
The Best Tips and Techniques From nibble

The Key to Hidden Apple Treasures

ore
Apple
Secrets

Edited by David Szetela

Nibble Publications
MicroSP ARC, Inc.

Concord, MA

Editorial Direction: David Szetela
Technical Direction: David A. Krathwohl
Copy Editors: Mary Locke, Charlotte A. Szetela
Technical Editors: Rich Williams, Owen Linzmayer
Cover: Paul J. Gagnon
Printed and bound by CSA Press, Hudson, MA

Copyright © 1986 by MicroSPARC, Inc., 45 Winthrop Street, Concord, MA
01742, (617) 371-1660. All rights reserved. No part of this book may be reprinted,
reproduced, or utilized in any form or by any electronic, mechanical or other means, now
known or hereafter invented, including photocopying and recording, or in any information
storage and retrieval system, without permission in writing from the Publisher.

MicroSP ARC, Inc. Limited License for the Use of the Programs in this Book: MicroSP ARC,
Inc. is the owner of all rights in the computer programs printed in this book. To allow for their
use by the purchaser of this book, MicroSPARC, Inc. grants to such purchaser, only, the
Limited License: (1) to enter these programs into the purchaser's computer, and (2) to place
such computer programs on a diskette for personal use.

Any other use, sale, distribution or copying of these computer programs without the written
consent of MicroSP ARC, Inc., or obtaining, or purchasing copies of these computer
programs other than from MicroSP ARC, Inc. or its authorized distributors is in violation of
this Limited License and is expressly prohibited.

ISBN 0-912341-24-8

Library of Congress Number 86-063016

Printed in the United States of America

1 2 3 4 5 6 7 8 9

86 87 88 89 90 91 92

Apple is a trademark of Apple Computer, Inc.

TABLE OF CONTENTS

Introductionv
Disk Head Cleaner by Art Mena 1
DOS 3.3 Fast Load Enhancement by Thomas N. Burt 5
RAM-PAD by Sandy Mossberg ... 13
TAB XY by S. Scott Zimmerman 21
Verify and Lock by Doug Denby 24
Apple Ile Cast of Characters by Sandy Mossberg 26
Applesoft Tricks by Craig Peterson31
DOS Catalog Dater by Art Mena 36
DOS Error Message and Command Changer by Donald Miller44
Practical Sort for Beginners by JoAnn Miner 47
Apple Slot Finder by Steven Weyhrich50
Exec Mini-Assembler by Bill Parker .. 54
Visi-Sort Plus by Andre Samson 58
Binary Dump by Tim Damon 61
Hypercounter by Ron Macken and Bill Consoli 65
Custom Catalog by Mas on Jones 67
80-Column Magic by G. Mark Fabbi 71
Eleven Free Sectors by Les Stewart 75
Fancy Hi-Res Picture Loading by Art Arizpe 77
Double Hi-Res Graphics for the Apple II Plus by A lg is J. Matyckas 84
Additional Hi-Res Colors by Matthew M. Storm 90
The Discourager by Mark Allen 92
Command Handler by Gary Bond 94
FID Plus by Joe Humphrey 97
Label Printer by Robert C. Brock 99
Break Processor by John J. Broderick101
Decision Maker by Beirne L. Konarksi 103
Print Using TAB by Clay Carr 105
Applesoft Variable Dump by Tom Gabriele 109
Flashing Cursor by Cecil Fretwell113
Auto Date by Clay Carr 120
Free Sector Chart by Donald Jessop 122
Pro DOS RESET Trap by Eric Seiden 124
Shades and Textures by Ted Huntington 126
Auto Case Convert by Bruce E. Howell 128
Software Volume Control by Phil Goetz 130
80-Column Catalog by Robert C. Meltzer 133
Hi-Res Characters by Vinay, Vivek and Vijay Pai.. 138
Applesoft Windows by Michael A. Seeds 143
80-Column Screen Dump by A.R. Clayton 148
Catalog Plus by Bryan Costales 151
/RAM-- A Free RAM Disk for ProDOS Users by Aaron Messing 159
LUCK -- A Lower to Uppercase Converter by Kirk Paterson 161
Mini-Assembler Switch by Charles Gilbert.. ... 166
Text Ups and Downs by Chester H. Page167
Applewriter Ile by Steven Meuse 174

lll

Beep Customizer by John Baumbach 177
Status Seeker by Paul Raymer 182
Vigilant FID by Donald W. Mill er, Jr 184
Eye Openers by Iver P. Cooper 190
Imagewriter Screen Dump by Gerald Blalock195

Appendix A: Entering More Apple Secrets Program Listings 198

iv

INTRODUCTION

The Apple II Plus, Ile, Ile and Hos are full of hidden treasures -- discover them for
yourself in this exciting collection of articles and programs.

More Apple Secrets is packed with over 50 of the best Apple Tips and Techniques from
Nibble Magazine. Nibble's experts teach you their tricks for creating text windows like those
on the Macintosh, automatically converting lower-case letters to upper-case, compressing Hi
Resolution graphics files so that they take up less disk space, and speeding up programs
enough to even hear the difference!

Or perhaps you want to know how to add dozens of new colors to your Hi-Resolution
palette, or enhance your programs with two-voice music and sound effects. Easy! These
programming treasures and many more can be discovered in More Apple Secrets.

If you are new to Apple computing, you'll appreciate the step-by-step instructions for
entering and saving programs. It's just like a cookbook for Apple users. (See Appendix A.)

Each Apple Secret is a tested, foolproof method for streamlining your Applesoft and
machine language programs, ranging from special programming tips to specific techniques.
Whether you're new to computing or a seasoned programmer, this book will provide
programs and tips you can use. Most articles include subroutines you can use in your own
programs. The authors give detailed, line-by-line explanations of the programs so you can
understand the programming logic. And the demonstration programs show you how to use
the techniques. You'll find programs that let you:

• Print Hi-Resolution text
• Create text windows like the Apple Macintosh
•Print custom labels
• Explore your Apple's memory
• Customize your favorite DOS command
• Modify Applewriter to work on the Uc
•Learn how the computer sorts information
... and much more.

More Apple Secrets programs are also available on diskette; see the bound-in ordering
card for details.

v

Disk Head Cleaner
Prevent the loss of important programs or data by keeping your 5 .25" disk drive heads clean.
This DOS 3.3 program makes sure your cleaning kit covers the entire surface.

by ArtMena

To paraphrase a line by Jack Webb in the movie The DJ., "Your disk drive is your friend. If
you take care of it, it will take care of you. But if you ever let it down, it will certainly let you
down." Your disk drive is about the most essential part of your system. Yet, it might be the
cause of many headaches. It has moving parts that wear, and more important, they get dirty.
Using a disk drive cleaning kit and the Head Cleaner program, you can keep your drives clean
and healthy.

DISK DIRT
If you don't abuse your drive, mechanical wear may never be a problem. However, dirt can

cause annoying I/O errors and even destroy the data on your disk. The dirt comes from several
sources. One source is dust in the air. However, the disk drive opening is very small and
unless your Apple is in a very dirty environment, very little dust enters the drive. The major
source of dirt is the disks themselves.

When you insert a disk and close the door to the drive, the disk is pressed against the
read/write head by a felt pad. While the disk is rotating, friction between the disk, read/write
head and felt pad cause particles of the disk surface to flake off and contaminate the head. Even
if you use a high-quality disk, it will still lose its surface over a long period of use. Hard disk
drives do not allow the head to touch the disk surface and consequently the surface does not
wear. Because all floppy disks will wear, you should always keep backup copies of all of your
important programs and data files.

CLEANING KITS AND TIPS
To keep my Apple clean, I always cover it when it's not in use. In addition, I leave the disk

drive doors open. If you close the door with no disk in the drive, the felt pad touches the head
and may contaminate it. However, in spite of all these precautions, the head will still get dirty.

One of the most important accessories you can have is a disk head cleaning kit The kit I
have contains two cleaning disks and a bottle of cleaning fluid. The cleaning disks are similar
to regular disks, except that the magnetic disk has been replaced by a cellulose disk. The fluid
is usually isopropyl alcohol, which dissolves the dirt from the head and evaporates entirely,
leaving the disk read/write heads clean.

USING A CLEANING KIT
Using a cleaning kit is easy. Squirt some fluid onto a cleaning disk, place the disk in the

drive and run the read/write head across the felt pad. I first did this by typing CATALOG. This
worked, but only a small portion of the cleaning disk was being used, i.e., the track that DOS
thought should contain the directory. Since the cleaning kit is not cheap, I decided to write a
program that would run the head between the inner and outer tracks of the cleaning disk in
order to use as much of the cleaning surface as possible.

USING THE HEAD CLEANING PROGRAM
The Head Cleaner program (Listing 1) starts by asking you which disk drive head.you

want to clean. You should specify 1 or 2. Pressing 0 will end the program. The Head Cleaner
program will run the head back and forth from track $0 to $22 (0-34) four times. This takes
about 30 seconds and should be sufficient to clean the head surface.

1

If you're an average user, you should clean your disk drive's head about once a month to
avoid any dirt buildup. This simple act will probably save you much aggravation and may
prevent the loss of important programs or data.

ENTERING THE PROGRAM
Type in the Applesoft program shown in Listing l, and save it with the command:

SA VE HEAD.CLEANER

HOW IT WORKS
The program uses the DOS 3.3 RWTS (Read or Write a Track or Sector) routine to move

the read/write head across the disk. The RWTS is a set of subroutines that DOS uses to read or
write sectors on the disk. However, I do not want to read or write anything, so I use it to find
or "seek" the disk tracks.

In order to use the RWTS, I had to set up a table of numbers called the IOCB (Input Output
Control Block). This table contains the specific instructions for the routine. The IOCB is
contained in the DATA statements in lines 800-810. It is stored in memory using the POKE
statements immediately following the DATA statements. Since we do not want to read or write
anything, we will use the zero (or null) command code to cause the head to go to the desired
tracks.

LISTING 1: HEAD.CLEANER

10 REM **********************
11 REM * HEAD.CLEANER *
12 REM * BY ART MENA *
13 REM * COPYRIGHT (C) 1983 *
14 REM * BY MICROSPARC, INC *
15 REM * CONCORD, MA. 01742 *
16 REM **********************
100 REM
110 REM
120 REM USE THIS PROGRAM WITH
130 REM A DISK DRIVE HEAD
140 REM CLEANING KIT TO KEEP
150 REM YOUR DRIVES CLEAN.
160 REM
170 REM JUST ENTER "RUN" AND
180 REM FOLLOW THE DIRECTIONS .
190 REM
200 REM
210 B$ = CHR$ (7) + CHR$ (7) + CHR$ (7)
220 GOSUB 820
230 REM
240 REM GET THE DRIVE NUMBER
250 REM
260 TEXT : HOME : POKE - 16368,0
270 VTAB 3: HTAB 12: INVERSE : PRINT " HEAD CLEANER "· NORMAL
280 PRINT : PRINT TAB(13)"BY ART MENA"
290 PRINT CHR$ (7)
300 PRINT : PRINT " ENTER THE DISK DRIVE NUMBER THAT"
310 PRINT "YOU WANT TO CLEAN (1 / 2,0=END) ?"
320 PRINT"===>";: GET DR$

2

330
340
350

360
370
380
390
400
410
420

430
440
450
460

470
480
4 90
500
510
520

530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730

740
750
760
770
780
790
800

DR = VAL (DR$)
IF DR$ = "0" THEN TEXT : HOME :
IF DR < > 1 AND DR < > 2 THEN
PRINT "INCORRECT DISK DRIVE";B$:
1000: NEXT I: GOTO 260
PRINT DR$: PRINT
REM
REM PRINT DIRECTIONS
REM

END
PRINT : PRINT : FLASH
NORMAL : FOR I = 1 TO

PRINT B$: PRINT " PUT SOME CLEANING FLUID ON A 5 1/4"
PRINT "INCH CLEANING DISKETTE AND PLACE IT"
PRINT "IN DRIVE NUMBER "DR$". PRESS ";: INVERSE : PRINT "
RETURN ": NORMAL
PRINT "WHEN YOU ARE FINSIHED."
REM
POKE - 16368,0
IF PEEK (- 16384) < > 13 AND PEEK (- 16384) < > 141
THEN GOTO 460
POKE - 16368,0
REM
POKE 818 ,DR
POKE 34,10: HOME
PRINT : PRINT CHR$ (7)" RUNNING THE HEAD BACK AND FORTH"
PRINT II 4 TIMES. PRESS II; : INVERSE : PRINT II ESC II; :

NORMAL : PRINT " TO STOP"
PRINT
REM
REM
REM
REM
REM

USE THE RWTS "SEEK"
COMMAND TO RUN THE
HEAD ACROSS THE DISK

FOR CNT = 1 TO 4
VTAB 15: PRINT "COUNT ==> "; CNT
FOR TRACK = 0 TO 34
GOSUB 710
NEXT TRACK
FOR TRACK = 34 TO
GOSUB 710
NEXT TRACK
NEXT CNT

STEP

PRINT PRINT "ALL DONE 1 "

- 1.

FOR I = 1 TO 1500: NEXT I: GOTO 260
REM
REM HEAD SEEK SUBROUTINE
REM
IF PEEK (- 16384) = 27 OR PEEK (- 16384) = 155 THEN
POP : GOTO 260
VTAB 17
PRINT "SEEKING TRACK==> ";TRACK;" II

POKE 820,TRACK
CALL 837: REM CALL RWTS
RETURN
REM IOCB FOR RWTS
DATA 1,96,l,0,0,0,65,3,0,128,0,0,0,0,0,96

3

810 DATA 1,0,0,239,219,160,48,169,3,32,217,3,96
820 RESTORE
830 FOR I = 816 TO 844
840 READ D: POKE I,D
850 NEXT I
860 RETURN

4

DOS 3.3 Fast Load Enhancement
Fast Load Enhancement replaces the standard DOS 3 3 WADS with a high efficiency Load
function that is two to five times the speed of LOAD times.

by Thomas N. Burt

I spend a lot of time doing assembly language and BASIC programming, so I get a little
weary waiting for DOS 3.3 to load long programs. Nine months ago, I got a hard disk drive
with the intent of "killing the problem with hardware." I was naturally expecting fantastic
performance gains. To my dismay, the hard drive was barely twice as fast as the floppy disk
drive. Obviously, something was amiss inside of DOS 3.3 itself. Armed with a copy of
Beneath Apple DOS by Don Worth and Pieter Lechner, the Apple DOS Reference Manual, a
good disassembler, and specifications for the Apple Disk II drive, I undertook to resolve the
problem.

First I'll explain DOS 3.3 110 performance, why DOS 3.3 is slow and how to speed it up.
The program Fast Load Enhancement is a simple modification that you can install as a
permanent part of DOS 3.3. The program can speed up the LOAD, BLOAD, RUN and BRUN
commands by up to five times over their native DOS 3.3 performance. For example, the time to
LOAD a 93-sector BASIC program with standard DOS 3.3 is 23 seconds, versus 5.5 seconds
with the Fast Load Enhancement.

DOS 3.3 ORGANIZATION
A Disk II disk has 35 tracks of 16 sectors each. A sector is the smallest unit of information

on a disk that can be accessed separately.
Each sector holds 256 bytes of data plus an address header that identifies the track, sector

number and volume number. Each track corresponds to a discrete position to which the
read/write head of the disk drive can be positioned. As the disk drive turns, each sector on the
track rotates under the head and can be read from or written to. Sectors are numbered
consecutively around the track from 0-15, in the order of rotation under the read/write heads.

Over this physical sector numbering, DOS 3.3 superimposes a logical numbering as shown
in Figure 1 (values are decimal; hexadecimal equivalents are shown in parentheses).

FIGURE 1: DOS 33 Logical Sector Numbering

logical
15 ($F)
14 ($E)
13 ($D)
12 ($C)
11 ($B)
10 ($A)

9 ($9)
8 ($8)

track
physical

15 ($F)
2 ($2)
4 ($4)
6 ($6)
8 ($8)

10 ($A)
12 ($C)
14 ($ E)

track
logical physical
7 ($7) 1 ($1)
6 ($6) 3 ($3)
5 ($5) 5 ($5)
4 ($4) 7 ($7)
3 ($3) 9 ($9)
2 ($2) 11 ($B)
1 ($1) 13 ($D)
0 ($0) 0 ($0)

Essentially, the logical sector order is descending from 15-0 with the logical sectors on
every other physical sector. Sectors 0 and 15 are handled specially so that their physical and
logical numbers agree. Two and 1116 complete turns of the disk are required for all 16 logical
sectors to pass under the read/write heads in consecutive order. This descending order logical

5

numbering is important, because that is precisely the order in which DOS reserves the sectors
of a track when creating a file.

How Disk Reading Works
The key routine is the DOS Read/Write TracldSector (RWTS) routine. For any program to

read a sector of data, the program makes a machine language subroutine call (JSR) to RWTS,
supplying a parameter list containing the desired slot, drive, track, (logical) sector, volume
number, and the data's memory address. The DOS 3.3 File Manager is the most common caller
ofRWTS.

When called, the RWTS first turns the disk drive on, if necessary. Once on, the disk drive
keeps turning. Next, the RWTS positions the read/write head to the correct track and then waits
for the desired logical sector to rotate under the head. (It looks at the address headers for a
match on the corresponding physical sector.)

Then the RWTS transfers 342 bytes of encoded raw data from the disk into a special area of
memory. The raw data is decoded into a normal 256-byte sector format and moved to the
memory location specified by the caller. The same general sequence occurs on a write, except
that the data is moved from the caller's memory location, encoded into raw data, and then
transferred to the disk.

As you can imagine, this process takes time - much more time than the brief interval
between the end of one physical sector and the beginning of the next. The alternating spacing
of logical data sectors on a track allows time for RWTS to decode and move, and for the caller
ofRWTS to process one sector, and then to resume reading the disk before the start of the next
logical sector has rotated past the disk's read/write head. This works great as long as the caller
ofRWTS doesn't allow too much time to elapse before calling RWTS again.

Disk 1/0 Timing
A Disk II drive turns at 300 rotations per minute (5 rotations per second). With 16 sectors

per track, this rate is equivalent to 80 sectors per second. In reading every other physical
sector, the intersector time available for processing is therefore l/80th of a second, or 12.5
milliseconds. RWTS uses about seven milliseconds of this time itself for raw data decoding
and moving. This leaves only about five milliseconds of processing time for the caller of
RWTS before the next logical sector of the current rack rotates into position under the
read/write head of the disk.

File Space
Files are created one sector at a time. As successive sectors are written, unused disk sectors

must be located and reserved before the data is actually transferred. This is necessary to ensure
that sectors of other files on the disk are not overwritten by the new file.

As the file is written, the DOS File Manager must remember which sectors were used, and
in what order. For each file, the File Manager creates a track/sector list that records the track
and logical sector number of each successive sector of the file.

To choose which sector to allocate to a file, the File Manager first finds a track with some
unused sectors. Within that track, the File Manager starts looking for free sectors from sector
15 to sector 0. Once a file is started on a given track, all free sectors on that track are allocated
to the file until there are none left Then a new track is selected. Thus, the DOS File Manager is
recording successive sectors of a file in exactly the order (15-0) for maximizing the speed of
file I/O.

Load Performance
Now let's see how all the above information pertains to the performance of LOADs. The

standard DOS 3.3 LOAD function uses the File Manager, in conjunction with RWTS, to copy
data between the disk and the Apple's memory. LOAD reads the program file into memory in
exactly the same way as a user's program would read a text file. This process involves

6

OPENing the program file, then calling the File Manager to read it sequentially (as defined by
the track/sector list), a sector at a time.

Each sector is read into a DOS file buffer (using the RWTS), and then COPYed a byte at a
time from the file buffer to its final destination in memory. As each byte is moved by the File
Manager, two separate file position pointers are updated.

Unfortunately, this process of doubly moving the sector a byte at a time, after it has been
read in and decoded by RWTS, takes so long (over 25 milliseconds) that the next logical sector
on the track has long since rotated past the read/write head and is missed. When RWTS is
called by the File Manager to read the next consecutive sector of the program file, it must wait
an entire revolution of the disk for that sector to again rotate under the read/write head.
Therefore, instead of proceeding at a nominal transfer rate of eight sectors per revolution of the
disk, (forty per second) loading proceeds at the pitiful rate of only one sector per revolution
(five per second).

A SOLUTION
I reasoned that if the DOS 3.3 load processor took less time to process sectors (so that each

successive sector of the program file could be read before it has rotated on by the read/write
heads), the effective data transfer rate for LOADs would be eight times faster.

Of course, there is some fixed overhead time in the loading process that is the same
regardless of how fast data is read. The file must be OPENed, which involves turning on the
disk drive (750 milliseconds) and searching for the file's entry in the disk catalog (minimum
350 milliseconds). When all sectors of a track have been read, the read/write head must be
moved to a new track (average 300 milliseconds). Then RWTS must wait an average of half a
revolution (100 milliseconds) to locate sector 15 on the new track. With an eight-fold raw data
rate increase, the net increase in LOAD times is still a respectable two to five times faster than
standard DOS 3.3. Longer files would show the most improvement

Looking at the entire load process, I questioned the value of first reading the data sector into
a separate DOS file buffer and then copying it to some other memory location - all the while
maintaining a set of file position pointers that will never be used again. Loading is a very
specialized form of file processing, since the entire program file is read or written sequentially
into memory as a continuous block.

I needed a way to intercept the File Manager 110 request submitted by the load processor,
and then to use a high-efficiency routine to call RWTS and stream the program directly to its
final place in memory. Naturally, the program image needed to be preserved correctly under all
circumstances and the DOS error handling facilities must still operate properly in the event of
an 1/0 or operator error.

FAST LOAD ENHANCEMENT
The Fast Load Enhancement consists of two parts: a machine language subroutine that

installs into DOS 3.3, and a small Applesoft program that creates an EXEC file to install the
subroutine and a few other patches. The machine language program is deceptively short and
simple. It makes extensive use of existing File Manager internal subroutines to handle the
track/sector list and the data transfers.

ENTERING THE PROGRAMS
Please refer to Appendix A for help in entering FLE.OBJ (Listing 2). The listing shows

ADDRESS:HEX DA TA in exactly the form needed for entry via the Monitor's memory entry
command. Key the program in starting at address $BEAF and save it with the command:

BSA VE FLE.OBJ,A$BEAF,L$B7

7

Next, key in the Applesoft program in Listing 3 and save it with the command:

SA VE INST ALL FILE CREATOR

Then RUN it to create the EXEC file on the same disk as the FLE.OBJ file. Once you have
done this, simply boot a copy of DOS 3.3, insert the disk with the various "FLE" files, and
EXEC the FLE.EXEC file to install the Fast Load Enhancement.

Make Fast Load Permanent
To capture the modified DOS permanently, take a disk that has already been initialized, but

that has no data on it that you need. Type CATALOG to determine the volume number used
when the disk was initialized. Either key in or LOAD the desired Hello program. Then enter the
command:

INIT HELLO, Ss ,Dd,Vv

where s is the slot number, dis the drive number and vis the volume number of the disk on
which the new DOS is to be captured.

The new DOS, a new VTOC and a new catalog will be written to the disk. If you boot from
this disk, the new DOS with the Fast Load Enhancement will be used to run the Hello program
and to load a RAM card if you have one (or if you have a 64K Apple Ile or Franklin Ace). The
new disk will be initialized, but not formatted- hence the need to use a previously formatted
disk.

The Fast Load Enhancement subroutine replaces the part of the RWTS used to format blank
disks. To protect against errors, the FLE.EXEC installation file disables the RWTS FORMAT
(code 4) function by changing the first instruction of the Format routine to a simple CLC (Clear
Carry), followed by an RTS (Return from Subroutine) instruction. The !NIT function can still
be carried out, but it will not format a blank disk. Disks must be preformatted by the INIT
command from standard DOS 3.3. These disks can then be reINITed, using the Fast Load
Enhancement DOS 3.3. The Volume number on the reINIT should be the same as that used
when the disk was preformatted.

HOW IT WORKS
Within the DOS Command Handler, the DOS 3.3. LOAD and BLOAD handlers join at a

common processing point called RWR, where the DOS File Manager is called to perform a
Read Range function. The FLE.EXEC file replaces this call with a JSR $BEAF, a call to the
FLE subroutine.

The program flow is described in the listing comments. Basically, the program first sets up
various pointers (FLE-FLEl), and copies the remnant of the first sector from the DOS file
buffer where OPEN left it (FLE2-FLE3). It then directly reads whole sectors until there are less
than 256 bytes left to read (FLE3-FLE8). The last sector, if any, is read into the file buffer and
its active part is then moved a byte at a time (FLE8-FLE11).

Finally, there are some special cases to be handled: program file length that is less than 256
bytes, and program length that is an exact multiple of 256 bytes. File Manager subroutines are
used to call RWTS, to locate the track/sector list buffer and data buffer, and to handle I/O
errors.

CO MP ATIBILITY
The Fast Load Enhancement should install into any reasonably standard version of DOS

3.3. It has been extensively tested in a BASIC environment. A large family of other machine
language processors and utility programs have also been run successfully. Programs that
follow standard Apple DOS interface specifications should not have problems.

8

Most problems with compatibility arise with utilities and special processors written in
machine language which may themselves modify DOS 3.3. Programs on copy-protected disks
probably will not work since they normally require their own nonstandard versions of DOS.
Also, users who have various nonstandard drives, such as eight-inch floppies or hard drives
should be careful, since these devices usually have different associated DOS 3.3 support
modifications.

Before doing anything irrevocable, like running your production payroll programs with the
Fast Load Enhancement, make a backup, and do a test first.

LISTING 2: FLE.OBJ

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

FLE.OBJ
DOS 3.3 LOAD/BLOAD EXTENSIONS

BY TOM BURT, IRVINE CA

COPYRIGHT (C) 1982
BY MICROSPARC INC.
CONCORD, MA 01742
ALL RIGHTS RESERVED

FLE IS INVOKED WHEN A LOAD COMMAND
IS PERFORMED. THE CODE DOES A HIGH
SPEED LOAD BY GOING DIRECTLY TO THE
RWTS ROUTINE FOR WHOLE SECTORS .

THIS VERSION INTERFACES TO THE
STANDARD 48K DOS 3.3., OVERLAYING
THE FORMAT FUNCTION OF RWTS.

DOS EQUATES NEEDED FOR ACCESS

FMPL EQU $B5BB ;FILE MANAGER P-LIST
FMWA EQU $B5Dl ;FILE MANAGER WORK AREA
STKSAVE EQU $B39B
FILPOSN EQU $B5E4 ;FILE POSITION
IO BORG EQU $B7E8 ;DOS IOB ADDRESS
IOBBUFA EQU IOBORG+8 ;BUFFER ADDRESS
BUFADR EQU $42 i - $43
STBUF EQU $48 ;-$49 BORROWED FROM RWTS

FILE MANAGER INTERNAL SUBROUTINES

RWTSDRVR EQU $B052 ;RWTS DRIVER
SELDABF EQU $AF10 ;GET DATA BUFFER ADDR
SELTSBF EQU $AFOC ;GET T/S LIST ADDR
RDTSLIST EQU $AFSE ;READ T/ S LIST
SETERROR EQU $B385 ;FILE MGR ERROR EXIT

FORMDSK EQU $BEOD ;RWTS FORMAT RTN
RWR2 EQU $A40A ;RWR2 JUMP IN DOS CDI

ORG $BEAF ;ORIGIN OF RWTS FORMAT

WORKING STORAGE FOR FAST LOADER

9

4S FL.OFFST EQU FILPOSN+2 ;OFFSET (2, 4)
46 FL.FWA EQU FMPL+8 ;FWA OF LOAD
47 FL.LDLN EQU FMPL+6 ;LENGTH OF LOAD
48
49 LOAD/BLOAD ENTRY - CALLED AFTER THE
so FIRST 2 OR 4 BYTES HAVE BEEN READ
Sl
S2 BEAF D8 FLE CLD ;ENSURE RIGHT ARITH MODE
S3 BEBO BA TSX ;SAVE STACK PTR FOR DOS EXIT
S4 BEBl SE 9B B3 STX STKSAVE
SS
56 BEB4 AD C3 BS FLEl LDA FL.FWA ;MOVE START ADDRESS
S7 BEB7 38 SEC
sa BEB8 ED E6 BS SBC FL.OFFST ;BACK UP BY OFFSET
S9 BEBB 8D C3 BS STA FL.FWA
60 BEBE AD C4 BS LDA FL.FWA+l
61 BECl E9 00 SBC #0
62 BEC3 SD C4 BS STA FL.FWA+l ;FWA/FWA+l = FWA-OFFST
63
64 BEC6 A9 OE LDA #$E ;OFFSET TO 2ND T/S LIST PAIR
6S BEC8 8D 6S BF STA TSP TR
66 BECB 20 10 AF JSR SELDABF ;POINT TO DATA BUFFER
67
68 BECE AC E6 BS LDY FL.OFFST ;GET OFFSET (2 OR 4)
69 BEDl AD Cl BS LDA FL.LDLN ;GET LENGTH (LSB)
70 BED4 18 CLC
71 BEDS 6D E6 BS ADC FL . OFFST
72 BEDS 8D Cl BS STA FL.LDLN ;ADD OFFSET
73 BEDB A9 00 LDA #0
74 BEDD 6D C2 BS ADC FL.LDLN+l ; (MSB)
7S BEEO 8D C2 BS STA FL.LDLN+l
76
77 BEE3 FO SF BEQ FLE9 ;SKIP < $100 BYTES LEFT
78
79 COPY THE REST OF THE FIRST SECTOR
80 FROM THE I/0 BUFFER TO MEMORY
81
82 BEES 20 SA BF JSR SETSTBF ;SET UP STORE BUFFER
83 BEES Bl 42 FLE2 LDA (BUFADR), Y ;FETCH BYTE
84 BEEA 91 48 STA (STBUF),Y
as BEEC ca INY
86 BEED DO F9 BNE FLE2 ;KEEP GOING
87
88 WE HAVE MOVED THE REST OF THE FIRST
89 SECTOR TO THE PROPER PLACEIN MEMORY
90 NOW WE READ WHOLE SECTORS UNTIL LESS
91 THAN A SECTOR OF DATA IS LEFT.
92
93 BEEF EE C4 BS FLE3 INC FL.FWA+l ;UP FWA BY $100
94 BEF2 20 oc AF JSR SELTSBF ;POINT TO T/S LIST
9S BEFS AC 6S BF LDY TSPTR
96 BEF8 DO 08 BNE FLE6 ;SKIP IF NOT AT END
97 BEFA 38 SEC ;FLAG NEXT T/S LIST
98 BEFB 20 SE AF JSR RDTSLIST
99 BEFE BO SS BCS FLEERR ;SKIP IF ERROR

100 BFOO AO oc LDY #$C ;OFFSET TO FIRST T/S PAIR
101
102 BF02 Bl 42 FLE6 LDA (BUFADR), Y

10

103
104
lOS
106
107
108
109
110
111
112
113
114
llS
116
117
118
119
120
121
122
123
124
12S
126
127
128
129
130
131
132
133
134
13S
136
137
138
139
140
141
142
143
144
14S
146
147
148
149
lSO
lSl
1S2
1S3
1S4
lSS
1S6
1S7
1S8
1S9
160

BF04
BFOS
BF06
BFOS
BF09
BFOC
BFOD
BFlO

BF12
BFlS
BF18
BFlB
BFlE
BF20
BF23
BF2S

BF27
BF2A
BF2C
BF2D
BF2E
BF31
BF33
BF36
BF38

BF3B
BF3C
BF3D
BF3F
BF42

BF44
BF47
BF4A
BF4C
BF4E
BFSO
BFSl

BFS3
BFS4

BFSS
BFS7

AA
ca
Bl 42
ca
SC 6S BF
AS
CE C2 BS
FO lS

AD C3 BS
SD FO B7
AD C4 BS
SD Fl B7
A9 01
20 S2 BO
90 CA
BO 2E

AD Cl BS
FO 27
SA
48
20 10 AF
AS 42
SD FO B7
AS 43
SD Fl B7

68
AA
A9 01
20 S2 BO
AO 00

20 SA BF
CC Cl BS
BO 07
Bl 42
91 48
ca
DO F4

18
60

A9 08
4C SS B3

TAX
!NY
LDA (BUFADR) I y
!NY
STY TSPTR
TAY
DEC FL.LDLN+l
BEQ FLES

LDA FL.FWA
STA IOBBUFA
LDA FL.FWA+l
STA IOBBUFA+l
LDA #1
JSR RWTSDRVR
BCC FLE3
BCS FLEERR

;TRACK

; DECR LENGTH BY $10 0
;SKIP < $100 BYTES LEFT

;SET ADDRESS FOR RWTS

;READ CODE
;READ THE SECTOR
;NO ERROR
;QUIT IF ERROR

WE ARE HERE TO READ THE LAST SECTOR
INTO THE DOS I/0 BUFFER AND THEN
COPY THE REMNANT TO THE END OF THE
THE CODE IMAGE IN MEMORY.

FLES LDA FL . LDLN
BEQ FLEll
TXA
PHA
JSR SELDABF
LDA BUFADR
STA IOBBUFA
LDA BUFADR+l
STA IOBBUFA+l

PLA
TAX
LDA #1

;CHECK LENGTH LSB
;QUIT IF NO DATA LEFT
;SAVE X

;GET DATA BUFFER ADDRESS
;SET UP THE IOB

;RECOVER X-REG

;READ CODE
JSR RWTSDRVR
LDY #0 ;SET UP OFFSET INTO SECTOR

WE ARE HERE WITH THE LAST PART OF
THE DATA IN THE DOS I/0 BUFFER

FLE9
FLElO

JSR SETSTBF
CPY FL . LDLN
BCS FLEll
LDA (BUFADR),Y
STA (STBUF),Y
!NY
BNE FLElO

ALL DONE WITH THE LOAD

FLEll CLC
RTS

FLEERR LDA #8
JMP SETERROR

;SET UP STORE BUFFER
;ALL DATA MOVED?
;IF YES, QUIT
;FETCH BYTE
;STORE BYTE
;ADVANCE POINTER

;EXIT CARRY CLEAR

; I/0 ERROR
;EXIT TO FMNGR

11

161 BFSA AD C3 BS SETSTBF
162 BFSD 85 48
163 BF5F AD C4 BS
164 BF62 85 49
165 BF64 60
166
167 BF6S 00 TSP TR
168 LENFLE

000 ERRORS

BEAF HEX START OF OBJECT
BF65 HEX END OF OBJECT
0087 HEX LENGTH OF OBJECT
94Fl HEX END OF SYMBOLS

LDA FL.FWA
STA STBUF
LDA FL.FWA+l
STA STBUF+l
RTS

DFC 0
EQU . - FLE

LISTING 3: INST ALL FILE CREATOR

100 REM *******************************
101 REM * FAST LOAD ENHANCEMENT *
102 REM * INSTALL FILE CREATOR *
103 REM * BY TOM BURT *
104 REM * COPYRIGHT (C) 1983 BY *
105 REM * MICROSPARC INC. *
106 REM* CONCORD,MA 01742 *
107 REM * ALL RIGHTS RESERVED *
108 REM *******************************
110 D$ = CHR$ (4)
120 REM OPEN THE TEXT FILE
130 PRINT D$; "0PEN FLE.EXEC"
140 PRINT D$;"WRITE FLE.EXEC"
150 REM LOAD THE FLE SUBROUTINE
160 PRINT "BLOAD FLE.OBJ,A$BEAF"
170 REM CHANGE LOAD / BLOAD TO CALL FLE
180 PRINT "CALL - 151"
190 PRINT "A40B :AF BE"
200 REM DISABLE RWTS FORMAT (CLC,RTS)
210 PRINT "BEOD:l8 60"
220 REM RETURN TO BASIC
230 PRINT "3D0G"
240 PRINT D$;"CLOSE FLE.EXEC"
250 END

12

;T/S LIST POINTER

RAM-PAD
If you are tired of searching through your manuals and program listings for often-used
addresses and routines, RAM-PAD is the utility for you. With it, data may be saved and
reviewed at the touch of a key.

by Sandy Mossberg

USING RAM-PAD
RAM-PAD works under DOS 3.3 on an Apple II Plus with a RAM card in slot 0, or on an

Apple Ile, Ile, IIGS or Franklin Ace. Typing BRUN RAM-PAD installs the program in the
extra 16K of firmware or hardware. I'll use the term "RAM card" or "card" to refer to this
bank-switched memory, regardless of whether it resides on a card in slot 0 or is built in.

Four screens (pages A-D) of text may be saved on the RAM card or restored to the display.
To save the cmTent screen contents (text page 1), press <CTRL>S followed by the control
character representing the desired page (<CTRL>A, <CTRL>B, <CTRL>C or <CTRL>D).

To review the contents of a page, press <CTRL>R followed by the control character
representing the desired page. After examining the restored page, pressing <CTRL>X makes
the restoration permanent, and places the cursor on the bottom row of the screen. Pressing any
other key returns the original screen to view. The flashing cursor disappears after using one of
the two main commands. Requesting an invalid page letter evokes a beep, and the cursor
reappears. The <RESET > key functions normally.

Since the pages are saved to RAM, turning off the computer destroys the saved pages.
PAGE-A for RAM-PAD (Listing 2) may be used to load the pages of RAM-PAD. This
Applesoft program provides you with one page of meaningful data that is transferred
automatically to page A of the installed RAM-PAD.

ENTERING THE PROGRAMS
Please refer to Appendix A for help in entering Listing 4. If you key it in from the

Monitor, save it to disk with the command:

BSA VE RAM.PAD,A$8000,L$126

To enter PAGE.A for RAM-PAD, key in Listing 5 and save it with the command:

SAVE PAGE.A

HOW THE PROGRAMS WORK

RAM-PAD
If the RAM card program does not extend above $F800, it is simpler to place the F8

Monitor ($F800-$FFFF) onto the card so that Monitor subroutines can be called without the
need for vectors. I usually opt for a stand-alone machine language program - one that requires
no Applesoft or EXEC file interface. To this end, the program must first be loaded into low
RAM (below $COOO), and then moved onto the card (high RAM). As with all co-resident
programs that control the I/O hooks, a special routine should restore these hooks when the
<RESET> key disconnects them. These functions are performed in lines 40-107 and lines
234-238 of Listing 4.

The routines that transfer control from the card (lines 197-204) ensure that the immediate
mode at entry (Applesoft or Monitor) is preserved.

Lines 250 and 251 and lines 255 and 256 take advantage of the ability of the Merlin
Assembler (published by Roger Wagner Publishing) to assemble a program with more than

13

one origin address. These four equates simply identify the starting and ending low RAM
addresses of the vector table and the RAM card program.

Bank Select Switches
Locations $C080-$C08F (bank select switches) are used to manipulate the read/write status

of card RAM and motherboard ROM.
Since we will use Bank 2 of the $DOOO-$DFFF space, only locations $C084-$C087 are

pertinent. Since $C080-$C083 is identical to $C084-$C087, only the former will be
considered.

For the purposes of the current program, one reference to $C081 turns ROM on and the
card off, and two or more successive references to $C081 turn ROM on and write-enable the
card. One reference to $C083 read-enables the card and disables ROM, and two or more
successive references to $C083 read- and write-enable the card and tum ROM off.

The RAM card program must be accessed by a routine in low RAM that employs one of the
switches noted above. This vector (lines 108-110) thus becomes the true input handler, and
its address may be found in $AA55-$AA56 of the DOS Main Routines Table. When exiting the
RAM card, a low RAM vector must also be employed (lines 114-119). I have tucked these
important vectors into a 33-byte free space within DOS ($BCDF-$BCFF).

The actual RAM card program is reasonably simple. Prior to saving the entry row (lines
135-136), keyboard input is filtered. If a valid command does not occur, control returns to
the caller (lines 132 and 134). If an appropriate command is encountered but does not occur
immediately to the right of the Applesoft prompt, RAM-PAD is bypassed (lines 140 and
144). If the command is sustained, $94 is subtracted from the ASCII value of <CTRL>R
($92) or <CTRL>S ($93) and stored in the Y-Register (lines 137 and 145-147). When (Y)
is later incremented (line 162), it contains a positive value if the SA VE command were given,
and a negative value if RESTORE was invoked (line 163).

The Display
The page letter to be saved or restored next must be obtained. On the Apple II Plus, KEYIN

places no cursor on the screen, however on the Apple Ile and Ile, a flashing checkerboard is
displayed.

Since I prefer no cursor and want the effect to be the same regardless of which machine is
used, a mini-KEYIN subroutine is employed (lines 226-230 to fetch a letter without a cursor
prompt. Any character other than <CTRL>A, <CTRL>B, <CTRL>C or <CTRL>D is rejected
(lines 152-156). The starting location of a valid page is found (lines 157-158) by
indexing the table in line 242.

Memory Move
The subroutine that moves memory (lines 208-222) picks up the high-order bytes of the

origin (Y-Register) and destination (A-Register) and affects the movement of exactly $400
bytes (indexed by the X-Register).

PMOVE is called by SA VE (lines 167-169) to transfer the screen contents to the RAM
card, and by RESTORE (lines 177-193) to store the current screen, display a page on the
card, and restore the original page if any character other than <CTRL>X is typed.

PAGE-A for RAM-PAD
Lines 120-200 and 510-520 format the screen. With ROM read and RAM card write in

effect (line 220), line 230 equates A$ to the Monitor command which moves the System
Monitor onto the card. The S.H. Lam subroutine (line 410) does the following:

1. Adds "PLA PLARTS" (the code at $D9C6) to the Monitor command.
2. POKES the entire command into the input buffer.
3. Clears the Status register.
4. Calls the Monitor Command Processor to execute the command.

14

The three-byte code added in number 1 allows return to a running BASIC program. Line
240 disables the card, and line 250 ends the program. You may eventually want to expand
this program to fill all four pages of the RAM-PAD.

Using Monitor commands in an Applesoft program is a valuable asset, and the Lam code is
the most efficient method I have found for doing this.

MODIFICATIONS
To provide four more storage pages, add E8ECFOF4 to line 244 of Listing 4, and

change line 157 to CMP #8.
It would be convenient to have RAM-PAD write pages of data into a binary file that could

be loaded at any time. The File Manager can be employed for this task; additional commands
are necessary. Since the RAM-PAD filters all input, you can easily add handy commands that
provide catalog control, entry to the System Monitor, cursor manipulation and other features.

LISTING 4: RAM.PAD

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

*
*
*

RAM.PAD
*
*
*

* by Sandy Mossberg * Merlin Assembler
* (C) 1983 MICROSPARC INC.*

*---------
* EQUATES:
*---------
CH
CV
BASL
PROMPT
CVSAV
KSWL
KSWH
AlL
AlH
A2L
A2H
A4L
A4H
DOSWRM
SOFTEV
KEY
STROBE
TABV
SETPWRC
KEY IN
MOVE
BELL
MONZ
*-------
* SETUP:
*-------

$24
$25
$28
$33
$34
$38
$39
$3C
$3D
$3E
$3F
$42
$43
$3DO
$3F2
$COOO
$C010
$FB5B
$FB6F
$FD1B
$FE2C
$FF3A
$FF69

ORG $8000

;Cursor column
;Cursor row
;Left margin of current
;Prompt character
;Save CV
;Input hook

;Start of segment moved

;End of segment moved

;Destination of move

;Warmstart DOS
;RESET vector
;Keyboard input
;Keyboard strobe
; Set row in (A)
;Set power-up byte
;Get keypress
;Move memory (Y=O)
;Beep!
;Enter system monitor

line

15

39
40 * Move F8 monitor ROM to card :
41

8000: AO F8 42 LOY f$F8
8002 : 84 30 43 STY AlH
8004 : 84 43 44 STY MH
8006: AO FF 45 LOY #$FF
8008: 84 3E 46 STY A2L
800A: 84 3F 47 STY A2H
800C: ca 48 INY
8000: 84 3C 49 STY AlL
800F: 84 42 50 STY ML
8011: AD 81 co 51 LOA $C081 ;ROM read, card write
8014: AD 81 co 52 LOA $C081
8017: 20 2C FE 53 JSR MOVE

54
55 * Move program to card:
56

801A: AO 80 57 LOY #>PGMSTART
801C: 84 30 58 STY AlH
801E: AO 70 59 LOY fPGMSTART
8020: 84 3C 60 STY AlL
8022: AO 81 61 LOY #>PGMEND
8024: 84 3F 62 STY A2H
8026: AO 25 63 LOY f PGMEND
8028 : 84 3E 64 STY A2L
802A: AO DO 65 LOY #>RCSTART
802C: 84 43 66 STY MH
802E: AO 00 67 LOY #RCS TART
8030: 84 42 68 STY ML
8032: 20 2C FE 69 JSR MOVE

70
71 * Move vectors into DOS:
72

8035: AO 80 73 LOY #>VECSTART
8037: 84 30 74 STY AlH
8039: AO SF 75 LOY fVECSTART
803B: 84 3C 76 STY AlL
8030: AO 80 77 LOY #>VECEND
803F : 84 3F 78 STY A2H
8041: AO 7C 79 LOY #VECEND
8043: 84 3E 80 STY A2L
8045: AO BC 81 LOY #>VRESET
8047: 84 43 82 STY MH
8049: AO DF 83 LOY #VRESET
804B: 84 42 84 STY ML
8040: AO 00 85 LOY #0
804F: 20 2C FE 86 JSR MOVE

87
88 * Set page 3 reset vector:
89

8052: AO DF 90 LOY #VRESET
8054: SC F2 03 91 STY SOFTEV
8057: AO BC 92 LOY #>VRESET
8059: SC F3 03 93 STY SOFTEV+l
805C: 20 6F FB 94 JSR SETPWRC

95
96 * Set input hook (fall into VRESET) :

16

97
9S LORAMl *
99 *--------------
100 * VECTOR TABLE:
101 *--------------
102 ORG $BCDF
103
104 * To RAMCARD:
105

BCDF: SD S3 co 106 VRESET STA $COS3 ;Card read
BCE2: 4C 99 DO 107 JMP RESET
BCE5: SD S3 co lOS VINPUT STA $COS3 ;Card read/write
BCES: SD S3 co 109 STA $COS3
BCEB: 4C 00 DO 110 JMP RC START

111
112 * From RAMCARD :
113

BCEE: SD Sl co 114 VEND STA $COS1 ;Disable card
BCFl: FO 03 115 BEQ VMON
BCF3: 4C DO 03 116 JMP DOSWRM
BCF6: 4C 69 FF 117 VMON JMP MONZ
BCF9: SD Sl co 11S VRTS STA $COS1 ;Disable card
BCFC: 60 119 RTS

120
121 LORAM2 *
122 *-----------------
123 * RAMCARD PROGRAM :
124 *-----------------
125 ORG $DOOO
126
127
12S * Get SAVE/RESTORE command and t e st validity:
129

DOOO: 20 lB FD 130 RC START JSR KE YIN
D003: C9 94 131 CMP #"S" +l-$40 ;CTL-S (save)
DOOS : BO 34 132 BCS RTSl
D007 : C9 92 133 CMP #" R"-$40 ;CTL- R (res tore)
D009 : 90 30 134 BCC RTSl
DOOB: A4 25 135 LDY CV
DOOD: S4 34 136 STY CVSAV ;Save entry row
DOOF: AA 137 TAX
DOlO: A4 24 13S LDY CH
D012: co 01 139 CPY n ;Command in column 1
D014: DO 25 140 BNE RTSl
0016: SS 141 DEY
D017: Bl 2S 142 LDA (BASL) , Y
D019: cs 33 143 CMP PROMPT ;Prompt in column 0
DOlB: DO lE 144 BNE RTSl
DOlD: SA 145 TXA
DOlE: E9 94 146 SBC #$94 ; R= $FE, S=$FF
D020: AS 147 TAY

14S
149 * Get page letter command and test validity:
150

D021 : 20 SD DO 151 JSR PKEYIN
D024 : 3S 152 SEC
D025: E9 Sl 153 SBC #"A" -$40 ;CTL-A,B , C,D=0 , 1 , 2 , 3
D027: 30 3S 154 BMI ERROR

17

0029: C9 04 155 CMP t4
D02B: BO 34 156 BCS ERROR
0020: AA 157 TAX ;Index to page table
D02E : BO A4 DO 158 LOA PAGETBL,X ;Starting address of page

15 9
160 * Direct flow to SAVE or RESTORE:
161

0031: ca 162 INY ; R=$FF , S=O
0032: 30 OA 163 BMI RESTORE

164
165 * SAVE current text page:
166

0034: AO 04 167 LOY 4t4
0036: 20 72 DO 168 JSR PMOVE
0039: FO 29 169 BEQ ENDOLD ;Always

170
171 * Vector RTS to low RAM:
172

D03B: 4C F9 BC 173 RTSl JMP VRTS
174
175 * RESTORE page for viewing :
176

D03E: 48 177 RESTORE PHA
D03F: A9 04 178 LOA #$04
0041: AO 04 179 LOY #4
0043: 20 72 DO 180 JSR PMOVE ;Save current text page
0046: 68 181 PLA
0047: AS 182 TAY
0048: A9 04 183 LOA t4
D04A: 20 72 DO 184 JSR PMOVE ;Display designated page
0040 : 20 SD DO 185 JSR PKEYIN ;Pause for keypress
0050: C9 98 186 CMP f "X"-$40 ;CTL-X
0052: FO 09 187 BEQ Rl
0054: AO 04 188 LOY f$D4 ;Recover original page
0056: A9 04 189 LOA t4
0058: 20 72 DO 190 JSR PMOVE
D05B: FO 07 191 BEQ ENDOLD ;Always
0050: A9 16 192 Rl LOA #$16 ;Restored page remains
D05F: DO 07 193 BNE ENDNEW ;Always

194
195 * Ending routines:
196

0061: 20 3A FF 197 ERROR JSR BELL ;Erroroneous page letter
0064: A4 34 198 ENDOLD LOY CVSAV ;Recover original page
0066: 88 199 DEY
0067: 98 200 TYA
D068: 20 SB FB 201 END NEW JSR TABV ;Restored page remains
006B: AS 33 202 LOA PROMPT
0060: C9 AA 203 CMP #" *"
006F : 4C EE BC 204 JMP VEND ;Vector end to low RAM

205
206 * Move up or down:
207

0072: 85 43 208 PMOVE STA A4H ;Destination hi
0074: 84 30 209 STY AlH ;Origin hi
0076: A2 04 210 LOX 4t4 ;$400 bytes to be moved
0078: AO 00 211 LOY to
007A: 84 42 212 STY A4L ;Destination lo

18

D07C: 84 3C 213 STY AlL ;Origin lo
D07E: Bl 3C 214 PMl LDA (AlL), Y ;Get from here
D080: 91 42 215 STA (A4L),Y ;Put here
D082: ca 216 INY
D083: DO F9 217 BNE PMl
D085 : E6 3D 218 INC AlH ;Bump pointer s hi
D087: E6 43 219 INC A4H
D089: CA 220 DEX
D08A: DO F2 221 BNE PMl ;More bytes to move
D08C: 60 222 RTS ;Exactly $ 400 bytes moved

223
224 * Get keypress (no prompt):
225

D08D: 2C 00 co 226 PKEYIN BIT KEY
D090: 10 FB 227 BPL PKEYIN
D092: AD 00 co 228 LDA KEY
D095: 2C 10 co 229 BIT STROBE
D098: 60 230 RTS

231
232 * RESET handler :
233

D099: A9 ES 234 RESET LDA #VINPUT ;Restore input hook
D09B : 85 38 235 STA KSWL
D09D: A9 BC 236 LDA #>VINPUT
D09F: 85 39 237 STA KSWH
DOAl: 4C EE BC 238 JMP VEND :Vector end to low RAM

239
240 * RAMCARD page table:
241

DOA4: D8 DC EO 242 PAGETBL HEX D8DCEOE4
DOA7 : E4
DOA8 : 00 243 RC END HEX 00

244 *------------------------------------
245 * Equates in BLOADed (LORAM) program:
246 *------------------------------------
247
248 * Vector table:
249
250 VECSTART LORAMl
251 VECEND LORAM1+LORAM2-VRESET-1
252
253 * RAMCARD program :
254
255 PGMSTART VECEND+l
256 PGMEND PGMSTART+RCEND- RCSTART

--End assembly, 294 bytes , Errors: 0

LISTING 5: PAGE.A

100
110
120

REM *** PAGE . A FOR RAM.PAD ***
REM *** PRINT INFORMATION
HOME : FOR I = 1 TO 13: IF I = 8 THEN PRINT PRINT

19

130 READ A$,B$: PRINT A$;: HTAB (11 - LEN (B$)): PRINT B$:
NEXT I: PRINT

140 FOR I = 1 TO 15: READ A$,B$: VTAB I: HTAB 19: PRINT A$;:
HTAB (33 - LEN (B$)): PRINT B$: NEXT : PRINT

150 PRINT "BANK2 ROM CARD BANKl"
160 PRINT "----- -----"
170 PRINT "49280 R,WP 49288"
180 PRINT "49281 R W2 49289"
190 PRINT "49282 R WP 49290"
200 PRINT "49283 R,W2 49291"
210 REM MOVE INFO TO RAM-PAD
220 POKE 49281 ,0 : POKE 49281,0: REM ROM READ, CARD WRITE
230 A$= "D800<400.7FFM": GOSUB 400: REM EXECUTE MONITOR COMMAND
240 POKE 49281,0: REM DISABLE CARD
250 END
400 REM S H LAM SUBROUTINE
410 A$= A$+ "N D9C6G": FOR I = 1 TO LEN (A$): POKE 511 +I,

ASC (MID$ (A$,I,1)) + 128: NEXT : POKE 72,0: CALL - 144:
RETURN

500 REM DATA
510 DATA LEFT,32,WIDTH,33,TOP,34,BOTTOM,35,CH,36,CV,37,PC,58,

START,103,LOMEM,105,ARRAY,107,FREE-
1,109,STRING,111,HIMEM,115

520 DATA DOSWARM,976,DOSCOLD,979,DOSHOOK,1002,RESET,1010,AMPER,
1013,CTLY,1016,KEY,49152,STROBE,49168,SPEAKER,49200,BS,-
1008,UP,-998,CLREOP,-958,KEYIN,-741,SETKBD,-375,SETVID,-
365,BELL,-198,MON,-155,MONZ,-151

20

TAB XY
TAB XY is an ampersand utility that provides a shorthand method for positioning the cursor on
the screen.

by S. Scott Zimmerman

TAB XY lets you av0id having to constantly type statements such as HTAB 9: VTAB 12 to
position the cursor in formatted screen output. It is a short assembly language program that
uses the Applesoft ampersand(&) command.

USING THE PROGRAM
To use the program, BRUN TAB XY. The general syntax for the utility is &X,Y whereX

is an integer number or expression for the HT AB, and Y is an integer number or expression for
the VTAB. X can take on any value from 1-80. (Use the range 1-40 or 1-80 depending on
whether you can display 40 or 80 columns with your computer.) Y must be in the range 1-24.
If you input a value outside these ranges, a beep will sound. After BRUNning TAB XY, you
can position the cursor at horizontal position 9 and vertical position 12 simply by using the
statement &9, 12.

ENTERING THE PROGRAM
Please refer to Appendix A for help in entering the program in Listing 6. If you key it in

from the Monitor, save it to disk with the command:

BSA VE TABXY ,A$3A4,L$2B

HOW IT WORKS
In addition to being a handy ampersand utility, the program provides a good illustration of

three Apple ROM subroutines for use in your assembly language programming. GETBYT is a
routine that gets an expression (or number), evaluates it, and enters the result in the 6502 X
Register. The expression it handles is the one pointed at by TXT.PTR, a vector located on zero
page at 184 and 185 ($B8 and $B9). Applesoft constantly updates TXTPTR to the next
character in the Applesoft program. In the case of TAB XY, the next expression after the & is
the X (HTAB) value.

COMBYTE does essentially the same thing as GETBYT, except that COMBYTE also looks
for a comma. If it finds one, it increments T.XTPTR and then evaluates the expression.
Therefore, the Y (VTAB) expression in TAB XY is obtained, evaluated and stored in the X
Register by COMBYTE.

TABV does the actual work in the TAB XY program. The Monitor routine positions the
cursor at the horizontal position (column) given in CH ($24), and at the vertical position (line)
given in the Accumulator.

21

LISTING 6: T ABXY

0
1
2
3
4
5
6
7
s
9

10
11
12
13
14
15
16
17
lS
19
20
21
22
23
24
25
26
27
2S
29
30
31
32
33
34
35
36
37
3S
39
40
41
42
43
44
45
46
47
4S
49
50
51
52
53
54

22

03A4
03A6
03A9
03AB
03AE
03BO
03B3

03B4
03B7
03BS
03BA
03BD
03BE
03CO
03C2
03C3
03C5
03C7
03C9

A9 4C
SD FS 03
A9 B4
SD F6 03
A9 03
SD F7 03
60

20 FS E6
CA
S6 24
20 4C E7
CA
EO lS
BO OA
SA
A6 24
EO 50
BO 03
4C SB FB

TABXY

by S. Scott Zimmerman

Copyright (c) 19S3
by MicroSPARC Inc .
Concord, MA 01742

All Rights Reserved

After BRUNning TABXY t o set &-vector,
use the syntax in Applesoft: &X,Y
where X is the HTAB value or expression
in the range 1 to SO, and where Y is
the VTAB value in the range 1 to 24.

ORG $3A4 ;Top of page 3

Apple Monitor addresses and routines :

CH EQU $24
AMPER EQU $3F5
GETBYT EQU $E6FS
COMBYTE EQU $E74C
TABV EQU $FBSB
BELL EQU $FF3A

;Monitor HTAB value
;Ampersand vector

;Mon rtn: Evaluate expression
;Mon: Check for","; eval exprsn

;Monitor tab routine
;Monito r beep routine

Initialize the &- vector:

LDA #$4C
STA AMPER
LDA #TABXY
STA AMPER+l
LDA #TABXY/
STA AMPER+2
RTS

;Opcode for JMP
;~ut at &-vector adrs
;Get LOB of starting adrs
;Stuff it for the J MP
;Get HOB of starting adrs
; and stuff it also

The main program starts here :

TABXY JSR GETBYT
DEX
STX CH
JSR COMBYTE
DEX
CPX #24
BCS ERROR
TXA
LDX CH
CPX #SO
BCS ERROR
JMP TABV

;Evaluate X (HTAB) value
;Adjust range 0 - 79
;Save X in monitor CH
;Evaluate Y ' (VTAB) value
;Adjust range 0 - 23
;Is Y greater than 23?
;Yes , it's an error
;Put Y value in accum.
;Check the X value
;Is X greater than 79?
;Yes , it ' s an error
;Go to monitor routine

Beep if there's an error:

55
56 03CC 4C 3A FF ERROR JMP BELL ;Sound the ala rm
57

000 ERRORS

03A4 HEX START OF OBJECT
03CE HEX END OF OBJECT
002B HEX LENGTH OF OBJECT
95Cl HEX END OF SYMBOLS

23

Verify and Lock
Verify and Lock modifies the DOS VERIFY command to prevent you from accidentally
deleting or writing over files you meant to keep.

by Doug Denby

Have you ever deleted a file by mistake? There are many utilities on the market to recover
deleted files - that wasn't my problem. Instead, in the process of developing a program, I
would sometimes write over previous (and sometimes better) versions of a program by using
the SA VE command.

Adopting the habit of appending version numbers to the file names (e.g., TESTl, TEST2,
TEST3, etc.) partially solved my problem, but it wasn't a complete solution. Often I couldn't
remember the most recent version number (and I am too lazy to catalog the disk before each
SA VE). I tried to develop the habit of locking each version as I saved it, but my lack of resolve
got the better of me. Finally, I decided to let DOS do it for me.

BUILT-IN LOCKING
After some feeble attempts at modifying the SA VE command, I came up with a better

method - modifying the VERIFY command. Why use VERIFY instead of SA VE? Changing
the SA VE command would protect only my Applesoft programs. I do some machine language
programming and memory (picture) storage and wanted to protect all file types with a single
patch.

My objective was to make the VERIFY command exit through the LOCK command
whenever it was executed. This would automatically lock every file that is SA VEd or
BSAVEd.

When I discovered that the VERIFY code occupied only four bytes, I wondered how I
could alter that type of compressed code. I could only replace the four bytes with a three-byte
instruction to jump elsewhere to perform the double command I wanted.

FINDING SPACE FOR THE PATCH
The replacement command (VERIFY and LOCK) would have to first load the Accumulator

with the File Manager's opcode for VERIFY, then jump to the File Manager subroutine, and
finally jump to the LOCK command (a total of eight bytes):

LDA#$0C
JSR $A277
JMP $A271

I could have put the new VERIFY & LOCK command in the empty space at $BA59. But since
I had already put a few other DOS patches there, I needed a new open memory area in DOS.

THE ERROR MESSAGE TABLE
The Error Message Table is a sequential file of phrases imbedded in DOS. Many of the

messages are longer than needed, so I decided to shorten one of them to free up some memory
in the table. The end of each phrase is marked by BIT7 of the final byte of the phrase. All other
bytes have BIT7 in the off (0) condition except the last byte of the phrase. A separate table
keeps track of the offset locations in the message table that point to the start of each phrase.
Therefore, shortening a phrase is easy. All I needed to do is tum on BIT7 of the last character
of the shortened message.

I changed the NO BUFFERS AVAILABLE to NO BUFFERS. The meaning remains clear
and 10 extra bytes are available.

24

MAKING THE PATCH
First, Enter the Monitor by typing Call -151. You should see the* prompt. Now alter the

original VERIFY command to point to the new location of the VERIFY & LOCK command by
typing:

A27D: 4C FF A9

Now enter the new command with the line:

A9FE:D3 A9 OC 20 77 A2 4C 71 A2

or use the following Applesoft routine:

10 REM VERIFY AND LOCK VIA LAM
20 A$ = "A27D : 4C FF A9 N A9FE:D3 A9 OC 20 77 A2 4C 71 A2 ~

D9C6G"
30 FOR I = 1 TO LEN (A$}
40 POKE 511 +I, ASC (MID$ (A$,I}) + 128
50 NEXT
60 CALL - 144

Your DOS 3.3 is now altered. To put the alteration permanently on a disk, just INIT a new
disk. From then on, every time that disk is booted, the modified DOS will be placed in the
machine.

All DOS commands act as before except that every SA VE, BSA VE and VERIFY command
also locks the file if it is verifiable by DOS 3.3. This patch does not affect TEXT file
commands in any way.

25

Apple Ile Cast of Characters
This demonstration program displays the four character sets available on the Apple Ile, Ile and
IIGS

by Sandy Mossberg

APPLE II AND Ile CHARACTERS
For the programmer, character generation is the most primal function of a computer. An

eight-bit character set must contain exactly 256 ($100) symbols, each represented by a single
numeric code. On page 15 of the Apple II Reference Manual there is a table that lists the single
character set of the Apple II Plus. By using the standard character output routine (COUT,
$FDED), ASCII codes 0-63 ($00-$3F), 64-127 ($40-7F) and 160-255 ($AO-$FF) represent
inverse, flashing and normal visible characters, respectively.

Codes 128-159 ($80-$9F) are invisible control characters, many of which initiate a
hardware or firmware action, e.g., <CTRL>D (134, $84) tickles DOS, <CTRL>L (140, $8C)
produces a formfeed and <CTRL>M (141, $8D) forces a carriage return.

With the Apple Ile's near mandatory 80-column card in the auxiliary slot (which simulates
slot 3), no longer is simplicity the keyword. With the card inactive, two separate character sets
(primary and alternate) may be utilized. With the card active, two different sets (primary and
alternate) become available. That makes four distinct character sets built into the Apple Ile
package. You may be conjuring up images of Greek or Hebrew alphabets, but all characters are
"American" and one set differs from another because the meaning of certain numeric codes
changes. Are you still with me? ·

Ile SOFT SWITCHES
Before we talk about the character sets, we need to discuss soft switches. The Ile contains

numerous soft switches that control and detect various states of the machine. Each switch uses
three memory locations - one for turning the switch on, one for turning it off and one for
reading the on/off condition. The display soft switches are listed on page 28 of the Apple Ile
Reference Manual.

THE DEMONSTRATION PROGRAM
Listing 7 is an Applesoft program that enables you to display the four character sets. If

you run the program with the card inactive, you may toggle between the primary and alternate
sets. The same is true with the card active in 40- or 80-column mode.

To permit the Apple to generate each character set, the Applesoft PRINT statement is
bypassed and COUT is used directly.

HOW IT WORKS
Lines 190-230 define the machine language subroutines that are poked into page 3 by

lines 240-250. Locations are given in decimal and the labels correspond to the equates in
line 260.

Lines 270-330 list the soft switches to be used and their equates. To activate or deactivate
most switches, the appropriate location must be written to, i.e., a value must be POKEd into it.
To determine the on/off state, the designated location must be read, i.e., a valued must be
PEEKed from it. A number larger than 127 ($7F) indicates that the switch is on; if less than
128 ($80), the switch is off.

Line 350 starts the ball rolling. After homing the cursor and clearing the screen,
AL TCHARSET is read. If the switch is on, Line 710 prints AL TERN A TE CHARACTER
SET on the top line and control passes to line 380.

If ALTCHARSET is off, line 360 calls the subroutine that outputs PRIMARY
CHARACTER SET. Line 380 prints the ones place column headers by poking numbers from

26

0-15 into location $07 (NYBBLE) and printing the row of hex numbers using PRHEX
(Monitor ROM) and OUTSP (Applesoft ROM).

Line 400 starts the FOR-NEXT I-loop by printing the tens place row headers. When the
card is active, ASCII codes 0-31 ($00-$1F) and 128-159 ($80-$9F) represent control
characters. With the card inactive, only negative ASCII (high bit set) control characters are
present.

Since control characters are invisible and may evoke an unwanted action, they must be
filtered out and displayed in another manner. Line 440 tests the status of the 80-colurnn card
(regardless of whether it is in 40- or 80-colurnn mode) by checking if slot 3 has control of the
output hook directly or via DOS. Testing the input hook would be equally valid. Finding $C3
(195) in the high-order byte of either location confinns an active card.

Do not make the mistake of using the 80COL switch to test for card activity, since it would
be off if the active card were in 40-colurnn mode (and the program would not work if run from
this mode).

Line 460 checks for all possible control codes. If none is found, flow is routed to lines
530-540 where the J-loop pokes the ASCII code into location $06 (CHAR) and uses COUT
to print each successive row of 16 ($10) characters.

If a control character is encountered with the 80-column card active, lines 490 and 520
print an arrow followed by a row of normal uppercase characters. In this way, control
characters are designated by an arrow following the row header. With an inactive card, positive
ASCII control characters do not exist and line 490 is bypassed.

Switching Sets
When the character set is completed, line 560 prints the message "SWITCH or END

(ANY KEY IE)?" and line 570 gets the input. If E is pressed, line 580 terminates the
program. Any other keypress switches character sets. The simplest way to do this would be to
toggle the display by reading ALTCHARSET. I chose a more circuitous routine to illustrate
several points.

If the card is inactive (tested in line 610), text page 1 contains a single set of locations
extending from 1024-2047 ($400-$7FF), and screen characters may be read (peeked) directly
by accessing the desired location. Line 640 does just that by reading the first character on the
screen, converting it to positive ASCII (screen characters are negative ASCII), and comparing
it to A. Finding this letter indicates that the alternate character set is on the screen and that the
primary set must be toggled in. If A is not the first character on the screen, line 650 restores
the alternate set.

Reading the screen with the 80-column card active is more complicated. Having 80 columns
means that twice as may locations are required on text page 1. The Ile handles this situation by
assigning odd locations, i.e., 1, 3, 5, etc., to main memory (PAGE2 off) and even locations,
i.e., 2, 4, 6, etc., to auxiliary memory (PAGE2 on) which is contained on lK of card ROM.

Thus, to read the first location (zero) on the first line (1024,$400), PAGE2 first must be
turned on (line 690). If you wanted to read the second location on the first line, 1024 would
still be PEEKed butPAGE2 would be off. Be sure to tum PAGE2 off again before executing
another command (line 640). At first, this process appears a bit unwieldy, but as you gain
experience, it is downright cumbersome. The theory and an 80-colurnn display map are found
on pages 30-32 of the new reference manual.

CHARACTER SET DIFFERENCES
After running the demo program several times with the card in either state, the subtle

differences between each of the four character sets will surface. Table 1 summarizes the
features of each set Unfortunately, Table 2-6 (page 20) in the new reference manual is
inaccurate (codes $80-$9F always are control characters and do not print uppercase letters),
incomplete (with the card active, codes $00-$1F also are control values), and misleading
("upper-case letters" and "lower-case letters" include several special character, and "special
characters" include numerals). Table 1 may be more meaningful to you.

27

The primary character set is standard with the card inactive, whereas the alternate set is
standard with an active card. The Apple Ile 80-Column Text Card Manual states authoritatively
on page 31 that the FLASH command "is not available while the card is active." Since the
primary set does appear to contain flashing "upper-case" characters with the card active, let us
challenge this assertion. Enter the following code:

1 0 POKE 4 91 66 , 0 : FLASH: PRINT "IMPORTANT": NORMAL

Type PR#3 to activate the card, run the program, and see how well the FLASH command
functions. We simply have enabled the primary character set by writing to location 49166.
From the immediate mode type POKE 49167,0 to restore the alternate set, and see that the
flashing characters are replaced by inverse ones. Run the program when the cursor is on the
bottom line and note the line of inverse spaces below the flashing message. Scrolling causes
this undesired effect. It would be wiser, therefore, to restrict a flashing message to a screen
location that does not cause scrolling. In practice, a more elegant method of flashing 80-column
characters is to do it temporarily. Consider this second one-liner:

1 0 HOME: VTAB 10: HTAB 1: INVERSE : PRINT " IMPORTANT": NORMAL:
POKE 49166,0: FOR I=l TO 1000: NEXT: POKE 49167,0

The "IMPORTANT' message is printed inversely and immediately converted to flashing by
writing to location 49166. A short timing loop is executed. Restoring the alternate character set
stops the flashing and you end up with a neat method of attracting attention. Any other inverse
"upper-case" characters on the screen also will flash momentarily, and inverse "lower-case"
characters temporarily will be converted to "special" characters.

28

TABLE 1: Character Sets of the Apple Ile

40-Column 80-Column
Primary Alternate Primary Alternate

$00-$1F Uppercase Uppercase
Inverse Inverse Control Control

$20-$3F Special Special Special Special
Inverse Inverse Inverse Inverse

$40-$5F Uppercase Uppercase Uppercase Uppercase
Flash Inverse Flash Inverse

$60-$7F Special Lowercase Special Lowercase
Flash Inverse Flash Inverse

$80-$9F Control Control Control Control

$AO-$BF Special Special Special Special
Normal Normal Normal Normal

$CO-$DF Uppercase Uppercase Uppercase Uppercase
Normal Normal Normal Normal

$EO-$FF Lowercase Lowercase Lowercase Lowercase
Normal Normal Normal Normal

Special: S P ! " # $ % & ' () * + , - . I 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
Uppercase: @ABC DEF G HI J KL MN 0 P QR ST U V W X Y Z [\] /\ _
Lowercase: a b c d e f g h i j k 1 m n o p q r s tu v w x y z { I } - DEL

LISTING 7: CHARACTER SET DEMO

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270

REM ***
REM * *
REM * Apple I le CHARACTER SET DEMO : Di spl ays alternate and *
REM *pri mary character sets with 80 column card on and off*
REM*
REM *
REM *

by Sandy Mossberg
Copyright (C) 1983 by MicroSPARC , Inc.

*
*
*

REM *** **********
REM Machine language s ubrout ines and equates :
REM 768 COUTSP LOA $06
REM 770 JSR $FDED
REM 773 OUTSP JMP $DB57
REM 776 PRHEX LOA $07

;print char. in $06 (ASCII)
; print space

REM 778 JMP $FDE3 ; print low nybble in $07
FOR I = 768 TO 780: READ N: POKE I , N: NEXT I
DATA 165,6, 32 , 237 , 253 , 76 , 87 , 219 , 165 , 7,76 , 227 , 253

CHAR 6:NYBBLE = 7:COUTSP = 768:0UTSP = 773:PRHEX 776
REM Soft switch equates :

29

280 REM ALTCHARSET: OFF (FALT) 49166 ($COOE)
290 REM ON (NALT) = 49167 ($COOF)
300 REM READ (RALT) 49182 ($C01E)
310 REM PAGE2: OFF (FPG2) 49236 ($COS4)
320 REM ON (NPG2) 49237 ($COSS)
330 FALT 49166 : NALT = 49167:RALT = 49182 : FPG2 = 49236:NPG2

49237: REM
340 REM Read character set and print it on top line.
3SO HOME : IF PEEK (RALT) > 128 THEN GOSUB 710: GOTO 380
360 GOSUB 720: REM
370 REM Print column headers ("ones place") .
380 PRINT : HTAB S: FOR I= 0 TO lS: POKE NYBBLE,I : CALL PRHEX :

CALL OUTSP : NEXT I: PRINT : PRINT : REM
390 REM Print row headers ("tens place").
400 FOR I= 0 TO 2SS STEP 16: POKE NYBBLE,I / 16 : CALL PRHEX:

POKE NYBBLE , O: CALL PRHEX: REM
410 REM Determine 80 column card (slot 3) activity by checking
420 REM for $C3 (19S) in high order byte of output hook

(SS, $37)
430 REM or true output handler of DOS (43604,$AAS4).
440 IF PEEK (SS) < > 19S AND PEEK (43604) < > 19S THEN S20
4SO REM 80 column card active . Non-control characters print

normally.
460 IF I < > 0 AND I < > 16 AND I < > 128 AND I < > 144

THEN S30: REM
470 REM 80 column card active. Convert positive ASCII control
480 REM characters to normal characters and mark them .
490 IF I = 0 OR I = 16 THEN PRINT "->";: FOR J = I TO I + lS :

POKE CHAR, J + 192: GOTO S40: REM
SOO REM 80 column card active or inactive . Convert neg. ASCII
SlO REM control characters to normal characters and mark them .
S20 IF I = 128 OR I = 144 THEN PRINT "->";: FOR J = I TO I +

lS: POKE CHAR,J + 64: GOTO S40
S30 PRINT " ";: FOR J = I TO I + lS: POKE CHAR,J
540 CALL COUTSP : NEXT J: PRINT : NEXT I : REM
S50 REM Control line - switch character sets or end.
S60 VTAB 23: PRINT "SWITCH or END (ANY KEY/E)? 11

;

570 VTAB 23: HTAB 28: GET A$: REM
580 REM End it all.
S90 IF A$ = "E" THEN END : REM
600 REM Switch . Read 80 column card activity.
610 IF PEEK (5S) = 195 OR PEEK (43604) = 195 THEN 690 : REM
620 REM Read first screen character on text page 1. If "A" then
630 REM switch to primary set ; if "P'', switch to secondary set.
640 IF CHR$ (PEEK (1024) - 128) = "A" THEN POKE FALT,0: POKE

FPG2,0: GOSUB 720: GOTO S70
650 POKE FPG2,0: POKE NALT,0 : GOSUB 710 : GOTO 570 : REM
660 REM If 80 column card active , to read first char . on text
670 REM page 1 (even numbered column), turn auxiliary memory
680 REM ("PAGE2") on. Truth is stranger t han fiction !
690 POKE NPG2 , 0: GOTO 640 : REM
700 REM Subroutines to print title on top line .
710 PRINT VTAB 1 : PRINT "ALTERNATE CHARACTER SET :": RETURN
720 PRINT : VTAB 1: PRINT "PRIMARY CHARACTER SET : 11

• RETURN

30

Applesoft Tricks
Six short tricks provide solutions to common Applesoft programming problems without
resorting to machine language routines.

by Craig Peterson

As powerful as Applesoft BASIC is, once in a while there are things that you would like it
to do that it doesn't. One example is permitting an INPUT command that allows commas as
part of a person's name (without throwing part of your input away and giving you and EXTRA
IGNORED message).

Many times the solutions to dilemmas like these are found in machine language programs.
But many of you are unfamiliar with machine language, and often these routines conflict with
one another because they occupy the same area of memory. Hex page $300 of the Apple's
memory has been used this way so much that I'm surprised the memory chips don't wear out.
It would be much simpler to program some of these routines in Applesoft and that's what I've
done. A word of caution: If you plan to use a compiler on your programs, some of these
methods may not work. In particular, those that use locations 131and132 and those that revise
the Applesoft pointers.

INPUT ANYTHING TRICK
One of the most common difficulties in Applesoft is allowing a user input that includes

commas, colons, quotation marks and the like. The standard INPUT statement won't permit
them. Instead, you get just that part of the input up to the first special character and then an
EXTRA IGNORED message. Using some of the above characters in your input, try typing in
and running the following lines:

100 PRINT "?";: GOSUB 130
110 PRINT IN$
120 END
130 CALL 54572: FOR B = 512 TO 768: IF PEEK (B) <> 0 THEN NEXT
1 40 IN$="" :AD = VAL (IN$) + PEEK (1 31) + 256 * PEEK (132) : POKE

AD ,B - 512 : POKE AD + 1,0: POKE AD + 2,2:IN$ =MID$ (IN$,
1) : B = 768 : NEXT : RETURN

Lines 130 and 140 comprise an input subroutine that will gather all the characters you
type in (except for the Apple's <ESC> key cursor moves) and place them into IN$. Unlike
GET statement input routines you may have seen before, this subroutine will create absolutely
no string garbage while doing its work. It can be used for disk input as well as keyboard input.
And it's almost as fast as the standard INPUT command because it actually uses part of
Applesoft to gather the input.

How INPUT Works
The two secrets to the operation of this subroutine are the CALL statement and memory

locations 131 and 132. Location 54572 is ROM Applesoft's machine language subroutine that
accepts the keyboard or DOS input and puts it in the input buffer. A maximum of 239
characters are allowed, just like the normal Applesoft INPUT command.

After the FOR-NEXT loop determines the length of the input, line 140 .finds the Applesoft
pointers to the variable IN$, and stuffs the input line length and the input buffer address into
these pointers. This is where memory locations 131 and 132 come in. If manipulated properly,
(as in the two statements in line 140) they will contain the address of the string variable's
pointers in memory.

31

After the input buffer pointers are placed into IN$, the string is relocated into main memory
with the MID$ statement. Finally, the dangling FOR-NEXT loop is completed by setting the
index B to its finishing value so the NEXT will be satisfied.

THE DO-WHILE TRICK
One criticism directed at the BASIC language is that it does not allow such structured

programming statements as DO-WHILE. Instead, BASIC program lines often use a lot of
GOTOs to accomplish the same thing, and in long programs these GOTOs can be quite slow in
execution. Actually, Applesoft does have a type of DO-WHILE as shown in the following
program:

200 J = 0
21 0 FOR I = 0 TO l:J = J +l:I = A(J) = B: NEXT

How DO-WHILE Works
The above example uses a capability of Applesoft called Boolean (or logical) algebra. You

use it all the time when you program IF statements. Essentially, it is the mathematics of true
and false.

If an expression evaluates as true, then it is given a value of 1. If the expression evaluates as
false, it is given a value of 0. The results of such expressions, which can be as complicated as
you require, can be placed into a numeric variable. For example, if A$ is the same as B$, the
statement I = A$ = B$ places a 1 into I. If they are not equal, a 0 is placed into I. Any valid
relational expression can be placed on the right-hand side of the first equal sign, and the I is
given a value according to the truth of the statement.

In line 210 above, the array A(J) is searched for the value in B, which is known to exist
somewhere in the array. As long as A(J) is not equal to B, the expression will evaluate to be 0,
which will be placed into I. Since I will not have reached its terminating value of 1, the NEXT
will continue the loop.

As soon as A(J) = B, this expression will evaluate to be a 1 which will be placed into I. The
NEXT will then see that I has reached its final value and will drop out of the loop.

THE ARRAY CLEAR TRICK
Applesoft BASIC allows something that many non-BASIC languages do not - the

dynamic allocation of arrays. The capability to dimension arrays to a variable number of
elements right in the middle of running programs can give certain programs a great deal of
flexibility. But once the array has been dimensioned, it cannot normally be redimensioned. If it
were possible to delete an existing array, Applesoft would then allow you to redimension that
array to a different number of elements. By manipulating one of Applesoft's pointers, it is
possible to do this.

The simplest approach to deleting arrays is to delete all the arrays. If you have only one
array in your program, or you can afford to delete all of the current arrays, then the following
line will accomplish this:

300 POKE 109, PEEK (107) : POKE 110, PEEK (108)

How Array Clear Works
Memory locations 107 and 108 are used by Applesoft as a pointer to the beginning of the

array storage. Memory locations 109 and 110 are used as a pointer to the top end of variable
storage. By placing 107,108 into 109, 110, the array storage is totally deleted, allowing you to
redimension any and all arrays without a peep from Applesoft.

It is usually a good idea to immediately follow the above statement with an X = FRE(O)
statement to force Applesoft to do its string house cleaning. Since all the arrays have been
deleted, the string garbage will normally be swept clean in the blink of an eye. Incidentally, this

32

technique is also a very quick method of reinitializing all the elements of an array to O and it is
much faster than a FOR-NEXT loop. Just delete the array and then redimension it to the same
size.

SELECTIVE CLEARING
If you want to delete only one or two arrays use the technique shown in the following lines:

310 DIM Al(100) ,A2 (200) ,A3(300)
320 AD= 0 * A2(0) +PEEK 131) + 256 *PEEK (132) - 7: POKE

110,AD/256: POKE 109, AD - 256 * PEEK (110)

Line 320 will delete array A2(*) and all arrays that were dimensioned after it in the
program. In the above example that would include array A3(*). Array A 1 (*) is left intact.

How Selective Clear Works
The minus 7 term in the first statement of line 320 is a function of the number of

dimensions in the A2(*) array. This minus term should be 5 plus 2 times the number of
dimensions.

Since A2(*) was a one-dimensional array, this term was 5 + 2 *1or7. If the array had been
a two-dimensional array (like A2(*, *)) then the term would have been 5 + 2 * 2 or 9.

For a string array, the beginning of line 320 should be changed as follows:

320 AD= 0 *VAL (A2 %(0)) + ...

By dimensioning last those arrays you wish to delete, you can selectively redimension them
according to the needs of your program.

Selective deletion of arrays is accomplished in the same way as the total array deletion,
except that instead of placing the beginning array storage into the end-of-variables pointer, we
place the beginning of the specified array there. Therefore, that array and all arrays stored
above it are deleted. Our old friends, memory locations 131 and 132 help us find AD, the
address of the beginning of the array.

THE LOWERCASE TRICK
Applesoft has a built-in talent for lowercase letters. Assuming you have a printer plugged

into slot 1, try running the following line:

400 PRINT CHR$(4); "PR#l " : PRINT: PRINT "L"; :POKE 243,32 : PRINT
"OWER ";:NORMAL: PRINT "C";: POKE 243,32 : PRINT "ASE":
NORMAL: PRINT CHR$(4);"PR#0"

How Lowercase Works
Memory location 243 is a special flag that tells Applesoft if lowercase conversion is to be

performed on the output of alphabetical and a few other special characters. POKEing a 32 into
this location causes subsequent characters to be converted from uppercase to lowercase.
POKEing a 0 into this location or using the NORMAL command cancels the conversion.

Depending on the printer card you use, you may have noticed some strange characters
printed onto your screen. This would happen if your Apple doesn't have a lowercase character
set in its character generator. If you have installed a lowercase chip in your Apple, or have an
Apple Ile, Ile or IIGS, you'll see lowercase characters printed on the screen. Although it is
somewhat involved to print a mixture of uppercase and lowercase characters, there are
situations in which the technique shown in line 400 above can be simpler than other methods
for achieving lowercase output.

33

THE ON-GOTO TRICK
IF-THEN and IF-THEN GOTO statements are probably the most familiar methods used to

conditionally change program flow by jumping to new line numbers. When used in this way,
the IF statement usually becomes the only statement on the line because if the condition is
satisfied, the jump is taken; if it's not satisfied, the rest of the line is ignored. Another statement
that can provide the same flow control and also give you greater flexibility is the ON-GOTO
statement. Here's an example:

500 ON A= B + 1 GOTO 800: PRINT MSG$: ON A >= C GOTO 850: PRINT
M2$

How ON-GOTO Works
ON-GOTO usually selects from a list of line numbers to which to jump based on the

expression that follows the ON keyword. You may also place a relational expression after the
ON. This expression will evaluate to either a one or zero, depending on whether the expression
is true or false.

If the expression is true, the one will select the first (and only) line number to which to
jump. If it's false, the zero will cause the program flow to fall through to the next statement on
the same line. In this way, a program flow decision can be made on a line yet you can still use
the remainder of the line.

THE NUMBERS FILE TRICK
A disappointing feature of DOS 3. is the speed at which text file information can be written

to or read from a disk. Something as simple as saving a large array of numbers can be time
consuming. Machine language subroutines are available to help alleviate the problem by
converting text to binary numbers. But it's much nicer to do it with a somewhat standard
Applesoft/DOS statement:

600 DIM ARRAY(7,8)
610 AD = 0 * ARRAY(0,0) + PEEK (131) + 256 * PEEK (132) : PRINT

D$;"BSAVE ARRAY,A";AD;",L"; 5 * 8 * 9
620 AD = 0 * ARRAY(0,0) + PEEK (131) + 256 * PEEK (132): PRINT

D$;"BLOAD ARRAY, A" ;AD

The setup of lines 610 and 620 is very similar to that used in previous examples. You
probably recognize 131,132 locating the beginning of the array variables. However, let me
explain the 5 * 8 * 9 term in line 610. The five in this product is used because the array is a
floating point array whose numbers take up five bytes of storage space in memory. If this were
an integer array(%), this number would be a two instead of a five, because integer array
numbers take only two bytes of memory.

The eight and the nine represent the number of elements in each dimension of the array,
which, because of the zeroth element, is always one more than the dimension numbers in the
DIM statement.

To use line 620, the array must have been dimensioned to the same size as the one that is
being BLOADed from the disk. Otherwise, the data overflows your dimensioned array space.

Note that this method cannot be used to store and retrieve string arrays from the disk. It
only works with floating point or integer numeric arrays.

How Numbers File Works
In line 610 above, the numeric data is saved as a binary file instead of a text file because

binary files are saved and loaded much faster than text files. The actual section of memory in
which the array numbers are stored is saved onto the disk.

34

Text file PRINT and INPUT statements are extremely slow to execute. You should find that
the method used in lines 610 and 620 is four to five faster on the average than using a
normally written or read text file.

An additional advantage of using the above technique is that data usually talces less storage
space on the disk. A typical decimal fraction expressed in scientific notation can talce as many
as 15 bytes of disk storage. If you used the above method, this floating point number would
talce only five bytes. You can save about 50% in disk storage space, depending on the nature of
the numbers in the array.

35

DOS Catalog Dater
Make the date your file was last updated part of your program's file name with this easy
modification to DOS.

by ArtMena

One of the most convenient features of the Apple II Pascal operating system is that is
records the date on which a disk file was written. The date is a part of that file's directory entry
and enables you to keep track of when files were last updated. Large timesharing computer
systems also perform this function, although for archiving purposes rather than for
programmer convenience.

It is possible to modify DOS to automatically add the date as part of the file name. But to
understand how to do this, we need to explore how DOS saves a file to a disk.

DOS FORMATTED DISKS
DOS 3.3 tracks are numbered from $0-$22 (0-34). Tracks $0-$2 are normally reserved

for DOS. Track $11 (17) contains the Volume Table of Contents (VTOC) and the directory
which is where the file names are stored. When you do a CATALOG, DOS reads the directory
from track $11 and prints out information pertaining to the active (not deleted) files on the disk.
The VTOC occupies track $11 sector $0 ($1 1/$0). The directory occupies the rest of the track
- sectors $1-$F.

Figure 2 shows the format of the directory sectors. Each directory sector can hold 7
directory entries for a maximum of 105 files per disk.

FIGURE 2: Directory Sector Format

Byte
$0
1
2

3-A
B-2D
2E-50
51-73
74-96
97-B9

BA-DC
DD-FF

Descrip tion
Not used
Track where the next directory sector is found ($11)
Sector where the next directory sector is found
Not used
Directory entry for File 1
Directory entry for File 2
Directory entry for File 3
Directory entry for File 4
Directory entry for File 5
Directory entry for File 6
Directory entry for File 7

The format of each of the directory entries is shown in Figure 3. The file name is
contained in $3-$20, for a maximum of $1E (30) characters in the file name.

36

FIGURE 3: Directory Entry Format

Relative
Byte

$0
1
2

3-20
21-22

Description

Track number of the files track/sector list
Sector number of the files track/sector list
File type
File name
Numbers of sectors occupied by the file

However, if the last character in a file name is not a blank, certain commercial DOS utility
programs will treat it as a deleted file, and may cause the file to disappear. Thus we actually
have only 29 characters to use for the file name. If we add the date in the format M1v1/DD/YY
then we have 21 characters left for the file name.

CATALOG DATER PROGRAM
The scheme for adding the date to the file name is quite simple. When you SA VE, BSA VE

or OPEN a file, DOS searches the directory for the file name you specify by reading each
directory sector, starting with $F, into a buffer located at $B4BB DOS first searches sector $F
for the file name. If it doesn't find the name, DOS reads in sector $E, then $D, $C and so on.
DOS searches until it finds the file name or it reaches the end of the directory.

If DOS finds the file name, it saves an index pointing to the file's directory entry. At this
point, my program jumps to a subroutine I call CA IDA TE and copies the date from location
DATE ($BCDF) to the last eight characters of the file name in the directory sector buffer. Then
it calls a routine to write the directory sector back out to the disk.

When DOS does not find the file name in the directory, it copies the file name following the
SA VE, BSA VE or OPEN command to the first available directory entry. At that point the
program jumps to the routine to copy the date to the file name and write the directory sector to
the disk.

A search of DOS reveals two locations where we must insert a JSR CA IDA TE command.
The first is $B206 where DOS successfully finds the file name in the directory. The second
location, $B22B, is for the case where DOS does not find the file name.

Since I don't think that changes to DOS should be permanent, I put the Catalog Dater
routine in place of the INIT function. This way, you cannot initialize a new disk with the
Catalog Dater routine incorporated into DOS. The routine will be poked into memory
immediately after you boot up DOS using the Hello program. Another reason is that DOS is
fairly compact, and there are few empty spaces in which to insert a new subroutine. By
disabling INIT, there is plenty of space for CA IDA TE and other routines.

HOW IT WORKS
The first thing the catalog date program (Listing 8) does is check for a SA VE, BSA VE or

OPEN command. Since these are the only DOS commands that will alter the contents of a file,
the file date will be changed only if the file itself has been changed.

If DOS is performing one of these commands, the program next checks to see if the file is
locked by checking bit seven of the file type (see Figure 3). It bit seven is one (i.e., the file
type is minus), the file is locked and the program does not change the date. If the file is not
locked, the date is transferred from location DA TE ($BCDF) to the last nine characters of the
file name which is located in the directory sector buffer.

This sector is then written to the disk, and the program is finished. Note that the date will be
copied to the file name for an OPEN command so that a file's date will be updated for both
OPEN, WRITE and OPEN,READ commands. I did this for simplicity, since DOS does not

37

search the directory for a READ or WRITE conunand. You may decide to add a test for a
READ command.

CATALOG DATE HELLO PROGRAM
The routine CATDA TE is poked into memory using a modified Applesoft Hello program.

The program to determine the date and poke it into memory starting at location DATE ($BCDF,
48351) is shown in Listings 9 and 10.

There are two versions. The first is for those who do not have a real-time clock/calendar
card installed. The routine will prompt you to type in the correct date, check it for validity and
poke it into memory.

The second version reads the month and day from a Mountain Computer Appleclock in slot
4. The year is added in line 580 and the date is poked into memory. If you have another clock
card, you can easily modify this program to read the date from it.

Don't worry about the lowercase characters, just type them in in uppercase. Once
CATDATE is poked into memory, it will remain there as long as DOS is not altered or until the
Apple is turned off. So if your programming extends past midnight, you must either reboot or
rerun Hello to change the date.

21-CHARACTER NAMES
There is one additional change to DOS that you must make in order to use CATDATE.

Since the file names are now 21 characters long, you must tell DOS to limit its search to 21
characters. This is done by poking $15 (21) into two locations: $B203 (45608) and $B228
(45571).

However, this brings up a potential problem. If you incorporate CA IDA TE into DOS and
then save the new Hello program to disk, it will have the date as part of the file name. Now,
the next time you boot the disk, the unmodified DOS will be loaded into memory and will
search for the Hello program. Unfortunately, it will not find a file named Hello, because it is
searching for a 30-character file name. Our new Hello program file name has the date in
characters 22-29. In order to avoid this problem you can do one of two things. You can either
save the Hello program using only unmodified DOS (i.e., CA TDA TE not installed).

Alternately, you can change the default file name length permanently. To do this, change
bytes $03 and $28 on track/sector $02/$01, to $15 (21). Use a program that will read and write
individual disk sectors, such as Disk Zap (Nibble Vol. 4/No. 3), to read, edit and write to the
disk sector. After this modification, DOS will always look for 21 characters in the file name
and ignore any other characters.

LISTING 8: CATALOG.DATER

38

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

CATALOG.DATER

BY ARTHUR L. MENA
COPYRIGHT (C) 1982
BY MICROSPARC, INC .
CONCORD , MA 01742

This routine replaces the INIT Function

These JSR ' s must be added to DOS to enable
CATDATE:

B206: JSR $AE8F

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
7 0
71
72

AE8E

AE8F
AE92
AE94
AE96
AE98
AE9A
AE9C
AE9E
AEAO

AEA2
AEAS
AEA8

00

AD SF AA
C9 04
FO oc
C9 30
FO 08
C9 lA
FO 04
C9 00
DO 17

AE 9C B3
BD ca B4
30 OF

B22B: JSR $AE8F

Also the file name length must be reduced to $15

B203:15
B228:15

Decimal locations

Label HEX DEC

START $AE8E 44686
CATDATE $AE8F 4468 7
DATE $BCDF 48351
END $AEBC 44732

Equates

CMDINDX EQU $AASF
WRTDIRSC EQU $B037
DIRINDX EQU $B39C
TS TRACK EQU $B4C6
FILTYP EQU $B4C8
DATE EQU $BCDF

ORG $AE8E

Kill INIT function

START DFC $00

Determine if this is a SAVE,
command.

CATDATE LDA CMDINDX

BSAVE,

CMP #$04 ;SAVE Command

C2

BEQ C2
CMP #48
BEQ C2
CMP #26
BEQ C2
CMP #00
BNE C3

Check if file locked

LDX DIRINDX
LDA FILTYP,X

;BSAVE

;OPEN

;OTHER

BMI C3 ;Yes

or OPEN

Transfer the date from the location DATE to the
directory sector buffer.

The date is stored backwards as follows:
DATE

0123456789
" RY/DD/MM"

39

73 II 28/02/80 " for example
74
75 AEAA AO 08 LDY #8
76 AEAC B9 DF BC Cl LDA DATE,Y
77 AEAF 9D DE B4 STA TSTRACK+24,X
78 AEB2 EB INX
79 AEB3 88 DEY
80 AEB4 10 F6 BPL Cl
81
82 Save Directory sector
83
84 AEB6 20 37 BO JSR WRTDIRSC
85
86 Reset X and return
87
88 AEB9 AE 9C B3 C3 LDX DIRINDX
89 AEBC 60 RTS

000 ERRORS

AEBE HEX START OF OBJECT
AEBC HEX END OF OBJECT
002F HEX LENGTH OF OBJECT
95A5 HEX END OF SYMBOLS

LISTING 9: CAT.DATE.NOCLOCK

REM **********************
REM * CAT.DATE.NOCLOCK *
REM * BY ARTHUR L. MENA *
REM * COPYRIGHT (C) 1983 *
REM * BY MICROSPARC, INC *
REM * CONCORD , MA. 01 742 *
REM **********************

REM
REM
REM This version of the program
REM is for those who do not have
REM a clock/calendar card in
REM their Apple
REM
REM
REM Poke CAT.DATE into memory
REM

to disk

is 08/20/82

10
11
12
13
14
15
16
120
130
140
150
160
170
180
220
230
240
250
260
270
280
290
300
310
320
330
340

B$ = CHR$ (7) + CHR$ (7) + CHR$ (7) : REM 3 Bells
RESTORE

40

FOR I = 44686 TO 44732
READ D: POKE I , D
NEXT I
REM
REM Poke JSR CAT.DATE into memory
REM
POKE 45611,32: POKE 45612,143: POKE 45613 , 174
POKE 45574 , 32 : POKE 45575,143: POKE 45576 , 174

350
360
370
380
390
400
410

420
430
440
450
4 60
470
480
490
500
510
520
530

540
550

560
565

570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750

REM
REM Change file name length to 21
REM
POKE 45608,21: POKE 45571,21
REM
REM
DATA 0,173,95,170,201,4,240,12, 201, 48 , 240 , 8 , 201 , 26 , 240 , 4 ,
201,0,208,23,174,156,179,189,200,1 80 , 48 ,15 , 160 , 8 , 185 , 223 , 1 8
8,157,222,180,232,136,16,246
DATA 32,55,176,174,156,179,96
REM
REM
REM Input date from keyboard
REM
TEXT : HOME
VTAB 5: HTAB 10: PRINT " CAT.DATE INSTALLED": PRINT
PRINT " INPUT THE CURRENT DATE": PRINT
PRINT
REM
VTAB 10: INPUT " WHAT
IF VAL (MN$) < 1 OR
INCORRECT": GOTO 520
VTAB 12: INPUT II WHAT
IF VAL (DA$) < 1 OR
INCORRECT": GOTO 540

IS THE CURRENT MONTH (1-1 2) ? "; MN$
VAL (MN$) > 12 THEN PRINT B$; 11 MONTH

IS THE CURRENT DAY (1-31) ? "; DA$
VAL (DA$) > 32 THEN PRINT B$; " DAY

VTAB 14: INPUT 11 WHAT IS THE CURRENT YEAR (00 - 99) ? "; YR$
IF VAL (YR$) < 0 OR VAL (YR$) > 99 THEN PRINT B$; " YEAR
INCORRECT": GOTO 560
REM

DA$ STR$ (VAL (DA$))
IF VAL (DA$) < 10 THEN DA$ " 0 " + DA$

MN$= STR$ (VAL (MN$))
IF VAL (MN$) < 10 THEN MN$ " 0 " + MN$
REM

DT = 48351: REM
DT$ = MN$ + "/"

PRINT : PRINT
PRINT DT$" HAS
REM

$BCDF
+ DA$ + " / " + YR$ + II II

BEEN INSTALLED AS THE

REM Poke date into memory
REM

J = 8
FOR I = 0 TO LEN (DT$) - 1

CURRENT DATE "

POKE DT + J, ASC (MID$ (DT$, I + 1 , 1)) + 128
J = J - 1

NEXT I
END

41

LISTING 10: CAT.DATE.CLOCK

10
11
12
13
14
15
16
120
130
140
150
160
170
180
190
20 0
210
220
230
270
280
290
300
31 0
320
330
340
350
360
370
380
390
400
410
420
430
440
450

4 60
470
480
490
500
510
520
530
540
550
560

42

REM
REM
REM
REM
REM
REM
REM

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

* CAT.DATE.CLOCK *
* BY ARTHUR L. MENA *
* COPYRIGHT (C) 1983 *
* BY MICROSPARC, INC *
* CONCORD , MA. 01742 *

Apple clock version

This version of the CATALOG
DATE program assumes you have
a Mountain Computer Appleclock
in slot #4. This program can
be easily modified to read the
date from other clock cards.
Consult the clock manuals for
details .

REM Poke CATDATE into memory
REM
RESTORE
FOR I = 44686 TO 44732
READ D: POKE I,D
NEXT I
TEXT : HOME : PRINT : PRINT " CAT.DATE INSTALLED"
REM
REM Poke JSR CATDATE into memory
REM
POKE 45611,32: POKE 45612,143: POKE 45613, 174
POKE 45574,32: POKE 45575 ,1 43: POKE 45576, 174
REM
REM Change file name length to 21
REM
POKE 45608,21: POKE 45571,21
REM
DATA 0,173,95 ,170,201,4,240,12 , 201,48 ,2 40,8, 201,2 6,2 40,4,
201 ,0, 208 ,23,174,156,179,189, 200 ,180 ,48,15,160,8,185 , 223,18
8 ,157,222,180,232,136,16,246
DATA 32 ,55,176,174, 156,179,96
REM
REM
REM
REM

Read date from Mountain Computer
Apple clock in slot four

D$ = CHR$ (4)
PRINT D$"IN#4 "
PRINT D$"PR#4"
INPUT " ";T$
PRINT D$ "IN#0 "
PRINT D$"PR#0"

570 PRINT
580 YR$ = "/87 II

590 DT$ = LEFT$ (T$,5) + YR$
600 DT = 48351: REM $BCDF
610 PRINT : PRINT : PRINT DT$" HAS BEEN INSTALLED AS THE

CURRENT DATE"
620 REM
630 REM Poke date into memory
640 REM
650 J = 8
660 FOR I = 0 TO LEN (DT$) - 1
670 POKE DT + J, ASC (MID$ (DT$,I + 1,1)) + 128
680 J = J - 1
690 NEXT I
700 END

43

DOS Error Message and Command
Changer
This short Applesoft routine lets you modify DOS 3 .3 commands ad error messages to
personalize your programs.

by Donald Miller, M.D.

Rewritten error messages are one way to personalize your Apple and DOS. Changing error
messages actually serves little purpose, but WHAT PROGRAM? or DOS BOOBOO may be
easier to swallow than FILE NOT FOUND or SYNTAX ERROR. However, changing
commands, besides personalizing, can be used to protect your disks, especially by changing
the INIT, CATALOG and SA VE commands. (See Craig Crossman's article in Nibble
Vol.2/No.3 for an excellent discussion of this.)

USING COMMAND CHANGER
After you see the title page, the program asks if you want to change error messages or DOS

Commands. Each standard message or command is then displayed in the order it appears in the
current DOS. You are asked to change that message or to go to the next.

If a change is to be made, the new message can be typed in. The new error messages may
not be longer than the old ones although they can be shorter and include punctuation and
spaces. However, new commands must contain the same number of letters as the old ones, and
you cannot use spaces or punctuation. After the change is entered, there's an opportunity to
correct it; otherwise the change is POKEd into DOS and temporarily stored in RAM.

The changes only affect DOS commands; for example, the RUN command will only be
affected if it is used with a file name.

SAVING THE CHANGES
The program allows you to easily create two binary files by capturing the newly created

configurations in RAM. These binary files could then be added to your disks and the Hello
program of each could be mcxiified to BLOAD the files. As an alternative, after exiting the
program, a new disk could be initialized; this disk will contain your personalized messages
without any further modification.

ENTERING THE PROGRAM
To key in the program, type the program as shown in Listing 11 and save it to disk with

the command:

SA VE COMMAND.CHANGER

HOW IT WORKS
Lines 20-50 prompt you to change error messages or DOS commands. Lines SO and

90 specify the starting and the ending addresses, as well as the length of the commands and
error messages, respectively. Lines 100-110 PEEK the starting address and each successive
address of each message and store them as a concatenated string.

Line 120 checks to see if the character is a negative ASCII character (high bit set), the last
character of that message. This line also checks to see if it is the end of all the messages or
commands.

Lines 150-190 display the "PEEKed" message and ask for a new entry. Line 200 sets
up an inverse field and limits the number of characters to the length of the PEEKED message.
Line 210 positions the cursor.

44

Line 220 GETs each new character and creates another concatenated string. This method
allows punctuation to be used. If you press the <RETURN> key at this point, the display may
not look very good, but your error messages can be put on several lines instead of all on one.

Lines 230-240 allow corrections. Line 250 calculates the starting address, minus one,
of the current message. Lines 260-270 use MID$ to extract each character and in line 280
the ASCII code of each is POKEd into memory.

Line 300 makes the last character negative by adding 128 (setting the high bit) to the
ASCII code. Lines 320-380 print the options to save the new messages. A binary file to
capture the changes in RAM is created in line 400. Lines 440-500 are the title page.

TABLE 2: Addresses (48K)

Commands

Decimal 43140-43271
Hexadecimal $A884-$A907

Error Messages

43380-43581
$A974-$AA3D

LISTING 11: COMMAND.CHANGER

10 REM COMMAND.CHANGER
12 REM BY DONALD MILLER
13 REM COPYRIGHT (C) 1983
14 REM BY MICROSPARC INC
15 REM CONCORD, MA 01742
20 GOSUB 440: HOME : VTAB 12: PRINT "CHANGE ERROR CODES OR

COMMANDS ? (E / C) ";: GET N$
30 IF N$ = "E" THEN 90
40 IF N$ < > "C" THEN 20
50 IF N$ = "C" THEN AD = 43140:B = 43272:C = 133: PRINT N$:

VTAB 16: HTAB 1: INVERSE : PRINT "NO NUMBERS, PUNCTUATION
MARKS OR SPACES MAY BE USED WHILE CHANGING COMMANDS"

60 A = AD
70 NORMAL
80 FOR I = 1 TO 3500: NEXT : GOTO 100
90 AD= 43380:B = 43582:C = 202:A =AD
100 CHR = PEEK (A) :A = A + 1
110 B$ = CHR$ (CHR) :A$ = A$ + B$
120 IF CHR > 127 THEN GOSUB 140: IF A = B THEN 320
130 GOTO 100
140 HOME
150 VTAB 6:TB = (20 - (LEN (A$) / 2)): HTAB TB: INVERSE : POKE

33,40 - TB: POKE 32,TB - 1: PRINT A$: TEXT
155 VTAB 23: HTAB 10: NORMAL : PRINT "PRESS (ESC) TO QUIT":

INVERSE
160 VTAB 10: NORMAL : PRINT "IS THIS THE MESSAGE YOU WANT TO

CHANGE?": PRINT "(Y/ N) ";: GET AN$
170 IF ASC (AN$) = 27 THEN 420
180 IF AN$< > "Y" THEN A$ = "": RETURN
190 VTAB 16: HTAB 1: PRINT "ENTER->";
200 INVERSE :TB= (20 - (LEN (A$) / 2)): HTAB TB: FOR I 1 TO

LEN (A$) : PRINT II II; ; NEXT

45

210 VTAB 16: HTAB TB
220 FOR I = 1 TO LEN (A$): GET L$: IF ASC (L$) = 13 THEN 225
222 PRINT L$; :M$ = M$ + L$: GOTO 227
225 CALL - 868: PRINT L$; :M$ = M$ + L$: HTAB TB: FOR RE = 1 TO

(LEN (A$) - LEN (M$)): PRINT"";: NEXT : HTAB TB
227 NEXT
230 NORMAL : PRINT : PRINT : PRINT "ANY CORRECTIONS ? (Y/N) ";:

GET AN$
235 CV = PEEK (37)
240 IF AN$= "Y" AND CV= 17 THEN M$ = "" : HTAB 1: CALL - 868:

GOTO 190
245 IF AN$= "Y" AND CV> 17 THEN VTAB 16: HTAB TB: CALL

958:M$ = ""· GOTO 190
250 AC = A - LEN (M$) - 1
260 FOR I = 1 TO LEN (M$)
270 K$ = MID$ (M$,I,1)
280 POKE (AC+ I), ASC (K$)
290 NEXT
300 POKE AC + I - 1, ASC (K$) + 128
310 A$= "":M$ = "": RETURN
320 HOME : VTAB 6: PRINT "DO YOU WANT TO CREATE A BINARY FILE

TO SAVE THESE CHANGES ? "
330 PRINT
340 PRINT "(YOU CAN THEN <BLOAD B("N$")REWRITE> IN HELLO

PROGRAMS ALREADY ON DISK OR ->"
350 PRINT
360 PRINT "YOU CAN <INIT> A NEW DISK NOW AND THESE CHANGES WILL

BE PERMANENT)"
370 PRINT : PRINT "(Y/N) "; : GET AN$
380 IF AN$ < > "Y" THEN 420
390 PRINT
4 00 PRINT CHR$ (4) ; "BSA VE B ("N$") REWRITE, A "AD", L " C"
410 PRINT : PRINT "DONE": FOR I= 1 TO 2000: NEXT
420 PRINT : PRINT : PRINT "TRY AGAIN ? (Y1N) ";: GET AN$: IF

AN$= " Y" THEN A$ = "":M$ = "": GOTO 20
430 HOME : END
440 HOME : VTAB 6: HTAB 7: PRINT "PERSONALIZED DOS ERROR CODE"
450 VTAB 8: HTAB 18: PRINT "AND"
460 VTAB 10: HTAB 12: PRINT "COMMAND REWRITER"
470 VTAB 16: HTAB 18: PRINT "BY"
480 VTAB 18: HTAB 9: PRINT "DONALD W MILLER JR MD "
490 FOR I = 1 TO 3500: NEXT
500 RETURN

46

Practical Sort for Beginners
Add a simple selection sort routine to enhance your programs. A sample program shows how
simple it is.

by JoAnn Miner

How would you go about alphabetizing a list of words? You might start with this simple
routine:

1. Pick out the first (lowest) word and write it in the list.
2. Find the next word and write it in the list.
3. Repeat step 2 until all the words are in order.

This is the essence of a simple selection sort routine. It may not be the most efficient or
elegant method, but it is easy to understand and it works.

UNDERSTANDING THE FLOW
How can you put this into a program that does something useful? It can be used as a

subroutine in a larger program to handle files for your library or record collection. Or it can be
used where an ordered list is needed, whether it is alphabetic or numeric.

The algorithm works through the array just as you might check through a list It looks for
the first element, then the second, and so on until the complete array has been checked and put
into order.

The names are stored in array A$(N) with N elements. (You could just as easily use
numeric data stored in a floating point array A(N).) Start with a FOR-NEXT loop with index I
to step through the array one.element at a time until the second to last element. This loop sets
the elements in their proper order in the new array.

A second FOR-NEXT loop with index J will start at 1=1+1 and step through to the end of
the array. this loop searches through the remaining elements of the array to find the next in
order. If A$(1) is less than A$(J), the elements are in proper order so the program proceeds to
the next J. If this test fails it then exchanges these two elements and continues.

Follow these steps to make the exchange:

1. Set a temporary variable, T$=A$(1)
2. Let A$(1)=A$(J)
3. Let A$(J)= T$

By exchanging the positions of the array elements in this way, only one array is needed. This
can be a useful feature when you sort long arrays.

Stepping Through the Array
The J loop steps through the array one element at a time until it reaches the last element.

Then I is increased by one to the next element of the array. This process continues - J
indexing inside the I loop- until I reaches the second to last element of the array. At this point,
all the elements have been compared and put into proper position in the list

A SAMPLE PROGRAM
Listing 12 is a sample program that alphabetizes an array of five words. The size of the

array can easily be increased by increasing the dimension in line 20. The upper limits of the
FOR-NEXT loops in lines 35, 110, 120 and 210 would also need to be increased.

47

HOW IT WORKS
Lines 30-50 are a loop to let you enter the list into memory. The sort routine actually

starts in line 100 with the FOR-NEXT loop to index through I from the first to the second to
last elements of the array. In line 120, a second FOR-NEXT loop is set to index J inside the
first loop. J ends on the last element of the array. In this way, the I loop steps the search
through the array one element at a time, and the J loop picks elements from the remaining
portion of the array to compare with it

A$(I) is compared to A$(J) in line 130. If the Ith element is less than or equal to the Jth
element, then these are in order and the next element will be compared. If this test fails, these
two elements will be exchanged and the search continues to the next Jth element In this way,
the lower elements are selected and moved to their proper location as the Ith element of A$(I).
Lines 200-240 print out the sorted array and the job is finished.

The sample list of names and printout of the steps though the sort show how this technique
works. The program picks the first element of the array and puts it into the first position. On
each pass through the remaining elements, the next element is picked. This continues until all
elements have been checked.

ON A CLEAR DAY YOU CAN SORT FOREVER
The selection sort is straightforward, but is not very efficient It does not take advantage of

any alphabetic order that might be in the original array. For an array of n elements, the I loop
will be repeated n-1 times. For each step ifl, the J loop will be repeated n-(I+l) times. For
each repetition of the J loop, a comparison will be made. This means that for any sort the
number of comparisons is:

n+(n-l)+(n-2)+ +l=(n*(n+l))/2

Therefore, for a list of 1000 names, 500,000 comparisons must be made.
This sort method is slow because it doesn't use any information from the list itself. If only

the last element of the array is out of place, it does just as much work as if the order is totally
random. There are other methods that will work faster in some situations. If you find that the
selection sort is just too slow, investigate more advanced methods such as the bubble sort,
Quicksort or the Shell-Metzner sort.

LISTING 12: SAMPLE.SORT

10 REM SAMPLE SELECTION SORT PROGRAM
15 REM LONGER ARRAYS CAN EASILY BE HANDLED
20 DIM A$(5)
30 REM INPUT THE ARRAY
35 FOR I = 1 TO 5
40 INPUT "ENTER A NAME? ";A$(I)
50 NEXT I
100 REM THE SORT ROUTINE
110 FOR I = 1 TO 4
120 FOR J = I + 1 TO 5
130 IF A$(I) < = A$(J) GOTO 160
135 REM EXCHANGE ELEMENTS
140 T$ = A$(I)
145 A$ (I) A$ (J)
150 A$(J) T$
160 NEXT J
170 NEXT I

48

200 REM PRINT OUT THE ARRAY IN ORDER
210 FOR I = 1 TO 5
220 PRINT I,A$(I)
230 NEXT I
240 PRINT : PRINT "THE SORT IS NOW COMPLETE"
999 END

49

Apple Slot Finder
Set up your programs so tha.t they automatically identify which peripherals are in which slots.
The program can then select the correct slot without further prompts.

by Steven Weyhrich

Apple Slot Finder is a modification of CONFIG, a program from in the October 1979 issue
of CONTACT, the Apple User's Group newsletter. CONFIG checks the Apple's peripheral
slots to determine what devices are plugged into them. Recently, I had been working on a
program that I wanted to run on Apples with different printer and slot configurations. I wanted
the program to automatically select the slot to which the printer was connected.

Slot Finder will identify the Apple Silentype printer card, the Apple Serial Interface card, the
Apple Disk II Controller card and Hayes Micromodem II card. For those with an Apple Ill
running in Apple II emulation mode, it will also identify the Emulation Communications card
and the Emulation Serial Interface card.

EMPTY SLOTS
A PR#s (wheres is slot 1-7) to an empty slot causes the computer to hang until the

<RESET> key is pressed. An IN#s to an empty slot gets you into the Monitor. The Apple tries
to redirect its output hooks (with PR#s) or its input hooks (with a IN#s) to the program that
starts at memory address $Cs00. If no peripheral card is plugged in, there is no ROM or RAM
at the memory location and the computer crashes. To avoid this, it is useful to know which
slots are empty. One way to do this is to have the program execute some lines like:

100 INPUT "WHICH SLOT FOR PRINTER?";SL
110 PRINT CHR$(4);"PR# "SL

This requires the user to know to which slot the printer is connected. Alternately, the
program can have a file on disk that contains the number of the printer slot, and the computer
will appear to automatically select the right slot The drawback to this is if the file was set up
for a differently configured Apple, the program will crash when it tries to execute a PR# to an
empty slot.

USING SLOT FINDER
When you run Slot Finder (Listing 13), if your Apple has any of the above mentioned

peripheral cards plugged into it, the program will identify the card as it scans each slot. If you
have a card that the program does not allow for, the program will declare that slot empty, even
if there really is a card there. (Later, I'll explain how to use the Byte Finder subroutine
(Listing 14) for the specific configuration of your Apple.)

The Slot Finder subroutine first examines each page of slot memory to determine the
presence or absence of a card. To do this, it jumps across the memory of each 256-byte slot
and PEEKs at the value of every 64th byte, summing these four bytes into the array CS
(checksum). This is done three times. On the Apple II, memory locations without RAM or
ROM return pseudo-random numbers when PEEKed. To view this for yourself, enter the
Monitor and list part of the memory of an empty slot. For example, for slot 7, use the
following command:

CALL - 151
*C700.C71F

Now do it again. Notice that one four-line group is different from the other.

50

Do the same for a slot that does contain a card, substituting the slot number with the card for
each numeral 7. This time the two groups of lines should match, byte for byte at each address.
If this is done on an Apple Ill in Apple II emulation mode, the numbers returned for an empty
slot are all $FF (255). In the Slot Finder subroutine, if the three checksum values match, the
slot is occupied; if they don't match, or if the sum reveals each checked byte to be $FF, the slot
is empty.

IDENTIFYING THE CARD
Once it finds a filled slot, the next part of the subroutine identifies the card. Since each card

has its own unique assembly language routine, comparing the same two or three relative bytes
in each different card to known values makes it possible to identify the card.

Byte Finder (Listing 14) aids in locating these unique bytes. The addresses used in the
original CONFIG program were the fifth and seventh bytes of each card. Since that will not
differentiate between an Apple Serial Interface card and a Silentype printer card, I used the
tenth and fifteenth bytes of each slot. The subroutine uses a seven-element array called SLOT,
and after RETURNing, each element of SLOT holds a number representing the card found in
that slot. If no match was found, a zero is returned. If the variable SLOT (4) = 5, slot 4 of your
Apple contains a Hayes Micromodem II, the fifth device defined in the initialization part of the
driver program.

CONFIGURING YOUR SYSTEM
To make your own program drive the Slot Finder routine, several variables must be set

before doing a GOSUB to it. The variables COOO, ClOO and C700 contain decimal values for
the hex numbers $COOO, $C100 and $C700, respectively. N represents the number of cards
you will define for your program to identify. R 1 and R2 represent the relative bytes being
checked in each slot.

Four arrays are used by the subroutine: Bl and B2, each dimensioned to size N, hold the
known bytes at relative addresses RI and R2, respectively for each card; CS, the checksum
array; and SLOT, the array that, after returning from the subroutine, holds the infonnation
gathered by it.

The string array NAME$ is not used by the subroutine. It is used in this example to list the
cards identified by the subroutine.

Byte Finder (Listing 14) facilitates the identification of bytes and relative addresses
unique to your Apple peripheral cards. It will ask for which relative byte to display, and then
do a continuously updated listing of that relative byte for all seven slots. When you run it on an
Apple II, the empty slots will have different bytes each time the slots are scanned. If you run it
on an Apple Ill in emulation mode, the empty slots will show with a 255.

MODIFICATIONS
Slot Finder contains no GOTOs or GOSUBs and so is completely relocatable. If you are

sure that you won't be using it on an Apple///, the last three comparisons in the IF statement in
line 420 may be deleted.

Line 360 is the FOR-NEXT loop that skips over the slot memory. Now, every 64th byte
is PEEKed. If you want to be more certain that the routine is identifying empty slots, the STEP
value in this line can be decreased. However, this will increase the time the routine takes to
check all seven slots, since it does more PEEKing. Conversely, if you need more speed, you
can increase the STEP value to a number greater than 64. Just be sure that it is still working in
the altered mode before you use it in your prize program.

You can also alter the way that Slot Finder saves what it learns about the slot configuration.
In its present form, it identifies slots by which cards (if any) are plugged into them. By making
the following changes to Listing 13, Slot Finder will instead identify cards by the slots they
are in. In line 80, change SLOT(7) to CARD(N) and in line 380, replace SLOT(SLOT) = I
with CARD(!) = SLOT. In addition, replace the following lines:

51

240 FOR I = 1 TO N
250 PRINT "THE NAME$(I)"IS ";
260 IF CARD(!) = 0 THEN PRINT "NOT PRESENT"
270 IF CARD(I) < > 0 THEN PRINT "IN SLOT "CARI:;>(I)
310 FOR I = 1 TO N:CARD(I) = 0: NEXT I

LISTING 13: SLOT.FINDER

10 REM **********************
11 REM * SLOT.FINDER *
12 REM * BY STEVEN WEYHRICH *
13 REM * COPYRIGHT (C) 1983 *
14 REM * BY MICROSPARC, INC *
15 REM * CONCORD, MA. 01742 *
16 REM **********************
30 REM ADAPTED FROM PROGRAM "CONFIG" IN CONTACT #6, APPLE

USER'S GROUP NEWSLETTER OF OCTOBER 1979
40 REM IDENTIFIES SLOTS BY WHICH CARDS ARE PLUGGED INTO THEM
50 COOO = 49152:Cl00 = 49408:C700 = 50944: REM MEMORY ADDRESSES
60 N = 14: REM NUMBER OF CARDS DEFINED
70 Rl = 10:R2 = 15: REM RELATIVE BYTE IN EACH SLOT
80 DIM Bl(N),B2(N),NAME$(N),CS(2),SLOT(7)
90 Bl(l) = 138:B2(1) = 120:NAME$(1) = "SILENTYPE PRINTER CARD"
100 B1(2) 120:B2(2) = 072:NAME$(2) ="SERIAL PRINTER CARD"
110 Bl(3) 036:B2(3) 060:NAME$(3) ="DISK CONTROLLER CARD"
120 Bl(4) 038:B2(4) = 072:NAME$(4) ="COMMUNICATIONS CARD"
130 Bl(5) = 255:B2(5) = 007:NAME$(5) ="HAYES MICROMODEM II"
140 B1(6) 038:B2(6) = 197:NAME$(6) = "EMULATION SERIAL CARD"
150 B1(7) = O:B2(7) 84:NAME$(7) "BUFFERED GRAPPLER PRINTER

CARD"
160 Bl(8) =
170 B1(9) =
180 Bl(lO)
190 Bl(ll)

CARD"

O:B2(8) 85:NAME$(8) ="GRAPPLER PLUS PRINTER CARD"
1 :B2 (9) 72 :NAME$ (9) "THUNDERCLOCK CARD"

207:B2(10) = O:NAME$(10) = "SIDER HARD DISK CARD"
6:B2(11) = 151:NAME$(11) = "APPLE SUPER SERIAL

200 B1(12) = 21:B2(12) = 204:NAME$(12) = "APPLE MOUSE CARD"
210 Bl (13) 56:B2 (13) = 7 :NAME$ (13) "UNIDISK CONTROLLER CARD"
220 GOSUB 310: REM CHECK THE SLOTS
230 REM REPORT ON RESULTS OF SEARCH
240 FOR I = 1 TO 7
250 PRINT "SLOT "I;
260 IF SLOT(!) = 0 THEN PRINT " IS EMPTY"
270 IF SLOT(I) > 0 THEN PRINT" HAS A "NAME$(SLOT(I))
280 PRINT : NEXT I
290 END
300 REM *** SLOT FINDER SUBROUTINE ***
310 FOR I = 1 TO 7:SLOT(I) = 0: NEXT I
320 FOR S = ClOO TO C700 STEP 256
330 SLOT = (S - COOO) / 256 : REM IDENTIFY THE SLOT #
340 REM MAKE 3 PASSES OVER SLOT MEMORY
350 FORK= 0 TO 2:CS(K) = 0
360 FOR I = 0 TO 255 STEP 64

52

370 CS(K) = CS(K) + PEEK (S + I)
380 NEXT I: NEXT K
390 REM NOW CHECK IF SUM FROM EACH PASS
400 REM IS THE SAME; IF NOT, OR IF ALL
410 REM BYTES ARE $FF , THEN SLOT rs EMPTY
420 IF CS(O) < > CS(l) OR CS(O) < > CS(2) OR CS(l) < > CS(2)

OR CS(O) = 1020 OR CS(l) = 1020 OR CS(2) = 1020 THEN 470:
REM EMPTY SLOT

430 REM IDENTIFY THE CARD
440 FOR I = 1 TO N
450 IF PEEK (S + Rl) = Bl(I) AND PEEK (S + R2) = B2(I) THEN

SLOT(SLOT) = I:I = N: REM A MATCH ; TERMINATE LOOP
460 NEXT I
470 NEXT S : REM CHECK THE NEXT SLOT
480 RETURN

LISTING 14: BYTE.FINDER

10 REM 27 - APR- 82
11 REM BYTE.FINDER
12 REM BY STEVEN WEYHRICH
13 REM COPYRIGHT(C) 1983
14 REM BY MICROSPARC , INC
15 REM CONCORD, MA 01742
40 COOO = 49152:Cl00 = 49408:C700 50944
50 KBD = - 1 6384:STR = - 16368
60 TEXT : HOME
70 FORK= 0 TO l:K = 0
80 VTAB 3: PRINT "TYPE " ;: I NVERSE : PRINT "Q";: NORMAL PRINT

II TO QUIT": PRINT
90 INPUT "BYTE # (0 - 255) " ; BYTE$
100 IF BYTE$= "Q" THEN VTAB 22: END
110 BYTE = VAL (BYTE$)
120 IF BYTE < 0 OR BYTE > 255 THEN 90
130 VTAB 7
140 PRINT "SLOT ADDRESS BYTE # VALUE "
150 PRINT "---- ------- ------ - - ---"
160 FOR J = 0 TO l:J = 0
170 VTAB 10
180 FOR I = ClOO TO C700 STEP 256
190 SLOT = (I - ClOO) / 256 + 1
200 BTE$ = RIGHT$ (" "+ STR$ (BYTE) , 3)
210 VLUE$ = RIGHT$ (" "+ STR$ (PEEK (I+ BYTE)) , 3)
220 PRINT " " SLOT" "I" "BTE$ TAB(25)VLUE$
230 NEXT I
240 PRINT : PRINT : PRINT "HIT ANY KEY TO CHANGE BYTE #"
250 X = PEEK (KBD): POKE STR, 0: IF X > 127 THEN J = 1
260 NEXT J
270 NEXT K

53

Exec Mini-Assembler
Easily access (under DOS 3.3) the mini-assembler built into ROM and still restore your
programs' variable pointers to their original locations.

by Bill Parker

The Apple II has a mini-assembler tucked away in the upper reaches of ROM that is a very
limited, scaled-down version of the fancier types of assemblers that are available commercially.
It allows you to program in assembly language by translating the mnemonic opcodes (operation
codes and operands) that you type into memory into hexadecimal (machine language) object
code. The mini-assembler stores the code, line by line, wherever in memory you specify. A
good description of it can be found on pp. 49-51 and 66 of the Apple // Reference Manual.

ACCESSING THE MINI-ASSEMBLER
I occasionally venture into the mini-assembler from Applesoft (ROM version) to write a

quick-and-dirty assembly language routine to speed up or customize part of a main program.
However, the problem with the mini-assembler is that it is actually part of Integer BASIC and
thus cannot be used when ROM Applesoft is active. So whenever I wanted to temporarily leave
an Applesoft program to use the mini-assembler, I first had to save my program, enter Integer
BASIC, enter the Monitor, and finally enter the mini-assembler with a $F666G.

When I was finished with the assembler, I had to return to Integer BASIC, reinitialize
Applesoft and reload my program. Worse yet, all of the variable pointers from my Applesoft
program were reset, losing previously stored data.

THE SOLUTION
With the assembly language program, SA VE.POINTERS (Listing 15) and the Applesoft

program CAPTURE.ASSM (Listing 16), you can create two EXEC files that will get you
into and out of the mini-assembler from Applesoft with a minimum of hassle. Best of all, your
original program is restored with its variable pointers returned to their original locations. This
provides complete retention of data.

USING THE PROGRAMS
After booting your System Master disk (which loads Integer BASIC into the upper 16K of

your Apple), load your Applesoft program. When you're ready to go to the mini-assembler,
just type EXEC MINl.ASSM and you're there.

When you are finished with the assembler, press the <RESET> key (or whatever works for
you) to return to Integer BASIC. Then type EXEC FP to go back to Applesoft with your
program (and variables) fully restored and waiting for you to pick up where you left off.

ENTERING THE PROGRAMS
Key in the program in Listing 15, and save it to disk with the command:

BSA VE SA VE.POINTERS,A$300, L$5A

Then type in Listing 16 and save it with the command:

SA VE CAPTURE.ASSM

This program creates two text files, MINI.ASSM and FP that, when executed, cause the actual
use of the assembly language pointer Save and Restore routine that you just typed in.

54

When you have saved both programs, RUN CAPfURE.ASSM and then delete it (you
won't need it anymore). What remains are the two text files, MINI.ASSM and FP, and the
assembly language program.

HOW IT WORKS
The first half of SA VE.PTRS (Listing 15) saves Applesoft pointers and program bytes

while the second half restores them (see Table 3).

TABLE 3: Applesoft Pointers

Pointer Hex Decimal
Name Function Location Location

1. TXTTAB Beginning of A/S program $67,68 103,104
2. VARTAB Beginning of simple vars, str. ptrs $69,6A 105,106
3.ARYTAB Beginning of array vars, str arr ptrs $6B,6C 107,108
4.STREND End of memory used by prog vars $6D,6E 109,110
5.FRETOP End of free memory (before str) $6F,70 111,112
6. PRGEND End of NS program $AF,BO 175,176
7. Beginning of next statement $801,802 2049,2050

The program was created to run in Page 3 of memory. It is, however, free of all JMPs and
JSRs (which use absolute addressing) and will therefore run in any memory area where there
are 90 bytes available. (If you load it into a different memory area, change the CALL statement
in CAPTURE.ASSM accordingly.)

When you enter the Monitor or the mini-assembler from Applesoft, your Applesoft program
is still in memory. When you return to Applesoft with the FP command (not the EXEC FP text
file you just created), Applesoft writes over the first two program bytes with z.eros and resets
the program pointers to their beginning values. Barring these minor changes, however, your
program is still in memory.

The EXEC MINI.ASSM runs the first half of your assembly language routine which saves
your Applesoft program and variable pointers while you are still in Applesoft. It then transfers
you to Integer BASIC and initializes the mini-assembler. When you return to Integer BASIC
from the mini-assembler, you can EXEC FP, which puts you back into Applesoft and calls the
second half of the assembly language routine that restores the program and variable pointers.
Your program is then exactly the way you left it

LISTING 15: SA VE .POINTERS

THE ASSEMBLER 1 . 0

SOURCE FILE -

0
1
2
3
4
5
6
7
8
9

· ************************************* I

SAVE. POINTERS
ROUTINE TO SAVE AND RESTORE
APPLESOFT PROGRAM POINTERS

BY BILL PARKER
(C) 1983 BY MICROSPARC INC.

•************************************* I

; LABELS

55

10 PTRTABL EQU $67
11 PRGEND EQU $AF
12 PRGBYT EQU $S01
13
14 INIT ORG $300
lS
16 0300 A2 00 SAVE LOX #0
17 0302 BS 67 SAVEPTRl LOA PTRTABL,X
lS 0304 90 4C 03 STA PTRSAVE,X
19 0307 ES INX
20 030S EO OA CPX no
21 030A DO F6 BNE SAVEPTRl
22 030C AS AF SAVEPTR2 LOA PRGEND
23 030E 90 4C 03 STA PTRSAVE,X
24 0311 ES INX
2S 0312 AS BO LOA PRGEND+l
26 0314 90 4C 03 STA PTRSAVE,X
27 0317 ES INX
2S 0318 AD 01 08 LDA PRGBYT
29 031B 90 4C 03 STA PTRSAVE,X
30 031E ES INX
31 031F AD 02 OS LDA PRGBYT+l
32 0322 90 4C 03 STA PTRSAVE,X
33 032S 60 RTS
34 ;--------------------------
3S 0326 A2 00 RESTORE LDX #0
36 0328 BD 4C 03 GETPTRSl LOA PTRSAVE,X
37 032B 95 67 STA PTRTABL,X
3S 0320 ES INX
39 032E EO OA CPX no
40 0330 DO F6 BNE GETPTRSl
41 0332 BD 4C 03 GETPTRS2 LOA PTRSAVE,X
42 033S 85 AF STA PRGEND
43 0337 ES INX
44 0338 BD 4C 03 LOA PTRSAVE,X
4S 033B SS BO STA PRGEND+l
46 0330 ES INX
47 033E BD 4C 03 LOA PTRSAVE,X
48 0341 80 01 08 STA PRGBYT
49 0344 EB INX
so 034S BD 4C 03 LDA PTRSAVE,X
Sl 034S BD 02 08 STA PRGBYT+l
S2 034B 60 RTS
S3 ;RESERVE SPACE FOR POINTERS
S4 PTRSAVE DFS 14 i ON PAGE 3

000 ERRORS

0300 HEX START OF OBJECT
03S9 HEX END OF OBJECT
OOSA HEX LENGTH OF OBJECT
9S9S HEX END OF SYMBOLS

56

LISTING 16: CAPTURE.ASSM

100 REM CAPTURE.ASSM
110 LET D$ = CHR$ (4): REM CTRL-D OR DISK COMMAND
120 PRINT D$;"0PEN MINI.ASSM"
130 PRINT D$;"WRITE MINI.ASSM"
140 PRINT "BRUN SAVE . POINTERS"
150 PRINT "INT"
160 PRINT "CALL -2458"
170 PRINT D$;"CLOSE MINI.ASSM"
180 REM
190 PRINT D$; "0PEN FP"
200 PRINT D$;"WRITE FP"
210 PRINT "FP"
220 PRINT "CALL 806"
230 PRINT D$;"CLOSE FP"

57

Visi-Sort Plus
The speed of the bubble, shell and Quicksort methods are illustrated in these graphics
demonstrations.

by Andre Samson

I've adapted the Visi-Sort program by Bill Fortenberry (Nibble Vol. 3/No. 5) which gives a
graphics demonstration of bubble sorting to two other sort methods. I find them equally fun to
watch. As a high school computer science teacher, I agree that the bubble sort is easy to teach.
Now, with this visual approach, I would not hesitate presenting the shell and Quicksort
methods. My compliments to C. Bongers for his flowchart of the Quicksort algorithm (Nibble
Vol. 3/No. 4) which is easily coded in Applesoft.

SHELL AND QUICKSORT
More interesting to watch is the worst case run of these three sorts (i.e., ordering on the

alternate diagonal/). By simply deleting the shuffling (line 130) and reversing the inequality
symbol (bubble: line 10030; shell: line 10040; Quicksort: lines 10020 and 10030), you
can quickly see the advantages of the latter two sorts. With Quicksort, this diagonal is
immediately obtained while the bubble sort is painfully slow to watch.

While the value of the shell and Quicksort methods is most apparent with voluminous data,
I recommend maintaining N=lOO. Most microcomputers will handle this Hi-Res number, so
the dimensioning of arrays F,L in Quicksort is unnecessary. Timing these sorts is a bit
misleading due to the overhead HPLOTting involved.

LISTING 17: SHELLSORT

10
100
110

REM SHELLSORT
HGR : HCOLOR= 3

120
130

DIM A(100): HOME VTAB 22: PRINT "CREATING ARRAY": FOR I
1 TO lOO:A(I) = I: NEXT
HGR : FOR I = 1 TO 100: HPLOT I,A(I): NEXT
HOME : VTAB 22: PRINT "SHUFFLING": FOR I 1 TO lOO:B =
INT (RND (1) * 100) + l:T = A(B) :A(B) = A(I) :A(I) = T:
NEXT
HGR : FOR I 1 TO 100: HPLOT I,A(I): NEXT

N = 100
140
150
160
170
180
9000
9001
9002
10000
10010
10015
10020
10030
10040
10050
10060

58

HOME : VTAB 22: PRINT "METZNER SORT": PRINT ""
GOSUB 10000
PRINT "": HOME : VTAB 22: PRINT "DONE": END

REM METZNER (SHELL) SORT"
REM A ARRAY TO SORT
REM N ELEMENTS IN ARRAY
M = N
M = INT (M / 2)

VTAB 23: PRINT "M=";M;" "; CHR$ (7)
IF M = 0 THEN RETURN
FOR X = 1 TO N - M:H = X

V = H + M: IF A(H) < A(V) THEN 10100
T = A(H) :A(H) = A(V) :A(V) = T

HCOLOR= 0: HPLOT H,0 TO H,100: HCOLOR= 3: HPLOT H,A(H)

10070
10080
10090
10100
10110

HCOLOR= 0: HPLOT V,0 TO V,100: HCOLOR= 3 : HPLOT V,A(V)
H = H - M

IF H > = 1 THEN 10040
NEXT X
GOTO 10010

LISTING 18: QUICKSORT

REM QUICKSORT
HGR : HCOLOR= 3

10
10 0
110 DIM A(100): HOME : VTAB 22: PRINT "CREATING ARRAY": FOR I =

1 TO lOO:A(I) = I: NEXT
120
130

HGR : FOR I = 1 TO 100: HPLOT I,A(I): NEXT
HOME : VTAB 22 : PRINT "SHUFFLING": FOR I= 1 TO lOO:B =
INT (RND (1) * 100) + l:T = A(B) :A(B) = A(I) :A(I) = T:
NEXT
HGR : FOR I 1 TO 100: HPLOT I,A(I): NEXT

N = 100
140
150
160
170
180
9000
9001
9002
10000
10010
10020
10030
10040
10050
10060
10070
10080
10090
10100
10110
10120
10130
10140
10150
10160

HOME : VTAB 22 : PRINT "QUICKSORT": PRINT ""
GOSUB 10000
PRINT "": HOME : VTAB 22: PRINT "DONE": END

REM QUICKSORT
REM A ARRAY TO SORT
REM N ELEMENTS IN ARRAY
S = O:F = l:L = N
M = A (INT ((L + F) /

IF A(I) < M THEN I =
IF A(J) > M THEN J =
IF I > J THEN 10110
IF I = J THEN 10090

2)):I = F:J = L
I + 1: GOTO 10020
J - 1: GOTO 10030

T = A(I) :A(I) = A(J) :A(J} = T
HCOLOR= 0: HPLOT J,0 TO J,100: HCOLOR= 3: HPLOT J,A(J)
HCOLOR= 0: HPLOT I,0 TO I,100: HCOLOR= 3: HPLOT I,A(I)

I = I + l:J = J - 1
IF I < = J THEN 10020
IF I > = L THEN 10130

F(S) = I:L(S) = L:S = S + 1
L = J

IF F
IF S

< L THEN 10010

s = s -
0 THEN RETURN
l:F = F(S) :L L (S) : GOTO 10010

LISTING 19: BUBBLESORT

10
100
110

120

REM BUBBLESORT
HGR : HCOLOR= 3
DIM A(lOO): HOME
1 TO lOO:A(I) = I:
HGR : FOR I = 1 TO

VTAB 22: PRINT "CREATING ARRAY": FOR I
NEXT
100: HPLOT I,A(I): NEXT

59

130 HOME : VTAB 22: PRINT "SHUFFLING": FOR I= 1 TO lOO:B =
INT (RND (1) * 100) + l:T = A(B) :A(B) = A(I) :A(I) = T:
NEXT
HGR : FOR I = 1 TO 100: HPLOT I,A(I): NEXT

N = 100
140
150
160
170
180
9000
9001
9002
10000
10010
10015
10020
10025
10030
10035
10101
10103

HOME : VTAB 22: PRINT "BUBBLE SORTING": PRINT ""
GOSUB 10000
PRINT "": HOME : VTAB 22: PRINT "DONE": END

REM BUBBLE SORT
REM A ARRAY TO SORT
REM N ELEMENTS IN ARRAY
N = N - 0
K = N - 1

FOR I = 1 TO K
L = N - I

FOR J = 1 TO L
IF A(J) < A(J + 1) THEN 10105

T = A(J) :A(J) = A(J + 1) :A(J + 1) = T
HCOLOR= 0: HPLOT J,0 TO J,100: HCOLOR= 3: HPLOT J , A(J)
HCOLOR= 0: HPLOT J + 1,0 TO J + 1,100: HCOLOR= 3 : HPLOT J

+ l,A(J + 1)
10105 NEXT : NEXT
10120 RETURN

60

Binary Dump
Save paper and ease eyestrain by using this short Applesoft program to print memory dumps in
16-column format.

by Tim Damon

Binary Dump is a small utility that lets you print out a long binary program in 16 columns
so you don't have to waste a lot of paper. The printout's chart format makes it easy to find the
memory address of any byte by looking at the column headings. The first three numbers of the
byte's address are on the left side of each line on the chart and the fourth number is at the top of
the column.

Included is a small routine that starts the numbering at the nearest (hexadecimal) number
ending in zero. Another routine starts the dump in the appropriate column.

Binary Dump is particularly useful when you are debugging a long program. Once the
address of an error is found, you only need to CAIL -151, enter the address followed by a
colon, and the correct byte.

USING BINARY DUMP
To use Binary Dump, just enter the starting location for the dump and the length of the

dump in hexadecimal. To find the starting address of the last binary program loaded off disk,
enter the Monitor by typing CALL-151. Then type AA 72 and press the <RETURN> key
twice. This gives you something like:

AA72- 00

03 FF FF FF EF DC 5 4

In this example, the starting address is $300; the 00 follows AA 72 and the 03 is the first
number on the next line.

To find the program length, enter AA60 and two <RETURN>s. This gives you:

AA60- 9C

00 DC 56 SD E7 CE Bl

or something similar. The program length is $9C, the 9C following AA60 and 00 from the start
of the next line.

The Binary Dump program occupies memory locations $800-$FA4 so if you have saved a
program that will load in that range, you must put it somewhere else. To do this, enter BLOAD
filename,A$nnnn where nnnn is the starting address (somewhere other than $800-$FA4).

ENTERING THE PROGRAM
Key in the program in Listing 20, and save it to disk with the command:

SA VE BINARY.DUMP

HOW BINARY DUMP WORKS
Binary Dump uses a PEEK command to get the byte into a variable. (For a list of variables,

see Table 4.) It then sends the decimal value of the byte through a decimal-hexadecimal
conversion and prints it in the chart format. You simply input the beginning memory address
and how many bytes to print out.

Variable

A$

BI

CH

CH$

DG

HX$

I, J, M andZZ

ID

NM$andWK

SD

w

x

TABLE 4: VARIABLES

Function

A work variable for the text centering subroutine and an input variable

A flag to check that the hex inputs are all right

The decimal value of a hex number after going through the hex to
decimal subroutine

The hex value of a decimal number after going through the decimal to
hex subroutine

A pointer variable for the decimal to hex conversion subroutine

A string of valid hex numbers

Loop counters

Length of the dump in decimal

Work variables for both conversion subroutines

Starting address (in decimal)

Tells how many columns to skip over before printing, to start the dump
in the appropriate column

The decimal value for the starting location to be printed

Binary Dump actually begins at line 110; line 70 jumps to the beginning. Lines 90 and
100 are one-line subroutines. Lines 80-87 set NM$ to the decimal value of the location of
each line to be printed, jump to the subroutine at line 700 to convert to hex, then check to be
sure that the hex number is four digits long.

Line 90 sets NM$ to the decimal value of the byte to be printed, jumps to the subroutine at
line 700 to convert to hex, then prints the byte. Line 100 is a text-centering subroutine.
Lines 110-230 print the title page and the instructions. Lines 240-290 get the starting
location (in hexadecimal) and check for a bad input. Lines 300-360 get the desired length of
the dump (in hexadecimal) and check for a bad input.

Lines 370-390 print the chart line across the printer paper. Lines 400-460 print the
starting address and begin printing in the appropriate column. Lines 470-550 print the rest of
the dump. Lines 560-600 check if the user wants to quit or get another dump. Lines 610-
690 convert hexadecimal values to decimal and lines 700-750 convert decimal values to
hexadecimal.

62

LISTING 20: BINARY.DUMP

1 REM **********************
2 REM * BINARY .DUMP *
3 REM * BY TIM & TOM DAMON *
4 REM * COPYRIGHT (C) 1983 *
5 REM * BY MICROSPARC, INC *
6 REM * CONCORD, MA. 01742 *
7 REM **********************
20 REM NEXT 3 LINES CHECK FOR PRODOS OR DOS 3.3, THEN CHECK

FOR LAST BLOAD ADDRESS. IF ABOVE $8000, HIMEM IS SET TO
$8000 TO PROTECT YOUR CODE FROM STRINGS.

30 PD = (PEEK (48896) = 76)
40 SA= (PEEK (43634) + 256 * PEEK (43635)) * NOT PD+ (PEEK

(48855) + 256 * PEEK (48856)) *PD
50 IF SA > 32768 THEN HIMEM: 32768
60 HOME
70 GOTO 110
80 PRINT : NM$ STR$ (X) : GOSUB 700
85 IF LEN (CH$) < 4 THEN CH$ = "0" + CH$: GOTO 90
87 RETURN
90 NM$= STR$ (PEEK (I)): GOSUB 700: PRINT CH$;" ";:RETURN
100 HTAB 20 - LEN (A$) / 2 + 1: PRINT A$: RETURN
110 INVERSE
120 HTAB 12: PRINT"******************": HTAB 12: PRINT"*

130
140
150

160
170
180

190
200
210
220
230
240

": HTAB 12: PRINT " *": HTAB 12: PRINT
"******************": VTAB 2: REM 16 SPACES IN THE LINES
NORMAL

A$ = " BINARY DUMP ": GOSUB 100
A$ = " BY TIMOTHY DAMON": GOSUB 100: VTAB 12: PRINT "**

COPYRIGHT 1983 BY MICROSPARC, INC. **"
VTAB 23: PRINT "INSTRUCTIONS?": WAIT - 16384,128
GET A$: IF A$ = "N" THEN 240
HOME : PRINT "THIS PROGRAM WILL DUMP OUT ANY BINARY
PROGRAM IN HEXADECIMAL NUMBERS IN 16 COLUMNS."
VTAB 8
INVERSE :A$= "HIT ANY KEY TO CONTINUE": GOSUB 100
WAIT - 16384,128
NORMAL
POKE - 16368,0
HOME : PRINT "ENTER THE STARTING ADDRESS OF THE
PROGRAM IN HEXADECIMAL.": PRINT "IF YOU DON'T KNOW WHAT IT
IS THEN TYPE IN 'END' AND FIND OUT!"

250
260
270
280

290
300
310

320
330

HX$ = "0123456789ABCDEF"
INPUT "ENTER ADDRESS: ";NM$: IF NM$ = "" THEN 260
IF NM$ = "END" THEN TEXT : HOME : END
GOSUB 610: IF BI= 1 THEN PRINT CHR$ (7); CHR$
(7) ;"INVALID INPUT":BI = 0: GOTO 260

SD = CH
PRINT : PRINT
PRINT "NOW ENTER THE
DON'T KNOW THIS THEN
INPUT "ENTER LENGTH:

LENGTH IN HEXADECIMAL.": PRINT "IF YOU
TYPE IN 'END' AND FIND OUT!"
";NM$: IF NM$ = "" THEN 320

IF NM$ = "END" THEN TEXT : HOME : END

63.

340 GOSUB 610: IF BI= 1 THEN PRINT CHR$ (7); CHR$
(?);"INVALID INPUT!":BI 0: GOTO 320

350 LD = CH - 1
360 PRINT : PRINT
370 HOME
380 PRINT CHR$ (4);"PR#l":X =SD: GOSUB 80: FOR ZZ = 1 TO LEN

(CH$) + 2 : PRINT " ";: NEXT : PRINT "0 1 2 3 4 5 6 7
8 9 A B C D E F"

390 FOR ZZ = 1 TO LEN (CH$) + 2: PRINT" ";:NEXT PRINT"-

400 I = SD:W = SD - 16 * INT (SD / 16)
410 IF W = 0 THEN 470
420 GOSUB 80:CH$ = LEFT$ (CH$,3) + "0"
430 PRINT CH$;"-"; SPC(W * 3);
440 FOR I = I TO I + 15 - W
450 GOSUB 90
460 NEXT I
470 FOR X = I TO SD + LD STEP 16
480 GOSUB 80
490 PRINT CH$;"- ";
500 FOR I = X TO X + 15
510 GOSUB 90
520 IF I = SD + LD THEN 550
530 NEXT I
540 NEXT X
550 PRINT : PRINT
5 60 PRINT CHR$ (4) ; "PR#O II
570 PRINT "ANY MORE? (Y/N)";: GET A$
580 IF A$ = "N" THEN TEXT : HOME : END
590 CLEAR
600 GOTO 240
610 CH= O:WK = 0
620 FOR M = LEN (NM$) TO 1 STEP - 1
630 FOR J = 1 TO 16

- " . I

640 IF MID$ (NM$,M,l) = MID$ (HX$,J,l) THEN CH CH+ (J - 1)
* 16 A WK: GOTO 670

650 NEXT J
660 BI= 1: RETURN
670 WK = WK + 1
680 NEXT M
690 RETURN
700 WK = VAL (NM$) :CH$ = '"'
710 DG =WK - INT (WK / 16) * 16:WK = INT (WK I 16)
720 CH$= MID$ (HX$,DG + 1,1) +CH$
730 IF WK > 0 THEN 710
740 IF LEN (CH$) < 2 THEN CH$ = 11 0" + CH$
750 RETURN

64

Hypercounter
Count with the speed of light! this short routine illustrates some of the principles of machine
language while it counts to one million, thousands of times faster than Applesoft.

by Ron Macken and Bill Consoli

Are you an Applesoft programmer who is discouraged by the complex logic involved in
machine language. Are assemblers hard for you to understand? This fun program illustrates
some of the basic logic of machine language and could easily start you on your way to being a
successful machine language programmer.

A 70,455% IMPROVEMENT IN SPEED
Try to remember back to the first time you typed in the following program:

10 FOR I= 1 TO 1000: VTAB 12: HTAB 18 : PRI NT I : NEXT I : END

When you ran it, weren't you amazed at the speed with which your Apple completed the
task? This simple program took about 15.5 seconds to run. If you were amazed by that display
of speed, then Hypercounter is just the thing to get your heart pumping. It counts to one
million in only 22 seconds. Your Applesoft program would have taken 4 hours, 18 minutes
and 20 seconds to accomplish the same feat That's an 70,455% improvement in speed. Also,
as Listing 21 shows, the logic is pretty easy to understand. It is the basis of all assembly
language logic.

The main problem with writing a program like this is that the computer wants to count in
hexadecimal instead of decimal. To solve this, we use eight individual digits . The program
doesn't actually count; instead it increments the rightmost digit, and if it is a nine, it is set back
to zero. The program then increments the digit to the left, also checking that digit.

Another problem is the time it takes to store variables in memory and then print them on the
screen. So, instead of counting from 0-9, it counts from $BO to $B9, which are the ASCII
values (in hex) of the digits 0-9. Then the variables are stored directly on the screen.
Admittedly, it's a cheap and dirty trick, but it eliminates the time-consuming steps of storing
variables in memory, then taking those variables out of memory to print them on the screen. By
counting in ASCII and storing the variables right on the screen, simulating a high-speed
counter was made a lot easier.

USING THE PROGRAM
To run the program you count just BRUN HYPERCOUNTER, or within your program,

include this line:

PRINT CHR$(4);"BLOAD HYPERCOUNTER"

then simply CALL 768 and watch the numbers fly.
Hypercounter will run for 36 minutes and 40 seconds (the time is takes to count to

99,999,999) or until you press the <RESET> key. Pressing <CTRL>C will not halt the
program. CALL 768 will restart the program after you have pressed <RESET>.

65

ENTERING THE PROGRAM
Please refer to Appendix A for help in entering this program. If you key it in from the

Monitor, return to Applesoft, type <CTRL>C<RETURN>, then save it to disk with the
command:

BSA VE HYPERCOUNTER,A$300,L$25

HOW HYPERCOUNTER WORKS
First, in lines 1-9 the eight screen locations ($5B8-$5BF) are assigned a value of $BO,

thus putting eight zeros on the screen. The main counting algorithm starts in line 10. As each
digit is checked, the number of the digit is always stored in Register X, and at the beginning, X
is given a value of eight. So the rightmost, or eighth digit is checked to see if it has a value of
$B9, or more simply, if it is a nine. Nine times out of ten it isn't, and the program will
continue by incrementing the digit (line 14), then branching back to line 10 to start over with
the eighth digit

On that one time when the digit is a nine, the program branches to the KICK routine where
the digit is changed from $B9 to $BO (from a nine to a zero). Xis then decremented, thus
shifting left one digit, from ones to tens, or tens to hundreds, or hundreds to thousands, etc.
Then the program is sent back to CHECK, which performs the same operations on the seventh
digit as it did on the eighth. The shift-left procedure continues until a digit is found that is not a
nine. At the point, the program goes back to COUNT, which resets X at eight (the rightmost
digit) and starts the process over.

LISTING 21: HYPERCOUNTER

0
1
2
3
4
5
6
7
8
9

HYPERCOUNTER

10
11
12
13
14
15
16
17
18
19
20
21
22
23

0300
0303
0305
0307
030A
030B
030D
03 0F
0311
0314
0316
0319
031C
031B
0321
0322
0324

000 ERRORS

20 58 FC
A9 BO
A2 08
9D B8 05
CA
DO FA
A2 08
A9 B9
DD B8 05
FO 06
FE B8 05
4C OD 03
A9 BO
9D B8 05
CA
DO EB
60

SCRN
HOME

NUMCL

COUNT
CHECK

KICK

0 300 HEX START OF OBJECT
0324 HEX END OF OBJECT
0025 HEX LENGTH OF OBJECT
95D2 HEX END OF SYMBOLS

66

ORG $30 0
EQU $5B8
EQU $FC58
J SR HOME
LDA #$BO
LDX #8
STA SCRN,X
DEX
BNE NUMCL
LDX #8
LDA f$ B9
CMP SCRN,X
BEQ KICK
INC SCRN,X
JMP COUNT
LDA #$BO
STA SCRN,X
DEX
BNE CHECK
RT S

; FIRST LOCATION ON THE SCREEN

; CLEAR SCREEN
; ASC (IN HEX) OF THE DIGIT 0

; SET XTH DIGIT TO 0

;GOTO NUMCL IF ALL 8 DIGITS ARE

;WILL TH I S DIGIT BE GREATER
;THAN 9 IF WE INCREMENT IT?

;YES? THEN IT NEEDS TO BE KICKED
;ACTUAL COUNTING I S DONE HERE

; START OVER
; KI CKS DIGIT OVER FROM 9 TO 0
;PUTS THE DIGIT ON THE SCREEN

; GO BACK AND DO IT AGAIN
;WE'VE REACHED 99 , 999 , 999 !

Custom Catalog
Personalize your DOS 3.3 disks with this Applesoft utility. Easily make changes in the disk
header, locked file and.file type symbols,file size and even file names.

by Mason Jones

Have you ever wished you had a way to title your disk catalogs? How about simply
customizing the catalog's characters, or disguising things on a disk that you want to protect?
Custom Catalog will do all that for you - making the process much easier than going into the
Monitor to make all the changes you want.

USING CUSTOM CATALOG
Custom Catalog (Listing 22) has five main functions. Select the function you want by

pressing the number next to it. After each function, or after cancelling a function, you will be
asked if you intend to make any other catalog refinements. If you type a Y, you will be
returned to the menu. Otherwise, the program will catalog the disk and end. Note that
throughout the program, you have to press <RETURN> only when entering more than one
character.

Change Headings
This function allows you to change the DISK VOLUME heading at the top of the catalog.

This lets you put a title on the disk, possibly indicating whose disk it is or describing what is
on the disk. The only restriction is that the title is limited to12 characters or less. Entering
longer strings could cause problems when cataloging the disk. If you wish to abort, press
<CTRL>Q and then <RETURN>.

This will take your string and POKE the ASCII code of the character with the high bit set
(shown on the chart on page 15 of the Apple Reference Manual) backwards into locations
45999-46010. This is one of the odd things about DOS - it changes the heading backwards.

Change Lock Symbol
This function lets you choose a character to replace the asterisk for denoting locked files. It

requests the ASCII code (high bit set, as above) in case the user wants to enter some
nonaccessible characters. It could easily be changed to simply allow input of the character
itself, as in the Change Heading function. Again, use <C1RL>Q to quit.

Change Type
Similar to Change Lock Symbol, the Change Type function is used to change the character

for denoting the various file types in the catalog. The program will ask you for the ASCII code
(high bit set) of the intended character. If you do not want to change the character, simply press
<RETURN> without typing anything else.

Change Sizes
Included more for fun than anything else, this will either change all file sizes to be printed as

000, or simply knock off the size-printing routine so the catalog does not show the sizes. This
function can be used to make the catalog shorter which is useful for some two-column catalog
programs. To abort, press <RETURN>.

Change Names
Similar to Change Sizes, above, this has two options: have no names printed on a catalog,

or have the names scrambled. With these two options, you can make it difficult to break into a
disk you want to protect.

67

Making the Changes Permanent
If you happen to do the wrong thing, simply reboot and everything will go back to normal.

If you want to make the changes permanent, make the adjustment you want. Then initialize a
blank disk. The newly-initialized disk will have all the changes you made right on it, whenever
you boot it.

CUSTOMIZING CUSTOM CATALOG
Since Custom Catalog is structured with each function in its own module, adding or

changing it should be quite easy. Every function uses the same general form, and exits via the
subroutine at line 820.

To add your own function, simply add it to the menu portion, and have the GOTO access
the proper address. The decimal addresses for each location, in summary, are as follows:

Disk Volume Heading: 45999-46010
Lock Symbol ASCII Code: 44515
Applesoft Type Symbol: 45993
Integer Type Symbol: 45992
Binary Type Symbol: 45994
Text File Type Symbol: 45991

LISTING 22: CUSTOM.CATALOG

10 REM **********************
20 REM * CUSTOM.CATALOG *
30 REM * BY MASON JONES *
40 REM * COPYRIGHT (C) 1983 *
50 REM * BY MICROSPARC, INC *
60 REM * CONCORD, MA. 01742 *
70 REM **********************
80 REM ***CATALOG***
90 TEXT : HOME : PRINT "*********** CUSTOM CATALOG *********** "
100 PRINT : PRINT TAB(13) ;"BY MASON JONES ": POKE 34,4
110 VTAB 20: PRINT " ** COPYRIGHT 1983 BY MICROSPARC, INC. **":

VTAB 6: INVERSE : HTAB 14: PRINT " CATALOG MENU"
120 NORMAL
130 PRINT PRINT "1] CHANGE HEADING";
140 PRINT TAB(20);"2] CHANGE LOCK SYMBOL"
150 PRINT " 3] CHANGE TYPE";
160 PRINT TAB(20);"4] CHANGE SIZES"
170 PRINT
180
190
200
210
220
230
240
250
260
270
280
290

68

PRINT "5] CHANGE NAMES";
PRINT TAB(20) ;" 6] QUIT"

CH = PEEK (- 16384)
IF CH> 175 AND CH< 183 THEN
GOTO 200
POKE - 16368, 0
IF CH 176 THEN TEXT HOME
IF CH = 177 THEN 310
IF CH = 178 THEN 430
IF CH = 179 THEN 520
IF CH 180 THEN 670
IF CH 181 THEN 750

230

END

300 IF CH = 182 THEN END
310 HOME : PRINT
320 PRINT "WHEN ASKED, PLEASE INPUT THE HEADING"
330 PRINT PRINT "YOU WISH TO BE SHOWN WHEN THE DISK"
340 PRINT PRINT "IS CATALOGED. PLEASE DO NOT INPUT"
350 PRINT : PRINT "MORE THAN 12 CHARACTERS , OR IT MAY"
360 PRINT : PRINT "NOT WORK PROPERLY."
370 PRINT
380 INPUT "HEADING: ";HD$
390 IF HD$ = CHR$ (17) THEN 820: REM CTL-Q
400 IF LEN (HD$) < 12 THEN HD$= HD$ + " " · GOTO 400
410 FOR X = 1 TO LEN (HD$) :H1$ = MID$ (HD$,X,1): POKE 46011 -

X, (ASC (Hl$) + 128) : NEXT X
420 GOTO 820
430 HOME : PRINT
440 PRINT "WHEN ASKED, INPUT THE SYMBOL YOU WANT"
450 PRINT : PRINT "TO TA.KE THE PLACE OF THE ASTERISK": PRINT
460 PRINT "FOR DENOTING A LOCKED FILE IN THE": PRINT
470 PRINT "CATALOG OF THE DISK. YOU MUST INPUT": PRINT : PRINT

"ASCII CODE OF THE CHARACTER": PRINT : PRINT "WITH THE HIGH
BIT SET .": PRINT

480 PRINT : INPUT "SYMBOL'S ASCII CODE: ";SY$: IF SY$= CHR$
(17) THEN 820: REM CTL-Q

490 SY = VAL (SY$)
500 POKE 44515,SY
510 GOTO 820
520 HOME : PRINT
530 PRINT "WHEN ASKED, INPUT ASCII CODE (HIGH ": PRINT
540 PRINT "BIT SET) OF THE SYMBOL YOU WANT TO STAND"
550 PRINT "FOR THE FILE TYPE MENTIONED . SIMPLY" : PRINT
560 PRINT "PRESS <RETURN> TO PASS.": PRINT
570 PRINT : POKE 34,14
580 HOME INPUT "APPLESOFT FILE: ";AF$:AF = VAL (AF$)
590 HOME INPUT "INTEGER FILE: ";IN$:IN = VAL (IN$)
600 HOME INPUT "BINARY FILE: ";BF$:BF VAL (BF$)
610 HOME INPUT "TEXT FILE: ";TF$:TF = VAL (TF$)
620 IF AF$ < > "" THEN POKE 45993,AF
630 IF IN$ < > "" THEN POKE 45992,IN
640 IF BF$ < > "" THEN POKE 45994 ,BF
650 IF TF$ < > "" THEN POKE 45991,TF
660 GOTO 820
670 HOME : PRINT
680 PRINT "YOU CAN EITHER:": PRINT
690 PRINT II 1) MAKE SIZES 000"
700 PRINT " 2) HAVE NO SIZES PRINTED"
710 PRINT PRINT " CHOICE : ";: GET CH$: PRINT CH$:CH VAL

(CH$)
720 IF CH 1 THEN POKE 44615,169: POKE 44616,0
730 IF CH 2 THEN FOR X = 44643 TO 44645: POKE X,234 : NEXT X
740 GOTO 820
750 HOME : PRINT
760 PRINT "YOU CAN EITHER:": PRINT
770 PRINT " 1) HAVE NO NAMES PRINTED"
780 PRINT " 2) HAVE NAMES SCRAMBLED"

69

790 PRINT PRINT " CHOICE: ";: GET CH$: PRINT CH$:CH VAL
(CH$)

800 IF CH 1 THEN FOR X = 44571 TO 44573: POKE X,234: NEXT X
810 IF CH 2 THEN POKE 44542,32: POKE 44543,72: POKE

44544,249
820 TEXT : HOME : VTAB 12: PRINT "ANY FURTHER CATALOG

REFINEMENTS? ";
830 GET B$: PRINT B$: IF B$ = "Y" THEN 80
840 HOME : PRINT CHR$ (4); "CATALOG": END

80-Column Magic

Take advantage of the advanced features available on an BO-column Apple Ile, Ile or IIGS.
These two machine language routines give you double-width DOS 3 .3 catalogs and double
width Monitor listings.

by G. Mark Fabbi

Two simple patches to DOS will improve upon two common functions of the Apple Ile, IIC
and IIGS: catalog and disassembly (the LIST command in the Apple Monitor). Both of these
are restricted for the same reason - a lack of information on the screen. Now, with the
supplied DOS patch, you can more than double the number of file names on the display.

For those who like to play around in the Monitor, Double List (Listing 23) will produce
two-column, 40-line Monitor listings. Once you start using it, you will never go back to the old
20-line format again.

DOUBLE CATALOG DOS
In order to modify the catalog function in DOS, I needed to know where it resided in

memory and how it worked. You can read more about it in Beneath Apple DOS by Don Worth
and Pieter Lechner.

The catalog function is handled at address $AD98-$AE2E. After initializing and finding the
Volume Table of Contents (VTOC) sector, the catalog is ready to be listed. After each file name
is printed, a call is made to the routine at $AE2F. This subroutine skips to the next line, tests if
the screen is full, and if so, waits for a keypress to resume the catalog.

To enable DOS to print two file descriptions per line, this subroutine call had to be either
changed or eliminated. Eliminating the subroutine call scattered file names and sector sizes all
over the screen. The output routine had done just what I had told it to - send a stream of
characters to the display without any linefeeds.

Since this attempt used all 80 columns for the output, I knew I had to remove the linefeed
only after the first file name on each line.

Further research with Beneath Apple DOS provided a possible solution. The first line of a
table listing zero-page usage held the key. Value $24 contains the "cursor horizontal" position
on the screen. By testing this value, it should be possible to determine if one or two file
descriptions have been printed on a line.

After some experimenting, I discovered that this counter is not updated with each character
displayed on the screen, so that after printing the first file description, its value is still $00.
Therefore, my program needed to determine whether the value is a zero, and if it is, do an
immediate return to the catalog function. Otherwise, it calls the routine at $AE2F to issue the
linefeed and look after the vertical line count

Now that I had found a solution, I needed space to insert it into DOS - no longer as easy
to find as it once was. With the release of the Apple Ile came a small revision to DOS 3.3. This
revision corrected bugs in the append and position functions and used much of the free space
that was formerly available.

I reworked the section of code that prints the message DISK VOLUME at the top of each
catalog. The heading now reads VOL, and the patch overwrites part of the space where the text
DISK VOLUME used to be. This method does not interfere with other DOS modifications or
detract from any of DOS 3.3's functions.

The following steps are required to use the routine:

1. Boot a disk with normal DOS.
2. Type CALL -151 to enter the Monitor.

71

3. Type B3AF:A5 24 FO 03 20 2F AE 60. This inserts the patch into DOS.
4. Type AE22:20 AF B3. This diverts operation to the patch.
5. Type ADAF: 04

ADBl: B7
B3B7: AE EC EF D6

This changes the heading to read "Vol."
6. This optional step increases the number of lines printed in the catalog:

Type ADA4: 17
AE3D: 17

Once all the changes have been made and carefully tested, you can make the modified DOS
a permanent part of your software library by initializing a new disk with the new DOS in
memory. The above patch will not in any way affect the normal operation of DOS 3.3. It will
still function as it should on any Apple II Plus or 40-column Ile. To use the double-width
catalog, the unenhanced Apple Ile must be in 80-column mode. Other users should see 80-
Column Catalog on page 133.

Warning: this patch leaves you with a nonstandard DOS. While I have been careful to avoid
conflict with other patches and software, you could run into problems. Before implementing
this patch with a nonstandard DOS, check that it does not interfere with your previous
modifications.

DOUBLE DISASSEMBLY
A different method had to be used to modify the LIST command, since it resides in the

Monitor ROM (which cannot be changed without programming a new EPROM). This meant
that a new command had to be used to get an assembly listing in two columns.

I used the Monitor's <CTRL> Y command to activate the new function. The <CTRL> Y
command forces the Monitor to jump to memory location $3F8, where a Th1P instruction can
be placed to direct control to your own program.

The firs t step in using the <CTRL> Y function is to set the jump at $3F8 ($300-30F of
Listing 23). This routine must be executed before the Double List feature can be used. (An
alternate method to install the necessary jump would be to type in the Monitor command
3F8:4C 10 03.)

l. I. -..G DOUBLE LIST
To use Double List, BRUN DOUBLE LIST to set up the <CTRL> Y pointer. Once this has

"' done, the function can be activated from the Monitor by typing (addr) <CTRL> Y. This
w111 give you 40 lines of disassembly starting at the specified address. To continue the list, type
<CTRL> Y. The routine will remember where it left off.

ENTERING DOUBLE LIST
Please refer to Appendix A for help in entering this program. If you key it in from the

Monitor, save it to disk with the command:

BSA VE DOUBLE LIST,A$300,L$48

HOW IT WORKS
The Double List routine uses a simple trick to manipulate the text window to get two listings

on the screen at the same time. The text window is defined by four bytes in zero page (see
Table 5). These four bytes determine what part of the display is active. Parts of the screen that
are not active cannot be written to or scrolled off the screen. By changing the width and left
edge of the screen, the second column can be printed on the right side without destroying the
left half of the screen.

72

TABLE 5: Active Text Window Display

Location 80-Column Range
Dec Hex Dec Hex

Left Edge 32 $20 0-79 $0-$4F
Width 33 $21 0-80 $0-$4F
Top Edge 34 $22 0-23 $0-$17
Bottom Edge 35 $23 0-24 $0-$18

Note: Left Edge plus Width must always be less than the current screen setting (40 or 80).

The routine uses code that is already present in the Monitor and is easy to understand. The
first information it needs is the location to start the listing. This function is located at $FFA 7
and is called GETNUM. This procedure analyzes the characters in the input buffer, converts
them to hex digits, and stores them in a Zero-page Register. The value in the Y-Register tells
where in the buff er to start looking.

The subroutine call to $33D transfers the address from the Zero-page Registers that
GETNUM uses to the registers that are used by the list function. The 80-column card is then
activated by the call to $FE95.

The Apple is now ready to list the first 20 lines. This is done by calling the subroutine at
$FE63 called LIST2, an alternate entry point to the LIST command.

Once the first disassembly is done, the text window must be set to allow a second column to
be displayed on the screen. After resetting the text window (being careful to change the width
before changing the left edge), you are ready to list the next 20 lines. Another call is made to
$FE63, and you have a neat two-column, 40-line disassembly.

Before the program returns to the Monitor, the text window must be restored to its original
state and the hooks to DOS must be repaired. The last five lines of the routine handle these
functions.

W aming: Double List routine works on Apple He's with the new Apple 80-column card
only. Use of this program on a II Plus or a 40~column Ile will cause an immediate system
crash.

MODIFICATIONS
This routine can easily be relocated if you are using the $300 area for another routine.

Changes must be made to Listing 1 to let the <CTRL> Y function know where to find the
routine, and to modify the JSR $33D instruction to reflect the new location of the subroutine.
All other branches in the routine are relative, so they do not need to be changed.

REFERENCES
1. Watson, Allen. Apple Ile Reference Manual, Apple Computer, Inc.
2. Ibid. Addendum: "Monitor ROM Listing."
3. O'Shea, Donald C. "The Disassemblist," Nibble, Vol.3/No.5.
4. Worth, Don and Pieter Lechner. Beneath Apple DOS, Quality Software.
5. Zaks, Rodney. Programming the 6502, Sybex.

73

Listing 23: Double List

0300: A9 4C LOA #4C
0302: 80 F8 03 STA $3F8 ;Set up <CTRL>Y pointers
0305: A9 10 LOA #10
0307: 80 F9 03 STA $3F9
030A: A9 03 LOA #03
030C: 80 FA 03 STA $3FA
030F: 60 RTS
0310: AO 00 LOY #0
0312: 20 A7 FF JSR $FFA7 ;Get starting address
0315: 20 30 03 JSR $330 ;Move addr to PC
0318: A9 03 LOA #3
031A: 20 95 FE JSR $FE95 ;PR#3
0310: A9 14 LOA #14 ;# of lines to list
031F: 20 63 FE JSR $FE63 ;List 20 lines
0322: A2 27 LOX #27
0324: 86 21 STX $21
0326: 86 20 STX $20 ;Set window
0328: A2 01 LOX #1
032A: 86 25 STX $25 ;Set vertical cursor
032C: A9 14 LOA #14 ;# of lines to list
032E: 20 63 FE JSR $FE63 ;List 20 lines
0331: A2 00 LOX #0
0333: 86 20 STX $20
0335: A2 4F LOX #4F
0337: 86 21 STX $21 ;Reset window
0339: 20 EA 03 JSR $3EA ; Reconnect DOS
033C : 60 RTS
0330: 8A TXA
033E: FO 07 BEQ $347 ;No addr input
0340 : BS 3E LOA $3E,X
0342: 95 3A STA $3A,X ;Move addr to PC
0344: CA DEX
0345: 10 F9 BPL $340
0347: 60 RTS

74

Eleven Free Sectors
Take back the 11 sectors DOS 3.3 allocates, but doesn't use. This short machine language
routine lets you write to the unused sectors on track 2.

by Les Stewart

Everybody knows that DOS uses the first three tracks on the disk, right? DOS 3.3 does use
tracks 0 and 1, but the Volume Table of Contents (VTOC) only uses the first five sectors (0-4)
of track 2. However, it shows all of track 2 as used, so the last 11 sectors are not available to
you. Eleven sectors are not much, but they could be the difference between a DISK RILL
message and getting that last program on the disk.

Listing 24 shows a short machine language program to free up the 11 sectors. Please refer to
Appendix A for help in entering this program. If you key it in from the Monitor, save it to disk
with the command:

BSA VE FREE.l 1.SECTORS,A$300,L$41

Once in place, a CALL 768 from Applesoft or a 3000 command from the Monitor will change
the VTOC on your disk to show sectors 5-16 on track 2 as free. Check your typing carefully
- an error in this program could mess up your disk.

Listing 24: FREE.II.SECTORS

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15 0300 A9 00
16 0302 8D ED B7
17 0305 8D EB B7
18 0308 8D F3 B7
19 030B 8D FO B7
20 030E A9 11
21 0310 8D EC B7
22 0313 A9 40
23 0315 8D Fl B7
24 0318 A9 01
25 031A 8D F4 B7
26 0310 20 E3 03
27 0320 20 D9 03
28 0323 A9 00

;**************************************
Free.11 .Sectors
by Les Stewart

Copyright (C) 1984 by
MicroSPARC, Inc.

This program will add eleven
usable sectors to a DOS 3.3
disk .

i
· ************************************** I

ORG $300
LDA #$00 ;Initia lize
STA $B7ED ;Sector no.
STA $B7EB ;Vol. no.
STA $B7F3 ; Counte r for partial
STA $B7FO ;Buffer pointer lo
LDA #$11 ;Track no.
STA $B7EC
LDA #$40 ;Buffer pointer hi
STA $B7Fl
LDA #$01 ;Set up read
STA $B7F4
JSR $03E3 ;Enter DOS
JSR $0309 ;Call RWTS for read

sector

LDA #$00 ;Restore status register

75

29 0325 S5 4S STA $4S
30 0327 A9 FF LOA f$FF ; Change first two bytes
31 0329 SD 40 40 STA $4040
32 032C A9 EO LOA f$EO
33 032E SD 41 40 STA $404 1
34 0331 A9 02 LOA 1$02 ;Set up write
35 0333 SD F4 B7 STA $B7F 4
36 0336 20 E3 03 JSR $03E3 ;Enter DOS
37 0339 20 09 03 JSR $030 9 ;Call RWTS for write
3S 033C A9 00 LOA .f$00 ;Restore statu s regi ster
39 033E S5 4S STA $48
40 0340 60 RTS ;Done

000 ERRORS

0300 HEX START OF OBJECT
0340 HEX END OF OBJECT
0041 HEX LENGTH OF OBJECT
95FF HEX END OF SYMBOLS

76

Fancy Hi-Res Picture Loading
Tired of watching the "venetian blinds" open as your Hi-Res picture is loaded? Try these
machine language routines for special effects display of either Hi-Res screen.

by Art Arizpe

Add some style and flash to your Hi-Res picture loading with two short machine language
programs that let you avoid the venetian blind effect and provide a neat and different way to
load your graphics screens.

HOW TO USE THE PROGRAMS
The first routine, Fancy Hi-Res Loader 1, is shown in Listing 25. When you load a

picture with it, the middle of the picture will appear first, as a horizontal strip. The strip will
widen toward the top and bottom of the screen until the entire picture is revealed.

The effect of Fancy Loader 2 (Listing 26) is similar to Fancy Hi-Res Loader 1, but the
picture first appears as a vertical strip and widens toward the left and right edges of the screen.

Listing 27 shows a short Applesoft program that demonstrates the use of the two Hi-Res
loaders. They are very easy to use from BASIC.

Both programs require that you initially load your picture onto either Hi-Res page I or page
2. The programs will then transfer the picture to the other (destination) page with the special
effect You tell the programs the page on which your picture is located by POK.Bing a value
into location $2FO (752 decimal). If the value in $2FO is equal to zero, the picture is located on
page 1 and the program will transfer it to page 2. If the value in $2FO is anything else, the
picture is located on page 2 and the program will transfer it to page 1.

Use these routines from BASIC as follows:

1. Without issuing an HGR or HGR2 command, BLOAD your picture onto the page that is
not the destination page.

2. POKE 752,0 if page 2 is the destination page. POKE 752,1 if page 1 is the destination
page.

3. CALL 768 to transfer the picture to your destination page.

Using HPOSN to calculate the base address of a Hi-Res line is a simple, but effective way
to accomplish quite a bit in a short program. Using HPOSN, you can also write routines that
will do a color reversal on a Hi-Res picture or will filter out particular colors from a picture.

ENTERING THE PROGRAMS
Please refer to Appendix A for help in entering these programs. If you key them in from the

Monitor, save them with the commands:

BSA VE FANCY.LOADER1,A$300,L$AE

and

BSA VE FANCY.LOADER2,A$300,L$DO

HOW THEY WORK
FANCY HI-RES LOADER 1

The program uses HPOSN, a routine located at $F411 (62481) in Applesoft ROM. HPOSN
will position the Hi-Res cursor without plotting. The position of the cursor is passed to
HPOSN as: horizontal -Y-Register (MSB), X-Register (LSB); vertical- A-Register.

77

HPOSN will leave the address of the first byte of the particular Hi-Res line specified by the A
Register in locations $26 and $27 on page zero.

HPOSN not used here to plot anything. I use it to locate the base address of any Hi-Res
line. It then becomes a simple matter to use the Y-Register in the post-indexed indirect
addressing mode of the 6502 to transfer each of the bytes in a Hi-Res line from one page to the
other. This is accomplished in lines 76-99 of Listing 25.

The rest of the program involves determining the correct origin and destination pages,
clearing the destination page, and looping through the 192 Hi-Res lines in the right order.
Fancy Hi-Res Loader 1 is fairly short (173 bytes) and Listing 25 is set up to assemble at
location $300 (768). The code is relocatable so you can place it anywhere you have room.

FANCY HI-RES LOADER 2
Listing 26 shows the second routine, Fancy Hi-Res Loader 2. At 207 bytes, the program

is a bit longer than the other. It will still fit in the space starting at $300, but just barely - the
program ends at $3CF and the DOS pointers start at $3DO.

MODIFICATIONS
You can control the speed of the two transfers. Each program calls the routine WAIT at

$FCA8 in the Monitor ROM in order to provide a delay to the transfer. This delay is
determined in line 71 in Listing 25, and line 85 in Listing 26. Experiment with these
values until you find the speed that you like best

LISTING 25: FANCY.LOADER!

SOURCE FILE -

0
1 FANCY.LOADERl
2 WRITTEN BY ART ARIZPE
3 (C) 1983 MICROSPARC, INC.
4 CONCORD, MA 01742
5
6 i
7 PTR2 EQU $0 ;DESTINATION POINTER
8 PTRl EQU $26 ; ORIGIN POINTER
9 HPAG EQU $E6 ;PAGE ZERO POINTER, BASE ADDRESS

10 ;OF HI-RES LINE
11 HPOSN EQU $F411 ;ROM ROUTINE TO LOAD BASE
12 ;ADDRESS OF HI-RES LINE
13 WAIT EQU $FCA8 ;DELAY ROUTINE
14 FLAG EQU $2FO
15 COUNT EQU $2Fl
16 FROM EQU $2F2
17 Yl EQU $2F3
18 Y2 EQU $2F4
19
20
21 ORG $300
22 0300 AD FO 02 LDA FLAG ;DETERMINE IF WE ARE MOVING FROM
23 0303 DO 08 BNE P2.Pl ;PAGE 1 TO PAGE 2
24 0305 A9 20 LDA #$20
25 0307 SD F2 02 STA FROM
26 030A OA ASL
27 030B DO 06 BNE CONTl
28 030D A9 40 P2.Pl LDA #$40 ;OR PAGE 2 TO PAGE 1

78

29 030F 8D F2 02 STA FROM
30 0312 4A LSR
31 0313 SS E6 CONTl STA HPAG ;INITIALIZE VARIABLES
32 031S A9 00 LDA #$00
33 0317 8D Fl 02 STA COUNT
34 031A A9 SF LDA f$SF
3S 031C 8D F3 02 STA Yl
36 031F SD F4 02 STA Y2
37 0322 EE F4 02 INC Y2
38 032S AD Fl 02 NXTLIN LDA COUNT ;FAST HI-RES ERASE ROUTINE
39 0328 A2 00 LDX #$00
40 032A AO 00 LDY #$00
41 032C 20 11 F4 JSR HPOSN
42 032F A9 00 LDA 1$00
43 0331 AS TAY
44 0332 91 26 NXT8YT STA (PTRl),Y
4S 0334 ca INY
46 0335 co 28 CPY 1$28
47 0337 DO F9 8NE NXT8YT
48 0339 EE Fl 02 INC COUNT
49 033C AD Fl 02 LDA COUNT
so 033F C9 co CMP f$CO
51 0341 DO E2 8NE NXTLIN
52 0343 AD F2 02 LDA FROM
53 0346 85 E6 STA HPAG
54 034S A9 60 LDA #$60
5S 034A 8D Fl 02 STA COUNT
56 034D AD 50 co LDA $C050 ;SET GRAPHICS MODE
S7 0350 AD S2 co LDA $COS2 ;SET FULL SCREEN
58 0353 AD 57 co LDA $COS7 ;SET HI-RES MODE
59 03S6 AD FO 02 LDA FLAG
60 03S9 DO 06 8NE HGRl
61 03S8 AD SS co LDA $COSS ;DISPLAY PAGE 2
62 03SE 18 CLC
63 03SF 90 03 8CC LOOPl
64 0361 AD S4 co HGRl LDA $COS4 ;OR PAGE 1
6S 0364 AE F3 02 LOOPl LDX Yl ;MAIN ROUTINE
66 0367 20 Sl 03 JSR MOVE
67 036A CE F3 02 DEC Y1 ;MOVES A PAIR OF LINES
68 036D AE F4 02 LDX Y2
69 0370 20 81 03 JSR MOVE
70 0373 EE F4 02 INC Y2
71 0376 A9 30 LDA 1$30 ;THEN A SHORT PAUSE
72 0378 20 A8 FC JSR WAIT
73 0378 CE Fl 02 DEC COUNT
74 037E DO E4 8NE LOOPl
7S 03SO 60 RTS ;RETURN TO CALLER
76 03S l 8A MOVE TXA ;ROUTINE WHICH MOVES A LINE
77 0382 A2 00 LDX #$00
7S 0384 AO 00 LDY f$00 ;FROM THE ORIGIN PAGE
79 0386 20 11 F4 JSR HPOSN ;TO THE DESTINATION PAGE
80 0389 AS 26 LDA PTRl
81 0388 SS 00 STA PTR2
82 038D AD FO 02 LDA FLAG ;IS PAGE 1 THE ORIGIN?
83 0390 DO 09 8NE P2
84 0392 18 CLC
as 0393 AS 27 LDA PTRl+l
86 039S 69 20 ADC #$20

79

87 0397
88 0399
89 039B
90 039C
91 039E
92 03AO
93 03A2
94 03A4
95 03A6
96 03A8
97 03A9
98 03AB
99 03AD

000 ERRORS

85
DO
38
AS
E9
85
AO
Bl
91
CB
co
DO
60

01
07

27
20
01
00
26
00

28
F7

P2

CONT2
LOOP2

0300 HEX START OF OBJECT
03AD HEX END OF OBJECT
OOAE HEX LENGTH OF OBJECT
956E HEX END OF SYMBOLS

STA PTR2+1
BNE CONT2
SEC ;OR PAGE 2?
LDA PTRl+l
SBC #$20
STA PTR2+1
LDY #$00
LDA (PTRl),Y ;LOOP; TRANSFER BYTES FROM
STA (PTR2),Y ;PAGE TO PAGE
INY
CPY #$28
BNE LOOP2
RTS

LISTING 26: FANCY.LOADER2

SOURCE FILE -

0
1 FANCY.LOADER2
2 WRITTEN BY ART ARIZPE
3 (C) 1983 MICROSPARC, INC.
4 CONCORD , MA 01742
5
6 PTR2 EQU $0 ;DESTINATION POINTER
7 PTRl EQU $26 ;ORIGIN POINTER
8 HPAG EQU $E6 ;PAGE ZERO POINTER, BASE ADDRESS
9 ;OF HI-RES LINE

10 HPOSN EQU $F411 ;ROM ROUTINE TO LOAD BASE
11 ;ADDRESS OF HI-RES LINE
12 WAIT EQU $FCA8 ;DELAY ROUTINE
13
14 FLAG EQU $2FO
15 FROM EQU $2Fl
16 TEMP EQU $2F2
17 XCOUNT EQU $2F3
18 YCOUNT EQU $2F4
19 Xl EQU $2F5
20 X2 EQU $2F6
21 Y1 EQU $2F7
22 Y2 EQU $2F8
23
24 ORG $300
25 0300 AD FO 02 LDA FLAG ;DETERMINE IF WE ARE MOVING FROM
26 0303 DO 08 BNE P2.Pl ;PAGE 1 TO PAGE 2
27 0305 A9 20 LDA #$20
28 0307 SD Fl 02 STA FROM
29 030A OA ASL
30 030B DO 06 BNE CONTl
31 030D A9 40 P2.Pl LDA #$40 ;OR PAGE 2 TO PAGE 1

80

32 030F SD Fl 02 STA FROM
33 0312 4A LSR
34 0313 SS E6 CONTl STA HPAG ;INITIALIZE VARIABLES
3S 031S A2 ' 13 LDX .f$13
36 0317 SE F5 02 STX Xl
37 031A ES INX
38 031B SE F6 02 STX X2
39 031E SE F3 02 STX XCOUNT
40 0321 A2 SF LDX .f$SF
41 0323 SE F7 02 STX Yl
42 0326 ES INX
43 0327 SE F8 02 STX Y2
44 032A SE F4 02 STX YCOUNT
4S 032D A9 00 LDA #$00
46 032F SD F2 02 STA TEMP
47 0332 AD F2 02 NXTLIN LDA TEMP ;FAST HI- RES ERASE ROUTINE
48 0335 A2 00 LDX .f$00
49 0337 AO 00 LDY #$00
so 0339 20 11 F4 JSR HPOSN
Sl 033C A9 00 LDA #$00
S2 033E AS TAY
53 033F 91 26 NXTBYT STA (PTRl),Y
S4 0341 ca INY
SS 0342 co 28 CPY #$28
56 0344 DO F9 BNE NXTBYT
57 0346 EE F2 02 INC TEMP
SS 0349 AD F2 02 LDA TEMP
S9 034C C9 co CMP .f$CO
60 034E DO E2 BNE NXTLIN
61 03SO AD Fl 02 LDA FROM
62 0353 85 E6 STA HPAG
63 03SS AD so co LDA $COSO ;SET GRAPHICS MODE
64 03S8 AD S2 co LDA $COS2 ;SET FULL SCREEN
6S 03SB AD S7 co LDA $C057 ;SET HI-RES MODE
66 03SE AD FO 02 LDA FLAG
67 0361 DO 06 BNE HGRl
68 0363 AD S5 co LDA $COSS ;DISPLAY PAGE 2
69 0366 18 CLC
70 0367 90 03 BCC LOOPl
71 0369 AD S4 co HGRl LDA $C054 ;OR PAGE 1
72 036C A2 SF LOOPl LDX #$SF ;MAIN ROUTINE
73 036E SE F7 02 STX Yl
74 0371 ES INX
7S 0372 SE F8 02 STX Y2
76 037S SE F4 02 STX YCOUNT
77 0378 AE F7 02 LOOP2 LDX Yl ;MOVES TWO COLUMNS OF BYTES
78 037B 20 AO 03 JSR MOVE
79 037E CE F7 02 DEC Yl ;BETWEEN THE TWO PAGES
80 0381 AE F8 02 LDX Y2
81 0384 20 AO 03 JSR MOVE
82 0387 EE F8 02 INC Y2
83 038A CE F4 02 DEC YCOUNT
84 038D DO E9 BNE LOOP2
85 038F A9 30 LDA #$30 ;SHORT PAUSE
86 0391 20 AS FC JSR WAIT
87 0394 CE FS 02 DEC Xl
88 0397 EE F6 02 INC X2
89 039A CE F3 02 DEC XCOUNT

81

90 039D DO CD BNE LOOPl
91 039F 60 RTS ;RETURN TO CALLER
92 03AO SA MOVE TXA ;MOVE A COLUMN OF BYTES
93 03Al A2 00 LDX #$00
94 03A3 AO 00 LOY #$00
9S 03AS 20 11 F4 JSR HPOSN
96 03A8 AS 26 LOA PTRl
97 03AA SS 00 STA PTR2
98 03AC AD FO 02 LOA FLAG
99 03AF DO 09 BNE P2

100 03Bl 18 CLC
101 03B2 AS 27 LOA PTRl+l
102 03B4 69 20 ADC #$20
103 03B6 8S 01 STA PTR2+1
104 03B8 DO 07 BNE CONT2
lOS 03BA 38 P2 SEC
106 03BB AS 27 LOA PTRl+l
107 03BD E9 20 SBC #$20
108 03BF 8S 01 STA PTR2+1
109 03Cl AC FS 02 CONT2 LDY Xl
110 03C4 Bl 26 LOA (PTRl),Y
111 03C6 91 00 STA (PTR2),Y
112 03C8 AC F6 02 LDY X2
113 03CB Bl 26 LOA (PTRl),Y
114 03CD 91 00 STA (PTR2) , Y
llS 03CF 60 RTS

000 ERRORS

0300 HEX START OF OBJECT
03CF HEX END OF OBJECT
OODO HEX LENGTH OF OBJECT
9SS3 HEX END OF SYMBOLS

LISTING 27: FANCY.LOADER.DEMO

10 REM **********************
11 REM * FANCY . LOADER.DEMO *
12 REM * BY A. ARIZPE *
13 REM * COPYRIGHT (C) 1983 *
14 REM * BY MICROSPARC, INC *
15 REM* CONCORD, MA 01742 *
16 REM **********************

;IS PAGE 1 THE ORIGIN?

;OR PAGE 2?

;MOVE BYTES FROM PAGE TO PAGE

70 TEXT : HOME : VTAB 2: PRINT "** COPYRIGHT 1983 BY
MICROSPARC , INC. **": VTAB 10: HTAB 8: PRINT "1) FANCY HI
RES LOADER 1"

80 PRINT : HTAB 8: PRINT "2) FANCY HI-RES LOADER 2"
90 VTAB 24: HTAB 10: INPUT "WHICH LOADER? ";LDR
100 IF LDR = 1 THEN PRINT CHR$ (4);"BLOAD FANCY.LOADERl"
110 IF LDR = 2 THEN PRINT CHR$ (4);"BLOAD FANCY . LOADER2"
120 TEXT : HOME : VTAB 10: INPUT "PLEASE ENTER THE HI-RES

PICTURE FILENAME: ";NA$: PRINT
130 INPUT "TO WHICH PAGE DO YOU WISH TO LOAD THE HI-RES

PICTURE (1 OR 2)? ";PAGE
140 ADR = 8192 :ADR = ADR * (3 - PAGE)

82

150 PRINT CHR$ (4) ; "BLOAD"; NA$; " , A" ; ADR
160 IF PAGE = 1 THEN POKE 752 , 1
170 IF PAGE = 2 THEN POKE 752,0
180 CALL 768 : REM TRANSFER PAGE
190 GET A$: GOTO 120

83

Double Hi-Res Graphics for the Apple
II Plus
Now you can get higher resolution graphics from your Apple II Plus. All you need is a high
resolution monochrome monitor and this short machine language routine.

by Algis J. Matyckas

You don't have to be left out of the double Hi-Res graphics experience just because you
own an Apple II Plus. You can plot 560 points horizontally in two colors - black and white.
That's twice the resolution provided by the 280 points plotted in normal Hi-Res mode.

First, let me give a brief technical description of Hi-Res graphics. The II Plus has two
blocks of memory reserved for Hi-Res graphics. The first block, Hi-Res page 1, is located in
memory addresses $2000-$3FFF. The second block, Hi-Res page 2, is located at addresses
$4000-$5FFF. Each page is made up of 192 rows that are 40 bytes wide, and each byte is
made up of 7 bits, each of which controls a point on the screen. (The eighth bit is not
displayed.) So, 40 bytes times 7 bits equals 280 points horizontally.

For a quick Hi-Res demonstration, type:

HGR: VTAB 24: CALL -151 <RETURN>

This will display Hi-Res page 1, move your cursor to the text window portion of the screen,
and put you into the Monitor.

To set the individual bits to plot points on the screen, type:

2000:01 <RETURN>

You will see a point in the upper-left comer of the screen that results from placing the value
$01 in the first byte of Hi-Res screen memory. In this Monitor command, 2000 specifies the
memory address in hexadecimal, the 01 is the value of the byte to be written into this address,
and the colon(:) is the Monitor command to write byte(s) to the specified location.

Now enter the following sequence:

2000:02 <RETURN>
2000:04 <RETURN>
2000:08 <RETURN>
2000:10 <RETURN>
2000:20 <RETURN>
2000:40 <RETURN>

If you were to repeat this sequence using the appropriate address for each of the 40 bytes, you
would see all 280 points in the top row.

The eighth bit in each byte is called the color bit. Instead of controlling a point, it determines
the color of the points plotted by that byte. You can use the color bit to create double Hi-Res
graphics. Each of the first seven bits now represents two narrower points on the screen. If the
color bit in the byte is clear (set to zero), then the left point is plotted for that bit If the color bit
is set (to one), then the right point is plotted.

Enter the following sequence and watch the display:

2000:01 <RETURN>

84

2000:81 <RETURN>
2000:02 <RETURN>
2000:82 <RETURN>
2000:04 <RETURN>
2000:84 <RETURN>
2000:08 <RETURN>
2000:88 <RETURN>
2000: 10 <RETURN>
2000:90 <RETURN>
2000:20 <RETURN>
2000:AO <RETURN>
2000:40 <RETURN>
2000:CO <RETURN>

If you were to repeat this sequence for 40 bytes, you would plot 560 distinct points.
There are two limitations to using the color bit to extend the graphics capability of the II

Plus. First, color is dependent on location (this does not matter if you have a monochrome
display), and second, all the bits of the byte are affected by changing the color bit. In other
words, you can't plot points in positions one and two at the same time.

USING THE PROGRAMS
DOUBLE.HIRES

The machine language routine DOUBLE.HIRES (Listing 28) is a simple way to generate
double Hi-Res graphics. It can be located anywhere in memory and is called from Applesoft
with the command:

CALL D,C,X,Y

where D is the decimal address for the beginning of the machine language routine (768 as listed
here); C sets the color (0 for black and 1 for white); Xis the X-coordinate, which ranges from
0-559; and Y is the Y-coordinate, which ranges from 0-191. You can use either Hi-Res
graphics page with this routine. Table 6 shows the Applesoft routines that the program uses
and their functions .

TABLE 6: Applesoft ROM Routines

Applesoft
Routine

CHKCOM
TXTPTR
COMBYTE
FR1v1NUM

FAC
GETADR
HFNS

HP LOT
COWR
LINNUM

Function

Checks for a comma at the location pointed to by TXTPTR.
A pointer for the next character or token from a program.
Checks for a comma and gets a byte in the X-Register (uses TXTPTR).
Evaluates the expression pointed to by TXTPTR, puts the results into FAC, and

makes sure it's a number.
Applesoft's main floating-point accumulator.
Converts FAC into a two-byte integer and stores it in LINNUM.
Gets and sets coordinates to be plotted in Hi-Res graphics. The program enters

HFNS at $F6BF where it picks up the Y-coordinate.
Plots the point at the coordinate set by HFNS.
The memory location in which the Hi-Res color byte is stored.
A two-byte location used in Applesoft as a general 16-bit number location.

85

THE DEMONSTRATION PROGRAM
The Applesoft demonstration program OHR.DEMO (Listing 29) is a collection of shapes

drawn in double Hi-Res and standard Hi-Res graphics. The double Hi-Res routine is loaded at
decimal location 768. We can see that the screen appears contracted in double Hi-Res mode. A
50-point by 50-point box looks like a rectangle, for instance, and a circle in Hi-Res looks like
an oval. (To obtain more normal proportions, double the total range of all X-coordinates in
double Hi-Res.) However, resolution is finer - a sine wave has more plotted points and looks
smoother.

ENTERING THE PROGRAMS
To key in the program DOUBLE.HIRES, type it in as it is shown in Listing 28 and save

it to disk with the command:

BSA VE DOUBLE.HIRES,A$300,L$2E

To key in the Applesoft demonstration program OHR.DEMO, type it in as shown in
Listing 29 and save it to disk with the command:

SA VE OHR.DEMO

HOW DOUBLE.HIRES WORKS
The program is well-documented. When called, the routine first initializes the color byte to

black (zero). It next uses COMBYTE to check the CALL statement for a comma and puts the
color into the X-Register. If the color is white, the color byte is changed (set to 127 or color 3).

The routine now needs to get the X-coordinate. CHKCOM is used to check for a comma.
FRMNUM then gets the X-coordinate from the CALL statement and GETADR evaluates it and
stores it in LINNUM. The Cany bit is then cleared and the X-coordinate divided by two. This
is accomplished by rotating the byte in LINNUM to the right using the ROR instruction.

After the rotation, the Carry bit, which now contains the value previously in bit 0, is
checked to see if the coordinate is odd or even. If the Cany is set, the coordinate is odd and the
sign bit of the color byte is set. If the Cany is clear, the X-coordinate is even and the sign bit of
the color byte remains zero. The even coordinate plots the left half of the plotting bit, and the
odd coordinate plots the right half. The X-coordinate in LINNUM is now in the range of the
Applesoft HPLOT command. The routine enters the Applesoft routine, HFNS, where it gets
the Y-coordinate and then HPLOTs to plot the point. Control is then returned to the BASIC
program.

LISTING 28: DOUBLE.HIRES

86

0
1
2
3
4
5
6
7
8
9

10
11
12
13

;

•********************** '
;* DOUBLE.HIRES *
; * BY ALGI S MATYCKAS *
;* COPYRIGHT (C) 1 985 *
; * BY MICROSPARC, I NC *
; * CONCORD , MA 01742 *
·********************** '
; MICROSPARC ASSEMBLER SOURCE

; --- APPLESOFT ROUTINES

CHKCOM EQU $DEBE ;CHECKS TXTP TR FOR COMMA

COMBYTE
FRMNUM
GETADR
HFNS2
HP LOT
COLOR
LINNUM

EQU $E74C
EQU $DD67
EQU $E752
EQU $F6BF
EQU $F457
EQU $E4
EQU $50

; GET A BYTE IN X REG
;EVALUATE EXPRESSION
;CONVERT INTO INTEGER
; SET COORD.
;PLOTS A POINT AT COORD
;HI-RES COLOR BYTE
;16 BIT NUMBER LOCATION

SET

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

;ROUTINE CAN BE RELOCATED ANYWHERE IN MEMORY

0300
0302
0304
0307
0309
030B
030D

A9 00
85 E4
20 4C E7
EO 00
FO 04
A9 7F
85 E4

;---

; ---

ORG $300

GET COLOR (BLACK OR WHITE) ---

LDA 1$00
STA COLOR
JSR COMBYTE
CPX 1$00
BEQ BLACK
LDA l$7F
STA COLOR

;INITIALIZE COLOR BYTE
;WITH BLACK
;GET COLOR FROM CALL
;IS COLOR BLACK?
;THEN GO ON ELSE
;CHANGE COLOR BYTE
;TO WHITE

GET PLOTTING COORDINATES ---

030F
0312
0315
0318
0319
0318
0310
031F
0320
0321
0323
0325

20 BE DE
20 67 DD
20 52 E7
18

BLACK JSR CHKCOM
JSR FRMNUM
JSR GETADR
CLC

;CHECK FOR COMMA AND
;GET X COORDINATE

0327
032A
032D

000 ERRORS

66 51
66 50
90 08
D8
18
AS E4
69 80
85 E4

20 BF F6
20 57 F4
60

; ---

EVEN

0300 HEX START OF OBJECT
032D HEX END OF OBJECT
002E HEX LENGTH OF OBJECT
95AA HEX END OF SYMBOLS

ROR LINNUM+l
ROR LINNUM
BCC EVEN
CLD
CLC
LDA COLOR
ADC 1$80
STA COLOR

PLOT POINT ---

JSR HFNS2
JSR HPLOT
RTS

;EVALUATE AND STORE IN LINNUM
;CLEAR CARRY REG.
;DIVIDE BY TWO
;AND CHECK IF EVEN
;IF EVEN THEN PLOT

;ELSE CLEAR FOR BINARY ADDITION
;CLEAR CARRY REG.
;LOAD COLOR BYTE
;SET SIGN BIT
;AND STORE COLOR BYTE

;GET Y COORDINATE
;PLOT THE POINT
;RETURN

87

LISTING 29: DHR.DEMO

1 REM **********************
2 REM * DHR . DEMO *
3 REM * BY ALGIS MATYCKAS *
4 REM * COPYRIGHT (C) 1985 *
5 REM * BY MICROSPARC, I NC *
6 REM * CONCORD , MA 01742 *
7 REM **********************
50 REM INITIALIZE AND SET UP HGR SCREEN
60 HOME : HGR : HCOLOR= 3: PRINT
70 PRINT CHR$ (4);"BLOAD DOUBLE.HIRES"
80 DHR = 768: REM ADDRESS OF DOUBLE HI-RES ROUTINE
90 HPLOT 140,0 TO 140 , 159: HPLOT 0 , 159 TO 279,159
100 INVERSE : VTAB 21 : PRINT " DOUBLE HIRES

HI RE s II ; TAB (4 0) ; II II

110 VTAB 22: PRINT TAB(40) ;" ";
120 VTAB 23: PRINT TAB(40); " ";:NORMAL
130 REM **** DRAW BOX ****
140 VTAB 22: HTAB 15: PRINT "50 X 50 BOX"
150 REM DOUBLE HI-RES
160 FOR X 115 TO 165: CALL DHR,1,X, 55 : NEXT
170 FOR Y 55 TO 105: CALL DHR, 1,1 65,Y: NEXT
180 FOR X 165 TO 11 5 STEP - 1: CALL DHR,1,X,105: NEXT
190 FOR Y 105 TO 55 STEP - 1: CALL DHR , 1 , 115,Y : NEXT
200 REM STANDARD HI-RES
210 FOR X 185 TO 235 : HPLOT X,55: NEXT
220 FOR Y = 55 TO 105: HPLOT 235 ,Y: NEXT
230 FOR X = 235 TO 185 STEP - 1: HPLOT X,105: NEXT
240 FOR Y = 105 TO 55 STEP - 1: HPLOT 185 , Y: NEXT
250 GOSUB 630: GOSUB 610: REM WAIT FOR KEYSTROKE AND

DIVIDE SCREEN
2'60 REM **** DRAW CIRCLE ****
270 VTAB 22 : HTAB 12: PRINT "CIRCLE RADIUS 50 "
280 REM DOUBLE HI-RES
290 XC = 140:YC = 80:R = 50:PA = O:PB = 6 . 28318:DP .01745327 78
300 FOR P = PA TO PB STEP DP:X = R * COS (P) :Y = R * SIN

(P) :X = XC + X: Y = Y + YC : CALL DHR,l,X,Y : NEXT
310 REM STANDARD HI-RES
320 HCOLOR= 3
330 XC = 210 : YC = 80 :R = 50:PA = O:PB = 6.28318 : DP .01745327 78
340 FOR P =PA TO PB STEP DP :X = R * COS (P) :Y R * SIN

(P) : X = XC + X:Y = Y + YC: HPLOT X, Y: NEXT
350 GOSUB 630: GOSUB 610
360 REM **** DRAW SINE WAVE ****
370 VTAB 22 : HTAB 1 : INVERSE : PRINT TAB(15) ;" "; :NORMAL :

PRINT " SINE WAVE";: INVERSE : PRINT TAB(40);" ";:NORMAL
380 REM DOUBLE HI-RES
390 FOR A = 0 TO 278
400 X = (A - 140) / 38:Y = SIN (X):YP 96 - (Y * 30): IF YP <

0 AND YP > 191 THEN 420
410 CALL DHR,l,A, YP
420 NEXT
430 REM STANDARD HI - RES

88

440 FOR A = 140 TO 278
450 X = (A - 210) / 19:Y = SIN (X) :YP = 96 - (Y * 30): IF YP <

0 AND YP > 191 THEN 470
460 HPLOT A,YP
470 NEXT
480 GOSUB 630: GOSUB 610
490 REM **** DRAW DIAGONAL ****
500 VTAB 22: INVERSE : PRINT TAB(8);" ";:NORMAL : PRINT

"PARALLEL DIAGONAL LINES";: INVERSE : PRINT TAB(40);" ";:
NORMAL

510 REM DOUBLE HI-RES
520 FOR X = 0 TO 159: CALL DHR,1,X,X: NEXT
530 REM STANDARD HI-RES
540 HPLOT 140,0 TO 220,159
550 GOSUB 630
560 REM INSTRUCTIONS *****
570 TEXT : HOME : PRINT TAB(14) ;"DOUBLE HIRES": VTAB 3: PRINT

"CALL DHR,C,X,Y": PRINT : PRINT " DHR=DECIMAL LOCATION OF
DOUBLE HI-RES ROUTINE"

580 PRINT : PRINT" C=COLOR (O=BLACK,l=WHITE)": PRINT : PRINT"
X=X COORD. RANGE (0 TO 559)": PRINT : PRINT "Y=Y COORD.
RANGE (0 TO 191)": VTAB 20: PRINT" END OF DEMO"

590 END
600 REM SUBROUTINE TO DIVIDE SCREEN
610 HGR : HCOLOR= 3: HPLOT 140,0 TO 140,159: HPLOT 0,159 TO

279,159: RETURN
620 REM SUBROUTINE TO WAIT FOR RETURN TO BE PRESSED
630 VTAB 24: PRINT TAB(13);"PRESS <RETURN>";
640 X = PEEK (- 16384) : IF X < 128 THEN 640
650 POKE - 16368,0
660 IF X < > 141 THEN 640
670 VTAB 24: HTAB 1: CALL - 958
680 RETURN

89

Additional Hi-Res Colors
Tired of being limited to the basic Hi-Res colors? This short Applesoft program gives you
additional Hi-Res colors like the pros use.

by Matthew M. Storm

Many adventure games and graphics development systems for the Apple are on the market
advertise "21 Hi-Res colors" or" 100 Hi-Res colors." However, these are not true, solid
colors. They are created by combining two or more colors in a palette, or micro-pattern.

There are many methods to do this. Mine is not the fastest, nor the most versatile, but it is
short, effective, and easy to understand. If you have a compiler, you may wish to compile it
because it is quite slow.

USING THE PROGRAM
Type RUN and the program (Listing 30) will ask if you want to generate additional colors

with lines or palettes. Palette drawing is for different shades, and line drawing is for excess
colors. If you choose palettes, you must enter the numbers of three colors.

The first number is for the background color, the color on which the rest of the dots will be
drawn. The second is the color of the dots in the odd-numbered rasters (horizontal lines). The
third is the color of the dots in the even-numbered rasters. For any color that you want to make
darker, use a 0 followed with the color number typed twice (such as 0,5,5 for dark orange, and
0,2,2 for dark violet).

You will be prompted to select the width (in pixels) and enter the height (in rasters). After
this, you will see a square drawn on the screen in the color and dimensions you specified.

To create additional colors for lines, you only have to enter two color numbers - one for
the odd-numbered raster, and one for the even-numbered raster. For example, aqua can be
made by typing 1,6.

HOW IT WORKS
Palette drawing is done by first plotting a background. Then the program goes through a

loop in which the first dot is plotted in the upper-left comer and the loop is stepped by four (a
dot is drawn every four spaces). In an even-numbered row, the first dot is drawn four spaces
in. Every dot, as you might have noticed, is two pixels wide because not every color can be
plotted in every column.

Line plotting is much easier. When you plot in an area, the color of each line alternates. In
an area plotted with colors 1 and 6, three rasters high, the color of the rasters alternates 1,6, 1.

LISTING 30: HIRES.COLORS

1 REM **********************
2 REM * HIRES . COLORS *
3 REM * BY MATTHEW STORM *
4 REM * COPYRI GHT (C) 1983 *
5 REM * BY MICROSPARC, INC *
6 REM * CONCORD, MA 01742 *
7 REM **********************
10 HOME : VTAB 22 : PRINT " ** COPYRIGHT 1983 BY MICROSPARC , INC .

** " : VTAB 24: PR INT "(P)ALETTES OR (L)INES ";: GET G$: IF
G$ = "L" THEN 160

2 0 HOME : VTAB 24 : INPUT "ENTER COLORS #1 , #2 , #3 "; A, B,C

90

30 IF A> 7 ORB> 7 OR C > 7 THEN CALL - 211: GOTO 20
40 INPUT "HOW WIDE ? ";W
50 INPUT "HOW HIGH ? ";H
60 IF H > 189 THEN 50
70 IF W > 279 THEN 40
80 HGR : POKE - 163 02,0: HCOLOR= A: FOR X = 2 TOH + 2 : HPLOT

O, X TO W,X : NEXT
90 POKE - 16368, 0
100 FOR Y = 2 TO H + 2
110 IF Y / 2 = INT (Y / 2) THEN HCOLOR= B: FOR X = 1 TO W

STEP 4: HPLOT X,Y: HPLOT X + l, Y: NEXT X: GOTO 140
120 HCOLOR= C: FOR X = 3 TOW - 1 STEP 4: HPLOT X,Y : HPLOT X +

l,Y: NEXT X
130 IF PEEK (- 16384) > 127 THEN 150
140 NEXT Y
150 POKE - 16301,0: POKE - 163 68 ,0: RUN
160 HOME : VTAB 24 : INPUT "ENTER COLORS #1 , #2 ";A,B
170 IF A> 7 ORB > 7 THEN CALL - 211 : GOTO 160
180 POKE - 16368,0
190 INPUT "HOW WIDE ? ";W
200 INPUT "HOW HIGH ? "; H
210 HGR : POKE - 16302,0: POKE - 16368 , 0
220 IF W > 279 THEN 190
230 IF H > 189 THEN 200
240 FOR Y = 2 TO H + 2
250 IF Y / 2 = INT (Y / 2) THEN HCOLOR= A: HPLOT 0,Y TO W, Y:

GOTO 280
260 HCOLOR= B: HPLOT 0 ,Y TO W, Y
270 IF PEEK (- 16384) > 127 THEN 150
280 NEXT
290 GOTO 150

91

The Discourager
Prefix your favorite program with this short Applesoft routine to prevent unauthorized access.
Impervious to <CTRL>C and <RESET> keys, this password scheme truly discourages prying
eyes.

by Mark Allen

The Discourager is just what it sounds like - a deterrent to people who accidentally (or
otherwise) look through your personal files or programs. Along with giving you protection,
The Discourager allows you to disable the <RESET> key and other normal escape routes.

USING THE DISCOURAGER
To use The Discourager, simply type RUN. Remember that "PASSWORD" in line 140 can

be changed to any word or numbers. The program should be appended to your Hello or other
important programs. I suggest that you place it at the very beginning of your programs and
replace the END statement in line 130 with a GOTO statement pointing to the first line of the
main program. Be careful not to forget the password.

ENTERING THE PROGRAM
To key in the program, type in Listing 31 as shown and save it to disk with the

command:

SA VE DISCOURAGER

HOW IT WORKS
Line 10 starts the program by clearing the screen and POKEing values into memory that

will disable the <RESET> key. The values POKEd into locations 1010 and 1011 make up the
address of a third place in memory. This third location (-10906) runs the program in memory.
So when you press <RESET>, the program will start over.

The value POKEd into memory location 214 makes all Applesoft commands equal RUN.
So you may be able to get out of the program, but anything you type will be executed as
though you had typed RUN.

Line 20 sets up the loop for the length of your input. The 13 in line 20 can be changeo . •
any number up to 255, depending on how long your password is. Line 30 asks for the
password.

Line 40 uses the subroutine at line 140 to put the cursor in the correct position and also
checks to see if <RETURN> has been pressed. If it has , control branches to line 90. Line
50 checks for either a space or a right arrow keypress. If one has been pressed, then it
proceeds to line 70.

Line 60 prints an "X" in order to hide your password and line 70 puts a space where the
cursor was. The old letters picked up by Z$ are added to the new letter or space in line 80.
Line 90 checks to see if the input is equal to the password. If it is, then it goes to line 120.
Line 100 tells you that you failed to give the correct password and line 110 restarts the
program to give you another chance.

Line 120 tells you that you gave the correct password and sets everything back to normal.
Line 130 ends the program. Line 140 is a subroutine that positions the cursor by finding
how long the prompt (A$) is and then adding that to the number of characters already typed in.

92

LISTING 31: DISCOURAGER

1
2
3
4
5
6
7
10

20
30

40
50
60
70
80
90
100
110
120

130
140
150

REM **********************
REM * DISCOURAGER *
REM * BY MARK ALLEN *
REM * COPYRIGHT (C) 1984 *
REM * BY MICROSPARC, INC *
REM * CONCORD , MA 01742 *
REM **********************

TEXT : HOME : POKE 1011 , 213: POKE 1012,112: POKE 1010,102 :
POKE 214,128: ONERR GOTO 150

FOR I = 1 TO 13
VTAB 22: PRINT "** COPYRIGHT 1984 BY MICROSPARC, INC. **":A$

="USER NAME - ": VTAB 12: PRINT A$
GOSUB 140: GET Z$: IF Z$ = CHR$ (13) THEN 90
IF Z$ = CHR$ (32) OR Z$ = CHR$ (21) THEN 70
PRINT CHR$ (88) : GOTO 80
PRINT CHR$ (32) : GOTO 80

K$ = K$ + Z$: NEXT I
IF K$ = "PASSWORD " THEN GOTO 120

HOME : VTAB 12: FLASH : PRINT "ACCESS DENIED": NORMAL
FOR X = 1 TO 3000: NEXT : HOME : CLEAR : GOTO 20
HOME : VTAB 12: PRINT "ACCESS APPROVED": POKE 1011,157:
POKE 1012,56: POKE 1010,191: POKE 214 , 0
POKE 216,0: END
VTAB 12 : HTAB LEN (A$) + I: RETURN
IF PEEK (222) = 255 THEN RUN

93

Command Handler
Using DOS 33 commands from within an assembly language program is simple once you
know how DOS handles them. These short examples will get you started.

by Gary Bond

To find out how assembly language programmers manage to RUN or BRUN disk files
from within an assembly language program we need to know a little bit about command
handlers. The Apple Disk Operating System (DOS) is a language that allows you to input
information from the disk drive to the computer, and to output information from the computer
to the disk drive. The routines that handle these input/output (1/0) operations are called by the
various commands (BRUN, BLOAD, RUN, SA VE, etc.) in the DOS language.

THE COMMAND HANDLER ENTRY POINT TABLE
The command handler interprets the command with the help of the Command Handler Entry

Point Table and calls the appropriate routine. Each routine begins at a fixed address or entry
point To use the routine in an assembly language program, just jump to the address of a
particular routine. The addresses are given in the Command Handler Entry Point Table (fable
7).

TABLE 7: Command Handler Entry Points

INIT
LOAD
SAVE
RUN
CHAIN
DELETE
LOCK
UNLOCK
CLOSE
READ
EXEC
WRITE
POSITION
OPEN
APPEND
RENAME
CATALOG
MON
NOMON
PR#
IN#
MAXFILES
FP
INT
BSAVE
BLOAD
BRUN
VERIFY

94

$A54F
$A413
$A397
$A4FO
$A4FO
$A263
$A271
$A275
$A2EA
$A51B
$A5C6
$A510
$A5DD
$A2A3
$A298
$A281
$A56E
$A233
$A23D
$A229
$A22E
$A251
$A57A
$A59E
$A331
$A35D
$A38E
$A27D

CATALOGING
Make sure that DOS is loaded and you have a disk that can be cataloged in the drive. Enter

the Monitor by typing CALL-151. Then type in A56EG.
We cataloged the disk by directly calling the routine that handles the catalog operation (see

Table 6). The G following A56E is a Monitor command to run the code starting at the location
preceding the G.

If you want to see what the catalog routine looks like, type A56EL. The Lis another
Monitor command which lists the code in assembly language form.

THE BRUN ROUTINE
Some of the routines can be used alone, but a few require additional information such as a

file name. To illustrate, let's use the BRUN routine.
Get out a blank initialized disk, or one that can be clobbered if you make a mistake, and

from the Monitor, enter this short machine language program:

800 :A2 00 E8 8A 9D DO 07 EO lA DO F7 60

This will serve as the "B" type file for the BRUN routine called from assembly language.
Type 800L and press <RETURN>. The listing should look like this:

0800- A2 00 LDX #$00
0802- E8 INX
0803 - 8A TXA
0804- 9D DO 07 STA $07DO,X
0807 - EO l A CPX #$1A
0809- DO F7 BNE $ 080 2
080B- 60 RTS

For those who already know a little assembly language, the results should be clear. For
those who don't, type 8000. You should see the alphabet printed in reverse letters somewhere
near the bottom of your screen.

To save the program type:

BSA VE ABC,A$800,L$C

BRUNNING AN ASSEMBLY LANGUAGE FILE
To BRUN a file from assemble language requires two things. First, store the file name in a

place where DOS will find it. That place is called the primary file name buffer and begins at
memory location $AA 75. Second, perform either a jump command (JMP) or a jump to
subroutine (JSR) followed by the entry point address.

Enter the following machine language program:

300 : A2 00 A9 AO 9D 75 AA E8 EO lE DO F 6 A9 Cl 8D 75 AA A9 C2 8D
76 AA A9 C3 8D 77 AA 4C 8E A3

Now type 300L and study the disassembled listing below:

0300 - A2 00 LDX #$ 00
0302 - A9 AO LDA #$AO
0304- 9D 75 AA STA $AA7 5 , X
0307 - E8 INX
0308 - EO lE CPX #$1E
030A- DO F6 BNE $302

95

030C- A9 Cl LOA #$Cl
030E- 80 75 AA STA $AA75
0311- A9 C2 LOA #$C2
0313- 80 76 AA STA $AA76
0316- A9 C3 LOA #$C3
0318- 80 77 AA STA $AA77
031B- 4C 8E A3 JMP $A3 8E

Before trying it out, save the new program with the command:

BSA VE DEMO,A$300,L$1E

After you have both files saved on disk, try running the new program first from the Monitor by
entering 3000, and then as a direct disk command by entering BRUN DEMO. The disk file
DEMO clears the primary file name buffer, loads the file name to BRUN (ABC), and then
jumps to the entry point for the BRUN routine.

Lines 300-30A clear the primary file name buffer by storing AO (the value for space) in
locations $AA 75-$AA92. One of the biggest mistakes the beginning programmer makes is not
clearing the buffer. The buffer must be clear before you use it because remnants from a larger
file name may remain.

Lines 30C-30E store the value Cl in the first memory location of the buffer ($AA 75),
and the remainder of the program stores the values C2 and C3 in the second and third buffer
locations (AA76-AA77). The values Cl, C2 and C3 are the hexadecimal representations of the
letters A, B and C - which happen to be the file name for the binary file we previously saved
to disk. Finally, line 31B jumps to the command handler entry point for BRUN.

Try experimenting with the DEMO program by modifying 3 lB in the different ways shown
below. Use the G command to run the new version each time.

31B:4C 71 A2 (will LOCK the ABC files)
31B:4C 75 A2 (will UNLOCK the ABC file)
31B:4C 5D A3 (will BLOAD the ABC file)
31B:4C 7D A2 (will VERIFY the ABC file)
31B:4C 63 A2 (will DELETE the ABC file)

The same rules apply for Applesoft files using the LOAD, RUN and SA VE commands.

DISABLING A DOS COMMAND
It's easy to disable any of the DOS commands. Simply store the value 60 at the Command

Handler Entry Point Table address of the command you want to disable. The value 60 is an
assembly language command for return from subroutine (RTS). For example, to disable the
CATALOG command, enter A56E:60 from the Monitor and try to catalog the disk.

96

FID Plus
Streamline the FID utility from your DOS 3.3 System Master with these simple enhancements.
Eliminate unnecessary keypresses, give the commands mnemonic symbols and change the
wildcard character with just a few modifications of the code.

by Joe Humphrey

FID (Flle Developer) is probably the most useful and well-written program that comes with
DOS 3.3. However, it has several features which can become quite annoying after a while.

THE FEATURES
1. It uses digits 0-9 to represent commands, rather than using more meaningful mnemonics

(such as the letter C to obtain a CATALOG).
2. It requires that you press <RETURN> after every command, even though most commands

are only one character (a pet peeve of mine).
3. Instead of using an asterisk (*) as a standard for a wildcard character (such as in

"*.SOURCE", which represents all files that end in ".SOURCE"), FID uses the equal sign
(=).

4. FID requires that you reenter the slot and drive numbers every time you switch between
COPY FILES and other commands, even though they usually keep the same values.

HOW TO FIX THEM
FID starts at memory location $0803 and is immediately followed by data. Therefore, any

changes need to be inserted into the program itself. Fortunately all the above features except for
number 4 can be fixed despite this restriction, and number 4 isn't too great an annoyance once
number 2 has been taken fixed.

To implement the enhancements, you need to do the following:

1. CALL 151
BLOAD FID

2. 1885
<RETURN>

1885:CD CF
D6 CS

13AF:CD C3
03 DS CC
C4 02 06
Dl 00 D2
Dl . 00 C4
C3 CC D3
DS D6 00
CD 00 C3
D2 D3 Dl
00

Enter the monitor, and load FID.

Check the byte at 1885. If the value is 00, you should begin
entering code at 1886 instead of 1885 as shown in the next step

Change the COPY FILES command to MOVE FILES, since the
COPY command conflicts with the CATALOG command.

Change the commands from the digits 1-9 to the letters M(ove),
C(atalog), S(pace), U(nlock), L(ock), D(elete), R(eset),
V)erify and Q(uit).

97

3. 08C7:0C FD
20 ED FD

OABl: 4C Cl
FB A2 OB
2C A2 OC
20 CD OA 20
OC FD 8D
00 02 AA 20
ED FD 20
8E FD 8A
A2 01 60

0941:BC OA
0965:BC OA
098D:BC OA
09Bl:BC OA
0A73:BC OA
0B46:B4 OA
OB6B:B4 OA
OClE:BC OA
OE72:B7 QA
OE80:B4 OA
OE8B:B7 OA
OFAS:BC OA

4. 0A38:AA
OASO:AA
OCEl:AA
ODOO:AA
OD29 :AA

Change some routines so that now, whenever a
single character of input is wanted, only the
character needs to be typed.

Change all references to the routines.

Change the wildcard character from"=" to"*".

S. BSA VE FID+, A$0803, L$124E Save the result to a new file.

or

UNLOCK FID
BSAVE FID,A$0803,L$124E
LOCK FID

Update FID itself.

These changes can be made independently of each other so that you can make only those
changes, you want.

98

Label Printer
Mailing list programs are fine if you want to generate hundreds of labels, but what if you want
just one or two? This short Applesoft program is designed for these small jobs and gives you a
choice of type styles.

by Robert C. Brock

Conventional mailing label programs provide the advantage of access to extensive
databases, but these heavy-duty systems rarely lend themselves to generating single labels.
Label Printer makes it convenient to print single or multiple labels for envelopes, file folders,
disks, etc. It's easy to run, lets you vary the type style and gives you the option of making
corrections before the labels are actually printed.

Label Printer was developed for use with the Epson MX-80 printer. As written, the
program will let you select standard (10 characters per inch), condensed (16.5 cpi), or double
width (9 cpi) type styles, with line lengths of 25, 45 and 21 characters, respectively. It uses 3
by 7 /8 inch labels.

USING LABEL PRINTER
You are first prompted to enter the number of labels to be printed and the number of lines

each label is to have. Next, you select the type style. The program prints the line number, and
the line length is displayed on the screen with left and right brackets and periods for character
spaces. The line length varies with the type style chosen. Enter each line of the label. Then the
label is displayed on the screen and you have the option to correct the data. When everything is
correct as displayed, the printer is activated and the label(s) is printed. You can run more labels
or terminate the program with a single keystroke.

ENTERING THE PROGRAM
To key in the program, enter Listing 32 as shown and save it to disk with the command:

SA VE LABEL.PRINTER

HOW THE PROGRAM WORKS
Throughout the program, input is checked to reject out of range entries where applicable.

Lines 160-180 determine the type style and line length. Epsons, as well as other printers,
use escape sequences to vary type styles. These consist of <ESC> (CHR.$ (27)) followed by
another character which changes the printer's mode. Variable LT sets the style and variable DW
holds the value for the double width mode. Variable SP defines the line length. If you don't
have an Epson, your printer's commands can be substituted here.

Lines 190-230 make up the input routine. The looping process is determined by the
variable N which specifies the number of lines in the label. Lines 240-260 display the label
before printing and offer the opportunity to make corrections. When everything is correct, the
processing moves to lines 290 and 300 where the printer is turned on and the label printing
routine takes over.

CUSTOMIZATION
Label size and type style are a matter of need and personal preference. By changing the line

length (SP) and type style (LT and DW), different label sizes and varieties can be developed.

99

LISTING 32: LABEL.PRINTER

10
20
30
40
50
60
70
80
90

100
110
120
130

140
150
160
170
180
190
200

210
220
230
240

250
260
270
280
290
300

310

320
330

100

REM **********************
REM * LABEL.PRINTER *
REM * BY ROBERT C. BROCK *
REM * COPYRI GHT (C) 1984 *
REM * BY MICROSPARC, INC *
REM * CONCORD , MA 01742 *
REM **********************
TEXT : HOME : CLEAR : POKE 34 ,10: DIM L$(5)
INVERSE : PRINT " *** LABE L PRIN TER ***":

PRINT " *** BY ROBERT C. BROCK *** ": PRINT "*
COPYRIGHT 1 984 BY MICROSPARC , INC *" : NORMAL
VTAB 5: I NPUT "HOW MANY LABELS TO PRINT? "; NN
VTAB 6: INPUT "HOW MANY LINES PER LABEL?
IF N < = 0 OR N > 5 THEN GOTO 110

II; N

VTAB 8: PRINT "TYPE STYLE: 1) STANDARD": PRINT TAB(
14) " 2) CONDENSED": PRINT TAB(14)"3) DOUBLE WIDTH ";:
I NPUT "";TY$
IF TY$ = "1" OR TY$ = "2" OR TY$ = " 3 " GOTO 1 60
GOTO 130
IF TY$ "l" THEN LT
IF TY$ = " 2" THEN LT
IF TY$ = "3 " THEN LT
FOR NL = 1 TO N

18:SP
15:SP
14 : SP

25 : DW 18
45:DW = 18
21:DW 15

VTAB 12 : PRINT PRINT "LINE #";NL;":": PRINT : PRINT CHR$
(91);: FOR L = 1 TO SP: PRINT ''. ";: NEXT L: PRINT CHR$
(93)

VTAB 15 : HTAB 2 : INPUT ""; L$ (NL)
IF LEN (L$(NL)) >SP THEN HOME : GOTO 200
NEXT NL
HOME : VTAB 14 : PRINT "THIS IS THE WAY THE LABEL WILL
LOOK :": PRINT
FOR C = 1 TO 5: PRINT L$(C) : NEXT C
VTAB 22: PRINT "IS THIS CORRECT? (Y/N) ";: GET AN$
IF AN$ = " Y" THEN POKE 34 , 3: GOTO 290
IF AN$ = "N " THEN HOME : GOTO 190
HOME : PRINT : PRINT CHR$ (4)"PR#l"
FOR C = 1 TONN: FOR I= 1 TO 5 : PRINT CHR$ (DW); CHR$
(LT) ;L$(I): NEXT I: PRINT : NEXT C

PRINT CHR$ (4)"PR#0": POKE 34,3 : HOME : VTAB 5: PRINT "RUN
MORE LABELS? (Y/N) ";: GET AN$: PRINT AN$
IF AN$ = "Y" THEN GOTO 80
POKE 34 ,0: HOME : END

Break Processor
Use this handy technique to insert break points in your assembly language programs. Examine
the processor registers before continuing the execution of your program.

by John J. Broderick

When writing assembly language code, it is often useful to be able to stop, display the
registers, examine memory, and then continue processing. However, your Apple may not
have enough memory to use a large debugging program and many debugging programs cannot
debug past DOS. In these cases, the subroutine below could help:

BREAK
BRK
NOP
PLA
PLA
JSR $FF3F
RTS

Wherever you want to stop your program, place a JSR BREAK directed to this subroutine.
The processor will recognize the BRK instruction and perform a system break displaying the
registers, Processor Status flags and stack. To continue, press G and <RETIJRN>.

HOW IT WORKS
At a BRK instruction, the Apple ignores the next byte (a NOP) and places the address of the

first PLA in $3A and $3B. It also stores the registers in page 0 from memory $45-$49.
Pressing the G and <RETURN> keys causes the Apple to get the address from memory

locations $3A and $3B and begin executing the instruction at that address. The PLAs are
necessary to discard the two bytes that were pushed on the stack by the G<RETURN>.

The next two bytes on the stack will be used by the following RTS, returning to your
program. The JSR $FF3F restores the proper contents of the registers before continuing.

ADD A ONE TO THE A-REGISTER
Listing 33 is a little program that keeps adding a one to the A-Register. Please refer to

Appendix A for help in entering this program. If you key it in from the Monitor, save it to disk
with the command:

BSA VE BREAK.PROCESSOR,A$5000,L$17

After you assemble this program into memory, turn on the printer and begin executing these
instructions at 5000 hex: Type CALL-151 to get into the Monitor . Then type 36:0 Cl (to turn
on printer) and 5000G (to begin executing).

Figure 6 shows a sample printout. The A-Register starts by containing zero; however, a
one is added to it just before the break. All other registers should remain the same.

101

Figure 6: Sample Printout

5011- A=Ol X=02 Y=03 P=30 S=EE
*G
5011- A=02 X=02 Y=03 P=30 S=EE
*G
5011- A=03 X=02 Y=03 P=30 S=EE
etc.

If you want to place the BREAK subroutine directly into memory at 6000 hex, enter from
the Monitor:

6000:00 EA 68 68 20 3F FF 60

You would then JSR $6000 to execute a break.

LISTING 33: BREAK.PROCESSOR

0
1
2 BREAK.PROCESSOR
3
4
5 5000 A9 00 !NIT
6 5002 A2 02
7 5004 AO 03
8 5006 18
9

10 5007 69 01 LOOP
11 5009 20 OF 50
12 500C 4C 07 50
13
14 500F 00 BREAK
15 5010 EA
16 5011 68
17 5012 68
18 5013 20 3F FF
19 5016 60

000 ERRORS

5000 HEX START OF OBJECT
5016 HEX END OF OBJECT
0017 HEX LENGTH OF OBJECT
95E9 HEX END OF SYMBOLS

102

ORG $5000
LOA to ; (LOAD THE REGS WITH ANYTHING)
LOX #2
LOY B
CLC ;ALWAYS CLEAR THE CARRY BEFORE G

ADC u ; (ADD 1 TO THE A REGISTER)
JSR BREAK
JMP LOOP ; (NEVER ENDING LOOP FOR TEST)

BRK
NOP
PLA
PLA
JSR $FF3F
RTS

Decision Maker
Use this short program to help you with the decisions in your life. Just enter your options and
rate pairs of choices to determine your priorities.

by Beirne L. Konarski

Major decisions are seldom easy to make. There are too many factors to consider and
weigh, one against the other. For instance, when I considered a career change, I thought about
factors like location, type of industry, degree of independence and the required skills. When
you buy a car, you must decide on your priorities: do you want a car with great gas mileage,
power, comfort, style or are you just looking for the cheapest way to get around? When you
purchased your computer, you probably went through a process of setting priorities and
comparing memory size, portability, expandability, and available languages and software.

Decision Maker is a short program can help you make those complicated decisions by
allowing you to choose among different options. Then, based on your preferences, it lists the
options in order of their priority and displays the corresponding weighting factors. The
program uses a method of bubble sorting that even the inexperienced programmer can
understand.

USING DECISION MAKER
The program fust asks how many options are to be evaluated. You are then prompted to

enter each option. Next, pairs of options are displayed on the screen. Enter a 1 or a 2 for each
set to indicate your preference. At times the decision may be difficult, but usually one choice is
preferable. After the pairs are compared, the computer displays the options, with the most
favored at the top and the number of favored comparisons to the right.

ENTERING THE PROGRAM
To key in the Decision Maker, enter the Applesoft program shown in Listing 34 and save

it on disk with the command:

SA VE DECISION.MAKER

HOW THE PROGRAM WORKS
Program execution begins with the prompt to obtain the number of options to be compared.

This number is used as a loop index to obtain the list of options and to store them in the array
LIS$() (lines 170-200). The array structure allows easy comparisons between pairs of
choices in the nested loops in lines 210-330. The outer loop traverses the list from the first
element to the next-to-last element, using the inner loop to compare each successive array
element with every element that follows it. In this way, each item is compared to every other
item without duplication.

Before the results can be displayed, the array elements must be sorted. I chose a simple
bubble sort for this purpose. If the bubble sort is unfamiliar, trace through a sample array on a
piece of paper and you will find that each time through the loop, the highest value is pushed to
the top. Finally, a simple loop prints the array and you are asked if you want to restart the
program.

103

LISTING 34: DECISION.MAKER

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150

160

170
1 80
190
200
210
22 0
230
240
250
2 60
270
28 0
290
300

310
320
330
3 40
350
360
370
380
390
400

410
420
430
440
450
460

104

REM *************************
REM * DECISION.MAKER *
REM * BY BEIRNE L. KONARSKI *
REM * COPYRIGHT (C) 1985 *
REM * BY MICROSPARC, INC. *
REM * CONCORD , MA 01742 *
REM *************************
REM
REM **********************

REM CHOOSE PRIORITIES
REM **********************
HOME
VTAB 5: HTAB 14: PRINT "DECISION MAKER"
HTAB 19: PRINT "BY"
HTAB 12: PRINT "BEIRNE L . KONARSKI " : PRINT : PRINT " *
COPYRIGHT (C) 1985 MICROSPARC, INC. *"
VTAB 13: HTAB 1: CALL - 958 : INPUT "HOW MANY CHOICES DO
YOU HAVE? ";C$:C = VAL (C$) : IF C < 3 THEN 160
DIM LIS$(C) ,TALLY(C)
FOR X = 1 TO C
PRINT "CHOICE #"X; : INPUT LIS$ (X)
NEXT
FOR X 1 TO C - 1
FOR Y = x + 1 TO c
HOME
PRINT "1 . "LIS$(X)
PRINT
PRINT "2 . "LIS$ (Y)
PRINT
PRINT "WHICH IS MORE IMPORTANT TO YOU? ": GET ANSWER$
IF ANSWER$ = "l" THEN TALLY(X) = TALLY(X) + 1: GOTO 320
IF ANSWER$< > "2" THEN PRINT : PRINT " 1 OR 2 PLEASE":
PRINT : PRINT : PRINT "PRESS <RETURN> TO CONTINUE": GET A$:
GOTO 230

TALLY(Y) = TALLY(Y) + 1
NEXT
NEXT
REM *********************
REM DISPLAY PRIORITIES
REM *********************
HOME
FOR X = C - 1 TO 1 STEP - 1
FOR Y = 1 TO X
IF TALLY(Y) < TALLY(Y + 1) THEN HOLD = TALLY(Y) :TALLY(Y)
TALLY(Y + 1) :TALLY(Y + 1) = HOLD:TEMP$ = LIS$(Y) :LIS$(Y)
LIS$(Y + 1) :LIS$(Y + 1) =TEMP$
NEXT : NEXT
PRINT "HERE IS THE ORDER OF PRIORITY"
FOR X = 1 TO C: PRINT LIS$(X); :HTAB 20 : PRINT TALLY(X) :NEXT
VTAB 22: PRINT "WOULD YOU LIKE TO RESTART? (Y/ N)"; : GET A$
IF A$ "Y" THEN CLEAR : GOTO 120
PRINT : HOME : END

Print Using TAB
Overcome Applesoft's weakness in formatting output with these short Applesoft routines.
Align decimal points or format dollar amounts without resorting to machine language.

by Clay Carr

One of the features that Applesoft doesn't have is a decimal tabulation function. This
function allows you to print columns of numbers so that the decimal points are lined up neatly.
To see just how far away Applesoft is from this, run the following:

10 FOR J = 400 TO -400 STEP -100: PRINT J/7: NEXT: END

Obviously, this won't do for any but the roughest program outputs.
The most common way to deal with this problem is to create a PRINT USING function.

This is either a subroutine or a machine language program that can be called by an Applesoft
program. (A very complete machine language version of this is presented in C. Bongers' article
"Amper Print-Use Program" in Nibble Express Vol. II.)

For my purposes, though, this is overkill. I seldom need to handle anything complex
enough to require more than a few decimal places (including negative numbers) and a dollar
sign. As a result, I have found some simpler alternatives for formatting real number fields. In
these examples, I will be making changes in lines. Line numbers in the text refer to the ones
most recently changed.

USING BOOLEAN LOGIC
The simplest and fastest approach is to use the Boolean capabilities within Applesoft . (See

Don Ravey's article How to Use Boolean in Nibble Vol. 3/No. 5.) This approach is based on
the structure of logical comparisons in Applesoft. If the result of a comparison is true, a one is
returned; if the result is false, a zero is returned. Using only this structure, it's easy to create a
subroutine which produces a true decimal tab. The basic form of the subroutine is:

1000 T = 10 - (N>=lOOOO) - (N>=lOOO) - (N>=lOO) - (N>=lO) -
(N>=O)

1010 RETURN

To test the results, let's modify the simple number-generation routine above:

10 FOR J = 400 TO -400 STEP -100: N=J/7: GOSUB 1000: PRINT
TAB(T)N: NEXT: END

When you run the routine, you'll see all of the positive numbers neatly lined up on their
decimal points. The value for T can be any number, depending on where you want the number
to print. But although the positive numbers look great, the negative numbers are not correctly
lined up. Let's use Boolean logic to correct this with a few simple changes:

1000 I= 1 - (2*(N<0))
1010 T = 10 - ((N*I) >= 10000) - ((N*I) >= 1000) - ((N*I) >=100)

- ((N*I)>=lO) - ((N*I)>=O) - (N<O)
1020 RETURN

What have we done? The statement I= 1 - (2*(N<0)) sets I equal to -1 if N is negative.
Now, whenever the Boolean comparisons are made, any negative numbers are turned into

105

positive ones. (The same thing could also be done using the ABS function.) A final space is
subtracted if the number is negative (N<O), to create a slot for the negative sign.

MAKE ROUNDING OFF A SNAP
This is now a full-fledged decimal tab function, as you will see if you run line 10 again.

But most of the time we don't need all of those decimal places. There's a neat trick with the
.INT function that makes rounding off to any place a snap. Let's make it the first statement of
the subroutine:

1000 N =INT (N*l00+.5)/100
1010 I= 1 - (2*(N<0))
1020 T = 10 - ((N*I) >= 10000) - ((N*I) >= 1000) - ((N* I) >=

100) - ((N*I) >= 10) - ((N*I) >= 0) - (N<O)
1030 RETURN

Line 1000 rounds off N to two decimal places. The number of places to round off is
simple to select It is the inverse of the multiplier used inside the INT function. In the example
above, the multiplier is 100, so the number will be rounded off to 1/100, or two decimal
places. (If the division by 100 were omitted, the function would convert the decimal fraction to
a percentage. Any decimal fraction can be converted to a percentage if the divisor outside the
INT function is 1/lOOth of the value of the multiplier inside the function.)

DEALING WITH DOLLAR FIELDS
The subroutine now has a complete decimal tab function that includes rounding off to any

decimal place as you can see by rerunning line 10. If you just need to print numbers, it is
short and fast. It will also work if you need to print dollar amounts for positive numbers; just
put a dollar sign($) immediately after TAB(T). But the subroutine has three drawbacks when
used for dollar fields:

1. If the number is negative, the negative sign prints after the dollar sign ($-12.5).

2. If the number is less than one, no leading zero is printed before the decimal (which is not
necessary, but produces a more professional appearance).

3. If there is only one decimal place used ($37.5), it will print without a trailing zero. Also, the
decimal point will be omitted if the number is an integer.

I have not found a way to solve these problems with a decimal tab subroutine. Instead, we
need to construct a completely formatted result (often called a PRINT USING function, since
that is the command used to format numbers in many BASICs). The essential difference
between decimal tabulation and formatting is that in the latter, the number is converted into an
alpha field.

We could begin with the rounding function in line 1000 and convert the rounded number
to a string:

1000 N =INT (N*l00+.5)/100
10 10 N$ = STR$(N)
1020 RE TURN

106

This is straightforward, but it gets us into trouble right away. To see the problem, modify the
number generator line slightly and run it. Since we're not computing a tab setting, drop the tab
and substitute N$ for N:

10 FOR J = 400 TO -400 STEP -100: N = J/7: GOSUB 1000: PRINT N$:
NEXT: END

Merely changing the number (N) to a string (N$) hasn't helped to keep trailing zeros in the
cents field: 37.5 remains 37.5, and 25 remains 25. Fortunately, a sneaky bit of addition and
subtraction solves this:

1000 N =INT (N*l00+.5)/100+.001
1010 N$ = STR$(N)
1020 N$ = "$" + LEFT$ (N$,LEN(N$) - 1)
1030 RETURN

When you run line 10, you'll find that the trailing zeros have been captured. We added .001
to the initial number, guaranteeing that the string will pick up the decimal places. Then we
simply drop the rightmost character and voila - there are two decimal places in every
situation!

We solve the problems of negative numbers and zeros before decimal fractions with two
new leading lines:

1000 N$ = "$": IF ABS (N) < 1 THEN N$ = N$ + "0": IF N =0 THEN
N$ = "$0. 00 ": GOTO 1050

1010 IF N < 0 THEN N$ = "-" + N$
1020 N =INT (ABS(N)*l00+.5)/100 + .001
1030 N$ = N$ + STR$(N)
1040 N$ = LEFT$ (N$,LEN(N$) - 1)
1050 RETURN

Line 1000 adds a leading zero to each decimal fraction. It also sets N$ equal to "$0.00" if
the number is zero; without this instruction, Applesoft has the disconcerting habit of printing
zero in the exponential format. Line 1010 takes care of negative numbers by providing a
negative sign in front of the dollar sign.

We need to one more line to add leading spaces and then a final line for RETURN:

1000 N$ = "$": IF ABS(N) < 1 THEN N$ = N$ + "0": IF N = 0 THEN
N$ = " $0 . 00": GOTO 1050

1010 IF N<O THEN N$ = " - " + N$
1020 N = INT (ABS(N) * 100+.5)/100 + .001
1030 N$ = N$ + STR$(N)
1040 N$ = LEFT$ (N$, LEN(N$) - 1)
1050 IF LEN (N$) < 10 THEN N$ = " " + N$: GOTO 1050
1060 RETURN

This gives us the complete formatting subroutine for dollar fields, complete with leading
blanks, which can be verified by running line 10.

SUMMARY
The first routine will work satisfactorily (and rapidly) with any numbers that don't require

prefixes (such as dollar signs) and where trailing zeros aren't important. The second one,
which is slightly more complex and takes a bit longer to execute, will handle any real number

107

and can be used with or without prefixes. Both are short, with almost unnoticeable execution
times.

FOR THOSE WHO WOULD LIKE PERFECTION
Actually, there is a flaw in the round-off formula in both subroutines. When I first

submitted this article, Nibble editors wrote back and asked me to put the two subroutines on
disk. I did, and added a short subroutine so that they could enter any value to check out both of
the subroutines. Since I also wanted to be sure they worked, I entered a variety of numbers. A
glitch popped up. Mind you, the glitch shouldn't exist.

According to my very limited mathematical knowledge, the rounding formulas above should
work 100% of the time. But they don't. If you enter 1.115 or -1 .115 into either, you get 1.11
and -1.11. The same thing happens with 2.225 and 3.335. It doesn't happen with 4.445 or
higher repeats.

Fortunately, there is a simple fix. In both subroutines, .5 is added to the number in the
parentheses to ensure that rounding off occurs. All you need to do is to add .51 instead. Don't
ask me why it works - I assume that it has to do with the way Applesoft translates
hexadecimal values into decimal values.

108

Applesoft Variable Dump
Checking the value of a variable is one of the most powerful methods for debugging a
program. This Applesoft utility will display the values of almost all of your variables and can
be called from within the program any time.

by Tom Gabriele

Back in the days when a computer's memory was made up of magnetic doughnuts called
core, a major tool used to find bugs in programs was the core dump. A core (or memory)
dump is the output (usually on a printer) of the contents of all the memory locations in a
specified range of addresses. By dumping the portion of memory where program variables are
stored, the programmer gets a "snapshot" of the state of the program when the memory dump
was done.

Memory dumps are usually printed in hexadecimal format, so it's generally a rather
formidable task to decipher the variable values. Apple memory dumps can be obtained through
use of the Monitor, but the dump is still in the relatively inscrutable hex code.

When debugging an Applesoft program, you can look at the value of any variable or set of
variables by simply PRINTing them. These diagnostic PRINT statements can be put into the
program itself, or you can execute them in the immediate mode during a break in program
execution.

One difficulty with this practice is that in many cases you do not know which variable (or
combination of variables) has the value that is causing the program to malfunction. The
Variable Dump program is a simple way to dump the values of all program variables to give
you a complete snapshot of the state of the program.

Variable Dump (Listing 35) handles all types of variables and single dimensional arrays.
It does not handle multidimensional arrays. If it did, not only would the program be overly
complex and long, but the dump of multiple multidimensional arrays would be voluminous and
not generally helpful in debugging. You can selectively dump desired elements of such
multidimensional arrays through the conventional PRINT statement technique.

Variable Dump identifies each variable by only the first two letters in its name. This should
not be regarded as a limitation because Applesoft itself only uses the first two letters to identify
variable names. Thus, if you are uncertain which program variable is being dumped, this
ambiguity is caused by two or more variable names beginning with the same two letters, which
Applesoft treats as a single variable.

USING VARIABLE DUMP
The program can be used in three simple steps.

1. Add the Variable Dump program statements to the program being tested.
2. Run the program being tested.
3. Transfer control to the variable dump routine.

Adding Variable Dump to Your Programs
Getting the dump statements into the program under test can be accomplished in several

ways. Of course, its statements could be typed directly into your program. However, this is
tedious and time-consuming, and would discourage frequent use of the routine. A more
efficient method is to EXEC the statements from a text file into the program under test..

You can create an EXEC file by adding the following line to Listing 35:

1 PRINT CHR$(4)" 0 PEN VARDUMP": PRINT CHR$(4)"WRITE VARDUMP ":
POKE 33,33:LIST 63000,: PRINT CHR$(4)"CLOSE"

109

Thereafter, you need only enter the command EXEC V ARDUMP whenever you want to
add the variable dumping routine to your program.

An alternative for those who have the Apple DOS 3.3 Tool Kit is to use the APA utility to:

1. Hide in memory the program under test.
2. Load the variable dump program statements.
3. Merge the program under test.

You can accomplish the same task with MicroSPARC's GALE program.

Running the Program Under Test
The second step is to run the program under test Its execution could be interrupted at

appropriate places to display variable dumps. For example, dumps could be displayed just
before error symptoms appear, after they show up, when the program bombs, at the end of
each iteration through a long loop of statements, or before and after critical and complex
computations. The important point is that the program under test must be run in combination
with the variable dump program.

Transferring Control
The third step is to get the Apple started on line 63000, the beginning of the variable

dump routine. This can be done in a number of ways. The simplest way is, after stopping the
program, give the immediate command GOTO 63000. The ONERR GOTO 63000 statement
could also be inserted early in the program to automatically display a dump whenever an
Applesoft or DOS error occurs.

Another very effective way of invoking variable dumps is to sprinkle GOSUB 63000
statements at appropriate places in the program. The resulting series of program state snapshots
can provide an informative, dynamic description of program behavior. This debugging
technique, combined with the Applesoft TRACE facility, should trap even the most elusive
bug. Of course, to use this GOSUB approach, a RETURN must replace the END statement in
line 63140.

A printed record of variable values can be obtained in the normal manner by enabling the
printer with a PR#n statement (where n is the printer slot number) prior to executing the dump
routine.

LIMITATIONS
The variable dump statements are numbered beginning with line 63000. Therefore,

programs with extremely high statement numbers cannot be tested. Rarely, however, do
programs have statement numbers in this range.

Since Variable Dump is written in Applesoft it has its own variables. Programs that use
these same variable names cannot be tested. To minimize the chance of this, the dump program
contains only 10 variables named ZO-Z9. For those very few programs that may have one or
two such variables, the conflicting dump routine variables could be changed to Integer type
variables, namely ZO%-Z9% (except for Z3).

HOW IT WORKS
By studying the 45 statements that make up the dump routine, one who is unfamiliar with

how the Apple stores numerical and string values can gain a good working knowledge of those
Data Table formats. These formats are diagrammed on p. 137 of the Applesoft Manual (p.
217 of theApplesoft BASIC Programmer's Reference Manual for the Ile). The pointers into
these tables at memory locations $69-$6E are defined on p. 140 of that manual (p. 278 in the
Ile manual).

The operation of the dump program is rather simple. The utility is modularized into a
number of subroutines to make it easier to understand and to minimize the number of
statements. It first scans through all the simple variables and then all the arrays. Variable Z9

110

holds the address of the next variable to be dumped, while Z8 marks the end of that table of
variables. The first statement ensures that entries are made in the variable table for all the
variables in the dump program itself. This guarantees that the format and pointers of those data
tables will be stable (fixed) while the dump utility scans them.

As the scan reaches each variable, the first two characters of its name are saved in Zl and
Z2 while it is temporarily renamed Z3. The value of Z3 is then displayed on the screen
following the name contained in Zl and Z2. After the deed is done, the correct name is restored
(POKEd) back to the variable, and the scan continues to the next variable.

As indicated in the Applesoft Manual, variable type is indicated by the most significant bits
(MSB) of the ASCII characters coding the first two letters of the variable name. If both MSBs
are zero, the variable is real. If both are one, the variable is integer. If the first character MSB is
a zero but the second character MSB is a one, then the variable is a string. (The older manual
seems to have this one backwards.)

The dump utility stores these MSBs in variables Z4 and Z5. It uses them to decide the type
of the variable being scanned so that it can use the appropriate variable type for Z3 when it
prints its value.

In scanning the simple variables, the Z9 pointer is incremented by seven to point to the next
variable. (Seven bytes are used to describe each simple variable.) In scanning the array
variables, the Z9 pointer is incremented by the total number of bytes used to store that array.
This byte count is contained in the third and fourth bytes of that array's Data Table.

After the name of each simple variable is extracted from the table, it is checked to see if it is
a variable of the utility program itself (ZO-Z9), since these are stored in the same Data Table
along with the variables of the program under test. If the variable being scanned is a dump
program variable, it is simply skipped. The number of dimensions of each array variable (in the
fifth byte of its Data Table) is also checked. If it is greater than one, that variable is skipped.

LISTING 35: VARIABLE.DUMP

10 REM *********8.9.84*******
20 REM * VARIABLE.DUMP *
30 REM * BY TOM GABRIELE *
40 REM * COPYRIGHT (C) 1984 *
50 REM * BY MICROSPARC, INC *
60 REM * CONCORD, MA 01742 *
70 REM **********************
63000 ZO = O: Zl = O:Z2 = O:Z4 = O:Z5 O:Z6 O:Z7 O:Z8 O: Z9

= 0
630 10 GOSUB 63360
63020 HOME : PRINT "** COPYRIGHT 1984 BY MICROSPARC, INC. **":

PRINT : PRINT "APPLESOFT VARIABLE DUMP": PRINT
63030 IF Z9 = Z8 GOTO 63130
63040 GOSUB 63270
63050 GOSUB 63320: IF (ZO) GOTO 63120
63060 GOSUB 63300
63070 PRINT CHR$ (Zl); CHR$ (Z2);
63080 IF (Z4) THEN PRINT " % = ";Z3%: GOTO 63110
63090 IF (Z5) THEN PRINT "$ = ";Z3$: GOTO 63110
63100 PRINT " = "; Z3
63110 GOSUB 633 10
63120 Z9 = Z9 + 7: GOTO 63030
63130 GOSUB 63440

111

63140 IF Z9 > = ZS THEN PRINT : PRINT "END OF VARIABLE DUMP":
END

631SO GOSUB 63270
63160 PRINT "ARRAY ";: GOSUB 63400
6316S IF PEEK (Z9 + 4) < > 1 THEN PRINT " HAS "; PEEK (Z9 +

4);" DIMENSIONS.": GOTO 63260
63170 GOSUB 63300
631SO PRINT
63190 FOR Z6 = 0 TO PEEK (Z9 + 6) + 2S6 * PEEK (Z9 + S) - 1
63200 PRINT "ELEMENT (";Z6;") = ";
63210 IF (Z4) THEN PRINT Z3%(Z6): GOTO 63240
63220 IF (ZS) THEN PRINT Z3$(Z6): GOTO 63240
63230 PRINT Z3(Z6)
63240 NEXT Z6
632SO GOSUB 63310
63260 GOSUB 63390: GOTO
63270 Zl = PEEK (Z9) :Z2
632SO Z4 = Zl > 127:ZS =
63290 RETURN

63140
PEEK (Z9 + 1)

Z2 > 127

63300 POKE Z9 + 1,Sl + 12S *ZS: POKE Z9,90 + 12S * Z4: RETURN
63310 POKE Z9,Zl: POKE Z9 + 1,Z2: RETURN
63320 zo = 0
63330 IF NOT (Zl = 90 OR Zl = 13S) THEN RETURN
63340 IF ((Z2 - 12S *ZS) > 47) AND ((Z2 - 12S *ZS) <SS) THEN

zo = 1
633SO RETURN
63360 Z9 = PEEK (lOS) + 2S6 * PEEK (106)
63370 ZS = PEEK (107) + 2S6 * PEEK (lOS)
633SO RETURN
63390 Z9 = Z9 + PEEK (Z9 + 2) + 2S6 * PEEK (Z9 + 3) : RETURN
63400 PRINT CHR$ (Zl); CHR$ (Z2);
63410 IF (Z4) THEN PRINT "%";: RETURN
63420 IF (ZS) THEN PRINT "$";
63430 RETURN
63440 ZS = PEEK (109) + 2S6 * PEEK (110): RETURN

112

Flashing Cursor
If you have an 80-column Apple Ile, Ile or JIGS, you can use this short program to customize
your cursor. Completely invisible to your application program, this routine works in both 40-
and 80-column modes.

by Cecil Fretwell

The "Apple Presents ... Apple" disk that comes with the Apple Ile demonstrates a flashing
cursor. The 80-Column Text Card Manual doesn't show a control code to turn on the flashing
cursor. So how do you set a flashing cursor? The answer is that no such control code exists. A
special program must be written to obtain a flashing cursor. Personally, I prefer a flashing
cursor, and writing such a program was a challenge I abandoned many times before I finally
succeeded.

Once installed, the Flashing Cursor program works well no matter which screen mode is
active, or whether you're using BIG MAC, PLE, or almost any other program or utility. The
flashing underline character replaces the active cursor, whether it is the flashing checkerboard
or the solid steady inverse cursor if the card is active. For example, suppose the cursor is
positioned at an A on the screen. What you will see using Flashing Cursor is an alternate
display of the A and the underline character.

LIMITATIONS
Unfortunately, the code does not produce a flashing cursor 100% of the time. First consider

the flashing checkerboard mode. I call this the regular 40-column mode, since it is exactly like
the Apple II Plus mode. The only flaw in this mode occurs when you perform the CATALOG
command, and the display stops to allow you to examine the file names on the screen. At this
point, the flashing checkerboard cursor appears.

When you complete the CATALOG command, the flashing underline cursor returns. To
replace the flashing checkerboard cursor in this instance is not impossible, but it would require
twice the code.

When the card is active, the flaw when you do a CATALOG still exists. The difference is
that a solid cursor appears during the CATALOG command pauses. A second flaw occurs
when escape mode is invoked. Pressing <ESC> causes the cursor to be replaced with a
nonflashing plus(+) character. When you exit from escape mode, the solid cursor is displayed
until you move it from the position at which the escape mode was exited. Nothing can be done
to flash the plus character because escape mode is handled entirely within the ROM code on the
card. Other than these exceptions, the system works exactly as if the Flashing Cursor code
were not installed.

ENTERING THE PROGRAM
Applesoft Version

To key in the program, type in the FLASHING.CURSOR program as shown in Listing
36 and save it to disk with the command:

SA VE FLASHING.CURSOR

Before you RUN the program for the first time, I strongly suggest that you remove the disks
from your drive(s), or at least open the doors of the drives. The process of installing
FLASIDNG.CURSOR involves fooling "Mother DOS," who gets extremely unhappy if you
make a mistake.

If you get the "ADDRESS FOR FLASHING CURSOR?" prompt, there is a good chance
that you entered the DATA statements correctly. If the program results in the message DATA

113

STATEMENTS ARE WRONG, you have made a mistake entering the DA TA statements in
lines 180-330. Correct your mistake(s), SA VE and RUN the program again.

Now where do you want the FLASHING.CURSOR code located? Suppose you choose the
well-worn area at $300. Enter 768 (the decimal equivalent of $300) and press <RETURN>.
You should get the message FLASHING CURSOR IS INSTALLED, along with the display
of a flashing cursor. If the system dies, you may have made a mistake in lines 130-150, or
the address you specified for the flashing code wiped out DOS or other valuable code. (See
why I urged you to save the program and protect your disks before you test it?)

The location for the code is up to you. If you have other programs you want to load into
$300, you will have to find 151 bytes of free space somewhere else. Just determine the decimal
equivalent of the beginning address and enter this value at the "ADDRESS FOR FLASHING
CURSOR?" prompt After determining that the Applesoft program is correct, you can now
safely RUN it from disk, LOAD and RUN it, include it in your HELLO program, etc. Now
test your program. I hope you will find no flaws other than those mentioned earlier.

Machine Language Version
Please refer to Appendix A for help in entering CURSOR.ML (Listing 37). If you key it

in from the Monitor, save it to disk with the command:

BSA VE CURSOR.ML, A$2EE, L$A9

If you want to store the machine language program in an area of memory other than that
starting at $300, enter the hex code (starting at line 57) into the desired area of memory. Then
enter the code in lines 39-45 starting at $2EE, replacing location $2F4 with the low address
byte of the code, and location $2F9 with the high address byte of the code. Before you test
your work, save it to disk as two separate files with names of your own choice.

The first, consisting of the FLASHING CURSOR code from line 57 on, should be saved
using the address parameter of the location at which the code was entered, and a length
parameter of $97. The second file will contain the code at $2EE and will have an address
parameter of $2EE and a length parameter of $12. Then BLOAD the FLASHING CURSOR
code, and BRUN the $2EE code.

Do not attempt to short circuit the $2EE code! For example, do not try to BLOAD the
FLASHING CURSOR code, and then use the ROM monitor to plant the code at $9EBA. If
you do, "Mother DOS" will die with unpredictable results!

HOW IT WORKS
The key to success is the hook planted at $9EBA. DOS traps all characters by replacing

KSWL, KSWH with the $9E81 address. After some gyrations, KSWL and KSWH are
replaced with the proper hook to the keyboard code, and DOS performs a JMP (KSWL) to that
code.

Once a key is pressed, KSWL and KSWH are set back to $9E81. Trying to replace the true
KSWL (e.g., $FD1B for regular 40-column mode) retained by DOS at $AA55, by a hook to
the FLASHING CURSOR code, which then does the JMP (KSWL) ($9EBA in DOS) won't
do the trick. For example, a PR#3 from regular 40-column will disable the FLASHING
CURSOR code.

In order to make the code position independent and to minimize the amount of space it
requires, existing subroutines in the 80-column card such as SCREEN were used. This
requires careful switching in and out of the card firmware (lines 57-61 and lines 128-
131). This concept was borrowed from the F8 ROM listing. The rest of the code requires an
understanding of how characters are retrieved and placed on the screen.

Lines 57-77 perform two functions. First, they save the state of the system before
Flashing Cursor is activated and wait for a key to be pressed. After a key is pressed, the
system state is restored, and the applications software is not even aware of the manipulations
being performed.

114

Next, the ISTAT location must be set up for use by KEYDL Y. Lines 58-94 operate with
interrupts disabled. Once KEYDLY comes into play, interrupts are allowed to occur while
Flashing Cursor is active.

Lines 78, 79 and 80 may seem unnecessary. This code appears in a lot of Apple's
software involving the lie 80-column card. The F8 ROM code that was executed before
reaching Flashing Cursor tried to replace the character at the current cursor position with a
flashing character. Not only does this foul up 80-column mode, but also, because of the way
the Ile maintains the screen buffers, failure to perform lines 78, 79 and 80 would result in
an unwanted character on the screen.

Having reached line 81, this is a good time to explain the function of RD80VID. If bit 7 of
this location is on, we know that the text card is active and in 80-column mode. If it is off, we
are in 40-column mode and at this point do not care whether the card is active or not. If 80-
column mode is active, lines 83-86 repair the improper screen character fetched by the F8
ROM software.

The subroutine SCREEN is another important feature on the text card. OURCH is the CH
(horizontal position) value maintained by the text card. This pesky location is one of the
reasons why things like HTAB and POKE 36,.xx do not always correctly position the cursor
on the screen. By loading the Y-Register with the current horizontal cursor position and
clearing the V-flag, SCREEN will return the current screen character at the cursor in the A
Register. We need this character because it is the one we want to flash on the screen.

By loading Y with the current horizontal cursor position, loading A with the desired
character, and setting the V flag, SCREEN will place the desired character on the screen. We
will use this idea very shortly.

Finally, the cursor is flashed by having the current screen character alternate with the
underline character. If you don't like the underline character, you can replace the contents of
location 331 with whatever character you like. Lines 87-117 perform the flashing work.

Lines 87 -95 place the underline character on the screen then look for a key pressed via
KEYDLY. RD80VID tells us how to set up the Y-Register properly so that SCREEN will place
the underline character on the screen. KEYDL Y not only lets interrupts occur, but also
provides a delay, allowing the character in the A-Register to remain on the screen for a short
time. If a key is pressed, Carry will be returned set and the character value of the key pressed
will be in the A-Register. If a key is not pressed, Carry is returned clear.

For the moment, assume that no key is pressed; therefore, the branch in line 96 is not
taken. If you want to replace the underline character with the current character on the screen,
this is where AL TCHR comes into play. If bit 7 of that location is turned on, the text card is
active. If it is turned off, the 4C-column mode is active.

If 40-column mode is active, no further work regarding the current character is required and
the program branches to line 109. If the card is active, lines 100-108 ensure that a flashing
character is "replaced" by its nonflashing equivalent before control passes to line 109. Failure
to perform this logic can produce some weird results on the screen.

When line 109 is reached, the logic up to line 116 performs the same operations as those
performed for the underline character. If calling KEYDL Y in line 116 shows no key pressed,
the program loops back to line 89 to display the underline character.

When a key is finally pressed, either line 96 or the failure to take the branch in line 117
causes lines 118-132 to be executed. Lines 118-124 restore the original character to the
screen. Lines 125-131 restore the state of the system before Flashing Cursor was invoked.
Finally, line 132 proceeds through KSWL to get the key pressed, etc. At this point, the
system doesn't even know that Flashing Cursor exists.

MODIFICATIONS
Since it can be customized, Flashing Cursor can be used in many creative ways. For

instance, a program with several modes could use a different cursor for each mode. Use your
imagination and have fun with Flashing Cursor!

115

I
I

I
I

.
' I

LISTING 36: FLASHING.CURSOR

1
2
3
4
5
6

REM
REM
REM
REM
REM
REM

* FLASHING.CURSOR *
* BY CECIL FRETWELL *
* COPYRIGHT (C) 1 984 *
* BY MICROSPARC, INC *
* CONCORD , MA 01742 *

7 REM
10 s = 0

20 FOR I = 1 TO 152
30 READ C:S = S + C
40 NEXT I
50 IF S = 0 THEN 80
60 PRINT "DATA STATEMENTS ARE WRONG"
70 END
80 RESTORE
90 TEXT : HOME : VTAB 22: PRINT "** COPYRIGHT 1984 BY

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
3 00
310
320
330

116

MICROSPARC, I NC . **": VTAB 1 0: INPUT "ADDRESS FOR FLASHING
CURSOR? " ;AD %
FOR I = 0 TO 150
READ C : POKE I + AD%,C
NEXT I

H% = AD% I 256
L% = AD% - H% * 256

POKE 39625 ,L%: POKE 39835 ,L%: POKE 39626,H%: POKE 39836 ,H%
PRINT "FLASHING CURSOR IS INSTALLED"
END
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

8,120 ,44, 21 ,1 92 , 8,141,7 ,192 ,133 ,2 52 ,104
168,104,72,42,42,42,42,133,253,152
72,165,252,72,138,72,165,252,164
36,145 ,40,173 , 31 ,1 92 ,1 6 , 9,17 2, 123, S
184,32 , 6 , 207,133 , 252 ,1 69 , 223 ,1 64
36 , 44 , 31,192,16,3,172 , 123,S , 44 , 88
255,32 ,6, 207 , 36,253 , 32,198,194
176,47,165,252,44,30,192,48,17,164,50
192,127 , 208 , 11,201,64,144 , 7 , 201
128 ,176 , 3,24,105 , 64 ,164, 36, 44,31,1 92
16,3,172,123,S,44,88,255,32,6,207
36,253,32,198 ,1 94,144 , 184,165,252
164 , 36,44 , 31,192,16,3 , 172,123 , S
44,88,255,32,6,207,104,170,104,40
48,3,141,6,192,40,108 , 56 , 0
-1 6049

\ \
\ \

LISTING 37: CURSOR.ML

SOURCE FILE -

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39 02EE
40 02FO
41 02F3
42 02F5
43 02F8
44 02FA
45 02FD
46
47
48
49
50
51
52
53

A9 4C
SD BA
A9 01
SD BB
A9 00
SD BC
4C DO

9E

9E

9E
03

;**********************************
CURSOR.ML

CUSTOM
FLASHING CURSOR

FOR APPLE IIE
BY CECIL FRETWELL
COPYRIGHT (C) 1984
MICROSPARC, INC.
CONCORD, MA 01742

;**********************************

CH EQU $24 ;CURSOR COLUMN
BASL EQU $28 ;CURSOR ADDRESS
INVFLG EQU $32 ;INVERSE/FLASH/NORMAL
KSWL EQU $38 ;KEYIN HOOK - LOW
OLDCHR EQU $FC ;ORIGINAL SCREEN CHAR
I STAT EQU $FD ; INTERRUPT STATE
OUR CH EQU $57B ;80 COLUMN CH
RD CHAR EQU $9EBA ;DOS JMP (KSWL)
SCXROM EQU $C006 ;BANK STATUS
SET ROMS EQU $C007 ;SET ROMS ON
RDCXROM EQU $C015 ;CURRENT ROM STATE
ALTCHR EQU $C01E ;READ ALT CHAR SWITCH
RD80VID EQU $C01F ;READ 80 COLUMN SWITCH
KE YD LY EQU $C2C6 ;KEY DELAY SUBROUTINE
SCREEN EQU $CF06 ;PICK/STORE SCREEN
SEV EQU $FF58 ;KNOWN RTS

SET UP TO FOOL MOTHER DOS

ORG

LDA
STA
LDA
STA
LDA
STA
JMP

$2EE

f$4C
RD CHAR
f<FLASH
RDCHAR+l
#>FLASH
RDCHAR+2
$3DO

;PLANT JMP TO US
;FROM DOS

;RETURN TO DOS

ALL OF THE WORK IS DONE HERE
NOTE THAT CODE IS POSITION
INDEPENDENT, THEREFORE, IT
CAN BE MOVED TO ANY DESIRED
AREA OF MEMORY WITH A
CORRESPONDING CHANGE TO

117

(Ir

f I
I I
I 1 l ~

S4 LOCATIONS $9EBA-$9EBC
SS
S6

;SAVE USER IRQ STATE S7 0300 08 FLASH PHP
SB 0301 78 SEI ;INHIBIT DURING BANK SWITCH

S9 0302 2C lS co BIT RDCXROM ;GET CURRENT STATE

60 030S 08 PHP ;SAVE ROM BANK STATE

61 0306 SD 07 co STA SETROMS ;SET ROMS ON

62 0309 BS FC STA OLDCHR ; SAVE A

63 030B 68 PLA ;HOLD ONTO CXBANK STATUS

64 030C AB TAY
6S 0300 68 PLA ;A EQU USER 'S IRQ STATE
66 030E 48 PHA ;AND RETAIN ON STACK
67 030F 2A ROL ;MOVE IRQ BIT TO V BIT
68 0310 2A ROL
69 0311 2A ROL
70 0312 2A ROL
71 0313 BS FD STA I STAT ;SAVE FOR KEYDLY
72 031S 98 TYA ;PUT CXBANK STATUS
73 0316 48 PHA BACK ONTO STACK
74 0317 AS FC LDA OLDCHR ;SAVE OLD A ON STACK
7S 0319 48 PHA
76 031A BA TXA ;SAVE X REGISTER
77 031B 48 PHA
78 031C AS FC LOA OLDCHR ;REPAIR MONITOR'S
79 031E A4 24 LOY CH ;SILLY ATTEMPT
80 0320 91 28 STA (BASL),Y
81 0322 AD lF co LOA RD80VID ;80 COLUMN ACTIVE?
82 032S 10 09 BPL KEYLOOP ;IF NOT
83 0327 AC 7B OS LOY OURCH ;THROW AWAY A FROM
84 032A BB CLV ;DOS AND REPLACE
BS 032B 20 06 CF JSR SCREEN ;WITH SCREEN CHAR
86 032E BS FC STA OLDCHR
87 0330 A9 DF KEY LOOP LOA 4$DF ;UNDERLINE CHARACTER
88 0332 A4 24 LOY CH ;ASSUME 40 COL
89 0334 2C lF co BIT RD80VID
90 0337 10 03 BPL KEYl ;IF 40 COLUMN MODE
91 0339 AC 7B OS LOY OURCH ;USE 80 COL CH
92 033C 2C SB FF KEYl BIT SEV ;STORE ON SCREEN
93 033F 20 06 CF JSR SCREEN ;DISPLAY UNDERLINE CHAR
94 0342 24 FD BIT ISTAT ;SET UP INTERRUPT STATE
9S 0344 20 C6 C2 JSR KEYDLY ;LOOK FOR KEY
96 0347 BO 2F BCS FLASHR ;IF GOT KEY
97 0349 AS FC LOA OLDCHR ;OLD CHARACTER
98 034B 2C lE co BIT ALTCHR ;OLD 40 COLUMN?
99 034E 30 11 BMI KEYF ;IF NOT

100 0350 A4 32 LDY I NVF LG
101 03S2 co 7F CPY 4$7F ;FLASHING?
102 03S4 DO OB BNE KEYF ;IF NOT
103 03S6 C9 40 CMP 4$40 ;FLASHING CHAR?
104 03S8 90 07 BCC KEYF ;IF NOT
lOS 03SA C9 80 CMP 4$80 ;FLASHING CHAR?
106 03SC BO 03 BCS KEYF ;IF NOT
107 03SE 18 CLC ;MAKE IT NORMAL
108 03SF 69 40 ADC 4$40 ;CHARACTER
109 0361 A4 24 KEYF LOY CH ;ASSUME 40 COL
110 0363 2C lF co BIT RD80VID
111 0366 10 03 BPL KEY2 ;IF 40 COL

118

d.
112 036S AC 7B 05 LDY OURCH ;USE SO COL CH
113 036B 2C SS FF KEY2 BIT SEV ;STORE OLD CHARACTER
114 036E 20 06 CF JSR SCREEN ;ON SCREEN
115 0371 24 FD BIT I STAT ;SET UP INTERRUPT STATE
116 0373 20 C6 C2 JSR KEYDLY ;LOOK FOR KEY
117 0376 90 BS BCC KEYLOOP ;IF NO KEY YET
llS 037S AS FC FLASHR LOA OLDCHR ;RESTORE OLD CHARACTER
119 037A A4 24 LDY CH ;ASSUME 40 COL
120 037C 2C lF co BIT RDSOVID
121 037F 10 03 BPL KEY3 ;IF 40 COL
122 03Sl AC 7B 05 LDY OURCH ;USE SO COL CH
123 03S4 2C SS FF KEY3 BIT SEV ;STORE OLD CHARACTER
124 03S7 20 06 CF JSR SCREEN ;ON SCREEN
125 03SA 6S PLA ;RESTORE X
126 03SB AA TAX
127 03SC 6S PLA ;RESTORE A
12S 03SD 2S PLP ;GET PRIOR I / 0 STATE
129 03SE 30 03 BMI FLASHl ;IF NO BANK RESTORE
130 0390 SD 06 co STA SCXROM ;RESTORE BANK
131 0393 2S FLASHl PLP ;RESTORE IRQ
132 0394 6C 3S 00 JMP (KSWL) ;CONTINUE THRU DOS

000 ERRORS

02EE HEX START OF OBJECT
0396 HEX END OF OBJECT
OOA9 HEX LENGTH OF OBJECT
9539 HEX END OF SYMBOLS

119

Auto Date
You may not have a clock card in your Apple, but supplying the date when your boot with this
short Hello program will give your other programs access to the date for as long as your Apple
has power.

by Clay Carr

Have you ever wished that your Apl?le had a built-in date ~unction? <?f course, you can buy
a clock card to get it Or you can use this short Applesoft routine that will do almost as muc.h.

The routine in DA TE.HELLO (Listing 1) can be included in your Hello program. What 1s
does it quite simple: it takes today's month, day and year (or any month, day and year) and
POKEs them into the last three available locations of memory page 3. Normally, these
locations aren't used by running programs, so the date is available no matter how many
programs you've run since you stored it there.

To key in the program, type in the DATE.HELLO program as shown in Listing 38,
and save it to disk with the command:

SA VE DATE.HELLO

USING THE PROGRAM
After running DA TE.HELLO, there are any number of ways that you can use the date. The
simplest and most useful is to put this instruction toward the beginning of a program:

100 OT$= PEEK (973) +"/"+PEEK (974) +"/"+PEEK (975)

Note: do not use DA TE$ as the variable. If you do, you'll find that the Apple has parsed it into
D ATE$ - which will send your program crashing in flames.

The DA TE.HELLO program doesn't store the date as a string (though it would be easy to
modify it to do this) because you may want to use the month, day and year values in
computations. For instance, if you want to use the banker's 360-day year to compute elapsed
time, you might want to use the data this way:

100 OT = PEEK (973) * 30 + PEEK (974) + PEEK (975) * 360

STORING THE DATE
Locations 973-975 ($3CD-$3CF) are not the only places that you could safely store the date

- they are just the quickest and easiest ones. Other bits and pieces of unused space are
scattered throughout the Apple, from page 0 to DOS 3.3 (such as $9CF8-$9CFF). If you're a
machine language programmer, you'll probably want to place the date into one of these and
leave all of page 3 available.

Caution: There are may different utilities that use the vacant locations in page 0, page 3 and
other normally available spots. If you use such utilities, you '11 need to experiment to find the
places in which data can safely be POKEd.

120

LISTING 38: DATE.HELLO

20
30
40
50
60
70
80
90
100

110

120
130

140

150

160
170

180
190

REM **********************
REM * DATE.HELLO *
REM * BY CLAY CARR *
REM * COPYRIGHT (C) 1984 *
REM * BY MICROSPARC, INC *
REM * CONCORD, MA 01742 *
REM **********************
REM

TEXT : HOME : PRINT "** COPYRIGHT 1984 BY MICROSPARC, I NC.
**": VTAB 5: PRINT "DO YOU WANT TO STORE AN ALPHANUMERIC":
PRINT "DATE FOR USE IN YOUR PROGRAMS TODAY? ": VTAB 8 : HTAB
18: GET Y$: ON 1 + (Y$ = "N") + 2 * (Y$ = "Y") GOTO 100, 190
TEXT : HOME : VTAB 5: HTAB 3: PRINT "INPUT THE DATE THAT
YOU WANT TO USE : "

D$ = "": VTAB · 8: HTAB 16: CALL - 868: PRINT II I I II

VTAB 8: HTAB 16: GET 0$: PRINT D$;:MO$ = D$: GET D$: PRINT
D$"/"; :MO = VAL (MO$ + D$)
GET D$: PRINT D$; :DA$ D$: GET D$: PRINT 0$" / "; :DA VAL
(DA$ + D$)

GET D$: PRINT D$; :YR$ = D$: GET D$: PRINT D$; :YR= VAL
(YR$ + D$)

ON 1 + (MO > 1 AND MO < 13) * (DA > 0 AND DA < 32) GOTO 120
HTAB 25: PRINT " OK? "; : GET Y$: ON 1 + (Y$ "N") + 2 *
(Y$ = "Y") GOTO 160, 12 0

POKE 973,MO: POKE 974,DA: POKE 975,YR
END

121

Free Sector Chart
This short Applesoft program explores the way machine language concepts can be writte? in
BASIC, while it provides an easy way to chart the amount of free space on a DOS 3 .3 dzsk.

by Donald Jes sop

Recently, a friend and I were discussing why all of the programs that calculate the free
space on a disk seem to be written in machine language. My friend assumed that sue~ a
program would be almost impossible to write in Applesoft. In my attempt to prove hun wrong,
I wrote Free Sector Chart (Listing 39). In addition to calculating the amount of free space on
a disk, Free Sector Chart presents a chart of the disk showing which sectors have data on
them.

THE CONVERSION TECHNIQUE
Since DOS stores the vacancy information in two bytes in the Volume Table of Contents

(VTOC), there were thousands of possible combinations of filled and unfilled sectors. I
realized that I would have to examine the information bit by bit.

The technique I used was to go from high to low bit, checking to see if the value from the
byte exceeded a specific value. For example, if the seventh bit was set, the value of the byte
would be equal to or greater than 21 or 128. If we subtract 128 from this byte, we can ignore
the seventh bit and concentrate on the sixth bit. The loop in lines 330-370 does just this by
stepping backwards through a FOR loop. By using this technique, many complicated machine
language subroutines can be converted to BASIC, thus enabling you to use the subroutine on
almost any machine.

ENHANCEMENTS
By adding a subroutine to dump the contents of the screen to a printer, Free Sector Chart

can be used to keep a close eye on how much space you have available in your disk library.
Adding a catalog listing option would make this an excellent archival aid.

LISTING 39: FREE.SECTOR.CHART

1
2
3
4
5
6
7

REM
REM
REM
REM
REM
REM
REM

* FREE.SECTOR.CHART *
* BY DONALD JESSOP *
* COPYRIGHT (C) 1984 *
* BY MICROSPARC INC *
* CONCORD , MA 01742 *

10 REM ** LOAD IN RWTS SUBROUTINE **
20 FOR X = 896 TO 896 + 30: READ D: POKE X,D: NEXT
30 DATA

169,3,160,138,32,217,3,96,0,0,1,96,1,0,17,0,153,3,0,32,0,0,
1,0,0,96,1,0,1,239,216

40 A$ = "0123456789ABCDEF"
50 HOME : PRINT : PRINT "** COPYRIGHT 1984 BY MICROSPARC, INC .

**"
60 INVERSE : HTAB 10: PRINT "FREE SECTOR CHART": NORMAL
70 INPUT "WHAT IS THE NAME OF THE DISK? ";NA$
80 NA$ = "FREE SECTOR CHART FOR " + NA$

122

PRINT

90 A= LEN (NA$): IF A< 39 THEN GOTO 110: REM ** WE ARE
CHECKING TO SEE IF THE TITLE CAN BE CENTERED PROPERLY **

100 NA$= LEFT$ (NA$,38)
110 PRINT "WOULD YOU ALSO LIKE A CATALOG OF THE DISK?

GET P$: PRINT P$
120 IF P$ = "Y" THEN PRINT CHR$ (4)"CATALOG"
130 PRINT : INVERSE : PRINT "PRESS ANY KEY TO CONTINUE";:

NORMAL : GET B$: PRINT B$
CALL 896 : REM ** WE NOW READ IN THE VTOC **
REM ** DRAW BORDER FOR CHART **
HOME
VTAB 1: HTAB (38 - LEN (NA$)) / 2 + 1: PRINT NA$
INVERSE
VTAB 3: HTAB 2: PRINT A$;A$; LEFT$ (A$, 3)

11 • • , .

140
150
160
170
180
190
200 FOR X = 1 TO 16: VTAB 3 + X: HTAB 1: PRINT MID$ (A$,X,1);:

NORMAL: PRINT SPC(35);: INVERSE : PRINT MID$ (A$,X,l):
NEXT

210 HTAB 2 : PRINT A$;A$; LEFT$ (A$,3)
220 NORMAL
230 REM ** DETERMINE WHICH SECTORS ARE FILLED **
240 H = l : P = 0
250 FOR X = 8247 TO 8383 STEP 4
260 H H + 1
270 v = 20
280 P = P + 1: IF P > 16 THEN P = 1
290 VTAB V: HTAB H: FLASH : PRINT MID$ (A$,P,1);: NORMAL
300 FOR Y = 1 TO 2
310 A = PEEK (X + Y)
320 REM ** THIS LOOP EXTRACTS THE INFORMATION BIT BY BIT **
330 FORT= 7 TO 0 STEP - 1: REM ** WE STEP BACKWARD THROUGH

THE BYTE **
340 V = V - 1: VTAB V: HTAB H
350 IF A < (2 A T) THEN PRINT "*"
360 IF A > (2 A T) - 1 THEN A = A - 2 A T:F = F + 1
370 NEXT
380 NEXT
390 VTAB 20: HTAB H: INVERSE PRINT MID$ (A$,P,1);
400 NEXT
410 NORMAL
420 VTAB 22 : HTAB 1: PRINT "THERE ARE ";F;" FREE SECTORS"
430 END

123

ProDOS RESET Trap
Trapping the <RESET> key under ProDOS can be smoothly handled by using the ON ERR
routine. A sample program shows you how it's done.

by Eric Seiden

While developing an interactive database p~ogram, I found it neces~ary to ensure that the
only exit route was through the save data routme, rather than by pressing <C!RL>C or
<RESET>. Since <CTRL>C causes an Applesoft error that can be trapped with the ONERR
statement all that remained was to disable <RESET>. Under DOS 3.3, this simply required
two POKEs (POKE 40286,252: POKE 40287,164), but under ProDOS, it is a little more
complicated.

TRAPPING RESET UNDER PRODOS
The method presented here uses POKEs to point the Reset vector at a short machine

language routine that can reside anywhere in memory. This routine then loads an error code
value into the Accumulator and jumps to the ProOOS error handler. That way, your program
can intercept RESETs as errors by using the ONERR statement and identify them by their code
number. This value may be obtained with the statement PEEK(222).

The error routine for ProDOS starts at $BE09. It is very simple to give the Reset vector any
error code that you want The following is a machine language routine to accomplish this task:

350 : A9 3E LDA #$3E
352: 20 09 BE JMP $BE09

For demonstration purposes, the routine is located at $350, but it may be relocated anywhere
that it will not be overwritten. To point the Reset vector to this routine, use the following
statement:

POKE 1010,LB:POKE 1011,HB:CALL-1169

where LB is the decimal value of the low byte of the address for the machine language routine,
and HB is the decimal value of the high byte. (The CALL -1169 simply sets a "power-up" byte
to let the Apple know that the Reset vector is legitimate.)

To use this technique in a program, it is necessary to POKE the machine language routine in
memory, change the Reset vectors and include an ONERR-GOTO statement and an error
handling routine. A demonstration of this technique is shown in Listing 40.

THE DEMONSTRATION PROGRAM
When you run the program, it will give you the choice of installing the RESET trap,

removing the RESET trap or quitting. If you choose option 1 to install the trap, the machine
language routine will be POKEd into memory and the RESET vectors changed. The program
will then proceed to count to one thousand until interrupted by a RESET. At this point, it will
print the error number and wait for a keypress before returning to the menu.

Option 2 will remove the trap before counting to one thousand. This may be confirmed by
RESETting out of the program. Option 3 will restore your system to normal before quitting to
be certain that the trap is removed.

124

ENTERING THE PROGRAM
To key in the program, enter it as shown in Listing 40 and save it to disk with the

command:

SA VE TRAP.RESET

CUSTOMIZING THE TRAP
Any value may be assigned to RESET errors by changing the value at $351 in the machine

language routine (or the POKE 849 in line 200). For instance, if you know that you v..ant
RESET to be interpreted as a particular ProDOS error, you could simply assign that error value
to it. If no ONERR statement is active when <RESET> is pressed, the word ERROR will be
printed. This may be confirmed by deleting line 220, choosing option 1, and pressing
<RESET>.

Even under control of the trap, a RESET will cause the cursor to be relocated at the bottom
of the screen. This should be taken into consideration when designing error message displays,
or when rerouting program flow back into the main body of the program.

LISTING 40: TRAP.RESET

10 REM ************************
20 REM * TRAP .RESET *
30 REM * BY ERIC SEIDEN *
40 REM * COPYRIGHT (C) 1984 *
50 REM * BY MICROSPARC, INC *
60 REM * CONCORD, MA. 01742 *
70 REM ************************
80 HOME : PRINT "CHOOSE:": PRINT " <1> RESET TRAPPED": PRINT "

<2> RESET NORMAL " : PRINT " <3> QUIT "
90 HTAB 5: GET K$: PRINT K$:K VAL (K$): IF K < 1 ORK> 3

THEN 90
100 IF K 3 THEN GOSUB 250: HOME : END
110 IF K 1 THEN GOSUB 200 : GOTO 130
120 IF K 2 THEN GOSUB 250: GOTO 130
130 HOME VTAB 10: PRINT "RESET IS ";
140 IF K = 1 THEN PRINT "TRAPPED."
150 IF K 2 THEN PRINT "NORMAL. "
160 FOR I = 1 TO 1000: VTAB 15: CALL - 958 : PRINT I: NEXT
170 GOTO 80
180 PRINT "ERROR NO .:"; PEEK (222): PRINT "PRESS A KEY TO

CONTINUE": GET K$: PRINT : GOTO 80
190 REM INSTALL RESET TRAP
200 POKE 848,169 : POKE 849,62 : POKE 850,32: POKE 851,9: POKE

852,190: REM POKE ML ROUTINE AT $350
210 POKE 1010,80 : POKE 1011,3: CALL - 1169: REM SET RESET

VECTOR TO POINT AT ML ROUTINE
220 ONERR GOTO 180
230 RETURN
240 REM REMOVE RESET TRAP
250 POKE 1010,0: POKE 1011,190: CALL - 1169
260 RETURN

125

Shades and Textures
This short program displays different color combinations available on the Apple Hi-Res screen.

by Ted Huntington

To help explore the range of colors and textures available on the Apple, I wrote a short
demonstration program called SHADES.TEXTURES. It displays the full range of colors
available on the Hi-Res screen in pairs, with one color next to another. It not only displays the
different color combinations possible, but also the textures that result from their interaction.
The program could aid in designing the screens for your next Hi-Res graphics project.

USING THE PROGRAM
When you run SHADES.TEXTURES, you are given the choice of automatically cycling

through pairs of colors, manually selecting the two colors to view, or quitting. If you choose to
manually select colors, you will next be asked to specify two numbers from 0-7. After these
are displayed, you are prompted to enter two new numbers. The automatic mode will cycle
through the colors, pausing after each combination is displayed until a key is pressed. Press
<ESC> to return to the menu if you want to switch modes.

ENTERING THE PROGRAM
To key in the program, enter Listing 41 as shown and save it to disk with the command:

SA VE SHADES.TEXTURES

LISTING 41: SHADES.TEXTURES

10
20
30
40
50
60

REM ************************
REM * SHADES.TEXTURES *
REM * TED HUNTINGTON *
REM * COPYRIGHT (C) 1 984 *
REM * BY MICROSPARC, INC *
REM * CONCORD, MA. 01742 *

70 REM ************************
80 ONERR GOTO 120
90 HOME : VTAB 5: HTAB 12: INVERSE : PRINT " SHADES AND

TEXTURES ": NORMAL : PRINT : HTAB 13: PRINT "BY TED
HUNTINGTON": PRINT : PRINT : HTAB 8: PRINT "<PRESS ANY KEY
TO BEGIN>": VTAB 22 : PRINT " **COPYRIGHT 1984 BY
MICROSPARC, INC. **"

100 VTAB 15: HTAB 20: GET AA$
110 HGR
120 HOME : VTAB 21: PRINT "AUTO OR MANUAL OR QUIT (A/M/Q) :";:

GET AA$: IF AA$ < > "A" AND AA$ < > "M" AND AA$ < > "Q"
THEN 120

130 PRINT : IF AA$ = "A" THEN 240
140 IF AA$ = "Q" THEN TEXT : HOME END
150 NY = 0
160 GOTO 190
170 FOR X = 1 TO 140 STEP 3: HCOLOR= C: HPLOT O,X TO X, O:

HCOLOR= D: HPLOT 3,X TO X,O: NEXT

126

180 IF NY = 1 THEN RETURN
190 HOME : VTAB 21: CALL - 958: PRINT "FIRST COLOR : ";: GET

C$:C = VAL (C$) : PRINT C: IF C < 0 OR C > 7 THEN 190
200 IF C$ = CHR$ (27) THEN 120
210 VTAB 22 : CALL - 958 : PRINT "SECOND COLOR:";: GET D$:D

VAL (D$): PRINT D: IF D < 0 OR D > 7 THEN 210
220 IF D$ = CHR$ (27) THEN 120
230 GOTO 170
240 NY= 1: FORE= 0 TO 7 : FOR F = 0 TO 7
250 HOME : VTAB 22: PRINT "COLORS-" ;C;" AND ";D; ""
260 GOSUB 170
270 c = c + 1
280 GET AA$
290 IF AA$ = CHR$ (27) THEN 120
300 NEXT F
310 C = O:D = D + 1
320 NEXT E
330 GOTO 20

127

Auto Case Convert
Have you converted your Apple to display lowercase ~ext, but find ~ourself with lots .of da!a
files that were created in the days of all uppercase? Thzs short machine language routine will
automatically account for initial capitals and convert the rest of your text to lowercase.

by Bruce E. Howell, D.D.S.

When I finally installed a keyboard enhancer and a lo~ercase chip in m.y Apple ~Plus, I
found that I was stuck with many name and address files m stuffy, mechanical-looking
uppercase. So I created a program to convert the uppercase. Instead of trying to modify a wide
variety of data file formats, I allow the existing programs to print the data and modify the
appearance of the output. Although a lowercase chip is required to display upper and lowercase
on the screen, no hardware modification is required to output upper and lowercase data to a
printer.

USING THE PROGRAM
To use CASE.CONVERTER (Listing 42), either BRUN the program or BLOAD it and

issue a CALL 768 from Applesoft. Neither <CTRL><RESET> nor PR#O turns off the
program, but a CALL 787 will reset all required hooks and pointers.

ENTERING THE PROGRAM
Please refer to Appendix A for help in entering this program. If you key it in from the

Monitor, save it to disk with the command:

BSA VE CASE.CONVERTER,A$300,L$71

HOW IT WORKS
The program follows a simple rule: convert all alphabetic characters to lowercase unless the

character is preceded by a non-alpha character. The characters are intercepted on their way to
the Monitor COUTl routine by changing the hook at $36 and $37. (It also modifies a DOS
pointer that changes $36 and $37.) The incoming character is checked; if it is not an alpha
character, FLAG 1 is reset to zero. If it is alphabetic and FLAG 1 is not zero, the character is
converted to lowercase by XORing with $20. An alpha character also sets FLAG 1 to one for
the next pass.

If converted, DOS commands from within an Applesoft program generate a syntax error.
To avoid this, <CTRL>D sets FLAG2, which then passes all characters unchanged until a
RETURN ($8D), thus resetting FLAG2 to zero.

LISTING 42: CASE.CONVERTER

SOURCE FILE -

128

0
1
2
3
4
5
6
7
8 0300 A9 26

CASE . CONVERTER
BY BRUCE HOWELL
COPYRIGHT (C) 1984
MICROSPARC, INC.
CONCORD, MA 01742

ORG $0300
ON LDA #START ;SET POINTER TO START

9 0302 SS 36 STA $36
10 0304 AS 03 LDA START/
11 0306 SS 37 STA $37
12 0308 A9 26 LDA fSTART
13 030A SD 04 9D STA $9D04 ;SET DOS POINTER ALSO
14 030D AS 03 LDA START/
lS 030F SD OS 9D STA $9DOS
16 0312 60 RTS
17 0313 A9 BD OFF LDA f$BD ;RESETS BOTH POINTERS
lS 031S SS 36 STA $36 ;TO TURN IT OFF
19 0317 A9 9E LDA f $9E
20 0319 SS 37 STA $37
21 031B A9 BD LDA f$BD
22 031D SD 04 9D STA $9D04
23 0320 A9 9E LDA f$9E
24 0322 SD OS 9D STA $9DOS
2S 032S 60 RTS
26 0326 SE 70 03 START STX HOLD ;SAVE X-REGISTER
27 0329 C9 SD CMP f$SD ;SEE IF RETURN
2S 032B FO 32 BEQ CR ;YES, GO CHECK FLAG2
29 032D AE 6F 03 LDX FLAG2 ;SEE IF DOS COMMAND
30 0330 EO 01 CPX f$01
31 0332 FO lC BEQ EXIT ;DOS COMMAND - EXIT UNCHANGED
32 0334 C9 S4 CMP f$S4 ;CHECK FOR START OF DOS COMMAND
33 0336 FO lF BEQ DOS ;YES IT IS
34 033S C9 41 CMP f$41 ;SEE IF LESS THAN "A"
3S 033A 10 OF BPL NOALP ;YES SO NON-ALPHA
36 033C C9 SB CMP f$SB ;SEE IF GREATER THAN "Z"
37 033E 30 OB BM! NOALP ;YES so NON-ALPHA
3S 0340 AE 6E 03 LDX FLAGl ;CHECK PREVIOUS CHAR.
39 0343 FO 02 BEQ DONT ;DON'T CONVERT
40 034S 49 20 EOR f$20 ;CHANGE TO LOWER CASE
41 0347 A2 01 DONT LDX #$01 ;SET FLAGl TO ONE
42 0349 DO 02 BNE NEXT
43 034B A2 00 NO ALP LDX f$00 ;RESET FLAGl TO ZERO
44 034D SE 6E 03 NEXT STX FLAGl
4S 03SO AE 70 03 EXIT LDX HOLD ;RESTORE X-REGISTER
46 03S3 20 BD 9E JSR $9EBD ;GO PRINT IT
47 03S6 60 RTS
48 03S7 A2 01 DOS LDX fOl ;START OF A DOS COMMAND
49 03S9 SE 6F 03 STX FLAG2
so 03SC 4C so 03 JMP EXIT
Sl 03SF AE 6F 03 CR LDX FLAG2 ;COULD BE END OF DOS COMMAND
S2 0362 EO 00 CPX fOO
S3 0364 FO El BEQ DONT ;NO, JUST PLAN CR
S4 0366 A2 00 LDX fOO
55 0368 SE 6F 03 STX FLAG2 ;YES, SO SET FLAG2
S6 036B 4C so 03 JMP EXIT
S7 036E 00 FLAGl DFC fOO ;PREVIOUS CHAR . FLAG
SS 036F 00 FLAG2 DFC #00 ;DOS COMMAND FLAG
S9 0370 00 HOLD DFC 00 ;PROTECTS X-REGISTER

000 ERRORS

0300 HEX START OF OBJECT
0370 HEX END OF OBJECT
0071 HEX LENGTH OF OBJECT
9SAD HEX END OF SYMBOLS

129

Software Volume Control
The versatility of the Apple's single speaker is demonstrated by this short mach~ne language
routine that lets you control the volume of the tones generated, as well as the pitch and
duration.

by Phil Goetz

While experimenting with a software voice for the Apple, I noticed that if I toggled the
speaker twice in a row and then used a delay, the volume was much lower than if I had a delay
between the two toggles. I found that this phenomenon can be used as a volume control. In
most tone routines, you are allowed to specify duration and pitch. The program
VOUMETONES (Listing 43) also allows you to specify volume.

USING THE PROGRAMS
To use VOLUMETONES, type BRUN VOLUMETONES. You must specify three

parameters for each note: duration, pitch and volume. For duration, 0 is the longest, 255 ($FF)
is the second longest, and 1 is the shortest. For pitch, 0 is the lowest, 255 is the second
lowest, and 1 is the highest.

For volume, the maximum is half the number for the pitch, and the volume decreases as it
approaches either one or one below the pitch. If the volume is set to zero, the same as the pitch,
or greater than the pitch, a different note will be obtained, so be careful to keep the volume
between one and one less than the pitch, inclusive.

Store the duration in memory location 769, the pitch in 771, and the volume in 788. Then,
to play the note, CALL 768.

VOL.TONES.DEMO (Listing 44) is a demonstration program that plays a constant pitch
starting at low volume, then reaches a maximum, and returns to a minimum. To sure to
BLOAD VOLUMETONES before BRUNning VOL.TONES.DEMO.

ENTERING THE PROGRAMS
To key in the programs, type in Listing 43 as shown and save it to disk with the

command:

BSA VE VOLUMETONES,A$300,L$1F

Then enter Listing 44 and save it to disk with the command:

BSA VE VOL.TONES.DEMO,A$1000,L$13

HOW VOLUMETONES WORKS
To understand how VOLUMETONES works, we must first know something about how

the Apple creates sound. Locations $C030-$C03F are connected to the Apple speaker, which
can be thought of as a cone. When any one of these locations is referenced, the speaker is
pushed out; when addressed again, it returns to its original configuration. One of these times, a
click is emitted. Therefore, every other time that a location from $C030-$C03F is addressed,
the speaker makes a click.

When one of these locations, usually $C030, is addressed at a constant rate, a wave with a
constant frequency (or pitch) is created. If $C030 is addressed at a faster rate, the frequency
and thus the pitch, goes up.

Since the speaker only clicks every other time that it is addressed (or toggled), only every
other toggle controls the pitch. If the second, silent toggle is midway between two audible
clicks, the maximum volume will be reached. If it is closer to either audible toggle, the volume

130

will be lower. The farther apart the toggles are, the greater the volume (to a point) . This is why
high-pitched tones on the Apple are lower in volume than low tones.

Here is my theory as to why this happens: The speaker, when addressed once, does not
change its state instantly, but begins to move toward a reflexed position. If the next toggle
follows closely after the first, it will pull back the speaker before it has reached the fully
reflexed position. Therefore, the closer together the speaker toggles, the less the speaker
movement and the smaller the vibration - thus the amplitude, and thus the volume.

LISTING 43: VOLUMETONES

0
1 VOLUME TONES
2 BY PHIL GOET Z
3 COPYRIGHT (C) 1 984
4 BY MI CROSPARC, INC .
5 CONCORD , MA 01742
6
7 ORG $30 0
8 0300 AO 90 DURATION LDY #$ 90 ;SET BY CALLER
9 0302 A9 60 PI TCH LDA #$60 ; SET BY CALLER

10 0304 38 SEC
11 0305 ED 14 03 SBC VOLUME+l
12 0308 SD QC 03 STA VTl+ l
13 030B A2 30 VTl LDX #$ 30 ;PI TCH MINUS VOLUME
14 030D CA VT2 DEX ;DELAY
15 030E DO FD BNE VT2
1 6 0310 AD 30 co LDA $C0 30 ;TOGGLE SPEAKER
17 0313 A2 30 VOLUME LDX #$3 0
18 0315 CA VT3 DEX ;DELAY
19 03 1 6 DO FD BNE VT3
20 0318 AD 30 co LDA $C030 ; TOGGLE SPEAKER
21 031B 88 DEY ;DECREMENT LOOP COUNTER (DURATION)

22 031C DO ED
23 031E 60
24

000 ERRORS

0300 HEX START OF OBJECT
031E HEX END OF OBJECT
OOlF HEX LENGTH OF OBJECT
95CD HEX END OF SYMBOLS

BNE VTl
RT S

LISTING 44: VOL.TONES.DEMO

0
1
2
3
4
5
6
7
8

VOL.TONES.DEMO
BY PHIL GOETZ

COPYRIGHT (C) 1984
BY MICROSPARC , INC.
CONCORD , MA 01742

NOTE: VOLUMETONES MUST BE LOADED
BEFORE TH IS DEMO IS RUN!

131

9
10 ORG $1000
11 1000 A9 01 LOA 1$01
12 1002 SD 14 03 STA $314 VOLUME IN DECIMAL 788
13 1005 20 00 03 VOL TONE JSR $300 CALL VOLUMETONES ROUTINE
14 1008 EE 14 03 INC $314 INCREASE VOLUME
15 lOOB AD 14 03 LOA $314
16 lOOE C9 60 CMP #$60 COMPARE TO MAXIMUM
17 1010 DO F3 BNE VOL TONE KEEP GOING
18 1012 60 RTS ; DONE

000 ERRORS

1000 HEX START OF OBJECT
1012 HEX END OF OBJECT
0013 HEX LENGTH OF OBJECT
95F5 HEX END OF SYMBOLS

132

80-Column Catalog
Use this short DOS 3.3 patch to display afull 80-column CATAWG on your screen or print it
out. Include the Applesoft routine in your Hello program or patch DOS for a permanent
change.

by Robert C. Meltzer

While Pascal, FORTRAN, most assemblers, and even BASIC can take advantage of 80-
column display capability, DOS 3.3 does not. This is most obvious when you execute a
CATALOG command. The information scrolls up the left side of the screen while the right side
goes to waste. I thought it would be useful to see twice the amount of catalog information on
the screen. Since I was looking for an excuse to poke around inside DOS anyway, I took my
copy of Beneath Apple DOS (an excellent reference by Quality Software) and started in. The
result is 80-Column Catalog.

DISSECTING CATALOG
According to the detailed map of DOS (in Chapter 8 of Beneath Apple DOS), addresses

$AD98-$AE2E (in a 48K machine) contain the CATALOG function handler. Disassemble 80
instructions starting from $AD98, using any good disassembler or the L function of the Apple
Monitor. With Beneath Apple DOS in hand you can follow the logic easily, assuming you
understand the 6502 instruction set. Careful examination of the code, or of the DOS manual,
indicates that one line of CATALOG output consists of:

1. The lock indicator (*).
2. The file type (A,l,B,T,S,R).
3. The file size in sectors.
4. The file name (up to 30 characters).

The item as printed is no more than 37 characters long. Two such items will fit on one line
of an 80-column screen (or printer), as we shall see.

USING CAT ALOG80
Run the program CATALOG80 shown in Listing 45. This Applesoft program will

modify DOS so that any future CATALOG commands will automatically result in an 80-
column display. To get an 80-column printout, activate your printer before cataloging.
Initializing a disk after running CAT ALOG80 will automatically transfer the 80-column catalog
capability to the new disk.

DOS LINECHECKER
Listing 46 is the CATALOG function handler's LINECHECKER subroutine located

at$AE2F-$AE41. This subroutine performs the following functions :

1. Sends a carriage return (CR) to the screen via the Monitor routine COUT at $FDED.
2. Decrements a count once for each line sent to the screen.
3. Waits for a keypress when the count goes to zero (i.e., when the screen is full).
4. Reinitializes the line count after receiving the keypress.
5. Returns to the caller.

It also indicates other interesting locations in the CATALOG handler that affect the format of
the screen output, specifically LINECHECKER calls that generate CRs between the DISK
VOLUME header and the body of the catalog.

133

MODIFIED DOS LINECHECKER
The solution given in MODIFIED LINECHECKER (Listing 47) ta.lees advantage of the

fact that a screen display wraps at the end of each line. In other words, if after we send 80
characters to an 80-column screen, we send 80 more, there will be an implicit CR and the
second 80 will be placed on the next line.

Each item put out by the CATALOG handler is exactly 37 characters. If, after each item, we
send three blanks in place of the CR, this will result in exactly 80 characters of output per line,
which will force an implicit CR after every two items.

Conveniently enough, there is a Monitor subroutine that sends three blanks to the output
device - PRBLNK located at $F948. Simply by replacing the first two instructions at $AE2F
of Listing 46 with two NOPs followed by a JSR PRBLNK, we can send three blanks after
each item instead of a CR, thus listing two items on each line. See Listing 47.

A couple of additional changes are required to complete this solution. The line count is
currently initialized by LDA instructions located at $ADA3 and $AE3C. The value $16 allows
22 lines of output to the screen before waiting for a keypress. We'll use this count as an item
count, rather than a line count, so we'll want its initial value set to $2A, to allow 42 items (two
items on each of 21 lines) to be sent to the screen before waiting for a keypress.

We can't send a full 48 items (24 lines) to the screen because we want to leave the DISK
VOLUME header at the top of the screen, and because each line we send forces a CR.
Therefore, we must leave room for two lines at the top and a blank line at the bottom of the
screen. Simply patching $2As into locations $ADA4 and AE3D$ will do the trick. Also,the
JSRs at $ADC3 and ADC6 must call CROUT (the Monitor CR routine) instead of LNCHK,
since LNCHK no longer sends CRs to the output device.

Listing 47 works, with no more increase in code space requirements than the original
Listing 46. However, it will not function reliably with a printer since no CR or LF
characters are ever sent by this routine to the output device.

THE BEST OF BOTH WORLDS
A solution that functions with an 80-column screen and equally well with a printer is given

in Listing 48. This solution, being more general, requires more code. There are a few small
unused areas of memory in DOS. We'll use the one at $BCDF to hold a patch to the
CATALOG handler's LINECHECKER in Listing 46. Most of the code in the
LINECHECKER remains unchanged. It doesn't routinely send a CR of course, but will still
wait for a keypress if the screen is full. The major difference from the simple solution (Listing
47) is that it unconditionally sends two blanks (using the Monitor routine PRBL2 located at
$F94A). Then it sends either a third blank or a CR, depending on whether it has just sent the
left or the right item to the screen.

Determining each item's position (left or right) is the key. Th is accomplished by three
instructions in the patch area. Since the item count is decremented once for each item output, its
low-order bit changes once for each output. The LDA, ROR sequence gets the low-order bit of
the item count in the C-bit of the P-Register, where it can be tested with the BCC instruction
immediately following the ROR. If the bit is clear, the program sends a CR; if it's set, it just
sends another space.

A couple of cosmetic changes complete our final solution. Since we're not implicitly
sending a CR at the end of each line as in Listing 47, we can plug a $2C instead of a $2A
into the item count and get more lines of text on the screen. We'll call CROUT instead of
LNCHK as in Listing 47. Two instructions are added at $ADAA to tab the DISK VOLUME
header to a more pleasing location on the screen.

If you have already used the $BCDF area of DOS for some other patch, there's another
unused area of 45 bytes at $BA69. You need only change the address in the JMP instruction at
$AE3F in Listing 48.

134

GETTING THE PATCH IN YOUR SYSTEM
There are several ways to get this patch into your system. You can include the program in

Listing 45 in your Hello program; this will simply put the patch in place each time you boot.
Alternately, you can patch in the code using Listing 45 or the Monitor, then INIT a new slave
disk, that will then have the patch as a permanent part of its DOS. (This won't work for a
master disk because the MASTER CREA TE program reads a fresh copy of DOS into memory
with which to create a master disk and ignores your nicely patched DOS.)

LISTING 45: CAT ALOGSO

10 REM ***********************
20 REM * CATALOG BO *
30 REM * BY ROBERT MELTZER *
40 REM * COPYRI GHT (C) 1 9B4 *
50 REM * MICROSPARC , I NC . *
60 REM * CONCORD, MA 01742 *
70 REM ***********************
BO HEX$ = "ADA4: 2C N ADAB: A9 13 B5 24 EA EA N ADC3: 20 BE FD

20 BE FD N D7D2G": GOSUB 120 : CALL - 144
90 HEX$ = "AE2F : EA CE 9D B3 DO OB 20 OC FD A9 2C BD 9D B3 A2

4C DF BC N D7D2G": GOSUB 1 20 : CALL - 1 44
100 HEX$ = " BCDF: 20 4A F 9 A2 BD AD 9D B3 6A 90 02 A2 AO

ED FD 60 N D7D2G " : GOSUB 120: CALL - 144
110 END
120 FOR I = 1 TO LEN (HEX$) : POKE 511 + I, ASC (MID$

(HEX$, I ,1)) + 12B : NEXT I : POKE 72 , 0 : RE TURN

LISTING 46: LINECHECKER

1
2
3

* LINECHECKER *
* DOS CATALOG FUNCTION HANDLER *
* DOS 3 . 3 *

BA 2 0

02

4
5
6
7
8
9
10

COUT
RD KEY

EQU $FDED
EQU $FDOC

; Monito r rtn to output (A)
Monito r keyb oard wait routine

ADA3 : A9 16 11
12
13
14
15

ADC3: 20 2F AE 16
ADC6: 20 2F AE . 17

18
19
20
21

AE2F : A9 8D
AE31 : 20 ED FD
AE34: CE 9D B3

22
23
24

ORG $ADA3
LOA #$16 Init i alize line count

* Code h ere prints out DISC VOLUME NNN

ORG $ADC3
JSR LNCHK
J SR LNCHK

; Do a CR, dee line count , e tc.
Do t he same again

* Code here prints out i nfo for eac h file & calls LNCHK

LNCHK
ORG $AE2F
LDA #$80
JSR COUT
DEC $B39D

; Load up a CR
Cal l Monitor routine to output

; Decre ment line c o u nt

135

AE37: DO 08 25 BNE $AE41 ; Branch if count not expired
AE39: 20 oc FD 26 JSR RD KEY If expired, go wait f or a keyin
AE3C: A9 15 27 LDA #$15 ; Then reinitialize line count
AE3E: 8D 9D B3 28 STA $B39D save for future reference
AE41 : 60 29 RTRN RTS return to caller

--End assembly, 27 bytes, Errors: 0

LISTING 47: MODIFIED LINECHECKER

1
2
3
4
5
6
7
8
9
10
11
12
13
14

ADA3: A9 2A 15
16
17
18
19

ADC3 : 20 8E FD 20
ADC6 : 20 8E FD 21

22
23
24
25

AE2F: EA 26
AE30 : EA 27
AE3 1: 20 48 F9 28
AE34 : CE 9D B3 29
AE37: DO 08 30
AE39 : 20 OC FD 31
AE3C : A9 2A 32
AE3E: 8D 9D B3 33
AE41 : 60 34

* MODIFIED LINECHECKER *
* Sends 3 blanks after each item *
* Copyright (C) 1984 * Merlin
* MicroSPARC, Inc. * Assembler
* Conco r d, MA 10742 *

CROUT
PRBLNK
RD KEY

EQU
EQU
EQU

$FD8E
$F948
$FDOC

ORG $ADA3
LDA #$2A

Monitor - output a CR
Monitor - output 3 blanks
Monitor - ke yboard wait

; Initialize item count

* Code here print s ou t DISC VOLUME NNN

ORG
JSR
JSR

$ADC3
CROUT
CROUT

Put out a real CR
and another

* This prints out info for each file and calls LNCHK

LNCHK

RTRN

ORG $AE2F
NOP
NOP
JSR
DEC
BNE
JSR
LDA
STA
RTS

PRBLNK
$B39D
$AE41
RD KEY
#$ 2A
$B39D

Send 3 blanks after i tem
Decrement item count
Branch if count not expired
If expired, wait for keyin
then restart item count
and save it for future use
Return to caller

--End assembly, 27 bytes, Errors : 0

136

LISTING 48: CAT ALOGSO.ML

1
2
3
4
5
6
7
s
9
10
11
12
13
14
15

ADA3: A9 2C 16
17
lS
19

ADAS: A9 13 20
ADAA: S5 24 21
ADAC: EA 22
ADAD: EA 23

24
25
26
27

ADC3: 20 SE FD 2S
ADC6: 20 SE FD 29

30
31
32
33

AE2F: EA 34
AE30: CE 9D B3 35
AE33: DO OS 36
AE35: 20 OC FD 37
AE3S: A9 2C 3S
AE3A: SD 9D B3 39
AE3D: A2 02 40
AE3F: 4C DF BC 41

42
43
44

BCDF: 20 4A F9 45
BCE2: A2 SD 46
BCE4: AD 9D B3 47
BCE7: 6A 4S
BCES: 90 02 49
BCEA: A2 AO 50
BCEC: SA 51
BCED: 20 ED FD 52
BCFO: 60 53

* CATALOGSO.ML *
* BY ROBERT MELTZER *
* COPYRIGHT (C) 19S4 * Merlin
* MicroSPARC, Inc. * Assembler
* Concord, MA 01742 *

RD KEY
COUT
CROUT
PRBL2

EQU $FDOC
EQU $FDED
EQU $FDSE
EQU $F94A

ORG $ADA3
LDA #$2C

ORG $ADAS
LDA #$13
STA $24
NOP
NOP

Monitor keybd wait routine
Monitor rtn to output (A)
Monitor rtn to output a CR
Monitor rtn to send blanks

Initialize item count

Set tab for volume header
and force horiz cursor posn

* Code here prints out DISC VOLUME NNN

ORG $ADC3
JSR CROUT
JSR CROUT

Put out a Carriage Return
and another

* This prints out info for each file and calls LNCHK

CLNUP

JPTCH

PATCH

ORG $AE2F
NOP
DEC $B39D
BNE JPTCH
JSR RDKEY
LDA #$2C
STA $B39D
LDX #02
JMP $BCDF

ORG $BCDF
JSR PRBL2
LDX #$SD
LDA $B39D
ROR
BCC *+4
LDX #$AO
TXA
JSR COUT
RTS

Decrement item count
If not zero ,
If zero, wait for keypress

then reinitialize the
item count value

blanks for PRBL2
Jump to the patch area

This is the patch area
Output (X) blanks
Assume we need a CR
Get the count

and put its low bit in C
If C=O then CR
If C=l, blank instead

Whichever it is, put it out
and return to caller

--End assembly, 51 bytes, Errors: 0

137

Hi-Res Characters
Use this exact replica of the Apple's character set to add text to your Hi-Res graphics. A short
Applesoft program shows you how.

by Vinay, Vivek, and Vijay Pai

When working in high resolution graphics on the Apple, the use of the Apple's charac~er set
is often required to display text on a Hi-Res screen. Programmers who find that the four lines
of text at the bottom of the screen are not adequate often forgo graphics and revert back to an
all-text program. With the shape table presented here, you can say good-bye to your Hi-Res
dilemmas for good! Hi-Res Characters consists of two parts: a shape table (Listing 49) and
an Applesoft demonstration program (Listing 50).

The shape table in Listing 49 is an exact replica of the Apple II's character set. All special
symbols, numbers, and uppercase letters are included, in the order that they appear in the
Apple's character set Since the Apple's character set and the shape table coincide, Hi-Res
characters can easily be drawn.

USING THE SHAPE TABLE
The shape table shown in Listing 49 begins at $6000, and has a length of $313.

Applesoft's shape table pointers must be set to the beginning address of the table. $E8 (232
decimal) holds the low-order byte of the beginning address, and $E9 (233) holds the high
order byte. Since the shape table begins at $6000, $00 (0) is the low-order byte and $60 (96) is
the high-order byte.

From Applesoft, the POKEs 232,0 and 233,96 must be used. From the Monitor, $E8 must
be set to $00, and $E9 must be set to $60. Either the Applesoft approach or the Monitor
approach may be used. The shape table may be BLOADed at a different address but the
Applesoft shape table pointers must be set to the new value of the beginning address.

DRAWING THE SHAPES
To draw a shape from a program, first determine the ASCII code of the letter to be drawn

using the ASC function. Subtract 31 from this value, then draw using the result from the
subtraction, i.e., DRAW (ASC (letter) - 31) AT X,Y. To obtairi double-width characters, first
draw the shape at X,Y. Then draw the same shape at (X+l) or (X-1),Y.

DEMONSTRATION PROGRAM
CHAR.SET.DEMO (Listing 50) shows how to test each shape by comparing it to its

counterpart in the Apple character set. A subroutine to draw sentences or phrases is also
included and explained.

ENTERING THE PROGRAMS
Please refer to Appendix A for help in entering Listing 49. If you key it in from the

Monitor, save it to disk with the command:

BSA VE HI.RES.CHAR.SET,A$6000,L$313

To key in CHAR.SET.DEMO, type in the program as shown in Listing 50 and save it to
disk with the command:

SA VE CHAR.SET.DEMO

138

LISTING 49: HI.RES.CHAR.SET

6000- 40 00 82 00 84 00 8B 00
6008 - 91 00 9F 00 AD 00 BA 00
6010- C6 00 C9 00 D4 00 DD 00
6018- EC 00 F3 00 F8 00 FD 00
6020- 00 01 07 01 l S 01 lD 01
6028 - 28 01 3S 01 42 01 4E 01
6030- SA 01 6S 01 71 01 7D 01
6038- 80 01 84 01 8E 01 96 01
6040- AO 01 AA 01 B7 01 C3 01
6048- CF 01 DC 01 E8 01 F4 01
60SO- 00 02 oc 02 18 02 22 02
60S8- 2A 02 37 02 40 02 4D 02
6060- SA 02 66 02 70 02 7E 02
6068- 8C 02 97 02 AO 02 AB 02
6070- B6 02 C2 02 CE 02 D8 02
6078 - ES 02 F3 02 FB 02 08 03
6080- OE 03 00 00 B6 04 40 18
6088 - 24 04 00 18 24 OD 36 04
6090- 00 83 24 6C 36 FF 16 2D
6098- 25 oc 16 17 FE 24 00 24
60AO- 74 39 3F 17 OE OD OE lE
60A8 - 27 lE 77 21 00 18 38 2C
60BO- S6 09 B8 17 17 17 4D 3S
60B8- 27 00 20 lC 17 76 lE 76
60CO- 65 lC 8C Bl 04 00 20 24
60C8- 00 lB 40 18 09 17 lE 36
60DO- OE OE 04 00 40 18 OE OE
60D8- 36 lE lE 04 00 24 34 so
60EO- Fl lE 18 lC 96 62 OD OE
60E8- lF B4 04 00 2D DF 27 48
60FO - B6 26 00 12 30 lE 04 00
60F8- lB 2D 2D 04 00 92 04 00
6100- 40 B9 17 17 17 04 00 oc
6108- oc lC 3F lE 36 2E lE OE
6110- 2D oc 24 24 00 2 4 BC 96
6118- 31 3E OD 04 00 6S E4 3F
6120 - lE 96 Fl CE 2D 2D 04 00
6128- 2S OS 20 3F 3F 96 4A 09
6130- F6 3F lC 04 00 2A 36 04
6138- 28 07 20 24 17 17 17 2E
6140- 04 00 28 lF 27 2C 2D BS
6148 - 32 F6 3F lC 04 00 39 3F
61SO- 2C 60 2D 96 32 lE 3F lC
61S8- 24 00 lA oc oc oc 3C 3F
6160- B7 92 31 04 00 39 E7 2C
6168- 28 7S B6 F6 3F 07 20 04
6170- 00 2D 24 07 38 F 7 76 4E
6178- Fl lE 3F 04 00 BO 04 00
6180- BO F6 04 00 lB oc oc oc
6188 - 96 92 lC lC 04 00 08 2D
6190- 2D D6 39 3F 27 00 09 07
6198- 38 EO 96 4A lE lE 04 00

139

61AO- 92 04 20 oc oc lC 3F lE
61A8- 04 00 30 2E 2C 24 lC 3F
61BO- lE 36 36 OE 20 25 00 2A
61B8- 25 3C 38 B8 17 36 F5 6E
61CO- 09 24 00 3F 24 2C 20 15
61C8- F6 OE F6 3F 27 24 00 09
6100- 40 03 lC 3F lE 36 36 15
6108- 20 oc 04 00 lB 24 2C 20
61EO- OE 36 36 17 3F 27 24 00
61E8- 25 40 3F 3F 36 2E lE 36
61FO- 20 20 04 00 19 20 40 18
61F8- 3F 3F 36 2E lE 36 04 00
6200 - OA 46 36 3F 3F 20 24 2C
6208- 28 20 04 00 20 24 FC lB
6210- 36 2E lE 36 40 21 24 00
6218 - 40 18 2B F5 36 36 3E OD
6220- 04 00 93 73 20 oc 24 24
6228- 24 00 63 oc oc OF 33 36
6230 - 36 6E 09 07 38 20 00 lB
6238- 24 B4 12 36 20 20 04 00
6240- 64 05 30 36 36 FE lB 24
6248- 24 24 OE 04 00 18 OE OE
6250- 56 24 24 24 OF 33 36 36
6258- 26 00 lB 24 05 28 75 36
6260- 36 lE 3F lC 24 00 65 3C
6268- 38 3F 36 2E lE 36 04 00
6270 - 8A 11 lC 07 68 24 3C 38
6278 - F7 36 36 OE 25 00 65 3C
6280- 38 37 18 36 2E OE OE OE
6288- OF 23 24 00 75 F6 3F lC
6290- 44 lC 64 20 OE 04 00 24
6298- 3C 6F 29 96 DA 36 04 00
62A0- lB 24 6C 09 36 36 F6 3F
62A8- lC 24 00 92 oc oc 24 24
62BO- OF 33 36 AE 04 00 76 OE
62B8 - 24 24 24 OF 33 36 36 66
62CO- 04 00 oc oc FC lB AE 16
62C8- 17 6E 09 E4 04 00 07 68
6200 - oc FC lB B6 4A 36 04 00
6208- 17 lE 2E 20 25 40 18 2B
62EO- 20 3F 3F 04 00 lB 24 2C
62E8- 20 F5 lB 36 36 2E 20 OF
62FO- 23 24 00 19 lC lC 96 49
62F8- OE 04 00 21 24 3F 6F 09
6300 - 36 36 36 27 B4 3B 27 00
6308- B8 17 40 El 04 00 92 lF
6310 - 60 25 00

140

LISTING SO: CHAR.SET.DEMO

10
20
30
40
50
60
70
80

REM
REM
REM
REM
REM
REM
REM
REM

90 REM

* CHAR.SET .DEMO *
* BY VINAY , VIVEK , *
* AND VIJAY PAI *
* COPYRIGHT (C) 1984 *
* BY MICROSPARC, INC *
* CONCORD, MA. 01742 *
********************* *

100 PRINT CHR$ (4);"BLOAD HR.CHAR.SET"
110 HOME : TEXT : HOME : SPEED= 255: NORMAL
120 POKE 232 , 0: POKE 233,96 : REM POKE IN HIGH AND LOW BYTES OF

SHAPE TABLE ADDRESS .
130 HGR : ROT= 0: SCALE= 1: HCOLOR= 7
140 A$= "PRESS A KEY TO " :B$ = "VIEW NEXT LETTER"
150 GOSUB 160: GOTO 250
160 FORT= 1 TO LEN (A$) : DRAW (ASC (MID$ (A$, T,1)) - 31)

AT T * 10 , 20
170 DRAW (ASC (MID$ (A$,T,1)) - 31) AT T * 10 + 1,20
180 NEXT
190 FORT= 1 TO LEN (B$): DRAW (ASC (MID$ (B$,T,1)) - 31)

AT T * 10 , 40
200 DRAW (ASC (MID$ (B$,T,1)) - 31) AT T * 10 + 1,40
210 NEXT
220 REM THE PROGRAM 'READS' EACH LETTER OF A$ ORB$, AND DRAWS

ITS (I ASC I VALUE - 31) .
230 REM THE SAME LETTER I S BEING DRAWN AGAIN, EXCEPT AT THE

NEXT PIXEL TO GIVE THE LETTERS THEIR THICKNESS . THIS
PROCESS MAY BE OMITTED TO ACHIEVE NORMAL WIDTH , APPLE
CHARACTER SHAPES .

240 RETURN
250 C$ = " < HI-RES CHARACTER": FORT = 1 TO LEN (C$): DRAW (

ASC (MID$ (C$,T,1)) - 31) AT (T * 10 + 20) , 100: DRAW (ASC
(MID$ (C$, T, 1)) - 31) AT (T * 10 + 21),100 : NEXT

260 VTAB 23 : PRINT " ** COPYRIGHT 1984 BY MICROSPARC , INC. ** " ;:
VTAB 21 : HTAB 5 : PRINT "<APPLE ' S CHARACTER (IN TEXT
WINDOW)"

270 FOR T = 32 TO 95
280 VTAB 21 : HTAB 1 : PRINT CHR$ (T)
290 HCOLOR= 7: DRAW T - 31 AT 3,100
300 WAIT - 16384,128: POKE - 16368,0
310 HCOLOR= 0: DRAW T - 31 AT 3 , 100
320 NEXT T
330 HGR : HOME
340 A$= "TYPE IN UP TO 20 CHARACTERS ":B$ "(NO CONTROL

CHARACTERS) "
350 HCOLOR= 7: GOSUB 160
360 VTAB 21: HTAB 1: INPUT ":";A$
370 IF LEN (A$) < 1 OR LEN (A$) > 20 THEN PRINT CHR$ (7) :

GOTO 360 : REM CHECK LENGTH OF INPUT
380 C$ = "--------------------" :B$ LEFT$ (C$, LEN (A$)) : REM

20 DASHES

141

390 FORT= 1 TO LEN (A$): IF ASC (MID$ (A$,T,1)) < 32 OR
ASC (MID$ (A$,T,1)) > 95 THEN PRINT CHR$ (7): GOTO 360:
REM CHECK FOR ILLEGAL CHARACTERS

400 NEXT T
410 HGR : HCOLOR= 7: GOSUB 1 60 : REM CLEAR SCREEN, AND DRAW WHAT

USER HAS TYPED IN.
410 HGR : HCOLOR= 7: GOSUB 160: REM CLEAR SCREEN, AND DRAW
WHAT USER HAS TYPED IN.

420 VTAB 22: PRINT "PRESS ANY KEY TO QUIT";: GET K$: TEXT :
HOME : END

142

Applesoft Windows
The Apple's text display is a window that you can control from within your own programs.
These short programs show you how it's done in both Applesoft and machine language.

by Michael A. Seeds

Your Apple Monitor contains a window, and looking through that window can solve a few
bothersome programming problems. For example, I like to jump around when I am editing a
program, and sometimes I need to copy parts of one section into another section. I've often
wished I could run two video monitors side by side - one to display the program and one to
display my working area. Another problem is displaying short messages without disturbing
text already on the screen.

CHANGING THE WINDOW'S BOUNDARIES
We can solve problems like these using the Apple text window. Normally the window is set

to fill the entire screen, but you can change the boundaries of the text window by POKEing
locations 32-35. A POKE 32,10, for instance, sets the left margin of the text window to the
tenth space from the left. You can try this in immediate mode, if you like. Try these locations:

Location Function Limits

32 Left edge 0-39
33 Width of window 1-40
34 Top edge 0-23
35 Bottom edge 0-23

(For more details, see page 31 of the Apple II Reference Manual or Appendix F of the
Applesoft BASIC Programmer's Reference Manual.)

When you change the text window, your Apple uses the new area and ignores anything
outside it The HOME command clears just the window and places the cursor at the upper left
corner of the window. If you list a program, the text in the window will scroll as usual, but
text outside the window will be left untouched. HTAB will move the cursor relative to the
newly-defined left edge, but VTAB will allow you to move the cursor above or below the
existing text window. Go ahead and try a few POKEs. No matter how much you mess up the
window boundaries, you can restore the window to full screen with a TEXT command.

Using these same locations, programs can very easily control the window boundaries. The
following two programs present two possibilities. The first, BIWIND (Listing 51), gives
you two work areas on the screen for program development and testing. The second,
WINDER (Listing 52), demonstrates a technique for creating Macintosh-like "dialog"
windows.

BIWIND
BIWIND is a short machine language program that allows you to divide the screen into top

and bottom sections. You can work in either half without disturbing the other. With BIWIND
installed, you can enter the top half of the screen by moving the cursor to the bottom half and
typing CALL 771. When you press <RETURN> the screen will divide in half and you will be
working in the top half. You can LIST, EDIT, and RUN programs here without disturbing the
text below (unless, of course, your program alters locations 32-35 or uses a TEXT command).

To enter the bottom half of the screen, move the cursor to the top half and type CALL 794.
Press <RETURN> and the bottom window will open for your use. To return to the full screen,
just type TEXT.

143

BIWIND is a simple program, and, because of the way it remem?ers t?e last cursor
position, it can get confused if y~u try to open the. half of the screen m which yo_u are already
working. If that happens, try typmg HOME. If thmgs get hopelessly confused, JUSt type TEXT
and you will be back to a full screen. .

I find BIWIND especially useful for editing my pro~ams. For example, I can Jump to t~e
top screen to list one segment of the program, and then Jump back to the bottom screen to edit a
related part of the program. .

The program will always divide the screen ii:to two equal areas unless yo_u specify
otherwise. To divide the screen at the nth line, JUSt POKE 770, n. The next tJ.me you open one
of the work areas, the new dividing line will be in effect.

If you use these subroutines in your own programs, notice that the variables the7 use all
begin with a W. A void using W variables in the rest of your prog!am so that the w1~dow .
subroutines won't interfere with them. Notice, also, that your mam program must dimension
WS$(24).

ENTERING BIWIND
Please refer to Appendix A for help in entering BIWIND. If you key it in from the Monitor,

save it to disk with the command:

BSA VE BIWIND,A$300,L$45

HOW BIWIND WORKS
This machine language program is really two separate routines. The first opens the top of

the screen, while the second opens the bottom of the screen. Let's look at the first routine.
When we CALL 771, the program saves the present location of the cursor for use when we

flip back to the bottom half of the screen, and then it loads in the last location of the cursor in
the top half of the screen. The Apple always stores the current cursor location in $25. Next, the
program sets the top of the working area to zero and it sets the bottom line to the contents of
$302. Finally, it calls the subroutine at $334 to draw a line of equal signs dividing the two
screen areas.

The second routine opens the bottom of the screen. This routine is very similar to the first.
The major difference is that it sets the top of the screen to the contents of $302 plus 1. This
prevents it from overwriting the dividing line of equal signs.

WINDER
The program WINDER (Listing 52) also uses the text window, but for a different

purpose. The subroutines starting at line 390 can be used in any Applesoft program to open a
small window in a text screen display. I use this to display messages to the user. The
subroutine at line 560 closes the temporary message window and restores the original data.
The first part of the program in Listing 52 is just a demonstration of the methods.

To open a window, the main program must set the quantities WL, WT, WW, and WB.
These are the four numbers to be POKEd into locations 32-35, and they define the location and
size of the window. To allow room for a border, WW and WB must be greater than two. Of
course, the boundaries of the window must not go beyond the boundaries of the video screen.

ENTERING WINDER
To key in WINDER, type in the Applesoft program shown in Listing 52 and save it on

disk with the command:

SAVE WINDER

144

LISTING 51: BIWIND

0
1
2 BI WIND
3 BY MIKE SEEDS
4 COPYRIGHT (C) 19SS
5 BY MICROSPARC, INC.
6 CONCORD, MA 01742
7
s MICROSPARC ASSEMBLER
9

10 ORG $300
11 VCURS EQU $25 ;VERTICAL CURSOR POSITION
12 BOTSCR EQU $23 ;BOTTOM OF TEXT WINDOW
13 TOPSCR EQU $22 ;TOP EDGE OF WINDOW
14 0300 OB TOP DFC 11 ;TOP CURSOR POSITION
lS 0301 17 BOT DFC 23 ;BOTTOM CURSOR POSITION
16 0302 oc LINE DFC 12 ;DIVIDING LINE SET AT 12
17 0303 AS 2S LDA VCURS •*** , OPEN TOP ***
lS 0305 SD 01 03 STA BOT ;SAVE BOTTOM CURSOR POSITION
1 9 030S AD 00 03 LDA TOP
20 030B SS 2S STA VCURS ;SET TOP CURSOR POSITION
21 030D A9 00 LDA #$0
22 030F S5 22 STA TOPSCR ;SET TOP OF AREA
23 0311 AD 02 03 LDA LINE ;GET DIVIDING LINE
24 0314 SS 23 STA BOTSCR ;SET BOTTOM OF AREA
2S 0316 20 34 03 JSR DIVIDE ;DRAW DIVIDING LINE
26 0319 60 RTS ;END OF OPEN TOP ROUTINE
27
2S 031A AS 2S LDA VCURS ;*** OPEN BOTTOM ***
29 031C SD 00 03 STA TOP ;SAVE TOP CURSOR POSITION
30 031F AD 01 03 LDA BOT
31 0322 SS 2S STA VCURS ;SET BOTTOM CURSOR POSITION
32 0324 AD 02 03 LOA LINE ;GET DIVIDING LINE
33 0327 lS CLC
34 032S 69 01 ADC n ;ADD ONE
3S 032A SS 22 STA TOPSCR ;SET TOP OF AREA
36 032C A9 lS LOA #$1S ;DECIMAL 24
37 032E SS 23 STA BOTSCR ;SET BOTTOM OF AREA
3S 0330 20 34 03 JSR DIVIDE ;DRAW DIVIDING LINE
39 0333 60 RTS ;END OF OPEN BOTTOM ROUTINE
40
41 0334 AD 02 03 DIVIDE LDA LINE ; GET LINE POSITION
42 0337 20 24 FC JSR $FC24 ;VTAB TO DIVIDING LINE
43 033A A2 27 LDX #39 ;PRINT 39 SYMBOLS
44 033C A9 BD LDA #$BD ;= SIGN
4S 033E 20 FO FD OUT JSR $FDFO ;PRINT A SYMBOL

145

46 03 41 CA DEX
47 0342 DO FA BNE OUT
48 0344 60 RTS

000 ERRORS

0300 HEX START OF OBJECT
0344 HEX END OF OBJECT
0045 HEX LENGTH OF OBJECT
95C3 HEX END OF SYMBOLS

LISTING 52: WINDER

10
20
30
40
50
60

REM
REM
REM
REM
REM
REM

* WINDER *
* BY MIKE SEEDS *
* COPYRIGHT (C) 1985 *
* BY MICROSPARC , INC *
* CONCORD , MA . 01742 *

70 REM ********************* ***
80 DIM WS$(24)

;LAST SYMBOL?
;DONE

90 HOME : PRINT : PRINT TAB(9)"FOR WHOM THE BELL BONGS"
100 PRINT PRINT TAB(15)"BY A. MONKEY": PRINT PRINT
110 FOR J 1 TO 8
120 FORK 1 TO 40: PRINT CHR$ (64 + 26 * RND (l));: NEXT K:

PRINT
130 NEXT J
140 VTAB 23: PRINT "PRESS ANY KEY TO HALT."
150 WL = 12 : WT = lO:WW = lO:WB = 5: GOSUB 390: REM OPEN WINDOW
160 PRINT : PRINT "GOT IT?"
170 GOSUB 350: REM DELAY
180 GOSUB 560: REM CLOSE WINDOW
190 IF PEEK (49152) > 128 THEN TEXT HOME END
200 WL = 5:WT = l:WW = 25:WB = 7
210 GOSUB 390 : REM OPEN WINDOW
220 VTAB WT+ 2 : HTAB 4: PRINT "NOTICE THE TEXT IS": HTAB 4 :

PRINT " RESTORED CORRECTLY."
230 GOSUB 350: REM DELAY
240 GOSUB 560: REM CLOSE WINDOW
250 IF PEEK (49152) > 128 THEN TEXT : HOME : END
260 WT= lO : WB = 10: GOSUB 390
270 FOR J = 1 TO 25: PRINT " ";J,J * J: NEXT J
280 PRINT : PRINT "SCROLLING IS AUTOMATIC"
290 GOSUB 350: GOSUB 560
300 IF PEEK (49152) > 128 THEN TEXT : HOME END
310 GOTO 150
320 REM · ==========
330 REM DELAY
340 REM ==========
350 FOR J = 1 TO 1500 : NEXT : RETURN
360 REM ===================
370 REM SUBROUTINE WINDOW
380 REM ===================

146

3 90

400
410
420

430
440
450
4 60
470

480
490
500
510
520
530
540
550
560
570
580

590

WA= 1024 + 128 * (WT - 1 - 8 * I NT ((WT - 1) / 8)) + 40 *
INT (WT / 8.5)

WS = WA
FOR WJ =WT TO WT+ WB - l:WS$(WJ) U II

FOR WK= 1 TO WW:WS$(WJ) WS$(WJ) + CHR$ (PEEK (WA + WL
+WK - 1)): NEXT WK
POKE WA+ WL,32: POKE WA + WL + WW - 1, 32

WA= WA+ 128: IF WA= 2088 THEN WA 1104
IF WA = 2048 THEN WA = 1064
NEXT WJ
FOR WJ = 1 TO WW: POKE WS + WL + WJ - 1,32 : POKE WA - 128 +
984 * (WA= 1064 OR WA = 1104) + WL + WJ - 1 , 32 : NEXT WJ
REM SET TEXT SCREEN
POKE 32 , WL + 1: POKE 33,WW - 2
POKE 34,WT: POKE 35,WT + WB - 2
HOME
RETURN
REM ================
REM SUBROUTINE CLOSE
REM ================
POKE 32,0: POKE 33 ,40
POKE 34,0: POKE 35,24
FOR WJ =WT TO WT + WB - 1: VTAB WJ: HTAB WL + 1: PRI NT
WS$(WJ): NEXT WJ
RETURN

147

80-Column Screen Dump
Use this handy Applesoft routine to send the contents of the BO-column display of your Ile, Ile
or JIGS to a printer

by A. R. Clayton

If you program the Apple Ile or Ile, you may have wondered whether you can read the 80-
column screen from Applesoft. It is possible, and this program demonstrates how the 80-
column display can be read a line at a time from within an Applesoft program, and sent to a
printer.

USING THE PROGRAM
To use the program, simply include the subroutine shown in lines 100-290 of Listing

53 in your own program. Whenever you want the contents of the 80-column screen sent to the
printer, use a GOSUB 100 statement. Listing 53 demonstrates the use of the program by
first turning on the 80-column card, issuing a CATALOG command to fill the screen, and
finally, using a GOSUB 100 to send the screen contents to the printer.

There are several methods of including this routine in your own program. The most obvious
is to simply load the routine, and then begin writing your program at line 300. (Other options
are to use the merge function in the RENUMBER program on the DOS 3.3 System Master disk
or to use one of the many programming utilities available that perform this function.) A text file
containing the code may be created and then EXECed into your program as described in the
DOS Manual on p. 76.

ENTERING THE PROGRAM
To key in the program, enter the Applesoft program as shown in Listing 53 and save it to

disk with the command:

SA VE SCREEN.DUMP80

You must have a Ile with an 80-column card installed, or a Ile or IIGS, and your printer
card must be in slot 1. If your printer card is in another slot, change the statement in line 100
to the appropriate slot. Also, Ile and IIGS owners should change the first statement in line
200 to:

PRINT L$

HOW THE PROGRAM WORKS
We assume that the 80-column display is active and that there is something on the screen

upon entry to the subroutine. Three FOR-NEXT loops then begin to execute, reading each line
across the screen until 80 characters have been read in. The 80-column screen is simply two
40-column screens that share the same memory block.

Starting at $400 (1024 decimal), every other character is stored on the auxiliary screen. The
first character of each line is stored on the alternate screen. To turn on the auxiliary screen and
read the first character, POKE 49237,0 and then PEEK(l024). This will return the ASCII
value of the first character on the screen. The next character would be read in by turning off the
auxiliary screen with the commands POKE 49236,0 and the PEEK(1024). For example:

Memory location
Character on screen
Memory

148

1024
A
AUX

1024
B

MAIN

1025
c

AUX

1025
D

MAIN

For a more detailed explanation, seep. 29 of the Apple Ile Reference Manual.
The following functions are performed by the routine: Lines 100-110 turn on the printer

and turn off the screen display to prevent characters from being sent to the screen. Lines 120-
140 set up three FOR-NEXT loops that step through each memory location used by the screen
display. .

Lines 150 and 170 toggle the soft switch between auxiliary and main memory. The
subroutine at line 260 removes control characters by testing their ASCII values. If the value is
less than 31, a space character is put in the place of the control character.

Line 200 sends L$ to the printer. This string was built in the subroutine that starts at line
260. When all 80 characters have been read, it is nulled and used again. Finally, lines 230
and 240 turn off the printer and turn on the 80-column card.

MODIFICATIONS
Because both the 80-column display and the printer interface are treated as peripherals, the

PR#O used to switch off output to the printer does not transfer output back to the 80-column
card in slot 3. Unfortunately, this means that a new PR#3 must be issued, which will clear the
screen.

If it is important that your program return to 80-column display with the original display
intact, you may want to modify the program. First, dimension a string array large enough to
hold each line of the 80-column screen. Then use this array, rather than the variable L$, to
build each line before sending it to the printer. After issuing the PR#O and PR#3 to redirect
output to the 80-column card, use a FOR-NEXT loop to reprint the screen from the string
array.

LISTING 53: SCREEN.DUMP80

10
20
30
40
50
60

REM
REM
REM
REM
REM
REM

* SCREEN.DUMP80 *
* BY A. R.CLAYTON *
* COPYRIGHT (C) 1985 *
* BY MICROSPARC , INC *
* CONCORD, MA. 01742 *

70 REM ************************
80 PRINT CHR$ (4) ;"PR# 3": PRINT CHR$ (4)"CATALOG": REM TURN

ON 80 COL CARD AND PUT SOMETHING ON THE SCREEN
90 GOSUB 100: END
100 PRINT CHR$ (4);"PR# l": REM TURN ON PRINTER
110 PRINT CHR$ (9) ;" 80N": REM TURN OFF SCREEN
120 FOR A 1024 TO 1104 STEP 40: REM SEE MEM MAP 80 COL TEXT

PAGE 32 IIe REF
130 FOR I = A TO A + 896 STEP 128
140 FOR X = I TO I + 39
150 POKE 49237,0: REM TURN PAGE 2 ON AUX MEM
160 GOSUB 260
170 POKE 49236,0: REM TURN PAGE 2 OFF
180 GOSUB 260
190 NEXT X
200 PRINT L$:L$ ""· REM PRINT L$ AND THEN NULL L$
210 NEXT I
220 NEXT A
230 PRINT CHR$ (4);"PR# 0": REM TURN PRINTER OFF
240 PRINT CHR$ (4);"PR# 3" : REM TURN 80 COL BACK ON
250 RETURN

149

260 L = PEEK (X)
270 L = L * (L < 255) * (L > 31): IF NOT L THEN L = 32
280 L$ = L$ + CHR$ (L)
290 RETURN : REM THIS SUB REMOVES CONTROL CHARACTERS

150

Catalog Plus
Modify the CATALOG command to display only the files you want to see. This patch to DOS
3.3 allows you to catalog by file type or by the first character of the.file name.

by Bryan Costales

The CATALOG function is the DOS 3.3 function that is most often tinkered with and
patched. Whether designed to skip the pause during a listing or to print JOE'S DISK instead
of DISK VOLUME, patches to the CATALOG all seem to be aimed at fixing a less-than
optimum routine.

I have always had problems finding a particular text file among 50 or so A, I, and B type
files, not to mention getting a separate listing of my source code files when both my source and
object files are binary type files. Why not, I thought, patch the CATALOG code to allow it an
argument or two? Why not alter the CATALOG to list only text files or only files that start with
the letter S, for that matter?

CATALOG.PLUS (Listing 54) solves these problems by allowing arguments in the
CATALOG command line. In designing the program, I decided to adhere to the following
restrictions:

1. The program does not use any of the so-called unused space in DOS.
2. It does not change the locations of any called subroutines (e.g., $AE2F, which prints a
carriage return and produces a pause.)
3. It does not change the plain CATALOG command itself, as many programs call that
function by name.
4. It does not change page 3 access, since programs like FID use it to produce a CATALOG
listing.

USING CATALOG PLUS
After you BRUN CA TLOG.PLUS, several options are available. The CATALOG

command still provides the full list of all the files on the disk. You have the option of providing
either of two arguments to limit your catalog to files of a certain type, files that begin with a
certain character, or both.

In the statement

CATALOGfiletypef ilename

filetype is the character representing the file type, such as I, B or A. A space following the
CATALOG command c~mses all file types to be selected. The filename field is the first letter of
a file name. If the filename field is omitted, all file names may be selected. Examples of the
possible combinations are shown in Figure 1. Pressing any key will stop or restart the listing.

FIGURE 1: Examples of CATALOG Functions

]CATALOG
*B 020 FID

T 005 LETTER.JOHN 12/81
T 004 EXEC LISTER
A 013 LISTER

] CATALOGB
*B 020 FID

151

]CATALOGL
T 005 LETTER.JOHN 12/81
A 013 LISTER

]CATALOGTL
T 005 LETTER.JOHN 12/81

Functions Lost or Changed
If you enter CATALOGDl, the function will no longer give the full catalog of the disk in

drive 1. You must now delimit the drive number with a comma. For instance, you would type
CATALOG,Dl or CATALOG B,Dl. Also, the words DISK VOLUME are no longer printed,
nor is the volume number displayed.

ENTERING THE PROGRAM
Please refer to Appendix A for help in entering this program. If you key it in from the

Monitor, start at $6000. The program should be saved to disk with the command:

BSA VE CATALOG.PLUS,A$6000,L$14C

When it is BRUN, CATALOG.PLUS rewrites the catalog code within DOS. The
CATALOG.PLUS code will be a permanent part of the DOS of any slave disk initialized from
this disk.

HOW IT WORKS
Whenever DOS finds a valid DOS command, it first checks its Command Parameter Table

at $A909 to see if that command requires a file name. By altering the byte at $A929 from a $40
to a $60, DOS is tricked into thinking that CATALOG requires a file name. DOS then
obligingly finds the file name and places it in the primary name buffer at $AA 75.

To ensure that CATALOG will always have a file name after it, we substitute the new name
CAT ALO into the Command Name Table at $A884. Just to be on the safe side, the whole table
is rewritten from scratch. If you had DOIT for RUN and CAT for CATALOG, you will now
find all the standard terms restored along with CAT ALO.

Now, if CATALOG is entered, DOS saves the file name G in the primary buffer. If
CAT ALOGA Tis entered, it saves the file name GAT. Next it compares the ASCII character for
each file's type to the second character in the buffer, and compares the first letter of each file
name to the third character in the buffer. Files are accepted for display when a match is found.

The File Manager lets you exit from the Catalog function. When the File Manager finds a
name in the buffer, it assumes that a file has been opened. If it were to remain open, you would
soon receive a NO BUFFERS AVAILABLE error. To prevent this, a JSR $A 764 locates the
opened file, places a $00 there, and closes it.

Finally, a JSR $A095 clears the primary file name buffer, so any page 3 callers will get a
bad listing only on the first try. (You will find that FID will catalog only Integer BASIC files
that start with the letter D. This is a first-time-only bug. Thereafter, all works as it should.)

MODIFYING THE PROGRAM
Before you attempt to modify this routine, a few words of caution are in order:

1. CATALOG.PLUS utilizes exactly the same space as the old Catalog. To add anything, you
must first remove something from the program.

152

2. The CROUT subroutine was not moved from location $AE2F because other patches to DOS
call it at that location (see, for instance, "Free Space," Golding/Pump, Call -A.P.P.L.E., April
1982).
3. I placed the high/low bytes of the file length in locations $44/$45 before calling PRINLEN
at $AE42. Although PRINLEN only utilizes $44, you may want to modify it to allow lengths
over 244 (see "Disassembly Lines," Nibble Vol.3/No.2).

LISTING 54: CATALOG.PLUS

0
1
2 CATALOG.PLUS
3
4 BY BRYAN COSTALES
5 COPYRIGHT (C) 1985
6 BY MICROSPARC, INC.
7 CONCORD, MA 01742
8
9 USE MACLIB,Dl ;MACRO LIBRARY

10 MUL CALLED IN FOR DCI DI RECTIVE
11 UEN
12
13 ORG $6000
14
15 *** ZERO PAGE LOCATIONS
16
17 BUFFPTR EQU $40
18 LEN CALO EQU $44
19
20 *** DOS LOCATIONS
21
22 CLRBUFFS EQU $A095 Clear buffers .
23 FINDBUFF EQU $A764 Locate open buffer.
24 KEYT ABLE EQU $A884 DOS cmd name table.
25 PARAM EQU $A929 Catalog parameter H.
26 VOLSAVE EQU $AA66 Last vo l ume number.
27 SOUGHT EQU $AA77 File/name sought.
28 INITFM EQU $ABDC Init fmgr workarea .
29 CATLOG EQU $AD98 Start of Catal og .
30 PRINLEN EQU $AE42 Print 2hex as 3dec .
31 INVTOC EQU $AFF7 Read/write the VTOC .
32 GETS EC EQU $B011 Read a dir sector.
33 ADVINDX EQU $B230 Advance to next file.
34 FMGRXT EQU $B37F Exit through filemgr .
35 DIRDEX EQU $B39C Directory index .
36 TYPNAM EQU $B3A7 File type letters .
37 DIRTRK EQU $B4C6 Track of T/S list.
38 FITYPE EQU $B4C8 File type & lock bit.
39 FI SIZE EQU $B4E7 File size in sectors .
40 VOLNUM EQU $B5F9 Vol number current.
41
42 *** MONITOR LOCATIONS
43
44 KE YB RD EQU $C000
45 KEYSTRB EQU $C010
46 COUT EQU $FDED

153

47 KEY IN EQU $FDOC
4S
49 *** CONSTANTS
so
Sl ZERO EQU $00
S2 CR EQU $SD
S3 SPACE EQU $AO
S4 ZROCMP EQU $FF Zero's Complement.
SS
SG RELOCATION ROUTINE:
S7
SS GOOO A2 A9 LDX fl+ END-START
S9 G002 BD A4 GO RLOOP LDA START,X
GO GOOS 9D 9S AD STA CATLOG,X
Gl GOOS CA DEX
G2 G009 EO FF CPX #ZROCMP
G3 GOOB DO FS BNE RLOOP
G4
GS CHANGE CATALOG TO CAT ALO
6G
G7 GOOD A2 00 LDX #ZERO
6S GOOF BD 20 GO CLOOP LDA KEYWORDS,X
G9 G012 FO OG BEQ PARAMO
70 G014 9D S4 AS STA KEYTABLE,X
71 G017 ES INX
72 GOlS DO FS BNE CLOOP
73
74 CHANGE CATALOG PARAMATER TO ACCEPT FILENAME
7S
7G GOlA A9 GO PARAMO LDA f$GO
77 GOlC SD 29 A9 STA PARAM
7S GOlF GO RTS
79
so G020 49 KEYWORDS DCI "INIT" Hi bit set .
so G021 4E
so G022 49
so G023 D4
Sl G024 4C DCI " LOAD" on last letter.
Sl G025 4F
Sl G02G 41
Sl G027 C4
S2 G02S S3 DCI "SAVE"
S2 G029 41
S2 G02A 5G
S2 G02B cs
S3 G02C 52 DCI " RUN"
S3 G02D 55
83 G02E CE
84 G02F 43 DCI "CHAIN"
S4 G030 4S
S4 G031 41
84 G032 49
S4 G033 CE
85 G034 44 DCI "DELETE"
S5 G03S 45
S5 G03G 4C
85 G037 45
85 G03S S4

154

8S 6039 cs
86 603A 4C DC! "LOCK".
86 603B 4F
86 603C 43
86 603D CB
87 603E SS DC! "UNLOCK"
87 603F 4E
87 6040 4C
87 6041 4F
87 6042 43
87 6043 CB
88 6044 43 DC! "CLOSE"
88 604S 4C
88 6046 4F
88 6047 S3
88 6048 cs
89 6049 S2 DC! " READ"
89 604A 4S
89 604B 41
89 604C C4
90 604D 4S DC! "EXEC"
90 604E S8
90 604F 4S
90 60SO C3
91 60Sl S7 DC! "WRITE"
91 60S2 S2
91 60S3 49
91 60S4 54
91 60SS cs
92 60S6 so DC! "POSITION"
92 60S7 4F
92 60S8 S3
92 60S9 49
92 60SA S4
92 60SB 49
92 60SC 4F
92 60SD CE
93 60SE 4F DC! "OPEN"
93 60SF so
93 6060 4S
93 6061 CE
94 6062 41 DC! "APPEND"
94 6063 so
94 6064 so
94 606S 4S
94 6066 4E
94 6067 C4
9S 6068 S2 DC! " RENAME "
9S 6069 4S
9S 606A 4E
9S 606B 41
9S 606C 4D
9S 606D cs
96 606E 43 DC! "CATALO"
96 606F 41
96 6070 S4
96 6071 41
96 6072 4C

155

96 6073 CF
97 6074 4D DCI "MON"
97 607S 4F
97 6076 CE
98 6077 4E DCI "NOMON"
98 6078 4F
98 6079 4D
98 607A 4F
98 607B CE
99 607C so DCI "PR#"
99 607D S2
99 607E A3

100 607F 49 DCI "IN# "
100 6080 4E
100 608 1 A3
101 6082 4D DCI "MAXFILES"
101 6083 41
101 6084 SB
101 608S 46
101 6086 49
101 6087 4C
101 6088 4S
101 6089 D3
102 608A 46 DCI "FP "
102 608B DO
103 608C 49 DCI " INT"
103 608D 4E
103 608E D4
104 608F 42 DCI "BSAVE "
104 6090 S3
104 6091 41
104 6092 S6
1 04 6093 cs
lOS 6094 42 DCI "BLOAD"
lOS 609S 4C
lOS 6096 4F
lOS 6097 41
lOS 6098 C4
106 6099 42 DCI "BRUN"
106 609A S2
106 609B SS
106 609C CE
107 609D S6 DCI " VERIFY"
107 609E 4S
107 609F S2
107 60AO 49
107 60Al 46
107 60A2 D9
108 60A3 00 HEX 00
109
llO START
lll 60A4 20 DC AB JSR INITFM Init fmgr workspc .
ll2 60A7 A9 FF LDA #ZROCMP
ll3 60A9 SD F9 BS STA VOLNUM Set vol#=O comp.
ll4 60AC 20 F7 AF JSR INVTOC Read the VTOC.
llS
ll6 60AF 20 2F AE JSR CROUT ; or $BA69 w/ Free Space .
ll7

156

llS 60B2 lS CLC For 1st sector.
119 60B3 20 11 BO NEXT SEC JSR GET SEC Get next sector.
120 60B6 BO 75 BCS AL LOO NE Done? Yes, exit.
121 60BS A2 00 LOX #ZERO For start of sector .
122 60BA SE 9C B3 CAT LOOP STX DIRDEX Save current loc .
123 60BD BO C6 B4 LOA DI RTRK , X Get track number .
124 60CO FO 6B BEQ ALLDONE Zero? Yes, exit.
125 60C2 30 62 BMI TESTDONE Deleted? Yes , skip.
126 60C4 BO cs B4 LOA FITYPE,X Get the file type.
127 60C7 OS PHP Save N-flag status.
12S 60CS 29 7F AND #$7F and strip lock bit.
129 60CA AO 07 LOY #$07
130 60CC QA ASL
131 60CD QA TYPE LOOP ASL Shift on- bit to get
132 60CE BO 03 BCS GOT TYPE off set to type with
133 6000 SS DEY offset in y- reg.
134 6001 DO FA BNE TYPE LOOP
135 6003 B9 A7 B3 GOT TYPE LOA TYPNAM,Y Get Character and
136 6006 AS TAY save it.
137 6007 CD 76 AA CMP SOUGHT-1 File type sought?
13S 60DA FO 07 BEQ CHKLETR
139 60DC A9 AO LOA #SPACE No , a space?
140 60DE CD 76 AA CMP SOUGHT-1

' 141 60El DO 43 BNE TES TOONE No, skip .
142 60E3 AD 77 AA CHKLETR LOA SOUGHT Yes, name sought?
143 60E6 DD C9 B4 CMP DIRTRK+3 , X
144 60E9 FO 04 BEQ CH KLOCK No, a space?
145 60EB C9 AO CMP #SPACE
146 60ED DO 37 BNE TESTDONE No , skip .
147 60EF A9 AO CH KLOCK LOA #SPACE Yes , locked?
14S 60Fl 2S PLP
149 60F2 10 02 BPL NOLOCK No , print space.
150 60F4 A9 AA LOA #"* Yes, print "*"·
151 60F6 20 ED FD NO LOCK JSR COUT
152 60F9 9S TYA Restore type letter .
153 60FA 20 ED FD JSR COUT and print it .
154 60FD A9 AO LOA #SPACE
155 60FF 20 ED FD JSR COUT Print a space.
156 6102 BO E7 B4 LOA FISIZE , X
157 6105 S5 44 STA LEN CALO Print length .
15S 6107 BO ES B4 LOA FISIZE+l,X
159 610A S5 45 STA LENCALO+l
160 610C 20 42 AE JSR PRINLEN
161 610F A9 AO LOA #SPACE Print a space.
162 6111 20 ED FD JSR COUT
163 6114 ES INX
164 6115 ES INX
165 6116 ES INX
166 6117 AO 10 LDY #$10 Y-reg for 30 letters.
167 6119 BD C6 B4 NAME LOOP LOA DIRTRK,X
16S 611C 20 ED FD JSR COUT Print file name.
169 611F ES INX
170 6120 SS DEY
171 6121 10 F6 BPL NAME LOOP
172 6123 20 2F AE JSR CROUT
173 6126 20 30 B2 TESTDONE JSR ADVINDX Get next file.
174 6129 90 SF BCC CATLOOP More? Yes, again.
175 612B BO S6 BCS NEXTSEC No , next sector.

157

..
I

I

/

,
I

176
177 6120 20 64 A7 A LLD ONE JSR FINDBUFF Find opened file.
178 6130 A2 00 LDX #ZERO
179 6132 BA TXA
180 6133 81 40 STA (BUFFPTR, X) and c l ose it.
181 6135 20 95 AO JSR CLRBUFFS Cl ear buffers .
182 6138 4C 7F B3 JMP FMGRXT Exit through filemgr.
183
184 CROUT EQU $AE2F
185 613B A9 8D LDA #CR Carriage return.
186 613D 20 ED FD JSR COUT
187 6140 AD 00 co LDA KE YB RD Key pressed?
188 6143 10 06 BPL CROUTO
189 6145 8D 10 co STA KEYSTRB Yes, clear strobe,
190 6148 20 oc FD JSR KE YIN and pause.
191 614B 60 CROUTO RTS No , return.
192
193 END

000 ERRORS

6000 HEX START OF OBJECT
614B HEX END OF OBJECT
014C HEX LENGTH OF OBJECT
9007 HEX END OF SYMBOLS

158

..- 1

/RAM - A Free RAM Disk for
ProDOS Users
Discover one of Apple's best kept secrets. If you own a Ile or IIGS, or Ile with an extended
BO-column card, ProDOS automatically gives you a RAM disk when you boot up.

by Aaron Messing

If you own an Apple Ile or IIGS, or a Ile with the extended 80-column card and ProDOS
and don't know about /RAM - get ready for a pleasant surprise. It isn't often that a
manufacturer includes a valuable feature in a system and forgets to mention the fact. However,
this seems to be the case for /RAM. Except for one brief reference in BASIC Programming in
ProDOS, Apple has ignored /RAM in their consumer-oriented documentation.

/RAM is the title of a ProDOS volume placed in the additional memory of the extended 80-
column card when ProDOS is booted. The process is totally automatic. The resulting RAM
disk simulates a disk in a drive connected to the slot containing your extended 80-column card.
As with other RAM disks, data manipulation is almost instantaneous, the mechanical noise of a
drive is missing, and any information stored in /RAM is lost when power to the system is cut
off.

You can obtain information about your system by consulting the ProDOS Filer Utilities on
the ProDOS User's Disk. Select Filer Utilities when the main menu appears. Then select
Volume Commands from the Filer menu. On the next menu, select List Volumes. A report will
appear on the screen that gives the location of /RAM, if it exists, and of other peripherals in
your system. /RAM shows up in slot 3, drive 2.

/RAM contains 128 blocks, of which 120 are free. This compares with 273 free blocks on a
formatted disk. The size of /RAM notwithstanding, only 12 names will be accepted in its
directory.

COMMANDS
Immediate mode commands used regularly in the course of manipulating programs on disk

(SA VE, LOAD, RUN, DELETE, LOCK, UNLOCK, CATALOG, etc.) work fine with /RAM.
Commands can be formed using the name /RAM or the slot and drive numbers. For example,
to run a program enter:

RUN /RAM./program name

or

RUN program name,S3 , D2

Although both commands will run your program, the second form, which specifies the slot
and drive numbers, changes the way the system responds. It allows you to give commands to
the system without typing in the slot and drive numbers again. The disk operating system will
return to the same slot and drive to complete your commands until you specify different
locations.

You can select how you want your system to respond for subsequent commands. If you are
busy calling and storing files in /RAM, use a command with slot and drive numbers or change
the default prefix with the command PREFIX /RAM. This procedure eliminates typing the
same slot and drive information with each new command. To access material within /RAM
only occasionally, use the volume title (/RAM),and work patterns with another disk drive will
remain undisturbed.

159

I ~-~ -
/ ; ;.

/

The entire !RAM volume can be erased using the Format a Volume command of the Filer
Utilities. If you want, the name !RAM can be changed.

Since there is less space on /RAM than an ordinary disk, /RAM cannot be used with the
Copy a Volume command. The mass transfer of files is handles efficiently by the Copy Files
command. This command has two wildcard features. The path names requested in the data
entry form can be entered as follows. To copy files from the RAM disk to another formatted
disk:

Copy Pathname (/RAM/=)
To Pathname (/your volume name/=)

To copy from your disk to the RAM disk:

Copy Pathname (/your volume name/?)
To Pathname (/RAM/?)

The equal sign and the question mark are the wildcard symbols used to replace the names of
the file. Either symbol may be used to transfer files in both directions. However, the same
symbol must be used to specify file names for the source and the destination. The program
reads the catalog of the source disk. As it copies each file, the program provides information on
your screen. There is no need to type each file name. If the equal sign is used, the copying
process is continuous for all files. If the question mark is used, you are asked to confirm each
choice. Use of wildcard symbols speeds up deletions and alterations of write-protection.

DIRECTORY SIZE
As you would expect, the RAM disk will not accept more information than it can hold and

there is a limit of 12 files in the directory. The Copy Files command terminates abruptly, but
benignly, if you try to copy a thirteenth file. This_ occurs even with blocks of free memory
remaining. For a way around the directory size limit, use the ProDOS command to make
subdirectories. The subject of subdirectories is well documented in the ProDOS.

SIDE EFFECTS
In general, !RAM has no side effects to disturb the rest of the system. Activating the 80-

column display mode does not affect the operation of /RAM. The same kinds of files that
would be stored on a disk can be placed in !RAM. The existence of files in !RAM will not
disturb copy or formatting procedures for disks in other drives. Hi-Res pictures are unaffected
by files in !RAM. However, double Hi-Res pictures use the same memory locations as /RAM
files, so loading a double Hi-Res image with files in /RAM makes garbage of them both.

160

,,)

LUCK - A Lower to Uppercase
Converter
Most older Apple II and II Plus computers do not have the capability to display lowercase
characters. This easy-to-use utility converts the lowercase characters in an Applesoft program
to uppercase so you can write a single program for both old and new machines.

by Kirk Paterson

Lowercase adapters and 80-column cards with lowercase are very useful. Without one of
these handy devices, a listing that was written with lowercase characters is displayed in a most
confusing manner. If you have not had occasion to see such a mess, consider yourself lucky.
the lowercase characters appear primarily as punctuation marks and numbers. Result: pure
gibberish!

WHY YOU NEED LUCK
If your setup has the capability to put lowercase characters on the screen, you may not see

the need for LUCK (Lower to Uppercase Keyboard). However, I had recently written a
routine that I wanted to pass on to a friend, but as I was about to copy it onto a disk for him, I
realized that his system didn't have lowercase capability. It also occurred to me that if my
Videx card failed, my programs that used lowercase would become useless. This may never
happen to you, but if you are afraid your luck might run out, here is a little program that will
give you a bit more luck.

WHAT LUCK DOES
LUCK (Listing 55) is a short machine language program that will convert lowercase

characters to uppercase in all the DAT A, PRINT and REM statements in your Applesoft
programs. This includes string assignments such as:

LET A$ = "thi s is a test"

and

DATA this, is, a, test

as well as string literals such as:

DATA "this", "is", "a", "test"

USING THE PROGRAM
After you have LOADed an Applesoft program, BRUN LUCK. The conversion will be so

fast, your disk drive may still be turning when it's done. The program can convert more than
3K of solid lowercase in that short a time.

ENTERING THE PROGRAM
Please refer to Appendix A for help in entering this program. If you key it in from the

Monitor, save it to disk with the command:

BSA VE LUCK,A$300,L$81

161

HOW LUCK WORKS
The program is well-documented, but let's cover the major functions here. The pointer to

the beginning of your Applesoft program is determined and preserved at the unused zero page
locations $FE and $FF. This pointer is then constantly updated to point to the next character in
the program.

READ.A.BYTE then puts the byte indicated by the pointer in the Accumulator and examines
it for a $00 (the flag for the end of a line), a $B2 (the token for REM), a $83 (the token for
DAT A), or a $22 (the token for a quotation mark). If any of these is found, the program
branches to the appropriate subroutine. If none is found, the pointer is updated and the next
character is read.

Tokens are one-byte codes for the keywords that you use as commands in Applesoft. (For a
complete listing, see p. 24 of the BASIC Programming Reference Manual, or Appendix H.4 of
the Applesoft BASIC Programmer's Reference Manual for the Ile.)

CHK.FOR.END looks at the next two bytes for zeros, which would indicate the end of the
program. If three consecutive zeros are found, the end of the Applesoft program has been
reached, and the LUCK program ends. If not, the Y-Register is set back to zero and a branch is
taken to END.OF.LINE.

At END.OF.LINE the current pointer is increased by four to skip the two line-link bytes
and the two line-numbers bytes. The program then branches back to the search routine.

Program flow branches to FND.REM.DATA when a REM or a DATA token has been
found. The current pointer is moved ahead one character at a time, and each character is
checked for lowercase via a JSR to CHK.FOR.LC. When a $00 is found, indicating the end of
the line, the program branches through the routine that checks for the end of the program to the
main body.

FOUND.QUOTE works in much the same manner as FND.REM.DA TA except that the
program also looks for a second quotation mark ("), which indicates the end of a string literal.
As it is possible to end a PRINT statement without a closing quotation mark, finding a zero
(end of line) will also cause a break out of this routine.

The subroutine CHK.FOR.LC is used by the other routines to find and convert lowercase
characters. The lowercase characters are represented by ASCII codes from $60-$7F. Their
uppercase counterparts are $20 less, so it is only necessary to subtract $20 from each one and
store it back where it wass. ZZLEN simply calculates the length of the program.

An interesting bug crept into the program when I was writing it, and it actually took longer
to track down and squash the bug than to write the program. When line numbers such as 290
and 8704 were translated into hex, they contained a byte that was exactly $22. This is the token
for a quotation mark and was read as such. The following bytes were then reduced by $20,
which created a real mess. It may be true that the "problem is in the software," but it pays to
remember that the software includes the interpretation and not just the code.

LISTING SS: LUCK

162

0
1
2
3
4
5
6
7
8
9

10
11

LUCK
LOWER TO UPPER CASE KEYBOARD

BY KIRK PATERSON
COPYRIGHT {C) 1985
BY MICROSPARC, INC.
CONCORD , MA 01742

Converts lower case letters in PRINT and REM
statements of Applesoft programs to upper case .

12 ORG $300
13
14 EQUATES
1 5
16
17 PRGBEG EQU $67,68 ;Beginning of Applesof t Prog.
18 CURR.PNTREQU $FE , FF ;Pointer to current char .
1 9
20
21 ZZBEG
22 0300 A6 67 LOX PRGBEG ; Initialize CURR.PNTR
23 0302 CA DEX less 1
24 0303 86 FE STX CURR . PNTR ;every line of APPLESOFT .
25 0305 A6 68 LOX PRGBEG+l
26 0307 86 FF STX CURR. PNTR+l
27
28 0309 AO 00 LOY #0 ; Index.
29 030B 4C 3B 03 JMP END .OF . LINE
30
3 1
32 READ.A.BYTE
33 030E Bl FE LOA (CURR.PNTR),Y ;Look at the next char .
34 0310 FO 15 BEQ CHK.FOR.END ;Zero? (End of line)
35 0312 C9 B2 CMP #$B2 Is it a REM?
36 0314 FO 33 BEQ FND.REM.DATA Yes, then convert it.
37 0316 C9 83 CMP #$a3 Is it a DATA?
3a 03la FO 2F BEQ FND.REM.DATA Yes , then convert it .
39 031A C9 22 CMP #$22 Is i t a quote?
40 031C FO 3E BEQ FOUND . QUOTE ;Then go to qu0te subrou.
41
42 NEXT.BYTE
43 031E E6 FE INC CURR.PNTR ;None of the above; carry o.
44 0320 DO 02 BNE NBl ;Watch for pointer reaching
45 0322 E6 FF INC CURR . PNTR+l ;the e nd of a page (xxFF).
46
47 0324 4C OE 03 NBl JMP READ . A. BYTE
4a
49
50 CHK . FOR.END
51 0327 ca INY ;Check for a second $00.
52 032a Bl FE LOA (CURR.PNTR),Y be a pointer so,
53 032A FO 04 BEQ CFEl look for a third one .
54
55 032C 8a DEY ; If there was only one then
56 0320 4C 3B 03 JMP END. OF . LINE not end of program
57
5a 0330 ca CFEl INY Is there a third zero?
59 0331 Bl FE LDA (CURR . PNTR),Y
60 0333 FO 05 BEQ CFE2 End of program reached.
61
62 0335 aa DEY Else restore index,
63 0336 aa DEY
64 0337 4C 3B 03 JMP END . OF .LINE and go to next line .
65
66 033A 60 CFE2 RTS ;ALL DONE! !
67
68
69 END . OF.LINE

163

70 033B AS FE LDA CURR.PNTR ;The link to the next line
71 033D 18 CLC ;line number take up four bs
72 033E 69 04 ADC t4 ;so, increment the CURR.PNT4
73 0340 90 02 BCC EOLl ;Crossing page boundary?
74
7S 0342 E6 FF INC CURR.PNTR+l ;Bump the HI byte if so.
76
77 0344 8S FE EOLl STA CURR.PNTR i Store the LO byte
78 0346 4C lE 03 JMP NEXT . BYTE ;and go to the next char.
79
80
81 FND.REM.DATA
82
83 0349 E6 FE FRDl INC CURR.PNTR ;Look at next byte.
84 034B DO 02 BNE FRD2
8S 034D E6 FF INC CURR . PNTR+l
86
87 034F Bl FE FRD2 LDA (CURR.PNTR), Y
88 03Sl FO 06 BEQ FRD3 ;If $00, EOL reached .
89
90 03S3 20 27 03 JSR CHK . FOR.LC ;Else , check for LC char .
91 03S6 4C 49 03 JMP FRDl ;and go on to next char.
92
93 03S9 4C 27 03 FRD3 JMP CHK.FOR.END ;EOL--Check end of program
94
9S
96 FOUND.QUOTE
97 03SC E6 FE INC CURR.PNTR ;Bump CURR.PNTR to point
98 03SE DO 02 BNE FQl at the next byte .
99

100 0360 E6 FF INC CURR.PNTR+l
101
102 0362 Bl FE FQl LDA (CURR . PNTR) , Y ;Get the next character.
103 0364 FO DS BEQ END . OF . LINE ;If=$00 , closing quote o .
104 0366 C9 22 CMP f$22 ;Is it the closing quote?
lOS 0368 FO 06 BEQ FQ2 ;Yes; end subroutine .
106
107 036A 20 27 03 JSR CHK . FOR.LC ;No; look for lowercase.
108 036D 4C SC 03 JMP FOUND.QUOTE ;and go to next charact.
109
llO 0370 4C lE 03 FQ2 JMP NEXT.BYTE ;Quote closed; continue.
lll
ll2
ll3 CHECK.FOR . LC
ll4 0373 C9 60 CMP #$60 ;Below lower case ASCII?
ll5 0375 90 09 BCC CFLl ;Yes; do nothing and re.
ll6
ll7 0377 C9 80 CMP #$80 ;Lower case ASCII?
ll8 0379 BO 05 BCS CFLl ;Yes; do nothing and re.
ll9
120 037B 38 SEC ;Lower case so convert
121 037C E9 20 SBC f$20 ;to the Upper Case ASCII

164

122 037E 91 FE
123
124 0380 60 CFLl
125
126
127 ZZLEN

000 ERRORS

0300 HEX START OF OBJECT
0380 HEX END OF OBJECT
0081 HEX LENGTH OF OBJECT
954B HEX END OF SYMBOLS

STA (CURR.PNTR) I y and stuff it back.

RTS

EQU ZZLEN-ZZBEG ;Show length of program

165

Mini-Assembler Switch
Here's an easy way to use the Mini-Assembler that comes with Language Card Integer BASIC
under DOS 3.3. There's no need/or assembly language programs or EXEC files, and your
Applesoft program and pointers are preserved.

by Charles Gilbert

In his article "Exec Mini-Assembler" (Nibble Vol. 4/No. 7), Bill Parker detailed an
interesting method of using the Apple Mini-Assembler without destroying an Applesoft
program or variable pointers. If you occasionally need to use the Mini-Assembler to write an
assembly language routine for use with Applesoft, Exec Mini-Assembler offers a way to
switch back and forth between Applesoft (ROM) and the Mini-Assembler (RAM card/Integer
BASIC and old Monitor).

Unfortunately, Parker's method involves two EXEC files and an assembly language
program on disk, not to mention yet another file (Applesoft Pointers) that is created when you
use the EXEC files. Another problem with this method is that it uses an assembly language
routine. There is only one small area of memory ($300-$3CF) that is completely safe to use for
an assembly subroutine, because it will never be overwritten by Applesoft and/or DOS. If you
use the Exec Mini-Assembler, then Parker's program is located in this area, so you have to use
an unsafe area of memory for assembly language routines. Alternatively, you may relocate
Bill's machine code in the unsafe area and use page 3 for your subroutine, but then you have to
change the EXEC file to call the new location.

The Mini-Assembler switch requires no disk access at all. With Integer BASIC loaded into
the RAM card area of memory, take the following steps to go from Applesoft to the Mini
Assembler

1. Exit Applesoft via CALL -151.
2. Type C080 followed by a <RETURN>. This turns the RAM card memory on, but does not
initialize Integer BASIC.
3. Enter the Mini-Assembler with F666G.

At this point you may use the Mini-Assembler as usual. You may use one of two methods
to return to Applesoft. The easier way is to use <RESET>. Since a warm <RESET> returns
you to the last active BASIC, and Integer BASIC was never initialized, you will find yourself
back in Applesoft with your program and all variables intact.

<RESET> may not work with certain hardware configurations, however. If <RESET>
doesn't work for your system (or if you simply dislike using it), use the following method:

1. Exit the Mini-Assembler with $FF69G.
2. Type C081 followed by a <RETURN>. This turns off the RAM card area of memory and
turns on the Applesoft ROMs.
3. Use <CTRL>C to reenter Applesoft.

For those who are interested in why as well as how this works, the important point is that
the memory on the RAM card is enabled and disabled without using the FP or INT commands.
This is accomplished by directly accessing the soft switches that control the status of upper
memory access. When you type C080 or C081 followed by a <RETURN>, the Monitor (old
or new) accesses that memory location and prints the contents of the location to the screen. In
this case, the value that is returned to the screen is of no importance. Accessing the location
sets the soft switch associated with the location.

166

Text Ups and Downs
Combine Applesoft and machine language to let you take a quick look at your DOS 3.3 text
files without booting up your word processor. You can scroll the text up or down without
splitting words at the ends of lines. lfyou have a printer, you can dump the screen with the
touch of a key.

by Chester H. Page

TEXT.VIEWER (Listing 57) is an Applesoft program for loading a sequential text file
and viewing it quickly. It uses SCROLL (Listing 56), a high-speed, machine language
routine that allows two-way scrolling and prevents broken words at line ends.

USING TEXT VIEWER
When TEXT. VIEWER is run, it loads in SCROLL and requests the name of the file to be

loaded. If you enter a question mark (?) for the file name, you will get the disk catalog. It then
loads the file and displays the first 24 lines. The right and left arrow keys let you scroll up and
down, respectively, one line at a time. The semicolon(;) and slash(/) do 12-line (half-screen)
scrolling. Scrolling past the end of the text in either direction is automatically prevented. At any
time, the text on display can be dumped to the printer by pressing P. Pressing N returns you to
the file name prompt so that a new file can be loaded.

ENTERING THE PROGRAMS
Please refer to Appendix A for help in entering Listing 56. If you key it in from the

Monitor, save it to disk with the command:

BSA VE SCROLL,A$1000,L$1BD

To key in the Applesoft driver program TEXT.VIEWER type in Listing 57 as shown and
save it to disk with the command:

SA VE TEXT.VIEWER

HOW THEY WORK
The machine language program, SCROLL, provides the power for TEXT.VIEWER. After

the text file is loaded, SCROLL searches for potential line ends. At each of these, backward
steps are taken until a space character is found. The space character is replaced with a
<RETURN> and the line search resumes.

At any stage of the display, there must be a "next top line" and a "next bottom line" waiting
for the next scroll comri1and. These lines start immediately after a <RETURN> character and
are located by pointers. Since scrolling up brings the previous next bottom line into the
window, the first step in scrolling up is to advance the next bottom line pointer before
scrolling. If the next bottom line would be past the end of the text, an RTS halts the scrolling.
After scrolling, a new top line pointer is set up.

Scrolling down uses the reverse procedure. The next top line pointer is corrected before
scrolling, and the next bottom line pointer is adjusted after scrolling. If the next top line would
be ahead of the beginning of the text, an RTS interrupts the scrolling operation. These safety
stops make use of a <RETURN> inserted at the beginning of the text and a zero at the end.

167

Listing 56: SCROLL

SOURCE FILE -

0
1 SCROLL
2 BY CHET PAGE
3 COPYRIGHT (C) 19S5
4 MICROSPARC, INC
5 CONCORD , MA 01742
6
7
s ORG $1000
9 STORE EQU $4A

10 BOTTOM EQU $D7
11 RD KEY EQU $FDOC
12 VTABZ EQU $FC24
13 BAS CA LC EQU $FBC1
14 COUT EQU $FDED
15 WNDTOP EQU $22
16 WNDBTM EQU $23
17 WNDWID EQU $21
lS BASL EQU $2S
19 BASH EQU $29
20 BAS2L EQU $2A
21 BAS2H EQU $2B
22 SCRNTP EQU $6
23 SCRNBM EQU $S
24 ASAV EQU $CE
25 1000 AO 00 LDY #0
26 1002 S4 4A STY STORE
27 1004 A9 12 LDA #$12
2S 1006 SS D7 STA BOTTOM
29 lOOS SS 4B STA STORE+l
30 lOOA 60 RTS
31 lOOB AO 00 LDY #0
32 lOOD A9 SD LDA #$SD
33 lOOF 91 4A STA (STORE), Y
34 1011 E6 4A INC STORE
35 1013 20 oc FD LOAD JSR RDKEY
36 1016 09 so ORA #$SO
37 101S C9 AO CMP #$AO
3S 101A BO 04 BCS)1
39 101C C9 SD CMP #$SD
40 101E DO F3 BNE LOAD
41 1020 91 4A J 1 STA (STORE), Y
42 1022 E6 4A INC STORE
43 1024 DO ED BNE LOAD
44 1026 E6 4B INC STORE+l
45 102S 4C 13 10 JMP LOAD
46 102B A9 SD SCALL LDA #$SD ;SECOND CALL
47 102D AO 01 LDY #1
4S 102F 91 4A STA (STORE), Y
49 1031 SS DEY
50 1032 A9 00 LDA #0
51 1034 91 4A STA (STORE), Y
52 1036 SS 4A STA STORE
53 103S AS D7 LDA BOTTOM

168

54 103A 85 4B STA STORE+l
55 103C AO 00 EDIT LOY to
56 103E Bl 4A EDITl LOA (STORE) I y
57 1040 C9 00 CMP tO
58 1042 FO 22 BEQ DONE
59 1044 C9 80 CMP #$80
60 1046 FO oc BEQ ENDLN
61 1048 ca INY
62 1049 C4 21 CPY WNDWID
63 104B 90 Fl BCC EDITl
64 1040 88 BACK DEY
65 104E Bl 4A LOA (STORE) I y
66 1050 C9 AO CMP #$AO
67 1052 DO F9 BNE BACK
68 1054 A9 80 ENDLN LOA #$80
69 1056 91 4A STA (STORE) I y
70 1058 ca INY
71 1059 18 CLC
72 105A 98 TYA
73 105B 65 4A ADC STORE
74 1050 as 4A STA STORE
7S lOSF 90 DB BCC EDIT
76 1061 E6 48 INC STORE+l
77 1063 4C 3C 10 JMP EDIT
78 1066 as 08 DONE STA SCRNBM
79 1068 AS 07 LOA BOTTOM
80 106A as 09 STA SCRNBM+l
81 106C 60 RTS ;READY TO GO
82 1060 20 49 11 UP JSR NEWBTM
83 1070 AS 22 LOA WNDTOP
84 1072 as CE STA ASAV
85 1074 20 24 FC JSR VTABZ
86 1077 20 SA 10 JSR NXTLN
87 107A A4 21 INIT LOY WNDWID
88 107C 88 DEY
89 1070 Bl 28 NXTCHR LOA (BASL),Y
90 107F 91 2A STA (BAS2L),Y
91 1081 88 DEY
92 1082 10 F9 BPL NXTCHR
93 1084 20 SA 10 JSR NXTLN
94 1087 4C 7A 10 JMP INIT
9S 108A AS 28 NXTLN LOA BASL
96 108C as 2A STA BAS2L
97 108E AS 29 LOA BASH
98 1090 85 2B STA BAS2H
99 1092 AS CE LOA ASAV

100 1094 18 CLC
101 109S 69 01 ADCU
102 1097 cs 23 CMP WNDBTM
103 1099 BO 06 BCS LDBTM
104 109B 85 CE STA ASAV
lOS 1090 20 24 FC JSR VTABZ
106 lOAO 60 RTS
107 lOAl 68 LDBTM PLA
108 10A2 68 PLA
109 10A3 AO FF LOY #$FF
110 10A5 ca LB INY
111 10A6 Bl 08 LOA (SCRNBM) I y

169

112 lOAS 91 28 STA (BASL),Y
113 lOAA C9 SD CMP #$SD
114 lOAC DO F7 BNE LB
llS lOAE S4 CE STY ASAV
116 lOBO E6 CE INC ASAV
117 10B2 A9 AO LDA #$AO
llS 10B4 91 2S)1 STA (BASL),Y
119 10B6 cs INY
120 10B7 C4 21 CPY WNDWID
121 10B9 90 60 BCC] 1
122 lOBB AO FF NEWTOP LDY #$FF
123 lOBD ca NT INY
124 lOBE Bl 06 LDA (SCRNTP), Y
12S lOCO C9 SD CMP #$SD
126 10C2 DO F9 BNE NT
127 10C4 cs INY
12S lOCS lS CLC
129 10C6 98 TYA
130 10C7 6S 06 ADC SCRNTP
131 10C9 as 06 STA SCRNTP
132 lOCB 90 02 BCC RTSl
133 lOCD E6 07 INC SCRNTP+l
134 lOCF 60 RTSl RTS
13S lODO 20 6S 11 DOWN JSR NEWTP2
136 10D3 AS 23 LDA WNDBTM
137 lODS 38 SEC
13S 1 0D6 E9 01 SBC U
139 lODS SS CE STA ASAV
140 lODA 20 24 FC JSR VTABZ
141 lODD 20 FO 10 JSR NXTLN2
142 lOEO A4 21 INIT2 LDY WNDWID
143 10E2 SS DEY
144 10E3 Bl 2S NXTCR2 LDA (BASL),Y
14S lOES 91 2A STA (BAS2L) ,Y
146 10E7 SS DEY
147 lOES 10 F9 BPL NXTCR2
14S lOEA 20 FO 10 JSR NXTLN2
149 lOED 4C EO 10 JMP INIT2
lSO lOFO AS 2S NXTLN2 LDA BASL
lSl 10F2 SS 2A STA BAS2L
1S2 10F4 AS 29 LDA BASH
1S3 10F6 SS 2B STA BAS2H
1S4 l OFS AS CE LDA ASAV
lSS lOFA 3S SEC
1S6 lOFB E9 01 SBC n
1S7 lOFD cs 22 CMP WNDTOP
lSS lOFF 30 07 BMI LDTOP
159 1101 SS CE STA ASAV
160 1103 20 24 FC JSR VTABZ
161 ll06 3S SEC
162 ll07 60 RTS
163 llOS 68 LDT OP PLA
164 ll09 6S PLA
16S llOA AO FF LDY #$FF
166 llOC ca LT INY
167 llOD Bl 06 LDA (SCRNTP), Y
16S llOF 91 2S STA (BASL) , Y
169 1111 C9 SD CMP #$SD

170

170 1113 DO F7 BNE LT
171 lllS S4 CE STY ASAV
172 1117 E6 CE INC ASAV
173 1119 A9 AO LOA #$AO
174 lllB 91 2S)1 STA (BASL) , Y
l 7S 1110 cs INY
176 lllE C4 21 CPY WNDWID
177 1120 90 F9 BCC [l
17S 1122 AO 00 LOY #0
179 1124 C6 OS DEC SCRNBM
180 1126 AS 08 LOA SC RN BM
181 1128 C9 FF CMP #$FF
182 112A DO 02 BNE NB
1S3 112C C6 09 DEC SCRNBM+l
184 112E C6 OS NB DEC SCRNBM
18S 1130 AS OS LOA SCRNBM
186 1132 C9 FF CMP #$FF
187 1134 DO 02 BNE) 1
188 1136 C6 09 DEC SCRNBM+l
189 1138 Bl OS) 1 LOA (SCRNBM) , Y
190 113A C9 80 CMP #$80
191 113C DO FO BNE NB
192 113E E6 08 INC SCRNBM
193 1140 AS OS LOA SCRNBM
194 1142 C9 00 CMP #$0
19S 1144 DO 89 BNE RTSl
196 1146 E6 09 INC SCRNBM+l
197 1148 60 RTS
19S 1149 AO FF NEWBTM LOY #$FF
199 114B ca)1 INY
200 114C Bl OS LOA (SCRNBM), Y
201 114E C9 00 CMP #0
202 llSO DO 03 BNE)2
203 11S2 6S PLA
204 11S3 68 PLA
20S 11S4 60 RTS
206 llSS C9 SD)2 CMP #$80
207 11S7 DO F2 BNE [l
208 11S9 cs INY
209 llSA lS CLC
210 llSB 98 TYA
211 llSC 6S OS ADC SC RN BM
212 llSE as 08 STA SCRNBM
213 1160 90 02 BCC RTS2
214 1162 E6 09 INC SCRNBM+l
21S 1164 60 RTS2 RTS
216 116S AO 00 NEWTP2 LOY #0
217 1167 AS 06 LOA SCRNTP
21S 1169 C9 01 CMP #1
219 116B DO DE BNE [l
220 1160 AS 07 LOA SCRNTP+l
221 116F cs 07 CMP BOTTOM
222 1171 DO 03 BNE) 1
223 1173 6S PLA
224 1174 68 PLA
22S ll 7S 60 RTS
226 1176 C6 06) 1 DEC SCRNTP
227 ll 7S AS 06 LOA SCRNTP

171

228 117A C9 FF
229 117C DO 02
230 117E C6 07
231 1180 C6 06 NT2
232 1182 AS 0 6
233 1184 C9 FF
234 1186 DO 02
23S 1188 C6 07
236 118A Bl 06)2
237 118C C9 SD
238 118E DO FO
239 1190 E6 06
240 1192 AS 06
241 1194 C9 00
242 1196 DO CC
243 1198 E6 07
244 119A 60
24S 119B A9 FF UMP
246 119D SS CE
247 119F E6 CE START
248 llAl AS CE
249 11A3 C9 18
2SO llAS FO lS
2Sl 11A7 20 Cl FB
2S2 llAA AO 00
2S3 llAC Bl 28)1
2S4 llAE 20 ED FD
2ss llBl ca
256 1182 co 28
2S7 1184 90 F6
2S8 11B6 20 SE FD
2S9 11B9 4C 9F 11
260 llBC 60 FIN

000 ERRORS

1000 HEX START OF OBJECT
llBC HEX END OF OBJECT
OlBD HEX LENGTH OF OBJECT
947S HEX END OF SYMBOLS

Listing 57: TEXT. VIEWER

CMP #$FF
BNE NT2
DEC SCRNTP+l
DEC SCRNTP
LDA SCRNTP
CMP #$FF
BNE)2
DEC SCRNTP+l
LDA (SCRNTP),Y
CMP #$8D
BNE NT2
INC SCRNTP
LDA SCRNTP
CMP #0
BNE RTS2
INC SCRNTP+l
RTS
LDA #$FF
STA ASAV
INC ASAV
LDA ASAV
CMP #$18
BEQ FIN
JSR BASCALC
LDY #0
LDA (BASL),Y
JSR COUT
INY
CPY #$28
BCC (1
JSR $FD8E
JMP START
RTS

10
20
30
40
50
60
70
80
90
100
110
120
130

REM **********************
REM * TEXT . VIEWER *
REM * BY CHET PAGE *
REM * COPYRIGHT (C) 1985 *
REM * MICROSPARC, INC *
REM * CONCORD, MA 0174 2 *
REM **********************

172

0$ = CHR$ (4)
IF PEEK (4096) < > 160 THEN 120
IF PEEK (4098) < > 132 THEN 120
IF PEEK (4099) = 74 THEN 130
PRINT D$"BLOAD SCROLL"
CALL 4096

140 HOME : VTAB 3: HTAB 14 : PRINT "TEXT VIEWER": HTAB 14 : PRINT
"BY CHET PAGE ": PRI NT " * COPYRIGHT 1985 BY MICROSPARC, INC.
* ": VTAB 10: PRINT "ENTER FILE NAME (?FOR CATALOG)"

150 INPUT "";F$
160 IF F$ = " ? "THEN PRINT D$"CATALOG": GET A$: PRINT : GOTO

140
170 ONERR GOTO 400
180 PRINT D$ "0PEN"F$
190 PRINT D$ "READ"F$
200 INPUT K$
210 PRINT D$ "CLOSE"F$: ONERR GOTO 250
220 PRINT D$"0PEN"F$
230 PRINT D$ "READ" F$
240 CALL 4107
250 PRINT D$"CLOSE"F$
260 CALL 4139
270 POKE 6 , 1 : POKE 7, PEEK (215)
280 FOR I = 1 TO 24: CALL 4205: NEXT
290 POKE 6,1: POKE 7, PEEK (215)
300 KEY PEEK (- 16384) : POKE - 16368, 0
310 IF KEY 149 THEN CALL 4205
320 IF KEY 136 THEN CALL 4304
330 IF KEY 187 THEN FOR I= 1 TO 12: CALL 4205: NEXT
340 IF KEY 175 THEN FOR I = 1 TO 12: CALL 4304 : NEXT
350 IF KEY 206 THEN 130
360 IF KEY 208 THEN GOSUB 390
370 IF KEY< > 155 THEN 300: REM ESC TO QUIT
380 HOME : END
390 PRINT D$ "PR#l": PRINT CHR$ (9) " 80N " : CALL 4507: PRINT

D$ "PR#0 " : RETURN
400 PRINT D$ "CLOSE " : IF PEEK (222) = 5 THEN PRINT "NO SUCH

FILE" : PRINT "PRESS ANY KEY TO TRY AGAIN": GET K$: PRINT
GOTO 130

410 PRINT "ERROR# " PEEK (222) " IN LINE" PEEK (218) + PEEK
(219) * 256 : END

173

Applewriter Ile
Use this utility to make a version of the popular word processor Applewriter 11 that will
function properly on the enhanced Ile, Ile and IIGS. Inverse characters are displayed correctly,
and 40-column mode can be manually selected for TV display. The pro gram requires an Apple
Ile or Ile operating under DOS 3.3, and Applewriter II.

by Steven Meuse

Applewriter Ile is the result of a whim. One lazy day it occurred to me that it would be fun
to lie on the couch and process words in 40 columns on the family TV. Had I known then that
I would spend a weekend modifying Applewriter II (the DOS 3.3 version designed for the Ile)
to work on an Apple Ile, I might not have done it.

Foresight being what it is, the project progressed "just another half hour" at a time. There
are no great mysteries to how it works (lots of disassembly), and a detailed description is
beyond the scope of this article. I would like to share the program, though, and explain how to
use it and what to expect from the patched version of Applewriter II.

PROBLEMS WITH APPLEWRITER //
Applewriter II (DOS 3.3 version) has a few problems with the Apple Ile because it's author

bypassed the normal text output routines in the Apple Monitor and stored the characters directly
into the video display buffer. While this creates faster displays, the Mousetext ROM in the
Apple Ile takes exception to certain values being put in the display buffer, and it displays
Mousetext instead of the intended (inverse) characters. (Mousetext is an addition to the Apple
character set that contains icons for use in Lisa/Macintosh-like applications that use the mouse.
It occupies space formerly used by a duplicate set of inverse, uppercase characters.)

One problem showed up on the status line, the bar at the top of the screen that shows in
inverse characters the amount of available memory, the length of the current document, the file
name and other important information. Another problem showed up when the cursor was over
a capital letter; this was also displayed as Mousetext

Also, a feature was lacking. There is an 80/40 switch on the Apple Ile that informs the
software whether to use the 80- or 40-column screen. Our TV isn't quite up to snuff when it
comes to displaying 80 columns, so this was an important feature to include. Fortunately,
Applewriter II can display 40 columns, but the display decision is made automatically, based on
whether there is an 80-column card. I had to fool Applewriter into using its 40-column screen
routines even when there is 80-column firmware, as there is in the Ile. The result is
A WCONVERT (Listing 58), an Applesoft program that will automatically load the necessary
Applewriter II files, modify them to provide normal text and 40-column capability, and then
save them on disk.

USING A WCONVERT
To use A WCONVERT, just run it and follow the prompts. Insert a backup of your

Applewriter //disk and press <RETURN>. The rest is automatic and takes a few moments to
complete. The program tells you when the conversion is complete.

A few words of caution are in order. Use the program only on a backup of your
Applewriter II disk and double-check your typing before running the program. If disaster
should strike, and the modified Applewriter does not work, use FID or a similar file transfer
program to copy two files from your master to your backup disk, and everything will be back
to normal. Those two files (and the only two that A WCONVERT modifies) are OBJ.BOOT
and OBJ.APWRT][F.

174

NEW FEATURES
What are the new features of Applewriter Ile? Of course, the converted version works on

the Ile the same as it always did. Now it works on the enhanced Ile, Ile and IIGS the way it
does on the Ile.

In addition, the modified Applewriter disk will now recognize when the 80140 column
switch is pressed in during bootup, and it will use the 40-column display. The 40-column
display can also be accessed on the Ile by pressing 4 during bootup. If Applewriter is run on a
128K Apple (Ile, IIGS or Ile with extended 80-column card), it will recognize and use the
extra memory, regardless of the 80/40 column choice.

The one difference between the normal and patched Applewriter // is the first message you
get on bootup. Instead of:

(For help while editing, press open-Apple and "?")
Press RETURN:

it now says:

Apple //c version

The memory saved by shortening the message was used for the patches. In addition, this gives
you a sure-fire way of knowing which version you are using. Just remember to press
<RETURN> to go on, and remember that open-Apple and ? gives you the help menu. Now
that the work is done, it is rather pleasant to sit here on the couch and use Applewriter on the
Apple Ile. Somehow these soft cushions make it all worthwhile.

ENTERING THE PROGRAM
To key in AWCONVERT, type in Listing 58 as shown and save it to disk with the

command:

SA VE A WCONVERT

LISTING 58: AWCONVERT

10
20
30
40
50
60
70

REM **********************
REM * AWCONVERT *
REM * BY STEVEN MEUSE *
REM * COPYRIGHT (C) 1985 *
REM * MICROSPARC, INC *
REM * CONCORD, MA 01742 *
REM **********************

80 REM CONVERT APPLEWRITER //
90 REM FOR //C COMPATIBILITY
100 HIMEM: 6400:D$ = CHR$ (4): TEXT : HOME : VTAB 9
110 PRINT "Insert a COPY of your Applewriter disk"
120 PRINT ; PRINT "and press [RETURN]. ";; GET A$: PRINT
130 PRINT D$"BLOAD OBJ . BOOT"
140 POKE 7383,194: POKE 7384,30
150 FOR X = 7874 TO 7904: READ L: POKE X,L: NEXT
160 DATA 32,234,29,173,0,192,201,180,208,5,141,16,

192,240,10,173,192,251,208,10
170 DATA 44,96,192,16,5,169,0,141,62,29,96
180 PRINT D$ ' ' ONLOCK OBJ. BOOT"

175

190 PRINT D$"BSAVE OBJ .BOOT,A$1C00 ,L$2E l"
200 PRINT D$ "LOCK OBJ.BOOT"
2 10 PRINT D$"BLOAD OBJ .APWRT] [F"
220 POKE 7129 ,7 6: POKE 7130,88: POKE 7131 ,80
230 POKE 7266,97: POKE 7267 , 80
240 POKE 12497,99: POKE 12498 , 80
250 FOR X = 17989 TO 18031: READ L: POKE X,L: NEXT
260 DATA

193,240,240,236,229,160,175,175,227,160,246,229,242,243,
233 , 239 , 238 ,1 60 ,0, 201

270 DATA
96,176,2 ,4 1 , 63 ,1 45,40 , 96,164 , 36 , 72 ,1 0 , 10 , 48 , 4 , 104 , 41 , 191,
72 ,104

280 DATA 76,222,37
290 PRINT D$ "UNLOCK OBJ.APWRT] [F"
300 PRINT D$ "BSAVE OBJ.APWRT] [F, A$1900 , L$30Dl "
3 10 PRINT D$"LOCK OBJ.APWRT] [F"
320 VTAB 20: PRINT "Conversion complete. "

176

Beep Customizer
Use this Applesoft program under DOS 3.3 to produce a customized machine language tone
routine. Every time a <CTR>G character is encountered, the custom tone will be sounded,
instead of the usual bell sound.

by John Baumbach

Anyone who uses the Apple often has encountered the SYNTAX ERROR. At first, the
accompanying beep is only mildly annoying, but after hearing it over and over, it can get
downright irritating. I decided to change the Apple beep and allow easy modification of the
new beep with Beep Customizer.

USING THE PROGRAM
When you run BEEP.CUSTOMIZER (Listing 59) the current settings for the beep will be

displayed, along with a four-item menu as shown in Figure 7. If an A is entered, the program
will ask you for the length and tone you wish for the beep. The program will only accept
values from 1-255. Press <RETURN> if you want to use the current value.

FIGURE 7: Menu Display

* BEEP CUSTOMIZER BY JOHN BAUMBACH *
* COPYRIGHT 1985 BY MICROSPARC INC *
***** **************************************

CURRENT LENGTH: 64
CURRENT TONE 16

(A) MODIFY CURRENT BEEP
(B) HEAR CURRENT BEEP
(C) SAVE CURRENT BEEP/QUIT
(D) QUIT

ENTER =>

To hear the beep that is currently defined by the length and tone shown on the screen, press
B. If you don't hear anything, check the DATA statement in line 670, or raise the tone a bit.
The smaller the tone value, the higher the pitch.

If you press C, you will be asked for the location to place the beep routine in memory. If
you are not sure, you can accept the default value (768) by pressing <RETURN>. The
machine language program is then saved onto your disk and it is also put into memory.
Entering D will do the same thing, but the machine language program is not saved to your disk.
To exit the program without doing anything, press <ESC>.

Now pressing <CTRL>G will output your new beep. You will also notice that getting a
SYNTAX ERROR is more pleasurable. .

Once you have saved the machine language code for your new beep to disk, you can just
type BRUN APPLE.BEEP to put the beep into memory. Then you're ready to go! A

177

I
/

I
<RESET> will disable the custom beep, but you can restore it by doing a CALL to your
starting address.

ENTERING THE PROGRAM
To key in the program, enter the Applesoft code shown in Listing 59 and save it to disk

with the command:

SA VE BEEP.CUSTOMIZER

There is no need to enter the code shown in Listing 60 since BEEP.CUSTOMIZER will
automatically generate the machine language code and save it for you under the name
APPLE.BEEP.

HOW IT WORKS
Line 80 in Listing 59 is a DIM statement, that DIMensions array A for the assembly

language program. The program then sets up the title page in lines 100-140 and loads the
data for the assembly language program into array A (line 180), which was previously
defined in line 80. Lines 190-200 display the current length and tone. The variable A(l 9)
contains the length (which starts as 64), and the tone (which starts as 16) is contained in the
variable A(21). The numbers 64 and 16 were arbitrarily chosen to define the beep.

Lines 210-240 display the menu and ask you for a selection. More about what each
selection does later. The part of the program that modifies the beep (lines 330-410) asks you
for a new length and new tone. When the new length is entered, it replaces the old length in the
variable A(l 9), and the new tone replaces the old tone in the variable A(21).

The next part of the program (lines 440-470) outputs the beep. The separate machine
language program (Listing 60) outputs the beep itself, and since there is no permanent place
for it right now, for the moment, it is put it into a "safe" place at decimal 750-767. This
location is safe for the time being, but it will be overwritten by other things soon. The machine
language program itself was read into the variable A previously (line 180), and is POKED
into memory now.

Line 490 saves the assembly language program to disk under the name APPLE.BEEP. It
first calls a locator routine in line 560, saves APPLE.BEEP, and then exits to line 530.
Lines 520-530 also call the locator routine, and then quit the program, after activating the
machine language routine.

In the locator routine things get a little complicated, but bear with me. In line 560, the
routine first gets the starting location in memory for the machine language beep routine. I
usually put short machine language routines at location 768 since it causes very few problems,
so this is the default value (line 570). The selected location is then output (line 590). The
formula in lines 600-610 alters the machine language program a bit by adjusting pointers. In
lines 620-650, the entire machine language program is POKEd into memory at the final
location and line 660 passes program control from the locator routine back to the main calling
routine. Finally, the machine language program in its Applesoft BASIC form is seen in the
DA TA statement (line 670).

Listing 59 shows a sample APPLE.BEEP program generated by BEEP.CUSTOMIZER.
This version specifies a starting address of 768, tone of 16, and length of 64. The assembly
format is provided to help you better understand how it works. The actual beep program starts
at $30B; the code at $300 changes the DOS 3.3 output hook (CSWL,CSWH) so that it points
to the beep routine.

Thereafter, before each character is output it is checked by the CMP #$87 statement at
$30B. If the character in the A-Register is a <CTRL>G, the rest of the beep routine is
executed. Otherwise, a branch to $324 is made, and the character is output normally.

The BEEP routine uses two built-in Applesoft routines to produce a tone. One produces a
delay based on the contents of the Accumulator and the other produces a click from the
speaker. The contents of Y, or the value you specified for tone length in

178

BEEP.CUSTOMIZER, determine how many speaker clicks to produce, while the contents of
A, provided as the tone frequency in BEEP.CUSTOMIZER, determine the amount of delay
between clicks.

LISTING 59: BEEP.CUSTOMIZER

10 REM **********************
20 REM * BEEP.CUSTOMIZER *
30 REM * BY JOHN BAUMBACH *
40 REM * COPYRIGHT (C) 1985 *
50 REM * BY MICROSPARC , INC *
60 REM* CONCORD, MA 01742 *
70 REM **********************
80 DIM A(36)
90 TEXT : HOME
100 FOR L = 1 TO 36:A$ =A$+ "* " : NEXT L
110 HTAB 3: PRINT A$
120 HTAB 3: PRINT " * BEEP CUSTOMIZER BY JOHN BAUMBACH *"
130 HTAB 3: PRINT "* COPYRIGHT 1985 BY MICROSPARC INC *"
140 HTAB 3: PRINT A$
150 PRINT
160 POKE 34 , 7
170 REM READ A.L. INTO "A"
180 FOR L = 1 TO 36: READ A(L): NEXT
190 VTAB 6: HTAB 1: CALL - 958: PRINT "CURRENT LENGTH : "; :

INVERSE : PRINT A(19): NORMAL
200 PRINT "CURRENT TONE : " ; : INVERSE : PRINT A(21): NORMAL
210 PRINT : PRINT : PRINT : PRINT " (A) MODIFY CURRENT BEEP"
220 PRINT " (B) HEAR CURRENT BEEP "
230 PRINT "(C) SAVE CURRENT BEEP /QUIT"
240 PRINT "(D) QUIT"
250 PRINT PRINT "ENTER => " ;: GET R$
260 IF R$ "A" THEN 330
270 I F R$ "B" THEN 440
280 IF R$ "D" THEN 520
290 IF R$ = "C " THEN 490
300 IF R$ CHR$ (27) THEN PRINT CHR$ (92) : PRINT : GOTO 680
310 GOTO 190
320 REM MODIFY BEEP
330 PRINT : PRINT : PRINT "<RETURN> TO ACCEPT CURRENT VALUE;

ENTER (0-255) " : PRINT
340 INPUT "ENTER NEW LENGTH => " ; LNGTH$: IF LNGTH$ = "" THEN

LNGTH$ = STR$ (A(19))
350 IF VAL (LNGTH$) < = 0 THEN 340
360 IF VAL (LNGTH$) > 255 THEN 340
370 INPUT "ENTER NEW TONE => " ;TNE$: IF TNE$ "" THEN TNE$

STR$ (A(21))
380 IF VAL (TNE$) < = 0 THEN 370
390 IF VAL (TNE$) > 255 THEN 370
400 A(19) VAL (LNGTH$)
410 A(21) = VAL (TNE$)
420 GOTO 1 90

179

430
440
450
4 60
470

480
490

500
510
520
530
540
550
560

REM OUTPUT BEEP
PRINT : PRINT "LISTEN
FOR L = 1 TO 100: NEXT

"

REM " CALL 750 " TEMPORARY BEEP
FOR L = 750 TO 767: POKE L,A(L - 734): NEXT CALL 750: FOR
L = 1 TO 300: NEXT : GOTO 190
REM SAVE BEEP
HOME : PRINT : PRINT " SAVE CURRENT BEEP:": PRINT
560: PRINT : PRINT CHR$ (4);"BSAVE
APPLE.BEEP,A";LCT;", L37"

GO SUB

PRINT : PRINT "BEEP SAVED ON DISK": PRINT : GOTO 530
GOTO 190
HOME : PRINT "QUIT PROGRAM:": PRINT GOSUB 560
PRINT : PRINT "BEEP INSTALLED.": CALL LCT : GOTO 680
REM PUT BEEP IN MEM AT
REM LOCATION "LCT"
PRINT : INPUT "ENTER A LOCATION TO PUT THE BEEP
MODIFIER ROUTINE (DEFAULT=768, $300)
IF LCT$ = "" THEN LCT = 768: GOTO 590

---=> ";LCT$
570
580
590
600

LCT = VAL (LCT$)
PRINT : PRINT " LOCATION IS "; LCT: PRINT

LCT = LCT + ll: B = LCT - INT (LCT / 256) * 256:HI = INT
(LCT / 256) :A(2) = B:A(6) = HI

LCT = LCT - 11
x = 0

FOR L = LCT TO LCT + 35
x = x + 1

POKE L,A(X): NEXT
RETURN

610
620
630
640
650
660
670 DATA 169,11,133 , 54,169,3,133 , 55,76,234 , 3,201,135,208,

18,152,72,160,64,169,16,32 ,1 68,252,173 , 48,192,136,208,245,1
04 ,168,96,76,240,253

680 TEXT : END

LISTING 60: APPLE.BEEP

180

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17 0300 A9 OB

·********************** I

;* APPLE . BEEP *
. *
I BY JOHN BAUMBACH *
. *
I COPYRIGHT (C) 1985 *
; * BY MICROSPARC, INC *
. *
I CONCORD, MA 01742 *
·********************** I

ORG $300
CSWL EQU $36
CSWH EQU $37
REC ON EQU $3EA
CTRLG EQU $87
SPKR EQU $C030
WAIT EQU $FCA8
COUTl EQU $FDFO

BP IN IT LDA #BEEP ;REDIRECT CHROUT VECTOR

\.......!

18 0302 85 36 STA CSWL ;TO GO THROUGH BEEP
19 0304 A9 03 LDA #BEEP/
20 0306 85 37 STA CSWH
21
22 0308 4C EA 03 JMP REC ON ;RECONNECT DOS VECTORS
23
24 030B C9 87 BEEP CMP fCTRLG ; CHROUT DIRECTED HERE
25 030D DO 12 BNE NORM ;CHAR OUTPUT IF NOT CTRL-G
26 030F 98 TYA ;SAVE Y- REG. ON STACK
27 0310 48 PHA
28 0311 AO 40 LDY #$40 ;TONE LENGTH FR. CUSTOMIZER
29 0313 A9 10 BP LOOP LOA #$10 ;TONE FREQ. FR. CUSTOMIZER
30 0315 20 AS FC JSR WAIT
31 0318 AD 30 co LDA SPKR ;CLICK SPEAKER
32 031B 88 DEY
33 031C DO F5 BNE BP LOOP
34 031E 68 PLA ;RESTORE Y- REG.
35 031F A8 TAY
36 0320 60 RTS
37 0321 4C FO FD NORM JMP COUTl ;OUTPUT CHAR
38

JOO ERRORS

0300 HEX START OF OBJECT
0323 HEX END OF OBJECT
0024 HEX LENGTH OF OBJECT
95AB HEX END OF SYMBOLS

181

Status Seeker
Status Seeker gives you the status of 11 functions. Put it in your programs to provide you with
valuable information.

by Paul Raymer

As most folks who program do, I have been collecting PEEKs, POK.Es and CALLs ever
since I figured out what they do. I have them in a big notebook and add to them when I find
new ones. It was just a matter of digging some out for this program.

WHAT DOES STATUS SEEKER DO?
When STA TVS.SEEKER runs, your computer determines the status of 11 functions for

you. As it is, it makes an interesting demonstration. When placed at the end of a program or
when parts of it are used in your program, it could provide valuable information.

ENTERING THE PROGRAM
This is one of those "have faith" listings. Just type in the Applesoft program as shown in

Listing 61 (watching the parentheses closely) and save it to disk with the command:

SA VE STA TVS.SEEKER

Then watch the program do its thing by typing RUN STATUS.SEEKER

EXPERIMENT!
Assign a value to AZ$ or X% in a new line 145. Change the speed to any number from 1-

255 and watch the program change. Add extra REM statements, and watch the program length
change. Move your joystick or paddles or use a Koala Pad to watch the paddle value numbers
change.

LISTING 61: STATUS.SEEKER

10 REM **********************
20 REM * STATUS . SEEKER *
30 REM * BY PAUL RAYMER *
40 REM * COPYRI GHT (C) 1985 *
50 REM * BY MICROSPARC , I NC *
60 REM* CONCORD, MA 017 42 *
70 REM **********************
80 TEXT : HOME : CLEAR
90 VTAB 2 3 : PRINT " ** COPYRI GHT 198 5 BY MICROSPARC,INC
100 C$ (0) = "": C$(1) = 11 $ 11 : C$ (2) = 11 %11 :PR = 1: SPEED= 20 0
110 VTAB 2 : HTAB 10 : INVERSE : PR I NT ti STATUS ti;: NORMAL

PRINT " BY PAUL RAYMER": PRI NT

** ti . ,

120 PRINT
(104)

PRINT "THIS PROGRAM STARTS AT ti; PEEK (1 03) + PEEK
* 256

130

140

182

PRINT
(176)

PRINT
(17 6)

PRINT "THIS PROGRAM ENDS AT "; PEEK (17 5) + PEEK
* 256

PRINT "THE PROGRAM LENGTH I S "; (PEEK (175) + PEEK
* 256) - (PEEK (103) + PEEK (1 04) * 256)

150 POKE 768, PEEK (129) : POKE 769, PEEK (130) :Vl = PEEK
(768) :V2 = PEEK (769) :VT = (Vl > 127) + (V2 > 12 7)

160 PRINT : PRINT "MOST RECENTLY USED VARIABLE IS (" CHR$ (Vl)
CHR$ (V2) C$ (VT) II) II

170 PRINT : PRINT "SPEED = "; 256 - PEEK (241)
180 PRINT : PRINT "DISK VOLUME"; PEEK (460 17) ;" BOOTED IN SLOT

";PEEK (43626);"/DRIVE ";PEEK (43624);
1 90 IF PEEK (64435) = 6 THEN PRINT : PRINT "MEMORY SIZE IS AT

LEAST 64K" : GOTO 210
200 PRINT : PRINT "MEMORY SIZE IS "; (PEEK (978) + 35) / 4;"K"
210 VTAB 19: HTAB 1 : PRINT "PADDLES SET (0)= (1)= "
220 VTAB 19: HTAB 17: PRINT PDL (0): VTAB 19: HTAB 27 : PRINT

PDL (1)
230 PRINT : HTAB 8: INVERSE PRINT "PRESS SPACE BAR TO END":

NORMAL
240 IF PEEK (- 16384) = 160 GOTO 260
250 POKE - 16336,0 : GOTO 210
260 SPEED= 255 : TEXT

183

Vigilant FID
Convert the FID program from your DOS 3.3 System Master to a more convenient version that
is available from DOS with a simple FID command. The new version occupies the RAM card
area of memory in an Apple II Plus, or a Ile, Ile or JIGS.

by Donald W. Miller, Jr., M.D.

Any Apple owner who has transferred text, binary or Applesoft files from one disk to
another has surely discovered the FID program on the DOS 3. 3 System Master. FID is a
versatile utility program that allows you to copy, delete, lock, unlock, and catalog DOS 3.3
files. Sometimes Fill is less convenient than it should be. For instance, to initialize a disk or
check the contents of a particular file, you have to exit FID, and then later reload it to use it
again.

The programs presented here provide you with a version of Fill that resides in the RAM
card area of memory (Fill.RC in a 64K Apple II Plus, or a Ile, Ile or IIGS. This version
incorporates the enhancements presented by Joe Humphrey in Fill Plus (Reprinted elsewhere
in this book), and, best of all, it is available with a simple FID command from Applesoft.

USING FID.CONVERTER AND FID.HELLO
When you run Fill.CONVERTER (Listing 62), it loads FID from your DOS 3.3 System

Master, and then stores the converted Fill.RC on another disk. You have about four minutes to
remove the System Master and replace it with the disk that is to receive Fill.RC.

Fill.RC must be installed by Fill.HELLO (Listing 63), so be sure to save them both on
the same disk. If you want the disk to boot with Fill.RC in place, delete any Hello program
you may already have on the disk, and rename Fill.HELLO with the command:

RENAME FID.HELLO,HELLO

USING FID.RC
Once Fill.RC is installed, your system can do just about anything it could before you

installed FID.RC. However, you can't use Integer BASIC or any other program that uses the
RAM card area of memory, and you can't use the FP command. The command FID runs
Fill.RC. Except for the Fill Plus enhancements, Fill.RC works just like the original Fill.

The FID Plus enhancements are:

1. Use letters instead of numbers to select choices from the menu.
2. Where one-character responses are expected, a carriage return is not required.
3. The COPY command has been changed to MOVE.
4. Instead of the equal sign(=), the wildcard character is the asterisk(*).

Select the Q option from the menu, and you're back in Applesoft Any program you had
there will be lost, but you don't have to reboot the system.

ENTERING THE PROGRAMS
To key in the programs, first type in Fill.CONVERTER (Listing 62), and save it with the

command:

SA VE Fill.CONVERTER

Then type in Fill.HELLO (Listing 63), and save it with the command:

SA VE Fill.HELLO

184

THE CONVERSION PROCESS
FID is located at $803 and is approximately 4,700 bytes long. Using the Monitor's

disassemble command, it's easy to see that the information from $803-$1317 is made up of
6502 instructions. At first, the remaining bytes appear to be random, disorganized numbers.
After some analysis, though, the information in Table 7 can be deduced. There are three ways
to convert a program such as FID to run at another location:

1. Disassemble the program and change each position-dependent reference according to the
new location of the program.
2. Use a symbolic disassembler, such as the Sourceror program that comes with the Big Mac
assembler.
3. Write a program to perform the task.

TABLE 7: FID Program Functions

Function

$13CA-$13DB*
$13DC-$13E7*
$13E8-$1449*
$144A-$18F8
$18F9-$190D*
$193C-$194C*

$194D
$1AF1*

Address

Table of subroutines
Table of buffers
Offset table for ensuing text
Text
File Manager parameter
Input/output control block (IOB)
Device characteristics table

Copy buffer start

*The addresses marked with asterisks will need to be changed when FID is relocated.

Since the first procedure promised to be tedious, and the second required that FID be
broken into two parts, I chose the third option. This resulted in a conversion program that is
specifically designed for FID. However, in the Modifications section below, I suggest some
changes to make it more generally applicable.

The process turned out to be more than a simple relocation. Since FID relies on certain
Monitor routines and the new location of FID conflicts with the Monitor in ROM, the
appropriate Monitor routines had to be copied into the RAM card. This avoids switching back
and forth between the RAM card and ROM. To avoid overwriting the copied Monitor routines,
FID's copy buffer was moved from just after FID to $951 .

185

THE INTERFACE
INIT seems to be the favorite command to discard when room is needed for a new DOS

command. However, an intact INIT command can be complementary to FID in file
management. A more logical candidate is the INT command, since loading the RAM card with
FID eliminates the possibility of using Integer BASIC. (Besides, INT is three letters long, and
so is FID.) The FP command also has to be deactivated to avoid any unexpected problems. The
location of the INT command handler is $A59E. The original DOS code is overwritten with the
following:

JSR $FB39 SET THE TEXT PAGE
LDA $C083 WRITE-ENABLE THE RAM CARD
LDA $C083
JSR $D003 RUN THE FID PROGRAM
LDA $C081 GO BACK TO ROM
JMP $3D3 COLD START DOS

The actual command (FID) is POKEd over INT in DOS's command table. The exit
locations in FID also had to be directed to the FID command handler. This was done simply by
placing an RTS command where FID had tried to IMP to $3D3.

HOW THE PROGRAMS WORK
FID.CONVERTER

The Fill.CONVERTER program (Listing 62) finds all the bytes that have to be changed,
and changes them. It goes through memory, one byte at a time, and evaluates each byte to
determine whether the following bytes have to be changed.

In 6502 machine language programs, there are one-byte, two-byte, and three-byte
instructions. None of the one-byte instructions has to be changed. Most of the three-byte
instructions have to be changed, since these usually contain references to addresses within the
program. Some of the two-byte instructions must be changed. The work of
Fill.CONVERTER is to skip the one-byte instructions, to determine which two-byte
instructions to skip, and to make the necessary changes in the remaining two- and three-byte
instructions.

First, FID.CONVERTER reads into the array (O(x)) all of .the opcodes that are three-byte
instructions (line 280). A second array (S(x)) is filled with the opcodes that are two-byte
instructions (line 290). With these lists at hand, the program BLOADs FID at location $1803
($1000 higher than its normal location) and PEEKs each location.

At line SO the memory byte is checked against the S(x) array. If there is a match, we know
the following byte doesn't have to be checked, and rather than have this byte evaluated against
the O(x) array, the counter is simply advanced. If the byte in question simply refers to an
address, (i.e., it is in the O(x) array) the program then looks at the high byte (line 100).

In line 110, a check is made to see if the address refers to a location within the FID
program rather than to a Monitor routine. Line 120 adjusts the byte if it is in the variable
storage area of FID. If it isn't, line 130 adjusts the value of the byte so FID will be at home in
the RAM card. The remaining lines (lines 140-190) change the assorted locations in FID, as
previously described.

FID.HELLO
The FID.HELLO program listing is well-documented. Of note is the S.H. Lam (Call-

A.P .P.L.E.) routine used to POKE in binary data (lines 60, 70 and 110). Also, the
Monitor MOVE routine is taken from my article "Escape from the Motherboard" in the March
1983 issue of Call-A.P.P.L.E. Just for fun, in line 100 the cursor routine can be modified
for a nonflashing cursor (NFC) on the Apple II or II Plus. Just remove the REM at the
beginning of the line.

186

MODIFICATIONS
If all of the Fill-specific program lines were removed, Fill.CONVERTER could be

changed into an all-purpose machine language program relocater. All the opcodes could be
placed in the appropriate array, and although slow, an accurate relocation could be done.
However, the trick is to know which opcodes to include and which to exclude. Also, a
working knowledge of machine language programming is needed to know what portions of the
program to change. Anyone with this degree of skill could probably write a machine language
program to do it all in a flash.

CAUTIONS
Disks INITialized with Fill.RC resident will contain a modified DOS. Specifically, the INT

and FP commands are disabled. An attempt to call FID when Fill.RC has not been installed
will land you in the Monitor. Also, if you have a program in memory and you then use FID,
don't expect your program to be there when you return. Fill.RC uses the memory where
Applesoft programs are stored and destroys normal program pointers.

LISTING 62: FID.CONVERTER

1 REM **********************
2 REM * FID.CONVERTER *
3 REM * BY DONALD MILLER *
4 REM * COPYRIGHT (C) 1985 *
5 REM * BY MICROSPARC, INC *
6 REM * CONCORD , MA 01742 *
7 REM **************** ******
10 REM FID - > FID.RC CONVERTER
20 GOTO 260
30 M = M + l :F = 0: IF M > 8983 THEN 140
40 V = PEEK (M)
50 FOR I = 1 TO 10: IF V = S (I) THEN F l:I = 10: GOTO 60
60 NEXT : IF F THEN M = M + 1: GOTO 3 0
70 FOR I = 1 TO 26 : IF V = O(I) THEN F l: I 26 : GOTO 80
80 NEXT
90 IF NOT F THEN 30
100 M = M + 2 : Z = PEEK (M)
110 IF Z < 8 OR Z > 30 THEN 30
120 IF Z > 25 AND Z < 30 THEN POKE M,Z - 17 : GOTO 30
130 POKE M,Z + 200 : GOTO 30
140 FOR I = 9163 TO 917 9 STEP 2 : POKE I, PEEK (I) + 200: NEXT

REM SUBROUTINE TABLE
150 POKE 9181,225: POKE 9183 ,10: POKE 9185,11 : POKE 9187 , 9 :

POKE 9189,12 : POKE 9191 , 22 5: REM BUFFER TABLE
160 FOR I = 9193 TO 9289 STEP 2 : POKE I, PEEK (I) + 200 : NEXT

REM OFFSET TABLE
170 K = PEEK (8822) = 250 : POKE 10498 + K,219: POKE 10502 +

K,225 : POKE 10504 + K,10: POKE 10506 + K,12: REM FILE
MANAGER PARM LIST

180 POKE 10563 + K, 225 : REM IOB POKE
190 POKE 6239 , 96 : POKE 7637 , 96 : REM CHANGE JMP $3D3 TORTS
200 POKE 6840 , 12: REM OMIT IF FID PLUS NOT INSTALLED

187

210 N = 1: FOR I= 9994 TO 10016 : POKE I , 128 + ASC (MID$
(S$,N,l)) :N = N + 1: NEXT : REM POKE IN TITLE

220 PRINT CHR$ (4)"BSAVE FID . RC,A$1803,L4700"
230 POKE 49281,0: POKE 49281,0: REM WRITE TO RAM
240 PRINT CHR$ (4)"BLOAD FID.RC,A$D003"
250 END
260 DIM 0(26),S(lO) : HOME : PRINT : PRINT"** COPYRIGHT 1985

MICROSPARC, INC . **": VTAB 9: PRINT "PLACE DISK WITH FID IN
DRIVE": PRINT : PRINT "THEN HIT ANY KEY";: GET A$

270 HOME : VTAB 9: PRINT "PLEASE WAIT (APPROX 4 MINUTES) "
280 FOR I = 1 TO 26: READ O(I): NEXT
290 FOR I= 1 TO 10: READ S(I): NEXT
300 DATA 141,142,173,76,32,189,157,185,205,204,221,172,13,140 ,

29 , 153,174,44,217,236,57,109,238,25,206, 62
310 DATA 133,162,201,240,144,105 , 160,208,169,176
320 S$ = "FID.RC BYD W MILLER JR": REM 23 PLACES YOUR TITLE

HERE
330 M = 6146
340 PRINT CHR$ (4)"BLOAD FID,A$1803"
350 GOSUB 380: REM FID PLUS ENHANCEMENTS
360 PRINT : PRINT "INSERT DISK TO RECEIVE FID.RC"
370 GOTO 30
380 REM FID PLUS
390 K = PEEK (10373) = 0: FOR I 10373 TO 10376: READ N: POKE

I + K, N: NEXT
400 DATA 205,207,214,197
410 FOR I = 9135 TO 9161: READ N: POKE I,N: NEXT
420 DATA 205,195,211,213,204,196,210,214,209,0,210,209,0,196,

195 , 204,211,213,214,0,205,00,195 , 210,211,209,0
430 FOR I = 6343 TO 6347: READ N: POKE I,N: NEXT
440 DATA 12,253,32,237,253
450 FOR I = 6833 TO 6860: READ N: POKE I,N: NEXT
460 DATA 76,193,251,162,ll,44,l62,12,32,205,10,32,12,253,141,

0,2,170,32 , 237,253,32,142,253 , 138,162,1 , 96
470 FOR I= 1 TO 7: READ P: POKE P,188: POKE P + 1,10: NEXT
480 DATA 6465,6501,6541,6577,6771,7198,8101
490 POKE 6982,180: POKE 6983,10 : POKE 7019,18 0 : POKE 7020,10:

POKE 7794 , 183: POKE 7795,10
500 POKE 7808,180: POKE 7809,10
510 POKE 7819,183: POKE 7820,10
520 ~ FOR I= 1 TO 5: READ P: POKE P,170: NEXT
530 DATA 6712,6736,7393,7424,7465
540 RETURN

LISTING 63: FID.HELLO

1 REM **********************
2 REM * FID.HELLO *
3 REM * BY DONALD MILLER *
4 REM * COPYRIGHT (C) 1985 *
5 REM * BY MICROSPARC, INC *
6 REM * CONCORD, MA 01742 *

188

7 REM **********************
10 REM FID.RC HELLO PROGRAM
20 HOME : VTAB 9: FLASH : PRINT "INSTALLING FID.RC": NORMA.L :

PRINT : PRINT "**COPYRIGHT 1985 BY MICROSPARC, INC. ** ":
PRINT : PRINT "TYPE 'FID' AT PROMPT TO ACCESS"

30 POKE 49281 , 0: POKE 49281 , 0: REM ENABLE ROM WRITE ENABLE
RAM

40 POKE 43249,70: POKE 43250,73: POKE 43251 ,196: REM REPLACE
INT WITH FID COMMAND

50 POKE 43247,64: REM DISABLE FP
60 H$ = "A59E: 20 39 FB AD 83 CO AD 83 CO 20 03 DO AD 81 CO 4C

03 03 N D7D2G": GOSUB 120: CALL - 144: REM FID.RC
CONTROLLER

70 H$ = "300: A9 00 85 3C 85 42 A8 A9 FF 85 3E 85 3F A9 F8 85 43
85 3D 20 2C FE 60 N D7D2G": GOSUB 120: CALL - 144 : REM
MONITOR MOVE

80 PRINT CHR$ (4)"BLOAD FID.RC,A$D003"
90 CALL 768: REM MOVE MONITOR
100 REM DON ' T USE THESE POKES IF YOU HAVE A IIe:POKE

64787,234: POKE 64788,234 : POKE 49282,0 : REM ADD NFC
110 HOME : NEW
120 FOR I= 1 TO LEN (H$): POKE 511 +I, ASC (MID$ (H$,I,1))

+ 128: NEXT : POKE 72,0: RETURN

189

Eye Openers
Use this routine to create an opening iris transition from one Hi-Res picture to another.

by Iver P. Cooper

Television programs use a variety of fades and wipes to make the transition from one scene
to the next One of the most interesting of these effects is called the opening iris: an ever
widening hole appears in the center of the old image, revealing the new image. IRIS is a
machine language routine that simulates this effect using the Hi-Res graphics screens.

USING THE PROGRAMS
When IRIS (Listing 64) is CALLed from within another program, it opens a rectangular

iris on Hi-Res page 1, revealing the picture on Hi-Res page 2. Before IRIS is called, the HGR
command must be issued, and the contents of the two Hi-Res pages must be set.

IRIS.DEMO (Listing 65) is a simple demonstration program that loads a Hi:-Res picture
onto page 2, BLOADs IRIS, clears page 1 to white, and repeatedly calls the IRIS routine until
a key is pressed.

ENTERING THE PROGRAMS
Please refer to Appendix A for help in entering Listing 64. If you key it in from the

Monitor, save it to disk with the command:

BSA VE IRIS,A$6000,L$DB

To key in the demonstration program, type in Listing 65 and save it with the command:

SA VE IRIS.DEMO

HOW IRIS WORKS
To understand the method IRIS uses to switch images between the Hi-Res graphics pages,

it may be helpful to examine a brief analogy. Think about the two Hi-Res pages as a two-story
building under construction. The girders running one way are labeled Y=O, Y= l , and so on,
and the girders that are perpendicular are labeled X=O, X=l, and so on. The top floor is Hi
Res page 2, and the bottom floor is Hi-Res page 1.

We want to wend our way as follows: starting just down and to the left of the geometric
center of the top floor, take a few steps toward the top of the screen, turn right, take a few
steps toward the right edge of the screen, tum right, take a few steps downscreen, turn right,
take a few steps toward the left edge of the screen, tum right, and so on - spiraling out until
we reach the edge of the building. We then want to recognize that we have reached the edge,
and stop.

Assume that each girder intersection is marked with a number. With each step, we want to
read off the intersection number for the benefit of a friend on the floor below, who will mark it
on the corresponding intersection there.

For the purposes of this program, I thought of the Hi-Res screen as being divided into
40x40 (mixed text and graphics mode) Lo-Res blocks. Each Lo-Res block is four pixels high
and seven pixels wide. If we start at the block just to the lower-left of the exact center of the
screen, and move upscreen one block, tum and move one block, tum and move two blocks,
turn and move two blocks, turn and move three blocks, tum and move three blocks, turn and
move four blocks, and so on, we will eventually travel down to the lower-right block of the
mixed mode screen.

In the source code for IRIS, lines 29-32 position the program's internal graphics cursor
in the proper starting point. The locations UPBY, DNBY, RTMARG and LFMARG control

190

how far it moves. These locations change just before a tum, so that a widening iris effect is
achieved. '

The internal cursor consists of a two-byte pointer at $26,$27 to the memory location for the
left edge of the cursor's row; a column block number at $E5, in the range 0-39; and a point
within-column indicator at $30. Block 0,40 on page 2 has memory address $4250. The
subroutine CHECK, which is called after every cursor movement in the DN segment of the
main routine, compares the value of the left edge pointer to the address of that block.

A second subroutine, called TRNSFR, actually moves the contents of the graphics screen.
TRNSFR:

I. Gets the value stored in the appropriate row and column on page 2.
2. Saves this value on the stack.
3. Moves the pointer to the corresponding position on page 1.
4. Gets the value saved on the stack and places it into page 1.
5. Restores the left edge pointer to page 2.

The actual movement of the internal cursor is accomplished by CALLs to the ROM
subroutines INCRY and DECRY, and by incrementing or decrementing the value at $E5.

MODIFICATIONS
To have a smaller iris opening on a comer of the screen, change the starting point in lines

29-32, the initial values of LFMARG and RTMARG, and the comparison values in CHECK.
To have the program overlay rather than erase the information originally on page 1 with
whatever is on page 2, insert the instruction ORA ($26),Y before the instruction STA ($26),Y.

LISTING 64: IRIS

0
1 IRIS
2 BY IVER P. COOPER
3 COPYRIGHT (C) 1985
4 BY MICROSPARC, INC
5 CONCORD, MA 01742
6
7 ORG $6000
8 PAGE EQU $E6
9 PAGE2 EQU $40

10 DECRY EQU $F405
11 INC RY EQU $F504
12 COLUMN EQU $ES
13 UPBY EQU $FC
14 DNBY EQU $FD
15 RTMARG EQU $FE
16 LFMARG EQU $FF
17 HPOSN EQU $F411
18
19 6000 A9 08 INIT LOA #8
20 6002 85 FC STA UPBY
21 6004 A9 oc LOA #12
22 6006 85 FD STA DNBY
23 6008 A9 14 LDA #20
24 600A 85 FE STA RTMARG
25 600C A9 12 LOA #18
26 600E 85 FF STA LFMARG
27 6010 A9 40 LOA #PAGE2

191

28 G012 8S EG STA PAGE
29 G014 A9 S3 LDA #83
30 6016 AO 00 LDY #0
31 6018 A2 8S LDX #133
32 601A 20 11 F4 JSR HPOSN
33 6010 20 BS 60 JSR TRNSFR
34 6020 A6 FC UP LDX UPBY
3S 6022 20 DS F4 UP2 JSR DECRY
3G 602S 20 BS GO JSR TRNSFR
37 G028 CA DEX
38 6029 DO F7 BNE UP2
39 602B AS FC LDA UPBY
40 602D 18 CLC
41 602E 69 08 ADC #8
42 G030 8S FC STA UPBY
43
44 G032 E6 ES RT INC $ES
4S 6034 A4 ES LDY $ES
4G 6036 C4 FE CPY RTMARG
47 G038 FO OA BEQ RT2
48 603A 90 08 BCC RT2
49 G03C CG ES DEC $ES
so 603E 88 DEY
Sl 603F E6 FE INC RTMARG
S2 6041 4C 68 60 JMP DN
S3 G044 20 BS 60 RT2 JSR TRNSFR
S4 6047 AS 26 LDA $26
SS G049 48 PHA
56 604A AS 27 LDA $27
S7 G04C 48 PHA
S8 604D 20 04 FS JSR INCRY
S9 60SO 20 BS 60 JSR TRNSFR
60 GOS3 20 04 FS JSR IN CRY
61 6056 20 BS GO JSR TRNSFR
G2 GOS9 20 04 FS JSR IN CRY
63 GOSC 20 BS GO JSR TRNSFR
G4 GOSF G8 PLA
GS G060 8S 27 STA $27
GG G062 G8 PLA
G7 G063 8S 26 STA $2G
G8 606S 4C 32 GO JMP RT
G9 GOG8 AG FD DN LDX DNBY
70 G06A 20 04 FS DN2 JSR INCRY
71 GOGD 20 cc GO JSR CHECK
72 G070 20 BS GO JSR TRNSFR
73 G073 CA DEX
74 G074 DO F4 BNE DN2
7S 6076 AS FD LDA DNBY
76 G078 18 CLC
77 G079 G9 08 ADC #8
78 G07B 8S FD STA DNBY
79
80 G07D C6 ES LF DEC $ES
81 G07F A4 ES LDY $ES
82 G081 30 OG BMI LFFLP
83 G083 C4 FF CPY LFMARG
84 G08S FO OA BEQ LF3
8S 6087 BO 08 BCS LF3

192

86 6089 E6 ES LFFLP INC $ES
87 608B ca !NY
88 608C C6 FF DEC LFMARG
89 608E 4C 20 60 JMP UP
90 6091 20 BS 60 LF3 JSR TRNSFR
91 6094 AS 26 LDA $26
92 6096 48 PHA
93 6097 AS 27 LDA $27
94 6099 48 PHA
9S 609A 20 DS F4 JSR DECRY
96 609D 20 BS 60 JSR TRNSFR
97 60AO 20 DS F4 JSR DECRY
98 60A3 20 BS 60 JSR TRNSFR
99 60A6 20 DS F4 JSR DECRY

100 60A9 20 BS 60 JSR TRNSFR
101 60AC 68 PLA
102 60AD as 27 STA $27
103 60AF 68 PLA
104 60BO as 26 STA $26
lOS 60B2 4C 7D 60 JMP LF
106
107 60BS A4 ES TRNSFR LDY $ES
108 60B7 Bl 26 LDA ($26),Y
109 60B9 48 PHA
110 60BA 38 SEC
111 60BB AS 27 LOA $27
112 60BD E9 20 SBC #$20
113 60BF 8S 27 STA $27
114 60Cl 68 PLA
llS 60C2 91 26 STA ($26),Y
116 60C4 AS 27 LDA $27
117 60C6 18 CLC
118 60C7 69 20 ADC #$20
119 60C9 8S 27 STA $27
120 60CB 60 RTS
121
122 60CC AS 26 CHECK LDA $26
123 60CE C9 50 CMP #$50
124 60DO DO 08 BNE CHECKZ
12S 60D2 AS 27 LDA $27
126 6004 C9 42 CMP #$42
127 60D6 DO 02 BNE CHECKZ
128 60D8 68 PLA
129 60D9 68 PLA
130 60DA 60 CHECKZ RTS

000 ERRORS

6000 HEX START OF OBJECT
60DA HEX END OF OBJECT
OODB HEX LENGTH OF OBJECT
9SSA HEX END OF SYMBOLS

193

LISTING 65: IRIS.DEMO

10 REM **********************
20 REM * IRIS . DEMO *
30 REM * BY IVER P. COOPER *
40 REM * COPYRIGHT (C) 1985 *
50 REM * BY MICROSPARC, INC *
60 REM * CONCORD, MA 01742 *
70 REM **********************
80 PRINT CHR$ (4);"BLOAD IRIS "
90 HOME : PRINT "ENTER THE NAME OF THE HI-RES PICTURE

(TRY 'DEMO')";: INPUT NA$
100 PRINT CHR$ (4); "BLOAD" ; NA$;" ,A$4 000 "
110 HGR : HOME : VTAB 22: PRINT " ** COPYRIGHT 1985 BY

MICROSPARC, INC. ** "
120 HCOLOR= 3: REM WHITE
130 HPLOT 0,0

FILE

140 CALL 62454: FOR I = 1 TO 1000: NEXT REM CLEAR SCREEN TO
WHITE AND PAUSE

150 CALL 24576: REM CALL IRIS ($6000)
160 IF PEEK (- 16384) < 128 THEN FOR I 1 TO 1000: NEXT

GOTO 110 : REM LOOP UNTIL KEY PRESS
170 POKE - 16368,0: TEXT : HOME : END

194

Imagewriter Screen Dump
Learn how to use the /magewriter Tool Kit Hi-Res screen dump routine from your own
program. You can dump either Hi-Res page in four different modes.

by Gerald Blalock

The Imagewriter printer is often sold as part of a package with the Apple Ile or Ile. Its Tool
Kit disk includes a menu-driven graphics screen dump program that handles a screen dump of
Hi-Res page 1 in normal or inverse text, and regular or double-size fonts. Those are the
functions that the documentation describes, however, the Tool Kit has some hidden talents.

You can bypass the menus and call the routine from other program and in immediate mode.
Furthermore, dumps can be made from page 2. Immediate mode access is as simple as a
BLOAD, two POK.Es, and a CALL for DOS 3.3, or three POK.Es and two CALLs for
ProDOS. Since the DOS 3.3 and ProDOS Imagewriter Tool Kit screen dump programs differ
significantly, they are discussed separately.

DOS 3.3 IMAGEWRITER DUMP
The Applesoft Hello program on the DOS 3.3 Imagewriter Tool Kit disk CALLs a machine

language program, GF, which is located at $9000. A little experimentation and disassembly of
the GF program reveals eight different modes that are set by a variable I will call XFEROPT.

Values zero through three control screen dumps from Hi-Res page 1 and determine both the
size of the image and whether it is printed in inverse. Values four through seven of XFEROFT
are the same as the first four, except that they apply to Hi-Res page 2. See Table 8 for the
values ofXFEROPT and their corresponding modes.

TABLE 8: Values of XFEROPT and Corresponding Modes

Number to POKE in Location 7

Option

Normal
Inverse
Double size Normal
Double size Inverse

Page 1

0
1
2
3

Page 2

4
5
6
7

A general-purpose screen dump program that lets you load a picture into either page and
dump it in any of the four modes is presented in Listing 66. (The DOS 3.3 GF program does
not work on the Ile or IIGS. Instead, you must use the ProDOS version.) To incorporate the
screen dump routines within your own programs, use the following procedure:

1. BLOAD GF from your Imagewriter Tool Kit disk.
2. BLOAD picture,A$2000 for Hi-Res page 1, or BLOAD picture,A$4000 for Hi-Res page 2.
3. POKE 6,PSLOT:POKE 7, XFEROPT (PSLOT is the slot holding your printer interface
card, and XFEROPT is the value obtained from Table 8.)
4. PR# PSLOT: PRINT CHR$(27);CHR$(78)
5. CALL 36864

195

PRODOS IMAGEWRITER DUMP
The ProDOS Imagewriter screen dump program works on the Apple II Plus, Ile, lie and

IIGS. The machine language program, named GRAF.O on the ProDOS Imagewriter Tool Kit
disk, is essentially the same as GF, except for the initial setup portion. The result is that three
POKEs and two CALLs are required to use GRAF.O from the immediate mode or from within
an Applesoft program. Unlike the DOS 3.3 version,the ProDOS version requires no printer
setup.

Listing 67 is a general-purpose screen dump that uses the ProDOS program GRAF.O.
Use _the following general procedure:

1. Set lilMEM: 36864 to protect the GRAF.O code.
2. BLOAD GRAF.O
3. BLOAD picture,A$2000 for Hi-Res page 1, or BLOAD picture,A$4000 for Hi-Res page 2.
4. POKE 6,PSLOT: POKE 252,16 * PSLOT: POKE 7, XFEROPT (PSLOT is the number of
the slot holding the printer interface card, and XFEROPT is the mode number from Table 8.)
5. CALL 38636
6. CALL 38156

ENTERING THE PROGRAMS
If you have the DOS 3.3 version of the Imagewriter Tool Kit disk, enter the program shown

in Listing 66 and save it on a disk that contains the file GF with the command:

SA VE DOS3.3.DUMP

If you have the ProDOS version of the Imagewriter Tool Kit, enter the program shown in
Listing 67 and save it on a disk that contains the file GRAF.O with the command:

SA VE PRODOS.DUMP

Note: Apple Computer, Inc. is no longer distributing the DOS 3.3 Imagewriter Tool Kit on
which the GF file needed for DOS3.3.DUMP is supplied. However, the GF file is included on
the More Apple Secrets disk; see the bound-in card at the end of this book for ordering
information.

LISTING 66: DOS3.3.DUMP

10 REM **********************
20 REM * DOS3.3.DUMP *
30 REM * BY GERALD BLALOCK *
40 REM * COPYRIGHT {C) 1985 *
50 REM * BY MICROSPARC, I NC *
60 REM * CONCORD, MA 01742 *
70 REM **********************
80 REM HI-RES DUMP USING IMAGEWRITER PRINTER
90 REM THE FILE 'GF' AND YOUR PICTURE FILE MUST BE ON THE

SAME DISK
100 HOME : HIMEM: 36864
110 0$ = CHR$ (4): REM CTRL-D
120 PSLOT = 1: REM PRINTER SLOT
130 PRINT D$;"BLOAD GF"
140 POKE 6,PSLOT

196

150 PRINT "NAME OF PICTURE FILE (?FOR CATALOG) ": INPUT " :
";NAME$: IF NAME$= " ? " THEN PRINT D$"CATALOG": GETZ$:
PRINT : GOTO 150

160 INPUT "WHICH PAGE (1 OR 2): II ;P$
170 P$ = LEFT$ (P$, 1): IF P$ < > " 1 " AND P$ < > "2" GOTO 1 60
180 PRINT D$; "BLOAD " NAME$ ", A$ "2000 + 2000 * (P$ = "2")
190 PRINT "PRINT MODES :": PRINT " 0 SINGLE NORMAL": PRINT "

1 SINGLE I NVERSE ": PRINT " 2 DOUBLE NORMAL": PRINT" 3
DOUBLE I NVERSE "

200 INPUT "PRINT MODE? "; XFEROPT
210 POKE 7,XFEROPT + 4 * (P$ = "2")
220 PRINT D$;"PR#"; PSLOT : PRINT CHR$ (27) + CHR$ (78): REM

TURN ON GRAPHICS MODE
230 CALL 36864: REM PRINT IT
240 PRINT : PRINT D$;"PR#0": REM ALL DONE !

LISTING 67: PRODOS.DUMP

10 REM **********************
20 REM * PRODOS . DUMP *
30 REM * BY GERALD BLALOCK *
40 REM * COPYRIGHT (C) 1985 *
50 REM * BY MICROSPARC , INC *
60 REM * CONCORD, MA 01742 *
70 REM **********************
80 REM HI- RES DUMP USING IMAGEWRITER PRINTER
90 REM THE FILE ' GRAF .0 ' AND YOUR PICTURE FILE MUST BE ON

THE SAME DISK
100 HOME : HIMEM: 36864
110 D$ = CHR$ (4): REM CTRL- D
120 PSLOT = 1: REM PRINTER SLOT
130 PRINT D$;"BLOAD GRAF . 0 "
140 POKE 6 , PSLOT : POKE 252 ,1 6 * PSLOT
150 PRINT "NAME OF PICTURE FILE (?FOR CATALOG) ": I NPUT "·

";NAME$: IF NAME$ = " ? " THEN PRINT D$"CAT": GET Z$: PRINT
: GOTO 150

160 INPUT "WHICH PAGE (1 OR 2): II ;P$
170 P$ = LEFT$ (P$, 1): IF P$ < > " 1 " AND P$ < > " 2 " GOTO 160
180 PRINT D$; "BLOAD " NAME$ ", A$ "2000 + 2000 * (P$ = "2 ")
190 PRINT "PRI NT MODES:": PRINT " 0 SINGLE NORMAL": PRINT "

1 SINGLE INVERSE ": PRINT " 2 DOUBLE NORMAL": PRINT " 3
DOUBLE INVERSE "

200 INPUT "PRINT MODE? " ; XFEROPT
210 POKE 7,XFEROPT + 4 * (P$ = "2 ")
220 CALL 38636 : REM SET UP PRINTER
230 CALL 38156 : REM PRINT IT

197

APPENDIX A

Entering More Apple Secrets Program Listings

More Apple Secrets includes programs written in Applesoft BASIC and machine language.
Both types of programs can be entered directly into your Apple, without the use of additional
software. This appendix presents some of the basics of program entry for those who are
new to Apple computing. While this short summary is no substitute for Apple's manuals, it
should be enough to get you started on More Apple Secrets program listings.

A QUICK OVERVIEW OF THE APPLE
When you first switch on your Apple, make sure that either the DOS 3.3 System Master disk
or the ProDOS System disk is in the disk drive. If you use the ProDOS System disk, you
will need to quit the startup program. You will the see a square bracket Q) character, called a
prompt. The square bracket prompt tells you that you can do one of three things:

1. Enter commands in the disk command language (e.g., CATALOG).

2. Enter commands in Apple's version of the BASIC language, Applesoft BASIC (e.g.,
PRINT 36+42).

3. Type in Applesoft BASIC program lines (e.g., 10 INPUT K).

To type in programs from More Apple Secrets, you may need to do all three.

ENTERING AN APPLESOFT BASIC PROGRAM
Before entering a program listing from More Apple Secrets, you should first thoroughly read
the text that describes the program. You may not understand all of the explanations the first
time through, but be on the lookout for any special directions for typing the program. You
should also be sure to have a formatted disk ready so that you can save your work.

All BASIC programs consist of a sequence of program lines. Each program line begins with
a number and is followed by one or more program statements separated by colons. For
example:

20 FOR J = 1 TO S:PRINT CHR$ (7) : NEXT J

To enter a program, begin with the first numbered line and type it in exactly as it appears
(including the line number itself). Though the program line may span several printed lines in
the listing, do not press the Return key until you reach the next line number. Then begin the
process again with the next line number. When you reach the end of the program, save your
work on the disk by typing the command SA VE followed by the name of the program.
That's all there is to it!

Let's try a sample program. To enter the program BELLS shown in Listing 1, follow this
sequence:

198

1. Type the word NEW and press Return to clear memory of any old programs. (Make
sure the Caps Lock key is down if you are using an unenhanced Apple //e.)

2. Type line 10 exactly as it appears, but do not press Return until you have typed the last
word in the line, "BELL".

3. Repeat this procedure with lines 20 and 30.

4. With an initialized disk in the drive, type SA VE BELLS and press Return to save your
program on the disk.

5. Since the program is now in memory, you may just type RUN and press Return to start
it. If you erase it from memory by running a different program or by turning off your
computer, you may put it back into memory and start it again by typing the command
RUN BELLS and pressing Return.

LISTING 1

10 REM RING THE BELL
20 FOR J = 1 TO 5: PRINT CHR$ (7): NEXT J
30 END

A FEW TIPS
The following tips may make your work a little easier:

1. If you make a mistake while typing, use the Left-Arrow key to go back and correct it,
and the Right-Arrow key to "retype" the remainder of the line before pressing Return. If
you have already pressed Return before you catch your error, simply retype the entire
line (number and all) and the new version will talce the place of the old. (The use of an
Applesoft line editor like MicroSPARC's GALE can eliminate much of this work.)

2. Be particularly careful when typing in statements that contain the reserved word DAT A.
Typos in other lines will probably show up as syntax errors when the program is finally
run, but those in DATA statements may not.

3. Save the program to disk periodically as you go along to minimize the effect of an
accidental power loss.

4. Don't try to make your own modifications to the program until you have typed it in as
published and have run it successfully. This will make it easier to debug in case you
have made typing errors.

5. If the program does not seem to run correctly, it may be helpful to temporarily remove
any ONERR statements. This will allow you to see error messages suppressed by
ONERR.

6. If you're certain that you have typed the program correctly, but you still can't get it
working, call MicroSPARC's Technical Support Staff at (617) 371-1660 for assistance.

ENTERING MACHINE LANGUAGE PROGRAMS
Both BASIC and the disk command language are powerful languages that interpret English
like words. Your Apple can also understand a much lower-level language, called machine
language. Since this is the Apple's "native tongue," machine language programs perform
much more quickly than those written in BASIC.

Often, a program called an assembler is used to help create machine language programs. An
assembler first allows the programmer to write an assembly language program and then

199

translates this program into machine language before it is run. Though you may not have an
assembler, you will still be able to enter and use the machine language from More Apple
Secrets listings. The advantage of an assembler is that it allows you to easily modify the
program, or to "borrow" a programming technique. Unless otherwise indicated, all
assembly language programs in More Apple Secrets were produced using The Assembler
from MicroSP ARC, Inc.

If you don't own an assembler, you will need to enter machine language programs directly
into the Apple's memory through what is called the System Monitor (not to be confused with
your video monitor). To reach this level from the disk/BASIC level (indicated by the']'
prompt), you simply type CALL-151 and press Return. You will then see an asterisk(*),
which is the prompt for the System Monitor. While you can use many commands at this
level, the only one you will need to enter More Apple Secrets listings looks like this example:

300:A2 05 20 DD FB CA FO 03 4C 02 03 60

In this command, the "300" specifies a memory location in your Apple and the colon tells the
Apple to put the following number (A2, a number in base 16) into that location. The
numbers following the first (05 through 60) are put into subsequent memory locations. (Of
course, you would press Return at the end of the line.) Though you don't need to
understand base 16 (or hexadecimal) numbers, you should know that all machine language
numbers are given in hexadecimal notation.

A SAMPLE MACHINE LANGUAGE PROGRAM
Let's follow a short example of entering a machine language program. Listing 2 shows the
contents of a portion of the Apple's memory, often called a "hex dump." The number to the
left of the hyphen is a memory location's "address," and the numbers to the right are the
contents of that and subsequent memory locations.

LISTING 2

0300 - A2 05 20 DD FB CA FO 03
0308 - 4C 02 03 60

Listing 3 shows the assembly language which was used to create the machine language
program shown. Notice that the numbers in the left-hand columns look very similar to those
in Listing 2. They are, in fact, the same set of memory addresses and their program contents
in a different format All of the columns on the right are assembly language instructions and
comments. While other assemblers use slightly different formats, you will always be able to
find the two columns which contain the addresses and contents of memory.

LISTING 3
1 RINGER PROGRAM
2 ORG $300
3 BELL EQU $FBDD
4 0300 A2 05 LOX #$5
5 0302 2 0 DD FB LOOP JSR BELL
6 0305 CA DEX
7 0306 FO 03 BEQ END
8 0308 4C 02 03 JMP LOOP
9 030B 60 END RTS

To enter the machine language listings, you just type in the addresses and their contents as
follows:

200

1. Type CALL -151 and press Return to get into the System Monitor. You should now
have an asterisk (*) prompt.

2. Type the first memory address shown, a colon (instead of the hyphen shown in the
listing), and the memory contents. If you were using a listing similar to Listing 2, you
would type:

300 :A2 05 20 DD FB CA FO O~
308 :4C 02 03 60

If you were using an assembler listing like that in Listing 3, you would type:

300:A2 05
302 : 20 DD FB
305 : CA
306:FO 03
308:4C 02 03
30B:60

Be sure that you do not put a space between the colon and the first pair of hexadecimal
digits, but that you do put spaces between subsequent pairs. Also, remember to press
Return after each line. You may actually type up to 85 pairs of digits after each colon,
but it is easier to follow the listing as published for your first time through. When you
finish typing the program, it can be verified by typing the starting address and pressing
Return until all of the code is listed. If your code does not show the values listed,
retype the incorrect line.

3. When you have entered the entire listing, press Control-C and then Return to get back
to the disk/BASIC level indicated by the ']' prompt This is accomplished by pressing
the C key while holding down the Control key, and then pressing the Return key.

4. While BASIC programs always start in the same place in the Apple's memory, and
thus can simply be saved with ilie SA VE command, machine language programs can
start at various places in memory. For this reason, the command to save a machine
language program (BSA VE) must include the starting address (A) and the length (L) of
the program being saved. For the program above, the command:

BSAVE RINGER,A$300,L$C

would be used. (The dollar sign($) signifies that the number is given in hexadecimal
notation.) Directions for saving rnac4ine language files (with the correct address and
length) are included in the text accompanying these programs.

You can now run this program by typing BRUN RINGER. (The address and length are
only necessary for the BSA VE command.) You can also run this program from the
disk/BASIC level (after you have BLOADed it into memory) with a CALL statement
followed by the decimal equivalent of the starting address. In this case, CALL 768 can be
used to run the program since 768 is the decimal form of the number $300.

Sometimes a machine language listing is not a program at all, but is merely a table of data
(such as a Hi-Res graphics shape table). In these cases, the memory addresses and their
contents should be typed in as described above, but you should not attempt to BRUN the file

201

you have saved. You will be able to detennine whether the machine language listing is a
program or a data table by reading the accompanying text.

MORE HELP
Program editors can be used to help speed the entry and editing of More Apple Secrets
programs. MicroSPARC, Inc., the publisher of More Apple Secrets and Nibble Magazine,
also publishes two program editors, GALE and l\1LE.

GALE (Global Applesoft Line Editor) offers screen oriented editing of Applesoft program
lines, global search and replace of any program text, auto line numbering, variable cross
referencing, renumbering, user-definable macro functions and much more.

MLE (Machine Language Editor) will help you enter and edit machine language listings
without using the Monitor. With l\1LE, you can enter machine language code, delete or insert
code to correct typing mistakes and save your work for later editing.

The Assembler is a complete editor and assembler system that can be used to directly enter
and assemble source code. It is available in both DOS 3.3 and ProDOS versions.

To order GALE, l\1LE, The Assembler or a subscription to Nibble Magazine, use the
convenient bound-in card at the back of this book. Phone orders are accepted with Master
Card or VISA- call (617) 371-1660.

202

I
I
I
I
I
I
I
I
I
I
I
I

The Key to
Hidden Apple Treasures

All of the programs from More Apple Secrets are available on disk!
Order them using one of the convenient postage-paid cards below.
You can also order The MicroSPARC Assembler, GALE and MLE, three
super tools for typing and editing programs. And if you're not yet a
subscriber to Nibble Magazine and you like More Apple Secrets, sub
scribe today to get more of the same top-quality programs and tips
- every month!

1---
1 Please send me:
I D More Apple Secrets book (buy one for a friend!) - S19.9S plus S1.7S shipping.•
: D More Apple Secrets disk (DOS 3 .3; can be converted to ProDOS) - $10.00 plus $1 .SO

1
shipping. •

I D Apple Secrets book (first book in the Apple Secrets series) - S19.9S plus S1 .7S shipping.·
I D Apple Secrets disk - S 10.00 plus S 1.SO shipping. •
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

D The MicroSPARC Assembler D DOS 3.3 version D ProDOS version
(please specify one) - S49.9S postpaid.

D GALE (Global Applesoft Line Editor) - S49.9S postpaid .
D MLE (Machine Language Editor) - S29.9S plus $1.SO shipping.•

D Please enter my subscription to Nibble Magazine. I've enclosed S26.9S for 12 issues (U.S. only;
see below for foreign rates) .

Nome Address

City State Zip Code

D I've enclosed a check or money order Charge my: D Visa D MasterCard

Charge Cord Number Expiration Dote

Signature Telephone Number AP

--
Please send me:
D More Apple Secrets book (buy one for a friend!) - S19.9S plus S1.7S shipping.•
D More Apple Secrets d isk (DOS 3.3; can be converted to ProDOS) - $10.00 plus $1.SO

shipping.·

D Apple Secrets book (first book in the Apple Secrets series) - S19.9S plus S1 .7S shipping. '
D Apple Secrets disk - $10.00 plus $1.SO shipping. •

D The MicroSPARC Assembler D DOS 3.3 version D ProDOS version
(please specify one) - S49.9S postpaid.

D GALE (Global Applesoft Line Editor) - S49.9S postpaid.
D MLE (Machine La nguage Editor) - S29.9S plus $1 .SO shipping.·

D Please enter my subscription to Nibble Magazine. I've enclosed S26.9S for 12 issues (U.S. only;
see below for foreign rates).

Nome Address

City State Zip Code

D I've enclosed a check or money order Charge my: D Visa D MasterCard

Charge Cord Number Expira tion Dote

I
I
I
I
I
I
I
I
I
I
I
I
I I Signature Telephone Number AP

~-------~------------- -----------------------' "Shipping : More Apple Secrets d isk and MLE: U.S. shipments. odd S 1.50 per disk: outside the U.S .• odd 52.50 for the first disk
I ordered. and 51 .00 for each additional d isk. More Apple Secrets book: U.S. shipments. odd 51.75 per book: outside U.S ..

odd S2. 75 per book for surface moll. $6.50 per book for a ir moll. Payments must be In U.S. funds. Moss. residents odd 5%
I soles tax on book and software orders.
I
I
I
I

Nibble Magazine Foreign Subscription Rotes: Canada Surface 534.95: Canada Air Moll 559.95; Outside U.S. and Canada
Surface 539.95: Outside U.S. and Canada Air Moil 589.95. U.S. First Closs Rote (for foster delivery) 551.95. All payments must
be In U.S. funds drown on a U.S. bank.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 43 CONCORD, MA

POSTAGE WILL BE PAID BY ADDRESSEE

nibble Magazine
45 Winthrop Street
Concord, MA 01742-9990

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

11 I,,,,,, f 11,,, f, I,, I,, 1, 11.1,, 1, 1,, 1, 1,, 11,,, 1, 1,, 1

I l

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 43 CONCORD, MA

POSTAGE WILL BE PAID BY ADDRESSEE

nibble Magazine
45 Winthrop Street
Concord, MA 01742-9990

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

111 •• •••• 111 ••• 1.1 •• 1 •• 1.11.1 •• 1.1 •• 1.1 •• 11,,·,1.1 •• 1

6

'- -

MORE APPLE SECRETS
The Key to Hidden Apple Treasures!

Unlock more mysteries of your Apple ... with More Apple Secrets! Your Apple
II Plus, Ile, Ile and IIGS are full of hidden treasures - discover them for yourself
with this exciting anthology.

More Apple Secrets is packed with over 50 of the best articles selected from
the popular Tips 'n Techniques column published in Nibble Magazine, the
Reference for Apple II Computing. Nibble's experts teach you their tricks
for creating Mac,like text windows from Applesoft, chaining Applesoft without
a chain, and speeding up programs enough to even hear the difference!

Want to add dozens of new colors to your Hi,Res palette, add two,voice music
and sound effects to your programs, or just customize the sound of your Apple's
beep? Easy! All these programming treasures and many more can be discovered
in More Apple Secrets. In fact, it will even tell you how to hide disk data
from prying eyes!

Each Apple Secret is a foolproof method for streamlining your Applesoft and
machine languge programs, ranging from special programming tips to specific
techniques. Most articles include subroutines you can use in your own pro,
grams. The authors give detailed, line,by,line descriptions of the programs
so you can understand the programming logic. And the demonstration pro,
grams show you how to use the techniques.

More Apple Secrets is the key to hidden Apple treasures. Use it to unlock
the secrets of your Apple!

All programs in More Apple Secrets are available on diskette! See the bound,in
card for ordering information. · · ·

$19.95

0 1

J

