


KfDg AND THE 
APPLE 

BY 
Edward H. Carlson 

Department of Physics and Astronomy 
Michigan State Unive_rsity 

Illustrated by 
Paul D. Trap 

First Printing July 1982 
Second Printing January 1983 

Third Printing June 1983 



~ DATAMOS't .. 
8943 Fullbright Avenue 

Chatsworth, CA 91311-2750 
(213) 709- 1202 

ISBN No. 0-88190-019-2 

CDPVAIBHT ~ 1982 BY DATAMOBT 

This manual is published and copyrighted by DATAMOST. All right s are reserved by 
DATAMOST. Copying, duplicating, selling or otherwise distributing this product is hereby 
expressly forbidden except by prior written consent of DATAMOST. 

The word APPLE and the Apple logo are registered trademarks of APPLE COMPUTER. INC. 

APPLE COM PUTER,INC.was not in anyway involved in the writing or other preparation of this 
manual, nor were the facts presented here reviewed for accuracy by that company. Use of the 
term APPLE shou ld not be construed to represent any endorsement, official or otherwise, by 
APPLE COMPUTER, INC. 



TABLE OF CONTENTS 

Page 
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 
io The Kids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 
To The Parents .. ............ .. . . .. . ... . . ............ .. . . . ..... . .. ... . . ... . ... ............ . .... . . . .. iii 
To The Teachers . . . . .. ............ . ........................... . ........ . ..................... . . ... . . iv 
About Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 
About the Book . .. .. . .. . ... . ... ... ................ ....... . . . . .. . . . ...... .. . ... ................... ... vi 

INTRODUCTION 

1 Home, Print, New, and Run · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·: · · · · · · · · . 7 
2 Peeping, Flash, Inverse, and Normal······························· · .. . ... .. . . . · · · · . . .. ·.· ··· ·· . . 13 
3 List and Rem·· ····· · ··· ·· ··· ·· ·· ·· ··· · .. ·.······················· ............................. 17 
4 Special Keys · . · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 23 
5 The INPUT Command· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ........ · ... · . · ...... . . · · · · .. 27 
6 Tricks with Print, Speed ...... .. ......... · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 30 
7 The LET Command . · · · · · · · · · · · · · · · · · · · .... · · · · · · · · · · · · · · · · . · · . · · · ..................... ........ 34 
8 The GOTO Command and Reset Key ....... · · · · · · · · · · · · · · · · · · · · · · · · · · . · · · · · · · · · · · · · · · · · · · · · · · · · 38 
9 The IF Command .... ... .. .. .. .. ....... . .. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 42 

10 Introducing Numbers··················· . ... ··· · ············· · · · ··· . ... . ... ............. · ..... · -48 
11 Tab and ))elay Loops .......... . ... . ........... · · .................... ..... ...................... 54 
12 The IF Command with Numbers .. ..... · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 59 
13 Random Numbers and the INT Function ....... . · · · · . . · . · · . · · ... . .......... . .... ..... . . · . · . · . . · .. . 63 
14 Save to the Disk · · · · · . · . · · ...... . . · . . . · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 69 

GRAPHICS, GAMES, AND ALL THAT 

15 Some Shortcuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 
16 Moving About on the Screen, VTAB, HTAB ... .................... . .................... .. ...... 79 
17 FOR-NEXT Loops .. .. . . . . ...... . ... ......... ....................... . ......................... 82 
18 Edit and Run Modes, The Calculator ........ .. ....... . .. . ... .. ..... . . . . ...... ... . . . ............. 87 
19 Moving Pictures Using Strings .... .. .. . ............................................. . ... .... . ... 91 
20 Variable Names ..... .. . .. ....... .. ... .. ... .... ........ . ................. . ..................... 95 
21 LO-RES Graphics ...... . ............................................ .. .................... ... . 98 
22 Graphics Using HLIN and VLIN ..... . ....... . . ... . .. .. .. . ..... . ........... ... . ..... . .. ... ... . . 103 
23 Secret Writing and the GET Command . ..... . ....... .. .. . .. . ....... . .. . ... . . .. .................. I 08 
24 Pretty Programs, GOSUB, Return, End .. .. . . ... .. .. ... .. .. . . ..... . ........... . ... ... . ... .. . . . . .. 11 3 

ADVANCED PROGRAMMING 

25 Line Editing ... , .............. ... . . ............... .... ................. . ..................... .11 9 
26 Snipping Strings: LEFT$, MID$, RIGHT$, LEN . .. ....... .......... ... ......................... .J 23 
27 Switching Numbers with Strings ...... . . . ........ . ................. .. . . .. ...................... .128 
28 Paddles for Action Games . . ................ ... ....... . ...... . ..... . ......... ... . ... . . ... .. .. .. .132 
29 ASCII Code, Keyboard, ON ... GOTO ......... . ....... ...................................... .138 
30 Arrays and the DIM Command ................ .. ... . ...... .. .................................... 145 
31 Logic: AND, OR, NOT ................. . . . ................. . . .. .. .... . . . . ..... . . . . .... .. . .. .. .149 
32 User Friendly Programs .. ... ........... .. . . ....................... . . . .. . . . .................... .156 
33 ))ebugging, STOP, CTRL-C, CONT ..... .... .. ....... ... .... ... ........ . ....... ... .. . .. . . . ... . . 162 

Appendix A - Disk Usage······ ·· · ··· ·· · ········ · ······ · ························· · · ·· ··· · ········· 167 
Appendix B - Saving to Tape · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 169 
Appendix C - Reserved Words in Applesoft · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 172 
Answers to Assignments · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 173 
Glossary · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · • · 207 
Index of Commands · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 216 
Error Messages · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 217 
Index of Topics · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·219 



ACKNOWLEDGEMENTS 

My sincere thanks go to Paul Sheldon Foote for suggesting I write this book. Paul pointed 
out to me that parents urgently need a book to help their children learn programming on their 
home computers. I have an Apple and kids at home and was helping plan and preparing to 
teach in the "Computers and You" summer camp at Michigan State University, but I had not 
noticed the absence of a book that would teach serious computing to children of middle 
school age. 

I am deeply grateful to my fellow teachers and board members at the summer camp: Mark 
Lardie, John Forsyth, and Mary Winter, each of whom shared their teaching experiences 
with me and suggested techniques for communicating the material in an effective way. 

Mark Lardie has been especially generous in reading the typescript and offering suggestions 
from his extensive experience in teaching computing to children under a variety of formats. 

The summer camp experience was enhanced by its smooth operation under the direction of 
Marc Van Wormer and by the expert and sympathic help of the student assistants Paul Johns 
and Cecilia Stauffer. 

Remembering the enthusiastic pleasure of the summer camp students has encouraged me 
during the months spent in preparing this book. Several families have used the book in their 
homes and offered suggestions for improvement. 

I especially wish to thank Steve Peter and his girls Karen and Kristy; George Campbell and 
his youngsters Andrew and Sarah; Beth O'Malia and Scott, John and Matt; Chris Clark and 
Chris Jr., Tryn, Daniel, and Vicky; and Paul Foote and David. 

In addition, Lucy Slinger commented on the book from her perspective as a science teacher 
and Bill Brown from his extensive experience in microcomputing. 

My own family has tolerated my periods of seclusion in the writing den. These were 
punctuated by noisy tours of the house in search of whichever of my children could listen to 
and evaluate my latest idea. So my final and heartfelt thanks go to my wife Louise and our 
children Karen, Brian and Minda. 



TO THE KIDS 

This book teaches you how to write programs for the Apple computer. 

You will learn how to make your own action games, board games and word games. You may 
entertain your friends with challenging games and provide some silly moments at your 
parties with short games you invent. 

Perhaps your record collection or your paper route needs the organization your special 
programs can provide. If you are working on the school yearbook, maybe a program to 
handle the finances or records would be useful. 

You may help your younger sisters and brothers by writing drill programs for arithmetic facts 
or spelling. Even your own schoolwork in history or foreign language may be made easier 
by programs you write. 

How to Use This Book Do all the examples. Try all the assignments. If you get stuck, first 
go back and reread the lesson carefully from the top. You may have overlooked some detail. 
After trying hard to get unstuck by yourself, you may go ask a parent or teacher for help. 

There are review questions for each lesson. Be sure you can answer them before announcing 
that you have finished the lesson! 

MAY THE BLUEBIRD OF HAPPINESS EAT ALL THE BUGS IN YOUR PROGRAMS! 

ii 



iii 

TO THE PARENTS 

This book is designed to teach Applesoft BASIC to youngsters in the range from 10 to 14 
years old. It gives guidance, explanations, exercises, reviews, and "quizzes." Some exer~ises 
have room for the student to write in answers that you can check later. Answers are provided 
in the back of the book for all assignments. Your child will probably need some help in 
getting started and a great deal of encouragement at the sticky places. 

Learning to program is not easy because it requires handling some sophisticated concepts. It 
also requires accuracy and attention to detail which are not typical childhood traits. For these 
very reasons it is a valuable experience for children. They will be well rewarded if they can 
stick with the book long enough to reach the fun projects that are possible once a repertoire 
of commands is built up. 

How to Use the Book The book is divided into 33 lessons for the kids to do. Each lesson 
is preceded by a NOTES section which you should read. It outlines the things to be studied, 
gives some helpful hints , and provides questions which you can use verbally (usually at the 
computer) to see if the skills and concepts have been mastered. 

These notes are intended for the parents, but the older students may also profit by reading 
them. The younger students will probably not read them, and can get all the material they 
need from the lessons themselves. For the youngest children, it may be advisable to read the 
lesson out loud with them and discuss it before they start work. 

TO THE TEACHER 

This book is designed for students in about the 7th grade. It teaches Applesoft BASIC on 
disk based or cassette Apple systems. The lessons contain explanations (including cartoons), 
examples, exercises, and review questions. Notes for the instructor which accompany each 
lesson summarize the material, provide helpful hints, and give good review questions. 

The book is intended for self study, but may also be used in a classroom setting. 

I view this book as teaching programming in the broadest sense, using the BASIC 
language, rather than teaching "BASIC." Seymour Papert has pointed out in 
MINDSTORMS that programming can teach powerful ideas. Among these are the idea that 
procedures are entities in themselves. They can be named, broken down into elementary 
parts, and debugged. Some other concepts include these: "chunking" ideas into "mind sized 
bites;' organizing such modules in a hierarchial system, looping to repeat modules , and 
conditional testing (the IF .. . THEN statement). 

Each concept is tied to everyday experiences of the student through choice of language to 
express the idea, through choice of examples, and through cartoons. Thus metaphor is 
utilized in making the "new" material familiar to the student. 



ABOUT PROGRAMMING 

There is a common misconception that programming a computer must be very similar to 
doing arithmetic. Not so. The childhood activities that computing most resembles may be 
playing with building blocks and writing an English composition. 

Like a set of blocks, BASIC uses many copies of a small number of elements (commands) 
that are combined in rather standardized ways to achieve an original end result. As 
familiarity with the system grows, a "bag of tricks" is collected by the programmer that 
allows each command to serve a larger number of functions, just as the child first uses the 
"triangle block" in making roofs, but later finds that two of them make a splendid fir tree. 

Like an essay, a program is a finished product that fulfills a specified need. The child writing 
to the theme "How I spent my summer:' adopts one of several working styles. The beginner 
may be hung up in how to hold the pencil and how to spell. The same child a few grades 
later will just start writing, not spending much time in forming good paragraphs, much less 
in planning the overall structure of the composition. With maturity comes freedom to move 
back and forth among the levels of concern, now thinking about the overall form, and a few 
moments later paying attention to word choice or punctuation. 

Computing does have some similarities to arithmetic as seen by most children. There are 
rigid rules to learn: procedures in arithmetic but only syntax in programming. Even the 
tiniest mistake makes the whole result "wrong." (A more effective attitude in programming 
is that "wrong" results are partly right, and need debugging, a normal and expected 
activity.) However, the limited scope for creativity in arithmetic contrasts sharply with the 
emphasis on creativity in program writing. 

iv 



v 

Programming offers general education advantages not easily found elsewhere in a child's 
experiences. The plasticity of the form, words on a screen that are created and destroyed by 
the touch of a key, allows effort to be concentrated on the central features to be learned. 
These features are balanced between analysis (why doesn't it work as I want) and synthesis 
(planning on several size scales, from the program as a whole down through loops and 
subroutines to individual commands). Learning on the computer is efficient of effort. Errors 
of syntax are automatically pointed out by the computer. 

The analytical and synthetical skills learned in programming can be transferred to more 
general situations and can help the child to a more mature style of thinking and working. 

ABOUT THE BOOK 
The book is arranged in 33 lessons, each with notes to the instructor and each containing 
assignments and review questions. 

For instructors who feel themselves weak in BASIC or are beginners, the student's lessons 
form a good introduction to BASIC. The lessons and notes differ in style. The lessons are 
pragmatic and holistic, the notes and GLOSSARY are detailed and explanatory. 

The book starts with a bare bones introduction to programming, leading quickly to the point 
where interesting programs can be written. See the notes for lesson 5, THE INPUT 
COMMAND, for an explanation. The central° part of the book emphasizes more advanced 
and powerful commands. The final part of the book continues this, but also deals with 
broader aspects of the art of programming such as editing and debugging, and user friendly 
programming. 

The assignments involve writing programs, usually short ones. Of course, many different 
programs are satisfactory "solutions" to these assignments . In the back of the book I have 
included a solution for each assignment program, some of them written by children who 
have used the book. 

Lessons 14 (SAVE TO THE DISK) and 18 (EDIT AND RUN MODES) can be studied 
anytime after the first lesson. 



INTRODUCTION 

INSTRUCTOR NOTES 1 HOME, PRINT, NEW, and RUN 

This lesson is an introduction to the computer. Directions for turning on the machine are 
given on the next page and may be supplemented by your own instructions. 

Appendix A concerns care and usage of disks . You should initialize a disk at this point for 
the exclusive use of the student. Instructions and a useful HELLO program for this are given 
in the appendix. 

Commands covered in this lesson are: 

HOME, NEW, PRINT and RUN 

The contents of the lesson: 

1. Turning on the computer. 
2. Typing versus entering commands or lines. RETURN key. 
3. The computer only understands a limited number of commands. 
4. In this lesson, HOME, NEW, PRINT, RUN. 
5. What is a program. Numbered lines. 
6. The screen can be cleared using HOME. 
7. Memory can be cleared with NEW. 
8. What is seen on the screen and what is in memory are different. This may be a hard 

concept for the student to understand at first. 
9. RUN makes the computer go to memory, look at the commands in the lines (in order) 

and perform the commands. 
10. One can skip numbers in choosing line numbers , and why one may want to do so. 

QUESTIONS: 

1. Write a program that will print your name. 

2. Make the program disappear from the TV screen but stay in memory. 

3. Run it. 

4. Erase the program from memory. 

5. Write a program that will clear the screen, then print "HELLO" 

6. Make it run. 

7. Erase it from memory but leave it on the screen. 

7 



8 

LESSON 1 HOME, PRINT, NEW, and RUN 

HOW TO TURN ON THE COMPUTER 

If you have the Apple II+ with Autostart ROM, then: 

1. Find your special disk or the one named "DOS 3.3 SYSTEM MASTER". 
2. Hold the disk with the label up and your thumb on the label. 
3. Put the disk carefully in the drive 1 and close the door. 
4. Reach behind the computer at the left and switch it on. 
5. Switch on the TV or Monitor. If you have another kind of Apple, follow these 

instructions: 

TYPING 
iype some things. What you type shows on the TV screen. 

COMMAND THE COMPUTER 
Thy this. iype: HOME 

and press the RETURN key. 

The word "HOME" tells the computer to erase the TV screen and move the flashing box to 
the upper left corner of the screen. 



Did the computer "peep" at you and print SYNTAX ERROR? If so, type HOME and press 
the RETURN key again. 

When the computer "peeps" and prints SYNTAX ERROR, it means the computer did not 
understand you. 

The computer only understands about 100 words. You need to learn which words the 
computer understands. 

Here are the first 4 words to learn: 

HOME, NEW, PRINT, and RUN. 

? • \ 

THE NEW COMMAND 
'fYpe: NEW 

and press RETURN. 

NEW empties the computer's memory so you can put your program in it. 

9 



10 

HOW TO ENTER A LINE 
When we say, "enter" we will always mean to do these 2 things. 

1. type a line 
2. then press the RETURN key. 

Enter this line: 10 PRINT 11 HI II 

(The 11 marks are quotation marks. To make 11 marks, hold down the SHIFf key and press 
the key that has the 2 and the 11 on it.) 

(Did you remember to press the RETURN key at the end of the line?) 

Now the line number 10 is in the computer's memory. It will stay in memory until you enter 
the NEW command, or until you turn off the computer. Line 10 is a very short program. 

THE NUMBER ZERO AND THE LETTER "O" 
The computer always writes the zero like this: 

zero 

and the letter 0 like this: 

letter 0 

You have to be careful to do the same. 

right 
wrong 

10 HOME 

10HOME 

0 

0 



WHAT IS A PROGRAM? 
A program is a list of commands you wish the computer to do. The commands are written in 
lines. Each line starts with a number. The program you entered above has only one line. 

HOW TO RUN A PROGRAM 
A moment ago you put this program in memory: 

10 PRINT "HI" 

Now enter: RUN 

(Did you remember to press the RETURN key?) 

The RUN command tells the computer to look in its memory for a program and then to obey 
the commands it reads in the lines. 

Did the computer obey the PRINT command? The PRINT command tells the computer to 
print whatever is between the quotation marks. The computer printed: 

HI 

11 



12 

HOW TO NUMBER THE LINES IN A PROGRAM 
Enter this program: 

1 REM PROGRAM 1 
2 HOME 
3 PRINT 11 HI II 

This program has 3 lines. Each line starts with a command. You have already learned the 
HOME and PRINT commands. You will learn about the REM command later. 

Usually you will skip numbers when writing the program. 

Like this: 10 REM PROGRAM 1 
15 HOME 
20 PRINT 11 HI 11 

It is the same program but has different numbers. The numbers are in order, but some 
numbers are skipped. You skip numbers so that you can put new lines in between the old 
lines later if the program needs fixing. 

Run the program you have entered. The computer does the commands in the lines. It starts 
with the lowest line number and goes down the list in order. 

Assignment 1 : 

1. Use the command HOME. Explain what it does. 

2. Use the command NEW. Explain what it does. 

3. Write a program that uses HOME once and PRINT twice. Then use the command RUN 
to make the program obey the commands. 



INSTRUCTOR NOTES 2 PEEPING, FLASH, INVERSE, AND NORMAL 

This lesson opens with the PRINT CHR$(7) statement which makes the Apple "peep." We 
wish to make plenty of "bells and whistles" available to the student to increase program 
richness. 

The idea of a "string constant;' used in Lesson 1, is explained. The numbers appearing in a 
string, for example the "19;' cannot be used directly in arithmetic. 

The FLASH and INVERSE commands put a little pizzazz on the screen. NORMAL puts the 
printing back to the familiar case. These commands can be used from the edit mode, or as 
statements in programs. 

QUESTIONS: 

1. How do you do each of these things: 
Make the Apple "peep"? 
Erase the screen? 
Empty the memory? 
Print your name? 

2. What is a "string"? 

3. What special key do you press to "enter" a line? 

4. What is a command? Give some examples. 

5. What does the computer mean when it prints "SYNTAX ERROR"? 

6. How could you print "FIRE" in flashing letters and make the computer peep? 

13 



14 

LESSON 2 PEEPING, FLASH, INVERSE, AND NORMAL 

Enter: 
Enter: 

NEW 
HOME 

NEW empties the memory and HOME erases the screen. You are ready to start this lesson. 

THE APPLE PEEPS LIKE A BIRD. 
Enter this program: 

10 HOME 
20 PR I NT CHR$ C 7 > 
RUN 

Did the Apple "peep"? Line 20 makes the apple peep. The number in the ( ) has to be 7. 

You may want to have the Apple peep in some of your programs. 

PRINTING AN EMPTY LINE 
Run this: 10 HOME 

20 PRINT"HERE IS A LINE" 
30 PRINT 
40 PRINT"ONE LINE WAS SKIPPED" 

Line 30 just prints a blank line. 



STRING CONSTANTS 
Look at these PRINT statements: 

10 PRINT 11 JOE 11 

10 PRINT 11 #047[[*[" 
10 PRINT 11 18 11 

10 PRINT 11 3.14158265 11 

10 PRINT "I'M 14 11 

10 PRINT II II 

Letters, numbers and punctuation marks are called "characters." Even a blank space is a 
character. Look at this: 

10 PRINT II II 

Characters in a row make a "string." 

The letters are stretched out like beads on a string. 

A string between quotation marks is called a "string constant." 

It is a string because it is made of letters, numbers and punctuation marks in a row. 

It is a constant because it stays the same. It doesn 't change as the program runs. 

FLASHY PRINTING 
Use these commands to make the stuff printed on the screen look more interesting. 

NORMAL is the usual kind of printing on the screen. 

15 



16 

INVERSE has dark letters on a bright background. 

FLASH has letters that blink. 

Important! After using FLASH or INVERSE in a program, put NORMAL at the end so 
that printing is ok when the program is over. 

Enter and run: 

Assignment 2: 

10 REM INVERSE , FLASH AND NORMAL 
20 HOME 
30 PRINT 11 HI THERE" 
a0 INVERSE 
50 PR I NT II INVERSE NOW II 

80 NORMAL 
70 PRINT "NORMAL AGAIN" 
80 FLASH 
85 PRINT "FLASHING NOW" 
90 NORMAL 

1. Write a program that prints your first, middle and last names, with the first name 
flashing, the middle name inversed and the last name in the normal way. 

2. Now add a "peep" before it prints each name. 



INSTRUCTOR NOTES 3 LIST AND REM 

In this lesson: 

LIST, LIST 30 
REM for titles, remarks 
memory boxes holding lines 
erase one line from memory 
add a line between old lines 
replace a line 
drawings using PRINT commands 

Actually, the difference between "command" and "statement" is artificial. The BASIC 
interpreter does not distinguish between them. Our wishes are called "commands" when 
used in the edit mode and "statements" when used in a program line. HOME is a good 
example of a command used both ways. In the first part of this book I will call all these 
things "commands" and later on explain what is meant by a statement (when talking about 
colons and having several statements on one line.) 

For now your student needs to understand that the program is stored in memory even when it 
is not visible on the screen, and that LIST just lists the program to the screen. The special 
uses like LIST 100-300 and LIST -300 will be taken up later. 

The memory as a shelf of boxes is a key model of the computer that we will develop in this 
book. It is an important tool in helping the student understand variables and the detailed 
workings of complicated expressions in a statement. 

REM as a remark command can be a little confusing to new students. It needs to be 
distinguished both from PRINT and from just typing to the screen. Using print to draw 
pictures is demonstrated. It is better to draw some at the end of each lesson than to do a lot 
now. Drawing after lesson 4 helps develop line editing skills. 

QUESTIONS: 

1. How do you erase a line you no longer want? 

2. 1)'pe HOME. Now how do you show all of the program in memory on the screen? 

3. How can you replace a wrong line with a corrected one? 

4. Suppose you want to put a line in between two lines you already have in memory. How 
do you do this? 

5. Explain how the computer puts program lines in "boxes" in memory. What does it write 
on the front of the box? 

17 



18 

LESSON 3 LIST AND REM 

Enter: HOME 
NEW 

Start each lesson with NEW and HOME to erase the screen and the memory. 

Now enter: 10 HOME 
20 PRINT 11 LISTEN 11 

30 PR I NT CHR$ ( 7) 
40 PRINT 11 DID YOU HEAR IT?" 

Run this 4 line program. Then enter HOME to erase the screen. The program is no longer 
visible on the screen. 

But the program is not lost. The computer has stored the program in its memory. We can ask 
the computer to show us the program again. 

LISTING THE PROGRAM 
To ask the computer to show line 30 of the program, enter: 

LIST30 

The computer will list whatever line you ask for by number. If you want to list the whole 
stored program just enter 

LIST 

with no number after it. Try it. 



THE MEMORY 
The computer's memory is like a shelf of boxes. The name of the box goes on the front of 
each box. At the start, all the boxes are empty and no box has a name. 

When you entered: 10 HOME 

the computer took the first empty box and wrote the name "Line 10" on the label. Then it 
put the command HOME in the box and put the box back on the shelf. 

When you entered: 20 PRINT 11 LISTEN 11 

the computer took the second box and wrote "Line 20" on its label. Then it put the 
statement PRINT "LISTEN" in the box and put that box in its place on the shelf. 

ERASING A LINE FROM MEMORY 
To erase one line of the program, enter the line number with nothing after it. For example, to 
erase line 20, enter: 

20 

You still see the line on the screen, but do a LIST and you see that line 20 is gone from 
memory. 

When you enter just a line number with nothing after it, the computer finds the box with that 
line number on it, empties the box and erases the name off the front of the box. 

How do you erase the whole program? (Look at the beginning of this lesson to see the 
answer.) 

What does the computer do to the boxes when you give it the command NEW? 

19 



20 

ADDING A LINE 
You can add a new line anywhere in the program, even between two old lines. Just pick a 
line number between those of the old lines , and type your line in. The computer puts it in the 
correct place. 

Enter NEW and this: 10 REM MORE AND MORE 
20 PR I NT II MORE LINES WANTED II 
£10 PR I NT II HERE THEY ARE II 

List it and run it. Now add this line: 

15 PRINT 11 STILL 11 

List and run it again. 



FIXING A LINE 
If a line is wrong, just type it over again. For example, in the above program line number 40 
can be changed by entering: 

40 PRINT "NEEDS FIXING" 

What did the computer do to the box named "Line 40" when you entered the line? 

THE REM COMMAND 
Use a REM command to put a title on your program. 

Enter NEW and this: 10 REM PROGRAM 2 
20 HOME 
30 PRINT "LINE 10 DOES NOTHING" 
35 REM THIS LINE DOES NOTHING 
40 LIST 
RUN 

21 



22 

REM means "remark:' Use REM to write any little note in the program that can help the 
reader understand the program. 

PICTURE DRAWING 
You can use the PRINT command to draw pictures. Here is a picture of a car. Enter NEW 
before drawing the car. 

10 HOME 
20 PRINT 
30 PR I NT II xxxxxx II 

a0 PR I NT 11 xxxxxxxxxxxx 11 

50 PRINT" 0 0 11 

Don't forget to put the spaces in the PRINT lines! They are part of the drawing. 

Assignment 3: 

1. What command will list line 10 of the program? 

2. How do you tell the computer to list the whole program on the screen? 

3. What does the computer do (if anything) when it sees the REM command? 

4. What is the REM command used for? 

5. Use HOME, CHR$(7), REM, and PRINT to draw 3 flying birds on the screen. Make 
each bird peep after it is drawn. 



INSTRUCTOR NOTES 4 SPECIAL KEYS 

This lesson concerns the arrow keys and the REPT key. 

The arrow keys are used in moving the cursor around in the line currently being worked on. 
Characters in the line are not affected by the cursor moving over them. Wherever the cursor 
stops, you can type in new characters. Characters cannot be inserted or deleted, only 
replaced by others or by spaces. When all is satisfactory, the line can be entered in the 
computer by pressing RETURN, as usual. But .. . 

Warning: · Only the part of the line between start (at the left) and the current location of 
the cursor will be entered. The part under and to the right of the cursor will be discarded. If 
you want to save all the line, move the cursor to the end. 

The arrow keys cannot be used alone to fix a line that had been entered earlier. A procedure 
for editing "old" lines will be given later. 

The RE.PT key (repeat) is useful for moving the cursor fast (with the arrow keys), or making 
any repeated character, such as a line of dots (periods) in graphics. 

QUESTIONS: 

1. What is a "cursor"? What is it good for? 

2. What part of the line gets cut off if you press RETURN while the cursor is in the middle 
of a line? 

Have your student demonstrate: 

3. How to edit a line. This includes using the arrow keys to move the cursor to the interior 
of the line, modifying characters there, and returning to the end before pressing 
RETURN. 

4. Using the REPT key. 

23 



24 

LESSON 4 SPECIAL KEYS 

THE CURSOR IS A FLASHING SQUARE 

The little flashing square is called the "input cursor:' It shows you where the next letter you 
type will appear on the screen. (Cursor means "runner." The little square runs along the 
screen showing where the next letter will appear.) 

THE ARROW KEYS 
The "arrow keys" help you fix errors in your typing. 

1Ype: 10 REM ATPLE. (do not press RETURN) 

Press the left arrow key several times to move the cursor (the flashing square) over the "T." 

1)'pe a "P" instead. 

Use the right arrow to move the cursor to the end of the line (after the period). 

Now the line is correct, reading: 

10 REM APPLE. 

Press RETURN to store the correct line in the memory. 



CAREFUL 
Move the cursor back to the end of the line before pressing the RETURN key. If you forget, 
the end of the line will be chopped off! Try it! 

REPEAT KEY 
Press the REPT key and any letter key. What happens? 

Press the REPT key and the left arrow key. What happens? 

Rule: The REPT key can be used with any other key on the keyboard. Try it with the space 
bar and with the RETURN key. 

25 



26 

DRAWING PICTURES 
The REPT key is handy in drawing pictures. Use it to repeat letters or punctuation marks in 
the drawing. 

Assignment 4: 

1. Type a line and use the arrow keys to move around in the line. Change letters in the line. 
When you are done, move the cursor to the end of the line and press RETURN to enter 
the line. 

2. Draw a "smiley face." 



INSTRUCTOR NOTES 5 THE INPUT COMMAND 

This lesson concerns the INPUT command and the idea of a string variable. 

We introduce the input command in its simplest form: 

INPUT A$ 

that is , without a message in quotes in front. This allows the student to concentrate on the 
central feature of an INPUT. 

Similarily, we will give only the essential feature of each command for the whole of the 
introduction of the book (through lesson 14). This allows us to quickly outline the essentials 
of programming so that the student "sees the forest" and is able to write meaningful 
programs. The commands required for interesting programs are: 

PRINT 
INPUT 
GOTO 
IF 
RND 

allows output 
input 
infinite looping 
branching and decisions 
random numbers for games 

Back to this lesson. String variables are introduced using the "box" concept again. Variable 
names are restricted to one letter for the time being. This does not lead to confusion in short 
programs and allows faster typing. It also puts off the discussion of the complicated naming 
rules until after our sprint to the RND command. 

We will work with strings and ignore numbers for as long as possible because strings make 
for more interesting programs and offer a less confusing entry into the logical concepts of 
programming. 

QUESTIONS: 

I . What two different things does the computer put in boxes? 

2. How does the program ask a person to type in something? 

3. How do you know the computer is waiting for an answer? 

4. A letter with a dollar sign after it is called what? 

5. Write a short program that uses HOME, PRINT and INPUT. 

6. Are you in trouble if the computer answers "EXTRA IGNORED" after an input? What 
made it do that? 

27 



28 

LESSON 5 THE INPUT COMMAND 

Use INPUT to make the computer ask for something. 

Enter: 10 HOME 
15 PRINT "SAY SOMETHING" 
20 INPUT A$ 
25 PRINT 
30 PRINT "DID YOU SAY II 

40 PR I NT A$ 

Run it. When you see a question mark, type "HI" and press the RETURN key. 

The question mark was written by INPUT in line 20. The flashing cursor means the 
computer expects you to type something in. 

When you type "HI;' the computer stores this word in a box named A$. 

Later, in line 40, the program asks the computer to print whatever is in the box named A$. 

Run the program again and this time say something funny. 

STRING VARrABLES 
A$ is the name of a "string variable." The name is written on the front of a box and the 
string is put inside the box. 

Rule: A string variable name always ends in a dollar sign, "$ ." You can use any letter you 
like for the name and then put a dollar sign after it. 

A$ is called a variable because you can put different strings in the box at different times in 
the program. The box can hold only one string at a time. 



ERROR MESSAGES FROM INPUT 

Rule: Do not put any commas, quotation marks, semicolons, or colons in the string you 
type in answer to the computer. 

If you accidently do put one in, the computer may answer: 

?EXTRA IGNORED 

and continue. This means that the computer chopped off everything after the comma (or 11 or 
; or: mark), and then continued running the program. 

Assignment 5: 

1. Write a program that asks for a person's name and then says something silly to the 
person, by name. 

2. Write a program that asks you to INPUT your favorite color and put it in a box called C$. 
Now the program asks you your favorite animal and puts this in box C$ too. Have the 
program print C$. What will be printed? Run the program and see if you are right. 

29 



30 

INSTRUCTOR NOTES 6 TRICKS WITH PRINT, SPEED 

In this lesson: 

PRINT with a semicolon at the end 
PRINT with semicolons between items 
the "invisible" PRINT cursor 
the SPEED command 

The use of commas in PRINT is ignored as it is of little use on a 40-column screen. 

The lesson introduces the output cursor which is invisible on the screen. It marks the place 
where the next character will be placed on the screen by a PRINT command. (The input 
cursor is the flashing square. It is familiar from the edit mode and the INPUT command.) 

When a PRINT statement ends with a semicolon, the output cursor remains in place and the 
next PRINT will put its first character exactly in the spot following the last character printed 
by the current PRINT command. 

Without a semicolon at the end, the PRINT command will advance the output cursor to the 
beginning of the next line as its last official act. 

A PRINT command can print several items, a mixture of string and numerical constants, 
variables, and expressions. Numerical constants and variables have not yet been introduced. 
The items are separated by semicolons. 

The series of printed items will have their characters in contact. If spaces are desired, as in 
the "HAM AND EGGS" example, the spaces have to be put in the strings explicitly. 

QUESTIONS: 

1. Which cursor is a little flashing square? What command puts it on the screen? 

2. Which cursor is invisible? What command uses it? 

3. How do you make two PRINT statements print on the same line? 

4. Will these two words have a space between them when run? 

10 PRINT 11 HI 11 ;"THERE! II 

If not, how do you put a space between them? 

5. What command causes the printing to be very slow? 

6. How do you get the printing speed back to normal? 



LESSON 6 TRICKS WITH PRINT, SPEED 

ONE LINE OR MANY? 

Enter this program: 10 REM FOOD 
20 PRINT 
30 PRINT 11 HAM 11 

40 PRINT "AND" 
50 PRINT "EGGS" 

and run it. Each PRINT command prints a separate line. 

Now enter: 30 PRINT "HAM II; 
40 PRINT "AND II; 

(Don't change or erase the other lines.) Be careful to put the space at the end of "HAM " 
and at the end of" AND " and the semicolon at the end of each line. 

Run it. 

What was .different from the first time? 

THE HIDDEN CURSOR 
Remember the flashing square? It is the INPUT cursor and shows where the next letter will 
appear on the screen when you type. 

The PRINT command also has a cursor, but it is invisible. It marks where the next letter will 
appear when the computer is PRINTing. 

31 



32 

Rule: The semicolon makes the invisible PRINT cursor wait in place on the screen. The 
next PRINT command adds on to what has already been written on the same line. 

\ / 
' ,--:-----, ,,,,, 

I 

~ '1//: 
I I 
I I~ 

~ L _____ _J 

FAMOUS PAIRS 
Enter: 10 HOME 

20 PR I NT II ENTER A NAME II 
30 INPUT A$ 
35 HOME 
ll0 PR I NT II ENTER ANOTHER II 
50 INPUT 6$ 
80 HOME 
70 PR I NT 11 PRESENT I NG THAT FAMOUS TWOSOME 11 

75 PRINT 
80 PRINT A$; 11 AND 11 ;B$ 

Be sure to put a space before and after the "AND." 

SQUASHED TOGETHER OR SPREAD OUT? 
Enter NEW then try this: 

10 PR I NT II ROCK 11 
; 

11 AND II ; 
11 ROLL 11 

after you have run it, try also: 

10 PR I NT II ROCK II ; 
11 AND II ; II ROLL 11 

don't forget the spaces after ROCK and AND. 

:}'II 



THE SPEED COMMAND 
Sometimes the usual printing speed of the computer is too fast. The SPEED command slows 
the printing. 

Enter and run: 10 REM : : : : : SPEED: : : : : 
20 HOME 
30 PRINT 11 MISSISSIPPI 11 

40 SPEED=5 
50 PRINT 11 MISSISSIPPI 11 

80 SPEED=255 

The speed can be set to any number from 1 to 255. SPEED= 1 is very slow. SPEED = 255 is 
the normal speed. 

Look at line 60. It is very important. It puts the computer back to normal speed when the 
program is done. 

Assignment 6 

1. Write a program that asks for the name of a musical group and one of their tunes. Then 
using just one PRINT command, print the group name and the tune name, with the word 
"plays" in between. 

2. Do the same, but use 3 print commands to print on one line. 

3. Have the computer print your name slowly in the inverse mode. 

33 



34 

INSTRUCTOR NOTES 7 THE LET COMMAND 

The LET command is introduced using the concept of memory boxes. 

The box model is used to emphasize that LET is a replacement command, not an "equal" 
relationship in the sense used in arithmetic. 

The box idea nicely separates the concepts "name of the variable" and "value of the 
variable." The name is on the label of the box, the value is inside. The contents of the box 
may be removed for use, and new contents inserted. 

More exactly, a copy of the contents is made and used when a variable is used, the original 
contents remain intact. This point is explained. 

Concatenation is covered under the heading "gluing the strings." 

Used so far: 

HOME, NEW, PRINT, RUN, PRINT CHR.$(7), FLASH, INVERSE, NORMAL, LIST, 
REM, INPUT, SPEED, LET 

Special keys discussed so far: 

RETURN, REPT, two arrow keys and the shift key. 

QUESTIONS: 

1. LET puts things in boxes. So does INPUT. How are they different? 

2. If you run this little program: 

10 LET A$= 11 HI 11 

20 LET B$=A$ 

what will be in box A$ at the end? What will be in box B$? 

3. In this program: 

10 Q$= 11 MOM 11 

what is "MOM" called? What is the name of the string variable in this program? What is 
the value of the string variable after the program runs? 

4. What is in each box after this program runs? 

10 LET H$= 11 FAT 11 

20 LET K $=II SAUSAGE II 
30 LET P$ = A$+K $ 



LESSON 7 THE LET COMMAND 

The LET command puts things in boxes. Enter and run: 

10 HOME 
20 LET W$= II MOPSEY II 
40 PRINT W$ 

Here is what the computer does: 

Line 10 The computer clears the screen. 

Line 20 It sees that a box named "W$" is needed. It looks in its memory for it. It doesn't 
find one because "W$" has not been used in this program before. So it takes an 
empty box and writes "W$" on the front, and then puts the string "MOPSEY" in 
it. 

Line 40 The computer sees that it must print whatever is in box "W$." It goes to the box 
and makes a copy of the string "MOPSEY" that it finds there. It puts the copy on 
the TV screen. The string "MOPSEY" is still in box "W$." 

NAMES AND VALUES 
The name of the variable was W$. The value of the variable is put in the box. In the 
program above, the value of W$ is "MOPSEY." 

35 



36 

t1Y NN1E JS W$ 
11Y Vl1LUE 15 /71<P'5£ru 

ANOTHER EXAMPLE: 
Enter and run: 10 LET D$= 11 PICKLES 11 

20 LET A$= II AND II 

30 PR I NT II WHAT GOES w I TH p I CKLES ? II 

35 I NPUT Z$ 
40 HOME 
50 PRINT D$;A$;Z$ 

Explain what the computer does in each line. 

1 0 ~~~~~~~~~~~~~~~~~~~~~~~~~~ 

20 ~~~~~~~~~~~~~~~~~~~~~~~~~~ 

30 ~~~~~~~~~~~~~~~~~~~~~~~~~~ 

35 ~~~~~~~~~~~~~~~~~~~~~~~~~~ 

40 ~~~~~~~~~~~~~~~~~~~~~~~~~~ 

50 ~~~~~~~~~~~~~~~~~~~~~~~~~~ 



GLUING THE STRINGS 
Here is how to stick two strings together to make a longer string. Enter: 

10 HOME 
20 LET W$= II HAR DE II 

25 LET X$= II HAR II 

30 L$=W$+X$ 
40 PRI NT L$ 
50 PR I NT 
80 L ET L$=L$+X$ 
70 PRINT L$ 

Before you RUN this program, try to guess what will be printed at line 40 and at line 70: 

40 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

70 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Now run the program to see if you were right. 

Rule: The " + " sign sticks two strings together. Notice that line 50 in the program above 
just prints an empty line. This is often good for spacing apart the things your program must 
print. 

Assignment: 7 

1. Write your own program that uses the LET command and explain how it stores things in 
"boxes." 

2. Write a program that inputs two strings, glues them together and then prints them. 

37 



38 

INSTRUCTOR NOTES 8 THE GOTO COMMAND AND RESET KEY 

The GOTO command allows a "dumb" loop that goes on forever. It also helps in flow of 
command in later programs, after the IF is introduced. It provides a slow and easy entrance 
for the student into the idea that the flow of command need not just go down the list of 
numbered lines . 

For now its main use is to let programs run on for a reasonable length of time. In each loop 
through, something can be modified. 

The problem is how to stop it. The RESET key does this nicely, if you have an Apple II 
with autostart ROM. If you have an Apple II Plus, get your pen out and modify the 
lesson to read "CTRL-C" everywhere that RESET is written. On some Apple II Plus, 
the CTRL key has to be pressed together with RESET to do a reset. 

We now have three of the four major elements that lead to "real" programming. They are 
PRINT, INPUT, and GOTO. Lacking is the IF, which will change the computer from some 
sort of a record player into a machine that can evaluate situations and make decisions 
accordingly. 

QUESTIONS: 

1. In this little program: 

10 PRINT 11 HI II 

20 GOTO 40 
30 PRINT 11 BIG 11 

40 PRINT 11 DADDY 11 

what will appear in the screen when it is run? 

2. And this one: 

10 PRINT 11 APPLE 11 

20 PRINT "PIE 11
; 

30 GOTO 20 

3. How do you stop the program in question 2? 

4. Write a short program that "peeps:' asks you your favorite movie star's name, and then 
does it over and over again. 



LESSON 8 THE GOTO COMMAND AND RESET KEY 

JUMPING AROUND IN YOUR PROGRAM 

Try this program: 10 HOME 
20 PR I NT II YOUR NAME? II 
25 INPUT N$ 
30 PRINT N$ 
35 PRINT 
40 GOTO 30 

RUN this program. It never stops by itself! To stop your name from whizzing past your eyes, 
press the 

CONTROL and RESET key at the same time. (or CONTROL C) 

Line 40 uses the GOTO command. It is like "GO TO JAIL'' in a game of Monopoly. Every 
time the computer reaches line 40, it has to go back to line 30 and print your name again. 

We will use GOTO in a lot of programs. 

MORE JUMPING 
Enter: 2 0 PR I NT 11 SAY S 0 METH I NG 11 

C
30 INPUT 5$ 
40 PRINT 11 0IO YOU SAY 111 ;5$; 11 '?" 
45 PRINT 
50 GOTO 30 

Run the program. 1)'pe an answer every time you see the "?" and the flashing cursor. Press 
the RESET key to end the program. 

Notice the arrow from line 50 to line 30. It shows what the GOTO does. You may want to 
draw such arrows in your program listings. 

39 



40 

KINDS OF JUMPS 
There are only two ways to jump: ahead or back. 

Jumping back gives a LOOP. 

10 PRINT 11 HI 11 

20 GOTO 10 

The path through the program is like this: 

b 10 PRINT 11 HI II~ 

L20GOTO 10~~--, 
The computer goes around and around in this loop. Press the RESET key to stop. 

Jumping ahead lets you skip part of the program. It is not useful yet, but we will use it later 
in the IF command. 

THE RESET 
The CONTROL C RESET key is a "life saver." When you are in trouble, press 
CONTROL C or RESET and the computer will "peep" and start over, waiting for your 
next command. Your program is still safe in memory. 



Assignment 8: 

1. Write a program that prints your first name over and over. 

2. How do you stop your program? 

3. Write another that prints your name on one line, then a friends on the next, over and 
over. Use SPEED to slow down the printing. Stop the program with the RESET key, then 
enter SPEED= 255 to get the printing speed back to normal. 

4. Write a program that uses each of these commands: HOME, PRINT, CHR$(7), PRINT, 
INPUT, LET, and GOTO. It also should glue two strings together. 

41 



42 

INSTRUCTOR NOTES 9 THE IF COMMAND 

The IF command is introduced in this lesson . The case where two strings are the same or not 
the same is treated. 

IF is a powerful command that is at the very heart of the computer as a logic machine. It is 
an intricate command and the student may require extra help at this point. 

The IF command appeals both to our verbal and our visual imagination. The "cake" cartoon 
and the "fork in the road" cartoon illustrate these ideas. That the flow of commands may be 
altered has already been introduced with the GOTO command. To that idea is now added the 
conditional test: if an expression is true , one thing happens, if it is false, another. 

The phrase "something N.' is used for the expression being tested for truth. The Apple 
manuals call "something N.' an "assertion." The phrase "command C" is used for the 
command to be done if the assertion is true. 

Two ideas occurring in the "something N.' may be confused by the student. They are the 
"= " relation and the truth of the overall assertion. 

The case where the "< >" sign is used may help distinguish the idea of the "truth" of the 
assertion from the logic within the assertion. 

On the other hand, the "< > " sign is probably unfamiliar to the student and it is possible 
that confusion is compounded at this point. In that case, just work with the overall IF idea 
and use the " = " case for examples. We will return to the IF at later points in the book and 
at that time familiarity with IF will work to the student's advantage. The larger set of 
relations: 

<, > , = =<, = >, 

will be treated then. 

QUESTIONS: 

1. How do you make this program print "THAT'S FINE"? 

15 PR I NT II DOES YOUR TOE HURT? II 
17 INPUT T$ 
20 IF T$= II NAH II THEN GOTO 9 0 
a0 IF T$= .. SOME .. THEN GOTO 15 
90 PRINT 11 THAT 'S FINE 11 

2. Write a short program which asks if you like chocolate or vanilla ice cream. Answers to 
be "C" or "V." For the "C" print "Yummy!". For the "V" answer, print "Mmmmmm!". 



LESSON 9 THE IF COMMAND 

Clear the memory and enter: 

10 HOME 
20 PR I NT II ARE YOU HAPPY? (YES DR NO) II 

30 INPUT A$ 
40 IF A$= 11 YES 11 THEN PRINT 11 I'M GLAD" 
50 IF A$= II NO II THEN PR I NT II TDD BAD II 

Run the program several times. 'Il'y answering "YES:' "NO" or "MAYBE." What happens? 

YES ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

NO ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

MAYBE~~~~~~~~~~~~~~~~~~~~~~~~~-

THE IF STATEMENT 
The IF statement has two parts: 

lOIF something A THEN command C 

First the computer looks at "something A." 

If it is true, the computer does the command C. 

If "something/\' is not true, then the computer goes on to the next line without doing the 
command C. 

43 



44 

It looks like this: 

10 IF something A is true THEN 
and then go on to the next line 

or 

10 IF something A is false 
go on to the next line 

SOME EXAMPLES OF IF 

10 REM IF TEST PROGRAM 
50 IF A$="YES" 
55 IF "YES"=A$ 
60 IF A$=B$ 
70 IF N$="BIRD" 
75 IF A$= 11 READY 11 

Line 50 and line 55 do exactly the same thing. 

Assignment 9A: 

1. Add these lines to the program: 

15 INPUT A$ 
17 LET C$= 11 WHAT? 11 

20 LET B$="PAY UP" 
25 LET N$=A$ 
85 PRINT C$ 
87 NORMAL 
99 GOTO 15 

Run the program and enter these words: 

THEN 

THEN 
THEN 
THEN 
THEN 
THEN 

YESt BIRDt READYt NO WAY 

do command C 

PRINT "GOOD" 
PRINT 11 GOOD 11 

LET C$="NO WAY!" 
PRINT CHR$C7> 
INVERSE 

and some other words you choose yourself. Look at what the program prints to see that 
IF commands are working as you expect. (Remember, if "something N.' is true, then the 
command after the THEN is executed.) 

2. Clear memory and write a program that asks if you are a "BOY" or "GIRL." If the 
answer is "BOY:' the program prints "SNIPS AND SNAILS." If the answer is "GIRL:' 
print "SUGAR AND SPICE." 



A FORK IN THE ROAD 
When it sees "IF:' the computer must choose which road to take. 

If "something .N' is true, it must go past the "THEN" and obey the command it finds there. 
Then it goes down to the next line. 

If "something .N' is false, it goes down to the next line right away. 

Here is the road map with the fork in the road marked: 

30 L(command)---, ,--. . 
r 'fork m the road 

40 ~IF A$= "HUNGRY" I ~ THEN--1~~ PRINT"EAT" ==i 
5 0 ~(command) 

I# 
Y{)J~f HUNR(j 

I I 

I . 

~---t-1.I· I,, 

1/1 . 

~ H--___,,,1 ...... 

45 



46 

THE "NOT EQUAL'' SIGN 
The "< >" sign means "not equal." It is the opposite of the " = " sign when used in an 
English phrase. 

To make the" < >" sign, press the "<" key, then the ">"key. 

40 IF something A THEN PRINT "NO SMOKE" 

"Something .N' is a phrase that is TRUE or FALSE. If it is true, then the computer prints 
"NO SMOKE." Look at this "something .N' phrase: 

Q$ <> 11 FIRE 11 

and put it in an IF command: 

ll0 IF Q$ <> 11 FIRE 11 THEN PRINT 11 NO SMOKE" 

If the Q$ box contains "COLD" then Q$ is not equal to "FIRE" and the expression 
Q$< >"FIRE" is TRUE. The computer will print "NO SMOKE." 

If the Q$ box contains "FIRE" then the phrase: 

Q$( ) FIRE is FALSE and 

computer will not print anything. 

Here is how it looks in a program: 

10 PRINT 11 IS YOU R HOU SE ON FIRE?" 
20 PRINT 11 CENTER ' FIRE' OR \COLD I ) II 

30 INPUT Q$ 
ll0 IF Q$ ( > 11 FIRE 11 THEN PRINT 11 NO SMOKE" 
50 IF Q$= 11 FIRE 11 THEN PRINT 11 HELP 11 



Assignment 98: 

1. Write a "pizza" program. Ask what topping is wanted. Make the computer answer 
something silly for each different choice .. You can choose mushrooms, pepperoni, 
anchovies, green peppers, etc. You can also ask what size. 

2. Write a color guessing game. One player INPUTs a color in string C$ and the other keeps 
INPUTing guesses in string G$. Use two IF lines, one with a "something~· 

G$< >C$ 

for when the guess is wrong, and the other with an "=" sign for when the guess is right. 
The "command C" prints "wrong" or "right." 

.· . . . · . 
. ::-.0··0 

)] 

47 



48 

INSTRUCTOR NOTES 10 INTRODUCING NUMBERS 

Numerical variables and operations are introduced. The LET, INPUT, and PRINT commands 
are revisited. 

The idea of memory as a shelf of "boxes" is extended to numbers. Again, variable names 
are limited to one letter for the time being. 

The arithmetic operations are illustrated. The "*" symbol for multiplication will probably be 
unfamiliar to the student. Division will give decimal numbers, so it is nice if your student is 
familiar with them. But most arithmetic will be addition and subtraction, with a little 
multiplication, and a student unfamiliar with decimal numbers will not experience any 
disadvantage. 

It may seem strange to the student that the numbers in string constants are not "numbers" 
that can be used directly in arithmetic. The VAL and STR$ functions will be introduced 
later in the book and allow interconversion of numbers and strings. 

A mixture of string and numerical values can be printed by PRINT. The non-standard use of 
"=" in BASIC, that it means "replace" and not "equal", shows up strongly in the 
statement: 

LET N=N+1 

The cartoon uses the box idea to illustrate this meaning of " = ". 

QUESTIONS: 

1. Name the three kinds of "boxes" in memory. (That is, named by the kinds of things 
stored in the boxes.) 

2. Explain why "N = N + l" for a computer is not like "7 = 7 + l " in arithmetic. 

3. Give another example of "bad arithmetic" in a LET command. Use the *, or I symbols. 

4. What does the computer mean by "TYPE MISMATCH ERROR"? 

5. Give an example of a program line that would have a TYPE MISMATCH ERROR. 

6. Explain what is meant by the "name of a variable" and the "value of a variable" for 
numerical variables. For string variables. 

7. If the boxes A and B have the numbers 5 and 8 in them, then PRINT A;B will print 58. 
How do you make the computer print 5 8 instead of 58? 



LESSON 10 INTRODUCING NUMBERS 

INPUT, LET, AND PRINT 

So far we have only used strings. Numbers can be used too. Enter and run this program: 

ARITHMETIC 

10 HOME 
20 PRINT"GIVE ME A NUMBER" 
30 INPUT N 
40 LET A=N+1 
45 PRINT 
50 PRINT"HERE IS A BIGGER ONE" 
60 PRINT A 

The minus sign is on the same key as the "=" sign. 

Computers use "*" instead of" x " for a multiplication sign. 

Try this . Change line 40 so that N is multiplied by 5. 

Computers use "!" for a division sign. Answers are given as decimals. 

\\ u • 

49 



50 

VARIABLES 
The name of a box that contains a string must end with a dollar sign. Examples: N$, A$, 
Z$. 

The name of a box that contains a number doesn't have a dollar sign. Examples: N, A, Z. 

The thing that is put in the box is called the "value" of the variable. 

HAM£ 
BICYCLE 

ARITHMETIC IN THE LET COMMAND 

Some more examples: 

10 LET A=2 
20 LET B=3 
30 LET C=B-A 
a0 PRINT A; 11 11 ;B; 11 11 ;c 

10 LET B=15 
20 LET A=B/5 
30 LET X=A*4+2 
40 PR I NT x; II II ; A 



CAREFUL! 
Numbers and strings are different. Example: "1984" is not a number. It is a string constant 
because it is in quotes . 

Rule: Even if a string is made up of number characters it is still not a number. 

Some numerical constants: 5, 22, 3.14, -50 

Some string constants: 11 H I 11 
, 

11 7 11 
, 

11 TWO 11 
, 

11 3 • 1 a 11 

Rule: You cannot do arithmetic with the numbers in strings. 

Correct: 

Wrong: 

Wrong: 

10 LET A = 3 + 7 

10 LET A$ = 3 + 7 

10 LET A = 11 3 II + 11 7 II 

51 



52 

If you run either of these wrong lines , the computer will print: 

TYPE MISMATCH ERROR IN LINE 10 

The two types of variables are "string" and "numerical." You cannot mix them. 

Enter: 10 LET A=5 
20 LET 6$= 11 10 11 

30 LET C=A+B$ 

Lines 10 and 20 are ok, line 30 is wrong. What will the computer do when you run this little 
program? Try it. 

Try to guess what each of these statements will print, then enter the line to see what 
happens: 

PRINT 5 

PRINT "5" 

PRINT "5 + 3" 

PRINT "5" + "3" 

PRINT 5 + 3 

MIXTURES IN PRINT 
You can print numbers and strings in the same PRINT command. (Just remember that you 
cannot do arithmetic with the mixture.) 

Correct: PRINT A; 11 SEVEN 11 
;

11 7 11 

PRINT A;B$ 

Run this line. 10 PRINT 5/2; 11 IS EQUAL TO 5/2 11 

A FUNNY THING ABOUT THE EQUAL SIGN 
The "=" sign in computing does not mean "equals" exactly. Look at this program: 

10 LET N=N+l 

This does not make sense in arithmetic. Suppose N is 7. This would say that: 

7=7+1 

which is not correct. 



But it is ok in computing to say N = N + 1 because the " = " sign really means "replace." 
Here is what happens: 

Look at this: 10 LET N=N+1 

The computer goes to the box with N written on the front . 

It takes the number 7 from the box. 

It adds 1 to the 7 to get 8. 

Then it puts the 8 in the box. 

Another way to say the same thing is: 

10 LET N=N+1 means 

LET (new N) equal (old N) plus one 

Assignment 10: 

1. Write a program that asks for your age and the current year. Then subtract and print out 
the year of your birth. Be sure to use PRINT statements to tell what is wanted and what 
the final number means. 

2. Write a program that asks for two numbers and then prints out their product. (Multiplies 
them.) 

53 



INSTRUCTOR NOTES 11 TAB AND DELAY LOOPS 

The TAB command adds flexibility to the screen display. Delay loops slow the program 
down so that its operation can be more easily observed. They also are used for portions of 
the program that must run at certain speeds, and should then be called "timing loops." 

TAB is used in a PRINT command and is like the tab on a typewriter. It is much more 
powerful than you might realize at first. It allows moving graphics (using strings) and 
interesting displays of verbal information. 

Students who are not rather familiar with a typewriter may need extra help in seeing what a 
TAB is good for. 

Several TAB commands can be used in one PRINT statement, but the arguments in the ( ) 
must increase each time. That is, TAB cannot be used to move the cursor back to the left. 
Later we treat the HTAB and VTAB commands which allow placement of the cursor 
anywhere on the screen. 

Use of a semicolon between TAB and the thing to be printed is not always necessary, but is 
recommended. 

This lesson introduces loops in a painless way. 

The delay loop is all on one line, with a colon to separate off the NEXT command. The 
amount of delay is determined by the size of the loop variable. A value of 1000 gives about 
a one-second delay. 

After seeing that the primary work of the loop is simply to count until a particular value is 
reached before going on to the next instruction, it will be easier for the student to handle 
loops in which things are going on inside. 

QUESTIONS: 

1. Show how to write a delay loop that lasts for about 2 seconds. 

2. Will this work for a delay loop? 

120 FOR Q= 1000 TO 5000 
122 NEXT Q 

3. Tell what the computer will do in each case: 

10 PRINT 11 HI 11 ;TABC20) ;"GOOD LOOKING! 11 

10 TABC5) ;PRINT "OH-OH! II 

10 PRINT TABC15) ;"NOP" ;TABC1> ;"NOT HERE " 



LESSON 11 TAB AND DELAY LOOPS 

THE TAB COMMAND 

TAB in a PRINT command is like the TAB on a typewriter. It moves the printing cursor a 
number of spaces to the right. 

(The printing cursor is invisible.) 

The next thing to be printed goes where the cursor is. 

Try this: 10 PR I NT II 123456788ABCDEF II 
20 PRINT 1 ;TAB(5) ;2 
30 PRINT TAB(3) ;"Y" ;TABC8) ; 11 z 11 

Rule: After TAB(N), then the next character will be printed in column N. 

CAREFUL! 
Run this: 10 TABC5) 

You see SYNTAX ERROR IN 10. TAB() has to be in a PRINT command. You cannot use 
TAB( ) by itself. 

YOU CANNOT TAB BACKWARDS 
Try this: 10 PR I NT "123456788ABCDEF" 

20 PRINT 1 ;TABC8) ;s;TAB(3) ;3 

The TAB() command can only move the printing to the right. You cannot move back to the 
left. 

YOUR NAME IS FALLING! 

10 HOME 
15LETN=1 
20 PRINT"YOUR FIRST NAME" 
30 INPUT W$ 
40 PRINT TAB ( N) HJ$ 
50 LET N=N+ 1 
60 GO TO 40 

Press CONTROL RESET to stop the run. 

This program prints your name in a diagonal down the screen, top left to bottom right. Try 
other values of N. Try changing lines: 

15LETN=30 
50 LET N=N-1 

55 



56 

HOW BIG A SPACE CAN TAB() MAKE? 
There are 40 spaces across the screen. You can use any number 1 through 40 inside the 
TAB() parentheses. Larger numbers make the computer skip lines. Numbers larger than 255 
will give an error message when the program runs: 

ILLEGAL QUANTITY ERROR IN XX. 

where XX is the line number. 

You can use TAB with strings too: 

Example: 10 PRINT F$;TAB<15> ;M$;TAB(25) ;L$ 

Here F$, M$, and L$ are the strings for the first, middle, and last names. 

FUNCTIONS DON'T FIGHT BUT THEY HAVE ARGUMENTS 
TAB( ) is a command that is like a "function." We will study other functions like RND( ), 
INT( ), LEFT$( ), etc. The number inside the ( ) is called "the argument of the function." 
TAB( ) says "move the cursor over" and the argument tells "where to move it to." 

Assignment: 11 A 

1. Write a program that asks for last names and nicknames. Then print the last name starting 
at column 5 and the nickname at column 25. Use a GOTO so the program is ready for 
another name-age pair. 

2. Write an "insult" program. It asks your name. Then it peeps, and writes your name. 
Then it TABS over in the line and prints an insult. 



DELAY LOOPS 
Remember the SPEED command? It lets you print much slower than normal. 

Here is a way to slow down other parts of the program. It is a "delay loop." 

Run this program: 10 REM DELAY LOOP 
20 HOME 
30 PRINT 11 WAIT 11 

40 FOR I= 1 TO 2000: NEXT I 
50 PRINT 11 DONE 11 

Line 40 is the delay loop. The computer counts from 1 to 2000 before going on to the next 
line. It is like counting when you are "it" in a game of hide and seek. 

'fry changing the number "2000" in line 40 to some other number. 

Each 740 in the delay loop is worth about 1 second of time. Try this: 

Assignment 11 B: 

10 REM---- TICK TOCK----
20 HOME 
30 INPUT "WAIT HOW LONG? 11

; S 
36 T=S*740 
40 FOR I= 1 TO T: NEXT I 
45 PR I NT : PR I NT CHR$ ( 7 > 

50 PR I NT s; II SECONDS ARE UP II 

1. Write a "slow poke" program that prints out a three word message with several seconds 
between each word. Have the computer peep before each word. 

57 



58 

INSTRUCTOR NOTES 12 THE IF COMMAND WITH NUMBERS 

The IF command is extended to numerical expressions. The logical relations used in this 
lesson are: 

= >, <, < > 

The use of nested IF's is demonstrated. 

A "home made" loop is demonstrated in the GUESSING GAME, but not discussed. The 
loop starts in line 50 and goes to 80. The exit test is made in line 70. The logic of this loop 
is that of a DO UNTIL. 

QUESTIONS: 

1. What part of the IF command can be TRUE or FALSE? 

2. What follows the THEN in an IF command? 

3. After this little program runs, what will be in box D? 

10LETD=4 
15 IF 3 < 7 THEN LET D = 9 

4. Same question, but for 3 > 7. 



LESSON 12 THE IF COMMAND WITH NUMBERS 

Try this: 10 REM *** TEENAGER *** 
15 HOME 
20 PR I NT II YOUR AGE? II 
30 INPUT A 
40 IF A< 13 THEN PR I NT 11 NOT YET A TEENAGER! 11 

50 IF A>18 THEN PRINT" GROWN UP ALREADY! 11 

This IF command is like the one that you used before with strings. Again we have: 

IF something A is true THEN do command C 

"Something/!\' can have these arithmetic symbols: 

= equal to 
> greater than 
< less than 
< > not equal to 

Each "something I\' is a phrase. It is written in "math language" but you should say it out 
loud in English. For example: 

A <> B is pronounced "A is not equal to B" 

5 < 7 is pronounced "five is less than seven" 

PRACTICE 
For these examples, LET A= 7, LET B = 5, and LET C = 5. 

Say each "something I\' out loud and tell if it is true or false: 

A=B T F 
A> B T F 
A< B T F 
A=C T F 
A< C T F 
A> C T F 
B = C T F 
B> C T F 
B< C T F 
A< > B T F 
B< > C T F 

59 



60 

AN IF INSIDE AN IF 
The "teenager" program above is missing something. Add: 

60 IF A >12 THEN IF A< 20 THEN PRINT "TEENAGER! 11 

To understand this, break it into two parts: 

60 IF A) 12 THEN (command C) where 

(command C) IS (IF A<20 THEN PRINT "TEENAGER! II) 

This line first asks " is the age greater·than 12?" 

If the answer is "yes" the line gets to ask the second question: "Is the age less than 20?" 

If the answer is again "yes" the line prints "TEENAGER!" 

If the answer to either question is no, the PRINT command is not reached, so nothing is 
printed. 

Assignment 12A: 

1. Draw the "fork in the road" diagram for line 60 above. There will be two forks on the 
diagram. (See page 1-45.) 

GUESSING GAME 

10 REM --- GUESSING GAME ---
15 HOME 
20 PR I NT II TWO PLAYER GAME II 
25 PRINT 
30 PR I NT 11 FIRST PLAYER ENTER A NUMBER FROM 1 TO 100 11 

35 PR I NT II WHILE SECOND PLAYER I SNIT LOOK I NG II 
37 PRINT 
40 INPUT N 
as HOME 
·5 0 p R I NT TAB ( 1 2 ) ; II MAK E A Gu Es s II ; 

55 INPUT G 
60 IF G< N THEN PR I NT II TOO SMALL II 
65 IF G>N THEN PRINT "TOO BIG" 
70 IF G=N THEN GOTO 90 
80 GOTO 50 
90 REM THE GAME IS OVER 
92 PRINT 
93 FLASH 
95 PRINT "THAT'S IT! II 

99 NORMAL 

If you want to save this program on a disk, read Lesson 14. 

Usually line 80 sends you to line 50 so you can make more guesses. But if G = N in line 70, 
then you skip to line 90 and print "THAT'S IT!." 



Assignment 128: 

1. Tell what happens in lines 50 through 80: 

If G is 31 and N is 88: 

50 ~~~~~~~~~~~~~~~~~~~~~~~~~~-

55 ~~~~~~~~~~~~~~~~~~~~~~~~~~-

60 ~~~~~~~~~~~~~~~~~~~~~~~~~~-

65 ~~~~~~~~~~~~~~~~~~~~~~~~~~-

70 ~~~~~~~~~~~~~~~~~~~~~~~~~~-

80~~~~~~~~~~~~~~~~~~~~~~~~~~-

If G is 88 and N is 88: 

50~~~~~~~~~~~~~~~~~~~~~~~~~~-

55 ~~~~~~~~~~~~~~~~~~~~~~~~~~-

60 ~~~~~~~~~~~~~~~~~~~~~~~~~~-

65 ~~~~~~~~~~~~~~~~~~~~~~~~~~-

70 ~~~~~~~~~~~~~~~~~~~~~~~~~~-

80~~~~~~~~~~~~~~~~~~~~~~~~~~-

61 



62 

2. Here is another program. What will it print, and how many times? 

10LETN=1 
20 IF N=13 THEN PRINT "UNLUCKY! II 

30 LET N=N+2 
40 IF N >30 THEN GOTO 99 
50 GOTO 20 
99 PRINT "DONE" 

What will it print if line 10 is changed to: 

10 LET N=2 

3. Write a program that says something about each number from one to ten. The player 
enters a number and the computer prints something about each number: "three strikes, 
you're out" or "seven is lucky" etc. 

4. Write a game for guessing a card that someone has entered. You must enter the suit (club, 
diamond, heart, or spade) and the value (1 through 13). First they guess the suit, then the 
program goes on to ask the value. Keep score. 

5. Write a digital clock program. It uses a timing loop to count seconds. Input the present 
time in hours, minutes and seconds. The clock then counts seconds and prints them out. 
When 60 seconds have gone by, add one to the minutes and put seconds back to zero. 
Same with hours. Run the clock a long time and adjust the timing loop so the clock keeps 
good time. 

d 
,;ljJ,~-..0:::,. -::;::--

\\\~ 



INSTRUCTOR NOTES 13 RANDOM NUMBERS AND THE INT 
FUNCTION 

This lesson introduces two functions: RND and INT. These are very important in games and 
also handy in making interesting displays like kaleidoscopes. 

The RND function produces psuedo-random decimal numbers between 0.0 and 1.0 . Such 
numbers are directly usable as probabilities, but integers over some range such as 1 to 6 for 
a die, or 1 to 13 for a suit of cards are often more to the point. 

Your student may be shaky in decimal arithmetic, but all that is required here is 
multiplication of the random number by an integer, and perhaps also addition to an integer. 
The computer does the multiplication, of course, so only a rough idea of the desired result is 
necessary. 

After extending the random number to a larger range than 0 to 1, conversion to an integer is 
desired. The INT function does this by simply truncating the number, "throwing away the 
decimal part." (For negative numbers the situation is a little more complicated, and that rare 
case is not treated here). 

The concept of functions is again used in this lesson and is further clarified. 

The nesting of one function in the parentheses of another is illustrated by using RND in the 
argument of an INT function. 

QUESTIONS: 

1. Tell what the computer will print for each case: 

10 PRINT INT(G) 

and the "box G" contains: 2, 2 .1, 2.95, 3.001, 67, 0, 0 .2 

2. Tell how the INT() function is different from "rounding off" numbers . Which is easier 
for you to do? 

3. Tell how to change a number so that the INT( ) function will round it off. 

4. What does the RND(8) function do? 

5. How can you get random integers (whole numbers) from 0 through 10. (Hint: 
INT(RND(8)* 10) is not quite right.) 

6. How can you get random integers from 5 through 8? 

63 



64 

LESSON 13 RANDOM NUMBERS AND THE INT FUNCTION 

THE RND FUNCTION 

When you throw dice, you can't predict what numbers will come up. 

When dealing cards, you can't predict what cards each person will get. 

The computer needs some way to let you "roll dice" and "deal cards" and do many other 
unpredictable things. 

Use the RND function to do this. RND stands for "random." 

Run this program: 10 REM RANDOM NUMBERS 
20 HOME 
25 LET N=RNDCB> 
30 PR INT N 
ll0 IF N< • 95 THEN GOTO 25 

You see a lot of decimal numbers on the screen. The RND function in line 25 made them. 

It does't matter what number you put in the parentheses just so long as it is positive. I 
choose "8" because it is near the "( )" signs on the keyboard making it easy to type (8). 



RND gives numbers that are decimals larger than 0 but smaller than 1. To make numbers 
larger than one, you just multiply. 

Change the program above to: 

25 LET N=RND<B>*52 
40 IF N< 45 THEN GOTO 25 

and run it again. 

Now the numbers are between 0 and 52 in size. They could be used for choosing the 52 
cards in a deck. 

But: 

We usually want whole numbers like 7 and 8 rather than decimal numbers like 7 .03454323 
and 8.89746582. Do this by using the INT function. 

THE INT FUNCTION 
The INT function takes the number in its parentheses and throws away the decimal part, 
leaving an integer. 

Try the INT function in this little program: 

And in this: 

And this: 

10 LET !=INT (8.3) 
20 PR I NT I 

10LETX=0.3 
20 PRINT "X = ";x;TAB< 10> ;"INT<X>= ";INT<X> 

10LETX=.3 
20LETY=2.5 
30 LET P=X+Y 
40 LET Q=INT<X+Y) 
50 PRINT p,Q 

Look at the answers to see that the decimal part was thrown away. 

Try this: 10 REM----- INT-----
20 HOME 
30 PRINT"GIVE ME A DECIMAL NUMBER" 
32 INPUT D 
35 LET I= I NT ( D > 
40 PRINT "DECIMAL" ;D;TAB<20> ;"INTEGER" ;1 
50 IF I <>0 THEN GOTO 30 

Enter 0 to end the program. 

65 



66 

ROLLING THE BONES 
Usually dice games use two dice. One of them is called a "die." Here is a program that acts 
like rolling a single die: 

10 REM I I I I I I ONE DIE I I I I I I 
20 HOME 
30 LET R=RND C 8 > 
ll0 PRINT "RANDOM NUMBER" ;TABC20) ;R 
50 LET S=R*8 
55 PRINT "TIMES 8 11 HABC20) ;s 
80 LET I=INTCS> 
85 PRINT "INTEGER PART 11 ;TABC20) ;I 
70 LET D=I+l 
75 PRINT 11 DIE SHOWS" ;TABC20> ;o 
77 PRINT 
80 PRINT "ANOTHER? < YIN > II 

82 INPUT Y$ 
85 IF Y$= II y II THEN GOTO 20 



WHAT GOES INSIDE THE ( ) ? 
Numbers: 10 LET X =INT < 3 4 • 7 ) 

Variables: 

Expressions: 

Functions: 

10 LET X=INT<J> 

10 LET X=INT<3*Y+2) 

10 LET X =I NT< RND < 8 > > 

Here is how to save a lot of room. 

Instead of: 

Use just: 

Assignment 13: 

30 LET R=RND < 8) 
50 LET S=R*G 
60 LET I= I NT< S) 
70LETD=1+1 

70 LET D=1+1NT<RND<B>*B> 

I . Write a program that "rolls" two dice, called Dl and D2. Show the number on Dl and 
on D2 and the sum of the dice. You do not need the variables R, S, and I in the program 
above. They were used to show how the final answer was found. 

2. Write a "paper, scissors, and rock" game, you against the computer. (Paper wraps rock, 
rock breaks scissors, scissors cut paper). The computer chooses a number 1, 2 or 3 using 
the RND() function: 1 is paper, 2 is rock, 3 is scissors. You INPUT your choice as P, R, 
or Sand the computer figures out who won and keeps score. 

67 



68 

INSTRUCTOR NOTES 14 SAVE TO THE DISK 

This lesson shows how to save programs to the disk and how to load them again. If your 
Apple has no disk drive, refer to Appendix B for instructions in use of tape cassettes for 
storage. 

The commands: 

are introduced. 

SAVE 
CATALOG 

LOAD 
DELETE 

If you have not yet initialized a disk for your student's exclusive use, do so before starting 
this lesson. Instructions and a sample HELLO program are given in an appendix. 

Other commands used in this chapter are: 

NEW 
HOME 
LIST 

This lesson can be used anytime after lesson 3. 

REM 
PRINT 

We put it this late in the book because most programs up to this point are relatively short and 
uninteresting, not worth saving. The process of programming was being emphasized, not the 
end result of useful programs. 

However, your own judgement should prevail, and you can insert this chapter at an earlier 
point in the flow of lessons so that your student can save some programs he/she is 
particularly proud of. 

QUESTIONS: 

1. What is a "file"? 

2. How long can a file name be? 

3. What punctuation mark cannot be in a file name? Can the file name have spaces in it? 

4. If you use the SAVE command without a file name, how can you get the computer back 
to normal? 

5. What does the LOAD "filename" command do? What does the CATALOG command do? 

6. How can you erase a file that you no longer want? 

7. If a program is put into a file, is it still in memory? 



LESSON 14 SAVE TO THE DISK 

If you do not have a disk, please turn to the Appendix B: SAVE TO TAPE. 

ENTERING A PROGRAM 
If you already have a program in the computer at this moment, skip to SAVING A 
PROGRAM. 

If not, enter: 

SAVING A PROGRAM 

NEW 
10 REM : : : HI : : : 
20 HOME 
30 PRINT 11 HI 11 

Do you still have your disk in the drive? If not, put your disk in now. Be sure to close the 
door! 

Enter: SAVE HI 

You will hear a whirring and see the red light on DRIVE 1. When the red light goes off and 
the whirring stops, your program is stored on the disk. 

The disk holds your program under the file name "HI." Think of the disk as a file cabinet. It 
has a file folder with the name "HI" written on it. In the file folder is your program. 

I 1 1 I 
We used the name "HI" because it is easier to remember if the file has the same name as the 
program. 

ff your program has a different name, SAVE it again under the correct name. 

69 



70 

Careful! Do not use the word "SAVE" without a file name after it because the computer 
will think you want to save on a tape cassette instead of a disk. 

A "LIFE SAVER" 
If you mess things up, press the CONTROL RESET key to get back to normal. 

THE CATALOG COMMAND 
Let's see if the program is really stored on the disk. 

Enter: CATALOG 

After whirring and the red light, you will see: 

A 002 HI 

The "!\' means the file folder contains an Applesoft program. 

The 002 means it is a short program, only taking up two sectors on the disk. Think of each 
sector as one folder in the file cabinet. 

LOADING THE PROGRAM 
Now that we are sure the program is on the disk, it is safe to erase it from memory. 

Enter: NEW 
HOME 
LIST 

The LIST shows nothing because NEW erased the program from the computer's memory. 
Let's get the program back. 

Enter: LOAD HI 

We hear the whirring and see the red light, but is our program now in memory? 

Enter: LIST 

to find out. 



ERASING A FILE 
So far, so good. But what if we change our minds and want to throw a file away? 

Use 

and then enter 

DELETE HI 

CATALOG 

to see if it is really gone from the disk. 

7i 



72 

LEGAL FILE NAMES 
The file name: 

must start with a letter 
can be long (up to 30 characters) 
can have numbers in it 
can have punctuation in it BUT . . . 
CANNOT HAVE A COMMA IN IT 
can even have spaces in it 

A short name is best, less to type. 

Good names 

Wrong names 

COMMANDS 

JUMPING CAT 
GUESSING GAME 
SUB 

7UP 
CAT, DOG 

These four commands are used with files: 

SAVE filename 
LOAD filename 
CATALOG 
DELETE filename 

(starts with a number) 
(has a comma in it) 

Where you see the word "filename" you must type the name of the file. 

TROUBLES AND ERROR MESSAGES 
Always use a filename in the SAVE and LOAD commands. Otherwise the computer will 
think you are trying to use the tape recorder instead of the disk. 

If you forget to use a filename in the DELETE command, the computer will print ?SYNTAX 
ERROR. Then just try again, using a file name. 

Assignment 14: 

1. Write a short program (4 lines) and SAVE it on the disk. 

2. Do NEW, and write another short program. SAVE it. 

3. Do NEW, and CATALOG. Then load each program and run it. 

4. Try out the DELETE command on one of the programs. 

5. Repeat practice with the SAVE, LOAD, CATALOG, and DELETE commands until you 
are sure that you understand them. 



GRAPHICS, GAMES AND ALL THAT 

INSTRUCTOR NOTES 15 SOME SHORTCUTS 

This lesson covers: 

? used for PRINT 
LET omission 

used between statements on a line 
INPUT used with a message 

The sprint is over. We have reached RND and the saving of programs to disk. All the 
elements are in place for the student to write substantial programs. 

The colon is used to shorten and clarify programs by putting several statements on a line. A 
line should contain statements that have something in common. 

The colon can mess up a program too. Some statements are reached by GOTO's. If you 
move such a statement to the middle of another line, you will get an error message upon 
running the program. 

A more subtle error that even experienced programmers occasionally make is to move a 
statement to the back of a line that has an IF in it. This changes the logic of the program, as 
now the statement will be executed only if the IF condition is true. 

On the other hand, the colon in Applesoft allows one to put a little "subroutine" consisting 
of several statements after an IF. This makes using a GOTO unnecessary for reaching the 
extended segment of program: a shorter and much less cluttered program results. So the 
colon becomes a powerful and nontrivial means of improving the clarity of the program. 

When INPUT is used without a message, a"?" sign is printed on the screen and the flashing 
input cursor appears. When INPUT is used with a message, "?" does not appear, just the 
flashing cursor shows. So if the message is a question, it should end in a question mark. 

QUESTIONS: 

1. What shortcut does the "?" give? 

2. How can you tell that the word LET is missing from a LET command? 

3. An INPUT command has a message in quotation marks. What punctuation mark must 
follow the quotes? 

4. Why is it sometimes good to put two statements on the same line, separated by a colon? 

5. What is wrong with each of these lines? 

10 REM BEGINNING:GOTO 1000 
10 GOTO 50:S$= 11 FAST 11 

73 



74 

LESSON 15 SOME SHORTCUTS 

A PRINT SHORTCUT 

Instead of typing PRINT, just type a question mark. 

Enter: 10 ? "HI" 
LI ST 10 

The computer substitutes the word PRINT for the question mark. 

A LET SHORTCUT 
These two lines do the same thing: 

10 LET A=a1 and10 A=a1 

also these two: 2 0 LET B $ = 11 H I 11 and 2 0 B $ = 11 H I 11 

You can leave out the word LET from the LET statement! The computer knows that you 
mean LET whenever the line starts with a variable name followed by an " = " sign. 

/7 ..:::? 
,, 
·.} 

,;? 

~ 



AN INPUT SHORTCUT 
Instead of: 

You can do: 

10 PRINT "ENTER YOUR NAME" 
20 INPUT N$ 

10 INPUT "ENTER YOUR NAME"; N$ 

Put a semicolon between the message "ENTER YOUR NAME" and the the variables. 

Examples: 10 INPUT "AGAIN? <YORN>" ; Y$ 
20 INPUT "LOCATION"; XtY 
30 INPUT "MONTH, DAY, YEAR" ;M$ tD ,y 

A LIST SHORTCUT 
There are 5 ways to use the LIST command: 

LIST 
LIST aa 
LIST 50-75 
LIST -27 
LIST 90 -

lists whole program 
lists line 48 
lists all lines from 50 to 75 
lists all lines from beginning to 27 
lists all lines from 90 to the end 

A COLON SHORTCUT 
Put several statements on a line with a colon " :" between them. This saves space. 

Instead of 

you can write: 

10 Q=17*3 
20 R=Q+2 
30 PRINT R 

10 Q=17*3:R=Q+2:? R 

In memory this line looks like: 

10 Q=17*3 : R=Q+2:PRINT R 

75 



76 

WHEN TO USE THE COLON SHORTCUT 
Use the shortcut: 

I. To make the program clearer. 

Put similar statements on the same line. Example: 

Instead of: 

write: 

10 X=0 
12 Y=0 
14 Z=0 

10 X=0:Y=0:Z=0 

2. To make the program shorter. 

3. To put a REM on the end of the line. 

Example: 40 H=X+Y/66 REM H IS THE HEIGHT 

THE COLON AFTER AN IF COMMAND 
You can make neater IF statements using colons. 

Without: 50 IF A=0 THEN GOTO 80 
60 B=Q 
62 C=B*D 
64 FLASH 
66 PRINT 11 WRONG 11 

80 FOR • • • 

With colons: 50 IF A<> 0 THEN B=Q:C=B*D:FLASH:PRINT 
II WRONG II 

80 FOR • • • 

All the commands in the path "A< > 0 is TRUE" are on the line after THEN. 

CAREFUL! 
Do not put something on the end of an IF line that doesn't belong. 

Example: 

is not the same as: 

35 IF A=B THEN PRINT 11 ALIKE 11 

40 Q=R 

37 IF A=B THEN PRINT "ALIKE ": Q=R 

because Q = R in line 40 is always done, no matter if A = B is true or not. But Q = R in line 
37 is done only if A= B is true. 



SOME MORE MISTAKES WITH COLONS 
The REM and the GOTO commands must be last on a line. Anything following them is 
ignored. 

Correct: 

Wrong: 

35 P=3:REM P IS THE PRICE 

35 REM P IS THE PRICE:P=3 

Because the computer ignores everything else on a line after reading REM. 

Correct: 

Wrong: 

40 R=P+1:GOTO 88 
42 S=3 

40 R=P+1:GOTO 88:S=3 

Because the computer goes to line 88 and can never come back to do the S = 3 command. 

COMMANDS, STATEMENTS AND LINES 
Commands tell the computer to do something. So far we have used these commands: 

HOME, PRINT, NEW, RUN, LIST, REM, INPUT, LET, GOTO, 
FLASH, INVERSE, NORMAL, IF, SPEED, SAVE, LOAD, 
CATALOG, DELETE 

Commands used in numbered lines may be called "statements." Used alone, they are always 
called "commands." 

Enter: HOME We say we have "entered a command." 

But if we write this line in a program: 

20 HOME We say that line 20 has one "statement," the HOME command. 

Some lines have several statements, separated by colons. 

30 HOME: PR I NT: LET 2=55 

is a line with three statements. 

77 



78 

Assignment 15: 

1. Write a program that uses each of these shortcuts at least once. 

2. Write a "vacation" program. It asks how much you want to spend. Then it tells where 
you should go or what you should do. 

3. Write a "crazy" program that asks your name, then prints out a funny way of saying you 
are crazy. The program randomly chooses one of these and prints it after your name. 



INSTRUCTOR NOTES 16 MOVING ABOUT ON THE SCREEN: 
VTAB, HTAB 

The commands HTAB and VTAB are used to move the output cursor to any point on the text 
screen. 

These commands are used for flexible manipulation of text and/or a form of graphics. 

The TAB command covered in a previous lesson is used inside a PRINT command. By 
contrast, HTAB and VTAB are used before the PRINT command. 

To make effective use of these commands, the screen needs to be thought of as a 40 
character across by 24 line down array. This viewpoint will be echoed when lo-res screen 
graphics are treated later. 

QUESTIONS: 

1. If you want to print the next word on line 12, what command do you use? 

2. If you want to print the next character on line 6, indented by 20 spaces, what two 
commands (separated by a colon)do you use? 

3. In the answer to question 2, does it matter which command comes first in the line? 

4. Show how to print the two words "FAT" and "CAT" on the same line with "CAT" 
printed first, starting at space 25, and then "FAT" printed starting at 5. 

79 



80 

LESSON 16 MOVING ABOUT ON THE SCREEN: VTAB, HTAB 

THE VTAB COMMAND 

There is room for 24 lines of typing on the screen. VTAB chooses which line. Use any 
number from 1 to 24. 

Run this program: 

And this program: 

10 REM VTAB DEMO 
15 HOME: SPEED= 1 
18 VTAB 10 :PRINT 11 LINE 10 FIRST 11 

20 VTAB 1 : PRINT 11 LINE 1 NEXT 11 

30 VTAB 2£1 : PRINT 11 LINE 2£1 LAST 11 

£10 SPEED=255 

10REM ::: WHICH LINE::: 
20 HOME 
30 INPUT 11 WHICH LINE 11 ;L 
£10 VTAB L 
50 PR I NT L; II HERE. II ; 

60 GO TO 30 

If the number after VTAB is zero or is larger than 24, the computer prints "ILLEGAL 
QUANTITY ERROR IN LINE 40." 

THE HTAB COMMAND 
The HTAB command tells how far over to start printing. Use numbers from 1 to 40. 

It is like the TAB command you learned earlier. The TAB command is used inside the 
PRINT command, but the HTAB command is used by itself. 

'fry this: 

And this: 

Press RESET to stop. 

10 REM --- HTAB DEMO ---
12 HOME: SPEED= 1 

20 VTAB 12: HTAB 35: PRINT 11 HERE 11 

30 VTAB 12: HTAB 5: PR I NT II THEN HERE II 
ll0 SPEED=255 

10 REM=== WHICH ROW, COLUMN=== 
20 HOME 
30 VTAB 1: HTAB 1: INPUT 11 WHICH ROW, COLUMN? 
II ; R ,c 
35 VTAB 1: HTAB 1: PRINT" II 

ao VTAB R: HTAB c: PR I NT 11 * 11 

£1 5 FOR T= 1 TO 2000: NEXT T 
60 GOTO 30 

Line 30 wants you to type two numbers separated by commas. If you only type one number 
and press the RETURN key, the computer prints: 

?? 



to tell you to enter another number. 

If you type in too many numbers separated by commas, the computer prints: 

EXTRA IGNORED 

which means the extra number is not used at all. 

GRAPHS ON THE SCREEN 
The screen is like a piece of graph paper. The numbers start at the top left corner. 

The lines downward are numbered 1 to 24 and the variable name Y is used for them. 

The columns across are numbered 1 to 40 and the variable name Xis used for them. Run 
this program: 

Assignment 16: 

10 REM --- GRAPHS ---
20 HOME 
25 PRINT"GIVE ME SOME X ANDY'S. 11 

27 PR I NT II x FROM 1 TO 40 t y FROM 1 TO 24 II 
28 PRINT 
30 INPUT II ENTER \ c I TO CONT I NUE II ; X$ 
32 HOME 
35 INPUT X ,y 
40 HTAB X : VTAB Y 
50 PRINT"*" 
55 HTAB 1:VTAB1 :PRINT" 
80 HTAB 1 : VTAB 1 : GOTO 35 

II 

1. Use the RND( ) function to write your first name at random points on the screen. Make it 
print your name many times all over the screen. 

2. Write a program that prints "HERE" at random points on the screen. After each time the 
word is written, erase it and go on to write again. Put in a delay loop so that "HERE" 
does not jump around too fast. · 

81 



82 

INSTRUCTOR NOTES 17 FOR-NEXT LOOPS 

FOR, NEXT and STEP commands which make loops are described in this lesson. 

The loop is made of two statements, one starting with FOR and the other with NEXT. These 
commands may be separated by several lines and yet are strongly interdependent. This could 
be a bit confusing to your student. The delay loop in a previous lesson helps form the notion 
that the FOR ... and the NEXT are coupled. It remains then to show the utility of 
repeating a set of commands in the middle of the loop. 

Nested loops are introduced using a case where the inside loop is a delay loop. 

There are subtle points not discussed in this lesson that may arise sooner or later. The loop is 
always traversed at least once because the test for exit is made at the NEXT statement which 
can be reached only by going through the loop. 

The FOR statement is evaluated just once at the time the loop is entered. It puts the starting 
value of the loop variable into variable storage where it is treated just as any other numerical 
variable. The STEP value, the ending value, and the address of the first statement after the 
FOR are put on a stack. 

From then on, all the looping action takes place at the NEXT command. Upon reaching 
NEXT, the loop variable is incremented by the value of the STEP and compared with the 
end value. If the loop variable is larger than the end value (or smaller in the case of negative 
STEPS.) NEXT passes control to the statement after itself. Otherwise, it sends control to the 
statement after the FOR command. 

Because the loop variable is treated just like any other variable by BASIC, it can be used or 
changed in the body of the loop. Changing it should be done with care, as it will be further 
changed by the NEXT which also uses it to decide if the loop has ended. 

Jumping into the middle of a loop is usually a disaster. Jumping out of a loop before NEXT 
causes an exit is commonly done , but in some cases (especially where subroutines are 
involved) may give hard to find bugs. 

QUESTIONS: 

1. Write a loop that prints the numbers from 0 to 20. 

2. Write a program loop that prints the numbers from 30 down to 20, by twos. 

3. Write a pair of nested loops to print the numbers 100, 200, 300 and between them, the 
numbers 1, 2 , 3, 4, 5 on separate lines. 



LESSON 17 FOR-NEXT LOOPS 

Remember the delay loop? The computer counted from 1 to 2000 and then went on. 

30 FOR T=1 TO 5:NEXT T 

The computer is smarter than that. It can do other things while it is counting. 

Run this: 10 REM COUNT I NG 
20 HOME 
30 FOR I=5 TO 20 
40 PR I NT I 
50 NEXT I 

The loop can start on any number and end on any higher number. Try changing line 30 in 
these ways: 

30 FOR I= 100 TO 101 
30 FOR I= - 7 TO 13 
30 FOR I= 1 • 3 TO 5 • 7 

MARK UP YOUR LISTINGS 
Show where the loops are by arrows: 

10 REM ON PAPER 
20 HOME 

[

30 FOR I=0 TO 7 
40 PR I NT I 
50 NEXT I 

83 



84 

THE STEP COMMAND 
The computer was counting by one's in the above programs. To make it count by two's, 
change line 30 to this: 

30 FOR 1=10 TO 30 STEP 2 

Assignment 17 A: 

1. Have the computer count by five 's from zero to 100. 

COUNT DOWN LOOPS 
You can make the computer count down by using a negative STEP. 

Try this: 10 REM *** APOLLO 11 *** 
20 HOME: SPEED= 100 
30 PR I NT 11 T MI NUS 12 SECONDS AND COUNT I NG 11 

40 FOR I= 11 TO 0 STEP -1 
50 PRINT I :PRINT CHR$(7) 
60 FOR J=1TO740:NEXT J:REM TIMING LOOP 
70 NEXT I 
75 INVERSE 
80 PR I NT 11 ALL ENGINES RUNNING• LI FT OFF• 11 

82 PR I NT II WE HAVE A LI FT OFF. II 

84 PR I NT II 32 MINUTES PAST THE HOUR. II 

86 PRINT "LIFT OFF ON APOLLO 11 . 11 

88 SPEED=255: NORMAL 

Line 60 is the timing loop. 

NESTED LOOPS 
In this program, we have one loop inside another. 

The outside loop starts in line 40 and ends in line 70. 

The inside loop is in line 60. 

These are "nested loops." It is like the baby 's set of toy boxes which fit inside each other. 



LOOP VARIABLES 
To make sure that each FOR command knows which NEXT command belongs to it, the 
NEXT command ends in the "loop variable" name. Look at line 60: 

80 FOR J= 1 TO 740: NEXT J 

J is the loop variable. And for the loop starting in line 40: 

40 FOR I=12 TO 0 STEP -1 

70 NEXT I 

I is the loop variable. 

BADLY NESTED LOOPS 
The inside loop must be all the way inside: 

Right: 

Wrong: 

25 FOR X=3 TO 7 

[

30 FOR Y=3 TO 7 
40 PRINT X*Y 
50 NEXT Y 
60 NEXT X 

25 FOR X=3 TO 7 
30 FOR Y=3 TO 7 
a0 PRINT X*Y 
50 NEXT X 
60 NEXT Y 

85 



86 

Assignment 178: 

l. Write a program that prints your name 15 times. 

2. Now make it indent each time by 2 spaces more. It will go diagonally down the screen. 
Use TAB in a loop. 

3. Now make it write your name 24 times, starting at the bottom of the screen and going up. 
Use VTAB in a loop. 

4. Now make it write your name on one line, your friend's name on the next and keep 
switching until each name is written 5 times. 



INSTRUCTOR NOTES 18 EDIT AND RUN MODES, 
THE CALCULATOR 

This lesson explains the EDIT MODE and the RUN MODE of the computer. 

We placed this material rather late in the book, despite its fundamental nature , because it is 
abstract and because we did not wish to slow down the race to mastery of the core 
commands in BASIC. 

However, you may want to take up this chapter at some earlier time in the course. The only 
commands used in this lesson are: 

PRINT and RUN 

Other names for these modes are: 

Edit mode: command mode 
calculator mode 

immediate mode 
direct mode 

Run mode: deferred execution mode 

The edit mode is the home base of the computer user. In the edit mode, you enter a line. The 
characters go into the input buffer which is 256 characters long. 

When RETURN is pressed, the computer looks to see if the line starts with a number. If so , 
it stores the line in the program space, making room at the right location so that the lines are 
numbered in order. 

If the line doesn 't start with a number, the computer executes the line right out of the input 
buffer. Most commonly, the line consists of a single command, like HOME, or RUN . But 
the immediate mode is a very powerful one in that fairly long one line programs can be 
executeJ. This feature is handy both in the program design phase, where arithmetic 
concerning the design can be done in between entering lines of the program, and during 
debugging. 

QUESTIONS: 

1. What does the computer do in the " RUN mode" ? 

2 . How can you tell if the computer is in the "edit mode"? 

3. What 3 kinds of things can you do in the edit mode? 

4. If you enter a line that starts with a line number, what happens to the line? 

5. If you enter a line that does not have a line number, what happens? 

87 



88 

LESSON 18 EDIT AND RUN MODES, THE CALCULATOR 

Enter: . NEW 
HOME and you are ready to begin the lesson. 

EXECUTION AND RUNNING 
We mean "execution" like the soldier executing the command "Left Face," not "execution 
by firing squad:' 

"Execute a program" means the same as "run a program." 

£Slf Fl#E! 

DEFERRED EXECUTION 
Enter and run this program: 

10 PRINT 11 HI 11 

f 
,&> 

This is the usual way to make and run programs, and is called "deferred execution." 

In "deferred execution" the computer waits until you enter the command "RUN" before 
executing the program. 

Rule for Deferred Execution: If the line starts with a number, it is put in memory. The 
line becomes part of the program in the computer's memory. The program is executed by the 
command "RUN." 

IMMEDIATE EXECUTION 
Here is a short cut. Enter this (no line number in front): 

PRINT "HI" 

This time the computer printed "HI" right away, without waiting for you to enter RUN. This 
is called "immediate execution." 



Rule for Immediate Execution: If the line does not start with a number, the computer 
executes the command right away (as soon as you press the RETURN key). 

Try this longer example: 

FOR I=1 TO 20:PRINT I:NEXT I:PRINT:PRINT 11 DONE 11 

Rule: In immediate execution you can run a one line program that has several statements 
separated. 

ASLEEP OR AWAKE? 
People act one way if they are awake and another way if they are asleep. They have two 
"operating modes." 

You can tell if they are asleep because they snore. (Well, not all people snore, but to explain 
how computers are like people, let's pretend that all sleeping people snore.) 

The computer has two operating modes too. They are called the "edit mode" and the "RUN 
mode." 

THE EDIT MODE 
Press the CONTROL RESET key. 

You see a "J 11 symbol and a flashing square. The 11 J 11 symbol is called a "prompt" and 
says that the computer is in the "edit mode" of Applesoft BASIC. The 11 J 11 is the "snoring" 
of the computer when it is in the edit mode. 

The flashing square is called the "cursor." It tells us that the computer is waiting for us to 
type something. The next letter we type will be on the screen underneath the flashing cursor. 

While the computer is in the edit mode: 

89 



90 

You can enter programs by typing lines that start with numbers. 

You can use the computer like a pocket calculator. Big pocket! 

You can correct errors in programs. This is called "editing" a program and is where the 
"edit mode" gets its name. Later in the book we will learn more about how to edit 
programs. 

THE RUN MODE 
Enter RUN to leave the EDIT MODE and go to the RUN MODE. 

While the computer is in the run mode: 

The program in memory runs. 

When the program is finished, the computer automatically goes back to the edit mode. 

Assignment 18: 

1. Explain what "immediate execution" means. Use the computer as a calculator to do some 
arithmatic problems. 

2. Explain what "deferred execution" means. Write a program that has several lines. In one 
line it prints "22 plus 67 is" and then in another line does the addition and prints the 
answer. 

3. How can you tell if the computer is in the edit mode? 

4. What does the computer do in the RUN mode? 

5. What mode does the computer enter when the program is done running? 

6. How can you tell where the next letter you type will appear on the screen? 



INSTRUCTOR NOTES 19 MOVING PICTURES USING STRINGS 

This lesson shows an interesting little program that "shoots" an arrow across the screen. 

Some of the power of string variables is demonstrated. Adding spaces moves the arrow and 
at the same time erases the previous image. Concatenation of strings is used and a clear 
"walk through" of the loop helps keep the loop idea as well as the box idea in mind. 

QUESTIONS: 

1. For moving pictures, you must erase the old picture before drawing the new one. How is 
the erasing done for the "arrow" program? 

2. The string box can be empty. How do you tell the computer that you want the string 
variable D$ to have an empty box? 

3. A loop ends with the NEXT I command. What does NEXT do to the variable I? What 
test does NEXT make? What choices does NEXT have as to which line is executed next? 

91 



92 

LESSON 19 MOVING PICTURES USING STRINGS 

One way to draw pictures is to use strings. Run this: 

Save to disk. 

\i 
10 REM >>>---ARROW----> 
20 HOME

1
,; 

3 0 s $ = .. 1 II : REM s $ I s A s p Ac E 
40 A$= 11 >>>------> 11 

42 VTAB 10 
44 FOR I= 1 TO 29 
46 HTAB I 
aa PR I NT S$+A$;: REM GLUING TWO STRINGS 
50 NEXT I 

This program shoots an arrow across the screen. 

Line 30 There is a space between the quotation marks. So in the box named "S$" there is 
stored a space. 

Line 40 This string looks like an arrow. 

Line 42 VTAB chooses line 10 for the arrow to move on. 

Line 44 This is the start of the loop. The loop ends in line 50. 

Line 46 The printing starts at the left of the line. 

Line 48 First the space in box S$ is glued on the back of the arrow. Then the space and 
arrow are printed. 

Line 50 NEXT checks if I is larger than 29 yet. It is not. The program goes back to line 46 
because this is the first line after the FOR I . . . . 

Line 46 Now the printing starts one space in from the left. 

Line 48 The arrow with one space on its feathered end is printed. This erases the old arrow. 

Line 50 NEXT checks again. 



Now you carry it two more times through the loop. 

EXACTLY HOW DOES THE ERASING HAPPEN? 
Write out the printed arrow for the first three steps. Use a "b" for the blank space in back of 
the arrow, so you can see it. You will get: 

b>> >------> 
b>>>------ > 
b>>>------ > 

Each time, the new arrow writes over the old arrow, except for the last 11 >11 on the feathered 
end. The last 11 > 11 is erased by the space on the end of the next arrow. 

93 



94 

EMPTY STRINGS AND STRINGS WITH SPACES 
Run this program: 

20 A$= 11 A 11 :6$= 11 6 11 

30 8$ = 11 
II 

40 PR I NT A$; 8$; 5$ 

The computer prints a space between the A and the B. The space comes from line 30. It is 
the space between the quotes. So the box named S$ has a space in it. 

Change line 30 and run again: 

30 8$ = 1111 

Now there is nothing between the quotes and so there is nothing in the box named S$. 

Rule: There is a difference between a string that is one space and a string that is empty. 

Assignment 19: 

1. Make the arrow go slower. Make the arrow leave little puffs of smoke behind. 

2. Write a program that makes your first name glide across the screen from left to right. 

3. Now make another program that has your friends name glide down from the top to the 
bottom. Hint: Use VTAB, and don't forget to erase the "old" name before printing the 
"new" name. 

4. Now make a combination program where your name glides across and your friends glides 
down so they cross in the middle of the screen. 



INSTRUCTOR NOTES 20 VARIABLE NAMES 

This lesson treats the rules for naming variables. 

Descriptive variable names help clarify programs. On the other hand, they take more typing 
and there are two hidden "gottcha 's ." 

One "gottcha" is that BASIC only records the first two letters of a name. This means that 
those beautiful,long,descriptive names may not be unique. Even experienced programmers 
occasionally get caught here, and the bug may be quite hard to detect. 

The other is that "reserved words" may not be included in the name anywhere: start, middle 
or end. The reserved words are the BASIC commands and functions. 

A sign that a name contains a reserved word is provided when listing the program. The 
variable name will be split up showing the reserved word by itself. The first time this 
happens the programmer may suspect that a typing error has occurred. However, this error 
will pop up again after "correction" of the typing, and the only correction that works is 
choosing a new name. 

A list of reserved words in APPLESOFf BASIC is presented in Appendix C. 

QUESTIONS: 

1. Names longer than two characters may give you trouble. Why? 

2. Names that have numbers in them may be good names or wrong names. How can you tell 
if they are good? 

3. Names cannot have punctuation marks in them, except in one case. What punctuation mark 
is allowed, where do you put it, and what does it tell you? 

4. Long names may have "reserved words" at the front , inside, or at the back. Which words 
are "reserved"? Where is there a list of reserved words? 

95 



96 

LESSON 20 VARIABLE NAMES 

OLD RULES 

1. A string variable name ends in a dollar sign. 

2. A numerical variable name doesn't. 

MORE RULES 

3. A name is made of letters and numbers. 

4. A name must start with a letter. 

5. A name cannot have any other symbols or punctuation marks. (Except that a string name 
must have a "$" at the end.) 

6. A name can have as many letters and numbers as you want. But ... 

7. Only the first two characters of a name matter. All the rest are ignored (except the "$" at 
the end of a string name). 

8. Reserved words cannot appear anywhere in a name. These words are the ones in 
commands: such as REM, LIST, FOR, TO, LET, IF, PRINT, and more. Appendix B 
contains a list of the reserved words. 

RIGHT AND WRONG NAMES 
Some correct names: A 7 7 

LEFTS IDE 
X3AB 
APE 
NAME$ 
05$ 

Some wrong names: 2 X 
X• 
S[$ 
$NAME 
3RDNAME$ 
LIST 
COLOR 
STATE$ 
TOM 

(has OR in it!) 
(has AT in it!) 
(has TO in it!) 

Do this . Put STATE$ and TOM in a line like: 

and then 
10 TOM = 1 
LIST 

You will see the name split apart if then~ is a reserved word in it. 



DIFFERENT NAMES THAT ARE THE SAME 
Breaking the rule that: 

"Only the first two characters matter" can make your program run very strangely! 

The computer can't tell the names in these pairs apart. 

It thinks that HOSE is the same as HOP 
and X1 is the same as X10 
and NAME1$ is the same as NAME2$ 

'fry this program: 10 HOP$ = II BUNNY II 
20 HOSE$ = 11 LONG AND NARROW II 

30 PRINT HOP$ 

and see that HOSE$ and HOP$ name the same variable, which really just has "HO$" 
written on the front of its box. 

Assignment 20: 

1. Read the rules numbered 1 through 8. For each rule make up two names, one that is 
correct and one that disobeys the rule. (Rule number 6 has no wrong name.) Try each 
name in a line like 1 0 NAME = 1 or 1 0 NAM E $ = 11 A 11 to see if it is a legal 
name. 

97 



98 

INSTRUCTOR NOTES 21 LO-RES GRAPHICS 

This lesson introduces the commands GR, TEXT, COLOR and PLOT. 

The next lesson finishes with the commands VLIN and HLIN. 

If you have a black and white TV or monitor then LO-RES is still useful. In fact, the 
drawings will be somewhat crisper. You must pick some color other than black (number 15, 
white, is good). 

A different style of drawing is used in color than in black and white. LO-RES color 
drawings look good when large areas are painted in a given color. In some colors, the lines 
are not very crisp. 

If you have a color monitor, then the student should set up its controls for pleasing color. 
The COLOR DEMOSOFf program on the SYSTEM MASTER disk is good for this, which 
is why the appendix on preparing a disk for your student asked you to put a copy of it on the 
student's personal disk. 

LO-RES stands for "low resolution;' meaning that the spots (pixels) are not so little. They 
are rectangles and each is as wide as a letter in text mode of display, but only half as high. 
The mode that your student uses will be 40 squares wide, 40 high, and have 4 lines of text 
space underneath. What I call "squares" are actually rectangles. 

Drawing pictures dot by dot is quite tedious. It is a little less work when using the VLIN and 
HLIN commands given in the next section. In any case, use of graph paper to block out the 
picture first is often helpful. I recommend using a variable to designate a corner (or the 
center) of the drawing, with offsets from the corner for the other points and lines in the 
drawing. Then it is easy to move the whole figure if necessary for animation or just for 
correction of the composition. 

QUESTIONS: 

1. If you give the command GR what happens? 

2. If you write a program using GR and PLOT, but when you run it you don't see any 
drawing, what have you forgotten to put after the GR command? 

3. What does the TEXT command do? 

4. How many colors are there to choose from? 

5. What range of numbers are allowed for X and Yin the command PLOT X,Y? How is 
this different from the range allowed for the commands HTAB and VTAB? 



LESSON 21 LO RES GRAPHICS 

Drawing pictures using little colored squares is called "LO RES graphics." 

ADJUSTING THE TV FOR COLOR 
If your TV or monitor is black and white, skip to GRAPIIlCS COMMANDS. 

Otherwise load and run the COLOR DEMOSOFf program from your disk. 

LOAD COLOR DEMOSOFf 
RUN 

Choose the menu entry that gives the numbers for the colors. Turn the color and tint knobs 
on your color TV or color monitor so the colored stripes match the color names. 

THE COLORS ARE: 

OBLACK 
1 MAGENTA 
2DARKBLUE 
3 PURPLE 
4DARKGREEN 
5 GREY 1 
6 MEDIUM BLUE 
7 LIGHT BLUE 

8 BROWN 
90RANGE 

10 GREY 2 
11 PINK 
12 LIGHT GREEN 
13 YELLOW 
14 AQUAMARINE 
15 WHITE 

99 



100 

GRAPHICS COMMANDS 
Run: 1 0 REM C C C C SM I LE > > > > 

20 GR 
30 INPUT "WHAT COLOR? <1 -15 > ";c 
35 COLOR=C 
a0 PLOT 20t20 
as PLOT 21 t21 
50 PLOT 22t22 
55 PLOT 23t22 
60 PLOT za,22 
65 PLOT 25t21 
70 PLOT 26t20 
85 PRINT CHR$C7):REM PEEP 
88 HOME 
80 INPUT "AGAIN? <YI N> II ;A$ 
85 IF A$= 11 Y11 THEN GOTO 30 
88 TEXT:HOME 

SAVE SMILE 

After trying some other colors, answer 0 to the "WHAT COLOR?" question. The computer 
will draw the smile in the color "black" and you will not see it on the black screen. 

The new commands used in this program are: 

GR 
COLOR 

TEXT 
PLOT 

Line 20 uses the GR command. GR means "graphics." 

Rule: Use GR before starting your picture so that the computer knows it must draw a 
picture. 

Line 35 uses the COLOR command. It chooses the number of the color that will be used 
next. 

Rule: After using the GR command, you must use the COLOR command with a number 1 
to 15. 

Why? Right after the GR command is executed, the color is always BLACK (which has 
number 0). If you forget to change to another color, you will not see a picture. You cannot 
see a black picture drawn on a black screen. 

Line 99 uses the TEXT command. 

Rule: End the drawing with the TEXT command so the computer will be ready to show 
words again. 



The PLOT command is used in several lines of the program. 

Rule: The command PLOT X,Y means put a spot on the screen at point X across and Y 
down. X is a number or variable in the range 0 to 39. So is Y. 

PLOT ZZJZ2 

TOO BAD! 
Most vely, vely, solly. Remember the VTAB and HTAB commands go from 1 to 24 and 1 to 
40 on the screen. It would be nice if the PLOT command also went from 1 to 40. But it 
doesn't! It goes from 0 to 39 instead. 

101 



102 

Assignment 21 : 

1. Put eyes and a nose on the face in the "smile" program. 

2. Add to the number guessing game in lesson 13 so that a colored star shows when the 
correct answer is guessed. Use a timing loop so that the star shows for a few seconds 
before the game starts again. 

3. Write a program to draw "Sinbad's Magic Rug." Let the user choose how many colors in 
the rug, and what colors. Then draw a pattern on the screen. You might like to see how 
the pattern was drawn in the COLOR DEMOSOFT program. Just: 

LOAD COLOR DEMOSOFT 
LIST 700-799 



INSTRUCTOR NOTES 22 GRAPHICS USING HUN AND VLIN 

The line drawing commands HLIN and VLIN are explained. 

LO-RES graphics use horizontal and vertical lines. Solid areas can also be filled in using 
lines. 

QUESTIONS: 

1. In the command HLIN A,B AT C, what kind of line is drawn? What do the letters A and 
B tell the command? What does the letter C tell? 

2. Answer the same questions for the command VLIN A,B ATC. 

3. What happens if you draw one line on top of another, or crossing another? 

4. How would you make a square with a blue outline and a solid red inside? 

103 



104 

LESSON 22 GRAPHICS USING HUN AND VLIN 

Now we will draw using lines instead of dots. 

First use the COLOR DEMOSOFf program and adjust the color knobs on your TV or 
monitor. 

HORIZONTAL LINES 
Let's draw a horizontal green line. You need to give the HLIN command with three numbers. 
Each number must be between 0 and 39. 

Run: 1~ GR:COLOR=12: REM COLOR IS GREEN 
30 HLIN 7,1a AT 3 

The computer draws a green bar on the third line from the top of the screen. (That is what 
"AT 3" means). The green bar starts in space 7 from the left of the screen and ends in space 
number 14. 

In other words: 30 HLIN 7,1a AT 3 means: 

The line starts at 7 and goes over to 14, AT line 3 down from the top. 



VERTICAL LINES 
Change line 30 to read: 

30 VLIN 8115 AT 4 

Now horizontal and vertical are switched around . The command means: 

The line starts at 8 and goes down to 15, AT 4 spaces in from the left 

PRACTICE PROGRAM 
Run this: 1 0 GR : REM - - MAKE L I NE S - -

12 HOME 
15 INPUT 11 HORIZONTAL OR VERTICAL? <HIV > 11 ;0$ 
20 IN PUT II COLOR? < 1-15 > II ; c 
25 COLOR=C 
40 IF D$= 11 V11 THEN GOTO 70 
42 PRINT 11 HORIZONTAL LINE" 
44 INPUT 11 HOW FAR FROM THE TOP? <0-38 > u;y 
46 INPUT 11 START WHERE? <0 -38 > 11 ;x1 
48 INPUT 11 END WHERE? <0-38> 11 ;x2 
50 HLIN X11X2 AT Y 
55 GOTO 12 
70 PRINT 11 VERTICAL LINE II 

74 INPUT 11 HOW FAR FROM THE LEFT? <0-38 > " ;X 
76 INPUT 11 START WHERE? <0-38> 11 ;Y1 
78 INPUT 11 END WHERE? <0-38> ";yz 
80 VLIN Y1 tY2 AT X 
85 GOTO 12 

Save the program under file name MAKE LINES. 

105 



106 

A LONGER EXAMPLE 

100 REM === PICK UP STICKS ---
105 HOME 
110 GR 
120 FOR I = 1 TO 50 
125 FOR T = 1 TO 300: NEXT T 
130 REM VERTICAL LINES 
135 COLOR= RND (8) * 16 
140 X = RND (8) * 38 
142 Y1 = RND (8) * 38 
144 Y2 = RND (8) * 38 
146 IF Y1 > Y2 THEN YT = Y1:Y1 = Y2:Y2 = YT 
148 VLIN Y1 tY2 AT X 
155 COLOR= RND (8) * 16 
157 FOR T = 1 TO 300: NEXT T 
160 REM HORIZONTAL LINES 
162 Y = RND (8) * 38 
164 X1 = RND (8) * 38 
166 X2 = RND (8) * 38 
168 IF X1 > X2 THEN YT = X1:X1 = X2:X2 = YT 
170 HLIN X1 tX2 AT Y 
180 NEXT I 
182 PRINT II D 0 N E11 

185 FOR T = 1 TO 5000: NEXT T 
188 TEXT : HOME 

Find each of these things in the program: 

1. Three timing loops. What does each do? 

2. One major loop. 

3. 1\vo major activities in the loop. 

4. A line that returns the screen to normal when the program is done. 

5. A command that tells the computer to get ready to draw. 

6. How many colors are used in the drawing? Are any of the sticks black? In what lines are 
the colors chosen? 



Enter and run the program. Then save it under the file name PICK UP STICKS. 

MOVING YOUR PICTURE 
To make your picture move, you have to: 

draw it 
erase it 
draw it again, moved over 
erase it again 
and so forth 

The best way to do this is to use a subroutine to draw the picture. We will show you how to 
do this in lesson 24. 

Assignment 22: 

1. Write a program that draws a square. Let the user choose what color it will be. Save it to 
disk. 

2. Add to the program so that it has 1 to 6 spots on it like dice. 

3. Write a program that draws your initials. Have it start with red (color 1) and peep, then 
change to dark blue (color 2) and so forth to color 15. 

107 



108 

INSTRUCTOR NOTES 23 SECRET WRITING AND THE GET 
COMMAND 

This lesson concerns the GET command. 

GET is a method of requesting a single character from the keyboard. The computer waits 
until the keystroke is made. 

There is no screen display at all. No prompt or cursor is displayed while waiting, and the 
keystroke, when made, is not echoed to the screen. 

The utility of the GET command lies just in this fact. For example, a requested word may be 
received with a series of GET's without displaying it to bystanders. 

Another advantage over INPUT is that no RETURN keypressing is required. This makes 
GET useful in "user friendly" programming. 

Apple points out that it is best to put the character into a string variable rather than a 
numerical variable. If you want to GET numerical digits , GET them as strings and convert 
them to numbers using the VAL() function discussed in a later lesson. 

QUESTIONS: 

1. Compare INPUT and GET. One gets one letter at a time, the other gets whole words and 
sentences. One has a cursor, the other does not. One prints on the screen, the other does 
not. One needs the RETURN key, the other does not. Which command does which? 



LESSON 23 SECRET WRITING AND THE GET COMMAND 

THE INPUT COMMAND 

There are two ways to use INPUT. 

Without a message: 10 INPUT AS 
10 INPUT N 
10 INPUT NAMEStAGEtDAYtMONTHStYEAR 

With a message: 10 INPUT 11 NAMEtAGE 11 ;NAMEStAGE 
10 INPUT "HOW ARE YOU? II ;FEELS 

Either way, a word, sentence or number can be typed in. 

THE GET COMMAND AND SECRET WRITING 
The GET command is different from INPUT. It gets a single character from the keyboard. 
After the program commands GET, the computer waits until a key is pressed. 

Nothing shows on the screen: 

no message will show on the screen 
no question mark will show 
no cursor will show 
what you type will not show. 

The computer waits until you press one key. You do not need to press the RETURN key 
afterward. The computer immediately goes on with the program. 

109 



110 

Use GET in guessing games for entering the word or number to be guessed without the other 
player being able to see it. 

Run this program: 

Run this one too: 

10 REM -----GET-----
20 HOME 
30 PRINT 11 PRESS ANY KEY 11 

40 GET K$ 
45 PRINT CHR$C7) 
47 FOR T=1 TO 1000:NEXT T 
50 PRINT 11 THE KEY YOU PRESSED WAS 11 ;K$ 

10 REM ### BACKWARDS ### 

20 HOME 
30 PRINT 11 TYPE IN A 5 LETTER WORD 11 

35 PRINT 
40 GET A$:GET 5$:GET C$:GET D$:GET E$ 
50 PRINT 11 NOW HERE IT IS 6ACKWARDS 11 

55 PRINT:INVERSE 
60 PRINT E$;D$;C$;6$;A$ 
70 NORMAL 

MAKING WORDS OUT OF LETTERS 
The GET command gets one letter at a time. To make words, glue the strings. 

10 REM GET A WORD 
20 HOME 
30 PRINT 11 TYPE A WORD. END IT WITH A PERIOD. 11 

35 W$= 1111
: REM WORD STRING IS EMPTY 

40 GET L$:REM GET A LETTER 
50 IF L$= 11

•
11 THEN GOTO 80:REM TO TEST FOR END 

60 W$=W$+L$:REM ADD LETTER TO END OF WORD 
65 GOTO 40: REM TO GET ANOTHER LETTER 
80 REM WORD IS FINISHED 
85 PRINT W$ 

How does the computer know when the word is all typed in? It sees a period at the end of 
the word. Line 50 tests for the period and ends the word when it finds the period. 



THE GET COMMAND FOR NUMBERS 
The GET command can be used to input numbers, but sometimes troubles appear. We will 
explain all this in the lesson on switching numbers with strings. 

Assignment 23: 

1. Write a program that has a "menu" for the user to choose from. The user makes a choice 
by typing a single letter. Use GET to get the letter. Example: 

PRINT "WHICH COLOR? R=REDt B=BLUEt 
G=GREEN II 

2. Write a sentence making game. Each sentence has a noun subject, a verb, and an object. 
The first player tyiies a noun (like "The donkey"). The second player types a verb (like 
"sings"). The third player types another noun (like "the toothpick."). Use GET so no 
player can see the words of the others. You may expand the game by having adjectives 
before the nouns. 

111 



112 

INSTRUCTOR NOTES 24 PRETTY PROGRAMS, GOSUB, 
RETURN, END 

This lesson covers subroutines. the END command is also treated here because the program 
will usually have its subroutines at high line numbers and so must END in the middle line 
numbers. 

Subroutines are useful not only in long programs but in short ones where "chunking" the 
task into sections leads to clarity. 

One of the hardest habits to form in some students (and even some professionals) is to 
impose structure on the program. Structuring has gone by many names such as "structured 
programming" and "top down programming" and uses various techniques to discipline the 
programmer. 

Call the students attention to ways that structuring can be done, and the advantages in clarity 
of thought and ease of programming that results . In this book, writing good REM statements 
and using modular construction in the program are the main techniques offered. 

GOSUB was put in BASIC for making modules. This lesson shows modular construction by 
example in the outline to the "cootie" program. 

QUESTIONS: 

1. What happens when the command END is executed? 

2. How is GOSUB different from GOTO? 

3. What happens when RETURN is executed? 

4. If RETURN is executed before GOSUB, what happens? 

5. What does "call the subroutine" mean? 

6. How many end commands are you allowed to put in one program? 

7. Why do you want to have subroutines in your programs? 



LESSON 24 PRETTY PROGRAMS, GOSUB, RETURN, END 

Run this program then save it to disk: 

100 REM MA IN PROGRAM 
101 
105 HOME 
110 PRINT "READY TO GO TO THE SUBROUTINE" 
120 GOSUB 200 
130 PR I NT 11 BACK FROM THE SUBROUTINE 11 

133 PRINT 
135 PRINT "GO TO THE SUBROUTINE AGAIN" 
140 GOSUB 200 
150 PRINT "BACK AGAIN" 
190 END 
199 
200 REM SUBROUTINE 
201 
210 PRINT 11 IN THE SUBROUTINE" 
215 FOR T = 1 TO 2000: NEXT T 
21 7 PR I NT CHR$ C 7 > 

290 RETURN 

This is the skeleton of a long program. The main program starts at line 100 and ends at line 
190. 

Where there are PRINT commands, you may put many more program lines. 

The END command in line 190 tells the computer that the program is over. The computer 
goes back to the Edit Mode. 

Line 120 and line 140 "call the subroutine." This means the computer does the 
commands in the subroutine, then comes back. 

The GOSUB 200 command is like a GOTO 200 command except that the. computer 
remembers where it came from so that it can go back there again. 

The RETURN command tells the computer to go back to the statement after the GOSUB. 

113 



114 

WHAT GOOD IS A SUBROUTINE? 
In a short program, not much. 

In a long program, it does two things: 

1. It saves you work and saves space in memory. You do not have to repeat the same 
program lines in different parts of the program. 

2. It makes the program easier to understand and faster to write and debug. 



THE END COMMAND 
The program may have zero, one, or many END commands . 

Rule: The END command tells the computer to stop running and go back to the Edit 
Mode. 

That is really all it does. You can put an END command anywhere in the program: for 
example, after THEN in an IF statement. 

MOVING PICTURES 

10 REM??? JUMPING J ??? 
20 HOME : GR 
22 X = 15: Y = 15: D = 1 
25 FOR J = 1 TO 10 
28 FOR I = 1 TO 10 
30 COLOR= 8: GOSUB 100: REM DRAW 
35 COLOR= 0: GOSUB 100: REM ERASE 
45 Y = Y - D 
50 NEXT I 
55 D = - D 
80 NEXT J 
80 TEXT : HOME : END 
100 REM 
101 REM DRAW THE J 
102 REM 
110 HLINX,X+SATY 
120 VLINY+1,Y+7ATX+3 
130 HLINX,X+2ATY+7 
1 ll0 PLOT X , Y + 8 
180 RETURN 

The picture is the letter "J". The subroutine starting in line 100 draws the "J". Before you 
GOSUB 100 you pick what color you want the "J" to be, using a COLOR command. Look 
at line 30 and at line 35. If you pick color number "O", then the subroutine erases a "J" from 
that spot. 

The subroutine draws the "J" with its upper left corner at the spot X, Y on the screen. When 
you change X or Y (or both) the "J" will be drawn in a different spot. Line 22 says that the 
first "J" will be drawn near the middle of the screen. 

The letter "D" tells how far the "J" will move from one drawing to the next. Line 22 makes 
"D" equal to 1, but line 55 changes D to -1 after 10 pictures have been drawn. 

Line 45 says that each picture will be drawn at the spot where Y is larger than the last Y by 
the amount D. 

115 



116 

Assignment 24A: 

1. Enter the JUMPING J program and run it. Then make these changes: 

Change the subroutine so it prints your own initial. 

Change the color of your initial to blue. 

Change the "jumping" to "sliding" (so the J moves horizontally instead of vertically). 

Change the starting point to the lower right-hand corner instead of the middle of the 
screen. 

Change the distance the slide goes to 20 steps instead of 10. 

Change the size of each step from 1 to 2. 

Change the "sliding" so it slides uphill. Use 

X=X+D:Y=Y-D 

Change the program so the initial changes color from red (color 1) through all the colors 
to white (color 15) as it jumps. 

Change COLOR= 0 in line 35 to COLOR = 1. What happens? 

HOW TO WRITE A LONG PROGRAM 
Let's write a hangman game. This is a word guessing game where you draw another part of 
the hanging person each time you make a wrong guess for a letter. 

First make an outline. You can do this on paper or right on the screen. If you have trouble 
deciding what to do, then just play through a game on paper and keep track of what 
happens. Then the progam has to do the same things. 

The outline could be: 

10 REM *** HANGMAN GAME *** 
200 REM INSTRUCTIONS 
300 REM GET THE WORD TO GUESS 
400 REM MAKE A GUESS 
500 REM TEST IF RIGHT 
600 REM ADD TO THE DRAW I NG 
700 REM TEST IF GAME IS OVER 
800 REM END GAME MESSAGE 

After making this outline, I filled in more details. 



10 REM *** HANGMAN GAME *** 
99 
100 REM MAIN LOOP 
101: 
120 INPUT" NEED INSTRUCTIONS? <YIN> 11

; Y$ 
122 IF Y$= 11 Y 11 THEN GOSUB 200 
130 GOSUB 300: REM GET WORD 
132 STOP 
135 GO SUB 400: REM MAKE GUESS 
140 GOSUB 500: REM TEST GUESS 
145 GOSUB 700: REM TEST IF GAME IS OVER 
190 GOTO 135: REM MAKE ANOTHER GUESS 
199: 
200 REM INSTRUCTIONS 

write the instructions last 
290 RETURN 
299: 

300 REM GET THE WORD TO GUESS 
• • • use INPUT to get a word from player 1 
• • • draw dashes for the letters to be guessed 
390 RETURN 
399: 
400 REM MAKE A GUESS 
• • • player 2 guesses a letter 
490 RETURN 
499: 
500 REM TEST IF GUESS IS RIGHT 
· · · if wrong, GOSUB 600: REM draw hangman part 
· · · if right, GOSUB 700: REM see if game is over 
590 RETURN 
599: 
600 REM ADD TO THE DRAWING 

add to the hangman drawing 
• • • test if drawing is done 
· · · if so, then GOSUB 800 
690 RETURN 
699: 
700 REM TEST IF GAME IS OVER 
• • • see if all letters have been guessed 
· · · if yes, GOSUB 900 
790 RETURN 
799: 
800 REM END GAME MESSAGE 
• • • message for when guesser loses 
890 RETURN 
899: 
900 REM END OF GAME MESSAGE 
• • • message for when guesser wins 
990 RETURN 

117 



118 

Things are getting a little mixed up in my mind on how to end the game. So I will leave that 
to later and start writing and testing the first part of the program. I put a STOP in line 132 
so that only the first subroutine will be run. I will start by writing the subroutine at 300, 
GETA WORD. 

Assignment 248: 

1. Write a short program that uses subroutines. It doesn't have to do anything useful, just 
print some silly things. In it put three subroutines: 

Call one of them twice from the main program. 

Call one of them from another of the subroutines. 

Call one of them from an IF statement. 

2. Write a program that writes your 3 initials on the screen, each one a different color. Then 
make them jump up and down one at a time! 

3. Finish the hangman game. This is a long project, and you may want to do part of it now 
and SAVE it to disk and finish the game later. 



ADVANCED PROGRAMMING 

INSTRUCTOR NOTES 25 LINE EDITING 

Line editing is a slightly involved procedure but nevertheless is cut and dried. 

This lesson introduces the I 
J K 
M 

system of moving the cursor. The ESC key must be pushed once before moving the cursor 
with the I, J, K, and M keys. 

Once the cursor is somewhere in the line to be fixed, it is moved to the first digit of the line 
number using the J key. This is important. Do not use an arrow key for this move to the 
front. After the cursor is placed on the first digit, only the arrow keys are used to move the 
cursor back and forth in the line. The I, J, K, and M keys must not be used. 

The reasons are this . The arrow keys also move a cursor back and forth in the line buffer. 
The right arrow reads characters from the screen into the buffer. If the buffer is to start with 
the line number, the arrow keys must not be used until the cursor is on the first digit of the 
line number. From then on, the line buffer contents will match the characters on the screen if 
the arrow keys and the typing of characters are the only cause of cursor movement. 

Appendix B of the Applesoft BASIC Programming Reference Manual gives a somewhat 
more complete description of line editing. It includes cases on insertion and deletion in 
lines. These procedures are recommended only after mastering the line editing procedures 
given here. 

QUESTIONS: 

I . To move the cursor do you hold the ESC key down while pressing the I, J, K, and M 
keys? 

2. To edit a line and put it back in memory, can you use the J and K keys in place of the 
arrow keys? Sometimes? Never? Always? Explain. 

3. What happens if you use the arrow keys to put the flashing cursor in the middle of the 
line, then press RETURN? 

119 



120 

LESSON 25 LINE EDITING 

We are going to use the "ESC" key. ESC stands for "escape." We will let the flashing cursor 
"escape" from its line and go wandering all over the screen. 

MOVING THE CURSOR ANYWHERE ON THE SCREEN 
To move the blinking cursor to any spot on the screen, follow the rule. 

Rule: First press the ESC key once. Then press these keys as often as you want: 

go left 

(Use the REPT key too.) 

I 
J K 
M 

go up 
go right 
go down 

Careful! Don't use the arrow keys to go left or right! Don't use any other keys except I, J, 
K, and M. (If you do, you must press ESC once more.) 

PRACTICE MOVING THE CURSOR 
Try moving the cursor to the top of the screen. 

Now move it to the left, then the right. If it goes off the edge of the screen, it pops back on 
the other side. 

Now move it back to the bottom. 

Move it up and in a circle. 



FIXING A LINE 
You learned this before. 

To fix a line that you are typing: 

1. Use the arrow keys to move the cursor to the error. 
2. 'JYpe the correct letter. 
3. Use the arrow to move to the end of the line. 
4. Press RETURN to put the line in memory. 

LINE EDITING: CHANGING A LINE THAT IS IN MEMORY 
Sometimes you don't find the error until after the line is put in memory. 

Sometimes you just change your mind about the line. 

Do you have to type the line over? No! 

Do these three things: 

1. Use LIST to put the line on the screen. 

2. Move the cursor to the beginning of the line using the ESC and the I, J, K, and M keys. 

3. Fix the line using the arrow, REPT, and RETURN keys just as before. 

Careful: Use only the ESC and I, J, K, and M keys. Put the cursor all the way to the left 
in the line you want to fix. 

After the cursor is over the first digit of the line number, do not use the I, J, K, or M keys 
any more. 

Use only the arrow keys to move to the location of the mistake. Type to fix the mistake. 

When the line is correct, move the cursor to the end (use right arrow key) and press 
RETURN to put the line back in memory. 

Sorry: You cannot add extra letters into the middle of the line. But you can blank out 
letters by putting a space in place of the letter. 

121 



122 

PRACTICE LINE EDITING 
Enter: G 2 3 PR I NT 11 I L I KE I PPL ES 11 

HOME 

Now enter: LIST 623 

Press ESC once and then the "I" key a few times to get the flashing cursor on top of the 
"2." 

Press the "J" key to move the cursor over the "6:' 

Press the right arrow and REPT to move the cursor over the first letter in "IPPLES." 

Press the "N.' key. This fixes the word to be "APPLES." 

Press the right arrow key until the cursor is in the next space past the quotes at the end of the 
line. Press RETURN. 

Then LIST to see if the line is correct. 

Assignment 25: 

1. Load one of your old programs from disk and practice LISTing lines and using ESC and 
l ,J ,K, and M keys to reach the first digit of the line number. Then change the lines using 
the arrow keys to move around. Store the lines back in the program using the RETURN 
key. 

2. Write an APPLE TREE program. It draws a background of blue, then grey ground, 
brown trunk and green leaves. Put apples in the tree. Then have the apples fall to the 
ground. Use subroutines for drawing the parts of the tree, and for making the apples fall. 
Use line editing to fix any bad lines. 



INSTRUCTOR NOTES 26 SNIPPING STRINGS: LEFT$, MID$, 
RIGHT$, LEN 

In this lesson the functions: 

LEFf $ 
LEN 

MID$ RIGHT$ 

are demonstrated. The use of MID$() with 3 arguments is shown, but not that with the third 
argument omitted. 

These functions together with the concatenation operation " + " allow complete freedom to 
cut up strings and glue them back in any order. 

As in earlier explanations, the main characteristics of the functions are shown, but not all the 
special cases, especially those that lead to ERROR messages. It is better that extensive 
explanations not clutter up the text. If the student experiences difficulty, an experienced 
programmer or an adult consulting the Apple manuals should clear up the problem. 

QUESTIONS: 

1. If you want to save the "STAR" from "STARS AND STRIPES;' what function will you 
use? What arguments? 

2. If you want to save "AND", what function and arguments? 

3. If you want to count the number of characters in the string PQ$, what function do you 
use? What argument? 

4. What is wrong with each of these lines? 

10 A$=LEFT$C4 t0$) 
10 RIGHT$CR$tl) 
10 F$=MID$CA t3) 
10 J$=LEFTCR$ tYT> 

5. What two arguments does the RIGHT$() function need? 

6. What command will snip the third and fourth letters out of a word. 

7 . Write a short program that takes the word "computer" and makes it into "putercom." 

123 



124 

LESSON 26 SNIPPING STRINGS: LEFT$, MID$, RIGHT$, LEN 

GLUING STRINGS 

You already know how to glue strings together: 

55 A$= 11 CON 11 + 11 CAT 11 + 11 EN 11 + 11 ATION 11 

60 PRINT A$ 

The real name for "gluing" is "concatenation." 

Concatenation means "make a chain." Maybe we should call them "chains" instead of 
"strings." 

SNIPPING STRINGS 
Let's cut a piece off a string. Enter and run: 

10 REM >>> SCISSORS >>> 
20 HOME 
30 N$ =II 123456788 II 
35 Q$=LEFT$ C N$ ,4) 
40 PR I NT Q$ , N$ 

The LEFT$ function snips off the left end of the string. The snipped off piece can be put in 
a box or printed or what ever. 

Rule: The LEFT$( ) function needs two th.ings inside the ( ) signs. 

1. The string you want to snip. 
2. The number of characters you want to keep. 



'fry another. Change line 40 to: 

40 PRINT RIGHT$(N$ 13) 

and run the program again. This time the computer prints: 

789 

RIGHT$() is like LEFf$() except the characters are saved off the right end of the string. 

MORE SNIPPING AND GLUING 
Run: 1 0 REM : : : SC I SS 0 RS AND GLUE : : : 

20 HOME 
30 N$ =II 123456789A6CDEF II 
35 FOR I= 1 TO 15 
40 L$=LEFT$ < N$ ti> : R$=R I GHT$ < N$, I> 
50 PRINT I ;TA6(5) ;L$;TA6<25) ;R$ 
60 NEXT I 

The pieces of string you snip off can be glued back together in a different order. Add this 
line and run: 

55 IF I=4 THEN PRINT: PRINT R$ + L$ :PRINT 

HOW LONG IS THE STRING? 
Run: 1 0 REM : : : L 0 NG R 0 PE : : : 

20 HOME 
30 INPUT 11 GIVE ME A STRING: 11 ;N$ 
40 L=LEN < N$ > 
50 PR I NT II THE STRING: \ II ; N$; II I II 

55 PR I NT: PR I NT II Is II ; L; II CHARACTERS LONG II 

The function LEN() tells the number of characters in the string. It counts everything in the 
string, even the spaces. 

125 



126 

CUTTING A PIECE OUT OF THE MIDDLE 
The MID$( ) function cuts a piece out of the middle of the string. 

Run: 

The line: 

10 REM ### MI DOLE ### 

20 HOME 
30 N$ =II 123456788 II 
40 P$=MID$CN$t3t4) 
50 PRINT P$ 

4 0 P $ = M I D $ C N $ t 3 t 4 ) means: 

Get the string from box N$. 
Count over 3 letters and start saving letters into box P$. 
Save 4 letters. 

LOOK MA, NO SPACES 
Enter: 10 REM > > > NO SPACES > > > 

11 
20 PRINT : PRINT 
25 PRINT 11 GIVE ME A LONG SENTENCE 11 = PRINT 
30 INPUT S$ 
40 L =LEN CS$) 
45 T$ = II II 

50 FOR I = 1 TO L: REM LOOK AT EACH LETTER 
60 L $=MID$ CS$tl tl) 
70 IF L$ < > II II THEN T$ = T$ + L$: REM SAVE ONLY 
LETTERS 
80 NEXT I 
92 PRINT : PRINT T$ 
95 PRINT : PRINT : PRINT 

Line 60 snips just one letter at a time out of the middle of the string. 



Assignment 26: 

1. Write a secret cipher making program. You give it a sentence and it finds how long it is. 
Then it switches the first letter with the second, third with the forth, etc. Example: 

TlllS IS AN APPLE. 

HTSI SI NA PALP.E 

becomes: 

2. Write a question answering program. You give it a question starting with a verb and it 
reverses verb and noun to answer the question. Example: 

ARE YOU A TURKEY? 

YOU ARE A TURKEY. 

3. Write a PIG LATIN program. It asks fo1 a word. Then it takes the first letter and puts it 
at the end of the word and adds AY. If the first letter is a vowel, it adds LAY, LEE, LI, 
LO, or LU. 

127 



128 

INSTRUCTOR NOTES 27 SWITCHING NUMBERS WITH STRINGS 

This lesson treats two functions, STR$ and VAL. A general review of the concept of 
function is also made. 

STR$ takes a number and makes a string that represents it. 

VAL does just the opposite, taking a string and making a numerical value from it. 

This interconversion of the two main types of variables adds great flexibility to programs 
involving numbers. 

QUESTIONS: 

1. If your number "marches" too quickly in the program of assignment 27, how do you 
slow it down? 

2. If your program has the string "GEORGE WASIDNGTON WAS BORN IN 1732." write 
a few lines to answer the question "How long ago was Washington born?" (You need to 
get the birthdate out of the string and convert it to a number.) 

3. What is a "value." What is meant by "a function returns a value?" What are some of the 
things you can do with the value? 

4. What is an "argument" of a function? How many arguments does the RIGHT$() 
function have? How many for the CHR$() function? 

5. Where in the line do commands always go? Can you put a function at the start of a line? 



LESSON 27 SWITCHING NUMBERS WITH STRINGS 

This lesson explains two functions: VAL() and STR$( ). 

MAKING STRINGS INTO NUMBERS 
We have two kinds of variables, strings and numbers. We can change one kind into the other. 

Run: 10 REM MAK I NG STRINGS INTO NUMBERS 
20 HOME 
30 L$= 11 123" 
40 M$= 11 788 11 

50 L=VALCL$) 
80 M=VAL CM$) 
70 PRINT L 
72 PRINT M 
74 PRINT 11

---
11 

78 PRINT L+M 

VAL stands for "value." It changes what is in the string to a number, if it can. 

MAKING NUMBERS INTO STRINGS 
Run: 10 REM MAK I NG NUMBERS INTO STRINGS 

11 : 
20 PRINT 
25 INPUT 11 GIVE ME A NUMBER 11 ;NB 
30 N$=STR$ C NB> 
35 L=LEN C N$) 
37 PRINT 
40 FOR I=L TO 1 STEP -1 
as B$=B$+MID$CN$ tI t1) 

50 NEXT I 
80 PRINT 11 HERE IT IS BACKWARDS 11 

85 PR I NT: PR I NT B$ 

129 



130 

STR$ stands for "string." It changes a number into a string. 

FUNCTIONS AGAIN 
In this book we use these functions: 

RND( ), INT( ), LEFT$( ), RIGHT$( ), MID$( ) , LEN( ), VAL( ), 
STR$( ), ASC( ) , CHR$( ), SCRN( ), POL() 

RULES about functions: 

Functions always have ()with one or more "arguments" in them. Example: 

MID$(D$,5,J) has 3 arguments: 0$, 5, and J 

The arguments may be numbers or strings or both. 

A "function" is not a "command." It cannot begin a statement. 

right: 10 LET D =LEN$< CS$> 

wrong: 1 0 LEN ( CS$ ) = 5 

A function acts just like a number or a string. We say the function "returns a 
value." The value can be put in a box or printed just like any other number or 
string. The function may even be an argument in another function. 

The arguments tell which value is returned. 

(Remember, string values go in string variable boxes, numerical values go in 
numerical boxes.) 

PRACTICE WITH FUNCTIONS 
For each function in the list below: 

Tell how many arguments it has, and give their names. 
Tell whether the value of the function is a string or a number: 

RND<B> ~~~~~~~~~~~~~~~~~~~~~~~ 
INT(Q) 
LEFT$(U$1Y) 
Ml0$(RIGHT$tEt2) 
VAL<ER$) 
STR$CINT<RND<B>>> 



Each line below has errors. Explain what is wrong. 

10 INT(Q)=65 
10 D$=LEFT ( R$ t1) 

10 PW$=VAL<F$) 
10 PRINT CHR$ 

Assignment 27: 

1. Write a program that asks for a number. Then make another number that is backwards 
from the first and add them together. Print all three numbers like an addition problem 
(with "+" sign and a line under the numbers). 

2. Make a number "march" slowly across the screen. That is , write it on the screen, then 
take its left digit and move it to the right. Keep repeating. Don't forget to erase each digit 
when you move it. 

131 



132 

INSTRUCTOR NOTES 28 PADDLES FOR ACTION GAMES 

This long lesson introduces the PDL() and SCRN( ) functions. It also uses PEEK(-16287) 
and PEEK(-16286) to see if the paddle buttons have been pushed. 

Paddles are commonly used in animated graphics games. In this lesson LO-RES graphics are 
used to move a dot (perhaps a cannon) which can shoot. The student will need to understand 
the X, Y addressing of the squares on the 40 by 40 screen. 

When drawing moving objects, you need to erase each old image before the next image is 
drawn. 

A "hit" on a target is detected by using SCRN( ) to test the square in front of the projectile. 
If there are several kinds of targets, it is better to test if the square is "background." If not, 
then jump to a subroutine that asks the color and thus the target type. 

Graphics games may grow to be rather long. BASIC is a little slow for such games. 
Maximum speed can be obtained if the "working" part of the program is first, and the 
"initialization" part is at the end, reached by a call from early in the program. 

For maximum speed, avoid repeatedly converting numbers to floating point. Such lines as 60 
in the = = = PADDLES = = = program are better written as: 

60 PEEKCQ0) 

where a variable QO = -16287 is defined in the initialization section. This practice is 
probably the most important single factor in obtaining fast programs. 

QUESTIONS: 

1. What range of numbers does the PDL( ) function return? 

2. How can you change this range to be 0 to 20? 

3. The PEEK(-16287) function tells if the push button on paddle 0 is being pushed. What 
will the value of the PEEK be if the button is being pushed? If it is not being pushed? 

4. What argument does PEEK() have if you are asking about the push button on paddle 1? 

5. What is the SCRN(X,Y) function used for? What range of numbers are allowed for X? 
ForY? 

6. If your program makes a dot move across the screen, how can you tell if the dot is about 
to hit something on the screen? 



LESSON 28 PADDLES FOR ACTION GAMES 

Run this program if your computer has game paddles. 

PADDLES AND THEIR BUTTONS 
Run: 10 REM === PADDLES ---

20 HOME:PRINT 
30 PRINT 11 TURN THE PADDLE KNOBS 11 

35 PRINT:PRINT 11 AND PUSH THE BUTTONS 11 

38 REM CHECK THE KNOBS 
a0 P0=PDLC0) 
45 VTAB=10 
a7 PRINT 11 PDL 0 = 11 ;p0;TABC15); 
LIB P1=PDLC1> 
50 PR I NT II POL 1 = II ; p 1 
55 REM CHECK THE BUTTONS 
60 B0=PEEKC-16287) 
62 Bl=PEEKC-16286> 
65 VTAB 12 
70 C$= 11 11 :IF B0>127 THEN C$= 11 BANG 11 

72 PRINT cs; 
74 C$=" 11 :IF B1>127 THEN C$= 11 BANG 11 

76 PRINT TABC15); C$ 
99 GOTO 40 

Use the RESET key to end the program. Save to disk. 

THE GAME PADDLES 
There are 4 paddles, numbered 0, 1, 2, and 3. (Your computer may have only 2 paddles, 
numbered 0 and 1, or may not have any paddles.) 

The PDL(O) function tells how much the knob on paddle 0 has been turned. 

If the number is near zero, the knob has been turned to the left. 

If the number is near 255, the knob has been turned to the right. 

Careful: Don't use PDL( ) twice in the same line, or even in lines that are next to each 
other. 

In the program above, lines 40 and 48 have PDL( ) in them. They are separated by lines 45 
and 47. 

(The reason is this: it takes a little time for the paddle to figure out where it is, and if the 
computer asks again about the paddles too soon, it gets mixed up.) 

133 



134 

THE PUSH BUTTONS 
To see if the push button on paddle 0 is being pushed, look at memory location -16287. That 
is what PEEK(-16287) does. If the number it finds is larger than 127 then the button is being 
pushed. 

The push button on paddle 1 is tested by looking at a nearby memory location, -16286. 

MOVING A SPOT ON THE SCREEN 
Run: 10 REM MOVE A SPOT 

15: 
20 HOME:GR 
30 PRINT 11 USE PADDLE 0 11 

50 Y=39 
55 COLOR = 0 
60 PLOT XtY 
65 X=PDLC0)*38/255 
67 COLOR = 3 
70 PLOT XtY 
99 GOTO 55 

Use the RESET key to stop the program. Save to disk using file name "MOVE A SPOT." 

Remember the graphics screen is 40 squares high and 40 squares wide. But you number the 
squares from 0 to 39 each way. 

Line 50 says: "put the dot on the last line, at the bottom of the screen." 



ERASE AND PUT 
"Erase and put, erase and put, erase and put . . .. "Every time you put a dot, you have to 
erase it again before putting it somewhere else. Otherwise, you will get more and more dots . 
(To see this happen, change line 55 to COLOR=3, or remove line 60.) 

Lines 55 and 60 do the erasing. Line 55 makes the color black, the same as the background 
color of the screen. Line 60 plots this black dot where the colored dot now is. 

Line 67 makes the dot have color 3, which is blue. Then line 70 plots the dot on the screen. 

Line 65 asks the paddle where on the bottom line the dot should go_. The paddle answers 
with a number between 0 and 255. But the screen only goes from 0 to 39. So we divide by 
255 to get a number between 0 and 1, and then multiply by 39 to get a number between 0 
and 39. We call this number X. 

SHOOT A LASER 
Load program "MOVE A SPOT" and add lines to get: 

10 REM SHOOT A DOT 
20 HOME:GR 
30 PRINT "USE PADDLE 0 " 
50 Y=38 
55 COLOR=0 
60 PLOT x,y 
65 X=PDLC0>*38/255 
67 COLOR = 7 
70 PLOT x,y 
75 IF PEEKC-18287>>127 THEN GOSUB 200 
99 GOTO 55 
200 REM SHOOT 
205 COLOR=12 
210 FOR I=38 TO 0 STEP -1 
220 PLOT X1I 
230 NEXT I 
2a0 FOR 1=38 TO 0 STEP -1 
245 COLOR = 0:PLOT X1I 
250 NEXT I 
299 RETURN 

Run. Use the RESET key to end the program. Save to disk in a file named "SHOOTING." 

Line 75 asks if the button on the paddle is being pressed. If yes, then the subroutine at line 
200 shoots a colored line up and then erases it. 

135 



136 

SHOOTING STARS, THE SCRN( ) FUNCTION 

Load the SHOOTING program and add these lines: 

10 REM *** SHOOTING STARS *** 
40 GOSUB 300 

215 IF SCRN<XtI> <>0 THEN PRINT CHR$(7); 
300 REM INITIALIZE STARS 
305 COLOR = 1 
310 FOR 1=1 TO 10 
320 X=RND<8>*40 
330 Y=RND<8>*20 
350 PLOT XtY 
360 NEXT I 
389 RETURN 

Run the program. Use the RESET key to stop the program. Save it to disk under file name 
"SHOOTING STARS:' 

DRAWING THE STARS 
The program calls the subroutine at 300 just once. It draws 10 stars at random near the top 
of the screen. 

HAS THE LASER HIT A STAR? 
While the program is drawing the laser line, it looks to see if the next square is background 
(black color). If not, it must be a star, and the peep sound is made to show that you hit a 
star. 

It looks at the square by using the function SCRN(X,Y) in line 215. SCRN(X,Y) asks what 
color is on the screen at location X, Y. In our case, it is color 0 for the background or color 9 
for squares that are stars. 



Assignment 28: 

1. The subroutine at line 200 in "SHOOTING" draws the whole laser line before erasing it. 
Rewrite the subroutine so that each square is erased before the next square is written. 

2. In the program "SHOOTING STARS": 

Make the stars of two colors, red and blue, (in the subroutine at line 300) and then in 
subroutine at 200, let the laser "pop" only the red ones. 

137 



138 

INSTRUCTOR NOTES 29 ASCII CODE, KEYBOARD, ON ... GOTO 

This lesson treats the ASCII code for characters, and the functions ASC( ) and CHR$( ) that 
change characters to numbers and vice versa. 

The ASCII code is primarily intended to standardize signals between hardware pieces such as 
computers with printers, terminals, other computers, etc. But within programs the ASCII 
numbers also are useful. The letters are numbered in increasing order and so the ASCII 
numbers are useful in alphabetizing routines. The numerical digits are also in order, and the 
punctuation marks also have ASCII numbers. 

Some of the signals sent between hardware, such as "bell;' "line feed;' and "carriage 
return" also have ASCII numbers which can be used inside of PRINT statements for control 
of the TV screen and the Apple's loud speaker. 

QUESTIONS: 

1. Does ASC(S$) return a string or a number for its value? 

2. Does ASC(S$) have a string or a number for its argument? 

3. Same two questions for CHR$(N). 

4. Which letter has the larger ASCII code number, B or W? 

5. Do you know the ASCII code for the character "1 "? Is it the number 1? 

6. What will the computer do if you run this line: 

10 PRINT CHR$C13); CHR$(7) 

(If you don't know, try it.) 



LESSON 29 ASCII CODE, KEYBOARD, ON ... GOTO 

NUMBERING THE LETTERS IN THE ALPHABET 

"That is easy;• you say. "A is 1, B is 2, C is 3 . . ." 

Well, for some strange reason, it goes like this: A is 65, B is 66, C is 67 . . .. 

These numbers are called the ASCII code of the characters. ASCII is pronounced "ask-key." 

The punctuation marks and number digits have ASCII code numbers too. 

ASC( ) CHANGES CHARACTERS INTO NUMBERS 
Use the ASC() function to change characters into ASCII numbers. 

Run: 10 REM *** WHAT NUMBER IS TH IS KEY? *** 
20 PRINT 
25 PR I NT 11 PRESS KEYS TO SEE ASCII NUMBER 11 

30 GET C$ 
40 PRINT C$;TABC5) ;ASCCC$) 
50 GOTO 30 

Try out some letters, digits, and punctuation. Try also the RETURN key and other keys. 

Press RESET to end the program. Then SAVE it to disk. 

139 



140 

ALPHABETICAL LIST 
What good are the ASCII numbers? Well, they can help in making alphabetical lists. 

Run: 10 
20 
30 
35 
ll0 
as 
ll7 
llB 
50 
55 
60 
65 

REM ALPHABETIZE 
PRINT 
INPUT"GIVE ME A LETTER : ";A$ 
PRINT 
INPUT"GIVE ME ANOTHER: ";B$ 
A=ASCCA$):B=ASCCB$) 
REM PUT IN ALPHABETICAL ORDER BY 
REM SEEING WHICH HAS THE LOWER ASCII NUMBER. 
IF A>B THEN X=A:A=B:B=X:REM SWAP THEM 
PRINT 
PRINT"HERE THEY ARE IN ALPHABETICAL ORDER" 
PRINT:PRINT CHR$CA> ;TAB CS> ;cHR$CB> 

Save it to disk. 

Look at these two functions: ASC( ) and CHR$( ) . 

ASC() gives you the ASCII number for the FIRST character in the string. 

CHR$() does the reverse. It gives you the character belonging to each ASCII number. 



THE ASCII NUMBERS FOR CHARACTERS 
The ASCII numbers for letters of the alphabet start at number 65 for A and go to 90 for Z. 

The digits start with 48 for zero and go to 57 for the digit "9." Punctuation starts at 32 for 
"space" and goes to 47. It starts again at 58 and goes to 64. It starts once more at 91 and 
goes to 95. 

The ASCII code for RETURN is 13. 

CHANGING NUMBERS INTO CHARACTERS 
Use CHR$( ) to change ASCII code numbers into a string holding one character. 

Run: 1 0 REM I I I D I SPLAY AS C I I I I I 
11 : 
20 HOME 
25 PRINT "NOTE: FIRST 32 CHARACTERS ARE INVISIBLE" 
30 FOR I=0 TO 255 
ll0 PR I NT I , CHR$ C I> 
50 FOR T=1 TO 500:NEXT T 
60 NEXT I 

Save the program to disk. 

At 96 the whole shebang starts over, so you really do not need to go above 95 in line 30. 

Nothing gets printed for numbers 0 through 31. But number 7 makes the Apple peep and 
numbers 10 and 13 make it skip a line. 

The ASCII number 7 stands for "bell." When printed, it makes the Apple peep. 

The ASCII number 10 stands for "line feed:' When sent to the screen or to a printer, it 
moves the cursor to the next line down. 

The ASCII number 13 stands for "carriage return." The name comes from the carriage return 
on a typewriter. It moves the cursor to the beginning of the line. 

(Actually, the carriage return lever on a typewriter does a "line feed" followed by a 
"carriage return.") 

141 



142 

GAMES AND THE KEYBOARD 
The GET command makes the computer wait for you to press a key. The program stops 
running until you press a key. 

There is another way to get a keystroke from the keyboard that does not make the computer 
wait. It is used in action games. NOTE: The Snake program has bugs; see page 166. 

2 GOTO 1000: REM SNAKE 
100 REM MAIN LOOP 
101 
102 
103 
10Ll 
105 
107 
110 
1 1 1 
113 
115 
120 
122 
12Ll 
128 
130 
1Ll0 
142 
145 
199 
999 

CL = CL + 11 
IF CL > 12 THEN CL = 1 

COLOR= CL 
DR = PEEK (AR) 
S = PEEK (ST) 

IF DR = LL THEN D = D - 1 : IF D = 0 THEN D = Ll 
IF DR = R THEN D = D + 1 : IF D = 5 THEN D = 1 
FOR T = 1 TO 50: NEXT T 
ON D GOTO 120 t 122 t 124 t 128 

Y = Y - 1 : GOTO 130 
X = X - 1: GOTO 130 
Y + 1 : GOTO 130 
X= X + 1 

PLOT X t Y 
A= B:B = C:C = E:E = F:F = G:G = X 
L = M:M = N:N = 0:0 = P:P = Q:Q = Y 

COLOR= 0: PLOT A tL 

1000 
1001 
1002 
1010 
1011 
2000 
2010 
2020 
2022 
202Ll 
2048 
2100 
2102 
2105 
2107 
2110 
2115 
2118 
3000 
3010 

GOTO 100 
END 

REM *****S N A K E ***** 

REM BY EDWARD H. CARLSON 

REM BORDER 
GR : COLOR= 7 
HLIN 0 ,39 AT 0 
VLIN 0 ,39 AT 39 
HLIN 0 t39 AT 39 
VLIN 0 ,39 AT 0 

LL = 1 as 
R = 138 
AR = 49152 
STROBE = 49188 
X = 20:Y = 20 
~ = X:B = X:C = X:E = X:F = X:G = X 
L = Y:M = Y:N = Y:O = Y:P = Y:Q = Y 

REM INSTRUCTIONS 
INPUT "DO YOU WANT INSTRUCTIONS? 11 ;Y$ 



3015 
3020 
3022 
3999 
9990 
9999 

IF Y$ < > II y II THEN 3999 
PRINT "TURN LEFTt LEFT ARROW KEY" 
PRINT "TURN RIGHTt RIGHT ARROW KEY" 
REM 
COLOR= 1 
GOTO 100 

THE KEYBOARD'S BOX 
Every time a key is pressed, the computer puts the character in a box with the name 
"49152" on the front. This is where INPUT goes to find characters. This is where GET goes 
to find characters. We can look in the box too. 

To look in the box, use the PEEK command. The SNAKE program used lines: 

105 DR=PEEKCAR) 

107 S= PEEK CST) 

where AR=49152 and ST=49168. Using variable names inside PEEK instead of constant 
numbers makes the program run faster. 

Line 105 looks in the keyboard's box to see if a key has been pressed lately. If so, the ASCII 
number of the key is taken from the keyboard box and put in box DR. · 

Line 110 asks if the key was the left arrow (ASCII number 149, see line 2100). 

What does line 111 do?-----------------------

Line 107 tells the computer to empty the keyboard's box so it is ready for another character 
from the keyboard. It does this using: 

107 S=PEEKCST) 

Where does 49168 get put in box ST? 

THE ON ... GOTO COMMAND 

115 ON D GOTO 120 , 12 2 , 124 , 126 

This means that: 

if D is 1 
2 
3 
4 

GOTO 120 
122 
124 
126 

if D is something else GOTO the next line 

After the GOTO, you can put one, two, or as many numbers as you want. Each number is 
the same as the number of a line somewhere in the program. 

143 



144 

Assignment 29: 

I . Write a program which asks for a word. Then it rearranges all the letters in alphabetical 
order. 

2. Write a program that speaks "double dutch." It asks for a sentence, then removes all the 
vowels and prints it out. 

3. Write a program that uses GET to get a letter A to C to use in a menu. Change the letter 
to a number 1to3. Then use the ON . . . GOTO command to pick which menu item to 
do. 



·'' 

INSTRUCTOR NOTES 30 ARRAYS AND THE DIM COMMAND 

This lesson introduces arrays. The DIM( ) statement is described. 

Arrays with one index are described first. The array itself is compared to a family, and the 
individual elements of the array to family members, with the index value being the " first 
name" of the member. 

1\vo dimensional arrays are compared to the rectangular array of cells on the TV screen. 

Higher dimensional arrays are just mentioned, with no examples given. 

QUESTIONS: 

1. What does the DIM AD$(5) command do? 

2. Where do you put the DIM command in the program? 

3. What two kinds of array families are there? 

4. What is the "index" or "subscript" of an array? 

5. What does the command DIM SR(5,9) do? 

145 



146 

LESSON 30 ARRAYS AND THE DIM COMMAND 

MEET THE ARRAY FAMILY 

22 F$C0)= 11 DAD 11 

2llF$C1)= 11 MOM 11 

28 F$C2>= 11 BRIAN 11 

Each member of the family is a variable. The F$ family are string variables. 

Here is a family of numerical variables: 

35 NC0>= ll3 
37 N ( 1) = 13 
39N<2>= 0 
ll1 NC3>= 0 

The family has a "last name" like A() or B$( ). Each member has a number in ()for a 
"first name:' The array always starts with the first name "O". 

Instead of "family" we should say "array." 

Instead of "first name" we should say "index number" or "subscript." 

THE DIM() COMMAND RESERVES BOXES 
When the array family goes to a movie, they always reserve seats first. They use a DIM 
command to do this. 

The DIM . . . command tells the computer to reserve a row of boxes for the array. DIM 
stands for "dimension" which means "size." For example, the statement 

18DIMAC3> 

saves four memory boxes, one each for the variables A(O), A(l), A(2), and A(3). These 
boxes are for numbers and contain the number "O" to start with. Another example: 

30 DIM AC3) tB$Cll> 

This time, DIM reserves 4 boxes for the A() array and 5 for the string array B$( ). The 
boxes named B$(0) through B$(4) are for strings and are empty to start with. 

Rule: Put the DIM( ) statement early in the program, before the array is used in any other 
statement. 



MAKING A LIST 
Enter: 

Run and save to disk. 

10 REM +++ IN A ROW +++ 
20 HOME: PR I NT 
30 DIM A$< 5) 
35 PR I NT II ENTER A WORD II 
40 FOR N=0 TO 5 
45 IF N >0 THEN PR I NT II ANOTHER II 
50 INPUT A$(N) 
55 PRINT 
60 NEXT N 
70 PRINT 
100 REM PUT IN A ROW 
105 PRINT" HERE THEY ARE IN A ROW" 
106 PRINT 
110FORI=0T05 
120 PR I NT A$ ( I ) ; II II ; 
130 NEXT I 

You can use a member of the array by itself, look at this line: 

40 6$ ( 2) =II YELLOW SUBMARINE II 

Or the array can be used in a loop where the index keeps changing. Lines 50 and 120 in the 
program "IN A ROW" do this . 

147 



148 

MAKING TWO LISTS 
Enter: 10 REM PHONE LIST 

20 HOME: PR I NT 
30 DIM NAME$ ( 20 > , NUMBER$ ( 20 > 
35 I =0 
a0 PR I NT 11 ENTER NAMES AND NUMBERS 11 

50 PR I NT: INPUT II NAME? II ; NA$ (I) 
80 INPUT 11 NUMBER? II ;NU$( I) 
70 I= I+ 1 : GOTO 50 

Run. Press RESET key to stop program. Save to disk. 

ONE DIMENSION, TWO DIMENSION, ... 
The arrays that have one index are called one dimensional arrays. But arrays can have 2 or 
more indices. Two dimensional arrays have their "family members" put in a rectangle like 
the days in a month on a calander. 

Assignment 30: 

10 REM+++ TWO-DIM ARRAY+++ 
15 : 
18 HOME 
20DIMT(5,8) 
30 FOR X=0 TO 5 
a0 FOR Y=0 TO 8 
50 T(X ,y)= X+Y 
80 NEXT Y ,x 
85 : 
70 REM ****** PR I NT OUT THE ARRAY 
72 : 
80 FOR J=0 TO 8 
82 VTAB ( 5+3*J) 
85 FOR I= 0 TO 5 
87 HTA5(3+4*I>:PRINT T(I ,J); 
90 NEXT I ,J 

1. Finish the PHONE LIST program so that it prints out the list of names with the telephone 
numbers beside them. 

2. Use a two dimensional array to make a "weekly calendar" program. It could use an array 
made by DIM AR$(7 ,24) so that each day of the week could have an entry for each hour. 



INSTRUCTOR NOTES 31 LOGIC: AND, OR, NOT 

This lesson treats the AND, OR, and NOT relations and the numerical values for TRUE and 
FALSE. These are important for some types of IF statements. 

The TEENAGER program in lesson 12 used a nested IF to print out "You are a teenager." A 
more concise logic uses the OR relation. 

There are several abstract ideas in this lesson that are difficult to grasp. The fact that TRUE 
and FALSE have numerical values of 1 and 0 is bad enough. But in addition, the computer 
often treats any number that is not zero as being TRUE. 

QUESTIONS: 

1. For each IF statement, tell if it will print anything: 

10 IF 3=3 THEN PRINT "HI" 
10 IF NOT<3=3> THEN PRINT "HI" 
10 IF 3=3 OR 0=2 THEN PRINT "HI 11 

10 IF 3=3 AND 0=2 THEN PRINT "HI 11 

10 IF 11 A 11 = 11 B 11 THEN PRINT 11 Hl 11 

10 IF NOT< 11 A 11 = 11 B 11
) THEN PRINT "HI II 

2. What number will each of these lines print? 

10 A=1: PRINT A, NOT A 
10 A=0: PRINT A, NOT A 
10 A=1 :B=1 :PRINT A AND B 
10 A=0:B=1 :PRINT A AND B 
10 A=0:B=0:PRINT A AND B 
10 A=0:B=1 :PRINT A ORB 
10 A=0:B=0:PRINT A ORB 
10 PRINT NOT 23 
10 PRINT NOT 0 
10 PRINT 3 AND 7 
10 PRINT 3 AND 0 

149 



150 

LESSON 31 LOGIC: AND, OR, NOT 

ANOTHER TEENAGER PROGRAM 

Enter: 1 0 REM < < < AND , 0 R , N 0 T > > > 
20 HOME: PRINT 
30 INPUT 11 YOUR FIRST NAME 11 ;N$ 
35 PRINT 
40 INPUT 11 YOUR AGE II ;A 
45 PRINT 
50 IF (A > 12) AND (A< 20) THEN PR I NT N$ 11 IS A TEENAGER• 11 

55 NFLAG = <A< 13) OR <A> 19 > 

60 IF NFLAG THEN PR I NT N$ 11 IS NOT A TEENAGER• 11 

65 PRINT 
70 IF <NOT NF LAG) AND (A= 16) THEN PR I NT 11 AND 11 N$ 11 IS 

SWEET s I XTEEN. II 

Run and save to disk. 

WHAT DOES "AND" MEAN? 
Two things are true about teenagers: they are over 12 years old and they are less than 20 
years old. Look at line 50. 

IF (you are over 12) AND (you are less than 20) THEN (you are a teenager) . 

WHAT DOES "OR" MEAN? 
In line 55 the OR is used. Two things are said: "age is under 13" and "age is over 19." 

Only one of them needs to be true for you to be "not a teenager." 

IF (you are under 13) OR (you are over 20) THEN (you are not a teenager) . 

TRUE AND FALSE ARE NUMBERS 
How does the computer do it? It says true and false are numbers. 

Rule: TRUE is the number 1 

FALSE is the number 0 

(It is easy to remember that 0 is FALSE because zero is the grade you get if your homework 
is false.) 



To see these numbers, enter this in the edit mode: 

PRINT 3=7 

The computer checks to see if 3 really does equal 7. It doesn't so it prints a "O" meaning 
FALSE. 

And this: PRINT 3=3 

The computer checks to see if 3 = 3. It is, so the computer prints "1" meaning "TRUE." 

PUTTING TRUE AND FALSE IN BOXES 
The numbers for TRUE and FALSE are treated just like other numbers and can be stored in 
boxes with numerical variable names on the front. Run this: 

10 N=< 3=22 > 

20 PR INT N 

The number 0 is stored in the box N because 3 = 22 is FALSE. 

And this: 10 N= 11 6 11 = 11 6 11 

20 PR I NT N 

151 



152 

THE IF COMMAND TELLS LITTLE WHITE LIES 
The IF command looks like this: 

10 IF CsoMethins A> THEN CcoMMand C> 

'fry these in the edit mode: 

IF 0 THEN PRINT "TRUE" 

IF 1 THEN PRINT "TRUE" 

Now try this: IF 22 THEN PRINT "TRUE" 

Rule: In an IF, the computer looks at "something A." 

If it is zero, the computer says "something A is FALSE:' and skips what is after 
THEN. 

If it is not zero, the computer says "something A is TRUE" and obeys the 
commands after THEN. 

The IF command tells little white lies. TRUE is supposed to be the number "1 :· but the IF 
streches the truth to say "TRUE is anything that is not FALSE."That is, any number that is 
not zero is TRUE. 

:Iff 1Hf 0#£ 
ANP 

ONLY FALSff 



WHAT DOES "NOT" MEAN? 
NOT changes FALSE to TRUE and TRUE to FALSE. Try this: 

10 REM ??? DOUBLE NEGATIVE ??? 
20 N=3 
30PRINT 11 N 11

; TAB<20); N 
40 PRINT "NOT N 11

; TAB<20); NOT N 
50 PRINT "NOT NOT N 11 ;TAB<20); NOT <NOT N> 
60 REM The corrlPuter Knows that 11 I don't have no ••• 11 

61 REM means 11 I do have •••• 11 

Save to disk. 

I'M NOT NOT 
FALL/NG 

0 ooaaaao 

The NOT also tells little white lies: 

N was 3, which is called TRUE, (a little white lie.) 

Then NOT 3 is FALSE, or the number 0. 

Finally, NOT (NOT 3) is the same as NOT (0) or NOT (FALSE) or TRUE or 
the number 1. 

153 



154 

THE LOGICAL SIGNS 
You can use these 6 symbols in the "something/.\' phrase: 

= 

<> 
< 
> 
< = 
> = 

equal 
not equal 
less than 
greater than 
less than or equal 
greater than or equal 

You have to press two keys to make the < > sign and the<= and>= signs. 

The last two are new, so look at this example to see the difference between < and < = : 

2< =3 
3< =3 
4< =3 

is TRUE 
is TRUE 
is FALSE 

2< 3 
3< 3 
4< 3 

These two "something /.\' phrases mean the same: 

2<= Q (2< Q) OR (2=Q) 

is TRUE 
is FALSE 
is FALSE 



Assignment 31: 

1. Tell what will be found in the box N if: 

N=ll=ll 
N=11G11< > 11s11 

N=5>7 
N=3>2 AND 3<2 
N=4=3 OR 4=4 
N=NOT 0 
N=S>=ll 

2 . Tell if the word "JELLYBEAN" will be printed: 

IF 0 THEN PR I NT II JELLYBEAN II 
IF 1 THEN PR I NT II JELLYBEAN II 
IF 9 THEN PR I NT II JELLYBEAN II 
IF 3< >0 THEN PR I NT II JELLYBEAN II 
IF z AND a THEN PR I NT 11 JELLYBEAN 11 

IF 0 OR 1 THEN PR I NT II JELLYBEAN II 
IF NOT 3 THEN PR I NT II JELLYBEAN II 
IF 11 A 11 = 11 Z 11 

IF NOT< 3 > AND 2 
IF NOT ( 0) OR 0 
IF £1 < =5 

THEN PR I NT II JELLYBEAN II 
THEN PR I NT II JELLYBEAN II 
THEN PR I NT II JELLYBEAN II 
THEN PR I NT II JELLYBEAN II 

3. Write a program to detect a double negative in a sentence. Look for negative words like 
not, no, don't, won't, can't, nothing and count them. If there are 2 such words there is a 
double negative. Test the program on the sentence "COMPUTERS AIN'T GOT NO 
BRAINS." 

155 



156 

INSTRUCTOR NOTES 32 USER FRIENDLY PROGRAMS 

This lesson concerns clear programs whicp interact with the user in a "friendly" way. 

The" spaghetti" program should be discouraged. A format for writing programs is presented 
in this lesson. While methods of imposing order on the task are largely a matter of taste, the 
methods used in this lesson can serve to introduce the ideas. 

"User friendly" means that the screen displays are easy to read, keyboard input is 
"RETURN key free" as much as possible, and errors are "trapped:' Ask if entries are ok. If 
not, give an opportunity to fix things. 

Instructions and "HELP" should be available. Prompts need to be given. Beginners need 
complete prompts, but experienced users would rather have curt prompts. 

It is hard to teach the writing of "user friendly" programs. Success depends mostly on the 
attitude of the programmer. The best advice is to "turn up your annoyance detectors to high" 
as you write and debug the program. 

Most young students will not progress very far toward fully "friendly" programming. To be 
acquainted with the desirability of "friendly" programming and to use some simple 
techniques toward accomplishing it are satisfactory achievements. 

QUESTIONS: 

1. Should your program give instructions whether the user wants them or not? 

2. What is a "prompt"? Give two examples. 

3. What is "scrolling"? How can you write to the screen without scrolling? 

4. If you want the user to enter a single letter from the keyboard, what command is best? 
(Avoid using the RETURN key.) 

5. What is an "error trap"? How would you trap errors if you asked your user to enter a 
number from 1 to 5? 

6. In what part of the program are most of the GOSUB commands found? 

7. Why put the "STARTING STUFF" section of the program at the end of the program (at 
high line numbers)? 

,. . 



LESSON 32 USER FRIENDLY PROGRAMS 

There are two kinds of users: 

1. Most want to run the program. They need: 

instructions 
prompts 
clear writing on the screen 
no clutter on the screen 
erasing old stuff from the screen 
not too much key pressing 
protection from their own stupid errors 

2. Some want to change the program. They need: 

a program made in parts 
each part with a title in a REM 
explanations in the program 

(Don't forget you are a user of your own programs, too! Be kind to yourself!) 

PROGRAMS HAVE THREE PARTS 

"STARTING STUFF": at the beginning of the program run 

give instructions to the user 
draw a screen display 
set variables to their starting values 
ask the user for starting information 

MAIN LOOP: 

controls the order in which tasks are done 
calls subroutines to do the tasks 

SUBROUTINES: 

do parts of the program 

157 



158 

PROGRAM OUTLINE 

1GOTO1000:REM ***Program name*** 

••• 
100 REM MAIN LOOP 

••• 
• • • calls subroutines 

••• 
199 END 
1000: 
1001 REM*** Program name*** 
1002: 

••• 
• • • 
• • • 
1999: 

REM's that give a descriPtion of the 
program, variable names, etc. 

2000 REM START I NG STUFF 

••• 
• • • 
••• 
• • • 
• • • 

asK for starting information 
set variable values 
give instructions 

2999 GOTO 100 

PUT THE MAIN LOOP AT THE BEGINNING OF THE PROGRAM 
Put the MAIN LOOP near the front because it will run faster there. 

PUT STARTING STUFF AT THE END OF THE PROGRAM 
Put the STARTING STUFF near the back because it may be the biggest part of the program, 
and you may keep adding to it as you write , to make the program more "user friendly." It 
does not need to run fast. 



PUT SUBROUTINES IN THREE PLACES 
between line 2 and line 99 for subroutines that must run fast 
after line 2999 for starting stuff subroutines 
between line 200 and line 99 for the rest of the subroutines 

INFORMATION PLEASE 

280 PRINT 11 00 YOU WANT INSTRUCTIONS <YIN > " 

This lets a beginner see instructions, and lets others say "no." 

TIE A STRING AROUND THE USERS FINGER 
Use a "prompt" to remind users what choices they have. 

Example: <YIN> where the choice is Y for "yes" or N for "no" 

Beginners need long prompts. Other users like short prompts. 

DON'T GIVE THE USER A HEADACHE 
SCROLLING gives headaches! 

BASIC usually scrolls. It writes new lines at the bottom of the screen and pushes old 
lines up. 

It is like the scrolls the Romans used for writing. They unwound from the bottom and wound 
up at the top. 

Avoid scrolling. use VLIN and HLIN to print just where you want. Erase by printing a 
string of blanks to the same spot. 

Use delay loops so the writing stays on the screen while the user reads it. 

159 



160 

OUCH! MY FINGERS HURT 
Use the GET command to enter single letters. This saves having to press RETURN. 

380 PR I NT 11 DO YOU NEED INSTRUCTIONS? < Y /N > 11 

382 GET R$: IF R$= II y II THEN GO SUB 3400 

SET TRAPS FOR ERRORS 
Example: Add this line to the above lines: 

384 IF R$( >II NII THEN GOTO 380 

Line 380 asked for only two choices, Y or N. If the user presses some other key, line 384 
sends him back to line 380. 

'fraps make your program "bomb proof" so that users will be unable to goof it up! 



Assignment 32: 

1. Look at the COLOR EATER program. Add REM's to explain the lines in the program. 
Fix up the information that is printed. For example, the "I HAVE NO FOOD" message 
ruins the messages printed in lines 2202 and 2210. 

2. Write a secret cipher program. The user chooses a password and it is used to make a 
cipher alphabet like this: 

if the password is APPLE 
remove the repeated letters, get APLE 
put it at the front of the alphabet and the rest of the letters after it in normal 
order 

APLEBCDFGHIJKMNOQRSTUVWXYZ 
The user chooses to code or decode from a menu. 

1 GOTO 1000: REM *** COLOR EATER *** 
2 : 
100 NC = 0 
101 FOR I = X - 1 TO X + 1 
102 FOR J = Y - 1 TO Y + 1 
104 IF I < 0 THEN I = 0 
105 IF I > 38 THEN GOTO 120 
108 IF J < 0 THEN J = 0 
107 IF J > 38 THEN GOTO 120 
108 CC = SCRNC I ,J) 
110 IF CC = C THEN X = I:Y = J: COLOR= 0: PLOT 
XtY: GOTO 100 
112 IF CC < > 0 THEN NC = 1 
115 NEXT J ti 
120 C = C + 1: IF C > 15 THEN C = 1 
125 IF NC = 0 THEN GOSUB 300 
130 VTAB (22): HTAB Cl>: PRINT x; 11 11 TAB ( 5)Y 11 

II a 

' 135 
188 
300 
310 
320 
330 
335 
340 
388 
1000 
2000 
2010 
2020 
2030 
2040 
2045 
2050 
2060 
2100 
2200 
2210 
2888 

VTAB (24>: HTAB C 1): PRINT C11 11
; 

GOTO 100 
REM COLOR EATER HAS NO FOOD 

X = X + 1: IF X > 38 THEN X = 1 
PRINT 11 I HAVE NO FOOD!"; 

PRINT CHR$ (7) 
FOR T = 1 TO 500: NEXT T 
HOME 
RETURN 

REM 
REM STARTING STUFF 
HOME : GR 
FOR I = 0 TO 38 
FOR J = 0 TO 38 

C = INT C RND (8) * 15) + 1 
COLOR= C 
PLOT I tJ 

NEXT J ti 
X = 20:Y = 20 

VTAB 22: HTAB 8: PRINT "X tY LOCATION" ; 
VTAB 24: HTAB 8: PRINT "EATING COLOR"; 
GOTO 100 

161 



162 

INSTRUCTOR NOTES 33 DEBUGGING, STOP, CTRL-C, CONT 

It is difficult to drill systematically on debugging, unless you are NASA with NASA's budget 
and time scale. 

We present a series of small techniques and a description of how to put them together in a 
debugging scheme. Only practice will serve to make debugging a chore that the student 
approaches with some confidence. 

QUESTIONS: 

1. What two ways can you make the computer print 

BREAK IN 55 

while the program is running? 

2. How are the STOP and the END commands different? 

3. How are the STOP and CTRL-C commands different? 

4. What does the CONT command do? 

5. Why would you put STOP commands in your program? 

6. How do delay loops help you debug a program? 

7. How do extra PRINT commands help you debug a program? 

8. Why do you take the STOP and extra PRINT commands out of the program after you 
have fixed the errors? 

9. Can you pick in what line the CTRL-C command will stop the program? Can you pick 
using the STOP command? 



LESSON 33 DEBUGGING, STOP, CTRL-C, and CONT 

THE STOP COMMAND 

Enter and run: 
10 REM SECRET STOP 
20 HOME 
25 R=INTCRNDCB>*200) 
30 FOR 1=0 to 200 
40 IF I=INT CRNDCR>*200) THEN STOP 
50 NEXT I 

The program will stop, and the computer will peep and print a message: 

BREAK IN 40 

What do you suppose the secret value of I was? 

Enter: PR I NT I 

and find out. 

HOW TO START IT AGAIN 
Enter the command CONT. 'fry it! 

"STOP" IS LIKE "END" 

(No line number) 

STOP makes the computer stop and enter the edit mode. 

It is like END except it peeps and prints the number of the line that the STOP is in. 

You can have as many STOP commands in your program as you like. 

STOP is used for debugging your program. 

163 



164 

ANOTHER WAY TO STOP RUNNING THE PROGRAM 
You can stop running the program with "CTRL-C." This means you hold down the key that 
says CTRL on it, and then press the "C" key. 

'fry it: 10 REM GO FOREVER 
15 PRINT: SPEED= 100 
20 PR I NT II MUD TURTLES OF THE WORLD II 
30 PRINT "UNITE! II :PRINT 
35 SPEED = 255 
40 FORT= 1 TD 1000: NEXT T 
99 GOTO 10 

The command CTRL-C stops the program at whatever spot it is . It prints: 

BREAK IN LINE XX peeps and enters the edit mode 

(where XX is the line number where it stops.) 

The command CONT starts the program again at the same spot. 

Try this: Try to make the above program stop in line 20. Then make it stop in 
line 30, then line 40. 

WHAT DO YOU DO AFTER YOU STOP? 
You put STOP in whatever part of your program is not working right. Then you run the 
program. After it stops, you look to see what happened. 

(Or you use CTRL-C to stop the program, but it may not stop in the spot where the trouble 
is.) 

Put on your thinking cap. Ask yourself questions about what happened as the program ran. 

You are in the edit mode. You can: 

List parts of the program and study them. 

Use the PRINT command to look at variables. Do they have the values you 
expected? 

If you find the trouble, you may add a line, change a line, or delete a line. 



STARTING THE PROGRAM AGAIN 
There are four ways to start a program. They are: 

CONT 
GOTO XX 
RUN XX 
RUN 

if you have not changed the program 
where XX is a line number 
where XX is a line number 
your old friend 

You may use the CONT command if you have not: 

added a line 
deleted a line 
or changed a line by editing it 

Or you may start running the program at a different spot by entering (without line number) 
the command: 

GOTO XX 

where XX is the line number where you want to restart . 

If you have changed the program, your only choice is to start at the beginning or at some 
other line number XX with RUN. 

What is the difference between these four ways? 

CONT GOTO XX 
These two ways use the values in the variable boxes left over from the last time 
you ran. 

CONT 
GOTO XX 

RUN 

starts at the line where the BREAK occured. 
starts at line XX 

RUN XX 
These two ways throw away all the variable boxes made the last time, then 
execute the program. 

RUN 
RUN XX 

starts at the first line of the program 
starts at line XX 

CONT can only restart a program that was stopped with a break from a STOP or CfRL..C. 
But RUN, RUN XX and GOTO XX can also start a new program. 

165 



166 

DEBUGGING 
Little errors in your program are called "bugs." 

If your program doesn't run right, do these four things: 

1. If the computer printed an ERROR MESSAGE, it tells what line it stopped on. Careful, 
the mistake may really be in another line! 

2. If the computer just keeps running but doesn't do the right thing, stop it and put some 
PRINT lines in that will tell what is happening. 

3. Or you can put STOP commands in the program. 

4. If the program runs so fast that you can't tell what is happening, put in some delay loops 
to slow it down. 

After you have fixed the program, take the PRINT lines, the STOP's and the delay loops out 
of the program. 

Assignment 33: 

1. Go back to the SNAKE program and fix up some of the bugs. For example, the program 
"crashes" when the snake hits a wall. Add "food" for the snake. Add score keeping. Let 
the game end if the snake touches a wall. 

2. Go back and fix up some other program that you have written. 



APPENDIX A DISK USAGE 

DISK CARE 

The student should be instructed on care of diskettes at this time. Especially: 

1. Do not touch the brown or gray magnetic disk though the oblong holes. 

2. Do not bend the diskette. 

3. Insert and remove the disk carefully from the drive . 

4. Always put the disk back in its protective cover after use. 

5. Do not spill food or drink on the diskette. In fact, it is better to not snack while at the 
computer. 

PREPARING A DISK FOR THE STUDENT 
Enter this program: 

10 REM === HELLO === 
20: 
30 REM GREETING PROGRAM FOR 
40: 
50 REM "KIDS AND THE APPLE" 
55: 
60 HOME:PRINT 
70 PRINT "student's natrte'S DISK" 
75 PRINT CHR$Cl1); "CATALOG" 
77 PRINT 
80 PRINT "ENTERING EDIT MODE" 
85 NEW 

167 



168 

Where it says "student's name" put the name of your student. This HELLO program will 
print the student's name, then the catalog of the disk and finally erase itself from memory so 
that the student will not accidently mix this HELLO program into his/her own program. 

After entering the above program, put a new disk in drive 1 and enter: 

INIT HELLO 

The disk drive will grind for a long time, preparing the disk for files . 

Then put in the DOS 3.3 SYSTEM MASTER and 

LOAD COLOR DEMOSOFT 

Put the student's disk back in and 

SAVE COLOR DEMOSOFT 

It may be a good idea to: 

LOCK HELLO 
LOCK COLOR DEMOSOFT 

so that they will not accidently be erased from the disk. The locked status of the files is 
indicated by an "*" before the entry in the catalog. 

If you want to modify the HELLO program in the future: 

UNLOCK HELLO 
LOAD HELLO 

Make your modifications. Then: 

SAVE HELLO 
LOCK HELLO 



APPENDIX B SAVING TO TAPE 

If your computer does not have a disk drive, you will use a tape recorder to save your 
programs. 

There are two steps in saving programs on cassette tape: 

First, you must be sure that the volume and tone controls are set correctly on the tape 
recorder. 

Then you must enter the correct commands into the computer. 

SETTING THE TAPE RECORDER CONTROLS 
The first time a tape recorder is used with the Apple II, the correct setting for the volume 
control must be found. If this has already been done, the instructor will write the settings 
down on the lines below. 

Otherwise, the instructor will follow the directions given in the Apple II BASIC 
Programming Manual for finding the correct settings and then write them down here. 

SAVING A PROGRAM TO CASSETTE TAPE 
The easiest way is to put only one program on each cassette. The best kind of cassettes to 
use are the 10 minute tape cassettes made especially for recording data. They are quite 
inexpensive. 

FOLLOW THESE STEPS 

1. List your program to make sure it is still there. 

2. Rewind the tape. 

3. Type SAVE but do not push the RETURN key yet! 

4. Push the RECORD and PLAY buttons at the same time on the recorder to start it. 

5. Push the RETURN key on the computer. 

169 



170 

From here on, the computer does everything automatically. You will see and hear these 
things: 

1. The cursor will disappear 

2. While you count to 15 slowly, the computer puts a steady tone on the tape, but you do 
not hear this happening. 

3. Then the computer will peep. It is starting to record the program now. 

4. When the computer is done recording, it will peep again, and the flashing cursor will 
reappear. 

The computer THINKS it put a program on the tape! To find out if the program really IS on 
tape, LOAD the program back into the computer. 

LOADING A PROGRAM FROM TAPE INTO THE COMPUTER MEMORY 

1. Look to see if the recorder controls are set properly. 

2. Rewind the tape. 

3. Enter LOAD. 

4. Start the recorder by pressing the PLAY key. 

From here on the computer does things automatically. You should see and hear these things: 

1. The cursor will disappear. The computer is listening for the steady tone. You will not 
hear it yourself. 

2. About 15 seconds later the computer will peep. It has come to the end of the steady tone 
and started to load the program into memory. 

3. When the computer has finished loading the program, it will peep and the flashing cursor 
will reappear. It takes about 10 seconds between peeps to load a short program and a few 
minutes to load a long one. 



ERRORS IN LOADING TAPE 
If the computer has trouble loading the program it will print an error message and may peep 
too. If you see one of these messages: 

*** SYNTAX ERR 
ERR 
*** MEM FULL ERR 
ERR*** MEM FULL ERR 

ask for help from the instructor or read the Apple II BASIC Programming Manual. 

PLAN AHEAD 
Sometimes things go wrong when you try to save a program on cassette. It is very 
discouraging to lose a program that you worked hard to write! You want to be sure that 
saving to tape will work BEFORE you write the program. 

So when you sit down at the computer, the first thing you should do is check to see if the 
tape system is working ok. Do this: 

1. Load a short program into the computer from tape. 

2. Save it on another cassette. 

3. Then erase memory with a NEW command. 

4. Read in the program you just saved to make sure it really was saved ok. 

SORRY, NO FILES 
You can't use file names with tape storage like you can with disk storage. 

wrong (with tape) 
wrong (with tape) 

right 
right 

LOAD SNAKE 
SAVE SNAKE 

LOAD 
SAVE 

171 



APPENDIX C RESERVED WORDS IN APPLESOFT 

& 

AND ASC AT ATN 

CALL CHR$ CLEAR COLOR = CONT 
cos 

DATA DEF DEL DIM DRAW 

END EXP 

FLASH FN FOR FRE 

GET GOSUB GOTO GR 

HCOLOR= HGR HGR2 HIMEM: HLIN 
HOME HP LOT HTAB 

IF IN# INPUT INT INVERSE 

LEFT$ LEN LET LIST LOAD 
LOG LOMEM: 

MID$ 

NEW NEXT NORMAL NOT NOTRACE 

ON ONERR OR 

PDL PEEK PLOT POKE POP 
POS PRINT PR# 

READ RECALL REM RESTORE RESUME 
RETURN RIGHT$ RND ROT= 
RUN 

SAVE SCALE= SCRN ( SGN SHLOAD 
SIN SPC ( SPEED= SQR 
STEP STOP STORE STR$ 

TAB ( TAN TEXT THEN TO 
TRACE 

USR 

VAL VLIN VTAB 

WAIT 

XPLOT XDRAW 

172 



ANSWERS TO ASSIGNMENTS 

ASSIGNMENT 1-:3 
10 HOME 
20 PRINT "HI THEREt" 
30 PRINT "APPLE COMPUTER!" 

2-1 
10 HOME 
20 FLASH 
25 PRINT "MINDA" 
30 INVERSE 
35 PRINT "ANNE" 
ll0 NORMAL 
ll5 PRINT "CARLSON" 

2 - 2 
10 HOME 
20 FLASH 
22 PRINT CHR$ C7) 
25 PRINT "MINDA" 
30 INVERSE 
32 PRINT CHR$ C7> 
35 PRINT "ANNE" 
ll0 NORMAL 
ll2 PRINT CHR$ C7> 
ll5 PRINT "CARLSON" 

3-5 
15 HOME 
16 PRINT 
17 PRINT 
20 P~INT II 

25 PRINT II 

" 
0 " 

27 
30 
32 
3ll 
36 
38 

PRINT CHRS <7> 
PRINT 
PRINT 
PRINT 
PRINT II 

PRINT " 
40 PRINT CHR$ <7> 
50 
52 
5ll 
56 
58 
60 

PRINT 
PRINT 
PRINT 
PRINT II 

PRINT II 

PRINT CHR$ C7> 

II 

0 II 

---0---" 
0 " 

173 



174 

ll-2 
10 HOME 
20 PRINT 
22 PRINT 
2ll PRINT 
28 PRINT 
30 PRINT II 

32 PRINT II 

3ll PRINT 
36 PRINT 
38 PRINT 
ll0 PRINT 
42 PRINT II 

aa PRINT 11 

llB PRINT II 

llB PRINT II 

5-1 
10 HOME 
20 PRINT 
22 PRINT 
2ll PRINT 

00 00 II 

00 00 II 

* * 
II 

* * 
II 

** ** II 

******** II 

30 PRINT 11 HELLO. WHAT IS YOUR NAME?" 
35 INPUT N$ 
37 HOME 
38 PRINT 
ll0 PRINT 11 WELLt 11 

lll PRINT 
ll2 PRINT N$ 
ll5 PRINT 
50 PRINT 11 IT IS SILLY TO TALK TO COMPUTERS." 

5-2 
10 HOME 
20 PRINT 11 WHAT IS YOUR FAVORITE COLOR?" 
25 INPUT C$ 
27 PRINT 
30 PRINT 11 1 PUT THAT IN BOX C$ 11 

32 PRINT 
35 PRINT 11 NOW YOUR FAVORITE ANIMAL? 11 

ll0 INPUT C$ 
42 PPRINT 
45 PRINT 11 1 PUT THAT IN BOX C$ T00 11 

47 PRINT 
50 PRINT 11 NOW LET'S PRINT WHAT IS IN BOX C$ 11 

52 PRINT 
55 PRINT 11 IT IS: 11 

57 PRINT 
60 PRINT C$ 



6-1 
2 REM BY DAN CLARKt AGE 10 
10 HOME 
20 PRINT "NAME A MUSICAL GROUP 11 

30 INPUT A$ 
40 PRINT 
50 PRINT "NAME ONE OF THEIR SONGS 11 

60 PRINT 
70 INPUT 6$ 
75 PRINT 
80 PRINT A$; II PLAYS II ;B$ 

6-2 
10 HOME 
20 PRINT "GIVE ME THE NAME OF A MUSICAL GROUP" 
22 INPUT G$ 
25 PRINT 
30 PRINT "WHAT IS ONE OF THEIR TUNES?" 
35 INPUT T$ 
40 PRINT 
ll2 PRINT 
50 PRINT G$; 
52 PRINT II PLAYS 11

; 

54 PRINT T$ 

6-3 
10 HOME 
20 PRINT "YOUR NAME?" 
25 INPUT N$ 
30 INVERSE 
a0 SPEED= 1 
a2 PRINT 
llll PRINT 
as PRINT 
50 PRINT N$ 
60 NORMAL 
70 SPEED= 255 

7-2 
10 
15 
17 
20 
25 
28 
30 
35 
37 
a0 
a2 

HOME 
PRINT 
PRINT 
PRINT 
INPUT 
PRINT 
PRINT 
INPUT 
PRINT 
PRINT 
PRINT 

11 HOW IS THE WEATHER?" 
W$ 

"AND HOW DO YOU FEEL?" 
F$ 

"YOU MEAN:" 

ll5 S$ = W$ + II AND II + F$ 
50 PRINT S$; 11 ? 11 

175 



176 

8-3 
10 HOME 
15 LET M$ = "MINDA" 
20 LET Y$ = 11 KAREN 11 

30 PRINT M$ 
35 SPEED= 1 
40 PRINT Y$ 
50 GOTO 30 

SA-2 
10 REM BOYS AND GIRLS 
20 HOME 
22 PRINT 
23 PRINT 
25 PRINT "ARE YOU A BOY OR A GIRL?" 
30 INPUT A$ 
32 PRINT 
33 PRINT 
34 PRINT 
35 IF A$ = 11 BOY 11 THEN PRINT "SNIPS AND SNAILS" 
40 IF A$ = 11 GIRL 11 THEN PRINT "SUGAR AND SPICE" 

SB-1 
2 REM PIZZA 
3 REM BY CHRIS CLARKt JR. AGE 14 GOING ON 

(YOU FIGURE IT OUT> 
4 HOME 
5 SPEED= 100 
6 PRINT "HALLO. AY AM MARIOt YOUR PIZZA MAN. 11 

7 PRINT "JUST TELL ME ZE GORY DETAILS AND I'LL" 
8 PRINT "DOZE REST. 11 

9 PRINT 
10 PRINT "WHAT SIZE SHOULD ZIS PIZZA BE 

(S/M/L)? 11 

20 INPUT S$ 
30 IFS$= "S 11 THEN PRINT "ON A DIET? HO HO!" 
31 PRINT 
33 IF S$ = 11 M11 THEN PRINT "GOOD CHOICE-NOT TOO 

BIGt BUT FILLING!" 
35 PRINT 
38 IF S$ = 11 L" THEN PRINT "YOU MUST HAVE A BIG 

BUNCH AT HOME!" 
39 PRINT 
40 PRINT "NOWt YOU WANT DOUBLE CHEES ON ZIS 

(Y/N)?" 
42 INPUT CH$ 
45 REM ETC. 
50 REM MUSHROOMSt ETC. 
60 REM ANCHOVIESt ETC. 
80 REM PEPPERSt ETC • 
90 REM MEATt ETC. 



150 INVERSE 
151 PRINT 11 HOKAY1 HERE IS YOUR PIZZA!" 
152 NORMAL 
153 PRINT 
15ll IF S$ = 11 S 11 THEN PRINT 11 WAN SMALL PIZZA WITH 

II ; 

155 REM ETC. 
160 IF BASE$ = 11 P11 THEN PRINT "PEPPERONI" 
165 REM ETC. t ETC. 
238 PRINT 
2ll0 FOR J = 1 TO 2000 
2a2 NEXT j 

2aa SPEED= 255 

SB-2 
10 REM === COLOR GUESSING GAME ---
20 HOME 
22 PRINT 
23 PRINT 
2a PRINT 
25 PRINT "PLAYER 2 TURN YOUR BACK" 
27 PRINT 
30 PRINT "PLAYER 1 ENTER A COLOR" 
35 INPUT C$ 
ll0 HOME 
a2 PRINT 
ll3 PRINT 
aa PRINT 
50 PRINT "PLAYER 2 TURN AROUND AND GUESS" 
52 PRINT 
53 PRINT 
5ll PRINT 
55 INPUT G$ 
60 IF G$ < > C$ THEN PR I NT II WRONG! II 

65 IF G$ = C$ THEN PRINT "RIGHT" 
67 PRINT 
70 GOTO 55 

10-1 
10 REM BIRTH YEAR 
20 HOME 
30 PRINT "HOW OLD ARE YOU?" 
32 PRINT 
3ll INPUT A 
36 PRINT 
ll0 PRINT "AND WHAT YEAR IS IT NOW?" 
50 INPUT Y 
52 B = Y - A 
55 PRINT "HAS YOUR BIRTHDAY COME YET THIS YEAR?" 
56 PRINT "<YIN> II 

60 INPUT Y$ 
65 IF Y$ = 11 N11 THEN B = B - 1 
67 PRINT 
70 PRINT "YOU WERE BORN IN 11 ;B; 11

•
11 177 



178 

10-2 
10 REM MULTIPLICATION 
20 HOME 
22 PRINT 
23 PRINT 
24 PRINT 
30 PRINT "GIVE 
35 INPUT A 
37 PRINT 
38 PRINT 
40 PRINT "GIVE 
45 INPUT B 
48 C = A * B 
50 PRINT 
52 PRINT 
60 PRINT "THEIR 

10-3 
10 REM CLOCK 
20 HOME 

ME A NUMBER" 

ME ANOTHER" 

PRODUCT IS 11 ;c 

30 PRINT "CLOCK PROGRAM" 
40 INPUT "PRESENT TIME: HR,MIN,SEC? ••;H,M,s 
50 MUL = 1018 
60 FOR I = 1 TO MUL: NEXT 
70 s = s + 1 
80 PRINT H11

:
11 TAB C 5)M 11

:
11 TAB C 10)5 

90 GOTO 60 
100 REM NEEDS "IF •• •" TO TURN MIN.HR HANDS 



11A-1 
10 HOME 
12 PRINT 
13 PRINT 
1-4 PR INT 
15 PRINT "THIS IS A PARTY GAME" 
16 PRINT 
17 PRINT 
20 PRINT "WHAT IS YOUR NAME? " 
22 PRINT 
24 PRINT 
25 INPUT F$ 
27 PRINT 
30 PRINT "PLEASE TURN YOUR BACK, ";F$ 
31 FOR I= 1 TO 5000 : NEXT I 
32 HOME 
34 PRINT "SOMEONE PRINT IN A NICKNAME "; 
36 INPUT N$ 
40 HOME 
42 PRINT 
44 PRINT 
50 PR I NT CHR$ C 7 >: REM BELL 
55 PRINT F$; TAB C 10);"IS CALLED ' 11 ;N$; 11

'" 

60 GOTO 12 

179 



180 

11A-2 
10 REM !@*#$ INSULTS $#@! 
12 HOME 
14 PRINT 
18 PRINT 
20 PRINT 11 HEY YOU! WHAT IS YOUR NAME? 11 

21 PRINT 
22 PRINT 
23 INPUT N$ 
25 REM DELAY LOOP 
30 FOR T = 1 TO 2000 
35 HOME 
38 PRINT CHR$ <7> 
38 PRINT 
40 PRINT CHR$ <7> 
42 PRINT 
44 PRINT CHR$ C7> 
48 PRINT 
48 PRINT CHR$ C7> 
50 PR I NT II BAH! ! ! 11 

52 PRINT 
55 PRINT TABC 10) ;N$ 
57 PRINT 
80 PR I NT TAB C 15) ; 11 YOUR FATHER EATS LEEKS ! ! ! 11 

11B-1 
2 REM "PATIENCE" BY DAN CLARK, AGE 10 
10 HOME 
15 SPEED= · 2 
18 PRINT CHR$ ( 7 ) 
20 PRINT "YOUR. II • • 
22 PRINT 
23 FOR I = 1 TO 2000: NEXT I 
25 PRINT CHR$ ( 7 ) 
30 PRINT II .WAIT'S. II • • • • 
31 PRINT 
32 FOR I = 1 TO 2000: NEXT I 
35 PRINT CHR$ ( 7) 
40 PRINT II ••• OVER! ! II 
50 SPEED= 255 



12B-3 
10 REM I GOT YOUR NUMBER! 
20 HOME 
25 PRINT 
26 PRINT 
27 PRINT 
30 PRINT "GIVE ME A NUMBER BETWEEN ZERO AND 

TEN." 
35 PRINT 
ll0 INPUT N 
ll5 PRINT 
46 PRINT 
50 IF N = 0 THEN PRINT "I GOT PLENTY OF 

NOTHING!" 
51 IF N = 1 THEN PRINT "I'M NUMBER ONE!" 
52 IF N = 2 THEN PRINT "TWO IS COMPANY." 
53 REM ETC. 
70 IF N > 10 THEN GOTO 99 
90 GOTO 25 
99 PRINT "THAT'S ALL FOLKS!" 

13-1 
10 REM ** A PAIR OF DICE ** 15 HOME 
20 LET D1 = 1 + INT RND ( 8) 
22 LET D2 = 1 + INT RND ( 8) 
25 D = D1 + D2 
30 PRINT "THE ROLL GAVE:" 
32 PRINT 

• 
• 

35 PRINT TAB< 10) ;"THE FIRST DIE 
40 PRINT TAB< 10>;"THE SECOND 
45 PRINT TAB< 10);"THE DICE 
47 PRINT 
48 PRINT 
50 PRINT "AGAIN? YIN"; 
55 INPUT Y$ 
57 PRINT 
58 PRINT 
60 IFY$="Y" THEN GOTO 20 

6) 
6) 

"; D 1 
";D2 
" ; D 

181 



182 

13-2 
10 REM PAPERt SCISSORS AND ROCK 
12 HOME 
13 PRINT 
14 PRINT 
15 PRINT 
18 PRINT "PLAY THE II 

17 PRINT 
18 PRINT 
19 PRINT TAB< 5>"P A PE R11 

20 PRINT TAB< 15)"S C I S S 0 R S" 
21 PRINT TAB< 31)"R 0 CK" 
22 PRINT 
23 PRINT "GAME AGAINST THE COMPUTER" 
24 PRINT 
25 PRINT "PRESS 'RESET' KEY TO END GAME" 
28 PRINT 
27 PRINT "ENTER YOUR CHOICE: <PtStR> 11 

28 REM COMPUTER CHOOSES 
30 C = INT ( RND (8) * 3) + 1 
32 IF C = 1 THEN C$ = 11 P11 

33 IF C = 1 THEN C$ = 11 S 11 

34 IF C = 1 THEN C$ = 11 R11 

35 REM C$ IS THE COMPUTERS CHOICE 
37 INPUT Y$ 
38 
38 
45 
48 
50 
52 
55 
57 
58 
80 
81 

REM Y$ IS YOUR CHOICE 

REM IS THERE A TIE? 

IF C$ < > Y$ THEN GOTO 60 
REM IF C$=Y$ THERE IS A TIE 
PRINT II TIE" 
GOTO 30 

REM NO TIEt WHO WINS? 

IF C$ = II P" THEN IF Y$ = 11s11 

IF C$ = "S" THEN IF Y$ = "R" 
IF C$ = uR" THEN IF Y$ = "P" 
REM COMPUTER WINS 

THEN 
THEN 
THEN 

GOTO 
GOTO 
GOTO 

62 
83 
64 
85 
66 
69 
70 

PRINT II COMPUTER WINS" 
GOTO 30 
REM YOU WIN 

72 PRINT II YOU WIN" 
78 GOTO 30 
80 REM END THE GAME BY PRESSING 
82 REM THE "RESET" KEY 

70 
70 
70 



OUTLINE 15-2 
10 REM ! ! ! VA CAT I ON ! ! ! 
12 HOME 
20 REM HEADING 
30 REM INSTRUCTIONS 
50 REM CHOICE OF VACATIONS 
80 REM ENDING OF PROGRAM 

PROGRAM 15-2 
10 REM ! ! ! VACATION ! ! ! 
12 HOME 
13 PRINT 
1ll PRINT 
15 PRINT 
20 REM HEADING 
21 PRINT "VACATION CHOOSING PROGRAM" 
22 PRINT 
23 PRINT "PICKS YOUR VACATION BY THE" 
2ll PRINT "AMOUNT YOU WANT TO SPEND" 
25 PRINT 
30 REM INSTRUCTIONS 
31 PRINT "ENTER THE AMOUNT IN DOLLARS THAT 11 

32 PRINT "YOU CAN SPEND." 
33 PRINT 
35 REM GET DOLLAR AMOUNT 
37 INPUT D 
ll0 M$ = "FLIP PENNIES WITH YOUR KID BROTHER." 
ll3 P$ = "SPEND THE AFTERNOON IN BEAUTIFUL HOG 

WALLOW , MI CH. II 

ll5 Q$ = "ENTER A PICKLE EATING CONTEST IN 
SCRATCHY BACK, TENN." 

ll7 REM ETC. 
ll9 REM ETC. 
58 Z$ = "BUY A COSY YACHT AND CRUISE THE 

CARIBBEAN SEA. 11 

70 IF D < 0.ll8 THEN PRINT M$: GOTO 80 
72 IF D < 0.88 THEN PRINT P$: GOTO 80 
7ll REM ETC. 
76 REM ETC. 
86 IF D < 1000000 THEN PRINT Z$: GOTO 80 
88 PRINT "TREAT YOUR WHOLE SCHOOL TO A 'ROUND 

THE WORLD TRIP!" 
90 REM ENDING OF PROGRAM 

183 



184 

16-1 
10 REM RANDOM NAME 
20 HOME 
30 INPUT "YOUR NAME? ";N$ 
40 X = RND <8> * 35 
50 Y = 1 + RND <8> * 19 
60 HTAB <X> 
70 VTAB <Y> 
80 PRINT N$ 
90 GOTO 40 
99 END 

16-2 
10 REM JUMPING 
20 HOME 
30 X = RND (8) 
35 Y = RND (8) 
50 VTAB <Y> 
60 HTAB <X> 

"HERE" 

* 35 +1 
* 22 +1 

70 
75 
80 
90 

PRINT "HERE"; 
FOR I = 1 TO 500: 
HTAB <X> 
PRINT II 

II 

999 GOTO 30 

17A-1 

NEXT 

10 REM COUNTING BY FIVES 
15 SPEED= 1 
20 FOR I = 5 TO 100 STEP 5 
30 PRINT I 
40 NEXT I 
99 SPEED= 255 

17B-2 
HOME 10 

20 REM SLIPPING NAME 
25 N$ = "BRIAN" 
27 SPEED= 200 
30 FOR I = 1 TO 15 
35 
40 
99 

PRINT TAB< 
NEXT I 
SPEED= 255 

I * 2 > ; N$ 



76-3 
10 REM CLIMBING NAME 
12 HOME 
15 N$ = "STANLAUS MAZURSKI" 
17 SPEED= 225 
20 FOR I = 23 TO 1 STEP - 1 
25 VTAB I 
27 HTAB I 
30 PRINT N$ 
40 NEXT 
90 HOME 
99 SPEED= 255 

176-4 
10 REM +++ FRIENDS NAMES +++ 
12 HOME 
15 SPEED= 100 
20 INPUT "NAME? ";N$ 
22 PRINT 
25 INPUT "OTHER NAME? 11 ;M$ 
30 FOR I = 1 TO 5 
35 FLASH 
36 PRINT 
40 PRINT N$ 
45 INVERSE 
46 PRINT 
50 PRINT M$ 
60 NEXT I 
98 SPEED= 255 
99 NORMAL 

19-2 
10 REM SLIDING NAME 
12 HOME 
20 INPUT "YOUR NAME? ";N$ 
25 VTAB 15: HTAB 1 
30 SPEED= 225 
40 FOR I = 1 TO 30 
45 N$ = II II + N$ 

50 PRINT N$; 
55 HTAB 1 
60 NEXT I 
99 SPEED= 255 

185 



186 

19-3 
REM FALLING FRIEND 
HOME 

10 
12 
20 INPUT "YOUR FRIEND'S NAME: 11 ;F$ 
25 8$ : II 

29 HOME 
30 FOR I = 1 TO 23 
31 
32 
3£1 
£10 
a2 
£15 
£19 

10 
12 
20 
22 
2a 

PRINT 8$ 
HTA8 15 
VTA8 I 
PRINT F$; 
HTA8 15 
FOR T = 1 TO 100: NEXT T 
NEXT I 

REM 
HOME 

19-ll 
CROSSING FRIENDS 

INPUT "YOUR NAME 11 ;Y$ 
PRINT 
INPUT "YOUR FRIEND'S NAME 

26 8$ : II II 

28 HOME 
35 
36 
37 

REM MAIN LOOP 

£10 FOR I = 1 TO 23 
£15 IF I > 16 THEN GOTO 60 
50 HTA8 2 * I 
51 VTA8 12 
53 PRINT 8$; 
55 HTA8 2 * I + 2 
57 PRINT Y$; 
60 HTA8 12: VTA8 I 
65 PRINT 8$; 
70 HTA8 12: VTA8 I + 1 
75 PRINT F$; 
90 NEXT I 
91 
92 REM DELAY AT END 
93 : 
95 FOR T = 1 TO 2000: NEXT T 
99 HOME 

II ;F$ 



21-2 
100 REM MAKE A STAR 
105 GR 
110 COLOR= 13 
120 FOR I = 15 TO 25 
125 PLOT 20tl 
130 PLOT I t20 
1 ll0 NEXT I 
1 ll8 COLOR= 1 1 
150 FOR I = 16 TO 24 
155 PLOT I t I 
158 J = 40 - I 
160 PLOT J ti 
170 NEXT I 
180 FOR T = 1 TO 3000: NEXT T 
195 TEXT 
197 HOME 

22-1 
10 REM DRAW A BOX 
12 HOME 
13 PRINT . PRINT . PRINT . . 
20 PRINT "WHAT COLOR SQUARE? <1-15> II 

22 INPUT C 
30 GR : COLOR= C 
ll0 HLIN 10t30 AT 10 
42 HLIN 10t30 AT 39 
ll4 VLIN 10t39 AT 10 
ll6 VLIN 10t39 AT 30 
60 FOR T = 1 TO 5000: NEXT T 
95 TEXT 
97 HOME 

187 



188 

21 - 3 
100 REM SINBAD'S MAGIC CARPET 
101 
102 GOTO 1000 
200 
201 REM MAIN LOOP 
202 
205 x = 1 
206 A= RND C8>:B = RND C8> 
207 C = RND C8> 
210 FOR I = 0 TO 19: FOR J = 0 TO 19 
212 K = I + J 
214 COLOR = CCX> 
215 PRINT CCX> 
216 X = X + A * CI + 3 * B> I CJ + 3) + C * C20 -

I - J) I 53 
217 REM CHANGE LINE 216 TO GET A VARIETY OF 

PATTERNS 
218 IF X > NC * 1 THEN X = X - NC: GOTO 218 
219 IF X < 1 THEN X = 1 
230 PLOT I tK: PLOT Kt! 
232 PLOT 39 - I tK: PLOT Kt39 - I 
234 PLOT 39 - Kt!: PLOT I t39 - K 
236 PLOT 39 - I t39 - K: PLOT 39 - Kt39 - I 
290 NEXT Jtl 
999 END 
1000 
1001 REM <<< SINBAD'S MAGIC CARPET >>> 
1002 
1080 DIM CC15) 
1090 GR 
2000 
2001 REM INPUT COLORS 
2002 
2010 INPUT 11 NUMBER OF COLORS IN THE RUG ";NC 
2020 FOR I = 1 TO NC 
2025 INPUT 11 COLOR ? <0-15> ";c 
2030 CC I > = C 
2032 FOR J = 1 TO C:X = RND C8>: NEXT J 
2033 REM THIS CHANGES THE RANDOM NUMBER FROM 

ONE RUG TO THE NEXT 
2035 NEXT I 
2040 REM SOME OF THE PRETTIEST RUGS HAVE ONLY Z 

COLORS 
9999 GOTO 200 



9 . • 
10 REM MENU MAKER 
11 
12 HOME 
15 PRINT . PRINT . PRINT . . 
19 . . 
20 PRINT "WHICH COLOR DO YOU LIKE?" 
21 PRINT 
22 PRINT II <M> MAGENTA 
24 PRINT II <Y> YELLOW 
26 PRINT II <G > GREEN 
28 PRINT II <B> BLUE 
29 PRINT 
30 
31 GET CS 
32 
35 IF C$ = "M" THEN c = 1 
36 IF C$ = "Y" THEN c = 13 
37 IF C$ = "G" THEN c = 12 
38 IF C$ = "B" THEN c = 6 
39 . . 
40 COLOR= C 
50 • . 
51 REM MAKE A STAR AS IN THE PROBLEM 2 OF ASSIGN ME NT 21 
52 189 



190 

A23 - 2 
10 
12 
13 
14 
15 
16 
18 
20 
22 

REM SILLY SENTENCES 
HOME 
PRINT : PRINT : PRINT 
PRINT "SILLY SENTENCES": PRINT : PRINT 
PRIN T "WANT INSTRUCTIONS? <YIN >": PRINT 
GET Y$: IF Y$ = 11 Y11 THEN GOTO 100 
PRINT : PRINT 
PRINT "THE SUBJECT: <END WITH A PERIOD)": PRINT 
GET L$ 

24 IF L$ = II. II 

28 S$ = S$ + L$ 
29 GOTO 22 

THEN GOTO 30 

30 S$ = S$ + 11 11
: REM ADD A SPACE AFTER THE LAST WORD 

32 PRINT "THE VERB: <END WITH A PERIOD>": PRINT 
34 GET L$ 
36 IF L$ = "•" THEN GOTO 42 
38 S$ = S$ + L$ 
40 GOTO 34 
42 S$ = S$ + II II 

50 PR I NT 11 THE OBJECT: (END WI TH A PER I OD) 11
: PR I NT 

52 GET L$ 
54 IF L$ = II. 

11 THEN GOTO 70 
56 S$ = S$ + L$ 
58 GOTO 52 
70 S$ = 8$ + 11

t
11 

80 PRINT 
85 PRINT S$ 
89 END 
100 
101 REM INSTRUCTINS 
102 
104 HOME 
110 PRINT "THREE PLAYERS ENTER PARTS OF A SENTENCE": PRINT 
115 PRINT "NO PLAYER CAN SEE WHAT THE OTHERS ENTER": PRINT 
120 PRINT "THE FIRST ENTERS THE SUBJECT. 11

: PRINT 
122 PR INT 11 (THE PERSON DO I NG SOMETHING) 11

: PR I NT 
130 PRINT "THE SECOND ENTERS THE VERB": PRINT 
132 PRINT II <THE ACTION WORD> II: PRINT 
1ll0 PRINT "THE THIRD ENTERS THE OBJECT": PRINT 
142 PRINT 11 <THE PERSON OR THING TO WHOM 11

: PRINT 
1aa PRINT II THE ACTION IS DONE>": PRINT 
1ll8 FOR T = 1 TO 5000: NEXT T 
150 GOTO 18 



25-2 
REM APPLE TREE 
HOME : GR 

10 
12 
20 
25 
30 
40 
50 
99 
200 
201 
202 
205 
210 
215 
220 
300 
301 
302 

REM MAIN LOOP 
GOSUB 200: REM 
GOSUB 300: REM 
GOSUB 400: REM 
GOSUB 500: REM 
END 

SKY 
MAKE TREE 
MAKE APPLES 
APPLES FALL 

REM 
REM BACKGROUND 
REM 
COLOR= 6: REM 
FOR I = 0 TO 39 
HLIN 0,39 AT I 
NEXT I 
REM 
REM MAKE TREE 
REM 

310 REM GROUND 

MAKE APPLES 

312 COLOR= 10: REM GREY 
314 HLIN 0,39 AT 39 
315 HLIN Ot39 AT 38 
320 REM TRUNK 
322 COLOR= 8: REM DARK GREEN 
324 VLIN 25,39 AT 19 
326 VLIN 25,39 AT 20 
330 REM GREEN PART 
332 COLOR= 4 
333 HLIN 17t21 AT 25 
334 HLIN 15t25 AT 24 
335 HLIN 13t27 AT 23 
336 HLIN 10t30 AT 22 
337 HLIN 9,31 AT 21 
338 HLIN 9,32 AT 20 
339 HLIN 9,32 AT 19 
340 HLIN 8t31 AT 18 
341 HLIN 10,29 AT 17 
342 HLIN 11 ,29 AT 16 
343 HLIN 13t26 AT 15 
344 HLIN 12t26 AT 14 
345 HLIN 14,z4 AT 13 
348 HLIN 16t23 AT 12 
347 HLIN 17t21 AT 11 
390 RETURN 

191 



192 

400 REM 
401 REM MAKE APPLES 
402 REM 
405 COLOR= 9: REM ORANGE 
408 FOR K = 1 TO 40 
409 REM PUT APPLES IN A RECTANGLE 
410 X = INT < RND (8) * 28> + 8 
415 Y = INT < RND (8) * 25) + 10 
420 L = SCRN< x,y) 
aza REM ONLY PUT APPLES ON GREEN TREE 
425 IF L = 4 THEN PLOT x,y 
430 NEXT K 
490 RETURN 
500 REM 
501 REM FALLING APPLES 
502 REM 
509 REM LOOK IN RECTANGLE FOR APPLES 
510 FOR K = 1 TO 1000 
515 X = INT < RND (8) * 28> + 8 
520 Y = INT < RND (8) * 25) + 10 
530 L = SCRN< x,y) 
534 REM IF FIND ORANGE APPLE, DROP IT 
535 IF L = 9 THEN GOSUB 600 
540 NEXT K 
590 RETURN 
800 REM 
801 REM DROP THE APPLE 
802 REM 
810 LL = 4: REM GREEN 
820 COLOR= LL: PLOT x, Y: REM COVER EMPTY SPOT 
825 Y = Y + 1: REM LOOK BELOW APPLE 
630 L = SCRN< x,y) 
634 REM IF SEE GROUND, PLOT APPLE AND RETURN 
635 IF L = 10 THEN COLOR= 9: PLOT x,y - 1: RETURN 
640 LL = L: REM COLOR TO COVER EMPTY SPOT 
645 COLOR= 9: PLOT x,Y: REM APPLE ONE SQUARE LOWER 
690 GOTO 620 



26-1 
' 10 REM CIPHER MAKER 
12 HOME 
13 PRINT 
14 PRINT 
20 PRINT "CODE MAKING PROGRAM" 
21 PRINT 
22 PRINT 
30 PRINT "ENTER A SENTENCE FOR CODING:" 
31 PRINT 
32 INPUT SS 
33 PRINT 
35 L = LEN <SS> 
40 FOR I = 1 TO L STEP 2 
45 PS= MIO$ (S$tlt2) 
50 Q$ = RIGHTS <PSt1) + LEFTS <PSt1) 
55 LS = LS + Q$ 
60 NEXT I 
65 PRINT 
66 PRINT "HERE IS THE CODED SENTENCE:" 
67 PRINT 
70 PRINT LS 

10 
12 
13 
20 
21 
25 

26-2 
REM QUESTION ANSWERER 
HOME 
PRINT : PRINT : PRINT 
PRINT "ENTER A QUESTION" 
PRINT 
INPUT Q$ 

28 L = LEN (Q$) 
30 : 
31 
32 

REM . TAKE OFF THE QUESTION MARK 

33 
34 
35 
36 
38 
39 
40 
45 
46 
47 
48 
49 
50 

Q$ = LEFT$ (Q$,L - 1) + 
PRINT 

REM LOOK FOR THE END OF . . 
FOR I = 1 TO L 

CS = MIO$ (Q$,It1> 

II II • 

THE 

IF CS = II II THEN 51 = I : I = 
NEXT I 

FIRST WORD 

L 

REM LOOK FOR THE END OF THE SECOND WORD 

FOR I = S1 + 1 TO L 

193 



194 

52 C$ = MID$ ( Q$ ti t1 > 
sa IF C$ = 11 11 THEN 52 = 1:1 = L 
56 NEXT I 
57 
58 REM TURN THE WORDS AROUND 
58 
60 5$ = MID$ (Q$,S+1+ 1t52 - 51> 
62 V$ = LEFT$ (Q$,51) 
65 PRINTS$ + V$ + RIGHT$ (Q$,L - 52) 

26-3 
10 REM *** PIG LATIN *** 
12 HOME 
13 PRINT PRINT : PRINT 
20 PRINT "THIS IS A PIG LATIN PROGRAM" 
21 PRINT 
25 PRINT 
30 INPUT 
32 PRINT 
a0 F$ = 

"GIVE ME A WORD: 
: PRINT 

LEFT$ < W$ t1 > 
a2 
aa 
as 
as 
50 

E$ = F$ + 11 AY 11 

IF F$ = 11 A11 THEN E$ = 
IF F$ = 11 E11 THEN E$ = 

= II I II IF F$ 
IF F$ = "O" 

THEN 
THEN 

E$ = 
E$ = 

II; W$ 

"LAY 
11 LEE 11 

11 LIE 11 

11 L0 11 

52 IF F$ = 11 U11 THEN E$ = 11 LU 11 

70 L$ = RIGHT$ <WSt LEN <W$) - 1) + E$ 
80 PRINT L$ 
85 PRINT : PRINT 
80 GOTO 30 

27-1 
10 REM BACKWARD ADDED TO FORWARD 
12 HOME 
13 PRINT : PRINT : PRINT 
20 INPUT "GIVE ME A NUMBER: 11 ;N 
30 N$ = STR$ <N> 
35 L = LEN <NS> 
a0 FOR I = 1 TO L 
as B$ = 6$ +MIO$ (N$tL + 1 - I t1) 
50 B = VAL (6$) 
55 NEXT I 

PRINT PRINT PRINT 
II; N 

PRINT 57 PRINT 
60 PRINT II 

61 PRINT II 

65 PRINT II 

+" ;B 
";LEFT$ ( II - - - - - - - - - - - ·- - II , L ) 

70 
72 
75 
76 
88 

A = N + B 
A$ = STR$ <A> 

IF LEN <A$) = 
IF LEN (A$> = 
END 

L THEN PRINT II II ;A 
L + 1 THEN PR I NT II II ; A 



27-2 
10 REM MARCHING NUMBERS 
12 HOME 
13 PRINT : PRINT : PRINT 
20 INPUT "GIVE ME A NUMBER ";N 
22 B$ : II II 

25 N$ = STR$ CN> 
27 L = LEN CN$) 
28 VTAB 15 
31 
33 REM LOOP 
3a 
a0 FOR I = 1 TO 39 - L 
as HTAB I 
50 PRINT II u; 
55 HTAB I + 1 
60 PRINT N$; 
62 FOR T = 1 TO 200: NEXT T 
65 N$ = RIGHT$ CN$tL - 1) +LEFT$ CN$,1) 
70 NEXT I 
80 
82 REM END 
0a 
99 SPEED= 255 

28-1 
200 REM SHOOT 
202 REM ADD TO SHOOT PROGRAM 
210 FOR I = 38 TO 0 STEP - 1 
230 COLOR= 12 
2a0 PLOT Xtl 
250 COLOR= 0 
260 PLOT Xtl 
290 NEXT I 
299 RETURN 

195 



196 

28-2 
10 REM *** SHOOTING STARS *** 
20 HOME : GR 
30 GOSUB 300 
40 PRINT "USE PADDLE 0" 
50 y = 39 
55 COLOR= 0 
60 PLOT x,y 
65 X = POL (0) * 39 I 255 
67 COLOR= 7 
70 PLOT X1Y 
75 IF PEEK ( - 16287) > 127 THEN GOSUB 200 
99 
200 
210 
212 
215 
217 

GOTO 55 
REM SHOOT 
FOR I = 38 TO 0 STEP - 1 

CS = SCRN < X ti > 

IF cs= 1 THEN PRINT CHR$ (7);:cs = 0 
COLOR= 12 

220 PLOT X1I 
230 COLOR= CS 
240 
280 
299 
300 
310 
320 
330 
340 
342 
345 
350 
399 

PLOT X ti 
NEXT I 
RETURN 
REM INITIALIZE STARS 
FOR I = 1 TO 10 

X = RND (8) * 40 
Y = RND (8) * 20 

COLOR= 10 
IF RND (8) < .5 THEN 
PLOT X,Y 
NEXT I 
RETURN 

COLOR= 1 



29-1 
10 REM ALPHABETICAL 
12 HOME 
13 PRINT : PRINT : PRINT 
19 
20 PRINT "THIS PROGRAM ARRANGES THE LETTERS" 
21 PRINT "OF A WORD IN ALPHABETICAL ORDER." 
22 
23 PRINT 
29 
30 INPUT "GIVE ME A WORD: II ;W$ 
31 
32 PRINT 
35 L = LEN CW$) 
37 
38 REM TEST LETTERS IN ALPHABET 
39 : 
40 FOR I = 65 TO 65 + 26 
41 : 
42 REM TO SEE IF IN WORD 
43 : 
45 FOR J = 1 TO L 
50 G = ASC C MIO$ CW$1J11)) 
55 IF G = I THEN H$ = H$ + 
60 NEXT J: NEXT I 
61 

PRINT 

CHR$ CG> 

70 
75 
76 

PRINT "HERE IT IS IN ALPHABETICAL ORDER: " 
PRINT 

80 PRINT H$ 

29-2 
REM @@@ DOUBLE DUTCH @@@ 10 

1 1 
12 
20 
21 
22 

HOME : PRINT : PRINT : PRINT PRINT : PRINT 

REM INPUT THE SENTENCE 

25 PRINT "GIVE ME A SENTENCE: " : PRINT 
30 INPUT S$: PRINT 
40 L = LEN CS$) 
42 HOME : PRINT : PRINT PRINT PRINT 
46 
47 REM CHECK EACH LETTER 
48 
50 
52 
60 
62 
64 
66 
68 

FOR 
L$ = 

IF 
IF 
IF 
IF 
IF 

I 

L$ 
L$ 
L$ 
L$ 
L$ 

= 1 TO L 
MIO$ CS$1I11>: REM 
= "A" THEN GOTO 
= "E" THEN GOTO 
= II I II THEN GOTO 
= "0" THEN GOTO 
= "U" THEN GOTO 

GET A LETTER 
72 
72 
72 
72 
72 

PRINT 

197 



69 SS$ = SS$ + L$ 
72 NEXT I 
73 
74 REM PRINT THE SENTENCE IN DOUBLE DUTCH 
75 • . 
76 PRINT "HERE IT IS IN DOUBLE DUTCH 11 

77 PRINT 
80 PRINT SS$ 

29-3 
10 REM ON ••• GOTO SAMPLE 
12 HOME 
13 PRINT : PRINT : PRINT 
20 
21 
22 

REM MAKE A MENU 

"MAKE YOUR CHOICE:" 30 PRINT 
31 PRINT 
32 PRINT 
33 PRINT 
40 PRINT 
41 X = ASC 
49 

: PRINT "<A > TAKE A 
PRINT "<B> EAT AN 
PRINT 11 <C > CALL A 
INPUT X$: PRINT 
< X$ > - 64 

50 ON x GOTO 60t70t80 
51 
52 GOTO 30 
59 

NAP" 
APPLE" 
FRIEND" 

60 PRINT "YOUR BED IS NOT MADE!" 
61 END 
70 PRINT "YOUR SISTER ATE THE LAST ONE!" 
71 END 
80 PRINT "YOUR FATHER IS ON THE PHONE!" 
81 END 

30-1 
9 : 
10 REM PHONE LIST KEEPER 
11 REM RUN 1000 TO INITIALIZE PHONE LIST 
13 D$ = CHR$ < ll> 
14 DIM NA$(20> tTE$(20) 
15 
16 REM MENU 
17 
18 GOSUB 800 
20 HOME 
21 PRINT PRINT : PRINT "PHONE LIST": PRINT 
22 PRINT 11 <A> ADD NAMES AND NUMBERS": PRINT 
24 PRINT 11 <L> LIST THE NAMES AND NUMBERS": PRINT 
25 PRINT 11 <E> END THE PROGRAM": PRINT 
26 PRINT 11 <I > INSTRUCTIONS": PRINT 
27 GET Y$ 
28 IF Y$ = 11 A11 THEN GOTO 100 

198 30 IF Y$ = "L II THEN GOTO 300 



31 IF Y$ = "E" THEN END 
32 IF Y$ = "I" THEN GOSUB 900 
35 GOTO 27 
95 END 
100 
101 REM ADD NEW NAMES AND NUMBERS 
102 
105 
110 
115 
120 
130 
132 
134 
140 
190 
193 
195 
300 
301 
302 
305 
310 
320 
325 
330 
390 
395 
500 
501 
502 
515 
520 
530 
535 
536 
540 
545 
595 
800 
801 
802 
810 
811 
815 
820 
821 
825 
830 
840 
895 
900 
995 
1000 

HOME 
INPUT "ENTER NAME: 11 

; A$ 
PRINT 
INPUT "ENTER NUMBER: ";T$ 
FOR I = 1 TO 20 
IF NA$ ( I) = II II THEN z = I : I = 20 
NEXT I 

NA$CZ> = A$:TE$ CZ>= T$ 
GOSUB 500 
HOME 
GOTO 20 

REM LOOK UP A NUMBER 

HOME 
FOR I = 1 TO 20 
PRINT NA $(I>; TABC 25) ;TE$C Ii 
IF NA$ (I) = "II THEN I = 20 
NEXT I 
PRINT "PRESS <M> FOR RETURN TO THE MENU": GET A$ 
GOTO 20 

REM PUT THE PHONE LIST ON DISK 

PRINT D$;"0PEN PHONE LIST" 
PRINT D$;"WRITE PHONE LIST" 
FOR I = 1 TO Z+ 1 
PRINT NA$CI> 
PRINT TE$CI> 
NEXT I 
PRINT D$;"CLOSE PHONE LIST 11 

RETURN 

REM LOAD PHONE LI ST FROM DISK 

PRINT D$; 11 0PEN PHONE LIST" 
PRINT D$; 11 READ PHONE LIST" 
FOR I = 1 TO 20 
INPUT NA$CI> 
INPUT TE$CI> 
IF NA$ ( I) = II II THEN z = I : I = 20 
NEXT I 
PRINT D$;"CLOSE PHONE LIST" 
RETURN 
REM 
RETURN 

199 



1001 REM INITIALIZE DISK FILE "PHONE LIST" 

0$ = CHR$ C 4 > 
1002 : 
1003 
1004 
1005 
1007 
1010 
1015 
1016 
1020 
1040 
1095 

PRINT D$;"OPEN PHONE LIST" 
PRINT D$;"WRITE PHONE LIST" 
DIM NA$C20) ,TE$C20> 
FOR I = 1 TO 20 
PRINT NASCI> 
PRINT TE$CI) 
NEXT I 
PRINT D$;"CLOSE PHONE LIST" 
END 

31-3 
2 : 
10 REM "AIN'T GOT NO" 
11 
12 HOME 
13 PRINT : PRINT : PRINT 
20 
21 PRINT "SEARCH FOR DOUBLE NEGATIVES'': PRINT 
22 
30 PRINT "ENTER A SENTENCE:": PRINT 
31 
32 INPUT S$: PRINT 
33 S$ = S$ + " ": REM END THE SENTENCE WITH A BLANK SPACE. 
35 L = LEN CS$) 
40 NM = 0: REM NUMBER OF NEGATIVE WORDS 
42 S1 = 1:S2 = 1: REM START LETTER OF TWO WORDS 
45 FOR I = 1 TO L 
50 L$ = MID$ css,1 ,1): REM GET A LETTER 
54 REM IS IT A SPACE? 
55 IF L$ = " " THEN S1 = S2:S2 = I + 1: GOSUB 200 
60 NEXT I 
65 PRINT 
70 IF NN = 2 THEN PRINT "THIS SENTENCE HAS A DOUBLE NEGATIVE." 
72 IF NN = 0 THEN PRINT "THIS SENTENCE AIN'T GOT NO DOUBLE 

NEGATIVE! 
74 IF NN = 4 THEN PRINT "THIS SENTENCE HAS TWO DOUBLE NEGATIVES 
100 
101 REM TEST THE PROGRAM ON THE SENTENCE: 

REM I NEVER EAT NO JUNK FOOD! 

END 

REM IS THE WORD A NEGATIVE? 

102 
103 
104 : 
198 
199 
200 
201 : 
205 
210 
220 
232 

LW = S2 - S1 - 1: REM 
W$ = MID$ css,s1 ,LW) 

PRINT W$ 

LENGTH OF THE WORD 

200 234 
IF W$ = 11 N0 11 OR W$ = "NOT" DR W$ = "DON'T" THEN NN = NN + 1 
IF W$ = "NOTH I NG" OR W$ = "NEVER 11 OR W$ = "A IN' T" THEN 
NN = NN + 1 



240 REM ETC. 
295 RETURN 

32 - 2 
1 GOTO 1000: REM *** CODE- DECODE *** 
2 
100 REM MAIN LOOP 
110 REM 
113 GOSUB 400: REM GET PASSWORD 
115 PRINT : PRINT "CODE OR DECODE? <CID> 11

: GET Y$ 
120 IF Y $ = 11 C11 THEN GOTO 500: REM CODE MESSAGE 
130 IF Y $ = 11 D11 THEN GOTO 600: REM DECODE MESSAGE 
140 GOTO 115 
199 END 
399 
400 REM GET PASSWORD AND FORM CODE ALPHABET 
401 
402 HOME : PRINT : PRINT 
405 INPUT "INPUT PASSWORD 11 ;PW$ 
406 REM REMOVE REPEATED LETTERS FROM THE PASSWORD 
408 F$ = LEFT$ <PW$t1) 
410 FOR I = 2 TO LEN <PW$) 
411 L1$ = MID$ <PW$tl t1) 
412 FOR J = 1 TO LEN CF$) 
415 L2$ = MID$ CF$tJt1) 
420 IF L1$ = L2$ THEN GOTO 430 
421 NEXT J 
422 F$ = F$ + L1$ 
430 NEXT I 
432 PW$ = F$ 
433 PRINT : PRINT : "THE SHORTENED PASSWORD IS ";PW$ 
434 
435 REM REMOVE PASSWORD LETTERS FROM THE ALPHABET 
436 
440 FDR J = 1 TD LEN <PW$):L2$ = MID$ <PW$tJt1) 
441 IF L2$ = LEFT$ CA$t1) THEN A$= MID$ CA$t2): GOTO 460 
442 FOR I = 2 TO LEN CA$):L1$ =MID$ (A$tl t1) 
445 IF L1$ = L2$ THEN A$= LEFT$ CA$tl - 1) + MID$ (A$tl + 1) 
455 NEXT I 
460 NEXT J 
461 
462 REM FORM CODE ALPHABET 
463 
465 A$ = PW$ + A$ 
470 PRINT : PRINT "THE CIPHER ALPHABET IS 11

: PRINT 
PRINT B$ 

498 RETURN 

PRINT A$: 

201 



202 

499 
500 REM FORM A CODED MESSAGE 
501 
505 PRINT : PRINT ''INPUT MESSAGE, END WITH '*' SIGN": PRINT 
510 GET L$:L = ASC (L$) 
515 IF L$ = "*" THEN GOTO 590 
520 IF L < 65 OR L > 91 THEN P$ = P$ + L$: GOTO 540 
530 P$ = P$ + MID$ (A$tl - 64t1) 
540 PRINT L$; 
589 GOTO 510 
590 PRINT : PRINT P$ 
598 END 
599 
600 REM DECODE A MESSAGE 
601 
610 PRINT : PRINT "TYPE IN THE CODED MESSAGE" 
612 PRINT "END THE MESSAGE WITH A '*' SIGN" 
613 PRINT PRINT 
615 GET L$ 
617 IF L$ = "*" THEN GOTO 690 
620 FOR I = 1 TO 26 
625 IF L$ = MID$ (A$ ti t1) THEN PRINT MID$ (6$ t i t1);: GOTO 6 
630 NEXT I 
635 PRINT L$; 
640 GOTO 615 
690 END 
1000 
1005 REM *** C 0 D E - D E C 0 D E *** 
1010 
2015 A$ = 11 A6CDEFGHIJKLMNOPQRSTUVWXYZ 11 

2020 6$ = 11 A6CDEFGHIJKLMNOPQRSTUVWXYZ 11 

2999 GOTO 110 



0 
1 
2 

SOME 
REM 
REM 
REM 

PROGRAMS BY STUDENTS 
EXTRA 4 JOHN AND MATT 
<<<< <FIRE! >>>> > 

3 REM BY MATT AND JOHN O'MALIA 
4 REM AGES 11 AND 12 
5 REM 
6 HOME PRINT "PRESS PADDLE BUTTON TO HIT SHIP 11 

7 PRINT 11 AIM AT TAIL SECTION" 
B FOR I = 1 TO 2500: NEXT I 
9 FOR GO = 1 TO 30 
10 HOME :SOUND = PEEK < - 16336) 
15 HTAB GO: PRINT 11 # 11 

25 HTAB GO: PRINT 11 =####) 11 

35 HTAB GO: PRINT 11 # 11 

45 y = POL (0) I 8 . 5 
47 VTAB 23: HTAB Y: PRINT 11

"
11 

60 IF PEEK < - 16287 > > 127 THEN 100 
65 NEXT GO 
99 GOTO 160 
100 FOR AR = 22 TO 1 STEP - 1 
105 VTAB AR: HTAB Y: PRINT 11

"
11 

120 FOR T = 1 TO 10: NEXT T 
145 NEXT AR 
147 Y = INT <Y> - 1 
149 VTAB 15 
150 PRINT "HE WAS AT 11 ;Go; 11 you WERE AT 11 ;y 
160 VTAB 17: PRINT "PLAY AGAIN? 11

; 

1 70 GET AG$: IF AG$ = II y II THEN RUN 
180 END 

2 REM GREETING PROGRAM 
3 REM BY DAN CLARK, AGE 10 
10 INPUT 11 WHAT IS YOUR NAME? ";N$ 
15 PRINT 
20 PRINT "HELLO II ;N$ 
30 PRINT 
35 FOR J = 1 TO 2000 
40 PRINT "HERE IS MY CATALOG 11 

45 0$ = CHR$ <4> 
50 PRINT 0$; 11 CATALOG 11 

203 



204 

10 REM ########################### 

15 REM • • 
20 REM # BY DAVID R.FOOTE • 
25 REM # • 

30 REM # AGE 10 • 
35 REM # • 

40 REM ########################### 

45 HOME 
660 TEXT : HOME 
670 S$ = II II 

680 K$ = "!_$_!" 
690 VTAB 10: HTAB 1 
695 FOR I = 1 TO 115 
700 PRINT S$ + K$ 
705 FOR T = 1 TO 20: NEXT T 
710 HTAB 1 
714 VTAB 5: PRINT "MONEY COMES AND MONEY GOES" 
715 VTAB 10 
720 S$ = S$ + II II 

730 NEXT I 
740 PRINT S$ + S$ 



10 
20 
30 
40 
45 
50 
55 
60 
62 

REM 
REM 
REM 
REM 
HOME 
PRINT 
PRINT 
PRINT 
REM 

########################### 

# BY DAVID R.FOOTE # 

# ************* # 
########################### 

"THIS PROGRAM WILL DISPLAY 11 

"DIFFERENT COLORS ON THE SCREEN" 

65 FOR I 
80 GR :D 
86 y = 1 

= 1 TO 1900: NEXT I 
= 0 

90 
140 
150 
330 
335 
340 

HLIN 0,39 AT Y:Y = Y + 1: IF Y < 38 THEN GOTO 90 
COLOR= INT <14 * RND <1>> + 1 

D = D + 1: IF D < 15 THEN GOTO 86 
TEXT : HOME 
VTAB 10: HTAB 12: PR I NT II THAT Is ALL FOLKS II 
FOR T = 1 TO 2000: NEXT T 

341 GR : COLOR= 6 
343 HLIN 0,39 AT X 
344 x = x + 1 
345 IF X < 39 GOTO 343 
360 COLOR= 11 
370 PLOT 18t23 
390 PLOT 19,23: PLOT 20t24: PLOT 21 t25: PLOT 22t26: PLOT 

22,26: PLOT 21 t27: PLOT 20,20: PLOT 19t29: PLOT 18t29: 
PLOT 17t28: PLOT 16t27: PLOT 5t26: PLOT 16t25: PLOT 17t24: 
PLOT 18t23 

400 COLOR= 1 
410 PLOT 10,20: PLOT 19t28: PLOT 20t27: PLOT 17,27 
420 COLOR= 11: PLOT 17t26: PLOT 20t26: COLOR= 14: PLOT 20,25: 

PLOT 17,25 
430 COLOR= 11: PLOT 18t27: PLOT 19,27 
440 PLOT 19t26: PLOT 19t25: PLOT 19t24: 
450 COLOR= 1: PLOT 18t26: COLOR= 11: PLOT 18t25: PLOT 18t24 
460 COLOR= 15: PLOT 19,30: PLOT 19,31: PLOT 19,32: PLOT 19,33 
470 PLOT 20t34: PLOT 21 t35: PLOT 22t36: PLOT 23t37: PLOT 

24t37: 
480 PLOT 18t34: PLOT 17t35: PLOT 16t36: PLOT 15t37: PLOT 14,37 
490 COLOR= 8: PLOT 7t38: PLOT 7t37: PLOT 7t36: PLOT 7t35: PLOT 

7,34 
500 VLIN 0,34 AT 7 
505 8 = 0 
510 COLOR= 6: HLIN 0,39 AT 8 
520 B = B + 1 
540 IF 8 < 20 THEN GOTO 510 
550 COLOR= 12: PLOT 6t20: PLOT a,20: PLOT 9t19: PLOT 9,10: 

PLOT 9t17: PLOT 8t16: PLOT 7t16: PLOT 6t16: PLOT 5t17: 
PLOT 5t18: PLOT 5,19 

560 COLOR= 9: PLOT 7,19 
565 FOR Z = 1 TO 4000: NEXT Z 
570 TEXT : HOME 
580 PRINT "HOW WAS THAT FOR A PICTURE?" 

205 



206 

2 REM BY CHRIS CLARK AGE 14 
5 SPEED= 100 
10 PRINT 11 Hlt I'M APPLE II." 
20 PRINT 
30 PRINT "WHAT IS YOUR FIRST NAME?" 
40 INPUT F$ 
50 PRINT 
51 PRINT "AND YOUR LAST NAME?" 
52 INPUT Q$ 
80 PR I NT II WELL t II ; F$; II II ; A$; II t I HAVE A PET BI RD. II 

85 PRINT 
70 PRINT "HIS NAME IS: 11 

80 LET C$ = "BEEP" 
90 PRINT C$ 
100 FOR V = 1 TO 1000: NEXT V 
105 HOME 
110 PRINT "IF YOU LISTENt YOU CAN HEAR HIM ••••• " 
115 FOR G = 1 TO 1000: NEXT G 
120 PRINT CHR$ (7) 
130 PRINT 
140 PRINT "HE SAYS HE LIKES YOUt 11 ;F$ 
150 FOR N = 1 TO 1000: NEXT N 
155 SPEED= 255 
180 PRINT "BYE t II ;F$ 
170 REM GOTO 160 

2 
3 
5 
10 
20 
25 
30 
33 
35 
40 
45 
50 
55 
59 
81 
82 
85 
67 
70 
72 
75 
80 
85 
90 

REM 
REM 

<<<<< <CARS>>>>>> 

FOR A = 
HOME 
PRINT 
HTAB A 

BY JOHN AND MATT O'MALIA 
1 TO 28 

PRINT II XXXXXX" 
SOUND = PEEK C - 18336) 

HTAB A 
PRINT 11 XXXXXXXXXXXX 11 

HTAB A 
PRINT II 0 0 11 

PRINT "***************************" 
NEXT A 
FOR D = 2 TO 19: HOME 
HTAB 29: VTAB D 
PRINT II XXXXXX" 
HTAB 29 
PRINT 11 XXXXXXXXXXXX 11 

HTAB 29: VTAB D + 2 
PRINT II 0 0 11 

HTAB 1: VTAB 5 
PRINT "***************************" 
NEXT D 

AGES 12 AND 11 



GLOSSARY 

argument 
The variable, number or string that appears in the parentheses of a function. Like: 

INT(N) 
LEFf$(W$,3) 

has 
has 

N as an argument 
W$ and 3 as arguments 

array 
A set of variables that have the same name. The members of the array are numbered. 
The numbers appear in parentheses after the variable name. See dimension, subscript. 
Examples: 

A(O) 
B$(7) 
CD(3,I) 

is the first member of the array A 
is the eighth member of the array B$ 
is a member of the array CD 

arrow keys 
Two keys on the Apple computer that have arrows on them. They move the input 
cursor to the left and right. 

ASCII 
Stands for American Standard Code For Information Interchange. Each character has an 
ASCII number. Some actions like line feed, carriage return and bell also have numbers. 

assertion 
The name of a phrase that can be TRUE or FALSE. The phrase we called "something 
A'' in an IF statement is an assertion. An assertion is also a numerical expression. See 
expression, TRUE, FALSE, logic, IF, something A. Example: 

the assertion 11 A11 <>fl 8 fl is TRUE 
the assertion 3 = 4 is FALSE 

autostart ROM 
A memory chip in later Apple II computers. It has a program that puts the machine into 
Applesoft BASIC as soon as the machine is turned on. See boot. 

beep 

bell 

The sound an Apple makes. See peep. 

The early teletype machines had a bell (like the bell on a typewriter). The Apple makes 
a "beep" sound instead. 

bells and whistles 
A phrase going back to the early days of hobby computing. It means the personal 
computer was hooked up to do some interesting or spectacular things, like flash lights 
or play music. 

blank 
The character that is a space. 

boot 
Means to start up the computer from scratch. An easy thing to do with modem 
computers that have start up programs stored permanently in ROM memory. It was an 
involved procedure in the early days. Now it usually means to read in the disk operating 
system programs (DOS) from a disk. 

207 



208 

branch 
A point in a program where there is a choice of which statement to execute next. An IF 
statement is a branch. So is an ON ... GOTO statement. A branch is not the same as 
a jump where there is no choice. See jump, IF. 

buffer 

call 

A storage area in memory for temporary storage of information being inputed or 
outputed from the computer. 

Using a GOSUB calls the subroutine. Putting a function in a statement calls the 
function. Call means the computer does what commands are in the subroutine 
or does the calculation that the function is for. 

carriage return 
On a typewriter, you push the lever that moves the carriage carrying the paper so a new 
line can begin. In computing, it means the cursor is moved to the start of the line, but 
not down to the next line. See line feed, CRLF. 

character 
Letters, digits, punctuation marks and the space are characters. 

clear 
Means erase. Used in ''clear the screen'' and ''clear memory.'' 

column 
Things arranged vertically. See row. 

command 
In BASIC a command makes the computer do some action, such as erase the screen and 
move the cursor to the upper left for the HOME command. See statement, expression. 
Some commands need expressions to be complete. Example: 

HTAB 2+J=1 

concatenation 
Means sticking two strings together by using a''+'' sign. For example: 

"HI 11 + 11 THERE 11 gives the string "HI THERE" 

constant 
A number or string that does not change as the program runs. It is stored right in the 
program line, not in a box with a name on the front. See line. 

CRLF 
Short for "carriage return followed by line feed." This is what is called just a 
"carriage return" on a typewriter. See carriage return, line feed. 

cursor 
A marker that shows where the next character on the screen or in a storage buffer will 
be placed. Cursor means "runner." The cursor runs along the screen as you type. 
There are two kinds of cursors in the Apple: 

data 

INPUT cursor 
PRINT cursor 

a flashing square on the screen 
invisible, ''shows'' where next character will be printed 

BASIC has two kinds of data: numerical and string. Logical data (TRUE, FALSE) are 
types of numerical data. 



debug 
Means to run a program to find the errors and fix them. You fix the errors by editing 
the program. See edit. 

deferred execution 
Means run a stored program. See immediate execution. 

delay loop 
A part of the program that just uses up time and does nothing else. Example: 

FOR T=1 TO 2000:NEXT T 

disk 

edit 

Short for "diskette." Someone called it "a cross between a 45 RPM record and a 
magnetic tape." Used to store information in a permanent form. Like a magnetic tape, 
the information can be erased and new information can be recorded. 

There are two kinds: editing a line and editing a program. In either kind, you are 
retyping parts of it to correct it. 

enter 
To put information into the computer by typing, then pushing the RETURN key. The 
information goes into the input buffer as it is typed. When RETURN is pushed, the 
computer uses the information. 

erase 
To destory information in memory or write blanks to the screen. See clear. 

error trap 
Part of a program that checks for mistakes in information that the user has entered, or 
checks to see if computed results make sense. 

execute 
To run a program or to perform a single command or statement. 

expression 
A portion of a statement that has a single value, either a number or a string. See value. 
Examples: 

7*X+1 
GT$+LEFT$CO$t2) 

3*LENC0$)+RNDC8) 
"DOPE 11 <> N$ 

FALSE 

file 

The number 0. See logic, assertion. 

A collection of information that is on a disk or is in the computer ready to put on a 
disk. 

file name 
The name of a file. See lesson 14 for legal names. 

flashing box 
The input cursor. 

flashing mode 
The mode chosen by the command FLASH which makes all material that the program 
writes to the screen flash on and off. Text you type from the keyboard will not flash. 
See normal mode, inverse mode. 

209 



210 

fork In the road 
Describes a branch point in the program. See branch. 

function 
BASIC has a number of functions built in. Each function has a name followed by 
parentheses. In the parentheses are one or more arguments. The function has a single 
value (numerical or string) determined by its arguments. See value, argument. The 
functions treated in this book are: 

graphics 

ASCt CHR$, INTt LEFT$, LENt MIO$, POL, 
PEEK, RIGHT$, RNDt SCRNt STR$, VAL 

Means picture drawing. 

HELLO program 
Each disk that can be used to boot the computer has a special program written in 
BASIC that is executed automatically at the start. It is called the HELLO program. 

immediate execution 
When a line that does not start with a number is entered from the edit mode, it is 
executed as soon as the RETURN key is pressed. If the line has only one command, 
you usually think of it as ' 'entering a command. '' But the line may have several 
statements separated by colons, and thus it is a little program. Then you think of it as 
''executing a program in the immediate mode.'' 

index 
An array name is followed by one or more numbers or numerical variables in 
parentheses. Each number is an index. Another word for index is "subscript." 

initialize a disk 
When you open a box of disks from the store, they are not yet ready to receive files. 
The computer must write some special things on them first. This is called 
''initialization of the disk.'' 

integers 
The whole numbers, positive, negative and zero. 

inverse mode 
The command INVERSE makes the computer write all output as black letters on white 
background. See normal mode. 

jump 
The GOTO command makes the computer jump to another line in the program, rather 
than execute the next line. 



llne 
There are two kinds of lines in BASIC: Lines that start with a number are stored in the 
program in memory. Lines that do not start with a number are executed right away (see 
immediate execution). A line contains one or more statements, separated by colons. 

Parts of a line: 

16 IF A<=7 THEN PRINT Q$+LEFT$C 11 RAT 11 tK) :GOTO 40 

16 
IF A<=7 THEN PRINT Q$+LEFT$C ••• > 

GOTO 40 
IF A< =7 THEN 
PRINT Q$+LEFT$C 11 RAT 11 tK) 
GOTO 40 
A<=7 
A<=7 
Q$+LEFT$ (II RAT II tK) 
LEFT$ C 11 RAT 11 ,K > 
II RAT II 

K 
A , Q$ , K 
7, "RAT" 
<= 

line number 
first statement 
second statement 
a command 
a command 
a command 
an assertion 
an expression 
an expression 
a function 
an argument 
an argument 
variables 
constants 
an operation 

llne buffer 
The storage space that receives the characters you type in. See buffer. 

llne editing 
Retyping parts of a line to correct it. You do this by moving the cursor to the wrong 
part and then typing the correct characters. 

line feed 
Moving the cursor straight down to the next line. The ASCII number 10 signals this 
command to the screen or printer. See carriage return and CRLF. 

llne numbers 
The number at the beginning of a program line. The line number tells the computer 
where to store the line. Some lines don't have numbers (the ones that will be executed 
in the immediate execution mode). 

llstlng 
A list of all the lines in a program. 

load 
To transfer the information in a file on the disk to the memory of the computer by using 
the LOAD command. 

I ogle 
The part of a program that compares numbers or strings. The relations AND, OR, and 
NOT, and = , < > , < , > , < = , and > = are used. See assertion, IF, something A. 

211 



212 

loop 
A part of the program that is done over and over again. There are two kinds of loops: 
FOR . .. NEXT loops, and "home made" loops that use IF .. . commands with 
GOTO commands. 

loop variable 
Is the number that changes as the loop is repeated. For example: 

FOR 1=1 TO 5:NEXT I I is the loop variable 

memory 
The part of the computer where information is stored. Memory is made of 
semiconductor chips, but we think of it as ' 'boxes' ' with a label on the front and the 
information inside. 

menu 
A list of choices shown on the screen. Each choice has a letter or number beside it. The 
program user presses a key to pick which choice is wanted. 

message 
The string in quotation marks after an INPUT command. Example: 

INPUT 11 TEXT t NUMBER II ;T$ tN 

monitor 
Has two meanings. We use it to mean a box with a TV type screen that is connected to 
the computer. It displays text and graphics but cannot receive television programs. In 
machine language programming, a monitor is a control program. 

nesting 
When one thing is inside of another. In a program we nest loops. Inside a statement, 
we can nest expressions or functions . 

normal mode 

L=LEN<MI0$(A$t3 tJ)) 
X=5*(6+C7*C8+K>>> 

nested functions 
nested parentheses 

Is the white on black printing on a screen that the computer usually does. See flashing 
mode, inverse mode. 

number 
Is one type of information in BASIC. The numbers are generally decimal numbers. See 
integer, strings. 

operation 
In arithmetic: addition, subtraction, multiplication and division, with symbols + , 
*, and I. The only operation for strings is concatenation. 

peep 
The sound that an Apple makes, usually to signal an error or some danger to the 
program. You can make the Apple peep with this command: 

PRINT CHR$C7> 

It is called "beep" in the Apple manuals and sometimes called "bell" because the old 
teletype machines used a bell for the same purpose. 



program 
There are two kinds. The usual program is a list of numbered lines containing 
statements. The computer executes the statements (commands) in order when the RUN 
command is entered. The program is stored in a special part of memory, and only one 
program can be stored at a time. 

A one line program can be entered when the computer is in the edit mode. It does not start 
with a line number and runs as soon as you press the RETURN key. This one line program 
does not get mixed with the stored program. But when it runs, it may read or change the 
variables (if any) that the stored program made when it ran. 

prompt 
Is a little message you put on the screen with an INPUT to remind the user what kind of 
an answer you expect. Its name comes from the hint that actors in a play get from the 
prompter if they forget their lines. 

psuedo-random 
A number that is calculated in secret by the computer using the RND( ) function. It is 
usually called a "random number." Pseudo-random emphasizes that the number really 
is not random (since it is calculated by a known method) but just is not predictable by 
the computer user. 

punctuation 
The characters like period, comma, I, ? , ! , $, etc. 

random 
Numbers that cannot be predicted, like the numbers that show after the roll of dice, or 
the number of heads you get in tossing a coin 10 times. 

remark 
A comment you make in the program by putting it in a REM statement. Example: 

REM THE NEXT 7 LINES ARE A SUBROUTINE 

reserved words 
A list of words and abbreviations that BASIC recognizes as commands or functions. 
The reserved words cannot be used in variable names. See appendix C. 

return a value 
When a function is used (called), its spot in the expression is replaced with a value (a 
number or a string). This is called "returning a value. " 

RUN mode 

row 

The action of the computer when it is executing a program is called ' 'operating in the 
RUN mode." You get into the run mode from the edit mode by entering RUN. When 
the computer ends the program for any reason, it returns to the edit mode. 

Things arranged horizontally (across). 

save to disk 
The program in the computer's memory is written (in magnetic code) on a diskette in 
the disk drive by the command: 

213 



214 

SA VE filename 

where "filename" stands for a name you choose to identify the program while it is on 
the disk. 

screen 
The TV screen or a similar one in a monitor that is hooked up to the compl;Jter. See 
monitor. 

scrolling 
The usual way an Apple writes to the screen is to put the new line at the bottom of the 
screen and push all the old lines up. This i~ called "scrolling." 

something A 
Is a phrase in this book that stands for an assertion in an IF statement. See assertion, 
IF. Example: 

IF A>a THEN GOSUB 500 A>4 is "something A" 

stack 
Is a data type used in machine language programming. The 6502 processor has a stack 
in page $01 and it holds information about loops, subroutines, and nesting. 

starting stuff 
Is the name given in this book to initialization material in a program. It includes REM's 
for describing the program, input of initial values of variables , set up of array 
dimensions, drawing screen graphics, and any other things that need to be done just once 
at the beginning of a program run. 

statement 
The smallest complete section of a program. It starts with a command. The command 
may have expressions in it. 

store 
To put information in memory or to save a file on a disk. 

string 
A type of data in BASIC. It consists of a set of characters. See number. 

subroutine 
A section of a program that starts with a line called from a GOSUB command and ends 
with a RETURN command. It may be called from more than one place in the program. 

subscript 
A number in the parentheses of an array. It tells which member of the array is being 
used. See index. 

syntax 
Means the way a statement in BASIC is spelled. SYNTAX ERROR means the spelling 
of a command or variable name is wrong, the punctuation is wrong or the order of parts 
in the line is wrong. 

timing loop 
A loop that does nothing except use up time. See delay loop. 



title 
The name of a program or subroutine. Put it in a REM statement. 

TRUE 
Has the value 1. See logic, FALSE, assertion. 

typing 
Pressing keys on the Apple. It is different from "entering." See enter. 

value 
The value of a variable is the number or string stored in the memory box belonging to 
the variable. See variable. 

variable 
A name given to a ''box'' in memory. The box holds a value. When the computer sees 
a variable name in an expression, it goes to the box and takes a copy of what is in the 
box back to the expression and puts it where the variable name was, and continues to 
evaluate the expression. See variable name. 

variable name 
A variable is either a string variable or a numerical variable. The name tells which. The 
rules for naming variables are given in lesson 20. The most important rule is that string 
variables have names ending in a"$" sign. Numerical variables do not have a dollar 
sign on the end. 

215 



216 

INDEX OF COMMANDS AND FUNCTIONS 
EXPLAINED IN THIS BOOK 

AND 149-150 
ASC( ) 138-140 
CATALOG 68, 70-72 
CHR$( ) 138, 140-141 
COLOR 98, 100, 135 
CONT 162-165 
DELETE 68, 71-72 
DIM 145-146, 148 
END 112-113, 115, 163 
FOR . . . TO 57, 82-85 
FLASH 13, 16 
GET 108-11, 142-143, 160 
GOSUB 112-113 
GOTO 27, 38, 39, 40, 42-46, 73, 165 
GR 98, 100 
HLIN 98, 103-104, 159 
HOME 7-8 
HTAB 79-80, 92 
IF ... THEN 27, 42-43, 58-60, 73, 76, 149 
INPUT 27, 28, 34, 49, 73-74, 108, 109, 143 
INIT 168 
INT( ) 63, 65, 67 
INVERSE 13, 16 
LEFT$( ) 123-124 
LEN( ) 123, 125 
LET 34, 35, 48-53, 73-74 
LIST 17, 75, 121 
LOAD 68, 70, 72, 168, 170-171 

KEYS EXPLAINED IN THIS BOOK 

RESET 38, 39, 40, 70, 89, 132-135 
RETURN 10, 23, 108, 122, 139, 156 
REPT 23, 25, 122 
ARROW KEYS 24, 25 
SHIFT 10 
ESC 119- 122 
CTRL 162, 164 

LOCK 168 
MID$( ) 123, 126 
NEW7, 9 
NEXT 57, 82-85 
NORMAL 13, 15 
NOT 149, 153 
ON .. . GOTO 143 
OR 149-150 
PDL( ) 132-133 
PEEK( ) 132-134, 143 
PLOT 98, 100-101 
PRINT 7, 9, 22, 27, 30-32, 49, 54, 73-74, 79, 164, 

166 
REM 17, 18, 21, 22, 161 
RETURN 112-113 
RIGHT$( ) 123, 125 
RND( ) 27, 63-65 
RUN 7, 9, 10, 87-90, 165 
SA VE 68-69, 72, 168-169, 171 
SCRN( ) 132-133, 136 
SPEED30, 33 
STEP84 
STOP 162-166 
STR$( ) 48, 128-129 
TAB( ) 54-56, 79-80 
TEXT98, 100 
UNLOCK168 
VAL( ) 48, 108, 128-129 
VLIN 98, 103, 105, 159 
VTAB 79-80, 92 



INDEX OF ERROR MESSAGES 

CAN'T CONTINUE 

You used the CONT command when it was not allowed. 

DIVISION BY ZERO 

You divided by zero. Or you divided by a variable whose value was zero. 

ILLEGAL DIRECT 

You used INPUT or GET in the edit mode. (Or you used DEF FN or DATA in 
the edit mode.) 

ILLEGAL QUANTITY 

You made one of these errors: 

You used a negative number as an array subscript, like 

LET A(-1)= 34 

You used a function with the wrong kind of argument. Like: 

wrong: L=V AL(R) 
wrong: T AB(-3) 
wrong: SPEED=400 
wrong: HT AB 55 

correct L=V AL(R$) 
correct TAB(3) 
correct SPEED=255 
correct HT AB 40 

Wrong arguments may be a string where a number is needed or a number where 
a string is needed, or a negative number where a positive one is needed, or a 
number that is bigger than allowed. 

NEXT WITHOUT FOR 

You used a NEXT before the computer reached a FOR . . . statement. Or you 
used the wrong name for the variable. Like: 

FOR I= 1TO5 
NEXTM 

OUT OF MEMORY 

Usually it means you have nested too many FOR .. . NEXT loops or too many 
subroutines inside each other, or an expression has too many parentheses. 

217 



218 

OVERFLOW 

You did a calculation which had a very large answer, too big for the computer 
to handle. 

REDIM'D ARRAY 

You made one of these errors: 

You used an array before you did the DIM command for it. Like: 

LET A(3)=7:DIM A(20) 

or you did executed DIM twice for the same array, like going through the DIM 
line twice. 

2010 DIM B$(7) 

RETURN WITHOUT GOSUB 

You let the computer reach a RETURN command before it went through a 
GOSUB ... command. This usually happens when the program accidently 
"runs into" a subroutine at the end. 

STRING TOO LONG 

You used concatenation to make a string longer than 255 characters. 

BAD SUBSCRIPT 

You made an error using an array. Like: 

DIM A(5,5):A(l,l,1)=77 

or DIM A(5): A(14)=7 

SYNTAX ERROR 

wrong number of subscripts 

subscript was larger than 5. 

You "spelled" the line wrong. Maybe you forgot a (or a ; or put a# in a 
name, etc. 

TYPE MISMATCH 

You mixed numbers and strings, like: 

LET A='9' or LET A$=33 or A$=LEFf(A$,l) 

UNDEF'D STATEMENT 

You used a GOTO or a GOSUB to a line number that is not in your program. 



ALPHABETICAL INDEX 

A 

addition 48, 63 
alphabetize 138 
annoyance detector 156 
Applesoft 70, 89 
argument 54, 56, 63, 123, 130 
arithmetic 48-52, 59, 63, 87 
array 145-148 
arrow 39, 83 
arrow keys 23-25, 119-122 
ASCII 138-141 
assertion 42-43 
autostart ROM 38 

B 

bells and whistles 13 
blank space 15 
boxes, see memory boxes branch 27 
break 163-164 
buffer 87, 119 

c 
calculator mode, see edit mode 
carriage return 138, 141 
character 15, 23, 30, 51, 54, 72, 87, 96, 108-109, 119, 124, 125, 138-143 
clear 17, 35, 43 
colon 17, 29, 54, 73, 75-77 
color 98-100, 106, 115, 132, 135-136 
column 55, 81 
comma 29-30, 72, 80 
command 8, 17, 19, 27, 58-59, 72, 80, 87, 113, 130 
command C 42-45, 59-60, 77, 152 
command mode, see edit mode 
concatenation 91, see gluing 
conditional test 42 
constant 15, 30, 51 
cursor 23-25, 30-31, 54, 56, 89, 108, 109, 119-122, 170 

D 

debugging 87, 114, 156, 162-166 
decimal numbers 48-49, 63-65 
deferred execution mode, see run mode 
dice 66 
die, see dice dimension 145-148 
direct mode, see edit mode division 48-49, 135 
disk 68-71, 98, 167 
disk drive 68-69, 167 
dollar sign 28, 50, 96 
DO UNTIL 58 drawing 22, 26, 98, 107, 115, 132, 136 

219 



220 

E 

edit a line 10, 23, 87 
edit mode 13, 30, 87-90, 113, 115, 152, 164 
enter a program 69, 90 
equal 48, 52-53, 59, 74, 154 
erase 8, 17-19, 31, 70, 91, 93, 115, 132, 135, 157, 159, 168 
error 90, 156 
error trap 160 
execute 88-89 
expression 17, 30, 42, 58, 67 
EXTRA IGNORED 29, 81 

F 

false 42-45, 149-154 
file 69, 71-72, 171 
flashing cursor, see cursor, input cursor 
floating point 132 
flow of command 38, 42 
fork in the road 45 
format 156 
function 48, 56, 63-65, 67, 108, 123, 128-130 

G 

Glossary 207 
gluing 37, 92, 109, 124-125 
graphics ... 54, 73, 79, 81, 98-100, 103-104, 132, 134 
greater than 59, 154 

H 

HELLO program 7, 68, 167-168 
horizontal 103-105 

ILLEGAL QUANTITY ERROR 56, 80 
immediate mode, see edit mode 
index 145-148 
initialization 132 
initialize a disk 7, 68 
input 27, 75, 87, 109, 111 
input cursor 24, 30-31, 73 
instruction 54 
integer 63, 65 

J 

jump 39-40 

K 

keyboard 109, 138-143, 156 
keystroke 108 



L 

less than 59, 154 
letters 15, 96, 109, 121 
life saver, 40, 70 
line numbers 12, 20, 38, 87, 112, 119, 121, 165 
line 32, 73, 77, 80, 82 
line, adding 20 
line feed 138, 141 
line, replace 17, 21 
line editing 17, 23, 24, 119-122 
list 18 
logic 42, 58, 73, 149 
loop 27, 38, 40, 54, 57-58, 82-85, 91, 106, 157-158, 166 

M 

memory 11, 14, 17-19, 70, 88, 114, 121 
memory boxes 17, 19, 27-28, 34, 48, 50, 53, 91, 124, 126, 130, 143, 146, 151, 165 
menu 99 
message, in INPUT 27, 73, 109 
message, ERROR 29, 58, 72, 123, 166, 171 
minus sign 49 
modular 112 
monitor 98 
multiplication 4849, 63, 65, 135 

N 

name 28, 35, 72 
nesting 58, 63, 82, 84-85 
not equal 47, 154 
numbers 15, 27, 30, 4849, 51-53, 56, 58, 63-65, 67, 72, 80, 83, 96, 109-111, 128-130, 138 
number, negative 63 

0 

operation 48 
operating mode 89 
output 27 
output cursor 30, 79 

p 

paddle 132-135 
Papert, Seymour iv 
parenthesis 56, 63-64, 67 
peep 13-14 
pixel 98 
PRINT, mixtures in 52 
PRINT cursor 30-32, 55 
program 11, 17-20, 27-28, 38, 54, 68, 73, 75-76, 87 
programs, fast 132, 143 
program, spagetti 156 
programming, top down 112 
prompt 89, 108, 156-157, 159 
projectile 132 
punctuation 15, 72, 96, 139, 141 

Q 

question mark 74-75 

221 



222 

R 

random 27, 63-65 
remark 17, 21-22, 76 
replace 48, 53 
reserved words 95-96, 172 
run mode 87-90 

s 
screen 8, 14, 17-18, 30-32, 35, 54, 56, 79, 108, 116, 132-136, 145, 156-157, 159 
scrolling 159 
semicolon 29-32, 54, 75 
sentence 109 
snipping strings 123-126 
something A 42-46, 59, 152 
space 30-32, 55, 72, 91, 94, 125 
speaker 138 
starting stuff 158 
statement 17, 19, 48, 52, 73-77, 82, 113, 130 
stop 38 
string 15, 27-30, 35, 37, 42, 49-52, 56, 59, 91, 111, 124, 128-130 
string constant 13, 15, 30, 48, 51 
string, empty 94 
string variable 27-28, 30, 50, 91, 96, 108 
structured programming 112 
subroutine 73, 82, 107, 112-118, 135-136, 157, 159 
subscript 146 
subtraction 48 
suit of cards 63 
SYNTAX ERROR 9, 55, 72 

T 

tape cassette 68, 70, 72, 169-171 
target 132 
text 79, 98,100 
true ... 43-46, 73, 76, 149-154 
truncating 63 
TYPE MISMATCH ERROR 52 
typing 8, 27, 109, 121 

u 
user friendly 108, 156 

v 
value 35, 48, 50, 54-55, 129-130, 165 
variables 17, 28, 30, 35, 50, 52, 67, 98, 101, 157 
variable, array 146 
variable, loop 54, 85 
variables, numerical 48, 50, 52, 96, 108, 146 
variable names .. .. 35, 48, 50, 81, 95-97 
vertical 103-105 

w 
whole numbers, see integers 
word 109-110 

z 
zero 10 




