i TiCE-HALL SERIES IN PERSONAL COMPUTING

JOHN E.UFFENBECK

Hardware
Interfacing

with the

Apple T Plus

$ A step by step introduction to microcomputer interfacing—

| - featuring 13 practical hardware experiments.

HARDWARE
INTERFACING
WITH THE
APPLE II PLUS

HARDWARE
INTERFACING
WITH THE
APPLE II PLUS

JOHN E. UFFENBECK

PRENTICE-HALL, INC., Englewood Cliffs, NJ 07632

/ H,mw e lus ,
Coli Lo~ 9
Hash v @ e.’lg:ne

Library of Congress Cataloging in Publication Data

Uffenbeck, John E.
Hardware interfacing with the Apple II Plus.

Includes index.

1. Computer interfaces—Experiments. 2. Apple II
(Computer) —Experiments. I. Title.
TK7887.5.U326 1983 621.3819'583 83-3186
ISBN 0-13-383851-X
ISBN 0-13-383844-7 (pbk.)

Apple is a registered trademark of Apple Computer, Inc.

Editorial/production supervision: Kathryn Gollin Marshak
Cover design: Diane Saxe

Manufacturing buyer: Gordon Osbourne

Cover photograph courtesy of Apple Computer, Ine.

© 1983 by Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632
All rights reserved. No part of this book may be

reproduced, in any form or by any means,

without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 2

0-13-38384Y4-7 {p}
0-13-383851-X {c}

Prentice-Hall International, Inc., London
Prentice-Hall of Australia Pty. Limited, Sydney
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro
Prentice-Hall Canada Inc., Toronto

Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books Limited, Wellington, New Zealand

For Kathy

CONTENTS

PREFACE

X

PART 1
GETTING STARTED

1

Introduction 3

Hardware Requirements 3
Nice-to-Have Components 7
Software Requirements 9
Conclusion 9

PART 2
BASIC CONCEPTS OF MICROCOMPUTER
INPUT/OUTPUT

11

Experiment 1 The PEEK and POKE Commands 13
Experiment 2 Address Decoding 22
Experiment 3 Memory-Mapped Output Port Concepts 36
Experiment 4 Memory-Mapped Input Port Concepts 46
Experiment 5 Interfacing the 8255 Programmable

Peripheral Interface 56
Experiment 6 Interfacing the 6820 Programmable

Interface Adapter 69

vii

viii

Contents

PART 3

SPECIAL INTERFACING PROBLEMS
83

Experiment 7 Hardware Interfacing Techniques, Part 1: Inputs 85
Experiment 8 Hardware Interfacing Techniques, Part 2: Outputs 100
Experiment 9 Interfacing a Digital-to-Analog Converter 114
Experiment 10 Interfacing an Analog-to-Digital Converter 126
Experiment 11 Handshaking I/O 140

Experiment 12 Serial Interfacing 153

Experiment 13 Interfacing a Programmable Sound Generator 172

APPENDICES

QEEHOQW®E >

191

Wiring the Vector Card 191

Parts List 195

Binary and Decimal Numbers 199
Basic Logic Gates 202

JK Flip-Flop 205

If the Experiment Doesn’t Work 207
Data Sheets 210

INDEX
235

PREFACE

This book is written for the computer ‘‘hacker,” the technician, the
engineer, and in general anyone with an interest in knowing a bit more about
the electronics of the Apple II Plus personal computer system. In particular
it deals with interfacing the sometimes ‘“hostile” outside world to the ex-
pansion bus of the Apple.

If you have never thought of using the Apple to control your world,
consider some of the possibilities. Using simple BASIC software you can
monitor the indoor or outdoor temperature, the opening and closing of a
door, the level of light in a room, the status of a smoke detector, or the
voltage on a charging capacitor. Once input, you can process this informa-
tion and turn on the light across the room, switch the furnace off or on, gen-
erate a piercing alarm signal, or program the “tinkling” of a bell.

All of these interfacing projects and several more are described in the
13 experiments in HARDWARE INTERFACING WITH THE APPLE II
PLUS. You will learn interfacing by doing interfacing. The book begins
with an explanation of the PEEK and POKE commands as their use will be
critical throughout. From there you will learn address decoding and input
and output ports. The Intel 8255 programmable peripheral interface is used
in Experiment 5 and contrasted with the Motorola MC6820 peripheral inter-
face adapter in Experiment 6. These two ICs greatly simplify the job of in-
terfacing to the outside world.

The last seven experiments deal with special interfacing techniques such
as analog-to-digital and digital-to-analog conversion methods. Also covered is
serial interfacing and the concept of ‘“handshaking” logic. The book ends
with a programmable sound generator project requiring 8 ICs. This circuit is
capable of producing a fantastic array of sounds from train whistles to gun
shots to an electronic organ.

You will be assumed to be a proficient—but not expert—BASIC pro-
grammer. Although machine language could be used for any of the experi-
ments, BASIC is used throughout. You should be familiar with digital bread-

ix

X Preface

boarding techniques and the 7400 series of digital logic gates. Mixed logic
symbology is used for all logic elements, and this technique is reviewed in
Appendix D.

The experiments are organized so that you can quickly see what you
will be required to do—the OVERVIEW, what you will learn; the OBJEC-
TIVES, what parts you will need; the PARTS LIST; a DISCUSSION on
the theory; and the experimental PROCEDURE itself.

One of the most difficult parts of any electronics project today is
locating the components and getting started. Part 1 addresses this issue and
Appendix B provides a complete parts list for all of the experiments with
several sources.

If you have never used your Apple as a hardware controller before, be
prepared for a pleasant surprise. You may find hardware interfacing even
more challenging and exciting than that last BASIC program you wrote.

Joun E. UFFENBECK

ACKNOWLEDGMENTS

The following figures and tables from Hardware Interfacing with the TRS-80
by John Uffenbeck are reproduced with the permission of Prentice-Hall, Inc.
Figure numbers refer to Hardware Interfacing with the Apple I Plus.

Figure I-4, Tables I-1, I-2, Figures 1-1, 2-4, 3-3, Table 3-1, Figures 4-1,
4-3, 4-4, 5-3, 5-6, 7-1, 7-2, 7-4, 7-b, 7-6, 7-8, 7-9, 8-1, 8-2, 8-4, 8-5, 8-6, 8-7,
9-1, 94, 9-5, 10-1, 10-2, 10-3, 10-4, 10-5,11-1, 11-2, 11-4, 11-5, 11-7, 12-1,
12-2, 12-3, 12-5, 12-9, Table 12-2, Figures 13-1, 13-2, 13-5, 13-7, 13-9,
13-11, Tables 13-1, C-1, Figures D-1, D-2, D-3, D-4, E-1, E-2, F-1.

The data sheets in Appendix G are reproduced courtesy of Intel Cor-
poration, Motorola, Inc., General Instrument Corporation, and National
Semiconductor Corporation.

HARDWARE
INTERFACING
WITH THE
APPLE II PLUS

Getting
Started

Read this section before attempting any of the experiments
in this book. You will need special hardware to do the ex-
periments and this section tells you what to get and where
you can find it.

INTRODUCTION

The Apple II plus microcomputer shown in Fig. I-1 is one of the most popu-
lar microcomputers on the market today. Because of this there are hundreds
of computer programs and operating systems available for the Apple. These
range from Star Invaders to Visicalc to Pascal. A nearly equal number of
books have been written describing how to use and operate these programs
using the Apple’s built-in BASIC language, Applesoft.

This book, however, deals with that area of microcomputers that is
sometimes considered ‘‘black magic” or ‘“‘taboo” by the microcomputer
owner: namely, microcomputer hardware and interfacing. It is my hope to
clear the air by leading you through 13 progressively more complex hard-
ware experiments on your Apple personal computer. By the time you have
completed all 13 experiments, you may not be an expert, but you will cer-
tainly understand microcomputer input and output. And you will also ap-
preciate the potential that your computer has as a hardware controller in
the home or industry.

Before beginning these experiments you should acquaint yourself with
the basic hardware and software necessary to perform the experiments.
These are explained in the following sections.

HARDWARE REQUIREMENTS

All of the experiments in this book are written with the Apple II computer
in mind and all hardware details are specific to this computer. The Apple is
most commonly available in the Apple II Plus version, with 48K bytes of
RAM (random access read-write memory) and one disk drive. While this
system is more than sufficient, the minimum configuration is assumed to be:

1. Any Apple II computer with Applesoft.
2. At least 8K of RAM.
3. A video monitor or suitable television receiver.

4 Introduction

Figure I-1 Apple II Plus microcomputer system. All of the experiments
in this book are intended for this computer. Reprinted from the Apple
IT Reference Manual with the permission of Apple Computer, Inc.

Notice that no disk drive, printer, language card, I/O card, or other
peripheral is required. If you have these things, fine, but if not, you won’t
need them.

What you will need is some means of connecting to one of the periph-
eral connector slots (preferably slot 7) and a solderless breadboard for build-
ing the interface circuits. The next few subsections detail these hardware
requirements.

THE RIBBON CABLE ASSEMBLY AND INTERFACE CARD

Figure I-2a illustrates the basic interfacing concept to be used throughout
this book. A Vector Electronics 4609 plugboard is inserted into slot 7 of
the Apple’s motherboard. The 40-pin connector on the rear of this card is
then wired to access the important interfacing signals provided by the Apple
at the slot 7 connector. This is shown in Fig. I-2b. A length of 40-conductor
ribbon cable with a card edge connector at one end (the computer end) and
a socket connector on the other is used to bring these signals out to the
motherboard. The socket connector conveniently allows No. 22 or 24 gauge
wire connections between it and the breadboard.

The Vector card is available from Jameco Electronics (1355 Shoreway
Road, Belmont, CA 94002), Priority One Electronics (9161 Deering Avenue,
Chatsworth, CA 91311), and several other suppliers for about $25. The 40-

Introduction

Figure I-2 (a) Apple computer with
its cover removed, revealing the Vec-
tor Electronics plugboard in slot 7.
The ribbon cable connected to the
rear of this card provides access to
the interfacing signals required to
do the experiments. A solderless
breadboard is used to build up the
various interfacing circuits.

conductor ribbon cable is available from Digi-Key Corp. (P.O. Box 677,
Thief River Falls, MN 56701). The part number is 924150-24 and the ap-
proximate cost is $15.

Before proceeding to Experiment 1 you should wire the Vector card
following the instructions given in Appendix A. This appendix also gives a
complete description of the electrical signals available at each peripheral
slot connector and at the breadboard.

One particularly nice feature of the Apple computer is that +5 V and
+12 V are available at each peripheral connector. This means that it will not

oy
T

Figure I-2 (b) Jumper wires are used to bring the interfacing signals from
the Apple’s peripheral connector to the edge connector on the Vector
card.

‘6 Introduction

be necessary for you to use an external power supply to perform any of the
experiments. The current capacities of these voltages are limited, however,
and it may be wise to remove any extra cards you have in your computer
when using the Vector card. But you should be able to operate with three
or four other cards in the computer besides the interface board (see Appen-
dix F, “If the Experiment Doesn’t Work™).

SOLDERLESS BREADBOARD

The purpose of the breadboard is to allow easy (solderless) connections be-
tween the various integrated circuits (ICs) used in the experiments and the
Apple. Referring to Fig. I-3, the ICs are placed so as to straddle the center
divider of the socket. There are then four remaining connections to each IC
lead in each row. Connections on one side of the center notch are electrically
isolated from the other side.

Table I-1 compares several types of solderless breadboards. The more
rows per side, the more ICs you will be able to interconnect and the more
expensive the breadboard. The first two entries in the table provide sockets
only, whereas the last three have the sockets mounted on a small base (see
Fig. I-3). If the cost of some of the Proto-Boards seems high, you may want
to consider fabricating your own base. In this way you can expand your
breadboard with additional sockets as needed while holding down the initial
cost.

Figure I-3 Breadboard end of the
ribbon cable assembly. The two
sockets shown provide 68 rows of
connections with a power bus (+5 V
and ground) running between the
two. The ribbon cable socket con-
nector is held in place by the
“‘stickum’ on the base plate. The
cable itself is a 40-conductor rib-
bon with a card edge connector on
the computer end. Refer to the text
for sources for these components,

Intreduction 7

TABLE I-1 SOLDERLESS BREADBOARDS ARE AVAILABLE IN A VARIETY OF
CONFIGURATIONS AND PRICES

Number
of rows
Type per side Part number Manufacturer
Modular breadboard socket 47 276-174 Radio Shack
(may be expanded) about $10
Quick Test Socket and bus 59 QT-598S, Jameco Electronics
strip (may be expanded) QT-59B 1355 Shoreway Road
Belmont, CA 94002
about $15
Proto-Board with Quick 68 ACE-200K, Digi-Key Corp.
Test Sockets 923333 P.O. Box 677
Thief River Falls,
MN 56701
about $20
Proto-Board with Quick 96 ACE-201K, Digi-Key
Test Sockets 923334 about $30
Proto-Board with Quick 94 PB-102 Jdameco
Test Sockets about $35

COMPONENTS

In general, each experiment will require you to wire one or more integrated
circuits on your breadboard. These circuits are then connected to the ribbon
cable’s socket connector with No. 22 or 24 gauge solid insulated wire. Figure
I-3 illustrates the method. Note that in addition to the ICs, several other
components may be required, depending on the experiment. Appendix B
lists the components needed to do all the experiments in this book. Each
project also begins with a complete list of parts needed for that experiment.

NICE-TO-HAVE COMPONENTS

There are additional supplies that can make your journey through this book
more meaningful and be an aid to you in troubleshooting your circuits.

LOGIC PROBE

A digital circuit may have only two operating states: ON or OFF. The out-
put of a logic gate is either high (1) or low (0). Although we could monitor
this condition with a voltmeter, another tool is often used—a logic probe.
Figure I-4 pictures a typical probe. The light-emitting diodes (LEDs) serve
as the logic-level indicators. These correspond to the logic 1 and O states and

8 Introduction

Figure I-4 A logic probe will be handy for monitoring logic levels. Its
three LEDs brightly indicate a logic 1, a logic 0, or a pulse condition.

to a pulse condition (a logic level rapidly switching between the 1 and 0
states).

A logic probe will be very handy for monitoring circuit conditions in
the various experiments in this book. Often we will be programming the
Apple to output a certain binary pattern which can easily be monitored with
the logic probe. Table I-2 lists several common logic probes, their distinguish-
ing features, and suppliers.

Again you can save money by building your own. There have been
numerous articles on logic probe construction over the last few years:
for example, Steve Dominguez, “Probos V,” Kilobaud Microcomputing,
October 1979, p. 78. In this article Dominguez describes a logic probe with
capabilities equal to those in Table I-2 but costing less than $5 for parts!

TABLE I-2 VARIOUS COMMONLY AVAILABLE LOGIC PROBES?

Source Part number Description

Radio Shack 22-301 Fully assembled, detects pulses
about $25 to 50 ns

Jameco Electronics LPK-1 Logic probe kit, detects pulses
1355 Shoreway Road to 300 ns; finax = 1.5 MHz
Belmont, CA 94002
about $23

Jameco LP-1 Fully assembled, detects pulses
about $50 to 50 ns; fiyax = 10 MHz

2 A logic probe, although not essential, will be handy for monitoring logic levels in the
interface circuits.

Introduction 9

Another interesting example is the logic probe described by Robert
Kreiger, “Build an Audible Logic Probe,” Popular Electronics, July 1980,
p. 73. This circuit produces different audio tones for the three logic condi-
tions (high, low, and pulse).

DC VOLTMETER

Although not essential, a DC voltmeter will be handy to measure power
supply voltages and to troubleshoot simple electrical circuits. It is particu-
larly handy to have an ohms function for continuity testing in cables-testing
for open circuits and short circuits. A meter with volts, ohms, and current
ranges is generally called a VOM. There are numerous sources for such meters,
with prices ranging from $5 to several hundred dollars.

OSCILLOSCOPE

A dual-channel oscilloscope would be very useful for troubleshooting and
tracing pulses through the various experiments. With it you would be better
able to appreciate the dynamic nature of the interfacing circuits. If you have
one, great—be sure to use it. If not, don’t worry, all the experiments can
easily be built and tested without one.

SOFTWARE REQUIREMENTS

All the programs in this book are written in BASIC. Machine language could
be used for the software, but BASIC is much easier to work with and usually
does the job just as well. Occasionally, a problem can be solved only by using
machine code. Although these areas are pointed out, they are left for another
book and another day.

CONCLUSION

As a starting point, I would recommend purchasing a 25-ft roll of No. 24
gauge solid insulated wire and a good-quality wire stripper. Then page through
the experiments in Parts 2 and 3 and decide if you want to do all or just
some of these experiments. Use Appendix B to make up a parts shopping
list. Don’t forget about the ribbon cable and Vector interface card. The
addresses of several suppliers are also given in Appendix B. Now prepare to
enter the world of microcomputer interfacing.

Basic Concepts
of Microcomputer
Input/Output

The six experiments in this section will teach you
how to add input and output ports to your Apple.
BASIC software for controlling these ports is also
discussed.

EXPERIMENT 1

THE PEEK AND POKE COMMANDS

OVERVIEW

In this experiment you will connect the ribbon cable assembly to the bread-
board. A 7476 JK flip-flop will then be wired to monitor memory read and
memory write cycles.

OBJECTIVES

The key points to be learned from this experiment are:

1.

2.
3.

4.

PARTS LIST

For interfacing purposes, the Apple can be thought of as having three
buses: the data bus, the address bus, and the control bus.

The control bus consists of two signals or lines: R/W and ®0.

The Apple treats all its I/O devices as if they were memory locations.
This is called memory-mapped 1/O.

Only two commands in BASIC allow access to the I/O devices. These
are the PEEK and POKE commands.

1 7476 JK flip-flop

1 7400 quad two-input NAND gate

1 LED (light-emitting diode)

1 180-£2 resistor (brown-gray-brown)
1 10-uF capacitor

13

14 Experiment 1
DISCUSSION: THE THREE-BUS SYSTEM ARCHITECTURE

Throughout this book we will be working with digital signals output by vari-
ous integrated circuits (ICs) in our interface circuits. Learning to understand
these signals and their dynamic nature is the essence of microcomputer
interfacing.

But what is a digital signal? Is it something that can be observed only
with an expensive oscilloscope, or will we need a digital voltmeter? First you
must appreciate that a digital signal can take on only one of two values.
These are usually referred to as the 1 and 0 states. Other names are HIGH
and LOW or ON and OFF.

Most of the ICs we will be working with are from the TTL (transistor-
transistor logic) family of logic circuits. These devices typically produce
3.4 V for a logic 1 and 0.2 V for a logic 0. Later in this experiment we will
see how light-emitting diodes (LEDs) can be used to observe these digital
signals.

Because a single digital line cannot carry too much information, several
lines are usually used and collectively referred to as a bus. On the Apple we
have 16 lines devoted to carrying memory addresses and refer to these lines
as the address bus. We also have eight lines used for carrying data to and
from the microprocessor. These lines are referred to as the data bus. We will
see that a third bus is also necessary for controlling the direction of data
flow and basic timing. This bus is referred to as the control bus.

Interfacing to any microcomputer requires a detailed understanding of
these three buses and their unique timing. This is the primary objective of
Experiments 1 through 4.

The Apple System Block Diagram

Figure 1-1 illustrates the Apple computer in block diagram form (actually
it could represent nearly any 8-bit microcomputer system). The main com-
ponents of the system are illustrated. The clock generator establishes the
basic timing for the entire computer. The 6502 CPU (central processing unit)
acts as a ““traffic cop” directing the flow of data between the various system
components as it is directed by programs stored in RAM (random access
memory) and ROM (read-only memory). The later two blocks can be thought
of as programmable user memory and permanent operating system memory,
respectively. The keyboard and video screen are actually memory-mapped
devices and can be considered part of the RAM block.

Each of the three buses shown has a specific responsibility with which
we must become thoroughly familiar.

1. The data bus. These eight lines handle the actual 8 bits of information
(one byte) that the CPU is working with. These bits may represent data

Experiment 1 15

geﬁL?me Databus DO-D7 8 bits wide—bidirectional
AP o) R b
Control bus: -4 (Read Only | :Outonly A
4 CCess e

Memory) .

CPU Memory) . Expansion

& & |

Address bus AO-A15 16 bits wide—out only :

Figure 1-1 Apple computer system block diagram. All components in
the system interface to the 6502 CPU over the 8-bit data bus. Refer to
Appendix A and the text for specific details on signals brought out to
the peripheral connectors.

bytes or instruction operation codes.

2. The address bus. For the 6502 (and most other microprocessors) the
address bus consists of 16 output lines. The binary pattern placed on
these lines by the CPU determines the specific memory location to be
read from or written to. Because there are 16 address lines, there are
2'¢ or 65,536 different addresses possible. These range from all 16 lines
low (address 0) to all 16 lines high (address 65535). The specific pat-
tern on these lines is always generated by the CPU (except for direct
memory access) and therefore these lines are outputs only.

3. The conirol bus. This bus could be considered to be all remaining sig-
nals at a typical peripheral connector. But this would mean a 21-pin bus
(excluding the five power pins)! For our immediate purposes we will
need only two of these lines (we will add a third in the next experi-
ment). The first is R/W. This control signal indicates if the current oper-
ation (machine cycle) will require the CPU to read data (an input) or
write data (an output). The solid bar above the W implies that the write
operation occurs when this line is low, a read when it is high. ®0 is the
second control signal and it is the microprocessor clock signal. In some
literature ®0 is designated ®2. This signal is important because the
6502 microprocessor uses its data and address buses only when this line
is high.

The three-bus structure just described requires a total of 27 lines. There
are also five power pins (+5 V, +12 V, and ground). The remaining 18 pins

16 Experiment 1

are described in Appendix A but will not be required for any of the experi-
ments in this book.

Read and Write Operations

The clock generator in Fig. 1-1 uses a 14.318-MHz crystal for its time base.
Flip-flop circuits divide this down to 1.023 MHz and it is then applied to the
6502 microprocessor as clock signal ®0. Internally, the ®0 clock signal is
split into two new clocks, called @1 and ®2. These two clock phases are then
output by the microprocessor and become part of the system control bus.
The timing relationships among these three clock signals are shown in

Fig. 1-2.
@0 (in) ———\ m
$1 {out) I\ /_
2 (out) —\ /—L

Figure 1-2 Timing relationships between the three clock signals in the
Apple computer. Only P0 and $1 are available at the peripheral con-
nectors.

For reasons known only to Apple Computer Corp., the ®2 clock out-
put of the 6502 is not used. Only ®0 and ®1 are available at the peripheral
connectors. Because ®0 is nearly identical to ®2 ($0 leads ®2 by approxi-
mately 30 ns), there are normally no problems in interfacing to the Apple
control bus.

Figure 1-3 illustrates the system timing for both read and write machine
cycle types. In Fig. 1-3a a read operation is occurring. The CPU begins by
establishing the proper binary address of the memory cell or I/O device on
address lines A0 through Al15. At the same time, the R/W line is brought
high to signify a read operation. When R/W is high AND @0 is high, valid
data is placed on the data bus by the I/O or memory device.

In Fig. 1-3b a write operation is occurring. Again the CPU begins by
outputting the memory or 1/O device address on AOQ through A15. This time
R/W is pulsed low, signifying a write operation. When R/W is low AND ®0
high, the CPU places the actual output data on the data bus, allowing mem-
ory or I/O to latch the data byte.

1 read cycle

L
| 1

S
| 1o

—\ /

Address of memory cell or |/O device becomes valid

l—R!\n_V switches high
|
R/W kA I
L
II I Valid data from memory or 1/O appears
| !
D0-D7 |
|

X

I
. |
<————— Memory read access time ————»

(a)

| 1 write cycle
I 1us
|

R /

1——,!\ddrt-:ss of memory cell or 1/0 device becomes valid

Data to memory or |/O appears

TRT WTET

X

DO-D7 i V/
; X

(b)

Figure 1-3 Illustrating memory read (a) and memory write (b) machine
cycles. In both cases the transfer of data occurs over the data bus and is

synchronized with the logic 1 level of ®0.

18 Experiment 1
Types of 1/0

In general, a microprocessor may interface with its I/O devices in two ways.
In the first, called I/O-mapped I/O, the microprocessor must use special in-
put (INP) and output (OUT) commands. For example, data is input with a
BASIC command such as

10 Y5INP(47)
or output with a command such as
10 OUT 47,Y

In the first case the variable Y receives the data from port 47, whereas in the
second case the variable Y is output to port 47.

Unfortunately, the 6502 microprocessor (and therefore the Apple
computer) does not support this type of I/O. This is a design feature of the
microprocessor itself and cannot be changed. For this reason Applesoft does
not allow the INP and OUT commands.

The second type of I/O is called memory-mapped I/O. In this scheme
I/O devices are interfaced so as to appear to be memory locations and the
full 16-bit address bus is used. In this case, any command that reads or writes
to memory becomes an I/O instruction. In BASIC there are just two. For
example, to read the contents of port 26128, we would use

10 Y=PEEK(26128)
Similarly, to write the contents of Y to this same port we would use
10 POKE 26128,Y

The experiments to follow will give more detail on how to use these PEEK
and POKE commands with memory-mapped I/O devices.

PROCEDURE

Step 1. Refer to Appendix A and wire your Vector card according to
the instructions given there. Now insert the card into the Apple slot 7. The
cable should exit to the left when viewed from the front of the Apple. See
Fig. I-2 for the proper orientation.

Step 2. Because all the experiments require connections to the socket
end of the ribbon cable, it will be best to secure this end of the cable to your
breadboard. Refer to Fig. I-3. The breadboard sockets have been offset just
slightly, allowing X inch of the “stickum” on the base to be exposed. This, in

Experiment 1 19

turn, is used to hold the socket end of the cable in place. Figure 1-4b illus-
trates the proper orientation and the resulting pin number configuration for
the socket connector.

Step 3. Connect a short wire from pin 1 of the socket connector to
one of the bus strips on the breadboard (label this strip +5 V). Connect a sec-
ond piece of wire from pin 40 to a second bus strip (label this ground). Now
connect a 10-uF capacitor (+ lead to +5 V) between the two bus strips.

Note. Your breadboard is now in its permanent configuration and ready to per-
form all the experiments in this book.

Step 4. Refer to Fig. 1-4a and wire this circuit on your breadboard.
Figure 1-4b illustrates the proper method for inserting the ICs. Please be
sure to observe the following:

1. Position the two ICs so that they straddle the center notch of the
breadboard (see Figs. 1-3 and 1-4b).

2. The ICs must have power; +5 V on pin 14 (7400) and pin 5 (7476).
Be sure also to connect the grounds: pin 7 (7400) and pin 13 (7476).

3. Connect the LED with the lead from the flat side of the package to
pin 15 of the 7476. Connect a 180-§ resistor (brown-gray-brown)
from the other LED lead to the +5 V bus strip.

4. Connect a wire from pin 37 (®0) of the socket connector to pin 1 of
the 7400. Connect pin 38 (R/W) to pin 2 of the 7400.

Note. When ®0 AND R/W are both high (a valid memory read cycle) the 7400 out-
put will go low. This will act as a clock pulse to the 7476, which is wired in the toggle
mode (refer to Appendix E for a review of the JK flip-flop). Each time a memory read
occurs, the 7476 will switch states and the LED will toggle ON and OFF.

Step 5. Type and run the following program and observe the LED.

10 Y=PEEK(26128)
20 GOTO 10

Question 1-1. The LED should appear to be brightly lit. Can you ex-
plain why? (Hint: Remove and replace the wire to the 7476 clock input
(pin 1) several times. You should see that the LED brilliance dims slightly
when the connection is made. Also, when the wire is removed the LED may
be ON or OFF, proving that the output is switching. If you have a logic
probe or oscilloscope you can monitor the flip-flop input and output pins
and observe this pulse condition.*)

* Answers to all questions are provided at the end of each experiment.

Flat side of LED package

+HBV
| -
45V L 45V
4
1
4
— 2 1 7
RIW 3 6
7400 — |14
+5 V—o K Q }—
16 CL
T 3
IC +5V GND
+5 V
7400 14 7
7476 5 13
(a)
| Ribbon cable assembly |
Socket connector I >

+HV—

GND—»

(b)

Figure 1-4 Circuit to be wired in step 4 of the experiment: (a) schematic repre-
sentation; (b) pictorial view of the breadboard and ribbon cable assembly.

20

Experiment 1 21

Figure 1-5 The circuit in Fig. 1-4 is
modified to monitor memory write
cycles by first inverting the R/W
line and then connecting to the
7400 pin 2 in Fig, 1-4,

To 7400 pin 2

Step 6. Try to slow down the program by adding a new line 15.

15 FOR I=1 TO 1000: NextI

Question 1-2. Why is the LED still continually 1it?

Step 7. By inverting the R/W line, the circuit in Fig. 1-4 will toggle for
memory write cycles. Figure 1-5 illustrates the circuit modification. Make
this change and then type and run the following program:

10 POKE 26128,0
15 FOR I=1 TO 1000: NEXTI
20 GOTO 10

Question 1-3. What do you observe?

Note. Although this experiment did not do anything very impressive, we did learn
an important lesson. You cannot interface I/O devices to the microcomputer by simply
monitoring for read or write machine cycle types. In Experiment 2 we will see how the
use of an address decoder will allow us to detect special read or write cycles for our I1/O
device. The 7476 portion of this circuit will be used again in the next experiment.

Step 8. Reread the objectives listed at the beginning of this experi-
ment. If these points are not clear to you, restudy the “Discussion™ and
“Procedure” sections.

SOLUTIONS TO QUESTIONS

1-1. The memory reads occur so rapidly that your eye cannot detect the LED switching
on and off.

1-2. The microprocessor is continually accessing memory for operation codes and data
(in addition to the PEEK command), causing thousands of memory reads each pass
through the program. In fact, because every microprocessor instruction must begin
with an op-code fetch (a memory read), the circuit in Fig. 1-4 will always have the
LED brightly lit and not slowly switching on and off. This will even be true when
the program is not running. Push the RESET key to observe this.

1-3. Again the LED is continually lit. Many memory write cycles also ocecur in a single
pass through the program in addition to the memory write due to the POKE
command.

EXPERIMENT 2

ADDRESS DECODING

OVERVIEW

In this experiment you will construct an 1/O port decoder circuit. Using this
decoder, input and output port enable circuits will be built. The effects of
partial decoding will also be observed.

OBJECTIVES

The key points to be learned from this experiment are:

i &

PARTS LIST

22

The microprocessor issues a 16-bit address on address lines AQ through
A15 to identify the memory cell or I/O device with which it wishes to
communicate.

An address decoder recognizes one unique address by outputting a
pulse when that address is present.

. An I/O port is enabled by the coincidence of the address select signal

and R/W pulse.

. Partial decoding results when some of the 16 address lines are not ex-

amined by the decoder. In this case, the I/O port will appear to occupy
more than one port address.

. The Apple provides a partially decoded address select signal at each

peripheral connector slot.

1 7432 quad two-input OR gate
1 7420 dual four-input NAND gate

Experiment 2 23

1 7404 hex inverter

1 7476 dual JK flip-flop

1 180-£2 resistor (brown-gray-brown)
1 LED

DISCUSSION: HARDWARE ADDRESS CONCEPTS

The function of a typical microcomputer is to receive data from its input
devices, process this information, and output new data to its output devices.
It does this by communicating with memory for specific instructions on
where to get the data, what to do with it, and where to output it. Figure 2-1
illustrates this concept and highlights the four main blocks in a typical digital
computer.

The memory, I/O ports, and CPU are electrically connected via the
three-bus architecture discussed in Experiment 1. The data transfers between
the various blocks in Fig. 2-1 occur over the bidirectional data bus. The CPU
identifies the particular memory location or I/O device by outputting that
memory cell’s or port’s unique address on the address bus. In addition, it

:> Input | Qutput <J_J
E port port

Data bus

Control bus

co0O

L
|
%ﬂ///ﬁ//////// T /}

Address bus

= Memaory

Figure 2-1 Block diagram of a typical digital computer. The CPU fetches
instructions from memory, inputs data from its input ports, and out-
puts data to its output ports.

24 Experiment 2

identifies if the data is entering or leaving the CPU (a read or write operation)
by pulsing appropriate lines on the control bus.

The address bus for the Apple computer is 16 bits wide (AO through
Al5) and is available at each of the eight peripheral connectors (slots O
through 7). With a 16-bit address there are 65,536 (2'®) different addresses
possible. This is referred to as 64K of memory space.

It is convenient to visualize this 64K of memory with a “map” detail-

Decimal Hexadecimal
65535 FFFF ==
Autostart ROM F8
63488 F800 ~
FO ROM
61440 FO00
59392 EB00 £0:
i EO ROM { Applesoft 1R
57344 E000
2K D8 ROM
55296 D800
T DO ROMJ A
53248 D000 —
1/0 ROM
51200 C800 4K 1/0
I/0 Ports
49152 C000 _‘r
Free
45066 BOOO
i Free
40960 A000
4K Free
36864 9000 f
F
32768 8000 =
Free
28672 7000
24576 6000 i
High-resoluti i
20480 5000 igh-resolution graphics (2) POTTT
16384 4000 High-resolution graphics (2)
12288 3000 High-resolution graphics (1)
8192 2000 High-resolution graphics (1)
4096 1000 Eis
Free
3072 coo
Text and Low-resolution graphics (2)
2048 800
1K Text and Low-resolution graphics (1)
1024 400 f
§ 5 System RAM (stack, etc.) R2

Figure 2-2 Memory map of the Apple II computer. Of the 64K total
memory space, 48K is devoted to RAM, 12K to ROM, and 4K to the
I/0O devices.

Experiment 2 25

ing the addresses of the various types of memory and I/O ports in the com-
puter system. This is shown in Fig. 2-2 for the Apple II.

The left side of this figure details the memory addresses in both hexa-
decimal and decimal notations. Notice that all memory locations from loca-
tion 0 to location 49151 (48K) is devoted to RAM (random access mem-
ory). This is read/write memory and is available for user programs, text and
graphics screens, and temporary storage for BASIC programs.

Of the remaining 16K of memory space, 12K is used by the six 2K
ROM (read-only memory) chips that contain the BASIC interpreter and sys-
tem monitor. The ROM numbers are identified in the map as DO through F8.
This leaves only the 4K block of memory space between address 49152 and
53247 for all I/O devices.

Figure 2-3 is an enlarged map of this memory space. It is further sub-

Decimal Hexadecimal
53248 D000 -
Open for large
ROM program 2K ROM
Activated by pin 20
1/0 strobe
51200 C800 -+
50944 €700 L. il
o i ! 6 ROM or RAM
256 bytes
50432 C500 Y 5 foreach
1.75K
50176 400 4 lioset ROM/RAM
49920 €300 d
49664 C200 2
49408 cioo | St) £
1/O ports for slots 0-7
n = (slot # +8)
X =)~
49280 Co80 el 0.25K
e . 1/0 ports
Built-in 1/0 locations
(keyboard, speaker, cassette, game 1/0)
49152 C000

Figure 2-3 Memory map of the 4K of memory reserved for I/O. Nor-
mally, only the 128 locations between 49280 and 49407 are used by
the peripherals.

26 Experiment 2

divided into two 2K blocks. The top 2K block from 51200 to 53247 is re-
served for a large ROM chip on a special-purpose peripheral card. Unless you
have such a card, this memory space is unoccupied.

There are seven 256-byte blocks reserved between 49408 and 51199.
These are intended for use as an on-card ROM or RAM for special-purpose
peripheral cards (printer interfaces, floppy disk controllers, real-time clocks,
ete.).

Finally, the remaining 256 bytes between 49152 and 49407 are avail-
able for I/O devices. However, the Apple keyboard, speaker, cassette port,
and game I/O occupy half of this space, leaving only 128 memory locations
available for I/O, shared among the eight slots.

Although it may seem that little space has been left for these I/O de-
vices, any of the memory space from 49280 to 53247 (3968 locations)
could in principle be used for I/O if care is taken to avoid conflicts with
other peripheral devices. In any case, we will soon see that 128 locations
are more than adequate for the majority of I/O applications.

ADDRESS DECODING

A decoder is a circuit that recognizes one particular binary pattern or code.
The simplest decoder possible is an AND gate (see Appendix D for a review
of the various logic gate types). For example, a three-input AND gate will
have its output go high only when all three of its inputs are high. It recog-
nizes the binary state 111.

A slight modification to this circuit allows it to decode any binary
state. Figure 2-4 illustrates this concept. By selectively adding inverters we
may decode any one of the eight possible states.

Because the Apple treats its I/O devices as memory locations (memory-
mapped I/O), we must decode the full 16-bit address bus to identify uniquely
one I/O port. A practical 16-bit decoder circuit is shown in Fig. 2-5.

Figure 2-6 illustrates a slightly more versatile decoder circuit. By using
a 7T4LS138 3-to-8 line decoder, eight separate address select pulses can be
generated. The two 7430 NAND gates require that address lines A15 through
A3 equal 1100000010000, If this is true, the 741.S138 will be enabled and

Cc B A | Q
0 0 o0 H
o o + | o

A 0 1 0 0

B —Do— Q 0 1T 1 | o

T M 1 0 0| 0
1 0 1 1 Figure 2-4 Simple decoder circuit.
i 1 .0 ’ 0 Only the input combination 101
T T 1 0 will cause the output to go high.

Experiment 2 27

ic +5V | GND
. 7430 (2)| 14 7

- S 740421 | 14 7
A 2 3 7432 14
A134-bo— 7430

] PN 4
A12 1> 8
s 5[_6 5
A10 E“g 8
is 11D 1011 o
AB [A>o. = 3

137712 L SEL 49280
7404 3
2
A7 -

2 2
R b Output will go low when
Sf\L' P g

7430 the address bus contains

D 6 4 1100 0000 1000 00O = 49280
—’-— 8
Qr\\hs

l/
— ”' ot ?
Al [B\»z !
40 > D 12

1 2

7404

Note: j}, <) >

Figure 2-5 Sixteen-bit decoder suitable for memory-mapped I/O on the
Apple computer. The binary address is

1100 0000 1000 0000 = 49280

and only this address will activate this circuit.

one of its eight outputs will go low, corresponding to the binary pattern on
its ABC inputs (A0 through A2).

Although this circuit is more versatile than the one in Fig. 2-5, it is
still quite ““messy” to construct, requiring five IC packages and numerous
connections. It is for this reason that partial decoding is often used.

Partial Decoding

When the decoder does not test all 16 address lines, the resulting circuit is
said to be partially decoded. An example of such a circuit is shown in Fig.
2-7. The low-order 8 bits of the address bus (A0 through A7) are not ex-
amined and therefore become ‘“‘don’t cares.” This means that there will be

28 Experiment 2

IC +5V GND
7404 (2) | 14
7430 (2) | 14
7415138 | 186 ; 0 b5 SEL 49280
g 1 b4 — SEL 29281
AD a 0 2 b13 SEL 40287
a1 —2]8 . 3 12— SEL 49283
az— 3lc 3 aptl _ SEL 49284
10 __iserzoae
5 5r9—55|_ 49285
g 6 b— SEL 49286
7 bL— SEL 49287
y 456
AlS
Al4 - =
1 2 4
A13 _—_b— 7430
A12 3R> - 8
Vo | 5D 6 5
IANGE 6
A10 A>o
" VHDHJ 1
13]_12
A8 [&\,—“ -
7404
A7 : !
A8 —’-——2 -
KIS 3
A5 B 7430
A I/'s's 4 .
A3 e g
"8 6
7404 11
12

Figure 2-6 This circuit generates eight sequential address select pulses
from 49280 to 49287. Each output is active low (goes low when
present),

256 different addresses (from 49152 to 49407 in this example) that will
all activate this circuit as if they were the same address. These correspond
to the 256 combinations of AO through A7.

The main advantage to partial decoding is the simplification in hardware
that results (three fewer chips than the decoder in Fig. 2-5). The main dis-
advantage is that one port now occupies the memory space of several ports
(256 in this case). This can limit system expansion.

Experiment 2 29

Ic +5V | GND
7404 14 7
7430 14 7
A15]
Al4 - :
A13——41Do—3 7430 L
A12 3[\L 4 8
A1l I/EDE = SEL 49152 - 49407
-
a8
A10 lr>- = 8
" 13 1121|>° -
AS—D;—R
7404
a1s A0

1100 0000 xxxx Xxxxx
x = "don't care"

Figure 2-7 Partial decoding results when some of the 16 address lines are
not examined by the decoder. These lines then become don’t cares.

In the case of the Apple II, the circuit in Fig. 2-7 clearly will not work.
This is because the memory space between 49152 and 49407, while reserved
for I/O devices, must accommodate many I/O devices, not just one.

Fortunately for us, the designers of the Apple have made our job of
address decoding somewhat simpler by already decoding the 12 high-order
bits of the 16-bit address bus. Figure 2-8 is equivalent to the decoder circuit
found in the Apple (the actual circuit is somewhat more complex).

Example 2-1

Refer to Fig. 2-8 and determine the range of addresses for each address select out-
put in this eircuit. (Note: Apple refers to these outputs as “device selects.”)

Solution First examine the 74L.S138 enable inputs. The two active-low inputs are
driven by the 7430, and in order for this gate’s output to be low, its binary input
must be 11000000 (A15 through A8). We also see that AT must be high to enable
the 74LS138 decoder. When both of these conditions are true, the ABC inputs (A4
through A6) are decoded to produce the eight device select outputs. For example,
the DEV4 output will be low when A6 through A4 = 100. The full 16-bit code
must then be

1100 0000 1100 XXXX =49344-49359

Because address lines A0 through A3 are not examined, these 4 bits become don’t
cares and each device select line will actually respond to 16 different addresses.
These are listed in Table 2-1.

30 Experiment 2

IC +5V GND
7404 14 7
7430 14
74.5138 16 o 15 DEVO SEL 49280
7 3 SEL 49296
A4 1], B 2 SEL 49312
A5 2 g L 3 SEL 49328
A6 3c S 4_11 DEV 4 SEL 49344
1 5b 10 ﬁ SEL 49360
3 8 9 DEVE SEL 49376
8 3 7 DEV7 SEL 49392
1 Enableinputs 4|56
Al15
Ald : > 2 s A7 (AND ®0)
A133—[\5D°_4
A12 8
Al1 5 o8

8
A10 L] g 6

¥ 10
0 V:;D 1
oy 13I[> 12
7404

Figure 2-8 Equivalent circuit to the address decoder built into the Apple
computer. Each device select pulse is brought to a separate I/O slot
(pin 41).

The following points summarize the address decoding features of the
Apple computer.

1. All I/O devices must normally reside between addresses 49280 and
49407.

2. Twelve of the 16 address lines are already decoded to this range on the
Apple motherboard.

3. Each peripheral slot connector has a signal (DEVICE SELECT) which
goes low when the address bus contains an address in its range. For
example, any address from 49360 to 49375 will cause the DEVICE
SELECT at peripheral slot 5 to go low. Table 2-1 summarizes this
information.

Example 2-2

Design a circuit to produce a pulse output when address 49399 appears on the
address bus. Which slot would normally be used for this circuit?

Experiment 2 31

Solution The circuit is shown in Fig. 2-9. Because address 49399 falls between
49392 and 49407, the proper slot is 7 (see Table 2-1). The low 4 bits must equal
a number between 0 and 15. This is calculated as

49399 - 49392 =7 = 0111,
The 7420 decodes these low 4 bits to make this a fully decoded circuit.

TABLE 2-1 THE EIGHT DEVICE SELECT
OUTPUTS IN FIG. 2-8 ARE NOT FULLY
DECODED; EACH OUTPUT CORRESPONDS
TO 16 DIFFERENT ADDRESSES

Signal Slot Range of

name number addresses

DEVO0 0 49280-49295
DEV1 1 49296-49311
DEV2 2 49312-49327
DEV3 3 49328-49343
DEV4 4 49344-49359
DEV5 5 49360-49375
DEV6 6 49376-49391
DEV7 7 49392-49407

I/O Port Enable

Input and output ports must receive an enable pulse telling them when they
can latch the data on the data bus (an output port) or when to gate their

DEV 7
@ 3 SEL 49399

7432

7404

@_A3 1D§ 1
[>=2 2™\ s

@ Al 4 IC +5V GND
7404 14 7
A0 5 7420
I 17 > 7420 14
7432 14 v

Figure 2-9 This circuit provides full decoding for address 49399 by
using the DEV7 signal available at peripheral connector 7. The pin num-
bers shown represent the numbers at the socket connector end of the
ribbon cable assembly.

32 Experiment 2

data onto the data bus (an input port). The address select pulse alone cannot
do this.

Refer to the timing diagrams in Fig. 1-3. Although the address bus con-
tains a valid address early in the machine cycle, the data bus is not ready to
receive or output data until near the end of that cycle. When exactly is it
ready? By carefully studying Fig. 1-3, you should be able to see that the 0
clock signal establishes the timing. When ®0 is high AND R/W is high, the
microprocessor is ready to input data. Conversely, when ®0 is high AND
R/W is low, the microprocessor presents output data on the data bus. Only
when @0 is high does the microprocessor actually use its data bus.

I said earlier that Fig. 2-8 was equivalent to the decoder circuit in the
Apple. One point that was purposely left open in that discussion was the
active-high enable input to the 74LS138 (labeled A7 AND ®0). The Apple
designers have again simplified our decoding task. Notice how ®0 is used
in this circuit. Only when A7 AND ®0 are high can the 74L.S138 be enabled.
This means that each address select output, DEVO through DEV7, will be
active only if their address is valid AND ®0 is high. Therefore, it will not be
necessary to use ®0 in our interfaces provided that one of the device select
outputs is used. This is because these outputs are already qualified with the
@0 clock signal.

Figure 2-10 is a circuit that provides input and output port enable
pulses. It uses the full decoder from Fig. 2-9 and develops an OUT 49399

-
|l DEV 7 1 R 8
i @ (I: 3 | SEL 49399 9
| I SR
[=4 : ¢ 3B OUT 49399
i 2
I '[1042
| I
i |
A3 1N 1 !
I o |
g ¥ :
A2 a 2
| (5> I\, I 13 1 =
! m 4|$ ‘ I AL IN 49399
I . i I 4 1zg
- — |
| ! IC1b
I
e s e e e e e e e e e d
[>—
IC +5 V GND
1| 7404 14 7
2| 7432 14 7
7420 14 7

Figure 2-10 The circuit from Fig. 2-9 (enclosed within dashed lines) is
used to generate input and output port enable signals.

Experiment 2 33

enable signal and an IN 49399 enable signal. Notice how the R/W line is
used to generate these two separate outputs.

In Experiments 3 and 4 we will see how to use these enable signals
when adding input and output ports to the Apple.

PROCEDURE
Note. Steps 1 through 3 of Experiment 1 should be followed before attempting
this and all other experiments in this book.
Step 1. Refer to Fig. 2-10 and wire this circuit on your breadboard.
Three ICs will be required. Be sure that the Vector card is in slot 7.

Note. Never wire a circuit or plug or remove cards from your Apple with the
computer power on.

Step 2. Refer to Fig. 2-11 and wire the 7476 JK flip-flop as shown.
Connect the clock input (pin 1) to the OUT 49399 output (7432 pin 8).

Step 3. Load and run the following program.

10 POKE 49399,Y :REM ADDRESS BUS=49399
20 FOR I=1 TO 1000: NEXT I :REM TIME DELAY
30 GOTO 10

Question 2-1. You should have observed the LED to switch slowly
ON and OFF. Explain why.

Step 4. Rerun the program of step 3 but use a different address. Now
run the program with the correct address but change line 10 to

10 Y=PEEK(49399)

¥ o

%V [PR g w—@—wv\—*s v
4 1802
Refer to 1 :
text for this -_-d> 7
connection 6
+5V =1 14
K QpF—
16 CLR
3
IC +5 V GND
#oY 7476 5 13

Figure 2-11 JK flip-flop connections to be made in step 2 of the experi-
ment,

34 Experiment 2

Question 2-2. What two signal conditions are required to obtain the
0OUT49399 signal? What hardware change is needed to make the PEEK com-
mand work?

Note. You may have noticed that the IN49399 output pulsed rather unexplicably
for both the PEEK and POKE commands. This strange result is a consequence of the
6502 microprocessor’s rather simple control bus, consisting of only ®0 and R/W. The
R/W line is normally high and pulses low for write machine cycles. When the processor
executes internal operations (incrementing the accumulator, for example) the R/W line is
left high. During this time the address bus is not “floated” but left with whatever “old”
address was present from a previous instruction. Thus we can have the odd situation
where a POKE command establishes an address which is left on the bus. A subsequent
internal CPU operation causes R/W to be high and our circuit decodes this and generates
an IN pulse. Fortunately, no harm is done. The CPU closes its data bus while performing
these internal tasks, effectively ignoring the outside world.

Step 5. Turn off the computer. Now move the Vector card to another
slot, say slot 4. Turn on the computer and run the program in step 3, again
monitoring the OUT49399 output.

Question 2-3. Why doesn’t the circuit respond to this program? What
changes must be made?

Step 6. Once you feel that you understand how to predict the address
associated with each slot, replace the Vector card in slot 7. Now connect
0UT49399 to the preset flip-flop input: pin 2. Connect IN49399 to the
clear input: pin 3. Wire the clock input to +5 V.

Step 7. Enter the following program into your computer and run it.

10 POKE 49399,Y :REM ADDRESS BUS=49399, R/W=0
20 FOR I=1 TO 1000: NEXTI :REM TIME DELAY

30 Y=PEEK(49399) :REM R/W=1

40 FOR I=1 TO 1000: NEXT I :REM TIME DELAY

50 GOTO 10

The LED should switch on and off.

Question 2-4. Once you feel that you understand the operation of
this program, write a new program that asks if you want the LED ON or
OFF, and takes the appropriate action (remember that the LED goes ON
when the flip-flop Q output goes low). After completing this question you
should be able to appreciate that the port enable pulses produced by this
circuit could be used for purposes other than enabling I/O ports (for ex-
ample, turn on a relay, a valve, a motor, etc.).

Step 8. Partially decode the circuit in Fig. 2-10 by connecting DEV7
directly to pins 9 and 13 of the 7432 (remove the 7420 and 7432 gate a).

Experiment 2 35

Load and run the following program.

10 HOME

20 INPUT “WHAT PORT ADDRESS WOULD YOU LIKE” ;P
30 FOR J=1 TO 4

40 POKE P,Y

50 FOR I=1 TO 500: NEXT I

60 Y=PEEK(P)

70 FOR I=1 TO 500: NEXT I

80 NEXT J

90 GOTO 10

Question 2-5. What range of addresses did you find that would cause
the LED to switch ON and OFF?

Step 9. Reread the objectives listed at the beginning of this experi-
ment. If these points are not clear to you, restudy the ‘“‘Discussion” and
“Procedure’ sections.

SOLUTIONS TO QUESTIONS

2-1. Each time the POKE 49399,Y command is executed the SEL49399 output and
R/W line go low. This causes OUT49399 to go low, clocking the flip-flop each time
the POKE is executed.

2.2. The OUT49399 output will be activated only if the address bus contains 49399
AND R/W is low (a memory write cycle). Only the POKE 49399,Y command will
accomplish this. The IN49399 output is activated by the Y=PEEK(49399) com-
mand. Connect the flip-flop clock input to this output (7432 pin 11) instead of
pin 8.

2-3. When plugged into slot 4, the DEV7 line in Fig. 2-9 becomes DEV4, Referring to
Table 2-1, this means that the new address is 49351 (49344 + 7). Line 10 should be
changed to POKE 49351,Y.

2-4. One possible program is

10 HOME

20 INPUT “DO YOU WANT TO TURN THE LED ON OR OFF”:A$
30 IF A$="“OFF” THEN 70

40 IF A$ () “ON” THEN 20

50 Y=PEEK(49399) :REM TURN LED ON
60 GOTO 10

70 POKE 49399,Y :REM TURN LED OFF
80 GOTO 10

2-5. You should have found that any address from 49392 to 49407 caused DEV7 to go
low and activate the flip-flop. The binary address is 110000001111 XXXX,

EXPERIMENT 3

MEMORY-MAPPED OUTPUT PORT CONCEPTS
OVERVIEW

In this experiment you will wire a 7485 4-bit comparator and a four-position
DIP switch as a port decoder that is switch selectable to 1 of 16 addresses.
You will use this circuit to enable an output port constructed from a 74100
8-bit latch.

OBJECTIVES

The key points to be learned from this experiment are:

1. A computer output port requires an address decoder, a port enable sig-
nal, and a latch.

2. A latch is an essential component in an output port because the output
data is on the data bus only for fractions of a microsecond.

3. The POKE X,Y command is used to force data Y onto the data bus and
address X onto the 16-bit address bus.

PARTS LIST

T485 4-bit comparator

7427 triple three-input NOR gate

74100 8-bit latch

8-position DIP (dual-in-line package) switch (Radio Shack 275-1301)
180-% resistors (brown-gray-brown)

LEDs

00 00

36

Experiment 3 37
DISCUSSION: THE POKE X,Y COMMAND

When using Applesoft, data is output to a port with the command POKE X,Y.
The sequence is as follows:

1. The address of port X is placed on the 16 address lines (A0 through
Al5).

2. Data Y is placed on the internal bidirectional data bus (now configured
as output lines).

3. The R/W control line goes low and a valid address appears on A0
through A15. When @0 goes high, data is available on D0 through D7.

Because the data bus is limited to 8 bits, Y is restricted to integers be-
tween 0 and 255. Similarly, X can represent any integer address between 0
and 65535. You should be able to see that by using the POKE X,Y command
we can force any data and address to appear on the data and address buses.

The job the hardware must perform should then be clear. It must:

1. Decode the port address.

2. Use the address select pulse from the decoder and R/W pulse to gener-
ate a port enable pulse.

3. Use this port enable pulse to enable a latch to store the output data.

Typical Output Port

Figure 3-1 illustrates a typical microcomputer 8-bit output port. The 7420
“looks for” a seven on AQ through A3 of the address bus. When this occurs
AND DEVT is low, the address matches. As discussed in Experiment 2 and
shown in Table 2-1, the full address is 49392+7 = 49399. Now, if the R/W
line is also low, the 7427 output will go high and enable the latch. The Q
outputs of the 74100 will catch and store the contents of the data bus.

Note that the reason this circuit works is the existence of unique con-
ditions on the three buses when the POKE 49399,Y command is executed.
No other BASIC command can activate this circuit.

Although this circuit uses a 74100 latch, other, equivalent circuits can
be used. Table 3-1 is a partial list of several common latches. Their distin-
guishing features are listed. Latches such as the 7475 and 74100 are level
triggered, meaning that the outputs will latch the input data when the clock
is at a certain voltage level (0 V in this case). The other latches in the table
are edge triggered and they will latch the input data the instant the clock
edge occurs (the rising edge in this case).

38

Experiment 3

7404
. 1 2
7420
Al é s (=247 ML our4ease
A2 2 12
13
A3
R/W
DEV 7 [12 o3
o= -
- " g
D2 ;f q ;9 Q2
Data | 03— : 80 a3
c GND ous e 0 o
+
I 5V 10 : B
7400 14 7 e 18 W
7404 14 7 oy 18 W s
7427 14 7 |
74100 24 7

Figure 3-1 This circuit is nearly identical to the decoder circuit in Fig,
2-10. When the address bus holds 49399 AND R/W is low, the 7427
output will be high, the latch enabled, and the contents of the data bus
latched at outputs QO through Q7.

TABLE 3-1 TYPICAL LATCHES SUITABLE AS MICROCOMPUTER
OUTPUT PORTS

Part Package
number Description Clock type
7475 4-bit latch Level triggered 16-pin DIP
74100 8-bit latch Level triggered 24-pin DIP
74173 4-bit latch with 1 Edge triggered 16-pin DIP

tri-state outputs
74174 6-bit latch 1 Edge triggered 16-pin DIP
74175 4-bit latch 1 Edge triggered 16-pin DIP
74LS373 8-bit latch with Level triggered 20-pin DIP

tri-state outputs

Experiment 3 39
The Data Output Is Always 8 Bits

This might already be obvious to you, but there is no way to instruct the
microprocessor to output less than 8 bits of data. Of course, we don’t have
to latch all 8 bits. For example, a very simple 1-bit output port is illustrated
in Fig. 3-2. This circuit uses partial decoding such that whenever DEVT is
low AND R/W is low, the D flip-flop will receive a clock pulse and latch bit
DO of the data bus.

Example 3-1
Determine BASIC commands to set and reset the flip-flop in Fig, 3-2.

Solution Any address between 49392 and 49407 will work. Therefore, to set the
flip-flop we could use

POKE 493921
and to reset the flip-flop we could use
POKE 49392,0

Suppose that the 8-bit output port in Fig. 3-1 is wired on your bread-
board and the command POKE 49392,73 is given. What will be seen at Q0
through Q77

The answer is the binary equivalent of 73, or 01001001, Actually, the
numeric value of the data output may not be as important as the binary
pattern of 1’s and 0’s that is established. For example, Fig. 3-3 illustrates

+5V

L

DO g D =R a =

e 6
D
EV 7 iw——— 4 3
R/w
5

7402

L -

(o]]

CLR

1
T Ic +5V GND
+5 V
7402 14 7

7474 14 7

Figure 3-2 One-bit partially decoded output port. This circuit will re-
spond to any port address between 49392 and 49407 and latch data
bus bit DO.

40 Experiment 3

OUT 49399 I
E
Q0 ——— Sprinkler
Q1 ——— Yard light
. Q2 ——— Bedroom light
4 Q3 ——— Bathroom light
1
A Rt Figure 3-3 If desired, the 8 bits of
Q5 ——— Alarm bell an output port can be used to con-
a6 Furnace trol appllar.lces in i_;he home. In this
case, a particular binary pattern must
Qa7 TV set be output to activate the proper
appliances.

the 8-bit latch from Fig. 3-1 connected to various conveniences in the home.
Let us assume that we wish to turn on the yard light, the bathroom light, the
coffee pot, and the furnace but to keep the other appliances off. What num-
ber should we output to port 493997

First, write down the desired binary pattern (assuming that a logic 1
will activate the appliance):

01011010

Now converting to decimal: 64 + 16 + 8 + 2 =90. The BASIC command
should be POKE 49399,90.

Seven-Segment Display Output Port

Suppose that we wish to add a display to our computer that can be used to
count events in decimal from 0 to 99. A possible circuit is shown in Fig.
3-4. In this circuit we have arbitrarily selected output port 49407 and have
chosen two common-anode seven-segment displays. The 7475’s will latch the
data bus contents when AQ through A3 equal 1111, A4 through A15 equal
110000001000 (DEV7), AND the R/W line is low. Each 7475 output is
then decoded to provide the proper seven-segment format for the two
DL707 displays.

Thinking that all is well, we might proceed to test this circuit by exe-
cuting the command POKE 49407,5. The displays show 05. Next we try
POKE 49407,52. The displays show 34! What is wrong?

What we have forgotten is that although BASIC ‘“‘thinks” in decimal,
when it outputs to a port, it does so in binary. When 52 is output, the actual

1874

50 Q

9,3,14 |‘VVV'— Y

el by DL707
I E I b a
1| 7420 12 13
0 L - o % Tl & |
of P 8 5 " 7 1np—=—10 b
A2 Data | D1—3 , 1 1 4 5 .
(O) & 10 8
bus | pp—dJ6 7 10 2 = .
5 7 9 7 c
D
D3 —7 9 & g L
15 =
14— 11
50 Q
L 9,3,14] VVYI——BV
. = 6 | ouT asa07 = L.
DEV 7 = a1z DL707
R/W IJ"I
E 12 b 13 a
pre—ta ¥ Pyl b 1z
7 B |, 7 11— 10 b
Data | D5—13 4 15 i > d . g
Ic +5V GND bus | pg—d6 7 16—=—2 4 i
7420 14 7 5 b 7 9 * £
D7 —|7
7427 14 7 o ° . LI PY
15 -
7475 (2)| 5 12 g
14 11
7447 (2) | 16 8

Figure 3-4 Seven-segment display wired to output port 49407 on the Apple.

42 Experiment 3

pattern on the data bus is 00110100. The most significant display receives
0011 (8) and the least significant display receives 0100 (4). Hence we see 34
and not 52.

The solution to this problem is in the software. We must adjust each
decimal number before it is output so that it appears correctly in the dis-
plays. Realizing that each display receives 4 bits, there will not be a carry
into the most significant display until a number greater than 15 (1111) is
output. In fact, the least significant display will count units as in decimal,
but the most significant display counts 16’s instead of 10’s. What must be
done is to convert the most significant digit to a decimal value, assuming a
weight of 16 for its position.

Example 3-2
Convert 52, to the proper format for output to two seven-segment displays.

Solution

1. The least significant display should receive the units’ digit without change: in
this case, 2.

2. The most significant display should show a 5. Converting to a base of 16 for
this digit, we have 5 X 16 = 80.

3. Add the two numbers: 80 + 2 = 82,

4, Check: 82 = 01010010 or 52 in the two seven-segment displays.

A BASIC program that will properly output to the two seven-segment
displays in Fig. 3-4 is listed below. Note that numbers greater than 99 cannot
be displayed and are therefore not allowed.

10 HOME
20 INPUT “ENTER ANY INTEGER BETWEEN 0 AND 99”;N
30 IF N>99 OR N<0 THEN 20

40 N1=N-(INT(N/10)*10)

50 REM N1=LEAST SIGNIFICANT DISPLAY

60 N2=INT(N/10)*16

70 REM N2=MOST SIGNIFICANT DISPLAY

80 POKE 49407,N1+N2

90 GOTO 20

As a final note, those of you who are up on your hexadecimal will note
that the circuit in Fig. 3-4 actually displays the hexadecimal equivalent of
the decimal number input. For example, when 52,, is input, the displays
show 34, which is the hexadecimal equivalent of 52.

Now if you are also up on your seven-segment decoders, you will know
that the 7447 will not display the hex characters A through F. If you are
interested in building a hexadecimal display for your computer, replace the
two 7475’s and 7447’s with 9368s. This chip provides a 4-bit latch and hex-

Experiment 3 43

adecimal decoder in one package. You will need to use common-cathode dis-
plays, however, because the 9368 outputs are active high.

If you have a little more money to spend and wish to reduce the amount
of wiring, use a TIL311 or HP 5082-7340 display. These chips have thelatch,
hexadecimal decoder, and LEDs all in one package. All that is needed are
the power connections and the four binary inputs.

Refer to Experiment 11, Question 11-5, for a software-only technique
for driving a seven-segment display. This method does away completely with
the seven-segment decoder chips.

PROCEDURE

Step 1. Study the circuit in Fig. 3-5. Now carefully wire it on your
breadboard, noting the following:

1. Mount the DIP switch upside down on the breadboard with switch 1 to
your right. In this way, when the switch handle is down it will corre-
spond to a 0, and to a 1 when up.

2. Be careful to orient all LEDs as shown (flat side of the package to the
resistor).

Note. The 7485 is a 4-bit magnitude comparator. When word A equals word B, its
A=B output will go high. For this to happen, the switch settings (S1 through S4) will
have to be matched by AO through A3 of the address bus. In addition, the high-order
address bus must cause DEVT to be active. When both of these conditions are met AND
R/W is low, the 7427 output will pulse high and the 74100 will be enabled. The range of
port addresses is 49392 to 49407.

Step 2. Set the DIP switch to all 0’s. Test your hardware with the fol-
lowing in the immediate mode.

POKE 49392,0

Question 3-1. What should you observe? How do you turn all the
LEDs OFF?

Step 3. Set all switches to the 1 (up) position. Again try outputting
to port 49392 and turn the LEDs ON or OFF. You should not be success-
ful because the port code is no longer 49392, Use the proper port address
in the POKE command and try again. You should now be able to turn the
LEDs ON or OFF.

Question 3-2. Write a BASIC program that asks you for the port ad-
dress and the specific LEDs you want turned on. Run the program and verify
proper operation. Remember that an ON LED requires a 0 output. Don’t

44

Experiment 3

forget to set the switches to the port value you have chosen.

Step 4.

position.

Question 3-3.

10 FOR J=255 TO 0 STEP -1
20 POKE 49392,J

30 FOR I=1 TO 100: NEXT I

40 NEXT J

50 GOTO

10

10 FOR J=0 TO 255

Load and run the following program with all switches in the 0

What happens if line 10 is changed to the following?

+BV

siie> = Word A
13 ort
a2 153 i 7 7427
A3 [1>—— 4 o l8 6
8
51 ¢™—3] 5
1
52 ¢ ™o—i
Word B
53 go—H [
PR\ v—
- =
. L
- 2 \12
i =, 3]/
DEV7 |39
12[23
b1 [B>— ai
Ic 45V | GND 02 7 a2
7427 14 7 e 21 4 as
1
7485 16 8 04 [1 "
74100 24 7 35 0
05 [27>——— 0 as
06 (25— as
o7 [2>—2 ot

Is Each 180 Q2 g |
Clb ”“_@“@
20 E!ia .
B8
Q—V\M—@—-
va_@_@
17 A A Ei .ja

Figure 3.5 Schematic diagram of an 8-bit output port switch selectable to one of
16 different port addresses.

Experiment 3 45

Step 5. Write a BASIC program similar to the seven-segment display
program at the end of the “Discussion’ section. This program should input a
number between 0 and 99 and output to the LEDs. You will have to inter-
pret the LEDs as two groups of four (Q0 through Q3 and Q4 through Q7) to
verify program operation.

Note. Because a logic 1 will turn an LED OFF, a lit LED will actually correspond
to a 0, not a 1. This problem can be corrected by outputting the complement of the de-
sired number (255-n).

Step 6. Reread the objectives listed at the beginning of this experi-
ment. If these points are not clear to you, restudy the “Discussion” and
“Procedure” sections.

SOLUTIONS TO QUESTIONS

3-1. 0 =00000000; all LEDs are ON. The command POKE 49392,255 will turn all LEDs
OFF,

3-2. One possible solution:

10 HOME

20 L=0 :REM L IS DATA TO BE OUTPUT
30 INPUT “ENTER THE PORT ADDRESS (49392-49407) ;P
40 IF P>49407 OR P<49392 THEN 30

50 FOR J=0TO 7

60 PRINT “TURN LED ";J;* ON/OFF ";

70 INPUT L3

80 IF L$="OFF” THEN L=L+(27J)

90 NEXTJ

100 POKE P,L

110 GOTO 10

3-3. Because a 0 output turns ON an LED, the LEDs will count backward when line 10 is
changed.

Note. You may want to try other counting programs to cause various effects
in the LEDs (for example, one LED appearing to bounce up and down).

EXPERIMENT 4

MEMORY-MAPPED INPUT PORT CONCEPTS

OVERVIEW

In this experiment you will wire an eight-position DIP switch as an input
port to the Apple using a 74LS244 octal tri-state buffer. Software tech-
niques will be demonstrated that allow individual switches to be monitored.

OBJECTIVES
The key points to be learned from this experiment are:

1. Data from an input port must be gated onto the bidirectional data bus
through tri-state gates.

2. The enable pulse for the tri-state gates is generated by the coincidence
of the address select pulse AND the R/W control signal.

3. The command Y=PEEK(X) is used to gate input data onto the data bus
from port X and to store it as variable Y.

PARTS LIST

1 7404 hex inverter

1 7432 quad two-input OR gate

1 74LS244 octal buffer (Radio Shack 276-1941)

1 8-position DIP (dual-in-line package) switch (Radio Shack 275-1301)
8 1-kf2 resistors (brown-black-red)

46

Experiment 4 47
DISCUSSION: THE Y=PEEK(X) COMMAND

Data is input to the Apple from memory or an input port with the BASIC
command Y=PEEK(X). When this command is executed, the following se-
quence of events takes place:

1. The address of port X is placed on the 16 address lines AQ through A15.
2. The bidirectional data bus internally configures itself for data input.

3. The R/W control line pulses high and when ®0 goes high, the data bus
is ready to input data.

As was true with the output port, the data input (Y) is limited to 8
bits, restricting the input data to integers between 0 and 255. The port
address, representing a 16-bit code, is restricted to integers between 0 and
65535. In order to input data to the Apple our hardware must:

1. Decode the port address.

2. Use the address select pulse from the decoder and R/W pulse to gener-
ate an input port enable pulse.

3. Use this enable pulse to gate data onto the data bus lines through tri-
state gates.

You might have thought that we could connect the data directly to the
data bus lines. The problem with this is that the input data would try to hold
the data bus lines at specific logic levels, interfering with normal computer
operation.

Figure 4-1 illustrates how the tri-state gate solves this problem. Only
when enabled is the input logic level passed through the gate onto the bus.
In fact, tri-state gates allow many different input ports to be connected to
the same bus. The key to this technique is that each set of gates is enabled
by a separate address, thereby allowing only one set to drive the bus at a
given time.

Tri-state gates are also used to increase the output drive capabilities of
the microprocessor. If this is not done, the many circuits connected to the
address and data bus may severely affect the processor’s ability to commu-
nicate reliably with memory and I/O devices. The tri-state gate is called a
buffer in this application.

Typical Input Port

Figure 4-2 illustrates an 8-bit microcomputer input port for the Apple com-
puter. In this example, partial decoding is used such that whenever DEVT is

48 Experiment 4

- Data bus line=0

(a)

Data bus line = 1

(b) Figure 4-1 Tri-state gates are com-
monly used to gate data onto a data
bus. In (a) and (b) the tri-state gate

Data bus line free is enabled and the data bus line is
connected to the input logic level.
o In (c) the tri-state gate is disabled
and its output appears as an open
circuit. The data bus line is now
free to be controlled by another
vy driver on the line.

low AND R/W high, the 7432 OR gate output will go low, enabling the eight
tri-state gates. The microcomputer can now read the data established by
switches S1 through S8 (simulating eight separate input channels). The only
B ASIC command that will activate this hardware is Y=PEEK(49392).*

The circuit in Fig. 4-2 uses the T4LS244 octal buffer, but other tri-
state circuits can be used for input ports. Figure 4-3 lists several common
types. Note that the 74LS241 and 74LS244 are particularly useful with
microcomputers because they contain eight gates in one 20-pin package.

The Data Input Is Always 8 Bits

As discussed in Experiment 3, the microcomputer always works with 8 bits
of data. In the case of an input port, this means that 8 bits of data will
always be read even if the input port itself supplies fewer than eight lines.
What will the computer ‘“‘see” if there are unused input lines? That is a good
question, but there can be no specific answer. Generally, a line with no con-
nection to it will be interpreted as a logic 1. This means that when the com-

*Because of the partial decoding, any address from 49392 to 49407 can be used.

5V 7415244

s1 T/

52¢ o

+5V

IC +5V | GND
1 k&2

53¢ o 81 G

7432 14 | 7 Y
7415244 | 20 | 10

7404 14 /

1kQ
8 12
54 & o— 25| D3
ey 2]
1kQ

BEVY [Ey——-
RAW [38> 122

7404
Figure 4-2 Apple computer input port circuit. The port address is deter-
mined by DEVT and in this case corresponds to any address between
49392 and 49407. When the tri-state gates are enabled, the data byte
established by S1 through S8 is gated onto the data bus.

49

Package outline

A
Voo G? Ab ¥6 Ah ¥5 Ad va Ve G2 Y6 A5 ¥h Ad Ve G2 AB Y6 A5 Y5 A4 Ya
16 15 |1a [\3 |(2 |n |\u ls 16 15 14 lwa l!z ||c ln I!a 15 |M |u |\2 ||| ||0 |9
LErrrELrFE R P oFr rrrrrrrer
& Al Y1 A7 ¥? A3 ¥3 GND G Al Az Y2 Al Y3 GND Gl Al ¥1 Az Y2 Al Ya GND
Part numbor = JAL5365 74L5366 1415367
Ve G2 Al Y6 AS YH Ad Y4 "
Vee 26 11 284 1v2 A3 1¥3 2a2 174 A1 Vee 26 1¥1 284 1Y2 2A3 1¥Y3 2A2 14 2a1
16 15 |=4 |r'_1 12 |H IIO]9 s wpdrz el s] wpdel dn 20 | 419 wid 164 J15 14 13]2 "
l, |_, l:‘ I_, |5 IG ’, B ' ? 3 a 5 6 7 8 g 10 "“lw H*Ija[4 5 6] [9 0
1G Nt 2v4 A2 2v3 1A3 2vy2 1a8 2¥v1 GND 16 1a1 2va 142 2¥a 1A3 2¥Y?2 144 Y1 GND
Gl Al ¥i A2 ¥2 AJ Y3 GND
7415368 74108241 1415244

Figure 4-3 Typical tri-state buffers suitable as microcomputer input ports.

Experiment 4 9l

mand Y=PEEK(49392) is given, and there is no port 49392, the result will
probably be Y=255 or 11111111. However, digital circuits can be very un-
predictable when connected to open circuits and may not always interpret
an open line as a 1 [particularly metal oxide semiconductor (MOS) circuits].

The solution to this problem is to use software to test individual bits
selectively, ignoring those that are not used. We will explore this technique
in the next section.

Masking

The most common method of bit testing is to use a “masking” technique.
A mask word is chosen and then ANDed with the input data. For example,
suppose that we wish to test bit 0 of an 8-bit input word. Assume that the
input data is 10110011 and we wish to know if bit 0 is a 1. The mask word
for testing bit 0 is 00000001. Note what happens when we AND these two
words together.

10110011 (input data)
. 00000001

(mask)
00000001

The result of the bit-by-bit AND operation is to cause bit 0 of the result
to be a 1 if bit 0 of the data is a 1. In general, a nonzero result means that
the desired bit is a 1, a zero result means that it is not. Any bit can be tested
by this method. For example, to test bit 5 the mask should be 00100000,

Unfortunately, Applesoft does not support a bit-by-bit AND operation.
Instead, if the two numbers being ANDed are nonzero, the result will be a 1;
if either or both numbers are zero, the result will be zero.

The only way to use the masking technique with the Apple is to go to
the 6502 processor’s native machine language. From BASIC this can be
awkward. A USR routine can be poked into memory by BASIC, but for our
purposes we will use a simpler method.

Converting Decimal to Binary

When inputting data with the PEEK command, we obtain a decimal number
representative of the binary data at the input port. If we convert this data
back to binary, it will be a simpler matter to test individual bits and ignore
those not connected.

A decimal number can be converted to binary in several ways. One of
the simplest is repeatedly to subtract the highest remaining power of 2 until
the result is zero. The binary number may then be written as the concatena-
tion of these binary digits. Appendix C details this method.

52 Experiment 4

Example 4-1
Write a BASIC program to convert any decimal number between 0 and 255 to
binary.

Solution The program is given below and uses the repeated subtraction method
just discussed. The deeimal number is assumed to be the variable N, and the result is
stored in an array B(J) with B(0) equal to the least significant bit.

100 FOR J=7 TO 0 STEP -1 :REM J COUNTS BITS

110 B(J)=1 :REM ASSUME THE BIT IS A 1

115 REM NOW MAKE B(J)=0 IF N-2~J<0

120 IF N-2~J <0 THEN B(J)=0: GOTO 140

130 N=N-2"~J :REM SUBTRACT POWER OF 2 IF N>2"J

140 NEXTJ
Note. If you want to test this program, add an input line,
10 INPUTN
and an output line,
150 FOR J=7 TO 0 STEP -1:PRINT B(J);: NEXT J

Now let us suppose that the 8 bits of data we input from a port corre-
spond to various sensors within your home. This is illustrated in Fig. 4-4.
Now we would like to write a BASIC program that will determine if the
furnace is on or off. Because the furnace sensor is connected to bit D1, we
must detect if this bit is high or low.

We can incorporate the routine given in Example 4-1 into a subroutine
and use this to test bit B(1). For example, if the input port is 49392:

10 HOME

20 N=PEEK(49392) :REM SAMPLE SENSORS
30 GOSUB 100

40 IF B(1)=1 THEN A$="ON ”: GOTO 60 :REM TEST BIT 1
50 A$=“OFF”

60 VTAB(10): PRINT “THE FURNACE IS: ;A$

70 GOTO 20

100 FOR J=7 TO 0 STEP -1

110 B(J)=1

120 IF N-2~J<0 THEN B(J)=0: GOTO 140

130 N=N-2~J

140 NEXTJ

150 RETURN

It is also possible to use this technique to test for various combinations
of bits. For example, suppose that we wish to know if the front door, kitchen

Experiment 4 53

Smoke alarm

l—
Furnace on/off [\\ D1
Day/night B e -
Front door alarm [\ G
Data bus
Kitchen window alarm I\
— D4
Bedroom window alarm :1
D5
Air conditioner on/off :I -
Refrigerator motor on/off ‘(Figure 4-4 The 8 bits of a typical
D7 input port may represent conditions
within the home. The electronies
—I I— associated with each sensor is not
Port enable shown (see Experiment 7).

window, or bedroom window sensors are active. Referring to Fig. 4-4, this
translates to bits D3 or D4 or D5 being high. We need only change lines 40
and 50 of the previous program:

40 IF B(3) OR B(4) OR B(5) =1 THEN A$=""ALARM "”: GOTO 60
50 A$="NO ALARM”

PROCEDURE

Step 1. Refer to Fig. 4-2 and carefully wire this circuit on your bread-
board. Position the DIP switch upside down with switch 1 on your right. In
this way a switch in the up position will correspond to a logic 1.

Step 2. Test your circuit by loading and running the following
program.

10 HOME

20 Y=PEEK(49392)
30 PRINT Y

40 GOTO 20

54 Experiment 4

Question 4-1. Explain the result obtained in step 2.

Question 4-2. Modify the program in step 2 so that it prints the fol-
lowing message: THE CURRENT VALUE OF THE SWITCH IS: XXX,
Make your modification such that the message is printed only once for any
switch setting.

Step 3. Load the following program into your computer. Try both
positions for all eight switches for a given bit test. Experiment with the bit
tested to be sure that you understand this program.

10 HOME

20 INPUT “WHICH BIT DO YOU WANT TO TEST (0-7) ;1
30 N=PEEK(49392)

40 GOSUB 100

50 IF B(I)=1 THEN A$=“ON ”: GOTO 70

60 A$=“OFF”

70 VTAB(12): HTAB(13): PRINT “SWITCH ;I IS "";A$

80 VTAB(14): HTAB(6): PRINT “THE BINARY WORD IS: ";
90 FOR J=7 TO 0 STEP -1: PRINT B(J);: NEXT J: GOTO 30
100 FOR J=7 TO 0 STEP -1

110 B(J) =1

120 IF N-2~J <0 THEN B(J) = 0: GOTO 140

130 N=N-2~J

140 NEXT J

150 RETURN

Question 4-3. Write a program to detect when bits 6 AND 3 =1 AND
when bits 0 OR 4 OR 7 = 1. When the condition is true, the program should
display “OK"; if not true, the screen should be blank.

Question 4-4. Write a program to provide a status report of all 8 bits
of input port 49392 (simulated by the eight-position DIP switch). This pro-
gram should continually update the display, providing an ‘“instantaneous’
status of all 8 bits.

Step 4. Reread the objectives listed at the beginning of this expefi-
ment. If these points are not clear to you, restudy the “Discussion” and
“Procedure’ sections.

SOLUTIONS TO QUESTIONS

4-1. You should see the decimal value of the switch setting rapidly scrolling by on the
screen. As the switch settings change, the value on the screen will also change.

Experiment 4

4-2. One possible way is

10 HOME

20 Y=PEEK(49392)

30 PRINT “THE CURRENT VALUE OF THE SWITCH IS: ;Y
40 IF PEEK (49392)=Y THEN 40

50 GOTO 10

4-3. One possible solution is

10 HOME

20 N=PEEK(49392)

30 GOSUB 100

40 VTAB(12):HTAB(19)

50 IF B(6) AND B(3) AND (B(7) OR B(4) OR B(0))=1 THEN PRINT
“OK”: GOTO 20

60 GOTO 10

100 FOR J=7 TO 0 STEP -1

110 B(J)=1

120 IF N-2~J<0 THEN B(J)=0: GOTO 140

130 N=N-2~J

140 NEXTJ

150 RETURN

4-4. One possible solution is

10 HOME

20 N=PEEK(49392)

30 GOSUB 100

40 FOR J=0TO 7

50 A$=“OFF”

60 VTAB(4+2*J)

70 IF B(J)=1 THEN A$=“ON ”

80 PRINT “SWITCH ";Jy* IS: ";A$
90 NEXTJ

95 GOTO 20

100 FOR J=7 TO 0 STEP -1

110 B(J)=1

120 IF N-2~J<0 THEN B(J)=0: GOTO 140
180 N=N-2~J

140 NEXTJ

150 RETURN

EXPERIMENT 5

INTERFACING THE 8255 PROGRAMMABLE
PERIPHERAL INTERFACE

OVERVIEW

In this experiment you will wire an 8255 programmable peripheral interface
(PPI) to the Apple. You will learn the software techniques needed to initialize
the PPI for mode 0 operation and a traffic light controller utilizing this cir-
cuit will be designed and demonstrated.

OBJECTIVES
The key points to be learned from this experiment are:

1. The PPI is a versatile interface circuit that can be programmed to pro-
vide several different combinations of input and output ports.

2. This chip meets all the requirements for microcomputer input or out-
put ports without requiring external tri-state gates or latches.

3. The 8255 contains three separate data ports which may be programmed
as input or output ports. A fourth port is used to control the mode of
operation of the three data ports and is called the control port.

PARTS LIST

1 8255 programmable peripheral interface (Jameco DP8255)
2 T404 hex inverters

1 7476 dual JK flip-flop

2 green LEDs

56

Experiment 5 57

2 red LEDs

2 yellow LEDs

6 180-L2 resistors (brown-gray-brown)
2 1-K £ resistors (brown-black-red)

2 pushbutton normally open switches

DISCUSSION: A “SMART"” I/O DEVICE

The 8255 is a programmable peripheral interface (PPI) integrated circuit.
It has three I/O ports (or 24 1/O pins) that may be programmed by a micro-
computer to be any combination of input and output ports. In fact, port C
can be split in half, with four of the pins programmed as inputs, and the re-
maining four as outputs.

A block diagram of this chip is shown in Fig. 5-1. The three I/O ports
can be seen (labeled ports A, B, and C) as well as two control blocks called
Group A Control and Group B Control. A unique feature of the 8255 is that
the microcomputer can communicate with these two control blocks and tell
the PPI what I/O configuration is desired. For example, we might specify
port A to be an input port, port B to be an output port, the high-order bits
of port C to be inputs, and the low-order bits of port C to be outputs. All
that is required is to send the proper control word to the two control blocks
(actually, the control port) within the 8255. No rewiring is required nor is
there a need to supply external tri-state gates and latches, as these are all
provided in the 8255.

Referring to Fig. 5-1, the 8255 is a 40-pin circuit and requires a single
+5-V power source.

Modes of Operation

The 8255 may be programmed to operate in one of three modes, referred to
as mode 0, mode 1, and mode 2. Mode 0 provides for basic input and output
operations with the three ports A, B, and C. This is referred to as uncondi-
tional I/O because the microcomputer inputs and outputs data without re-
gard for the I/O port’s BUSY/READY status. None of the interface circuits
we have discussed thus far has supplied this status line. The I/O ports have
always been assumed to be ready.

In some cases, however, the I/O device may have a special status line
to indicate that it is busy right now and cannot accept or provide data.
When interfacing to this type of device, the microcomputer must check the
BUSY/READY flag, and attempt to input or output data only when the I/O
device indicates that it is ready. This particular mode of operation is also
accommodated by the 8255 and is referred to as mode 1 or strobed I/0. In
this mode ports A and B are used for the data paths, but port C is used to

58

Experiment 5

PIN CONFIGURATION 8255 BLOCK DIAGRAM

paal] v N 407 pas
paz(]2 39 Pas l
Par[ja 387 pas "l
pao []4 n[Jrar soniR W | aaou
Rt s susPLIS . 1 A i
B 3 wa ohe TROu i <:> oy <:f> ralen,
&s 37 meser | cuntao fo— I =
cnp 7 ufJo, g
a1]s nlJo, T
a0]s 1z2{Jo, r I
pcz 1o n{Jo, |
pce 11 8255 207 p, La " Al -
— — D e 4") 4 ey S0
pes (12 w[o, [("——— i B
o |
pca |13] 04 A1 DIALCTIONAL DATA BUS ‘
e el nata J |
i B 7o 259 <,|: —— W <:—————— — |
pc1)15 267 Vee & it | =
"a e
rc2 |16 25[] ra? DAt L — :___)>
b - 3 MUY C =
rc3]w? 24(7] Pe6 [b R i £01] S
rao 18 23[] pes : ‘ _t
P81 |19 22 PBa t
raz[|20 n{]eea I ! |
[JE——
— oy MAD caoue | A | caoue
e rr:-l.‘;::,n conTROL \r“_-_—‘l §¢:> . C:_—“"‘)_ L
| " v "
PIN NAMES A —)
ettt Y — l‘l
00, 0ATA BUS (BLOIRECTIONAL |]
RESET RESETINPUT
€5 CHIPSELECT
_RD READINPUT | 5__—?
WR_ WRITEINPUT o
AD, AY _PEF_G_Y AD_DRESS
PAT.PAD PORT A [BIT)
P87-PBO PORT 8 (BIT)

[PCTPCO | PORTCBIT
+5 VOLTS
dvoLrs

Vee
GND

Figure 5-1 Block diagram of the 8255 programmable peripheral interface (PPI).
This chip contains three separate I/O ports which may be programmed as inputs
or outputs by the microcomputer. (Courtesy of Intel Corporation.)

generate or accept the BUSY/READY or ‘“‘handshaking” signals. We will
examine this type of I/O in detail in Experiment 11.

Mode 2 is the third mode of operation and is similar to mode 1. The
difference is that the data path consists of one set of I/O lines (port A)
which are now configured to be bidirectional. Port C again provides hand-
shaking capabilities. This mode of operation is intended for I/O devices that
communicate over a single 8-bit bidirectional data bus.

In addition to the three modes of operation discussed, there is also a
bit set/reset mode. This mode allows individual bits of port C to be set or
reset by choosing different control words.

In this experiment we will use only mode 0. Experiment 11 offers more
details on mode 1. You are also referred to the 8255 data sheets in Appen-
dix G and available from Intel Corporation, 3065 Bowers Avenue, Santa
Clara, CA 95051. Another good reference is Microcomputer Interfacing with
the 8255 PPI Chip by Paul Goldsbrough (Indianapolis, Ind.: Howard W.
Sams and Co., 1979).

Experiment 5 59
Interfacing to the 8255

When the 8255 is interfaced to the Apple, all three system buses must be
used. The eight data bus lines are connected directly to the 8255, as shown
in Fig. 5-2. The RD/WR control line is connected to pin 6 (WR) and inverted
and applied to pin 5 (RD). The inverter is necessary to generate an active-low

IC +5V GND PAD ~
§ f—
8255 26 7,35 5[_rai
7404 14 7 DOD DO 34 2 PA2
PA3
7432 14 7 D1 D1 33 1 f— "
D 40 PA4 ort A
D2 32 39 PAS
D3
03 [25)——31 3g|_PAE
D4 30 37| PAT
o5 27220 oco
14 |—EC0__
D7
D7 27 8 gl PC2
7404 2 17 —PC3__
o 1 2 RD ~ PortC
5 12 PC5
WR" Yas 11}_PC6
10PC7_
18 |—PBO_ 1)
19 —PB1
20 —FPB2
0 £ -~ ~ Port B
or
A0 @A— 9 22| PB4
- 23 PB5
Al 8 24 i
2 PB7
5 -
6
6 cs

7432

Figure 5-2 Interface circuit between the Apple II and the 8255 PPIL In
this circuit full decoding is used and the 8255 occupies the four ports
from 49392 to 49395 (assuming that slot 7 is used for the Vector inter-
face card).

60 Experiment 5

memory read signal. The two low-order address lines are connected to the
A0 and Al inputs to allow selection of the four different ports in the 8255
(remember that there are four combinations of 2 bits). Finally, the chip
select input is derived from an address decoder of A2, A3, and the device
select signal (DEVT in this case).

When the chip select input goes low, the 8255 “looks™ at A0 and Al
to determine which port you wish to talk with. It then examines its RD and
WR inputs to see which way that data is to flow.

The interface circuit in Fig. 5-2 again takes advantage of the built-in
decoding of A4 through A1l5 within the Apple. Because of this, we need
only decode address lines AO through A3 to provide full decoding. Assum-
ing that the Vector plugboard is in slot 7, the device select signal (DEVT)
will be low for any address between 49392 and 49407. Studying Fig. 5-2,
when DEV7 is low AND A2 AND A3 are low, the 8255 will be selected.
This corresponds to all addresses between 49392 and 49395.

Example 5-1
List all commands in BASIC that will access the PPI in Fig. 5-2.

Solution There are only two commands: Y=PEEK(X) and POKE X,Y. For the
specific addresses involved:

COMMAND ACTION
Y=PEEK(49392) Input data from port A
Y=PEEK(49393) Input data from port B
Y=PEEK(49394) Input data from port C
Y=PEEK(49395) Not allowed by the PPI

and
POKE 49392)Y Output data Y to port A
POKE 49393,Y Output data Y to port B
POKE 49394,Y Output data Y to port C
POKE 49395,Y Output data Y to the control port

Note that the first four commands cause the RD input to be active and the last four
commands cause the WR input to be active.

The commands listed in Example 5-1 actually correspond to a truth
table for the 8255. This is repeated in Fig. 5-3 in a more general format. Be
cautious when using this table, however. Each of the I/O ports (A, B, and C)
can be configured as an input or an output port, but not both simultaneously.
The specific control word used will determine this. If port A is configured as
an output port, you cannot input from this port even though the command
Y=PEEK(49392) can be given. The control port must be rewritten with a
new control word that causes port A to be an input port.

Experiment 5 61

A1 AD Operation
00 Input data from port A
01 Input data from port B
10 Input data from port C
11

Illegal condition

{ad CS=0,RD=0

A1 A0 Operation
o0 QOutput data to port A
01 Qutput data to port B
10 Output data to port C Figure 5-3 8255 truth table. In (a)
B QOutput data to control group the read (or input) operations are

n ay summarized. In (b) the write (or
(b} CS=0 WR=0 output) operations are summarized.

Initializing the PPI from BASIC

Before using the PPI it must be initialized for the specific I/O configuration
desired. This must be done before any attempt is made to use the circuit in a
system.

Initializing the PPI from BASIC is a simple matter consisting of a com-
mand of the form POKE XY, where X is the address of the PPI control port
and Y is the desired control word. This word can be determined by referring
to Fig. 5-4. This chart details how each bit in the control word is established.

Example 5-2

Determine the control word needed for the following I/O configuration. Port A =
output, port B = input, port C (PCO through PC3) = input, and port C (PC4 through
PCT7) = output.

Solution Referring to Fig. 5-4:

bit7=1 Defines mode set versus bit set mode
bits 6,5 =00 Defines mode 0, unconditional I/O
bit4 =10 Port A = output

bit 3=0 Port C (PC4-PCT) = output

bit 2=0 Mode 0

bit1=1 Port B = input

bit0=1 Port C (PCO-PC3) = input

The control word is 10000011 = 131.

Using the hardware shown in Fig, 5-2 and the I/O requirements in
Example 5-2, the PPI is initialized with the command

POKE 49395,131

62 Experiment 5

CONTROL WORD

D, | 0 [Dg | Dy | Dy [2, | Dy | g

GROUP B

PORT C (LOWER])
1= INPUT
0= OUTPUT

PORT B
1= INPUT
0= 0UTPUT

MODE SELECTION

0= MODE O
1= MODE 1

GROUP A
PORT C {UPPER)
1= INPUT
0= 0UTPUT
PORT A
1= INPUT
0« OUTPUT -~

Figure 5-4 Mode definition format

ROOESELECTION for the 8255. The particular control
01 = MODE | word needed is determined by

1X = MODE 2

matching port definitions against

those in the chart. Note that for

any of the modes (0 through 2) to

MODE SRT.£LAG be active, bit 7 must be a 1. (Cour-
tesy of Intel Corporation.)

PROCEDURE

Step 1. Refer to Fig. 5-5 and carefully wire this circuit on your bread-
board. Do not wire the LEDs or flip-flops at this time. Use caution when
handling the 8255, as it is an MOS device and subject to damage due to static
electricity, Do not handle the IC leads and ground yourself to your bread-
board before placing the chip into the socket.

Note. The circuit in Fig. 5-5 uses partial decoding to simplify the hardware. When-
ever DEV7 is low, the 8255 will be activated and AO and A1 will determine the specific
port selected. This means that the 8255 occupies four sets of four ports, with the lowest
group at 49392 to 49395 and the highest group at 49404 to 49407.

Step 2. We will test the hardware by wiring ports A and B in parallel
and then outputting data to port A and inputting the data from port B. Wire
PAO to PBO, PA1 to PB1, and so on. Refer to Fig. 5-2 for pin numbers.

Experiment 5 63

1 -
PAD 180 Q2
D) oo _|,, 4 2 :
D1 1 3 4 18082
@_ 33 3 5 443 ' Yellow Main St,
D2 2 6
32 2 ¢ Green
E p3 N 9 g 1808 _
D4 4 1 10 1800
30 40 b Yellow § Side St.
D5 5 13 12 1802
@— 29 39 Green
D6
28 7404
27 2 1k
I r—VWWA— 5V
8 PBO P I
2 18 Q J :
2 15 7 . Main St.
5 ; il
w2 3 ol
S =
a K
14 PCO C
S T
1k
?L ‘\MF +5V
PB1 P l
19 i
1 Q i J . Side St.
1" 3 k.
g =
P a K
15|_FC! B
6 I .
DEV 7 l Cs
Ic +5V GND
8255 26 7,35
7404 (2) 14 7
7476 5 13

Figure 5-5 Hardware for the Apple traffic light controller interface. Ports A and
C are outputs and port B is an input. Cars are detected with two normally open
pushbutton switches,

Question 5-1. Write a BASIC program that will test this hardware ar-
rangement. What is the control port address? the control word?

Step 3. To gain more experience with the 8255, you may want to
repeat step 2 with ports B and C wired in parallel.

64 Experiment 5

Note. In the next steps we will assemble and test the hardware needed to convert
the Apple into a traffic light controller. Green, red, and yellow LEDs will simulate the
traffic lights and two pushbutton switches will act as car sensors.

Step 4. Remove all wires from ports A, B, and C. Now connect the
six LEDs and six 180-£2 resistors to port A using a second 7404 as shown in
Fig. 5-5.

Step 5. Test your LED interface by loading and running the following
program:

10 POKE 49395,130 :REM MAKE PORT A AN OUTPUT
20 FOR J=0TO 5

30 POKE 49392,2"J

40 FOR I=1 TO 250: NEXT I

50 NEXT J

60 GOTO 10

Question 5-2. What output code word (decimal) is needed to show
(a) red on Main St. and green on Side St.? (b) yellow on Main St. and red
on Side St.?

Step 6. If your LEDs are working properly, add the car sensors, con-
sisting of one 7476 and two pushbutton switches. Refer to Fig. 5-5 for the
details.

Question 5-3. What control word is needed to initialize the 8255 for
the traffic light controller circuit in Fig. 5-5?

Note. The 7476 flip-flop will be set by its asynchronous preset input each time a
switch is depressed (simulating a car). Because the flip-flop can set only once, the com-
puter must reset this flip-flop so that it can detect the next closure of the switch. In
software we can do this by pulsing the PCO and PC1 lines from high to low and back high
again.

Step 7. Test your flip-flop circuit by loading and running the follow-
ing program. See if you can predict what this program will do.

10 HOME

20 POKE 49395,130 :REM INIT PPI

25 REM NOW RESET THE FLIP-FLOPS

30 POKE 49394,255: POKE 49394,0: POKE 49394,255

40 PRINT “PUSH THE MAIN ST PUSHBUTTON”

50 GOSUB 500: IF B(0)=1 THEN POKE 49392,7: GOTO 70
60 GOTO 50

70 PRINT “PUSH THE SIDE ST PUSHBUTTON"

80 GOSUB 500: IF B(1)=1 THEN POKE 49392,56: GOTO 100
90 GOTO 80

100 INPUT “PUSH RETURN TO RESET THE FLIP-FLOPS ; A$

Experiment 5 65

120 POKE 49392,0

130 GOTO 10

500 Y=PEEK(49393)

510 FOR J=7 TO 0 STEP -1

520 B(J)=1

530 IF Y-27J<0 THEN B(J)=0: GOTO 550
540 Y=Y-2"J

550 NEXT J

560 RETURN

Note. As discussed in Experiment 4, it is necessary to convert the data from the
input port (49393) to binary to test the individual bits. This is done using the method
developed in Experiment 4 and appears in the program as the subroutine in lines 500
through 560. The array B(J) holds the binary value of the variable Y.

Step 8. When your hardware works successfully through step 7, you
are ready to write the traffic light controller program. The following require-
ments should be met:

1. Main St. is the priority street. It must have a minimum of 30 s of green
before changing to red. In addition, it should only change to red if 30 s
has elapsed and at least one car is waiting on Main St.

2. The green light on Side St. should stay green until either 30 s has elapsed
or three or more cars are waiting on Main St.

3. In all cases, lights should sequence from green, to yellow (for 4 s), to
red.

Note. A solution to this step is provided at the end of this experiment.

Step 9. Reread the objectives listed at the beginning of this experi-
ment. If these points are not clear to you, restudy the ‘Discussion’ and
“Procedure” sections.

SOLUTIONS TO QUESTIONS

5-1. The control port is 49395 (using the lowest set of addresses). Because port C is un-
defined, there are four possible control words that configure ports A and B as de-
sired. They are: 130, 131, 138, and 139. One possible test program is

10 HOME

20 POKE 49395,130 :REM INIT PPI

30 INPUT “DATA TO OUTPUT TO PORT A IS ;A

40 POKE 49392, A :REM 49392 IS PORT A

50 INPUT “PUSH RETURN TO SEE THE DATA INPUT FROM PORT B ";B$
60 PRINT PEEK(49393) :REM 49393 IS PORT B

70 IF PEEK(49393)=A THEN PRINT “PORT TEST IS OK”: GOTO 90

66

5-2.
5-3.

Experiment 5

80 PRINT “PORT TEST FAILS”
90 INPUT “AGAIN ;B$

100 IF B$=""YES” THEN 30

110 END

Another test program that lets the Apple do all the testing is

1000 HOME

1010 POKE 49395,130 ‘REM INIT PPI
1020 FOR J=0 TO 255

1030 POKE 49392,J

1040 IF PEEK(49393)=J THEN 1060

1050 PRINT “TEST FAILS ON OUTPUT ";J

1060 NEXT J

1070 PRINT “TEST OVER”

1080 END

(a) 33; (b) 10
Port A = output to LEDs. Port B = input from car sensors. Port C (lower) = output
to reset car sensors. Control word = 130 or 138.

Step 8 (solution). A possible solution is shown below (refer also to

the flowchart in Fig. 5-6).

10
20
25
30
40
50
60
65
70
80
90
100
110
120
130
140
150
155
160
170
180
190
200
210
220
230

HOME
20 POKE 49395,130 :REM INIT PPI

:REM RESET SENSORS
POKE 49394,255: POKE 49394,0: POKE 49394,255

POKE 49392,12 :REM MAIN IS GREEN SIDE IS RED
D=30: GOSUB 600 :REM WAIT 30 S
GOSUB 500: IF B(1)<>1 THEN 60 :REM CAR ON SIDE ST?

:REM RESET SIDE ST SENSOR
POKE 49394,3: POKE 49394,1: POKE 493943

POKE 4939210 :REM MAIN IS YELLOW SIDE IS RED
D=4: GOSUB 600 :REM WAIT 4 S
POKE 49392,33 :REM SIDE IS GREEN MAIN IS RED
C=0 :REM CAR COUNTER
FOR K=1 TO 30 :REM 30 LOOPS AT 1 § EACH
GOSUB 500: IF B(0)=1 THEN 160 :REM CAR ON MAIN?
D=1: GOSUB 600 :REM DO LOOPS AT 1 S EACH
GOTO 200

:REM RESET MAIN ST SENSOR
POKE 49394,3: POKE 49394,2: POKE 49394,3

C=C+1 :REM ADD 1 TO CAR COUNTER

IF C<>3 THEN 200 :REM 3 CARS?

K=30

NEXT K

POKE 49392,17 :REM SIDE IS YELLOW MAIN IS RED
D=4: GOSUB 600 :REM WAIT 4 S

GOTO 40

Light code

@

Experiment 5 67

500
510
520
530
540
550
560
600

610
620

Y=PEEK(49393) :REM SAMPLE SENSORS

FOR J=7 TO 0 STEP -1

B(J)=1

IF Y-2~J<0 THEN B(J)=0: GOTO 550

Y=Y-2"J

NEXT J

RETURN

FOR T=1 TO D#750 :REM TIME DELAY ADJUST FOR 1 8
— PER VALUE OF D

RETURN

Initialize
PPI
reset flip-flops

A

Main = green
Side = red

!

Wait
30 sec

4.sec
switch
pattern

!

Side = green
Main = red

\Yes 4.spc
3 carsion switch am—

: pattern

30 sec
elapsed
?

Figure 5-6 Traffic light controller
program flowchart.

68 Experiment 5

Note. This program should work with your hardware, but if your switches have
excessive bounce time, erratic operation may occur. This is because the computer will
reset the flip-flop only once, If the switch bounce time is too long, it will set again. The
cure is a brief time delay in lines 65 and 160:

FORI=1to5: NEXTI

This allows the switch time to stop bouncing before the computer resets the flip-flop.

EXPERIMENT 6

OVERVIEW

INTERFACING THE 6820 PROGRAMMABLE
INTERFACE ADAPTER

In this experiment you will wire a 6820 programmable interface adapter
(PIA) to the Apple. You will learn how to program this device for basic
input and output by repeating the traffic light controller problem from
Experiment 5.

OBJECTIVES

The key points to be learned from this experiment are:

1.

2.

3.

PARTS LIST

The 6820 is a standard programmable I/O device intended for use in
6800/6500 family microcomputer systems.

This chip features 16 I/O lines that can be individually programmed as
input or output pins.

Like the 8255 PPI chip, the 6820 occupies four memory locations. Two
of these ports are used for control of the device and the remaining two
for data input/output.

1 6820 programmable interface adapter (Jameco MC6820 or MC6821)
1 7404 hex inverter

1 7476 dual JK flip-flop

2 red LEDs

2 green LEDs

69

70 Experiment 6

2 yellow LEDs

6 180-£2 resistors (brown-gray-brown)

2 1-kf2 resistors (brown-black-red)

2 pushbutton normally open (PBNO) switches

Note. Throughout this experiment the PIA referred to is the MC6820. However,
the MC6821 is an identical part and may be substituted for the MC6820 throughout this
experiment.

DISCUSSION: ANOTHER PROGRAMMABLE [/O DEVICE

The 6820 programmable interface adapter (PIA) is another example of the
trend in integrated electronics toward programmable interface devices. Such
devices can free the microcomputer of the tedious task of continually mon-
itoring its I/O ports. Also, because they are programmable, these intelligent
I/O adapters can be controlled via software and actually change their hard-
ware appearance to suit the device being interfaced. For example, a parallel
printer may require as many as nine output lines for data and strobe signals
and three to four input lines for printer status signals. But a burglar alarm
system may require 15 input lines and only a single output line for an alarm
condition. The 6820 can accommodate both of these interfacing problems
with a simple change of data written to its control register.

If you have read through Experiment 5, you have probably realized
that the 6820 is basically another 8255. The 8255 was designed by Intel
Corp. for use with its 8080 and 8085 family of microprocessors. But as we
have seen, it can easily be adapted to the 6502 microcomputer (that is, the
Apple). The 6820 was originally designed by Motorola for use with the 6800
microprocessor. It is also available from MOS Technology as the 6520 and
considered a support device for 6500 series microprocessors (MOS Tech-
nology also offers the MCS6522, an enhanced version of the 6520/6820).
Because of the similarity between the 6800 and 6502, we will see that the
PIA is easily interfaced to the Apple.

Figure 6-1 is a block diagram of the 6820 illustrating the bidirec-
tional data bus interface and 16 programmable I/O pins. Four handshaking
lines are also provided, called CAl, CA2, CB1, and CB2. Handshaking
I/O was introduced in Experiment 5 and is covered in detail for the 8255 in
Experiment 11.

Although the microcomputer normally only inputs and outputs data
from the PIA, it is possible to cause the PIA to interrupt the microcomputer
from its present task and have it immediately service an I/O device. This is
done by causing the PIA to generate an interrupt pulse. The 6820 provides
two such signals, labeled ITRQA (interrupt request A) and IRQB (inter-
rupt request B). More detail on this type of I/O can again be found in
Experiment 11.

Experiment 6

Do
o1
o2
D3

D5
D6

Ve ™ Pinz

Vgg Pin

cso

csS1 <
€52 23

RSO
R51

RW 2

Enabla 3

RESET

IRQ8B 37

71

38 t—— 40 CA1
Interrupt Status
" Control A le—= 39 CA2
Caontrol
Register A
33 -—p (CRA)
32 - N Data Direction
31 - — Register A
Butters N
29— | pBA) Output Bus 1
28 -
27 -] FaQ
26] Output PA1
j\> RAegister A
1ORA) a2
Peripheral PA3
Interface
PA4
A
s PAS
Bus Input @
Registar & aa
IR
IBIR -g- PAT
20
3 e—a= 10 PBO
:> Output t—a= 11 PBI1
Register 8
i oRa] ‘j> H]E PB2
22 -— Peripheral he—e= 13 PB3
Interface
24 ——o— 8 —= 14 PB4
23 ——a= Chip S— rt— 15 PBS
Select —
36 —a—l i re—a= 16 PB6
35 —w R'w a—= 17 PB7
1 Control
— 4
25
34 — - —
Data Direction
Control Register B
Register B (DDRBI
ICRBI

I

Intarrupt Status

te—— 18 CB1

Control B

tt—a= 19 CB2

Figure 6-1 Block diagram and pin numbers for the 6820 PIA. Two bit-program-
mable I/O ports are provided. (Courtesy of Motorola, Inc.)

The most significant difference between the 6820 and 8255 is the
number of I/O pins. The 6820 has 16, each of which can be programmed
to be an input or output pin. The 8255 has 24 I/O pins, but they are byte
(8-bit) or nibble (4 bits of port C) programmable. The 6820 is more versatile

but provides fewer total I/O pins than the 8255. Programming the 6820 is
also a bit more complex.

Interfacing the 6820 to the Apple

Figure 6-2 shows how to interface the 6820 to the Apple. Several comments
can be made about this interface:

1. The 6820 is directly compatible with the Apple’s control bus and ac-
cepts the R/W and ®0 control signals directly. In some literature the
®0 input (pin 25) is called E. It is simply a synchronization signal

required by internal logic of the 6820.

72

+5V

GND

6820

20,34

o o
~ o

A

4
=)

>
(=]

?

=

A2
A3

DEV 7

D3

?

D4

?

D5

L]

o
~

RSO

S

?

45V
RESET
34
38—
40 ————CA;
PAD
3 ; PA1
32 4 PA2
31 2
g PA3
30 -
29 7 |__PAS
PAG
28 Gl
6 9 PA7
27 8
26 2 10 —EB0
0 - PB1
12}—PB2
13 |—PB3
14— PB4
21 15 (—FEBS.
16 |—PBS
25 yl—EEL
- 15 —c8!
cB2
19 f——
35 37
22 24 23

|

CS1
‘

S

39

Cso

Cs2

Experiment 6

g

Figure 6-2 6820 PIA interface to the Apple. The circuit occupies ports

49404 through 49407 when the Vector card is in slot 7.

2. Three chip select inputs are provided, which in this case eliminates
the need for address decoder gates (refer to Fig. 5-2 for a contrast).
When CSO AND CS1 are high, AND CS2 is low, the 6820 will be

enabled.

3. Once enabled, address lines A0 and Al, connected to the RSO and RS1
register select inputs, determine which of four (actually six) internal

Experiment 6 73

registers will be selected. This means the 6820 will appear as four
memory locations to the microcomputer system.

4. The four internal registers may be read from or written to by the
microcomputer. The R/W line tells the 6820 which way data is to go.
When R/W is high, a read operation is indicated. When R/W is low, a
write operation is indicated.

Example 6-1

Indicate the range of addresses occupied by the 6820 PIA interface circuit shown
in Fig. 6-2.

Solution Because the CS2 chip select input is connected to the Apple’s DEV7
device select signal, the address must be in the range 49392 to 49407 (refer to
Experiment 2 if this is not clear to you). Now to enable the 6820, CSO and CS1
must both be high and CS2 low. This means that the offset to add to the base
address (49392) is 12 (A3 A2 Al A0=11XX=12). The four combinations of
A0 and A1 result in addresses in the range 49404 to 49407, all enabling the circuit.

The four combinations of A0 and Al should define four registers
within the PIA. However, by being a bit crafty, they actually define six.
Table 6-1 helps explain. The definition of each port is set by separate control
registers labeled CRA (control register A) and CRB (control register B).
When RS1 and RSO =00 or 10, bit 2 of the corresponding control register
defines whether the data direction register (DDR) or data buffer is accessed.
In this way six locations are defined with only 2 bits. The control register
should be written to before accessing the data direction register or data
buffer since the value of control register bit 2 is generally unknown.

The two data direction registers specify the port pins that will be inputs
or outputs. A logic 1 specifies an output, a 0 an input.

Example 6-2

Write a BASIC program to configure port A of the 6820 interface in Fig. 6-2 with
bits 0, 1, 5, and T as inputs and bits 2, 3, 4, and 6 as outputs.

TABLE 6-1

RS1 RSO Address Function
CRA bit 2=0 0 0 49404 Port A data direction register
CRA bit 2=1 0 0 49404 Port A data buffer
CRA bit 2=X 0 1 49405 Port A control register
CRB bit 2=0 1 0 49406 Port B data direction register
CRB bit 2=1 1 0 49406 Port B data buffer

CRB bit 2=X 1 1 49407 Port B control register

L

TABLE 6-2 PIA CONTROL REGISTER FORMAT*

Determine Active CA1l (CB1) Transition for Setting
Interrupt Flag IRQA(B) 1—(bit b7)
bl =0 : IRQA(B) 1 set by high-to-low transition on
CA1l (CB1).

: IRQA(B) 1 set by low-to-high transition on
CA1l (CB1).

bl=1

IRQA(B) 1 Interrupt Flag (bit b7)

Goes high on active transition of CA1 (CB1); Automatically
cleared by MPU Read of Output Register A(B). May also be
cleared by hardware Reset.

CA1 (CB1) Interrupt Request Enable/Disable
b0 = 0 : Disables IRQA(B) MPU Interrupt by CA1 (CB1)
active transition.l
b0 =1 : Enable IRQA(B) MPU Interrupt by CA1 (CB1)
active transition.

1. IRQA(B) will occur on next (MPU generated) positive
transition of b0 if CA1 (CB1) active transition
occurred while interrupt was disabled.

9 —

b7 b6 b5 b4 b3 b2 b1l b
IRQA(B)1 | TRQA(B) 2 CA2 (CB2) DDR CA1l (CB1)
Flag Flag Control Access Control

——

IRQA(B) 2 Interrupt Flag (bit b6)

CA2 (CB2) Established as Input (b5 = 0): Goes high on
active transition of CA2 (CB2); Automatically cleared by
MPU Read of Output Register A(B). May also be cleared
by hardware Reset.

CA2 (CB2) Established as Output (b5 =1): IRQA(B) 2 =10,
not affected by CA2 (CB2) transitions.

Determines Whether Data Direction Register Or Output
Register is Addressed

b2 = 0 : Data Direction Register selected.
b2 =1 : Output Register selected.

GL

CA2 (CB2) Established as

QOutput by b6 =1

b5 b4 b3

1 0 —> GAZ,
b3 =0:
b3 =1

—— CB2
b3=0:
b3=1

b5 b4 b3

(Note that operation of CA2 and CB2
output functions are not identical)

Read Strobe With CA1 Restore

CAZ2 goes low on first high-to-
low E transition following an
MPU Read of Output Register
A returned high by next active
CA1 transition.

: Read Strobe with E Restore

CAZ2 goes low on first high-to-
low E transition following an
MPU Read of Output Register
A; returned high by next
high-to-low E transition.

Write Strobe With CB1 Restore

CB2 goes on low on first low-
to-high E transition following
an MPU Write into Output
Register B; returned high by the
next active CB1 transition.

: Write Strobe With E Restore

CB2 goes low on first low-to-
high E transition following an
MPU Write into Output Register
B; returned high by the next
low-to-high E transition.

1 1
L Set/Reset CA2 (CB2)

CA2 (CB2) goes low as MPU writes
b3 = 0 into Control Register.

CA2 (CB2) goes high as MPU writes

b3 =1 into Control Register.

CAZ2 (CB2) Established as Input by b5 = 0

b5 bt b3

0 _I—_, CAZ2 (CB2) Interrupt Request Enable/

Disable

b3 = 0 : Disables IRQA(B) MPU Interrupt
by CA2 (CB2) active transition.1

b3 = 1 : Enables IRQA(B) MPU Interrupt
by CA2 (CB2) active transition.

1. IRQA(B) will occur on next (MPU
generated) positive transition of b3 if
CAZ2 (CB2) active transition occurred
while interrupt was disabled.

Determines Active CA2 (CB2) Transition

for Setting Interrupt Flag IRQA(B) 2—

(bit b6)

b4 = 0 : IRQA(B) 2 set by high-to-low
transition on CA2 (CB2).

b4 =1 : IRQA(B) 2 set by low-to-high
transition on CA2 (CB2).

*¥Courtesy of Motorola, Inc.

76 Experiment 6
Solution The proper control word to write to DDRA is
01011100 =92

The program would be

10 POKE 49405,0 :REM BIT 2 = 0 DDRA ACCESS

20 POKE 49404,92 :REM DEFINE I/O PINS

30 POKE 49405,4 :REM BIT 2 = 1 DATA BUFFER ACCESS
40 END

Comparing the 6820 and 8255

When programming the 8255 in Experiment 5, we spoke of various program-
ming modes. There was mode 0 for unconditional I/O, mode 1 for hand-
shaking I/O, and mode 2 for bidirectional I/O. Is the 6820 also programmed
by selecting a particular operating mode?

The answer is no—although it will support the 8255’s modes 0 and 1.
This programming is accomplished through the control register associated
with port A (CRA) or port B (CRB).

Because handshaking capabilities are handled by the CA and CB con-
trol pins, there is no need to select a mode 0 or mode 1. If you need hand-
shaking capabilities, then use the CA and CB control pins; if not, then
ignore these pins.

Programming of the control register is quite complex, allowing great
flexibility in the use of the CA and CB control pins as BUSY/READY and
ACENOWLEDGE signals. Interrupt-driven I/O can also be accommodated
by the 6820 via the IRQA and IRQB outputs, as discussed previously. The
function of these pins is again set by the control registers. Table 6-2 sum-
marizes the control register format for the 6820. Because handshaking I/O is
discussed in detail in Experiment 11, we will not go into detail about pro-
gramming the 6820 control registers beyond basic I/O requirements.

It is possible to use the CA2 and CB2 control pins in a simple bit set/
reset mode. This is illustrated in Tables 6-2 and 6-3. Similarly, it is possible

TABLE 6-3

CRA input bits 5 4 3 Output CA2

110 0
111 1

CRB input bits 5 4 3 Output CB2

110 0
111 1

Experiment 6 77

CRA CRA CRB CRB
bit 1 cA1l bit 7 bit 1 cB1 bit 7
0 e : : = 1
1 1 1 0 _L 1

Figure 6-3 The CA1l and CB1 control lines will cause bit 7 of the corre-
sponding control register to be set when a rising or falling edge occurs,
as shown in the figure.

to monitor the CAl and CB1 input control pins. This is shown in Fig. 6-3
and in Table 6-2. In this case, bit 7 of the control register will be set when
the desired edge (either rising or falling) occurs as specified by control regis-
ter bit 1. Bit 7 will be reset by a subsequent read operation of the corre-
sponding data register.

Example 6-3

Using the hardware interface of Fig. 6-2, write a BASIC program to detect when the
CA1 input goes high and output a logic 0 to the CA2 and CB2 output pins.

Solution The initial bit pattern for CRA is
76543210 «— bit

XX111X1X (32+16+8+2)
set bit 7 when CA1 = _f
set CA2=1
Similarly for CRB:
76543210 «bit

XX111XXX (32+16+8)
set CB2=1

The program initializes the control registers and then waits for bit 7 of CRA to go
high. When this occurs the CA2 and CB2 control lines are reset.

10 POKE 49405,4 :REM ACCESS PORT A DATA BUFFER
20 Y= PEEK (49404) :REM MAKE SURE CRA7=0

30 POKE 49405, (32+16+8+2) :REM INIT CRA

40 POKE 49407, (32+16+8) :REM INIT CRB

50 IF PEEK(49405)<<128 THEN 50 :REM WAIT FOR RISING EDGE

60 POKE 49407, (32+16+2) :REM MAKE CB2 LOW

70 POKE 49405, (32+16) :REM MAKE CA2 LOW

80 END

78 Experiment 6

+5V
' RESET
34 —u 5
38— IRDA
a0 LCA!
CA2
¥ Each 5V
2 180 &2
b0 [2>—2{ 3 2 MDD_W—@_ Red
4
D1 @i 32 3| PA1 3 Yellow & Main st.
D2 . D2 31 4 PA2 5 6 b Green
D3 12
D3 @_ 30 5] PA3 13 B
D4
D4 29 e ”{>"w \/v\/\—@—— Yellow - Side St.
D5 PAS 9 8
D5 @— 28 7 | Green
D6 27 gLbAs
D7 PA7
D7 26) Bl 1k
: +5V
6 ‘D l VA
Main St.
8 1080 sl R
2 11 k2B 7 I
0 PB2 12 4
= R/W = 7 =
RIW 21 g LB w 0
14 |PB4 8 g K
E PBS5 13
40 [37>—— 25 :2 e 1kQ
RSO PB7 VVWN—— 45V
7
A0 [17>—— 36 7 e » é 1 Side St.
RS1 & 7 A .
Al 35 4
1/2
7 ==
- 6
d ¢ K
- CB1 TE
CB2
19 ——
37 ’-—» IRQB
22 24 23 Ic +5V GND
A2 cso 6820 | 20,34 1
74
A3 . CS1 76 5 13
DEV) Ccs2 7404 14 7

Figure 6-4 Apple traffic light controller interface using the 6820 PIA.

Experiment 6 79
PROCEDURE

Step 1. Refer to Fig. 6-4 and wire this circuit on your breadboard.
Do not wire the LEDs or two flip-flops at this time.

Step 2. Following the test procedure developed in Experiment 5,
wire ports A and B in parallel.

Question 6-1. Write a BASIC program to test this circuit. Have the
computer test all combinations of both ports acting as inputs and outputs.

Step 3. If the hardware passes the test program in Question 6-1, test
the CA and CB control lines by devising a test circuit to go along with the
BASIC program given in Example 6-3. A solution is provided at the end of
this experiment.

Step 4. Study the circuit in Fig. 6-4 and compare it to the 8255 inter-
face in Fig. 5-5. These two circuits are nearly identical except that the 8255
version uses three ports, whereas the 6820 can use only two.

Step 5. If you are solving the traffic light controller problem for the
first time, turn back to steps 4 through 7 of Experiment 5 and perform these
steps using the interface circuit in Fig. 6-4. Remember to change addresses
to match the 6820 hardware configuration.

Step 6. With the LEDs and flip-flops working properly, write the
traffic light controller program as described in step 8 of Experiment 5. A
solution is provided at the end of this experiment.

Step 7. Reread the objectives listed at the beginning of this experi-
ment. If these points are not clear to you, restudy the ‘“‘Procedure” and
“Discussion” sections.

Note. Experiments 7, 8, 9, 11, and 13 are all written using the 8255 PPI. If you
prefer, all of these experiments except number 11 can be done using the 6820 PIA. The
port addresses will have to be changed and the initialization commands will be different.

SOLUTIONS TO QUESTION

6-1. One possible solution is

10 HOME

20 A=0 :REM DDRA CODE=INPUT
30 B=255 :REM DDRB CODE=OUTPUT
40 GOSUB 500 :REM PROGRAM THE PORTS

50 PRINT “TESTING A AS INPUT, B AS OUTPUT”
60 PRINT

80

Experiment 6

70 FOR J=0 TO 255

80 POKE 49406,d

90 IF PEEK(49404)=J THEN 120

100 PRINT “ERROR AT ";J;* READ ";PEEK(49404)

110 PRINT

120 NEXTJ

130 A=255 :REM DDRA CODE=QUTPUT
140 B=0 :REM DDRB CODE=INPUT
150 GOSUB 500 :REM PROGRAM THE PORTS
160 PRINT “TESTING B AS INPUT, A AS OUTPUT”

170 PRINT

180 FOR J=0 TO 255

190 POKE 49904,d

200 IF PEEK(49406)=J THEN 230

210 PRINT “ERROR AT ;J;* READ ";PEEK(49406)

220 PRINT

230 NEXTJ

240 PRINT “TEST COMPLETE”

250 END

500 REM SUBROUTINE TO PROGRAM PORTS A AND B
510 POKE 49405,0 :REM DDRA ACCESS

520 POKE 49407,0 :REM DDRB ACCESS

530 POKE 49404,A :REM PROGRAM PORT A
540 POKE 49406,B :REM PROGRAM PORT B
550 POKE 49405,4 :REM A=DATA BUFFER
560 POKE 49407,4 :REM B=DATA BUFFER
570 RETURN

Step 3 (solution). Figure 6-5 shows the circuit. When the program is

run, both LEDs should come on (CA2 and CB2 = 1). Depressing the switch
will cause both LEDs to go off.

10
15
i/}
20
25
30
40
50
60
65
70
80
90

Step 8 (solution)

HOME

POKE 49405,0: POKE 49407,0 :REM INIT PIA

REM NOW PROGRAM A=INPUT, PB0,1=0UTPUT PB6, 7=INPUT

POKE 49406,3: POKE 49404,255: POKE 49407,4: POKE 49405,4
:REM RESET SENSORS

POKE 49406,3: POKE 49406,0: POKE 49406,3

POKE 49404,12 :REM MAIN IS GREEN SIDE IS RED
D=30: GOSUB 600 :REM WAIT 30S
GOSUB 500: IF B(7)<>1 THEN 60 :REM CAR ON SIDE ST?

:REM RESET SIDE ST SENSOR
POKE 49406,3: POKE 49406,1: POKE 49406,3
POKE 49404,10 :REM MAIN IS YELLOW SIDE IS RED
D=4: GOSUB 600 :REM WAIT 4 8

100 POKE 49404,33 :REM SIDE IS GREEN MAIN IS RED

Experiment 6

110
120
130
140
150
155
160
170
180
190
200
210
220
230
500
510
520

C=0
FOR K=1 TO 30

GOSUB 500: IF B(6)=1 THEN 160

D=1: GOSUB 600
GOTO 200

81

:REM CAR COUNTER

:REM 30 LOOPS AT 1 S EACH
:REM CAR ON MAIN?

:REM DO LOOPS AT 1 S EACH

:REM RESET MAIN ST SENSOR

POKE 49406,3: POKE 49406,2: POKE 49406,3

C=C+1

IF C<>3 THEN 200
K=30

NEXTK

POKE 49404,17

D=4: GOSUB 600
GOTO 40
Y=PEEK(49406)

FOR J=7 TO 0 STEP -1
B(J)=1

40(CA1

o

:REM ADD 1 TO CAR COUNTER
:REM 3 CARS?

:REM SIDE IS YELLOW MAIN IS RED
:REM WAIT 4 S

:REM SAMPLE SENSORS

+5V

1k

39| CA2

2_11
b [
7404

oNOD

19| CB2

Y L

3 4 180 2

5 6 180
——— KW sV

IC +5V GND
6820 20, 34 1
7404 14 7

Figure 6-5 Test circuit for step 3 and Example 6-3. Pressing the switch
should turn OFF the LEDs.

82

530
540
550
560
600

610
620

Experiment 6

IF Y-2-J<0 THEN B(J)=0: GOTO 550

N=Y-22g

NEXT J

RETURN

FOR T=1 TO D*750 :REM TIME DELAY ADJUST FOR 18
PER VALUE OF D

NEXTT

RETURN

Note. This program should work with your hardware, but if your switches have

excessive bounce time, erratic operation may occur. This is because the computer will
reset the flip-flop only once. If the switch bounce time is too long, it will set again. The
cure is a brief time delay in lines 65 and 160:

FORI=1to5: NEXTI

This allows the switch time to stop bouncing before the computer resets the flip-flop.

Special
Intertacing
Problems

The experiments in this section should not be at-
tempted until the concepts in Part 2 have been
mastered. This section covers special problems
that occur when interfacing the Apple to the out-
side world.

EXPERIMENT 7

—— HARDWARE INTERFACING TECHNIQUES, PART 1: INPUTS —

OVERVIEW

In this experiment you will interface several different input sensors to the
Apple. These include a magnetic switch, a temperature sensor, and a photo-
cell. Input techniques using the game I/O connector will be explained and
control programs using BASIC will be developed.

OBJECTIVES
The key points to be learned from this experiment are:

1. The outside world generally presents data to the computer in non-TTL-
compatible voltage levels.

2. The Apple can only interpret TTL levels, and others may damage the
computer.

3. An analog comparator circuit is commonly used to convert nonstandard
voltages to TTL.

4. One 8-bit input port allows the computer to monitor eight different
sensors.

PARTS LIST

1 7404 hex inverter

1 8255 programmable peripheral interface (Jameco DP8255)
1 LM339 quad comparator (Radio Shack 276-1712)

1 LM334 temperature sensor (Radio Shack 276-1734)

86 Experiment 7

cadmium sulfide photoresistor (Radio Shack 276-116)
magnetic switch (Radio Shack 49-495)

1-k§2 resistors (brown-black-red)

10-kS€2 resistors (brown-black-orange)

220-8 resistor (red-red-brown)

10-k§2 variable resistors (pots)

PO M DO CO

DISCUSSION: INPUTTING DATA FROM THE OUTSIDE WORLD

The true power of the microcomputer becomes clear when we begin inter-
facing it to the “outside world.” Imagine typing on your keyboard and being
able to turn on or off any light or appliance within your home, or having
your computer sense the temperature in your living room and turn on the
furnace or air conditioner as appropriate. The possibilities are nearly endless.
The main obstacle in doing any of these things is the electronics required
between the computer and the controlled device.

Figure 7-1 illustrates the problem. The microcomputer is a binary ma-
chine communicating only in 1’s and 0’s. Unfortunately, most of the infor-
mation we wish to monitor is not in this digital format. Temperature, for
example. The temperature could be 10°F or 80°F or any value in between.
Yet the computer expects a simple yes or no type of input. Quantities such
as temperature, pressure, humidity, and velocity are all analog in nature and
cannot simply be described as on or off. These types of inputs can be inter-
faced to the computer, but they require a special analog-to-digital converter
circuit. This technique will be examined in detail in Experiment 10.

Outside world

|
|
|
|
: Temperature sensor
|

<|—: GRVRY (4,// Furnace

Microcomputer 4

converter ‘—1\
\:\\

Burglar alarm

Smoke detector

Figure 7-1 The outside world is interfaced to the microcomputer through
a circuit that must convert the sensor’s information to 0-V and 5-V
levels compatible with the computer’s electronics.

Experiment 7 87

In many cases we do not need to know the exact value of the analog
information. In this case we can force the input to be of a yes or no nature.
For example, is the temperature 60°F, or is the humidity less than 50%, or
is the furnace off? All of these questions can be answered yes or no. The
problem now becomes one of converting the sensor’s ON/OFF status to 0-V
and 5-V logic levels that the computer can interpret. This is the 0-V/5-V con-
verter box in Fig. 7-1.

The next few sections illustrate some examples of the circuitry required
to convert the ON/OFF information of the sensor to standard logic levels.

Magnetic Switch Interface

One of the most common and simplest devices to interface to a computer is
a mechanical switch. This device certainly meets our criterion of having only
an ON or OFF condition. In this example let’s see how the open and closed
switch contacts are converted to standard logic levels.

Magnetic switches are commonly used in burglar alarm systems to de-
tect door or window openings. Two types of switches are possible. In one, the
switch contacts close when the magnet engages. In the other, the switch con-
tacts open when engaged. Figure 7-2 is an example of the former type. The
switch itself is housed in the plastic package shown on the right. The left-
most package is simply the magnet. One advantage to this type of switch is
that the contacts are not exposed to the environment. This allows reliable
contact closures even under dirty conditions.

Figure 7-3 illustrates an interface to the Apple using the 8255 PPI chip.
The magnetic switches shown are being used to detect door openings and the
contacts close when the magnets are engaged. With the door closed, the 7404
inverter input is held at ground (0 V) and the 8255 inputs (PCO0 and PC1) are
high. An open door disengages the magnets, opening the contacts. The in-

Figure 7-2 Typical magnetic
switch. When the two units
are brought within 1 inch of
each other, the switch con-
tacts will close. The unit
shown is a Radio Shack
49-495.

oo
[o3]

o
o

o
[X]

02 [z
D3 [ZB)—=—
04 [Z5)—2
D5 [27)—2—
DG.— e
07

7404

3

33
32
31
30
29
28
27

oo, ®

N W s

-

40
39

38

37

18
19
20
21

22|

23
24
25

PAD
PA1
PA2
PA3
s
PAS
PAG
PA7

PBO
PB1
PB2
PB3
PB4
PB5
PB6
PB7

PCO

Experiment 7

+BV GND

8255

26 7,35

7404

14 7

Port

Name

49392

Port A

49393

Port B

49394

Port C

49395

Control

+6 V

1k2

PC1

443

PC2
PC3
_res
|TES
| PC6
PC7

7404

— Front
door

+5V opens

1k

|
|
i
|
|
|
|
|
|
|--—50ﬂ—-lI
|
|
|
|
|
I
|
|
I

—— Back

door

opens

Figure 7-3 Two magnet switches are used to monitor the front and back doors of
a home. When either door opens, the 7404 inverter input goes high and the input
port receives a low logic level.

Experiment 7 89

verter input now goes high and the 8255 input goes low. A BASIC program
to check the two doors might be:

10 HOME

20 POKE 49395,137 :REM INIT PPI. A,B=0OUTPUTS, C=INPUT
30 GOSUB 500: IF B(0)<>1 THEN PRINT “FRONT DOOR OPEN”
40 IF B(1)<>1 THEN PRINT *“BACK DOOR OPEN”

50 END

500 Y=PEEK(49394) :REM SAMPLE SENSORS

510 FOR J=7 TO 0 STEP -1

520 B(J)=1

530 IF Y-27J<0 THEN B(J)=0: GOTO 550

540 Y=Y-2"J

550 NEXT J

560 RETURN

Note that the now standard subroutine (lines 500 through 560) is again
required to convert the input data to binary. This technique was first dis-
cussed in Experiment 4.

Using one 8255 chip, 24 inputs can be monitored. The wiring from
each switch to the computer will require a pair of conductors, but the 7404
and pull-up resistor may be located at the computer site.

Sensing Light and Dark

In this example and the next we will see how the analog nature of a sensor
can be converted to a digital format.

There are numerous instances where it would be desirable for your
computer to sense the relative amount of light in a room or out-of-doors.
For example, an outdoor light sensor could detect nightfall and the com-
puter could then activate a yard light. A light sensor might also be used as
part of a burglar alarm system or to count objects proceeding down an
assembly line.

A useful integrated circuit for accomplishing these types of interfaces
is the LM339 analog quad comparator shown in Fig. 7-4. This chip has four
identical comparators in one 14-pin package. Each comparator has two
inputs, labeled (+) and (-). Electronically, the comparator examines the
voltages on its two inputs. If the (+) input is largest, the output will switch
to an open-circuit condition. An external pull-up resistor is used to pull
the output to +5 V for this case. If the (-) input is the largest, the output
switches to 0 V. A particularly nice feature of the LM339 is that only a few
microvolts of difference between the two inputs is required for the output
to switch states. Typical switching times are less than 1 us.

90 Experiment 7

Ground = pin 12
V* =pin3

Figure 7-4 LM339 quad comparator.
8l Four comparators are included in
one standard 14-pin dual-in-line
package (DIP). The output switches
1 between an open circuit when the
13 (+) input is greater than the (-) in-
10 put, and 0 V when the (-) input is
greater than the (+) input.

The LM339 is also useful for converting voltages which exceed normal
TTL values to standard levels. This is because the comparator inputs are
rated to withstand voltages as high as +36 V (the minimum is -0.3 V).

A simple circuit for detecting the presence of light and converting this
information to 0-V and 5-V levels is shown in Fig. 7-5. This circuit uses a
photoresistor (shown in Fig. 7-6) and one-fourth of the LM339 quad com-
parator. When the comparator (+) input (pin 7) has a more positive voltage
than the (-) input (pin 6), the output of the comparator goes OFF and is

+5V
HEW, +5V
R2
R1=10kS2 i A
6
o , To PC2 in Fig. 7.3
Twisted
Radio Shack [S pair = Vour =5V; dark
276-116 s = Vour =0 V; light

1 k$2 at normal room light

Figure 7-5 Light-sensing circuit with adjustable threshold. This circuit
uses one of the four comparators in the LM339 package. The photore-
sistor has a resistance which is low (~100 £2) in the presence of light
but large (~1 M) in darkness. By adjusting R1, the specific light-dark
switching threshold can be set.

Experiment 7 91

®) ©)]
Proto~Board no.100

Figure 7-6 Typical light sensor.
The unit shown is a cadmium
sulfide photoresistor (Radio
Shack 276-116).

spPecialties

pulled to 5 V by R3. When the (-) input is most positive, the output is 0 V.
Because the photoresistor’s resistance varies from hundreds of ohms in
bright light to megohms in darkness, the voltage at pin 7 will vary from 0V
(bright) to 5V (dark).

The circuit can be adjusted by setting the light conditions to the switch-
ing point and then adjusting R1 so that the comparator output (pin 1) just
switches to the desired value (5 V for dark or 0 V for light). A BASIC test
program for aligning the interface might be (assuming that PC2 in Fig. 7-3
is the input bit)

10 HOME

20 POKE 49395,137 :REM INIT PPI

80 VTAB(12): HTAB(18)

40 GOSUB 500: IF B(2)=1 THEN PRINT “DARK ”: GOTO 30
50 PRINT “LIGHT”

60 GOTO 30

92 Experiment 7

500 Y=PEEK(49394) :REM SAMPLE THE SENSOR
510 FOR J=T7 TO 0 STEP -1

520 B(dJ)=1

530 IF B(J)-2"J<0 THEN B(J)=0: GOTO 550

540 Y=Y-2"dJ

550 NEXT J

560 RETURN

Again a two-conductor cable can be used to connect the photoresistor
to the interface electronics. With four comparators in one package, four such
sensors can be monitored.

One application of the photoresistor intexface that should not be over-
looked is a touch sensor input to the computer. When an input is desired, the
user simply covers the photoresistor with his or her finger. Because the sen-
sor can be mounted behind a plate of glass, this technique is useful when it is
desired to limit actual access to the computer for security reasons.

Sensing Temperature

Temperature is another analog quantity that can be monitored by the Apple.
In this instance we will not be concerned with the specific temperature, but
rather in the ability to determine if the temperature is above or below some
threshold value. This is consistent with our approach (in this experiment) to
convert analog information to digital.

Figure 7-7 illustrates the electrical interface. An LM334 temperature
sensor is used to provide a current that is proportional to temperature. With
the component values shown, the voltage applied to the comparator (+) in-
put will increase 10 mV/°K. For example, with V* = 5V, the output voltage
across R2 is typically 3.1 V, but will rise or fall as the temperature changes.
By adjusting R3 to a particular value, we may detect when the temperature
exceeds (or falls below) this limit.

Example 7-1

Refer to Fig. 7-7. Assume that the room temperature is 20°C (68°F) and Vgg =
3.1 V. Adjusting R3, what voltage should be applied to pin 4 of the comparator if
we wish to detect temperatures above 32°C (90°F)?

Solution The change in temperature is 32°C - 20°C = 12°C. Because a Kelvin
degree is the same as a Celsius degree, Vi will increase by 12° X 10 mV/°K = 120
mV. R3 should be set so that pin4is 3.1V +0.12V =3.22V.

The LM334 temperature sensor is contained in a TO-92 plastic package
and looks identical to a small plastic transistor. The 220-2 resistor (R1) can
be soldered directly to the two device leads and the remaining two con-
nections (V* and V™) are brought to the interface electronics through a two-
conductor cable. Because the device is a current source, the resistance of
the cable, and therefore its length, is not critical.

Experiment 7

LM334 v+ I

R

93

+5V LM334
{front)

+ by
R V¥ R V
+5V

+
3’

‘IOKRI

-

To PC3 in
Fig. 7.3

i

Figure 7-7 Sensing temperature with the Apple. The LM334 output cur-
rent increases with temperature such that Vg5 will rise 10 mV/°K. When
the LM339 comparator (+) input (pin 5) exceeds the threshold voltage
established by R3 on pin 4, its output pulls high through R4. For tem-

peratures below this point, the output is low.

The best way to calibrate the circuit in Fig. 7-7 is to place the LM334
at the temperature condition you wish to detect and then measure the out-
put voltage across R2. Now adjust R3 until the voltage at pin 4 just equals

this value.

If you do not have a voltmeter, the following program can be

run. With the LM334 at the switching temperature, slowly adjust R3 until
the screen displays “HOT.” This program assumes that the LM339 output is
connected to PC3 in Fig. 7-3.

10
20
30
40
50
60
500
510
520
530
540
550
560

HOME
POKE 49395,137 :REM INIT PPI
VTAB(12):HTAB(18)

GOSUB 500: IF B(3)=1 THEN PRINT “HOT ”: GOTO 30
PRINT “COLD"

GOTO 30

Y=PEEK(49394) ‘REM SAMPLE TEMP SENSOR
FOR J=7 TO 0 STEP -1

B(J)=1

IF Y-2~J<0 THEN B(J)=0: GOTO 550

Y=¥-2°J

NEXT J

RETURN

94 Experiment 7
Smoke Detector Interface

Occasionally, the signal we wish to monitor is not steady but of a pulsing
nature: for example, the alarm signal on a digital clock or smoke detector.
In this case, the interface circuitry must latch the alarm condition to pre-
vent the computer from assuming multiple alarms. Generally, this also re-
quires some means of resetting the latch once the alarm has ceased.

In this example let us see how to interface a smoke detector to the
Apple. Figure 7-8 illustrates a common type. This is the Radio Shack ioni-
zation smoke alarm and it produces a burst of 3-kHz audio at 4 to 6 Hz
when activated.

The interfacing scheme consists of simply paralleling wires with the
smoke detector’s internal audio alarm. In the case of the Radio Shack unit,
this involves prying the front cover off (voiding the warranty) and connect-
ing two wires to the outermost connections of the audio alarm.

Because the alarm is pulsing, the interface circuit must use a flip-flop
to hold the alarm input to the computer at a steady (nonpulsing) logic level.
The interface circuit is illustrated in Fig. 7-9. When the smoke alarm is acti-
vated, the pulsing alarm signal is applied as a clock signal to the 7476 JK
flip-flop. With J wired high and K low, the @ output will switch high on the
first pulse from the alarm. This can be monitored by the computer for
further action.

Because the flip-flop output will remain high even after the alarm dis-
appears, the clear input must be pulsed low to reset the circuit. This is
accomplished by pulsing the PAO line.

77—\
N2

Figure 7-8 Smoke detector and
alarm. Illustrated is the Radio Shack
ionization smoke alarm 49-454. The
two wires shown are in parallel

with the internal speaker,

Experiment 7 95

+5Vv
1kQ IC | +5V | GND
7475 5 13
2
Smoke | 4 15
alarm [R1 d TH o __D-Il;?gp?g
\ 7 A
| JUL 1kQ Clock 4
|

>
1 6
| 16 _ |14
| 5V D1_r K cLp Q@ pP—
- -— 3 ! > To PAO
Fig. 7.3

Figure 7-9 Apple smoke detector interface. PC4 and PAO refer to the
8255 schematic diagram in Fig. 7-3. The flip-flop is necessary because
the alarm signal is pulsing. D1 and R1 protect the input from large or
negative input voltages.

The following program will clear the flip-flop (in case it powers up al-
ready set) and then wait for an alarm condition.

10 HOME
20 POKE 49395,137 :REM INIT PPI
30 POKE 49392,0: POKE 49392,1 :REM RESET FLIP-FLOP

40 GOSUB 500: IF B(4)<>1 THEN 40

50 VTAB(10):HTAB(18): PRINT “ALARM”

60 END

500 Y=PEEK(49394) :REM CHECK FLIP-FLOP
510 FOR J=7 TO 0 STEP -1

520 B(J)=1

530 IF Y-2~J<0 THEN B(J)=0: GOTO 550

540 Y=Y-2"J

550 NEXT J

560 RETURN

Using the Game Connector for Input

The Apple game connector is a special IC socket located in the upper right
corner of the motherboard. This socket is commonly used for game paddles
or joysticks. However, it can also be used for inputting information to the
microcomputer just as we have been discussing in this experiment.

96 Experiment 7

There are two restrictions you should be aware of when using this
connector.

1. The game connector has only 3 bits or channels (INO through IN2).

2. Each channel is accessed as a separate memory location; you do not
test individual bits.

Figure 7-10 illustrates the pinning of this socket. The three input lines
are available on pins 2 through 4. Notice that 5 V and ground are also pro-
vided. The four output port lines will be discussed in Experiment 8.

Each input line is TTL compatible and its logic level can be determined
by PEEKing the address shown. If you refer to the memory map in Fig. 2-3,
you will see that the three port addresses are within the block of 128 loca-
tions referred to as built-in I/O. When PEEKing one of these three locations,
a result greater than 127 indicates a 1, less than 128 indicates a 0.

As an example of how to use this connector, Fig. 7-11 illustrates a mag-
netic door switch interface similar to the one discussed in Fig. 7-3. The soft-
ware required to monitor this switch is very simple.

10 HOME
20 IF PEEK(49249) < 128 THEN PRINT “FRONT DOOR OPEN”

30 IF PEEK(49250) < 128 THEN PRINT “BACK DOOR OPEN”
40 END

This program is similar to the one presented earlier in the section on the
magnetic switch interface. In fact, it is simpler because we do not have to
convert the input data to binary and test individual bits. There is also no
8255 initialization. Of course, there are only three input lines compared to
24 with the 8255. Nevertheless, when you have a need to monitor only a few
TTL inputs, the game I/O socket may be a good choice.

e
+v [1 16 [J Open
PEEK (49249) N0 O 2 15 1 out0
PEEK (49250) INT [3 14 [] outl
PEEK (49251) IN2] 4 13 0 out2
Strobe [] 5 12 0 out3
Game paddles [6 11 ['Ganisipadios Figure 7-10 Pin numbers and de-
Game paddles [7 10 0 Gamepaddles geriptions for the Apple game 1/0
GnD [8 9 D open connector. Three input lines are
available.

Experiment 7 97

+5V
Game 1/0 connector

1kQ g
7404 1 16 /
d {>c w 2 15
5V i 14
Front door 4 L
1k0 —— opens 5 12
== 6 11
5 7 10
8 9
Back door opens ‘
- IC +5 V GND
7404 14 7
Game
1/0 1 i

Figure 7-11 Magnetic door switch interface using the game I/O connector.
PROCEDURE

Step 1. Study the circuit in Fig. 7-3 and wire the 8255 PPI and the
RD/WR 7404 on your breadboard. For the moment connect nothing else to
the 8255.

Question 7-1. We can test that the hardware is functional by program-
ming all three PPI ports to be inputs and selectively grounding one input at a
time while holding all others high. What are the eight different input com-
binations that BASIC will see as each pin is grounded?

Question 7-2. What command should be used to initialize the PPI?

Step 2. Load and run the following program, testing all three ports by
touching one input pin at a time to ground with the other seven connected
to +5 V. Do not proceed until all ports check out.

10 HOME

20 POKE 49395,155 :REM PROGRAM ALL PORTS AS INPUTS
30 INPUT “WHICH PORT DO YOU WISH TO TEST (A, B OR C) ”;P$

40 IF P$="A” THEN N=49392: GOTO 70

50 IF P§=“B” THEN N=49393: GOTO 70

60 N=49394

70 VTAB(10):HTAB(18): PRINT PEEK(N)

80 GOTO 70

98 Experiment 7

Step 3. Connect two wires to the contacts on one magnetic switch.
Connect one of these wires to ground and the other wire to pin 3 of the
7404 using a 1-k§2 pull-up resistor as shown in Fig. 7-3. Connect the 7404
output (pin 4) to the PCO input (pin 14) of the 8255.

Step 4. Using the program given in the discussion as a guide, write a
similar program to detect when the magnets are close together (“closed”)
or far apart (‘““open’). Don’t forget to initialize the 8255.

Step 5. Now interface the light-sensing circuit shown in Fig. 7-5.
Connect the LM339 output (pin 1) to PC2 (pin 16) of the 8255. Load and
run the test program given in the “Discussion.” Adjust the setting of R1
until you can get the computer to display “LIGHT” and “DARK?” as the
room lights are turned on and off.

Step 6. Using another comparator in the LM339, construct the tem-
perature-sensing circuit shown in Fig. 7-7. Connect the comparator output
(pin 2) to PC3 (pin 17) of the 8255. Now load and run the program given
in the “Discussion.”

Step 7. Adjust R3 until the screen just displays “COLD.’’ Now pinch
the LM334 between your fingers. The screen should display “HOT” in 5 to
10s.

Note, All three sensors should now be interfaced and adjusted. In the following
step we will develop a control program to monitor particular conditions of all three
5ensors.

Step 8. Write a BASIC program that:

1. Displays the status of all three sensors on the screen.

2. Asks for the alarm condition that should cause the computer to display
or flash “ALARM.” For example, if the door is open, the temperature
is hot and the light is dark, sound the alarm.

One possible solution is provided at the end of this experiment.

Step 9. Reread the objectives listed at the beginning of this experi-
ment. If these points are not clear to you, restudy the ‘‘Discussion’ and
“Procedure’ sections.

Note., Do not disassemble the hardware for this experiment, as portions of it will
be used in Experiment 8.

SOLUTIONS TO QUESTIONS

7-1. When the least significant bit is grounded, the input port will see 11111110 or
254. The seven other combinations are: 253, 251, 247, 239, 223, 191, and 127.

Experiment 7 99

7-2, POKE 49395,155
Step 8 (solution)

10 HOME: POKE 49395,137 :REM INIT PPI
20 PRINT “WHAT IS THE ALARM CONDITION?"
30 PRINT

40 INPUT “DOOR OPEN OR CLOSED ”;D$

50 IF D$=“OPEN” THEN D=0: GOTO 80

60 IF D$=“CLOSED” THEN D=1: GOTO 80

70 GOTO 40

80 INPUT “LIGHT CONDITION: BRIGHT OR DARK ";L$
90 IF L$=“BRIGHT” THEN L=0: GOTO 120

100 IF L$=“DARK” THEN L=1: GOTO 120

110 GOTO 80

120 INPUT “TEMPERATURE CONDITION: HOT OR COLD ”;T$
130 IF T$=“COLD” THEN T=0: GOTO 160

140 IF T$=“HOT” THEN T=1: GOTO 160

150 GOTO 120

160 HOME

170 D$=*“OPEN ”

180 GOSUB 500: IF B(0)=1 THEN D$="CLOSED”

190 L$="“BRIGHT”

200 IF B(2)=1 THEN L$=“DARK ”

210 T$=“COLD”

220 IF B(3)=1 THEN T$="HOT ”

230 VTAB(6): HTAB(1): PRINT “THE DOOR IS: ";D$
240 VTAB(8): PRINT “THE LIGHT IS: ";L$

250 VTAB(10): PRINT “THE TEMPERATURE IS: ";T$
260 VTAB(14): HTAB(18)

270 IF B(0)=D AND B(2)=L AND B(3)=T THEN PRINT “A L A R M”
280 PRINT “ ». GOTO 170

500 Y=PEEK(49394)

510 FOR J=7 TO 0 STEP -1

520 B(J)=1

530 IF Y-2"J<0 THEN B(J)=0: GOTO 550

540 Y=Y-2"J

550 NEXT J

560 RETURN

Note. If you wish to simulate this program without building the hardware, replace
line 500 with

500 Y=INT(1000*RND(1)): IF Y >255 THEN 500

EXPERIMENT 8

HARDWARE INTERFACING TECHNIQUES,
PART 2: OUTPUTS

OVERVIEW

In this experiment you will wire an npn transistor as a mechanical relay
driver. A solid-state relay will also be interfaced and driven directly with
TTL. Finally, an ultrasonic interface will be constructed for controlling
120-V AC devices. Control programs using BASIC will be developed.

OBJECTIVES
The key points to be learned from this experiment are:

1. Few real-world devices can be driven directly by a microcomputer.

2. A mechanical relay can be used to control most electronic and electro-
mechanical devices. It can be driven by a microcomputer via an output
port and external driver transistor,

3. Solid-state relays can be driven directly with TTL but may not handle
the current and voltage of their mechanical counterparts.

4. When isolation between the controlled device and the computer is
necessary, opto-couplers and ultrasonic techniques can be used.

PARTS LIST

1 7400 quad NAND gate
1 7404 hex inverter
1 8255 programmable peripheral interface (Jameco DP8255)

100

Experiment 8 101

LM386 integrated amplifier (Radio Shack 276-1731)
LM567 tone decoder (Radio Shack 276-1721)
TIL111 or 4N25 opto-coupler (Radio Shack 276-132)
magnetic switch (Radio Shack 49-495)

piezoelectric buzzer (Radio Shack 273-060)

SPDT DIP relay (Radio Shack 275-240)
general-purpose diode

general-purpose npn transistor

40-kHz transducers (The Micromint Inc., 561 Willow Avenue, Cedar-
hurst, NY 11516)

LED

0.05-uF capacitor

0.1-uF capacitor

0.033-uF capacitor

0.005-uF capacitor

0.0047-uF capacitor

10-uF capacitor

100-uF capacitor

10-k£2 potentiometers (pots)

100-£2 resistor (brown-black-brown)
150-82 resistor (brown-green-brown)
220-82 resistor (red-red-brown)
330-£2 resistor (orange-orange-brown)
1-k£2 resistors (brown-black-red)

[T T S S S G i A T Sy

BOH H H H N H e

DISCUSSION: THE MICROCOMPUTER AS A CONTROLLER

BASIC programming presents new challenges when your computer can turn
on the light across the room or sound an audio alarm when two switch con-
tacts are opened. In Experiment 7 we developed techniques for getting in-
formation into the Apple. In this experiment we want to finish that story by
studying output port techniques.

The output devices your computer can control may be analog or digital
in nature. For example, to control a DC motor the computer could output a
binary number. When converted to a voltage level, the magnitude of this
number will determine the speed of the motor. An interface of this type will
require a special digital-to-analog converter circuit. This type of interface will
be discussed in detail in Experiment 9.

In this experiment we will interface several output devices that the
computer can control with simple ON and OFF commands. These include

102 Experiment 8

Qutside world

P 120-V AC yard light

: 0-V/5-v > control || | .
Microcomputer DC aloctaribs -+ 24.V DC solenoid
N

}
N
|
|
|

s Switch contacts

Figure 8-1 A microcomputer can be used to control any number and
type of “outside world” devices provided that the proper control elec-
tronics is provided between the computer and the outside world.

lights, relays, home appliances, sprinklers, and most any other device whose
control function can be switched ON and OFF. Once again the main obstacle
to accomplishing these interfaces is the control electronics required between
the computer and outside world. This is illustrated in Fig. 8-1.

The control electronics are necessary because the typical microcomputer
is a 5-V DC machine, but the typical outside world device is anything but
5-V DC! For example, it might be a 24-V DC solenoid on a sprinkler system,
a pair of switching contacts on a slide projector, or a 120-V AC yard light.

In addition to their non-TTL compatibility, these outside world devices
can also present a hazard to your microcomputer (if you have ever seen a
digital circuit board that ‘“‘accidentally” encountered 120-V AC, you know
what I mean!). Therefore, for some interfaces, another requirement for the
control electronics is isolation (no direct electrical connection) between the
computer and control circuitry.

Mechanical Relays

Mechanical relays have been used for many years to allow low-voltage DC
control circuits to control high-voltage and current AC or DC devices. The
basic technique is illustrated in Fig. 8-2a. When S1 is closed, current is al-
lowed to flow through the relay coil to ground, causing it to become an
electromagnet. This, in turn, pulls in the moving metal arm of the relay,
causing the lamp to light as the AC current path through the normally open
(NO) contact and arm is completed. Releasing the switch turns off the light.

Note that the control circuit consists of S1, the 5-V DC source, and the
relay coil. Depending on the relay type, the control current required is usu-
ally quite small. On the other hand, the controlled circuit consists of the
relay contacts, the light, and the 120-V AC source. The current capabilities
of this circuit are limited by the size of the relay contacts. Typical values for
a small 5-V relay are 1 to 3 A. Larger relays may handle correspondingly

Experiment 8 103

{—
15V 120-v AC
o No —0
NC
-0
/
Coil Arm
S1
S
r
i (a)
+5V
Ne D—
Coil 120-V AC
No
SRS 0 — Figure 8-2 Typical relay control
Arm circuit. The circuit in (a) presents
a pictorial view of the relay. The
|—- S1 ' symbol in (b) is more common on
schematic diagrams. In either case,
depressing S1 closes the relay con-
- (b) tacts and activates the AC light.

higher currents. The schematic symbol for the relay is often separated into
a coil and contact set linked by a dashed line, as shown in Fig. 8-2b.

Figure 8-3 illustrates an interface between the Apple and a small 5-V
DC relay. The relay is being used to control an LED powered by a 12-V DC
source. This is an example of how non-TTL voltages can be interfaced to the
microcomputer. An 8255 programmable peripheral interface chip is used and
port A is programmed as an output port. Transistor Q1 takes the place of the
pushbutton switch in Fig. 8-2. When PAO goes high, this voltage will turn on
the transistor, causing a short circuit to exist between its collector (C) and
emitter (E) terminals. This is analogous to closing S1 in Fig. 8-2. Current can
now flow through the relay coil and the switch contacts, lighting the LED.

You might wonder why the relay could not be connected directly to
the 8255 output port (programming PAO to be a 0 could then turn on the
relay). The problem with this is that the relay coil current, although not
large, is still too large to be handled by the 8255 alone or most any TTL
circuit.

For the relay shown in Fig. 8-3, the manufacturer indicates a coil resis-
tance of 56 2. This means that the relay will draw about 90 mA (5-V/56 £2)
of current when energized. The 8255 can sink 1.6 mA of current maximum,
and most TTL gates are limited to 16 mA maximum. The transistor, how-
ever, can easily handle this current.

+5V

150 2
PAD
Do @_00 34 4 VAN
D1 gL EAL R1
01 [25——— 33 PA2
D2 i —
D2 32 , |_Pas
b3 PA4
D3 @_Dd 3 40 -P_AS
o4 " a9 |EA8_
D§ | PA6
05 [27p——— 29 ol B
37 p——
D6 28
D7 PBO
D7 27 18
PB1
jod PB2
: S
. B
L
5 23 P_BE 5V
24—
5 P87
| | 1kQ
i I
i PCO - |
o 4 N3 ! !
PC2 7404 |
16 | |
PC3 I
17 |
PC4 I !
13 . I | —
12 - r_ 50ft_"§ zront
PC6 oor
11 s | Ii BV gpens
10 I |
6 | |
; = } i 1k
l:nsw-—1 q | i
6 5 | I
I |
IC +5V GND Port Name I !
8255 26 7,35 49392 | PortA
7404 14 7 49393 | PortB —
Back
49394 | PortC oo
49395 Control pRans

Figure 8-3 Interfacing a mechanical relay to the Apple, The 8255 provides the
output port and Q1 functions as a relay driver. Programming a 1 to PAO will
turn the relay on activating the LED. The relay shown is a subminiature single-

pole-double-throw (SPDT) DIP relay (Radio Shack 275-240).

Experiment 8 105

When PAO switches low, the transistor will turn off and become an
open circuit between its collector and emitter terminals. This will turn the
relay off. It will also generate a momentary, but large, inductive “kickback”
voltage at the collector terminal. This is similar to the spark produced when
the breaker points on your car’s distributor open and close. It is due to cur-
rent being interrupted while flowing through an inductor or coil. Diode D2
protects the transistor from damage due to this voltage transient by shorting
the voltage to ground. Resistors R1 and R2 protect the transistor and LED
junctions from excessive current.

Solid-State Relays

The main advantages of using a mechanical relay are its simplicity and high
current and high voltage handling capabilities. However, being mechanical,
it does present certain problems. The switch contacts are subject to wear
and pitting as they continually open and close. And because the contacts
are exposed to the environment, they may eventually become contaminated
with dirt. The switching time of a relay is also relatively slow.

A solid-state relay has no moving parts or contacts to pit and wear out.
It can switch from ON to OFF in the time it takes to turn on a transistor
(microseconds).

One example of a solid-state relay and interface circuit is shown in
Fig 8-4. The key component in this circuit is the TIL111 opto-coupler. This
is a six-pin integrated circuit consisting of an infrared LED (IRED) and
photo infrared-detecting transistor. When the computer outputs a 1 to PA1
of the 8255, the 7404 inverter grounds the IRED cathode, causing it to emit
light. This, in turn, saturates the phototransistor, causing it to become a
short circuit between its collector (C) and emitter (E): in effect, shorting the
“relay” contacts. In this example the piezoelectric buzzer then emits a loud
4 8-kHz tone suitable as a small alarm signal.

One disadvantage to the circuit in Fig. 8-4 is that the relay contacts,
pins 4 and 5 of the opto-coupler, can only handle direct current. Figure 8-5
illustrates a slight modification to this circuit that allows it to control AC
as well as DC.

The four diodes in this circuit are connected in a bridge configuration
and they force the current to flow through the phototransistor in one direc-
tion only (DC). In this example the relay contacts are inserted in series with
the low-voltage AC control wires to the solenoid on a gas furnace. When the
8255 outputs a 1, the IRED and phototransistor turn on, providing a low-
resistance path through the diodes and transistor, turning on the furnace.

Control with BASIC is very simple.

10 POKE 49395,137 :REM INIT PPI, A AND B OUTPUTS, C AN INPUT
20 POKE 49392,2 :REM TURN ON FURNACE
30 END

106 Experiment 8

+5V

+5-9 Vv
100 Q

:] Red
7404 2 5 Black
PA1 II>G
6

Piezoelectric buzzer
(Radio Shack 273-060)

e |

w

NC i
O0—]___L

TIL-111 or 4N25

;o

(Radio Shack 276-132)

Figure 8-4 A solid-state relay can be built using an opto-coupler. When
activated by the computer, pins 4 and 5 of the opto-coupler become a
short circuit turning on the piezoelectric buzzer. Refer to Fig. 8-3 for
the 8255 pin numbers.

Commercially available solid-state relays with current capabilities as
high as 50 A are available. They usually contain an opto-isolated TRIAC
molded into a plastic package. These are particularly simple to use, as only
the input and output terminals are accessible.

Ultrasonic Interface

An important advantage of using an opto-coupler is the isolation that it
provides between the control and controlled circuits. There is no electrical
connection between the two because the light path is used to pass the
ON/OFF control signal. This is important because it protects the control cir-
cuit (and computer!) from faults that may occur in the usually higher voltage
controlled circuit.

Another type of circuit that provides even greater isolation than the
opto-coupler is the ultrasonic interface illustrated in block diagram form in
Fig. 8-6. A 40-kHz (ultrasonic) sound wave is transmitted under computer
control through the air. When the receiver detects this signal it turns on a
relay, activating the controlled device. Depending on the transmitter and
receiver circuits, distances of 20 to 30 ft between the two are possible.

Experiment 8

(e AN ..]

+5V

TIL-111 or 4N25
(Radio Shack 276-132)

120-v AC % 28V AC

Gas solenoid
on furnace

Figure 8-5 Computer-controlled solid-state furnace controller, The four
diodes enclosed within the dashed lines are available in a single 4-pin

bridge rectifier package (for example, Radio Shack 276-1173).

107

This means there is no danger of high voltage (120 V AC, for example) from
the control circuit inadvertently getting into the controlled circuit and

computer.

An Apple interface circuit is shown in Fig. 8-7. The transmitter is con-
trolled by bit PAO of the 8255. When this bit is a 1, the 40-kHz signal devel-
oped by the 7404 oscillator is passed to the output transducer. Because the

Computer

—|

Ultrasonic
transmitter

1 L
b
LT j il

Ultrasonic
receiver

Relay

40-k Hz sound wave

Controlled
device

Figure 8-6 Ultrasonic computer interface. The transmitter, when acti-
vated by the computer, generates a high-frequency sound wave. When
detected by the receiver, this signal can be used to activate a relay and
turn on or off the controlled device.

80T

40-kHz oscillator

+5V
R1 10 uF
s IcC | +5v | GND g
7400 | 14 7 100 uF
R2 |
—wwW—y1 7404 7404 | 14 7 -
2200 7400 2 6 1 8
10 1 G
—Dc 5 = LM386 | ¢
13712 3 5
2 Li A 0.1 uF
| [
[RY
0.05 uF > <
20-30 ft L
40-kHz transducers (receiver and transmitter)
NC SPDT dip relay
Arm (o (Radio Shack
8 0.033 uF | ©No 275-240)
2 R |
5 {1 8|} L1IA o +5V
5 —
0.005 uF
I *
M
e 5 -
‘75 0.0047 uF
—i 3 6 [} { _]_
10 k2 é._ R4 =
R3
+5V OTi 4 5
+ 1kQ

10 uF

1:_

Figure 8-7 Apple ultrasonic interface. The transmitter and receiver communicate
over a 40-kHz ultrasonic sound path. The 40-kHz transducers are available from
The Micromint Inc., 561 Willow Avenue, Cedarhurst, NY 11516.

Experiment 8 109

transducer is optimized for operation at 40 kHz, R1 should be adjusted to
produce 40-kHz oscillations at pin 3 of the 7400.

The receiving transducer detects the 40-kHz signal and passes it to the
LM386 eight-pin integrated amplifier. Because the received signal is very
tiny (a few millivolts at 20 to 30 ft), this amplifier is a necessity for dis-
tances greater than 3 or 4 ft. The gain of the amplifier is fixed at 20 but
may be increased to 200 by adding a 10-uF capacitor between pins 1 and
8. This may be needed for longer distances.

The “‘heart” of the receiver is the LM567 tone decoder. When this IC
detects the presence of the 40-kHz tone at its input on pin 3, the output
at pin 8 switches to ground. What’s more, this output pin has the capability
of sinking 100 mA of DC current, making it ideal as a relay driver. The
relay contacts can be connected to a 120-V AC lamp or any other AC or
DC appliance. The relay specified is rated for 125-V AC at 1 A, but higher
current relays could be substituted.

The interface in Fig. 8-7 may appear to provide the ultimate in isola-
tion, but it does have some limitations. The ultrasonic beam produced by the
transmitter is easily blocked by a chair, a couch, or your own body (perhaps
this suggests a use as a burglar alarm?) and it will not penetrate walls or win-
dows. This means that the transmitter and receiver must generally be in the
same room.

Because the circuit described here only transmits an ON or OFF mes-
sage, it is not too practical to have more than one receiver. This is because all
receivers would pick up the same message.

BSR LTD manufactures a complete remote control system that allows
placement of up to 16 separate receivers anywhere in your home. This sys-
tem is similar to the one described here but uses ordinary house wiring to
carry specially encoded messages to all receivers. An excellent article describ-
ing an interface between this system and the Radio Shack Model I TRS-80
is described by Steve Ciarcia, “Computerize a Home,” BYTE, January 1980,
p. 28.

A gimilar system is offered by Mountain Hardware Inc., 300 Harvey
West Blvd., Santa Cruz, CA 95060. Called the INTROL X-10, this unit plugs
into one of the Apple peripheral connectors and allows ON/OFF control of
lights and appliances in your home.

Using the Game I/O Connector

The game I/O connector was discussed in Experiment 7. Figure 7-10 details
the pin connections of this 16-pin socket. Apple refers to the four output
pins (OUTO through OUT3) as annunciator outputs. They provide standard
TTL levels.

110 Experiment 8

Each output can be turned ON or OFF by referencing the appropriate
memory location. Table 8-1 lists the addresses associated with each output.
Note that this technique is quite different from the output ports we have
been discussing. For example, to cause pin 15 (OUTO0) of the game I/O con-
nector to go high, we would use either of the BASIC commands: POKE
49241,Y or Y=PEEK(49241). The state of the RD/WR line is unimportant
(that’s why a PEEK or a POKE command can be used). It is only necessary
to force the appropriate address onto the bus. For the same reason, the
data used in these commands is unimportant (a POKE 49241,1 or a POKE
49241,0 will both cause OUTO to go high).

It should be clear that most of the output interfaces we have been dis-
cussing can be implemented through the game I/O connector. The relay
control circuit in Fig. 8-3, for example, is redrawn in Fig. 8-8 to accommo-
date the game I/O connector. A BASIC program to monitor the magnetic
switch wired to INO and activate the relay at OUTO is

10 HOME

20 POKE 49240,Y :REM MAKE SURE RELAY IS OFF
30 IF PEEK(49249)>127 THEN 20 :REM WAIT FOR OPEN DOOR

40 POKE 49241,Y :REM THIS TURNS ON RELAY

50 END

The main disadvantage to using the annunciator outputs is that only
four lines are provided and it will take four separate commands to define
each line. Compare this to a standard 8-bit output port in which one com-
mand immediately defines all eight lines. Nevertheless, it can be advanta-
geous to use the game I/O connector when it is desired to control single
lines with minimum hardware.

TABLE 8-1 ADDRESSES OF THE FOUR
ANNUNCIATOR OUTPUTS

Qutput
number Condition Address
0 OFF 49240
ON 49241
1 OFF 49242
ON 49243
2 OFF 49244
ON 49245
3 OFF 49246

ON 49247

111

Experiment 8

5V

+5V Game |/O connector =00 @ZzW & =————— o—

1k
7404 3 et 16
1]\‘2 150 2
2 15
l/
3 14
Open 4 13
— 5 12 —
i 6 11
7 10
f 8 g
IC +5V GND
7404 14 7
Game 1 8
1/0

Figure 8-8 Using the game I/O connector to control a mechanical relay.
Four output lines are available at this connector.

PROCEDURE

Step 1. Refer to Fig. 8-3 and wire this circuit on your breadboard. If
you still have the hardware from Experiment 7 in place, remove the light and
temperature sensors but leave the magnetic switch in place. The 8255 wiring
is unchanged. Be sure to wire the relay properly by locating the coil, arm,
and normally closed (NC) and normally open (NO) contacts. Connect the
moving relay arm to +12 V (pin 21 of the socket connector).

Question 8-1. Write a simple program to test this circuit.

Step 2. Connect R2 and the LED to the NC contact and again run the
test program from Question 8-1. Note the difference in operation.

Question 8-2. With the circuit wired as in step 2, must the relay be
ON or OFF to turn on the LED?

112 Experiment 8

Step 3. Refer to Fig. 8-4 and wire this solid-state relay interface and
piezoelectric buzzer to the 8255. The 7404 should already be on your
breadboard.

Question 8-3. The test program used for Question 8-1 will also work
for this circuit. To what should the POKE command be changed?

Step 4. If you still have the magnetic switch interfaced to your com-
puter, write a program to accomplish the following:

1. If the magnets are engaged, turn ON the relay and LED.

2. If the magnets are disengaged, turn OFF the relay and LED but cause
the buzzer to switch on and off rapidly (an alarm condition).

A solution is provided at the end of this experiment.

Note. The following steps involve the ultrasonic interface shown in Fig. 8-7. As
explained in the “Discussion,” optimum performance occurs when the ultrasonic fre-
quency is set to 40 kHz. This requires an oscilloscope, frequency counter, or an accurate
signal generator that can be substituted for the 7404 oscillator,

Step 5. Remove the solid-state and mechanical relay circuits built in
the first four steps. Now add a 7400 to your breadboard and wire the ultra-
sonic transmitter shown in Fig. 8-7. Use two of the extra inverters in the
7404 already on your breadboard.

Step 6. For testing purposes enable this circuit with the following
in the immediate mode:

POKE 49395,137: POKE 49392,1

Now, using whatever means are available to you, adjust R1 until the signal
at pin 3 of the 7400 is 40 kHz.

Note. The ultrasonic receiver in Fig. 8-7 should ideally be built on a second bread-
board located remote to the transmitter. If this is not possible, wire it on your bread-
board together with the transmitter. If you plan to test the circuit beyond distances of
2 to 3 ft, you will have to use the LM386 amplifier. If not, the amplifier can be skipped
and the receiving transducer’s output connected directly to pin 3 of the LM567.

Step 7. With the test program from step 6 holding the transmitter
on, adjust the receiver to 40 kHz by adjusting R4 until the relay clicks on
reliably.

Step 8. You may wish to connect an AC light to the relay, some
other AC device, or the piezoelectric buzzer. Now run the program given in

Experiment 8

the solution to Question 8-1. Some experimentation with the position of the

two transducers is required for best performance.

Step 9. Reread the objectives listed at the beginning of this experi-
ment, If these points are not clear to you, restudy the ‘“Discussion” and

“Procedure’ sections.

Note.

The 8255 portion of this circuit will be used again in Experiment 9.

8-1.

SOLUTIONS TO QUESTIONS

10 HOME

20 POKE 49395,137

:REM INIT PPI, PORTS A,B ARE OUTPUTS,
C AN INPUT

30 INPUT “DO YOU WANT THE RELAY ON OR OFF ";A$
40 IF A$="ON” THEN POKE 49392,1: GOTO 30
50 POKE 49392,0: GOTO 30

8-2, Off

8-3. POKE 49392,2

Step 4 (solution)

10
20
30
40
50
60
70
80
90
500
510
520
530
540
550
560

HOME
POKE 49395,137 :REM INIT PPI
GOSUB 500: IF B(0)=1 THEN POKE 49392,1: GOTO 30

REM SOUND THE ALARM

POKE 49392,2 :REM BUZZER ON
FOR J=1 TO 50: NEXT J :REM WAIT

POKE 49392,0 :REM BUZZER OFF
FOR J=1 TO 50: NEXT J :REM WAIT

GOTO 30

Y=PEEK(49394)

FOR J=7 TO 0 STEP -1

B(J)=1

IF Y-2~J<0 THEN B(J)=0: GOTO 550
Y=Y-2°J

NEXT J

RETURN

EXPERIMENT 9

—— INTERFACING A DIGITAL-TO-ANALOG CONVERTER

Note. You must have a 0-5 V voltmeter to monitor the analog output voltage of
the converter circuit in this experiment.

OVERVIEW

In this experiment you will interface an MC1408 digital-to-analog converter
to the Apple. The circuit will be calibrated to provide a 0- to 4.98-V pro-
grammable power supply in 20-mV steps. BASIC control software will be
developed.

OBJECTIVES
The key points to be learned from this experiment are:

1. A digital-to-analog converter receives a digital word and converts it to a
scaled analog voltage, 0 to 5 V, for example.

2. An n-bit converter will produce voltage steps of size equal to the full-
scale output voltage divided by 2". A typical step size is 20 mV for an
8-bit converter.

3. A digital-to-analog converter is interfaced to a microcomputer through
a normal output port.

4. Because BASIC is very slow, machine language is required when using
the digital-to-analog converter for complex waveform generation (music
or speech, for example). BASIC is adequate for applications such as
real-time control of mechanical devices or a programmable power
supply.

114

Experiment 9 115
PARTS LIST

7404 hex inverter

8255 programmable peripheral interface (Jameco DP8255)
MC1408 (see the text) (Jameco MC1408L8)

LM1458 dual operational amplifier (Radio Shack 276-038)
LED

270-£2 resistor (red-violet-brown)

180-£2 resistor (brown-gray-brown)

1-k§2 resistors (brown-black-red)

10-kS2 potentiometer (pot)

100-pF capacitor

0-5V voltmeter

o N e e e e

DISCUSSION: DIGITAL AND ANALOG OUTPUTS

In Experiments 7 and 8 we discussed digital interfacing techniques. The cir-
cuits in these experiments produced discrete ON/OFF output levels. Input
devices were regarded to switch ON or OFF when they crossed some preset
reference level. In this experiment and the next we do not restrict our inputs
or outputs to these discrete levels. Instead, the whole continuum of values
between 0 V and some full-scale value will be allowed. If we wish to output
3.73 V or 1.02 V, our circuit will be capable of doing it.

How is this accomplished? In this experiment we introduce a new inte-
grated circuit called the digital-to-analog converter or DAC. This IC is cap-
able of accepting an n-bit digital input word and producing an analog output
voltage scaled to the magnitude of this binary word. In Experiment 10 we
will interface an analog-to-digital converter (ADC). With this circuit, an input
voltage (proportional to temperature, light, pressure, etc.) can be converted
to a digital input word and then processed by the computer.

Digital-to-Analog Techniques

Figure 9-1 illustrates a hypothetical DAC. The circuit receives a binary input
that is used to turn on or off a number of weighted voltage sources. A sum-
ming amplifier then adds all inputs to produce the net output voltage. For
example, the circuit in Fig. 9-1 will produce a 5-V output when the input
word is 0101 (the 4-V and 1-V sources are switched on).

The simple DAC in Fig. 9-1 has 4 bits and therefore 16 steps from 0 V
(0000) to 15 V (1111). The size of one step is always equal to the contribu-

116 Experiment 9

DO

D1 2

Summing
Binary

J_—]d'o—-—'ww——
il
{/o—/ww—\—
input . ‘_E?(C__,ww__’_ amp
L
Ic’o—ww—
il

Analog output

D3

Figure 9-1 Hypothetical 4-bit DAC. The four binary inputs control the
four switches. Note that each voltage source is weighted according to its
bit position. Maximum output occurs when the binary input is 1111
and producesa 15-V (1 V + 2V + 4V + 8 V) output.

tion of the least significant bit, 1 V in this case. Knowing the step size, we
can predict the output voltage for any binary input as:

(decimal input value) X (step size) = analog output voltage (9-1)

The full-scale output voltage of the circuit in Fig. 9-1 is 16 V even though
the output can never reach this value! This is because the most significant
bit contributes one-half of full scale, the next bit one-fourth, the next one-
eighth, and so on. An infinite number of bits is required to actually achieve
the full-scale output voltage. For this reason, maximum output is always one
step below full scale.

For an n-bit DAC the full-scale output voltage is

Vs = 2" X step size (9-2)

Example 9-1

For the DAC in Fig. 9-1 determine the full-scale output voltage and output voltage
for a 1111 binary input. Assume a 1-V step size.

Solution Applying Eq. (9-2), we get
Ves=2"X1V=168V

Experiment 9 117

and when the binary inputis 1111 (15,,), we have
Vour=15X1V=15V

Often, the full-scale output voltage can be adjusted with external com-
ponents to whatever value you desire. Then the maximum output voltage
will be one step less than this value. This type of DAC is referred to as a
multiplying digital-to-analog converter.

The MC1408

Figure 9-2 is a data sheet and block diagram of the Motorola MC1408 8-bit
DAC. This IC is available in several varieties. The MC1408 series will operate
from 0 to 75°C, and the MC1508 will operate from - 55 to 125°C (the mili-
tary temperature range). In addition, the MC1408 is subdivided into three
accuracy levels. The MC1408L-8 has 8-bit accuracy, the MC1408L-7 has
7-bit accuracy, and the MC1408-L6 has only 6-bit accuracy.

Unlike the hypothetical DAC in Fig. 9-1, the MC1408 uses a weighted
current switching scheme to produce an output current that is proportional
to the 8-bit binary input. Referring to Fig. 9-2, a 2-mA reference current is
established at pin 14, which becomes the full-scale output current of the
device.

We can rearrange Eq. (9-2) to determine the value of one current step.
Substituting I'zg (full-scale current) for Vys, we obtain

step size = — = ———— = T7.8125 uA

This means that maximum output current will be
255 (11111111) X 7.8125 puA =1.992 mA

The absolute accuracy of these values depends on the part used and the
stability of the reference current. An MC1408L-6 will be accurate to 1 part
in128 (+£0.78%). The MC1408L-8 will be accurate to 1 part in 512 (£0.19%).
These numbers represent an accuracy to i% a least significant bit.

The transfer characteristics in Fig. 9-2 illustrate the output current
versus binary input. Note that a binary input of 128 (10000000) will provide
an output current of 128 X 7.8125 pA =1 mA or half of full scale (128 is
half of the 256 possible steps).

Interfacing the MC1408 to the Apple

When interfacing the MC1408 DAC to the Apple, three requirements must
be met.

1. An 8-bit output port must be provided. The MC1408 has no internal
latches to save the input binary word.

ORDERING INFORMATION

Device Temperature Range Package
MC1408L6 0°C to +75°C Ceramic DIP
MC1408L7 0°C to +75°C Ceramic DIP
MC1408L8 0°C to +75°C Ceramic DIP
MC1408P6 0°C to +75°C Plastic DIP
MC1408P7 0°C to +75°C Plastic DIP
MC1408P8 0°C to +75°C Plastic DIP
MC1508L8 -55°C to +125°C Ceramic DIP

Specifications and Applications
Information

MC1408
MC1508

EIGHT-BIT MULTIPLYING
DIGITAL-TO-ANALOG CONVERTER
designed for use where the output current is a linear product
of an eight-bit digital word and an analog input voltage.
® Eight-Bit Accuracy Available in Both Temperature Ranges

Relative Accuracy: +0.19% Error maximum
{MC1408L8, MC1408P8, MC1508L8)

® Seven and Six-Bit Accuracy Available with MC1408 Designated
by 7 or 6 Suffix after Package Suffix

® Fast Settling Time — 300 ns typical

© Noninverting Digital Inputs are MTTL and
CMOS Compatible

® Qutput Voltage Swing — +0.4 V 10 -5.0V
e High-Speed Multiplying Input
Slew Rate 4.0 mA/us
® Standard Supply Voltages: +5.0V and
-50Vio-15V

EIGHT-BIT MULTIPLYING
DIGITAL-TO-ANALOG
CONVERTER

SILICON MONOLITHIC
INTEGRATED CIRCUIT

L SUFFIX
CERAMIC PACKAGE
CASE 620 g

P SUFFIX
PLASTIC PACKAGE
CASE 648

FIGURE 1 - D-10-:A TRANSFER CHARACTERISTICS

FIGURE 2 - BLOCK DIAGRAM

1g. OUTPUT CURRENT (ma)

(00000000)

(ARERERRRY]
INPUT DIGITAL WORD

mance |2 ¢
conTROL

21D A2Q A0 A4

1 o—

013
Yec
|

16
COMPEN

Source Pau

TYPICAL APPLICATIONS

® Tracking A-to-D Converters

® Successive Approximation A-to-D Converters
® 2 1/2 Digit Panel Meters and DVM's

® Waveform Synthesis

e Sample and Hold

® Peak Detector

® Programmable Gain and Attenuation

® CRT Character Generation

Audio Digitizing and Decoding
Programmable Power Supplies
Analog-Digital Multiplication
Digital-Digital Multiplication
Analog-Digital Diaision

Digital Addition and Subtraction
Speech Compression ard Expansion
Stepping Motor Drive

118

Figure 9-2 Block diagram and transfer curves for the MC1408 DAC.
(Courtesy of Motorola Semiconductor Products Division.)

Experiment 9 119

2. A 2-mA reference current must be applied to pin 14 of the DAC. This
current determines absolute accuracy and stability of the interface.

3. A current-to-voltage converter circuit must be used on the DAC output
if an output voltage is desired instead of current.

A circuit that accomplishes these requirements is shown in Fig. 9-3.
Note the following about this circuit:

1. The 8255 is programmed to make port A an output. Data sent to this
port will be converted to a weighted current by the DAC.

2. The 2-mA reference current is established by the R1R2 voltage divider,
which develops 2 V (180 £2/(180 £2 + 270 £2) X 5 V) on pin 6 of the
LM1458. This op-amp is used as a voltage follower passing the 2 V to
R3, which establishes the 2 mA (2 V/1 k£2).

3. The other half of the LM1458 provides the current-to-voltage con-
version. Output current, I,, flows through R4, which can be adjusted
to yield any desired full-scale output voltage within the saturation
limits of the op-amp.

Example 9-2
What value should R4 be adjusted to if full-scale output is to be 5.0 V?
Solution Because the full-scale output current is 2.0 mA, R4 =5V/2 mA =25
ke2.

Example 9-3

What is the maximum output voltage for the circuit in Fig. 9-37 Assume that
VFS =5.0 V.

Solution Apply Eq. (9-2) to determine the step size:
Vi
step size = —— =——— = 19.53 mV

Then when the binary output is 11111111 (255,,),
Vout(max) = 255 X 19.53 mV =4.98V

The results of Examples 9-2 and 9-3 indicate that, under computer con-
trol, we should be able to adjust the output voltage of the circuit in Fig. 9-3
to any voltage between 0 and 4.98 V in approximately 20-mV steps.

DAC Software

Controlling the DAC in Fig. 9-3 from BASIC is extremely simple. The only
requirement is that the desired binary value be output to port A of the 8255.

0zt

+5V
L 5 R1=2708
PAQ Al
DO @L 34 4 12 | BTN . L "
" D1 5L_PAl A2| M R3=1kQ
[23>——=
D2 2 PA2 A3 10 c 15 1/2 1458
R2= 2
D2 32 ,[_pa3 A4l I RE =1k | 180¢
D3 [25)———31 PA4 —
D4 40 5l .]
D4 [26) 30 PAS AB 0 g —
39 7 4
o 05 | agl__PAS A7l 8 i ‘IUP pF R4 =10 k02
[- 3|__PA7 A8l o =
D6 28 1 2
D7
D7 27 W 9
8
9 -] 8 2 b——o0+ Analog output
-12V
5 Part B | _
5 (not used) — L 12 1458 _I
e Power Connections
7 ic | +5v | -12v | GND | +12V
7404 | 14 7
8255 | 26 7,35
[PartC 1408 | 13 3 1,2
{not used) 1458 7 14
-
6
CS

Figure 9-3 Eight-bit DAC interface to the Apple. Port A of the 8255 is pro-
grammed as an output port and the MC1408 converts the binary output word to
an analog voltage. The LM1458 op-amp serves as a voltage-to-current converter
and 2-mA voltage-follower reference circuit.

Experiment 9 121

For example, to output 2.5 V, the binary code 10000000 (128,,) should be
output.

10 POKE 49395,137 :REM INIT PPI, A,B=0OUTPUTS, C=INPUT
20 POKE 49392,128 :REM THIS IS PORT A
30 END

The DAC circuit in Fig. 9-3 must be calibrated before it can produce
accurate output voltages. This can be accomplished by running the test pro-
gram just given and adjusting R4 until V,,,=2.50V.

It is also very important that the reference current be exactly 2 mA for
absolute accuracy. This is established by the voltage-follower circuit con-
nected to pin 14 of the DAC. If the value of either resistor R1 or R2 is in-
correct, or the 5-V source is not exactly 5V, errors will occur. Although the
reference in Fig. 9-3 is suitable for our testing purposes, more stable pre-
cision references should probably be considered for serious applications.

Example 9-4

Develop a general formula that can be applied to the circuit in Fig. 9-3 to deter-
mine the proper binary code for any desired output voltage between 0 and 4.98 V.
What code should be used to output 3.65 V?

Solution We need only determine what fraction of the full-scale output is desired
and then scale this result to a number between 0 and 255.

Yow X
50V 256

where X is the unknown code. Solving for X yields

- Vout
D 50V X 256

Now, to produce 3.65V,

3.65V
5.0V

A POKE 49392,187 should be used.

X= X 256 = 186.88

One limitation to the circuit in Fig. 9-3 is that the output current is
limited to 20 to 25 mA by the op-amp. This current capability can be in-
creased fairly simply by the addition of a “pass transistor,” as shown in Fig.
9-4. Operation is identical to Fig. 9-3, but the load current will now pass
through @1 instead of the op-amp. Suitable heat sinking for Q1 will allow
currents in excess of 1A.

122

Experiment 9

vt oH2v

—0 +
Analog output

MC1408

:]
R4S

Figure 9-4 This addition to the circuit in Fig. 9-3 increases the current
capabilities to several hundred milliamperes or more, depending on the
transistor used and heat sinking (if any).

Other DACs

When designing a digital-to-analog interface circuit, several considerations
should be made. Among these are:

1.

Bits of resolution. DACs are commonly available with 8 to 12 bits.
The more bits the converter has, the smaller the step size and the
greater the resolution.

Internal reference. All DACs require a stable reference current or
voltage. On most this must be supplied externally adding cost and com-
plexity to the design.

Internal buffering. Unless the DAC has an internal buffer (latch), one
must be designed into the system. Converters with greater than 8 bits
require double buffering.

. Settling time. This is the time required for the output voltage to settle

and remain around the final value. This in turn indicates how rapidly
the digital input may vary.

. Linearity. This defines the deviation from the straight-line transfer char-

acteristic shown in Fig. 9-2. This is often expressed as a percentage or
fraction of a least significant bit (+3 LSB equals -5 or 0.19% for an
8-bit converter, for example).

Internal amplifier. The output of most DACs is a current that must be
converted to a voltage. If this conversion is not provided internally, it
also must be designed into the system.

Table 9-1 presents a summary of this information for several commonly

available DACs.

1Al

TABLE 9-1 EXAMPLES OF COMMERCIALLY AVAILABLE 8-, 10-, AND 12-BIT DACs

Settling
Part Resolution Linearity time Internal Internal Internal DIP
number (bits) Manufacturer Supplies (%) (ns) ref, buffer amp. pins
DACO0800 8 National +4.5to+18V +0.19 100 No No No 16
Semiconductor
MC1408L8 8 Motorola +5V,-16V +0.19 300 No No No 16
MC1408L7 8 Motorola +5V,-15V +0.39 300 No No No 16
MC3410 10 Motorola +HV,-15V +0.06 250 No No No 16
DAC1000 10 National +5to 15V +0.05 500 No Yes No 24
Semiconductor
DAC-02 10 Precision 15V +0.1 1500 Yes No Yes 18
Monolithics
DAC1200 12 National #15V,6V +0.012 1500 Yes No Yes 24
Semiconductor
AD563 12 Analog Devices +5Vtol15V,-16V £0.012 1200 Yes No No 24

124 Experiment 9

PROCEDURE

Step 1. Refer to Fig. 9-3 and if you have not already done so, wire
the 8255 and 7404 inverter on your breadboard.

Step 2. You can make sure that this portion of the interface circuit
works by wiring the simple logic-level indicator circuit shown in Fig. 9-5.
Touch its input to the port A outputs of the 8255 and run the following
program with N=0 and then 255.

10 HOME: POKE 49395,137 :REM INIT PPI

20 N=0

30 POKE 49392,N :REM OUTPUT N TO PORT A
40 END

Question 9-1. What should you see with the logic-level indicator for
these two values of N?

Step 3. When your hardware passes the test in step 2, continue wir-
ing the circuit in Fig. 9-3 by adding the MC1408 and LM1458 op-amp.
Connect -12 V (pin 30 of the socket connector) to pin 3 of the MC1408
and pin 7 of the LM1458. Connect +5 V to pin 13 of the MC1408 and
+12 V (pin 21 of the socket connector) to pin 14 of the LM1458.

Step 4. Calibrate the DAC by following the test procedure given
under “DAC Software” in the ‘““Discussion” section.

Question 9-2. Test the interface by running the calibration program
from step 4 with line 20 changed so that you output 24,,, 97,4, 1635, and
237,,. What output voltage do you measure for each of these values?

Step 5. Write a program to make the output voltage ramp from 0 to
+5 V, dropping abruptly back to 0V, and repeating this cycle. This program
should generate a sawtooth waveform.

Question 9-3. Modify the program in step 5 to produce a triangular
waveform. The output should ramp from 0 to +5 V and back down to 0 V.

Question 9-4. What is the period of the triangular waveform gener-
ated in Question 9-27 Is it realistic to use a BASIC control program for
music generation?

Step 6. Develop a BASIC program that will make the DAC perform
as a programmable power supply. The Apple should prompt you for an

/,/\/ Figure 9-5 Simple logic-level tester
using one of the spare inverters in

3 4 1809 +5y the 7404. Alogic 1 on pin 3 will
turn ON the LED, a 0 will turn it

7404 OFF.

Experiment 9 125

output voltage between 0 and 4.98 V and then determine the proper deci-
mal code to output to the DAC to produce that voltage. (Hint: Study Ex-
ample 9-4 for a general formula that can be used to calculate the proper
code. Also note that the computer will fruncate noninteger results, so you
may want to compensate for this in your program.) A solution is provided at
the end of this experiment.

Step 7. Reread the objectives listed at the beginning of this experi-
ment. If these points are not clear to you, restudy the ‘“Discussion” and
“Procedure” sections.

Note. The 8255 will not be used in Experiment 10.

SOLUTIONS TO QUESTIONS

9-1. N=0; all outputs are low (LED OFF at each pin). N=255; all outputs are high (LED
ON at each pin).

9-2. 047V,1.89V,3.18V,463V
9-3. One possible solution:

10 POKE 49395,137 :REM INIT PPI

20 FOR J=0 TO 255 :REM RAMP UP

30 POKE 49392,J

40 NEXT J

50 FOR J=254 TO 1 STEP -1 :REM RAMP DOWN
60 POKE 49392,J

70 NEXT J

80 GOTO 20

9-4. On the Apple II the period is approximately 3 s (0.3 Hz). Because BASIC takes so
long to interpret one program line, it is not practical to generate music with this
technique.

Step 6 (solution)

10 HOME
20 POKE 49395,137 :REM INIT PPI
30 VTAB(1)

40 INPUT “ENTER OUTPUT VOLTAGE (0-4.98V): "}V

50 IF V>>4.98 OR V<0 THEN 30

60 V1=(V/5)%256 :REM SCALE V (0-255)

70 V2=INT(V1) :REM FIND INTEGER VALUE
80 IF V1-V2>=5 THEN V2=V2+1 :REM ROUND OFF

90 POKE 49392,V2 :REM OUTPUT VALUE

100 VTAB(10): PRINT “VOUT= ";V;* VOLTS ”
110 VTAB(12): PRINT “DECIMAL CODE= ”;V2;¢
120 GOTO 30

EXPERIMENT 10

— INTERFACING AN ANALOG-TO-DIGITAL CONVERTER ——

OVERVIEW

In this experiment you will interface the National Semiconductor ADC0809
analog-to-digital converter to the Apple. An eight-channel digital voltmeter
will be programmed. A BASIC program to convert the Apple into a storage
oscilloscope using high-resolution graphics is given.

OBJECTIVES
The key points to be learned from this experiment are:

1. An analog-to-digital converter is used to convert an analog input voltage
to an n-bit digital word.

2. One common conversion technique is to use a digital-to-analog con-
verter in a feedback loop with a digital counter or computer.

3. Two methods for controlling this analog-to-digital converter result in
the successive approximations and tracking converter designs.

4. Fully integrated data acquisition ICs are readily available and may
easily be interfaced to the Apple computer.

PARTS LIST

1 7402 quad two-input NOR gate
1 7404 hex inverter

126

Experiment 10 127

[

LM1458 dual operational amplifier (Radio Shack 276-038)

ADCO0809 8-channel analog-to-digital converter
(Jameco ADCO809CCN)

LM334 temperature sensor (Radio Shack 276-1734)
6.2-V zener diode (optional, see text)

220-82 resistor (red-red-brown)

1-k{2 resistors (brown-black-red)

10-k£2 resistor (brown-black-orange)

330-k{2 resistor (orange-orange-yellow)

10-k$2 potentiometer (pot)

50-k$2 potentiometer (pot)

680-pF capacitor

10-uF capacitors

[

DO = e e O e

DISCUSSION: CONVERTING AN ANALOG VOLTAGE
TO A DIGITAL INPUT

This experiment will explore the other half of analog interfacing begun in
Experiment 9: namely, interfacing an analog input voltage to the Apple.
Experiment 7 has already shown how non-TTL level signals may be inter-
faced, but these voltages were of an ON/OFF nature. In this experiment the
input voltage will be allowed to have any value between 0 V and some full-
scale value.

The circuit required to do this conversion is called an analog-to-digital
converter, or ADC. A block diagram of a typical converter interface is shown
in Fig. 10-1. The ADC receives an input voltage which must be between 0 V
and its full-scale value (established by Vygr) and converts this voltage to
an n-bit digital word (8 bits in this example). A select pulse is then used
to enable the tri-state gates of an input port and gate the data into the
computer.

Much of the terminology associated with the digital-to-analog converter
(DAC) also relates to the ADC. For example, an n-bit ADC will only recog-
nize discrete steps of the input voltage. If n =4, there will be 16 unique
digital words that can be input from the ADC, representing 16 possible
values of the input voltage.

Example 10-1

Refer to the ADC interface in Fig. 10-1 and determine the step size and digital
output for a 1.25-V input. Assume that full-scale voltage is 5.0 V.

128 Experiment 10

Vher

7

P

Vin A Apple
— 3 D4 [databus
D5
D6
:(o Figure 10-1 Simplified block dia-
gram of an ADC interface. In real-
2 ity, most ADCs must be ‘““told to
make a conversion” before the
digital equivalent of the input volt-
INPORT from port decoder and control bus age is available to the computer,

Solution The concept of step size is identical to that encountered with the DAC
in Experiment 9. Using Eq. (9-2),

Ves 5.0V
=227 1053 mV
T

step size =

If the input voltage is 1.25 V, the binary output will be

1.26V
50V

X 256 = 64,, = 01000000

As this example points out, the ADC is basically treated as a DAC
in reverse. You can also see that the full-scale voltage is very critical in
determining the range of input voltages and resulting binary output word.
For some ADCs this value is preset; for others it may be adjustable with a
potentiometer.

One last difference between the DAC and ADC should be pointed out.
The DAC produces a steady output voltage as long as its binary input is
unchanging. The ADC must generally be told to convert its present analog
input to digital. This is referred to as a conversion. On some ADC circuits
this conversion may take several milliseconds; on others it may take only

Experiment 10 129

tens of microseconds. The point is that the ADC does not do this conversion
on its own; it must be told to do so by external hardware or software.

The Flash Converter

Perhaps the simplest way to visualize an analog-to-digital converter is the so-
called ““flash” converter shown in Fig. 10-2. In this circuit three analog com-
parators compare the input voltage against each possible step value. The
output of a comparator is high when Vj, is greater than the step value and
low when less than this value. A logic gate array is needed to convert the
comparator outputs to the standard 1-2-4-8 binary code.

The circuit in Fig. 10-2 is extremely simple because it only provides a
2-bit digital word, but it does illustrate the concept. A major advantage to
this type of ADC is the conversion speed, which is limited only by the propa-
gation delays of the comparators and logic gates. This may result in conver-
sion times of less than 1 us.

Of course, a 2-bit ADC is not too practical! With 4 V full scale, each
step must be 1 V (4 V/22). If the circuit is expanded to 8 bits, 256 different
voltage levels must be detected and 255 comparators will be needed (none is
needed for the 0-V step). This is the major disadvantage of this technique. An
n-bit converter will require 2" - 1 comparators. And although the tech-
nology does exist to put 255 (or more) comparators on a single piece of

Logic gate array |
i
- Do
|
|

v

|

7 |

N |

(0-4v) & . |
v | |

|

D1

1y

Figure 10-2 Two-bit *‘flash” converter. The three comparators detect
the three possible steps: 1 V, 2 V, and 3 V. The logic gates convert the
comparator outputs to standard binary code.

130 Experiment 10

silicon, the cost may be prohibitive. Nevertheless, when high speed is needed,
flash converters may offer the only alternative.

The Tracking ADC

The tracking ADC uses a more roundabout technique than the straight-
forward flash converter. With this technique a DAC is used to output a
known voltage. This voltage is compared against the unknown input voltage
and the binary code sent to the DAC adjusted up or down as necessary. The
DAC output eventually converges on the input voltage with its binary input
corresponding to the input voltage. Figure 10-3 illustrates the technique.

The computer program controlling the DAC makes an initial guess at
the value of Vymown by outputting a binary code to the DAC. The DAC
converts this to a voltage that is compared by the analog comparator against
Visnown- As Fig. 10-3 illustrates, if the comparator output is high, the pro-
gram’s guess was too big; if low, it was too small. By connecting the com-
parator output to an input port, the control program can tell if the current
guess needs to be adjusted up or down.

This type of interface is called a tracking analog-to-digital converter and
can be built with relatively inexpensive components. As you might imagine,
it is rather slow and also ties up the computer while making the conversion
process. The computer can be taken out of the loop by using the comparator
output to control the up/down-counting direction of a binary counter. This
is illustrated in Fig. 10-4.

+5V
[po
D1
D2
& D3
fg:::::!";%l::m D4 gg'é T;czr[np:rter
= git go [
D6
D7 Comparator
1= Vgyr is too big

0 - Vgt is too small

VUNKNDWN

Figure 10-3 Eight-bit ADC suitable for computer control. The unknown
input voltage is compared against the DAC’s output voltage and the 8-bit
output word adjusted up or down until V¢ and Vypinown converge.

Experiment 10 131

Clock

1kQ2

8-bit Vour)
DAC -

8-bit up/down
counter

N oo lalwin|l—= O

Comparator

UP/DOWN

v UNKNOWN

Figure 10-4 Tracking ADC. No computer control is necessary, as the
comparator output is used to control the counting direction of an
up/down hinary counter.

Successive Approximations

The tracking method of analog-to-digital conversion is not really too “smart.”
It is analogous to a number-guessing game. You must determine a number
your opponent is thinking of by asking if a certain number (your guess) is
too high or too low. If the range of values is 0 to 255, the tracking technique
has us first guess 128 and then 129 and 130 and 131 and so on until finally
arriving at the correct number. A worst-case scenario has us just finding 255
to be the answer, when the input suddenly switches to 0. It will now take
255 more guesses to find this new value! Therefore, in addition to being
slow, the tracking ADC has a hard time following analog signals that change
value rapidly between extremes.

Continuing with the guessing-game analogy, we might try to come up
with a better “‘guessing algorithm.”” Assuming an 8-bit ADC:

As a first guess, turn on the most significant bit, 128 in this case.

If this guess is too big, turn off this bit; if not, leave it on.

Now turn on the next most significant bit, 64 in this case.

Repeat this process until all 8 bits have been tested and one conversion
is complete.

o

132 Experiment 10

Start
SAR
Clock
e — BUSY/READY 0
+5V
DAC

Comparator

v UNKNOWN

Figure 10-5 Successive approximation ADC circuit. This circuit con-
verges on the proper digital output word much faster than the tracking
design.

The advantage to this technique, called successive approximations, is
that only n tests are needed for an n-bit word compared to 2" - 1 (worst
case) for the tracking method.

Don’t think a computer must be used for this technique either. Figure
10-5 illustrates the use of an SAR (successive approximation register) to-
gether with a DAC and analog comparator. The SAR can be thought of as
a special type of digital counter that follows the algorithm just presented.

Interfacing the ADC0809 to the Apple

It seems to be true in most digital designs today that if you look hard
enough, you can find a single IC to accomplish your design goal. The
ADCO0809 is National Semiconductor’s answer to the analog data acquisition
problem. Among its features are:

1. Eight separate inputs

2. Internal SAR, DAC, and comparator

3. Tri-state outputs to facilitate microcomputer interfacing
4. Typical conversion time of 100 us

Experiment 10 133

TRISSTATE' is a registered trademark of National Semiconductor Corp.

Block Diagram START cLock
- e am 1
9 | END OF CONVERSION
—t I CONTAOL & TIMING (INTERRUPT)
= | |
O—— 8 CHANNELS I :
8 ANALOG INPUTS — N N
o—| SWITCHES SAR ; '
—a
o—
: COMPARATOR ; = —0
" Lo
9 | sTate? Lo
oureur [0 81T OUTRUTS
o— | LATCH
e | | BUFFER [~ ©
g L LR
| SWITCH TREE I
Fis | | |
|
3-BIT ADDRESS 4 O—— |
o ADDRESS S -'I ﬁ |
L LATCH | I
AND
ADDRESS oo yecopen |
RATCHENABLE 256R RESISTOR LADDER
| |
ver GND REF(D REF(-) OUTPUT

ENABLE

Figure 10-6 Block diagram of the ADCO0809 eight-channel analog-to-digital con-
verter. (Courtesy of National Semiconductor.)

Figure 10-6 is a block diagram of this chip. The three address lines
allow selection of one of the eight input channels. The conversion process
begins by applying an active high pulse (100 to 200 ns) to the start input.
The DAC is made up of the switch tree and 256R resistor ladder. This re-
sistor network acts as a voltage divider controlled by the SAR. The com-
parator compares the switch tree output with the input voltage and the
result is applied to the SAR. The typical time for convergence on the proper
binary code is 100 us. The 8-bit output can be connected directly to a micro-
computer data bus and the output enable pin pulsed by an input port enable
pulse.

Figure 10-7 illustrates an interface between this chip and the Apple
computer. Note the following about this interface:

1. The chip is interfaced directly to the Apple address, data, and control
buses; a programmable I/O chip (such as the 8255) is not required.

2. The chip occupies eight addresses corresponding to DEV7 low and the
eight combinations of AO through A2. These addresses are 49392
through 49399. Because A3 is not decoded, the circuit will also re-
spond to the address range 49400 through 49407.

1/2 LM1458

+12V
EOC _L 6.2 V loptional)
+
10 uF
| Ve VREF - T O
7 11 12 f— — = =
oo [22)>——17
D1 @_ 14
D2 ‘ 15
IC +12V 45V GND
D4 -— 18
[26) 7402 14 7
os [27) 19 7404 14 7
D6 ._ 20 5 ADCO809 . 13,16
o7 21 5 Lm1ase | 14| 7
c * Refer to the "Discussion’
AD D 25 0 and "'Procedure," step 1.
Al 24 8
A2 [15—— 23 0
9
Channel 0 26
1 27
2 8 Clock
3 1 10
4 2 1k$2 1 k2
—AAA—
5 3
5 . 7404 7404
1 3 5
7 5 |
6 22 9 16 13 2 D 4 D 6
J OE L
STRT 1T
ALE 680 pF
_ 2
R/W |38 i
3 =i
B |
DEV Y7 8 -VREF

Figure 10-7 Analog-to-digital converter interface to the Apple computer. The

ADCO0809 provides eight separate analog inputs and occupies eight consecutive
memory locations.

134

Experiment 10 135

3. The conversion is begun by POKING the address corresponding to the
analog input channel we wish to convert. For example, input 2 maps to
address 49394,

4. After 100 us, the 8-bit binary equivalent of this channel is available and
can be input by PEEKING any address that causes DEVT to be low.

5. The clock signal is generated by the 7404 oscillator circuit shown. The
clock frequency is approximately 500 kHz.

6. Vgyger establishes the full-scale input of the ADC. By adjusting this to
5.0 V, one step will equal 19.53 mV (5.0 V/256). The manufacturer
recommends that Vggp and Ve be matched in this configuration.

Example 10-2

Write a BASIC program to monitor input channel 0 and continually output the
voltage value to the Apple screen,

Solution Channel 0 corresponds to address 49392 in Fig. 10-7. One possible
program is

10 HOME
20 POKE 49392,Y :REM CONVERT CHANNEL 0

30 VTAB(12):HTAB(8)
40 V=(PEEK(49392)/256)*5 REM SCALE TO 5V
50 PRINT “ CHANNEL 0 = ;V;* VOLTS"

60 GOTO 20

PROCEDURE

Step 1. Refer to the Apple ADC interface circuit in Fig, 10-7. Begin
wiring this circuit by constructing the 5.0-V Vzgr and Vi supply circuit. If
desired, the 6.2-V general-purpose zener diode may be omitted, or, for
accurate work, replaced by a precision temperature-compensated zener diode
such as the LM329B (6.9 V). In either case, R1 should be adjusted until the
LM1458 output is 5.0 V.

Step 2. Continue wiring the remainder of the circuit, taking normal
precautions when handling the ADC0809 MOS device.

Question 10-1. What BASIC command should be given to begin a
conversion of the voltage applied to input channel 0?

Note. Because BASIC takes so long to interpret and execute one program line,
there is no need to monitor the ADC0809’s EOC (end of conversion) output. We can
assume that the input voltage has been converted by the time the next program line
occurs. If the ADC is controlled with machine language, the EOC output must be
monitored.

136 Experiment 10
P +5 V

10 k§2
Vour (05 V)

IOHF

J__ Figure 10-8 Simple 0to 5V test volt-
— — age for the circuit in Fig. 10-7,

Step 3. The following program converts the Apple into a digital
voltmeter. The simple circuit in Fig. 10-8 can be used to supply a test voltage
to the ADC. With a test voltage applied to pin 26 (INO), run the following
program.

10 HOME
20 POKE 49392,Y :REM CONVERT CHANNEL 0
30 V=(PEEK(49392)/256)*5 :REM SCALE TO 5V

40 VTAB(12): HTAB(18)
50 PRINT V; ¢ VOLTS &
60 GOTO 20

Question 10-2. The program in step 3 displays eight digits of accuracy
to the right of the decimal point. This is misleading because the ADC step
size is only 0.02 V. Change the program in step 3 so that only two digits to
the right of the decimal point are displayed.

Step 4. The ADCO0809 has the capability of monitoring eight separate
analog inputs. Write a program to monitor the eight input channels con-
tinuously and display their values on the screen. A solution is provided at the
end of this experiment.

Note. When running this program, be sure that all eight input channels are con-
nected to some voltage between 0 and 5 V.

Note. The ADC circuit and software developed could now be used to monitor
eight analog sensors displaying their values on the CRT screen. In the next step we will
use the LM 334 femperature sensor used in Experiment 7. The interface circuit is shown
in Fig. 10-9. By connecting the 220-£2 resistor as shown, only two wires need be run back
to the computer. Also note that the distance between the computer and the sensor can be
almost any length without affecting the accuracy (the sensor provides a constant current
dependent only on temperature). The output voltage across the 10-kS2 resistor will vary
10 mV/°K and at room temperature (70°F), the output voltage should be 2.94 V
(294°K). We can convert this voltage to °F as follows:

F= (((VX 100) - 273) X %) +32

Experiment 10 137

LM334
{front)

]

2209 10 k2

f To pin 26 of the ADC (channel 0)

10 uF

s

o +5V

DR

Long distance

Figure 10-9 The LM334 temperature sensor provides an output voltage
that can be converted to degrees Kelvin, Celsius, or Fahrenheit. By con-
necting the 220-£) resistor as shown, only two leads are needed for the
interface,

Step 5. Connect the LM334 temperature sensor circuit shown in
Fig. 10-9 to channel 0 of the ADC. Now change the program given in step 3
as follows:

38 T=INT(((V*100)-273)%1.8)+32
40 VTAB(12): HTAB(11)

50 PRINT “T = ;T;* DEGREES”
60 GOTO 20

Note. Be careful when interpreting the accuracy of this program. The LM334 out-
put changes 10 mV/°K and the ADC can resolve a 20-mV change. This means that a
change of two Kelvin degrees (or 3.6 Fahrenheit degrees) is required before the ADC can
detect it. In addition, the accuracy of the LM334 is about +3%, making the temperature
display accurate to only 5 to 10°F.

Step 6. The following program uses the high-resolution graphics of
the Apple to create a graph of voltage versus time. When you run this pro-
gram, note the following:

1. The screen format is 160 vertical by 280 horizontal.

2. The horizontal scale is in relative time units requested in line 40.
Replying 1 to this input will sweep the screen in about 13 s. A reply
of 800 will result in approximately one sample each second and sweep
the screen in about 5 minutes.

138

Experiment 10

3. The program pauses briefly in line 50 to allow you to set up the input

Note.

voltage. A beep signifies that the sampling has begun.

A particularly good demonstration can be obtained by monitoring the volt-

age across a capacitor as shown in Fig. 10-10. Use T =100 for the sampling interval. The
characteristic exponential charging curve will be displayed.

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210

HOME : VTAB(12)
INPUT “WHICH CHANNEL (0-7) ”’;C
PRINT

INPUT “TIME BETWEEN SAMPLES ;T

FOR I=1 TO 1000: NEXT I

PRINT CHRS$(7)

HGR

HPLOT 0,159 TO 279,159

X=0

VTAB(21)

PRINT “CHANNEL = ;C
VTAB(23)

PRINT “SAMPLE INTERVAL = ;T
POKE 49392+C,0

Y=(PEEK(49392)/256) * 160
Y=160-Y
HPLOT X,Y
FOR I=1 TO T: NEXTI
X=X+1
IF X=280 THEN END
GOTO 140
+5V
330 kQ
Channel 0 of ADC
4
10 uF
Step 7.

:REM PAUSE FOR SETUP
:REM BEEP!

:REM GO TO GRAPHICS
:REM DRAW AXES

:REM X=HORIZ POSIT
:REM TEXT IS VISIBLE

:REM BEGIN CONVERSION
:REM Y=VERTICAL POSITION
:REM INVERT Y VALUE
:REM PLOT THE POINT

‘REM SAMPLE INTERVAL
:REM NEXT HORIZ

Figure 10-10 Circuit used to test the
graphics mode of the ADC interface
and program in step 6.

Reread the objectives listed at the beginning of this experi-

ment. If these points are not clear to you; restudy the “Discussion’” and
“Procedure” sections.

Experiment 10

139

SOLUTIONS TO QUESTIONS

10-1. POKE 49392,Y
10-2. Add the following lines:

35 V1=100*V
36 IF V1-INT(V1)>=.5 THEN V1=V1+1
37 V=(INT(V1))/100

Step 4 (solution)

10
20
30
40
50
60
70
80
90
500
510
520
530

HOME

FOR J=0 TO 7 :REM J=CHANNEL SELECTOR
POKE 49392+J,0 :REM CONVERT CHANNEL J
V=(PEEK(49392+J)/256) *5 :REM SCALE TO 5V

GOSUB 500

VTAB(2+3*J): HTAB(9)

PRINT “CHANNEL ”;J;* = ";V;* VOLTS

NEXT J

GOTO 20

V1=100*V

IF V1-INT(V1)>=.5 THEN V1=V1+1

V=(INT(V1))/100

RETURN

EXPERIMENT 11

HANDSHAKING I/O

OVERVIEW

In this experiment you will program the 8255 to operate in mode 1 (strobed
input/output). A DIP switch, 74100 latch, and seven-segment display will be
interfaced and used to simulate a strobed I/O device. A software seven-
segment decoder will be described and tested.

OBJECTIVES
The key points to be learned from this experiment are:

1. With unconditional 1/O, the microcomputer outputs or inputs data
from its peripherals without regard for their BUSY/READY status.

2. Conditional 1/O requires the computer to monitor the BUSY/READY
status flag of the I/O device. This is done using either a polled or an
interrupt-driven technique.

3. Polling is simplest to accomplish, but is slow and inefficient compared
to interrupt-driven techniques.

4. When operating in mode 1, the 8255 provides several status indicators
and strobe inputs that facilitate a handshaking I/O interface.

PARTS LIST

1 8255 programmable peripheral interface (Jameco DP8255)
1 7404 hex inverter

140

Experiment 11 141

74100 8-bit latch
seven-segment display DL707 (Radio Shack 276-053)
8-position DIP switch (Radio Shack 275-1301)
68-L2 resistor (blue-gray-black)
180-82 resistors (brown-gray-brown)
0 1-k2 resistors (brown-black-red)
pushbutton normally open (PBNO) switches
red LED
green LED

= DD R e e

b

DISCUSSION: CONDITIONAL VERSUS UNCONDITIONAL 1/O

All the interfacing problems considered to this point have involved uncondi-
tional 1/O. The input or output device is assumed ready to accept or output
data unconditionally. This technique is fine for fast peripherals or cases
where the operator must be queried from the keyboard before the program
continues.

But what about a device like an electronic printer? This electrome-
chanical peripheral requires a finite length of time to print each character it
is sent by the microcomputer. For example, an ASR-33 teletype prints at a
rate of one character each 100 ms. Yet the microcomputer may be capable
of outputting data at a rate as fast as one character every 10 us (0.01 ms).
This is obviously much faster than the printer can handle. Data will be lost
unless some means of synchronizing the microcomputer to the much slower
printer is found.

One common method is to require the peripheral to supply a BUSY/
READY flag that can be read by the microcomputer. In this way, data will
still flow between the computer and peripheral, but conditionally. The con-
dition being that the status flag must indicate READY. Figure 11-1 sum-
marizes these two basic types of I/O.

Polled I/O

A logical question to ask at this point is: How does the computer know
when this READY flag is set? In other words, how does it know when the
peripheral is ready? The most common technique is to establish a status port
that the microcomputer can poll periodically.

Figure 11-2 illustrates the bit assignments for a typical status port. This
particular port monitors three READY flags, but as many as eight could be
monitored from a single port. The microcomputer checks to see (poll) if any
of its I/O devices have data or can accept data by testing each bit individu-

142 Experiment 11

(Start) (Start)

&

Perform Perform
calculations calculations
Y
Qutput
the result Is
output device Wait
ready
Input
the response
Qutput
the result
(a) e
Does
input device Wait

have data?

Input
the response

(b)

Figure 11-1 Comparing conditional and unconditional 1/0. In (a) uncon-
ditional I/0 is illustrated. The microcomputer assumes that the I/O de-
vice is always ready and inputs or outputs data accordingly. In (b), con-
ditional I/O is shown. Now the computer is synchronized to the I/O
device READY status.

7 6 5 4 3 2 1 0 Bit
Keyboard ADC Printer
ready ready ready
128 64 32 16 8 4 2 1 Value

Figure 11-2 Bit assignments for a typical status port. One port can pro-
vide the BUSY/READY status for up to eight different peripherals,

Experiment 11 143

ally. For example, an analog-to-digital converter (ADC) may take several
milliseconds to convert its input voltage to an n-bit digital word. Finally,
when ready, its BUSY/READY flag will be set, indicating that it is ready for
new data. This condition can be tested by a BASIC program such as

10 GOSUB 500: IF B(3)<>1 THEN 10 :REM WAIT FOR READY
20 Y=PEEK(49393)

30 END

500 N=PEEK(49392)

510 FOR J=7 TO 0

520 B(J)=1

530 IF N-2°J<0 THEN B(J)=0: GOTO 550

540 N=N-2"J

550 NEXT J

560 RETURN

Line 10 waits for bit 3 of status port 49392 to go high (the converter
is ready) and then inputs the digital word from data port 49393.

A more elaborate polling program could monitor all three flags and
branch to different locations when a particular flag becomes ready. For
example:

10 GOSUB 500: IF B(0)=1 THEN 100
20 IF B(3)=1 THEN 200

30 IF B(5)=1 THEN 300

40 GOTO 10

The standard decimal-to-binary subroutine is assumed in location 500,
as in the previous example. Special routines to handle each I/O device are
then placed in locations 100, 200, and 300.

A major disadvantage to polling is that the computer is continually
tied up checking its I/O devices waiting for a READY flag to be set. The
analogy has been made that polled I/O is similar to someone waiting for a
phone call by continually picking up the receiver and asking if someone is
there (rather than letting the bell ring—interrupting you from some other
activity). Depending on the circumstances, this may be a rather inefficient
use of the computer (not to mention a rather tiring way of waiting for a
phone call!).

Interrupt-Driven 1/0

The second common method of interfacing to conditional I/O devices is to
use an interrupt technique. As explained in the phone call analogy, it would
be more efficient to allow the computer to perform some other job, and
only when the I/O device is ready, stop and service it. This is the essence of
interrupt-driven I/0.

144 Experiment 11

Most microprocessors have some form of interrupt capability. You may
think of this as a hardwired line directly into the “heari’ of the micropro-
cessor. When this line is activated (for example, pulled low), the micropro-
cessor will save the contents of the various registers it is working with in
RAM memory (the ‘“‘stack’) and then branch to a special memory location
to service the interrupting device.

Several advantages of interrupt-driven I/O should come to mind. First,
the microcomputer need only service the I/O device when that device is
ready; the rest of the time the computer can be working on some other task.
With vectored interrupts or multilevel interrupts, the memory location of the
I/O device service routine is established at the time of the interrupt. This
means there is no need for a GOTO type of statement to direct the computer
to the correct routine.

Because of this, the handling of I/O seems almost ‘“‘invisible” to the
user. In fact, using this technique, the computer can appear to be doing two
different jobs at one time. For example, a clock circuit might generate an
interrupt once each second. The computer could service this interrupt (the
background) by adding one to a count and display the time of day on the
CRT screen. This might require 200 to 300 us, but leave 999,700 us before
the next interrupt occurs. During this time the computer can work on its
main task (the foreground). To the user, the computer appears to be doing
two tasks simultaneously.

Another advantage to interrupts is that a priority structure can be
established. If conflicts occur because of multiple interrupts, the priority
structure will see that the most important device is serviced first. For that
matter, the interrupts can be turned off (disabled) when the microcomputer
does not want to be interrupted (wouldn’t you like to be able to do that!).

The main disadvantage to interrupts is the increased software complex-
ity. The computer can actually become interrupt bound, continually servic-
ing interrupts without being able to return to its main task. Debugging errors
in this type of software can be extremely difficult.

Generally, the servicing of interrupts must be done with an assembly
language program. Interrupting a BASIC program can have disastrous results.
When an interrupt occurs the current machine instruction is completed first
before branching to the service routine. But with BASIC one program state-
ment may involve many machine instructions. There is no guarantee that
when you return from the interrupt service routine the many variables re-
quired by BASIC will all be unchanged.

Which Scheme Should I Use?

Despite the advantages of interrupt-driven I/O, for most small BASIC-
oriented computer systems such as the Apple, polling may be the best choice.

Experiment 11 145

Often in such systems the computer has nothing else to do while waiting for
its I/O anyway, and the efficiency may be academic. For this type of com-
puter the interrupt capability is best designed into the overall operating sys-
tem ROMs.

Using the 8255 for Conditional I/O

The 8255 programmable peripheral interface was first introduced in Exper-
iment 5. Since then we have used it in many of the experiments but always
programmed it to operate in mode 0. In this experiment we are demon-
strating conditional I/O and will use the 8255 in mode 1. Intel refers to this
mode as strobed input/output.

Figure 11-3 illustrates the four combinations possible for mode 1 opera-
tion. These correspond to the four different combinations of ports A and B
as input and output ports. Notice that port C is a status port and not a data
port for this mode. As such, it provides strobe and acknowledge signals
(sometimes referred to as ‘“‘handshaking” signals) for the two data ports.

Figure 11-4 indicates the names and descriptions of these handshaking
signals. For the case of an input port, the input device first pulls the strobe
line (STB) low, causing data to be gated immediately into the 8255 (but not
the microcomputer). The 8255 acknowledges this data transfer by causing its
IBF (input buffer full) line to go high. The microcomputer now has the
choice of using a polled or an interrupt-driven technique to determine that
data is ready and then input this data. If polling is used, the IBF line of
port C (PC1 or PC5) must be tested and data subsequently read from port A
or B as appropriate. This read operation also resets the IBF flag.

If interrupts are used, the INTR output of the 8255 must be connected
to the interrupt input of the microprocessor. Branching to the proper service
routine will now occur ‘“automatically.’”” Notice that the interrupts must first
be enabled by a bit set/reset operation in order for INTR to be active.

An output port is handled in a similar fashion. In this case, the micro-
computer outputs data to the appropriate 8255 port, causing its OBF (out-
put buffer full) line to go low. This line should be monitored by the output
device to determine when data is ready. The output device then acknowledges
receipt of the data by driving the 8255 ACK (acknowledge) line low.

Again the microcomputer may use polling or interrupts to interface this
port. If polling is used, the ACK signal of port C (PC2 or PC8) is tested and
new data is output only when this line is low, indicating that the previous
data has been accepted by the output device. The interrupt technique uses
the INTR line to determine this same information. Again the INTR line must
be high to enable interrupts.

Figure 11-5 will help you determine the proper control word to be used,
depending on the port configuration desired. Notice that when configuring

146 Experiment 11

MODE 1 (PORT A) MODE 1 (PORT A)

PA, PA, PAPA [B D
CONTROL WORD CONTROL WORD

D, 0y D; D, Dy D, D; Dy :-I_N;E_“ - D, Dy Dy D, Dy D, D, D,
RN ENEN 2007 N] e Lfo]+[o[DxPxTX] 2 Er————
1 7

e— ATK,

PCs 5

1+ INPUT 1= INPUT
0= OUTPUT 0= OUTPUT
E

1 Pe = 18F, P

. Y INTR,
AD ———=0f WA ——=f
2 2
Py |- 10 PCas foerf—
MODE 1 (PORT B) MODE 1 (PORT B}

P8, -PBy PB,-PB, :. >
CONTROL WORD CONTROL WORD
D, Dy Dy D, Dy D, D, D, reem - D, Dy Dy D, D, Dy D, D,

PC, |=— STB,
DX | Les | ™ L DXDDAX] [Y])
——= INTR,

T

PORT A, B — (STROBED INPUT) PORT A, B — (STROBED OUTPUT)

PA, PA, 'I:> PA,PAy @
WR —=Of PCy — ?A AD —=d Pyl -_ST—B.
PCq |-—— ACK, PCs |—— 18F,
CONTROL WORD CONTROL WORD
D; Dy Dy D, 0; D, D, Dy PCy |——= INTR, D, Dy Dy O, Dy D, D, D, PCy——INTR,
1of1 ofwls+]1 2 1(ofvf1]w]1]o0 2
DODDDNON by DODOEODN .
P, PCe.7
1= INPUT .
S e, S
RD——=O PC;[—— 5TB, WR ——=0 PC, [—— OBF,
pC,|— 18F, PC, |+—— ACK,
FCo —— INTR, PCy ——= INTR,
PORT A — (STROBED QUTPUT) PORT A — (STROBED INPUT)
PORT B — (STROBED INPUT) PORT B — (STROBED OUTPUT)

Figure 11-3 The four possible I/O configurations for ports A and B when the
8255 is programmed for mode 1 operation. Port C becomes a status port in this
mode. (Courtesy of Intel Corporation.)

Experiment 11

Signal
IBF

STB
INTR

Signal

o
@
m

ACK

INTR

Direction

ouT

ouT

Direction

ouT

ouT

Input Port

Description

A 1 on this output indicates that the data has been
loaded into the input latch; in essence an acknowledge-
ment. IBF is set by the falling edge of the STB

input and is reset by the rising edge of the RD input.

A 0 on this input loads data into the input latch.

A 1 on this output can be used to interrupt the CPU
when an input device is requesting service, INTR is

set by the rising edge of STB if IBF isa 1 and INTE

is a 1. Itis reset by the falling edge of RD. This
procedure allows an input device to request service

from the CPU by simply strobing its data into the port.
INTE A is controlled by bit set/reset of PC4 and INTE B
by bit set/reset of PC2.

Output Port

Description

The OBF output will go low to indicate that the CPU
has written data out to the specified port. The OBF
flip-flop will be set by the rising edge of the WR
input and reset by the falling edge of the ACK input
signal,

A 0 on this input informs the 8255 that the data from
port A or port B has been accepted. In essence, a
response from the peripheral device indicating that it
has received the data output by the CPU.

A 1 on this output can be used to interrupt the CPU
when an output device has accepted data transmitted
by the CPU. INTR is set by the rising edge of ACK if
OBF is aﬂand INTE isa 1. Itisreset by the falling

edge of WR. INTE A is controlled by bit set/reset of
PC6 and INTE B by bit set/reset of PC2,

Figure 11-4 Port C of the 8255 supplies several “handshaking’’ signals
when programmed for mode 1 operation.

147

the 8255, two lines of port C are always available for use as input or output
bits independent of the other 6 bits.

Example 11-1

Determine the control word to be used to cause port A to be an output, port B an
input, and PC4 and PC5 to be outputs.

Solution Referring to Fig. 11-5, the following binary pattern is found:

1010011X = 166 or 167

148 Experiment 11

Mode 1 for port B

Port A 1:input l
0: output Port B 1:input
‘ 0:output
Y \
rjelr|{=]-f¥]=1]%
T el !

Mode set/reset active Don't care for mode 1

i
L

This bit defines PC4, 5 or
PCB, 7 as inputs or outputs

Mode 1 for port

1:input

0:output
Port A PortB Active bits
IN IN PCB, 7
IN ouT PCB, 7
ouT IN PC4,5
ouT ouT PC4,5

Figure 11-5 Mode 1 control word format.

PROCEDURE

Step 1. Refer to Fig. 11-6 and wire the 8255 on your breadboard.
Now add the port A DIP switch, the IBF monitor at PC5, and the strobe
input at PC4. The remainder of the circuit will be wired later.

Question 11-1. Write a program that configures the PPI in mode 0
and tests the DIP switch connections.

Question 11-2. What control word is needed to configure the PPI for
mode 1 with port A an input port and port B an output port and PC6 and
PC7 inputs?

Step 2. Load and run the following program. With the program run-
ning, set a number up on the DIP switch and depress and release S1. Try
this several times for different numbers on the switch.

10 HOME
20 POKE 49395,188 :REM PPI MODE 1, A=INPUT B=QUTPUT
30 PRINT PEEK(49392) :REM READ SWITCH

40 GOTO 30

Experiment 11

8

2

SERRRER

Y

L

DEV 7

Question 11-3.

149

Each 18 BV

14
24

7404
74100

<o o e o |-
IO-Hd=-%0n v~0
sl<=l=1= == |-

TR

I AT

~
=
o

§i
3

PBO

13
10

22
21
11
10
15

3 N O 7] (50 B
00 - &
af== |alo|e|=

cs 2

oL707
Power Connections

Figure 11-6 Circuit to illustrate handshaking logic with the 8255.

Unless the strobe input is pulsed low, the computer

output to the CRT screen remains unchanged. Explain.

Step 3.

Change the program in step 2 by adding new lines 30 to 70

and the subroutine beginning at line £00 as follows:

30
40
50
60
70
500
510
520
530
540
550
560

GOSUB 500: IF B(5)<>1 THEN 30
FOR J=1 TO 500: NEXT J
VTAB(12)

PRINT “THE INPUT VALUE IS: ";PEEK(49392)
GOTO 30

N=PEEK(49394)

FOR J=7 TO 0 STEP -1

B(J)=1

IF N-2J<0 THE B(J)=0: GOTO 550
N=N-2"J

NEXT J

RETURN

:REM WAIT FOR IBF
:REM DELAY TO SEE IBF

:REM TEST PORT C

Question 11-4. Notice the IBF LED as the program in step 3 is run.
What turns ON this LED? What turns it OFF?

150 Experiment 11

Note. The port A interface just constructed provides full handshaking with the
IBF, acknowledge signal, and the strobe input. Also note that the 8255 acts as a buffer
by holding the input data until the microcomputer is ready to read it.

Step 4. Wire the 74100, seven-segment display, OBF LED monitor,
and S2 acknowledge switch as shown in Fig. 11-6. Now load and run the
following program with S2 depressed. You should observe the numeral 5
on the seven-segment display.

10 HOME

20 POKE 49395,153 :REM INIT PPI FOR MODE 0, B=OUTPUT

30 POKE 49393,18 :REM MAKE SEGMENTS b AND e HIGH (OFF),
ALL OTHERS LOW (ON)

40 END

Question 11-5. Change the program in step 4 so that the display ap-
pears to count at a slow rate from 0 through 9. You should then be able to
appreciate how software can take the place of a conventional seven-segment
decoder.

Step 5. The following program tests the port B interface using mode 1.
Load and run this program. Push S2 and observe the OBF LED and display.

10 HOME

20 POKE 49395,188 :REM PPI MODE 1

30 INPUT “WHAT NUMBER ";N

40 POKE 49393,N :REM OUTPUT DATA
50 GOSUB 500: IF B(2)=1 THEN 50 :REM WAIT FOR ACK
60 GOTO 30

500 N=PEEK(49394) :REM TEST PORT C
510 FOR J=7 TO 0 STEP -1

520 B(J)=1

530 IF N-27J<0 THEN B(J)=0: GOTO 550

540 N=N-2"J

550 NEXT J

560 RETURN

Question 11-6. Notice the OBF LED as the program in step 5 is run.
What turns ON this LED? What turns it OFF?

Step 6. Write a program to demonstrate the full handshaking concept
from inputting of data from the DIP switch to outputting that data back to
the display at port B. Figure 11-7 is a flowchart of the process. A solution is
provided at the end of this experiment.

Step 7. Reread the objectives listed at the beginning of this experi-
ment. If these points are not clear to you, restudy the ‘‘Discussion” and
“Procedure” sections.

Experiment 11 151

Dashed lines indicate

= operator action

| Strobe data |
I into 82565 |
L -

Input
buffer full

Qutput data

back to 8255

| G S e
: Observe !l
] OBF |
I LED |
e |

/,” \\\\

/, Outpul s No
<. buffer full ~ >=——

~

\\\ 4 /,/'

oy -
IYDS

[m——————
| _Push
L ACK switch |

Figure 11-7 Flowchart of the full
handshaking program to be written
for step 6.

152 Experiment 11

SOLUTIONS TO QUESTIONS

11-1.
10 HOME

20 POKE 49395,153 :REM INIT PPI MODE 0 A=INPUT, B=OUTPUT
30 PRINT PEEK(49392)
40 GOTO 30

Note. This program also serves as a binary to decimal converter.

11-2. 1011110X = 188 or 189.
11-3. The data is not latched by the 82355 until the strobe input is pulsed low. Until this
occurs, port 49392 contains the “old” data.

. Closing S1 strobes the data into the 8255, turning the IBF LED ON. The
PEEK(49392) operation resets the IBF line.

11-5.

11

1l
=

10 HOME

20 FOR J=0 TO 9: READ N(J): NEXT J :REM N(J) HOLDS THE
SEVEN-SEGMENT PATTERNS

30 POKE 49395,153 ‘REM INIT PPI

40 FOR J=0 TO 9

50 POKE 49393, N(dJ)

60 FOR I=1 TO 300: NEXT I :REM SLOW COUNT

70 NEXT J

80 GOTO 40

90 DATA 64,121,36,48,25,18,3,120,0,24 :REM 0-9 PATTERNS

11-6. An output write to port 49393 turns on the OBF LED., It is reset by the acknowl-

edge pulse produced by closing S2. This also clocks the data into the 74100 and
seven-segment display.

Step 6 (solution).

10 HOME

20 POKE 49395,188 :REM INIT PPI

30 GOSUB 500: IF B(5)<>>1 THEN 30 :REM WAIT FOR IBF

40 FOR J=1 TO 500: NEXT J :REM TIME DELAY

50 Y=PEEK(49392) :REM INPUT THE DATA
60 POKE 49393,Y :REM NOW OUTPUT THE DATA
70 GOSUB 500: IF B(2)=1 THEN 70 :REM WAIT FOR ACK
80 GOTO 30

500 N=PEEK(49394) :REM SAMPLE PORT C
510 FOR J=7 TO 0 STEP -1

520 B(J)=1

530 IF N-2~J<0 THEN B(J)=0: GOTO 550

540 N=N-2~J

550 NEXT J

560 RETURN

EXPERIMENT 12

OVERVIEW

SERIAL INTERFACING

In this experiment you will wire the Motorola MC6850 asynchronous com-
munications interface adapter (ACIA) to the address and data buses of the
Apple. The 6850 will be wired to transmit to itself and a BASIC program
will be used to display the ACIA status bits in real time.

OBJECTIVES

The key points to be learned from this experiment are:

1,

The ACIA receives and transmits serial data at a baud rate that is typ-
ically 1% of the clock rate.

The ACIA is programmed ‘“automatically” to insert start bits, stop bits,
parity bits, and to select the number of data bits per transmitted or
received word.

. A typical ACIA interface utilizes status bits to indicate when a word is

ready to be received or transmitted.

Most computer terminals use a 7-bit data word and the ASCII code for
letters, numerals, and punctuation symbols.

. The 6850 ACIA provides TTL input and output voltages, but these

must be converted to RS-232C levels for terminals and printers or con-
verted by a modem to two different audio frequencies for transmission
over the telephone lines.

153

154 Experiment 12

PARTS LIST

=

6850 asynchronous communications interface adapter (Jameco
MC6850)

7404 hex inverter

LM555 universal timer (Radio Shack 276-1723)

1-k§2 resistor (brown-black-red)

180-£2 resistor (brown-gray-brown)

LED

50-k§2 potentiometer

0.01-pF capacitor

22-uF capacitor

L S O N Gy Sy Y

DISCUSSION: SERIAL CONCEPTS

The microcomputer is inherently a parallel machine. It communicates with
its memory and I/O ports via eight parallel data bus lines. For this reason,
all the interfaces we have constructed to this point have been parallel and
dealt with these eight data lines.

Because of this, a serial I/O port requires reorganizing the data path to a
single line through which the 8 data bits must pass in single file. Figure 12-1
compares typical serial and parallel computer ports (in this case to a printer).

Both ports are similar in that normal address decoding and control logic
are needed to place the port at a particular memory or I/O address. In this
respect the microcomputer cannot tell the difference between the two ports.
However, what the two ports do with their data once it is received is quite
different.

As shown in Fig. 12-1, the parallel port passes the eight lines on to the
printer and includes two control lines (BUSY/READY and STROBE) and a
common ground, for a total of 11 connections.

The serial port converts the data to single bits that are transmitted one
at a time to the printer using the DATA OUT line. If the printer wants to
reply, it may do so in a similar fashion using the DATA IN line. Finally, a
common ground establishes the third connection.

The advantage of the serial technique is its simplicity and low cost—
only a three-conductor cable is needed. The advantage of the parallel tech-
nique is its high speed, as all bits arrive at once.

The choice of which method to use usually depends on the distance
between the computer and peripheral (lengthy multiconductor cables are
very expensive) and the speed of transmission required. Often the periph-
eral is a human interface (printer or video terminal) and extreme high speed
is not critical. In these cases the economy of serial transmission is chosen.

Experiment 12

Microcomputer

158

Data bus
Decoder
Address and
bus control
logic
Control bus

Figure 12-1 Comparing serial and parallel computer ports. The parallel

Data 1
2
3
4
5
Parallel port 6 Parallel
(latches 7 srinter
tri-states) F
8
Strobe
BUSY/READY
GND
Data out
Serial port Data in Serial
(UART] printer
GND

port is much faster but also more complex than the serial port.

Another advantage of serial interfacing is that it may be used with a
modem (modulator-demodulator) to pass data over the telephone lines for
thousands of miles. There is more detail on this technique in the last section
of this “Discussion.”

Baud Rate

The rate at which the serial data bits are transmitted is referred to as the
baud rate. A typical baud rate for a computer teminal is 1200. This means

156 Experiment 12

that 1200 bits are transmitted each second. Although you might think that
this would represent 150 bytes per second (1200/8), in practice, extra bits
are sent along with the data bits, so that one character (or byte) may ac-
tually be as many as 12 bits long. This reduces the character rate to 100
characters per second in this example. But the baud rate remains 1200.

Several factors affect the choice of baud rate for a given interface. Be-
cause a printer is a mechanical device, we must be careful not to send it
characters faster than it can type them out or data will be lost. For example,
the ASR-33 teletype runs at 110 baud. At this rate it can only accept data
at a rate of 10 characters per second.

When long cables (>1000 ft) are used, the internal capacitance of the
cable limits maximum speed. Baud rates as high as 19,200 can be used with
CRT terminals and short (<30 ft) cables.

ACIAs and UARTs

When comparing the serial and parallel ports in Fig. 12-1, it was stated that
the serial port is less complex and more economical than the parallel port.
However, you might question this since the serial port must convert the
parallel data from the computer to the serial format. Fortunately, the IC
manufacturers have recognized the importance of a circuit capable of doing
this conversion, and have developed a special serial communications chip
called the universal asynchronous receiver-transmitter, or UART for short.
Motorola prefers the acronym ACIA for asynchronous communications
interface adapter. For the purposes of this discussion the terms “UART” and
“ACIA” are interchangeable.

The UART contains a separate and independent transmitter and receiver
of serial data in one IC package. All that is needed is a clock circuit to estab-
lish the baud rate. Usually, this clock runs at 16 times the actual baud rate.
For example, at 1200 baud the actual clock rate is 16 X 1200 = 19.2 kHz.
Figure 12-2 illustrates the key components in a typical UART.

The transmitter section receives 8 bits of data from the computer and
begins transmitting the data when the strobe pulse occurs. The control sec-
tion determines how many bits each transmitted word will have, the number
of stop bits, and the choice of parity. The transmitter buffer empty flag
(TBE) indicates if the transmitter is ready for a new data word.

Similarly, the receiver data ready (DR) flag indicates that a serial char-
acter has been received and is available to be read. Once the data has been
read, the data ready flag should be reset by applying a reset data ready pulse
as shown in Fig. 12-2. The control section is shared by the receiver and
transmitter, so the word configuration must be the same for both.

Experiment 12

Transmitter clock

Receiver clock

157

Strobe Reset data ready
23 40 16 X Baud rate 17 I 18
26 12
D0 O—— }—p—0 DO
1
D1 0—27- T l————0 D1
28 s R 10
D2 O—+ a & ————0 D2
n
D3 o—i 5 Serial out Serial in : -%—-———o D3
30 m —— e 8
D4 O— i 25 20 t — >0 D4
31 d 7
D5 O——— : e —»—0 D5
32 e L3 6
D6 O——— f————0 D6
r
5
D7 0—33-— —»——0 D7
22] 19
. Control: .
; o 37 0—
Transmitter buffer empty Data bits Data ready
38 o—
Parity on/off
35 0—
29 Parity odd/even
5 = N ¢
+5 V 12V | GND - Stop bits
1 3

Figure 12-2 Block diagram of a typical UART. A separate receiver and
transmitter are provided. Hardwiring control pins high or low deter-
mines the number of data bits per word, stop bits, and parity. The pin
numbers shown are for the General Instrument AY-5-1013 UART.

Data Word Format

It was mentioned earlier that several extra bits are transmitted along with the
data. These are the start bit, always a 0; one or two stop bits, each always a
1; and an optional parity bit. The parity bit may be chosen to be odd or
even. This simply means that the total number of 1’s in the word (including
the parity bit) will be even or odd.

The purpose of the start and stop bits is to frame the data for synchro-
nization. The receiver knows that whenever the data input line drops low (a
start bit), data is about to be transmitted. The stop bit allows the receiver
some time to get back in “sync” before the next character is sent. This is
necessary because the receiver and transmitter clocks are usually located at
different sites and therefore are not at the exact same frequency.

158 Experiment 12

The purpose of the parity bit is to detect single bit errors in transmis-
sion. If a single 1 or 0 is lost, the received word will have the “wrong” parity.
This will set a parity error flag in the UART and the receiver may then
request a retransmission.

Example 12-1

Draw waveforms to scale for the output of a UART running at 1200 baud and
transmitting the byte: 01010101. Assume odd parity and two stop bits.

Solution Refer to Fig. 12-3. Each character begins with a start bit and ends with
the 2 stop bits. The 8 data bits are transmitted least significant bit first. The parity
bit follows the data bits and is a 1 to maintain an odd number of 1’s in the word
(five in this case). Finally, two stop bits end the word.

At 1200 baud, one bit lasts for 1/1200 s = 833 us. It takes 12/1200 s = 10 ms
to transmit the entire word. This corresponds to 100 characters per second.

The UART shown in Fig. 12-2 is typical of the General Instrument
AY-5-1013. This type of UART allows most of the control functions to
be hardwired high or low and simplifies software control.

Another type of UART is represented by the Intel 8251 and Motorola
MC6850. These devices are similar to the Intel 8255 programmable periph-
eral interface because they are controlled totally from software. In both of
these devices there is one data path, the bidirectional 8-bit data bus. Re-
ceived and transmitted data is sent over these lines along with control

Previous stop bits Next start bit

/iy

/ : \ |
, 1]

T
|
1
1
1
[
|
|
|
|
|
|
|

Parity: stop | bits

I

I /S

|
?

— - 10 ms— —

Figure 12-3 Qutput waveforms for a UART transmitting the byte
01010101 with odd parity and 2 stop bits. The baud rate is 1200.

Experiment 12 159

information establishing parity, number of stop bits,and number of data bits
per word. In the next section we will study the MC6850 in detail and show
an interface to the Apple computer.

Interfacing the 6850 ACIA to the Apple

Figure 12-4 illustrates the electrical connections required to interface the
6850 to the Apple. All communication with the ACIA is via the 8-bit bidi-
rectional data bus wired to pins 15 through 22. To the Apple, the 6850
appears to be two sequential memory locations corresponding to RS=0 and
RS=1. The specific memory address is determined by the three chip select
inputs, CS0, CS1, and CS2. When these inputs equal 1, 1, 0, respectively, the
6850 is selected. The register select input (RS) and R/W input then deter-
mine the specific internal register selected as illustrated in Table 12-1.

Studying Table 12-1, when RS=0 (that is, A0=0 in Fig. 12-4) the out-
put control register or input status register is selected. The R/W line controls
which of these two will be accessed. These registers allow the micropro-
cessor to set the protocol of transmitted words (bits per word, parity, stop
bits, and clock rate) and to monitor the status of the transmitter and receiver
buffers.

When RS=1 the data registers are selected. In this case a memory write
operation will cause the output byte to be converted to serial and trans-
mitted bit by bit at the specified clock rate. A memory read operation will
input the word currently stored in the receiver buffer (that is, the word most
recently received and converted to parallel).

Example 12-2

Indicate the four BASIC commands required to access the Apple-ACIA interface
in Fig. 12-4 and describe the function of each.

Solution Examining the chip select inputs, we see that this interface is partially
decoded because the Al address line is not used. Because the DEVT7 device select
signal from the Apple is connected to CS2, the range of possible addresses is 49392
through 49407 (refer to Experiment 2 if this is not clear to you). The low 4 bits of
the address correspond to

A3 A2 A1 A0
1 1 X 0 Control functions
1 1 X 1 Data functions

The offset for the control port is 12 choosing the don’t care to be 0 (A3
A2 Al A0 = 1100) and the data port offset is 13 (A3 A2 Al AO = 1101). The

o O
2 8§ 8 %

Q
)Elgimlg
o o oo

R

B
o

El
L]

b
o
b
'm

A2 Cs!

S
A3

CS

DEV 7|38

BV

X

RC

0.01 pF

1 k2

VA

%501(9

=
+

(clocks)

22

21
20
19
18
17
16

8 9

10

8]

23
24

Receive data

Transmit data

7404

o

T

N

Modern
control

signals

180

-
m
o

g |

"Transmit-to-self-

test circuit"

[

+5V GND

7404

14 7

6850

12 1

5565

4,8 1

Figure 12-4 Interfacing the MC6850 ACIA to the Apple. This circuit occupies
two memory locations at addresses 49404 and 49405,

160

Experiment 12 161

TABLE 12-1 CONTROL FUNCTIONS OF THE 6850 ACIA

CS0 CSs1 52 RS R/W Function
1 1 0 0 0 Write to control register
1 1 0 0 1 Read from status register
1 1 0 1 0 Output data for transmission
1. 1 0 1 1 Input received data

four commands and their functions are:

POKE 49404,Y Y=0UTPUT CONTROL DATA
Y=PEEK(49404) Y=STATUS INFORMATION
POKE 49405,Y Y=OUTPUT DATA
Y=PEEK(49405) Y=INPUT DATA

Nole. Because address line Al is not decoded, a second set of addresses will
also respond to the PEEK and POKE commands. These addresses are 49406 (status
and control port) and 49407 (data port).

In addition to the chip select signals and register select input, a syn-
chronization signal called E must be connected to pin 14 of the ACIA. In
Fig. 12-4 the ®0 clock signal is used to provide this synchronization. Recall
from Experiment 1 that only when ®0 is high does the 6502 microprocessor
use its data and address buses.

The clock or baud rate generator in Fig. 12-4 uses a 555 universal timer.
Although this circuit is suitable for the purposes of this experiment, a more
stable clock reference should be selected for a real-world application. The
Motorola MC14411 baud rate generator is shown in Fig. 12-5. This chip
simultaneously generates 14 different baud rates from 75 baud to 9600 baud
using a 1.8432-MHz crystal. The crystal provides stability and accuracy,
which is particularly important because the baud rates for the receiving and
transmitting UARTs must typically match within 5%.

ACIA Control Register

Figure 12-6 illustrates the control designations for the 8 bits of the 6850
control register (address 49404 for the interface in Fig. 12-4). Before writing
a specific pattern to this register, a master reset command should be given.
For reasons that will become clear later in this “Discussion,” the RTS (re-
quest to send) output should be kept high during this reset to avoid a loss of
data when communicating with a modem. The proper control word is then

X10XXX11 =67 (choosing X’s = 0)

162 Experiment 12

15 MQ2
Crystal = 1.8432 MHz

See chart
I_J——\

N

T

=

b

0
24 |23 | 22 21 20 19 |

3 osers s
=]

=]

=]

=]

B

Y
Baud rate outputs

) MC 14411

Baud rate outputs

D0 0N O E

9600 4800 2400 1200 600 200 300 150 75 NC
Reset—l_—o
=2 100 K
Pin 22 23 Clock rate

0 0 X1 $5V

0 1 X8

1 0 X 16

1 1 X 64

Figure 12-5 The MC14411 generates 14 different baud rates from its
1.8432-MHz crystal time base. Pins 22 and 23 select the output clock
rate as 1X, 8X, 16X, or 64X the selected baud rate as required by the

UART chosen.

Example 12-3

Determine the BASIC command sequence to be given to establish the following
serial transmission protocol:

+16 clock rate
8 data bits

no parity

2 stop bits

Assume that the ACIA is used to communicate with a video terminal (not a
modem) and that polling rather than interrupts will be used.

Solution The +16 clock rate requires bl b0 = 01. Similarly, the 8 data bits, no
parity, and 2-stop-bit selection requires b4 b3 b2 = 100. Because communication
is with a terminal, the modem control signal RTS is not needed. And because poll-

Experiment 12 163

Control register | 7 | 6 I 5 4 l 3 | 2 | 1 I (LI
Receiver Interrupts Transmitter Control Protocol Clock rate
__ Transmit
RTS interrupts Data bits Parity Stop bits
0 Disabled 00 o Disabled oo0o 7 Even 2 00 =1
1 Enabled 01 0 Enabled 001 7 Odd 2 01 +16
10 1 Disabled 010 7 Even 1 10 +64
19 0 Disabled 011 7 Odd 1 11 Master
Data Out =0 100 8 No 2 reset
101 8 No 1
110 8 Even 1
111 8 Odd 1

Figure 12-6 Port 49404 of the interface in Fig. 12-4 accesses the 6850 control
register. The 8 bits of this port are used to specify the serial protocol desired,
clock rate, and interrupt control logic.

ing will be used, the interrupt enables also will not matter. This means that b7 b6
b5 = XXX. Assembling the control word

XXX10001 =17 (choosing X’s = 0)

For the interface in Fig. 12-4 the initialization sequence would be

POKE 49404,67 :REM MASTER RESET
POKE 49404,17 ‘REM INITIALIZE

ACIA Status Register

Serial data transmission is of course slower than parallel transmission, requir-
ing the microcomputer to synchronize itself to the character rate of the
UART or ACIA. In the case of the 6850 ACIA, a status port is provided that
can be polled to determine when the receiver has a new character to be read
or the transmitter is ready to accept new data. Figure 12-7 illustrates the
8 status bits provided by the 6850. Two of these signals are particularly im-
portant for computer to ACIA synchronization.

Bit 0 of the status register is the receive data register full (RDRF) or
data ready flag. This bit goes high when the full character has been received.
It is cleared when the data register is read.

Bit 1 of the status register goes high when the transmitter data register

164 Experiment 12

7 6 5 4 3 2 1 0 < Bit

RQ PE |OVRN| FE CTS | DCD | TDRE | RDRF

[RQ — interrupt request
PE — parity error
OVRN— overrun

FE_ — framing error
CTS — clear to send

DCD — data carrier detect

TDRE — transmitter data register empty
RDRF— Receive data register full

Figure 12-7 The command Y=PEEK(49404) will access the 6850 status
register in Fig. 12-4. These 8 bits provide information about the trans-
mitted and received data as explained in the text.

is empty (TDRE). This is called transmitter buffer empty (TBE) by some
manufacturers. This bit can be tested by the microcomputer to determine
when the ACIA is ready to transmit another character.

Three error conditions can be monitored at bits 4, 5, and 6. The fram-
ing error condition is set if the start and stop bits are not received at the
proper time (that is, the ACIA is out of “sync™). The overrun condition
occurs if the computer does not read the input data register before another
character is received. When the received character’s parity does not match
the parity specified (even or odd) by the control register, the parity error bit
is set.

The 6850 may be interfaced using an interrupt-driven or a polled I/O
technique (refer to Experiment 11 for more details on these two types of
I/0O). If interrupts are enabled—by choosing the appropriate bit pattern for
the control register—the TRQ output at pin 7 will go low if bits 0, 1, 2, or 5
of the status register are set. In addition, bit 7 of the status register goes
high whenever any interrupt occurs. This allows the 6850 to identify itself
as the interrupting device.

Finally, bits 2 and 3 are modem status signals and will be discussed later
under “Digital Communications.”

UART Software

Usually, the UART is controlled by a machine language program in ROM.
Data is transmitted or received by simply sending or receiving characters to
or from a special driver routine. In this experiment we are attempting to
understand serial communications and will use BASIC to control the UART.

Figure 12-8 is a flowchart of a test program that utilizes the ““transmit
to self” test circuit in Fig. 12-4. Notice how the TDRE and RDRF status
bits synchronize the microcomputer to the UART character rate.

Experiment 12

Reset ACIA

Set

protocol
[
e TORE = 1?
Yes
Qutput
data
to
ACIA
|
Mo RDRF =17

Display it

End

Example 12-4

Write a BASIC program to transmit the 8-bit data word 01010101 (85,4) and then
receive it using the “transmit to self” test circuit in Fig. 12-4, Use 2 stop bits and
no parity.

Solution

10
20
30
40
50
60

HOME

POKE 49404,67

POKE 49404,17

GOSUB 500: IF B(1)<>>1 THEN 40
POKE 49405,85

GOSUB 500: IF B(0)<>1 THEN 60

165

Figure 12-8 ACIA control flowehart
for transmit to self test circuit.

The program follows the flowchart of Fig. 12-8.

:REM MASTER RESET
:REM SET PROTOCOL
:REM WAIT FOR TDRE
:REM 85 IS THE DATA
:REM WAIT FOR RDRF

166 Experiment 12

70 PRINT “THE DATA IS: ";PEEK(49405)

80 END

500 Y=PEEK(49404) :REM READ STATUS REGISTER
510 FOR J=7 TO 0 STEP -1

520 B(J)=1

530 IF Y-2~J<0 THEN B(J)=0: GOTO 550

540 Y=Y-2~J

550 NEXT J

560 RETURN

Digital Communications

Once your computer can transmit and receive serial data, an entire new world
of digital communications is open to you. For example, with a serial port
and a modem you may ‘“‘call up”’ other computers over the telephone lines
and participate in several of the time-sharing networks now available. Or call
your stockbroker and get the latest quotations. Perhaps you need informa-
tion on the undersea life of the marine iguana of the Galapagos Islands. The
Dialog Information Retrieval Service (part of Lockheed Missile and Space
Company, Inc.) has some 50 billion bytes of information available on line
corresponding to about 40 million individual bibliographic abstracts and
references!*

When using your computer to communicate with other computers (or
terminals), certain standards must be followed by everyone for compatibility.

1. The American Standard Code for Information Interchange (ASCII).
This is a 7-bit code that defines a particular binary pattern for all the letters
of the alphabet, numerals, punctuation marks, and control characters. As
long as the ASCII code is used by all manufacturers, when you type a ques-
tion mark on your keyboard, it will also appear as a question mark on the
receiving computer’s CRT screen or printer. Table 12-2 is an ASCII code
chart included for reference.

2. The RS-232C Serial Communications standard. This standard de-
fines the voltage levels for logic 1’s and 0’s when communicating serially.
You might be surprised to learn that this standard is not TTL compatible.
A logic 1 is a voltage more negative than -3 V and a logic 0 must be more
positive than +3 V. Typical levels used are +12 V. The reason for the large
voltage levels is to provide greater noise immunity, particularly when long
cable lengths are involved. The RS-232C standard goes beyond defining
voltage levels. It also specifies a 25-conductor cable and connector—referred
to as a standard DB-25 connector. Although signals are defined for all 25
pins, communications can take place using only three of those pins (pin 2—
transmit data, pin 3—receive data, and pin 7—signal ground). Figure 12-9

*Stan Miastkowski, “Information Unlimited: The Dialog Information Retrieval
System,” BYTE, June 1981, pp. 88-108.

Experiment 12 167

TABLE 12-2 THE 128 ASCII CHARACTERS AND THEIR DECIMAL EQUIVALENTS

DEC AScII DEC ASCII DEC ASCII
0 null 43 + 86 Vv
1 CONTROL A 44 . 87 w
2 + B 45 - 88 X
3 @ 46 : 89 Y
4 D 47 / 90 Z
5 E 48 0 91 [
6 F 49 1 92 %
7 G 50 2 93]
8 H 51 3 94 ~
9 I 52 4 95 —

10 J 53 5 96 @
11 K 54 6 97 a
12 E 55 7 98 b
13 M 56 8 99 ¢
14 N 57 9 100 d
15 (o] 58 ; 101 e
16 P 59 ; 102 f
17 Q 60 < 103 g
18 R 61 a 104 h
19 S 62 o 105 i
20 T 63 ? 106 j
21 U 64 @ 107 k
22 v 65 A 108]
23 w 66 B 109 m
24 X 67 C 110 n
25 Y 68 D 111 o
26 v y/ 69 E 112 p
27 ESC 70 F 113 q
28 FS 71 G 114 r
29 GS 72 H 115 s
30 RS 73 I 116 t
31 uUs 74 J 117 u
32 SP 75 K 118 v
33 ! 76 L 119 w
34 ¥ 77 M 120 x
35 # 78 N 121 y
36 $ 79 0 122 z
37 % 80 P 123 {
38 & 81 Q 124 |
39 2 82 R 125 }
40 (83 S 126 ~
41) 84 T 127 DEL
42 * 85 U

891

Serial
terminal
or
printer

C
o]
m u u
P A A
u R R
t & i T
e
r
A sl A sl
SO DB-25 DB 25 S0
- -]
MC1489 ‘ MC1488
Enable b @_ @ i>0
(when high)
MC1488 | MC1489
I - A

~ 3-conductor transmission line

Figure 12-9 Typical RS-232C interface. Note that the SERIAL IN and OUT lines
are reversed at each end of the interface and an MC1488 and 1489 are used to
convert the UART’s TTL levels to RS-232C levels. The pin numbers shown are
for the standard DB-25 connector.

Enable
(when high)

Experiment 12 169

illustrates a typical RS-232C interface. Note the use of the MC1488 and
MC1489 to convert the TTL levels to RS-232C levels.

3. Modems. A modem or modulator-demodulator converts the RS-
232C voltage levels to two different audio tones. For example, an originate
modem sends a 1270-Hz sine wave for a logic 1 and a 1070-Hz sine wave for
a logic 0. Modems are used when communicating over long distances via the
telephone lines. In situations like this the digital pulses would be hopelessly
lost over the long line lengths involved, but the audio tones pass quite
happily over this voice network. When using full duplex operation, trans-
mission and reception at the same time, the receiving modem (called the
answer modem) uses yet another set of frequencies, 2225 Hz for a 1 and
2025 Hz for a 0. When communicating with a modem the data rate is gen-
erally restricted to 300 baud or less.

The 6850 ACIA provides three modem control signals, called DCD,
data carrier detect; RTS, request to send; and CTS, clear to send. These
signals are part of the RS-232C standard and correspond to pins 8, 4, and 5
on the DB-25 connector.

The typical sequence of events required to establish serial communica-
tions with a modem using the 6850 ACIA is:

1. Dial the phone number of the distant computer and wait to hear a high-
pitched tone.

2. Connect the telephone to the modem. When the modem detects this
carrier signal it will pull the DCD input to the ACIA low (DCD = 0).

3. When DCD goes low, the serial transmit logic within the ACIA is en-
abled. The microcomputer may now ‘“request to send” (RTS = 0) by
writing the appropriate bit pattern to the control register bits 5 and 6
of the ACIA.

4. If the computer at the other end of the line is ready, the modem replies
with “clear to send” (CTS = 0). With half duplex lines CTS is held high
while the distant computer is transmitting.

Note. When using the 6850 ACIA to communicate with a terminal instead of a
modem, the DCD and CTS inputs must be grounded for proper operation.

PROCEDURE

Step 1. Refer to Fig. 12-4 and wire the ACIA interface circuit to your
Apple. Again use caution when handling the static-sensitive 6850 device.

Step 2. Study Example 12-4. Now adjust the 50k pot to minimum
resistance (maximum frequency) and then load and run the program given in
this example. You should observe the LED indicator to flash ON and OFF as
the character is being transmitted. If all goes well, the message “THE DATA
IS: 85” will appear on the screen.

170 Experiment 12

Question 12-1. How many total clock pulses are required to transmit
the character?

Question 12-2. The 555 clock frequency should be adjustable be-
tween approximately 1 and 100 Hz. Calculate the time required to transmit
the character using the program in step 2 at 1- and 100-Hz clock rates.

Question 12-3. Calculate the baud rate for these two clock frequencies.

Step 3. Change the control code in line 30 from 17 to 18 and rerun
the program. Have the 555 adjusted to its maximum frequency.

Question 12-4, Explain the effect produced by the new control code.
What happens to the baud rate when the control code is changed to 18?

Step 4. We may gain a better understanding of the 8 status bits by
monitoring them as a character is being transmitted. Load and run the fol-
lowing program. Run the program several times until you understand the
sequence of events.

Note. It will be necessary to slow the 555 clock down so that BASIC does not
miss any of the status bit changes.

10 HOME

20 INVERSE

30 PRINT “IRQPE OR FE CTS DCD TDR RDR”
40 NORMAL

50 POKE 49404,67 :REM MASTER RESET

60 POKE 49404,17 :REM 8 DATA BITS, +16 CLOCK
70 Y=PEEK(49404) :REM SAMPLE STATUS PORT
80 GOSUB 500: GOSUB 600 :REM UPDATE SCREEN

90 IF B(1)<>1 THEN 70 :REM WAIT FOR TDRE

100 POKE 49405,85: PRINT “LOAD BUFFER”

110 Y=PEEK(49404) :REM SAMPLE STATUS PORT
120 GOSUB 500: GOSUB 600 :REM UPDATE SCREEN

130 IF B(0)<>1 THEN 110 :REM WAIT FOR RDRF

140 PRINT “THE CHARACTER IS: ";PEEK(49405)

150 END

500 FOR J=7 TO 0 STEP -1

510 B(J)=1

520 IF Y-2~J<0 THEN B(J)=0: GOTO 540

530 Y=Y-2~J

540 NEXT J

550 RETURN

600 FOR J=0 TO 7
610 HTAB(30- J*4)
620 PRINT B(J);
630 NEXT J

640 PRINT

650 RETURN

Experiment 12 171

Question 12-5. Which bit must be set before the message “LOAD
BUFFER” is printed? Which bit must be set before the character itself is
printed?

Question 12-6. Normally, the ACIA is used to transmit 7-bit ASCII
characters. Assuming odd parity and 1 stop bit, what changes should be
made to the program in step 4? Try it.

Step 5. Modify the program from step 4 so that it prompts you for:
clock rate (+16 or +64), even or odd parity (use 1 stop bit and 7 data bits),
and the ASCII character to be sent. The program should then modify the
control code and fransmit and receive the character. A solution is provided
at the end of this experiment.

Step 6. Reread the objectives listed at the beginning of this experi-
ment. If these points are not clear to you, restudy the “Discussion™ and
“Procedure” sections.

SOLUTIONS TO QUESTIONS

12-1. 11 bits/character X 16 clock pulses/bit = 176 clock pulses.

12-2. At 1 Hz the total time is 176 s. At 100 Hz the total time is 1.76 s.

12-3. Baud rate = hits/second. At 1 Hz: 1 bit/16 s = 0.06 baud. At 100 Hz: 1 bit/0.16 s =
6.3 baud.

12-4. When the control code = 18, 64 clock pulses are required for each bit. This slows
the rate of transmission by a factor of 4.

12.5. bit 1, TDRE; bit 0, RDRF
12-6. Change line 60 to POKE 49404,13 and line 140 to

PRINT “THE CHARACTER IS: ”;CHR$(PEEK(49405))

Step 5 (solution). Add or change the following lines to the program
given in step 4.

12 INPUT *(1)1/16 OR (2) 1/64 CLOCK RATE ";C

13 IF C=1 THEN CC=1: GOTO 15 :REM CC=CONTROL CODE
14 CC=2

15 INPUT ‘(1) EVEN OR (2) ODD PARITY: ;P

16 IF P=1 THEN CC=CC+8: GOTO 18

17 CC=CC+12

18 INPUT “WHAT CHARACTER DO YOU WISH TO SEND "*;C$

19 HOME

60 POKE 49404,CC

100 POKE 49405,ASC(C$): PRINT “LOAD BUFFER”

EXPERIMENT 13

—— INTERFACING A PROGRAMMABLE SOUND GENERATOR ——

OVERVIEW

In this experiment you will interface a General Instrument programmable
sound generator to the Apple using an 8255 PPI chip. BASIC programs will
be developed to test all internal registers of the device. A program that con-
verts the Apple and keyboard into an electronic organ with memory is given.

OBJECTIVES

The key points to be learned from this experiment are:

1.

PARTS LIST

172

The AY-3-8910 programmable sound generator is designed for com-
puter control and does not require external resistors or capacitors to
achieve the various sound effects.

The AY-3-8910 has two modes of operation: fixed amplitude and
envelope generator control.

. The data bus and address bus of the AY-3-8910 are time multiplexed,

requiring the interface to follow a specific sequence when writing data
to the chip.

In some cases the execution of BASIC commands is too slow for strob-
ing I/O devices, and external hardware must be designed to develop
proper strobe pulse widths.

1 AY-3-8910 programmable sound generator (Digital Research: Com-
puters, P.O. Box 401565, Garland, TX 75040)

Experiment 13 173

8255 programmable peripheral interface (Jameco DP8255)
4013 dual D flip-flop (CMOS)

4069 hex inverter (CMOS)

7400 quad NAND gate

7404 hex inverter

74121 one-shot

L.M386 audio amplifier (Radio Shack 276-1731)
10-MS2 resistor (brown-black-blue)

300-L2 resistor (orange-black-brown)

4.7-kS2 resistors (yellow-violet-red)

1-k{2 resistor (brown-black-red)

470-Q resistor (yellow-violet-brown)

20-pF capacitor

0.001-uF capacitor

0.1-uF capacitor

300-pF capacitor

100-uF capacitor

10-uF capacitors

3.579545-MHz crystal (Radio Shack 272-1310)
loudspeaker

el B G I o S T O T S S G A S G Gy A UV S S Y

DISCUSSION: ELECTRONIC SOUND GENERATORS

Computers have been used to generate music and various sound effects since
their inception. Early microcomputers were programmed to execute specific
time-delay loops. The cyclic pattern established on the address bus as these
loops were executed radiated to nearby transistor radios and music could be
created.

More recent techniques have involved turning on and off oscillator cir-
cuits pretuned to produce specific notes. This method is illustrated in Fig.
13-1. A computer output port is used to activate the particular notes desired.
Chips such as the Mostek MK50240N top-octave generator have simplified
this design. This IC, illustrated in Fig. 13-2, incorporates all the circuitry
needed to produce one full octave on the equal-tempered scale in a single IC
package.

The most recent developments have been to produce ICs capable of
complex sound generation. This includes tone, noise, and control of the
envelope attack and decay times. With these ICs it is possible to simulate the
sound of a train whistle, police siren, gunshot, explosion, and thousands of
other sound effects.

174 Experiment 13

port

Computer
output } '—-'i

Figure 13-1 A computer output port can be used to turn on or off sev-
eral pretuned oscillator circuits, The op-amp combines their output and
drives the speaker.

Experiment 13 175

L 3
+12v[] 1 B[]c
Clock [] 2 15 [] nC
M
Gno[] 3 Moo1ales
c* [j 4 g 13[] A®
o[] s 2 12[]A
4
=[] s o 1 []Jo*
N Figure 13-2 The Mostek MK50240N
e[7 w[]c : :
develops the 13 frequencies equiva-
F[s 9 j F* lent to the equal-tempered scale
from a 2-MHz clock input,

Two types of complex sound generators are currently available. In the
first, external capacitors and resistors establish basic circuit time constants
and control the various waveshapes and tones. This type of circuit is gener-
ally hardwired to produce a particular sound or range of sounds. For exam-
ple, the circuit in Fig. 13-3 produces the sound of a bird chirping, but by
lowering the capacitance at pin 17, a “barking dog’’ sound is produced. Still
other sounds can be produced by rewiring the circuit altogether. For exam-

047 .F

28 27 %6 25 24 23 2

SN76477

e
2N3704 — gv

2N3703

For barking dog, the capacitor at pin 17 1s
changed to 15 pF to increase the frequency of the VCO.

Figure 13-3 Using the TI SN76477 to simulate a chirping bird. (Courtesy
of Texas Instruments Incorporated.)

176 Experiment 13

ple, the wiring needed to produce a gunshot or explosion effect is illustrated
in Fig. 13-4,

The chip shown in both of these circuits is the Texas Instruments
SN76477. This IC incorporates both digital and analog circuitry in one IC
and includes a noise generator, voltage-controlled oscillator, super-low-
frequency oscillator, noise filter, mixer, and envelope control circuit. Its
particular function is programmed by wiring control pins high or low and
connecting various resistor-capacitor combinations to the other pins. The
SN76477 can be controlled by a microcomputer, but it is awkward and re-
quires a substantial number of analog parts (resistors and capacitors).

The SN76488 is similar to the SN'76477 and incorporates an on-chip
audio amplifier capable of driving a small speaker. This eliminates the need
for the two-transistor amplifier in Fig. 13-3 and 13-4.

A second type of complex sound generator is typified by the General
Instrument AY-3-8910 shown in Fig. 13-ba and the TI SN76489A in Fig.
13-5b. These programmable sound generator ICs, like the Intel 8255, are
meant to be controlled by a microcomputer. All their functions are con-

330
kit
0.01uF 5V

28 27 26 25 24 23 22 21 20 19 1B 17 16 15

SN76477

5V

TRIGGER

TFor gun shot RNF = 82 ke, for
explosion RyF = 330 ki2.

39 kQ

Figure 13-4 The circuit in Fig. 13-3 is rewired to produce a gunshot or
explosion effect. Note the number of external resistors and capacitors
required. (Courtesy of Texas Instruments Incorporated.)

LLT

Top view

Vgs (GND) [] 1 N 40 [] Vee (45 V)
ne [2 39 [] Testn
Analog channel 8 [3 38 [_] Analog channel C
Analog channel A l: 4 37 :l DAO
ne [] s 36 [] A1
1087 [] 6 35 [] pA2
1086 [] 7 34 [] pA3
1085 [] 8 33 [] 0Ad
1084 [] 9 32 [_] DAS
1083 [] 10 31 [] pAe
1082 [1 30 [] oAz
o1 [] 12 29 [] 8C1
1080 [13 28 [] 8C2
1047 [] 14 27 [] 8OIR
1086 [15 26 :| Test 2
10a5 [] 16 25 [] A8
10a4 [] 17 24 [] as
10A3 18 23 [] RESET
10A2 Ié 19 22 [] Clock
10a1 [] 20 21 [] 10A0
(a) AY-3.8910

Figure 13-5 Pin diagrams for the
mable complex sound generators.

_/
p2[]1 16 [] Vee (45 V)
p1[] 2 15 [] o3
po[]3 14 [T] Clock
Ready [] 4 13 Joa
WE[]s 12] ps
CE[]s 1n[Jos
AudioOUT [7 10] b7
GnD [8 9]ne
(b) SN76489A

(a) AY-3-8910 and (b) SN76489A program-

178 Experiment 13

trolled via an 8-bit bidirectional data bus connected to a microprocessor.
No rewiring is necessary to change the sounds produced. This is because a
new control word transmitted by the microprocessor accomplishes this
function. In this experiment we will concentrate on the GI AY-3-8910 and
its interface to the Apple.

The GI AY-3-8910

The General Instrument AY-3-8910 programmable sound generator (PSG)
is an extremely powerful integrated circuit. Using a standard color TV
crystal (3.58 MHz) for its time base, each of its three output channels can
be programmed to produce a tone in the range 55 Hz to 224 kHz in 4069
discrete steps! The volume is also programmable and 16 different levels are
possible. The three channels may be programmed to have different tones,
allowing chords and resonance effects to be produced. The chip also contains
a noise generator useful for simulating explosions, gunshots, and percussion
instruments. In addition, the output envelope or waveshape can be controlled
to allow variable attack and decay periods. For example, a ringing bell is
simulated by an abrupt attack time but a longer decay period.

In addition to its sound capabilities, the AY-3-8910 features two pro-
grammable I/O ports that can be used similar to the I/O ports in the 8255,
The AY-3-8912 is identical but features a single I/O port.

Interfacing the AY-3-8910 to the Apple

Note. The AY-3-8910 is a very complex IC. In explaining its operation, let us first
treat it as a ““black box’ and show how it is interfaced to the Apple. After this is under-
stood, we can study its internal register array and how to program these registers.

Figure 13-6 illustrates an interface circuit between the Apple and the
PSG chip. There are several important aspects to this interface.

1. The clock generator. The PSG must receive a TTL-level clock signal at
pin 22 with a frequency between 1 and 2 MHz. The circuit shown de-
rives its time base from a 3.58-MHz TV crystal. The 4013 CMOS flip-
flop provides a +2 function and the frequency applied to pin 22 is
therefore 1.79 MHz.

2. The PSG data bus. All communication with the PSG is through an 8-bit
bidirectional data bus at pins 30 through 37. Port A of the 8255 is
programmed as an output port and data is output to the PSG with the
command

POKE 49392,DATA

6L1

o 22
uz
os [
D4
Ds@i
D.,
97

34 4
3 3
32 2
kL 1
30 40
29 39
28 38
27 37

LB -

Clock 8. 15
1.79 MHz ~J
22
PAD DAD |,
1 1
% A = 3.579545-MHz
35 CRYSTAL
= 3 1
4 4
33
5 -l P
8 _lsj
7 7 |30
A
+5V v
47k 02 a
0.001 uF 5
8
9
BOIR . .
BCHt 29 0
BC2 |0
5V
4
3
38
23
lnsssr

+5 V GND 45V GND
4013 14 7/ 7400 14 7
4069 14 7 7404 14 7
LM386 | 6 2,4 74121 14 7
8255 26 7,35
8910 28,40 | 1

3

Figure 13-6 Interface circuit between the Apple and AY-3-8910 programmable
sound generator. The 74121 one-shot is necessary to meet the write data pulse
width specification.

180

3.

Experiment 13

Name BDIR (pin 27) BC1 (pin 29) Function

Inactive 0 0 Hold. Chip should normally
be held in this state.

Read 0 1 Read data from the PSG.

Write 1 0 Write data to the PSG.

Latch address 1 1 The data on the data bus should
be latched and interpreted as
an internal register address.

Figure 13-7 The four basic functions of the AY-3-8910 PSG as deter-
mined by the binary pattern on the control bus. Control pin BC2 (pin
28) is high for all combinations.

The PSG control bus. The control bus of the PSG determines the mode
of operation of the chip and how it will interpret data on its data bus.
Figure 13-7 lists the four possible modes. Normally, the chip is held in
the inactive mode. When writing data, the address of the internal regis-
ter desired must first be output and the control bus brought momentar-
ily to the latch address state. Any subsequent data writes or reads will
now be directed to or from this latched register. If it is desired to read
or write from a different register, a new address must be output and the
control bus momentarily sequenced through the latch address state.

Timing diagrams for the latch address, write data, and read data modes

are illustrated in Fig. 13-8. When in the write mode care must be taken not
to exceed the write data pulse width (tpw), specified as 10 us by General
Instrument. This is the purpose of the one-shot connected to PC1 in Fig.
13-6. When PC1 goes high, the one-shot output will pulse high for approxi-
mately 3 us (within the tpy specification). Using BASIC it is not possible to
pulse the PC1 line from low to high to low in less than 3 to 5 ms (3000 to
5000 ps).

Example 13-1

What BASIC command must be given to cause the PSG control bus to sequence
through each of the four modes listed in Fig. 13-7?

Solution Because the 8255 is memory mapped at ports 49392 through 49395,
and the PSG control bus is connected to port C, all commands are of the form

POKE 49394 XX

where port C corresponds to address 49394. The inactive state is entered with the
command

POKE 49394,0 :REM INACTIVE

BUS
CONTROL DON'T CARE % Aseneas: W4 DON'T CARE
DECODE
—— tas — tAH [
ViH
A9, A8, PREVIOUS .
DA7--DAO STATE ALORESS
Vie
77} BUS CONTROL *ANY COMBINATION OF BDIR, BC2, BC1
4 SIGNALS CHANGING WHICH DECODE "LATCH ADDRESS"

——>l le— 50 ns MAX.. INCLUDING SKEW.

**REFER TO PARAGRAPH 2.1.1
FOR A DESCRIPTION OF
“VALID" PSG ADDRESSING.

BDIR BC2 BC1
0 0 1

or 1 0 0
or 1 1 1

WRITE DATA TV 1IN (G 05000 s

BUS

CONTROL DON'T CARE WRITE TO PSG* DON'T CARE
DECODE
| tos (#—— low —— lon [*—
Vin
PREVIOUS

DAT7--DAD STATE DATA

Vi
BUS CONTROL *“WRITE TO PSG"-
&4 SIGNALS CHANGING

.

50 ns MAX.,

INCLUDING SKEW.

BDIR BC2 BC1
1 1 o

READ DATA T HVI N G s s s ey

BUS
CONTROL DON'T CARE READ FROM PSG* INACTIVE
DECODE
— {(— p— g~
Vou
PREVIOUS READ DATA
DA7--DAO STATE VALID TRISTATE
Voo
P BUS CONTROL L &
,Z READ FROM PSG™.

4

SIGNALS CHANGING
50 ns MAX.,

INCLUDING SKEW

BDIR BC2 BC1
0 1 1

Figure 13-8 Timing relationship for the AY-3-8910 PSG. (Courtesy of
General Instrument Corporation.)

182 Experiment 13

The write mode requires the command
POKE 49394,2 :REM WRITE
The latch address mode requires the command

POKE 49394,3 :REM LATCH ADDRESS

Notice that for this last case PCO enables the one-shot pulse to pass to the
BC1 input through the 7400 and both pins 27 and 29 pulse high as required.

It would appear that the read mode could be entered with the command
POKE 49394,1. However, this will cause PC1 to be low, disabling the one-shot,
and preventing pin 29 (BC1) from pulsing high as required. The circuit as shown
cannot be used in the read mode. Figure 13-9 illustrates the modification needed
to enable this mode of operation, In this experiment we will only be testing the
sound generator portion of the PSG, not its built-in I/O ports. Therefore, the read
mode is not necessary.

+5V w——] 2408
14 11 10 !
—] 3 BDIR
6 2
Q

7404

PC1 5 D\,B 3
PCO 3 Dc 4 I 4

74121 7408

IC +5V GND
7404 14 7
74121 14 7
7408 14 7

Figure 13-9 Modifications to the interface circuit in Fig. 13-6 to allow
all four modes of operation on the control bus.

Experiment 13 183
PSG Software

Controlling the AY-3-8910 from BASIC requires that a specific sequence be
followed to properly address and write into a desired register. Refer to the
waveforms in Fig. 13-8 for the following sequence:

1. Output the register address.

Set the control lines to latch address (BDIR=1 BC1=1).
Set the control lines to inactive (BDIR=0 BC1=0).
Output the data for the selected register.

Set the control lines to write data (BDIR=1 BC1=0).
Set the control lines to inactive (BDIR=0 BC1=0).

2 gt =

Each time data is to be written to the PSG, the sequence outlined above
must be followed. In addition, the control lines must not stay in the write
data state for longer than 10 us (refer to the discussion on the control bus
in the preceding section).

Example 13-2

Write a BASIC program that will input the desired register and data from the key-
board and output this information to the PSG using the proper sequence. Assume
the hardware configuration shown in Fig. 13-6.

Solution

10 HOME

20 POKE 49395,128 :REM INIT PPI AND MAKE ALL PORTS OUTPUTS
30 INPUT “REGISTER AND DATA ";R,D

35 REM LATCH ADDRESS

40 POKE 49392,R: POKE 49394,3: POKE 49394,0

45 REM NOW WRITE DATA

50 POKE 49392,D: POKE 49394,2: POKE 49394,0

60 GOTO 30

Notice how the program follows the six steps listed previously. The PSG data
bus is connected to port 49392 (8255 port A) and the control bus is controlled by
bits PCO and PC1 of port 49394 (8255 port C).

Now that the hardware is functional, all that remains is to determine
what data to write to which register to make the PSG sound off! This is the
hard part, but also the fun part!

Table 13-1 lists the functions of all 16 registers within the PSG. Seven
distinct functions exist (actually only six functions control sound genera-
tion as registers 14 and 15 correspond to the two programmable I/O ports).

As Table 13-1 indicates, the PSG can be operated in two specific modes.
In the first, called the envelope mode, register 13 controls the output ampli-

184 Experiment 13

TABLE 13-1 THE 16 REGISTERS OF THE AY-3.8910 PSG?

Active in:
Register Envelope Fixed-amplitude
numbers Function mode mode
0-5 Controls the tone on channels A, B, Yes Yes
and C. Can be set between 55 Hz
and 224 kHz.
6 Noise generator frequency. This fre- Yes Yes
quency can be varied between 3.6
and 112 kHz,
7 Mixer control. This register allows Yes Yes
any combination of channels to be
enabled for noise and/or tones.
8-10 Amplitude control. The amplitude No Yes
of each channel can be set to one
of 16 levels.
11,12 Envelope period control. These regis- Yes No

ters control the frequency or period
of the output waveform in the en-
velope mode. They allow control of
the attack and decay times.
13 Envelope shape. The actual envelope Yes No

shape is set by the value in this
register, Refer to Fig. 13-10 for
specific waveshapes.

14, 15 I/O port data store Yes Yes

“Frequencies specified assume a 1.79-MHz clock frequency.

tude and therefore waveshape. Figure 13-10 illustrates the various wave-
shapes possible. Notice that only 4 bits of this register are used (B0 through
B3). Control of the waveshape allows for various sound effects. For example,
writing a 0 to register 13 with the tone generator enabled and a long decay
time will simulate a ringing bell.

The second mode of operation is called the fixed-amplitude mode. In
this mode, the amplitude of each channel is set by registers 8 through 10 to
one of 16 levels., No control of the waveshape is possible.

With either mode of operation, the chip can be enabled to produce a
tone or noise signal or both on any of its three channels. Register 7 controls
the mixing of these combinations.

Although I could try to describe the operation of each individual regis-
ter, the best way to understand the capabilities of this IC is to assemble the
test circuit in Fig. 13-6 and experiment with it yourself. Figure 13-11 sum-
marizes the function of all 16 registers and is obtained from the General
Instrument Programmable Sound Generator Data Manual. This manual is a

Experiment 13 185

ENVELOPE SHAPE/CYCLE CONTROL mss——

R13 BITS
B3 B2 B1 BO

GRAPHIC REPRESENTATION
OF ENVELOPE GENERATOR
OUTPUT E3 E2 E1 EO.

mCZ--Z00
XOP-->
m-APZIm-rp»
orox

—&= EP P.— EP IS THE ENVELOPE PERIOD
(DURATION OF ONE CYCLE)

Figure 13-10 Ten separate waveshapes are possible when operating the
AY-3-8910 PSG in the envelope control mode. Bits BO through B3 of
register 13 control this selection. (Courtesy of General Instrument
Corporation.)

186 Experiment 13

BIT
B7 B6 BS B4 B3 B2 B1 BO
REGISTER

RO 8-BIT Fine Tune A
Channel A Tone Period

R1 G 4-BIT Coarse Tune A

R2 8-BIT Fine Tune B

= Channel B Tone Period V//////////////M TG TR

R4 8-BIT Fine Tune C

m Channel C Tone Period //J///// ////A BT Comss T &
R6 | Noise Period w7222 5-BIT Period Control

IN!OUT Noise Tone
lOEI 1I0A C B A C B A

R8 | ChamnelAAmpliude 20004 wmx| b | 2 [u | w
Ro | channelBAmpiitude [2204 mx| | L [b | w
R10 | Channel CAmpliude o222 wm*| 3 [L2 | v | w

R7 Enable

R11 Envel Period B-BIT Fine Tune E
nvelope Perio
R12 i 8-BIT Coarse Tune E
R13 | Envelope Shape/Cycle 22220] conT| atT.| ALT [HOLD
R14 1/0 Port A Data Store 8-BIT PARALLEL /O on Port A
R15 1/0 Port B Data Store 8-BIT PARALLEL I/O Port B
f !
Tone period: L ‘-G—CT%:: TPy,p= 256CT + FT
‘ L CT = coarse tune register {1, 3, 5)

FT = fine tune register (0, 2, 4)

clock

Noise period: fy = — NP,g= decimal equivalent of
16NPyq register 6
Icl(}ck
Envelope period: fe = EP,g= 256CT + FT
256EP,, :
CT = coarse tune register (12)

FT = fine tune register {11)

* Mode bit: M = 1 for fixed amplitude mode
M = 0 for envelope generator mode

Figure 13-11 Summary of all 16 AY-3-8910 PSG register functions.
(Courtesy of General Instrument Corporation.)

Experiment 13 187

necessity for working with this chip and can be obtained by writing to Gen-
eral Instrument Corp., Microelectronics Division, 600 W. John Street, Hicks-
ville, NY 11802.

PROCEDURE

Step 1. Refer to Fig. 13-6 and carefully wire this circuit on your
breadboard. This is a complex circuit requiring eight ICs, so take your time
to be sure each connection is correct. If you have an audio amplifier, the
LM386 portion of the interface can be skipped and the output from pins 3,
4, and 38 across the 1-k{2 resistor connected to your amplifier. Take care
when handling the AY-3-8910, as it is a static-sensitive MOS device.

Step 2. Test your hardware by running the program given in Example
13-2. Type the following responses to the “REGISTER AND DATA”

prompt:
1.1 Set coarse tone for channel A to 1.
7,62 Enable tone on channel A only.
8,10 Set the volume for channel A to 10.

After typing 8,10 you should hear a low-pitched tone. Try changing the
volume by writing new data to register 8. Change the tone by writing to
register 1.

Question 13-1. What response is needed to set the tone to its lowest
value and the volume to maximum?

Question 13-2. Type

1,0
0,100
Explain the result.
Step 3. Type
2,101 Write 101 to channel B fine tune tone register.
7,60 Enable both channels A and B.
8,10 Set the volume for channel A to 10.
9,10 Set the volume for channel B to 10.

Question 13-3. Explain the effect produced in step 3.

Step 4. Reset the PSG by touching pin 23 to ground. With the test
program still running type:

7.7 Enable noise on all three channels.
8,10 Set the volume of all three channels to 10.
9,10

10,10

188 Experiment 13

You should hear a rushing sound. Try writing numbers to register 6 between
0 and 31. This will change the noise generator frequency.

Step 5. With the pattern of step 4 established, try the following:

6,15 Set the noise frequency to midvalue.

8,16 Enable the envelope generator mode for all three channels.
9,16

10,16

12,16 Set a short decay time.

13,0 Set the envelope decay for one cycle only.

After typing 13,0 you should hear a single “‘gunshot!”
Step 6. Change the registers by typing:

6,0 Set the noise frequency to its lowest value.
12,56 Set a longer decay time.
13,0 Set the envelope decay for one cycle only.

You should hear the sound of an ““explosion.”

Question 13-4. With a small change the PSG will now produce the
sound of a ringing bell. What changes are needed?

Step 7. Modify the answer to Question 13-4 by typing 13,8 in place
of 13,0. The bell should now ring on its own (refer to Fig. 13-10 to see why).
Changing the data written to register 12 will change the delay time.

Step 8. Write a program to simulate a whistling bomb sound effect
using the explosion produced in step 6. A solution is provided at the end of
this experiment.

Step 9. The following program converts the Apple into an electronic
organ. Keys A through K correspond to one consecutive octave of notes with
C% at W, D¥ at E, F¥ at T, G¥ at Y, and A% at U. The computer will save
your notes (and mistakes!) and display the current number of notes in mem-
ory on the screen. The offset allows a vibrato effect.

10 HOME: DIM D(200),N$(500)
20 PRINT “ APPLE AY-3-8910 ELECTRONIC ORGAN"

30 R=7: D=62: GOSUB 1000 :REM ENABLE TONE FOR A
40 R=8: D=10: GOSUB 1000 :REM VOLUME ON A TO 10
50 FOR K=1 TO 25 :REM THIS IS A SHORT TUNE
60 R=0

70 FOR D=48 TO 54: GOSUB 1000: NEXT D

80 FOR D=54 TO 48: GOSUB 1000: NEXT D

90 NEXTK

100 READ N1,N2 :REM GET ASCII KEY &
TONE CODE

Experiment 13 189

110
120

130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
1000
1010
1020
1030
3000
3010
3020
3030
3040
3050
3060
3070
3080

IF N1=999 THEN 140

D(N1)=N2 :REM ASSIGN TONE CODE TO
ARRAY

GOTO 100

POKE 49395,128 :REM INIT PPI

R=7: D=63: GOSUB 1000 :REM DISABLE ALL CHANNELS

VTAB(3)

INPUT “ENTER OFFSET OR 0: ”;BOFF

VTAB(5)

INPUT “FIXED OR ENVELOPE MODE: ";V$

PRINT

IF LEFT$(V$,1)=“F" THEN 280

D=16: R=8: GOSUB 1000 :REM ENABLE ENVELOPE MODE

R=9: GOSUB 1000

VTAB(7)

INPUT “ENTER DECAY VALUE (0-255): ";DECAY
R=12: D=DECAY: GOSUB 1000

GOTO 330

VTAB(7): INPUT “WHAT VOLUME LEVEL (0-15): "V

R=8: D=V: GOSUB 1000

R=9: GOSUB 1000

R=0: D=0: GOSUB 1000 :REM BE SURE TONE IS OFF

R=2: GOSUB 1000

VTAB(9)

PRINT “I WILL SAVE YOUR NOTES.”

PRINT: PRINT “TYPE Q TO QUIT.”

R=7: D=60: GOSUB 1000 :REM ENABLE TONE ON A AND B
GET N$

IF N$=“Q” THEN 3000

N$(I)=N$: I=I+1: VTAB(22): HTAB(36): PRINT I;

N=ASC(N$)
R=0:D=D(N): GOSUB 1000 :REM PLAY TONE ON A

R=2: D=D(N)-BOFF: GOSUB 1000 :REM PLAY OFFSET ON B
R=13: D=0: GOSUB 1000 :REM DECAY ONE CYCLE ONLY
GOTO 370

IF D>255 OR D<0 THEN D=0

POKE 49392 R: POKE 49394,3: POKE 49394,0
POKE 49392,D: POKE 49394,2: POKE 49394,0
RETURN

PRINT

INPUT “ENTER THE TEMPO (0-500): ;T

FOR J=0 TO I-1

N=ASC(NS$(J))

R=0: D=D(N): GOSUB 1000 :REM PLAY NOTE ON A

R=2: D=D(N)-BOFF: GOSUB 1000 :REM PLAY OFFSET NOTE
R=13: D=0: GOSUB 1000 :REM DECAY ONE CYCLE ONLY
FOR K=1 TO T: NEXT K :REM TEMPO

NEXT J

190 Experiment 13

3090 FOR K=1 TO 1000: NEXT K :REM ALLOW LAST NOTE TO DIE
3100 VTAB(4): GOTO 150

4000 DATA 65,214,87,202,83,190,69,180,68,170,70,160,84,151

4010 DATA 71,143,89,135,72,127,85,120,74,113,75,107,999,999

Step 10. Reread the objectives listed at the beginning of this experi-
ment. If these points are not clear to you, restudy the ‘““Discussion” and
“Procedure” sections.

SOLUTIONS TO QUESTIONS

13-1
1,15 Lowest tone frequency.
8,15 Highest volume,

13-2. The coarse tone register for channel A is set to 0 and the fine tune register is set to
100. The new tone produced is of a much higher frequency.
13-3. Because the channel A tone register (register 0) = 100, but the channel B tone =101
(register 2), a resonance effect is heard.
13-4
0,100 Set all three channels for a high-pitched tone.
2,100
4,100
7,56 Enable tone only for channels A to C.
13,0 One decay cycle only.

Step 8 (solution)

10 HOME

20 POKE 49395,128 :REM INIT PPI

30 R=7:D=62: GOSUB 500 :REM ENABLE TONE ON A ONLY

40 R=8:D=15: GOSUB 500 :REM MAXIMUM VOLUME

50 FOR J=48 TO 192 :REM SWEEP EFFECT

60 R=0:D=dJ: GOSUB 500

70 NEXTJ

80 R=6:D=15: GOSUB 500 :REM SET NOISE TO MIDVALUE

90 R=7:D=7: GOSUB 500 :REM ENABLE NOISE ON ALL CHANNELS
100 R=8:D=16: GOSUB 500 :REM ENVELOPE MODE

110 R=9: GOSUB 500
120 R=10: GOSUB 500

130 R=12:D=56: GOSUB 500 :REM TIME DELAY FOR EXPLOSION
140 R=13: D=0: GOSUB 500 :REM DECAY ONE CYCLE ONLY
150 INPUT A$:REM WAIT TO DO IT AGAIN

160 GOTO 30

500 POKE 49392,R: POKE 49394,3: POKE 49394,0
510 POKE 49392,D: POKE 49394,2: POKE 49394,0
520 RETURN

APPENDIX A

WIRING THE VECTOR CARD

Interfacing to the Apple computer is accomplished via the eight peripheral
connectors located across the rear of the main circuit board (motherboard).
These eight connectors are also referred to as slots 0 through 7.

Access to these connectors is obtained by removing the computer top
cover. Any interconnecting cables are routed through special openings in the
rear of the case.

SIGNAL DESCRIPTIONS

The signal descriptions of each of the 50 pins of a typical peripheral con-
nector are given in Fig. A-1. Interfacing to these 50 pins, we can design
digital circuits whose function will be controlled by programs running on
the Apple.

For the experiments in this book, access to these pins is obtained by
plugging a specially wired Vector 4609 plugboard into one of the slot con-
nectors. The outline of such a card is shown in Fig. A-2 and two photos are
provided in Fig. I-2a and b. The Vector plugboard mates with the slot con-
nector and also provides a mate for a 40-pin card edge connector at its rear.
This can be seen in Fig. A-2. As described in Part 1, a 40-conductor ribbon
cable with card edge connector on one end and socket connector on the
other is used to bring these signals to the breadboard.

Although the plugboard can provide only 40 connections, this turns
out to be more than adequate for the purposes of this book. Jumper wires
are used to wire the slot connector end of the card to the 40-pin card edge
connector end.

Figure A-3 lists the connections that must be made between the two
connector receptacles and summarizes the resulting pinning at the socket
connector end of the ribbon cable.

191

192 Appendix A

O
|
GND 26 | | 25 +5V
DMAIN 27 (T 33| 24 DMAOUT
INTIN 28 | (3|23 INTOUT
NMI 20 | 2| 22 DMA
JRQ 30| &2| 21 RDY
RES 37| 3|20 17O STROBE
INH 32 |C] (3] 19 N.C.
-12V 33 (] (3] 18 R/W
-5V 34 |C]]| 17 A15
N.C. 35| (] 16 A14
™ 36 ||| 15 A13
Q3 37 |3 14 A2
1 38 |C|3]| 13 A1
USER1 39 |3 12 A10
$0 40 |CHY3| 17 A9
DEVICE SELECT 47 (] @] 10 A8
D7 42| 1|9 A7
De 43| @] 8 As
D5 44 (3 8|7 A5
D4 45 |] | 6 A4
D3 46 |C] 8|5 A3
D2 47| (3] 4 A2
gé jg E g g 2(1] Figure A-1 Pin connections for a
+12v s50|cd &| + WOSELECT typical peripheral connector on
= the Apple motherboard. (Reprinted
from the Apple II Reference Man-
O ual with the permission of Apple

Computer, Inc.)

Do not use
this row _l
VECTOR4503 COMPONENT SIDE = = g S IR 2 o0
. o T = A . . e s ote pin s » R 8w These fingers
; o «= mate with a
~ 40-pin card
edge
connector

Ags

These fingers mate
with a slot connector

Figure A-2 Qutline of the Vector 4609 plugbhoard. The component side is shown
with one of the typical jumper wire connections highlighted (pin 50 to pin 21).

Appendix A 193
Description Apple pin number Vector pin number

Data bus DO 49 22

Data bus D1 48 23

Data bus D2 47 24

Data bus D3 46 256

Data bus D4 45 26

Data bus D5 44 27

Data bus D6 43 28

Data bus D7 42 29

+5V 25 1

+12V 50 21

-12V 33 30

-5V 34 31

Ground 26 40

Address bus A0 2 17

Address bus Al 3 16

Address bus A2 4 15

Address bus A3 5 14

Address bus A4 6 13

Address bus A5 7 12

Address bus A6 8 11

Address bus A7 9 10

Address bus A8 10 9

Address bus A9 11 8

Address bus A10 12 7

Address bus A1l 13 6

Address bus A12 14 5

Address bus A13 15 4

Address bus A14 16 3

Address bus A15 17 2

Device select 41 39

R/W 18 38

0o 40 37

(a)
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
- — — A0 Al A2 A3 A4 A5 A6 AT AB A9 A10 All Al12 A13 Al4 Al5 +5V
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
+12V DO D1 D2 D3 D4 D5 D6 D7 -12V -5V — — — — — &0 R/W DS GND
(b)

Figure A-3 (a) Pin number correspondence between the Appie and the Vector
plugboard. (b) Summary chart handy for locating pin numbers when doing the
experiments,

194 Appendix A

WIRING THE CARD

Before wiring the Vector card, please note the following.

1. Orient the card with the component side up.

2. Use solid No. 22 or 24 gauge insulated wire.

3. Use Fig. A-3 to determine the source and destination of each wire.

4. Do not solder the connections until all wires have been mounted on the
board. Mount these wires as neatly as possible.

5. The +5V and ground connections require no jumper wires.

6. Once all connections are made (but not soldered), connect the ribbon

cable to the card. Now using an ohmmeter, check the socket connector
end of the cable for proper continuity to each pin of the peripheral
connector. If you do not have an ohmmeter, carefully check each con-
nection to be sure that it is correct.

7. Solder all connections.

Once wired, and with the ribbon cable attached, mount the card in the
Apple. Refer to Fig. I-2a and notice that the cable should be connected so
as to exit to the left of the Vector card when viewing the computer from the
front. Route the excess cable length through one of the openings in the rear
of the cabinet.

The socket connector end of the cable should then be secured to your
breadboard. Steps 1 through 3 of Experiment 1 detail the final steps neces-
sary to make your breadboard “‘operational.”

APPENDIX B

PARTS LIST

Tables B-1 through B-4 list all the parts required to perform the 13 experi-
ments in this book. The following information is supplied:

Part number

Description of the part

Quantity needed to do any one experiment

Supplier code

RS Radio Shack

J Jameco Electronics, 1355 Shoreway Road, Belmont, CA 94002

D Digi-Key Corp., P.O. Box 677, Thief River Falls, MN 56701

P Priority One Electronics, 9161 Deering Avenue, Chatsworth, CA
91311

B R e

Most of the parts are noncritical and slight variations should present no
problems in the experiments (for example, substituting a 330-82 resistor for
a 300-L2 resistor). Also, the 7T4LS series of TTL gates may be substituted for
any of the standard 7400 part numbers given. If you are not sure about a
particular parts description, refer to the text for that experiment, as it often
contains more detail about the components required. A good idea would be
to write to the companies listed and request a parts catalog. Many other
suppliers also exist and you should consult any of the popular hobbyist
magazines.

195

TABLE B-1 PARTS LIST: INTEGRATED CIRCUITS

961

Number per experiment

Part

number Description Quantity Supplier 1234567891011 12 13
7400 Quad NAND gates 1 RS JDP 1 1 ¥
7402 Quad NOR gates 1 RS JDP il
7404 Hex inverters 2 RSJDP 1 1211111 1 1 1
7420 Dual NAND gates 1 JDP 1
7427 Triple NOR gates 1 JDP 1
7432 Quad OR gates 1 RSJDP 1 1
7476 Dual JK flip-flop 1 JDP 11 11
7485 4-bit comparator 1 JDP 1
74100 8-bit latch 1 J 1 1
74121 One-shot 1 JDP 1
7415244 Tri-state buffers 1 RS JDP 1
4013 Dual flip-flop (CMOS) 1 RSJDP 1
4069 Hex inverters (CMOS) 1 RSJDEP 1
8255 PPI 1 JDP 1 4 [U | 1 1
6820 PIA 1 J P 1
6850 ACIA 1 J P 1
MC1408 8-bit DAC 1 J P 1
AY-3-8910 PSG 1 see Exp. 13 1
TIL111 Opto-coupler 1 RS J 1

or 4N25
ADCO0809 8-bit ADC 1 J D 1
LM334 Temperature sensor 1 RS J D 1 1
LM339 Quad comparators) RSJDP 1
LM386 Audio amplifier 1 RS J D 1 1
LM555 Timer 1 RSJDP 1
LMb67 Tone decoder 1 RS J D 1
LM1458 Dual op-amp 1 RSJDP 11

Appendix B

TABLE B-2 PARTS LIST: RESISTORS

197

Number per experiment

Description Quantity Supplier 1234567891011 12 13
68-£2 resistor 1 RSJDP 1
100-£2 resistor 1 RSJDP i
150-§2 resistor g RSJDP 1
180-£2 resistor 8 RS JDP 118 66 1 2 1
220-§2 resistor 1 RSJDP 11 1
270-§2 resistor 1 RSJDP 1
300-£2 resistor 1 dDP 1
330-£2 resistor 1 RSJDP 1
470-82 resistor 1 RSJDP 1
1-k{2 resistor 10 RSJDP 822322 3101 1
4.7-k2 resistor 2 RSJDP 2
10-k£2 resistor 2 RS JDP 2 1
330-k{2 resistor i JDP 1
10-M¢ resistor 1 RS J P 1
10-k{2 potentiometer 2 RSJDP 2211
50-k§2 potentiometer 1 RSJDP 1 1
Photo cell 1 RS 1
TABLE B-3 PARTS LIST: CAPACITORS
Number per experiment
Description Quantity Supplier 1234567891011 12 13
20-pF capacitor 1 J D i
100-pF capacitor 1 RS J D 1
300-pF capacitor 1 J D 1
680-pF capacitor 1 Jd D 1
0.001-uF capacitor 1 RS J D 1
0.0047-uF capacitor 1 RS J D 1
0.005-uF capacitor : RS J D 1
0.01-uF capacitor 1 RS J D 1
0.033-uF capacitor 1 J D 1
0.05-uF capacitor 1 RS J D 1
0.1-uF capacitor 1 RS J D 1 1
10-uF capacitor 3 RS J D 1111111213 1 1 3
22-uF capacitor 1 RS J D 1
100-uF capacitor 1 RS J D 1 ¥

198 Appendix B

TABLE B4 PARTS LIST: MISCELLANEOUS

Number per experiment

Part Deseription Quantity Supplier 1234567891011 12 13
LED Red 8 RSJDP 118 22 A7 1 1
LED Green 2 RSJDP 2 92 1
LED Yellow 2 RSJDP 2 2
Switch PBNO 2 RS JD 22 2
Switch Magnetic 1 RS 11
Switch 8-position DIP 1 RS J P 11 1
Buzzer Piezoelectric 1 RS J D 1
Transistor npn 1 RS JDP p]

Transducer 40 kHz 2 see Exp. 8 2
Relay SPDT DIP 1 RS J D |
Crystal 3.579545 MHz 1 RSJDP 1
Diode General purpose 1 RS JDP 1
Diode 6.2-V zener 1 RSJDP 1
(optional)
Display Seven-segment 1 RS JDP 1

(common anode)

APPENDIX C

BINARY AND DECIMAL NUMBERS

All digital computers work with electrical circuits that can be considered
ON or OFF, Usually, this is referred to as a 1 or a 0, or a high and a low.
Because of this ON-OFF nature, the binary number system is used to
represent data and addresses within the computer.

Just as decimal is a base fen number system, binary is a base two
number system. Each binary digit or bit has a value or weight that is a
factor of 2 higher than the digit to its right. The value of any digit is found
as the base (2) raised to the power corresponding to its position from the
right. The first position is considered zero. For example,

1101=1X23 +1X22+0X2' +1X2°
= 8 + 4 + 0 + 1 =13
Binary numbers are converted to their decimal equivalents by simply
adding the appropriate binary weights. Table C-1 lists the binary value for
each of the first 16-bit positions. Notice that when moving from right to

left, each bit is a factor of 2 higher than its rightmost neighbor.
The Apple uses 8-bit words and some typical examples are:

00001011 =8+2+1=11,,
00100110 = 32 + 4 + 2 = 38,,

11000111 =128 + 64 + 4+ 2 +1 =199,

11111111 =128+64+32+16+8+4+2+1 = 255,

199

200

TABLE C-1 POWERS OF 2 FOR THE FIRST 16 BIT POSITIONS

[P

e ————— o
- <
M mmm e e —————]
||||||||||||| w0
M -
|||||||||||||||||||||||| (]
W= =]
|||||||||||||||||||||||||||||||| -+
° ©
P mmc e crmr e e e, e e e - - -
o
(-]
Lo R —
0
-
B e e i B R B N
=t o
—
[e0]
e ~
- [=]
3]
[de]
B s s e =)
— o
=
o™
s =]
i —
-]
=
<]
o ™
i ©
—
2
|- T—
i 21
ae] +
=
=
o
3
g 3
= R=
w. @
="
-
m

Appendix C 201

When converting from decimal to binary, the highest remaining power
of 2 is repeatedly subtracted from the decimal number. For example,

2*y -18 (highest power of 2 in 25)
9

(2*) -8 (highest power of 2 in 9)
1

@) -1 (highest power of 2in 1)
0

The answer is then the binary number corresponding to 2% (16) + 23 (8) +
2%(1) or 11001. Other examples are:

58 = 25(32) + 2%(16) + 23(8) + 2!(2) = 111010
147 =27(128) + 2% (16) + 2! (2) + 2°(1) = 10010011
250 = 27(128) + 25(64) + 25(32) + 2*(16) + 23(8) + 2! (2) = 11111010

APPENDIX D

BASIC LOGIC GATES

There are only three basic logic functions used in any digital system. These
are the AND, OR, and NOT functions. Schematically these are represented
as logic gates and illustrated in Fig. D-1.

The AND gate requires A AND B to be high in order for the output C
to be high. The OR gate requires A OR B to be high in order for its output
C to be high. The NOT gate or inverter simply inverts the value of its input:
a1l in yields a 0 out, and a 0 in yields a 1 out.

Although the AND and OR gates in Fig. D-1 have only two inputs (A
and B), logic gates with more than two inputs are also available.

Two common variations of the AND and OR gate are the NAND
(NOT-AND) and NOR (NOT-OR) gates. These are illustrated in Fig. D-2.
From their truth tables (and logic symbols) it can readily be seen that these
gates simply provide the inverted output of their AND and OR gate equiva-
lents. Thus a NAND gate has a 0 output when inputs A AND B are high,
while the NOR gate provides a 0 output when inputs A OR B are high.

Although the truth tables for the various logic gates can (and probably
should) be memorized, their schematic symbols also suggest a word inter-
pretation. Refer to Fig. D-3a for the AND gate. If we use the convention
that a circle represents an inversion or low (0) logic level, then the standard
AND gate symbol says in words: When inputs A and B are high, output C
will be high. However, by referring to the AND gate truth table in Fig. D-1a,
we can also see that any time A OR B is a 0, the output is also a 0. This sug-
gests the second symbol drawn in Fig. D-3a. The word interpretation is:
When A OR B is low, the output C is low. Note how the small circles are
used and interpreted for this alternate AND gate symbol. Figures D-3b-(d)
illustrate the corresponding interpretation for the OR, NAND, and NOR
gates and their alternate symbols.

You might wonder why these other logic symbols are used. The answer

202

Appendix D 203

(a)

AlB
A B
{c) {>° ? :) Figure D-1 The three basic logic

gates and their truth tables: (a)
NOT AND; (b) OR; (¢) NOT,

is that often logic signals are active low (go to a 0 level when they are pres-
ent) and we may need to perform any of the various logic functions on these
active low signals. Figure D-4 illustrates this case. In this figure we need to
determine when two active low signals (note the LI~ symbol), SEL219
AND 1IN, are both low and then produce an active high output signal
(IN 219).

Although the circuits in parts a and b of Fig. D-4 are equivalent and
both use the same two-input NOR gate, Fig. D-4a is much easier to under-
stand in terms of what the circuit is doing than is the equivalent circuit in
Fig. D-4b.

A
C
;DO— Figure D-2 Truth tables and logic
symbols for the (a) NAND and

(b) NOR gates.

204

B
T —

(a)

A
B

(b)

o

C
A

. s
B

C

(c)

T s

{d)

L @
Y

H’g
'

Figure D-3 The primary and alternate (active low) logic symbols are
shown for (a) the AND gate, (b) the OR gate, (c) the NAND gate, and
(d) the NOR gate.

T —0 I
i IN219
-.r ——g

0

(a)

SEL219
S
i IN219

(b)

Figure D-4 A NOR gate is used to
detect when SEL219 AND IN are
both low and generate an active
high output pulse. Both circuits
(a) and (b) are equivalent, but
only (a) gives the proper word
interpretation.

APPENDIX E

JK FLIP-FLOP

A flip-flop is a logic element that is used to store or remember a logic condi-
tion. Typically, a clock signal is applied to the flip-flop and at the instant
this clock occurs, the flip-flop latches the binary signal it is monitoring.

There are several different types of flip-flops, but the most versatile is
the JK type. The symbol for this flip-flop is illustrated in Fig. E-1. There are
two sets of inputs, referred to as the asynchronous (PRESET and RESET)
and synchronous (J and K) inputs.

The flip-flop responds to the asynchronous inputs immediately, inde-
pendent of the clock signal. Studying the first three entries in the truth
table, when the PRESET input is low, the Q output is sef or high. Similarly,
when the RESET input is low, the @ output is reset or low. Because it is not
logical to try to set and reset the flip-flop at the same time, the PRESET and
RESET inputs should not both be low at the same instant.

The synchronous inputs, J and K, are used only when the PRESET and
RESET inputs are both high. This corresponds to the last four entries in the
table. Using J and K, the flip-flop output will change only when the clock

Asynchronous Synchronous
inputs inputs Output
{LPreset Preset Reset | K ¢ T
—] Qbl———m 0 1 X X 1
1 0 X X 0
——>Clock 0 0 X X Not allowed
1 1 0 0 No change
K a 1 1 4] 1 0
1 1 1 0 1
T Reset 1 1 1 1 Toggle

Figure E-1 Truth table and logic symbol for the JK flip-flop.

205

206 Appendix E

1

rLPreset /
+5V | | ‘ I
1 | 1 | |
J aQ
180 &2 —1 5 —> 1 |
i | | |
LI —p> Clock clock —] 1~ U LJ
aad | | |
1 —K apF— : [| .
: | | |
TReSEt | LEDON | LEDOFF | LEDON | LED OFF
| | | I
1
(a)

Preset | |

Clock U] U U][J
T
!
|
|
|

|
|
Reset ; L
|
| |
| L i
J | I I X I | }
1
, !
¢
!
! ! bl sl
- i) 2
3 g/ b gl € = 5;
o e | 2l 21 o 2|]
a Ll @ | o | Zi '_1 @ |
Q 1 L I |

(b)

Figure E-2 In (a) the flip-flop is used to detect very short pulses; in
(b) it responds to its J and K inputs when the falling edge of the clock
pulse occurs.

pulse occurs. Depending on the logic levels of J and K, the Q output may do
nothing (no change state), reset (Q = 0), set (Q = 1), or toggle (switch to the
opposite state).

In this book the JK flip-flop is often used to catch pulses that are too
short to be observed normally (1 to 2 us long). Figure E-2a illustrates the
technique. With J and K high, the flip-flop will toggle each time the pulse
arrives. When @ is low, the LED will light. In this way we can observe each
time a pulse occurs even though the pulse itself is only 1 us wide.

Finally, Fig. E-2b illustrates the general case where all the inputs are
changing in time and the flip-flop responds accordingly.

APPENDIX F

IF THE EXPERIMENT DOESN'T WORK

One of Murphy’s laws states: If anything can go wrong, it will. As you do the
experiments in this book you may decide to rewrite this law to say: The
more wires you plug into a logic breadboard, the less chance the circuit has
of working! This leads us to Rule 1 when working with digital circuits:

Rule 1. Keep calm.

It is surprising how many of yesterday’s major problems can be solved
the next morning in five minutes with a cool head. When you find yourself
getting agitated, take a break. Come back to the circuit later. More often
than not, you will fix your problem in a few minutes,

Rule 2. Keep it neat.

This has to be the cardinal rule for wiring digital circuits. Don’t use a
6-inch length of wire to connect two points that really require only 4 inch
of wire. If you don’t heed this rule, you’ll soon have a ‘“rat’s nest” of wires
that is impossible to trace and debug. Problems in this kind of circuit almost
always require complete rewiring of the circuit.

Rule 3. Understand the circuit function,

It is very hard to troubleshoot something if you don’t understand how
it works in the first place. If you don’t know that two 1’s into a NAND gate
cause a 0 out, you won’t be able to recognize a bad chip if you see one. This
rule may require you to sit down and study the circuit for awhile. But that’s
OK. This also helps you to follow Rule 1.

207

208 Appendix F
Rule 4. TIsolate the problem.

This is the key to all good troubleshooting. Many of the circuits and
programs in this book get quite complicated, and when you throw in the
computer control function, a number of different problems can occur. A
first step is to isolate the problem to hardware or software. You can do this

Circuit does
not work

Check program:
1. Addresses
2. Data

3. Logical

Make
corrections

Software
looks OK?

Visual the circuit:

. Power ON

Loose wires

. Power and ground
. Chips in backwards
. Any open pins

OB WN =

Make
corrections

Circuit
looks OK?

Write a very
simple test
program

Software Hardware
problem problem

Figure F-1 General flowchart to be used for locating hardware or soft-
ware problems in the experiments.

Appendix F 209

by running a very simple program that you know must work. If the circuit
still does not function, it is most likely that you have a hardware problem.

Figure F-1 is a flowchart of the logical steps to follow when trouble-
shooting any of the experiments in this book. After performing obvious
checks of the software and hardware for errors, a simple test program should
be run. Based on the results of this program, one of two paths is chosen,

SOFTWARE PROBLEMS

If you think the problem is within the software, double check your program
line by line for accuracy. Often it is a good idea to insert breakpoints into
the program and have the computer output intermediate results. What you
are trying to do is isolate the problem to a particular portion or command in
the program.

HARDWARE PROBLEMS

Hardware problems can usually be attributed to faulty wiring or bad chips. A
logic probe is extremely handy for debugging these types of problems. If
you do not have a logic probe, a logic-level tester can be built from a single
inverter and LED as shown in Fig. 9-5.

If possible, set up a static (nonchanging) condition and trace through
the logic with your probe. For example, many of the experiments utilize the
8255 programmable peripheral interface. You could program all I/O pins to
be outputs and then see if each pin can be set high and low by testing with
your probe. You can similarly test these pins as inputs by applying +5V or
0V to each pin (refer to steps 1 and 2 and Question 9-1 of Experiment 9).

All the experiments require an address decoder and connections to the
control bus. With your test program running, you should see pulses on the
appropriate control lines, and the address decoder output should pulse when
its address appears on the bus.

Be very careful when inserting the Vector card into one of the Apple
motherboard peripheral connectors. With the card edge connector in place,
it is a tight fit. If the computer power will not come on or the computer
does not respond to the keyboard, turn the Apple off and then check to
make certain that the card is securely in place. The insertion of the Vector
card should in no way interfere with normal operation of your Apple.

APPENDIX G

DATA SHEETS

210

Appendix G 211

intel’ Silicon Gate MOS 8255

PROGRAMMABLE PERIPHERAL INTERFACE

B 24 Programmable I/0 Pins ® Direct Bit Set/Reset Capability
m Completely TTL Compatible Easing Control Application Interface
® Fully Compatible with MCS"-8and ™ 40 Pin Dual In-Line Package

MCS " -80 Microprocessor Families ® Reduces System Package Count

The 8255 is a general purpose programmable 1/0 device designed for use with both the 8008 and 8080
microprocessors. It has 24 /0 pins which may be individually programmed in two groups of twelve and
used in three major modes of operation. In the first mode (Mode 0), each group of twelve 1/0 pins may be
programmed in sets of 4 to be input or output. In Mode 1, the second mode, each group may be programmed
to have 8 lines of input or output. Of the remaining four pins three are used for handshaking and interrupt
control signals. The third mode of operation (Mode 2) is a Bidirectional Bus mode which uses 8 lines for a
bidirectional bus, and five lines, borrowing one from the other group, for handshaking.

Other features of the 8255 include bit set and reset capability and the ability to source 1TmA of current at

1.5 volts. This allows darlington transistors to be directly driven for applications such as printers and high
voltage displays.

PIN CONFIGURATION 8255 BLOCK DIAGRAM
[7%1a k] A a7 rac
paz[]2 0[] Pas [t
ra1 3 3] rae
rac e n{ear Fontn " arous
e ot g weies | o .p:.. =
i ~{ - | :
ono (7 uflo, —
a1 nJo, I
as u{lo, I l
rcr o dicy no,y | Py
pes [w0, | — . e
res [z n[]o, ‘ < :?:': E e
rea 13 u[Jo, OACTIONAL DaTA B8 it
vt nho oo T it [—>
i e st ‘] -
'“E 17 27 roe 1 :(r?:: §:—‘ e
rea 18 2a[] ras 1
ra1 10 22[7] vee
#8220 Ellmi [|
L
E—— T rcur
PR | ooy ‘ | e T W
PIN NAMES ig—————t] | y
e o SRR 3 B l u =
0,0y DATA BUS IBLOIRECTIONAL) | f
RESET RESET INPUT
CHIP SELECT
[TAB | meaoweutr] ~ ¥
Wh WRITE INPUT ‘]
[A0, a1 PORT ADDRESS
PATPAD | PORTAIBIT)
| PB7.PBO PORTBBIT) |

[“pcrrca PORT C (BIT)
[Vee +5 VOLTS
| GND @VOLTS

212

SILICON GATE MOS 8255

Appendix G

8255 BASIC FUNCTIONAL DESCRIPTION

General

The 8255 is a Programmable Peripheral Interface (PP1) de-
vice designed for use in 8080 Microcomputer Systems. Its
function is that of a general purpose 1/O component to inter-
face peripheral equipment to the 8080 system bus. The
functional configuration of the 8255 is programmed by the
system software so that normally no external logic is nec-
essary to interface peripheral devices or structures.

Data Bus Buffer

This 3-state, bi-directional, eight bit buffer is used to inter-
face the 8255 to the 8080 system data bus. Data is trans-
mitted or received by the buffer upon execution of INput
or OUTput instructions by the 8080 CPU. Control Words
and Status information are also transferred through the Data
Bus buffer.

Read/Write and Control Logic

The function of this block is to manage all of the internal
and external transfers of both Data and Control or Status
words. It accepts inputs from the 8080 CPU Address and
Control busses and in turn, issues commands to both of the
Control Groups.

(CS)
Chip Select: A “low” on this input pin enables the com-
munication between the 8255 and the 8080 CPU.

(RD)

Read: A “low’ on this input pin enables the 8255 to send
the Data or Status information to the 8080 CPU on the
DataBus. In essence, it allows the 8080 CPU to “read from"
the 8255.

(WR)

Write: A “low" on this input pin enables the 8080 CPU to
write Data or Control words into the 8255,

(Ag and Aq)

Port Select O and Port Select 1: These input signals, in con-
junction with the RD and WR inputs, control the selection of
one of the three ports or the Control Word Register. They
are normally connected to the least significant bits of the
Address Bus (Ag and Aq b

8255 BASIC OPERATION
Aq Ag RD WR | Cs INPUT OPERATION (READ]
0 0 1 Q PORT A = DATA BUS
0 1 0 1 0 PORT B = DATA BUS
1 0 0 1 0 PORT C= DATA BUS
OUTPUT OPERATION
{(WRITE}
0 0 1 0 0 DATA BUS = PORT A
0 1 1 0 0 DATA BUS = PORT B
1 1] 1 a a DATA BUS = PORT C
1 1 1 0 0 DATA BUS = CONTROL
DISABLE FUNCTION
X X X X 1 DATA BUS = 3-STATE
1 1 | 0 1 0 ILLEGAL CONDITION

Mlt‘l:’ CROU
e Ho . o
T e ammensy, || et L
CONTAOL e
=

S DIVICTIONAL DATA BUS
0,9

pata
{: sus K ;m_'—‘—’_____‘)
BUFFER
AT
INTLANAL

K=
e [l

A 0
e KD,

o |y

L ——-
agan

e L oroue

Al COMTROL coNTROL

Ay

T [—

k= ¥ k—>u.

8255 Block Diagram

Appendix G

SILICON GATE MOS 8255

213

(RESET)

Reset: A “high” on this input clears all internal registers in-
cluding the Control Register and all ports (A, B, C) are set
to the input mode.

Group A and Group B Controls

The functional configuration of each port is programmed
by the systems software. In essence, the 8080 CPU “out-
puts” a control word to the 8255. The control word con-
tains information such as “mode”, “bit set”, “'bit reset”
etc. that initializes the functional configuration of the 8255,
Each of the Control blocks (Group A and Group B) accepts
“commands” from the Read/Write Control Logic, receives
“control words” from the internal data bus and issues the
proper commands to its associated ports.

Control Group A — Part A and Port C upper (C7-C4)

Control Group B — Port B and Port C lower (C3-C0)
The Control Word Register can Only be written into. No
Read operation of the Control Word Register is allowed.

8255 BLOCK DIAGRAM

Ports A, B, and C

The 8255 contains three 8-bit ports (A, B, and C). All can
be configured in a wide variety of functional characteristics
by the system software but each has its own special features
or “personality” to further enhance the power and flexi-
bility of the 8255.

Port A: One B-bit data output latch/buffer and one 8-bit
data input latch.

Port B: One 8-bit data input/output latch/buffer and one
8-bit data input buffer,

Port C: One 8-bit data output latch/buffer and one 8-bit
data input buffer (no latch for input). This port can be di-
vided into two 4-bit ports under the mode control. Each 4-
bit port contains a 4-bit latch and it can be used for the
control signal outputs and status signal inputs in conjunc-
tion with Ports A and B.

PIN CONFIGURATION

a3 et 40[7) Pa4
raz]2 [ras
rar 3 0[] pas
l rag [w[)ear
| - ao[]s 3¢ [W
—_— s a8 mEsEY
rowiR [o caour] -
Senus | om 3 A SN -n‘-r A P r.um: 7 4o,
7 caow | 4 S 8 a (wr-—a Pay iy arJs n{o,
- & K == » = =
contRoL aof]s nfio,
pcr o n{Jo,
1 ¢ pcs T 8255 (7o,
1 res 2 nllo,
chour | - L 2im{t] n[Jo,
'y o
— R e =P »Ba
W ey rci[]1s W[Vec
BIGINLCTIONAL OATA EUS S £l rcz e Sl o
Oyl ”",‘“ e — L=1s {1} [0
INTEANAL Gaous vas] n[res
DYA N x 19 re1 s 12
f =) G Y g =
O = raz(] 20 n[rea
w———agl
ik o} AtAD! o L anour [0
cniRon ; .
e vo 0,
. e T e Co
2 "
et —————— =— [CHIP SELECT 1
| . L
ya ‘ _AD . READ INPUT |
WR WAIVE MUY —
20, A1 PORT ADDRESS
T PATPAD _ PORT A (BIT)]
L [Pe7PEO_ | PORT B (BIT) 1
[“pcrpco | PoRTCiBIT)
| Veo +5 VOLTS
GND aVoLTS

214 Appendix G
SILICON GATE MOS 8255
8255 DETAILED OPERATIONAL DESCRIPTION

i CONTROL WORD

Mode Selection
There are three basic modes of operation that can be select- Pr| O | P | D Oy] 00|00
ed by the system software: L]

Mode 0 — Basiz Input/Output

Mode 1 — Strobed Input/Qutput

Mode 2 — Bi-Directional Bus
When the RESET input goes “high” all ports will be set to HAdLn D
the Input mode (i.e., all 24 lines will be in the high im- PORT C (LOWER)
pedance state). After the RESET is removed the 8255 can (‘.'{,NJ;ng
remain in the Input mode with no additional initialization
required. During the execution of the system program any T
of the other modes may be selected using a single OUTput 0= OUTPUT
instruction. This allows a single 8255 to service a variety of AGOESEAETOH
peripheral devices with a simple software maintenance rou- 0= MOOE 0

tine.

The modes for Port A and Port B can be separately defined,
while Port C is divided into two portions as required by the
Port A and Port B definitions. All of the output registers, in-
cluding the status flip-flops, will be reset whenever the
mode is changed. Modes may be combined so that their
functional definition can be “tailored” to almost any 1/O
structure, For instance; Group B can be programmed in
Mode 0 to monitor simple switch closings or display compu-
tational results, Group A could be programmed in Mode 1
to monitor a keyboard or tape reader on an interrupt-driven
basis.

{ ADDRESS BUS]
] [
{] CONTROL BUS 1
l DATA BUS
0,04 Ay “1
[

az55

- M j
1

PE,PB, PC,PC, PC,PC, PA, PA,
c
mODE1 —]_ 8 - - AT
P8, PB, CONTROL CONTROL PA,P
OR 10 ORI/O i

IIl |11

DUNTHDL

B |BIDIRECTIONAL

Basic Mode Definitions and Bus Interface

1=MODE 1

GROUP &

PORT C |UPPER]
1= INPUT
0= QUTPUT

PORT A
1= INPUT
0=0uTPUT

MODE SELECTION
00 = MODE 0
01 = MODE 1
1X = MODE 2

MODE SET FLAG
1= ACTIVE

Mode Definition Format

The Mode definitions and possible Mode combinations may
seem confusing at first but after a cursory review of the
complete device operation a simple, logical 1/0 approach
will surface. The design of the B255 has taken into account
things such as efficient PC board layout, control signal defi-
nition vs PC layout and complete functional flexibility to
support almost any peripheral device with no external logic.
Such design represents the maximum use of the available
pins,

Single Bit Set/Reset Feature

Any of the eight bits of Port C can be Set or Reset using a
single OUTput instruction. This feature reduces software
requirements in Control-based applications.

Appendix G

SILICON GATE MOS 8255

215

CONTROL WORD

0, |0, | o5 | O

|

X

0|0 | B | D

BIT SET/RESET
X X = SET
0= RESET
DON'T
CARE

BIT SELECT
[e[AT2]3]a.
1]0[1]o[1]01
Tola[1]olo]1]1]

1 1

ol11
0iojo

rlzle]

s1e[e

BIT SET/RESET FLAG
0=ACTIVE

Bit Set/Reset Format

When Port C is being used as status/control for Port A or B,
these bits can be set or reset by using the Bit Set/Reset op-
eration just as if they were data output ports.

Interrupt Control Functions

When the 8255 is programmed to operate in Mode 1 or
Mode 2, control signals are provided that can be used as
interrupt request inputs to the CPU. The interrupt request
signals, generated from Port C, can be inhibited or enabled
by setting or resetting the associated INTE flip-flop, using
the Bit set/reset function of Port C.

This function allows the Programmer to disallow or allow a
specific 1/0 device to interrupt the CPU without effecting
any other device in the interrupt structure,

INTE flip-flop definition:

(BIT-SET) — INTE is SET — Interrupt enable
(BIT-RESET) — INTE is RESET — Interrupt disable

Note: All Mask flip-flops are automatically reset during
mode selection and device Reset.

Operating Modes

Mode 0 (Basic Input/Output)

This functional configuration provides simple Input and
Output operations for each of the three ports. No “hand-

shaking™ is required, data is simply written to or read from
a specified port.

Mode 0 Basic Functional Definitions:

Two 8-bit ports and two 4-bit ports.

Any port can be input or output.

Qutputs are latched.

Inputs are not latched.

16 different Input/Output configurations are possible
in this Mode.

BASIC INPUT
TIMING (D7-Dg

FOLLOWS INPUT, INPUT x
NO LATCHING)
o i e\ ——————
X
e e CDELAY TIME | | TOELAYTME -
= FROM RD 1 FROM INPUT DATA
WH 3
~ SET-UP VIOLATION
BASIC OUTPUT _ e N
TIMING (OUTPUTS 0,0,)C X:X
LATCHED) —_— N P pe—
ouTPUT X
tDATA " - - 1 DATA
sare o OUTPUT DATA
tDELAY TIME
— 1 FROM WR INVALID

Mode 0 Timing

MC6821

@ MOTOROLA M(&o M:lé ;
SEMICONDUCTORS Rg Y

MC68B21

3501 ED BLUESTEIN BLVD., AUSTIN, TEXAS 78721 lz.o M“Z]

PERIPHERAL INTERFACE ADAPTER (PIA)

The MC6821 Peripheral Interface Adapter provides the universal Mos
means of interfacing peripheral equipment 1o the M6800 family of (N-CHANNEL, SILICON-GATE,
microprocessors. This device is capable of interfacing the MPU to DEPLETION LOAD)
peripherals through two B-bit bidirectional peripheral data buses and
four control lines. No external logic is required for interfacing to most PERIPHERAL INTERFACE
peripheral devices. ADAPTER

The functional configuration of the PIA is programmed by the MPU
during system initialization. Each of the peripheral data lines can be pro-
grammed 10 act as an inpul or output, and each of the four con-

trol/interrupt lines may be programmed for one of several control
modes. This allows a high degree of flexibility in the overall operation of

the interface. L SUFFIX
® 8-Bit Bidirectional Data Bus for Communication with the CERAMIC PACKAGE
CASE 715
MPU
@ Two Bidirectional 8-Bit Buses for Interface (o Peripherals
® Two Programmable Control Registers
® Two Programmable Data Direction Registers L1l S SUFFIX
CERADIP PACKAGE
® Four Individually-Controlled Interrupt Input Lines; Two CASE 734
Usable as Peripheral Control Qutputs
® Handshake Control Logic for Input and Output Peripheral
Operation
@ High-Impedance Three-State and Direct Transistor Drive P SUFFIX
Peripheral Lines PLASTIC PACKAGE
® Program Controlled Interrupt and Interrupt Disable Capability CASETN
® CMOS Drive Capability on Side A Peripheral Lines
® Two TTL Drive Capability on All A and B Side Buffers
® TTL-Compatible
) . PIN ASSIGNMENT
@ Static Operation
Vssl]' @ W[cal
PAO[2 wflcaz
MAXIMUM RATINGS PAIls #[11ROA
: pa2(17[1iRaB
Characteristics Symbaol Value Unit "
Supply Voliage vVee 0310 +70 v PA3E N 6 [1RS0
Input Voltage Vin 03t +70 | V PA4Q. 3RS
Operaung Temperature Range TLto TH Fnsﬂ ! [RESET
MCBB21, MC68A21, MC6BB21 Ta 0 w070 e ~
MCE821C. MCBBAZIC. MCEBB21C -40 10 +B5 pasL ¢ 3pDo
Storage Temperature Range Tsig 5510 +150 " PAT[e azfo
Paafo nfo2
THERMAL CHARACTERISTICS a1 D3
Characteristic Symbol Value Unit PBZI; 2 29[104
Thermal Resistance
Ceramic i 50 SRR PB3[J13 4 []05
Plastic JA 100 PB4[] 14 21[106
Cerd
erdip 60 PBs[607
PBE[]16 2[E
This device contains circuilry to protect the inputs against damage due ta high PB7 Q17 24[1Cst
static veltages or electric fields; however, it is advised that normal precautions cei1s 2afIcsz
be taken to avoid applicanon of any voltage higher than maximum-rated
voltages 1o this high-impedance circuit. Reliability of operation is enhanced if cez[1e 22[1cso
unused inputs are tied 10 an appropriate logic voltage li.e., either Vgg or Veg! veelo 2R/W

©MOTOROLA INC . 1981 DS8435-R2

MC6821»MCB8A21=MCE8B21

PIA INTERFACE SIGNALS FOR MPU

The PIA interfaces 10 the MB800 bus with an B-bit bidirec-
uonal data bus, three chip select lines, two register seiect
lines, two interrupt request lines, a read/write line, an enable
line and a reset line. To ensure proper operation with the
MC6800, MCB802, or MCEB08 microprocessors, VMA
should be used as an active part of the address decoding.

Bidirectional Data (DO-D7) — The bidirectional data lines
(DO-D7) allow the transfer of data between the MPU and the
PIA. The data bus output drivers are three-state devices that
remain in the high-impedance (off) state except when the
MPU performs a PIA read operation. The read/write line is in
the read (high) state when the PIA is selected for a read
operation.

Enable (E} — The enable pulse, E, is the only timing
signal that is supplied to the PIA. Timing of all other signals
is referenced to the leading and trailing edges of the E pulse.

Read/Write (R/W) — This signal is generated by the
MPU to control the direction of data transfers on the data
bus. A low state on the PIA read/write line enables the input
buffers and data is transferred from the MPU to the PIA on
the E signal if the device has been selected. A high on the
read/write line sets up the PIA for a transfer of data to the
bus. The PIA output buffers are enabled when the proper ad-
dress and the enable pulse E are present.

RESET — The active low RESET line is used to reset all
register bits in the PIA 10 a logical zero (low). This line can be
used as a power-on resel and as a master reset during
system operation.

Chip Selects (CSD, CS1, and C52) — These three input
signals are used to select the PIA. CS0 and CS1 must be
high and CS2 must be low for selection of the device. Data
transfers are then performed under the control of the enable
and read/write signals. The chip select lines must be stable

PIA PERIPHERAL

The PIA provides two B-bit bidirectional data buses and
four interrupt/control lines for interfacing to peripheral
devices.

Section A Peripheral Data (PAO-PA7) — Each of the
peripheral data lines can be programmed 1o act as an input or
output. This is accomplished by setting a “'1”" in the cor-
responding Data Direction Register bit for those lines which
are to be outputs. A “0" in a bit of the Data Direction
Register causes the corresponding peripheral data line 10 act
as an input. During an MPU Read Peripheral Data Operation,
the data on peripheral lines programmed to act as inputs ap-
pears directly on the corresponding MPU Data Bus lines. In
the input mode, the internal pullup resistor on these lines
represents a maximum of 1.5 standard TTL loads.

The data in Qutput Register A will appear on the data lines
that are programmed to be outputs. A logical 1" written in-
to the register will cause a "high” on the corresponding data

for the duration of the E pulse. The device is deselected
when any of the chip selects are in the inactive state.

Register Selects (RS0 and RS1) — The two register
select lines are used to select the various registers inside the
PIA. These two lines are used in conjunction with internal
Control Registers to select a particular register that is to be
written or read.

The register and chip select lines should be stable for the
duration of the E pulse while in the read or write cycle.

Interrupt Request (IRQA and TRQAB) — The active low In-
terrupt Request lines (IRQA and TRQB) act to interrupt the
MPU either directly or through interrupt priority circuitry.
These lines are "open drain”’ (no load device on the chip).
This permits all interrupt request lines to be tied together in a
wire-OR configuration.

Each Interrupt Request line has two internal interrupt flag
bits that can cause the Interrupt Request line to go low. Each
flag bit is associated with a particular peripheral interrupt
line. Also, four interrupt enable bits are provided in the PIA
which may be used to inhibit a particular interrupt from a
peripheral device

Servicing an interrupt by the MPU may be accomplished
by a software routine that, on a prioritized basis, sequentially
reads and tests the two control registers in each PIA for in-
terrupt flag bits that are set.

The interrupt flags are cleared {zeroed) as a result of an
MPU Read Peripheral Data Operation of the corresponding
data register. After being cleared, the interrupt flag bit can-
not be enabled to be set until the PIA is deselected during an
E pulse. The E pulse is used 1o condition the interrupt control
lines (CA1, CA2, CB1, CB2). When these lines are used as
interrupt inputs, at least one E pulse must occur from the in-
active edge to the active edge of the interrupt input signal to
condition the edge sense network, If the interrupt flag has
been enabled and the edge sense circuit has been properly
conditioned, the interrupt flag will be set on the next active
transition of the interrupt input pin.

INTERFACE LINES

line while a 0" results in a “'low." Data in Output Register A
may be read by an MPU “Read Peripheral Data A" operation
when the corresponding lines are programmed as outputs.
This data will be read property if the voltage on the
peripheral data lines is greater than 2.0 volts for a logic *1"
output and less than 0.8 volt for a logic 0" output. Loading
the output lines such that the voltage on these lines does not
reach full voltage causes the data transferred into the MPU
con a Read operation to differ from that contained in the
respective bit of Qutput Register A.

Section B Peripheral Data (PB0-PB7) — The peripheral
data lines in the B Section of the PIA can be programmed to
act as either inputs or outputs in a similar manner to PAQ-
PA7. They have three-state capabiity, allowing them to enter
a high-impedance state when the peripheral data line is used
as an input. In addition, data on the peripheral data lines

MOTOROLA Semiconductor Products Inc.

MC6821eMC68A21eMC68B21

PBO-PB7 will be read properly from those lines programmed
as outputs even If the voltages are below 2.0 volts for a
"high’* or above 0.8 V for a “low". As outputs, these lines
are compatible with standard TTL and may also be used as a
source of up to 1 milliampere at 1.5 volts to directly drive the
base of a transistor switch

Interrupt Input (CA1 and CB1} — Peripheral input lines
CA1 and CB1 are input only lines that set the interrupt flags
of the control registers. The active transition for these
signals i1s also programmed by the two control registers.

Peripheral Control (CA2) — The peripheral control line
CA2 can be programmed to act as an interrupt input or as a

peripheral control output. As an output, this line is compati-
ble with standard TTL; as an input the internal pullup resistor
on this line represents 1.5 standard TTL loads, The function
of this signal line is programmed with Control Register A.

Peripheral Control (CB2) — Peripheral Control line CB2
may also be programmed to act as an interrupt input or
peripheral control output. As an input, this line has high in-
put impedance and is compatible with standard TTL. As an
output it is compatible with standard TTL and may also be
used as a source of up to 1 milliampere at 1.5 volts to directly
drive the base of a transistor switch. This line is programmed
by Control Register B.

INTERNAL CONTROLS

INITIALIZATION

A RESET has the effect of zeroing all PIA registers. This
will set PAQ-PA7, PBO-PB7, CA2 and CB2 as inputs, and all
interrupts disabled. The PIA must be configured during the
restart program which follows the reset.

There are six locations within the PIA accessible to the
MPU data bus: two Peripheral Registers, two Data Direction
Registers, and two Control Registers. Selection of these
locations is controlled by the RS0 and RS1 inputs together
with bit 2 in the Control Register, as shown in Table 1.

Details of possible configurations of the Data Direction
and Control Register are as follows:

TABLE 1 - INTERNAL ADDRESSING

Control
Reqister Bit
RS1| RS0 | CRA.2 | CRB-2 Location Selected

(1] 0 1 X Penipheral Register A

0 0 4] X Data Direcuion Register A
0 1 X X Control Register A

1 0 X 1 Peripheral Register B

1 0 X 0 Data Direction Register B
1 1 X b 4 Control Register B

X - Don't Care

PORT A-B HARDWARE CHARACTERISTICS

As shown in Figure 17, the MC6821 has a pair of /0 ports
whose characteristics differ greatly. The A side is designed
to drive CMOS logic 1o normal 30% to 70% levels, and incor-
porates an internal pullup device that remains connected
even in the input mode, Because of this, the A side requires
more drive current in the input mode than Port B. In con-
trast, the B side uses a normal three-state NMOS buffer
which cannot pullup to CMOS levels without external
resistors. The B side can drive extra loads such as Darl-
ingtons without problem. When the PIA comes out of reset,
the A port represents inputs with pullup resistors, whereas
the B side (input mode also) will float high or low, depending
upon the load connected to it.

Notice the differences between a Port A and Port B read
operation when in the output mode. When reading Port A,
the actual pin is read, whereas the B side read comes from an
output latch, ahead of the actwal pin.

CONTROL REGISTERS (CRA and CRB)

The two Control Registers (CRA and CRB) allow the MPU
to control the operation of the four peripheral control lines
CA1, CAZ, CB1, and CB2. In addition they allow the MPU to
enable the interrupt lines and monitor the status of the inter-
rupt flags. Bits 0 through 6 of the two registers may be writ-
ten or read by the MPU when the proper chip select and
register select signals are applied. Bits 6 and 7 of the two
registers are read only and are modified by external interrupts
occurring on control lines CA1, CA2, CB1, or CB2. The for-
mat of the control words is shown in Figure 18.

DATA DIRECTION ACCESS CONTROL BIT (CRA-2 and
CRB-2)

Bit 2, in each Control Register (CRA and CRBIJ, deter-
mines selection of either a Peripheral Output Register or the
corresponding Data Direction E Register when the proper
register select signals are applied to RS0 and RS1. A 1" in
bit 2 allows access of the Peripheral Interface Register, while
a 0" causes the Data Direction Register to be addressed.

Interrupt Flags (CRA-6, CRA-7, CRB-6, and CRB-7) —
The four interrupt flag bits are set by active transitions of
signals on the four Interrupt and Peripheral Control lines
when those lines are programmed to be inputs. These bits
cannot be set directly from the MPU Data Bus and are reset
indirectly by a Read Peripheral Data Operation on the ap-
propriate section.

Control of CA2 and CB2 Peripheral Control Lines (CRA-3,
CRA-4, CRA-5, CRB-3, CRB-4, and CRB-5) — Bits 3, 4, and
5 of the two control registers are used to control the CA2 and
CB2 Peripheral Control lines. These bits determine if the con-
trol lines will be an interrupt input or an output control
signal. If bit CRA-5 (CRB-5) is low, CA2 (CB2) is an interrupt
input line similar to CA1 (CB1). When CRA-5 (CRB-5) is
high, CA2 (CB2) becores an output signal that may be used
to control peripheral data transfers. When in the output
mode, CAZ and CB2 have slightly different loading
characteristics.

@ MOTOROLA Semiconductor Products Inc.

MC6821¢MC68A21eMC68B21

Control of CA1 and CB1 Interrupt Input Lines (CRA-0, enable the MPU interrupt signals TROA and iRQB, respec-
CRB-1, CRA-1, and CRB-1) — The two lowest-order bits of tively. Bits CRA-1 and CRB-1 determine the active transition
the control registers are used to control the interrupt input of the interrupt input signals CA1 and CB1.

lines CA1 and CB1. Bits CRA-0 and CRB-0 are used to

Determine Active CA1 (CB1) Transition for Setting

Interrupt Flag IRQA(B)1 — (bit 7)

b1=0: IRQAI(BI1 set by high-to-low transition on CA1
icB1)

bi=1: IRQAIBI set by low-to-high transition on CA1
(CB1.

.

IRQA(B) 1 Interrupt Flag (bit 7)

Goes high on active transition of CA1 (CB1), Automa-
ucally cleared by MPU Read of Output Register AlB).
May also be cleared by hardware Reset

FIGURE 18 — CONTROL WORD FORMAT

CA1 (CB1) Interrupt Request Enable/Disable
b0=0: Disables IRQA(B) MPU Interrupt by CA1
(CB1) active transition. !
b0=1: Enable IRQA(B) MPU Interrupt by CA1 (CB1)
active transition,
1. IRQAIB) will occur on next (MPU generated) positive
transition of b0 if CA1 [CB1) acuve transition oc-
curred while interrupt was disabled

L

ol K o

b7 b6 Bs | b b3 b2 bt | m
Control Register | |\poA(B)1 | IRQABI2 CA2 (CB2I DDR CAI (CB1)
Flag Flag Control Access Control

IRQAI(B)2 Interrupt Flag (bit 6)

When CA2 (CB2) is an input, IRQA(B) goes high on ac-
tive transition CAZ (CB2); Automatically cleared by
MPU Read of Qutput Register A(B). May also be
cleared by hardware Reset.

CAZ2 ICB2) Established as Output (bS5=1): IRQA(B)
2=0, not affected by CA2 (CB2) transitions.

L

Determines Whether Data Direction Register Or Output
Register is Addressed

b2=0: Data Direction Register selected.

b2=1: Output Register selected.

CA2 (CB2) Established as Output by bS5=1
(Note that operation ot CA2 and CB2 output

bS b4 b3 functions are not identicall

—» CA2

10 b3=0: Read Strobe with CA1 Restore
CA2 goes low on first high-to-low
E wansition following an MPU read
of Output Register A; returned high
by next active CA1 wansition, as
specified by bit 1.

b3=1. Read Strobe with E Restore
CA2 goes low on first high-to-low
E transition following an MPU read
of Output Register A; returned high
by next high-to-low E transition dur-
ing a deselect.

—p CB2

b3=0: Write Strobe with CB1 Restore
CB2 goes low on first low-to-high
E transition following an MPU write
nto Quiput Register B; returned
high by the next acuve CB1 transi-
tion as specified by bit 1. CRB-b?
must first be cleared by a read of
data
b3=1: Write Strobe with E Restore
CB2 goes low on first low-1o-high
E transition following an MPU write
into Qutput Register B; returned
high by the next low-to-high E tran-
sition following an E pulse which
occurred while the part was de-
selected.
L Set/Reset CA2 (CB2)
CA2 (CB2) goes low as MPU writes
b3=0into Control Register.
CA2 (CB2) goes high as MPU writes
b3=1into Control Register.

CA2 (CB2) Established as Input by b5=0

B5 ba b3

0 CA2 (CB2) Interrupt Request Enable/Disable
b3=0: Disables IRQA(B) MPU Interrupt by
CA2 (CB2) active transition.*
b3=1: Enables IRQA(B) MPU Interrupt by
CAZ2 (CB2) active transition.
*IRQAIB) will occur on next IMPU generat-
ted) pesitive transition of b3 if CA2 (CB2)
active transition occurred while interrupt
was disabled
‘3 Determines Active CA2 (CB2) Transition for
Setting Interrupt Flag IRQA(BI2 — (Bit b6)
b4=0: IRQAIB)2 set by high-to-low transi-
tion on CA2 (CB2).
b4=1: IRAAIB)2 set by low-to-high transi-
tion on CA2 (CB2)

@ MOTOROLA Semiconductor Products Inc.

Appendix G 221

ORDERING INFORMATION
Device Temperature Range Package

MC1408L6 0°C to +75°C Ceramic DIP
MC1408L7 0°C to +75°C Ceramic DIP
MC1408L8 0°C to +75°C Ceramic DIP
MC1408P6 0°C to +75°C Plastic DIP M01408
MC1408P7 0°C to +75°C Plastic DIP
MC1408P8 0°C to +75°C Plastic DIP MCI 508
MC1508L8 -55°C to +125°C Ceramic DIP

Specifications and Applications
Information

EIGHT-BIT MULTIPLYING

DIGITAL-TO-ANALOG
EIGHT-BIT MULTIPLYING CONVERTER

DIGITAL-TO-ANALOG CONVERTER
. . designed for use where the output current is a linear product
of an eight-bit digital word and an analog input voltage.

SILICON MONOLITHIC
INTEGRATED CIRCUIT

@ Eight-Bit Accuracy Available in Both Temperature Ranges
Relative Accuracy: +0,19% Error maximum
(MC1408L8, MC1408P8, MC1508L8)

® Seven and Six-Bit Accuracy Available with MC1408 Designated
by 7 or 6 Suffix after Package Suffix

® Fast Settling Time — 300 ns typical

® Noninverting Digital Inputs are MTTL and

CMOS Compatible lMSUFle
P
® Qutput Voltage Swing — +0.4 V to -5.0 V CEMCA'& GAQCDKAGE "
@ High-Speed Multiplying Input L
Slew Rate 4.0 mA/us P SUFFIX
® Standard Supply Voltages: +5.0 V and PLASTIC PACKAGE
-50V10-15V e

FIGURE 2 — BLOCK DIAGRAM

FIGURE 1 — D-to-A TRANSFER CHARACTERISTICS

ms8 Lse
A1Q A20 AJQ A4Q ASO AGQ ATQ AS

3 HANGE TE' Tr. T’ TB T') T'“ T" T"

g CONTROL -—ip
= 1 o Current Switenes 04
z T
i 5]
T
= R 2R Ladder Buas Corcunt 2
:-_’ GND
2 Viatie)) 4_‘__L
= 14 o —o13
8 Aeterence vee

- 15 0—| Currant

= Viet(-} Amptter
= o6

COMPEN
Vicba
(00000000} [RRREREERY] NPN Current
INPUT DIGITAL WORD SourcePaly

TYPICAL APPLICATIONS

Tracking A-to-D Converters Audio Digitizing and Decoding
Programmable Power Supplies

.
® Successive Approximation A-to-D Converters
. Analog-Digital Multiplication

2 1/2 Digit Panel Meters and OVM's
Waveform Synthesis
Sample and Hold

Digial-Digital Multiplication
Analog-Digital Division

Digital Addition and Subtraction
Speech Compressibn and Expansion
Stepping Motor Drive

Peak Detector
Programmable Gain and Attenuation

CRT Character Generation

222

MC1408, MC1508

Appendix G

B ifier Drive and C

The reference amplilier provides a voltage at pin 14 for con-
verting the reference voltage to a current. and a turn-around circuit
or current mirror for feeding the ladder. The reference amplifier
input current, 114, must always flow into pin 14 regardless of the
setup method or reference voltage polarity.

Connections for apositive reference voltage are shown in Figure
7. The reference voltage source supplies the full current 114. For
bipolar reference signals. as in the multiplying mode, R15 can be
tied to a negative voltage corresponding to the minimum input
level. It is possible to eliminate R15 with only a small sacrifice
in accuracy and temperature drift. Another method for bipolar
inputs is shown in Figure 25

The compensation capacitor value must be increased with in-
creases in R14 to maintain proper phase margin, for R14 values
of 1.0, 2.5 and 5.0 kilohms, minimum capacitor values are 15,
37, and 75 pF. The capacitor should be tied to Vgg as this in-
creases negative supply rejection,

A negative reference voltage may be used if R14 is grounded
and the reference voltage is applied to R15 as shown in Figure 8.
A high input impedance is the main advantage of this method.
Compensation involves a capacitor to VEg on pin 16, using the
volues of the previous paragraph, The negative reference voltage
must be at least 3.0-volts above the VEE supply. Bipolar input
signals may be handled by connecting R14 1o a positive reference
voltage equal to the peak positive input level at pin 15.

When a dc reference voltage is used, capacitive bypass to ground
is recommended. The 5.0-V logic supply is not recommended as
a reference voltage. |f a well regulated 5.0-V supply which drives
logic is to be used as the reference, R14 should be decoupled by
connecting it to +5.0 V through another resistor and bypassing
the junction of the two resistors with 0.1 uF 1o ground. For
reference voltages greater than 5.0 V, a clamp diode is recommen-
ded between pin 14 and ground.

If pin 14 is driven by a high impedance such as a transistor
current source, none of the above compensstion methods apply
and the amplifier must be heavily compensated. decreasing the
overall bandwidth.

Output Voltage Range

The voltage on pin 4 is restricted 1o a range of -0.55 10 +0.4
volts at +25°C, due to the current switching methods employed
in the MC1408, When a current switch is turned “off”, the posi-
twve voltage on the output terminal can turn “on™ the output
diode and increase the cutput current level. When a current switch
is turned “on’’, the negative output voltage range is restricted.
The base of the termination circuit Darlington transistor is one
diode voltage below ground when pin 1 is grounded, so a negative
voltage below the specified safe level will drive the low current
device of the Darlington into saturation, decreasing the output
current level.

The negative output voltage compliance of the MC1408 may
be extended to -5.0 V volts by opening the circuit at pin 1. The
negative supply voltage must be more negative than -10 volts.
Using a full scale current of 1.992 mA and load resistor of 2.5
kilohms between pin 4 and ground will yield a voltage output
of 256 levels between 0 and -4.980 volts. Floating pin 1 does
not affect the converter speed or power dissipation. However, the
vilue of the load resistor determines the switching time due to
increased voltage swing. Values of R up to 500 ohms do not sig-
nificantly affect performance, but a 2.5kilohm load increases
“'worstcase” settling time 10 1.2 ps (when all bits are switched on).

GENERAL INFORMATION

Refer to the subsequent text section on Settling Time for more
details on output loading.

If a power supply value between -5.0 V and -10 V is desired,
o voltage of between 0 and -5.0 V may be applied to pin 1. The
value of this voltage will be the maximum allowable negative out-
put swing.

Output Current Range

The output current maximum rating of 4.2 mA may be used
only for negative supply voltages typically more negative than
-8.0 volts, due to the increased veltage drop across the 350-ohm
resistors in the reference current amplifier.

Accuracy

Absolute accuracy is the measure of each output current level
with respect 1o its intended value, and is dependent upon relative
accuracy and full scale current drift. Relative accuracy is the
measure of each output current level as a fraction of the full scale
current. The relative accuracy of the MC1408 is essentially
constant with temperature due to the excellent temperature track-
ing of the monolithic resistor ladder. The reference current may
drift with temperature, causing a change in the absolute accuracy
of output current. However, the MC1408 has a very low full
scale current drift with temperature,

The MC1408/MC1508 Series iz guaranteed accurate to with-
in £1/2 LSB at +25°C at a full scale output current of 1.992 mA.
This corresponds to a reference amplifier output current drive 1o
the ladder network of 2.0 mA, with the loss of one LSB = 8.0 gA
which is the ladder remainder shunted to ground. The input current
to pin 14 has a guaranteed value of between 1.9 and 2.1 mA,
allowing some mismatch in the NPN current source pair. The
accuracy test circuit is shown in Figure 4. The 12-bit converter
15 calibrated for a full scale output current of 1.992 mA. This is
an optional step since the MC1408 accuracy is essentially the
same between 1.5 and 2.5 mA. Then the MC1408 circuits” full
scale current is trimmed to the same value with R14 so that a zero
value appears at the error amplifier output. The counter is activated
and the error band may be displayed on an oscilloscope, detected
by comparators, or stored in a peak detector.

Two 8-bit D-10-A converlers may nol be used to construct a
16-bit accurate D-10-A converter. 16-bit accuracy implies a total
error of +1/2 of one part in 65, 536, or +0.00076%, which 15 much
more accurate than the £0.19% specification provided by the
MC1408x8.

Multiplying Accuracy

The MC1408 may be used in the multiplying mode with
wight-bit accuracy when the reference current is varied over a range
of 256:1. The major source of error is the bias current of the
termination amplifier. Under “worst case™ conditions, these eight
amplifiers can contribute a total of 1.6 WA extra current at the
output terminal. If the reference current in the multiplying mode
ranges from 16 uA to 4.0 mA, the 1.6 uA contributes an error
of 0.1 LSB. This is well within eight-bit accuracy referenced to
40mA,

A monotonic converter is one which supplies an increase 1n
current for each increment in the binary word, Typically, the
MC1408 is monotonic for all values of reference current above
0.5mA. The recommended range for operation with a dc reference
current is 0.5 10 4.0 mA

AA MOTOROLA Semiconductor Products Inc.

Appendix G 223

MC1408, MC1508

GENERAL INFORMATION (Continued)

Settling Time

The “'worst case”’ switching condition occurs when all bits are The test circuit of Figure 5 requires a smaller voltage swing for
switched “on”, which corresponds to a low-1o-high transition for the current switches due to internal voltage clamping in the MC.
all bits. This time is typically 300 ns for settling to within £1/2 1408. A 1.0-kilohm load resistor from pin 4 to ground gives
LSB. for B-bit accuracy, and 200 ns to 1/2 LSB for 7 and 6-bit @ typical settling time of 400 ns. Thus, it is voltage swing and not
accuracy. The turn off is typically under 100 ns. These times the output RC time constant that determines settling time for
apply when R 500 ohms and Cp < 25 pF. most applications.

The slowest single switch is the least significant bit, which turns Extra care must be taken in board layout since this is usually
“on" and settles in 250 ns and turns “off” in BO ns. In applica- the dominant factor in satisfactory test results when measuring
tions where the D-to-A converter functions in a positive-going settling time. Short leads, 100 uF supply bypassing for low fre-
ramp mode, the “"worst case” switching condition does not occur, quencies, and minimum scope lead length are all mandatory.

and a settling time of less than 300 ns may be realized. Bit A7
turns “on” in 200 ns and “oft”’ in B0 ns. while bit AB turns “on"
in 150 ns and “off” in 80 ns.

TYPICAL CHARACTERISTICS
(Ve = #5.0 V, VEE = =15 V, T = +25°C unless otherwise noted.)

FIGURE 11 ~ TRANSFER CHARACTERISTIC versus TEMPERATURE

FIGURE 10 — LOGIC INPUT CURRENT versus INPUT VOLTAGE (A5 thru AB thresholds lie within range for A1 thru Ad)
10 =1 N [, | |
= I, | £ S [,
_ _e289C . gmop-+ +
- (%
o8 E [+125°C. T
= = 10 Lo e Al
= +
E ‘ - — | |
e H 1
e \ > 08 +
o
= =
2 AlLAZ 6 SN I
=04 ~ g o A2
g g .
ES ™ S 04
a2 \ T [o
o K \ 02 t y A4
ol AtAs ﬂ_ 0 | | |
10 20 0 40 5.0 [0 20 30 40 50
V. LOGIC INPFUT VOLTAGE (Vdc) Vi, LOGIC INPUT VOLTAGE (Vec)
FIGURE 12 — OUTPUT CURRENT versus OUTPUT VOLTAGE FIGURE 13 - OUTPUT VOLTAGE versus TEMPERATURE
(See text for pin 1 restrictions) (Negative range with pin 1 open is -5.0 Vdc over full temperature ranga)
20 ﬁl T T +1.0
Al @ High Level 8
1E A2 A8 Low Level 1w
< 18 Z 08
L = o T A
= Vg Range - 7
E 1 for B-but g w02 // ,-?‘//)
= Accuracy =] ’ ‘- Allgwab le V() Range
& 10 = g 0 for Bbit Accuracy 7
=1 r o tpin 1
2 = .02
2 s pin 1 0pen g .04 / 729775, 7
S VEE < -10 Vdc T pin 1 grounded - 7 VA///
T o4 S -06 P A
02 £ 08—
o <10 i
210 -60 50 40 -30 -20 -10 W10 +20 +30 KT] 50 100 50
V. OUTPUT VOLTAGE, PIN 4 (Vde) T, TEMPERATURE (°C)

M MOTOROLA Semiconductor Products Inc.

[

ADC0808, ADC0809

24

Appendix G

National
Semiconductor

ADCO0808, ADC0809 8-Bit uP Compatible A/D Converters

With 8-Channel Multiplexer

General Description

The ADC0808, ADC0809 data acquisition component is a
monolithic CMOS device with an B-bit analog-to-digital
converter, 8-channel multiplexer and microprocessor
compatible control logic. The 8-bit A/D converter uses suc-
cessive approximation as the conversion technique. The
converter features a high impedance chopper stabilized
comparator, a 256R voltage divider with analog switch tree
and a successive approximation register. The 8-channel
multiplexer can directly access any of B-single-ended ana-
log signals.

The device eliminates the need for external zero and full-
scale adjustments. Easy interfacing to microprocessors
Is provided by the latched and decoded multiplexer ad-
dress inputs and latched TTL TRI-STATE® outputs.

The design of the ADC0B08, ADC0809 has been optimized
by Incorporating the most desirable aspects of several
A/D conversion techniques. The ADC0B08, ADC0809 of-
fers high speed, high accuracy, minimal temperature
dependence, excellent long-term accuracy and repeatabi-
lity, and consumes minimal power. These fealures make
this device ideally suited to applications from process and
machine control to consumer and automotive applica-
tions. For 16-channel muitiplexer with common output
(sample/hold port) see ADC0816 data sheel. (See AN-247
for more information.

AtoD,Dito A

Features

B Resolution — B-bits

B Total unadjusted error — = 1/2LSB and = 1LSB

B No missing codes

B Conversion time — 100 us

B Single supply — 5 Ve

B Operates ratiometrically or with 5 V¢ or analog span
adjusted voltage reference

B 8-channel multiplexer with latched control logic

B Easy interface to all microprocessors, or operates
“stand alone™

B Qutputs meet T2 voltage level specifications

B OV to 5V analog input voltage range with single 5V
supply

B No zero or full-scale adjust required

B Standard hermetic or meolded 28-pin DIP package

B Temperature range -40°C to +85°C or -55°C to
+125°C

B Low power consumption — 15 mW
B Latched TRI-STATE® output

Block Diagram START cL0cK
- Mo an 1
| o END OF CONVERSIDN
° = CONTROL & TIMING (INTERRUPT)
o— | l I
o—{ 8CHANNELS : I
§ ANALOG INPUTS] ML
O0—{ SWITCHES SAR : A
o
T
{ COMPARATOR : . —o
) | STATE® |_g
ouTPUT BT OUTPUTS
o— | wteh [
> | | BUFFER [O
T | L F
o
| SWITCH TREE !
- I |
I
3BIT ADDRESS | O— |
o ADDRESS B gt & 1
LATCH 1 I i |
arcaaEEy bEcODER I |
LATCH EMARLE 256R RESISTOR LADDER
| |
veo GND RERD REF(-) OUTPUT

TRISTATE' is a registered trademark of National Semiconducter Corp

ENABLE

Appendix G

[N
[\]
w

Functional Description

Multiplexer: The device contains an 8-channel single-
ended analog signal multiplexer. A particular input chan-
nel is selected by using the address decoder. Table |
shows the input states for the address lines to select any
channel. The address Is latched into the decoder on the
low-to-high transition of the address latch enable signal.

TABLE |
SELECTED ADDRESS LINE
ANALOG CHANNEL Cc B A
INO L L L
IN1 L L H
IN2 L H L
IN3 L H H
IN4 H L L
INS H L H
IN6 H H L
IN7 H H H
CONVERTER CHARACTERISTICS

The Converter

The heart of this single chip data acquisition system is its
B-bit analog-to-digital converter. The converter is designed

to give fast, accurate, and repeatable conversions over a
wide range of temperatures. The converter Is partitioned
into 3 major sections: the 256R ladder network, the suc-
cessive approximation register, and the comparator. The
converter's digital outputs are positive true.

The 256R ladder network approach (Figure 1) was chosen
over the conventional R/2R ladder because of its inherent
monotonicity, which guarantees no missing digital codes.
Monotonicity is particularly important in closed loop feed-
back control systems. A non-monotonic relationship can
cause oscillations that will be catastrophic for the
system, Additionally, the 256R network does not cause
load variations on the reference voltage.

The bottom resistor and the top resistor of the ladder
network In Figure 1 are not the same value as the
remainder of the network. The difference in these
resistors causes the output characteristic to be sym-
metrical with the zero and full-scale points of the transter
curve. The first output transition occurs when the analog
signal has reached + 1/2 LSB and succeeding output
transitions occur every 1 LSB later up to full-scale.

The successive approximation register (SAR) performs 8
Iterations to approximate the input voltage. For any SAR
type converter, n-iterations are required for an n-bit con-
verter. Figure 2 shows a typical example of a 3-bit con-
verter. In the ADCO0808, ADCOB09, the approximation
technigue is extended to B bits using the 256R network.

CONTROLS FROM S.A.R.
(]

REF(+) o—| ’* ‘

10
. & COMPARATOR
INPUT

1R
[]
.
R
.
.
256R u
.
.
R
.
>
R :D .
<
L
<
WA &
<b
i —_—
REF(-) O

FIGURE 1. Resistor Ladder and Switch Tree

608000V ‘80800QY

ADCO0808, ADC0809

226

Appendix G

Functional Description (continued)

The A/D converter's successive approximation regisier
(SAR) is reset on the positive edge of the start conversion
(SC) pulse. The conversion is begun on the falling edge of
the start conversion pulse. A conversion in process will be
interrupted by receipt of a new start conversion pulse.
Continuous conversion may be accomplished by tying the
end-of-conversion (EOC) output to the SC Input. If used In
this mode, an external start conversion pulse should be
applied after power up. End-of-conversion will go low be-
tween 0 and 8 clock pulses after the rising edge of start
conversion.

The most important section of the A/D converter is the

comparator. It Is this section which Is responsible for the
ultimate accuracy of the entire converter. It is also the

m

i--FULL-SCAI.i
- ERROR=1/21SB

10 IDEAL CURVE
10
100
o

e NONLINEARITY < 1/2 LSB
oo| p—d-s

A/D OUTPUT CODE

NONLINEARITY = -1/2 LSB
o

i [~ zeno ernon = -1/a Lse
oo L Vin
08 1/8 2/8 3B 4/8 51 68 118

ViN AS FRACTION OF FULL-SCALE

FIGURE 2. 3-Bit AID Transfer Curve

QUANTIZING
ERROR

INPUT OV
VOLTAGE

—_——

comparator drift which has the greatest influence on the
repeatability of the device. A chopper-stabilized com-
parator provides the most effective method of satistying
all the converter requirements.

The chopper-stabilized comparator converts the DC input
signal into an AC signal. This signal is then fed through a
high gain AC amplifier and has the DC level restored. This
technique limits the drift component of the amplifier since
the drift is a DC component which is not passed by the AC
amplifier. This makes the entire A/ID converter extremely
Insensitive to temperature, long term drift and input offset
errors,

Figure 4 shows a typical error curve for the ADCO808 as
measured using the procedures outlined in AN-179.

INFINITE RESOLUTION
m PERFECT CONVERTER
718 2158 : IDEAL 38T CONVERTER
5
g unawsteo™ A
e ERROR | —
& ABSOLUTE
2 m ACCURACY
S mo -172158
QUANTIZATION
001 ERROR

Vin
0/8 1/8 2/8 3/8 4/8 5/8 6/8 7/8

Vin AS FRACTION OF FULL-SCALE

FIGURE 3. 3-Bit A/D Absolute Accuracy Curve

REFERENCE LINE

FULL
SCALE

FIGURE 4. Typical Error Curve

Appendix G 227
Connection Diagram 8
Pack: g
Dual-in-Line Package
(==]
e — _2:_"‘1 "y
e =2 L i g
s =4 . ng (®)
s — L 2004 8
= L2 aop s (=]
[23 m
START = = aooc
€0t — i L2 e
253 ADCO808 120 2 thess
ouTPUT j |20, 22
ENABLE
cLock =2 P 23
Vee A lz—d
REF(3) — T -ay5
oo -3 LS ReF(-)
PRLI LA
TOP VIEW

Timing Diagram

v

START 0% 0%
tws—|
ALE 0% 0%
= tWALE —=]

STASLE ADDRESS

e e

aaos — vV
INPUT A A
sm_y
L5
COMPARATOR : :
INPUT
[INTERNAL NODE)
—t 10—
ouTPUT) \

ENABLE

Eoc
! j "‘7(
-————tg0C
| I
TRISTATE
... S _—

FIGURE §

@ MOTOROLA

MCGE50
MCESA50
SEMICONDUCTORS C68A

3501 ED BLUESTEIN BLVD., AUSTIN, TEXAS 78721 Mg.§§850

Hz)

ASYNCHRONOUS COMMUNICATIONS INTERFACE
ADAPTER (ACIA) MOS
(N-CHANNEL, SILICON-GATE)
The MCB850 Asynchronous Communications Interface Adapter pro-
vides the data formatting and contral to interface serial asynchronous ASYNCHRONOQUS
data communications information 1o bus organized systems such as the COMMUNICATIONS INTERFACE
MCB800 Microprocessing Unit. ADAPTER
The bus interface of the MC6850 includes select, enable, read/write,
interrupt and bus interface logic 10 allow data transfer over an 8-bit

bidirectional data bus. The parallel data of the bus system is serially
transmitted and received by the asynchronous data interface, with pro-

per formatting and error checking. The functional configuration of the
ACIA is programmed via the data bus during system initialization. A

programmable Control Register provides variable word lengths, clock CU.LS,‘?I;J)ZF(_‘LTME_
division ratios, transmit control, receive control, and interrupt control, CASE 623

For peripheral or modem operation, three control lines are provided,

These lines allow the ACIA to interface directly with the MCB860L

0-600 bps digital modem,

@ B- and 9-Bit Transmission P SUFFIX

@ Optional Even and Odd Parity PLASTIC PACKAGE
@ Parity, Overrun and Framing Error Checking CASE 709

® Programmable Control Register

@ Optional =1, 186, and +64 Clock Modes

@ Up to 1.0 Mbps Transmission L SUFFIX

® False Start Bit Deletion CE"A":“;‘;:?&“GE
@ Peripheral/Modem Contral Functions

@ Double Buffered

@ One- or Two-Stop Bit Operation

PIN ASSIGNMENT
MC6850 ASYNCHRONOUS COMMUNICATIONS INTERFACE ADAPTER

K DIAGRAM ——
L ¢ vVss) @ N ou ncTs
Rx Datal]2 2301 6CD
Rx CLK[]3 2201 00
Data = Tx CLK[]4 21101
Data B Bus Transmitter f—u- | 20SMit —
FEREE Butiers Data RTS[5 2001 D2
Tx DalaI;ﬁ 19103
maf7 18 [1D4
Rasal Receive
™ Daws csoQs 1705
csz[9 16 [1 D6
Sudiens Selection| £ EIIO 15 107
N ang Rs 1 1afle
Interrupt Control Poripheral/ VCCE 12 BlRW
Modem
Control

©MOTOROLA INC., 1981 DS 8493-R2

MC6850 MCE8A50eMCE8

FIGURE 9 — EXPANDED BLOCK DIAGRAM

Transmit Clock 4 1 Ciock Parity
Enable 14 ﬁ Gen Gen
Read/Write 13 —8= chp _*—'I
Chip Select 0 B —# Select Transmit Transmit
Chip Select 1 10— and Data p Shift b————————3 & Transmut Data
Chip Select1 2 9 —C) Read/Write Register Register
Register Select 11 —m Control +
Transmit
e 24 Clear-to-Send
D0 22 -
A Status
01 21 - Register *
- 1
D2 20 "l'_':;'.":p' O— 7 interrupt Request
D319 -~ Data
D4 18 =8 BB;::," 23 Data Carrier Detect
ul
D5 17 =S
D6 16 =i O— = 5 Reguest-to-Send
D7 15 = Control
' Register d)
Receive Parity
= Control { Chack
VCC = Pin 12 Receive Recaive
VeemPin i Data K] Shift 2 R Data
SS L Register Register
Clock Sync
e . P
Aeceive Clock 3 Gy Logks

DEVICE OPERATION

At the bus interface, the ACIA appears as two addressable
memory locations. Internally, there are four registers: two
read-only and two write-only registers. The read-only
registers are Status and Receive Data; the write-only
registers are Control and Transmit Data. The serial interface
consists of serial input and output lines with independent
clocks, and three peripheral/modem control lines.

POWER ON/MASTER RESET

The master reset {CRO, CR1) should be set during system
initialization to insure the reset condition and prepare for pro-
gramming the ACIA functional configuration when the com-
munications_channel_is required. During the first master
reset, the IRQ and RTS outputs are held at level 1. On all
other master resets, the RTS output can be programmed
high or low with the IRQ output held high. Control bits CRS
and CR6 should also be programmed to define the state of
RTS whenever master reset is utilized. The ACIA also con-
tains internal power-on reset logic to detect the power line
turn-on transition and hold the chip in a reset siate to pre-
vent erroneous output transitions prior to initializatiori. This
circuitry depends on clean power turn-on transitions. The

power-on reset is released by means of the bus-programmed
master reset which must be applied prior to operating the
ACIA. After master resetting the ACIA, the programmable
Control Register can be set for a number of options such as
variable clock divider ratios, variable word length, one or two
stop bits, parity (even, odd, or nonel, etc.

TRANSMIT

A typical ransmitting sequence consists of reading the
ACIA Status Register either as a result of an interrupt or in
the ACIA's turn in a polling sequence. A character may be
written into the Transmit Data Register if the status read
operation has indicated that the Transmit Data Register is
empty. This character is transferred to a Shift Register where
it is serialized and transmitted from the Transmit Data output
preceded by a start bit and followed by one or two stop bits.
Internal parity (odd or even) can be optionally added to the
character and will occur between the last data bit and the
first stop bit. After the first character is written in the Data
Register, the Status Register can be read again to check for a
Transmit Data Register Empty condition and current
peripheral status. If the register is empty, another character
can be loaded for transmission even though the first
character is in the process of being transmitted (because of

@ MO TOROLA Semiconductor Products Inc.

MC6850¢ MCE8A50* MCE8B50

double buffering). The second character will be automatical-
ly transferred into the Shift Register when the first character
transmission is completed. This sequence continues until all
the characters have been transmitted

RECEIVE

Data is received from a peripheral by means of the Receive
Data input. A divide-by-one clock ratio is provided for an ex-
ternally synchronized clock (to its data) while the divide-
by-16 and 64 ratios are provided for internal synchronization.
Bit synchronization in the divide-by-16 and 64 modes is in-
itiated by the detection of 8 or 32 low samples on the receive
line in the divide-by-16 and 64 modes respectively. False start
bit deletion capability insures that a full half bit of a start bit
has been received before the internal clock is synchronized
to the bit time. As a character is being received, parity (odd
or even] will be checked and the error indication will be
available in the Status Register along with framing error,
overrun error, and Receive Data Register full. In a typical
receiving sequence, the Status Register is read to determine
if a character has been received from a peripheral. If the
Receiver Data Register is full, the character is placed on the
8-bit ACIA bus when a Read Data command is received from
the MPU. When parity has been selected for a 7-bit word (7
bits plus parity), the receiver strips the parity bit (D7=0) so
that data alone is transferred to the MPU. This feature
reduces MPU programming. The Status Register can con-
tinue 1o be read to determine when another character is
available in the Receive Data Register. The receiver is also
double buffered so that a character can be read from the
data register as another character is being received in the
shift register. The above sequence continues until all
characters have been received

INPUT/OUTPUT FUNCTIONS

ACIA INTERFACE SIGNALS FOR MPU

The ACIA interfaces 1o the MB800 MPU with an 8-bit
bidirectional data bus, three chip select lines, a register select
line, an interrupt request line, read/write line, and enable
line. These signals permit the MPU to have complete control
over the ACIA.

ACIA Bidirectional Data {D0-D7) — The bidirectional data
lines (DO-D7) allow for data transfer between the ACIA and
the MPU. The data bus output drivers are three-stale devices
that remain in the high-impedance (off) state except when
the MPU performs an ACIA read operation.

ACIA Enable (E) — The Enable signal, E, is a high-
impedance TTL-compatible input that enables the bus in-
put/output data buffers and clocks data to and from the
ACIA. This signal will normally be a derivative of the MCB6800
¢2 Clock or MCB809 E clock.

Read/Write (R/W) — The Read/Write line is a high-
impedance input that is TTL compatible and is used to con-
trol the direction of data flow through the ACIA's input/out-
put data bus interface. When Read/Write is high IMPU Read
cycle), ACIA output drivers are turned on and a selected
register is read. When it is low, the ACIA output drivers are

@ MOTOROLA Semiconductor Products Inc.

turned off and the MPU writes into a selected register.
Therefore, the Read/Write signal is used 1o select read-only
or write-only registers within the ACIA.

Chip Select (CS0, CS1, CS2) -~ These three high-
impedance TTL-compatible input lines are used 1o address
the ACIA. The ACIA is selected when CS0 and CS1 are high
and CSZ is low. Transfers of data to and from the ACIA are
then performed under the control of the Enable Signal,
Read/Write, and Register Select.

Register Select (RS) — The Register Select line is a high-
impedance input that is TTL compatible. A high level is used
10 select the Transmit/Receive Data Registers and a low
level the Control/Status Registers. The Read/Write signal
line is used in conjunction with Regjster Select to select the
read-only or write-only register in each register pair.

Interrupt Request (iRQ) — Interrupt Request is a TTL-
compatible, open-drain (no internal pullup), active low out-
put that is used to interrupt the MPU. The IRQ output re-
mains low as long as the cause of the interrupt is present and
the appropriate interrupt enable within the ACIA is set. The
TRQ status bit, when high, indicates the IRQ output is in the
active state.

Interrupts result from conditions in both the transmitter
and receiver sections of the ACIA. The transmitter section
causes an interrupt when the Transmitter Interrupt Enabled
condition is selected (CR5#CR6), and the Transmit Data
Register Empty (TDRE) status bit is high. The TDRE status
bit indicates the current status of the Transmitter Data
Register except when inhibited by Clear-to-Send (CTS) be-
ing high or the ACIA being maintained in the Reset condi-
tion. The interrupt is cleared by writing data into the
Transmit Data Register. The interrupt is masked by disabling
the Transmitter Interrupt via CR5 or CR6 or by the loss of
CTS which inhibits the TDRE status bit. The Receiver sec-
tion causes an interrupt when the Receiver Interrupt Enable
is set and the Receive Data Register Full (RDRF) status bit is
high, an Overrun has occurred, or Data Carrier Detect (DCD)
has gone high. An interrupt resulting from the RDRF status
bit can be cleared by reading data or resetting the ACIA. In-
terrupts caused by Overrun or loss of DCD are cleared by
reading the status register after the error condition has oc-
curred and then reading the Receive Data Register or reset-
ting the ACIA. The receiver interrupt is masked by resetting
the Receiver Interrupt Enable.

CLOCK INPUTS

Separate high-impedance TTL-compatible inputs are pro-
vided for clocking of transmitted and received data. Clock
frequencies of 1, 16, or 64 times the data rate may be
selected.

Transmit Clock (Tx CLK) — The Transmit Clock input is
used for the clocking of transmitted data. The transmitter in-
itiates data on the negative transition of the clock.

Receive Clock (Rx CLK) — The Receive Clock input is
used for synchronization of received data. (In the + 1 mode,
the clock and data must be synchronized externally.) The
receiver samples the data on the positive transition of the
clock,

C6850*MC68A50* MC68B50

SERIAL INPUT/OUTPUT LINES

Receive Data (Rx Data) — The Receive Data line is a high-
impedance TTL-compatible input through which data is
received in a serial format. Synchronization with a clock for
detection of data is accomplished internally when clock rates
of 16 or 64 times the bit rate are used.

Transmit Data (Tx Data) — The Transmit Data output line
transfers serial data to a modem or other peripheral.

PERIPHERAL/MODEM CONTROL

The ACIA includes several functions that permit limited
control of a peripheral or modem. The functions included are
Clear-1o-Send, Request-to-Send and Data Carrier Detect.

Clear-to-Send (CTS) — This high-impedance TTL-
compatible input provides automatic control of the transmit-
ting end of a communications link via the modem Clear-to-
Send active low output by inhibiting the Transmit Data
Register Empty (TDRE) status bit.

Request-to-Send (RTS) — The Request-to-Send output
enables the MPU to control a peripheral or modem via the
data bus. The RTS output corresponds to the state of the
Contral Register bits CR5 and CR6. When CR6=0 or both
CR5 and CR6=1, the RT3 output is low (the active state).
This output can also be used for Data Terminal Ready (DTR).

Data Carrier Detect (DCD) — This high-impedance TTL-
compatible input provides automatic control, such as in the
receiving end of a communications link_by means of a
modem Data Carrier Detect output. The DCD input inhibits
and initializes the receiver section of the ACIA when high. A
low-to-high transition of the Data Carrier Detect initiates an
interrupt to the MPU to indicate the occurrence of a loss of
carrier when the Receive Interrupt Enable bit is set. The
Rx CLK must be running for proper DCD operation.

ACIA REGISTERS
The expanded block diagram for the ACIA indicates the in-
ternal registers on the chip that are used for the status, con-
trol, receiving, and transmitting of data. The content of each
of the registers is summarized in Table 1.

TRANSMIT DATA REGISTER (TDR)

Data is written in the Transmit Data Register during the
negative transition of the enable (E) when the ACIA has been
addressed with RS high and R/W low. Writing data into the
register causes the Transmit Data Register Empty bit in the
Status Register to go low. Data can then be transmitted. If
the transmitter is idling and no character is being transmit-
ted, then the transfer will take place within 1-bit time of the
trailing edge of the Write command. If a character is being
transmitted, the new data character will commence as soon
as the previous character is complete. The transfer of data
causes the Transmit Data Register Empty (TDRE) bit to in-
dicate empty.

RECEIVE DATA REGISTER (RDR)

Data is automatically transferred to the empty Receive
Data Register (RDR) from the receiver deserializer (a shift
register) upon receiving a complete character. This event
causes the Receive Data Register Full bit (RDRF) in the
status buffer to go high (fulll. Data may then be read
through the bus by addressing the ACIA and selecting the
Receive Data Register with RS and R/W high when the
ACIA is enabled. The non-destructive read cycle causes the
RDRF bit to be cleared to empty although the data is re-
tained in the RDR. The status is maintained by RDRF as to
whether or not the data is current. When the Receive Data
Register is full, the automatic transfer of data from the
Receiver Shift Register to the Data Register is inhibited and
the RDR contents remain valid with its current status stored
in the Status Register.

TABLE 1 — DEFINITION OF ACIA REGISTER CONTENTS

Buffer Address
Data RS e R/W RS R/W RSeRTW RS« R/W
Bus Transmit Receive
Line Data Data Control Status
Number Register Register Register Register
(Write Only) (Read Only) (Write Only) (Read Only)
0 Data 811 0° Data Bit 0 Counter Divide Receive Data Register
Select 1 ICRO) Full ([RDRAF
1 Data 8it 1 Data Bit' 1 Counter Divide Transmit Dats Register
Select 2 .CR1} Empiy (TDRE)
2 DataBn 2 Data But 2 Word Select 1 Data Carrier Detect
(CR2) (DTD)
3 Data Bit 3 Data 811 3 Ward Select 2 Clear to Send
(CRI) (TS
a Data Bit 4 Data Bit 4 Word Select 3 Framing Ertar
(CR4I FE)
5 DataBit 5 DataBit S Transmit Cantrol 1 Recewver Overrun
{CRS) OVRN
6 Data Bit 6 DataBi 6 Transmit Control 2 Pariy Error (PE)
ICRG)
? DataBit 7°°* Data Bt 7°° Receive interrupt interrupt Request
Enabile (CR7| (TRGI

* Leadingbit = LSB - 81t 0
“* Data but will be zero in 7 it plus parity modes
*** Data bit is "don’t care’ in 7 bit plus parity modes

@ MOTOROLA Semiconductor Products Inc.

MC6850e MCE68A50* MCE8B50

CONTROL REGISTER

The ACIA Control Register consists of eight bits of write-
only buffer that are selected when RS and R/W are low. This
register controls the function of the receiver, transmitter, in-
terrupt enables, and the Request-to-Send peri-
pheral/modem control output.

Counter Divide Select Bits (CRO and CR1) — The Counter
Divide Select Bits (CRO and CR1) determine the divide ratios
utilized in both the transmitter and receiver sections of the
ACIA. Additionally, these bits are used to provide a master
reset for the ACIA which clears the Status Register (except
for external conditions on CTS and DCD) and initializes both
the receiver and transmitter. Master reset does not affect
other Control Register bits. Note that after power-on or a
power fail/restart, these bits must be set high to reset the
ACIA. After resetting, the clock divide ratio may be selected.
These counter select bits provide for the following clock
divide ratios:

CR1 CRO Function
0 0 -1
0 1 - 16
1 0 + B4
1 1 Master Reset

Word Select Bits (CR2, CR3, and CR4) — The Word
Select bits are used to select word length, parity, and the
number of stop bits. The encoding format is as follows:

CR4 | CR3 | CR2 Function

0 0 0 7 Bits+ Even Parity + 2 Stop Bits
[¢] 0 1 7 Bits+ Odd Parity + 2 Stop Bits
0 1 0 7 Bits+ Even Parity + 1 Stop Bit
0 1 1 7 Bits + Odd Parity + 1 Stop Bit

1 0 0 8 Bits+2 Stop Bits

1 0 1 8 Bits+ 1 Stop Bit

1 1 (4] 8 Bits + Even parity + 1 Stop Bit
1 1 1 8 Bits+ Odd Parity + 1 Stop Bit

Word length, Parity Select, and Stop Bit changes are not
buffered and therefore become effective immediately.

Transmitter Control Bits (CR5 and CR6) — Two Transmit-
ter Control bits provide for the control of the interrupt from
the Transmit Data Register Empty condition, the Request-to-
Send (RTS) output, and the transmission of a Break level
Ispace). The following encoding format is used:

CR6 | CR5 Function
0 0 E: low, Transmitting Interrupt Disabled
0 1 RTS =low. Transmitung Interrupt Enabled.
1 0 RTS =high, Transmitting Interrupt Disabled.
1 1 ATS =low, Transmits a Break level on the
Transmit Data Output. Transmitting Inter-
rupt Disabled.

Receive Interrupt Enable Bit (CR7) — The following inter-
rupts will be enabled by a high level in bit position 7 of the
Control Register (CR7): Receive Data Register Full, Overrun,
or a low-to-high transition on the Data Carrier Detect (DCD)
signal line.

STATUS REGISTER

Information on the status of the ACIA is available to the
MPU by reading the ACIA Status Register. This read-only
register is selected when RS is low and R/W is high. Infor-
mation stored in this register indicates the status of the
Transmit Data Register, the Receive Data Register and error
logic, and the peripheral/modem status inputs of the ACIA.

Receive Data Register Full (RDRF), Bit 0 — Receive Data
Register Full indicates that received data has been trans-
ferred to the Receive Data Register. RDRF is cleared after an
MPU read of the Receive Data Register or by a master reset.
The cleared or empty state indicates that the contents of the
Receive Data Register are not current. Data Carrier Detect
being high also causes RDRF to indicate empty.

Transmit Data Register Empty (TDRE), Bit 1 — The
Transmit Data Register Empty bit being set high indicates
that the Transmit Data Register contents have been trans-
ferred and that new data may be entered. The low state in-
dicates that the register is full and that transmission of a new
character has not begun since the last write data command.

Data Carrier Detect (DCD), Bit 2 — The Data Carrier
Detect bit will be high when the DCD input from a modem
has gone high to indicate that a carrier is not present. This bit
going high causes an Interrupt Request to be generated
when the Receive Interrupt Enable is set. It remains high
after the DCD input is returned low until cleared by first
reading the Status Register and then the Data Register or
until a master reset occurs. If the DCD input remains high
after read status and read data or master reset has occurred,
the interrupt is cleared, the DCD status bit remains high and
will follow the DCD input

Clear-to-Send (CTS), Bit 3 — The Clear-to-Send bit in-
Jicates the state of the Clear-to-Send input from a modem.
A low CTS indicates that there is a Clear-to-Send from the
modem. In the high state, the Transmit Data Register Empty
bit is inhibited and the Clear-10-Send status bit will be high.
Master reset does not affect the Clear-10-Send status bit.

Framing Error (FE), Bit 4 — Framing error indicates that
the received character is improperly framed by a start and a
stop bit and is detected by the absence of the first stop bit.
This error indicates a synchronization error, faulty transmis-
sion, or a break condition. The framing error flag is set or
reset during the receive data transter time. Therefore, this er-
ror indicator is present throughout the time that the
associated character is available.

Receiver Overrun (OVRN), Bit 5 — Overrun is an error flag
that indicates that one or more characters in the data stream
were lost. That is, a character or a number of characters
were received but not read from the Receive Data Register
(RDR) prior to subsequent characters being received. The
overrun condition begins at the midpoint of the last bit of the
second character received in succession without a read of
the RDR having occurred. The Overrun does not occur in the
Status Register until the valid character prior to Overrun has

- @ MOTOROLA Semiconductor Products Inc.

Appendix G

233

MC6850¢ MC68A50* MC6E8B50

been read. The RDRF bit remains set until the Overrun is
reset. Character synchronization is maintained during the
Overrun condition. The Overrun indication is reset after the
reading of data from the Receive Data Register or by a
Master Reset.

Parity Error (PE), Bit 6 — The parity error flag indicates
that the number of highs (ones) in the character does not
agree with the preselected odd or even parity. Odd parity is
defined to be when the total number of ones is odd. The
parity error indication will be present as long as the data

character is in the RDR. If no parity is selected, then both the
transmitter parity generator output and the receiver partiy
check results are inhibited.

Interrupt Request (IRQ), Bit 7 — The IRQ bit indicates the
state of the TRQ output. Any interrupt cendition with its ap-
plicable enable will be indicated in this status bit. Anytime
the IRQ output is low the TRQ bit will be high to indicate the
iNterrupt or service request status. iRQ is cleared by a read
operation 1o the Receive Data Register or a write operation
to the Transmit Data Register.

INDEX

A

AC control interface, 105-9 (see
also Relay interface)
Address bus, 14-15, 23
Address decoder, 26-31
switch selectable, 43-44
Analog-to-digital converter (ADC):
description, 127-29
flash converter, 129-30
National Semiconductor
ADC0809, 132-35 (see also
Appendix G):
Apple II interface, 133-35
description, 132-33
digital voltmeter, 135-36
temperature sensor, 92-93
successive approximations con-
verter, 131-32
tracking converter, 130
AND gate, 202-4
Apple II:
address decoding, 30
memory map, 24-25
slot connectors, 4-5
using the game connector:
input, 95-97
output, 109-11

ASCII, 166-67 (Table 12-2)
Asynchronous Communications

Interface Adapter (ACIA),

156-69
Motorola MC6850 (see also
Appendix G):
Apple II interface, 159-61
control register, 161-63
control software, 164-66
modem control lines, 169
status register, 163-64

B

Baud rate, 155-56
Baud rate generator (MC14411),
161-62

Binary number system, 199-201
Breadboard, 6-7 (Table I-1)
Bus:

address, 14-15, 23

control, 14-15, 24

data, 14-15, 23

three bus architecture, 14-15
Buzzer, piezoelectric, 106

235

236

Clock, 15-16
Comparator:
light sensing interface, 89-92
LM339, 89-90
temperature sensing interface,
92-93
Connector descriptions, 191-93
Control bus, 14-15, 24

D

Data bus, 14-15, 23

Decimal-to-binary conversion
(BASIC program), 51-52

Decoder, 26-31

Device select, 29-31

Digital communications, 166-69

Digital-to-analog converter (DAC):

characteristics, 122-23
(Table 9-1)
full-scale output, 116
hypothetical 4-bit, 115-17
Motorola MC1408, 117-18 (see
also Appendix G):
Apple II interface, 117-20
control software, 119-21
programmable power supply,
124-25
waveform generator, 124

F

Flash converter, 129-30
Flip-flop, 205-6
Furnace controller, 107

Index
G

Game connector:

used for input, 95-97

used for output, 109-11
General Instrument:

AY-3-8910, 178

AY-5-1013, 156-57
Graphics, use of high resolution,

137

H

Handshaking, 58, 70, 145-47

I

Input port, 47-49, 53
Intel 8255, 57 (see also
Appendix G)
Interface:
AC control, 105-9
ACIA, 159-61
ADC, 133-35
DAC, 117-20
digital thermometer, 136-37
digital voltmeter, 135-36
furnace controller, 107
handshaking test circuit, 148-51
magnetic switch, 87-89
mechanical relay, 102-5
organ, electronic using the
AY-3-8910, 188-90
peripheral interface adapter
(PIA), 71-73
photoresistor, 89-92
programmable peripheral inter-
face (PPI), 59-60
programmable power supply,
124-25

Index

smoke detector, 94-95
solid-state relay, 105-6
sound generator (AY-3-8910),
178-80
temperature sensor, 92-93
traffic light controller, 62-68,
79-82
ultrasonic, 106-9
Interrupt driven IO, 14345
I/O mapped 1/0, 18
I/O port enable pulse, 31-33
I/O types, 141-45

L

Latch, 37-38 (Table 3-1)
Logic gates, 202-4
Logic probe, 7-9 (Table 1-2)

M

Machine cycles, 16-17, 21
Magnetic switch interface, 87-89
Masking, 51
Memory map (Apple II), 24-25
Memory-mapped 1/O, 18
Modem, 169
Motorola:
MC1408, 117-18 (see also
Appendix G)
MC6820, 70-71 (see also
Appendix G)
MC6850, 156-69 (see also
Appendix G)
MC14411, 161-62

237
N

NAND gate, 202-4

National Semiconductor ADC0809,
132-33 (see also
Appendix G)

NOR gate, 202-4

o]

Operational amplifier (Op-Amp):
current-to-voltage converter, 119
voltage follower, 119

Opto-coupler, 105-6

OR gate, 202-4

Output port, 37-41, 44

P

Partial decoding, 27-30
Parts list, 195-98
Pass transistor, 121-22
PEEK, 18, 33-35, 47-48
Peripheral Interface Adapter,
Motorola MC6850 (see also
Appendix G):
Apple II interface, 71-73
application as traffic light
controller, 78-79
block diagram, 71
control register format, 74-75
description, 70-71
software control, 73, 76-77
Photoresistor interface, 89-92
POKE, 18, 33-35, 37
Polled 1/0O, 141-43
Printer port, 154-55

238

Programmable Peripheral Interface,
Intel 8255 (see also
Appendix G):

Apple II interface, 59-60

application as traffic light
controller, 62-65

block diagram, 58

handshaking signals, 145-47

initialization, 61-62, 145-48

mode 0, 57

mode 1, 145-48

modes of operation, 57-58

Programmable sound generator
(see Sound generator)

R

RAM, 25

READY flag, 141

Relay interface:
mechanical, 102-5
solid-state, 105-6

ROM, 25

RS-232C, 166-69

S

Serial data transmission, 154-56
Serial interfacing, 156-69
Seven-segment display:

software driver, 150

two digit output port, 40-43

Smoke detector interface, 94-95

Solderless breadboard, 6-7
(Table I-1)

Sound generator:

General Instrument AY-3-8910:
Apple II interface, 178-80
application as electronic

organ, 188-90

Index

control with BASIC, 180-87
description, 178
summary of functi®hs, 186
timing, 180-82
Mostek MK50240N, 173, 175
Texas Instruments:
SN76477, 175-76
SNT6489A, 176-T77
Successive approximations ADC,
131

i

Temperature, analog sensing,
136-37

Temperature sensor interface,
92-93

Texas Instruments (see Sound
generator)

Timing diagrams, memory read and
write, 16-17

Tone decoder, 108-9

Tracking ADC, 130

Transducer, 106-9

Transistor relay driver, 103-5

Tri-state gate, 47-48, 50

Troubleshooting, 207-9

U
Ultrasonic interface, 106-9
Universal Asynchronous Receiver-

Transmitter (UART),
156-57

v

Voltage, analog sensing, 135-36

é-

o . A R 1
te bt " | . R % X
2R DRARY 5
‘%\ AR
A a
AT) - ¥
V’; 5 TR '?!'\L\ 1
2 L3
e

Uil ﬂ};‘!“

Sobrirbeh ke

SRR
38

N A 4
% ?.‘;‘TJJ.{\"V:;"

WA “ "‘:"
R B
v o
o sv._vv-v\()""',vv‘!“,’. ,»wr
R IR s
SR s

v_,‘ 3 .x;’w.‘:

» S

SR
A R

,,‘--— 'u-:“s;'{"
25

e AT

TR

: TS

S P Q)

el S B e W v

s ATy Poeen
S

A

ki .
R SR SR ""‘:‘Z ¥
e i e
LR " f‘v_w .r{;"‘vvso SR

"!:"v

'; A K-.'v~v-~‘ Ty
EENRES \\7"' n w“
SIS

T \,.sv.‘aw

e
S, St
-. ,.-bv O n\"'

TR

SREERCROHR I oe
~ v e/

SRR,
AR RR e

Ch O M
‘."‘__‘{,‘,‘ ,,?..., gy

t—'%
S

v 2
X VR o
e 'L“ ‘..-n-‘ AT
R TR

w-u—wvvvxhv

O .-vr.,,‘. v
SRy

s
IR
pei
hrocty
o

AU AA e v
e Y
\!:V ~'l UL
e h__ﬁ»,\ o
SRy

..v\-~),

e
-,.‘ SR
m

St

SGoiAnAs
R e R -v.r,‘}“!;v'&ﬁ»w L%
2

3:2::-%‘3%-
R

_‘.-N;v.:,,...,\.ww»x.. S

N e

AL

g T
s ashrh Aty A

N W
S A0,

ot
s
T o

2SS

e
e

b s R b

gm—f’,‘

T
>

2 '_»_._,.:';
w»«“(.“??.‘!:' s
R SRR,
LA LS SRS
SEEEs TR
] e TRy

..‘..,

Ty b T

9..,--‘(3_‘;)

:.—% VR

._....s-

\s‘i"

,.,‘k-.,»:‘——.‘w Ty

‘“" SRR
\1

e
St

e ety by
S Wl'»c :

e —Pv-\m

LT wg;,
TRt

S

hoA 0 A
T
.'.‘i‘»-‘;}‘&!"“‘
eIt
T ks
St b A b A
R e el e

SENE
LAY
A ."“vav

A

ABCas
.<v~*‘¢'

s

SIS

\:n,,:{

oy W‘*“"‘ “""‘
A

X RT

TPty
»W\Qr' e '“"";

v\'v Y
J..""(.‘v "53&.

B e T
“mvwvw—wv

ANCOOER
e o

.5 LSRRI
N e

T ,-0'5 R
%‘-\}Jv\e LRI
IR ""w' % £ beid
3 Q"»u’.‘:‘ ‘;-‘,Aagﬁ -

