9:3E 3A 36 129 DF8 $3E,$3A,$36,$32,$2E,$2A,$26,$22
80AC:32 2E 2A
80AF:26 22
8081:3D 39 35 130 DF8 $3D,$39,$35,$31,$2D,$29,$25,$21

8084 31 2D 29
8087 25 21
8089 3D 39 35 131 DF8 $3D,$39,$35,$31,$2D,$29,$25,$21
808C 31 2D 29
808F 25 21
80C1 3C 38 34 132 DF8 $3C,$38,$34,$30,$2C,$28,$24,$20
80C4 30 2C 28
80C7 24 20
80C9 3C 38 34 133 DFB $3C,$38,$34,$30,$2C,$28,$24,$20

~

fllllll
I

~

r-t

~

1-t

i'

""'
..
~

r

~

...,

~ .
I

~ Text and Graphics 373

Example 6-3 Cont.

!.a

80CC:30 2C 28
80CF:24 20
80D1:3F 3B 37 134 DFB $3F,$3B,$37,$33,$2F,$2B,$27,$23 .. 80D4:33 2F ?B
80D7:27 23
80D9:3F 3B 37 135 DFB $3F,$3B,$37,$33,$2F,$2B,$27,$23
80DC:33 2F 2B
80DF:27 23 80E1:3E 3A. 36 136 DFB $3E,$3A,$36,$32,$2E,$2A,$26,$22
80E4:32 2E 2A
80E7:26 22
80E9:3E 3A 36 137 DFB $3E,$3A,$36,$32,$2E,$2A,$26,$22
80EC:32 2E 2A

~ 80EF:26 22
80F1:3D 39 35 138 DFB $3D,$39,$35,$31,$2D,$29,$25,$21
80F4:31 2D 29
80F7:25 21
80F9:3D 39 35 139 DFB $3D,$39,$35,$31,$2D,$29,$25,$21 80FC:31 2D 29
80FF:25 21
8101:3C 38 34 140 DFB $3C,$38,$34,$30,$2C,$28,$24,$20
8104:30 2C 28
8107:24 20

~
8109:3C 38 34 141 DFB $3C,$38,$34,$30,$2C,$28,$24,$20
810C:30 2C 28
810F:24 20
8111: 3F 3B 37 142 DFB $3F,$3B,$37,$33,$2F,$2B,$27,$23
8114:33 2F 2B

~
8117:27 23
8119:3F 38 37 143 DFB $3F,$3B,$37,$33,$2F,$2B,$27,$23
811C:33 2F 2B
811F:27 23
8121:3E 3A 36 144 DFB $3E,$3A,$36,$32,$2E,$2A,$26,$22
8124:32 2E 2A

~ 8127:26 22
8129:3E 3A 36 145 DFB $3E,$3A,$36,$32,$2E,$2A,$26,$22
812C:32 2E 2A
812F:26 22
8131:3D 39 35 146 DFB $3D,$39,$35,$31,$2D,$29,$25,$21 ,...
8134:31 2D 29
8137:25 21
8139:3D 39 35 147 DFB $3D,$39,$35,$31,$2D,$29,$25,$21
813C:31 2D 29
813F:25 21

~ 8141:3C 38 34 148 DFB $3C,$38,$34,$30,$2C,$28,$24,$20
8144 30 2C 28
8147 24 20
8149 3C 38 34 149 DFB $3C,$38,$34,$30,$2C,$28,$24,$20 .. 814C 30 2C 28
814F 24 20
8151 150 *

374 Apple® Programmer's Handbook ~

Example 6-3 Cont.

~
j

8151: 151 * HIRES LINE ADDRESSES - LOW
8151: 152 * 8151:DO DO DO 153 LOLINE DFB $DO,$DO,$DO,$DO,$DO,$DO,$DO,$DO
8154:DO DO DO

~ 8157:DO DO
8159:50 50 50 154 DFB $50,$50,$50,$50,$50,$50,$50,$50 i '
815C:50 50 50
815F:50 50
8161:DO DO DO 155 DFB $DO,$DO,$DO,$DO,$DO,$DO,$DO,$DO

~ 8164:DO DO DO
8167:DO DO
8169:50 50 50 156 DFB $50,$50,$50,$50,$50,$50,$50,$50
816C:50 50 50
816F:50 50

~ 8171:DO DO DO 157 DFB $DO,$DO,$DO,$DO,$DO,$DO,$DO,$DO
8174:DO DO DO l
8177:DO DO I

8179:50 50 50 158 DFB $50,$50,$50,$50,$50,$50,$50,$50
817C:50 50 50
S17F:50 50 ~
8181:DO DO DO 159 DFB $DO,$DO,$DO,$DO,$DO,$DO,$DO,$DO

I

S1S4:DO DO DO
8187:DO DO
8189:50 so 50 160 DFB $50,$50,$50,$50,$50,$50,$50,$50
818C:50 50 50 ,.,
818F:50 50
8191:A8 A8 A8 161 DFB $A8,$AS,$AS,$AS,$A8,$A8,$A8,$A8
8194:A8 A8 A8
8197:A8 A8
8199:28 28 28 162 DFB $28,$28,$2S,$2S,$28,$2S,$2S,$28 ,..
819C:28 28 28 I

819F:28 28
81A1:A8 A8 AS 163 DFB $A8,$AS,$AS,$AS,$AS,$AS,$A8,$AS
81A4:A8 A8 A8
81A7:A8 A8 IIIII
81A9:28 28 28 164 DFB $28,$28,$28,$28,$28,$28,$28,$28
81AC:28 28 28
S1AF:28 28
81B1:A8 A8 A8 165 DFB $A8,$A8,$A8,$AS,$A8,$A8,$A8,$A8
8184:A8 A8 A8 ~
81B7:A8 AS
8189:28 28 28 166 DFB $28,$28,$28,$28,$28,$28,$28,$28
81BC: 28 28 28
81BF:28 28
81C1:A8 A8 A8 167 DFB $AS,$A8,$A8,$A8,$A8,$A8,$A8,$A8 ,...
81C4:A8 A8 AS
81C7:A8 A8
81C9 28 28 28 168 DFB $28,$28,$28,$28,$28,$28,$28,$28
81CC 28 28 28
81CF 28 28 ...
81D1 80 80 80 169 DFB $80,$80,$80,$80,$80,$80,$80,$80

~

IIIII Text and Graphics 375

Example 6-3 Cont.

~

81D4:80 80 80
81D7:80 80
81D9:00 00 00 170 DFB $00,$00,$00,$00,$00,$00,$00,$00 .. 81DC:OO 00 00
81DF:OO 00
81E1:80 80 80 171 DFB $80,$80,$80,$80,$80,$80,$80,$80
81E4:80 80 80
81E7:80 80

,..q 81E9:00 00 00 172 DFB $00,$00,$00,$00,$00,$00,$00,$00
81EC:OO 00 00
81EF:OO 00
81F1:80 80 80 173 DFB $80,$80,$80,$80,$80,$80,$80,$80
81F4:80 80 80 - 81F7:80 80
81F9:00 00 00 174 DFB $00,$00,$00,$00,$00,$00,$00,$00
81FC:OO 00 00
81FF:OO 00
8201:80 80 80 175 DFB $80,$80,$80,$80,$80,$80,$80,$80 .. 8204:80 80 80
8207:80 80
8209:00 00 00 176 DFB $00,$00,$00,$00,$00,$00,$00,$00
820C:OO 00 00
820F:OO 00

~
8211: 177 *
8211: 178 * DIVISION TABLE FOR 2 MOD
8211: 179 * 8211:02 02 02 180 DIV7 DFB 2,2,2,2,2,2,2
8214:02 02 02 ,.. 8217:02
8218:03 03 03 181 DFB 3,3,3,3,3,3,3
8218:03 03 03
821E: 03
821F:04 04 04 182 DFB 4,4,4,4,4,4,4

.... 8222:04 04 04
8225:04
8226:05 05 05 183 DFB 5,5,5,5,5,5,5
8229:05 05 05
822C:05
8220:06 06 06 184 DFB 6,6,6,6,6,6,6 ... 8230:06 06 06
8233:06
8234:07 07 07 185 DFB 7,7,7,7,7,7,7
8237:07 07 07
823A:07 8238:08 08 08 186 DFB 8,8,8,8,8,8,8
823E:08 08 08
8241:08
8242:09 09 09 187 DFB 9,9,9,9,9,9,9
8245 09 09 09 ... 8248 09
8249 OA OA OA 188 DFB 10,10,10,10,10,10,10

-

r-'

376 App/~ Programmer's Handbook

Example 6-3 Cont.

-.
824C:OA OA OA
824F:OA
8250:08 08 OB 189 OF8 11,11,11,11,11,11,11
8253:08 08 OB ,._
8256:08
8257:0C oc oc 190 OFB 12,12,12,12,12,12,12
825A:OC oc oc
825D:OC
825E:OD OD 00 191 OF8 13,13,13,13,13,13,13 ,...
8261:00 OD OD
8264:0D

: 8265:0E OE OE 192 OF8 14,14,14,14,14,14,14
8268:0E OE OE
8268:0E
826C:OF OF OF 193 OF8 15,15,15,15,15,15,15 ~
826F:OF OF OF' i

8272:0F
8273:10 10 10 194 OF8 16,16,16,16,16,16,16
8276:10 10 10
8279:10 ~

827A:11 11 11 195 OF8 17,17,17,17,17,17,17
827D:11 11 11
8280:11
8281:12 12 12 196 DF8 18,18,18,18,18,18,18
8284:12 12 12 ,..,
8287:12
8288:13 13 13 197 OF8 19,19,19,19,19,19,19
8288:13 13 13
828E:13
828P:14 14 14 198 OFB 20,20,20,20,20,20,20 ~
8292:14 14 14
8295:14
8296:15 15 15 199 OF8 21,21,21,21,21,21,21
8299:15 15 15
829C:15 ~

8290:16 16 16 200 DF8 22,22,22,22,22,22,22
82A0:16 16 16
82A3:16
82A4:17 17 17 201 OF8 23,23,23,23,23,23,23
82A7:17 17 17 ...,.
82AA:17
82A8:18 18 18 202 OF8 24,24,24,24,24,24,24
82AE:18 18 18
8281:18
8282:19 19 19 203 OF8 25,25,25,25,25,25,25 r-"
8285:19 19 19
8288:19
8289: 1A 1A 1A 204 OP8 26,26,26,26,26,26,26
828C:1A lA 1A
828F: 1A
82C0:18 18 18 205 DF8 27,27,27,27,27,27,27

tlllll

r

....

,.. Text and Graphics 377

Example 6-3 Cont •

..,
82C3:18 18 18
82C6:1B
82C7:1C 1C 1C 206 OFB 28,28,28,28,28,28,28
82CA:1C 1C 1C

jllllt 82C0:1C
82CE:10 10 10 207 OFB 29,29,29,29,29,29,29
8201:10 10 10
8204:10
8205:1E 1E 1E 208 OFB 30,30,30,30,30,30,30

IJIIIII 8208:1E 1E 1E
8208:1E
820C:1F 1F 1F 209 OFB 31,31,31,31,31,31,31
820F:1F 1F 1F
82E2:1F

~ 82E3:20 20 20 210 OFB 32,32,32,32,32,32,32
82E6:20 20 20
82E9:20
82EA:21 21 21 211 OFB 33,33,33,33,33,33,33
82E0:21 21 21

~ 82F0:21
82F1:22 22 22 212 OFB 34,34,34,34,34,34,34
82F4:22 22 22
82F7:22
82F8:23 23 23 213 OFB 35,35,35,35,35,35,35

!IIIII 82FB:23 23 23
82FE:23
82FF:24 24 24 214 OFB 36,36,36,36,36,36,36
8302:24 24 24
8305:24

~ 8306:25 25 25 215 OFB 37,37,37,37,37,37,37
8309:25 25 25
830C:25
8300:26 26 26 216 OFB 38,38,38,38,38,38,38
8310:26 26 26 ,_, 8313:26
8314: 217 *
8314: 218 * POSITION HASKS FOR HIORES BITS
8314: 219 * 8314:83 83 8C 220 LEFT OFB $83,$83,$8C,$8C,$BO,$BO,$CO

~ 8317:8C 80 80
831A:CO
8318:CO 80 80 221 OFB $C0,$80,$80,$80,$80,$80,$80
831E:80 80 80
8321:80

llillll 8322:83 83 8C 222 OFB $83,$83,$8C,$8C,$BO,$BO,$CO
8325:8C BO 80
8328:CO
8329:CO 80 80 223 OFB $C0,$80,$80,$80,$80,$80,$80
832C:80 80 80

lllllt 832F:80
8330:83 83 8C 224 OFB $83,$83,$8C,$8C,$BO,$BO,$CO

-

378 Apple® Programmer's Handbook
Example 6-3 Cont.

....
8333:8C BO BO
8336:CO
8337:CO 80 80 225 DFB $C0,$80,$80,$80,$80,$80,$80
833A:80 80 80 ,..
833D:80
833E:83 83 8C 226 DFB $83,$83,$8C,$8C,$BO,$BO,$CO
8341:8C BO BO
8344:CO
8345:CO 80 80 227 DFB $C0,$80,$80,$80,$80,$80,$80
8348:80 80 80
8348:80
834C:83 83 8C 228 DFB $83,$83,$8C,$8C,$BO,$BO,$CO
834F:8C BO BO
8352:CO ~
8353:CO 80 80 229 DFB $C0,$80,$80,$80,$80,$80,$80 I

8356:80 80 80
8359:80
835A:83 83 8C 230 DFB $83,$83,$8C,$8C,$BO,$BO,$CO
835D:8C BO BO
8360:CO
8361:CO 80 80 231 DFB $C0,$80,$80,$80,$80,$80,$80
8364:80 80 80
8367:80
8368:83 83 8C 232 DFB $83,$83,$8C,$8C,$BO,$BO,$CO
836B:8C 80 BO
836E:CO
836F:CO 80 80 233 DFB $C0,$80,$80,$80,$80,$80,$80
8372:80 80 80
8375:80 ,...
8376:83 83 8C 234 DFB $83,$83,$8C,$8C,$BO,$BO,$CO
8379:8C BO BO
837C:CO
837D:CO 80 80 235 DFB $C0,$80,$80,$80,$80,$80,$80
8380:80 80 80 ..
8383:80
8384:83 83 8C 236 DFB $83,$83,$8C,$8C,$BO,$BO,$CO
8387 8C BO BO
838A CO
8388 co 80 80 237 DFB $C0,$80,$80,$80,$80,$80,$80
838E 80 80 80
8391 80
8392 83 83 8C 238 DFB $83,$83,$8C,$8C,$BO,$BO,$CO
8395 8c BO BO
8398 co
8399 co 80 80 239 DFB $C0,$80,$80,$80,$80,$80,$80
839C 80 80 80
839F 80
83AO 83 83 8C 240 DFB $83,$83,$8C,$8C,$BO,$BO,$CO
83A3 BC BO BO

~ 83A6 CO

,-.
I I

r"
I

.. Text and Graphics 379

Example 6-3 Cont •

....
83A7:CO 80 80 241 DFB $C0,$80,$80,$80,$80,$80,$80
83AA:80 80 80
83AD:80

~ 83AE:83 83 8C 242 DFB $83,$83,$8C,$8C,$80,$80,$CO
8381:8C 80 80
83B4:CO
8385:CO 80 80 243 DFB $C0,$80,$80,$80,$80,$80,$80
8388:80 80 80 .., 8388:80
83BC:83 83 sc 244 DF8 $83,$83,$8C,$8C,$BO,$BO,$CO
83BF:8C BO 80
83C2:CO
83C3:CO so· 80 245 DFB $C0,$80,$80,$80,$80,$80,$80

IIIII 83C6:80 80 80
83C9:80
83CA:83 83 8C 246 DF8 $83,$83,$8C,$8C,$80,$BO,$CO
83CD:8C BO BO
83DO:CO

~ 83Dl:CO 80 80 247 DFB $C0,$80,$80,$80,$80,$80,$80
83D4:80 80 80
83D7:80
83D8:83 83 8C 248 DFB $83,$83,$8C,$8C,$BO,$BO,$CO
83D8:8C BO 80 - 83DE:CO
83DF:CO 80 80 249 DFB $C0,$80,$80,$80,$80,$80,$80
83!2:80 80 80
83!5:80
83!6:83 83 8C 250 DFB $83,$83,$8C,$8C,$BO,$BO,$CO

~
83E9:8C
83EC:CO

BO BO

83ED:CO 80 80 251 DF8 $C0,$80,$80~$80,$80,$80,$80
83F0:80 80 80
83F3:80

,_. 83F4:83 83 8C 252 DFB $83,$83,$8C,$8C,$80,$BO,$CO
83F7:8C BO BO
83FA:CO
83F8:CO 80 80 253 DFB $C0,$80,$80,$80,$80,$80,$80
83FE:80 80 80

~
8401:80
8402:83 83 8C 254 DF8 $83,$83,$8C,$8C,$B0,$80,$CO
8405:8C 80 80
8408:CO
8409:CO 80 80 255 DF8 $C0,$80,$80,$80,$80,$80,$80

,._ 840C:80 80 80
840F:80
8410:83 83 8C 256 DFB $83,$83,$8C,$8C
8413:8C
8414: 257 * 8414:80 80 80 258 RIGHT DFB $80,$80,$80,$80,$80,$80,$81

~ 8417:80 80 80

-

380 Apple® Programmer's Handbook

Example 6-3 Cont.

841A:81
8418:81 86 86 259 DFB $81,$86,$86,$98,$98,$EO,$EO
841E:98 98 EO
8421:EO
8422:80 80 80 260 DFB $80,$80,$80,$80,$80,$80,$81
8425:80 80 80
8428:81
8429:81 86 86 261 DFB $81,$86,$86,$98,$98,$EO,$EO
842C:98 98 EO
842F:EO
8430:80 80 80 262 DFB $80,$80,$80,$80,$80,$80,$81
8433:80 80 80
8436:81
8437:81 86 86 263 DFB $81,$86,$86,$98,$98,$EO,$EO
843A:98 98 EO
843D:EO
843E:80 80 80 264 DFB $80,$80,$80,$80,$80,$80,$81
8441:80 80 80
8444:81
8445:81 86 86 265 DFB $81,$86,$86,$98,$98,$EO,$EO
8448:98 98 EO
844B:EO
844C:80 80 80 266 DFB $80,$80,$80,$80,$80,$80,$81
844F:80 80 80
8452:81
8453:81 86 86 267 DFB $81,$86,$86,$98,$98,$EO,$EO
8456:98 98 EO
8459:£0
845A:80 80 80 268 DFB $80,$80,$80,$80,$80,$80,$81
845D:80 80 80
8460:81
8461:81 86 86 269 DFB $81,$86,$86,$98,$98,$EO,$EO
8464:98 98 EO
8467:£0
8468:80 80 80 270 DFB $80,$80,$80,$80,$80,$80,$81
846B:80 80 80
846E:81
846F:81 86 86 271 DFB $81,$86,$86,$98,$98,$EO,$EO
8472:98 98 EO
8475:EO
8476:80 80 80 272 DFB $80,$80,$80,$80,$80,$80,$81
8479:80 80 80
847C:81
847D:81 86 86 273 DFB $81,$86,$86,$98,$98,$EO,$EO
8480:98 98 EO
8483:EO
8484:80 80 80 274 DFB $80,$80,$80,$80,$80,$80,$81
8487:80 80 80
848A:81
8488:81 86 86 275 DFB $81,$86,$86,$98,$98,$EO,$EO
848E:98 98 EO
8491:!0

~

,.._

~

,...

,..,.
1
I

...,

r"

....

....
I

- Text and Graphics 381

Example 6-3 Cont.

,..,
8492:80 80 80 276 DFB $80,$80,$80,$80,$80,$80,$81
8495:80 80 80
8498:81

~ 8499:81 86 86 277 DFB $81,$86,$86,$98,$98,$EO,$EO
849C:98 98 EO
849F:EO
84A0:80 80 80 278 DFB $80,$80,$80,$80,$80,$80,$81
84A3:80 80 80

~ 84A6:81
84A7:81 86 86 279 DF8 $81,$86,$86,$98,$98,$EO,$EO
84AA:98 98 EO
84AD:EO
84AE:80 80 80 280 DF8 $80,$80,$80,$80,$80,$80,$81 8481:80 80 80
8484:81
8485:81 86 86 281 DFB $81,$86,$86,$98,$98,$EO,$EO
8488:98 98 EO
84BB:EO

~
84BC:80 80 80 282 DFB $80,$80,$80,$80,$80,$80,$81
848F:80 80 80
84C2:81
84C3:81 86 86 283 DF8 $81,$86,$86,$98,$98,$EO,$EO
84C6:98 98 EO

~
84C9:EO
84CA:80 80 80 284 DFB $80,$80,$80,$80,$80,$80,$81
84CD:80 80 80
84D0:81
84D1:81 86 86 285 DFB $81,$86,$86,$98,$98,$EO,$EO
84D4:98 98 EO .. 84D7:EO
84D8:80 80 80 286 DFB $80,$80,$80,$80,$80,$80,$81
84DB:80 80 80
84DE:81
84DF:81 86 86 287 DFB $81,$86,$86,$98,$98,$EO,$EO

~ 84E2:98 98 EO
84E5:EO
84E6:80 80 80 288 DFB $80,$80,$80,$80,$80,$80,$81
84E9:80 80 80
84EC:81 .. 84ED:81 86 86 289 DFB $81,$86,$86,$98,$98,$EO,$EO
84F0:98 98 EO
84F3:EO
84F4:80 80 80 290 DFB $80,$80,$80,$80,$80,$80,$81
84F7:80 80 80 84FA:81
84FB:81 86 86 29-1 DFB $81,$86,$86,$98,$98,$EO,$EO
84FE:98 98 EO
8501:EO
8502:80 80 80 292 DFB $80,$80,$80,$80,$80,$80,$81

1111111 8505:80 80 80
8508:81
8509:81 86 86 293 DFB $81,$86,$86,$98,$98,$EO,$EO

,....

r-'

382 Apple® Programmer,s Handbook ...
Example 6-3 Cont.

850C:98 98 EO
850F:EO
8510:80 80 80 294 OFB $80,$80,$80,$80
8513:80
8514: 295 *
8514: 296 * MASKS FOR HIORES COLORS
8514: 297 *
8514:80 80 298 COLOR OFB $80,$80 O ••• BLACK
8516:00 00 299 OFB $00,$00

fllllt 8518: 300 *
8518:80 80 301 OFB $80,$80 1. •• OK. VIOLET
851A:55 2A 302 OFB $55,$2A
851C: 303 *
851C:05 AA 304 OFB $05,$AA 2 ••• OK.BLUE ,..,
851E:OO 00 305 OFB $00,$00
8520: 306 *

I 8520:05 AA 307 OFB $D5,$AA 3 ••• TRUE BLUE
8522:55 2A 308 OFB $55,$2A
8524: 309 *
8524:80 80 310 DFB $80,$80 4 ••• 0K.GREEN

,....
8526:2A 55 311 OFB $2A,$55
8528: 312 *
8528:80 80 313 OFB $80,$80 5 ••• GREY-1
852A:7F 7F 314 OFB $7F,$7F
852C: 315 * ,..
852C:D5 AA 316 OFB $05,$AA 6 ••• AQUA i
852E:2A 55 317 OFB $2A,$55
8530: 318 *
8530:05 AA 319 OFB $D5,$AA 7 ••• LT.BLUE
8532:7F 7F 320 DFB $7F,$7F
8534: 321 *
8534:AA 05 322 DFB $AA, $05 8 ••• 0K.ORANGE
8536:00 00 323 DFB $00,$00
8538: 324 *
8538:AA 05 325 DFB $AA,$05 9 ••• PINK ~

853A:55 2A 326 OFB $55,$2A
853C: 327 *
853C:FF FF 328 DFB $FF,$FF 10 •• GREY-2
853E:OO 00 329 OFB $00,$00
8540: 330 *
8540:FF FF 331 DFB $FF,$FF 11 •• LT. VIOLET
8542:55 2A 332 DFB $55,$2A
8544: 333 *
8544:AA 05 334 DFB $AA,$05 12 •• BROWN
8546:2A 55 335 DFB $2A,$55
8548: 336 *
8548:AA D5 337 DFB $AA,$05 13 •• LT.ORANGE
854A:7F 7F 338 DFB $7F,$7F
854C: 339 *
854C:FF FF 340 DFB $FF,$FF 14 •• LT.GREEN
854E:2A 55 341 DFB $2A,$55
8550: 342 *
8550:FF FF 343 OFB $FF,$FF 15 •• WHITE

~

-
r

-

-

-
-

Example 6-3 Cont.

8552:7F 7F
8554:
8554 : 00

344
345 *
34 6

Text and Graphics 383

DFB $7F,$7F

BRK

*** SUCCESSFUL ASSEMBLY: NO ERRORS

Then set the Applesoft shape parameters

HCOLOR =3 : SCALE = 1 : ROT=O

before drawing them one by one at the center of the screen with

DRAW 1 AT 140, 80

to see what you have. Remember, you must know these things in order
to write a program that uses a shape table.

When you program to draw shapes, you use five Applesoft com
mands- HCOLOR, SCALE=, ROT = , DRAW, and XDRAW.

The ORA W and XDRA W commands put the shape on the screen.
The ORA W uses the current HCOLOR = value while the XDRA W
uses the complement of the color on the screen. Use XDRA W for
cursors because when used at an existing cursor, it will remove it, re
storing any underlying shape. You can use DRAW best on back
ground shapes and characters; XDRA W on foreground (moving)
shapes and cursors. Syntax required is just the shape number, but you
can give the position with an AT like the example given above.
HCOLOR = , SCALE= , and ROT= must be set first.

The HCOLOR = sets the drawing color as described earlier. Shapes
work best in black and white: zero for black, three for white.

The SCALE= command lets you magnify the shape about its start
position on the screen. Use SCALE= 1 normally. If you increase the
scale, you must be sure that there is enough room. SCALE= 2 doubles
the size, SCALE= 3 triples the size, and so on.

The ROT = command Jets you rotate the shape defined to another
orientation. ROT = 0 is normal. ROT= 16 rotates by goo clockwise;
ROT = 32 rotates 180°; ROT = 48 rotates by 270° clockwise, goo
counterclockwise. Rotations above 63 aren't defined. These four - 0,
16, 32, 48 - are the most useful.

Loading a shape table is simple, and can be done by any program
that uses it. Although Applesoft has a SHLOAD command for tape

384 Applrl" Programmer's Handbook

shape table loads, you probably will want to keep shape tables on disk
and load them from there. So, the disk loads are described fi rst.

From disk, shape tables can be BLOADed just like any other binary
fi le. Then you must adjust the memory map pointers to protect it from
the running program. And finally, you have to put the address of the
shape table into a Page Zero pointer so that Applesoft will know
where to find it. Here's how you might do it:

LOMEM:16384: CLEAR
BLOAD SHAPET ABLE,A$1800
POKE 232,0 : POKE 233,24

:REM $4000

:REM $1800

The Page Zero pointer is at $E8 and $E9; hence the POKEs to 232 and
233. Another way might be:

HlMEM :32768 : CLEAR
BLOAD SHAPET ABLE, A$8000
POKE 232,0 : POKE 233,128

:REM $8000

:REM $8000

It's up to you. The shape table can reside anywhere as long as its start
address is stuffed into $E8.E9.

The SHLOAD command will load from tape, put the table to fit
below the current HIMEM, then change HIMEM to the beginning of
the table, protecting it. It also sets $E7 .E8 to the beginning of the
table. So, just be sure no strings were referenced before the SHLOAD
and it will set all the pointers for you, automatically. """

A shape table has three parts, each following the other in memory.
First there is one byte containing the number of entries. You read this
number when you use the

NS = PEEK(FN AD(232))

statement that reads the first byte of the shape table as referenced by
$E8.E9 in Page Zero. The second byte of a shape table is unused and
can be ignored.

The second part of a shape table is the index to the shapes. This
index has two bytes for each shape in the table, so it is 2*NS in size,
where NS is the number of shapes kept in the first part. Each of the
indexes has two bytes and is a relative address in low-byte/ high-byte
order. The relative address is from the beginning of the shape table to n

~

Text and Graphics 385

the first byte in the shape being indexed. So, the first index contains
the relative address of the first shape, the second index contains the
relative address of the second shape, and so on. There can be any
number of shapes, from one to 255; however, it may be wise to limit
this number to 127 if you make the shape tables for yourself. Then the
indexes will be easier to access, since they contain two bytes each. See
Figs. 6-10 and 6-11.

The third part of a shape table is the set of shapes themselves. Each
shape contains one or more bytes, the last one being zero. This is im
portant, because the zero byte tells the Applesoft drawing routines
where the shape ends. All the nonzero bytes then contain the shape
and will be used by the DRAW or XDRA W routines, one after the
other, until the zero byte is reached.

Shapes are drawn by plotting single points and moving the current
drawing location to an adjacent pixel and there plotting the next
point. This is repeated until the shape is complete. After plotting, each
move can be in one of four directions - up, down, left, or right - to
reach the next pixel. Each plot-then-move appears in the shape table
as a small instruction to the DRAW routine called a vector. The shape
is defined as a sequence of plot-then-move vectors that instructs the
ORA W routine in Applesoft.

There are four different plot-then-move vectors: up, right, down,
and left. In addition, the PLOT routine will handle vectors that don't
plot but just move. There are four of these: up, right, down, and left.
So, there are eight vectors you can use to make shapes; here are their
codes:

Binary Hex Symbol Vector Description

000 0 A move up
001 1 o- move right
010 2 ? move down
011 3 4-() move left
100 4 • plot-then-move up
101 5 ... plot-then-move right
110 6 T plot-then-move down
111 7 ... plot-then-move left

All vectors move the drawing position by exactly one pixel. You use
them to draw the shape that you want.

386 Applff11 Programmer's Handbook

RELATIVE
ADDRESS

00

01

02

04

Fig. 6-10. A shape table with one entry.

RELATIVE
ADDRESS

INDEX TO 1ST SHAPE

FIRST SHAPE

GO NUMBER OF SHAPES

01 UNUSED

02 0 7 0 0 INDEX TO 1ST SHAPE

04 G D 0 0 INDEX TO 2ND SHAPE

06 I 4 0 0 INDEX TO 3RD SHAPE

07

FIRST SHAPE

OD

SECOND SHAPE

14 I ffiiRDSH~E
Fig. 6-11. A shape table with three entries.

r"
I

Text and Graphics 387

The vectors are kept in the bytes of the entries in the shape table.
However, since each vector only requires three bits for storage, the
vectors are packed by stuffing two or three of them into each byte. To
follow the packing, see Fig. 6-12. You can see it is partitioned into
three chunks called Vector One, Vector Two, and Vector Three. Each
of the first two are three bits in size while Vector Three is only two
bits. This means that Vector Three can hold simple move vectors only;
the larger plot-then-move vector codes are just too big.

The solution to the Vector Three size limitation is to defer the plot
then-move vectors to Vector One of the next byte. The rule for
packing vectors into bytes is to start with Vector One. The next vector
goes into Vector Two. After that, if the third vector is less than four in
size, then it goes into Vector Three. Otherwise, the byte is full and the
third vector goes into Vector One of the following byte. Continue like
that until the end of the shape, at which time an extra zero byte is
appended to complete the entry.

To create shape tables, the procedure is to pack the vectors into
bytes to create each shape entry. Then, a table is built with the number
of entries (shapes) in the first byte, an index table of relative addresses
starting at the third byte, and the index table followed by the shape
entries, with each entry ending in a zero byte. The routines needed to
do these things are not difficult to write and some examples are given
later on. However, the procedure for packing vectors into bytes
becomes complicated because of an anomaly in the original design.

The vector code for move up is zero. This code conflicts with the
end-of-shape marker which is also zero. One result of this conflict is
that three move ups in a single byte gives a zero byte terminating the
entire shape. Any further shape vectors are ignored, so you get only
that part of the shape drawn before the three move ups.

Another consequence of the clashing codes is ignored move ups. If
Vector Three is zero, it is presumed to be empty and ignored. So, you

I I

""" THREE I I
VECTOR TWO~
VECTOR ONE

Fig. 6-12. A shape byte.

388 Apple® Programmer's Handbook

can't put a move up in Vector Three, but it can be deferred to the next
byte. But if both Vector Three and Vector Two are zero, then the
Vector Two that you think must be a move up, isn't. It is ignored as
well. A zero in Vector One is all right as long as there is a nonzero Vec
tor Two or Vector Three, but you can't encode move ups in Vector
Two unless Vector Three turns out to be a nonzero entry.

At first it appears that you can't use the simple move-up vector. By
avoiding its use entirely, you can build shape tables without any
hassles. If you try to use them, you get unexpected results. Shapes are
distorted from any missed move ups. Some shapes are only partially
drawn because of several move ups in sequence. But some move ups
do work properly, so unless you know about the move-up anomaly,
you will become confused and frustrated with your results.

Therefore, one solution to the anomaly is to avoid using the move
up in any shape creation programs.

Another solution is to write a more complicated packing routine
that handles move ups. An example of such a packing routine is given
here.

Here's how vectors are packed into a shape table entry while
avoiding the move-up anomaly. The routine is called VP ACK; you
can see it in the listing of Example 6-4.

The current byte being packed is pointed to by ZEND in Page Zero.
The number of the vector within that byte is I, 2, or 3 in VECNUM.
The vector to be packed is in the A-reg when VPACK is called.

VP ACK interprets the vector number of VECNUM and branches
accordingly to VPACKI, VPACK2, or VPACK3.

For Vector One, the VPACKI block just writes the A-reg to the cur
rent byte. Since the vector code is between zero and seven, it is already
positioned in the three least significant bits, so it becomes the byte
with Vector One.

For Vector Two, the vector in the A-reg must be shifted left by three
bits to be in the Vector Two position. Then it must be put into the cur
rent byte without altering the Vector One already resident there. The
ORA instruction in the VPACK2 block accomplishes this.

Vector Three is the tricky one. The first thing done at VP ACK3 is to
check if the vector is zero or a plot-then-move type. If so, then the
packing must be deferred to the next byte. Otherwise, the vector is 1,
2, or 3 in value and may be packed into the current byte - shifted left
six bits and an ORA. After packing Vector Three, the pointer ZEND
must be advanced to access the next byte; the block that advances
ZEND is called NEXT.

r-1
I

~
I

I

r

-

Text and Graphics 389

Example 6-4.

SOURCE
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0001:
0002:
0003:
0058:
0000:
0000:
0000:
0000:

FILE: EXAMPLE 6.4

OOE7:
0050:
0052:
0053:
0094:
0096:
009B:
0000:
0000:
1800:
0000:
0000:
0000:
0000:
D393:
0000:
0000:
0000:
0000:
0000:
0000:
0000:

1 ********************************
2 * EXAMPLE 6.4 *
3 * *
4 * SHAPE TABLE WRITER *
5 * *
6 * FOR DETAILS ON HOW TO USE *
7 * THESE ROUTINES, SEF. TEXT. *
8 * *
9 ********************************

10 *
11 *
12 *

E Q A T E S

13 * CONSTANTS
14 *
15 KUP
16 KRIGHT
17 KDOWN
18 KLEFT
19 KLANDR
20 *
21 *

EQU
EQU·
EQU
EQU
EQU

22 * PAGE ZERO
23 *
24 ZEND
25 VECNUH
26 PEN
27 PENX
28 HIGHDS
29 HIGHTR
30 LOWTR
31 *
32 *
33 TABLE
34 *
35 *

EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU

$00
$01
$02
$03
$58

$E7
$50
$52
$53
$94
$96
$9B

$1800

36 * APPLESOFT & MONITOR
37 *
38 BLTU
39 *
40 *
41 *
42 *
43 *
44 *
45 *

EQU $D393

R 0 U T I N E S

FOR UPCURSOR
FOR RIGHTCURSOR
FOR DOWNCURSOR
FOR LEFTCURSOR
LEFT AND RIGHT

TABLE POINTER

PEN MASK
ALTERNATE PEN MASK
USED BY BLTU
USED BY BLTU
USED BY BLTU

START SHAPE TABLE

BLOCK TRANSFER UP

NEXT OBJECT FILE NAME IS EXAMPLE 6.4.0BJO
8000:
8000:
8000:
8000:
8000:
8000:20
8003:20
8006:20
8009:4C

60 80
95 80
oc 80
69 FF

46 ORG $8000
47 *
48 *
49 * TEST HAINLINE *****
50 *
51
52
53
54

JSR
JSR
JSR
JHP

SETUP
KEY
ACCEPT
$FF69 MONITOR

390 Apple® Programmer's Handbook

Example 6-4 Cont.

800C: 55 *
BOOC: 56 * 800C: 57 * ACCEPTED SHAPE TABLE - INSERT
800C: 58 *WITH NEW INDEX, THEN SETUP. ~
BOOC: 59 *
800C:AD 00 18 60 ACCEPT LDA TABLE IF ONLY NULL
800F:C9 01 61 CHP #1 THEN DON'T BLTU.
8011: FO 07 62 BEQ ACC1
8013:A4 94 63 LOY HIGHDS
8015:A5 95 64 LOA HIGHDS+1
8017:20 93 D3 65 JSR BLTU HOVE OLD SHAPES BY 2.
801A: 66 * BOlA: AO 01 67 ACC1 LDY 11
801C:A9 00 68 LDA to HAKE NEW NULL SHAPE. ~ 801E:91 E7 69 STA (ZEND),Y

I 8020:C8 70 INY
8021:91 E7 71 STA (ZEND),Y
8023: 72 *
8023:EE 00 18 73 INC TABLE BUMP NUMBER ENTRIES r--8026: 74 *
8026:18 75 CLC
8027:A5 E7 76 LDA ZEND CALCULATE ADDRESS OF
8029:69 02 77 ADC 12 NEW NULL RECORD
8028:85 E7 78 STA ZEND r 802D:A5 E8 79 LOA ZEND+1
802F: 69 00 80 ADC to
8031:85 E8 81 STA ZEND+1
8033: 82 *
8033:AD 00 18 83 LDA TABLE FIND INDEX TO NEW r 8036:0A 84 ASL A NULL.
8037:AA 85 TAX
8038: 86 *
8038:38 87 SEC
8039:A5 E7 88 LDA ZEND ,...
803B:E9 00 89 SBC #>TABLE CALCULATE INXEX
803D:9D 00 18 90 STA TABLE,X FOR NEW NULL.
8040:A5 E8 91 LDA ZEND+1
8042:E9 18 92 SBC #<TABLE
8044:9D 01 18 93 STA TABLE+1,X

~ 8047: 94 * 8047:CA 95 ACC2 DEX
8048:CA 96 DEX
8049:FO 14 97 BEQ ACC3 WHILE INDEX, DO
804B:18 98 CLC

.r-' 804C:BD 00 18 99 LOA TABLE,X
804F:69 02 100 ADC #2
8051:9D 00 18 101 STA TABLE,X
8054:BD 01 18 102 LDA TABLE+1,X
8057:69 00 103 ADC 10
8059:9D 01 18 104 STA TABLE+1,X BUMP INDEX BY 2 --805C:4C 47 80 105 JHP ACC2
805F: 106 * 805F:60 107 ACC3 RTS
8060: 108 *
8060: 109 * 1-1
8060: 110 *

~

Text and Graphics 391

Example 6-4 Cont.

8060: 111 * SET THE POINTERS FOR THE
8060: 112 * SHAPE TABLE.
8060: 113*
8060:AD 02 18 114 SETUP LDA TABLE+2 FIRST INDEX
8063:18 115 CLC
8064:69 00 116 ADC #>TABLE OFFSET INDEX
8066:85 9B 117 STA LOWTR TO GET ADDRESS OF
8068:AD 03 18 118 LDA TABLE+3 FIRST SHAPE.
806B:69 18 119 ADC #<TABLE
806D:85 9C 120 STA LOWTR+l
806F: 121 *
806F:AD 00 18 122 LDA TABLE NUMBER OF SHAPES
8072:0A 123 ASL A
8073:AA 124 TAX
8074:BD 00 18 125 LDA TABLE,X LAST INDEX
8077:18 126 CLC
8078:69 00 127 ADC #>TABLE
807A:85 96 128 STA HIGHTR OFFSET INDEX TO GET
807C:BD 01 18 129 LDA TABLE+1,X ADDRESS OF NULL
807F:69 18 130 ADC #<TABLE SHAPE.
8081:85 97 131 STA HIGHTR+1
8083: 132 *
8083:18 133 CLC 8084:A5 96 134 LDA HIGHTR
8086:69 02 135 ADC #2
8088:85 94 136 STA HIGHDS BEYOND NULL SHAPE
808A:85 E7 137 STA ZEND END OF TABLE.
808C:A5 97 138 LDA HIGHTR+1 - 808E:69 00 139 ADC 10
8090:85 95 140 STA HIGHDS+l
8092:85 E8 141 STA ZEND+l
8094:60 142 RTS
8095: 143 * 8095: 144 * 8095: 145 * KEYBOARD COMMAND INTERPETER
8095: 146 * FOR THE CURSOR KEYS: IJKM AND
8095: 147 * <SP> FOR THE PEN. EXITS WITH
8095: 148 * I A I FOR ACCEPT OR I R I FOR
8095: 149 * REJECT IN THE A-REG.
8095: 150 * 8095:A9 00 151 KEY LDA 10 INIT PEN UP
8097:85 52 152 STA PEN
8099:A9 01 153 LOA {#1 - 809B:85 50 154 STA VECNUM !NIT VECTOR 1
809D:A9 04 155 LOA #4 MASK FOR PEN DOWN
809F:85 53 156 STA PENX
80Al:A2 00 157 LOX #0 FOR INDEXED INDIRECT!
80A3: 158 * 80A3:AO 00 co 159 KEYO LOA $COOO KEYBOARD
80A6:10 FB 160 BPL KEYO
80A8:2C 10 co 161 BIT $COlO CLEAR STROBE
80AB: 162 *
80AB:C9 D2 163 CMP # 1 R 1 REJECT SHAPE? ,... 80AO:OO 01 164 BNE KEY1
80AF:60 165 RTS

392 Apple® Programmer,s Handbook

Example 6-4 Cont.

8080: 166 *
8080:C9 C1 167 KEY1 CHP #I A I ACCEPT SHAPE?
8082:DO 01 168 8NE KEY2
8084:60 169 RTS
8085: 170 *
8085:C9 AO 171 KEY2 CHP I' I CHANGE PEN?
8087:DO OD 172 8NE KEY3
8089:A5 52 173 LDA PEN
8088:48 174 PHA ~
808C:A5 53 175 LDA PENX SWAP PEN AND PENX
808E:85 52 176 STA PEN
80C0:68 177 PLA
80C1:85 53 178 STA PENX
80C3:4C A3 80 179 JHP KEYO ~
80C6: 180 *
80C6:C9 C9 181 KEY3 CHP #'I' UP?
80C8:DO OA 182 8NE KEY4
80CA:A9 00 183 LDA #KUP
80CC:05 52 184 ORA PEN
80CE:20 01 81 185 JSR VPACK INSERT UPVECTOR
80D1:4C A3 80 186 JHP KEYO
80D4: 187 *
80D4:C9 CB 188 KEY4 CHP I 'K I RIGHT?
80D6:DO OA 189 BNE KEY5 ,..
80D8:A9 01 190 LDA #KRIGHT
80DA:05 52 191 ORA PEN
80DC:20 01 81 192 JSR VPACK INSERT RIGHTVECTOR
80DF:4C A3 80 193 JHP KEYO
80E2: 194 * ,...
80E2:C9 CD 195 KEY5 CHP (#I M' DOWN?
80E4:DO OA 196 BNE KEY6
80E6 A9 02 197 LDA IKDOWN
80E8 05 52 198 ORA PEN
80EA 20 01 81 199 JSR VPACK INSERT DOWNVECTOR
80ED 4C A3 80 200 JHP KEYO
80FO 201 * 80FO C9 CA 202 KEY6 CHP I I J I LEFT?
80F2 DO OA 203 BNE KEY7
80F4 A9 03 204 LOA #KLEFT
80F6 05 52 205 ORA PEN
80F8 20 01 81 206 JSR VPACK INSERT LEFTVECTOR
80FB 4C A3 80 207 JHP KEYO
80FE 208 * 80FE 4C A3 80 209 KEY7 JHP KEYO JUST KIDDING!

!'-' 8101 210 *
8101 211 * 8101 212 * 8101 213 * VECTOR PACK ROUTINE TO PUT
8101 214 * THE A-REG VECTOR INTO THE NEW
8101 215 * SHAPE. X-REG MUST BE ZERO.

I

8101 216 * A-REG MUST BE VECTOR (0 •• 7).
8101 217 * Y-REG AND A-REG CLOBBERED.
8101 218 * 8101 A4 50 219 VPACK LOY VECNUH
8103 co 01 220 CPY 11

r

Text and Graphics 393

Example 6-4 Cont.

filii

8105:00 05 221 BNE VPACK2
8107: 222 *
8107:81 E7 223 VPACK1 STA (ZEND,X) VECTOR 1 8109:E6 50 224 INC VECNUM
810B:60 225 RTS
810C: 226 *
810C:CO 02 227 VPACK2 CPY #2
810E:DO OA 228 BNE VPACK3 ,.. 8110:0A 229 ASL A VECTOR 2
8111:0A 230 ASL A
8112:0A 231 ASL A
8113:01 E7 232 ORA (ZEND,X)
8115:81 E7 233 STA (ZEND,X)

lllllt 8117:E6 50 234 INC VECNUM
8119:60 235 RTS
811A: 236 *
811A:C9 00 237 VPACK3 CMP #0 VECTOR 3
811C: FO 19 238 BEQ DEFER IF VECTOR ISN'T

~
811E:C9 04 239 CMP #4 1, 2, OR 3 THEN DEFER
8120:BO 15 240 BCS DEFER TO NEXT BYTE.
8122:0A 241 ASL A
8123:0A 242 ASL A
8124:0A 243 ASL A

.... 8125:0A 244 ASL A
8126:0A 245 ASL A
8127:0A 246 ASL A
8128:01 E7 247 ORA (ZEND,X) PUT IN HIGHEST
812A:81 E7 248 STA (ZEND,X) TWO BITS.
812C: 249 * ,..
812C:A9 01 250 NEXT LOA #1 POINT TO THE
812E:85 50 251 STA VECNUH FIRST VECTOR OF
8130:E6 E7 252 INC ZEND THE NEXT BYTE.
8132:00 02 253 BNE *+4
8134:E6 E8 254 INC ZEND+1 .. 8136:60 255 RTS
8137: 256 *
8137:48 257 DEFER PHA
8138:A1 E7 258 LOA (ZEND,X) IF BYTE < 8
813A:C9 08 259 CHP 18 THEN V2 IS AN ILLEGAL

~ 813C:BO 10 260 BCS DEFER1 MOVE-UP CODE.
813E:09 58 261 ORA #KLANDR
8140:81 E7 262 STA (ZEND,X) so, REPLACE WITH A
8142:20 2C 81 263 JSR NEXT LEFT-AND-RIGHT, THEN
8145:A9 00 264 LOA #0 A MOVEUP IN NEXT V1 • .. 8147:20 01 81 265 JSR VPACK
814A:68 266 PLA
814B:4C 01 81 267 JHP VPACK FINALLY, INTO V2 OF NEX
T!
814E: 268 * ,..
814E:20 2C 81 269 DEFER1 JSR NEXT JUST TOO BIG FOR V3
8151:68 270 PLA
8152:4C 01 81 271 JHP VPACK SO PUT IT IN V1 OF NEXT

8155: 272 *
~

*** SUCCESSFUL ASSEMBLY: NO ERRORS

-

394 App/~ Programmer's Handbook

Now it is left with the deferred vector to pack. The DEFER block
calls NEXT to advance the pointers, then calls the VPACK routine in
the confidence that it will pack into Vector One of the next byte. A
special case where both Vector Two and Vector Three are zero is
treated slightly different. The zero in Vector Two must be a previous
move up. To render it valid, it too must be moved to the next byte. A
special mask called KLANDR (for left-and-right) ORAd into the byte
makes Vector Two a move left and Vector Three a move right. These
vectors cancel each other, so they act like a nonzero no operation.
Then the move up is put into the next byte's Vector One, followed by
the vector of the current call into Vector Two. The two JSR VPACK
instructions after the JSR NEXT accomplish this.

Except for the tricks in packing for Vector Three, the VPACK rou
tine is simple enough. To use it yourself, set ZEND and VECNUM ini
tially to the first byte of your shape's memory area, and to Vector One
with the value one. Each vector you add to the shape as you build
must be in the A-reg when you call VPACK. Make sure the X-reg is
zero. When finished, VPACK will point to the last byte.

Once you have a shape, you must somehow put it into a shape table,
with or without any previous entries, and correct the indexes to point
properly to your new entry and any previous entries. There are two
ways to do this: either use a previously extended table with fixed
blocks for the anticipated number of entries, or start with a null table
and use an indexed sequential append routine. The first is easier to
write from scratch, but the second is easy to use and more efficient in
memory management.

The listing has routines for appending to a shape table. Here's how
they work.

The routines assume a shape table already resides at $1800. See Fig.
6-13. To begin, you must put a table at $1800. Such an initial table
without any shapes is called a null table and you can enter it easily
from the Monitor by

1800: 01 00 04 00 00

where the first byte is the number of entries, the third and fourth bytes
point to the fifth byte (as $0004), which is a zero. This single entry of
zero is called the null entry or null shape. Using this method of
indexed sequential management, all shape tables will have a null as the
last entry.

n

-

-

(A) Null shape table.

1800

1801

1802

18(14

1805

18(16

1807

1808

1809

(8) Before insertion.

1800

1801

1802

1804

NUMBER OF SHAPES

INDEX TO NULL

NULL

NEW SHAPE

Text and Graphics 395

NUMBER OF SHAPES

INDEX TO NULL

HULL

1800

1801

1802

1804

1806

1807

1808

1809

I BOA

IS!lB

(C) After insertion.

NUMBER OF SHAPES

INDEX TO FIRST SHAPE

INDEX TO NULL

FIRST SHAPE ENTRY

NULL

Fig. 6-13. Inserting the first entry into a shape table.

To add a new shape to the table at $1800, you use a routine that sets
up Page Zero pointers, SETUP. One result of SETUP is the initiali
zation of ZEND to the second byte after the end of the shape table
(after the null entry). After the shape has been created by a routine
that uses VP ACK, the pointed ZEND will give the last byte of the new
shape. The shape table at this time has not been altered in any way, so
you can accept or reject the new entry. If rejected, you merely use
SETUP to reset ZEND for another shape. If accepted, then the
ACCEPT routine will append the new shape and you can call SETUP
after to reset the pointers for the new, longer shape table.

As an example, consider your creation of the first entry. First, you
make a null shape table at $1800.1804 as described above. Then you
make up your new shape starting at $1806, two bytes beyond the end
of the table. Let's say it has four bytes: $1806.1809. By a JSR to
ACCEPT, it is inserted by putting its index at $1802.1803 where the
index to the null was before. The index to the new null then goes into
$1804.1805 where it has just enough room. At $180A a zero is added
to the new shape to give it its terminator. The second zero following is

396 Appl~ Programmer's Handbook

the new null: you can see its address $180B is reflected in the index
$000B at $1804. The first entry was inserted by ACCEPT so simply
because you created it just two bytes after the old table.

Inserting any other entry works the same way except that all the pre
vious entries must be moved forward in memory by two bytes to make
room for the new index. An Applesoft routine called BL TU handles
this easily as long as it has its pointers set up for it by the SETUP rou
tine.

Like the first entry, a~y other entry uses the shape you created two
bytes past the end of the old table. (See Fig. 6-14) With old entries,

LOWTR

HIGHTR

HIGHDS
ZEKD

(A) Before insertion. (8) After insertion.
t'ig. 6-14. Inserting the n-th entry into a shape table.

PREVIOUS
SHAPES

MEW
SHAPE

MULL SHAPE

r

-

r

-

-

Text and Graphics 397

these are moved ahead two bytes and the new index inserted by over
writing the old null. The new null index then follows in the two freed
bytes. All the indexes of the previous entries must be advanced by two
- a DO-WHILE handles this in ACCEPT. Again, the new entry in
cludes a zero byte and a further zero byte becomes the new null.

You can follow the action easily by using the KEY routine together
with SETUP and ACCEPT to enter shapes to a null table and dump
$1800.183F, say, to watch the table grow.

The KEY routine is a keyboard entry to create the vectors to pass to
VP ACK. It begins by allowing move only vectors - hitting the space
bar switches PEN and PENX to allow plot-then-move vectors. Hitting
the spacebar again will switch back to plot only vectors again. After
you have used it, you may want to expand the KEY routine to include
a LORES display with different colors for the pen-up, pen-down, and
plotted points. Make your own custom Shape Table Editor.

n
n
n
n
Q

n
n
n
n
f\ I .

n
11
j !

n
n
n

-

-

-

-

CHAPTER SEVEN

Disk Opernting System

7.1 STRUCTURES

The purpose of DOS is to create, maintain, and use data structures
on 5V4-inch floppy disks. In the first section of this chapter, you can
find all the details of these structures. Later, in the second section, you
can find the protocols to use DOS in maintaining any structure at the
level needed.

7.1.1 DOS on Disk

Disks created and used by DOS 3.3 are formatted into 35 tracks of
sixteen sectors each. Each track is circular in shape and is on the top
surface of the disk, concentric with the others. Track Zero is the out
side track and is the longest. Track 34 is the shortest, being the inner
most track. Although the longer outside tracks can hold more data
than the shorter inside tracks, all tracks on the disk have the same
storage capacity 0f sixteen sectors of 256 bytes each.

It is easier to picture the disk as a rectangular map rather than to
draw the circular tracks. This map has a grid of 35 tracks by sixteen
sectors and is partitioned into the sections DOS creates with the IN IT
command.

Tracks Zero, One, and Two are dedicated to DOS. Whenever a disk
is INITed (initialized), it formats the entire disk by writing markers
that create tracks and sectors. Then it copies itself into the first three

399

400 Apple® Programmers Handbook

tracks with its bootstrap routines in Track Zero. This gives you a slave
disk that will bootstrap into the original DOS's memory area, below
$COOO.

The middle track, Track 17, contains a Catalog and a special sector
called the Volume Table of Contents or VTOC. From here, DOS has
a maximum arm motion of sixteen to reach any one of the other 34
tracks. Since it must always reference the VTOC and Catalog, this is
ideal.

After using the space for itself and the Catalog, 496 of the original
560 sectors remain for storing the files. One file called the greeting
program and usually named "HELLO" will be loaded and run when
ever the disk is booted. DOS will use and release space in the files
storage areas as needed.

Two utilities you may need to work with DOS disks are a DISK
MAP that usually draws the disk map using LORES graphics to show
the allocation of sectors, and a DISK ZAP that lets you read,
examine, change, and write to any designated sector on the disk. For
debugging and file recovery you should at least have a DISK ZAP,
such as Example 7-1.

Assuming a 48K Apple with the disk controller card in Slot Six, here
is what happens when a DOS disk bootstraps.

Typing PR#6 or otherwise running the firmware at $C600 starts the
Stage Zero bootstrap routine. A chunk of Page Three is written with a
table to translate disk codes, wiping out any vectors or routines there.
Then it loads in the Track Zero, Sector Zero page at $800. Finally, it
jumps to $801 which is the Stage One bootstrap just loaded.

The Stage One bootstrap routine loads the remainder of Track Zero
to memory starting at $B700 (SLAVE) or $3700 (MASTER). The
SLAVE is the simplest procedure, since the MASTER will have to
relocate itself later on. Assuming a SLAVE, the Stage One bootstrap
routine finishes by jumping to $B700. See Table 7-1.

Finally, the Stage Two bootstrap routine completes the load from
Tracks One and Two. The Boot One stage in $800.8FF is moved to
$B600 where it remains. It forces a subsequent load of the bank
switched RAM by writing a $00 to a location there. If a BASIC was
loaded by a previous bootstrap routine, this will cancel it, forcing it to
be re-loaded.

You can remove this feature by canceling the instruction to zero the
RAM. From the monitor, type

BFD3: EA EA EA

...
(

....
!

-
-

-
-

Example 7-1.

>LIST
1 REM EXAMPLE 7.1
2 REM
3 REM D I S K Z A P
4 REM
5 REM IN INTEGER BASIC
6 REM

10 GOTO 30000
100 REM

Disk Operating System

101 REM CHR$ FUNCTION (TOGNAZINNI)
102 REM
110 CHS=CHR+128*(CHR<128)
120 LC1= PEEK (224):LC2~ PEEK (225)-(LC1>243)

: POKE 79+LC1-256*(LC2>127)+(LC2-255*(LC2
>127))*256,CHS:CHR$=".": RETURN

500 REM
501 REM MONITOR COMMAND CALL
502 REM
510 FOR H=l TO LEN(HEX$): POKE 511+H, ASC(HEX

$(H)): NEXT H: POKE 72,0
520 CALL -144
530 RETURN
600 REM
601 REM CALL THE DISK
602 REM
610 CALL RWTS
612 POKE IOBVOL,255: REM RESET DOS
620 ERR=O: IF PEEK (O)fO THEN ERR= PEEK (IOBC

ODE)
630 IF ERRIO THEN RETURN
640 VTAB 2: TAB 4
650 PRINT "CURRENT TRACK a ";TRK;", SECTOR a

";SEC;".
660 RETURN

1200 REM
1201 REM PARSE TRACK & SECTOR
1202 REM
1210 ERR=1:P=2
1212 IF P> LEN(A$) THEN RETURN
1220 TRK= ASC(A$(P,P))-176: IF TRK<O OR TRK>9 THEN

RETURN
1230 P=P+1: IF P> LEN(A$) THEN RETURN
1240 TRK1= ASC(A$(P,P))-176: IF TRK1<0 OR TRK1

>9 THEN 1270
1250 TRK=TRK1+10*TRK: IF TRK<O OR TRK>34 THEN

RETURN
1260 P=P+1: IF P> LEN(A$) THEN RETURN
1270 IF A$(P,P)#"," THEN RETURN
1272 PmP+1: IF P> LEN(A$) THEN RETURN
1280 SEC= ASC(A$(P,P))-176: IF SEC<O OR SEC>9 THEN

RETURN
1290 ERR=O:P~P+1: IF P> LEN(A$) THEN RETURN
1300 ERR=1:SEC1= ASC(A$(P,P))-176: IF SEC1<0 OR

SEC>9 THEN RETURN

401

402 Appl~ Programmer's Handbook

Example 7-1 Cont.

1310 SEC=SEC1+10*SEC: IF SEC<O OR SEC>NSEC-1 THEN
RETURN

1320 IF P< LEN(A$) THEN RETURN
1330 ERR;Q: RETURN

12000 REM
12001 REM READ COMMAND
12002 REM
12010 ERR;O
12020 P=2: GOSUB 1200: REM PARSE T,S
12040 IF ERR~O THEN 12080
12060 ERR=O: PRINT " \\\ ???SYNTAX???": RETURN

12080 POKE IOBVOL,O
12100 POKE IOBTRK,TRK
12120 POKE IOBSEC,SEC
12140 POKE IOBBUF,O: REM $2000
12160 POKE IOBBUF+1,32
12180 POKE IOBCHD,1: REM READ
12200 GOSUB 600: REM RWTS
12220 IF ERR=O THEN 12260
12240 POKE 34,3: POKE 35,19: CALL -936: GOTO 12280

12260 A$="L":L=1: GOSUB 14000
12280 RETURN
13000 REH
13001 REM WRITE COMMAND
13002 REH
13010 ERR"'O
13020 Pa2: GOSUB 1200: REH PARSE T,S
13040 IF ERRaO THEN 13080
13060 ERR=O: PRINT" '~\ ???SYNTAX???": RETURN

13080 POKE IOBVOL,O
13100 POKE IOBTRK,TRK
13120 POKE IOBSEC,SEC
13140 POKE IOBBUF,O: REH $2000
13160 POKE IOBBUF+1,32
13180 POKE IOBCHD,2: REH WRITE
13200 GOSUB 600: REM RWTS
13220 RETURN
14000 REM
14001 REH LIST OTHER HALF BUFFER
14002 REH
14010 ERR=255
14090 IF LEN(A$)>1 THEN PRINT " \ ???EXTRA I

GNORED???"
14100 POKE 34,2: POKE 35,19: CALL -936
14120 IF (L<1) OR (L>2) THEN 14160
14140 GOSUB 14100+L*200
14160 RETURN
14300 REM FIRST HALF OF BUFFER
14310 POKE 2,BUF1 HOD 256: POKE 3,BUF1/256
14320 FOR LINEaO TO 15: POKE 2,(BUF1+LINE*8) HOD

256

Example 7-1 Cont.

14330 VTAB LINE+4: TAB 1
14340 CALL 8448: REM DUMP
14350 NEXT LINE
14360 ERRaO:La2: RETURN
14500 REM SECOND HALF OF BUFFER

Disk Operating System

14510 POKE 2,BUF2 HOD 256: POKE 3,BUF2/256
14520 FOR LINEgQ TO 15: POKE 2,(BUF2+LINE*8) HOD

256
14530 VTAB LINE+4: TAB 1
14540 CALL 8448: REM DUMP
14550 NEXT LINE
14560 ERR=O:L=1: RETURN
15000 REM
15001 REM CHANGE COMMAND
15002 REM
15010 ERR=O
15020 IF LEN(A$)>4 THEN 15060
15040 PRINT " k ???NOT ENOUGH???": RETURN
15060 HEX$•"20":HEX$(3)=A$(2)
15080 HEX$(LEN(HEX$)+1)=" N E88AG"
15100 GOSUB 500: REM MONITOR
15120 RETURN
28000 REM
28001 REM GET AN INSTRUCTION
28002 REM
28020 POKE 34,20: POKE 35,23
28030 VTAB 23: TAB 1
28060 PRINT".";: INPUT A$: IF LEN(A$)<1 THEN 28060

28080 FOR INSTal TO CMDSIZ
28100 IF A$(1,1)=CMD$(INST,INST) THEN RETURN
28120 NEXT INST
28140 PRINT " k ???INVALID COHMAND(";CMD$;"

)???"
28180 GOTO 28060
29000 REM
29001 REM INITIAL MENU
29002 REM
29020 TEXT CALL -936: POKE 50,63: TAB 16: PRINT

"DISK ZAP": POKE 50,255
29040 PRINT : PRINT "THIS PROGRAM WILL READ, WR

ITE, AND"
29060 PRINT "EXAMINE ANY SECTOR ON THE DISK IN"

,_ 29080 PRINT "THE CURRENT DRIVE. THE CONTENTS 0

-

F"
29100 PRINT "THE CURRENT SECTOR (LAST READ) HAY

BE"
29120 PRINT "CHANGED. BACKUP ANY WORK BEFORE Y

OU"
29140 PRINT "USE THIS PROGRAM!!!"
29160 PRINT : PRINT "THE COMMANDS ARE:"
29180 TAB 5: PRINT "R<T>,<S> ••• READ TRACK, SE

CTOR"

403

404 App/~ Programmer's Handbook

Example 7-1 Cont.

29200 TAB 5: PRINT "W<T>,<S> ••• WRITE TRACK, S
ECTOR"

29220 TAB 12: PRINT "L ••• LIST HALF BUFFER"
29260 TAB 5: PRINT "CNN: ETC ••• CHANGE AT $NN"

29300 TAB 12: PRINT "Q ••• QUIT THIS PROGRAM"
29320 REM
29340 REM
29380 REM
29400 RETURN
30000 REM
30001 REM MAIN LINE
30002 REM
30010 TEXT : CALL -936: TAB 16: PRINT "DISK ZAP

30012 VTAB 11: TAB 10: PRINT" ••• INITIALIZING

30020 DIM HEX${150): DIM A$(128)
30030 CMDSIZ~5: DIM CMD$(CMDSIZ)
30032 CMD$c"QR\ILC"
30034 BUF1=8192: REM $2000
30036 BUF2~BUF1+128
30040 D$="": REM CTRL/D
30060 NSEC=16: REM DOS 3.3
30062 HEX$="2100:AO 00 A5 02 20 DA FD A9 AD 20

FO FD A9 AO 20 FO N E88AG"
30064 GOSUB 500
30066 HEX$="2110:FD AO 00 B1 02 20 DA FD A9 AO

20 FO FD C8 CO 08 N E88AG"
30068 GOSUB 500
30070 HEX$="2120:DO F1 A9 1D 18 65 28 85 28 A9

00 65 29 85 29 AO N E88AG"
30072 GOSUB 500
30074 HEX$="2130:07 81 02 91 28 88 10 F9 60 N E

88AG"
30076 GOSUB 500
30080 HEX$="300:A9 B7 AO E8 20 D9 03 A9 FF BO 0

2 A9 00 85 00 60 N E88AG"
30100 GOSUB 500: REM MONITOR COMMAND
30140 IOB=-18456: REM $B7E8
30160 RWTS=768: REM $300
30180 IOBDRVNaiOB+2
30200 IOBVOLai0B+3
30220 IOBTRKaiOB+4
30240 IOBSECciOB+5
30260 IOBBUF=IOB+8
30280 IOBCMD=I08+12
30300 IOBCODEaiOB+13
30320 IOBOLDVaiOB+15
31000 GOSUB 29000: REM MENU
31020 GOSUB 28000: REM GET INSTRUCTION
31040 IF INST=1 THEN 32000: REM Q~QUIT

31060 GOSUB 10000+(1000*INST}: REM INTERPET

Disk Operating System

Example 7-1 Cont.

31080 IF ERR#O THEN 31500
31100 GOTO 31020
31120 REM
31500 REM
31501 REM ERROR ROUTINE
31502 REM
31520 POKE 34,20: POKE 35,23: VTAB 23
31530 TAB 1
31540 A$::"DISK": IF ERR=128 THEN A$=="READ"
31542 IF ERR::16 THEN A$~"PROTECT"
31544 IF ERR=32 THEN A$="VOLUME"
31560 TAB 8: PRINT "???";A$;" ERROR???"
31640 GOTO 31020
31650 REM

32000 TEXT : CALL -936
32010 PRINT "BYE!": PRINT
32767 END

Table 7-1. DOS Locations After Bootstrap

Track

Sector 0 1 1

0 B6 AI Bl
I B7 A2 B2
2 B8 A3 B3
3 B9 A4 B4

4 BA AS B5
5 BB A6
6 BC A7
7 BD AS
8 BE A9
9 BF AA

A AB
B AC
c 90 AD
D 9E AE

E 9F AF
F AO BO

before INITing any disk you don't want to force reloads.

405

Finally, the Stage Two bootstrap finishes by forcing a DOS cold
start at $9084.

406 App/f!9 Programmer's Handbook

The DOS cold start routine sets up buffers and HIMEM, creates
vectors, especially in Page Three, and grabs the CSW and KSW ~

hooks, and finally runs the HELLO program. You can cold start DOS
again if you want it to initialize itself from scratch by using the Page
Three vector:

$303 jumps to cold start

A less drastic choice is the warm start that simply recognizes the cur
rent BASIC again and jumps to the BASIC warm start at $E003.
Again, use the Page Three vector:

$3DO jumps to warm start

A warm start won't clobber the current BASIC program, so it is a
good choice when you want to re-enter BASIC after working with the
Monitor by typing 3DOG.

The greeting program is run automatically at the end of a DOS
bootstrap. If the program is in Applesoft and Integer is resident in
stead, the DOS looks for a program called APPLESOFT on disk to
load into RAM. This is an earlier version of Applesoft, and not
described in this book. System disks usually have an alternate greeting
Integer program called APPLESOFT that loads FPBASIC into the
16K RAM area instead.

For situations where your HELLO program won't know what
BASIC, if any, is available, or must setup a new memory map, you
will want a binary HELLO. Ordinarily, DOS won't BRUNa greeting
program; it wants to use the RUN command instead. You can change
this by typing

9E42: 34

from the Monitor into a 48K DOS 3.3, then INITing your new slave
disk. After, delete the HELLO file and BSAVE your new binary
HELLO in its place.

When any HELLO program loads and runs, it must be below
$9600, to avoid overwriting DOS or its buffers. After it is loaded, you
can change the map and relocate a binary program to fit between DOS
and its buffers. This protects it from changes in MAXFILES and
makes it quite invisible to BASIC. Here's how.

,.,
I

....
!

,..
I

Disk Operating System 407

First, load the binary program into low RAM, $801. If you
BSA VEd it from there, the bootstrap routine will do this. Then move
the program upmemory to its resting place below $9DOO, overwriting
the buffers. Then, change the value of the pointer at $9000: it pointed
to the first buffer below itself; now you point it to a location at least
38 bytes below your program. And finally you do a JSR $A251 to
rebuild the buffers below your program. This leaves your program
between the buffers and the start of DOS proper at $9DOO. The
HIMEM will be at the beginning of the new buffer's area, with your
program hiding in DOS. See Fig. 7-1 and. Table 7-2.

Once it is established - between DOS and buffers or elsewhere -
you may have to explore the Apple to see what version it is. Then you
can set soft switches and put out messages if you don't have the fea
tures in the machine you need. The Monitor version can be found by
looking at $FBB3: a $38 is in Standards, a $EA is in Autostarts, and a
$06 is in lie Monitors. The BASIC can be identified at $EOOO: $4C for
Applesoft, $20 for Integer. If you need certain peripheral cards, this
would be the time to check for them, too. Disassemble them at $Cn00
- where n is the slot - to see what unique values you can identify
them with. Don't use the $C800.C8FF ROM area; it's not unique to
any one slot.

You can allow more space on data disks than on program disks.
Program disks need DOS on Tracks Zero, One, and Two. Data disks
can be made without DOS on Tracks One or Two, freeing 32 sectors
for additional file storage. Here's how.

Make a new slave disk the usual way, INITing a HELLO program.
Delete the HELLO file. Then, use a Disk Zap utility to alter Track
Zero/Sector Zero as follows:

FE: OA 01

Then, change Track Zero/Sector One:

00: 20 93 FE 20 89 FE 20 58
08: FC A6 28 90 88 CO 20 31
10: F8 BA CA 9A 68 85 30 A9
18: 2A 85 3C AO 00 81 3C FO
20: 06 20 ED FO C8 DO F6 4C
28: 00 EO C4 C1 D4 C1 AO CF
30: CE CC D9 AO AD AO CE CF

408 Appl~ Programmer's Handbook

38: AO C4 CF 03 AO CF CE AO
40: C4 C9 03 CB 87 00

where the chunk $2A.44 is a screen message and the zero at $45 ends
that message. On Track 17/Sector Zero, the VTOC, you can release
the Tracks One and Two by

:I .., ...
~ "" S!~ "' ...

0 c.:> --~~ Q li! iii: e:'"' ...

!
=-:;:

:E .,
~t: a:

V> ...
0 c.:>o
Q ~(.) =>

<D

I !
21 =

:::E
<>-:g <>=a.
<.!lo

Q
~u

Fig. 7-t. Hiding a binary program in DOS.

. s

...
t;

N ...
~

.... ...
t;

-
....

~
I

~

,..

...
I

-

,..
I

Disk Operating System 409

Table 7-2. Hiding a Binary Program

STEP 1: DOS uses its buffers to BLOAD the program to low RAM at
$800.

STEP 2: When run, the program first copies itself to high RAM, just
below $9000, and overwrites lhe buffers.

STEP 3: After setting $9D00.9D01 to point 38 locations below the
program copy, the program calls DOS at $A251 that rebuilds
the buffers below the copy.

STEP 4: Afterwards, the program is abandoned, leaving it in copy
between DOS and its buffers.

3C: FF FF 00 00 FF FF

when so changed. The catalog remains intact and can be used by DOS,
but the disk won't bootstrap; it gives an error message instead.

Slave disk patches are summarized in Table 7-3.

Table 7-3. Summary of Slave Disk Patches

9FA2:34 Allows binary HELLO

AE34: 60 Removes CATALOG pauses

BFD3: EA EA EA Removes forced re-loads of BASIC
NOTE: Use the Monitor to make modifications to DOS before INITing a new, modified slave disk.

7 .1.2 Disk Files

Files on disk are managed by accessing disk sectors for reading, up
dating, and writing. On each disk, access is controlled beginning with
one sector, the VTOC (see Fig. 7-2).

The VTOC or Volume Table of Contents resides at the same loca
tion on all disks - Sector Zero of Track 17. From there, the DOS File
Manager can find all other sectors it wants. This is because of two
parts of the VTOC, the Track Bit Map and the First Directory Link.
The Track Bit Map shows all 560 sectors on the disk as being either in
use or free. Then, the Link to the first directory sector tells DOS where
the directory of files begins. From there, each entry points to the files
themselves; files that are managed with indexes are called Track-Sec
tor-Lists or TSLs. Each sector in the chain from VTOC to data can be
traced by links.

410 Apple® Programmer's Handbook

01

VTOC

I 1ST I 1ST

ri
DATA

2ND- SECTOR

•~r 1 RECTORY
SECTOR TO TSL

2ND I OF FILE
1ST FILE DATA

2ND FILE
SECTOR

3RD FILE
4TH FILE
5TH FILE

6TH FILE
7TH FILE I 122ND I 122NO DATA

HUT 1 I SECTOR
!RECTORY NEXT SECTOR TSL

1ST FILE SECTOR

2ND FILE
3RD FILE 1ST I I

123RO
4TH FILE 2ND-~ DATA

5TH FILE
SECTOR

6TH FILE

7TH FILE I 24TH I 1
DATA

SECTOR

00 IS "LAST SECTOR·

!
00 IS "lAST SECTOR·

•·lg. 7-2. File management sector linkage.

Each link consists of two bytes, track number and sector number.
Like a memory address pointer inside the Apple, a link points from
sector to sector on the disk. The first link in the chain is in Bytes One
and Two of the VTOC; it points to the sector containing the first seven
directory entries. This link is usually $11 and $OF, pointing to Track
17, Sector 15.

Within each directory entry is the CATALOG information for one
file and another link. This file link points to the TSL of the file where
an entire index of links resides, pointing sequentially to all the data
sectors of the file.

Each sector containing a set of directory entries or indexes may not
be large enough. For instance, a directory of ten entries won't fit into
one sector; there is only enough room for seven. The remaining three

,...

Disk Operating System 411

must go elsewhere. So, the directory sector has a link to point to the
next directory sector. This way, a list of directory sectors can be
chained together with the last one having zeros in its link. Similarly,
the TSL can hold more than the 122 data links if the data file should
exceed 122 sectors. Like the directory sector list, the TSL can build a
list to extend itself by using a link to the next TSL sector. This way,
there is no logical limit to the lengths of the directory and its files.

The entire structure of link lists on the disk begins in the VTOC with
the link to the first directory sector.

The VTOC also keeps track of which sectors have been allocated.
Each sector is represented by one bit in the Track Bit Map: one track
of sixteen sectors in two bytes. For each byte pair, the first byte keeps
Sectors 15 to 8 and the second byte keeps Sectors 7 to 0. A bit that is
on (I) flags the sector as free; a bit that is off (0) flags the sector as in
use. Each track actually has four bytes, but the last two are unused
and zeroed. With 35 tracks on disk, the Track Bit Map occupies 4 x 35
or 140 bytes in the VTOC. See Table 7-4.

With the Track Bit Map and the link lists, the disk management is
maintained, starting at the VTOC.

Table 7-4. Volume Table of Contents (VTOC)

Track 17 /Sector 0

00 Unused
01.02 Link to first directory sector
03 DOS release number
04.05 Unused
06 Volume number of this disk
07.26 Unused
27 Number of indexes per TSL sector (= 122)
28.2F Unused
30 Last allocation: track number
31 Last allocation: direction
32.33 Unused
34 Number of tracks/disk (= 35)
35 Number of sectors/track (= 16)
36.37 Number of bytes/sector (= 256)
38.C3 Track Bit Map: Tracks 0 ... 34; four bytes each
C4.FF Unused space for further entries

Detail of Track Bit Map Entry

00 Bits 7 ... 0 on for Sectors 15 ... 8 free
01 Bits 7. . . 0 on for Sectors 7 . . . 0 free
02.03 Unused (==0)

412 Appl~ Programmer,s Handbook

The directory usually starts in Track 17 /Sector 15. Aside from the

,...
I

link to the next directory sector, it just consists of seven entries of 35 ~
bytes each. See Table 7-5.

00
01.02
03.0A
OB.2D
2E.50
51.73
74.96
97.89
BA.DC
DD.FF

00.01
02
03.20
21.22

Table 7-Sa. Directory Sectors (Starts at 17 /15)

Unused
Link to next Directory sector (00 =none)
Unused
Directory entry. 1st
Directory entry. 2nd
Directory entry, 3rd
Directory entry, 4th
Directory entry, 5th
Directory entry, 6th
Directory entry, 7th

Table 7-Sb. Detail of a Directory Entry

Link to file storage (TSL)
File type
File name
File length in sectors

NOTE: A zero track number in the link flags entry as unused.

Table 7-Sc. File Type Codes

00 Text 80 locked Text
01 Integer 81 locked Integer
02 Applesoft 82 locked Applesoft
04 Binary 84 locked Binary
08 S-type 88 locked S-type
10 Relocatable 90 locked Relocatable
20 A-type AO locked A-type
40 B-type co locked B-type

NOTE: Relocatable files are defined in Apple's DOS Toolkit Assembler - sec manual. Types S, A, and B not de
fined at time of this writing.

Each entry has the link to its file as the first two bytes. A zero track
number in the link flags the entry as unused, so that Track Zero can
not be reached from the directory. This is why any of Track Zero can
not be released for files storage when data disks are made. When a file
is DELETEd, a zero is written to the first byte of the entry to flag it as
unused, the original track number is copied to the last byte of the file
name, Byte $20 of the entry, and all the file sectors are freed in the
Track Bit Map in the VTOC. Until these sectors are reused by

~
I

r
I

Disk Operating System 413

another file, all of the DELETEd file information is still available.
This is the basis of DELETE recovery schemes found in some disk
utility packages.

The CATALOG command displays most of the directory entry.
The file length is kept in two bytes (lo/hi) and can be greater than 255;
however, the CATALOG only shows the low byte value. If you have a
file of 255 sectors, that will show in the catalog, but if you increase the
file size to 256 the CATALOG shows zero. The information is kept in
the directory, however.

Occasionally un unprintable character gets itself hidden in a file
name. A dump of the directory shows it quite clearly but the CAT A
LOG won't. This is annoying because you will try to reference the file
without any success because you don't really know its directory name.
For instance, if a file called DOODLE has a ctrl/0 hidden between the
two printable "O"s, then when you type

LOAD DOODLE

you just get FILE NOT FOUND error. Whenever this happens, check
the file name in the directory by dumping it with a Disk Zap or an im
proved CATALOG utility. You probably will find one or more hidden
control characters.

Where seven directory entries have been made, the eighth entry
must go into another sector. This is usually Track 17/Sector 14. You
can confirm this by looking at the link in Track 17/Sector 15: second
and third bytes. If any directory sector has a zero directory link there,
it means that there are no more sectors of the directory. There may be
as many as fifteen directory sectors in Track 17; these will hold 15 x 7
or 105 directory entries, maximum.

Tracks 3 to 16 and Tracks 18 to 34 are used for data storage for a
total of 496 sectors. If you make a data disk without DOS, then releas
ing Tracks One and Two increases your files storage area to 528 sec
tors. For each file you create, at least two sectors are used for file stor
age. A small file whose data fits into one sector of less than 256 bytes
uses one sector for data and one sector for an index. These data
sectors are called the TSL - track sector list. Then as more sectors of
data are added later, they may be linked to the file in its TSL. So, the
file storage is always at least one sector larger than the size of its data.
See Table 7-6.

414 Applf!IJ Programmer,s Handbook

Table 7-6. Layouts of File Sectors

Track-Sector-List (TSL) Sectors

00 Unused
01.02 Link to next TSL sector (0 = end)
03.08 Unused
OC.FF Indexes to file sectors: 122 links of two bytes each

Text File Format

00 ... (negative-ASCII record) 80
(negative-ASCII record) 80
...
(negative-ASCII record) 80
...
00

Records delimited by CR characters; file terminated by a zero byte.

Integer File Format

00.01 Program length in bytes
02 ... Tokenized program

Applesoft File Format

00.01 Program length in bytes
02 ... Tokenized program

Binary File Format

00.01 Address of memory image
02.03 Length in bytes
04 ... Binary image of memory

Each file has one, perhaps more, TSL sectors. The first TSL sector
is linked from the directory entry and indexes the sequence of data sec
tors of the file. It consists of 122links: each link pointing to a data sec
tor. The first link points to the first data sector, the second link points
to the second data sector, and so on. If a file has more than 122 data
sectors, a second TSL sector is linked from the first by the second and
third bytes of the TSL. For most files, this link will be zero, indicating
no further TSL sectors. As data and TSL sectors are allocated to the
file, links are written and the Track Bit Map updated in the VTOC to
show them in use. Similarly, when a file is DELETEd, the Directory
link is zeroed and the sectors released in the Track Bit Map. The entire
file, including TSL sectors and data sectors, is maintained this way.
When a file is found from the link in its directory entry, it can be
scanned sequentially by simply going through the TSL from top to
bottom until the end of file is reached. From each TSL link, the data
sector can be accessed.

r-'
I

r

r

r

-
...

Disk Operating System 415

Within each file, the data varies. For each file type, the end of file is
recognized in a different way. For instance data in text files consists of
negative-ASCII code only with a zero byte marking the end of file.
This is the simplest method. When read, text files are accessed through
the DOS File Manager one record at a time; each record recognized by
a carriage return character at its end. This scheme is different than
that used by the other file types.

Program files of Applesoft and Integer have many different codes.
They have ASCII and keyword tokens so the end of file is given by the
first two bytes of the data instead. For the first sector of the data only,
the first two bytes contain the length in bytes (lo/hi) of the memory
image of the program. Then DOS uses this number in its LOAD com
mand to know when the end of file has been reached.

Binary files use a similar scheme. In the first sector of data, they
keep both the starting address and the length of their binary image.
This scheme occupies the first four bytes of data with the memory im
age to be loaded following. All file types, however, keep the end of file
information one way or another with the data and not in the TSL.

7.1.3 Disk Format

The physical sequence of sectors on each track is not the one you
normally use. For a given track, Sector One follows Sector Zero with
six other sectors between them. Sector One is actually in the physical
sector number seven. See Table 7-7.

To compare the logical addressed sectors with the physical posi
tional sectors, look at the Sector Interleaving table. What this scheme
of addressing does is to allow a large gap between logical sectors to
give the routines time between sector accesses. The time it takes to ac
cess a sector is then available sixfold before the next sequential sector
need be accessed. No space on disk is lost: all logical sectors are there
in the sixteen physical spaces.

This scheme was first adopted in DOS 3.3. Before that, thirteen sec
tor disks under DOS 3.1, 3.2, and 3.2.1 all used a different scheme
that is now obsolete. The newer sixteen sector disk system introduced
with the Pascal Language system uses a simple sector interleaving sys
tem just described. The DOS 3.3 scheme is compatible with the Pascal
Language system, but not equivalent. That is to say, DOS 3.3 can be
used to read and write disks formatted by the Pascal Language sys
tem, but the sectors have different meanings .

416 Apple® Programmer's Handbook

Table 7-7. Sector Interleaving

Physical Logical

0 0

I D

2 B

3 9

4 7

s s
6 3

7 I

8 E

9 c
A A

B 8

c 6

D 4

E 2

F F

,.,
I

,.,
I

In Pascal, the disk is formatted like a DOS disk, but the FILER
considers the disk to have 280 blocks of a data capacity of 512 bytes
each. So, each track contains eight blocks. The Pascal block numbers, r
Table 7-8, allow you to convert between the two systems if you
want to access one system from the other's disks. From Pascal, you
will use the BLOCKREAD and BLOCKWRITE; from DOS you will ~
use the RWTS described in this chapter.

Table 7-8. Pascal Block Numbers

Pascal Block
(mod 8) DOS sectors Physical sectors

0 O,E 0,8

I D,C 1,9

2 B,A 2,A

3 9,8 3,8
4 7,6 4,C

s 5,4 5,0

6 3,2 6,E

7 l,F 7,F

NOTE: Track number = Block DIV 8.

t-1
I

...

Disk Operating System 417

Whenever you INIT a new disk, the first thing that DOS does is to
completely format the disk by writing to each and every possible loca
tion. This completely destroys any previous contents of the disk. Also,
it creates the tracks and sectors by the method known as soft sector
ing.

If you look at a disk, you will see perhaps a small hole near the big,
central hole. On some disks that are labeled hard sectored, you will see
a ring of these holes around the hub hole. On hard-sectored systems,
these holes tell the hardware where the sectors are by chopping the
light from a small lamp into sync pulses. Each sync pulse tells the disk
controller that a new sector is coming under the read/write head. But,
the Apple uses soft-sectoring instead. On soft-sectored systems, the
disk is formatted so that each track has a long burst of special bytes
between each pair of sectors. Then the track is simply read and these
special bytes are recognized by the DOS in the data stream. So, while
the hard-sectored disks have sync pulses, soft-sectored disks like the
Apple uses must be read to detect sync bytes that were formatted on
the disk earlier.

There are sixteen sectors on each track. When formatted, they are
made with sync bytes that have 10 bits each instead of the usual 8. The
format is 8 bits on, 2 bits off. These sync bytes partition the track into
sectors of two fields each as shown in Fig. 7-3.

Each sector contains an address field and a data field. The address
field has the volume, track, and sector numbers. The data field has the
256 bytes you know as its contents encoded into it. There are a few
sync bytes between the two.

Each track begins with a burst of sync bytes. Then the first sector is
formatted with an address field, a few more sync bytes and a data

14
BYTES

1
.ADDRO~
, l l

40 TO 95 5 TO 10
TYPICAL TYPICAL

GAP GAP

349
BYTES

1
DATA 0

GAPS ARE 10-BIT SYNC BYTES
FIELDS ARE 8·BIT ENCODED BYTES

Fig. 7-3. Formatted disk track gaps and fields.

14 349
BYTES BYTES

1 I ,
• ADDRI ~DATAl>

I I 7

I 0 TO 24 5 TO 10
TYPICAL TYPICAL

GAP GAP

418 Applf!® Programmer's Handbook

field. A burst of sync bytes follow before the second physical sector is
made. When the last sector is formatted, its data field overwrites the
first few sync bytes of the track. This way, the sync bytes take care of
small variations in speed.

Formatting is done for the entire disk, from Track Zero to Track
35. Each track is made with the given volume number, the track num
ber, and the logical sector numbers in the address fields of each sector.
All gaps between sectors and fields are filled with 10-bit sync bytes;
the fields themselves are made with 8-bit bytes.

Address fields are fourteen bytes each. They start and end with
special values that make sure the READ routine knows where it is at.
The prefix bytes are $D5, $AA, and $96; the suffix bytes are $DE,
$AA, and $EB. This leaves eight bytes between them for address
information: volume, track, sector, and checksum. Each number is
one byte in value and is put into two bytes each, see Fig. 7-4.

l
PREFIX

J

FOURBIT
ENCODED

t
SUFFIX

1

Fig. 7-4. Sector address fields.

~
I

-
Disk Operating System 419

Each byte of header data is encoded as two bytes on the disk in the
address field. This is done because of restrictions in reading bytes in
synchronization. What happens is that the hardware can't read any
byte value; they must have their bit 7s on and they can't have two zero
bits contiguously. Of the many ways data can be encoded to meet
these requirements, address fields use a four-bit encoding scheme that
works as follows.

Consider any byte o f eight bits you wish to encode as

, For example, encode $3B which is 00111 01 1 in binary. The byte is
mapped to two bytes having their odd bits always on as

n
-

-

so that the $3B becomes

10111111 and 10111011

when encoded. The $3B has been mapped to $87 and $BB.
You can decode two bytes from an address field to its value in o ne

byte by reversing the steps. See the hardware protocols in Section
7.2.5.

If four-bit encoding was used for data fields as well, the track wou ld
only hold ten sectors because each chunk of 256 bytes would have to
be encoded to 512 bytes. So, the data fields use another encoding
scheme called six bit that maps 256 bytes to 342 bytes instead. A litt le
more complicated, the six-bit scheme gives 16 tracks per sector.

Like the address fi eld, the data field has a prefix of three bytes,
encoded contents, and a suffix of three bytes. The prefix for data
fields is $D5, $AA, and $AD; the suffix is the same: $DE, $AA, and
$EB. The contents are encoded as six bits of data and a checksum. See
Fig. 7-5.

Here's how the sixbit encoding scheme works. The 256 bytes are
converted to 342 bytes that have bits 7 and 6 in each byte as zero.
These six-bit values are in the range from $00 to $3F. A table called
the Write Translate Table (see Table 7-9) looks up a unique legal byte
for each six-bit value. Consider the following example.

420 Apple® Programmer's Handbook

SIXBII
EHCOOEO

I
SUffiX

I

Fig. 7-5. Sector dal:1 fields.

The negative-ASCII string "HELLO" has the six values: $C8, $C5,
$CC, $CC, $CF, $AO. Write in binary and regroup the bits in chunks
of six each:

$(8 110010 00
$(5 11000101
$((11 001 100
$CC 110011 00
$CF 11 00 1111
$AO 1 0 1 00000

Write each group of six bits as a byte of two zero bits and six data bits:

00110010 = $32
00001100 = $0(
00010111 = $17
00001100 = $0(

-

-

-
-

Disk Operating System 421

Table 7-9. Write Translate Table

Six bit Code Six bit

00 96 10
01 97 II
02 9A 12
03 9B 13
04 90 14
05 9E 15
06 9F 16
07 A6 17

08 A7 18
09 AB 19
OA AC lA
OB AD IB
oc AE IC
OD AF lD

OE B2 IE
OF 83 IF
20 06 30
21 07 31
22 09 32
23 DA 33
24 DB 34
25 DC 35
26 DO 36
27 DE 37
28 OF 38
29 E5 39
2A E6 3A
2B E7 3B
2C E9 3C
20 EA 3D

2E EB 3E
2F EC 3F

NOTE: AA and 05 are reserved codes .

00110011 $33
00001100 = $0(
00111110 = $3E
00100000 = $20

Code

B4
B5
B6
B7
B9
BA
BB
BC
BD
BE
BF
CB
CD
CE
CF
03
ED
EE
EF
F2

F3
F4
F5
F6
F7

F9
FA
FB
FC
FD
FE
FF

422 Apple® Programmer's Handbook

The six values are now mapped to eight six-bit values having the same
bit sequence. To get byte values that can be put on disk, use a table in
RWTS called a Write Translate Table and lookup each byte to get:
$EF, $AE, $BC, $AE, $F2, $AE, $FE, and $06. These are the six bit
encoded values of the ASCII string "HELLO".

To transform raw data back to original values, the process is
reversed. First, use a table called the Read Translate Table in R WTS
to lookup the six-bit value for each encoded byte. Then regroup the six
least significant bits from each six-bit value together to form eight-bit
bytes. From 242 bytes of sixbit you will get 256 bytes of eight-bit data
bytes.

Each bit is read or written to the disk in four microseconds. With
the disk rotating at 300 revolutions per minute, this provides a
capacity of about 50,000 bits per track. Each eight-bit byte can be
accessed in 32 microseconds in this system. Although the bytes are
used in the Apple with a crystal-controlled clock, remember that the
bits on disk are clocked from the recorded pulses on the disk. For this
reason, constant synchronization must be made.

The first method to ensure synchronization is to provide clock
pulses interleaved with the data bits on the disk. Each bit is recorded
as a cell consisting of one clock pulse followed by the data bit. A one
bit will be represented by two pulses, clock and data. A zero bit will be
represented by one pulse, clock only. Each of these bit cells is four
microseconds: two microseconds for the clock pulse and two micro
seconds during which a bit of data is defined as pulse/no pulse. The
data stream then is interleaved with clock pulses that the hardware
must separate in order to read.

To separate clock and data, the hardware needs two conditions met.
First, there can be no more than two zero bits consecutive. Second, all
bytes must start with a one bit as bit 7.

When it starts reading a track, there is no way of knowing where it
is. The first bits are arbitrarily shifted into a byte latch even though
the odds are one in eight of being the start of a byte. However, if it
looks for sync bytes, then it checks to see that all bits are on. If any bit
is off, then it tries again with the next bit. After several tries, this
synchronizes the byte reading to give true bytes.

The situation is similar when writing. A byte must be supplied each
32 clock cycles. If a longer time is taken, then zero bits are written.
The one case where this is done deliberately is in the routine that
creates the sync bytes. It writes an $FF, then wastes enough time for

r"
I

-

-

....

Disk Operating System 423

two zero bits to get written before writing the next $FF. But normal
reading and writing of bytes is done in 32-cycle loops. See Fig. 7-6.

Within the bytes, the hardware can stay synchronized with clock
pulses interleaved with data bits. For longer times, the sync bytes must
align the hardware to read and write bytes that agree with the sector
fields.

- 4ps-~ 4ps-l-4ps-r-4ps-r 4ps-l-4ps-l-4ps-l-4ps-
1-------------------32~--------------------l

Fig. 7-6. Example of disk data byte (value $87).

7.2 PROTOCOLS

7 .2.1 Command

The protocol you already know is the highest level you can use. You
use these DOS commands in one of three ways. First, you can handle
entire files at a time using BLOAD, BRUN, BSAVE, CHAIN,
DELETE, EXEC, LOAD, LOCK, RENAME, RUN, SAVE, UN
LOCK, and VERIFY. Second, you can manipulate files in detail by
working within their structures, their records and fields. The com
mands you use to manipulate text files this way are: APPEND,
CLOSE, OPEN, POSITION, READ, and WRITE. And third, you
have some universal housekeeping commands: CATALOG, FP, IN#,
INIT, INT, MAXFILES, MON, NOMON, and PR#. All three types
of commands are summarized in Table 7-10 which also lists their
syntax.

Each command is more or less independent of the others in the
sense that you can use them in turn without much more than a rough
idea of what they do. The exception is the second group which is the
file structure commands.

In this section, you can find each command described in alphabetic
order; the file manipulation commands are described at the end in a
separate group.

BLOAD f {,Aa} {,Ss} {,Dd} {, Vv}

424 Apple® Programmer's Handbook

Table 7-10. DOS Command Syntax

Command Syntax

APPEND f, Ss, Dd, Vv, Lj

BLOAD f, Aa, Ss, Dd, Vv

BRUN f, Aa, Ss, Dd, Vv

BSAVE f, Aa, Lj, Ss, Dd, Vv

CATALOG Ss, Dd

CHAIN f, Ss, Dd, Vv

CLOSE f
DELETE f, Ss, Dd, Vv

EXEC f, Rr, Ss, Dd, Vv

FP Ss, Dd, Vv

IN# s

INIT f, Ss, Dd, Vv

INT

LOAD f, Ss, Dd, Vv

LOCK f, Ss, Dd, Vv

MAXFILES n

MON C, I, 0 ~
I

NOMON C, I, 0

OPEN f, Lj, Ss, Dd, Vv

POSITION f, Rr

PR# s

READ f, Rr, Bb

RENAME f, g, Ss, Dd, Vv

RUN f, Ss, Dd, Vv

SAVE f, Ss, Dd, Vv

UNLOCK f, Ss, Dd, Vv

VERIFY f, Ss, Dd, Vv

WRITE f, Rr, Bb

f, g == file names
s == slot: 1 to 7 -d == drive: 1 or 2
v = volume: 0 to 254
r = record: 0 to 32767
j = record size: 1 to 32767
b = byte number: 0 to j
a = stan/load address (note: hex number prefixed $)

i
:

-

-

-

-
-

-

Disk Operating System 425

Loads a binary file. You can override the start address of the file
with the A option; for example,

BLOAD CHARACTERS,A$4000

loads the file at $4000 regardless of the file's own start address
parameter. You can't a lter the length, however.

What you can do is find the start address and length of the
BLOADed file. Call this routine immediately a fter the BLOAD, be
fore any other DOS command is used:

JSR $03DF get File Manager parameters
STY $40
STA $41
JSR CROUT output a CR
LDY #$08 point to address parameter
JSR HEX OUT and output it.
JSR PRBLNK three spaces out
LDA #$06 point to length parameter
JSR HEXOUT and output it .
JMP CROUT output a CR and return

HEX OUT LDA ($40}, y low byte
TAX
INY
LDA ($40). y high byte
JMP PRNTAX print them and return

The routine uses Monitor routines from C hapter Two.

BRUN f {,Aa} {,Ss} { ,Dd} {, Vv}

Loads a binary fi le, just like the BLOAD command. When finished
with the load, it transfers control to the new loaded file instead of re
turning. The file must have program code at its start address even if it
is only the three bytes of a JMP instruction. The load address is
optional, just like the BLOAD command.

426 Appl~ Programmer,s Handbook

BSA VE f,Aa,Ll { ,Ss} { ,Dd} {, Vv}

Saves a binary file. If the file is new, a directory entry is created.
The file name, start address, and length are mandatory; the slot,
drive, and volume are optional. The start address you give must be the
first location of the binary image in memory and becomes the default
load address. Remember, if you are making a binary HELLO file, you
must alter the DOS as described earlier; the patch is

9E42: 34

made to DOS before the INIT command.

CATALOG {,Ss} {,Dd}

Displays most of each directory entry. As mentioned earlier, beware
of hidden characters, or the CATALOG won't reveal the file names.
Also, files using more than 256 sectors will show only the low byte of
the file size: a number from 000 to 255 even though the directory size r'
is larger.

CHAIN f {,Ss} {,Dd} {,Vv}

This works like a program RUN command but without clearing the
variables of the current program. The idea is to link program segments
together with common data when a program can't fit into memory.
The program is broken up into smaller programs, or segments, as they
are often called, and each one can (theoretically) CHAIN to any of the
others without destroying the current variables' data.

In practice, it works with Integer BASIC which keeps its strings in
the variables and the variables in a separate memory area. With
Applesoft BASIC, chaining has bugs due to the keeping of variables in
the same area as the program. Apple lie has an improved CHAIN
routine on their System Disks that can be run as a binary routine to do
CHAINing.

r

-

-

Disk Operating System 427

A more satisfactory solution would be to BSA VE your data
between programs. Use the information in Chapter Four. Or, you can
write the data out to a data file to be read by the other programs in
your system. Unfortunately, these solutions require program planning
which is usually lacking in situations where CHAINing is asked for.
Try and rewrite the mess as a designed, disk-based system instead.

DELETE f {, Ss } {, Dd } {, Vv }

Removes the file from disk by zeroing the track number of the link
in its directory entry. The old track number is put into the last byte of
the file name. The sectors used by the file are freed by turning on the
bits in the Track Bit Map in the VTOC. Immediately after a DELETE,
the information is not lost even though the directory and storage
spaces have been released.

To un-delete a file, you must get to it in time with either an UNDE
LETE or a DISK ZAP utility, otherwise the space will be reused,
wiping out the old file data. Find the file name by searching the direc
tory in 17/15, 17/14, etc. When found, restore the track number from
the last byte of the file name. Blank ($AO) that last byte. Then, write
down the location of the TSL. Replace the directory sector and read
the TSL. Copy down all the TSL entries. Read in the VTOC from
17/0 and turn off the bits in the Track Bit Map corresponding to your
list. Save the rebuilt VTOC. The file should be intact if you were care
ful, but try and copy it to a new disk just in case. In fact, you should
be able to rebuild the disk on a copy with FlO for backup.

EXEC f {,Rr} {,Ss} {,Dd} {,Vv}

Generates keyboard commands by reading a data file. You can keep
common command sequences in a text file, then EXEC that file in
stead of re-typing the sequence each time. Use a text file line editor
like the one in Apple's Toolkit. Or use the commands to OPEN,
WRITE, and CLOSE to create it from a program. The editor method
is easiest to write and maintain.

An easy way to edit BASIC program files is by capturing them to a
text file and using the features of a text line editor to maintain it. The
Capture Algorithm

428 Appl~ Programmer's Handbook

0 PRINTCHR$(4)"0PEN CFILE" :PRINTCHR$(4) " WRITE CFILE" :
LIST 10,32767:PRINT CHR$(4)"CLOSE " :END

in a file called CAPTURE can be EXECuted by

EXEC CAPTURE
RUN

with the program in memory. The text file called CFlLE is created
which you can edit. Then, EXEC CFILE to get it back as a program in
BASIC.

FP {,Ss} {,Dd} {,Vv}

If Applesoft is not currently in memory, then it will be bank
switched in an attempt to find it. If unsuccess ful, DOS then tries to
load and run a program in Integer called APPLESOFT from the cur
rent disk. If this fails you get a FILE NOT FOUND error.

This FP command may be implied at boot time. If the HELLO pro
gram is in Applesoft and the Apple has only Integer BASIC resident,
then a n FP implied command is executed. For this reason, Apple DOS
Master System disks have an Integer program called APPLESOFT
that loads FPBASIC into memory. When APPLESOFT is ENDed,
the HELLO program is run, completing the boot.

Regardless of how it is called, the FP command fini shes by cold
starting Applesoft.

IN# s

This command preempts the Monitor command keyword in BASIC
of the same name. It sets the input hook within DOS according to the
slot number , s, as $Cn00. If s is zero, then the keyboard input is used.
See Chapter Six for details on the way the hooks work.

INIT f {,Ss} {,Dd} {, Vv}

-

-

-

-
-
-

Disk Operating System 429

Creates slave DOS disks. You must have your greeting program in
memory at the time (t) and name it, preferably as HELLO. Just
before calling, you can make the patches described earlier for:

9E42: 34 for Binary HELLO
AE34: 60 to remove CATALOG pauses
BFD3: EA EA EA prevent forced BASIC loads

You get a slave disk with DOS, a VTOC, a Directory, and your
HELLO program. See the layout part of the Disk Map section in this
chapter for more details.

You have to BRUN MASTER CREATE to convert slave disks
made with INIT to master disks. A master disk will bootstrap in old
Apples that have only 16K or 32K of RAM.

INT

See a lso the FP command. The INT command causes DOS to
switch languages to Integer BASIC if it is not already current. If
Integer BASIC can't be found then you get a LANGUAGE NOT
AVAILABLE error.

Once Integer BASIC is found, it is cold started, and any previous
program is lost.

LOAD f {,Ss} {,Dd} {, Vv}

You use th is to load a BASIC program. If the BASIC of the
program isn't in current memory, then memory is switched to try and
find it. If Applesoft is not found, DOS will try to run APPLESOFT in
Integer BASIC from disk first.

When loaded, a ll pointers are reset for the language used. HIMEM
and LOMEM in the case of Integer and TXTT AB and MEMSIZ in the
case of Applesoft are unchanged and used to determine the load ad
dress. The length comes from the first two bytes of the program file as
described in the Disk Map section.

r'l LOCK f {,Ss} {,Dd} {, Vv}

430 App/~ Programmer's Handbook

Using this one flags the file type (bit 7) in the directory entry as pro
tected. You see it as an asterisk - "*" - in the CATALOG display.
When LOCKed, a file cannot be altered by a file managing command,
either from DOS or from the File Manager directly. It won't protect
the file against INIT, which will wipe out the entire disk; only a write
protect tab over the notch on the side of the disk will protect it from
INIT. Same goes for the RWTS writes: they can change any sector on
disk regardless of what may be in one of the directory sectors.

Your best use of LOCK is in file management. For example,
LOCKing a transaction file like a Cash Journal is a great way to show
that the file has been posted to an accounts file(s).

MAXFILES n

A very tricky command. You can change the number of file buffers
from three to another number with this one. It is known more for its
restrictions which you must observe religiously:

Thou Shalt Not . . . set MAXFILES 0. Ordinary-looking com
mands like LOAD need a file buffer.

Thou Shalt Not . . . use MAXFILES in an EXEC file. The
MAXFILES command clears all file buffers, in
cluding your EXEC buffer.

Thou Shalt Not . . . use from within Applesoft after you assign
strings; they will be clobbered by an increase in the
buffers space.

Thou Shalt Not ... use from within Integer for verily thy program
will be clobbered!

There is an Assembler call you can make to MAXFILES to avoid con
tentions with BASICs, $A251, for you to set things up from a binary
HELLO program first.

MON C ,I ,0

Controls the DOS echo to the video display. As commands, inputs,
and outputs are recognized at the DOS hook routine, each may be
echoed to the video display at COUTI. This command lets you turn

~
I

Disk Operating System 431

the echoes ON, individually. The default for DOS 3.3 is for all echoes
to be OFF. Using MON C, for instance, lets you see all commands
that a program issues with a ctrl/D prefix. The MON I lets you see
inputs to DOS from any device currently in its input hook. The MON
0 lets you see any outputs to DOS from your program as DOS writes
them.

Use MON and NOMON when debugging DOS commands, reads,
and writes to see what is getting through.

NOMOM C ,I ,0

Similar to MON, but turns OFF one or more of the three echoes.
NOMON C,I,O is the normal state for DOS 3.3.

PR# s

This command preempts the Monitor command keyword in BASIC of
the same name. It sets the output hook within DOS according to the
slot number, s, as $Cs00. If sis zero, then the video output is used. See
Chapter Six for details on the way the hooks work.

RENAME f,g {,Ss} {,Dd} {,Vv}

Renames a file in its directory entry. Looks up the old file name, f,
in the directory, then replaces it with the new file name, g.

RUN {f} {,Ss} {,Dd} {,Vv}

If a file name is given, does a LOAD of that program file, then a
BASIC RUN command. If no file name is given, then just a BASIC
RUN for the program currently in memory is done. See the LOAD
command for more details.

SAVE f { ,Ss } {, Dd } {, V v }

432 Apple® Programmer's Handbook

If program file of the type of BASIC currently active is not on file, a
new directory entry is created. The BASIC program text is written to
the file. If the file exists as another type, a FILE MISMATCH error
results.

UNLOCK f {,Ss} {,Dd} {,Vv}

Using this one flags the file type by clearing bit 7 in the directory ..._
entry. When the file is UNLOCKed, you can write to it with any of the
commands: DELETE, WRITE, and SAVE. See the LOCK command.

VERIFY f {,Ss} {,Dd} {,Vv}

This does a load of all the sectors of the file to verify that the file is ~
readable. You can VERIFY any type of file.

APPEND f {,Ss} {,Dd} {,Vv}
OPEN f {,Ss} {,Dd} {,Vv}
CLOSE {f}
POSITION f { ,Rr}
READ f {,Bb}
WRITE f {,Bb}

This is the syntax for sequential files access. Each record ends with a
CR character ($80) and has any length. The OPEN puts the position
pointer at the beginning of the file while the APPEND opens the file
and points to the end of the file instead. The CLOSE will close all files
if no file name is given.

The POSITION works two ways. If you give it a record number, it
searches forward that many records to a new file position. So, R is the
key for a relative record number, not an absolute one. For instance, if
you were at Record 34 and you gave DOS

POSITION FILEX, R4

....
i

- Disk Operating System 433

the pointer in the file manager would advance to Record 38. If you
- don't use the R option, the pointer is reset to the beginning of the en

tire file. You do this when you want another pass through the file.

-

....

-

After an OPEN or a POSITION to set the pointer to zero, you can
read and write the current record. Each READ or WRITE enables the
DOS to trap input or output at the hooks. The B option lets you point
absolutely anywhere in the file. For example,

1000 R$= " " : REM GET A RECORD
1010 PRINT D$ " READ"F$",B"STR$(BN)
1020 GET A$:1F A$ = CHR$(13) THEN 1050
1030 R$ =R$+A$: BN = BN + 1
1040 GOTO 1010
1050 BN=BN + 1: RETURN

where R$ is returned as the record, D$ is CHR$(4), F$ is the fi le name,
and BN is the byte number: zero for start of fi le. While BN is in
cremented sequentially here, you can randomly access a sequential
file, one byte at a time, by setting BN anywhere in the file you wish.

OPEN f, Lj {,Ss} {,Dd} {, Vv}
CLOSE {f}
POSITION f {,Rr}
WRITE f {,Rr} {,Bb}
READ f {,Rr} {,Bb}

This is the syntax for random access. Like sequential records, each
ends with a CR character, but unlike them, a ll records must have the
same length. Otherwise, the files are the same. To open, you must
declare the record size as j. The record size includes all delimiters,
especially the CR.

The POSITION works the same way as in the sequential access
case; it is rarely used in random access.

Normally, READs and WRITEs use the R option without the B.
This selects the record number, Record Zero being the first one. The B
option points to the byte relative to the record. For instance,

PRINT D$ " READ" F$"RO,BO"

434 Appl~ Programmer's Handbook

or

PRINT O$"REA O"F$"RO"

are equivalent and point to the beginning of the file. Similarly,

PRINT O$" REAO"F$"R5,81"

points to the second byte of the sixth record. This is the result of the
calculation:

pointer = b + j*r

7 .2.2 File Manager

Normally you use the File Manager with calls from DOS: com
mands like OPEN or READ. You can only OPEN and handle records
in text files but by calling the File Manager directly, you can work with
other file types as well. Not only will File Manager calls let you write
manipulation programs like FID but you can develop your own access
methods for easier file handling. The call to File Manager is provided
in Page Three; you can make a simple JSR there.

The heart of your calls to the File Manager involves passing it your
parameters by reference in the registers:

LOA
LOY
JSR
BCS

#< PARMS
#> PARMS
$306
ERROR

address high
address low
Fi le Manager

In case of errors, the error code is in the eleventh byte (Byte $0A) of
the parameter block, PARMS. If you kept a Page Zero pointer to the
parameters, you could use the call:

LOA ZPARM + -
1 address high

LOY ZPARM address low
JSR $306 File Manager
BCS ERROR

-

-

-
-
-

Disk Operating System 435

Before each call, you must be sure all parameters needed are in the
,. block you reference. Use Tables 7-11, 7-12, 7-13, and 7-14.

Table 7-lla. File Manager Syntax
Byte

Operation 00 01 02 03 04 OS 06 07 08 09 OA OR OC OD OE

OPEN 01 - j j v d s f n n e - b

CLOSE 02 - - - - - - - - - e - b

READ 03 m r r y y I 1 k k e - b

WRITE 04 m r r y y I 1 k k e - b

DELETE OS - - - v d s - n n e - b

CATALOG 06 - - - - d s - - - e - b

LOCK 07 - - - v d s - n n e - b

UNLOCK 08 - - - v d s - n n e - b

RENAME 09 - g g v d s - n n e - b

POSITION OA - r r y y - - - - e - b

I NIT 08 p - - v d s - - - e - b

VERIFY oc - - - v d s - n n e - b

Table 7-llb. File Manager Syntax

aa = Address of file data buffer

bb = Address of file status buffer

d = Drive number

e = Error return code

f = File type code

gg = Address of new file name

jj = Record size(random) or $0000(sequential)

kk = Data transfer value(SINGLE) or address(RANGE)

11 = Data transfer length(RANGE)

m = Mode: SINGLE, RANGE, POSITION/SINGLE,
POSITION/RANGE

nn = Address of file name
p = Page of DOS start, usually $9D

rr = Record number(random) or $0000(sequential)

s = Slot number

tt = Address of file TSL buffer

v = Volume number
yy = $0000(random) or byte offset(sequential)

b I

b I

b t

b I

b I

b -
b t

b I

b t

b -
b -
b t

OF

I

t

t

t

t

-
t

t

t

-
-
I

10 II

a a

a a

a a

a a

- -
- -
- -
- -
- -
- -
- -
a a

436 Apple® Programmer's Handbook

Table 7-12. Read/Write Modes

Byte $01: 01 is SINGLE. One byte of data is read/written as the value in
Byte $08.

Byte $01: 02 is RANGE. A range of bytes is read/written so its address is
in Bytes $08.09 and its length is in Bytes $06.07.

Byte $01: 03 is POSITION/SINGLE. The current position is set to the
record number in Bytes $02.03 offset by Bytes $04.05. Then one
byte is read/written as the value in Byte $08.

Byte $01: 04 is POSITION/RANGE. The current position is set to the
record number in Bytes $02.03 offset by Bytes $04.05. Then a
range of bytes is read/written so its address is in Bytes $08.09
and its length is in Bytes $06.07.

Table 7-13. Error Return Codes ..,
00 No error, C-flag clear

01 Unused

02 Illegal op code, Byte $00

03 Illegal mode, Byte $01 ~

04 Write protect error

05 End of file

06 File not found ~

07 Volume mismatch

08 Disk 110 error

09 Disk full -OA File locked

Table 7-14. File Type Codes

Code File

00 Text

01 Integer

02 Applesoft

04 Binary

08 S-type

10 Relocatable

20 A-type

40 B-type

r

Disk Operating System 437

The main difference between using the File Manager through DOS's
command interpreter and using it directly is in the managing of file
buffers. Each file you want to access must have four buffers of
various sizes for the File Manager to use. Two of these buffers are 256
bytes each: one page for a data sector and one page for a TSL sector.
Then a 30-byte buffer must hold the file name and a 45-byte buffer be
given to the File Manager to keep the status of the file. When it is off
working with other files, this file must be remembered so that the next
time you reference it, File Manager can recall its status (see Fig. 7-7).
It sets up the status when you OPEN the file. So, to provide these buf
fers, one way is to reserve space in your program:

DATAl
TSLl
STATl
NAME I

DS 256
DS 256
DS 45
DS 30

file 1 data
filet TSL
file 1 status
file 1 name

And, similar declarations for any other files.

FIL£
BUFF£R

DATA

TSL

MISC INFO

r--------------------------------------,
I
I

:
I
I
I

I

L-------------------------------------
Nate: See explanation ol Fi&- H

below.

~ Fig. 7-7. How lhe file manager works.

438 Appl~ Programmer's Handbook

HOW THE FILE MANAGER WORKS

Any one of your routines, or the DOS command interpreter,
can call the FILE MANAGER at its Page Three JMP location at
$3D6. A list of parameters must be given with its address in the
Y -reg(lo) and A-reg(hi) at the time of call. This PARMS list tells
FILE MANAGER what to do and gives it the pointers to the file
buffer: to the DATA buffer, to the TSL buffer, and to the status
location in the MISCINFO.

The FILE MANAGER reads the parameters to find out what
to do. The parameters tell it where the DATA buffer, the TSL
buffer, and the STATUS buffer are to be found. It uses the
STATUS buffer to store its file status between calls. It accesses
the disk and keeps buffers for the VTOC, the DIRECTORY, the
TSL, the DATA, and for each file.

The FILE MANAGER reads and writes to the disks, one sec
tor at a time. Interpreting its op code, it searches the disk for in
formation, changes it, and returns the updated sectors to disk. It
uses the VTOC and DIRECTORY to manage the files that it
manipulates with its buffers. Each disk access is made using a
Read/ Write Track/ Sector (RWTS) routine, described later on in
this chapter.

Here's how to OPEN a file directly. With the space declared for
buffers and another block of 17 bytes for your parameters, set each
parameter byte:

Byte
Bytes
Byte
Byte
Byte
Byte
Bytes
Bytes
Bytes
Bytes

$00
$02.03
$04
$05
$06
$07
$08.09
$0C.OD

$0E .OF
$10.11

$01, the op code for OPEN
length of fixed record; zero otherwise
volume, zero for any vo lume
drive : $01 or $02
slot: usually $06
fi le type , use Table 7.
address of fi lename :buffer
address of status buffer
address of TSL sector buffer
address of data sector buffer

If you are opening a new fi le, then byte $07 must be set to your file
type. Before calling the File Manager, set the X-reg to zero: this wi ll

-

-
-

-

-

....

....

.....

.....

Disk Operating System 439

tell it to allocate a new directory entry for you. And, you must have a
file name in the file-name buffer for any kind of OPEN. If you are re
OPENing an existing file, then byte $07 need not be set. You should
set the X-reg to a nonzero value to inhibit the creation of a directory
entry, just in case the file isn't found .

After calling the File Manager to OPEN your file, you can get the
type of the previously created file you are re-OPENing from byte $07:
File Manager returns it to you. If you have an error, interpret Byte
$0A, the error code .

Once the file is OPENed, you should immediately do a POSITION
call to point File Manager to the first byte. Use the same parameters as
OPEN except for:

Byte $00 $0A, OP code for POSITION
Bytes $02.05 all zeros

Such a call is called a REWIND by analogy to the rewinding of a tape
to the beginning of a file.

Similarly, you can CLOSE the file when you are finished with it. All
files that were OPENed must be CLOSEd:

Byte
Bytes
Bytes
Bytes

$00
$0C.OD
$0E .OF
$10.11

$02, the CLOSE OP code
address of status buffer
address of TSL buffer
address of data sector buffer

Throughout the time a file is OPEN, you must maintain its buffer ad
dresses for future calls, up to and including the CLOSE.

When DOS uses the File Manager, it assigns its buffers from the
three at $9600.9CF8 - see the DOS memory map in Chapter Two.
You can get a closer look at these three buffers in Fig. 7-8.

Each buffer is 595 ($253) bytes in size. There are two full page buf
fers in each for the data sector and the TSL sector of its file. The re
maining 83 ($53) bytes are called MISCINFO for miscellaneous infor
mation and contain the file name and status buffers. And,
MISCINFO has some pointers.

Looking at the one DOS buffer a little closer (Fig. 7-9) you can see
what the MISCINFO is all about. The two small buffers for the file
status (45 bytes) and the fi le name (30 bytes) complete the File Mana-

440 Apple® Programmer's Handbook

DOS

S9CF8
MISC INFO 1

TIS LIST 1

$253

DATA 1

S9AA6
MISC INFO 2

T/S LIST 2

$253

DATA 2

S9853
r.IISC INFO 3

T/S LIST 3

S253

DATA 3

S9600

USER
PROGRAM

Fig. 7-8. Three DOS buffers.

ger's needs for a single file's buffers. Then there are the four pointers
at the highest addresses of MISCINFO. Three of these point to the
status, TSL, and data buffers for this file. The fourth pointer is a link
to the next buffer - it points to the file name of the next file buffer.

The buffers are all linked together in a chain. The first buffer is
pointed to from $9000.9001 which is the beginning of DOS. It in turn
points to the file name buffer in the next file buffer. This second buf
fer points in turn to the third. The third one is usually last, so it has
zeros in its link pointer.

The number of buffers and the pointers in each are setup by the
MAXFILES command. From assembly language you set the number
of buffers at $AA57, the first pointer value at $9000.9001, then JSR
the MAXFILES command at $A251. The first pointer must be at least
38 bytes below the highest location occupied by the buffers. It points

,...
I

-

-

RELATIVE
ADDRESS

000

100

100

1
11D

14B
24D
14C
151

-

FROM PREVIOUS BUfFER
OR 59000

FILE DAIA
BUFFER

156 BYlES

IRACII/SECTOR LIST
BUFfER

156 BYTES

FILE STATUS
45 BYTES

FILE NAME I 30 BYTES

Fig. 7-9. One DOS buffer.

I
I

Disk Operating System 441

TO NEXT
BUFFER

MISC
INFORMATION

to the fi le name which occupies 30 bytes and is fo llowed by four
pointers in eight more bytes. To have three buffers that begin on a
page boundary at $9600, the pointer in $9D00.9DO I is set to $9C

Regardless of whether you alter MAXFILES, DOS wi ll search
through the buffers beginning with the pointer at $9DOO and ending

...,. when the next file pointer is zero.

-
-

Instead o f making your own file buffers, you can use the regular
DOS buffers. Here's how.

There are two routines that will search the buffers. One is at $A 764;
it returns the address of the buffer in Page Zero at $44.45 (with $45
zero if none a re free). Another uses two calls th at you can make in
your own search routine:

GETBUF JSR $A792 point to first
GETB1 LOY #0

LOA ($42),Y zero filename?

442 Appl~ Programmer's Handbook

BEQ
JSR
BEQ
BNE

FOUND
$A79A
NONE
GETB1

yes ... buffer free
no ... point to next
end of chain?
no ... loop

The second BEQ tests for the end of the chain of buffers: the pointer
in $42.43 is zero then. Of the two exits to this routine, FOUND has the
address of the free buffer in $42.43. This address is for the file name,
so you can load it with yours to claim the buffer for yourself.

With the pointer in $42.43, copy your 32 byte file name into the buf
fer. This name should have blanks to fill up the entire 32 bytes; don't
leave garbage in with your file name.

Now you can start building the parameter list for your file. Put its
address in $40.41 and you can call $AF08 to set the addresses of the
buffers in it. Then set your parameters in bytes $00.07 as before. The
rest of the call sequence is just like the case of using your own buffers.

When you close the file, you must release the buffer back to DOS.
This is easy: just zero the first byte of the file name. When the file is
OPENed, you should save the file name pointer from $42.43 because
the copy in the parameter list won't remain. At CLOSE then, you can
recall it:

LDA FILB1 + 1
STA $43
LDA FILB1
STA $42
LDA #0
TAY
STA ($42),Y

get file buffer
pointer and put
into $42.43

zero first byte
of file buffer
filename

immediately after you CLOSEd the file.
To summarize, here is what you need to open, close, and rewind

files . To open a file, attach a buffer with a GETBUF type routine,
copy the file name into the buffer, save the buffer pointer, copy the
buffer pointers into your parameter list, and call the File Manager to
OPEN the file on disk. Normal OPENs should be followed with aRE
WIND call that zeros the bytes $02.05 of the file's parameter list.
Then, call File Man ager to POSITION its pointer. When you close a
file, call File Manager with its parameters. Include a buffer release in

-

-

-

-
-

Disk Operating System 443

your CLOSE routine, immediately after the CLOSE call to zero the
first byte of the file name buffer.

You can access OPENed files with the READ and WRITE op
codes. When you used DOS commands to do this, with text fi les, you
could choose either random or sequential file access. To do the same
thing with the File Manager yourself, you need to know about the
read/ write mode - a File Manager parameter - in Byte $01. By se
lecting the value of the mode, you can access your file either randomly
or sequentially .

To read a Data file sequentially, set

Byte
Byte
Bytes
Bytes
Bytes

$00:
$01 :
$02 .03:
$04.05:
$0C.11 :

$03, the READ opcode
$01 , the SINGLE mode
reco rd number, reset zero by REWIND
byte offset, reset zero by REWIND
addresses as set by OPEN sequence

The single byte is returned to you in Byte $08. If the end of file was
found, the return code in Byte $0A will be $05; you must test each of
your READs for this. The byte offset in $04.05 will be bumped by one
count for each READ or WRITE that you make. You can buffer your
reads into records by testing the text character for $8D which is the
carriage return character that separates records.

To write a sequential data file, you can first search the file for the
end-of-file return code in $0A with the sequential read procedure.
This will APPEND your writes to the end of the current file. Assum
ing you have an entire record to write from the input buffer at Page
Two, set

Byte
Byte
Bytes
Bytes
Bytes
Bytes

$00:
$01 :
$02.05:
$06.07:
$08.09:
$0C.1 1:

$04, the WRITE op code
$02, the RANGE mode
pointers, reset by REWIND routine
number of bytes t o write, less 1
address of bytes t o write
addresses as set by OPEN sequence

Using the RANGE mode avoids having to write a loop when you want
to read an entire buffer. Be careful of the number of bytes in bytes
$06.07, however. You must set it to the number of bytes for READ op
codes but to the number of bytes less one for the WRITE op codes.

444 App!e0 Programmer's Handbook

The number of bytes includes the carriage return character $80, so
you must be sure that it is there. For writing sequential records, set the
number of bytes in bytes $06.07 to the record length that you have
without a carriage return; make sure the carriage return is appended to
the record as it will be written. For example, a record of fifty bytes
must be written with fifty-one bytes, fifty characters a nd a $80. A
fifty ($0032) must be put in bytes $06.07. The $80 is in $0232, the
fifty-first cha racter o f the record.

Random access by calling the File Manager is just as easy. When n
OPENed, you will have declared the number of bytes in each record,
including th.e return character $80, in bytes $02.03. So, you can access
the file to read a record by:

Byte
Byte
Bytes
Bytes
Bytes
Bytes
Bytes

$00:
$01 :
$02.03:
$04.05:
$06.07
$08.09
$0C.11

$03, the READ op code
$04, the POSITION/RANGE mode
Record Number: 0 . .. $7FFF
$0000, the byte offset
record length
record buffer address, e.g ., $0200
addresses as set by OPEN sequence

The POSITION/ RANGE mode implies a POSITION followed by a
READ. This way, you only need one File Manager call to point to the
record given in bytes $02.03. Since you have fixed length records, the
posi tion is easily calculated a nd the record is read to your given
buffer. The length in bytes $06.07 is used to set the size o f the record
read while the position is calculated from the record length you
specified back in the file's OPEN sequence. T he two should be the
same in most applications, but remember that F ile Manager uses them
for these two different purposes.

Wri ting random is much the same. You use the same POSI
TION/ RANGE mode but with the WRITE op code this time:

Byte
Byte
Bytes
Bytes
Bytes
Bytes
Bytes

$00:
$01 :
$02 .03:
$04.05:
$06.07:
$08.09
$0C.11

$04, the WRITE op code
$04, the POSITION/RANGE mode
Record Number
$0000, the byte offset
record length less one
record buffer address, e.g. , $0200
addresses as set by the OPEN sequence

-
n

-

Disk Operating System 445

Notice that the value you use in bytes $06.07 is one less than the true
number of bytes written. This is the case for all WRITEs, as explained
before with sequential writes.

With either READ or WRITE, whenever you want random access
to a record, put the record number in bytes $02.03 and always zero
bytes $04.05 before each call. After the call, the byte offset is
advanced by the File Manager to point to the next byte. Occasionally
this feature may be used, but for most calls, you'll want to zero it with
each call.

With the various op codes and modes directly available you can
access files any way you want. In addition to the text file type, you can
access files of other types using these File Manager calls. You can
OPEN, READ, WRITE, and CLOSE program files or binary files in
just the same way. Just keep the format of the file in mind and read
the parameters when you OPEN the file.

In the case of program files - A and I types - you must first read
in the beginning two bytes and store them in RAM as the length. Then
you can load the file either at its normal BASIC load point or any
where else you want using the length you have as the bytes $06.07 for
the READ call. You don't have return characters, $8D, to separate
records in program files; refer to the description of the BASIC text in
either Chapter Four or Five.

For binary file types, you can first read the address and length as the
first four bytes of the file. You then can read the entire file as one
range using the address and length parameters. Again, you can read it
in anywhere in RAM you wish; in part or in whole.

Programs you write to read other programs into memory this way
are called loaders. With File Manager, you can make your own cus
tom loader, perhaps as a binary HELLO program. For some applica
tions, you may want to create program or bi~ary files. You must write
two bytes as the length of your program file at the beginning. And,
write the start address and length of a binary file you create as its first
four bytes just like DOS does.

The File Manager has all the file handling operations in addition to
the OPEN, CLOSE, READ, and WRITE. See the syntax in Fig. 7-7
for the parameters that each requires. Most of these parameters are
the same ones you use when giving DOS the corresponding com
mands. Buffers are needed. You always get the carry flag to warn of
error return code, and you get the code in byte $0A, just like the ones
already described.

446 Appl~ Programmer's Handbook

7.2.3 Read/ Write Track/ Sector

The Read/ Write Track/ Sector routines let you access the disks di
rectly. You can read and write to individual sectors anywhere on a
disk, you can format disks, and you can position the read/ write head
to any track for special access methods. Most usage of RWTS routines
are handled for you from Page Three call sequences, so you can write
programs that are independent of the DOS memory locations.

Like the File Manager, RWTS has two Page Three call sequences.
One fetches the address of the parameters; the other calls the RWTS
routine itself. When you write

JSR $03E3
STY $48
STA $49

get lOB

you get the address of the parameter list called the Input-Output Block
or lOB. Here it is put into $48.49 which is the same location in Page
Zero that R WTS uses itsel f. By varying the Y -register from $00 to $10,
you can set the parameters as you need for your call. Then,

JSR $03E3
JSR $0309
BCS ERROR

get lOB
call RWTS

performs the operation you specified: READ, WRITE, POSITION,
o r FORMAT. Like File Manager, the RWTS returns the carry flag set
if it found an error. See Table 7- I 5 for a full summary of the lOB
parameters.

When you finish using R WTS and before you return or use the
Monitor again, you must zero location $48 in Page Zero. There is a
conflicting usage, and the Monitor thinks a nonzero value there is a
saved P-reg. You can't avoid the conflict because RWTS itself uses
$48.49 as the lOB pointer.

You can of course use your own lOB instead of the one in DOS. If
you do, then you must set the Y -reg to the low byte of its address and
the A-reg to the high byte immediately before the call to RWTS:

-

-

-

-

-

Byte

00

01

02

03

04

05

06.07

08.09

OA

OB

oc

OD

OE

OF

10

Disk Operating System

Table 7-15. Input/Output Block

Contents

$01, always

Slot• J6. Example $60

Drive: $01 or $02

Volume: $0 1 to $FE. $00 is wild.

Track: $00 to $22

Sector: $00 to $OF

Address o f Device Characteristic Table

Address o f Data Buffer

Unused

Bytes, partial sector. Full sector $00

Command: 00 Positio n

01 Read

02 Write

04 Format

Return: 08 Initialization

10 Write protect

20 Volume mismatch

40 Drive 1/0 error

Volume of previo us access

S lo t of previous access • 16

Drive o f previous access

LOA
LOY
JSR
BCS

#< MYIOB
#> MYIOB
$0309
ERROR

get lOB

call RWTS

447

This is probably what you did if you used File Manager with several
files, but most calls to RWTS can be handled easier if you only use the
built-in lOB. This custom lOB call is only for unusual situations; use
the JSR $03E3 method instead .

The thing you change for different RWTS calls is the Data Buffer
address at bytes $08.09. You can keep various kinds of data in differ
ent buffers by changing this parameter. File Manager, for instance,
varies this address to have separate buffers for its current VTOC , Di
rectory sector, and up to three sets of data and TSL buffers. They all

448 Appl~ Programmer's Handbook

use the same lOB; only the buffer pointer need be changed to redirect
the reads and writes.

Here's how to read a sector from the disk. First, get the lOB address
into $48.49 as described above. Then set the parameters as follows:

Byte $01 :
Byte $02:
Byte $03 :
Byte $04:
Byte $05 :
Byte $08.09:

Byte $0B:

Byte $0C:

slot number t imes 16, normally $60
drive number, $01 or $02
volume, $00 to read any volume
track $00 . . . 22
sector $00 .. . OF
Buffer address. This is where your read sector
wil l be placed .
Normally $00, you can set byte count for a par
tial sector instead.
command code, $01 for READ

If you are using your own lOB instead of the system's, you must also
set:

Byte
Byte

Byte
Byte
Byte

$00:
$06.07 :

$0E :
$OF :
$10:

to $01
address of DCT, a Device Contro l Tab le of
four bytes: 00 01 D8 EF for Disk II.
volume number last accessed
slot number times 16 last accessed
drive number last accessed

Upon return from RWTS, you test for error with the C-flag. If set,
you can find the error in byte $0D according to Table 7-15.

Here's how to write a sector to the disk. First, get the lOB address
into $48.49 as described above. Then set the parameters as follows:

Byte $01 :
Byte $02:
Byte $03 :
Byte $04:
Byte $05 :
Byte $08.09:
Byte $0B:

Byte $0C:

slot number t imes 16, normally $60
drive number, $01 or $02
volume number, $00 to writ e any volume
track $00 . . . 22
sector $00 ... OF
Buffer address. This is the data to be written .
normally $00, you can set the byte count for a
partial sector instead.
command code, $02 for WRITE

,...

-

-
-
-

-

Disk Operating System

If you are using your own lOB instead, you must also set:

Byte $00:
Byte $06.07:
Byte $0E:
Byte $OF:
Byte $10:

to $01
address of DCT
volume number last accessed
slot number times 16 last accessed
drive number last accessed

449

Upon return from RWTS, you test for error with the C-flag. If set,
you can find the error in byte $00 according to Table 7-15.

Here's how to format a disk. You get a data disk with no DOS, no
YTOC, and no Directory. Just 35 formatted tracks of 16 sectors each,
wi th the sync bytes and fields written to allow RWTS to access it di
rectly. Use this command call to make data disks for your own direct
access method.

First, get the lOB address into $48.49 as described. Then set the fol
lowing parameters:

Byte $01 :
Byte $02:
Byte $03:
Byte $0C:

slot number times 16, normally $60
drive number, $01 or $02
volume number to create : $00 ... FE
command code, $04 for FORMAT

If you are using your own lOB, you must set:

Byte $00: to $01
Byte $06.07: address of DCT
Byte $0E: volume number last accessed
Byte $OF: slot number times 16 last accessed
Byte $10: drive number last accessed

Upon return from RWTS, you test for error with the C-flag . If set,
you can find the error in byte $0D according to Table 7- 15.

Here's how to position the read/ write head . When you want to
select a given track ahead of time to speed things up or to select the
track for the hardware-level reads and writes, you can positio n the
head to th at t rack without RWTS doing a read or write on its own.
First, get the lOB address into $48 .49 as described. Then set the pa
rameters as follows:

450 Apple® Programmer's Handbook

Byte $01 : slot number times 16, normally $60
Byte $02: drive number, $01 or $02
Byte $04: track number to position $00 . . . 22
Byte $0C: command code: $00 for POSITION

If you are using your own lOB instead of the system's, you must a lso
set:

Byte 00:
Byte $06.07:
Byte $OF:
Byte $10:

to $01
address of OCT
slot number times 16 last accessed
drive number last accessed

Upon return from RWTS, you test for error with the C-flag. If set you
can fi nd the error in byte $00 according to Table 7-15.

Example 7-1 (listed earlier in the chapter) is a Disk Zap program in
Integer BASIC. The routine to call RWTS is put into Page Three using
Lam's method in the mainline. Another routine at $2100 displays the
contents of a buffer at $2000 a half page at a time when called by the
routine at line 14000. These three machine language calls, $E88A,
$0300, and $2 100, are represented at the bottom of the Structure
Diagram in Fig. 7-10.

When run, it gives you an "INITIALIZING" message while Lam's
method sets up the machine language routines at $300 and $2100.
Then a routine at line 29000 displays the commands: Read , Write, List
half the data buffer, Change contents of data buffer, and Quit the
program. Each command has its own routine in the 10000 ... I 99999
line number range. A routine at 1200 parses the track and sector
numbers in the Read and Write commands. The List shows the other
half of the buffer, so you can see the entire buffer by repeated L com
mands to view alternately the $00. 7F and $80.FF halves. The Change
command has Monitor syntax; for instance,

C25:00 01 02

put $00 in byte $25 of the buffer, $01 in byte $26, $02 in byte $27.
It is simple to use as it stands, but you may change it for yourself. In

particular, you can rewrite it in Applesoft BASIC when you key it in if
you don't have Integer BASIC. This lets you simplify some expres
sions and eliminate the CHR$ routine at line 100.

n

-

-
-

~
~

~
L::___j

Fig. 7-10. Disk zap call slruclure.

7 .2.4 Nibble

Disk Operating System 451

The RWTS section contains all the routines to access the disk. The
way it works is by having all disks formatted with their address fields.
Then, any sector is read or written by searching for its address field
and following it by accessing its data field. So, each newly formatted
disk has 35 tracks formatted with sync bytes and 16 address fields. The
R WTS write routines write the data fields one sector at a time onto the
disk from your buffer. Similarly, read routines get the data field from
the disk for the sector you requested and deliver it decoded to your
buffer. You can see how each of the RWTS routines work to do these
accesses.

The routine that writes an address field is at $BC56. You can look at
it there and see how it does the write. It uses the Y -reg as the number
of sync bytes to write first. Then it writes the prefix bytes $05, $AA,
$96. Next the volume, track, sector, and checksum are written, fol-

452 App/f!FJ Programmer's Handbook

lowed by the suffix bytes $DE, $AA, $EB. The format routine in
RWTS calls this one 16 times for each track.

When address bytes are written, they are packed in four bit nibbles
(sometimes spelled nybbles) as described earlier in Section 7 .1.3. The
routine that does this packing is at $BCC4.

When the data field is written, it's a bit more complicated. Not only
must the track be SEEKed, the sector must be found by reading back
the address fields until the one you want is found. Then the buffer you
gave to RWTS must be written in the data field in a special format.
The address field is read at RDADR ($B944) and the data are trans
formed to disk format in two stages, see Fig. 7-11.

$9800
SB82A

SBA29

f'ig. 7-JJ. Writing a data field.

First, the 256 bytes in your buffer are converted to 342 six-bit
nybbles by the PRENYBBLE routine. Then, the sector is found, and
the WRITE routine converts the nybbles to disk format by using the
write translate table to look up the code for each of the 342 nybbles in
PRJ and SEC. The WRITE routine also prefixes the data field with
five sync bytes, then $D5, $AA, $AD. When written, the data field
gets its suffix of $DD, $AA, $EB. The result is your 256-byte buffer
encoded to the data field of the specified sector.

Similarly, RWTS reads a given sector. First, the track is SEEKed
and the sector address field found by using RDADR. Then the data
field is read into the PRI and SEC nybble buffers by looking up the
nybble six-bit values from the coded bytes using the read translate
table at $BA96. See Fig. 7-12. After the READ routine at $B8DC is
finished, the POSTNYBBLE routine at $B8C2 packs the 342 six-bit
nybbles from PRJ and SEC to your 256-byte data buffer.

All these routines are called by the RWTS main routines who see to
it that registers, Page Zero pointers, and the scratchpad RAM in

~

~

~

r
,,

...

Disk Operating System 453

SBBOO

SBA96

Fig. 7-12. Reading a data field.

TEXT1 are given the parameters appropriate to each. RWTS gets
these parameters from the lOB you gave it. You don't have to know
anything about these routines to use RWTS from the lOB level, but
studying how they do each separate task in converting data and
accessing the disk is necessary if you want to work with raw disk
dumps. You can, with practice, learn to get raw disk bytes and
interpret them to recover lost data or explore disk protection schemes.

7 .2.5 Hardware

By addressing the hardware you can read and write directly to the
disk. Bypassing RWTS you can access the sync bytes, address fields,
and data fields in each track without the automatic decoding and en
coding. Here's how.

The hardware is in the DEVICE SELECT address space. For Slot
Six, this is the range $COEO.COEF. You can address the general range
$C080.C08F indexing it with 16 times the slot number instead. This
lets you write slot independent routines, although the examples given
here are for Slot Six only. See Table 7-16.

The addresses $COEO.COE7 control the stepper motor. By turning
on each phase for a certain length of time in proper sequence, the
read/write head can be moved radially over the disk to any desired
track. The routines to do this are a bit complex, so the best way to do
it is to use the SEEK command in R WTS. If you are experimenting
with unusual track arrangements, you can try varying the parameters
in the Device Control Table at $B7FB. See Section 7 .2.3 for the call
sequence.

454 Apple® Programmer's Handbook

Table 7-16. DISK II Device Addresses

Label Address Description

PHASOFF $COEO Stepper motor Phase 0: OFF

PHASOON $COEI Stepper motor Phase 0: ON

PHASIOFF $COE2 Stepper motor Phase I: OFF

PHASION $COE3 Stepper motor Phase I : ON

PHAS20FF $COE4 Stepper motor Phase 2: OFF

PHAS20N $COE5 Stepper motor Phase 2: ON

PHAS30FF $COE6 Stepper motor Phase 3: OFF

PHAS30N $COE7 Stepper motor Phase 3: ON

MOTOROFF $COE8 Drive motor: OFF

MOTOR ON $COE9 Drive motor: ON

DRIVEl $COEA Select Drive One

DRIVE2 $COEB Select Drive Two

Q6L $COEC Strobe data latch

Q6H $COED Load data latch

Q7L $COEE Prepare data latch to read

Q7H $COEF Prepare data latch to write

NOTE: For controller card in Slot Six

You can turn the drive motor on and off easily. After a SEEK, you
must turn it on to keep the disk spinning. Then it is your responsibi lity
to turn it off when finished. The instructions are:

BIT $COE9
BIT $COE8

drive motor ON
drive motor OFF

You can only access one drive at a time. A pair of addresses switch
between the two, so you can select the drive directly by:

BIT $COEA
BIT $COEB

engage Drive One
engage Drive Two

The write-protect tab on the disk is detected by a microswitch
mounted inside the drive. You can read this switch indirectly with this
sequence,

BIT $COED
BIT $COEE
BMI PROTECT

-
-

-

Disk Operating System 455

where PROTECT is the address you want to execute if the write
protect tab was found on the disk. This sequence switches two
transistors: Q6 high and Q7 low to read the protect switch to the high
order bit of the data latch . If the high bit is set, then the disk is being
protected. You must detect this and avoid writing to the disk because
the hardware won't protect the disk.

Other combinations of Q6 and Q7 let you do reads and writes with
the hardware data latch. To read a byte:

VALID
BIT $COEE
LDA $COEC
BPL VALID

input mode
strobe data latch

To be val id, the high-order bit must be on, hence the BPL. The
resulting byte in the A-reg can be tested for $FF with a CMP instruc
tion if you are looking for sync bytes.

To write , you must observe a few precautions. First, you have to
check for a write-protect tab as described above. Then,

BIT $COEF output mode

given to prepare for output. After that , you need a I 00 microsecond
delay before the first write can take place. Writing data must be done
in a 32-cycle loop so that all bytes are written 32 cycles apart. The
A-reg is written by,

STA $COED
ORA $COEC

to data latch
strobe data latch

within the loop. Study the examples that RWTS uses for itself.
There is little need to write directly, however. The direct read may

be necessary to get data from an unreadable format where RWTS re
turns drive errors. Once captured, the data may be extracted by
recognizing the data fields and usi ng the read translate table,
POSTNIBBLE routine, and modifications to decode them. This is
heavy stuff; be prepared to spend some time.

- The Track Dump program of Example 7-2 lets you examine the raw
bytes from any of the 35 tracks on disk. After loading, type

456 App/~ Programmer's Handbook

Example 7-2.

SOURCE FILE: EXAMPLE 7. 2
0000: 1 ******************************
0000: 2 * EXAMPLE 7. 2 *
0000: 3 * *
0000: 4 * T R A C K D U M P * ..
0000: 5 * *
0000: 6 * USE FROM MONITOR WITH THE *
0000: 7 * CTRL/Y COMMAND: *
0000: 8 * (TRACK) < (START) .(END) *
0000: 9 * *
0000: 10 ******************************
0000: 11 * 0000: 12 * 0000: 13 TRACK EQU $00
0002: 14 START EQU $02
0004: 15 END EQU $04
003C: 16 Al EQU $3C MONITOR PAR
MS
003E: 17 A2 EQU $3E
0042: 18 A4 EQU $42
0048: 19 lOB EQU $48
0000: 20 * 0000: 21 * MONITOR CALLS
0000: 22 *
FBDD: 23 BELL! EQU $FBDD

~ FF69: 24 MONZ EQU $FF69
0000: 25 *
0000: 26 *

NEXT OBJECT FILE NAME IS EXAMPLE 7.2.0BJO

0300: 27 ORG $0300
0300: 28 *
0300:A9 4C 29 LOA I$4C THE JMP OPC
ODE
0302:80 F8 03 30 STA $03F8 CTRL/Y VECT
OR
0305:A9 12 31 LOA #>DUMP
0307:80 F9 03 32 STA $03F9
030A:A9 03 33 LOA #<DUMP
030C:8D FA 03 34 STA $03FA
030F:4C 69 FF 35 JMP MONZ ~

0312: 36 *
0312: 37 * FIRST GET PARAMETERS FROM
0312: 38 * THE CALLER AND lOB POINTER
0312: 39 * FROM DOS.
0312: 40 *
0312:A5 42 41 DUMP LOA A4 GET TRACK p

ARM
0314:85 00 42 STA TRACK
0316:A5 3C 43 LOA Al GET START A
DDRESS
0318:85 02 44 STA START
031A:A5 3D 45 LOA Al+l
031C: 85 03 46 STA START+l
031E:A5 3E 47 LOA A2 GET END ADD
RESS ...
0320:85 04 48 STA END

Disk Operating System 457

Example 7-2 Cont.

0322:A5 3F 49 LOA A2+1
0324:85 05 50 STA END+l
0326:20 E3 03 51 JSR $03E3 GET lOB POI
NTER
0329:84 48 52 STY lOB
032B:85 49 53 STA IOB+l
032D: 54 *
0320: 55 * SECOND SET lOB AND CALL
032D: 56 * RWTS TO SEEK THE TRACK.
032D: 57 * 032D:AO 04 58 LDY 1#$04
032F:A5 00 59 LOA TRACK
0331:91 48 60 STA (lOB), Y SET TRACK N
UH
0333:A4 oc 61 LDY $0C
0335:A5 00 62 LDA $00 SEEK COHHAN
D
0337:91 48 63 STA (IOB),Y SET ... 0339:20 E3 03 64 JSR $03E3 GET lOB ADD
RESS
033C:20 D9 03 65 JSR $03D9 CALL RWTS T
0 SEEK
033F:A9 00 66 LOA #10 ,... 0341:85 48 67 STA $48 MONITOR FIX

0343:90 03 68 BCC DUHPl
0345:4C DD FB 69 JHP BELLl ERROR EXIT
BEEPS ... 0348:2C E9 co 70 DUHPl BIT $COE9 KEEP MOTOR
ON
0348: 71 * 034B: 72 * THIRD SEARCH FOR BEGINNING
034B: 73 * OF A FIELD ON THE DISK.

~
034B: 74 *
034B:A2 00 75 LDX 10
034D:2C EE co 76 BIT $COEE SET LATCH T
0 READ
0350:AD EC co 77 DUHP2 LOA $COEC STROBE LATC
H ,..,
0353:10 FB 78 BPL DUHP2 UNTIL BYTE
IS VALID
0355:C9 FF 79 CHP #$FF SYNC BYTE?
0357:DO F7 80 BNE DUHP2 NO •• TRY AGA
IN ,..
0359:AD EC co 81 DUHP3 LDA $COEC LOOK FOR SE
COND
035C:10 FB 82 BPL DUMP3 SYNC BYTE
035E:C9 FF 83 CHP #$FF
0360:DO EE 84 BNE DUMP2 ,...
0362:AD EC co 85 DUMP4 LDA $COEC WE HAVE TWO

0365:10 FB 86 BPL DUMP4 SYNC BYTES!
IGNORE

0367:C9 FF 87 CMP I$FF ANY FURTHER ONES.

458 Appl~ Programmer's Handbook

Exnmple 7-2 Cont.

0369 : FO F7 88 BEQ DUMP4
036B : 89 * 036B : 90 * READ DISK TO MEMORY RANGE
0368 : 91 * GIVEN BY THE CALLER .
036B : 92 * 036B : DO 05 93 BNE DU MP 6 (ALIIAYS)
036D :A D EC co 94 DUMP 5 LOA $COEC READ A BYT E

0370 :1 0 FB 95 BPL DU MP S
0372 : 81 02 96 DUMP6 STA (START,X) PUT BYTE
0374 : E6 02 97 INC START
0376 : 00 FS 98 BNE DU MP S BUMP PIONTE
R
0378 : E6 03 99 INC START+ 1 UNTIL LA ST
PAGE
037A : A5 03 100 LOA START+1
037C : C5 05 101 CM P END+1
037E : DO ED 102 BN E DUMPS
0380 : 103 * 0380 : 104 * ALL DONE : CLEAN UP .
0380 : 105 * 0380 : 2C E8 co 106 BIT $CO E8 MOTOR OFF
0383 : 4C 69 FF 107 JMP MONZ BACK TO MON
!TOR

*** SUCCESSFU L ASSEMBLY : NO ERRORS

300G

to the monitor, to set the ctrl/ Y j ump.
To get any track, you type a monitor comma nd with the ctrl/Y. For

instance, if you want T rack 17, choose a chunk o f memory to contain
it - say, $1000.3FFF. This command is

11 < 1000.4000(ctrl/Y}(CR)

where $ 11 is the track number. In general,

{track} < {start}.{finish}(ctrl/Y)

Another one is given in Example 7-3 . This command fetched Track 17
($ 11) to memory $4000.5FFF. Here is what it shows.

The first th ree bytes, $05, $AA and $96, are the prefix to a n
address field. The next eight bytes then contain the volume, track, sec
tor, and checksum. Then at $4008 you can see the suffix bytes of
$DE, $AA, and $EA. This last byte., $EA, is nominally $EB but is not
veri fied so it can vary somewhat in actual value.

-
-

n
-

-
-
....

Disk Operming Sysrem 459

Example 7-3.

)1(11 <'1000 .60 00

lK'IOOO.'I3FF

'1000- 1)5 AA 96 EE EA AA BE: AB
'1008- AA EF FE: DE AA EA D2 FF
'I Ill II ·· F3 FC FF F F FF FF D5 AA
'1 018- AD A6 AF 9D AE E:3 AF A7
'1020 - AE AE 9D AE AD E:3 9D 9E:
'10 28·· D7 D9 D9 F2 E:5 D6 D9 97
'1113 11 - D6 F Z FZ D6 9E: DO F5 D6
'1038- F 7 A7 96 A7 AE AE 9D AE
'10'10 - 96 A7 A7 A7 A7 AE AE 97
'10'18- D7 06 9E: 9E: 9A 9A EF 9A
'1050 - E:7 EF E:7 EF E:6 E:7 B5 D6
·10513·· '76 96 AE '7D A7 A7 96 A7
'106 0- 9D AE 'ID AE 96 A7 A7 A7
'1068- AC E:Z 82 D7 DA ED 86 CE
'1070 .. FE: A6 A6 A6 9E: 96 96 9b
'1078 - 96 96 9F 9D DA E:A 97 97
·1 080 - 9E 9F.: CD BE 9E: 9F 9F BF
'10 88- BD 9B A6 9 A CF 96 96 96
'109 0 - 96 96 9b 96 96 9b 96 96
'1098- 96 96 96 FC E:9 9E A6 9A
'IOAO - F3 9F 9A 9D 9E BE CE 97
'IOAB·· 9F A6 90 9E CD 96 96 96
' lO BO - 96 96 96 96 96 96 96 96
'IOE:B- 96 96 96 96 96 96 E9 9 0
'lOCO- 9E 90 97 EF 96 9F 9E 9E
'IOC8 - CD BD 9A 9A 9D 90 96 9E

i1
'1000 -· 90 9E CD 96 96 96 96 96
'1008- 96 96 96 96 96 9 6 96 96
'IOEO - 96 E6 9A 9E 9F 9E: EF 96
'IO EI3 - 9F 9E 9E CD CD 9 F 90 A6
'IO FO · 9A A6 CD 96 96 96 96 96
'IOF8 - 96 96 96 96 96 96 96 96

~ '11 00 ·· 96 96 96 96 EA 9E 90 9 F
'1 108·· 9A FZ 97 9E: 9E 9E n :: CD
'111 0- CD 9F 9D A6 9A A6 CD 96
'1118- 96 96 96 96 96 9 6 96 96
'1120 - 96 96 96 96 96 96 96 D6
'11 28- A7 90 9F 9A EF 97 A6 97
'113 0- 96 CE e:D 9B 9E. 9E: A6 96
'1138- 97 9 A E:E 96 96 96 96 96
'11'10 - 96 96 96 96 96 9 6 96 96
'11'18 - 96 '76 E5 97 9D 9E 97 FZ
'1150- 96 9F 9D 9E CD E:D 96 90
'1158- 9E BE 96 96 96 96 96 96
'1160 - 96 96 96 96 96 96 96 9 6
'1 168- 9 6 '76 '76 96 '16 E6 9A 96

~

Look at the contents of the address field . Each two bytes encode
one byte of information as follows: - 1 b 71 bs 1 b 3 1 b 1 1 b6 1 b41 b21 b0

460 Appl~ Programmer's Handbook

The algorithm to decode is to shift left the first byte then AND the two
together. Doing it by hand, you pick o ut the bits in order of signifi
cance and write them:

For instance, ta ke the volume encoded as $EE, $EA. Expanding in
. binary

1110111011101010

then pick out the informative bits,

- 1-0 - 1-0 -1-0 - 0 - 0

then rearrange in order of significance,

11001000

which is $C8, decimal 200. The volume number is 200. You know the
track number is 17 ($ 11), so you can decode the next two bytes, $AA
and $88, yourself and check your result.

After the address field, you can see some "garbage" and $FF sync
bytes before the data field at $4016. The three bytes, $D5, $AA, and
$AD, prefix the data. The data is encoded sixbit, so you must use a
translate table in DOS to convert the codes to sixbit. For instance, you
will notice a lot of $96 codes in the data. The $96 is the code for $00.

The data field ends with the three bytes, $DE, $AA, and $EB, at
$41 70. The next sector follows at $4187 with the prefix to its address
field . And on it goes.

If you decode the sector numbers in these two address fields, you
wi ll find that the first sector is $02 and the second is $03. There is no
way of knowing which sector the command will read first from the
track; you can consider it as a roulette game. In this case it started
with Sector $08 , followed by Sector $09. See the Sector Interleaving in
Table 7-7; Sector $08 is physical sector number $02.

-

-
-

-

-

-
CHAPTER EIGHT

Input/Output

8.1 BUILT-IN 1/0

You can use the built-in 1/0 alone in the case of the speaker, or key
board. For video display, you need a monitor connected from outside.
Similarly for the cassette recorder and various devices that connect to
the games socket: joysticks, relays, pushbuttons, etc. The advantage
to using built-in 1/0 is in not having to use a peripheral card.

8.1.1 Cassette Tape

You can store up to four disks' worth of files on one C-60 cassette
tape. Considering the difference in cost between the two media , tape is
the best choice for archival storage. Use good quality tapes to reduce
the chance of dropout in your recordings. Dropout is missing bits on
the tape due to uneven magnetic oxide coating; it won't be noticed in
listening but it causes errors in digital reads. Choose a standard bias,
low noise, C-30 or C-60 tape like the Maxell UD-30 or UD-60.

As far as a tape recorder is concerned, you can use any one you
happen to own as long as you can get it to work after adjusting the
volume and tone. If you are buying a new one speci fically for the
Apple, then choose a plain mono type with a counter. Since the Apple
was first used, two of the most trouble-free models have been the
Panasonic RQ-2309 and the Sony TCM-737. People have used other
brands as well, but try any new recorder out first. Some machines

461

462 Appl~ Programmer's Handbook

won't work; they can't be adjusted to the Apple's volume and tone re
quirements. Recording and playing back an Apple file is the only way
to be sure.

Accessories you need to complete the cassette recorder include two
miniature phone plug cables, Radio Shack 42-2420. Also, you should
have cotton swabs and isopropyl alcohol to clean the heads and cap
stan. A head demagnetizer should be used at least every couple of
months or so. If you depend on the machine, have it cleaned and ad
justed by a technician once a year to maintain reliability.

To use, you must find the volume and tone control settings. On a
compatible recorder, this will be about a third volume and near full
tone. Listen to a pre-recorded tape and adjust to get a clear tone at the
beginning of each recording. This is the header record and is a con
stant tone tasting about ten seconds.

Connect the IN jack to the recorder's MON output jack using one
of the cables. Connect the OUT jack to the recorder's MIKE input
jack. Now you can attempt to record and play back a file to confirm
the volume and tone settings.

To record, mount a new tape. Rewind. Without changing the con
trols from the settings you made by ear, enter the following command
to the Apple Monitor:

DOOO.FFFFW

without a RETURN. Then put the recorder in RECORD mode. With
the tape running, press RETURN to enter the tape write command.
When finished, the Monitor's asterisk (*) returns. Stop the recorder.

To p lay back, rewind. Enter the command

1000.3FFFR

to the Monitor, again without a RETURN. Put the recorder in PLAY
mode, then press RETURN with the tape running. l fall is well, the
Monitor wi tt return with an asterisk when the playback is finished. If
it cannot READ anything, it witt just do nothing - looking for there
cording forever. If it reads but finds errors, you get an ERR message
on the screen .

If the playback was read successfully, compare the copy at
$ l 000.3FFF with the original at $DOOO.FFFF using the verify com
mand in the Monitor. They should match exactly.

-

-
-

-
-

-
-
-

-

-
-
-

Input/ Output 463

If you cannot record and playback successfully, try another setting.
Repeat the procedure until successful. Then mark the volume and tone
settings on the recorder using a dab of nail polish or typewriter cor
rection fluid.

If you want to hear the playback, unplug the MON jack tem
porarily. To make sure it is getting through to the Apple, leave it
plugged in and play back using the following routine

0300: JSR $FCFD
LOA $C030
JMP $0300

read a bit
toggle speaker

instead of the READ command. This will sound the speaker with the
incoming bit st ream so you can hear it.

You can read and write BASIC programs to and from tape easily.
To save a BASIC program, type

WRITE

then start the recorder. With the tape running, press RETURN. When
finished you will see the BASIC prompt, a] or>. Similarly, use the

READ

command to load a BASIC program from tape. If it cannot read, it
will wai t forever or give you an ERR message.

Remember not to use a file name like you do with DOS commands.
A READ or WRITE command without a file name will be accepted as
a tape command.

To save and load binary files, enter the Monitor first. Then use the
R and W monitor commands with start and end addresses. The
procedure in giving commands and starting the recorder is the same
regardless of file type. One point you should keep in mind when
working with tape is that you must provide start and end addresses for
reads as well as writes. With disk, you can BLOAD the fi le into the
same memory that it was BSA VEd from; with tape this is not auto
matic. You have to remember where the fi le resides in memory.

An exception to this is the SHLOAD command in Applesoft. The
binary file is read by this command, but Applesoft gives the start

464 Apple® Programmer's Handbook

address for you . When the tape is read, the binary fi le is put below the
MEMSIZ address a nd the start address of the file is given to you at
$E8.E9 in Page Zero . Applesoft uses this address for all its shape table
commands; see Chapter Six for more information on shape tables.

T o read and write binary files fro m an assembler program, you set
the start address in location $3C .3D and the end address in $3E.3F.
Then use a JSR to the READ routine at $FEFD or to the W RITE rou
tine at $FECD. With the READ routine, you will need a method to
detect errors. One way is to save CH ($36) in Page Zero before making
the READ. This is the horizonta l screen cursor and will change during
the read if an error occurs. This is because the READ routine will
print an E RR message to the screen, advancing the cursor as it does
so. Upon return from the READ, you can compare C H to its previous
value. If it has changed , then you know an er ror has occurred . Such
an error detector might look like

LOA CH get cursor
STA OLDCH
JSR READ read tape to (A 1.A2)
LOA CH new cursor
CMP OLDCH same?
BNE ERROR no . . . ERR in READ

yes .. no error in READ

where O LDCH is any RAM location.
A binary file has a format on tape like tha t o f Fig. 8-1. For BASIC

DATA

SYNC _j CHECKSUM _j
Fig. 8- J. Taped binary file.

files, a more complicated format is used ; see Fig. 8-2. T he READ and
WRITE routines handle these formats for us so we don't normally get

PROGRAM C ~~

Fig. 8-2. Taped BASIC fi le.

-
-
-

n

-

,..,

Input/Output 465

involved in the formats. Knowing the details is needed if you want to
write special tape routines, like an Apple tape loader for another
computer.

Here's how the Apple II reads and writes tapes. There are two kinds
of files built-in to the tape routines, BASIC and binary. Binary files
are the simplest. To locate any file on a tape, you must listen for it or
use the tape counter. Some people use the recorder's microphone to
record voice cues between files. Once located, a steady tone lasting
about ten seconds marks the beginning of the file.

This tone is called the header. It consists of a 770-Hz square wave,
1300 microseconds each cycle. At the end of the header is a special
sync bit lasting 450 microseconds. The sync bit is followed by the data
itself at 1500 baud (bits per second). One last byte contains the check
sum. The header, sync bit, data, and checksum byte make one binary
file.

BASIC files are kept as two binary files, one immediately following
the other. That is why you hear two beeps for BASIC files and only
one beep for binary files. The first binary file is fiXed. It contains two
bytes (Integer) or three bytes (Applesoft) and tells the BASIC the
length of the program to load. The second binary file contains the pro
gram itself as data. It can be any length, and the BASIC loader knows
that length from the first file.

Two bytes are always needed in the length file. Integer BASIC files
have two bytes, but Applesoft has three. The third byte is read into
Page Zero at $06. The value normally written is $55. If a value greater
than $7F was written, then the Applesoft will RUN the program after
the READ is finished and disable immediate execution. Unless you
can get into the Monitor and change location $06 back to $55, you
cannot use Applesoft to LIST the program or do anything else. This
"feature" is not used by the normal WRITE command but some com
mercially distributed tapes might. A Standard Apple Monitor will
RESET to the Monitor command interpreter where you can change lo
cation $06 to its safe value of $55 if you experience this problem.

Bits are created by toggling the OUT jack during the recording
session. For instance, the HEADR routine creates a square wave by
toggling each 650 microseconds to give a period of 1300 microseconds.
At the end of its count, it toggles after 200 microseconds and again
after 250 microseconds to create the sync bit. The sync bit therefore
lasts 450 microseconds but is not symmetric. When writing data, each
bit is symmetric but has one of two different periods. A one bit is en-

466 App/~ Programmer's Handbook

coded as a 1000 microsecond-cycle and a zero bit as a 500-micro
second cycle. This gives a frequency of 1000Hz for ones and 2000Hz
for zero. Such encoding schemes are often called frequency shift
keying or FSK for short. With FSK of 1000 Hz and 2000 Hz the
average gives the transmission rate for recording and reproducing the
data - 1500 Hz as 1500 baud.

Bits are read and written by two monitor routines called WRBIT
($FCD6) and RDBIT ($FCFD). They address the IN and OUT hard
ware addresses at $C060 and $C020.

Table 8-1 summarizes the addresses used by tape routines; see
Chapter Two for further notes on each location.

Table 8-1. Summary of Tape Addresses

Label Address Contents

CHKSUM $002E Checksum EORed during READ and WRITE

CH $0036 Cursor changed by READ if ERR

AI $003C Start address for READ and WRITE

A2 $003E End address for READ and WRITE

$0006 Inhibits Applesoft when > $7F

SHAD DR $00E8 Shape table start address

$C020 Cassette "OUT'' port

$C060 Cassette "IN" port

HEADR $FCC9 Writes header tone and sync bit

WRBIT $FCD6 Writes one bit

RDBIT $FCFD Reads one bit

WRITE $FECD Writes binary file from (AI) to (A2)

READ $FEFD Reads binary file into (AI) from (A2)

8.1.2 Games Socket

Many of the built-in I/0 features of the Apple II are collected in the
"games" socket on the motherboard. This is a 16-pin DIP socket in the
right rear area, designated as J-6 on the Apple II. This is where the
game paddles plug in with a 16-pin DIP header plug. In addition to
paddles, you can plug in other devices using the various pinouts
provided.

Most device hookups require the 5 volts on pin 1 and ground lines
on pin 8. Up to 4 game paddles (or 2 joysticks), 3 switches, and 4 TTL
outputs called annunciators are available. In addition, one line called
a strobe can be brought low during Phase Zero for a cycle by address-

-

-
Input/Output 467

ing $C040 with a read instruction. Although seldom used, this line can
be useful in enabling or gating special TTL circuits you may build.

On the lie model, an adaptor cable from the games socket provides
the switches, paddles, and power lines to a DB-9 connector on the
back of the case. This is a good idea, and if you have another Apple II
model, you may want to add this cable yourself to upgrade your
Apple. The game paddles and switches are the most often used lines
on devices plugged in there. The 16-pin DIP socket is fragile unless
you are used to handling hardware and don't plug and unplug the
cable often. When the connection is on the DB-9 at the back, you can
plug and unplug your joystick/ game paddles much easier and reliably.
The connections are shown in Table 8-2.

Table 8-2. Games Socket Pinouts

16-pin DB-9
DIP Name Address Description connector

1 5 VOLTS Maximum 300 rnA 2

2 swo C061 Switch ON if> 127 7

3 SWl C062 Switch ON if > 127 1

4 SW2 C063 Switch ON if > 127 6

5 STB C040 Strobes when addressed

6 POLO C064 Game paddle resistance 5

7 PDL2 C066 Game paddle resistance 8

8 GND Signal ground 3

9 N.C. No connection

10 POLl C065 Game paddle resistance 4

11 PDL3 C067 Game paddle resistance 9

12 AN3 C05E.C05F Clear/set annunciator

13 AN2 COSC.COSD Clear/set annunciator

14 ANI COSA.COSB Clear/set annunciator

15 ANO C058.C059 Clear/set annunciator

16 N.C. No connection

The switches are used extensively. On game paddles and joysticks,
SWO and SWI are connected to the pushbuttons where you can use
them for graphics control such as scaling and pen up/down functions.
On the lie model, they are read by the RESET routine to determine
which of the many RESET routines that the model lie has will be
executed. In particular, SWO is connected to the OPEN-APPLE key
just left of the spacebar and SWI is connected to the SOLID-APPLE

468 App/~ Programmer's Handbook

key just right of the spacebar. On earlier Apples, you may connect the
SW2 to the SHIFT key on the keyboard for use by a lowercase
routine. This modification is described later in this chapter, in Section
8.1.4.

When designing custom interfaces, remember that the switches are
simple LS inputs and the annunciators are LS outputs with little fan
out; use buffers.

If you plan to use the annunciators at all, it's a good idea to make a
state tester first. Take a 16-pin DIP header and connect four LEOs to
it with series resistors to pins 12, 13, 14, and 15. Return the cathodes
to ground at pin 8. Then, you can see the LEOs toggle when you
address them in the $C058.C05F range.

Use the annunciators to drive relays like the Clare 1896. See Fig.
8-3. A 2N2222 makes a low cost current amplifier to drive the winding

~
II CLARE ~~~

1

1896 PHONE
PLUG

ANO
12

1K

16 PIN
DIP

!OK

HEADER

8
GND

sv

Fig. 8-3. Annunciator output relay circuits.

from the TTL output. Always protect relay input circuits with a diode
like the 1 N914 across the winding; the back EMF can clobber solid
state quite easily. For simple secondary circuits like a cassette recorder
motor switch, a small resistor value in series wiht a 0.01 JJF capacitor is
usually sufficient. You can control a tape recorder by switching the
recorder off when not writing to tape so that you don't create long
dead sections. Be sure to delay after switching the motor on and be
fore recording again, to allow the tape to reach operating speed.

Other output circuits are possible; relays, SCRs, and triacs may be
used. The 2N2222 buffer is a simple buffer that you may have to
adapt. Don't try to use current devices without amplification; the LS
output just won't have the source current to make most of them work.

You can use game paddles or a joystick on each pair of analog in
puts. Most connect to POLO and POLl. To use the built-in routines,
you should use paddles or joysticks having a full resistance of 140

-

Input/Output 469

kilohms each. Whenever a paddle is read, this resistance gives a value
of zero to 255 depending upon the setting of the knob.

To read the value and therefore the position of the knob, use the
PDL(n) function in BASIC where n is the paddle number, 0, 1, 2, or 3.
Normally, PDL(O) and PDL(l). If you are assembling, the routine is
in the Monitor at $FB1E, returning the value in theY-reg, $00 to $FF.
In either case, you need a resistance of zero to 140 kilohms to get
values from zero to 255.

Once you have read one paddle resistance this way, you must delay
before reading the paddle again, or even reading any other paddle.
What happens is that reading the paddle discharges four capacitors
through the four resistances of the paddles (as connected to the games
socket). Then the routine counts until your paddle has discharged the
capacitor and clears bit 7 at its address. Once this is finished, the
capacitor is recharged for the next call. If you call too soon, the
capacitors don't have enough time to recharge and you get a too-low
reading. This interference between successive readings is simply a
function of time; use a delay loop if your routine has nothing else it
can do.

If you look at the PREAD routine at $FB1E in the Monitor, you
can see how it works. First, the $C070 address is referenced to fire a
special timer chip (acts like four 555's). This chip discharges four
0.022 ,.,F capacitors through any conducting paths connected to the
games socket pins PDLO, PDLl, PDL2, and PDL3 to" the + 5-volt
line. The higher the resistance of each path, the longer the discharge
will take. By testing location $C064,X where X is 0, 1, 2, or 3, the
routine detects one of these time-outs. By counting with the Y -register
once each twelve cycles, the routine has its return value when the time
out occurs. To count all the way to 255 the resistance must be at least
150 kilohms; if you use smaller resistance values, the range of return
values will be correspondingly less. You call PREAD with the paddle
number in the X-reg, and pickup the returned value from the Y -reg.

If you write your own paddle routine, you would do much the same
thing. First, use a read instruction with $C070 to start the four timers.
Then loop, counting and testing for a time-out on one or more
paddles. Finally, return with all counts as the paddle values reflecting
the knob position(s). Remember, you are working in real time: use the
times given in Table 8-3 to design your loops.

The addresses of the paddles and their routine are summarized in
Table 8-4.

470 Appltf® Programmer's Handbook

Table 8-3. Joystick/Paddle Times

Resistance Time

500kQ 11,000 J.lS

200kQ 4400 J.lS

150kQ 3300 J.lS

IOOkQ 2200 J.lS

50kQ 1100 J.lS

20kQ 4401-lS

IOkQ 220 J.lS

SkQ 110 tJS

2kQ 44J.lS
lkQ 22 J.lS

NOTE: Time cons1an1s for discharging 0.022 ,..F capacilor lhrough given resislances.

Table 8-4. Joystick/Paddle Addresses

Label Address Contents

POLO $C064 Game paddle time-out

POLl $C065 Game paddle time-out

PDL2 $C066 Game paddle time-out

POL3 $C067 Game paddle time-out

PTRIG $C070 Game paddle trigger

PREAO $FB1E Game paddle read routine

There are several reasons for writing your own joystick routine. A
joystick hs two paddle resistances, and both can be read at the same
time even though the PREAD routine calls will interfere with each
other without an intervening delay. Joysticks can be easily found at
good prices with resistance values other than 150 kilohms. The
PREAD routine needs a resolution of 256; you must be able to make
one of 256 different settings to use each control. Because of aging,
noise, and the small angle you have in joysticks, this is almost
impossible to maintain. Your own routines can deal with the resolu
tion problem by reducing it and scaling. You can handle resistances
other than 150 kilohms. And once started, your timers can be counted
simultaneously to return both X and Y direction values from only one
call.

As an example, look at the joystick schematic in Fig. 8-4. This one
uses a 100-kilohm joystick from Radio Shack (271-1705) with a pair of
pushbuttons (275-8077) mounted in a case (270-231). A 75-cm

-

Input/Output 471

TO
GAMES
SOCKET

lOOK

POll
10

220
220

+SV

swo

SWI

270 270

Fig. 8-4. Joystick schematic.

(30-inch) length of ribbon cable with a 16-pin DIP header plug
provides the Apple interface. The four resistors are l4 -watt each and
limit the current to each device. The joystick resistance is chosen
largely on availability and price. Such a choice reduces the range of
values from PREAD or the PDL(n) function by about a third. See the
table of Joystick/Paddle Times in Table 8-3.

Table 8-3 is just a list of selected values for the times taken to dis
charge a 0.022 11F capacitor through various resistances. For the
design value of 150 kilohms, this is 3.3 milliseconds, while for the 100
kilohms of the Radio Shack joystick this is 2.2 milliseconds or about
two-thirds of the design value. The general formula for capacitor dis
charge time is

t = RC
where t is in milliseconds, R is in kilohms, and C is in microfarads
(#-'F). The discharge time is the time the paddle circuit takes from the
$C070 reference until the bit 7 changes at the paddle address from on
to off.

The JOYSTICK routine of Example 8-1 works with the 100-kilohm

472 Apple® Programmer's Handbook

Example 8-1.

SOURCE FILE:
0000:

EXAMPLE 8.1

0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
C064:
EOUT
C065:
EOUT
C070:
GGER
0000:
0000:

1 ******************************
2 * EXAMPLE 8.1 *
J * *
4 * J 0 Y S T C K *
5 * *
6 * READS JOYSTICK IN GAMES *
7 * SOCKET. BOTH RESISTANCES *
8 *READ SIMULTANEOUSLY, BUT *
9 *WITHOUT 256 RESOLUTION. *

10 * *
11 * RETURNS VALUES IN X-REG AND*
12 * Y-REG. A-REG CLOBBERED. *
1J ******************************
14 *
15 *
16 XTOUT EQU $C064 X-VALUE TIM

17 YTOUT

18 PTRIG

19 *
20 *

EQU $C065

EQU $C070

Y-VALUE TIM

PADDLES TRI

NEXT OBJECT FILE NAME IS EXAMPLE 8.1.0BJO

OJOO: 21 ORG $0300
0300: 22 *
0300: 23 * A TEST CALL SEQUENCE.
0300: 24 *
0300:20 08 OJ 25 JSR JOY
030J:86 00 26 STX $00
0305:84 01 27 STY $01
0307:60 28 RTS
0308: 29 *
0308: 30 *
0308: J1 *
0308:A2 00 32 JOY LOX 1#0
030A:AO 00 JJ LOY 10
OJOC:A9 80 34 LOA 1$80 RESOLUTION
030E:38 35 SEC
030F:2C 70 co J6 BIT PTRIG
0312:2C 64 co 37 JOY1 BIT X TOUT
0315:10 03 J8 BPL JOY2
0317:E8 J9 INX
0318:00 02 40 BNE JOYJ
031A:EA 41 JOY2 NOP
031B:EA 42 NOP
031C:2C 65 co 43 JOY3 BIT YTOUT
031F:10 OJ 44 BPL JOY4
0321:C8 45 INY
0322:00 02 46 BNE JOYS
0324:EA 47 JOY4 NOP
0325:EA 48 NOP
OJ26:E9 01 49 JOYS SBC 11
0328:BO E8 50 BCS JOY1
032A:60 51 RTS

*** SUCCESSFUL ASSEMBLY: NO ERRORS

-

..
-
~

Input/Output 473

joystick. Two paddles are counted using the X-reg and the Y -reg for
each of POLO and POLl ($C064 and $C065). The A-reg counts for
the entire loop, guaranteeing a fixed number of tests of both time-out
addresses. For the 100-kilohm case, a value of $80 is quite sufficient.
Each of the resulting 128 times through the loop results in a test of
each time-out by using the BIT instruction. The BIT won't change any
register value and is needed because all three registers are used as
counters. Each of the two tests within the loop is an IF-THEN-ELSE
having either a count or a short delay as an action. The delay, done
with NOP instructions, ensures that both paths take the same time -
eleven cycles each, including the BIT. So, the two tests take 22 cycles
within the loop. Adding the loop overhead gives 27 cycles for each
loop with a possible count in the X-reg, Y -reg, or both on each.

The longest time for a time-out with the 100-kilohm joystick is
about 2200 microseconds. With 27 microseconds for each count, this
gives 2200 + 27 or about 70 as the largest count value. So, the routine
will return a value of zero to 70 in each of the X- and Y -registers as its
result.

With a low resolution scheme like this, you avoid several hassles as
mentioned earlier, but you have to program a bit more in exchange.
For instance, if you want to move a cursor around a screen with the X
and Y- values from the JOYSTICK routine, you have to do some
scaling.

For LORES coordinates, you can convert the joystick readings to
screen positions by

XP = INT(0.5714*XJ)
YP = INT(0.5714*YJ)

where XJ and Y J are the joystick values and

40/70 = 0.5714 (approx)

The idea here is that you want a value of zero to 39 for each position
given joystick values from zero to 69. Joysticks vary, so you will have
to adjust the 0.5714 factor by experiment.

For HIRES coordinates, you need two scales. One scale for fine
positioning, perhaps 0.5 or 0.25 depending on the feel you prefer in
the application. The other scale for coarse positioning lets you reach

474 Appl~ Programmer's Handbook

any area on the screen using the joystick before switching scales for
fine setting. Given the noise susceptibility of low cost joysticks, this
approach is better than the unit factor normally used. To change from
zero to 69 to the range of zero to 255, the factor is

255 + 70 = 3.642857

giving scale equations of

XP = INT(3.6429*XJ)
YP = INT(3.6429*YJ)

for coarse positioning. You can use one of the push buttons for scaling
to make the cursor positioning easier to handle.

If you have a joystick that has a spring return to center position,
you should remove the springs to do position encoding as just
described. Alternately, you can use this feature to do velocity
encoding instead.

Velocity encoding lets you use low resolution without switching
scales. Rather than using the joystick values as positions, you use
them to change the current position to a new value. Releasing the joy
stick knob so that it returns to center stops cursor motion at the cur
rent position. It is simple to use and only a little tricky to program.

You call JOYSTICK at the beginning of your program to determine
the center position values in X and Y. The user must allow the joystick
handle to rest in its center position while this reading is made. You
then use these values to calculate several parameters:

DL = 0.85 * CJ
DH = 1.15 * CJ
SL = 0.40 * CJ
SH = 1.60 * CJ

called dead low
called dead high
called speed low
called speed high

where CJ is the reading at the center of the joystick. They should be
close for both X and Y.

In the cursor move loop of your program, you get the joystick read
ings and then range test them with DL, DH, SL, and SH. If between
DL and DH, don't do anything; this is called the dead band. If be
tween DL and SL, decrease the position coordinate slightly. If less
than SL, decrease the position coordinate considerably more.

,...

-

Input/ Output 475

Similarly, increase the position coordinate slightly if the joystick value
1!!!!1 is between DH and SH and increase it a lot if greater than SH. For

example, here's how it might be done for the X-coordinate in HIRES:

1000 REM Velocity encode X-coord of cursor
1010 IF XJ > DL AND XJ < DH THEN RETURN
1020 IF XJ > CJ THEN 1040
1022 IF XJ < SL THEN 1026
1024 XC = XC - 1 : GOTO 1028
1026 XC = XC - 8 :
1028 IF XC < 0 THEN XC = 0 :
1030 RETURN
1040 IF XJ > SH THEN 1044
1042 XC = XC + 1 : GOTO 1046
1044 XC = SC + 8 :
1046 IF XC > 279 THEN XC = 279
1048 RETURN

Similarly, a routine using Y J can velocity encode the Y -coordinate of
the cursor position, YC.

The relationship between the velocity of the cursor and the position
of the joystick is given in Fig. 8-5. See the dead band in the center,
where the cursor doesn't move. See the two speeds in each of the two
directions to give it a nice feel to the operator.

+8 1-

5
9 + I

= 0 ~ - 1 t-
1::

-8 1- ----J

I

FUll
LEFT

I

SL

Fi~. 8-5. Velocity cncodin~ a joystick.

I I
OL CENTER OH

JOYSTICK POSITION

I

SH

I

FULL
RIGHT

476 Appl~ Programmer's Handbook

8.1.3 Speaker

The simplest and most common way to use the built-in speaker in
the Apple is with the monitor routine. This is easily done by typing a
ctrl/G on the keyboard followed by a RETURN. This results in a beep
sound called the bell. From an Applesoft program, you can PRINT a
CHR$(7) to do the same thing: the ASCII code 7 is called BEL for this
purpose.

When writing in machine language you can use the output hook to
do the same ctrl/G beep. Load the A-reg with $87 - the negative
ASCII code for BEL- and JSR COUT. Whatever device is acting as
video terminal will get the ctrl/G code. Normally, this will be the
built-in Apple video at COUTJ; in fact by JSR CO UTI instead of
COUT you can be sure that the Apple built-in speaker routine will get
the ctrl/G if you have a special setup in the output hook you don't
want disturbed. There are two other Monitor calls that you can use as
well. BELL will load the ctrl/G for you and jump to COUT. The
actual routine in the video routines of the Monitor that makes the
sound is called BELLI and you can use it directly. BELL for terminal
use; and BELLI for always ensuring an Apple beep, are usually the
best choices of beep routines to call.

The speaker itself is driven by a transistor circuit because the LS
TTL just can't supply the kind of power and low impedance a com
mon eight-ohm speaker needs. The transistor circuit is driven from a
TTL address decoder so that a read command from the processor at
$C030 will toggle the speaker. Two reads will produce one cycle if they
are far enough apart. Don't use write instructions because you will get
two toggles very close to each other. The speaker and its circuit can
only respond to audio frequencies; closely-timed toggles won't be
realized, much less heard.

There are many sounds you can make with simple control of the
interval between successive toggles. Among these often wanted are
ticks, tones, staccato, and trills. Each requires you to toggle the
speaker in various kinds of real-time loops. For sounds, frequencies
between 100Hz and 2000Hz are best. Now, 100Hz has a period of 10
milliseconds and 2000Hz one of 0.5 millisecond. Toggling twice each
period means that a I 00 Hz tone must delay between each toggle so
that the time from one toggle to the next is only 5 milliseconds. For the
2000 Hz tone, the time between toggles is 0.25 millisecond or 250
microseconds. These times are easy to get with a fast 1.023 MHz clock
(0.9778 microsecond).

""'

-

-

Input / Output 477

An easy way in fact is the WAIT routine at $FCA8. By loading the
A-register before the JSR, you can control the delay time this routine
takes to return to you; it does nothing except decrement the A-reg to
zero. Fig. 8-6 plots the equation

t = 0.4889(26 + 27a + 5a2)

where t is the delay time in microseconds and a is the value of the
A-register passed to WAIT. Some delay times are shown in Table 8-5
as a result of this equation.

200

/
v

100

so 17
/

1/

v
-/ !==---

7
fJ

j

I
5

I

1

0 I
0 32 64 96 128 160 192 114 255

VALUE PASSED IN A·REG

Fig. 8-6. Execution of a WAIT routin~.

To make the speaker tick, you toggle it twice with a delay between.
f!!!ll Delays between 0.25 millisecond and 5 milliseconds work OK; just try

them and choose the one that sounds right for what you want. For
instance, a click made with a 1.0 ms interva l can be heard by running

BIT $C030 toggle speaker
LDA #$12 for 1 .0 ms(approx)

478 Appl~ Programmer's Handbook

Table 8-5 . WAIT Routine Intervals

A-reg Time (ms)

I 0.028
2 0.049
5 0.140

10 0.389
20 1.255
50 6.79

100 25.8
200 99. 1
255 162.0

JSR WAIT
BIT $C030 togg le speaker again
RTS

Now, vary the delay parameter from $12 to get the click to sound the
way you want.

Steady tones are done with loops . For each time through the loop,
you toggle the speaker at half the period as just explained above. A 1.0
kHz tone is toggled each 0.5 ms to work:

TONE
TONE1

LOX #SFF
LOA #$0C
JSR WAIT
OEX
BNE TONE1

duration of tone
for 0.5 ms(approx)

The duration is controlled by setting the number o f half-cycles in the
X-reg. Notice that the length of time depends on both the duration
(X-reg) and hal f-period (A-reg) defined for the loop. To have the
period and duration of the tone independent of each other as param
eters is tricky but there is a short routine called Lutas' algorithm that
will do just that. With Example 8-2 set $0300 to the period and S0301
to the duration. You can even play musical tunes; see Table 8-6 for the
notes.

Staccato sounds use loops. Each staccato has a simple uni t, usua lly
a tick or click sound, but a tone can be used for special effect. Simply
repeat the unit sound in the loop.

Trills are performed by alternately sounding two tones usually close

-

-

-
-
-

t-1

~

fill'\

fill\

....

....

,...

~

Input/Output 479

Example 8-2.

SOURCE FILE: EXAMPLE 8.2
0000: 1 ******************************
0000: 2 * EXAMPLE 8.2 *
0000: 3 * *
0000: 4 * LUTAS' ALGORITHM FOR *
0000: 5 * MAKING SPEAKER TONES. *
0000: 6 * *
0000: 7 * FROM BASIC: *
0000: 8 * POKE 768, PERIOD *
0000: 9 * POKE 769, DURATION *
0000: 10 * CALL 770 *
0000: 11 * *
0000: 12 ******************************
0000: 13 *
0000: 14 *
0000: 15 *

NEXT OBJECT FILE NAME IS EXAMPLE 8.2.0BJO

0300: 16 ORG $0300 FOR 768
0300: 17 *
0300: 18 *
0300: 19 PERIOD OS 1
0301: 20 DURA TN OS 1
0302: 21 *
0302: 22 *
0302:AD 30 co 23 TONE LDA $C030 TOGGLE SPEA
KER
0305:88 24 TONE! DEY
0306:00 05 25 BNE TONE2
0308:CE 01 03 26 DEC DURA TN
030B:FO 09 27 BEQ TONE3 FINISHED
030D:CA 28 TONE2 DEX
030E:DO F5 29 BNE TONE!
0310:AE 00 03 30 LDX PERIOD
0313:4C 02 03 31 JMP TONE
0316:60 32 TONE3 RTS

*** SUCCESSFUL ASSEMBLY: NO ERRORS

to each other in pitch. Each tone must have a short, often equal,
duration. A value of $10 or so makes a good starting point when
trilling with Lutas' alogrithm. If you want to have a continuous sound
without the break in pitch, you can write a gliding tone. Like the trill,
it works between two pitches (frequencies), but sounds all the pitches
between. The so-called phasor zap sound is a glide.

8.1.4 Built-In Terminal

In the simplest case of built-in terminal usage, you just connect a
cable from the video output jack to a video monitor. Alternately, an
R.F. modulator is connected between the video output and a television

480 App/t?Fl Programmer's Handbook

Table 8-6. Notes for the Tone Routine

Octave 1 Octave 2 Octave 3
Note DEC HEX DEC HEX DEC HEX

c 225 E1 113 71 056 38
C# 213 DS 106 6A 053 35
0 201 C9 100 64 050 32
0# 189 BD 095 SF 047 2F
E 179 B3 089 20 045 20
F 169 A9 084 54 042 2A
F# 159 9F 080 50 040 28
G 150 96 075 4B 038 26
G# 142 8E 071 47 035 23
A 134 86 067 43 033 21
A# 126 7E 063 3F 032 20
B 119 77 060 3C 030 IE
c 113 71 056 38 028 IC

Usc the first two octaves, and only the third octave when really needed. Here arc the
durations to u~.

Length Duration

Half 255 FF
Quarter dot 192 co
Quarter 128 80
Eighth dot 096 60
Eighth 064 40
Sixteenth dot 048 30
Sixteenth 032 20

set. If an SO-column display is needed, you should use a good-quality
cable like those sold for video recorders; otherwise, you could lose
information and be unable to read the characters on the screen. In
such a case, you will use a monitor with at least S-MhZ bandwidth
because a tv just doesn't have the ability to handle SO columns of text.

The Apple lie model provides an auxiliary socket where you can
plug in an SO-column text card. This converts the built-in display to
SO-columns from 40-columns by using soft switches; see Chapter Two.
In the lie monitor, many routines are provided to allow the SO-column
extension to be a true extension of the original 40-column display. If
you don't have a lie, then you can plug a regular peripheral card
into Slot Three.

In models previous to the lie, the way to get SO-columns is to use a
card like the Videx. In addition to an SO-column display, this card
gives you lowercase and keyboard goodies. In particular, you can use

-

-

Input/Output 481

ctrl/ A as a shift key. By using the input and output hooks described in
Chapter Six, this card replaces the Monitor's routines completely to
give you a complete terminal using the built-in keyboard and external
video monitor. It is the easiest way to go when you need lowercase and
an 80-column display.

If you just need lowercase but don't want to use an 80-column card,
then there are a few schemes to do this.

The simplest and cheapest way to get lowercase is to use a cascade in
the output, as described in Section 6.1. The LCOUT routine given
there converts uppercase to inverse and lowercase displays normally.
Apple Computer Inc., markets a text editor called Applewriter that
uses this scheme. It is an inexpensive and effective method to have
lowercase.

Another way is to buy a lowercase adaptor. You install it yourself
or the dealer will do it for you. For Apples of Revision 7 or greater, it
is inexpensive and simple. A more complicated adaptor is needed for
the earlier (than Revision #7) models, so make sure you get the right
one for you. Revision 7 and later models have a slide switch added to
interlock the RESET key to the CTRL key, located just under the
front opening when the cover is removed. The adaptor may have a
cable to the games socket; this lets the SHIFT key switch SW2 for
software detection.

Finally, you can do it yourself. The hardware you need is simple,
but you need a character set in ROM. One scheme described by Don
Lanacaster in Son of Cheap Video uses a Motorola 6674 character
generator and modifies the Apple. Another scheme replaces the 2513
ROM with a 2716 EPROM that you must program. See Apple
Orchard, Vol. I, No.I (Mar/ Apr. 1980) for hardware details and firm
ware listing.

If you have an old Apple, earlier than Revision 7, then you may
have a live RESET key. Unless modified, this key will work by itself.
Modify it so that anyone wanting to do a RESET must also press the
CTRL key. Otherwise, you will cause a RESET sometime when you
only mean to press the nearby RETURN key.

Here's how. Remove the cabinet from the steel base plate and un
plug the keyboard. Remove the keyboard. Look at the CTRL key; you
will see two unused pins. Connect them to a pair of wires; A WG30
wire-wrap wire will do fine. With this pair, connect the RESET key in
series with the CTRL key. Keep leads dressed so as not to catch on
anything during reassembly. Replace keyboard and plug back into the

482 Applr:f® Programmer's Handbook

motherboard. Replace cabinet. RESET should not work now unless
CTRL is also held down.

So, if you want more than the built-in terminal offers, install a card
or make the keyboard modifications you need. Lowercase adaptor
schemes are available alone or on 80-column cards. The alternative to
80-column cards is a serial card in Slot Three to use an external, stand
alone terminal. This scheme is sometimes used for full screen graphics
from the Apple video output with the text being exchanged with the
user on the external terminal.

8.2 PERIPHERAL 1/0

8.2.1 The Apple Bus

In Chapter One, the use of peripheral cards was discussed and Fig.
1-1 gave the locations of the slots where they are plugged in. Here, the
card itself is discussed. In particular, this section deals with how to use
the Apple bus to design and build your own cards. Even for a begin
ner, this is not too difficult, provided the interface needed is simple.

The Apple bus is defined as the pinout on the seven slots that accept
peripheral cards. Each pin is labeled by number and name as shown in
Fig. 8-7. To make your own peripheral interface, you use a
Hobby/Prototyping Board like that of Fig. 8-8 and make connections
by soldering, wire-wrapping, or both. Wire wrap is probably the easi
est; you can modify your work until you are satisfied with its per
formance.

The first thing you can get from the bus onto your card is power.
The + 5 volt and ground lines on Pins 25 and 26 are connected to the
buses on your card. You just install decoupling capacitors between
ICs and then connect these lines to feed those ICs. If you need other
voltages, they are on Pins 33, 34, and 50. Current limits per card are
determined by the connecting paths. For the entire set of peripheral
cards, the maximum current for + 5 Vis 500 rna, for -5 Vis 200 rna,
for -12 Vis 200 rna, and for+ 12 Vis 250 rna. These figures are given
for the lie model; others, especially clones, may be different. The
total power dissipation for any card should not exceed 1.5 watts,
regardless.

On the bottom pins, towards the front, lies the data bus from Pin 42
(00) to Pin 49 (07). You can connect to a MOS memory or something

-
Fig. 8-7. Peripheral connector output
pins. (Courtesy Apple Computer, Inc.)

Input/ Output 483

TOP VIEW

BACK OF P.C. BOARD

0

GND 26 2S
Dt.IA IN 27 24

INT IN 28 23
iOO 29 22

~ 30 21

m 31 20

iiiH 32 19

-12 V 33 18

-sv 34 17

N.C. 3S 16
)II 36 15

Q3 37 14

4>1 38 13

USER I 39 12

<1>0 40 11

DEVICE SELECT 41 10

07 42 9

06 43 8

DS 44

04 4S

03 46

02 47

Dl 48

DO 49
+12V SO

0
FRONT OF P.C BOARD

LOCATIONS J2 TO Jl2

+5 v
DMA OUI

INT OUT
DMA

ROY

iiOSmB£
N.C.

RIW

AIS

Al 4
All

Al2

All

AlO
A9

A8

AI
A6

AS
A4

AJ

A2
AI

AD
110 SELECI

Fig. 8-8. Hobby/ Phototyping board A2BOOOIX. (Courtesy Apple Computer, Inc.)

else that presents a light load. If you need more than one LS load, then
use a buffer like the LS245, which is tri-state and bi-directional.

484 App/~ Programmer's Handbook

The address bus is on the top pins, towards the front. The entire bus
can be accessed from Pin 2 (A0) to Pin 17 (A15) and Pin 18 (R/W).
Only memory and processor cards usually need the entire address bus.
Common peripheral interfaces use Pin 41 (OS) to select hardware and
peripheral chip registers and Pin 1 (1/0 select) to select on-board
memory. A separate select line on Pin 20 (I/O strobe) can enable addi
tional on-board memory in the $C800.CFFF range. The use of these
selects is shown in the following sections.

Many peripheral chips are designed to use interrupts. In addition,
you may use them directly to get a special job done like step and trace
debugging, taking memory snapshots, forcing RESETs, and so on.
Each interrupt line - IRQ, NMI and RES - is available on Pins 30,
29, and 31. In addition, the bus gives you a special feature called
daisy-chain interrupts.

This scheme is designed to handle interrupt contention among
several cards. The line enters from the next highest slot on Pin 28 and
must leave for the next lowest slot on Pin 23. If not used, connect Pin
28 to Pin 23. If used, Pin 28 signals allowed interrupts and Pin 23
allows interrupts by lower cards. Connect Pin 28 to enable your inter
rupts; connect Pin 23 to disable further interrupts whenever you
generate an IRQ (or NMI).

Daisy-chain interrupts are seldom used. To allow for their use by
other cards in your system, connect Pins 23 and 28 together.

Timing is available on Pins 35, 36, 37, 38, and 40. Of these, Phase
Zero on Pin 40 is most often used because it goes low at the right time
to enable data transfers. You simply connect it to the enables on your
buffers, peripheral chips, or whatever needs a ground-enabled input
to transfer data with the data bus. The exact phase of this line varies
between the old Apple lis and the Apple lie so production boards
must be tested in both. The old Apple II bus gives a slightly later
falling edge. The other clock lines provide for special timing.

In addition to several clock lines, there are other special features on
the Apple bus. A daisy chain from Slot 7 down to Slot 1 called DMA
for direct memory access will inhibit the 6502 from accessing the
memory by signaling the cards of lower priority, just like the interrupt
daisy chain. The DMA line at Pin 22 is used when this occurs. To ig
nore this feature, you should connect Pin 27 (DMA in) to Pin 28
(DMA out). Don't connect anything to Pin 22 (DMA).

The RDY line from the 6502 appears at Pin 21. It will halt the proc
essor during Phase One when pulled low. Rarely used. The inhibit line

Input/Output 485

on Pin 32 (INH) disables motherboard memory access. Also rarely
used. These two lines are used by fancy cards having on-board proces
sors and memory.

Pin 39 is interesting. On Apples before the lie, it is called USER 1
and connects to the LS138 that performs the 1/0 select of slot-de
pendent memory. Rarely used, it would disable the memory selection
when pulled low. A jumper called USERI on the motherboard can
connect or disconnect the line between the LS138 and the peripheral
bus. Rarely used, it appears to serve little purpose.

On the Apple lie, the Pin 39 line carries S.O. from the processor.
Known as sync output, S.O. goes high whenever the 6502 does an
operand fetch. It can be used to generate an interrupt, preferably an
NMI, each instruction to provide a "bullet-proof' single-step debug
ger. You need some switching on your card to do this; the Sym-l uses
this method very nicely. On the old Apple, S.O. is hardwired to
ground and is just not available.

Finally, Pin 19, which is not connected on Slots l to 6, carries the
video sync signal to Slot 7. It has a fan out of two LS loads. The fan
outs and fan ins of the bus are given for all other pins in Table 8-7.

8.2.2 Simple 1/0 Ports

One of the simplest 1/0 port systems you can make on a peripheral
card is shown in Fig. 8-9. Eight output ports are connected to LEOs
and eight input ports are connected to switches. By throwing the
switches and observing the LEOs, you can see the ports work with
simple software routines. When you get everything working okay, you
can then replace the switches and LEDs with other 1/0 devices as you
wish.

To build it, use the parts list of Table 8-8. Wire wrap is the easiest
method to use. Some soldering will be needed as well.

Mount the sockets on the board with Silicone Seal™ or hot glue. In
stall the 0.05 IJF capacitors between the ICs and across the power bus
for decoupling. One of these should be as close to the plug pins as
possible. Using wire wrap, connect the ground and five-volt lines to
the pins on the IC sockets as given in Table 8-9. Jumper the Apple bus
daisy chains: connect Pin 24 and Pin 27 together; connect Pin 23 and
Pin 26 together.

The remainder of the wiring appears on the schematic of Fig. 8-9.
Use it to complete the wiring. You may have to test your LEOs for

486 Apple® Programmer's Handbook

Table 8-7. Peripheral Loading and Driving Rules
(Courtesy Apple Computer, Inc.)

Maximum
Pin Number Name Required Drive I.STIL Load

I 1/0 SELECT N/A 10
2-17 ~~s Tri-State Buffer 5

18 Tri-State Buffer 10
19 N/C N/A N/A
20 I/0 STROBE N/A 2
21 ROY Open Collector N/A
22 DMA Open Collector N/A
23 INTOUT 4 LSTTL N/A
24 DMAOUT 4 LSTTL N/A
25 +5V N/A N/A
26 GND N/A N/A
27 DMAIN N/A 4
28 INT IN N/A 4
29 NMI Open Collector N/A
30 IRQ Open Collector N/A
31 RES N/A 2
32 iNH Open Collector N/A
33 -12V N/A N/A
34 -5V N/A N/A
35 N/C N/A N/A
36 7M N/A 2
37 Q3 N/A 2
38 IZJJ N/A 2
39 USER I N/A N/A
40 IZJO N/A 2
41 DEVICE SELECT N/A 10

42-49 Do-D, Tri-State Buffer 1
50 +12V N/A N/A

polarity before wiring them in if you don't know them already. Other
wise, wiring is straightforward.

Here's how it works.
The data from the Apple bus is buffered by the bi-directional tri

state buffer, 74LS245. The direction is controlled from the R/W line
and it is enabled by the DS line. This means that the bus is connected
only when an address of $C0nx is given, where n is the slot number
plus eight and xis any number, $0 to $F. Given such an address, if the
R/W line is low then the direction of the 74LS245 is right to left; if it is
high, the direction is left to right. This chip isolates the Apple data bus
from the board's data bus that connects to the 74LS75s and 74LS244.

Input/Output 487

1 1 1 1 1 1 1 x~··
" " " " "

::c

?i
f!!

~ ~

"' -~ r 0 1
f- r-... = ~ - ... = ~ - N ~ ... ~ ... :::: ... = 8

-~ "I rJ-
..=--

~ ~ ! ..=- ...

... N, N !:!! ..,
~ "' :: ... ~ "'

..
._____

3___ ...
..__ ~ ::

14 !!! "' I

- "'

"' "' N

I
1-

£
3

!?! -

r.
= ~ :::: :: :z ~ ::: !:!!

~ ~ ~ :: ~ ~ ~ ::; ~ ~ • ::: ~

1: 0 g Q ~ ::: ~ :g ~ ::; l:g I!; ~ c -I~ z: -G ~ "' s

Fig. 8-9. Simple 1/0 port schematic.

488 Appltf'J Programmer's Handbook

Quantity

1

1

2

1

I

2

5

I

1

I

8

8

8

6

1

NOTE: Sec Fig. 8·9.

Table 8-8. Parts List for Simple 1/0 Ports

Description

74LS245 quad bus transceiver

73LS138 decoder: 3 to 8

74LS75 quad latch

74LS244 octal tri-state bus driver

74LS04 hex inverter

20-pin DIP wire-wrap sockets

16-pin DIP wire-wrap sockets

14-pin DIP wire-wrap socket

16-pin DIP header

8xSPST DIP switch

Standard red LEOs

220 ohm resistors

2200 ohm resistors

10.05 #JF disk capacitors

Apple hobby/prototyping board

Table 8-9. TTL Power Pinouts on
the Simple 1/0 Ports

Type Ground +5 volt
74LS pin pin

04 7 14

75 12 5

138 8 16

244 10 20

245 10 20

This internal data bus won,t load the Apple bus. You can connect
several loads to it in LS type chips if you wish. Here, we have a set of
eight inputs and a set of eight outputs connected. The inputs come
from a 74LS244 that is a unidirectional buffer. Here, it works from
right to left. The inputs are switches but could be any other device that
is capable of driving LS logic. The switch level is gated through to the
internal data bus whenever Pins 1 and 19 on the 74LS244 go low.

The internal bus also carries output data to the D-latches in the two
74LS75s. Whenever Pins 4 and 13 go high, the inputs to the latches are
used to set or clear the outputs. By using latches, the output appears

Input/Output 489

constant even after the data from the bus disappears. A LED is lighted
whenever an output goes low; dark whenever it goes high.

Address decoding is done with 74LS138 chips. On the motherboard,
one of these feeds the peripheral 1/0 slots by decoding the address bus
to one of seven lines. Each line is a separate DS for each slot. This
way, each slot can use DS to enable its own hardware with very little
further decoding to be done.

On this card, the 74LS138 completes the address decoding. It is
enabled whenever DS goes low. Another enable is connected from an
inverter on clock Phase One to provide timing. The three lines on Pins
1, 2, and 3 of the 74LS138 provide a three bit address to bring one of
eight output lines low. To get the address, the R/W line and address
lines A0 and A1 are used here. This generates different outputs for
reads and writes for the various combinations of A0 and A 1• Only two
of these eight combinations are used; one of these selects the output
port and one selects the input port. The actual addresses that must be
used to reach the ports are summarized in Table 8-10.

Table 8-10. Simple Port Device Selection

Instruction Al AO R/W Yn Pin

LOA $C080,X H H H 0 15

STA $C080,X H H L 1 14

LOA $C081,X H L H 2 13

STA $C081,X H L L 3 12

LOA $C082,X L H H 4 11
STA $C082,X L H L 5 10

LOA $C083,X L L H 6 9

STA $C083,X L L L 7 7

There are eight possible combinations of R/W, A0 , and A1 lines.
Each combination brings a different 74LS138line low; if a routine has
sixteen times the slot number in the X-reg, $sO, then the instructions
given will address the board. Each address selects a different Yn, 0 to
7, as the enable output from the 74LS138. YO appears on Pin 15 and
selects the output port in the schematic. Y1 appears on Pin 14 and
selects the input port. Y2 to Y7 are unused here, so $C081.C083 will
have no effect.

Look at a couple of test examples. Suppose you put the board in
Slot Five. The addresses $CODO.CODF belong to that slot since $CODO
is $C080 + $50. If you write to the board with a Monitor command

490 Apple® Programmer's Handbook

CODO:AA

you should see the LEDs make a pattern with every second one
lighted. $AA is 10101010 in binary. Write other patterns to test the
output port.

Similarly, test the input port by reading from the Monitor with: n
CODO

The byte read from that location should match the bit pattern of the
eight switches on the board. Convert the hex number to binary and
match up the pattern . Make different patterns and test until you are
sure the input port reads exactly what you expect.

Instead of switches and lights, you can connect other devices to
your l/0 port. Make sure that it works okay with the switches and
lights first. Then, you can either replace them with lines from the de
vice or you can use the remaining enables from the 74LS138.

Replacement is the simplest. If you have an input device like an ana
log-to-digital converter, simply unhook the switch lines from the
74LS244 and wire up your new lines. For output disconnect the LEDs
from the 74LS75s and connect any output lines you want latched . If
you don't want latching on output, use the internal board data bus -
Pins 2 to 8 on the 74LS245. Without latching, be sure to use the enable
from Pin 15 o f the 74LS 138 to strobe it a t the enable-low pin of your
device. To enable high, use Pin 4 of the 74LS04 inverter.

For cases where a strobe is required to enable the external device,
use one o f the other lines on the 74LS138 as indicated in Table 8-10.
This way you can leave the LEDs and switches at $C080,X alone and
assign one of the remaining three addresses . Simply use the internal
da ta bus from the 74LS245 Pins 2 to 9 for data.

8.2.3 Peripheral Interface Adaptor

Another way of making a simple l/0 port is to use a peripheral
interface adaptor chip, PIA for short. The most common o f these is
the Motorola 6821. Equivalent types you may see in the literature are
the 6820 and the 6520. What this chip does is provide two ports of
eight data bits and two control bits each. It has logic you can control
by addressing. It provides processor bus interfacing with eight bits of
data and two IRQ lines. In addition, it has several enables, allowing it

....

n

-

,..

Input/Output 491

to be selected by several addressing schemes. By coming in a single,
inexpensive package, it is often the way to go when making up simple
interface cards for peripheral devices.

Hookup of the 6821 PIA to the Apple bus is quite simple. Fig. 8-10
shows the connections. If you have only the one IC to connect to the

26
DO CAl

CA2

DO 01 PAO
42 33

01
43 32

02 PAl
02

44 31
03 PA2 PORT

A 03
45 30

04 PA3
04

46 29
05 PA4

OS
47 28

06 PAS

06
48 27

07 PAS
07

49 26 PA7

INTERNAL DATA
BUS ISEE TEXTI

ill RES
31

IRQB

iRQ 30
PBO
PBI

t/>0 40 PB2
PBJ

6S CS3 PB4 PORT

RNi
41

R/W B
18 PBS

AO RSO PB6
AI RSI PB7

CS2

+SV 25
CSl CBI
sv CB2

APPLE II BUS PIA TYPE 6821

Fig. 8-10. The 6821 to Apple II Interface.

data bus on the card then you don't need an internal data bus; simply
connect the data lines directly as indicated by the dashed lines. How
ever, if you plan to add other data bus devices later, such as memory,
then you should buffer with a 74LS245 to provide an internal data
bus, just like the simple 1/0 port of Fig. 8-9 shown earlier. Use R/W
on the direction pin and enable it to ground.

The rest of the pinout is straightforward. There are two IRQs from
the 6821, IRQA and IRQB, each from its corresponding port. Sim
plest thing to do is connect both to the Apple II IRQ line to make them
available for future programming. The reset line (RES) must be con
nected since it clears the registers in the PIA at power up. Without re
setting, the PIA may generate unintentional interrupts!

492 Apple® Programmer's Handbook

Addressing is used to select one of four register locations at Pins 35
and 36 on the 6821. The device select (DS) line connected to the chip
select (CS3) addresses these registers at the four locations given in
Table 8-11. Each of the two ports has two locations, data and control.

Table 8-11. PIA Register Select Addresses

Address Register

$C080,X Data register A

$C08l,X Control register A

$C082,X Data register B

$C083,X Control register B

NOTE: Where X-reg contains 16 times slot number.

By reading and writing to these locations from the Apple, you can
send and receive data from the ports, and control such things as inter
rupts and control lines handshaking protocol.

Like the simple 1/0 port, you can connect devices. Use either Port
A or Port B data lines for most simple applications. Each line on each
port can be set independently for input or output. However, if you
plan to use the control lines in future for handshaking, use Port A for
input and Port B for output. While the two ports are identical in their
data handling logic, they differ in their control logics. See the refer
ences for details on use of control lines, interrupts, and handshaking.

Here, you can see how to control the transfer of data with a PIA.
Each of the two data locations belongs to one port. And, each of

the two control locations contains the control register for each port.
See Fig. 8-11 for PIA data and control registers for Port A. There are

ORA

PA7 PAS PAS PA4 PAl PA2 PAl PAO

DORA

DA7 DA6 DAS DA4 DA3 DA2 DAI DAO

CRA

IRQ I IRQ2 OUT NEG IRQE DDR NEG IRQE

CA2 CAl

l'"ig. 8-11. PIA datu and control registers for port A.

-

Input / Output 493

two registers for data, ORA and DORA. Data are transferred in ORA
and in the direction specified by DORA. ORA is called the output reg
ister of Port A while DORA is called the data direction register of Port
A. Both ORA and DDRA reside at the same location, but more about
that a little later.

Upon reset, the data location contains ORA. All lines of data, PAO
to PA 7, are connected to ORA as inputs. By reading at the data loca
t ion - $C800,X - you get the eight bits representing the eight data
input lines at the time of the read. Input is not latched; it follows the
data lines as they change from cycle to cycle.

The reason all bits of ORA are inputs is because the other data reg
ister, DDRA, was cleared to zero by the reset. If any bit in DDRA is
changed to a one, then the corresponding bit in ORA becomes an out
put. For example, if you changed bit 3, DA3, in DORA to a one, then
bit 3, P A3, in ORA would become an output bit. The line PA3 would
be an output line. The remaining lines would not be affected; they
would remain as inputs.

To change bits in the data direction register, you have to switch the
data location from ORA to DORA. Then, you can change the DORA
contents. Immediately afterwards, you would want to switch the data
locat ion back from DORA to ORA to access the port. This switching
is done in the control register. You use bit 2, called DDR, in CRA.
Here is the code:

LOA $C081 ,X get CRA
ORA #$04 turn on Bit 2 (DDR)
STA $C081 ,X rep lace CRA
LDA $C080,X get DORA
ORA #$08 turn on Bit 3 (output)
STA $C080,X replace DORA
LOA $C081 ,X get CRA
AND #$FB turn off Bit 2 (DDR)
STA $C081 ,X replace CRA

Remember, the X-reg contains sixteen times the slot number.
When a line is set to output, it is latched by ORA, the output reg

ister. So, after you write to the data register, the output appears on
any o utput lines and remains there until you change it again.

To summarize, inputs are zero in the DDR and unlatched in the out
put register. Outputs are the ones in the DDR and latched in the out
put register.

494 App/~ Programmer's Handbook

To use Port B, the rules are the same. Use $C082,X for
ORB/DDRB and $C083 for CRB. The layout is given in Fig. 8-12;

ORB

P87 P86 PBS P84 PBl P81 PSI PBO

OORB

087 086 DBS 084 083 DB1 OBI 080

CRB

I IRQ I IRQ1 our NEG IRQE DDR NEG IRQE

CB1 CBI

Flj:. 8·12. PIA dala and con lrol regislcrs for pori B.

compare to Fig. 8-11. As an example, here is how to set all eight data
lines of Port B for output:

LDA $C083,X get CRB
ORA #$04 turn on Bit 2 (DDR)
STA $C083,X replace
LDA #$FF turn on all bits
STA $C082,X in DDRB
LDA $C083,X get ORB again
AND #$FB turn off Bit 2
STA $C083,X replace

To use the ports, then, you could read from Port A by

LDA $C080,X

and write to Port B by

STA $C082,X

assuming you initialized Port B for output as just shown. Always set
the X-reg to sixteen times the slot number before using any of these
statements.

-

-

i1

n

Input/Output 495

8.2.4 Peripheral Memory

While you can get peripherals working from routines in main mem
ory, there are cases where you need memory right on the same card as
the interface circuitry itself. The most obvious is the need to determine
the slot number of the device. An on-card routine can do this easily.
Another is the need to use Apple's input/output protocol, the hooks.
You can send and receive byte streams easily from BASIC or many
software packages if the routine is at $C§OO, where ~ is the slot num
ber. Review Section 6.1 for how the hooks work.

If you decide to add memory to your peripheral card, the question
is, RAM or ROM? Traditionally, ROM is used on cards so that the
routine is permanent. No initial loading is needed and any system can
pass bytes with no need to have the routine on a special disk. Choose
an EPROM like the 2316. You will need a PROM programmer; use an
Apple card. Several are available from manufacturers. You can save a
bit by making your own eraser.

To make a PROM eraser, get an 18-inch fluorescent lamp that pro
duces short ultraviolet. They are sold by lamp suppliers as germicidal
lamps. Don't use so-called "black light" tubes. They are cheaper, but
put out long wavelength ultraviolet, not the short wavelength the
EPROM needs to erase. The lamp should be labeled as producing
253.7 nanometers, a mercury line in the short ultraviolet. Fig. 8-13
gives the circuit.

..&..
r-------------~ ~----------~

START

Fig. 8-13. EPROM eraser circuit.

If you are modifying an existing fixture, you have to do two things.
First, put the fixture in a "bottomless" box that rests on a table or
floor so as to cover and illuminate the EPROMs. Locate the start
switch outside the box so that you can start it without looking at the
light itself. The short ultraviolet is dangerous to eyesi~ht. Next, use a

496 Appl~ Programmer's Handbook

normally open pushbutton to turn the lamp off whenever the box is
lifted from its resting surface. This is your safety switch to prevent ac
cidental eye exposure to the lamp.

Such a homemade eraser lamp is safer and cheaper than most com
mercially available lamps.

Alternately, you can use RAM on a card. The advantages include
speed and ease of programming and no initial costs for PROM pro
gramming eq uipment. You have to load the card before using it, but
you can also modify your routines when necessary.

The easiest RAM to use is a static RAM . A low-cost static RAM is
the type 2114. A circuit that adapts two of these chips to the Apple bus
is shown in Fig. 8-14. The buffer used to isolate the internal data bus is
not shown, but is the same as described. The 74LS245 buffer can be
enabled permanently by grounding Pin 19 so that it will work for both
device addresses and 1/0 (memory) addresses. Connect the direct ion
switch at Pin I to Apple R/ W line.

Regardless of RAM or ROM, you will write the routine starting at
$C~OO to either input or output one byte. You have 256 bytes of pro
gram space there to do that. For simple devices, that is usually suffi
cient.

If you want RAM storage for information between calls, use the
scratch pad memory in SCREEN 1 ($0400.07FF) as assigned to your
slot. See Chapter Two for a breakdown. This is where you keep setup
parameters the first t ime they a re called, and use them on subsequent
calls. If the slot number is kept in the Y -reg, then you address this
scratchpad as $0478,Y and $04F8,Y and so on. See Table 2-3 for the
others.

Remember, you need sixteen times the slot number in the X-reg to
address the device hardware as described in Sections 8.2.2 and 8.2.3 .

Here is how to get the slot number of a routine running in
$C~OO .C~FF:

JSR $FF58 a known RTS
TSX
LDA $0100,X gets our PC-high
AND #$OF isolates ~
TAY slot number in Y-reg
ASL A
ASL A

-

-

-
-
-

J 1] 1 1]

"l'l
~· r---

!
~
fll

r"o INTERNAL DATA BUS
00

42
01

43

i ;:;·
"'

02
44

03
45

>
3:

04
46

= :s
05

47

1:1:1 06
48 ,

ftj

::!.
07 49

'-' ,
:r
ftj

i.
11 12 13 14

04 03 02 01 ,
1:1:1

RIW i£ 18 10 ..,
?- 110 SEL cs

I a
AO AI A2 AJ A4

5 6 7 4 3

AO
2

AI
3

A2
4

A3
5

A4
6

AS
]

A6
8

A7
9

-
APPU II BUS

j 1 1

+5V

t18 II 12

DC 03

7 wr
2114

7 cs
AS A6 A7 A8 A9 GND AO AI A2

2 I 17~9 r 6 7

I]

13 14

02 01

2114

A3 AC AS AS

4 3 2 I

J 1

+5V

L

A7 A8 A9 GHD I

17~9

]

:;
'ti
t::
.........
a
t::
'S
t:: -
~
""-~

]

498 App/~ Programmer's Handbook

ASL A
ASL A
TAX $10*slot in X-reg

Do this after pushing the registers onto the stack at the beginning of
the routine. The slot number in theY -reg can reach the proper scratch
pad RAM and the X-reg can reach the proper device by $C08n,X ad
dressing.

By making your own special-purpose peripherals and by program
ming their routines on-board, you can transform your Apple into any
number of different "custom-built" computers. Where does your
imagination lead you at this point? Make it on your Apple!

-

-
-
-
-
-

....

-
-

APPENDIX A

Bibliography and Notes

In addition to the material in this book, you may wish to consult the
following on particular points. They can give you more detail on
specific topics whenever you must dig a little deeper on any project.

Apple Computer, Inc., publish definitive reference material on the
Apple II. In particular, you may wish to consult one of the following:

Apple II Reference Manual (1978 ed.). A collection of engineering
notes including the Standard Monitor and Sweet16 source listings,
very clear schematics and the instruction set for Integer BASIC as it
appears in Chapter Five of this book. Out of print now.

Apple II Reference Manual (1979 ed.). A real reference manual,
this is the standard reference for Apple II before the lie model -
Standard and Autostart Monitors listed .

Apple lie Reference Manual (1982 ed.). Two volumes, the second
containing the listings of the lie Monitor and SO-column firmware.
Very thorough.

Applesoft BASIC Programmer's Reference Manual (1982 ed.). 2
volumes, for Jle only. An expanded version of the earlier, excellent
Applesoft manual, this one emphasizes lie features. With care, it
can be used on the older Apple II models - try out any feature
first.

499

500 Apple® Programmer's Handbook

Apple II Product Specification - Hobby/Prototyping Board
(Product Code A2BOOOIX). This useful collection of bus inter
facing information comes with to bare board from Apple. Nice to
have if you design peripheral cards.

Dougherty, The Apple II Monitors Peeled (latest ed.) is a complete
description of the Standard and Autostart Monitors. Very
exhaustive.

Programmer's Aid #1 Installation and Operating Manual expands
on the features you can use with Integer BASIC configurations.
Main features are highlighted in Chapter Five in this book.

Apple Software Bank - Contributed Programs Volumes 3-5 is a
collection of freebee software documentation. Includes File
Cabinet, a LIS Per, and other goodies that were distributed by
Apple. Try your local Apple user group; they may have the
software in their library.

Disk Operating System Instructional and Reference Manual (latest
version 3.3). Highlighted in Chapter Seven, but contains more use
ful material, especially at the command level.

You can get Apple publications through local dealers. The address of
the orchard head office is

Apple Computer, Inc.,
20525 Mariani A venue
Cupertino, CA 95014

Apple Pugetsound Program Library Exchange is a user group with a
large mail-in membership. Their magazine, which is called
A.P.P.L.E., is distributed to members. They distribute software and
documentation; in particular:

The Wozpak II and Other Assorted Goodies. Supplied from Apple,
it contains original Wozinak material on the Apple II and Integer
BASIC goodies developed in the early years of the Apple. A must
for Integer BASIC freaks, it comes with software.

Program Line Editor written by Neil Konzen. This manual and
software is a must for anyone doing extensive BASIC program
ming. Integer and Applesoft versions come on disk.

....

Bibliography and Notes 501

Write them for current membership information. There are many
more useful uti1ities you can get from them:

Apple Pugetsound Program Library Exchange
6708 39th Avenue SW,
Seattle, WA 98136

Crossley, John, "Applesoft Internal Entry Points," Apple Orchard,
pp 12-14, published by International Apple Core, P.O. Box 976,
Daly City, CA 94017. Vol. 1, no. 1 (Mar., Apr., 1980). A collection
of Applesoft locations and call descriptions. The first large collec
tion published, this is the one Applesoft books are largely based
upon.

Coan, James A., Basic APPLE BASIC, Hayden Book Company,
Inc., Rochelle Park, New Jersey. For anyone who has little or no
Applesoft programming experience, this book takes you through
BASIC from the beginning. May be used for both Applesoft and
Integer BASIC instruction.

Gayler, Winston D., The Apple II Circuit Description, Howard W.
Sams & Co., Inc. (1983). Very effective reference if you expect to do
much work with Apple II hardware. Also great for troubleshooting
clones.

Intel Component Data Catalog (latest edition), good source for
PROM data. Literature Department, Intel Corporation, 3065
Bowers Avenue, Santa Clara, CA 95051.

Irwin, Paul, "Amper Jump & TSort," Nibble, vol. 2, no. 6 (1981). A
simple method for u~ing several routines with ampersand calls is
given. Also, a tag sort for strings is given and described in detail.

Ibid, "Amp-L-Soft", Nibble, vol. 3, no. 7 (1982). More ampersand
call goodies with notes on loading ampersand routines to run with
Applesoft. Tones, an INPUT anything, and a fast substring search
are included.

Lancaster, Don, TTL Cookbook, Howard W. Sams & Co., Inc.
(1974). Excellent introduction to TTL chips for would-be hardware
hackers.

502 App/~ Programmer's Handbook

Ibid, Son of Cheap Video, Howard W. Sams & Co., Inc. (1980). The
last two chapters describe a lower-case video and keyboard scheme.

Leventhal, Lance, 6502 Assembly Language Programming,
Osbourne/McGraw-Hill, Inc. (1979). Although the unexplained
Assembler directives will discourage the beginning programmer,
this is quite a thorough reference for anything you may care to look
up in the way of 6502 features and routines.

Luebbert, William F., What's Where in the Apple? (latest edn.) from
Micro Ink, Inc., 34 Chelmsford Street, P.O. Box 6502,
Chelmsford, Mass. 01824, the people who publish Micro magazine.
This is a large gazetteer of the Apple II that covers both Applesoft
and Integer configurations.

MC6500 Microcomputing Family Programming Manual, Jan. 1976.
Published jointly by MOS Technology, Inc., 950 Rittenhouse Road,
Norristown, PA 19401 and by Synertek, P.O. Box 552, MS/34,
Santa Clara, CA 95052. When it comes to programming the 6502,
this is the definitive work by the designers themselves.

MC6500 Microcomputing Family Hardware Manual, 1976. Also
published jointly by MOS and Synertek, this describes and explains
how to design with 6500 series hardware: 6502 and 6520 chips in
particular. Remembr, the 6520 can be had in a later product called
the 6821.

Motorola Microprocessors Data Manual, latest edition, from
Literature Distribution Center, Motorola Semiconductor Products
Inc., P .0. Box 20924, Phoenix, AZ 85036. This gives the 6800 fami
ly of processors and peripherals. These peripheral chips work on the
Apple II bus.

Pump, Mark, "DOS Internals: An Overview," Call - A.P.P.L.E.,
(Feb. 1981). One of the best dissections of DOS ever written, it
covers versions 3.1, 3.2, and 3.3.

Radio Shack, Semiconductor Reference Guide (current ed.). A
collection of data on the products carried by Radio Shack. Many

...

,...

-

--

Bibliography and Notes 503

popular items - memory, transducers, transistors, TTL, and so
forth. Radio Shack Cat. #276-4006.

Synertek (current year) Data Catalog, Synertek, P.O. Box 552 MS/34,
Santa Clara, CA 95052. Lots of 6500 series data, memories,
especially the type 2114 static RAM.

The TTL Data Book for Design Engineers, latest edition, from Semi
conductor Group, Texas Instruments, Inc., P.O. Box 225012,
Dallas, TX 75265. This is the bible of the industry - look up any of
the TTL chips you may likely use here. If you don't know TTL, get
Lancaster's book as well.

Lechner, Pieter, Worth, Don, Beneath Apple DOS, (1981), from
Quality Software, 6660 Resenda Blvd., Resenda, CA 91335. Just
about everything you wanted to know about DOS.

n
n
n
n
n_

r
t I

n
n
n
n
n
I i·

IT

n:
rr
lL

-

n

-
APPENDIXB

Apple II Programmers'
Reference Card

Examine Memory
addr
addrl.addr2

MONITOR COMMANDS SUMMARY

Displays single location.
Displays a block of memory.
Displays next 8 locations. (return)

addrl<addr2.addr3V Verifies that block (addr2.addr3) equals the block
beginning at (addrl).

addrL
L

Change Memory

List (disassemble) locations from (addr).
List beginning at next location.

addr:byte by1e Change contents starting at (addr).
:byte byte byte Change contents starting at next location.
addrl<addr2.addr3M Move block from (addr2.addr3) to (addrl).
NOTE: To set a block to a ll single byte value (e.g. , all zeros), use two commands as
fo llows. addrl :by1e

Cassette Tape
addrl.addr2W
addrl.addr2R

Apple Video Display
N

Calculate Hexadecimal
byte/ + byte2
by1ef - by1e2

(addrl + l)<addrl .(addr2-l)M

Write block of memory to tape.
Read block from tape into memory.

Set to normal white-on-black.
Set to inverse black-on-white.

Add hex numbers.
Subtract hex numbers.

505

506 App/f!F> Programmer's Handbook

5D
SE
SF
60
61
62
63
64
65
66
67
68
69
6A

93
94
9S
%
97
98
99
100
101
102
103
104
lOS
106

23808
24064
24320
24576
24832
25088
2S344
25600
25856
26112
26368
26624
26880
27136

68 107 27392
6C 108 27648
60 109 27904
6E 110 28160
6F I II 28416
70 112 28612
71 113 28928
72 114 29184
73 liS 29440
74 116 296%
75 117 29952
76 118 30208
77 119 30270
78 120 30464
79 121 30976
7A 122 31232
78 123 31488
7C 124 31744
70 125 32000
7E 126 32256
7G 127 32512

HEX HEX HIGH

80 128 32768
81 129 33024
82 130 33280
83 131 33536
84 132 33792
8S 133 3404S
S6 134 34304
87 135 34560
88 136 34816
89 137 3S072
SA 138 3532S
SB 139 355S4
sc 140 35840
80 141 36096
BE 142 36S32
SF
90
91
92
93
94

143
144
145
146
147
148

36608
36864
37120
37376
37632
37888

m

REM
LET
GOTO
IF
PRINT
PRINT
PRINT
POKE

COLOR=
PLOT

HUN

AT
VLIN

AT
o VTAB
p

q

LIST

LIST
w POP

NODSP
NODSP
NOTRACE
DSP
DSP
TRACE
PRII

DEL INII

Applesofl ASCII

END NUL
FOR SOH
NEXT STX
DATA ETX
INPUT EOT
DEL ENQ
DIM ACK
READ BEL
GR BS
TEXT HT
PRit LF
INti VT
CAll FF
PLOT CR
HUN SO
VLIN
HGR2
HGR
HCOLOR=
HPLOT
DRAW

Sl
OLE
DCI
DC2
DC3
DC4

EOR m,X
LSR m,X

RTS
ADC (z,X)

ADCz
ROR z

PLA
ADCtlv
RORA

-V-BDI-C
-V-BDIZ-
-V-BDIZC
-VI-····
-VI----C
-VI---Z·
-VI---ZC
-VI--I··
-VI--1-C
-VI--IZ-
·VI--IZC
-VI-()..
• VI-D--C
-VI-D·Z·
-VI-0-ZC

JMP (m) -VI-Ol··
ADC m -VI-01-C
ROR m -VI-OIZ-

·VI-DIZC
BVS -VIB····
ADC (z),Y -VIB---C

-VIB--Z·
-VIB--ZC
-VIB-1--

ADC z,X -VIB-1-C
ROR z,X -VIB-IZ-

·VIB-IZC
SEI -VIBD---
ADC m,V -VIBD--C

-VIB()..Z-
-VIB()..ZC
-VIBDI-

ADC M,X -VIBDI-C
ROR m,X -VIBDIZ-

·VIBDJZC

OP CODE FLAGS

ST A (z,X) N-······
N--····C
N-----Z

N·····ZC
STY z N--·-1·-
STA z N----1-C
STX z N----IZ-

N·--IZC
DEY N---D···

N---0--C
TXA N---0-Z-

N---()..ZC
STY m N---01--
ST A m N---01-C
STX m N---DIZ·

BCC
STA (z),Y

STY z,X

N---DIZC
N--B··
N--8--C
N--8--Z
N--B--ZC
N--B-1·-

50
SE
SF
60
61
62
63
64
65
66
67
68
69

6A
68
6C
60
6E
6F
70
71
72
73
74
75
76
77
78
79

7A
78
7C
70
7E
7F

HEX

80
81
82
83
84
S5
86
87
88
S9
SA
SB
sc
so
SE
SF
90
91
92
93
94

9S
96
97
98
99
9A
9B
9C
90
9E
9F
AO
AI
A2
A3
A4
AS
A6
A7
AS
A9
AA
AB
AC
AD
AE
AF
BO
Bl
B2
B3
B4
BS
B6
B7
BS
B9
BA
BB
BC
BD
BE
BF
co
Cl
C2
C3
C4
cs
C6
C7
CS
C9
CA
CB
cc
CD
CE
CF
DO

149
ISO
lSI
152
IS3
154
ISS
IS6
IS7
15S
IS9
160
161
162
163
164
16S
166
167
16S
169
170
171
172
173
174
17S
176
177
17S
179
ISO
181
IS2
183
184
ISS
186
187
188
IS9
190
191
192
193
194
19S
196
197
19S
199
200
201
202
203
204
20S
206
207
208

3SI44
38400
38656
38912
39168
39424
39680
39936
40192
4044S
40704
40960
41216
41472
41728
41984
42240
42496
427S2
43008
43264
43S20
43776
44032
44288
44544
44800
4SOS6
4S312
4SS68
4SS24
46080
46336
46S92
46848
47104
47360
47616
47872
48128
48384
48640
48896
491S2
49408
49664

49920
S0176
S0432
50688
50944
Sl200
SI4S6
Sl712
Sl968
S2224
S2480
S2736
S2992
53248

Apple II Programmers, Reference Card 507

XDRAW
HTAB
HOME
ROT=
SCALE=
SHLOAD
TRACE
NO TRACE
NORMAL
INVERSE
FLASH
COLOR:
POP
VTAB
HIMEM:
LOMEM:
ON ERR
RESUME
RECALL
STORE
SPEED=
LET
GOTO
RUN
IF
RESTORE
&
GOSUB
RETURN
REM
STOP
ON
WAIT
LOAD
SAVE
DEFFN
POKE
PRINT
CONT
LIST
CLEAR
GET
NEW
TAB
TO
FN
SPC(
THEN
AT
NOT
STEP
+

AND
OR
>

NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
us
SP

Olo
&

+

0
I

7

s
9

<

>

@

A
B
c
D
E
F
G
H
I
J
K
L
M
N
0
p

STA z,X
STX z,Y

TXA
STA m,Y
TXS

STA m,X

LOY llv
LOA (z,X)
LCX/#v

LOY z
LDAz
LOX z

TAY
LDA/#v
TAX

LOY m
LOAm
LDXm

BCS
LDA(z),Y

LOY z,X
LOA z,X
LOX z,Y

CLV
LOA m,Y
TSX

LOY m,X
LOA m,X
LOX m,Y

CPY /#v
CMP {z,X)

CPY z
CMPz
DECz

INY
CMP/#v
DEX

CPY m
CMPm
DECm

BNE

N--B-1-C
N--B-IZ
N--B·IZC
N-·BD···
N--BD--C
N--80-Z
N--BD-ZC
N--BDI··
N--BDJ-C
N--BDIZ
N--BDZIC
N-1·-···
N-1----C
N-1---z
N-1--zc
N-1--1··
N-1--1-C
N-1--JZ
N-1--IZC
N-1-D--
N-1-D--C
N-1-D-Z
N-1-D-ZC
N-1-DI-
N-1-DI-C

95
96
97
98
99
9A
9B
9C
90
9E
9F
AO
AI
A2
A3
A4
AS
A6
A7
AS
A9
AA
AB
AC
AD

N-1-DIZ- AE
N-1-DIZC AF
N-IB···· BO
N-18---C 81
N-IB--Z· 82
N-IB--ZC 83
N-IB-1-- B4
N-18-1-C 85
N-IB-IZ· B6
N-18-IZC B7
N-180-- 88
N-IBD--C 89
N-IBD-Z- BA
N-IBD-ZC 88
N-1801-- DC
N-IBDI-C BD
N-IBDIZ- BE
N-IBDIZC BF
NV-·-··- CO
NV-----C Cl
NV····Z· C2
NV····ZC C3
NV·-·1·· C4
NV···I·C C5
NV···IZ- C6
NV···IZC C7
NV--0-- C8
NV--D--C C9
NV-·D·Z· CA
NV--0-ZC CB
NV--01-· CC
NV--01--C CD
NV-DIZ· CE
NV--DIZC CF
NV-B---· DO

508 App/~ Programmer's Handbook

Test and Debug
addrG Go, executes routine at (addr). ~

ctrl/Y User, executes routine at $03sF8.
ctrl/E Examine registers. Change them with a colon on the

next command - : (A) (X) (Y) (P) (S) - for as
many registers as wanted ,...

addrT• Trace routine at (addr) until BRK (op code $00) is
executed.

addrS* Single step by executing one instruction only at
(addr). Step following instructions by "S'' only for

flllll
each.

*NOTE: Trace and step are available in Old Monitor only.
Mini-Assembler

CALL -151 Enter Monitor from Integer BASIC only.
F666G Enter Miniassembler from Monitor.

..._
addr:instruction Assembles instruction with mnemonic at (addr).
(space)instruct ion Assembles instruction at next location.
$command Executes any Monitor command.
$FF69G Return from Miniassembler to Monitor.

HEX I. OW HIGH ASCII INUGER BASIC OPCODE RAGS HEX

00 0 0 NUL s1ar1 line BRK 00
OJ 256 SOH end line ORA(z,X) -------C 01
02 Sl2 STX ------Z- 02
03 768 ETX ------ZC 03
04 1024 EOT LOAD -----1-- 04
OS 1280 ENQ SAVE ORAz -----1-C OS
06 1536 ACK CON ASL z -----IZ- 06
07 1792 BEl RUN -----IZC 07
08 2~8 BS RUN PHP ----0--- 08
09 2034 HT DEL ORA II\' ----0--C 09
OA 10 2560 LF ASLA ----D-Z- OA ~
08 II 2816 VT NEW ----D-ZC OB
oc 12 3072 FF CLR ----01-- oc
OD 13 3378 CR AUTO ORAm ----01-C OD
OE 14 3S84 so ASL m ----DIZ- OE
OF IS 3840 Sl MAN ----DIZC OF ~
10 16 4096 OLE HIMEM: BPL ---8---- 10
II 17 43S2 DCI LOMEM: ORA (z),Y ---8---C II
12 18 4608 DC2 + ---8--Z- 12
13 19 4864 DC3 ---8--ZC 13
14 20 Sl20 DC4 ---B-1-- 14
IS 21 S376 NAK ORA z,X ---B-1-C IS
16 22 S632 SYN ASI. z,X ---B-IZ· 16
17 23 5888 ETB ---8-IZC 17
18 24 6144 CAN >= CLC ---80--- 18
19 2S 6400 EM > ORA m,Y ---80-C 19
lA 26 6656 SUB <= ---80-Z- lA
18 27 6912 ESC <> ---BD-ZC 18
IC 28 7168 FS < ---BDI- IC
ID 29 7424 GS AND ORA m,X ---801-C ID
IE 30 7680 RS OR ASL.m,X ---8DIZ- IE p-1
IF 31 7936 us MOD ---BDIZC IF
20 32 8192 SP A JSR m --1---- 20

21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C

3D
3E
3F
40
41
42
43
44
45
46
47
48
49
4A
4B
4C

4D
4E
4F
so
51
52
53
54
ss
56
51

58
59
SA
58
sc

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
so
51
52
53
54
ss
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
15
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

91
92

8448
8704
8960
9216
9472
9728
9984
10240
10496
10752
11008
11264
11520
117i6
12032
12288
12544
12800
13056
13312
13568
13824
14080
14336
14592
14848
15104
15360
15616
15872
16128
16384
16640
16896
17152
17408
17664
17920
18176
18432
18688
18944
19200
19456
19712
19968
20224
20480
20736
20992
21248
21504
21760
22016
22272
22528
22784
23040
23296
23552

"To
&

I
0

4

s
6

9

<

>

@

A
8
c
D
E
F
G
H

K
L
M
N
0
p

Q
R
s
T
u
v
w
X
v
z
r
\

Apple II Programmers' Reference Card 509

THEN
THEN

(

PEEK
RND
SGN

ABS
POL

+

NOT
(

LEN(
ASC(

SCRN(

TEXT
GR
CALL
DIM
DIM
TAB
END
INPUT
INPUT
INPUT
FOR

TO
STEP
NEXT

RETURN
GOSUB

AND(z,X)

BIT z
ANDz
ROL z

PLP
AND#v
ROLA

BJTm
ANDm
ROLm

BMI
AND (l),Y

AND z,X
ROL z,X

SEC
ANDm,Y

ANDm,X
ROL m,X

RTI
EOR (z,X)

EOR z
LSR z

PHA
EOR #v
LSR A

JMPm
EORm
LSRm

BVC
EOR (z),Y

EOR z,X
LSR z,X

CLI
EOR m,Y

--1----C
--1---Z-
·-1--ZC
--1--1--
·-1--1-C
-1-IZ-
--1--IZC
--1-D---
--1-0--C
--1-D-Z-
--1-D-ZC
--1-01--
·-1-01-C
--1-0IZ
·-1-0IZC
--18----
·-IB---C
--18--Z
·-18--ZC
--18-1--
--18-1-C
--18-IZ-
--18-IZC
--I8D---
--I8D--C
--180-Z-
·-IBD-ZC
--1801--
--IBDI-C
--IBDIZ-
--18DIZC
-V------
-V-----C
-V----Z-
-V---ZC
-V---1--
-V---1-C
-V--IZ-
-V---IZC
-V--0---
-V--0--C
-V-D-Z-
-V--0-ZC
-V--01--
-V--01-C
-V--OIZ-
-V--OIZC
-V-8---
-V-8---C
-V-B--Z-
-V-8--ZC
-V-8-1--
-V-8-1-C
-V-8-IZ-
-V-8-IZC
-V-80---
-V-80-C
-V-80-Z-
-V-BD-ZC
-V-801--

21
22
23
24
25
26
27
28
29

2A
28
2C
2D
lE
2F
30
31
32
33
34
35
36
37
38
39

3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46
47
48
49

4A
48
4C
4D
4E

4F

so
51
52
53
54
ss
56
57
58
59
SA
sa
sc

...

510 Apple® Programmer's Handbook

Dl 209 53504 < Q CMP(z),Y NV-8---C OJ
02 210 53760 SGN R NV-8-Z- 02
03 211 54016 INT s NV-8--ZC 03
04 212 54272 ABS T NV-8-1-- 04
05 213 54528 USR u CMP z,X NV-8-1-C 05
06 214 54784 FRE v DEC z,X NV-B-IZ- D6
07 215 55040 SCRN(w NV-8-IZC 07
08 216 55296 POL X CLD NV-80--- 08
09 217 55552 POS y CMP m,Y NV-80--C 09
DA 218 55808 SQR z NV-80-Z- DA
DB 219 56064 RND c: NV-80-ZC DB
DC 220 56320 LOG NV-801-- DC
DO 221 56576 EXP ::I CMPm,X NV-801-C DO
DE 222 56832 cos DECm,X NV-8DIZ- DE
OF 223 57088 SIN NV-8DIZC OF
EO 224 57344 TAN CPX #v NV1----- EO

• El 225 57600 ATN a SBC{z,X) NV1----C El
E2 226 57856 PEEK b NVI--Z- E2
E3 227 58112 LEN NV1---ZC E3
E4 228 58368 STR$ CPX z NVI--1-- E4
E5 229 58624 VAL SBCz NV1--1-C E5
E6 230 58880 ASC INCz NVI--IZ- E6
E7 231 59136 CHR$ 8 NVI--IZC E7
EB 232 59392 LEFTS h INX NVI-0--- E8
E9 233 59648 RIGHTS SBC#v NV1-D--C E9
EA 234 59904 MID$ j NOP NV1-D-Z- EA
EB 235 60160

T
k NVI-D-ZC EB

EC 236 60416 CPXm NVI-01-- EC
ED 237 60672 m SBCm NV1-D1-C ED
EE 238 60928 INCm NV1-DIZ- EE
EF 239 61184 0 NVI-DIZC EF
FO 240 61440 p BEQ NV18---- FO
F1 241 61696 q SBC(z),Y NVIB---C Fl
F2 242 61952 NVIB--Z- F2
F3 243 62208 error NV1B--ZC F3
F4 244 62464 messages NVIB-1-- F4
F5 245 62720 SBC z,X NV18-1-C FS
F6 246 62976 INCz,X NV18-IZ- F6
F7 247 63232 w NV18-IZC F7 ~
F8 248 63488 SED NV1BD--- F8
F9 249 63744 SBCm,Y NVJ8D--C F9
FA 250 64000 NVIBD-Z- FA
FB 251 64256 NVIBD-ZC FB
FC 252 64512 NVIBDI-- FC r FD 253 64768 SBC m,X NVIBDI-C FD
FE 254 65024 "\, INCm,X NV1BDIZ- FE
FF 255 65280 DEL NVIBD1ZC FF

~
I I

Apple II Programmers' Reference Card 511

UNIQUE 6502 INSTRUCTIONS

MNEMONIC OPCODE ADDRESSING FLAGS

branch
BCC 90 relative
BCS BO relative
BEQ FO relative
BMI 30 relative
BNE DO relative
BPL 10 relative
BVC 50 relative
BVS 70 relative

p-register bit
CLC 18 implied -----C
CLD 08 implied --0---
CLI 58 implied ---1--
CLV B8 implied -V---
SEC 38 implied -----C
SED F8 implied --0--
SEI 78 implied ---1--

program flow
BRK ()() implied --1-
JMP 4C absolute
JMP 6C indirect
JSR 20 absolute
NOP EA
RTI 40 implied stack*
RTS 60 implied

transfer
TAX AA implied N---Z-
TAY AS implied N---Z-
TSX BA implied N--Z-
TXA SA implied N---Z-
TXS 9A implied
TYA 98 implied N---Z-

stack
PHA 48 implied
PHP 08 implied
PLA 68 implied N---Z-
PLP 28 implied stack*

•restored from stack

...

512 Apple® Programmer,s Handbook

ACCUMULATOR,MEMORY,ANDINDEXINSTRUCTIONS ...
...

$
~

$ ~

~-..;
~ ~ ~ ~ ~ ~

N"':' ~ & st

" $' ~I' $'~ ti &' i ~"#;' q."':' 4."1;' s
01 01 s ~ ~ {; ;;) S} 0 R ~ ~ ~ 8 I ~ ~ ~ J

"" ~ IV ~ "" "#;' ~ ~ ~ -'t;

,...
I

ADC - 69 65 75 60 70 79 61 71 NVZC
AND - 29 25 35 20 30 39 21 31 N-Z-
ASL OA 06 16 OE N-ZC
BIT 24 2C 76Z-
CMP C9 cs DS CD DD 09 Cl Dl N-ZC
CPX - EO E4 EC N-ZC
CPY - co C4 cc N-ZC
DEC - C6 06 CE DE N-Z- ~

DEX CA* N-Z-
DEY 88* N-Z-
EOR 49 45 55 40 50 59 41 51 N-Z-
INC - E6 F6 EE FE N-Z- t-Il

INX E8* N-Z-
INY C8* N-Z-
LOA - A9 AS B5 AD BD B9 AI Bl N-Z-
LOX - A2 A6 B6# AE BE N-Z-
LOY AO A4 84 AC BC N-Z-
LSR 4A 46 56 4E 5E N-Z-
ORA 09 05 15 00 ID 19 01 11 N-Z-
ROL 2A 26 36 2E 3E N-ZC ~

ROR 6A 66 76 6E 7E N-ZC
SBC - E9 E5 FS ED FD F9 E1 Fl NVZC
STA 85 95 80 90 99 81 91
STX - 86 96# 8E ...,
STY - 84 94 8C

•implied N negative Ccarry
llzero page, Y Vovernow 6 v ifbit6

Z zero 7 N ifbit7 ~

-

-

Index 513

Index

A

Access file, 444
Accumulator , 132, 308
Addition a nd subtraction, 207

ADC instruction, 207
C LC instruction, 207
SBC instruction, 209
SEC instruction, 209

Addition, mul tiple byte, 211
Address

high, 130
low, 130

Address bus, 129
Unidirect ional, 129

Address pointer, 74
Addressing, 154
Algorithm, 167, 201
Alterna te , 33 1, 332

character set, 66, 68
Ampersand vector, 326
Analog input, 102
Annunciator, 466, 468

port , 10 1
Apple li e

processor access soft switches, 69, 72
video display access soft switches, 69,

73
Applesoft, 79-82

at $DOOO.F7FF, 104-1 11
BASIC, 9, 69

command set, 23
special, 22

Architecture, 125
A-register, 132-134, 138- 142, 164, 169,

193
Arithmetic, 203-228

algorithms, 203
base ten, 203
base two, 203
nags, 222
shift left, 2 16

Arithmetric-logic unit, 129, 130
Array, 237, 238, 244, 248, 260, 28 1

ASL instruction, 2 16
Assembler, 125

directive, 143, 144, 183
notat ion, 140, 14 1, 168
programming, 18
pseduo-op, 143

Auto-increment, 3 11
Auxiliary

memory, 67, 69
slot , 14, 3 17

B

Bank switch, 59, 63, 64, 69, 104
Bank-switched memory, 19

ROM to RAM, 19
Base sixteen, 205

hex notation, 205
BASIC system use, 60, 67
Beep, 318
Binary

coded decimal, 207
notation, 205

BIT instruction , 2 14, 215
Black rout ine, 352
Blocks, 299, 300
Blue/ora nge pattern, 355
Boolean logic, 212
Borrow, 209
Break routine, 188, 189
Breakpoints, 187
Buffer , 130, 134

space, 201
Bui lt-in 110, 137, 461

cassette recorder, 461
keyboard, 461
speaker, 46 1
video display, 461

Built- in terminal, 479
cable, 480
li ve reset, 48 1
monitor, 480
R.F. modulator, 479

514 App/~ Programmer's Handbook

c
Call

extensions, 290-293
sequence, 149, 154

CALSUB routine, 183, 184
CASE

routine, 173-175
structure, 175

Cassette re~order, 461, 462, 463
Cassette tape, II, 18, 461, 465, 466

back up, 13
Catalog, 400, 409, 410, 413
C-flag, 207-211, 450
Chaining operations, 303
Character code, 139
Character sets

alternate, 331
primary, 331

Character string, 285
Checksum, 76, 214, 418
Chopping, 417
Circle, routine for, 36
Clipping, 35 1
Clock, 125

master signal, 126
Close files, 442
Code

conversion, 180
converter, 193

Coding
assembler, 146
form, 145

Cold start, 88, 106, 189, 191, 405, 406
Color burst generator, 355
Columnvalue, 335
Command, 423

illegal, 287
set, 320

Compare instruction, 162
Compound structure, 201
Constants

declaring of, 38
integer, 282
string, 282

Control characters, 319
Controller card, 11
Control lines, 130
Copy routine, 193
Cursor

control of, 193
locate, 33
parameters, 33

D

Data bus, 129
Data storage, 244
Dead band, 474, 475
Debugging, 128
Decimal notation, 205
Decision instruction, 163
Decoder instruction, 130, 131, 133
Default prompt, 324
Delimiters, 29
Descriptor, 247, 262, 263
Device control table, 453
D-flag, 186, 211
DIMensioned variables, 280
Directives, 146, 148
Directory sector, 409
Disk

files, :409
format, 415
management, 411
map, 400
operating system, 11
zap, 400, 407

Dispatching routine, 182
Display

attribute, 278, 279
byte, 279
1/0 logic, 85
timing, 127
video, 85, 86

D-latches, 488
DOS 3.3, 87-96
DOS, 399
DOS on disk, 399-409
Dot generator, 355
Drive error, 39

motor, 454

E

Echo,430
Effective address, 156
Emulator, 306, 309
End of file, 415, 443
End of line position, 76
Entry point, 176, 201
Error

arithmetic, 24
codes, 40
detector, 464
handler routine, 39
messages, 277
syntactic, 24
trapping, 23, 82

,....

~
I

... Index 515

Exit, 210
point, 176, 201

1-flag, 202 ,... Exponent, 226, 227, 302, 303
Index register, 169

F
Indirect

addressing, 184, 185, 197, 198
Fail safe, 172 indexing, 198 Fetch, 132, 138 jump, 196
Field, 29 mode, 157
File Initialization, 210

buffer, 78, 437 constants, 38

.... commands, tasks, 38
open, 434, 438 variables, 38
read, 434 writing of, 37

handling, 42-55 Input anything routine, 325
manager, 61 Input buffer, 60 parameters, 434, 438 INPUT command, 324, 325
random access, S0-55 Input hooks, 77, 318
sequential, 42-50 Input/Output, 97-104

Filename, 439 block, 446

~
Firmware, 9-18 switch, 318
Floating point, 225-228, 302, 305 Integer BASIC, 9, 69, ISO, 265
Forced address, 139 map, 276
Format disk, 449 tokens, 279, 283
Four byte mantissa, 245 Integer ,... Free space, 240 constants, 282
Frequency shift keying, 466 value, 74, 79

G
variable, 246, 247

Interface, 13, 14, 252-263
,... Games socket, 466-468 Interpreter, 61

Gate, 129 Interrupt, 128, 130, 185-191

Gazetteer, 58, 69 Invoke, 143

GETLN routine, 326 110 logic, 128

Graphics, 35-37, 337 1-register, 130, 140 ,...
displays, 193 Instruction register, 130

Greeting program, 400, 401
J

H Joystick, 466-474 ,...
Hack and run, 142, 150 Jump
Hand assembly, 145 indirect, 157
Handling numbers, 219 instruction, 138, 139
Hard sectored, 417

1-t Hardware, 9-16, 453 K
interrupt, 186

Header record, 44 Keyboards, 11
High byte order, 155, 156 live reset, 11

.... Highest significant bit, 128 problems with
HIRES lowercase, II

graphics, 293 uppercase, II
routines, 293-295

Hi-res graphics, 340-353 L ,... Hook address, 319, 320
Hue, 355, 356, 358 Label, 144, 145, 148

516 App/~ Programmer,s Handbook

Lam's method, 153, 154, 450
Latches, 130
Least significant bit, 340
Line numbers, 39-42, 43
Link pointer, 278
Linkage editing, 152
Linked records, 282
Literal data, 20 I
Literalstring, 335
Live reset, 481
Location counter, 151
Logic

instruction, 212
shift right, 216

Loop, 169-171, 178, 179, 201
Lo-res graphics, 337-340
Low byte order, 155, 156
Lowercase routine, 322
Lowest significant bit, 128
LSR instruction, 217

M

M command, 300, 302
Machine code, identify, 143
Mailbox, 195, 210
Mainline, 39
Mantissa, 227, 302, 303
Markers, 399
Mask, 76, 213-215, 352
Master clock, 127
Memory, 57, 58, 59, 236
Merge, 45, 47, 48, 50
Methods, 177-184
Mid-res graphics, 353-360
Miniassembler, 150, 151, 265, 298
Mismatched bits, 214
Mixed graphics, 340, 341, 342
ML

files, 287, 289
routine, 254

Mnemonics, 140, 141, 143, 146
Modularity, 201
Modulator rf, 9, II
Monitor, 141-150, 153, 161

autostart, 17
command interpreter, 77
hooks, 317
rf modulator, 9, 11
test, 298
tv set, 9, 11
verify files, 296

Monitor at $F800.F8FF, 112-117
routines, 112-117

Most significant bit, 340
Motherboard, 9

underground market, 10

N

Natural numbers, 219
Nesting, 201
NEW command, 252
N-flag, 161-163, 170, 171
Nibble, 206, 207, 223, 451-453
Non-register OPs, 308, 309
Normalized coordinates, 350, 351
Null, 29, 50, 250-252, 324, 394

0

Object file, 152
Op code, 138-141, 144-148, 187, 306

summary, 307
Open files, 442
Operand, 137-139, 144
Output, 94-96

switch, 318
Overflow, 208-210
Overwrite, 237

p

Pack-and-load, 285, 289
Packing, 260
Paddle, 466-471
Pages two and three, 83, 84
Pages zero and one, 74
Page vectors, 191
Page zero, 57-60, 155, 158, 185, 300,

301
Parameter buffer, 198
Parameters, 192, 195, 198
Parses, 24, 286
Pascal, 14, 18, 415, 416
Pasor zap, 479
Pass routines, 193-195
PC-register, 132
Peripheral

cards, 13
interface adapter, 490
110, 137. 482
memory, 495
PROM eraser, 495
scratchpad, 336
slot, 126
slot zero, 13
special, 13

,...

~
I

jlllll
I

t-.
' I

I

r
I

....
I

Phase
one, 126, 127
two, 133
zero, 126, 127

Pixels, 339, 340, 346, 347, 352, 354, 385
color, 354-360

Plank's constant, 225, 227
POKE method, I 53
Polygon, routine for, 37
Positional notation, 203, 204
Positive logic, 129
Power supply, 11
P-reg, 160, 167

C-flag, 161-163
N-flag, 161-163
Z-flag, 161-163

PRENYBBLE routine, 452
Primary, 331, 332

character set, 66, 68
Processor

flags, 132
stack, 83

Program
counter, 131
debugging, 186
design, 37-42
flow, 160
initialize, 37
location, 276
major function, 42
text, 237, 250

Programmer's aid #1, 137, 265, 290, 296
Programming, 22-31

Assembler, 18
BASICs, 22

Prompt character code, 76
Protocols, 399, 423
Pseudocode, 183
Pseudo-op, 143
Pull instruction, 165
Push instruction, 165

R

Random access files, 51-55, 433, 444
Random number, 79
Range test, 175, 176
Read/write

head, 453
mode, 443

Read/write track/sector, 446
Real-time routine, 177
Rectangle, routine for, 36

Re-entrant, 202
Registers, 192

OPs, 308
storage, 78

Relative
address, 154
record, 432

Index 517

Relocate program, 298-300
Repack, 238
Repacking, 245
RESET routine, 318
Return instruction, 165
Rewind files, 442
ROL instruction, 217
ROR instruction, 218
Rotates, 217, 219

s

Scratch pad, 85
Screen, 34-35, 334, 337
Scrolling, 27, 34, 323

parameters, 328
window, 75

Search routine, 441
Searchers, 193
Sector interleaving table, 415
Sectors, 399
Segments, 299
Sentinel, 45

byte, 279
Sequential files, 42-50, 51, 52
Shape tables, 360-397
Simple l/0 ports, 485
Six-color problem, 354
Slave disk, 407, 409, 429
Sloping lines, 339
Slot zero, 63
Soft

sectoring, 417
switches, 59, 64, 66, 69, 97, 100, 103,

113
Soft-switch setup, 193
Sort, 45, 46, 47
Source

address, 77, 78
file, 152

Speaker, 476
phasor zap, 479
staccato, 478
trills, 478

S-register, 132, 166, 167

518 App/£1® Programmer,s Handbook

Stack, 181, 182, 308
clean up, 199
pointer, 132, 165

Status register, 215
Stepper motor, 453
Step/Trace utility, 149
Store A-reg absolute, 141
Strings, 28, 30, 31
Strobe, 466, 490

port, 99
Structures, 167, 399
Subtracting routine, 211
Swap routine, 168
SWEET16 pseudo-processor, 305,

306-308, 309
Sync bytes, 417, 418, 422
Syntax, 301, 423, 424, 445

checking, 256
System pointer, 78, 79

T

Terminal, 32, 33
GET routine, 22, 23

Test, keypress for, 327
Text

assembler, 151
editor, 151

Timbre, 293
Timing diagram, 127
Tools, 15-17
Track

bit map, 409, 411
dump, 455
sector list, 413

Tricks, 285
Trigonometric functions, 350
Tri-state buffer, 486

u
Unary functions, 304
Un-delete, 427
Underflow, 209-211
Unhooked,321, 322
Unmixed graphics, 340

Unpacking, 260
Unprintable characters, 413
Unstack, 181
User defined registers, 306
USR function, 253, 254
Utilities, 19, 21, 290-316

line editor, 20
uncopyable disks, 22

v
Variables, 278

storage, 237-240, 245, 276, 286
Vector, 387, 388, 394
Velocity encoding, 474
Verb list, 231-235
Vertical cursor, 75
V-flag, 214, 222
Video display, 11, 18
Violet pattern, 354
Volume table of contents, 400, 409-412

w
Warm start, 89, 106, 117, 189, 191, 405
White routine, 352
Wire wrap, 15
Wrap around, 156, 218
Write

protect, 454
sector, 448
translate table, 419, 422

X

X-register, 132, 157, 158, 162, 180, 181

y

Y-register, 132, 157, 158, 161, 162

z
Zero-page-x, 197, 198
Z-flag, 161-164, 170-172

~
I

t-.
I

~
I

S~N~~-----------
More Books

for
Apple Owners!

INTRODUCING THE APPLE® MACINTOSH™
Introduces you to the design philosophy and physical st ructure of the Macintosh ™. and explores its displays, key
board, mouse, software, accessories, and more. By Connolly and Lieberman. 192 pages, 8 x 9'/•, softbound. ISBN
0-672-22361-9. © 1984.

No. 22361 $12.95

APPLE® lie PROGRAMMERS' REFERENCE GUIDE
An outstanding reference guide specifically for the lie that makes needed facts. applications, and other technical
lnformallon readily available at your fingertips. By David L Heiserman. 416 pages, 5'/z x 8'/z, comb-bound. ISBN
0·672-22299-X. © 1984.

No. 22299 $19.95

APPLESOFT FOR THE lie
A detailed Applesofl programmer's reference manual wrillen specifically for the lie and covering all aspects of lie
syntax and programming techniques. By Blackwood and Blackwood. 368 pages, 6 x 9, comb-bound. ISBN
0-672-22259-0. ~ 1983.

No. 22259 $19.95

APPLE® PROGRAMMER'S HANDBOOK
This single-volume coverage of essenllal Apple data contains dozens of tested "stock" routines organized by topic, a
detailed memory map, and much more. By Paul irwin. 480 pages, 5'/z x 8'/z, comb-bound. ISBN 0-672-22175-6. (£) 1984.
No. 22175 $21 .95

BASIC TRICKS FOR THE APPLE®
From a seasoned professional comes this collection of ideas, examples, and special Applesoft subroutines to use or
modify as part of your own Apple programs. By Allen L Wyatt. 160 pages. 5'/z x 8'/z, softbound. ISBN 0-672-22208-6.

1983.

No. 22208 $8.95

APPLE® II FOR KIDS FROM 8 TO 80
Whatever your age, you'll think you're at Computer Camp as these enjoyable and easy to follow. beginner-level BASIC
programming instrucllons help you quickly begin writing your own Apple 11-compatible programs. By Michael P.
Zabinski and Frank Mazzola. 160 pages, 8'/z x 11, softbound. ISBN 0·672·22297-3. < 1984.

No. 22297 $10.95

ENHANCING YOUR APPLE® II, Volume 1 (2nd Edition)
Lets you mix text, low-res, and high-res together anywhere on-screen; have 3·D graphics, overlapping single-l ine
colors, and other special effects; tear apart and understand somebody else's machine-language program. and much
more. By Don Lancaster. 256 pages, 8'/z x t t, softbound. ISBN 0-672·21822·4. © 1984.
No. 21822 $15.95

THE APPLE® II CIRCUIT DESCRIPTION
Gives you a detailed circuit description of all revisions of the Apple II and Apple II+ motherboard, Including the key·
board and power supply. By Winston D. Gayler. 176 pages plus foldouts, 8'/z x 11, comb·bound. ISBN 0·672·21959·X.
© 1983.
No. 21959 ... $22.95

DISKS, FILES, AND PRINTERS FOR THE APPLE® II
Provides basic-to-advanced details for using disks, files, and printers with an Apple II, plus hard·to·find advice on pro·
gramming with sequential-access, random-access. and executive files. By Blackwood and Blackwood. 216 pages,
6 x 9, comb·bound. ISBN 0-672·22163·2. © 1983.
No. 22163 ... $15.95

APPLE® II APPLICATIONS
Gives you a broad spectrum of tested programming and board-level Interfacing applications, including serial and
parallel 1/0 boards, EPROM or E2PROM boards, remote data acquisition, and more. By Marvin L. DeJong. 256 pages,
51/z x 8'/z, softbound. ISBN 0-672·22035·0. © 1983.
No. 22035 ... $13.95 ..

....
I

,..
I

I

APPLESOFT LANGUAGE (2nd Edition) ~
New material quickly introduces you to Applesoft syntax and programming, Including advanced programming tech·
nlques, graphics, color commands, sorts, searches, and more. By Blackwood and Blackwood. 288 pages, 6 x 9, comb·
bound. ISBN 0-672·22073-3. @ 1983.
No. 22073 ... $13.95

MOSTLY BASIC: APPLICATIONS FOR YOUR APPLE® II, Book 1
Twenty-eight Applesoft programs, including a telephone dialer, digital stopwatch, a spelling test, house-buying
guide, gas mileage calculator, and many more. By Howard Berenbon. 160 pages, 8'12 x 11, comb-bound. ISBN
0-672·21789·9. © 1980.
No. 21789 ... $13.95

MOSTLY BASIC: APPLICATIONS FOR YOUR APPLE® II, Book 2
More fascinating BASIC programs, including three dungeons, eleven household programs, seven on money or Invest·
ment, two that test your level of ESP, and more- 32 in all! By Howard Berenbon. 224 pages, 8'/z x 11, comb-bound.
ISBN 0-672·21864-X. © 1981.

Ask for No. 21864 ... $12.95

INTERMEDIATE LEVEL APPLE® II HANDBOOK
Hard·to-find, practical info that uses ROM-based Integer BASIC to lead you into Apple 6502 machine and assembly
language programming. By David L. Heiserman. 328 pages, 6 x 9, comb·bound. ISBN 0.672·21889-5. © 1983.
No. 21889 ... $16.95

INTIMATE INSTRUCTIONS IN INTEGER BASIC
Includes much to help you build Integer programs that run smoothly and take full advantage of that dialect's rapid·
running characteristics. By Blackwood and Blackwood. 160 pages, 5'/z x 8'/z, soft. ISBN 0-672·21812·7. © 1981.
No. 21812 .. $8.95

,...
I

~

...,
These and other Sams Books and Software products are available from better retailers
worldwide, or directly from Sams. Call 800-428-SAMS or 317-298-5566 to order, or to get
the name of a Sams retailer near you. Ask for your free Sams Books and Software
catalog!

Prices good In USA only. Prices and page counts subject to change without notice.

Apple is a registered trademark of Apple Computer, Inc. Macintosh Is a trademark of Apple Computer, Inc.

n
n
n

SAV~--------------~~-

Apple
Programmer's
Handbook
The Apple computer has emerged as a true " Open System." The built-in
peripheral bus, along with Apple published Monitor source listings and
schematics, allows anyone to configure his own Apple into a custom
computer: From word processing to video games, the Apple can be any
computer you want by adding reasonably priced peripheral boards.

This book is for the people who have these customized Apples. If you
need specific information on these custom features you can find just
what you want to know quickly and easily in this book. Each topic is
treated with specific examples. The Apple Programmer's Handbook:

• Tells you what peripherals you need to make your Apple II into any
custom computer system

• Explains Assembler programming

• Provides mops and locations most often needed by the Assembler
programmer

• Gives information on Integer and Applesoft BASIC

• Shows you hardware projects you con bui ld

• Lists newly developed state-of-the art applications for your Apple

• Presents information so clearly written the book con be used for self
study by the Apple II user

Howa rd W. Sams & Co., Inc.
4300 West 62nd Street, Indianapolis, Indiana 46268 U.S.A.

$22.95/22175 ISBN : 0-672-22175-6

SArd----------------·~-

Apple
Programmer's
Handbook
The Apple computer has emerged as a true "Open System." The built-in
peripheral bus, along with Apple published Monitor source listings and
schematics, allows anyone to configure his own Apple into a custom
computer. From word processing to video games, the Apple can be any
computer you want by adding reasonably priced peripheral boards.

This book is for the people who have these customized Apples. If you
need specific information on these custom features you can find just
what you want to know quickly and easily in this book. Each topic is
treated with specific examples. The Apple Programmer's Handbook:

• Tells you what peripherals you need to make your Apple II into any
custom computer system

• Explains Assembler programming

• Provides maps and locations most often needed by the Assembler
programmer

• Gives information on Integer and Applesoft BASIC

• Shows you hardware projects you can build

• Lists newly developed slate-of-the art applications for your Apple

• Presents information so clearly written the book can be used for self
study by the Apple II user

Howard W. Sams & Co., Inc.
4300 West 62nd Street, Indianapolis, Indiana 46268 U.S.A.

$22 .95/22175 ISBN: 0-672-22175-6

