

Microsoftm BASIC
Using
the

SoftCardm

Microsoft .. BASIC
Using
the

SoftCard ..

James S. Coan

[l1
HAYDEN BOOK COMPANY

a division of Hayden Publishing Company, Inc.
Hasbrouck Heights, New Jersey

Equipment Reeded
• Apple II, Apple II Plus, or an Apple Ile computer with a

minimum of 48K of memory
• Color television set or monitor
• Microsoft SoftCard (at least one disk drive required)

To achieve lowercase characters you will need one of the
following: ·

• Apple Ile, an SO-column card, or an external terminal with an
appropriate interface card.

Production Editor: TERRY DONOVAN
Art Director: JIM BERNARD
Cover Design: SHARYN BANKS
Original Artwork: JOHN McAUSLAND
Composition: BI-COMP, INC.
Printed and bound by: ARCATA GRAPHICS CO.:

FAIRFIELD GRAPHICS DIVISION

Apple and Applesof&are registered trademarks of Apple Computer. Inc.; Microsoft
is a trademark of Microsoft Corp.; CP/M is a registered trademark of Digital
Research. Inc.; none of which is affiliated with Hayden Book Company.

Copyright © 1984 by HAYDEN BOOK COMPANY. All rights reserved. No part of
this book may be reprinted, or reproduced, or utilized in any form or by any
electronic, mechanical, or other means,. now known or hereafter invented, includ
ing photocopying and recording, or in any information storage and retrieval system,
without permission in writing from the Publisher.

Printed in the United States of America

1 2 3 4 5 6 7 8 9PRINT1NG

84 85 86 87 88 89 90 91 92 YEAR

Who knows how many versions of BASIC there are? All are recognizable
as emanating from the original BASIC developed at Dartmouth College
under John G. Kemeny and Thomas E. Kurtz. Most versions have added
new features.

BASIC-80, developed by Microsoft, is in use on yast numbers of com·
puters today. Therefore, if you learn Microsoft BASIC (also known as
MBASIC or MS-BASIC), you will be able to use many computers. In
addition, the BASIC we learn will be a good foundation for programming
in other versions of BASIC and other computer languages everywhere.

Microsoft has developed BASIC in two modes: one is interpretive, and
the other is compiled. The interpretive mode of BASIC is highly interac
tive. This interactive nature of BASIC has been a primary reason for its
tremendous popularity. We can easily write programs and instantly com
mand the computer to execute them for us. We can even command the
computer to execute individual BASIC statements immediately right at
the keyboard. Our mistakes and typing errors are often pointed out to us in
plain English, rather than in undecipherable code. One of the drawbacks
of BASIC is its slow execution speed. The reason for this slow speed is that
interpretive languages must analyze and translate each statement into a
more primitive form each time it is encountered during program execu·
tion. If a statement is executed fifteen thousand times, the interpreter
must do the analysis and translation fifteen thousand times. The com
puter derives no benefit from the repetitious nature of the process (see,
computers are not as smart as humans!). This interpretation takes more
time than the actual program execution.

Compiled BASIC overcomes the slow-speed problem. The compiler
performs the line-by-line analysis and translation once and creates an
entirely new program, which may then be executed without the aid of the
BASIC interpreter program. The time required to transform each program
statement is eliminated.

The icing on the cake is that we have, in Microsoft BASIC, one lan
guage that may be managed in either mode. Thus it is possible to write

and thoroughly test BASIC prognUns interactively and then compile the
result for more efficient use of computer resources.

This book is about prognUnming in Microsoft BASIC-80 using the
SoftCard and CP/M on Apple II, Apple II Plus, and Apple lie computers.
BASIC-80 is an enhanced version of the standard Microsoft BASIC. The
primary enhancement is the inclusion of low-resolution and high
resolution graphics. Some of the additions are simply to include features
for the convenience of Applesoft programmers. Problems included at ap
propriate points in the book make it suitable for the classroom as well as
for the individual who wants to learn BASIC. Features of BASIC are
generally introduced as they are needed to solve a task. Nearly one hun
dred programs are presented and discussed. The general approach is to
begin with small programs to solve real problems and then to build them
up into larger programs as required. It is helpful to break any task into
small segments. One goal is to write prognUn segments that will fit en
tirely on one screen. We even organize things in such a way that our list of
tasks actually become the REMarks that form the prognUn documenta
tion before we begin to write program statements in BASIC. Larger pro
gnimS are developed by first writing a control routine that will manage a
collection of subroutines. Then we write the subroutines. Sometimes we
have already written some of the subroutines to solve earlier prognim
ming problems.

We get started with simple calculations and printed messages in
Chapter 1. Chapter 2 introduces numeric and string variables. The loop
concept comes up in Chapter 3, with the formal introduction of FOR and
NEXT in Chapter 4. We learn about functions and subroutines in Chapter
5. Chapter 6 presents numeric and string arrays. Here an alphabet game
rounds out our work with string arrays. With many programming con
cepts and BASIC features in hand, we consider a few interesting applica
tions in Chapter 7. A calendar program, the sieve of Eratosthenes, and
different base numbering systems appear here. Chapters 8, 9, and 10 take
us from a simple sequential-access file to a workable mailing-list prognim.
Low-resolution and high-resolution graphics are the topics of Chapters 11
and 12.

Each chapter (except for Chapter 7) is followed by a "Sidelight" sec
tion that presents special features, concepts, and advanced techniques.
Topics range from the use of a question mark for PRINT to how to use
POKE to change the "Ok" message issued by BASIC after every task.

Appendix A compares SoftCard BASIC.with Applesoft. EDIT Mode is
discussed in Appendix B with numerous examples. Use of the disk for
maintaining a library of prognUns is presented in Appendix C, and an
ASCII chart is presented in Appendix D. An index of prognUns in the text
appears in Appendix E. Appendix F contains solution prognUns for the
even-numbered problems.

I wish to thank Alan Boyd of Microsoft Consumer Products for provid
ing material assistance. Mike Violano and Chris Varley of Hayden Book
Company, Inc., have made important suggestions and provided valuable
counsel in the development of this book.

New Hope, Pa. JAMES s. COAN

To the Beader

Learning to program a computer can be very exhilarating. The thrill of
seeing your first apparently complicated idea implemented in a clear,
simple program is wonderful. You will be well advised to look upon the
computer as something to be mastered and not as some impersonal mon
ster that is out to do you in. Everything that the computer does is explain·
able and predictable. You should take care to evaluate the results that the
computer produces; do not blindly accept computer results as faultless.
That is not to say that the computer is going to make mistakes. In fact,
under normal conditions, the computer will execute your instructions
exactly. Mistakes in the results of a program execution are usually caused
by errors in the instructions written by the programmer. Resist the temp
tation to blame anything other than your programming for incorrect or
unexpected results.

No one need fear the computer. This is especially true when it comes
to learning. We can work with the computer in total privacy. Errors that
the computer reports to us become our secret. Nobody else needs to know
what we did wrong. Once we have mastered the computer, we may confi
dently demonstrate our skill to all who will join in. When we learn to ride
a bicycle or drive a car, someone is bound to know and we may be·
humiliated. This need not be the case with the computer. The computer
will keep its secret if you will keep yours. The computer has truly infinite
patience and will never raise its voice.

Learning to program a computer is not so complicated. You will prob
ably find that an iterative process works best. Read some of the text, try
some programs on the computer, and go back to read some more. There
are certain things that you cannot possibly know without being told and
certain things that make sense based on what is known so far. You will
find that reading the text will help with writing the next program and
that writing and executing a program will help with reading the text.

A program consists ofa set of instructions that causes the computer to
perform a task of our choosing. The process of writing those instructions
for the computer is called programming. Programs do an amazing variety

of things. You may perform the simplest of arithmetic calculations or the
most complex of mathematical manipulations. You can write programs to
interact with the user. You may want to do this to make the computer play
a game or to fill out a tax return. You may write a computer program to
solve an algebra homework problem or organize a directory of names and
addresses of your friends or business associates. And you may even be
programming a computer just for the fun of it.

I hope that you are soon stimulated by your work in programming to
bring to the computer your new and exciting problems to be solved. Above
all, to be successful, you will have to be an active participant. Actually
write programs and execute them. Then try to see how what you have
learned fits into the picture of the BASIC language and programming in
general.

Contents

Chapter 1
Gttttillg Stll.J:'tttd.. J.

... Introduction to Programming .. ""......... 2
1·1 ... Displ~g Messages (PRINT a.nd LPRINT) 2

... RlJN (Executing a. Program) ... 3

... LIST a.nd LLIST ... 3

.•• NEW ... 6

... Line Numbers.. 6

... DELETE ... _................................ 7

... At the Keyboard.. 8

... SUMMARY ... 8
Problems for Section 1-1 ... 9

1·8 ... Ca.lculations .. 9
... SUMMARY... 11

Problems for Section 1-2... 12
llitlttlJ.~:t;]... 111

... HOME ... 12

... Question Mark(?) in PRINT ... 12

Chapter a
Jlddillg l!'eatl11-e11.. l~

8·1 .•. More Calculations ... - 14
... Number Pigeonholes (Numeric Variables) 16
... The Assignment Statement (LET) .. 16
... Optional LET ... _. 17
•.. READ a.nd DATA. ... _... 17
... Entering Values from the Keyboard (INPUT)........................... 18

.... PBIN'T USING and J,PBIN'T USING... 19
••. Multiple INPUT and Multiple BEAD.. 21
••. BESTOBE.. 22
•.. SUMMA.BY ... 22

Problems for Section 2-1 .. 23
8·8 ... Additional .Arithmetic Opera.tors.. 23

•.. Order of Operations .. ,... 23
••. Ra.ising to a. Power ... ""........... 24
••. MODula.r Arithmetic.. 24
... Integer Division. ... 28

Problems for Section 2-2 ... , _. 28
1-S .•. More Messages ... -.. 26

••• Word Pigeonholes (String Va.ria.bles) ... 26
•• .Adding. Strings (Conca.tena.tion)... 28
•.. SUMMARY•.......•.•...• -.. 29

Problems for Section 2-3 .. ~................ 29

814eJ1Cht a CA Word about Precision)........................ ae
••. Single Precision. ... 29
•.. E-forma.t.. 30
••. The Biggest Number? .. 31

Chapter 3

lll':ritiJlt& a ~e>tira111....................................... a.a
8·1 ... Do It .Again .. 32

••. Our First Counting Program. .. 32
••• GOTO ... 33
•.. IF . . . THEN -. -...................... 34
••. Comma. Spacing ... :................................ 37
•.. SUMMA.BY ... 38

Problems for Section 3-1 ... 38
8·8 ... Do It Again (When We :pon't Know How Ma.ey')..................... 38

••. A Little Planning.. 39
•.. BEMa.rk... 39
••. END .. -. 43
••. IF . . . THEN Revisited.. 44
••• STOP .. 44
.••. SUMMARY ... _ 44

Problems for Section 3-2 .. -......... 48
8·8 .•. IF • • • THEN . • . ELSE... 48

•.• Multiple Statements on One Line (:) "".................... 48
••• Multiple Lines per Statement (CTBL-J) .. 47

... SUMMARY... 47
Problem for Section 3-3... 47

Sidelight :s (More about Ill'PU'T). ••••••••••••••••••••••••••••••• 47

... INPUT with Prompt.. 48

.... LINE INPUT .. 49

Chapter4
Lc:>e>p11... BO

4-1 .. . Counting '\Vith FOR and NEXT m 50
•.. CTRL-S and CTRL-0... 51
•... STEP.. 51
... SUMMARY... 53

Problems for Section 4-1 ... 63
4-8 ... More Bounce to FOR and NEXT ... 53

... Apostrophe.. 54

... SUMMARY... 56
Problems for Section 4-2... 56

4-:S .. . Let's Explore Interest.. 56
... Fibonacci Numbers... 67

Problems for Section 4-3 .. 57
4-4 .. . Nested Loops ..•... 58

... Another Look at Compound Interest.. 58

... Pythagorean Triples ... ;......................... 59
•.. TAB () ... 61

Problems for Section 4-4 ... 61
4-8 .. . More about NEXT.. 62

Sidelight 4 (Another Look at Precision)................... 63

•.. %, I, a.n.d # Precision Indicators .. 63
... Some Double-Precision Examples ... 63
... Integer Values... 66

Chapter B
Packages in BASIC (l'unctions and
ll111>re>11ti:IJ.es~... ts'1

8-1 ... Introduction to Numeric Functions " - 67
•.. SQR (Square Root).. 67
... INT (Greatest Integer) "" -........................... 68

.. . l'act;ors ... _. 69
••. SUl4¥ABY ... ~_............... 69

Problems for Section 5-1 .. __ 69
8·8 .. . String Functions.. 70

... LEN (Length of a String).. 70
•• • ABO (ASOII Value).. 70
••. OHR$ (Character Whose ASOII Oode Is Given) 70
... STR$ (Convert Numeric to String) .. 70
... VAL (Value of a String) ... 71
•.. LEFT$, MID$, an.d BIGHT$... 71
•.. INSTR. .. 72
•.. STBING$ (String of Character) ... __ 73
•.. SPAOE$.. 73
... SUMMARY... 74

Problems for Section 5-2 ... '"......... 74
8·8 ... Miscellaneous Functions ... 74

•. ..ABS (Absolute Value).. 74
•.• SGN (Sign).. 75
••• RN'D (Random Numbers) .. 75
.•. RN'D(X) .. --.... 77
••. RANDOMIZE ;.. 77
••. FBB (Free Memory) ... 77
... Trigonometric Functions .. _. 77

Problems for Section 5-3 ... -....... 78
8·4 .. . Programmer-Defined Functions (DEF FN).................................. 78

••. Numeric Functions... 78
... String Functions .. 80

Problems for Section 5-4... 81
8-8 .. . DEF INT, SGL, DBL, STR (Variable Typing)................................ 81
8·8 ... Subroutines (GOSUB an.d BBTURN) .. 81

Problems for Section 5-6 ... ;................. 83

Sideligllt 8 (PBJ!IK an.4 POKJ!I) es
... PEEK ... 83
... POKE ... 83
••. Ok ... 83
.•. Screen Window .. 84

Chapier 8

Pigeonholes Galore (.Arrays)...................... 88

8-1 ... Numbers, Numbers, an.d More Numbers (Numeric
MrS(fs) .. 86

.•. Drawing Ban.dom Numbers from a Hat... 88
••. BUMKABY ... 90

Problems for Section 6-1 ... 90
e-a ... A Simple Sort... 91

Problems for Section 6-2... 92
8-8 ... MrfJ3 Sizes and Shapes (DIM).. 93

... Klll.ti.ple Dimensions.. 93
Problems for Section 6-3... 96
8·4 ... Words, Words, and More Words (String ArrFJ3S)..................... 96

Problems for Sectiion 6-4... 97
8-8 ... An. .Alphabet Game.. 97

... Load the Signs .Mra;y... 98

... Establish Ga.Ille Beginning... 98

... Simulate Random Signs a.long the Road....................................... 98
••. Did the PISiYer Spot the Next Letter? .. 98
... Is the Next Letter Really on the Sign? .. 99

Problems for Section 6-5 ... 104

814elight 8 (.Array Goodies) 104

... OPI'ION BASE... 104
••. Varia.ble DIM .. 105
••• EBA.SB ••••••••••••••••••••••••••••••.••••••••••••••••••••••.•••••••••••••••••••••••••••••••• "······················ 106
... Varia.ble Typing and l/Iemor,y ... 106

Chapter 7
lliscellaneous Applications........................ 107

'1·1 ... A Calendar Program. .. 107
Problems for Section 7-1 .. : 112

'1·8 ... The Sieve of Eratosthenes .. , 112
Problems for Section 7-2 ; ... 113

'1-8 ... Number Bases .. 114
... Binar,y Numbering.. 114
... Hexadecimal Numbering ... 116
... Octal Numbering .. 117

Problems for Section 7-3 ... 117

Chapter 8
Filt111.. l.J.9

8·1 ... Introduction to Data Files.. 119
... Sequential-Access Files ... 120
... Ran.dom-Acoess Files... 120

8·8 .. . Sequentia.l Files... 120
... OPEN... 120
... PRINT #.. 121
•.. INPUT #.. 121
... CLOSE #... 122
... STOP, CTRL-C, CONT... 122

Problems for Section 8-2 .. --........ 126
8-8 ... A Program Is a. File, Tool... 126

... LINE INPUT.. 127

... EOF (End of File)... 128
Problems for Section 8-3 ... ""................. 129

8-4 .. . Updating a Sequential File.. 129
Problems for Section 8-4... 130

Sidelight 8 (Double :Buffer).. 181

Chapter 9

B.andom-Access Files................................... 133

9·1 .. . An Introduction. ... 133
9-8 .. . Some Tools... 134

... OPEN ... 134

... FIELD ... 136

... LSET and RSET.. 136
•.. PUT.. 136
... GET.. 136
... CLOSE... 136
... SUMMARY ... ;... 136

9-8 .. . A Sample Random-Access File .. 137
... SUMMARY... 139

Problems for Section 9-3... 139
9·4 .. . Some More Tools .. --......... 139

•.. MKS$.. 140
... CVS... 140
... MKI$, MKD$, CVI, and CVD... 142
... SUMMARY... 142

Problems for Section 9-4... 143

Sidelight 9 (Initialization Options) 148

•.. JM:.. 143
.•. IF:.. 143
.. . /8:.. 144
... l\4BASIC FILENAME ... 144

Chapter 10
Bandom-.A.ccess Ad.dress List...................... 148

10·1 .. . Design the File.. 145
... SUMMARY... 155

Problems for Section 10-1 .. 155

BidelfCht 10 (llixed·Access l'iles) 1se

Chapter 11
~o-lle11 Clra1thic11.. 1811

... Introduction... 158
11·1 .. . Getting Started in Lo-Res.. 158

... The Graphics Screen (GB) ... 159

... Colors (COLOR)... 160

... Plotting Blocks (PLOT)... 161

... Drawing Lines (HLIN' a.nd VLIN')... 161

... Restoring the Text Boreen (TEXT) ""....................................... 162

... Let's Experiment ... _.. 162
••. BUUMARY ... _ 164

Problems for Section 11-1 .. 165
11·8 ... A Graphic Example .. 165
Problems for Section 11-2 .. 167
11·8 ... Divide a.nd Conquer (More Dice) ... 167
Problems for Section 11-3.. 170

SidelfCht 11 (Miscellaneous Aids to Gra»hica)......... 1 '11

... GET .. 171

... BEEP ... 171

... INPtJT$.. 171
•.• External Termina.1 .. - 172
... BORN ... 172

Chapter 18

Jli-lle11 Clra1thic11.. 1'111

18·1 .. . Introduction to Hi-Bes Graphics ... 173
... The Hi-Bes Graphics Screen (HGB) .. 173
... Hi-Bes Colors (HCOLOB) ... 175
... ·Plotting Dots (HPLOT).. 175

.•• Lines in Hi-Bies (HPLOT ••• TO •• ,)'""'''""'"""'"'"'"'"'"'-" 178
••• S'UKKABY .. " __ 178

Problems for Section 12-1 .. 179
11·8 ... A Graphics Example.. 180

••. SUMMARY .. ~··················· ... ·····-·"···········.. 186
Problems for Section 12-2.. 187
· 11-:s ... Hi-Bes Graphs from Formulas ... :........... 187

••. Cartesian Coordinates... 187
••• SUMMABY •••••...•.••.••.•••.•••••••.••••.•••••••••••• - ... 191

Problems for Section 12-3 .. - 191
11·6 .. . Polar Graphs... 191
Problems for Section 12-4.. 194

llitl«1~1; l.11 ~JlllCJ~~·••• IS.IS

.A:p:pen41x .A
.A:p:plesoft and SoftCar4 BISIO..................... 198

•.. Applesoft Features Not Included... 198
••. Features Included to Support Applesott.. 197
••. Statements That Behave Differently.. 197
... Features in So:ftCa.rd BASIC Not Found in Applesott............. 198

.A:p:pen41x B

JI])~ llllode... JI()()

•.• EDIT Mode Comman.ds .. -............. 200
.•. Move the Cursor (Press the Space Bar) .. 201
... Insert. ... 201
.•. Delete ... -. ,.. 202
••. Be&l'ch .. 202
••• Ch&Il.ge ... 202
.•. ESCape... 203
••. Beneath the Surface... 204
... Mtsoellan.eous Additional EDIT Features _.. 205

.A:p:pen41x C
118~ "11.ft l>iillc.. Jl()'a'

•.• Program Names (and File Names, Tool} - ... - 207 ,,
~ .• Disk Drives .. ._........................ 807

•.. SA VE •.•.••.••••• ~··-··········-·--··--·-· 207
... Protected Programs.. 208
.... FILES .. ""................................. 209
... LO.AD.. 209
... RU'N , -. -. 210
... MERGE.. 210
... KILL .. -.... 210
... NAMB .. !fl.-········· '"' 210

Appenclix D

Jl!ICI~ Cllllli-aacster Cl~................................ ill.J.

Appenclix B

~Cle:at e>f ~e>i&J:ai:11111....................................... ill.4'i

Appenclix I'

Se>lutle>n ~i&J:mn.s for Bven-Rumb•reCl
~e>blellls.. ill.II

~Cle:a:... ia~:s

Chapter 1

Getting
Started

With some things it is best to jump in with both feet. We want to get to the
point where we can write programs and see results as quickly as possible.
The proliferation of computers has made programming available to the
masses. It is becoming easier for all of us to learn about computers. At the
same time, it is becoming more and more important for us to do just that.

We are going to write programs in the version of Microsoft BASIC-SO
(also known as MBASIC or MS-BASIC) thatis supplied with the SoftCard.
The SoftCard is designed to plug into an Apple II computer. It also oper
ates in the Apple II Plus and the Apple Ile.

With the SoftCard we get both BASIC and the CP/M (Control Program
for Microcomputers) operating system required to run it. Two versions of
BASIC are supplied. MBASIC is an enhanced version of the tried and true
Microsoft BASIC-SO. It is designed to incorporate important features of
Applesoft that implement special capabilities of the Apple computers.
The most significant enhancement is the low-resolution (Lo-Res) graphics
instruction set. GBASIC adds high-resolution (Hi-Res) graphics to
MBASIC. Unless the distinction is important we will always simply use
the term BASIC.

To get started, we need a computer with the SoftCard plugged in ac
cording to the instructions supplied by Microsoft and a disk holding CP/M
and BASIC (MBASIC or GBASIC). When we turn on the machine, we will
hear some disk noise and see a little message revealing the version of
CP/M on the screen followed by

A>

1
•••

MICROSOFT BABIC USING THE SOFTCARD

That symbol is the prompt familiar to anyone who has ever used the CP/M
operating system. The prompt is a reminder to the user that nothing is
going on-that the computer is ready for us to enter some instruction. The
easiest way to use BASIC is to type

MBASIC

from the keyboard and press the RETURN key. Nothing will happen until
we press the RETURN key. This will be on the same line with the CP/M
prompt. It looks like this on the screen

A>MBASIC

If CP/M doesn't find what we want it will respond with

MBASIC?

Insert the proper disk and try again. That instruction tells CP/M to copy
MBASIC from the disk to computer memory so that we may write pro
grams in BASIC. After some more whirring, a message about the version
of BASIC will appear on the screen. The last line is "Ok"! Suppose we
want to get back to CP/M. The instruction SYSTEM is used for this pur
pose. When we issue this command, the CP/M prompt appears at the
bottom of the screen. We are ready to begin .

. . . . Introduction to Programming
Programming is the process of writing instructions to control a computer.
Each programming language has its list of available instructions and its
rules about how to put the instructions together. In BASIC many of the
instructions use English words. This makes BASIC easy to learn. We run
a program with RUN. We instruct the computer that we are at the end of
the program with END. We tell the computer to stop everything right there
with STOP. And so it goes. It is the programmer's job to select the most
appropriate instructions from those available and put them together in a
sensible and efficient fashion to solve the problem at hand.

In order for us to be assured that the computer has actually done
something for us, we should always include some instructions to display a
message. Therefore, we begin with the PRINT statement.

1-1 ... Displaying Messages (PBilft and LPB.Ilft)

Here is a complete program:

181 print "My first Microsoft BASIC program.•

a •••

GETTING STARTED

This is just a one-liner. It causes the computer to "PRINT" the message
contained within quotes. If we are using a TV or other CRT video display,
the message will last until we push it off the screen with additional mes
sages. On a printer, the message will be printed on the paper for more
permanent use. We will use LPRINT instead of PRINT whenever we
want the display to go to the printer .

• . . . B.Ull (Executing a Program)
If we type just this one line there will be no action. For the message to
actually be displayed, we must command BASIC to "RUN" the program.
This is done by simply typing RUN and by pressing the RETURN key. It
looks like this:

RUN
My first Microso~ BASIC program.
Ok

Whenever BASIC types "Ok", that means it bas completed its work.
Nothing is going on anymore, and nothing else will happen until we make
an entry.

Interactive BASIC obeys instructions in two ways-now and later.
The PRINT statement of our program above is a "later" instruction. The
RUN statement we used is a "now" instruction. These two types are
called "deferred" and "immediate" instructions. The BASIC language
consists of a collection of instructions and a set of rules governing their
use. Each instruction is called a keyword. PRINT and RUN are keywords.
Many instructions may be used for both immediate and deferred execu
tion. The thing that determines whether we have a deferred instruction or
an immediate instruction is whether it bas a line number. If we give the
statement a line number, it is a deferred instruction. Without the line
number it is executed immediately. Instructions prepared for later execu
tion make programs that can be retained for future use. The numbered
program lines that we type are accumulated to form the complete pro
gram. Then the whole set of instructions may be reused. Immediate
statements are one-shot statements; once used they are gone .

• • • • LIST and LLIST
The LIST instruction causes the statements of the current program to be
displayed just as they were entered at the keyboard. LIST displays right on
the screen. LLIST sends the display out to the printer.

LIST
100 PRINT "My first Microso~ BASIC program. 11

Uk

Program 1-1. Our first program.

3
•••

MICROSOFT BASIC USING THE SOFTC.ARD

BASIC has converted "print" to "PRINT". BASIC converts all instruc
tions to uppercase. If your Apple configuration has only uppercase, then it
doesn't matter. But if you are using an Apple Ile, an 80-column card, or an
external terminal then you might lil_te to take advantage of lowercase dis
play for some things. For some comments on an external terminal see
Sidelight 11. Note that "PRINT" (with a space) will not be recognized,
and you will have to retype the line. The words inside quotes are not
instructions to BASIC. They remain exactly as we type them. Normally,
any instruction must have a space before and a space after for BASIC to
properly recognize it. Further, there must not be any spaces within the
word itself. BASIC preserves the line just as we type it. This allows us to
put in extra spaces between keywords to line things up nicely for easy
reading.

Try it! You will benefit greatly from "hands-on" experience. If at all
possible, sit down in front of a computer now and type in Program 1-1.
Type exactly what you see above. If you make a typing error, there are lots
of ways to correct it. You can press the left arrow as many times as it takes
to fix the mistake. Or you can hold down the CTRL key and press H to
achieve the same effect. CTRL-@ works too. Now suppose you have a line
that is too messed up to fix this way. No problem: just hold down CTRL
and press X. The line is canceled and you can begin again. At the end of
the line, press the RETURN key-nothing will happen until RETURN is
pressed. If the computer talks back to you, it is probably because you
typed something wrong. If this happens to you, simply press the RETURN
key once more and type the line correctly. Don't let this be upsetting. You
can't hurt the computer with program instructions. This is one of the nice
things about programming: no error can damage the computer. On the
other hand, if you were to experiment with the electronics hardware, any
little flaw or error could damage or destroy your machine. Appendix B
discusses the wonderful things that we can do to recover from computer
"back talk." Your attitude should always be that you know you are going to
master the computer. Don't be put off by anything the computer does.

Now, back to our program. LIST it. To do this press five keys in tum:
"L", "I", "S", "T", and "RETURN". RUN it. This one takes four key
strokes. We must always notify BASIC that we have completed the cur
rent line by pressing the RETURN key.

Next, type

lH PRINT "My second Microsoft BASIC program."

LIST it. We have replaced our program line with another one. RUN it.
Next, type 100 and press the RETURN key. LIST the result. Nothing

is displayed-"Ok" appears by itself. We have eliminated our program
line. Since our program consisted of only a single line, we have eliminated
the entire program. Later we will see programs of many lines. It is imprac-

4
•••

GETTING STARTED

tical to eliminate entire programs a line at a time. Therefore, BASIC pro
vides the keyword NEW for this purpose
NEW is used only when we wish to eliminate an entire program. Once we
have entered the RETURN key after NEW any program we had is gone
forever. Whenever we desire to begin a new programming project we
should use the NEW keyword. Otherwise, we will simply merge our new
program with our old one. This can be disastrous.

We may display any message by enclosing it within quotes in a PRINT
statement or an LPRINT statement.

Let's consider some longer messages. What we are going to do here
will come through very vividly if you can follow along by typing right into
BASIC. Type

118 PRINT •Let's get sane practice at•
118 PRINT •displaying messages. We are•
128 PRINT •using the canputer :(or the purpose of"
131 PRINT •improving our minds.• ·

Program 1-2. Practice printing messages.

RUNning this program will produce the messages in quotes exactly as
typed in the program. RUN it. -Let• s get sane practice at

displaying messages. We are
using the canputer for the purpose of
improving our minds.
Ok

Figure 1-1. Printing a four-line message.

Once again we see the "Ok" from BASIC, assuring us that all is well.
Next, let's tinker with our little program. Let's eliminate the second line
by typing

118

Now LIST it.

118 PRINT •Let's get sane practice at•
121 PRINT •using the canputer for the purpose of"
131 PRINT •improving our minds.•
Ok

Program 1-3. Changing Program 1-2.

And the comforting "Ok" makes its appearance. (To avoid intense bore
dom we won't mention "Ok" in this context again.) When we RUN this
new program the corresponding message is displayed.

B •••

MICROSOFT BASIC USING THE SOFTCARD

Let's get sane practice at
using the canputer for the purpose of
improving our minds.

Figure 1-2. Executian of Program 1-3.

And finally we eliminate the new second line by typing

128

to produce Program 1-4. Ifwe try to remove a line thatisn't there, say 160,
BASIC gently reports our error with the

Undefined line n\Dber

message.

188 PRINT •Let• a get sane practice at•
138. PRINT •improving our minds.•

Program 14. Eliminate a line from Program 1-3.

Just as we should expect by now, another line has been removed, leaving
a two-liner. We are getting a little experience here at simply manipulating
a program. Let's RUN it.

Let's get sane practice at
improving our minds.

Figure 1-3. Executian of Program 14.

We could easily restore the original program by retyping the two lines we
eliminated earlier. This exercise should give us some idea of how to do
some of the beginning things in BASIC. We have entered a program,
LISTed it, RUN it, and modified it for further execution .

. . . . Line Numbers
All the lines in our programs have been given line numbers. BASIC uses
these line numbers to keep track of what it is doing at every moment. The
line number serves to label or name the line. Thus, when we typed 110
followed by the RETURN key we informed BASIC that the line named
"110" should be eliminated. And earlier when we typed 100 PRINT "My
second Microsoft program." we directed BASIC to replace line 100 with a
new line 100. BASIC programs are always arranged in order of increasing
line number. The order in which we type the program lines doesn't mat
ter.

Line numbers are important for program management. We may want
to refer to line numbers in a LIST or RUN instruction. LIST 100 displays
the single line for us to see. LIST 90-210 lists only those lines in the range
90 to 210. LIST 90,210 works just as well. The dash is standard for Mi-

6
•••

GETTING STARTED

crosoft BASIC. The comma is allowed for the convenience of Applesoft
programmers. LIST-210 displays all of our program from the beginning
through line 210. And LIST 560- produces all lines from 560 to the end of
the program. We may even RUN 210 to begin program execution at line
210 .

•••. DBLBD
DELETE is a command that we use to purge lines in a program. We delete
line 100 with

IZLB'1'B lSf/J

And, to delete lines 305 through 389, we use

DBLBTB 385-389

We may delete from the beginning of the program to line 790 with

DELETE -798

But DELETE 600- is rewarded by the

Illegal function call

error message. This feature is really for our own protection! It is just too
dangerous. For some reason, DELETE works on a protected program. (For
more about protected programs, see Appendix C.) But we cannot enter
those deleted lines again. For the convenience of Applesoft programmers,
the SoftCard version of BASIC-80 allows DELETE to be shortened to
DEL. Further, we may use a comma instead of the dash.

Let's make one more change in our message-printing program. As
written, our program displays its message on two separate lines. It would
be nice to have it produce a one-line display. In BASIC that is really very
easy. We simply place a semicolon at the end of line 100. See Program 1-5.

U!JI PRD1T •Let• a get sane practice a.t• [!]
131 PRD1T •Jmproving our minds.•

Program 1-5. Two PRINT statements display on a single line.

The semicolon at the end of the PRINT statement in line 100 is an in
struction to BASIC to continue further display on the same display line.
Of course, we are limited by the screen width here. See Figure 1-4.

Let• a get saae practice atimproving our minds.

Figure 1-4. Execution of Program 1-5.

Oops! We really want a space between "at" and "improving". If we want a
space, then we must include it in our instructions to the computer. Since

'1 •••

MICROSOFI' BASIC USING THE SOFl'CARD

anything enclosed within quotes is displayed as typed, all we need to do is
include a space at the appropriate spot. This we do in Program l-6.

lfJI PRINT •t.et' • get acme practice at E!J
138 PRDl'l' •improving our minds.•

Program 1-6. Include the space this time.

Now RUN it .

• . . . At the Keyboard
If you have been performing these exercises on your own computer, there
is a fair chance that you have seen some disapproving message from
BASIC. Probably you have witnessed the

Syntax error

message. "Syntax" simply refers to form. Everything we enter into the
computer must have a correct form or syntax. If we enter an incorrect
form, BASIC cannot determine what action to take. Thus, it reports a
"Syntax error". Perhaps you typed "RIN" at the keyboard, intending to
RUN a program. "RUIN" is a favorite. That doesn't work either. Or per
haps "LOST" instead of"LIST". No harm has been done. Simply type the
instruction correctly and proceed.

If we enter a numbered program statement with such an error, some
thing different occurs. Suppose we type something such as

190 PRCl1'1' "'lhia ia a sample error"

Nothing happens-until we execute the program. At that time, BASIC
detects the problem and reports

Syntax error in 100

generously notifying us of the line where the error was found. Following
this, BASIC goes into EDIT Mode by displaying the line number for us. At
first in our programming career it may be best to simply get out of this
new mode by pressing the RETURN key. We're doing enough new stuff as
it is. Next, the beginner will replace the program line by retyping it. As
you get a little more experience, you will want to use the magical powers
of EDIT Mode. These powers are revealed in Appendix B. Check out
EDIT Mode whenever you are ready .

••.• SUKKAB.Y
When an Apple with a SoftCard is turned on with a CP/M diskette in the
disk drive, the CP/M system is in control. Typing "MBASIC" puts Mi
crosoft BASIC in control. Whenever we desire to return to CP/M from
BASIC, we may type "SYSTEM".

8
•••

GETTING STARTED

We have spent some time here becoming familiar with BASIC by
causing the computer to display word messages. This has given us a
chance to see how to build programs and make changes in them. Pro
grams are built up by typing numbered instructions having a syntax or
form that we know BASIC can analyze and act upon. We change an exist
ing program line by typing a new one with the same line number.

There are certain words that we may use in BASIC to instruct the
computer. We have seen the keywords PRINT and LPRINT, RUN, LIST
and LLIST, NEW, and DELETE or DEL.

We may display messages by enclosing them within quote marks in a
PRINT statement. On a PRINTed line we may combine messages by
separating them with a semicolon in PRINT statements. The computer
will 9arry out the instructions of our program when we enter the RUN
instruction. RUN 300 begins execution with line 300. We may examine
our entire program with the LIST instruction. LIST 400, LIST 200-250,
LIST -600, and LIST 440- are all forms of LIST that allow us to list se
lected lines of our programs. We erase a program from the computer with
the keyword NEW. We may eliminate selected lines from our program
using DELETE. DELETE 100, DELETE 100-190, and DELETE -300 are
useful forms of the DELETE instruction.

Problems for Section 1-1•
Don't limit yourself to the problems listed here. As you begin to under
stand BASIC and programming, you will want to draw on problems of
special interest to you. The process of learning to program a computer is
unique in that the computer will provide you with some measure of your
success. You don't need a teacher or an answer book to give important
feedback on your progress. It is especially satisfying to be able to formu
late your own problems, program their solution, and verify the result-all
on your own.

1. Think up any message that you would like the computer to
display-for example, "Now is the time for all good people to come
to the aid of their country." LIST the program and RUN it. Try
other messages.

a. Write a program to display the following message: "Programming
is fun. The computer will solve many problems for us." Use two
PRINT statements-one for each sentence. Have the message dis
played on a single line. RUN it from just the second line using
RUN (line number).

1-a ... Calculations
The ability to display messages is crucial to good programming. Well
thought-out messages and result labels are very important. Every com
puter program should display some message.

9 •••

MICROSOFT BASIC USING THE SOFTCARD

The message is not the only thing. Often it is the ability of the com
puter to perform calculations with lightning speed that makes it so useful.
Even if our real interest lies in graphics, games, voice, learning systems,
word processing, or any other seemingly nonmathematical application, it
is the arithmetic power of the computer that makes it perform so many
different tasks. For this reason, it is important for us to learn how to direct
it to calculate for us.

We can calculate an important number with a simple program such as
Program 1-7.

100 PRIN'l' 24 * 365

Program 1-7. Calculate hours in the year.

If we type this program in and RUN it we will instantly see the display of
Figure 1-5.

8760

Figure 1-5. Execution of Program 1-7.

We can easily direct the computer to perform calculations right in the
PRINT statement. We have used the "*" (asterisk symbol) to indicate
multiplication. We might even want to use immediate mode to display
such a simple result. We could enter the line

PRIN'l' 24 * 365

In this case, we won't need to direct the computer to RUN the program.
The result will be displayed instantly without it.

We really ought to dress up our program a little by including a label to
tell us what that number is. All we have to do is add a quoted message.
Program 1-8 does the job.

100 Piu:NT 24 * 365; 0 H:>urs in a year•

Program 1-8. Labeling a calculated result.

Here we have used the semicolon to place the message right on the same
line as the calculated result. Look carefully at the execution of Program
1-8 in Figure 1-6.

RtB
8760 Hours in a year

Figure 1-6. Execution of Program 1-8.

Note that we got a space between the 0 in 8760 and the Hin Hours.
BASIC always inserts a space following the display of a numeric value.

Program 1-9 is a simple program to demonstrate multiplication, addi
tion, subtraction, and division of two numbers.

10 •••

GETTING STARTED

118 PRINT •'!be nanbers are 192 and 235•
-->128 PRINT

200 PRINT • '!be product is•: 192 * 235
210 PRINT " '!be S\.IU is": 192 + 235
220 PRINT "'!be difference is": 192 - 235
230 PRINT " Dividing we get": 192 I 235

Program 1-9. Demonstrate simple calculations.

We can see in Program 1-9 that* is used to multiply,+ is used to add,- is
used to subtract, and I is used to divide.

'!be n\nbers are 192 and 235

The product is 45120
The S\.IU is 427

The difference is-43
Dividing we get .817021

Figure 1-7. Execution of Program 1-9.

Here in one short program we have done several calculations. How
many calculations we might direct the computer to perform is limited
only by the number of statements we are willing to type. Note that we
used a blank PRINT statement in line 120 to improve the appearance of
the program display. That decimal value for the division is necessarily
approximate. If we do that problem out "all the way" we find a 46-digit
repetition. In this case BASIC rounded off the result to 6 digits. That will
be enough for many, many applications. Just in case we ever want more
digits, be assured that we can easily obtain 16 digits (but we'll get to that
later). And if we are willing to write a little program we can get as many as
we like. Note that the three positive results are preceded by a space, while
the negative value is indicated in the conventional manner.

We may direct the computer to perform arithmetic in any order by
using parentheses. While 2 + 3 * 4 evaluates to 14, (2 + 3) * 4 evaluates
to 20.

It is important to realize that very soon we will see more convenient
ways to perform calculations on the computer. Right now we are trying to
approach learning programming with a minimum of new detail at each
step along the way. As each idea becomes familiar to us, then we will be
ready to tackle the next feature or programming technique. We are going
to learn to write programs by progressing from the known to the un
known .

• • • • BUMMAB.Y
So now we have the ability to display messages and perform arithmetic
calculations in PRINT statements. We even have the ability to produce an
empty line for attractive display using the blank PRINT. BASIC uses the

11
•••

MICROSOFI' BASIC USING THE SOFTCARD

asterisk (*) to indicate multiplication. Plus (+), minus (-), and· slash (I)
are used for addition, subtraction, and division respectively. We rely on
BASIC to provide six-digit precision without any special effort on our part.

l'roblems for Section 1-8
1. Write a progmm to calculate the sum of the counting numbers

from 1to10.
a. Write a program to find the average of 78, 89, and 82.
8. Write a program to calculate the number of days since you were

born.
4. Write a program to calculate the number of hours since you were

born.
s. Write a program to find the simple interest at 11.98% on $4949 for

one year.
e. Add 283.4, 658, 385.8, and 17.
'1. Add $19234.30 and $123.45. Comment on the result. Remember

that we said six digits.

smBLIGIRl

We presented some fundamentals in Chapter 1. In this section we will
look at some extras .

•••• BOMB
The SoftCard version of BASIC includes the HOME instruction especially
for Applesoft programmers. HOME simply clears the screen and places ·
the cursor at the upper left corner awaiting further instructions. This is
very nice for presenting information clearly formatted for the reader. It is
also nice for programmers who want to .clear the screen and LIST a few
program lines for careful study .

• • • . Question Kark (f) in P1liln?
A question mark may replace the keyword PRINT in any print statement.
This saves four keystrokes every time we use it. The question mark may
be used in both deferred and immediate modes. To find the number of
hours in a year, type

?24*365

and the computer will respond with 8760 as quick as a flash.
Deferred mode has an added wrinkle. Suppose we type

18
•••

GETTING STARTED

18?24*365

Running this program will produce the expected result. But LIST reveals
that something else has happened.

LIST
18 PRDl'l' 24*365

We typed a question mark, but BASIC lists it as PRINT. No problem here.
You .have the choice of either typing ? or PRINT. The result is the same.

13
•••

Chapter a
Adding
Features

Now that we have written a few programs and are familiar with the
computer and BASIC, it is time to add some simple but powerful features.
We will learn how to supply values for our programs to work on in a much
more general way than in Chapter 1. The ability to remember values will
be revealed. We'll be doing more with calculations and displaying mes
sages.

8-1 ... Kore Calculations
It is your job to buy the eggs this week. That's not so tough: just go to the
grocery store and buy some eggs. But you are also asked to get the best
buy. So you read the paper and learn that small eggs sell for $. 72 a dozen,
medium eggs for $.87, large eggs for $.95, and extra large eggs for $1.00.
Which should you buy? How do you decide which is the best buy? You
probably want the lowest cost per ounce. So you want to know the weight
per dozen. That is easy: look at the egg cartons. There you will find that
the four sizes of eggs listed above weigh 18, 21, 24, and 27 ounces per
dozen, respectively. Those figures are actually the minimum weights, but
we'll use them for comparison. It is easy to determine the price in cents
per ounce. The problem is solved for us by Program 2-1.

18" PRINT 188/271 95/241 87/21: 72/18

Program 2-1. Calculate egg values.

14 •••

ADDING FEATURES

Here we have a one-line program to tell us which size eggs to buy to get
the most egg for the money.

3.7837 3.95833 4.14286 4

Figure 2-1. Execution of Program 2-1.

Clearly we get the lowest per-ounce price by purchasing the extra large
eggs. If the store is out of them, then large eggs are the ones to get. On the
other hand, we often serve eggs individually, or we use recipes that call
for a fixed number of eggs. In this case we usually expect medium eggs,
and the computer's results will not change anything.

Program 2-1 may have solved a problem for us. It listed four numbers.
By remembering that the sizes are listed decreasing from left to right we
can interpret the results. However, it is a very primitive program. At the
very least, we should have the computer label each of the values for us.
One way to do this is to write four separate PRINT statements as shown
in Program 2-2.

188 PRINT •Extra large•r 188/27
118 PRINT • Iarge•r 95/24
121 PRINT • Medil.lll•r 87/21
138 PRINT • Snall"r 72/18

Program 2-2. Label egg values.

It is always a good idea to arrange programs and program output (display)
in such a way that items are easy to read. The leading spaces within
quotes in lines 110, 120, and 130 will help produce a nicely arranged
report. The extra spaces following the semicolons on those same lines
help to make the program easier to read. BASIC does convert all keywords
to uppercase; otherwise any extra spaces we type for clarity (or even by
accident) are left in. This feature gives us a chance to insert lots of space
to make programs more readable. This is all for your benefit-the com
puter doesn't care.

Extra large 3.7037
Large 3.95833

Medium 4.14286
Small 4

Figure 2-2. Execution of Program 2-2.

It might be nice to insert a line 90 to display a message announcing "Egg
prices in cents per ounce" or something such as that.

Calculating cents to the nearest ten-thousandth isn't relevant to our
problem. One of the things we will be looking for a little later on is a way to
round off numeric results. ·

18 •••

MICROSOFJ: BASIC USING THE SOFTCARD

••. . :Sum.bar Pigeonholes (:Sum.eric Variables)
We can program the computer to perform many useful and interesting
calculations using just the arithmetic available in PRINT and LPRINT
statements. That gives us a hand-held calculator for the price of a com
puter. Tremendous additional problem-solving power is unleashed with
each new programming feature available in BASIC. Thus far we have
been using our video display or a piece of paper to save any results pro
duced by a program.

BASIC contains the ability to save results within a program without
having to display them. We simply think of a nice name for a value and tell
the computer to remember a number by that name. Computer people call
this name a variable. If we want to save a number, 765.50, representing a
person's wages, then we might well ask the computer to use a variable
called WAGES. We will have to remember that it is a measure of money.
The computer won't do that for us. So, in a program, if we need to calcu
late a 2.4% wage tax we would use an expression such as

WAGES * .824

And we could have the computer remember that value in another
variable-perhaps TAX, or WTAX. We should select names that help us to
remember what the number represents. For quick, short programs,
though, we will often use just a single letter. This makes for faster typing.

There are some restrictions on what names we may use for variables.
They must begin with a letter and be 40 or fewer characters. We may use
any letters, any digits, and the decimal point in variable names. The vari
able name must not be a keyword or a BASIC instruction. Thus, names
like NEW, PRINT, and LIST are no-no's. However, we may use OLDLIST
or even NEWLIST if it suits our purpose. OLD.LIST, NEW.LIST, and
PRINT.LIST are all legitimate variable names. This gives tremendous
flexibility .

. . . . ~he .Assignment Statement (LB~)
BASIC has a special statement that allows us to direct it to remember
values. It is called the LET statement and can be used as follows:

288 LET WAGES • 765

To retain the value for taxes in TAX we would use a statement such as

228 LET TAX • WAGES * .824

The LET statement is referred to as the assignment statement because it
causes the computer to assign a value to the variable named on the left of
the equals sign.

Next, we might want to know how much is left and to save that value
in NPAY or even NET.PAY.

16 •••

ADDING FEATURES

23" LET NET. PAY = WAGES - TAX

Finally we ought to have the program display the result.

29" PRINT •Net pay is:"1 NET.PAY

By putting these together we get Program 2-3.

->200 LET WAGES • 765
221 LET TAX = WAGES * .824
231 LET NET. PAY • WAGES - TAX
29" PRINT "Net pay is:"1 NET.PAY

Program 2-3. First program with variables.

RUNning this program produces the output of Figure 2-3.

Net pay is: 746.64

Figure 2-3. Execution of Program 2-3.

We have created a program that consists of a sequence of instructions
leading to a problem solution. This program may be saved and used again
with another value for WAGES in line 200. By making a slight change in
the program we may solve the same problem for any wages figure we like.
To find the net pay for a person having wages of 635, simply replace line
200 in Program 2-3 with

200 LET WAGES • 635

and RUN the program. The LET statement is probably one of the most
frequently used statements in BASIC .

. . . • Optional LET
The use of the LET keyword itself is optional. We may use the statement

29" WAGES • 635

to assign the value 635 to the variable WAGES. This is still called an
assignment statement, and it will perform in exactly the same manner as
the equivalent LET statement. Many people strongly encourage the be
ginner to continue using the LET keyword until he or she is quite com
fortable with programming. For this reason we will use LET for a little
while longer in this book.

We may also cause the computer to READ values stored elsewhere in
the program as DATA .

•• • • BBAD and DATA
Earlier in our wages program we changed the value of WAGES by typing
the LET statement in line 200 with the new number. We can simplify this
process a little by using READ and DATA. Consider Program 2-4.

17 •••

MICROSOFT BABIC USING THE SOFTCARD

->219 Rl!'AD WAGBS
228 LET 'l'AX • WAGBS * .824
238 LET NET. PAY • WAGBS - TAX
298 PRD1T "Bet pay is1 11 7 NET.PAY
9"8 DATA 765

Program 2-4. Introduce READ and DATA.

This program will produce exactly the same result as our first wages
program. The action of line 200-READ WAGES-is to search the pro
gram for a DATA statement. Upon :finding it READ assigns the value
found there to the variable named in the READ statement. Thus the
statement pair

219 Rl!'AD WAGBS
988 DATA 765

does exactly the same job as the statement

288 LET WAGBS • 765

Furthermore, as we will see shortly, the READ-and-DATA combination is
used to supply many values for variables during the execution of a pro
gram. In the meantime we will look at a third method for assigning values
to variables.

So far we have the LET statement and the READ-and-DATA combina
tion. Both techniques require that all values be stored as part of the pro
gram and be known before the program is executed. The third method
allows us to enter values at the keyboard while the program is actually
running .

• . . . Bntertng Values from the Keyboard (lllPUT)
We often find that a program solves a problem based on just a few items of
information, such as wages. In addition we would like to create programs
that nOJ1programmers can run with ease. Sometimes when we run a pro
gram we don't even know what numbers to· enter until we see some re
sults from another part of the program. In situations like this we may use
the INPUT statement of nASIC.

D1PUT WAGES

is another way to assign a value to a variable. The INPUT statement
provides the program operator with an opportunity to type values at the
keyboard. Following a carriage RETURN the typed value is assigned to
the variable named in the INPUT statement, in this case WAGES. This is
much better than having to replace a whole program statement. With this
capability people who are not programmers can feel confident using our
programs to solve their own problems. It is a good idea to display a label to
describe the value that is to be entered. See Program 2-5.

18
•••

ADDING FEATURES

->280 PRINT "Enter wages"r
21111 INPUT WAGES
220 LET TAX •WAGES* .024
230 LET NET. PAY • WAGES - TAX
290 PRINT "Net pay iss"f NET.PAY

Program 2-5. Demonstrate the INPUT statement.

Notice that our program uses three different BASIC statements: INPUT,
LET, and PRINT. Programming is the process of putting together those
statement types required to solve the problem at hand. Now the program
may be used to solve the net-pay problem for many values of wages with
out changing the program itself. If is this kind of capability that makes
the computer such a useful machine. When this program RUNs it will
display the message of line 200 followed by a question mark. This is
the signal for us to enter our number. See Figure 2-4.

Enter wages? 635
Net pay is: 619.76

Figure 2-4. Execution of Program 2-5.

In Figure 2-4 we typed the value 635 and the program displayed every
thing else. Notice that we got the question mark on the same line as our
message by using a semicolon in the PRINT statement.

If you should happen to press the RETURN key without entering a
value, BASIC will take the value to be zero. In the event that you happen
to lean on the repeat (REPT) key and enter 40 digits BASIC will cough.
Two messages will be displayed, followed by another question mark.

overflow
?Redo fran start
?

That means just what it says: reenter your value; the number you entered
is too large.

Now we have three methods for providing values for a program to
work on: LET, READ and DATA, and INPUT. LET assigns a value accord
ing to the expression following an equals sign. READ and PATA may be
combined to supply values right in the program itself for use during
execution. INPUT assigns a value entered from a keyboard .

• • • • Pllilft USDTG and LPllilft USDTG
Suppose in Program 2-5 we respond with 777, then what? Let's try it. See
Figure 2-5.

Enter wages? 777
Net pay iss 758.352

Figure 2-5. Try a different value for wages in Program 2-5.

19 •••

MICROSOFT BASIC USING THE SOFTCARD

It is difficult to spend .352 dollars. We would like to have our results in
this calculation rounded off to the nearest cent. That is easy to do with
PRINT USING. PRINT USING allows us to lay out the form we would
like to see for the display. We may use number signs(#) to describe how
we want the results to look. To allow for three digits to the left of the
decimal and two to the right, we use the following statement:

29'/J PRINT USING "Hl.H"; NET.PAY

When our program executes line 290, BASIC will use only the spaces
occupied by the number signs for digits. Further, we may include our
descriptive label in the quotes. Now, line 290 looks like this:

29'/J PRINT USING "Net pay isa Ht.H"r NET.PAY

Including this new line 290 in Program 2-5 produces the display of Fig
ure 2-6.

Enter wages? 777
Net pay is: 758.35

Figure 2-6. Program 2-5 with PRINT USING.

The value in NET.PAY is still 758.352, but the display is rounded off to
two decimal places. Eventually, we will see how to round off values for
saving in variables.

There is another situation in which it would be nice to employ PRINT
USING. Suppose we enter 800 when we run Program 2-5. BASIC will
display the result as 780.8. It would be nice to show a zero in the cents
column. PRINT USING is just the ticket for this. Running Program 2-5
with the latest version of line 290 will display 780.80. If we enter a value
that calls for more digits in the display than the number signs allow to the
left of the decimal, the BASIC displays a percent sign(%) to the left of the
result. So it is a good idea to allow plenty of space.

Since Program 2-5 talks about money, let's get PRINT USING to in-
clude a dollar sign($) in the display. See Figure 2-7.

29'/J PRINT USING "Net pay isa $Hl-ll"r NET.PAY
RUN
Enter wages? 777
Net pay isa $758.35

Figure 2-7. A dollar sign in PRINT USING.

We may include up to two dollar signs there. Only one of them will be
displayed. The other one acts just like a number sign-it holds a space for
a digit if needed. If only one dollar sign is used, then it will be displayed in
the column where it appears in the PRINT USING statement. For two
dollar signs, BASIC places a dollar sign right up against the figure in the
display.

ao
•••

ADDING FEATURES

There are some additional features of PRINT USING that we will look
at as it seems appropriate .

. • . . :Multiple IllPU'l! and :Multiple BEAD
The INPUT statement is powerful enough just as we have seen it. In
addition we may easily enter several values using a single INPUT state
ment. We simply list all of the variables we wish to assign following the
keyword INPUT, separating them with commas. While we may list many
variables in a single INPUT statement, it is a good idea to limit the num
ber to three or four at the most. It is difficult to type a very long list of
numbers on one line without getting lost somewhere. Two to three is
ideal. Incidentally, we may use EDIT Mode when responding to an
INPUT request. See Appendix B. CTRL-A lets us correct our typing errors
before pressing the RETURN key. CTRL-A only works with Apples that
don't have an 80-column card that traps it for upper/lowercase con
version.

When the program runs, the operator must type the values separated
with commas. So, to enter the four egg prices from our earlier program,
we may use

128 INPUT PE, PL, FM, PS

where PE stores Price Extra large. The READ statement may be used in
the same way.

100 RFAD WE, WL, WM, WS

Here we store Weight Extra large in WE. It makes sense to use READ
and DATA for the egg weights per dozen since they will never change. It
makes sense to use INPUT to assign values for egg prices because they
often change. Next we supply some sensible messages and display the
cents per ounce as before, and the program is done. This time we have a
program that may be used by anyone. See Program 2-6.

108 RFAD WE, WL, WM, WS
118 PRINT "Enter prices in cents•
115 PRINT "Extra large, large, Medium, Small"
128 INPUT PE, PL, FM, PS
19" PRINT
200 PRINT "Extra large•: PE/WE
218 PRINT • large•: PL/WL
228 PRINT • Medium": PM/WM
238 PRINT • Small": PS/WS
908 DATA 27, 24, 21, 18

Program 2-6. Making the eggs program more flexible.

Notice that we have blended the use of INPUT and READ nicely in the
same program. READ is appropriate for values that seldom change;
INPUT is used for values that usually change.

21
•••

MICROSOFT BABIC USING THE SOFTCARD

Enter prices in cents
Extra large, Luge, Medi\ID, anau
? 188,95,87,72

Extra large 3.7837
Large 3. 95833

Medi\ID 4.14286
Small 4

Figure 2-8. Ex,ecution of Program 2-6.

By using the multiple-value capability of READ and INPUT we have
gotten the equivalent of eight LET statements into one READ, one IN
PUT, and one DATA. The number of values possible here is limited only
by the line-length limit (255 characters) and the readability of the
program •

•••• BllftOBB
Occasionally we would like to READ DATA more than once. Normally, if
the program runs out of data BASIC delivers the

Ou.t of DATA in 291/J

error message and execution terminates. The 290 names the line in
our program where the READ statement appears. We can change that
with the

RBS'1'0RB

statement. All DATA is restored to the program and the next item read by
a READ statement will be the very first item in the first DATA statement.
Further, if we have a program with several blocks of DATA, we may use
RESTORE with a line number to cause the program to begin reading
DATA at the line number of our choice.

RBS'1'0RB 2UJ

will cause the next item of data to be selected from the beginning of the
DATA statement at line 210. The line number in the RESTORE statement
must be a real line number; however, it need not be a DATA statement.
So, be careful. In fact, RESTORE is a little-used statement, but from time
to time it solves an interesting problem .

• • • • SUllllAllY
We have seen the use of numeric variables. Numeric variables store
numeric values within a program. Values are stored in numeric variables
using LET, READ, and INPUT. The LET statement assigns the value on
the right of an equals sign to the variable named on the left. READ copies
values from DATA statements to variables. INPUT looks to the keyboard
for its source of information.

aa •••

ADDING FEATURES

Both READ and INPUT may be used for several variables by separat
ing them with commas. We may reREAD DATA by using RESTORE or
RESTORE 900 to restore all data or just that beginning with line 900.

We can display results rounded off and with a dollar sign. We just put
the pattern we want in quotes in a PRINT USING statement.

Problems for Section a-1
1. What will the following program display?

100 LET WAGBS • 432
110 LET TAXES •WAGES* .022
130 PRDl'l' WAGES

a. Write a program to request three numbers from the keyboard and
calculate the average.

8. Write a program to READ three numbers from DATA and calculate
the average.

4. Program the computer to request an interest rate in percent and a
dollar amount. Have your program display the interest and the
amount for simple interest for one year.

s. READ three digits into three variables. Then display all possible
arrangements in six PRINT statements. The first PRINT will be

140 PR.INT Ar Br c

a-a ... Additional Arithmetic Operators

We have become used to worldng with the conventional arithmetic opera
tions of addition, subtraction, multiplication, and division. Three more·
operations are available to us. We may raise a value to.a power using an
exponent. We may command BASIC to perform modular arithmetic and
integer division. These operations may be programmed with extra state
ments, but it is very nice to have them directly accessible •

. . . . Order of Operations
BASIC does addition, subtraction, multiplication, and division exactly the
way we would do them on paper. Multiplication and division are done
first, followed by addition and subtraction. We may also use parentheses to
change that order just as we would in mathematical expressions. Thus, if
we need to divide 7 by the sum of 6 and 9, we might type the following:

PRDl'l' 7 I (6 + 9)

We will quickly get used to writing all these things on a single line. It's
just like using an electronic calculator.

23
•••

MICROSOFT BABIC USING THE SOFTCARD

.... Baising to a Power
We can easily square a number by multiplying it by itself. For higher
powers this may not be the best way. Since we cannot write X cubed by
writing a superscript, BASIC uses the """ symbol to indicate "to the
power". This symbol is found at "shift-N" on the Apple II and Apple II
Plus and at "shift-6" on the Apple lie. We find the exponentiation symbol
in a variety of locations on different terrllinals used as an external termi
nal. So, we write X cubed as

X"'3

Raising to the power is carried out in BASIC before addition, subtraction,
multiplication, and division just as we ordinarily do it. An expression
such as

x2 + y2
xz _ y2

is written in BASIC as

(X"'2 + Y"'2) I (X"'2 - Y"'2)

.... KODular .Arithmetic
Many calculations are cyclic in nature. One common example is the
reckoning of time of day. We keep track of time in 12-hour segments.
Some institutions use a 24-hour clock. This is a modular process. When
we add some number of hours to a given time, we determine the result
ing time using modular arithmetic. The days of the week rotate in a
modular fashion.

For days of the week we think of a seven-day rotation. Using modular
arithmetic we would label the days from zero through six inclusive. Thus
if we choose to designate Sunday as day zero, then Thursday becomes day
four and Saturday becomes day six. In this situation we say the modulus
is seven. Using the MOD operation of BASIC it becomes a simple matter
to determine the day of the week that is 17 days from a Tuesday. We
simply code a statement such as

PRINT (17 + 2) MOD 7

and the computer will promptly report a five, which corresponds to a
Friday. As with other operations we should be aware of the ·order in which
the computer will do things. Note that we surrounded an expression with
parentheses. This is because the MOD operator has a higher priority than
addition. Without the parentheses in that statement the computer would
display 19 because it would take 2 MOD 7 first and then add 17. The
priority of the MOD operator follows multiplication and division and pre
cedes addition and subtraction.

84
•••

ADDING FEATURES

The MOD operator expects values in the range -32768 to 32767 or
we will get an "Overflow" error message .

. • • . Integer Division.
Integer division simply ignores any remainder after division. While 18/7 is
2.57143, the result of integer division is 2. The symbol for this new opera
tion is the backslash (\). This symbol is produced on an Apple II and
Apple II Plus with CTRL-B. It is found just above the RETURN key on
the Apple Ile.

PRDl'l' 18 \ 7

produces the desired result. The -32768 to 32767 limit applies here, too.
Table 2-1 shows the order in which BASIC carries out the various

arithmetic operations. As we have already seen, we may use parentheses
to alter that order in any expression in our program .

.AB.UJDlll!rIO OD~IORS
fl7mbol Bame Bzample

"
*,I

\
MOD
+,-

Exponentiation X " 3
Multiplication and X * Y

Division X I Y
Integer division A \ B
Modular Arithmetic A MOD B
Addition and Subtraction X + Y, X - Y

Table 2-1. Order of operations in BASIC.

Problem.a for Section 8·8
1. Write a program to print a value for

1 1
2+3
--
1 3 ---
4 5

Do this by assigning values as follows: A= 1, B = 2, C = 3,
D = 4, and E = 5.

a. Write a program to print a value for

2 3
3+4
5 2
0+3

as •••

MICROSOFT BABIC USING THE SOFTCARD

Assign variables as follows: A= 2, B = 3, C = 4, D = 5, and
E = 6.

8. Write a program to calculate
(17.45 - 6.92)'
6.983 - 96.21

4. Write a program to request two numbers. Have the program print
the first number MOD the second. Experiment with a variety of
values. ·

8. Write a program to request two numbers. Print the result of integer
division of the first number divided by the second one. Experiment
with a range of values.

8-:S ... More Messages

We have been displaying messages by enclosing them in quotes in PRINT
statements. Sometimes the message depends on the program results. For
example, we might be looking for the day of the week with the highest
temperature or the lowest sales volume. Or we might want to do some
thirig as simple as programming the computer to display someone's name
to attract attention. BASIC has many features for handling nonnumeric
values with ease .

•• . . Word Pigeonholes (8'r1ng Variables)
We may assign a message to a variable. Such a variable is different from a
numeric variable, so we need to use a special kind of variable name. Any
variable name that ends with a$ (dollar sign) may be used for this pur
pose. Variables of this type are usually called "string variables" because
they may store a string of characters. Let's see an example. Look at Pro
gram 2-7.

1"8 LB'1' M!NAME$ - •Jim•
121/J PRINT MD1AME$r • is nice.•

Program 2-7. Demonstrate string variable.

This little program simply assigns a string value to the string variable
MYNAME$ in line 100 and then displays the contents with a little mes
sage in line 120. That's all.

Jim is nice.

Figure 2-9. Execution of Program 2-7.

Suppose we try using NAME$ as a variable name.

181/J LB'1' BAME$ • •Jim•

86 •••

ADDING FEATURES

Execution of this statement will bring forth an unexpected result. BASIC
uses NAME as a keyword. NAME is used to change the name of a disk
file. (See Appendix C.) So trying to use NAME as a variable is an error.
RUNning a program with this line will produce the following display:

RUff
Syntax error in 100
Ok
100 • <- cursor here

and we swing into EDIT Mode. (See Appendix B.) Since we won't know
all keywords in advance, this will occasionally happen to us. We solved
this problem in Program 2-7 by using MYNAME$. We could just add a
period to the end of any keyword to obtain a legal variable name. So we
might also use NAME.$ in this case.

We may work with string variables in many of the ways in which we
work with numeric variables. For instance, any of the following state
ments may appear in a program:

lf!lf!I LET A$ • •First•
100 RFAD A$
100 INPUT A$.
100 PRINT A$

String variables may store from 0 to 255 characters at any time. In order
to READ A$ we must provide a corresponding DATA statement. If we
want to include a comma in the string, then we must enclose the string in
quotation marks. Without the quotation marks, any comma is interpreted
as the end of the current DATA item. Since string variables may be used
with INPUT and READ as well, we could easily change line 100 of Pro
gram 2-7 and get the computer to say something nice to our friends.

Program 2-8 is a little demonstration of READing more than one data
string.

->Ulf!I RFAD L$, P$
118 PRINT P$7 • "1 L$
9"21 DATA Lincoln, Abraham

Program 2-8. Demonstrate READing string values.

Line 100 reads the first string into L$ and the next string into F$.

Abraham Lincoln

Figure 2-10. Execution of Program 2-8.

Suppose we really want to store "Lincoln, Abraham" in a string vari
able. We simply use quotes as mentioned earlier. It looks like Program 2-9.

87 •••

MICROSOFT BASIC USING THE SOFTCARD

188 RFAD HAMB.$
111 PRIN'l' NAME.$
988 DATA •Lincoln, Abraham•

~rogram 2-9. Demanstrate READing a comma into a string variable .

• • • • .Ad.ding Strings (Concatenation)
Sometimes we want to build up one string from other strings. We can
attach strings with the plus sign (+). Plus will not mean numeric addition
but "putting together" or concatenation. We might want to use a person's
name in a variety of ways in a program. We might want to use the first
name sometimes and the full name at others. Consider Program 2-10.

188 RFAD P$, L$
-->111 LB'l' POLL$ • P$ + L$

131 PRINT •fint name •r P$
141 PRIN'l' " Last name • r L$
151 PRINT • Pull name •r POLL$
981 DATA George, Washington

Program 2-10. Demanstrate string concatenation.

Pirst name George
Last name washington
Pull name Georgewashington

Figure 2-11. Execution of Program 2-10.

Oops! We must change line 110 in Program 2-10 to read:

111 LB'l' PULL$ • P$ + • • + L$

Now we will get a space between George's first and last name. We may use
the plus sign to join strings as long as the total number of characters does
not exceed 255. If this limit is exceeded we will see the

Strlng too long in 111

error message.
Don't get carried away with string operations. If we try to subtract

strings we will evoke another error message from BASIC. The line

188 C$•B$-D$

will produce the following:

Type m18match in 111

It just isn't defined. Minus is for numbers, not strings. BASIC allows two
data types: strings and numerics. We will get the same treatment for a
statement such as:

181 LB'l' A$ • 65.45

We simply can't indiscriminately mix strings and numerics.

as
•••

ADDING FEATURES

We will be adding more string capabilities to our repertoire as time
goes on, but direct subtraction and direct arithmetic will not be among
them. To get the characters 65.45 stored in string variable A$, just enclose
them in quotes.

1"9 L1!:1' A$ • •65.45•

•••• SUM?tl.AB.Y
String variables may be used to store nonnumeric data. We may use strings
with LET, INPUT, READ and DATA, and PRINT statements. Two strings
may be joined using a plus sign. To include a comma in a string it is
necessary to surround the string data with quotes.

Problems for Section 8·3
1. Rewrite Program 2-6 to READ the egg-size names from DATA

along with the weight per dozen.
a. Write a program to READ the days of the week into seven variables

and display them.
8. Write a program to request a person's name from the keyboard.

Have your program respond with "Hello there 'your name'".
4. Write a little program to request a single string using INPUT and

display the string variable with PRINT. Experiment. Enter a string
with and without a comma. Verify that you can get a comma into
the string by using quotes. Work with this until you are comfort
able with string INPUT.

8. Write a program to request a person's name in two strings, first
name first. Display the name in the form last name, comma, first
name. For example, for "John, Jones" entered at the keyboard,
display as "Jones, John".

smELIGBTa

A Word about Precision

•... Single Precision
The numbers we have been working with are called single-precision
numbers. They are displayed with up to six significant digits as required.
This enables us to perform calculations for a wide range of numeric val
ues. We get single-precision numbers automatically in BASIC. Later we
will discuss how to get up to 16-digit precision and how to limit calcula-

89
•••

MICROSOFT BABIC USING THE SOFTCARD

tions to the range ofintegers from -32768 to 32767. The ranges are related
to the amount of computer memory required to store numeric values. In
addition, more execution time is required to operate on values of greater
precision. For now, let's explore the world of single precision.

Even with single precision, BASIC distinguishes between whole
number values within the integer range and those outside. Let's type in a
simple program and list it. See Figure 2-12.

NEW
189 LET X • 3241
110 LET Y • 65000
120 LET Z • 65000.9
LIST
100 LET X = 3241

~>110 LET Y = 650001
-->120 LET Z = 65000.9

Figure 2-12. Demonstrate numeric values in program LISTing.

See what BASIC did to line 110? An exclamation point is appended to
the 65000. This serves as a reminder to us that, while that number
might look like a true integer, it is stored as a single-precision value. Look
at line 120. There is no exclamation point there, but we know that
65000.9 is not an integer. Suppose we LET X = 9999999. BASIC does
something quite different. We are plunged into the world of E-format .

.... E-format
Let's construct a :program that will produce a result too big or too small for
six digits. When this happens BASIC resorts to a special notation that
displays six-digit precision and a power of ten. It is called E-format and is
just like scientific notation. Consider Program 2-11.

189 Nl = 93.326
110 N2 = 24398.9
200 PRINT "'lhe mrnbers are :": Nl: "and": N2
220 PRINT " .Add : ": Nl + N2
230 PRINT "subtract :"r Nl - N2
240 PRINT "Multiply :": Nl * N2
250 PRINT " Divide :": Nl I N2

Program 2-11. Demonstrate E-format.

'lhe n\11\bers are a 93.326 and 24398.9
Add I 24492.2

Subtract :-24305.6
Multiply I 2.27705E+06

Divide I 3.82501E-03

Figure 2-13. Execution of Program 2-11.

30
•••

ADDING FEATURES

Look at the results for "Multiply" and "Divide". There we see
2.27705E +06 and 3.82501E -03. The expression 2.27705E +06 means
2.27705 times ten to the sixth power. Let's get PRINT USING to tell us
what those numbers really look like. We can do it in immediate mode right
now.

PRIN"1' U3D1G •tttttttt ttt.ttttttttt•r Nl * N2,·Hl I N2
2277050 0.00382501

The 0 on the end in 2277050 is not exact. The 5 is the result of rounding
the calculation off to six significant digits.

We can even get PRINT USING to put in commas after every three
digits if we want. This is done by placing a comma in the PRINT USING
pattern just to the right of the position of the units digit. If the pattern has
a decimal point, the comma goes next to it on the left.

PRINT U3ING "tttttttt,•r Nl * N2
2,277,050 .

• • • • ne Biggest Kum.bar?
What is the biggest number we can get? We can easily ask the computer.
Just type

PRINT 1 I 0

Normally we don't divide by zero,. but let's do it just this once to learn
about the limits of BASIC. We get

Division by zero
1. 70l4lE+38

The error message reminds us that division by zero is frowned upon. But
the rest of the program will be executed just the same. The displayed
value is simply the largest value BASIC can produce for us. Likewise, for
-1 I 0 we get -1. 70141E +38 as the smallest value available. In either
we get the "Division by zero" warning.

31
•••

Chapters

Writing a
Program

In this chapter we will be adding numerous new BASIC features. We will
see how to use BASIC to repeat procedures, make decisions, and perform
special calculations. Here we will begin to develop the habit of describing
our program as we go along. As our programs grow, it will become clearer
that we should do some planning before we begin entering code into the
computer. This should nicely round out our programming ability and
give us a good framework on which to hang many interesting and power
ful tools.

3-1 .•. Do It Again

Many, if not most, computer applications involve repetitious operations.
Often that requires counting of some kind. Counting is one of the earliest
mathematically oriented skills that we learn in life. If we can teach the
computer to count, we will be well on the way to managing repetitious
calculations of all kinds.

Think about counting. We set up at 1. Then we get to 2 by adding 1.
Then we get to 3 by adding 1. We always get to the next number in line by
adding 1 .

• . . . Our First Counting Program
We easily set up at 1 with a simple assignment statement.

lSS COUNT • l

32
•••

WRITING A PROGRAM

Then we get to the next number by adding 1.

140 TEMP • COONT + 1
150 COUNT • TEMP

If we were limited to the statements offered so far, we would use another
pair of statements such as 140 and 150, followed by two more statements
to add 1, and so on. That would lead to very long programs. What we need
is an instruction that causes statements 140 and 150 to be executed again
and again. We simply need to divert program execution from the usual
increasing-line-number sequence to execute line 140 after each time it
executes line 150. At line 160 we need a statement that says "go to line
140" .

•••• GOTO
The statement

16e 001'0 140

will always cause line 140 to be executed next regardless of what state
ments might follow with higher line numbers in the program. GOTO is
sometimes called an unconditional transfer statement. Thus program
execution will loop back to continuously repeat the statements just pro
cessed. Now let's collect our program in one place. See Program 3-1.

100 COUNT'"' 1
140 TEMP • COONT + 1
150 COUNT • TEMP
160 001'0 140

Program 3-1. Our first counting program.

You should be a little suspicious of Program 3-1. What makes it stop?
Certainly nothing inherent in the program conveys the idea that it will
end. And it won't-until you press CTRL-C, press the RESET key, press
CTRL-RESET, or pull the plug. CTRL-C is an emergency procedure that
will halt execution of any program regardless of the instructions in the
program. Let's not create an emergency here. This is your classic endless
loop. We're not done yeti Not only that, but the program never tells us
where it is. It counts to itself. Let's make it count "out loud".

The "out loud" part is easy. All we have to do is include a PRINT
statement in the right place and make sure that it is executed for all
values of COUNT. The result is Program 3-2.

~>100 COUNT = 1
130 PRINT COUNT
140 TEMP = COONT + 1
150 . COUNT = TEMP

~>16e 001'0 130

Program 3-2. Counting "out loud" this time.

33 . •·.··

MICROSOFT BASIC USING THl!l SOFTCARD

We inserted line 130 to display the counting value and changed line 160 to
read GOTO 130. Now we are ready to tell our counting program where to
stop. Let's have our program count from 1to7.

What we really need is the ability to execute the display in line 130
only so long as the value of COUNT is within range. In our case, if
COUNT is greater than 7 we want to stop the repetition. For this we will
use the IF statement of BASIC .

• • • • II' • • • '!rBJ!llT
We can have our program display a little message at line 190 when the
counting is completed. Therefore we want to divert execution to line 190
when the value of COUNT exceeds 7. We may insert an IF statement just
before line 130 to do this.

1211J IF COUNT > 7 THEN 1911J

does the job. Here the symbol > is used to represent "greater than". We
have six options in an IF statement:

< less than
<= less than or equal to
= equal to
<> not equal to
> greater than
>= greater than or equal to

These symbols are called relational operators. Any BASIC expression may
appear on either side of a relational operator.

Line 120 will transfer the flow of execution of the program to line 190
as soon as the value of COUNT passes 7. Thus the IF statement used in
this way is sometimes called a conditional transfer. Now we must change
line 160 to GOTO 120 in order to execute the IF test for each value of
COUNT.

The resulting program simply counts "out loud" from 1to7. See Pro
gram 3-3.

lr/JllJ
12flJ
138

->148
-->158

16"
1911J

COUNT• l
IF COUNT > 7 THEN 1911J

PRINT COUNT
TJ!MP • COUNT + l
COUNT • TJ!MP
GO.rO 128

PRINT "Done"

Program 3-3. Counting from l to 7.

It is important to note that the value of COUNT actually overshoots by 1.
So, when this program terminates, the value of COUNT will be 8. In this
program we have also begun a practice that is intended to make programs

84 •••

WRITING A PROGRAM

easier to read. We have indented the statements following the IF state•
ment that work together as a group.

Many articles have been written about the evils of the GOTO state
ment in BASIC (and some other programming languages). Indeed the
beginning programmer is likely to overuse it. Programs that have a lot of
GOTOs are very difficult to read. We like to read programs and segments of
programs pretty much from top to bottom. Too many GOTOs interrupt
this natural way to read. Thus, after three or four detours to follow GOTOs
we begin to become confused. We can't remember whether we have read
the whole program and we lose track even of what the program is sup
posed to do. As we plan programs we will use it sparingly. There are some
programming situations, however, where GOTO is the simplest solution
to the problem. We will use it for those situations.

Lines 140 and 150 of this program deserve some discussion. All we
want to do is increase the value of the variable COUNT by 1. We did this
by using TEMP as an intermediate variable. We really want the variable
COUNT to take on ·the value COUNT+ 1. In an assignment statement
in BASIC the equals sign implies exactly that.

14" LET COUNT :a COUNT + 1

is perfectly legal and proper in a computer program. In this situation the
equals sign does not declare an equivalence but describes an action for the
computer to carry out. We may think of the equals sign as a little arrow
pointing to the left when it is used in this way. The computer must calcu
late the value of COUNT+ 1 defined on the right and store it in the
variable COUNT named on the left. By using this simplified method of
adding 1 to COUNT we have shortened our program by one line.
Whenever we can shorten a program without making it any harder to read
it is a good idea. In this case it seems like a good idea. See Program 3-4.

100
120
130

->140
160
19"

COUNT = 1
IF CXXJNT > 7 THEN 190
PRINT COUNT
COUNT = COUNT + 1
ooro 120

PRINT "Done•

Program 34. Counting from 1 to 7 with COUNT = COUNT + 1.

This program will produce exactly the same results as the first one.
Our counting program has four distinct components. These four in

gredients play a part in all program loops.

1. We initialize the counting variable.
a. The value of the counter is tested to determine whether to recycle

or exit the repetition.

38
•••

MICROSOFT BASIC USING THE SOFTCARD

8. Some action is programmed. In our example, we display the cur·
rent value of the counter.

4. Increment the counter, and loop to step 2.

Later on we will be taking advantage of an automatic "loop maker" in
BASIC. We have designed our first loop program to perform in exactly the
same way as the automatic feature of BASIC.

1
2
3
4
5
6
7

Done

Figure 3-1. Execution of Program 34.

With our loop maker it is easy to make small changes to. alter how the
program will count. We can change line 100 to begin the count at any.
number we like. We can change line 110 to end the count anywhere. And
we can alter line 140 to count by twos or sixes or nines or whatever. We
could even have our program count backwards by subtracting in line 140
(note that, by using the technique presented here, if the final value pre·
cedes the initial value then nothing happens).

Usually we have some higher puri)ose in mind for counting than
merely displaying the value of the counter. We want to scan the days of the
week, or the months of the year, or the years of the life of a mortgage, or
the names on a customer list. Or we might just want to flip a coin so many
times. Maybe we want to roll so many dice or just display "I like BASIC"
nine times.

If we bounce a hard steel ball on a hard surface it will bounce many
times. How high and how many times depend on the elasticity of the
material. Suppose we have a ball that recovers nine-tenths of its height on
each bounce. If we drop such a ball from 10 meters it will bounce to 9
meters on the first bounce and 8.1 meters on the second. It is not hard to
develop a formula to calculate the height after any number of bounces,
but it is also not hard to write a program to simulate the bouncing of the
ball. It will then be very easy to modify our program to calculate additional
values for us. Let's bounce the ball five times. All we need for that is to
change our counting program to stop at 5 instead of 7. We need to include
a statement that calculates the new height for every bounce. We need a
PRINT statement to display the number of bounces and the height. It
would be nice to include a PRINT statement to label the two columns of
figures.

36
•••

WBITING A PROGRAM

PRDl'l' •eounce Height•
LET HEIGHT • 10
LET COUNT • 1
IF COUNT > 5 THEN 191/J

->81
91
188
111
121 LET HEIGHT = HEIGHT * • 9

->131
141
161
191/J

PRDl'l' COUNT f • • r HEIGHT
LET COUNT = COUNT + 1
GC71'0 llllJ

PRD1'1' •eone•

Program 3-5. Bouncing a steel ball.

Bomce Height
1 9
2 e.1
3 7.29
4 6.561
5 5.911J49

Done

Figure 3-2. Execution of Program 3-5 .

.... Comma Spacing
In Program 3-5 we took some pains to line up the columns of :figures with
the column labels displayed in line 80. That is because we are still using
the semicolon to separate items in PRINT statements. If we use a comma
instead, BASIC automatically forms columns 14 digits wide. All we have
to do is make small changes in lines 80 and 130. In line 80 we separate the
two labels with a comma. In line 130 we remove the extra spaces and
replace the semicolon with a comma. Let's see how that looks. See Pro
gtam 3-6.

->BllJ
911J
188
110
12&

->13&
141
161
191/J

PRD1'1' "Bounce", "Height"
LET HEIGHT • lllJ
LET COUNT • 1
IF COUNT > 5 THEN 19111
LET HEIGHT • HEIGHT * .9
PRIN'l' COUNT, HEIGHT
LET COUNT • COONT + 1
GC71'0 llllJ

PRD1'1' "Done•

Program 3-6. Program 3-5 with comma spacing.

Bounce
1
2
3
4
5

Done

Height
9
a.1
7.29
6.561
5.911149

Figure 3-3. Execution of Program 3-6.

37 •••

MICROSOFT BASIC USING THE SOFTCARD

For many purposes it is quite satisfactory to use comma spacing. This
feature allows us to quickly produce a nicely arranged display without the
bother of having to count spaces and go to the extra trouble to line things
up. BASIC does it for us. Beyond this we could employ PRINT USING .

•••• SUMMABY
In this section we have learned to count-or, rather, we have learned how
to make the computer count. To do this we have mastered the GOTO
and IF statements. GOTO is used to unconditionally divert the order in
which the statements of the program are executed. The IF statement is
used to conditionally determine which statement will be executed next.
We have seen that the LET statement in BASIC may name the same
variable on both sides of the equals sign. A comma may be used to sepa
rate items in a PRINT statement. This sets up the display screen into
columns that are 14 characters wide.

Problems for Sec'tlon 3-1
1. Write a program to display "I like BASIC." eight times.
8. Modify Program 3-4 to count from 1to19.
8. Modify Program 3-4 to count from 1 to 7 by twos.
-&. Modify Program 3-4 to count from 1 to 100 and calculate the sum

of the numbers in the sequence. You might not want to display all
100 values of the counting variable.

8. Modify Program 3-4 to count from 2 to 42 by twos.
8. Modify Program 3-4 to count backwards from 10 to -10.

S-1 ... Do I't .Again (When We
Don't Know Bow Many)

It is easy to tell the computer to do something a certain number of times
when we know how many times we want, but that is not always the case.
In fact we might want the program to perform a certain calculation until
some point is reached and tell us how many times it took. We might want
to know how many bounces the steel ball makes before it bounces less
than half the original height. We might want to have a program keep
asking for values from the keyboard until a special value is entered as an
instruction to stop requesting values.

How about a program to calculate test averages? One person might
enter three test scores while the next might wish to enter five test scores.
For this we need to know the total of the scores entered and the num
. ber of scores. How will the program "know" when the person has
entered all the scores? Let's choose a special value to signal that. How

38
•••

WRITING A PROGRAM

about -1? If the operator enters -1, the program should proceed to the
average calculating statements. If the operator enters any positive score
then the program should add that score to the current sum and ask for a
new test score .

. . • . A Little Planning
This program is shaping up to be a little more involved than those we've
done up to this point. So this is an opportunity to work on the process of
program development. There are really three things this program ought
to do.

1. Tell the user what the program does.
a. Request test scores from the keyboard.
8. Calculate and display the average.

Once the programmer understands the problem and what steps are in
volved in the solution it is a good idea to define these steps right in the
program itself. We could put the three steps listed above in PRINT state
ments, but that might not be appropriate for the running program. It is
usual to have messages in the program for programmers alone. In BASIC
this is done with the REM statement .

.... BEKark
Whatever follows on the line after REM in a program statement will be,
ignored by BASIC. Thus what we type functions as a "remark" to anyone
reading our program, rather than an instruction to the computer to per
form any action. This is a part of what we call program documentation.

Good REM statements are brief and succinct. It takes a little skill to
develop good remarks in a program. REMarks like "Increment Jl" and
"Subtract NUMBER from OLDNUMBER" are quite uninformative. We
could better see those actions from the program statements themselves.
Suen REMarks actually make a program harder to read. On the other
hand, REMarks like "Initialize accumulated mileage" or "Terminate on
negative INPUT" describe the intended action and are helpful to anyone
reading our program.

Programs that are crystal clear to us right now will be foggy and mys
terious a few weeks from now. So we ought to include REMs right away. A
lot of people write their programs and then go back to insert REMs. A few
people write the REMs first and then write the program. Let's do it
that way.

Taking the three segments above, let's write some REMs. We will
select line numbers for the REMs so that they serve as labels for the
program segments that actually perform the computer task. So we need. to
think about how to lay out the line numbers in the final program. This is a
process that will come with practice.

39
•••

MICROSOFT BASIC USING THE SOFTCARD

1. Tell the user what the program does.

That is really the instructions. We do that with a few PRINT statements.
Let's begin at line 100 and place the REM at line 98 thus:

98 REM ** Instructions

The stars tend to set this statement off a little. If our remark runs over to
several lines we will omit the stars on the rest.

a. Request test scores from the keyboard.

This is where we request data, add the scores to a summing variable,
and recycle to the INPUT statement using GOTO. Let's begin this seg
ment at line 200 and place the REM at 198.

198 REM ** Request test scores

That ought to do it.

3. Calculate and display the average.

And finally we need to report thP. results to the program user. Let's leave a
little extra room and place this segment at line 400.

398 REM ** calculate average

Using this method of program planning is very beneficial. We have sepa
rated the programming job into little tasks that are relatively easy to do
one at a time. We have created some program documentation in advance.
All too often programmers, being human, work feverishly until the pro
gram performs the desired task. Then it is very difficult to discipline one
self to go back and produce good documentation. After all, the program is
done, isn't it?

Doing it our way, when the program is done, at least part of the
documentation is done too. At this point we have nice labels for the three
parts of the program.

98 REM ** Instructions
198 REM ** Request test scores
398 REM ** calculate average

Program 3-7a. REMs for average calculatian program.

We can use these REMs as our program outline during the process of
writing the BASIC program statements. The process of writing the pro
gram statements is often called "coding" because we are converting our
ideas into "code" that the computer can work with. The statements are
called "code."

Now we can easily write program statements for each of the three
parts without having to think about any of the other parts. This segment
ing of the program helps free our mind for clear thinking.

40
•••

WRITING A PROGRAM

Now for the instructions:

98 Rl!M ** Instructions
100 PRINT "Test score averaging"
110 PRINT
120 PRINT "Enter test scores - one at a time"
130 PRINT "Enter -1 after last score"
140 PRINT

Program 3-7b. Instructians segment.

We have tried to say what the program does and what the user should do.
It is important to write short and easy-to-read instructions. It is worth the
effort to produce clear, succinct displays for the user. Long instructions
that fill the screen are difficult to read. Long, hard-to-read REMs are also
not good.

Next, the keyboard entry segment:

198 Rl!M ** Request test scores
200 NUMBER = 0
210 SUM "' 0
220 PRINT "Score"1 NtMBER + h
230 INPUT sCoRE
240 IF SCORE • -1 THEN 400
250 SUM "'SUM +SCORE
260 NUMBER • NtMBER + 1
290 GOTO 220

Program 3-7c. Keyboard entry segment.

Again we have added some little touches here that may make our program
a little easier to read. Where we have a group of statements that will be
executed repeatedly we have indented to show the extent of the repeated
code. And we have indented code following the IF statement to show that
what follows is grouped in another way. You should adopt any of these
practices that make your programs easier for you to read.

As you type in your programs, you may have occasion to employ EDIT
Mode (see Appendix B) to get it right. Take the time to master EDIT Mode.
It really is worth the effort.

And finally, the average calculation and display:

398 REM ** calculate average
400 AVG ... SUM I NUMBER
420 PRINT
430 PRINT "Average , AVG

Program 3-7d. Calculate average segment.

Programmers often refer to little segments of programs as "routines."
Every programmer has his or her favorite routine to integrate the left
framis or digitize the window tum.

41
•••

MICROSOFT BASIC USING THE SOFTCARD

Now we have a nice routine to request test scores from the keyboard
and display the average. See Program 3-7.

98
100
lUJ
120
131/J
140
198
21/Jl/J
211/J
221/J
231/J
240
251/J
26"
29li!I
398

->41/JS
421/J
43(/J

R1!M ** Instructions
PRINT "Test score averaging"
PRINT
PRINT "Enter test scores - one at a time"
PRINT "Enter -1 after last score"
PRINT
R1!M ** Request test scores
NUMBER • S
SUM =II.I
PRINT "Score"1 NUMBER + 11

INPUT SCORE
IF SCORE • -1 THEN 400

StM • StM + SCORE
NUMBER • NtMBER + 1

GOTO 221/J
R1!M ** calculate average
AVG - StM I NtMBER
PRINT
PRINT "Average , AVG

Program 3-7. Calculate average.

All that remains is to RUN it. See Figure 3-4.

Test score averaging

Enter test scores - one at a time
Enter -1 after last score

Score 1 ? ll/Jl/J
Score 2 ? 91
Score 3 ? 71
Score 4 ? -1

Average • 87.3333

Figure 3-4. Execution of Program 3-7.

We might want to take advantage of PRINT USING here. This would
allow us to round off results to suit our purpose.

431/J PRINT USING "Average= tt.r, AVG

rounds off to the nearest tenth for us. It is easy to do and greatly improves
the appearance of our results.

There is one more little wrinkle in Program 3-7 that deserves some
more attention. Suppose someone runs this program and then finds that
there really aren't any scores to enter. Or suppose someone enters -1 as
the first score by accident. When execution arrives at line 400 the value
of NUMBER is zero.

48 •••

WRITING A PROGRAM

400 AVG = St.M I NUMBER

Line 400 causes the computer to attempt to divide by zero. That's bad
news. Let's see what BASIC does with it.

Test score averaging

Enter test scores - one at a time
Enter -1 after last score

Score l ? -1
Division by zero

Average• l.70141E+38

Figure 3-5. Demonstrate division by zero.

We saw this condition in Sidelight 2. When BASIC tries to divide by zero it
just comes up with 1.70141E+38 and proceeds with that value. A laud
able goal for computer programmers is never to subject the person who
uses our programs to error messages from BASIC. At line 400 we can
determine if the value of NUMBER is zero or not. If it is, we want to
terminate the RUN. Ifit is not zero, we want to allow the calculation and
display to proceed. So let's move line 400 to line 410 and put in an IF
statement at line 400. What will the IF statement say? We can do exactly
what we did in Program 3-3. We can put in a line 490 PRINT "Done".
That has worked for us before, but let's explore other options. BASIC
includes a special statement that causes execution to end. It is the END
statement .

•••• END
Up to this point we have allowed our programs to terminate by simply
"running off the end." We may be more explicit with the END instruction.
The END statement says "go no further". It is an orderly way for a pro
gram to terminate. So we may include the statement

49" END
and the statement

4"0 IF NUMBER • 0 THEN 491!f

Now our little routine at line 400 reads as follows:
398 REM ** calculate average
400 IP NUMBER "" 0 THEN 491!f
410 AVG =SUM I NlMBER
420 PRINT
430 PRINT "Average ... , AVG
49" END

There is another way to do this. It turns out that the IF statement has
several forms.

43
•••

MICROSOFT BASIC USING THE SOFTCARD

•••• II' • • • THBR B.evisited
We have been using only the feature of the IF statement that transfers
control to some line in the program. THEN may also be used to execute
any BASIC statement-even another IF. Thus

185 IF X = 5 THEN GOTO 212

produces the same effect as

185 IF X • 5 THEN 212

Using this new concept we can simply move line 400 to 410 and code the
following line at 400:

400 IF NUMBER = 0 THEN END

It's that simple .

•••• STOP
We may use STOP to terminate program execution. The line 245 STOP
will cause the following message:

Break in 245

Ordinarily, we would only use STOP to interrupt execution in an effort to
hunt down an error while we are writing a program. STOP should only be
used to indicate an extraordinary condition. It is very helpful to have the
line number displayed for us here.

There is another aspect of our average-calculating program that we
ought to think about. What happens if we enter a negative score other
than -1? It is summed right in with the others. We could easily include an
IF test to see if a negative score other than -1 is entered. A nice touch
would be to display a message that the score entered is out ofrange and to
request a value again. Well-written programs verify response from the
keyboard. Values absolutely out of range are refused. The operator is re
quired to enter another value. For our averaging problem, we might ex
clude all scores above 100 as well. This is left as an exercise .

•••• SUMXAB.Y
The REM statement has been introduced. REM is used to include mes
sages about the program to humans who will be reading it. REM has no
effect upon the execution of a RUNning program. We used REM state
ments judiciously to help us organize our thoughts prior to actually writ
ing BASIC program statements. The END statement may be used for an
orderly program termination. In addition to changing the order in which
the computer executes program statements, IF. . . THEN has the ability
to execute any statement that follows THEN on the same program line.

44
•••

WRITING A PROGRAM

Problems for Section 3-8
1. Modify Program 3-6 to determine how many times the ball

bounces before it fails to recover half the original height.
a. In Problem 1 calculate the total distance traveled by the steel ball.

Remember that it travels down one distance and up another.
8. Modify Program 3-7 so that the user cannot enter any negative

score other than -1. Also reject any score above 100.
4. Write a program to convert money into coins. For example: 99 U.S.

cents becomes

Enter cents:? 99
1 Half dollars
1 Quarters
2 Dimes
4 Pennies

Place the coin values and names in DATA statements.

3-3 . .. II' • • • ~llB1'T . • . BLSB

Let's develop a program to display the passing of the hour. It will just
repeat 1 through 12 over and over again. The primary consideration is that
whenever HOUR reaches 12 we reset it to 1 and continue. That requires
two statements following THEN. In ortler to do that we need the colon
delimiter .

. . . . Multiple Statements on One Line (:)
In BASIC we may separate two or more statements on the same line by
using a colon. Thus we may code lines such as

300 x = 5 : z = 18

Use this with caution. Don't make program lines too long; they may be
come difficult to read. It is very nice to be able to place statements that
belong together on the same line. Getting back to our digital clock: if the
HOUR is less than 12 we simply increase HOUR by 1. That is easy:

110
->200

210
250
280

HOUR= 12
IF HOUR = 12 THEN HOUR = 1 a GOTO 2Sa

HOUR = HOUR + 1
PRINT HOUR:
GOTO 200

We have here the makings of a digital clock. See the colon in line 200. If
HOUR= 12, HOUR will be set to 1 and execution will proceed toline250.
Three things are needed to make this quite realistic. First, we should

48
•••

MICROSOFT BABIC USING THE SOFTCARD

clear the Apple text screen at the beginning of the program. BASIC in
cludes the HOME statement for just this purpose.

11/18 BOMB

clears the screen and places the cursor in the upper left corner. Second,
each new time should overwrite the previous one. The HTAB statement
allows us to place PRINTed display anywhere on the current line.

25£1 HTAB 1

places the cursor in the first printing position of the line for us. This is an
absolute position. The cursor can be moved forward or backward with
HTAB. Third, we should program in at least enough delay so that we can
read the display of each hour as it appears on the screen. Of course, to be
completely realistic, we would leave each value in place for exactly one
hour. We could put in a little counter that does nothing but take up time.
With a little experimentation, we could determine the upper limit that
would keep the clock display on the screen for the hour. For testing we
will let it move much faster.

26£1 x • 1
270 IF X < 21/18 THEN X • X + 1 a GOTO 270

will hold the display for a few seconds. See Program 3-8.

98
1£1£1
11£1

->2£1£1
-->21£1

240
25£1
26£1
27£1
28'iJ

Rl!M ** Display digital hours
HOME
HOUR= 12
IF HOUR • 12 THEN HOUR • 1 a GOTO 240

HOUR = HOUR + 1
HTAB 1
PRINT HOUR7
X•l
IF X < 20£1 THEN X • X + l a GOTO 270
GOTO 21/18

Program 3-8. An hourly digital clock.

Enter Program 3-8 into the computer and try it.
Look at lines 200 and 210. BASIC allows us to program two alterna

tive actions right in the IF . . . THEN itself. We can do all that in a single
IF . . . THEN . . . ELSE statement. Here is what it looks like:

2£10 IF HOUR • 12 THEN HOUR • 1 BISE HOUR = HOUR + 1

It is that simple. Sometimes it is nice to rearrange statements like this one
for easier reading. See if you like the following version:

2£1£1 IF HOUR = 12 THEN HOUR • 1
EISE HOUR = HOUR + 1

This is done with another new feature of BASIC.

48
•••

WRITING A PROGRAM

••.. Multiple Lines per Statement (C~BL-J)
CTRL-J has a special meaning in a BASIC program. This character gener
ates a new physical line on the screen without signaling a new program
line. We are free to use this to make our programs easier to read. The
computer doesn't care. We could replace line 200 in Program 3-8 and
erase line 210 to produce exactly the same result. See Program 3-9.

98 Rl!M ** Display digital hours
188 HOME
118 HOUR• 12

->200 IF HOUR = 12 THEN HOUR • 1
EI.SE HOUR • HOUR + 1

24" HTAB 1
258 PRINT HOURr
268 x - 1
278 IF X < 200 THEN X • X + 1 1 GOTO 279
288 001'0 200

Program 3-9. The digital clock with IF . . • THEN • . . ELSE .

• • • • SUJlllAB.Y
We may use a colon to separate BASIC statements on a single program
line. The IF . . . THEN statement allows us to program two options in
the same statement using the ELSE keyword. We may extend a program
line onto additional physical lines by using the CTRL-J character. This is a
convenience for making programs readable.

We are beginning to accumulate quite a collection of ways to specify
how our printed display will look. We may label our results with quoted
messages. The semicolon gives us close spacing, while we may set up
14-character columns with a comma. The PRINT USING statement al
lows us to display nice labels, place our numeric result anywhere, and
round off results as needed. HTAB allows us to declare any position on a
line for the next PRINT position. This position is independent of where
the last item appears. · ' .

Problem for Section 8-8
1. Extend the digital clock of Program 3-9 to show minutes and

seconds.

SIDBLIGJRS

More about IRPft

The INPUT statement has a number of interesting features. Later, we
will even use it for accessing data in disk files. We have often used a

47
•••

MICROSOFT BASIC USING THE SOFTC.ARD

PRINT statement to label our INPUT requests. These labels are some
times called prompts .

. . . . :num with Prompt
We may display a message within the INPUT statement itself.

189 INPUT "Enter bilO integers"' A, B

will display the message in quotes, output the usual question mark fol
lowed by a space, and request two numeric values. This is exactly the
behavior we produced with statements such as

200 PRINT "Enter t'WO integers"i
219 INPUT A, B

But with prompted INPUT we have some other options. Suppose we don't
want the question mark. It can be suppressed by using a comma at the
end of the message in the INPUT statement. We might prefer to distin
guish a particular question by using some other symbol.

100 INPUT "Enter bilO integers: 11 , A, B

Now we have the following screen display:
Enter bilO integers: 23,98

where 23, 98 was typed at the keyboard. The rest of the display was
produced by the INPUT with the prompt statement.

Further, we might like to ask several questions on the same line. We
can do this by suppressing the carriage return coming from the keyboard
with a semicolon before the message in the INPUT statement.

100 INPUT 1 "Age" r YEARS
119 INPUT 7 • weight" 7 POUNDS
129 INPUT 11 Sex (Mor F)"7 GENDER$

These three INPUTs will be strung out on one line to produce the follow- ·
ing display: •

Age? 32 Weight? 134 Sex (M or F)? M

where 32, 134, and the final M were all entered from the keyboard.
Of course, in the situation where we have several INPUTs on the same
line, the

Redo fran start
error message applies only to the most recent INPUT statement.

We are still free to display our messages with PRINT statements and
use the special features of INPUT by putting a null message in prompted
INPUT. In any situation where our prompt might change from one execu
tion of a statement to the next, we might use something such as this:

200 PRINT A$7 a INPU'1' "- ", X, Y

48 •••

WRITING A PROGRAM

This way we have a very flexible capability .

• • • .-LIBB IRPUT
We may want to enter a comma in a string INPUT request. We may
achieve this by enclosing the entry in quotes. Using quotes may not be the
best way, however, especially for a program that may be used by a begin
ner. This is also a problem if sometimes we need a comma and sometimes
not. It may be a nuisance to remember whether or not we need quotes.
The LINE INPUT statement is designed to accept an entire line of string
input without regard to commas.

200 LINE INPUT •F.nter a name •, A$

This LINE INPUT statement will display our little message and no ques
tion mark. Then we have the opportunity to enter whatever is appropriate,
commas or not as we choose. If we want a question mark displayed in this
situation, we simply include it in the message. Replacing the comma with
a semicolon won't do it.

49
•••

Chapter4

Loops

In the last chapter we developed the idea of looping in programs. Many
computing situations involve repetitious operations. In this chapter we
will use the BASIC control structures for loops. The counting process
pervades computer programming to such an extent that it makes sense to
automate the instructions. The FOR and NEXT statements allow us to set
values for beginning and ending limits of a repetition.

4-1 ... Coun"ting with l'OB and BED

Let's examine another program to count from 1 to 7.

200 Fm COUNT = 1 TO 7
220 PRINT COUNT
240 NE}Cl' COUNT

->290 PRINT "Done"

Program 4-1. Counting with FOR and NEXT.

A FOR statement in BASIC is used to set the beginning and ending values
for a selected variable. We used COUNT in this case. It is called the loop
variable. All statements between here and a matching NEXT statement
will be executed as long as the selected variable is within the range indi
cated. The repetition ends with NEXT COUNT. NEXT COUNT auto
matically adds 1 to the value of COUNT until COUNT exceeds 7. At this
point the statement following the NEXT statement will be processed.
Thus, in our little program, the word "Done" will be displayed. At line
290 the value of COUNT will be 8.

so •••

LOOPS

Suppose we code a routine such as

201 FM COUNT • 7 TO 3
218 PRINT COUNT
291 NE~ COUNT

What will happen? That depends on which revision of BASIC-80 you are
using. The revision number is displayed whenever you invoke BASIC-80
on your computer. If someone else has always done this before you get to
the computer, don't despair. All you need to do is RUN this little three
line program to find out. If the program produces no display, then you
have revision 5.0 or newer. If the program displays the number 7, then
you have revision 4.51 or older. It doesn't matter which you have; both
versions perform looping in a satisfactory manner. But it is important to
know how your FOR and NEXT loops will behave .

• • • • CTBL-8 and CTBL·O
Suppose we program something that flies off the screen before we can get
a good look at it. Some loop going from 1 to 10000, for example. We can
freeze the display with CTRL-S. Holding down the CTRL key and pressing
S will do it. Now we can relax to study the screen. One of the important
uses for this is to LIST a long program looking for a particular segment of
interest. Once we have found it, then we must use LIST to display the
desired range of line numbers. We should take great care that our final
programs control the screen in such a way that the user does not have to
frantically lunge at the keyboard searching for CTRL-S. Press CTRL-Q to
resume output. (Any key will work.)

CTRL-0 does something quite different. The display freezes, all right,
but program output continues just the same. To pick up the display
wherever the computer has gotten in the meantime, simply press
CTRL-0 again. No other key will do it. But CTRL-C will halt execution .

.... SDP
The STEP feature of the FOR statement allows us to specify our own
increment. If we want to count by twos we can easily do it with FOR and
NEXT. See Program 4-2.

188 FM COUNT • 2 TO 18 STEP 2
118 PRINT COUNT
191 NEXT COUNT
Program 4-2. Counting by twos with STEP.

2
4
6
8
18
Figure 4-1. Execution of Program 4-2.

81 •••

MICROSOFT BASIC USING THE SOFTCARD

Of course, the value of COUNT will be 12 following execution of Program
4-2. If we ever want the value of a FOR variable that was the last one
actually used in the loop, then we should code a statement such as

102 TEMP • COUNT

Then we are assured that the variable TEMP has saved the last value of
COUNT no matter how execution exits the loop.

With STEP we can easily count backwards. Just use a negative STEP
value and be sure that the limits in the FOR statement are correct.

The limits in the FOR statement may be variables. The limit values
need not be integers. But when using decimal values the computer may
round things off so that an unexpected final value is produced.

FOR and NEXT are widely used in programs. They are good short
hand. Whenever we need to count in a program it is easy to think in terms
of FOR and NEXT. We don't have to think about initializing a variable,
incrementing it, and testing it to see if we are through. All this is done
automatically and painlessly, so our minds can remain uncluttered and
free to consider the higher purposes of our program.

In addition, FOR and NEXT are very helpful to us when reading exist
ing programs. When we see FOR we know that a repeated process follows,
ending with the matching NEXT statement. Furthermore, the beginning
and ending values appear right in the first statement of the repetition
code. The statement

225 FOR I • 1 TO 17

readily conveys that we are going to count from 1 to 17. On the other
hand, the statement

912 IF COUNT > 17 THEN 190

could mean other things besides the end of the loop process.
Now suppose we begin a loop with
300 LETJ•l

and then inadvertently signify the end with
490 NEJCr J

·Mercifully BASIC will tell us what happened. The message

NE:n' without FOR in 490

will report where to look for the trouble.
Similarly, BASIC will report a missing NEXT statement with the fol

lowing:

FOR without NEn' in 310

These messages are very helpful to us when we are testing our programs.
Of course, one of our objectives is never to cause these messages to ap-

sa
•••

LOOPS

pear. It is possible to write programs that work the first time. But we will
occasionally bring forth error messages in spite of our best efforts not to .

• • • . SUM1'4AB.Y
FOR, NEXT, and STEP are revealed as the way to set up repeated opera
tions when we know where we want to start and end. FOR NUMBER=
FIRST TO LAST STEP JUMP begins the loop. NEXT NUMBER ends the
loop.

Problems for Section 4-1
1. Write a FOR . . . NEXT loop to count from 10 to 20.
a. Write a FOR . . . NEXT loop to count from 93 to 80 by twos.
8. Write a program to display "I like BASIC" six times.
4. Write a program to display the integers from 1 to 15 paired with

their reciprocals.
8. Write a program to display decimal values for sevenths. That is,

display 1/7, 2/7, ... 6/7, and 7/7.
8. Do Problem 5 for elevenths.
'1. Write a program to calculate the sum of the counting numbers

from 1to100. (You probably don't want the computer to display
the values of the loop variable in this one.)

8. Examine the following program:

100 FOR I '"' 1 TO 1.3 STEP .1
110 PRINT I
120 NEXI' I

What values do you think it will display? RUN it .. Do you get what
you expect? Change line 100 to FOR I= 1TO1.2 STEP .1.

9. Write a loop to display the four numbers you expected in the first
part of Problem 4-8.

4-2 ... More Bounce to FOB. and NEXT

In Programs 4-1and4-2 we simply displayed the FOR variable to demon
strate that the structure performs as advertised. We usually are interested
in other things.

Let's pursue the bouncing steel ball a little more. By writing a routine
to simulate the actual bouncing we can supplement it to calculate more
information. For example, suppose we want to learn the total distance the
ball travels from the point we release it to the top of the eighth bounce.
First, we write the bouncing simulation with FOR and NEXT. See Pro
gram 4-3.

83 •••

MICROSOFT BASIC USING THE SOFTCARD

98 REM ** Simulate a bouncing steel ball
159 PRINT "Bounce","Height"
181/J HEIGHT '"' 19

->196 I

198 REM ** Bounce here
200 FOR BOUNCE • 1 TO 8

->219 HEIGHT = HEIGHT * .9
229 PRINT BOUNCE, HEIGHT
29" NEJCI' BOUNCE
5"" PRINT "Done"

Program 4-3. Bouncing a steel ball with FOR and NEXT.

Program 4-3 simply uses FOR and NEXT to perform the job of our earlier
ball-bouncing program. We have added a feature here that sometimes
makes programs easier to read. We have used a colon by itself in line 196.
This just creates some white space within the program.

· Now it is a simple matter to incorporate the logic to calculate the total
distance traveled. We simply initialize DISTANCE to zero outside the
FOR . . . NEXT loop and add in the length of the downward and the
length of the upward path. On the downwa.Id path the ball travels the old
height; on the upward path the ball travels the new height. Just insert two
distance-adding statements-one before line 210 and one after line 210 in
Program 4-3. Next, it would be a good idea to display the distance along
with the bounce number and the height. This is done in Program 4-4.

98
-->150

183
190
196
198
200

--nas
210

-->215
-->220

2~
50i1J

REM ** Simulate a bouncing steel ball
PRINT "Bounce", "Height", "Total Distance"
HEIGHT = li?J
oia·rANcE = a

REM ** Bounce her~
FOR BOUNCE = 1 TO 8

DISTP.NCE = DISTANCE + HEIGHT 'Add downward path
HEIGtlT = flEIGli'r * . 9
DISTANCE = DISTANCE + HEI<Ml.' 'Md upward path
PRIN'r BUUN'CE, HEIGHT, DISTANCE

NE.JCT' BOUNCE
PRINT "Done"

Program 4-4. Calculate the distance for a bouncing balL

•.. . Apostrophe
Look at lines 205 and 215 in Program 4-4. We have used a new feature of
BASIC to document those statements. The apostrophe may be used just
like a REM statement. The apostrophe is especially convenient when we
want to comment on the purpose of a single line. Everything following an
apostrophe on a line is ignored during program execution. Here it is crystal
clear what those two lines do. The apostrophe may be used instead of a
colon to provide an almost-blank line. Techniques of this sort may be used

84
•••

LOOPS

to make programs ever more readable. Anything that makes programs
more readable makes them easier to work with.

Bounce
1
2
3
4
5
6
7
B

Done

Height
9
8.1
7.29
6.561
5.92149
5.31441
4. 78297
4.313467

Total Distance
19
36.1
51.49
65.341
77.8369
89.~262
99.1236
108.211

Figure 4-.2. Execution of Program 4-4.

Once again, we might want to pretty up our program display. Look at lines
150 and 220. Let's replace them with

150 PRim' "Bnce Height Total distance"
220 PRINT USIL'lG "H U.H H#.U"r BOUNCE, HEIGHT, DISTANCE

And now see the display in Figure 4-3.

Bnce
1
2
3
4
5
6
7
8

Done

Height
9.00

·e.uJ
7.29
6.56
5.91
5.31
4.78
4.31/J

Total Distance
19.1/Jf/J
36.11/J
51.49
65.34
77.81
89.f/J3
99.12

11/JS.21

Figure 4-3. Execution of Program 4-4 with PRINT USING .

•••• SUMMA'RY
We have used a program simulating a bouncing ball to demonstrate FOR
and NEXT. In this program we are interested in several quantities besides
the value of the loop variable. The apostrophe has been introduced as an
alternative vehicle for including comments right within a BASIC pro
gram. This is especially desirable when we would like to comment on the
piirpose of a single line in a program. A colon or an apostrophe may be
used as the only character on a numbered line to break up a program
listing. This technique can be used to make programs significantly easier
to read.

Problem.a for Section 4-8
1. Write a program to print a table containing a number, its square,

and its cube. Do this for values in a range from 1 to 20.

SS •••

MICROSOFT BASIC USING THE SOFTCARD

a. Write a program to display the first 20 Fibonacci numbers. This
is a sequence for which the first two elements are both ones
and succeeding values are obtained by adding the previous two
elements.

8. Factorials are used a great deal in probability calculations. Facto
rial four is written 4 ! and is calculated by multiplying all the count
ing numbers from 1 to 4. That is:

4!= 4 * 3 * 2 * 1

Write a program to display the factorial of a value entered using an
INPUT statement. Note: O! is defined as 1.

4. In the song "The Twelve Days of Christmas," gifts are given to the
singer according to a progression of numbers. The first day she got
a partridge in a pear tree. On the second day she got two
turtledoves and a partridge in a pear tree. On the final day she
received 12 + 11 + . . . + 2 + 1 gifts. Write a program to display
the total number of gifts she received. If she had to return one
each day, on what day would she return the last gift?

4-B ••• Let's Bxplore Interest
Interest is paid for the use of money. It is a kind of rent. Simple interest is
paid on an annual basis. Simple interest at 18% on $1000 comes to $180
for the year. Compound interest is calculated and added to the principal at
intervals. With the proliferation of computers, daily compounding has
become commonplace. If interest is compounded daily, the interest is
added to the principal daily. The annual percentage is prorated.
That is, an 18% annual interest rate comes to 18/365 or about
.04931506849315069% per day. While there is a formula for ·this, we can
easily calculate compound interest using a FOR loop. See Program 4-5.

100 PRINT "calculate canpound interest."
110 PRINT
198 I

200 INPUT " Principal": P
210 INPUT "Annual rate"r AR
212 AR "" AR I 10111
215 PRINT
220 DR = AR I 365 'Daily Bate
230 FOR DAY = 1 TO 365
240 INl'EREST = P * DR
250 P = P + INl'ERF.ST
260 NElCl' DAY
270 PRINT Pi "After one year"

Program .4-5. Calculate compound interest.

66
•••

calculate canpomd interest

Principal? 1000
Annual rate? 18

LOOPS

1197.16 After one year

Figure 4-4. Execution of Program 4-5.

We see that we pay an extra $17.16 for compounding instead of using
simple interest. Of course, if we are doing the lending, that looks pretty
good .

. . . . Fibonacci Numbers
Fibonacci numbers describe a number of natural phenomena and are of
interest to mathematicians. A sequence of numbers is involved. The first
two numbers in the sequence are both 1. Following this, each number in
the sequence is the sum of the previous two values. So, the third element
is 1 plus 1 or 2. Let's write a little program to display a few Fibonacci
numbers. See Program 4-6.

98 PRINT "Fibonacci numbers:"
100 B = 0 : Fm = 1
200 FOR J = 1 TO 10
210 PRINT FIBr
220 A = B : B = Fm
250 Fm= A+ B
290 NEJCl' J

Program 4-6. Display Fibonacci numbers.

Here we save the last two elements in the sequence in variables A and B
at all times. To get the sequence going we artificially set them both equal
to 0.

Fibonacci numbers:
l 1 2 3 5 8 13 21 34 55

Figure 4-5. Execution of Program 4-6.

As we get more and more into programming we will find ourselves
using loops everywhere. We will get lots of practice with FOR and NEXT
throughout the rest of our programming career.

Problems for Section 4-:S
1. Compare the interest on $1000 for one year at 18% with the inter

est at 12%.
a. Modify Program 4-6 to display the square of an element in the

sequence and the product of the elements immediately before and

87 •••

MICROSOFT BASIC USING THE SOFTCARD

immediately after. Also display the result of subtracting one from
the other.

s. How many Fibonacci numbers can be expressed with six or fewer
digits?

4-4 ... Rested Loops

Nested loops occur whenever we program one loop within another .

. • • . .An.other Look at Compoun~ Interest
Suppose we need to calculate compound interest over several years. Let's
display the compound amount each year on $1000 for five years. We can
easily do this by enclosing the yearly-interest calculation of Program 4-5
within a FOR loop that enumerates the years. See Program 4-7.

lf/Jf/J PRINT II calculate canpound interest. II
llf/J PRINT
198 I

200 INPUT " Principal": P
2lf/J INPUT "Annual rate" 1 AR
212 AR = AR I 10f/J
215 PRINT
221/J DR = AR I 365 'Daily Rate

-->225 FOR YEAR = 1 TO 5
231/J FOR DAY = 1 TO 365
24f/J INl'EREST = P * DR
250 P = P + INTEREST
260 NEXl' DAY

->27f/J PRINT P, "After": YEAR: "years"
-->28" NWCl' YEAR

Program 4-7. Compound interest for several years.

In Program 4-7, we simply added lines 225 and 280 to carry the calcula
tion through five years using a FOR loop with YEAR as the variable, and
we changed line 270 to display a more appropriate message. Notice that
the DAY loop is entirely enclosed within the YEAR loop. It looks like this:

225 FOR YEAR = 1 TO 5
230 FOR DAY = 1 TO 365
26~ NE:>Cl' DAY
28" NE:>Cl' YEAR

These are known as nested loops. We have indented each loop to show
what statements belong together here. The loops must be closed with
NEXT in the reverse order of that in which they were opened with FOR.

88 •••

calculate canpound interest

Principal? 100"
Annual rate? 18

1197.16
1433.2
1715. 78
2054.07
2459."6

After 1 years
After 2 years
After 3 years
After 4 years
After 5 years

LOOPS

Figure 4-6. Execution of Program 4-7 .

. . . . Pythagorean Triples
There is an interesting set of right triangles with sides whose lengths are
integers. Any three integers that can represent the sides of a right triangle
are referred to as a Pythagorean triple. If we label the sides of a right
triangle as LEG 1, LEG2, and HYPOT, then the Pythagorean theorem
tells us that the sum of the squarei;t of the two legs equals the square of
the hypotenuse or

LEGl *LEGl + LEG2*LEG2 = HYPOT*HYPOT

Suppose we want to find all Pythagorean triples with either leg up to
25. We will write a program based on the following nested loops:

11" ->12"
-->14"

19"
20"
21"

POR LEGl = 1 TO 25
FOR LEG2 = 1 TO 25

FOR HYPOT • 1 TO 50
NEJCl' HYPOT

NEJCI'.LEG2
NEJCl' LEGl

Here we have nested loops three deep. That's perfectly okay, but we
should be a little cautious about this process. Even though computers are
fast, it is easy to program a task that will take too long for the computer to
do. We have programmed 31250 steps for the computer. While this is not
much of a challenge for the computer, we will wait a few minutes for the
full results. It will be worthwhile for us to study the problem with an eye
toward eliminating some work for the computer.

lfweletvaluesforbothlegsrangefrom 1 to25, then wewillget3,4, 5
and 4, 3, 5 in the result. We can easily eliminate duplication by changing
line 120 so that the value ofLEG2 begins with the current value ofLEGl,
or even LEGl + 1.

12" FOR LEG2 = LEGl + 1 TO 25

That saves a lot of unnecessary steps for the computer.
Now look at line 140. Certainly we do not have to make the computer

use values for the hypotenuse beginning with 1. We could safely begin

89
•••

MICROSOFT BASIC USING THE SOFTCARD

with LEG2. The hypotenuse must be at least as long as the longer leg. so
line 140 becomes

14" Fat HYPOT = LEG2 TO 51/J

Using 50 as the upper limit is fine. We will use other means to ensure that
the computer doesn't have to test values higher than necessary.

For each set of three numbers we need to compare the sum of the
squares of the two legs with the square of the hypotenuse. If the sum of
the squares of the legs is greater than the square of the hypotenuse, then
we try the next value for the hypotenuse. If the sum of the squares of the
legs is less than the square of the hypotenuse, then we have overshot on
the hypotenuse and it is time to try a new value for LEG2. If they are
equal, we display the three lengths and proceed to the next value for
LEG2.

l!/J(/J
110
12!/J
14"

-->145
-->150
-->18!/J

182
19"
200
210

PRINT "Pythagorean triples"
FOR LEGl = 1 TO 25

FOR LEG2 = LEGl + 1 TO 25
FOR HYPOT = LEG2 TO 50

IF LEGl*LEGl + LEG2*LEG2 < HYPOT*HYPOT THEN 20!/J
IF LEGl*LEGl + LEG2*LEG2 > HYPOT*HYPOT THEN 19"
PRINT LEGl; LEG2: HYPOT
ooro 200

NEJCl' HYPOT
NEJCl' LEG2

NEJCl' LEGl

Program 4-8. Display Pythagorean triples.

You might wonder why we didn't square values using an exponent in lines
145 and 150. Because of the way that BASIC raises to a power, small
calculation errors could result in missing some of the triples we want.

Line 145 will cause execution to jump out of the loop before the loop_
variable has run its course. In this situation, BASIC keeps track of the fact
that that particular loop is still active. This is done in an area of memory
called the stack. In very large programs this can cause the stack to over
flow. We can avoid this situation by using the following replacement for
145: .

145 IF LEGl *LEGl + LEG2*LEG2 < HYPOT*HYPJT THEN HYPOT=50 a GOTO
190

60
•••

Pythagorean triples
3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
g 12 15
10 24 26
12 16 2111
15 2111 25
18 24 3111
2111 21 29

LOOPS

Figure 4-7. Execution of Program 4-8 .

.... UB()

We could line up those columns nicely with comma spacing on an 80-
column display. Or we could use TAB in the PRINT statement of line 180.
TAB(X) causes the next printed item to begin in a column numbered ~.
The first column is numbered 1. While the HTAB statement positions
absolutely on the line, TAB(X) cannot back up on the line. An attempt to
do so results in the display moving to the next line. We could replace line
180 in Program 4-8 with

180 PRINT LEGl: TAB(5): LEG2: TAB(llll): HYPOT

to achieve a nicely spaced display. Notice in Figure 4-8 that the columns
are left-justified. If what we want is right justification, then we can easily
employ PRINT USING to do the display. BASIC is providing us with a
wide variety of options for producing nicely formatted reports.

Pythagorean triples
3 4 5
5 12 13
6 8 HJ
7 24 25
8 15 17
9 12 15
10 24 26
12 16 20
15 20 25
18 24 3111
2111 21 29

Figure 4-8. Execution of Program 4-8 with TAB() in PRINT.

Problems for Section 4-4
1. Here is a formula for compound interest:

61 •••

MICROSOFT BASIC USING THE SOFTCARD

A= P(l + I)N

where

A = Compound amount
P = Principal
I =Interest rate per interest period

N = Number of interest periods

Write a program to calculate interest using this formula.
a. 9, 40, 41 and 12, 35, 37 are Pythagorean triples. They do not ap

pear in the execution of Program 4-8. Find some additional
Pythagorean triples using Program 4-8 by raising the upper limit
on LEG2 to 50 and the upper limit on HYPOT to 75.

8. Write a program to display a multiplication table. Select an upper
limit so that you can produce a nice display on the screen. Use
nested loops and PRINT USING.

4-8 ... More about BBD
BASIC allows us to close a FOR loop with the keyword NEXT by itself.
This is good and it is bad. It is bad because the lack of the variable name
obscures which loop is being terminated. The computer will take care of
it, but we will have a hard time following the program by just reading the
code. The benefit is that NEXT by itself executes somewhat faster then
NEXT with a variable. It also takes one byte less memory for each charac
ter in the variable name. You are encouraged always to include the vari
ables unless speed or memory becomes more important than having a
readable program.

If several FOR loops have a common end point it may be designated
with a single NEXT statement. For example,

NExr T, N, L

In this case the single NEXT statement must name the variable for each
loop involved. Omitting any will evoke the

FOR without NEJCl'

error message. Including the loop variable in all NEXT statements and
matching every FOR with a corresponding NEXT enables us to maintain
nice spacing and clear documentation.

We describe these short cuts, not for you to use them, but to equip you
to recognize them in other people's programs. People do write programs
with no variables in NEXT. We just don't want you to be thrown off by
that.

Consider Program 4-9.

62
•••

100 FOR I = 1 TO 2
110 FOR J = 1 TO 3
120 FOR K = 1 TO 4
150 PRINT K, J, I
170 NE:lCI' K
180 NE:lCl' J
190 NE:lCI' I

LOOPS

Program 4-9. Note nicely matched NEXT statements.

Naming the variable in each NEXT and using proper indentation together
make this program very easy to read.

SIDBLIGJR4

.Another Look at Precision.

As we said in Sidelight 2, BASIC normally works with single-precision
numeric values. This is entirely adequate for most computing projects.
For many years it was the only degree of precision available.

BASIC offers two more precisions for numeric values. We can restrict
values to the range of integers from -32768 to 32767. Results outside
that range are considered overflow values. We can work with double
precision values. Double precision gives us 16 significant digits and a
range from about -1. 7E+38 to 1. 7E+38 .

• • • • %, I, and # Precision Indicators
There are several ways to get the precision we want. At any time we can
declare a variable as integer, single-precision, or double-precision by ap
pending a special character to the variable name. This is the way we
distinguish between a string variable and a numeric variable. A percent
sign (%) designates an integer, an exclamation point (!) designates a
·single-precision variable, and we get double precision with a number sign
(#). We saw the exclamation point in Sidelight 2. Any numeric variable
without any of these symbols is considered a single-precision variable.
The variable X and X! are the same. Any of these symbols may be used for
constants as well. So, X% is an integer variable and 12345# is a double
precision value .

. . . . Some Double-Precision Examples
Besides explicitly typing the number sign, we can cause BASIC to work
with double precision in other ways. When numbers are entered in certain
forms, they are processed and stored in standard double precision. When a
number is expressed in eight or more digits or when we use D, instead of

63
•••

MICROSOFT BASIC USING THE SOFTCARD

E, to specify an exponent, the result is in double precision. D-format is
just like E-format, except that the decimal part is expressed with up to 16
digits. We can demonstrate this by entering some program statements to
see how they are transformed in a LISTing.

100 X# = 12345678
110 Y# = 12345015
LIST
100 X# = 12345678#
110 Y# = 1.23450+19

We can determine the actual range for double-precision values by
asking BASIC to divide by zero in double precision.

PRINT li I 0#
Division by zero

1.7014118346046930+38

It can be fun to explore things in different precisions.

100 Ai = 3 I 17
120 B# = 3# I 17
140 C# = 3 I 17#
160 ot = 3# I 17#

PRINT A#
PRINT B#
PRINT C#
PRINT 0$

These four lines will tell us something very important about how numbers
of different precisions are handled. Let's execute them .

• 1764705926179886
.1764705882352941
.1764705882352941
.1764705882352941

Now what do we do? Which of the two different values is correct? Since
each of the last three values is generated by appending a number sign to
the numeric value itself, we might favor that result. But can all 16 digits
really be right?

Let's write a little program to perform infinite-precision division for
us. See Program 4-10.

300 N = 3 : 0 = 17
-->320 Q = N \ 0 : PRINT O:
-->360 N = (N - Q*D) * 10

370 ooro 320

Program 4-10. Infinite-precision division.

Note the use of integer division in line 360. If this is really infinite preci
sion, then we will just have to press CTRL-C to stop it. This program
simply performs long division a digit at a time. Let's see ...

64 •••

LOOPS

121 1 7 6 4 7 121 5 8 8 2 3 5
2 9 4 1 1 7 6 4 7 121 5 8 8
2 3 5 2 9 4 1 1 7 6 4 7 121
s "c

Break in 32121

Figure 4-8. Executian of Program 4-10.

That's our answer. But it's so hard to read! We need to work out a way to
eliminate the spaces. This is an interesting place to take advantage of
PRINT USING. If we include a semicolon at the end of a PRINT USING
statement, the next display continues on the same line. So line 320 be
comes

32121 Q = N \ D : PRINT USING "#": Q:

Now let's see it. Look at Figure 4-9.

12Jl76471215882352941176471215882352941176471215
882352941176470588235294117647121588235294
117647121588235294117647121588235294l"C
Break in 32121

Figure 4-9. Executian of Program 4-10 with PRINT USING.

Well, you get the idea. It just happens to come out to a 16-digit repeating
decimal. We could spruce this program up a bit by inserting the decimal
point in the correct place. It goes between the 0 and the 1 on the first line
of the program execution display. Now we can confirm that this particular
calculation is accurate to 16 significant digits as long as we force the
calculation routine into double precision by using the number-sign desig
nation on one of the numbers in the calculation. While the result for 3/17
displayed 16 digits, we can easily see that they are not any more accurate
than single precision .

. . . . Integer Values
If our program has lots of loops that are running pretty slowly, we can
consider using integer variables for the loop index.

100 FOR I% = 1 TO UPPERLIMIT
120 NIDC1' 1%

runs in about 60% of the time it takes for

10121 FOR I = 1 TO UPPERLIMIT
1212J NIDC1' I

Furthermore, calculations on integer variables require less computer

68
•••

MICROSOFT BABIC USING THE SOFTCARD

time than calculations on single-precision variables. And single-precision
calculations take far less computer time than double-precision ones. Even
double-precision display is very slow. We may not use a double-precision
variable as the loop variable.

66 •••

Packages in BASIC
(Functions and Subroutines)

BASIC is made up of several kinds of features. There are the keywords
and the loop structures. We have line numbers, numeric variables, and
string variables. There are the various arithmetic operations available to
us. In this chapter we are going to add a tremendous collection of tools to·
our programming repertoire. We are going to discuss many of the func-.
tions available. In addition, we are going to learn about subroutines.

A function is a process that returns a value. For example, there is a
function that returns the square root of a number. While we could write
the necessary BASIC code to do that, it is desirable to have the program
ming language do it for us. Why should every user of BASIC have to write
it? Another function returns the number of characters in a string variable.
BASIC includes many such functions as features of the language. In addi
tion, we may create our own programmer-defined functions.

A subroutine is like a mini-prognm. It is a segment of a program that
we may isolate and use from anywhere else in our program. Subroutines
are useful whenever we need the same calculation at many different
places in a program. Furthermore, subroutines make it possible to parti
tion the work of a big program into little jobs. This helps us to clear our
mind to concentrate on a smaller programming task at any one time.

8-1 ... Introduction to ITumeric l'unctions

•••• SQB. (Square B.oot)
We can easily write a little program to display the square roots of the
integers from 1 to 10. The square root function is designated by SQR. The

67
•••

MICROSOFT BABIC USING THE BOFTCABD

value for which we require the square root is enclosed in parentheses. The
value in parentheses is called the "argument" of the function. See line 110
in Program 5-1.

UJ0 FCR J = 1 TO 18
-->118 PRINT J, SQR(J)

128 ·nxr J

Program 5-1. Display some square roots.

Here we simply display the value on the screen.

l
2
3
4
5
6
7
8
9
18

l
1.41421
1.73285
2
2.23687
2.44949
2.64575
2.82843
3
3.16228

Figure 5-1. ~xecution of Program 5-1.

In Program 5-1, SQR(J) takes on a value during execution. We may use
that value in ·many of the ways that we use other values. The following
statements demonstrate some ways.

188 X • SQR(HEIGHT)
leeJ SIDE = SQR(X'*X + Y*Y)
108 T • SQR(J) - 2"T + 18*R9

•••. :an (Greatest Integer)
The INTeger function returns the largest integer not greater than the
argument. So INT(5.0) becomes 5 and INT(5.99) also becomes 5.
INT(-6.5) becomes -7. The result shouldn't be -6 because that is
greater than -6.5. INT is not the same as doing integer division using \.
The difference shows up for negative results.

INT(& I -4) evaluates as -2

while

6 \ -4 works out to -1

This function is often used to round ofl' values. The most frequent
application is in financial calculations. We always round ofl' to the nearest
hundredth of a dollar to cqme out to whole cents. All values half a cent or
more we round up and values less than half a cent we round down. So
what we do first is multiply the dollar value by a hundred to get cents.

88 •••

PACKAGES IN BASIC (FUNCTIONS AND SUBROUTINES)

Now if we just cut off the decimal part we will always round down. Since
we only want to round down for values less than half a cent, we add half a
cent and then cut off the decimal part. We end up with an expression that
performs the cents rounding for us.

INT(DOLLARS * 100 + .5)

tells us the number of cents. Now all we need to do is divide by a hundred
to get th~ decimal point back in. The final expression is

Im'(DOLLARS * 100 + .s) I 100

If this evaluates to $54.40, BASIC will PRINT without the trailing zero.
And if it comes out to a whole dollar, that is the way it will display. In
order to have any trailing zeros to the right of the decimal point displayed,
we should display with PRINT USING .

.... Factors
Since we can now take the greatest integer of a value, we can also decide
whether one number divides evenly into another. This means that we can
find factors of integers. Factors occur in pairs. See Table 5-1.

2 * 6 = 12
3 * 4 = 12
4 * 3 = 12
6 * 2 = 12
Table 5-1. Factor pairs.

In fact, all pairs of factors occur twice, except in the case of a perfect
square. Also, every factor greater than the square root is paired with a
factor less than the square root. We can test all integers up to the square
root of a number and we will have all possible factor pairs. Study Pro
gram 5-2.

100 J:NPUT "Find factor pairs of11 1 N
120 FOR D = 2 TO SQR(N·)
130 0 = N ID
140 IF 0 <> INl'(O) THEN PRINT 07 Q
180 NEJC1' D

Program 5-2. Find factor pairs .

• • • • S'UllKAB.Y
We have introduced the SQR() and INT() functions. These are built-in
features of BASIC to calculate the square root and greatest integer.

Problems for Section 8-1
1. Write a program to display the square roots of integers from 1 to 20

rounded off to the nearest tenth. ·

69 •••

MICROSOFT BASIC USING THE SOFTCARD

a. Do Problem 1, displaying the values with PRINT USING.
s. Modify Program 5-2 to find the smallest prime factor of an integer.
4:. Write a program that requests a numeric date in the form

YYMMDD. One of the reasons that we like to use this numeric
YYMMDD form for the date in a computer is that if we sort by that
number, the result will be in chronological order. First, verify that
it is a possible date. Then display the date in the form YY MM DD.
That is: 790121 becomes 79 1 21.

s-a ••• String Functions

There are a number of functions that will help us handle string values.
Included are functions to determine the length of a string, pick strings
apart, and functions that generally simplify programming with strings .

• • • • LEJI' (Length of a String)
LEN(A$) returns the number of characters actually stored in the string
variable A$. This value can range from 0 to 255. Whenever we analyze a
string, character by character, the LEN function is useful for determining
how many characters to look at .

• • • • .ASC (.ASCII Value)
The ASC function returns a number corresponding to the internal code
that BASIC uses to represent characters. For example,

ASC("A")

has a value of 65. The ASCII value for Z is 90. ASCII is the American
Standard Code for Information Interchange. It is used by a great many
computer systems. A partial table of ASCII values is presented in Appen
dix D. ASC(V$) returns the ASCII value associated with the first charac
ter in the string variable V$.

• • • • CBB.$ (Character Whose .ASCII Code Is Given)
The CHR$ function is the reverse of the ASC function.

CHR$(65)

returns the character"/*:' since "A" is represented by 65 using ASCII .

• • • • STB.$ (Convert Jl'um.eric to String)
The STR$ function converts a numeric value to string format. STR$(N)
converts the internal binary code used to represent the numeric value of
N into the ASCII code used for each of the digits. Let's examine the e:ffect
of a statement such as

70
•••

PACKAGES IN BASIC (FUNCTIONS AND SUBROOTINES)

188 T$ • STR$(X)

While X stores a numeric value that we may use directly in arithmetic
calculations, T$ stores the digits of the number as string characters. Thus,
T$ permits us to manipulate the digits using string functions and tech
niques. T$ will begin with a space or a minus sign. That is just the way
it is .

• • • • v.a.r. (Value of a String)
VAL is the reverse of STR$. VAL(N$) returns a numeric value. If N$ is a
string of digits, VAL converts them into the binary format used for storing
numbers. If the first character could not be part of a number, a zero is
returned. If the function is successful in converting the beginning of a
string, it continues to the end of the string or until it encounters an
impossible character. Thus,

VAL("7 Days in the week")

will convert to

7

The VAL function handles E-format just fine. The numeric value will be
converted to standard form.

VAL("312E-2 ")

becomes
3.12

and all is well. D-format works, too .

.. . . LBn•, MIDS, and BIGm•
The LEFT$, MID$, and RIGHT$ are among the most often used striqg
functions. These functions return a string value. As the names imply,
these functions enable us to pick strings apart.

LEFT$(A$,5) returns the five leftmost characters in the string vari
able A$. If A$ contains fewer than five characters, the LEFT$ returns
whatever is there. RIGHT$ performs the exact same duty on the right end
of a string.

MID$ allows us to extract characters from the interior of a string.
Well, we don't remove them, we just obtain a copy of them. MID$(A$, 7,3)
refers to the three characters of A$ beginning with the seventh character.
And MID$(A$,K,l) specifies the Kth character in the A$ string.

All numeric arguments must be in the range 0 to 255 or you will get
the

Illegal function call

71 •••

MICROSOFT BASIC USING THE SOFTCARD

error message. In addition, for the expression MID$(A$,J ,K), we get the
same error message if the value of J goes to zero.

Let's enter some days of the week in a string and separate them for
display. See Program 5-3.

UJ0 WEEK$ = "f.bn'l'ueWedThuFri"
120 PRINT LEFT$(WEEK$,3)
130 PRINT MID$(WEEK$,7,3)
140 PRINT RIGHT$(WEEK$,3)

Program 5-3. Demanstrate LEFT$, MID$, and RIGHT$.

The expression LEFT$(WEEK$,3) represents the three leftmost charac
ters in the character string WEEK$, or Mon. Similarly, RIGHT$
(WEEK$,3) becomes the three rightmost characters in WEEK$, giving
us Fri. MID$ is a little different. MID$(WEEK$, 7,3) is the three charac
ters beginning with the seventh character in the string WEEK$, produc
ing Wed.

f.bn
Wed
Fri

Figure 5-2. Executian of Program 5-3.

We have used MID$ as a function here. MID$ may also be used as a
command to assign characters anywhere in a string variable. If

X$ = "f.bn'l'ueWed"

and the following statement is executed:

MID$ (X$, 4, 3) = "Feb"

then X$ will contain "MonFebWed" .

•••• IITSTB
INSTR is used to find a string of characters in another string. For exam
ple, suppose we need to enter the day of the week and have the program
use the day number for further calculation. Program 5-4 is a little routine
that will report the character position of a day.

689 REM ** What day is this?
700 WEEK$ = "SUNMOOTUEWEDrHUFRISAT"
710 INPUT "Day": DAY$
720 DAY$ = LEFT$(DAY$,3) •3 characters to match
740 P = INSTR(WEEK$,DAY$)
760 PRINT "Found in position"1 P

Program 5-4. Demanstrate INSTR.

We have set up a string with the days of the week for our program to match
against a day name entered from the keyboard. Note that we will have to

72
•••

PACKAGES IN BASIC (FUNCTIONS AND SUBROUTINES)

enter all uppercase to obtain a match. We have saved only the first three
characters as well. INSTR requires two strings. The function will look for
an occurrence of the second string in the first one. The number we get is
the position of the first character in the match. Let's see it run in Fig
ure 5-3.

Day? FRIDAY
Found in position 16
Ok
RUN
Day? Friday
Found in position e
Figure 5-3. Execution of Program 5-4.

We can see that INSTR returns 0 when it fails to find a match. While we
found FRIDAY in position 16, we really would like to know which group
of three characters that is to know the day number. That is easy. Just
divide by 3 using integer division and add 1. But now we have to test for
P = 0 first to rule out a bad response from the keyboard.

INSTR also allows us to begin anywhere for the search.

PRINT INSTR(4, H ABXDEFGHIJXK" I "X")
11

INSTR didn't report the X found at 3 because we told it to begin with
character number 4 .

. . • . ftBDTG$ (String of Character)
STRING$(1,J) simply returns the character whose ASCII value is J-just
like CHR$. STRING$(K,J) returns K of them. STRING$(5,37) becomes
five percent signs. This function is not essential for programming. How
ever, it is handy for filling in reports and dressing up program display in
general. Just don't let the value of K or J become less than 0 or greater
than 255 or you will get an

Illegal function call

STRING$ may also be used with a· string argument to indicate the
character to be repeated.

STRING$(UJ,"-")

will become ten dashes. This function can be used to output spaces in a
display, but a special SPACE$ function is provided for this .

•••• SPAOB$
SPACE$(15) becomes 15 spaces, SPACE$(X) becomes X spaces. This
SPACE$ string can be used in general string assignment and display
statements of all kinds.

73
•••

MICROSOFT BABIC USING THE SOFTC.ARD

•••• SUllKABY
We have introduced LEN, ASC, CHR$, STR$, VAL, LEFT$, MID$,
RIGHT$, INSTR, STRING$, and SPACE$. We can use all of the earlier
string concepts here. Thus, expressions such as the following all perform
sensibly:

445 8$ • 8$ + SPACE$(3) + MID$(A$,J,2)
568 C$ • MID$(X$,4,6) + LEFT$(3)
218 0$ • RIGBT$(D$,LEN(D$)-l)

MID$, besides being a function to isolate characters within a string,
may be used as a command to assign characters anywhere in a string.

Problems for Section 8-8
1. Write a program to display the contents of a string backwards.
a. Using HOME, HTAB 1, and string features from this section, write

a program that scrolls a message across the screen horizontally.
8. Write a program to request a name, last name first followed by a

comma and the first name. Have your program search for the
comma and rearrange the name in first-name-first format. Thus,
"Kennedy, John F." will become "John F. Kennedy". Note: the
response to INPUT will have to be enclosed in quotes to get the
comma into the string. Or use LINE INPUT. See Sidelight 3.

"· Modify Program 5-4 so that it calculates the correct day number
rather than the character position.

8. Looking at the ASCII chart in Appendix D, note that the uppercase
alphabet is found in the range from 65 to 90 and the lowercase
alphabet from 97 to 122. In Program 5-4 use this information to
force the characters in the string coming from the keyboard to
uppercase.

8. Write a program that requests a date in a string in the form YY/
MM/DD. Note that dates in this form can be sorted to arrange in
real chronological order. First verify that it is a possible date. Then
display the date in the form YY-Mmm-DD. That is: 79/02/21 be
comes 79-Feb-21.

'1. Write a program that requests a numeric date in the form
YYMMDD. One of the reasons that we like to use this numeric
YYMMDD form for the date in a computer is that if we sort by that
number, the result will be in chronological order. First verify that
it is a possible date. Then display the date in the form YY-Mmm-DD.
That is: 790221 becomes 79-Feb-21.

B·B ... Miscellaneous l'unctions
••• • .ABS (Absolute Value)
The ABSolute value function is occasionally useful. ABS(X) changes the

'14: •••

PACKAGES IN BASIC (FUNCTIONS AND SUBROUTINES)

sign of all negative arguments, returns zero when X equals zero, and gives
X for positive values of X.

There is an interesting application that uses ABS. We can determine
the minimum of A and B with the following expression:

(A + 8 - ABS (A - 8)) I 2

A simple change makes this work for maximum. Alternatively we could
obtain the minimum with an IF test such as

905 MIN= A
907 IF A > 8 THEN MIN = 8

And here is yet another way:

200 IF A > 8 THEN MIN = B
EISE MIN = A

Either one produces the desired value.
Suppose we are testing for X = Yin an IF statement. If both values are

decimal numbers, we may be satisfied if they are within .0000001 of each
other and we don't care which is larger. This is just the place for ABS.

905 IF ABS(X-Y) < .0000001 THEN COde for match here

•... SGB (Sign)
The SiGN function returns -1, 0, or 1 according to whether the argument
is positive, zero, or negative. It doesn't get much of a workout .

• • • . B1'D (Bandom Bum.bers)
One popular function is the random-number generator. The ability of the
computer to bring forth random numbers makes it easy to create pro
grams that do different things each time they are run. The function RND
returns random values in the range 0 to 1. Let's see how it works. See
Program 5-5.

100 FORI=lT010
110 PRINT RND
120 NEXl' I

Program 5-5. Demanstrate random numbers.

Program 5-5 simply displays each value. We may use these numbers in all
the same ways we use any numbers in a program. We may assign them to
variables and use them in calculations of all kinds.

'18 •••

MICROSOFT BASIC USING THE SOFTC.AltD

.245121

.31/J51/Jl/J3

.311866

.515163

.llJ583136 .
• 788891
.49711/J2
.363751
.984546
.901591

Figure 5-4. Execution of Program 5-5.

We might want to use random numbers to simulate some activity. This
could be as simple as flipping a coin or as complex as modeling the traffic
on a proposed road bridge. ·

Let's fiip a coin. A coin can come up either heads or tails (coins land on
edge infrequently enough so that we can ignore the possibility). We could
divide the random numbers evenly by splitting the interval from zero to
one at the . 5 mark. It is almost as easy to multiply all values by two to
make the interval become from zero to two. If we then apply the INT
function, only two values are possible-zero and one. The beauty of this
concept is that it also applies easily to many other random events. To roll
dice we simply multiply by six to get j,ntegers from zero to five. In the case
of the dice we can then add one to obtain the six different faces. Program
5-6 flips a coin ten times.

11/Jl/J FOR I = 1 TO 10
110 COIN =INT(2 * RND)
121/J IF COIN = l/J THEN PRINT "Heads"
130 IF COIN = 1 THEN PRINT "Tails"
19" NEJCl' I

Program 5-6. Flip a coin ten times.

Heads
Heads
Heads
Tails
Heads
Tails
Heads
Heads
Tails
Tails

Figure S.5. Execution of Program 5-6.

If we RUN Program 5-6 again we will get the same results. Computer
random-number generators can be like that. They produce a sequence of
numbers that is repeatable. Because the list is quite long, however, it is
useful for most purposes. What we need is a way to change where we start

76
•••

PACKAGES IN BASIC (FUNCTIONS AND SUBROUTINES)

the list from one execution of a program to the next. Of course, BASIC
provides for this. There are two methods. One is to place a value in
parentheses to go with RND. The other is to use the RANDOMIZE
statement .

•••. Bm>(X)
RND(X) is affected by the value of X. For a given negative value of X we
get the same value of RND(X). Each different negative value for X gives a
different starting point. For X equals zero we get the most recently gener
ated random value. And if X is positive we get the same result as we get
for RND without an argument. So to get different results from RUN to
RUN simply execute RND(X) with a negative value for X once and posi
tive values after the first. Making the value of X different each time pro
vides the variety. You can get a value by asking for the person's name. Use
the number of characters in the name or use the date or the time .

• • • • B.AllDOKIZJI
The RANDOMIZE statement permits us to enter a number from the
keyboard that "seeds" the random-number generator. Give it a differ
ent seed and get a different sequence. When BASIC encounters the
RANDOMIZE statement during execution it displays the following
message:

Randan Number Seed (-32768 to 32767)?

Simply give it a number off the top of your head.
Sometimes we would rather not have our program deliver the "Ran

dom Number Seed" message. In such a program we may use an alterna
tive form:

RANDOMIZE N

where n is different from one execution to the next. We can get different
values for N the same way we got them for X above. When we learn about
data files we can even use a file to keep track of how many times the
program has been executed and use that number to seed the random
number generator .

• • • • l'BE (Free Memory)
FRE(X) returns the number of unused bytes of memory. This is helpful to
the programmer working on large programs. RUNning the program first
will give a more realistic number. Each character requires one byte. An
integer occupies two bytes. A single-precision number takes up four
bytes, while a double-precision value uses eight bytes. See Sidelight 6 and
Chapter 7. Memory use is especially important to the programmer work
ing with arrays. See Chapter 6.

'1'1
•••

,,

MICROSOFT BASIC USING THE SOFTCARD

Any value, even a string, may be used for the argument of FRE. It is
convenient to use 8 or 9 since they are right there with the right and left
parentheses on the keyboard .

• . . . Trigonometric Functions
ATN(Z), CO&(Z), SIN(Z), and TAN(Z) are the four trigonometric func
tions. In each case the value of Z must be in radians rather than degrees.
The trigonometric values are converted to six-digit precision.

Problems for Section 8-S
1. Write a little routine to request a person's name and use the num

ber of characters in the name to seed the random-number
generator.

a. Flip a coin 200 times. Report on the number of heads and tails.

8-4 ... Programmer-Defined l'unctions
(DBI' I'S)

•... Rumeric Functions
Earlier we saw an expression to round off values to the nearest hun
dredth.

INT (DOLLARS * 101/J + • 5)

Every time we want a rounded-off value we have to repeat this expres
sion. Sometimes we would rather use such an expression once and refer to
it whenever needed. The programmer-defined function capability exists
for just this purpose. Once, usually early in our program, we use a state
ment such as the following:

DEF FN ROUND(X) = INT(X * 11/Jl/J + .5)

Then wherever we need to round off to the nearest hundredth we simply
incorporate FN ROUND(DOLLARS) as appropriate. The DEFined func
tion statement must execute before any statement that refers to it. Fail
ure to do this will evoke the

Undefined user function

error message. It is a good idea to place all DEF statements at the very
beginning of your programs. Program 5-7 is a simple demonstration of a
rounding-off function.

78
•••

90
-->100

120
130

->140
150
900
910
990

PACKAGES IN BASIC (FUNCTIONS AND SUBROUTINES)

PRINT "ROUNDED", "UNROUNDED"
DEF FN ROtJND(X) = INT(X * UIJeJ + .5)· / 100
READ DOLIARS
IF DOLIARS = 0 THEN END
PRINT FN ROUND(DOLLARS) , DOLIARS
GOTO 120
DATA 1.091, -17.569, 100.999
DATA 17.569
DATA 0

Program 5-7. Demonstrate rounding off with DEF F.N.

Look at line 100. Note that while the variable used to define the function
is X, when the computer gets to line 140 it replaces X everywhere with
DOLLARS. The computer simply matches up the variable in parentheses
in line 140 with whatever variable appears in parentheses in line 100. The
X used in this way is called a dummy variable. It simply serves to tell the
computer where to use the value named in the referencing statement later
on. If we happen to use X for some other purpose in our program, that is all
right. The two uses of the variable X do not interact at all.

ROUNDED UNROUNDED
1.09 1.091

-17.57 -17.569
101 100.999
17.57 17.569

Figure 5-6. Execution of Program 5-7.

We can round values off and store the result in a variable using a
rounding-off function such as this. While we may also do rounding with
PRINT USING, the results appear only in the display and are not stored in

. variables in the program.
Suppose we want to round off to different degrees of precision at dif

ferent points in a program. We could do a DEF FN for each degree of
precision. Or we could do one DEF FN in terms of precision for the whole
job. We would like to have two values go into our function: the figure to be
rounded and the degree of precision. We could use the number of decimal
places as the degree of precision. Thus for rounding to the nearest hun
dredth we would use a 2. We can easily define such a function as follows:

100 DEF FN ROUND(X, Y) =INT(X * 10"'r + .5) / 10"'r

We may use as many variables as is practical. Now if we code a line such
as

190 PRINT FN ROUND(DOLIARS, P .)

the computer will replace X with DOLLARS and replace Y with P. So it
will evaluate

INT(DOLLABS * l((J"p + .5) I 10"i>.

79 •••

l\4ICROSOFT BASIC USING THE SOFTflARD

Our function reference must have the same number of arguments as the
function definition.

Syntax error in 140

will remind us that we failed to match the number of arguments. BASIC
will swing into EDIT Mode to help us. We will see the same message if
there is a syntax error in the DEF statement. Even though the error is in
the DEF statement, BASIC will report the line number of the statement
that references FN ROUND instead. So, if you don't see anything wrong
in the statement that refers to the function, go right to the DEF statement
and look at it. You will save a lot of staring.

If we name a variable in the function definition that is not in the
argument list in parentheses following DEF FN . . . , then the computer
will simply use that variable's actual value for the calculation .

• • • • Str1ng Functions
Occasionally we want to define our own string functions. 'Dlke the case
where we are trying to match a keyboard response to a set of possible
responses stored in a string. If we are working with the full upper- and
lowercase character set, we need to consider both upper- and lowercase.
Notice that uppercase characters are in the range 65 to 90 and lowercase
characters range from 97 to 122. See the ASCII chart in Appendix D. If we
have an uppercase character we can change it to lowercase by adding 32.
And to go the other way, we subtract 32. But outside the ranges 65 to 90
and 97 to 122, we want to leave the character unchanged. While there are
a number of ways to do this, we can define a string function to do the job.
Let's do lower to upper.

We need an assignment statement that will subtract 32 from any
ASCII codes in the range from 97 to 122 and leave the others alone. With
IF . . . THEN we would use a statement such as

309 IF ASC(A$)>96 AND ASC(A$)<123·THEN A$= CHR$(ASC(A$)-32)

The logical expression ASC(A$)>96 AND ASC(A$)<123 in the IF state
ment evaluates as 0 for false and -1 for true. So, if we multiply that
expression by 32, the result is 0 or -32. Now we have

32*(ASC(A$)>96 AND ASC(A$)<123)

Then we add that to ASC(A$) to get the ASCII value for the required
character. CHR$() gets it back to a string character. Putting this all to
gether we have a DEFined function:

109 DEi!' FNLU$ (X$) =
CHR$(ASC(X$) + 32*(ASC(X$)>96 AND ASC(X$)<123))

Now if we want to convert uppercase to lowercase, all we need to do is
change the limits in our defined function and subtract instead of add. It is
easy to write a little routine to test this.

80
•••

PACKAGES IN BASIC (FUNCTIONS AND SUBROUTINES)

200 INPUT "Enter a character"1 C$
210 PRINT FNLU$(C$)
220 GOTO 200

Problems for Section B-4
1. Define a function to convert centigrade to Fahrenheit. To get from

centigrade to Fahrenheit we multiply by 9/5 and add 32.
a. Define a function to convert Fahrenheit to centigrade. To go from

Fahrenheit to centigrade we subtract 32 and multiply by 5/9.
B. Define a function to return the average of three numbers.
4. Write the function to convert from upper- to lowercase.

s-s ... DBF IRT, SGL, DBL, STB.
(Variable Typing)

BASIC does most of its numeric calculations in single-precision mode.
Occasionally we want to work in other modes. We saw in Sidelight 4 that
we could designate specific variables for other modes of calculation by
appending a percent sign or a number sign to the variable name. We can
also use a special DEF statement to declare that all variable names begin
ning with certain letters shall be of a specific type.

100 DEFINT A-C,Q
110 DEFSGL H
120 DEFDBL X, Y, Z
130 DEFSTR N•P

Line 100 declares all variables beginning with letters A, B, C, and Q as
integer variables. Line 110 sets H to single precision. X, Y, and Z are set to
double precision in line 120. Any variable beginning with N, 0, or P will
be a string variable according to line 130. Any other variable names are
unaffected by this. Variables redefined evoke no error message and the
last definition prevails.

s-e ... Subroutines (GOSUB and BBTU'Bm')

A subroutine is a side excursion. The program suspends what it is doing to
execute program statements in another part of the program. Following
this, it comes back to work on what it was doing when it took the excur
sion in the first place. We direct the computer to make the side excursion
with the keyword GOSUB, and we signal the end with the keyword
RETURN.

GOSUB 900 causes the computer to begin executing program state
ments beginning with line 900. This is just like GOTO 900 except that
BASIC remembers its place with GOSUB. For GOSUB 900 to function

81
•••

:MICROSOFT BASIC USING THE SOFTCARD

properly BASIC must encounter a RETURN statement. The program
statements beginning with line 900 and ending with the RETURN state
ment make up the subroutine. If we cause the program to execute a
RETURN statement in the absence of a GOSUB, we get

RETURN without GOSUB

The way to avoid this is to place subroutines at higher line numbers and
include an END statement just before the first subroutine in the program.
BASIC does not check for GOSUB without RETURN. That is the pro
grammer's responsibility.

Suppose we are writing a program that has a lot of yes-no questions in
it. We can write a subroutine to do this and use it from many places in the
program. It is common practice to accept Y for yes and N for no. We
should allow either upper- or lowercase. See Program 5-8.

1198 REM ** Yes-No processor
12121121 PRINT QUESTION$: : INPUT ANSWER$
121215 ANSWER$ = LEFT$(ANSWER$, 1)
121121 IF ANSWER$ = ''Y" OR ANSWER$ = "y" THEN ANSWER = 1 : GOTO 1290
1220 IF ANSWER$ = "N" OR ANSWER$ = "n" THEN ANSWER = 0 : GOTO 1290
1230 PRINT "Answer Yes or No, Please"
1240 PRINT
1250 GOTO 121210
1290 RETURN

Program 5-8. Subroutine to process yes-no questions.

We might also consider defining the case-converter function here and
using it instead of two separate tests for Y and y. Now we have a subrou
tine that we can use from anywhere in our program with

420 QUESTION$ = "Next menu" : GOSUB 1200
430 IF ANSWER = 1 THEN Yes code •••

EI.SE No code •••

This technique saves us from having to include the actual code to process
input from the keyboard at numerous points in our program. Further, it
enables us to assocta,te the whole idea of handling the keyboard with the
simple statement GOSUB 1200. Thus we can concentrate on another por
tion of the program. For tasks of any size, it is impossible to hold the entire
solution in our head at any particular instant in time. So any device we
can develop that helps to simplify what we have to think about at any one
moment is desirable.

It often works out that subroutines we write for one program are use
ful in other programs. Once this begins to happen, it becomes worthwhile
to develop more sophisticated routines than we might for just one applica
tion. For example, suppose we are working on a routine to accept the date
from the keyboard. We might, say, keep the year in the range 0 to 99, keep
the month in the range 1 to 12, and keep the day in the range 1 to 31 and

ea •••

PACKAGES IN BASIC (FUNCTIONS AND SUBROUTINES)

be done with it. At the next level of sophistication we might additionally
check that for month number 2 the day is in the range 1to29. Finally, we
might develop a routine that distinguishes the 30- and 31-day months and
allows for leap year. Once we have this routine fully tested we may then
use it in all future programs dealing with a calendar.

Problems for Section 8·8
1. From Program 5-2 to find factor pairs, write a subroutine to find all

prime factors of a value entered from the keyboard.
a. Write a subroutine to process the date in the form YY/MM/DD.

Note that dates in this form can be sorted to arrange them in real
chronological order. Verify that it could be a real date with a sub
routine. Then create a string holding that date in the form YY
Mmm-DD. Example: 75/12/25 becomes 75-Dec-25.

:s·. Write a subroutine to process the date in the form YYMMDD. Note
that dates in this form can be sorted to arrange them in real
chronological order. Verify that it could be a real date with a sub
routine. Then create a string holding that date in the form YY
Mmm-DD. Example: 751225 becomes 75-Dec-25.

•••. PlllEK

smBLIGJRS

PBBIC and POICB

PEEK is a function that returns a value.
PEEK(X)

reports the value stored in memory location X. On a 64K machine, mem
ory runs from -32768 to 32767. Everything that the computer does is
based on things that go on in memory. In addition, we have ways to use
external storage such as disk. But PEEK(X) applies only to computer
memory. That is where our programs run .

.••• POKE
POKE is a BASIC statement that writes a value to an address in memory.
PEEK and POKE are used for advanced programming. However, it is
instructive and interesting to consider a simple application .

•••• Ok
Suppose we tire of the "Ok" message that we see so much in BASIC.
Since it must be in memory somewhere, we ought to be able to find it. We

83
• • •

:MICROSOFT BASIC USING THE SOFTCARD

need to look for an uppercase letter "0" followed by a lowercase letter "k".
Referring to the ASCII chart in Appendix D, we see that "0" i$ represented
by 79 and "k" is coded as 107. The rest is easy. We need a little program to
look for a 79 followed by a 107. See Program 5-9.

98 REM ** Look for the Ok message
100 FOR MEM = 0 TO 32766
110 IF PEEK(MEM) <> 79 THEN 190
120 IF PEEK(MEM+l) <> 107 THEN 190
130 PRINT MEM
190 NEX!' MEM

Program 5-9. Look for "Ok" in memory.

Running this program reveals that "Ok" occurs at memory cells 3349 and
3350. So what? So we can now POKE an alternate message using a little
program. It is even easy to do in immediate. Suppose we prefer "Hi" to
"Ok". Look at the ASCII chart and find that "H" is 72 and "i" is 105. Let's
do it:

POKE 3349, 72 1 POKE 3350, 105
Hi

And we have our new greeting, just like magic. Or we might like to have a
colon instead. That can easily be done with a colon followed by a space.
Checking the ASCII chart again, or we could use ASC(":") and ASC(" "),
we find that the numbers are 58 and 32.

POKE 3349, 58 : POKE 3350, 32

•••• Screen Window
In Applesoft, POKE can be used to create a window on the text screen.
There must be a way to do it in SoftCard BASIC, too. Let's look at the
layout. See Table 5-2.

Item
Left edge
Width
Top line
Bottom line

APPLE SO ft
Address

32
33
34
35

Value
0

40
0

24
Table 5-2. Screen parameters in Applesoft.

The SoftCard documentation includes a chart that would enable us to
determine the appropriate parameters for SoftCard BASIC. If that
documentation isn't readily available, we can simply modify Program 5-9
to help us here, too.

84 •••

PACKAGES IN BASIC (FUNCTIONS AND SUBROUTINES)

98 REM ** Look for window parameters
100 FOR MEM = 0 TO 32764
110 IF PEEK(MEM) <> 0 THEN 191/J
120 IF PEEK(MEM+l) <> 40 ~HEN 191/J
130 IF PEEK(MEM+2) <> 0 THEN 193
140 IF PEEK(MEM+3) <> 24 THEN 191/J
150 PRINT MEM
190 NEJCl' MEM

Program 5-10. Look for window parameters.

Program 5-10 leaves us without any results. We have looked at only part of
memory. Let's look at the other part from 0 to -32768. Changing line
100 to

100 FOR MEM = 0 TO -32765

ought to do it. We get -4064. Following this, we see that the screen is
converted into full-screen Lo-Res graphics. There is lots to explore here.
We will just pursue the text window. Now we can control the text window
according to Table 5-3.

Item
Left edge
Width
Top line
Bottom line

SOftC&llD
Address
-4064
-4063
-4062
-4061

Value
0

40
0

24

Table 5-3. Screen parameters in SoftCard BASIC.

This works only with the 40-character Apple screen that comes from
memory-mapped video. Don't expect to use it with an external terminal.
If you want to move the left edge, then you must set the width first. If the
cursor stays outside the window when the POKEs are used, we have to
take action to put it inside the window. HOME does it. And when we want
our old screen back, we use TEXT. TEXT is a statement normally used to
restore the text screen after using graphics. Pressing the RESET key does
it, too. You may have to hold down the CTRL key at the same time. BASIC
responds with

Reset error

Never mind. Unless you are working with files, just proceed with what
you want to do.

88
•••

Chapter&

Pigeonholes Galore
(Arrays)

We have been working with numeric variables for some time now. These
variables have been very useful for many programs. We use them in FOR
loops and calculations of all kinds. Numeric variables are important in
making the computer such a useful tool. Likewise, we have taken advan
tage of the string-variable features of BASIC. The variables we have been
using are all classed as simple variables. They hold a single value.

In this chapter we are going to take a quantum leap forward. While we
have used a variable for each value in the past, we are going to see how to
use the variable concept to encompass a large number of values, all with a
single name. We are going to enter the world of the computer array.

Arrays are used for storing information that naturally belongs to
gether. Tax tables, pricing structures, inventory information, and life in
surance premiums are all appropriate for using arrays. Many times an
array is useful for storing information about the workings of the program
itself. We may use arrays for storing test scores,· temperatures, random
numbers, and lists of all kinds. We might use an array to store the days of
the week or the months of the year.

6-1 ... Rumbers, 1'Tum.bers, and More B'umbers
(1'Tumeric Arrays)

If we were going to store the high temperatures for each day of the week
we might use SUNDAY, MONDAY, ... , FRIDAY, and SATURDAY as

86 •••

PIGEONHOLES GALORE (.ARRAYS)

variables. That would be cumbersome. We would probably prefer to do the
necessary calculation by hand. An array variable is a new kind of place to
store values. An array may have as many pigeonholes as we need for any
problem. We can designate WEEK as an array variable to contain values
for the seven days of the week. To distinguish the several values stored in
any array we use a value written in parentheses following the variable
name. The value written in parentheses is called a subscript and each
data value stored in the array is called an element. Thus, the temperature
for SUNDAY could be stored in

\
WEBK(l)

In this case WEEK is the array name, and one (1) is the subscript. The
temperature for Sunday is stored in the element designated as number 1.
We read WEEK(l) as "WEEK-sub-one". In our example "WEEK-sub
seven" would be used for the temperature on Saturday. We can just as
well code WEEK(X) OR WEEK(J9).

The first occurrence of any reference to a variable such as WEEK(l)
establishes the array named WEEK. BASIC automatically provides ele
ven elements numbered from 0 through 10. In the next section we will
learn how to specify exactly the number of elements we need for our
situation.

The benefits of arrays are immediately available to us with no new
requirements or keywords to learn. They are just like simple variables bU:t
with a special naming convention. We may use BASIC to assign values in
all the ways we already know. Assignment (LET), INPUT, and READ all
work the same as for simple variables. Array variables are used in calcula
tions and in PRINT, LPRINT, PRINT USING, and LPRINT USING
statements with ease. We may test the value of an array element in an IF
statement.

Let's write a program to READ temperatures for a week, calculate the
average, and find the highest and lowest temperatures. In order to do this
we will set three initial values equal to the temperature of day 1. That is,
on Sunday the SUM and the HIGH and LOW temperature are each equal
to Sunday's temperature. Then for each of the other days of the week we
will perform three tasks. We will add the day's temperature to the SUM.
We will see whether today's temperature is lower than the current LOW.
And we will determine whether today's temperature is higher than the
current HIGH. Finally, we must display the results. See Program 6-1.

91 Rl!M ** Enter the temperatures in array WEEK
lf/J8 FOR J • 1 TO 7
110 RFAD WEEK(J)
121/J NExr J
146 a
148 Rl!M ** Set up initial conditions
151/J SUM = WEEK(l)

87 •••

MICROSOFT BASIC USING THE SOFTCARD

160 HIGH = WEEK(l) : UM = WEEK(l)
196 :
198 REM ** Scan the week's temperatures
200 FOR J = 2 TO 7
210 SUM = SlM + WEEK(J)
220 IF WEEK(J) < LOW THEN IDll = WEEK(J)
230 IF WEEK(J) > HIGH THEN HIGH = WEEK(J)
240 NEXT J
290 :
300 PRINT "Average temp:"1 SUM I 7
310 PRINT "Highest temp: 11 1 HIGH
320 PRINT " lowest temp: 11 1 IDll
896 :
903 DATA 71, 77, 82, 76, 79, 72, 74
990 END

Program 6-1. Find average, highest, and lowest temperatures.

Average temp: 75.857l
Highest temp: 82
Lowest temp: 71

Figure 6-1. Execution of Program 6-1.

As is often the case, there are lots of things we might do to change this
program. We might want to round off the average temperature to the
nearest degree. We might want to know on which days the high and low
temperatures occurred. We might want to know how many times the
temperature increased and decreased. These are left as exercises .

• . . . Drawing Bandom Kum.bars from a Hat
Suppose we wish to simulate drawing numbers from a hat. We can easily
do it with random numbers, provided that we may return each number to
the hat before drawing the next one. If we must simulate drawing without
replacement, then we must have a way of keeping track of what has been
drawn. Here is an ideal application for an array. We simply set each ele
ment of an array equal to 1 and make the value 0 when that element has
been selected. If the selected element is 1 then we know that it is available
for use: use it and set it to 0. If a selected element is 0 then we know that it
is not available for use and we must select again. Let's look at such a
program to draw five numbers at random from among ten. See Pro
gram 6-2.

SflJ RANOOMIZB
9llJ RI!M ** Drawing five randan nmbers fran among ten
96 I

98 RI!M ** Make all values available
1"9 i'OR J = 1 TO lflJ
llflJ A(J) • 1 'Value available
12flJ NEXT J
196 I

198 RI!M ** Select five randan values

88
•••

200
->21'/J
-->250

260
270
280

PIGEONHOLES GALORE (.ARRAYS)

FORJ:al'l'OS
RANDOM :s INI'(RND * 10 + 1)
IF A{RANDOM) a 0 THEN 210
PRINT RANDOM:
A{RANDOM) =- 0 'Value unavailable

NEXT J

Program 6-2. Drawing five random numbers from among ten.

Randan n\Kllber seed (-32768 to 32767)? a
3 8 6 2 10

Figure 6-2. Execution of Program 6-2.

From all appearances our program works just :fine. But look at lines 210
and 250. If the value selected by line 210 has already been used, then line
250 requires the computer to draw another random value. Inevitably this
is a trial-and-error process. It might be interesting to evaluate how well it
does work. One measure of the quality of the program will be the number
of unusable random numbers generated: the fewer the better. We can
easily insert a counting variable to determine this. This is left as an ex
ercise.

Considering the problem set before us, the trial-and-error method of
the above program is not really a serious flaw in design. Drawing five
numbers from among ten, or even drawing ten from among ten, does not
require major computer resources. However, what happens when we in
crease the numbers? Suppose we want to draw one hundred from among
one hundred? When we draw for the last number, we have a one in a
hundred chance of getting it. That could take a while. It is worth invest
ing some effort to eliminate the trial-and-error entirely.

Here is a plan that allows us to use every random number selected.
First initialize the elements of the array as follows:

100 FOR J a 1 TO 10
110 A(J) • J
120 NEXT J

This means that each element stores one of the numbers in the range 1 to
10. Next, select a random number in the range 1 to 10 and use that value
as the subscript, S. Now display A(S) and replace A(S) with A(lO). We
have our first random number. Now select a random number in the range
1 to 9. Since we have moved A(lO) into a lower-numbered element, we
may select from among fewer elements and still include all of the remain
ing numbers in the next random selection. The second time through we
move A(9) into the selected element. We simply repeat the select-display
replace sequence until the desired number of random draws have oc
curred.

We need to calculate the number of elements remaining. As the draw
number (J) goes from 1 to 5, the number of elements remaining goes from

89 •••

MICROSOFT BASIC USING THE SOFTC.AltD

10 to 6. Thus, we can calculate the last element with

210 LAST m 10 - J + 1

Of course we could just as well use LAST = 11 - J, but the form in line
210 tells us more about where the numbers are coming from. This makes
the program easier to read. See Program 6-3.

90
92
100
110
120
196
200
210
230

-->240
-->250

270
300

REM ** Randan values without replacement
• and without trial-and-error
FORJ=l'l'Ol0
A(J) = J

NE:JC'r J

FOR J = 1 TO 5
LAST = 10 - J + 1
S = INI'(RND * LAST + 1)
PRINT A(S):
A(S) = A(LAST) 'Move last value

NE:JC'r J
END

Program 6-3. Drawing without replacement efficiently. ·

Notice that the element is printed in line 240 and then replaced by the
current LAST element in line 250. LAST is always the number of active
elements in the array. Even if we happen to select the LAST element this
method continues to function properly. The LAST element will be as
signed to itself. No harm done.

3 10 9 4 1

Figure 6-8. Execution of Program 6-3 .

• • • • SUl't!lVIAllY
So now we have a variable that allows us to include several values in a
single variable name. X(J) is the Jth element in the array variable X. We ·.
may use subscripts from 0 to 10. We often use arrays to store data values
that belong in a group.

Problems for Section. 6-1
It is a good idea to simply experiment with arrays to get the feel of how
they work. Some of these problems are suggested to provide "fingertip
learning."

1. Modify the temperature program (6-1) to determine how many
times the temperature increased, decreased, and remained un
changed.

a. Modify the temperature program (6-1) to display the day on which
the highest and lowest temperatures occurred.

90 •••

PIGEONHOLES GALORE (ARRAYS)

8. Modify the first random-number drawing program (6-2) to draw
ten numbers from among ten.

4. Change the first random-number-drawing program (6-2) to count
the number of random values that are duplicates. Run it with
several seeds to get a range of values.

8. Enter 3, 5, 6, and 17 in one array and 6, -9, 11, -13, and 3 in
another. Display all possible pairs by selecting one element from
each array. There are 20 pairs.

8. Fill two arrays as in Problem 5. Fill a third array with all elements
in either array with no duplicates. Display the resulting array.

7. Fill an 11-element array with random values. Display the largest
value and its position in the array.

e-aA Simple Sort
Computers do a lot of sorting and arranging of data. Whole books are
devoted to sorting and searching. In this section we are going to look at a
very simple sort and write a program to implement it. Arrays are ideal for
jobs like this. We will load an array with ten numbers and arrange them in
increasing order. To do this we will check pairs of elements in the array
one pair at a time. If they are in the correct order, we simply go to the next
pair. If they are not in the correct order, then we want to exchange them.
One way to exchange two values requires an intermediate variable. To
exchange A and B we need three BASIC statements as follows:

520 TEMP= A
530 A = B
54'/J B = TEMP

The variable TEMP is used to save the value of A while we copy the value
of B into it. Then the value that we saved in TEMP can be copied into B.

BASIC lets us do that in a special statement.

531/J SWAP A, B

does exactly the same thing. If we check out pairs of numbers that are
next to each other in an array named A, the heart of the sort will be the
following statement:

24'/J IF A(J) > A(J+l) THEN SWAP A(J), A(J+l)

We need a routine to READ the values into the array, a routine to
perform the test of line 240 above on all necessary pairs, and a routine to
display the results.

The values can be read in with a loop that looks for a special value to
signal the end of DATA. Let's use -999999.

The routine that checks all necessary pairs simply scans the array
from the beginning to one less than the end, looking at the Jth and J + 1st

91
•••

MICROSOFT BASIC USING THE SOFTCARD

as in line 240 above. At the end of each scan, we can look at the one less
pair because we have moved the next largest value to the correct location
in the array. Once we have put the correct value in the element numbered
2, the process is guaranteed to be complete. It is time to display the result.

50 REM ** A simple sort
98 REM ** Load mmbers to be sorted in A array
100 N = QJ
110 READ x : IF x ... -9999991 THEN 200
120 N = N + l
130 A(N) = X
140 GOl'O 110
196 :
198 REM ** Here is the sort
200 FOR LAST = N - 1 TO 2 STEP -1
230 FOR J = 1 TO IAST
240 IF A(J) > A(J+l) THEN SWAP A(J), A(J+l)
250 NEJcr' J
280 NEJcr' LAST
296 :
298 REM ** Sort canplete - display
300 FOR J = 1 TO N
310 PRINT A(J);
320 NEJcr' J
890 END
896
898 REM ** Test data
900 DATA 102, 32, -91, 982, 87
902 DATA 73, 23, -981, 234, 21
990 DATA -999999

Program 6-4. A simple sort.

This sort is deceptively easy. It is also very slow. If we have much data to
be sorted, we must tum to more sophisticated methods.

-981 -91 21 23 32 73 . 87 102 234 982

Figure 6-4. Execution of Program 6-4.

Problems for Section 6-8
1. Notice that the 200 routine of Program 6-4 that does the actual

sorting would take the same time for a list that is already in order
as for any other. Put in a variable that switches on whenever a
SWAP is done. At the end of the inner loop have.the program test to
see if any SWAP has been done. Ifno SWAP has been done then the
sort is finished. (This will improve execution for some lists, but
very little can be done to improve the inherent inefficiency of this
type of sort.)

a. Change Program 6-4 to arrange in decreasing order.

98
•••

PIGEONHOLES GALORE (ARRAYS)

e-:sArray Sizes and Shapes (Diii)

Suppose we want to deal with data for the 12 months of the year. We
would like to have an array with subscripts up to 12. It is easy with DIM.

85 DIM MCNrHS(l2)

does the trick. The DIM or DIMension statement is executed only once to
create the desired effect. We may also use DIM to declare smaller arrays.
As before, the zero subscript is available, so we really have 13 storage
cells in the MONTHS array. For our little problem dealing with the days of
the week we could use

83 DIM WEEK(7)

It is always good programming practice to include every array in a DIM
statement. Ideally this statement is among the early statements in the
program. This provides important information to anyone reading our pro
gram. It is disconcerting to find a statement referring to X(6), or worse yet
X(J9), without any clue as to how large the array might be. Even if we
want to allow subscripts up to ten, we should state that in a DIM state
ment. Several arrays may be mentioned in a single DIM statement by
separating them with commas.

95 DIM WEEK(7), Maml(l2)

takes care of two arrays for us. An attempt to DIM an array a second time
will evoke the

Duplicate Definition

error message. Versions of BASIC prior to 5.0 say "Redimensioned array" •

• . . . Multiple Dimensions
Suppose we want to work with population figures over a period of years.
Let's look at a table of values for Spokane, Washington.

"2llAll
1950
1960
1970
1980

POPULA.no•
161,271
181,608
170,516
171,300

Table 6-1. Papulaticm of Spokane, Washington.

With such a small table we could actually do a lot of analysis by eye.
However, the principles we learn here may be applied to larger amounts
of data. We need an array with four rows and two columns. We can easily
provide such an array wi,th

93 •••

MICROSOFT BASIC USING THE SOFTCARD

100 DIM CENSUS(4,2)

Up to 255 dimensions are theoretically possible, but there are numerous
practical limits that we will reach long before 255. Three or four dimen
sions quickly gobble up computer memory. If we ever access CENSUS
with a first subscript larger than 4 or second subscript larger than 2, we
will get

Subscript out of range

On the other hand, if a subscript goes negative, we get

Illegal function call

In the CENSUS situation we are actually providing an extra row and
an extra column because of the zero subscripts. In the interest of simplic
ity, let's not use the zero subscripts. Later, when we are more comfortable
with arrays, we can look at this situation in more detail. Sidelight 6 tells
us how to eliminate zero subscripts.

So what do we do with this data? We might want to know the year of
the largest and smallest population. Or we might want to know about
percentage increases and decreases. Perhaps it would be useful to arrange
the years in order of population. But first we must get the data into the
array. Perhaps the easiest way is to READ DATA. We will be careful to
leave the extra commas out when typing the DATA statements for our
program. Commas are used to separate DATA items. Once we have the
data in our array we can put together a program to provide answers to all
of our questions. It will be a good idea to develop the program using
subroutines for the various functions. See Program 6-5.

100 DIM CENSUS(4,2)
110 GOSUB 800 'Read census data
120 GOSUB 900 'Display census data
190 END
796
798
800
810
830
870
880
890
896
898
900
910
930
970
975
980
990

Rn-1 ** Read census data
FOR ROW = 1 TO 4

FOR COLUMN = 1 TO 2
REl\D CENSUS (ROW, COLUMN)

NEXI' COLUMN
NEXI' ROW
RETURN

Rn-1 ** Display census data
FORROW=lT04

FOR COLUMN = 1 TO 2
PRINT CENSUS (ROW, COLUMN) ,

NEJCI' COLUMN
PRINT

NEJCI' ROW
RETURN

94
•••

PIGEONHOLES GALORE (ARRAYS)

996 :
1000 DATA 1950,161271, 1960,181608
1010 DATA 1970,170516, 1980,171300

Program 6-5. Read and display census data.

Note how convenient it will be to have the display code isolated as a
subroutine. Later, when we only want to know which year produced the
largest census for Spokane, we may simply leave out GOSUB 900. In this
way the display routine will be unaffected. We could also include the
conventional comma in the population figures with PRINT USING.

1950 161271
1960 181608
1970 170516
1980 171300

Figure 6-5. Execution of Program 6-5.

Now we are in a position to begin asking questions about the data.
Let's find out which census tabulated the greatest population. We need
a little routine that scans the array looking for the largest value of
CENSUS(J,2). We also need to keep track of the year. We just set YEAR
to the first year and set LARGE to the population for the first year. Then
we scan the rest of the array to see if any years have a higher population.
Program 6-6 lists the relevant changes to Program 6-5.

100 DIM CENSUS(4,2)
110 GOSUB 800 'Read census data
120 GOSUB 700 'Find largest population
190 END
696 :
698 ~ ** Find largest population
700 YEAR = CENSUS (1, 1) : IARGB ,. CENSUS (1, 2)
710 FOR J = 2 TO 4

-->720 IF CENSUS (J 1 2) <= LARGE THEN 770
730 YEAR ... CENSUS (JI 1)
740 LARGE •CENSUS(J, 2)
770 ~ J
700 PRINT 'YEAR, IARGB
790 RErURN

Program 6-6. Change Program 6-5 to find largest population.

Look at line 720. We said that if any value in column 2 is greater than the
current value of LARGE we will save the new higher value. We say if the
value in column 2 is less or equal to the current value of LARGE then
proceed directly to the next value in column 2. Otherwise, save the new
value of population and the year. We could also code that process with

720 IF CENSUS (JI 2) > LARGE THEN 'YEAR - CENSUS (JI l)
1 IARGE =CENSUS(J, 2)

98
•••

PIGEONHOLES GALORE (ARRAYS)

If we use this version of line 720, we will, of course, eliminate lines 730
and 740. This new line 720 may be easier to read. This program will
inform us that Spokane had a population of 181,608 in 1960.

Problems for Section 8-3
Again, it is good to experiment with arrays. DIMension a two-dimensional
array and try things. Try three dimensions.

1. Write a program to fill a five-by-seven array with values of your
choice. Display the totals column by column. Display the totals
row by row.

a. Write a program to fill a five-by-seven array with values of your
choice. Display the largest value in each row. Display the largest
value in each column.

8. Fill a four-by-eight array with random values in the range from 1 to
100. Display the array. Then multiply each element by -5 and
display the result.

4. Draw one hundred numbers from among one hundred using the
method of Program 6-2 and Program 6-3. Compare the time re
quired.

8-4 ••• Words, Words, and More Words
(String .Arrays)

If we were going to store the high temperature for each day of the week we
might also want to store the names of the days of the week. We want
Sunday, Monday,. , . , Friday, and Saturday as data. This is easy to do
with a string array. Let's look at a little program to display the names of
the days of the week.

9a Rl!M ** Display the days of the week
96 I

100 DIM DAY$ (7)
110 FOR J • 1 TO 7
120 ~ DAY$(J)
130 NElCr J
196 I
200 FOR J • 1 TO 7
210 PRINT DAY$(J)
220 NElCr J
896 I

900 DATA Sunday, M.:>nday, Tuesday, Wednesday
9la DATA Thursday, Friday, Saturday

Program 6-7. Display the days of the week.

98
•••

PIGEONHOLES GALORE (ARRAYS)

Now it is a simple step to combine the ideas of Programs 6-7 and 6-1 to
label the results with the day name.

Once we have the day names in a string array some nice things begin
to happen. We have the labels available at all times for display. We also
have the flexibility of using the full day name where that is important or
using abbreviations where there is little space. We may use

LEFT$ (DAY$ (J) I 3)

to display just the first three letters.
String values are listed in DATA statements in the same manner as

numeric values. Strings and numerics may be intermixed at will. A string
variable may READ a numeric value, but a numeric variable cannot
READ a string value. If you try to do that you will get

Syntax error in 900

where the line number names the DATA statement. Now you know. If it
becomes necessary to include a comma or a colon as part of a data item,
then surround the entire data item with quotes. Quotes are also required
for important leading or trailing spaces.

Problems for Section 6·4
1. Modify Program 6-7 to display only the three-letter day name ab

breviation in common use.
a. Write a program that stores the months of the year in a string array

and displays them as column headers as follows:

J F M A M J J A S 0 N D
a e a p a u u u e c o e
n b r r y n 1 g p t v c

:s. Write a program that stores the months of the year in a string array
and displays them as column headers as follows:

J F M A M J J A S 0 N D
a e a p a u u u e c o e

n b r r y n 1 g p t v c

6-BAn .Alphabet Game

You're driving along and someone says, "Let's play Alphabet." Everybody
in the car tries to find every letter of the alphabet in order on signs along
the roadway. Whoever gets the "Z" first wins. We can develop a computer
program to do a fair job of simulating that game. We'll write a program to
play this game for a single player. Then you may want to expand on it. The

97
• • •

MICROSOFT BABIC USING THE SOFTCARD

program will involve many of the things we have been doing recently.
There will be a string array to store the signs. We can use the RND func
tion to select signs. The sign should appear on the screen only briefly to
simulate highway driving. During that time the player should have the
opportunity to strike a letter key to signify that he or she has spotted the
next letter. The computer needs to do some checking and display mes
sages-according to the outcome. For now we may enter the signs in DATA
statements. Later we may want to use data files. Since much of what we
will be doing in this program has to do with single letters, and many signs
have both upper- and lowercase letters, we will have an opportunity to
work with the ASC function a bit here.

This is a big job we have laid out for ourselves. We can easily trim it
down to size by spending a little extra time organizing before we generate
any BASIC program statements. Think about the steps in the game in
programming terms .

• • . . Loacl the Signs Array
It can be said that, once we select our route, the stream of signs has been
determined. We may easily simulate this by storing a sequence of signs in
a string array. By later selecting signs at random, we may offer the game
player different ''routes." We may arbitrarily DIMension a string array.
Let's use 50 for now. We can just think up a few signs and put them in
DATA statements. Later we can put in additional DATA statements if we
prefer to .

. . • . Establish Game Beginning
It is easy to get a game going. We simply say, "Now I begin with 'A' or 'a'."
For simplicity let's begin with a capital A. Since we will be scanning the
alphabet, it will be convenient to think in terms of numeric or ASCII
codes. The ASCII code for a capital A is easy to find with

PRD1'1' ASC(RA")

We get 65 .

• • • • Simulate Banclom Signs along the B.oacl
Once we have the first letter established all we need is to generate some
random signs. Of course, when we are riding in a car the signs come
flashing by. So let's fl.ash a sign on the screen and then make it disappear.
We need to provide a FOR . . . NEXT loop to delay the sign image on the
screen just long enough to be seen. We can clear any screen by coding 24
PRINT statements. This way, the sign moves up the screen. Thus,
simulating the way we drive along the highway .

•• . . Diel the Player Spot the llext Letter?
Here we create a routine that allows the player to either enter or not a
letter of the alphabet. The easiest way to do that is to use the

98
•••

PIGEONHOLES GALORE (.ARRAYS)

INDY$

statement. This is a new statement that reads a single character from the
keyboard. BASIC does not display the character entered. If we want to
display it, we do that with PRINT. The RETURN key is not required. If no
key has been pressed, then the resulting string is null-that is, it has an
ASCII value of zero. And program execution continues on, unlike INPUT,
which stops to wait for a response at the keyboard no matter what. So
what we need here is to "look" at the keyboard and "see" if a letter has
been pressed. If a letter has been pressed, let's arbitrarily convert it to
uppercase. This is an ideal place for the case converting functions from
Section 5-4. If nothing is pressed, then no action is required. If any key has
been pressed, then this routine should determine that the player, in fact,
pressed the next letter in the alphabet. If no key has been pressed then the
sign selecting routine should be repeated .

•••• Is the •~xt Letter B.eally on the Sign?
Having displayed a sign and received the next letter in alphabetic se
quence the program should check to be sure that the letter is on the sign.
Here again, we need to deal with uppercase and lowercase. If the current
letter is on the sign, and the player has not completed the alphabet,. then
we repeat the sign-generating routine. Otherwise we move on to termi
nate the game.

Each of the processes described here is an ideal candidate for a sub
routine. This means that we have partitioned the complex problem into
manageable tasks. We may concentrate on each smaller task and do the
job efficiently. The benefits don't stop there, however. Once the program
has been written and it performs to our satisfaction, we may easily make
important modifications by concentrating on a single subroutine rather
than poring through one long stream of code. It is going to be a simple job
to convert this program so that it stores the signs in a data file on disk.
Then we can request each new player to enter a favorite sign. Thus the
game will become more and more interesting as more people play it.

To summarize then, here is a description of the final program.

1. Load the signs array
a. Establish game beginning
:s. Simulate random signs along the road
4. Did the player spot the next letter? If not then repeat step 3
8. Is the next letter really on the sign? If not "Z" yet repeat step 3 or

else wind up this game

We will code each of the numbered steps as a subroutine. This summary
will serve as the control routine. By retaining each line of the summary as
a remark in the program itself we can provide good documentation without
further effort. All that remains is for us to make a few decisions about line
numbers and variables, and the control routine is complete. Let's just

99 •••

MICROSOFT BASIC USING THE SOFTCARD

place the subroutines at 1000, 2000, and so on. Now for the variables.
Let's use SIGNS$ as the signs array, N as the total number of signs,
ALPHA! as the ASCII value of the current letter, CAPA as the ASCII
value of the letter entered at the keyboard during the play of the game
(remember it will be zero if no key is pressed), and R as the randomly
selected position of the current sign in the SIGNS$ array. So SIGNS$(R)
contains the current sign. We won't forget to DIMension SIGNS$ and
include the DEF for converting to uppercase. All of this transforms easily
into the BASIC code for a routine to control our game program. See Pro
gram 6-Ba.

189 DIM SIGNS$(59)
192 DEr FNU$ (A$) •

CHR$(ASC(A$) + 32 * (ASC(A$)>96 AND ASC(A$)<123))
119 GOSUB 1900 'Load the signs array
120 GOSUB 2900 'Establish game beginning
139 GOSUB 3099 'Simulate randan signs along the road
149 GOSUB 4"'119 'Did the player spot the next letter?
145 IF CAPA = 9 THEN 139 'If not then repeat step 3
151/J GOSUB 5001/J 'Ia the next letter really on the sign?
155 IF ALPHAl < 91 THEN 139 'If not "Z" yet repeat step 3
161/J PRINT "0>03ratulations, you have made it tbroQJh the alphabet"
191/J END

Program 6-Ba. Control routine to play Alphabet.

Now all we have to do is write each of the subroutines. The program will
practically write itself. Loading the SIGNS$ array consists of READing
DATA. We provide for a counter and a final data value as a signal that all
data has been read. The number of signs read here is returned in "N".

998
1001/J
ll/Jl0
1920
1931/J
ll/J41/J
1989

-->1985
1991/J

Rl!M ** Load the signs array
N = l/J
RFAD A$ 1 IF A$ • "Done" THEN 11/JSl/J
N=N+l
SIGNS$(N) =A$
ooro 1019

PRINT "'lhere are:•1 N1 "signs in tbia game.•
GOSUB llr/Jl/J
RETURN

Program 6-Bb. Load the Alphabet game road signs.

Note the GOSUB 1100 in line 1085. We need a delay so that the player has
time to read the message in the program. We chose to do this in a subrou
tine at line 1100. We can add the DATA statements at any time.

Now let's establish the game beginning. This simply consists of in-
itializing ALPHAl to the ASCII value for capital "N'.

1998 REM ** Establish game beginning
2r/Jr/Jr/J ALPHAl = 65 'Get ready to look for 'A'
21/J91/J RETURN

Program 6-Bc. Start with capital "A''.

100
•••

PIGEONHOLES GALORE (ARRAYS)

To simulate .the signs along the roadside we need to generate random
values from one to the number of signs in the array. Next we display the
sign and provide a delay. Since part of the idea of this game is to have the
signs go flying past, we use a separate delay here. This one should be
shorter than the one we use for displaying messages. Finally we PRINT
24 blank lines and leave this subroutine. After you see this program RUN
you might want to make some changes. You might vary the length of time
the signs stays on the screen from one sign to the next. This could be done
with the RND function. You might want to display the sign at different
places on the screen. The length of time a sign is on the screen might vary
with the length of the sign. With tasks handled as subroutines, the result
ing program will be easy to fine-tune.

2998 REM ** Simulate randan signs along the road
3000 R • INl'(RND * N + 1)
3020 PRINT SIGNS$(R)
3030 FOR J :a 1 TO 800 a ~ J
3040 FOR J • 1 TO 24 : PRINl' : NEJC1' J
3090 BETURN

Program 6-Bd. Display a sign.

Next we process the player keyboard input. As we said a little earlier,
we will use INKEY$. Since the INKEY$ function does not display
keyboard input we will include a PRINT statement to do so. It is impor
tant to know that the ASC function cannot handle a null string-that is,
one containing no characters. When the INKEY$ function finds that no
key has been pressed, it returns a null string. Therefore we will have to
test this condition separately. If we find that a letter that has been keyed
in is not the next one in the alphabet, we need to display a message and
keep it on the screen long enough for the player to read. Here is another
use for the subroutine at line 1100.

3998 REM ** Did the player spot the next letter?
4000 A$ = INKEY$
4005 IF LEN(A$) • 0 THEN CAPA • e : GOTO 409e
4el0 PRINT A$: " ":
4020 A$ = FNU$(A$) a CAPA :a ASC(A$)
403e IF A$ < "A" OR A$ > "Z" THEN 4"0e
4050 IF CAPA = ALPHAl THEN 4090
4060 PRINT "Not the next letter in the alphabet" a GOSUB nee
4070 GOTO 4000
4090 BETURN

Program 6-Be. Check keyboard input.

To check if a letter is on a sign we need to check both upper- and
lowercase. We need a message for "not found" and one for "found". Here
is yet another use for the delay routine at line 1100. If the letter is found
we need to increment ALPHA! to move to the next letter in the alphabet.

101
•••

MICROSOFT BASIC USING THE SOFTCARD

4998 Rl!M ** Is the next letter really on the sign?
5000 FOR J • l TO LEN(SIGNS$(R))
5010 B$ • PNU$(MID$(SIGNS$(R),J,l))
5020 IP A$ • B$ THEN 5050
5030 NEJC1' J
5040 PRINT "Your letter is not on the sign• a GOSUB 1100
5045 GOTO 5090
5050 PRINT "Good" a OOSUB 1100
5060 ALPHAl =ALPHAl + 1
5090 RETUBN

Program 6-Bf. Check if a letter is on a sign.

And now we come to the delay routine. It is simply a FOR . . . NEXT
loop that does nothing. Here we have set the upper limit at 1500. You
might want to change that to suit your own taste.

1098 Rl!M ** Time delay for messages
1100 FOR J • 1 TO 1500 a NElCl' J
1190 RETURN

Program 6-Bg. Time-delay routine.

Finally, we have included a few signs for data.

1498 Rl!M** The signs
1500 DATA Stop, Al's Pizza, Dairy Queen, Burger :King
1502 DATA Yield, One way, This Way OUt, Detour
1504 DATA One Show Only Tonight, Exit Only, Entrance Only Please
1506 DATA Florida 2138 mi., Ply United, Jet Set Diner
1508 DATA Give Her a Valentine, Give Him a Valentine
1510 DATA First Avenue, North Side
1598 DATA Done

Program 6-Bh. Data for the Alphabet game.

Here is the complete Alphabet game program.

1"9 DIM SIGNS$(50)
102 DEF PNU$(A$) •

CHR$(ASC(A$) + 32 * (ASC(A$)>96 AND ASC(A$)<123))
110 GOSUB 1"90 'Load the signs array
120 GOSUB 2000 'Establish game beginning
130 GOSUB 3000 'Sintulate randan signs along the road
140 GOSUB 4000 'Did the player spot the next letter?
145 IP CAPA • 0 THEN 130 'If not then repeat step 3
150 GOSUB 5000 'Is the next letter really on the sign?
155 IP ALPHAl < 91 THEN 130 'If not •z• yet repeat step 3
160 PRINT "Cl:>RJratulations, you have made it through the alphabet"
190 END . '
996 :
998
1000
1010
1020
1030

Rl!M ** Load the signs array
N = 0
RFAD A$: IP A$ = ''Done" THEN 1080
N=N+l
SIGNS$(N) =A$

102
•••

PIGEONHOLES GALORE (ARRAYS)

1040 GOTO 1010
1080
1085
1090
1096
1098
1100
1190
1496
1498
1500
1502
1504
1506
1508
1510
1598
1996
1998
2000
2090
2996

:

PRINT "There are:"r Nr "signs in this game."
GOSUB 1100
RETURN

REM ** Time delay for messages
FOR J = 1 TO 1500 : NEXl' J
RETURN

REM ** The signs
DATA stop, Al's Pizza, Dairy Queen, Burger King
DATA Yield, One Way, This Way out, Detour
DATA One Show Only 'lbnight, Exit Only, Entrance Only Please
DATA Florida 2138 mi., Fly United, Jet Set Diner
DATA Give Her a Valentine, Give Him a Valentine
DATA First Avenue, North Side
DATA ll:>ne

REM ** Establish game beginning
ALPHA! = 65 'Get teady to look for 'A'
RETURN

2998 REM ** Simulate randan signs along
3000 R = INT (RND * N + 1)

the road

3020 PRINT SIGNS$(R)
3030 FOR J = 1 TO 800 : NEJCl' J
3040 FOR J = 1 TO 24 : PRINT : NEXl' J
3090 RETURN
3996 :
3998 REM ** Did the player spot the next letter?
4000 A$ = INKEY$
4005 IF LEN(A$) = 0 THEN CAPA = 0 : GOTO 4090
4010 PRINT A$: II .. ,

4020 A$ = FNU$(A$) : CAPA = ASC(A$)
4030 IF A$ < "A" OR A$ > "Z" THEN 4000
4050 IF CAPA = ALPHA! THEN 4090
4060 PRINT "Not the next letter in the alphabet" a GOSUB 1100
4070 GOTO 4000
4090 RETURN
4996 :
4998 REM ** Is the ~t letter really on the sign?
5000 FOR J = 1 TO LEN(SIGNS$(R))
5010 B$ = FNU$(MID$(SIGNS$(R),J,l))
5020 IF A$ = B$ THEN 5050
5030 NEJCI' J
5040 PRINT "Your letter is not on the sign" : GOSUB 1100
5045 GOTO 5090
5050 PRINT "Good II : GOSUB 1100
5060 ALPHAl = ALPHA! + 1
5090 RETURN

Program 6-8. The Alphabet game.

Now, there are lots of things that you could do to improve this pro
gram. You could convert it to accommodate several players. You could

103
•••

MICROSOFT BASIC USING THE SOFTCARD ·

make changes so that the program prods the player for missing signs that
have the next letter on them. The program could easily be made to go
faster or slower and to change speed at random. It could stop at a traffic
light or move onto an Interstate. You could do lots of things with graphics.
The signs could be flashed at random about the screen. They could be
made to flash on and off. We have only scratched the surface.

Problems for Section 8-B
Problems 1 through 7 refer to the Alphabet game.

1. Write a little routine to seed the random-number generator. Re
quest the player's name. Then use the length of the name.

a. Write a little program to seed the random-number generator. Re
quest a name. Sum up the ASCII values of the characters of the
name. Use the sum as the seed. Using this scheme Ann and Bill
will produce different random sequences.

a. Change the Alphabet game to simulate changing speed in the car.
Stop at a traffic light. Move onto the Interstate.

6. Make the time a sign stays on the screen proportional to the length
of the sign.

8. Give the program the ability to make signs appear with differing
probability. "Yield" could appear often, but "Rudy's Diner" should
appear only once in any one game (unless we get lost).

e. Write a program to tabulate the frequency of occurrence of the
letters in the signs. This information could be used to decide on
additional signs to include in the DATA.

'I. Arrange the results in problem 6 in order of frequency of occur
rence.

8. Write a program to play Geography. In this game two or more
players take turns thinking of place names. Each player must
name a place whose first letter matches the last letter of the previ
ous player's place. Have the program add new place names to the
array and offer to play additional games. Make the computer a
player in a two-player game. Names may not be repeated in any
one game.

•••• OP.rIOIT BASB

smJDLIGJft 8
.Azray Goodies

BASIC automatically allows for zero subscripts. Programmers may ignore
the zero subscript if that is desirable. Sometimes zero subscripts are just

104
•••

PIGEONHOLES GALORE (.AltBAYS)

the ticket, and sometimes we don't need them. We are not required to use
zero subscripts. Usually this is not an important consideration. But when
we work with large arrays, the amount of memory taken up by all those
unused zero elements can be a real problem.

Suppose we look at an array DIMensioned ten by ten by ten. Such an
array contains 1,331 elements. Of those, 331 are referenced by at least one
zero subscript. If we have no logical use for them, we can save all that
space with

OPTION BASE 1

This statement eliminates all elements with a zero subscript. So for our
ten-by-ten-by-ten array we need only enough memory for 1,000 elements.
That is quite a saving .

•• . . Variable Diii
Suppose we have a program in which the dimensions of our arrays might
change depending on data handled during execution. We can provide for
all situations by using a variable DIM statement. We may use a program
segment such as the following:

121 INPUT " Number of weeks 1 11 7 WEEKS
131 INPUT "Number of values per week:"r VAU.JES
141 DIM MATRIX(WEEKS, VAWES)

If we call for too large an array BASIC will deliver the
out of· memory in 141

error. If we try to dimension the same array again, regardless of the
amount of memory required, we will see

Duplicate Definition in 141

Older versions of BASIC will report "Redimensioned array in 140". There·
is a way around the "Duplicate Definition" problem .

•••• BBASB
We can eliminate an array and recover the memory it occupies with the
ERASE statement.

945 ERASE TEST, TESTl

does this for arrays TEST and TESTl. This frees us to redimension any
array mentioned in the ERASE statement. Or we might just want the
space for some other purpose. An attempt to ERASE a nonexistent array
brings forth

Illegal function call

108 •••

MICROSOFT BASIC USING THE SOFTO.ARD

•••• Variable Typing and Memory
If we have a situation in which we need a very large array, and values

in the range -32768 to 32767 are sufficient, then we have the option of
declaring our array as ~integer array just as we did for simple variables.

llB DIM ARRAY% (400·, 5)

gives us 2000 or 2406 values depending on our use of zero subscripts.
Integers require two bytes in memory, while our conventional six-digit
precision values require four.

On the other hand, we might require up to 16 digit precision. In this
case, we declare a double precision array.

lBB DIM NUMBER#(lB,20)

does the job. Of course, now our numbers occupy eight bytes each.
In a program where several numeric data types are in use, we might

want to explicitly declare single precision with a statement such as

91 DIM ~ID81Tl(l2,31,2)

Such a move will serve to more clearly document what is going on in your
program.

106 •••

Chapter?

Miscellaneous
Applications

'1·1 .•. A Calendar Program

Let's write a program to display one month of a calendar given the month
and year. The workings of our calendar are well known. The days of the
week have a seven-day rotation. The number of days in each month is
fixed. The calendar follows a strange pattern, but it is a fixed pattern. The
four-year rotation for leap year is clear. If we limit ourselves to the twen
tieth century, we don't have to worry about the 400-year cycle. It is easy to
develop this program by going from the big tasks down to the smaller
ones.

Given the month and year, we are going to produce the calendar dis
play of Figure 7-1.

Dec 1929

Sun ~n Tue Wed 'lhu Fri sat
1 2 3 4 5 6 7
8 9 10 11 12 13 14

15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31

Figure 7-1. One page of a calendar.

10'1 •••

MICROSOFT BASIC USING THE SOFTCARD

The control routine has only two segments: request data from the
keyboard and display the calendar for that month. We start right in with
Program 7-la.

21/J GOSUB 100 'Get fbnth, Year
31/J GOSUB 201/J 'Display calendar
91/J END

Program 1-la. Control the calendar.

We want a number from 1 to 12 for the month and from 0 to 99 for the
year. Let's make sure that values entered are within that range. We might
just as well ensure that the values passed to the main program are inte
gers, while we are at it. This is easy to do with the INT() function. See
Program 7-1 b.

96 :
98 REM ** Get M>nth, Year
100 INPUT "M>nth, Year" 1 MCNrH, YEAR
130 MClfl'H = INl'(MOOTH) : YEAR = INl'(YEAR)
140 IF MCNrH < l OR MCNrH > 12 THEN 100
160 IF YEAR < 0 OR YEAR > 99 THEN 100
190 REl'URN

Program 1-lb. The INPUT subroutine.

WOW, we are already half done-but not quite. We need to break up
the calendar display into several smaller tasks. A few calculations are
needed and we might split the display itself into two parts. Let's display
the title and calendar itself separately. That sounds like more subrou
tines. We just keep on breaking the task into manageable pieces. Study
Program 7-lc.

196 :
198 REM ** Display calendar
200 GOSUB 300 'calculate
240 GOSUB 401/J 'Display title
260 GOSUB 500 'Display days
290 RETURN

Program 1-lc. Control printing the calendar.

The subroutine at line 300 will make all the necessary calculations from
the month and year entered at the keyboard. As long as we keep the month
and year variables intact, the subroutine at 400 can easily display the title.
In order to display the familiar number grid for a month, we need to know
the number of days in the month and the day of the week for the first day.
Given those two things, the subroutine at line 500 can do its job.

We need to tackle the calculations now. The leap year calculation is
modular in nature. If the year number is divisible by 4 then it is a leap year
(ignoring the 400-year cycle here). If YEAR MOD 4 is 0, then we have a
leap year. Remember MOD from Chapter 2?

108
•••

MISCELLANEOUS APPLICATIONS

300 LEAP = 0 a IF 'YEAR MOD 4 = 0 THEN LEAP = 1

Using line 300, LEAP is 1 for leap year and 0 if not.
The days follow a seven-day cycle. This is another modular process.

Let's assign 0 to 6 to the day names Sunday through Saturday. If we can
just work out the day name for January 1 of any year, then we will be able
to work our way through the months. If we know what day of the week
January 1 of any year falls on, we can calculate all the rest. For 365-day
years, the day of the week of Jan. 1 advances one day from year to year.
Leap years advance one extra day. It turns out that Jan. 1, 1900, fell on a
Sunday. So the day of the week of Jan. 1 is the YEAR number adjusted for
leap years taken MOD 7. The leap year adjustment should add an extra
day every four years beginning with 1901. Therefore, we add 3 to the year
number before dividing by 4. Remember, we are accepting year numbers
in the range 0 to 99.

310 DAY = (YEAR + INI' ((YEAR + 3) I 4)) MOD 7

Upon execution of line 310, DAY will be in the range 0 to 6 for the day of
the week of Jan. 1 of the current year.

Now we want to know the day name for the first day of the current
month. For this we need to know the pattern governing the number of
days in each month. Here it is:

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
l 2 3 4 5 6 7 8 9 10 11 12

31 28 31 30 31 33 31 31 3~ 31 30 31

See that the alternation changes after July? The number of days in a
month is 30 plus 1 for odd-numbered months up to the seventh month.
For the later months, we add 1 for the even-numbered months. This is a
perfect place for another MOD calculation. M MOD 2 is 1 for odd
numbered months and 0 for even-numbered months. If we just add 1 for
M > 7 we get back on the track. (Subtracting 1 is fine, too.) In BASIC,
M > 7 evaluates to -1, but it doesn't matter whether we add or subtract.
All this is done to assign the number of days in the current month to the
variable N in the following statement:

350 N = 30 + ((M + (M > 7)) MOD 2)

We need to add this to the day-of-the-week value for the next month as we
cycle through the months of the current year to get to the requested
month. Note that for January, the value for N must be 0 as we begin to
cycle through the months of the year, since there is no previous month.
And finally, when we come to February, as we cycle through the months
of the requested year, we must set N to either 28 or 29 as this is a leap year
or not.

36" IF M = 2 THEN N = 28 + LEAP

109
•••

MICROSOFT BASIC USING THE SOFTCARD

All this goes to make up the calculations of Program 7-ld.

292 :
294 REM ** calculate
296 ' DAY - weekDAY, 1st of ~nth
298 N - No. of days in ~nth
300 LEAP = 3 : IF YEAR MOD 4 = 0 THEN LEAP = 1
310 DAY = (YEAR + INl' ((YEAR + 3) / 4)) MOD 7
320 N = 0
330 FOR M = 1 TO MONTH
340 DAY = (Dl\Y + N) MOD 7
350 N = 30 + ((M + (M > 7)) MOD 2)
360 IF M = 2 THEN N = 28 + LEAP
380 NE}CI' M
390 REI'URN

Program 7-ld. Calendar calculations.

The calendar title at line 400 comes next. We simply set up a string
with all the month names and PRINT the three characters corresponding
to the month selected. See Program 7-le.

396 :
398 REM ** Display calendar title
400 M$ = "JanFebMarAprMayJunJulAugSepOctNovDec"
410 PRINT
430 PRINT TAB(8): MID$(M$, MONTH*3-2, 3), 1900 +YEAR
440 PRINT : PRINT "Sun ~n Tue Wed 'lhu Fri Sat" : PRINT
490 REI'URN

Program 7-le. Display calendar title.

Finally, we need to work out the display of the number grid for the
month. We are going to display 28, 29, 30, or 31 days as determined by the
value of N. That is easy with a FOR loop running from 1 to N. The first
day of the month needs to be positioned under the corresponding day
name as displayed by Program 7-le. The program needs to output a blank
PRINT whenever it has just displayed a Saturday. See Program 7-lf.

496 I

498 REM ** Display calendar days
5flJ0 K =DAY
530 FOR J = 1 TO N

-->540 PRINT TAB(K*4 + 1 - (J < 10)): Jr
550 K = (K + 1) MOD 7 : IF K = flJ THEN PRINT
570 NEJC1' J
58flJ PRINT : PRINT
590 RETURN

Program 7-lf. Display calendar days.

There is just one thing in line 540 that bears further comment. We are
using TAB() to position the display in the correct column. To make it
come out right, we are subtracting (J < 10) there. Since the expression

110
•••

MISCELLANEOUS APPLICATIONS

(J < 10) is -1 when true, we are TABing an extra space for one digit
values of J. Thus the subtraction. This lines up the columns nicely for us.

This program has been designed to be flexible. The control routines of
Program 7-la and 7-lc can be changed to achieve different goals. By
breaking up the task into small subroutines, we can easily use them un
changed for other purposes. The problems for this section are intended to
clearly demonstrate this concept.

Now we list the program in its entirety.
28 GOSUB 100 'Get M:>nth, Year
38 GOSUB 200 'Display calendar
99 END
96 I

98 Rl!M ** Get M:>nth, Year
100 INPt1l' "M:>nth, Year"r MCNl'H, DAR
138 MCNl'H • INl'(MCNl'H) 1 DAR • INl'(YEAR)
148 IF MCNl'H < 1 OR MCNl'H > 12 THEN 100
16" IF 'YEAR < 8 OR DAR > 99 THEN 100
19" RE'l'UBN
196 I

198 Rl!M ** Display calendar
200 GOSUB 300 'calculate
248 GOSUB 400 'Display title
26" GOSUB 500 'Display days
29" RE'l'UBN
292 I

294 Rl!M ** calculate
296 • DAY - weekDAY, 1st of M:>nth
298 • N - No. of days in M:>nth
300 LFAP • 0 : IF 'YEAR MOO 4 • 9 THEN LFAP • 1
318 DAY .. (YEAR + Ill11' ((YEAR + 3) I 4)) MOD 7
32e N • 8
33e FOR M • 1 TO MCNl'H
348 DAY• (DAY+ N) MOD 7
358 N • 38 + ((M + (M > 7)) MOD 2)
36" IF M • 2 THEN N ., 28 + LEAP
3811J NEXr M
39" REl'URN
396 I
398 Rl!M ** Display calendar title
49" M$ '"' "JanFebMarAprMayJunJulAugsepOctNovDec"
418 PRINT
439 PRINT TAB(B); MID$(M$, MCN1'H*3-2, 3), 19"e +YEAR
448 PRINT I PRINT "sun M:>n Tue Wed 'lhu Fri Sat" I PRINT
49" RE'l'UBN
496 I

498 Rl!M ** Display calendar days
500 K •DAY
538 l'ca J • 1 TO N
548 PRINT TAB(K*4 + 1 - (J < 10))7 J7
559 K • (K + 1) MOD 7 1 .IF K • 9 THEN PRINT
578 NEXr J
5811J PRINT 1 PRINT
59" REl'URN

Program 7-1. The calendar program.

111 •••

MICROSOFT BABIC USING THE SOFTCARD

Problems for Section 7·1
1. Modify Program 7-1 so that it displays the calendar for an entire

year.
a. Modify Program 7-1 so that it displays all calendars for a given

month for a range of years.
8. Modify Program 7-1 to display the month and year for every month

that has a Friday the thirteenth. Note: if Friday falls on the thir
teenth, then what day of the week does the first of the month
fall on?

4. Modify Program 7-1 to request a date in the form YYMMDD and
display the day of the week for that date.

s. With the year 2000 close at hand, modify Program 7-1 to handle
the twenty-first century.

8. Write a subroutine to verify keyboard input for being a valid date.
Accept numbers in the form YYMMDD. Get right down to Feb
ruary and leap years.

7-8 ... The Sieve of Eratosthenes

Eratosthenes, who lived around 240 B.c., worked out a way of detecting
prime numbers by eliminating all. composite numbers. The steps used
are: Write down all the integers. Now, beginning with 2, cross out all
multiples of 2 up to the upper limit. Go back to the next un-crossed-out
integer and cross out all multiples of it. Repeat this until there are no more
numbers to cross out. The remaining numbers are primes.

This is nicely implemented on the computer using an array to "write
down" the integers we want. Set all array values equal to 1. Then begin
with 2, leave it, and proceed by crossing out 4, 6, and so on. Next go back
to the 3, leave it, and begin by crossing out 6, 9, and so on. The crossing
out process may be simulated by setting the array value equal to 0.

This method is surprisingly easy to program. We first try this with just
100 elements in our array. If we start out with thousands and we make a
programming error, it may be several minutes before the results are dis
played. Let's perfect it with the smaller task. After we are sure that it
works then we can try larger and larger values until we use all of memory.
See Program 7-2.

188 PRINT "Finding primes using the Sieve of Eratosthenes"
lU!J PRINT
12" UPPER.LIMIT • 188
13" DIM SIEVE(UPPER.LIMIT)
196 a
198 RJ!M **load the array with l's
288 FOR. J • 1 TO UPPER. LIMIT

118 •••

MISCELLANEOUS APPLICATIONS

21'11 SIEVE (J) • 1
. 220 NEJer J

296 I •
298 Bl!M ** •W:>rk the sieve•

-->300 POR Jl • 2 TO UPPER.LIMIT
320 FCR J2 ::a 2*Jl TO UPPER.LIMIT STEP Jl
34" SIEVE{ J2) • 0
360 NE}C1' J2
3811J l!1EJCl' Jl
396 I

398 Bl!M ** Display primes only
400 FCR Jl • 2 TO UPPER. LIMIT
420 IF SIEVE (Jl) • 1 THEN PRINT Jh
44" NEJer Jl

Program 7-2. Primes using the sieve of Eratosthenes.

Since we may want to run this program with a large value for
UPPER.LIMIT, it makes sense to consider efficiency in this program.

Look at line 300. There is no need to have J1 go past the square root of
the UPPER.LIMIT. Any larger values that must be crossed out already
have been.

Think about what happens in the line 300 routine when J1 gets to 4.
We might go to 8, 16, and so on. But any multiple of 4 is also a multiple of
2. And all multiples of 2 have already been crossed out, including 4.
Therefore, we do not need to cross out values if the first element we come
to already has been. We can carry out this test with an IF statement. The
combination of these two things will result in a saving of execution time.

If we want a very large number of primes, then we can learn about
random-access files and come back to this problem. We could store each
integer in one record of a file and think of the file as one giant array
on disk.

Problems for Section 7-8
1. Set the upper limit on line 120 of Program 7-2 at 1000 and RUN

the program. Change the upper limit in line 300 to SQR(UPPER.
LIMIT) and insert a line 310 to test if SIEVE(Jl) has already been
crossed out. RUN the new version. Compare the execution time
for the two versions.

a. We are limited by available memory in Program 7-2. As written,
the program uses 4 bytes for each integer in array SIEVE. First
increase UPPER.LIMIT to the maximum possible size, then
change the program to use an integer array SIEVE%. You should
be able to nearly double the array size.

8. BASIC handles integers faster than single-precision numbers.
Speed up Program 7-2 by declaring all variables as integer with

113
•••

MICROSOFT BASIC USING THE SOFTCARD

10 DEFINT A-Z

Compare execution time for single-precision and integer mod,es.

'1-:S ••• Rum.bar Bases
•... Binary Kum.baring
Computers are not very good at reckoning in our familiar base-ten number
system. Computers digest everything they do in terms of electrical states.
Things are either in a charged state or in an uncharged state. With just
two states, it makes sense to represent them with 1 and 0. This leads us to
the binary, or base-two, numbering system. The computer doesn't work
with different numbers, it just represents them differently. We are very
used to working with the decimal, or base-ten, numbering system. In base
ten, each place represents a power of ten. In binary, each place represents
a power of two. When we write 10 in decimal, we mean ten. When we
write 10 in binary, we mean two. To write ten in binary, we use 1010. And
1010 is 23 + 21• In base ten, 1010 is one thousand ten.

Binary arithmetic in base two is very easy. For addition, the result of
adding two digits is either 0, 1, or 10.

0 + 0 = 0
1+0 = 1
1+1=10

When adding 1 and 1 there will be a carry into the next place to the left.
Multiplication is also straightforward. When multiplying by 1 the dig

its shift according to the position of the 1, and when multiplying by 0 the
result is 0. The shift for 1 in the first column on the right is 0 places, for 1
in the second column it is 1 place, and so on. Numbering the columns
beginning with 0 makes the shift ~qual to the column number. This
agrees nicely with making the column number the exponent on two
represented by the digit in that column. Some examples are:

1*101= 101
10 * 101= 1010

1000 * 101 = 101000

(shift of 0)
(shift of 1)
(shift of 3)

To multiply two by two in binary looks like this:

10
* 10

100

And to multiply 27 by 5 we would write the following:

114
•••

MISCELLANEOUS APPLICATIONS

11011
* 101
11011

00000
11011

10000111

Nate that the carry from adding 1 and 1 in column 3 created a "domino
effect" by pushing the carry across several columns.

In any number system each digit of any integer represents an integer
power of the base. So the digits in base two represent 1, 2, 4, 8, 16, 32, 64,
128, 256, 512, 1024, and so on in base ten corresponding to the bit posi
tions 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and so on in binary.

One disadvantage of the binary number system is that it takes so
many digits to represent numbers. For instance, 15 base ten is written as
1111 in binary, and 127 base ten is written 1111111 in binary. Only hu
mans notice how cumbersome this is. Computers are well suited to ac
cessing individual digits to determine their state, or to change their
state.

A Binary digIT is called a BIT. Since a single bit isn't always useful, it
makes sense to group them into packages. One byte is 8 bits. This works
out very nicely to accommodate base-ten values in the range 0 to 255.

In BASIC the largest true integer value is 32767, and the smallest is
-32768. That comes out to 65536 numbers. Zero base ten is 0 in binary.
And 65535 base ten is 1111111111111111 in binary notation. That is 16
bits. We get 16 bits by grouping two bytes together. But, in practice, that
number range is utilized as numbers in the range -32768 to 32767. Values
from 0 to 32767 are stored as we would expect. Values from 32768 to
65535 are translated into values in the range -1 to -32768. The 16th bit is
used to determine the sign of the number. We'll come back to this later.

It is instructive to write a program to convert base-ten numbers to
binary notation. A very easy way to start is to use MOD to decide whether
the given base-ten number is odd or even. If it is odd, then the units digit
in the binary number is a 1. Ifit is even, then the units binary digit is 0.
Next, we "peel off" the binary digit by dividing by 2 using integer division
and do the odd/even test on the result. We repeat this until the result is
zero.

11/Jf/J PRINT "O>nvert base ten numbers to binary format"
111/J PRINT
196 :
201/J INPUT "Enter a value11 7 DECIMAL
210 X = DECIMAL MOD 2

-->220 A$ = STR$(X) + A$
230 DECIMAL =DECIMAL \ 2

118
•••

MICROSOFT BASIC USING THE SOFTCARD

24111 IF DECIMAL THEN 21111
25111 PRINT A$

Program 7-8. Ccmvert base ten to binary.

MOD and integer division are limited to integers. Values entered outside
the range -32768 to 32767 will bring forth the following message:

overflow in 21111

Let's run Program 7-3.
' Convert base ten numbers to binary format

Enter a value? 8466
1 Ill Ill Ill Ill 1 Ill Ill Ill 1 Ill Ill 1 Ill

Figure 7-2. Executicm of Program 7-8.

Program 7-3 does not handle negative numbers. BASIC uses "twos
complement" form to store negative integers in the range -1 to -32768.
Once we have the binary form of the absolute value of our negative num
ber, the rule to get twos complement is: change every 0 to a 1, change
every 1 to a 0, and add 1 to the result. Let's look at an example. Running
Program 7-3 for 32000 gives us

0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0

According to the rule we change l's to O's, O's to l's, and add 1, thus:

1000001011111111
+ 1

1000001100000100

This last 16-bit binary display represents -32000 .

. . . . Hexadecimal Kum.baring
It doesn't take long working with binary numbers for us to wish there
could be some shorthand. Hexadecimal numbering comes to the rescue.
This new system has 16 digits. Since our familiar base-ten system has
only 10 digits, it is necessary to invent 6 new digits. The characters A
through F have been selected. Thus, the hexadecimal digits are

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F

Now each place represents an integer power of 16. Here are some exam
ple values:

11 hex
lA hex

4FFF hex
8FFF hex
FFFE hex

17
26

16383
32767
65534

base ten
base ten
base ten
base ten
base ten

10001
11010

11111111111111
111111111111111

1111110000010110

116 •••

binary
binary
binary
binary
binary

MISCELLANEOUS APPLICATIONS

Clearly the hex form is very compact. It turns out that hex values from 0
to FF exactly correspond to base-ten values from 0 to 255. And that
exactly corresponds to the range of values available in one 8-bit byte.

Fortunately, BASIC handles hex numbers with ease. If we want to
know the base-ten equivalent for 4F, we just

PRINT 5rH4F

and quick as a flash we get 79. We may express hex numbers in BASIC by
using the &H prefix. This is very handy for utilizing information we might
find in magazine articles (or anywhere else for that matter) in which the
author includes values in hex. One of the primary uses for hex numbering
is for addresses in memory. Suppose we want the base-ten representation
for FEFE. BASIC replies with -258. This assumes that we are interested
in strict integer values in the range -32768 to 32767. We can get a posi
tive result by adding 65536. We get 65278. Values greater than FFFF
cause an overflow.

Converting values the other way is just as easy. The HEX$ function is
the way to go. To find a hex value for 65535 we simply

PRINT HEX$(65535)

BASIC unselfishly reports FFFF. Trying to get a hex value for numbers
greater than 65535 will evoke the

Overflow

error message .

. . • . Octal Jl'um.bering
For completeness here, we introduce the OCT$ function and the &O prefix
for octal values. The base-eight system is referred to as OCTAL. The digits
run from 0 through 7. The use of OCT$ and &O parallels, in every way,
the use of HEX$ and &H. The largest octal value allowed in BASIC is
177777, which is equivalent to 65535 in base ten.

Problems for Section 7-:S
1. Program 7-3 displays the results with the binary digits separated.

Fix this.
a. Program 7-3 uses the convenience of the integer MOD operator and

integer division. We might like to see a binary representation of
integers greater than 32767. Use ordinary division and the INT
function to do this.

IS. Write a program to convert binary numbers to base-ten form. Ac-

117
•••

MICROSOFl' BASIC USING THE SOPTCARD

cept binary values from the keyboard into a string and process into
a BASIC numeric variable.

"- Rewrite Program 7-3 to displays twos complement for integers in
the range -1 to -32768.

118 •••
I

Ohap'ter 8

Files

For all but the most elementary of computer uses we require some mech
anism for saving the results of our work for future use. Most computer
work is done on a disk-based system. In recent years there has been an
explosion in the use of the floppy disk. The appearance of the floppy disk
has enabled schools, businesses, and individuals to use computers for a
very low cost. For a little more money it is possible to dramatically in
crease storage capacity by obtaining a "hard disk." Very large computers
have used disks for many years.

It is the disk system that allows us to begin a project and save it using
the computer itself. Disks are used to save computer data just as cassette
tapes are used to save sounds. We save our BASIC programs on disk with
the SAVE command. We later retrieve our programs with the LOAD
command, as discussed in Appendix C. All data saved on a disk is or
ganized into "~k files." MBASIC.COM is a disk file. Even our programs
saved on disk are called files. It happens that"some files are programs that
execute by themselves, some files can be executed by using BASIC first,
and some files are useful only as data. These last are usually called data
files. In the absence of data files we have been saving data in DATA
statements of programs. Such data is hard to edit and not practical to
up~te during program execution. With data files we can write a program
to manage the data of the file itself and use other programs to obtain
information from the file as needed. We can use data from several data
files to prepare reports of all kinds.

8-1 •.. Intro4uction to Data l'iles

A data file is just some area of the disk where we may save data. The
applications for data files are truly unlimited. We can maintain inventory

119 •••

MICROSOFT BASIC USING THE SOFTCARD

information, payroll, all kinds of financial information, production rec
ords, personnel records, and an endless array of business-related facts
and figures. We use data files for word processing, such as writing letters
or writing books (this one is an example). Legal documents of all kinds are
now prepared using word processing.

In this chapter we will write a few programs that will serve as an
introduction to data files. We will use relatively small files. The theory and
practice of very large files are beyond the scope of this book. As files are
required to contain thousands and even millions of data items it becomes
necessary to develop special techniques for organizing the data and find
ing it later.

BASIC data files come in two distinct varieties: sequential access and
random access. Data stored in sequential files is similar to data stored in
DATA statements of a program. To get to any particular data entry we
must READ all other data entries that precede the one we want.
Random-access files are organized into segments that allow us to read any
single data entry anywhere in the file directly .

. . . . Sequential-Access Files
Sequential-access files are relatively easy to work with from a program
ming viewpoint. We simply learn a few new BASIC keywords and think
about the continuous stream of data in the file. The catch is that sequen
tial files tend to produce slow-running programs. To make a single change
in a data entry of a sequential-access file requires that we read and rewrite
the entire file. Thus we avoid sequential access for large files .

. . . . B.andom-Access Files
Random-access files are slightly more complex to program. But they tend
to produce faster results and readily facilitate large files and ones that
require frequent updating. Random access does not mean that we go
about in an erratic fashion accessing data in the file. It means that we may
access data at random anywhere in the file. We may read the 31st entry,
change it, and rewrite it without reading any other entry in the file. We
simply need to organize our file so that we know where our data are in
the file.

8-8 ... Sequential Files
OPEN, PRINT#, INPUT#, and CLOSE are the four BASIC keywords
required to perform any useful work with data files .

•••• OPBR
OPEN establishes the communications channel between our program
and the data file on the disk. OPEN creates the link between the file and

120
•••

FILES

the program and points to the beginning of the file. Further, OPEN
creates an area in memory where data are temporarily held. This is called a
file buffer. The file buffer is used to manage the flow of data between the
program and the disk file. We need to open a file for either Output or Input.
Our program may either Output data to the file or Input data from the file.
A file opened for sequential access cannot do both on a single channel. In
addition we need to select a channel number for our file and give it a
name.

11111 OPEN 11 0 11 I #1, "SAMPLE.DAT"

Opens a file named SAMPLE.DAT for output on channel number 1. We
may select any channel number from 1 to 15. Microsoft BASIC automat
ically allows for three file channels. If we want some other number, we
simply declare that when we invoke MBASIC or GBASIC. See Sidelight 9.

If the file already exists, OPEN simply forms the necessary linkage. If
the file does not exist then OPEN creates it. Once opened in "0" mode, a
file is ready to receive data. This is done with a PRINT # statement .

•••• P~#
PRINT #C outputs data to the file buffer numbered C. Whenever the file
buffer fills up, it is written out to the disk file itself. That is, a copy of the
information in the buffer is written out to the disk. And PRINT #C again
fills the buffer. Since disk access is slow and memory access is fast, this
buffer scheme is used to reduce the time it takes to move data back and
forth between a program and a file.

PRINT # performs very much like PRINT. When data items are sepa
rated by semicolons, little space is wasted. When data items are separated
by commas, spaces are included to provide for 14 character columns.
Since this takes up space on the disk, we usually avoid comma spacing. A
data item in a file is much like a display line on our screen or our printer.
The entire line is treated as a whole. So, if we use

200 NUMBER = 456
210 PRINT #1, "This is a test"; NUMBER

to output data to a file, then the data item consists of the entire expression
as follows:

This is a test 456

just as though we displayed it on our screen. And the er-If (carriage
return-line feed) goes out, too .

•••• IKPUT #
INPUT #C accepts data from the file on the channel numbered C. This is
just a form of the INPUT statement used for accepting data from the

121
•••

MICROSOFT BASIC USING THE SOFTCARD

keyboard. A list of variables must name the values to be entered. To make
a file available for INPUT#, it must first be OPENed in input mode.

110 OPEN "I" I #1, "SAMPLE.DAT"

does the job. To read the data from our PRINT# example, we simply use a
single string variable in an INPUT # statement.

INPUT #1, A$

will cause the string
This is a test 456

to be transferred from the file buffer to the string variable A$. It's that
simple •

•••. CLOSE#
The communications channel between the file and the program is severed
with the CLOSE statement.

CIDSE tl

disconnects the program from the file opened on channel 1. Part of this
process involves transferring data from the file buffer in memory to the
file itself on disk. CLOSE without any file number disconnects all files. It
is especially important to close files that have been written to. Failure to
do this could result in losing data. Some other actions cause an automatic
CLOSE, but it is not good practice to count on this.

This problem is of special concern when program execution termi
nates due to an error condition. In this situation, the file buffer is left
hanging. We must issue a CLOSE from the keyboard to ensure that any
data written to the buffer is copied out to the file. Executing an END
statement does perform the functions of a CLOSE, but it is good practice
to include an explicit CLOSE anyway .

• • • • STOP, OTBL-C, oo:r:r
STOP and CTRL-C leave things in the same condition as an error. CLOSE
is not automatic with STOP or CTRL-C. We may use CTRL-C to interrupt
our program during testing. This gives us the opportunity to display the
values of variables and decide whether our program is performing satis
factorily. If all is well, then we may resume execution with CONT. We
may insert STOP statements at key points in a program for the same
purpose. As with CTRL-C, files are still OPEN so we may proceed with
CONT. Since STOP displays the current line number, this is an important
technique for finding trouble spots in a program.

If you get
can't continue

128
•••

FILES

it could be that you have edited a line of the program. This message is also
displayed if the program was interrupted by an error instead of STOP,
CTRL-C, or END.

We have four of the key sequential-files statements: OPEN, PRINT#,
INPUT#, and CLOSE#. With these four statements we can create and
use significant sequential files. Now we are ready to convert our little
Alphabet program from Chapter 6 so that it is file-based. We need an
initialization program to set up the file in the first place, and we need a
program to play the game. All we need to do is take the DATA statements
from Program 6-Sh, write a new control routine, and create a new subrou
tine that READs DATA and PRINT #'sit to a data file. See Program 8-1.

9flJ Rl!M ** write aaae signs to a file for Alphabet game.
96 I

98 Rl!M ** Q:>ntrol routine
12111 OPEN "O", #1, "SIGNS.DAT"
14111 GOSUB 1111111111 'write the signs to the . SIGNS file
15111 CIDSE
19111 END
1496 I

1498 R!M ** The signs
15111111 DAT~ Stop, Al's Pizza, Dairy Queen, Burger King
151112 DATA Yield, one Way, This way out, Detour
1504 DATA one Show only Tonight, Exit on1y, Entrance only Please
1506 DATA Florida 2138 mi., Fly United, Jet Set Diner
1508 DATA Give Her a Valentine, Give Him a Valentine
1510 DATA First Avenue, North Side
1598 DATA Done
6996 :
6998 R!M ** write the signs to the SIGNS file
700111 READ A$
7020 PRINT #1, A$
7030 IF A$ <> "Done" THEN 700flJ
7099 RETURN

Program 8-1. Initialize the signs ftl.e for Alphabet game.

The control routine for initializing the signs file couldn't be simpler. Just
OPEN the file, use a subroutine to read the signs from DATA statements
and write the signs to the SIGNS file, and CLOSE it. That's all.

Look at the subroutine at line 7000. Notice that the end-of-data signal
word "Done" is written to the file. This means that we can use the subrou
tine at line 1000 of our original program with very slight changes. When
we play the game we will get the data from the file instead of from DATA
statements in our program. Instead of READing DATA we want to
INPUT # the file data. The conversion is astonishingly straightforward.
See Program 8-2a.

188 •••

998
1000

-->1010
1020
1030
1040
1080
1085
1090

MICROSOFT BASIC USING THE SOFTOARD

REM ** Load the signs array
N = QJ
INPUT #1, A$: IF A$ = "Done" THEN 108"
N=N+l
SIGNS$(N) = A$
Gal'O 1010

PRINT "There are:"1 N; "signs in this game."
GOSUB 1100
REl'URN

Program 8-2a. Load the Alphabet game road signs.

The only change in this subroutine is in line 1010. We replaced READ
with INPUT #1,. It is that simple.

Next we need only provide an OPEN before GO SUB 1000 and CLOSE
after. See Program 8-2b.

100
102

-->105
110

-->115
120
130
140
145
150
155
160
190

DIM SIGNS$(50)
DEF FNU$(A$) =

CHR$(ASC(A$) + 32 * (ASC(A$)>96 AND ASC(A$")<123))
OPEN II I" , #1, II SIGNS. DAT"
GOSUB 1000 'Load the signs array
CIDSE
GOSUB 2000 'Establish game beginning
GOSUB 3000 'Simulate randau signs along the road
GOSUB 4000 'Did the player spot the next letter?

IF CAPA = 0 THEN 130 'If not then repeat step 3
GOSUB 5000 'Is the next letter really on the sign?

IF ALPHA! < 91 THEN 130 'If not "Z" yet repeat step 3
PRINT "congratulations, you have made it through the alphabet"
END

Program 8-2b. Changed cantrol routine in Alphabet game for files.

All we had to do was insert line 105 to OPEN the file and line 115 to
CLOSE it. Nothing more is needed in the control routine.

Finally, there is the matter of DELETEing the unwanted DATA
statements in the range 1500 to 1590. It is remarkable that we have made
such a major conversion with so little programming effort. It pays to or
ganize our programs carefully.

100 DIM SIGNS$(50)
12J2 DEF FNU$(A$) =

CHR.$(ASC(A$) + 32 * (ASC(A$)>96 AND ASC(A$)<123))
105 OPEN "I", il, "SIGNS.DAT"
110 GOSUB 1000 'Load the signs array
115 CIDSE
120 GOSUB 2000 'Establish game beginning
130 GOSUB 3000 'Simulate randau signs along the road
140 GOSUB 4000 'Did the player spot the next letter?
145 IF CAPA = 0 THEN 130 'If not then repeat step 3
150 GOSUB 5000 'Is the next letter really on the sign?
155 IF ALPHAl < 91 THEN 130 'If not "Z" yet repeat step 3
160 PRINT "congratulations, you have made it through the alphabet"

124 •••

199 END
996 I

FILES

998 REM ** Load the signs art'ay
1000 N = 0
1010 INPUT #1, A$: IF A$ = ''Done" THEN 1080
1820 N = N + 1
1030 SIGNS$(N) = A$
1840 Garo 1010
1080 PRINT "There are: 11 1 NJ "signs in this game."
1085 GOSUB 1100
1090 RETURN
1096 I
1098 REM ** Time delay for messages
1100 FOR J = 1 TO 1500 1 NEJCl' J
~190 RETURN
1996 I

1998 REM ** Establish game beginning
2000 ALPHA! = 65 'Get ready to look for 'A•
2090 RETURN
2996 I

2998 REM ** Simulate randan signs along the road
3000 R = INl'(RND * N + 1)
3020 PRINT SIGNS$(R)
3030 FOR J = 1 TO 81J0 1 NEJCl' J
3040 FOR J = 1 TO 24 I PRINl' I NEJCl' J
3090 RETURN
3996 I

3998 REM ** Did the player spot the next letter?
4000 A$ = INKEY$
4005 IP LEN(A$) = eJ THEN CAPA = 0 1 GOTO 4090
4010 PRINT A$: II .. ,

4020 A$ = FNU$(A$) : CAPA = ASC(A$)
4030 IF A$ < "A" OR A$ > "Z" THEN 4000
4050 IF CAPA = ALPHAl THEN 4090
4060 PRINT "Not the next letter in the alphabet" 1 GOSUB 1100
4070 GOTO 4000
4090 RETURN
4996 I

4998 REM ** Is the next letter really on the sign?
5000 FOR J = 1 TO.LEN(SIGNS$(R))
5010 B$ = FNU$(MID$(SIGNS$(R),J,l))
5020 IP A$ = 8$ THEN 5050
5330 NEJCl' J
5040 PRINT "Your letter is not on the sign" 1 GOSUB 1100
5045 GOTO 5090
5050 PRINT "Good" 1 GOSUB 1100
5060 ALPHA! = ALPHA1 + 1
509" RETURN

Program 8-2. File-based Alphabet game.

Since· we have changed none of the game-playing features of this pro
gram, it will behave exactly as the last version did.

188
•••

MICROSOFT BASIC USING THE SOFTCARD

There are lots of things we could do now to add interest to the pro
gram. We could make it tell the player when a letter was on a sign but not
identified. Now that the program is file-based we could ask each player to
enter his or her favorite sign. If the entry is not in the file, then the pro
gram could add it and rewrite the ~le. The program could use the number
of letters in the sign to seed the random-number generator instead of
asking for a name.

Problems for Section a-a
There are lots of games that could be computerized using files to store
information. Use your imagination.

1. Modify the Alphabet game program to seed the random-number
generator by requesting a new sign from the keyboard. Use the
number of characters in the sign as the seed. Compare the new
sign with those in the array. If it is a new one, add it to the end of
the array, OPEN the file for output, and write the array out to the
file. Then CLOSE the file. Just use the subroutine at line 7000 in
Program 8-1.

a. Modify Program 8-2 to report each time the player missed the next
letter twice.

8. Write a program to tabulate the number of times each letter of the
alphabet occurs in the signs file.

4. Add a routine to your program in Problem 3 to arrange the results
in order of frequency of occurrence.

8. Write a program to play Geography. In this game two or more
players take turns thinking of place names. Each player must
name a place such that the first letter matches the last letter of the
previous player's place. Have the program save all new place
names in a disk file. No name may be used twice in the same
game. Make the computer one player in a two-player game.

8-3 ... A Program Is a l'ile, ~ool
When we write useful programs, we save them on disk. Now the program
is a file. If we use the ",A!' option to save the program, it is accessible to
other programs. (See Appendix C.) This is exactly how a text editor works.

Let's write a little program to simply display a program stored on disk.
Then let's think about expanding it to pretty up program listings. Some
programmers use lots of colons to include several statements on the same
line. This does save computer memory and disk space. The drawback is
that too much of this makes programs hard to read. We can break each of
those lines up into individual statements and display them separately. But

186
•••

FILES

first we just display the program as is. Note that the program we are
writing can display any file stored in ASCII format.

We simply OPEN for input and repeatedly INPUT data from the file,
displaying as we go. Let's use our program to display Program 8-2a as the
first example. See Program 8-3.

10f/J Rl!M ** Display a program fran disk
-->200 OPEN "I", #1, "UlAJ:6IGN.BAS"
-->210 INPUT #1, A$

240 GOSUB 9100
25f/J GOTO 210
9096 :
9f/J98 Rl!M ** Straight PRINT
91(/Jl/J PRINT A$: RETURN

Program 8-3. Display a program from disk.

We have named Program 8-2a as "LOADSIGN.BAS" in line 200. Let's do
it. See Figure 8-1.

998 Rl!M ** Load the signs array
1000 N = l/J

-->1~10 INPUT #1
A$: IF A$ = ''Done" THEN 1081/J
1020 N = N + 1
1030 SIGNS$(N) = ~$
1040 GOTO 1010
1080 PRINT "There are:"; N; "signs in this game."
1085 GOSUB 1101/J
1090 REI'URN
Input past end in 210

Figure 8-1. Execution of Program 8-3.

Figure 8-1 reveals two serious problems. We can solve both of them easily
with new BASIC features. Notice that line 1010 is displayed as two lines.
That is because there was a comma in the program line. A comma here
means the same thing that a comma entered at the keyboard in response
to INPUT means. It separates data items from each other. To cure this we
need a statement that reads data from the file until a carriage return-line
feed is encountered. LINE INPUT is made to solve just this problem .

.... Lnnl I1'PD~
LINE INPUT accepts all data on a line up to the cr-lf pair. LINE INPUT
#F does it for file #F. All we have to do is change line 210 to

LINE INPUT #1, A$

But what about the other problem? "Input past end" is similar to "Out
of DATA''. We can use EOF here.

187
•••

MICROSOFT BABIC USING THE SOFTCARD

••• . BOI' (Bnd of l'ile)
We can check for the end of a sequential file with the EOF function. We
have used a special data item to signal the end of data in our programs
thus far, but a program stored as a file by BASIC has no such easy signal.
EOF(F) returns 0 if there is more data in the file on channel number F. We
get -1 if the end of the file has been reached. So all we need is to move
line 210 to 220 and code

IF EOF(l) THEN END

at line 210. See Program 8-4.

100 Rl!M ** Display a program fran disk
200 OPEN II I" I #1, 11 I.OAI:sIGN. BAS"

-->210 IF EOF(l) THEN END
->220 LINE INPUT #1, A$

240 GOSUB 9100
250 GOTO 210
9096 :
9098 Rl!M ** Straight PRINT
9UJ0 PRINT A$: RETURN

Program 84. Fix Program 8-3.

Executing this program will produce the display of Program 8-2a.
Now it's time to work on breaking out multiple statements on a line.

We can just add a subroutine at 9200 to do this and change line 240 of
Program 8-4. Let's look for space-colon-space. This means that we will
have to write our programs with that sequence to separate statements on
the same line. We can just add a subroutine at line 9200 and change line
240 to read GOSUB 9200. See Program 8-5.

100 Rl!M ** Display a program fran disk
200 OPEN II I" I #1, "DISPLAY. BAS"
210 IF EOF(l) THEN END
220 LINE INPUT #1, A$

~->240 GOSUB 9200
250 GC71'0 210
9096 :
9098 Rl!M ** Straight PRINT
9100 PRINT A$: RETURN
9196 I
9198 REM ** Format lines here
9200 FOR J = 1 TO LEN(A$)
9210 IF MID$(A$,J,3) <>ti: II 'l'HEN'9250
9220 PRINT LEFT$(A$,J-l)
9230 . PRINT II II 1
9240 A$ = MID$(A$,J+l) : GOTO 9200
9250 NE}Cl' J
9260 PRINT A$
9290 RETURN

Program 8-5. Format multiple statements in a program.

188 •••

FILES

Now, just for fun, let's save Program 8-5 as "DISPLAY.BAS" and use it to
display itself. See Figure 8-2.

100
200
210
220
240
250
9096
9098

REM ** Display a program fran disk
OPEN "I", fl, "DISPLAY.BAS"

-->911/J0

9196

IF EOF(l) THEN END

:

LINE INPUT #1, A$
GOSUB 921/Jl/J
GOTO 210

REM ** Straight PRINT
PRINT A$

: REl'URN

9198 REM ** Format lines here
9200 FOR J = 1 TO LEN(A$)

-->9210 IF MID$(A$,J,3) <> II

9220
9230

-->9241/J

I II THEN 9250
PRINT LEFT$(A$,J-l)
PRINT II 11 7
A$ = MID$(A$,J+l)

I 00'1'0 921/J0
9250 NEXl' J
9260 PRINT A$
9290 RErURN

Figure 8-2. Execution of Program 8-5.

Our program has very nicely rearranged lines 9100 and 9240. But look at
line 9210. The very statement that decides to break statements up has the
sequence of characters we are looking for in it. We could easily put in
another check to see if the J + 3rd character is a quotation mark by com
paring to CHR$(34). (See the ASCII chart in Appendix D.) This is left as a
problem.

Problems for Section 8-:S
1. Add a check in Program 8-5 to :fix the improper display of line

9210.
a. Modify Program 8-5 to display only lines containing FOR or NEXT

statements. Hint: INSTR will be handy here.

8-4 ... 11i>4ating a Sequential File

We have seen how to create a sequential file. If we can read the file con
tents into an array in memory, we can easily rewrite the file with updated
information. Now let's see a more general method for updating a file. We
simply OPEN a second file temporarily. Once the changes are made and

189
•••

MICROSOFT BASIC USING THE SOFTCARD

the new file complete, we KILL the old file and give its name to the new
file.

Let's maintain a list of names in a file. We will write a program that
allows us to add a name at the beginning of the file. First, we need to
create the file. That is easy with Program 8-6.

100 OPEN "O", #1, "DEMOOLDAT"
110 RFAD N$
120 PRINT #1, N$
140 IF N$ = "End" THEN CI.OSE END
160 GOTO 11121
896
900 DATA Tom, Dick, Harry
999 DATA End

Program 8-6. Put some names in a file.

Now we can work on the program to do the actual update. Let's name our
temporary file "DEMOOl.TMP". See Program 8-7.

98 Rm.! ** Add a na~e to a sequential file
100 OPEN "I", #1, "DEMOOl.D.».T"
110 OPEN 11 0 11 , #2, "DEMOOl.'IMP"
120 INPUT 11 Add a name" r Nl$
130 PRINT #2, Nl$
140 INPUT #1, N$: PRINT #2, N$
150 IF N$ <> "End" THEN 140
160 CLOSE
170 KILL "DEMOOl.D.».T"
180 NAME "DEM001.'IMP" AS "DEMOOl.DAT"
190 END

Program 8-7. Add a name to a sequential file.

This program could be made to do a number of other things. We might
want to prevent duplicates from getting into our names file. We might
want to keep it alphabetized. We might want to add the ability to delete
names. All of these are relatively straightforward tasks. We leave them
as problems.

Problems for Section 8·4
1. Write a program to simply display the names in the names file.
a. Modify Program 8-7 to prevent duplicate names from ever getting

into the file. This can be done without an extra pass through the
file.

8. Modify Program 8-7 to keep the file alphabetized. Of course, the
DATA in Program 8-6 must be in the right order to begin with.

4. Rewrite Program 8-7 to delete a name.

130
•••

FILES

SIDBLIGH'.r 8

Double Buffer

Double what?? In Chapter 8 we updated a sequential file by two different
commonly used methods. For jobs that allow us to add all new entries at
the end of the file, here's another scheme.

OPEN the same file on two different file channels. Open it for input on
one channel and for output on another. Then transfer the entire file by
INPUT #'ing from the input channel and PRINT #'ing to the output
channel. Then add the new item at the end. This method also works for
deletions anywhere in the file.

One advantage over creating a second file, killing the old file, and
finally renaming the scratch file is that the double-buffer method requires
no extra disk space. A disadvantage is that additions must come at the
end. Let's just use Program 8-6 from Chapter 8 to write a few names in
the file to get started.

Now we want a program that lets us add names. We can easily trans
fer all names up to the "End" marker. Next we want to request a name
from the keyboard, PRINT # it to the file, and PRINT # "End" out there.
Finally, we CLOSE the file. See Program 8-8.

->100
-->HIS

111/J
115
121/J
125
131/J

-->135
141/J
151/J
161/J
191/J

OPEN "I", #1, "DEMOl/Jl.DAT"
OPEN "O", #2, "DEMOl/Jl.DAT"
INPUT #1, N$
IF N$ = "End" THEN 135

PRINT #2, N$
PRINT N$
G<Yl'O 111/J

INPUT "Enter a new name"1 N1$
PRINT #2, Nl$
PRINT #2, N$ 'Be sure End goes out
CIDSE #1, #2
END

Program 8-8. Double-buffer sequential-file update.

We have to be a little careful with this double-buffer business. There are
some pitfalls to be avoided. Whoever runs this program must never exit
the INPUT at line 135 with CTRL-C. This would result in a file without
the "End" marker. The next time we run this program we will get

Input past end in 111/J

131
• • •

MICROSOFT BASIC USING THE SOFTCARD

One other word of caution. Look carefully at lines 100 and 105. It is no
accident that we opened for input before we opened for output. When a file
is opened for output, BASIC points to the beginning of the file and clears
out the first record. By opening for input first, we have caused the first
data in the file to be copied to a buffer area in the memory of our computer.
Now, no harm is done by clearing it out in line 105.

132
•••

Chapters

Random-Access
Files

Since entries in a tile may vary in length, they may require varying
amounts of space. Therefore, there is no way of predicting just where the
5th or the 50th entry might begin. So, for sequential files, we must always
read from the beginning of the file. When we write to such a file we must
write the entire file. As the file becomes larger and larger this all takes
more and more time.

It takes a little more programming effort to work with random-access
files than it does for sequential access. But they tend to produce faster
results and readily facilitate large amounts of data. Random access is
essential for applications that require frequent updating. Again, random
access does not mean that we go about in an erratic fashion accessing data
in the file; it means that we may access data at random anywhere in the
file. We may read the 31st entry, change it, and rewrite it without reading
any other entry in the file. We may do the same for any entry in the file. We
simply need to organize our file so that we know where our data are. And
that takes a little planning.

9-1 ... An Introduction

We use random-access files for all kinds of record keeping. The ability to
access any data entry at will is ideal for applications where we will not be
processing every entry every time we access the file. Contrast this with
the Alphabet game, in which we must read every entry in the file with

133
•••

MICROSOFT BABIC USING THE SOFTCARD

every use of the program. Random-access files are used for name-and
address mailing lists, every conceivable financial accounting function,
and stock portfolio management. Recipes, home-management data, and
magazine-article reference material are all appropriate for random-access
files.

In many applications several files are linked together to form a system
of files. An order entry might "point" off to a mailing-list file and an inven
tory file.

In order to access data entries in a file at random, BASIC must be able
to calculate the exact location of every entry. This can be done by allocat
ing a fixed amount of disk space to each entry. Thus, if we allow 25 bytes
for each entry, the tenth entry ends with the 250th byte and the 11th entry
begins with the 251st byte. In practice, if we specify which entry, BASIC
does the rest.

With sequential files the fundamental unit of storage is the character
or byte. With random-access files the fundamental unit of storage is the
record. A record is simply a collection of bytes. We think of a record as
containing one entry. An entry consists of items that belong together. We
might have an inventory file in which an entry contains the part number,
price, number on hand, reorder point, and date last received. Those five
items make up one entry. If 32 bytes is enough for the items in our entries,
then we may organize our file into records that contain just 32 bytes. The
record size is entirely up to us-well, as long as our record calls for 128 or
fewer bytes it is up to us. (For larger records see Sidelight 9.) We decide
record size according to our application. It is important to study each
application thoroughly and plan effectively how we will organize files to
manage the data required.

Often a group of programs will be used to handle a file or system of
files-one program to enter and delete entries, another to edit entries, and
perhaps a third to print a nicely formatted report to display all of the data
in the file. Additional programs may be used to prepare reports of all
kinds.

A new set of tools is needed to work with random-access files.

9-8 ... Some Tools
We have a set of new keywords and conditions that enable us to work with
random-access files. We can get started with FIELD, LSET and RSET,
PUT, and GET. In addition, we will learn new ways to use OPEN. CLOSE
works just the way it did in the last chapter .

•••• OPB1'T
We open for random access with the "R" mode indicator in an OPEN
system. Further, we may declare the record length.

134
•••

RANDOM-ACCESS FILES

UJl/J OPEN' 11 R", #1, "SAMPLE. mT", 41/J

sets up a file named SAMPLE.DAT for random access on channel 1. A file
channel forms the communications linkage between our program and the
file itself on disk. The record size is 40 bytes. If we omit the record-length
option, BASIC automatically makes it 128 bytes. However, when we in
voke BASIC, we may change that with the IS: option. See Sidelight 9 .

•••• J'IBLD
Once a file is opened for random access, the file buffer is established in
memory. A FIELD statement is required to describe the layout of the
buffer. That is, we need to tell BASIC just how each item in an entry will
be placed in the record. All data in a random-access file must be in string
form. Later we will see how to convert numeric values to string values
and vice versa.

111/J FIEID #1, 22 AS X$, 11/J AS Y$

defines our records as having two strings. One string is allocated 22
characters and the other 10 characters. The string values may be assigned
with LSET and RSET .

• • • • I.SB!r and BSJl!r
Once the buffer is established in memory, we use a FIELD statement to
partition the buffer according to our needs. In order to move data into the
file itself, we need to first place it in the file buffer. This is done with an
LSET or RSET statement.

371/J LSET Y$ = "TEST"

loads the string value into the space in the buffer designated by Y$ in the
FIELD statement.

LSET differs from LET in two regards. LSET assigns a string value in
the file buffer. LET may not be used for this purpose. LET assigns a string
value in an area of memory restricted to variable usage. LSET moves the
string value into the left end of the string variable and fills the right end
with spaces, while LET simply assigns the string value to a string vari
able. LSET would move "TEST" into Y$ of our FIELD statement above as
"TEST ". Thus, LSET always creates a string having as many
characters as specified in the FIELD statement. It is important to note
that we cannot place data in a file buffer with a LET statement.

RSET is the same as LSET except that the string value is loaded into
the right end of the space allocated in the buffer. The left end is filled with
spaces. So,

211/J RSET Y$ = "TEST"

will cause Y$ to contain" TEST".

138 •••

MICROSOFT BASIC USING THE SOFTCAltD

LSET and RSET have no effect when the variable has not been named
in a FIELD statement •

•••• lift
PUT is the statement we use to copy data from the file buffer in memory to
the disk file on the disk. Once we have finished working on a record in
memory, we want it written out to the disk.

211 Pl1l' #1, 5

will write out the buffer to record number 5 of the file OPENed on chan
nel number 1. lfwe omit the record number, PUT simply writes out to the
next record .

•••• GB~
GET is the statement we use to copy data from the disk file on the disk to
the file buffer in memory.

3fiJ5 GET #6, RB:

copies the contents of record number REC of the file OPENed on channel
6 to the associated file buffer. Note that it really is a copy of the data. The
data is not removed from the disk file. If we omit the record number, GET
simply accesses the next record .

•••• CLOSlll
The communications established by an OPEN statement are severed with
a CLOSE statement.

4911J CWSE #3

terininates any activity on channel number 3. If we have entered any data
into the file on that channel and executed a PUT statement, CLOSE will
cause the current buffer contents to be written out to the disk.

We may also close several channels.
392 CIDSE #1, #~, #8

CLOSEs the three file channels designated in the statement. CLOSE by
itself CLOSEs all active file channels.

• • • • SUllllAB.Y
Once we organize files in records of a fixed size we may get at any data
entry in the file as long as we know where it is. Whether our file contains
50 or 1000 records, a program can access any data entry directly and
quickly.

A few easy-to-remember statements are available to manipulate data
in a file to solve problems of our choice. OPEN, FIELD, LSET and RSET,

138 •••

RANDOM-ACCESS FILES

PUT, GET, and CLOSE are all that we need to get started with random
access files. In the next section we will develop an example, then go into a
little more detail and introduce some more tools.

8-8 ••• .& Sample Bandom-.A.ccess l'ile

Suppose we are working on an accounting system. We have been assigned
the task of creating a file to contain the labels for a chart of accounts. For
example, we might designate account number 1 as real estate taxes,
number 2 as personal property taxes, number 9 as medical expenses, and
99 as miscellaneous.

With just a little thought we can do the job. We might call the file
"ACNAMES.DAT", for account names. Now we need to consider the
record size. "Personal property taxes" contains 23 letters. So we need at
least 23 bytes per record. We do not need to include the carriage retum
and line-feed characters in the byte count, as we do with sequential files.
Let's just allow 30 characters for good measure.

It is a simple matter to OPEN a file and FIELD the corresponding
buffer.

lQJS OPEN "R", #1, "ACNAMES.DAT", 30
110 FIELD tl, 30 AS X$

Program 9-la. OPEN and FIELD the accounts-label file.

Since we have only one data item in each file record, it tums out that the
record size is the same as our single data item. This is a special situation.
The record size is usually the sum of the number of bytes required for all
items in an entry. (It could be larger.)

If we limit account numbers to the range from 1 to 99 and we don't
need them all, what do we do about the "holes"? Let's label them "Unas
signed". We can accomplish this by first doing an LSET to store "Unas
signed" in X$ and then doing a PUT in a loop that runs from 1 to 99. This
is a routine we do only once in the life of the file.

2QJ0 LSET X$ = ''Unassigned"
210 FOR REC = 1 TO 99
220 Pur 11, a:ex:
230 NElCl' REC

Program 9-lb. File accozmts-labelfile with "Unassigned".

Notice that we only perform the LSET to load the buffer once. The PUT
operation creates a copy in the file. The buffer remains intact. Thus, we
can copy the buffer contents over and over again. Now we have a file with
"Unassigned" written to all 99 records.

Finally we need a routine to write the real account labels to the file.
This can be done by READing the labels from DATA in our program.

137 •••

:MICROSOFT BABIC USING THE SOFTCABD

When each label is written to the file, the "Unassigned" label previously
written there will be replaced. ·

380
311/J

RFAD N, N$
IF N$ = ''Done" THEN 391/J

->321/J
341/J
35.f/J
361/J
381/J
391/J
395

IF N < 1 OR N > 99 THEN 381/J
LSET X$ == N$
PUT #1, N
GOTO 380

PRINT N 1 "Out of range"
CIDSE #1
END

Program 9-lc. Write actual account.labels to thefll.e.

We are providing for "Done" as the signal for end of data. In line 320 we
check to see if the account number is within the agreed-upon range. If a
value is out of range we get a little message. We would fix the incorrect
data and run the program again. Little checks like this save untold grief
later on. Working with files increases the complexity of programining. An
error in the data written to a file by one program may later look like a
programming error in some other program. A little extra care along. the
way is worth the effort.

We put this all together with sample DATA as Program 9-1.

8t/J RPM ** Initialize account label file
96 I

lf/Jf/J OPEN "R"' tl' 11 ACNAMES. DAT", 30
110 FIEID #1, 31/J AS X$
196 I

198 Rl!M ** Fill file with ''Unassigned"
280 LSET X$ = ''Unassigned"
210 FOR REC = 1 TO 99
220 PUT #1, REX:
230 NEJC1' REC
296 :
298 Rl!M ** Write out actual labels
300 READ N,. N$
310 IF N$ "" ''Done" THEN 391/J
320 IF N < 1 OR N > 99 THEN 381/J
341/J LSET X$ = N$
350 PUT #1, N
36f/J GOTO 300
383 PRINT NJ "Out of range"
39f/J CIDSE #1
395 END
896 I
900 DATA 1, Real estate taxes
901 DATA 2, Personal property taxes
902 DATA 9, Medical expenses
903 DATA 99, Miscellaneous
994 DATA 22,· sewer and water

138 •••

RANDOM-ACCESS FILES

935 DATA 38, Cleaning and mainte~ce
906 DATA 44, ~rtgage interest
990 DATA "· Ik>ne
Program 9-1. Initialize an accounts-label.file.

It's a good thing that we didn't settle for 23 characters in a record, since
"Cleaning and maintenance" requires 24 .

•••• SUMKAB.Y
We have seen most of the basic tools we need for random-access files. With
OPEN, FIELD, LSET, RSET, PUT, GET, and CLOSE we can perform
all of the operations required to create and maintain a simple file. It is
important to analyze our space requirements so that we allow enough
space in each record for the largest entry we will encounter. It is impor
tant to execute a CLOSE statement to copy the :final buffer contents to the
disk file itself.

Problems for Sec'tion 9-:S
1. Write a program to print chart-of-account labels. Simply scan the

file and print the number and label for all assigned records.
a. Write a program to allow for adding account labels. Your program

should :first determine that the account number is actually unas
signed.

8. Write a program to allow renaming account labels. This would be
useful when a label is incorrectly spelled due to a typing error or a
more accurate label has been suggested. In practice, accountants
don't arbitrarily change account labels.

4. Sometimes it is desirable to have shorter labels for reports that
have little space. Change Program 9-1 so that two labels are stored
in each record. One label will be the full description and the other
will be an abbreviation. Limit abbreviations to eight letters.

9-4 ... Some· Kore ~ools
We have worked with a random-access file using string values only. Obvi
ously there must be some way to handle numeric values. A special set of
functions is provided to represent numeric values in string form. These
functions provide for compact storage of numeric data. We have MaKe
functions and Con Vert functions. The MaKe functions make strings out of
numeric values. The Con Vert functions convert string values into
numeric values. These are very different from the STR$ and VAL func
tions.

139
•••

MICROSOFT BASIC USING THE SOFTC.ARD

•••. MKS$
The MKS$ function makes a string out of a single-precision numeric
value. The string formed requires four bytes.

4UJ I.SET Y$ = MKS$ (Y9)

does the whole job of loading the string representation of the numeric
value of Y9 into the buff er for Y$. We need a companion function to go the
other way .

•••• CVS
CVS converts a four-byte string to a single-precision numeric value.

520 ZS = CVS(Z$)

does it.
Let's create a file to store the names of the ten largest U.S. cities, their

rank, and the percentage of growth from 1970 to 1980. Then we can write
programs to prepare various reports.

Table 9-1 was prepared from information found in an almanac.

Cl'n'
Baltimore
Chicago
Dallas
Detroit
Houston
Los Angeles
New York
Philadelphia
San Antonio
San Diego

llA1'K
9
2
7
6
5
3
1
4

10
8

%GBO~B
-13.1
-10.8

7.1
-20.5

29.2
5.5

-10.4
-13.4

20.1
25.5

Table 9-1. Ten largest U.S. cities in 1980.

The program will simply OPEN a file and write each data set to a different
record. We can easily use DATA statements for this. In practice, for larger
applications we would have a system of programs. One of those programs
would be used to enter data into the file and edit incorrect data already
there. For a file with a thousand entries we would not have a thousand
DATA statements in a program. The file would be managed directly from
the keyboard. See Program 9-2.

100 OPEN "R", #1, "CITIES. DAT", 20
110 FIELD #1, 12 AS CITY$, 4 AS RANK$, 4 AS PERCENT$
196 I

200 FOR K = 1 TO 10
210 READ X$, R, G

140
• • •

RANDOM-ACCESS FILES

220 LSET CITY$ = X$
230 LSET RANK$ = MKS$(R)
240 LSET PERCENT$ = MKS$(G)
250 PIJl' #1, K
280 NE}C1' K
290 CLOSE #l
890 END
896 I
900 DATA Baltimore, 9, -13.1
902 DATA Chicago, 2, -10.8
904 DATA Dallas, 7, 7.1
906 DATA Detroit, 6, -20.5
908 DATA Houston, 5, 29.2
910 DATA Los Angeles, 3, 5.5
912 DATA New York, 1, -10.4
914 DATA Philadelphia, 4, -13.4
916 DATA San Antonio, 10, 20.1
918 DATA San Diego, 8, 25.5

Program 9-2. Write ten-largest-cities data to random-access fil,e.

We have simplified this project by stating that we will have ten cities. In
the next chapter we will develop ways to manage files that have no preset
or fixed number of records.

Now that we have the file, one of the easiest tasks we might perform is
to simply display the data in a neatly arranged format in the same order in
which it appears in the file. This is left as an exercise.

We might want to see the data in the file arranged by rank. An easy
scheme will be to form a ten-element array that contains the record posi
tions of the appropriate data. Array element 1 will contain the record
number of the data for New York, and array element 10 will contain the
record number of the data for San Antonio. So our program will first have
to scan the file building the array and then access the records in order
according to the array just formed for display. See Program 9-3.

50
80
96
100
110
196
198
200
210
220

-->230
250
296
300
310
320
330

I

I

REM ** Display cities in rank order
DIM ARRAY(l0)

OPEN "R" I #1, "CITIES.DAT" I 20
FIELD #1, 12 AS CITY$, 4 AS RANK$, 4 AS PERCENT$

REM ** First load the array with record number
FOR REC = 1 TO 10

GET tl, ~
R = CVS(RANK$)
ARRAY(R) = REX:

NEXl' ~

PRINT "City Rank % Growth"
FOR K = 1 TO 10

GET tl, ARRAY(K)
R = CVS(RANK$)

141 •••

MICROSOFT BABIC USING THE SOFTCABD

34"
-->351'/J

381'/J
391'/J
891'/J

G = CVS(PERCENT$)
PRINT USING "&: H

NEJC1' K
CIOSE #1
END

ttt.#"1 CITY$, R, G

Program 9-3. Display cities in rank <Jrder •.

Look at line 230. That program statement loads the array with the record
where the city with the appropriate rank will be found in the file. The
position in the report is the position in the array, and the data value stored
in the array is the number of the record in the file. This is easily done with
a single-dimension array. We have here a very special situation. Most data
does not include its own order position as an item.

Again we have used PRINT USING to good advantage in line 350.
Notice the ampersand(&) there. We may include that character as a sig
nal to BASIC to display a string found in the expression list following the
USING string. In this case that is CITY$. See Figure 9-1.

City Rank % Growth
New York 1 -11'/J.4
Chicago 2 -11'/J.8
Los Angeles 3 5.5
Philadelphia 4 -13.4
Houston 5 29.2
Detroit 6 -2e.s
Dallas 7 7.1
San Diego 8 25.5
Baltimore 9 -13.1
San Antonio 10 20.1

Figure 9-1. Execution of Program 9-3.

It is important to realize that nothing we have done in this program has
changed the data in the file. The data has been rearranged on paper only.
Writing report-generating programs that do not modify the data file makes
all reporting programs totally independent from each other .

•••• :Mia$, llKD$, O'VI, and OVD
We also have functions to work with integer and double-precision numeric
values. MKI$ makes a two-byte string out of an integer numeric. CVI
converts its back. MKD$ makes an eight-byte string out of a double
precision numeric. The process is reversed with the CVD function.

Now we have full :flexibility to work with all of the data formats avail
able to us. When we are working with files that may grow to hundreds and
thousands of records it becomes important to ftt data as compactly as
possible •

• • • • SUllllAllY
We have the ability to store numeric data as strings in random-access files
using the MaKe (MKI$, MKS$, and MKD$) and Con Vert (CVI, CVS, and

148 •••

RANDOl\II-ACCEBS FILES

CVD) functions. Strings created with MaKe must also be LSET or RSET
into the FIELDed buffer.

We have seen an example here of rearranging data stored in a file for
the purpose of producing a report. Thls was done without changing the file
itself. Thus, various reports need not interact.

:111-e>l>lttJllll ~C>i- llttc:tie>Jl ~~ •••••••••••••••••••••• ~ ••••••••••••••
1. Write a program that simply displays the data in the census file in

alphabetic order.
a. Write a program that uses a sorting technique from the chapter on

arrays combined with the method used in Program 9-3 to display
the cities of Table 9-1 in order of increasing growth.

1. Convert the sieve of Eratosthenes program (7-2) to use each record
of a file to store one element of the array. Be sure to test your
program with a small upper limit before you experiment with large
values. Program errors will take longer to detect if you have to
wait a long time before the computer displays the results.

smBLIGJR9
In.itializat1C>11. Optie>11.11

While most of the time it will be adequate to access BASIC by simply
typing MBASIC or GBASIC, occasionally we may have a special require
ment. BASIC establishes the number of available file channels, the num
ber of bytes per file record, and the amount of computer memory that will
be used. BASIC arbitrarily provides 3 file channels, 128 bytes per record,
and all of memory. These are the defaults-the values we get by doing
nothing .

•••• JK:
If you are using machine-language subroutines, you can reserve memory
with the JM option.

A>MBASIC /M133791

would exclude all memory above 33K from use by BASIC. Of course, the
more memory you reserve, the less there is for your BASIC program .

•••• IF:
Often programs need to use more than 3 files at one time.

143 •••

MICROSOFT BASIC USING THE SOFTCARD

A>MBASIC /F:7

will provide up to 7 file channels. Each channel requires 178 bytes for
overhead. In addition, each channel is allocated 128 bytes for storage of
one record of data. Changing the record size changes the number of bytes
allocated.

We may call for 0 to 15 channels. Just don't try to work with any files
after specifying 0 channels. Calling for 16 or more will be greeted by the

Illegal function call

error message. On the other hand, a request for a negative number of
channels evokes the

Syntax error

message .

••.. /8:
We can change the record size with the IS option. Why /S? Because records
are sometimes referred to as sectors.

A>MBASIC Is: 64

sets the record size to 64 bytes. Any integer greater than 36 may be used.
Values less than 37 evoke a

Syntax error

message. If we select a value such that all of memory is used, then we
may expect the

Out of memory
message.

Any of the parameters supplied to MBASIC may be entered in deci
mal, octal, or hexadecimal notation. Thus 10, &012, and &HOOOA are
equivalent and may be used interchangeably .

• • • • MBASIC FILJ!JRAIDJ
We can directly execute a BASIC program by naming it right in the in
itialization instruction. Of course, BASIC will default to the .BAS exten
sion if none is specified. In the event that we name a nonexistent program,
BASIC will load and issue the

File not found

error message and return to CP/M.
These options may be used in any combination desired. Thus we can

incorporate BASIC programs in SUBMIT files of CP/M. In order to utilize
the powerful SUBMIT capability, the exit from the BASIC program must
be via the SYSTEM statement. SYSTEM will cause BASIC to exit to the
CP/M system. If a SUBMIT file is active, then the next command in the
file will be performed.

144
•••

Chapter 10

Random-Access
Address List

Let's develop a computerized name-and-address list, a common need for
business and personal use. The idea here is to store all the name and
addresses in a disk file. Then we may extract those we need for any par
ticular situation. Names may be classified by a code. We might set up a
personal family mailing-list file using F, H, W, or C to designate friends of
family, husband, wife, or children. A business might use Band S for
billing and shipping addresses.

In business it is common practice to arrange these names alphabeti
cally or by zip code or business volume. In order to achieve this we would
not rearrange the names file itself; instead we would create a file that
contains just a list of the records in the desired order. We might maintain
several such lists of record numbers. Then we can easily write a program
that will read a list of record numbers to print the corresponding name
and-address data from the data file in the desired order.

10-1 ... Design the l'ile

Let's organize a program to build the mailing-list data file. There are a
number of major tasks involved. One part of the p;rogram needs to request
all of the necessary data from the keyboard. Another will write the entry
into the file. Another will have to determine where the new entry belongs.

We will have to organize the entry itself. We must decide what infor
mation belongs in an entry and how many characters to allow for each
item. Then we must calculate the necessary record size. Our program

148 •••

MICROSOFT BASIC USING THE SOFTCARD

must include code to manage all these things. We need a routine that will
write the entry into the data file. Probably the most important part of
writing the program is deciding how to organize entries within the file.

When we sit down to enter the first name and address we know that
the file is empty. After that we have no idea how many names are in the
file. Therefore we have no idea where the next entry should go in the file.
We could use a piece of paper to keep track of how many names there are.
But then we might just as well keep the names on paper, too. The whole
idea is to let the computer do the work. We need to develop a plan for
keeping track of where things are. One scheme is to assign each entry its
record number as an identification number and include that number as
part of the data entry. Thus, the first name in the system will be number
1, the second will be number 2, and so on. Now we can have the next
number to be assigned saved in the file itself. A good place to do this would
be in record 0. But there is no record 0. We can easily create one, however.
If we call our working file "NAMES.DAT", we can put this information in
"NAMES.ZER". So a file with no names in it should have a 1 stored in our
little ".ZER" file. We can easily write an initialization program to do this.
Then after each new name is entered the program adds 1 to that value
in our ".ZER" file.

Even· though we are thinking about a program to enter names in a
file, this is the time to think about how names are to be deleted. Deleting
names from a mailing list can be handled in one of several ways. We
could replace the name with the word "Deleted." Or we could set things
up so that each deleted entry immediately frees a record for new data.
We can make deleted records available for new entries by setting up
a catalog of available space within the file itself. Including the record
number as part of the data fits right in here. Thus, we are going to build a
catalog of available record numbers threaded through the data file. Then
when an entry is deleted we store the number of the last deleted record in
the deleted record and then store the number of the currently deleted
record in the ".ZER" file along with the number of the next highest record
in the file. This will leave a trail of deleted record numbers beginning with
the number stored in file ".ZER". Now we have two numbers there-the
next record at the end of the file and the most recently deleted record.
When we start up a new file, the most recently deleted record will be 0.

This scheme also provides a method for determining whether an entry
has been deleted or not. Read the record. If the identification number·
equals the record number, then it is real data. If not, then the entry has
been deleted and the number is the record number of the previously de
leted record. Note that the first deleted record will contain a value of 0. As
an example of a file with deleted records see Figure 10-1 on page 147.
Let's trace the available-space catalog in Figure 10-1. The second number
in "FILE.ZER" is 8. Look at record 8 of FILE.DAT. There we find a 4.

148 •••

RA.NDO::M:-ACOESS ADDREBB LIST

FILE.ZER

9 {on the end}, 8 {last deleted entry} I
FILE.DAT

1 1 Jones John •••

2 2 Smith William ...

3 3 Hayes Mary •••

4 6 {deleted entry} ..•

5 5 Bradshaw Eleanore ..•

6 0 {deleted entry (first one)} •..

7 7 Hough Hugh •••

8 4{deleted entry} ...

9 {never used}

Figure 10-1. Layout oj'records in use and deleted.

Look at record 4. There we find a 6. Look at record 6. There we find a 0.
Thus the deleted records are 8, 4, and 6. When we finally use record 6 for a
new entry, the program should place a 0 in "FILE.ZER" where the 8 is
now. Following this event, the next new entry will go to new space at the
end of the file.

The entry program will have to look at the two record numbers stored
in "FILE.ZER" and decide whether to place the new entry at the end of
the file or on a record from which a name has been deleted. That is easy. If
the deleted record number is 0 the new name goes on the end. Otherwise
use the deleted record.

It is important to observe in all this that even though we are designing
the program to enter data, it is necessary to thoroughly think through the
deleting process. We must design the whole system before actually coding
any part of it. Thus we avoid the mistake of having to redesign the system
after programs have been written.

We have entering and deleting pretty well under control. Now how
about changing an entry? As long as each name has an identification

14'1
•••

,

MICROSOFT BABIC USING THE SOFTC.ARD

number we can easily read the corresponding record and display each
item as it appears, giving the opportunity to make changes in each case.
We will also need to periodically print up a list of the names with the IDs.
It should be relatively easy to write a program to scan the file from begin
ning to end, displaying the data in each undeleted record. That program
can easily select various Categories according to the code stored in the
code item. ·

We seem to have thought through four functions of our mailing"'.list
system: new, delete, change, and display. We have mentioned the need to

. initialize the data file once to prepare it for entering data. Let's do that
:first. Let's identify new space at the end of the file using the file variable
NEWID$ and deleted old space embedded within the file with the file
variable OLDID$. See Program 10-1.

98 RliM ** Initialize .ZER file
108 FILENAME$ = "NAMES"
110 OPEN "R", 11, FILENAME$+ "·ZER", 8
129 FIEID fl, 4 AS NEWID$, 4 AS OIDID$
130 LSET NEWID$ = MKS$(1)
140 LSET OIDID$ • MKS$ (0)
150 PUT #1, 1
160 CU>SE #1
191iJ END

Program 10-1, Initialize mailing-list file.
Once this program has been run, we may count on "FILE.ZER" contain
ing a 1 and a 0. Of course, we must ensure that this program is never run
again. Life can be quite complete without ever having to reconstruct a file
system with a bad ".ZER" file. Of course, it is a good idea to maintain
copies of any data system on extra disks. With good data backup it is easy
to recover from such a catastrophe. ·

Let's now design thE'. layout for a data record. See Tu.hie 10-1.

DAUJ.Ullll
Identification #
Code
Last name
First name
Address
City
State
Zip
Telephone

LABBL
ID#
CODE
LAST
FRST
ADDR
CITY
STAT
ZIP
PHON

KAlml1JJI
01' C•••AODB8

4
2

20
20
30
20

2
5

17
120

Table 10-1. Record layout for mailing-l~t file.

148 •••

RANDOM-ACCESS ADDRESS LIST

Note the large value for the telephone number. It allows for an area
code, an exchange, and a four-digit extension. The total comes to 120
characters. We might consider allowing for the four new digits in the zip
code, too. If we let the program calculate the total number of characters in
the routine that reads the label data in the first place we won't have to give
any further thought to this.

If we are careful about listing all of the above considerations we will
have the structure of the control routine for our name-and-address entry
program. Once we have the control routine we may concentrate on a
single subroutine at a time. The following shows the list of functions for
the name-and-address entry program.

1. Read data labels and limits
a. Read available-space parameters (.ZER file)
8. OPEN the .DAT file
4. Display next available ID and request data.

Terminate on null LAST name
8. Prepare available space
8. Write new entry in .DAT file
7. Write available-space info back to .ZER file.

Do it again (repeat step 4)

Each of the numbered tasks listed above can be accomplished with a
'Subroutine. Some of those subroutines will also be used by the other
programs that we will be writing for our name-and-address system. To
terminate on null LAST name we need to provide a way for the data
requesting routine to send back a signal to quit. "Do it again" will simply
direct the program to repeat the functions again beginning with
number4.

We may arbitrarily select line numbers for the subroutines and for
the control routine itself, and we will have the guts of our program
completed. See Program 10-2a.

198
200
210
220
230

-->240

REM ** control routine
GOSUB 2000 'Read data labels and limits
GOSUB 19210 'Read available-space parameters .ZER file
GOSUB 1800 'OPEN the .OAT file
GOSUB 1700 'Display next available ID and request data
IF EXIT = 1 THEN CLOSE a END

250 GOSUB 1600
260 GOSUB 1500
270 GOSUB 1300

'Tenninate on null LAST name
'Prepare available space
'Write new entry in .OAT file
'Write available-space info back to .ZER file
'Do it again (repeat step 4) ·->280 GOTO 230

Program 10-2a. Control routine for mailing-list program.

We have seven subroutines and two control statements in our main rou
tine of Program 10-2a. Line 240 requires that the value of EXIT be set, to 1

149
•••

MICROSOFT BASIC USING THE SOFTCARD

if the operator desires to exit and set to any other value for any entry that is
to be placed in the file. Line 280 simply uses a GOTO to repeat the request
for another new entry. We will now write the subroutines, one at a time.

We read the data labels at 2000. If we give some more thought to bow
to design the routine to take data from the keyboard, we should be able to
come up with a creative scheme. We could surely ask the eight questions
in eight statements using INPUT with prompt. For each of the eight
inputs we could have a statement that checks to see if the entry is too
long. Any changes in the file design will require changing that routine.
And when we write the editor program for the system we will have an
other routine to rewrite if we wish to use this system of programs for
another mailing list. Wouldn't it be a good idea to put the prompt labels
and the maximum field sizes in DATA and read them into two arrays? Of
course it would. Then major changes in the program can be made with
simple changes in the DATA statements. Our DATA statements will come
directly from the labels and character limits in Table 10-1. We can read
the DATA into arrays with a FOR . . . NEXT loop. Here is where we total
up the number of characters and save that number in RLENGTH. See
Program 10-2b.

1998 REM ** Read data labels and limits
2000 READ N0
2010 RLENGI'H = 0
2020 FOR X9 = l TO N0
2030 READ U.SEL$(X9), L(X9) 'Item length

-->2040 RLENGI'H = RLENGI'H + L(X9)
2050 NEXT X9
2090 RETURN
2096 :
2098 REM ** DATA - labels and limits
2100 DATA 9

.2102 DATA ID #, 4
2104 DATA CODE, 2
2106 DATA LAST, 20
2108 DATA FRST, 20
211121 DATA ADDR, 30
2112 DATA CITY, 20
2114 DATA STAT, 2
2116 DATA "ZIP ", 5
2118 DATA PHON, 17

Program 10-2b. Read data labels for mailing-list program.

In Program 10-2b, NO is the number of data items in an entry. The labels
are stored in the LABEL$ array and the maximum numbers of characters
are stored in the L array. The completed program should include a
DIMension statement to provide for the LABEL$() and L() arrays.

The subroutine to read the available-space parameters is very simple.
It just reads the values placed there by the initialization program. See
Program 10-2c.

180
•••

RANDOM-ACCESS ADDRESS LIST

1898 REM ** Read available-space parameters
1900 OPEN II R11 , #1, FILENAME$ + II. ZER" , 8
1.910 FIELD #1, 4 AS NEWID$, 4 AS OLDID$
1920 GET U, 1
1930 NS = CVS(NEWID$)
1940 OS = CVS(OLDID$)
1990 RETURN

Program 10-2c. Read available space in mailing-list program.

In Program 10-2c we have chosen to carry new space in the variable NS
and deleted space in DS.

Before we may access any data in the" .DAT" file we must OPEN and
FIELD it. Referring to Table 10-1 we see that the record size must be 120.
We have already taken care of this in variable RLENGTH at line 2040 of
Program 10-2b. Let's create a string array for the file to match the string
array we will be using to accept data from the keyboard. This means that
the FIELD statement must provide for all nine elements of the array. See
Program 10-2d.

1798 REM ** OPEN the .DAT file
1800 OPEN II R" , #2, FILENAME$ + II. DAT" , RLENGTB

->1810 FIELD #2, L(l) AS F$(1), L(2) AS F$(2), L(3) AS F$(3),
L(4) AS F$(4), L(S) AS F$(5), L(6) AS F$(6),
L(7) AS F$(7), L(8) AS F$(8), L(9) AS F$(9)

1890 RETURN

Program 10-2d. OPEN and FIELD the mailing-list datafile.

Line 1810 in Program 10-2d is a long one. We can make it easy to read by
using CTRL-J or the line-feed character to arrange the various items of
the field in neat columns on several lines. We write the subroutine once
and forget about it. We have used the elements of the L() array in the
FIELD statement so that any nine-element mailing list can be processed
without having to EDIT line 1810.

Now it is time to display the next available ID and request data. We
said we would do this at 1700. Since we have planned carefully, this will
be very straightforward. The first job here is to determine the next actual
available space. We choose to first make it new space. Then if there is any
deleted space we reassign DS to the ID. We handle the label display and
the data request with a FOR . . . NEXT loop. See Program 10-2e.

1698
1700
1705
1710
1715
1720
1725
1727

->1730
1735

REM ** Process entry fran keyboard
ID=NS: IFDS <> 0TBENID=DS
PRINT·
PRINT IABEL$ (1): II: II: ID
I<DATA$(1) = STR$(ID)
FOR I9 = 2 TO N0

PRINT IABEL$ (I 9):
INPUT X$: IF I9 <> 3 THEN 1735
IF LEN(X$) = 0 THEN EXIT = 1 : GOTO 1790
IF LEN(X$) <= L(I9) THEN 1750

181
•••

1748
1745
1758
1768

->177111
179111

MICROSOFT BASIC USING THE SOFTCARD

PRINT "Too long - Reenter"
PRINT " 1 "r 1 ooro 1727
ICDATA$ (I9) • X$

NEXl' I9
EXIT= 8
RErURN

Program 10-2e. Handle keyboard data entry for mailing-list program.

Note that in line 1730 we set EXIT to 1 if the response to the request for
LAST name is of zero length. The length will be zero when the user re
sponds with only the RETURN key. Otherwise EXIT is set to 0 in line
1770. We created a KDATA$ array to accept keyboard data. Later we will
transfer it to file data in F$. We must include the KDATA$() and F$()

. arrays in the DIMension statement in the completed program.
Next we must prepare available space. What we do here depends on

whether we are going to replace a deleted entry or write a new record. If
we are going to use a new record we simply add 1 to the new-space vari
able and RETURN. If we are going to write this data to a previously
deleted record then we must retrieve the record number that was written
there when the deletion occurred. That number is essential for correctly
maintaining the available-space catalog. Remember this from Figure
10-1?

1598 Rl!M ** Prepare available space
168111 IF DS • 8 THEN NS = NS + 1

EISE GET #2, DS 1 DS = CVS(F$(l))
169111 RErURN

Program 10-2{. Prepare available space for mailing-list file.
Note that in this subroutine either new space changes or deleted space
changes, but never both.

Once the available-space situation is taken care of, we may actually
write the entry to the file. We need to LSET the ID value into F$(1) and
then move all keyboard data from KDATA$() to F$() as well. Finally we
PUT the data into record number ID.

1498 Rl!M ** write new entry in .mT file
15111~. LSET ,$(1) = MKS$(ID) .
1518 FOR I9 = 2 TO N0
1520 LSET F$(I9) = I<DATA$(I9)
153111 NEXl' I9
1540 PTJ'l' #2, ID
159111 REn'URN

Program 10-2g. Write a data entry in the mailing-list program.

And last but by no means least we must provide the subroutine that
writes the available-space parameters to the ".ZER" file. This is exactly
like the initialization program except that we must write NS and DS. See
Program 10-2h.

188
•••

RANDOM-ACCESS ADDRESS LIST

1298 .REM ** Write available-space info back to ·ZER file
13111111 I..SET NEWID$ = MKS$ (NS)
131111 I..SET OLDID$ • MKS$(DS)
133111 Pt1l' #1, l
139111 RETURN
Program 10-2h. Write available-space parameters in mailing-list program.

Finally, in order for all of this to happen, we must include the file
name in FILENAME$ and also include the appropriate dimensioning
statement. See Program 10..2i.

98 REM ** mailing list program
. 1111111 FILENAME$ = "NAMES"

11111 DIM IABEL$(9), L(9), F$(9), KDATA$(9)

Program 10-2i. Program parameters for mailing-list program.

This makes it very easy to work on a different mailing list with the same
field lengths by simply changing line 100.

We list the complete program here for your convenience.

98
100
11111
196
198
21110
210
22111
230
24111

I

REM ** mailing list program
FILENAME$ = "NAMES"
DIM IABEL$(9), L(9), F$(9), KDATA$(9)

REM ·••·Control routine
GOSUB 20111111 'Read data labels and limits
GOSUB 190111 'Read available-space parameters .zER file
GOSUB 18111111 'OPEN the .mT file
GOSUB 171110 'Display next available ID and request data
IF EXIT = 1 THEN CIDSE : END

250 GOSUB 160111
260 GOSUB 1500
270 GOSUB 1300
280 GOTO 230
1296 I

'Tenninate on null IAST name
'Prepare available space
'Write new entry in .01\.T file
'Write available-space info "back to .zER file
'Do it again (repeat step 4)

1298 REM ** Write available-space info back to .ZER file
131110 I..SET NEWID$ = MKS$ (NS)
1310 I..SET OLDID$ = MKS$ (DS)
1330 Pt.11' #1, l
1390 RETURN
1496 I

1498 REM ** Write new entry in .Il!\.T file
1500 LSET F$(1) = MKS$(ID)
151111 FOR I9 = 2 TO Niii
1520 LSET F$(I9) = KDATA$(I9)
1530 NEJCI' I9
1540 PUl' #2, ID
159111 RETURN
1596
1598
1600

REM ** Prepare available space
IF DS = 0 THEN NS = NS + l

ELSE GET #2, DS : DS = CVS(F$(1))
169111 RETURN

163
• • •

MICROSOFT BASIC USING THE SOFTCARD

1696
1698 REM ** Process entry fran keyboard
1700 ID= NS : IF OS <> 0 THEN ID m OS
1705 PRINT
1710 PRINT LABEL$ (1) ; ": "; ID
1715 KDATA$(1) = STR$(ID)
1720 FOR I9 = 2 TO N0
1725 PRINT LABEL$(I9)1
1727 INPUT X$: IF I9 <> 3 THEN 1735
1730 IF LEN(X$) = 0 THEN EXIT= 1 : GOTO 1790
1735 IF LEN(X$) <= L(I9) THEN 1750
1740 PRINT "Too long - Reenter"
1745 PRINT " : "; : GOTO 1727
1750 KDATA$ (I9) = X$
1760 NEXI' I9
1770 EXIT = 0
1790 RETURN
1796
1798 REM ** OPEN the .DAT file
1800 OPEN "R" , #2, FILENAME$ + 11 • DAT" , RLENGTH
1810 FIELD #2, L(l) AS F$(1), L(2) AS F$(2), L(3) AS F$(3),

L(4) AS F$(4), L(5) AS F$(5), L(6) AS F$(6),
L(7) AS F$(7), L(8) AS F$(8), L(9) AS F$(9)

1890 RETURN
1896 :
1898 REM ** Read available-space parameters
1900 OPEN "R", #1, FILENAME$ + ".ZER", 8
1910 FIELD #1, 4 AS NEWID$, 4 AS OLDID$
1920 GET #1, 1
1930 NS = CVS(NEWID$)
1940 OS = CVS(OLDID$)
1990 RETURN
1996
1998 REM ** Read data labels and limits
2000 READ N0
2010 RLENGTH = 0
2020 FOR X9 = 1 TO N0
2030 READ I.ABEL$ (X9), L(X9)
2040 RLENGTH = RIENGTH + L(X9)
2050 NEXI' X9 .
2090 RETURN
2096 :
2098 REM ** DATA - labels and limits
2100 DATA 9
2102 DATA ID #, 4
2104 DATA CODE, 2
2106 DATA IAST, 20
2108 DATA FRST, 20
2110 DATA ADDR, 30
2112 DATA CITY, 20
2114 DATA STAT, 2
2116 DATA "ZIP ", 5
2118 DATA PHON, 17

Program 10-2. Entering names in a mailing-list file.

lS4
•••

RANDOM-ACCESS ADDRESS LIST

This program is intended to be a simple example of a workable
mailing-list data entry program. Using the preceding discussion and some
of the routines of this program you should be able to develop programs to
delete entries, change entries, and print mailing labels.

There are many areas in which this program can be made more flexi
ble .. We might request the mailing-list file name from the program
operator. We might eliminate the DATA statements from the program by
placing that data in the ".ZER" file as well as the data already there. The
benefits of doing things this way are tremendous. With all of the informa
tion about the mailing list stored in a file, our one program can be used. to
process many different mailing lists. We can handle different labels and
different item lengths as the program stands. We have only to change line
1810andline 110 to change the number of items in an entry. We will soon
find that we have to write a program to manage the companion file that
contains all of this nice information. That is a small price to pay. When we
can change the behavior of a program by changing data in a file, we
approach data-base-management capabilities.

Computers and programming have acquired an aura of mystery that
puts many people off. We are working toward the day when people who
use computers will not have to do any programming. We all use elevators
without being elevator operators. Yet we still need people who are elevator
experts. One goal for programmers is to create programs that can handle
many tasks without changing the program itself.

Programming for the delete and change functions can be handled by
either writing separate programs or by including the new subroutines
necessary right in Program 10-2. We could provide a menu that lets the
user select which function is desired .

•••• SUJIWABY
Once we organize files in records of a fixed size we may get at any data
entry in the file as long as we know where it is. In this chapter we have
designed a mailing-list system. We have written the program to enter data
into this file using keyboard interaction. Arrays have been used to good
advantage to provide a flexible system. We need only change the name of
the file in one line of our program to work with a different mailing list. By
changing only a few DATA statements we can even dramatically chang
ing the mailing-list file itself. This experience has pointed the way to
concepts that will even allow us to store the characteristics of a mailing
list system in yet another file. The closer we come to this, the closer we
come to a truly "user-friendly" system.

:troblems for Section 10-1
1. Incorporate a delete routine in the name-and-address entry pro

gram.

lBB •••

MICROSOFT BASIC USING THE SOFTCARD

a. Write a program to edit data in the mailing-list file. Display each
item and ask if the user wants to make a change.

8. Write a program to display all data from the file for names having a
specified code.

4. Write a program that will print mailing-address labels. Set the pro
gram up so that it requests up to ten ID numbers from the
keyboard and then prints all of the labels. (The next step would be
to have the program READ the list of IDs from another file pre
pared by yet another program.)

8. Modify our mailing-list system by placing the labels and item lim
its in the ".ZER" file. Have the program request the file name from
the keyboard. You will have to write a little program to write the
data to the ".ZER" file in the first place. To do this you can FIELD
the same file three ways. Thus, different records may be used for
different purposes. Here is one possible set of FIELD statements.

1798 R1!M **OPEN the .ZER file
180t/J OPEN "R", 11, FILENAME$, 8
1810 FIELD 11, 4 AS NEWID$, 4 AS OLDID$
1812 FIELD #1, 4 AS N0$
1814 FIELD #1, 4 AS IA$, 4 AS LE$
1890 RETlJRb1

smBLIGJft 10
Mixe4-.Access l'iles

In some applications it may be desirable to design a file using a mixture of
random and sequential access. We may use PUT and GET to position at
the desired record and use PRINT# and INPUT# to manipulate the data
items within the record. Remember that the use of FIELDed records
results in all string values being filled with spaces to occupy the space
allocated. This does not happen in sequentially written records.

With a sequential record we can design for efficient space use. We can
calculate the record size from the true maximum space use. Suppose we
have an application with several items in each record that fluctuate
widely in size. Using a FIELDed record we are required to allocate space
based on the maximum for each item. Suppose we have a situation in
which the maximum for the first item is 35 characters and the maximum
for the second item is also 35 characters, but the sum of the first and
second items is never more than 50. We can save 16 characters per record
by writing sequentially. Remember that a sequential PRINT # inserts a
cr-lf at the end of the line.

188 •••

RANDOM-ACCESS ADDRESS LIST

With sequential access we are free to intermix strings and numerics
as needed. The only catch is that we niust calculate all the characters in
the printed form of the numeric value. We could use the MaKe functions
to work with numeric values in a file. This would allow us to compress our
data into the record. Thus, a number like 9. 71208E+20 could be stored in
the space of just four characters plus the cr-lf delimiter. We would just
use

220 X$ = MKS$(X9)

and then use PRINT # to get the contents of X$ into the file buffer. Of
course, we would use the Con Vert functions to recover the numeric val
ues from the file later.

187
•••

Chapter 11

Lo-Res
Graphics

•... Introduction
While many computer applications center on numeric manipulations and
things like word processing, we find a great deal of interest in computer
graphics. Some people·are attracted by the ease with which data can be
presented in chart form using a computer. Others will use graphics
merely for the pleasing effects that are possible. Still others are attracted
to the games aspect. Both high-resolution and low-resolution graphics are ·
offered on Apple computers using a SoftCard. If you are already familiar
with graphics in Applesoft, you will find few differences in MBASIC.

If you are using an Apple with an 80-column card, you will want to
check on how it interacts with graphics. The TEXT command returns the
computer to normal text mode after graphics work. If your screen "looks
funny" in this situation, then you might want to disable the 80-column
card for graphics work. You should have no such difficulty using an exter
nal terminal. With an external terminal, though, PRINT statements dis
play on the terminal and graphics display appears on the Apple video

.screen.

11-1 ... Getting Started in Lo-B.es

With just five statements we create a graphics screen and have full con
trol over placement and coloring of 1920 blocks. GR, COLOR, PLOT,
HLIN, and VLIN are all we need. In addition, the TEXT statement re
stores the computer to the conventional text screen. Let's examine them
before we attempt our first program.

188
•••

LO-RES GRAPmcs

••.. The Graphics Screen (GB)
The statement

100 GR or 100 GR 0

prepares the computer for graphics work-or graphics play. When this
statement is executed, the screen is divided into two parts. The top part is
organized into 40 columns and 40 rows. Thus, we have 1600 blocks at our
disposal. This graphics portion of the screen is cleared to all black. (We'll
get to the rest of the colors in a minute.) The remainder of the screen is
reserved for four lines of regular text display. See Figure 11-1.

+0,0

+0,39

40x40
Graphics
Screen

4-line text screen
40 characters per line

Figure 11-1. The graphics screen layout.

39,o+

39,39+

This arrangement is called mixed graphics and text. Each block is iden
tified by its column and row. The block in the upper left comer is labeled
0,0. The block in the lower right corner is labeled 39,39. Columns are
numbered from 0 to 39 from left to right and rows are numbered from 0 to
39 from top to bottom. This is not the same as the conventional rectangu
lar coordinate system widely used in mathematics, but this difference
presents no great obstacle.· Many graphics applications are not related to
mathematical pursuits anyway. When we want to represent a mathemat
ical relationship we will find the translation ~asy enough. The plotted
points are not exactly square, so we call them blocks rather than squares.

159 •••

MICROSOFT BASIC USING THE SOFTCARD

We may also use the GR statement to convert the entire screen for
graphics work.

100 GR 1

does the job. Now the graphics screen is 40 blocks wide and 48 blocks
high. The blocks are numbered 0 to 4 7 from top to bottom. We have
replaced the four text lines at the bottom of the screen with eight rows for
graphics blocks. Again, the graphics screen is cleared to all black. Note
that any text display will appear as a mosaic of colored blocks in this area
of the screen. So we will need to program any user interaction with the
INKEY$ statement. Remember we used this in the Alphabet game in
Section 6-4? IN KEY$ takes a single character from the keyboard on the fly
without displaying the character. GET is another statement that might be
used here. See Sidelight 11 for this one.

Thus we have two Lo-Res graphics screens. They may be referred to
as screen number 0 and number 1. Number 0 gives 1600 blocks in a grid
40 blocks wide and 40 blocks high. Number 1provides1920 blocks in a
40-by-48 grid. Of course, they aren't totally different screens; they are
really variations of the same screen.

We may easily clear the screen to any Lo-Res color right in the GR
statement.

100 GR 0, 10

will set up the mixed graphics-text screen and clear the graphics portion
to color number 10. We'll do the colors next .

• . . . Colors (COLOB.)
Even if we are working with a noncolor monitor, we will have to pay
attention to color. We will need to at least use white and black. There are
16 colors, numbered from 0 to 15 as shown in Table 11-1.

0 Black 8 Brown
1 Magenta 9 Orange
2 Dark blue 10 Gray
3 Purple 11 Pink
4 Dark green 12 Green
5 Gray 13 Yellow
6 Medium blue 14 Aqua
7 Light blue 15 White
Table 11-1. Lo-Res colors.

When the GR statement is executed, COLOR is set to black or the color·
specified in the GR statement. Once this happens we are free to assign the
color of our choice with

180
•••

LO-RES GRAPHICS

llfi!J COLOR = X

The COLOR statement may be used to establish any of the 16 colors listed
above. Of course we may use a statement like COLOR = Cl to assign the
desired color. Nothing visible happens when a COLOR statement is exe·
cuted, just as nothing visible happens when a conventional assignment
statement is executed. All plotting will appear in the most recently as·
signed color.

We may even use a statement such as

14" COLOR = COLOR + 1

COLOR must never be assigned outside the 0 to 15 range. Illegal values
will evoke the

Illegal function call

error message. Decimal values will be rounded off.
And don't try

lflJllJ GR llJ, COLOR

This will not clear the screen to the current value of COLOR. It will set
COLOR to 0 and clear the screen to black. No harm is done. It's just that
the behavior is a little confusing the first time one sees it. The results may
be unexpected .

• • • • Plotting Blocks (PLO~)
We plot blocks with the PLOT statement. The statement

SH PIDT 2, 3

will plot a block near the upper left corner of the graphics screen in the
color that is active when line 500 is executed. Of course we may use
PLOT X, Y so that values may be calculated to establish a position before
executing the PLOT statement. Even

PIDT X + 3 * Y, 2 * Y - 1

may be coded. It's that simple .

•••• Drawing Lines (BLIB' and VI.IR)
We could plot blocks next to each other with several PLOT statements to
draw lines. However, BASIC includes special statements to draw hori·
zontal and vertical lines for us.

6BllJ HLIN llJ, 39 AT flJ

will draw a horizontal line 40 blocks long at the very top of the screen.

701 VLIN A, B AT C

181 •••

MICROSOFT BASIC USING THE SOFTCARD

will draw a vertical line running from A to B in column C. We must
ensure that the values of A, B, and C remain within the 0 to 39 range (or 0
to 47, as appropriate) to avoid the "Illegal function call" message.

VLIN is convenient for drawing bar graphs. We can incorporate some
labeling in the four-line text screen at the bottom to make nicely readable
charts .

. . . . Bestoring the Text Screen (TBXT)
The TEXT statement eliminates any graphics display and restores the
text screen for us. The image on the graphics screen is gone forever. The
cursor will sit at the bottom of the screen blinking at us awaiting our next
command. We might just leave this statement out while we are writing
and testing our programs. Then, when we are satisfied with the results,
we insert the TEXT statement. This is also a good place for a HOME
statement. Sometimes we will want to program in a little delay loop just
to leave a graphics display on the screen long enough for the user to ap
preciate our handiwork.

We can learn a great deal about graphics using immediate mode. We
can issue one of the GR commands, set a COLOR, and then PLOT points
and draw lines directly from the keyboard. We will very quickly acquire a
feel for the structure of the graphics screen and full-color Lo-Res
graphics .

. . . . Let's Bxperiment
One of the nice things about working with graphics programs is that we
can produce dramatic changes in the results with minor changes in pro
gram code. We can demonstrate some pleasing effects with very short
example programs. Even without a color monitor we get the idea. Con
sider Program 11-1.

50 GR 0
100 COU>R == 15
110 FOR P = 0 TO 19
130 PLOT P, P
190 NEn' p

Program 11-1. A simple demonstration.

Can you tell what it does without running it? Program 11-1 simply plots a
diagonal line from the upper left corner to the center of the screen. Type it
in and RUN it. Now let's also draw a line from the upper right comer to
the center. Just add

135 PLOT 39 - P, P

Note that when we think of measuring distance from the left edge we
simply use the value and when we think of measuring distance from the

182
•••

LO-RES GRAPmcs

right edge we use 39 minus the value. The same thinking applies for the
top and bottom edges. For full-screen graphics we subtract from 4 7 to
measure from the bottom edge. .

Now let's join pairs of points horizontally. To join the points plotted by

131/J PLOT P, P

·and

135 PLOT 39 - P, P

we could use a little FOR loop such as

131/J FOR X = P TO 39 - P
132 PLOT X, P
135 NEX1' x

But this is exactly what HLIN was designed to do.

131/J HLIN P~ 39 - P AT P

accomplishes the same result. Now we have a white triangle at the top of
the screen. Let's add some color. Suppose we change the COLOR for each
HLIN plotted. it is easy to insert statements to change the color and keep
it in the 0 to 15 range. IF ... THEN ... ELSE is ideally suited to this
situation.

11/Jt/J COLOR= 0
180 IF COLOR = 15 THEN COLOR = t/J

ELSE COLOR = COLOR + 1

Line 100 starts the color at black. Line 180 ensures that the COLOR value
never exceeds 15. Now we have a triangle of many colors. Note that 4
colors appear twice since we have plotted 20 lines and used only 16 differ
ent colors. Let's keep going.

Let's add a triangle symmetrical to this one at the bottom. One BASIC
statement ought to do it.

135 HLIN P, 39 - P AT 39 - P

That was easy. Finally, let's fill the triangles at the two sides.

141/J VLIN P, 39 - P AT P
145 VLIN P, 39 - P AT 39 - P

Now we have a series of rectangles using the 16 colors available to us. See
Program 11-2.

51/J GR t/J
11/Jt/J COLOR= 0
111/J FOR P = t/J TO 19
131/J HLIN P, 39 - P AT P
135 HLIN P, 39 - P AT 39 - P
141/J VLIN P, 39 - P AT P

163
•••

MICROSOFT BASIC USING THE SOFTCARD

145 VLIN P, 39 - P AT 39 - P
100 IF COLOR = 15 THEN COLOR = 0

ELSE COLOR = COLOR + 1
190 NEXT P

Program 11-2. Drawing boxes of many colors.

Figure 11-2. Execution of Program 11-2.

We can easily add motion to this demonstration by drawing the screen
over and over again. We must be sure that the color keeps changing. We
could just put in a new line 195 GOTO 110. Or we might enclose the
whole routine in a FOR loop to repeat the pattern a fixed number of times.

Note that CTRL-S also stops graphics output. Sometimes it is useful
to stop the figure as it progresses, giving us an opportunity to study our
programs .

• • • • SU?t!M.AB.Y
With five BASIC keywords, we control the Lo-Res graphics screen. GR
prepares the screen for us. GR 0 gives us the 40-by-40 mixed graphics and
text screen, while GR 1 invokes the full 40-by-48 graphics screen. Fur
ther, GR S, C may be used to clear the screen to color number C. We may
set one of 16 colors in the range O to 15 by assigning the desired value to
COLOR. We plot points with the PLOT statement. Lines are easy to draw
with HLIN and VLIN. The rows are numbered from 0 to 39 beginning at
the top of the screen. The columns are numbered from 0 to 39 beginning at
the left edge of the screen. For full-screen graphics the rows are numbered
0 to 47. We restore the text screen with TEXT.

164
•••

LO-RES GRAPmcs

Problems for Sec'tion 11-1
A few problems are offered here to get you going in your experimentation
with graphics. Don't limit yourself. Try new things. You can't damage the
computer with a BASIC program.

1. Change Program 11-2 so that the boxes get larger instead of
smaller.

a. Change Program 11-2 so that a COLOR is selected at random in
stead of in sequence.

B. Change Program 11-2 so that the COLOR is selected at random for
each line drawn.

4. Write a program to select a COLOR, an X-coordinate, and a
Y-coordinate at random. Plot the selected point in the selected
COLOR. Have the program repeat this without end. (CTRL-C gets
you out.)

8. Write a program to simulate stars blinking in the sky. Randomly
set COLOR to either 0 or 15. You'll want more O's than 15's. Ran
domly select coordinates in a portion of the screen (try 10 by 10 in
the upper left corner). It will be a little more realistic if you select
only odd or even coordinate values.

8. Write a program to draw a bar graph picturing the following tem
peratures for a nine-day period:

DAY DK•
1 30
2 27
3 26
4 31
5 26
6 30
7 38
8 36
9 34

11-a& Graphic Bxample

It is easy to program a computer to simulate the roll of a die and display a
numeric result. Now that we know about Lo-Res graphics, let's also dis
play a realistic picture of a die. It will be surprisingly easy to do. Re
member that we can assign colors, plot small blocks, and draw lines.
Meanwhile, let's concentrate on the nature of a picture of one face of a die.

Think of drawing the siX possible faces of a die on ordinary graph
paper. This can be done nicely if we use a rectangle five blocks wide and
seven blocks high. Our drawing on graph paper will be distorted. But

168
•••

MICROSOFT BASIC USING THE SOFTCARD

when we get to the graphics screen the result will be more nearly square
because the graphics blocks are wider than they are high. We come up
with the sketch of Figure 11-3.

• • • • • • • •
• • • • •

• • • • • • • •

Figure 11-3. The six dice.

Now the computer problem separates into two parts. First, we need
the die background. And second, we need six different configurations for
the dots in some contrasting color.

The five BASIC keywords GR, COLOR, PLOT, HLIN, and VLIN are
all we need to do wondrous things on the graphics screen. We can now
plan how to apply them to draw a die. Let's first draw the "l" face of a
white die. We need to tum on graphics, set COLOR to white, draw 5
vertical lines 7 blocks high, set COLOR to black, and PLOT a block in the
middle of the 5-by-7 rectangle. Program 11-3 draws a "l" near the upper
left comer of the screen:

98 REM ** The "l • face on a die
101i!J GR IZJ
llli!J COLOR = 15
121ZJ FOR X = l TO 5
131ZJ VLIN 1, 7 AT x 'Plot background
lSIZJ NEJCI' X
161ZJ COLOR = IZJ
l 71i!J PLOT 3, 4 'Plot dot
181i!J END

Program 11-3. Draw the "1" face of a die.

Note that it would be equally correct to draw 7 HLINs 5 blocks wide. We
simply chose the scheme that resulted in the fewer number of statements
to execute. Program 11-3 executed line 130 only five times. Now see
Figure 11-4. That is pretty nice. How do we get a "3"? Simply add the
following two statements and run the new program:

165 PLOT 2, 2
175 PLOT 4, 6

After we have had a chance to study the graphics screen, we can type
TEXT to clear it. Looking at Figure 11-3 we see that the seven positions on

166 •••

LO-RES GRAPmcs

Figure 11-4. Execution of Program 11-3.

the face of the die where a dot may appear are 2,2; 2,4; 2,6; 3,4; 4,2; 4,4;
and 4,6. By properly selecting from among these seven, we may draw any
of the six faces.

Problems for section 11-2
1. Write a program to display a die showing the "6" face in the upper

right corner of the screen.
a. Write a program to display a pair of dice-one showing a "l" and

the other showing a "3".

11-3 ... Divide and Conquer (More Dice)

Once we have written the code to display a die of a particular color having
a particular face value in a particular place, it is hard to be inspired to
write new code to display that same die in another location or another
color. And it is even less exciting to consider displaying five dice this way.
When we find ourselves writing routine after routine, each of which is
only a slight variation of another routine, programming becomes tedious.
It doesn't have to be that way. The more experience we gain in program
ming, the more opportunity we will have to utilize what we have already
done. Often a current problem is only a slight variation of an old, already
solved, one.

167
•••

MICROSOFT BABIC USING THE SOFTCARD

If we want to display a green die and then a pink die in the same
location, the only thing that changes is the color. Clearly, it is a nuisance
to duplicate the code that does the actual graphing. Subroutines will help
us tremendously here.

For our green-die-followed-by-pink-die problem we need to have the
program pause between the two displays. Otherwise, things will happen
so quickly that we will not see the first die. This pause can be accom
plished with a time-waster FOR . . . NEXT loop that does nothing else,
The problem is solved in seven easy steps as follows:

1. Enable graphics mode.
a. Set green color.
8. Display the die.
4. Waste some time.
s. Set pink color.
8. Display the· die.
T. End.

Once again, we have the control routine of a new program. Let's look
at it. See Program 11-4a.

100 GR 9, 9 'Enable graphics mode.
119 COI.OR = 12 'Set green color.
129 GOSUB 1909 'Display the die.

-•>159 . FOR X = 1 TO 1500 : NEJCr X
'Waste sane time.

16" COLOR • 11 'Set pink color.
179 GOSUB 1900 'Display the die.

->190 END 'End.

Program l l-4a. The control segment qf a die-drawing program.

We think of
GOSUB. 1909 .

as "display a die" with,out having to think about the actual BASIC state
ments required to do the display. Look at 150. That is our delay loop. For a
longer delay, use a value larger than 1500. Without a delay, we would not
even see the first die because it would be so quickly replaced with the
second die.

The display routine is very easy. We may simply select those state
ments from our earlier die-drawing program and use appropriate line
numbers. We may concentrate on the display without having to think
about other parts of the program. See Program 11-4b.

998 Rl!M **Display a 111 11 die
1000 FOR x = 1 TO 5
1819 VLIN 1, 7 AT x 'P1ot background
1028 NEXl' x
1030 COLOR = 9

188
•••

LO-RES GRAPmcs

lf/J41 PLOT 3, 4
18911J RETURN

'Plot dot

Program 11-4b. Subroutine to display a "1" die.

Programs 11-4a and 11-4b together make up a complete program to dis
play the "1" die 1n two different colors with a brief delay in between. This
is difficult to show on the printed page, so you will have to run it yourself.

Wouldn't it be nice to be able to display a die anywhere on the screen?
This is easy with subroutines. All we need is to send values to our subrou
tine that specify where a comer of the die is to be. Using X and Y as the
horizontal an:CI vertical positions of the upper left comer of the die, we get
the following subroutine to display the "l" anywhere on the screen.

998 REM ** Display a •1 • die
ll/J80 FCR 19 • 0 'l'O 4
11/JH VLIN Y, Y + 6 AT X + 19
1021/J NEJa' 19
ll/J30 COLOR = llJ
1040 PLOT X + 2, Y + 3
1"90 Rf:l'URN

Program 11-5. Drawing a "l" anywhere on the screen.

However, we mus.t ensure that the values of X and Y place the entire die
within the 40-by-40 graphics screen. That means that X may range from 0
to 35 and that Y is limited to values from 0 to 33 for our 5-by-7 die face.

Now the final piece of the puzzle will fit into place as soon as we write
six subroutines, one for each of the six possible faces of a die. Numbering
the first lines 1100, 1200, and so on to 1600 Will help to identify the
purpose of each subroutine.

1098 REM ** Plot one
11011J PLOT X + 2, Y + 3
11911J RETURN
1196 I

1198 REM ** Plot two
12011J PLOT X + 1, Y + 1
1211/J PLOT X + 3, Y + 5
1291/J Rf:l'URN

•

1598 REM ** Plot six
1611JllJ PLOT X + 1, Y + 1
1610 PLOT X + l, Y + 3
1628 PLOT X + 1, Y + 5
16311J PLOT X + 3, Y + 1
16411J PIPT x + 3, Y + 3
1651/J PLOT X + 3, Y + 5
1691/J RETURN

169 •••

MICROSOFT BASIC USING THE SOFTCARD

Now we may remove lines 1030 and 1040 from our die-display subrou
tine. This leaves us witH. a very simple subroutine that will serve two
functions for us: it will draw a die background and it may be used to erase
a die from the screen.

998 REM ** Display a die background
10111111 FOR I9 = Ill TO 4
11111111 VLIN Y, Y + 6 AT X + I9
11112111 NEXl' I9
109111 RETURN

The display separates nicely into showing the background and plotting
the spots. These two functions are now done with distinct subroutines.
GOSUB 1000 displays the background. GOSUB 1100 through GOSUB
1600 may be used to display 1through6 spots on the die. The selection of
one of these six subroutines is easily done with the ON . . . GOSUB
statement.

2111111 ON R GOSUB 1111JllJ,1211JllJ,1311JllJ,1411JllJ,1511JllJ,1611JllJ

where R is the value for this roll of a die does it all for us. We caii set the
colors independently. Once a die has been drawn on the screen, we can set
the color to 0 and call upon the background-display routine to erase the
die, spots and all.

Problems for Section 11·8
1. Write a program to display a die face showing a "5" in the upper

right comer of the graphics. screen.
a. Write a program to display a random die face in the upper left

comer of the screen.
8. Display a random die face, leave it for a few seconds, and then

erase it.
4. Display two dice at random next to each other in the lower left

comer.
8. Write a program to display a blinking die. Let it blink 10 times,

then leave the display on the screen.
8. Display a few dice at random in random locations on the screen to

simulate physically rolling the dice. Then display a pair of dice at
random and leave them on the screen.

170
•••

LO-RES GRAPHICS

smBLIGBT 11

Miscellaneous Aids to Graphics

•••• GBT
GET may be used to accept a single character from the keyboard without
any display on the screen. This is just what we need for full-screen Lo-Res
graphics. GET waits until a character is struck before BASIC will proceed
to the next program statement. This distinguishes GET from INKEY$.
GET waits; INKEY$ does not wait. The only escape from a GET seems to
be to hit the RESET key. If we enter CTRL-C, it is entered into our string
variable. So, be a little careful about endless loops with GET.

INKEY$ is a function, but GET is a statement. It looks like this:
220 GET A$

If we use GET with a numeric variable, BASIC will think we are acces
sing a random-access file buffer .

•••. BBBP
With invisible keyboard interaction, it is sometimes nice to give the user
some feedback in the form of sounds.

see BEEP A, B

causes the Apple to emit a tone whose pitch is governed by A and that
lasts for a time dependent on B. Both A and B range from 0 to 255 (zero is
high pitch and short time). So a statement such as

250 BEEP ASC(A$), ASC(A$)

would change both according to the key pressed in our earlier GET state
ment.

Sometimes we need responses of more than one character. We can put
INKEY$ or GET A$ in a loop and build up a string from individual charac
ters. Another option exists in BASIC .

•••• JllPUT$
INPUT$ can be used to request a specified number of characters from the
keyboard without displaying the input.

528 A$ = INPUT$(2)

will wait until two characters have been entered and store them in A$.
CTRL-C halts execution.

171 •••

MICROSOFT BASIC USING THE SOFTCARD

•.. . External Terminal
Here is an option that helps us in a lot of situations. The SoftCard CP/M
system provides for an external terminal. Now we can have upper/
lowercase, SO-character lines, and graphics all in one operation. We do
need a suitable communications interface card in SLOT #3 and a con
necting cable to do this, but it is worthwhile for many applications.

With the external terminal we get both Lo- and Hi-Res graphics as
well as a full screen of text at the same time. The SoftCard documentation
provides full details for setting up a system in this way .

•••• SCBR'
We might get into a situation where we would like our program to be able
to distinguish the colors on the Lo-Res screen. We can easily do it with the
SCRN function.

200 C = SCRN{X,Y)

returns the color of the block at position (X, Y) of the graphics screen.
Values outside the range 0 to 39 for X and outside the range 0 to 4 7 for Y
will evoke the

Illegal function call

error message. SCRN will return values for the text screen, but they are
related to characters rather than to colors.

172
•••

Chapter 12

Hi-Res
Graphics

We saw in Chapter 11 that we could convert the screen into a graphics
area containing up to 1920 little blocks. We could select from among 16
colors for each and every block individually.

Hi-Res graphics provides more dots and fewer colors. We can easily
plot in a graphics area of 44,800 dots. We will also have four lines at the
bottom of the screen for standard text display. If we do not require those
four text lines, we can create a graphics screen of 53, 760 dots. Instead of
16 colors we have 6 in Hi-Res.

12·1 ... Introduction "to Hi-B.es Graphics

There are just four commands for controlling the Hi-Res screen: HGR,
HCOLOR, HPLOT, and TEXT. Hi-Res graphics is available in GBASIC
only. A great deal of memory is required to work with Hi-Res graphics. So
there is less memory available for program use in GBASIC. Any attempt to
use HGR, HCOLOR, or HPLOT in MBASIC will be rewarded with the

Graphics statement not implemented

error message. Let's look at them all before we attempt to write our first
program .

• • . . The Bi·Bes Graphics Screen (KGB.)
The statement

100 HGR

173
•••

:MICROSOFT BASIC USING THE SOFTCARD

prepares the computer for Hi-Res graphics work. When this statement is
executed, the screen is divided into two parts. The top part is organized
into 280 columns and.160 rows. This gives us the 44,800 dots mentioned
earlier. The remainder of the screen is reserved for four lines of regular
text display. Each dot in the graphics area is identified by its column and
row. The columns are numbered from 0 to 279 going from left to right.
The rows are numbered from Oto 159 going from top to bottom. This is not
the same as the conventional rectangular coordinate system widely used
in mathematics, but this difference presents no great obstacle. The dot in
the upper left corner is labeled (0,0). The dot in the lower right corner is

.labeled (279,159). The computer is restoJ"ed to the conventional full text
screen with the TEXT statement. Since TEXT immediately restores the
text screen we will often code a little delay loop to allow time for the
viewer to examine our handiwork.

There's more. Sometimes we may want to bring back something we
drew earlier on the Hi-Res screen. We can do that with a value in the HGR
statement.

189 HGR.2

does it for us. HGR 3 also restores any previous plotting. The difference
between 2 and 3 is that 3 uses the four-line text window for graphics and 2
dQes not. This gives us the 53, 760 dots mentioned earlier.

Think about that. We can restore a graphics screen. That means the
screen was there all the time. TEXT simply allows us to look at the text
screen. The text screen occupies a different portion of computer memory
than the Hi-Res screen. Thus, when we use the TEXT command we see
whatever was on the text screen before plus any text interaction that has
taken place.

In fact~ there are four values we may use to implement the Hi-Res
screen. The values 0 through 3 represent different graphics modes. See
Table 12-1.

IOUBll KODB
0
1
2
3

.AO~IOll

mixed graphics and 4-line text
full-screen graphics
mixed graphics and 4-line text
full-screen graphics

Table 12-1. Hi-Res screen values availabl.e in HGR.

clear the screen
clear the screen
no clear
no cleai:

Screens 1 and 3 use the full screen for graphics. This permits us to plot
points in the range from 0 to 191 vertically. Thus the lower right corner
becomes (279,191). In addition, for screens Oand 1 we may specify a color
value. The screen will be filled with the color we specify.

120 HGR 0, 5

174
•••

m-RES GRAPmcs

clears the screen to orange and leaves four lines for text. Note that the
cursor is not automatically moved into the text window as it is for Lo-Res.
We need VTAB for that. VTAB A places the cursor at the beginning of the
Ath line of the text screen. The lines are numbered 1 to 24. So we need
VTAB 21 .

• • . . Bi-Bes Colors (BCOLOB.)
Even if we are working with a black-and-white monitor, we will have to
pay attention to color. HGR presents us with the screen color of our
choice. Further plotting is done in the same color as the screen. If we don't
change the plotting color then our drawings will be invisible. We set the
Hi-Res color with ff COLOR. We may use values in the range 0 to 12 with
12 causing the color to be the reverse of the color already on the screen.
Thus, green and violet are exchanged, as are orange and blue. Similarly
the whites and blacks replace each other. Drawing twice with HCOLOR
set to 12 restores the original colors. The color names are shown in Table
12-2.

0 black 4 black 8 black! 12 reverse
1 green 5 orange 9 white!
2 violet 6 blue 10 black2
3 white 7 white 11 white2
Table 12-2. Hi-Res color values.

The statement
120 HCOI.OR = 1

will set the ~-resolution graphics color to green .

. • • . Plotting Dots (BPLO~)
The statement

150 HPLOT X, Y

will plot a dot at (X, Y) on the high-resolution graphics screen. The color
used will be the last Hi-Res color set using HCOLOR. See Program 12-1.

100 HGR
110 HCOI.OR = 3
120 HPLOT 0, 0
130 HPLOT 0, 159
14QJ HPLOT 279, 159
150 HPLOT 279, 0

Program 12-1. Plot dots in the four earners.

Program 12-1 will place a white dot in each of the four comers of the
graphics screen. At least that is what we would think. It turns out that
there are some limits on what colors may be plotted where. A white dot

178 •••

MICROSOFT BABIC USING THE SOFTCARD

plotted in an odd-numbered column is really green (that is, if we select
HCOLOR = 3) and a white dot plotted in an even-numbered column is
really violet. For HCOLOR = 7 an odd column produces orange, while an
even column plots as blue. Don't despair: we can easily produce white
dots by plotting two dots next to each other, or by using colors 9 and 11.
Now our dots will be wider, but they will be white. HCOLORs other than
3 and 7 do not exhibit this problem. We might want to change our program
as shown in Program 12-2.

11'/Jl'/J HGR
110 HCOLOR = 11
120 HPLOT 0, l'/J

131'/J HPLOT l'/J, 159
141'/J HPLOT 279, 159
151'/J HPLOT 279, l'/J

Program 12-2. Plot dots in the four corners (white this time) .

•••• Lines in Hi-B.es (BPLOT • •• TO)
There is no HLIN or VLIN statement in Hi-Res graphics. Instead we have
a powerful extension of the HPLOT statement.

11'/Jl'/J HPLOT X, Y TO Xl, Yl

plots a line going from X,Y to Xl,Yl. This is much more flexible than
HLIN or VLIN. HP LOT. . • TO may be used for horizontal, vertical, and
diagonal lines. We can easily extend Program 12-2 to place a nice border
around the graphics screen. See Program 12-3.

11'/Jl'/J HGR
110 HCOLOR = 11
120 HPLOT 0, l'/J TO l'/J, 159
130 HPLOT l'/J, 159 TO 279, 159
141'/J HPLOT 279, 159 TO 279, 0
150 HPLOT 279, 0 TO l'/J, l'/J

Program 12-3. HPLOTting a border on the Hi-Res screen.

It is often desirable to have a border around a graphics display. So let's
write a subroutine to do that right now. We could write the four state
ments from 120 to 150 from Program 12-3 as a single line by using three
colons to create a multiple statement. However, HPLOT allows us to
include multiple TOs. See Program 12-4.

598 REM ** Plot a border
600 HPLOT l'IJ, 0 TO 0, 159 TO 279, 159 TO 279,·0 TO 0, 0
691'/J lml'URN

Program 12-4. Subroutine to plot a border.

From now on we can use GOSUB 600 as calling for a Hi-Res border in the
currently active HCOLOR. For HCOLORs 3 and 7 we would need to add a

176
•••

m-RES GRAPmcs

vertical line at the left and right edges of the screen. The ability to con
tinue plotting with multiple TOs is very nice.

HPLOT has one additional feature. Once a point has been plotted we
can continue plotting in the same color with

HPLOT TO X, Y

This is useful for plotting in a "dot-to-dot" style.
So there we have it. HGR, HCOLOR, HPLOT, and TEXT give us

tremendous power to draw figures on the Hi-Res graphics screen. When
plotting white using HCOLOR 3 or 7 we must plot two horizontally adja
cent dots to really get white.

For demonstration purposes let's write a program to display the Hi-Res
colors. We need the usual HGR to prepare the graphics screen. Next we
should label the colors. This can be done by displaying the color number
just beneath each vertical color bar. In order to do this we have to prepare
the four-line text window. In Lo-Res mode HOME clears only the bottom
four lines. In Hi-Res graphics HOME clears the entire 24-line text screen.
So now the cursor is hidden in the upper left corner of the text screen.
Only the last four lines of the text screen are visible below the upper 160
lines of the Hi-Res graphics screen. As we noted earlier, VTAB 21 places
the cursor at the first line of the window. We get a white border by setting
HCOLOR to 11 and calling our border-plotting subroutine at 600. Next,
for each color, we simply calculate some nice spacing and plot vertical
bars. See Program 12-5.

90 REM ** Display hi-res colors
11/Jl/J HGR
ll/J6 :
11/JB REM ** Prepare text window
111/J HCME : VTAB 21
116 :
118 REM ** White border
121/J HCOLOR = 11 : GOSUB 61/Jl/J
166 :
168 REM ** Colors l/J thru 11
1 70 PRINT II 11 7
1812J FOR C = l/J TO 11
185 HTAB 3*C + 2 : PRINT Cr
190 HCOLOR = C

-->21/Jl/J B = 2l*C + 12
-->211/J FOR X = 1 TO 12

221/J HPLOT x + a, 5 TO x + a, 154
231/J NEJCl' x
251/J NEJCl' c
31/JeJ PRINT
321/J HTAB 14 : PRINT "Hi-res colors"
590 END
596 :
598 REM ** Plot a border

I
/

177 •••

MICROSOFT BASIC USING THE SOFTCARD

600 HPLOT 0,0 TO 0,159 TO 279,159 TO 279,0 TO 0,0
690 RETURN

Program 12-5. Display Hi-Res colors.

Line 200 simply calculates a starting point for each color bar. Line 210
sets up a FOR loop to plot bars 12 dots wide.

Color Key:

0 E:=i Black

1 ~Green
2~Violet

3 .. White

4~Black

5~0range

6 ::::::::::::: B I u e

7 .. White

Figure 12-1. Executian of Program 12-5 .

•••• SUMM.AB.Y

sc=i Black

9 .. Whitc

10 C=:J Black

11 .. White

In Hi-Res graphics we have the tools to draw dots and lines in six colors.
Values positioning points on the screen may range from 0 to 279 horizon
tally and 0 to 191 vertically.

We set up the screen with HGR. We may recall the most recent draw
ing or not, and w~ may access four text lines or not.

HCOLOR allows us to assign color values in the range 0 to 12. This
gives us black, white, green, violet, orange, and blue.

178
•••

m-REB GRAPHICS

With HPLOT we can plot dots or lines. HPLOT with TO is used to plot
one line, plot several connected lines, or draw a line from the most re
cently plotted point.

Problems for Seatlon 18-1
1. Modify the border-plotting subroutine of Program 12-4 so that it

may also be used to plot a border around the full graphics screen.
Require that the calling routine set the bottom edge by setting a
variable to either 159 or 191.

a. Draw a bar graph picturing the following daily high temperatures
for a one-week period.

DA"I' DM•
Sun 42
Mon 38
Tue 40
Wed 31
Thu 24
Fri 18
Sat 15

8. Draw a bar graph using two colors tQ represent the following daily
high and low temperatures for a week.

DA"I'
·Sun

Mon
Tue
Wed
Thu
Fri
Sat

BIGB
100
101
94
97
88
93
84

LOW
76
77
71
82
70
71
70

6. Draw a ~Taph to show the following fluctuation in stock price for a
five-day period.

DAY llBICll
Mon 33-3/4
Tue 35-118
Wed 35
Thur . 36-1/4
Fri 37-7/8

8. Use the data for problem 3 to draw a line graph with one line for
high temperature and another for low temperature.

179 •••

MICROSOFT BABIC USING THE SOFTCARD

18-8A Graphics Example
Now that we have the fundamentals we can work on making a draw
ing on the screen. We can simply code a series of HPLOT statements to
draw lines and dots on the screen. Then, to add a line, we add an HPLOT
statement. To remove a line, we remove an HPLOT statement. Using
this method each new drawing is a new program.

A different approach is to write a little routine that HPLOTs lines
using data stored in DATA statements. We can completely specify any line
and any HCOLOR with five numbers-one for the color and two for each
end of the line. To plot a single dot, simply make both ends of the line the
same point. This makes the plotting routine very simple indeed. Once we
perfect it, we may use it for any other drawing by simply changing the
DATA. It is easy to terminate plotting by looking for a color value of -1.
See Program 12-6.

198 REM ** Line plotting routine
200 READ C,X,Y,Xl,Yl
210 IF C = -1 THEN 290
220 HCOLOR = C
230 HPLOT X, Y TO Xl, Yl
240 Gal'O 200
290 RETURN

Program 12-6. Plot drawings from DATA.

Program 12-6 is surprisingly short and simple. It is always very nice to
come upon a short routine that does so much. This routine assumes that
the Hi-Res graphics screen has been prepared. The real work in this draw
ing business is producing the data.

Just for fun let's draw a traffic light at an intersection of two roads. We
should do the drawing on cross-section paper so that we can easily read
the (X, Y) coordinates for each end of each straight line in the drawing. See
Figure 12-2 on the bottom of the following page. The first three lines are
numbered as examples in Figure 12-2. Line 1 is represented by the data
11, 100,20, 145,60. Line 2 is represented by the data 11, 162, 75,250, 153.
And line 3 is represented by the data 11,60, 17, 125, 75. In a similar fash
ion we obtain the rest of the data shown in Program 12-7a. It is a good idea
to insert REMs to separate the data into sensible groups.

100 HGR 1
110 GOSUB 200
190 END
196 I

198 REM ** Line plotting routine
200 READ C,X,Y,Xl,Yl
210 IF C = -1 THEN 290
220 HCOLOR = C

180
•••

m-REB GRAPmcs

23s BPL0'1' x, Y TO XI., n
248 001'0 200
29" RETURN
996 •
998
999
lOOt/J
lt/Jt/12
ltllt/14
1116
1BB8
lilt/I
1112
1114
1138

• lt/148
1142
lt/144
1146
1148
1151
1991

REM ** Line data
REM ** The road
DATA ll,100,2B,145,6t/J
DATA 11,162,75,251,153
DATA 11,61,17,125,75
DATA ll,142,9tll,21B,151
DATA 11,200,19,145,61
DATA 11,125,75,SB,119
DATA 11,245,14,162,76
DATA 11,142,9",SB,137
REM ** The light standard
DATA 11,148,ltll,lSB,lB
DATA ll,lSB,lB,151,48
DATA 11,151,48,148,48
DATA 11,148,48,148,lB
DATA 11,145,48,145,55
DATA 11,145,48,148,55
DATA -1,ra,ra,s,ra

Program 12-7a. Draw a troJJic light using data and Hi-Res •

IlJilI

0,0 ··11-. . .

• •lli '"'
• •WJ..lil.IJ.lJ.i

WJ
. ill! 80,0

.... -!

· 1(60, 17) • (100,20) .mm 1 · . I ·Line1 ·
. . . ·~ • ·~·· ..
Line3 ~ · ·

. . : : : : (1~;6B,
. . . . (125,75) ••. . 162,75 .

~ - ...

§!§

El"" """" . Ill . t:1t:1 •

i-••••

: . (142,90) .. ;Line

• • !1lilIIl
• • :ill!IIli

·2so:·1w~
! '

0,160 ! ••• . 280,160
•llllllilill

Figure 12-2. Drawing of a troJJic light on cross-section paper.

181 •••

MICROSOFT BASIC USING THE SOFTCARD

Figure 12-3. Executian of Program 12-7a.

Well, this is a good start. But we certainly ought to put in the
three lights. Let's develop a routine to draw a circle of any size anywhere
on the screen. Then we can place three of them in our traffic light. We can
draw circles using the Pythagorean theorem or we might use sines and
cosines. Let's use the Pythagorean theorem now.

The Pythagorean theorem says that for any point (X,Y) on a circle of
radius R we have

x2 + y2 = n2

Refer to Figure 12-4 on the following page.
So we can get points on a circle by solving for Y and calculating values

for a range of values of X.

Y = vn2 - x2

In order to graph the whole circle we should use both the positive and
negative square roots for Y and use both positive and negative values for
X. Let's draw a circle of radius 10 centered at the point (70,80). In order to
make this as versatile as possible, let's use variables for the radius and the
coordinates of the center of the circle. Consider Program 12-7b.

90 REM ** Draw a circle
100 HGR l
170 HCOIDR a 3 : R z 10
100 XO a 70 : YO • 80
300 FOR X :a -R TO R STEP .4
310 y :a SQR(R4 2 - XA2)

182
•••

HI-RES GRAPHICS

320 HPLOT XO + X, YO + Y
330 HPLOT XO + X, YO - Y
340 NEXl' x
Program 12-8. Draw a circle for the traffic light.

x2 + y2 = R2

Figure 124. Coordinates on a circle.

Figure 12-5. Our first circle in Hi-Res.

183
•••

MICROSOFT BABIC USING THE SOFTCARD

It would be a good idea to type this program in and experiment with
different increments in the FOR loop and different sized circles at differ
ent places on the screen. The greater the increment for X the faster the
drawing goes and vice versa. Of course, if we use too large an increment
then we have large gaps in the figure. (See Figure 12-5 on page 183.)

Now we are ready to incorporate our circle-drawing code into our
traffic light program. It needs to be a subroutine. That is easy, just add
390 RETURN.

399 FOR X = -R TO R STEP .4
310 y = SOR(RA2 - XA2)
320 HPLOT XO + X, 'YO + Y
330 HPLOT XO + X, 'YO - Y
340 NEJCl' x
390 RE1'URN

Program 12-7b. Circle-drawing subroutine.

Looking again at our drawing of the traffic light we can easily decide to
center the three lights at (145,15), (145,25), and (145,35). The routine to
control this appears as Program 12-7c.

398 Rl'M ** Display the three lights
400 HCOI.DR = 11 : R = 3
410 XO = 145 : 'YO = 15 a GOSUB 300
420 'YO = 25 a GOSUB 300
430 'YO = 35 a GOSUB 300
490 RE1'URN

Program 12-7c. The three lights.

You will have to type this one in, too, to get a feel for the result. Now if we
just had red, yellow, and green as Hi-Res colors we could go the distance.
Let's just settle for a blinking "yellow" light. Using orange will be area
sonable compromise. We can put in little delay loops to make it realistic.
Again we do this with subroutines. We control the blinking light with
Program 12-7d, while the actual light appears in Program 12-7e.

498 RFM ** Blinking "yellow"
500 XO = 145 : 'YO = 25
510 FOR T = 1 TO 30
520 HCOIDR = 10 : GOSUB 600
525 FOR 19 = 1 TO 100 : NIDCI' 19
530 HCOI.DR = 5 : GOSUB 600
535 FOR 19 = 1 TO 500 : NIDCI' 19
580 NEXI' T
590 REI'URN

Program 12-7d. Control the blinking light.

184
•••

fil-RES GRAPHICS

598 ru:M ** Display the-actual light
600 FOR 19 = -1 TO 1
610 HPLOT XO - 1, YO + 19 TO XO + 1, Y9 + I9
620 NEJCI' 19
690 RETURN

Program 12-7e. The blinking traffic light.

This completes a sketch of a traffic light at an intersection of two roads.

100 HGR 1
110 GOSUB 200
120 GOSUB 400
130 GOSUB 500
190 -END
196
198 m:M ** Line plotting routine
200 RFAD C,X,Y,Xl,Yl
210 IF C = -1 THEN 290
220 HCOLOR = C
230 HPLOT X, Y TO Xl, n
240 GOTO 200
290 RETURN
296 I

298 m:M ** A circle
300 FOR X = - R TO R STEP .4
310 Y = SQR(R~2 - X~2)
320 HPLOT XO + X, YO + Y
330 HPLOT XO + X, YO - Y
340 NEJCl' x
390 RErURN
396
398 ru:M ** Display the three lights
400 HCOLOR = 11 : R = 3
410 XO = 145 YO = 15 : GOSUB 300
420 YO = 25 GOSUB 300
430 YO = 35 : GOSUB 300
490 RETURN
496
498 ru:M ** Blinking "yellow''
500 XO = 145 : YO = 25
510 FOR T = 1 TO 30
520 HCOIDR = 10 : GOSUB 600
525 FOR 19 = 1 TO 100 : NEJCI' I9
530 HCOLOR = 5 : GOSUB 600
535 FOR I9 = 1 TO 500 : NEJCl' 19
580 NEJCI' T
590 RErURN
596 :
598 ru:M ** Display the actual light
600 FOR I9 = -1 TO 1
610 HPLOT XO - 1, YO + I9 TO XO + 1, Y9 + I9
620 NEJCI' 19
690 RETURN

188
•••

MICROSOFT BASIC USING THE SOFTCARD

996 :
998
999
1000
1002
1004
1006
1008
1010
1012
1014
1038
1040
1042
1044
1046
1048
1050
1990

REM ** Line data
REM ** The road
DATA ll,100,20,145,60
DATA 11,162,75,250,153
DATA 11,60,17,125,75
DATA 11,142,90,210,151
DATA 11,200,19,145,60
DATA 11,125,75,80,109
DATA 11,245,14,162,76
DATA 11,142,90,80,137
REM ** The light standard
DATA 11,140,10,150,10
DATA 11,150,10,150,40
DATA 11,150,40,140,40
DATA 11,140,40,140,10
DATA 11,145,40,145,55
DATA 11,145,40,148,55
DATA -1,0,0,0,0

Program 12-7. The completed traffic light program.

There is always room for improvement. Program 12-7 can draw only
one traffic light of one size at one spot on the screen. We might convert the
data so that every point is calculated in terms of a single starting point.
Then we will be able to move the traffic light to any point that keeps the
entire figure on the screen. Maybe we could draw cars racing around the
screen. Our border-drawing subroutine could be used to nicely frame our
picture. We could determine the data for many figures and save it in data
files on disk. Then we will ha11e a whole library of :figures to use for later
graphics applications. The possibilities are truly unlimited.

We have presented an introductory treatment of :figures in Hi-Res. A
great deal can be done with the tools available in BASIC. However, to
produce high-speed action with collisions and explosions, programmers
often resort to assembly language programming .

•••• SUMM.AllY
Just four BASIC keywords open the way to very powerful Hi-Res color
graphics. HGR 0 gives us a screen with 280 columns and 160 rows. HGR 1
activates an additional 32 rows at the bottom of the screen. Colors in the
range from 0 to 12 are available with HCOLOR. In order. to get white we
must plot the points (X, Y) and (X + 1, Y). Violet and blue appear only in
even-numbered columns, while green and orange may be plotted only in
odd-numbered columns. HPLOT . . . TO plots single points or line seg
ments in any orientation. We restore the text 8Creen with the TEXT
statement. We have developed a routine that allows us to specify a draw
ing in terms of a collection of line segments. For each segment we need
only supply the color and the endpoints.

186 •••

m-BES GRAPHICS

Problems for Section 18·8
The possibilities for drawing figures on the screen are literally unlimited.
We can only begin to make some suggestions leading you into problems of
interest. Let your imagination plunge you into exciting graphics demon
strations.

1. Adjust the data in the traffic-light-drawing program so that each
set of data is calculated in terms of a fixed starting point. Using
(XO,YO) as (100,20), the first three data lines will be

111JS0 DATA 11,0,0,45,40
1005 DATA 11,62,55,150,133
1818 DATA 11,-48,-3,25,55

Now the control routine can select a variety of starting points and
draw the traffic light anywhere on the screen with just one plotting
subroutine.

a. Supply data to draw a sailboat on the screen using the plotting
routine of Program 12-7a.

8. Supply data to draw a simple TV set on the screen using the plot
ting routine of Program 12-7a.

4. Write a program that illustrates the raising of a flag on a flagpole.
Plotting the flagpole is straightforward. By successively plotting a
flag on ever-increasing heights of the pole, the flag will appear to be
raised. Note that you must erase the previous flag as you plot each
new one. This can be done by erasing only a section of the previous
flag.

18-:s ..• Hi-Bes Graphs from l'ormulas

Figures that can be described using a formula are easy to graph. There are
many examples from mathematics .

• • • . Cartesian Coordinates
Let's develop a method for adjusting the X and Y values in the conven
tional Cartesian coordinate system for plotting on the screen. We would
like to move the (0,0) point near the center of the screen and alter the
orientation for Y values so that they are increasing up instead of down.
Suppose we specify that the point (XO,YO) on the Hi-Res screen shall
represent the point (0,0) in a Cartesian system. Typically we might place
the origin of a graph near the center of the screen. So the point (XO, YO)
may often be (140,80). The X conversion is easy. We simply want to move
each plotted point to the right on the screen. The Y conversion requires

18'1 •••

MICROSOFT BABIC USING THE SOFTCARD

that we tum the graph "upside down." So the point

(Xl,Yl)

in the conventional Cartesian coordinate system becomes

(XO + Xl, YO - Yl)

on the Hi-Res screen.
It would be nice to plot the X and Y axes right on the screen. A very

simple subroutine will do this for us. Again, here we can plot the vertical
line two dots wide.

Plotting points that fit a formula is straightforward enough. For our
first graphs we might do just functions. This is a good application for a
DEFined function. We can start with the simplest of all functions:

y .. x
We define this function with

160 DEF FNF(X) • X

We need a subroutine that scans all possible values for X and determines
if the Y value is on the screen. If it is, then the routine should plot the
point. If not, then the routine should simply try the next X value. All of
this is done in Program 12-9.

90 REM ** Plot a function
100 HGR 0 : HOME
116 a
118 REM ** White border
120 HCOLOR = 11 : OOSUB 600
126 : .
128 REM ** Plot axes (still White)
130 GOSUB 700
146 :
148 REM ** Draw the graph
15f1J HCOLOR = 1 'Arbitrarily select green

-->16f1J DEF FNF(X) "" x 'Define the function
18f1J GOSUB 200 'Plot the function
190 END
196 :
198 REM ** Plot a function
200 FOR Xl = -138 TO 138
220 Yl = FNF(Xl) 'Use the function
230 X m 14f1J + Xl
24f1J Y m 80 - Yl
250 IF Y > 2 AND Y < 157 THEN HPLOT X, Y
270 NIDCl' Xl
290 RETURN
596 :
598 REM ** Plot a border

~->600 HPLOT flJ,0 TO 0,159 TO 279,159 TO 279,0 TO 0,0
690 RETURN
696 :

188
•••

ID-RES GRAPmcs

698 REM ** Plot axes for graphing
700 HPLOT 3,80 TO 276,80
710 HPLOT 140,3 TO 140,156
790 REl'URN

Program 12-9. Plot a functian in Hi-Res.

This program is set up for the mixed graphics-text screen. We could
easily convert the subroutines at lines 600 and 700 to plot for either full or
part screen using an SO value that could be 191 for full screen and 159 for
part screen. In addition we might want to move the axes so that the point
(0,0) is not in the exact center. As we discussed earlier this could be done
by passing (XO,YO) to the axes-plotting subroutine as the Hi-Res coordi·
nates of the (0,0) point for the Cartesian graph.

Figure 12-6. Executian of Program 12-9.

Now it is a very simple matter to replace line 160 of Program 12-9
with the function of our choice. With a little experimentation we can
prod,uce attractive displays without the tedium of arduous calculations.
Values of sine are in the range from - 1 to + 1, so we need to scale up to
get values that will show up nicely on the screen. We select a scale factor
of 50 to get an idea of what it looks like. Let's demonstrate this with

160 DEF FNF(X) • 50 * SIN(X/10)

Now let's do a circle with sine and cosine.
Referring to Figure 12-8 we see that the X distance from the center of

the circle is Rcos(G) and the Y distance is Rsin(G). Following our pattern

189
• • •

MICROSOFT BASIC USING THE SOFTCARD

Figure 12-7. Program 12-9 with sine function.

(x,y)

}--- y = Rsin(g)

x = Rcos(g)

Figure 12-8. Coordinates on a circle using sine and cosine.

190
•••

HI-RES GRAPHICS

for Cartesian coordinates again we get the screen coordinates of the point
(Rcos(G), Rsin(G)) as

(XO + R * COS(~), 'YO + R * SIN(G))

Finally, we obtain a range of points on a circle by rotating the angle G
through 211 radians (about 6.29) or 360 degrees. This is best done with a
FOR loop. We can experiment with the increment to get a smooth drawing
in a reasonable amount of time.

Let's start with a circle of radius 10 centered at the point (70, 70).
Consider Program 12-10.

90 R™ ** Draw a circle
100 HGR 0
150 R = 10
160 XO = 70 : 'YO = 70
170 HCOLOR = 11
300 FOR G = 0 TO 6. 28 STEP .2
310 Xl = R * COS(G)
320 Yl = R * SIN(G)
320 HPLOT XO + Xl, 'YO - Yl
340 NEJCl' G

Program 12-10. Draw a circle .

•••• SUJIMABY
We can plot a mathematical function by simply scanning the X-value
range on the Hi-Res screen and calculating each Y value. The program
needs to verify that each point is actually on the screen. By using a
DEFined function we have been able to write a generalized program to
display functions of our choice.

Problems for Section 12-3
. 1. We sometimes need to experiment with a function. Try to plot

2X3 - 2X2 + 3X - 5. It should be apparent that most of the Y
values are off the screen. We can scale the Y dimension down by
dividing the value of Y by a large number-say 100000. Try it.

8. Try X2 + SOX - 450. Divide by 100. Remembering that the scale is
distorted, we can gain a lot of insight into how a function performs.

8. Replace the circle-drawing routine in the traffic light of Program
12-7b with the circle-drawing routine of Program 12-10.

12-4 ... Polar Graphs

Polar equations often produce interesting graphs. One of the reasons we
don't draw many polar graphs by hand is that they take too much tedious

191
• • •

MICROSOFT BASIC USING THE SOFTCARD

calculation involving trigonometric functions. We can easily produce the
graphs without the tedium by using Hi-Res graphics and letting BASIC do
the calculations.

We may use

R = 1 - 2cos(G)

as an example equation. Using sines and cosines we get the X and Y
coordinates as follows:

X = Rcos(G)

and

Y = Rsin(G)

where G is the central angle in radians. To obtain a full graph the central
angle must sweep through a full 360 degrees or 217' radians, just as in
Program 12-10. We can get about 60 points by using STEP .1 in a FOR
• . . NEXT loop. Since the point (0,0) is in the comer of the Hi-Res screen
we need to adjust the starting point to keep the figure in view.

To make our figures as large as possible we can use HGR 1 to obtain
full-screen graphics. In this situation there is no text display, so after we
have had a chance to examine the graph, we will need to type TEXT "in
the blind" to get back the text screen and see our program. Now we have
to think about adjusting the X and Y values on the conventional Cartesian
coordinate system for plotting on the screen. This is exactly the same
conversion we carried out in Section 12-3. So the point (X9,Y9) in the
conventional Cartesian coordinate system becomes (XO + X9, YO - Y9)
on the Hi-Res screen. Where the point (XO,YO) defines the J:IOint on the
screen where we want the Cartesian point (0,0) to be located. Again we
have shifted to the right and turned the graph upside down.

It would be nice to display a polar axis right on the screen with the
graph. We can easily plot a line beginning at the point (0,0) and extending
to the right edge of the screen. Placing the polar axis on the screen will
clearly locate the graph for us.

Once we have a working program, it will be a simple matter to plug in
other equations. In this way we can look at dozens of graphs in the time it
would take to draw a single graph by hand. It is interesting to watch the
figures as they are formed on the screen. Drawing a polar graph by hand,
like typing a 100-page paper on a portable typewriter, is one of those things
everybody ought to do once in a lifetime.

Our program separates nicely into three packages: the control routine,
the polar-axis-plotting routine, and the graph-plotting routine. Let's work
on them in that order.

In the control routine we set up the full graphics screen with HGR 1.
Setting the color is easy. Next we define the X and Y axes and call the
polar-axis-plotting subroutine. Polar graphs plotted true size are usually

192
•••

HI-RES GRAPmcs

very small. So we should provide a scaling factor to produce a larger
graph. We define the radial scale in RS. In the actual plotting subroutine
we will be arranging for the central angle to range through a full rotation
of 21T radians. But we might· like to control the step size in the control
routine. Thus we set the value of ST here. Finally we call the plotting
subroutine. That is all there is to it. See Program 12-1 la.

98
100
110

-->120
130

->140
160
190

REM ** Cbntrol polar graphing
HGR 1
HCOLOR = 6
XO = 139 : YO = 95
GOSUB 1000 'Plot polar axis
RS = 45 : ST = .1
GOSUB 200 'Plot the graph
END

Program 12-lla. Control routine for polar graphing.

In Program 12-lla line 120 sets the axes as close to the center of the
screen as possible. Line 140 sets the radial scale at 45 and the step size
at .1.

The easy one is the polar-axis-plotting routine. All we do is HPLOT a
line from the point (XO, YO) to the right' edge of the screen. That takes one
statement. See Program 12-llb.

998 REM ** Plot polar axis
1000 HPLOT XO, YO TO 279, YO
1090 RETURN

Program 12-llb. Draw a polar axis.

Now let's look at the actual plotting subroutine. We need to provide for
the angle to sweep a full rotation. This is done with a FOR . . . NEXT
loop ranging from 0 to 6.29. The number of points we want plotted may
well depend on the size of the graph. We may want more points for larger
graphs. So we let the calling routine establish the STep size. We can then
experiment with each new equation until we get a nice graph. A large step
size will not give enough points of the graph; too small a step size will take
too long to plot~ See Program 12-llc.

198
200

-->210
-->220
-->230

240
250
290

REM ** Plot polar graph
FOR G = 0 TO 6. 29 STEP ST

Rl = 1 - 2 * COS(G)
R9 = RS * Rl
X9 = R9 * COS(G) a Y9 = R9 * SIN(G)
HPLOT XO + X9, YO - Y9

NEn'. G
REl'URN

Program 12-llc. Pol.ar-graph-plotting subroutine.

193
•••

MICROSOFT BASIC USING THE SOFTCARD

In Program 12-llc, the polar equation is defined in line 210, the scaling
factor is implemented in line 220, and the Cartesian X and Y values are
calculated in line 230. It will be a simple matter to change the polar
equation by changing line 210. We must be aware that other polar equa
tions may contain points that are off the screen. We can test for out-of
range values and skip the plotting for those points. Further, we must be
alert for equations that may cause BASIC to attempt to divide by zero. See
Figure 12-9 for a trial run of this program.

Figure 12-9. Execution of Program 12-lla,b,c.

Problems for Section 18-4•
1. We can easily plot a circle with our polar-equation-plotting pro

gram using the polar equation R = 1. Do this.
a .. There are lots of interesting polar graphs. Graph any of the fol-

lowing:

(a) R = 1 + 2cos(G) - 3sin(G)2

(b) R = 3 + sin(3G)
(c) R = 2 + sin(2G)
(d) R = sin(G) + cos(G)

:S. Many polar equations produce nice graphs, but they will cause our
polar-plotting program to fail. Some points will lie off the graphics
screen. Some values of G will cause division by zero. We can easily
test whether a point is on the screen between fines 230 and 240 of

194
•••

m-RES GR...\Pmcs

Program 12-1 lc. If a point is off the screen, don't plot it. If the
formula we enter at line 210 has an indicated division then we can
put in a test between lines 200 and 210. If the current value of G
would cause such a zero division, don't even execute line 210.
Adding these features will enable you to draw graphs for any of the
following:

(a) Rcos(G) = 1
(b) R = 1 + Rcos(G)
(c) R = tan(G)
(d) R = 2G (make the scale 1 and make Grange from -50

to 50)
(e) R = 2/G (scale 25 and G from -10 to 10)

smBLIGJR 12

BSCBR

We may be interested in whether a point on the Hi-Res screen has been
plotted.

210 P = HSCRN(X,Y)

will tell us. The value of P will be 0 if no point has been plotted and -1 if it
has. Unlike SCRN with Lo-Res we cannot determine the color using
HSCRN.

It can be very instructive to experiment with HSCRN. Issue an HGR
command to paint the screen green. Then examine points with odd and
even values for X. For X even we get HSCRN equal to 0 and for X odd we
get HSCRN equal to -1. Green is plotted only in odd-numbered columns.
Similarly, we will find orange in odd-numbered columns, while violet and
blue are plotted in even-numbered columns. For HCOLOR 9 and 11 we
find that both odd and even values of X are plotted. But for HCOLOR 3
and 7 only dots with even values for X are plotted.

198
•••

Appendix A

Applesoft
and SoftCard

BASIC

... . Applesoft Features Not Included
FLASH, IN#, PR#, HIMEM and LOMEM, DRAW and XDRAW, SCALE,
and ROT are not available in SoftCard BASIC.

In addition (or subtraction), the ESC A, B, C, and D, and ESC I, J, K,
and M editing features are replaced by the powerful EDIT Mode. EDIT
Mode is discussed in Appendix B.

If you really want FLASH, just POKE -4046, 127. (With some 80-
column cards this will not work.) All characters with ASCII values in the
range 64 to 127 and 192 to 255 will flash, while all others will appear as
inverse characters. (See Appendix D for the ASCII chart.) This will cause
all letters plus the characters@,[,\,], ",and_ to flash. The way back is
with the NORMAL statement. None of this matters much for applications
that use an external terminal.
' Several of the functions provided by IN# and PR# are standard fea
tures of the SoftCard. We may use a printer by plugging it into SLOT #1.
In CP/M, CTRL-P acts as a toggle switch to turn the printer output on and
off. If the printer output is off, CTRL-P turns it on. If the printer output is
on, CTRL-P turns it off. In BASIC we send output to the printer with
LP.RINT, LPRINT USING, or LLIST.

We may use an external terminal by plugging the appropriate
hardware into SLOT #3. We can tailor the CP/M software to our specific
terminal using CONFIGIO in BASIC.

The SoftCard documentation includes a little routine that may be
used to boot another disk. This takes the place of IN #6 in Apple soft,

196
•••

APPLESOFT AND SOFTCARD BABIC

assuming the disk is in SLOT #6. Of course, we can always shut the
computer off, install the new disk, and tum the computer back on again.

We can achieve the purpose of HIMEM by using the /M: option upon
invoking BASIC in the first place.

MBASIC /M132767

limits BASIC to memory up to address 32767. Memory is set aside for
special purposes.

Shape-table graphics are simply not provided .

• • • • J'eatares Included to Su;p:pon A;p;plesoft
HOME clears the text screen and places the cursor in the upper left
corner.

The HTAB statement is used to provide absolute horizontal cursor
positioning. HTAB X places the cursor at position X. The positions of the
line are numbered beginning with 1. VTAB does the same thing for verti
~ positioning. The lines are numbered from 1 to 23. Note that HTAB and
VTAB are statements and are not to be used in a PRINT statement.

INVERSE displays all further text as dark letters on a light back
ground. NORMAL restores the familiar text display.

We may erase lines from a program with DEL or DELETE as we
prefer. Both work, though DEL entered in a program statement will list as
DELETE. To delete several lines we may use the comma as in Applesoft.
DEL 1,120 will eliminate lines 1 through 120. LIST also allows the
comma .

• • • . Statements nat Behave D1fferen.t1y
GR is used to determine whether we get four text lines at the bottom of the
screen c>r not. GR 1 is just like GR in Applesoft. GR 2 invokes full-screen
Lo-Res graphics. Further we may include a second parameter to clear the
screen to a desired color.

211/J GR 1, 8

will clear the full screen to brown.
COLOR in SoftCard BASIC may be treated as simply a special vari

able, rather than as a keyword. Thus, we may code statements such as

385 COi.DR • COLOR + 1

We may not set COLOR values outside the range of 0 to 15.
Hi-Res graphics are available only in GBASIC. GBASIC allows far less

user memory than MBASIC. There is no HGRl. The HGR statement may
include a para.meter to set mixed graphics and text or full-screen graphics
and whether or not the screen is cleared. Further, a second parameter may
be used to paint the screen the HCOLOR of our choice. HGR 0 is the same
as HGR in Applesoft. HGR 1 (not to be confused with HGRl in Applesoft)

197 •••
.I

MICROSOFT BASIC USING THE SOFTCARD

clears the screen to black and enables us to use the bottom four text lines
for graphics work. HGR 2 restores the graphics screen in mixed graphics
and text, while HGR 3 restores the full graphics screen. HGR 0 and HGR 1
may be followed by a color number from 0 to 11 to clear the screen to the
color of our choice. HCOLOR 12 reverses whatever color is already
plotted.

HCOLORs 0 through 7 behave almost as in Applesoft. White
HCOLORs 9 and 11 have been added and plot white whether the column
is odd or even. Black HCOLORs 8 and 10 are paired up with 9 and 11.

FOR . . . NEXT in versions 5.0 and later of SoftCard BASIC will not
execute if the initial value of the loop is outside the range specified by the
last value and the STEP. In Applesoft FOR. . . NEXT always executes at
least once.

IF . . . THEN in SoftCard BASIC permits an ELSE clause not al
lowed in Applesoft.

The logical operators are quite diiferent. In Applesoft

2 OR 4

is evaluated as 1. So is
2 AND U1J

On the other hand, SoftCard BASIC evaluates logical expressions bit by
bit. Thus,

2 OR 4

evaluates as 6 because both the 2 bit and the 4 bit are set, while
2 AND 18

evaluates as 2 because the 2 bit is the only bit set in both 2 and 10.
NOT simply reverses all bits in the number. All ones go to zero and all

zeros go to one. Thus,

NOT 127

becomes -128 .

• • . . Features in SoftCard BASIC Bot Found in Applesoft
We can generate tones with BEEP.

218 BEEP 5, 15

will sound a tone whose pitch is related to 5 and whose duration is related
to 15. These values may range from 0 to 255. These values are not math
ematically coordinated with musical notes.

HSCRN (X, Y) returns a -1 or a 0 as the point (X, Y) is or is not plotted
on the Hi-Res screen. It will not report the color number.

PRINT USING provides tremendous flexibility for formatting results
in a display. We can easily specify neatly organized reports with right-

198
•••

APPLESOFT AND SOFTCARD BASIC

justified columns of figures all rounded to the same precision right in the
PRINT statement. It is interesting to note that the pattern in a PRINT
USING statement can be a string variable.

2ee PRINT usmG • #HH.H "1 x

becomes
50 A$ = H #####.## H

200 PRINT USING A$: X

This feature opens the way for tremendous flexibility for formatting re
sults. The string pattern could be DATA in a program, or even stored in a
file on disk.

WIDTH N sets the screen width to N characters.
We can change the line numbering sequence with RENUM.
RENUM 300, 125, 20

Will map the existing line numbers into new line numbers according to
the three numbers given. Iri this case the old line number 125 will become
300 and succeeding line numbers will have intervals of 20. Lines cannot
be moved out of sequence with RENUM.

A program line editor is available in EDIT Mode. See Appendix B for a
complete description.

LINE INPUT reads an entire line of data without regard to commas.
Everything up to cr-lf is accepted in a statement such as

220 · LINE INPUT A$

No question mark is displayed.
We may work with double-precision numeric values with up to 16-

digit precision. Such variables are designated by appending a number sign
· (#) to any legal variable name or any constant.

The WRITE statement displays values close packed and separated by
commas. Strings are surrounded by quotes. We may also write data into a
file with WRITE #.

100 X = 123456 : A$ = "The hour is late"
110 WRITE X, A$
RUN
123456,"The hour is late"

Files are managed with distinct statements designed for this purpose.
Files are identified by channel number for easy organization of multiple
file access in a single program.

One of the advantages of using Microsoft BASIC on any computer is
that most of the features will be transportable to any other machine that
supports the same language.

199
•••

AppendixB

EDIT
Mode

Touch typing is wonderful. EDIT Mode is even more wonderful. When we
first "bring up" BASIC-80 the program area of the computer is a blank
sheet of paper or an empty chalkboard. As soon as we type program state
ments in, it's not blank or empty anymore. There is a program that we
might want to modify. We might have made a typing error, or we might
want to change a statement to change its effect in the program. In many
cases an error in a program line is simply a single mistyped character.
Without EDIT Mode we are required to retype the entire line. And there is
nothing to stop us from making more typing errors on the next try. With
EDIT Mode, we simply use a few easy-to-remember commands to change
only the offending character or characters.

In order to successfully master the world of EDIT Mode it is best to
perform each exercise directly on a computer. This is fingertip learning.
Read through this section to become familiar with the overall scheme of
things and then go through it again following along on a keyboard. Go
beyond the exercises; try each feature several times on your own program
examples. After a bit of practice, many people find that they can simply
tell their fingers what to do. They do the rest. The time spent mastering
the editor now will be repaid many times in your programming experi
ence. This point cannot be overemphasized .

. . . . EDIT Mode Commands
BASIC-80 offers a set of commands that enable us to make changes in a
single line. As we process a line making changes, the cursor follows along

200
•••

EDIT MODE

to show us just where we are on the line. Our changes may be displayed
for us to see, but the commands are not. At first this may seem a little
difficult for the beginner, but soon even the timid user will be comfortable
with the process. Let's begin by entering Program B-1.

lee PRINT "This is a EDIT example.•
lle PRINT "We will bee makng a few changes.•
12e PRINT •If we folllow alone with the,"
13e PRINT "then we will becom editting experts.•

Program B-1. An EDITing example.

Type the program exactly as it appears so that you may folliow alone mak
ing exactly the changes outlined here. It is important for you to have
access to a computer for this, as we cannot easily demonstrate the dy
namic nature of the editing process on paper. The best we could do would
be to insert clear plastic overlays in a book. But there really is no substi
tute for actual experience.

We get at line 100 by typing:
EDIT 100

BASIC goes into EDIT Mode by displaying the line number and waiting
for us to make the next move. Probably the simplest move to make is to
move the cursor .

. . . . Move the Cursor (Press the Space Bar)
Pressing the space bar causes the editor to display the next character of
the current line. Pressing it again produces another character. The
keyboard repeat feature may be used for this. We step through the line
until we expose the "a". At this point we want to insert the letter "n" .

.... Insert
The insert command is "I". As with BASIC, either "i" or "I" is valid. The
character to insert is "n". We do that by keying "in" or "In". The character
inserted will be upper- or lowercase exactly as we type it here. The "I" will
not appear on the screen. The "n" will appear on the screen. At this point
we may leave EDIT Mode for this line by pressing RETURN. The editor
responds by displaying the rest of the line and returning to BASIC. Line
100 now reads

100 PRINT "This is an EDIT example.•

Line 110 requires two changes. We want to fix "bee" and "makng".
The double "e" problem is solved with "delete" and the missing letter is
handled with "insert".

EDIT 110

Press the space bar repeatedly until the "e" in "bee" appears.

201 •••

MICROSOFT BABIC USING THE SOFTCARD

.... Delete
Next, simply press "D" or "d" to delete a single character. The editor
replies by displaying

lll/J PRINT "We will be\e\

With the cursor just sitting there. The letter "e" displayed between the
. backslashes has been deleted. Now we may continue on the same line by
pressing the space bar four times until the "k" appears. At this point "Ii"
will insert an "i" to correct the word "making". The :first "I" is for insert
and the second ''i" gets inserted. Press RETURN and the edit is complete
for line 110. Your screen should look like this:

lll/J PRINT "We will be\e\ making a few changes."

Now we are ready to make three changes in line 120. We need to fix the
triple "l", change "alone" to "along", and insert the word "exercises" at
the end of the line.

EDIT 1211J

We could pass over 16 characters until the cQrsor gets to the first "l". Or
we could use a new command to search for it .

•... Search
Simply key in "SI" to tell the editor to search for the desired character.
The line up to that point is displayed, and the editor awaits our delete
command. The errant "l" is backslashed out of existence with delete and
we may proceed to the next edit. Now we may search for the "e" in alone.
What we want now is to for it to become a "g". We could use delete
followed by insert "g". Or we might prefer to change the next character to
a "g" with the change command .

.... Change
We may enter "Cg" to change the next character to a "g" without regard to
what was there. Following this we simply press the space bar enough to
get to th~ point where we want to insert " exercises". The resulting display
should match the following:

121/J PRINT "If we fo\l\llow along with the exercises,"

As you become more experienced with editing you will see several ways to
achieve the same thing. For example, to insert the word "exercises"
above, we might have preferred to search for the comma and then insert
the desired word. Clearly the search method is faster. As you grasp the
options that the editor offers you will1also learn to quickly judge whether
there is a faster alternative. Just don't use up a lot of time trying to think
of a clever technique to save a millisecond. Each person develops his or
her own techniques.

808
•••

EDIT MODE

We have two changes to make in line 130. We need to fix "becom" and
"editting".

EDIT 130

Let's search for the "m" and then press the space bar once. At this point
we may insert an "e" with "le". What next? We could press RETURN to
signify the end of an edit and then reedit the line. But that seems cumber
some. And it is. It will be better for us to exit the insert mode with the
ES Cape key and then search for the first "t" in "editting" .

•••• BSCape
Once we are in EDIT there are two submodes. We may be commanding
the editor to do something or we may be inserting text. We insert with the
insert command. Once in there we may exit in one of two ways. We have
been using the RETURN key to get out. But that takes us all the way out
of the editor entirely. We may use ESCape to simply exit insert without
leaving the editor. This allows us to make numerous changes on a pro
gram line in a single edit. In our example we press ESCape and then "St"
to search for the double "t". Next delete with "D" and press RETUllN.

130 PRINT "then we will becane edi\t\ting experts."

Now we really ought to insert the word "Mode" in line 100. Type
EDIT 100 again. Press the space bar until the cursor has passed over
"EDIT". Or use a combination of the search command and the space bar.·
It will be necessary to search for "T" several times, or search for "D" and
then press the space bar to locate the cursor properly. With practice you
will learn to size up the best way to get to the point of the line where you
want to be. Next, type "I Mode" and RETURN. Insert lets us insert as
many characters as we like. We are limited to 255 characters on the line,
though. It'll be a little while before that is a problem for us. It is the ·
RETURN key that signals the end of the insertion.

And finally we may examine our edited program with the LIST com
mand in BASIC.

LIST
100 PRINT "'nlis is an EDIT Mode example."
110 PRINT "We will be making a few changes."
120 PRINT "If we follow along with the exercises,"
130 PRINT "then we will becane editing experts."

We have seen how to do six different things in EDIT Mode:

1. Move the cursor (press the space bar)
a. Insert
8. Delete
4. Search
8. Change
e. Leave the editor (RETURN)

203
•••

MICROSOFT BASIC USING THE SOFTCARD

It is best to practice each of the features we have demonstrated here.
Work on this until things become reflex actions. Don't stop now. The rest of
this appendix is about to unveil more powerful features of EDIT Mode .

• . . . :Beneath the Surface
After you have mastered the features presented thus far you will want to
learn more. Once EDIT Mode becomes second nature to you, you may
concentrate on your programs rather than on wrestling with the process of
keying in BASIC program statements and getting them right. We present
here a description of the additional capabilities that go with each of the six
basic EDIT Mode functions.

1. Move the cursor (space bar and Rubout or left arrow)

Press the space bar once and the cursor moves one character to the
right. Press it twice to move two characters. We may move the cursor any
number of spaces by first entering that number. Thus if we press 5 fol
lowed by the space bar the cursor will move 5 characters to the right.

We can move the cursor to the left with the Rubout key or left arrow.
Rubout and left arrow are two different symbols that have the same effect
in this environment. (Rubout is CTRL-@ on Apple II and II Plus.) Press it
once to move 1 character. To move 10 characters enter 10 and press
Rubout. Just like magic.

a. Insert (I, #I, and X)

We insert characters on a line by typing "I" followed by our desired
insertion. We insert x characters with "xi" followed by x-characters. We
leave insert with either RETURN or ESCape.

A special command has been included for the sole purpose of extend
ing a line. The "X" subcommand moves the cursor to the end of a line and
goes into the insert submode.

We delete characters in this submode with Rubout or left arrow. Left
arrow causes the cursor to move to the left over one character each time it
is pressed. Rubout displays an underline character(_). Either way, a
character is removed for each key press.

:s. Delete (D, #D, an~ H)

Each time we use the delete command a character is deleted. We may
delete any number of characters by entering that number before issuing
the delete command. All characters are displayed between a pair of
backslashes. If the number we enter is greater than the number of charac
ters on the rest of the line, delete only removes the rest of the line. It does
not extend to the next line.

The H command deletes the rest of the line to the right of the cursor
and goes into insert mode.

804 . •·.

EDIT MODE

4. Search (S, #S, K, and #K)

We may search for a character with the S command. We may also
search for the ith occurrence of a character with iS.

The K search is both powerful and dangerous. The K search deletes all
characters passed over in the search. If the character you are searching for
is not found then the rest of the line is deleted. Use this one carefully.

8. Change (C and #C)

Change the next character with the C command. To change i charac
ters, enter iC followed by the i characters you wish to insert. For example,
"3cNEW" will replace the next three characters with "NEW".

8. Leave the editor (RETURN, E, Q, L, and A)

There are a number of commands grouped here that have to do with
managing the entire edit. RETURN at any time ends the editing session
for this line. In this case the remainder of the line is displayed. To avoid
the display use the "E" command. The "Q" command allows us to quit
the editor without making any of the changes we have entered. Thus the
line remains as it was before we began to tinker. We may display the line
in its current form with the "L" command. The line will be displayed and
the line number will appear with the cursor just as it does at the begin
ning of an edit. The "A" command simply allows us to start all over by
throwing away any changes we have made .

• . . . llliscellan.eous Additional EDIT Features
When BASIC encounters a syntax error during program execution it au
tomatically enters EDIT Mode on the errant line. Normally we want to fix
the line and RUN the program again. If we don't want to edit at this time,
then we may simply leave the editor with the "Q" command or press
RETURN.

We may enter EDIT Mode at any time in BASIC by typing Control-A.
Hold down the CTRL key and press the letter A. BASIC-80 will move the
cursor to a new line, display an exclamation point(!), and wait for your
EDIT Mode commands. We may use this to fix a line we are currently
typing or to fix the last line typed. Thus, if we issue a command at the
keyboard and wish to do it again, we may type CTRL-A and press RE
TURN. Try it. Or suppose we type a command line and make a typing
error. We may use CTRL-A to correct the error and reissue the command in
one operation. If the command last issued was LIST, CTRL-A will enter
EDIT Mode beginning at the last program line listed but without the line
number. Now you know. This CTRL-A thing also works while responding
to an INPUT statement. This makes it easy to edit data entered during
program execution. Remember, not all SO-column cards support CTRL-A
as a way to enter EDIT Mode.

808
•••

MICROSOFT BASIC USING THE SOFTCARD

Suppose you only want to change theline number. You could type it
again with the correct line number. Or you could fool EDIT Mode into
doing mo.st of the work for you. A simple two-step edit will do the job.
Let's change line 200 to line 500. First EDIT 200 and press RETURN.
Second, press CTRL-A and insert 500 at the beginning of the line. You
may now list the program to verify that the program line appears at both
line 200 and line 500. To eliminate line 200 simply type 200 followed by
the RETURN key.

Finally, the editor always remembers the most recent line number as
"." (dot). So "EDIT ." will enter the editor with the most recent line
number. The space is required between the "T" and the".".

The beginner should spend some time at a keyboard trying all of the
EDIT Mode features. A little time spent learning how to use it will pay off
in much time saved as you learn to write programs.

206
•••

.AppendixC

Using
the Disk

With a disk we can easily save programs for future use.
We are going to learn about SAVE, RESET, FILES, LOAD, RUN,

MERGE, KILL, and NAME. All of these directives allow us to designate
which disk drive to use .

. . . . Program. Kam.es (and File Rames, Tool)
We are allowed up to eight characters in program names. As we will see
shortly, BASIC will add the three characters "BAS". So, if we name a
program "TESTING", BASIC will call it "TESTING.BAS". There is the
name and the three-character extension. They are separated by a pe
riod (.) .

.... Disk Drives
Under CP/M we simply use a letter followed by a colon to refer to a disk
drive. If we want the current one, then we may omit the drive designa
tion. To specify program "EGGS.BAS" on drive B, we simply attach the
drive designation to the program name:

"B:EGGS. BAS"

It is that simple .

•••• SA'VJ!I
Suppose we have just put the finishing touches on one of our eggs pro
grams. We can save our program on disk with the following:

207
•••

M.ICROSOFT BABIC USING THE SOFTCABD

SAVE "EGGS"

1t•s a good idea to use all uppercase letters for file names. After a little disk
activity BASIC will return to await our next command. The program will
be saved under the name "EGGS.BAS,.. The extension" .BAS., is added by
BASIC. If you want some other extension, just include it when you type
the SAVE command. ·

There are three formats for program files stored on disk by BASIC. The
EGGS program mentioned earlier would be saved in compressed binary
fOrma.tby our :first command. This format is usable only by BASIC. but ft
saves disk space for large programs.

There are a number of program editors available. These editors give us
the ability to make wholesale changes in our BASIC programs. For exam·
pie. we might want to change all variables named NUMBER to NEW·
NUMBER. This would be somewhat tedious with EDIT Mode in BASIC.
but it would go fast and easy with a good program editor. ED.COM is a
program editor that comes with CP/M. A few simple commands are used
to edit text in the computer. ED does not depend on our writing a BASIC
program. We could write a letter to a friend. Instructions for the use of this
program are included with the CP/M documentation. The catch is that
most program editors require that the file being edited be stored in ASCII
format. That is, each character must be stored as a single character using
a standard coding method. Using this format the word PRINT is stored as
five characters, whereas PRINT is stored in the space of a single character
·using compressed binary format. It is a simple matter to save our program
in ASCII format.

SAVE "EGGS" ,A

does the job .

•• • • Protected Programs
Sometimes we have a program that we want to let other people use, but
we don't want them to be able to read the BASIC code. We may protect our
program with

SAVE "EGGS" ,P

We have to be careful with this one. Even we cannot LIST the program. It
is necessary to save such a program in an unprotected format as well. If
we try to LIST a program saved in protected format, we will be greeted
with

Illegal function call

Most things we might try to do to change the program are greeted with the
same message. Note that if the program name we use in a SA VE state-
ment is already on the disk, BASIC simply replaces it with the current

aoa •••

USING THE DISK

program. You are warned to be careful not to wipe out another old pro
gram by selecting its name for a new one. We go merrily along writing and
saving programs, and someday we get the message

Too many files

It means just that. The disk has room for just so many files, and eventu
ally we reach that point. To see the directory of files on the disk simply use
the FILES command (see below). We may use KILL (see below) to elimi
nate junk programs and use SAVE again.

If we find that we cannot part with any programs on this disk, we
switch disks and try again. But now we will get the message

Disk Read Only

Aha! BASIC remembers where programs are on each disk. If we remove
one and insert another, BASIC will remember about the wrong disk. That
message is for our own protection. We use the RESET command to tell
BASIC to remember this disk now. Now we can SAVE our precious pro
gram. That was the RESET command-not the RESET key. What else
can happen? Well, if our programs become very long or we work with files
that contain a lot of data, we might see the following message:

Disk full

That means just what it says. There is no more room no matter what.
Again, determine what can be erased from the disk to make room. ·

•.•. l'ILBS
The FILES command causes the name of the files on the current disk to
be displayed. We may use the wild-card features of the CP/M operating
system to view only selected files. Thus,

FILES "*.BAS"

. will display only those files with the ".BAS" extension. And
FILES "CA??????•*"

will display a directory of all files that begin with CA .

•••• LO.AD
Any program SAVEd is easily brought back with LOAD.

LOAD "EGGS"

loads a copy of our program into memory from disk. To execute the pro
gram we just issue the RUN command. Alternatively we could RUN our
program directly with

LOAD "EGGS" , R

The "R" option causes the program to execute as soon as it is loaded. It is

209
•••

MICROSOFT BASIC USING THE SOFTCARD

important to know that the "R" option keeps all files "OPEN". This com
mand can be included within another program. So we may move from
program to program under program control. LOAD replaces any program
already in memory .

•••• BUii'
This statement may also be used to directly execute a program on disk.

RUN "EGGS"

will replace any program in memory and execute "EGGS.BAS" stored on
disk. Note that the "R" option to keep files open (described under LOAD)
may also be used with RUN "program" .

•••• llBBGl!I
As we develop more and more programs, we will discover that routines
written for one program exactly fit for another. We can use MERGE to
incorporate BASIC statements stored in a file on disk with BASIC state
ments stored in computer memory. We simply need to make sure that the
line numbers do not conflict.

MERGE "EGGSl II

will blend the code from EGGS 1 on disk with any program residing in
memory at the time. If there is a line-number conflict, then the state
ments coming from disk prevail. The program coming from disk must
have been SAVEd with the ,A option for MERGE .

•••• KU.L
We must have the ability to erase old, unwanted files from disk. The KILL
command does it:

KILL "EGGS. BAS"

The KILL statement requires the extension even though SAVE, LOAD,
and RUN don't. Needless to say, the KILL statement should be used with
great care. There is no easy way to "UNKILL" a file. BASIC will KILL
"*. *", but you probably wish it wouldn't .

•••• l'f.AlVIB
We may change the name of a file on disk with the NAME statement.

NAME "EGGS.BAS" AS "HAMNEGGS.BAS"

changes the name of EGGS program to HAMNEGGS. Note that the file
name extension is also required. While SAVE can wipe out an old pro
gram, NAME will report

File already exists

to save us a lot of trouble. If we really want to replace the old one, we use
KILL and NAME again.

210
•••

AppendixD

ASCII
Character Chart

This ASCII chart has been simplified. The control characters (codes 0 to
31) and the ASCII codes 96 to 127 have real meaning and are used by
many computers. The codes 128 to 255 are essentially a repeat of codes O
to 127.
Value Character Value Character Value Character

00 CTRL-@ 16 CTRL-P 32 SPACE

01 CTRL-A 17 CTRL-Q 33 !

02 CTRL-B 18 CTRL-R 34 ,,

03 CTRL-C 19 CTSL-S 35 #

04 CTRL-D 20 CTRL-T 36 $

05 CTRL-E 21 CTRL-U 37 %

06 CTRL-F 22 CTRL-V 38 &

07 CTRL-G 23 CTRL-W 39

08 CTRL-H 24 CTRL-X 40 (

09 CTRL-1 25 CTRL-Y 41)

10 CTRL-J 26 CTRL-Z 42 *
11 CTRL-K 27 ESC 43 +
12 CTRL-L 28 FS 44

13 CTRL-M 29 CTRL-SHFT-M 45

14 CTRL-N 30 CTRL-SHFT-N 46

15 CTRL-0 31 us 47 I

811 •••

MICROSOFT BASIC USING THE SOFTCARD

Value Character Value Character Value Character

48 0 75 K 102 f

49 1 76 L 103 g

50 2 77 M 104 h

51 3 78 N 105 i

52 4 79 0 106 j

53 5 80 p 107 k

54 6 81 Q 108 I
55 7 82 R 109 m

56 8 83 s 110 n

57 9 84 T 111 0

58 85 u 112 p

59 86 v 113 q

60 < 87 w 114 r
61 = 88 x 115 s
62 > 89 y 116 t

63 ? 90 z 117 u
64 @ 91 Ct 118 v

65 A 92 \t 119 w
66 B 93 Jt 120 x
67 c 94 A 121 y

68 D 95 122 z
69 E 96 ' 123 {

70 F 97 a 124 I
71 G 98 b 125 }

72 H 99 c 126
73 I 100 d 127 DEL
74 J 101 e

t These characters are not labeled on the Apple II or the Apple II Plus keyboard.
ASCII 91 ([)is generated by pressing CTRL-K, 92 (\)comes from CTRL-B, and
we get 93 (]) from SHIFr-M. They are readily available on the Apple Ile
keyboard and on most external terminals.

212
•••

ASCII CHARACTER CHART

CTRL-@ is the Rubout character. CTRL-A summons up EDIT Mode.
CTRL-B is used for the backslash(\). CTRL-C brings program execution
to a halt. CTRL-G produces a bell-like sound. CTRL-H is the backspace
character (left arrow). CTRL-1 tabs to the next eight-character column.
CTRL-J causes a line feed (If). CTRL-K becomes a right square bracket
(]). CTRL-M generates the RETURN character (er). CTRL-0 toggles pro
gram display while execution proceeds. CTRL-S suspends program
execution. Any key resumes. CTRL-X cancels the current typed line.

The program CONFIGIO.BAS, supplied with the SoftCard disk, may
be used to reassign keys for special purposes.

213
•••

Program
1-1.
1-2.
1-3.
1-4.
1-5.
1-6.
1-7.
1-8.
1-9.
2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-8.
2-9.

2-10.
2-11.
3-1.
3-2.
3-3.

AppendixB

Index
of Programs

Description
Our first program.
Practice printing messages.
Changing Program 1-2.
Eliminate a line from Program 1-3.
Two PRINT statements display on a single line.
Include the space this time.
Calculate hours in the year.
Labeling a calculated result.
Demonstrate simple calculations.
Calculate egg values.
Label egg values.
First program with variables.
Introduce READ and DATA.
Demonstrate the INPUT statement.
Making the eggs program more flexible.
Demonstrate string variable.
Demonstrate READing string values.
Demonstrate READing a comma into a string
variable.
Demonstrate string concatenation.
Demonstrate E-format.
Our first counting program.
Counting "out loud" this time.
Counting from 1 to 7.

214
•••

Page
3
5
5
6
7
8
10
10
11
14
15
17
18
19
21
26
27

28
28
30
33
33
34

INDEX OF PROGRAMS

Program Description
3-4. Counting from 1 to 7 with COUNT=

3-5.
3-6.
3-7a.
3-7b.
3-7c.
3-7d.
3-7.
3-8.
3-9.
4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
4-7.
4-8.
4-9.
4-10.
5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.
5-9.
5-10.
6-1.
6-2.
6-3.
6-4.
6-5.
6-6.
6-7.
6-Sa.
6-8b.
6-8c.
6-8d.
6-8e.

COUNT+ 1.
Bouncing a steel ball.
Program 3-5 with comma spacing.
REMs for average calculation program.
Instructions segment.
Keyboard entry segment.
Calculate average segment.
Calculate average.
An hourly digital clock.
The digital clock with IF . . . THEN . . . ELSE.
Counting with FOR and NEXT.
Counting by twos with STEP.
Bouncing a steel ball with FOR and NEXT.
Calculate the distance for a bouncing ball.
Calculate compound interest.
Display Fibonacci numbers.
Compound interest for several years.
Display Pythagorean triples.
Note nicely matched NEXT statements.
Infinite-precision division.
Display some square roots.
Find factor pairs.
Demonstrate LEFT$, MID$, and RIGHT$.
Demonstrate INSTR.
Demonstrate random numbers.
Flip a coin ten times.
Demonstrate rounding off with DEF FN.
Subroutine to process yes-no questions.
Look for "Ok" in memory.
Look for window parameters.
Find average, highest, and lowest temperatures.
Drawing five random numbers from among ten.
Drawing without replacement efficiently.
A simple sort.
Read and display census data.
Change Program 6-5 to find largest population.
Display the days of the week.
Control routine to play Alphabet.
Load the Alphabet game road signs.
Start with capital "A".
Display a sign.
Check keyboard input.

218
•••

Page

35
37
37
40
41
41
41
42
46
47
50
51
54
54
56
57
58
60
63
64
68
69
72
72
75
76
79
82
84
85
88
88-89
90
92
94-95
95
96
100
100
100
101
101

MICROSOFT BASIC USING THE SOFTCARD

Program Description
6-8f. Check if a letter is on a sign.
6-8g. Time-clelay routine.
6-8h. Data for the Alphabet game.
6-8. The Alphabet game.
7-la. Control the calendar.
7-lb. The INPUT subroutine.
7-lc. Control printing the calendar.
7-ld. Calendar calculations.
7-le. Display calendar title.
7-lf. Display calendar days.
7-1. The calendar program.
7-2. Primes using the sieve of Eratosthenes.
7-3. Convert base ten to binary.
8-1. Initialize the signs file for Alphabet game.
8-2a. Load the Alphabet game road signs.
8-2b. Changed control routine in Alphabet game for files.
8-2. File-based Alphabet game.
8-3. Display a program from disk ..
8-4. Fix Program 8-3.
8-5. Format multiple statements in a program.
8-6. Put some names in a file.
8-7. Add a name to a sequential file.
8-8. Double-buffer sequential-file update.
9-la. OPEN and FIELD the accounts-label file.
9-lb. Fill accounts-label file with "Unassigned".
9-lc. Write actual account labels to the file.
9-1. Initialize an accounts-label file.
9-2. Write ten-largest-cities data to random-access file.
9-3. Display cities in rank order.
10-1. Initialize mailing-list file.
10-2a. Control routine for mailing-list program.
10-2b. Read data labels for mailing-list program.
10-2c. Read available space in niailing-list program.
10-2d. OPEN and FIELD the mailing-list data file.
10-2e. Handle keyboard data entry for mailing-list

10-2f.
10-2g.
10-:2h.

10-2i.
10-2.
11-1.

program.
Prepare available space for mailing-list file.
Write a data entry in the mailing-list program.
Write available-space parameters in mailing-list
program.
Program parameters for mailing-list program.
Entering names in a mailing-list file.
A simple demonstration.

818
•••

Page
102
102
102
102-103
108
108
108
110
110
110
111
112-113
115-116
123
124
124
124-125
127
128
128
130
130
131
137
137
138
138-139
140-141
141-142
148
149
150
151
151

151-152
152
152

153
153
153-154
162

INDEX OF PROGRAMS

Program Description
11-2. Drawing boxes of many colors.
11-3. Draw the "l" face of a die.
11-4a. The control segment of a die-drawing program.
11-4b. Subroutine to display a "l" die.
11-5. Drawing a "l" anywhere on the screen.
12-1. Plot dots in the four comers.
12-2. Plot dots in the four comers (white this time).
12-'3. HPLOTting a border on the Hi-Res screen.
12-4. Subroutine to plot a border.
12-5. Display Hi-Res colors.
12-6. Plot drawings from DATA.
12-7a. Draw a traffic light using data and Hi-Res.
12-8. Draw a circle for the traffic light.
12-7b. Circle-drawing subroutine.
12-7c. The three lights.
12-7d. Control the blinking light.
12-7e. The blinking traffic light.
12-7. The completed traffic light program.
12-9. Plot a function in Hi-Res.
12-10. Draw a circle.
12-lla. Control routine for polar graphing.
12-llb. Draw a polar axis.
12-1 lc. Polar-graph-plotting subroutine.
B-1. An EDITing example.

817
•••

Page
163-164
166
168
168-169
169
175
176
176
176
177-178
180
180-181
182-183
184
184
184
184-185
185-186
188-189
191
193
193
193
201

·"
·m

Appendix I'

Solution Programs for
Even-Numbered Problems

Each two-page spread should be read from top to bottom as one individual page .

Chapter 1
Section 1-1
PToblem No. 2

100 PRINT •Programming ia fun. "1
118 PRINT •'lbe canputer will solve many problems for us.•

run

120
130
140
151/J
160
170
180
19"

PRINT "Interest rate in percent•r
INPUT RATE
PRINT • Dollar amount of loan"r
INPUT AMOONT
PRINT
PRINT • Interest is $ 11 1 RA'l'B * AMOUN'l' I 100
PRINT " Amount is $"1
PRINT RA'l'B * AMOUN'l' I 100 + AMOUN'l'

Progranming is fun. 'Dle canputer will solve many problems for us.• run
Olt I will calculate simple interest.

run ll0
'Dle cxmputer will aolve many problems for us.
Olt

Section 1-2
PToblem No. 2
100 PRINT (78 + 89 + 82) I 3

Interest rate in percent? 11.98
Dollar amount of loan? 11111/Jl/J

Interest is $ 119.8
Amount is $ 1119.8

Section 2-2
Problem No. 2
100 RFAD A. 8, C, D, B

••
·co

run
83

Ok

Problem No. 4
lflJl!J PRINT •1 am 15 years. 3 months, and 2 days old.•
118 PRINT a'lbat makes approximately:"1 5576 * 241 "Hours•
128 PRINT •We got 5576 days fran the answer•
122 PRINT •to Problem 3.•

run
I am 15 years. 3 months, and 2 days old.
'ftlat makes approximately: 133824 Hours
we got 5576 days fran the answer
to Problem 3.
Ok

Problem No. 6

lflJl!J PRINT 283.4 + 658 + 385.8 + 17

run
1344.2

Chapter a
Section 2-1
Problem No. 2
90 PRINT "I will calculate the average of tbree numbers•
95 PRINT
100 PRINT "Enter your three numbers1•1
110 INPUT A, B, C

· 120 PRINT •The average iss•r (A + B + C) / 3

run
I will calculate the average of three numbers

Enter your three numbers&? 43,56,12
The average is1 37

Problem No. 4

100 PRINT "I will Qal.culate simple interest.•
118 PRINT

11111 LET N "' A/B + B/C
12111 LET D = D/E + A/B
130 PRINT N I D
900 DATA 2, 3, 4, 5, 6

run
.944445

Problem No. 4
60 PRINT "Demonstrate the MOD operator•
70 PRINT
8111 PRINT "Enter two numbers (A,B) "1
10111 INPUT A, B
120 PRINT "A·MOD B ="1 A MOD B

run
Demonstrate the MOD operator

Enter two numbers (A,B)? 5,7
A MOD B m 5

run
Demonstrate the MOD operator

Enter two numbers (A,B)? 7,5
AMODBa2

Section 2-3
Problem No. 2
1111111 RFAD Ali!I$, Al$, A2$, A3$, A4$, AS$, A6$
12111 PRINT Ali!I$.
13" PRINT Al$
140 PRINT A2$
15111 PRINT A3$
16111 PRINT A4$
178 PRINT AS$
lSllJ PRINT A6$
9flJl!J DATA SUnday, M:>nday, Tuesday, Wednesday
91111 DATA Thursday, Friday, Saturday

run
SUnday
M:>nday

·"' •N ·o

Section 2-3 Problem No. 2 (continued)
Tuesday
Wednesday
Thursday
Friday
Saturday

Problem No. 4
lfllflJ PRINT "Enter anything -"1
12flJ INPUT A$
13flJ PRINT
14fll PRINT "You entered <"1 A$: ">"

run
Enter anything -? Green

You entered <Green>

Chapter 8
Section 3-1
Problem No. 2
100 COUNT = 1
120 IF COUNT > 19 THEN 190
130 PRINT COUNT
140 COUNT = COUNT + 1
160 GOTO 120
190 PRINT "Done"

run
1
2
3
4
5
6
7
8
9
10
11
12

-4
-5
-6
-7
-s
-9
-lflJ
Done

Section 3-2
Problem No. 2
80 PRINT "Botmce", "Height"
90 LET HEIGHT = 10
95 LET OLD.HEIGHT =HEIGHT
lflJflJ LET COUNT = 1
lflJ5 LET DISTANCE = 0
115 LET DISTANCE = DISTANCE + HEIGHT
120 LET HEIGHT = HEIGHT * .9
125 LET DISTANCE = DISTANCE + HEIGHT
130 PRINT COUNT I HEIGHT
135 IF HEIGHT * .9 < OW.HEIGHT / 2 THEN 190
140 LET COUNT =COUNT + 1
160 Gal'O ll5
190 PRINT COUNT: "Botmces"
200 PRINT DISTANCE: "Meters - total distance"

run
Bounce

1
2
3
4
5
6
6 Bounces

Height
9
a.1
7.29
6.561
5.9049
5.31441

89.0262 Meters - total distance

Problem No. 4

100 PRINT "Enter centsa":
105 INPUT CENTS
110 IF CENTS = 0 THEN 200
120 READ COIN, COIN$
150 NUMBER = CENTS \ CX>IN 'Note integer division

.IO
•I\)

13
14
15
16
17
18
19

Done

Problem No. 4

11/Jt/J COUNT"' 1
llt/J TOl'AL = t/J
121/J IF COUNT > 1111£1 THEN 191/J
135 TOl'AL = TarAL + COUNT
140 COUNT = COUNT + 1
160 ooro 121/J
191/J PRINT TOl'AL

run
5051/J

Problem No. 6
101/J COUNT = 10
120 IF COUNT < -11/J THEN 191/J
130 PRINT COUNT
140 COUNT = COUNT - l
160 GOTO 120
191/J PRINT "Done"

run
10
9
8
7
6
5
4
3
2
1
flJ

-1
-2
-3

161/J IF NUMBER • t/J THEN 121/J
170 PRINT NUMBER7 COIN$
175 CENTS = CENTS - NlMBER * COIN
183 GOTO ll0
2111£1 PRINT "Done"
91/J0 DATA 50, Half dollars
902 DATA 25, ()larters
904 DATA 11/J, Dimes
906 DATA 5, Nickels
908 DATA 1, Pennies

run
Enter cents:? 91

1 i:lalf dollars
1 Quarters
1 Dimes
1 Nickels
1 Pennies

Done

Ohapter4
Section 4-1
Problem No. 2
100 FOR COUNT = 93 TO 89 STEP -2
111/J PRINT COUNT7
120 NEXl' COUNT

run
93 91 89 87 85 83 81

Problem No. 4
100 FOR COUNT = 1 TO 15
110 PRINT COUNT. 1 I COUNT
12111 NEXl' COUNT

run
1
2
3
4
5
6

1
.5
.333333
.25
.2
.166667

•• •• . .,

Section 4-1 PToblem No. 4 (continued)

7
8
9
lf/J
11
12
13
14
15

PToblem No. 6

.142857

.125

.111111

.1

.f/J909891

.flJ833333

.0769231

.f/J714286

.0666667

lef/J FOR COUN'l' ,,. 1 TO 11
110 PRINT'COUN'l', COUN'l' I ll
121/J NElfl' COUN'l'

run
1
2
3
4
5
6
7
8
9
10
11

PToblem No. 8

.0909891

.181818

.212121

.363636

.454545

.545455

.636364

.727273

.818182

.909891
1

101/J FOR COUN'l' = 1 TO 1. 2 STEP • l
111/J PRINT COUNT
120 ll1Elfl' COUN'l'

run
l
1.1
1.2

Section4-2
PToblem No. 2
8f/J A .. e I B • e I l'IB .. l

'l'he last gift would go back one day
abort of ~ year later.

Section4-3
PToblem No. 2
90 PRINT "Fibonacci nllll):>ers1•
101/J B = 0 1 FIB = l
21/Jf/J FOR J = 1 TO 10
211/J PRINT FIB,
215 X = FIB * FIB·
221/J A = B 1 B • FIB 1 FIB • A + B
231/J PRINT X, A * FIB, X - A * FIB
290 NExr J

run
Fibonacci numbers1

l l 0
1 1 2
2 4 3
3 9 ie
5 25 24
8 64 65
13 169 168
21 441 442
34 1156 1155
55 3025 3f/J26

Section4-4

PToblem No. 2
lQS PRINT 11Pythagorean triples"
110 FOR I£Gl • 1 TO 25
120 FOR I£G2 - LEGl + 1 TO 53
140 FOR HYPOT = LEG2 TO 75

1
-l

l
-l

l
-l

l
-l

l
-l

145 IF IEGl*LEGl + LEG2*LEG2 < HYPO'l'*HYPO'l' THEN 201/J
lSf/J IF U:Gl*LEGl + LEG2*LEG2 > HYPO'l'*HYPO'l' THEN 190
l8f/J PRINT I£Glr TAB(5)r LEG2r TAB(lS)r HYP0'1'
182 G01'0 2Sf/J
190 Nnr HYPOT
2f/JS Nnr I£G2
211/J ll1En' LEGl

Pythagorean.triples
3 4 5

•• •I»
•fA

ll!ll!l FOR COUNT = 1 TO 21!1
111!1 PRINT USING "### -> ####l"r COUNT, FIB
121!1 A = B : B = FIB s FIB "' A + B
131!1 NE>Cl' COUNT

run
1 ->
2 ->
3 ->
4 ->
5 ->
6 ->
7 ->
8 ->
9 ->

10 ->
11 ->
12 ->
13 ->
14 ->
15 ->
16 ->
17 ->
18 ->
19 ->
21!1 ->

1
1
2
3
5
8

13
21
34
55
89

144
233
377
611!1
987

1597
2584
4181
6765

Problem No. 4
100 PRINT "The twelve days of Christmas"
110 PRINT
121!1 GIFTS = 0
130 TODAY = 0
150 FOR DAY = 1 TO 12
160 TODAY = TODAY + DAY
170 GIFTS =GIFTS +TODAY
180 NE>Cl' DAY
190 PRINT GIFTS: "Gifts"
500 PRINT
502 PRINT "The last gift '-'t>Uld go back one day"
504 PRINT "short of a year later."

run
The twelve days of Christmas

364 Gifts

5 12 13
6 8 11!1
7 24 25
8 15 17
9 12 15
9 41!1 41
11!1 24 26
12 16 21!1
12 35 37
14 48 51!1
15 21!1 25
15 36 39
16 30 34
18 24 30
21!1 21 29
21!1 48 52
21 28 35
24 32 41!1
24 45 51

Chapter 8
Section 5-1
Problem No. 2
ll!ll!l FOR N ·= 1 TO 21!1
111!1 Roor = SQR(N)
120 PRINT USING "### ##.#": N, ROCJl'
190 NE>Cl' N

run
1 1.0
2 1.4
3 1.7
4 2.0
5 2.2
6 2.4
7 2.6
8 2.0
9 3.0

10 3.2
11 3.3
12 3.5
13 3.6
14 3.7
15 3.9

·"' •N ••

Section 5-1 Problem No. 2 (continued)

16 4.0
17 4.1
18 4.2
19 4.4
20 4.5

Problem No. 4

100
110
12!/J
14!/J
16!/J
196
198
2f/Jf/J
21!/J
220
23!/J
24!/J
25!/J
26!/J
29!/J
296
298
3f/Jf/J
31!/J
320

INPUT "Enter a date in the form YYMMDD":

run

IF DATE = 0 THEN END
YEAR = INl'(DATE I lf/J00f/J)
MCNTH = INT((DATE - YEAR*l00f/J0) I 100)
DAY = DATE - YEAR*lf/Jf/Jf/J0 - MCNl'H*l00

REM ** Let's validate the entered value
IF YEAR < f/J THEN 300
IF YEAR > 99 THEN 30!/J
IF MCNTH < 1 THEN 310
IF MONTH > 12 THEN 31!/J
IF DAY < 1 THEN 320
IF DAY > 31 THEN 320
PRINT YEAR: MONTH: DAY
END

REM ** Error messages
PRINT "Bad year" : PRINT
PRINT "Bad month" : PRIN·r
PRINT "Bad day" : PRINT

: GOTO 100
GOTO 100
GOTO 100

Enter a date in the form YYMMDD? 4«)21212
49 2 12

run
Enter a date in the form YYMMDD? 322104
Bad month
Enter a date in the form YYMMDD? 321204

32 12 4

Section 5-2
Problem No. 2
10 HOME

DATE

200 IF YEAR < 0 THEN 300
210 IF YEAR > 99 THEN 300
220 IF MONTH < 1 THEN 310
230 IF Man'H > 12 THEN 310
240 IP DAY < l THEN 320
250 IF DAY > 31 THEN 32!/J
260 Y$ == MID$(STR$(YEAR),2} : IP YEAR< 10 THEN Y$ = "'J" + Y$
265 D$ "'MID$(STR$(DAY),2) : IF Dl'\Y < 10 l'HEN D$ = "0" + D$
270 M$ = MID$(MCNTH$,MCNTH*3 - 2,3)
28f/J PRIN'l' Y$: "-": M$: 11- 11 1 0$
290 END
296 :
298 REM ** Error messages
300 PRINT "Bad year" : PRINT : GOTO 100
310 PRINT "Bad month" : PRINT : GOTO 100
320 PRINT "Bad day" : PRINT 1 GOTO 100

run
Enter a date in the form YY/MM/DD? 76/7'J/04
Bad month
Enter a date in the form YY/MM/DD? 76/07 /04
76-Jul-04

Section 5-3

Problem No. 2

lf/J0 FOR I ,. 1 TO 200
120 COIN = INI'(RND*2)
130 IF COIN = 0 THEN HEADS = HEADS + 1
140 IF COIN = 1 THEN TAILS = TAILS + 1
150 NEXT I
18f/J PRINT HEADS: "Heads"
19!/J PRIN'l' TAILS: "Tails

run
106 Heads
94 Tails

Section 5-4
Problem No. 2

10 REM ** Convert from Fanrenheit to centigrade
5fi!J DEF FNC(X) ,. (X-32)*5 / 9

.IO
•IO ·m

289 8$ = SPACE$(39)
21'/J READ A$: IF A$ m "Done" THEN END
221/J FOR 19 == l TO LEN(A$)
231/J FOR X = l TO 41/J a NElC1' X 'Por timing
243 8$ • RIGHT$(8$,38) + MID$(A$,I9,l)
251/J HTAB l 1 PRINT 8$1
261/J NE>Cl' 19
291/J GO'l'O 211/J
898 I

901/J DATA "Here we go, across the screen•
911/J DATA " just like downtown. Today"
921/J DATA " there was big news in the"
931/J DATA " canputer 'WOrld. A creature"
941/J DATA " from outer space took out a patent0

951/J DATA " on a revolutionary device that"
961/J DATA II will • • • "
998 DATA" "
999 DATA "Done"

Problem No. 4
698 Rm4 ** What day is this?
71/J0 WEEK$ = "SUNMCNl'UEWEDl'HUFRISAT"
711/J INPUT "weekday'' 1 DAY$
715 IP IEN(DAY$) = 0 THEN END
720 DAY$.. LEFT$ (DAY$, 3) • 3 characters to match
730 P = INSTR(WEEK$,DAY$)
740 IF P • llJ THEN PRINT "Not found" I GOTO 711/J
780 PRINT "Day n\lllber0 1 P \ 3 + l

run
weekday? January
Not found
Weekday? 'l\lesday
Day number 3

Problem No. 6

91/J MCNrH$ 111 "JanPebMarAprMayJunJul.AugSSpOctNovDec"
189 INPUT "Enter a date in the foJ:lll YY/fli4/DD" 1 DATE$
lf/J5 IP LEN(DATE$) .. l/J THEN END
121/J 'LEAR = VAL(LEPT$ (DATE$, 2))
141/J MCNrH = VAL(MID$ (DATE$,4, 2))
161/J DAY a VAL(RIGHT$(DATE$,2))
196 I

198 RIM ** Let's validate the entered value

Problem No. 4
11/J REM** Convert frcm upper to lower case
50 DEF ft1UL$(X$) 111 CHR$(ASC(X$) - 32*(ASC(X$)>64 AND ASC(X$)<91)

Section 5-6
Problem No. 2
91/J MCNl'H$ = "JanPebMarAprMayJunJulAugSSpOctNovDec"
lf/J0 INPUT "Enter a date in the foJ:lll YY/fli4/DD0 1 DATE$
lf/J5 IP LEN(DATE$) = l/J THEN END
110 GOSUB 589 'Verify date INPUT
120 IP ERROR.MESSAGE$ <> "Ok" THEN PRINT ERROR.MESSAGE$ a GOTO 11/Jf/J
130 GOSUB 61/Jf/J 'POJ:lll the date string
141/J PRINT NEW.DP.TE$
291/J END
496 :
498 REM ** Verify the date
51/J0 ERROR.MESSAGE$ = "Ok"
511/J DAY = VAL(RIGHT$(DATE$,2))
521/J IP DAY < 1 OR DAY > 31 THEN ERROR.MESSAGE$ • "Bad day"
530 MCNrH = VAL(MID$ (DATE$,4,2))
540 IP MCNl'H < l OR MCNl'H > 12 THEN ERROR.MESSAGE$ "' "Bad month"
550 YEAR = VAL(LEPT$ (DATE$, 2))
561/J IP YEAR < 0 OR YEAR > 99 THEN ERROR.MESSAGE$ • "Bad year•
571/J IP LEN(DATE$) <> 8 THEN ERROR.MESSAGE$ • "Bad date"
591/J RETURN
596 I
598 REM ** PoJ:lll the date string
611J0 Y$ • MID$ (STR$ (YEAR), 2) : IP 'LEAR < 10 THEN Y$ • "0" + Y$
611/J M$ • MID$(M<NrH$,MCNl'H*3 - 2, 3)
620 0$ = MID$(STR$(DAY),2) a IF DP.Y < 11/J THEN D$ • "0" + 0$
630 NEW.DP.TE$ • Y$ + 11-• + M$ + 11-• + D$
691/J RETURN

run
Enter a date in the fom Y'l/MM/DD? 77 /02/14
77-Peb-14

Ghapter8
Section 6-1
Problem No. 2

51/J WEEK$ • •sunMon'l'UeWed'lhuPriSat"
90 REM ** Bnter the temperatures in array WEBK

•• •• ...

Section 6-1 Problem No. 2 (continued)

108 FOR J • 1 TO 7
110 READ WEEK(J)
120 NE)W J
146 :
148 REM ** Set up initial conditions
150 SUM = WEEK(l)
160 HIGH = WEEK(l) : LOW = WEEK(l)
170 LOW.OA.Y "" 1 : HIGH.OA.Y = 1
196 :
198 REM ** Scan the week's temperatures
200 FOR J = 2 TO 7
210 SUM = Stl4 + WEEK(J)
220 IFWEEK(J).<LOW THEN LOW =WEEK(J) 1 LOW.my •J
230 IF WEEK(J) > HIGH THEN HIGH = WEEK(J) 1 HIGH.IP.Y • J
290 NE:n' J
300 PRINT "Average temp:"r St.M I 7
310 PRINT "Highest temp:"r HIGH
320 PRINT " lowest temp:"r LOW
330 PRINT .. Highest day: .. , MID$(WEEK$,HIGH.OA.Y*3 - 2, 3)
340 PRINT " lowest day: "7 MID$(WEEK$,LOW.IP.Y *3 - 2, 3)
896 I
900 DATA 71, 77, 82, 76, 79, 721 74
990 END

run
Average temp: 75.8571
Highest tempi 82

Lowest temp: 71
Highest daya Tue

Lowest day: SUn

Problem No. 4

50 RANDOMI:l:E
90 REM ** Drawing five randaa nlJllbers fJ:aa among ten
96 I
98 RfM ** Make all values available
100 FOR J • l TO 10
110 A(J) = 1 'Value available
123 NE:n' J
130 DUPLICATE = 8
196 I
198 RPM ** Select five randaa values

Section 6-2
Problem No. 2
59 REM ** A simple sort
98 RPM ** Load numbers to be sortea in A array
108 N = 0
110 READ X : IF X = -9999991 'l'HBN 2eJeJ
120 N "'N + l
130 A(N) = X
140 GOl'O 110
196 I

198 REM ** Here is the sort
200 FOR IAS'l' = N - 1 TO 2 STEP -1
230 FOR J = 1 TO IAST
240 IF A(J) < A(J+l) THEN SNAP A(J), A(J+l)
250 NEXl' J
281/J NEXl' IAS'l'
296 I
298 REM ** Sort couplete - display
308 FOR J 111 1 TO N
310 PRINT A(J)r
320 NEXl' J
890 END
896 I
898 RfM ** Test data
900 DATA 102, 32, -91, 982, 87
902 DATA 73, 23, -981, 234, 21
990 DATA -999999

run
982 234 102 87 73 32 23 21 -91 -981

Section 6-3
Problem No. 2
90 Rl!M ** Experimenting with a 5 by 7 array
100 FOR ROW = l TO 5
110 FOR COLUMN= 1 TO 7
120 A(RC>;ol, OOLUMN) "' lift'(RND*lSfJ)
130 NEXl' COLUMN
140 NE:n' ROW
150 GOSUB 308 'Largest value in EOWB
155 PRINT : PRINT
16S GOSUB 208 'Largest value in colmna
190 END

•• •• ·--a

200 POR J = 1 TO 11!1
2UI RANDOM = INT(RND * lflJ + 1) .
253 IF A(RANDOM) = 0 THEN DUPLICATE • OUPLICATE + 1 t 001'0 218
260 PRINT RANDOM:
270 A(RANDOM) "' 21 'Value unavailable
280 NE:>cr' J
300 PRINT
310 PRINT IXJPLICATE: "Duplicates•

run
Randan number seed (-32768 to 32767)? 3

9 5 6 2 8 10 4 7 1 3
61 Duplicates

run
Rand.an number seed (-32768 to 32767)? 2

1 9 7 2 3 6 5 4 10 8
9 Duplicates

Problem No. 6

198 REM ** Read the arrays
200 RFAD Nl
210 POR I • 1 TO Nl t RFAD A(I) : NEXl' I
246 I

250 RFAD N2
260 POR I • 1 TO N2 t READ B(I) : NEXl' I
296 I

298 RJ!M ** Load the third array
300 POR J • 1 'l'O Nl : C(J) • A(J) : NEXl' J : N3 "' Nl
3UJ POR K • 1 TO N2
328 POR J • 1 'l'O N3
338 IF C(J) • B(K) THEN 368
348 NEXl' J
351!1 N3 ,. N3 + l t C(N3) • B(K)
360 NEXl' K
396 I

4B8 POR J - 1 TO N3 I PRINT C(Jh I NEXl' J
491/J END
896 I

908 DATA 4, 3, 5, 6, 17
911 DATA 5, 6, -9, 11, -13, 3

run
3 5 6 17 -9 11 -13

196 I

198 REM ** Display colmn totals
201!1 FOR COWMN = 1 TO 7
210 LARGEST = A(l, COLUMN)
220 FOR ROW = 2 TO 5
230 IF A(RCM,COLllMN) > LARGEST THEN IARGEST • A(RON,COUMN)
241!1 NEXl' ROif
250 PRINT 1ARGEST7 "Largest for COl1J11n"7 COLUMN
260 NE:>cr' COLUMN
290 RETURN
296 I

298 REM ** Display row col1J11ns
300 FOR ROif = 1 TO 5
310 LARGEST = A(RCM, 1)
320 FOR COLUMN "' 1 TO 7
330 IF A(ROW, COLllMN) > LARGEST THEN IARGEST = A(RON,COI.ao!N)
340 NE:>cr' COLUMN
350 PRINT IARGEST7 "Largest for r<:M": RCM
360 NE:>cr' ROif
390 RETURN

run
118 Largest for row 1
14 7 Largest for row 2
143 Largest for row 3
130 Largest for row 4
117 Largest for row 5

143 Largest for colmn 1
147 Largest for collJlln 2
135 Largest for collJlln 3
117 Largest for collJlln 4
83 Largest for col1J11n 5
145 Largest for collJlln 6
136 Largest for collJlln 7

Problem No. 4
53 RANDOMIZE
60 DIM A(lOO)
99 REM ** Drawing five randcn nmbers frcm among ten
91 ' With trial-and-error
96 :
98 RiM ** Make all values available

•• ·• ·m

Section 6-3 Problem No. 4"(continued)

FOR J • l TO 109 109
110
120
130
156
160
196
198
200
210
250
260
270
280
285
298
290
380
390
396

:

A(J) = l 'Value available
NExr J
PRINT "With trial and error"

INPUT "Start timing .and press 'RETURN' "r A$

REM ** Select onn hundred randan values
FOR J "" l TO 100

RANOOM = INT (RND * 1!110 + 1)
IF A(RANDOM) = ill THEN 210
PRINT RANDOM:
A(RANDOM) ... 3 'Value unavailable

NE:lcr' J
BEEP 10,10
PRINT "Stop timing"
INPUT "Press 'RETURN'"r A$
PRINT
PRINT "Without trial and error"

398 REM ** And now the fa11t way
489 :
490 REM ** Randan values without replacenent
492 ' and without trial-and-error.
500 FOR J m l TO 103
SUI A(J) = J
523 NE~ J
556 -:
560 INPUT "Start timing and press 'RETURN' "r A$
596 :
600 FOR J = l TO 109
610 LAST = 100 - J + l
630 S = INl'(RND * LAST + l)
640 PRINT A(S)r
650 A(S) = A(IAS'l') 'Move last value
673 NEx:r J
685 BEEP 10,10
690 PRINT "Stop timing"
900 END

run
Randan nlllllber seed (-32768 to 32767)? 9
With trial and error

Section 6-5
Problem No . .2

:

GOSuB 900
FORI•lT03

PRINT RND:
NE~ I
END

'i.2;c. :.._
100
120
130
140
190
896
898
900
910
920
930
940
950
990

REM ** Request a name for seeding RND
INPUT "What's your name": NAME.$

run

SEED .. 0
FOR J = l TO LEN(NAME.$)

SEED = SEED + ASC(MID$(NAME.$,J, 1))
NE~ J
RANDOMIZE SEED
RETURN

What's. your name? John Adams
.598175 .0355749 .30511

run
What's your name? JOHN AD!\MS

.0815393 .888169 .986779

Problem No. 4

10 REM ** Replace line 30Jfll in Program 6-8.
11 'Adjust the number multiplied by the
12 'sign length to suit.
3030 FOR J = 1 TO 50 * LEN(SIGNS$(R)) : NIDCl' J

Problem No. 6
98 REM ** Tabulate frequency of letters on signs
100 DIM ALPffA(26)
110 GOSUB 400 'Do the tabulation
120 GOSUB 600 'display the results
190 END
396 :
398 REM * Tabulate frequency of letters of the alphabet
400 READ A$: IF A$ = "Done" THEN 490
410 FOR I = l TO LEN(A$)
420 B$ = MID$(A$,I,l) : X • ASC(8$)
440 IF X < 65 THEN 49lJ

·"' . .,
·co

Start timing and press 'RETURN' ?
109 45 58 95 55 83 29 48 43
99 50 46 59 6 2 15 211J 5 68
54 31 90 9 61 60 10 66 13 41
17 44 94 24 85 62 89 80 93 34
49 91 69 75 33 39 11 77 97 1
72 37 28 64 7 52 88 76 53 14
84 25 63 92 27 18 47 86 26 87
74 22 56 21 8 96 79 12 19 78
82 35 38 23 16 3 81 67 73 42
40 32 71 4 98 51 30 70 36 57
65

Stop ti.ming
Press 'RETURN'?

Without trial and error
Start timing and press 'RETURN'?
61 18 95 80 46 2 29 64 99 92
411J 77 88 22 26 66 5 67 39 75
44 32 86 711J 3 33 47 84 73 4
15 52 93 109 76 97 87 35 16
10 43 13 51 41 53 69 89 94 63
31 90 23 36 83 81 14 25 78 30
211J 62 54 19 58 9 7 96 37 21
68 8 72 6 11 79 59 55 34 53
42 60 49 17 91 50 98 74 27 71
1 82 57 12 28 38 85 48 45 24
65

Stop timing

Section 6-4
Problem No. 2
90 MCNTH$ "' "JanFebMarAprMayJunJulAugsepOctNovDec"
109 FOR R '"' l TO 3
llllJ FOR M = 1 TO 12
120 PRINT " "r MW$(M<ll'l'H$, 3*M-3+R, lh " "r
130 NE>Cl' M
140 PRINT
150 NE>Cl' R

run
J F M A M J J A S 0 N D
a e a ·p a u u u e c o e
n b r r y n 1 g p t v o

450
460
470
480
485
493
596 I

IF X > 96 AND X < 123 THEN X • X • 32
IF X > 90 ?HEN 48llJ
ALPHA(X-64) = ALPHA(X-64) + 1

NE>Cl' I
GOTO 400
RETURN

598 REM ** Display letter frequency
600 FOR I = 1 TO 26
61111 PRINT CHR$(I+64), " "r ALPHA(!)
620 NIDCl' I
690 RETURN
1496 I

1498 REM ** The signs
1500 DATA Stop, Al's Pizza, Dairy Queen, Burger King
1.502 DATA Yield, One Way, 'Ibis way OUt, Detour
1504 DATA One Show Only Tonight, Exit Only, Entrance Only Please
1506 DATA Florida 2138 mi., Fly United, Jet set Diner
1508 DATA Give Her a Valentine, Give Him a Valentine
151111 DATA First Avenue, North Side
1598 DATA tone

run
A 13
B 1
c 1
D 7
E 26
F 3
G 5
H 6
I 18
J 1
K 1
L 10
M 2
N 18
0 12
p 3
Q 1
R 10
s 8
T 15
u 6
v 5

·"' •GI ·o

Section 6-5 Problem No. 6 (continued)
w 3
x 1
y 8
z 2

Problem No. 8

5 REM ** Play a geography game
10 DEF FNLU$(X$) = CHR$(ASC(X$) + 32 * (ASC(X$)>96 AND ASC(X$)<123)
20 DIM NA$(300),AV(300)
30 GOSUB 8000 'Read names array
32 INPUT "Do you wish to see the instructions": A$
34 IF FNLU$ (LEFT$ (A$ I l)) = "N" THEN 37
35 GOSUB 9000 'Instructions
37 GOSUB 4000 'Initialize available names array
40 GOSUB 7000 'Computer starts
50 GOSUB 6000 'Person response
58 IF PE$ = "QUIT" THEN 75
60 GOSUB 5000 'Computer response
65 IF CP$ <> "QUIT" THEN 50
75 INPUT "Do you want another game": A$
85 HOME
90 IF FNLU$ (LEFT$ (A$, l)) = "N" THEN END
100 FOR I9 = 1 TO 1000 : NEJel' I9
120 GOTO 32
3996
3998
400flJ
40lflJ
402flJ
4090
4996
4998
511ll1lflJ
511JUJ

I

REM ** Initialize available names array
FOR J9 = l TO N0

AV(J9) • 1
NEXl' J9
REl'URN

REM ** C'anputer response
FORI9=1TON0

IF FNLU$(LEPT$(NA$(I9),l)) = FNLU$(RIGHT$(PE$,l))
AND AV(I9) = 1 THEN 505111

5flJ15 NEXl' I9
5021!1 PRINT 1 PRINT • I have run out of names•
511J25 CP$ • "QUIT"
5031!1 GOTO 51!191!1
51!15flJ CP$ = NA$(I9) : AV(I9) • flJ

5061!1 PRINT " I choose 1 ": CP$
51!19'J RErURN
5996 I

9flJlflJ PRINT "with you. You will take turns with the" : PRINT
9015 PRINT "<Xlllputer. Each of you will be trying to"; : PRL.'ll'
9020 PRINT "'.think of names of places such that the" : PRINT
9025 PRINT "first letter of your name is the same as": : PRINT
9030 PRINT "the last letter of the previously used" : PRINT
9035 PRINT "place name." : PRINT
9045 INPUT "Are you ready? ": A$
9065 IF FNLU$ (LEFT$ (A$ I 1)) <> ''Y II THEN 9045
9070 FOR I9 = 1 TO 1000 : NElC1' I9
9090 RETURN

Chapter?
Section 7-1
Problem No. 2

10 REM ** Make the following changes ---
20 GOSUB 811J0 'Get the month and year range
25 FOR ~ = Yl TO Y2
35 NE:lCl' ~
796 I

798 REM ** Request month and range of years
800 INPUT " What month" 1 MONTH
810 IF MONTH < 1 OR MONTH > 12 THEN 800
820 INPUT "Range of years fran, to": Yl, Y2
830 IF Yl < l1J OR Yl > 99 THEN 820
84l1J IF Y.2 < 0 OR Y.2 > 99 THEN 820
850 IF Yl > Y2 THEN 821/J
890 RETURN

run
What month? S

Range of years fran, to? 36,37

May 1936

Sun M:>n 'l\le Wed 'lhu Fri Sat

l 2
3 4 5 6 7 8 9

lf/J 11 12 13 14 15 16
17 18 19 21!1 21 22 23
24 25 26 27 28 29 31!1
31

·" •fA

5998
6000
6005
6010
6020
6022
6025
6030
6035
6037
6040
6045
6051!1
6055
6060
6065
608111
6085
6096 I
6098
6100
6150
6190
6996

REM ** Person go
PRINT
INPUT " Your turn"r PE$
IF LEN(PE$) < 2 THEN PRINT "Name too short" I GOTO 6005
IF LEN(PE$) <> 4 THEN 61i14f/J
XPE$ = PE$
FOR I9 = 1 TO 4 'Convert to uppercase
MID$(XPE$,I9,l) = FNLU$(MID$(PE$,I9,l))

NEXl' I9
IF XPE$ = "QUIT" THEN PE$ = XPE$: GOTO 6190
IF FNLU$(LEFT$(PE$, 1)) = FNLU$(RIGHT$(CP$, 1)) THEN 6051!1
PRINT "No match" : GOTO 6005
FOR I9 = 1 TO N0
IF PE$ = NA$(I9) THEN 6100

NEXl' I9
IF Nl!I = 300 THEN PRINT "No roan" I GOTO 6005
N0 = N0 + 1 : NA$(N0) = PE$: AV(N0) = l!I
GOTO 6190

REM ** Place name is on the list
IF AV(I9) = 3 THEN PRINT "Already used" : GOTO 6005
AV(I9) = l/J

RETURN

6998 REM ** Computer beg in the game
7000 X9 = INT(RND*N0 + 1)
7020 CP$., NA$(X9) : AV(X9) m l/J
7030 HOME
7040 PRINT "First place : "r CP$
7090 REl'URN
7996 :
7998 REM ** Read names
8001/J I9 = 1
8010 RFAD NA$(I9)
8021/J IF NA$ (I 9) = ''Done" THEN 8080
8031!1 I9 = I9 + 1 I GOTO 8010
8080 Nl/J = I9 - 1
8090 RETURN
8096 :
8100 DATA New York, Chicago, Philadelphia, Boston
8590 DATA "Done"
8996
8998
9000
9005

I

REM ** Instructions
HOME
PRINT "This program will play a geography game" : PRINT

May 1937

Sun !t:>n TUe Wed Thu Fri Sat

1
2 3 4 5 6 7 8
9 11/J 11 12 13 14 15

16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31

Problem No. 4

20 GOSUB 600 'Get a date
25 IF DATE = 0 THEN END
30 GOSUB 700 'Display day of the week
90 END
292 :
294 REM ** calculate
296 ' WEEl<DAY - 1st of !t:>nth
298 ' N - No. of days in Month
300 LEAP = flJ : IF YEAR MOD 4 = i3 THEN LEAP = l
310 WEEl<DAY = (YEAR + INI'{(YEAR + 3) I 4)) MOD 7
320 N = flJ
330 FORM= 1 TO MOOTH
340 WEEl<DAY = (WEEKDAY + N) MOD 7
350 N = 31/J + ((M + (M > 7)) MOD 2)
360 IF M = 2 THEN N = 28 + LEAP
383 NE>Cl' M
3921 RETURN
496 :
498 REM ** Verify the date
51/Jf/J ERROR.MESSAGE$ = "Ok"
511/J YEAR = INT(DATE I 10000)
521/J Mcm'H = INT((DATE - YEAR*lflJ001/J) I 100)
530 DAY = DATE - YEAR*ll/Jf/Jf/Jf/J - MCNl'H*ll/Jf/J
541/J IF DAY < 1 OR DAY > 31 THEN ERROR.MESSAGE$ • "Bad day"
550 IF MOOTH < 1 OR MCNl'H > 12 THEN ERROR.MESSAGE$ - "Bad month"
561/J IF YEAR < 0 OR YEAR > 99 THEN ERROR.MESSAGE$,. "Bad year"
590 RETURN
596 :
598 REM ** Get a date
61/Jf/J INPUT "Enter a date in the form YYMMDD"r DATB
605 IF DATE = f/J THEN 690
611/J GOSUB Sf/J0 'Verify date INPUT

·" •(A . .,

Section 7-1 Problem No. 4 (continued)

621!1 IF ERROR.MESSAGE$ <> "Ok" THEN PRINT ERROR.MESSAGE$ I GOTO 600
690 RETURN
696 I

698 REM ** Display day of the week
700 WEEK$ = "SunM:>nTueWedThuFriSat"
711!1 GOSUB 31!10 'Get first day of this month
721!1 WEEKDAY = (WEEKDAY + DAY - 1) MOD 7
731!1 X = WEEKDAY * 3 + 1
741!1 PRINT
751!1 PRINT "Your date falls on •; MID$(WBEK$, X, 3)
790 RETURN

run
Enter a date in the form YYMMDD? 89131!11
Bad month
Enter a date in the form YYMMDD? 880101

Your date falls on Sun

Problem No. 6
90 MCl!ITH$ = "JanFebMarAprMayJunJulAugSepOct:NovDec"
11!11!1 . INPUT "Enter a date in the form Y?MMDD"; DATE
UIS IF DATE = l!I THEN END .
110 GOSUB 503 'Verify date INPUT
121!1 IF ERROR.MESSAGE$ <> "Ok" THEN PRINT ERROR.MESSAGE$ 1 GOTO 100
131!1 GOSUB 601!1 'Form the date string
140 PRINT NEW.DATE$
290 END
292 I
294 REM ** calculate
296 ' WEEKDAY - 1st of llt)nth
298 ' N - No. of days in llt)nth
300 LEAP = 0 : IF YEAR MOD 4 = 0 THEN LEAP = 1
311!1 WEEKDAY = (YEAR + Im' ((YEAR + 3) I 4)) MOD 7
321!1 N = l!I
330 FOR M = 1 TO MCl!ITH
340 WEEKDAY = (WEEKDAY + N) MOD 7
350 N = 30 + ((M + (M > 7)) MOD 2)
361!1 IF M = 2 THEN N = 28 + LEAP
380 NEJCl' M
390 RETURN
496 I

498 REM ** Verify the date

196 I .

21!11!1 INPUT "Enter a negative mnber in. base ten form"1 TEN
205 IF TEN > -1 THEN 203
211!1 DECIMAL = ABS (TEN)
221!1 X = DECIMAL MOD 2
231!1 A$ = RIGHT$(STR$(X),l) +A$
240 DECIMAL = DECIMAL \ 2
259 IF DECIMAL THEN 221!1
271!1 A$ "" "3" + A$ 1 IF LEN(A$) < 16 THEN 270
280 PRINT n Binary form of .. : ABS (TEN): II is ", A$
296 I

298 REM** l's to 0's and vice versa
301!1 FOR Jl = 1 TO LEN(A$)
311!1 X$ = MID$(A$,Jl,l)
321!1 IF X$ = "0" THEN MID$(A$,Jl, 1) • "l"

331!1 NE:>Cl' Jl
396 I

398 REM ** .Add 1

EISE MID$(A$,Jl, 1) = "l!I"

41!10 FOR Jl "' LEN(A$) TO 1 STEP -1
411!1 X$ = MID$(A$,Jl,l)
421!1 IF X$ = "0 II THEN MID$ (A$, Jl, 1) - 0 1.. I GOTO 500
431!1 MID$(A$,Jl,l) "' "l!I"
441!1 NEXl' Jl
496 I
498 REM ** Display
51!11!1 PRINT "'.lWo' s oanplement form is", A$

run
convert negative numbers to t11«>'s oanplement form

Enter a negative number in base ten form? a
Enter a negative number in base ten form? -1
Binary form of 1 is 1!11!11!10001!11!10000001!11
Two's complement form is 1111111111111111

Chapter a
Section 8-2
Problem No. 2
1 REM ** Enter these lines
118 TIMES = 0 •count times missed
142 GOSUB 6000 'Is ALPHA! on the sign?
144 IF CAPA <> l!I THEN 150

•• •fA
•fA

51111/J ERROR.MF.SSAGE$ • "Ok"
511/J YEAR .. INl'(DATE I ll/Jl/Jl/Jl/J)
521/J MCNrH .. INl'((DATE - YEAR*ll/Jl/Jl/Jl/J) I UJl/J)
531/J DAY = DATE - YEAR*ll/Jl/Jl/Jl/J - MCNl'H*ll/Jl/J
551/J IF MCNl'H < 1 OR MCNl'H > 12 THEN ERROR.MESSAGE$ • "Bad month"
561/J IP YEAR < Ill OR YEAR > 99 THEN ERROR.MF.SSAGE$ = "Bad year"
571/J GOSUB 31/J1/J 'Pind mnber of days in this MCNrR
581/J IP D.1\Y < l OR DAY > !11 THEN ERROR.MESSAGE$ a "Bad day"
591/J RETURN
596 I
598 R!M ** Form the date string
611Jl/J Y$ = MID$(STR$(YEAR),2) 1 IF YEAR < UJ THEN Y$ • "l1J" + Y$
611/J M$ = MID$(MCNl'H$,MCNl'H*3 - 2,3)
621/J D$ = MID$(STR$(DAY),2) 1 IF D.1\Y < ll1J THEN D$ = "Ill"+ D$
631/J NEW.D.1\TE$ • Y$ + "-n + M$ + "-" + D$
691/J RETURN

run
Enter a date in· the form YYMMDD? 89111132
Bad day
Enter a date in the form YYMMDD? 880111Jl
88-Jan-l/Jl

Section 7 -3
Problem No. 2

11111/J PRINT n<l:>nvert base ten numbers to binary format"
110 PRINT
196 I
200 INPUT "Enter a value"r DECIMAL
210 x ... DECIMAL - INl' (DECIMAL I 2) * 2
221/J A$ = STR$(X) + A$
230 DECIMAL = INl'(DECIMAL I 2)
241/J IP IECIMAL THF..N 211/J
250 PRINT A$

run
Cl:>nvert base ten numbers to binary fomat

Enter a value? 99
1100011

Problem No. 4
10l1J PRINT "Convert negative nmibsra to tt.o'• amaplanent form"
lll1J PRINT

145 IF TIMES <> 2 'l'HEN 131/J
148 PRINT "You missed n 1 CHR$ (ALPHAJ.) 1 " twice• a GOSUB lll1Jl11
149 TIMES·= 0 1 ALPHAl = ALPHAl + l 1 GOTO 155
511170 TIMES = 0
5996 I
5998 Rl!M ** Is ALPHAl on the sign?
61/J00 POR J ml TO LEN(SIGNS$(R))
61/Jl0 8$ = PNU$(MID$(SIGNS$(R),J,l))
6320 IP CHR$(ALPHA1) • 8$ THEN 61/J5l1J
6030 NEXl' J
611J41/J ooro 611191/J
611J50 TIMES = TIMES + l
6091/J REl'URN

Problem No. 4

81/J DIM 8(26) : POR I = l TO 26 1 S(I)"'I 1 NElel' I
91/J DIM ALPHA(26)
96 I
98 Rl!M * Tabulate frequency of letters of the alphabet
101/J OPEN "I", 1, "SIGNS.DAT"
11112 INPUT il, A$: IP A$ = U0one" THEN 21/J1/J
110 FOR I = 1 TO LEN(A$)
121/J 8$ = MID$(A$,I,l)
130 X = ASC(8$)
135 IF X < 65 THEN 161/J
141/J IF X > 91/J THEN X = X - 32
151/J ALPHA(X~4) = ALPHA(X-64) + l
161/J NElel' I
191/J ooro 11112
196 I
198 Rl!M •• Arrange in increasing order
21/J1/J N = 26
21115 N=N-laFIAG=l/J
211/J FOR I = l TO N
221/J IF ALPHA(I) <= ALPHA(I+l) THEN 2811
225 PIAG • l
231/J SWAP ALPHA(I), ALPHA(I+l)
241/J SWAP S(I), S(I+l)
281/J NEler I
285 IP PIAG = l THEN 21/JS
296 I
298 RPM * Display frequency chart
31/J1/J POR I = l TO 26
311/J PRINT CHR$(S(I)+64)1 ALPHA(I),
321/J NBX1' I

·"' •GI
·~

Section 8-2 Problem No. 4 (continued)

391/J END

run
B 1
x 1
w 3
D 8
A 13
E 28

Section 8-3
Problem No. 2

c 1
M 2
G 2
s 8
0 14

J 1
z 2
v 5
y 8
T 17

K 1
F 3
H 6
L 10
I 18

0 l
p 3
u 6
R 11
N 20

91/Jl DATA 2,
902 DATA 9,
903 DATA 99,
934 DATA 22,
905 DATA 38,
906 DATA 44,
990 DATA llJ,

Section 9-4

Problem No. 2

PP Taxes,
Medical,
Misc,
s & w.
C & M,
~rtgage,

Done,

Personal property taxes
Medical expenses
Miscellaneous
Se1r1er and water
Cleaning and maintenance
~rtgage interest
Done

50
79
a0
96

REM ** Display cities in % Growth order
REM ** Store the file record in POSITION
DIM ARRAY(l0), POSITION(l0)

: 1 REM ** Enter these lines
9200 IF INSTR(A$,"FOR") = 0 AND INSTR(A$,"NE)Cl'")
9205 FOR J = 1 TO LEN(A$)

• l/J THEN 9291/J 100
110

OPEN "R", #1, "CITIES.MT", 21/J
FIELD tl, 12 AS CITY$, 4 AS RANI<$, 4 AS PERCENT$

:

Section 8-4
Problem No. 2

1 REM ** F.nter this line
14" INPUT #1, N$: IF N$ <> Nl$ THEN PRINT #2, N$

Problem No. 4

98 REM ** Add a name to a sequential
100 OPEN °!", #1, "DEMOIH.DAT"
110 OPEN "O", #2, "DEMOOl.'lMP"
120 INPUT "Delete a name0 r Nl$
14" INPUT #1, N$: IF N$ <> Nl$ THEN
150 IF N$ <> "End" THEN 14"
160 CLOSE
170 KILL "DEMOOl. MT"
18" NAME "DEMOOl.'lMP" AS "DEMOOl.MT."
191/J END

Chapter 9
Section 9-3

Problem No. 2
96 I

100 OPEN "R", tl, "ACNAMES. D!l.T", 38

file

PRINr #2, N$

196
198
200
210
220
230
240
250
296
298
300
310
320
330
340
350
36"
396
4"0
410
420
431/J
441/J
451/J
48"
491/J
891/J

:

:

REM ** First load the array with % Growth
FOR REC = 1 TO 11/J

GET #1, REC
G = CVS(PERCENT$)
ARRAY(REC) = G
POSITION(REC) = REC

NEJCl' REC

REM ** Now arrange according to % Growth
FOR IAST .. 9 TO 1 STEP -1

FOR J = 1 TO IAST
IF ARRAY(J) <=ARRAY(J+l) THEN 350

SWAP POSITION(J), POSITION(J+l)
SWAP ARRAY(J) , ARRAY(J +l)

NIDCl' J
NEJCl' IAST

PRINT "City Rank % Growth"
FORK=lTOll/J

GET tl, POSITION(K
R =CVS(RANK$)
G = CVS(PERCENT$
PRINT USING "& H Ht. t"r CITY$, R, G

NEJCl' K
CLOSE tl
END

...
•GI
·01

111 PIBLD tl. 31 AS X$
196 I

198 Rl!M ** Request new account
210 INPUT "New account t. label"r N. A$
221 IP N>t/J AND N<l00 THEN 388
238 PRINT "Account mnber out of range• 1 001'0 200
240 IF IBN(A$) <= 38 THEN 300
258 PRINT "Label too long" 1 001'0 288
296 :
298 R!M ** Go into the file
388 GET tl, N
311 IP LEFT$ (X$, 18) = "Unassigned" THEN 340
328 PRINT "That account nlJllber is in use" : 001'0 2SS
340 LSET X$ = A$
358 Pl1l' tl. N
398 CIDSE
395 END

Problem No. 4

BS Rl!M ** Initialize account label file
96 :
lfJt/J OPEN "R". #1, "ACNAMES.!>'T"• 38
118 FIELD ti. 38 AS X$. 8 AS L$
196 I

198 REM ** Pill file with ''Unassigned"
2t/J3 LSET X$ = "Unassigned"
285 LSET L$ = •&npty"
210 FOR REC = 1 TO 99
22t/J Pt.11' #1, REC
238 NUl' REC
296 I

298 REM ** Write out actual labels
380 READ N, S$, N$
3li/J IP N$ = ''Done" THEN 398
328 IF N < 1 OR N > 99 THEN 38t/J
338 LSET L$ = S$
340 LSET X$ = N$
358 Pl1l' tl, N
36t/J GOTO 300
38t/J PRINT N; "Qit of range"
398 CIDSE tl
395 END
896 :
988 DATA 1, R Taxes, Real estate taxes

run
City Rank
Detroit 6
Philadelpiia 4
Baltimore 9
Chicago 2
New York 1
Los Angeles 3
Dallas 7
San Antonio 18
San Diego 8
Houston 5

Chapter 10
Section 10-1
Problem No. 2

' Growth
-20.5
-13.4
-13.1
-11.0
-11.4

5.5
1.1

21.1
25.5
29.2

19 Rl!M ** mailing list program
28 PILENAME$ = "NAMES"
38 DIM IABEL$(9), L(9). F$(9). RDATA$(9)
396 I
398 REM ** Control routine for editing names
488 GOSUB 281/JS 'Read data labels and limits
418 GOSUB 198t/J 'Read available-space parameters
428 GOSUB 18t/JS 'OPEN the .D!\T file
431/J GOSUB 401/Jl/J 'Request ID to edit
44" IP ID = t/J THEN CIDSE : END

'Terminate on zero ID
458 GOSUB 4188 'Read the entry and edit it
46t/J GOTO 438 'Do it again

Rl!M ** OPEN the .D!\T file
OPEN "R", t2, FILENAME$ + ".DAT", RIENGl'H

.zER file

1796
1798
18t/J0
1811 PIELD t2. L(l) AS F$(1), L(2) AS F$(2), L(3) AS P$(3),

L(4) AS F$(4). L(5) AS F$(5), L(6) AS F$(6).
L(7) AS F$(7). L(8) AS F$(8), L(9) AS F$(9)

1898 RETURN
1896 I
1898 R!M ** Read available-space parameters
1980 OPEN "R" , tl, PILENAME$ + ". ZER" , 8
1918 FIELD tl. 4 AS NEWID$, 4 AS OLDID$
1920 GET tl. 1
1938 NS = CVS(NEWID$)
1940 DS • CVS(OLDID$)

Section 10-1 Problem No . .2 (continued) 211!10 DATA 9
2102 DATA ID#, 4

1990 RETURN 2104 DATA CODE, 2
1996 I 2106 DATA IAST, 20
1998 REM ** Read data labels and limits 2108 DATA FRST, 20
21/Jl/J0 RFAD N0 2110 DATA ADDR, 30
2010 RIENGl'H = 0 2112 DATA CITY, 20
2020 FOR X9 = 1 TO N0 2114 DATA STll.T, 2
21!130 RFAD IABEL$(X9), L(X9) 2116 DATA "ZIP ", 5
2040 RIENGl'H = RIENGl'H + L(X9) 2118 DATA PHON, 17
2050 NE:lCl' X9 5996 I
2090 RETURN 5998 REM ** Request up to 10 ID's here
2096 I 601/J0 PRINT "Enter up to 10 ID's": : LINE INPUT A$
2098 REM ** DATA - labels and limits 6005 A$=A$+","
21.110 DATA 9 6010 FOR 19 = l TO 10 I ID(I9) = V!I I NElCl' 19
2UJ2 DATA ID #, 4 6020 Nl = 0
211/J4 DATA CODE, 2 61/J311J X = INSTR(A$,",") 1 IF X = 0 THEN 6090
2106 DATA IAST, 20 6040 X9 = VAL(LEFT$(A$,X-l))
2138 DATA FRST, 20 6050 IF X9 < NS AND X9 > 0 THEN 6070
2110 DATA II.DOR, 30 6060 PRINT X9: "out of range - reenter": : INPUT X9 : GOTO 6050
2112 DA.TA CITY, 20 6070 Nl = Nl + 1 : ID(Nl) = X9 •• 2114 DATA STAT, 2 6080 IF Nl < 1111 THEN A$ = MID$(A$,X+l) : GOTO 611131!1

•tA 2116 DATA "ZIP •, 5 61!190 REl'URN
•a> 2118 DATA PHON, 17 6096 I

3996 : 6398' REM ** Display labels here
3998 REM ** Request ID to edit 6100 FOR 19 = 1 TO Nl
41/Jl/J0 PRINT 6111/J ID = ID(I9)
4010 INPUT "EDIT ID #": ID 6120 GET #2, ID
4020 IF ID < NS AND ID >= 111 THEN 4090 613flJ X = CVS(F$(1)): IF X <>ID THEN 6180
41/J30 PRINT II NCX!l-EXISTENl' ID" : GOTO 4001!1 6135 PRINT USING II & &": F$(4), F$(3)
4090 RETURN 6140 PRINT USING " &": F$(5)
4096 : 6150 PRINT USING " & & &": F$(6), F$(7), F$(8)
4098 REM ** Read the entry if it is real 6160 PRINT : PRINT : PRINT
4100 GET #2, ID 6180 NE:lCl' 19
4110 X = CVS(F$(1)) 1 IF X =ID THEN 4125 6190 REl'URN
4120 PRINT ID: "Has been deleted" I GOTO 4190
4125 FOR I9 = 2 TO N0

Chapter 11 4131/J PRINT IABEL$(I9): •: ": F$(I9)J
4135 PRIN'l' TAB(L(I9)+8): "1 OK": : INPf11' AN$ Section 11-1
4140 IF LEFT$(AN$,l) = "Y" THEN 4185 Problem No . .2 4145 IF LEFT$ (AN$, 1) = "N" THEN 4160
4150 PRINT .. 'Y' OR 'N' Please" : GOTO 4135 l mM ** Load program 11-2 and
4160 INPUT " : ", KDATA$(I9) 2 REM Type the following:
4165 IF I.EN(KDATA$(19)) <= L(I9) THEN 418" 18"
4170 PRINT "Too long" : GOTO 4160 100
418" LSE'l' F$(I9) a KDATA$(19) 120 COIDR = INT(RND(l)*l6)

.to
•"1
·~

4185 ~ I9
4187 Pl1l' i2, ID
419111 RETURN

Problem No. 4

19
2111
3111
496

Rl!M ** mailing list program
FILENAME$ = "NAMES"
DIM IABEL$(9), L(9), F$(9), J(l)ATA$(9)

498 Rl!M ** Control routine for displaying labels
51110 GOSUB 281110 'Read data labels and limits
51111 GOSUB 19111111 'Read available-space parameters .ZER file
520 OOSUB 18111111 'OPEN the .mT file
53111 GOSUB 61111110 'Request up to 10 ID nunbers
535 IF ID(l) = 0 THEN CIDSE 1 END

'Terminate on no requested nunbers
54111 GOSUB 61111111 'Display address labels for the requested ID's
56111 CIDSE 1 END
1796 I

1798 Rl!M ** OPEN the .mT file
18111111 OPEN "R" , t2, FILENAME$ + ". mT" , RLENGTH
1810 FIELD t2, L(l) AS F$(1), L(2) AS F$(2), L(3) AS F$(3),

L(4) AS F$(4), L(5) AS F$(5), L(G) AS F$(6),
L(7) AS F$(7), L(S) AS F$(8), L(9) AS F$(9)

189111 RETURN
1896 I
1898 Rl!M ** Read available-space parameters
191116 OPEN "R" I u. FILENAME$ + ... ZER" I 8
1910 FIEW tl, 4 AS NEWID$, 4 AS OWID$
1920 GET tl, 1
1930 NS • CVS(NEWID$)
194111 OS = CVS(OWID$)
199111 RErtJRN
1996 I

1998 Rl!M ** Read data labels and limits
211106 RFAD Niii
261111 RLENGTH • S
202111 FOR X9 • l TO NS
211136 RFAD IABEL$ (X9) I L(X9)
2946 RLENGTH • RLBNGl'H + L(X9)
2656 NEX1' X9
209111 RErtJRN
2096 I

2698 RIM ** DATA - label.a and limi.U

Problem No. 4

19 Rl!M ** Randon colors at randan points
100 GR 6
110 X a INT(RND(l)*39)
126 Y = INT(RND(l)*39)
130 COLOR = INT(RND(l)*l6)
15111 PLOT X, Y
176 GOTO 110

Problem No. 6
1"0 GR
110 HOME
120 PRINT II .. ,

130 COU>R = 15
14" FOR I = l TO 9
150 RFAD A
16111 VLIN 39 - I, 39 AT 3 * I
170 PRINT Ir
18111 NElCl' I
191/J PRINT II Days"
21110 PRINT "Daily temperature"
210 END
296 I

300 DATA 30, 26, 26
310 DATA 31, 26, 30
320 DATA 38, 36, 34

Section 11-2
Problem No. 2
98 RIM ** Plot a one and a three
11110 GR S
196 I

200 COLOR • 15
218 FOR I • 11 TO 15
220 VLIN 1,7 AT I
238 VLIN 3,9 AT I + 18
24" ll1EXl' I
296 I
31110 COLOR • 9
319 PLOT 13,4 'Plot the •one•
339 PLOT 22,4 'Begin the "three•
34" PLOT 23,6
351 PLOT 24,8

Section 11-3 1318 PID'1' X+3,Y+5
1328 PID'1' X+2, Y+3 Problem No. 2 1398 RBTUBN

RANDOMIZE 1396 I 58 1398 RIM ** Plot a 1 four' 98 RIM ** Display a nnaaa die face
1488 PID'1' X+l, Y+l 181 GR 8 1418 PID1' X+l, Y+5 ,,-

196 I 1428 PID'1' X+3, Y+l 288 COIDR • 15 1438 PID1' X+3, Y+5 218 P<BI•8'1'04 1498 RBTUBN 228 VLIN 8,6 AT I 1496 I 238 NEXl' I 1498 RIM** .Plot a 'five' 296 ·I 1588 PID1' X+l, Y+l 381 COi.DR • eJ 1518 PID1' X+l, Y+5 318 R • INT(RND(l)*6) + 1 1528 PlDl' X+3, Y+l 32111 ON R GOSUB 118111, 1281, 1398, 1488, 1588,.1681 1538 PID1' X+3, Y+5
39111 END 1548 PID1' X+2, Y+3
1896 I 1598 RBTUBN
111198 RIM ** Plot a •one• 1596 I
118111 PID1' 2,3 1598 RIM ** Plot a • six1
1198 REl'URN 161118 PID1' X+l, Y+l •• 1196 I

R!M ** Plot a 1 blo1
1618 PID1' X+l, Y+3

•GI 1198 1628 PID1' X+l,Y+5 ·m 1288 PLOT 1,1 1631/J PID1' X+3, Y+l
1218 PLOT 3,5 1648 PID1' X+3, Y+3
129111 RE1'URN 165111 PID1' X+3,Y+5
1296 I 169111 RBTUBN
1298 RIM ** Plot a 1 three1

1388 PID1' 1, 1 Problem No. 6 131111 PLOT 3,5
1328 PlDl' 2,3 98 R!M ** 'Roll the dice'
139111 REl'URN 181 GR 8
1396 I 11115 GOSUB 5111111
1398 REM ** Plot a •four• 118 R = INT(RND(l)*6) + l
143111 PLOT 1,1 128 X•eJ1Y•32
1418 PLOT 1,5 125 COIDR = 15 1 GOSUB 21/11/J 1 GOSUB 38111
1428 PID1' 3,1 148 R"' INT(RND(l)*6) + l
1438 .PLOT 3,5 158 X.=l81Y=38
1498 RE1'URN 168 COi.DR = 15 I GOSUB 28llJ 1 GOSUB 38111
1496 I 198 END
1498 R!M ** Plot a •five• 196 I
151118 PID1' 1, 1 288 P<BI•X'l'OX+4
151111 PLOT 1,5 228 VLIN Y,Yi6 AT I
1528 PID1' 3,1 238 NEler I
1538 PID1' 3,5 298 RBTUBN
154111 PLOT 2,3 296 •

1590 RETURN 31/H!J COLOR= 111
1596 : 3211J ON R OOSUB lleJeJ,1211JeJ,13eJ111,14"eJ,15"eJ,16"i
1598 REM** Plot a 'six' 390 RETURN
1611JeJ PLOT 1,1 496 I

16111J PLOT 1,3 498 REM ** The rolling dice
16211J PLOT 1,5 51/H!J POR X9 = 1 TO leJ
1631/J PLOT 3,1 51111 X = INl'(RND(l)*33)
16411J PLOT 3,3 5211J Y = INl'(RND(l)*35)
16511J PLOT 3,5 53111 cau:>R = 15 : R = INl'(RND(l)*6)+1
1690 RETURN 54111 GOSUB 200 : GOSUB 300

561/J COU>R = liJ 1 GOSUB 21/H!J
Problem No. 4 58" NElCl' X9

590 RETURN
11/J RANDOMIZE 5 ll/J96 I
98 REM ** Display two dice at randan ll/J98 REM ** Plot a •one•
1011J GR l/J lleJl/J PLOT X+2, Y+3
110 R = INI'(RND(l)*6) + 1 1190 REl'URN
120 x = 0 : y = 32 1196 I
130 GOSUB 200 : GOSUB 31/H!J 1198 REM ** Plot a 'two'
14111 R = INI'(RND(l)*6) + l 12011J PLOT X+l, Y+l

•• 150 X=l0:Y=30 1210 PLOT X+3, Y+5
160 GOSUB 21/H!J 1 GOSUB 300 1290 RETURN •GI 190 END 1296 I ·co 196 : 1298 REM ** Plot a 'three'
200 COLOR= 15 1300 PLOT X+l, Y+l
210 FORI=XTOX+4 1310 PLOT X+3,Y+5
220 VLIN Y,Y+6 AT I 1320 PLOT X+2,Y+3
230 NE:lCI' I 1390 RETURN
290 RETURN 1396 I
296 : 1398 REM ** Plot a 'fi:>ur'
300 COLOR.= 0 141110 PLOT X+l,Y+l
320 ON R GOSUB ll0eJ,1200,1311JeJ,141/H!J,15"0,16"0 14111J PLOT X+l, Y+5
390 RETURN 14211J PLOT X+3, Y+l
1096 I 1430 PLOT X+3, Y+5
1098 REM ** Plot a •one' 1490 REl'URN
lleJeJ PLOT X+2,Y+3 1496 I
1190 RETURN 1498 REM ** Plot a 'five•
1196 I 1511JeJ PLOT X+l, Y+l
1198 REM ** Plot a 'two' 15lfll PLOT X+l,Y+5
12011J PLOT X+l,Y+l 15211J PLOT X+3, Y+l
12111J PLOT X+3,Y+5 153111 PLOT X+3, Y+5
1290 RETURN 15411J PLOT X+2, Y+3
1296 I 1590 REl'URN
1298 REM ** Plot a 'three' 1596 :
13f/JeJ PLOT X+l,Y+l 1598 REM ** Plot a 'six'

·"' -~ ·o

Section 11-3 Problem No. 6 (continued)

1600 PLOT X+l,Y+l
1610 PLOT X+l,Y+3
1620 PLOT X+l,Y+S
1630 PLOT X+3,Y+l
1640 PLOT X+3,Y+3
1650 PLOT X+3,Y+5
1690 REl'URN

Chapter 18
Section 12-1

Problem No. 2

100 HGR
106 :
108 REM ** Prepare text window
110 HOME : vrAB 21
116 :
118 REM ** White border
120 HCOI.OR = 11 : OOSUB 600
130 HCOI.OR = 2
196 :
198 REM ** Plot graph here
200 FOR DAY = 1 TO 7
210 REl\D D$, T
220 FORI=0T07
230 X = 35 * DAY + I - 3
240 Y = 157 - 3 * T
250 HPLOT X, Y TO }(, 157
270 NE>Cl' I
275 PRINT TAB(DAY*5): D$:
280 NElCI' DAY
590 END
596 :
598 REM ** Plot a border
600 HPLOT 0,0 TO 0,159 TO 279,159 TO 279,0 TO 0,0
690 RETURN
696 I

700 DATA SUn, 42, llt>n, 38
710 DATA Tue, 40, Wed, 31
720 DATA 'lbu, 24, Fri, 18
738 DATA Sat, 15

600 HPLOT 0,0 TO 0,159 TO 279,159 TO 279,0 TO 0,0
690 RETURN
696
710
720
730
740
750

DATA Mon,
DATA Tue,
DATA Wed,
DATA 'lbu,
DATA Fri,

Section 12-2
Problem No. 2

HGR l
GOSUB 200
END

33.75
35.125
35
36.25
37.875

100
110
190
196
198
200
210
220
230
240
290
996 I

REM ** Line plotting routine
REl\D C,X,Y,Xl,Yl
IF C = -1 THEN 290

HCOI.OR = C
HPLOT X, Y TO Xl, Yl

ooro 200
REl'URN

998 REM ** Sailboat data
1000 DATA 11,30,40,40,50
1002 DATA 11,30,40,30,52
1004 DATA 11,30,50,40,50
1006 DATA 11,26,52,46,52
1008 DATA 11,26,52,28,56
1010 DATA 11,28,56,44,56
1012 DATA 11,44,56,46,52
1990 DATA -1,0,0,0,0

Problem No. 4

100 HGR 1 1 lf:OI.OR ,. 11
196 I
198 REM ** Plot the flagpole
200 HPLO'l' 31, 10 TO 31, 150
296 I
298 REM ** Draw the flag
308 P<R H = 140 TO 12 STEP -2
310 HCOI.OR • 11
321J HPLOT 35, ff TO 78, H

Problem No. 4

100 HGR
106 :
108 REM ** Prepare text window
110 HOME 1 vrAB 21
116 :
118 REM ** White border
120 HCOLOR = 11 1 OOSUB 600
130 HCOLOR = 2
196 I

198 REM ** Plot graph here
200 FOR DAY = 1 TO 5
210 READ D$, P
220 FORI=3T07
230 X = 35 * DAY + I - 3
240 Y = 157 - 4*P
250 HPLOT X, Y TO X, 157
2721 NE}Cl' I
275 PRINT TAB(DAY*S h D$:

.m 280 NE}Cl' DAY
590 END

-~ 596 : 598 REM ** Plot a border

330 HPLO'l' 35, H + 8 TO 49, H + 8
340 HPLOT 35, H + 1 TO 36, H + 1
400 HCOI.DR m 10
420 HPLOT 35, H + 18 TO 70, H + 18
430 HPLOT 37, H + 2 TO 49, H + 2
440 HPLOT 35, H + 17 TO 36, H + 17
489 IF RND(l) > .9 THEN FOR K "' 1 TO 100 1 ~ K
49111 NEX1' H

Section 12-3
Problem No. 2

1 REM ** Simply replace line 160 in program 12-9
2 R&1 You might try it without dividing by 100
160 DEF FNF(X) = (X4 2+50*X-t50)/100

Section 12-4
Problem No. 2

1 REM ** Simply replace line 210 in program 12-llc
2 REM with any of the listed equations

& (ampersand), 142
&H prefix, 117
'(apostrophe), 54-55
*(asterisk), 10
\(backslash), 25
"(caret), 24
: (colon), 45, 54
,(comma)

in DATA statements, 94
in DELETE and LIST statements,

197
in INPUT statements, 21, 127
in LINE INPUT statements, 49
in PRINT# statements, 121
in PRINT USING statements, 31,

95
for spacing, 37-38
in strings, 27

$(dollar sign), 20, 26
. (dot), 207
= (equals sign), 35
! (exclamation point), 63, 205
#(number sign), 20, 63
()(parentheses), 11, 23
% (percent sign), 20, 63
+(plus sign), 11, 28
? (question mark), 12-13, 19
"(quotation marks), 27, 97
; (semicolon), 7, 19, 48, 121

A command, 205
",A" option, 126
ABS (absolute value) function, 7 4-75
Addition, 11, 23

in binary, 114
of string variables, 28-29

Address lists, 145-156
Alphabet game program, 97-104,

123-126
Ampersand(&), 142
ANT(Z) function, 78
Apostrophe ('), 54-55
Applesoft BASIC, 158, 196-199
Arithmetic calculations, 10-12, 14-15

in binary, 114-115
integer arithmetic, 25
modular, 24-25
numeric functions, 67-69
order of operations in, 23, 25
powers in, 24
precision in, 29-31, 63-66, 81
rounding off in, 20

Arrays, 86
DIM statements for, 93-96, 105
levels of precision in, 106
numeric, 86-90
OPTION BASE statement for, 105
sorting of, 91-92
string, 96-97

ASC (ASCII value) function, 70
ASCII (American Standard Code for

Information Interchange), 70,
80, 211-213

Assignment statements
INPUT, 18-19, 21-22
LET, 16-17
READandDATA, 17-18

Asterisk(*), 10

Backslash (\), 25
BEEP statement, 171, 199
Binary number system, 114-116

243
•••

MICROSOFT BASIC USING THE SOFTCARD

Bits, 115
Blocks (in graphics), 159-160
Buffers

double, 131-132
ftle,121, 122, 135-137

Bytes, 115, 134

C command, 202, 205
Calculations, 9-12, 14-15

in binary, 114-115
integer division, 25
modular arithmetic in, 24-25
numeric functions for, 67-69
order of operations in, 23, 25
powers in, 24
precision in, 29-31, 63-66, 81
rounding off in, 20

Calendar program, 107-111
Caret ("), 24
Cartesian coordinates, 187-191
Changing

datain files, 147-148
EDIT Mode for, 202-203

CHR$ function, 70
Circles, drawing, 182-184
CLOSE statement, 136
CLOSE# statement, 122
Code,40
Colon (:), 45, 54
Color

COLOR statement for, 160-161,
163, 198

HCOLORstatementfor, 175-177,
197

Comma(,)
in DATA statements, 94
in DELETE and LIST statements,

197
in INPUT statements, 21, 127
in LINE INPUT statements, 49
in PRINT# statements, 121
in PRINT USING statements, 31,

95

Comma (continued)
for spacing, 37-38
in strings, 27

Compressed binary format, 208
Concatenation, 28-29
Conditional transfers (IF ... THEN

statements), 34
CONFIGIO. BAS, 196, 213
CONTstatement, 122-123
Con Vert functions, 139-143
COS(Z) function, 78
CTRL-@, 4, 204, 213
CTRL-A, 21, 205, 213
CTRL-B, 25, 213
CTRL-C, 33, 122-123, 131, 171, 213
CTRL-G,213
CTRL-H, 4, 213
CTRL-1,213
CTRL-J, 47, 151, 213
CTRL-K,213
CTRL-M,213
CTRL-0, 51, 213
CTRL-P, 196
CTRL-RESET, 33
CTRL-S, 51, 164, 213
CTRL-X, 4, 213
Cursors

EDIT Mode commands for,
200-204

HTAB statement and, 46, 197
TEXT statement and, 162

CVD function, 142
CVlfunction, 142
CVS function, 140

D command, 202, 204
D-format, 63-64
Data files, 119-120

address lists in, 145-156
random-access, 133-143
sequential-access, 120-126,

129-130
DATA statement, 17-18, 22, 27

for arrays, 94, 97

244
•••

Data statement (continued)
for Hi-Res graphics, 180

Decimal number system, 114
DEF FN statement, 78-80, 188
DEF statement

to def me functions, 78-80
to define level of precision, 81

Defaults, 143
DEFDBL statement, 81
Deferred instructions, 3
DEFINT statement, 81
DEFSGL statement, 71
DEFSTR statement, 81
DELETE (DEL) command, 7, 197
Deletions

of disk files, 211
in EDIT Mode, 201-202
in files, 146-14 7

Dice, 165-170
DIM statement

for arrays, 93-96
levels of precision in, 106
variables in, 105

Disk files, 119, 208-210
Disks, 119, 207-210
Division, 11, 23

integer, 25
by zero, 31, 42-43

Dollar sign($), 20, 26
Dot(.),206
Double buffers, 131-132
Double-precision numbers, 63-64, 66

in arrays, 106
DEFDBL statement for, 81
MKI$, MKD$, CVI, and CVD

functions for, 142
Dummy variables, 79

E command, 205
E-format, 30-31
ED.COM (program editor), 208
EDIT Mode, 27, 41, 197, 200-206

for INPUT requests, 21
for syntax errors, 8, 90

INDEX

END statement, 2, 43, 122
Endless loops, 33
EOF (end of file) function, 128
Equals sign (=), 35
ERASE statement, 105
Eratosthenes, 112
Errors

correction of, 4, 21
EDIT Mode corrections of, 200-203
syntax, 8, 205

ESCape key, 204
Exclamation point (!), 63, 205
Exponents (powers), 24

D-format for, 63-64
E-format for, 30-31

External terminals, 196
graphicson, 158, 172

IF option, 143-144
Factoring, 69
Fibonacci numbers, 57
FIELD statement, 135
File buffers, 121, 122, 135-137
File channels, 143-144
Files, 119

data, 119-120
on disks, 208-210
functions for, 139-143
mixed-access, 156-157
programs as, 126-129
random-access, 133-143
random-access address lists,

145-156
sequential-access, 120-126,

129-130
FILES command, 209
FLASH statement, 196
Floppy disks, 119
FOR ... NEXT statements, 50-55,

62-63, 199
in graphics programs, 193

FRE (free memory) function, 77-78
Functions

miscellaneous, 74-78

248 • • •

MICROSOFT BABIC USING THE SOFTC.ABD

Functions (continued)
numeric, 67-69
for random-access files, 139-143
string, 70-7 4
user-defined, 78-81, 188

GBASIC, l, 173, 198
GET statement, 136, 160, 171
GOSUB statement, 81-83
GOTO statement, 33-35

implied in IF ... THEN statement,
44

GR (graphics screen) statement,
159-160, 197

Graphics, 1
Cartesian coordinates in, 187-191
Hi-Res (high-resolution), 173-186,

197-198
Lo-Res (low-resolution), 158-170
polar graphs in, 191-194
statements and functions for,

171-172

H command, 204
Hard disks, 119
HCOLORstatement, 175-177, 198
Hexadecimal number system,

116-117
HEX$ function, 117
HGR (Hi-Res graphics) statements,

173-175, 197-198
Hi-Res (high-resolution) graphics, l,

158,172,173-186,197-198
Cartesian coordinates in, 187-191
HSCRN statement in, 195
polar graphs in, 191-194

HLIN statement, 161, 163
HOME statement, 12, 46, 162, 177,

197
HPLOT statement, 175-176
HPLOT ... TO statement, 176-178
HSCRN statement, 195, 198
HTAB statement, 46, 197

I command, 201, 204
IF ... THEN ... ELSE statement,

46-47, 163, 198
IF ... THEN statements, 34-35, 44
Immediate instructions, 3
Initialization, 143-144

of files; 148
INKEY$ statement, 99, 101, 160

GET statement and, 171
INPUT statement, 18-19, 21-22

CTRlrA response to, 205
LINE INPUT form of, 49
with prompts, 48

INPUT$ statement, 171
INPUT# statement, 121-122
Insertions, in EDIT Mode, 201
INSTR function, 72-73
Instructions, deferred and

immediate, 3
INT (greatest integer) function,

68-69
Integer division, 25
Integer variables, 63, 65-66

in arrays, 106
binary representation of, 115
DEFINT statement for, 81

Interest rates, 56-57
compounded,58-59

INVERSE statement, 197

K command, 205
Keywords, 3, 27
KILL command, 209, 210

L command, 205
LEFT$ function, 71-72
LEN (length of a string) function, 70
LET statement, 16-17

LSET statement and, 135
LINE INPUT statement, 49, 127,

199
Line numbers, 6-7, 206

848 •••

Unes
multiple, per statement, 4 7
multiple statements on one, 45

LIST command, 3, 197, 205
protected programs and, 208

LLIST command, 3
LOAD command, 119, 209-210
Logical operators, 198
Loops, 35-36

with computed ends, 38-39
FOR ... NEXT statements in,

50-55, 62-63
GOID statements in, 33-34

INDEX

NAME command, 210
Names

for arrays, 87
for programs, 207
for variables, 16

Nested loops, 58-61
NEW command, 5

IF ... THEN ... ELSE statements in,
46-47

NEXT statement, 50-55, 62-63
NORMAL statement, 196, 197
NOT operator, 198
Numberbases, 114-117
Number sign(#), 20, 63
Numeric arrays, 86-90
Numeric functions, 67-69

user-defined, 78-80
Numeric variables, 16, 86 IF ... THEN statements in, 34-35

nested, 58-61
Lo-Res (low-resolution) graphics, 1,

158-170
LPRINT statement, 3, 5
LSET statement, 135-137

/M option, 143
MaKefunctions, 139-143
MBASIC (MS-BASIC), 1, 158, 173
Memory

disks for, 207-210
FRE function for, 77-78
for Hi-Res graphics, 173
PEEK and POKE functions for,

83-85
stack in, 60

MERGE command, 210
Messages

displaying, 2-9
string variables for, 26-29

MID$ function, 71-72
Mixed-access files, 156-157
MKD$ function, 142
MK1$ function, 142
MKS$ function, 140
MOD operator, 24-25
Multiplication, 10-11, 23

in binary, 114-115

in random-access files, 139-143

Octal number system, 117
OCT$ function, 117
"Ok" message, 3, 83-84
OPEN statement, 120-121, 134-135
OPTION BASE statement, 105
Order of arithmetic operations, 23, 25

Parentheses [0], 11, 23
PEEK function, 83-85
Percent sign (%), 20, 63
Plotting

in Cartesian coordinates, 187-191
HPLOT statement for, 175-178
PLOTstatementfor, 161
of polar graphs, 191-194

Plus sign (+), 11, 28
POKE function, 83-85
Polar graphs, 191-194
Powers (exponents), 24

D-format for, 63-64
E-format for, 30-31

Precision, 29-31, 63-66
in arrays, 106
defining level of, 81

847 •••

:MICROSOFT BASIC USING THE SOFTCARD

Prime numbers program, 112-113
PRINT statement, 2-3, 5, 7-8

calculations in, 11, 14• 15
commas in, 37-38
for graphics, 158
implied in INPUT statements, 48
lnloops,36
question mark substituted for,

12-13
TAB O clause in, 61

PRINT# statement, 121

Q command, 205
Question mark(?), 12-13, 19
Quotation marks("), 27, 97

PRINT USING statement, 20, 31, 42,

Random-accessfiles, 120, 133-143
for address lists, 145-156
mixed-access files and, 156-157

Random numbers, 75-77, 88-90
RANDOMIZE statement, 77
READ statement, 17-18, 21-22, 27
Records, 134-135

95, 142, 198-199
Printers, 196
Program editor (ED.COM), 208
Program names, 207
Programming, 2
Programs

alphabet game, 97-104, 123-126
arrays in, 86-90, 93-97
calendar, 107-111
to convert decimal to binary,

115-116
correcting errors in, 4
on disks, 207-210
to draw dice, 165-170
as files, 126-129
functions in, 67-81
line numbers in, 6-7
loops (repetitious operations) in,

32-44, 50-63
mailing list, 145-155
prime numbers,· 112-118
SAVE and LOAD commands for,

119
forsorting, 91-92
S10P and CONT in, 122-123
subroutines in, 81-83
syntax errors in, 8

Prompts,2
INPUT statements with, 48

Protected programs, 208-209
PUT statement, 136
Pythagorean theorem, 182
Pythagorean triples, 59-61

IS.option for, 144
Relational operators, 34
REM statement, 39-41

implied by apostrophe, 54-55
RENUM statement, 199
RESET command, -209
RESET key, 33, 85
RES10RE statement, 22
RETURN key, 2, 4, 203, 205
RETURN statement, 81-83
RIGHT$ function, 71-72
RND (random numbers) function,

75-77
RND(X) function, 77
Rounding off

INT function for, 68-69
PRINT USING statement for, 20

Routines, 41
RSET statement, 135-136
Rubout key, 204
RUN command, 2, 3, 211

Scommand,202,205
IS option, 144
SAVE command, 119, 207-208
Screens

for Hi-Res graphics, 173-175
for Lo-Res graphics, 159-160
windows in, 84-85

SCRN function, 172
Semicolon(:), 7, 19, 48, 121

848 •••

INDEX

Sequential-access mes, 120-126, 133
mixed-access mes and, 156-157
updating, 129-130

SGN (sign) function, 75
Sieve of Eratosthenes program,

112-113
Sines, 78,189-191
SIN(Z) function, 78
Single-precision numbers, 29-30, 63,

66
in arrays, 106
DEFSGL statement for, 81
MKS$ and CVS functions for, 140

Sorting, 91-92
Sounds, BEEP statement for, 171,

198
Space bar, 201
SPACES function, 73
SQR (square root) function, 67-68
Stack (in memory), 60
Statements

multiple, on one line, 45
multiple lines per, 4 7

STEP, 51-52
STOP statement, 2, 44, 122-123
STR$ (convert numeric to string)

function, 70-71
String arrays, 96-97
String functions, 70-74

user-defined, 80-81
String variables, 26-28

adding, 28-29
DEFSTR statement for, 81
in random-access files, 135,

139-143
STRING$ function, 73
Subroutines, 67, 81-83
Subscripts

in arrays, 87, 94
zero, 104-105

Subtraction, 11, 23
SWAP statement, 91
Syntax errors, 8, 205
SYSTEM command, 2

TAB();61
TAN(Z) function, 78
Terminals, external, 196

graphics on, 158, 172
TEXT command, 85, 158, 162, 174
'Ii'igonometric functions, 78

graphics of, 189-194

Updating
double buffer method of, 131-132
of sequential-access files, 129-130

User-defined functions, 78-81, 188

VAL (value of a string) function, 71
Variables

assignment statements for, 16-19,
21-22

DEF statements for, 81
in DIM statements, 105
dummy, 79
integer, single-precision, and

double-precision, 63-66
as limits in FOR ... NEXT loops, 52
in NEXT statements, 62':'63
numeric, 16
in numeric arrays, 86-90
string, 26-29
in string arrays, 96-97

VLIN statement, 161-163
VTAB statement, 175, 197

WIDTH N statement, 199
Windows, 84-85
Word processing, 120
WRITE statement, 199

X command, 204

Zero
as.array subscript, 104-105
division by, 31, 42-43

849
•••

•

6263-X

Microsof f
BASIC
Using the Softeard™
JAMES S. COAN
A complete guide to programming in Microsoft BASIC-80 using the SoftCard
on Apple II Plus and Ile computers. The author begins with simple. concise
programs that introduce the reader to various features of the language. and
then he gradually moves on to more complex programs that illustrate
problem solving. Nearly 100 programs are presented and discussed. and
problems included at appropriate points in the text make it suitable for the
classroom as well as for the home.

Topics covered include a comparison between Microsoft BASIC-80 and
Applesoft BASIC. a thorough explanation of low-resolution and high
resolution graphi~s. and a review of the various statements. variables. and
functions of the SoftCard.

Each chapter is followed by a "Sidelight" section that presents special
features. concepts. and advanced techniques. Appendixes include an ASCII
chart, an index of programs, and solutions to even-numbered problems.

Other Books ot Interest ...

GETTING STARTED WITH CP/M®
Rob Patten and Paul Calandrlno

A step-by-step initiation into using the world's most popular microcomputer
operating system. Explains what CP/M is and what an operating system
does. presents a detailed walk-through of a productive working session. and
provides answers to most beginners' questions. The book also offers a
concise summary of all operating system commands and includes a handy
pull-out Command Reference Card to keep by your machine. #5208-1.
paper, 112 pages.

GETTING THE MOST FROM YOUR MICRO
Ernest E. Mau

This valuable sourcebook shows you how to take care of all your computer
equipment to ensure trouble-free operation. It provides specific preventive
steps you can use to keep bothersome bugs out of your system. and it
includes easy-to-follow instructions that enable you to fix many minor
technical problems yourself. #6264-8. paper. 288 pages.

[JJ
HAYDEN BOOK COMPANY, INC.

Hasbrouck Heights, New Jersey
H

. $1895
=------.::::::;

ISBN 0 -8104-6263-X

